
T.O. 3185-4-638-2741-1

MPX-32

Release 1.58

Reference Manual

Volume I

September 1 ~82

·c
Publication Order Number:. 323-003661-000

-} GOULD
Electronics & Electrical Products

JUNB)

This manual is supplied without representation or warranty of any kind. Gould Inc.,
S.E.L. Computer Systems Division therefote asSUmes no responsibility and shall have no
liability of any kind arising from the supply or use of this publication or any material O ..
contained herein.

LIMITED RIGHTS LEGEND

for

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould S.E.L. and/or its vendors, and
its use, disclosure or duplication is subject to the restrictions stated in the Gould S.E.L.
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited rights as
described in DAR 7-104.9A.

Copyright 1982
Gould Inc., S.E.L. Computer Systems Division

Printed in the U.S.A.

HISTORY

The MPX-32 Release 1.0 Reference Manual, Publication Order Number 323-001011-000,
was printed June, 1979.

Publication Order Number 323-001011-100 (Revision 1, Release 1.3) was printed
February, 1980.

Publication Order Number 323-001011-200 (Revision 2, Release 1.4) was printed July,
1980.

Publication Order Number 323-003661-000 (Revision 3, Release 1.5B) was printed
September, 1982. The updated manual contains the following pages:

Title page
Copyright page
iii/iv through xxi/xxii
1-1 through 1-24
2-1 through 2-36
3-1 through 3-19/3-20
4-1 through 4-77/4-78
5-1 through 5-66
6-1 through 6-42
7-1 through 7-92
8-1 through 8-90
A-I through A-7/ A-8
B-1 through B-21/B-22
C-l through C-39/C-40
D-l and D-2
E-l and E-2
F-l through F-3/F-4
G-l through G-3/G-4
GL-l through GL-ll/GL-12
IN-l through IN-17/IN-18

iii/iv

(:

CONTENTS

1. INTRODUCTION

1.1

1.2

1.3

1.4

1.5

System Description ••••••••••••••
1.1.1 Hardware Interrupts/Traps •••••
1.1.2 Software Interrupt System
1.1.3 Task Priority Levels ••••••
1.1.4 Supervision and Allocation
1.1.5 Memory Allocation ••••••• ;.

1.1.5.1 Dynamic Allocation
1.1.6 File Management •••••••••

1.1.6.1 Permanent Files •••••••••••••

1.1.7
1.1.8

1.1.9

1.1.6.2 Temporary Files •••
1.1.6.3 Random Access Files •••••
1.1.6.4 Disc File Protection ••
1.1.6.5 Dedicated System Files ••
System Services ••••••
Input/Output Operations ••••••••••
1.1.8.1 Direct I/O •••••••••••
1.1.8.2 Device Independent I/O ••
1.1.8.3 Logical File Codes
1.1.8.4 File Access ••••••
Communications Facilities •••
1.1.9.1 Intertask Messages
1.1.9.2 Run Requests •••
1.1.9.3 Global Common •••
1.1.9.4 Datapool ••••••••
1.1.9.5 Internal Communications

1.1.10 Trap Processors ••••
1.1.11 Timer Scheduler ••••••••••••••••••••
System Command Processors ••••••••••••
1.2.1 Terminal Services Manager (TSM)
1.2.2 Operator Communications (OPCOM)
1.2.3 Batch Processing •••••••••
Program Development Utilities •••••••
1.3.1 Task Cataloging (CATALOG) ••

1.3.2
1.3.3
1.3.4
1.3.5
1.3.6

1.3.1.1 Privilege
1.3.1.2 Overlays •••••••••
Debugger (DEBUG) ••••••••••
Macro Library Editor (MACLIBR)
Subroutine Library Editor (LIB ED)
DAT APOOL Editor (DPEDIT)
Text Editor (EDIT) ••••••

Service Utilities •••••••••••••••••
1.4.1 Source Update (UPDATE) ••••
1.4.2 Media Conversion Processor (MEDIA) ••
System Manager Utilities •••••••••
1.5.1 The M.K EY Editor (K EY) ••••••••••

1-4
1-5
1-5
1-9
1-9
1-9

1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-12
1-12
1-12
1-12
1-12
1-13
1-13
1-13
1-13
1-13
1-14
1-14
1-14
1-14
1-14
1-15
1-16
1-16
1-16
1-17
1-17
1-17
1-17
1-18
1-18
1-18
1-18
1-18
1-18
1-19
1-19

v

1.6
1.7

1.5.2
1.5.3

The File Manager (FILEMGR) •••••••••
MPX-32 System Startup, Generation, and

Installation (SYSGEN) •••••••••••
Libraries
Minimum Hardware Configuration for MPX-32

2. SYSTEM OVERVIEW

2.1

2.2

2.3

2.4

2.5
2.6
2.7

vi

Task Activation Sequencing (M.ACT, M.PTSK)
2.1.1 Phase 1 Activation ••••••••••
2.1.2 Phase 2 Activation •••••
2.1.3 Task Service Area (TSA)
MPX-32 CPU Scheduling ••••••
2.2.1 Execution Priorities ••••
2.2.2 Real Time Priority Levels (1-54)
2.2.3 Time Distribution Priority Levels (55-64) ••

2.2.3.1 Priority Migration ••••••••
2.2.3.2 Situational Priority Increments
2.2.3.3 Time Quantum Controls

2.2.4 State Chain Management •••••••
Internal Processing Unit (IPU) Scheduling ••
2.3.1 Options
2.3.2 Biased Task Prioritization •••••••
2.3.3 Nonbiased Task Prioritization •••
2.3.4 IPU Task Selection and Execution
2.3.5 CPU Execution of IPU Tasks •••••
2.3.6 IPU Accounting ••••••••••••••
MPX-32 Task Interrupt Scheduling. • • ••••
2.4.1 Task Interrupt Levels • • • • • • • • • • • • • • • • • •••••••••

2.4.1.1 Task Interrupt Receivers. • • •••••••••
2.4.1.2 Scheduling ••••••••••••••••••
2.4.1.3 System Service Calls from Task Interrupt

Levels
2.4.1.4 Task Interrupt Context Storage •••••••••
2.4.1.5 Task Interrupt Level Gating ••••••••••

2.4.2 User Break Interrupt Receivers (M.BRK and M.BRKXIT)
2.4.3 User End Action Receivers (M.XMEA, M.XREA, M.XIEA)
2.4.4 User Message Receivers (M.RCVR, M.GMSGP/M.XMSGR).
2.4.5 User Run Receivers (M.GRUNP/M.XRUNR)
2.4.6 User Abort Receivers (M.SUAR) •••••••
2.4.7 Task Interrupt Services Summary •••••••
CPU Dispatch Queue Area ••••••
I/O Scheduling •.••
Swap Scheduling. • • • • • • • • ••••••••••••
2.7.1 Structure
2.7.2 Entry Conditions ••••••••••

2.7.3
2.7.4
2.7.5
2.7.6

2.7.2.1 Dynamic Expansion of Address Space
(M.G E/M.GD) ••••••••••••••••••

2.7.2.2 Deallocation of Memory (M.FE/M.FD)
2.7.2.3 Request for Inswap • • • • • ••••••••••••••
2.7.2.4 Change in Task Status. • • • • • • • • • • •••••
Exit Conditions
Selection of Inswap and Outswap Candidates
Outswap Process ••••••••
Inswap Process

1-19

1-19
1-20
1-21

2-1
2-1
2-2
2-2
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-10
2-11
2-11

2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-15
2-15
2-15
2-15
2-16

2-16
2-16
2-16
2-16
2-16
2-16
2-17
2-18

c1.

2.8 Task Termination Sequencing •••••••••••••••••••••••••••••••••• 2-18
2.8.1 Exit Task (M. EXIT) •• 2-18
2.8.2 Abort Task (M.BORT) •••••••••••••••••••••••••••••••••• 2-18
2.8.3 Delete Task (M.DELTSK) ••••••••••.•••••••••••••••••••• 2-18

2.9 Resource Management •••.•••••••••..•...•.••..•••.........•• 2-20
2.9.1 General •• 2-21

2.9.1.1 Static Allocation ••••••••••••••••••••••••••••• 2-21
2.9.1.2 Dynamic Allocation and Deallocation

(M.ALOC, M.DALC) •• 2-21
2.9.1.3 Shared versus Unshared Resources ••••••••••••••••• 2-21
2.9.1.4 Device Allocation (M.PDEV) ••••••••••••••••••••• 2-21
2.9.1.5 Task-Synchronized Access to Common

Resources ••••••••••••••• • • • • • • • • • • • • • • • • •• 2-22
2.9.1.6 File Gating 2-24

2.9.1.6.1 Gating Mechanism and Support
Structures .. 2-24

2.9.1.6.2 Task Implementation •••••••••••••••• 2-26
2.9.1.6.3 Avoiding Deadlocks ••••••••••••••••• 2-26

2.9.2 Operating System Memory Allocation •••••••••••••••••••••• 2-26
2.9.2.1 I/O Buffer and I/O Queues. •• 2-27
2.9.2.2 Blocking Buffers for Blocked I/O • • • • • • • • • • • • • • • • •• 2-27
2.9.2.3 Task Service Area (TSA) •• 2-27

2.9.3 Memory Class Requirements. •• 2-28
2.9.4 Memory Allocation for Tasks. •• 2-28

2.9.4.1 Static Memory Allocation. •• 2-29
2.9.4.1.1 Static vs Dynamic Memory

Partitions•............. 2-29
2.9.4.1.2 Memory Partition Applications ••••••••• 2-29

2.9.4.2 Dynamic Address Space Expansion/Contraction
(M.GE,M.FE,M.GD,M.FD) •••••••••••••••••••••• 2-31

2.9.4.3 Extended Indexed Data Space •••••••••••••••••••• 2-31
2.9.4.4 Intertask Shared GLOBAL and DATAPOOL

Memory (M.SHARE,M.INCL,M.EXCL) ••••••••••••• 2-31
2.9.4.5 Shared Procedures •••••••••••••••••••••••••••• 2-35

2.10 MPX-32 Faults/Traps and Miscellaneous Interrupts. • • • • • • • • • • • • • . • • •• 2-35

3. TASK STRUCTURE AND OPERA nON

3.1
3.2

3.3
3.4

Task Identification
Task Structures ••••••••••••••••••••••.•.••••••••••••..•••••
3.2.1 Non-Shared Tasks
3.2.2 Shared Tasks
3.2.3 Multicopied Tasks
3.2.4 Unique Tasks
T as k Execution.
Intertask Communication •••••••••••••••••••••••••••••••••••••
3.4.1 Receiving Task Services

3.4.1.1 Establishing Message Receivers (M.RCVR) •••••••••••
3.4.1.2 Establishing Run Receivers ••••••••••••••••••••••
3.4.1.3 Execution of Message Receiver Programs ••••••••••••
3.4.1.4 Execution of Run Receiver Programs •••••••••••••••
3.4.1.5 Obtaining Message Parameters (M.GMSGP) ••••••••••
3.4.1.6 Obtaining the Run Request Parameters

(M.G RUNP) .•........•.....••.....••....•..
3.4.1.7 Exiting the Message Receiver (M.XMSGR) •••••••••••

3-1
3-1
3-2
3-4
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-7

3-8
3-8

vii

3.4.2

3.4.3

3.4.4

3.4.1.8

3.4.1.9

Exiting the Run Receiver Task
(M.EXIT or M.XRUNR) •••••

Waiting for the Next Request
(M.SUSP, M.ANYW, or M.EAWAIT)

Sending Task Services •••••••••••••••••••
3.4.2.1 Message Send Service (M.SMSGR) ••
3.4.2.2 Send Run Request Service (M.SRUNR)
3.4.2.3 Waiting for Message Completion •••••
3.4.2.4 Waiting for Run Request Completion ••
3.4.2.5 Message End Action Processing (M.XMEA)
3.4.2.6 Run Request End Action Processing

(M.XREA)•••••.
Parameter Blocks •••••••••••••••••••

Parameter Send Block (PSB) ••••••••••
Parameter Receive Block (PRB)

3.4.3.1
3.4.3.2
3.4.3.3 Receiver Exit Block (RXB) ••••••••••••••
Messages and Run Request Services Summary ••

4. OPERATOR COMMUNICA nONS (OPCOM)

4.1

4.2
4.3

4.4

viii

Overview
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Task Names, Task Numbers, and Owners
Batch Jobs, Job Numbers, and Owner Names
Restricting OPCOM Commands •••
Restricting Owner Name Privileges
The EXIT Command ••••

4.1.6 System Task Restrictions
Activating OPCOM ••••••••••••
Using OPCOM Commands •••••••
4.3.1 At the OPCOM Console •

4.3.2

4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5

Information Messages • • • • • • ••••
Action Messages. • • • • • • • • • • ••••
Commands.
Aborting a Command •••••••••••••••••••
Correcting Command Line Errors

4.3.1.6 Command Processing
At the Terminal ••••••••••••
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4

Commands •••••••••
Aborting a Command
Command Line Errors. • ••••
Command Processing ••••••••

OPCOM Commands •••••••••••••••
4.4.1 ABORT Command •••
4.4.2 ACTIVATE Command
4.4.3 BATCH Command ••••••••
4.4.4 BREAK Command
4.4.5 CONNECT Command ••••••
4.4.6 CONTINUE Command •••••••••••••••••••
4.4.7 DELETETIMER Command ••
4.4.8 DEPRINT Command •••••••
4.4.9 DEPUNCH Command ••••
4.4.10 DISABLE Command •••••••••••••••••
4.4.11 DISCONNECT Command ••
4.4.12 DUMP Command ••
4.4.13 ENABLE Command •••••

3-8

3-9
3-9
3-9
3-9

3-10
3-10
3-10

3-10
3-10
3-11
3-14
3-16
3-18

4-1
4-1
4-2
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-8

4-12
4-13
4-15
4-17
4-18
4-20
4-22
4-23
4-25
4-27
4-28
4-29
4-30

(

(

4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.4.21
4.4.22
4.4.23
4.4.24
4.4.25
4.4.26
4.4.27
4.4.28
4.4.29
4.4.30
4.4.31
4.4.32
4.4.33
4.4.34
4.4.35
4.4.36
4.4.37
4.4.38
4.4.39
4.4.40
4.4.41

ENTER Command ••••
EST ABLISH Command
EXIT Command ••••••••••••••••••
HOLD Command
KILL Command
LIST Command ••
MODE Command
MODIFY Command.
OFFLINE Command ••••••
ONLINE Command ••••••••••••
PURGEAC Command
REDIRECT Command
REMOVE Command
REPRINT Command
REPUNCH Command
REQUEST Command ••
RESUME Command
SA VEAC Command ••
SEARCH Command
SEND Command •••••
SETTIMER Command
SNAP Command ••
START Command
STATUS Command
SYSASSIGN Command
TIME Command •••
TURNON Command
URGENT Command

5. INTERACTIVE PROCESSING

5.1

5.2

User Interaction
5.1.1 Logging On
5.1.2 Accessing Batch, Independent, or Interactive

Processing Environments.
Returning to TSM •••••••••••••
Logging Off
Special Keys ••••••••••
Communicating with Other Terminals
File Access •••••••••••

5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8 A Typical Terminal Session
Executing Tasks under TSM ••
5.2.1 Assignments ••••••••••
5.2.2 Options

5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.2.2.1
5.2.2.2
5.2.2.3
5.2.2.4
5.2.2.5
5.2.2.6
Breaks
Wakeup's

Prompting Option •••••••••••••••••••
Lower Case Option
Internal Processing Unit (IPU) Option.
Error/Noerror Option ••••••••
Command/Nocommand Option.
Text/Notext Option

TSM Screen Logic.
Tabs
Project Names/Numbers

4-31
4-32
4-34
4-35
4-37
4-38
4-44
4-45
4-47
4-48
4-48
4-49
4-50
4-51
4-53
4-55
4-56
4-57
4-58
4-60
4-62
4-64
4-65
4-66
4-73
4-75
4-76
4-77

5-1
5-1

5-3
5-7
5-7
5-8
5-9
5-9

5-10
5-11
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-12
5-13
5-13
5-14
5-14
5-15

ix

5.3

5.4

5.5

5.6

x

Using. Command Files. eo ••••••••••••••••••

5.3.1 Activating Tasks from Command Files ••
5.3.2 Chaining Command Files ••••••••••
5.3.3 Command File-to-Terminal Interplay.
5.3.4
5.3.5
5.3.6

5.3.7

Error Processing ••••••••••••••••
Conditional Processing and Parameter Passing
Concatenating a Value to a User-Supplied

Parameter ••••••
Breaks and Wakeups ••

TSM Commands •••••••••••
5.4.1 ACCOUNT COl'T!mand
5.4.2 ALLOCATE Command
5.4.3 ASSIGN 1 Command
5.4.4 ASSIGN2 Command
5.4.5 ASSIGN3 Command
5.4.6 ASSIGN4 Command
5.4.7 CLEAR Command
5.4.8 CPUTIME Command ••
5.4.9 DEBUG Command
5.4.10 DEFM Command
5.4.11 DEFNAME and %name Commands ••••••••
5.4.12 ENDM - End Macro.
5.4.13 EOJ Command •••••
5.4.14 ERR? Command ••••
5.4.15 EXECUTE or RUN Command
5.4.16 EXIT Command ••.•••••••
5.4.17 GOTO Command (Command File Only).
5.4.18 IF A and IFP Commands (Command File Only) ••
5.4.19 IFF Command (Command File Only) ••
5.4.20 1FT Command (Command File Only) ••
5.4.21 JOB Command ••••
5.4.22 LlNESIZE Command
5.4.23 , Message Command
5.4.24 NOTE Command ••••
5.4.25 OPTION Command.
5.4.26 PAGESIZE Command
5.4.27 PROJECT Command ••
5.4.28 RESETF Command
5.4.29 SCAN Command ••
5.4.30 SELECT Command
5.4.31 SETF Command •••••••••••••••••••
5.4.32 SIGNAL Command
5.4.33 USERNAME Command
5.4.34 WAIT Command
5.4.35 WHO Command
Sample Command Files
5.5.1 Example 1
5.5.2 Example 2 ••
5.5.3 Example 3 •••
Developing an Interactive Task
5.6.1 TSM Scanner (M. TSCAN) •••
5.6.2 TSM Break Processor (M. TBRKON)
5.6.3 TSM Conversion Services ••••••••

5.6.3.1 Convert ASCII Decimal to Binary

.. ' ...

(M.CONADB)

5-16
5-16
5-16
5-16
5-17
5-17

5-18
5-18
5-18
5-22
5-23
5-24
5-25
5-26
5-27
5-27
5-27
5-28
5-29
5-30
5-30
5-31
5-31
5-32
5-32
5-32
5-33
5-34
5-36
5-38
5-39
5-39
5-39
5-40
5-42
5-42
5-42
5-43
5-43
5-44
5-45
5-46
5-47
5-48
5-48
5-48
5-49
5-50
5-52
5-52
5-54
5-55

5-55

(....•.
'.

-. .,.../

5.7

5.6.3.2 Convert ASCII Hexadecimal to Binary
(M.CONAHB) ••••••••••••••

5.6.3.3

5.6.3.4

Convert Binary to ASCII Decimal
(M.CONBAD) ••••••••••••••

Convert Binary to ASCII Hexadecimal

5.6.4
(M.CONBAH) ' ••

Terminal I/o ...
5.6.4.1
5.6.4.2
5.6.4.3

Reads •••••••
Writes ••••••••
Close and Open

5.6.4.4 Rewind •••••
5.6.5 Sample Interactive Task
Terminal Initialization (INIT) ••••
5.7.1 The LOGONFLE ••••••
5.7.2 ADS Terminal Record Syntax and Defaults •••••••
5.7.3 ALIM Terminal Record Syntax and Defaults
5.7.4 8-Line Asynchronous Communications Controller

5.7.5
5.7.6
5.7.7

Record Syntax and Defaults
Sample LOGONFLE ••••••••••••
Using INIT •• ...
INIT Errors

..
....

6. BATCH PROCESSING

6.1
6.2
6.3
6.4
6.5

Job Flow•.•..•....•.•.•
System Files
Spooled Input Control via $SELECT
Deck Organization ••••••••••••
Job Control Statements ••••••••
6.5.1 $ACTIV A TE Statement ••
6.5.2 $ALLOCATE Statement
6.5.3 $ASSIGN 1 Statement
6.5.4 $ASSIGN2 Statement ...
6.5.5 $ASSIGN3 Statement •••••

....

. . .
6.5.6 $ASSIGN4 Statement
6.5.7 $DEBUG Statement ••••••••••••••••••••
6.5.8 $DEFNAME Statement
6.5.9 $EOJ Statement ••••••
6.5.10 $EXECUTE Statement
6.5.11 $GOTO Statement
6.5.12 $IFF Statement •• · .
6.5.13 $IFT Statement ••••••••••
6.5.14 $JOB Statement ••••••
6.5.15 $NOTE Statement ·
6.5.16 $OBJECT Statement. ·
6.5.17 $OPTION Statement •••••
6.5.18 $RESETF Statement ••
6.5.19 $SCAN Statement • · ... ·
6.5.20 $SELECTD Statement. · ...
6.5.21 $SELECTF Statement ••• ·
6.5.22 $SELECTLD Statement ••
6.5.23 $SELECTLF Statement •• ·
6.5.24 $SELECTS Statement ••• ·
6.5.25 $SETF Statement ••••• ·
6.5.26 $USERNAME Statement

5-55

5-56

5-57
5-58
5-58
5-58
5-58
5-58
5-59
5-60
5-60
5-62
5-63

5-64
5-65
5-65
5-66

6-1
6-3
6-4
6-6
6-6
6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-17
6-18
6-18
6-20
6-22
6-25
6-25
6-26
6-27
6-27
6-28
6-30
6-31
6-33
6-34
6-34
6-35

xi

6.6
6.7
6.8

6.9

6.5.27
6.5.28

$$ Statement ••
$$$ State ment

Job Accounting
Punched Output
Listed Output •••
6.8.1 Task Aborted •••••••••••
6.8.2 Activity Deleted
6.8.3 End of Job •••••
6.8.4 Error in Field •••
6.8.5 Execution Time
6.8.6 Records Ignored
6.8.7 SGO Overflow
6.8.8 Elapsed Time ••••••
Examples •••••••••••

7. FILE AND DEVICE ALLOCA nON AND I/O

7.1

7.2

7.3

7.4

xii

MPX-32 Logical Input/Output
7.1.1 Logical File Codes ••
7.1.2 File Control Blocks ••

7.1.2.1 Logical I/O Initiation
7.1.3 Logical File Code Assignment ••

7.1.3.1 Making Assignments
7.1.3.2 I/O Linkages

MPX-32 File Access ••••••••••
7.2.1 File Management ••••••

7.2.1.1 Temporary versus Permanent Files
7.2.1.2 System versus User Files ••••••
7.2.1.3 Password and Key Protection
7.2.1.4 System Master Directory (SMD).
7.2.1.5 System Master Directory (SMD) Entries

MPX-32 Device Access •••••••••••••••• e· •••••••••••

7.3.1

7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7

Special Device Specifications and Handling
7.3.1.1 Magnetic Tape ••••••••••••
7.3.1.2 Temporary Disc File Size ••••
Examples of Device Identification Levels ••
GPMC Devices •••••••••••
NULL Device ••••••
OPCOM Console •••••
Special System Files ••
Floppy Discs ••••••••
7.3.7.1 Generating Floppy Discs as Discs ••
7.3.7.2 Generating Floppy Discs as Magnetic

Tapes
7.3.8 Samples.
I/O Processing Overview •••••
7.4.1 Wait I/O ••••••••••••••

7.4.2

7.4.3

7.4.1.1
7.4.1.2

Wait I/o Errors
Wait I/o Exit and Abort Processing

7.4.1.3 Error Processing and Status Inhibit
No-Wait I/O •••••••••••...••••••••••••
7.4.2.1 No-Wait I/O Complete Without Errors
7.4.2.2 No-Wait I/O Complete With Errors •••••••••
7.4.2.3 No-Wait End Action Return to 10CS
Direct I/O•.....

6-35
6-36
6-37
6-37
6-37
6-37
6-38
6-38
6-39
6-39
6-39
6-40
6-40
6-40

7-1
7-2
7-2
7-2
7-2
7-3
7-3
7-4
7-4
7-6
7-6
7-7
7-7
7-8

7-10
7-10
7-10
7-13
7-13
7-14
7-14
7-14
7-14
7-16
7-16

7-16
7-17
7-18
7-18
7-18
7-19
7-19
7-19
7-19
7-20
7-20
7-20

/

'\

7.5

7.6

7.7

7.8

c

7.4.4 Blocking •••••••••••••••
I/o Via Special System Files ••••••
7.5.1 System Listed Output Files
7.5.2 System Binary Output Files.
7.5.3 System General Object Files
7.5.4 System Control Files ••••
Setting Up File Control Blocks ••
7.6.1 FCB Word Descriptions.

7.6.2
7.6.3

7.6.1.1 Word 0 •••
7.6.1.2 Word 1. ..
7.6.1.3 Word 2 ••••••••••
7.6.1.4 Word 3 •••
7.6.1.5 Words 4 and 5 ••
7.6.1.6 Word 6 ••
7.6.1.7 Word7 ••
7.6.1.8 Word 8."
7.6.1.9 Word 9 •••
7.6.1.10 Word 10 ••
7.6.1.11 Word 11 •
7.6.1.12 Word 12 •••••••
7.6.1.13 Word 13 ••
7 .6.1.14 Word 14 ••
7.6.1.15 Word 15 ••
Macros ••••••••
Sample FCB Setup Non-Macro.

7.6.4 Sample FCB Setup-Macro •••••
Setting Up Type Control Parameter Blocks (TCPB's) for

the OPCOM Console ••••••••••••••••••••••••••
Services
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.8.7

7.8.8
7.8.9
7.8.10
7.8.11
7.8.12
7.8.13
7.8.14
7.8.15
7.8.16
7.8.17
7.8.18
7.8.19
7.8.20
7.8.21
7.8.22
7.8.23
7.8.24
7.8.25

M.ALOC - Allocate File or Peripheral Device ••
M.BACK - Backspace Record or File ••
M.CLSE - Close File ••••••••••••••
M.CREA TE - Create Permanent File ••
M.CW AT - System Console Wait •••••••••••
M.DALC - Deallocate File or Peripheral Device
M.DELETE - Delete Permanent File or Non-SYSGEN

Memory Partition. • • • • • • • • • • • • • • • • • • ••••
M.FADD - Permanent File Address Inquiry. . • ••••
M.FILE - Open file •
M.FSLR - Release Synchronization File Lock •••••
M.FSLS - Set Synchronization File Lock. • •••••••••
M.FWRD - Advance Record or File •••••••••••••••••••
M.FXLR - Release Exclusive File Lock ••••••
M.FXLS - Set Exclusive File Lock
M.LOG - Permanent File Log ••••••••••••••
M.PDEV - Physical Device Inquiry. • • • • • ••••
M.PERM - Change Temporary File to Permanent ••••••••••
M.READ - Read Record ••••••••••
M.RELP - Release Dual Ported Disc ••••
M.RESP - Reserve Dual Ported Disc •••
M.RRES - Release Channel Reservation
M.RSML - Resourcemark Lock •••
M.RSMU - Resourcemark Unlock.
M.RSRV - Reserve Channel. • ••••
M.R WND - Rewind File •••••••••

7-21
7-21
7-22
7-22
7-23
7-23
7-24
7-28
7-29
7-29
7-36
7-42
7-42
7-42
7-43
7-43
7-43
7-43
7-44
7-44
7-44
7-44
7-44
7-45
7-46
7-46

7-47
7-48
7-49
7-52
7-54
7-55
7-58
7-58

7-60
7-61
7-63
7-64
7-65
7-67
7-68
7-69
7-71
7-73
7-75
7-77
7-78
7-79
7-79
7-80
7-81
7-82
7-83

xiii

7.8.26
7.8.27
7.8.28
7.8.29
7.8.30
7.8.31
7.8.32
7.8.33
7.8.34
7.8.35
7.8.36

M.TYPE - OPCOM Console Type ••••••••••••••••••••••••• 7-84
M.UPSP - Upspace•............. 7-85
M.USER - Username Specification •••••••••••••••••••••••• 7-86
M.WAIT - Wait I/O ...•..•.•...•...............•••..•. 7-87
M.WEOF - Write EOF•..•.•.......•. 7-88
M. WRIT - Write Record ••••.•••.••••••.••.•.•••.•..••• 7-89
M.XIEA - No-Wait I/O End Action Return •••••••••••••••••• 7-90
Erase or Punch Trailer •••••••.••..•.•.•.••.••..•...••• 7-90
Execute Channel Program. •• 7-91
Release FHD Port 7-92
Reserve FHD Port•............ 7 -92

8. SYSTEM SERVICES

8.1
8.2

xiv

RTM System Services Under MPX-32 •••••••••••••••••••••••••••••
Task Execution Services
8.2.1
8.2.2

8.2.3
8.2.4

8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15
8.2.16
8.2.17
8.2.18
8.2.19
8.2.20
8.2.21
8.2.22
8.2.23
8.2.24
8.2.25
8.2.26
8.2.27
8.2.28
8.2.29
8.2.30
8.2.31
8.2.32
8.2.33
8.2.34
8.2.35
8.2.36
8.2.37

M.ACTV - Activate Task ••••••••••••••.•.•.••••••••.•••
M.ANYW - Wait for Any No-Wait Operation Complete;

Message Interrupt or Break Interrupt •••••••••••••••••••••
M.ASYNCH - Set Asynchronous Task Interrupt •••••••••••••••
M.BORT - Abort Specified Task, Abort Self,

or Abort with Extended Message ••••••••••••••••••••••••
M.BRK - Break/Task Interrupt Link •••••••••••••••••••••••
M.BRKXIT - Exit from Task Interrupt Level •••••••••••••••••
M.CDJS - Submit Job from Disc File ••••••••••••••••••••••
M.CONN - Connect Task to Interrupt ••••••••••••••••••••••
M.DATE - Date and Time Inquiry •••••••••••••••••••••••••
M.DEBUG - Load and Execute Interactive Debugger •••••••••••
M.D EL TSK - Delete Task •.••••••••••.•••••.•••••••.•••
M.DEVID - Get Device Mnemonic or Type Code ••••••••••••••
M.DISCON - Disconnect Task from Interrupt ••••••••••••••••
M.D L TT - Delete Timer Entry •••••••••••••••••••••••••••
M.DSMI - Disable Message Task Interrupt •••••••••••••••••••
M.DSUB - Disable User Break Interrupt ••••••••••••••••••••
M.EA WAIT - End Action Wait •••••••••••••••••••••••••••
M. ENMI - Enable Message Task Interrupt ••••••••••••••••••
M.ENUB - Enable User Break Interrupt ••••••••••••••••••••
M.EXIT - Terminate Task Execution ••••••••••••••••••••••
M.GMSGP - Get Message Parameters ••••••••••••••••••••••
M.GRUNP - Get Run Parameters •••••••••••••••••••••••••
M.HOLD - Program Hold Request ••••••••••••••••••••••••
M.ID - Get Task Number •....•....•...••••.•.•.••...•••
M.INT - Activate Task Interrupt •••••••••••••••••••••••••
M.MYID - Get Task Number ••.•.•.•••.•.•..•.•.•.•....•
M.OLA Y - Load Overlay Segment ••••••••••••••••••••••••
M.PGOW - Task Option Word Inquiry ••••••••••••••••••••••
M.PRIL - Change Priority Level •••••••••••••••••••••••••
M.PTSK - Parameter Task Activation •••••••••••••••••••••
M.RCVR - Receive Message Link Address ••••••••••••••••••
M.SETS - Set User Status Word ••••••••••••••••••••••••••
M.SETT - Create Timer Entry •••••••••••••••••••••••••••
M.SMSGR - Send Message to Specified Task ••••••••••••.••••
M.SRUNR - Send Run Request to Specified Task ••••••••••••••
M.SUAR - Set User Abort Receiver Address •••••••••••••••••
M.SUME - Resume Task Execution •.••••••••••••••••••••••

8-2
8-3
8-3

8-5
8-6

8-7
8-12
8-13
8-14
8-16
8-18
8-20
8-21
8-23
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-37
8-39
8-40
8-42
8-44
8-45
8-46
8-49
8-50
8-52
8-55
8-57
8-59
8-60

c

8.2.38 M.SUSP - Suspend Task Execution ••••••••••••••••••••••••
8.2.39 M.SYNCH - Set Synchronous Task Interrupt •••••••••••••••••
8.2.40 M. TDA Y - Time-of Day Inquiry ••••••••••••••••••••••••••
8.2.41 M. TSTE - Arithmetic Exception Inquiry ••••••••••••••••••••
8.2.42 M. TSTS - Test User Status Word •••••••••••••••••••••••••
8.2.43 M. TSTT - Test Timer Entry •••••••••••••••••••••••••••••
8.2.44 M. TURNON - Activate Program at Given Time of Day •••••••••
8.2.45 M.XBRKR - Exit from Task Interrupt Level •••••••••••••••••
8.2.46 M.XMEA - Exit from Message End Action Routine ••••••••••••
8.2.47 M.XMSGR - Exit from Message Receiver •••••••••••••••••••
8.2.48 M.XREA - Exit from Run Request End Action Routine •••••••••
8.2.49 M.XRUNR - Exit Run Receiver ••••••••••••••••••••••••••
8.2.50 M.XTIME - Task CPU Execution Time •••••••••••••••••••••
8.2.51 Debug Link Service

8.3 Memory Management Services ••••••••.••••••••••••••••••••••••••
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12

Appendix A
Appendix B
AppendixC
Appendix D
Appendix E
Appendix F
Appendix G

M.ADRS - Memory Address Inquiry •••••••••••••••••••••••
M.DUMP - Memory Dump Request ••••••••••••••••••••••••
M.EXCL - Free Shared Memory ••••••••••••••••••••••••••
M.F ADD - Permanent File Address Inquiry ••••••••••••••••••
M.FD - Free Dynamic Extended Indexed Data Space •••••••••••
M.FE - Free Dynamic Task Execution Space •••••••••••••••••
M.GADRL - Get Address Limits •••••••••••••••••••••••••
M.GD - Get Dynamic Extended Indexed Data Space •••••••••••
M.GE - Get Dynamic Task Execution Space •••••••••••••••••
M.INCL - Get Shared Memory •••••••••••••••••••••••••••
M.SHARE - Share Memory with Another Task ••••••••••••••••
M.SMULK - Unlock and Dequeue Shared Memory •••••••••••••

MPX-32 Device Access •••••••••••••••••••••••••••••••
System Services Cross Reference Charts ••••••••••••••••••
MPX-32 Abort and Crash Codes •••••••••••••••••••••••••
Numerical Information •••••••••••••••••••••••••••••••
Powers of Integers•...••.•...••.............
ASCII Interchange Code Set •••••••••••••••••••••••••••
lOP Panel Commands•....•..•.........

8-61
8-63
8-64
8-65
8-66
8-67
8-68
8-70
8-71
8-72
8-73
8-74
8-75
8-76
8-77
8-77
8-78
8-80
8-81
8-81
8-82
8-83
8-84
8-85
8-86
8-88
8-90

A-I
B-1
C-l
D-l
E-l
F-l
G-l

Gl<JSSar'Y •••••••••••••••.•••••••••••••••••••••••••••••••••••••• G L-l

Index. .. IN-l

xv

figure

1-1
1-2

2-1
2-2
2-3
2-4

3-1
3-2
3-3
3-4
3-5

5-1
5-2

6-1

7-1
7-2
7-3
7-4-
7-5

xvi

ll..LUSTRA nONS

Title Page

MPX-32 Processors and Utilities •• 1-2
Hardware/Software Priorities • 1-6

Task Service Area (TSA) Structure. •• 2-3
File Lock Overview 2-25
Sample Task Address Space. •• 2-30
Sample Allocation of Common Memory
Partitions and Common Code. •• 2-34

Non-Shared Task Address Space •••••••••••••••••••••••••••••
Shared Task Address Space ••••••••••••••••••••••••••••••••
Parameter Send Block (PSB) •••••••••••••••••••••••••••••••
Parameter Receive Block (PRB) ••••••••••••••••••••••••••••
Receiver Exit Block (RXB) ..•••........•...•........•...•.

Interactive/Batch/Real Time Environments ••••••••••••••••••••
TSM/Job Control Commands •••••••••••••••••••••••••••••••

Data Flow for a Job

(Deleted)•....•......•••..•.•••.••••....••......
SMD Entries .. .
File Control Block
Punched Tape Format ••.••••••••••••••••••••••••.•••...••
Type Control Parameter Block •••••••••••••••••••••••••••••

3-3
3-5

3-11
3-15
3-16

5-4-
5-6

6-2

7-9
7-25
7-40
7-47

[-
Table

1-1
1-2
1-3

2-1
2-2
2-3
2-4

3-1

5-1

6-1

7-1
7-2
7-3
7-4
7-5
7-5a

("" 7-6

7-7
7-8

TABLES

Title

CONCEPT /32 Trap Vectors ••••••••••••••••••••••••••••••••
CONCEPT /32 Interrupt Vectors •••••••••••••••••••••••••••••
MPX-32 Device Support

MPX-32 State Queues
Task Interrupt Operation Services Summary ••••••••••••••••••••
Task Termination Sequencing (EXIT, ABORT, DELETE) ••••••••••••
MPX-32 Faults/Traps and Miscellaneous Interrupts •••••••••••••••

1-7
1-8

1-22

2-7
2-14
2-19
2-36

Message and Run Request Services Summary ••••••••••••••••••• 3-19

Special Keys .. 5-8

Terminating Conditions for Spooled Input Processing. • • • • • • • • • • • •• 6-5

Disc Description Table. .. 7-5
MPX-32 Device Type Codes ••••••••••••••••••••••••••••••• 7-15
FCB Bit Interpretations •••••••••••••••••••••••••••••••••• 7 -26
Non Extended I/O Device Status •••••••••••••••••••••• • • • • •• 7 -28
Device Functions (Standard Devices) •• 7-31
Device Functions (Terminals) •••.•••••••••••••••••••••••••• 7-34
Acceptable/Nonacceptable Device Transfers Specified

in TCW Word 1, Bits 12 and 30/31 ••••.••••••••••••••••••••• 7-35
Default and Special Device Formatting ••••••••••••••••••••••• 7-38
Standard Terminal and Line Printer Carriage Control

Characters and Interpretation. •• 7-41

xvii/xviii

(,
Documentation Conventions

Notation conventions used in command syntax and message examples throughout this
manual are described below.

lowercase letters

In command syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

!ACTIVATE taskname

means replace taskname with the name of a task, e.g.,

!ACTIVATE DOCCONV

In messages, lowercase letters identify a variable element. For example,

**BREAK ** ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In command syntax, uppercase letters specify a keyword must be entered as shown for
input, and will be printed as shown in output. For example,

SA VE filena me

means enter SAVE followed by a filename, e.g.,

SA VE DOCCONV

In messages, uppercase letters specify status or information. For example,

taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces { l
Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

I counter l
startbytei

means enter the value for either counter or startbyte.

xix

Brackets []

An element inside brackets is optional. For example,

[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example,

[base name]
progname

means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example,

TRACE [lower address [upper address]]

means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.

Commas between multiple brackets within an encompassing set of brackets are semi
optional; that is, they are not required unless subsequent elements are selected. For
example,

M.OFCB fcb,ifc ~[a], [b] ,[c], [d], [e]]

could be coded as

M.OFCB FCB12,IN

or

M.OFCB FCBl2,IN"ERRAO

or

M.OFCB FCB13,OUT"ERAO"PCK

Horizontal Ellipsis

The horizontal ellipsis indicates the previous element may be repeated. For example,

name , ••• ,name

means you may enter one or more name values separated by commas.

xx

{'
"\ .. j~'

C Vertical Ellipsis

The vertical ellipsis specifies commands, parameters, or instructions have been
omitted. For example,

COLLECT 1

LIST

means one or more commands have been omitted between the COLLECT and LIST
commands.

Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in parentheses; e.g., (234).

(. . Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that may
be typed by the user as an abbreviation. For example,

ACTIVATE taskname

means spell out the command verb ACTIVATE or abbreviate it to ACTI.

RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,

TSM > EDIT

means TSM was written to the terminal; EDIT is typed by the user.

Subscript Delta A

A subscript delta specifies a required space. For example,

EDT> STO.TSSPGM

means a space is required between ° and T.

xxi/xxii

(-". "

J.,I

1. INTRODUCTION

The SYSTEMS Mapped Programming Executive (MPX-32) is a disc-oriented,
multiprogramming operating system that supports concurrent execution of multiple tasks
in interactive, batch, and real time environments. MPX-32 provides functionality in
many areas, including memory management, terminal support, multiple batch streams,
and intertask communication.

MPX-32 employs the SelMAP to fully support the 16MB address space of the 32 Series.
Each task executes in a unique address space which may be expanded under task control
up to 2MB of memory. An integrated CPU scheduler and a swap scheduler provide
efficient use of main memory by balancing the in-core task set based on time
distribution factors, software priorities, and task state queues. The SelMAP is used to
perform dynamic relocation of tasks during inswap.

Tasks operating under MPX-32 can be activated and/or resumed by hardware interrupts,
system service requests, interactive commands, job control directives, or by the
expiration of timers. Multiple copies of a task can be executed concurrently in
interactive, batch, or real time environments. Through its various scheduling capabilities,
MPX-32 provides the flexibility needed to adapt system operation to changing real time
conditions.

The MPX-32 software package is composed of various software modules including the
resident OS (IOCS, CPU and Swap schedulers, Resource Allocator, File System
Executive, and reentrant system services), device and interrupt handlers, a Terminal
Service Manager (TSM), a system generator (SYSGEN), and utilities such as a Text
Editor, Debugger, and File Manager. The Macro Assembler (Model 1011) is also provided
as part of the MPX~32 package. Figure 1-1 describes the system nucleus and utilities.

Memory-only MPX-32 (MPX-32/M) is a condensed version of the MPX-32 operating
system that does not support any file structure capability. The system is designed for
use in real-time environments where all tasks reside permanently in memory and limited
operator communications is required. System installation and initial task
loading/activation is accomplished via a System Distribution Tape (SOT) giving the user
the option of loading a modified version of the operator communications task which
allows limited communications with the system via the operator's console.

The Internal Processing Unit (IPU) is a second central processor designed to work with a
Series 32 CPU to increase system throughput. The IPU is attached to the SelBUS like the
first CPU and shares all memory (including the resident operating system area) with the
first CPU. The IPU's function is to execute user's task level code in parallel with CPU
operation. (The IPU is optional hardware and must be specified during SYSGEN for use
on a system.)

To avoid contention between the IPU and CPU, there are some limitations on what the
IPU can do:

It cannot communicate with peripherals (perform I/O).

It cannot process supervisor call (SVC) or call monitor (CALM) system services.

It cannot execute interrupt control instructions.

1-1

.
I
tV

:!1
~ ;; -I -•
3:
"a
::<
~

l
~ en

~
Q.

c:
r+ .. -.. r+ ..
Il

r
~- /'

co
N
o
OJ

~

I T
SYSTEM
COMMAND LANGUAGE
PROCESSORS PROCESSORS

TSM III ASSEMBLER U,BI

OPCOM III FORTRAN (t.BI
BATCH (BI PASCAL II.BI

COBOL II.BI
BASIC III

SYSTEM NUCLEUS

IOes
CPU SCHEDULER
SWAP SCHEDULER
RESOURCE ALLOCATOR
FILE SYSTEM EXECUTIVE

I 1 I 1
SYSTEM PROGRAM USER

MANAGER DEVELOPMENT SERVICE UTILITIES

UTILITIES UTILITIES UTILITIES AND TASKS

KEY II.BI CATALOG II.BI MEDIA II.B) II.B,R)

FILEMGR II.BI DEBUG II.BI UPDATE II.BI

SYSGEN II.BI MACLIBR II.BI
ACCOUNTING II.BI LIBED II.BI
COMPRESS II.BI DPEDIT II.BI

EDITOR III

!

"

r~
\ '

"

c·

('

Therefore, the IPU and CPU are designed to manage task execution transparently around
the IPU limitations. For example, if the IPU is executing a task and encounters a service
it cannot perform, a trap is sent to the CPU, the CPU takes over execution of the task at
that point, and the task remains in the CPU until completion or it is reselected for IPU
execution.

MPX-32 standard features include:

o Support for the full 16MB addressability of the 32 Series.

o Up to 255 tasks executing concurrently.

o 64 software priority levels, 10 of which are time distributed.

o Servicing of all standard peripheral devices including XIO controllers. I/O
buff er ing for 32/5x ser ies controllers.

o Standard handlers for interrupts and traps.

o Intertask communications, including send-receive.

o Intertask shared memory partitions, e.g., GLOBAL common and
DATAPOOL.

0

0

0

0

0

0

0

Dynamic allocation and deallocation of memory and peripherals.

Multiple batchstreams including multiple spooled input and output queues.

Wait and no-wait I/O capabilities including automatic blocking, buffering,
and queueing.

Terminal support for up to 64 devices, including device independent
operation and an extensive repertoire of online commands.

Automatic task reentrancy through separation of pure code and data areas.

Reentrant system services available to all tasks.

Several levels of system security including access restrictions based on task
ownership.

o File management, assignment, and security.

o Up to 255 logical files (files or devices) opened concurrently per task.

o Project accounting capability.

o Transparent support of the IPU.

1-3

MPX-32 supports the 32/7x computers and the CONCEPT /32 computers, i.e., the
SYSTEMS 32/27 and SYSTEMS 32/87.

The following is an outline identifying the major differences in operating MPX-32 on
SYSTEMS 3217x and CONCEPT/32 computers:

32/7x

8KW map block

16 protection granules per map
block

1 megabyte logical address space

Supports E-class and F-class
magnetic tape

Uses TLC console

Supports E-class or D-class GPMC

Supports E-class or F-class discs

CALM or SVC callable

Supports IPU

Bounding of data types is not
enforced; results are
indeter minate

1.1 System Description

CONCEPT/32

2KW map block

4 protection granules per map block

2 megabyte logical address space

Supports F-class magnetic tape or
Floppy Disc

Uses lOP console

Supports D-class GPMC

Supports F-class discs

SVC callable only (CALM instructions
are automatically converted to their
equivalent SVC type)

No IPU support

Enforces (via traps) doubleword and 8
word bounding for double word and file
instructions

SYSTEMS' 32 Series computers operating under MPX-32 use hardware and software
priorities for scheduling and executing tasks. Figure 1-2 shows the various MPX-32
software elements and the hardware and software priority levels that are assigned to
each.

t-4

/

(

1.1.1 Hardware Interrupts/Traps

A SYSTEMS 32/7x computer can contain up to 112 hardware priority interrupt and trap
levels. The CONCEPT/32 computers support up to 96 hardware interrupts and traps.
The exact number in a particular system is dependent on the user's requirements and the
number of peripheral devices in the configuration.

The highest hardware priority levels in the system are reserved for the basic system
integrity interrupts and traps. These include the Power Fail-Power Up traps and System
Override interrupts and traps. Lower levels are used for the I/o transfer interrupts,
Memory Parity Trap, Console Interrupt, and I/o service interrupts.

The next lower group of interrupts and traps are used for exceptional conditions, Call
Monitor and Supervisor Call requests, and Real-Time Clock. The exceptional conditions
include Non-Present Memory Trap, Undefined Instruction Trap, Privilege Violation Trap,
and Arithmetic Exception Interrupt.

All lower hardware priority levels are used for external interrupts. User tasks can be
connected directly or indirectly to the external interrupts.

1.1.2 Software Interrupt System

MPX-32 provides 64 software priority levels for controlling the user's application. All
system scheduling is performed by priority. Users can assign multiple tasks to any
priority level and thus achieve a high level of multiprogramming versatility. The
software priority levels are used by the Resource Allocator for peripheral and memory
allocation, by the I/O Supervisor for the· queueing of I/O requests, and by MPX-32
whenever CPU control is allocated.

1-5

,

HARDWARE 'RIORITIES

00 POwER FAIL·SAFE/AUTOSTART IPIlI')

01 SYSTEM OVERRIDE IPOI

02 MEMORY PARITY IP02

03 NON·PRESENT MEMORY IP03 ,.. EXEC

~ I
04 UNDEFINED INSTRUCTION 1P04 ~ MONS

05 PRIVILEGE VIOLATION 1P05 I- IOCS

OS SuPERVISOR CALL CSYC)
FISE

~ AL:J(

07 MACHINE CHECK 1P07 I ~ LUUH

OS SYSTEM CHECK IPOB I I- TSM ~

011 MAP FAULT 1P09 ~ I- SOUT ~
OA

NOT'USED 00

Of
WATCHDOG .POE
(BLOCK MODE TIMEOUT)

OF ARITHMETIC EXCEPTION
~

IPOF
10-12 NuT USED .Y

...
13 ATTENTION INTERRuPl '"'''' 1P13 1

14

SERYICE INTERRUPTS SYSTEM AND USER DEVICE HANDLERS 1
23

.&

24·26 NOT USED
,.y

~

". I
27 CALL MONITOR (CALM) 1P27· YECTORS TO SYSTEM MODULES·

28 REAL TIME CLOCK IP28· TIMER SCHEDULER I
29 NOT USED
2A

EXTERNAL INTERRuPTS
USER INTERRUPT HANDLERS I

7F JNTERV..t.L TIMER INTERRUPT IPiT. CPU SCHEDULER I

SOFTWARE PRIORITIES
1

REAL TIME ~ TASKS. PROCESSORS/UTILITIES
EXECUTE EITHER AT CATALOGED

64 I PRIORITY OR AT TIME DISTRIBUTION

55 PRIORITY. DEPENDING ON HOW

... TIME DISTRIBUTION ACTIVATED.

. "IN MOST CASES

820630

Figure 1-2 Hardware/Software Priorities

1-6

c

(

Relative
Priority

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10

Default Trap

Table 1-1
CONCEPT/32 Trap Vectors

Vector Location (TVL) Trap Condition

80
84
88
8C
90
94
98
9C
AO
A4
A8
AC
BO
B4
B8
BC
CO

Power Fail Trap (Power Down)
Auto Start Trap (Power Up)
Memory Parity Trap
Nonpresent Memory Trap
Undefined Instruction Trap
Privilege Violation Trap
Supervisor Call Trap
Machine Check Trap
System Check Trap
MAP Fault Trap
Call Monitor Trap
Not Used (Reserved for IPU)
Address Specification Trap
Console Attention Trap
Privilege Mode Halt Trap
Arithmetic Exception Trap
Cache Memory Parity Trap (32/87 only)

1-7

Table 1-2 ()
CONCEPT /32 Interrupt Vectors

Default
Interrupt
Vector Default Default

Relative Location lOCO TCW
Priority (IVL) Address Address InterruEt Condition

00 100 External/Software Interrupt 0
01 104 External/Software Interrupt 1
02 108 External/Software Interrupt 2
03 10C External/Software Interrupt 3
04 110 700 704 I/O Channel 0 Interrupt
05 114 708 70C I/O Channel 1 Interrupt
06 118 710 714 I/O Channel 2 Interrupt
07 llC 718 71C I/o Channel 3 Interrupt
08 120 720 724 I/O Channel 4 Interrupt
09 124 728 72C I/O Channel 5 Interrupt
OA 128 730 734 I/O Channel 6 Interrupt
OB 12C 738 73C I/O Channel 7 Interrupt
OC 130 740 744 I/O Channel 8 Interrupt
00 134 748 74C I/O Channel 9 Interrupt
OE 138 750 754 I/O Channel A Interrupt
OF 13C 758 75C I/O Channel B Interrupt ",

\

10 140 760 764 I/O Channel C Interrupt ,,----./J

11 144 768 76C I/O Channel D Interrupt
12 148 770 774 I/O Channel E Interrupt
13 14C 778 77C I/O Channel F Interrupt
14 150 External/Software Interrrupts
15 154

+ 16 158
17 15C External/ Software Interrupts
18 160 Real-Time Clock Interrupt
19 164 External/ Soflare Interrupts

1 1
5E 278 External/Software Interrupts
5F 27C Interval Timer Interrupt

1-8

1.1.3 Task Priority Levels

Priorities 55-64 are time-sliced to provide for round-robin time distribution among tasks
of the same priority. Priorities 1-54 are not time distributed. A task's cataloged priority
will be altered based on its eligibility to run. For example a task's priority is boosted
when an I/o operation is completed and restored after a minimal time quantum. Priority
migration ensures maximum response to real time events.

1.1.4 Supervision and Allocation

CPU scheduling is maintained through a set of state queues including the priority state
chains and such execution states as suspended, queued for memory, queued for
peripheral, I/o wait, etc. Each CPU dispatch queue entry defines all scheduling
attributes of a single task. The entry typically migrates among the state queues as the
task's execution eligibility changes. These state chains are also used by the swap
scheduler to select candidates for swapping.

The CPU scheduler is invoked whenever a scheduling event occurs. Scheduling events
include:

o Occurrence of an external interrupt

o The completion of an I/o operation

o The expiration of a timer

o The deallocation of a resource

o The completion of a system service

IPU scheduling is maintained through state queues consisting of biased tasks (C.RIPU)
scheduled in addition to MPX-32 normal state queues for nonbiased tasks (SQR T thru
SQ64). Biased tasks, if any, are prioritized among themselves and are scheduled for
execution before any nonbiased tasks. Nonbiased tasks, if any, are also prioritized among
themselves and are scheduled for execution after all biased tasks have been completed.
If a nonbiased task waiting for execution has a higher priority level than a biased task
also waiting for execution, the nonbiased task is still not executed until after all waiting
biased tasks have been completed.

1.1.5 Memory Allocation

The unit of memory allocation is a map block, which is 8KW on the 32/7x computer and
2KW on the CONCEPT/32 computers. Memory is allocated to tasks as needed. AU tasks
are loaded dis contiguously into a whole number of physical map blocks, utilizing the
SelMAP to create their contiguous logical address space. No partial map blocks are
allocated.

The MPX-32 memory allocation scheme allows the user tasks to dynamically expand and
contract their address space via system service caUs.

The unit of memory protection is called a protection granule and is 512W. Thus it is
possible to have protected data areas within a map block.

1-9

1.1.5.1 Dynamic Allocation

Dynamic allocation and deallocation are performed via the allocate and deallocate
system services. With these services, the user can dynamically allocate and deallocate
any peripheral device, permanent and temporary disc files, or the System Listed Output
(SLO) and System Binary Output files (SBO). By allocating peripheral devices
dynamically, the user can ensure that each task will have exclusive use of a peripheral
only during the time required to perform the task's I/O. Therefore, when peripherals are
unallocated, other tasks can use them on an as-needed basis.

Because the allocation of system-wide peripheral devices that are requested dynamically
cannot be guaranteed, the user task must be prepared to accept a denial return.

A task requesting additional memory is automatically queued until the memory can be
allocated. For peripherals and file space, the caller can optionally queue for allocation
or take alternative action.

1.1.6 File Management

In the MPX-32 operating environment, files are used in several ways. Permanent files
are created for user programs, user data, and system programs. Temporary files provide
system scratch storage, user scratch storage, and system output data storage for the
system printer and card punch. Separation is maintained among files belonging to
different users.

The file management system for MPX-32 consists of the resident File System Executive
and the non-resident File Manager. Together they supervise all file space on the discs.

1.1.6.1 Permanent Files

Residing in disc storage, permanent files are defined as system or user files by entries in
the System Master Directory (SMD) which specifies each file's name, device address,
size, type and system flags. The permanency of these files stems from the fact that all
SMD entries are stored on the disc and may be deleted only when specifically directed by
the user or when the user initiates a cold start.

All permanent files are referenced by name, and any number of tasks may access any
permanent file for both input and output. To locate the SMD entry for each file, MPX-32
employs a hashing technique which translates the characters in the file name to a
specific location in the SMD.

Permanent files are classified as either fast or slow depending on the speed at which
their SMD entries can be located. A fast permanent file is one whose entry can be
located with one disc access. Slow permanent files are not necessarily characterized by
a unique mapping of names in the SMD, and therefore, two or more disc accesses may
occasionally be required to find each file's entry.

1-10

c

1.1.6.2 Temporary Files

Temporary files are files whose definitions are eliminated from the system upon
completion of the task requiring the space. Temporary file space is allocated and
deallocated by the File System Executive, which is responsible for maintaining space
allocation maps for all available discs. Temporary files are typically used for system
scratch storage and user scratch storage.

1.1.6.3 Random Access Files

Any disc file may be accessed randomly by record number through standard 10CS calls.
The user sets a bit in a File Control Block (FCB) and specifies the relative disc block
number (also in the FCB) to utilize this feature.

1.1.6.4 Disc File Protection

File protection mechanisms are available to prevent unauthorized access to and deletion
of permanent files. Protection of individual files may be specified when the files are
created, and is based on a one- to eight-character password. In addition, read and write
access to a file may be restricted. User files can also be protected on a per user basis.
If a key is associated with an ownername/username in the M.KEY file, it must be
specified before any access to the user's files is permitted.

1.1.6.5 Dedicated System Files

To increase system thruput, and to minimize I/O delay time, IOCS supports disc buffered
I/o in conjunction with the use of special system files. Four dedicated file codes exist in
the system. One file code is for buffered system input (SYC), two file codes exist for
buffered system output (SLO, SBO), and one file code is reserved for a System Object file
(SGO). A user may assign a system file to a file code in the same manner that he would
assign a device to a file code.

1.1.7 System Services

MPX-32 offers an extensive array of resident system service routines designed to
perform frequently required operations with maximum efficiency. Using the CALM or
the Supervisor Call instruction, tasks running in batch,interactive, or real time
environments can call these routines.

All system service routines are reentrant. Thus, each service routine is always available
to the currently active task.·

The system service routines are provided as standard modular components of MPX-32.
The "open-ended" design of the system, however, gives each user freedom to add any
service routines required to tailor MPX-32 to his specific application.

1-11

1.1.8 Input/Output Operations

The Input/Output Control System (IOCS) provides I/o services that relieve the
programmer of detailed chores. While keeping software overhead to an absolute
minimum, laCS receives and processes all I/o requests for both user and tasks. It
performs all logical error checking and parameter validation. laCS also logically
processes all I/O operations and assigns I/o control to the appropriate device handler.
The device handler, in turn, executes the I/O data exchange, processes service interrupts,
and performs device testing.

Input/Output operations under MPX-32 include the following general capabilities: direct
I/O, queued I/O requests, device independent I/O, device interchangeability, device
reassignment, and disc-buffered (blocked) I/O.

1.1.8.1 Direct I/O

Should the user wish to acquire data at rates which prohibit the overhead of laCS, he can
issue I/O directly. Mechanisms are provided in lacs to ensure that no conflict occurs
with lacs file operations. The interface facilities provided in lacs for direct I/O enable
a task to gain exclusive use of an I/O channel.

1.1.8.2 Device Independent I/O

Normal I/O operations in the system occur to and from user specified logical file codes.
These file codes are assigned and reassigned to the physical device to which the I/O
commands are ultimately routed.

1.1.8.3 Logical File Codes

The user logical file code consists of from one to three ASCII characters. For each file
code defined and referenced by a user task, there is an entry in a File Assignment Table
(FAT). The FAT entry describes the device controller channel and the device to which
the file is assigned. In the case of a disc, which is a shared device, additional addressing
information is provided for complete identification of the file. Each user task is allowed
a maximum of 255 logical file assignments.

1.1.8.4 File Access

Both random and sequential file access is supported by lacs. Random or sequential
access is specified by the user. All files assigned to devices other than disc are
considered sequential. A file assigned to disc may be referenced by both random and
sequential transfers. A parameter specifying either read-only or read-write status must
accompany the open request. Attempts to perform a write operation on a file specified
as read-only, or attempts to circumvent disc file protection and security are aborted.

1-12

1.1.9 Commmications Facilities

MPX-32 offers complete facilities for conducting communications between individual
users, between internal system elements, between user tasks, and between the operator
and the system. Users communicate with one another through sharing permanent files,
Global Common and DATAPOOL partitions, and job status flags which can be set and
interrogated by system service routines. Tasks communicate with one another via
messages or run requests.

1.1.9.1 Intertask Messages

Tasks can establish message receivers for intertask communication. Messages are
buffered by MPX-32 in memory pool until the receiving task is eligible to receive. The
receiving task is interrupted asynchronously and optionally responds to the sender. The
sender optionally waits for a reply or elects to be interrupted asynchronously by a
response. Messages can be queued to an arbitrary depth.

1.1.9.2 Rm Requests

A task can send a run request to any other task. A run request is similar to a message,
except that, with a run request, the receiver may not yet be in execution. In such cases,
the receiving task is activated before the message is queued. The receiving task can
process run requests at any time.

1.1.9.3 Global Common

Global Common is an area of memory that many programs can access by using symbolic
names to identify specific storage cells. In this respect, Global Common is· comparable
to local common. Unlike local common, however, access to Global Common is not
restricted to programs within a single task. Rather, programs belonging to many
independent tasks can freely access the same data and exchange control information
within the Global Common area.

1.1.9.1J Datapool

Like Global Common, DAT APOOL is an area of memory that many tasks can access
using symbolic references. In addition to providing all the advantages of Global
Common, DAT APOOL provides a much wider range of structuring flexibility. For
example, where Global Common symbolic references must follow the same order as the
locations of the data in memory, symbolic references to the DATAPOOL may be entirely
independent of the actual positioning of data within the memory area.

1-13

1.1.9.5 Internal Commmications

Internal system elements communicate through temporary files, system queues, and the
system communications region. The system communications region occupies
approximately 2KW of lower memory. It contains information common to all system
modules and processors.

1.1.10 Trap Processors

Trap processors are entered when any exceptional condition trap occurs. Certain traps
indicate task errors, such as a reference to non-present memory, a privilege violation, or
execution of an unimplemented instruction. These traps cause the violating task to be
aborted. When the arithmetic exception trap occurs, the overflow condition is noted for
use by the task in execution.

1.1.11 Timer Scheduler

The timer scheduler schedules events such as task activation, task resumption, flag
setting and resetting, and interrupt activation on a timed basis.

1.2 System Command Processors

The Terminal Services Manager (TSM), the interactive OPCOM command processor, and
the Job Control processor provide the user with access to MPX-32 interactive, batch, and
real time processing environments.

1.2.1 Terminal Services Manager (TSM)

The MPX-32 Terminal Services Manager (TSM) provides interactive, timeshared access to
the MPX-32 system for terminals connected either through TLC, ADS, ALIM, or 8-Line
Asynchronous controllers. It is an integral part of the MPX-32 operating system and
allows the terminal user to:

o log on to MPX-32

o access any MPX-32 processor

1-14

(

(

o run tasks designed to run in any MPX-32 environment (batch, real time, or
interactive) in the interactive environment

o access other environments in the system, e.g., to activate a task at its
base (normally real time) priority in the real time environment or submit
a job to run in the batch environment

o return to the interactive environment on exit from another processor

o log off MPX-32

1.2.2 Operator Communications (OPCOM)

MPX-32 provides a comprehensive set of commands that can be used to interrogate the
system and tune it for optimum response to changing conditions.

The commands allow the user to perform the following functions:

o List the status of all queues, tasks, and I/O controllers

o Control spooled print and punch output

o Hold and continue execution of tasks

o Activate and abort tasks

o Connect tasks to interrupts

o Establish resident and non-resident tasks

o Set and interrogate time-of-day clock

o Create and delete timer scheduler queue entries

o Delete allocation queue entries

o Enable, disable, and trigger hardware interrupts

o Reserve devices, release them, and place them offline or online

o Change the assignment of the system input device, the SGO file, and the
destination of the SLO and SBO spooled output files

o Initiate the reading of the batch stream

o Issue system debugging commands

1-15

1.2.3 Batch Processing

Batch processing consists of spooling batch jobs to disc, interpreting job control
statements, and directing listed and punched spooled output to destination files and
devices. Multiple jobs are processed concurrently within limits established by SYSGEN
and the availability of computer resources. Tasks comprising batch processing compete
with each other and with nonbatch tasks for computer resources under standard MPX-32
allocation algorithms.

Each job is spooled to a separate System Control (SYC) disc file prior to processing. Jobs
may be spooled to SYC files from card, magnetic tape, and paper tape peripheral
devices, and from blocked, temporary and permanent disc files. The OPCOM BATCH
command may be used to initiate spooling from peripheral devices and permanent files.
The Submit Job From Disc File system service (M.CDJS) is used by TSM and EDITOR and
can be invoked by a user task to initiate spooling from permanent and temporary disc
files.

Job sequence numbers reflect the order that jobs are entered and uniquely identify each
job and its tasks.

Upon job completion, a job's spooled listed and punched output is automatically routed to
usable peripheral devices if no particular device{s) or permanent file{s) are specified for
the job. Usable devices for automatic selection are specified via SYSGEN and OPCOM
commands. Spooled output destination devices include line printer, card punches,
magnetic tape, and paper tape. Spooled output is selected for processing based on the
software priority of jobs and, within a given priority, on the order in which jobs complete
processing.

1.3 Program Development Utilities

1.3.1 Task Cataloging (CATALOG)

By exercising the facilities of the Cataloger, users create permanent load modules that
will execute as tasks on the MPX-32 system. During cataloging, relocatable object
modules produced by the Assembler. or compilers are loaded and linked internally and
externally to library subroutines. The linked body of code thus produced is then sent to a
selected permanent file in relocatable or absolute format. In addition, the Cataloger
places a preamble on this file. This preamble contains a summary of the resources
required by the task, such as memory, permanent files, and peripheral devices and
defines special task characteristics (shared, resident, etc.). Once created, a task is
known to the system by the name of the permanent file in which it resides. The task can
then be activated, saved, restored, or otherwise operated on by specifying its name in the
appropriate job control statement, system service call, or terminal directive.

1-16

(.. •..... " ..
. ,
jl

c 1.3.1.1 Privilege

Whether a task is privileged/unprivileged can be defined along with the task. (The ability
to specify privileged operation for a task can be restricted by ownername.)

By specifying whether tasks are privileged or unprivileged, users can control system
security. Tasks designated to run privileged are free to execute any instruction in the
instruction repertoire. They also have read/write access to all memory locations.

1.3.1.2 Overlays

For efficient use of memory, the Cataloger provides the user with facilities for dividing
large programs into overlays. Both the main program segment (the root), and the overlay
segments, can be cataloged in relocatable format. Individual overlays can be cataloged
separately, permitting the user to modify or replace any overlay without disturbing any
of the others. Flexible symbol linkage is provided between the root and its associated
overlays and between individual overlays of various levels.

1.3.2 Debugger (DEBUG)

The MPX-32 Debugger is a command-oriented processor used to debug a single, cataloged
user task. It can be accessed with a DEBUG command in TSM, with a $DEBUG
statement in batch, by coding a M.DEBUG service call within the cataloged task, or by
using the Break key after a task has been activated via TSM, in which case TSM provides
the option of calling M.DEBUG.

DEBUG commands allow the user to:

o trace task execution

o set debugging traps within the task

o display and/or alter contents of the task's logical address space, general
purpose registers, etc.

o watch for privileged task entry into the operating system or other areas
of memory not usually accessed even by a privileged task

o perform other operations that facilitate task debugging

1.3.3 Macro Library Editor (MACLIBR)

With the Macro Library Editor, macros that are used frequently can be placed in a macro
library where they will be available for use by the Macro Assembler. During execution,
the Macro Library Editor simply transfers the macros from the Source Input File to the
Macro Library File. The macros entered into the library are listed on an output file.

1-17

1.3.4 Subroutine Library Editor (LISED)

The Subroutine Library Editor provides facilities for creating and modifying the System
Subroutine Library and any number of user subroutine libraries. The user is provided with
a listing of directives, module names, external definitions, the quantity of library and
directory space remaining on the disc, and the modules that were specified for deletion
but were not located in the library.

1.3.5 OAT APOOL Editor (DPEDIT)

The OAT APOOL Editor provides the ability to create and maintain dictionaries for
access to static or dynamic DATAPOOL common memory partitions.

1.3.6 Text Editor (EDIT)

The MPX-32 Text Editor provides a comprehensive set of commands for building and
editing text files, merging files or parts of files into one file space, copying existing text
from one location to another, and in general for performing editing functions familiar to
users of interactive systems.

EDIT is typically used to create source files and to build job control files and general
text files. A job file built in the Editor can be copied directly into the batchstream using
the Editor BATCH command.

1.4 Service Utilities

1.4.1 Source Update (UPDATE)

The Source Update processor provides facilities for revising source files. It permits the
user to enter new files as well as to update existing files by adding, replacing, and
deleting source statements. Input can be in either standard or compressed format, and
either format may be selected for the output file. The user can also elect to have Source
Update produce a listing of the control stream as it generates the output file.

1.4.2 Media Conversion Processor (MEDIA)

The Media Conversion Processor performs utility functions ranging from card duplication
to merging multiple media inputs into single or multiple media outputs. It provides
media editing, media-to-media conversion, code conversion, media copying, and media
verification. Rather than restricting the user to a fixed set of functions, the Media
Conversion Processor is controlled by a language of directives very similar to FORTRAN
which the user employs to program his utility functions.

1-18

(-"
'\~.J'';

1.5 System Manager Utilities

1.5.1 The M.KEY Editor (KEY)

KEY is a utility used to build an M.KEY file for the MPX-32 system. The M.KEY file
specifies valid owner names/user names on the system and optionally sets, for each
owner name/user name:

o a key to restrict access to the owner name during logon and to restrict
access to the user name when accessing files

o OpeOM indicators restricting the owner's use of opeOM commands

o an indicator that prevents the owner from cataloging "privileged' tasks
(tasks that use privileged system services or privileged variations of
unprivileged system services)

o an indicator that prevents the owner from activating tasks cataloged as
privileged

o default tab settings

o default alphanumeric project names/numbers for accounting purposes

After KEY has been run, only those owners/users established in the M.KEY file are
allowed to log on to the system and access files.

1.5.2 The File Manager (FILEMGR)

The MPX-32 File Manager is used to create or delete permanent disc file space, create
or delete special GLOBAL partitions and/or a DATAPOOL partition (one that can be
dynamically allocated in memory when required by tasks). A primary use is to provide
system and user permanent file backup.

1.5.3 MPX-32 System Startup, Generation, and Installation (SYSGEN)

Under MPX-32, the user can install a SYSTEMS-supplied starter system by booting from
the master System Distribution Tape (SOT). Using the starter system, which is fully
operational, a user-configuration of the system can be generated via the SYSGEN utility
(running either interactively or in batch). An online RESTART command is available to
test user-configured systems. When a system is checked out, the user can create his own
SOT using the FILEMGR SOT command.

1-19

When SYSGEN runs, system tables are constructed and linked to the resident system c-.)
modules, handlers, and user-supplied resident modules and handlers as specified via ~ .)
SYSGEN directives. A resident system image is formed and subsequently written to a
dynamically acquired permanent disc file. Concurrent with this process, a listing of
directi ves is buH t and a load map of the system is generated. The load map can be saved
on a system symbol table file specified by the user with the SYMT AB directive and used
subsequently in patching the system.

A System Debugger can also be configured in the resident system image to assist in
patching or debugging resident system code, including user interrupt and I/o handlers.

1.6 Libraries

Subroutine Libraries - Subroutine Libraries can be utilized to simplify the development of
applications. Subroutines can be added, modified, or deleted. This permits one routine
to be changed withough having to reassemble or recompile all of the subroutines needed
for a task. Only the task must be recataloged.

Subroutines on a subroutine library can be used by programs written in various languages,
including Assembly language. They are accessed as object modules when a task is
cataloged. The subroutine library and directory for MPX-32 are called MPXLlB and
MPXDIR, respectively. User subroutine libraries can be built and modified via the LIBED
utility.

System Macro Libraries - Three macro libraries are supplied as part of the MPX-32
system. They are used only with programs written in Assembly language. The first,
M.MPXMAC, should be accessed when code that uses MPX-32 system services is
assembled. The second, M.MACLlB, is used when code contains RTM monitor service
calls. These macro libraries provide macros containing equates for MPX-32
communication region variables. The third, M.RTMMAC, is used when developing an
application on a MPX-32 system that will be run on a RTM system.

The user can expand, contract, or modify a macro library by using the MACLlBR utility.

Other - The SYSTEMS Scientific Subroutine Library is optionally. available. It contains
math and statistical routines for scientific and engineering applications. A user group
library is also available. It is provided by and for SYSTEMS users.

1-20

o

1.7 Minimum Hardware Configuration for MPX-32

Hardware requirements for MPX-32 operation on a SYSTEMS 32/7x computer are as
follows:

Memory-Only

64KW Memory
Magnetic Tape (Class E or F)
TLC Console

Disc-Based

128KW Memory
Magnetic Tape (Class E or F)
TLC Console
32 MByte Extended I/O Cartridge
Disc
Line Printer

Hardware requirements for MPX-32 operation on a CONCEPT/32 computer are as
follows:

Memory-Only

64KW Memory
Magnetic Tape (Class F) or

Floppy Disc
lOP Console

Disc-Based

128KW Memory
Magnetic Tape (Class F) or lOP

Floppy Disc
lOP Console
32 MByte Extended I/O Cartridge
Disc

The minimUm configuration must also include the prerequisites that are required to
support the items listed, i.e., controllers, formatters, etc.

Hardware supported by MPX-32 is listed in Table 1-3. Where appropriate, the code used
to access a device is shown in parentheses. The code indicating the appropriate device,
e.g., 'TY' for a terminal on an ALlM, is used when accessing devices connected via a
communications link.

1-21

Model
Number

2005

7410

8000

8030

8050

8055

8110

8130

8140

8170

8210

8211

8212

8310

8311

8313

8314

8510

9005

9009

9010

9013

9014

9020

9024

9103

9104

9109

Description

Table 1-3
MPX-32 Device Support

Internal Processing Unit (IPU) C32/7x only)

Analog Digital Interface (ADI)

I/O Processor

Line Printer/Floppy Disc Controller (32/27 only) (lP)

XIO High Speed Tape Processor (HSTP) (XIO)

Disc Processor II

32mb Cartridge Module Disc

80mb Disc Processor Subsystem

300mb Disc Processor Subsystem

Floppy Disc with Controller (Fl)

High Speed Tape Processor Subsystem 75 ips 9-Track 1600/6250 bpi (M9)

High Speed Tape Processor Subsystem 125 ips 9-Track 1600/6250 bpi (M9)

High Speed Tape Processor Subsystem 125 ips 9-Track 800/1600/6250 bpi
(M9)

Band Printer (300 Ipm) (64 character) (lP)

Band Printer (600 Ipm) (64 character) (lP)

Band Printer with VFU (300 Ipm) (64 character) (lP)

Band Printer with VFU (600 Ipm) (64 character) (lP)

8 Line Asynchronous Communication Controller

Terminal Line Printer/Card Reader Controller (TLC) (32/7x only)

10mb Cartridge Disc Controller (32/7x only)*

Moving Head Disc Controller (32/7x only) (DM)

Magnetic Tape Controller (Copper) (32/7x only) (MT)

Fixed Head Disc Controller (32/7x only) (DF)*

Low Speed Tape Processor (lSTP) (XIO)

Disc Processor I (XIO)*

Extended (Class D) General Purpose Multiplexer Controller (GPMC)

General Purpose Multiplexer Controller (GPMC) (32/7x only)

Synchronous Line Interface Module (SLIM)

c

*This product is no longer available but remains supported by MPX-32 in existing C
installations.

1-22

r

(

Table 1-3 (Cont.)

Model
Number Definition

9110 Asynchronous Line Interface Module (AUM)

9116 Binary Synchronous Line Interface Module (BUM)

9122 Asynchronous Data Set Interface (ADS) (32/7x only)

9131 High Speed Data Interface II (HSD II)

9132 High Speed Data Interface I (HSn 1)*

9201 KSR Teletypewriter 00 cps) (CT or TY)*

9202 Teletypewriter (30 cps) (CT or TY)

9203 Alphanumeric CRT (95 character) (CT or TY)

9210 Card Reader (300 cpm) (CR)

9211 Card Reader (1000 cpm) (CR)

9223 Matrix Printer (340 cps) (LP)

9225 Line Printer (300 Ipm) (64 character) (LP)*

9226 Line Printer (600 Ipm) (64 character) (LP)*

9237 Line Printer (900 Ipm) (64 character) (LP)

9245 Line Printer (260 lpm) (96 character) (LP)*

9246 Line Printer (436 lpm) (96 character) (LP)*

9247 Line Printer (600 lpm) (96 character) (LP)

9260 Paper Tape Reader (PT)*

9264 Paper Tape Punch/Spooler (120 cps) (PT)

9337 4 MB Fixed Head Disc Drive (OF)

9448-32 32 MB Cartridge Module Disc (XIO) (OM)

9460 Paper Tape Reader with Controller (300 cps) (PT)

9462 Paper Tape Reader/Spooler (300 cps) (PT)

9508 10 MB Master Cartridge Disc Drive (OM)

9520 80 MB Master Moving Head Disc (OM)

9521 40 MB Master Moving Head Disc (OM)

9523 300 MB Master Moving Head Disc (OM)

9561 45 ips Master Magnetic Tape Unit 9-Track (M9)

*This product is no longer available but remains supported by MPX-32 in existing
installations.

1-23

Model
Number

9563

9567

9568

9571

9577

9733-5

1-24

Table 1-3 (Cont.)

Definition

45 ips Master Magnetic Tape Unit 9-Track (M9)

Low Speed Tape Processor Subsystem 45 ips 9-Track 800 bpi (M9)

Low Speed Tape Processor Subsystem 45 ips 9-Track 800/1600 bpi (M9)

Low Speed Tape Processor Subsystem 75 ips 9-Track 800/1600 bpi (M9)

75 ips Master Magnetic Tape Unit 9-Track (M9)

5 MB Fixed Head Disc (XIO) (OF)

(.""\
j

2. SYSTEM OVER VIEW

The MPX-32 operating system consists of a system nucleus and a number of associated
processors and utilities. The nucleus provides overall supervision of tasks and resources
as described in this section.

Note: The term Itaskl is used throughout MPX-32 to describe a body of code which is
scheduled for CPU time as a single entity. A load module is a task, in loadable form,
stored on disc.

2.1 Task Activation Sequencing (M.ACTV, M.PTSK)

The MPX-32 Allocator performs task activation in two phases.

2.1.1 Phase 1 Activation

When a task is activated on the MPX-32 system, either via the M.ACTV service or the
M.PTSK service, the MPX-32 Allocator runs on behalf of the task that issues the service
call (the activating task). In many cases, the activating Itaskl , is TSM, OPCOM, or Job
Control. Running at the priority of the activating task, the Allocator constructs a
rudimentary Task Service Area (TSA) for the new task in the task1s address space and a
rudimentary Dispatch Queue Entry (DQE) in the communications region. Data in the
prototypes include: a task number (or Itasknol), parameters passed with the task
(M.PTSK), the Loaq Module Information Table (LMIT), and other basic data that define
the task.

Initially, the DQE for the task is unlinked from the list of free DQE1s maintained by the
CPU scheduler and linked to the preactivation state queue (PREA). (See Section 2.2.4.)
After the prototype TSA and DQE are constructed, the DQE is unlinked from the PREA
state queue and linked to the appropriate ready-to-run queue. A context is set up in the
prototype TSA so that the Allocator can gain control for the second phase of activation
as soon as the new task becomes the highest priority ready-to-run task on the system.
There are several cases where task activation does not continue at the end of phase 1:

activation via a run request for a single-copied task that is already active

timer activation requests (M.SETT)

RTM-compatible activation on an interrupt (CALM Xl 661 or M.CONN)

In the first case, the CPU scheduler may link the run request to an existing DQE (see
Section 2.4.5). In the last two cases, the task remains in the preactivation state queue
until the timer expires or the interrupt fires. At that point, such tasks are linked to the
appropriate ready-to-run queue as described previously.

2-1

2.1.2 Phase 2 Activation

In this phase, the Allocator operates on behalf of the new task, and runs at the new task's
specified priority. It reads in the Resource Requirements Summary (RRS) from the load
module file, merges them with static assignments, and validates the results. Resources
are allocated. The task's DQE may be linked and unlinked to various state queues as it
moves through stages of device and memory allocation.

If any parameters, assignments, or other task resource requirements specified in the load
module or by Job Control or TSM assignments are invalid, the Allocator aborts the task
during this phase and the task exits as described in Section 2.8.

When the new task has allocated all resources required for execution, it is loaded into
memory, relocated, and the Allocator transfers control to the task at its cataloged
transfer address.

There are two exceptions to the control transfer at the end of phase 2. The first is a
task that has been initiated via the OPCOM ESTABLISH command.· This task is linked
into the suspended state queue (SUSP) instead of going into execution. The purpose is to
provide a capability within the MPX-32 structure equivalent to the capability in R TM
(Real Time Monitor) for activating a task that resides permanently in memory (a resident
task). (In MPX-32, resident means 'locked in memory'.) When an activating request
occurs for a task that has been established (a timer expires, an interrupt fires, or the
task is resumed), the task is fully ready to execute and is brought into execution with just
a context switch. If the task has been cataloged as resident, no inswap is required.

The second exception is a task that has been activated with the MPX-32 Debugger
attached (TSM or job control DEBUG taskname command). Instead of transferring
control to the task, the Allocator first loads and then transfers control to the Debugger.

2.1.3 Task Service Area (TSA)

The Task Service Area (TSA) is a section of memory associated with each active task.
The size of each task's TSA is fixed for the duration of the task's execution. However,
the sizes of TSA's among tasks is variable and is dependent on the amount of space
reserved for I/O activity.

As depicted in the following figure, the number of blocking buffers, File Assignment
Table (FAT) entries and the File Pointer Table (FPT) entries is variable among tasks. For
all tasks, the first buffer and FAT and FPT entry are reserved for MPX-32 use; i.e., they
are present in every TSA.

The pushdown stack area in the TSA provides reentrancy in calls to system modules. At
each call to a system module entry point, T.REGP is incremented to the next 32-word
pushdown level where the contents of the general purpose registers and Program Status
Doubleword (PSD) are saved. Within this 32-word level, 22 words are available for
scratchpad storage by the module entry point being called. T.REGP is decremented to
the previous pushdown level upon return to the entry point caller. Upon context switch
away from a task, the next pushdown level is used to preserve the contents of the task's {
registers and PSD. Ten words are used at the context switch level. '--

2-2

./

(

(

T. FATA

T. FPTA

T.BBUFA

TSA FIXED AREA

PUSHDOWN STACK IT.REGS)

" 32·WORD MODULE CALL
LEVELS
110WORD CONTEXT SWITCH
LEVEL

~------------

T.REGP . -------------
-----------~

TSA VARIABLE AREA

1 TO 255 1SWORD FAT
ENTRIES FIRST IS
RESERVED FOR SYSTEM
USE.

1 TO 255 3·WORD FPT
ENTRIES. FIRST IS
RESERVED FOR SYSTEM
USE.

1 TO 255 192·WORD
BLOCKING BUffERS.
FIRST IS RESERVED
FOR SYSTEM USE.

------------_

Figure 2-1

WORD

o

7

B
9

10

31

WORD

o

7

B
9

Task Service Area (TSA) Structure

MODULE CALL LEVEL

GENERAL PURPOSE
REGISTERS 0·7

SCRATCHPAD
STORAGE

CONTEXT SWITCH LEVEL

GENERAL PURPOSE
REGISTERS 0·7

PSD

820631

2-3

2.2 MPX-32 CPU Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to active
tasks. Tasks are allocated CPU time based on execution priority and execution
eligibility. Execution priority is specified when a task enters (is cataloged into) the
system. Execution eligibility is determined by the task's readiness to run.

2.2.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels are
divided into two major categories. Real-time tasks operate in the priority range 1-54.
Time distribution tasks operate in the priority range 55-64.

2.2.2 Real Time Priority Levels {I-.54}

Scheduling of real time tasks in MPX-32 occurs on a strict priority basis. The system
does not impose time-slice, priority migration, or any other scheduling algorithm which
will interfere with the execution priority of a real time task. Execution of an active real
time task at its specified priority level is inhibited only when it is ineligible for execution
(not ready to run). Execution of a real time task may, of course, always be preempted by
a higher priority real time task that is ready to run.

2.2.3 Time Distribution Priority Levels (.5.5-64)

For tasks executing at priority levels 55-64, MPX-32 provides a full range of priority
migration, situational priority increment, and time quantum control.

2.2.3.1 Priority Migration

The specified execution priority of a time distribution task is used as the task's base
execution priority. Each time distribution task's current execution priority is determined
by the base priority level as adjusted by any situational priority increment. The current
execution priority is further adjusted by increasing the priority (by one level) whenever
execution is preempted by a higher priority time distribution task, and decreasing the
priority whenever the task gains CPU control. The highest priority achievable by a time
distribution task is priority level 55. The lowest priority is clamped at the task's base
execution level.

2-4

()

(
2.2.3.2 Situational Priority Increments

Time distribution tasks are given situational priority increments in order to increase
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready to run after having been in a natural wait state. A
task that is CPU bound will migrate toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait state list, and
relinked to the ready to run list.

2.2.3.3

Situation

Terminal input wait
complete
I/o wait complete
Message (send) wait
complete
Run request (send)
complete
Memory (inswap) wait
complete

Time Quantum Controls

Priority Increment

Base level + 2

Base level + 2
Base level + 2

Base level + 2

Base level + 3

The MPX-32 system allows for the specification of two time quantum values at
SYSGEN. If these values are not specified, system default values are used. The two
quantum values are provided for scheduling control of time distribution tasks. The first
quantum value (stage 1) indicates the minimum amount of CPU execution time
guaranteed to a task before preemption by a higher priority time distribution task. The
stage 1 quantum value is also used as a swap inhibit quantum after inswap. The second
quantum value represents the task's full time quantum. The difference between the first
and second quantum values defines the execution period called quantum stage 2. During
quantum stage 2, a task may be preempted and/or outswapped by any higher priority
task. When a task's full time quantum has expired, it is relinked to the bottom of the
priority list, at its base execution priority.

Time quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value is reset when the task voluntarily
relinquishes CPU control (e.g., suspends, performs wait I/O, etc.).

2.2.4 State Chain Management

The current state of a task (e.g., ready to run, waiting for I/O, etc.) is reflected by the
linkage of the dispatch queue entry (DQE) associated with the task into the appropriate
state chain. Linkage is established via string forward and string backward addresses and
a state queue index in each DQE. The string forward address for a given DQE points to
the closest lower priority DQE and the string backward address points to the closest
higher priority DQE in a given state. The index points to a state chain head cell, which
contains the link forward/backward addresses from the DOE at the top (highest priority
task) of the state chain. At a given time, from anyone DOE or from a head cell, an
entire state chain queue can be examined by moving either backward or forward through
the DQE linkages.

2-5

The state queues are divided into two major categories: ready to run and waiting. The
ready-to-run category is subdivided by priority, with a single queue for the real time
priorities and a separate queue for each of the time distribution priority levels. The
"waiting" category is subdivided according to the resource or event required to make the
task eligible for execution.

2-6

c

e- STATE
INDEX LABEL MEANING

0 FREE DQE is available (in free list)

I PREA Task activation in progress

2 CURR Task is executing

3 SQRT Task is ready to run (priority level I-54)

4 SQ55 Task is ready to run (priority level 55)

5 SQ56 Task is ready to run (priority level 56)

6 SQ57 Task is ready to run (priority level 57)

7 SQ58 Task is ready to run (priority level 58)

8 SQ59 Task is ready to run (priority level 59) Ready to
run queues

9 SQ60 Task is ready to run (priority level 60)

10 SQ61 Task is ready to run (priority level 61)

(..
11 SQ62 Task is ready to run (priority level 62)

12 SQ63 Task is ready to run (priority level 63)

13 SQ64 Task is ready to run (priority level 64)

14 SWTI Task is waiting for terminal input

15 SWIO Task is waiting for I/o
Operation

16 SWSM Task is waiting for message complete wait queues

17 SWSR Task is waiting for run request complete

18 SWLO Task is waiting for low speed output

19 SUSP Task is waiting for:
1) Timer expiration, or
2) Resume request, or
3) Message request interrupt.

20 RUNW Task is waiting for:
1) Timer expiration,or Execution
2) Run request. wait queues

21 HOLD Task is waiting for a continue request

(~ Table 2-1 MPX-32 State Queues

2-7

STATE () INDEX LABEL MEANING

22 ANYW Task is waiting for:
n Timer expiration, or
2) No-wait I/o complete, or Execution
3) No-wait message complete, or wait queues
4) No-wait run request complete, or (continued)
5) Message request interrupt, or
6) Break interrupt

23 SWDC Task is waiting for disc space allocation

24 SWDV Task is waiting for device allocation
Resource

25 SWFI Task is waiting for file system (H.FISE) wait queues

26 MRQ Task is waiting for memory allocation

27 SWMP Task is waiting for memory pool allocation

28 SWGQ Task is waiting in general wait queue

29 CIPU Current IPU task } IPU state
queues*

30 RIPU Requesting IPU execution

Table 2-1 MPX-32 State Queues

* See the MPX-32 Technical Manual, Chapter 9 for further details.

o
2-8

2.3 Internal Processing Unit OPU) Scheduling

The IPU is a user transparent device managed by the MPX-32 operating system. The IPU
is scheduled as an additional resource to offload the CPU and improve system thruput in
a multi-tasking enviroment. Scheduling of tasks for IPU execution is controlled by the
IPU scheduler (H.CPU) based on a task's eligibility to run. Tasks may be biased for
execution in the CPU or IPU thru cataloged or runtime options. However, if no biasing is
in effect, a task is directed to the first available processor. Biased tasks have processing
priority over nonbiased tasks.

