
T.O. 3185-4-638-2741-2 

o 
MPX-32 

Release 1.58 

Reference Manual 

Volume n 

September 1982 

c 
Publication Order Number: 323-003662-000 

o -> GOULD 
Electronics & Electrical Products 

.83 



This manual is supplied without representation or warranty of any kind. Gould Inc., 
S.E.L. Computer Systems Division therefore assumes no responsibility and shall have no a 
liability of any kind arising from the supply or use of this publication or any material 
contained herein. 

UMITED RIGHTS LEGEND 

for 

PROPRIETARY INFORMATION 

The information contained herein is proprietary to Gould S.E.L. and/or its vendors, and 
its use, disclosure or duplication is subject to the restrictions stated in the Gould S.E.L. 
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense 
agreement. The information is provided to government customers with limited rights as 
described in DAR 7-104.9A. 

Copyright 1982 
Gould Inc., S.E.L. Computer Systems Division 

Printed in the U.S.A. 
o 



( 

( 

HISTORY 

The MPX-32 Release 1.0 Reference Manual, Publication Order Number 323-001012-000, 
was printed June, 1979. 

Publication Order Number 323-001012-100 (Revision 1, Release 1.3) was printed 
February, 1980. 

Publication Order Number 323-001012-200 (Revision 2, Release 1.4) was printed July, 
1980. 

Publication Order Number 323-003662-000 (Revision 3, Release 1.5B) was printed 
September, 1982. The updated manual contains the following pages: 

Title page 
Copyright page 
iii/iv through xvii/xviii 
1-1 through 1-10 
2-1 through 2-56 
3-1 through 3-18 
4-1 through 4-63/4-64 
5-1 through 5-58 
6-1 through 6-33/6-34 
7-1 through 7-7/7-8 
8-1 through 8-9/8-10 
9-1 through 9-14 
10-1 through 10-24 
11-1 through 11-29/11-30 
A-J through A-7/ A-8 
B-1 through B-21/B-22 
C-1 through C-39/C-40 
0-1 and 0-2 
E-l and E-2 
F-1 through F-3/F-4 
G-l through G-3/G-4 
GL-l through GL-ll/GL-12 
IN-l through IN-17/IN-18 

iii/iv 





( 

( 

CONTENTS 

1. THE ASSEMBLER (ASSEMBLE) 

1.1 
1.2 

1.3 
1.4-
1.5 
1.6 
1.7 

1.8 

General Description ••••••••••• 
Files and File Assignments •••••• 
1.2.1 Source Code (PRE and SI) 
1.2.2 Macro Libraries (MAC, MA2). 
1.2.3 Listing (lO) •••••••••• 
1.2.4- Object Code (BO and GO) •••• 
1.2.5 Compressed Source (CS) •••• 
1.2.6 Temporary Files (UTI, UT2) 
Options ............. . 
Accessing the Assembler. 
Assembler Directives 
Listings ••••••• 
Errors and Aborts. 
1.7.1 Aborts. 
Examples ••••• 

2. THE CATALOGER (CATALOG) 

2.1 

2.2 

2.3 
2.4-

General Description ••••••••••• 
2.1.1 load Module Information 
2.1.2 
2.1.3 
2.1.4 
2.1.5 
2.1.6 
2.1.7 
2.1.8 

2.1.9 

Resource Require ments 
Absolute load Modules •• 
Sectioned versus Nonsectioned Tasks 
Segmented versus Nonsegmented Tasks 
Object Modules and load Modules 
Password Protected load Modules 
The Cataloging Process •• 
2.1.8.1 First Pass 
2.1.8.2 Second Pass 
2.1.8.3 Common References •• 
2.1.8.4- Included or Excluded Object Modules 
2.1.8.5 Selective Retrieval from SGO 
2.1.8.6 Symbol Tables (SYMTAB's) 
Allocation and Use of Global Common and DAT APOOl 

Partitions •••••••••• 
Files and File Assignments 
2.2.1 File Assignments Chart •• 
Options ••••••••• 
Using the Cataloger 
2.4-.1 Cataloging a Nonsegmented Task •• 

2.4-.1.1 Job Organization ••••• 
2.4-.1.2 Recataloging the load Module. 

2.4-.2 Cataloging a Segmented Task 
2.4-.2.1 Job Organization 
2.4-.2.2 Overlay levels ••• 

1-1 
1-2 
1-2 
1-2 
1-2 
1-3 
1-3 
1-3 
1-7 
1-8 
1-8 
1-9 
1-9 
1-9 

1-10 

2-1 
2-3 
2-5 
2-6 
2-6 
2-7 
2-7 
2-8 
2-8 
2-8 
2-9 
2-9 
2-9 
2-9 

2-10 

2-10 
2-11 
2-13 
2-18 
2-18 
2-18 
2-18 
2-21 
2-21 
2-21 
2-23 

v 



2.5 
2.6 

2.7 
2.8 
2.9 
2.10 

2.4.2.3 
2.4.2.4 

2.4.2.5 
2.4.2.6 

The Overlay Transient Area ••••••••••••••• 
Resolution of External References in Segmented 

Tasks ....................... . 
Cataloging a Segmented Task in Stages 
Recataloging with Overlays. 

Accessing the Cataloger •••••• 
Cataloger Directives •••••••• 
2.6.1 
2.6.2 
2.6.3 
2.6.4 
2.6.5 
2.6.6 
2.6.7 
2.6.8 
2.6.9 
2.6.10 
2.6.11 
2.6.12 
2.6.13 
2.6.14 
2.6.15 
2.6.16 
2.6.17 
2.6.18 
2.6.19 
2.6.20 
2.6.21 
2.6.22 

ABSOLUTE Directive 
ALLOCATE Directive •• 
ASSIGN 1 Directive •••••••••• 
ASSIGN2 Directive ••• 
ASSIGN3 Directive. 
ASSIGN4 Directive ••• 
BUFFERS Directive ••••• 
CAT ALOG Directive 
ENVIRONMENT Directive. 
EXCLUDE Directive •• 
EXIT Directive •••• 
FILES Directive ••••• 
INCLUDE Directive •• 
LINK BACK Directive 
LORIGIN Directive •• 
OPTION Directive ••• 
ORIGIN Directive ••.• 
PASSWORD Directive. 
PROGRAM Directive. 
PROGRAMX Directive 
SYMT AB Directive ••• 
USERNAME Directive 

Errors 
Examples •• 
Listings •• 
Creating RTM Tasks on the MPX-32 System ••••••••• 
2.10.1 Assembling RTM Object Modules. 
2.10.2 Running RTMCATL ••••••••• 
2.10.3 Semantic Differences ••••••••• 
2.10.4 Transporting the Cataloged Task to an RTM System 
2.10.5 RTMCATL Load Modules Cannot by Used on MPX-32 

Systems .................... ~ .......... . 

3. TASK STRUCTURE AND OPERA nON 

3.1 General Description .................. . 
3.1.1 Multiple Dictionaries •••••••••••••••• 
3.1.2 Static versus Dynamic DATAPOOL 
3.1.3 DPEDIT Directives. 
3.1.4 Input Data Format •• 
3.1.5 Dictionary Records •• 

3.2 Files and File Assignments ••• 
3.2.1 The Input File (SYC) •••••.•••••••••.••••••• 
3.2.2 The DAT APOOL Dictionary (OPD) ••••••• 
3.2.3 Audit Trail and Error Listings (LO and ER) •• 
3.2.4 Save and Remap Files (OT and IN) • 
3.2.5 Scratch Files (UI and xuI) .. 

3.3 Options 

vi 

2-28 

2-29 
2-31 
2-32 
2-34 
2-35 
2-38 
2-38 
2-39 
2-40 
2-42 
2-43 
2-43 
2-44 
2-45 
2-46 
2-46 
2-46 
2-47 
2-47 
2-47 
2-48 
2-48 
2-49 
2-49 
2-50 
2-50 
2-50 
2-51 
2-53 
2-55 
2-55 
2-55 
2-56 
2-56 
2-56 

2-56 

3-1 
3-1 
3-2 
3-2 
3-3 
3-6 
3-7 
3-7 
3-7 
3-7 
3-8 
3-8 

3-11 



( 

( 

3.4 
3.5 
3.6 

3.7 
3.8 
3.9 

Using DPEDIT ••• 
Accessing DPEDIT 
DPEDIT Directives. 
3.6.1 IDPD Directive 
3.6.2 IENTER Directive 
3.6.3 ILOG Directive ••• 
3.6.4 IREMAP Directive •••••• 
3.6.5 ISAVE Directive ••• 
3.6.6 IVERIFY Directive 
Listings 
Errors. 
Examples •• '-

4. THE DEBUGGER (DEBUG) 

4.1 

4.2 

4.3 

4.4 
4.5 

General Description ••••••••••••••••• 
4.1.1 Attaching DEBUG to a User Task 
4.1.2 I/O 

4.1.3 
4.1.4 

4.1.2.1 
4.1.2.2 
4.1.2.3 

TerminalI/O 
Command Files 
SLO Files •• 

Control Transfers. 
Break Handling ••• 

Files and File Assignments 
4.2.1 File Assignments Chart •• 
Using the Debugger 
4.3.1 Expressions 

4.3.2 
4.3.3 
4.3.4 
4.3.5 

4.3.1.1 Constants 
4.3.1.2 Register Content References 
4.3.1.3 Memory Content (Indirect) References •• 
4.3.1.4 Bases •• 
4.3.1.5 COUNT 
4.3.1.6 Operators 
Relative versus Absolute Expression Evaluation 
Address Displays and References 
Address Restrictions. 
Traps and Trap Lists •• 
4.3.5.1 Setting a Trap 
4.3.5.2 Nesting Trap Lists 

Accessing the Debugger 
Commands ........... . 
4.5.1 
4.5.2 
4.5.3 
4.5.4 
4.5.5 
4.5.6 
4.5.7 
4.5.8 
4.5.9 
4.5.10 
4.5.11 
4.5.12 
4.5.13 
4.5.14 

ABSOLUTE Command ••••••• 
BASE Command ••• 
BREAK Command 
CC Command ••••• 
CLEAR Command 
CM Command 
CR Command •• 
DELETE Command 
DETACH Command 
DUMP Command 
END Command •••••••••• 
EXIT Command 
EXIT Command 
FILE Command 

.. '. 

3-11 
3-11 
3-12 
3-12 
3-12 
3-14 
3-14 
3-15 
3-15 
3-16 
3-17 
3-17 

4-1 
4-5 
4-7 
4-7 
4-9 
4-9 
4-9 

4-11 
4-11 
4-11 
4-13 
4-13 
4-15 
4-16 
4-16 
4-17 
4-19 
4-19 
4-21 
4-21 
4-21 
4-23 
4-23 
4-24 
4-27 
4-29 
4-34 
4-35 
4-36 
4-36 
4-37 
4-38 
4-39 
4-40 
4-41 
4-42 
4-42 
4-43 
4-44 
4-45 

vii 



4.6 
4.7 
4.8 
4.9 

4.5.15 
4.5.16 
4.5.17 
4.5.18 
4.5.19 
4.5.20 
4.5.21 
4.5.22 
4.5.23 
4.5.24 
4.5.25 
4.5.26 
4.5.27 
4.5.28 
4.5.29 
4.5.30 
4.5.31 
4.5.32 

FORMAT Command ••••• 
GO Command ••• 
IF Command 
LIST Command •• 
LOG Command •• 
MSG Command •• 
RELATIVE Command 
REVIEW Command 
RUN Command 
SET Command •• 
SHOW Command 
SNAP Command •• 
ST A TUS Command •••••• 
STEP Command ••• 
TIME Command •••••••• 
TRACE Command 
TRACK Command 
WATCH Command 

Batch Considerations 
Listings and Reports 
Errors •••••••• 
Examples 

5. INTERACTIVE PROCESSING 

5.1 
5.2 
5.3 
5.4 

5.5 
5.6 

viii 

General Description ••••• 
Files and File Assignments 
Options ............. . 
Using the Editor •••••••••••••• 
5.4.1 Addressing Techniques 

5.4.1.1 Special Characters 
5.4.1.2 Line and Range Addressing 
5.4.1.3 Groups ••••••••••• 
5.4.1.4 Content Identifiers •••••••• 
5.4.1.5 Defaults •••••••••••••• 
5.4.1.6 Special Command Defaults 
5.4.1.7 Descrition in Syntax Sections 

5.4.2 Lines and Line Numbers •••••••••••• 
5.4.2.1 Line Numbers Generated by the Editor. 
5.4.2.2 Line Numbers at the Beginning and End of the 

Workfile 
5.4.2.3 Physical Position of Line Numbers •• 
5.4.2.4 Text Output without Line Numbers ••••••••• 

5.4.3 
5.4.4 
5.4.5 
5.4.6 

Accessing Files Created Outside the Editor 
Accessing Password Protected Files ••• 
Accessing System Files •••.•.•• 
Entering and Editing Upper/Lower Case Text 

5.4.7 Using the Break Key •• 
Accessing EDIT 
EDIT Commands •. 
5.6.1 APPEND Command 
5.6.2 BATCH or RUN Command 
5.6.3 CHANGE Command 
5.6.4 CLEAR Command 
5.6.5 COLLECT Command 

. . ~ 

4-46 
4-47 
4-49 
4-50 
4-50 
4-51 
4-51 
4-52 
4-52 
4-53 
4-54 
4-55 
4-55 
4-56 
4-56 
4-57 
4-60 
4-61 
4-62 
4-63 
4-63 
4-63 

5-1 
5-1 
5-1 
5-2 
5-2 
5-2 
5-3 
5-3 
5-4 
5-4 
5-4 
5-5 
5-6 
5-6 

5-7 
5-7 
5-7 
5-8 
5-8 
5-8 
5-9 
5-9 

5-10 
5-11 
5-13 
5-14 
5-15 
5-17 
5-18 



( 

(" 

C"\ 
•• ,y/ 

5.7 

5.6.6 
5.6.7 
5.6.8 
5.6.9 
5.6.10 
5.6.11 
5.6.12 
5.6.13 
5.6.14 
5.6.15 
5.6.16 
5.6.17 
5.6.18 
5.6.19 
5.6.20 
5.6.21 
5.6.22 
5.6.23 
5.6.24 
5.6.25 
5.6.26 
5.6.27 

COMMAND Command 
COpy Command 
DEBUG Command 
DELETE Command •• 
EXIT Command 
INSERT Command 
LIST Command ••• 
MODIFY Command •• 
MOVE Command 
NUMBER Command 
PREF ACE Command 
PRINT Command ••• 
PUNCH Command 
REPLACE Command 
SA VE Command •••••••••••• 
SCRATCH Command ••••• 
SET Command ••• 
SHOW Command ••••• 
STORE Command 
USE Command ••• 
VERIFY Command 
WORKFILE Command. 

Edit Errors .............. . 

6. THE FILE MANAGER (FILEMGR) 

6.1 

6.2 

6.3 
6.4 

6.5 
6.6 

General Description ••••••••••••••••••• 
6.1.1 The System Master Directory (SMD) 
6.1.2 System Files versus User Files •• 
6.1.3 The Save/Restore Process 
Files and File Assignments ••••• 
6.2.1 File Assignments Chart. 
Options ........... . 
Using the File Manager •••••••••• 
6.4.1 Computing the Size of a File. 
6.4.2 Using Wild Card Characters in File Names 
6.4.3 Password-Protected Files ••••••• 
6.4.4 Special Characters in File Names 
6.4.5 Notes on File-to-Tape Transfers 
6.4.6 Device Specifications 
Accessing the File Manager •••• 
FILEMGR Directives ••••••• 
6.6.1 CREATE and CREATEU Directives 
6.6.2 CREATEM Directive ••••••••••• 
6.6.3 DELETE and DELETEU Directives. 
6.6.4 DELETEW Directive. 
6.6.5 EXIT Directive ••••• 
6.6.6 EXPAND and EXPANDUDirectives •••••••••• 
6.6.7 LOG, LOGU, LOGC, and LOGS Directives 
6.6.8 MEMO Directive •••••••••••••••• 
6.6.9 PAGE Directive ••••••••••••••••• 
6.6.10 RESTORE and RESTOREU Directives ••••• 
6.6.11 REWIND Directive ••••••• 
6.6.12 SAVE and SAVEU Directives 
6.6.13 SA VELOG Directive •••••• 

5-21 
5-22 
5-26 
5-26 
5-27 
5-28 
5-30 
5-32 
5-33 
5-35 
5-37 
5-39 
5-40 
5-41 
5-42 
5-44 
5-45 
5-50 
5-52 
5-54 
5-56 
5-57 
5-58 

6-1 
6-1 
6-2 
6-3 
6-3 
6-3 
6-5 
6-5 
6-5 
6-6 
6-6 
6-7 
6-7 
6-9 
6-9 

6-10 
6-12 
6-14 
6-17 
6-17 
6-19 
6-19 
6-20 
6-21 
6-22 
6-22 
6-25 
6-26 
6-30 

ix 



6.7 
6.8 
6.9 

6.6.14 
6.6.15 
6.6.16 

D ST Directi ve •• • • 
SKIPFILE Directive 
USERNAME Directive 

Examples •• 
Errors •• 
Listings. 

7. M.KEY EDITOR (KEY) 

7.1 
7.2 
7.3 

7.4 
7.5 

General Description •••• 
File and File Assignments 
Using Key 
7.3.1 Input Record Syntax 
7.3.2 Sample Input File •• 
Accessing the M.KEY Editor 
Example ..••.•••..•.•.. 

8. THE SUBROUTINE LIBRARY EDITOR (LiBED) 

8.1 

8.2 

8.3 
8.4 
8.5 
8.6 

8.7 
8.8 
8.9 

General Description •••••••••••• 
8.1.1 LIBED Directives Summary. 
Files and File Assignments ••••••• 
8.2.1 The Object Module File (LGO) 
8.2.2 The Directive File (CTL) ••••• 
8.2.3 The Subroutine Library File (LIB) •• 
8.2.4 The Directory (DIR) 
8.2.5 Listed Output (LLO) 
Options 
Using LIBED 
Accessing LIBED 
Subroutine Library Editor Directives 
8.6.1 DELETE Directive 
8.6.2 EXIT Directive •• 
8.6.3 LOG Directive 
Listings. 
Errors •• 
Examples. 

9. THE MACRO LIBRARY EDITOR (MACLlBR) 

9.1 

9.2 

9.3 
9.4 
9.5 
9.6 

x 

General Description ••••••••••••••••• 
9.1.1 MACLIBR Command Summary ••••• 
Files and File Assignments •••• 
9.2.1 Macro Library (MAC) 
9.2.2 Macro Input File (sl) 
9.2.3 Directives (DIR) • 
9.2.4 Audit Trail (LO) 
9.2.5 Scratch File. 
Options •••••• 
Using the Macro Library Editor 
Accessing the Macro Library Editor 
Macro Library Editor Directives •••••• 
9.6.1 / APPEND Directive 
9.6.2 /CREATE Directive 
9.6.3 /DELETE Directive 

6-30 
6-32 
6-32 
6-33 
6-33 
6-33 

7-1 
7-2 
7-3 
7-3 
7-5 
7-6 
7-7 

8-1 
8-1 
8-2 
8-2 
8-2 
8-2 
8-2 
8-2 
8-5 
8-5 
8-6 
8-7 
8-7 
8-7 
8-7 
8-8 
8-8 
8-8 

9-1 
9-2 
9-2 
9-2 
9-3 
9-3 
9-3 
9-3 
9-6 
9-6 
9-7 
9-8 
9-8 
9-8 
9-9 

")," 

l -" 
, ' 

\' " ", j' 



( 

( 

9.6.4 /DISPLAY Directive. 
9.6.5 lEND Directive . . . . . 
9.6.6 IEXIT Directive ••• 
9.6.7 IINSERT Directive · .... 
9.6.8 ILOG Directive . . . . . 
9.6.9 IMACLIST Directive •• . . . . . 
9.6.10 /REPLACE Directive . . . . . . . 

9.7 Listings. . . . . . · .... 
9.8 Errors .. . . . . . . . . . . 
9.9 Examples · .... . . . . . . 
10. MEDIA CONVERSION UTILITY (MEDIA) 

10.1 
10.2 
10.3 
10.4 

10.5 
10.6 

10.7 
10.8 
10.9 

MEDIA Directives Summary 
Files and File Assignments 
Options •••••••• 
Using MEDIA •••• 
10.4.1 Labels 
Accessing MEDIA 
MEDIA Directives 
10.6.1 General 
10.6.2 BACK FILE Directive 
10.6.3 BACKREC Directive 
10.6.4 BUFFER Directive •• 
10.6.5 CONVERT Directive •• 
10.6.6 COPY Directive ••• 
10.6.7 DUMP Directive ••••••• 
10.6.8 END Directive ••••••• 
10.6.9 EXITDirective •• 
10.6.10 GOTO Directive. 
10.6.11 INCR Directive 
10.6.12 MESSAGE Directive 
10.6.13 MOVE Directive •••••••• 
10.6.14 OPTION Directive •••••• 
10.6.15 READ Directive ••• 
10.6.16 REWIND Directive 
10.6.17 SETC Directive 
10.6.18 SKIPFILE Directive 
10.6.19 SKIPREC Directive 
10.6.20 VERIFY Directive 
10.6.21 WEOF Directive •• 
10.6.22 WRITE Directive 
Listings. 
Errors •••••••••• 
Examples •• 

1I. SOURCE UPDATE UTILITY (UPDATE) 

11.1 

11.2 
11.3 
11.4 

General Description •••••••• 
11.1.1 UPDATE Directives 
Files and File Assignments 
Options ......... . 
Using UPDATE ••••• 
11.4.1 Compressed Source Formatting 
11.4.2 Library Mode of Operation ••• 

...... 9-9 · ...... 9-9 
....... 9-9 

. ...... 9-10 
.......... 9-10 

· .... 9-10 · ..... ...... 9-11 
. ..... 9-11 
. .... . ...... 9-12 

· .... . . . . . . . . 9-13 

10-1 
10-2 
10-4 
10-4 
10-4 
10-4 
10-5 
10-5 
10-6 
10-6 
10-7 
10-7 
10-8 
10-8 
10-9 
10-9 

10-10 
• • 10-11 

10-11 
.10-12 

• • 10-13 
• ••••••• 10-15 
• ••••••• 10-15 

.10-15 
......... 10-16 

.10-16 
••• 10-16 

.10-17 
• 10-17 

.......... 10-18 
• •• 10-19 

. ........... 10-21 

11-1 
11-1 
11-3 
11-6 
11-7 
11-7 
11-7 

xi 



11.5 
11.6 

Accessing UPDATE 
UPDATE Directives 
11.6.1 
11.6.2 
11.6.3 
11.6.4 
11.6.5 
11.6.6 
11.6.7 
11.6.8 
11.6.9 
11.6.10 
11.6.11 
11.6.12 
11.6.13 
11.6.14 
11.6.15 
11.6.16 
11.6.17 
11.6.18 
11.6.19 
11.6.20 
11.6.21 
11.6.22 
11.6.23 
11.6.24 

General •• 
I ADD Directive 
I ASI Directive (Reassign LFC to Disc File) 
I AS3 Directive (Reassign LFC to Device) • 
IBKSP (Backspace) Directive •••••••• 
IBLK (Blank Sequence Field) Directive. 
ICOPY Directive •• 
IDELETE Directive 
lEND Directive 
IEXIT Directive ••• 
/INSERT Directive 
ILIST Directive ••• 
IMOUNT Directive ••••••••••••• 
INBL (No Blank Sequence Field) Directive 
INOLIST Directive ••• 
INOSEQN Directive •••••••• 
IREPLACE Directive 
IREWIND Directive 
ISCAN Directive 
ISELECT Directive •• 
ISEQUENCE Directive 
ISKIP Directive. 
IUSR Directive 
IWEOF Directive 

11.7 
11.8 
11.9 

Listings •• 
Errors •• 
Examples 

Appendix A 
Appendix B 
Appendix C 
Appendix D 
Appendix E 
Appendix F 
Appendix G 

MPX-32 Device Access •...•••••.•••. 
System Services Cross Reference Charts ••••••• 
MPX-32 Abort and Crash Codes •• 
Numerical Information 
Powers of Integers • . • • 
ASCn Interchange Code Set 
10 P Panel Commands • . • ••• 

• • 11-11 
.11-12 
.11-12 

• •• 11-12 
• • 11-13 

•••• 11-13 
• .11-14 

11-14 
.11-15 

• .11-15 
• • 11-15 

••••• 11-16 
• 11-16 
• 11-17 

• •••••• 11-18 
•••• 11-18 

11-19 
• •• 11-19 

.......••••• 11-19 
• •• 11-20 
• •• 11-20 

11-20 
.11-21 

• •••• 11-21 
•••••••• 11-22 
••••••• 11-22 

.11-23 
11-24 

.11-26 

A-I 
B-1 
C-l 
0-1 
E-1 
F-I 
G-1 

GJ()5,sary ..............................•...........•...•....... G L-l 

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IN-l 

xii 



( 

Figure' 

2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 

3-1 
3-2 
3-3 

4-1 
4-2 
4-3 
4-4 

6-1 

( 11-1 
11-2 
11-3 
11-4 

D..LUSTRA TIONS 

Title 

Cataloging a Load Module ................................ . 
I/O Overview ......................................... . 
Simple Over lay Structure .••......••......•••••.••••..•••• 
More Complex Over lay Structure ••••••..••••••••••••••••••••• 
Default Memory Allocation for Overlays •••••••••••••••••••••• 
Modified Memory Allocation for Overlays ••••••••••••••••••••• 
Recataloging Illustration ................................. . 

2-2 
2-11 
2-23 
2-24 
2-25 
2-27 
2-33 

Datapool Editor Input Data Format. • • • • • • • • • • • • • • • • • • • • • • • •• 3-5 
Datapool Dictionary Entry Format. • . • • . • • • • . • . • • • • . • • • • • • • •• 3-6 
Datapool Editor Audit Trail Format ••••••••••••••••••••.••••• 3-16 

DEBUG Memory Map .....••••••.••...•••.•.••......••••• 4-6 
DEBUG Base Names ..................................... 4-18 
DEBUG Command Address Restrictions. • • • • . • • • • • • • • • • • • • • • •• 4-22 
Nested Trap Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-25 

File-to-Tape Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-8 

Compressed Record Card Format ••••••••••••••••••••••••••• 11-8 
Library Format (Magnetic Tape) ••••• • • • • • • • • • • • • • • • • • • • • • •• 11-9 
Header Record Format ••..•••.•.•••...••••••••••••••••••• 11-10 
Library End-of-Tape Format •••••••••••.••••••••••••••••••• 11-10 

xiii 



Table 

1-1 

2-1 

3-1 

4-1 
4-2 
4-3 
4-4 

6-1 

8-1 

9-1 

10-1 
10-2 

11-1 

xiv 

TABLES 

Title 

Assembler File Assignments 1-4 

Cataloger File Assignments. • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •• 2-14 

DPEDIT File Assignments. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 3-9 

DEBUG Prompts and Labels ••••••••••••••••••••••••••••••• 4-8 
Debugger File Assign ments • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 4-12 
Valid Use of Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-29 
Instructions that Break a Trace. • • • • • • • • • • • • • • • • • • • • • • • • • • •• 4-59 

File Manager File Assignments 6-4 

LIBED File Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-3 

MACLIBR File Assignments ••••••••••••••••••••••••••••••• 9-4 

MEDIA File Assignments. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 10-3 
MEDIA Option Definitions ••••••••••••••••••••••••••••••••• 10-14 

UPDATE File Assignments •••••••••••••••••••••••••••••••• 11-4 



(" 

Documentation Conventions 

Notation conventions used in command syntax and message examples throughout this 
manual are described below. 

lowercase letters 

In command syntax, lowercase letters identify a generic element that must be replaced 
with a value. For example, 

!ACTIVATE taskname 

means replace taskname with the name of a task, e.g., 

!ACTIVATE DOCCONV 

In messages, lowercase letters identify a variable element. For example, 

**BREAK** ON:taskname 

means a break occurred on the specified task. 

UPPERCASE LETTERS 

In command syntax, uppercase letters specify a keyword must be entered as shown for 
input, and will be printed as shown in output. For example, 

SAVE filename 

means enter SAVE followed by a filename, e.g., 

SA VE DOCCONV 

In messages, uppercase letters specify status or information. For example, 

taskname, taskno ABORTED 

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT 

Braces { } 

Elements placed one under the other inside braces specify a required choice. You must 
enter one of the arguments from the specified group. For example, 

~ counter l 
1 startbyte ~ 

means enter the value for either counter or startbyte. 

xv 



Brackets [ ] 

An element inside brackets is optional. For example, 

[CUR~ 
means the ter m CURR is optional. 

Items placed one under the other within brackets specify you may optionally enter one of 
the group of options or none at all. For example, 

[ base name] 
progname 

means enter the base name or the program name or neither. 

Items in brackets within encompassing brackets specify one item is required only when 
the other item is used. For example, 

TRACE [lower address [ upper address]] 

means both the lower address and the upper address are optional, and the lower address 
may be used alone. However, if the upper address is used, the lower address must also be 
used. 

Commas between multiple brackets within an encompassing set of brackets are semi
optional; that is, they are not required unless subsequent elements are selected. For 
example, 

M.DFCB fcb,ifc [, [a] ' [ bJ ' [c J, [dJ , [ e ] ] 

could be coded as 

M.DFCB FCBI2,IN 

or 

M.DFCB FCB12,IN"ERRAD 

or 

M.DFCB FCB13,OUT"ERAD"PCK 

Horizontal Ellipsis 

The horizontal ellipsis indicates the previous element may be repeated. For example, 

name , ••• ,name 

means you may enter one or more name values separated by commas. 

xvi 



(' 

(, 

Vertical Ellipsis 

The vertical ellipsis specifies commands, parameters, or instructions have been 
omitted. For example, 

COLLECT 1 

LIST 

means one or more commands have been omitted between the COLLECT and LIST 
commands. 

Numbers and Special Characters 

In a syntax statement, any number, symbol, or special character must be entered as 
shown. For example, 

{value} 

means enter the proper value enclosed in parentheses; e.g., (234). 

Underscore 

In syntax statements, underscoring specifies the letters, numbers or characters that may 
be typed by the user as an abbreviation. For example, 

ACTIVATE taskname 

means spell out the command verb ACTIVATE or abbreviate it to ACTI. 

RESET 

means type either RESET or RST. 

In examples, all terminal input is underscored; terminal output is not. For example, 

TSM >EDIT 

means TSM was written to the terminal; EDIT is typed by the user. 

Subscript Delta. 

A subscript delta specifies a required space. For example, 

EDT >STO"SSPGM 

(~' means a space is required between ° and T. 

xvii/xviii 





1. THE ASSEMBLER (ASSEMBLE) 

The Macro Assembler (or Assembler) translates source code mnemonics into binary
equivalent machine instructions for the 32/7x CPU and interprets Assembler directives. 
Assembler directives provide the ability to use symbolic addresses and storage areas, 
equate symbols, define references to external object modules, control listed output 
characteristics, etc. 

Within source provided to the Assembler, the user can access system services. This is 
done either by setting up appropriate registers and using SVC or CALM instructions, 
and/or using macro calls which are expanded into assembly-level code by the Assembler. 

The Assembler uses the MPX-32 System Macro Library (M.MPXMAC) for MPX-32 SVC
related services by default. The RTM System Macro Library (M.MACLIB) can also be 
assigned for assembly to access R TM CALM equivalent services. 

On a CONCEPT/32 computer, a new SVC type 15 replaces CALM instructions. During 
reassembly of a program, the Assembler automatically converts CALM instructions to 
their equivalent SVC 15,X'nn' number if OPTION 20 is set. 

Also, an address exception trap will be generated when a doubleword operation code is 
used with an incorrectly bounded operand; therefore coding changes will be required 
when a trap occurs. 

1.1 General Description 

In developing Assembly language source code, four separate, non-MPX-32 documents are 
key: 

o The Macro Assembler Reference Manual, publication number 323-001220, 
which documents Assembler directives. 

o The SYSTEMS 32/70 Computer Reference Manual, publication number 
301-000140, which documents the SYSTEMS 32/70 CPU instruction set 
and mnemonics. 

o The SYSTEMS 32/27 Single Slot Central Processing Unit, publication 
number 301-000400, which documents the SYSTEMS 32/27 CPU 
instruction set and mnemonics. 

o The CONCEPT 32/87 Reference Manual, publication number 301-000810, 
which documents the SYSTEMS 32/87 CPU instruction set and mnemonics. 

After a successful assembly, the user has an object module which can be output to a 
subroutine library file, output to a permanent file or device medium, or cataloged 
immediately into a task suitable for execution on MPX-32. Object modules can be linked 
together into a single task by assembling and cataloging them in the same job (an SGO 
file is the default output for assembly and default input for the Cataloger), by accessing 
the Subroutine Library during a separate Cataloger run, or by using $SELECT job control 
statements prior to cataloging (batch only). 

1-1 



The Assembler dynamically establishes both a macro storage table and a symbol table in OM' 
memory before it starts assembly. As a default option, all available memory is allocated , 
for the symbol table and zero for the macro storage table. The ratio of available space 
allocated for macro storage can be changed. From 0 to 80 percent of available memory 
can be allocated to macro storage. The percentage is specified with an OPTION 
statement as described in Section 1.3. 

1.2 Files and File Assignments 

This section describes the input and output files used by the Assembler. 

1.2.1 Source Code (PRE and 51) 

Source code is assigned to logical file codes (lfc's) PRE and SI. Source is input first from 
PRE and then from SI. User program source should be assigned to SI while source 
consisting of non-executable assembler directives (such as SET directives) can be 
assigned to PRE. The user can input source code from any device or file. The default 
assignment for SI is to SYC and for PRE is to NU (the null device). 

1.2.2 Macro Libraries (MAC, MA2) 

The System Macro Library provides a collection of macro definitions which can be used 
by source programs. The user can add macros to the system library or create his own 
macro library using the macro library Editor (MACLIBR) as described in Chapter 9 of this 
volume. Rules and conventions for using macros residing in a macro library are the same 
as for macros defined and used only within one program, and are described in the Macro 
Assembler Reference Manual. In general, a macro is accessed in a source program by 
using its name in the opcode!instruction field of a source statement and supplying any 
required or optional parameters in the operand field. 

The System Macro Library, M.MPXMAC, is assigned by default for assembly to lfc 
MAC. A different macro library (e.g., M.MACLIB for RTM-compatible macros) can be 
assigned to MAC if desired. 

The Assembler also supports another macro library, MA2. This library is searched by the 
Assembler for every name found in the opcode!instruction field. It is searched before 
the permanent symbol table and may be useful to override an existing opcode or 
Assembler directive. 

1.2.3 Listing (LO) 

The Assembler produces a listing that pairs hexadecimal representation of object code 
with the corresponding source statements. The listing lfc is LO. An SLO file is assigned 
to LO by default. Listings are further described in the Macro Assembler Reference 
Manual. 

1-2 

o 



( 

1.2.4 Object Code (80 and GO) 

Object code is output on the file or device assigned to lfc BO as well as to lfc GO. The 
default assignment for BO is to a system SBO file which is output to the system device 
defined as POD at SYSGEN or via the OPCOM SYSASSIGN command. The default 
assignment for lfc GO is to an SGO file. Other utilities such as UBED and CATALOG 
will access an SGO file for the job automatically; however, SGO is temporary and will be 
lost if not used in the same job. 

1.2.5 Compressed Source (CS) 

The Assembler will optionally accept source program input or produce source output in 
compressed format. To output compressed source, assign a file or device to lfc CS. 
Compressed source as input is specified by assigning the name of the file or device to lfc 
SI. 

If both BO and CS are assigned to SBO files, the binary output is output prior to the 
compressed source output. 

1.2.6 Temporary Files (UTI, UT2) 

UT1 is a temporary file used to hold the source text for processing on pass 2 of the 
Assembler. On pass 1, the Assembler writes the source text, along with the expanded 
macro text, to UT1 and on pass 2 reads UT1. 

UT2 is a temporary file used for the cross reference and symbol table during the 
assembly. 

1-3 



Table I-I 
..- Assembler File Assignments 
I 

-I:" 

Previous 
fnput/Output Loslal Asslsnments Processor How Specified 
Descriptlm File Code for Assembly Assisnment fot Assembly Comment 

Source Code PRE Default: Permanent file built ASSIGN statements If the user specifies 
ASSIGNl using EDIT or MEDIA an assignment to PR E, 
PRE=MPXPRE source is read from PRE 

until an EOF is reached, 
Options: then source is read from SI. 
ASSIGNn 
PRE={fIIename} 

devmoc 

51 Default: Work file built using EDT>8ATCH 
ASSIGN2 EDIT. 
SI=SYC Permanent file built EDT> 8ATCH lobflle For further description 

using EDIT or MEDIA or see "Accessing the 
Assembler" 

Cards ??8ATCH fD,devmoc} 
F,jobflie 

Other device medium Same route shown for The file or device can 
e.g., magnetic tape, cards. contain compressed aourc:e. 
where file was copied 
from cards of a file 
via MEDIA. 

Interactively. See 
"Accessing the Assembler" 

Options: $SELECT can only be used 
ASSIGNn In batch. 

51= {filename} 
devmoc 
or 

$SELECT 

Macro Library MAC Default. Macro Ubrarles are Accessed automatically MACLl8 contains 
ASSIGN I maintained or created for macro calls R TM - compatible macros. 
MAC = M.MPXMAC"U via the MACLl8R locluded In the source RTMMAC contains RTM macros 

utility. code. for use with the RTM 
Options: CatoJopr (see Section 2. 10) • 
ASSIGN I 

t·MACLl8ttU } 
MAC- userlib"U 

.RTMMAC"U 

~ 
MA2 None 

~" 
~>1'/ ~--) 



..-
I 
VI 

~ 
j 

"put/Output 
Description 

Binary Object 
Code 

LoKlcal 
File Code 

BOand GO 

AssiKnments 
for Assembly 

Defaults: 
ASSIGN2 
50 = SBO 
GO = SGO 

Options: 
ASSltNn 
00= filename} 

devnmc 

ASSIGNn 
Go={filename} 

tdevnmc 

~. 

Table I-I (Cont'd) 
Assembler File Assignments 

Previous 
Processor 
Assignment 

If a user file is 
assigned to 00 or 
GO, it must be 
pre-established via 
the FILEMGR utility. 

How Specified 
fot Assembly 

ASSIGN statements. 

~ 

Comment 

If an SBO file fills up, 
the Assembler automatically 
allocates an additional 84 
sectors (~OO cards). If 
other than SBO, the utility 
aborts. SBO output (the 
default assignment for Ifc 
00) is routed to the 
device specified as the 
Punched Output Device 
(POD) during SYSGEN (see 
Volume 3) or reassigned 
via the OPCOM SYSASSIGN 
command. (See Volume I, 
Section 4.) 

SGO output is routed to 
a temp file accumulated fot 
a job so that the object 
code can be accessed by 
utilities such as L1BED 
and the Cataloger. 

Thus, to enter the object 
module(s) directly in a 
library, run L1BED. To 
catalog the object 
module(s), immediately 
run the Cataloger. 

Note that if you want to 
retain output and you are 
not going to catalog or 
enter the object module(s) 
into a library during the 
same job, make a permanent 
copy on the file or device 
assigned either to eo or 
GO • 



-I 
0'\ 

Input/Output logical 
Description File Code 

Compressed CS 
Output 

Listed Output- LO 
Source, Object, 
errors, if an y. 

Temporary UTI 
Source 

Temporary UT2 
Source Table 

t""\ 
L : 
~ •.. jI' 

Assignments 
for Assembly 

No default. 
ASSIGNn 
CS= (tilename} 

devnmc 

Default: 
LO: SLO 

Options: 

LO: filename} 
devnmc 

ASSIGN3 
UTI=DC,lOO 

ASSIGN3 
UT2=DC,200,U 

Table I-I (Cont'd) 
Assembler File Assignments 

Previous 
Processor 
Assignment 

N/A 

'It. 

How Specified. 
for Assembly Comment 

Output is generated in 
compressed form. See 
the Macro Assembler 
Reference Manual. 

If an SLO file fiUs up 
(comes to EOF) the 
Assembler allocates an 
extra 2000 lines. If the 
aUoca tion fails or if 
LO is aSSigned to other 
than SLO, the Assembler 
aborts in this situation. 

Temporary file for 
source text on pass 2. 



( 

(~' 
. ." 

1.3 Options 

The options used by the Assembler include control options and macro percentage 
options. The default output control options are a listing, an object file, and a cross
reference. The additional options are the compressed source output and the object 
output to an SGO file. The macro percentage option is defaulted to 0 percent. Options 
10-18 inclusive indicate a percentage of from 0-80. If more than one percentage is 
specified, the lowest percentage is used. 

Option 

1 

2 

3 

4 

5 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Description 

No listed Output (Source Listing) 

No Punched Output (Binary Object) 

List Internally Generated Symbols with Cross Reference 

No Symbol Cross-Reference 

Binary Output Directed to SGO File 

Compressed Source Output 

SI Not Blocked 

LO, BO, and CS Not Blocked 

Allot 0 Percent to Macro Storage 

Allot 10 Percent to Macro Storage 

Allot 20 Percent to Macro Storage 

Allot 30 Percent to Macro Storage 

Allot 40 Percent to Macro Storage 

Allot 50 Percent to Macro Storage 

Allot 60 Percent to Macro Storage 

Allot 70 Percent to Macro Storage 

Allot 80 Percent to Macro Storage 

Outputs Symbolic Information to the Cataloger for use by the 
Symbolic Debugger 

Generates Replacement 15,X'nn' Instructions for Call Monitor 
Instructions 

1-7 



1.4 Accessing the Assembler 

To access the Assembler as part of a batch job, create a job file using the EDITOR, 
punch cards, or other media. The job file can be read to SYC and the job activated in 
several ways: 

from the OPCOM console: 

" <Attention>" 

??BATCH {F,jObfile t 
D,devmnc) 

from the OPCOM program: 

TSM>OPCOM 

??BATCH 
{ 

F,jobfile { 
D,devmncf 

from the EDITOR: 

TSM>EDIT 

EDT>BA TCH [jobfile] 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate the Assembler and run online, use the TSM ASSIGN commands to make 
Assembler assignments equivalent to those preceding the EXECUTE ASSEMBLE 
command on a jobfile, then proceed to issue Assembler directives. (SELECT and 
OBJECT statements are not available when running the Assembler online.) 

TSM >ASSEMBLE 
ASS> 

At the Assembler prompt, enter Assembler directives and source code. 

1.5 Assembler Directives 

See the Macro Assembler Reference Manual. 

1-8 

(~"'\ 

i\.,] 

l·" .. 
V 



( 

1.6 Listings 

The Assembler produces a listing of source code, object code equivalents, symbol cross 
references, and error diagnostics. 

Typical Assembler output is shown and described in Chapter 7 of the Macro Assembler 
Reference Manual. 

1.7 Errors and Aborts 

Errors are detected during both passes of Assembler processing. They are described in 
Appendix H of the Macro Assembler Reference Manual. Abort codes are described in 
Appendix C of this volume. 

1.7.1 Aborts 

When LO is assigned to an SLO file and end-of-file is detected, an additional allocation 
of 2000 lines will be attempted. If the attempt is unsuccessful or if LO is not assigned to 
an SLO file, the assembly will be aborted with abort code AS03. 

When BO is assigned to an SBO file and end-of-file is detected, an additional allocation 
of 500 cards ( 84 sectors) will be attempted. If the attempt is unsuccessful or BO is not 
assigned to an SBO file, the assembly will be aborted with abort code AS02. 

A macro library is not required by the Assembler, but if one is provided, it must be in the 
proper format if an attempt is made to read it. If the format is invalid, the assembly is 
aborted. If a macro prototype from a macro library exceeds the remaining size of the 
macro storage table, the following message is printed on the listing just preceding the 
macro call, and the macro call is flagged by the Assembler: 

THE FOLLOWING MACRO CAUSED A TABLE OVERFLOW 

In some cases, a cross-reference is not generated because there is not enough memory 
available to sort the cross-reference information. If this occurs, the following message 
will be printed on LO: 

**XREF COULD NOT BE PERFORMED** 

There is not enough memory to store required macros and the symbol table. See Sections 
1.1 and 1.3. 

If the number of symbols in a program exceeds the maximum number of symbols that the 
symbol table can hold, the following message is printed on the file or device assigned to 
LO: 

SYMBOL TABLE OVERFLOW 

1-9 



If the macro table size is exceeded due to too many bytes of in-line macros, in-line .(, .. _ ... -~ 
FORM skeletons, repeated code, or macro-call argument data, the following message is _.-II' 

printed on the file or device assigned to LO: 

MACRO TABLE OVERFLOW 

1.8 Examples 

Example 1 - In the sequence, the user assembles source code from a file name SJ.MEDIA, 
outputs object code to a file name OJ.MEDIA, then catalogs the object into a load 
module file named MEDIA. SLO output for the job is directed to a file named MOUT. 