2.3.1 Options

IPU options available are as follows:

IPUBIAS When set, tasks that are IPU compatible will be run by the IPU.
At any point during execution where compatibility ceases, the
CPU is trapped and the task is transferred to the CPU for
execution.

CPUONL Y When set, the IPU is ignored and the task is executed by the CPU.

Default: Tasks are executed by the first available processor.

2.3.2 Biased Task Prioritization

If the IPU scheduler finds more than one biased task waiting for processing, they are
placed in a ready to run state (C.RIPU), in priority order among themselves, and are
eligible for swapping while waiting.

2.3.3 Nonbiased Task Prioritization

If the IPU scheduler finds more than one nonbiased task waiting for processing (any task
in ready state queues SQRT thru SQ64). they are placed in priority order among
themselves and scheduled for processing after processing of all biased tasks that may be
waiting. Nonbiased tasks never get processed in the IPU before biased tasks, even though
a nonbiased task may have a higher priority level than a waiting biased task.

2.3.4 IPU Task Selection and Execution

When the IPU task scheduler has found a task, it checks for IPU eligibility. For a task to
be eligible for IPU execution, the following conditions must be present:

No pending task interrupts
No system action requests, e.g. aborts
Not CPU biased
Current execution address outside of resident O.S.

2-9

If a task fails anyone of these tests, it is ineligible for IPU execution (i.e., ignored) and
the task scheduler proceeds to select the next task, if any.

If a task has been selected and is determined eligible for IPU processing, it is linked to
the current IPU task queue (C.CIPU), a start IPU (SIPU) is executed, the IPU executive
(H.IPU) fields the trap, performs memory management on behalf of the task, and
transfers control to the task, i.e., executes the task.

If there are no IPU compatible tasks found, the IPU remains idle.

2.3.5 CPU Execution of IPU Tasks

Unbiased tasks require CPU execution for code sequences reqUIrmg OS execution.
Unbiased tasks are also free to execute task level code in the CPU.

IPU biased tasks will be executed by the CPU for only those code sequences requiring OS
execution. When the PSD points back into the task, its CPU execution is terminated
immediately and the task is linked to the IPU request queue (C.RIPU). If the IPU is
running and this new task has a higher priority than the task the IPU is executing, the
executing task is 'bumped' and replaced with the new task. If the IPU is running and the
new task has a lower priority than the task currently under execution, the new task is
placed in the IPU ready to run queue (C.RIPU).

2.3.6 IPU Accounting

When the IPU and its interval timer handler are specified during SYSGEN, and the IPU is
used for task execution, the following message will be displayed at EOJ and when logging
off a terminal:

IPU EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SECONDS

where xx is a decimal number.

2.4 MPX-32 Task Interrupt Scheduling

In addition to the 64 levels of execution priority available, the MPX-32 scheduler
provides a software interrupt facility within the individual task environment.

2.4.1 Task Interrupt Levels

Individual tasks operating in the MPX-32 environment may be organized to take
advantage of task unique software interrupt levels. Each task in the MPX-32 system may
have six levels of software interrupt, sometimes referred to as pseudo interrupts:

Level Priority

2-10

o
1
2
3
4
5

Description

Reserved for operating system use
DEBUG
Break
End Action
Message
Normal Execution - Run Request lr ,"

i'
'j

c 2.4.1.1 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt receiver
addresses for both break and message interrupts. The DEBUG interrupt level is used by
the system to process tasks running in DEBUG mode. The end action interrupt level is
used for system post processing of no-wait I/O, message, or run requests. It is also used
for executing end action routines specified by the user task. The normal execution level
is used for run request processing and general base level task execution.

2.4.1.2 Scheduling

Task interrupt processing is gated by the MPX-32 CPU scheduler (see Figure 1-0 during
system service processing. If a task interrupt request occurs while the task is executing
in a system service, the scheduler defers the interrupt until the service returns to the
user task execution area. If service calls are nested, the scheduler defers the task
interrupt until the last service executes and returns to the user task execution area. The
user may defer task interrupts through calls to synchronize task interrupts (M.SYNCH) or
disable message interrupts (M.DSMI).

2.4.1.3 System Service Calls from Task Interrupt Levels

A task may utilize the complete set of system services from any task interrupt level. It
is prohibited, however, from making a wait-for-any call (M.ANYW, M.EA WAIT) from task
interrupt levels.

2.4.1.4 Task Interrupt Context Storage

When a task interrupt occurs, the CPU scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when the
task exits from the active interrupt level.

2.4.1.5 Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate system
service call. When the level active status is reset, any queued request is processed.

2.4.2 User Break Interrupt Receivers (M.BRK and M.BRKXIT)

A task may enable the break interrupt level by calling the M.BRK service to establish a
break interrupt' receiver address. The level becomes active as a result of a break
interrupt request generated either from a hardware break or from a M.INT service call
which specified this task. When the break level is active, end action, message, and
normal execution processing is inhibited. The level active status is reset by calling the
M.BRKXIT service to exit from the pseudo interrupt (break) level.

2-11

2.4.3 User End Action Receivers (M.XMEA, M.XREA, M.XIEA)

When a task issues a no-wait I/O, message, or run request, a user task end action routine
address may optionally be specified. If specified, the routine will be entered at the end
action priority level from the appropriate system post processing routine. When the end
action level is active, processing at the message or normal execution level is inhibited.
The level active status is reset by calling the appropriate end action service:

End Action
Type

I/O
Send Message
Send Run Request

End Action
Exit Service

SVC 1,X'2C'
M.XMEA
M.XREA

2.4.4 User Message Receivers (M.RCVR, M.GMSGP/M.XMSGR)

A task may enable the message interrupt level by calling the M.RCVR system service to
establish a message interrupt receiver address. The level becomes active as the result of
a message send request specifying this task as the destination task.

When the message level is active, normal execution processing is inhibited. The task's
receiver may optionally call a service M.GMSGP to store the message in a user receiver
buffer. After appropriate processing, the message interrupt level may be reset by calling
the M.XMSGR system service to exit from the message interrupt receiver.

2.4.5 User Rm Receivers (M.GRUNP/M.XRUNR)

User run receivers execute at the normal task execution (base) level. The cataloged
transfer address is used as the run receiver execution address. The run receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing.

When a run request is issued via the M.XRUNR service, if the task is single-copied, the
load module name is used to identify the task to be executed. If the task is multicopied
and a run request is being issued to a task which is waiting for a run request (i.e., in the
RUNW state chain), the task number must be specified. If a run request is sent to a
multicopied task by load module name, another copy of that load module will be
activated.

The task receiving the run request may optionally call a service M.GRUNP to store the
run parameters in a user receiver buffer. After appropriate processing, the run receiver
task may exit by calling the M.XRUNR system service. Any queued run requests are
then processed.

2.4.6 User Abort Receivers (M.SU AR)

User abort receivers execute at the normal task execution (base) level. The user task CJ
may optionally establish an abort receiver by calling the M.SUAR service.

2-12

(

If an abort condition is encountered during task operation, control is transferred to the
task's abort receiver. Before entry, any active software interrupt level is reset, all
outstanding operations or resource waits are completed, and all no-wait requests are
processed. End action routines associated with no-wait requests which complete while
the abort is outstanding are not executed. Status bits reflecting this are posted in the
appropriate FCB's. Any files opened or resources allocated at the time the abort
condition is encountered remain opened and/or allocated when the abort receiver is
executed.

The TSA stack is clean. The context at the time the abort condition is encountered is
stored in T .CONTXT. When the abort receiver is entered, R5 reflects task interrupt
status at the time the abort condition was encountered:

Bit

16-18
19
20
21
22-31

Meaning When Set

N/A
User Break Interrupt Active
End Action Interrupt Active
Message Interrupt Active
N/A

The standard exit service described in Section 2.8.1 is used to exit from a task's abort
receiver. If another abort condition is encountered while a task is executing an abort
receiver, the task is deleted.

A privileged task may re-establish its abort receiver through the M.SUAR service. An
unprivileged task is not allowed to re-establish its abort receiver after an abort condition
has been encountered. An attempt to do so will result in a task delete.

2.4.7 Task Interrupt Services Summary

Table 2-2 summarizes the services described in this section including required parameter
blocks. For a detail description of the parameter blocks for run and message requests,
see Section 3.4.

2-13

"" I ..-
.j::"

Sending
Task

Functions

Receiving
Task

Functions

~.
\ '
~ /

Table 2-2 Task Interrupt Operation/Services Summary

TASK INTERRUPT PRIORITY Level' Level'

Run Abort Message End Action
T ASK INTERRUPT FUNCTIONS Requests Requests Requests -Run

Issue Request M.SRUNR M.80RT M.SMSGR MPX
OPCOM OPCOM Send

Abort

Send Block PSB N/A PSB N/A

Wait for Completion (walt) PSB N/A PSB N/A

Establish End Action Receiver PS8 N/A PSB N/A

Wait for Completion ~walt) M.ANYW N/A M.ANYW N/A

Can-Back Information P58 N/A PSB N/A
c

~

Establish Receiver N/A M.SUAR M.RCVR PSB

Get Parameters M.GRUNP N/A M.GMSGP PSB

Receive Block PRB N/A PRB PSB

Exit Receiver M.EXIT M.EXIT M.XMSGR M.XREA
M.XRUNR

Exit Block RXB N/A RXB N/A

Wait for Next Request RXB N/A M.SUSP N/A
(if M.XRUNR) M.ANYW

Disable Interrupt Level N/A N/A M.OSMI N/A

Enable Interrupt Level N/A N/A M.ENMI N/A

(
'\
'.

Level J Level 2

End Action End Action Break
- Msg -I/O Requests

MPX MPX Hardware Break
OPCOM Break

"'.INT

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

PSB FCB M.BRK

PS8 R I Points to FCB N/A

PSB FCB TY's UOT or
Contents of T.BREAK

M.XMEA SVC I,X'2C' M.BRKXIT
M.XBRKR

N/A N/A N/A

N/A N/A M.ANYW

N/A N/A N/A

N/A N/A N/A

"', .4

(/

c

2.5 CPU Dispatch Queue Area

The CPU Dispatch Queue is a variable length table built at SYSGEN and contains a
maximum of 255 Dispatch Queue Entries (DQE's). Free DQE entries are linked into the
C.FREE head cell in the standard linked list format. When a task is activated, a DOE is
obtained from the free list and is used to contain all of the memory-resident information
necessary to describe the task to the system.

For example, the task sequence number, owner name, load module name, TSA address,
priority, and current state chain pointers are kept in the DQE, as are abort codes,
message and run receiver queue addresses, etc.

Additional (swappable) information is maintained in the Task Service Area (TSA). While
a task is active, its DQE is linked to one of the various ready-to-run or wait state chains
provided by the CPU scheduler to describe the task's current status. When a task exits,
its DQE is again linked to the free list.

2.6 I/o Scheduling

I/o scheduling is designed to provide efficient service to I/o bound tasks while keeping
the CPU busy with compute-bound tasks. This allows the fullest possible utilization of
both the CPU and I/o devices.

A task that has been waiting for I/o to complete (SWTI or SWIO) is changed to an
executable state at a priority slightly higher than a similar compute-bound task when the
I/o completes as described in Section 2.2.3.2. At that time, the CPU scheduler
interrupts the execution of the compute-bound task so that the I/O-bound task can
execute. The I/O-bound user requires comparably little CPU time before initiating
another I/O request and returning to the SWTI or SWIO state. The compute-bound task
then resumes execution. The CPU scheduler automatically adapts to tasks that alternate
between bursts of computing and bursts of I/O.

2.7 Swap Scheduling

The Swap Scheduler task processes entries in the Memory Request Queue (MRQ). It
provides memory allocation and swap scheduling as appropriate, to service individual
requests for memory.

2.7.1 Stnucture

The Swap Scheduler is a resident, privileged task which resides in low memory. It is
mapped into the address space of every task in the system. It has its own minimal TSA
and DQE, and executes at the priority of the highest priority task in the Memory Request
Queue.

The Swapper remains suspended until resumed by the executive in response to a swap
scheduler event.

2-15

2.7.2 Entry Conditions

The Swap scheduler task is normally suspended. It is relinked to the ready-to-run queue
by the executive in response to a system service calling the executive to report a swap
scheduler event. There are four basic types of swap scheduler events.

2.7.2.1 Dynamic Expansion of Address Space (M.GE/M.GD)

Whenever there is insufficient memory to satisfy a dynamic memory request on behalf of
a task, the task is linked into the memory request queue and the Swap scheduler is
resumed.

Memory is allocated in 2KW increments on a CONCEPT/32 and in 8KW increments on a
SYSTEMS 32/7x computer.

2.7.2.2 Deallocation of Memory (M.FE/M.FD)

Whenever a task deaUocates some or all of its memory, and the memory request queue is
not empty, the Swap scheduler is resumed.

2.7.2.3 Request for Inswap

Whenever a currently outswapped task becomes eligible for execution, it is linked into
the memory request queue. The Swap scheduler is resumed to process the inswap
request.

2.7.2.4 Change in Task Status

Whenever a task which had been previously ineligible for swapping becomes eligible, the
Swap scheduler is resumed. Such status changes include the completion of an unbuffered
I/o operation, the release of a lock-in-memory flag, or the expiration of a stage one time
quantum.

2.7.3 Exit Conditions

The Swap scheduler signals the executive when it cannot process any more outstanding
requests, or when the memory request queue is empty. The Swap scheduler is unlinked
from the ready-to-run queue and placed in a special wait-for-memory-event state.

2.7.4 Selection of Inswap and Outswap Candidates

The Swap scheduler initially attempts to allocate the memory required for the highest
priority task in the memory request queue. If there is insufficient free memory, the
Swap scheduler examines the state queues on a priority basis (as indicated next),
searching for the memory class and number of map blocks required.

2-16

l·····-"'·· I: I

)Y

(Outswap Priority Order

HOLD
SUSP
RUNW
SWDV
SWDC
SWTI
SWLO
SWIO
ANYW
SWSR
SWSM
MRQ
SWMP
SWGQ
SWFI

SQ64

SQ55
RIPU
SQRT

WAIT QUEUES

READY -TO-RUN QUEUES

The DQE address of the first outswap candidate satisfying any of the current memory
request is determined, and the task is then outswapped completely before the Swap
scheduler reexamines the memory request queue.

Whenever sufficient memory is available for inswap, the inswap process is initiated. The
Swap scheduler continues to process entries in the memory request queue until the queue
is empty or until it cannot find an available outswap candidate for a task requesting
memory. Both outswap and inswap are serial processes which go to completion before
the memory request queue is reexamined. Dynamic memory requests are similar to
inswap requests, except that there is no associated disc file to read. Some tasks in the
memory request queue may be queued for both inswap and a dynamic request. In such
cases, both requests must be satisfied before the inswap process can proceed.

2.7.5 Outswap Process

Outswap is a demand process which is initiated in response to an inswap or dynamic
memory request. The TSA of the outswap candidate is mapped into the Swap scheduler
and used to construct a new address space which represents the swappable map blocks in
a logically contiguous format. Then the swap file is allocated and opened by the Swap
scheduler. For F class swap devices, a single write request is given to IOCS. Command
and data chains are built in the handler to perform the specified transfer. For E class
swap deVices, the swap scheduler issues multiple 4KW writes to IOCS from its internal
buffer until all swappable map blocks have been written. The Swap scheduler issues no
wait I/O requests, and performs its own double buffering of Hand S map blocks through
its dedicated E class mapblock.

Once output is complete, the memory is deallocated, and the memory request queue is
reexamined to find the highest priority candidate for inswap.

2-17

2.7.6 Inswap Process

Once sufficient memory is available, the Swap scheduler allocates the memory required
by the highest priority task in the memory request queue. If the request is simply a
dynamic one, the Swap scheduler adjusts the TSA of the requestor to reflect the newly
allocated memory, and the CPU scheduler is informed.

If the request requires an inswap, the Swap scheduler allocates and opens the Swap file
and reads the swapped image into the newly allocated memory. For F class swap
devices, a single READ request is given to IOCS. Command and data chains are built in
the handler to perform the specified transfer. For E class swap· devices, the swap
scheduler issues multiple 4KW reads to IOCS until all swapped map blocks have been
read. The Swap scheduler issues no-wait I/O requests, and performs its own double
buffering of Hand S map blocks through its dedicated E class map block.

Once inswap is complete, the Swap scheduler cleans up its map and reexamines the
memory request queue for the next inswap candidate.

2.8 Task Termination Sequencing

Three types of task termination are provided by the MPX-32 executive: exit, abort, and
delete task execution. .

2.8.1 Exit Task (M.EXIT)

The exit task service is called by a task that wishes to terminate its execution in a
normal fashion. The sequence of system processing on task exit is described in Table 2-3.

2.8.2 Abort Task (M.80RT)

The abort task service is called by a task that wants to terminate its execution in an
abnormal fashion. It may also be initiated by the system when a task encounters a
system trap condition (e.g., undefined' instruction, privilege violation, or non-present
memory); or by a system service because of a parameter validation error. This service
may also be asynchronously initiated by another task of the same ownername or by the
OPCOM ABORT command. The sequence of system processing on task abort is described
in Table 2-3.

2.8.3 Delete Task (M.DEL TSK)

The delete task service is called by the system on behalf of a task that encounters a
second abort condition when processing an initial abort request. This service may also be
initiated asynchronously by another task of the same ownername or by the OPCOM KILL C······
command. The sequence of system processing on task delete is reflected in Table 2-3. i '\

2-18

(
Task Has

Outstanding
I/O

Outstanding
Messages in
Receiver
Queue

(
Outstanding
No-wait Run
Requests
with Call
Back

Run
Requests
in Receiver
Queue

('

Table 2-3 Task Termination Sequencing
(EXIT, ABORT, and DELETE)

System Action

Task Exit Task Abort

Defers processing Same as exit,
until any except inhibits
outstanding I/o execution of
is complete. user no-wait I/O
Aborts task if end-action
encounters user routines. Task
no-wait I/o end abort is reflected
action routine. in appropriate

FCB(s).

Unlinks all Same as exit.
outstanding
messages; posts
complete with
abnormal status.

Defers exit proces- Defers abort
sing until all processing until
requests are corn- all requests are
plete. Inhibits complete. Inhibits
execution of end execution of end-
action routines. action routines.
End action not pro- Task abort status
cessed status is is reflected in
reflected in run run request
request parameter parameter block.
block.

Terminates the Same as exit.
current run
request and posts
appropriate status
in run request
parameter block.
Then activates a
new copy of the
task for next
run request in
queue, if any.

Task Delete

Terminates
all
outstanding
I/O.

Same as exit.

Call backs
are ignored.

Same as exit.

2-19

Task Has

Task Abort
Receiver

Files Open

Devices!
Memory
Allocated

End Table 2-3 Task Termination Sequencing
(EXIT, ABORT, and DELETE)

System Action

Task Exit Task Abort

Not processed. Transfers control
to task after
other steps taken
above. Files are
not closed; devices
and memory are not
deallocated.
(Remaining abort
processing by
system is
discontinued.)

Closes all open Same as exit.
files
automatically.
Preserves
integrity of both
user and system
files.

Deallocated Same as exit.
automatically.

2.9 Resource Management

Task Delete

Not
processed.

Does not
close files
automatically;
preserves
integrity of
system
critical
files. User
files are
left as is.

Same as exit.

Resource management refers to the allocation of peripherals, file space, and memory.
With MPX-32, allocation may be static or dynamic, and resources may be shared or
unshared.

2-20

O···-~· .'

/ '. (,

,,-j

o

r ... 2.9.1 General

2.9.1.1 Static Allocation

Static allocation refers to those resources which are allocated to a task at activation.
Static assignments are specified via ASSIGN and ALLOCATE directives. These
directives may be specified when the program is cataloged (see Volume 2, Chapter 2).
Alternatively, Job Control or TSM commands (Volume 1, Chapters 5 and 6) may be used
to override cataloged assignments or provide additional static assignments. If a
statically assigned resource is temporarily unavailable, the requesting task is
automatically queued for allocation. Task loading is deferred until all static resources
can be allocated.

2.9.1.2 Dynamic Allocation and Deallocation (M.ALOC,M.DALC)

Once task activation is complete, additional resources may be allocated or deallocated
via system service calls M.ALOC and M.DALC (see Volume 1, Chapter 7) for files and
peripherals and M.GE/M.FE and M.GD/M.FD for memory. This process is called dynamic
allocation. A task requesting additional memory is automatically queued until the
memory can be allocated. For peripherals and file space, the caller may optionally queue
for allocation or try again later. System table space for dynamically allocated files must
be specified via the FILES statement provided in the Cataloger.

2.9.1.3 Shared versus Unshared Resources

Shared resources may be allocated concurrently to more than one task. Unshared
resources are restricted to one task at a time. Permanent disc files and common
memory partitions are always shared resources. Peripherals may be SYSGENed as shared
or unshared.

2.9.1.4 Device Allocation (M.PDEV)

Peripherals may be allocated generically by device type, or specifically by device type,
channel and subaddress as described in Volume 1, Chapter 7. When allocating
generically, unshared peripherals are allocated before shared peripherals. The physical
device inquiry system service (M.PDEV) may be used to determine specific attributes of
a device.

Certain devices have special allocation considerations:

(a) Discs are always considered shared devices, although temporary file
space is unshared. (The generic type code DC may be used to specify
any type of disC; DM refers to moving head discs; and DF to fixed head
discs.)

2-21

2.9.1.5

(b) Mag~etic take device~ may be gelneric~llY ref~ed to as MT. M9 refers ,(
to nme-trac magnetIc tapes on y an M7 re ers to seven-track onlY.'_j;/
Parity, density, etc., are I/O considerations specified as control flags in
the FCB. Tapes may have optional volume number specification. For
multi-volume reels, both the reel name and volume number are written
onto the tape and verified during input operations. For tapes without
volume specification (volume=O) the reel ID is an optional parameter
which is not written to the tape. (See also Chapter 7.)

(c) The system console has a dual nature. Under the device type CT it is
unshared and used as a TSM terminal. However, it is shared with respect
to system messages e.g., tape mount requests, real-time aborts, and
device status errors. These messages are written via the M. TYPE
system service. The ATTENTION button on the front panel functions as
the Break key for this device.

(d) TSM terminals must be SYSGENed as unshared devices. Allocation to
these terminals is provided by TSM functions.

Task-Synchronized Access to Common Resources

MPX-32 provides the structure for tasks to voluntarily synchronize access to a common
resource such as a disc file, a sharable device, a common data area, a shared/included
procedure area, or any other physical resource.

The capability provided by MPX-32 is a general resource mark mechanism. Each task
using a 'marked' resource must:

use the M.RSML and M.RSMU (Resource mark Lock/Unlock) services to
synchronize access to a resourcemark with other tasks

make the association of a particular resource mark with an actual resource

What MPX-32 provides is a table of resourcemarks that are currently in use, a
mechanism for queuing tasks for each mark, and automatic unlock on a resource mark
when a task terminates (aborts, exits, or is deleted),· if the task has not unlocked the
resource mark on its own.

A resource mark is simply a numeric value from 1 to 64. Values 1-32 are for SYSTEMS'
internal use, values 33-64 are available for customer use. The default size of 64 can be
increased by using the SYSGEN RMTSIZE directive. However, MPX-32 does not enforce
resource access restrictions, i.e., the system does not associate a particular resource
with a particular resource mark. Thus, if several tasks use synchronization service calls
to gate access to a resourcemark and another task does not, the 'outside' task will gain
the resource just as if no restrictions were active for it.

Tasks synchronizing use of resources are responsible for using resourcemarks that
uniquely identify resources across the system. MPX-32 ensures only that a specified
mark is within the legal numeric range.

2-22

(:

To use resource marking, each cooperating task:

uses M.RSML to lock the resourcemark

performs the access which requires synchronization

uses M.RSMU to unlock the resourcemark and release the highest priority task
queued for the resourcemark

The task has several options available if the resource mark is locked when it issues the
M.RSML caU. As specified in the call, it can:

obtain an immediate denial return and go on

wait until it can gain ownership of the lock

wait until it can gain ownership or until a specified number of timer units
have expired, whichever occurs first

If a single task uses more than one resource mark, i.e., if it is synchronizing access to
more than one resource, the user must exercise care to avoid deadlock situations, e.g.,
Task A in wait for a lock owned by Task B while Task B is in turn waiting for a lock
owned by Task A.

A task using more than one resource mark can avoid deadlocks by unlocking all locked
resourcemarks if it cannot succeed in locking anyone of them. The task then waits for
the critical unlock to occur before reattempting locks on aU the other resource marks in
the set.

Sample Resourcemark Use by a Task

T4

ABC

SBUF

PROGRAM T4
M.REQS
LIST NGLIST
ENDM
EQU
M.RSML 33,0
M.WRIT ABC
M.RSMU 33
M.EXIT

LOCK RSM,INDEF.WAIT,NORM SWAP
WRITE TO CRITICAL FILE
UNLOCK RSM

DATAW C'ABC' LFC SETUP
. GEN 12/B 80,20/B(SBUF)
REZ 6W
RES 80B

2-23

2.9.1.6 File Gating

File gating mechanisms implemented in MPX-32 are an extension of the general
resourcemarking capability described in the previous section, and are supported by the
MPX-32 Executive in cooperation with the File System Executive and the Allocator.

File gating is used to preserve the integrity of critical disc files, and to avoid
noncompatible operations on the same file by two or more different tasks. For example,
an exclusive lock is used by the operating system to prevent one task from deleting any
permanent file while another task is writing to the same file.

MPX-32 supports both synchronized and exclusive file gating. Synchronization gating
services enable a task to coordinate concurrent access to a file that it shares with other
tasks. Exclusi ve gating services enable a task to gain sole allocation of a file, as though
it were an unshared resource (exclusive lock). File gating services are available to both
privileged and unprivileged tasks.

As with resource marking, use of file gating services is entirely voluntary, i.e., if a
synchronized file gating service is used by a task, a task that is not cooperating in the
gating can access a file as if the lock had not been imposed. However, if an exclusive
lock has been imposed, no other task can allocate a file until the file is unlocked.
Exclusive lock is thus binding on noncooperating as well as cooperating tasks.

Services which support file gating are:

2.9.1.6.1

M.FXLS
M.FXLR
M.FSLS
M.FSLR

Set Exclusive File Lock
Release Exclusive File Lock
Set Synchronization File Lock
Release Synchronization File Lock

Gating Mechanism and Support Structures

MPX-32 maintains a memory resident File Lock Table (FL T), which contains an entry
showing the UDT index and starting sector for each permanent disc file that is currently
allocated, whether it is locked or not. The FL T entry also includes a count of tasks that
are currently queued for the lock and the task number of the task which currently owns
the lock.

When a task requests a lock and the file is not yet locked, the task's number is entered in
the FL T and execution continues. If a task requests a lock and the file is already locked,
the task can obtain an immediate denial and continue, or go into a general wait state
(SWGQ) until the file is unlocked. As in resource marking, a requesting task has the
additional option of setting a watchdog timer for the maximum time it will wait to
obtain a lock.

Figure 2-2 illustrates task interface with the locking mechanisms used by MPX-32 for
synchronized locks. The same basic mechanism is used for exclusive locks, except that
on an exclusi ve lock, the requesting task must be the only task that has allocated the
file.

If a task locks a file for either synchronized or exclusive gating and does not unlock it, {
the lock is automatically removed when the task deallocates the file or exits. If a task is ..
aborted, the lock is released. _j

2-24

(~

File Lock Table (FLT) SWGQ State Chain

Words

0-1 IFile (UDT/STARTING Sector)lcountltasknol
2-3 IFile (UDT/STARTING Sector)lcountltasknol

Task~

[T'aSk~ _

ITask

Max 200 entries or number defined
at SYSGEN

Tasks are queued
by priority
through central
DOE state chain
mechan ism.

Return
Imnediate
Denial

Task Options
When requesting a synchronized

lock on a file that is already
locked. -

, TASK

Wait for Timeout. If
lock available in interim,
the task will gain it. If
not, MPX-32 returns denial
to task.

Figure 2-2 File Lock Overview

Wait until
Available

820632

2-25

2.9.1.6.2 Task Implementation

Locks are performed only on files which are already allocated to a task. The task uses a
logical file code (rather than a file name) to identify the file lock. This enables the task
to lock by critical operation rather than specific name.

2.9.1.6.3 Avoiding Deadlocks

If a task must lock more than one file at a time, there is potential deadlock with other
tasks as illustrated below.

Task A Task B

Requires Requires ~

Ac t u a I F i 1 e s

Task A needs both File 1 and 2 simultaneously, as does Task B. Task A gets File 1, but
before it can get File 2, Task B gets File 2. Task A goes into a wait for File 2. Task B is
in wait for File 1. Since neither task can get both the files it requires simultaneously, /
processing does not continue. To further complicate the deadlock, any other task that
queues for either file will wait indefinitely.

The way to ensure against deadlocks is for a task that needs to lock more than one file
simultaneously to perform the locks only when all such files are available. This can be
accomplished via the denial or timed denial return options available with MPX-32 file
lock services.

2.9.2 Operating System Memory Allocation

MPX-32 occupies the lower portions of each task's address space, thereby allowing
MPX-32 to run "mapped" with each task.

MPX-32 maintains lists of available memory for allocation to tasks and for I/o that
requires intermediate buffering.

2-26

r
l

(

2.9.2.1 I/O Buffer and I/O Queues

The system buffer pool is an area of 'E' class memory which is contiguous to the resident
system and has a size specified at SYSGEN by the POOL directive. The entire buffer
pool is write-protected from the unprivileged task and is intended for use exclusively by
system services. The buffer pool is mapped into the address space of each task. System
buffer space is allocated in 2W increments. The maximum size of any entry is 192
words. The entries fall into one of three categories:

(1) I/O Queues - approximately 26 words

These are allocated when lacs queues a request and deallocated when
post I/O processing is complete.

(2) Message or Run Request Buffers - up to 192 words

These are allocated by the M.SMSGR or M.SRUNR services and
deallocated when receiver processing is complete.

(3) 'E' Class I/O Buffers - up to 192 words

These are allocated and deallocated when I/O queues for I/O to E class
devices, but only when actually necessary.

None of these buffers are allocated permanently.

For tasks which require I/O buffers for 'E' class devices greater than 192 words, 10CS
automatically allocates one 'E' class memory map block. This buffer is deallocated with
the I/O queue when I/O is complete.

2.9.2.2 Blocking Buffers for Blocked I/O

File assignments for permanent files (ASSIGN l's), and devices (ASSIGN3's), optionally
specify that a file is blocked or unblocked. (The default is blocked.) If blocked, blocking
buffers for the files are allocated at load time immediately above the TSA. The Catalog
BUFFERS directive may be used to provide additional blocking buffer space for
dynamically allocated, blocked files. (See Volume 2, Chapter 2.)

2.9.2.3 Task Service Area (TSA)

This area comprises the first part of a task's address space located immediately above
the operating system. See Figure 2-1 in Section 2.1.3 and Figure 2-3 in Section 2.8.4.

2-27

2.9.3 Memory Class Requirements

When a task is cataloged, the user specifies the class of memory required at run time.
User tasks are divided into two types based upon their memory class requirements. Tasks
that require direct I/o to Class 'E' devices and must run at the fastest memory speed
available are type E and are allocated space within Class 'E' memory. These user tasks
are required to use the Cataloger ENVIRONMENT directive with a parameter 'E' to
indicate the necessity of Class 'E' memory.

Tasks which are not "memory speed critical" can request various types of memory
allocation; these requirements are also specified for MPX-32 via a Cataloger
ENVIRONMENT directive parameter:

Parameter

5

H

E

Result

Execution delayed until Class '5', 'H', or 'E' available.
(Default)

Execution delayed until Class 'H' or 'E' available.

Execution delayed until Class 'E' available.

In situations where a 32 Series system has no memory installed of the class the user task
requests, the first available lower class is allocated to that task.

The absence of an ENVIRONMENT parameter for memory class is dealt with by assuming
that tasks are to be loaded into any memory class available.

2.9.4 Memory Allocation for Tasks

The unit of memory allocation is called a map block, and is 8KW on the 32/7x computer
and 2KW on the CONCEPT /32. All user tasks are dis contiguously loaded into a whole
number of physical map blocks, utilizing the SEL map itself to create their contiguous
logical address space. No partial map blocks are allocated.

This scheme allows user tasks to dynamically expand and contract their address space by
using the M.GE/M.FE and M.GD/M.FD service calls described in Section 8. Figure 2-3
illustrates the logical address space of a task.

Memory Protection

The unit of memory protection is called a protection granule, and is 512W. Thus it is
possible to protect a task's TSA even though it is in the same map block as the data
section (DSECT).

2-28

(

(

(v~

2.9.4.1 Static Memory Allocation

The Cataloger determines the size, in protection granules, of a cataloged load module.
The cataloger directive, ALLOCATE, may be used to specify additional bytes of
memory. At activation time, the size of the TSA is determined and rounded up to a
number of protection granules. This value is added to the cataloged requirement to
determine task size. Additionally Job Control or TSM ALLOCATE directives may be
used to specify the total task size of the DSECT. The final sum is rounded up to a map
block increment.

2.9.4.1.1 Static vs Dynamic Memory Partitions

Character istics Static Dynamic

Logical addresses Fixed at SYSGEN Fixed by File Manager CREA TEM

Physical addresses Fixed at SYSGEN Variable

Allocation unit 512 words 8K words (32/7x)
2K words (CONCEPT /32)

Time of allocation SYSGEN Run time via M.SHARE

Time of deallocation Never When allocation count=O

Inclusion Automatic via Run time via M.INCL
Activation

Exclusion Automatic via Exit Automatic via Exit or
or M.EXCL M.EXCL

Owner names or None Established by M.SHARE
task nu mbers caller

Swapping Never swapped Swappable when user count=O

2.9.4.1.2 Memory Partition Applications

Char acter is tics Global DATAPOOL Extended Common CSECTs

Cataloger resolves Yes Yes No Yes
references

Compiler resolves No No Yes N/A
references thru
extended bases

Must be logically Yes Yes No Yes
below 128KW

Variables are order Yes No Yes N/A
dependent

Static Yes Yes Yes No

Dynamic Yes Yes Yes Yes

2-29

HIGH

PAGE -.

lOW

2-30

CSECT

(PURE CODE & DATA)

AVAILABLE FOR

DYNAMIC DSECT

EXPANSION

AVAILABLE DATA AREA RESULTING

FROM MAP BLOCK BOUNDING

DSECT

(IMPURE CODE & DATA)

NOTE: IF TASK IS NOT SECTIONED,
DSECT CONTAiNS All CODE & DATA

TASK SERVICE AREA

SYSTEM BUFFERS

OPERATING

SYSTEM

Figure 2-3. Sample Task Address Space

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

,:MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

}MAP BLOCK

820633

(~/

2.9.4.2 Dynamic Address Space Expansion/Contraction
(M.GE,M.FE,M.GD,M.FD)

A task can expand/contract both its execution and extended data space via system
services. The M.GE service appends a map block to the user's execution space starting at
the top of his OSECT. M.GE can be used more than once to obtain additional map blocks,
as long as they are available in the task's logical address space. The M.FE service frees
the most recently obtained map block, i.e., it works in the opposite order of M.GE. The
M.GO service appends a map block to the user's extended indexed data space, starting
from 128KW. (Like M.GE, it can be used more than once.) The M.FO service frees the
most recently obtained map block from the extended indexed data space, i.e., it works in
the opposite order of M.GO.

2.9.4.3 Extended Indexed Data Space

MPX-32 provides limited support for logical addresses above 128KW. The following
restrictions apply to the use of this address space:

2.9.4.4

o Instructions cannot be executed in this logical space.

o The user must reference this space via index registers. Negative offsets
are invalid in the word address field of any instruction as long as the
indexed addressing mode is active.

o Some system services cannot access data in this logical space. Full I/O
support is provided via the expanded FCB specification.

o No memory protection is provided for this logical space on the 32/7x.

o No data initialization facilities are provided for this logical space.

o The user must dynamically request this logical space to be mapped via the
M.GO, M.SHARE or M.INCL system services.

o GLOBAL and OAT APOOL are not supported in extended data space.

Intertask Shared GLOBAL and DATAPOOL Memory
(M.SHARE,M.INCL,M.EXCL)

Intertask shared memory is provided under MPX-32 through GLOBAL and OAT APOOL
memory partitions. As in RTM, there are up to one hundred Global regions (GLOBALOO -
GLOBAL99) plus a DAT APOOL partition available to the user.

Global and DATAPOOL partitions can be defined either via SYSGEN or through the
CREATEM command in the File Manager.

Partitions created at SYSGEN are considered permanently allocated; they are assigned
both physical and logical memory attributes which apply to any task that references the
partitions. This type of allocation is called static allocation. The static Global and
Datapool partitions are defined in integral numbers of protection granules.

2-31

Both GLOBAL and DAT APOOL partitions are located in an integral number of physical
map blocks starting on a map block boundary and ending logically at the top of the user's
execution space (128KW). Areas are mapped into user space when required. See
Sections 2.9.4.1.1 and 2.9.4.1.2.

Write protection is available to prevent the user from storing into a common area to
which he does not have write access.

Alternatively, the user can define dynamic shared memory partitions via the File
Manager. There are several key distinctions between statically and dynamically
allocated common:

o Statically allocated common is fixed in physical memory even when no
task is sharing it through its map. Dynamically allocated common is
deallocated when its allocation count equals zero.

o Statically allocated common is allocated in increments of 512 words,
while dynamically allocated common is allocated in map block increments
(8KW on a 32/7x computer and 2KW on a CONCEPT /32).

o Statically allocated common is invoked on a system-wide basis.
Dynamically allocated common is based on a subsystem concept, where a
single task issues an M.SHARE request and other tasks request that task's
common to be included via the M.INCL system service. A particular
common partition, e.g., DA TAPOOL, can be defined concurrently in
several such subsystems. However, each subsystem has a physically
unique partition.

o Dynamically allocated common can be excluded from a task via the
M.EXCL system service. The user can elect to subsequently include
another dynamically allocated common area via M.INCL. Statically
allocated partitions are not supported.

o All logical references to common, whether statically or dynamically
allocated, are resolved by the Cataloger. this is possible because the
logical address of a system common partition is fixed when the partition
is defined.

o Unlike RTM, load modules from one MPX-32 configuration are compatible
with another configuration, even if GLOBAL or DATAPOOL are allocated
different physical addresses. The only compatability requirement is that
both systems employ the same logical conventions.

Figure 2-4 illustrates a relatively complex view of the relationship between logical
address spaces and statically allocated and dynamically allocated common partitions.
The figure also introduces the allocation considerations for shared procedures, which are
described in the section which follows.

2-32

(In brief,

(

o Tasks A, B, and C all reference a static DATAPOOL partition.

o Task A has used an M.SHARE service for dynamic GLOBALIO and Task B
has used M.INCL for GLOBALIO. Thus GLIO is mapped at the same
location in each logical address space.

o Tasks A and B use M.INCL for GL02, and Task C has used M.SHARE for
GL02, to use for intertask c·)mmunication. Thus GL02 is mapped into the
same location in each logical address space.

o Task D shares no memory or code with other tasks. Map blocks 7 and up
are available to the task.

o Tasks A and B are shared. They have CSECT mapped at the same location
in each logical address space.

2-33

!'oJ
I

\,0)
-&:'

f
l!

f
Ii'

!I~
g~,
38
Sa.
l~

S
f
!
~ .. '
i'

00

~

~

(\
'\-, /

STATIC DATAPOOL
GL10

UNUSED

GL02

CSECT

\ ..
TASK A

, , TASKB
DSECT \. DSECT

. OPERATING

SYSTEM

TASKSA+B
(SHARE CODE)

15
14
13
12
11
10
9
8
1
6
5

4
3
2
1
o

--

STATIC DATAPOOI
GL05
GL04
GL03
~L02

DSECT .

OPERATING
SYSTEM

TASKC
(DOES NOT

SHARE CODE)

f~'\

'~

,
I

,

I

15
14
13
12
11
10
9
8
1
6
5

4
3
2
1
0

DSECT

OPERATING
SYSTEM

TASKD
(DOES NOT

SHARE CODE
OR COMMON)

15
14
13
12
11
10
9
8
1
6
5

4
3
2
1
0

~
~jj

[2.9.4.5 Shared Procedures

MPX-32 supports shared procedures. A Catalog parameter, SHARED, is used to specify a
shared procedure, which must consist of a CSECT (pure code and data) and a DSECT (any
impure data). When a shared procedure is activated for the first time, the system loader
reads both the shared procedure section and the impure data section into memory. The
shared procedure section is mapped as if the task had issued an M.INCL service request.
Every subsequent activation of the shared procedure causes only the impure data section
of the shared procedure to be loaded since the procedure section is already in memory,
has not been altered, and can be mapped as in an M.INCL service request.

Shared procedures, like shared memory areas, have an allocation count associated with
them to prevent premature deallocation of the memory they occupy and a user count to
control the swapping of these partitions.

Shared procedure space is allocated in the highest available logical address (below
common partitions, if any). (See Figure 2-4.)

2.10 MPX-32 Faults/Traps and Miscellaneous Interrupts

MPX-32 provides interrupt and trap processors for all standard interrupts and traps. A
list of these interrupts with associated information is shown in Table 2-4.

Processing for trap levels 03, 04, 05, 09 is dependent upon the location of the instruction
causing the trap. A system crash (M.KILL; not OPCOM KILL) results if the offending
instruction is issued from a location within the MPX-32 system area. If the instruction is
issued from a location within a task area, the task is aborted.

When a system crash occurs as a result of a trap handler entry, the CPU halts with the
registers containing the following information:

RO=PSD Word 0 (when trap generated)
RI=PSD Word 1 (when trap generated)
R2=Real address of instruction causing trap
R3=Instruction causing trap
R4=CPU status word (from trap handler)
R5=Crash code:

MPOl=X'4D503031' (See H.IP02 Codes)
NM01=X'4E4D3031' (Non-Present Memory - H.IP03)
UI01=X'55493031' (Undefined Instruction - H.IP04)
PVOl=X'50563031' (Privilege Violation - H.IP05)
MCOl=X'4D433031' (Machine Check - H.IP07)
SC01=X'53433031' (System Check - H.IP08)
MF01=X'4D463031' (Map Fault - H.IP09)
CPOI=X'42543031' (Cache Parity - H.IP 10) 32/87 only
BT01=X'42543031' (Block Mode Timeout - H.IPOE)
HTOl=X'48543031' (Privileged Halt Trap - H.IPHT) CONCEPT /32 only

R6=Real address of register save block
R7=C'TRAP'=X' 54524150'

2-35

N
I

I.,o.J
0'\

Relative
Priority

00
01

02/12
03/24
04/25

OS/26

06
07
08
09
OE
OF/29

13
27

28

Note 1:

~\
,,"-.- /

. .ults/Traps and Mise Interrupts

Logical Dedicated
Priority IVL Loc. Description

00 OF4 Power Fail Safe Trap
01 .. OFC System Override Trap
12 .OE8 Memory Parity Trap
24 ;190 Non-Present ~~mory Trap
25 ,J94 Undefined Instruction

Trap
2t· , 198 Privilege Violation

Trap
180 S:":Dervi sor Ca 11 Trap
184 Mach,','le Check Trap
188 System G~eck Trap
18C Map Fault Trap
OE4 Block Mode -nmeout Trap

29 lA4 Arithmetic Ex~eption
Trap

1'3 OEC Attention Interrupt
27 19C Call Monitor (CALM)

Interrupt
28 lAO Real-Time Clock

Interrupt
--

Illegal SVC Task Abort Codes
SVOI Abort of unprivileged

task using M.CALL
SV02 Invalid SVC , abort
SV03 Abort of unprivileged

task attempting use of
a "privileged-only"
service

SV04 Invalid SVC type abort
SV05 Abort of unprivileged

task attempting M.RTRN

System Action:
PSD in OS Area

Halt
Halt
t~.KILL
M.KILL
~1. KILL

M.KILL

Process SVC
M.KILL
M.KILL
M.KILL
M.KILL
N/A (Not
Enabled)

Process Int.
Process CALM

Process Int.

Note 2: I 11 ega 1
CMOI
CM02

CM03

SYSTEM Action:
PSD In Task Crash/Abort

Area Code

Halt N/A'
Halt N/A
M.KILL MP01
Abort Task NM01
Abort Task UI01

Abort Task PV01

Process SVC See Note 1
M.KILL MeOl
M.KILL SCOI
Abort Task MFOl
M.KILL BTOI
Record N/A
Exception in
TSA
Process Int. N/A
Process CALM See Note 2

Process Int. N/A

CALM Task Abort Codes
CALM instruction not located
Expected CALM instruction
does not have CALM (X'30')
opcode
Invalid CALM number

,#,,""
{. \

\. >/

3. TASK STRUCTURE AND OPERA nON

3.1 Task Identification

Under MPX-32, the user can communicate with and control tasks either by task name or
task number (unless a task is multicopied, in which case, the task number is required).
The task name is the cataloged name of the load module file containing the task. The
task number is assigned when the task is activated and is a sequential 24-bit number
concatenated with an 8-bit DQE index. Task numbers are unique for each task in the
system.

Each task is also associated with an owner. Valid owner names are specified in the
M.KEY file, if it exists; otherwise, all owner names are valid. An owner can have any
number of tasks with the same or different task names active on the system at any point
in time.

In addition to the task numbers, each batch job is assigned a unique sequence number
when the job is entered in the batchstream.

Active tasks can be listed by:

Task number

Owner name

Task Load Module Name

Batch sequence number (if Batch)

Execution Class (Real-time, Online, Batch)

Pseudonym used by MPX-32 to further identify the task, e.g., by the terminal
it is running on

or a combination of the above.

The system provides the OPCOM LIST commands and the system service M.ID for listing
any active task by specifying a unique combination of these attributes.

3.2 Task Structures

A task is structured to meet a user's particular requirements by defining the contents of
a unique address space. A unique address space is a mapped logical address space which
contains up to 128KW of code and data and may also contain up to 128KW of extended
indexing data on a 32/7x computer. On a CONCEPT /32, a unique address space is
mapped logical address space which contains up to 128KW of code and data and may also

3-1

contain up to 384KW of extended indexing data. This unique address space is established
when the task is activated and may contain:

(a) A non-shared task

(b) A task which shares procedure (code and pure data) with another task

(c) A task which shares memory (common storage or user defined use) with
another task

Shared memory considerations are described in Chapter 2.

3.2.1 Non-Shared Tasks

This type of address space contains a single task including its Task Service Area (TSA),
its code section (CSECT - write protected memory containing code and pure data), and
its data section (DSECT - read/write memory containing impure data). (Note: Tasks
which are not sectioned have only a DSECT, which contains the code and all data.)

3-2

HIGH V/ / / / / /uNGse6// / / / / /

MAP BLOCK
cseCT ~

(PURE CODE It DATA)
MAP BLOCK

MAP BLOCK

~.

MAP BLOCK
AVAILABLE FOR ~

DYNAMIC DSECT ~

<IIC~ EXPANSION
~

MAP BLOCK

..
MAP BLOCK

C~ DSECT
(IMPURE CODE It DATA)

NOTE: IF TASK IS NOT SECTIONED, MAP BLOCK

DSECT CONTAINS ALL CODE It DATA ~

PAG~ 17 / / / / //////// / / /

TASK SERVICE AREA MAP BLOCK

SYSTEM BUFFERS

MAP BLOCK

~

OPERATING MAP BLOCK

SYSTEM

LOW

~

} MAP BLOCK

c.\
...,,/

820636

Figure 3-1. Non-Shared Task Environment Address Space

3-3

3.2.2 Shared Tasks

When a task is cataloged, the user can specify that a program section is to be shared. A
program section (CSECT) consists of code and pure data. This section is write protected
and mapped into each requesting user's logical address space. A separate data section
(DSECT) is mapped into each logical address space, as illustrated in Figure 3-2.

3-4

(
HIGH

(

LOW

SHARED CSECT

AVAILABLE FOR

DYNAMIC DSECT

EXPANSION

UNIQUE DSECT

TASK SERVICE AREA

SYSTEM BUFFERS

OPERATING

SYSTEM

~------------------------------------..
Figure 3-2 Shared Task Address Space

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

MAP BLOCK

} MAP BLOCK

820635

3-5

3.2.3 Multicopied Tasks

An owner or several owners can have tasks with the same name (and the same load
module) active concurrently. This is accomplished by cataloging the task as multicopy.
The task name is not sufficient to communicate with multicopy tasks; the task number
must be used.

3.2.4 Unique Tasks

Although only one copy of a task that is unique can be active on the system at a given
time, the MPX-32 run request mechanism can be used to queue run requests to the task,
so that as soon as one user stops executing, another can begin. (See Intertask
Communication and Activation, Section 3."'.)

3.3 Task Execution

Tasks are introduced to the system by a request to activate the cataloged load module by
name. Activation can be requested in several different ways.

Batch tasks are activated via the $EXECUTE Job Control statement.

Online tasks are activated via the RUN command under TSM.

Real time tasks can be activated by the M.ACTV or M.PTSK system
services. The requestor uses the M.PTSK service to rename the task or to
specify additional or alternate resource requirements for the task. Real time
tasks can also be activated by the job control statement $ACTIVATE or the
OPCOM command, ACTIVATE.

Real time tasks can also be activated via timers or interrupts.

3.4 Intertask ComllUlication

MPX-32 provides both message and run request send/receive processing. Run request
services allow a task to queue an execution request (with optional parameter pass) for
another task. Message services allow a task to send a message to another active task.
The services provided for use by the destination tasks are called "receiving task
services". Those provided for tasks which issue the requests are called "sending task
services". Message and run request services use the software interrupt scheduling
structure described in Section 2."'.

3-6

/-- ,-
I -

\ .. _/

3.4.1 Receiving Task Services

3.4.1.1 Establishing Message Receivers (M.RCVR)

In order to receive messages sent from other tasks, a task must be active and have a
message receiver established. A message receiver is established by calling the system
service M.RCVR, and providing the receiver routine address as an argument with the
call.

3.4.1.2 Establishing Run Receivers

Any valid task may be a run receiver. Although a set of special run receiver services are
provided, in the most simple case, they need not be used. The run receiver mechanism is
provided by the system to allow queued requests for task execution, with optional
parameter passing. The cataloged transfer address is used as the run receiver execution
address. The task load module name is used to identify the task to be executed unless
the run request is being sent to a multicopy task in the waiting for run request state, in
which case the task number should be used to identify the particular copy of that task. If
a load module name is specified and a task of that load module name is currently active,
but is not a single-copied task, the load module is activated (multi-copied) to process this
request. When a single-copied task exits, any queued run requests are executed. If a run
request is issued for a task that is not currently active, the task is activated
automatically.

3.4.1.3 Execution of Message Receiver Programs

When a task is active and has a message receiver established, it can receive messages
sent from other tasks. A message sent to this task causes a software (task) interrupt
entry to the established message receiver.

3.4.1.4 Execution of Run Receiver Programs

When a valid task is executed as a result of a run request sent by another task, it is
entered at its cataloged transfer address. A run receiver executes at the normal task
execution (base) level.

3.4.1.5 Obtaining Message Parameters (M.GMSGP)

When the message receiver is entered, Rl contains the address of the message queue
entry in memory pool. The task may optionally retrieve the message directly from
memory pool, or the task may call a receiver service (M.GMSGP) to store the message
into the designated receiver buffer. If the M.GMSGP service is utilized, the task must
present the address of a five-word Parameter Receive Block (PRB) as an argument with
the call.

3-7

3.4.1.6 Obtaining the Rm Request Parameters (M.GRUNP)

When the run receiver is entered, Rl contains the address of the run request queue entry
in memory pool. The task may optionally retrieve the run request parameters directly
from memory pool, or the task may call a receiver service (M.GRUNP) to store the run
request parameters into the designated receiver buffer. If the M.GRUNP service is
utilized, the task must present the address of a three-word Parameter Receive Block
(PRB) as an argument with the call.

3.4.1.7 Exiting the Message Receiver (M.XMSGR)

When processing of the message is complete, the message interrupt level must be exited
by calling the M.XMSGR service. When M.XMSGR is called, the address of a two-word
Receiver Exit Block (RXB) must be provided. The RXB contains the address of the
return parameter buffer, and the number of bytes (if any) to be returned to the sending
task. The RXB will also contain a return status byte to be stored in the Parameter Send
Block (PSB) of the sending task. After message exit processing is complete, the message
receiver queue for this task is examined for any additional messages to process. If none
exists, a return to the base level interrupted context is performed.

3.4.1.8 Exiting the Rm Receiver Task (M.EXIT or M.XRUNR)

When run request processing is complete, the task may use either the standard exit call
(M.EXIT), or the special run receiver exit service (M.XRUNR).

If the standard exit service (M.EXIT) is used to exit the run receiver task, no user status
or parameters are returned. Only completion status is posted (in the scheduler status
word) of the Parameter Send Block (PSB) in the sending task. After completion
processing for the run request is accomplished, the run receiver queue for this task is
examined, and any queued run request causes the task to be re-executed. If the run
receiver queue for this task is empty, a standard exit is performed.

If the special exit (M.XRUNR) is used to exit the run receiver task, the address of a two
word Receiver Exit Block (RXB) must be provided as an argument with the call. The
RXB contains the address of the return parameter buffer, and the number of bytes (if
any) to be returned to the sending task. The RXB also contains a return status byte to be
stored in the Parameter Send Block (PSB) of the sending task. After completion
processing for the run request is accomplished, the exit control options in the RXB are
examined. If the "wait" exit option is used, the run receiver queue for this task is
examined for any additional run requests to be processed. If none exist, the task is put
into a wait-state, waiting for the receipt of new run requests. Execution of the task does
not resume until such a request is received. If the "terminate" exit option is used, any
queued run requests are processed. If the run receiver is empty, however, a standard exit
is performed.

3-8

p'-"

. , (...•. '.' ..

3.4.1.9 Waiting for the Next Request (M.SUSP, M.ANYW or M.EAWAIT)

In addition to the wait options described under the heading "Exiting the Run Receiver
Task", a task can use M.SUSP, M.ANYW, or M.EAW AIT services. When operating at the
base execution level, a task that has established a message receiver can use the M.SUSP
service call to enter a wait-state until the next message is received.

A task may also make use of the special M.ANYW service from the base software level.
The M.ANYW service is similar to M.SUSP. The difference is that whereas the M.SUSP
wait-state is ended only upon receipt of a message interrupt, timer expiration, or
resume, the M.ANYW wait-state is ended upon receipt of any message, end action, or
break software interrupt.

M.EAW AIT is similar to M.ANYW except that if no requests are outstanding, an
immediate return is made to the caller.

3.4.2 Sending Task Services

3.4.2.1 Message Send Service (M.SMSGR)

A task may send a message to another active task, providing the destination task has
established a message receiver. The sending task must identify the destination task by
task number. When the send message service (M.SMSGR) is called, the address of a
Parameter Send Block (PSB) must be provided as an argument. The PSB specifies the
message to be sent, whether or not any parameters are to be returned, and the address of
a user end action routine. User status can be returned by the destination task. The
operating system also returns completion status in the PSB. No-wait and no-call-back
control options are also provided.

3.4.2.2 Send Rm Request Service (M.SRUNR)

A task may send a run request to any active or inactive task, identifying the task by load
module name. When the run request service (M.SRUNR) is called, the address of a
Parameter Send Block (PSB) must be provided as an argument. The PSB format allows
for the specification of the run request parameters to be sent, any parameters to be
returned, scheduler and user status, as well as the address of a user end action routine.
No-wait and no-call-back control options are also provided.

3-9

3.4.2.3 Waiting for Message Completion

A message may be sent in either the wait or no-wait mode. If the wait mode is used,
execution of the sending task is deferred until processing of the message by the
destination task is complete. If the no-wait mode is used, execution of the sending task
continues as soon as the request has been queued. The operation in progress bit in the
scheduler status field of the PSB may be examined to determine completion. A sending
task may issue a series of no-wait mode messages followed by a call to the M.ANYW or
M.EA WAIT system wait service. This allows a task to wait for the completion of any no
wait messages previously sent. The completion of such a message will cause resumption
at the point after the M.ANYW or M.EAW AIT call.

3.4.2.4 Waiting for Rm Request Completion

Waiting for a run request completion follows the same form and has the same options as
waiting for message completion.

3.4.2 • .5 Message End Action Processing (M.XMEA)

User specified end action routines associated with no-wait message send requests are
entered at the end action software interrupt level when the requested message ,/-"
processing is complete. Status and .return paralmetersh wMillxhMaEveA bee~ posted bas "'- /'
appropriate. When end action processing is comp ete, t e. servlce must e
called to exit the end action software interrupt level.

3.4.2.6 Rm Request End Action Processing (M.XREA)

Run request end action processing follows the same form and has the same options as
message end action processing. The only difference is that the M. XREA service is used
instead of M.XMEA.

3.4.3 Parameter Blocks

Parameters for run requests and messages are passed via parameter blocks established
within the user task. The parameter blocks are described in this section.

3-10

(----._;

("
3.4.3.1 Parameter Send Block (PSB)

The Parameter Send Block (PSB) is used to describe a send request issued from one task
to another. The same PSB format is used for both message and run requests. The
address of the PSB (doubleword bounded) must be presented as an argument when either
the M.SMSGR or M.SRUNR services are invoked.

Please note that a task number, not a load module name, must be used if sending a
message request or if sending a run request to a multicopied task which is waiting for a
run request.

WORD

o 7 t 8 15 116 23124 ~ 1

o Load module name (or task number if message or run request
to multicopy task in RUNW state)

1 Load module name (or 0 if message or run request to
multicopy task in RUNW state)

Priority Number of bytes
2 (PSB. PRI) Reserved to be sent (PSB.SQUA)

3 Reserved Send buffer address (PSB.SBA)

Return parameter buffer Number of bytes
4 length (bytes) (PSB.RPBL) actually returned

(PSB.ACRP)

5 Reserved Return parameter buffer address
(PSB.RBA)

6 Reserved No-wait request end action address
(PSB.EM)

7 Completion Processing User
status start status status Options

(PSB.CST) (PSB.1ST) (PSB.UST) (PSB.OPT)

820615
Figure 3-3. Parameter Send Rlock (PSB)

WORD 0

Bits 0-31 Load Module Name - Characters 1-4 of the name of the load
module to receive the run request or task number of the
multi copied task to receive run request, or of the task to receive
the message.

3-11

WORD 1

Bits 0-31

WORD 2

Bits 0-7

Bits 8-15

Bits 16-31

WORD 3

Bits 0-7

Bits 8-31

WORD 4

Bits 0-15

Bits 16-31

WORD 5

Bits 0-7

Bits 8-31

WORD 6

Bits 0-7

Bits 8-31

3-12

Load Module Name - Characters 5-8 of the name of the load
module to receive the run request, or Unused if message send.
Note: Must be 0 if sending a run request to a multicopy task in
RUNW state.

Priority - This field contains the priority of the send request (1-
64). If the value of this field is zero, the priority used defaults to
the execution priority of the sending task. This field is not
examined if the sending task is privileged.

Reserved.

Number of Bytes to be Sent - This field specifies the number of
bytes to be passed (0-768) with the message or run request.

Reserved.

Send Buffer Address - This field contains the word address of the
buffer containing the parameters to be sent.

Return Parameter Buffer Length - Contains the maximum number
of bytes (0-768) that may be accepted as returned parameters.

Number of Bytes Actually Returned - This field is set by the send
message or run request service upon completion of the request.

Reserved.

Return Parameter Buffer Address - Contains the word address of
the buffer into which any returned parameters will be stored.

Reserved.

No-Wait Request End Action Address - Contains the address of a
user routine to be executed at a interrupt level upon completion of
the request.

o

WORD 7

Bits 0-7

(

Bits 8-15

Completion Status - This bit encoded field contains completion
status information posted by the operating system as follows:

Bit

o

2

3

4

5

6-7

Meaning When Set

Operation in progress (busy).

Destination task was aborted before
completion of processing for this request.

Destination task was deleted before
completion of processing for this request.

Return parameters truncated (attempted
return exceeds return parameter buffer
length).

Send parameters truncated (attempted send
exceeds destination task receiver buffer
length).

User end action routine not executed because
of task abort outstanding for this task (may
be examined in abort receiver to determine
incomplete operation).

Reserved.

Processing Start (Initial) Status - This value encoded field contains
initial status information posted by the operating system as
follows:

Code

o

1

2

3

4

5

Definition

Normal initial status.

Message request task number invalid.

Run request load module name not found in
System Master Directory (SMD).

File associated with run request load module
name is password protected.

File associated with run request load module
name does not have a valid load module
format.

Dispatch Queue Entry (DQE) space is
unavailable for activation of the load module
specified by a run request.

3-13

3.4.3.2

Bits 16-23

Bits 24-31

6

7

8-9

10

11

12

13

14

15

An I/o error was encountered while reading
the SMD to obtain the file definition of the
load module specified in a run request.

An I/o error was encountered while reading
the file containing the load module specified
in a run request.

Reserved.

Invalid priority specification. Note: An
unprivileged task may not specify a priority
which is higher than its own execution
priority.

Invalid send buffer address or send quantity
exceeds 768 bytes.

Invalid return buffer address.

Invalid no-wait mode end action routine
address.

Memory pool unavailable.

Excessive no-wait requests. Limit is 5 for
unprivileged tasks and 255 for privileged
tasks.

User Status - As defined by sending and receiving tasks.

Options - This field contains user request control specification. It
is bit encoded as follows:

Bit

24

25

Meaning When Set

Request is to be issued in no-wait mode.

Do not post completion status or accept
return parameters. This bit is examined only
if bit 24 is set. When this bit is set, the
request is said to have been issued in the "no
call-back mode".

Parameter Receive Block (PRB)

The Parameter Receive Block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same format PRB is used for both
message and run requests. The address of the PRB must be presented when either the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

3-14

C' -~\ , :

.;

C \IDRD

0 7 8 15 11 6 23124

o Status Parameter receiver buffer address
(PRB.ST) (PRB.RBA)

Receiver buffer Number of bytes
1 length (Bytes) (PRB.RBL) actually received

2

3

4

(WORD 0

Bits 0-7

Bits 8-31

WORD 1

Bits 0-15

Bits 16-31

(PRB.ARQ)

Ownername of sending task (Word 1) (PRB.~)

Ownername of sending task (Word 2) (PRB.~)

Task number of sending task (PRB.TSKN)

Figure 3-4. Parameter Receive Block (PRB)

Status-value encoded status byte

Code Definition

o Normal status

1 Reserved

2 Invalid receiver buffer address (PRB.RBAE)

3 No active send request (PRB.NSRE)

4 Receiver buffer length exceeded (PRB.RBLE)

Parameter Receiver Buffer Address - This field contains the word
address of the buffer, into which the sent parameters are stored.

Receiver Buffer Length - Contains the length of the receiver
buffer (number of bytes).

Number of Bytes Actually Received - This value is set by the
operating system and is clamped to a maximum equal to the
receiver buffer length.

3-15

31

820637

WORDS 2,3

Bits 0-63

\ WORD 4

Bits 0-31

Ownername of Sending Task - Set by the operating system to
contain the ownername of the task which issued the parameter
send request.

Task Number of Sending Task - Set by the operating system to
contain the task activation sequence number of the task which
issued the parameter send request.

3.4.3.3 Receiver Exit 8lock (RX8)

The Receiver Exit Block (RXB) is used to control the return of parameters and status
from the destination (receiving) task to the task that issued the send request. It is also
used to specify receiver exit-type options. The same format RXB is used for both
messages and run requests. The address of the RXB must be presented as an argument
when either the M.XMSGR or M.XRUNR services are called.

WORD
0 7 8 15116 23124 31

Return Return parameter buffer address
o status (RXB.RBA)

(RXB.ST)

Options Number of bytes
1 (RXB.OPT) Reserved to be returned

WORD 0

Bits 0-7

Bits 8-31

3-16

(RXB.RQ)
,

820638

Figure 3-5. Receiver Exit Block (RXB)

Return Status - Contains status as defined by the receiver task.
Used to set the user status byte in the Parameter Send Block (PSB)
of the task which issued the send request.

Return Parameter Buffer Address - Contains the word address of
the buffer containing the parameters which are to be returned to
the task which issued the send request.

0·''''· , ,

WORD 1

Bits 0-7

Bits 8-15

Bits 16-31

(....
'--"

Options - This field contains receiver exit control options. It is
encoded as follows:

Value

o

1

Reserved.

Exit Type

M.XRUNR

M.XMSGR

M.XRUNR

Meaning

Wait for next run request.

Return to point of task
interrupt.

Exit task, process any
additional run requests. If
none exist, perform a
standard exit.

M.XMSGR N/A

Number of Bytes to be Returned - This field contains the number
of bytes of information to be returned to the sending task.

3-17

3.4.4 M~ and RWl Request Services Summary

T,he following table is provided as a summary of message and run request services
provided by the MPX-32 system.

3-18

(-","

I. .'
." " .1

Table 3-1 Message and Run Request Services Summary

Run Request
Services

Receiver
Services

N/A

M.GRUNP prbaddr

M.XRUNR rxbaddr

or

M.EXIT

N/A

Send
Services

M.SRUNR psbaddr

M.ANYW timel

M.XREA

ARGUMENT

recvaddr

prbaddr

rxbaddr

psbaddr

task no

timel

Message
Services Function

M.RCVR recvaddr Establish receiver
address

M.GMSGP prbaddr Get parameters

M.XMSGR rxbaddr Exit receiver

M.ANYW time 1 Wait for receipt

or of next message

M.SUSP taskno,timel

M.SMSGR psbaddr Send request

M.ANYW timel Wait for any
M.EA WAIT time 1 request completion

M.XMEA Exi t user end
action service

OESCRIPTION

Address of receiver

Address of Parameter Receive Block (PRB)

Address of Receiver Exit Block (RXB)

Address of Parameter Send Block (PSB)

Contains zero

Contains zero if indefinite wait, otherwise contains
negative number of time units to be used as a wait
time-out value

3-19/3-20

4. OPERA TOR COMMUNICA nONS (OPCOM)

MPX-32 provides a set of commands that allow the user to exercise control over system
operations either from the operator's console (OPCOM console) or from a terminal,
where the user can run OPCOM interactively.

OPCOM commands allow the user to:

Activate and control system and user tasks

Activate and control batch jobs

Display system status information

Control peripherals associated with a batch job, user task, or system task

Display and access physical memory

Connect and disconnect tasks to/from interrupts

Set or delete timers to activate or resume tasks or request interrupts

Disable and re-enable hardware interrupt levels

4.1 Overview

This section describes general system characteristics that apply to use of OPCOM.

4.1.1 Task Names, Task Numbers, and Owners

OPCOM commands used to control tasks (ABORT, BREAK, CONNECT, CONTINUE,
DEPRINT, DEPUNCH, DISCONNECT, HOLD, KILL, SEND, and RESUME) require unique
identification of the task, either by task name/owner name, or by task number, which
always uniquely identifies a task.

A task number is an eight-digit number assigned by MPX-32 to a task when it is
activated. This number is unique and identifies a particular copy or sharer of a task.

A task name is the name supplied when a task is cataloged; it is also the name of the load
module file that contains the task. More than one task with the same name can be active
in the MPX-32 system at a time if it is cataloged as multicopied or shared.

The owner name for a task activated from a terminal is the name specified at logon. It
cannot be changed except by logging on again. Normally, the logon owner name is
associated with any task the owner activates on the system, except if batch or if the
owner name is not restricted (see next sections). The OPCOM console has the default
owner name CONSOLE.

4-1

If a load module can be multicopied or shared, the task name/owner name may not
identify a particular copy of a task (one owner could activate several tasks of the same
name).

OPCOM thus restricts any user (terminal or OPCOM console) from entering a task name
for any task that can be multicopied or shared, and accepts a control command only if
the task number is used. The task number can be obtained by using either the STATUS or
LIST taskname command. Either command will list all tasks of the specified name with
task numbers and other information that allow the user to determine which task number
to use.

The terminal user can be further restricted in his ability to control tasks. This is
accomplished via theKEY utility described in Volume 2 and in Volume 1, Section 4.1.4. If
access to tasks with other owner names is restricted, the user who issues a [RUN]
OPCOM command from his terminal can control only those tasks which he has
activated. If a terminal user issues a control command for a task that he does not own,
the command is not accepted by OPCOM. If not restricted, an owner has the capabilities
described next for CONSOLE.

The CONSOLE owner can activate a task under CONSOLE (by default) or under any
owner name he chooses. The CONSOLE owner is not restricted in his ability to control
tasks on the system (except by the multicopy and shared restrictions described
previously).

4.1.2 Batch Jobs, Job Numbers, and Owner Names

OPCOM commands used to control batch jobs (REMOVE, REDIRECT, REPRINT,
REPUNCH, DEPRINT, DEPUNCH, or URGENT) use job numbers to identify the job. If
several jobs are submitted on a job file or device medium, a separate number is supplied
for each occurrence of a $30B job control statement. The job number is in a range from
0-9999, and uniquely identifies the job in the system.

Control commands for jobs do not have the same owner name restrictions that can be
applied to tasks. Any owner can use the job number in the control commands above to
control a job.

However, if you need to exercise control over a specific task within a job, you must be
the CONSOLE owner name, have the owner name supplied on the $30B card, or have the
privilege of controlling tasks with other owner names. If a job is submitted from a
terminal and the owner name is changed on the $308 card, the $30B owner name applies
to the job only. The logon owner name is maintained for the terminal user. To issue
OPCOM control commands pertaining to the task(s) activated by the job (see previous
section), the restricted user must either use the OPCOM console (which has the owner
name of CONSOLE and can access any task) or log off the terminal and log on again with
the owner name used on the $30B card.

4-2

;(

tc>

,(-
i(

4.1.3 Restricting OPCOM Commands

Any command verb can be restricted from a terminal user based on his owner name and
OPCOM restriction bits in the M.KEY file. Each command is represented by a bit set in
a particular position in the OPCOM restriction doubleword of the user's M.KEY entry.
The module number of each command verb corresponds to its bit position. For example,
the command verb "MODIFY" (module OC 18), is represented by bit 18 of the OPCOM
restriction double word. (Module numbers are indicated in the command summary chart
at the beginning of Section 4.4.)

With the exception of EXIT (see Section 4.1.5), if a command verb bit is set, the
command is not available to that owner name and generates an "INVALID COMMAND
VERB" message. All commands are always available to the CONSOLE owner at the
OPCOM console.

4.1.4 Restricting Owner Name Privileges

In addition to restricting use of OPCOM commands, the KEY utility can be used to
restrict the following functions and privileges for an owner name:

o Access to tasks with different owner names can be prohibited.

o The ability to activate or establish tasks cataloged as privileged can be
eliminated.

Like OPCOM commands, these privileges are removed by setting bits in the OPCOM
restriction doubleword of the user's M.KEY entry. The same technique used for OPCOM
commands is used for privileges. Bits 40-41 apply. See the KEY utility, Chapter 7,
Volume 2.

4.1.5 The EXIT Command

The EXIT command (bit position 0 of the OPCOM restriction bits) cannot be restricted
from terminal users. It should be set only to inhibit use of EXIT at the OPCOM console.
If the EXIT bit is set and the OPCOM console operator issues an EXIT command, OPCOM
issues a CR/line feed and suspends.

If the EXIT bit is not set, when the operator types EXIT, the TSM > prompt is returned,
and the operator can use the console like a terminal, with one exception: system
messages will be interspersed with any interactive I/o from the console. To reaccess
OPCOM, type [RUN] OPCOM to the TSM> prompt. .

Caution: if you type EXIT to the TSM> prompt, you will exit the system. To reactivate
OPCOM at the console, depress the ATTENTION key. You will be prompted by TSM to
log on. To obtain the normal capabilities of the OPCOMconsole, use the owner name
CONSOLE at logon. OPCOM can be accessed for the console by:

TSM > [RUN] OPCOM

If a time out occurs while OPCOM is waiting for input, an exit occurs.

4-3

4.1.6 System Task Restrictions

System tasks J.SW APR {the Swapped, J. TSM (Terminal Services Managed, and J.OPCOM
(running on the terminal used to access OPCOM) cannot be activated nor controlled via
OPCOM commands. The status of such tasks can however, be obtained via the LIST or
STATUS commands.

4.2 Activating OPCOM

The OPCOM task is automatically active on the OPCOM console after a cold start, warm
start, or restart. To enter a command, depress the ATTENTION key on the CPU front
panel,

< Attention>
??

A double question mark prompt indicates that OPCOM is ready to accept a command.
The ATTENTION key must be depressed before entering each unsolicited command. (See
Section 4.3.)

To activate OPCOM from a terminal, respond OPCOM or RUN OPCOM to the TSM>
prompt:

TSM >[RUN] OPCOM
??

The double question mark prompt is issued automatically by OPCOM after an OPCOM
command has been processed.

Alternatively, an OPCOM command can be issued at the TSM prompt with immediate
return to T5M rather than OPCOM. To do so, use an exclamation point as a synonym for
'OPCOM', followed by the OPCOM command verb:

T5M >!command
TSM>

F or example:

4-4

TSM>!LIST
TSM>--

r

l.

(.. -..
L

4.3 Using OPCOM Commands

4.3.1 At the OPCOM Console

There are certain system messages and operations geared to the OPCOM console, and not
to terminals running OPCOM, e.g.,

MOUNT and DISMOUNT messages for magnetic tape

Abort messages and codes for tasks running in the real time environment as
descr ibed in Appendix C

I/O error conditions that can either be corrected offline with I/O resumed or
aborted

Outputting these messages to the console assumes a central location of configured
system hardware, including the OPCOM console, the CPU, printers, tape units, etc. User
tasks can also output messages to the OPCOM console.

4.3.1.1 Information Messages

Commands or responses to prompts at the OPCOM console always take precedence over
messages output to the console. The maximum uninterruptable output string for a
message is 72 characters. The operator can depress the ATTENTION key to interrupt.
The OPCOM prompt (??) will be issued after the current line of output is printed. The
message is continued as soon as the OPCOM command has been processed.

4.3.1.2 Action Messages

If a system message requires operator intervention and reply, correct the condition noted
if applicable and enter the reply directory, using a carriage return (CR) as the
terminator. For example,

*CR7800 INOP: R,A? R <co

A card reader is inoperational. The operator fixes it and responds R and a carriage
return for resume. Input continues.

4.3.1.3 Commands

Each complete input command is terminated by depressing a carriage return (CR).
OPCOM checks the command verb and parameters. If correct, it completes the
operation indicated. It acknowledges the command only after processing is complete (see
4.3.1.6).

4-5

4.3.1.4 Aborting a Command

If you depress the ATTENTION key after a command has been entered but before the
command has been acknowleged, the command is processed up to the point of first
output; output is suppressed, two asterisks (**) are printed to indicate suppression, and
the OPCOM prompt (??) is returned. The command is processed completely if it
produces no console output.

If you depress the ATTENTION key and then do not want to issue an OPCOM command,
type just CR in response to the ?? prompt. OPCOM will suspend until ATTENTION is
depressed.

4.3.1.5 Correcting Command Line Errors

Any typing error on the command line can be corrected by entering a Control H (CTRLH)
or BACKSPACE key on the terminal. A command line can be erased completely by
depressing the RUB key or DELETE key.

If a command verb is incorrect, OPCOM displays the message:

INVALID COMMAND VERB

and displays the OPCOM prompt (??). Re-enter the command.

If a command parameter is wrong, OPCOM displays an error message that identifies the
invalid parameter. The ATTENTION key must be depressed before re-entering the
command.

4.3.1.6 Command Processing

An OPCOM command that is processed to completion issues a carriage return/linefeed to
the OPCOM console that acknowledges completion. If a command is legal but cannot be
executed at this time, it issues the message:

REQUEST NOT EXECUTED

OPCOM always acknowledges a command with either a message or a CR/linefeed at the
console.

4.3.2 At the Terminal

The terminal user obtains only the OPCOM messages that pertain to commands he issued
from his or her terminal. Terminal users also do not have any equivalent to depressing
the ATTENTION key. After issuing an OPCOM command successfully, the OPCOM
prompt (??) is simply returned. The EXIT command is used at the terminal to return to
the TSM > prompt.

4-6

(

4.3.2.1 Commands

Each complete input command is terminated by depressing a carriage return (CR).
OPCOM checks the command verb and parameters. If correct, it completes the
operation indicated. It acknowledges the command only after processing is complete.
The acknowledgement is return of the OPCOM ?? or TSM> prompt.

4.3.2.2 Aborting a Command

To abort a command, depress the Break key or equivalent. If the command produces no
terminal output, Break will have no effect. If the command produces output, the
command is processed up to the point of first output, a double asterisk (**) is displayed
to indicate suppression, and the OPCOM ?? or TSM > prompt is returned.

4.3.2.3 Command Line Errors

Any typing error on the command line can be corrected by entering a Control H (CTRLH)
or BACKSPACE key on the terminal. A command line can be erased completely by
depressing the RUB key or DELETE key.

If a command verb is incorrect, OPCOM displays the message:

INVALID COMMAND VERB

It then returns the OPCOM prompt (??) or the TSM > prompt so that you can reissue the
command. If a command parameter is wrong, OPCOM displays an error message that
identifies the invalid parameter. Reissue the command as described above.

4.3.2.4 Command Processing

An OPCOM command that is processed to completion issues a carriage returnllinefeed
and the ?? or TSM > prompt to acknowledge completion. If a command is legal but
cannot be executed at this time, it issues the message:

REQUEST NOT EXECUTED

OPCOM always acknowledges a command with a message or a CR/line feed. It then
reissues the?? or TSM> prompt at the terminal.

4-7

4.4 OPCOM Commands

CPCOM commands are summarized below and described in detail in pages which follow.
OPCOM commands may be abbreviated to the first four characters. A command verb is
separated from associated parameters by one or more blanks or any valid delimiter
(commas, parentheses, or equal signs). Where a comma is required, it is shown in the
syntax statement.

Command

ABORT
(OCOO

ACTIVATE
(OC02)

BATCH
(OC03)

BREAK
(OC04)

CONNECT
(OC05)

CONTINUE
(OC06)

DEBUG

DELETETIMER
(OC27)

DEPRINT
(OCO?)

DEPUNCH
(OC08)

4-8

Function

Enters the specified task's abort receiver, if any. If none,
deletes task.

Activates a task.

Reads batch job(s) from specified device or file.

Enters pseudo interrupt receiver for specified task.

Connects specified task to indirectly connected interrupt level
defined via SYSGEN.

Releases task or device from HOLD.

Accesses the System Debugger. See Volume 3.

Deletes specified timer attached to task.

Deletes specified SLO files (or current file only) from system
output queue for specified job or task.

Same as DELETEPRINT for SBO files.

(." /

(

(

DISABLE
(OC09)

DISCONNECT
(OC 10)

DUMP
(OC 11)

ENABLE
(OC12)

ENTER
(OC13)

ESTABLISH
(OC39)

EXIT
(OCOO)

HOLD
(ae 14)

KILL
(OC15)

LIST
(OCI6)

MODE
(OCI7)

MODIFY
(OCI8)

OFFLINE
(OC19)

Disables an interrupt at specified priority level.

Disconnects specified task from indirectly connected interrupt
level defined at SYSGEN.

Dumps specified word locations to SLOe

Enables an interrupt at specified priority level.

Updates system date and time.

Activates and suspends a task.

Returns to TSM> prompt.

Inhibits a task from getting CPU control, stops spooled output
to a printer, punch or magnetic tape, or stops spooled input
from a card reader or magnetic tape until operator issues
CONTINUE.

Deletes specified task from system.

Lists entries in system dispatch queue, output print or punch
queue, account file, system patch file, or job queue as
specified.

Selects continuous batch, unidirectional file allocation, inhibits
banner page on SLO, or locks OPCOM console.

Changes a physical memory word in operating system address
space.

Makes a device unavailable for allocation.

4-9

ONLINE
(OC20)

PURGEAC
(OC2I)

REDIRECT
(OC22)

REMOVE
(OC23)

REPRINT
(OC24)

REPUNCH
(OC25)

REQUEST
(OC26)

RESUME
(OC38)

SAVEAC
(OC28)

SEARCH
(OC29)

SEND
(OC30)

SETTIMER
(OC31)

SNAP
(OC32)

4-10

Makes a device available for allocation.

Deletes current contents of accounting file M.ACCT.

Overrides SLO or SBO on job statement to SYSGEN'd LOD or
POD device.

Aborts batch task if active and removes the SYC file for the
batch job.

Reprints previous and current SLO files, current SLO, or all
SLO files for a job.

Same as REPRINT for SBO files.

Generates an RI (Request Interrupt) instruction for a specified
interrupt priority level.

Resumes specified task.

Saves the current contents of M.ACCT on magnetic tape.

Searches physical memory for a specified value.

Sends a message to a task which has established a message
receiver.

Sets specified timer for resumption of a task, activation of an
established task, or execution of an RI instruction at an
interrupt level.

Dumps physical word locations in physical memory to console.

(

START
(OC33)

STATUS
(OC34)

SYSASSIGN
(OC35)

TIME
(OC36)

TURNON
(OC40)

URGENT
(OC37)

Resumes batch jobs after restart or warm start.

Lists amount of memory in current use, channel and device and
I/O queue status information, device type and status
information, or task attributes and current status.

Establishes availability of device for selection as SLO and/or
SBO destination or temporarily overrides SYSGEN-selected SID
device. Specifies use of device for batch output, real time
output, or both.

Prints time and date on terminal.

Activates a specified task at a specified time.

Changes the priority of a batch job.

4-11

4.4.1 ABORT Command

The ABORT command is used to abort the specified task. Only tasks found in the system
dispatch queue can be aborted.

Syntax:

where:

Response:

ABORT

taskname

task no

{ T, task name }
task no

specifies the name of the task (load module). If task name is
used to abort a task, the task must be a unique copy load
module. (See Section 4.4.1.)

is the eight-digit task number assigned at activation.

If successful: LF (line feed)

If the task is in a wait state (e.g., for I/O or run requests) entry is deferred until it is safe
to abort.

If the task does not have an abort receiver, files and devices are closed. IOCS purges

At
, 'I.~ '_J

blocking buffers and generates automatic EOF's as appropriate in an attempt to preserve "'--- j

data integrity. The DQE for the task is then deleted.

The KILL command can be used to terminate outstanding I/O and run requests associated
with the task with no deferred processing.

If the task is scheduled to leave the system as a result of a previously issued ABORT
command, the response is TASK SCHEDULED TO LEAVE SYSTEM.

Examples:

??ABORT T,PGMTEST

Comment:

If the task with taskname PGMTEST is a single copy load module, with no outstanding
allocation requirements or outstanding I/O, it is aborted.

?? ABOR T 02000001

Comment:

If the task with task number 02000001 has no outstanding allocation requirements or
outstanding I/O, it is aborted.

4-12

'. ----"
~ ~~)/

(

(

4.4.2 ACTIVATE Command

The ACTIVATE command is used to activate the specified task. System modules
J.SW APR and OPCOM cannot be activated by this command. ACTIVA TE is used to
initiate tasks independent of the interactive or batch environment, i.e., at their base
priorities. The other alternative is to use the ESTABLISH command.

If ACTIVATE is used and the task is structured internally to suspend itself (with
M.SUSP), it is suspended at the end of the activation sequence. It can be resumed on a
timer (see the SETTIMER command), connected to an indirectly-connected interrupt
level (see the CONNECT command), or resumed via the RESUME command. The
EST ABLISH command is used to suspend a task without structuring it internally to
suspend.

Syntax:

where:

Response:

Examples:

Comment:

ACTIVATE

load mod

ownername

key

LF Oine feed)

load mod [,ownername [,key]]

is the one- to eight-character name of the permanent load
module file where the task is cataloged. It must be a system
file (no user name). The name of the task and the name of the
load module file are always identical.

is an optional one- to eight-character ownername. Default:
logon ownername.

is the one- to eight-character key, if any, associated with the
ownername in the M.KEY file.

Execution begins when the task is the highest priority task in the system.

If activation is not successful, e.g., if an assigned device is not configured in
the system, an abort code and message are output to the OPCOM console.

??ACTIVATE PGMTEST

The permanent file with filename PGMTEST is activated. If OPCOM is running on behalf
of a terminal user, PGMTEST is activated with the user's owner name, otherwise the task
has CONSOLE as its owner.

4-13

??ACTI PGMTEST,GIPSON

Comment:

The permanent load module file named PGMTEST is activated. PGMTEST is activated
with the owner name GIPSON.

4-14

(~

4.4.3 BATCH Command

The BATCH command is used to read batch jobs from the current System Input Device
(SID), specified device, or permanent file. The file must be a STOREd file.

Syntax:

BATCH

where:

BATCH

devmnc

density

parity

jobfile

username

key

password

[D,devmnc [,density,parity 1]
F, jobfile ,[username[,key]] [,password]

if no parameters are specified, the job file is read from the
System Input Device (SID).

is a device mnemonic specifying a device media containing the
job file. Can optionally contain an unblocked 'U' specification
for files or magnetic tape, as well as other descriptors. (See
Appendix A.)

is "H" (high density) or "L" (low density) if the device is seven
track magnetic tape. Otherwise, omit this field.

is "Ell (even parity) or "011 (odd parity) if the device is seven
track magnetic tape. Otherwise, omit this field.

is the name of a permanent file from which batch input is to be
read.

is a one,;,. to eight-character user name associated with the
jobfile. Default: if OPCOM console, system files; if a
terminal, the last name specified or implied with the
USERNAME command (TSM default is owner name = user
name).

Any search for a file based on user name that fails (no match)
is followed by search for a system file with the specified name.

is a one- to eight-character key, if any, associated with the
user name in the M.KEY file.

is a one- to eight-character password associated with the
specified permanent file for read access.

4-15

Response:

Examples:

Comment:

LF (line feed)

The job file is read to an SYC file, along with any additional records specified
in $SELECT directives. When the SYC file is complete, the job is entered into
the batchstream (dynamic job stream queue) at.the current batch priority.

If continuous batch has not been specified with the MODE command, reading
stops at the $$ statement. If continuous batch, continues reading until $$S
statement.

If any errors occur, they are displayed on the system Listed Output Device
(LOD) or if LOD is not available, on any device related to LOD for automatic
selection.

??BATCH

Batch jobs are read from the current System Input Device (SID).

??BATCH D,CR7 AOO

Comment:

Batch jobs are read from the card reader on channel 7 A, subaddress 00.

??BATCH F,PGMTEST

Comment:

Batch jobs are read from the file named PGMTEST.

4-16

(... ".,
, ,/

(

(

4.4.4 BREAK Command

The BREAK command is used to interrupt a task and enter the task's pseudo-interrupt
receiver.

Syntax:

BREAK

where:

taskname

taskno

Response:

IT,taskname (
taskno ~

is used to break into a task, the task must be a single copy load
module.

is the task number assigned at activation.

If the specified task is not in the system or has not established a pseudo-interrupt
receiver address (using the M.BRK system service), the task continues and a message is
displayed on the console or terminal. Alternatives are to ABORT or KILL.

If successful: LF (line feed)

Examples:

??BREAK T,PGMTEST

Comment:

If the task named PGMTEST is a unique load module with a break receiver, enters its
break receiver.

??BREAK 02000001

Comment:

If the task with task number 02000001 has a break receiver, enters its break receiver.

4-17

4.4.5 CONNECT Command

The CONNECT command is used to connect the specified task to the specified interrupt
level so that when the interrupt occurs, the task is resumed. The interrupt level must be
described as indirect during SYSGEN.

Before using CONNECT, use the ACTIVATE or ESTABLISH command to activate the
task.

Syntax:

where:

Response:

4-18

CONNECT

taskname

intlevel

taskno

LF (line feed)

1 T, taskname,intlevel t
taskno,intlevel \

is the name of the load module file containing the task. If the
task name is used to connect a task, the task must be a unique
copy load module.

is the 2-character hexadecimal interrupt priority level.

is the 8-digit task number assigned at activation.

If a task is already connected to the specified interrupt level, the command is
ignored. (A task abort or delete automatically disconnects a task from the
interrupt.) If the specified task is not in the system, the command is ignored.

If the connection is successful, the task is resumed at its current priority
when the interrupt occurs.

The STATUS command can be used to indicate that a task is indirectly
connected to an interrupt ('f' flag). However, the user is responsible for
keeping track of what task is indirectly connected to a particular interrupt
level.

C Examples:

(

(,--.

, -

??CONNECT T,PGMTEST,2F

Comment:

If the task with taskname PGMTEST is a unique copy load module, it is connected to
interrupt level '2F'. This level must be defined at SYSGEN for indirect connection.

??CONNECT 02000001,2F

Comment:

The task with task number 02000001 is connected to interrupt level '2F'.

4-19

4.4.6 CONTINUE Command

The CONTINUE command continues the system output task, system input task, or a
specified user or system task which was held by the HOLD command.