1-10 

$JOB SJ.MEDIA OWNER SLOF=MOUT 
$OPTION 17 (Allocates 70% of Assembler address 

$ALLOCATE 16000 

$ASSIGN3 UTl=DC,400 
$ASSIGN3 UT2=DC,800,U 
$ASSIGN 1 MAC=M.MACLIB"U 
$AI BO=OJ.MEDIA 
$AI SI=SJ.MEDIA 
$EXECUTE ASSEMBLE 
$AI SGO=OJ.MEDIA 

$EXECUTE CATALOG 
FILES 64 

BUFFERS 16 

ENVIRONMENT MUL TICOPY 

ASSIGN2 *IN=SYC 
ASSIGN2 *OT=SLO,500 
OPTION PROMPT 

CATALOG MEDIA 
$EOJ 
$$ 

space for macros) 
(Allocates 16,000 bytes beyond minimum 
Assembler requirement) 
(Temporary file for Assembly) 
(Temporary file for Assembly) 
(Uses R TM-compatible macro library) 

(Object code 
cataloging) 

is now assigned for 

(Up to 64 files can be allocated 
dynamically) 
(Up to 16 buffers can be allocated 
dynamically) 
(More than one copy of MEDIA can be 
active at the same time) 
(Default assignment for MEDIA) 
(Default assignment for MEDIA) 
(Provides MED prompt automatically in 
interactive environment. User does not 
have to use the TSM OPTION PROMPT 
command) 



2.6 Cataloger Directives 

Cataloger directives are summarized below and described in detail on subsequent pages. 

For recommended organization of Cataloger directives and job control statements see 
Section 2.4.1.1 for a nonsegmented task and Section 2.4.2.1 for a segmented task. 

Most Cataloger directives can be abbreviated to four characters. ASSIGN statements 
following the CATALOG directive may be abbreviated to AI, A2, A3, or A4. PROGRAM 
and PROGRAMX must be completely spelled out. 

If a directive or parameter can be abbreviated, the abbreviation is indicated in syntax 
statements by under lining. 

Legal delimiters are commas and blanks. Commas need be used only where shown. 

2-35 



4-~ 

4 

Directive 

ABSOLUTE 

ALLOCATE 

ASSIGN! 

ASSIGN2 

ASSIGN3 

ASSIGN4-

BUFFERS 

41 CATALOG 

45 ENVIRONMENT 

4" EXCLUDE 

4" EXIT 

4~ FILES 

2-36 

Function 

Specifies an absolute origin for the DSECT. 

Allocates additional memory for main load module. 

Equates permanent disc files (optionally unblocked) with lfc's used 
in task to be cataloged. 

Equates system SBO, SLO, SYC, or SGO with lfc used in task to 
be cataloged. 

Equates device (optionally unblocked) with lfc used in task to be 
cataloged. Default for tapes and discs is blocked. Assigns a 
temporary disc file and its size (see Appendix A). Option for 
unblocking applies only to these units. 

Equates lfc in task to be cataloged with existing lfc. Equates the 
assignment for this lfc to existing lfc's device assignment. 

Establishes number of blocking buffers required for dynamic 
assignments in non-shared tasks. In a shared task, establishes 
total number of blocking buffers required. 

Identifies and describes the load module{s) to be cataloged. 

Describes memory class, residency, map size, and sharing or 
multicopying requirements of task. 

Specifies global names in library object modules not to include in 
load module even though referenced in object modules being 
cataloged. 

Terminates Cataloger directive input. 

Establishes number of dynamic disc file assignments in non-shared 
task. In a shared task, establishes total disc file assignments. 



(" INCLUDE 47 

LlNKBACK 47 

LORIGIN 47 
OPTION ~1 e 
ORIGIN 1® 
PASSWORD 4~ 

PROGRAM ~9 

PROGRAMX 50 

SYMTAB 0 

( USERNAME 

ERRoRS 5\ 

C.·.' 
e-/ 

Specifies global names in library object modules to include in load 
module being cataloged even though they are not referenced in 
the object modules being cataloged on SGO. 

Specifies overlay load modules at lower levels to link to the 
current overlay load module. 

Establishes new overlay origin and new overlay level. 

Specifies default options for the cataloged load module. 

Establishes new overlay load module origin. 

Provides Cataloger with WRITE access to previously protected 
disc file containing load module or supplies or changes password 
protection. 

Specifies which object modules from SGO to include in a load 
module. 

Specifies that no object modules from SGO can be included in a 
load module. 

When a load module for a task is cataloged separately, specifies 
that symbol table references saved previously via CATALOG SYM 
options be used. 

Specifies user name associated with all default and dynamic files 
associated with task. (May be overridden by JCL USERNAME 
statement.) 

2-37 



2.6.1 The ABSOLUTE Directive 

The ABSOLUTE directive allows the user to build an absolute load module (one that 
requires no relocation by MPX-32 at load time). The user is responsible for insuring the 
base address specified is higher than MPX-32 and the TSA. If the base address results in 
an overlap between the task and MPX-32 or the task's TSA, the task will not load. 
Memory between the end of the TSA and the start of the task is still allocated to the 
task and is available for use by the task. 

Syntax: 

ABSOLUTE [base] 

where: 

base is a hexadecimal logical address that is to be the base address of the task. 
This address is rounded up to the nearest 512 word boundary. If no base is 
supplied, a value of 40000(6) is used. 

Note: The CSECT origin is not effected by this directive. The transient area option on 
the CATALOG directive (TRA=X) has no effect when the ABSOLUTE directive is used. 
Multiple ABSOLUTE directives are not allowed. 

2.6.2 The ALLOCATE Directive 

A task is always allocated enough memory to accommodate a cataloged load module. 
ALLOCATE is used to increase the memory allocation for a task at execution time. 
Other means of allocating more memory are the $ALLOCA TE or TSM ALLOCATE 
commands, which are runtime-specific for a particular task and the M.GE service, used 
within a task, to obtain memory dynamically. 

The ALLOCATE directive used when cataloging a task gets additional memory every 
time the task is run, i.e., it is static. The allocation cannot be reduced at runtime or by 
dynamic service calls. 

For further description of memory allocation in the logical address space of a task, see 
Volume 1. 

Syntax: 

ALLOCATE bytes 

where: 

bytes specifies the number of additional bytes (in hex) to allocate to the task. 

Note: If the size of the operating system plus the size of the task plus the size of the 
allocate equals more than 128KW, the task cannot be loaded and an abort condition will 
occur. 

2-38 



( 

2. THE CATALOGER (CATALOG) 

The Cataloger produces load modules that are ready to activate in one of three task 
operating environments: real time, interactive, or batch. 

2.1 General Description 

To produce the desired load module, the user creates a job stream of job control 
commands and Cataloger directives. A careful distinction must be made between job 
control commands for the job that executes the Cataloger, and directives which will 
reside in the cataloged load module. 

The Cataloger creates a load module which contains the transfer address of the task, a 
Resource Requirement Summary Table, and relocation matrices, in addition to the 
program code. 

The load module resides in a permanent system file of the same name specified in the 
CA T ALOG directive. 

Assignment statements occurring between the $EXECUTE CATALOG command and the 
CAT ALOG directive cause the Cataloger to create entries in the Resource Requirement 
Summary Table (see the MPX-32 Technical Manual, Chapter 2) located in the load 
module file (see the MPX-32 Technical Manual, Chapter 6). Directives and assignment 
statements to the Cataloger are coded without the dollar sign ($). All directives must 
begin in column one of their respective line. 

A sample job stream follows: 

$JOB TESTCAT DALE} 
$ALLOCATE 28000 
$EXECUTE CATALOG 

A2 INP=SYC ~ 
A2 OUT =SLO, 100 
ALLOCATE 18000 
OPTION PROMPT 
CA T ALOG TEST 1 
$EOJ 
$$ 

Job Control Commands 

Directives which will be cataloged 
in load module TEST 1. 

A simple load module is illustrated in Figure 2-1. 

2-1 



N 
I 

N 

"T1 
~. 

OQ 
C ., 
(l) 

IV 
I 
0-
o 

() 

~ 
III -o 

OQ 
~. 

:::I 
OQ 

III 
i' o 
III 
0-

3: 
o a. c 
ro 

(Xl 

~ 
~ 
W 

I""l ,I 

ASSEMBLER 
OR 

COMPILER 
RUN 

(EXECUTE 
ASSEMBLE) 

~ 

LOAD MODULE 
INFORMATION 
DEFINED 

OBJECT 
MODULE 

-
-

1/.11111111111111111 
111111111111111111) -IIIIIIIIIIIIIIIIII/' 
'111111111111111111 
'111111111111111111 

OBJECT 
CODe 

· . . · . 
· . · . 

. . · . 
· · . . -· · . . 
· . · . 

LOAD MODULE ON 
DISC READY TO 
ACTIVATE ON MPX·32 

DEFAULT RESOURCE 
REQUIREMENTS 
DEFINED 

RELOCATION 
MATRIX 



2.1.1 Load Module Information 

The Cataloger ENVIRONMENT and CATALOG directives establish the following special 
characteristics for a task: 

Residency - a task defined as resident either remains in physical memory 
unless it aborts (RTM-compatible) or remains resident until it exits or aborts 
(MPX). In either case, it is not a candidate for swap to disc. Default is 
nonresident, i.e., a task is swappable. 

The task needs to execute in a special class of physical memory. E=requires 
Class E memory; must execute within the first 128KW of memory. H=requires 
high-speed memory; must execute in H or E. S=the task can execute in slow 
memory or in any other class of memory that is available; this is the default 
definition. 

Multicopying - the task can be active concurrently in several logical address 
spaces. The entire task is copied to physical memory each time it is 
activated. 

Sectioned Sharing - the task can be active concurrently in several logical 
address spaces. The CSECT area of the task is copied into physical memory 
once and a new DSECT area is established in physical memory each time the 
task is activated. DSECT areas are deallocated as sharers exit. CSECT 
remains allocated until all sharers exit. 

No Sharing - the task is unique. Only one copy of the load module can be 
active in one logical address space at a time (the default). 

Privilege - any task which accesses a privileged system service must be 
cataloged as privileged in order for the service to be executed. A privileged 
task is allowed to write into any area of memory in its logical address space, 
including the system area, and to execute the 32/75 privileged instruction 
set. Default is unprivileged. 

Base Priority - the priority (1-64) at which the task is executed if activated in 
a real time environment (by the OPCOM ACTIVATE or ESTABLISH command, 
another task, a timer, or an interrupt). If activated via TSM or in the 
batchstream, this priority will be overridden. 

Unless defined otherwise with the ENVIRONMENT directive, a task is: 

nonresident, 

unique, 

executable in any memory class available (S, H, or E). 

2-3 



If not specified with the CATALOG directive, the base priority of a task is 60 and its 
status is unprivileged. 

(For further description of multicopying and sharing, see Section 2.1.3.) 

The information on residency, priority, etc., is output by the Cataloger at the beginning 
of the main load module for a task so that it is available for the MPX-32 allocator and 
execution scheduler immediately upon activation. 

2-4 

{ '" 
'\._] 



2.1.2 Resource Requirements 

The resource requirements for a task include all files and devices used by the task: 

default assignments 

runtime assignments that override the defaults 

runtime assignments for required or optional files or devices that do not have 
default assignments 

dynamic assignments 

A task's default resource requirements, if any, are established by ASSIGN directives used 
when the main load module is cataloged. Runtime resources (required, optional, or 
overriding) are established by the user with ASSIGN directives when the task is activated 
(at runtime). 

Another type of resource requirement is for files or devices that are allocated 
dynamically by the task via M.ALOC service calls. See Volume 1, Chapter 7. 

A prerequisite for any blocked I/o used by a task is a blocking buffer, which the allocator 
establishes in the Task Service Area (TSA). (Files on disc and magnetic tape are assumed 
to be blocked unless you specify otherwise when using an ASSIGN directive or M.ALOC 
service call.) Files also require table entries in the TSA. 

The Cataloger preserves resource information on the default files and devices used by a 
task, including the number of blocking buffers and table entries that are required. At 
activation, runtime-assigned files and devices are allocated as specified (overriding file 
and device assignments are merged into the defaults), so that the appropriate memory is 
allocated for table space and buffers. However, if files and/or devices are allocated 
dynamically by the task, you must indicate the number of additional file table entries and 
buffers required. 

Cataloger FILES and BUFFERS directives are used to accoun;t for dynamic assignments. 
The FILES directive specifies the number of files and devices allocated dynamically (and 
thus the number of table entries to leave room for) and the BUFFERS directive specifies 
the number of blocking buffers required for blocked files or device media accessed 
dynamically. 

Resource requirements for shared tasks require special treatment because several 
concurrent sharers of the task can use varying runtime assignments that imply varying 
allocation of blocking buffers and file space. FILES and BUFFERS directives for 
cataloging shared tasks must reflect the maximum number of files and devices that can 
be assigned: default (or override), required, optional, and dynamic. This information is 
required by the Cataloger in order to ensure that the TSA (Task Service Area) for each 
sharer is the same size and that the DSECT section of the shared task begins at the same 
location in each sharer's logical address space. 

2-5 



2.1.3 Absolute Load Modules 

The Cataloger provides the capability for a user to build an absolute load module. An 
absolute load module requires no relocation by the loader thereby reducing the allocation 
time for the task. 

The ABSOLUTE directive instructs the Cataloger to resolve all relocatable addresses 
relative to the base address supplied by the user in the directive. The user is responsible 
for selecting a base address large enough to be beyond the TSA (task service area) for the 
task. The TSA is allocated after the end of MPX-32 and varies in size based on the 
number of files and buffers required in the task. 

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32 
changes. If there is an overlap between MPX-32 or the task's TSA and the absolute task 
itself, the task will be aborted during the loading phase. 

2.1.4 Sectioned versus Nonsectioned Tasks 

The Cataloger supports both sectioned and nonsectioned tasks. Nonsectioned tasks are 
allocated in a contiguous area in a user's logical address space (in effect, they are 
comprised of one large DSECT). You can catalog nonsectioned tasks as multicopied, and 
they will be copied into physical memory to support multiple concurrent activations; or 
nonsectioned tasks can be cataloged unique, so that only one activation - exit can occur 
at a time. Nonsectioned tasks cannot, however, be shared in the sense that sectioned 
tasks can be. 

Sectioned tasks use Assembler CSECT and DSECT directives to define pure code and 
data (CSECT) and impure data (user dependent) sections of the task. The Cataloger 
merges all CSECT's into a write-protected allocation in upper memory and all DSECT's 
into a writable allocation in lower memory just above the task's TSA (Task Service 
Area). Sectioned tasks can take advantage of the CSECT/DSECT sectioning to write
protect pure code and data, but the primary purpose of CSECT IDSECT is to support 
sharing. If shared, the CSECT of the task is copied into memory once and only the 
DSECT is recopied with subsequent activations. 

A sectioned task can be defined as shared, multicopied, or unique via an ENVIRONMENT 
directive. A nonsectioned task can be defined as multicopied or unique only. The default 
for any task is unique as described previously. 

Footnote: A task can be developed with CSECT and DSECT directives that are NOP'd 
for assembly, so that if use or size increases to a point where it is more efficient to use 
the 8KW or 2KW CSECT than to multicopy, the user can remove the NOP's from the task 

{-" 
\\~J 

and recatalog to have the Cataloger build the CSECT and DSECT areas. If using , 
CSECT IDSECT to protect pure code and data, the same memory allocation described for i~, 
sharing is made by the Cataloger. 

2-6 



( 

There are facets of memory allocation that should be considered in implementing 
CSECT /DSECT. The minimum allocation for a CSECT area is 8KW on a 32/7x and 2KW 
on a CONCEPT/32; DSECT is allocated in a separate map block along with the TSA. This 
means that the minimum space used for the task's DSECT is 8KW or 2KW, including TSA 
size. This allocation is required by the 8KW map block granularity of the 32/7x or the 
2KW map block granularity of the CONCEPT /32. If a task is less than 8KW or 2KW 
total, and would thus require only one 8KW or 2KW DSECT, multicopying and 
nonsectioning may allow more efficient use of memory. 

2.1.5 Segmented versus Nonsegmented Tasks 

Two types of load module can be part of one task. There is one main load module. The 
name supplied with the CATALOG directive for this module is the name used to activate 
the task, determine its status, etc. There can be any number of overlay load modules 
associated with a task, each constructed with a separate CATALOG directive. The main 
and overlay load modules reside in separate disc files and are linked to each other via 
system service calls within the object code. 

If a task is comprised of a main load module and overlay modules, it is segmented, or 
overlayed. If it does not use overlays, it is "nonsegmented". 

2.1.6 Object Modules and Load Modules 

Each load module is composed of one or more assembled or compiled 'modules' of object 
code. For purpose of this discussion, an object module is the product of assembling or 
compiling In' lines of source code terminated by an END directive or equivalent, and the 
source module is the source code that forms the object module. 

Object modules are normally named. The object module that contains a starting address 
for the task is defined as such by providing a transfer address that indicates where to 
begin execution. 

It is generated in the Assembler by providing the transfer address with an END 
directive. If more than one object module has a transfer address, the Cataloger takes 
the transfer address for the last object module cataloged as the transfer address for the 
module. 

Since an object module produced by an assembly or compilation is identical in format to 
any other object module, source modules for a task can be written in different 
languages. The object modules produced by assembly or compilation can be interspersed 
when they are cataloged into a task. 

Object modules are normally output to SGO by the Assembler or compiler. They can be 
accessed automatically for cataloging or they can be routed to a file and incorporated in 
a subroutine library. Object modules are retrieved by the Cataloger as described in 
Section 2.1.7. 

Note: The load module files created by CATALOG are the proper size and are file type 
CA. 

2-7 



2.1.7 Password-Protected Load Modules 

Read only (RO) password protection can be supplied for a load module file via the 
Cataloger PASSWORD directive. Or RO password protection may be supplied for a load 
module file by using the FILEMGR utility. If a load module file is RO protected, you 
must use a Cataloger PASSWORD directive when you catalog or recatalog the load 
module. 

If a task uses overlay load modules, each module may have a unique password. 

Password only (PO) protection should not be supplied for a load module file. The task 
will not activate. 

2.1.8 The Cataloging Process 

The Cataloger makes two passes through SGO, the user library (if assigned), and the 
system subroutine library. 

2.1.8.1 First Pass 

On the first pass, the Cataloger searches through the file or device assigned to SGO -
normally the temporary system file SGO. (See File Assignments.) It builds a table that 
includes all REF's and DEF's found in SGO object modules. A REF is output by the 
assembler or compiler when it encounters an EXT directive in the source. A DEF is 
output by the assembler or compiler when it encounters a DEF directive in the source. 

If the Cataloger finds a REF on SGO with no corresponding DEF, it goes to the user 
library. It adds DEF's it finds that match the REF's on SGO. It also adds any REF's it 
finds within the object modules that contain the DEF's it was looking for, to the REF's in 
the table. If it finds a REF in the user library with no corresponding DEF, or cannot find 
a SGO REF on the user library, it searches the system subroutine library. It adds DEF's 
it finds there that match the list of REF's it has built. It adds any REF's it finds within 
the object modules that contain the DEF's it was looking for, to the REF's in the table. 

The Cataloger now has a table that contains the names of all DEF's and REF's that were 
found in the order they were found (SGO, user library, system subroutine library). 

2-8 

o 

o 



2.1.8.2 Second Pass 

The Cataloger retrieves an object module for the first occurrance of each DEF. (SGO, 
user library, or system subroutine library.) It resolves all matching REF's to these 
DEF's. If it has found two DEF's with the same name, it takes the first object module 
that contains the DEF. (It notes duplicate DEF's on the listing output at the end of the 
Cataloger run.) If any REF's cannot be resolved to OEF's, they are also noted on the 
listing. Object modules are retrieved from the SGO in the order they are found. 

2.1.8.3 Common References 

The Cataloger follows the same procedure in the first pass for common block definitions 
and references. 

In the second pass, uninitialized common is allocated based on the largest area defined 
for a given block. Initialized common is allocated based on the size required by the first 
function code that initializes the block. 

Note that this 'common' is not Global (GLOBALOO-GLOBAL99) or DATAPOOL. Global 
and DAT APOOL areas are allocated separately in memory. This is common allocated 
within the task itself, e.g., within a FORTRAN BLOCKDATA subprogram and/or by 
COMMON op codes in the source. 

2.1.8.4 Included or Excluded Object Modules 

The INCLUDE directive can be used to specify object modules from a library to include 
in a load module, even though they are not referenced on SGO. These are added to the 
first pass REF's in the table built by the Cataloger. There is also an EXCLUDE 
directive, which specifies DEF's in a library to exclude, even though they are referenced 
on SGO. These are kept on the table and honored by not adding references to them in the 
first pass. 

2.1.8.5 Selective Retrieval from SGO 

The PROGRAM directive can be used to specify names of object modules to include from 
SGO. Since if no PROGRAM (or PROGRAM X) directive is used, all object modules are 
taken, this is a means of retrieving SGO object modules selectively for a load module. 
PROGRAMX excludes all object modules on SGO from a load module. 

2-9 



2.1.8.6 Symbol Tables (SYMTAB's) 

A symbol table is built for each load module that is cataloged. It is the table described 
previously with all references as resolved from the second pass. The symbol table is used 
if a segmented task is being cataloged. Any external references not resolved for one 
load module can be resolved when all SYMTAB's are present. SYMTAB's must be saved 
and restored when a segmented task is cataloged in stages. 

Symbols in the symbol table include all external references, all global symbols, and all 
program names. 

2.1.9 Allocation and Use of Global Common and DATAPOOL Partitions 

Global common partitions (GLOBALOO-GLOBAL99) named in the object modules are 
resolved directly to memory locations in system common defined via SYSGEN or the 
FILEMGR. How DATAPOOL is structured and resolved depends upon a DATAPOOL 
dictionary that the user creates with the Datapool Editor utility (DPEDIT). 

Labeled common blocks are identified as Global by the name "Global" and "Globaldd" 
where dd is two decimal digits from 00 through 99. When a common block with one of 
these names is encountered by the Cataloger, space is not allocated for it in the module's 
area. Instead, all references to the common block are linked to the core partition of the 
same name. Therefore, a Global common memory partition must be created before a 
program that references it can be cataloged. If the definition of the partition changes, 
the programs that reference it must be recataloged. 

DA T APOOL references in an object module are included in the table of external 
references built by the Cataloger and they are resolved to locations in the DAT APOOL 
area of system common according to the DATAPOOL dictionary supplied by the user (see 
File Assignments). 

The memory allocation unit on the 32/7x is 8KW and on the CONCEPT /32 is 2KW (one 
mapblock). Global and DATAPOOL are memory partitions which can be defined at 
SYSGEN or dynamically via the File Manager. In the latter case (dynamically), partitions 
must be allocated in 16 page (8KW or 2KW) increments. In SYSGEN, protection granule 
allocation is possible, providing the means to define multiple partitions within a 
mapblock; however the allocation unit for the task remains 1 mapblock. The unused 
partitions in a mapblock are write protected and are not included in the task's logical 
address space. 

For further description of Global common and DATAPOOL, see Volume 1. See also the 
DATAPOOL editor, Volume 2, Chapter 3. 

2-10 



( 

2.2 Files and File Assignments 

Figure 2-2 provides an overview of Cataloger input sources and output routes. The path 
taken by default if no special assignments are made for cataloging is shown with 
arrows. It should be noted that the assignments covered in this section are external to 
the task being cataloged and apply only to the cataloging process itself. Default 
assignments used by the task which is being cataloged (internal assignments) are made 
via Cataloger ASSIGN directives within the task as described in Section 2.6. 

JOB OBJECT OBJECT SYSTF1v1 USER DATA POOL 
FILE CODE CODE ON SUBROUTINE SUBROUTINE DICTIONARY 
Q\1 ON SGO FILE/ LIBRARY LIBRARY 
SYC DEVICE (MPXLIB) 

I I I 
IT'Xut 

-I I 

1 -" 

LOAD DUPLICATE/ PRINTER SYMBOL 
l\IODULE SUBSTITIJTE LISTING TABLE 
ON DI SC LOAD rvonULE MAP AND FILE 

ON CARDS ERRORS 

820644 

Figure 2-2. I/O Overview 

Job File - Contains Job Control Commands, including ASSIGN's, SELECT's, etc., and 
Cataloger directives for the job. Cataloging can be one of several parts of a job 
(including for example, compilation or assembly), or a single job using code stored on a 
file, device, or library. For the required sequence of Cataloger directives, see USING 
THE CATALOGER, Section 2.4. For sample job files used in cataloging, see Section 2.8. 

The alternative routes for reading the file to SYC (interactive and batch) are described 
in the File Assignment Table, Section 2.2.1, and Activation, Section 2.5. 

Object Modules - The result of a compilation or assembly. Object modules can come 
from SGO (same job as a compilation or assembly), from a permanent file or device 
medium produced during a compilation or assembly, from a system library file (MPXLlB), 
or from one or two user-built subroutine library file(s). 

2-11 



System Subroutine Library - A file named MPXLIB. If the SYSTEMS Scientific Runtime .• ( ... .-...••. ~ .. ~.\ .. 
Library has been purchased, it is delivered on magnetic tape and output to disc in the file _-' 
named MPXLIB. MPXLIB contains FORTRAN math subroutines and I/o formatting 
routines. These 'external' object modules can be accessed by object modules written in 
various languages, including Assembler. 

The user can add object modules (subroutines) to the Scientific Runtime Library or 
modify the library via the LIB ED utility program. The Cataloger searches MPXLIB by 
default (LIS=MPXLIB). (The directory for MPXLIB is on a file named MPXDIR.) The 
user can develop a library of user object modules via LIBED and assign it instead of 
MPXLIB. (See next description.) 

User Subroutine Library - A library of subroutines or programs (object modules) built by 
the user after compilation or assembly by using the LIB ED utility. The user can create 
as many subroutine libraries and associated directories as he needs. The number of these 
libraries and directories that can be assigned and accessed during a particular CATALOG 
session is controlled by a variable set when the CATALOG program was assembled. The 
maximum number of user libraries available is six, therefore, the maximum number of 
subroutine libraries and associated directories that can be accessed is seven, (six user 
libraries and the system library). If assigned to lfc LIS (and LID), a seventh user library 
is searched instead of the library named MPXLIB. The lfcs for the user libraries are Lnn 
(and Dnn), starting with LOI, etc. The subroutine libraries are searched in the lfc order 
LIB, LOI, L02, ••• ,L05, and LIS. The library associated with lfc LIB (and DIR) has the 
distinct characteristic of always being searched before the other user libraries (Lnn) and 
the system subroutine libraries. This provides the capability of establishing an 
installation-wide subroutine library as an extension to the system subroutine library. 

Note: Users who have acquired the source for the CATALOG 
program may wish to adjust the maximum number of user 
libraries for their particular requirements. The equated 
variable MAXULIB located at the beginning of the program 
contains the specified number. The CATALOG program is 
nominally distributed with a maximum of six user libraries. 

Users who have a universal subroutine library may wish to 
recatalog the CATALOG program· to set the lfc LIB (and 
DIR) to default to their subroutine library. 

DATAPOOL Dictionary - A file built via the DPEDIT utility that contains names and 
locations of DATAPOOL variables. Allows the Cataloger to find DATAPOOL locations 
in common memory when DATAPOOL variable names are used in the task being 
cataloged. More than one dictionary can be built with DPEDIT. It is up to the user to 
assign the appropriate dictionary for his task when it is cataloged. 

Load Module - A cataloged task that is ready for execution. The load module is normally 
output to disc as a system file; however, output can be suppressed or directed to cards or 
to a non-system file or device via Cataloger options. (See OPTIONS, Section 2.3.) 

Printer Listing; Load Module Map and Errors - These are described in the LISTINGS 
section. Can be suppressed. See OPTIONS. 

Symbol Table (SYMT AS) - This is the mechanism for resolving external references. Used 
when cataloging a task with overlays in separate Cataloger runs. 0 

2-12 



(' 

2.2.1 File Assignments Chart 

Table 2-1, columns 1-3, describes input files used by the Cataloger, their associated file 
codes, if any, and default assignments, if any. Columns 4-6 relate the Cataloger input 
files to previous use of other processors as applicable. Where it is feasible to override a 
default assignment, or to supply more files than the defaults accommodate, columns 3-6 
describe options. Output files are also included. 

2-13 



Table 2-1 
N 
I Cataloger File Assignments ..... 

-I=" 

Default and How Built 
Cataloger Optional (Previous 

Input/Output Logical Assignments Processor How Specified 
Description File Code for Catalolil'lC Assignment) for Cataloging Comment 

~ 

Object SGO Default: In assembly or compilation, Cataloger uses the SGO Compilation or 
modules from SGO=SGO default assignments for file associated with the Assembly: 
compilation object modules are: job for object code by SGO output is temporary •. 

.or assembly default. See "device" If you want, to retain 
CO=SGO (temp file for job) for S60. output and you are not 

going to catal~ or enter the 
6O=SBO (temp file output to object module(s into a 

card punch) library during the same 
job, ma.ce a permanent copy. 
See options next. 

To enter the object 
module(s) directly in 
a library, run L1BED. 
Default input assignment is 
from SGO (LGO=SGO). 

Option: In assembly or compilation, Change SGO assignment, 
SGO=filename change GO or BO assignment e.g., 

disc to a file, e.g., $ASSIGNI SGO=MYFILE 
$ASSIGNI GO=MYFILE or 

Use $SELECTF and $OBJECT, The object module(s) 
e.g., from. the file are read 
$OBJECT onto the SYC file 
SSELECTF MY FILE with the job (via 

$SELECTF) and 
automatically 
transferred by job 
control to SGO because 
of the $OBJECT directive. 

Option: Change Go assignment, e.g., Change or add assignment, The Cataloger accesses 
SGO=device ASSIGNJ GO=MT e.g., the specified device 

or $ASSIGNJ SGO=MT for object modules 
Use default 60 assignment to or 
card punch. Use $SELECTD and $OBJECT, 

e.g., The object module(s) 
$OBJECT from the device are 
$SELECm MT read onto the SYC file 

and transferred to SGO 
as in SELECTF above. 

0 n 
"--"J 0 



~ 
! 

........ ~ 

Table 2-1 (Cont'd) 

Cataio~er File Assi~nment! 

Default and How Built 
Cataloger Optional (Previous 

Input/Output Logical Assignments Processor How Specified 
Description File Code for Cataloging Assignment) for Cataloging Comment 

Object LIS LlS=MPXLlB ~assword],U Via LIB ED utility, where MPXLlB/MPXDIR is Object modules 
modules from default output assign- searched automatically (subroutines) for MPXLlB 
System ments for library object during Catalog, whether can come from 
Subroutine modules are: another assignment to Math Subroutine 
Library and LIB and D1R is made or Library, optionally 
Library LID LlD=MPXDlR ,password],U LlB=MPXLlB not. (See below.) with added user 
Directory D1R=MPXDlR object modules; or a 

or user can create and 
Option: user library as Original SUBLIB is option- name his own library 

User Library described below. tionally contained on of object modules when 
and related FORTRAN installation tape he used LIB ED and assign 
directory as Math Subroutine Library it. 

Object Option: Via LIB ED utility, where The specified user library 
modules from Lnn lnn=user library, user supplies his own LIB and directory will be 
user library LIB ,password],U and D1R output assign- searched during Cataloging 
and related LlB=user library, ments. in addition to the library 
directory. Dnn ,password],U and directory assigned to 

D1R LIS and LID. 
Dnn=user directory, 

~assword],U 
DIR=user directory, 

,password], U 

DATAPOOL DPD No default. If The DA T APOOL dictionary ASSIGN I DPD=dictionary The name of the 
variables DAT APOOL variables is built via the DPEDIT dictionary that 
used in used in object utility, where the DPD when the main load module corresponds to 
object modules, use: directive is used to is cataloged. variables referenced 
modules assign a file for the in the cataloged task 

DPD=dictionary dictionary. A device is must be supplied in 
not acceptable. the main load module 

of the task. 

Global N/A N/A Global common memory N/A The Cataloger 
Common Areas partitions are defined determines the 

via SYSGEN or the location of a GLOBAL 
N FILEMGR, with internal name and resolves 
I structure (position of references to its .... 
VI data within a common area) location in common 

defined entirely by the memory. 
user. 



tV 
I -Cl' 

Default and 
Cataloger Optional 

Input/Output Logical Assignments 
Description File Code for CataloginK 

Symbol Table N/A N/A 
u Input 

Symbol Table SYM No default. 
uOutput 

5YM·r" ...... J devmnc 

Job File SYC SYC=SYC 

Temporary ISY ASSICN] ISY =DC,200 
Symbolic 
Debug File 

o 

Table 2-1 (Cont'd) 

Cataloger File Assignments 

How Built 
(Previous 
Processor 

Assignment) 

Previous run of the 
Cataloger. See below. 

8y Cataloger. SYM assign-
ment must be made before 
using SYM option to build 
table. 

Work file built using 
EDITOR. 

Permanent file built 
using EDIT or MEDIA. 

Cards. 

Other device medium e.g., 
magnetic tape, where job-
file was copied from 
cards or a file via 
MEDIA. 

Interactively. See 
"AcceSSing the Cataloger". 

Internal file for 
Cataloger 

0, 
~ ) 

How Specified 
for Cataloging Comment 

Use the SYMTAB directive 
and specify the symbol 
table file with SELECT, 
e.g., 

SYMTAB 
SSELECTF SYMFILE 

U~ the SYM option of the 
CA T A LOG directive and 
assign a file or device 
to SYM, e.g., 

ASSKiNI SYM=SYMFILE 

EDITOR> 8ATCH 

EDlTOR>8ATCH iobfile For further 
description see 

or "Accessing the 
Cataloger". ?"'ATCH {D~} F"obfJle 

Same route shown for 
cards. 

ASSICN] 'SY=DC,200 Used to generate Symbolic 
Debug information during 
load module construction 

~,ce. 
r'~ , 
\~) 



N 
I 
>-
"'.J 

(j 

Input/Output 
Description 

Output 

Load Module 
File 

Duplicate or 
Substitute 
Load Module 
110 Carci 
Format 

Listing: 
Module Map 
and Errors 

Cataloger 
Logical 

File Code 

N/A 

SBM 

SLO 

Default and 
Optional 

Assignments 
for Cataloging 

" 

N/A 

Default of SBM=CP is 
specifi ed via the. 
CAR option on the. 
CAT ALOG directive. 

Option: 

Assign a file or 
device to SBM, e.g., 
SBM=fi1ename 

SLO=SLO,lOO 

Option: 

ASSIGN I SLO=filename 
ASSIGN3 SLO=devmnc 

(......., 
~ 

Table 2-1 (Cont'd) 

Cataloger File Assignments 

How Built 
(Previous 
Processor How Specified 

Assignment) for Cataloging Comment 

By Cataloger. Can be main In CATALOG directive, Output to a file can 
load module, or in seg- user specifies name of be suppressed by the 
mented task, an overlay the load module. This is NOP option on the 
load module. also the name of the file CATALOG directive. 

on which the Cataloger 
builds the load module. 

By Cataloger. By using the CAR option For duplicate or 
on the CA T ALOG command. substitute output, 
Card output can be CAR option must be 
redirected to a file or used. 
device other than the 
card punch by assigning 
a different device to 
the Ifc SBM, e.g., 

ASSIGN I SBM=filename 

By Cataloger. Outputs a Default output is to 100 
map which outlines struc- record SLO file, which is 
ture of load module and output to the device 
defines number of records assigned as system LOD. 
and errors, if any. For Output can be redirected 
further description, see to a file or device via 
Listings and Errors ASSIGN I or ASSIGN3 
sections. SLO=statement. 

Output of the module map 
can be suppressed by 
using the NOP option on 
The CATALOG directive. 



2.3 Options 

OPTION 1 

OPTION 19 

is used by the Cataloger to suppress the automatic subroutine library 
search for external references. Therefore, all necessary object 
modules must be explicitly specified via INCLUDE directives. 

is used by the Cataloger to include symbolic debug information which 
is placed at the end of the load module (Note - this does not affect 
memory requirements, it only increases disc usage). 

Other options for cataloging a load module are specified as parameters of the CATALOG 
directive. Their directives are: 

NOM suppress printing the load module map. 

Nap suppress load module output to the permanent system file 
named in the CATALOG command. 

CAR output the load module in punch card format to the file or 
device specified by the logical file code SBM. The file will 
be blocked. No EOF's are written until the end of the load 
module. 

Options for the task being cataloged can be specified with the OPTION directive (see 
Section 2.6.16). 

2.4 Using the Cataloger 

This discussion is broken into two major areas, one which describes cataloging concerns 
pertaining to a nonsegmented task (one load module, no overlays) and a second major 
area that describes the more complex concerns when a task is segmented. 

2.4.1 Cataloging a Nonsegmented Task 

For a description of how the Cataloger resolves external references and allocates 
common blocks, see Section 2.1.8. 

2.4.1.1 Job Organization 

The following organization of Cataloger and job control directives reflects all possible 
directives pertaining to a nonsegmented task. It flags directives that are optional by 
enclosing them in brackets. For detail descriptions, see individual commands in Section 
2.6. 

2-18 

o 



( 

The only Cataloger directive that is not optional is CATALOG. Directives shown 
between $EXECUTE CATALOG and CATALOG can be in any order, but they must 
precede the CATALOG directive for the main load module. EXCLUDE and/or INCLUDE 
should precede a PROGRAM or PROGRAMX directive. 

Directives in 
Appropriate 
Order 

[$ASSIGNnJ 

[
$OBJECT ~ 
$SELECTF filename 
$SELECTD devmnc 

$EXECUTE CATALOG 

ALLOCATE 

ABSOLUTE 

PASSWORD 

USERNAME 

FILES 
BUFFERS 

ASSIGNn 

ENVIRONMENT 

OPTION 

Function 

Supply override, optional, or additional assignments for 
cataloging. (See File Assignments Chart.) 

Can be used to get $OBJECT modules from a permanent file 
or from a device medium. Use only if creating a job file to 
run in batch. If interactive, use INCLUDE for this function. 

Activates the Cataloger. Required. 

Allocates additional memory for task at run time. 

Specifies an absolute origin for the DSECT. 

Required to establish or confirm password protection for the 
load module file to be cataloged. 

Required to establish that files used in default and dynamic 
assignments for the task being cataloged are located in a 
particular user directory, i.e., that they are not system 
files. 

Specifies number of dynamically assigned files and blocked 
files or devices used by the task. (See Section 2.1.2.) 

Supplies default assignments for task being cataloged. 

Defines task residency, sharability, multicopy, map size, or 
special memory class for task. 

Specifies default options for task (0-31). 

2-19 



CATALOG loadmod [privilege] [priority] [options] 

[EXCLUDE] 
[INCLUDE] 

,PROGRAM] 
LPROGRAMX 

2-20 

Supplies load module name. This is the name of both the 
task and the file on which the load module is output by the 
cataloger. Specifies if the task is privileged or not, and 
establishes its base priority 0-64). Can also establish 
output options. 

Used for special treatment of object modules on user library 
and system subroutine library. INCLUDE must be used if 
PROGRAMX is used. See command descriptions. 

Used for selective retrieval of object modules from SGO or 
to bypass SGO completely. 

( '" j 



(. 

2.4.1.2 Recataloging the Load Module 

When a load module is recataloged and the cataloging process is successful, the old file is 
deleted, and a new file is created with the same name, on the same disc as the old file. 

2.4.2 Cataloging a Segmented Task 

Overlays provide a means of segmenting tasks .for more efficient memory utilization. 
When it is impractical to have a large task in memory in its entirety, the task can be 
divided into a main load module and one or more overlay load modules. A segmented (or 
overlayed) task is brought into execution by activating the main load module. 

The programmer must allocate sufficient space for the worst case memory utilization of 
the overlays in his program when cataloging the main load module. This is done by 
summing the memory requirements for the largest overlay at each level and issuing an 
ALLOCATE directive for the proper amount. 

2.4.2.1 Job Organization 

The main load module in a segmented task is organized similarly to a nonsegmented task, 
with the exception that if a symbol table (SYMT AB) is required, a SYMT AB directive 
followed by $SELECT is used to retrieve It. A CATALOG directive is used for each 
overlay load module that is cataloged. The order of the CATALOG directives is 
significant. The CATALOG directive for the main load module must appear first. Low 
level overlay load modules are cataloged immediately after the main load module and all 
overlay load modules of a particular level are cataloged sequentially. The association of 
an overlay load module at one level with an overlay load module at a lower level is 
established by using the LINK BACK directive. These technicalities are described in 
more detail in subsequent sections. 

2-21 



Directives in 
Appropriate 
Order 

~ $OBJECT J 
{$SELECT filename } 

$SELECTD devmnc 

[$EXECUTE CATALOG] 

[PASSWORD] 

[ORIGIN] 

[LORIGIN] 

CATALOG loadmod 0 

[LINK BACK] 

[J:XCLUDE] 
[INCLUDE] 

[ PROGRAM] 
PROGRAM X 

2-22 

Function 

Can be used to get object modules from a permanent file or 
from a device medium to SGO. Use only if creating a job 
file to run in batch. If interactive, use INCLUDE for this 
function. Use here only if cataloging an overlay load 
module in a separate Cataloger job. 

Activates the Cataloger. Required only if cataloging an 
overlay load module in a separate Cataloger job. 

Required to establish or confirm password protection for the 
overlay load module file named with the following 
CATALOG directive. 

Establishes a new overlay origin for all load modules which 
follow up to next ORIGIN or LORIGIN directive. Does not 
establish new overlay level. 

Establishes new overlay level for all load modules which 
follow up to the next LORIGIN directive. Not required for 
lowest overlay level. 

Supplies load module name. This is the name of the file on 
which the overlay load module is output by the Cataloger. 
If it follows main module, it is taken as a low level 
overlay. All subsequent modules up to LORIGIN directive 
are at same level. 

Specifies associated overlay load module at lower level. 

Used for special treatment of object modules on user library 
and system subroutine library. INCLUDE must be used if 
PROGRAMX is used. See command descriptions. 

Used for selective retrieval of object modules from SGO or 
to bypass SGO completely. 

i: .', 0_",." 



( 

2.4.2.2 Overlay Levels 

Overlay load modules are accessed by the main load module and access each other via 
system service calls. An overlay level consists of one or more overlay load modules that 
do not reference each other internally and can thus be loaded into the same logical 
memory locations within the task. 

Low level overlays usually represent the overlays a main load module calls in after it is 
loaded. Higher level overlays which follow are associated with one of the lower level 
overlays. 

The simplest overlay structure consists of a single overlay level. In this case, the overlay 
modules share a single transient area. Each overlay, as it is accessed via a system 
service such as M.OLAY replaces the previous overlay in memory. 

MAIN 

At A2 A3 

820645 

Figure 2-3. Simple Overlay Structure 

2-23 



An example of the logical structure of a task with more overlays and overlay levels is {-" 
presented in Figure 2-4. This task consists of a main load module and seven overlay load G 
modules. The over lay load modules are grouped into two levels: A and B. Level A 
overlays are low level. Level B overlays are higher level. 

MAIN 

820646 ./ 

Figure 2-4. More Complex Overlay Structure 

2-24 



(~ 

HIGH 
UPPER BOUND 

B, 

LEVEL B ORIGIN 

( LEVEL A ORIGIN 

MAIN LOAD MODULE 

UPPER BOUND 

TSA 

LOW 

////IIJ/III)I/IZ UNUSED SPACE 

820650 

Figure 2-5. Default Memory Allocation for Overlays 

2-25 



The Cataloger ORIGIN (or LORIGIN) directives can be used to modify the overlay 
structure described previously. For example, a different origin can be set up for higher 
level load modules associated with A2 ("3, 84, and B5), so that space not being used when 
A2 is in memory can be used. The total program memory requirements are thus reduced 
and the programmer can lower the allocation amount in cataloging the main module. 
Figure 2-6 illustrates how the overlay area is modified. 

2-26 

o 

o 



.." --. 
to 
C , 
m 
N 
I 
m . 
~ 
0 
0-
-'. 
-t. 
-'. 
m 
0-

if 
3 
0 

~ 
):0 
--' 
--' 
0 
n 
OJ 
c-t .... 
0 
::s 
.." 
0 , 
0 
< m , 
--' 
OJ 
'< 
\11 

N 
I 

N 
"-I 

~ 

00 
N 
0 

I~ 

HIGH MEMORY 

LEVEL 80RIG 
MODIFIED FOR 
83·85 BY 
USING ORIGIN 
DIRECTIVE 

LOW MEMORY 

N 

• 

..-, 

r'1111111111. r'llllh 
VlIIIIIII/1. Vi//I/I 

85 84 83 82 

A2 

MAIN LOAD 
MODULE 

TSA 

VIIIIII/7/, -.--
'////1////1. 

8, 

~ 

A, 

UPPER BOUND 
S NOW MOVED DOWN 

LEVEL 8 DEFAULT ORIGIN 
ESTABLISHED BY USE OF 
LORIGIN DIRECTIVE, FOR 
8' ·85 

LEVEL A ORIGJN 

~ 



2.4.2.3 The Overlay Transient Area 

If the programmer wants his overlays to be in low memory, he can use the overlay 
transient area by specifying TRA=xxx on the BUILD or CATALOG directive. He must 
then use the ORIGIN and LORIGIN directives to set the origins for his overlays. 

2-28 

, I C.~~.' ,,',' 



( 

( 

2.4.2.4 Resolution of External References in Segmented Tasks 

This section is based on the description of the cataloging process in Section 2.1.8. The 
resolution of DEF's, REF's, and COMMON definitions and references in a task with 
overlays is basically the same as described in that section, with several additions to the 
order in which the table is constructed in the first pass. The order of search for external 
references in segmented tasks is described below. For the main load module: 

restored SYMT AB's, if any 

other object modules in the main load module, if any 

user library, if any (unless suppressed via $OPTION 1) 

the system subroutine library (unless suppressed via $OPTION 1) 

overlay load modules, beginning at the lowest level 

If the external reference is contained in an overlay load module: 

restored SYMT AB's 

main load module 

lower level overlay load modules associated with the current overlay, via a 
LlNKBACK directive, beginning at the lowest level 

other object modules within the current overlay load module 

user library, if any (unless suppressed via $OPTION 1) 

system subroutine library (unless suppressed via $OPTION 1) 

object modules in higher level overlay load modules associated with the 
current over lay load module 

Space for common blocks defined in the main load module is allocated with the main load 
module. The amount of space for each uninitialized block is the largest amount required 
in any load module that references it (main or overlay). 

If a common block is defined outside the main load module, space for it is allocated with 
the lowest level overlay load module that defines it. 

2-29 



If a common block is defined in two overlay modules at the same level, space for it is !( ....... --),. 
allocated in both overlay load modules and references to it in higher level overlays are .. _j 
resolved to one load module or the other, as applicable. 

If a common block is initialized with data, the size of the block is determined by the first 
occurrance of a definition that initializes the data, regardless of whether the same block 
is initialized with a larger value in any subsequent object modules or load modules. An 
overlay load module cannot initialize a common block that is defined in the main load 
module or an associated overlay load module. The overlay load module is only allowed to 
initialize common blocks it defines. 

2-30 

o 



2.4.2.5 Cataloging a Segmented Task in Stages 

The main load module can be cataloged in one session, with or without overlay load 
modules. Overlay modules can be cataloged in subsequent sessions. If the transient area 
size is not declared on the CATALOG directive for the main load module, a transient 
area is reserved by the Cataloger that is large enough to accommodate any overlay 
modules that are cataloged in the same run as the main load module. If overlay modules 
cataloged separately from the main load module require more space, an adequate 
transient area size must be specified when the main load module is cataloged. 

The mechanism used to resolve external references when load modules are cataloged in 
separate stages is the SYMTAB. The SYMTAB contains the definitions of all common 
blocks and all DEF's from the previous cataloging session. All REF's must be resolved 
when the SYMT AB is built. SYMT AB's created during the current session can be added to 
the SYMT AB file, if desired, so that SYMTAB's can be restored in subseque':lt runs. 

SYMTAB's are saved by assigning a file or device to lfc SYM and specifying the SYM 
option on the first load module being cataloged in the current session. They are restored 
by using the SYMTAB directive followed by $SELECT, to retrieve the above file or 
device. 

Common blocks which are defined in cataloged load modules are not reallocated when 
new load modules are cataloged. Common block sizes are not expanded as a result of 
definitions contained in new load modules being cataloged. 

References to Global Common and DATAPOOL are not affected, as these areas are 
(- allocated in a separate area of memory from the task. 

(~ 

2-31 



2.4.2.6 Recataloging with Overlays 

Care is required in recataloging some load modules and not others. Load modules whose 
sizes increase will end up with allocations that overlap the address spaces of load 
modules that are not being recataloged. In addition, resolution of external references 
and common blocks within the task can be affected. 

Overlap can be detected by examining the addresses of each load module, which are 
printed in the module's map (see Listings, Section 2.9). Overlap is indicated when an 
overlay's end address is greater than the beginning address of a higher level overlay or is 
greater than the beginning address of the main load module. 

Changing the size of the transient area changes the location of the main module in 
relation to the overlay modules. If the size of the transient area is changed, all 
previously cataloged overlay modules that reference the main load module must be 
recataloged. 

When a load module is recataloged, the resolution of addresses for DEF's in object 
modules and common blocks defined within the task may also change. As a result, 
references to the object modules and common blocks by other load modules are incorrect 
unless they are recataloged. Assume inter-module referencing for the task as illustrated 
in Figure 2-7. 

In the table at the bottom of Figure 2-7, if any load module(s) are recataloged, all other 
load modules which correspond to X's in the vertical column beneath the load module 
must also be recataloged, i.e., if the main load module is recataloged, Al and A2 must be 
recataloged. If A 1 and A2 are recataloged, all load modules must be recataloged. 

2-32 

{-),c, 
\~;! 

o 



MAIN 

I 
Al A2 

1 1 1 
81 82 83 84 I 85 

I 

( 
LOld Module Referenced 

Main Al A2 81 82 83 84 85 

Main X X 

Al X X X 

A2 X X X X 

81 X 

82 X 

83 X 

84 X 

85 X 

820652 

Figure 2-7. Recataloging Illustration 

2-33 



2.5 Accessing the Cataloger 

To access the Cataloger as part of a batch job, create a job file using the EDITOR, punch 
cards, or other media as described in Table 2-1. The job file can be read to SYC and the 
job acti vated in several ways: 

from the OPCOM console: 

" < Attention> " 

??BATCH \F,jobfile ( I D,devmnc\ 

from the OPCOM program: 

TSM> OPCOM 

??BATCH ~ F,jobfile ( 
I D,devmnc\ 

from the EDITOR: 

TSM > EDIT 

EDT> BA TCH [jobfileJ 

If the jobfile is the current EDITOR work file, issue just the SA TCH command. 

To activate the Cataloger and run on-line, use the TSM ASSIGN commands to make 
Cataloger assignments equivalent to those preceding the EXECUTE CATALOG command 
on a job file, then proceed to issue Cataloger directives. (SELECT and OBJECT 
statements are not available when running the Cataloger on-line.) 

TSM >CATALOG 
CAT> CAT ALOG loadmod privilege priority options 
CAT> etc. 

If there are no Cataloger commands involved in the cataloging task other than 
CAT ALOG, the command line and parameters shown entered above at the CAT prompt 
can be issued directly at the TSM prompt. 

2-34 

o 



c: 2.6.3 The ASSIGN 1 Directive 

The ASSIGN 1 directive is used to supply default file assignments for logical file codes 
used by the task being cataloged. Assignments for a task must be cataloged with the 
main load module. For a description of techniques used to set up logical file codes see 
Volume 1, Chapter 7. 

Syntax: 

ASSIGN 1 lfc=filename[:~~~~:~~,u 1 [lfc= ••. ] 
"u J 

where: 

lfc is a logical file code used in the task to denote a generic input or output 
source. 

filename is an 8-character maximum name of a permanent disc file to assign to the 
lfc. 

Anyone of the optional parameters following the file name may be entered 
in the order shown in the syntax statement. Commas separate options. If an 
option is missing, the comma must be supplied, as in: 

filename"U 

password is an 8-character maximum password for the disc file if it has been 
password-protected. 

U 

Examples: 

If RO protected, the password is required to write to the file. If PO, the 
password is required to read or write to the file. 

the file is optionally unblocked. Default: blocked. 

ASSIGN1 LlB=LlBRARY"U DIR=DIRECTORY"U 

ASSIGNl OT=OUTFILE IN=INFILE,MYPASS 

2-39 



2.6.4 The ASSIGN2 Directive 

The ASSIGN2 directive is used to supply default system file assignments to logical file 
codes. At runtime, an lfc assignment to a system file results in IOCS creating one of the 
types of files described below for use by the task: 

SBO System Binary Output. A type of temporary file created and used by IOCS 
for buffering output to the device defined at SYSGEN or via the OPCOM 
SYSASSIGN command as POD (Punched Output Device). Output from the 
user task directed to the lfc associated with SBO will be buffered and routed 
by IOCS to the POD. 

SLO System Listed Output. A type of temporary file created and used by IOCS 
for buffering output to the device defined at SYSGEN or via the OPCOM 
SYSASSIGN command as LOD (Listed Output Device). Output from the user 
task directed to the lfc associated with SLO will be buffered and routed by 
IOCS to the LOD. 

SYC System Control. A temporary system file associated only with jobs 
processed in the batchstream. (One SYC per job.) SYC is used for buffering 
input from the device defined at SYSGEN or via the OPCOM SYSASSIGN 
command as SIO (System Input Device). Tasks that are not designed to run 
solely in the batchstream should not make assignments to SYC. Batch tasks 
can use SYC to input data records. 

SGO System General Object. A system file associated only with jobs processed in 
the batchstream. SGO is a permanent file used by Job Control to accumulate 
object code. The SGO file exists until a job is complete, at which time it is 
deleted. User tasks designed to run only in batch can do I/o to the SGO file 
as described in Section 2.1.8. 

For further description of all the above system files, see Volume 1. 

2-40 

c 



( 

c 

Syntax: 

ASSIGN2 lfc= ~SBo,cardS 1 [lfc= .• .J 

where: 

lfc 

SBO 

cards 

SLO 

printlines 

SYC 

SGO 

S La, p r i n t lin e s 
SYC 
SGO 

is a logical file code used in the task 

System Binary Output file 

is the number of cards you expect to output as an object deck. 
Determines size of SSO temporary file required. 

System Listed Output file 

number of print lines required for listed output •. Determines size of SLO 
temporary file required. 

System Control file. Use only if task runs solely in the batchstream. 

System General Object file. Use only if task runs solely in the 
batchstream. 

2-41 



2.6.5 The ASSIGN3 Directive 

The ASSIGN3 directive is used to supply default device assignments for logical file codes 
used by the task being cataloged. It also assigns a temporary disc file (see Appendix A). 

Syntax: 

where: 

lfc 

devmnc 

blocks 

reel 

vol 

U 

Note: 

Examples: 

Tape: 

Disc: 

2-42 

ASSIGN3 lfc=devmnc l,blOCkS t [,U] [lfc= ••• ] 
,reel [,voI] \ 

is a logical file code used in the task 

is a device mnemonic of a configured peripheral device. See Appendix A. 

number of disc blocks (192 words) to be allocated for this file. 

specifies a 1-4 character identifier for the reel. This parameter is required 
in batch. This parameter is not required in TSM and if not specified, the 
default is SCRA (scratch). 

if multivolume tape, indicates volume number. Default: 0 (not multivolume) 

specifies the tape or disc is optionally unblocked. Default: Blocked 

There must be no embedded blanks within an lfc assignment. Commas must 
be inserted for all nonspecified options (see Examples). One or more blanks 
are the legal separator between one lfc assignment and the next. 

A3IN=M91000,SRCE"U OT=PT 

A3IN=DC,20 

0", , , __ i:',' 



(-

(-

2.6.6 The ASSIGN4 Directive 

The ASSIGN4 directive is used to associate one or more logical file codes used by the 
task being cataloged with an existing lfc assignment. This assignment will remain for the 
associated file or device even if the original assignment is deallocated. 

Syntax: 

where: 

lfc=lfc 

ASSIGN,! lfc=lfc [lfc=lfc] 

is a pair of logical file codes, where the first lfc is the new assignment and 
the second is the lfc already associated with a file or device in any previous 
ASSIGN directive (including ASSIGN4). 

Any number of lfc to lfc associations can be established. 

2.6.7 The BUFFERS Directive 

The BUFFERS directive is used to specify the number of blocking buffers required for 
dynamic assignments (with M.ALOC) used in a task. 

If the task is shared, specify the total number of blocking buffers it requires. (See 
Section 2.1.2.) 

Syntax: 

where: 

buffers 

BUFFERS buffers 

is the number of dynamic assignments requiring blocking buffers, or if a 
shared task, total blocking buffers required. 

If OPTION 19 is set, the number of buffers supplied is added to the 3 buffers 
required by the Debugger. 

2-43 



2.6.8 The CATALOG Directive 

The CAT ALOC directive is used to supply a load module file name. When cataloging the 
main module of a task, specifies the task's privilege, priority, and optionally, selects 
various output alternatives for the Cataloger. The name supplied for the main module is 
the name used to activate the task, determine its status, etc. There can be any number 
of overlay load modules associated with a task, each constructed with a CAT ALOC 
directive. The modules reside on separate disc files. The optional parameters can be 
specified in any order within the syntax statement. 

Syntax: 

CATALOG load mod [;g] [, TRA=size] [,priority H,NOM] [,Nap] [,CAR] [,SYM ] 

where: 

load mod is the name of a permanent disc file where the main or overlay load module 
is to be stored. 

P,U,O for the main module only, specifies P for a privileged task, U for an 
unprivileged task. If an overlay module, specifies O. Overlays assume the 
privileged or unprivileged status of the main load module. Default: 
unprivileged, main module. 

TRA=size used with main load module to specify number of bytes (in hex) to allocate 
for overlay transient area. Default is an area large enough to accommodate 
all overlay load modules cataloged in the same run as the main load module. 

priority 

NOM 

NOP 

CAR 

SYM 

2-44 

for main load module only, specifies base priority (1-64). Default: 60. 
Overlay load modules assume the priority of the related main load module. 
If an overlay module, do not specify priority. 

The priority at which the task is executed depends on how the task is 
activated (online, batch, or real time). If in real time, the task maintains its 
base priority as cataloged. If activated via TSM or in the batchstream, its 
priority changes to the SYSCENed priorities of either TSM or Batch. 

optionally inhibits printing a main or overlay load module map. 

optionally inhibits output of a main or overlay load module to the file 
specified as the load module file. 

optionally outputs the main or overlay load module on punch cards. Card 
output can be redirected to a different medium by assigning the file code 
SBM to the desired medium. (See Table 2-1.' 

saves the symbol table for a main or overlay load module on a device or 
file. This option is used if cataloging load modules of a segmented task in 
different runs of the CAT ALOC program. 1("· .. 

J 



( '-

, ~ 

Note: 

RTM parameters RT and BP are ignored, without reporting an error, thus RTM 
CATALOG directives will still work. 

Files whose names begin with the letters SYSG are loaded with a TSA address of 
X'38000'. This facilitates SYSGEN's remapping between host and target systems. 

2.6.9 The ENVIRONMENT Directive 

The ENVIRONMENT directive is used to establish residency, execution in a special class 
of physical memory (E or H) and/or sharing characteristics for a task. As described in 
Section 2.1.3, the entries with this directive supply information for the load module 
information area in the main load module. 

Unless defined otherwise with this directive, a task is: 

nonresident 

unique, i.e., not sharable, not multicopied 

executable in any memory class available (S, H, or E) 

Syntax: 

ENVIRONMENT RESIDENT 
[

'EJ [,SHARED] [,MAP2048] 
,H ,MULTI ,MAP8192, 
,S 

where: 

RESIDENT makes the task resident in memory (locked in core); it cannot be swapped. 

E 

H 

S 

SHARED 

MULTI 

execute in Class E memory only. If unavailable, delay execution until 
available. 

execute in Class H or faster memory. If both Class Hand E memory are 
unavailable, delay execution until one or the other is available. 

Note: if a 32/75 has no memory installed of the class requested, the first 
lower speed memory available is allocated to the task. 

Default: task is executed in any class memory available (H, S, or E). 

copies the CSECT area of a sectioned task into physical memory once and 
copies DSECT as needed for sharing. Use only with a sectioned task. 

multicopies the entire load module into physical memory as needed for 
concurrent activations. Can be a sectioned or nonsectioned task. 

Default: the task is not available for multiple concurrent activations. One 
copy of the load module can be active at one time in the system. 

2-45 



MAP2048 indicates map size of target system is 2KW. 

MAP8192 indicates map size of target system is 8KW. Default. 

2.6.10 The EXCLUDE Directive 

The EXCLUDE directive is used to exclude object modules in a library (system or user) 
from the load module being cataloged even though they are referenced in the object 
modules coming from SGO. 

Object modules included from a library during cataloging may also reference the 
excluded object modules. The references will be ignored and the object modules will 
remain excluded. 

All global symbols in an object module that are referenced by the program must be 
excluded for the object module to be excluded. 

For further description of object modules and the cataloging process, see Section 2.1. 

Syntax: 

EXCLUDE name [name] ••• 

where: 

name is the name of a global symbol in the object module. 

2.6.11 The EXIT Directive 

The EXIT directive is used to terminate Cataloger directive input. 

Syntax: 

EXIT 

2.6.12 The FILES Directive 

The FILES directive is used to specify the number of files required for dynamic 
assignments (with M.ALOC) used in a task. 

If the task is shared, specify the total number of files required. (See Section 2.1.2.) 

Syntax: 

FILES number 

where: 

2-46 

o 



( 

number 

2.6.13 

is an ASCII number of dynamic assignments or if a shared task, total logical 
file codes assigned. 

If OPTION 19 is set, the number of files supplied is added to the 5 files 
required by the Debugger. 

The INCLUDE Directive 

The INCLUDE directive is used to include object modules from a library (system or user) 
in a load module being cataloged even though they are not referenced in the object 
modules on SGO. If PROGRAMX is used to ignore SGO as an input source, INCLUDE 
must be used to retrieve object modules from a library. 

Syntax: 

INCLUDE name [name] ••. 

where: 

name is the name of a global symbol in the object module. 

2.6.14 The LlNKBACK Directive 

The LINK BACK directive specifies overlay load module(s) at lower leveI(s) for backward 
links when cataloging an overlay load module. (Forward links from lower to higher level 
overlay load modules are established automatically by the Cataloger.) Resolves 
references to object modules and common in the current load module with references to 
object modules and common blocks in the lower level overlay. (For further description, 
see Section 2.4.2.4.) 

Syntax: 

where: 

loadmod 

2.6.1.5 

LINKBACK load mod [loadmod] 

is the name of an overlay load module at a lower level. User can supply 
more than one name. 

The LORIGIN Directive 

The LORIGIN directive is used to establish a new overlay level. Can also establish an 
origin for this level. Default origin is above the largest overlay load module at the 
preceding level. LORIGIN need not be used for the lowest level of overlays, but must be 
used for all higher levels. 

2-47 



Syntax: 

where: 

X bytes 

loadmod 

2.6.16 

lORIGIN { X bytes} 
loadmod 

overrides the default origin of the modules at this level with specific offset 
from beginning of overlay transient area. Specified by 'X', one or more 
blanks, and the number of bytes in hexadecimal. 

specifies the override origin at the end of a specific overlay load module at 
the previous level. Does not have to be largest overlay at that level. 

The OPTION Directive 

The OPTION directive specifies up to 32 default options for the task being cataloged. 
Options 1-32 set corresponding bits (0-31) in the option word in the Task Service Area 
(TSA) of the task. 

When the task is activated, the task can use the M.PGOW service to return the contents 
of the TSA option word, check the bit settings, and take action as required. 

Options 1-32 can also be specified before a task is run interactively or in batch. The 
TSM or Job Control OPTION commands will override cataloged options 1-20. 

Syntax: 

where: 

n 

2.6.17 

OPTION n [,n] , ••• 

is a number from 1-32 which sets the corresponding bit in the TSA status 
word. 

or 

can be any of the following keywords: 

PROMPT 
DUMP 
LOWER 
IPUBIAS 
CPUONLY 

Set prompt option 
Set dump option 
Set lower case input option 
Set IPU bias option 
Set CPU only option 

The ORIGIN Directive 

'f' ), .' I 

,",J 

The ORIGIN directive establishes a new origin for overlay load modules which follow. 0,,:) 
Can be used to override the default origin for a set of overlays. (Default origin is above 
the largest over lay load module at the preceding level.) 

2-48 



Syntax: 

where: 

X bytes 

loadmod 

2.6.18 

ORIGIN { X bytes} 
loadmod 

overrides the default origin of the modules at this level with specific offset 
from beginning of overlay transient area. Specified by 'X', one or more 
blanks, and the number of bytes in hexadecimal. 

specifies the override origin at the end of a specific overlay load module at 
the previous level. Does not have to be largest overlay at that level. 

The PASSWORD Directive 

The PASSWORD directive supplies the password required to write to a load module file 
that already exists and is password protected. (See Section 2.1.7.) 

If a load module file is being created for the first time, can be used to supply a password 
for it. The file will be RO protected. 

The PASSWORD directive remains in effect only for the current load module. 

Syntax: 

where: 

password 

2.6.19 

PASSWORD password 

is the one to eight character password associated with the load module file 
(if any); if not password protected, can be used to supply a password. 

If no password is supplied, cancels the password previously associated with 
the load module file. 

The PROGRAM Directive 

The PROGRAM directive is used to specify object modules to include from SGO in a 
main or overlay load module. If omitted, all object modules on the file or device 
assigned to SGO are cataloged. (See also PROGRAM X, which is used to exclude all object 
modules on SGO from a load module.) 

Syntax: 

PROGRAM objmod [objmodJ 

2-49 



where: 

objmod 

2.6.20 

is the name of the object module to include. More than one name can be 
specified. 

The PROGRAMX Directive 

The PROGRAMX directive is used to ignore the contents of the file or device assigned to 
lfc SGO in cataloging a load module. An INCLUDE directive is required to get object 
modules from a library if PROGRAMX is used. (See INCLUDE.) 

Syntax: 

PROGRAMX 

2.6.21 The SYMTAB Directive 

The SYMTAB directive is used when cataloging a segmented task in phases or when 
recataloging a segmented task. Following SYMT AB, a SSELECT job control statement is 
used to specify the name of a file or device assigned to lfc SYM in a previous run. (The 
SYM option must also have been used with the CATALOG directive at the previous 
session.) On the SYMT AB, the Cataloger has collected the names of all common blocks, 
DEF's, and REF's used previously. 

For further description of SYMTAB use, see Section 2.4.2.5. 

Syntax: 

2.6.22 

SYMTAB 
$SELECTF filename 
$SELECTD devmnc 

The USERNAME Directive 

The USERNAME directive establishes usernames for default files or dynamically assigned 
files used by the task being cataloged. If not used, files are expected to be system files. 

Syntax: 

USERNAME username [key] 

where: 

username is the one to eight character username establishing the directory in which 
files are located. Username is normally the same as the owner name used to 

o 

logon to MPX, or can be any other owner name/user name from the M.KEY 0: 
file. 

2-50 



key 

2.7 

CTOl 

CT02 

CT03 

CT04 

CT05 

CT06 

if a user key is required to logon, it is also established in M.KEY. Supply the 
valid key for the above user name/owner name. 

Errors 

Physical end-of-file encountered on subroutine library. The lfc of the library 
in question is displayed. This results from the library being updated by 
another user while it is allocated by the Cataloger. 

Load module file specified with CATALOG cannot be allocated. 

Unrecoverable I/O error encountered on the DATAPOOL dictionary file 
assigned to DPD. 

Listed output space is depleted and additional SLO space cannot be 
allocated. 

Unrecoverable I/o error on file or device assigned to SBM for symtab output. 

An error occurred during the cataloging process and the reason is described 
in the SLO output. 

Below are the error messages output to SLO prior to the CT06 abort. 

UNABLE TO DELETE LOAD MODULE, M.DELETE ERROR STATUS IS xx. 

See the MPX-32 Reference Manual Volume 1 M.DELETE section for 
further details. 

UNABLE TO CREATE LOAD MODULE, M.CREATE ERROR STATUS IS xx. 

See the MPX-32 Reference Manual Volume 1 M.CREATE section for 
further details. 

SYMBOL TABLE OVERFLOW 

Allocate more memory for CATALOG to execute in. 

UNDEFINED EXTERNAL "exname" REFERENCED IN "modname" 

The program element (modname) references an external symbol 
(exname) that cannot be found in the SGO file or any of the subroutine 
libraries. 

NO DATAPOOL CORE PARTITION DEFINED 

A datapool partition must be defined in order to use datapool. 

VALID DATAPOOL DICTIONARY FILE NOT ASSIGNED 

Assign the datapool dictionary to lfc DPD. 

2-51 



2-52 

UNDEFINED DATAPOOL "8-char name" 

Datapool item could not be found in the datapool dictionary. 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - OUT OF SEOUENCE 

Absolute origins are not supported in MPX-32. 

PROGRAM "8-charname", OBJECT RECORD X'xxxx' - CHECKSUM ERROR 

Absolute origins are not supported in MPX-32. 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ABSOLUTE ORIGIN 

Absolute origins are not supported in MPX-32. 

PROGRAM "8-char name", OBJECT RECORD X'xxxx" - BOUND ERROR 

Bounding value must be between 0 and 32. 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - UNASSIGNED 
FUNCTION CODE 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - ILLEGAL COMMON 
ORIGIN 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - REFERENCE TO 
UNDEFINED COMMON BLOCK 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - GLOBAL COMMON 
INITIALIZE 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - PREMATURE END
OF-FILE 

PROGRAM "8-char name", OBJECT RECORD X'xxxx' - DATAPOOL 
REFERENCE OUT OF RANGE 

MULTIPLE TRANSFER ADDRESS IN MODULE "8-char name" 

MULTIPLY DEFINED EXTERNAL "8-char name" 

*ERROR IN FIELD x: ILLEGAL DIRECTIVE* 

*ERROR IN FIELD x: ILLEGAL BLANK FIELD* 

*ERROR IN FIELD x: ILLEGAL ENTRY* 

*ERROR IN FIELD x: EXCESSIVE ASSIGNMENTS* 

*ERROR IN FIELD x: MISSING DIRECTIVE* 

*ERROR IN FIELD x: ILLEGAL FILE NAME* 0_".·'···'\· i 



( 

( 

2.8 Examples 

Example I - Cataloging a nonseg mented task. Note that although the CATALOG 
directive BP parameter from RTM is kept, it will be ignored by MPX-32. The ability of a 
task to run in a particular environment is not a function of cataloging. See Volume 1. 

$JOB CATI FADEN 
$OBJECT 
(Object) 
$EXECUTE CATALOG 
CATALOG MODULE BP U 

$EOJ 

(Object modules to be cataloged.) 

(Task is unprivileged; entire contents of the 
SGO file are cataloged.) 

Example 2 - Cataloging a segmented (overlaid) task. This sample produces the load 
modules in Figure 2-6. 

$JOB CAT2 JAN 
$OBJECT 
(Object) 
$EXECUTE CATALOG 
ASSIGN2 A=SLO,250 
ASSIGN2 B=SYC 
ASSIGN3 C=DC,500 
CATALOG MAIN 
PROGRAM PROGA 
CATALOG Al OV 
PROGRAM PROGB 
CATALOG A2 0 
PROGRAM PROGC 
LORIGIN Al 

CATALOG Bl 0 
LINK BACK Al 
PROGRAM PROGD 
CATALOG B2 0 
LINK BACK Al 
PROGRAM PROGE 
ORIGIN A2 

CATALOG B3 0 
LINK BACK A2 
PROGRAM PROGF 
CATALOG B4 0 
LlNKBACK A2 
PROGRAM PROGG 
CATALOG B5 0 
LlNKBACK A2 
PROGRAM PROGH 
$EOJ 

(Object modules to be cataloged.) 

(Establishes new overlay level and an origin at 
the end of overlay At) 

(Links over lay B 1 to lower level over lay AI) 

(Establishes overlay orIgm at the end of 
Overlay A2; does not change overlay level) 

2-53 



Example 3 - Cataloging a main load module with no linkage to overlay load modules. 

$JOB CAT3 TERI 
$OPTION 5 (Routes load module to an SGO file) 
$EXECUTE FORTRAN 
(Source) (Programs to be cataloged) 
$EXECUTE CATALOG 
ASSIGN2 AB=SLO, 1 00 CD=SBO,50 
ALLOCATE 1000 (Allocates 1000 additional hexadecimal bytes 

of memory for task) 
ASSIGN! XY=AFILE 
CATALOG MODULE2 TRA=500 P 61 

$EOJ 

(Overlay transient area is 500 hexadecimal 
bytes) 

Example 4 - Cataloging overlay load modules with no link to main load module 

$JOB CAT4 BATMAN 
$OBJECT 
(Object) 
$OPTION 5 
$EXECUTE ASSEMBLE 
(Source) 

$EXECUTE CATALOG 
CATALOG OVERLAY 1 0 
PROGRAM PROGA 
CATALOG OVERLA Y2 0 
PROGRAM PROGB 
$EOJ 

(Object modules to be cataloged) 
(Routes output to SGO File) 

(Produces object modules to be cataloged on 
SGO) 

Example 5 - Cataloging with a user library 

2-54 

$JOB CAT6 ROBIN 
$OBJECT 
(Object) 
$ASSIGN 1 DIR=ULIBDIR"U LIB=ULIB"U 
$ASSIGN 1 SYM=SYMFILE (File for SYMTAB output) 
$EXECUTE CATALOG 
ASSIGN2 l=SYC 2=SLO,1000 

(Default assignment for MAINSEG) 
CATA MAINSEG TRA=l520 ",,,SYM 

(Note that commas are used to get default 
parameters for priority, NOM etc.) 

EXCLUDE OVlSUB (OV2SUB is referenced by object modules in 
MAINSEG but is to be included in OV 1.) 

INCLUDE MAINSUB (MAINSUB, referenced by object modules in 
OVI but not by object modules in MAINSEG; is 
to be included in MAINSEG.) 

CATALOG OVI 0 
INCLUDE OVlSUB 
PROGRAM X 
$EOJ 

(OVI consists only of OVlSUB) o 



( 

Example 6 - Cataloging overlay load modules linked to main segment 

$JOB CAT7 OWNER 
$OBJECT 
(Object) 
$EXECUTE CATALOG 
SYMTAB (Restores SYMT AB Saved in Example 5 for 

Linkage to MAINSEG to OV2 and OV3.) 
$SELECTF SYMFILE 
CATALOG OV2 0 
PROGRAM OV2MAIN OV2SUB 
CATALOG OV3 0 
PROGRAM OV3MAIN 
$EOJ 

2. 9 Listings 

Sample load module map. Not supplied. 

2.10 Creating RTM Tasks on the MPX-32 System 

The RTM Cataloger is available on MPX-32 systems for users who want to take 
advantage of the program development capabilities of MPX-32 to produce programs for 
systems running under an RTM system. 

The name of the alternate Cataloger is R TMCA TL. 

2.10.1 Assembling RTM Object Modules 

MPX-32 will accept most Call Monitor (CALM) instructions in a form that is 
syntactically and functionally equivalent to RTM CALM's. Thus, source code that uses 
CALM's can be built to run on RTM or MPX-32. If the code is to run on MPX-32, several 
CALM's require modification. If the code is to run on RTM systems, make no 
modification. See the RTM Reference Manual for RTM CALM descriptions and the 
MPX-32 Reference Manual, Volume 1, Chapter 8 for exceptions related to MPX-32. 

Also note that although much of the source code for RTM is compatible with MPX-32, 
the Communications Region (C.'s) and Task Service Area (T.'s) are constructed 
differently in the two systems. Thus, some coding sequences will not work on both 
systems correctly and others will. Two different versions of the source code may be 
required, one to run on each system. In some cases, the same source assembled against 
the RTM macro library (M.RTMMAC) for RTM systems and against the RTM-MPX 
compatible library (M.MACLIB) for MPX-32 systems will however, work. 

The MPX-32 Assembler allows users to expand RTM macro calls by using the RTM Macro 
Library as follows: 

, 

$ASSIGNI MAC = M.RTMMAC"U 

This is the same file called M.MACLIB on an RTM system. 

2-55 



2.10.2 Running RTMCATL 

See the R TM Cataloger description in the R TM Reference Manual, for logical file codes 
and assignments which apply to using RTMCA TL. 

FORTRAN programs require an appropriate runtime library for cataloging. Subroutine 
libraries and directories normally used on an R TM system for cataloging (SUBLIB and 
SUBLlBD) must be available to run RTMCATL successfully. They are dynamically 
assigned to logical file codes LIS and LID by the RTM Cataloger. 

RTMCATL is accessed just like CATALOG (see Section 2.5). Where the CATALOG 
directive is shown with MPX-32 parameters, use the CATALOG directive and the RTM 
syntax shown in the RTM Reference Manual. 

2.10.3 Semantic Differences 

Note that in RTM documentation, the term program applies to both the separate object 
modules produced in an assembly or compilation and the output of the Cataloger (an 
accumulation of one or more object modules). 

In MPX-32 documentation, the word program seldom appears, and is replaced by the 
terms object module, load module, and task. For clarification of how MPX-32 
documentation uses these terms, see Section 2.1.5. 

MPX-32 also uses the terms segmented and nonsegmented to differentiate between tasks 
with overlays (segmented) and tasks without overlays (nonsegmented). See Section 2.1.4 
for clarification of these terms. 

2.10.4 Transporting the Cataloged Task to an RTM System 

The MPX-32 File Manager (see Section 6 of this volume) can be used to copy the 
cataloged load module file to magnetic tape and the R TM File Manager (see the R TM 
Reference Manual) can be used to copy the load module file to an R TM system. 

2.10.5 RTMCA TL Load Modules Cannot be Used on MPX-32 Systems 

Tasks produced with the special Cataloger will not run correctly on the MPX-32 system. 
They do not have the same load format as MPX-32 tasks. 

2-56 

( ...... ,. 
!' "'# 



3. THE DAT APOOL EDITOR (DPEDIT) 

DATAPOOL is a memory partition defined either at SYSGEN or via the File Manager 
utility (FILEMGR). The DATAPOOL partition is structured via DATAPOOL dictionaries 
that are built and maintained via the DATAPOOL Editor (DPEDIT). DPEDIT provides the 
ability to add, change, delete, and equate variables in an existing dictionary or build a 
new dictionary. 

3.1 General Description 

With most common partitions (Global Common 00-99, for example) a task must define all 
locations of the common partition to use anyone location. The size defined for each 
location must also be consistent across tasks which access the memory partition. Thus to 
change any location in a common partition (other than DATAPOOL), the source for all 
tasks which access the partition must be modified to reflect the new sequence and/or 
size of all variables when one changes. (Such tasks must then be reassembled and 
recataloged.) 

DAT APOOL and DAT APOOL dictionaries provide the ability to reference memory 
locations symbolically by name and to define only the locations actually used by task. 

With DA T APOOL, if a variable is changed, it is changed once in a dictionary and all tasks 
which reference the partition are simply recataloged with the modified dictionary. (If 
multiple dictionaries are used, their modification depends on whether they reference 
DATAPOOL locations whose offset would be affected by the change. The user can, if 
desired, group variables into different offsets from the beginning of the DA T APOOL 
partition so that tasks which are not related need not be concerned with a redefined 
location.) 

3.1.1 Multiple Dictionaries 

Having multiple DATAPOOL dictionaries for a single DATAPOOL partition provides the 
ability to let the DATAPOOL dictionary act as a translator. For example, if one 
dictionary defines the variable A as a 1 word offset from the beginning of DATAPOOL 
partition and a second dictionary defines the variable D as the same offset, A and D 
become equivalent values for the tasks which use the dictionaries. Multiple dictionaries 
also allow the user to selectively access locations by communicating tasks. For example, 
Task A provides 1 byte of status, Task B provides a second byte, Task C provides two 
more bytes, and Task D's dictionary allows it to pick up all four bytes of status. By 
providing a separate dictionary for each task, the user ensures that a task cannot modify 
a location not defined in it's dictionary. 

In summary, via DAT APOOL dictionaries, the user has the ability to structure and access 
DATAPOOL in a number of ways, depending on the needs of tasks which communicate 
with each other. The reader is also referred to Volume 1, Chapter 2 for a description of 
various intertask communication features available with MPX-32, including run requests 
and messages. 

3-1 



3.1.2 Static versus Dynamic DATAPOOL 

SYSGEN can be used to permanently allocate memory specified for the DATAPOOL 
partition in protection granule increments. SYSGEN marks the allocated protection 
granules as unavailable for outswap and creates an entry defining the partition in the 
System Master Directory (SMD). 

Alternatively, the File Manager CREATEM directive can be used to create a DATAPOOL 
memory partition. A DATAPOOL partition defined via CREATEM is allocated 
dynamically when required by a task. Whereas a DATAPOOL partition created via 
SYSGEN is defined in protection granules, a DATAPOOL partition created via the 
FILEMGR is 8KW minimum on a 32/7x and 2KW on a CONCEPT/32. DATAPOOL cannot 
be created via both utilities. If SYSGEN is used, CREATEM cannot be used for 
DA T APOOL, and vice versa. 

For dynamic allocation and deallocation, MPX-32 has the ability to generate multiple 
DATAPOOL map block(s) into more than one logical address space. If created in the 
FILEMGR, there can be more than one physical copy of DATAPOOL in memory at a 
time, depending on the association of tasks that access it simultaneously. Physical space 
is not taken up permanently (as it is with a SYSGEN-created DATAPOOL partition), thus 
it is reasonable to have multiple DATAPOOL partitions. Each task structures and shares 
a given DATAPOOL partition via a DATAPOOL dictionary. All tasks which access the 
same 'DATAPOOL' do so by specifying the same dictionary during cataloging and by using 
M.SHARE and M.INCL. 

For further description of the use of system common areas such as DATAPOOL, see 
Volume 1, Chapter 2. 

3.1 •. 3 DPEDIT Directives 

Directive Function 

/DPD Assigns the DAT APOOL directory a new permanent file name. 

/ENTER Precedes data records. Data records are the mechanism for 
adding, deleting, or changing symbols in the DATAPOOL. 

flOG Provides audit trail listing of all elements in the DATAPOOl 
directory. 

/REMAP Reuses the DATAPOOl partition by rebuilding from the /SAVE 
directory entries and hashing them into the DA T APOOl 
directory. 

/SAVE Preserves binary contents of each active entry in the 
DATAPOOl directory. 

/VERIFY Verifies DAT APOOl elements in the directory. Assures proper 
bounding, checks for duplicate entries, corrects improper 
relative addresses, and provides error flags. 

3-2 



C··".-· 
/ 

3.1.4 Input Data Format 

Data records are the means of structuring a DAT APOOL dictionary. They are built in 
80-byte card image format and are used to add, delete, or change DATAPOOL symbols. 

The str:ucture of a data record is shown in Figure 3-1 and described in this section. 

All fields of the data record except the SOURCE and. DESCRIPTION fields must be left
justified and contain no embedded blanks. The VARIABLE SYMBOL field is used to 
contain the one- to eight-character (ASCII) name of the symbol to be added, deleted, or 
changed. The function to be performed is specified by the U field. 

The U field specifies add by a blank, delete by a minus sign, or change by an asterisk. 

The add function must include the fields up to and including the BASE SYMBOL field. 
The remaining fields are optional. A symbol can be added to the dictionary if it has not 
been previously defined in the dictionary and if its address is within the range of the 
DATAPOOL memory partition. If the PRECISION option is specified, address bounding is 
verified before adding the symbol to the dictionary. 

The delete function utilizes only the VARIABLE SYMBOL and U fields. The remaining 
fields are ignored. A symbol can be deleted only if it is not used as a base. If the symbol 
to be deleted references a base, the responsibility count for the base symbol is 
decremented. Responsibility count is the number of times the symbol is used as a base 
for other symbols. 

The change function must include the VARIABLE SYMBOL and U fields. The remaining 
fields are optional. All fields of a symbol can be changed if the symbol is not being used 
as a base. If the symbol being changed is used as a base, no changes can be made in the 
BASE SYMBOL or DISPLACEMENT fields. 

Each column on the data record which is blank results in no change to the corresponding 
column of the original specification; a column which contains a number sign (/I) causes 
the corresponding column of the original specification to be blanked; and a column which 
contains any other character results in a replacement of the corresponding column of the 
original specification. 

Note that the change function is column oriented. When an entire field is to be replaced, 
the high-order columns of the field should be padded with number signs (II) in order to 
blank out unwanted characters from the original specification. For example, the BASE 
SYMBOL field should be padded with number signs (II) when it is to be entirely replaced 
by a new symbol which has fewer characters than in the original BASE SYMBOL field. 

The E field, which equates symbols with base symbols, must contain an 'EQU'. Any other 
character string is invalid. 

The BASE SYMBOL field is used in conjunction with the VARIABLE SYMBOL field and 
the E field. The base symbol referenced must have been previously defined by the 
DATAPOOL dictionary. This field may optionally contain a dollar sign (S) which 
indicates location 0 of the dictionary. 

3-3 



The DISPLACEMENT field modifies the base symbol location if a plus sign (+) is inserted 0' ",' 
in column 22. Absence of the plus sign (+) in column 22 causes the displacement to be " 
ignored. 

The purpose of the T field is for user documentation of symbol type, but if used, must 
contain either E, F, I, or L. 

If the P field contains L, B, H, W, or D, the specified boundary will be verified against 
the actual symbol address to ensure proper bounding. 

The purpose of the D field is for user documentation of array dimensions, but if used, 
must contain decimal integer(s}. 

The SOURCE and DESCRIPTION fields provide for user documentation. The SOURCE 
field provides a User Descriptor Area to identify the originator of the symbol. An 
asterisk in the first column of the DESCRIPTION field will cause a page eject during a 
LOG ALPHA. An asterisk in the second column of the DESCRIPTION field causes a page 
eject during a LOG relative function. The remaining columns of the DESCRIPTION field 
can be used for comments. 

3-4 

o 

o 



( 

- -@:I • I 

I&.MII . -.-. "'-
[I] +---....1 
10&1.-'-
I lASE SV..aL I +-__ -l 

I·OC ........... ~I _ ...... -

-

I D'SPLACEMENT 1 .... -------...... 

·H, ,. ' .... .0.;_..,.. 
• Dcoi_I .... ·Dcoi ___ 

·Dcoi_Dc ......... 

II 

II 
II 
I I - -

I 

"------.,;..' -+@J 

L....-______ ... !!J 

L....-----------+G] 

1IIOT1l: "_DtIPLACUdNT _Ic.-Hlcll, ' ..... 1+1 __ ...-__ 221, 

~ w-_ 0-_ H-__ 

1-"'" 
L - ... 

~ 
1· .... -
e·F_ 
F·Fi .... 
L· ....... 

Figure 3-1. Datapool Editor Input Data Format 

"II! 

. 

820647 

3-5 



3.1.5 Dictionary Records 

Figure 3-2 shows the format for a OAT APOOL dictionary entry built by the OAT APOOL 
Editor. The dictionary entries are used by the Cataloger and loader to resolve 
references to DAT APOOL symbols within a task s logical address space. When a task is 
cataloged, the user specifies which OATAPOOL dictionary to use by assigning the 
dictionary file to the logical file code DPO. 

3-6 

WORD I DATAPOOL EDITOR INl'UT DATA IMAGE CIO aYTES) I 
1·20 .. _____________________________ ...... 

21 I ZERO I RELATIVE ADDRESS I 
" I ! , I J I ! ! I , ! ! , ! ! ! ! I I I I ! I ! I ! I I , 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 2~ 26 272M ?'l '" 'll 

22 

23 I I , , , ! ! , ! I ! R~SEtV~D, , , , , ! ! ! , ! I , , S,TA;US, ! I I 
012345678 9 1011121314151617181920212223242526272829~31 

DICTIONARY ENTRY ACTIVE (SETI + t 
COLLISION ENTRY OCCURRED AT THIS ENTRYISETI ~ 

24 I RESERVE~ I 
! I I I ! ! I J ! I I I I ! ! ! ! ! I ! ! I ! ! I I I I J I I 

o I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 10 11 

Figure 3-2. Datapool Dictionary Entry Fonmat 

Figure 3-2. Datapool Dictionary Entry Format 

820648 

o 



( 

3.2 Files and File Assignments 

Files required by DPEDIT are described in this section. 

3.2.1 The Input File (SYC) 

The input file includes both DPEDIT directives and the data cards described in the 
previous section. Data cards follow the DPEDIT ENTER directive. The logical file code 
for input is SYC. The default assignment is ASSIGN2 SYC = SYC. 

3.2.2 The DATAPOOL Dictionary (DPD) 

The user must create a permanent file space for the DAT APOOL dictionary via the 
FILEMGR before running DPEDIT. When the dictionary file is created by the user, its 
contents are initialized to zeros. The size of the file created should be sufficient to 
contain twice the number of symbols which will be defined in the dictionary. The blocks 
are constructed with eight records per block. To determine the size of the file to be 
created, double the number of entries and divide by eight. The minimum allowable size 
is five blocks. 

The dictionary file for output is associated with the logical file code DPD with an 
ASSIGNI unless you need to produce more than one version of the dictionary, in which 
case, the DPD directive is used to switch from the assigned file to subsequent files. See 
Section 3.2.4. 

3.2.3 Audit Trail and Error Listings (LO and ER) 

As DPEDIT processes directives, it produces one line of listed output for each operation 
it performs. Any operations that produce errors are listed to a separate file or device. 
The lfc for the audit trail is LO. The lfc for the error lines is ER. 

Defaults: 

LO=SLO 
ER=SLO 

All listed output can be produced on one file or device by using an ASSIGN4 to equate the 
two file codes. 

3-7 



3.2.4 Save and Remap Files (OT and IN) 

The REMAP directive can be used to restructure an existing D AT APOOL dictionary that 
has been saved (via the /SAVE directive) from a previous DPEDIT run or in the current 
DPEDIT run. 

The file or device to use for /SA VE is assigned to lfc OT. The file or device to use when 
this file is remapped is assigned to lfc IN. Before a remap, use the DPD directive to 
assign a different file or device for DATAPOOL dictionary output. Or, the name of the 
file can be specified with /REMAP. If the assignment is not changed, the existing 
dictionary is overwritten. 

3.2.5 Scratch Files (UI and XUI) 

A temporary file for sort resulting from a LOG directive (lfc's UI and XUI) is assigned by 
DPEDIT by default to a disc file, 100 blocks. The temporary file is unblocked. 

3-8 

Ci 



Yo) 
I 
\D 

(""y 

Input/Output 
Description 

Directives and 
Data Records 

Existing 
Dictionary for 
REMAP Input 

Output 
Dictionary to 
use in 
Subsequent Remap 

Logical 
File Code 

SYC 

IN 

OT 

r-', 

Table 3 - I 
OPED IT File Assignments Page I of 2 

Previous 
Assignments Processor 
for DPEDIT . Assignment 

Default: Work file built using 
ASSIGN2 EDIT. 
SYC = SYC Permanment file built 

using EDIT or MEDIA. 

Cards. 

Other device medium 
e.g., magnetic tape, 
where jobfile was 
copied from cards or a 
file via MEDIA. 

Interactively. See 
"Accessing DPEDlT." 

Source data records 
following an /ENTER 
directive are the 
primary means of 
input to DPEDIT. See 
Section 3.1 for 
detailed description. 

No default. File space must be 
ASSIGNn·· pre-established via 

{filename} 
the FILEMGR utility. 

IN = . devnmc 

No default. Same as above. 