Syntax:

CONTINUE

where:

PRINT

PUNCH

READ

devmnc

taskname

taskno

Response:

LF (line feed)

PRINT [,devmnc]
PUNCH [,devmnc]
READ [,devmnc]
T,taskname
taskno

if no device mnemonic, continues system task controlling SLO
output to the system LOD device. Not valid under memory
only MPX-32.

if no device mnemonic, continues system task controlling SBO
output to the system POD device. Not valid under memory
only MPX-32.

if no device mnemonic, continues system task controlling input
from the system SID device. Not valid under memory-only
MPX-32.

is a device mnemonic. Continues system output task
controlling SLO (PRINT) or SBO (PUNCH) output to the
specified device. Continues system input task controlling SID
(READ) input from the specified device.

is the name of the load module containing the task. If task
name is used to continue a task, the task must be a unique copy
load module.

is the eight-digit task number assigned at activation.

The HOLD bit is turned off in the DQE for the task and the task continues at the address
following the hold. (J.SSIN and J.SOUT system tasks control the device I/O described
above.)

On a memory-only MPX-32 system, an entry other than a task name or task number is an
error.

Examples:

??CONTINUE PRINT

4-20

, ",'
~~jj

(Comment:

Output to the current system Listed Output Device (LOD) is continued.

??CONT READ,CR7801

Comment:

Input from the card reader on channel 78 with subaddress 01 is continued.

??CONT T,PGMTEST

Comment:

If the task with taskname PGMTEST is a unique copy load module, it is continued.

??CONT 02000001

Comment:

The task with task number 02000001 is continued.

(

4-21

4.4.7 DELETETIMER Command

The DELETETIMER command deletes the specified timer. If the timer is not in the
system, the operator is informed. Timers are set up via the SETTIMER command.

Syntax:

DELETETIMER timer

where:

timer is the two-character ASCII name of the timer to be deleted.

Response:

If successful: LF (line feed)

4-22

;(- ,

'-/

(

4.4.8 DEPRINT Command

The DEPRINT command is used to:

Syntax:

where:

Response:

delete the SLO file currently being output to a particular device

delete an SLO file generated for a particular task

delete all SLO files for a job

DEPRINT

DEPRINT

J,jobno

T,taskname

taskno

D,devmnc

LF (line feed)

[
J,jObnO J
T,taskname
taskno
D,devmnc

if no parameters are specified, the SLO file currently being
output to the system LOD device is deleted.

is the job sequence number (1-9999) assigned when the job was
queued. All SLO files for the job are deleted.

is the name of the load module file containing the task. If the
task name is used to delete the SLO file for a task, the task
must be a unique copy load module.

is the eight-digit task number assigned at activation. Deletes
the SLO file for the task.

is a device mnemonic. Used to delete the SLO file currently
being output on other than the SYSGEN-defined LOD device.

The system output task(s) associated with the task or job producing the SLO
file(s) delete the file(s) from the system output queue. If a specified SLO file
is being printed, printing stops.

4-23

Examples:

??DEPRINT 3,700

Comment:

Deletes all SLO files for job number 700.

??DEPR T,PGMTEST

Comment:

If the task with task name PGMTEST is a single copy load module, all of its SLO files are
deleted.

??DEPR 02000001

Comment:

Deletes all SLO files for task with task number 02000001.

??DEPR

Comment:

Deletes the SLO file currently being printed on the system Listed Output Device (LOD).

??DEPRINT D,LP7 AOO

Comment:

Deletes the SLO file currently being output to a printer on channel 7 A, subaddress 00.

4-24

(~ ...

4.4.9 DEPUNCH Command

The DEPUNCH command is used to:

Syntax:

where:

Response:

delete the SBO file currently being output to a particular device

delete an SBO file generated for a particular task

delete all SBO files generated for a job

DEPUNCH

DEPUNCH

jobno

T,taskname

taskno

D,devmnc

[
J,jObnO]
T,taskname
taskno
D,devmnc

if no parameters are specified, the SBO file currently being
output to the system POD device is deleted.

is the job sequence number (1-9999) assigned when the job was
queued. All SBO files for the job are deleted.

is the name of the load module file containing the task. If task
name is used to depunch a task, the task must be a unique copy
load module.

is the eight-digit task number assigned at activation. The SBO
file for the task is deleted.

is a device mnemonic used to delete the SBO file currently
being output on other than the SYSGEN-defined POD device.

If successful: LF (line feed)

If a specified SBO file is being output, output stops.

4-25

Examples:

??DEPUNCH J,700

Comment:

Deletes all SBO files for job number 700.

??DEPU T,PGMTEST

Comment:

If the task with task name PGMTEST is a single copy load module, all of its SBO files are
deleted.

??DEPU 02000001

Comment:

Deletes all SBO files for task with task number 02000001.

??DEPU

Comment:

Deletes the SBO file currently being punched on the current system Punch Output Device
(POD).

??DEPUNCH D,CP7400

Comment:

Deletes the SBO file currently being punched on the card punch, channel 74 with
subaddress 00.

4-26

" ·c····~. '.'"

(

l

(

4.4.10 DISABLE Command

The DISABLE command causes a Disable Interrupt (DJ) instruction to be executed for the
specified hardware interrupt level.

The CPU will not respond to an external interrupt signal at the specified level until an
ENABLE Interrupt (EJ) instruction is received (see the ENABLE command).

Syntax:

where:

Response:

DISABLE intlevel

intlevel

LF (line feed)

is the two-character hexadecimal interrupt priority in the
range 00 to 7F.

If a hardware interrupt level is RTOM-jumpered for constant enable (as
opposed to software enable/disable), this command is not honored.

4-27

4.4.11 DISCONNECT Command

The DISCONNECT command disconnects the specified task from its indirectly connected
interrupt level.

Syntax:

where:

Response:

Examples:

Comment:

DISCONNECT

taskname

taskno

LF (line feed)

{ T,taskname}
taskno

is the name of the load module containing the task. If the task
name is used to disconnect a task, the task must be a unique
copy load module.

is the task number assigned at activation time.

??DISCONNECT T,PGMTEST

If the task with task name PGMTEST is a unique copy load module, it is disconnected
from its indirectly connected interrupt level.

??DISCONNECT 0200000 I

Comment:

The task with task number 02000001 is disconnected from its indirectly connected
interrupt level.

4-28

(

(.

4.4.12 DUMP Command

The DUMP command is used to output the word locations specified by the starting and
ending physical addresses. OPCOM dynamically allocates an SLO file for output. Output
is listed in side-by-side ASCII-coded hexadecimal with ASCII format.

DUMP can also be used for automated dump on abort of a task running independent of
the batch or interactive environment.

Syntax:

where:

Response:

Examples:

Comment:

DUMP

start

end

ON

OFF

l ~~rt,end ~
OFF \

is the starting hexadecimal physical word address.

is the ending hexadecimal physical word address.

indicates that a dump is required on abort of an
independent task.

indicates that an independent task abort dump is not required.
The indication may have been previously set (=ON) via a DUMP
ON command.

LF (line feed) upon completion of the request

or

"DUMP NOT PERFORMED-TRY AGAIN LATER" if an SLO file cannot be
allocated dynamically at the time of the request.

??DUMP 3000,3FFF

Dumps the contents of physical memory between logical address 30000 and logical
address 3FFF to the SLO file.

4-29

4.4.13 ENABLE Command

The ENABLE command is used to execute an Enable Interrupt (EI) instruction for the
specified hardware interrupt level. The level will respond to external interrupts
generated by an .associated device. (Hardware interrupt levels are automatically enabled
by defining them at SYSGEN.)

Syntax:

where:

Response:

4-30

ENABLE intlevel

intlevel is the two-character hexadecimal interrupt priority level.

LF (line feed)

The specified hardware interrupt level is enabled. If directly connected, the
privileged user task associated at SYSGEN will execute on an interrupt.

If indirectly connected, the task connected, if any, will resume on the
interrupt. If a timer is set to generate an RI instruction on timeout, the
specified interrupt will respond to the instruction.

c 4.4.14 ENTER Command

The ENTER command updates the date and time currently stored by the system.

Syntax:

where:

Response:

ENTER month/ day /year ,hour: minute:second

month

day

year

hour

minute

second

LF (line feed)

is the two-digit decimal month

is the two-digit decimal day

is the two-digit decimal year

is the two-digit decimal hour

is the two-digit decimal minute

is the two-digit decimal second

(Example:

??ENTER 10/16/78,13:15:43

("' •....•

4-31

4.4.1.5 ESTABLISH Command

The ESTABLISH command activates the specified task and suspends it at the end of the
activation sequence. Tasks that are established remain inactive until they are activated
by a timer (see the SETTIMER command), connected to an indirectly connected interrupt
level (see the CONNECT command), or resumed (see the RESUME command). When
activated, they are brought into execution at their base (cataloged) priority.

This command enables a user task to activate and suspend for resumption by a timer,
interrupt, or RESUME command without building the suspension into the task itself.
EST ABLISH also allows the task to resume with all devices and memory allocation
complete. (For further description, see Section 2.1.2.)

If a task activated with ESTABLISH is defined as RESIDENT when it is cataloged, it is
not swappable; otherwise it can be swapped.

System modules J.SW APR and J.OPCOM cannot be established through this service.

Syntax:

where:

Response:

EST ABLISH load mod [,ownername [,key]]

loadmod

ownername

key

LF (line feed)

is the one- to eight-character name of the permanent load
module file containing the cataloged task. It must be a system
file (no user name).

is an optional one- to eight-character owner name for the
task. Default: logon owner name (and key).

if ownername is used, supplies the one- to eight-character key
associated with the ownername for a user if one has been
established in the M.K EY file.

The task is activated, then suspended.

4-32

c Examples:

??EST ABLISH PGMTEST

Comment:

The permanent load module file named PGMTEST is established. PGMTEST is
established with the logon owner name. (See Section 4.1.1.)

??ESTA PGMTEST,GIPSON

Comment:

The permanent load module file named PGMTEST is established. PGMTEST is
established with GIPSON as its owner.

4-33

4.4.16 EXIT Command

The EXIT command is used to terminate OPCOM and return to the TSM prompt. It
cannot be used at the OPCOM console if the EXIT bit has been set. (See Section 4.1.5.)

Syntax:

EXIT

Response:

TSM>

4-34

("'''.,
,7

f' 4.4.17 HOLD Command

The HOLD command holds a system output task, system input task, or a specified user or
system task.

Syntax:

where:

Response:

~ PRINT ['rdevmnc] ~
PUNCH L,devmnc]

HOLD READ [,devmnc]
T,taskname
task no

PRINT

PUNCH

READ

devmnc

taskname

taskno

if no device mnemonic, holds the system task controlling SLO
output to the system LOD device. Not valid under memory
only MPX-32.

if no device mnemonic, holds the system task controlling SSO
output to the system POD device. Not valid under memory
only MPX-32.

if no device mnemonic, holds the system task reading input
from the system SID device. Not valid under memory-only
MPX-32.

is a device mnemonic. Holds system task controlling SLO or
SBO output to the specified device or reading input from the
specified input device.

is the name of the load module containing the task. If task
name is used to hold a task, the task must be a unique copy
load module.

is the task number assigned at activation.

A hold bit is turned on in the DQE for the task. Its current status is retained so that it
can be continued where it left off.

LF (line feed)

On a memory-only MPX-32 system, an entry other than a task name or task number is an
error.

If the task is scheduled to leave the system the response is: TASK SCHEDULED TO
LEAVE SYSTEM and the task is not held.

Examples:

??HOLD PRINT

Comment:

Output to the current system Listed Output Device (LOD) is held.

4-35

??HOLD READ,CR780 I

Comment:

Input from the card reader device on channel 78 with subaddress 0 I is held.

??HOLD T,PGMTEST

Comment:

If the task with task name PGMTEST is a unique copy load module, it is held.

??HOLD 02000001

Comment:

The task with task number 02000001 is held.

4-36

(~

4.4.18 KILL Command

The KILL command is used to terminate all outstanding I/o requests and run requests,
and delete the specified task from the system dispatch queue.

Syntax:

where:

Response:

KILL jT, taskname t
~taskno \

taskname is the name of the load module that contains the task. If task
name is used to kill a task, the task must be a unique copy load
module.

taskno is the task number assigned at activation time.

Processing is not deferred for outstanding I/o or run requests. User files and devices are
closed and deallocated. The DQE for the task is deleted.

LF (line feed)

Examples:

??KILL T,PGMTEST

Comment:

If the task with task name PGMTEST is a unique copy load module, it is killed.

??K ILL 0200000 I

Comment:

The task with task number 02000001 is killed.

WARNING: Use of this command may impact integrity of blocked
files. Blocking buffers are not purged, and end-of-files
(EOFs) are not written. Also, any I/O pending can be
incomplete.

The only exception to this is for SLO/SBO where an end
of file is written if the file is output active.

4-37

4.4.19 LIST Command

The LIST command is used to display the entries in:

Syntax:

where:

the system dispatch queue (all or selectively)

system output print queue

system output punch queue

accounting file

system patch file (M.PATCH)

job queue as specified

LIST

EXECUTION
PRINT
'PUNCH
ACCOUNT [['OW~E=name] [,PROJ=]roj) [,nATE=dateJJ ORIG= jTSM.nnnnt

BATCH ~
PATCHES
JOBS
taskname , [ownername] [,pseudonym]

LIST with no parameters, lists all entries in the System Dispatch
Queue.

EXECUTION same as LIST above.

PRINT specifies entries in the SLO file output queue for all jobs. Not
valid under memory-only MPX-32.

PUNCH same as PRINT for SSO file output queue. Not valid under
memory-only MPX-32.

ACCOUNT copies contents of Job Accounting file to an SLO file. Not
valid under memory-only MPX-32.

PATCHES copies contents of System Patch file to an SLO file. Not valid
under memory-only MPX-32.

JOBS lists all jobs waiting or active on system. Not valid under
memory-only MPX-32.

c

In response to LIST with one or more of the task identifiers task name, owner name, 0',\
and/or pseudonym, OPCOM displays the status of task(s). Anyone of these parameters,
or any combination of these parameters can be used to select tasks; however, they must

4-38

be entered in the order shown in the syntax statement, supplying a comma for any
missing parameter.

On a memory-only MPX-32 system, an entry other than EXECUTION or a task name is an
error.

Response:

taskname specifies the name of the load module containing a task. If not
specified, all tasks with the specified owner and/or pseudonym
are listed.

ownername specifies the owner name for a particular task name or all
tasks belonging to the owner. If task name has not been
specified, the comma must still be used, e.g.,

pseudonym

LIST ,ownername

If ownername is not specified, all tasks with the specified task
name and/or pseudonym are listed.

specifies the pseudonym for a task. A pseudonym is established
by some system tasks (e.g., TSM uses TSM*terminal number,
and job control uses .Odevmnc) and can be established by user
tasks. The pseudonym allows identification of a particular
copy of a task without the task number.

For example, a TSM pseudonym allows you to identify the TSM
copy for a particular terminal and in so doing, see what task
and owner are currently active on the specified terminal.

If task name and owner name are not specified, two commas
must precede the pseudonym, e.g.,

LIST "pseudonym

In response to LIST with no parameters, all entries in the System Dispatch Queue (DQE's)
are displayed; same as LIST EXECUTION, next.

In response to LIST EXECUTION or tasks selected by task identifiers:

taskno taskname ownername pseudonym priority state swap
(for all tasks on system or each task selected)

where:

taskno is the task number assigned at activation.

taskname is the name of the load module containing the task.

ownername owner of the task, i.e., the owner who activated it.

4-39

pseudonym pseudonym name of task. The pseudonym allows identification :(
of a particular copy of a task without the task number.' ~

priority

state

swap

is the current software priority level, from 1 to 64.

is a four-character identifier corresponding to the state of the
task. See STATUS command in this section, description of
response to STATUS T, for details.

is the swap status of the task:
IN means the task is in memory
OUT means the task is outswapped

In response to LIST PRINT or LIST PUNCH:

where:

jobno jobname files pseudonym
(for SLO or SBO files generated by batch jobs)

taskno pseudonym
(for each SLO or SBO file generated by a task running independent of the
batch or interactive environment)

jobno is the job's sequence number.

jobname is the one- to eight-character job name as specified on the
$JOB statement.

files is the number of SLO or SBO files generated by the job.

pseudonym is the pseudonym of the J.SOUT task that is currently
processing the SLO or SBO files, e.g., .Odevmnc.

task no is the task number of the task within the job which created the
SLO or SBO file.

In response to LIST ACCOUNT:

With no parameters, outputs the current contents of the Accounting file on an SLO file.

In response to LIST ACCOUNT with one or more keywords specified, only statistics of
requested data is output. Keyword parameters can contain leading or trailing wild card
characters in the form of question marks (?).

4-40

OWNE=name

DATE=date

ORIG={TSM.nnnn}
BATCH

specifies the 1-8 character owner name associated with the
file

specifies the 1-8 character alphanumeric project name/number
associated with the file

specifies the 8 character numeric date associated with the file,
entered in the format month/day/year

specifies the mode of operation in which the file was used

Note: When a special data type is requested, the keyword must be specified along with
the pertinent information.

The ORIG= keyword can be used in one of six ways:

ouptuts statistics of all jobs run under TSM
output statistics of all jobs run under TSM on devices 20xx
outputs statistics of all jobs run under TSM on device 2009
outputs statistics of all jobs run under Batch

ORIG=TSM
ORIG=TSM.20??
ORIG=TSM.2009
ORIG=BATCH
ORIG=JOB/120?? outputs statistics of all jobs run under Batch with job numbers

20xx
ORIG=JOB/12033 outputs statistics of job number 2003 run under Batch

Examples:

LIST ACCO,OWNE=MCNORTON,DATE=01/22/80,ORIG=TSM.20??

Outputs statistics on all jobs with owner name MCNORTON run on January 22, 1980 on
any TSM device 20xx.

LIST ACCO,OWNE=DRUCK ER,PROJ =087212

Outputs statistics on all jobs with owner name DRUCKER and project number 087212.

In response to LIST PATCHES:

Outputs the contents of the System Patch file to an SLO file for printing.

4-41

In response to LIST JOBS:

jobno ownername jobname priority taskno SLO=pseudonym SBO=pseudonym

where:

jobno

ownername

jobname

priority

taskno

SLO/SBO

pseudonym

Examples:

??LlST PGMTEST

Comment:

is the job's sequence number.

owner name for the job as specified on the $JOB statement.

is the one- to eight-character job name as specified on the
$JOB statement.

is the job's software priority (1-64-).

is the task number of the last task in the job that was
activated or is "WAITING".

these fields are printed only if SLO and/or SBO assignments
are specified for the job.

indicates the pseudonym of the J.SOUT task processing the
job's SLO or SBO files. The pseudonym indicates the
destination device mnemonic, e.g., .OLPOlOO. If the
destination is a permanent file, this field contains the
permanent file name.

Lists all entries in the dispatch queue with task name PGMTEST.

??LIST PGMTEST ,GIPSON

Comment:

Lists all entries in the dispatch queue with task name PGMTEST and ownername GIPSON.

4--4-2

:(i
\ .""

(/

??LIST ,GIPSON

Comment:

Lists all entries in the dispatch queue with ownername GIPSON.

??LIST

Comment:

Lists all entries in the dispatch queue.

4-43

4.4.20 MODE Command

The MODE command is used to define the following special system operations.

Continuous Batch - Batchstream input from SID is processed until the job control
statement, $$$, is encountered. All $$ job control statements are ignored.

Inhibit Banner Page - Suppresses the banner page which is produced by system
output tasks when processing SLO files.

OPCOM Console Lock - Allows entering continuous OPCOM commands without
intervening Console Interrupts.

Uni-Directional File Allocation - Treats all requests for temporary disc space as
permanent file requests, i.e., space is allocated from the high end of the disc
downward.

Inhibit Mount Message - Suppresses the mount message produced by the system
when a single magnetic tape is assigned for I/O. The mount message will, however,
be displayed when a multivolume magnetic tape operation is assigned for I/O.

Syntax:

MODE

SCBT
RCBT
SIBP
RIBP

: SOPC
ROPC'
SUFA
RUFA
SIMM
RIMM

where:

SCBT sets continuous batch

RCBT resets continuous batch

SIBP sets inhibit banner page

RIBP resets inhibit banner page

SOPC sets OPCOM console lock

ROPC resets OPCOM console lock

SUF A sets uni-directional file allocation

RUF A resets uni-directional file allocation

SIMM sets inhibit magnetic tape mount message

RIMM resets inhibit magnetic tape mount message

Response: O"~"\
LF (line feed)

4-44

4.4.21 MODIFY Command

The MODIFY command is used to reset a memory word at the specified physical address
to the specified value. A mask can be used to modify only some bit positions in the word
and leave the others alone. If no mask is specified, a mask of binary zeroes is used, i.e.,
all bits are to be reset as indicated by the specified value.

The MPX Debugger can be used to access and modify locations in a task's logical address
space using logical addressing.

If a mask is used, a "logical AND" operation is performed between the specified memory
word and the mask word, followed by a "logical OR" operation performed between the
result of the "logical AND" and the specified value. This result is stored in the specified
memory word.

Syntax:

MODIFY address,value [,mask)

where:

address is the hexadecimal physical word address.

value is the hexadecimal value of the word.

mask is the hexadecimal word mask. (The absence of this argument results
in the use of a mask of binary zeros.)

Response:

LF (line feed)

Examples:

??MODIFY 3000,52535253

Comment:

The hex value '52535253' will be stored at physical location 3000.

??MODI 12000,52535253,00000000

Comment:

The hex value '52535253' will be stored at physical location 12000.

4-45

??MODIFY 3004,52530000, OOOOFFFF

Comment:

The upper half word of physical location 3004 is changed to '5253', while the lower half
word is unchanged.

??MODI 12004,00530055,FFOOFFFF

Comment:

Byte one of the word at physical location 12004 is changed to '53'. Byte three of the
word at physical location 12004 is "logically OR'd" with '55' and the result stored at that
location. Bytes zero and two of the word are unchanged.

4-46

('" "

4.4.22 OFFLINE Command

The OFFLINE command is used to inhibit the specified device from all further
allocation. The device can be brought back online with the ONLINE command.

Syntax:

OFFLINE devmnc

where:

devmnc is a device mnemonic.

Response:

LF (line feed)

Any task that has assigned a specific device that is offline will generate an abort
error. If the device is a system device (LOD, POD, or SID) it will be bypassed for
auto selection; if another device is SYSGENed or SYSASSIGN'd as available for auto
selection, it will be used automatically so that tasks producing SLO and SBO output
can proceed. If no other device is SYSGENed for auto selection, the SYSASSIGN
command can be used to do so.

The REDIRECT command can also be used to divert output from a batch job to the
LOD or POD device if needed.

Example:

??OFFLINE LP7 A

Comment:

Line printer on channel 7 A with subaddress 00 is taken offline.

4-47

4.4.23 ONLINE Command

T.he ONLINE command makes the specified device available for allocation.

Syntax:

ONLINE devmnc

where:

devmnc is a device mnemonic.

Response:

LF (line feed)

Example:

??ONLINE LP7 A

Comment:

Line printer on channel 7 A with subaddress 00 is placed online.

4.4.24 PURGEAC Command

The PURGEAC command is used to delete the current contents of the accounting file,
M.ACCNT.

Syntax:

PURGEAC

Response:

LF {line feed}

4-48

c

, I 0','

(
4.4.25 REDIRECT Command

The REDIRECT command is used to override the destination device for SLO or SBO files
specified on a $JOB statement. The job's SLO or SBO files are redirected to the system
Listed Output Device (LOD) or Punched Output Device (POD) as specified by the
SYSGEN DEV directive. Any completed output is reprocessed.

Syntax:

REDIRECT jobno [B]

where:

jobno

B

Response:

LF (line feed)

Examples:

is the job's sequence number. The job must be active, its SLO or SBO
files must be queued, or output must be in progress.

specifies the job's SBO files. If not entered, SLO files are assumed.

??REDIRECT 700

(- Comment:

(--

The SLO files for the job with job number 700 are redirected to the system Listed Output
Device (LOD).

??REDIRECT 700 B

Comment:

The SBO files for the job with job number 700 are redirected to the system Punched
Output Device (POD).

4-49

4.4.26 REMOVE Command

The REMOVE command terminates any further processing of the specified job. The job
need not be active. If the job is active, any task executing within the job is killed (this
includes the termination of all outstanding I/o requests and run requests). Output that is
already spooled to an SLO or SBO file is processed normally.

Syntax:

REMOVE jobno

where:

jobno is the job's sequence number

Response:

LF (line feed)

Example:

??REMOVE 700

Comment:

The job with job number 700 is removed from the system.

4-50

WARNING

Use of this command may impact integrity of blocked files. Blocking
buffers are not purged, and end-of-files (EOFs) are not written. Also,
any I/o pending can be incomplete.

The only exception to this is for SLo/sBO where an end-of-file is
written if the file is output active.

()

(4.4.27 REPRINT Command

The REPRINT command is used to:

reprint the SLO file currently being output on a particular device

reprint the current and previous SLO file output on a particular device

reactivate a spooled output task that has aborted

reprint all SLO files for a particular job

Syntax:

REPRINT

where:

REPRINT

CURR

times

PAGE

page no

devmnc

[
[CURR

JOB,jobno

[,~AGE,pagenol] [devmnc]]
,times J '

if no parameters are specified with the REPRINT command, the
previous and current SLO files being output to the SYSGEN-defined
LOD device are reprinted. SLO files being output on other devices
can be specified by providing the device mnemonic. (See devmnc.)

optionally limits reprinting to current SLO file only. Default:
current and previous.

can optionally specify number of times to reprint the current file (1-
12). Default is 1.

can optionally specify a page number on the current listing where
reprinting should start. Default is page 1.

specifies the decimal page number (1-32767).

used to reprint SLO files being output on other than the SYSGEN-
defined LOD
'MT 1 OOO,SA VEl.
addressing. For
specified.

device. Supply a device mnemonic, e.g.,
See Appendix A, which describes MPX device

this command, a channel and subaddress must be

4-51

JOB

jobno

used to reprint all SLO files for a particular job. Output from the
specified job must be in process, or the command is ignored.

specifies the job sequence number (1-9999) assigned when the job was
started and shown on the output.

Response:

LF (line feed)

Printing always begins at the beginning of the specified SLO file(s) unless
overridden by the PAGE parameter. The REPRINT JOB command is ignored if the
job's SLO files are not currently being printed.

Examples:

The LOD device malfunctions in the middle of printing UPDATE diagnostics. You fix it,
then:

REPRINT CURR, PAGE,5

PAGE is used to start printing at the point where the malfunction occurred.

You want two copies of the SLO file currently being output to the LOD device:

REPRINT CURR,2

It stops printing the file, then reprints two copies.

The LOD device malfunctions, you fix it, and you want to reprint SLO files at the
beginning of the job that was interrupted:

REPRINT JOB,54

A system output task is aborted before or while printing SLO files.

REPRINT LP0700

The system output task is reactivated and all available SLO output for this device is
printed.

4-52

(/

4.4.28 REPUNCH Command

The REPUNCH command is used to:

repunch the SBO file currently being output on a particular device

repunch the current and previous SBO file output on a particular device

reactivate a spooled output task that has aborted

repunch all SBO files for a particular job

Syntax:

REPUNCH [[CURR] [,devmnc]]
JOB,jobno

where:

REPUNCH if no parameters are specified with the REPUNCH command, the
previous and current SBO files being output to the SYSGEN-defined
POD device are repunched. SBO files being output on other devices
can be specified by providing the device mnemonic. (See devmnc.)

CURR

devmnc

JOB

jobno

optionally limits reprinting to current SBO file only. Default:
current and previous. Use comma if supplying a device mnemonic.

used to reprint SBO files being output on other than the SYSGEN
defined POD device. Supply a device mnemonic, e.g.,
'MTIOOO,SAVE'. See Appendix A, which describes MPX device
addressing. For this command, a channel and subaddress must be
specified. Do not use a comma before devmnc if CURR is not
specified.

used to reprint all SBO files for a particular job. Output from the
specified job must be in process, or the command is ignored.

specifies the job sequence number (1-9999) assigned when the job was
started and shown on the output.

4-53

Response:

LF (line feed)

Punching always begins at the beginning of the specified SBO file(s). The
REPUNCH JOB command is ignored if the job's SBO files are not currently being
punched.

Examples:

The POD device malfunctions in the middle of a job. You fix it, then:

REPUNCH CURR

The POD device malfunctions, you fix it, and you want to repunch SBe files at the
beginning of the job that was interrupted:

REPUNCH JOB,54

A system output task is aborted before or while punching SBe files.

REPUNCH LP0700

The system output task is reactivated and all variables SBe output for this device is
printed.

4-54

c

4.4.29 REQUEST Command

The REQUEST command causes a Request Interrupt (RI) instruction to be executed for
the specified interrupt priority level. See also ENABLE and SETTIMER command
descr iptions.

Syntax:

REQUEST intlevel

where:

intlevel is the two-character hexadecimal interrupt priority level.

Response:

LF (line feed)

11--55

4.4.30 RESUME Command

The RESUME command is used to resume execution of the specified task. The task must
be suspended in order to be resumed. A task can also be resumed via a timer or an
interrupt (see SETTIMER and CONNECT).

Syntax:

RESUME

where:

1 T,taskname~ task no ~

(

taskname is the name of the load module containing the task. If task name is
used to resume a task, the task must be a unique copy load module.

taskno is the task number assigned at activation.

Response:

LF (line feed)

A task can be suspended awaiting a timeout, an interrupt, or resumption by another
task. This command inswaps the task if needed and moves it into the ready to run
queue.

If the task is not suspended, the command is ignored.

Examples:

??RESUME T,PGMTEST

Comment:

If the task with taskname PGMTEST is a unique copy load module, it is resumed.

??RESUME 02000001

Comment:

The task with task number 02000001 is resumed.

4-56

i.(.·.·,
. -~,/

(.

4.4.31 SAVEAC Command

The SAVEAC command provides for saving the current contents of the accounting file,
M.ACCNT, on magnetic tape. A message is output to the operator's console specifying
that the reel identified as "ACCT" be mounted on the magnetic tape unit specified by the
device mnemonic.

Syntax:

SAVEAC devmnc

where:

devmnc is the device mnemonic of a magnetic tape unit. See Appendix A.

Response:

LF (line feed)

SA VE COMPLETED (Contents of accounting file have been saved.)

UNABLE TO ALLOCATE DEVICE (Specified device is unavailable for system use.)

4-57

4.4.32 SEARCH Command

The SEARCH command is used to search memory within the specified physical addresses
for a value under control of a mask. A "logical AND" operation is performed between
the memory word and the task word. The result is compared to the value, and if equal,
the memory address and contents are printed on the OPCOM console.

The Debugger can be used to search memory locations in a task's logical address space
using logical adcfre::;sing. (See Volume 2.)

Syntax:

SEARCH start,end,value (,mask]

where:

start

end

value

mask

4-58

is the starting hexadecimal physical word address.

is the ending hexadecimal physical word address.

is the hexadecimal value used in comparison.

is the hexadecimal word mask. (Absence of this argument results in
the use of a mask of binary ones.)

()

"'\

o

C Response:

LF (line feed)

address content (repeated for each successful comparison)

where:

address is the hexadecimal physical word address.

content is the hexadecimal word content.

Examples:

??SEARCH 3000,3FFF ,52535253

Comment:

All words between physical locations 3000 and 3FFF with the value '52535253' will be
displayed (along with its location).

??SEARCH 12000,12FFF,52535253,FFFFFFFF

(Comment:

All words, between physical locations 12000 and 12FFF with the value '52535253' will be
displayed (along with its location).

??SEARCH 12000, 12FFF ,00530000,00FFOOOO

Comment:

All words between physical locations 12000 and 12FFF with the value '53' in byte one will
be displayed (along with location).

4-59

4.4.33 SEND Command

The SEND command is used to send a message to a task which has established a message
receiver.

Syntax:

SEND

where:

taskname

taskno

message

Examples:

{
T' taskname} [,message]
taskno

is the name of the load module containing the task. If task name is
used to send a message to a task, the task must be a unique copy load
module.

is the task number assigned at activation.

is the message to be sent to the specified task. It may optionally be
typed on the same line, in which case no response will be given. If
more space is needed for a message, omit it from the command line,
and receive the following response:

"ENTER MESSAGE"
??

Type the message in response to the OPCOM?? prompt (72 characters
maximum), terminated by a CR. The message will be transmitted.

??SEND T,PGMTEST
"ENTER MESSAGE"
??THIS IS A TEST

Comment:

If the task with task name PGMTEST is a unique copy load module and has a message
receiver, the message 'THIS IS IS A TEST' is sent to its receiver buffer address.

??SEND 02000001,THIS IS A TEST

Comment:

The message is short enough to be included on the command line. If the task with task
number 02000001 has a message receiver, the message 'THIS IS A TEST' is sent to its
receiver buffer address.

4-60

o

(-

(

Operator at OPCOM console types:

?? LIST J.OPCOM
03000004 J.OPCOM SYSTEM 62 TO T
04000009 J.OPCOM GIPSON 62 TO T

??SENO 04000009
"ENTER MESSAGE"
??EXIT

At owner GIPSON terminal:

?? TIME
01/29/78 11:59:35

**EXIT
TSM>

Comment:

The operator at the OPCOM console can send OPCOM commands to a terminal user's
interactive OPCOM task. The command is queued and processed after the user's current
command is complete as shown above.

Owners who are not restricted in their ability to access tasks with different owner names
can also use this capability.

4-61

4.4.34 SETTIMER Command

The SETTIMER command is used to cause one of three types of events at specified time
intervals:

a task can be activated

a task can be resumed

a Request Interrupt (RI) instruction can be executed for a hardware interrupt level.

The time intervals are specified in terms of time units. The duration of a time unit is
defined by SYSGEN, based on the NTIM and MTIM directives.

Syntax:

SETTIMER timer,tl,t2, RST,taskno ~ ACP,lOadmOd!

where:

timer

tl

t2

ACP

loadmod

RST

task no

ROI

intlevel

Response!

LF (line feed)

4-62

RQI,intlevel

is the two-character ASCII name of the timer being created.

is the decimal number of time units until the first timeout of this
timer.

is the decimal number of time units used to reset this timer upon each
timeout. If "t2" is zero, the timer will timeout only once.

means the timeout event is to be the activation of the specified task.

is the name of the load module file containing the task.

means the timeout event is to be the resumption of the specified task.

is the eight-digit task number assigned at activation.

means the timeout event is the execution of a Request Interrupt (RI)
for the specified interrupt level.

is the two-character hexadecimal interrupt priority level.

Examples:

??SETTIMER AB,2,0,ACP ,PGMTEST

Comment:

The file with filename PGMTEST is activated when its associated timer (AB) expires.
The timeout is set to occur only once.

??SETTIMER AB,2,),RST ,02000001

Comment:

The task with task number 02000001 is resumed when its associated timer (AB) expires.
The timer AB is reset to 3 upon each following time event.

??SETTIMER AB,2,0,RQI,2F

Comment:

A Request Interrupt (RI) is issued for interrupt level 2F when its associated timer (AB)
expires. The timeout is set to occur only once.

4-63

4.4.35 SNAP Command

The SNAP command dumps the word locations specified by the starting and ending
physical address to the OPCOM console.

The Debugger can be used to snap memory locations in a task's logical address space
using logical addresses. (See Volume 2.)

Syntax:

SNAP start,end

where:

start is the starting hexadecimal physical word address.

end is the ending hexadecimal physical word address.

Response:

LF (line feed)

Address content (repeated for each successful comparison)

where:

address is the starting hexadecimal physical word address of the current line.

content is the hexadecimal word content.

Examples:

??SNAP 3000,3FFF

Comment:

Displays the contents between physical locations 3000 to 3FFF.

4-64

((
1',11

_/

(4.4.36 START Command

The START command is used after a system restart or warm start to initiate processing
of batch jobs which remain buffered on disc from the time of the prior system failure.
The command is also used to resume processing an active job when its associated job
control task terminates abnormally.

Syntax:

START

Response:

LF (line feed)

Any active job is resumed. System tasks that control output accumulation and
queuing for temporary files such as SLO and SBO are also resumed.

4-65

4.4.37 STATUS Command

The STATUS MEM command displays a current memory utilization map.

The STATUS CHA command returns information relating to a particular I/o channel,
including the number of controllers, the number of devices attached, and the number of
I/O entries currently queued on the channel. The status of each device connected to the
channel is also displayed.

The STATUS DEVICE command displays information such as device type and device
status for the specified device.

The STATUS T command or the STATUS command with a task number returns the
current status of the task and its significant attributes.

The STATUS IPU command returns information relating to the IPU if one is configured
on the system.

Syntax:

STATUS

where:

MEM

class

address

devmnc

taskname

taskno

IPU

4-66

MEM [,class]
CHA,address
D,devmnc
T,taskname
task no
IPU

with no class, displays physical address boundaries and other
information for each class of memory.

restricts display to a particular memory class:

E - memory below 128KW
H - high speed memory above 128KW
S - slow speed memory above 128KW

is a two-character hexadecimal channel number or GPMC device
address in the range 80-FF.

is a device mnemonic. See Appendix A.

is the name of the load module containing the task.

is the task number assigned at activation.

returns online or offline status and which task, if any is running.

()

o

C Response:

In response to STATUS MEM:

M EM low -- high {
FREE}
ALOC class [MALFUNC]
SHAR

where:

class E for memory below 128KW
H for high speed memory above 128KW
S for slow speed memory above 128KW

[NONPRES]

low is the low physical memory address boundary

high is the high physical memory address boundary

FREE free memory

ALOC allocated memory

SHAR shared memory

MALFUNC (malfunctioning memory). Field is blank if memory is operational.

NONPRES non-present memory.
configured.

Field is blank if specified memory is

4-67

In response to STATUS CHA, address:

chaddr UNITS units I/O queue

{ FREE}
ALOC
SHAR

[taskno] dest DEV devaddr ON/OFF

(device line is repeated for each device on the channel)

where:

4-68

chaddr

units

queue .

devaddr

OFF

ON

FREE

ALOC

SHAR

taskno

dest

is the channel address or GPMC device address and the controller
type of this controller.

is the number of units on this controller.

is the number of I/O requests queued for this controller.

is the device address and the device type.

device is off-line.

device is on-line.

device is free.

device is allocated.

device is shared.

is the task number of the task to which the device is allocated. This
field is blank if the device is not allocated.

this field indicates the device's availability for automatic selection as
a destination device for SLO and SBO files as follows:

R T SLO (real-time SLO files)

RT SBO (real-time SBO files)

B T SLO (batch SLO files)

BT SBO (batch SBO files)

("".
./

C·'"P

(' In response to STATUS DEVICE,devmnc, the same information displayed for each device
on a channel is displayed for the specified device. See STATUS CHA.

In response to STATUS T, taskname or STATUS taskno:

task no taskname ownername pseudonym priority type orIgm MEM=class
MAPBLKS=mapblocks priv res state abcdefgh DEV=dev NWIO=requests RRCT=requests
MRCT =requests GQID = enque information

where:

taskno is the task number assigned at activation.

taskname is the load module name of the task.

ownername is the owner of the task.

pseudonym is the pseudonym of the task.

priority is the current priority level from 1 to 64.

type RT (real-time, priority I-54)
TD (time-distribution, priority 55-64)

origin B (batch)
T (terminal
~ (independent)

class E for memory below 128KW
H for high speed memory above 128KW
S for slow speed memory above 128KW

mapblocks number of 8K or 2K map blocks used by the task.

priv U (unprivileged)
P (privileged)

res N (nonresident)
R (resident)

state is a four-character identifier corresponding to the state of the task
described below:

Current Task in Execution (CURR)

Real Time Priority - Ready to Run (SQR T)

Time Distribution Levels - Ready to Run (SQ54 - SQ64)

Current IPU Task in Execution (CIPU)

Requesting IPU Task (RIPU)

4-69

a

b

c

d

e

f

4-70

Wait Interactive (SWTI)

Waiting for Wait I/O (SWIO)

Wait, Sending Message (SWSM)

Wait, Sending Run Request (SWSR)

Wait, Low Speed Output (SWLO)

Wait, Suspended for Message Interrupt, Timeout, or Resume (SUSP)

Wait for Wait Run Request or Timeout (RUNW)

Wait, Operator Hold (HOLD)

Wait for any No-wait I/O, No-wait Run Request, or any Message
Interrupt or Break (ANYW)

Wait, Disc Space (SWDC)

Wait, Peripheral (SWDV)

Wait, FISE (SWFI)

Wait, Memory (MRQ)

Wait, Memory Pool (SWMP)

Preacti vation Phase - See Section 2.1.1 (PR EA)

Dispatach queue available for allocation by a task (FREE)

General wait queue - resourecmark (SWGQ)

o (in memory)
1 (outswapped)

o (swappable)
1 (unswappable)

o (no abort requested)
1 (abort requested)

o (no message receiver)
1 (has message receiver)

o (no break receiver)
1 (has break receiver)

o (not indirectly connected)
1 (indirectly connected) ()

r-

(/

g

h

DEV

NWIO

RRCT

MRCT

o (multicopied or shared load module)
1 (unique copy load module)

reserved

is only displayed if state = SWDV or SWDC

number of no-wait I/O requests outstanding

number of run receiver requests outstanding

number of message receiver requests outstanding

GQID is displayed only if the state = SWGQ. Three words of information
containing the ENQUE ID are DQE.PRS, DQE.PRM and the function
code DQE.GQFN.

In response to STATUS IPU:

{ON } TASK=taskname OWNER=ownername T ASK/l=taskno
OFF

where:

ON indicates the IPU is online

OFF indicates the IPU is offline

taskname is the task name of the task running in the IPU

ownername is the owner name of the task running in the IPU

taskno is the task nu mber of the task running in the IPU

If a task is not running in the IPU, the foHowing message will be displayed:

{g~F} THERE IS NO TASK RUNNING IN THE IPU

If an IPU is not on the system, the foHowing message will be displayed:

THERE IS NO IPU ON THIS SYSTEM

Examples:

??STATUS MEMORY

4-71

Comment:

Displays current memory utilization map for each class of memory (e.g., E, H, S)

??STATUS MEMORY,E

Comment:

Displays current memory utilization map for memory class E.

??STATUS CHA,7A

Comment:

Displays the status of channel 7 A and all devices connected to the channel.

??STATUS DEVICE,LP7 A01

Comment:

Displays status of the line printer device on channel 7 A with subaddress 01.

??STATUS T,PGMTEST

Comment:

Displays the current status of all tasks named PGMTEST.

??STATUS 02000001

Comment:

Displays the status of the task with task number 02000001.

4-72

(' 4.4.38 SYSASSIGN Command

The SYSASSIGN command is used to establish the availability of a device for automatic
selection as the final destination device for printed (SLO) and punched (SBO) output. It
can also be used to change the default system input device (SID) for batch.

Syntax:

SYSASSIGN

where:

ON

OFF

devmnc

L

P

R

B

density

parity

Response:

[~g~F~ ,devmnc ,~~f, J: f]
SID, devmnc [,density,parityJ

makes the device available for automatic selection.

makes a device unavailable for automatic selection.

is a device mnemonic, e.g., MTOIOO. (For description, see Appendix
A.)

device is destination for listed output (SLO files).

device is destination for punched output (SBO files).

use to select device for real-time output.

use to select device for batch output.

is "H" (High density) or ilL" (Low density) if the specified device is 7-
track magnetic tape; otherwise omit this parameter.

is "E" (Even parity) or "0" (Odd parity) if the specified device is 7-
track magnetic tape; otherwise omit this parameter.

LF (line feed)

4-73

Examples:

??SYSASSIGN ON,LP7 A,L,R

Comment:

Makes the line printer on channel 7 A with subaddress 00 available for automatic
selection for spooled real-time SLO output.

??SYSASSIGN OFF,CP740I,P,B

Comment:

Makes the card punch on channel 74 with sub address 01 unavailable for automatic
selection for spooled batch SBO output.

??SYSASSIGN SID,CR780 1

Comment:

Changes the default System Input Device (SID) to the card reader on channel 78 with
subaddress 01.

4-74

c

4.4.39 TIME Command

The TIME command is used to print the date and time-of-day on the console.

Syntax:

TIME

Response:

month/ day /year hour: minute:second

where:

month is the two-digit decimal month

day is the two-digit decimal day

year is the two-digit decimal year

hour is the two-digit decimal hour

minute is the two-digit decimal minute

(second is the two-digit decimal second

LF (line feed)

Example:

??TIME
01/29/78 11:59:35

4-75

4.4.40 TIJRNON Command

The TURNON command is used to activate or resume a specified task at a specified time
and reactivate it at specified intervals by creating a timer table entry using a specified
timer ID.

Syntax:

TURNON loadmod,time,[reset] ,timerid

where:

loadmod

time

reset

timerid

4-76

is the 1-8 character name of the permanent load module file where
the task is cataloged. It must be a system file (no user name).

is the time of day the task will be activated or resumed, entered in
the format hour:minute:second where hour, minute, and second are
the 2-digit decimal hour, minute, and second on the 24 hour clock.

is the time interval to elapse before resetting the clock upon each
timeout, entered in the format hour:minute:second where hour,
minute, and second are the 2-digit decimal hour, minute, and second
on the 24 hour clock. The task will be reactivated at each timeout.
If a reset value is not specified, the comma denoting the field must
still be specified, and the task will be activated or resumed only
once.

is the 2-character ASCII name of the timer that will be created. ''--

(,-

(~

4.4.41. URGENT Command

The URGENT command is used to change the priority of a batch job. The job must be
spooled to disc, waiting, or active.

Syntax:

URGENT jobno,priority

where:

jobno is the job's sequence number 0-9999).

priority is the software priority at which the job is to run in the range 1
through 64.

Response:

LF (line feed)

This command overrides any active jobs designated as sequential on the $JOB
statement (must proceed to $EOJ before beginning another job). It is normally used
to boost the tasks in the specified job to a higher priority than 64.

Example:

??URGENT 700,60

Comment:

Changes the current priority of job number 700 to priority 60.

4-77/4-78

c

5. INTERACTIVE PROCESSING

The MPX-32 Terminal Services Manager (TSM) provides interactive, timeshared access to
the MPX-32 system for terminals connected either through TLC, ADS, or ALIM
controllers. It is an integral part of the MPX-32 operating system and allows the
terminal user to:

log on to MPX-32

access any MPX-32 processor

run interactive or noninteractive (l.e., batch or real time) tasks in the
interactive environment

access other environments in the system, e.g., to activate a task at its base
(normally real-time) priority in the independent environment or submit a job
to run in the batch environment

return to the interactive environment on exit from another processor

initiate processing from a command file

log off MPX-32

This section describes TSM functions and TSM commands. Many TSM commands are used
for 'job control', i.e., to accomplish the same fl/nctions as job statements used when
submitting a job for batch processing. Other TSM commands allow the user to activate
and run tasks online and send messages to users at other terminals.

Two TSM command verbs are optional: RUN (or EXECUTE) and SELECT. RUN is used
to initiate a task and SELECT is used to access a command file. When no command verb
is supplied, TSM checks first for a task load module file. If it finds none, it checks for a
user command file. The verbs RUN (or equivalent) and SELECT can be used to avoid
ambiguity about the type of file to access.

Terminals must be initialized before they can be used with the MPX-32 system. If a
terminal hardware interface has been disrupted, e.g., the terminal has been unplugged, it
must be reinitialized. See Section 5.7.

5.1 User Interaction

5.1.1 Logging On

To log on to MPX-32 from a terminal, depress the wakeup character defined for
terminals at SYSGEN, e.g., CTRL E, ?, etc. TSM responds:

GOULD S.E.L. MPX-32 1.5X TSM *systemname*

ENTER OWNERNAME AND KEY: ownername [key]

5-1

Respond by entering a one-to-eight character owner name and optional key. If an M.KEY t
file has been established (via the KEY utility), it contains valid owner names and can" /
contain owner keys (to restrict access to an owner name). TSM checks the owner name
and key, if any, with M.KEY. (If M.KEY does not exist, any one-to-eight character
owner name or key is valid.)

If the owner name and/or key is not valid, or if another user has logged on with the owner
name you supply, TSM displays an appropriate message:

UNAUTHORIZED NAME OR KEY
or

NAME IN USE

You are prompted again to enter an owner name and key. The prompt is reissued until
you enter a valid owner name and key or use just a carriage return (CR) in response to
the prompt. Using just CR logs you off the terminal.

If the owner name (and key) are valid and are not currently in use at another terminal,
one of two prompts are issued.

(1) If project accounting is not present on your system, you are logged on and the
TSM> prompt is displayed, and you can enter any TSM command.

(2) If project accounting is present on your system, i.e., a M.PRJCT file exists and
your owner name does not have a default project name/number established in the
KEY utility, you are prompted to enter a valid 1-8 character alphanumeric project
name/number:

ENTER PROJECT NAME/NO.:

If you enter an invalid project name/number, TSM responds:

UNAUTHORIZED PROJECT NAME/NO.
ENTER PROJECT NAME/NO.:

If you enter a carriage return, the TSM> prompt is displayed but actual access to
TSM has not been gained. Capabilities available to you at this point are limited to
those tasks which do not require activation. If you attempt to perform an
activation function, i.e., RUN, DEBUG, INIT, you are returned to the ENTER
PROJECT NAME/NO.: prompt.

In short, when project accounting is present on your system, the only way to gain
full access to TSM is by entering a valid project name/number when one is
requested.

The M.CNTRL file is a TSM command file which is selected by J. TSM automatically
when a user logs on (the user files are searched before the system files to locate the
M.CNTRL file).

Since the M.CNTRL file may contain TSM commands as well as comments, it provides a
convenient way to establish defaults, send messages, and to further restrict access to the
TSM environment.

5-2

(

(

Examples of usage:

EDT>COL
1. NOTE LOG ON AT
2. !TIME
3. <cr>
EDT> STO M.CNTRL SYS

This will cause the time and date to be automatically displayed each time a user logs on
the system. The word NOTE indicates the line is a comment line.

EDT>COL
1. , Msg
2. <cr>
EDT>STO M.CNTRL

This will cause a message to be displayed to a user who signs on under the username
M.CNTRL is stored on.

5.1.2 Accessing Batch, Independent, or Interactive Processing Environments

TSM provides the terminal user with access to batch and real time environments as well
as to the interactive environment. As illustrated in Figure 5-1, the batch or real time
environments are accessed by using the [RUN] OPCOM command in response to the
TSM > prompt. TSM also recognizes an exclamation point as a synonym for 'OPCOM', so
that the user can issue an OPCOM command by typing '!command'. This allows a one
shot access to OPCOM with automatic return to TSM.

A user task can be put into execution in any of the three processing environments after
logging on. To activate a task from the interactive environment at its cataloged priority
(e.g., to activate a task for independent processing in the real time environment), the
task must be cataloged with all, except dynamic, assignments. The interactive user can
enter OPCOM and ACTIVATE or ESTABLISH the task. For example:

TSM>OPCOM (or)

?? ACTIVATE MYTASK

?? EXIT

TSM>

The user can activate the same task in the interactive environment by supplying just the
task name in response to the TSM prompt, e.g.:

TSM> MYTASK

In the interactive environment, the user can supply assignments. The task executes at
the time distribution priority of TSM and has special TSM support for breaks, wakeup,
SYC assignments, and other functions as described in Section 5.2

5-3

LOGON

TIM)

LOGOFF "41-_.:E.::.X:.:IT_~

ISSUE
INDIVIDUAL

OPCOM
COMM,.NDS

INTERACTIVE
ENVIRONMENT

~:~-------~~~------ ~-~l

I l.:r~~~ II ~:~: 1
t II lASE 'RIOI .. TlIS I
ti. ______ ~.-L,Ift~~is .. '" ~ TIMI~I""NT L. __ ~ II I

I I
L_~_~I

820642

Figure 5-1. InteractivelB.tch/R •• , Time Environments

5-4

("

.~.

(..

Or the user can activate the task as part of a batch job (in the batch environment) by
creating a job file and submitting it with an OPCOM or Text Editor BATCH command,
e.g.,

TSM>OPCOM (or) TSM > lBA TCH jobfile

?? BATCH jobfile

?? EXIT

TSM>

or

TSM> EDIT

EDT > BATCH iobfile

EDT> EXIT

TSM>

TSM>

Figure 5-2 shows TSM, Command Files, command files with parameter passing (Macro
Files) and Job Control commands, and their valid/non-valid usages are described in
relation to each other.

5-5

TSM COMMAND MACRO
FILES FILES

JOB
CONTROL

1 Commands valid throughout TSM but not valid in Job Control.
ACCOUNT, CLEAR, CPUTIME, EXIT, INIT, RESTART, RUN, SCAN,
SELECT, SIGNAL, WAIT, WHO

2 Commands valid only in Macro Files. Never valid in Job Control.
DEFM,ENDM,WA,WP,WF%,WT%,%

) Commands valid in Job Control but not valid in TSM unless in a file.
DEFNAME, GOTO, WF flag, WT flag

4 Commands valid throughoutTSM and Job Control.
ALLOCATE, ASSIGN 1, ASSIGN2, ASSIGN), ASSIGN4, DEBUG, EOJ,
EXECUTE, JOB, NOTE, OPTION, RESETF, SETF, USERNAME

5 Commands valid only in Job Control.

5-6

ACTIVATE, OBJECT, SELECTD, SELECTF, SELECTLD, SELECTLF,
SELECTS

820639

Figure 5-2. TSM/Job Control Commands

(

(/

A task can be activated at its base priority in the real time environment via the batch
statement $ACTIVATE. In batch, assignment and option statements can precede
$ACTIVATE so that the task need not be cataloged with all non-dynamic resource
assignments.

When a batch job is submitted from the terminal, some messages pertaining to the job
are displayed at the submitting terminal as well as the OPCOM console. They are
indicated in Section 6.8 of this volume. An end of job message is displayed at the
submitting terminal when the job is complete:

jobno owner $EOJ jobname
JOB EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SEC

5.1.3 Rettrning to TSM

The terminal user must eventually return to TSM via an EXIT command or Control
C <CTRLC > key sequence in order to log off the system or access a different processor.

5.1.4 Logging Off

To log off a terminal, use the TSM EXIT command in response to the TSM> prompt. The
following message will then be displayed:

CPU EXECUTION TIME = xx HOURS- xx MINUTES
TOT AL CONNECT TIME = xx HOURS- xx MINTUES-

RING IN FOR SERVICE

where xx is a decimal number.

xx. xx SECONDS
xx. xx SECONDS

When the Internal Processing Unit (IPU) and its interval timer handler are specified
during SYSGEN, and the IPU is used for task execution, the following message is also
displayed when logging off a terminal:

IPU EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SECONDS

5-7

5.1.5 Special Keys

Table 5-1 indicates special keys used to correct characters, correct a line of terminal
input, and perform other special interactive functions.

RETURN

Function

Terminates the current input or command line. Also used in other
places, for example, to continue output after a pause at bottom of
screen •

. Typing RETURN is assumed in all cases at the end of an input line or
command line and is not discussed in the documentation. Referred
to in text or examples as < CR> or carriage return.

<CTRLH> . Deletes the character just typed. Can be used repeatedly. Enter the
correct character(s).

RUB or DELETE Deletes the line just typed. Must be used before a carriage return.
The cursor moves to the next line. Enter the corrected line.

<CTRU> Used to display tab spacing on input. If terminal has TAB key,
produces same result. Shown in text and examples as <CTRU>.

< CTRLC > Used to exit a processor when an EXIT command is not available.
Returns you to the TSM;; prompt. Shown in text and examples as

<CTRLC>. Simulates EOF function from terminals.

BREAK See Section 5.2.5.

Wakeup See Section 5.2.4.

Table 5-1 Special Keys

5-8

5.1.6 Communicating with Other Terminals

The TSM SIGNAL command can be used to send a message {72-characters maximum} to a
specific terminal user or to all terminals. When a message is entered, it is stamped with
the owner name of the sender and the date and time sent. If a message is sent to an
owner who is not currently logged on, the command is denied. If a message is sent to all
terminals, it is queued for output to any terminal not currently logged on and displayed
the next time a user logs on to that terminal.

To communicate with a particular task, see the OpeOM SEND command. SEND allows
tasks with message or run receivers to accept control messages or data from the OpeOM
task running on a terminal, i.e., from the user who has accessed OpeOM.

5.1.7 File Access

The owner name you supply at logon is always taken as a user name for files accessed
interactively unless overridden with the TSM USERNAME command. The TSM
USERNAME command can be used to access files belonging to a different user. Sample
use: before assigning an input file that has a different user name for a task to be run
interactively.

The user name you establish with the TSM USERNAME command remains in effect for
interactive processing until you use USERNAME again or log off the system. When you
log on again, the original user name = user name association is established.

User names are associated with files in the System Master Directory {SMD}. When a file
name is specified, the system always looks first in the SMD for files with the current
user name. If a file with the specified name does not exist with the current user name,
the system searches for a system file (no user name).

An equivalent USERNAME command is available for batch jobs and for various utilities.
When used in the batch environment or with a utility, the modified user name applies
only to the batch or utility being run. When you return to TSM, the user name supplied
with the most recent TSM USERNAME command is returned.

5-9

5.1.8 A Typical Terminal Session

The following example demonstrates the interaction between the user and the system
during a typical session.

? User depresses special wake-up character, I?' in this case.

SYSTEMS MPX TSM *BIGFOOT*
ENTER YOUR OWNERNAME AND KEY:BABBAGE OK

ENTER PROJECT NAME/NO.: ~

TSM >ASSIGN4 5=UT

TSM>A46=UT

TSM>OPTION PROMPT

TSM> EXECUTE ANYTASK

HELLO, I AM ANYT ASK,
WHAT CAN I DO FOR YOU

ANY> LIST

(task lists 24 lines)

ENTER CR FOR MORE < CR>

(program resumes listing)

<break>

Lfc 5 is this terminal.

Lfc 6 is also this terminal.

Generate prompt for input.

Run the task.

Task outputs task-generated
message.

Prompt is issued before read.

Bottom of screen is reached; user enters CR.

Task is in infinite loop; user issues break.

BREAK ON ANY TASK. AT 2003BC44. ET: 1.02 SEC.

CONT, ABORT, OR DEBUG? A

ANYTASK,02000001 ABORTED. PSW:2003BC44 BIAS:34000 REASON:TSOI

TSM> CLEAR

TSM>OPCOM

?? ACTIVATE REAL TIME

?? EXIT

TSM>EXIT

CPU EXECUTION TIME = 00 HOURS- 33 MINUTES- 00.40 SEC
TOTAL CONNECT TIME = 01 HOURS- 50 MINUTES- 16.32 SEC
RING IN FOR SERVICE

5-10

(

(

5.2 Executing Tasks Under TSM

Any cataloged load module can be run interactively by issuing the TSM RUN command.
Tasks which are designed to run in any environment (online, independent-realtime, or
batch) can be run from terminals.

Files and devices can be assigned and options selected for a task to be run interactively
as described in Sections 5.2.1 and 5.2.2 next. Assignments and options apply only to one
task. After the task is run, they are cleared automatically by TSM.

The CLEAR command can be used to clear assignments and options before a task is run.
CLEAR also performs the function of terminating input from a command file.

5.2.1 Assignments

TSM overrides the cataloged assignment of a logical file code to SYC, if any, with an
assignment to the user's terminal (ASSIGN3 UT = terminal number, ASSIGN2 SYC =
UT). This provides a task designed to run from a control file (SYC) in batch with
automatic reads from the terminal or command file, for control commands and
directives. The user can associate any logical file code he wants to UT for interactive
operation by cataloging a task with ASSIGN4 lfc=UT, or by providing the assignment with
an ASSIGN4 command at the TSM > prompt.

If a task is activated with TSM that requires no input from SYC and has no assignments
to UT, the task simply runs with no prompt for terminal interaction until it exits or
aborts. The user can communicate with the task via the Break key or the wakeup
character. A task can also be designed to run interactively. Special TSM features avail
able to the programmer are described in Section 5.6.

When a task is run interactively, regardless of its internal structure, the terminal is
automatically associated with the task by TSM, (UT = terminal numbed.

5.2.2 Options

5.2.2.1 Prompting Option

If running a task online that is designed primarily for batch processing, the task may not
establish a prompt for reads from the terminal. The TSM command OPTION PROMPT
can be used to have TSM automatically precede any read from the terminal with the first
three characters of the task name and a right angle bracket. OPTION PROMPT should be
used only if the task does not write the prompt itself.

5-11

5.2.2.2 Lower Case Option

When running a task (e.g., the EDITOR utility) online, the task may force a translation of
lower case characters to upper case. This translation may be inhibited via the TSM
OPTION LOWER command to allow entering lower case characters. The only strings
that must be entered in all upper case are file names.

5.2.2.3 Internal Processing Unit (lPU) Options

If an Internal Processing Unit (IPU) is installed on your system, two options are available
for its use:

5.2.2.4

IPUBIAS (Bit 26) - When set, tasks that are IPU compatible will be run by the
IPU processor. At any point during execution where compatibility ceases, the
CPU is trapped and the task is transferred to the CPU processor for
execution.

CPUONL Y (Bit 25) - When set, the IPU processor is ignored and all tasks are
executed by the CPU processor.

Default: Tasks are executed by the first available processor.

Error/Noerror Option

When a TSM task aborts, the abort code is automatically interpreted and an explanation
is displayed at the user's terminal. To inhibit the automatic display, specify OPTION
NOERROR. The automatic display can be reset by specifying OPTION ERROR.

5.2.2.5 Command/Nocommand Option

When TSM reads commands from a macro or command file, they are echoed at the user's
terminal prefixed by an asterisk. To inhibit this operation, specify OPTION
NOCOMMAND. This option remains in effect until an end-of-file (EOF) or end macro
(ENDM) is encountered, at which time the default of listing the commands is reset. The
listing operation can be reset at any time by specifying OPTION COMMAND at the
TSM> prompt.

5.2.2.6 Text/Notext Option

When a processor reads commands from a macro or command file, they can be echoed at
the user's terminal (prefixed by an asterisk) by specifying OPTION TEXT. This option
remains in effect until an end-of-file (EOF) or end macro (ENDM) is encountered, at
which time the default of not listing the commands is reset. The listing operation can be
inhibited at any time by specifying OPTION NOTEXT at the TSM> prompt.

5-12

5.2.3 Breaks

If you depress the Break key and a task does not have its own break receiver, TSM
prompts:

** BREAK ** ON:taskname AT:location ET:n SEC.

CONT,ABORT,OR DEBUG?

If you respond C (Continue), the task continues in execution. If you respond A (Abort),
TSM aborts the task, displays the message below, and returns the TSM> prompt.

taskname,taskno ABORTED. PSW:psw-contents BIAS:bias

REASON: TSOI

TSM>

TSOI indicates user requested (from the terminal) to be aborted from a BREAK request.

If you respond D (DEBUG), the MPX-32 Debugger is attached to the task and you are
prompted for a DEBUG command (See the DEBUG description in Volume 2.)

If the task has its own break receiver, TSM defers to it when you depress the Break key.

5.2.4 Wakeup's

If a task is running and does not respond to the Break key, it is in a wait-for-resources
state. 30 communicate with a task that is waiting for resources (memory, a device, a
file, etc.) you can enter the wakeup character used to logon. TSM responds:

<wakeup>

T ASK state. CONTINUE OR DELETE?

TSM displays the type of resource for which the task is queued. To delete the task,
respond D (Delete). The task is killed as if you had entered a KILL command in OPCOM,
and TSM displays an abort message on the terminal:

taskname, taskno ABORTED. PSW:psw-contents BIAS:bias

REASON: TS02

TSM>

TS02 indicates user requested (from terminal) a task to be deleted from a wait state
queue.

To continue the task, respond C (Continue). The task continues in execution. The TSM>
prompt is not returned.

5-13

The wakeup character is also used to reestablish dialogue with TSM after entering a
special wait (for messages) state. (See the TSM WAIT command.)

5.2.5 TSM Screen Logic

TSM bottom end-of-screen logic is automatically available for a task run interactively.
TSM uses the predefined screen length for a terminal. At the bottom of the screen, on a
write, TSM prompts the terminal user:

ENTER CR FOR MORE:

If the user responds with a CR, TSM writes the next line on the screen and returns to the
task. If the user responds with other than a carriage return, TSM throws away the line
that caused it to go to the end of screen. It sets bit 7, Word 3 in the FeB that indicates
end of medium before returning to the task. If the task has the logic to check end of
medium, the task will be able to process one of two ways according to the situation. If
the task does not have the logic to check and, for example, stop output, TSM continues
output to the next bottom of screen.

When programming in a high level language, the programmer must consider testing for
end of medium before each write to a TSM device. If no testing is used, the language
will handle a write while at end of medium based on the language being used.

If screen length is not defined at SYSGEN (implying a hard copy terminaI), the TSM end
of-screen logic is not used.

5.2.6 Tabs

The M.KEY file in MPX-32 can contain tab settings for each ownername specified in the
logon file as described in the KEY processor in Volume 2. TSM defaults to these tabs if
they exist. Or, if no tabs are set in M.KEY, TSM sets system tabs when you access the
EDITOR SET TABS command in Volume 2. You can override the tab settings
(M.KEY!system) when using the EDITOR SET TABS command.

The most recent tabs set with SET TABS will remain in effect as long as you remain on
the system (until you exit TSM), i.e., they will remain in effect as you access various
processors, move from one system environment to another, etc. When you exit from
TSM, the SET TABS are not saved. When you log on again, either the M.KEY tabs (or
system tabs if none exist in M.KEY) are set.

During formatted input, the tab character (CTRL I) is interpreted by the TSM device
handlers and replaced by the appropriate number of blanks. The cursor is adjusted by
echoing the spaces to the terminal.

The tab character used to define tab positions in the SET TABS command is either a
backslash (\) or the character you define when you enter tab settings. The most recent
tab character defined in SET TABS is the one used when entering a tabbed record unless
you want to U$e < CTRL I>or TAB. Like tab settings, the tab character remains in effect
until you exit TSM. When you log on again, the tab character is a backslash.

5-14

('

5.2.7 Project Names/Numbers

When using the ACCOUNT utility under MPX-32, project names/numbers have to be
established for owner names on the system to gain access to TSM. This can be done in
one of two ways.

0) A M.PRJCT file can be created via the Text Editor containing the 1-8 character
(per entry) alphanumeric project names/numbers which will be valid on the system
in use. This file can then be stored unnumbered.

(2) Default project names/numbers can be established for each owner name via the
KEY utility.

In addition, a file must be created (it can be created by the File Manager CREATE
directive) and named M.ACCNT (file size is determined by individual needs). This file is
where job accounting information is collected for use by TSM.

When M.ACCNT is approximately 90% full, TSM displays the following message on the
console:

W ARNING THE ACCOUNTING FILE IS OVER 90% FULL.

M.ACCNT should be listed to the printer (see Section 1j..1j..19) or saved to magnetic tape
(see Section 1j..1j..31) and then purged (see Section 1j..1j..24-). Until M.ACCNT is purged, the
warning message is displayed each time MPX-32 is restarted. When M.ACCNT becomes
completely full, it is automatically purged and all previous accounting data is lost.

Project names/numbers can be changed by a user while logged on via the PROJECT
command under TSM. When you change a project name/number, you terminate the
ACCOUNT utility for the previous project name/number and initiate the ACCOUNT
utility for the new project name/number which remains in effect until changed again or
you log off the system.

Upon logging off the system, default project names/numbers are restored, if any.

5-15

5.3 Using Command Files

MPX-32 accepts a file of TSM commands in lieu of terminal input, allowing the user to:

make assignments, define options, and accomplish other runtime operations
associated with activating a task or processor

activate and run tasks or processors in the interactive environment

perform conditional processing

select other command files

perform argument replacements in any line of code regardless of whether used at
the TSM > prompt or used when in a particular processor.

5.3.1 Activating Tasks from Command Files

The user can activate any task from a command file. Any parameters passed with the
RUN command can be accessed by an interactive task via the M. TSCAN service.
Records following the RUN command line within the command file are accessible to
tasks; however, any command preceded by a' dollar sign ($) is interpreted as a command
to TSM and a pseudo end of file for the currently executing task.

If a command file contains more commands following the pseudo end of file, there are
two different paths that can be taken, depending on whether the currently executing task
interprets pseudo end of file as an exit or not.

If the task exits, TSM continues reading from the command file, interpreting the
$command as its own.

If the task does not exit at pseudo end of file, the task can read from the terminal.
Reading from the terminal continues until the task does exit. At that time, TSM
processes the $command from the command file.

5.3.2 Chaining Command Files

SELECT commands can be embedded in command files to access other command files.
Without conditional processing, the chaining capability is directly from one command file
to the next, i.e., the first SELECT encountered accesses a new command file. However,
with conditional processing, the user can select alternate command files to gain more
flexibility in command file processing.

5.3.3 Command File-to-Terminal Interplay

TSM provides two file codes for interactive processing: SYC (system control) and UT t--'"
(user's terminaI). When processing a command file, the command file is assigned by TSM I'.j'

to SYC. With no command file, SYC = UTe UT is always assigned to the user's terminal.

5-16

(
As TSM reads a command file, it displays commands and responses at the terminal (to
UT) as if it were operating interactively. When it reads an EXECUTE or equivalent
command to activate a task, TSM turns control over to the task. Whether commands and
responses to the task are displayed or not depends on whether the task uses UT for I/O.

When all commands on the command file have been processed, the user enters a CLEAR
command, TSM encounters a DEFM command, or a task reads from the terminal, TSM
returns to the terminal for input.

5.3.4 Error Processing

Errors that may be encountered by TSM in command file processing include:

1. An entry in the command file that is not a TSM command, a load module
(task) name, or a command file

2. Supplying invalid parameters for a TSM command, a task, or a command file.

3. Interactive errors which are encountered by a task or processor activated via
a command file.

In the first case, command file processing terminates and the control returns to the
terminal. In the second case, the user can correct the command line that caused the
error and continue processing from the command file. Or the user can abort command
file processing by issuing a CLEAR command.

If an error is encountered by a task or processor that has been activated from a command
file, the error and recovery are the same as in normal interactive processing. The user
can, of course, issue a break at any time and follow a continue, abort, or debug path as
described in Section 5.2.3. When a task is aborted, control returns to TSM. TSM
continues processing commands from the command file at the point following the abort.
1FT and IFF commands can be used for conditional processing on abort. (See command
descriptions.) Error messages are descriptive and most will not need further reference.
However, if a file allocation error code is given, refer to Section 7.8.1 of this volume for
a description of the error.

5.3.5 Conditional Processing and Parameter Passing

The IFP, IFA, GOTO, 1FT, IFF, DEFNAME, and %name commands provide the ability to:

Substitute parameters. When the file is accessed, the user can pass up to eight
predefined variables to it, adapting the one command file to various runtime uses.

Provide parameter defaults. When the runtime user passes parameters, he can
obtain a default value by entering nothing or if a gap, by using an extra comma or
other valid non-blank TSM delimiter, to indicate a missing parameter.

Use conditional execution capabilities; e.g., based on a value actually supplied for
a particular condition, the command file can branch to a particular set of
commands or select a different command file altogether.

Please note that using task names identical to command file names should be avoided.
The task names will take precedence over the command file unless the SELECT command
is used.

5-17

.5.3.6 Concatenating a Value to a User-Supplied Parameter

In a command file that uses parameter substitution, the command file can use two
optional forms of a parameter name:

value%par
or

%par;value

This allows the user who develops the command file to append a constant string before or
after the variable value (%par) supplied by the user of the command file •

.5.3.7 Breaks and Wakeups

If the break key is depressed or the wakeup character used to log on is entered, the next
command in the command file will not be processed. The following message will be
displayed if either event occurs:

A BREAK OCCURRED DURING COMMAND FILE PROCESSING.
ENTER CR TO CONTINUE OR 'CLEAR' TO TERMINATE.

If a carriage return is entered, TSM reads the next command in the command file.

If the CLEAR command is entered, TSM terminates command file processing and returns
the TSM prompt •

.5.4 TSM Commands

TSM commands are summarized in the chart which follows and described in detail in the
following pages. Valid abbreviations are shown by underlining.

Any TSM command can be preceded by a dollar sign ($). This allows command files to be
processed in Batch, if desired. It also facilitates utility or task processing (see Section
5.3.1).

Command Function

ACCOUNT Displays contents of job accounting file to logical file code UTe

ALLOCATE Overrides cataloged memory allocation for tasks run online.

ASSIGN 1 For tasks run online, associates permanent disc file (optionally unblocked)
with lfc.

ASSIGN2 Associates system SBO, SLO, SYC or SGO file with Ifc for task run
online. SYC is automatically associated with the user's terminal.

ASSIGN3 For task run online, associates device (optionally unblocked) with lfc. If
channel/subaddress specified, denotes specific device. User's terminal is
preassigned as "UT=terminal". To assign the terminal for other lfc's, use
ASSIGN4.

5-18

ASSIGN4

CLEAR*

CPUTIME*

DEBUG

DEFM*

DEFNAME

ENDM*

EOJ

ERR?*

EXECUTE
or

RUN

EXIT*
or
X*

GOTO

IFF

IFP*

1FT

INIT*

JOB

Associates lfc with another lfc for task run online. All lfc's referring to
user's terminal should be assigned as "UT", e.g., SI=UT.

Clears all previous ASSIGN, OPTION, and ALLOCATE commands.

Displays elapsed CPU execution time for all tasks activated by an owner
since logon.

Loads the specified task with the interactive Debugger (DEBUG) attached
and passes control to the Debugger.

Defines parameters for a command file.

Establishes a name to branch to for conditional processing.

Defines end of command file. Optional.

Deletes an SGO file established via the JOB command.

Defines any specified error code.

Activates a task in online environment. The task name specified
must be a cataloged load module.

Ends online activity. Logs user off terminal.

Branches to a name in a command file.

Branches to a name if the specified parameter is absent.

Branches to a name if a condition is false.

Branches to a name if the specified parameter is present.

Branches to a name if a condition is true.

Initializes terminals. See Section 5.7.

Creates an SGO file for processing.

* Not a valid command under Batch. (See Section 6.5.)

5-19

LINESIZE*

* message

%name*

NOTE

OPTION

Dynamically modifies the screen width defined for a terminal.

Sends a message to the terminal.

Establishes a name to branch to for conditional processing.

Sends a message to the terminal.

Provides options for tasks running online:

1-20: task-dependent options.

21-32: system-defined options available to all tasks.

DUMP (Option 24): dumps task's area of memory to SLO on abort.

PROMPT (Option 21): uses first three characters of task initiated with
RUN plus as prompting character for task read requests through lfc
UTe The prompt is preceded by a carriage return/linefeed.

LOWER (Option 22): suppresses automatic conversion of lower case
characters to upper case on input; good for data, but user is cautioned
that commands and key words must be shifted to upper case.

IPUBIAS (Option 26): IPU compatible tasks will be executed by the IPU
processor.

CPUONL Y (Option 25): tasks are executed only by the CPU processor.
Default: tasks are executed by the first available processor.

COMMAND: echoes commands in a macro or command file to the user's
terminal as they are read by TSM.

NOCOMMAND: inhibits commands in a macro or command file from
being echoed to the user's terminal as they are read by TSM.

ERROR: causes automatic display of abort description at the user's
terminal when an abort occurs.

NO ERROR: inhibits display of abort description at the user's terminal
when an abort occurs.

TEXT: echoes commands in a macro or command file to the user's
terminal as they are read by a processor.

NOTEXT: inhibits commands in a macro or command file from being
echoed to the user's terminal as they are read by a processor.

* Not a valid command under Batch. (See Section 6.5)

5-20

(,:

(

PAGESIZE* Dynamically modifies the screen length defined for a terminal.

PROJECT* Changes the project name/number for accounting purposes.

RESTART* Reboots the resident MPX-32 operating system. See Volume 3.

RESETF Sets flag(s) to FALSE for conditional processing.

SCAN** Dynamically modifies the screen width defined for a terminal.

SELECT** Selects a command file of TSM commands.

SETF Sets flags(s) to TRUE for conditional processing.

SIGNAL * Sends a message to another logged on user or to all terminals.

USERNAME Modifies current user name for file access.

WAIT* Waits for messages when terminal would otherwise be inactive. Requires
wakeup to resume interactive processing.

WHO* Displays owner names and terminal addresses of aU logged on users.

$$ Ignored by TSM.

$$$ Ignored by TSM.

* Not a valid command under Batch. (See Section 6.5.)
** Functionality different under Batch. (See Section 6.5.)

5-21

5.4.1 ACCOUNT Command

The ACCOUNT command is used to display the entries in the job accounting file to
logical file code UTe

Syntax:

ACCOUNT[[,oWNE=name] [,PROJ=proi) [,DA TE=date] [ORIG= {~~~CH}]]

where:

OWNE=name

PROJ=proj

DATE=date

ORIG={TSM }
BATCH

If no parameters are specified, the entire contents of the
job accounting file are displayed.

specifies the 1-8 character owner name associated with
the files to be displayed.

specifies the 1-8 character alphanumeric project
name/number associated with the files to be displayed.

specifies the 8 character numeric date associated with
the files to be displayed, entered in the format
month/day/year

specifies the mode of operation in which the files to be
displayed were used.

Note: Keyword parameters can contain leading or trailing wild card characters in the
form of question marks (?).

Examples:

ACCO,OWNE=JIM,D A TE=06/l6/80,ORIG= TSM.20??

Displays statistics on all jobs with owner name JIM run on June 16, 1980 on any TSM
device 20xx.

ACCO,PROJ =087212

Displays statistics on all jobs run under project number 087212.

5-22

:(.......•
~"

(

(-

(

5.4.2 ALLOCATE Command

A task is always allocated enough memory to accommodate a cataloged load module.
ALLOCATE is used to increase the memory allocation for a task at execution time.

The ALLOCATE command gets additional memory when the task is run, i.e., it is
dynamic.

Syntax:

where:

ALLOCATE bytes

bytes specifies the number of additional bytes (in hex) to allocate to the
task.

5-23

5.4.3 ASSIGN 1 Command

The ASSIGN! command is used to assign permanent files for logical file codes used by
the task being run.

Syntax:

where:

Examples:

ASSIGNllfc=filename [,[password] [,U]] [lfe= •••]

lfc

filename

password

U

is a logical file code used in the task.

is an 8-character maximum name of a disc file to assign to the
lfc.

Anyone of the optional parameters following the file name may
be entered in the order shown in the syntax statement. Commas
separate options. If an option is missing, the comma must be
supplied, as in:

filename"U

Blanks should be used' between lfc assignments. (See Examples.)

is an 8-character maximum password for the disc file if it has
been password-protected.

If RO protected, the password is required to write to the file. If
PO, the password is required to read or write to the file.

the file is optionally unblocked. Default: blocked.

ASSIGNI LlB=LlBRARY"U DIR=DIRECTORY"U

ASSIGN! OT=OUTFILE IN=INFILE,MYPASS

c

(.

5.4.4 ASSIGN2 Command

The ASSIGN2 command is used to supply system file assignments to logical file codes.
An lfc assignment to a system file results in 10CS creating one of the types of files
described below for use by the task:

SBO System Binary Output. A type of temporary file created and used by
10CS for buffering output to the device defined at SYSGEN or via
the OPCOM SYSASSIGN command as POD (Punched Output Device).
Output from the user task directed to the lfc associated with SBO
will be buffered and routed by 10CS to the POD.

SLO System Listed Output. A type of temporary file created and used by
10CS for buffering output to the device defined at SYSGEN or via
the OPCOM SYSASSIGN command as LOD (Listed Output Device).
Output from the user task directed to the lfc associated with SLO
will be buffered and routed by 10CS to the LOD.

SYC System Control File. TSM automatically assigns SYC to UTe Tasks
should use ASSIGN4 to equate any other logical file codes to UTe

SGO System General Object. This is a temporary file used to accumulate
object code.

For further description of all of the above system files, see Chapter 7.

Syntax:

ASSIGN2 lfc =

where:

lfc

SBO

cards

SLO

printlines

SYC

SGO

(SBO,cards 1
t' SLO,printlines

SYC
SGO

Llfc = •••]

is a 3-character logical file code used in the task

System Binary Output file

is the number of cards you expect to output as an object
deck. Determines size of SBO temporary file required.

System Listed Output file

number of printlines required for listed output. Determines
size of SLO temporary file required.

System Control File.

System General Object file. Note: SYSGEN size can be
overridden with the JOB command. (See JOB.)

5-25

.5.4 • .5 ASSIGN) Command

The ASSIGN3 command is used to supply device assignments for logical file codes used by
the task being run.

Syntax:

where:

Note:

Examples:

Tape:

Disc:

5-26

ASSIGN3 lfc=devmnc
[

,blocks][,U] [lfc= •••]

Ifc

devmnc

blocks

reel

vol

U

,reel, r voll

is the logical file code used in the task

is the device mnemonic of a configured perhiperal device. See
Appendix A.

number of disc blocks (192 words) to be allocated for this file.

specifies a 1-4 character identifier for the reel. Default: SCR
(scratch)

if multivolume tape, indicates volume number. Default: 0 (not
multivolume)

specifies the tape or disc is unblocked. Default: Blocked

There must be no embedded blanks within a lfc assignment. Commas must be
inserted for all nonspecified options (see Examples). One or more blanks are
the legal separator between one Ifc assignment and the next.

A3 IN=M91000,SRCE"U OT=PT

A3IN=DC,20

c

5.4.6 ASSIGN4 Command

The ASSIGN4 command is used to associate one or more logical file codes used by the
task being run with an existing lfc assignment. This assignment will remain for the
associated file or device even if the original assignment is deallocated.

A logical file code assigned to the logical file code 'UT' implies an assignment to the
user's terminal.

Syntax:

where:

5.4.7

ASSIGN4 lfc=lfc [lfc=lfc]

lfc=lfc is a pair of logical file codes, where the first lfc is the new
assignment and the second is the lfc already associated with a
file or device in any previous ASSIGN directive (including
ASSIGN4). When running interactively, the user's terminal is
preassigned to UT as in ASSIGN3 UT=terminal.

Any number of lfc to lfc associations can be established.

CLEAR Command

The CLEAR command is used to clear all previous ASSIGN, OPTION, and ALLOCATE
commands. CLEAR is also used to terminate processing from a command file before end
of file and to return control to the terminal user.

Syntax:

CLEAR

5.4.8 CPUTIME Command

The CPUTIME command is used to return the elapsed CPU execution time for all
interactive tasks activated by the owner who issues the command.

Syntax:

CPUTIME

Response:

CPU EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SEC

5-27

'.4.9 DEBUG Command

The DEBUG command is used to debug a task (cataloged load module) using the
interactive Debugger described in Volume 2.

Syntax:

where:

5-28

DEBUG taskname

taskname is the name of a cataloged load module. Same as the name of
the file containing the load module. Must be a system file.

c

5.4.10 DEFM Command (Command File Only)

The DEFM command supplies parameters that are processed by TSM when a command
file is executed. A 'parameter' can be a substitution string for part of a value or a
'parameter' can be any value normally supplied as a variable on a given command line.
Up to eight parameters can be defined for any given command file.

A single parameter must have no embedded commas, blanks, or other TSM delimiters and
can be 8-characters maximum in length. The parameters typed on the command line
when the file is executed must match the order of the parameters supplied on the DEFM
command. If a missing value is followed by other values, the missing value must be
indicated by an extra comma or other non-blank TSM delimiter.

Syntax:

DEFM [par IJ [,par2J

where:

par 1 up to eight parameters can be defined for substitution. A
parameter is eight characters maximum. If more than eight
characters are supplied (in the command file or from the terminal
when the command file is accessed) the extra characters are
truncated.

(_ Response:

At runtime, parameters supplied by the user with the name of the command file are
matched positionally against the parameters defined above. Each time substitution is
indicated by a percent sign, TSM matches the parameter against the input parameter and
places the proper value in the terminal input buffer.

Documentation of any command file containing DEFM parameters should include at a
minimum, definition of the parameters to enter when the command file is accessed and
the exact order in which to enter the parameters.

Example:

This command file is used to make assignments and select standard options for
assembly. "SI" is the parameter indicating a base file name (e.g., if the user were to
leave out the first parameter, SI would be the name of the input file for the assembly).
The macro selects I as the default option via the second parameter.

Command File (ASSEMBLE):

DEFM SI,I
ASSIGN 1 SI=%SI
ASSIGN I BO=OB%SI
OPTION %1 34
ASSEMBLE
ENDM

. User Supplies: TSM SELECT ASSEMBLE SRCE

5-29

Expansion of Command File as Executed:

ASSIGN 1 SI=SRCE
ASSIGN 1 BO=OBSRCE
OPTION 1 34
ASSEMBLE

Comments:

Notice that file names are generated that are unique to the user and yet consistently
related by concatenation in the two ASSIGN commands. See Section 5.3.6. Use of the
TSM SELECT command is illustrated because it forces the identification of the file
named ASSEMBLE to be a command file and not a load module.

5.4.11 DEFNAME and %name Commands (Command File Only)

The DEFNAME and %name commands are used to establish names to branch to for
conditional processing.

Following DEFNAME or %name, the user supplies the sequence of commands to process
when a conditional branch occurs. A branch is the result of a command such as IFF, 1FT,
IFP, etc., that references the name.

Syntax:

where:

5.4.12

name specifies a one- to eight-character name corresponding to a name
referenced in a previous command. The name must contain at
least one numeric character.

ENDM - End Macro

The ENDM command can be used to terminate a command file. It is not required.

Syntax:

ENDM

5-30

C","· .\ . ,

(. 5.4.13 EOJ Command

The EOJ command is used to signal the deletion of SGO. If JOB is used, EOJ should also
be used. (See the JOB command).

Syntax:

EOJ

5.4.14 ERR? Command

The ERR? command is used to display the description of any specified abort code.

Syntax:

where:

Example:

Errors:

ERR? code

code is a four character abort code as defined in Appendix C

TSM>ERR? MS91

T ASK HAS ATTEMPTED NORMAL EXIT WITH A TASK INTERRUPT STILL
ACTIVE.

TSM>

If an invalid error code is requested, TSM will respond:

<<<UNRECOGNIZABLE ERROR CODE»>

(or)

«<TOO MANY CHARACTERS IN ERROR CODE»>

5-31

.5.4.15 EXECUTE or RUN Command

The EXECUTE (or RUN) command is used to activate a task in the online environment.
Sections 5.2 and 5.3 describe running tasks online. This command is the default command
for TSM, i.e., it is implied if you do not enter a TSM command verb.

Syntax:

r RUN] taskname
lEXECUTE

where:

taskname is the name of any cataloged load module file •

.5.4.16 EXIT Command

The EXIT command is used to log off the system.

Syntax:

EXIT
or

X

.5.4.17 GOTO Command (Command File Only)

The GOTO command is used to skip subsequent commands until the specified name is
found in the command file. The name is defined via a DEFNAME or %name command.

Syntax:

where:

5-32

GOTO name

name is a one-to-eight character string that indicates a point to go to
on the file.

5.4.18 IF A and IFP Commands (Command File Only)

The IFP/IF A commands allow branching to a name based on whether a particular
parameter is supplied (IFP) or not (IF A) at runtime. IFP/IF A can be used, for example, to
set up a default course when a parameter is absent or they could be used to vary
processing depending upon what the runtime user supplies when he selects a command
file.

Syntax:

{, IFP}%par name
IFA

where:

Example:

%par

name

a parameter supplied with the DEFM command, preceded by a
percent sign.

a name that marks a point to get to on the command file to
continue processing commands. The name can be either a
command or a string that marks a branch forward through the
command file.

In this partial example, OP is the parameter for selecting an Assembler option. It will be
("~ the fourth parameter entered when the command file is accessed.

DEFM SI,ASSEMBLE,NEW,OP

IFA %OP ASSM
OPTION %OP
GOTO NOP
%ASSM
OPTION 1
%NOP
OPTION 34

User Enters: TSM >EXAMPLE SRCE,ASSEMBLE,CREATE,2

Expanded Commands Are:

OPTION 2
OPTION 34

The IF A command line is translated as, if an option parameter is absent, select option I
plus options 3 and 4. If not absent, use the specified option as indicated on the next line
plus options 3 and 4.

5-33

5.4.19 IFF Command (Command File Only)

The IFF command is used to branch to a name in a command file when a condition is
false. There are several types of conditions that can be tested:

o strings - the first character string is not equal to the second character
string.

o flags - the specified flag or flags are false. Note that flags are set to
TRUE or FALSE via the SETF (TRUE) or RESETF (FALSE) commands

o ABORT - the preceding task does not abort

o files - the specified file name does not exist

If a condition does test false, the user provides a name to branch to in the command
file. If a condition does not test false, TSM continues processing with the next command
in the command file.

Syntax:

where:

5-34

IFF

string

flagno

ABORT

%string {~~} string

flagno .
name

ABORT
FILE filename

is any string, eight characters maximum. (The string
may be the result of argument substitution or concate
nation.) If more than eight, characters to the right are
truncated. The value can be an alphanumeric string. If
the value of the expression is false, TSM branches. If it
is true, TSM processes the next command on the
command file. See Example.

is a numeric flag number from I - 16. One flag number
can be specified. The flag specified must then be
FALSE (see the RESETF command) to cause a branch.
If the flag tests TRUE, TSM processes the next
command on the command file.

if the task immediately preceding IFF was not aborted,
TSM branches. If the task was aborted, TSM processes
the next command on the command file.

FILE filemname specifies the name of a user or system file. If the file
does not exist, TSM branches. If the file exists, TSM
processes the next command on the command file. .{-"

(/

Examples

(/

name is a one-to-eight character string defined via a
DEFNAME or % name command that marks a point on a
command file. When the user branches, he branches to
one of the names on the command file. If no name
exists that matches the name referenced for a branch,
TSM continues to the end of the command file and
returns to the terminal user.

IFF %A EQ B (Branches when the user does not enter B as the value of
parameter %A.)

IFF %A NE B (Branches when the user enters B as the value of
parameter %A.)

5-35

5.4.20 1FT Command (Command File Only)

The 1FT command is used to branch to a name in a command file when a condition is
true. There are several types of conditions that can be tested:

o strings - the first character string is equal to the second character string.

o flags - the specified flag or flags are TRUE. Note that flags are set to
TRUE or FALSE via the SETF (TRUE) or RESETF (FALSE) commands.

o ABOR T - the preceding task aborts.

o files - the specified file exists.

If a condition tests true, the user provides a name to branch to in the command file. If a
condition does not test true, TSM continues processing with the next command on the
command file.

Syntax:

where:

5-36

1FT
%string {~~}string

flagno
ABORT

name

FILE filename

string

flagno

ABORT

FILE filename

is any string, eight characters maximum (the string may
be the result of argument substitution or concate
nation). If more than eight, characters to the right are
truncated. The value can be an alphanumeric string. If
the value of the expression is true, TSM branches. If it
is false, TSM processes the next command on the
command file.

is a numeric flag number from 1-16. One number can be
specified. If the specified flag is TRUE (set by the
SETF command), TSM branches. If the flag tests
FALSE, TSM processes the next command on the
command file.

if the task immediately preceding 1FT aborts, TSM
branches. If the task does not abort, TSM processes the
next command on the command file.

specifies the name of a user or system file. If the file
exists, TSM branches. If the file does not exist, TSM
processes the next command on the command file.

it .. j, ~/

(

name

Example:

is a one- to eight-character string defined via a
DEFNAME or % label command that marks a point on a
command file. When the user branches, he branches to
one of the labels on the command file. If no label exists
that matches the label referenced for a branch, TSM
continues to the end of the command file and returns to
the terminal user.

The example is used to show conditional processing for parameters. The NEW parameter
is the point of concentration. The user can, at runtime, enter the string CREATE to
create a new library and directory file before running the Subroutine Library Editor. If
the string is absent, or other than CREATE, the existing library will be updated only.

Note that CREATE and DELETE tasks shown in the example are demonstration tasks
only. (See Section 5.6.5, which uses DELETE as a sample interactive task.)

Command File (EXAMPLE):

DEFM SI,ASSEMBLER,NEW,OP

1FT %NEW NE CREATE OLD
DELETE DIR
DELETE LIB
CREATE LIB, DM0800,I28
CREA TE DIR, DM0800,40
OPTION I
%OLD
A4 LLO=UT
Al DIR=DIR"U
Al LIB=LIB"U
Al LGO=OB%SI
LIBED

User Enters: TSM>EXAMPLE SRCE,ASSEMBLE,CREATE

Expanded Commands Are:

DELETE DIR
DELETE LIB
CREATE LIB, DM0800,128
CREATE DIR, DM0800,40
OPTION I
A4 LLO=UT

5-37

The 1FT command line is translated as "if the NEW parameter is any valid string other ,("" --
than CREATE, branch to OLD". If the runtime value string supplied is CREATE, delete _7

existing library and directory files and create new file spaces, and select option 1 before
making LIB ED assignments. The name %OLD is used to move the runtime user past
CREATE and DELETE tasks if he wants to update existing library files •

.5.4.21 J08Command

The JOB command is used to obtain an SGO file for TSM processing. SGO files are used
to accumulate object code from an assembly or compilation and move it through
cataloging or into a library. (See Section 7.6.) JOB and EOJ commands delimit
commands pertaining to the utility processors that are using the SGO file. JOB and EOJ
can be used interactively or on a command file. For TSM processing, all parameters
except SGO are ignored.

Syntax:

where:

.5-38

JOB [jobname] [ownername] [,key] (SGO=size]

jobname

ownername

key

size

is a one- to eight-character job identifier. If more than
eight characters are specified, the first eight characters
are used. Ignored by TSM.

is a one- to eight-character owner name. Ignored by
TSM.

is a one- to eight-character key associated with the
owner name in the M.KEY file, if any. Ignored by TSM.

specifies the number of 192-word blocks of disc space
that are to be allocated for the SGO file. If the SGO
field is omitted, the size of the SGO file is determined
by the SYSGEN directive SGOSIZE (see Volume 3). A
size of zero is interpreted as one •

(-

(

5.4.22 LlNESIZE Command

The LINESIZE command is used to dynamically modify the screen width defined
previously for a terminal at SYSGEN. It remains in effect for the terminal until the user
logs off.

Syntax:

where:

5.4.23

LINESIZE maxchars

maxchars

Message Command

specifies the maximum character position to be
displayed/(written to) the terminal in the range of 72-
236. Anything less than 72 or greater than 236 is an
error.

A message can be included in a command file by using any valid TSM closing delimiter as
the first nonblank character in a line. The message is displayed at the terminal when
TSM comes to that point in the command file. This command is equivalent to the NOTE
command. If used at the terminal, nothing happens.

Syntax:

where:

5.4.24

U ~sage
message

NOTE Command

is any 72-character maximum message (predicated on
starting the message at the beginning of the line).

The NOTE command is used to send a message to the user's terminal. It is identical in
function to the Message command.

Syntax:

NOTE message

where:

message is a 72-character maximum message to be displayed on
the terminal.

5-39

5.4.25 OPTION Command

The OPTION command supplies various options for running a task online.

Syntax:

where:

5-40

OPTION

n

n
DUMP
PROMPT
LOWER
CPUONLY
IPUBIAS
COMMAND
NOCOMMAND
ERROR
NOERROR
TEXT
NOTEXT

If a parameter is not specified, all previous options are cleared.

a number from 1-32 specifying a particular option available for an
MPX-32 utility or user task. (See utility documentation OPTION
sections.)

DUMP specifies an automatic dump on abort for the MPX-32 utility or
user task to be run. On abort, the task's area of memory will be
dumped to an SLO file by TSM and printed (output to the LOD).

PROMPT specifies an automatic prompt before read from the terminal
(UT). The first three characters of the utility or task being run
will be displayed by TSM. See Section 5.2.2.

LOWER inhibits translation of lower case input to upper case, which
allows the user to enter and edit lower case as well as upper case
characters. Commands and key words can be entered in any
combination of upper/lower case; the names of files must,
however, be all upper case. See Section 5.2.2.

CPUONLY specifies tasks are to be executed only by the CPU processor.

IPUBIAS

See Section -'.2.2.

specifies IPU compatible tasks will be run by the IPU processor.
Default: tasks are executed by the first available processor. See
Section 5.2.2.

COMMAND causes commands in a macro or command file to be echoed to the
user's terminal and prefixed by an asterisk as they are read by
TSM. Default. t··

"".

"

_/

("

(/

(~/

NOCOMMAND inhibits commands in a macro or command file from being
echoed to the user's terminal as they are read by TSM.
Remains in effect until an EOF or EOM is encountered. Reset
by OPTION COMMAND.

ERROR

NOERROR

TEXT

NOTEXT

causes automatic interpretation and displays a description of
abort code at the user's terminal when an abort occurs.
Default.

inhibits automatic interpretation and display of abort code
description at the user's terminal. Reset by OPTION ERROR.

causes commands in a macro or command file to be echoed to
the user's terminal and prefixed by an asterisk as they are read
by a processor. Remains in effect until an EOF or EOM is
encountered.

inhibits commands in a macro or command file from being
echoed to the user's terminal as they are read by a processor.
Default.

5-41

5.4.26 PAGESIZE Command

The PAGESIZE command is used to indicate how many consecutive output records (lines)
to write at the terminal without an intervening read or CR FOR MORE message. It
dynamically modifies the page size specified previously at SYSGEN. It remains in effect
for the terminal until the user logs off.

A pagesize of zero can be specified to output lines without intervening CR messages. Be
careful not to specify zero if a task you are using does not have a BREAK receiver. If
you do, output cannot be stopped with the BREAK key.

Syntax:

where:

5.4.Z1

PAGESIZE maxlines

maxlines specifies the maximum number of lines to display (write)
before another read (or CR) from the terminal.

PROJECT Command

The PROJECT command is used to change the project name/number you are working
under for accounting purposes. It causes the ACCOUNT utility to terminate
accumulating data on the old project name/number and initiate accumulation of data on
the new project name/number.

Syntax:

where:

5.4.28

PROJECT number

number is a 1-8 character alphanumeric project name/number
previously established and recognizable by the ACCOUNT
utility.

RESETF Command

The RESETF command is used to specify a FALSE (=0) condition for up to sixteen
distinct flags. The flags can then be tested by 1FT and/or IFF commands within a
command file. RESETF should precede any IFF or 1FT commands that check the
condition of the specified flags.

Syntax:

where:

5-42

RESETF flagno [flagno] •••

flagno specifies a flag number in the range 1 through 16 (decimaI).
Any number of flags may reset with a single RESETF
command. Flags remain reset false within a command stream
until set true with a subsequent SETF command.

(

(/

5.4.29 SCAN Command

The SCAN command is identical in function to the lINESIZE command. It is used to
specify the length of a logical record (line) to 'print' (display at the terminaI).

Syntax:

where:

5.4.30

SCAN maxchars

maxchars specifies the last character position to be printed in the range
72-255. Anything less-than 72 is an error.

SELECT Command

The SELECT command is used to read TSM commands from a file instead of from the
terminal. The file must be blocked and uncompressed, i.e., use the EDITOR STORE
command (rather than SAVE) when building it. TSM looks for the specified file under the
user name that is in effect when the SELECT command is issued.

A SELECT command can be used to select another command file from the current
command file. Processing continues at the beginning of the newly selected file; if there
are any commands following SELECT on the first file, they are skipped. Any number of
command files can be chained via SELECT commands.

Syntax:

where:

Response:

SELECT cmdfile [par I] [par2 •••]

cmdfile

parI

The command verb SELECT is optional. It can be used to avoid
any ambiguity about whether a task or a command file is to be
executed.

is the name of a permanent file containing TSM commands.

is a parameter to pass for the command file. Up to eight
parameters can be passed as described in Section 5.3.5.

TSM commands which are read from the file are echoed to the terminal preceded by an
asterisk (to indicate they are coming from the file). The commands are executed
immediately. When a RUN or equivalent command is used to activate a task via the
command file, TSM activates the task. The task is then run interactively, typically with
input from the user at the terminal or input from the command file. When the task exits,
TSM reads the next command on the command file, if any. Command file processing
terminates at end of file, when the user issues a CLEAR command, or at an ENDM
command.

5-43

Errors:

If a file allocation error occurs with a code number given, refer to Section 7.8.1 of this
volume for a description of the error.

If an invalid command is detected on the command file, TSM prompts the user for
interactive input. The user can correct the error or enter any valid TSM command.

The CLEAR command can be used to terminate processing from the command file and
return control to the. terminal. If any valid command other than CLEAR is executed,
TSM returns control to the command file for further processing.

Entering just a carriage return when TSM encounters an error on the command file
causes TSM to skip the command that was invalid and execute the next command on the
command file.

5.4.31 SETF Command

The SETF command is used to specify a TRUE (=1) condition for up to sixteen distinct
flags. The flags can then be tested by 1FT and! or IFF commands within a command file.
SETF should precede any IFF or 1FT commands that check the condition of the specified
flags.

Syntax:

where:

5-44

SETF flagno {flagno]

flagno specifies a flag number in the range 1 through 16 (decimaI). Any
number of flags can be set TRUE within a single SETF
command. Flags remain set (TRUE) within a command stream
until set FALSE with a subsequent RESETF command.

(j

,c' '\

C· "~"~\ "'
"

5.4.32 SIGNAL Command

The SIGNAL command is used to send a message to another logged on owner or to all
terminals. See Section 5.1.6.

Syntax:

where:

Response:

SIGNAL [ownernameJ

ownername is a valid owner name of another logged on user. If the owner
is not logged on, the message is denied.

Default: No ownername sends the message to all ter minals.

In response to SIGNAL, TSM types:

"ENTER MESSAGE"

The message is 72 characters maximum, terminated by a carriage return. The message
will be transmitted unless sent to a specific owner who is not currently logged on.

5-45

.5.4.33 USERNAME Command

The USERNAME command is used to change your current user name and gain access to
another user's files as described in Section 5.1.7.

Syntax:

wher-e:

USERNAME [usernameJ [key]

username

key

is the name of a valid user on the M.KEY file. Default if no
name supplied is no user name, i.e., system files are created and
only system files are acc-essed.

specifies a valid key if required to use this user name.

Response:

If another person is concurrently logged on with the same user name you supply, the
message

WARNING MEYERS ON 2003 HAS SAME USERNAME
TSM>

is displayed, where MEYERS is the owner name and 2003 is the terminal ID of the other
person logged on with the same user name. The person who performed 'USER MEYERS'
has access to the same files as owner Meyers logged on a different terminal.

A WHO entered at the TSM > prompt shows both owners logged on with the same user
name:

5-46

TSM> WHO
ADDRESS
TY7EOO
TY2003

* TY2009
TSM>

OWNERNAME USERNAME
CONSOLE
MEYERS MEYERS
MCNORTON MEYERS

If"
(j!

5.4.34 WAIT Command

The WAIT command is used to put a terminal into a special wait state so that it can
receive messages. For example, if you have submitted one or more batch jobs and \,\Tant
to see messages pertaining to the job{s) before continuing terminal operation or logging
off, you can use WAIT. Messages output by job control will then be displayed as the job
is processed. You can continue to wait for other messages (e.g., if you have submitted
more than one job) or you can exit the wait state by depressing the wakeup character to
return to normal interactive operation.

If WAIT is not used, an inactive terminal is in a read condition and a read is not
interrupted by messages (unless the terminal times out). You have to issue carriage
returns to get out of a read condition and display a message.

There is no overhead associated with a terminal in the special wait state - it is the same
as being logged off.

For a description of the job control messages output to a terminal, see Section 5.1.2.

Syntax:

WAIT

Example:

1

2

3

EDT> COL
1. $JOB X FADEN,G SLOF=SLOFI
3. $EXECUTE FILEMGR
4. LOGU
5. $EOJ
6. $$
EDT>BATCH
EDT>EXIT
TSM>WAIT
0002 FADEN $EOJ X
JOB EXECUTION TIME = 00 HOURS- 00 MINUTES- 01.28 SECONDS
TSM > <wakeup>
TSM>

Comments:

1 The user submits the workfile displayed above.

2 When the job is done (successfully or with an abort), the batch end of job
message is displayed as well as elapsed execution time. The form of the EOJ job
message is:

3

jobno owner $EOJ jobname

This job is number 0002, it belongs to FADEN, and its name is X.

At this point the terminal is still in the special ANYW state. The user can leave
it waiting to receive messages from other jobs that have completed or use the
wakeup character to enter a TSM command.

5-47

5.4.35 WHO Command

The WHO command is used to show owner names and terminal addresses of all logged on
terminal users.

Syntax:

WHO

Response:

TSM displays the device mnemonic of each active terminal with the owner name used to
log on and the user name currently in effect for file access. An asterisk is displayed
before the mnemonic of the terminal that issued the WHO command.

Example: .

TSM>WHO

ADDRESS

TY7DOO
*TY2000
TY200B
TSM>

OWNER NAME USER NAME

CONSOLE
FADEN
MARK

5.5 Sample Command Files

5.5.1 ~mple 1

FADEN
MARK

The user assembles source code with binary output assigned to SGO, assigns SYC as the
input file for assembling, catalogs the load module file, LMSRCE, then executes
LMSRCE as an interactive task. The name of the command file shown below is LESTER:

JOB
OPTION 2 3 4 5
A4 LO=UT
ASSEMBLE
ST ART M.EXIT

END START
$CATALOG LMSRCE
LMSRCE
EOJ

LESTER is then executed as:

TSM>LESTER

5-48

(/

5.5.2 ~~ple 2

This command file uses parameter substitution for assembling, cataloging, and executing
a task. Cataloging and execution are treated as conditional parameters in the command
file.

Command File (GEN):

1 DEFM SI, T,OPT
2 !FA 960PT 1

OPTION 960PT
961
OPTION 2 3 4

3 At SI=96SI
Al BO=96SI;BO
A4 LO=UT

4 ASSEMBLE
51FT 96T EQ C EXIT

Al SGO=96SI; BO
CATALOG LM96SRCE U60 NOM

6 1FT 96 T NE XA EXIT
LM96SRCE
96EXIT

User Enters: TSM>GEN SFIL

Expanded Commands Are:

OPTION 234
Al SI=SFIL
Al BO=SFILBO
A4 LO=UT
ASSEMBLE
At SGO=SFILBO
CATALOG LMSRCE U60 NOM
LMSRCE
EXIT

1 Parameters are SI (base file name), T (C=do not catalog or execute; XA=catalog
and execute, blanks or anything else = catalog but do not execute). OPT is a
numeric option in addition to options 2, 3, and 4 (which are selected
automatically by the command file).

2 If OPT parameters absent, select options 2, 3 and 4 and continue. If not absent,
enable specified option, plus 2, 3, and 4.

5-49

3 Assign a file named in the first parameter to SI or use SI if nothing. Assign the
same file name suffixed by BO for binary output. Note that a semicolon is used
to concatenate the parameter with a string. Assign listed output to the
terminal. '

4 Execute the Assembler.

5 If user enters C as the second parameter, exit; else, make the SGO' assignment
and catalog.

6 If user enters anything other than XA as the second parameter, exit; else
execute the task that has been cataloged on LMSRCE.

5.5.3 ~~ple 3

Parts of this example have been used in command descriptions. The entire sample
command file is:

I

2

3

5

6

5-50

DEFM SI,ASSEMBLE,NEW,OP
DELETE OB%SI
CREATE OB%SI,DM0800,20
A4 LO=UT
Al BO=OB%SI
Al SI=%SI
IFA %OP ASSM
OPTION %OP
GOTO NOP
%ASSM
OPTION I
%NOP
OPTION 34
1FT %ASSEMBLE EQ ASSEMBLE ASSM 1
OPTION 15
ALLOCATE 20000
%ASSEMBLE
GOTO EOC
%ASSMI
ASSEMBLE
%EOC
1FT %NEW NE CREATE OLD
DELETE DIR
DELETE LIB
CREATE L1B,DM0800,128
CREATE DIR,DM0800,40
OPTION 1
%OLD
Al DIR=DIR"U
Al L1B=L1B"U
At LGO=OB%SI
L1BED
ENDM

(_.-,.,

, ,.j

1 The command file unconditionally deletes any existing object file, creates a new
20 block file space on DM08, and makes assignments for assembly.

2 If the user does not select an option, he gets options 1, 3, and lI-.

3 If ASSEMBLE, skip option 15 and ALLOCATE, and run; else implement.

lI- GOTO EOC moves past the alternate ASSEMBLE.

5 As described in previous examples, set up for output to either an old or a new
subroutine library file.

6 Execute the Subroutine Library Editor.

5-51

.5.6 Developing an Interactive· Task

There are a number of functions that TSM automatically handles for a task that is
activated in the online environment. It handles sequencing for all interactive tasks using
time distribution priorities 55-64 and timesharing algorithms to provide maximum
response to each terminal on an equal time slice basis. It returns the TSM prompt to
the terminal when a task activated in the online environment aborts or exits. It handles
break and wakeup interrupts to let the terminal user communicate with a task. It
supplies override assignments for SYC that allow a task cataloged for reads from SYC to
read instead from the terminal without special programming or cataloging. The user
interaction in these cases is described in previous sections.

This section describes interactive services available to the programmer. None of these
services have to be used in order to run a task interactively.

M. TSCAN - Access the TSM scanner

M. TBRKON - Used by a task to access TSM break handling capability as
described in Section 5.2.3.

M.CONADB, M.CONAHB, M.CONBAD, and M.CONBAH - Convert ASCII hex
or decimal values to binary and vice versa.

This section also describes how regular calls to IOCS (read, write, etc.) are handled by
TSM for a task with an assignment to UTe

.5.6.1 TSM Scanner (M. TSCAN)

When a terminal user enters a RUN command (optional) with the name of a task, TSM
loads the entire input line in a line buffer in memory pool, scans the task name, activates
the task, and leaves the pointer in its scanner at the next field.

The M. TSCAN service can be called by the user task to have TSM pass any fields supplied
by the terminal user in addition to the task name.

For subsequent interface to the terminal, the task can also use the TSM scanner. Each
read from a logical file code assigned to UT causes TSM to put the line typed at the
terminal into the OS line buffer and initialize the scanner to point to the first field.

Functional Description

A record is terminated by a carriage return. The parameters (fields) to be scanned are
all in the user's line buffer. They are reinitialized during each terminal read. Each
subsequent call to this service returns another argument (field) from the buffer •

.5-52

(Comment:

TSM maintains the address of the line buffer in the user's TSA.

The current scan position is updated automatically each time this service is used.

A field accessed by this service is left-justified and blank-filled by TSM and
stored into Registers 6 and 7.

Register 5 contains the character count of the last field found by the scanner.
There are no more fields in the line when the character count in R5 is zero and
the delimiter in R4 is a carriage return.

Valid delimiter characters for fields are blanks, commas, semicolons, equal signs,
carriage return, and left or right parentheses. Therefore, these characters must
not be used in file names.

The M.R WND service can be used to reset the cursor at the first field in the
current input record following the task name. The input line can be scanned via
M. TSCAN without any additional IOCS calls.

M. TSCAN ignores all blanks and left parentheses before the first parameter or delimiter
encountered. If a delimiter is encountered before the first parameter, all blanks and left
parentheses are still ignored until the first parameter is encountered. If multiple blanks,
left parentheses, or a combination of them are used after the first parameter, the first
one encountered is treated as the delimiter. Do not use any others.

Entry Conditions

Calling Sequence:

M.TSCAN

(or)

SVC 1,X'5B' or M.CALL H.TSM,2

Exit Conditions

Return Sequence:

M.RTRN 4,5,6,7

Registers:

R4 delimiting character

R5 number of significant characters before delimiter

R6,7 left-justified character string

5-53

5.6.2 TSM Break Processor (M. TBRKON)

Functional Description

M. TBRKON processes a pause or break from the terminal or calling task. The user
receives the following prompt on the terminal:

***BREAK *** ON taskname AT location
CONTINUE, ABORT, or DEBUG?

If the user enters C, the task resumes execution at the instruction following the call. If
the user enters A, the task is aborted.

If the user enters D, TSM loads the Debugger as an overlay and transfers control to the
Debugger.

Entry Conditions

Calling Sequence:

M.TBRKON

(or)

ZR R2
SVC 1,X'5C'

or LW R2,TCW
or M.CALL H. TSM,6

This routine is also the default receiver for any online task, and therefore will be entered
as a result of a hardware or software break. If a user Transfer Control Word is loaded in
register 2, it will be printed along with the break message. Fortran PAUSE uses this
capability.

Exit Conditions

Output:

None

Return Sequence:

M.RTRN

Registers:

None

Abort Cases:

TSOI If user enters 'A' (Abort) to the prompt described above.

5-54

C·) ./

(/

.5.6.3 TSM Conversion Services

.5.6.3.1 Convert ASCn Decimal to Binary (M.CONADB)

Entry Conditions

Calling Sequence:

where:

M.CON ABO [n]

(or)

LO 6,n
SVC 1,X'28' or M.CALL H.TSM,7

n is the address of a left-justified, double word-bounded, ASCII-coded decimal
number, blank-filled. If not specified with M.CONAOB, contents of registers
6 and 7 will be converted.

Exit Conditions

Return Sequence:

M.RTRN 6,7

Registers:

R6 0 if a character is non-numeric

R7 binary equivalent of input

.5.6.3.2 Convert ASCn Hexadecimal to Binary (M.CONAHB)

Entry Conditions

Calling Sequence:

where:

M.CONAHB en]

(or)

LO 6,n
SVC 1,X'29' or M.CALL H.TSM,8

n is the address of a left-justified, double word-bounded, ASCII
coded decimal number, blank-filled. Takes registers 6 and 7.

5-.55

Exit Conditions

Return Sequence:

M.RTRN 6,7

Registers:

R6 0 if a character is not hexadecimal

R7 binary equivalent of input

.5.6.3.3 Convert Binary to ASCD Decimal (M.CONBAD)

Entry Conditions

Calling Sequence:

where:

M.CONBAD [n]

(or)

LW 5,n
SVC 1,X'2A' or M.CALL H.TSM,9

n the address of a positive binary number

Exit Conditions

Return Sequence:

M.RTRN 6,7

Registers:

R6,7 ASCII result, right-justified with leading ASCII zeros

5-56

(~/

5.6.3.4 Convert Binary to ASCB Hexadecimal (M.CONBAH)

Entry Conditions

Calling Sequence:

where:

M.CONBAH [n]

(or)

LW 5,n
SVC 1,X'2B' or M.CALL H.TSM,lO

n is the address of a binary number

Exit Conditions

Return Sequence:

M.RTRN 6,7

Registers:

R6,7 ASCII result, right-justified with leading ASCII zeros

5-57

5.6.4 Terminal I/o

TSM provides optional pre and post processing for user I/o requests on the TSM
terminal. This processing is inhibited by certain control flags in the user's FCB; Word 3:

Bit o
2
6

No-wait I/o
Data formatting inhibited
Expanded FCB

Otherwise, I/o operations on the terminal are restricted as indicated.

5.6.4.1 Reads

On a read (M.READ), the maximum input is limited to the width of the terminal
(specified at SYSGEN). I/O is automatically buffered to enable task swapping during I/o
wait. The TSM scanner is initialized at I/O completion. Error returns are not honored,
but error status is returned in the FCB. Carriage returns are replaced by blanks, but the
actual input byte count is returned in the FCB. The entire input buffer is blank-filled
prior to input to insure proper parsing by the scanner. The special control characters
described in section 5.1.5 are honored.

5.6.4.2 Writes

The maximum output record on a write (M.WRITE) is limited to the width of the
terminal. A line counter is maintained to detect bottom of screen, and the bottom of
screen logic (see Section 5.2.6) is in effect. Output is only buffered if required by the
controller. Error returns are not honored, but error status is returned in the FCB. The
carriage control characters in byte 0 (see Section 7, Table 7-7) are also in effect.

5.6.4.3 Close and Open

When accessing a terminal, a task does not have to use an M.CLSE or M.FILE service.
IOCS handles the open and TSM handles the dose for UT automatically.

5.6.4.4 Rewind

M.R WND can be used to return the TSM scanner to the first field in the TSM line buffer.

5-58

(.5.6 • .5 Sample Interactive Task

$EXECUTE ASSEMBLE
PROGRAM DELETE
LIST NOMAC
M.EQUS
M.TBLS

* THE FUNCTION OF THIS TASK IS TO ACCEPT ONE TERMINAL

* PARAMETER IN SEMI FILEMGR FORMAT AND DELETE THE

* NAMED FILE.

*
* FAILURE TO COMPLETE IS SIGNALED WITH A FAILURE

* MESSAGE TO THE TERMINAL

*
* INPUT FORMAT:

* DELETE FILENAME

*
*
DELETE EQU $

M.TSCAN GET 1ST ARG
STD R6,FILENAME SA VE FOR DELETE
M.DELETE FILENAME
TRR R7,R7
BNZ EXIT NOERRS
TRR R6,R5

C.MSG EQU $

(M.FILE TERM,RW OPEN TERMINAL FILE
(OPTIONAL)

M.CONBAD CONY BIN TO ASCII
DEC

STB R7,ERRTYPE
M.WRIT TERM
M.CLSE TERM OPTIONAL CLOSE

EXIT EQU $
M.EXIT RET TO SYSTEM

*
*
*
FILENAME REZ ID

*
*
TERM DATAW C'UT'

GEN 12!B(TY.LEN),20!B(MESSAGE)
REZ 6W

MESSAGE EQU $
DATAB C"'M"J DELETE FAILED •• ERRTYPE ,

TY.LEN EQU $-MESSAGE
ERR TYPE EQU $-IB

END DELETE

('

5-59

'.7 Terminal Initialization (INm

Terminal initialization is the process of· defining hardware characteristics of each
terminal that is to be· used with the MPX-32 operating system. These characteristics
include, for example,baud rate, parity, HALF or FULL duplex, etc •• The wakeup ('ring')
character for all terminals is also defined as a hardware characteristic.

Characteristics are typically defined by a user-created system file named LOGONFLE,
or in its absence, by a ,set of system supplied defaults.

Terminal initialization is handJed automatically when a system is installed (after
SYSGEN) or restarted. Additionally, the TSM INIT command can be used to reinitiaHze
all terminals or just one terminal after the automatic execution.

A terminal connected to a TLC controller is not initialized via INIT. IN IT initializes only
terminals connected through model 9122 ADS, 9110 ALIM or 8510 8-line Asynchronous
Communications controllers.

'.7.1 The LOGONFLE

The form of a LOGONFLE is shown below. LOGONFLE must contain a record for the
wakeup character definition ahd one record for each terminal. Only characters 1-72 of
each record are interpreted.

where:

5-60

Record 1: wakeup

Record 2: ccaa field field

EOF

wakeup

ccaa

field

is a 2-character field defining the hexadecimal character
which must be typed at interactive terminals to start a log-on
sequence. If LOGONFLE was not created, system default is
X'3F' (question mark).

is the channel number and subaddress of the terminal to
initialize. Must be supplied in LOGONFLE for each terminal.
If LOGONFLE was not created, system default is to initialize
all addresses defined at SYSGEN as device type 'TY' with the
system default parameters •

. is a 1-8 character keyword (only the first 4 characters are
significant) describing the characteristics of a terminal. Fields
can be entered in any order and duplicated, and are evaluated
left to right, thus later entries can overrule earlier
inconsistent entries.

(

(-

(~

Note: The LOGONFLE file must contain the logon records in blocked,
uncompressed format. The Editor STORE command can be used to create
this file.

An asterisk (*) in column 1 from Record 2 on indicates that line is a comment line. A
semicolon (;) or an exclamation point (!) in any position of a line from Record 2 on
permits comments to follow on the line.

Keyword

19200

9600

7200

4800

3600

2400

2000

1800

1200

900

600

300

150

134

110

75

50

EXT

HOST

LOCAL

ADS

Not used

9600

7200

4800

bps

bps

bps

3600 bps

2400 bps

Not used

1800 bps

1200 bps

900 bps

600 bps

300 bps

150

134.5

110

75

50

bps

bps

bps

bps

bps

External rate

Host operation

DTE mode

ALIM

Not used

9600

7200

4800

bps

bps

bps

3600 bps

2400 bps

Not used

1800 bps

1200 bps

900 bps

600 bps

300 bps

150

134.5

110

75

50

bps

bps

bps

bps

bps

External rate

Not used

Not used

REMOTE DTE off Switched bit set

8-Line Async

19200

9600

7200

4800

bps

bps

bps

3600 bps

2400 bps

2000 - bps

1800 bps

1200 bps

Not used

600 bps

300 bps

150

134.5

110

75

50

Not used

Not used

Not used

bps

bps

bps

bps

bps

Dial-up bit set in UDT Switched bit set

ODD Odd parity Odd parity Odd parity

Default

Yes

No HOST

Yes

EVEN Even parity Even parity Even parity Yes

NONE No parity No parity No parity
Decrease in size of the serial character due to the absence of the parity bit.

HALF Not used

FULL Not used
Full duplex bit set in UDT

Half duplex
operation

Full duplex
operation

Half duplex
operation

Full duplex
operation

Yes

5-61

Keyword ADS ALIM 8-Line AsyncDefault --
EFLAG Bit 16 of LCW 1 Not used Not used No flag

OFLAG Bit 17 of LCW 1 Not used Not used No flag

MODEM DTE off Modem Hardware ring
Modem bit set in UDT

NOTSM Non TSM device Non TSM device Non TSM device
TSM bit turned off in UDT

IN IT 2 words 5 words 1 word
This keyword can be used to set up specific initialization. Hex initialization

information must be correct length. For 8-Line Asynch, the last byte of the word can be
used to define a special read termination character. Refer to the appropriate technical
manuals for specific initialization information.

B19 Bit 190fLCWI on Not used Not used NotB19
(may not support

SI

SI.5

S2

8

7

6

5

TSM)

1 stop bit

2 stop bits

2 stop bits

8 bit characters

7 bit characters

6 bit characters

5 bit characters

1 stop bit

1.5 stop bits

2 stop bits

8 bit characters

7 bit characters

6 bit characters

5 bit characters

5.7.2 ADS Terminal Record Syntax and Defaults

1 stop bit Yes

1.5 stop bits

2 stop bits

8 bit characters

7 bit characters Yes

6 bit characters

5 bit characters

ccaa [baud] [~~~~~E]I!-IOST] . [parityJ [charsize] [stopbits J [MODEM]!NOTSMJ

where:

5-62

[EFLAG] [OFLAGJ [B19J

ccaa is the channel and subaddress of the terminal.

baud specifies baud rate: 9600, 7200, 4800, 3600, 2400,· 1800, 1200,
900, 600, 300, 150, 134, 110, 75, 50, or EXT. Note: If EXT is
entered, the baud rate is set externally. Default: 9600 baud

LOCAL,REMOTE defines interface. Default: LOCAL

HOST

parity

charsize

specifies current loop interface operation is desired. If not
desired, leave the field blank. Default: the field is ignored.

specify ODD, EVEN, or NONE. Default: EVEN. If NONE is
specified, there is a decrease in size of the serial character
due to the absence of the parity bit.

specify character size: 5, 6, 7, or 8. Default: 7

i(.··.·.\
• • .?

(

(

stopbits

MODEM

NOTSM

EFLAG

OFLAG

specify number of stop bits: 1,2, or None. Default: 1

sets modem bit in UDT. Default: not set

specifies a non-TSM device. Default: not set

bit 16 of LeW 1 set. READY IRINGIFLAG E (OUT). Default:
reset.

bit 17 of LeW 1 set. READY IRING/FLAG 0 (OUT). Default:
reset.

B19 bit 19 of LeWI set. HDX mode. Default: reset.

5.7.3 ALIM Terminal Record Syntax and Defaults

where:

ccaa [baud] [~~tEJ [parity] [charsize] [stopbits] [REMOTE] [MODEM]

[NOTSM]

ccaa is the channel and subaddress of the terminal

baud specifies baud rate: 9600, 7200, 4800, 3600, 2400, 1800, 1200,
900, 600, 300, 150, 134, 110, 75, 50 or EXT. Note: If EXT is
entered, the baud rate is set externally. Default: 9600 baud

HALF,FULL specifies HALF or FULL duplex operation. Default: HALF

parity

charsize

stopbits

REMOTE

MODEM

NOTSM

specify ODD, EVEN or NONE. Default: EVEN. If NONE is
specified, there is a decrease in size of the serial character
due to the absence of the parity bit.

specify character size: 5, 6, 7 or 8. Default: 7

specify number of stop bits: I, 1.5, 2 or None. Default: 1

sets dial-up bit in UDT. Default: not set

sets modem bit in UDT. Default: not set

specifies a non-TSM device. Default: TSM device.

5-63

5.7.4 8-Line Asynchronous Commmications Controller Record Syntax and Defaults

ccaa [baud] [~jt[] [parity] [charsize] [stopbits] [REMOTE][MODEM]

where

5-64

[NOTSM]

ccaa is the channel and subaddress of the terminal

baud specifies baud rate: 19200, 9600, 7200, 4800, 3600, 2400, 2000,
1800, 1200, 600, 300, 150, 134, 110, 75, or 50. Defualt: 9600
baud

HALF,FULL specifies HALF or FULL duplex operation. Default: HALF

parity

charsize

stopbits

REMOTE

MODEM

NOTSM

specify ODD, EVEN or NONE. Default: EVEN. If NONE is
specified, there is a decrease in size of the serial character
due to the absence of the parity bit.

specify character size: 5, 6, 7 or 8. Default: 7

specify number of stop bits: 1, 1.5, 2 or None. Default: 1

sets dial-up bit in UDT. Default: not set

sets modem bit in UDT. Default: not set

specifies a non-TSM device. Default: TSM device.

(5.7.5 Sample LOGONFLE

I Record 1 3F
2 Record 2 6000 9600 LOCAL EVEN 7

Record 3 6001 9600 LOCAL HOST EVEN 7 2
3 Record 4 6002 4800

Record 5 2000 9600 FULL EVEN 7 1.5
4 Record 6 2002
5 Record 7 2004 2400 ODD 52
6 Record 8 2007 MODEM REMOTE IN!T 00001518 7A06CCOO 01808000 80800580 80000000

Comments

1 Record 1 is the wakeup (ring in) character '?'.

Records 2, 3, and 4 are for ADS terminals.

2 Record 2 defaults to non-host operation.

3 Record 4 uses default values following the baud rate: LOCAL
interface, non-HOST operation, EVEN parity, 7 as the character
size, and 2 as the number of stop bits.

4

Records 5 and 6 are for ALIM terminals.

Record 6 uses all default values: 9600 baud rate, HALF duplex,
EVEN parity, 7 as the character size, and 1.5 as the number of stop
bits.

5 Record 7 uses a 2400 baud rate, ODD parity, and 2 stop bits

6 Record 8 configures a BELL 103F dial-in modem on an ALIM.

5.7.6 Using INIT

INIT is an interactive task that can be thought of as a TSM command. LOGONFLE is
assigned for input by default.

TSM > INIT ccaa

where:

INIT

ccaa

with no channel and subaddress uses the current version of
LOGONFLE to reinitialize all terminals that are currently free
to allocate.

a specific terminal can be reinitialized by supplying the
appropriate channel and subaddress (hexadecimaI). The record
from LOGONFLE that matches the channel and subaddress is
used to reinitialize the terminal.

5-65

5.7.7 INIT Errors

Message

DEVICE NOT PRESENT ADDR=ccaa

DEVICE NOT TERMINATED,
ADDR=ccaa

M.ALOCI DENIAL,NO LOGON FILE,
DEFAULT USED

M.ALOC3 DENIAL,ADDR=ccaa

NON TSM DEVICE,ADDR=ccaa

NO UDT ENTRY FOR ADDR=ccaa

ON ADDRESS ccaa, FIELD
UNIDENTIFIED: xxxxxxxx

TERMINAL SET-UP COMPLETE

NO LOGONFLE ENTRY FOR ADDR=ccaa

5-66

Description

The specified terminal is not plugged in
to the CPU.

Specified terminal not plugged in on
terminal end of line.

There is no file named LOGONFLE on
the system. Default parameters have
been set. See Sections 5.7.1/5.7.3.

The terminal at the specified channel
and subaddress is in use and cannot be
initialized now.

The channel and subaddress of a device
other than a terminal has been specified
in LOGONFLE.

Specified terminal not SYSGEN'd.

The string xxxxxxxx is not a valid key
word for a characteristic's statement.

Initialization
ini tialization
message).

is done (unsuccessful
will also generate this

There is no entry in the LOGONFLE for
the channel and subaddress specified by
INIT ccaa.

[

(

6. BATCH PROCESSING

Batch processing consists of spooling batch jobs to disc, interpreting job control
statements, and directing listed and punched spooled output to destination files and
devices. The number of jobs which can be active concurrently is established at SYSGEN.
Tasks comprising batch processing compete with each other and with nonbatch tasks for
computer resources under standard MPX-32 allocation algorithms.

6.1 Job Flow .

Each job is spooled to a separate System Control (SYC) disc file prior to processing as
shown in Figure 6-1. Jobs may be spooled to SYC files from card, magnetic tape, and
paper tape peripheral devices, and from blocked temporary and permanent disc files. The
OPCOM BATCH command may be used to initiate spooling from peripheral devices and
permanent files. The Submit Job From Disc File system service (M.CDJS) may be used
to initiate spooling from permanent and temporary disc files.

When spooling of each batch job to its SYC file is complete, the job is assigned a
sequence number in the range 1 through 9999. Job sequence numbers reflect the order
that jobs are entered and uniquely identify each job and its tasks. A job is eligible for
processing as soon as the complete job is spooled to disc.

Jobs are selected for processing in the order in which they are entered unless overridden
by the OPCOM URGENT command. This command also specifies the priority at which
batch tasks which comprise the job are to execute. Nonurgent batch tasks execute at the
priority specified at SYSGEN. Since tasks from separate jobs compete independently for
computer resources, the order in which jobs are completed is not necessarily the same as
the order in which they were entered.

Upon job completion, a job's spooled listed and punched output is automatically routed to
usable peripheral devices if no particular device(s) or permanent file(s) are specified for
the job. Usable devices for automatic selection are specified via SYSGEN and OPCOM
commands. Spooled output destination devices include line printers, card punches,
magnetic tape, and paper tape. Spooled output is selected for processing based on the
software priority of jobs and, within a given priority, on the order in which processing of
jobs was completed.

Job data flow is illustrated in Figure 6-1.

6-1

JOB SOURCE
DEVICE OR

FILE

•
SYSTEM

INPUT TASK
(J.SSIN)

~
<. :> !C ::> -- SBO SYSTEM

SYC
~ FILES OUTPUT ... BATCH

FILE .. TASK
TASK

(J.SOUT)

...... ~ .t '" ..,;

T ,::: ~ - " .-
JOB CONTROL

SGO CARD
TASK

~ FILE .. PUNCH
(J.JOBC)

" ~ -
"; ;.....

C ~ -SLO SYSTEM
... FILES OUTPUT

TASK
(J.SOUT)

'- ~ n -
PRINTER

10..

820641 I("
/

Figure 6·1. Data Flow for a Job

6-2

(

(...

6.2 System Files

Four classes of system disc files provide intermediate storage for batch jobs.

SYC - System Control
SGO - System General Object
SLO - System Listed Output
SBO - System Binary Output

A separate System Control (SYC) file exists for each job and is used for disc buffering
the job on input. SYC files are system disc files whose definitions are kept in a System
Input Directory (M.SID). Jobs are spooled to SYC files from disc files and peripheral
devices by System Input tasks. Job Control reads its statements from this file, and batch
tasks read directive and data statements from it. (Batch tasks are those activated via
$EXECUTE and $DEBUG statements. SYC files are automatically deleted when
processing of the associated job is complete. SYC files are preserved through system
restart if the associated job was not active. After system restart, processing of jobs in
these files may be initiated by operator command.

System General Object (SGO) files are used for accumulating object records. A separate
SGO file is automatically allocated for each job. Object records which follow the
$OBJECT statement are written to SGO by Job Control; the Macro Assembler and
compilers also write object records to SGO when optionally specified. The object records
are accumulated on SGO until either the contents are read or until the end of a job is
reached, whereupon the contents are deleted. Any batch task can read or write records
to the job's SGO file.

System Listed Output (SLO) and System Binary Output (SBO) files are spooled output
files used for listed output and punched output, respectively. The System Output tasks
direct data from these files to destination peripheral devices. The definitions of these
files are kept in a System Output Directory (M.SOD) and are automaticaly deleted when
printing or punching of the files is complete. SLO and SBO files are preserved through
system restart.

SYC files are automatically expanded by the System Input tasks as required to
accommodate each job's size. The default size of each SGO file is established by
SYSGEN but may be overridden via the JOB statement. SLO and SBO file sizes are
specified on Cataloger, TSM, or Job Control ASSIGN statements or when dynamically
allocated via system service calls.

Note: If one of these special system files is to be referenced by more than one logical
file code, an ASSIGN2 and an ASSIGN4 must be used to allocate it rather than multiple
ASSIGN2's.

Detailed information on the use of system files is contained in Section 7.

6-3

6.3 Spooled Input Control via $SELECT

Batch data are spooled to SYC files from devices and files specified by the OPCOM
BA TCH command, the Editor BATCH command, and the Submit Job From Disc File
system service. These devices and files are designated as primary system input sources.
While a job is being spooled to its SYC file, data from alternate sources may be merged
with data from the primary source. Alternate system input sources are designated by
$SELECT statements which may be included anywhere in a job followng the $JOB
statement. When a $SELECT statement is encountered during input spooling, the
$SELECT statement is not written to the SYC file but is replaced by data from the
device or file specified on the statement. However, $SELECT statements which contain
errors are written to the SYC file.

Each $SELECT statement encountered which specifies a valid device or file establishes a
new alternate level. A maximum of three alternate levels is provided. The conditions at
which an alternate level is reset to a previous level (alternate or primary) are
summarized in Table 6-1.

A device or file may be specified on a SELECT statement which is the primary source or
an alternate system input source at a previous level. If so, a new alternate level is
established, but reading resumes from the device or file at its current position. This
occurs for devices only if the device is identically specified, e.g., the specification
MTIOOO is not identical to MTIO.

6-4

(

CONDITION

I/O Error

End-of-Medium

End-of-File

$EOJ

$$

$$$

PROCESSING

On alternate source: perform end-of-job processing (END JOB).
Reset to primary source. If primary source is a device, continue
reading from device. If primary source is a file, terminate
reading from the file.

On device or file primary source: END JOB and terminate reading
from device or file.

On alternate source: ENDJOB and reset to primary source. If
primary source is a device, continue reading from device. If
primary source is a file, terminate reading from the file.

On device or file primary source: END JOB and terminate reading
from device or file.

On alternate or primary card device source: pseudo end-of-file
(OF record) written to SYC and continue reading from device.

On alternate non-card device source: revert to previous level if
specified number of files have been read.

On primary non-card device source: continue reading from device.

On file primary source: END JOB and terminate reading from file.

On alternate or primary source: END JOB and continue reading
from source.

On alternate source: END JOB and reset to primary source. If
primary source is a device, continue reading from device. If
primary source is a file, terminate reading from the file.

On device primary source: END JOB and terminate reading from
device if Continuous Batch mode is not set. If Continuous Batch
mode is set, continue reading from device.

On file primary source: ENDJOB and terminate reading from the
file.

On alternate source: identical to $$.

On device or file primary source: terminate reading from device
or file.

Table 6-1 Terminating Conditions for Spooled Input Processing

6-5

6.4 Deck Organization

Job Control statements are processed sequentially by the Job Control task. Certain
statements establish preconditions for a task's execution. These consist of $USERNAME,
$ASSIGN, $ALLOCATE, and $OPTION. These statements apply to the task executed via
the subsequent $DEBUG, $EXECUTE or $ACTIVATE statement within the job. $ASSIGN,
$ALLOCATE, and $OPTION statements remain in effect only for the task subsequently
executed. A $USERNAME statement remains in effect within a job until overridden by
another $USERNAME statement.

Tasks placed into execution by $DEBUG and $EXECUTE (but not by $ACTIVATE)
statements may read data or directive statements from the SYC file. These statements
immediately follow the $DEBUG or $EXECUTE statement. An end-of-file condition is
generated if the task attempts to read a Job Control statement. $SELECT statements do
not generate this condition since they are replaced during input spooling.

6..5 Job Control Statements

All Job Control statements begin in column I with a dollar symbol ($) prefix. By default,
positions beyond column 72 on Job Control statements are not interpreted. All numeric
entries are decimal unless otherwise noted. Fields are separated by one or more blank
spaces.

Some Job Control statements may be abbreviated. Underlining is used in the syntax
statements which follow to show the valid abbreviations.

SELECT statements are a special form of job control used to include records on the SYC
file from alternate system input sources while the job is being spooled to its SYC.

SELECT statements which specify a valid device or file are replaced by data from that
alternate device or file. SELECT statements are not written to the SYC file unless they
contain errors.

Conditional batch processing is provided by the Job Control statements $SETF,
$RESETF, $IFT, $IFF, and $DEFNAME.

6-6

(-

C'

Statement

$ACTIVATE*

$ALLOCATE

$ASSIGNI

$ASSIGN2

$ASSIGN3

$ASSIGN4

$DEBUG

$DEFNAME

$EOJ

$EXECUTE

$GOTO

$IFF

$IFT

$JOB

$NOTE

$OBJECT*

$OPTION

$RESETF

$SCAN

$SELECTD*

Function

Initiates a real time task.

Increases cataloged memory for execution.

Associates permanent disc file (optionally unblocked) with lfc.
Default is blocked.

Associates system SBO, SLO, SYC, or SGO file with lfc.

Associates device (optionally unblocked) with lfc. If
channel/subaddress specified, denotes specific device. Default
for tapes and discs is blocked. Option for unblocking applies only
to these units.

Associates lfc with another lfc.

Loads task with Debugger as an overlay.

Delimits an 1FT, IFF, or GOTO processing sequence and controls
conditional processing.

Specifies end of job.

Initiates system batch processor: FORTRAN, FILEMGR, etc.

Causes an unconditional branch to a name in the input stream
which is defined by a DEFNAME statement.

If false, test.

If true, test.

Identifies the job to the system. Allows specification by job of
final destination for SLO and SBO files, if desired. Owner name
is specified.

Writes a note to the OPCOM console.

Used at the beginning of an object code "deck".

Specifies program numeric options (1-20), system DUMP option,
or CPUONL Y /IPUBIAS option. NOMAP and NOEXEC options are
not supported.

Resets false flags for conditional processing.

Specifies last column to read on JCL statement (80 maximum).

Reads batch from specified device.

* Not a valid command under TSM. (See Section 5.4).

6-7

$SELECTF*

$SELECTLD*

$SELECTLF*

$SELECTS*

$SETF

$USERNAME

$$ and $$$

Reads batch records from specified disc file.

Reads records in library format from device file created via
Source Update.

Reads records from library formatted disc file created via Source
Update.

Resets all alternate system input source levels. Reading of batch
data reverts to primary system input source.

Sets true flags for conditional processing.

Overrides default user name for files in subsequent $SELECT
statements and $EXECUTE statements until overridden by
another $USERNAME statement.

Follows last $EOJ in job stream. $$ terminates a batch input
stream if noncontinuous. $$$ terminates if in continuous batch
mode. (If continuous batch is specified via the OPCOM MODE
command, $$ is ignored and processing terminates at $$$.)

* Not a valid command under TSM. (See Section 5.4).

6-8

(

6.5.1 $ACTIVATE Statement

The $ACTIV ATE statement initiates the execution of a real-time task. Processing of Job
Control statements continues immediately after the task is activated.

Syntax

where:

load mod

Usage

$ACTIV ATE load mod

is a load module name. If the load module is cataloged as not
available for multicopying and a copy is currently executing, a
message is output to SLO and processing continues with the next
Job Control statement.

The task is activated at its cataloged priority with its pseudonym set to the job's
sequence number. The task's owner name is set to the owner name from the $JOB
statement. Tasks activated via this statement may not perform I/o to SYC or SGO files.

Note that $ASSIGN and $OPTION statements can be used prior to $ACTIV ATE to assign
files or devices and set option bits for the real time task.

6-9

6.5.2 $ALLOCATE Statement

The $ALLOCATE statement provides for an increase in the amount of memory allocated
for a task's subsequent execution.

Syntax

where:

bytes

Usage

$ALLOCATE bytes

is the total number of bytes, in hexadecimal, to be allocated for a
task, excluding the Task Service Area (TSA).

This statement increases the task's memory requirements that were established when the
task was cataloged. The statement applies to the task subsequently executed via
$DEBUG, $EXECUTE or $ACTIVA TE. If the number of bytes specified is less than the
task's cataloged memory requirements, the statement is ignored.

6-10

(
6.5.3 $ASSIGN 1 Statement

The $ASSIGN I statement associates a logical file code with a permanent disc file.

Syntax

where:

lfc

filename

password

U

Usage

$ASSIGN I lfc=filename [,[password] [,U]] [lfc = ••• J - -

is a one- to three-character logical file code contained in a File
Control Block (FCB) of a task.

is the one- to eight-character name of a permanent disc file.

is an optional one- to eight-character password associated with
the file. An entry is required only if access if restricted, and the
type of program usage (read or write) is permitted by password
only.

is an indicator that the file is to be accessed in the unblocked
mode. If "U" is not entered, blocked access is assumed.

Assignments establish linkage between logical file codes and peripheral devices and files
for I/o operations. Assignments made by Job Control statements are temporary and
exist only for the task subsequently executed via $DEBUG, $EXECUTE or $ACTIVATE.
These assignments augment or replace assignments that were made when the task was
cataloged. If the logical file code in the assignment matches one made at catalog time,
it replaces the previous assignment. If not, it is added to cataloged assigments. Multiple
assignments, separated by one or more blank spaces, may be made with $ASSIGNI,
$ASSIGN2, $ASSIGN3, and $ASSIGN4 statements. If more than three characters are
entered for a logical file code, only the first three are used.

6-11

6.5.4 $ASSIGN2 Statement

The $ASSIGN2 statement associates a logical file code with a system file.

Syntax

where:

lfc

file

size

Usage

~SSIGN2 lfc=file,size [lfc= •••]

is a one- to three-character logical file code contained in a File
Control Block (FCB) in a task.

is the three-character system file mnemonic. One of four entries
may be made:

SBO (System Binary Output file)
SLO (System Listed Output file)
SGO (System General Object file)
SYC (System Control file)

"SGO" or "SYC" may not be entered if the subsequent task within
the job is brought into execution by a $ACTIV A TE statement.

is the amount of file space required. An entry is made only for
the punched (SBO) and listed (SLO) output files. The size is
expressed for the respective files as the number of cards and the
number of print lines.

Refer to the $ASSIGN 1 statement.

6-12

(.. ":
/'

(

(

6.5.5 $ASSIGN3 Statement

The $ASSIGN3 statement associates a logical file code with a peripheral device or a
temporary disc file.

Syntax

where:

lfc

devmnc

blocks

reel

vol

U

Note:

Examples

Tape:
Disc:

Usage

$ASSIGN1Ifc=devmnc{,bloCkS } [,U] [Ifc= •••]
,reel,[vol]

is the logical file code used in the task.

is the device mnemonic of a configured peripheral device. See
Appendix A.

number of disc blocks {192 words} to be allocated for this file.

specifies a 1-4 character identifier for the reel. 'SCRA' (scratch)
cannot be used for multivolume tapes.

if multivolume tape, indicates volume number. Default: 0 (not
multivolume)

specifies the tape or disc is optionally unblocked. Default:
Blocked

There must be no embedded blanks within a Ifc assignment. Commas must be
inserted for all nonspecified options (see Examples). One or more blanks are
the legal separator between one Ifc assignment and the next.

A3IN=M91000,SRCE"U OT=PT
A3IN=DC,20

Refer to the $ASSIGN 1 statement.

6-13

6.5.6 $ASSIGN4 Statement

The $ASSIGN4 statement associates a logical file code with another logical file code.

Syntax

where:

lfcl

lfc2

Usage

$ASSIGN4 lfcl=lfc2 [lfc= ••• J - -

is a one- to three-character logical file code contained in a File
Control Block (FCB) in a batch task. This logical file code is to be
associated with a file or device indirectly through a second
logical file code, lfc2.

is a one- to three-character logical file code contained in a FCB
in a task. This file code is directly associated with a file or
device via a previous $ASSIGN1, $ASSIGN2, or $ASSIGN3 or
indirectly via an $ASSIGN4 statement or cataloged assignment.

Refer to the $ASSIGN 1 statement.

6-14

(6.5.7 $DEBUG Statement

The $DEBUG statement places the specified task in execution as a batch task under
control of the Debug processor.

Syntax

where:

load mod

Usage

$DEBUG load mod

is a load module name. If the load module is cataloged as unique
(single-copied) and a copy is currently executing, a message is
output to the SLO and processing continues with the next Job
Control statement.

The task is activated with its psueodnym set to the job's sequence number. The task's
owner name is set to the owner name from the $JOB statement. Directive or data
statements to be read by the specified batch task from the SYC file follow the $DEBUG
statement.

6-15

6..5.8 $DEFNAME Statement

The $DEFNAME statement is used in conjunction with the $IFT and $IFF Job Control
statements to control batch input stream processing.

Syntax

where:

name

Usage

$DEFNAME name

specifies a one- to eight-character name corresponding to a name
entry of a previous SIFT or $IFF Job Control statement. The
name must contain at least one nonnumeric character.

This statement is used to delimit an $IFF and/or $IFT conditional processing sequence. If
the specified "name" matches that given with a previous $IFF and/or $IFT statement for
which the tested conditions have been satisfied, batch stream processing resumes with
the next Job Control statement after the $DEFNAME statement. If the specified "name"
does not match that given with the $IFF and/or $IFT statement that causes processing to C' "-'\
be suspended, the $DEFNAME statement has no effect on batch stream processing. ' =/

o
6-16

c· 6.5.9 $EO] Statement

The $EOJ statement signals the end of a job.

Syntax

$EOJ

Usage

This is the last statement of a job.

6.5.10 $EXECUTE Statement

The $EXECUTE statement initiates the execution of a batch task.

Syntax

where:

EXECUTE

loadmod

Usage

i EXECUTE load mod

is an optional word. If EXECUTE is not used, the $ sign is still
required with no embedded blanks (i.e., $loadmod) and load mod
cannot be a keyword.

is a load module name. A system utility (see Volume 2) or a user
task can be specified. (Note: the name of a load module file is
identical to the task name on MPX-32.) If the load module is
cataloged as not available for multicopying and a copy is
currently executing, a message is output to the SLO and
processing continues with the next Job Control statement.

The task is activated with its pseudonym set to the job's sequence number. The task's
owner name is set to the owner name from the $JOB statement. Directive or data
statements to be read by the specified batch task from the SYC file follow the
$EXECUTE statement.

$EXECUTE GO is not supported.

6-17

6..5.11 $COTO Statement

The GO TO statement is used to unconditionally branch to a name in the batch input
stream. The name to branch to must be defined by a DEFNAME statement.

Syntax

where:

name

Usage

$GOTO name

is a one- to eight-character name that appears in a subsequent
DEFNAME statement.

The unconditional GO TO provides a means of suspending batch stream processing until a
DEFNAME statement is encountered with the same name specified in the GOTO
statement or until an EOJ statement is encountered.

6..5.12 $IFF Statement

The $IFF statement causes specified condition(s) to be tested for false values. If the
condition is satisfied, batch input stream processing is altered according to parameter
specifications included with the statement. The $IFF statement has three formats, as
follows:

Syntax 1

where:

flagno

name

Usage

$IFF [flagno] flagno ••• name

specifies the flag number in the range 1-16 (decimal).

is a one- to eight-character name that appears on a subsequent
$DEFNAME statement.

This form of the $IFF statement provides for specifying up, to 16 distinct flags, which, if
any are false (see $RESETF), result in batch stream processing being suspended until a
$DEFNAME statement is encountered that specifies a "name" matching that given in the
$IFF statement; or until an $EOJ statement is encountered. If no flag tests false, batch
stream processing continues with the next Job Control statement.

6-18

.'\,
,"-"

(

(

Syntax 2

where:

name

Usage

$IFF ABORT name

is a one- to eight-character name that appears on a subsequent
$DEFNAME statement.

If the immediately preceding task within the current job was not aborted, this variation
of the $IFF statement causes batch stream processing to be suspended until a
$DEFNAME statement is encountered that specifies the "name" matching that in the
$IFF statement; or until an $EOJ statement is encountered. If the previous batch job
processing was aborted, batch stream processing continues with the next Job Control
statement.

Syntax 3

where:

filename

name

Usage

$IFF FILE filename name

is a one- to eight-character file name.

is a one- to eight-character name that appears in a subsequent
$DEFNAME statement.

If the specified "file" is not defined in the SMD as a system or user (based on any
preceding $USERNAME statement) file, batch input stream processing is suspended until
a $DEFNAME statement is encountered that specifies a "name" matching that given in
the $IFF statement; or until an $EOJ statement is encountered. If the file is defined to
the system, batch stream processing continues with the next Job Control statement.

6-19

6.5.13 $1FT Statement

The $IFT statement causes specified condition(s) to be tested for the true value. If the
condition is satisfied, batch input stream processing is altered according to parameter
specifications included with the statement. The $IFT statement has three formats, as
follows:

Syntax 1

where:

flagno

name

Usage

$IFT flagno [flagnq] ••• name

specifies a flag number in the range 1-16 (deciman.

is a one- to eight-character name that appears in a subsequent
$DEFNAME statement.

This form of the $IFT statement provides for specifying up to 16 distinct flags, which, if
true (see $SETF), result in batch stream processing being suspended until a SDEFNAME
statement is encountered that specifies a "name" matching that given in the $IFT '<I.

statement; or until an $EOJ statement is encountered. If any flag tests false, batch
stream processing continues with the next Job Control statement.

Syntax 2

$IFT ABORT name

where:

name is a one- to eight-character name that appears in a subsequent
$DEFNAME statement. .

Usage

If the immediately preceding batch task was aborted, this variation of the $IFT
statement causes batch stream input processing to be suspended until a $DEFNAME
statement is encountered that specifies a "name" matching that given in the $IFT
statement; or until an $EOJ statement is encountered. If the previous batch task was not
aborted, batch stream processing continues with the next Job Control statement.

6-20

(. Syntax 3

where:

filename

name

Usage

$IFT FILE filename name

is a one- to eight-character file name.

is a one- to eight-character name that appears in a subsequent
$DEFNAME statement.

If the specified file is defined in the SMD as a system or user (based on any preceding
$USERNAME statement) file, batch input stream processing is suspended until a
$DEFNAME statement is encountered that specifies a "name" matching that given in the
$IFT statement; or until an $EOJ statement is encountered. If the file is defined to the
system, batch stream processing continues with the next Job Control statement.

6-21

6 • .5.14 $308 Statement

The $JOB statement identifies the job to the system. It is required as the first
statement of a job, and together with the $EOJ statement, it delimits a job.

Syntax

where:

$JOB jobname ownername [,key] [SGO=size] [SLO=number] [SBO=numbea-

rSLOD=devmnc]
LSLOF=file

r SBOD=devmnc]
LSBOF=file [S]

jobname is a one- to eight-character job identifier. If more than eight characters
are specified, the first eight characters are used.

own,ername is a one- to eight-character owner name.

key is a one- to eight-character key associated with the owner name in the
M.K EY file if any. .

size specifies the number of 192-word blocks of disc space that are to be
allocated for the job's SGO file. If the SGO field is omitted, the size of the
job's SGO file is determined by the SYSGEN directive SGOSIZE (see Volume
3). A size of zero is interpreted as one.

number specifies the number of SLO or SBO files to be generated by the Batch
Job. A separate SLO and SBO file is created for each job and SLO or SBO
assignment within the job. A queue is created for these SBO/SLO files. The
queue is large enough to contain the definitions of 768 separate SLO or SBO
files. The SLO and SBO fields may be used to increase or decrease the
length of their respective queues. To discard all SLO or SBO files
generated by the job, enter zero. If zero is entered for SLO, listings of Job
Control statements and statement error messages are also discarded.

Default: Up to 768 files are generated, as required by the job.

6-22

c

(

(

SLOD/F
SBOD/F

devmnc

file

S

These fields specify the final destinations of SLO and SBO files generated
by the job. If these fields are omitted, final destinations for SLO and SBO
files are automaticaly selected from eligible devices specified by SYSGEN
DEVICE directives (the SPOOLED parameter). Fields in the $JOB
statement are interpreted as follows:

SLOD

SLOF

SBOD

SBOF

Any SLO files generated by the job are to be output to the
specified device.

Any SLO files generated by the job are to be output to the
specified permanent disc file.

Any SBO files generated by the job are to be output to the
specified device.

Any SBO files generated by the job are to be output to the
specified permanent disc file.

is the six-character device mnemonic of the final destination device for
SLO or SBO files. The specified device may be a card punch, paper tape
punch, line printer, or magnetic tape device. The entry consists of a two
character device code followed by a four hexadecimal character device
address, e.g., LP7 AOO. (See Appendix A.) The device address consists of a
two-character device channel number followed by a two-character device
subaddress. If the subaddress is omitted, zero is assumed. If the entire
device address is omitted, a channel number and subaddress of zero are
assumed. Reel identifiers are not entered for magnetic tape devices. For
assignments to magnetic tape devices, the reel identifier on the output
tape is SLO or SBO, the tape is multivolume (beginning with volume 1) and
the tape is blocked.

is the identity of the final destination permanent disc file for SLO or SBO
files in the following form:

filename [, [[username] ,[key]] [,password]

If the specified file does not exist, a file is dynamically created to contain
the job's SLO or SBO. If the specified file does exist, the job's SLO or SBO
is copied to it if the file is large enough. If not large enough, the file is
deleted, and a file of adequate size is dynamically created. If a password is
specified, dynamically created files have password-only access. If disc
space is unavailable to dynamically create a file or an invalid file name or
password is specified, output is redirected to a device available for
automatic selection.

specifies that the job is to be run sequentially. A sequential job is not run
until all previously entered sequential jobs are completed.

6-23

Usage

This is the first statement of a job and must be the first statement on a primary system
input source. When the job becomes active, the job sequence number, owner name, and
job name are listed on the operator's console.

Fields following the "ownername" field may be entered in any order. If the fields
following the "ownername" exceed the length of a single statement, the fields may be
entered on continuation statements. Continuation statements must immediately follow
the $JOB statement. Continuation statements do not contain a "$" symbol in column 1
but contain specification fields beginning in any column through 72.

6-24

f

(

6.5.15 $NOTE Statement

The $NOTE statement provides a means of writing a message to the operator's console.

Syntax

where:

message

Usage

$NOTE [message]

is an optional field containing information to be printed with the card
image.

The job's sequence number together with the contents of columns 1 through 65 are listed
on the operator's console when the statement is processed by Job Control.

6.5.16 $OBJECT Statement

The $OBJECT statement serves as a precursor for a program object deck.

Syntax

$OBJECT

Usage

The program object deck which follows the statement is stored on the SGO file. More
than one deck may follow the statement. The last deck is terminated by the next Job
Control statement. A $SELECT statement does not terminate the deck.

6-25

6.5.17 $OPTION Statement

The $OPTION statement designates options for the task subsequently executed.

Syntax

where:

number

Usage

$OPTION number [number] •••

is a numeric entry from 1 through 20

or

the system option, as follows:

DUMP

CPUONLY

IPUBIAS

if this option is specified and the batch task aborts,
the task's logical address space is dumped.

if this option is specified, tasks are executed only by
the CPU processor.

if this option is specified, IPU compatible tasks are
executed by the IPU processor.
Default: tasks are executed by the first available
processor.

Options provided by tasks are specific to each task and are designated by numbers. The
statement applies to the task subsequently executed via $DEBUG, $EXECUTE or
$ACTIVA TE. Options associated with system batch tasks are explained in their
respective sections.

A bit is set in the task option word for each option specified in the $OPTION statement.
Bits 12 through 31 of the option word are processor options and correspond respectively
to options 20 through 1. The Task Option Word Inquiry system service provides a task
with the contents of its option word. Control of any task can be accomplished through
its interpretation of the word.

Note

One $OPTION statement may be used to specify multiple options.
Option specifications must be separated by one or more blank spaces.