OT =. {fileoame~ 
devnmc 

How Specified 
for DPEDIT 

EDT > BATCH 

EDT> BATCH iobfile 
or 

??BATCH {D, devnmc } 
F, jobfile 

Same route shown for 
cards. 

Source data records 
may be accessed by a 
$SELECT Statement 
in batch. 

By assignment and 
use of the IREMAP 
or /DPD directive. 

By assignment and 
use of the /SAVE 
directive. 

~, 

Comment 

For further description 
see "Accessing DPEDIT." 



\.I.) 
I -0 

Input/OUtput Logical 
Description File Code 

DATA POOL DPD 
Dictionary 

Audit Trail LO 

Separate Error ER 
Listing 

Temporary disc UI. 
file 

Temporary disc XUI 
file 

o 

Table) - I (Cont'd) 
DPEDIT File Assignment! 

Assignments 
for DPEDIT 

No default. 

ASSIGNn 

DPD= {filename} devmnc 

Default: 
ASSIGN2 
LO = SLO 

Options: 

LO= {filename } 
devmnc 

Default: 
ASSIGN2 
ER = SLO 

Options: 
AS51GN2 

ER = {filename} 
devmnc 

Default: 
ASSIGN) UI=DC,100,U 

Default: 
I\SSIGN4 XUI=UI 

Page 2 of 2 

Previous 
Processor 
Assignment 

Same as above. 

N/ A, unless using a 
disc file (see above) 

See above. 

C~: 

How Specified 
for DPEDIT 

8yassignment. A dif
ferent file or device 
can be accessed by using 
the DPD directive. 

An ASSIGN4 can be used to 
equate LO to ER so that 
listings are provided on 
the same SLO file. 

Comment 

Unblocked 

(.~,\ 

.. rI 



(- 3.3 Options 

None. 

3.4 Using DPEDIT 

For further description of the use and allocation of DAT APOOl (and GLOBAL) system 
common areas, particularly in context of a task's logical address space, see Volume 1, 
Chapter 2. 

3 • .5 Accessing DPEDIT 

To access DPEDIT as part of a batch job, create a job file using the EDITOR, punch 
cards, or other media as described in Table 3-1. The job file contains DPEDIT directives 
and data records preceded by Job Control ASSIGN's, etc. A job file can be read to SYC 
and the job activated in several ways: 

from the OPCOM console: 

" <Attention> " 

??BATCH { F,jobfile } 
D,devmnc 

from the OPCOM program: 

TSM >OPCOM 

??BATCH 

from the EDITOR: 

TSM > EDIT 

{ F,jobfile } 
D,devmnc 

EDT > BATCH (jobfile] 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate DPEDIT and run online, use the TSM ASSIGN commands to make DPEOIT 
assignments equivalent to those preceding the EXECUTE DPEDIT command on a jobfile, 
then proceed to issue DPEDIT directives. 

TSM > ASSIGN 1 DPD=filename"U 
TSM > DPEDIT 
D PE > 7 directi ve 

3-11 



3.6 DPEDIT Directives 

DPEDIT directives are summarized in Section 3.1.3. 
subsequent pages. 

They are described in detail in 

A comma between parameters is the legal delimiter. Blanks embedded after the 
directive in a DPEDIT command line are ignored. 

3.6.1 /DPD Directive 

The tDPD directive assigns a different permanent file to the DPD logical file code. It is 
used to maintain multiple dictionary files during a single edit run. 

Syntax: 

where: 

filename 

3.6.2 

tDPD filename 

is the name of a permanent file containing the dictionary to assign to DPD. 
The file is dynamically allocated using R TM services and is thus 
automatically unblocked. Only one blank is allowed between the "tDPD" 
portion of the directive and the filename. 

/ENTER Directive 

The tENTER directive indicates that data cards are to be processed by the Datapool 
Editor. These data cards are used to add symbols to the datapool dictionary, delete 
symbols from the dictionary, and change parameters defining a symbol in the dictionary. 

The data cards that are to be processed as a result of the tENTER directive must follow 
the directive. Processing of data cards continues until a directive or an end-of-file 
indicator is encountered. Multiple tENTER directives may be used. 

A symbol can be added to the dictionary if it has not been previously defined in the 
dictionary and if its address is within the range of the datapool memory partition. If the 
Precision option is specified, address bounding will be verified before adding the symbol 
to the dictionary. 

A symbol can be deleted only if it is not used as a base. If the variable symbol to be 
deleted references a base, the responsibility count for the base symbol is decremented. 
The responsibility count is the number of times the symbol is used as a base for other 
symbols. 

All fields of a variable symbol can be changed if the variable symbol is not being used as 
a base. If the variable symbol being changed is used as a base, changes cannot be made 
in the Base Symbol or Displacement fields. 

Syntax 

tENTER 

3-12 

o 



( 

( 

( 

Example(s) 

tENTER 
LIMA EQU $ 
A EQU $ + lOOW F W 10 
B EOU A + lOW ** 

In this example, the data cards containing the data cards to be processed follow the 
Enter directive. 

3-13 



3.6.3 fLOG Directive 

The fLOG directive provides a listed output audit trail of all symbols defined in the 
DATAPOOL dictionary, the total number of entries in the dictionary, and the number of 
active entries. 

Syntax: 

fLOG [type] 

where: 

type specifies the type of output desired. ALPHA specifies that the listed output 
will be ordered alphabetically. REL specifies that listed output will be 
produced in the sequence in which the DATAPOOL items reside in the 
D AT APOOL memory partition. If no type is specified, both types of output 
will be generated. 

Example(s) 

fLOG ALPHA 
fLOG 
fLOG REL 

3.6.4 /REMAP Directive 

The fREMAP directive is used to expand or rebuild a DATAPOOL dictionary without 
having to recreate dictionary entries through the fENTER directive data record 
sequence. 

fREMAP rebuilds a dictionary from the dictionary specified with a fSAVE directive or 
built during a previous run and assigned to lfc IN. Each entry is remapped through the 
hash coding scheme and written to the dictionary assigned to Ifc DPD via the fDPD 
directive. Or the dictionary to be used for output can be 'assigned' to DPD via the 
optional file parameter on the fREMAP directive. 

Note that the dictionary output file is initially destroyed by the fREMAP function, i.e., if 
you have built one dictionary and do not make a reassignment through fDPD or the file 
parameter, the dictionary you built will be lost. 

Syntax: 

fREMAP [file] ,[R] 

where: 

file is an optional field which contains the name of a permanent file to assign to 
DPD. Or the fDPD directive can be used for the same function. 

R 

3-14 

if specified in this field, the file assigned to the logical file code IN will be 
rewound before processing the dictionary entry records. 0''''·'··· " " 

" 



3.6.5 /SAVE Directive 

The /SAVE directive preserves the contents of each active entry in the DATAPOOL 
dictionary in dictionary entry records on the file assigned to the logical file code OT. An 
end-of-file is written to OT when the function is complete. The dictionary entry record 
is a binary record containing the entire dictionary entry. (See Figure 3-2.) A checksum 
and a sequence number are included in the record. 

When a directive is issued, 'DPD' and 'OTt should not be assigned to the same file. 

Syntax: 

/SAVE 

3.6.6 /VERWY Directive 

The /VERIFY directive checks each active entry in the datapool dictionary for proper 
placement in the dictionary, for precision to assure proper bounding, and for relative 
address within the range of the DAT APOOL to ensure that the computed value at entry 
time is correct. Any discrepancies detected in the dictionary are noted on a listed 
output file. 

Improperly mapped entries are corrected and no error flags are generated. If an 
improperly mapped entry is encountered, and an entry of the same name is already in the 
dictionary, the current entry being verified is deleted and an error flag is generated. 

Incorrect relative addresses are corrected and an error flag is generated. Invalid entries, 
that is, entries with no base symbol in the dictionary, or entries whose data record is 
invalid, are deleted and error flags are generated. 

Range and precision errors generate flags. 

Syntax: 

Example(s) 

/VERIFY 

$ASSIGNI DPD=DPDl 

. 
$EXECUTE DPEDIT 
/REMAP ,R 
/VERIFY 

In this example, Datapool Editor will verify DPO I after remapping it. 

3-15 



3.7 Listings 

The DATAPOOL Editor has two listed output files, the audit trail (accessed through the 
logical file code LO) and the error audit trail (accessed through the logical file code 
ER). If either of these files overflows and is assigned to a System Listed Output (SLO) 
file, the old SLO is dynamically deallocated (released for system output on job 
termination) and a new SLO file is allocated with the same size requirements as the 
original. Figure 3-3 describes audit trail format. 

The audit trail contains a definition of the operations performed, the source records 
(Figure 3-1), the relative address within the DATAPOOL of the symbol defined by the 
dictionary entry, the number of disc accesses required to get the entry, the number of 
times this symbol is used as a base, and when applicable, an error code defining why the 
requested operation was not performed. 

AUDIT TRAIL FORMAT 

PAGE HEADING; 

CURRENT DATA FILE: 

ERROR 
• CODE FUNCTION 

(EC) 

FORMAT EXPLANATION 

PRINT COLUMNS 

1-4 

9·14 

17-96 

101-108 

112-11S 

117-119 

H1me (1) 

RELATIVE 
DATA CARD ADDRESS 

(RA) 

HEADING 

ERROR CODE 

FUNCTION 

DATA CARD 

RELATIVE ADORES 

RESPONSIBILITY COUNT 

COLLISION MAPPING 

RESPONSIBILITY 
COUNT 

(Re) 

DESCR IPTI ON 

COLLISION 
MAPPING 

(04) 

REFER TO ERROP CODES DESCRIPTION 

ADO. DELETE. lOG. OR CHANGE 

Hexadecimal address assigned to this 
variable symbol relative to the 
beginning of the datapool core partition. 

Decimal number oftirnes that symbol is 
used IS a base. 

Decimal number of disc Iccesses required 
to locate this entry. 

(1) narne- 'MAIN' if specified by SASSIGNl; otherwise. name-File specified by DPO or 
REMAP directive. 

820649 

Figure 3-3. DATAPOOL Editor Audit Trail Format 

3-16 



(

C" • 

..... 

(. 

3.8 Errors 

The following console messages are issued by the DATAPOOL Editor. 

DPEDIT devmnc CKSM 

The DA T APOOL Editor has encountered a checksum error on the input (IN) file to the 
REMAP function. 

DPEDIT devmnc SQER 

The DA T APOOL Editor has encountered a sequence error on the input (IN) file to the 
REMAP function. 

These messages are only output if IN is assigned to a card device. The "devmnc" 
specification gives the device mnemonic, including the device address of the device to 
which IN is currently assigned. After the message is issued, the editor enters a program 
hold. To retry the read, reposition the deck in the reader and enter the operator 
command CONTINUE DPEDIT. If no retry is desired, enter the operator command 
ABORT DPEDIT. 

For a description of abort codes, see Appendix C. Error messages EC 11 through EC25 
and ERnn are described in Appendix C. They report diagnostic error conditions which 
could cause an abort. 

3.9 Examples 

Example 1 - Saving Several Dictionaries 

$JOB DPEDITI MEYERS 
$ASSIGNI DPD=DPDl"U 
$ASSIGN30T=MT,DPDS 
$EXECUTE DPEDIT 
ISAVE 
IDPD DPD2 
ISAVE 
IDPD DPD3 
ISAVE 
$EOJ 
$$ 

Save Dictionary DPD 1 
Assign DPD to Dictionary DPD2 
Save DPD2 
Assign D PD to D PD 3 
Save DPD3 

3-17 



Example 2 - Remapping a Dictionary 

$JOB DPEDIT2 MEYERS 
$ASSIGNI DPD=DPDI"U 
$ASSIGN3 IN=MT,DPDS 
$EXECUTE DPEDIT 
/REMAP ,R 
/VERIFY 
/REMAP DPD2 
/REMAP DPD3 
/ENTER 
A EOU $ 
$EOj 
$$ 

Rewind IN and Remap DPDl 
Verify DPDl 

(See Figure 3-1 for column placement) 

Example 3 - Expanding, Saving, and Remapping a Dictionary 

$JOB DPEDIT3 MEYERS 
$EXECUTE FILEMGR 
EXPAND DPD1,100 
$ASSIGN30T=MT,DPDT 
$ASSIGN4- IN=OT 
$EXECUTE DPEDIT 
/SAVE 
/REMAP DPDl,R 
$EOJ 
$$ 

Example 4- - Saving a Dictionary on Cards 

3-18 

$JOB DPEDIT4- MEYERS 
$ASSIGNI DPD=DPD1"U 
$ASSIGN30T=CP 
$EXECUTE DPEDIT 
/SAVE 
$EOJ 
$$ 

Expand Dictionary Size 

Save DP[) 1 
Rewind IN and Remap DPD 1 



4. THE DEBUGGER (DEBUG) 

The MPX-32 Debugger is used to debug a sin~le, cataloged user task. It can be accessed 
with a DEBUG command in TSM, with a SDEBUG statement in batch, by coding a 
M.DEBUG service call within the cataloged task, or by using the Break key after a task 
has been activated via TSM, in which case TSM provides the option of calling M.DEBUG. 

If a command or job control statement is used, the user's task is activated and DEBUG 
gains control just before the system would transfer· control to the user task's transfer 
address. In cases where the user task is already running, the context of the task (general 
purpose registers and PSD) just prior to the M.DEBUG call is retained and control is 
transferred to DEBUG to start debugging at that point in the user's task. 

When DEBUG gains control, it prompts the user for a DEBUG command. DEBUG 
commands allow the user to: 

trace task execution 

set debugging traps within the task 

display and/or alter contents of the task's logical address space, general 
purpose registers, etc. 

watch for privileged task entry into the operating system or other areas of 
memory not usually accessed even by a privileged task 

perform other operations that facilitate task debugging 

This chapter concentrates on interactive (online) functioning of DEBUG. Batch functions 
are described in terms of differences between batch and online operation in Section 4.6, 
Batch Considerations. 

4.1 General Description 

DEBUG terms are summarized below. 

Absolute Expression 

Base 

Base Table 

An input expression whose value is determined solely by the 
terms and operators specified; i.e., an expression which is not 
relative. See "Relative Expression". 

A type of expression term representing any 32-bit number, 
usually a memory address. 

Internal DEBUG storage containing the definitions of all 
special bases and user bases. Maintained by the BASE and 
CLEAR commands. Displayed by the SHOW command. 

4-1 



Count 

Deferred Command 

Immediate Command 

Log File 

Relative Expression 

Special Base 

Status Report 

Trap or 
Trap Instruction 

Trap Address 

Trap List 

4-2 

A special expression term equal to the number of occurrences 
of the most recently-occurring trap since that trap was set by 
the SET command. 

A command whose execution is deferred until the occurrence 
of a trap. Deferred commands are added to the trap list 
currently being built rather than being executed 
immediately. See "Immediate Command". 

A command which is executed immediately rather than being 
added to a trap list; not a deferred command. 

A circular (wrap-around) temporary disc file on which DEBUG 
maintains a record of the last 100 (approximate) screens of 
terminal I/O. 

An input expression assumed by DEBUG to represent a 
displacement from a base address. The base is automatically 
added to the value of the expression. See" Absolute 
Expression" • 

Any of the following bases, which are automatically defined 
by DEBUG: 

$ 
$PSD 
$TSA 
$DSS 
$DSE 
$PCH 
$CSS 
$CSE 

- Current Program Counter 
- Program Status Doubleword 
- Task Service Area 
- DSECT Start 
- DSECT End 
- Patch Area 
- CSECT Start 
- CSECT end 

An analysis of the user task's context, showing the user PST) 
and registers for each currently active task interrupt level 
(e.g., I/O end action receiver active). 

An SVC 1,X'66' (H.MONS,29 call) instruction used by 
DEBUG to replace a user instruction in setting a trap in the 
user task; the control transfer caused by the execution of this 
instruction (to DEBUG's Entry Point 3). 

The address in the user task where a trap instruction has been 
placed by the SET command. 

The sequence of DEBUG commands which is executed upon 
the occurrence of a trap. 



Trap List Terminator 

Trap Table 

User Base 

User Context 

( 
User PSD 

( 

Any command which directs control away from a trap list. 
A trap list terminator must be the last command of a trap 
list. The following commands are trap list terminators: 

BREAK 
END 
EXIT 
FILE 
GO 
TRACE 
TRACK 
WATCH 

Internal DEBUG storage containing the definitions of all 
currently set traps, including their trap addresses, COUNT's, 
and trap lists. Maintained by the SET, DELETE, and CLEAR 
commands. Displayed by the LIST command. 

Any base other than the special bases; defined by the BASE 
command. 

The user Program Status Doubleword (PSD) and user 
registers, collectively. 

The PSD maintained by nEBUG to indicate the PSD in 
effect for the user task. On entry to DEBUG, the user PSD 
is the last PSD in effect for the user task as of the moment 
of the control transfer; on entry to the user task, it is the 
PSD to be in effect as the user task gains control; while 
DEBUG has control, the user PSD may be modified by the 
following commands: 

BREAK 
CC 
GO 
TRACE 
TRACK 
WATCH 

4-3 



User Registers 

User Task 

4-4 

The eight words of memory used by DEBUG to contain the 
user registers in effect for the user task. When DEBUG 
gains control, the user registers are as reported in the Task 
Service Area (TSA) in T.CONTXT; on entry to the user task, 
the user registers contain the register contents to be in 
effect as the user task gains control; while DEBUG has 
control, the user registers may be changed by the CR 
command. 

The task being debugged. 

c 



(~ 4.1.1 Attaching DEBUG to a User Task 

DEBUG functions essentially as an unsolicited overlay of the user task being debugged; 
i.e., the user neither catalogs DEBUG as an overlay nor identifies any overlay transient 
area for DEBUG when the user task is cataloged. 

The DEBUG overlay receives special handling by MPX-32. The M.DEBUG system service 
(H.MONS,29, SVC 1,X'63') attaches DEBUG to the calling task as follows: 

1. DEBUG is loaded at the beginning of the map block below the user task's 
pure code and data section (CSECT) and/or common areas. The lower 
address of the user's CSECT, if any, is thus decreased by the size of 
DEBUG (8KW). (Refer to the DEBUG memory map in Figure 4-1.) 

2. The area "T.CONTXT" is initialized in the calling task's TSA. T.CONTXT 
contains eight words for the user's register contents at the point of call 
and two words for the user's PSD at the point of call. It is used by 
DEBUG to determine the last known context of the user task upon entry 
to any DEBUG entry point. 

3. Control is passed to DEBUG's Entry Point I (startup entry point). Any 
task interrupt levels active at this point remain in effect. They are 
analyzed by DEBUG and displayed in a status report. 

4-5 



4-6 

• EXTENDED ADDRESS SPACE 

, 
I 
I 
I 
I 128KW 

GLOBAL COMMON/DATAPOOL 

CSECT 

DEBUG PATCH AREA 

DEBUG 

'////////////////////////////////////////////1 
v////////////////////////////////////////////. 

DSECT 

TSA 

OPERATING SYSTEM 

o 

Figure 4-1. I?ebug Memory Map 

820653 



( 

( 

In response to the TSM 'DEBUG' command, MPX-32 calls M.DEBUG on behalf of the user 
task as the last stage of task activation. In this situation, T.CONTXT is initialized with 
all registers zeroed and the user PSD indicates the user task's cataloged transfer 
addresses. Control is passed to DEBUG's Entry Point 1 instead of the user task's 
cataloged transfer address. The combination of OEBUG and the user task is still a single 
task, with a single TSA and a single dispatch queue entry. 

Also, if a task is activated from TSM (TSM > RUN load mod) and the user depresses the 
Break key while the task is processing, TSM provides the alternative of attaching 
DEBUG. In this case, the task context is saved as described previously in step 2. 

4.1.2 I/o 

4.1.2.1 Terminal I/o 

When DEBUG is attached to a task, it obtains the screen size from the Unit Definition 
Table (UDT) for the terminal device assigned to the logical file code UT (User 
Terminan. (This is the screen size defined at SYSGEN.) 

The number of lines per screen (any non-negative 32-bit number) is used by DEBUG. If 
the user has defined a value of 0 lines per screen, DEBUG disables the full-screen logic 
(described below). The minimum allowable screen width (number of characters per line) 
for debugging is 72 characters, and the maximum is 132 characters, the width of a 
System Listed Output (SLO) file. 

The screen size detected by DEBUG is used to allocate a log file (a temporary disc file) 
large enough to contain approximately 100 full screens. The log file is manipulated by 
the LOG and REVIEW commands. It contains a record of the most recent screens of I/o 
to the user's terminal, providing a complete audit trail of the debugging session. The 
user is warned 10 screens before the end of the log file space is reached and the oldest 
records begin to be overwritten by the most recent (a circular file). 

The screen width detected by DEBUG is also used to calculate how many words per line 
will fit into displays such as SNAP's. The format of a screen record is illustrated in 
Section 4.9. 

The screen height is used to enable DEBUG to pause when a fuU screen of lines has been 
written to the terminal (terminal write operations by the user task are counted) with no 
intervening terminal input. This prevents long displays (e.g., SNAP's) from running off 
the top of the screen before they can be read by the user. A SYSGEN'd height of zero 
lines signifies that the terminal is a hard-copy device and disables the full-screen logic. 
A consequence of this disabling is that long SNAP's, for example, cannot be terminated 
prematurely. 

4-7 



--"" 
When at the end of a full screen of consecutive output, DEBUG displays the message "CR :(.: 
FOR MORE:", the possible responses and their effects are as follows. . . ,~j/ 

Response 

Carriage Return 

Anything Else 

Effect 

The display continues. 

Terminates the current command; the next command is read 
from the terminal. 

Terminal input and output are labelled with prefix characters (prompts) that indicate, 
both on the terminal and on the log file, who said what and when. The prompt for an 
input command from the terminal is one or two periods: "." or " •• ". A single prompt 
signifies that the command is an immediate command; a double prompt signifies a 
request for a deferred command. In all other cases, the prefix characters are pseudo
prompts in that they are only labels for terminal output lines. Table 4-1 identifies the 
various combinations of prompt characters which may arise and the significance of each. 

Prompt 

> 

» 

!! 

4-8 

Significance 

The user must input an immediate command on logical file 
code (lfe) IIIN. 

The user must input a deferred command on logical file code "-,c./ 

(lfe) IIIN. 

DEBUG Pseudo-prompts (used to label DEBUG output on lfc 
IIOT): 

Immediate command from lfc 1103 (FILE command) 

Deferred command from lfc 1103 (FILE command) 

Immediate command from a trap list. 

Deferred command from a trap list. 

Follows any of the above prompts and pseUdo-prompts; 
labels output resulting from a command. 

Table 4-1. DEBUG Prompts and Labels 



( 

4.1.2.2 Command Files 

A command file is any permanent disc file which contains DEBUG commands. The 
commands are in the form of 80-byte card images. The MPX-32 Text Editor can be used 
to create a DEBUG command file. The STORE (not SAVE) command should be used to 
write a command file. A command file is accessed via the FILE command. 

4.1.2.3 SLO Files 

DEBUG automatically creates SLO files when the LOG and DUMP commands are used. 

4.1.3 Control Transfers 

During a debugging session, control can pass back and forth between DEBUG and the user 
task any number of times. Since, in fact, DEBUG and the user task are parts of a single 
task, and since it is important for the scheduler to know which part is executing at any 
given time, all such control transfers take place through scheduler (H.EXEC) service 
calls. 

Each time DEBUG gains control, T.CONTXT in the TSA contains the user task's context 
as of its last executed instruction, and T.REGS and T.REGP indicate the current task 
interrupt push-down level in effect for the user task (i.e., the stack is not pushed an 
additional level upon entry to DEBUG). DEBUG analyzes the TSA and DOE of the task in 
a status report on the terminal, detailing the user context (PSD and registers) for each 
acti ve task interrupt leve I. 

When DEBUG gains control, it runs privileged regardless of the privilege state of the user 
task. When DEBUG passes control to the user task, the scheduler restores the user task's 
privilege state. 

The following is a summary of the control transfers which take place between DEBUG 
and the user task. DEBUG always gains control as a result of M.DEBUG, whether it is 
called by the task activation service, by the task itself, or by TSM at the request of the 
terminal user after the task is running. 

4-9 



The user task gains control: 

1. when DEBUG executes a GO command; 

2. when DEBUG executes a BREAK command; 

3. for the execution of a user instruction during a TRACE, TRACK, or 
WATCH command; 

4. when DEBUG executes a DETACH command. 

DEBUG regains control from the user task: 

1. when the user task executes a DEBUG trap instruction; 

2. when IOCS recognizes a break from the user's terminal; 

3. when the user task calls the M.BRKXIT service, after DEBUG executes a 
BREAK command; 

4. after the execution of a user instruction during TRACE, TRACK, and 
WATCH; 

5. when the user task would normally be aborted by MPX-32; 

6. when the user task executes an Exit system service. 

Note that if DEBUG gains control upon a trap instruction (SVCl,X'66') which was coded 
by the user (as opposed to one which was planted by the SET command), DEBUG will 
interpret it as a break from the terminal instead of a trap. (See Section 4.1.4.) 

If for any reason during a debugging session it is useful to clear all active user task 
interrupt levels, the RESTART command may be used for this purpose. 

4-10 

o 



( 4.1.4 Break Handling 

A break occurs when: 

the terminal user depresses the Break key 

any task uses the M.INT service to simulate an interrupt and enter a break 
receiver 

DEBUG acknowledges breaks by analyzing the user context in a status report when it 
receives control at its break-handling entry point. It prompts the terminal user for the 
next immediate command. If a command file is being used, command file processing 
terminates. 

While DEBUG is attached to a user task, that task's break receiver Hf any) can be 
accessed only by using the BREAK command. 

DEBUG recognizes breaks only when: 

it has executed a GO command and has not yet prompted for the next 
command, i.e., when the user task has control; 

it is executing a WATCH command. 

(__ At all other times, breaks for the task are ignored. 

("" 

If executing GO or WATCH as described above, the execution of a trap instruction that 
was not set by the SET command appears to DEBUG as a break which occurred between 
the execution of the trap instruction and the next user instruction. 

4.2 Files and File Assignments 

DEBUG has no static file allocations. When it gains control at its startup entry point, it 
dynamically allocates terminal input and terminal output file codes to the terminal and 
provides a log file with enough blocks for approximately 100 screens of terminal I/O. 

During the debugging session DEBUG allocates SLO files for LOG and nUMP commands 
(enough for the log or dump being printed) and assigns command input from a file 
specified in the FILE command. 

4.2.1 File Assignments Chart 

Table 4-2, columns 1-3, describes input and output files used by the Debugger, their 
associated logical file codes, and default assignments. Column 4 is not applicable to the 
Debugger. The only file assignments feasible to override for debugging are the input and 
output assignments for batch processing as described in column 3. 

4-11 



+=' 
I ..-

N 

Default and 
Input/Output Logical Optional 
Description File Code Assignments 

Terminal Input II IN ASSIGN4 IIIN=UT 

Batch Input ASSIGN2 IIIN=SYC 
(Job File) User can override 

with Job Control 
ASSIGN's.) 

Terminal 1I0T ASSIGN4110T=UT 
Output 

Batch Output ASSIGN2110T=SLO,1000 
(User can override 
with Job Control 
ASSIGN's.) 

Log File 1101 ASSIGN3 110l=DC,n 
(temporary 
disc file) 

Output Files 1102 ASSIGN2 1102=SLO,n 

Command File 1103 ASSIGNI 1103=filename 

c 

Table 4-2 

Debugger File Assignments 

How Built 
(Previous 
Processor 

Assignment) 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

t\ 
~-~ 

How Specified 

N/ A - Do not specify. 

BATCH command in EDITOR 
or OPCOM. 

N/ A - Do not specify. 

N/ A unless you want to 
override. 

N/A. DEBUG allocates #01 
as a temporary file. 

N/ A. Do not specify. 

N/ A. DEBUG makes this 
assignment automatically 
when the FILE command is 
used. 

Comment 

See Section 4.4 

The log file is large 
enough to hold 
approximately 100 
screens of terminal I/O 
or batch equivalent. 

In batch, file assigned 
to lOT is used for DUMP 
output. A LOG command 
is treated as a comment. 

~ ,) 



4.3 Using the Debugger 

This section describes the use of expressions, how to set traps and trap lists, and the use 
of relative and absolute addressing within the Debugger. 

4.3.1 Expressions 

An expression is an input character string which is composed of a term or a sequence of 
terms separated by operators. Each term represents a 32-bit, signed, binary number. 
Expressions are used to specify memory addresses, memory contents, logical masks, 
character strings, or numbers. 

Terms that are legal for use in expressions are defined and described in the following 
paragraphs, as are operators that specify arithmetic and logical operations to be 
performed on two terms or expressions. All operators are binary (requiring two 
arguments) and have no hierarchy of precedence. They are executed left-to-right, one at 
a time, except where the user defines precedence by parentheses (exactly as in 
FORTRAN expressions containing operators of equal precedence). 

4-13 



The following general rules apply: 

1. Any term is an expression. 

2. If e and f are expressions and * is any operator, 

e*f 

is an expression whose value is the result of performing the n*n operation 
on the values of e and f. 

3. If e, f, and g are expressions and * and II are any operators, 

4. 

e*fllg 

is evaluated as 

(e*f)lIg; 

i.e., the value of e*f is calculated first. 

Parentheses may be used to override the normal left-to-right execution 
of operators during the evaluation of an expression. During evaluation 
the subexpressions in innermost parentheses are each evaluated left-to
right and their values replace the parenthetical subexpressions. This 
process is continued through any number of levels of nested parentheses 
until no parentheses remain. Then the resulting expression is evaluated 
in the normalleft-to-right manner. 

5. All operators act on and result in 32-bit values. 

DEBUG recognizes five types of terms in expressions: constants, register content 
references, memory content references, bases, and COUNT. 

4-14 

o 

o 



(~ 

4.3.1.1 Constants 

There are five types of constants, as follows: 

Hexadecimal Constant - A string of 1 to 8 hexadecimal digits enclosed in 
apostrophes and preceded by the letter X (e.g., X'lEC'). If a "FORMAT N" 
command (which assumes decimal format) is not in effect, the letter X and 
the apostrophes may be omitted. 

Decimal Constant - A string of 1 to 10 decimal digits enclosed in apostrophes 
and preceded by the letter N (e.g., N'193'). If a "FORMAT N" command is in 
effect, the letter N and the apostrophes may be omitted. The resulting value 
is truncated on the left to produce a 32-bit value. 

C Constant - A string of 1 to 4 ASCII characters enclosed in apostrophes and 
preceded by the letter C (e.g., C'Al ?'). If fewer than 4 characters are 
entered, trailing blanks are added to produce a 32-bit value. 

G Constant - A string of 1 to 4 ASCII characters enclosed in apostrophes and 
preceded by the letter G (e.g., G'AI ?'). If fewer than 4 characters are 
entered, leading binary zeroes are added to produce a 32-bit value. 

Binary Constant - A string of 1 to 32 ASCII l's and O's enclosed in apostrophes 
and preceded by the letter B (e.g., B'lOlOll'). If fewer than 32 bits are 
entered, leading binary zeroes are added to produce a 32-bit value. 

4-15 



4.3.1.2 Register Content References 

These are references to general purpose registers in the form Rn, where n is 0-7. 
DEBUG uses 32-bit contents of the specified user register. 

4.3.1.3 Memory Content (Indirect) References 

Valid references are: 

where: 

C(base) 
C(base+hex) 
C(base-hex) 
C(base+dec) 
C(base-dec) 
C(hex) 
C(dec) 

base is a base (see next section) 

hex is a hexadecimal number 

dec is a decimal number 

These expressions specify the contents of the 32-bit word whose address is the expression 
inside the parentheses. Bits 30 and 31 of the expression value are zeroed to determine 
the word address. 

4-16 

o 

o 



4.3.1.4 Bases 

Bases are symbolic terms whose names begin with $. The special bases automatically 
defined by DEBUG are as follows: 

Name 

$ 

$PSD 

$TSA 

$DSS 

$DSE 

$PCH 

$CSS 

$CSE 

Specifies 

Bits 13-31 of user PSD 

Bits 0-31 of user PSD 

Address of TSA 

Address of first word of DSECT after the TSA 

Address of first word following the end of DSECT 

Address of first word of 256W DEBUG patch area 

Address of first word of user CSECT (=$CSE if no user CSECT) 

Address of first GLOBAL/DATAPOOL (=128KW if no GLOBAL or 
DATAPOOL) 

Figure 4-2 shows the relative positions of the last six bases named above on a memory 
map of a user task which uses all possible memory areas (CSECT, DSECT, Global 
Common, and extended address space). 

User bases can be defined by the BASE command. Their names consist of S followed by 
one to eight alphanumeric characters, the first of which must be alphabetic. User base 
names must not match any of the special base names used by DEBUG. 

4-17 



4-18 

sesE 

SCSS 

SPCH 

SDSE 

SDSS 

STSA 

$0 

• 

.. 
• 

• 

• 
.. 

• 

t • I 
I 
I 

EXTENDED ADDRESS SPACE 

GLOBAL COMMON/DATAPOOL 

CSECT 

DEBUG PATCH AREA 

DEBUG 

/////////////////////////////////// / //////i; 
'//////////////////////////////////////////1 
1//////////////////////////////////////////1 

DSEeT 

TSA 

OPERATING SYSTEM 

t 
I 
I 
t 128KW 

a 

Figure 4-2. Debug Base Names 

820654 

(~) 



(~ 4.3.1.5 COUNT 

The value of the special term COUNT is always the number of occurrences of the most 
recently-occurring trap since that trap was last set by the SET command. If no trap has 
occurred since DEBUG initialization, the value of COUNT is O. 

4.3.1.6 Operators 

If a and b are expressions, then allb is an expression where II is any of the DEBUG 
operators defined below. 

Arithmetic Operators 

x+y the sum of x and y; overflow ignored. 

x-y y subtracted from x; overflow ignored. 

x*y x multiplied by y; overflow ignored. 

x/y x divided by y; remainder ignored. 

( . Logical Operators 

Xt\y 

x&y 

x!y 

x@y 

x is logically shifted by y bits. The shift is to the left if y is 
-positive and is to the right if y is negative. 

x logically anded with y. 

x inclusively ored with y. 

x exclusively ored with y. 

4-19 



Relational Operators 

The six relational operators yield a value of I if the specified relation is true, and a value 
of 0 if the relation is false. Comparisons are arithmetic; i.e., the 32-bit values being 
compared are assumed to be signed numbers. 

x=y x equals y 

x>y x is greater than y 

x<y x is less than y 

x< >y x is not equal to y 

x >=y x is greater than or equal to y 

x< =y x is less than or equal to y 

4-20 

o 



( 

4.3.2 Relative versus Absolute Expression Evaluation 

An input expression in a DEBUG command can be used to represent an address as 
indicated in the command syntax. In these cases, an expression is evaluated as relative 
(i.e., the value of $DSS, the first word of DSECT, is automatically added to its value) 
unless it contains any base name outside of a memory content reference. (See Sections 
4.3.1.3 and 4.3.1.4.) 

All other input expressions are evaluated as absolute (i.e., no bias is added). 

The same logic also applies to the expression within parentheses inside a memory content 
reference (i.e., such expressions represent addresses by virtue of their context). 

Examples: 

SET lCDD 

N lCDD 

SET $B+1CDO 

lCOO evaluated as $DSS+ICOO 

leOO evaluated as 7168 

$B+1COO evaluated as $B+1COO 

RELATIVE and ABSOLUTE commands may be used to override this expression evaluation 
logic. For example, if you use ABSOLUTE before SET I COO, 1 COO would be the address 
lCOO, not $DSS+ICOO. 

4.3.3 Address Displays and References 

When DEBUG displays a value which, by virtue of its context, represents a memory 
address (e.g., the address portion of the user PSD in a status report) it displays the value 
either as a five-digit hexadecimal memory address or as a five-digit hexadecimal 
displacement from some base address value, depending on the most recent ABSOLUTE or 
RELATIVE command. 

4.3.4 Address Restrictions 

When DEBUG encounters a value which, by virtue of its context, represents a memory 
address (e.g., the first argument of a DUMP command) it subjects the address to certain 
restrictions, as described in Figure 4-3. Any address violating the criteria of Figure 4-3 
causes the current command to be terminated and a self-explanatory description of the 
violation to be displayed. 

4-21 



4-22 

ACCESS TYPE 
READ WRITE BRANCH 

x X X 

X 

X X 

X 

X X 

X X X 

X X 

X X 

NOTATION: 

x • PROHIBITED 

ACCESS TYPES 

MEMOr:1Y AREA 

EXTENDED DATA MAP HOLES 

EXTENDED DATA 

PROTECTED GL.OBAL./DATAPOOL. 

UNPROTECTED GL.OBAL./DATAPOOL 

USER CSECT 

DEBUG PATCH AREA (256W1 

DEBUG 

~/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
'IIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIII/' 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII//' 

OSECT 

TSA 

MPX·32 

MPX·l019 

READ: C( ) IN ANY COMMAND 
DUMP 
SCAN 
SNAP 

WRITE: CM 

BRANCH: GO IBOTH ARGUMENTS) 
KILL 
SET 
TRACE} BOTH ARGUMENTS AND ALL. 
TRACK INSTRUCTION ADDRESSES 
WATCH 

256KW 

128KW 

• 

• 

0 

Figure 4-3. DEBUG Command Address Restrictions 

DEBUG BASE NAMES 

SCSE 

sess 
SPCH 

SOSE 

SDSS 

STSA 

820655 

/{ -, 

\~-_/ 



( 

( 

4.3 • .5 Traps and Trap Lists 

The user sets traps in a task with the SET command. The user instruction at each trap 
address is replaced by DEBUG with an SVC 1,X'66' (trap) instruction, and the replaced 
instruction is saved by DEBUG. When the trap instruction is executed, DEBUG gains 
control and executes a trap list. 

DEBUG locates the trap table entry which defines the trap and increments the trap's 
COUNT variable by 1. Then the stored commands comprising the trap list are executed 
(refer to the IF command description for a discussion of conditional execution of trap list 
commands). Any number of commands can be in the trap list. The commands are 
executed in the order they were added to the trap list. Any DEBUG commands can be 
used in a trap list, except LOG and REVIEW. 

4.3 • .5.1 Setting a Trap 

When the user issues an immediate SET command, DEBUG defers the execution of 
subsequent commands, storing them in the trap list for the trap that is being set. 

Each deferred command is checked for validity before it is stored. A diagnostic message 
informs the user of any error in the command; the user can re-enter the command at his 
option. Note that expressions in deferred commands can contain references to user bases 
which have not yet been defined. This is the only 'error' allowed in a deferred command. 

When the user enters a trap list terminator command which corresponds to the 
immediate SET command, DEBUG adds it to the trap list and stops building the trap list. 
Subsequent commands are immediate (not deferred). 

Valid trap list terminators are BREAK, END, EXIT, FILE, GO, TRACE, TRACK and 
WATCH. 

Sample Trap Lists: 

• SET 100 
•• SNAP 
•• DUMP 
•• GO S 
• SEf200 
•• SNAP 
•• DELETE $ 
• GO $ 
.GOl6 

4-23 



The user sets two traps, one at location 100 and the second at location 200, then uses GO 
to start execution at location 16. If the trap at location 100 is encountered in execution, 
control is returned to DEBUG. DEBUG displays a status report on the terminal and 
performs a snap and a dump. It executes the instruction replaced by the trap instruction 
and continues execution. 

If the trap at location 200 is encountered, DEBUG displays a status report, performs a 
snap, and is terminated. The task continues to execute. 

4.3.5.2 Nesting Trap Lists 

Trap lists can be nested within a trap list. The user can set a second trap if the first trap 
is encountered, and so on, for as many trap lists as the user wants to nest. 

DEBUG matches SET commands and trap list terminators as shown in Figure 4-4 to allow 
the nesting. 

4-24 

c 



.,J::
I 
N 
VI 

~ 

I-tj ..... 
lQ 
s::; 
Ii 
CD 

,j::o 

I 
~ 

z 
CD 
(/I 

rt 
CD 
0.. 

t-3 
Ii 
III 
to 

t"i ..... 
(/I 

rt 
(/I 

co 
'" o 
OJ 
(J1 
OJ 

IN LIST 

SET 

• • 
SET 

• • 
TERMINATOR 

SET 

• • 
SET 

• • TERMINATOR 

TERMINATOR 

TERMINATOR 

~ 

DEBUG 

+1 ---, +1 

+1 +2 

., +1 ~ 

+1 - +2 

+'J ., 
+3 

+2 

-1 +1 ....-

., +0 ... 

COMMENT 

TERMINATOR FOR MOST RECENT SET 

TERMINATOR FOR MOST RECENT 
UNMATCHED SET 

ENDS NESTED TRAP LIST AT 0 

~ 



DEBUG increments a counter for each SET. Each terminator encountered matches the 
most recent unmatched SET and decrements the counter. When aU SET's are matched, 
the trap list ends. 

In the example which follows, the last trap list terminator command (TRACE) 
corresponds to the first trap set in the nested list, the second-to-Iast terminator (END) 
corresponds to the second trap set. An immediate prompt (.) is not issued until the user 
has supplied a terminator for each trap in the list. 

Sample Nested Trap List: 

• SET 100 
•• SNAP 
•• DUMP 
•• SET 200 
•• SNAP 
•• DUMP 
•• END 
•• TRACE 
• GO $ 

If DEBUG encounters the trap at location 100, it displays a status report, performs a 
snap, a dump, sets the trap at location 200, and starts a trace. If it encounters the trap 
at location 200, it displays a status report, performs a snap, a dump, and transfers 
control back to the user at the terminal. 

4-26 



( 

( 

4.4 Accessing the Debugger 

To access the Debugger from TSM, use: 

TSM> DEBUG load mod 

The task is activated with DEBUG attached as an overlay. Control is passed to the 
Debugger instead of to the task's transfer address when activation is complete. 

The Debugger prints the current date and time and a status report: 

MPX-32 DEBUG date:time 
(Status Report) 

The DEBUG prompt for an immediate command (.) is then displayed: 

.command 

Enter a DEBUG command. 

The Debugger can also be activated by coding a service call, M.DEBUG, in the task 
itself. The call causes DEBUG to be loaded into the address space of the task. Control 
is passed to DEBUG and DEBUG displays a message at the terminal as described above. 

To access the Debugger for a task that has been activated via a TSM RUN command, 
depress the Break key. TSM responds: 

*** BREAK *** ON taskname AT location 
CONTINUE, ABORT, OR DEBUG? D 

If you enter D (for DEBUG), the Debugger is loaded into the address space of the task, 
control is passed to DEBUG, and DEBUG displays a message at the terminal as described 
above. 

To access the Debugger as part of a batch job, create a job file using the EDITOR, punch 
cards, or other media. Use $DEBUG loadmod instead of $EXECUTE. The job file can be 
submitted: 

from the OPCOM console: 

" < Attention> " 

??BATCH { F,jObfHe } 
D,devmnc 

4-27 



from the OPCOM program: 

TSM >OPCOM 

??BATCH { F,jObfile } 
D,devmnc 

from the EDITOR: 

TSM> EDITOR 

. 
EDT> BA TCH [jobfile] 

If the job file is the current EDITOR work file, issue just the BATCH command. See 
Section ~.6 for considerations when running the Debugger in batch. 

~-28 

C-~"··· '. 
,; 



( 

4.5 Commands 

The following rules apply to DEBUG commands, whether they are input from the 
terminal or a job file (file code IIIN) or from a file specified in a FILE command (file 
code 1103). 

Each command is contained entirely in a single 80-byte record. If IIIN is assigned to a 
device or file with a smaller or larger record size, input commands are respectively 
blank-filled or truncated on the right hand end. There are no provisions for the 
continuation of commands or for compound commands. 

The command verb starts in the first position of the line or record. All commands have a 
command verb except for the default form of the Expression command, in which a blank 
in the first column indicates the absence of a command verb. If a command can be 
abbreviated, the acceptable abbreviation is indicated in the syntax statement by 
under lining. 

The command verb is followed by a terminator (any non-alpha character) and the 
argument list, if any. Multiple arguments are separated by commas (,). Extra blanks in 
the command line are ignored unless they are used inside a C or G character string. 

Any of the command arguments in Table 4-3 can be specified by the user in the form of 
an expression, as long as the expression is valid and conforms to any further restrictions 
mentioned in the description of the command being used: 

Arg Command 

reg CR 

value CM,CR 

addr BASE, CM, GO, LIST 

low DUMP, SNAP 

high DUMP, SNAP 

screens REVIEW 

start TRACE,TRACK 

stop TRACE, TRACK 

trap DELETE, GO, SET 

expr expression 

cond IF 

Table 4-3 Valid Use of Expressions 

4-29 



Only diagnostic messages originating from the command logic are mentioned in the 0 
command descriptions. Diagnostics arising from expression errors are covered in Section 
4.8. Note that any diagnostic message incurred by a command signals the termination, 
possibly premature, of the command. 

The RESPONSE section of each command description outlines DEBUG's response to the 
command when it is executed (i.e., immediate). For possible responses to deferred 
commands see Section 4.3.5, Traps and Trap Lists. 

Even if no mention is made of batch differences in a command description any reference 
to the terminal is understood in batch to refer to the lfc /lIN for input and flOT for 
output. See Section 4.2.1 for a description of I/O assignments in batch. 

4-30 

c 

o 



( Command 

'3.,.. ABSOLUTE 

'3 5 BASE 

3(p BREAK 

3tP CC 

37 CLEAR 

31 CM 

39 CR 

( 40 DELETE 

4\ DETACH 

DUMP 

42 END 

43 EXIT 

Function 

Evaluates all input expressions as absolute and displays all output 
addresses as absolute until a RELATIVE command is issued. 

Creates, deletes, or modifies the definition of a user base. 

Transfers control to user task's break receiver. 

Displays or modifies condition codes in user task's PSD. 

Clears symbolic bases, or deletes all traps set in user task. 

Changes contents of memory beginning at specified address to new 32-
bit value(s). 

Changes contents of user register(s) beginning at specified register to 
new 32-bit value(s). 

Deletes specified traps. 

Detaches DEBUG from the user task. DEBUG transfers control to the 
task at specified address or last address executed in the task. 

Dumps a snapshot of specified area of task's memory, including task's 
PSD and general purpose registers to dynamically created SLO file 
(interactive) or existing SLO file (batch). 

Terminates a trap list and returns control to the terminal. 

Terminates both DEBUG and user task and returns control to TSM. 

4-31 



4 Li expression 

4" FILE 

4~ FORMAT 

47 GO 

$0 LIST 

5'"0 LOG 

Sri MSG 

51 RELATIVE 

52 REVIEW 

52 RUN 

5$ SET 

5'1 SHOW 

4-32 

Specifies an expression. DEBUG evaluates it and outputs its value on 
screen (interactive) or SLO (batch). No command word is used. 

Reads records from specified command file. Reverts to terminal at 
end of file. 

Sets default format for untyped numeric constants in input expressions 
to decimal or hex. 

Resumes execution of user's task at specified address or last known 
user program counter value. Optionally sets a one-shot trap at 
specified address. The trap is deleted automatically by DEBUG after it 
occurs. 

Used for conditional execution of trap lists. 

Lists on UT (interactive) or SLO (batch); trap(s) set in task, with trap 
list(s). 

Copies the log file of screen I/O to a dynamically allocated SLO file. 
Interactive use only. In batch, entire session already recorded on SLOe 

Specifies a comment to output on terminal (interactive) or SLO file 
(batch). 

Displays and interprets logical addresses relative to a base. 

Displays log file screens one at a time. Interactive use only. 

Restarts run (as opposed to single-step) operation for TRACE or 
TRACK. 

Sets word address of an instruction to be trapped. User then creates 
trap list. 

Lists addresses of all traps, bases, or option settings. 

( •.... , c; 



(-- S5 SNAP 

55 STATUS 

~(P 

5~ 

57 

bO 

~\ 

( 

STEP 

TIME 

TRACE 

TRACK 

WATCH 

Dumps a snapshot of specified area of task's memory, including task's 
PSD and general purpose registers to terminal screen (interactive) or 
existing SLO (batch). 

Displays a status report of user PSD and registers for each currently 
active task interrupt level. 

Single-steps subsequent TRACK or TRACE. 

Displays current date and time. 

Transfers control to user task and displays each instruction after it is 
executed. 

Transfers control to user's task and' displays each branch instruction 
after it is executed. 

Like TRACE, but does not display instructions. Detects erroneous 
branches into areas such as the MPX-32 operating system. 

4-33 



4.5.1 11le ABSOLUTE Command 

The ABSOLUTE command is used to: 

evaluate all input expressions as absolute until a RELATIVE command is 
executed 

display all addresses as absolute hexadecimal logical addresses until a 
RELATIVE command is executed 

See Section 4.3.2. 

Syntax: 

ABSOLUTE 

Response: 

The command is always valid. 

No output. 

DEBUG prompts for the next command. 

4-34 

() 

f 

""-> 

o 



( 

4.5.2 The BASE Command 

The BASE command is used to: 

define a user base (add its name to the internal base definition table) 

delete a user base name from the base table 

redefine a user base (change the value specified in the base name's definition) 

Up to 16 user bases are allowed. See Section 4.3.1.4. 

Syntax: 

BASE base[,addr] 

where: 

base is a user base name. Must begin with the character $ and an alphabetic 
character. Can be up to eight alphanumeric characters maximum. 

addr 

Response: 

supplies a logical address for a base. If no address is used, deletes specified 
base name. If "addr" is specified and "base" is already defined, "base" is 
redefined to represent "addr". 

No output except diagnostics. Diagnostic messages inform the user if: 

the user tries to define a new base and the base table is full (16 user bases) 

"base" is not specified 

"base" is a DEBUG base name 

the user attempts to delete an undefined base 

4-35 



4.5.3 The BREAK Command 

The BREAK command is used to transfer control from the Debugger to the user task's 
break receiver. 

Syntax: 

BREAK 

Response: 

The user break receiver gets control. DEBUG regains control upon the occurrance of the 
next break, trap, user abort, or break receiver exit. 

No output except diagnostics. A diagnostic message informs the user if the user task has 
no break receiver. 

The BREAK command is a trap list terminator. 

4.5.4 The CC (Condition Code) Command 

The CC command is used to display the four condition code bits in the DEBUG base $PSD 
(bits 0-31 of the user PSD) or to display the old condition code of $PSD and insert a new 
value. 

Syntax: 

CC [cc] 

where: 

cc is a string of four binary digits. If used, replaces the existing condition code 
in $PSD. 

If no value is specified, DEBUG displays the present condition code. 

Response: 

A diagnostic message informs the user if the condition code is specified incorrectly. 

DEBUG prompts for the next command. 

4-36 

;',',j O·~·'" 



(-

( 

4.5.5 The CLEAR Command 

The CLEAR command is used to delete all user base definitions or delete all traps. 

Syntax: 

where: 

BASES 

TRAPS 

Response: 

CLEAR { BASES} 
TRAPS 

indicates that all user base definitions are to be deleted. 

indicates that all traps are to be deleted. 

A diagnostic message informs the user of any argument specification errors. 

No output except for diagnostics; DEBUG prompts for the next command. 

4-37 



4.5.6 The eM (Change Memory) Command 

The CM command is used to alter the contents of one or more consecutive words in the 
task's logical address space. 

Syntax: 

where: 

addr 

value 

Response: 

CM addr=value[,valueJ, ••• 

specifies the address of the first or only word to be changed (bits 30 and 31 of 
addr are ignored and assumed to be 00). 

is the 32-bit value to be stored at the specified address. Successive values are 
stored in consecutive words beginning at "addr". Two consecutive commas 
with no intervening value can be used to skip the memory address 
corresponding to the missing value, leaving its contents unchanged. 

Diagnostic messages inform the user if: 

"addr" and "value" are not both present and valid 

memory changes must be stopped because "addr" or an address derived from it 
(multiple values) violates a DEBUG address restriction, or because an error 
occurs in evaluating one of the "value" expressions. 

Note that in the second case, the diagnostic message will make clear which memory 
words, if any, were successfully changed. 

A SNAP is performed for the modified range and the new contents are displayed. 

DEBUG prompts for the next command. 

4-38 

I" ", "('~,,".' 
~,) 

() 



4.5.7 The CR (Change Register) Command 

The CR command is used to alter the contents of one or more user registers. 

Syntax: 

where: 

Rn 

value 

Response: 

CR Rn=value~value], ••• 

is a number in the range 0-7, specifying one of the user registers RO-R7. 

is the 32-bit value to be stored in the specified register. Succeeding value's, 
if any, are stored in consecutive user registers. Two consecutive commas 
with no intervening value can be used to skip the user register corresponding 
to the missing value, leaving its contents unchanged. If user register R7 has 
been altered or skipped and one or more unused value's remain, they are 
ignored. 

A diagnostic message informs the user if: (l) a register specification is absent or not in 
the range 0-7; or (2) the first value is not specified. 

DEBUG prompts for the next command. 

4-39 



4.5.8 TIte DELETE Command 

The DELETE command is used to delete specified traps and restore replaced user 
instructions to their original locations. 

Syntax: 

DELETE trap 

where: 

trap is a trap address. 

Response: 

A diagnostic message informs the user if: 

no "trap" is specified 

"trap" is not an address at which a trap has been set by the SET command 

Note that in the second case, the diagnostic message clarifies which address is not a trap 
address by displaying an exclamation point below the incorrect expression; any traps 
specified to the left of the incorrect expression will have been deleted. 

As each trap is deleted, the user instruction replaced by the trap· instruction is restored 
to its original location. 

DEBUG prompts for the next command. 

4-40 

(-~ 

l .... : 
-~ 

o 



( 

( 

4.5.9 The DETACH Command 

The DETACH command is used to detach DEBUG from the user task and transfer control 
to the task at the specified address or at $ (bits 13-31 of user PSD). 

Syntax: 

DETACH [addr] 

where: 

addr is the address within the user task to which control is transferred. If not 
specified, defaults to $. 

Response: 

All traps are deleted (there is no need to enter CLEAR TRAPS to restore user 
instructions replaced by trap instructions). 

DEBUG files and memory are deallocated. 

DEBUG transfers control to the specified address. 

A diagnostic message informs the user if the specified address violates a DEBUG address 
restr icti on. 

DETACH is a trap list terminator. 

4-41 



4.5.10 The DUMP Command 

The DUMP command is used to output a range of memory on an SLO file. 

ASCII format is used for the right hand side of the memory display. 

On line: the dump is output to a dynamically created SLO file, using file code 1102. 

Batch: the dump is output to file code IIOT. 

Syntax: 

where: 

low and 
high 

Response: 

DUMP [low~high]] 

are expressions representing memory addresses. If "high" is not specified 
or is not greater than "low", only the single word at "low" is displayed. 

If no addresses are specified the entire user task area is displayed. Bits 30 
and 31 of the values of "low" and "high" are zeroed to produce word addresses. 

The memory range between the addresses "low" and "high" is output. The user PSD and \i~ •• j 
registers are also shown. 

A diagnostic is displayed if any address in the range violates an address restriction. 

4.5.11 The END Command 

The END command is used to terminate a trap list. Using just a carriage return performs 
the same function. 

Syntax: 

END or <CR> 

Response: 

END is a trap list terminator. 

4-42 

o 



( 

4.5.12 The EXIT Command 

The EXIT command is used to terminate debugging and return to the TSM > prompt. Both 
the user task and DEBUG exit. 

Syntax: 

EXIT 

Response: 

DEBUG calls the M.EXIT service after verifying that the user desires to exit the system 
(return to TSM) and determining whether a hard copy of the log file is desired. 

EXIT is a trap list terminator. 

In batch, if EXIT is used and/or end-of-file is encountered on !lIN, DEBUG processing 
terminates. 

4-43 



4.5.13 Expression Command 

The Expression command is used to display the value of an input expression. 

Syntax: 

where: 

A displays the low order 19 bits of "expr" as an address. The data are displayed 
as absolute or relative, based on the most recent ABSOLUTE or RELATIVE 
command. 

B displays "expr" in binary 

N displays "expr" as a signed decimal number 

X displays "expr" in hexadecimal 

expr is any expression 

Response: 

A diagnostic message informs the user of any error encountered in evaluating the 
expression and displays an exclamation point under the invalid term or operator. 

After displaying the value of the expression, DEBUG prompts for the next command. 

4-44 

,. C··~·\···· 



4.5.14 The FILE Command 

The FILE command is used to input subsequent DEBUG commands from a command file 
instead of from the terminal. 

Syntax: 

FILE filename[,passwordJ 

where: 

filename is the name of a command file on disc. 

password is the password, if any, associated with the file. 

Response: 

A diagnostic message informs the user if: 

"filename" is absent or invalid, or the file does not exist 

the password is invalid 

the user is not allowed access to the file, e.g., a password is associated with 
the file and has not been supplied 

the command is read from a command file 

If there are no errors, DEBUG assigns lfc 1103 to the specified file and reads subsequent 
commands from 1103 instead of IIIN. When DEBUG reaches EOF on 1103 or a break is 
recognized, command input reverts to IIIN. The user name, if any, stored in T.USER in 
the task's TSA is used to access the command file. 

Use of the FILE command terminates a trap list. 

4-45 



4.5.15 The FORMAT Command 

The FORMAT command is used to set the default (assumed) format for untyped numeric 
constants in expressions to hexadecimal or decimal. 

Syntax: 

where: 

x 

N 

Response: 

FORMAT {~} 

sets the input radix to hexadecimal, which is the original default when 
DEBUG is attached. 

sets the input radix to decimal. 

A diagnostic message informs the user if the format specification is absent or invalid. 

DEBUG prompts for the next command (no output). 

4-46 

c' 

o 



( 

4.5.16 The GO Command 

The GO command is used to transfer control to the user task, optionally setting a one
shot trap. 

Syntax: 

GO [addr][, trap] 

where: 

addr is the address within the user task to which DEBUG transfers control. If 
"addr" is not specified, the DEBUG base $ (bits 13-31 of the user PSD) is 
used. 

trap is the address within the user task at which DEBUG sets a one-shot trap. 

Response: 

The trap is defined by the following trap list: 

MSG**ONE-SHOT SET BY GO COMMAND** 
DELETE trap 

where "trap" is the address of the one-shot trap, displayed by DEBUG as a 
hexadecimal number. If a trap address is not specified by the user in the GO 
command, DEBUG does not set a trap before transferring control to the user 
task. 

A diagnostic message informs the user if: 

either the transfer address or trap address violate DEBUG address 
restrictions 

a trap address is specified and a trap is already set there 

no trap table space remains and a trap address is specified 

the specified transfer address is two bytes greater than any trap address 

"addr" is an odd number 

"trap" is not on a word boundary 

4-47 



In any of these cases, the GO command is not executed. 

If GO is successful, DEBUG transfers control to the user task at the specified address. If 
the last control transfer into DEBUG was caused by a trap and control is passed to the 
trap address for that trap, the user instruction replaced by the trap instruction is 
executed first. Control is then passed to the trap address plus one word unless the 
replaced user instruction is any instruction which terminates the TRACE, TRACK, or 
WATCH commands--such a replaced instruction may not be executed without first 
deleting the trap set on it. 

Control remains with the user task until a trap, break, or user abort occurs, whereupon 
DEBUG regains control and reads the next immediate command from the terminal or a 
trap list as appropriate. 

GO is a trap list terminator. 

4-48 

,(", " 

.J 



(" 
4.5.17 The IF Command 

The IF, command is used to make a trap list conditional, i.e., the trap list is executed only 
if specified conditions are met. 

Syntax: 

IF cond 

where: 

cond is any expression. 

Response: 

If the value of "cond" is 0, the trap list which follows the IF is not executed; otherwise it 
is executed. When "cond" is 0, the COUNT for the trap is incremented, the user 
instruction replaced by the trap instruction is executed, and control is passed back to the 
user task as in a "GO ~" command. 

When "cond" is nonzero, the occurrence of the trap is reported, the trap's COUNT is 
incremented, and DEBUG executes the remaining commands in the trap list. 

A diagnostic message informs the user when IF is entered as an immediate command or 
when "concl" is absent or invalid. 

The expression "conci" is evaluated. If the value is nonzero, the trap is reported and 
remaining commands in the trap list are executed. The relational operators listed in 
Section 4.3.1.6 produce a value of 1 if the relation is true, and a value of ° if false. 

The trap's COUNT is incremented whether the trap is reported or not. 

A trap list may contain at most one immediate IF command. When IF is present, it must 
be the first command of the trap list. 

If the value of "cond" is zero no trap is reported and the program continues executing as 
if the user issued a GO $ command. 

4-49 



4.5.18 1lte LIST Command 

The LIST command is used to display the trap list for a specific trap. 

Syntax: 

LIST trap 

where: 

trap specifies a trap address. 

Response: 

A diagnostic message informs the user if "trap" is not a trap address. 

4.5.19 1lte LOG Command 

The LOG command is used to print the log file. For log file description, see Section 
4.1.2.1. 

Syntax: 

LOG 

Response: 

All log file records which have not already been printed are copied to an SLO file. The 
SLO file is then closed and deallocated. All log file records thus copied are no longer 
accessible (their space is released). The LOG command is ignored in batch. 

A diagnostic message informs the user if LOG is entered as a deferred command. 

4-50 

",1\ C··"'.·· 



4.5.20 The MSG Command 

The MSG command is used to display a message. 

Syntax: 

where: 

message 

Response: 

MSG message 

* 

is any character string. 

The character string is displayed. MSG can be used, for example, on a command file or 
in a trap list. 

4.5.21 The RELATIVE Command 

The RELATIVE command is used to input and display adresses as they are relative to a 
base. 

Syntax: 

RELATIVE [base] 

where: 

base is a base name. If a base is not specified, the base specified in the last 
RELATIVE command is used. If no base has been specified in a RELATIVE 
command, the special base $DSS (DSECT start) is used. 

Response: 

Each address that is displayed is represented as a displacement from the nearest base 
which is not greater than the address. 

Each relative input address is biased with the value of the the specified base. 

A diagnostic informs the user if the specified base has not been defined. 

4-51 



4.5.22 The REVIEW Command 

The REVIEW command is used to display the log file at the terminal. 

Syntax: 

where: 

screens 

Response: 

REVIEW [screens] 

is the number of screens from the current position in the log file for DEBUG 
to backspace before beginning the log file display. If the number of screens 
is not specified or is greater than the number of screens currently contained 
in the log file, the display begins at the first record in the log file. 

DEBUG displays the log file one screen at a time. 

When DEBUG reaches the end of the log file, the display is terminated and DEBUG 
prompts for the next command. None of the above terminal I/o is copied to the log file. 

REVIEW is treated as a comment in batch. 

A diagnostic message informs the user if: 

REVIEW is entered as a deferred command 

REVIEW is read from a command file 

4.5.23 The RUN Command 

The RUN command is used to trace or track until DE~UG reaches a full screen of output 
instead of single-stepping. 

Syntax: 

RUN 

Response: 

Until a STEP command is executed, the TRACE and TRACK commands run to a full 
screen of output before pausing. 

4-52 

(. 

ecce", 

" 

___ jill 



(-

4.5.24 The SET Command 

The SET command is used to set a trap in the user task. 

Syntax: 

SET trap 

where: 

trap is the address at which DEBUG sets a trap. 

Response: 

The user instruction at the specified trap address is replaced by a trap instruction (SVC 
1,X'66'). . 

DEBUG stores subsequent commands in the trap list (i.e., subsequent commands are 
deferred) until a trap list terminator is read which corresponds to this SET. Trap list 
terminators and their interaction with the SET command are discussed in Section 4.3.5, 
T raps and Trap Lists. 

A diagnostic message informs the user if: 

The trap address is absent, is already a trap address, or violates an address 
restriction. 

DEBUG's trap table is full and thus no more traps can be set until a trap is 
deleted. 

"trap" is not on a word boundary. 

4-53 



4.5.25 TIle SHOW Command 

The SHOW command is used to display current base definitions, trap addresses, or option 
settings. 

Syntax: 

SHOW 
(

( BASES )] 
J TRAPS ( 
t OPTIONS) 

where: 

If no argument is specified, all displays are produced. 

BASES displays the current definitions of all special bases and user bases. 

TRAPS displays all trap addresses. 

OPTIONS displays the settings of the options controlled by the following commands: 

Response: 

ABSOLUTE/RELATIVE 
RUN/STEP 
FORMAT 

A diagnostic message informs the user if any argument but BASES, TRAPS, or OPTIONS 
is used. 

4-54 

o 

c····"'. \: 
" 



4.5.26 The SNAP Command 

The SNAP command is used to output the contents of a range of logical addresses on the 
file or device assigned to IIOT. The output format is side-by-side hexadecimal and 
ASCII. 

Syntax: 

where: 

[SNAP][low~highJ ] 

If a range of addresses is not supplied, DEBUG snaps the logical address 
space of the task from $DSS to $DSE. 

low specifies the first address to snap. If no address is specified, the snap begins 
at $DSS. Bits 30 and 31 are ignored and assumed to be 00. 

high specifies the last address to snap. If not specified, only the single word at 
the low address is snapped. Bits 30 and 31 are ignored and assumed to be 00. 

Response: 

( The specified memory contents are output to IIOT. 

4.5.Z7 The STATUS Command 

The STATUS command is used to display a status report indicating the user PSD and user 
registers for each currently active task interrupt level. 

Syntax: 

STATUS 

Response: 

DEBUG displays a status report on the terminal. 

4-55 



4.5.28 The STEP Command 

The STEP command is used before TRACE or TRACK to single-step through the 
execution of each instruction in the user task. 

Syntax: 

STEP 

Response: 

Until a RUN command is issued, all TRACE and TRACK commands will pause after each 
instruction display so the user can inspect each instruction and its results before the next 
instruction is executed. 

STEP is ignored in batch. 

4.5.29 The TIME Command 

The TIME command is used to display the date and time of day. 

Syntax: 

TIME 

Response: 

DEBUG displays the calendar date as stored in the Communication Region (C.DATE) and 
the time of day as returned by the M.TDAY service. 

4-56 

() 



( 

( 

4.5.30 The TRA.CE Command 

The TRACE command is used to execute and display each user instruction and its 
results~ To trace only branching instructions, use the TRACK command. 

Syntax: 

TRACE [start][,stop] 

where: 

start is the address of the first user instruction to be executed. If starting address 
is not specified, the special base $ (bits 13-31 of the user PSD) is used. 

stop is the address of the last user instruction to be traced. If a stop address is 
not specified, the trace continues as described below. 

Response: 

DEBUG fetches user instructions beginning at the specified start address and executes 
them, displaying each instruction and some of its results and/or operands in a basic 
Assembler-like format. 

Unless a RUN command is in effect, DEBUG pauses after each instruction is executed or 
simulated, if possible, and waits for a I-character response from the user. To proceed to 
the next user instruction, enter only a carriage return. Any other response terminates 
TRACE. If a RUN command is in effect, TRACE does not pause after each instruction 
but proceeds immediately to the next instruction; thus the only opportunity to stop the 
display is at the end of each screen. Note that in batch, TRACE functions as if a RUN 
command were in effect. 

4-57 



This process continues until one of the following occurs: 

An instruction has been fetched, executed, and displayed from the specified 
stop address. The user context indicates that the instruction has been 
executed, as shown in the status report announcing trace termination. 

A user instruction is aborted, e.g., by a privilege violation or a map fault. 
TRACE executes most user instructions by transferring control to the user 
task for one instruction at a time. When these instructions execute, it is as 
if the user had entered "GO a,b" where "a" is the address of an instruction 
and "b" is the address of the next instruction (logically next, not necessarily 
"a"+l W). Any abort condition caused by such instructions is reported as it 
would be after a GO command and the trace is terminated. The user context 
is reported in a status report. 

DEBUG fetches an instruction that breaks the trace (see Table 4-4). The 
instruction is displayed and TRACE is terminated. The user context still 
points to the untraceable instruction, as shown in the status report 
announcing trace termination. 

The address of the next instruction to be fetched would violate an address 
restriction. No instruction is displayed, the trace is terminated, and the user 
context points to the bad address as shown in the status report announcing 
trace termination. 

If the last control transfer to DEBUG is caused by a trap, and the starting address is $ 
(the user PSD), the user instruction replaced by the trap instruction at $ is traced as if it 
were at $, and the trace continued. 

A diagnostic message informs the user if the starting address violates an address 
restriction or is two bytes greater than any trap address or "start" or "stop" is an odd 
address. 

TRACE is a trap list terminator. 

4-58 

o 

o 



AI 
BEl 
BRI 
CD 
CEMA 
DAI 
DI 
EI 
EWCS 
HALT 
JWCS 
LEM 
LPCM 
LPSD 
RDST 
RI 
RWCS 
SEM 
SCPU 
TD 
TMTR 
TPR 
TRP 
UEI 
WAIT 
WWCS 

Table 4-4 Instructions that Break a Trace 

All undefined opcodes 

4-59 



4.5.31 The TRACK Command 

The TRACK command functions exactly like TRACE, except that it displays only 
branching instructions. 

Syntax: 

TRACK [start][,stop] 

where: 

start is the address of the first user instruction to be executed. If the starting 
address is not specified, the special base $ (bits 13-31 of the user PSD) is 
used. 

stop is the address of the last user instruction to be executed. If a stop address is 
not specified, the track is continued as described for TRACE. 

Response: 

TRACK functions exactly like TRACE with the following exception: 

4-60 

Only instructions which can cause branching are displayed (BCT, TRSW, 
LPSD, etc.), and they are listed with an indicator, where appropriate, 
showing whether a conditional branch is being taken. 

o 



(' 

4.5.32 The WATCH Command 

The WATCH command functions like TRACE, but does not display instructions. It is used 
to detect erroneous branches into areas such as Global Common or MPX-32. 

Syntax: 

WATCH [start] [,stop] 

where: 

start is the address of the first user instruction to be executed. If a starting 
address is not specified, the special base $ (bits 13-31 of the user PSD) is 
used. 

stop is the address of the last user instruction to watch. If a stop address is not 
specified, the watch continues as described below. 

Response: 

DEBUG performs a TRACE but inhibits the usual instruction display. When, as often 
happens in a new program, an erroneous branch is taken, it is often into an area 
completely out of the program (e.g., a branch to location 0). Especially in the case of a 
privileged task, many instructions may precede the inevitable disaster. While the system 
crumbles, many of the most useful hints as to the cause (e.g., register contents) are 
destroyed. WATCH provides a convenient means of detecting such branches when they 
happen without all the terminal output caused by TRACE or TRACK. 

4-61 



4.6 Batch Considerations 

This section parallels the other sections in this chapter, outlining the major differences 
which arise when DEBUG is attached to a batch task. The differences between 
interactive and batch functions for specific commands are discussed in the individual 
command descriptions in Section 4.5. File assignments are covered in Section 4.2. 

Section 

4.4 

4.1.2.1 

4.1.2.3 

4.1.4 

4-62 

Batch Considerations 

DEBUG may be attached at activation time to a batch task by using 
the Job Control command $DEBUG where $EXECUTE would normally 
be used. 

Terminal I/O: Screen size is meaningless. There is no log file; input 
commands are read without prompts, and pseudo-prompts are added as 
for commands from a command file. 

SLO files: The DUMP command does not produce a separate SLO file, 
but places its output on the SLO file allocated for the file code /lOT; 
the LOG command is treated as a comment in batch since there is no 
log file. 

DEBUG recognizes breaks during batch processing, but since there is no 
terminal, the only possible sources are the OPCOM BREAK command 
or an SVC I,X'66' instruction coded by the user as part of his task (i.e., 
not planted by the SET command). Since in batch, the command 
stream is not interactive, but must be composed before execution, the 
user abort and break interception provided by DEBUG must be used 
with care. 



(" 4.7 Listings and Reports 

See individual command descriptions. 

4.8 Errors 

See individual command descriptions and Appendix C. 

4.9 Examples 

Not supplied. 

( 

4-63/4-64 





5. THE TEXT EDITOR (EDIT) 

The MPX-32 Text Editor (EDIT) provides a comprehensive set of commands for building 
and editing text files, merging files or parts of files into one file space, copying existing 
text from one location to another, and in general for performing editing functions 
familiar to users of interactive systems. 

EDIT is typically used to create source files and to build job control files and general 
text files. A job file built in the Editor can be copied directly into the batchstream using 
the Editor BATCH command. 

5.1 General Description 

Edit structure is based on the concept of a work file upon which the user operates with 
editing commands. Source text may be transferred between permanent disc files and the 
work file. Access to source text is based on line numbers contained within text lines. 

The Text Editor only recognizes file names with 1-8 characters. Valid characters for file 
names are A-Z, 0-9, dot (.) and underscore (). Although other characters will generally 
be accepted, their use is not recommendecL Filenames should not begin with a dot or 
string of digits followed by a dot. Filenames must contain at least one alphabetic 
character. 

5.2 F"des and F"de Assignments 

Not applicable. 

5.3 Options 

The TSM command OPTION LOWER can be used to accommodate a terminal that is 
entering upper and lower case text. See Section 5.4.6, Entering Lower Case Text. There 
are no other options that affect the use of EDIT. 

5-1 



5.4 Using the Editor 

5.4.1 Addressing Techniques 

There are several ways of specifying what lines to work on with an EDIT command, 
ranging from supplying a specific line number to specifying a group of lines and ranges of 
lines. The following sections describe various addressing techniques. 

5.4.1.1 Special Characters 

Several characters are available to use in place of a line number (these apply to workfile 
line numbers only): 

F or FIRST 

L or LAST 

E or END 

A or ALL 

the first line in the file 

the last line in the file 

the last line in the file (L) plus the current increment set for adding 
lines at the end of the file (DELTA, normally 1.) 

all lines in the file 

C or CURRENT the last line currently displayed on the terminal 

N or NEXT the line following the current line 

When referring to external files, specific line numbers should be stated to avoid 
erroneous results, i.e., 200/300 not 200/E. 

Because these characters and words are EDIT keywords, they cannot be used as file 
names. 

5-2 

( ............ '.~ 
" 

-- -,Y 



5.4.1.2 tine and Range Addressing 

To access a specific line, type the line number. To access a contiguous set of lines 
(range), type the first line number, a forward slash, and the last line number in the range, 
i.e., 

lineno 

or 

lineno/lineno 

The characters "F", "L", or "E" can be used in place of a specific line number. The range 
implied by ALL is F/L. Usage of "e" and "N" as part of a range is not permitted and will 
cause incorrect results. These special characters are intended to be used only to display 
a single line. 

When only part of a range is specified with an EDIT command, the rest of the range is 
implied. If you use a beginning line number followed only by a forward slash: 

linenol 

the last line in the range defaults to the end of the last range specified in the previous 
command. Likewise, if you use just a forward slash and the last line number for a range 
specification: 

llineno 

the first line number defaults to the first line number from the last range specified with 
the previous command. See also Section 5.4.1.5. 

5.4.1.3 Groups 

A group is any combination of line numbers and ranges, where each specification is 
separated from the next by a comma, e.g., 

lineno/lineno, lineno, lineno/lineno 

There can be up to 24 specifications in a group. The above illustration shows three. 

5-3 



5.4.1.4 Content Identifiers 

To limit access within a group to lines containing a specific string, type the string 
enclosed in backslashes, i.e., 

string 

Only the lines containing the specified string are then accessed. A content identifier 
used with a group applies to the entire group, e.g., 

1/60, TRAP ,75, 209/L 

specifies that all lines within the group that contain the content identifier TRAP are to 
be accessed. This applies to lines 1-60, line 75, and line 209 through the last line of the 
file. 

5.4.1.5 Defaults 

When no lines are specified with an EDIT command, the lines specified with the previous 
EDIT command are used by default, with the following exceptions: 

5.4.1.6 

o If a group was specified previously, only the last line or range in the group 
(the specification to the right of the last comma) is taken for the current 
command. 

o Content identifiers do not carryover. If you have selected lines within a 
range in the previous command by using a content identifier, you will 
access the entire last range in the group without regard to the content 
identifier when you specify nothing. 

Special Command Defaults 

Several EDIT commands have special defaults: 

5-4 

o Initially the default for COLLECT and INSERT is the line following the last 
line of the file (E). After that point, COLLECT and INSERT default to the 
line following the last line collected or inserted as the point to begin 
collecting or inserting lines. (When LIST follows one of these commands 
and no group is supplied, it defaults to the lines that have just been 
collected, or inserted.) 



( 

o COpy and MOVE also have special defaults. If nothing is specified, they 
default to the first through last lines specified or implied in the last range 
of the previous command as source text and the line following the last line 
in the file (E) as the point where source should be copied or moved. 

LIST, CHANGE, APPEND, REPLACE, PREFACE, and DELETE initially default to the 
first line of the file. After that, defaults are geared to the specification for the previous 
command as described previously in Section 5.4.1.5. 

5.4.1.7 Description in Syntax Sections 

The syntax description for each command in Section 5.6 uses the term 'group' as a means 
of flagging any of the addressing techniques described in Sections 5.4.1.1 through 5.4.1.4. 
Defaults are reiterated with each command description. 

In general the various arguments associated with any command may be entered in any 
order. 

5-5 



5.4.2 Lines and Line Numbers 

Line numbers take the form of decimal numbers in the range zero (0) to 9999.999, with at 
most three digits after the decimal point. When creating new text, it is usually 
convenient to use only integer line numbers, reserving fractional line numbers for 
subsequent insertions. 

The user work file is limited to 10,000,000 lines. This is the actual limit if the user 
sequentially numbers lines 0.000, 0.001, ••• ,9999.999, inclusive. Otherwise, the work file 
is limited by the highest line number. 

5.4.2.1 Line Numbers Generated by the Editor 

When the Editor generates line numbers, e.g., with the COLLECT, MOVE, COPY, or 
INSERT command, it does so according to what the user specifies for a beginning line 
number (base) and optional increment. The following rules apply: 

5-6 

o The least significant decimal position used in the base (or increment) 
applies to line numbers that are generated by the Editor. A specification in 
tenths implies lines 1 to_ ,.9 or some subset thereof. A specification in 
hundreths implies lines .01 to .99 or some subset thereof. A specification 
in thousandths implies lines .001 to .999 or some subset thereof. 

o The Editor stops the current operation if it encounters an existing line 
number. As long as no existing lines are encountered, the Editor rolls over 
line numbers until it reaches an existing line number. 

o An increment is an absolute number to add to the previous line number to 
obtain the next line number. It is not automatically relative to the base, 
i.e., if you specify a base (or beginning) line number in tenths, and want to 
increment in tenths, the increment must reflect the base decimal 
position. For example, if you specify line 2.2 as the starting line and 
specify .2 as an increment, the Editor generates lines 2.2, 2.4, 2.6, and 
2.8. If instead, you specify 2 as an increment, the next line number 
generated after 2.2 will be 4.2. The default increment used in generating 
line numbers is 1, .1, .01, or .001 depending on the least significant position 
of the specified base number. 

o DELTA increments apply to lines following the last line of the workfile. 

o a special DELTA increment 0/10 of DELTA value} is used by the Editor to 
generate line numbers for COLLECT and INSERT commands when the line 
number supplied (or implied) by the user already exists. 

c 



c 

( 

5.4.2.2 Line Numbers at the 8egiming and End of the Workfile 

Unless otherwise specified, when you begin building a workfile, the Editor defaults to line 
1 for beginning of file. Lines 0 - 0.999 are, however, valid line numbers and can be used 
subsequently to insert lines before line 1. 

The special character 'E' provides access to the end of the workfile, as it specifies the 
last line in the file plus an increment. The line number for E depends on the setting of 
DEL TA. DELTA is normally an increment of lover the last line in the file. It can be 
overridden to a different significant digit and increment (e.g., .02) by using the SET 
DELTA command. 

5.4.2.3 Physical Position of Line Numbers 

The Editor q"isplays line numbers at the beginning of the line, but it does not store, save, 
or output them there. The line numbers are physically output in columns 73-80 of each 
line of text, so that when another program reads the file, it can ignore the line numbers. 

For example, when any processor is run, it requires that a directive, a label, or some 
other significant command 'verb' begin in position 1 of a line. (In some cases, a symbol 
such as a slash precedes the verb; in this description and throughout the documentation, 
the symbol is considered an integral part of the verb.) 

Because the Editor moves the line number to the end of each line, the verb falls in the 
correct position (column 1) for processing in the batch environment. 

5.4.2.4 Text Output Without Line Numbers 

The workfile can be listed or output without line numbers if desired for readability or 
required for subsequent processing by a user-developed task. No SYSTEMS processors 
require removing line numbers. 

Physically, using UNN as an option on a command replaces the Editor line number in 
columns 73-80 with blanks. 

5-7 



.5.4.3 Accessing Files Created Outside the Editor 

The USE command is normally used before performing any other editing functions on 
these files. If a disc file being copied into the workfile via USE has records longer than 
80 characters, the records are truncated to 80 characters. In addition, editing requires 
valid line numbers in positions 73-80 on files coming in from disc. If the line numbers do 
not exist, data in positions 73-80 are replaced by Editor line numbers. The line numbers 
generated for the records reflect the current value of DELTA, i.e., if DELTA is set at 
the default, numbers are provided starting at 1.0 and incrementing by 1. 

If an unnumbered file is accessed that has not previously been edited, and it has more 
than 9999 records, records 10,000 and subsequent are ignored. DEL T A can be reset so 
that up to 10,000,000 records are copied into the workfile. See the SET DELTA 
command. 

To get a file from media other than disc into the Editor, use another utility, e.g., MEDIA, 
to copy it to disc prior to issuing the Editor USE command. (See Volume 2, Chapter 8.) 

.5.4.4 Accessing Password-Protected F"des 

Any file that is defined as RO (Read Only) protected can be read without supplying the 
password. Commands that read files include LIST, PRINT, PUNCH, USE, COPY, and 
BATCH. Read only files cannot, however, be written to without supplying a valid 
password. Commands that 'write' files include SAVE, SCRATCH, and STORE. A file that ,,-"'\ 
is PO (Password Only) protected cannot be read or written without supplying a valid ~\~) 
password. -

The Editor honors these rules by prompting for a password in any of the cases where it is 
required: 

ENTER PASSWORD password 

If the user does not type a valid password and the command (e.g., LIST, PRINT, etc.) 
involves a read, the command terminates. If the command (e.g., SAVE) involves a write, 
the prompt is returned until the user enters the valid password or types just a CR ,in 
which case, the command terminates. 

Password protection can be achieved via the Editor when performing a SAVE or STORE 
command and specifying the RO or PO option. See SA VE and STORE command 
descriptions. If the RO or PO option is not used, the password is retained when Editor 
STORE or SAVE commands are used • 

.5.4 • .5 Accessing System Files 

A system file (one without a username) can be edited by any user who knows the 
password associated with the file, if any. Any user can create a system file by using the 
SYS keyword on a STORE or SAVE command. Password protection is described in the 0.'." 
previous section • 

.5-8 



( 

5.4.6 Entering and Editing Upper/Lower Case Text 

The Editor normally translates lower case input to upper case. TSM provides a command 
that inhibits the translation: 

TSM > OPTION LOWER 

This allows the user to enter and edit lower case characters. 

When entering upper/lower case text, depress the shift key for upper case characters. 
Commands and keywords as well as text can be entered in any combination of upper and 
lower case; however, the names of files must be all upper case. 

Files that are built with upper/lower case text must be edited with the same character 
conventions in effect. For example, a content identifier in all upper case will not match 
text with the same characters if any of the text characters are lower case. 

5.4.7 Using the Break Key 

The Editor responds to the Break key, which provides a convenient means of terminating 
a long display once you have the information you need, or stopping a global change or 
large set of deletions in process. Response to the break is not guaranteed in a specific 
timeframe. When the break interrupt is received, the command in process is terminated 
at the earliest safe termination point. 

5-9 



5.5 Accessing EDIT 

To access the Editor use: 

TSM> EDn 

The Editor prompts for a work file code: 

ENTER WORK FILE CODE OR CR TO TERMINATE: filecode 

The file code is a two-character prefix for the work file. Each character must be 
printable. If the code you supply has been used previously in accessing EDIT, the existing 
workfile with that prefix is retrieved with a message indicating whether it was cleared, 
saved, or changed (without a save) at the end of the last EDIT session. The EDT 
prompt is then displayed. 

If the code you supply has not been used before, EDIT assumes that you want to create a 
new work file. It creates the file for you. 

To exit the Editor, type a carriage return. 

You can bypass the prompt for a work file code by entering the code when you access the 
Editor. A blank or comma is the legal delimiter, i.e.,: 

, TSM > EDIT filecode 

Note: The special characters, the commands, and the keywords within commands cannot 
be used as a file name. Also, numeric names are not permitted. 

5-10 

( 
\ 

\ 

'c ... '1;" .. 
=./ 



.5.6 EDIT Commands 

EDIT commands are summarized in the following chart and described individually in 
sections which follow. EDIT commands must either be abbreviated to three characters 
or completely spelled out. 

To delete one or more character(s) on a command line or on a line of text being edited, 
use a Backspace or a CTRL H key sequence. Type the right character(s). 

To delete an entire command or text line, use the RUB or DELETE key, then re-enter the 
line. 

The Break key can be used to interrupt operations in process. 

Command 

APPEND 5-/3 

BATCH S-J4 

CHANGE $" - I S 

CLEAR t) -I J 

COLLECT 5' -I ~ 

COMMAND S-2l 

COpy 5-22.... 

DEBUG t; - ~ (p 

DELETE 5-'2<-

EXIT 5-27 

INSERT S-Z.B 

LIST 5- 30 

MODIFY S - 32 

MOVE 5-33 

NUMBER '5 -3 5 

PREFACE S·3 7 

PRINT 5-3" 

Function 

Appends text to end of a line or group of lines. 

Copies work file or specified file into batchstream. 

Replaces a character string with a different one. 

Clears work file. 

Accumulates lines of text. 

Displays the last four commands the user performed. 

Copies existing text to work file. 

Causes the user to exit the Editor and enter the Task 
Debugger. 

Deletes lines. 

Terminates current session in the Editor. 

Inserts lines of text. 

Lists text on terminal screen. 

Changes an existing line by allowing the user to space past 
good characters and replace bad characters. 

Moves lines of text within the workfile. 

Renumbers lines in work file. 

Inserts characters at beginning of line. 

Copies work file or specified permanent file to SLO file. 

5-11 



PUNCH 5-40 
REPLACE 5-4\ 
RUN 5 -I., 
SAVE 5-42 
SCRATCH 5-44 

SET 5-1-5 

SHOW 5- 50 

STORE 5-52 

USE -5~ 

VERIFY S-5tp 

WORK FILE 5-'57 

5-12 

Copies work file or specified permanent file to SBO file. 

Deletes lines and enters new ones. 

Copies work file or specified file into batch stream. (Same as 
the BATCH command, see BATCH). 

Saves work file compressed on permanent file. 

Deletes a permanent file. 

Sets delta, tabs, verification, or show files status length. 

Shows current line increment, files, or tab settings. 

Stores work file uncompressed on permanent disc file. 

Copies another permanent file into a cleared work file. 

Checks validity of the current work file. 

Accesses a different work file. 



5.6.1 APPEND Command 

The APPEND command is used to append characters at the end of an existing line. More 
than one line can be accessed with the command. Additions are then made line by line. 

Syntax: 

where: 

group 

APPEND [group] 

is a line number, a range of lines, or a group of ranges and/or lines on which to 
append text. Lines to be modified can be further identified by content. (See 
Section 5.4.1.) 

If not specified, the last range specified in the previous command is accessed 
by default. 

Response: 

The first line in the specified group is displayed, with the cursor positioned at the end of 
the line. Type the additional character(s) followed by a carriage return. The new 
characters are added to the line. 

If a group has been specified, the next line in the group is displayed for modification, and 
so on, continuing to the last line in the group. 

To terminate the APPEND command, enter a carriage return instead of appending a 
character to a line. To bypass modifying a line and go to the next specified line in a 
group, type a blank followed by a carriage return. The line remains unchanged, but the 
APPEND command is not terminated. For tabs, use the Editor tab character instead of 
CTRLI. (See the SET TABS command.) 

Example: 

EDT> 
35. 

EDT> 
35. 

EDT> 

Errors: 

APPEND 35 
DEBUG CO'v\\rON 

<CR> 
DEBUG CXlvfvON 

DBC( 441 ) 

DBC( 441 ) 

\ f\K) • WORD S FOR CO'v\\rON. 

1'0. \IDRDS FOR CCM'vON. 

If the characters you attempt to append to a line cause it to exceed 72 characters, the 
additional characters are not displayed and the following message appears: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N 
(No) to leave the line as it was before you attempted to append characters. 

5-13 



5.6.2 The BATCH or RUN Command 

The BATCH command (the RUN command is equivalent) is used to copy a job file into 
the batchstream. The file can be the current work file or another job file in the user's 
directory. In either case, the file must contain job control statements for a complete 
job. (See Batch Processing, Volume 1, Chapter 6.) 

An alternative to this command is the OPCOM BATCH command as described in Volume 
1, Chapter 4. 

Syntax: 

where: 

jobfile 

UNN 

Response: 

BA TCH [jobfile] [UNN] . 

is any one-to-eight character name of a file in the user's directory. If no file 
is specified, defaults to the current workfile. (To copy another workfile in 
your directory into the batchstream, use the WORKFILE command, then 
BATCH.) 

changes the line numbers in physical line positions 73-80 to blanks. This is not 
required for batch processing with any of the SYSTEMS utilities. (See Section 
5.4.2.3.) 

The file is entered in the batchstream and the EDT> prompt is returned. (The OPCOM 
LIST command can be used to check on the status of the job.) 

Errors: 

If a job file specified for BATCH is PO (Password Only) protected, the password is 
required to read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the BATCH command terminates. 

Errors encountered during batch processing are shown on the listing produced for the 
job. (See BATCH PROCESSING, Volume 1, Chapter 6.) 

5-14 

.( .. ... "'.' .•..... ~: " 

~j 

(} 



( 
5.6.3 11le CHANGE Command 

The CHANGE command is used to replace an existing string with another string. 
Existing characters following the replacement string are adjusted left or right to 
compensate for replacing a string of one length with a longer or shorter string. (It is not 
uncommon to exceed the 72-character line limit with this command. See Errors.) 

Text in tabbed lines will be shifted left or right to adjust for a replacement string just 
like any other line. To compensate for the shift, you can type extra blanks in the existing 
string (if it is shorter than the replacement) or type extra blanks in the replacement 
string (if it is shorter than the existing string). This will maintain the original alignment 
of tabbed values. 

Syntax: 

where: 

group 

string 

newstring 

NOLlST 

Response: 

CHANGE [group] \ string\\ [newstringJ \ [NOLlST] ---- ----

is a line number, a range of lines, or a group of ranges and/or lines to be 
modified. (See Section 5.4.1.) A content identifier cannot be used with the 
CHANGE command. 

If a group is not specified, the last range specified in the previous command 
is used by default. 

identifies the existing string to replace. It must be enclosed in backslashes. 

is the string to replace the existing string. It must also be enclosed in 
backslashes. To delete the existing string, replace it with nothing by using 
two consecutive backslashes. 

inhibits the automatic display of lines as they are changed. 
recommended on large groups. 