For valid OPTION numbers and their descriptions, refer to the MPX-32 Reference
~~~~al, Volume 2, under the particular utility you are using (Assembler, Source Update, () 

6-26 



( 

6.5.18 $RESETF Statement 

The $RESETF statement provides for specifying up to sixteen distinct flags that may be 
tested by subsequent $IFT and/or $IFF Job Control statements within a job. Flags set 
with the statement will have a FALSE (=0) Boolean value. 

Syntax 

where: 

flagno 

6.5.19 

$RESETF flagno [flagno] ••• 

specifies a flag number in the range 1 thrugh 16 (decimal). Any number of 
flags may be reset with a single $RESETF statement. Flags remain reset 
within a job until set with a subsequent $SETF statement. 

$SCAN Statement 

The $SCAN statement specifies the last column to be scanned on all Job Control 
statements within a job. If no $SCAN statement is present, 72 is the last column scanned. 

Syntax 

where: 

number 

$SC AN nu mber 

is a numeric entry in the range 4-80 specifying the last position to be 
scanned on Job Control statements. 

6-27 



6.5.20 $SELEcm Statement 

The $SELECTD statement causes ensuing batch records to be spooled to the SYC file 
from the specified peripheral device. 

Syntax 

$SELECTD devmnc reel [ mode] [density] [parity] [NORE] 

[UNBLOCKED] [fs fr] 

where: 

devmnc is the six-character device mnemonic and address of a card reader, paper 
tape reader, or magnetic tape device. The entry consists of a two-character 
device mnemonic (see Appendix A) followed by a four hexadecimal character 
device address, e.g., CR7800. The device address consists of a two
character device channel number followed by a two-character device 
subaddress. If the subaddress is omitted, zero is assumed. If the entire 
device address is omitted, a channel number and subaddress of zero are 
assumed. If the device is the primary or an alternate system input source at 
a previous level, the following fields are not interpreted. 

The following fields are applicable only for magnetic tape devices and floppy discs 
SYSGENed as magnetic tape: 

reel is a four-character tape reel identifier. 

The following three fields are applicable only for 7-track magnetic tape format as 
follows: 

mode 

density 

6-28 

is a character which specifies the 7-track magnetic tape format as follows: 

I = interchange (BCD) 
P = packed (binary) 

If this field is omitted, the interchange mode is assumed. 

is a character which specifies the 7-track magnetic tape density as follows: 

H = 800 BPI 
L = 556 BPI 

If this field is omitted, 800 BPI is assumed. 



( 

(~ 

( 

parity is a character which specifies the 7-track magnetic tape parity as 
follows: 

E = even parity 
o = odd parity 

If this field is omitted, even parity is assumed. 

The following fields are applicable for magnetic tape only and floppy discs SYSGENed as 
magnetic tape. 

NORE 

UNBLOCKED 

fs 

fr 

inhibits magnetic tape rewind. If this parameter is omitted, the 
magnetic tape is rewound before and after being read. 

specifies that the magnetic tape is unblocked, i.e., contains one 
logical record per physical record. If this parameter is omitted, 
blocked is assumed. 

is the number of files to be skipped prior to reading the magnetic 
tape. If this parameter is omitted, no files are skipped. 

is the number of files to be read from the magnetic tape. If this 
parameter is omitted, one file is read. End-of-file marks read· from 
the tape are not written to the SYC file. 

If "fs" is entered, "fr" must also be entered, and vice versa. 

6-29 



6.5.21 $SELECTF Statement 

The $SELECTF statement causes ensuing batch records to be spooled to the SYC file 
from the named, permanent disc file. 

Syntax 

where: 
file 

$SELECTF file (UNBLOCKED] [fs frJ [password] 

is a one- to eight-character permanent file name. If the file is the 
primary or alternate system input source at a previous level, the 
following fields are not interpreted. To select a file belonging to a 
username different than the user name/ownername selected on the 
$JOB statement, see the $USERNAME statement. 

UNBLOCKED specifies that the disc file was written in the unblocked mode. If 
this parameter is not entered, blocked mode is assumed. 

fs 

fr 

password 

6-30 

The user program is responsible for defining and testing end 
conditions, since there is no hardware EOF on a disc file. The 
operating system does not have an EOF to test or detect. 

is the number of files to be skipped prior to batch input data 
records. If this parameter is omitted, no files are skipped. If the 
UNBLOCKED option is requested, fs must equal zero or not be 
specified. 

is the number of files to be read. If this parameter is omitted, one 
file is read. End-of-files are not copied to the SYC file. If "fs" is 
entered, "fr" must also be entered, and vice versa. If the 
UNBLOCKED option is requested, fr must equal one or not be 
specified. 

is the one- to eight-character password associated with the file. An 
entry is required if read access to the file is permitted only by 
password. 

,1 
'-.. ' 



( 

(. 

6.5.22 $SELECTLD Statement 

The $SELECTLD statement causes ensuing batch records to be spooled to the SYC file 
from the specified peripheral device whose data is in library format. Data in library 
format is created by the Source Update processor (UPDATE). 

Syntax 

where: 

devmnc 

$SELECTLD devmnc reel [ mode] [density] [parity] 

[NORE] [UNBLOCKED] header 

is the six-character device mnemonic and address of a card reader, 
paper tape reader, or magnetic tape device. The entry consists of a 
two character device mnemonic (see Appendix A) followed by a four 
hexadecimal character device address, e.g., CR7800. The device 
address consists of a two-character device channel number followed 
by a two-character device subaddress. If the subaddress is omitted, 
zero is assumed. If the entire device address is omitted, a channel 
number and subaddress of zero are assumed. If the device is the 
primary or an alternate system input source at a previous level, the 
following fields are not interpreted. 

The following fields through "UNBLOCKED" are applicable only for magnetic tape 
devices and floppy discs SYSGENed as magnetic tape. 

reel is a four-character tape reel identifier. Required for magnetic tape. 

The following three fields are applicable only for 7-track magnetic tape devices. 

mode 

density 

is a character which specifies the 7-track magnetic tape format as 
follows: 

I = interchange (BCD) 
P = packed (binary) 

If this field is omitted, interchange mode is assumed. 

is a character which specifies the 7-track magnetic tape density as 
follows: 

H = 800 BPI 
L = 556 BPI 

If this field is omitted, 800 BPI is assumed. 

6-31 



parity is a character which specifies the 7-track magnetic tape parity as 
follows: 

E = even parity 
o = odd parity 

If this field is omitted, even parity is assumed. 

The following fields are applicable only for magnetic tape devices and floppy discs 
SYSGENed as magnetic tape. 

NORE 

UNBLOCKED 

header 

6-32 

inhibits magnetic tape rewind. If this parameter is omitted, the 
magnetic tape is rewound before and after being read. 

specifies that the magnetic tape is unblocked, i.e., contains one 
logical record per physical record. If this parameter is omitted, 
blocked is assumed. 

is the one- to eight-character name which appears on the header 
record to which the device is to be positioned prior to reading. The 
device is positioned to this header record, and one file is copied to 
the SYC file. 



(~ 

6.5.23 $SELECTLF Statement 

The $SELECTLF statement causes ensuing batch records to be spooled to the SYC file 
from the named, permanent disc file which is in library format. Library formatted disc 
files are created by the Source Update (UPDATE) system processor. 

Syntax 

$SELECTLF file [UNBLOCKED] header [password] 

where: 

file 

UNBLOCKED 

header 

password 

is a one- to eight-character permanent file name. If the file, is a 
$USERNAME statement specifying the user name must precede the 
$SELECT statement within the job. If the file is the primary or an 
alternate system input source at a previous level, the following 
fields are not interpreted. 

specifies that the disc file was written in the unblocked mode. If 
this parameter is not entered, blocked mode is assumed. 

The user program is responsible for defining and testing end 
conditions since there is no hardware EOF on a disc file. The 
operating system does not have an EOF to test or detect. 

is the one- to eight-character name which appears on the header 
record to which the file is to be positioned prior to reading. The file 
is positioned to this header record, and one file is copied to the SYC 
file. 

is the one- to eight-character password associated with the file. An 
entry is required only if read access to the file is permitted only by 
password. 

6-33 



6.5.24 $SELECTS Statement 

The $SELECTS statement resets all alternate system input source levels established by 
previous $SELECT statements. Reading of batch stream data reverts to the primary 
system input source. This statement has no effect when read from the primary system 
input source. 

Syntax 

$SELECTS 

6.5.25 $SETF Statement 

The $SETF statement provides for specifying up to sixteen distinct flags that may be 
tested by subsequent $IFT and/or $IFF Job Control statements within a job. Initially all 
flags have a FALSE (=0) Boolean value. Flags set with this statement will have a TRUE 
(=1) Boolean value. 

Syntax 

where: 

flagno 

6-34 

$SETF flagno [flagno] ••• 

specifies a flag number in the range 1 through 16 (decimal). Any 
number of flags may be set with a single $SETF statement. Flags 
remain set within a job until reset with a subsequent $RESETF 
statement. 



( 

6.5.26 $USERNAME Statement 

The $USERNAME statement specifies the user name associated with a set of user files. 
The user name applies to files specified on subsequent $SELECT statements and to all 
files referenced by tasks activated by subsequent $EXECUTE, $J1EBUG and $ACTIVATE 
statements within the current job. The user name is set to the owner name specified in a 
$JOB statement whenever the $JOB statement is encountered. This default user 
name/owner name association can be overridden by a $USERNAME statement. 

Syntax 

where: 

username 

key 

6.5.27 

$USERNAME [ username [,key] ] 

is the name of a valid user on the M.KEY file. Default if no name 
supplied is no user name, i.e., system files are created and only 
system files are accessed. 

specifies a valid key if required to use this username. 

$$ Statememt 

The $$ statement terminates a batch input stream. 

Syntax 

$$ 

Usage 

The $$ statement follows the $EOJ statement on the last job in the batch stream. On 
encountering this statement, the System Input task terminates processing of batch 
statements. This statement is ignored if read from a primary system input source device 
and if Continuous Batch mode has been requested via Operator Communications. 

6-35 



6.5.28 $$$ Statement 

The $$$ statement terminates a batch input stream when the Continuous Batch mode has 
been requested. 

Syntax 

$$$ 

Usage 

This statement is used to terminate a batch stream when the. Continuous Batch mode has 
been requested via Operator Communications. If Continuous Batch mode has not been 
requested, this statement is treated as a $$ statement. 

6-36 



( 

( 

6.6 Job Accounting 

Accounting facilities are provided for batch jobs which indicate elapsed time and CPU 
time used for each job. Job accounting information can be listed, saved, and purged by 
operator commands. 

The job accounting function optionally collects job information on an accounting file 
which is also used by TSM. The file must be named M.ACCNT and may be created by the 
File Manager CREATE directive. See OPCOM LIST command. 

6.7 Ptmched Output 

Each job's punched spooled output is preceded by a banner card which contains the job's 
sequence number. Punched spooled output from a real-time task is preceded by a banner 
card which contains the first four characters of the task number. Banner cards are 
output to card punch devices only. 

6.8 Listed Output 

Each. page of spooled output printed by a System Output task contains a heading line 
consisting of the date, identification, MPX-32 release level, and a page number. The date 
printed is that which is specified by the operator command, ENTER. For batch output, 
the identification is the job name from the $JOB statement and the job sequence 
number. For output from nonbatch tasks, the identification is the task number. 

Each Job Control statement is written on Spooled Listed Output (SLO) when it is 
processed by the Job Control task. Job Control statements that are not processed as a 
result of conditional assembly specifications will appear on listed output with the leading 
$ character converted to a left parenthesis, e.g., $NOTE would be listed as (NOTE. 

$SELECT statements are not written on listed output unless they contain errors. Other 
messages written on listed output are described below. 

6.8.1 Task Aborted 

TASK ABORTED PSD= BIAS= REASON= 

The execution of the task specified on the preceding $EXECUTE or $DEBUG statement 
was aborted. The contents of the PSD, the relocation offset bias, and abort reason are 
listed. 

6-37 



6.8.2 Activity Deleted 

ACTIVITY DELETED - STATEMENT ERRORS 

A statement error caused the next $EXECUTE, $ACTIVATE or $DEBUG statement 
within the job to be bypassed. This message follows the statement that is bypassed. If a 
$JOB statement contains an error, the entire job is bypassed. 

SINGLE COpy TASK ALREADY ACTIVE - resubmit job later 

ACTIVITY DELETED - nonexistent load module file 

ACTIVITY DELETED - password protected load module file 

ACTIVITY DELETED - invalid load module file 

ACTIVITY DELETED - dispatch queue not available 

ACTIVITY DELETED - load module read error 

One of the above conditions caused the preceding $EXECUTE, $ACTIVATE, or $DEBUG 
within the job to be bypassed. 

6.8.3 End of Job 

$EOJ UNRECOVERABLE I/O ERROR ON SOURCE INPUT device/file 
$EOJ END-OF-MEDIUM READ ON SOURCE INPUT device/file 

A System Input task encountered the condition on the indicated device or file system 
input source while spooling the job to the SYC file. The simulated $EOJ statement is 
written to SYC by the System Input Task upon encountering the abnormal condition. The 
portion of the job preceding the simulated SEOJ is processed normally. The remainder of 
the job is lost. 

6-38 



(: 

( 

6.8.4 Error in Field 

ERROR IN FIELD d message 

The preceding statement contains an error. A decimal number is inserted at "d" to 
indicate the statement field that contains the error. The first field of a statement is "I". 
"Message" identifies the error and is one of the following: 

ILLEGAL DIRECTIVE 

ILLEGAL BLANK FIELD 

ILLEG AL ENTRY 

EXCESSIVE ASSIGNMENTS 

ILLEGAL FILE NAME 

More than 64 assignments are specified 
for a program. 

The file name in an $ASSIGN 1 
statement contains a character whose 
hexadecimal ASCII equivalent is not in 
the range 21 through 5F. 

SELECT LEVELS EXCEEDED - Previous $SELECT statements have 
established three levels of alternate 
system input sources which is the 
maximum. 

DEVICE/FILE UNAVAILABLE - The device or file specified on a 
$SELECT statement does not exist or 
cannot be allocated. An incorrect 
password may have been specified for a 
file. 

VALUE MISSING The entry in a field is incomplete. 

6.8.5 Execution Time 

JOB EXECUTION TIME=nnHOURS- nnMINUTES- nn.nnSECONDS 

This message lists the CPU execution time (excluding I/O wait time) for the batch job. 

6.8.6 Records Ignored 

RECORD(S) IGNORED 

Except for $JOB continuation statements, Job Control ignores any statements that it 
encounters that do not have a dollar symbol ($) in column 1. These statements are not 
written on listed output. 

6-39 



6.8.1 SGO Overflow 

SGO OVERFLOW 

Object records following the $OBJECT statement exceed the size of the SGO file. The 
size of the SGO file is established at SYSGEN time and on the $JOB statement. The 
remainder of the job is not processed. 

6.8.8 Elapsed Time 

TOT AL JOB TIME=nn HOURS- nn MINUTES- nn.nn SECONDS 

This message lists elapsed time (from $JOB to $EOJ statement processing) for batch 
jobs. 

6.9 Examples 

Examples of various types of batch jobs are provided below: 

Example 1 

The following example shows a Fortran compilation. 

SlOB EXAMPI USERA 
$OPTION 2 
$OPTION 3 
$EXECUTE FORTRAN 
(Source) 
$EOl 

Example 2 

Inhibits punched object output. 
Inhibits printing of storage dictionary. 

This example illustrates program assembly from magnetic tape. 

SlOB EXAMP2 USERB SLOF=LOFILE,USERB All listed output from job is directed to 
user file LOFILE. 

$ASSIGN3 SI=M9,SRCE 

$EXECUTE ASSEMBLE 
$EOJ 

6-40 

Overrides cataloged assignment 
Assembler normally reads source from 
SYC file. 

( ''', 
j' 



(' Example 3 

( 

This example shows a program being cataloged. 

$JOB EXAMP3 USERC 

$USERNAME ABC 

$OBJECT 
(Object) 

$OPTION 5 
$EXECUTE ASSEMBLE 
(Source) 
$EXECUTE CAT ALOG 
CATALOG FILX U 64 
$ASSIGN I AB=FILAB 
$EXECUTE FILX 
$EOJ 

Example 4 

Establishes owner name USERC for the 
job and for files allocated during job. 

Overrides USERC to ABC for file 
access. 

Program to be combined with assembler 
-output. 

Ouput assembled program to SGO file. 

Execute the cataloged program. 

Here the $SELECT statement is used to obtain a source program. 

$JOB EXAMP4 USERD 
$EXECUTE FORTRAN 
$SELECTD MTIO SRCE 1 1 

$EOJ 

Source program obtained from second 
file of a blocked magnetic tape. 

The following are examples of conditional batch processing. 

Example 5 

If file ABC exists, processing will be suspended through the $DEFNAME statement and 
FILEMGR will not be executed. 

$JOB EXAMP5 USERF 
$IFT FILE ABC FILEPR 
$EXECUTE FILEMGR 
CREATE, ABC,DC,100 
$DEFNAME FILEPR 
$EOJ 

6-41 



Example 6 

If the UPDATE run is aborted, ASSEMBLE will not be executed. 

SlOB ~XAMP6 USERG 
$ASSIGN 1 SI1 =SSS 
$ASSIGN 1 SO=CC 1 
OPTION 1 2 
$EXECUTE UPDATE 
(Source Update Directives) 
$IFT ABORT NOASSEM 
$ASSIGN 1 SI=CC 1 
$EXECUTE ASSEMBLE 
$DEFNAME NOASSEM 
$EOl 

Example 7 

SI1 is assigned to CC 1 and SO to CC2, replacing the $SETF 1 with $RESETF 1 causes SI1 
to be assigned to CC2 and SO to CC 1. 

SlOB EXAMP7 USERH 
$SETF 1 
$IFF 1 NOT CC 1 
$ASSIGNI SIl=CCI 
$ASSIGN 1 SO=CC 1 
$DEFNAME NOTCCI 
$IFT 1 NOTCC2 
$ASSIGN 1 SIl=CC2 
$ASSIGN 1 SO=CC 1 
$DEFNAME NOTCC2 
$EXECUTE UPDATE 
(Source Update Directives) 
$EOl 

6-42 

i(.-~ . -' 



( 

( 

7. ALE AND DEVICE ALLOCATION AND I/o 

The MPX-32 Allocator obtains the physical resources required to execute a task. The 
MPX-32 I/O Control System (IOCS) receives and processes device independent I/O 
requests from both user tasks and the MPX-32 system. This section describes: 

Basic I/o linkages for tasks and users 

File and device assignments 

MPX-32 device addressing (duplicated in Appendix A) 

Logical file codes 

File Control Blocks 

It provides a processing overview that describes wait I/O, no-wait I/O, direct I/O, error 
processing, and other major I/o concepts in context of the interface between IOCS, 
standard device handlers, and the system. It describes special system files, how to set up 
File Control Blocks and Type Control Parameter Blocks, and covers each of the I/O 
services available to users. 

7.1 MPX-32 Logical Input/Output 

MPX-32 provides the user with extremely versatile logical, device independent I/O 
capabilities. That is, instead of coding references to actual physical devices or disc files, 
and performing I/O himself, the user may code references to LOGICAL FILES and 
request an MPX-32 Input/Output Control System to perform I/O on his behalf. 

Several important advantages are gained by performing logical file I/O: 

o The user need not be aware of specific device handling requirements. 

o Unprivileged tasks may perform I/o (the SEL 32/75 I/O instructions are part of the 
privileged instruction set). 

o Tasks which perform logical I/O are easier to debug and modify. 

In order to provide MPX-32 with sufficient information to create the necessary linkages 
between the user's logical files and the actual peripheral devices or disc files, the user 
must: 

o Identify logical files via logical file codes (lfc's). 

o Describe logical file attributes via File Control Blocks (FCB's). 

o Associate logical files with their target physical devices or disc files via logical file 
code assignments. 

7-1 



7.1.1 Logical File Codes 

Logical file codes (lfc's) are user defined one to three ASCII character codes which 
identify logical files within tasks. 

Logical file codes are configured into corresponding File Control Blocks (see Section 7.6 
for FCB format). 

7.1.2 FIle Control Blocks 

A File Control Block (FCB) must be set up by the user to describe each logical file within 
a task, and to describe certain attributes of each logical I/O operation. 

In addition, certain information collected by IOCS following each I/o operation is made 
available to the user via the corresponding FCB. 

Final1y, certain space in the FCB is reserved for use by IOCS. 

The FCB format is decribed in detail in Section 7.6. 

7.1.2.1 Logical I/O Initiation 

In order to initiate a logical I/o operation the user must code into his task a cal1 to one 
of the data transfer or device access services described in Section 7.8 accompanied by 
the address of a corresponding FCB. 

7.1.3 Logical File Code Assignment 

Before executing a logical I/o request the user must associate the appropriate logical 
file code (lfc) with the target peripheral device or disc file. This is accomplished via 
logical file code assignment. 

Logical file codes may be assigned to specific peripheral devices or files when a task is 
cataloged (static assignment), or during task execution via the M.ALOC service (dynamic 
assignment). 

For tasks which run under TSM (interactive tasks) or Job Control (batch tasks) static 
assignments may also be made by the user at run time (see Section 5 and 6). For such 
assignments, if the logical file code matches one assigned at catalog time, it replaces the 
cataloged assignment. If the file code assigned at run time does not match any cataloged 
assignment, it is added to cataloged assignments. 

Dynamic assignments cannot override cataloged or run time assignments, and any 
attempt to do so is treated as an error. To accomplish dynamic override, the user task 
must first deal10cate (deassign) the static assignment via the M.DALC service. 

7-2 

,( , 

\,i . 
'--/' 



(-

( 

7.1.3.1 Making Assignments 

MPX-32 supports four classes of assignments as follows: 

- Assigns a lfc to a permanent disc file. ASSIGNl 
ASSIGN2 - Assigns a lfc to one of four types of special system disc files (SYC, SGO, 

ASSIGN3 
ASSIGN~ 

SLO, SBO). 
- Assigns a lfc to a peripheral device or temporary disc file. 
- Assigns a lfc to a previously assigned lfc. 

For a description of Cataloger assignment directives, see Volume 2, Section 2. 

For a description of static assignments which may be made at run-time via TSM and Job 
Control, see Sections 5 and 6. 

For a description of the dynamic assignment/allocation services (M.ALOC and M.DALC), 
see Section 7.8. 

7.1.3.2 I/o Linkages 

As a result of building a logical file code into an FCB, and assigning the logical file code 
to a device or disc file, the following I/O linkage elements are created in the user's TSA: 

o A File Assignment Table (FAT) entry which points to an entry in each of two tables 
describing controllers (COT) and devices (UDT). 

o A File Pointer Table (FPT) entry which contains the lfc specified during assignment, 
and which should therefore match the lfc contained in the FCB. 

Before any service requested by the user to initiate an I/o operation can be completed, 
the user's logical file must be opened. The user may perform this function himself via 
the M.FILE service, otherwise IOCS will automatically open the users logical file when 
an I/O initiation service request is made, and the logical file is not open. 

When the user's logical file has been opened, the I/O linkage elements are tied together 
as follows: 

o The FPT entry points to the corresponding FCB and FAT entry. 

o The FAT and corresponding FCB entries point to each other. 

7-3 



7.2 MPX-32 File Access 

The MPX-32 File System Manager (FISE) maintains the System Master Directory (SMD), 
which describes the disc, starting block, length, user name, indicators (e.g., password 
protection) and other information for each permanent file on the system. The 
description of temporary files is similar, but contained in the Task Service Area (TSA) 
for each task. 

When a file is assigned for I/O, the MPX-32 Allocator calls FISE. FISE checks to ensure 
that the file exists, that a password has been supplied, if applicable, that the file belongs 
to the user who activates the task or is a system file, etc., and passes information back 
to the Allocator so that all such access is verified before the file is opened by the task 
via 10CS. The description of a valid file is placed in the File Assignment Table (FAT); if 
an invalid assignment is made, the error is passed back to the user in the allocation stage 
via an abort code and the task is not continued. 

10CS uses the FAT entry to map to the appropriate disc and file. Access to disc files is 
sequential, starting with the first block in the file, unless the user has provided a random 
access block address in Word 2 bits 12-31 or Word 10 bits 0-31 of the FCB. 

Permanent files are accessed by name; temporary files are accessed by a device address 
as described in Section 7.4. 

7.2.1 File Management 

The MPX-32 File System Executive (FISE) provides space management for all discs 
defined to the system at SYSGEN. Disc space is allocated to files in units, each 
consisting of an integral number of 192-word blocks. In no case is an allocation unit 
larger than four blocks (see Table 7-1). 

7-4 

~. 

:l_/ 



........ 
I 
VI 

~ 

Unit 
Size Type 

4MB Fixed Head 

40MB Moving Head 

80MB Moving Head 

300MB Moving Head 

Extended I/O Devices 

24MB Fixed Media 

40MB Moving Head 

80MB Moving Head 

300MB Moving Head 
--

Words/ Sectors/ 
Sector Track 

I92W 23 

I92W 23 

192W 23 

192W 23 

192W 20 

192W 20 

192W 20 

192W 20 

~. 

Table 7-1 Disc Description 

Number 
of Max Sectors/ 

Heads Cylinders Cylinder 

256 ° ° 
5 400 115 

5 800 115 

19 800 437 

I 
4 300 80 

5 400 10O 

5 800 100 

19 800 380 

,...-. 

Max 
Max Sectorsl Alloc. Bit Map Max Byte 

Sectors Allocation Units Size* Capacity 

5888 I 5888 184W 4.52MB 

46,000 2 23,000 719W 35.32MB 

92,000 2 46,000 1438W 70.65MB 

349,600 4 87,400 2732W 268.49MB 

24,000 2 12,000 3nW 18.43MB 

40,000 2 20,000 625W 30.72MB 

80,000 2 40,000 1250W 61.44MB 

304,000 4 76,000 2375W 233.47MB 



7.2.1.1 Temporary versus Permanent Files 

Temporary files are allocated to a task for use during its execution and are deallocated 
when the task terminates. Tasks are not allowed to share a temporary file, but any 
number of tasks can have several temporary files allocated to them. Definitions of 
temporary files are retained in the Task Service Area (TSA) for a task. 

Permanent files are files which are permanently defined to the system. The definition of 
each permanent file and each memory partition is retained in the System Master 
Directory (SMD) which resides on disc. An SMD entry is added each time a new 
permanent file or memory partition is created and the entry is retained until the file or 
memory partition is deleted. 

7.2.1.2 System versus User Files 

Permanent files defined in the SMD are divided into two levels: system files and user 
files. System files are required for MPX-32 functions or are shared between users. All 
files created at SYSGEN are system files. User files are private and owned by individual 
users. File identities take the following form: 

System Files: filename 
User Files: username, filename 

System files are identified by a one- to eight-character file name which may not 
duplicate another system file name. User files are identified by a one- to eight
character user name together with a one- to eight-character file name. The "username, 
filename" pair identifying a user file may not duplicate the "username, filename" identity 
of another user file. 

A file's category (system or user) is established when the FILEMGR utility, the 
M.CREATE system service, the Editor, or any similar utility, is used to create the file. 
A file created by any method may be specified as a system file. If not explicitly 
specified as a system file, a file'S category is based on whether or not a user name is 
associated with the task creating the file. 

The user name associated by default when a user logs on the MPX-32 system is the logon 
owner name. Th«7re is no user name for files created or accessed by a user who logs on 
the OPCOM console (i.e., system files are assumed). 

A username associated with files related to a task can be modified or changed to nothing 
via the USERNAME Catalog, File Manager, and Job control directives, the TSM 
USERNAME command, and the M.USER system service. Association of a user name with 
a task must be consistent with the allocation of permanent files by the task, i.e., if user 
files are to be allocated by a task, the user name must be associated with the task prior 
to allocating the files. 

7-6 

r-"-
~J 

(,--'~---

j 



When permanent file allocation is attempted, the file directory search is based on 
whether or not a user name is associated with the task. If a user name is not present, a 
system file with the specified file name must exist in the directory. If a user name is 
present, the directory is searched for a user file with the specified file name and user 
name. If the user file does not exist, the directory is searched for a system file with the 
specified file name. 

7.2.1.3 Password and Key Protection 

File protection mechanisms are available to prevent unauthorized access to and deletion 
of permanent files. System and user files may be protected individually. User files may 
also be protected on a per user basis. 

Individual files can be protected when the files are created. Protection is based on a 
one- to- eight character password; the password mayor may not be unique for each file 
as desired. If a password is associated with the file, the file is deleted only by specifying 
the password. The password must also be entered on the SAVE FILE, DELETE, and 
EXPAND File Manager directives. 

In addition, read and write access to a file can be restricted. A file can be declared as 
read-only. A read-only file can be read without its password, but the password is required 
to write the file. A password-only file requires the password to read or write the file. 

The KEY utility is used to provide a file (named M.KEY) containing valid owner 
names/user names for an installation. A key can be specified for an owner name/user 
name, if desired. The key is then required to: 

log on the system 

change to this user name for access to associated user files 

The M.KEY mechanism provides file access control on a 'per-username' basis •. 

7.2.1.4 System Master Directory (SMD) 

Each permanent file, temporary file, or memory partition has associated with it a two 
word space definition which describes its location, length, etc. The space definition of 
permanent file or memory partition resides on the System Master Directory (SMD). The 
space definition together with the permanent file name, user name and password, or 
memory partition name, comprise an SMD entry. 

The space definition of a temporary file is retained in the File Assignment Table (FAT) 
area of the TSA of the task that assigns the file until the task terminates or system 
output is complete. At that time, these definitions are returned to the File System 
Executive for deallocation of the defined space. Deallocation of permanent file space is 
performed via an M.DELETE service call, a DELETE command in the Editor, or when the 
File Manager utility (FILEMGR) encounters a DELETE directive. 

7-7 



Memory partitions, similar to permanent disc files, have a two word space definition in 
the associated SMD entry. The SMD entry for a statically allocated memory partition is 
built by SYSGEN when a PARTITION directive is specified. This type of partition can be 
deleted only by omitting the definition in a subsequent SYSGEN warm or cold start. The 
SMD entry for a dynamically allocated memory partition is built by the FILEMGR utility 
in response to a CREATEM directive. This type partition is deleted by the FILEMGR 
utility upon encountering a DELETE directive, or alternatively via M.DELETE. 

7.2.1.5 System M~ter Directory (SMD) Entries 

Figure 7-2 describes the formats of SMD entries for files and memory partitions. 

7-8 



( 

( 

WORD 0 

a 
1 

2 

3 

4 
5 

6 

7 

WORD 0 

a 
1 

Disc File SMD Entry 

7 8 15 16 31 

FILE NAME 
(MAX 8 CHARACTERS, LEFT-JUSTIFIED, BLANK-FILLED) 

STARTING DISC ADDRESS 
FILE TYPE* (STARTING BLOCK NUMBER) 

FILE INDICATORS** LENGTH IN 192-WORD BLOCKS 

USER NAME OR 0 FOR SYSTEM FILE 
(MAX 8 CHARACTERS, LEFT-JUSTIFIED, BLANK-FILLED) 

COMPRESSED PASSWORD I UDT INDEX 

RESERVED 

Memory Partition SMD Entry 

7 8 15 16 31 

PARTITION NAME 
(GLOBALnn or DATAPOOL) 

STARTING STARTING PHYSICAL 
2 LOGICAL PAGE PAGE OR a 

3 FILE INDICATORS** I MEMJRY CLASS LENGTH IN PAGES 

4 
5 

6 COMPRESSED PASSWORD 

7 

* File Types (Hexadecimal digits) 
ED - EDITOR SAVE 
EE - EDITOR STORE 
FE - EDITOR Workfile 
FF - SYSGEN-created 
BA - BASIC (unused) 
CA - Cataloged Load Module 

RESERVED 

RESERVED 

RESERVED 

**File Indicators 
Bit 0 - Active, permanent 

1 - SYSGEN'd partition 
2 - No save in response to 

FILEMGR SAVE directive 
3 - Fast 
4 - Collision Mapping 

01 - 99 Available for Customer Use 5 - Not SYSGEN'd partition 
6 - Read-Only Protected 
7 - Read/Write Protected 

Figure 7-2. SMD Entries 
820616 

7-9 



7.3 MPX-32 Device Access 

When a device is assigned for I/O, the MPX-32 Allocator verifies that the device is 
available, allocates blocking buffers required for blocked I/o to disc or magnetic tape, 
and identifies the device for IOCS in the File Assignment Table (FAT). If a device is not 
available (e.g., not included in the SYSGEN configuration of a system, offline, etc.), the 
Allocator returns an abort code and does not continue with the task. 

Throughout the reference manual, the generic descriptor 'devmnc' is used to indicate that 
a device can be specified. 

Under MPX-32, device addresses are specified using a combination of three levels of 
identification. They are device type, device channel/controller address, and device 
address/ subaddress. 

A device can be specified using the generic device type only, which will result in 
allocation of the first available device of the type requested. 

A second method of device specification is achieved by using the generic device type and 
specifying the channel/controller address. This results in allocation of the first available 
device of the type requested on the specified channel or controller. 

The third method of device selection requires specification of the device type, 
channel/controller, and device address/subaddress. This method allows specification of a 
particular device. 

7.3.1 Special Device Specifications and Handling 

7.3.1.1 Magnetic Tape 

Multivolume magnetic tape processing is supported under MPX-32. A multivolume 
magnetic tape is defined as a set of one or more (255 maximum) physical reels of 
magnetic tape processed as a continuous reel. . 

Multivolume tape files have the following general format: 

VOLUME : i E 
RECORD I DATAl 0 
(LABEL) I I F 

The 192-word volume record is a tape label produced as the first record for each volume 
of a multivolume file. The volume number and reel identifier portions of this record are 
verified as part of subsequent read operations. The volume record has the following 
format: 

WORDS(S) CONTENTS 

0 Reel Identifier (ASCII) 
I Volume Number (Binary) 
2-3 Date Created (ASCII) 
~ Time Created (ASCII) 
5-191 Unused 

7-10 

/~ --



(-

(-

The reel identification is a four-character ASCII entry. 

The volume number (1-255) is given in binary. 

The date is Gregorian in the format. 

MM/DD/YY 

Time is given in the following format: 

HOUR (Byte 0) 
MINUTE (Byte 1) 
SECOND (Byte 2) 
INTS 0/100 Seconds) (Byte 3) 

Multivolume magnetic tape processing mode is invoked via the Job Control statement, 
$ASSIGN3, and/or the Allocate File/Peripheral Device Monitor Service. 

Multivolume processing is automatic for magnetic tape operations in the forward 
direction (i.e., READ, WRITE, ADVANCE, ERASE). For reverse direction operations 
(i.e., REWIND, BACKSPACE), the user is required to provide processing logic for proper 
reel manipulation and positioning requests. 

Volume numbers in the range 1-255 are provided as an operations aid in mounting and 
dismounting physical reels of magnetic tape. MPX-32 treats the volume numbers in 
circular fashion, i.e., volume 1 follows volume 255 in the numbering scheme. 

A scratch tape (SCRA) may not be assigned if the multivolume mode is specified. A unit 
for which multivolume magnetic tape operations are applicable may not be designated a 
shared (SHR) device. The mount message cannot be inhibited for multivolume magnetic 
tape operations. 

For multivolume magnetic tape processing, MPX-32 will not pass End-of-Medium (EOM) 
indicators to the user via the FCB. If a READ, WRITE, or ADVANCE operation is 
requested when tape is at end-of-medium, the system will issue a DISMOUNT message to 
the console teletypewriter for the current volume (reel), followed by a MOUNT request 
for the next sequential volume number prior to performing the requested operation. 

The system does not recognize multivolume mode specification when a magnetic tape is 
positioned at load point and a REWIND or BACKSPACE operation is requested. 

For File Manager RESTORE operations, special processing occurs if the file being 
restored resides on two or more reels of a multivolume magnetic tape. 

For magnetic tape, a reel identifier, multivolume number, and unblocking can be part of 
the device mnemonic. 

Syntax: 

Ifc= device, [reel] ,[ volume] [,U] 
• 

where: 

device is anyone of the three levels of device specification described 
above. 

7-11 



reel 

volume 

U 

specifies a one- to four-character identifier for the reel. 
Default: SCRA (Scratch). 

if multivolume tape, indicates volume number. Default: not 
multivolume (0). 

the tape is optionally unblocked. Default: blocked. 

Commas in this specification are significant. If an option is not specified, e.g., a reel 
identifier, but another option is specified, e.g., U, commas must be inserted for all non
specified options in between, e.g., 

MT 1000",U 

There must be no embedded blanks within the entire device mnemonic. 

When the task is activated that has an assignment to tape, a MOUNT message indicates 
the name of the task and other information on the OPCOM console: 

{TASK} taskname, taskno MOUNT reel VOL volume ON devmnc DEV,R,A,H? devmnc 
jobno 

where: 

jobno 

taskname 

taskno 

reel 

volume 

devmnc 

DEV,R,A,H 

7-12 

if the task is part of a batch job, identifies the job by job 
number. 

is the name of the task to which the tape is assigned. 

is the number of the task. 

if the assignment is a multivolume tape, indicates the reel 
identifier specified in the assignment. SCRA is invalid if using 
multivolume tape. 

identifies the volume number to mount if multivolume tape. 

is the device mnemonic for the tape unit selected in response 
to the assignment. If a specific channel and subaddress are 
supplied in the assignment, the specific tape drive is selected 
and named in the message. Otherwise, a unit is selected by the 
system and its complete address is named in the message. 

the device listed in the message can be allocated and the task 
resumed (R), a different device can be selected (DEV), the task 
can be aborted (A), or the task can be held with the specified 
device deallocated (H). If a 'R' response is given and a high 
speed XIO tape drive is being used, its density can be changed 
when the software select feature is enabled on the tape unit 
front panel. If specified, it will override any specification 
made at assignment. Values are: 

!(----~ 

,_/ 



N or 800 indicates 800 bpi non return to zero inverted 
(NRZI) 

P or 1600 
G or 6250 

indicates 1600 bpi phase encoded (PE) 
indicates 6250 bpi group coded recording 
(GCR) Default. 

Example usage: RN R1600, etc. 

Note: Do not insert blanks or commas. 

Response: 

To indicate the drive specified in the MOUNT message is ready and proceed with the 
task, mount the tape on the drive and type R (Resume), optionally followed by a density 
specification if the drive is a high speed XIO tape unit. To abort the task, type A 
(Abort). To hold the task and deallocate the specified device, type H (Hold). The task 
can then be resumed by the OPCOM CONTINUE command, at which time a tape drive 
will be selected by the system and the MOUNT message redisplayed. 

To select a tape drive other than the drive specified in the message, enter the mnemonic 
of the drive you want to use. Any of the three levels of device identification can be 
used. The MOUNT message is reissued. Mount the tape and type R if satisfactory, or if 
not satisfactory, abort, override, or hold as just described. 

7.3.1.2 Temporary Disc File Size 

For a temporary disc file, size must be specified and unblocking is optional. 

Syntax: 

lfc = device,size [,U] 

where: 

device is anyone of the three levels of device specification described 
above. 

size specifies the number of 192-word blocks required. 

U the file is optionally unblocked. Default: blocked. 

7.3.2 Examples of Device Identification Levels 

Examples of the three methods of device specification follow: 

Type 1 - Generic Device Class 

$ASSIGN3 DEV=M9,SAVE, 1 

In this example, the device assigned to logical file code (lfe) "DEV" will be any 9-
track tape unit on any channel. The multivolume reel number is 1. The reel 
identifier is SAVE. 

7-13 



Type 2 - Generic Device Class and Channel/Controller 

$ASSIGN3 DEV=M910,MORK"U 

In this example, the device assigned to logical file code (lfe) "DEV" will be the first 
available 9-track tape unit on channel 10. The specification is invalid if a 9-track 
tape unit does not exist on the channel. The reel identifier is supplied. This is not a 
multivolume tape. It is, however, unblocked. 

Type 3 - Specific Device Request 

$ASSIGN3 DEV=M91001 

In this example, the device assigned to logical file code (lfe) "DEV" will be the 9-
track tape unit 01 on channel 10. The specification is invalid if unit 01 on channel 10 
is not a 9-track tape. The tape reel identifier is SCRA; the tape is blocked and is not 
multivolume. 

7.3.3 GPMC Devices 

GPMC/GPDC device specifications are in keeping with the general structure just 
described. For instance, the terminal at subaddress 04 on GPMC 01 whose channel 
address is 20 would be identified as follows: 

$ASSIGN3 DEV=TY2004 

7.3.4 NULL Device 

A special device type "NU" is available for NULL device specifications. Files accessed 
using this device type generate an end-of-file (EOF) upon attempt to read and normal 
completion upon attempt to write. 

7.3.5 OPCOM Console 

Logical file codes are assigned to the OPCOM console by using the device type "CT". 

7.3.6 Special System Files 

There are four special mnemonics provided for access to special system files: SLO, SBO, 
SGO and SYC. These are assigned via the $ASSIGN2 statement, as in: 

$ASSIGN2 OUT =SLO,printlines 

For non-batch tasks, SLO and SBO files are allocated dynamically by the system and used 
to disc buffer output to a device selected automatically. For batch tasks, use of SLO and 
SBO files is identical, except that automatic selection of a device can be overridden by 
assigning a specific file or device. 

SGO and SYC assignments are used for batch processing. See Section 7.5. 

7-14 

() 

rf~ 
I ' 
1,,- " 



(" Dev 
Type 
Code Device Device Description 

00 CT Operator Console (Not Assignable) 
01 DC Any Disc Unit 
02 DM Any Moving Head Disc 
03 DF Any Fixed Head Disc 
04 MT Any Magnetic Tape Unit 
05 M9 Any 9-Track Magnetic Tape Unit 
06 M7 Any 7-Track Magnetic Tape Unit 
07 CD Any Card Reader-Punch 
08 CR Any Card Reader 
09 CP Any Card Punch 
OA LP Any Line Printer 
OB PT Any Paper Tape Reader-Punch 
OC TY Any Teletypewriter (Other than Console) 
OD CT Operator Console (Assignable) 
OE FL Floppy Disc 
OF NU Null Device 
10 CA Communications Adapter (Binary 

Synchronous/Asynchronous) 
11 UO Available for user-defined applications 
12 Ul Available for user-defined applications 

( 
13 U2 Available for user-defined applications 
14 U3 Available for user-defined applications 
15 U4 Available for user-defined applications 
16 U5 Available for user-(jefined applications 
17 U6 Available for user-defined applications 
18 U7 Available for user-defined applications 
19 U8 Available for user-defined applications 
lA U9 Available for user-defined applications 
1B LF Line Printer/Floppy Controller (used only with SYSG~N) 

Table 7-2. MPX-32 Device Type Codes 

7-15 



7.3.7 Floppy Discs 

Floppy discs may be treated as random access devices or as sequential access devices. 
When a floppy disc is assigned, all space on the diskette (I334 192-word blocks) is 
allocated to the task. The MPX~32 file system does not support floppy discs. 

The floppy disc provides a software End-of-File (EOF) capability for the unblocked, 
sequential mode of operation. A request to write an EOF causes the floppy to write a 
192-word record beginning with X'OFOO'. When reading, EOF will be reported when 
X'OFOO' is detected as the first word of data read. EOF reporting may be optionally 
inhibited. EOF reporting is automatically inhibited when reading in random access 
mode. Only blocked EOF is reported when reading in blocked mode. 

See Tables 7-5 and 7-7 for a complete description of floppy disc operations and 
specifications. 

7.3.7.1 Generating Floppy Discs as Discs 

To SYSGEN a floppy disc as a disc, the following device directive format should be used: 

DEVICE=FO, DTC=FL, HANDLER=H.FLlOP, DISC=FLOOI 

The corresponding assignment would be made as follows: 

$ASSIGN3 LFC=FL7EFO 

When SYSGENed as file type code "FL", all I/O is assumed to be unblocked unless bit 5 of "",~ 
word 2 (BL) is set prior to execution of the required operation. 

7.3.7.2 Generating Floppy Discs as Magnetic Tapes 

To SYSGEN a floppy disc as a magnetic tape, the following device directive format 
should be used: 

DEVICE=FO, DTC=M9, HANDLER=H.FLlOP, DISC=FLOOI 

The corresponding assignment would be made as follows: 

$ASSIGN3 LFC=M97EFO, TAPE ["U] 

When SYSGENed as file type code "M9", all I/O is assumed to be blocked unless "U" is 
specified on the assignment. Standard magnetic tape mount messages will be sent to the 
console. 

Multi-volume operation is, however, not supported for floppy discs SYSGENed as 
magnetic tape. 

7-16 



( 

(~-

7.3.8 Samples 

A description of device selection possibilities would be constructed as follows: 

DISC 

TAPE 

DC 
OM 
DM08 
DM0801 
OF 
DF04 
DF0401 

MT 
M9 
M910 
M91002 
M7 
M712 
M71201 

CARD EQUIPMENT 

CD 
CR 
CR78 
CR7800 
CP 
CP7C 
CP7COO 

LINE PRINTER 

LP 
LP7A 
LP7AOO 

Any Disc 
Any Moving Head Disc 
Any Moving Head Disc on Channel 08 
Moving Head Disc 01 on Channel 08 
Any Fixed Head Disc 
Any Fixed Head Disc on Channel 04 
Fixed Head Disc 01 on Channel 04 

Any Magnetic Tape 
Any 9-track Magnetic Tape 
Any 9-track Magnetic Tape on Channel 10 
9-track Magnetic Tape 02 on Channel 10 
Any 7-track Magnetic Tape 
Any 7-track Magnetic Tape on Channel 12 
7-track Magnetic Tape 01 on Channel 12 

Any Card Reader-Punch 
Any CR 
Any CR on Channel 78 
CR on Channel 78 Subaddress 00 
Any CP 
Any CP on Channel 7C 
CP on Channel 78 Subaddress 00 

Any LP 
Any LP on Channel 7 A 
LP on Channel 7 A Subaddress 00 

7-17 



7.4 I/o Processing Overview 

A task starts I/O operations (opens, reads, writes, etc.) by issuing service calls to loes 
(see Section 7.9). 10CS completes linkage of an assigned device or file and an FCB, 
validates the logical address of the task's data buffer (defined in the Transfer Control 
Word of the FCB), and links an I/O request containing the TCW information to a queue 
for the appropriate device handler. The I/O requests are queued by the software priority 
(1-64) of requesting tasks. 

The handler issues appropriate instructions to the device controller (Command Device, 
Test Device, or Start I/O). 

The controller performs the I/O. For example, it reads a record into the task's data 
buffer. When the requested I/O is complete, the controller issues a Service Interrupt (SI). 

If the handler is passing the address of a list of commands or data (JOCL) for a controller 
to operate on, the SI is returned from the Controller when all operations specified in the 
list have been completed. -

The processing that occurs when the handler receives the SI interrupt from the controller 
depends on whether the user has established a wait-I/O or no-wait I/O environment via 
the FCB. 

7.4.1 Wait I/O 

If wait I/O, the task has been waiting (suspended) until the I/O operation completes. 
10CS returns to the task at the point following the I/O service call. 

7.4.1.1 Wait I/o Errors 

If an error occurs during an I/O operation to tape or disc, the handler automatically 
retries the operation. If retry operations fail, the handler passes the error to 10CS and 
10CS posts status in the FCB. (Word 3, and optionally Words 11 or 12.) The task can take 
action or not as described in the next section. When an error is detected on a card 
reader, line printer, or other device that does not have automatic retry, the handler 
passes the error to 10CS and 10CS issues a message on the OPCOM console indicating the 
device is not operating: 

*devmnc INOP: R,A? 

Sample criteria for the INOP message are: the printer runs out of paper or jams, a card 
reader jams, etc. IOCS allows the console operator to correct the condition (or abort). 
If the device is fixed, the operator types R (Retry). loes re-establishes the entry 
conditions for the handler (passes the TCW with the initial transfer count, etc.) and calls 
the handler to retry the I/O operation that was in error. The error status is cleared and 
I/O proceeds normally. If the operation aborts, IOCS starts abort processing. 

7-18 

c 



( 7.4.1.2 Wait I/O Exit and Abort Processing 

If error processing is not applicable (disc or magnetic tape) or if the operator has 
responded A (Abort) to the INOP message, IOCS either aborts the task or transfers 
control to the task at the address specified in Word 6 of the FCB. If the task gains 
control, it can examine the contents of the Word 3 and optionally Words 11 and 12 as 
applicable and perform its own exit or abort processing. 

If the user has not defined an error return address for wait I/o in the FCB, IOCS aborts 
the task and displays an abort message on the OPCOM console: 

I/O ERR DEVICE: devmnc STATUS statusword 

IOCS displays the status word 3 from the FCB on the OPCOM console. 

7.4.1.3 Error Processing and Status Inhibit 

The user can set Word 2 bit 1 of the FCB to bypass error processing by handlers and by 
10CS. On error, the status word of the FCB is still set by 10CS (unless bit 3 is set as 
described below), and IOCS transfers control to the task normally. The task must perform 
any error processing. 

If the user sets Word 2 bit 3 of the FCB, he inhibits handlers from checking status in any 
respect. No error status is returned to IOCS. All I/O appears to complete without error. 

7.4.2 N~Wait I/O 

If the user has indicated no-wait I/o in the FCB, IOCS returns control to the task 
immediately after an I/O request is queued. The task continues in execution in parallel 
with I/O. When the handler fields an 51 interrupt for the specified I/o operation, it 
notifies the MPX-32 Executive. The Executive links the I/O queue entry to a software 
interrup~ list for the task (a task interrupt). When the task is to gain control, the 
Executive passes control to IOCS. 

7.4.2.1 N~Wait I/O Complete Without Errors 

IOCS checks the address specified by the user in the FCB for no-wait I/O end action 
processing. If I/O has completed successfully, it routes control to the address provided 
by the user for normal end processing (word 13). (If the user has not specified this 
address in the FCB, IOCS returns control to the Executive, and the task continues in 
execution at the point where the task interrupt occurred.) 

7-19 



7.4.2.2 No-Wait I/o Complete With Errors 

When IOCS gains control on a task interrupt and an error has occurred, 10CS routes 
control to the task at the user-supplied error return address in the FCB (Word 14.) If the 
user has not supplied this address, control is returned to the Executive and then to the 
task so that it continues in execution at the point where the task interrupt occurred. 

The FCB (Word 3 and optionally Words 11 and 12) will indicate the cause of an error. The 
task is responsible for examining the word(s) and for any recovery procedure. 10CS makes 
no attempt to recover from an error condition through operator intervention when a task 
uses no-wait I/O. 

7.4.2.3 No-Wait End Action Return to IOCS 

A task using no-wait I/o end action processing should return to 10CS via an SVC I,X'2C' 
after normal or error processing is complete. 10CS will return control to the executive, 
which returns control to the task at the point where the task interrupt occurred. 

7.4.3 Direct I/O 

Within a task, the user can temporarily bypass normal 10CS and handler functions by 
coding his own handler and attaching it to a specific channel (service interrupt leveD. 
Direct I/O is totally under the user's control and is used to acquire data at rates which \ .. 
prohibit 10CS overhead. 

To perform direct I/O, the task basically passes a TCW directly to a device. It bypasses 
IOCS completely. The task is responsible for any control structures related to the I/O 
operation {it does not for example, have use of an FCB) and it must field interrupts on its 
own. The user must be familiar with the hardware, its response to software instructions, 
and must implement all support pertaining to I/O to the device. 

Before connecting his own handler, the user issues a Reserve Channel call to IOCS. IOCS 
then holds aU outstanding or subsequent requests for the specified channel until the task 
issues a Release Channel call. When IOCS receives the release request, it resumes 
normal processing on the channel with the standard handler. 

Direct I/O is not the same function a user fulfills by developing an I/O handler and 
linking it into the system at SYSGEN. Direct I/O is a privileged operation. 

7-20 



( 

7.4.4 Blocking 

I/O to disc files and magnetic tape is blocked or not depending upon the device 
assignment or the setting of Word 2 bit 5 of the FCB. If the user does not set bit 5, I/O 
will be blocked or unblocked as determined by the device assignment. If bit 5 is set, I/O 
will be blocked. The FCB definition will override any assignment specification of 
unblocked (specified explicitly on an ASSIGN 1 or ASSIGN3 directive or M.ALOC service 
call). 

For blocked I/O, IOCS automatically allocates and uses a ,I92-word blocking buffer that 
provides intermediate buffering between a task's data buffer and a device. A block is 192 
words long and records that can be packed into the block are a maximum 254 bytes long. 
Longer records are simply truncated. ~ --------, 

On input, IOCS transfers a block of records from a device into the blocking buffer and 
moves them into the task's data buffer one logical record at a time. On output, IOCS 
transfers one logical record at a time from the task's data buffer into the blocking buffer 
and outputs the accumulated records in 192-word blocks. 

Reads and writes to the same blocked file or tape by the same task should not be mixed 
because it interferes with the blocking buffer operations being performed by IOCS. A 
read attempted while IOCS is writing out a group of records to the blocking buffer (or a 
write when reading) is not executed and IOCS aborts the task. 

7.'j I/o Via Special System Files 

There are two types of temporary system files that a task or user can assign for I/O: 

System Listed Output (SLO) files are used to disc buffer output for printing. 

System Binary Output (SBO) files are used to disc buffer output in card 
format. 

There are two types of temporary system files used by the MPX-32 Job Control processor 
and by TSM to disc buffer I/O. These files are accessed by user tasks, but such access is 
controlled by the system to facilitate processing. 

System Control (SYC) files are used to control command processing. For 
batch, one SYC file is allocated, for each job submitted. The SYC file 
contains commands required to start, execute, and complete the job. TSM 
treats the user's terminal and any command files selected as an SYC file. 

System General Object (SGO) files are blocked files which are passed from 
one job step to another without implicit end-of-file marks. Typically SGO 
files are used to accumulate object code from an assembly or compilation 
and move it through cataloging or to a library. 

7-21 



1.'.1 System Listed Output Files 

System Listed Output (SLO) files are temporary disc files used to buffer output for 
printing. If assigned for output from a non-batch task, contents of the SLO file are 
accumulated on disc and output automatically to one of the device(s) established at 
SYSGEN or via OPCOM for automatic selection. Output begins only after the task 
deallocates the SLO file via an M.D ALC service call or after the system deallocates the 
file during task exit or abort termination processing. 

If SLO is assigned for output from a task running in the batchstream, it is' output after 
the job is complete. The automatic selection of a device can be overridden in batch by 
directing SLO to a specific device or permanent file on a $JOB statement. 

Tasks are allowed to READ from, WRITE to, REWIND, or WRITE an EOF to an SLO 
file. Writing an EOF causes IOCS to purge an SLO file that is output active. (See 
M.WEOF.) 

An SLO file is automatically blocked and deblocked by IOCS. (See Section 7.4.4.) The 
maximum record size on an SLO file is 132 bytes. 

With SLO files, a task can optionally fill up to three title buffers to be output at the top 
of each page when the contents are printed. The title buffers, which are 132 bytes each, 
are filled sequentially whenever a set of 1, 2 or 3 records specify minus (-) as a carriage 
control character. 

The number of title buffers to output is initialized for each set of records. For example, 
if three buffers are filled and later a minus (-) carriage control character is encountered 
in a record, only the first buffer (the most recent record) is printed on subsequent 
pages. Title record(s) continue to be printed until they are replaced by another set of 
one or more title records or until the current SLO file has been printed. 

1.'.2 System Binary Output Files 

A System Binary Output (SBO) file is a type of temporary file used to disc buffer output 
in card image format. When SBO output is directed to a card punch, the output is 
punched in either ASCII or binary format as determined by the first byte of the record. 
A binary record is a maximum 120 bytes long 0.5 bytes per card column} and an ASCII 
record is a maximum 80 bytes long (1 byte per card column). 

In other respects, handling of SBO files is identical to SLO files described previously. 

Title buffers do not apply. 

7-22 

·c··--··. / 



( 

( 

7.5.3 System General Object Files 

SGO is a permanent file used to accumulate object code. The SGO file exists until a job 
is complete, at which time it is deleted. User tasks designed to run in batch or TSM can 
do I/o to the SGO file. Legal operations are: OPEN, CLOSE, READ and WRITE. 
REWIND and WRITE EOF are allowed on input. 

Object code is collected sequentially on the SGO file. The open operation performed by 
the system when SGO is assigned does not set the current access address back to the base 
of the file. The file is positioned at the point the previous processor stopped accessing 
the file. This allows the accumulation of output from a compiler or assembler. In batch, 
object records following the $OBJECT statement on a job file can be accumulated on the 
SGO file for a job. In TSM, the $OBJECT capability is not available. 

A task which writes data to the SGO file should not write an end-of-file, or perform a 
rewind operation on the file to preclude destroying the contents. To read the SGO file, a 
task should open the file in the read-only mode, write an end-of-file, then rewind the file 
before beginning the read operation. If the SGO file is opened read-only, its contents are 
set to null when the file is closed. 

7.5.4 System Control Files 

SYC is a type of temporary system file associated only with jobs processed in the 
batchstream, one SYC per job. SYC is used for buffering input from the devices and/or 
files. Tasks that are not designed to run in the batchstream or under TSM should not 
make assignments to SYC. TSM makes a special default to SYC for on-line users 
accessing batch tasks: 

SYC = UT 

where 'UT' has been assigned by TSM to the user's terminal. 

An SYC file is created automatically for the user when the BATCH command is issued. 
The specified or implied file or device contents are copied by the system to SYC. 

Records having a dollar sign, "$", as the first character are assumed to be Job Control 
statements. If a batch task attempts to read a Job Control statement, an end-of-file 
status is returned in the appropriate FCB of the task. A task running in batch is aborted 
on a second attempt to read a Job Control statement. 

A Job Control $EXECUTE or $DEBUG statement activates a task in batch. Records 
which follow an $EXECUTE statement are read by the batch task specified on the 
$EXECUTE statement. 

A Job Control $OBJECT statement causes subsequent records to be put on the SGO file. 

Valid operations on SYC by user tasks include: OPEN, READ and CLOSE. Access is 
solely sequential; reads are destructive. 

7-23 



7.6 Setting up File Control Blocks 

Section 7.1 describes the function of an FCB. Parts of the FCB must be defined by the 
user: 

A logical file code is required. 

A Transfer Control Word (TCW) indicating transfer count and data buffer 
address for I/O operations controlled by this FCB is required. 

IOCS assumes the following if no other special I/O characteristics are defined in the 
FCB: 

Wait I/O - IOCS returns to the calling task only when a requested operation 
on the file or device assigned to this FCB is complete. 

Automatic retry on error by IOCS and some handlers as described in Section 
7.4.1. 

Device dependent output and input are handled using standard techniques. 

Status information is returned in the FCB. 

File and device access is sequential. 

Areas of the FCB can be used to define! 

No-Wait I/O - Immediate return to the calling task after I/O operation is 
queued. User can define address to return to in task when processing is 
com plete (normal or error). 

Error Processing Inhibit - Only status is returned by handlers. No error 
processing by IOeS or handlers. 

Special device output characteristics. 

Random access for disc files. 

Expanded Transfer Control Word (TCW) 

Some areas of the FCB are defined by IOCS. IOCS stores the opcode each time the task 
specifies a particular FCB, stores status returned by handlers, tracks actual record 
length in bytes for each transfer, and builds and maintains I/O queue and File Assignment 
Table (FAT) addresses. Figure 7-3 describes the FCB layout. In the diagram, areas which 
can be defined by the user are shaded. All but Words 0 and 1 are optional. The user 
should initialize to zero all portions of the FCB that he wants to let IOCS or handlers set 
up or that IOCS must handle. 

Overlay Considerations 

c 

When programs are cataloged as overlays, care must be taken to preserve the FCBs used 
in the course of the program until the files can be closed and deallocated. One way to 
ensure this is to construct the FCBs within the main program where they will not be 
destroyed by the loading of overlays. This will require that the appropriate address 
labels and externals be set up so that overlay segments which do I/O may connect with 
the FCBs. If the FCBs are contained within overlay segments, then the files associated C ... ", 
with the FCBs must be closed and deallocated before the segment is overlayed by 
another segment. 

7-24 



rwCOOE' , , , .. , " , ~~,~~: , , , I WOIID I 

o 1234,171 • 10 II 12 13 14 I' II n " " 20 21 22 23 24 2!i 25 27 21 21 3D 31 

I', , , : ~ : .. ,1·1 : ~T~~~R:-,~~, : , I ~ I 
o 1 2 3 4 5 I I. 10 II 12 13 14 15 II 11 II " 20 21 22 23 24 2!i 25 27 21 21 3D 31 

2 

12 13 14 Hi 11 17 II 111 20 21 22 23 24 2!i 25 27 21 21 3D 31 

3 

4 I . . , : , , ,: ~A~ R~~RD:LE~~ C~~ES: , , : , , , : , , , I 
o 1 2 3 4 5 II 7 • • 10 11 12 13 14 15 111 17 11 II 20 21 22 23 24 2!i 25 27 21 21 30 31 

5 I , , ~~~ , , I , , 
o 1 2 3 4 5 II 7 I I 10 II 12 13 14 15 II 17 II " 20 21 22 23 24 2!i 25 27 28 29 3D 31 

I I~A~?I :~~D, ( , •• : • , ~I~I~~~~~~ • I : •• I I 
o 1 2 3 4 5 I 7 I II 10 11 12 13 14 15 111 J7 II 111 20 21 22 23 24 2!i 2CI 27 21 29 30 31 

: I ' I : I " I 
o 1 2 3 4 5 I 7 I II 10 11 12 13 '4 15 111 17 11 " 20 21 22 23 24 2!i 25 27 21 29 30 31 

( "IF WOAD 2. BIT 115 SET. WOADS 1.11.10 ARE USED I-'STEAD OF WOADS 112" 

· I , I • : , , , : , i ' :-:~~~ , , , : , , , : , , , I 
o 1 2 3 4 5 II 7 I I 10 11 '2 13 14 IS 'I 11 II " 20 21 22 23 24 2!i 25 27 21 21 3D 31 

10 I , .. : , I ' : , II~~~~, , : , • , : , • , I 
o 1 2 3 4 5 I 7 I I 10 11 12 13 14 15 II 17 II II 20 21 22 23 24 25 21 27 21 21 30 31 

"EXTE~ED 110 ONLY .. 

II 
SfATUlWORD 

IENIE COMMAND RETURN OR EAI STATUI IIF WORD 2. liT 12 IS IETI 

o I 2 3 4 5 I 7 I II 10 11 12 13 14 15 11 17 11 III 20 21 22 23 24 2!i 25 27 21 21 30 31 

12 I , , , : , , , : , , I : I S;A~:WO~D,2 , : I ' , : I ' I': I ' , I 
o 1 2 3 4 5 I 7 I I 10 II 12 13 14 15 11 17 II " 20 21 22 23 24 2!i 25 27 21 21 3D 31 

··N().WAIT '.(l •• 

13 I , , ~~~ , , I , , , : , :-77~~~,+:-, , : , , , I 
o I 2 3 4 5 I 7 I I 10 11 12 13 14 '5 11 17 II II 20 21 22 23 24 2!i 25 27 21 21 30 31 

14 I , , ~~~ , I I , . , : , ,-:-:".~.IR~~,~~, , : ' • , I 
o I 2 3 4 f> I 7 I , 1011 12 13 14 15 11 17 II " 20 21 22 23 24 25 25 27 21 21 30 31 

c 11 I , , , : , , I : ,', ~~RV;D;~ F~RI ,EX:~ :,',:," I 
o 1 2 3 4 5 I 7 , I 10 11 12 13 14 IS II 17 II 11 20 21 22 23 24 25 21 27 21 21 3D 31 

820640 

Figure 7-3.File Control Block 
7-25 



Word/Bit 

1/12 
1/30,31 

2/0 
2/1 
2/2 

2/3 

2/4 

2/5 

2/6 

2/7 
2/8 

3/0 

3/1 
3/2 

3/3 
3/4 
3/5 

3/6 

3/7 

7-26 

Descriptor 

F 
C 

NWT* 
NER 
DFI* 

NST 

RAN 

BL 

EXP 

Reserved. 
DFD 

OP 

ERR 
BB 

PRO 
INOP 
BOM 

EOF 

EOM 

Description 

Buffer Address Definitions Set by User 

Format: l=byte, O=other 
Code: If Format = 1: byte number. If Format = 0: 

OO=word, Ol=left halfword, l1=right half word 

Control Flags - Special Format Indicators Set by User 

No-Wait I/O (Words 13-14). Else: Wait I/O 
No error return processing. Else: see Section 7.6.1.3. 
Data Format Inhibit. Use format in Bits 8-12. Default: 
10CS provides formats. See Table 7-7. 
No Handler Status checked. Handler status normally 
returned in Word 3 will not be returned, however, system 
status will be returned. Else: see Section 7.6.1.3. 
Random Access (user supplies address in Bits 13-30. 
Default: Sequential. 10CS supplies address. 
Blocked I/O, disc/tape only. Else: based on assignment. 
See Section 7.5.4. 
Go to Words 8, 9, 10 instead of Words 1 and 2. Default: 
Words 1 and 2. 
*For terminal I/O, see also TSM, Section 5.6.4, this 
volume. 

Device Format Definition. When· set, special definitions 
for 7-track tapes, ALIMs, ADSs, etc. are indicated in bits 
9-12. (See Table 7-7.) 

Status Flags Set by Handlers and System 

Operation in Progress. (I/O request has been queued.) 
Bit is reset after I/O post processing is complete. 
Error Condition found 
Invalid blocking buffer control pointers encountered in 
blocking or deblocking 
Write protect violation 
Device is inoperable 
BOM (load point) or illegal volume number (multi-volume) 
on mag tape 
End of File (TSM also sets this bit when <CTRL C> typed 
on terminal) . 
End of Medium (TSM also sets if other than <CR> at 
bottom of screen.) (End of tape, end of disc file.) 

Table 7-3 
FCB Bit Interpretations (Page 1 of 2) 



( Status for Extended I/o Devices Returned by Handlers 

3/10 TIME Last command exceeded timeout value and was terminated 
3/16 ECHO Echo on Channel 
3/17 INT Post-Task-Controlled interrupt on channel 
3/18 LEN Incorrect record. length on channel 
3/19 PROG Channel program check 
3/20 DATA Channel data check 
3/21 CTRL Channel control check 
3/22 INTF Interface check 
3/23 CHAI Channel chaining check 
3/24 BUSY Controller / device busy 
3/25 ST Controller/device status modified 
3/26 CTR Controller end 
3/27 ATTN Attention 
3/28 CHA Channel end 
3/29 DEV Device end 
3/30 CHK Unit check 
3/31 EXC Unit exception 

Status for Non-Extended I/O Devices Returned b~ Handler 

3/8-11 Test Testing Status as received from a 8000 level test 
Status device (TO) issued by handler 

3/12-15 DCC Controller status (DCC) as received from a 4000 

("/ 
Status level TD instruction 

3/16-31 Device Device status as received from a 2000 level TO 
Status instruction. Not applicable for PT, CR, or TY. See 

Table 7-4. 

Special I/O Status 

6/0 No-Wait I/o Normal End Action address not executed. 
6/1 No-Wait I/O Error End Action address not executed. 
6/2 KILL command. I/o was not issued. 

( " 

/ 
Table 7-3 

FeB Bit Interpretations (Page 2 of 2) 

7-27 



'I 
I 
N 
00 

Line 
Printer 
LP 

1101' Line 
Printer 

MAG 
TAPE 

MT 

MOVING 
HEAD 
DISC 

OM 
(EXCEPT 
100MB) 

FIXED 
HEAD 
DISC 

OF 

CARD 
READER! 
PUNCH 

CD 

CART. 
DISC 

DC 

MOVING 
HEAD 
DISC 

OM 
(100MB) 

OTHER* 

HIGH 
SPEED 
DATA 
INTERFACE 
(GENERIC 
HANDLER) 

~. 

" 

16 17 

CD PROG 
TERM VIO 

0 0 

I~~RM PROG 
VIO 

CD PROG 
TERM V.I0 

CD PROG 
TERM VIO 

CD PROG 
TERM VIO 

CD PROG 
TERM VIO 

IcD PROG 
TERM VIO 

CD 
TERM 

Table 7-4 
Non Extended I/o Device Status 

(2000 Level) 
Word 3 Bits 

18 19 20 21 22 23 211 25 26 27 

DEV 0 0 0 0 0 0 BOF 0 0 
INOP 

0 0 0 0 0 0 0 0 0 0 

DEV VRC 0 REW CRC DATA 0 EOT BOT EOF 
INOP IN LRC LOST 

PROG 

DEV CKSM CKSM FILE SEEK DATA 0 SEC- SEC- SEC-
INOP ERR ERR UN- IN LOST TOR TOR TOR 

(HW) (SW) SAFE PROG BIT BIT BIT 
8 II 2 

DEV .'CKSM CKSM 0 SLCT DATA 0 SEC- SEC- SEC-
INOP ERR ERR IN LOST TOR TOR TOR 

(HW) (SW) PROG BIT BIT BIT 
SECTOR SECTOR 8 II 2 
BIT 32 BIT 16 

DEV ECHO 0 PHOTO 0 0 0 0 0 0 
INOP CK. DIO 

ERR 

DEV CKSM CKSM DEV SEEK DATA 0 OFFSET ADDR DUAL 
INOP ERR ERR ABNOR- IN LOST ACTIVE ERR TRK 

(HW) (SW) MAL PROG -
DEV UN COR CKSM FAULT SEEK CDR 0 0 ADR 0 
INOP DATA ERR IN DATA ERR 

ERR (SW) PROG ERR 

ERROR STATUS FORMAT EXTERNAL IOCB ERR 
(See Word 3 description) TERM ADDR ON 

ERR TI ADDR 
FETCH 

*TY, PT, CR not applicable 

~8 29 30 31 

0 DEV 0 0 
BUSY 

~HAN DEV UNIT 
~ND END CK BOF 

0 DEV FILE ODD 
BUSY PROT REC 

VIO LGT 

TCA SEC- FILE TRK 
ERR TOR PROT ERR 

BIT VIO 
I 

TCA SEC- FILE 0 
ERR TOR PROT 

BIT VIO 
I 

0 DEV 0 0 
i 

BUSY 

I 
TCA EOP FILE SEEK 

I 

ERR PROT ERR 
VIO 

TCA 0 0 SEEK 
ERR ERR 

i 

: 
I 
! 

DEV EP5 NON EXECUTE 
EOB ERR CHANNEL PROGRAM 

PRE- IOCB TYPE IN 
CLUDED ERROR 
REQUEST OO-DATA TRANSFER 
QUEUEING Ol-DEV STATUS 

IO-COMMAND 
TRANSFER 

\" 



( 

7.6.1 FCB Word Descriptions 

7.6.1.1 Word 0 

IOCS defines the I/O operation indicated by the task (READ, WRITE, etc.) in terms of 
the operation allowed on an assigned device or file; user defines the logical file code (lfe) 
used externally to assign a file or device for the operation. 

Bits 0-3 

Bits 4-7 

Bits &-31 

7.6.1.2 Word 1 

This field is always zero. 

Operation Code - IOCS uses a single hex digit to indicate the 
type of function for the device handler. Allowable functions 
and their definitions are unique to each peripheral device. (See 
Table 7-5.) 

Logical File Code - Any combination of three ASCII characters 
is acceptable. MUst be supplied by user. 

This word (or Words & and 9 if bit 6 of Word 2 is set) supplies a Transfer Control Word 
(TCW) used to access a data buffer or IOCL for I/O (see below). If no TCW definition is 
supplied, the transfer buffer defaults to location 0 of the task's logical address space 
(below the operating system) and is 4096 words (4KW) maximum. 

Bits 0-11 Count - Three hex digits specify the number of units (bytes, 
halfwords, or words) to be transferred to or from a device or 
file. The count must include a carriage control character, if 
applicable. The units the count relates to are determined by 
the data buffer address in bits 12-31. The maximum value of 
this field is 4096 words. For blocked files, 254 bytes is the 
maximum transfer. For unblocked files, the maximum value of 
this field is 4096 words. A zero, negative, or greater than 
maximum count will default to the maximum transfer count. 

or 

Number of Data or Command Chain Doublewords - For data/ 
command chaining (e.g., to a GPMC or AD! controller via the 
Execute Channel service) SVC I,X'25', bits 0-11 indicate the 
number of data or command chain doublewords in the I/O 
Command List (IocU. The address of the list is provided in 
bits 12-31. 

7-29 



The F bit (12) and C bits (30 and 31) of the data buffer address are set by IOCS according 
to the definitions in the following bits. 

7-30 

Bits 12, 
30 and 31 

Format Code - These bits specify byte, halfword, or word 
addressing for data transfers. They are interpreted as follows: 

Type of 
Transfer 
Byte 
Half word 
Word 
where: 
xx 
y 

00 

F 
(Bit 12) 

1 
o 
o 

CC 
(Bits 30-31) 

xx 
yl 
00 

- Byte number (00, 01, 10 or 11) 
- 0 left Halfword 

1 Right Halfword 
- Word 

If a half word or word transfer is specified and a device accepts only bytes, 
IOCS adjusts the count accordingly (x2 or 4). If a byte transfer is specified 
and a device accepts only halfwords or words, IOCS checks to see that the 
number of bytes in the buffer is an even multiple of the requested transfer 
and that the data buffer address is on an acceptable boundary. If these 
conditions exist, IOCS adjusts count accordingly (times 0, 2, or 4) and 
initiates the transfer. If the conditions are not met, the request is treated as 
a specification error. Table 7-6 indicates transfers that are acceptable for 
various devices. Addresses that will produce specification errors are flagged 
with an asterisk. 

Note that IOCS operations described above enable the user to specify byte 
transfers beginning on a word boundary or word transfers on any device, 
whether the device operates on bytes, words, or halfwords. 

Doubleword addressing is not allowed; IOCS will abort the task. 

Bits 13-29 Data Buffer Address - Specifies the start address of a data 
buffer reserved by the user for reads and writes. Bounding 
requirements are indicated in Table 7-6. 

or 

Data/Command Chain Address - Specifies the address of an 
IOCl to use when the Execute Channel service (SVC I,X'25') 
is called. The IOCl in turn supplies an IOCD entry describing 
the transfer count, buffer address -and other control 
information for each command or data transfer to the device. 

c 

(~ 



'-I 
I 

Vo) .... 

~ 

Operation 

Open 
(M.FILE) 

Rewind 
(M.RWND) 

Read Record 
(~.READ) 

Write Record 
(M.WRIT) 

Write EOF 
(M.WEOF) 

Execute Channel 
(Extended I/O 
or GPMC or HSD 

laCS Line Printer 
pp Code (LP) 

0 lacs opens. 
(See Section 7.8) 

I Eject; set 
BaM bit 0/5) 
in FCB. 

2 Spec error 

3 Write from 
data buffer 
described in 
TCW . 

4 Nap 

5 Spec error 

~ 

Table 7-5. Device Functions (Standard Devices) 

Card Reader Floppy Disc ~ag Tape 
(CR) (FU (MT) 

Nap lacs opens lacs opens 
(See Section 7.8.9) (See Section 7.8.9) 

Set BaM bit. Set current Rewind Tape. 
block address 
to zero (FAT) 

Read card Read to data Read to data 
(80 max ASCII) buffer as buffer as 
(120 max BIN) described in described in 

TCW TCW 

Spec error Write from data Write from data 
buffer described buffer described 
in TCW; if blocked, in TCWj if blocked, 
laCs writes 'n' writes 'n' data 
data buffers to buffers to blocking 
blocking buffer buffer before 
before output output 

Spec error If blocked lacs Write EOF 
writes EOF. If 
unblocked writes 
X'OFOO' 

Spec error Invalid Invalid or Execute 
Channel if Extended 
I/O 

.~ 

Page 1 of 3 

Disc Data (HSD) 
(DM/DF/DC) Interface 

-

lacs opens Nap - intended for 
(See Section 7.8.9) user device speci-

fic processing. 

-

Set current Send device 
block address command 
to zero (F AT) 

Read to data Read to data 
buffer as buffer as 
described in described in 
TCW expanded TCW 

Write from data Write from 
buffer described data buffer 
in TCW; if blocked, described in 
lacs writes 'n' expanded TCW 
data buffers to 
blocking buffer 
before output 

If system file or Send device 
blocked, lacs command 
writes EOF else 
Nap 

----

Invalid or Execute Logical or physical 
Channel if Extended 'Start I/O' format 
I/O request 

--- ------- '----



...... 
I 
\"J 
N 

Operation 

Advance 
Record 
(M.FWRD) 

Advance File 
(M.FWRD) 

Backspace 
Record 
(M.BACK) 

Backspace 
File (M.BACK) 

Upspace 
(M.UPSP) 

Erase or 
Punch Trailer 
Not user 
IOCS/handler 
provide call 
automatically 

~ 
'~ ~;/ 

IOCS Line Printer 
Op Code (LP) 

6 Spec er~or 

7 Spec error 

8 Spec error 

9 Spec error 

A Upspace 

B NOP 

Table 7-5. Device Functions (Standard Devices) Page 2 of 3 

Card Reader Floppy Disc \Aag Tape 
High Speed 

Disc Data (HSD) 
(CR) (FL) (MT) (D\\/DF/DC) Interface 

Skip card If blocked, Advance record If blocked, Send device 
advance record; advance record; command 
if unblocked, if unblocked, 
advance one advance one 
192W block. 192W block. 

Advance file Advance file Advance file NOP Send device 
(past X'OP-
pseudo EOF) 

(past EOF) (past EOF) command 

Spec error If blocked, Backspace If blocked, Send device 
backspace record backspace command 
record; if record; if 
unblocked, unblocked, 
backspace one backspace one 
192W block 192W block 

Spec error Backspace file Backspace NOP Send device 
(past EOF) file to command 

previous EOF 

NOP Format diskette. Multivolume: If NOP Send device 
Virgin diskettes BOT, writes volume command 
must be formatted record. If EOT, 
proir to normal performs ERASE, 
usage. writes EOF, and 

issues \iOUNT 
message. Not Multi-
volume: Writes a 
10 byte record of 
ASCII blanks. 

NOP Spec error \0\ ul ti -volume NOP Send device 
only. Same as command 
upspace above. 
Erases 4" of 
tape before 
writing. 

,'# ."' ~I 



...... 
I 
VJ 
VJ 

~ 

IOCS Line Printer 
Operation Op Code (LP) 

Eject/PlrIch C Eject to top of 
Leader form 

Close D IOCS closes 
(M.CLSE) (See Section 

7.8) 

Reserve FHD E Spec 
Port Error 

Release FHD F Spec 
Port Error 

Note: NOP = No Operation Performed 
Spec Error = Illegal Opcode 

Example: ~.READ on Line Printer 

~ ~ 

Table 7-5. Device Functions (Standard Devices) Page 3 of 3 

High Speed 
Card Reader Floppy Disc Mag Tape Disc Data (HSD) 

(CR) (FL) (MT) (mA/DF/DC) Interface 

NOP Spec error Write dummy NOP Send device 
record with command 
eject control 
character as 
first character 

' IOCS closes IOCS closes IOCS closes IOCS closes NOP, complementary 
(See Section (See Section (See Section (See Section function to open 
7.8) 7.8) 7.8) 7.8) 

Spec Spec Spec Reserve port - Send device 
Error Error Error 4 MB disc only; command 

else, spec error 

Spec Spec Spec Release port - Send device 
Error Error Error 4 MB disc only; command 

else, spec error 



Table 7-5a. Device Functions (Terminals) 

TERMINALS (Describes Handler Action Only) 
(TV) 

IOCS 
Op Handler = H.ASMP Handler = H.A810P Handler = H.TY 10 

Operation Code (ALIM) (8-Line) (ADS) 

Open 0 NOP Initialize lOP NOP 
M.FILE Channel if Necessary 

Rewind 1 NOP NOP Eject; Set BOM 
M.RWND Bit in FCB 

Read Rec. 2 Read to Data Read to Data Read to Data 
M.READ Buffer Buffer Buffer 

Write Rec. 3 Write Record to Write Record to Write Record to 
M.WRIT Terminal Terminal Terminal 

Write EOF 4 NOP NOP Sets Ring Mode 
M.WEOF 

Execute 5 Execute Channel SPEC ERROR NOP 
Channel 

Advance 6 Connect Communi- Set Data Terminal NOP 
Record cations Channel Ready 
M.FWRD 

Advance 7 Disconnect Com- Reset Data NOP 
File munications Terminal Ready 
M.FWRD Channel 

Backspace 8 Initialize Dev- Used by J.TINIT to NOP 
Record ice and Set Initialize Terminals 
M.BACK Timeout Value 

Backspace 9 Clear Break NOP Reset Break 
File M.BACK Status Flag Word (Dummy Service) 

Upspace A SPEC ERROR SPEC ERROR NOP 
M.UPSP 

Erase/Plilch B Transmit Break Set/Reset Break NOP 
Trailer (depends on flags 

in FCB) 

Eject/Punch C SPEC ERROR SPEC ERROR NOP 
Leader 
M.EJECT 

Close D NOP NOP NOP 
M.CLSE 

Reserve FHD E SPEC ERROR SPEC ERROR NOP 
Port 

Release FHD F SPEC ERROR SPEC ERROR NOP 
Port (/ 

.-

NOP = No operation performed SPEC ERROR = Illegal operation code 

7-34 



( 

c 

Table 7-6. Acceptable/Nonacceptable Device Transfers 
Specified in TCW Word 1, Bits 12 and 30/31 

Device Transfers 

FCB Format/Bounding Words Halfwords 

Bits Bits 
12 ~0/31 Q ~0/31 -

Word 0 00 0 00 

Left Halfword 0 01 0 01 

Right Halfword 0 11* 0 11 

Byte, first even 1 00 1 00 

Byte, third even 1 10* 1 10 

Byte, any odd 1 xl* 1 xl* 

Bytes 

Bits --12 -
0 

0 

0 

1 

1 

1 

* Writes to/reads from device will result in IOCS abort with this FCB definition. 

30/31 

00 

01 

11 

00 

10 

xl 

7-35 



7.6.1.3 Word 2 

Word 2 provides optional control specifications for I/O. 

Bits 0-7 

7-36 

Operational Specifications - These eight bits enable the user 
to specify that special operations such as no-wait I/O be 
performed by IOCS. The meaning of each bit is as follows: 

o - If this bit is set, IOCS will return to the user 
immediately after the I/O operation is queued. If the 
bit is reset, IOCS will exit to the calling program only 
when the requested operation has been completed. 

I - If this bit is set, error processing will not be performed 
by either the device handler or IOCS. Normal error 
processing for disc and magnetic tape is automatic error 
retry. Error processing for unit record devices except 
the system console is accomplished by IOCS typing the 
message "INOP" to the console which allows the 
operator to retry or abort the I/O operation. If the 
operator aborts the I/O operation, or if automatic error 
retry for disc or magnetic tape is unsuccessful, an error 
status message is typed to the console. An error return 
address is not applicable if this bit is set, however, the 
device status will be posted in the FCB (unless bit 3 is 
set). 

2 - When this bit is set, data formatting is inhibited. 
Otherwise, data formatting is performed by the 
appropriate device handler. (See Bits 8 through 12 for 
further explanation.) 

3 - If this bit is set, the device handlers perform no status 
checking and no status information is returned. Hence 
all I/O will appear to complete without error. 

4 - When this bit is set, file accessing will occur in the 
random mode. Otherwise, sequential accessing will be 
performed. 

5 - If set, a blocked file is specified (disc or tape 
assignments only). 

6 - Expanded FCB present (Words 8-15). This takes 
advantage of a larger I/O transfer quantity (in bytes), a 
24-bit addressing field, and a 32-bit random access 
address. For Extended I/o operations, up to two 
interrupt status words are then returned after I/O 
complete. When this bit is set, IOCS assumes the FCB 
is 16 words long. The information in Words 8 and 9 is 
used instead of the data in Word 1. Also, the random ( 
access address in Word 10 is used instead of the data in 
Word 2. j 



(~ 
Bits 8-12 

B.its 13-31 

7 - If this bit is set, a task will not be aborted even if an 
error condition occurs that would cause the task to be 
aborted. 

Device Control Specification - These bits contain control 
specifications unique to certain devices. Device handlers 
interpret and process the specifications. A bit setting is 
meaningful only when a particular type of device is assigned 
as indicated in Table 7-7, columns 2 and 3. (Column 1 
indicates default control.) 

Random Access Address - This field contains a block number 
(zero origin) relative to the beginning of a disc file, and 
specifies the base address for read or write operations. 

Note: If bit 6 of Word 2 is set, the expanded random access address in Word 10 is used 
instead of bits 13-31 above. 

For High Speed Data (HSD) Interface applications, Word 2 bit meanings are as follows: 

Bit 2 

Bit 8 

Bit 9 

Bit 10 

Bit 11 

Bits 24-31 

For Execute Channel Program, if set, physical 10CL is 
specified. 

Request Device Status After Transfer - This bit indicates an 
10CB should be added to the IOCL to retrieve device specific 
status after the data transfer has completed. 

Send Device Command Prior to Data Transfer - This bit 
indicates an 10CB should prefix the data transfer to transmit 
a device command word to the device. The value sent is the 
32-bit expanded random access address. 

Disable Timeout for this Request - This bit indicates the 
operation will take an indeterminable period of time and the 
handler should wait an indefinite period of time for the I/O to 
complete. This generally only has meaning on read 
operations. 

Set UDDCMD from Least Significant Byte of Word 2 - This 
bit indicates that the UDOCMD byte in the data transfer 
10CB should be set to the least significant byte of the random 
access field of the FCB. This provides the ability to pass 
additional control information to the device without 
modifying the device driver. 

If bit 11 is set, these bits define the UDDCMD field of the 
generated 10CB, overriding the default value from a handler 
table. 

7-37 



....... 
I 

\.W 
00 Device 

Card Reader 
Punch (CR 
or CP) 

Floppy Disc 
(FL) 

Line 
Printer (LP) 

TLC Terminal 
or Teletype 
(TV or CT) 

High Speed 
Data (HSO) 
Interface 
(Generic Handler) 

Paper Tape 
Reader (PT) 

Paper Tape 
PlI"Ich (PT) 

o 

Default 
(Bit 2=0) 

Read/P\D'lch Auto 
Select Mode. 
First column -
Rows 2-5, all 
P\D'lched = binary, 
no translation, 
max. 120 bytes. 

Not all punched = 
ASCII, translate, 
max 80 bytes. 

EOF = column I, 
Rows 2-5 only 
P\D'lched. Binary, 
no translation (X'OF'). 
Max 120 bytes. 

Report EOF if 
X'OFOO' encountered 
in word 0 during 
read of an lI"Iblocked 
record. 

Interpret first 
character as 
carriage control. 

Interpret first 
character as. 
carriage control. 

Logical IOCL 

Read in formatted 
mode, skipping 
leader 

P\D'lch in formatted 
mode. 

Table 7-7. Default and Special Device Formatting 

Override 
(Bit 2=1) 

See Bit 8. 

No EOF reporting 
on \D'lblocked 
reads. 

No carriage 
control 
interpretation 

No carriage 
control 

See Word 2 
definition 

Read lI"Iformatted 

Punch lI"Iformatted 

Bit 8 Bit 9 

O=ASCII read/p\D'lch 
l:Binary read/punch 

See Word 2 definition See Word 2 
definition 

0=00 not skip leader 
I=Skip leader 

( 

Page I of 2 

Bit 10 Bit 11 Bit 12 

.-

See Word 2 See Word 2 See Word 2 
definition definition definition 

~ 
'" j 



'.J 
I 
~ 
\0 

t", 
\, .I 

Device 

Mag Tape 
(MT,7-
track only) 

(MT 9-
track only) 

Discs 
(DM,DF) 

ALlM 
(Asynchronous 
Line Inter-
face Module) 
Terminals 
(TV) 

ADS 
(Asynch-
ronous 
Data Set) 
(TV) 

8-Line 
Asynchronous 
Communications 
Multiplexer 
(TV) 

Default 
(Bit 2=0) 

Binary, ODD 
parity, 800 bpi 

N/A 

N/A 

Read: receive 
data (bytes) 
defined for 
transfer count. 