Not 

As each line is changed, the resulting line is displayed. Changed lines scroll up on the 
screen, and no intervention except the Break key is possible until a full screen of changes 
is displayed. At that point, the Editor pauses, waiting for a signal from the terminal. 
Use a carriage return to continue the specified changes. Or, use any other character to 
terminate the command. (A No response to an error prompt also terminates the 
command. See Errors.) 

5-15 



Example: 

EDT> CHA\EXPR~XPRESSION\ALL 
14. * 'OUTPUTS: R6=O GOOD EXPRESSION 
15. * R7=VALUE OF EXPRESSION 
674. * FOUND END OF EXPRESSION 
EDT> 

Comment: 

In this example, the Editor searches the workfile for every occurrence of the term 
"EXPR." and changes each one to "EX PR ESSION". 

Errors: 

If a change in a line results in a line longer than 72 characters, the modified line is 
displayed with the characters beyond 72 truncated. The following message appears: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N 
(No) to leave the line as it was before you attempted to make the change. 

Typing N terminates the CHANGE command. 

5-16 



( 5.6.4 The CLEAR Command 

The CLEAR command is used to clear the current contents of the workfile. It is used in 
conjunction with the USE command to access a different disc file or before building text 
into a new file interactively via a COLLECT command. 

To preserve the contents of the workfile before clearing it (e.g., to retain editing 
changes made since you accessed the Editor), use the SAVE or STORE commands before 
using CLEAR. (See the SAVE and STORE command descriptions.) 

CLEAR is also an option on the USE command. If you have not specifically cleared the 
workfile already with the CLEAR command or the CLEAR option, USE prompts 
CLEAR=N, to discourage clearing the workfile, knowing that it must be cleared before 
you can use another file and assuming that you want to take action to SAVE or STORE 
the current workfile if you have not done so already. 

Note that a file does not have to be read into the workfile with a CLEAR/USE sequence 
in order to be listed, copied, or printed. 

Syntax: 

CLEAR 

Response: 

( The workfile is cleared and its status is updated as reflected in the SHOW command. 

Example: 

1 EDT>CLEAR 

2 EDT>USE XXX CLEAR 

Comment: 

1 The current contents of the workfile are cleared and the workfile is now 'empty'. 

2 The current contents of the workfile are replaced by the contents of file XXX. 

Errors: 

To be supplied. 

( .........• 

'" , 

5-17 



5.6.5 The COLLECT Command 

The COLLECT command is used to enter new lines of text into the workfiIe. 

Syntax: 

where: 

lineno 

/lineno 

COLLECT [lineno (flineno]] [BY increment] 

is the line number in the workfile at which collection is to begin. The least 
significant digit in the specified line number determines the line numbers 
the Editor generates for the collected text. (See Section 5.4.2.1.) If the 
line number you specify currently exists, the Editor adds 1/10 of DELTA, 
and provides that line number for you. 

If a beginning line number is not specified, EDIT defaults to the line 
following the last line entered with the previous COLLECT or INSERT 
command or to E, if neither command has been issued. The line number 
which prompts for collected text reflects the least significant digit of line 
numbers used in the previous collection or insertion. (It does not reflect 
the increment used in the previous command, but defaults back to 1., .1, 
.01, or .001 as applicable, unless overridden with BY.) 

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line numbers. This 
is useful when inserting lines at the beginning of an existing workfile. 

To collect lines at the end of the workfile, use lEI to signify the last line in 
the file plus 1, e.g., COLLECT E. When E is used, line numbers for 
collected text will reflect the least significant position and increment of 
the DELTA value for line numbers. See the SET DELTA command. 

is the line number in the work file at which collection is to end. This 
line number must not currently exist. If not specified, collection ends 
when the Editor reaches a line number that does already exist. 

Line numbers used to prompt for collected text reflect the decimal 
position of the line number specified for beginning or ending the 
collection, whichever is least significant. 

BY increment is an absolute number to add to each line number to generate the next 
line number. The increment value can be any number starting at .001 
up to 9999.999. 

5-18 

Example: If O. is specified as a beginning line for collection and .05 is 
specified with BY, line numbers generated for collection are .00, .05, 
.10, .15, .20, etc. 

The default increment is DELTA or 1/10 of DELTA depending on the 
least significant digit used in the line number specification(s). 

For further description of increments, see Section 5.4.2. c· 



(/ 

Response: 

The beginning line number is displayed as a prompt. Enter the text of the line followed 
by a carriage return. From this point on, line numbers are generated automatically. The 
next sequential line number is displayed. Continue entering lines. A blank followed by a 
carriage return creates a blank line. 

To terminate the command, use a carriage return after the line number is displayed, or 
depress the Break key. The EDT> prompt is returned. 

The command terminates automatically if the next line number in a collection sequence 
already exists or if you have specified a line at which to end collection and have entered 
that line. 

Examples: 

EDT> COL 22.01 
22.01 text 
22.02 text 
22.03 text 
22.04 <CR> 
EDT> 22/23 
22. text 
22.01 new text 
22.02 new text 
22.03 new text 
23. text 
EDT> 

1 

EDT> LIST L 
374. text 
EDT> COL E 
375. text 
376. text 
377. <CR> 
EDT> 

Comment: 

1. If you were to answer the EDT> with another COL command at this time, the Editor 
would default to the last command and start its collect with line number 22.04. 
Therefore, it is necessary to set the Editor up with a new command sequence to start 
the next collect. In this example we chose the E command. 

Errors: 

If more lines are to be collected than there are available lines, EDIT collects as many 
lines as it can. It then displays the line number where collection stopped with the 
message: 

lineno NOT PROCESSED. 

5-19 



Use COLLECT again with a beginning line number specification and/or TO increment 
that generates enough new lines to accommodate the text that still must be collected. 
Start collecting again. (See Section 5.4.2.1 and the lineno descriptions under Syntax.) 

The NUMBER command can be used if you have gotten to a .nnn position with no line 
numbers left for insertion. See the NUMBER command. 

If you type more than 72 characters in a line, the additional characters are not displayed 
and the following message appears: 

. TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed on the 
screen. Type N (No) to re-enter the line. 

5-20 



5.6.6 The COMMAND Command 

The COMMAND command is used to display the user's last four Edit commands as they 
were seen by the Editor. 

Syntax: 

COMMAND 

Response: 

The last four commands entered into the Editor are displayed. This could be useful in 
determining a problem with a file. Possibly what you typed in as an instruction wasn't 
what you really wanted done. 

Example: 

EDT> COM 
F,L 
DEL 3/7 
APP 9 
COM 
EDT> 

If less than four commands were issued to the Editor, only those issued are displayed. 

5-21 



5.6.7 1be COpy Command 

The COpy command is used to copy existing lines of text to the work file, beginning at 
the specified line number. The lines to copy can be on the work file already or they can 
come from a file saved or stored previously. 

To select specific lines from a file, the file must be saved or stored with line numbers. If 
the whole file is to be copied, a lack of line numbers makes no difference. 

The lines from which text are copied are not deleted. To delete lines in one part of a 
workfile and copy them to a different part, use the MOVE command. 

Files that have not been built in the Editor or accessed and saved previously via Editor 
USE and SAVE or STORE commands cannot be copied directly into a workfile. 

To do so, save the current contents of the workfile, then access the desired file with the 
USE command. USE attaches line numbers in a form acceptable to the EDT. (See Section 
5.4.2.3.) 

Save or store the file back on disc, then copy the original file back into the workfile. 
The file can now be copied into the workfile. 

Syntax: 

where: 

group 

COpy [group] [FROM][filename] [TO lineno] [BY increment] [LIST] 

is a line number, a range of lines, or a group of ranges and/or lines to 
copy into the workfile from another file or from within the workfile 
itself. Lines to be copied can be further identified by content. (See 
S:ection 5.4.1.) If copying from a file other than the current work file, 
the name of the file must be supplied with FROM. 

If nothing is specified for group, all lines in the file are copied. 

FROM filename specifies the name of a file from which lines are to be copied. This 
file must belong to the same user who issues the command. 

TO Hneno 

5-22 

If a file name is not specified, the current workfile is the default. 

is the line number in the workfile at which copying is to begin. The 
least significant digit in the specified line number determines the line 
numbers the Editor generates for the text being copied. (See Section 
5.4.2.1.) The line number you specify must not currently exist (must 
not have been used before or must have been previously deleted). 
Copying stops if the Editor generates a line number that already 
exists. 

( ...... ... .I: .. ',,"-! 
I) 

jl' 

(j 



( 

BY increment 

LIST 

Response: 

If a beginning line number is not specified, EDIT defaults to E, the 
line following the last line in the workfile. If collecting at end of file, 
line numbers for copied text will reflect the least significant position 
and increment of the DELTA value for line numbers. See the SET 
DELTA command. 

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line 
numbers. This is useful when copying lines to the beginning of an 
existing workfile. 

is an absolute number to add to each line number to generate the next 
line number. The increment value can be any number starting at .001. 

Example: If O. is specified as a beginning line for copying and .05 is 
specified with BY, line numbers generated for copied text are .00, 
.05, .10, .15, .20, etc. 

The default increment is 1., .1, .01, or .001, depending on the least 
significant digit used in the line number specification. 

For further description of increments, see Section 5.4.2.1. 

specifies that lines be displayed as they are copied. It is helpful if 
you have to break out of a copy operation. 

(~ Lines are copied into the workfile as specified. 

If lines are coming from a file other than the workfile, the name of the file and the 
message *FILE* are displayed. 

Example: . 

1. EDT> COP 93/95 TO 90.1 
EDT> 90/96 --90. text 
90.1 copied text 
90.2 copied text 
90.3 copied text 
91. text 
92. text 
93. text (same as 90.1) 
94. text (same as 90.2) 
95. text (same as 90.3) 
96. text 

5-23 



2. 

3. 

Comments: 

1. 

2. 

3. 

-Errors: 

EDT >COP 1/5 FROM BAT TO 1.01 
EDT> 1/2 
1. text 
1.01 BAT text 
1.02 BAT text 
1.03 BAT text 
1.04 BAT text 
1.05 BAT text 
2. text 
EDT> 

EDT> COP TO 30.1 5,12/14,20 
EDT> 30/31 
30. text 
30.1 Copied text (same as line 5) 
30.2 Copied text (same as line 12) 
30.3 Copied text (same as line 13) 
30.4 Copied text (same as line 14) 
30.5 Copied text (same as line 20) 
31. text 
EDT> 

In this example text was copied from one position in the workfile to another 
position, therefore only the line numbers to be copied needed to be specified. 

In this example, text from an existing file was copied to the workfile so both 
the file name (BAT) and the line numbers to be copied had to be specified. 

In this example, text was copied from several positions in the workfile to one 
position. To do this, the 'TO' parameter must be specified before the group 
parameters. If you attempt this in the standard manner (i.e., format shown 
under the Syntax), lines 5 and 12 through 14 would be copied to the end of 
the file and only line 20 would be copied to 30.1 (see Defaults, Section 
5.4.1.5). 

If more lines are to be copied than there are available lines, EDIT copies as many lines as 
it can. It then displays the line number on the file being accessed where copying stopped 
with the message: 

lineno NOT PROCESSED. 

Use COPY again with a TO specification that has a beginning line number (and/or TO 
increment) that generates enough new lines to accommodate the text that still must be 
copied. (See Section 5.4.2.1 and the TO and BY descriptions under Syntax.) Start 
copying again at the line number displayed above. 

5-24 



If a file is specified for COPY and it is PO (Password Only) protected, the password is 
required to read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the COPY command terminates. 

5-25 



5.6.8 TIle DEBUG Command 

The DEBUG command is used to exit from the Editor and generate memory dumps. This 
command was introduced for internal use only to aid in development and debugging of the 
Editor. 

As a result, the keyword DEBUG is reserved and cannot be used as a file name. 

Syntax: 

DEBUG 

5.6.9 TIle DELETE Command 

The DELETE command is used to delete lines of text from the work file. 

Syntax: 

where: 

group 

DELETE [group] [LIST] 

is a line number, a range of lines, or a group of ranges and/or lines to be 
deleted. Lines to be deleted can be further identified by content. (See 
Section 5.4.1.) 

If not used, the last range specified in the previous command is deleted by 
default. 

LIST specifies that lines be displayed as they are deleted. 

Response: 

The specified lines are deleted from the workfile. The Break key can be used to stop 
deletions. (See Section 5.4.7.) 

Exampl¢: 
': 

Errors: 

EDT>DEL 15/20 
EDT> 13/22 
13. text 
14. text 
21. text 
22. text 
EDT> 

If an invalid group is specified, the Editor responds: 

5-26 

VOID RANGE - LINE RANGE NOT SPECIFIED OR ILLEGAL 
EDT> 



( 

( 

.5.6.10 TIle EXIT Command 

The EXIT command terminates the current EDIT session and returns you to the TSM> 
prompt. The current workfile is maintained as is for future editing. 

Syntax: 

Example: 

EXIT or X 

EDT > EXIT 
TSM>--

5-27 



.5.6.11 The INSERT Command 

The INSERT command is used to add one or more new lines of text to a file. It is 
essentially the same as COLLECT except that INSERT assumes the addition one line at a 
time and COLLECT assumes the addition of more than one line. 

Syntax: 

INSERT [group] [BY increment] 

where: 

group 

BY increment 

5-28 

is a line number, a range of lines, or a group of ranges and/or lines 
you want to insert. . 

The least significant digit in the line number or range, specified in 
the group, determines the line numbers the Editor generates for the 
inserted text. (See Sections 5.4.1 and 5.4.2.) If the line number you 
specify currently exists, EDIT adds 1/10 DELTA to the existing line 
and uses it as the line number. 

If no line numbers are specified, EDIT normally defaults to the line 
following the last line entered with the previous COLLECT or 
INSERT command. The line number which prompts for inserted text 
reflects the least significant digit of line numbers used in the 
previous collection or insertion. (It does not reflect the increment 
used in the previous command, but defaults back to 1., .1, .01, or 
.001 as applicable.) 

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line 
numbers. This is useful when inserting one or more Lines at the 
beginning of an existing workfile. 

To insert a line at the end of the workfile, use 'E' to signify the last 
line in the file plus 1, i.e., INSERT E. When E is used, the line 
number for inserted text will reflect the least significant position 
and increment of the DELTA value for line numbers. See the SET 
DELTA command. This is the default if no previous INSERT or 
COLLECT command has been used and a group is not specified. 

is an absolute number to add to each line number to generate the 
next line number. The increment value can be any number, starting 
with .001. 

Example: If 0./0.99 is specified as a range of lines to insert and .05 
is specified with BY, line numbers generated for insertion are .00, 
.05, .10, .15, .20, etc. 

The default increment is 1., .1, .01, or .001, depending on the least 
significant digit used in the range specification(s). 

For further description of increments, see Section 5.4.2.1. o 



( Response: 

( 

(

C •• 

. , 

The beginning line number is displayed as a prompt. Enter the text of the line followed by 
a carriage return. From this point on, line numbers are generated automatically. The 
next sequential line number is displayed. Continue entering lines. A blank followed by a 
carriage return creates a blank line. 

To terminate the command, use a carriage return after the line number is displayed or 
depress the Break key. The EDT> prompt is returned. 

The command terminates automatically if the next line number in an insertion sequence 
already exists or when it reaches the line number you have specified for ending insertions 
and have entered that line. 

Example: 

EDT>INS 14.01 
14.01 text 

,., -

EDT> 13Ti5 .,;, ;/ 

13. text 
14. text 
14.01 text 
15. text 
EDT> 

Errors: 

If more lines are to be inserted than there are available lines, EDIT takes as many lines 
as it can. It then displays the line number where insertion stopped with the message: 

lineno NOT PROCESSED. 

Use INSERT again with a BY specification that has a beginning line number (and/or BY 
increment) that generates enough new lines to accommodate the text that still must be 
inserted. (See Section 5.4.2.1 and The group description under Syntax.) Start inserting 
again before the line number displayed above. 

The NUMBER command can be used if you have gotten to a .nnn position with no line 
numbers left for insertion. See the NUMBER command. 

If you type more than 72 characters in a line, the additional characters are not displayed 
and the following message appears: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed on the 
screen. Type N (No) to re-enter the line. 

5-29 



5.6.12 TIle UST Command 

The LIST command is used to display lines from the current workfile or from any other 
file in the user's directory. The LIST command is implied when no command is supplied 
in response to the EDT> prompt. 

Syntax: 

[LIST] [group] [[FROM] filename] [UNNJ 

where: 

group 

FROM filename 

UNN 

Response: 

is a line number, a range of lines, or a group of ranges and/or lines 
to list. Lines can be further identified by content. (See Section 
5.4.1.) 

If not specified, LIST normally defaults to the last range specified or 
implied in the previous command. Exception: Initially, LIST or a 
carriage return to the EDT> prompt lists the first line of the file. 
To list the entire file, use LIST ALL (or just ALL). 

specifies the one-to-eight character name of a file in the user's 
directory. Using the keyword FROM is optional. 

If FROM filename is not specified, listing defaults to the current 
workfile. 

lists lines without displaying line numbers. 

The specified or default group is scrolled onto the screen. If the screen is full, EDIT 
pauses. Enter a carriage return to continue the listing or any other character to 
terminate the listing. To interrupt the listing mid-screen, use the Break key. 

If a file is specified for LIST and it is PO (Password Only) protected, the password is 
required to read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the LIST command terminates. 

5-30 

o 



(" .. Example: 

Errors: 

To be supplied. 

EDT> COL 
12. text 
13. text 
14. text 
15. <CR> 
EDT> LIST 
12. text 
13. text 
14. text 
EDT> LIST ALL 
1. text 
2. text 
3. text 

12. text 
13. text 
14. text 
EDT> 

5-31 



5.6.13 The MODIFY Command 

The MODIFY command is used to change an existing line by spacing past good 
characters and replacing bad characters. An up arrow (1\) can be used to replace a 
character with a blank. MODIFY is used one line at a time~ It cannot be applied to all 
lines in the file. 

Replacement strings must be equal to or less than the number of characters being 
changed. If not less than or equal to the original string, or for global modifications, use 
the CHANGE command. 

Syntax: 

where: 

group 

Response: 

MODIFY [group] 

is a line number, a range of lines, or a group of ranges and/or lines to be 
modified. Lines to be modified can be further identified by content. (See 
Section 5.4.1.4.) 

If not used, the last range specified in the previous command is accessed by 
default. 

The first line in the specified group is displayed. The Editor reissues the line number as a 
prompt. Use the space bar to keep characters, type in new characters where needed, or 
use the uparrow key to replace characters with a blank. Using a carriage return before 
the end of the line keeps remaining characters 'as is'. 

If a group has been specified, the next line in the group is displayed for modification, and 
so on, continuing to the last line in the group. 

For tabs, use a CTRLI key sequence rather than the Editor tab character. 

Example: 

EDT>MOD 1/3 

EDT> 

5-32 

1. THERE WILL BE A SHORTTMEETING ON TUESDAY. 
1. 1\ 

1. THERE WILL BE A SHORT MEETING ON TUESDAY. 
2. PLEASE PLAN OT ATTEND. 
2. TO 
2. PLEASE PLAN TO ATTEND. 
3. ATTENDANCE WItL NOT BE NOTED. 
3. <CR> 

1. Space past good characters, enter an up arrow to replace T with a space. 
2. Space past good characters, enter correction. (.~ 
3. Immediate carriage return leaves line 'as is' and returns the EDT> . ~; 

prompt. 



5.6.14 The MOVE Command 

The MOVE command is used to move one or more existing lines of text from one part of 
the work file to another. Each line is deleted from its original position after it has been 
moved successfully to the new position. 

Syntax: 

where: 

group 

TO lineno 

BY increment 

MOVE [group] [TO lineno] [BY increment] [LIST] 

is a line number, a range of lines, or a group of ranges and/or lines 
to move. Lines to move can be further identified by content. (See 
Section 5.4.1.) 

If not specified, EDIT defaults to the last line or range in the group 
specified (or implied) in the previous command. 

is the line number given to the first line of text being moved. The 
least significant digit in the specified line number determines the 
line numbers the Editor generates for the rest of the text. (See 
Section 5.4.2.1.) The line number you specify must not currently 
exist (must not have heen used before or must have been previously 
deleted). 

If a beginning line number is not specified, EDIT defaults to E, the 
line following the last line on the workfile. Line numbers for text 
that is moved will reflect the least significant position and 
increment of the DELTA value for line numbers. See the SET 
DELTA command. 

Note that 0., .0, .00, or .000 up to 0.999 are acceptable line 
numbers. This is useful when moving lines to the beginning of a 
workfile. 

is an absolute number to add to each line number to generate the 
next line number. The increment value can be any number, starting 
at .001. 

Example: If o. is specified as a beginning line for moved text and 
.05 is specified with BY, line numbers generated for the text are .00, 
.05, .10, .15, .20, etc. 

The default increment is 1., .1, .01, or .001, depending on the least 
significant digit used in the line number specification(s). 

For further description of increments, see Section 5.4.2.1. 

5-33 



Response: 

The Editor simultaneously moves text to its new position and deletes the text from its 
old position. 

Example: 

1. EDT> MOV 60/62 TO 58.1 
EDT> 58/63 
58. ~xt 
58.1 moved text (formerly line 60) 
58.2 moved text (formerly line 61) 
58.3 moved text (formerly line 62) 
59. text 
63. text 
EDT> 

2. EDT> MOV TO 53.1 46,48/50,52 
EDT> 45/54 
45. text 
47. text 
51. text 
53. text 
53.1 moved text (formerly line 46) 
53.2 moved text (formerly line 48) 
53.3 moved text (formerly line 49) 
53.4 moved text (formerly line 50) 
53.5 moved text (formerly line 52) 
54 text 

Comment: 

1. Lines 60/62 are deleted from their current position and moved to the specified 
position within the workfile. 

2. In this example, text was moved from several positions in the workfile to one 
position. To do this, the 'TO' parameter must be specified before the group 
parameters. If you attempt this in the standard manner (i.e., format shown 
under the Syntax), lines 46 and 48 through 50 would be moved to the end of 
the file and only line 52 would be moved to 53.1 (see Defaults, Section 
5.4.1.5). 

Errors: 

If more lines are to be moved than there are available lines, EDIT moves as many lines as 
it can. It then displays the original line number where copying stopped with the message: 

lineno NOT PROCESSED. 

Use MOVE again with a TO specification that has a beginning line number (and/or TO 
increment) that generates enough new lines to accommodate the text that still must be 
moved. (See Section 5.4.2.1 and the TO and BY descriptions under Syntax.) Start 
moving again at the line number displayed above. 

5-34 



5.6.15 The NUMBER Command 

The NUMBER command is used to renumber all lines in the workfile, using the specified 
decimal position and increment. The default number for the first line in the file is 1; the 
default increment is also 1 (i.e., lines are numbered 1, 2, 3, etc.). 

If the line number and increment do not provide sufficient line numbers for the entire 
workfile, a diagnostic is displayed; the workfile is unchanged. 

Syntax: 

NUMBER [lineno] [BY increment] 

where: 

lineno 

BY increment 

Response: 

is the line number for the first line in the workfile. If a beginning 
line number is not specified, EDIT defaults to line 1. 

Line numbers for the file will reflect the increment of the DELTA 
value for line numbers unless overridden with BY. See the SET 
DELTA command, and BY, next. 

is an absolute number to add to each line number to generate the 
next line number. The increment value can be any number, starting 
at .001. 

Example: If 1 is specified as a beginning line number and .05 is 
specified with BY, line numbers generated are 1.00, 1.05, 1.10, 1.15, 
1.20, etc. 

For NUMBER the default increment is not dependent on the least 
significant digit used in the line number specification. It is 
dependent only upon DELTA. (See the SET DELTA command.) 

A diagnostic is displayed if the line number and increment do not provide sufficient line 
numbers. 

5-35 



Example: 

5-36 

EDT>LlS 3/4 
3. text 
3.01 text 
3.02 text 
3.03 text 
4. text 
EDT> NUM 
EDT>LiS3/L 
3. text 
4. old line 3.01 text 
5. old line 3.02 text 
6. old line 3.03 text 
7. old line 4 
<break> 

EDT> 

( ----" 
I ' 

" 
, ,,~.,.....-'\ 



5.6.16 The PREFACE Command 

The PREFACE command is used to insert one or more characters at the beginning of an 
existing line. Additions are made character-by-character, resulting in a right shift in the 
existing line. 

More than one line can be accessed with the command. Additions are then made line by 
line. 

Syntax: 

where: 

group 

Response: 

PREF ACE [group] 

is a line number, a range of lines, or a group of ranges and/or lines to be 
modified. Lines to be modified can be further identified by content. (See 
Section 5.4.1.) 

If not used, the last range specified in the previous command is accessed by 
default. 

The first line in the specified group is displayed. The Editor reissues the line number as a 
prompt. Type the new string, followed by a carriage return. Existing characters in the 
line are right shifted with the new string at the beginning of the line. The rest of the 
line remains unchanged. If a group has been specified, the next line in the group is 
displayed for modification, and so on, continuing to the last line in the group. 

To terminate the PREFACE command, enter a carriage return in lieu of a new string. 

For tabs, use a CTRLI key sequence rather than the Editor tab character. 

5-37 



Example: 

EDT> PRE 1,15,20 

1. ON MODIFYING A LINE 
1. UP <CR> 
1. UPON MODIFYING A LINE 

15. MODIFIED LINE SHIFTS 
15. A <b> <CR> 
15. A MODIFIED LINE SHIFTS 
20. TO BYPASS MODIFICATION 
20. <CR> 
VOID RANGE 
EDT> 

Comments: 

1. Note that b indicates typing blank spaces. 

2. A carriage return terminates the PRE command and the line remains 'as is'. 

Errors: 

If you type more than 72 characters as a new string, the additional characters are not 
displayed and the following message appears: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N 
(No) to leave the line as it was before the replacement was attempted. 

5-38 



(~ 

5.6.17 The PRINT Command 

The PRINT command is used to print the current workfile or another file in the user's 
directory on the device assigned for system SLO files (usually a printed. 

Syntax: 

PRINT [filename] [UNNJ 

where: 

filename 

UNN 

Response: 

is a one- to eight-character name of a file in the user's directory. If no file 
is specified, defaults to the current workfile. (Note that other workfiles in 
your directory can be output by accessing them with the WORKFILE 
command.) 

outputs the file without line numbers. 

To be supplied. 

Example: 

To be supplied. 

Errors: 

If a file is specified for PRINT and it is PO (Password Only) protected, the password is 
required to read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the PRINT command terminates. 

5-39 



5.6.18 TIle PUNCH Command 

The PUNCH command is used to output the current workfile or another file in the user's 
directory on the device assigned for system SBO files (usually a card punch). 

Syntax: 

where: 

filename 

UNN 

Response: 

PUNCH [filename] [ UNN] 

is a one- to eight-character name of a file in the user's directory. If no file 
is specified, defaults to the current workfile. (Note that other workfiles in 
your directory can be output by accessing them with the WORK FILE 
command.) 

outputs the file without line numbers. See Section 5.4.2.4. 

To be supplied. 

Example: 

To be supplied. 

Errors: 

If a file is specified for PUNCH and it is PO (Password Only) protected, the password is 
required to read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the PUNCH command terminates. 

5-40 

t······'····· I. 
j 

() 



( 

5.6.19 TIle REPLACE Command 

The REPLACE command is used to replace existing lines in the workfile with different 
lines of text. Replacements are made line by line. 

Syntax: 

where: 

group 

Response: 

REPLACE [group] 

is a line number, a range of lines, or a group of ranges and/or lines to be 
replaced. Lines to be replaced can be further identified by content. (See 
Section 5.4.1.) 

If not specified, the last range specified in the previous command is accessed 
by default. 

The first line in the specified group is displayed. The Editor reissues the line number as a 
prompt. Type the replacement line, followed by a carriage return. If a group has been 
specified, the next line in the group is displayed for replacement, and so on, continuing to 
the last line in the group. 

To replace an existing line with all blanks, type a blank space followed by a carriage 
return in lieu of a replacement line. The REPLACE command will not terminate. 

To terminate the REPLACE command, enter a carriage return in lieu of a replacement 
line or use the Break key. 

Example: 

Errors: 

EDT> REP 24 
24. The replace commands are used to REPLACE 
24. The REPLACE command is used to replace 
EDT> 

If you type more than 72 characters as a replacement string, the additional characters 
are not displayed and the following message appears: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated, modified line. Type N 
(No) to leave the line as it was before the replacement was attempted. 

5-41 



5.6.20 1lte SAVE Command 

The SAVE command is used to put a copy of the current workfile on disc as a permanent 
file in the user's directory. With SAVE, the text is compressed, i.e., consecutive blanks 
are replaced with a special string indicating the number of blanks compressed. The 
workfile remains in tact. The STORE command is identical to SAVE except that the file 
is not compressed and with STORE, you can specify unnumbered. 

~ 

If you attempt to save onto a file name that already exists in your directory, you must 
explicitly scratch (delete) the existing contents of the file. This requirement curbs 
inadvertant writes over existing files. 

The SAVE command is order dependent, therefore, the syntax must be entered in the 
order shown below: 

Syntax: 

where: 

filename 

SA VE [filename] [:gJ [SYS] [SCRATCH] 

is the one- to eight-character name of the file to create. Filename is 
optional. 

If a name is not specified, the workfile is copied to the file name used in the 
most recent SAVE, STORE, or USE command, unless it was a system file. If 
the last file used with one of the above commands was a system file, the 
workfile is copied to a file of the same name in the user's directory unless 
you use SYS. See below. 

PO creates the file with password only access restrictions. 

I 
RO creates the file with read Ont)1 access restrictions. 

Both the PO and RO options permit creating a restricted file, changing a 
nonrestricted file to a restricted file, or changing the password of a 
restricted file. 

If a file has restricted access and the PO or RO option is specified, the 
message "ENTER PASSWORD:" is displayed. The valid password must be 
given before the file can be scratched. Upon entering the valid password, 
the message "ENTER NEW PASSWORD:" is displayed. Upon entering the 
same password or a new password, the file will be SAVED. 

SYS creates the file named above as a system file. 

SCRA TCH explicitly clears the contents of the file named or implied with the SAVE 
command before the workfile is copied to that file space. If not specified, 
you are prompted for the scratch function. (See Response.) 

5-42 



(" 

.. (
'~" 

Response: 

The current contents of the workfile are copied into the file space specified with SAVE. 
I! SCRATCH is not specified and a file of the same name already exists in the user's 
directory, the following message is displayed: 

filename, SCRATCH = N 

Type N (No) or enter a carriage return to terminate the save operation. Type Y (Yes) to 
scratch the existing contents of the file and store the workfile in their place. 

If a file is password protected, the following prompt IS displayed: 

ENTER PASSWORD: 

The valid password for the file must be entered. If what you type is not the valid 
password, the prompt is repeated. See Errors. 

When the save is complete, the following message is displayed: 

filename nnnnnn size type username speed device restriction 
ii*WRKFL nnnnnn size type username speed device 
ii*WRKFL SAVED xx lines 

where filename is the name of the file saved, ii is the workfile code, nnnnnn is the 
starting address, size is the file size, type is the file type, username is the user name 
associated with the file, speed designates FAST or SLOW access, device is disc address, 
restrictions note any restrictions placed on access to the file, and xx lines is the number 
of lines of text in the workfile. 

Example: 

Errors: 

EDT> SAVE SSS 
SSS 334400 
MM*WRKFL 289296 
MM*WRKFL SAVED 
EDT> 

4ED 
80FE 
120 LINES 

MEYERS S 0800 RO 
MEYERS S 0800 

If a file is password protected, you must supply the valid password to update the file. I! 
you do not, the Editor keeps prompting for a valid password. Enter a carriage return to 
get out of the loop. The SAVE command will terminate and the workfile will not be 
saved. 

5-43 



5.6.21 TIle SCRATCH Command 

The SCRATCH command is used to delete a user file or a system file from the 
directory. Both the filename and its contents are removed from the disc and disc 
directory. Space is thus freed for new files. If the file is password protected, the 
password must be supplied. 

Syntax: 

SCRATCH filename [SYS] 

where: 

filename is the one- to eight-character name of the file to be scratched. 

SYS designates the name file is a system file. 

Response: 

If a file is password protected, the following prompt is displayed: 

ENTER PASSWORD: 

The valid password for the file must be entered. If what you type is not the valid 
password, the prompt is repeated. See Errors. 

If a system file is found with the file name specified and SYS was not specified, the 
following message is displayed: 

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (y OR N)? 

A Y (Yes) response will scratch the file. N (No) response will not scratch the file and 
terminate the scratch operation. 

Note: If there is a user file and a system file with the same file name and SYS is not 
specified, the user file is the file which will be scratched. 

Example: 

EDT> SCR AAA 
EDT> SCR BAR SYS 
EDT> 

User file AAA is scratched and system file BAR is scratched. 

Errors: 

If a file is password protected, you must supply the valid password to scratch (delete) it. 
If you do not, the Editor keeps prompting for a valid password. Enter a carriage return 
to get out of the loop. The SCRATCH command will terminate, and the file will not be 
scratched. 

5-44 

,c,··.'."·' , , 



( 

( 

5.6.22 The SET Commands 

There are four SET commands in the Editor: SET DELTA, SET TABS, SET 
VERIFICATION and SET SHOW FILES. They are described separately in this section. 

SET DELTA 

The SET DELTA command is used to specify a default increment and significant digit 
other than 1.0 for line numbers which follow the last line of the workfile. The reset 
DEL TA value remains in effect only for the current editing session. When you exit the 
Edi tor, DELTA is returned to 1.0. 

Syntax: 

where: 

increment 

SET DEL [increment] 

is an absolute number to add to each line number to generate the next line 
number. The increment value can be any number, starting at .001 (up to 
9999.999). Zero is an invalid increment. 

Example: If .05 is specified as DELTA and line 15 is the last line on the workfile, lines 
generated at the end of file (when E is specified or implied) will be 15.05, 15.10, 15.15, 
15.20, etc. 

The default DELTA increment is 1., i.e., in the example above, the next line numbers 
generated would be 16, 17, 18 and so on. If an increment is not specified, the default 
value of DELTA is reset. 

Response: 

DEL TA is modified. After the current session is complete, it will be reset to 1. 

Example: 

To be supplied. 

Errors: 

If 0 is entered as the increment value, the following message is displayed: 

ERROR-O. 
EDT> 



SET TABS 

The SET TABS command is used to modify tab positions. In MPX-32, the M.KEY file can 
contain tab settings for each logon ownername as described in the KEY utility (Section 
7). TSM defaults to these tabs if they exist. Or, if no tabs are set in M.KEY, TSM sets 
system tabs when you access the Editor. 

Default tabs set by the Editor are in columns 10, 20, 36, 41, 46, 51, 61, and 72, which 
correspond to label, op code, and other fields defined on SYSTEMS Assembler coding 
sheets. 

The most recent tabs set with SET TABS will remain in effect as long as you remain on 
the system (until you exit TSM), i.e., they will remain in effect as you access various 
processors, move from one system environment to another, etc. When you exit from 
TSM, the SET TABS are not saved. When you log on again, either the M.KEY tabs (or 
system tabs if none exist in M.KEY) are set. 

When typing text with tabs, the tab character produced by a Control I ( <CTRLI > ) key 
sequence is interpreted by the TSM device handlers and replaced by the appropriate 
number of blanks. The cursor is adjusted by echoing the spaces to the terminal. This 
allows you to see tabbed spacing on the screen as you are entering the text. 

The tab character used to define tab positions in the SET TABS command is either a 
backslash (\) or the character you define when you enter tab settings. The most recent 
tab character defined in SET TABS is the one used when entering a tabbed record (unless 
you want to use <CTRLI>. Like tab settings, the tab character remains in effect until 
you exit TSM. When you log on again, the tab character is a backs lash. 

The tab character is removed from the text when it is interpreted, so that no special 
treatement of tab characters is required from subsequent processors such as the 
Assembler. 

Syntax: 

SET TABS 

Response: 

The Editor displays the current tab settings. Assuming tabs have not been reset 
previously during the current session, numbers 1-9 indicate column groupings (lO's, 20's, 
etc.) with the default tab character (\) for columns 10, 20, and 70, enclosed in blanks. 
Beginning in column 29, the most significant digit of the column number is also enclosed 
in blanks, e.g., b3b indicates the beginning of columns 30-39, with blanks falling in 
columns 29 and 31 as shown in the example. 

The Editor prompts for new tab positions by locating the cursor in column 2. Type blanks 
for non-tab positions and any character desired in tab positions (a maximum of 8 tab 
positions can be set at one time). The character(s) you supply will override the 
backslash. If you use different characters for tab specifications, the last one typed is 
taken as the tab character. Any tab that is not specified explicitly is not set. 

5-46 



Example: 

EDT> SET TABS 

TABS 
• SET 

TABS 

=12345678 2345678 2345678 3 2345 78 4 2345 78 5 234 
=bbbbbbbbbAbbbbbbBbbbbCbbbbbbbbbbbCbbbbbbBbbbbbbbbbbbbC 

=123456789C123456C8921C34567893123C567894C234567895123C 

If a user has changed the tabs and wants to return to the Editor default settings, rather 
than perform a SET TABS command and reenter the settings, he can perform one of the 
following commands: 

SET{OLD } 
OLDTAB 
OLDTABS 

Response: 

The tab settings are returned to the Editor default tab positions and the tab delimiter is 
returned to the default delimiter, i.e., backslash (\). 

If the user wishes to change the tab delimiter but keep tab settings in their current 
positions, he can perform the following command: 

SET TC 

The Editor responds: 

CHAR= 

Enter the character you want to be the tab delimiter. To return to the default tab 
delimiter, perform the following command: 

SET OTC 

Errors: 

If when using tabs, you exceed 72 characters in a line, the tabbed line is displayed with 
extra characters truncated followed by the message: 

TOO LONG, GO = Y 

Type Y (Yes) or enter a carriage return to keep the truncated line as displayed. Type N 
(No) to re-enter the line. 

If more than 8 tab positions are entered, only the first 8 are recognized and set. 

5-47 



SET VERIFICA nON 

The SET VERIFICATION command is used to set or inhibit the automatic verification of 
a file before a Number, Save or Store command is performed (see VERIFY command). 

Syntax: 

where: 

SET{VFA} 
VFN 

VFA enables the automatic verification of a file before any Number, Save or 
Store command is performed and remains in effect until a SET VFN is 
performed or the Editor is exited. 

VFN inhibits the automatic verification of a file before any Number, Save or 
Store command is performed. Default. 

Response: 

When a SET VFA command is used, the following message is displayed upon issuing a 
Number, Save or Store command: 

VERIFYING BEFORE NUM/SAV/STO. PLEASE WAIT. 

There is no response to the SET VFN command other than the Number, Save or Store 
operation being performed. 

Errors: 

The following error messages can be generated by the validation (VF A) routine: 

LINE COUNT ERROR - INTEGRITY UNCERTAIN 

POINTER INVALID - INTEGRITY UNCERTAIN 

HEADER SEQ INVALID - INTEGRITY UNCERTAIN 

SEQ ERR - BAD SECTOR LINKAGE - INTEGRITY UNCERTAIN 

INVALID SECTOR NUMBER - INTEGRITY UNCERTAIN 

If any of these messages is displayed, the following message is also displayed: 

CONTINUING MAY RESULT IN LOST DATA 

5-48 

o 



( 

( 

SET SHOW FILES 

The SET SHOW FILES command is used to obtain a shortened version of file status output 
from a Show or Show Files command. 

Syntax: 

where: 

SET {SFS} 
SFN 

SFS causes a shortened version of file status output to be displayed when a 
Show or Show Files command is performed and remains in effect until a 
SET SFN is performed or the Editor is exited. 

SFN causes the normal version of file status output to be displayed when a Show 
or Show Files command is performed. Default. 

Response: 

The file status displayed in response to a SET SFS command is as follows: 

EDT> SET SFS 
EDT> SHoFiLES 
UTILPC 303828 
STATUS 345328 
SH*WRKFL 295552 
<break> 

EDT>SHO 
JM*WRKFL 298380 
JM*WRKFL SAVED 

20ED 
8ED 

80FE 

80FE 
5 LINES 

The file status displayed in response to a SET SFN command is the same as the SHOW 
command SHOW FILES example shown in this chapter. 

Errors: 

None 

5-49 



5.6.23 The SHOW Command 

The SHOW command is used to display the status of one particular file, current 
increment setting of DELTA, current tab settings, or names of current files in the user's 
directory. For further description of DELTA and tabs, see the SET command. 

If just SHOW is used, the Editor displays the name of any file accessed (SAVED, 
STORED, or USED) in the current session plus the status of the current workfile. 

Syntax: 

where: 

filename 

DELTA 

FILES 

TABS 

Response: 

~filename] SHOW DELTA 
FILES 
TABS 

is a 1-8 character file name whose status will be displayed. 

is an option which displays DELTA. 

is an option which displays names of permanent disc files belonging to the 
user. 

is an option which displays the current tab settings. 

For SHOW, the following message is displayed: 

ii*WRKFL nnnnnn size FE username speed device 
ii*WRKFL status xx lines 

where ii is the workfile code, nnnnnn is the starting address, size is the file size, FE 
designates a workfile, username is the username associated with the file, speed 
designates FAST or SLOW access, device is the disc address, the status message for the 
workfile is one of the following: CHANGED, CLEAR, SAVED, and xx lines is the number 
of lines of text in the workfile. CHANGED means the file has been edited but the edited 
version has not been saved. CLEAR means the file has been cleared and another disc file 
has not been copied into it SAVED means that a SAVE or STORE command has been 
issued with no intervening editing. 

If a default file name exists for SAVE and STORE, its name is also displayed. 

5-50 

,1'- '\ 

',-/ 

( lc" 
, ", 



( .. -

(' 

For SHOW FILES, the Editor lists each file in the user's directory. For each file the 
following is displayed: 

filename, starting disc address (beginning block number), number of blocks, 
type, as defined via the FILEMGR utility (files created in the Editor are 
automatically type ED or EE), user name associated with the file, speed of 
the file, device address, and restrictions, if any 

Display of file names can be terminated with the Break key. Or, you can wait until a full 
screen is displayed. EDIT will pause. Enter a carriage return to continue the listing or 
any other key to terminate the command. 

For SHOW TABS, positions 1-72 of the line are displayed with the current tab character 
displayed in positions corresponding to current tab stops. 

For DELTA, the DELTA increment value used to generate lined numbers at the end of 
file is displayed. 

Example: 

EDT> SHOW FILES 
UI*WRKFL 219775 118FE MEYERS F 0800 
MM$UI.5 277536 59ED MEYERS F 0800 RO 
MM$UI.7 275471 59EE MEYERS F 0800 

1 <break> 
EDT> SHOW 

MM*WRKFL 254720 80FE MEYERS F 0800 
2 MM*WRKFL CHANGED 3 LINES 

EDT>SHO DELTA 
3 1. (DELTA) 

EDT> 

Comments: 

1 The Break key is used to terminate the listing of files in the user's directory 
mid-screen. FE designates a work file, ED designates a SAVED file, and EE 
designates a STORED file. 

2 No files have been saved, stored, or used in the current section. Only the 
status of the workfile is displayed. 

3 The increment that will be used when adding text at the end of the workfile in 
1, the default value of DELTA. 

5-51 



5.6.24 TIle STORE Command 

The STORE command is used to put a copy of the current workfile on disc as a 
permanent file in the user's directory. The text is output as is and the workfile remains 
intact. The SAVE command is identical to STORE except that the saved file is 
compressed and cannot be stored unnumbered. (See the SAVE command.) 

If you attempt to store onto a file name that already exists in your directory, you must 
explicitly scratch (delete) the existing contents of the file. This requirement curbs 
inadvertent writes over existing files. 

The STORE command is order dependent, therefore the syntax must be entered in the 
order shown below: 

Syntax: 

where: 

filename 

STORE [filename] 

is the one- to eight-character name of the file to create. Filename is 
optional. 

If a name is not specified, the workfile is copied to the file name used in the 
most recent SAVE, STORE, or USE command, unless that file was a system 
file. If the last file used with one of the above commands was a system file, 
the workfile is copied to a file of the same name in the user's directory. 

PO creates the file with password only access restrictions. 

RO creates the file with read only access restrictions. 

Both PO and RO options permit creating a restricted file, changing a 
nonrestricted file to a restricted file, or changing the password of a 
restricted file. 

If a file has restricted access and the PO or RO option is specified, the 
message "ENTER PASSWORD:" is displayed. The valid password must be 
given before the file can be scratched. Upon entering the valid password, 
the message "ENTER NEW PASSWORD:" is displayed. Upon entering the 
same password or a new password, the file will be STORED. 

SYS creates the file named above as a system file. 

UNN The file can optionally be stored without line numbers. See Section 5.4.2.4. 

SCRATCH explicitly clears the contents of the file named or implied with the STORE 
command before the workfile is copied to that file space. 

If not specified, you are prompted for the scratch function. (See Response.) 

5-52 



Response: 

The current contents of the workfile are copied into the file space specified with 
STORE. If SCRATCH is not specified and a file of the same name already exists in the 
applicable directory, the following message is displayed: 

filename, SCRATCH = N 

Type N (No) or enter a carriage return to terminate the command. Type Y (Yes) to 
scratch the existing contents of the file and store the workfile in their place. 

If a file is password protected, the following prompt is displayed: 

ENTER PASSWORD: 

The valid password for the file must be entered. If what you type is not the valid 
password, the prompt is repeated. See Errors. 