Write: formatted 

Read: perform 
special charac-
ter formatting. 

Write: first 
character is 
for form control. 

~ I , 

Table 7-7 Default and Special Device Formatting 

Override 
(Bit 2=1) 

See Bits 8-10 

Bit 2 
Read -0-

0 
1 
0 

Write 0 
0 
I 

Read:read n bytes 
with no format-
ting.* 

Write n form 
control. 

*Note: User is 
responsible for 
setting appropri-
ate bits for his 
particular 
application. 

Bit 8 

O=lnterchange 
(binary coded 
decimal) 
1=Packed (binary) 

Bit 8 Bit 9 
-1- -0-

0 1 
N/A N/A 

0 0 

N/A 0 
N/A I 
N/A N/A 

I 

0 

Transmit break 
(erase, punch 
(trailer): 
O=Stop transmit-
ting break 
I =Start trans-
mitting break. 
Read: I=ASCD 
control character 
detect 

Bit 9 Bit 10 

If Bit 8=0: 0=800 bpi 
O=EVEN parity 1=556 bpi 
1=ODD parity 

On Read: 
=Blind mode reset 1= Inhibit 
=Echo on read conversion of 
=Receive data lower case 
=Receive data characters to 

upper case 
=Formatted write 0= Convert 
=Initialize device 
=Unformatted write 

= Handler to Same as ALIM 
issue LCW above 
command to 
ADS 

= No LCW 

Read: O=Echo by Read (if Bit 
controller 2=0): O=con-
I=No echo by vert lower 
controller case characters 

to upper case 
Write: O=Normal I =Inhibit con-
write version of lower 
I =Ini tialize case characters 
device (load to upper case. 
UART parameters) 

~ 

Page 2 of 2 

Bit 11 Bit 12 

I = Handler to Expanded FCB 
issue TXB only (Bit 6 set) 
command to I =Post External 
ADS Asynchronous 

0= No TXB Interrupt status 
in Word 11 

O=Do not post 
status 

H.F810P only H.F8IOP only 
Read: O=no Read: O=do not 
Special char- purge type 
acter detect ahead buffer 
l=special I =purge type 
character ahead buffer 
detect 

Write: 
O=normal write 
l=write with 
input subchannel 
monitoring 



(SPROO<ET) (. 
-~/ 

8 7 6 5 4 3 2 1 

a b b b c c c c where: 

c c c c c c c c a - Punched to indicate an 
End-of-File record 

d d d d d d d d b - Consists of three bits 
that are always punched 

d d d d d d d d to provide a Start Code 
to the reader 

d d d d d d d d 

d d d d d d d d c - Consists of a 12-bit 
number specifying the 

d d d d d d d d number of data bytes in 
the record 

d d d d d d d d 

d d d d d d d d d - Consists of 1 to 4095 
data bytes 

e e e e e e e e 
e - Ten frames of leader to 

separate records 
820617 

Figure 7-4 Punched Tape Format 

7-40 



(-

Control 
Character 

(Position 1) 

Blank 

0 

1 

+ 

-

Table 7-8 Standard Terminal and Line Printer 
Carriage Control Characters and 

Interpretation 

Result 

Hex 
Value Terminal Line Printer 

20 Linefeed/carriage Single space 
return before write before print 

30 Two linefeeds/ Doublespace 
carriage return before print 
before write 

31 Five linefeeds/ Eject page 
carriage return before print 
before write 

2B No linefeed before No space 
write. Carriage before print 
return only. 

2D Same as 1 Eject and print 
SLO header 
record* 

* A task can output up to three 132-byte maximum header records at a time to an 
SLO file. Each record would have a minus sign in the first position. (See Section 
7.6.1.) 

7-41 



7.6.1.4 Word 3 

Word 3 returns I/O status. IOeS uses 32 indicator bits to return the status, error, and 
abnormal conditions detected by handlers during the previous or current device 
operation. The task can examine these bits as needed. Individual bit assignments for bits 
0-7 apply to any device. Bits 8-31 mean different things depending on the device. For 
extended I/O devices, individual bits are shown in the FeB Word 3 area of Figure 7-3 and 
described in Table 7-3. For non-extended I/O devices, test status, controller (DeC) 
status, and device status are returned as described in Table 7-4, which accompanies the 
FeB diagram in Figure 7-3. 

For High Speed Data (HSD) Interface applications, Word 3 error status bits have the 
following meanings: 

Bits 17-18 Unused 

Bits 19 Record length error 

Bit 20 Parity Error 

Bit 21 Nonpresent memory (NPM) 

Bit 22 Invalid opcode in lOeB Word 0 

Bit 23 Device inoperable 

Bit 24 Data buffer overflow 

7.6.1.5 Words 4 and 5 

Word 4 defines record length. This word is used by IOeS to indicate the actual number of 
bytes transferred during a read or write. . 

Word 5 defines I/O queue address in bits 8-31. This field is set by IOeS to point to the 
I/O queue for an I/O request initiated from this FeB. 

7.6.1.6 Word 6 

In bits 0-7, IOeS returns special status bits as described in Table 7-3. 

Word 6 defines a wait I/O error return address in bits 8-31. Specify the address to 
transfer control to in the case of an unrecoverable error. If this field is not defined, an 
unrecoverable error is detected, and the user has not set bits 1 and 3 of Word 2 to inhibit 
error processing, IOeS aborts the task. 

7-42 

C: 

,-' 

( " ./ 

c 



( 

( 

7.6.1.7 Word 7 

Word 7 must not be written by the user. It defines the File Assignment Table (FAT) 
entry associated with all I/O performed on behalf of this FCB. The FAT address is 
supplied by IOCS. 

7.6.1.8 Word 8 

Word 8 begins expanded TCW definition. This area of the FCB can be used to define 
transfers larger than 4096 words, e.g., for extended I/O devices. 

Bits 8-31 

7.6.1.9 Word 9 

Expanded data buffer address - specifies the start 
address of a data buffer reserved by the user for 
reads or writes. This must be a logical byte address 
with no format bit present. Word bounding is 
required for some devices if unblocked. 

or 

Expanded Data/Command Chain List Address - Word 
address that points to the data or command chain list 
(JOCl) if using Execute Channel service, SVC 1,X'25'. 

Word 9 continues the expanded TCW definition. 

Bits.0-31 

7.6.1.10 Word 10 

Expanded transfer count - eight digits specify the 
number of bytes to be transferred. Note that the 
transfer count supplied here is always in byte units. 
Must include the carriage control character, if 
applicable. A zero or negative count defaults to the 
maximum allowable count (254 bytes if blocked). 

Word 10 defines expanded random address. This word contains a block number (zero 
origin relative to the beginning of the disc file). It is the start address for the current 
read or write operation. 

For High Speed Data (HSD) Interface requests in non-Execute Channel Program format, 
this word defines a device command. 

7-43 



7.6.1.11 Word 11 

Word 11 returns status. 

Bits 0-31 

7.6.1.12 Word 12 

Status word 1 - for extended I/O, if an error is detected 
during an I/O operation, these 32 bits are returned by the 
SENSE command. 

or 

Status EAI - for communications adapter (CA) interface, 
returns external asynchronous interrupt (EIA) status if bit 12 
of Word 2 is set. 

Word 12 returns status word 2. This is the second status word returned from extended 
I/o hardware. 

For High Speed Data (HSD) Interface applications, this word contains status sent from 
the user's device. 

7.6.1.13 Word 13 

Word 13 defines normal return address for no-wait I/O. In bits 8-31, specifies address to 
transfer control to when a no-wait I/o operation is complete. The code at this address 
must be terminated with a call to 10CS for post-processing service (SVC ·1,X'2C'). See 
Secti on7 .4.2. 

For High Speed Data (HSD) Interface applications, this address plus 1 word is the location 
to which control is transferred on asynchronous notification. 

7.6.1.14 Word 14 

Word 14 defines an error return address for no-wait I/O. In bits 8-31, specifies 
(optionally) the address to transfer control to when no-wait I/O completes with an 
error. The code at this address must be terminated with a call to 10CS for post 
processing service (SVC I,X'2C'). See Section 7.4.2. 

7.6.1.1.5 Word 1.5 

Word 15 is reserved for I/o service expansion. 

7-44 

c 



( 

7.6.2 Macros 

The M.DFCB or the M.DFCBE macro can be used to define an FCB or an expanded FCB, 
respectively. 

Syntax: 

where: 

M.DFCB [E] 

label 

lfc 

count 

buffer 

error 

random 

NWT/NER/ 
DFI/NST/ 
RAN/ 

ASCII/BIN 

LDR/NLD 

INT/PCK 

EVN/ODD 

556/800 

nowait 

nowai terror 

label, lfc, count buffer [error] 
, [r andom] , ~NWTj [' [JERi , [DFI] , [NST] 
, [RAN] , ~ASC , LDR '~INT] , r EVN] 

BIN NLD PCK LODD 
, [556], nowai t], [nowai error] 

800 

ASCII string to use as symbolic label for address of this 
FCB. 

Logical file code; see Word 0, bits 8-31. 

Transfer count. See Word 1, bits 0-11. Specify in number of 
bytes. For expanded FCB, see Word 9, bits 0-31. 

Start address of data buffer. (Reserve on Word boundary.) 
See Word 1, bits 12-31. For expanded FCB, see Word 8, bits 
8-31. 

Error return address for wait I/o (see Word 6, bits 8-30. 

Random access address. See Word 2, bits 12-31. For 
expanded FCB, see Word 10, bits 0-31. 

See Table 7-3. 

For CR or CP, see Table 7-7. 

For PT (Reader), see Table 7-7. 

For 7-track mag tape, see Table 7-7. 

Parity, see Table 7-7. 

Bits per inch density, see Table 7-7. 

M.DFCBE (expanded FCB) only. Specifies address for 
normal no-wait I/O end action return. 

As above. Specifies address for no-wait I/o error end action 
return. 

7-45 



7.6.3 Sample FCB Setup Non-Macro 

User defines an FCB for terminal message output: 

TERM 

MESSAGE 

TY.LEN 
ERRTYPE 

DATAW 
GEN 
REZ 
EQU 
DATAB 
EQU 
EQU 

G'UT' 
12/B(TY.LEN),20/B(MESSAGE) 
6W 
$ 
C' "M"J CREATE FAILED. ERRTYPE 
$-MESSAGE 
$-IB 

Notes: The source code uses TERM with M.WRIT to access this FCB. The logical file 
code is UTe The Transfer Control Word built with the GEN directive has a transfer count 
equal to the message (TY.LEN EQU $-MESSAGE), computed by the Assembler. 

The buffer start address is at MESSAGE (address is supplied by the Assembler). In the 
actual message, "M indicates carriage return and "J indicates line feed before output. 
The last byte of the message comes from Register 5 when an error occurs as defined by: 

C.MSG EQU $ 
M.CONBAD 
STB R5,ERRTYPE 
M.WRIT TERM 

7.6.4 Sample FCB Setup-Macro 

7-46 

MESSAGE 

TY.LEN 
ERRTYPE 

M.DFCB 
EQU 
DATAB 
EQU 
EQU 

TERM, UT, TY.LEN, MESSAGE 
$ 
C' "M"J CREATE FAILED. ERR TYPE ' 
$-MESSAGE 
$-IB 

c 



( 7.7 Setting Up Type Control Parameter 8locks (TCP8's) for the OPCOM 
Console 

Messages are sent from a task to the OPCOM console and a response optionally read back 
via a TCPB. The TCPB sets up task buffer areas for messages output by the task and 
reads back from the console. 

The TCPB is comprised of a Write and an optional Read Transfer Control Word defined 
like the TCW in Word 1 of the FCB. If read back from the terminal is not desired, the 
Read TCW must be zero. The user must perform his own carriage return and line feed. 

The size of the read buffer should include space for both an input character count 
preceding the message (provided by IOCS) and the carriage return (end-of-record) 
character typed by the user at the end of an input line. 

The count of input characters actually typed is placed by IOCS in the first byte of the 
read buffer. This input count does not include the carriage return character. 

The byte transfer count is normally used by a task as maximum allowed input before 
termination. If the operator types in the maximum count without having typed a carriage 
return, the read is terminated. 

The end-of-record character (carriage return) is normally allowed for in both the read 
and write buffer transfer count. If five characters are expected, the read transfer count 
would typically be for six characters. This allows the operator to type in and verify the 
correctness of all five characters before terminating the input message by striking a 
carriage return. 

Message transfers are always in bytes, hence the buffer address must be a byte address 
(F-bit setting-bit 12 as shown in Figure 7-5). 

If the NWT bit is set (Word 2, bit 0) IOCS returns immediately to the calling task after 
the message is queued. The task can subsequently examine the OP indicator set by IOCS 
in Word 2, bit 31 to see if the requested transfer is complete (0) or in process 0). 

WORD 0 
1 

2 

o 12 30 31 
OUTPUT COUNT 11 I OUTPUT DATA BUFFER ADDRESS I BYTE 
INPUT COUNT 111 INPUT DATA BUFFER ADDRESS I BYTE 

N 
W RESERVED 0 
T P 

Bit Interpretations 

Word 2, Bit 0 is set to define no-wait I/O. NWT 
OP Word 2, Bit 31 is set by IOCS if an operation is in progress. 

820618 

Figure 7-5 Type Control Parameter Block 

7-47 



7.8 Services 

Services pertaining to file and device allocation and I/o are summarized below and 
described in detail in this section. Special operations performed for a task are: 

OPEN 

CLOSE 

- If not issued by the task, IOCS opens the file or device 
read-write. 

- If not issued by the task, the file is closed automatically 
and a device is deallocated automatically during task 
termination. 

Services are organized alphabetically by macro names. The services that are not macro 
callable, but yet available to the user, are described at the end of the section. 

SVC numbers and short alpha descriptors are listed under the macro name. Appendix B 
provides cross reference charts. 

Standard MPX-32 conventions are used in syntax statements. 

7-48 

( ' 
I· " 

'.,-/ 

( , 



( 

C·-
.-

7.8.1 M.ALOC - Allocate File or Peripheral Device 

The M.ALOC service dynamically allocates a peripheral device, a permanent disc file, a 
temporary disc file, or a SLO or SBO file, and creates a File Assignment Table (FAT) 
entry for the allocated unit and specified logical file code. This service may also be used 
to equate a new logical file code with an existing logical file code. 

Under memory-only MPX-32, this service dynamically allocates peripheral devices only; 
files are not supported. 

Entry Conditions 

Calling Sequence: 

where: 

retad 

function 

lfc 

M.ALOC retad,lfc,function,arga,argb, [MOUNT] , [UNBLOCKED] 
[,WAIT] 

(or) 

LA 
LI 
SLL 
ORMW 

[
SBR 
SBR 
SBR 

LA 
LA 
SVC 

Rl,retad 
R5,function 
R5,24 
R5,lfc 
R5,O for MOUNT option inhibited ] 
R5, I for UNBLOCKED option 
R5,2 for WAIT for resource requested 
R6,arga 
R7,argb 
1,X'40' (or) M.CALL H.MONS,21 

is the denial return logical address 

is the function code as follows: 

i=assign logical file code to a user or system permanent file 
2=assign logical file code to a system file code 
3=assign logical file code to a peripheral device 
4=assign logical file code to a defined logical file code 
5=assign logical file code to a system permanent file only 

contains the one to three ASCII character logical file code to be 
assigned. The first byte contains zero to accommodate the function code. 
The lfc is then left-justified and blank-filled in the three remaining bytes. 

7-49 



arga,argb contents unique to each function are as follows: 

1 arga contains the one to eight ASCII character permanent file name. If a user 
name is not associ~ted with the calling task, the system file of the name 
specified is allocated. If a user name is associated with the calling task, 
an attempt is made to allocate a user file of the name specified. If 
unsuccessful, a system file is allocated. 

argb contains the one to eight character, left justified, blank filled password 
required to access the file. If the file is not password protected, 
contains O. 

2 arga contains the character string SLO or SBO in bytes 1,2,3 

argb contains the number of 192 word blocks required for allocation to the file 

3 arga 

argb 

4 arga 

contains the device type code (see Appendix A, Table A-O in byte 0 and 
optionally the channel number in byte 2 and the device subaddress in byte 
3. If the device subaddress is present, the most significant bit of byte 2 
must be set. If the channel number is present, bit 0 of byte 0 must be 
set. For magnetic tape devices, byte 1 = volume number or 0 if single 
volume. 

if arga defines a disc file = size of file (number of 192,word blocks 
required). If arga defines a magnetic tape = four-character reel 
identifier. For all other devices = O. 

contains the previously defined logical fil~ code 

argb equals zero 

5 arga 

argb 

MOUNT 

contains the one to eight character permanent file name of a system file 

contains the one to eight character, left-justified, blank filled password 
required to access the file. If the file is not password protected, 
contains O. 

is a character string. indicating to the macro that the optional MOUNT 
message should not be sent. 

UNBLOCKED is a character string indicating to the macro that the file be.ing allocated 
is to be lI1blocked. If not specified, the file will be blocked automatically. 
This option should not be used when specifying function code 2 or 4. 

WAIT 

-7-50 

is a character string indicating the caller wishes to be queued for the 
resource and will relinquish the CPU until the resource becomes available. 

c 

c 



( 

C··• " 

Exit Conditions 

Return Sequence: 

M.RTRN condition code 1 is set in the program status doubleword if 
the calling task has read but not write access rights to the 
specified permanent file 

Registers: None 

(or) 

Return Sequence: 

M.RTNA 1,6 for denial returns if the requested file or device cannot be 
allocated. 

Registers: 

R6 = 0 if file or device busy. Condition codes 1-4 are set to indicate why: 

CCI set=Permanent file is exclusively locked 
CC2 set=File Lock Table (FL T) is full 
CC3 set=Nonshared device is busy (already allocated) 
CC4 set=Disc space is not available 

=n if an error condition exists as described next. Note that when R6=n, 
CC 1-CC4 are not applicable. 

External References 

Error Conditions 

R6=1 
=2 
=3 
=4 
=5 
=6 
=7 
=8 
=9 
=10 
=11 
=12 
=13 
=14 
=15 
=16 
=17 

- permanent file non-existent 
- illegal file password specified 
- no FAT IFPT space available 
- no blocking buffer space available 
- shared memory table entry not found 
- invalid shared memory table password specified 
- dynamic common specified in ASSIGN 1 
- unrecoverable I/o error to SMD 
- SGO assignment specified by terminal task 
- no 'UI' file code exists for terminal task 
- invalid RRS entry 
- LFC in ASSIGN 4 non existent 
- assigned device not on system 
- device in use by requesting task 
- SGO or SYC assignment by real-time task 
- common memory conflicts with allocated task 
- duplicate LFC allocation attempted 

Output Messages: See MOUNT message description in Section 7.3.1.1. 

7-51 



7.8.2 M.BACK - Backspace Record or File 

The M.BACK service is not applicable for system files (i.e., SYC, SGO, SLO, SBO). This 
service performs the following functions for backspacing records: 

If a blocked file is output active, a purge is issued prior to the backspace 
function. After the specified number of records are backspaced, returns to 
the user. 

Backspaces specified number of records. 

M.BACK performs the following functions for files: 

If a blocked file is output active, an end-of-file and purge are issued prior to 
performing the backspace file function. Records are backspaced until an 
end-of-file record is found. 

The specified number of files are backspaced. 

The read/write control word then points to the end-of-file just encountered. 

Entry Conditions 

Calling Sequence: 

where: 

fcb 

number 

R 

$-lW 

7-52 

M.BACK fcb,[R],number 

(or) 

LA 
LNW 
~SVC 
1svc' 
,'BIB 

l,fcb 
4,number 
1,X'35' or M.CALL H.IOCS,9 t 
1,X'36' or M.CALL H.IOCS,19\ 
4,$-lW 

FCB address 

address of word containing the number of records or files to backspace 

backspaces by record (SVCl,X'35'); else backspaces by file (SVCl,X'36') 

branches back to SVC until reaches last word of Register 4 

() 



( Exit Conditions 

Return Sequence: 

Registers: 

Abort Cases: 

1006 
1013 

Output Messages: 

M.RTRN 

None 

Invalid blocking buffer control cells for blocked file. 
Illegal operation for system file 

None 

7-53 



7.8.3 M.CLSE - Close File 

The M.CLSE service marks a file closed in the File Pointer Table (FPT) and the count of 
open files (DFT.OPCT) is decremented. If any logically equivalent files (ASSIGN4) are 
open, i.e., if count after decrementing is not equal to zero, no further action is taken. 

If the file is a system file or blocked file, purges any active output blocking buffer. The 
file is marked closed (open bit cleared in FAT). 

For files assigned to SYC or SGO, the current disc address is used to update the Job 
Table for Job Control. 

This service issues an EOF prior to purging system files SLO and SBO which were opened 
for read/write. Also issues an EOF prior to purging for blocked files which are output 
active. 

Close requests to a file that is already closed are ignored. 

Entry Conditions 

Calling Sequence: 

where: 

M.CLSE 

(or) 

fsA 
SVC 
SVC 
SVC 

fcb is the FCB address 

fcb [,[EOF] [,REW] ] 

l,fcb 
I,X'38' or M.CALL H.IOCS,5j 
1,X'37' or M.CALL H.IOCS,2 
1,X'39' or M.CALL H.IOCS,23 

EOF Writes EOF (SVC 1,X'38'). See M.WEOF description. 

REW Rewinds file or device (SVC 1,X'37'). See M.RWND description. 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7-54 

('''' 
~' 



( 

( 

7.8.4 M.CREA TE - Create Permanent File 

The M.CREA TE service allocates disc space for the specified permanent file and writes a 
corresponding entry into the SMD. Optionally, the allocated space is zeroed. 

Entry Conditions 

Calling Sequence: 

M.CREA TE filename,blocks,devtype,[ devchan],[subaddr], 

where: 

filename 

blocks 

devtype 

D~~' password} [S] ,[N] ,[F] ,[type] ,[Z] 

(or) 

LD 
LW 

[~~~ SBR 
SBR 
ZR 
LI 
SLL 

[~~i AD! 
SBR 

. SBR 
ORR 
ZR 
ZR 

[ ;~R 
SBR 
SVC 

R6,filename 
R2,blocks 
R2,6 if R 
R2,7 if P 
R2,2 if N 
R2,3 if F 
R3 
Rl,devtype 

read only ] 
password only 
not SAVE DEVICE file 
FAST file 

Rl,16 
R3,devchan ] 
R3,8 
R3,subaddr 
R3,0 if devchan present 
R3,16 ifsubaddr present 
Rl,R3 
R4 (or) LD R4,password 
Rl 
Rl,X'type' if type present J 
Rl,O if S - system file 
R 1, 1 if Z - pre zero 
I,X'75' (or) M.CALL H.FISE,12 

is a doubleword containing the one to eight ASCII character, left-justified, 
blank filled name of the file. Each character in the name must have an 
ASCII equivalent in the range 21 through 5F (printable) and may not contain 
a comma 

contains the size of the file specified as a multiple of 192 word blocks 

the device type code which specifies the type of disc on which the file is to 
reside as follows: 

01 = DC 
02 = DM 
03 = DF 

7-55 



devchan 

subaddr 

R,P 

is the optional channel number of the particular device on which the file is 
to reside (Bit 0 of R3 is set to indicate the presence of the channel number) 

is the optional subaddress of the particular device on which the file is to 
reside (Bit 16 of R3 is set to indicate the presence of the subaddress) 

optional character to indicate file access restrictions as follows: 

R - Read only (password required to write) 
P - Password only (password required to read or write) 

If this parameter is not specified, the file may be read or written to without 
a password. 

password is a doubleword containing the optional one to eight ASCII character, left
justified, blank filled password. Each character must have an ASCII 
equivalent in the range 01 through 7F (printable, lowercase, or special). The 
password may not contain a comma. If a file access restriction (R or P 
parameter) is specified, a password must be entered. If no access restriction 
is specified, a password is ignored. If a password is entered, the file can be 
deleted only by specifying the password. In addition, the password must be 
entered on SAVE FILE, DELETE, and EXPANO File Manager directives. R4 
is zero if no password is to be associated with the file. 

S 

N 

F 

is an optional character to indicate that the file is to be a system file. If not 
specified, the file is created as a user file if a user name is associated with 
the calling task, or as a system file if no user name is associated with the 
calling task. 

is an optional character to indicate that the file is not to be saved in 
response to the SAVE J)EVICE File Manager directive. 

is an optional character to indicate that the file is a FAST file. If no 
parameter is entered, the file is created as a SLOW file. 

type is an optional parameter which is a one or two digit hexadecimal value 
specified by the user to identify the origin of the file as follows. For 
example, the system software utilizes the following file types: 

z 

7-56 

ED - Editor Save File 
EE - Editor Store File 
FE - Editor Work File 
FF - SYSGEN Created File 
BA - BASIC File 
CA - Cataloged Load Module 

is an optional character to indicate that the space allocated to the file is to 
be zeroed. 



( 

( 

Exit Conditions 

Return Sequence: 

M.RTRN 6,7 

Registers: 

R7 zero if the file was not created. R6 contains the reason as 
follows: 

R6 = 1 if a file of the name specified already exists 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.ALOC8 
S.ALOC9 
S.FISE3 

Abort Cases: 

= 2 if a FAST file was specified and collision mapping occurred 
with an existing directory entry 

= 3 if restricted access (bit 6 or 7 of R2) was specified, but no 
password (R4,R5) was entered. 

= 4 if disc space is unavailable 
= 5 if the specified device (channel and/or subaddress) is not 

configured, or no device of the type specified is available. 
= 6 if the specified device is off-line. 
= 7 if the SMD is full 
= 8 if the specified device type (byte 1 of R3) is not configured. 
= 9 if the file name or password contains invalid characters or 

imbedded blanks. 

H.FISE,I; H.FISE,2; H.FISE,5; H.FISE,7; 
H.FISE,8; H.FISE, 10; H.MONS,20; H.IOCS,4 

FSOI Unrecoverable I/o error to the System Master Directory (SMD). 
FS02 Unrecoverable I/O error to a disc allocation map. 

Output Messages: 

None 

7-57 



7.8.5 M.CWAT - System Console Wait 

The M.CW AT service suspends operation of the calling program until the specified 1/0 
transfer is complete. 

Entry Conditions 

Calling Sequences: 

where: 

M.CWAT tcpb 

(or) 

LA l,tcpb 
SVC I,X'3D' (or) M.CALL H.IOCS,26 

tcpb is the address of a Type Control Parameter Block (TCPB). See Section 7.7. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: None 

Abort Cases: None 

Output messages: None 

7.8.6 M.DALC - Deallocate File or Peripheral Device· 

The M.DALC service deallocates a peripheral device or disc file to which the specified 
logical file code is assigned. Dynamic deallocation of a peripheral or permanent disc file 
makes that resource available to other tasks. Deallocation of SLO and SBO files result in 
their definitions being passed to System Output for output to their terminal devices. If 
the specified logical file code has been equated to other logical file codes in the system, 
this service deallocates only the specified code. 

Under memory-only MPX-32, this service deallocates peripheral devices only; files are 
not supported. 

7-58 

c 



f 

( 

Entry Conditions 

Calling Sequence: 

where: 

M.DALC Ifc 

(or) 

LW R5,lfc 
SVC l,X'4l' (or) M.CALL H.MONS,22 

lfc contains the one to three ASCII character, left justified, blank filled logical 
file code for which deallocation is to be performed (bytes 1-3). Byte 0 is 
zero unless the device is magnetic tape. If tape, bit 0 of byte 0= 1 indicates 
that the DISMOUNT message is to be output, but that the device is not 
deallocated. If bit 0 of byte 0=0 output DISMOUNT message and deallocate. 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

External References 

System Macros: M.CALL, M.RTRN 

Abort Cases: None 

Output Messages: 

*task DISMOUNT reel FROM UNIT xx 
*task DISMOUNT reel, VOL volno FROM UNIT xx 

where: 

task is the load module name of the task requesting that the magnetic tape unit 
be deallocated 

reel 

volno 

xx 

is the reel identifier of the magnetic tape to be dismounted 

is the volume number of the magnetic tape to be dismounted - if single 
volume = blank 

is the device number of the non-shared magnetic tape unit from which the 
tape is to be dismounted 

7-59 



7.8.7 M.DELETE - Delete Permanent File or Non-SYSGEN Memory Partition 

The M.DELETE service deletes a specified permanent file or non-SYSGEN created 
memory partition. 

Entry Conditions 

Calling Sequence: 

where: 

filename 

S 

password 

M.DELETE filename,[S],[password] 

(or) 

LD 
ZR 
ZR 
SVC 

R6,filename 
R3 (or) [U R3,G'S'] 
R4 (or) [LD R4,password] 
I,X'77' (or) M.CALL H.FISE,14 

is a doubleword containing the one to eight character name of an existing 
file to be deleted. The name is left-justified and blank filled. 

is the optional character "5" if a system file only is to be deleted. If the 
character "5" is not specified, the file is assumed to be a user file whose 
user name is that which is associated with the calling task. 

is a doubleword containing the one to eight character password which is 
left-justified, and blank filled. A password must be specified if the file 
has an associated password. 

Exit Conditions 

Return Sequence: 

Registers: 

7-60 

M.RTRN 6,7 

R7 0 if the specified file was not deleted. R6 contains the reason 
as follows: 

R6 = 1 if a file of the name specified does not exist or is a 
SYSGEN created memory partition, or the file is allocated, or 
File Lock Table space is not available (CC 1 = 1 if file is 
allocated, CC2 = 1 if file is allocated and exclusively locked, 
CC3 = 1 if File Lock Table space is not available) 
= 2 if a required password was not specified. 

c 



(/ 

c 

External References 

System Macros: 

M.CALL H.FISE,2; H.FISE,7; H.FISE,8; H.MONS,20 
M.RTRN 

System Subroutines: 

Abort Cases: 

S.FISEI 
S.FISE2 
S.FISE3 

FSO 1 Unrecoverable I/O error to the System Master Directory 
(SMD). 

FS02 Unrecoverable I/O error to a disc allocation map. 

Output Messages: None 

7.8.8 M.F ADD - Permanent File Address Inquiry 

The M.FADD service is intended for the use of those who wish to issue I/O directly. It 
provides the word address of the beginning of a memory partition or the track, head, and 
sector address of the beginning of a disc file. The device address for disc files is also 
included in the result. Access restrictions are returned for disc files. 

Entry Conditions 

Calling Sequence: 

where: 

name 

M.FADD name 

(or) 

LD R6,name 
SVC 1,X'43' (or) M.CALL H.MONS,2 

is a doubleword containing the one to eight ASCII character, left-justified 
and blank-filled permanent file name. The file is assumed to be a user 
file if the calling task has an associated user name or a system file if the 
calling task has no associated user name. If the calling task has an 
associated user name but no user file of the specified name exists, the file 
is assumed to be a system file. 

7-61 



Exit Conditions 

Case I, Denial Return: 

Return Sequence: M.RTRN 7 

Registers: 

R7 bit 0 1 indicating that the specified file name cannot be located in 
the SMD 

bits 1-31 zero 

Case II, Memory Partition: 

Return Sequence: M.RTRN 6,7 

Registers: 

R6 bit 0 
bits 1-31 

R7 

1 indicating that the specified name is a memory partition 
number of 512 word pages allocated to the partition logical 
address of the first word of the specified partition 

Case III, Disc File: 

Return Sequence: M.RTRN 6,7 

Registers: 

R6 and R7 are returned with the address of the beginning of the disc file as 
follows: 

o 

R6 

o 1 

R7 0 

7-62 

Zero 

Channel 
Address 

5 6 

Device 
Address 

7 8 

Device 
Subaddress 

12 13 

Zero 

15 16 

Zero 

15 16 

Track 
Number 

22 23 

Head 
Number 

31 

27 28 31 

Sector 
Number 

c 



( For disc files, the following additional parameters are returned. 

Condition code 1 is set in the program status word if a password is required to write the 
file (read-only file). 

Condition code 2 is set if a password is required to read or write the file (password-only 
file). 

Condition code 3 is set if the file is a system file or core partition. 

External References 

System Macros: 

M.CALL H.FISE,10 
M.RTRN 

Abort Cases: None 

Output Messages: None 

7.8.9 M.FILE - Open File 

The M.FILE service performs the following functions: 

Note: 

Establishes appropriate linkages between a user FCB and an assigned file or 
device. 

Marks a file open for either read-write or read-only operations. Increments 
internal counts of tasks having the file open at this time. 

For SYC or SGO files, completes building the FAT based on Job Control 
information. 

For system and blocked files, initializes blocking buffer for subsequent 
access. 

Requests the initial MOUNT message for statically allocated, non-shared 
magnetic tape devices. 

OPEN requests to a file which is already OPEN are ignored. 

7-63 



Entry Conditions 

Calling Sequence: 

where: 

M.FILE fcb, [RW] 

(or) 

LA l,fcb 
[SBR 1,1. if RW] 
SVC 1,X'30' (or) M.CALL H.IOCS,l 

fcb is the FCB address 

RW is the optional character string RW which specifies read-write. (If the task 
has read but not write access to a permanent disc file, the file is opened 
read-only.) 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1017 No logical file code assigned which matches FCB file code 

7.8.10 M.FSLR - Release Synchronization File Lock 

The M.FSLR service is used for disc file gating. It is implemented in conjunction with 
the set synchronization File Lock service (M.FSLS) to control a synchronization lock 
indicator. When M.FSLR is called, the synchronization lock is released, and the queue of 
tasks waiting to own the lock will be polled. 

7-64 



Entry Conditions 

Calling Sequence: 

M.FSLR lfca 

(or) 

LW R5,lfca 
SVC 1,X'24' (or) M.CALL H.FISE,25 

where: 

lfca is the address of a word that contains an unused byte in byte 0, and a one to 
three ASCII character, left justified, blank filled logical file code in bytes 1, 
2, and 3. 

Exit Conditions 

Return Sequence: M.RTRN R7 

Registers: 

Notes: 

7.8.11 

R7 = 0, Request accepted, synchronization lock released. 
= 1, Request denied, synchronization lock was not set. 
= 5, Request denied, specified lfc not allocated. 
= 6, Request denied, specified lfc is not assigned to a 

permanent disc file. 

1. A synchronization lock may not be cleared by a task other than 
the task which set the lock. 

2. If a task owns a synchronization lock when the task terminates, 
the lock is automatically released. 

3. A synchronization lock is automatically released when the file is 
deallocated. 

M.FSLS - Set Synchronization File Lock 

The M.FSLS service is used in conjunction with the Release Synchronization File Lock 
service (M.FSLR) for disc file gating. The M.FSLS and M.FSLR services control a 
synchronization lock indicator which allows synchronized access to a disc file that is 
concurrently allocated to multiple tasks. To use the M.FSLS service, the file must have 
been previously allocated to the calling task. The file is identified by logical file code 
(lfc). 

7-65 



Entry Conditions 

Calling Sequence: 

where: 

lfca 

timev 

M.FSLS lfca[,tim ev] 

(or) 

LW 
L1 
SVC 

R5,lfca 
R4,timev (or) ZR 
I,X'23' (or) M.CALL 

R4 
H.FISE,24 

is the address of a word that contains an unused byte in byte 0, and a one to 
three ASCII character, left justified, blank filled logical file code in bytes 1, 
2, and 3. 

is a numeric value interpreted as follows: 

° 
-n 

= return immediately with a denial code if the file already has a 
synchronization lock set. 

= place the requesting task in a wait state until it has become the 
owner of the synchronization lock. 

= place the requesting task in a wait state until it owns the 
synchronization lock, or until the expiration of n timer units, 
whichever occurs first. 

Exit Conditions 

Return Sequence: M.RTRN R7 

Registers: 

R7 = 0, Request accepted, synchronization lock set. 
= 1, Request denied, synchronization lock is already owned by 

another task. 
= 2, Request denied, time-out occurred while waiting to 

become lock owner. 
= 3, Reserved. 
= 4, Reserved. 
= 5, Request denied, lfc not allocated. 
= 6, Request denied, lfc not assigned to permanent disc file. 

7-66 

o 

() 



(. 

7.8.12 M.FWRD - Advance Record or File 

The M.FWRD service is not applicable for system files (i.e., SYC, SGO, SLO, SBO). It 
performs the following functions for advance record: 

Verifies volume record if BOT on multi-volume magnetic tape. 

Advances specified number of records. 

M.FWRD performs the following functions for advance file: 

If a blocked file, logical records are advanced until an end-of-file is found. 
The read/write control word will point to the first record after the end-of
file. 

Verifies volume record if BOT on multi-volume magnetic tape. 

Advances specified number of files. 

Entry Conditions 

Calling Sequence: 

where: 

fcb 

number 

R 

$-lW 

M.FWRD fcb,[R],number 

(or) 

LA 
LNW 
~SVC 
l SVC 

BIB 

l,fcb 
4,number 
1,X'33' or 
1,X'34' or 
4,$-lW 

FCB address 

M.CALL H.IOCS,7l 
M.CALL H.IOCS,85 

address of word containing the number of records or files to be advanced 

advance by record (SVCl,X'33'). Default: advance by file (SVCl,X'34'). 

branches back to SVC until reaches last word of Register 4 

7-67 



Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1006 Invalid blocking buffer control cells for blocked file 
1013 Illegal operation for system file 
1028 Advance record issued for a blocked file while writing 
1029 Advance file issued for a blocked file while writing 
1030 Either volume number or reel id from volume record do not match 

F AT information 

Output Messages: 

MOUNT !DISMOUNT messages if EOT on multi-volume magnetic tape 

7.8.13 M.FXLR - Release Exclusive File Lock 

The M.FXLR service is used in conjunction. with the Set Exclusive File Lock service 
(M.FXLS> for disc file gating. When M.FXLR is called, the exclusive lock is released and 
other tasks can allocate the associated disc file. Note that another task will not be able 
to exclusively lock the file, however, until it is deallocated by this task. For further 
description of file gating, see Volume 1, Section 2. 

Entry Conditions 

Calling Sequence: 

where: 

M.FXLR lfca 

(or) 

LW R5,lfca 
SVC I,X'22' (or) M.CALL H.FISE,23 

lfca is the address of a word that contains an unused byte in byte 0, and a one to 
three ASCII character, left justified, blank filled logical file code in bytes 1, 
2, and 3. 

7-68 

o 



( Exit Conditions 

Return Sequence: M.RTRN R7 

Registers: 

Notes: 

7.8.14 

R7 = 0, Request accepted, exclusive file lock released. 
= 1, Request denied, an exclusive file lock was not owned by 

this task. 
= 5, Request denied, specified lfc is not allocated. 
= 6, Request denied, specified lfc is not assigned to a 

permanent disc file. 

1. An exclusive file lock may not be released by a task other than the 
owning task. 

2. Any outstanding exclusive file locks are released on task termination or 
on file deallocation. 

M.FXLS - Set Exclusive File Lock 

The M.FXLS service is used for disc file gating. It allows the calling task to gain 
exclusive allocation of a file, as though it were an unshared resource. The file must have 
been previously allocated, and is identified by the address of logical file code (lfc). For 
further description of file gating, see Volume 1, Chapter 2. 

7-69 



Entry Conditions 

Calling Sequence: 

where: 

lfca 

timev 

M.FXLS 

(or) 

LW 
LI 
SVC 

lfca~timev] 

R5,lfca 
R4,timev (or) ZR 
I,X'21' (or) M.CALL 

R4 
H.FISE,22 

is the address of a word that contains an unused byte in byte 0, and a one to 
three ASCII character, left justified, blank filled logical file code in bytes 1, 
2, and 3. 

is a numeric value interpreted as follows: 

+1 = return immediately with a denial code if the file is already 
allocated to another task. 

o = place the requesting task in a wait state until the 
designated file can be exclusively locked. 

-n = place the requesting task in a wait state until the 
designated file can be exclusively locked, or until the 
expiration of n timer units, whichever occurs first. 

Exit Conditions 

Return Sequence: M.RTRN R7 

Registers: 

R7 = 0, Request accepted, file is exclusively locked. 
= 1, Request denied, file is allocated to another task, or is 

already exclusively locked. 
= 2, Reserved. 
= 3, Reserved. 
= 4, Request denied, time-out occurred while waiting to 

become lock owner. 
= 5, Request denied, lfc not allocated. 
= 6, Request denied, lfc not assigned to permanent file. 

7-70 

c 

() 



( 

7.8.15 M.LOG - Permanent File Log 

The M.LOG service provides a log of currently existing permanent files. 

Entry Conditions 

Calling Sequence: 

where: 

M.LOG [type],addressGfilename] 

(or) 

LI R4,type 
LA R5,address 
LO R6,filename (if TYPE =N or 0) 
SVC I,X'73' (or) M.CALL H.MONS,33 

type is a byte-scaled value which specifies the type of log to be performed as 
follows: 

address 

filename 

Note: 

="N"=O 
="A"= 1 
="S"=2 
="U"=3 
="0"=4 

specifies a single named system or user file 
specifies all permanent files 
specifies system files only 
specifies user files 
specifies a single named system file 

If TYPE = "N" and a user name is associated with the calling task 
an attempt is made to locate the user file directory entry for the 
given file name. If unsuccessful, the system file directory entry 
is located if any. If a user name is not associated with the calling 
task, the file is assumed to be a system file. 

If TYPE = "U" and the calling task has an associated user name, 
that user's files are logged. All files are logged if the calling task 
has no associated user name. 

This service logs one SMO entry per call. Types 1, 2, and 3 are 
usually used to search through a set of user or system files. A 
standard call specifying the type is used to get the first file in the 
set. To get the rest or the files in the set, a call in the form 
M.LOG ,address is made repeatedly until the desired number of 
files is logged or until R5 is returned as zero, signifying all files 
in the set have been logged. 

is the address of an eight-word area within the calling task where the file 
System Master Directory entry is to be stored. 

contains a one to eight-character file name if TYPE = "N" or "0". 

7-71 



Exit Conditions 

Return Sequence: M.RTRN 4,5 

The eight-word SMD entry, if any, is stored at the address specified as "address". The 
password field contains zero or one to indicate the absence or presence of a password 
respectively. 

Registers: 

R4 . If type = "N" or "0" (R4=O or 4), R4 is destroyed. If type = "A", 
"5" or "u" (R4=1,2 or 3), this service is called repeatedly to obtain 
all the pertinent file definitions. The TYPE parameter in R4 is 
specified in the first call only. R4 is returned containing the 
address of the next directory entry to be returned. The value 
returned in R 4 must be unchanged upon the subsequent call to this 
service. 

R5 Contains zero if type = "N" or "0" (R4=O or 4) and the specified 
file could not be located or type = "A", "5" or "U" (R4=1,2 or 3) 
and all pertinent files have been logged. Otherwise, R5 is 
unchanged. 

External References 

System Macros: 

M.CALL 
M.RTRN 

Abort Cases: 

MS28 

Output Messages: 

None 

7-72 

A permanent file log has been requested, but the address 
specified for storage of the directory entry is not contained 
within the calling task's logical address space. 

c 



( 
7.8.16 M.PDEV - Physical Device Inquiry 

The M.PDEV service returns (to the caller) physical device information describing the 
unit to which a specified logical file code is assigned. 

Entry Conditions 

Calling Sequence: 

where: 

M.PDEV lfc 

(or) 

LW R5,lfc 
SVC I,X'421 (or) M.CALL H.MONS,1 

lfc contains a one to three ASCII character, left-justified, blank filled logical 
file code in bytes 1, 2, and 3 for which physical device information is 
requested. 

Exit Conditions 

Return Sequence: M.RTRN 7 

(/ Registers: 

R7 zero, if the specified logical file code is unassigned 

(or) 

Return Sequence: 

Registers: 

M.RTRN 4,5,6,7 

R4 bit 0 

R5 

bits 1-7 
byte 1 
bytes 2,3 

1 for Extended I/O (Class F) device 
o for all other device classes 
o 
o 
device (2 ASCII characters), e.g., MT, DC, etc. See 
Appendix A. ' 

if disc = number of 192-word blocks in file 
if magnetic tape = reel identifier (4 ASCII characters) 
if TSM terminal: 

byte 2 = number of hexadecimal characters in line 
byte 3 = number of hexadecimal lines on screen 

all other devices = 0 

7-73 



R6 bytes 0,1 
byte 2 
byte 3 

R7 byte 0 
byte 1 
bit 8 
bits 9-12 
bits 13-15 

bytes 2,3 

maximum number of bytes transferrable to device 
device channel number 
device subaddress 

device type code (2 hex digits) See Appendix A. 

o if file is unblocked, 1 if file is blocked 
o 
system file code, as follows: 

o not a system file 
1 SYC file 
2 seo file 
3 SLO file 
4 SBO file 

if disc = number of 192-word sectors per allocation unit 
if magnetic tape = volume number (O=single volume) 
all other devices = 0 

Note: If the specified logical file code is assigned to SYC or seo, and that file is not 
open, bits 13 through 15 of R7 are returned equal to 1 or 2. All other returned 
parameters are not applicable. 

When doing a physical device inquiry while running from the console terminal, R7 can be 
returned 0 even though the lfc is assigned. When this occurs, the device type code 00 
(console terminal) is in register 7. 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

.7-74 



( 7.8.17 M.PERM - Change Temporary File to Permanent 

The M.PERM service changes the status of a temporary file allocated to the calling task 
to permanent. The file must be an open, temporary, SLO or SBO file. 

Entry Conditions 

Calling Sequence: 

where: 

filename 

M.PERM 

(or) 

LD 
LW 
ZR 

~S~~ SBR 
BR 

ZR 

[;~R 
SBR 

ZR 
[LD 
SVC 

filename,lfc, 

R3,6 
R3,7 
R3,2 
R3,3 

Rl,O 
Rl,l 

[ m. passworj. 
[S] ,[N] ,[F] ,[type] ,[Z] 

R6,filename 
R2,=G'lfc' 
R3 
if R - read only ] 
if P - password only 
if N - not SAVE DEVICE file 
if F - FAST file 
Rl 
Rl,X'type' if type present] 
if S - system file 
if Z - pre zero 
R4 
R4,password if file is to have a password] 
1,X'76' (or) M.CALL H.FISE,13 

is a doubleword containing the one to eight ASCII character, left-justified, 
blank filled name of the file. Each character in the name must have an 
ASCII equivalent in the range 21 through 5F (printable) and may not contain 
a comma. 

lfc is the one to three ASCII character, left-justified, blank filled logical file 
code assigned to an open, temporary, SLO or SBO file. The file is marked as 
permanent in the calling task by this service if successful. 

R,P optional character to indicate file access restrictions as follows: 

R- Read only (password required to write) 
P- Password only (password required to read or write) 

If this parameter is not specified, the file may be read or written without a 
password. 

7-75 



password ~s a'f~oudblebwlordk cfo.nlltadining the 0dPtioEnalhonehto eight ASCII hcharacter 'AISecft- 1(, .'. ., 

JUstl Ie, an 1 e passwor. ac c aracter must ave an II ... 
equivalent in the range 01 through 7F (printable, lowercase, or special). The 
password may not contain a comma. If a file access restriction (R or P 
parameter) is specified, a password must be entered. If no access restriction 

S 

N 

F 

is specified, a password is optional. If a password is entered, the file can be 
deleted only by specifying the password. In addition, the password must be 
entered on SAVE FILE, DELETE, and EXPAND File Manager directives. R4 
is zero if no password is to be associated with the file. 

is an optional character to indicate that the file is to be a system file. If not 
specified, the file is created as a user file if a user name is associated with 
the calling task, or as a system file if no user name is associated with the 
calling task. 

is an optional character to indicate that the file is not to be saved in 
response to the SAVE DEVICE File Manager directive . 

. is an optional character to indicate that the file is a FAST file. If no 
parameter is entered, the file is created as a SLOW file. 

type is an optional parameter which is a one or two digit hexadecimal value 
specified by the user to identify the origin of the file as follows. For 
example, the system software utilizes the following file types: 

z 

ED - Editor Save File 
EE - Editor Store File 
FE - Editor Work File 
FF - SYSGEN Created File 
BA - BASIC File 
CA - Cataloged Load Module 

is an optional character to indicate that the space allocated to the file is to 
be zeroed. 

Exit Conditions 

Return Sequence: M.RTRN 6,7 

Registers: 

R7 

R6 

7-76 

zero if the file was not created. R6 contains the reason as 
follows: 

= 1 
= 2 

= 3 

= 4 

= 7 
= 9 

if a file of the name specified already exists 
if a FAST file was specified and collision mapping 
occurred with an existing directory entry 
if restricted access (bit 6 or 7 or R2) was specified, but 
no password (R4,R5) was entered. 
if the file associated with the specified logical file code 
is not an open, temporary, SLO or SBO file. 
if the SMD is full 
if the file name or password contains invalid characters 
or imbedded blanks. 



External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.ALOCI2 
S.FISE3 

Abort Cases: 

H.FISE,I; H.FISE,2; H.FISE,8; H.FISE, 10; 
H.MONS,20; H.IOCS,4 

FSOI 
FS02 

Unrecoverable I/O error to the System Master Directory (SMD). 
Unrecoverable I/O error to a disc allocation map. 

Output Messages: None 

7.8.18 M.REAO - Read Record 

The M.READ service performs the following functions: 

Provides special random access handling for disc files. 

Deblocks system files and blocked files. 

Reads one record into the buffer indicated by the Transfer Control Word 
(TCW) in the FCB. 

Entry Conditions 

Calling Sequence: 

M.READ fcb 

(or) 

LA 1,fcb 
SVC 1,X'31' (or) M.CALL H.IOCS,3 

where: 

fcb is the FCB address. Appropriate transfer control parameters are defined in 
the TCW. 

7-77 



Exit Conditions 

Return Sequence: M.RTRN 

Registers: 

Abort Cases: 

None 

1003 Non-privileged user attempting transfer to a logical address 
outside legal boundaries. 

1006 Invalid blocking buffer control cell fora system or blocked file. 
1026 Read attempted for a system or blocked file while write in 

process. 
1030 Illegal volume record. Either volume number or reel 10 from 

volume record do not match F AT information. 
1032 Second attempt to read a $ statement in an SYC file. 

Output Messages: 

DISMOUNT !MOUNT messages if EOT and multi-volume magnetic tape 

7.8.19 M.RELP - Release Dual Ported Disc 

The M.RELP service applies only to dual ported extended I/O disc and allows the 
privileged user to release a device from its reserved state. 

Entry Conditions 

Calling Sequence: 

M.RELP 

(or) 

LA l,fcb 
SVC I,X'27' (or) M.CALL H.IOCS,27 

where: 

fcb FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7-78 

\""-- / 

c 



(' 

(-

7.8.20 M.RESP - Reserve Dual Ported Disc 

The M.RESP service applies only to dual ported extended I/O disc and allows the 
privileged user to reserve a device to the requesting CPU until such time as a release 
(M.RELP) issued. 

Entry Conditions 

Calling Sequence: 

M.RESP 

(or) 

LA 1,fcb 
SVC 1,X'26' (or) M.CALL H.IOCS,24 

where: 

fcb FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7.8.21 M.RRES - Release Channel Reservation 

If the specified channel has not been reserved by this task, the M.RRES service ignores 
the request to release the channel and returns to the task. If the channel has been 
reserved by this task, the channel reserve indication is removed from the COT entry. 

After releasing the reserved channel, if any requests had been queued while the channel 
was reserved, IOCS resumes I/O to the associated device. 

This service is not applicable for extended I/o channels. 

7-79 



Entry Conditions 

Calling Sequence: 

where: 

channel 

M.RRES channel 

(or) 

L W l,channel 
SVC I,X'3B' (or) M.CALL H.IOCS,13 

specifies the channel number (hexadecimaI). If LW, load bits 24-31 of 
Register 1. 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7.8.22 M.RSML - Resourcemark Lock 

The M.RSML service is called to lock the specified resourcemark. It is used in 
conjunction with the unlock resourcemark service (M.RSMU) by tasks to synchronize 
access to a common resource. For further description, see Section 2.9.1.5. 

Entry Conditions 

Calling Sequence: 

where: 

lockid 

7-80 

M.RSML lockid, [timev] [,p] 

(or) 

LI R4, timev 
ZR R5 
[SBR R5,0] 
LI R6,lockid 
SVC I,X' 191 (or) M.CALL H.MONS,62 

is the numeric resourcemark index o 



timev 

p 

is a numeric value which specifies action to be taken if the lock is already 
set and is owned by another task: 

+1 = immediate denial return 
o = wait until this task is the lock owner 
-n = wait until this task is the lock owner, or until n timer 

units have expired, whichever occurs first 
Default: O. Wait until this task is the lock owner. 

indicates that while this task is waiting to become lock owner, the 
swapping mode is to be set to swap this task only if a higher priority task 
is requesting memory space. Otherwise, the task will be a swap candidate 
if any task is requesting memory. 

Exit Conditions 

Return Sequence: M.RTRNR7 

Registers: 

R7 

Abort Cases: 

zero if the request was accepted, otherwise contains a request 
denial code: 

1= lock index exceeds maximum range 
2= lock index is less than minimum range 
3= lock is owned by another task (and timev=+ 1) 
4-= lock is owned by another task, timev=-n and n timer units 

have elapsed 

None 

Output Messages: None 

7.8.23 M.RSMU - Resourcemark Unlock 

The M.RSMU service is called to unlock a resourcemark which has previously been locked 
by a call to the M.RSML service. If any other tasks are waiting to lock the specified 
resourcemark, the highest priority waiting task will become the new lock owner. 

Entry Conditions 

Calling Sequence: 

M.RSMU lockid 

(or) 

LI R6,lockid 
SVC 1,X'lA' (or) M.CALL H.MONS,63 

where: 

lockid is the numeric resourcemark index 

7-81 



Exit Conditions 

Return Sequence: 

Registers: 

Abort Cases: 

M.RTRN R7 

R7 zero if the request was accepted, otherwise contains a request 
denial code: 
block index exceeds maximum range 
2=lock index is less than minimum range 
3=lock is not owned by this task 

None 

Output Messages: None 

7.8.24 M.RSRV - Reserve Channel 

M.RSRV is a privileged service. If the task is unprivileged or the channel has been 
reserved previously by another task, this service makes a denial return. If the channel 
has not previously been reserved, the task number is stored in the COT entry to mark the 
reservation. If any requests are currently queued for thischannei, suspend is invoked 
until C()mpletion of any I/O currently in progress is complete. The standard handler is 
then disconnected from the Service Interrupt (sl) level. After reserving a channel, the 
task must connect its own handler to the SI dedicated location. 

This service is not applicable for extended I/O channels. 

Entry Conditions 

Calling Sequence: 

where: 

channel 

denial 

M.RSR V channel,denial 

(or) 

LW I ,channel 
LA 7,denial 
SVC I,X'3A' (or) M.CALL H.IOCS,12 

specifies the channel number (hexadecimal) in bits 24-32. If using L W, 
load channel number in Register I. 

is the user's denial return address 

c; 

c 



Exit Conditions 

Return Sequence: 

M.RTRN 

(or) 

normal return 

M.RTNA 7 denial return 

Registers: 

Abort Cases: 

1014 

Output Messages: 

Normal - None 
Denial - None 

Unprivileged user attempting to reserve channel 

None 

7.8.25 M.RWND - Rewind File 

The M.RWND service performs the following functions: 

Issues an end-of-file and purge if the file is a system or blocked file which 
is output active. 

For system and blocked files, initializes blocking buffer control cells for 
subsequent access. 

Rewinds file or device. 

Entry Conditions 

Calling Sequence: 

where: 

fcb 

M.RWNDfcb 

(or) 

LA 1,fcb 
SVC 1,X'37' (or) M.CALL H.IOCS,2 

is the FCB address 

7-83 



Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1009 Rewind attempted on SYC file 

7.S.26 M. TYPE - OPCOM Console Type 

The M. TYPE service types a user specified message and performs an optional read on the 
OPCOM console. Input message address validation is performed for the unprivileged 
task. Operation is wait I/O. 

The maximum input or output is 80 characters. 

M. TYPE builds a Type Control Parameter Block (TCPB) which defines input and output 
buffer addresses for console messages and reads as described in Section 7.7. 

Entry Conditions 

Calling Sequence: 

where: 

outmess 

out count 

inmess 

incount 

tcpb 

7-S4 

M. TYPE outmess,outcount [,inmess,incount] 

(or) 

LA 1,tcpb 
SVC 1,X'3F' (or) M.CALL H.IOCS,14 

specifies address of output message buffer 

specifies transfer count for output (number of bytes, SO maximum). If not 
specified (transfer count is zero), defaults to maximum. 

specifies address of input message buffer. If not specified, TCPB Word 2 
is zeroed. 

transfer count for input (number of bytes, 80 maximum). Incount also 
takes into account the <CR> character typed at the end of the input line. 

specifies address of Type Control Parameter Block (TCPB). See Section 
7.7. 

//""--"\ 

~J 

o 



Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1003 Non-privileged user attempting transfer to a logical address 
outside legal boundaries 

1015 Type request while operation in progress 
1025 Transfer count of zero 

Output Messages: None 

7.8.27 M.UPSP - Upspace 

The M.UPSP service is not applicable to blocked or system files (i.e., SYC, SGO, SLO, 
SBO). If BOT is present on multi-volume magnetic tape, volume record (header) is 
written. If EOT is present on multi-volume magnetic tape, ERASE/WRITE EOF is 
performed. 

Entry Conditions 

Calling Sequence: 

M.UPSP fcb 

(or) 

SVC 1,X'10' (or) M.CALL H.IOCS,20 

where: 

fcb is the FCB address 

Registers: 

Rl FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 
1013 The user has requested an illegal operation to be performed on a 

system file. 

Output Messages: MOUNT /DISMOUNT messages if EOT on multi-volume magnetic 
tape 

7-85 



7.8.28 M.USER - Usemame Specification 

The M.USER service associates a user name with the calling task. Optionally, this 
service nullifies any user name associated with the calling task. The user name 
associated with the task is utilized in file create, delete, log, and allocate services called 
subsequently. . 

Entry Conditions 

Calling Sequence: 

where: 

username 

key 

M.USER [username [,key] ] 

(or) 

ZR R6 null username 
ZR R7 
SVC I,X'74' (or) M.CALL H.MONS,34 

(or) 

LD R6,username 
LD R4,key 
SVC 1,X'74' (or) M.CALL H.MONS,34 

contains the one to eight-character user name left justified and blank 
filled. Each character must have an ASCII equivalent in the range 01 
through 7F. 

To nullify any user name associated with the calling task, both parameters 
are omitted. 

contains the one to eight-character left justified and blank filled user key, 
if any, associated with the user name. 

Exit Conditions 

Return Sequence: M.RTRN 6,7 

Registers: 

7-86 

R6,R7 zero if the service was not performed because the specified user 
name contains invalid characters or is not in the user name file 
or the required key was not furnished. Otherwise unchanged. 

CC 1 set if the service was not performed 

(~ 



( 

c 

External References 

System Macros: M.CALL, M.RTRN 

Abort Cases: 

MS28 Unrecoverable I/o error to disc. 

Output Messages: None 

7.8.29 M.WAlT - Wait I/o 

The M.W AIT service provides return to the user when the I/O request associated with the 
specified FCB is complete; however if the FCB has no I/O outstanding on it, then a 
return to the user is made instead of linking the task to the Wait state queue. Once the 
task is linked to the queue, it is suspended until I/O completes. 

Entry Conditions 

Calling Sequence: 

M.WAIT fcb 

where: 

(or) 

LA 
SVC 

1,fcb 
l,X'3C' (or) M.CALL H.IOCS,25 

fcb is the FCB address 

Exit Conditions 

Return Sequence: 

Registers: 

Abort Cases: 

Output Messages: 

M.RTRN 

None 

MS31 User attempted to go to an any wait state from an end 
action routine. 

None 

7-87 



7.8.30 M.WEOF - Write EOF 

The M.WEOF service performs the following functions: 

Prevents a write to a read-only file. 

Issues an end-of-file and purge if the file is a system or blocked file which is 
output active. (If EOF is requested for an unblocked disc file, the handler 
ignores the request.) 

Writes volume record if BOT on multi-volume magnetic tape. 

Performs ERASE/WRITE EOF if EOT on multi-volume magnetic tape. 

Writes one EOF. 

Entry Conditions 

Calling sequence: 

where: 

M.WEOF fcb 

(or) 

LA 
SVC 

l,fcb 
I,X'38' (or) M.CALL H.IOCS,5 

fcb is the FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: Npne 

Abort Cases: 

1010 FAT entry marked read-only (unless SGO). 
1011 File is SYC. 
1030 Illegal volume record. Either volume number or reel ID from 

volume record do not match FAT information. 

Output Messages: 

DISMOUNT /MOUNT messages if EOT on multi-volume magnetic tape 

7-88 

() 



<. 

( 

7.8.31 M. WRIT - Write Record 

The M.WRIT service performs the following functions: 

Prevents a write to a read-only file. 

Provides special random access handling for disc files. 

Blocks records for system and blocked files. 

Writes volume record if BOT of multi-volume magnetic tape. 

Performs ERASE/WRITE EOF if EOT of multi-volume magnetic tape. 

Writes one record from the buffer pointed to by the TCW in the FCB. 

Entry Conditions 

Calling Sequence: 

M.WRIT fcb 

where: 

(or) 

LA 
SVC 

l,fcb 
1,X'32' (or) M.CALL H.IOCS,4 

fcb is the FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1006 Invalid blocking buffer control cell for a system or a blocked 
file. 

1027 Write attempted while reading from a system or a blocked file. 
1053 Write attempted to SYC file in batch mode. 

Output Messages: 

DISMOUNT /MOUNT messages if EOT on multi-volume magnetic tape 

7-89 



7.8.32 M.XIEA - No-Wait I/O End Action Return 

The M.XIEA service is required for exiting any no-wait I/o end action routine (both 
normal and error end action routines use this exit). 

Entry Conditions 

Calling Sequence: 

M.XIEA 

(or) 

SVC 1,X'2C' or M.CALL H.IOCS,34 

Exit Conditions 

Return Sequence: 

BL S.EXEC6 no-wait I/o post processing complete 

Registers: None 

Abort Cases: None 

Output Messages: None 

7.8.33 Erase or Pmch Trailer 

The Erase or Punch Trailer service writes the volume record if BOT on multi-volume 
magnetic tape or performs ERASE/WRITE EOF if EOT on mUlti-volume magnetic tape. 

Erase, punch trailer is not applicable to blocked or system files (i.e., SYC, SGO, SLO, 
SBO). 

Entry Conditions 

Calling Sequence: 

LA 1,fcb 
SVC 1,X'3E' or M.CALL H.IOCS,21 

where: 

fcb FCB address 

7-90 



( 

( 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: 

1012 File not opened for write mode. 
1013 Illegal operation for system file. 

Output Messages: 

MOUNT /mSMOUNT messages if EOT on multi-volume magnetic tape 

7.8.34 Execute Channel Program 

The Execute Channel Program service allows command and data chaining to General 
Purpose Multiplexor Controller (GPMC) and extended I/O devices only. 

Entry Conditions 

Calling Sequence: 

where: 

LA 
SVC 

fcb FCB address 

Exit Conditions 

Return Sequence: 

Registers: 

Abort Cases: 

l,fcb 
I,X'25' or M.CALL H.IOCS,1O 

M.RTRN 

None 

1003 Non-privileged user attempting transfer to a logical address 
outside legal boundaries. 

1043 10CL list or data address not in contiguous E-memory (GPMC 
devices only). 

7-91 



7.8.35 Release FHD Port 

The Release FHD Port service is available only to privileged users and is currently only 
supported by the four megabyte fixed head disc. 

Entry Conditions 

Calling Sequence: 

LA l,fcb 
SVC l,X'27' or M.CALL H.IOCS,27 

where: 

fcb FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7.8.36 Reserve FHD Port 

The Reserve FHD Port service is available only to privileged tasks and is currently only 
supported by the four megabyte fixed head disc. 

Entry Conditions 

Calling Sequence: 

LA l,fcb 
SVC l,XI26' or M.CALL H.IOCS,24 

where: 

fcb FCB address 

Exit Conditions 

Return Sequence: M.RTRN 

Registers: None 

Abort Cases: None 

Output Messages: None 

7-92 



(~ 

8. SYSTEM SERVICES 

MPX-32 offers a set of resident system service routines designed to perform frequently 
required operations with maximum efficiency. Using the CALM or the Supervisor Call 
instruction, tasks running in any environment can call these routines. 

All of the system service routines are reentrant. Thus, each service routine is always 
available to the task which is currently active. 

System service routines are provided as standard modular components of the Mapped 
Programming Executive. The "open-ended" design of the system, however, gives each 
user freedom to add whatever service routines are required to tailor MPX-32 to a 
specific application. 

System services enable tasks to: 

Activate, suspend, resume, abort, terminate and hold task execution 

Change a task's priority level 

Create, test, and delete timers 

Interrogate system clocks 

Allocate and deallocate devices and files 

Obtain the characteristics of a device or file 

Communicate with other tasks via messages and status words 

Load and execute overlays 

Obtain information on the memory assigned to a task 

Connect tasks to interrupts 

Interrogate the arithmetic exception and option word status for task 

MPX-32 services are implemented as SVC traps. There are several ways of accessing 
services: 

By macro calls, with parameter passing as indicated. The expansion code in 
the system macro library is then accessed automatically during assembly to 
provide Assembly language setup of appropriate registers and instructions 
including SVC's, in the user's code. 

By setting up appropriate registers and instructions directly and using 
appropriate SVC's. 

By following the course above but issuing an M.CALL request to the entry 
point of the system module that provides the service. 

8-1 



The first two access paths are described for each system service in this section and other 
sections where services are documented. The third access path is privileged, and is 
indicated primarily to provide the appropriate system module names and entry point 
numbers for cross-reference to other documentation when needed. 

Documentation conventions used in service syntax descriptions are the standard 
conventions described at the beginning of this book. 

Recognizing that the user may need to get back to documentation on a particular service 
either from an SVC number or alphabetically by a short descriptor (like RTM) or by 
macro name, cross reference charts are provided for all system services in· Appendix B. 
The services in this section are organized alphabetically by macro name under two broad 
categories: 

Task Execution Services 

Memory Management Services 

File and device allocation and I/O as well as file management services are organized 
alphabetically in Chapter 7. Services for interactive tasks are described in Chapter 5. 

8.1 RTM System Services Under MPX-32 

MPX-32 will accept call monitor (CALM) instructions which are syntactically and 
functionally equivalent to the RTM CALM's. These CALM's are implemented for 
compatibility purposes, only. The user is encouraged to use the new MPX-32 system 
services, instead of CALM's, because they will run faster and support the new 
capabilities available in MPX-32. Mixing CALM's and SVC's in the same program 
element is not encouraged. 

Generally, RTM CALM's will operate under MPX-32 without any change in syntax or 
function. A few seldom-used CALM's have been deleted, and others may have additional 
restrictions applied to them. In general, however, the changes to the user's source code 
should be minimal in the conversion from RTM to MPX-32. 

Under MPX-32 the following RTM CALM implementation is slightly different from its 
RTM equivalent: 

CALM X'73' Permanent File Log 
(The file definition is returned in sectors instead of allocation 
units.) 

The following RTM CALM's have been deleted in MPX-32. 

CALM X'62' 

CALM X'63' 

8-2 

Unlink Dynamic Job Queue Entry (not required in MPX) 
M.DDJS or CALL M:UNLKJ 

Activate with Core Append (replaced by memory expansion 
and contraction services of MPX) M.ACAP (was not in RTM 
run-time) 



(: 

CALM X'64' Retrieve Address of Appended Core (same as CALM X'63') 
M.APAD (was not in RTM run-time) 

CALM X'65' Initialize reentrant library pointers (MPX-32 does not support 
the RTM reentrant run-time library) 

All Random Access Calls 

CALM X'59' 

CALM X'5A 

CALM X'5B' 

CALM X'5C' 

CALM X'5D' 

TSS CALM'S 

Random Access OPEN (MPX-32 does not support DRAH) 
(CALL M:OPEN) 

Random Access READ (same as CALM X'59') 

Write Function (same as CALM X' 59') 
(CALL M:WRITE) 

DEFINE FUNCTION 
(CALL M:DEFINE) 

FIND FUNCTION 
(CALL M:DEFINE) 

MPX-32 replaces TSS with TSM, a new online support package. Therefore, all 
TSS CALM's X'80' - X'84' have been deleted. 

On a CONCEPT/32 computer, a new SVC type 15 replaces CALM instructions. During 
reassembly of a program, the Assembler automatically converts CALM instructions to 
their equivalent SVC 15,X'nn' number if OPTION 20 is set. 

Also, an address exception trap will be generated when a doubleword operation code is 
used with an incorrectly bounded operand, therefore coding changes will be required 
when a trap occurs. 

8.2 Task Execution Services 

8.2.1 M.ACTV - Activate Task 

The M.ACTV service is used to activate a task. The task assumes the owner name of the 
caller. 

Entry Conditions 

Calling Sequence: 

M.ACTV 

(or) 

LD 
SVC 

loadmod 

R6,loadmod 
I,X' 52' (or) M.CALL H.MONS,15 

8-3 



where: 

loadmod is a doubleword containing the load module name for which an 
activation request is to be queued, one to eight ASCII characters, 
left-justified and blank filled. The specified load module must 
exist as a system file and must not be password only (PO) 
protected. 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 6,7 

R6 zero if the service could be performed 

R7 contains the task number of task activated by this service 

(or) 

R6 = 1 if invalid attempt to multicopy a unique load module 

R7 task number of existing task with same name 

(or) 

R6 = 2 if load module file not in SMD 
= 3 if load module file is PO password protected 
= 4 if file does not contain valid data 
= 5 if no DQE is available 
= 6 if read error on SMD 
= 7 if read error on load module 
= 8 insufficient memory 

= 10 no physical memory available 

External References 

System Macros: 

M.RTRN 

Abort Codes: 

None 

Output Messages: 

None 

8-4 



( 

8.2.2 M.ANYW - Wait for Any No-Wait Operation Complete, Message Interrupt, or 
Break Interrupt 

The M.ANYW service is called to place the currently executing task in a state waiting 
for the completion of any no-wait request, for the receipt of a message, or or a break 
interrupt. The task is removed from the associated ready to run list, and placed in the 
any-wait list. A return is made to the program location following the SVC instruction 
only when one of the wait conditions has been satisfied or when the optional time-out 
value has expired. 

Entry Conditions 

Calling Sequence: 

M.ANYW time 1 

(or) 

LW R6,timel 
SVC l,X'7C' (or) M.CALL H.MONS,37 

where: 

timel 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS3l 

Output Messages: 

None 

contains zero if wait for an indefinite period is requested. 
Otherwise, time 1 contains the negative number of time units to 
elapse before the wait is terminated. (The actual time elapsed can 
vary by one time unit because of system design.) 

User attempted to go to an any wait state from an end action 
routine. 

8-5 



8.2.3 M.ASYNCH - Set Asynchronous Task Interrupt 

The M.ASYNCH service resets the asynchronous task interrupt mode back to the default 
environment. 

Entry Conditions 

Calling Sequence: 

M.ASYNCH 

(or) 

SVC I,X'IC' 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

(or) M.CALL H.MONS,68 

CC I set if asynchronous task interrupt already set 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-6 



8.2.4 M.BORT - Abort Specified Task, Abort Self, or Abort with Extended Message 

M.BORT - Specified Task 

This service allows the caller to abort another task. If the named task has been swapped 
out, it will not be aborted until it regains CPU control. When the named task receives 
CPU control, it will be aborted (see Section 2.7, Table 2-2). If the specified task is not in 
execution, the request is ignored. 

Entry Conditions 

Calling Sequence: 

M.BORT abcode, task 

where: 

(or) 

LW 
ZR 
LW 
SVC 

abcode 

task 

Exit Conditions 

Return Sequence: 

R5,abcode 
R6 
R7,taskno 

(or) LD R6, taskname 

I,X'56' (or) M.CALL H.MONS,19 

contains the abort code consisting of four ASCII characters 

the address of a doubleword containing the name of the task or 0 
in Word 0 and the task number in word 1. Task number must be 
used if the task is multicopied or shared. 

M.RTRN 7 

Registers: 

R7 

CCl 

zero if any of the following conditions exist: 

the specified task number or task name was not found in the 
dispatch queue 

the specified task name was not single copied 

the owner name of the task requesting the abort is restricted 
from access to tasks with a different owner name (via the 
M.KEY file), the task requesting the abort is not privileged, 
and the owner names of the requesting and target task do not 
match 

the task is in the process of exiting the system 

Otherwise, task number. 

set if the task is in the process of exiting the system. 

8-7 



External References 

System Macros: 

M.RTRN 
M.IOFF 
M.OPEN 

Abort Cases: 

None 

Output Messages: 

None 

8-8 

M.CALL 
M.IONN 

! 
''--



M.BORT - Self 

This service aborts the calling task by issuing an abort message, optionally performing a 
post-mortem dump, and performing the functions common to the normal termination 
service as described in Chapter 2. 

Entry Conditions 

M.BORT 

(or) 

abcode 

L W R5,abcode 
SVC 1,X'57' (or) M.CALL H.MONS,20 

where: 

abcode contains the abort code consisting of four ASCII characters. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.CALL 

Abort Cases: 

None 

Output Messages: 

task number ABORTED. PSW:xxxxxxxx BIAS:yyyyy REASON:zzzz 

where: 

task is the one to eight character task load module name of the task 
being aborted. 

number 

xxxxxxxx 

yyyy 

zzzz 

is the task number of the task being aborted 

is the location the abort occurred 

is the beginning of the DSECT 

is the four character abort code 

8-9 



M.BORT - With Extended Message 

A call to this service will result in an abort of the specified task. An additional eight 
characters are displayed in the abort message. 

Entry Conditions 

Calling Sequence: 

where: 

M.BORT abcode,task,extcode 

(or) 

LD 
LW 
LI 
LW 
SVC 

abcode 

task 

extcode 

R2,extcode 
R5,abcode 
R6,0 t (or) LD R6,taskname 
R7,taskno~ 
I,X'62' (or) M.CALL H.MONS,28 

contains the abort code consisting of four ASCII characters. 

the address of a doubleword containing the name of the task or 0 
in Word 0 and the task number in word 1. Task number must be 
used if the task is multicopied or shared. A task number of 0 
specifies the calling task. 

contains the extended abort code message consisting of one to 
eight ASCII characters, left justified, and blank filled. 

Exit Conditions 

Return Sequence: 

Registers: 

8-10 

M.RTRN 7 

R7 zero if the specified task was not found in the Dispatch Queue, or 
the task is scheduled to leave the system. Otherwise contains the 
task number. 

CC 1 set if the task was scheduled to leave the system. 

r.f .... ··· 
'~ 



( External References 

System Macros: 

M.RTRN 
M.IOFF 
M.OPEN 

Abort Cases: 

None 

Output Messages: 

M.CALL 
M.IONN 

Same as Abort Self 

8-11 



8.2.5 M.BRK - Break/Task Interrupt Link 

The M.BRK service allows the caller to establish the address of a routine to be entered 
whenever another task or the operator activates his task interrupt via an M.INT service. 

Entry Conditions 

Calling Sequence: 

M.BRK 

(or) 

brkadd 

LA R7,brkadd 
SVC 1,X'6E' (or) M.CALL H.MONS,46 

where: 

brkadd 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-12 

is the logical word address of the entry point of the task's 
break/task interrupt routine 



( 

( 

(-

8.2.6 M.BRKXIT - Exit from Task Interrupt Level 

The M.BRKXIT service must be called at the conclusion of executing a task interrupt 
routine. It transfers control back to the point of interruption. 

Entry Conditions 

Calling Sequence: 

M.BRKXIT 

(or) 

SVC 1,X'70' (or) M.CALL H.MONS,48 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-13 



8.2.7 M.CDJS - Submit Job from Disc File 

The M.CDJS service submits a job contained on a blocked permanent or temporary disc 
file. Prior to calling this service, the specified file should be rewound to purge the 
contents of the blocking buffer if it has been dynamically built. 

Entry Conditions 

Calling Sequence: 

M.CDJS 

(or) 

filename [,password] 

LD R2, password 

where: 

LD R6,filename 
SVC I,X'61' (or) M.CALL H.MONS,27 

filename 

password 

contains the one to eight character name of the blocked 
permanent disc file which contains the job. If a user name is 
associated with the calling task, an attempt is made to 
allocate a user file of the name specified. If unsuccessful, a 
system file is allocated. 

(or) 

contains zero in the first word and the second. word contains 
the address of a file control block which is associated with a 
blocked temporary file in the calling task. 

Once submitted, the logical file code associated with the 
permanent or temporary file is· deallocated and may be 
reassigned by the user task. 

is the optional password which is required only for password
only (PO) permanent files. 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

8-14 



[ 

( 

Registers: 

R7 

(or) 

R7 bit 0 

o if successful 

set if specified file does not exist, invalid password 
specified, or FCB is not associated with a temporary file 

bits 1-31 0 

(or) 

R7 bit 1 1 if unable to activate system input task 

bits 0,2-31 0 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-15 



8.2.8 M.CONN - Connect Task to Interrupt 

The M.CONN service is used to centrally connect a task to an interrupt level so that 
when the interrupt occurs, the specified task will be scheduled for execution (resumed). 

Entry Conditions 

Calling Sequence: 

where: 

M.CONN 

(or) 

LW 
LI 
LW 
SVC 

task 

intlevel 

Exit Conditions 

Return Sequence: 

task,intlevel 

R5,intievel 
R6,O t 
R7,taskno \ 
1,X'4B' 

(or) LD R6,taskname 

(or) M.CALL H.MONS,lO 

the address of a doubleword containing the name of the task or 
o in Word 0 and the task number in word 1. Task number must 
be used if the task is multicopied or shared. A task number of 
o specifies the calling task. 

is the hardware priority level to which the task is to be 
connected. 

M.RTRN 6,7 

Registers: 

R6 

R7 

8-16 

Denial Code 
1 = Task already connected to an interrupt 
2 = Another task connected to the specified interrupt 
3 = Interrupt not SYSGEN specified indirectly connect

able 
4 = Specified task number not found in Dispatch Queue 

zero if task not connected to interrupt. Otherwise, contains 
the task nu mber. 

,(
'\ .... 

(, ..... 

_./ 



( 

( 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

If the task named is not currently in execution, it is preactivated so that the interrupt 
may be connected. 

8-17 



8.2.9 M.DATE - Date and Time Inquiry 

The M.DATE service returns to the caller the date (in ASCIO, calendar information 
(century, year, month and day), and a count of the number of real-time clock interrupts 
since midnight. To aid in converting the interrupt count to time-of-day, counts of the 
number of interrupts per second and the number of interrupts per time unit are also 
returned. 

Entry Conditions 

Calling Sequence: 

where: 

M.DA TE pbaddr 

(or) 

LA 
SVC 

pbaddr 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

8-18 

R7,pbaddr 
1,X'15' (or) M.CALL H.MONS,70 

is the logical word address of the first location of a 
parameter block formatted as follows: 

Words 0-1 

Word 2 byte 0 
byte 1 
byte 2 
byte 3 

Word 3 

Word 4 

Word 5 

Current Gregorian Date (ASCII 
MM/DD/YY) 

Century (Binary) 
Year (Binary) 
Month (Binary) 
Day (Binary) 

Number of clock interrupts since 
midnight 

Number of clock interrupts per 
second (initialized by SYSGEN) 

Number of clock interrupts per 
time unit (initialized by SYSGEN) 

c 

"r'--''' 

~~/ 

c 



(' External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

( 

8-19 



8.2.10 M.DEBUG - Load and Execute Interactive Debugger 

A call to the M.DEBUG service will cause the interactive Debugger to be loaded as an 
overlay segment. Control is then transferred to the Debugger. If the Debugger is 
already loaded, then only a transfer to the Debugger will take place. 

Entry Conditions 

Calling Sequence: 

M.DEBUG 

(or) 

SVC 1,X'63' (or) M.CALL H.MONS,29 

Exit Conditions 

Return Sequence: 

M.RTRN 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-20 

7 R7 is the transfer address of the Debugger if the 
Debugger was loaded by this service call. R7 is 
zero if the Debugger was already loaded at the time 
this service was called. 



8.2.11 M.DELTSK - Delete Task 

A call to the M.DEL TSK service forces I/O completion and immediately aborts the 
specified task (see also Task Termination Sequencing in Chapter 2). 

Entry Conditions 

Calling Sequence: 

where: 

M.DELTSK 

(or) 

LD 
LW 
LI 
LW 
SVC 

R2,extcode 
R5,abcode 
R6,O t 
R7, taskno ~ 
1,X'5A' or 

abcode 

task 

ext code 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R7 

abcode, task,extcode 

(or) LD R6, taskname 

M.CALL H.MONS,31 

contains the abort code consisting of four ASCII characters. 

the address of a doubleword containing the name of the task 
or 0 in Word 0 and the task number in word 1. Task number 
must be used if the task is multicopied or shared. A task 
number of 0 specifies the calling task. 

contains the extended abort code message consisting of one 
to eight ASCII characters, left justified, and blank filled. 

7 

zero if the specified task was not found in the Dispatch 
Queue. Otherwise contains the task number. 

8-21 



External References 

System Macros: 

M.RTRN 
M.IOFF 
M.OPEN 

Abort Cases: 

MS12 

Output Messages: 

M.CALL 
M.IONN 

Non-privileged user attempting to abort a task with a 
different owner name. 

Modifies Abort message to be: 

where: 

8-22 

ABORT task REASON: xxxx zzzzzzzz AT: yyyyyyyy 

zzzzzzzz is the extended message code supplied with the call to this 
service. 

,e··-.' \ ~' 



( 

8.2.12 M.D EVID - Get Device Mnemonic or Type Code 

The M.DEVID service allows the user to pass either a device mnemonic or a generic 
device type code and receive the corresponding type code or mnemonic. See Appendix A 
for device mnemonic and device type codes. 

Entry Conditions 

Calling Sequence: 

M.DEVID 

(or) 

LW R2,id 

id 

SVC 1,X'14' (or) M.CALL H.MONS,71 

where: 

id contains either a device mnemonic in the right halfword with 
the left half word zero or a device type code in byte 3 with 
bytes 0-2 zero. 

Exit Conditions 

Return Sequence: 

M.RTRN 2 

Registers: 

If input was a device mnemonic: 

R2 bytes 0-2 
byte 3 

If input was a device type code: 

R2 left half word 
right half word 

zero 
corresponding device type code 

zero 
corresponding device mnemonic 

If input was a mnemonic or device type code not in the system Device Type Table (DTT): 

R2 bit 0 
bits 1-31 

External References 

System Macros: 

M.RTRN 

set 
unchanged 

8-23 



Abort Cases: 

None 

Output Messages: 

None 

8-24 

\ ,,-,---



( 

( 

(~ 

8.2.13 M.DISCON - Disconnect Task from Interrupt 

The M.DISCON service is used to disconnect a task which has previously been centrally 
connected to an interrupt level. 

Entry Conditions 

Calling Sequence: 

M.DISCON task 

(or) 

LI R6,O t 
LW R7,taskno ~ 

(or) LD R6,taskname 

SVC I,X'5D' (or) M.CALL H.MONS,38 

where: 

task 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R7 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS29 

Output Messages: 

None 

the address of a doubleword containing the name of the task 
or 0 in Word 0 and the task number in word I. Task number 
must be used if the task is multicopied or shared. A task 
number of 0 specifies the calling task. 

7 

zero if the task was not found in the Dispatch Queue. 
Otherwise contains the task number. 

Non-privileged user attempting to disconnect a task with a 
different owner name. 

8-25 



8.2.14 M.DLTT - Delete Timer Entry 

The M.DLTT service is used to reset the timer for the specified task so that its specified 
function will no longer be performed upon time-out. 

Entry Conditions 

Calling Sequence: 

M.DLTT timer 

(or) 

LW R7,timer 
SVC 1,X'47' (or) M.CALL H.MONS,6 

where: 

timer two-character ASCII name of a timer, right justified 

Exit Conditions 

Return Sequence: 

M.RTRN 

CC 1 set if timer entry not found 

Registers: 

None 

External References . 

System Macros: 

M.RTRN 

Output Messages: 

None 

NOTE: Deletion of timer entry will not delete the associated task. One-shot timers are 
deleted on expiration. 

8-26 



( 

( 

8.2.15 M.DSMI - Disable Message Task Interrupt 

The M.DSMI service disables the task interrupts for messages sent to the calling task. 
M.DSMI is useful for synchronization gating of the task message interrupts. 

Entry Conditions 

M.DSMI 

(or) 

SVC 1,X'2E' (or) M.CALL H.MONS,57 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

CC 1 set if task interrupts were already disabled 

8-27 



8.2.16 M.DSUB - Disable User Break Interrupt 

The M.DSUB service deactivates the user break interrupt (see M.ENUB) and allows user 
breaks via the terminal BREAK key to be acknowledged. 

Entry Conditions 

Calling Sequence: 

M.DSUB 

(or) 

SVC I,X'12' (or) M.CALL H.MONS,73 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

CC 1 set if user break already disabled 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-28 

1(. 

;' 



8.2.17 M.EAWAIT - End Action Wait 

The M.EA WAIT service will wait for the completion of any no-wait request or I/O end 
action if any are queued. If there aren't any outstanding, the service returns 
immediately to the user. This service is similar to the M.ANYW service. 

Entry Conditions 

Calling Sequence: 

M.EA WAIT time I 

(or) 

LW R6,timel 
SVC I,X'lD' (or) M.CALL H.EXEC,40 

where: 

timel 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS31 

Output Messages: 

None 

contains zero if wait for an indefinite period is requested. 
Otherwise, time I contains the negative number of time units 
to elapse before the wait is terminated. (The actual time 
elapsed can vary by one time unit because of system design.) 

User attempted to go to an any wait state from an end action 
routine. 

8-29 



8.2.18 M.ENMI - Enable Message Task Interrupt 

The M.ENMI service enables task interrupts for messages sent to the calling task. It is 
used to remove an inhibit condition previously established by invoking the M.DSMI 
service. 

Entry Conditions 

Calling Sequence: 

M.EN1\AI 

(or) 

SVC 

Exit Conditions 

Return Sequence: 

1\A.RTRN 

Registers: 

CCI 

8-30 

I,X'2F' (or) M.CALL H.MONS,58 

set if task interrupts were already enabled 

('~-,', ,'1. 

i' 
, ~-j 



( 8.2.19 M.ENUB - Enable User Break Interrupt 

The M.ENUB service activates the user break interrupt and causes further user breaks 
via the terminal BREAK key to be ignored. 

Entry Conditions 

Calling Sequence: 

M.ENUB 

(or) 

SVC 1,X'13' (or) M.CALL H.MONS,72 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

CC 1 set if user break already enabled 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Ouput Messages: 

None 

8-31 



8.2.20 M.EXIT - Terminate Task Execution 

The M.EXIT service performs all normal termination functions required of exiting tasks 
(see Section 2). All devices and memory are deallocated, related table space is erased, 
and the task's Dispatch Queue entry is cleared. 

Entry Conditions 