When the store is complete, the following message is displayed: 

filename nnnnnn size type username speed device restrictions 
ii*WRKFL nnnnnn size type username speed device 
ii*WRKFL SAVED xx lines 

where filename is the name of the file stored, ii is the workfile code, nnnnnn is the 
starting address of the file, size is the size of the file, type is the file type, username is 
the user name associated with the file, speed designates FAST or SLOW access, device is 
the disc address, restrictions note any restrictions placed on access to the file, and xx 
lines is the number of lines of text in the workfile. 

Example: 

Errors: 

EDT> STO RRR 
RRR 333124 
BB*WRKFL 326568 
BB*WRKFL SAVED 
EDT> 

4EE HALE F 0800 
80FE HALE F 0800 
120 LINES 

If a file is password protected, you must supply the valid password to store on it. If you 
do not, the Editor keeps prompting for a valid password. Enter a carriage return to get 
out of the loop and terminate the command. 

5-53 



5.6.25The USE Command 

The USE command is used to copy a permanent disc file into the current workfile. 

The file can be one created or edited previously using the Editor, or the user can access a 
file that has not been edited previously in the interactive environment. (See Section 
5.4.3.) If you attempt to use a file that was not edited previously and has more than 9999 
physical records, DELTA should be reset to an increment less than 1.0 or the subsequent 
records (10,000 and up) will not be brought into the work file. (See the SET DELTA 
command.) 

Syntax: 

where: 

filename 

CLEAR 

USE filename [CLEAR] [SCRATCH] [SYS] 

is the one- to eight-character name of a permanent file. The records on the 
file must be blocked. Since the Editor's default assignment for incoming 
files is a temporary system file which is always blocked, this presents no 
problem to the user. 

is an option which clears the current workfile before copying the contents of 
the specified file into the workfile. (It performs an identical function to the 
CLEAR command or a positive response to the CLEAR prompt described 
below.) 

SCRATCH is the equivalent of CLEAR. 

SYS indicates the file name specified is a system file. If there is a user file and a 
system file with the same filename and SYS is not specified, the user file is 
the one brought into the workfile. If SYS is not specified and a system file is 
found with the file name specified, the following message is displayed: 

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (y OR N)? 

For further discussion of system files, see Section 5.4.5. 

Response: 

The workfile is cleared and the contents of the specified disc file are brought in. If 
CLEAR has not been specified, the Editor prompts: 

CLEAR = N 

Type N (No) or enter a carriage return to terminate the command or Y (Yes) to 
continue. The prompt defaults to No to protect the user from inadvertently clearing out 
edited text that he may want to save. If there is any question of whether or not to clear 
the workfile, terminate the command. The SHOW command can be used to check the 
current status of the workfile (CLEAR, SAVED, or CHANGED). CHANGED indicates 
that edits have been made since the workfile was last saved. 

A new or different workfile can be accessed. (See the WORKFILE command.) 

5-54 

t···~: 

'--/ 



( 

( 

If the specified disc file is PO (Password Only) protected, its password is required to 
access it. 

Example: 

EDT>USE RRR 
EDT> USE XXX SYS CLE 
EDT> 

User file RRR is brought into the workfile then system file XXX is brought into the 
workfile. 

If a file specified for USE is PO (Password Only) protected, the password is required to 
read it. The prompt: 

ENTER PASSWORD 

is displayed. Enter the valid password followed by a carriage return. If the password is 
not valid, the USE command terminates. 

If the specified file is not a normal source/text file, that is, it does not have a file code 
type of EE, ED, or CO, the following message is displayed: 

FILE TYPE NOT ED, EE, OR CO, PROCESS IT (y OR N)? 

If the user knows the file is indeed source or text, he may try to use it. 

5-55 



5.6.26 TIle VERIFY Command 

The VERIFY command checks the validity of the current workfile. 

Syntax: 

VERIFY 

Response: 

The following error messages can be generated by the validation routine: 

LINE COUNT ERROR - INTEGRITY UNCERTAIN 

POINTER INVALID -INTEGRITY UNCERTAIN 

HEADER SEQ INVALID - INTEGRITY UNCERTAIN 

SEQ ERR - BAD SECTOR LINKAGE -INTEGRITY UNCERTAIN 

INVALID SECTOR NUMBER - INTEGRITY UNCERTAIN 

If any of these messages is displayed, the following message is also displayed: 

CONTINUING MAY RESULT IN LOST DATA 

A short verify is performed before each command and can generate two additional error,~./ 
messages: 

5-56 

NEXT FREE SECTOR IN HEADER AND FREEPAGE DO NOT MATCH 

FREEPAGE IS IN HEADER AS AN ACTIVE SECTOR 



(-

5.6.27 The WORKFILE Command 

The WORKFILE command is used to access a different workfile than the one currently in 
use. The current workfile is stored back on disc as is (the message describing its status is 
also retained). The new workfile is created or retrieved. Workfiles are named: 

ii*WRKFL 

where ii is the workfile code you specify after you activate the Editor or via a 
WORK FILE command. The file code must be two printable upper case characters 
uniquely identifying each workfile in the user's directory. The first character cannot be 
a number, however the second character can, i.e., A9*WRKFL is acceptable. 

Syntax: 

WORKFILE filecode 

where: 

filecode specifies the work file code identifying the workfile to be used. 

Response: 

When you use the WORKFILE command, you can enter the code for the new workfile. If 
you do not enter the file code, the Editor prompts for it: 

ENTER WORK FILE CODE OR CR TO TERMINATE 

Either enter a valid two-character workfile code or terminate the command. 

If the filecode entered identifies an existing workfile for your user name, EDIT stores the 
current workfile back on disc and retrieves the specified work file. The message 
indicating the current state of the workfile is displayed (SAVED, CLEARED, or 
CHANGED). 

If the code entered does not identify an existing workfile, EDIT assumes that you want to 
create a new one. 

To terminate the WORKFILE command, use a carriage return in response to the prompt 
for channel and subaddress. The Editor will keep the current workfile. 

Example: 

To be supplied. 

5-57 



5.7 EDIT Errors 

See individual command descriptions. Possible error messages are as follows: 

EDITOR FOUND UNPRINTABLE CHARS??? 

ILLEGAL USE OF AN EDIT RESERVED KEY WORD 

ILLEG AL PARAM ETER 

CANNOT SCRATCH YOUR CURRENT WORKFILE 

??? NOTING IN WORK FILE TO BE SAVED! 

DISC FILE SPACE UNAVAILABLE 

INCORRECT POINTERS IN WORKING FILE 

COMMAND IGNORED - JOB QUEUE FULL 

NOT A VALID SOURCE FILE 

LAST LINE OVERFLOW TRY SMALLER DELTA 

FILE IS IN USE BY ANOTHER 

ZERO NUMBER DETECTED ON BY COMMAND 

INVALID FILENAME OR WORK FILE NAME CANNOT BE SPECIFIED HERE 

READ ERROR 

FILE IS TOO BIG FOR EDITOR TO HANDLE 

WRITE ERROR 

BAD COMPRESSED RECORD DETECTED 

UNABLE TO ALLOCATE FILE 

SEQUENCE ERROR 

NO CURRENT DEF AUL T FILENAME - PLEASE SPECIFY A FILENAME 

NO DISC SPACE AVAILABLE FOR WORKFILE 

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y,N)? 

BAD LINE IN WORKFILE - AM RECOUNTING 

COULD NOT SCRATCH FILE SPECIFIED 

UNEXPLAINED EOM/EOF. DATA LOST. PROCESS AS EOF. 

FILE TYPE NOT ED, EE, OR CO. PROCESS IT (Y,N)? 

AM EXPANDING WORKFILE. PLEASE WAIT. 

NEXT FREE SECTOR IN HEADER AND FREEPAGE DO NOT MATCH 

FREEPAGE IS IN HEADER AS AN ACTIVE SECTOR 

DETECTED EOM ON WRITE - LOGIC ERROR 

(In the event this occurs, generate a SPR detailing events leading up to the generation 

of this error.) 

CREATION FAILED - REASON 7 means directory is full. 

5-58 

;(" 
''--j 



( 

6. THE FILE MANAGER (FILEMGR) 

The MPX-32 File Manager (FILEMGR) is used to create or delete permanent disc file 
space, create or delete special Global partitions and/or a DATAPOOL partition (one that 
can be dynamically allocated in memory when required by tasks), or to provide system 
and user permanent file backup. 

Temporary versus permanent files, types (system and user), allocation, and other basic 
concepts and supporting constructs for disc files are described in Volume 1, Chapter 7, 
with the File System Executive (FISE). 

Note that files built in the MPX-32 Text Editor are created and expanded without 
running the FILEMGR utility. Any permanent files can also be deleted (scratched) via 
the Text Editor. 

Note also that files cannot be copied from one user directory to another with the 
FILEMGR. The MEDIA utility is used for that purpose (see Volume 2, Chapter 10). 

6.1 General Description 

This section describes the System Master Directory (SMD), compares system files to user 
files, and describes how the FILEMGR saves and restores files. 

6.1.1 The System Master Directory (SMD) 

The SMD is located on disc and contains entries for all permanent files and Global 
Common/DATAPOOL partitions located on all discs configured in a user's system. Each 
entry in the SMD shows: 

file name/partition name 

user name, if any 

beginning address for the file (block number) 

password, if any 

number of 192-word blocks in the file or protection granules in the partition 

other information used by the system when the file or partition is accessed, 
e.g., access speed (FAST/SLOW), disc type, channel, subaddress, etc. 

Temporary files can be created and used by the system and by user tasks. They are not 
logged in the SMD although they are tracked by the system. The temporary files are 
allocated in free space on a disc only for the duration of a task. The FILEMGR does not 
attempt to allocate permanent files in space concurrently being used by temporary files. 

6-1 



Temporary files cannot be created, deleted, saved, or restored via the FILEMGR. 
System services are available that enable a task to create temporary files, or to turn a ,of, 
temporary file into a permanent file. ~-

6.1.2 System Files versus User Files 

The FILEMGR allows the user to create, delete, save, or restore either system files or 
files in a specific user directory. 

System files can be accessed for reads by any user on the MPX-32 system and are 
normally load modules, (including SYSTEMS processors, user tasks, etc.) operating systern 
files and library files, or files that the user needs to share among several user names. 
They have no associated user name. 

User files are private and cannot be shared. They are associated with a particular user, 
whose name is matched against the M.KEY file at logon or after logon. For further 
description of M.KEY, see the KEY utility, Volume 2, Chapter 7. 

User files can be read or written only by the user who logs on or who declares 
himself/herself as the user via a USERNAME statement (batch, TSM, or FILEMGR). A 
task can use the M.USER system service to access a particular set of user files or before 
creating a permanent file in a specific user directory. 

When using the FILEMGR, user files are denoted specifically by a U as part of a 
directive, e.g., SAVEU, RESTOREU, CREATEU, etc. If U is specified, the FILEMGR 
searches first in the directory of the user last specified in a USERNAME statement, i.e., 

$USERNAME name (batch) 

TSM USERNAME name (interactive) 

USERNAME name (FILEMGR directive) 

If creating a file space with CREA TEU, the search for the name stops in the user 
directory and a new file is created if the name does not already exist. 

If saving files, when a file cannot be found in the user's directory, the FILEMGR searches 
the system directory for the name. 

System files (no username) are specifically denoted by a FILEMGR or other USERNAME 
directive with no user name supplied. The system directory is also assumed for the 
OPCOM console unless overridden by a USERNAME statement. System files are assumed 
by default when a command verb does not contain a U. 

The directory entry of a file is maintained when it is restored, i.e., the user name used to 
save the file is the user's directory to which the file is restored. 

Global Common/DATAPOOL partitions defined either at SYSGEN or via the FILEMGR 
belong to the system file catagory. 

6-2 



( 

( 

6.1.3 The Save/Restore Process 

When files are saved, the FILEMGR builds a directory containing directory entries for all 
files saved in a group, where a group is one or more files specified with one SAVE or 
SAVEU directive. The FILEMGR uses the SMD and copies files in the group to an output 
medium preceded by the directory. 

When files are restored, a directory entry is created for each file to be restored. The 
FILEMGR locates the file on the input medium and reads it to temporary space on disc. 
It matches the name against the SMD, and deletes the existing file, if any, that matches 
the name. The FILEMGR then creates a new permanent file in the SMD for the file that 
is being restored. The existing user name, if any, is retained from the saved version. 

Reading first to temporary space ensures that an I/o error in the restoration process 
does not result in the loss of existing disc files. The user can opt to bypass this function 
as described in Section 6.3. 

6.2 Files and File Assignments 

Default assignments. for the FILEMGR cover all needs for running the utility except for 
saves and restores. 

The IN/OUT File or Device - Normally magnetic tape is used to save files for subsequent 
restoration to disc. Characteristics of disc-to-tape transfer are described in Section 
6.4.5. 

Job File - Contains Job Control Commands, including ASSIGN's, OPTION's, etc., and 
FILEMGR directives for the job. For sample job files used in the FILEMGR, see Section 
6.9. 

The alternative methods for reading the file to SYC (interactive and batch) are described 
in the File Assignment Table, Section 6.2.1, and Activation, Section 6.5. 

6.2.1 File Assignments Chart 

Table 6-1, columns 1-3, describes input files used by the File Manager, their associated 
file codes, if any, and the default assignments, if any. Columns 4-6 relate the File 
Manager input files to previous use of other processors as applicable. Where it is feasible 
to override a default assignment or supply more files than the defaults accommodate, 
columns 3-6 describe options. Output files are also included. 

6-3 



(j\ 
I 

-+=" 

Input/Output 
Description 

Job File 

Listing/logs 
and Audit 
Trail 

Input (for 
RESTORE's) 

Output (for 
SI\VE's) 

1'. 
'L. ! 
"I!c~f 

FllEMGR 
logical 

File Code 

SYC 

SlO 

IN 

OUT 

Oefault and 
Optional 

Assignments 
for Cataloging 

Default: 
SYC=SYC 

Defa'ult: 
SlO: SlO, 6000 

Option: 
Change number of 
printlines 
anticipated on 
SlO. 

No default 

IN= {devmnc } 
filename 

No default 

OUT =(devmnc J 
filenaml" 

Table 6-1 

Filf' Manager File I\~~ignrnl"nh 

How f\uilt 
(Previous 
Processor 

Assignment) 

Work file built using the 
EntTOR. 

Permanent 'file built using 
EOITOR or MEOlA. 

Cards or other device media, 
e.g., magnetic tape, where 
the job file was copied from 
cards or a file via MEOII\. 
Supply the device mnemonic. 

Interactively. See Accessing 
the File Manager. 

By FIlEMGR. Outputs an 
audit trail of files saved 
(or restored). 

Previolls run of FIlEMGR. 
This is the file or device 
defined as IIc OUT when the 
files were saved 

Ry fllf.MGR, as files are 
saved 

if-

How Sped fied 
for FIlEMGR 

EOI>(}ATCH ---

1'.01 >[\ATCH jobfile 

or 

??8ATCH {O,deVmnC} 
"--- F,jobfile 

To change the number of 
printlines to use on SlO, 
U'le ASSIGN2, e.g., 
ASSIGN2 SlO=SlO,600 

ASSIGN) for device 
a~signments, e.g., 
I\SSIGN11N=MTOI00, 

or 
ASSIGNI for file 

assignment 

I\SSIGN) for dl"vice 
assignments, e.g., 
ASSIGN) OUT=MTOIOO,I 

or 
ASSIGNI for file 

as'iignmcnt 

Comment 

For further 
description, see 
I\ccessing t~ File 
Manager. 

For further 
description of device 
mnemonics, Sf'e 
Appendix 1\. 

.~ " ,., 



(-- 6.3 Options 

FILEMGR options can be specified with the $OPTION batch statement or the OPTION 
command in TSM. Options apply to SAVE, RESTORE, and SAVELOG directives as 
follows. 

Option 1 - The tape assigned to lfc IN is pre-MPX-32. All files restored are 
assumed to have eight-word, RTM-formatted SMD entries. Eight-word MPX
formatted entries are written to the SMD. The primary change in the SMD 
entry is in the structure of the space definition. Also, the second half word of 
Word 6 is now used. (See Volume 1, Chapter 7.) 

Option 2 - Normally, when restoring files, the media copies Ofc IN) are written 
first to temporary file space on disc as described in Section 6.1.3. This option 
causes the FILEMGR to delete the existing disc file specified for the restore 
before copying the saved file back onto disc from lfc IN. For further 
description, see section 6.1.3. 

Option 3 - The user can specify that a file not be saved when it is created. This 
option overrides that specification and allows NOSA VE files to be saved. 

Option 4 - The user can override the username specified when the file was 
saved. This allows all files on the same tape to be restored to the current 
username in effect in File Manager. If a single or limited number of file names 
rather than all the files under a given user name are to be restored, it is 
sometimes necessary to use the "RESTOREU" to locate the file, rather than 
"RESTORE". 

Option 5 - The user can override the username specified when the file was 
saved. This allows all files on the save tape to be restored as system files. 

Option 6 - The user can override the default to any moving head disc during a 
restore to be any disc (moving head or fixed head). 

6.4 Using the File Manager 

6.4.1 Computing the Size of a File 

When you use the CREATE or CREATEU directive to establish a file space, you define 
file size in blocks. A block consists of 192 words (768 bytes). On unblocked files, records 
are stored one per block, i.e., a 200 block file, unblocked, will contain 200 records. 

The maximum record size for a blocked file is 254 bytes. A guide for approximating 
space required for a blocked file is: 

records between 4 and 254 bytes long (1 and 63 words) are packed together up 
to a block boundary 

records cannot span block boundaries 

a new file always begins on a block boundary 

6-5 



two header and two trailer bytes are inserted on each packed record 
automatically for identification and tracking 

Thus, in computing the space needed for blocked files, you allow for the extra four bytes 
in each packed record and for the number of records that can be packed into a block. 

Fixed length records under 254 bytes long take up blocks on the file as follows: 

768 (Bytes per Block) 
Record Length (bytes) + 4 

Number of Records 
Number of Records per Block 

= 

= 

Number of 
Records per Block 

Number of Blocks 

For example, if each record is 80 bytes long, each block will hold 9 records (768/84). To 
hold 2000 records, the file must be 223 blocks long (2000/9, rounded). 

The number of blocks required to accommodate variable-length records can be estimated 
by getting an average byte/record value and using that value as the record length in the 
setup shown above. For example, if you anticipate having approximately 150 variable
length records in a file, none exceed 254 bytes, and the average is about 50 bytes long: 

768 150 
50 +4 = 14 14 = 11 blocks (rounded) 

Output to all disc files is assumed to be in blocked form unless specified otherwise when 
a file is assigned or allocated. 

6.4.2 Using Wild Card Characters in File Names 

When saving or restoring files, a question mark can be used in place of a character in a 
file name to match any character that falls in its position. 

From one to eight question marks can be used. 

The total number of characters specified in a filename is the upper limit of characters 
allowed in matching file names. 

For example, using just five question marks as a 'file name' saves all files with five or 
fewer than five characters in the file names. 

Using P}?????? as a file name saves all files beginning with PJ. 

6.4.3 Password-Protected Files 

Files can be password-protected via the FILEMGR CREATE or CREATEU directive. Any 
file defined as Read Only (RO) protected can be read without supplying the password; the 
password is required to write to it. 

( .. \" 
c/ 

Any file defined as Password Only (PO) requires that the password be supplied to access 0'\· 
it for any operation. 

6-6 



( 

6.4.4 Special Characters in File Names 

If any file specified with SAVE or RESTORE has any of the following characters in the 
name, the name must be enclosed in single quotes: 

; 
( 
) 
/ 

For example: 

SA VEU FILE='EM:02' 

6.4.5 Notes on Fil~to-Tape Transfers 

All SAVE's in a given session apply to the magnetic tape or set of tapes assigned to lfc 
OUT prior to the EXECUTE FILEMGR directive. (A set of tapes is implied by indicating 
multivolume on the device mnemonic, e.g., MTOI00,SAVE,1, where ,1 implies Volume 1 
of n physical tapes.) 

When the FILEMGR is ready to execute, it issues a MOUNT message on the OPCOM 
console prompting the operator to mount an appropriate tape. When the tape is mounted, 
the operator responds on the OPCOM console and the FILEMGR proceeds. 

SA VEts and RESTORE's must be coordinated by the user. 

Any SAVE or SA VEU directive, including SAVE FILE=filename, or SA VE 
FILE=prototype, prototype , ••• n, puts out a group of one or more files on tape 
with one EOF mark at the end of the group. 

If a RESTORE directive in a subsequent session selects files or a group of files 
from a tape that contains several groups, the FILEMGR must know where that 
group is located physically on the tape. 

The FILEMGR assumes a sequential restoration in the order that files were 
saved. If files are restored outside the order in which they were saved, the user 
must use special FILEMGR directives. 

Figure 6-1 illustrates the physical result of multiple SAVE/RESTORE operations. 

The left side of the figure illustrates SA VEts used to output disc files to a magnetic 
tape. The right side illustrates how RESTORE's could be used to retrieve the files back 
to disc. 

6-7 



USERNAME C 
SAVEU FILE-CCmm 

6-8 

DIRECTORY 

FILES 

END OF TAPE 

EOF 

USERNAME C 
RESTOREU 

Figure 6-1. Fil~ - to - Tape Transfers 

820657 

o 



( 

One tape contains five groups of files, each with a separate set of directory entries. All 
files are saved for User A. One file is saved for User B, followed by files from two other 
users. USERNAME and blank specifies system files. All system files on the moving head 
disc configured on channel 8, subaddress 00 are saved, then all User C files that begin 
with CC are saved. 

When restoring files from the tape, one file is selected from User A. The FILEMGR goes 
past the EOF marking the end of User A's files. To restore the system files back to 
DM0800, the SKIPFILE directive tells the FILEMGR to move past two EOF's to the 
beginning of the group of system files. 

Restoring User C's files requires no special directive, because the FILEMGR is already 
positioned at the beginning of that group. 

The REWIND directive is used if you do not restore files in the same order they were 
saved, for example, if you were moving back to restore another User A file after User C 
restoration. Do not use REWIND in the middle of a multivolume restoration. 

6.4.6 Device Specifications 

Device mnemonics used with the FILEMGR must include the device code and channel. A 
subaddress is optional. The default subaddress is 00. For further description, see 
Appendix A. 

6.5 Accessing the File Manager 

To access the File Manager as part of a batch job, create a job file using the EDITOR, 
punch cards, or other media as described in Table 6-1. The job file can be read to SYC 
and the job activated in several ways: 

from the OPCOM console: 

"<Attention>" 

??BATCH ) F,jobfile t 
i D,devmnc\ 

from the OPCOM program: 

TSM>OPCOM 

.??BATCH ~ F,jobfile t 
t D,devmnc \ 

6-9 



from the EDITOR: 

TSM>EDIT 

EDT>BATCH jobfile 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate the FILEMGR and run on-line, use the TSM ASSIGN and OPTION commands 
for FILEMGR assignments and options equivalent to those preceding the EXECUTE 
FILEMGR command on a jobfile, then proceed to issue FILEMGR directives. 

TSM>FILEMGR 
FIL>CREATEU MYFILE,DC,25"F AST 
FIL>DELETEU GEO.l 
FIL> 

6.6 FlLEMGR Directives 

File Manager directives are summarized below and described in detail on pages which 
follow. FILEMGR directives cannot be abbreviated. A directive must begin in column 1 
of a record or command line. Commas are legal separators. Blanks are ignored. 

Directive 

CREATE 
or CREATEU ,- \ 2. 

CREATEM 

DELETE '-17 
or DELETEU 

DELETEW ,- Ii 

6-10 

Function 

Creates a permanent system file or 
user file on specified disc. 

Defines a dynamic area of memory with 
a Global Common variable name 
(GLOBAL 00-99) or the name 
DATAPOOL. This area can be accessed 
by M.SHARE (first task activated) and 
M.INCL (any task thereafter). Can also 
define a memory partition in the user's 
extended address space. 

Deletes specified system or user file 
from SMD and deallocates disc space. 

Deletes specified system or user file 
from SMD and deallocates disc space. 



EXIT 

EXPAND I \ Q 

or EXPANDU (:J - \ 

LOG or LOGU ~. 2 0 

LOGC I' 

LOGS 1\ 

RESTORE DEVICE ,,- Z 
or 
RESTOREU DEVICE 

RESTORE FILE 
or 
RESTOREU FILE 

REWIND 

SAVE DEVICE 
or 
SA VEU DEVICE 

In interactive mode, exits the File 
Manager and returns to TSM >. In 
batch, designates the end of File 
Manager directives in a job stream. 

Expands or contracts space of a per
manent syste m or user file to n 192-
word blocks. 

Lists all permanent files or user files 
defined in the SMD. 

Indicates collision mapping. 

Lists all system and user files or a 
subset of files defined in SMD. 

Creates a tape from which the dynamic 
task activation can be performed on a 
memory-only MPX-32 system. 

Puts page eject and header on audit 
trail. 

Restores all permanent system or user 
files to specified disc from device 
assigned to lfc IN. (This was the device 
assigned to lfc OUT when the SAVE 
command was used.) If a file being 
restored does not already exist in the 
SMD, it is added; else it is replaced. 

Restores specified permanent system or 
user file(s) to disc from the device 
assigned to lfc IN (usually magnetic 
tape). (This was the device assigned to 
lfc OUT when the SAVE command was 
used.) If the file(s) being restored 
already exist in the SMD, existing 
contents are replaced by the IN 
contents. If a file does not as yet exist, 
it is added. 

Positions input file or device (lfc IN) or 
output file or device (lfc OUT) at 
beginning. 

Saves all permanent system or user 
files from specified disc (except those 
created by SYSGEN) on device assigned 
to lfc OUT. 

6-11 



SAVE FILE b -~ (0 or 
Saves specified system or user file(s) C.'. ;;. 
on device assigned to lfc OUT. 

SAVEU FILE 

SAVELOG 

SOT 

SKIPFILE 

USERNAME 

L- ~O 

c.-'?>C 

(..-~,-

,- "3'-

Lists files in directory on lfc IN; 
beginning at current location. 

Specifies key load modules. 

Advances past specified number of 
EOF's on the file or device assigned to 
lfc IN or lfc OUT. 

Associates new username with 
FILEMGR operations. 

6.6.1 The CREATE and CREA TEU Directives 

The CREATE directive is used to allocate file space for a system file. The CREA TEU 
directive is used to allocate file space for a user file. For CREATEU, the file will be 
created in the directory of the user whose name was most recently supplied in a 
USERNAME statement (batch, TSM, or FILEMGR). If no username is associated for 
FILEMGR operations (e.g., if creating a file from the OPCOM console) with no 
intervening USERNAME directive or if USERNAME b has been specified a system file is 
created with CREATEU just as if a CREATE directive had been issued. 

Syntax: 

CREATE [U] filename, devmnc , blocks , [typ~, [FAST], 

[ ] 
SLOW 

[Nf:R,O]; [NSAV~ -

where: 

6-12 

, I ~ ~' password 

filename 

devmnc 

blocks 

type 

specifies the name of the file, eight characters maximum. 
File names must not contain blanks. Any printable ASCII 
characters are acceptable. Required. 

allocates the file on a specific disc by supplying the 
appropriate disc device code, channel, and sub address as 
described in Appendix A. To let the FILEMGR allocate the 
file on any disc, use just DC as the device mnemonic. 

the size of the file. Specifies the number of 192-word 
blocks required for it. See Computing the Size of a File, 
Section 6.4.1. 

optionally specifies a two-character code to display or print 
with the file name (e.g., files created in the EDITOR carry 
the code ED). The code is entered here in hexadecimal, but 
is output in ASCII. Default is 00. 

.1('.'\ 

~-j 

o 



FAST 

SLOW 

NZRO 

NSAV 

RO 

PO 

password 

the file's directory entry must be retrieved from the SMD in 
one disc access. 

the file's directory entry can be retrieved from the SMD in 
one or more accesses. SLOW is the default. 

optionally suppresses initializing the disc file space to O's. 
Default: the file space is initialized to all O's. 

optionally suppresses output of this file when all files on the 
disc it is contained on are saved via a SAVE DEVICE 
directive. Default: the file is saved. 

the file space is read-only protected. A password must be 
supplied to write to it. 

the file space is read-write protected. A password must be 
supplied to access it. Default: the file space is not 
protected. 

if RO or PO, specifies an eight-character maximum 
password. 

6-13 



6.6.2 The CREA TEM Directive 

The CREATEM directive is used to define a Global Common partition, a DATAPOOl 
partition, or a partition in the user's extended address space (above the 128KW logical 
address space mapped for each task). Memory partitions defined via the FIlEMGR are 
allocated dynamically when required by a task, i.e., they do not remain allocated in 
physical memory regardless of use as do SYSGEN-defined Global Common partitions or a 
SYSGEN-defined DATAPOOl partition. To use a memory partition defined via the 
FIlEMGR, tasks must use M.SHARE or M.INCl system services. 

A partition defined via the FIlEMGR is 8KW minimum on a 32/7x and 2KW on a 
CONCEPT/32, whereas a SYSGEN-defined partition is structured in protection granule 
increments (512 words per protection granule). 

A_ particular Global Common name, e.g., GlOBAl02, can be created only once. If 
created via SYSGEN, GlOBAl02 cannot be created again with the FIlEMGR. 

DAT APOOl is a good candidate for dynamic allocation and deallocation. MPX-32 has 
the ability to multicopy D AT APOOl map block(s) into more than one logical address 
space. If created in the FIlEMGR, there can be more than one physical copy of 
DAT APOOl in memory at a time, depending on the association of tasks that access it 
simultaneously. Physical space is not taken up permanently (as it is with a SYSGEN
created DATAPOOl partition), thus it is reasonable to have multiple DATAPOOl 
partitions. Each task structures and shares a given DAT APOOl partition via a 
DATAPOOl dictionary. All tasks which access the same 'DATAPOOl' do so by 
specifying the same dictionary during cataloging and by using M.SHARE or M.INCL. 

Syntax: 

where: 

6-14 

GlOBAlnn 

DATAPOOl 

creates a Global common partition (00-99) which can be 
located physically in any class of memory (E, H, or S) and is 
mapped into the address space of each task that accesses it 
via an M.INCl system service. One task must use M.SHARE 
to define the partition as sharable. 

creates a DATAPOOl partition whose structure is defined 
via one or more DATAPOOl dictionaries. Like Global 
Common, the DATAPOOl area can be located physically in 
any class of memory (E, H,or S) and mapped into the logical 
address space of each task that accesses it via the M.INCl 
system service. One task must use M.SHARE to define the 
partition as sharable. (The same dictionary must be used in 
cataloging each task associated with M.SHARE or M.INCL.) 



extname 

prot gran 

(~ 
firstpage 

E 

is any one-to-eight character name to use for a memory 
partition in a task's extended address space. This partition 
may be mapped into memory above the first 128K W logical 
address space available to a task. Since the partition will be 
in extended memory, certain restrictions will apply. Refer 
to the MPX-32 Reference Manual Volume 1, Section 2.9.4.4 
for programming restrictions that affect the use of 
extended address space. 

Partitions in a task's extended address space can be located 
in any class of physical memory (E, H, or S). 

The name used for a partition that is allocated in extended 
address space must not be GLOBALnn or DATAPOOL. 

specifies the number of 512-word protection granules to 
include in the partition. (Sixteen protection granules equal 
one map block on a 32/7x and four protection granules equal 
one map block on a CONCEPT /32). Unused physical 
protection granules within the last 8KW map block on a 
32/7x or 2KW on a CONCEPT /32 allocated to the partition 
will be write-protected from all sharing tasks. However, 
only one dynamic partition may be defined in anyone map 
block. 

specifies the starting protection granule in the nonextended 
logical address space (pages 0-255) or in the extended 
address space (pages 256-479 on a 32/7x and 256-1019 on a 
CONCEPT /32) where the partition is to be mapped. 
Protection granules in the first several map blocks should 
not be specified, as they are used for the MPX-32 operating 
system. 

Protection granules for GLOBAL and DATAPOOL partitions 
are normally allocated from top down in a task's logical 
address space, or below any SYSGEN-created common 
partitions. In a 32/7X, the last map block of extended 
address space is reserved for MPX-32 use. In a 
CONCEPT /32, the last two map blocks of extended address 
space are reserved for MPX-32 use. See Volume 1 for 
further description of the various structures of logical 
address spaces available to the user. 

allocate the partition physically in Class E memory (first 
128KW). If Class E not available, wait. 

6-15 



H 

s 

RO 

PO 

password 

6-16 

high speed. Allocate the partition in Class H memory. If H 
or E not available, wait. 

slow. Allocate the partition physically in any class memory 
(E, S, or H). If no memory available, wait. Default: S. 

the partition is read-only protected. Tasks are not allowed 
to write to it without supplying a password. 

the partition is read and write protected. A password must 
be supplied to access it. 

supplies the password, eight-characters maximum. 

() 



( 

( 

6.6.3 The DELETE and DELETEU Directives 

The DELETE directive is used to scratch a system file from disc and free the disc 
space. The directive also removes the directory entry for the file from the SMD. 

The DELETEU directive is used to delete a file from the directory of the user whose 
name was supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR). 

Syntax: 

DELETE [U] filename [,password] 

where: 

filename is the name of the file to delete. 

password is the password associated with the file, if any. 

6.6.4 The DELETEW Directive 

The DELETEW directive enables the user to scratch more than one file per directive 
from the disc, free disc space, and remove the directory entry for each file from the 
SMD. Up to 20 file prototypes can be specified per directive, continued on several lines 
or cards with each line or card containing a comma as the last non-blank character. 

This directive can be used to delete system files and user files. However, user files with 
the user name SYSTEM must be deleted with the DELETE U directive because the 
DELETEW directive interprets the word SYSTEM as meaning a system file. 

There are no defaults with the DELETEW directive. For each file set to be deleted, the 
word SYSTEM or a user name and the respective file name must be specified in the 
directive (see examples). 

Syntax: 

DELETEW [FILE:] prototype Gprototype] ••• 

where prototype identifies a file set as follows: 

(username[,key])[']filenamJ'] [ipassword] 

where: 

username 

filename 

can be changed for each file set in a directive. The user 
name and optional key must be enclosed in parentheses. The 
pseudo user name SYSTEM is used to specifically indicate 
system files and must be enclosed in parentheses. 

name of file to delete. A question mark (?) can be used in 
place of any character(s) of the file name to match any 
character in that position. 

6-17 



;password 

Examples: 

If a filename contains any of the following characters, the 
file name must be enclosed in single quotes: 

: ; ( ) or / 

supplies the password required to access a file if it is either 
PO (Password Only) or RO (Read Only) protected. 

Example 1 - This example demonstrates how to delete all non-password protected system 
files that begin with GS. and WD/. 

TSM >A4 SLO UT 
TSM>FILEMGR 
FIL>DELETEW FILE=(SYSTEM)GS. ????? ,(SYSTEM)'WD/?????' 
FIL>X 
TSM> 

Example 2 - This example demonstrates how to delete all files belonging to user name 
FADEN with user key F and password SECRET. 

TSM >A4 SLO UT 
TSM> FILEMGR 
FIL> DELETEW (FADEN,F)????????;SECRET 
FIL>X 
TSM> 

Example 3 - This example demonstrates how to delete the file RISK belonging to user 
name HOLLY and all non-password protected system files that begin with GC •• 

$JOB 
$EXECUTE FILEMGR 
DELETEW FILE=(HOLL Y)RISK,(SYSTEM)GC. ????? 
EXIT 
$EOJ 

6-18 

c 

4···"" 
/'f( , 

"'L_~ 



( 

6.6.5 TIle EXIT Directive 

The EXIT directive is used to exit the File Manager and return to the TSM 
when running in interactive mode. 

prompt 

When running in batch mode, the EXIT directive signifies the end of File Manager 
directives in a job stream. 

Syntax: 

EXIT 

6.6.6 TIle EXPAND and EXPANDU Directives 

The EXPAND directive is used to increase or decrease the size of an existing system 
file. The FILEMGR allocates a new file space on the disc that already contains the file, 
copies the existing contents of the file to the new space, deallocates the original file 
space, and updates the SMD. If the file space is increased in size, additional space is 
zeroed. If decreased in size, any contents that exceed the new space are truncated. 

The EXPANDU directive expands a file from a specific user directory. The user name is 
the name supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR). 

Syntax: 

where: 

EXPAND [U] filename, blocks [,password] 

filename 

blocks 

password 

is the name of the file to expand or contract. 

the size of the file. Specifies the number of 192-word 
blocks to allocate for the file. (For further description of 
file size, see Section 6.4.) 

is the password associated with the file, if any. 

6-19 



6.6.7 The LOG, LOGU, LOGe, and LOGS Directives 

The LOG and LOGU directives are used to obtain a list of all permanent files defined in 
the System Master Directory (SMD) or all user files, respectively. The data output 
includes the file name, the device on which the file resides, FAST/SLOW file access, file 
size, and starting address of the file. 

Syntax: 

where: 

LOG [U ] [ C ] [[FILE=] prototype JGprototypeJ ••• 

U 

C 

FILE= 

prototype 

If no parameters are specified, the resulting list contains 
data on all permanent files defined in the SMD. 

indicates active user files of the username currently 
associated with the File Manager. 

indicates collision mapping by printing a 'C' in the rightmost 
position on the audit trail. 

limits the list to a specific file or set of files. Up to 20 file 
prototypes can be specified with a single LOG directive. 
Note: prototypes can be continued on several lines (or 
cards)' Each line or card must have a comma as the last 
non-blank character. 

identifies a subset of files are described in the RESTORE 
and RESTOREU directives syntax. 

The LOGS directive lists all system and user files or a subset of files that currently exist 
in the System Master Directory (SMDt For each file, LOGS indicates the device and 
sector number. It flags overlapping files. It can be used before and/or after other 
FILEMGR directives. 

Syntax: 

LOGS 

6-20 

1-.··.· ... '\ '--,I' 



-. ( ".' ... 

6.6.8 The MEMO Directive 

The MEMO Directive is used to create a tape or floppy disc from which dynamic task 
activation can be performed on a memory-only MPX-32 system. 

During dynamic task activation, the system allocator reads the preamble (first 192-word 
block) of the first load module on the input medium. If the load module name in the 
preamble is the same as the load module name specified in this directive, the remainder 
of the load module is loaded. If the names do not match, the allocator advances down 
the input medium to the preamble of the next load module. This process continues until 
either the appropriate load module name is found or an end-of-file (written by the File 
Manager) is encountered. In either case, the input medium will be rewound and 
deallocated when task loading has completed. 

Syntax: 

where: 

MEMO load mod [,load mod] , ••• 

load mod is the load module nameof the task to be activated. A 
maximum of 20 load module names can be specified per tape 
or floppy disc. 

6-21 



6.6.9 The PAGE Directive 

The PAGE directive is used to force a page eject and output a header on the audit trail. 
(A header is output automatically for the first page of the audit trail.) 

Syntax: 

PAGE 

6.6.10 The RESTORE and RESTOREU Directives 

The RESTORE directive copies system files saved via the SAVE directive back to disc. A 
tape or other media assigned to lfc OUT with SAVE is assigned to lfc IN to restore the 
files. For further description, see Section 6.4 The RESTORE directive can be used to 
restore: 

all system and user files on IN to any available moving head disc 

all system and user files on IN to a specific disc or type of disc 

an arbitrary list of system (and user) files from IN to a specific disc or type of 
disc 

The RESTOREU directive restores files from IN belonging to a particular user back onto 
disc (under the same user name). The user name used to retrieve the files is the name 
supplied in the most recent job control USERNAME statement (batch, TSM, or 
FILEMGR). With RESTOREU, you can restore: 

all files belonging to a particular user or all system files (no user name 
associated) from IN to any available moving head disc 

all files belonging to a particular user or all system files (no user name 
associated) from IN to a specific disc or type of disc 

an arbitrary list of user and/or system files from IN to a specific disc or type of 
disc 

With a list, files from other user names can also be restored. 

Syntax: 

where: 

6-22 

RESTORE[UJ [[DEVICE=devmncJJ[[ FILE=prototypeJ [,prototype] , ••• J 

If nothing is specified, files are restored to the disc from 
which they were saved. If that disc is not available, files 
are restored to any available disc as if the DC device 
mnemonic had been used. 

( 
... ···.·'11 ... 

,'-' 
j 



(: DEVICE 

devmnc 

FILE= 

prototype 

where: 

username 

filename 

;password 

c' 

used to restore the files on lfc IN to a specific disc or type 
of disc. 

the device, channel, and subaddress of the disc(s) as 
described in Appendix A. 

Files can be restored to any available disc by using the 
device mnemonic DC. 

limits the restoration to a specific file or set of files. Up to 
20 file prototypes can be specified with a single RESTORE 
directi vee Note: prototypes can be continued on several 
lines (or cards). Each line or card must have a comma as 
the last non-blank character. 

identifies a file or file set as follows: 

[(username)] [I] filename [I] [;password] 

can be changed for each file or file set in a list. The 
username must be enclosed in parentheses. Default: if 
RESTORE, no user name; if RESTOREU, will save specified 
file or files from directory of user last specified in TSM, 
batch, or FILEMGR USERNAME statement. 

name of file to restore. A question mark (?) can be used in 
place of any character(s) of the file name to match any 
character in that position. See Section 6.4. 

if a file name contains any of the following characters, the 
file name must be enclosed in single'quotes: 

( ) or I 

if the file is either PO (Password Only) or RO (Read Only) 
protected, supplies the password required to access it. 

6-23 



Examples: 

RESTORE 

Comment: 

Restores all files from lfc IN back to disc. If a file on IN does not currently exist, it is 
created and added to the SMD. Files are restored to the disc from which they were 
saved. 

If a file already exis.ts, it is replaced by the version on the device assigned to lfc IN. 

USERNAME MOORE 
RESTOREU FILE = DEBUG.? 
USERNAME JOHNSON 
RESTOREU 

Comment: 

Restores all files belonging to Moore named DEBUG.n to disc, where n can be any 
character or no character. 

Restores all files on IN belonging to Johnson. 

RESTORE DMOIOO 

Comment: 

Restores all system and user files on IN to disc DMOI. If some of the files exist on other 
discs, they are deleted from those discs after they are safely restored on DMOI. 

6-24 

o 



(-

( 
--" 

6.6.11 The REWIND Directive 

The REWIND directive is used to rewind a magnetic tape. It is used primarily when 
restoring files from a tape in an order different than the order they were saved as 
described in Section 6.4. 

The FILEMGR does not rewind a tape automatically at the end of either a set of SAVE's 
or RESTORE's. If the tape has not been rewound offline, it can be rewound via this 
directive. 

Syntax: 

REWIND 

where: 

IN specifies the device assigned to lfc IN. 

OUT specifies the device assigned to lfc OUT. 

6-25 



6.6.12 The SAVE and SA VEU Directives 

The SAVE directive is used to back up permanent disc files on the medium associated 
with lfc OUT. Normally files are saved on, and restored from, magnetic tape: 

The SAVE directi ve can be used to back up: 

all files on all discs configured in the system 

all files on a particular device 

an arbitrary list of system and user files, where no user name supplied defaults 
to a system file 

Or with SA VEU, you can back up: 

all files for a particular user {all discs or a specific disc} 

all system files {all discs or a specific disc} 

an arbitrary list of user and system files, where no username supplied defaults 
to the most recent USERNAME statement (batch, TSM, or FILEMGR) 

The SAVEU directive saves files taken from the directory of the user whose name was 
supplied in the most recent USERNAME statement (batch, TSM, or FILEMGR). To save 
just system files, use USERNAME without any name supplied. 

As files are saved, the FILEMGR builds a directory containing essentially the same 
information contained on the SMD. It outputs this directory at the beginning of each 
group of files saved on the medium assigned to lfc OUT. An error message and a zero
filled block on OUT indicating end-of-file (EOF) is produced if a save directive is 
specified and no files are saved, i.e., SAVE DEVICE=DM0801. 

An 'audit trail' of all files saved in a particular FILEMGR/-s~ssion is provided 
automatically on SLOe This list should be kept and used in restoring the files, because 
the sequence in which files are saved is important when they are restored. For further 
description, see Sections 6.4 and 6.7. 

To increase or decrease the number of blocks in the saved version of a file, its new size 
(number of blocks) can be specified when it is saved. The file space will be recreated 
when the file is restored and will be the size you specify in the save. The ability to 
modify the size of a file is available only when saving a specific file. 

Syntax: 

SAVE[U] 

where: 

6-26 

[lDEVICE=devmnc tJ 
FILE=prototype ,prototype , ••• \ 

if no parameters are supplied, all system and user files (SAVE) 
or all user files (SA VEU) without password protection are saved 
on lfc OUT. 

( - •... ,'I 
\ . 

j 
~ 



( DEVICE= 

devmnc 

FILE= 

prototype 

where: 

username 

( 

filename 

jpassword 

/ SIZ:blocks 

( 

limits the saved files to a particular disc. 

the device code, channel, and subaddress of the disc as 
described in Appendix A. 

limits the SAVE to a specific file or set of files. Up to 20 file 
prototypes can be specified. Note: prototypes can be 
continued on several lines (or cards). Each line or card must 
have a comma (,) as the last non-blank character. 

identifies the file or file set as follows: 

[(username)] [I] filename [,] [jpassword][/SIZ:blocks] 

can be changed for each prototype. 

The username must be enclosed in parentheses. 

Default: SAVE, no username, i.e., will look for system files. 

Default: SAVEU, the username supplied in the most recent 
USERNAME statement (batch, TSM, or FILEMGR). If cannot 
match the file in the user directory, will search for a system 
file. 