Calling Sequence: 

M.EXIT 

(or) 

SVC 1,X'55' (or) M.CALL H.MONS,18 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-32 

l.·~.·· 
\\ 

,,~--



8.2.21 M.GMSGP - Get Message Parameters 

The M.GMSGP service is called from the message receiver routine of a task that has 
received a message interrupt. Its purpose is to transfer the message parameters into the 
designated receiver buffer, and to post the ownername and task number of the sending 
task into the Parameter Receive Block (PRB). (For description of the PRB, see Section 
3.) 

Entry Conditions 

Calling Sequence: 

M.GMSGP 

(or) 

prbaddr 

LA R2,prbaddr 
SVC I,X'7 A' (or) M.CALL H.MONS,35 

where: 

prbaddr is the logical address of the Parameter Receive Block (PRB). 

Exit Conditions 

Return Sequence: 

M.RTRN 6 

Registers: 

R6 Contains the processing status error code: 

Error Code 

a 
I 
2 
3 
4 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

Definition 

Normal status 
Invalid PRB address 
Invalid receiver buffer address 
No active send request 
Receiver buffer length exceeded 

8-33 



8.2.22 M.GRUNP - Get Run Parameters 

The M.GRUNP service is called by a task that is executing on behalf of a run request. Its 
purpose is to transfer the run parameters into the designated receiver buffer, and to post 
the ownername and task number of the sending task into the Parameter Receive Block 
(PRB). (See Section 3.) 

Entry Conditions 

Calling Sequence: 

where: 

M.GRUNP 

(or) 

LA R2,prbaddr 

prbaddr 

SVC 1,X'7B' (or) M.CALL H.MONS,36 

prbaddr is the logical address of the Parameter Receive Block (PRB). 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R6 Contains the processing status error code: 

Error Code Definition 

o Normal status 
1 Invalid PRB address 
2 Invalid receiver buffer address 
3 No active send request 
4 Receiver buffer length exceeded 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-34 



8.2.23 M.HOLD - Program Hold Request 

The M.HOLD service makes the specified task ineligible for CPU control by setting the 
hold bit in the CPU Dispatch Queue. The specified task remains in the hold state until 
the operator issues the OPCOM CONTINUE command. If the specified task is not in the 
CPU Dispatch Queue, the request is ignored. 

Entry Conditions 

Calling Sequence: 

where: 

M.HOLD task 

(or) 

LI 
LW 
SVC 

R6,O t (or) LD R6,taskname 
R7, taskno~ 
I,X'58' (or) M.CALL H.MONS,25 

task the address of a doubleword containing the name of the task or 0 
in Word 0 and the task number in word 1. Task number must be 
used if the task is multicopied or shared. A task number of 0 
specifies the calling task. 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 7 

R7 zero if the specified task was not found in the Dispatch Queue, or 
if the task is scheduled to leave the system. Otherwise contains 
the task number. 

CC 1 set if the task is scheduled to leave the system. 

8-35 



External References 
(i"',.i 

,-

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

(~ 

8-36 



(" 
8.2.24 M.ID - Get Task Number 

The M.ID service allows the user to pass the address of a parameter block containing any 
of the following: (a) task number, (b) task load module name, (c) owner name, or (d) task 
pseudonym, and the service will provide the missing items if a matching entry is found. 
Initially, the caller passes zero (0) as the index value following the parameter block 
address. If more than one task in the Dispatch Queue satisfies the given parameters, the 
service returns to the caller with an index value in Register 5 for retrieval of further 
entries. The caller is responsible for updating the index with the contents of Register 5 
and reissuing M.ID until all tasks that meet specifications have been identified or R5 = O. 

Entry Conditions 

Calling Sequence: 

where: 

M.ID pbaddr ,index 

(or) 

L W R5,a variable equal to 0 or an index 
LA R7,pbaddr 
SVC I,X'64' (or) M.CALL H.MONS,32 

pbaddr 

index 

is the logical word address of the first location of a 
parameter block formatted as follows: 

Word 0 Task Activation Sequence Number 

Words 1-2 Task Load Module Name 

Words 3-4 Owner Name 

Words 5-6 Pseudonym 

The user supplies those items that are known and zeros the 
other words. 

a variable equal to zero for initial call, then set to plus or 
minus value for each subsequent call. When R5 = 0, all tasks 
that match have been identified. 

8-37 



Exit Conditions 

Return Sequence: 

M.RTRN 5 

Registers: 

R5 = 0 if no entry satisfies the given parameter(s). 
R5 = Bit 0 is set if more than one task satisfies the given parameters. 

Bits 1-31 contain the DOE address of the current task found .. 

R5 may be used as input for subsequent caUs. 

External References 

System Macros: 

Abort Cases: 

M.RTRN 
M.RTNA 

MS32 Invalid entry to M.ID (H.MONS,32) 

Output Messages: 

None 

8-38 

( ... 



8.2.25 M.INT - Activate Task Interrupt 

The M.INT service allows the calling task to cause the previously declared break/task 
interrupt receiver routine of the specified task to be entered. 

Entry Conditions 

Calling Sequence: 

where: 

M.INT 

(or) 

ZR 
LW 
SVC 

task 

Exit Conditions 

Return Sequence: 

task 

R6 t 
R7,taskno f 

(or) LD R6, taskname 

I,X'6F' (or) M.CALL H.MONS,47 

the address of a doubleword containing the name of the task 
or 0 in Word 0 and the task number in word 1. Task number 
must be used if the task is multicopied or shared. A task 
number of 0 specifies the calling task. 

M.RTRN 6,7 

Registers: 

R6 bit 0 

bits 1-31 

R7 

1 if the specified task was not set up to 
receive a pseudo interrupt 

o Otherwise 

o 

zero if the specified task was not found in the 
Dispatch Queue. Otherwise contains the task 
number. 

8-39 



External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8.2.26 M.MYID - Get Task Number 

The M.MYID service allows the user to obtain status on the currently executing task. 

Entry Conditions 

Calling Sequence: 

where: 

8-40 

M.MYID 

(or) 

ZR 
SBR 
LA 
SVC 

pbaddr 

pbaddr 

R5 
R5,0 
R7,pbaddr 
I,X'64' (or) M.CALL H.MONS,32 

is the logical word address of the first location of a 
parameter block formatted as follows: 

Word 0 Task Activation Sequence Number 

Words .1-2 Task Load Module Name 

Words 3-4 Owner Name 

Words 5-6 Pseudonym 

Words 7-8 User Name 

Word 9 User Key (right-justified, left-half word 
zero filled) 

Word 10 Task Scheduling Flags 

'~ ..... 



[ 

{ 

(~ 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R5, R7 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Message: 

None 

5 

unchanged 

8-41 



8.2.27 M.OLAY - Load Overlay Segment 

The M.OLAY service is provided for loading an overlay segment. The actual loading is 
performed by the System Loader (H.LODR) and control is returned to the caller upon 
completion. The named segment must have been defined to the Cataloger as an overlay 
load module. 

If desired, can transfer control to the overlay segment at its cataloged transfer address 
rather than to the caller. 

Entry Conditions 

Calling Sequence: 

M.OLAY 

(or) 

LD 
SVC 

(or) 

loadmod [,EXE] 

R6,loadmod 
1,X'50' (or) M.CALL H.MONS,13 

[SVC 1,X'51' (or) M.CALL H.MONS,14] 

where: 

loadmod 

EXE 

Exit Conditions 

Return Sequence: 

is a doubleword containing the name of the file containing the 
overlay segment to be loaded, one to eight ASCII characters, 
left-justified and blank filled. 

specifies transfer control to the overlay (SVC 1,X'51'). Default: 
loads overlay without transfer (SVCl,X'50'). 

M.RTRN 7 

Registers: 

R7 transfer address of the overlay segment 

8-42 



r- External References 

l. System Macros: 

M.CALL 
M.RTRN 

Abort Cases: 

MS07 LDOl-08 

MS08 

MSIO 

MSll 

MS12 

Output Messages: 

None 

(. 

Cannot load overlay segment due to software 
checksum or data error. 

Overlay is not in the SMD. 

Overlay has an invalid preamble. 

Unrecoverable I/O error during overlay loading. 

Overlay is password protected. 

8-43 



8.2.28 M.PGOW - Task Option Word Inquiry 

The M.PGOW service provides the caller with the 32-bit task option word (same as 
program option word). 

Entry Conditions 

Calling Sequence: 

M.PGOW· 

(or) 

SVC 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R7 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

I,X'4C' (or) M.CALL H.MONS,24 

7 

contains the 32-bit task option word 



(. 

( 

8.2.29 M.PRIL - Change Priority Level 

The M.PRIL service is provided to the privileged caller who wishes to dynamically alter 
the priority level of the specified task. Valid priority levels for real-time tasks are 1-54 
inclusive. Valid priority levels for time distribution tasks are 55-64 inclusive. A real
time task cannot be changed to a time distribution priority level and a time distribution 
task cannot be changed to a real-time priority level. I/O continues to operate at base 
priority level of the cataloged task. 

Entry Conditions 

Calling Sequence: 

where: 

M.PRIL 

(or) 

LW 
LI 
LW 
SVC 

task 

priority 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 

External References 

System Macros: 

M.RTRN 
M.CALL 
M.OPEN 

Abort Cases: 

MS06 

Output Messages: 

None 

task,priority 

R5,priority 
R6,=O t (or) LD R6,taskname 
R7,taskno 5 
I,X'4A' (or) M.CALL H.MONS,9 

the address of a doubleword containing the name of 
the task or 0 in Word 0 and the task number in word 1. 
Task number must be used if the task is multicopied or 
shared. A task number of 0 specifies the calling task. 

is the priority level to be assigned to the task 0-54 for 
a real-time task; 55-64 for a time distribution task). 

zero if the specified task was not found in the 
Dispatch Queue. Otherwise contains the task number. 

Specified priority not in 1-64 range. 

8-45 



8.2.30 M.PTSK - Parameter Task Activation 

The M.PTSK privileged service activates a task whose load module name, optional 
resource requirements, and optional pseudonym are specified to the service call. 

Entry Conditions 

Calling Sequence: 

where: 

8-46 

M.PTSK 

(or) 

LA R l,actaddr 

actaddr ,psbaddr 

LA R2,psbaddr (or) ZR R2 
SVC I,X'5F' (or) M.CALL H.MONS,40 

actaddr is the logical word address of the first location of an activation 
parameter block formatted as shown below 

PARAMETER BLOCK 

(Words 0-12 are required. The RRS entries (words 13-205) are optional as 
indicated by byte 1.) 

Word 0 byte 0 bits 

byte 1 

byte 2 

byte 3 

Word 1 byte 0 

byte 1 

1 = Reserved 
2 = Terminal task 
3 = Batch task 
4 = Debug overlay required 
5 = RTM resident (ESTABLISH) 

Number of resource requirements or zero if same 
as summary entries in Load Module Information 
Table (LMIT) 

Memory requirement = number of 512 word pages 
exclusive of TSA or zero if memory requirements 
are to be taken from the LMIT 

Memory class (ASCII E, H or S) or zero if memory 
class to be taken from LMIT 

Number of blocking buffers required or zero if 
same as LMIT 

Number of FAT /FPT pairs (files) to be reserved or 
zero if same as LMIT 



[ 

( 

byte 2 

byte 3 

Word 2,3 

Word 4,5 

Word 6,7 

Word 8,9 

Word 10 

Word 11 

Word 12 

Words 13-205 
(optional) 

psbaddr 

Priority level of task being activated or zero if 
same as LMIT. Overridden if priority is specified 
in the option PSB. 

Reserved for future use 

Load Module Name - one to eight ASCII character, 
left-justified, blank filled, load module name 

Pseudonym - one to eight ASCII character left
justified, blank filled pseudonym to be associated 
with task or zero if no pseudonym is desired 
(pseudonym's are intended to be unique - the 
responsibility for uniqueness rests with the caller) 

Owner Name - one to eight ASCII character, left
justified, blank filled, owner name to be associated 
with task or zero if task to default to current 
owner name. Default is to current owner name if 
a PSB is used. 

User Name - one to eight ASCII character, left
justified, blank filled user name to be associated 
with files referenced by this task or zero if same 
as LMIT 

User Key - right justified compressed halfword 
equivalent of user key. If zero, same as LMIT. 

Task Option Word - contains the initial value of 
the task option word or zero 

Task Status Word - contains the initial value of the 
task status word or zero 

Resource Requirement Summary - each entry 
contains three words. The maximum number of 
entries is 64. Each entry is compared with the 
RRS entries in the LMIT. If the logical file code 
currently exists, the specified lfc assignment will 
override the cataloged assignment, otherwise it 
will be treated as an additional requirement 
(merged). 

is the logical address of the Parameter Send Block 
(PSB) or zero, if no parameters are to be passed. 
See Chapter 3 for PSB description. 

8-47 



Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

RO 

R6 = 0 

R7 

(or) 

R6 = 1 

R7 

(or) 

R6 = 2 
= 3 
= 4 
= 5 
= 6 
= 7 
= 8 
= 9 

External References 

System Macros: 

M.RTRN 

Abort Codes: 

None 

Output Messages: 

None 

8-48 

6,7 

is destroyed 

if the service could be performed 

contains the task number of task activated by this service 

if invalid attempt to multicopy a unique load module 

task number of existing task with same name 

if load module file not in SMD 
if load module file is password protected 
if file does not contain valid data 
if no DQE is available 
if read error on SMD 
if read error on load module 
insufficient memory 
calling task is unprivileged 



r 

( 

8.2.31 M.RCVR - Receive Message Link Address 

The M.RCVR service allows the caller to establish the address of a routine to be entered 
for the purpose of receiving messages sent by other tasks. 

Entry Conditions 

Calling Sequence: 

M.RCVR 

(or) 

recvadd 

LA R7,recvadd 
SVC I,X'6B' (or) M.CALL H.MONS,43 

where: 

recvadd 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

is the logical word address of the entry point of the receive 
message routine in the user's task. 

7 

R7 contains zero if the receiver address was invalid, otherwise 
contains the receiver address 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-49 



8.2.32 M.SETS - Set User Status Word 

The M.SETS service allows the calling task to modify any task's user status word. Along 
with the Test User Status Word service, this is one of the means provided by MPX-32 for 
task-to-task communication. The user status word resides in the CPU Dispatch Queue 
(DQE.USW) and has a value of zero until modified by this service. The user status word 
is removed from the queue, modified as specified, and replaced in the queue. 

Entry Conditions 

Calling Sequence: 

where: 

M.SETS function,statusw [, task] 

(or) 

LD R4,task 
LI R6,function 
L W R7,statusw 
SVC I,X'48' (or) M.CALL H.MONS,7 

function 

statusw 

STF (0, RSF (2), STC (3), or INC (4) specify the type of 
modification to be performed and are Set Flag, Reset Flag, Set 
Counter, and Increment Counter respectively. If using the macro 
call, specify the alphabetic code. If loading registers, specify the 
corresponding numeric. 

contains a function parameter specific to function codes as 
follows 
l=bit position in the status word to be set (1-31) 
2=bit position in the status word to be reset (1-31) 
3=value to which the status word is to be set 
4=value by which the status word is to be incremented 

task is the address of a double word containing the name of the task, or 
o in word 0 and the task number in word 1. Task number must be 
used if the task is multicopied or shared. A task number of 0 or 
omission of the argument specifies the calling task. 

Exit Conditions 

Return Sequence: 

Registers: 

8-50 

M.RTRN 5 

R5 bit 0 set if the specified task number was not found in the 
Dispatch Queue. Otherwise, R5 is zero. (j 



(-

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS05 

Output Messages: 

None 

Invalid function code specification. 

8-51 



8.2.33 M.SETT - Create Timer Entry 

The M.SETT service builds an entry in the timer table so that the requested function is 
performed upon time-out. Timer entries may be created to activate a program, resume a 
program, set a bit in memory, reset a bit in memory, or request an interrupt. Any task 
may create a timer to activate or resume a program. Timer entries to set or reset bits 
may be created by any task, provided the bit is within a static memory partition. Only 
privileged users may set bits in the operating system. A request interrupt can only be 
requested by a privileged task. 

Entry Conditions 

Calling Sequence: 

where: 

8-52 

M.SETT 

(or) 

LB 
SLL 
ORMW 
LW 
LW 
LW (or LD) 
(LW 
SVC 

timer 

tl 

t2 

function 

timer, tl, t2,function,arg4,arg5 

R3,function 
R3,24 
R3,timer 
R4,tl 
R5,t2 
R6,arg4 
R7,arg5) 
1,X'45' (or) M.CALL H.MONS,4 

is a word containing zeros in bytes 0 and 1, and a two
character timer identification in bytes 2 and 3. 

contains the current value to which the timer will be set in 
negative time units. 

contains the value to which the timer will be reset upon each 
time-out in negative time units. If the reset value is zero, the 
function will be performed upon time-out and the timer entry 
will be deleted. This case is called a "one-shot" timer entry. 

ACP 0), RSP or RST (2), STB (3), RSB (4), and RQI (5) specify 
the function to be timed and are activate program, resume 
program, set bit, reset bit, and request interrupt, 
respectively. If using the macro call, specify the alphabetic 
code. If loading registers, specify the corresponding numeric. 

(j 



ARG4 and ARG5and FCT, CODE contain values specific to the function being timed as 
follows: 

FUNCTIQ\J 

ACP 

RSP 

(or) 
RST 

STB 

RSB 

RQI 

NUMERIC 

1 

2 

2 

3 

4 

5 

ARG4 and ARG5 

arg4 . contains the one- to eight-charact~r name of 
the program to be activated. If the task named is 
not currently in execution, it is preactivated to 
connect the interrupt to the task. This connection 
remains in effect until the task aborts or the timer 
is deleted. On normal exit, the timer table is 
updated to point to the next generation. If arg4 is 
zero, indicates the current task. 

arg5 is nUll. 

arg4 is a doubleword containing the one- to eight
character name of the task to be resumed in R6 
and R7. If arg4 is zero, indicates the current task. 

arg5 is null. 

arg4 is the task number entered into R7 and R6 is 
zeroed. If arg4 is zero, indicates the current task. 

arg5 i~ null. 

arg4 contains the address of the word in which the 
bits are to be set. The address must be within the 
operating system (if privileged) or a static memory 
partition. 

arg5 ~ontains the bit configuration of the mask 
word to be ORed. 

arg4.c::ontains the address of the word in which the 
bit is to be reset. The address must be within the 
operating system (if privileged) or a static memory 
partition. 

arg5 . contains the bit configuration of the mask 
word to be ANDed. 

arg4 contains the priority level of the interrupt to 
be requested. 

arg5.is null. 

8-53 



Exit Conditions 

Returned Sequence: 

Normal Return: 

M.RTRN R3 

R3 is non-zero and condition codes are not set. 

Error Condition: 

M.RTRN R3 

R3 is zero if request is denied. 
If no condition codes are set on a denial return, then there are no timer 
entries available. Otherwise, the condition codes are interpreted as follows: 

CC 1 set if requested load module does not exist 
CC2 set if requested task is not active 
CC3 set if attempting to create a duplicate timer id 

Abort Codes: 

MS02 

MS03 

MS04 

8-54 

Invalid function code specified for request to create a timer 
entry. Valid codes are ACP (1), RSP or RST (2), STB (3), RSB (4), 
and RQI (5). 

A privileged task bit Set/Reset address is outside of the operating 
system or a static memory partition, or an unprivileged task bit 
Set/Reset address is outside of a static memory partition. 

Task has attempted to create a timer entry to request an 
interrupt with a priority level outside the range of X'12' to X'7F', 
inclusive, or the requesting task is unprivileged. 



[ 8.2.34 M.SMSGR - Send Message to Specified Task 

The M.SMSGR service allows a task to send up to 768 bytes to the specified destination 
task. Up to 768 bytes may also be accepted as return parameters. For further 
description, see Chapter 3. 

Entry Conditions 

Calling Sequence: 

where: 

M.SMSGR psbaddr 

(or) 

LA R2,psbaddr 
SVC I,X'6C' (or) M.CALL H.MONS,44 

psbaddr is the logical address of the Parameter Send Block (PSB). See 
Chapter 3 for PSB description. 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 6 

R6 Contains the processing start (initial) error status if any: 

Error Code Definition 

a Normal initial status 
1 Task not found 
2-9 Reserved 
10 Invalid priority 
11 Invalid send buffer address or send quantity exceeds 

768 bytes 
12 Invalid return buffer address 
13 Invalid no-wait mode end-action routine address 
14 Memory pool unavailable 
15 Excessive no wait run requests. Limit is 5 for 

unprivileged tasks and 255 for privileged tasks. 
16 Invalid PSB address 
17 Destination task is not a valid message receiver 

8-55 



External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-56 



( 

8.2.35 M.SRUNR - Send RlIl Request to Specified Task 

The M.SRUNR service allows a task to activate or re-execute the specified destination 
task with a parameter pass of up to 768 bytes. Up to 768 bytes may also be accepted as 
return parameters. For further description, see Chapter 3. 

Entry Conditions 

Calling Sequence: 

M.SRUNR psbaddr 

(or) 

LA R2,psbaddr 
SVC I,X'6D' (or) M.CALL H.MONS,45 

where: 

psbaddr 

Exit Conditions 

Return Sequence: 

is the logical address of the Parameter Send Block (PSB). See 
Chapter 3. 

M.RTRN 6,7 

Registers: 

R6 

Error Code 

R7 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 

16 
17 

Contains the processing start (initial) error status if any: 

Definition 

Normal initial status 
Reserved 
Load module name not found in SMD 
Load module file is password protected 
Invalid load module file format 
Dispatch Queue Entry (DQE) unavailable 
I/O error on SMD read 
I/O error on load module read 
Memory unavailable 
Invalid taskno for run request to multicopied load 
module in RUNW state 
Invalid priority 
Invalid send buffer address or send quantity exceeds 
768 bytes 
Invalid return buffer address 
Invalid no-wait mode end-action routine address 
Memory pool unavailable 
Excessive no-wait run request. Limit is 5 for 
unprivileged tasks and 255 for privileged tasks. 
Invalid PSB address 
Reserved 

Contains the task number (taskno) of the destination task, or zero 
if the request was not processed. 

8-57 



External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-58 

\ . 
"--

c~ 



[ 

( 

8.2.36 M.SUAR - Set User Abort Receiver Address 

The M.SUAR service provides the user with the ability to set up an address to which 
control will be returned on an abort during task execution. 

All files remain open prior to transferring to the user specified address. See Task 
Termination Sequencing in Chapter 2. 

Entry Conditions 

M.SUAR 

(or) 

address 

LA R7,address 
SVC 1,X'60' (or) M.CALL H.MONS,26 

where: 

address 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R7 bit 0 

bit 0 

is the logical address to which control will be transferred on task 
termination 

7 

1 if the request is denied because the specified address is 
outside the user's allocated area 

o if the request is honored 

bits 1-31 o 

External References 

System Macros: 

M.SPAD 
M.CALL 
M.RTRN 

Abort Cases: 

MS89 

Output Messages: 

None 

An unprivileged task has attempted to reestablish an abort 
receiver (other than M.IOEX). 

8-59 



8.2.37 M.SUME - Resume Task Execution 

The M.SUME service is used to resume a ta<;k that has been suspended. A request to 
resume a task which is not suspended is ignored. 

Entry Conditions 

Calling Sequence: 

where: 

M.SUME 

(or) 

ZR 
LW 
SVC 

task 

R6 t (or) LD R6, taskname 
R7,taskno~ 
1,X'53' (or) M.CALL H.MONS,16 

task the address of a doubleword containing the name of a task or 0 in 
Word 1 and the task number in Word 2. Task number must be used 
if the task is multicopied or shared. 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 zero if any of the following conditions exist: 

the specified task number or task name was not found in the 
dispatch queue 

the specified task name was not single copied 

the owner name of the task requesting the abort is restricted 
from access to tasks with a different owner name (via the 
M.KEY file), the task requesting the abort is not privileged, 
and the owner names of the requesting and target task do not 
match 

the task is in the process of exiting the system 

Otherwise, task number. 

CC 1 set if the task is in the process of exiting the system. 

External References 

System Macros: 

M.CALL 
M.RTRN 
M.OPEN 

Abort Cases: 

None 

Output Messages: 

None 

8-60 

M.IOFF 
M.IONN 



( 

( 

( 

8.2.38 M.SUSP - Suspend Task Execution 

The M.SUSP service results in the suspension of the caller or any other task of the same 
owner name for the specified number of time units or for an indefinite time period, as 
requested. A task suspended for a time interval results in a one-shot timer entry to 
resume the task upon time-out of the specified interval. A task suspended for an 
indefinite time interval must be resumed through the M.SUME system service. 
Suspension of a task can also be ended upon receipt of a message interrupt. 

Entry Conditions 

Calling Sequence: 

where: 

M.SUSP 

(or) 

LW 
LI 
LW 
SVC 

task 

time1 

Exit Conditions 

Return Sequence: 

task, time 1 

R5,time1 
R6,O ~ (or) LD R6,taskname 
R7,taskno ~ 
1,X' 541 (or) M.CALL H.MONS,17 

the address of a doubleword containing the name of a task or 0 in 
Word 1 and the task number in Word 2. Task number must be used 
if the task is multicopied or shared. A task number of 0 specifies 
the calling task. 

contains zero, if suspension for an indefinite time interval is 
requested. Else the negative number of time units to elapse 
before the caller is resumed. (The actual time elapsed can vary 
by one time unit because of system design.) 

M.RTRN 7 

Registers: 

R7 task number if the service was performed. 
Zero if the service could not be performed, 

CC 1 set if specified task number was not found in the Dispatch Queue, 

CC2 set if the time interval was invalid. 

8-61 



External References 

System Macros: 

M.RTRN 
M.CALL 
M.OPEN 

Abort Cases: 

None 

Output Messages: 

None 

8-62 

M.IONN 
M.IOFF 

(/ 



( 

( 

8.2.39 M.SYNCH - Set Synchronous Task Interrupt 

The M.SYNCH service will cause message and task interrupts to be deferred until the 
user makes a call to M.ANYW, M.EAWAIT, M.WAIT, or M.SYNCH. When this service is 
used, message interrupts will not be interrupted by End Action Interrupts. All task 
interrupt levels cannot be interrupted, except by break, until they voluntarily relinquish 
control. 

Calling Sequence: 

M.SYNCH 

(or) 

SVC 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

I,X'IB' (or) M.CALL H.MONS,67 

CC 1 set if synchronous task interrupt was already set 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-63 



8.2.40 M.IDAY - Time-of-Day Inquiry 

The M. TDAY service returns to the caller the time of day as computed from the real
time clock interrupt counter. The counter is initialized via a SYSGEN parameter and may 
be modified at any time by the OPCOM ENTER command. 

Entry Conditions 

Calling Sequence: 

M.TDAY 

(or) 

SVC 1,X'4E' (or) M.CALL H.MONS,11 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 byte O=hours (0-23) 
byte 1 =minutes (0-59) 
byte 2=seconds (0-59) 
byte 3=interrupts (less than one second) 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-64 

(, ~.j 
J 



( 
8.2.41 M. TSTE - Arithmetic Exception Inquiry 

The M. TSTE service resets the arithmetic exception status bit in the user's TSA and 
returns CC 1 set or reset according to the status value. The status bit is set whenever 
the user is in execution and an arithmetic exception trap occurs. The bit remains set 
until this service is requested, or the task terminates. 

Entry Conditions 

Calling Sequence: 

M.TSTE 

(or) 

SVC 1,X'4D' (or) M.CALL H.MONS,23 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

PSD CC 1 contains the value of the arithmetic exception status bit 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-65 



8.2.42 M.TSTS - Test User Status Word 

The M. TSTS service returns the 32 bit user status word of any specified task in 
execution. The user status word resides in the CPU Dispatch Queue (DQE.USW) and is 
modified by the Set User Status Word system service. These two services treat the user 
status word as either a set of 32 flags or as a 32 bit counter. Bit 0 is used as a status 
flag. 

Entry Conditions 

Calling Sequence: 

M.TSTS task 

where: 

(or) 

LI 
LW 
SVC 

R6,O t (or) LD R6,taskname 
R7,taskno \ 
1,X'49' (or) M.CALL H.MONS,8 

task the address of a doubleword containing the name of a task or 0 in 
Word 1 and the task number in Word 2. Task number must be used 
if the task is multicopied or shared. A task number of 0 specifies 
the calling task. 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 bit 0 set if the specified task was not found in the Dispatch Queue. 
Otherwise, R7 returns the user-status word. 

External Ref erences 

System Macros: 

M.RTRN, M.CALL, M.OPEN 

Abort Cases: 

None 

Output Messages: 

None 

8-66 



r 

( 

( 

8.2.43 M. TSTT - Test Timer Entry 

The M.TSTT service returns to the caller the negative number of time units remaining 
until the specified timer entry time-out. If the timer has expired, the result returned is 
zero. 

Entry Conditions 

Calling Sequence: 

M.TSTT 

(or) 

timer 

LW R6,timer 
SVC 1,X'46' (or) M.CALL H.MONS,5 

where: 

timer two-character ASCII name of a timer, right justified. 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 negative number of time units remaining until time out 

(or) 

zero if the timer has expired, or does not exist 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-67 



8.2.44 M.TURNON - Activate Program at Given Time of Day 

The M.TURNON service activates or resumes a specified task at a specified time and 
reactivates (resumes) it at specified intervals by creating a timer table entry using a 
specified timer ID. 

Entry Conditions 

Calling Sequence: 

M.TURNON loadmod,time, [reset] , timerid 

where: 

(or) 

LD 
LW 
LW 
LW 
SVC 

loadmod 

time 

reset 

timerid 

Exit Conditions 

Return Sequence: 

Normal Return: 

M.RTRN 

R6,loadmod 
R4,time 
R5,reset 
R3,timerid 
I,X'lE' (or) M.CALL H.MONS,66 

is the 1-8 character name of the permanent load module file 
where the task is cataloged. It must be a system file (no user 
name) and it must be a left-justified blank filled doubleword. 
Zero load module indicates the current task. 

is the time of day on the 24-hour clock when the task will be 
activated. It is a word value with the following format: 

Byte 0 
Byte 1 
Byte 2 
Byte 3 

= binary hours 
= binary minutes 
= binary seconds 
= zero 

is the time interval on the 24-hour clock to elapse before 
resetting the clock upon each timeout. It has the same format as 
the 'time' argument above. The task will be reactivated at each 
timeout. If a reset value is not specified, the comma denoting 
the field must still be specified and the task will be activated 
only once. 

is a word variable containing the right-justified zero filled 2-
character ASCII name of the timer that will be created. 

R3 

R3 is non-zero. 

8-68 



( 

Error Condition: 

M.RTRN R3 

R3 is zero if request is denied 

If no condition codes are set on a denial return, then there are no timer 
entries available. Otherwise, the condition codes are interpreted as follows: 

CC 1 set if requested load module does not exist 
CC2 set if requested task not active 
CC3 set if attempting to create a duplicate timer ID. 

External References 

System Macros: 

M.CALL 
M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

H.MONS,4 

8-69 



8.2.45 M.XBRKR - Exit from Task Interrupt Level 

The M.XBRKR service must be called at the conclusion of executing a task interrupt 
routine. It transfers control back to the point of interruption. 

Entry Conditions 

Calling Sequence: 

M.XBRKR 

(or) 

SVC 1,X'70' (or) M.CALL H.MONS,48 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-70 

c 



( 
8.2.46 M.XMEA - Exit from Message End Action Routine 

The M.XMEA service is called to exit the end action routine associated with a no-wait 
message send request. For further description, see Chapter 3. 

Entry Conditions 

Calling Sequence: 

M.XMEA 

(or) 

SVC 1,X'7E' (or) M.CALL H.MONS,50 

Exit Conditions 

Return Sequence: 

M.RTRN (to interrupt context at message interrupt or task base level) 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS99 End action interrupt was inactive when end action exit issued. 

Output Messages: 

None 

8-71 



8.2.47 M.XMSGR - Exit from Message Receiver 

The M.XMSGR service must be called to exit the message receiver code of the calling 
task after the task has received a message from another task. For further description, 
see Chapter 3. 

Entry Conditions 

Calling Sequence: 

M.XMSGR rxbaddr 

(or) 

LA R2,rxbaddr 
SVC 1,X'5E' (or) M.CALL H.MONS,39 

where: 

rxbaddr 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS93 

MS94 

MS95 

Output Messages: 

None 

8-72 

is the logical address of the Receiver Exit Block (RXB). 

(to interrupted context at task base level) 

Invalid Receiver Exit Block (RXB) address was encountered during 
message exit. 

Invalid Receiver Exit Block (RXB) return buffer address was 
encountered during message exit. 

Task has made a message exit while the message interrupt was 
not active. 



( 

8.2.48 M.XREA - Exit from Roo Request End Action Routine 

The M.XREA service is called to exit the end action routine associated with having sent 
a no-wait run request. 

Entry Conditions 

Calling Sequence: 

M.XREA 

(or) 

SVC 1,X'7F' (or) M.CALL H.MONS,51 

Exit Conditions 

Return Sequence: 

M.RTRN (to interrupted context at message interrupt or task base level) 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

MS99 End action interrupt was inactive when end action exit issued. 

Output Messages: 

None 

8-73 



8.2.49 M.XRUNR - Exit Run Receiver 

The M.XRUNR service is called to exit a task which was executing on behalf of a run 
request issued from another task. 

Entry Conditions 

Calling Sequence: 

where: 

M.XRUNR rxbaddr 

(or) 

LA R2,rxbaddr 
SVC i,X'7D' (or) M.CALL H.MONS,49 

rxbaddr is the logical address of the Receiver Exit Block (RXB). For 
further description, see Chapter 3. 

Exit Conditions 

Return Sequence: 

The run receiver queue will be examined and if not empty, the task will be 
executed again on behalf of the next request. If the queue is empty, the exit 
options in the RXB are examined. If option byte is 0, the task will be placed 
in a wait state, waiting for the next run request to be received. If option byte 
is non-zero, the task will exit the system. Note: if the task is re-executed, 
control will be transferred to the instruction following the M.XRUNR call. 

External References 

System Macros: 

None 

Abort Cases: 

MS96 Invalid Receiver Exit Block (RXB) address. 

MS97 Invalid return parameter buffer address. 

MS98 Run receiver mode not active when run receiver exit issued. 

Output Messages: 

None 

8-74 



8.2.50 M.XTIME - Task CPU Execution Time 

The M.XTIME service returns to the caller a doublewordvalue representing the total 
elapsed CPU execution time (in microseconds) since initiation of the task. The CPU 
execution time is determined by adding the accumulated CPU and IPU interval timer 
ticks to the number of interval timer ticks expired in the current time quantum. This 
sum is multiplied by the value (in tenths of microseconds) that each interval timer tick 
represents. This product is divided by ten to get the final result into microseconds. 

Entry Conditions 

Calling Sequence: 

M.XTIME 

(or) 

SVC 1,X'2D' (or) M.CALL H.MONS,65 

Exit Conditions 

Return Sequence: 

M.RTRN 6,7 

Registers: 

R6,R7 CPU and IPU execution time in microseconds 

External References 
i 

System Macros: 

None 

Abort Cases: 

None 

Output Messages: 

None 

8-75 



8.2.51 Debug Link Service 

The Debug Link service is intended to be used only by the interactive Debugger for the 
purpose of transferring control to the Debugger. The Debugger plants this SVC trap in 
the user's task at the desired location. 

Entry Conditions 

Calling Sequence: 

SVC 1,X'66' (or) M.CALL H.MONS,42 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTNA 

Abort Cases: 

None 

Output Messages: 

None 

8-76 



8.3 Memory Management Services 

8.3.1 M.ADRS - Memory Address Inquiry 

The M.ADRS service provides the beginning and ending logical addresses of the memory 
allocated to a task. The beginning address is the location into which the first word was 
loaded and is a word address. The ending address is also a word address and defines the 
last word allocated to the task. 

Entry Conditions 

Calling Sequence: 

M.ADRS 

(or) 

SVC 

Exit Conditions 

Return Sequence: 

1,X'44' (or) M.CALL H.MONS,3 

M.RTRN 6,7 

( Registers: 

R6 Logical word address of the first location of the task's DSECT. 
This address is always on a page boundary. 

R7 Logical word address of the last location available for loading or 
expansion of the task's DSECT. This address is always on a map 
block boundary -1 W. 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-77 



8.3.2 M.DUMP - Memory Dump Request 

The M.DUMP service provides a dump of the caller's Program Status Doubleword (PSD), 
General Purpose Registers, and specified memory limits. The output is to a SLO file in 
side-by-side hexadecimal with ASCII format, with the PSD and registers preceding the 
specified memory limits. The PSD and registers are extracted from the first level of 
push-down of the calling task. Optionally, register 5 may specify the address of a ten 
word block containing registers 0 through 7 and the PSD to be dumped, respectively. Any 
task may request a memory dump. 

Entry Conditions 

Calling Sequence: 

where: 

NOTE: 

M.DUMP start,end [,mem3] 

(or) 

ZR R5 (or) LA R5,mem3 
LW R6,start 
LW R7,end 
SVC I,X'4F' (or) M.CALL H.MONS,12 

start contains the low logical word address requested in dump 

end 

mem3 

contains the high logical word address requested in dump 

is the optional address of ten consecutive words containing RO 
through R7 and a PSD, respectively. If R5=O, the registers and 
PSD dumped are taken from the first level of push-down. 

Start and end are truncated to the nearest 8-word boundaries and memory is 
dumped between the truncated limits. 

Exit Conditions 

Return Sequence: 

Registers: 

8-78 

M.RTRN 6,7 

R6 Reason: 

R7 

I =high dump limit less than low limit 
4=no F AT or FPT space available 
5=request made with insufficient levels of push-down available 
6=cannot allocate SLO file 
7 =unrecoverable I/O error 

zero if dump could not be performed 



( 

(~ 

c 

External References 

System Macros: 

M.SPAD 
M.CALL 
M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

8-79 



8.3.3 M.EXCL - Free Shared Memory 

The M.EXCL service allows a task to dynamically deallocate any common areas it has 
previously shared (M.SHARE) or included (M.INCL). M.EXCL causes the allocation count 
(SMT.ACNT) and use count (SMT.USE) to be decremented by one. The common area will 
be deleted and its resources returned to the free list when the allocation count goes to 
zero. 

M.EXCL is also called by the exit processor (H.ALOC,3). If a task begins to abort or 
come to any unnatural or untimely end while the task was in the process of building a 
shared partition, or loading data into a shared partition through the use of a shared 
memory data lock, the exclude service will handle any tasks that are queued to the 
aborting shared memory table. The user task must know if the shared memory table 
entry was originally built with an ownername or a tasknumber, and must know what those 
values are. 

Entry Conditions 

Calling Sequence: 

M.EXCL partition { ,ownername } 
, tasknumber, TNUM 

where: 

(or) 

LD 
LD 

SVC 

partition 

ownername 

tasknumber 

TNUM 

Exit Conditions 

Return Sequence: 

6,partition 
2,ownername (or) LW 2, tasknumber 

ZR 3 
1,X'79' (or) M.CALL H.ALOC,lll-

contains a doubleword bounded, left-justified blank filled 
memory partition name, e.g., GLOBALOI 

contains the owner name of the original owner of the partition 

contains the left-justified tasknumber of the original owner of 
the partition 

indicates a task number is being used instead of an ownername 

M.RTRN (or) abort user with AL39 

Registers: 

None 

Abort Cases: 

AL39 Shared memory table entry not found. 

8-80 

( 



8.3.4 M.F ADD - Permanent File Address Inquiry 

The M.FADD service returns the number of 512W pages and beginning addresses of 
specified static or dynamic DAT APOOL or GLOBAL nn memory partition names. See 
Section 7.8.8. 

8.3.5 M.FD - Free Dynamic Extended Indexed Data Space 

The M.FD service allows the task to deallocate the most recently acquired extended 
memory map block, thus contracting its address space. 

Entry Conditions 

Calling Sequence: 

M.FD 

(or) 

SVC I,X'6A' (or) M.CALL H.ALOC,9 

Exit Conditions 

Return Sequence: 

M.RTRN R3 

Registers: 

R3 new upper limit of extended memory 

o if no extended memory left allocated 

8-81 



8.3.6 M.FE - Free Dynamic Task Execution Space 

The M.FE service allows the task to dynamically deallocate the most recently acquired 
execution space map block, thus contracting its address space. 

Entry Conditions 

Calling Sequence: 

M.FE 

(or) 

SVC I,X'68' (or) M.CALL H.ALOC, II 

Exit Conditions 

Return Sequence: 

M.RTRN R3 (or) abort user with AL20 

Registers: 

R3 new upper address of execution space 

Abort Cases: 

AL20 User attempted deallocation of TSA. 

8-82 



( 

(-

8.3.7 M.GADRL - Get Address Limits 

The M.GADRL service returns to the caller the logical addresses associated with the 
boundaries of his task. 

Entry Conditions 

Calling Sequence: 

M.GADRL 

(or) 

SVC I,X'65' (or) M.CALL H.MONS,41 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 

R3 

R4 

3,4,5,6,7 

contains the logical word address of the first location of the 
task's DSECT (always on a page boundary) 

contains the logical word address of the last location in the 
DSECT actually loaded by the loader' 

R5 contains the logical word address of the last location currently 
available in the task's DSECT (always a map block boundary - I W) 

R6 contains the logical word address of the first location of the 
task's CSECT or' COMMON allocation (always a map block 
boundary) 

R 7 contains the logical word address of the last location currently 
available in the task's extended indexed data sp~c~ (always 'a map 
block boundary - I W) 

External References: 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 
None 

8-83 



8.3.8 M.GD - Get Dynamic Extended Indexed Data Space 

The M.GD service allows the task to dynamically acquire an additional map block of 
memory in its extended area. The memory will be of the same type specified when the 
task was cataloged. It will be mapped in a logically contiguous manner, with the first 
request map starting at l28KW. The task may call this service up to 15 times on a 
SYSTEMS 32/7x and 190 times on a CONCEPT/32, if sufficient memory exists, to expand 
its extended indexed data space. Alternatively, the task may choose to deallocate this 
space in the reverse order via M.FD. The task will be suspended until the allocation is 
successful. ' 

Memory is allocated in 2KW increments on a CONCEPT/32 and in 8KW increments on a 
SYSTEMS 32/7x. 

Entry Conditions 

Calling Sequence: 

M.GD 

(or) 

SVC I,X'69' (or) M.CALL H.ALOC,8 

Exit Conditions 

Return Sequence: 

M.RTRN R3,R4 

Registers: 

R3 logical address of allocated memory 

o if allocation conflict (R4 = error code) 

R4 ending logical word address of allocated memory or error code 

Error Conditions: 

8-84 

R3 = a 

R4 = I attempted allocation of an excessive number of map blocks 

= 2 attempted all-ocation ex~eeds physical memory configured 



( 

8.3.9 M.GE - Get Dynamic Task Execution Space 

The M.GE service allows the task to dynamically expand its memory allocation in map 
block increments, starting at the end of its OSECT up to the top of its logical address 
space. The additional memory will be of the same type specified when the task was 
cataloged. The task will be mapped in a logically contiguous manner up to the start of 
its CSECT or GLOBAL common, or 128KW, whichever occurs first. The task will be 
suspended until the allocation is successful. 

Memory is allocated in 2KW increments on a CONCEPT /32 and in 8KW increments on a 
SYSTEMS 32/7x. 

Entry Conditions 

Calling Sequence: 

M.GE 

(or) 

SVC 1,X'67' (or) M.CALL H.ALOC,10 

Exit Conditions 

Return Sequence: 

M.RTRN R3,R4 

Registers: 

R3 starting logical address of new map block 

R4 ending logical address of 'new map block 

Error Conditions 

R3 = 0 

R4 = 1 excessive OSECT allocation attempted 

= 2 attempted allocation exceeds physical memory configured 

8-85 



8.3.10 M.INCL - Get Shared Memory 

The M.INCL service allows a task to dynamically include a memorv partition into its 
address space, e.g., GLOBALOI or DATAPOOL common. The task is suspended until the 
inclusion is complete. M.INCL causes the allocation count (SMT.ACNT) and the use 
count (SMT.UCNT) to be incremented by one. The task performing an M.INCL must 
know if the shared memory table entry was built with an ownername or tasknumber, and 
know what they are. 

Under memory-only MPX-32, shared memory applies only to static memory partitions or 
CSECTS. 

Entry Conditions 

Calling Sequence: 

M.INCL partition 1 ,ownername ~ ,[RW] , [password], denial, [TNUM] 
, tasknumber ~ 

where: 

8-86 

LD 
LD 

ZR 
ZR 
ZR 
LA 

(or) 

[SBR 
SVC 

partition 

ownername 

tasknumber 

RW 

password 

denial 

TNUM 

6,partition 
2,ownername LW 

ZR 
2,tasknumber 
3 

° 4 (or) LO 4,password 
5 
O,denial 
0,0 if R/W] 
1,X'72' M.CALL H.ALOC,13 

contains the doubleword hounded, left-justified blank 
filled memory partition name, e.g., GLOBALOI 

contains the owner name of the original owner of the 
partition 

contains the left-justified task number of the original 
owner of the partition 

specifies read/write control desired. Default is read 
only. 

contains a double word bounded, left-justified blank 
filled password. This must be the same as specified in 
CREATEM directive for partition (see MPX-32, 
Volume 2, Section 6.6.2). 

specifies a denial return address. 

indicates a task number is being used instead of an 
owner name 



Exit Conditions 

Return Sequence: 

M.RTRN R3 

Registers: 

R3 

(or) 

M.RTNA 

R3 

RO 

starting address of shared memory partition. This is a 20-bit 
address. 

RO,R3 for denial returns 

1 if entry not found in shared memory table 

2 if invalid password specified 

3 if memory requirements conflict with task's address space 

4 if entry not found in shared memory table after returning 
from SWGQ state chain 

address to return to wi thin user task body 

8-87 



8.3.11 M.SHARE - Share Memory with Another Task 

The M.SHARE service dynamically creates a shared memory partition from the partition 
definition found on the System Master Directory (SMD). This definition must have been 
previously defined via the File Manager utility. 

This service is invalid under memory-only MPX-32. 

The call results in the creation of a new common area, which will be uniquely identified 
by the owner name or task number of the caller, and by the memory partition name. The 
memory type will be specified by the SMD definition. Pre-zeroing is not performed by 
this service. The partition is swappable with the task if the use count equals zero. The 
partition is deallocated when the allocation count equals zero. The task is suspended 
until the Shared Memory Table entry is built and the memory allocation is complete. The 
shared partition can be gated from the use of other tasks to allow the initial loading of 
data. This is called a data lock. Any tasks attempting to include this partition while the 
lock is set will be queued to the SWGQ state (general queue) and will remain there until 
the lock is reset by the M.SMULK service. 

Options: 

To request read/write access, set bit 0 in RO. 

To request task number instead of owner name, set bit 1 in RO. 

To request 'data lock' and includers to be enqueued, set bit 2 in RO. 

Entry Conditions 

Calling Sequence: 

\It.SHARE partition, [RW], [password] , [TNUM] , [LOCK] 

(or) 

where: 

8-88 

LD 
ZR 

~
BR 

SBR 
SBR 
LD 
ZR 
ZR 
SVC 

partition 

RW 

password 

TNUM 

LOCK 

6,partition 
o 
0,0 if read/write ~ 
0,1 if task number requested 
0,2 if data lock requested 
~,password 
~ if no password 
5 if no password 
1,X'71' (or) M.CALL H.ALOC,12 

specifies the doubleword bounded, left justified memory 
partition name 

specifies read/write control. 

specifies the doubleword bounded, left justified password. 
Password must be specified if the memory partition was 
created as either RO/PO. 

indicates a task number is being used instead of an owner 
name 

specifies a data lock 



( 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

RO bit 4 

R3 

Abort Cases: 

AL27 

AL33 

AL40 

AL41 

AL42 

AL46 

AL47 

R3 (or) abort user with AL40, AL41, or AL42 

reset if share becomes an include 

starting address of memory partition if share is successful 

No free entries in SMT. 

Shared memory definition conflicts with callers address 
space. 

Partition definition not found on SMD. 

SMD definition not a dynamic definition. 

Invalid password for this partition. 

Task attempted to share memory via a dynamic memory 
partition in a memory-only environment. 

Dynamic memory partitions cannot be greater than 1 
megabyte. 

8-89 



8.3.12 M.SMULK - Unlock and Dequeue Shared Memory 

The M.SMULK service allows a user to unlock the data lock associated with a particular 
shared memory partition. See M.SHARE (ALOC,12) for use of data lock. 

Upon executing M.SMULK, the lock on the shared area is reset and all users that are 
queued to the shared area are relinked from the SWGO (general queue wait state) to their 
appropriate run state. At this time they have full access to the shared partition. 

This service is invalid under memory-only MPX-32. 

Entry Conditions 

Calling Sequence: 

M.SMULK partition, ownername ,TNUM 

(or) 

LD 

SVC 

where: 

partition 

ownername 

tasknumber 

TNUM 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

None 

Output Messages: 

None 

8-90 

R2,ownername 

1,X'lF' 

(or) 

(or) 

LW 
ZR 
M.CALL 

R2, tasknumber 
R3 
H.ALOC,19 

contains a doubleword bounded, left-justified blank filled 
memory partition name 

contains the owner name of the original owner of the partition 

contains the left-justified task number of the original owner of 
the partition 

indicates a task number is being used instead of an owner name 

( 



APPENDIX A 
MPX-32 DEVICE ACCESS 

Throughout the reference manual, the generic descriptor 'devmnc' is used to indicate that 
a device can be specified. 

Under MPX-32, device addresses are specified using a combination of three levels of 
identification. They are device type, device channel/controller address, and device 
address/subaddress. 

A device can be specified using the generic device type only, which will result in 
allocation of the first available device of the type requested. 

A second method of device specification is achieved by using the generic device type and 
specifying the channel/controller address. This results in allocation of the first available 
device of the type requested on the specified channel or controller. 

The third method of device selection requires specification of the device type, 
channel/controller, and device address/subaddress. This method allows specification of a 
particular device. 

A-I 



1. Special Device Specifications and Handling 

1.1 Magnetic Tape 

For magnetic tape, a reel identifier, multivolume number, and unblocking can be part of 
the device mnemonic. 

Syntax: 

lfc= device 

where: 

device 

reel 

volume 

U 

[
,reel ] 
,reel, volume 
,reel,volume,U 
,reel"U 

is anyone of the four levels of device specification described 
above. 

specifies a one- to four-character identifier for the reel. 
This parameter is required in batch. This parameter is not 
required in TSM and if not specified, the default is SCRA 
(Scratch). 

if multivolume tape, indicates volume number. Default: not 
multivolume (0). 

the tape is optionally unblocked. Default: blocked. 

Commas in this specification are significant. If an option is not specified, e.g., a reel 
identifier, but another option is specified, e.g., U, commas must be inserted for all non
specified options in between, e.g., 

MT 1000",U 

There must be no embedded blanks within the entire device mnemonic. 

When the task is activated that has an assignment to tape, a MOUNT message indicates 
the name of the task and other information on the OPCOM console: 

~!ASKl,taskname,taskno MOUNT reel VOL volume ON devmnc DEV,R,A,H? 
IJobno ~ 

where: 

jobno 

taskname 

task no 

/\-2 

if the task is part of a batch job, identifies the job by job 
number. 

is the name of the task to which the tape is assigned. 

is the number of the task. 
( 



reel 

volume 

devmnc 

DEV,R,A,H 

Response: 

if the assignment is a multivolume tape, indicates the reel 
identifier specified in the assignment. This parameter is 
required in batch. This parameter is not required in TSM and 
if not specified, the default is SCRA. 

identifies the volume number to mount if multivolume tape. 

is the device mnemonic for the tape lD'lit selected in response 
to the assignment. If a specific channel and subaddress are 
supplied in the assignment, the specific tape drive is selected 
and named in the message. Otherwise, a unit is selected by 
the system and its complete address is named in the message. 

the device listed in the message can be allocated and the task 
resumed (R), a different device can be selected (DEV), the 
task can be aborted (A), or the task can be held with the 
specified device deallocated (H). If an 'R' response is given 
and a high speed XIO tape drive is being used, its density can 
be changed when the software select feature is enabled on 
the tape unit front panel. If specified, it will override any 
specification made at assignment. Values are: 

N or 800 

P or 1600 
G or 6250 

indicates 800 bpi nonreturn to zero inverted 
(NRZI) 
indicates 1600 bpi phase encoded (PE) 
indicates 6250 bpi group coded recording 
(GCR) Default. 

Example usage: RN, R1600, etc. 

Note: Do not insert blanks or commas. 

To indicate the drive specified in the MOUNT message is ready and proceed with 
the task, mount the tape on the drive and type R (Resume), optionally followed by a 
density specification if the drive is a high speed XIO tape unit. To abort the task, 
type A (Abort). To hold the task and deallocate the specified device, type H (Hold). 
The task can then be resumed by the OPCOM CONTINUE command, at which time 
a tape drive will be selected by the system and the MOUNT message redisplayed. 

To select a tape drive other than the drive specified in the message, enter the 
mnemonic of the drive you want to use. Any of the three levels of device 
identification can be used. The MOUNT message is reissued. Mount the tape and 
type R if satisfactory, or if not satisfactory, abort, override, or hold as just 
described. 

A-3 



1.2 Temporary Disc File Size 

For a temporary disc file, size must be specified and unblocking is optional. 

Syntax: 

lfc = device,size [,U] 

where: 

size specifies the number of 192-word blocks required. 

U the file is optionally unblocked. Default: blocked. 

Examples of the three methods of device specification follow: 

Type 1 - Generic Device Class 

$ASSIGN3 DEV=M9" 1 

In this example, the device assigned to logical file code (lfe) "DEV" will be any 9-
track tape unit on any channel. The multivolume reel number is 1. The reel 
identifier is SCRA. 

Type 2 - Generic Device Class and Channel/Controller 

$ASSIGN3 DEV=M9l0,MORK"U 

In this example, the device assigned to logical file code (lfe) "DEV" will be the first 
available 9-track tape unit on channel 10. The specification is invalid if a 9-track 
tape unit does not exist on the channel. The reel identifier is supplied. This is not 
a multivolume tape. It is, however, unblocked. 

Type 3 - Specific Device Request 

A-4-

$ASSIGN3 DEV=M9l001 

In this example, the device assigned to logical file code (lfe) "DEV" will be the 9-
track tape unit 01 on channel 10. The specification is invalid if unit 01 on channel 
10 is not a 9-track tape. The tape reel identifier is SCRA; the tape is blocked and 
is not multivolume. 



2. GPMC Devices 

GPMC/GPDC device specifications are in keeping with the general structure just 
described. For instance, the terminal at subaddress 04 on GPMC 01 whose channel 
address is 20 would be identified as follows: 

$ASSIGN3 DEV=TY2004 

3. NULL Device 

A special device type "NU" is available for NULL device specifications. Files accessed 
using this device type generate an end-of-file (EOF) upon attempt to read and normal 
completion upon attempt to write. 

4. OPCOM Console 

Logical file codes are assigned to the OPCOM console by using the device type "CT". 

5. Special System Files 

There are four special mnemonics provide<1 for access to special system files: SLO, SBO, 
SGO and SYC. These are assigned via the $ASSIGN2 statement, as is: 

$ASSIGN2 OUT =SLO,printlines 

For non-batch tasks, SLO and SBO files are allocated dynamically by the system and used 
to disc buffer output to a device selected automatically. For batch tasks, use of SLO and 
SBO files is identical, except that automatic selection of a device can be overridden by 
assigning a specific file or device. 

SGO and SYC assignments are used for batch processing. See Section 7.6. 

A-5 



Dev I 
Type 
Code Device Device Description 

00 CT Operator Console (Not Assignable) 
01 DC Any Disc Unit 
02 DM Any Moving Head Disc 
03 DF Any Fixed Head Disc 
04 MT Any Magnetic Tape Unit 
05 M9 Any 9-Track Magnetic Tape Unit 
06 M7 Any 7-Track Magnetic Tape Unit 
07 CD Any Card Reader-Punch 
08 CR Any Card Reader 
09 CP Any Card Punch 
OA LP Any Line Printer 
OB PT Any Paper Tape Reader-Punch 
OC TY Any Teletypewriter (Other than Console) 
OD CT Operator Console (Assignable) 
OE FL Floppy Disc 
OF NU Null Device 
10 CA Communications Adapter (Binary 

Synchronous/ Asynchronous) 
11 UO A vailable for user-defined applications 
12 UI A vailable for user-defined applications 
13 U2 A vailable for user-defined applications t 14 U3 A vail able for user-defined applications 
15 U4 A vailable for user-defined applications 
16 U5 A vail able for user-defined applications 
17 U6 A vailable for user-defined applications 
18 U7 A vailable for user-defined applications 
19 U8 A vailable for user-defined applications 
lA U9 Available for user-defined applications 
IB LF Line Printer/Floppy Controller (used only with SYSGEN) 

-{ 

i 
Table A-I: Device Type Codes 

A-6 



( 

6. Samples 

A description of device selection possibilities would be constructed as follows: 

DISC 

TAPE 

DC 
DM 
DM08 
DM0801 
DF 
DF04 
DF0401 

MT 
M9 
M910 
M91002 
M7 
M712 
M71201 

CARD EQUIPMENT 

CD 
CR 
CR78 
CR7800 
CP 
CP7C 
CP7COO 

LINE PRINTER 

LP 
LP7A 
LP7AOO 

Any Disc 
Any Moving Head Disc 
Any Moving Head Disc on Channel 08 
Moving Head Disc 01 on Channel 08 
Any Fixed Head Disc 
Any Fixed Head Disc on Channel 04 
Fixed Head Disc 01 on Channel 04 

Any Magnetic Tape 
Any 9-track Magnetic Tape 
Any 9-track Magnetic Tape on Channel 10 
9-track Magnetic Tape 02 on Channel 10 
Any 7-track Magnetic Tape 
Any 7-track Magnetic Tape on Channel 12 
7-track Magnetic Tape 01 on Channel 12 

Any Card Reader-Punch 
AnyCR 
Any CR on Channel 78 
CR on Channel 78 Subaddress 00 
Any CP 
Any CP on Channel 7C 
CP on Channel 7C Subaddress 00 

Any LP 
Any LP on Channel 7 A 
LP on Channel 7 A Subaddress 00 

A-7/A-8 





APPENDIX B 
SYSTEM SERVICES CROSS REFERENCE CHARTS 

B-1 



USER LEVEL SYSTEM SER VICES - MACRO NAME 

MACRO DESCRIPTOR SVC 1,XX 

M.ACTV ACTIVATE TASK 52 

M.ADRS MEMORY ADDRESS 44 
INQUIRY 

* M.ALOC ALLOCA TE FILE 40 
OR PERIPHERAL DEVICE 

M.ANYW WAIT FOR ANY MSG, 7C 
END ACTION, OR BRK 

M.ASYNCH SET ASYNCHRONOUS TASK 1C 
INTERRUPT 

M.BACK BACKSPACE RECORD 35 
OR 
FILE 36 

M.BORT ABORT SPEC. TASK 56 
OR 
SELF 57 
OR 
WITH EXT. MESSAGE 62 

M.BRK BREAK/TASK 6E 
INTERRUPT LINK 

M.BRKXIT EXIT FROM TASK 70 
INTERRUPT LEVEL 

** M.CDJS SUBMIT JOB FROM 61 
DISC FILE 

M.CLSE CLOSE FILE 39 

M.CONADB CONVERT ASCII 28 
DECIMAL TO BINARY 

M.CONAHB CONVERT ASCII 29 
HEX TO BINARY 

M.CONBAD CONVERT BINARY TO 2A 
ASCII DECIMAL 

*Reduced functionality under Memory-Only MPX-32 
**Not supported under Memory-Only MPX-32 

B-2 

MODULE, 
E.P. 

H.MONS,15 

H.MONS,3 

H.MONS,21 

H.MONS,37 

H.MONS,68 

H.IOCS,9 

H.IOCS,19 

H.MONS,19 

H.MONS,20 

H.MONS,28 

H.MONS,46 

H.MONS,48 

H.MONS,27 

H.IOCS,23 

H.TSM,7 

H.TSM,8 

H.TSM,9 

REF MANUAL 
SECTION 

8.2.1 

8.3.1 

7.8.1 

8.2.2 

8.2.3 

7.8.2 

8.2.4 

8.2.5 

8.2.6 

8.2.7 

7.8.3 

5.6.3.1 

5.6.3.2 

5.6.3.3 

" 

l( 
~._./ 



( USER LEVEL SYSTEM SERVICES - MACRO NAME 

(CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC I,XX E.P. SECTION 

M.CONBAH CONVERT BINARY TO 2B H.TSM,10 5.6.3.4 
ASCII HEX 

M.CONN CONNECT TASK TO 4B H.MONS,10 8.2.8 
INTERRUPT 

** M.CREATE CREA TE PERM FILE 75 H.FISE,12 7.8.4 

M.CWAT SYSTEM CONSOLE WAIT 3D H.IOCS,26 7.8.5 

* M.DALC DEALLOCATE FILE 41 H.MONS,22 7.8.6 
OR DEVICE 

M.DATE DATE AND TIME INQUIRY 15 H.MONS,70 8.2.9 

** M.DEBUG LOAD AND EXECUTE 63 H.MONS,29 8.2.10 
INTERACTIVE DEBUGGER 

(- ** M.DELETE DELETE PERM FILE 77 H.FISE,14 7.8.7 

M.DELTSK DELETE TASK 5A H.MONS,31 8.2.11 

M.DEVID GET DEVICE MNEMONIC 14 H.MONS,71 8.2.12 
OR TYPE CODE 

M.DISCON DISCONNECT TASK 5D H.MONS,38 8.2.13 
FROM INTERRUPT 

M.DLTT DELETE TIMER ENTRY 47 H.MONS,6 8.2.14 

M.DSMI DISABLE MESSAGE 2E H.MONS,57 8.2.15 
TASK INTERRUPT 

M.DSUB DISABLE USER 12 H.MONS,73 8.2.16 
BREAK INTERRUPT 

** M.DUMP MEMOR Y DUMP REQUEST 4F H.MONS,12 8.3.2 

M.EAWAIT END ACTION WAIT ID H.EXEC,40 8.2.17 

M.ENMI ENABLE MESSAGE 2F H.MONS,58 8.2.18 
T ASK INTERRUPT 

C~ *Reduced functionality under Memory-Only MPX-32 
**Not supported under Memory-Only MPX-32 

B-3 



USER LEVEL SYSTEM SERVICES - MACRO NAME (-
(CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.ENUB ENABLE USER 13 H.MONS,72 8.2.19 
BREAK INTERRUPT 

M.EXCL FREE SHARED MEMORY 79 H.ALOC,14 8.3.3 

M.EXIT TERMINATE TASK 55 H.MONS,18 8.2.20 
EXECUTION 

** M.FADD PERMANENT FILE 43 H.MONS,2 7.8.8 
ADDRESS INQUIRY 

M.FD FREE DYNAMIC EXTENDED 6A H.ALOC,9 8.3.5 
INDEX DATA SPACE 

M.FE FREE DYNAMIC TASK 68 H.ALOC,11 8.3.6 
EXECUTION SPACE 

M.FILE OPEN FILE 30 H.IOCS,1 7.8.9 
/ 

** M.FSLR RELEASE 24 H.FISE,25 7.8.10 
"" SYNCHRONIZA TION 

FILE LOCK 

** M.FSLS SET SYNCHRONIZATION 23 H.FISE,24 7.8.11 
FILE LOCK 

M.FWRD ADVANCE RECORD 33 H.IOCS,7 7.8.12 
OR 
FILE 34 H.IOCS,8 

M.FXLR RELEASE EXCLUSIVE 22 H.FISE,23 7.8.13 
FILE LOCK 

** M.FXLS SET EXCLUSIVE 21 H.FISE,22 7.8.14 
FILE LOCK 

M.GADRL GET ADDRESS LIMITS 65 H.MONS,41 8.3.7 

M.GD GET DYNAMIC EXTENDED 69 H.ALOC,8 8.3.8 
INDEXED DATA SPACE 

M.GE GET DYNAMIC TASK 67 H.ALOC,lO 8.3.9 
EXECUTION SPACE 

*Reduced functionality under Memory-Only MPX-32 (-**Not supported under Memory-Only MPX-32 

B-4 



( .. USER LEVEL SYSTEM SERVICES - MACRO NAME 

(CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.GMSGP GET MSG PARAMETERS 7A H.MONS,35 8.2.21 

M.GRUNP GET RUN PARAMETERS 7B H.MONS,36 8.2.22 

M.HOLD PROGRAM HOLD REQUEST 58 H.MONS,25 8.2.23 

M.ID GET TASK NUMBER 64 H.MONS,32 8.2.24 

* M.INCL GET SHARED MEMORY 72 H.ALOC,13 8.3.10 

M.INT ACTIVATE TASK 6F H.MONS,47 8.2.25 
INTERRUPT 

** M.LOG PERMANENT FILE LOG 73 H.MONS,33 7.8.15 

M.MYID GET TASK NUMBER 64 H.MONS,32 8.2.26 

** M.OLAY LOAD OVERLAY 50 H.MONS,13 8.2.27 

(" OR 
LOAD AND EXECUTE 51 H.MONS,14 
OVERLAY 

** M.PDEV PHYSICAL DEVICE 42 H.MONS,l 7.8.16 
INQUIRY 

** M.PERM CHANGE TEMP FILE 76 H.FISE,13 7.8.17 
TO PERMANENT 

M.PGOW TASK OPTION WORD 4C H.MONS,24 8.2.28 
INQUIRY 

M.PRIL CHANGE PRIORITY LEVEL 4A H.MONS,9 8.2.29 

M.PTSK PARAMETER TASK 5F H.MONS,40 8.2.30 
ACTIVATION 

M.RCVR RECEIVE MESSAGE 6B H.MONS,43 8.2.31 
LINK ADDRESS 

M.READ READ RECORD 31 H.IOCS,3 7.8.18 

M.RELP RELEASE DUAL 27 H.IOCS,27 7.8.19 
PORTED DISC 

(' *Reduced functionality under Memory-Only MPX-32 
**Not supported under Memory-Only MPX-32 

B-5 



USER LEVEL SYSTEM SERVICES - MACRO NAME ,( 

(CONTINUED) " / 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC I,XX E.P. SECTION 

M.RESP RESERVE DUAL 26 H.IOCS,24 7.8.20 
PORTED DISC 

M.RRES RELEASE CHANNEL 3B H.IOCS,13 7.8.21 

M.RSML RESOURCEMARK LOCK 19 H.MONS,62 7.8.22 

M.RSMU RESOURCEMARK UNLOCK lA H.MONS,63 7.8.23 

M.RSRV RESER VE CHANNEL 3A H.IOCS,12 7.8.24 

M.RWND REWIND FILE 37 H.IOCS,2 7.8.25 

M.SETS SET USER STATUS 48 H.MONS,7 8.2.32 
WORD 

M.SETT CREATE TIMER ENTRY 45 H.MONS,4 8.2.33 

* M.SHARE SHARE MEMORY WITH 71 H.ALOC,12 8.3.11 
ANOTHER TASK 

M.SMSGR SEND MESSAGE TO 6C H.MONS,44 8.2.34 
SPECIFIED TASK 

M.SMULK UNLOCK AND DEQUEUE IF H.ALOC,19 8.3.12 
SHARED MEMORY 

M.SRUNR SEND RUN REQUEST 6D H.MONS,45 8.2.35 

M.SUAR SET USER ABORT 60 H.MONS,26 8.2.36 
RECEIVER ADDRESS 

M.SUME RESUME TASK EXECUTION 53 H.MONS,16 8.2.37 

M.SUSP SUSPEND TASK 54 H.MONS,17 8.2.38 
EXECUTION 

M.SYNCH SET SYNCHRONOUS TASK IB H.MONS,67 8.2.39 
INTERRUPT 

M.TBRKON TRAP ONLINE USER'S 5C H.TSM,6 5.6.2 
TASK 

*Reduced functionality under 'v1emory-Only MPX-32 (" **Not supported under Memory-Only MPX-32 

B-6 



(~/ 

(' 

MACRO 

M.TDAY 

** M.TSCAN 

M.TSTE 

M.TSTS 

M.TSTT 

M.TURNON 

M.TYPE 

M.UPSP 

M.USER 

M.WAIT 

M.WEOF 

M.WRIT 

M.XBRKR 

M.XIEA 

M.XMEA 

M.XMSGR 

M.XREA 

USER LEVEL SYSTEM SERVICES - MACRO NAME 

(CONTINUED) 

MODULE, REF MANUAL 
DESCRIPTOR SVC I,XX E.P. SECTION 

TIME-OF-DAY INQUIRY 4E H.MONS,11 8.2.40 

SCAN TERMINAL INPUT 5B H.TSM,2 5.6.1 
BUFFER 

ARITHMETIC EXCEPTION 40 H.MONS,23 8.2.41 
INQUIRY 

TEST USER STATUS WORD 49 H.MONS,8 8.2.42 

TEST TIMER ENTRY 46 H.MONS,5 8.2.43 

ACTIVATE PROGRAM AT IE H.MONS,66 8.2.44 
GIVEN TIME OF DAY 

CONSOLE TYPE 3F H.IOCS,14 7.8.26 

UPSPACE 10 H.IOCS,20 7.8.27 

USERNAME 74 H.MONS,34 7.8.28 
SPECIFIC A TION 

WAIT I/o 3C H.IOCS,25 7.8.29 

WRITE EOF 38 H.IOCS,5 7.8.30 

WRITE RECORD 32 H.IOCS,4 7.8.31 

EXIT FROM TASK 70 H.MONS,48 8.2.45 
INTERRUPT LEVEL 

NO-W AIT I/O END 2C H.IOCS,34 7.8.32 
ACTION RETURN 

EXIT FROM MESSAGE 7E H.MONS,50 8.2.46 
END ACTION ROUTINE 

EXIT FROM MESSAGE 5E H.MONS,39 8.2.47 
RECEIVER 

EXIT RUN REQUEST 7F H.MONS,51 8.2.48 
END ACTION ROUTINE 

**Not supported under Memory-Only MPX-32 

B-7 



USER LEVEL SYSTEM SER VICES - MACRO NAME l 
(CONTINUED) 

;,,,,-. 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC I,XX E.P. SECTION 

M.XRUNR EXIT RUN RECEIVER 7D H.MONS,49 8.2.49 

M.XTIME TASK CPU EXECUTION 2D H.MONS,65 8.2.50 
TIME 

N/A ERASE OR PUNCH 3E H.IOCS,21 7.8.33 
TRAILER 

** N/A DEBUG LINK SERVICE 66 H.MONS,42 8.2.51 

N/A EXECUTE CHANNEL 25 H.IOCS,lO 7.8.34 
PROGRAM 

N/A RELEASE FHD PORT 27 H.IOCS,27 7.8.35 

N/A RESER VE FHD PORT 26 H.IOCS,24 7.8.36 

N/A SET TABS IN UDT 59 H.TSM,5 N/A 
/' 

\,"'.,,~ 

**Not supported under Memory-Only MPX-32 

B-8 



(~ 
USER LEVEL SYSTEM SERVICES - ALPHABETIC 

REF MANUAL 
SVC I,XX MODULE E.P. SECTION 

ABORT SELF M.BORT 57 H.MONS 20 8.2.4 

ABORT SPECIFIED M.BORT 56 H.MONS 19 8.2.4 
TASK 

ABORT WITH EXTENDED M.BORT 62 H.MONS 28 8.2.4 
MESSAGE 

ACTIVATE PROGRAM AT M.TURNON IE H.MONS 66 8.2.44 
GIVEN TIME OF DAY 

ACTIVATE TASK M.INT 6F H.MONS 47 8.2.25 
INTERRUPT 

ACTIVATE TASK M.ACTV 52 H.MONS 15 8.2.1 

ADVANCE FILE OR M.FWRD 34 H.IOCS 8 7.8.12 
RECORD 33 H.IOCS 7 7.8.12 

ALLOCA TE FILE OR M.ALOC 40 H.MONS 21 7.8.1 

(- PERIPHERAL DEVICE 

ARITHMETIC EXCEPTION M.TSTE 4D H.MONS 23 8.2.41 
INQUIRY 

BACKSPACE FILE OR M.BACK 36 H.IOCS 19 7.8.2 
RECORD 35 H.IOCS 9 7.8.2 

BREAK/TASK INTERRUPT M.BRK 6E H.MONS 46 8.2.5 
LINK 

CHANGE PRIORITY M.PRIL 4A H.MONS 9 8.2.29 
LEVEL (PRIV) 

CHANGE TEMP FILE TO M.PERM 76 H.FISE 13 7.8.17 
PERMANENT 

CLOSE FILE M.CLSE 39 H.IOCS 23 7.8.3 

CONNECT TASK TO M.CONN 4B H.MONS 10 8.2.8 
INTERRUPT 

CONSOLE TYPE M.TYPE 3F H.IOCS 14 7.8.26 

CONVERT ASCII DECIMAL M.CONADB 28 H.TSM 7 5.6.3.1 

( 
TO BINARY 

B-9 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC !'\ 
(CONTINUED) 

\_, 

REF MANUAL 
SVC I,XX MODULE E.P. SECTION 

CONVERT ASCII HEX M.CONAHB 29 H.TSM 8 5.6.3.2 
TO BINARY 

CONVERT BINARY TO M.CONBAD 2A H.TSM 9 5.6.3.3 
ASCII DECIMAL 

CONVERT BINARY TO M.CONBAH 2B H.TSM 10 5.6:3.4 
ASCII HEX 

CREA TE PERM FILE M.CREATE 75 H.FISE 12 7.8.4 

CREATE TIMER ENTRY M.SETT 45 H.MONS 4 8.2.33 

*DATE AND TIME INQUIRY M.DATE 15 H.MONS 70 8.2.9 

DEALLOCA TE FILE OR M.DALC 41 H.MONS 22 7.8.6 
DEVICE 

DEBUG LINK SERVICE N/A 66 H.MONS 42 8.2.51 ;: 

DELETE PERM FILE M.DELETE 77 H.FISE 14 7.8.7 
\ 
"'-

DELETE TASK M.DELTSK 5A H.MONS 31 8.2.11 

DELETE TIMER ENTRY M.DLTT 47 H.MONS 6 8.2.14 

DISABLE MESSAGE M.DSMI 2E H.MONS 57 8.2.15 
TASK INTERRUPT 

*OISABLE USER BREAK M.OSUB 12 H.MONS 73 8.2.16 
INTERRUPT 

DISCONNECT TASK FROM M.DISCON 50 H.MONS 38 8.2.13 
INTERRUPT 

ENABLE MESSAGE M.ENMI 2F H.MONS 58 8.2.18 
T ASK INTERRUPT 

*ENABLE USER BREAK M.ENUB 13 H.MONS 13 8.2.19 
INTERRUPT 

END ACTION WAIT M.EAWAIT 10 H.EXEC 40 8.2.17 

ERASE OR PUNCH N/A 3E H.IOCS 21 7.8.33 
TRAILER 

(. 
*NEW 

B-1O 



[ UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

(CONTINUED) 
REF MANUAL 

SVC 1,XX MODULE E.P. SECTION 

EXECUTE CHANNEL N/A 25 H.IOCS 10 7.8.34 
PROGRAM 

EXIT FROM MSG RCVR M.XMSGR 5E H.MONS 39 8.2.47 

EXIT FROM MSG END M.XMEA 7E H.MONS 50 8.2.46 
ACTION ROUTINE 

EXIT FROM TASK M.BRKXIT 70 H.MONS 48 8.2.6 
INTERRUPT LEVEL M.XBRKR 8.2.45 

EXIT RUN RCVR M.XRUNR 7D H.MONS 49 8.2.49 

EXIT FROM RUN M.XREA 7F H.MONS 51 8.2.48 
REQUEST END ACTION 
ROUTINE 

FREE DYNAMIC EXT M.FD 6A H.ALOC 9 8.3.5 
INDEX DATA SPACE 

(' 
FREE DYNAMIC TASK M.FE 68 H.ALOC 11 8.3.6 
EXECUTION SPACE 

FREE SHARED MEMORY M.EXCL 79 H.ALOC 14 8.3.3 

GET ADDRESS LIMITS M.GADRL 65 H.MONS 41 8.3.7 

*GET DEVICE MNEMONIC M.DEVID 14 H.MONS 71 8.2.12 
OR TYPE CODE 

GET DYNAMIC EXTENDED M.GD 69 H.ALOC 8 8.3.8 
INDEXED DATA SPACE 

GET DYNAMIC TASK M.GE 67 H.ALOC 10 8.3.9 
EXECUTION SPACE 

GET MSG PARAMETERS M.GMSGP 7A H.MONS 35 8.2.21 

GET RUN PARAMETERS M.GRUNP 7B H.MONS 36 8.2.22 

GET SHARED MEMORY M.INCL 72 H.ALOC 13 8.3.10 

GET TASK NUMBER M.ID 64 H.MONS 32 8.2.24 
M.MYID 8.2.26 

( 
*NEW 

B-11 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC r' '=./ 
(CONTINUED) 

REF MANUAL 
SVC 1,XX MODULE E.P. SECTION 

LOAD AND EXECUTE M.DEBUG 63 H.MONS 29 8.2.10 
INTERAcTIVE DEBUGGER 

LOAD OVERLAY AND" M.OLAY 50 H.MONS 13 8.2.27 
LOAD AND EXECUTE 51 H.MONS 14 8.2.27 
OVERLAY 

MEMOR Y ADDRESS INQUIRY M.ADRS 44 H.MONS 3 8.3.1 

MEMOR Y DUMP REQUEST M.DUMP 4F H.MONS 12 8.3.2 

NO-W AIT I/O END M.XIEA 2C H.IOCS 34 7.8.32 
ACTION RETURN 

OPEN FILE M.FILE 30 H.IOCS 1 7.8.9 

PARAMETER TASK M.PTSK 5F H.MONS 40 8.2.30 
ACTIVATION (PRIV) 

PERMANENT FILE ADDRESS M.FADD 43 H.MONS 2 7.8.8 
INQUIRY 

PERMANENT FILE LOG M.LOG 73 H.MONS 33 7.8.15 

PHYSICAL DEVICE M.PDEV 42 H.MONS 1 7.8.16 
INQUIRY 

PROGRAM HOLD REQUEST M.HOLD 58 H.MONS 25 8.2.23 

READ RECORD M.READ 31 H.IOCS 3 7.8.18 

RECEIVE MESSAGE M.RCVR 6B H.MONS 43 8.2.31 
LINK ADDRESS 

RELEASE CHANNEL (PRIV) M.RRES 3B H.IOCS 13 7.8.21 

RELEASE DUAL PORTED M.RELP 27 H.IOCS 27 7.8.19 
DISC 

RELEASE EXCLUSIVE M.FXLR 22 H.FISE 23 7.8.13 
FILE LOCK 

RELEASE FHD PORT (PRIV) N/A 27 H.IOCS 27 7.8.35 

*NEW 
( 

B-12 



( 
UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

(CONTINUED) 
REF MANUAL 

SVC I,XX MODULE E.P. SECTION 

RELEASE M.FSLR 24 H.FISE 25 7.8.10 
SYNCHRONIZA TION 
FILE LOCK 

RESER VE CHANNEL (PRIV) M.RSRV 3A H.IOCS 12 7.8.24 

*RESERVE DUAL PORTED M.RESP 26 H.IOCS 24 7.8.20 
DISC 

RESERVE FHD PORT (PRIV) N/A 26 H.IOCS 24 7.8.36 

RESOURCEMARK LOCK M.RSML 19 H.MONS 62 7.8.22 

RESOURCEMARK UNLOCK M.RSMU lA H.MONS 63 7.8.23 

RESUME TASK EXECUTION M.SUME 53 H.MONS 16 8.2.37 

REWIND FILE M.RWND 37 H.IOCS 2 7.8.25 

( SCAN TERMINAL M.TSCAN 5B H.TSM 2 5.6.1 
INPUT BUFFER 

SEND MESSAGE TO M.SMSGR 6C H.MONS 44 8.2.34 
SPECIFIED TASK 

SEND RUN REQUEST M.SRUNR 60 H.MONS 45 8.2.35 

SET ASYNCHRONOUS TASK M.ASYNCH lC H.MONS 68 8.2.3 
INTERRUPT 

SET EXCLUSIVE M.FXLS 21 H.FISE 22 7.8.14 
FILE LOCK 

SET SYNCHRONIZATION M.FSLS 23 H.FISE 24 7.8.11 
FILE LOCK 

SET SYNCHRONOUS TASK M.SYNCH IB H.MONS 67 8.2.39 
INTERRUPT 

SET TABS IN UDT N/A 59 H.TSM 5 N/A 

SET USER STATUS WORD M.SETS 48 H.MONS 7 8.2.32 

SET USER ABORT M.SUAR 60 H.MONS 26 8.2.36 

(~: 
RECEIVER ADDRESS 

*NEW 

B-13 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC r'-" .1 

ii..J 
(CONTINUED) 

REF MANUAL 
SVC I,XX MODULE E.P. SECTION 

SHARE MEMORY WITH M.SHARE 71 H.ALOC 12 8.3.11 
ANOTHER TASK 

SUBMIT JOB FROM M.CDJS 61 H.MONS 27 8.2.7 
DISC FILE 

SUSPEND TASK EXECUTION M.SUSP 54 H.MONS 17 8.2.38 

SYSTEM CONSOLE WAIT M.CWAT 3D H.IOCS 26 7.8.5 

TASK CPU EXECUTION TIME M.XTIME 2D H.MONS 65 8.2.50 

T ASK OPTION WORD M.PGOW 4C H.MONS 24 8.2.28 
INQUIRY 

TERMINATE TASK M.EXIT 55 H.MONS 18 8.2.20 
EXECUTION 

TEST TIMER ENTRY M.TSTT 46 H.MONS 5 8.2.43 

TEST USER STATUS WORD M.TSTS 49 H.MONS 8 8.2.42 

TIME-OF -DA Y INQUIRY M.TDAY 4E H.MONS 11 8.2.40 

TRAP ONLINE USER'S M.TBRKON 5C H.TSM 6 5.6.2 
TASK 

UNLOCK AND DEQUEUE M.SMULK IF H.ALOC 19 8.3.12 
SHARED MEMORY 

*UPSPACE M.UPSP 10 H.IOCS 20 7.8.27 

USERNAME SPECIFICATION M.USER 74 H.MONS 34 7.8.28 

WAIT I/O M.WAIT 3C H.IOCS 25 7,8.29 

WAIT FOR ANY MSG, M.ANYW 7C H.MONS 37 8.2.2 
END ACTION, OR BRK 

WRITE EOF M.WEOF 38 H.IOCS 5 7.8.30 

WRITE RECORD M.WRIT 32 H.IOCS 4 7.8.31 

*NEW 
(" 

./ 

B-14 



( 
USER LEVEL SYSTEM SERVICES - SVC ORDER 

REF MANUAL 
SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

OO-OF RESERVED 

10 UPSPACE H.IOCS,20 M.UPSP 7.8.27 

11 RESERVED 

12 DISABLE USER BREAK H.MONS,73 M.DSUB 8.2.16 
INTERRUPT 

13 ENABLE USER BREAK H.MONS,72 M.ENUB 8.2.19 
INTERRUPT 

14 GET DEVICE MNEMONIC H.MONS,71 M.DEVID 8.2.12 
OR TYPE CODE 

15 DATE AND TIME INQUIRY H.MONS,70 M.DATE 8.2.9 

16 RESERVED 

17 ADI I/O H.ADIO,8 N/A N/A 

(~ 18 ADI EAI H.ADI0,9 N/A N/A 

19 RESOURCE MARK LOCK H.MONS,62 M.RSML 7.8.22 

lA RESOURCEMARK UNLOCK H.MONS,63 M.RSMU 7.8.23 

IB SET SYNCHRONOUS TASK H.MONS,67 M.SYNCH 8.2.39 
INTERRUPT 

lC SET ASYNCHRONOUS H.MONS,68 M.ASYNCH 8.2.3 
T ASK INTERRUPT 

ID END ACTION WAIT H.EXEC,40 M.EAWAIT 8.2.17 

IE ACTIVATE PROGRAM AT H.MONS,66 M.TURNON 8.2.44 
GIVEN TIME OF DAY 

IF UNLOCK AND DEQUEUE H.ALOC,19 M.SMULK 8.3.12 
SHARED MEMORY 

20 RESERVED 

21 SET EXCLUSIVE H.FISE,22 M.FXLS 7.8.14 
FILE LOCK 

C 
B-15 



USER LEVEL SYSTEM SERVICES - SVC ORDER (' , (CONTINUED) i. . .... ) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

22 RELEASE EXCLUSIVE H.FISE,23 M.FXLR 7.8.13 
FILE LOCK 

23 SET SYNCHRONIZATION H.FISE,24 M.FSLS 7.8.11 
FILE LOCK 

24 RELEASE H.FISE,25 M.FSLR 7.8.10 
SYNCHRONIZA TION 
FILE LOCK 

25 EXECUTE CHANNEL H.IOCS,lO N/A 7.8.34 
PROGRAM 

26 RESER VE FHD PORT H.IOCS,24 N/A 7.8.36 
RESERVE DUAL PORTED H.IOCS,24 M.RESP 7.8.20 
DISC 

27 RELEASE FHD PORT H.IOCS,27 N/A 7.8.35 
RELEASE DUAL PORTED H.IOCS,27 M.RELP 7.8.19 
DISC 

28 CONVERT ASCII H.TSM,7 M.CONADB 5.6.3.1 
DECIMAL TO BINARY 

29 CONVER T ASCII H.TSM,8 M.CONAHB 5.6.3.2 
HEX TO BINARY 

2A CONVERT BINARY H.TSM,9 M.CONBAD 5.6.3.3 
TO ASCII DECIMAL 

2B CONVERT BINARY H.TSM,10 M.CONBAH 5.6.3.4 
TO ASCII HEX 

2C NO-W AIT I/O END ' H.IOCS,34 M.XIEA 7.8.32 
ACTION RETURN 

2D T ASK CPU EXECUTION TIME H.MONS,65 M.XTIME 8.2.50 

2E DISABLE MESSAGE H.MONS,57 M.DSMI 8.2.15 
T ASK INTERRUPT 

( 

B-16 



( 
USER LEVEL SYSTEM SERVICES - SVC ORDER , 

(CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

.f.. 

2F ENABLE MESSAGE H.MONS,58 M.ENMI 8~2.18 
TASK INTERRUPT 

30 OPEN FILE H.IOCS,1 M.FILE 7.8.9 

31 READ RECORD H.IOCS,3 M.READ 7.8.18 

32 WRITE RECORD H.IOCS,4 M.WRIT 7.8.31 

33 ADVANCE RECORD H.IOCS,7 M.FWRD 7.8.12 

34 ADVANCE FILE H.IOCS,8 M.FWRD 7.8.12 

35 BACKSPACE RECORD H.IOCS,9 M.BACK 7.8.2 

36 BACKSPACE FILE H.IOCS,19 M.BACK 7.8.2 

37 REWIND FILE H.IOCS,2 M.RWND 7.8.25 

( 38 WRITE EOF H.IOCS,5 M.WEOF 7.8.30 
,/ 

39 CLOSE FILE H.IOCS,23 M.CLSE 7.8.3 

3A RESERVE CHANNEL (PRIV) H.IOCS,12 M.RSRV 7.8.24 

3B RELEASE CHANNEL (PRIV) H.IOCS,13 M.RRES 7.8.21 

3C WAIT I/O H.IOCS,25 M.WAIT 7.8.29 

3D SYSTEM CONSOLE WAIT H.IOCS,26 M.CWAT 7.8.5 

3E ERASE OR PUNCH TRAILER H.IOCS,21 N/A 7.8.33 

3F CONSOLE TYPE H.IOCS,14 M.TYPE 7.8.26 

40 ALLOCATE FILE OR H.MONS,21 M.ALOC 7.8.1 
PERIPHERAL DEVICE 

41 DEALLOCA TE FILE OR H.MONS,22 M.DALC 7.8.6 
DEVICE 

42 PHYSICAL DEVICE H.MONS,1 M.PDEV 7.8.16 
INQUIRY 

(' 

B-17 



USER LEVEL SYSTEM SERVICES - SVC ORDER 

" Vl .' 
(CONTINUED) 

, =~/ 

REF MANUAL 
SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

43 PERMANENT FILE H.MONS,2 M.FADD 7.8.8 
ADDRESS INQUIR Y 

44 MEMOR Y ADDRESS H.MONS,3 M.ADRS 8.3.1 
INQUIRY 

45 CREA TE TIMER ENTRY H.MONS,4 M.SETT 8.2.33 

46 TEST TIMER ENTRY H.MONS,5 M.TSTT 8.2.43 

47 DELETE TIMER ENTRY H.MONS,6 M.DLTT 8.2.14 

48 SET USER STATUS H.MONS,7 M.SETS 8.2.32 
WORD 

49 TEST USER STATUS H.MONS,8 M.TSTS 8.2.42 
WORD 

4A CHANGE PRIORITY H.MONS,9 M.PRIL 8.2.29 
LEVEL (PRIV) 

'". 
4B CONNECT TASK TO H.MONS,10 M.CONN 8.2.8 

INTERRUPT 

4C TASK OPTION WORD H.MONS,24 M.PGOW 8.2.28 
INQUIRY 

4D ARITHMETIC H.MONS,23 M.TSTE 8.L.41 
EXCEPTION INQUIRY 

4E TIME-OF-DAY H.MONS,11 M.TDAY 8.2.40 
INQUIRY 

4F MEMORY DUMP H.MONS,12 M.DUMP 8.3.2 
REQUEST 

50 LOAD OVERLAY H.MONS,13 M.OLAY 8.2.27 

51 LOAD AND EXECUTE H.MONS,14 M.OLAY 8.2.27 
OVERLAY 

52 ACTIVATE TASK H.MONS,15 M.ACTV 8.2.1 

53 RESUME TASK H.MONS,16 M.SUME 8.2.37 
EXECUTION 

(~ 

B-18 



[ USER LEVEL SYSTEM SERVICES - SVC ORDER 

(CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

54 SUSPEND TASK H.MONS,17 M.SUSP 8.2.38 
EXECUTION 

55 TERMINATE TASK H.MONS,18 M.EXIT 8.2.20 
EXECUTION 

56 ABORT SPECIFIED TASK H.MONS,19 M.BORT 8.2.4 

57 ABORT SELF H.MONS,20 M.BORT 8.2.4 

58 PROGRAM HOLD REQUEST H.MONS,25 M.HOLD 8.2.23 

59 SET TABS IN UDT H.TSM,5 N/A N/A 

5A DELETE TASK H.MONS,31 M.DELTSK 8.2.11 

5B SCAN TERMINAL H.TSM,2 M.TSCAN 5.6.1 
INPUT BUFFER 

( 5C TRAP ONLINE H.TSM,6 M.TBRKON 5.6.2 
USER'S TASK 

5D DISCONNECT TASK H.MONS,38 M.DISCON 8.2.13 
FROM INTERRUPT 

5E EXIT FROM H.MONS,39 M.XMSGR 8.2.47 
MESSAGE RECEIVER 

5F PARAMETER TASK H.MONS,40 M.PTSK 8.2.30 
ACTIV A TION (PRIV) 

60 SET USER ABORT H.MONS,26 M.SUAR 8.2.36 
RECEIVER ADDRESS 

61 SUBMIT JOB FROM H.MONS,27 M.CDJS 8.2.7 
DISC FILE 

62 ABORT WITH EXTENDED H.MONS,28 M.BORT 8.2.4 
MESSAGE 

B-19 



USER LEVEL SYSTEM SERVICES - SVC ORDER l~' 

(CONTINUED) 
"",-"/ ' 

REF MANUAL 
SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

63 LOAD AND EXECUTE H.MONS,29 M.DEBUG 8.2.10 
INTERACTIVE 
DEBUGGER 

64 GET TASK NUMBER H.MONS,32 M.ID 8.2.24 
M.YID 8.2.26 

65 GET ADDRESS LIMITS H.MONS,41 M.GADRL 8.3.7 

66 DEBUG LINK SERVICE H.MONS,42 N/A 8.2.51 

67 GET DYNAMIC TASK H.ALOC,10 M.GE 8.3.9 
EXECUTION SPACE 

68 FREE DYNAMIC TASK H.ALOC,ll M.FE 8.3.6 
EXECUTION SPACE 

69 GET DYNAMIC EXTENDED H.ALOC,8 M.GD 8.3.8 
INDEXED DATA SPACE 

6A FREE DYNAMIC EXTENDED H.ALOC,9 M.FD 8.3.5 
INDEX DATA SPACE 

6B RECEIVE MESSAGE H.MONS,43 M.RCVR 8.2.31 
LINK ADDRESS 

6C SEND MESSAGE TO H.MONS,44 M.SMSGR 8.2.34 
SPECIFIED TASK 

6D SEND RUN REQUEST H.MONS,45 M.SRUNR 8.2.35 

6E BREAK/TASK H.MONS,46 M.BRK 8.2.5 
INTERRUPT LINK 

6F ACTIVATE TASK H.MONS,47 M.INT 8.2.25 
INTERRUPT 

70 EXIT FROM TASK H.MONS,48 M.BRKXIT 8.2.6 
INTERRUPT LEVEL M.XBRKR 8.2.45 

71 SHARE MEMORY H.ALOC,12 M.SHARE 8.3.11 
WITH ANOTHER TASK 

72 GET SHARED MEMORY H.ALOC,13 M.INCL 8.3.10 

73 PERMANENT FILE LOG H.MONS,33 M.LOG 7.8.15 " '( 

B-20 



( USER LEVEL SYSTEM SERVICES - SVC ORDER 

(CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

74 USERNAME H~MONS,34 M.USER 7.8.28 
SPECIFICATION 

75 CREA TE PERM FILE H.FISE,12 M.CREATE 7.8.4 

76 CHANGE TEMP FILE H.FISE,13 M.PERM 7.8.17 
TO PERMANENT 

77 DELETE PERM FILE H.FISE,14 M.DELETE 7.8.7 

78 RESER VED FOR 
FUTURE USE 

79 FREE SHARED MEMORY H.ALOC,14 M.EXCL 8.3.3 

7A GET MSG PARAMETERS H.MONS,35 M.GMSGP 8.2.21 

7B GET RUN PARAMETERS H.MONS,36 M.GRUNP 8.2.22 

(0 7C WAIT FOR ANY MSG, H.MONS,37 M.ANYW 8.2.2 
END ACTION, OR BRK 

7D EXIT RUN RECEIVER H.MONS,49 M.XRUNR 8.2.49 

7E EXIT FROM MESSAGE H.MONS,50 M.XMEA 8.2.46 
END ACTION ROUTINE 

7F EXIT FROM RUN H.MONS,51 M.XREA 8.2.28 
REQUEST END ACTION 
ROUTINE 

B-21/B-22 





APPENDIX C 

MPX-32 ABORT AND CRASH CODES 

( 

(> 

C-I 



CODE 

ADO! 

AD02 

AD03 

AD04 

C-2 

Address Specification Trap Handler (H.IPOC) 

DESCRIPTION 

Address specification occurred within the operating system. 

Address specification occurred within the current task. 

Trap occurred while no tasks were in active state. 

Trap occurred within another interrupt trap routine. 



CODE 

ALOI-AL06 

AL07 

AL08 

AL09 

ALIO 

ALll 

AL12 

ALl3 

( 
ALl4 

AL15 

ALl6 

ALl7 

AL18 

AL19 

AL20 

AL21 

AL22 

AL23 

The Allocator (H.ALOC) 

DESCRIPTION 

Reserved 

The combined number of file assignments for a task exceeds 
number specified. The cataloged assignments are combined with 
those defined by $ASSIGN statements. See cataloger FILES 
directive and recatalog if needed. 

An assigned permanent file is nonexistent. 

An assigned device is not configured in the system. An assigned 
device is off-line. 

Reserved 

Reserved 

Unable to load program because of I/O error or addressing 
inconsistencies in load module preamble. 

An unrecoverable I/O error has occurred during the read of the 
task preamble into the TSA. 

Reserved 

An assigned device type is not configured in the system. 

A resident request has been issued for a task requiring an SLO, 
SBO, SGO or SYC file. Resident tasks cannot use system files. 

Reserved 

Reserved 

A file code to file code assignment (ASSIGN4) has been made to an 
undefined file code. A file code must be defined before a second 
file code can be equated by an ASSIGN4. 

User attempted deallocation of TSA. 

Destroyed task MIDL was detected while attempting to allocate 
dynamic execution space. 

A software checksum error has occurred during task loading. 

An invalid user name is cataloged with the task. The user name is 
either not contained in the user name file M.KEY or a correct user 
key is not present. Also: task has attempted to deallocate TSA. 

C-3 



AL24 

AL25 

AL26 

AL27 

AL28 

AL29 

AL30 

AL31 

AL32 

AL33 

AL34 

AL35 

AL36 

AL37 

AL38 

AL39 

AL40 

AL41 

AL42 

AL43 

C-4 

Access to an assigned permanent file is by password only, and a 
valid password was not included on the cataloged assignment or Job 
Control statement assignment. 

Undefined Resource Requirement Summary (RRS) type (internal 
format of an assignment statement is wrong). 

The task has requested more blocking buffers than were specified 
during catalog. See Cataloger BUFFER directive and recatalog if 
needed. 

There are no free entries in shared memory tahle for GLOBAL, 
DATAPOOL, CSECT, or other shared areas. 

Task is attempting to share an undefined GLOBAL or DATAPOOL 
memory partition. 

Task is attempting to exclude undefined memory partition. 

The requested device is already assigned to the requesting task via 
another file code. Use ASSIGN4 or deallocate before reallocating. 

Logical file code has already been allocated by caller (e.g., a card 
reader may already be assigned to lfc IN and a magnetic tape 
cannot be assigned to the same file code). Use ASSIGN4 or 
deallocate before reallocating. 

Dynamic common block may not be assigned via ASSIGN 1 
directive. 

Shared memory definition conflicts with caller's address space. 

Shared memory partition not defined in SMD. 

Attempt to share an SMD entry that is not a memory partition. 

Invalid password specified for shared memory partition. 

Attempt to exclude undefined shared memory partition. 

Attempt to activate a privileged task by unauthorized owner. 

Shared memory entry not found. 

Partition definition not found on SMD. 

SMD definition not a dynamic definition. 

Invalid password for this partition. 

Task has attempted to allocate an unshared resource that was not 
available during task activation in a memory-only environment. 

/{ 
." 



(- AL44 

AL45 

AL46 

AL47 

AL48 

AL49 

AL50 

AL51-AL54 

AL55 

AL56 

AL57 

(-

Unable to resume 'SYSBUILD' task during initial task activation in 
a memory-only environment. 

Unable to deallocate input device after dynamic task activation in 
a memory-only environment. 

Task has attempted to share memory via a dynamic memory 
partition in a memory-only environment. 

Dynamic memory partitions cannot be greater than 1 megabyte. 

The user has attempted to exclude a shared partition whose 
associated map blocks are not designated as being shared in the 
task's TSA. 

The task's DSECT space requirements overlap the task's TSA space 
requirements. 

The task's DSECT space requirements overlap the task's CSECT 
space requirements, or if no CSECT, load module is too large to fit 
in user's address space. 

Reserved 

The sum of the CSECT, DSECT, and the operating system sizes is 
greater than the total amount of memory configured. 

Unrecoverable I/o error to the SMD. 

File Lock Table (FL T) is full. 

C-5 



CODE 

ASOI 

AS02 

AS03 

AS04 

AS05 

AS06 

AS07 

AS08 

AS09 

ASIO 

ASII 

ASI2 

AS13 

AS14 

ASI5 

AS16 

AS17 

C-6 

Assembler 

DESCRIPTION 

Physical end-of-file encountered on write to the General Object 
(GO) file. 

Physical end-of-file encountered on write to the Binary Output 
(BO) file. 

Physical end-of-file encountered on write to the Listed Output 
(LO) file. 

Physical end-of-file encountered on write to the scratch (UTI) file 
(i.e., $ASSIGN3 UTI = DC, ????). 

Physical end-of-file encountered on write to the cross-reference 
(UT2) file (i.e., $ASSIGN3 UT2 = DC, ????). 

There does not exist a prime number of three-word entries in the 
allocated core for the symbol table. 

Unrecoverable I/O error on the Binary Output (BO) file. 

Unrecoverable I/O error on the General Object (GO) file. 

Unrecoverable I/O error on the Listed Output (LO) file. 

Unrecoverable I/O error on the Source Input (SI) file. 

Unrecoverable I/O error on the intermediate compressed source 
(UTi) file. 

Physical end-of-file encountered on write to the Compressed 
Source Output (CS) file. 

Checksum error on compressed source input either during pass I 
while reading compressed source f rom the Source Input (SI) file or 
during pass 2 while reading the intermediate scratch compressed 
source (UTI) file. 

The file the Assembler is using as the macro library was not 
successfully created by the macro library generator. The file is 
invalid. 

Unrecoverable I/O error on the Macro Library (MAC) file. 

Unrecoverable I/O error on the cross-reference (UT2) file. 

Unrecoverable I/O error on the Compressed Source Output (CS) 
file. 



(- AS18 

AS19 

AS20 

AS21 

AS22 

AS23 

AS24 

AS25 

AS26 

AS27 
(~~ 

AS28 

AS29 

AS30 

AS31 

AS32 

AS33 

Invalid blocking buffer control pointer encountered on the Binary 
Output (BO) file. 

Invalid blocking buffer control pointer encountered on the General 
Object (GO) file. 

Invalid blocking buffer control pointer encountered on the Listed 
Output (LO) file. 

Invalid blocking buffer control pointer encountered on the Source 
Input (SI) file. 

Invalid blocking buffer control pointer encountered on the Scratch 
Compressed Source (UTI) file. 

Invalid blocking buffer control pointer encountered on the 
Compressed Source Output (CS) file. 

Invalid blocking buffer control pointer encountered on the cross
reference (UT2) file. 

The macro library (MAC) file is unblocked. 

End of file on MA2 file. 

Unrecoverable I/o error on MA2 file. 

Invalid blocking buffer control pointer on MA2 file. 

MAC assigned to illegal device. 

MA2 assigned to illegal device. 

Potential abort conditions have been detected during program 
assembly. An abort status flag within the job's TSA has been set 
during assembler termination processing. Conditional job control 
directives may be used to test status prior to job continuation. 

Unrecoverable I/o error on the prefix (MPXPRE) file. 

Invalid blocking buffer control pointer encountered on the prefix 
(MPXPRE) file. 

C-7 



CODE 

AUOl 

AU02 

AU03 

AU04 

AU05 

CODE 

DBOl 

DB02 

CODE 

CMOl 

CM02 

CM03 

CM04 

CM05 

C-8 

Auto-Start Trap Processor (H.IPAS) 

DESCRIPTION 

Trap occurred on auto-start. 

Trap occurred in another interrupt trap routine. 

Reserved 

Reserved 

User was unmapped when trap occurred. 

Debugger 

DESCRIPTION 

End of medium error on lfc 1I0T in batch mode. 

Fatal I/O error on lfc contained in the abort message. 

Call Monitor Interrupt Processor (H.IP27 and H.IPOA) 

DESCRIPTION 

Physical end-of-file encountered on write to the compressed source 
output (CS) file. Call monitor interrupt processor cannot locate 
the CALM instruction. 

Expected CALM instruction does not have CALM (X'30') opc~de. 

Invalid CALM number. 

CALM number too low (out of bounds). 

CALM number too big (out of bounds). 

( 



CODE 

CTOI 

CT02 

CT03 

CT04-

CT05 

CT06 

Catalog 

DESCRIPTION 

Physical end-of-file encountered on subroutine library. The lfc of 
the library in question is displayed. This results from the library 
being updated by another user while it is allocated by the 
Cataloger. 

Load module file specified with CATALOG cannot be allocated. 

Unrecoverable I/o error encountered on the OAT APOOL dictionary 
file assigned to DPD. 

Listed output space is deleted and additional SLO space cannot be 
allocated. 

Unrecoverable I/O error on file or device assigned to SBM for 
SYMT AB output. 

An error occurred during the cataloging process and the reason is 
described in the SLOe 

C-9 



CODE 

DPOI 

DP02 

DP03 

DP04 

DP05 

DP06 

DP07 

DP08 

DP09 

DPIO 

DPll 

DPl2 

DPl3 

DPl4 

DPl5 

DPl6 

DPl7 

DPl8 

DPl9 

DP20 

DP21 

DP22 

DP99 

C-lO 

Datapool Editor (DPEDIT) 

DESCRIPTION 

Unrecoverable I/O error while reading or writing the DAT APOOL 
dictionary. 

Dictionary file code (DPD) unassigned. 

Unrecoverable error on error audit trail {ER} file. 

Unrecoverable error on audit trail (LO) file. 

Unable to allocate additional SLO space for audit trail after initial 
file is filled. 

Unable to allocate additional SLO space for error audit trail after 
initial file is filled. 

Invalid directive. 

The name 'DATAPOOL' is not defined as a core partition. 

Dictionary overflow. 

Unable to reassign the DPD file. 

End-of-tape or illegal end-of-file encountered on IN. 

Physical end-of-media encountered on OT. 

Unrecoverable error on IN. 

Unrecoverable error on OT. 

File code OT unassigned and the SAVE function requested. 

File code IN unassigned and the REM AP function requested. 

Sequence error on -dictionary entry record {accessed through file 
code IN}. 

Checksum error on dictionary entry record {accessed through file 
code OT}. 

Invalid specification on REMAP directive. 

Invalid specification on DPD directive. 

Unrecoverable error on directive input {SYC} file. 

Dictionary size is less than the required minimum {five records}. 

A non-fatal error occurred. 



( 
CODE 

ECll 

ECl2 

ECl3 

ECl4 

ECl5 

ECl6 

ECl7 

ECl8 

( 
ECl9 

EC20 

EC2l 

EC22 

EC23 

EC24 

EC25 

ERnn 

Error Condition Codes for DPEDIT 

DESCRIPTION 

Attempt to delete a symbol not found in the dictionary. 

Attempt to delete a symbol that is used as a base for another 
variable. 

A change is requested for a symbol used as a base that may result 
in a change in the relative address. 

The calculated relative address does not fall on the specified 
boundary (precision). 

The referenced base symbol is not in the datapool dictionary. 

Attempt to add a symbol that is already defined in the dictionary. 

The calculated relative address is not within the range of the 
datapool core partition. 

The datapool variable does not reside in the dictionary at the 
location computed by the hash coding scheme. 

Invalid specification on directive. 

Log function deleted, not enough memory to sort data. 

Log function deleted, the scratch sort file is not enough to contain 
the necessary data. 

Log function deleted, unrecoverable I/o error on the scratch sort 
file. 

Attempted to change a symbol not found in the dictionary. 

Computed relative address does not agree with actual. 

Entries are multiply defined. 

Error encountered in processing data card fields. The column 
number in which the error was detected is specified by linn". 

C-ll 



CODE 

EDOI 

ED02 

ED03 

ED04 

C-12 

EDIT (, 
" 

_,,,,-i 

DESCRIPTION 

User terminal I/O hardware error. 

Internal line linkage invalid. 

Reserved (R TM Only). 

Internal logic error. 



( 

CODE 

FMOI 

FM02 

FM03 

FM04 

FM05 

FM06 

FM07 

FM08 

FM09 

FMIO 

FMll 

FM12 

FM13 

FM14 

FM15 

FM16 

FMl7 

FMl8 

FM19 

FM20 

FM21 

FM24 

FM25 

File Manager (FILEMGR) 

DESCRIPTION 

Invalid command verb on directive. 

Required argument(s) absent from a directive. 

Create requested for an existing file. 

Device specified is invalid for this command. 

Decimal number specification contains non-decimal digits. 

Hexadecimal number specification contains non-hexadecimal 
characters. 

Specified file is password protected and correct password not 
specified. 

Attempt to expand a core partition. 

Cannot create or expand file due to unavailability of disc space for 
allocation. 

Attempt to create a fast file which mapped into an existing fast 
file in the SMD. 

DELETE, SAVE, or EXPAND requested for a disc file which does 
not exist. 

Insufficient file assignment table space for I/o to the SMD. 

Unrecoverable I/o error to the SMD. 

Unrecoverable I/o error to the SYC file. 

Unrecoverable I/O error to the SLO file. 

Unrecoverable I/O error to the IN file. 

Unrecoverable I/o error to the OUT file. 

Invalid argument. 

Cannot allocate required file. 

Unrecoverable I/o error on SAVE/RESTORE file. 

Unexpected EOF on IN file. 

File specified for RESTORE not found. 

Too many prototypes specified. 

C-13 



FM26 

FM41 

FM42 

FM99 

C-14 

EOF expected on IN file not found. 

End of medium on lfc SLO. 

Invalid username or key. 

Directive errors have been detected during execution of the File 
Manager. An abort status flag within the job's TSA has been set 
during File Manager termination processing. Conditional job 
control directives may be used to test status prior to job 
continuation. 



(C 
CODE 

FSOI 

FS02 

FS03 

FS04 

FS05 

FS06 

FS07 

FS08 

(~ 
CODE 

FTOI 

FT02 

FT03 

FT04 

FT05 

FT06 

File System 

DESCRIPTION 

Unrecoverable I/O error to the System Master Directory (SMD). 

Unrecoverable I/o error to a disc allocation map. 

Attempt to add a new file, but the System Master Directory (SMD) 
is full. 

A disc allocation map checksum error was detected. 

Attempt to allocate disc space that is already allocated. 

Attempt to deallocate disc space that is not allocated. 

Reserved. 

Unrecoverable I/O error occurred while zeroing a file during 
creation. 

Fortran 

DESCRIPTION 

Fortran scratch file *u 1 must be expanded (i.e., $ASSIGN3 
*U 1 =DC, ????). 

Fortran scratch file *U2 must be expanded (i.e., $ASSIGN3 
*U2=DC, ????). 

Binary output (BO) file must be expanded if a disc file (i.e., 
$ASSIGN2 BO=SLO, ???? or a direct assignment to the card punch -
$ASSIGN3 BO=CP). . 

The compiled program caused the SGO file to overflow. The size 
of the SGO file can be increased via SYSGEN or may be assigned to 
tape via Operator Communications. 

End of medium on nonspooled SLO file. File must be expanded if a 
disc file or a direct assignment made to the line printer -
$ASSIGN3 LO=LP. 

Potential abort conditions have been detected during program 
compilation. An abort status flag within the job's TSA has been set 
during compiler termination processing. Conditional job control 
directives may be used to test status prior to job continuation. 

C-15 



CODE 

HTOI 

HT02 

HT03 

HT04 

HT05 

C-16 

Halt Trap Processor (H.IPHT) 

DESCRIPTION 

Trap occurred in user's map area. 

Trap occurred in another interrupt trap routine. 

Trap occurred while no other tasks were in the active state. 

Reserved. 

User was unmapped when trap occurred. 

(/ 

c 



CODE 

1001 

1002 

1003 

1004 

1006 

( 

1007 

1008 

1009 

1010 

1011 

Input/Output Control Supervisor (H.IOCS) 

DESCRIPTION 

An I/o operation has been attempted for which the FCB is not 
properly linked to a File Assignment Table (FAT) entry. Since this 
linkage is established by 10CS when the file is opened, either the 
user task has not properly opened the file or the FeB has been 
inadvertently destroyed subsequent to the time the open file 
operation was performed. 

An I/o operation has been attempted on an unopened file. This 
abort code will normally be issued when a user has opened a file, 
subsequently closed the file, then attempted an I/O operation on 
the file. 

An unprivileged task is attempting to read data into an area of 
core which is not allocated for its use. This type of abort is usually 
caused by an invalid TCW in the task's FCB. 

The control specifications in the FCB specify random access. 
However, the random access address contained in the FCB does not 
fall within the limits of the file. 

Invalid blocking buffer control cells have been encountered during 
a read operation performed on a blocked file. This type error is 
normally caused in one of the three ways: 

(1) The user's blocking buffer has been inadvertently destroyed. 
(2) The file being read is not a properly blocked file. 
(3) A data transfer error has occurred on input of data from the 

file. 

The task has attempted to perform an operation which is not valid 
for the device to which the user's file is assigned (e.g., a read 
operation specified for a file assigned to the line printer). 

Reserved 

The task has attempted to perform a rewind operation on the 
system SYC file. 

The task has attempted a write End-of-File operation on a file 
which has been opened in the Read-Only access mode. 

The task has attempted a write End-of-File operation on the 
system SYC file. 

C-17 



1012 

1013 

1014 

1015 

1017 

1018 

1021 

1022 

1024 

1025 

1026 

1027 

1028 

1029 

1030 

C-18 

The task has attempted an erase or punch trailer operation on a 
file which has been opened in the Read-Only access mode. 

The task has requested an illegal operation to be performed on a 
system file (backspace file, upspace, erase or punch trailer, eject, 
advance record, advance file, or backspace record). 

A task running in the unprivileged mode has attempted to reserve 
an I/O channel. 

A task has requested a type operation and the Type Control 
Parameter Block (TCPB) specified indicates that an operation 
associated with that TCPB is already in progress. 

The task has attempted an open operation on a file, and no File 
Pointer Table (FPT) entry exists with a matching file code. This 
type of abort is most often caused by an improper or missing file 
assignment directive at catalog or linking load time. This type 
abort may also occur if the logical file code portion of the task's 
FCB has been inadvertently destroyed. 

Reserved 

10CS has encountered an unrecoverable I/o error in attempting to 
process an I/O request on behalf of a task. 

An illegal 10CS entry point has been entered by a task. 

A task has specified an illegal address or transfer count in the FCB 
TCW. This type of error is usually the result of trying to output to 
a halfword device from a data area which is not on a halfword 
boundary. This error may also occur if the task attempts to 
transfer other than an even multiple of half words to or from a 
half word device. 

The task has requested a data transfer operation (read or write) 
with a Transfer Control Word (TCW) which specifies a quantity of 
zero. 

Illegal sequence of operations while in read mode on either a 
system file or a blocked file. 

Illegal sequence of operations while in write mode on either a 
system file or a blocked file. 

Attempt to advance a record while in the write mode on a blocked 
file. 

Attempt to advance a file while in the write mode on a blocked 
file. 

Illegal or unexpectecd volume number encountered on magnetic 
tape. 



( 1032 

1033 

1034 

1035 

1036 

1037 

1038 

1039 

1040 

( 

1043 

1046 

1047 

1048 

1049 

1053 

1054 

(' 

Calling task has attempted to perform a second read on a $ 
statement through the SYC file. 

An Invalid Device Address has been specified in the Task's 
Input/Output Control Header (lOCH). 

An unprivileged task has requested the link service. 

An unprivileged task has specified an 10CB list greater than 30 
10CB's in length. 

A SYSGEN error has occurred, and the handler HAT address is not 
in the Controller Definition Table (CDT). 

Job sequence number not found in the job table for task attempting 
to open SYC or SGO file. 

The task has requested a write operation to be performed on a file 
which has been opened in the read-only access mode. Permanent 
files to which a task has read but not write access are opened read
only even though read-write is specified when the file is opened. 

Blocked file indicated in FCB (or implied via assignment to a 
system file) but no blocking buffers available. 

User TCW is in error due to one or more of the following 
conditions: 

1. Unable to construct a valid TCW because the transfer count is 
too large. 

2. Transfer count not an even multiple of transfer type. 

3. Data address not bounded for transfer type (types = W, HW, B). 

Input/Output Control List (JOCL) or data address not in contiguous 
'E' memory (ASYNC,BSYNC). 

Dynamic storage space for 10CDs within 10Q exhausted. 

Class IE' device TCW is not in class 'E' memory. This type of error 
indicates a map failure. 

Reserved 

Device access failure 'on OPEN. 

The user has attempted to write to SYC file in Batch mode. 

An attempt has been made to use the same logical file code in two 
or more File Control Blocks. 

C-19 



CODE 

JCOl* 

JC02* 

JC03* 

JC04* 

JC05* 

JC06* 

JC07 

JC08* 

JC09 

JCIO* 

JCll* 

Job Control Task (J.JOBC) 

DESCRIPTION 

Unrecoverable read error from job's SYC file. 

Unrecoverable write error on SLO file. 

Unrecoverable write error on job's SGO file. 

Unable to build FAT/FPT for SLO or for SSO link file which 
indicates a program error. 

Unable to allocate disc space for SLO file. 

An entry is not available in the System Output Directory (M.SOD) 
for the definition of the job's SLO or SBO link file. 

This job's Job Table entry has been destroyed which indicates a 
program error. 

Unable to allocate the job's SYC file. 

Unrecoverable I/O error to SMD returned on call to File System 
Executi ve (H.FISE, 1 0). 

Unrecoverable I/O error to disc allocation map returned by File 
System Executive (H.FISE,3 or H.FISE,4). 

Unable to allocate job's SGO file. 

* Whenever a Job Control task aborts with one of these codes, the associated job is 
deleted. 

C-20 



( Loader (H.LOJ)R) 

CODE DESCRIPTION 

LDOl Load code section error. 

LD02 Code section checksum error. 

LD03 Bias code error. 

LD04 Code matrix checksum error. 

LD05 Load data section error. 

LD06 Data section checksum error. 

LD07 Bias data error. 

LD08 Data matrix checksum error. 

( '"'' '. 
;".,'" 

C-21 



CODE 

LE01 

LE02 

LE03 

LE04 

LE05 

LE06 

LE07 

LE08 

LE09 

LElO 

LEll 

LEl2 

LEl3 

LEl4 

LEl5 

LEl6 

LEl7 

C-22 

LIBED 

DESCRIPTION 

Directive error. The last directive printed on the directive list is 
in error. 

Object record sequence error. The name of the module with the 
error will be the last line printed on the log. 

Object record checksum error. The name of the module with the 
error will be printed as the last line of output on the log. 

Object module format error. The module whose name is the 
module following that one has an invalid record code in record 1. 

Incomplete object module. An object module, whose name is the 
last printed line of the log, has no terminal record (Hex DF). 

Unrecoverable error on the SYC file. 

Unrecoverable error on the LGO file. 

Unrecoverable error on the LLO file. 

Unrecoverable error on the LIB file. 

Unrecoverable error on the DIR file. 

Unrecoverable error on either the dynamically assigned temporary 
library file or temporary directory file. 

Allocation denial on request for temporary disc space used to 
perform update function (i.e., disc space unavailable). 

Delete table overflow. A combined maximum of 255 modules may 
be deleted/replaced/added in anyone LIBED run. 

End-of-medium encountered on temporary library. This error 
indicates the need to expand the subroutine library assigned to the 
LIB file code. The FILEMGR may be used to perform this function 
prior to another L1BED run. 

End-of-medium encountered on temporary directory. This error 
indicates the need to expand the subroutine library directory 
assigned to the DIR file code. The FILEMGR may be used to 
perform this function prior to another L1BED run. 

End-of-medium encountered on LIB file. The assigned file must be 
reallocated. 

End-of-medium encountered on DIR file. The assigned file must be 
reallocated. 



LE18 

CODE 

MDOl 

MD02 

{ CODE 

ME99 

End-of-medium encountered on either LIB or DIR file. This error 
may occur on either a log, statistics, or update run and indicates 
that a previous CREATE run terminated prior to completion with 
an uncorrectable I/O error or a LEI6/LEI7 error. 

MEDIA 

DESCRIPTION 

Potential abort conditions have been detected during media 
conversion operation. An abort status flag within the job's TSA has 
been set during compilation or execution processing. Conditional 
job control directives may be used to test status prior to job 
continuation. See output on logical file Code *OT for details about 
the abort condition. 

At EOF on a SLO file. 

MACLIBR 

DESCRIPTION 

Potential abort conditions have been detected during library 
editing operation. An abort status flag within the job's TSA has 
been set during editing processing. Conditional job control 

'directives may be used to test status prior to job continuation. 

C-23 



CODE 

MPOI 

MP02 

MP03 

MP04 

MP05 

C-24 

Memory Parity Trap (H.IP02) 

DESCRIPTION 

Memory error occurred in a task's logical address space. 

Memory error occurred in another interrupt trap routine (nested 
traps, context lost). 

Memory error occurred while no tasks were in the active state. 

Memory error occurred in a map block reserved for the O/S. 

Error occurred while current task was in the unmapped mode. 



( 
CODE 

MSOI 

MS02 

MS03 

MS04 

MS05 

MS06 

( 
MS07 

MS08 

MS09 

MSIO 

MSll 

MSl2 

MSl6 

MS17 

MS21 

( 
MS22 

System Services (H.MONS) 

DESCRIPTION 

Permanent file address inquiry service found a number of 
allocation units in the Unit Definition Table that do not correspond 
to any known disc. 

Invalid function code specified for request to create a timer 
entry. Valid codes are ACP 0), RSP or RST (2), STB (3), RSB (4), 
and RQI (5). 

A privileged task bit Set/Reset address is outside of the operating 
system or a static memory partition, or an unprivileged task bit 
Set/Reset address is outside of a static memory partition. 

Task has attempted to create a timer entry to request an interrupt 
with a priority level outside the range of X'12' to X'7F', inclusive, 
or the requesting task is unprivileged. 

Invalid function code has been specified for request to set user 
status word. 

Unprivileged task has attempted to reset a task priority level or a 
privileged task has attempted to reset a task priority to a level 
outside the range of I to 64, inclusively. 

Cannot load overlay segment due to software checksum or data 
error. 

Overlay is not in the SMO. 

Task has attempted to connect a task to an interrupt level not 
defined for indirectly connected tasks. 

Overlay has an invalid preamble. 

An unrecoverable I/O error has occurred during overlay loading. 

Overlay is password protected. 

Task has requested dynamic allocation with an invalid function 
code. 

File name contains characters outside range of X'20' to X'5F', 
inclusively. 

Multi-volume magnetic tape allocation request made to scratch 
(SCRA) tape. 

Multi-volume magnetic tape allocation request made on shared 
tape drive. 

C-25 



MS23 

MS24 

MS25 

MS28 

MS29 

MS30 

MS31 

MS32 

MS89 

MS90 

MS91 

MS92 

MS93 

MS94 

MS95 

MS96 

MS97 

MS98 

MS99 

C-26 

Task has issued a MOUNT MESSAGE ONLY allocation request to a 
non-allocated drive or to a device which is not a magnetic tape. 

Task has specified an illegal volume number (0 if tape is 
multivolume; non-zero if tape is single volume). 

Operator has aborted task in response to mount message. 

A permanent file log has been requested, but the address specified 
for storage of the directory entry is not contained within the 
calling task's logical address space. 

Task has attempted to load the interactive Task Debugger overlay 
in a memory-only environment. 

Task has attempted to obtain a permanent file log in a memory
only environment. 

User attempted to go to an any wait state from an end action 
routine. 

Invalid register set-up detected in M.ID. 

An unprivileged task has attempted to reestablish an abort receiver 
(other than M.IOEX). 

Task has made a run request end action routine exit while the run 
request interrupt was not active. 

Task has attempted normal exit with a task interrupt still active. 

Task has attempted to queue a message during its exit sequence. 

An invalid Receiver Exit Block (RXB) address was encountered 
during message exit. 

An invalid Receiver Exit Block (RXB) return buffer address was 
encountered during message exit. 

Task has made a message exit while the message interrupt was not 
active. 

An invalid Receiver Exit Block (RXB) address was encountered 
during run receiver exit. 

An invalid Receiver Exit Block (RXB) return buffer address was 
encountered during run receiver exit. 

Task has made a run receiver exit while the run receiver interrupt 
was not active. 

Task has made a message end action routine exit while the message 
interrupt was not active. 

/ 



[- Fortran Execution Time 

CODE DESCRIPTION 

RS47 Invalid time interval request. 

RS48 Invalid acti vation request. 

RS49 Invalid run request. 

RS53 Invalid task number. 

RS60 Invalid address specified. 

RS65 Invalid delete request. 

RS66 Invalid abort request. 

RS67 Invalid resource mark request. 

RS68 Invalid disconnect request. 

RS69 Skip file or record operation requested on non-existent FCB. 

RS70 Allocation error (appears only if lOST AT and $n parameters have 

( 
been omitted). 

RTOI Unformatted read I/o error. 

RT02 Formatted read I/O error. 

RT03 Unformatted write I/O error. 

RT04 Formatted write I/O error. 

RT05 Reference made to non-existent device type or address. 

RT06 Unit out of 0-999 range. 

RT07 No left parenthesis on format. 

RT08 Transfer index out of range (option 7 or M:ERRFLG can be used to 
avoid an abort). 

RT09 Format error. 

RTIO The I/o transfer requirements for the data buffer are incompatible 
with the amount of available data. 

RTII Format parenthesis level in excess of two. 

(~ RT13 Argument list exceeds logical read record. 

C-27 



RT14 

R'T15 

RT16 

RT17 

RT18 

RT19 

RT20 

RT21 

RT22 

RT23 

RT24 

RT25 

RT26 

RT27 

RT28 

RT29 

RT30 

RT31 

RT32 

RT33 

RT34 

C-28 

Incorrect descriptor in format. 

Integer descriptor but non-integer argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

Hexadecimal descriptor but non-hexadecimal argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

0, E, F, G descriptor, not real or complex argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

Logical descriptor but non-logical argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

Attempt to read past EOF/EOM. 

Attempt to write past EOF /EOM. 

Attempt to read past EOF/EOM. 

Attempt to write past EOF /EOM. 

Attempt to backspace following EOF/EOM. 

Rewind after EOF /EOM. 

Formatted record read. 

Unformatted record read. 

Ooubleword integer overflow (option 7 or M:ERRFLG can be used 
to avoid an abort). 

Byte integer input with negative sign (option 7 or M:ERRFLG can 
be used to avoid an abort). 

Byte integer overflow (option 7 or M:ERRFLG can be used to avoid 
an abort). 

Halfword integer overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Full word integer overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Illegal character in 0, E, F, G input (option 7 or M:ERRFLG can be 
used to avoid an abort). 

Underflow in floating conversion (option 7 or M:ERRFLG can be 
used to avoid an abort). 

Overflow in floating conversion (option 7 or M:ERRFLG can be 
used to avoid an abort). ( 



( 

RT35 

RT36 

RT40 

RT41 

RT42 

RT43 

RT44 

RT46 

RT50 

RT51 

RT52 

RT55 

RT61 

RT62 

RT63 

RT64 

RT65 

RT66 

RT67 

RT68 

RT69 

RT80 

RT81 

Argument list overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Argument list overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Attempt to free busy 10CH/IOCB entry. 

Attempt to link busy 10CH/IOCB entry. 

10CH/IOCB table overflow. 

Wait I/o returned before I/O termination. 

Status parameter not linked to ADI device prior to I/o request. 

ADI table address not on halfword boundary. 

Missing or omitted parameter. 

Parameter out of range. 

End of search list reached. 

Error found in math library routine. 

List-directed I/O (input) encountered, character string split 
between two records. 

Internal file read/write past EOF/EOM with no END option 
specified. 

Block number exceeds maximum block number in file. 

Record overflow. 

Record length exceeds maximum allowable. 

Record length not specified for random access or specified for 
sequential file. 

Implicit open not allowed for or random access I/O. 

Reference to sequential operation on a file opened for direct 
access not allowed. 

Error(s) encountered on open. 

Subscript error (i.e., subscript not a decimal number, illegal 
punctuation, excessive subscripts, or subscript out of range). 

NAMELIST identifier error (i.e., column 1 non-blank, ampersand 
character not present, name does not immediately follow 
ampersand character, or non-blank following name). 

C-29 



RT82 

RT83 

RT84 

RT85 

RT86 

RT87 

RT88 

RT89 

RT90 

RT91 

RT92 

RT93 

RT94 

RT95 

RT96 

RT97 

RT98 

RT99 

C-30 

Symbolic name error (no equal sign after variable/array name). 

Data item error (i.e., excessive values for symbol or expected to 
find symboI). 

Illegal value (i.e., illegal punctuation, mlssmg comma, zero 
Hollerith count, or illegal character in value). 

Attempt to read past EOF /EOM. 

Attempt to write past EOF/EOM. 

Symbolic name not defined in NAMELIST statement. 

Repeat count error. 

Symbolic name exceeds eight characters. 

Invalid read/write operation. 

End-of-file status return pursuant to random access record. 

Random access partition number out-of..;.range (i.e., partition 
number not between 1 and 95, inclusive). 

Random access number out-of-range {i.e., record number not 
between 1 and 65,535, inclusive}. 

Random access transfer length (write/read) or record size 
definition (define) out-of-range {i.e., transfer record length not 
between 1 and 65,535 bytes, inclusive}. 

Invalid random access argument list length. 

FCB table overflow (16 or more files for RTM; 31 or more files for 
MPX-32). 

Diagnostic output message exceeds 100 lines. To allow more 
diagnostic messages, statically assign the DO file (i.e., $ASSIGN2 
DO=SLO,500). 

Denial return when attempting to allocate file for diagnostic 
output message. 

Insufficient blocking buffer space (each unit assignment to a 
system file requires one blocking buffer unless one file is assigned 
to another, i.e., via $ASSIGN4). 



( 
CODE 

SBOI 

SB02 

SB03 

SBOll-

SB05 

SB06 

CODE 

SCOI 

SC02 

SC03 

SCOll-

System Binary Output 

DESCRIPTION 

An I/O error has. been encountered on the device assigned as the 
system binary (punched) output device. 

The system output program has encountered an unrecoverable I/O 
error in attempting to read a punched output file from disc. 

Denial of file code to file code allocation for J.SOUT2 indicates 
loss of system integrity. 

System binary output abor~ed by operator. 

No timer entry for system binary output (system fauld. 

Five echo check errors detected while attempting to punch a single 
card. 

System Check Trap Processor 

DEFINITION 

System check trap occurred at an address located within the 
operating system. 

System check trap occurred within the current task's space. 

System check trap occurred at a time when there were no tasks 
currently being executed (C.PRNO equals zero). 

System check trap occurred within another trap (C.GINT does not 
equal 1). 

C-3l 



CODE 

SGOl 

SG02 

SGO) 

SG04 

SG05 

SG06 

SG07 

SG08 

SG09 

SGIO 

SGll 

SGl2 

SGl3 

SGl4 

SGl5 

SGl6 

SGl7 

SGl8 

C-32 

System Generator (SYSGEN) 

DESCRIPTION 

Invalid loader function code in binary object module from the 
System Resident Module (OBJ) file. 

Invalid binary record read from System Resident Module (OBJ) file 
(byte 0 must be X'FF' or X'DF'). 

Sequence error in module being read from temporary file. 

CHECKSUM error in module being read from temporary file. 

Unable to find CDT and/or UDT for I/o module load. 

Unable to obtain additional memory required for resident system 
image module loading. 

Unable to obtain memory required for resident system image 
construction. 

Non-relocatable byte string encountered in binary module being 
processed from temporary file. 

Unable to allocate temporary file space. 

Overrun of SYSGEN address space by system being generated. 
Probable erroneous size specification in PA TCH or POOL 
directive. 

Sequence error while reading object module from file assigned to 
'OBJ'. 

CHECKSUM error while reading object module from file assigned 
to 'OBJ'. 

Unable to allocate disc space for SYMT AB file. 

Unable to allocate disc space for SYSTEM IMAGE file. 

Maximum number (240) of symbol table/patch file entries 
exceeded. 

Missing SYSTEM or SYMTAB directive. 

Invalid IPU interval timer priority. Must not be between X'78' and 
X'7F'. 

Maximum size of 80K for target system has been exceeded. 

c 



SG19 

SG20 

SG21 

SG23 

SG24 

SG25 

SG26 

SG27 

SG28 

SG99 

Attempt to define interrupt vectoring routine as system 
reentrant. Only device handlers may be system reentrant. 

Unable to find "link" device in UDT. 

Insufficient room in memory pool for download file list. 

Insufficient shared memory table entries specified with SHARE 
directive. Number of entries must be equal to or greater than the 
number of partitions specified with /PARTITION NAME directives. 

Attempt to define partition starting mapblock number in operating 
system area. 

Attempt to define partition starting mapblock number in non
configured physical memory. 

Attempt to use a module incompatible with the target machine 
type. The offending module name is the last entry on the listing 
followed by three asterisks (***). 

The device specified in either the SMD, SWP, SID, LOD or POD 
directives is not included in the configuration being built. 

The null device specification which is required to be included in 
every configuration is missing. 

Directive errors encountered. 

C-33 



CODE 

SMOl 

SM02 

SM03 

SM04 

SM05 

SM06 

SM07 

SM08 

SM09 

SMlO 

SMll 

SM12 

5MB 

SMl4 

C-34 

System Output Supervisor (H.SOUT) 

DESCRIPTION 

The System Input Directory (M.SID) which is created at SYSGEN, 
does not exist. The directory may be created with the File 
Manager, but the file must be zeroed during creation. 

The Systems Output Directory (M.SOD) which is created at 
SYSGEN, does not exist. The directory may be created with the 
File Manager, but the file must be zeroed during creation. 

Unable to build a FAT /FPT for a system output task which is 
attempting to allocate an SlO or SBO file. Indicates a program 
error. 

The Job Table entry associated with a job for which end-of-job 
processing is being performed has been destroyed. Indicates a 
program error. 

Entry linkage is not consistent on the System Output Directory 
(M.SOD). The contents of M.SOD have been destroyed or a 
program error exists. 

Entry linkage has been destroyed on the System Input Directory 
(M.SID). 

Entry linkage has been destroyed on the System Output Directory 
(M.SOD). 

Unrecoverable I/O error on spooled link file. 

Unrecoverable I/O error on System Input Directory (M.SID). 

Unrecoverable I/O error on System Output Directory (M.SOD). 

Unrecoverable I/O error to a disc allocation map returned on call 
to File System Executive (H.FISE,4). 

Attempt to activate System Output task unsuccessful. 

Unrecoverable I/o error to the SMD returned on call to File 
System Executive (H.FISE,l). 

Attempt to access a system input or output file in a memory-only 
environment. 



(~~~ 

(" 
j 

(' 

CODE 

SNOI 

SN02 

SN03 

SNO~ 

SN05 

SN06 

SN07 

SN08 

CODE 

STOI 

ST02 

ST03 

System Input Task (J.SSIN) 

DESCRIPTION 

Blocking buffer or FAT space is not available. 

Unrecoverable I/o error from the disc file being used as the SYC 
file. 

System Input Directory (M.SID) does not exist or an unrecoverable 
I/O error was encountered in attempting to access it. 

Job Sequence Number has been duplicated. Indicates a program 
error. 

Spooled Input Directory (M.SID) is full. 

A permanent file specified on the OPCOM BATCH command does 
not exist. 

Unrecoverable I/O error to the SMD returned on call to the File 
System Executive (H.FISE,1 or H.FISE,IO). 

Unrecoverable I/o error to the allocation map returned on call to 
the File System Executive (H.FISE.3 or H.FISE,~). 

System Output Task (J.SOUT) 

DESCRIPTION 

Unrecoverable write error on destination device for SLO or SBO 
records. 

Unable to perform file code to file code allocation for separator 
file code. 

Unable to issue magnetic tape mount message via allocation 
service. 

Whenever a System Output task aborts, the task may be restarted with the 
OPCOM/REPRINT or REPUNCH commands. 

C-35 



CODE 

SVOI 

SV02 

SV03 

SV04 

SV05 

CODE 

SWOI 

SW02 

SW03 

SW04 

SW05 

SW06 

SW07 

CODE 

SYOI 

SY02 

SY03 

SY04 

SY05 

SY06 

SY07 

SY08 

C-36 

SVC Trap Processor (H.IP06) 

DESCRIPTION 

Abort of unprivileged task using M.CALL. 

Invalid SVC number abort. 

Abort of unprivileged task attempting use of a "privileged-only" 
service. 

Invalid SVC type abort. 

Abort of unprivileged task attempting M.RTRN. 

Swap Scheduler Task (J.SW APR) 

DESCRIPTION 

Unrecoverable I/O error. 

Reserved 

Reserved 

No 'E' memory available for SW APR's buffer file. 

No FAT or FPT to allocate. 

Task has requested inswap but was never outswapped. 

EOM detected on swap file. 

'SYSBUILD' 

DESCRIPTION 

Unable to allocate _ or open input device during initial task loading. 
(Memory only MPX-32) 

Unable to activate task. (Memory only MPX-32) 

Unable to deallocate or close input device after initial task 
loading. 

IPL device is undefined. 

File is too small for the tape contents. 

Transfer count on read is zero. 

Unable to create a permanent file. 

Unable to allocate file. c 



CODE 

UDal 

UD02 

UPDATE 

D ESC RIPTION 

Potential abort conditions have been detected during update 
processing. An abort status flag within the job's TSA has been set 
during execution processing. Conditional job control directives 
may be used to test status prior to job continuation. 

User requested abort from mount prompt. 

C-37 



CODE 

BTOl 

EXOl 

EX02 

MCOI 

MFOl 

MPOI 

NMOI 

OCOI 

PVOI 

TSOI 

TS02 

TS03 

UIOI 

C-38 

Miscellaneous Abort Codes 

DESCRIPTIONS 

Block mode timeout trap. 

An abort has occurred in the task exit sequence. 

An abort has occurred during the task abort sequence and has been 
changed to a delete (kill) task request. 

Machine check trap. 

A map fault trap has occurred. This is the result of a bad memory 
reference outside of the user's addressable space. 

Memory error occurred in a task's logical address space. This is an 
internal or CPU failure. Rerun task. 

Indicates a CPU failure. 

The operator has requested that the task be aborted. 

Privilege violation trap. 

User requested removal from a BREAK request. 

User requested removal from a Wait State queue. 

Task running from specified terminal was aborted when the 
terminal disconnected. 

Undefined instruction trap. 



[ Crash Codes 

When system crash' occurs as a result of a trap handler entry, the CPU halts with the 
registers containing the following information: 

RO=PSD Word 0 (when trap generated) 
Rl=PSD Word 1 (when trap generated) 
R2=Rea1 address of instruction causing trap 
R3=Instruction causing trap 
R4=CPU status word (from trap handler) 
R5=Crash code: 

(See H.IP02 Codes) 
(Non-Present Memory - H.IP03) 
(Undefined Instruction - H.IP04) 
(Privilege Violation - H.IP05) 
(Machine Check - H.IP07) 
(System Check - H.IP08) 
(Map Fault - H.IP09) 
(Cache Parity - H.IP10) 32/87 only 
(Block Mode Timeout - H.IPOE) 

MPOl=X'4D503031' 
NMOl=X'4E4D3031 ' 
UIOl=X'55493031 ' 
PVOl=X'50563031' 
MCOl=X'4D433031' 
SCOl=X'53433031' 
MFOI=X'4D463031 ' 
CP01=X'42543031 ' 
BTOl=X'42543031 ' 
HTOl=X'48543031 
SWOl=X'53573031 ' 

(Privileged Halt Trap - H.IPHT) CONCEPT /32 only 
(See SW APR codes) 

R6=Real address of register save block 
R7 =C'TRAP'=X'54524150' 

For further description, see Volume 1, Section 2.10. 

C-39/C-40 



( ", 

II 

=/ 



( 

( 

APPENDIX D 

NUMERICAL INFORMATION 

D-l 



-;( 
t" • I· ""<c- / 
I • '.I 
I I ... 
t I ... 
• J '.1 • 

10 t •• 1 
II , •• a .. • ..... -
I. 7 .. 1111 - • .... _21 
'12 I '''1113125 
I. 10 '''1''1125 n. 11 '''_.121 

TABLE OF POWERS OF TWO t_ 12 ... *'.121 
• 112 1:1 ... '22 070 3'2 I 

IOIIt W ... 011.'1125 
II JII " 0 .. _117 I" 'a 

II" II 0 .. 015211 Jll0I25 
II' 072 17 O .. CI07 121 lit 53' a 
2121 .. .. 0 .. 0113 ., •• 7_121 uc_ " 0 .. 00' 107 _132 1121 

1 .. 571 • 0 .. _11317. :111 _ 25 
2017112 21 0 .. _."137 , .. 203 '25 
t'"'' 22 0 .. _nU'1I71 101 lin ._- ZI 0"_'''201._''125 

IIn721' N 0 .. _111 ...... 771_121 
»1IMCJ:t 21 0.000 _ 0211102 322 .7 .. 3125 
17101 .. 21 O.ooo_OIUO' 111113,,7_25 

'IC21778 27 0 .. _ 001 .. 510 _123121125 ..... • 0.000 _ 0113121210 at .. l .'.012 5 
... 10112 21 0. __ 001112 .. 5' .. 230.7 03125 

10737.' 12. 30 0.000_00013132257.,154"511121 
21.7411_ II 0.000000000 ... , .73017.2571125 

4214117. II 0.000 000 000 132 130 .. 3153 _121 .. 25 
.... ICII2 33 0.000 000 000 HI.' 5321 I2II1C "4 413 125 
171"_1" 34 0.000 _ 000 011207110 113 .. 7407 221112 5 
343117 •• » 0. __ 000021103130 411 733703113211 25 

.7".71,. • 0.000_000014111115221_111 .. 140121 
137 ••• 3412 37 0.000 000 000 007 275.7 11. 1.3425 103 320 3125 
27 •• 77 ..... • 0.000 000 000 0113137.71107011 712.1 Il1O 11125 
... .,..,3_ • 0.000 000 000 001"'" 403141111 475130 071125 

1_511 127 771 • 0.000 000000 000 ..... 701 772121237115031012 S 
2 III 023 211 552 4' 0.0000000000004" 747 310 ..... 111.751.53125 
•• 011111 '04 42 0.000 000 000 000 227 373175 443232 05. 471 75. 711121 
.711 CII3 on _ 43 0.000000000000 113 .. 137 72' ."0217.371112 .'n 

17112' ..... " 44 0.000 000 000 000 011 .. 341,,,, .. 01. __ '" _ 21 

.' .. 372_132 41 0.000000 000 000021421701430 401 007 434 ... 170 703 125 
7O.7441n .. .. 0.000000000000014210114 711202003717422411 .,1125 '.737 ___ 

47 0.000000000000007 '''.27.7101001111 711242171711 a 

• U74 171710_ .. 0.000 ___ 00311271l.7IIOOIOOI2I_12I137 __ 

_ .... 3.2' 112 • • .000 _ 000 000 001 nl 3M .. 400 210 ... 177 110 _ .. 312 I 

1'21 .... 142124 10 0.000_000000000",714"700 121232 a .. 3JC4n_a 
221' JlllIl_2. I' 

~_OOO __ ~ ___ OI2m_WIl7~_m 

t 101 .. 127 170_ U O'OOOcalooo_ooom ..... m~ __ 78mm*OI2I 

• CI07 III 254 '.112 II 0.000 _ 000 000 000 111 022 302 4125"" 042 313 I." 012 03' a 
.. 01. __ .'. .. ... cal 000 000 000.0lIl111 111 231 217127 CD1 1'1 1Il4Ol,,1 0" 121 
• oa "7 0,.113_ • 0 .. 000 cal cal 000 CD7 .,. 171115121 111110Il10 "I 7CD 210107112 I 

12.7 1M Dl71271J1 • ~_ooooooooommmlO7~_.,.m_~~m .. a 
1 .. 1"'.071 •• 12 17 O.ooocalOOOOOOOOO.IJI*103lO7mmWll7m~l2Il53m 

_ no 371 '" 711 7 .. .. 0.000000 000000 000 003 ...... 11'.311.1.123141112 ml13 4"1125 
171_ 712 303 423_ .. o.oooOOO_0000000017IC 723 475'71107. 4n 12 •• 1.'""., 21 

1 112 121 104 .. _171 10 ~OOOOOOOOOOOOOOOIl7~m"403W_II2M_I53.~12I 
2 ... 3.213.3112 II 0.000 cal 000 000 000 000 433_ ..... 201 7738112 III 120 347.,1 .. 170 3115 
t .. , _01l427l17104 12 0.000 000 000 cal 000 000 211 .... 34 •• 7 '00 _101 ... 510 173 ... 342 215 'II 21 
'223372031"715_ U 0.000 000 000 000 000 000 '.420 2172. ,SO 443 400 7.310 ..... 111 142571121 

(-j 

0-2 



( 
APPENDIX E 

POWERS OF INTEGERS 

E-l 



......... II11II. 

16" n 1,-n 

0 0.10000 00000 00000 00000 • 10 

16 1 O.62SOO 00000 00000 00000 • 10-1 

2.56 . 2 0.39062 SOOOO 00000 00000 • 10-2 

4 OP6 3 0.24414 06250 00000 00000 • 10.3 

65 536 4 0.15251 71906 25000 00000 • 10-4 

1 041 576 5 0.95367 43164 06250 00000 • 10-6 

16 m 216 6 0..596006 64477 53906 25000 • 10.7 

268 435 456 7 0.37252 90298 46191 40625 • 10.8 

4 294 967 296 8 0.23283 06436 53869 62891 • 10.9 

61 719 476 736 9 0.14551 91522 13668 51807 • 10.10 

1 099 511 6'l1 776 10 0.90949 .0017 72921 23792 • 10.12 

17 592 186 o.u 416 11 0.56843 41816 «*)80 14870 • 10. 13 

281 474 976 710 656 12 0.35527 13678 10050 OP294 • 10. 14 

4 503 599 6'l1 370 496 13 0.22204 46049 25031 30808 • 10. 15 

n 057 59. 037 9'l1 936 14 0.13177 71780 78144 56755 • 10. 16 

1 152 921 so. 606 846 976 15 0.86736 17379 81«)3 54721 • 10-18 

.......... 11. 

~ A 10-n 

1 a 1.0000 0000 0000 0000 

A I 0.1999 "99 "" 99911. 

U 2 0.28F5 C28F 5e28 F5C3 • 16-1 

3E1 3 0.4 I 89 3741 C6A7 EF9E • 16.2 

2710 4 0.6801 BlAC 710C 8296 • 16-3 

I 1611.0 5 0.A7C5 N:.47 1147 1423 • 16-4 

F 4240 6 0.10C6 f7AO 15EO 8037 • 16-4 

98 "80 7 0.lA07 F29A leAF 4858 • 16-5 

5F5 fl00 I 0.2 AF 3 lDC4 6118 731F • 16-6 

31911. eAGO 9 0.4488 2fAO U5A 52ec • 16-7 

2 5401 1400 10 0.6 DF 3 7F67 5EF6 fADf • 16-1 

17 4176 flOO 11 OoAf! I FFOI OU MfF • 16-' 

E8 04 AS 1000 12 0.1197 9981 20EA 1119 • 16-' 

"8 4E72 AGOO 13 O.IC25 C268 .. 976 81C2 • 16-10 

5AF3 10711. 4000 14 0.2009 3700 4257 3604 • 16- 11 

3 107E A4C6 1000 15 0.480E 1E71 'OSI 5660 • 16- 12 

23 86F2 6fCl 0000 16 O.734A CASf 6226 FOAE • 16- '3 

163 4578 'DBA 0000 17 0.1.77 AA32 3611.4 844' • 16.14 

Oft 1683 11.764 0000 18 0.1272 SOtll 0243 AlAI • 16 14 

8AC! 230. 89E 8 0000 19 0.1013 C94F 8602 AC35 • 16- IS 

(-/ 

E-2 



[ 
APPENDIX F 

ASCII INTERCHANGE CODE SET 

F-l 



o 1 2 .. ,. ... 
• .. 1-0 0 0 
I 1-~o 0 0 

• 2 - 0 1 
7 3 0 1 0 

~ 0 NUL OLE • lZ"'1 '2·11"'1 ........ 
al 1 10M DCI , 

lZ.' ".1 12.' 

0010 2 STX DCZ · 
lZ.2 ".2 .. , 

0011 3 ITX DC3 #I 
12~ 11~ N 

OlIO • lOT DC4 , .. , ...... ,,~ 

0101 I INa NAK • ........ ... No4 

01'0 • ACK SYN • ~ N 12 

0111 7 .L ITI · a.., .... ... 
la I • CAN C 

n .... " .... 12 .... 

'001 • NT 1M J 
'Z .... """ n .... 

10'0 A LF - · a.... .... , " ... 
1011 • VT ESC • 

IZ .... ·3 N-' 12 •• 

1100 C FF F$ · 12· .... n· ..... Mo3 

1101 D CII as · 
12· •• ·5 " ...... n 

1110 E SO lIS 
12· .... I' ...... 12.·3 

1111 F .. US , 
12· ... ·' 11 .... ·' 0·1 

F-2 

• I 

0 0 0 
0 1 1 

1 0 0 , 0 1 

0 • , 
0 .... 11·' 

1 A Q 
1 12·1 ". 
2 • II 
2 12·2 11. 

3 C S 
3 lZ-3 N 

• D T 

• 12" o.:a 

I E U 
I 124 004 

• F V 

• 12. 001 

, G W 
7 'Z·' 0. 

I H X 

• 12. 0.' 

• I Y 

• 12. 0. 

: J Z 
"Z 11·1 0. 

; K ( 
11 ... 11·2 12.2 

L 6 ... \ 
11-3 N-2 

• M I 
N 11 .. 11.:r 

> N A 
a.t 114 "., , 0 -
0.1-, 11" 0. .. 

• 
0 

1 
1 
0 

· 
"1 

• 
lZ.' 

It 
12.0.2 

c 
12.0.3 

d 
12 .. 

• 
12-001 

f 
12 ... 

• 12.' 

It 

'241 

i 
lZ4I 

J 
12·11·1 

1& 

lZ·11·2 

I 
12·11·3 

1ft 

12·11 .. 

II 

12·11 .. 

0 

12·"4 

7 

0 
1 
1 
1 

It 
lZ·11·' 

.. 
12·11. 

, 
12·n .. 

• 
".0.2 

t 
11.0.3 . 
u 
n .. 

., 
11-001 

• " ... 
• "., 
y 

"41 

• " ... 
I 
12-0 

• • 12·11 

I 
11.0 

-11., 

DEL 
12·'·' 

,r' 
'~/ 

c 



( 

Some positions in the ASCII code chart may hl'1Ie a different graphic representation on vlfious devices as: 

ASCII IBM 029 

" > 

Control Characters: 

NUL Null DC3 Device Control 3 
SOH Start of Heading (CC) DC4 Device Control 4 (stop) 
STX Start of Text (CC) NAK Negative Acknowledge (CC) 
ETX End of Text (CC) SYN Synchronous Idle (CC) 
EOT End of Transmission (CC) ETB End of Transmission Block (CC) 
ENQ Enquiry (CC) CAN Cancel 
ACK Acknowledge (CC) EM End of Medium 
BEL Bell (audible or attention signall SS Start of Special Sequence 
BS Backspace (FE) ESC Escape 
HT Horizontal Tabulation (punch card skip)(FE) FS File Separator (IS) 

(' lF line Feed (FE) GS Group Separator (IS) 
VT Vertical Tabulation (FE) RS Record Separator (IS) 
FF Form Feed (FE) US Unit Separator (IS) 
CR Carriage Return (FE) DEL Delete 
SO Shift Out SP Space (normally nonprinting) 
SI Shift In (CC) Communication Control 
OLE Data link Escape (CC) (FE) Format Effector 
DC1 Device Control 1 (IS} Information Separator 
DC2 Device Control 2 

( .. 
'". 

F-3/F-4 





APPENDIX G 

lOP PANEL COMMANDS 

G-l 



AS (CR) 

AS=xxxxxxxx (CR) 

CRMD =xxxxxxxxxxxx (CR) 
=xxxxxxxxxxxx (CR) 

CS (CR) 

CS=xxxxxxxx (CR) 

EA (CR) 

EXEC (CR) 

GPR (CR) 

HALT (CR) 

IPL (CR) 

IPL=xxxx (CR) 

IS (CR) 

IS=xxxxxxxx (CR) 

MA=xxxxxx (CR) 
(CR) 

MAV=xxxxxx (CR) 
(CR) 

MD=xxxxxxxx (CR) 
=xxxxxxxx (CR) 
= (CR) 

MSGE (CR) 

OVR (CR) 

PRIP (CR) 

PSD (CR) 

PSD=xxxxxxxx (CR) 

PSW (CR) 

PSW =xxxxxxxx (CR) 

REGA=xxxxxxxx (CR) 

RS (CR) 

RS=xxxxxxxx (CR) 

RST (CR) 

RUN (CR) 

SECP (CR) 

STEP (CR) 
(CR) 

WS (CR) 

G-2 

Clear address stop 

Set address stop 

Load CRAM with xxxxxxxxxxxx 
Load CRAM with data and increment address 

Read control switches 

Set control switches 

Read effective address 

Execute CRAM 

Read general purpose registers 

Halt 

IPL from default address 

IPL from xxxx 

Clear instruction stop 

Set instruction stop 

Read physical memory address location 
Increment and read memory address 

Read virtual memory address location 
Increment and read memory address 

Write memory data 
Increment and write memory data 
Increment and write previous data 

Message 

Toggle clock override 

Set primary panel (master only) 

Read Program Status Doubleword (1 and 2) 

Write Program Status Word (2) 

Read Program Status Word (0 
Write Program Status Word (1) 

Write General Purpose Register A 

Clear read operand stop 

Set read operand stop 

Reset 

Run 

Set secondary panel (master and slave) 

Instruction step 
Instruction step 

Clear write operand stop 

i(-' 
'\..J 



( 

( 

WS=xxxxxxxx (CR) 

@@C 

@@P 
(LF) 

Notes: 

Set write operand stop 

Enter console mode 

Enter panel mode 
Repeat command 

I (CR) denotes Carriage Return after each command. 

2 LOCK ON and LOCK OFF are not supported by the CRT panel. 

Console Mode 

To change from SCP mode to console mode, it is necessary for an operator to input (Q@C 
(CR). 

Upon receipt of the CR command following the @@C command, the firmware moves the 
cursor on the CRT to the extreme left margin of the next line. 

To return to the control panel mode, enter @(aP (CR). When the control panel mode is 
selected, II is used as the prompt. 

G-3/G-4 





(-

( 

Address Space 

Batch 

Indirectly-Connected 
Interrupt 

Console 

Context Area 

Context Switch 

Glossary 

The range of addresses described by a given configuration 
of the SELMAP. Normally the address range is from 0 to 
some map block boundary. Also referred to as "logical 
address space". When the CPU is unmapped, the only 
address space is the range of physical memory configured. 

Batch processing is the sequential processing of multiple 
jobs, with the operating system's Job Control program 
providing automatic job-to-job transition. Job Control and 
batch are often used synonymously. 

A hardware interrupt for which a special control block is 
defined at SYSGEN. The control block is connected to an 
active software task via the M.CONN service or OPCOM 
CONNECT command so that when the hardware interrupt 
occurs, the task is resumed. Resumption is based on the 
software priority of the user task. 

The teletypewriter or CRT terminal which is used by the 
operator to control the operation of MPX-32. Also called 
"operator's console", "OPCOM console", or "system 
console". 

task program Status Doubleword (PSD) and registers 
stored in the Task Service Area. 

The process of one task relinquishing CPU control and 
another task gaining CPU control. 

Software: based on availability of resources and software 
priorities. 

Hardware: based on hardware interrupt and trap priorities. 

GL-l 



Controller Definition 
Table (CDT) 

DATAPOOL 

DAT APOOL Dictionary 

DA TAPOOL Editor 

Device Handlers 

Directly-Connected 
Interrupt 

Disc Allocation Unit 

Dispatch Queue 

Fast File 

GL-2 

The CDT contains an entry for each controller described to 
SYSGEN. This entry describes the channel number, device 
type code, the number of units on the controller, Unit 
Defini tion Table (UDT) address, etc. IOCS uses the CDT 
entry to record controller status and control I/o queue 
information. 

Datapool is a memory partition which can be defined at 
SYSGEN or via the FILEMGR. DATAPOOL structure is 
defined by a datapool dictionary created and maintained 
via the Datapool Editor utility (DPEDIT). Elements of 
DA TAPOOL storage are referenced symbolically rather 
than by their address. 

The DA T APOOL dictionary is a map of elements in the 
DA TAPOOL. The dictionary equates a logical location in 
the DA T APOOL to a symbolic value. 

The DA T APOOL Editor (DPEDIT) is a utility used to 
maintain the DAT APOOL dictionary. Definitions of 
elements in the DA T APOOL can be modified, deleted, or 
added to the dictionary via the DAT APOOL Editor. 

Device handlers execute queued I/O commands, process 
service interrupts, and perform device testing functions. 
A handler is provided for each standard peripheral device. 

A user module that is incorporated with the resident MPX-
32 operating system at SYSGEN and associated with a 
specific hardware interrupt level; hardware context switch 
on interrupt goes directly to this task without routing 
through MPX-32. 

A disc allocation unit is a number of records, the size of 
which is disc-dependent. There are currently between one 
and four 192-word blocks per disc allocation unit. 

A list of tasks that have been activated, their priorities, 
and other pertinent information. Referenced by the 
Execution Scheduler for software context switches. 

The file definition is retrieved from the System Master 
Directory (SMD) with one disc access. 

,i{---~" ,_/ 



( File 

File Assignment 
Table (FAT) 

File Code 

File Control Block 
(FCB) 

File Manager 

File Name 

File Pointer Table 
(FPT) 

File System Executive 
(FISE) 

A collection of related records on a recording medium. 
MPX-32 input files may be on disc, tape, paper tape, or 
cards, or input can come from a terminal. Output files can 
be directed to the above as well as line printers. "File" in 
MPX-32 normally denotes disc files (as opposed to files on 
a device medium). 

A FAT describes the channel and the device to which a file 
is assigned. There is a FAT entry for each logical file code 
referenced by a user program. 

A three-character field in a File Control Block (FCB) that 
contains a mnemonic that refers to the file. The 
mnemonic can be used to refer to the FCB in Job Control 
statements, TSM and OPCOM commands, and system 
services such as $ASSIGNx. Synonymous with logical file 
code. 

An FCB contains parameters which describe an I/o oper
ation and identify the file code on which the operation is 
to be performed. User tasks and system programs define 
the contents of their related FCB's. 

The File Manager (FILEMGR) is a utility program used to 
maintain permanent disc files. It provides a set of 
directives for creating, deleting, saving, and restoring 
files. 

A file name is the one- to eight-ASCII character name of a 
permanent file. It is established when the file is created. 

The FPT provides the link between a user's FCB identifying 
the file and the F AT entry describing the device to which 
the user's file code is assigned. Static contents of the FPT 
are built by the MPX-32 resource allocation service; they 
are updated dynamically by the device allocation and 
deallocation system services. The FPT table is maintained 
in the task's TSA built by MPX-32. 

The File System Executive provides the interface between 
user tasks and available file space. It performs dynamic 
allocation and deallocation of temporary file space, 
locates or adds permanent file definitions in the System 
Master Directory, and maintains the disc allocation map. 

GL-3 



Global Common 

I/O Control System 

Impure Data 

Independent 

Interacti ve 

Interrupt 

Interrupt Control 
Block (ICB) 

Interrupt Vector 
Location (IVL) 

Job 

GL-4 

Global common is a set of memory partitions defined via 
SYSGEN or the FILEMGR which multiple tasks can access 
as a global resource. Definitions of Global Common items 
are determined by their relative position within the 
common partition. 

The Input/Output Control System (IOCS) processes I/O 
requests by the task and queues these requests by the 
software priority of the task. 

Tables, arrays, etc. that are an integral part of a task, yet 
can be modified during execution. If a task is sectioned, 
impure data are located in DSECT and reside in read/write 
memory separate from code and pure data, which are 
located in CSECT and reside in read-only memory. 

A task that runs independent of an interactive or batch 
environment, normally a real-time task. 

Of or pertaining to terminals. An interacti ve task is one 
doing I/O to a terminal. 

An internal or external event that requires rapid service by 
special software (or firmware) routines. The CPU 
preserves its current state and transfers control to the 
required interrupt handler. 

A series of memory locations included in a software inter
rupt handler that are pointed to by the IVL. This is where 
the CPU preserves its current state and transfers control 
to a software handler. 

Dedicated memory location for connecting an interrupt to 
connecting an ICB. 

A job is a sequential set of tasks whose batched execution 
is scheduled by the Job Control program based on Job 
Control statements. 

(~ 



(: 

Job Control Program 

Job Name 

Job Queue 

Job Sequence Number 

Job Stream 

Key 

Load Module 

Load Module 
Information Table 

Logical File Code 
(lfe) 

Macro Library Editor 

A program (i.e., a collection of tasks) which provides batch 
processing services, including: job-to-job transition, 
management of spooled I/O, run-time I/O device 
assignments. Job Control processing is controlled through 
Job Control Statements. 

One copy of the Job Control program is used for each job 
processed concurrently in the system. The number of Job 
Control programs that can run concurrently is specified at 
SYSGEN time. 

A job name is the one- to eight-character job name from 
the $JOB statement which defines the beginning of the 
job. An owner name is also specified for the job. 

The single ordered set of all SYC files containing spooled 
jobs waiting to be initiated by Job Control programs. 

A job sequence number is a decimal number which is 
assigned sequentially to a job when it is spooled to SYC 
disc space by the System Input program. 

The sequence of jobs processed by a particular Job Control 
program. The number of job streams processed by MPX-32 
is the number of Job Control programs which may run 
concurrently, which is established by SYSGEN. 
Synonymous with batchstream. 

A one-to-eight character code associated with an 
ownername/username to provide a degree of protection for 
system access and user files. 

A cataloged task that may be activated in one of three 
task activation environments: independent, interactive, or 
batch. 

A part of a load module produced by the Cataloger that 
contains special indicators for the task, a relocation 
matrix, and resource requirements. 

Synonymous with file code (q.v.). 

The Macro Library Editor (MACLlBR) is a utility program 
used to create disc and tape resident macro libraries for 
use with the Macro Assembler. 

GL-5 



Map 

Map Block 

Media Conversion 

MPX-32 Executive 

Object Module 

On-Line or Online 

Operator 
Communications 

Owner 

Owner Name 

Priority 

GL-6 

Synonymous with SELMAP (q.v.). 

The set of memory locations whose addresses are 
calculated from a single map register. All map blocks are 
the same size and begin on addresses which are multiples 
of their size. Map block size is determined by hardware 
map granularity. On the 32/7x, a map block is 8KW and on 
the 32/27, a map block is 2KW. 

In general, a map block is the smallest mappable quantum 
of physical memory. 

The Media Conversion utility (MEDIA) is used for media to 
media conversion, media copying, and media verification. 
It provides functions ranging from file duplication to 
merging media inputs into single or multiple media 
outputs. 

The MPX-32 Executive schedules CPU processing for all 
tasks running under software priority levels. MPX-32 
stands for Mapped Programming Executive. 

An object module is the smallest unit of a task that is 
output on the SGO by the Assembler or Compiler and is 
identified by name. It consists of relocatable object code 
to be processed by the Cataloger. 

Synomymous with INTERACTIVE (q.v.). 

Operator Communications (OPCOM) commands allow the 
user to exercise system control through a set of commands 
entered via the console or a terminal. 

One who owns a task. See owner name. 

A one to eight ASCn character, left justified, blank filled 
name, maintained in the M.KEY file, if it exists, and 
associated with task activation. 

Relative eligibility. Hardware priority refers to the 
priority scheme of external interrupts and service 
interrupts. Software priority refers to the priority scheme 
used by MPX-32 to resolve conflicting requests for 
resources. Priority for a task activated independent of the c 



( 

(~ 

Privileged 

Procedure 

Processor 

Program 

Program Status 
Doubleword (PSD) 

Protection 

Protection Granule 

Pseudonym 

batch or interactive environment is the priority established 
for the task when it is cataloged. The priority for a task 
activated interactively (via a RUN command) is the 
terminal priority established at SYSGEN. The priority for 
a task activated as part of a batch job is 64 unless 
modified via the OPCOM command URGENT. 

Privilege is a state of processing that allows access to a 
set of otherwise unexecutable "privileged" instructions, 
and to a privileged collection of system services. The 
privileged/ unprivileged state of a task is indicated when it 
is cataloged. 

Synonymous with 'code'. 

A SYSTEMS program that a user can run to perform a 
related set of operations such as file maintenance, media 
conversion, FORTRAN compilation, etc. Also used 
synonymously with utility. Language processors are 
compilers, assemblers, or interpreters. Command 
processors are Job Control, TSM, and OPCOM. 

A program is a part of a task, a task, or a set of related 
tasks. 

Hardware registers that define the state of the CPU at any 
given time. . 

Memory protection: Write by unprivileged programs is not 
allowed. File protection: Use of passwords etc. that allow 
the user who creates a file to protect it, if desired. 

The smallest unit ·of memory within a map block that can 
be individually write locked. On the 32/7x, a protection 
granule is 512 contiguous words beginning on a 512-word 
boundary. 

A one-to-eight character name which provides more 
information about a task's environment than the task 
number/ownername, etc. For example, TSM uses the 
pseudonym TSM*terminal-number to identify a task by the 
terminal it is running on and Job Control uses the 
pseudonym .Odevmnc to identify a spooling task's target 
device. 

GL-7 



Pure Data 

Real-Time 

Reel Identifier 

Reentrancy . 

Resident 

Resident 
(Locked in Mempry) 

Resource Allocator 

Resourcemark 

Resource Requirement 
Summary (RRS) 

Scheduler 

GL-8 

Tables, arrays, etc. that are an integral part of a task and 
do not change during execution. Located with code. If a 
task is sectioned, pure data are included with code in 
CSECT and reside in read-only memory. 

Any user task which is not activated in an interactive or 
batch environment is usually considered a real-time task. 
Real-time tasks are typically designed to respond to 
external stimuli (such as external interrupts) or to be 
executed periodically, as with a timer. 

A 1-4 character name output with a magnetic tape mount 
message and also written to a tape along with the volume 
number if using multivolume tape. 

The logical property of procedural code which allows it to 
be executed completely asynchronously by multiple 
concurrent tasks. 

In MPX-32, user's code (e.g., an interrupt handler) that is 
incorporated with the MPX-32 operating system at 
SYSGEN and is mapped into every user's address space 
with the operating system. 

A task that is non-swappable. It remains in memory until 
it exits or aborts. 

The part of the resident system whose primary function is 
to allocate memory and peripherals. 

A numeric value used cooperatively by tasks to 
synchronize access to a common resource such as a disc 
file or sharable device. 

A part of the Load Module Information Table that defines 
the devices, files, etc. required for the task. 

The CPU scheduler dispatches CPU control based upon 
system events and task priorities. Synonymous with 
MPX-32 Executive. 



Slow File 

Source Update 

Subroutine Library 
Editor 

Supervisor Call (SVC) 

System General Object 
(SGO) File 

System Binary Output 
(SBO) File 

System Control 
File (SYC) 

System Generation 
(SYSGEN) 

System Input 

On MPX-32, a slow file is one in which the scatter- storage 
mechanism used to build SMD entries may use a back-up 
algorithm if the file name maps into an existing active file 
(collision mapping). If the back-up algorithm is used, it 
may require additional disc access. 

The Source Update (UPDATE) utility is used to create and 
update user and system source files. 

The Subroutine Library Editor (LIBED) is a utility program 
for creating and updating subroutine libraries. 

Supervisor Call is a trap that provides user interface to 
system services. Also the name of the software 
instruction that causes the trap. 

SGO files are used for the accumulation of object code 
within batch jobs. A separate SGO file is allocated for 
each job and exists for the duration of the job. 

An SBO file is a temporary file used for punched output. 
SBO files generated by real-time tasks are output to 
destination peripheral devices when the files are 
deallocated. SBO files generated by a batch job are output 
to destination peripheral devices upon job completion. 

An SYC file is a disc file that provides intermediate stor
age for Job Control statements, object code, and data for 
a batch job. A separate job file is dynamically created on 
the SYC for each task initiated in a user's job file, and 
when the last task in the job completes execution, the job's 
SYC is deleted. 

The System Generation program is used to tailor the MPX-
32 operating system to the hardware and software 
requirements of an installation. 

The System Input task transfers batch input from devices 
and dynamically linked temporary and permanent disc files 
to intermediate storage on System Control (SYC) files. 

GL-9 



System Listed Output 

System Loader 

System Master 
Directory (SMD) 

System Output 

System Service 

Task 

Task Identifier 

Task Number 

T ask Scheduler 

GL-IO 

An SLO file is a temporary file used for listed output. SLO 
files generated by real-time tasks are output to destination 
peripheral devices when the files are deallocated. SLO 
files generated by a batch job are output to destination 
peripheral devices upon job completion. 

The System Loader is the part of the Allocator that loads 
any cataloged load module into memory upon request; it 
performs all necessary biasing of relocatable data. 

The SMD is created at SYSGEN and describes the location, 
length, name, and related information about each file or 
memory partition in the system. Entries are made in the 
SMD for load modules as a part of the cataloging process. 

The System Output task outputs the print (SLO) and punch 
(SBO) data collected for each task from temporary disc 
files to destination listed and punched output devices. 

Equivalent to the term "Monitor Service" in RTM. 

A task is a body of code which is scheduled for CPU time 
as a single entity. It has one Dispatch Queue Entry (DQE) 
and one Task Service Area (TSA). A task may be activated 
as real-time, batch, or on-line. 

Tasks are identified by attributes. Attributes of a task 
include its unique task number (see below), the name of its 
owner, its load module name, its job sequence number (if 
batch), and an optional pseudonym to use in intertask 
communication. The task number is the only attribute that 
can be used to abort or to communicate with a task that 
can be multicopied. It may be obtained by the user by 
specifying one or a combination of task attributes. 

A task number is a sequential 32-bit number which is 
assigned to the task when it is activated and identifies the 
task uniquely over time (until system restart). Task 
attributes known by the user can be used to obtain the 
task number. The operator must refer to the task only by 
task number when attempting to, for example, abort. 

See Scheduler. 



(~ 

Terminal 

Terminal Services 
Manager (TSM) 

Timer 

Timer Unit 

Transfer Control 
Word (TCW) 

Trap Processors 

Unit Definition 
Table (UDT) 

Unprivileged 

User 

User Name 

An I/o device featuring a keyboard for input and either a 
CRT or a printer for output. The asynchronous 
communication channels for terminals are managed by the 
MPX-32 Terminal Services Manager (TSM). 

A collection of tasks and service routines which control· 
the MPX-32 interactive environment. 

An optional task scheduling mechanism provided for each 
task by MPX-32. Timers are managed using the same real
time clock which is used to maintain the time-of-day. 

A timer unit. is a number of real-time clock interrupts 
selected by 'the user at SYSGEN to represent a logical unit 
of time. 

A TCW contains byte count and data address information 
used to define and control an I/O operation involving data 
transfer. 

Most Trap Processors are firmware and/or software 
routines that are entered when any exceptional condition 
trap occurs; they then perform the appropriate 
processing. The SVC trap is a special case used to transfer 
control from a task to the MPX-32 operating system. 

The UDT describes each peripheral device in the system. 
The entry describes the device subaddress and channel 
number, the device type code, unit status, number of 
allocation units, the physical characteristics of the device, 
etc. 

An unprivileged task is one that does not execute 
"privileged" instructions. The privileged/unprivileged state 
of a task is established when it is cataloged. 

See User Name. 

One to eight ASCII character, left justified, blank filled 
name, maintained in the M.KEY file, if it exists, and 
associated with all user files in the System Master 
Directory (SMD). The absence of a user name indicates a 
system file. 

GL-Il/GL-12 





[ 

( 

INDEX 

This index is for use with the MPX-32 Reference Manual, Volumes I, II and III. Its format 
is section number (volume number) where the information can be found. 

Abort Codes, Appendix C (V I and V2) 

Accounting 
IPU, 2.3.6(V 1), 5.1.4(V 1) 
Job, 6.6(V I) 
Logging On, 5.I.l(V1) 
OPCOM LIST Command, 4.4.19(Vl) 
PROJECT Command, 5.4.27(V I) 
Project Names/Numbers, 5.2.7(Vl) 
Terminal Services Manager (TSM), 5.4.HV1) 

ASCII Interchange Code Set, Appendix F (VI and V2) 

Assembler (ASSEMBLE), l(V2) 
Aborts, 1.7. I(V2) 
Accessing, 1.4(V2) 
CALM vs SVC Macro Libraries, l(V2), 1.2.2(V2) 
Description, l.l(V2) 
Directives, 1.5(V2) 
Errors, 1.7(V2) 
Examples, 1.8(V2) 
Files and Assignments, 1.2(V2) 
MA2, 1.2.2(V2) 
M.MACLlB, l(V2), 1.2.2(V2) 
MACLlBR, 1.2.2(V2), 9.6(V2) 
M.MPXMAC, l(V2), 1.2.2(V2) 
Options, 1.3(V2) 
PRE Files, 1.2.l(V2) 
SBO Files, 1.7.l(V2) 
SGO Files, l.l(V2) 
SI Files, 1.2.l(V2) 
SLO Files, 1.2.3(V2), 1.7.l(V2) 
SVC vs CALM Macro Libraries, l(V2), 1.2.2(V2) 
Temporary Files, 1.2.6(V2) 

Batch Processing, 6(V 1) 
Deck Organization, 6.4(V I) 
Examples, 6. 9(V 1) 
Job Accounting, 6.6(V 1) 

IN-l 



Batch Processing, 6(Vl) (Continued) 
Job Control Statements, 6.5(Vl) 
Job Flow, 6.l(V1) 
Listed Output, 6.8(V 1 ) 
Punched Output, 6.7(V1) 
Spooled Input, 6.3(V 1) 

Terminating Conditions, Table 6-I(VI) 
System Files 

SBO,6.2(VI) 
SGO, 6.2(V 1) 
SLO, 6.2(V 1) 
SYC, 6.2(Vl) 

CALMs, 8. I(v 1) 
Use on SYSTEMS 32/27, I(V2) 

Cataloger (CATALOG), 2(V2) 
Absolute Load Modules, 2.1.3(V2) 
Accessing, 2.5(V2) 
Base Priority, 2.1.l(V2) 
CAR, 2.3(V2) 
Catalog Process, 2.1.8(V2) 
CSECTS,2.1.4(V2) 
DATAPOOL 

Dictionary, 2.2(V2) 
Partitions, 2.1. 9(V2) 

Description, 2. I(V2) 
Directives, 2.6(V2) 
DPEDIT, 2.2(V2) 
DSECTS, 2.1.4(V2) 
Examples, 2.8(V2) 
Files and Assignments, 2.2(V2) 
Global Common Partitions, 2.1.9(V2) 
Job File, 2.2(V2) 
LIBED, 2.2(V2) 
Load Modules, 2.1.I(V2), 2.1.6(V2), 2.2(V2) 

Password Protected, 2.1.7(V2) 
Recataloging, 2.4.1.2(V2) 

MAXULIB, 2.2(V2) 
MPXDIR, 2.2(V2) 
MPXLIB, 2.2(V2) 
M ulticopy, 2.1.l(V2) 
Nonsegmented Tasks 2.1.5(V2) 

Cataloging, 2.4. I(V2) 
Job Organization, 2.4.1.l(V2) 

NOM, 2.3(V2) 
NOP, 2.3(V2) 
No Sharing, 2.I.HV2), 2.1.4(V2) 
Object Modules, 2.1.6(V2), 2.2(V2) 

Exclude, 2.1.8.4(V2) 
Include, 2.1.8.4(V2) 

Options, 2.3(V2) 

IN-2 

rr
'---/ 



Cataloger (CATALOG), 2(V2) (Continued) 
Overlay 

Levels, 2.4.2.2(V2) 
Recataloging, 2.4.2.6(V2) 
Transient Area, 2.4.2.3(V2) 

Pr i vilege, 2.1.l(V2) 
Residency,2.1.l(V2) 
Resource Requirements, 2.1.2(V2) 
RTM Tasks on MPX-32 

Assembling Object Modules, 2. 10. l(V2) 
RTMCATL, 2.10.2(V2), 2.l0.5(V2) 

Sectioned Sharing, 2.l.l(V2), 2.1.4(V2) 
Segmented Tasks, 2.1.5(V2) 

Cataloging, 2.4.2(V2), 2.4.2.5(V2) 
External References, 2.4.2.4(V2) 
Job Organization, 2.4.2.l(V2) 

SGO Retrieval, 2.1.8.5(V2) 
Symbol Tables, 2.1.8.6(V2), 2.4.2.5(V2} 
System Subroutine Library, 2.2(V2) 
User Subroutine Library, 2.2(V2) 
Using, 2.4(V2) 

Cold Start Process, 2.4(V3) 

Commands 
Assembler, 1.5(V2) 
Cataloger, 2.6(V2) 
DATAPOOL Editor, 3.l.3(V2), 3.6(V2) 
Debugger, 4.5(V2) 
File Manager, 6.6(V2) 
File Services, 7.8(Vl) 
Job Control, 6.5(Vl) 
Macro Library Editor, 9.l.l(V2), 9.6(V2) 
Media Conversion Utility, lO.l(V2), 10.6(V2) 
Memory Management Services, 8.3(V 1) 
Memory-only MPX-32 

MEMO Directive, 6.6.8(V2) 
SDT Directive, 6.6.14(V2), 4.3(V3) 

Operator Communications, 4.4(Vl) 
Source Update Utility, 11.1.l(V2), ll.6(V2) 
Subroutine Library Editor, 8.l.l(V2), 8.6(V2) 
SYSGEN, 7.4(V3), 7.6(V3) 
System Debugger, 8.3(V3) 
System Distribution Tape, 4.3(V3) 
System Patch Facility, 9.2(V3) 
Task Execution Services, 8.2(V 1) 
Text Editor, 5.6(V2) 
TSM, 5.4(V 1) 

IN-3 



Command Files 
Activating Tasks, 5.3.l(V 1) 
Chaining, 5.3.2(V 1) 
Terminal Interplay, 5.3.3(Vl) 
Using, 5.3(Vl) 

Command Processors 
Batch Processing, 1.2.3(Vl) 
Operator Communications (OPCOM), 1.2.2(Vl) 
Terminal Services Manager (TSM), 1.2.l(Vl) 

Communications Facilities 
DATAPOOL, 1.1.9.4-(Vl) 
Global Common, 1.1.9.3(Vl) 
Internal, 1.1.9.5(Vl) 
Intertask Messages, 1.1.9.l(Vl) 
Run Requests, 1.1.9.2(Vl) 

Control Switch Assignments, 2.3.l(V3) 

CPU Dispatch Queue 2.5(V 1) 

Cross Reference 
SVC, Appendix B(V 1 and V2) 

DATAPOOL,1.1.9.4-(Vl) 
Cataloger, 2(V2) 
Datapool Editor, 1.3.5(Vl), 3(V2) 
Description, 3.l(V2) 
Dictionary, 2.2(V2) 
Directives, 3.1.3(V2), 3.6(V2) 
Errors, 3.8(V2) 
Examples, 3.9(V2) 
Fields, 3.1.4-(V2) 
Files and Assignments, 3.2(V2) 
Input Format, 3.1.4-(V2), 3.1.5(V2) 
Memory, 2.9.4-.4-(VI) 
Multiple Dictionaries, 3.1.l(V2) 
Options, 3.3(V2) 
Partitions,2.1.9(V2) 
Static vs Dynamic, 3.1.2(V2) 

Debugger (DEBUG), 4-(V2) 
Accessing, 4-.4-(V2) 
Attaching to User Task, 4-.1.l(V2) 
Batch Considerations, 4-.6(V2) 
Break Handling, 4-.1.4-(V2) 

IN-4-

ie",·.--' 
/' 



( "" 

/ 

Debugger (DEBUG), 4(V2) (Continued) 
Commands, 4.5(V2) 
Control Transfer, 4.1.3(V2) 
Description, 4.I(V2) 
Files and Assignments, 4.2(V2) 
Input/Output 

Command Files, 4.1.2.2(V2) 
SLO Files, 4.1.2.l(V2), 4.1.2.3(V2) 
Terminal, 4.1.2. HV2) 

Prompts and Labels, Table 4-l(V2) 
Using 

Address Displays, 4.3.3(V2) 
Address Restrictions, 4.3.4(V2) 
Expressions, 4.3.l(V2) 
Relative vs Absolute, 4.3.2(V2) 
Traps, 4.3.5(V2) 

Device Access, Appendix A (V 1 and V2) 
Floppy Discs, 7.3.7(V1) 
GPMC Devices, 7.3.3(V1) 
Identification Levels, 7 .3.2.(V 1) 
NULL Devices, 7.3.4(Vl) 
OPCOM Console, 7.3.5(Vl) 
Samples, 7. 3.8(V 1) 
Specifications, 7 .3.l(V 1) 
System Files, 7.3.6(Vl) 

Device Codes, Table 7-2(V3) 

Device Handlers, Table 7-4(V3) 

Disc Device Codes, Table 7-3(V3), Appendix A(VI and V2) 

End Action Receivers, 2.4.3(V1), 3.4.2.5(V1), 3.4.2.6(V1) 

Errors 
Assembler, 1.7(V2) 
Batch Processing 

Activity Deleted, 6.8.2(V1) 
Error in Field, 6.8.4(V1) 
SGO Overflow, 6.8.7(Vl) 
Task Abort, 6.8.l(V 1) 

Catalog, 2.7(V2) 
DATAPOOL Editor, 3.8(V2) 
Debugger, 4.8(V2) 
ERR? Command, 5.4.14(V1) 
Interactive Processing, 5.7 .6(V 1) 
Macro Library Editor, 9.8(V2) 

IN-5 



Errors (Continued) 
Media Conversion Utility, IO.8(V2) 
Source Update Utility, 11.8(V2) 
Text Editor, 5.7(V2) 

Examples 
Assembler, 1.8(V2) 
Batch Processing, 6.9(vl) 
Cataloger, 2.8(V2) 
DATAPOOL Editor, 3.9(V2) 
Interactive Processing, 5.5(Vl) 
M.KEY Editor, 7.5(V2) 
Macro Library Editor, 9.9(V2) 
Media Conversion Utility, IO.9(V2) 
Source Update, 11.9(V2) 
Subroutine Library Editor, 8.9(V2) 
SYSGEN,7.7.l(V3) 
System Distribution Tape, 2.8(V3) 
System Patch, 9.6(V3) 
User Configured System, 4.5.l(V3) 

Files 
Assignment 

Default, 7.1.3(VO, 7.8.I(VI), 2.1.2(V2) 
LFC,7.1.3(V1) 
Regular Files, 5.4.3(VO, 6.5.3(V1), 7.1.3(V1) 
Static, 7 .1.3(V 1), 2.1.2(V2) 
System Files, 5.4.4(V 0, 6.5.14(V 1), 7 .1.3.l(V 1), 7 .3.6(V 1), 7 .5(V ° 

Command Files, 5.3(V 1) 
Activating Tasks, 5.3.l(Vl) 
Chaining,5.3.2(V1) 
Conditional Processing, 5.3.5(Vl) 
Error Processing, 5.3.4(V 1) 
Parameter Passing, 5.3.5(V1) 
Parameter Substitution, 5.3.6(Vl) 
SELECT Command, 5.4.30(V 1) 
Terminal Interplay, 5.3.3(V 1) 

Compressed!Uncompressed, 5.4.30(Vl), 5.6.20(V2), 5.6.24(V2) 
Copying, 5.6.7(V2), lO(V2) 
Creating, 7 .8.4(V 1), 5.6.5(V2), 5.6.20(V2), 5.6.24(V2), 6.6.l(V2), 9(V2) 
Deleting, 7 .8.7(V 1), 5.6.21(V2), 6.6.3(V2), 6.6.4(V2) 
Load Modules, 2.1.7(V2), 2.2(V2), 2.4.1.2(V2) 
Modifying, 5(V2), 9(V2), lO(V2), 1l(V2) 
Names 

Special Characters, 6.4.4(V2) 
Wild Card Characters, 6.4.2(V2) 

Passwords, 7.2.1.3(Vl), 2.1.7(V2), 5.4.4(V2), 6.4.3(V2) 
Permanent, 7. 2.I.l(V 1), 6.1. HV2) 
Random Access, 7.6.1.3(Vl) 
Runtime Assignment, 2.1.2(V2) 
Saving, 5.6.20(V2), 6.4.5(V2), 6.6.12(V2) 
SBO, 6.7(Vl), 7.5.2(Vl) 

IN-6 



Files (Continued) 
SGO, 6.5.16(Vl), 7.5.3(Vl), 2.1.8.4(V2), 2.1.8.5(V2) 
Size, 6.4.l(V2) 
SLO, 6.8(V 1), 7 .5.l(V 1) 
SMD, 7.2.1.4(V1), 6.1.l(V2), 7.6.14.l(V2) 
Storing, 5.6.24(V2) 
SYC, 5.2.l(V 1), 6.3(V 1), 6.5.20-23(V 1), 7 .5.4(V 1) 
SYSGEN,7.6.14(V2) 
System, 5.4.4(V1), 6.2(V1), 7.2.1.2(Vl), 7.5(V1), 5.4.5(V2), 6.1.2(V2) 
Temporary, 5.4.5(V1), 7.2.1.1(V1), 7.3.1.2(V1), 6.1.Hv2) 
Types, 5.4.4(V 1), 6.2(V2) 
User, 7.2.1.2(V1), 6.1.2(V2) 
Username, 5.1.7(V 1), 5.4.33(V 1), 6.5.26(V 1), 7 .8.28(V l),2.6.22(V2),6.6.16(V2), 1l.6.23(V2) 

Files and File Assignments 
Assembler, 1.2(V2) 
Cataloger, 2.2(V2) 
DATAPOOL Editor, 3.2(V2) 
Debugger, 4.2(V2) 
File Manager, 6.2(V2) 
M.KEY Editor, 7.2(V2) 
Macro Library Editor, 9.2(V2) 
Media Conversion Utility, IO.2(V2) 
Source Update Utility, 11.2(V2) 
Subroutine Library Editor, 8.2(V2) 
SYSGEN, 7.2 (V3) 
Text Editor, 5.2(V2) 

File Control Block (FCB), 7 .6(V 1) 
Macros, 7 .6.2(V 1) 
Macro Sample, 7.6.4(V1) 
Non-Macro Sample, 7 .6.3(V 1) 
Word Descriptions, 7 .6.l(V 1) 

File Management 
Dedicated System Files, 1.1.6.5(V1) 
Disc Protection, 1.1.6.4(V 1) 
Permanent Files, 1.1.6.l(Vl) 
Random Access, 1.1.6.3(V1) 
Temporary Files, 1.1.6.2(V1) 

File Manager (FILEMGR), 6(V2) 
Accessing, 6.5(V2) 
Description, 6.1 (V2) 
Directives, 6.6(V2) 

• 

Files 
Assignments, 6.2(V2) 
Password Protected, 6.4.3(V2) 
Restored, 6.1.3(V2) 
Saved, 6.1.3(V2) 

IN-7 



File Manager (FILEMGR),6(V2) (Continued) 
Files (Continued) 

Special Characters, 6.lJ..lJ.(V2) 
System, 6.1.2(V2) 
User,6.1.2(V2) 

Options, 6.3(V2) 
System Distribution Tape (SOT) Generation, 6.6.1lJ.(V2) 
System Master Directory, 6.1.i{V2) 
Using 

Computing File Size, 6.lJ..l (V2) 
Device Specifications, 6.lJ..6(V2) 
File to Tape Transfers, 6.lJ..5(V2) 
Password-Protected Files, 6.lJ..3(V2) 
Special Characters, 6.lJ..lJ.(V2) 
Wild Card Characters, 6.lJ..2(V2) 

File Utilities 
Media Conversion, 1.lJ..2(Vl) 
Source Update, 1.lJ..1(Vl) 

FISE, 7 .2(V 1) 

Floppy Discs, 7.3.7(Vi) 

Global Common, 1.1.9.3(Vl) 

Global Memory, 2.9.lJ..lJ.(Vl) 

Hardware Configuration, 1.7(V!), 2.1(V3) 

Input/Output 
Blocking, 7 • lJ.. lJ.(V 1) 
Buffer,2.9.2.i{Vl) 
Device Dependent, 1.1.8.2(Vl) 
Direct, 1.1.8.1(vl), 7.lJ..3(Vl) 
File Access, 1.1.8.lJ.(Vl) 
File Identification, 1.1.8.3(Vl) 
No-Wait I/O, 7.lJ..2(Vl 
Scheduling, 2.6(V 1) 
Queues, 2.9.2.l(Vl) 
Wait I/O, 7.lJ..1(Vl) 

IN-8 



( 

(/ 

Installing MPX-32 System 
Memory-only, 2.5.l(V3), IO.lj.(V3) 
RESTART, Online, 5(V3) 
Starter, 2(V3) 
SYSGEN, 7(V3) 
User-Configured, lj.(V3) 

Internal Processing Unit (IPU) 
Accounting, 2.3.6(V i), 5.1.lj.(V 1) 
CPU Execution, 2.3.5(Vl) 
Eligibility, 2.3.lj.(V 1) 
Introduction, l(v 1) 
Options, 2.3.l(Vi), 5.2.2.3(V1) 
Scheduling, 1.1.4(Vi), 2.3(Vl) 
Status Command, lj..4.37(Vl) 
SYSGEN,7.6.3.2(V3) 
Task Execution, 2.3.4(Vl) 
Task Prioritization, 2.3.2(VO, 2.3.3(Vl) 

Interrupts 
Hardware, 1.1.1(Vi) 
Miscellaneous,2.10(Vl) 
Software, 1.1.2(Vi) 
Task Level, 2.4.l(Vl) 
Task Receivers, 2.4.1.l(V 1) 
Task Scheduling, 2.4(Vl), 2.lj..1.2(Vl) 

IPU - See Internal Processing Unit 

Intertask Communication 
Parameter Blocks, 3.4.3(V 1) 
Receiving Task Services, 3.4.l(V1) 
Sending Task Services, 3.4.2(V1) 

Libraries, 1.6(V 1) 

Load Modules, 2.I.l(V2), 2.1.6(V2), 2.2(V2) 
Password Protected, 2.1.7(V2) 
Recataloging, 2.lj..1.2(V2) 

Logical File Codes, 7 .1.I(V 1) 
Assignments,7.1.3(Vl) 

Logical Input/Output 
File Control Blocks (FCB), 7.1.2(Vl), 7.6(Vl) 
Logical File Codes (LFC), 7 .1.l(V 1) 
Logical File Code Assignments, 7 .1.3(V 1) 

IN-9 



LOGONFLE, 5.7 .1(V 1), 4.5(V3) 

M.KEY Editor (KEY), 7(V2) 
Accessing, 7.4(V2) 
Description, 7.l(V2) 
Example, 7.5(V2) 
Files and Assignments, 7.2(V2) 
Using 

Input Syntax, 7.3.l(V2) 
Sample File, 7.3.2(V2) 

Macro Library Editor (MACLIBR), 9(V2) 
Accessing, 9.5(V2) 
Description, 9.l(V2) 
Directives, 9.1.l(V2), 9.6(V2) 
Errors, 9.8(V2) 
Examples, 9.9(V2) 
Files and Assignments, 9.2(V2) 
Listing, 9.7(V2) 
Options, 9.3(V2) 
Using, 9.4(V2) 

Media Conversion Utility (MEDIA), IO(V2) 
Accessing, IO.5(V2) 
Description, lO(V2) 
Directives, lO.l(V2), IO.6(V2) 
Errors, 10.8(V2) 
Examples, IO.9(V2) 
Files and Assignments, 10.2(V2) 
Option Definitions, Table lO-2(V2) 
Using, 1O.4(V2) 

Labels, 10.4.l(V2) 

Memory 
Allocation, 1.1.5(Vl), 2.9.2(Vl) 

Static, 2.9.4.l(Vl), 2.9. I. l(Vl) 
Task, 2.9.4(Vl) 

DATAPOOL,2.9.4.4(Vl) 
Dynamic Allocation, 1.1.5.l(Vl), 2.9.1.2(Vl), 2.9.4.I.l(Vl) 
Dynamic Deallocation, 2.9.1.2(Vl) 
Global, 2.9.4.4(Vl) 
Management Services, 8.3(Vl) 
Partition Applications, 2.9.4.1.2(Vl) 
Static vs Dynamic, 2.9.4.I.l(Vl) 

Memory-Only MPX-32, IO(V3) 
Abort Codes, Appendix C (V I and V2) 
Hardware Configuration, I.7(Vl), 2.I(V3) 
Introduction, I (V I) 

IN-IO 



Memory-Only MPX-32, IO(V3) (Continued) 
MEMO Directive, 6.6.8(V2) 
Memory Requirements, IO.2(V3) 
Operator Communications, 4.4.6(V 0, 4.4.17(V 0, 4.4.19(V 1), 2.5.Hv3), IO.6(V3) 

Sample Job Stream, IO.6.l(V3) 
Overview, IO.l(V3) 
Sample SYSGEN File, IO.3.l(V3) 
SDT Directive, 6.6.14(V2), 4.3(V3) 
SY SBUILD, 2.5. I(V3) 
System Generation, IO.3(V3) 
System Installation, IO.4(V3) 
System Monitor Services, 7.8.l(Vl), 7.8.6(V1), IO.7(V3) 
Task Activation, IO.5(V3) 

Message Receivers, 2.4.4(Vl), 3.4.1.l(Vl), 3.4.1.3(Vl), 3.4.1.5(V1), 3.4.1.7(VO 

Message and Run Request Services Summary, Table 3-l(Vl) 

Multicopied Tasks, 3.2.3(V1) 
Cataloger,2.1.l(V2) 

Non-Shared Tasks, 3.2.l(Vl), 2.9.1.3(Vl), 2.1.l(V2), 2.1.4(V2) 

Non-Segmented Tasks, 2.1.5(V2) 

- Numerical Information, Appendix D (VI and V2) 

Object Modules, 2.1.6(V2), 2.2(V2) 
Excluded, 2.1.8.4(V2) 
Included, 2.108.4(V2) 

Options 
Assembler, 1.3(V2) 
Cataloger, 2.3(V2), 2.6.16(V2) 
DAT APOOL Editor, 3.3(V2) 
File Manager, 6.3(V2) 
IPU, 2.3.1(Vl), 5.2.2.3(Vl) 
Interactive Processing, 5.2.2{Vn 
Macro Library Editor, 9.3(V2) 
Media Conversion Utility, IO.6.14(V2), Table IO-2(V2) 
Source Update Utility, 11.3(V2) 
Subroutine Library Editor, 8.3{V2) 
Terminal Services Manager (TSM), 5.2.2(Vl) 
Text Editor, 5.3(V2) 

IN-II 



Overlays 
Levels, 2.4.2.2(V2) 
Recataloging, 2.4.2.6(V2) 
Transient Area, 2.4.2.3(V2) 

Parameter Receive Block, 3.4.3.2(V 1) 

Parameter Send Block, 3.4.3.I(VI) 

Patch Facility 
Conventions, 9.1.2(V3) 
Dedicated Names, 9.1.I(V3) 
Description, 9.l(V3) 
Directives, 9.2(V3) 
Entry Conditions, 9.3(V3) 
Examples, 9.6(V3) 
Exit Conditions, 9.4(V3) 
External References, 9.5(V3) 

Permanent vs Temporary Files, 7.2.l(VI) 

Powers of Integers, Appendix E (V 1 and V2) 

PRE Files, 1.2.l(V2) 

Priority Levels 
IPU, 2.2.l(V 1) 
Task, 1.1.3(V1) 

Privilege - See Restrictions 

Program Development Utilities 
DATAPOOL Editor, 1.3.5(VI) 
Debugger, 1.3.2(V1) 
Macro Library Editor, 1.3.3(V1) 
Subroutine Library Editor, 1.3.4(VI) 
Task Cataloging, 1.3.l(Vi) 
Text Editor, 1.3.6(V1) 

Project Names/Numbers 
Default, 5.2.7(VI) 
Description, 5.2.7(V 1) 
Logging On, 5.1.l(V1) 

M.KEY File, 7.3.l(V2) 

IN-12 

c 



( 

Receivers 
End Action, 2.4.3(V 1), 3.4.2.5(V 1), 3.4.2.6(V 1) 
Exit Run Receiver, 8.2.49(V1) 
Message, 2.4.4(Vl), 3.4.1.l(Vl), 3.4.1.3(Vl), 3.4.1.5(Vl), 3.4.1.7(Vl), 8.2.47(Vl) 
User Abort, 2.4.6(V1), 8.2.36(Vl) 
User Break, 2.4.2(V1) 
User Run, 2.4.5(V1), 3.4.1.2(V1), 3.4.1.4(V1), 3.4.1.6(V1), 3.1.4.8(Vl), 3.4.1.9(V1) 

Receiver Exit Block, 3.iI-.3.3(V1)· 

Recovery 
From Disc, 6.l(V3) 
Using SDT, 6.2(V3) 

Resource Management 
Device Allocation, 2. 9.1.4(V 1) 
Dynamic Allocation, 2.9.1.2(Vl), 2.9.4. I. l(vl) 
Dynamic Deallocation, 2.9.1.2(V1) 
File Gating, 2. 9.1.6(V 1) 
Shared vs Unshared Resources, 2.9.1.3(Vl) 
Static Allocation, 2.9.1.l(Vl), 2.9.4.1.l(Vl) 
Task Synchronized Access, 2.9.1.5(Vl) 

RESTART (On-line) 
Precautions, 5.l(V3) 
Syntax, 5.2(V3) 
Use,5(V3) 

Restrictions 
Commands,4.1.3(V1) 
Owner Name Privileges, 4.1.4(V1) 
System Tasks, 4.1.6(V1) 

RTM Development Under MPX-32, 8.l(Vl) 
Cataloger 

Assembling Object Modules, 2.10.l(V2) 
RTMCATL, 2.10.2(V2), 2.10.5(V2) 

SBO Files, 6.2(Vl), 7.5.2(V1), 1.7.l(V2) 

Scheduling 
CPU, 1.1.4(Vl), 2.2(V1), 2.3.5(V1) 
Input/Output, 2.6(V 1) 
IPU, 1.1.4(Vl), 2.3(V1) 
Swap, 2.7(Vl) 
Task Interrupt, 2.4(V 1) 

IN-13 



Sectioned Sharing, 2.1.l(V2), 2.1.4(V2) 

. Segmented Tasks, 2.1.5(V2) 
Cataloging, 2.4.2(V2), 2.4.2.5(V2) 
External References, 2.4.2.4(V2) 
Job Organization, 2.4.2.l(V2) 

SGO Files, 6.2(Vl), 7.5.3(Vl), 1.l(V2), 2.1.8.5(V2) 

Shared Tasks, 2.9.1.3(V1), 3.2.2(V1) 

SLO Files, 6.2(V1), 7.5.l(V1), 1.2.3(V2), 1.7.l(V2), 4.1.2.l(V2), 4.1.2.3(V2) 

Source Update Utility (UPDATE), Il(V2) 
Accessing, 11.5(V2) 
Description, 1l.l(V2) 
Directives, 1l.1.l(V2), 1l.6(V2) 
Errors, 11.8(V2) 
Examples, 1l.9(V2) 
Files and Assignments, 11.2(V2) 
Options, 1l.3(V2) 
Using 

Compressed Source, 1l.4.l(V2) 
Library Mode, 11.4.2(V2) 

Special Characters 
File Manager, 6.4.4(V2) 
Debugger,8.1.l(V3) 

State Queues, Table 2-l(V 1) 

Subroutine Library Editor (LlBED), 8(V2) 
Accessing, 8.5(V2) 
Description, 8.l(V2) 
Directives, 8.1.1 (V2), 8.6(V2) 
Examples, 8.9(V2) 
Files and Assignments, 8.2(V2) 
Options, 8.3(V2) 
Using, 8.4(V2) 

Swap Scheduling 
Entry Conditions, 2.7 .2(V 1) 
Exit Conditions, 2.7.3(V1) 
Inswap/Outswap,2.7.4(V1) 
Inswap Process, 2.7.6(V1) 
Outswap Process, 2.7.5(V1) 
Structure, 2.7 .1(v 1) 

-IN ... 14 

c~ 



(~ 
SYC Files, 6.2(V 1), 7 .5.4(V 1) 

SYSBUILD 
Disc-based MPX-32, 2.5(V3) 
Memory-only MPX-32, 2.5.l(V3) 

SYSGEN 
Accessing, 7.5(V3) 
Building Object Input File, 3.1.2(V3) 
Cold Start, 2.4(V3) 
COMPRESS, 3.1.3(V3) 
Description, 7. I(V3) 
Device Codes, Table 7-2(V3) 
Device Handlers, Table 7-4(V3) 
Directives, 7.4(V3), 7.6(V3) 
Disc Device Codes, Table 7-3(V3) 
Examples, 7.7 .l(V3) 
Files and Assignments, 7.2(V3) 
Internal Processing Unit (IPU), 7.6.3. I(V3) 
System Resident Tasks, 7.7.2(V3) 
Warm Start, 2.4(V3) 

System Debugger 
Accessing, 8.2(V3) 
Bases,8.1.4(V3) 
Commands, 8.3(V3) 
Restrictions, 8.1.6(V3) 
Special Functions, 8.1.2(V3) 
Special Operators, 8.1.1 (V3) 
Use,8(V3) 

System Distribution Tape (SDT) 
Creating User Tape, 4.2(V3) 
Directive, 4.3(V3) 
Example, 2.8(V3) 
Format, Figure 4-I(V3) 
Installing User Tape, 4.5(V3) 
Master Tape, 2.2(V3) 
Memory-only MPX-32, 6.6.14(V2), 4.3(V3), IO.4(V3) 
Restoring Files, 2.7(V3) 
System Builder (SYSBUILD), 2.5(V3) 

System Manager Utilities 
File Manager, 1.5.2(V1) 
M.KEY Editor, 1.5.l(V1) 
Startup, Generation, Installation, 1.5.3(V1) 

IN-15 



System Master Directory (SMD), 7.2(Vl) 
Changing, 4.l(V3) 
Cold Start, 2.4(V3) 

System Services 
Description, 1.1.7(V1), 8(Vl) 
Memory Management Services, 8.3(Vl) 
RTM Use Under MPX-32, 8.l(Vl) 
Task Execution Services, 8.2(V!) 

System Service Calls (SVC), 2.4.1.3(V1), 7.8(Vl), 8.2(V!) 
Cross Reference, Appendix B (V 1 and V2) 
Use on SYSTEMS 32/27, I(V2) 

System vs User Files, 7.2. 1.2(V l) 

Tasks 
Acti vation Sequencing, 2. I(v 1) 
Execution, 3.3(V 1) 
Identification, 3.l(V1), 4.1.l(Vl), 4.1.2(Vl) 
Memory-only Task Activation, lO.5(V3) 
Multicopied, 3.2.3(V1) 
Non-Sectioned, 2.1.4(V2) 
Non-Segmented, 2.1.5(V2) 
Non-Shared, 3.2. I(V 1) 
Sectioned, 2.1.4(V2) 
Segmented, 2.1.5(V2) 
Shared, 3.2.2(V 1) 
Structure, 3.2(Vl) 
Termination Sequencing, 2.8(V 1) 
Unique, 3.2.4(Vl) 

Task Interrupts 
Context Storage, 2.4.1.4(VI) 
Gating, 2.4.1.5(V 1) 
Levels, 2.4.l{v 1) 
Receivers, 2.4.1.l(V 1) 
Scheduling, 2.4(V 1) 
Summary, 2.4.7(V 1) 
System Service Calls, 2.4.1.3(V1) 

Task Priority Levels, 1.1.3(Vi), 2.2.I(Vl) 
CPU, 1.1.4(V1) 
IPU, 1.1.4(V1) 

Task Service Area (TSA), 2.1.3(Vl), 2.9.2.3(Vl) 

IN-16 



C~ 
" 

Temporary vs Permanent Files, 7.2.1.l(V1) 

Text Editor (EDIT), 5(V2) 
Accessing 

EDIT, 5.5(V2) 
Files Outside Editor, 5.4.3(V2) 
Password-Protected Files, 5.4.4(V2) 
System Files, 5.4.5(V2) 

Break Key, 5.4.7(V2) 
Commands, 5.6(V2) 
Description, 5.l(V2) 
Entering Text, 5.4.6(V2) 
Errors, 5.7(V2) 
Files and Assignments, 5.2(V2) 
Options, 5.3(V2) 
Using 

Content Identifiers, 5.4.1.4(V2) 
Defaults, 5.4.1.5(V2), 5.4.1.6(V2) 
Groups, 5.4.1.3(V2) 
Line Ranges, 5.4.1.2(V2), 5.4.2(V2) 
Special Characters, 5.4.1.l(V2) 

·Timer Scheduler, 1.1.11(Vl) 

Trap Processors, 1.1.10(VO 

Unique Tasks, 3.2.4(V 1) 

User-Configured System 
Building, 3.l(V3) 
Example, 4.5.l(V3) 
Installing, 4(V3) 
Running SYSGEN, 3.2(V3) 
System Debugger, 3.l(V3) 
Terminal Initialization, 3.4(V3) 
Testing~ 3.3(V3) . 

User vs System Files, 7.2.1.2(V1) 

Warm Start Process, 2.4(V3) 

Wild Card Characters 
Accounting, 4.4.19(V 0, 5.4.l(V 1) 
DELETEW Directive, 6.6.4(V2) 
File Manager, 6.4.2(V2) 

IN-17/IN-18 