Or the pseudo username SYSTEM can be used specifically to 
indicate system file(s). 

name of file to save. A question mark (?) can be used in 
place of any character(s) of the file name to . match any 
character in that position. See Section 6.4. 

if a file name contains any of the following characters, the 
file name must be enclosed in single quotes: 

) or / 

if the file is password protected, supplies the password 
required to read it. 

specifies the desired size of the file in number of I92-word 
blocks. If existing file is larger, truncates the saved version; 
if existing file is smaller, add blocks on the saved version and 
initializes them to O's. 

Default: the size of the existing file is the size of the saved 
version. 

For further description of file size, see Section 6.4. 

6-27 



Examples: 

SAVE "--
Comment: 

Saves all files (system and user) on all discs configured in the system. 

SAVE DEVICE=DMOIOO 

Comment: 

Saves all system and user files from the moving head disc on channel 01, subaddress 00. 

USERNAME B 
SAVEU 

Comment: 

Saves all files belonging to User B on all discs configured in the system. 

USERNAME 
SAVEU 

Comment: 

Saves all system files from all discs configured in the system. 

USERNAME BROWN 
" SAVEU FILE=PJ$?????,(MOORE)DEBUG.?,EXPR 

Comment: 

Saves all the files in Brown's directory that start with PJ$, plus the file named EXPR. 
Also saves all files named DEBUG. from the directory of a user named MOORE. All 
DEBUG. files are saved, regardless of the character following the dot. If a DEBUG. file 
in Moore'S directory contains an eighth character, the file will not be saved. (See Section 
6.4.2.) 

6-28 



( 

USERNAME MILLER 
SAVEU FILE=?????,'FTN:SRC' 

Comment: 

Saves all files from the Miller directory that have five or less characters in the file 
name. Also saves the Miller file named FTN:SRC, which is enclosed in single quotes 
because of the embedded colon in the file name. 

USERNAME SMITH 
SAVEU 
USERNAME MOORE 
SAVEU 

Comment: 

Saves all files in Smith's directory, then saves all files in Moore's directory. 

6-29 



6.6.13 The SAVELOG Directive 

The SAVELOG directive can be used when restoring files from magnetic tape or before 
restoring files, simply to check the contents of a tape. It displays (or lists) the files 
grouped in the current directory on the tape assigned to lfc IN. After listing those files, 
it returns the tape to the beginning of the current directory. 

This directive is useful during restoration because it allows you to match restore 
directives against the actual saved files on a tape, or it can be used simply to check the 
contents of a tape, e.g., to ensure that the right tape is mounted for the files you want to 
restore. 

If a tape contains several directories, the SKIPFILE directive can be used to get to and 
list the next directory, e.g., if a tape had three directories, 

SAVELOG 
SKIPFILE IN 
SAVELOG 
SKIP FILE IN 
SAVELOG 
REWIND IN 

would output all directory entries to SLOe Or if SAVELOG is inserted between RESTORE 
directives, each directory list would precede the RESTORE operations shown on SLOe 

Syntax: 

SAVELOG 

Example: 

To be supplied 

6.6.14 The SOT Directive 

The SDT directive is used to specify key load modules. It also checks to ensure that each 
file specified is a valid load module. 

Syntax: 

where: 

6-30 

SOT sysfile,BOOTxx, [loadmod] , ••• 

sysfile specify the load module that contains the resident operating 
system. You will have run SYSGEN to create a tailored 
version of the operating system and will specify the name of 
the output file generated with SYSGEN as the first load 
module. (Supply the file name used with the SYSGEN 
SYSTEM directive.) 



BOOTxx 

loadmod 

specify the SYSTEMS-supplied load module, BOOT7X or 
BOOT27, which loads the resident system onto disc. BOOTxx 
also provides restart logic on disc for reloading from disc. It 
is required for all configurations of the SOT. 

specify key load modules required to get a system that the 
user can communicate with. 

For MPX-32, absolute minimum load modules are: FILEMGR, 
OPCOM, J.INIT, J.SOUT, and J.TSM. Additional load 
modules should be included with the key modules or the SOT 
to maximize convenience for the user: J.JOBC, J.SSIN, 
JSSIN2, J.TINIT. These are followed by an EOF written by 
the FILEMGR after the last load module specified with SOT. 

For memory-only MPX-32 systems, the SOT is built as follows: 

where: 

SOT sysfile,BOOTMEMO[,OPCMM] [,loadmod] , ••• 

sysfile 

BOOTMEMO 

OPCMM 

load mod 

specifies the name of the load module that contains the 
resident operating system created by running SYSGEN. This 
is the file named used wit the SYSGEN SYSTEM directive. 

specifies the SYSTEMS-supplied load module 'BOOTMEMO' 
which performs the necessary system initialization and 
creation of the task SYSBUILO which in turn performs the 
loading and activation of user tasks supplied on the SOT. 

specifies the memory-only operator communications task. 
This module is created by assembling the source module 
SJ.OPCOM into the object module OJ.OPCOM under the user 
name MEMONL Y, with the memory-only conditional assembly 
flag (C.MEMO) set with the MPX-32 macro library. The 
resulting object module is then cataloged as the load module 
OPCMM so as not to erase the MPX-32 operator 
communications task (OPCOM). This module is optional, but 
if desired, it must be the first task name on the SOT after 
BOOTMEMO. 

specifies the load module names of user tasks to be loaded 
from the SOT and activated after system initialization. Up 
to 18 tasks (17 if OPCMM is specified) can be included in the 
SOT directive for immediate loading and activation. 

Note: The SOT cannot be multi-volume. The boot loader is not capable of processing the 
header record. 

6-31 



6.6.15 The SKIPFILE Directive 

The SKIPFILE directive is used to advance past one or more end-of-files (EOF's) on the 
file or device assigned to lfc IN or lfc OUT. 

Syntax: 

SKIPFILE 

where: 

n number of EOF's to skip. Default: one. 

Example: 

For sample use, see Figure 6-1 and accompanying text and the SAVELOG description. 

6.6.16 The USERNAME Directive 

The USERNAME directive is used to establish a directory to associate with subsequent 
FILEMGR directives. 

Initially, if running from a terminal via TSM, the user name is defaulted to the owner 
name established at logon. . If running from the OPCOM console, no user name is 
established (implying the user name 'SYSTEM'). The initial user name can be changed by 
supplying a different username in any USERNAME statement (batch, TSM, or FILEMGR). 

The USERNAME directive without any name supplied associates system files with 
subsequent FILEMGR directives. 

Syntax: 

where: 

6-32 

USERNAME [username] [,ke~ 

username 

key 

is the name of a valid user on the M.KEY file. Default if no 
name supplied is no user name, i.e., system files. 

specifies a valid key if required to use this user name. 

o 



6.7 Examples 

(~ Example 1 - This example saves all user files beginning with XY onto a tape. 

TSM > ASSIGN3 OUT=MT 
TSM > ASSIGN4 SLO=UT 
TSM >FILEMGR 
FIL> SA VEU FILE=XY?????? 
FIL> EXIT 
TSM>--

Example 2 - This example creates a fast file named TEST of 100 sectors. 

TSM> ASSIGN4 SLO=UT 
TSM> FILEMGR 
FIL> CREATEU TEST,DM,lOO"FAST 
FIL> EXIT 
TSM>--

Example 3 - This example restores the tape files in Example 1 back to disc. 

6.8 

EDT> COL 
$JOB --
~GN3IN=MT 
SEXECUTE FILEMGR 
RESTOREU FILE=XY?????? 
EXIT 
SEOJ 
~ 
EDT>RUN 

Errors 

See Appendix C. 

6.9 Listings 

The FILEMGR automatically outputs an audit trail of all directives issued, resulting 
operations, and errors on SLO. In addition, if you use a FILEMGR LOG, LOGU, and/or 
SAVELOG directive, those results are output to SLO. 

On SAVE's it is a good idea to retain the audit trail listing so that you have the right 
order of saved files on the tape to use in restoration. 

6-33/6-34 





( 

( 

7. M.KEY EDITOR (KEY) 

KEY is a utility used to build an M.KEY file for the MPX-32 system. The M.KEY file 
specifies valid owner names/usernames* on the system and optionally sets, for each 
owner name/username: 

a key to restrict access to the owner name during logon and to restrict access 
to the user name when accessing files 

OPCOM indicators restricting the owner's use of OPCOM commands 

an indicator that prevents the owner from cataloging 'privileged' tasks (tasks 
that use privileged system services or privileged variations of unprivileged 
system services) 

an indicator that prevents the owner from activating tasks cataloged as 
privileged 

default tab settings 

default alphanumeric project names/numbers for accouting purposes 

After KEY has been run, only those owners/users established in the M.KEY file are 
allowed to log on to the system and access files. The owner name CONSOLE cannot be 
restricted in any way. CONSOLE is also the one exception to an owner name being 
identical to a user name. There is no user name associated with the CONSOLE owner. 

7.1 General Description 

KEY processes an input file containing ownernames/usernames, keys, and other 
information described previously and outputs the data to the M.KEY file referenced by 
the system at logon. 

*Owner names are associated with tasks in the System Dispatch Queue and, except for 
jobs, cannot be changed from logon through logoff. Usernames are associated with file 
names in the System Master Directory (SMD) and can be changed via USERNAME 
commands/directives in Job Control, TSM, and various utilities (as documented). 

7-1 



7.2 Files and File Assignments 

The primary file required to use KEY is an input file containing M.KEY information for 
each owner. 

The structure of the input file is described in Section 7.4 

The input file is prepared using the EDITOR STORE UNNUMBERED command. It is 
assigned to the logical file code INP, as in: 

ASSIGN 1 INP=filename 

A system file named M.KEY is also required. It can be password-protected. This is the 
output file used by the KEY utility and accessed by the system. The file code used by 
KEY for this file is OUT, as in: 

ASSIGNlOUT=M.KEY,pass,U 

Output to M.K EY must be unblocked. 

M.KEY file space can, for example, be created and password-protected via the 
FILEMGR. 

7-2 



( 

7.3 Using KEY 

This section describes how to build the input file for KEY. For ease of use, the input file 
should be built as a system file, as in: 

EDT>COLLECT 

EDT>STORE INFILE UNN SYS 

7.3.1 Input Record Syntax 

ownername,key ,opcommands,opcommands, tabs, tabs,projno 

where: 

ownername 

key 

one-to-eight character name used to log on the MPX-32 system. Also 
provides the user name for file access. 

one-to-eight character key to associate with the owner name/user name. 

opcommands hex characters representing the bit pattern of OPCOM commands and 
privileges available to this owner name. Two words are used, and are 
separated by a comma or blanks. The bit settings in a word can optionally 
be left unchanged by entering a zero for the word; however, if you set one 
bit in a word, all bit settings in that word must be specified. 

If a bit is set, a function or privilege is denied to tasks with this 
ownername. 

The module number of each command verb corresponds to its bit position. For example, 
the command verb "MODIFY" (module OCI8), is represented by bit 18. Module numbers 
are indicated below. 

With the exception of EXIT (see Volume 1, Section 4.1.4), if a command verb bit is set, 
the command is not available to an owner name and generates an "INVALID COMMAND 
VERB" message. 

7-3 



Bit Command C 00' EXIT 
01 ABORT 
02 ACTIVATE 
03 BATCH 
04 BREAK 
05 CONNECT 
06 CONTINUE 
07 DEPRINT 
08 DEPUNCH 
09 DISABLE 
10 DISCONNECT 
11 DUMP 
12 ENABLE 
13 ENTER 
14 HOLD 
15 KILL 
16 LIST 
17 MODE 
18 MODIFY 
19 OFFLINE 
20 ONLINE 
21 PURGEAC 
22 REDIRECT 
23 REMOVE 
24 REPRINT 
25 REPUNCH \,~ .. 

26 REQUEST 
27 DELETETIMER 
28 SAVEAC 
29 SEARCH 
30 SEND 
31 SETTIMER 
32 SNAP 
33 START 
34 STATUS 
35 SYSASSIGN 
36 TIME 
37 URGENT 
38 RESUME 
39 ESTABLISH 

Bit Privilege 

40 Disables access to tasks with a different owner 
name. 

41 Disables activation of privileged tasks other than 
OPCOM (Note: With this bit set File Manager 
cannot be activated). 

42 Disables cataloging of load modules as privileged. 
To use the privileged option will be considered 
illegal and the cataloger will abort the job. 0 43 Disables use of the TSM RESTART command. 

44-63 Reserved. 

7-4 



( 

tabs 

projno 

Tab Stop 
Setting 
(Hex) 

hex characters representing the tab positions for this owner name. Eight 
tabs can be set. Each word defines four tab positions. The words are 
separated by a comma or blank. The first byte of 00 indicates end of 
tabs. Tabs must be entered in ascending order and not exceed the width 
of a terminal line. 

one-to-eight character alphanumeric project name/number to associate 
with the owner name. 

1 2 3 4 5 6 7 8 

7.3.2 Sample Input File 

Notes: 

1. GIPSON,DG 

HAWK, RH,O,O, 151 A2640 
2. BEVIER,JB,0,0,OA142430,36400000,ALLFILES 

F AD EN ,G F ,0,0,1 A 152640 
MYERG 

3. MEYERS,M,40002000,10000000 
PARIS,C 
HALE,C 
MOORE 

1. Owners/users with only name and key and no other specifications have access 
to all OPCOM commands, have no default tabs (until they enter the Editor), 
and no privilege restrictions. 

2. This owner has access to all OPCOM commands, default tab settings for tabs 
in positions la, 20, 36, 48, 54, and 64, and a default project name established 
as ALLFILES. 

3. This owner cannot use the following OPCOM commands: ABORT, MODIFY, 
and SYSASSIGN. 

7-5 



7.4 Accessing the M.KEY Editor 

To access KEY, assign appropriate files to IN and OUT as described in Section 7.2. Then 
activate KEY. To do so as part of a batch job, create a job file using the the EDITOR, 
punch cards, or other media. The job file can be read to SYC and the job activated in 
several ways: 

from the OPCOM console: 

" < Attention> " 

??BA TCH ~ F,jobfile ( 
iD,devmnc\ 

TSM>OPCOM 

??BATCH ~ F,jobfile ( 
iD,devmnc\ 

from the EDITOR: 

TSM > EDIT 

EDT> BATCH [jobfile] 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate KEY and run on line, use the TSM ASSIGN command for KEY assignments, 
then activate KEY. 

7-6 

TSM> KEY 
TSM> 

(',","," 
,jP 



7.5 Example 

How to build the input file is described in Section 7.3. A sample input file (INFILE) is 
described in Section 7.3.2. 

TSM> ASSIGN I INP=INFILE 
TSM> ASSIGNI OUT=M.KEY,KEYPASS,UNBLOCKED 
TSM>KEY 
TSM> 

7-7/7-8 





8. THE SUBROUTINE LIBRARY EDITOR (LIBED) 

The System Subroutine Library (UBED) is a set of assembled object modules available 
from SYSTEMS. It is called MPXUB and contains FORTRAN math subroutines and I/O 
formatting routines. The corresponding directory for MPXUB is named MPXJ)IR. The 
library object modules can be accessed as externals by tasks written in various languages, 
including Assembly language. The Subroutine Library Editor (UBED) is used to add 
object modules to the library. 

The user can also use UBED to create his own library of object modules and a 
directory. He can then access modules within the library as externals. UBED is also 
used to delete existing modules from a library. 

References to subroutines (object modules) in the library (MPXUB and/or user) are 
resolved when a task that accesses them is cataloged. (See the Cataloger, Volume 2, 
Chapter 2.) 

8.1 General Description 

With UBED, the object modules to include on a library or to replace on an existing 
library are assigned to the logical file code Library General Object (LGO), where the 
default assignment is to SGO. This allows the user to assemble or compile one or more 
object modules with output to SGO and use SGO as input to LIBED in the same job, if 
desired. 

LIBED has three directives: LOG is used to specify if a list of all module names and 
external definitions is desired, DELETE is used to specify modules to be deleted, and 
EXIT is used to terminate directive input and cause previous directives to be processed. 

Existing modules are replaced with new modules automatically whenever the 
replacement module exists on the file assigned to LGO. 

Use of the $OPTION statement determines whether a library is being created or not, as 
described in Section 8.3. If creating a library, LIBEl) does not process directives. 

The subroutine library directory is used by the Cataloger to locate modules on a given 
library. 

8.1.1 L1BED Directives Summary 

Directive 

DELETE 

EXIT 

LOG 

Function 

Deletes a module from the library. 

Terminates directive input. 

Provides a log of all modules and their external definition. 

8-1 



8.2 Files and File Assignments 

The following logical file codes are used for LIBED assignments. Note that a file or 
device assigned to LIB or DIR must be assigned as unblocked. All other file or device 
assignments are blocked (the MPX-32 default). 

8.2.1 The Object Module File (LGO) 

LIBED takes input from the file or device assigned to LGO. This file contains assembled 
or compiled object modules. The default assignment is LGO = SGO. 

8.2.2 The Directive File (eTL) 

The LOG or DELETE directives are supplied on the file or device assigned to CTL. The 
default assignment is CTL = SYC. 

8.2.3 The Subroutine Library File (LIB) 

Object modules are output to the file or device assigned to LIB. If object modules are 
being deleted, the file or device assigned to LIB is both the input and output source. 
Object modules are automatically replaced if they exist on the file or device assigned to 
LGO as well as on the file or device assigned to LIB. 

8.2.4 The Directory (DIR) 

The file or device assigned to DIR is used for the library directory. The directory is 
created or maintained by LIBED. The user must be certain that the proper directory is 
paired with the corresponding library when making assignments for LIBED or the 
Cataloger. 

8.2.5 Listed Output (LLO) 

The file or device assigned to LLO is used for LIBED listings. (See Section 8.7.) The 
default assignment is LLO = SLO, 1000. 

8-2 



00 
I 

\.I.) 

I"', 

Input/Output 
Description 

Object Module 
Input File 

Directives 

Subroutine 
Library 

Logical 
File Code 

LGO 

CTL 

LIS 

~ 

Table 8 - 1 
UBED File Assignments 

Previous 
Assignments Processor 
for LlSED Assignment 

Default: The Assembler defaults 
ASSIGN2 output to an SGO file. 
LGO = SGO It is used automatically 

if assembling code in the 
Options: same job, or output from 
ASSIGNn the Assembler can be 

LGO = {filename} 
directed to a device 
or permanent file and 

devmnc accessed by assignment 
to LGO. 

Default: Work file built using 
CTL = SYC EDIT. 

Permanent file built 
using EDIT or MEDIA. 

Cards. 

Other device medium 
e.g., magnetic tape, 
where jobfile was 
copied from cards or 
a file via MEDIA. 

Interactively. See 
"Accessing LlSED." 

Default: If disc file is used 
LlS=MPXLlS for the library it 

must be pre-established 
Options: via the FILEMGR utility. 
ASSIGNn If the size of a file 

LIS = 1 MPXLlS("U 
is increased, it must 
also be handled via 

user lib the FILEMGR. 

~ 

Page 1 of 2 

How Specified 
for LlSED Comment 

EDT>SATCH 
For further description 

EDT>SATCH jobfile see "Accessing LlSED" 
or 

??SATCH ~ D'~V':TlnC~ 
--- F,)obflle 

Same route shown for 
cards. 

The Subroutine Library 
and directory created 
via LlSED are used when 
a task is cataloged that 
accesses object modules 
on the library. Soth 
files must be unblocked. 



00 
I 

-+=" 

Input/Output 
Description 

Library Directory 

Listed Output 

o 

Logical 
File Code 

DlR 

LLO 

Assignments 
for LIBED 

DlR=MPXDlR"U 
Options: 
ASSIGNn 

DlR = lMPX~IRt"U 
userdlr \ 

ASSIGN2 
LLO = SLO,IOOO 
Options: 
ASSIGNn 

LLO = lfilename t 
devmnc ~ 

Table 8 - 1 (Conti d) 
LISED File Assignments 

Previous 
Processor 
Assignment 

A directory is produced 
for each subroutine 
library. The directory 
<e.g., MPXDlR) already 
exists or is to be 
created via this run of 
LIBED. 

N/A 

,{ -'''"', 
I ) 

How Specified 
for LIBED 

Page 2 of 2 

Comment 

See above. 

~ 
~) 



( 

8.3 Options 

If no options are specified, LlBED processes directives from the file or device assigned to 
CTL. If an object module on the file or device assigned to LGO has the same name as an 
existing module on the library (LIB assignment), it is replaced. If not, it is added to the 
library. LlBED updates the directory. 

LlBED options are specified through the job control statement, $OPTION or the TSM 
OPTION command. 

OPTION 1 or $OPTION 1 is used to create a new library and directory from the object 
modules in the file assigned to LGO. Processing under this option ignores the current 
contents of the library and directory (if any) and ignores the file assigned through the 
CTL file code. When this option is specified, a LOG of all module names and external 
definitions is produced automatically. 

OPTION 2 or $OPTION 2 is used to make only a statistics run. It produces an analysis of 
allocated and remaining disc space in the library and directory assigned to file codes LIB 
and DIR. 

8.4 Using LIBED 

Subroutine libraries are a convenient mechanism for accessing code (object modules) used 
by different tasks. Up to seven libraries can be accessed when a task is cataloged. 

To be used most efficiently in a subroutine library, an object module should be given a 
specific, unique name when it is assembled or compiled (PROG = uniquename), so that is 
can be accessed with a Cataloger PROGRAM directive. Also, cataloger INCLUDE and 
EXCLUDE directives access object modules by the name supplied in Assembler DEF 
statements. These names should be unique to avoid problems. 

Note that the name 'subroutine' library is really a misnomer, as both main segments 
(programs) and subroutines (definitions) can be included and edited on the library, i.e., 
they are all discrete 'object modules'. 

8-5 



8.5 Accessing LISED 

To access the Subroutine Library Editor as part of a batch job, create a job file using the 
EDITOR, punch cards, or other media as described in Table 8-1. The job file can be read 
to SYC and the job activated in several ways: 

from the OPCOM console: 

" <Attention>" 

??BATCH ~F,jobfile ~ 
I D,devmnc\ 

from the OPCOM program: 

TSM> OPCOM 

??BATCH \F,jobfile ~ 
iD,devmnc \ 

from the EDITOR: 

TSM> EDIT 

. 
EDT > BATCH [jobfile] 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate the Subroutine Library Editor and run online, use the TSM ASSIGN and 
OPTION commands to make the Subroutine Library Editor assignments and chose options 
equivalent to those preceding the EXECUTE UBED command on a jobfile, then proceed 
to issue Subroutine Library Editor directives, if applicable. (SELECT and OBJECT 
statements are not available when running the Subroutine Library Editor online.) 

8-6 

TSM> UBED 
UB> 



r 

( 

8.6 Subroutine Library Editor Directives 

All directives are read from the device assigned through logical file code CTL. 
directives begin in column 1 and fields are terminated by blanks. 

8.6.1 DELETE Directive 

All 

The DELETE directive causes the specified program (object module) to be deleted from 
the library assigned to lfc LIB, and its external definitions to be removed from the 
directory assigned to lfc DIR. 

Syntax: 

DELETE name comments 

where: 

name is the one- to eight-character (ASCII) program name to be deleted. This 
entry must be left-justified with no leading blanks. 

comments any desired comments. 

8.6.2 EXIT Directive 

The EXIT directive terminates directive input and causes the previous directives to be 
processed. 

Syntax: 

EXIT 

8.6.3 LOG Directive 

The LOG directive causes a log of all module names and their external definitions to be 
output to the device or file assigned to lic LLO. 

Syntax: 

LOG 

8-7 



8.7 Listings 

The Subroutine Library Editor generates the following listed output: 

o A directive list 

o An optional log of module names and external definitions 

o An optional analysis of available library and directory disc space 

o A list of modules specified for deletion that were not located in the 
specified library 

8.8 Errors 

Not supplied. 

8.9 Examples 

Example 1 

This example creates a subroutine library on the file USERLIB and directory on the file 
USERDIR. The library contains all modules following the $OBJECT Job Control 
statement. A log of the module names and external definitions are produced on the LLO 
device. The files USERLIB and USERDIR must be created via the File Manager. 

Example 2 

$JOB CREATE MEYERS 
$NOTE CREATE NEW USER LIBRARY 
$OBJECT 
(User Object Modules) 
$ASSIGN 1 LIB=USERLIB"U 
$ASSIGN 1 DIR=USERDIR"U 
$OPTION 1 
$EXECUTE UBED 
$EOJ 
$$ 

This example produces a log of all library module names and external definitions, on the 
SLO device. In addition, statistics on available space in the library and directory are 
printed. 

8-8 

$JOB LOG MEYERS 
$ASSIGN 1 LIB=USERLIB"U 
$ASSIGN 1 DIR=USERDIR"U 
$EXECUTE LIBED 
LOG 
$EO] 
$$ 

[ 
-lj 

'\ C-~"··· 



( 

Example 3 

This example updates the standard MPX-32 System Subroutine Library and directory 
MPXLIB and MPXDIR. All modules following the $OBJECT statement either replace an 
old module of the same name or are added as a new module. The module name UMOD 1 is 
deleted. A log of all module names and external definitions and an analysis of remaining 
disc space in MPXLIB and MPXDIR is produced. 

Example 4 

$JOB UPDATE MEYERS 
$OBJECT 
(User Object Modules) 
$EXECUTE LIBEl) 
LOG 
DELETE UMODI 
$EOJ 
$$ 

In this example, the binary output from a compilation is taken directly from the SGO file 
and used as input to the Subroutine Library Editor. Modules replace modules of the same 
names; modules that do not match existing names are inserted. 

Example 5 

$JOB UPDATE MEYERS 
$NOTE UPDATE OWNER LIB FROM COMPILATION 
$OPTION 5 
$EXECUTE FORTRAN 
(Source Program) 
$AI LIB=ULIB"U 
$AI DIR=UDIR"U 
$EXECUTE LIBED 
$EOJ 
$$ 

This example produces a log (using Control C as the EOF character) and returns the 
user to the TSM prompt automatically when execution is complete. 

TSM >ASSIGNI LIB=USERLIB"U 
TSM >ASSIGN 1 DIR=USERDIR"U 

(If these ASSIGN 1 statements are not specified, the resulting log details 
contents of the System Subroutine Library to the terminal.) 

TSM> ASSIGN4 LLO=UT 
TSM>EXECUTE LIB ED 
LIB> LOG 
LIB>< Control C > 
TSM> 

8-9/8-10 





(' 

9. THE MACRO LIBRARY EOITOR (MACLlBR) 

The Macro Library Editor (MACLIRR) is used to create and maintain system or user 
macro libraries. 

MACLIBR allows the user to: 

o cielete or replace macros by name 
o insert macros 
o build a macro library from scratch 

9.1 General Description 

Macros are sequences of Assembly language instructions that are given unique names 
(e.g., M.ALOC). When a macro name is used in source code, the macro is retrieved from 
the macro library by the Assembler and expanded into the associated instructions. In a 
macro, the user can also define up to 256 variable parameters to pass to the macro. In a 
task that uses the macro, the task supplies appropriate parameters and instructions are 
expanded as defined in the macro. For further description, see the Macro Assembler 
Reference Manual, particularly Section 6. 

The system macro library for MPX-32 is named M.MPXMAC. Supplied with the 
operating system, M.MPXMAC contains all macros required to expand system services 
(Volume 1, Chapters 5, 7, and 8) into Assembler level code with service calls (SVC's). 
The system macro library for RTM is also provided with MPX-32, and is called 
M.MACLIB. It can be used with RTM-based source code that uses Call Monitor (CALM) 
services. 

Macros begin with a DEFM statement, which can be proceeded by a header record 
further describing the macro. The user can list the DEFM statements for a library via 
the /MACLIST directive. The first line of each macro (header or DEFM) is shown on the 
normal MACLIBR audit trail. 

Within the macro, the user can optionally define parameters to pass to the macro 
(dummy symbols preceded by percent signs). Other dummy symbols are labels used for 
conditional processing. The /MACLIST directive allows the user to output all dummy 
symbols used in a macro. 

For further description of macros, see the Macro Assembler Reference Manual, 
publication number 323-001220. 

9-1 



9.1.1 MACLIBR Command Summary 

Directive 

/APPEND 

/CREATE 

/DELETE 

/DISPLAY 

/END 

/EXIT 

/INSERT 

/LOG 

/REPLACE 

Function 

Adds macro(s) at end of a library file. 

Generates a macro library. 

Deletes a macro from a library. 

Lists a macro. 

Defines end of INSERT, REPLACE, APPEND, and/or CREATE 
sequence. After APPEND or CREATE, has same effect as 
EXIT. 

Last update directive. Performs update and returns control to 
calling task. 

Inserts macro(s) ahead of specified macro. 

Lists names and numbers of all macros after all updates 
complete. 

Replaces an existing macro with a new one of the same name. 

9.2 Files and File Assignments 

Input and output files for MACLlBR are described in this section and the accompanying 
files assignments chart, Table 9-1. 

9.2.1 Macro Library (MAC) 

A macro library can reside on either a permanent disc file or a magnetic tape file. If the 
macro library file is a disc file, the File Manager utility (see Chapter 6) must be used to 
create the macro library file prior to generating the macro library. 

The file assigned to MAC must be unblocked. 

Both the Macro Assembler and the Macro Library Editor default the assignment of the 
macro library to the M.MPXMAC permanent file. During assembly, the macro library is 
searched each time a macro that is not coded in-line is encountered. 

The user has the capability to create multiple macro libraries. When generating a macro 
library other than M.MPXMAC, the user must reassign the file code, MAC, to the desired 
macro library file via Job Control or TSM $ASSIGN 1 or $ASSIGN3 statements. 
(Similarly, the Macro Assembler can access a macro library other than M.MPXMAC by 
reassignment of the file code, MAC.) 

9-2 



( 

( 

9.2.2 Macro Input File (51) 

Macro source is supplied on the file or device assigned to SI. Macros must not be 
compressed format. Each macro may have a maximum of 256 parameters. The 
maximum number of macros is 65,535. 

9.2.3 Directives (DIR) 

MACLIBR directives are supplied on the file or device assigned to lfc DIR. The default 
assignment is to an SYC file. See Table 9-1. 

9.2.4 Audit Trail (LO) 

The file or device for an audit trail is assigned to lfc La. The default assignment is to 
SLOe For further description of the audit trail, see Section 9.7. 

9.2.5 Scratch File 

A scratch file the same size as the library file assigned to MAC is allocated dynamically 
by MACLIBR. The scratch file is used to build and edit macros from the source into an 
existing or new library. 

9-3 



~ 
I 

.;::-

Input/Output 
Description 

Source Code 

Directives 

~) 
" 

Logical 
File Code 

SI 

DlR 

Assignments 
for MACLIBR 

Default: 
ASSIGN4 
SI=DIR 

Options: 
ASSIGNn 

SI = 1 filename ~ 
devmnc 

Default: 
DIR=SYC 

Table 9 - 1 
MACLIBR Files and File Assignments 

"U 

Previous 
ProcessOr 
Assignment 

Source files can be 
created via EDIT, 
MEDIA, etc., as 
described in alternative 
routes to SYC with the 
DIR file code. 

Work file built using 
EDIT. 
Permanent file built 
using EDIT or MEDIA. 

Cards. 

Other device medium 
e.g., magnetic tape, 
where jobfile was copied 
from cards or a file 
via MEDIA. 

Interactively. See 
"Accessing MACLIBR" 

How Specified 
for MACLIBR 

EDT>BATCH 

EDT> BATCH jobfile 
or 

??BA TCH J D,devmnc ~ 
---I F ,jobfiJe ' J 

Same route shown 
for cards. 

Page 1 of 2 

Comment 

By default, MACLIBR 
equates the source code 
and directives files so 
that all come from SYC. 
Note: if you use a 
separate file for the SI 
assignment, specify 
UNBLOCKED ("U). 

For further description 
see "Accessing MACLIBR." 

t~i 



-.0 
I 
Vt 

~ 

Input/Output 
Description 

Macro Library 

Listed Output 

Logical 
File Code 

MAC 

LO 

~ 

Table 9 - 1 
MACLIBR Files and File Assignments 

Assignments 
for MACLlBR 

Default: 
ASSIGN! 
MAC = M.MPXMAC"U 

Options: 
ASSIGNI 

MAC = IM.MACLIBI "U 
/userlib \ 

Default: 
ASSIGN2 
LO = SLO,2000 
Options: 
ASSIGNn 

LO = lfilenamel 
",devmnc ," 

Previous 
Processor 
Assignment 

If an existing library 
file is not being used, 
the file for the library 
must be pre-established 
via the FILMGR utility. 

How Specified 
for MACLlBR 

~ 

Page 2 of 2 

Comment 

The macro library file 
must be unblocked. 
M.MPXMAC is used for MPX-32 
compatible macros (SVC 
service calls) and MACLIB 
provides R TM-compatible 
CALM service calls. 



9.3 Options 

Applicable MACLlBR options are specified through the Job Control or TSM OPTION 
command as follows: 

$OPTION 7The file assigned to lfc DIR is unblocked. 

$OPTION 8The input file assigned to lfc SI is unblocked. 

If either option is specified, it must also be specified in the ASSIGN statement. 

9.4 Using the Macro Library Editor 

MACLlBR processes files sequentially, i.e., the macro specified with any directive must 
be located further 'down' on the library file than the macro specified with the previous 
directive. For example, you cannot add a macro in the middle of a library then replace a 
macro at the beginning. Care is required in preparing the directives file and the file 
assigned to SI so that both follow the sequence of the library being updated. 

The user is cautioned against allowing duplicate names for macros. If two macros have 
the same name and you want, for example, to delete one of them, there is no guarantee 
that the right one will be deleted. MACLlBR makes no checks for duplicate names. 
Listed output from the previous edit can be used to make a name check. 

9-6 



9.5 Accessing the Macro Library Editor 

To access MACLIBR as part of a batch job, create a job file using the EDITOR, punch 
cards, or other media as described in Table 9-1. The job file can be read to SYC and the 
job activated in several ways: 

from the OPCOM console: 

" <Attention> " 

??BATCH ~ F, jobfile t 
I D, devmnc \ 

from the OPCOM program: 

TSM>OPCOM 

??BATCH 

from the EDITOR: 

TSM > EDIT 

\ F, jobfile t 
) D, devmnc\ 

EDT> BA TCH(jobfil~l 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate the Cataloger and run online, use the TSM ASSIGN commands to make 
Cataloger assignments equivalent to those preceding the EXECUTE MACLIBR command 
on a jobfile, then proceed to issue Cataloger directives. (SELECT and OBJECT 
statements are not available when running MACLIBR online.) 

TSM> MACLIBR 
MAC> MACLIBR 
MAC> 

9-7 



9.6 Macro Library Editor Directives 

Macro Library Editor directives are described in detail on subsequent pages. 

Most Macro Library Editor directives can either be abbreviated to the first four 
characters or completely spelled out. If a directive or parameter can be abbreviated, the 
acceptable abbreviation is indicated in syntax statements by underlining. 

Both a comma and blanks between parameters are legal delimiters. Comrrias need be 
used only where shown. 

Directives are processed serially until an IEXIT directive or an end-of-file is 
encountered. At least one blank column or space must separate the end of the directive 
verb and required parameter. A required parameter must not be placed beyond column 
20 nor exceed 8 characters. Directives which reference a macro by name must be in the 
same order as they appear on the macro library file. The only exception is in the case of 
the IDISPlAY and IlOG directives, which may occur anywhere. 

MACLlBR writes the updated macro library to a dynamically allocated scratch file. 
When the updating sequence is complete, the IEXIT directive will cause the scratch file 
to be copied to the file assigned to MAC. For I APPEND and ICREATE directives, an 
lEND directive or an end-of-file will serve as an IEXIT directive and cause the scratch 
file to be copied to the file assigned to MAC. The /INSERT, IDElETE, and /REPlACE 
directives will cause the remainder of the macro library to be retained if the name 
specified cannot be found. All modifications to that point will be placed on the macro 
library file. ;<. , 

9.6.1 / APPEND Directive 

The I APPEND directive is used to add macros to the end of the macro library. All 
macros from the current file position to the end of the macro library will remain the 
same. Macros are read from the SI file until an lEND directive or an end-of-file is 
encountered. Because no further updating is possible, this will act as an EXIT directive 
to terminate MACLIBR. 

Syntax: 

IAPPEND 

9.6.2 /CREA TE Directive 

The ICREATE directive is used to generate a macro library. Macros are read from the 
file assigned to SI until an lEND directive or an end-of-file is encountered. MACLlBR 
then terminates. 

Syntax: 

ICREATE 

9-8 

C·) 
. )I 



9.6.3 IDELETE Directive 

The /DELETE directive is used to delete the named macro from the macro library. All 
macros from the current file position to the name macro remain the same. The next 
directive is processed after the macro has been found and deleted. 

Syntax: 

/DELETE macro 

where: 

macro is the 1- to 8-character ASCII name of the macro to be deleted. 

9.6.4 IDISPLAY Directive 

The /DISPLAY directive is used to list the statements of the named macro or of all 
macros if a name is not specified. This directive may be placed anywhere. After the 
macro has been displayed or found to be nonexistent, the macro library is repositioned to 
where it was before the display. The next directive is then processed. 

Syntax: 

/DISPLAY [macro] 

where: 

macro is the 1- to 8-character (ASCII) name of the macro to be displayed. 

9.6.5 lEND Directive 

The /END directive is used to define the end of an /INSERT, /REPLACE, / APPEND, or 
/CREATE sequence. After an /INSERT or /REPLACE sequence, the next directive is 
processed. For / APPEND or /CREATE, processing is the same as for an /EXIT directive. 

Syntax: 

/END 

9.6.6 IEXIT Directive 

The /EXIT directive defines the last directive. If any updates have been performed, the 
scratch file is copied to the file assigned to MAC. If no updates have been performed, 
MACLIBR terminates. If a /LOG END directive has been included, the updated library is 
logged. 

Syntax: 

9-9 



9.6.7 /INSERT Directive 

The IINSERT directive is used to insert macro(s) ahead of the macro specified by the 
directive. All macros from the current file position to the specified macro remain the 
same. Macros are read from the file assigned to 51 until the lEND directive or an end
of-file is encountered. The next directive is then processed. 

Syntax: 

where: 

macro 

9.6.8 

IINSERT macro 

is the 1- to 8-character (ASCII) name of the macro before which the new 
macro will be inserted. 

/LOG Directive 

The fLOG directive is used to output the name and number of all macros to the file or 
device assigned to LO. This directive may be placed anywhere in a Macro Library Editor 
directive stream. If the END option is specified, the logging operation is performed 
after all updates are complete. If the END option is not specified, the macro library is 
logged exclusive of any updates. When the logging operation is complete the macro 
library is repositioned to the point prior to logging. The next directive is then processed. 

Syntax: 

fLOG [END] 

where: 

END The log is output after all updates are complete. If not used, the log does not 
reflect updates. 

9.6.9 /MACLIST Directive 

The fMACLI5T directive is used to entirely or partially suppress the listing of each 
source macro. This directive does not affect listed output of macros that have already 
been formatted via fDISPLAY or fLOG. When dummy symbols are output, their 
corresponding hexadecimal assignments are included. 

Syntax: 

fMACLIST [option] 

where: 

9-10 

;,("; 
, ,,"/ 



( 

( 

( 

option is one of the following parameters: 

ON 
OFF 
ID 
BODY 

SYMS 

= 
= 
= 
= 

= 

Complete listing 
Suppress listing 
List each macro DEFM statement 
List each macro and exclude output of 
dummy symbols 
List each macro DEFM statement and include output 
of dummy symbols 

If no option is specified, MACLlBR defaults to ON and provides a complete listing. 

9.6.10 /REPLACE Directive 

The /REPLACE directive is used to replace the named macro with a new macro from the 
file assigned to SI. All macros from the current file position to that of the specified 
macro remain the same. Macros are read from the file assigned to SI until an END 
directive or and end-of-file is encountered. The next directive is then processed. 

Syntax: 

/REPLACE macro 

where: 

macro is the 1- to 8-character (ASCII) name of the macro to be replaced. 

9.7 Listings 

The Macro Library Editor outputs an audit trail that includes directives, a list of all 
macros, each macro, and a series of MACLlBR operation counters as follows: 

CODE 

BR 

BW 

MD 

MR 

MI 

BU 

NM 

DESCRIPTION 

Number of I92-word blocks read from the file assigned to MAC 

Number of I92-word blocks written to the scratch file 

Number of macros deleted 

Number of macros replaced 

Number of macros inserted and appended 

Number of 192-word blocks used on file assigned to MAC, after 
updating 

Macro number of next macro 

The MACLlBR counter values appear at the end of the audit trail. 

9-11 



9.8 Errors 

Unless the message, MAC UPDATE COMPLETE, has been printed, the following error 
diagnostic messages will cause any editing operation to be inhibited. 

ARGUMENT 'NI' MATCHES ARGUMENT 'N2': 

This is a warning that macro parameters in the N 1 and N2 positions of the parameter lisf 
are equal. 

CURRENT MAC POSITION: 

This message is issued, followed by the current position of the Macro Library file, when a 
/LOG directive is encountered. 

DIRECTIVE FILE READ ERROR: 

Error condition detected while reading the directive file. 

DUMMY PARAMETERS OVERFLOW: 

A macro has exceeded the maximum of 256 parameters. 

DYNAMIC ALLOCATION OF UTI SCRATCH FILE FAILED: 

A scratch file the same size as the MAC file could not be allocated. This error is most 
likely the result of insufficient disc space. 

EOF /EOM ON DIRECTIVE FILE: 

An end-of-file on the directive file was encountered before normal termination by an 
/EXIT or /END directive. 

ILLEGAL DIRECTIVE: 

The directive is not a legal directive. 

MAC FILE SIZE INCREASE REQUIRED: 

The updated macro library is larger than the Macro Library file. 

NAME NOT FOUND: 

A macro specified on a/REPLACE, /INSERT, /DELETE, or /DISPLAY directive was not 
found on the library file assigned to MAC. The macro may not exist or the file may be 
already positioned beyond that macro. /INSERT, /REPLACE, and /DELETE directives 
must occur in the sequence in which the named macros are found on the macro library 
file. 

REPOSITIONED TO: 

On the completion of a /DISPLAY or /LOG directive, this message is printed preceding (" 
the present position on the Macro Library file. . .. ; 

9-12 



( 9.9 Examples 

Example 1- This sequence generates a new macro library with directive and source input 
from the card reader. 

$JOB CREATE MEYERS 
$ASSIGN3 SI=CR Assign Source File to Card Reader 
$ASSIGN4DIR=SI Assign Directive File to Card Reader 
$EXECUTE MACLIBR 
$EOJ 
$$ 

Cards 

ICREATE 
(Macro Source) 
lEND 

Example 2- This sequence logs all macros by number and name. 

$JOB LOG OWNER 
$EXECUTE MACLIBR 
ILOG 
IEXIT 
$EOJ 

(' Example 3- This sequence displays the macro named M.EQUS. 

$JOB DISPLAY OWNER 

(' 

$EXECUTE MACLIBR 
lOIS M.EQUS 
IEXIT 
$EOJ 

Example 4-This sequence appends the macro named M.TEST. 

$JOB APPEND OWNER 
$EXECUTE MACLIBR 
IMAC BODY List with No Dummy Symbol Output 
IAPPEND 
(M.TEST Source) 
lEND 
$EOJ 

9-13 



Example 5- This sequence updates the macro library using fREPlACE, fDElETE and l' 
fINSERT directories. ;1",_/ 

$JOB UPDATE OWNER 
$EXECUTE MACLIBR 
flOG List Current Macros 
flOG END List Updated Macro Library 
fREP M.EQUS Replace M.EQUS 
(Replacement Macro Source) 
fEND 
fDElETE M.EXIT Delete M.EXIT 
fINS M.F ADD Insert macro before M.F ADD 
(Macro Source to be Inserted) 
fEND 
fEXIT 
$EOJ Copy from Scratch to MAC 

9-14 



( 

( 

10. MEDIA CONVERSION UTILITY (MEDIA) 

The Media Conversion Utility (MEDIA) enables a user to manipulate data and/or files. 
With MEDIA, the user can copy one file to another file, copy a file from one type of 
medium to another (e.g., copy a magnetic tape file· to a disc file), or dump (really a 
special type of copy) a file from one type of medium to another (e.g., from magnetic 
tape to a line printer). 

MEDIA can also be used to manipulate data. For example, the user can rearrange data 
from one group of columns on an input deck to another group of columns on an output 
deck. Another feature allows the user to convert data from one type of code to another, 
e.g., from EBCDIC to ASCII. 

10.1 MEDIA Directives Summary 

A summary of MEDIA directives follows. For further details, see Section 10.6. 

Directive 

BACKFILE 

BACKREC 

BUFFER 

CONVERT 

COpy 

DUMP 

END 

EXIT 

GOTO 

INCR 

MESSAGE 

MOVE 

/0 -~ 
/0 ... tp 
lo-7 

10-7 

IO-~ 

\O-~ 

to -~ 

\ 0 -\ \ 

10- 1\ 

10-\<-

Function 

Positions file backward n files. 

Positions file back n records. 

Names buffer (B03-B09) and specifies size or 
resets buffer's current read address to start 
address. 

Converts contents of buffer from ASCII to BCD, 
BCD to ASCII, ASCII to EBCDIC, EBCDIC to 
ASCII, or 026 to 029. 

Copies input records from file or device to 
output file or device. 

Copies a file by converting to ASCII coded hex 
and outputting to the line printer or SLOe 

At end of statements, transfers control to 
specified previous statement. 

Leaves MEDIA. 

Conditional transfer to another directive based 
on counter value, error, or EOF. Or, transfer can 
be unconditional. 

Adds specified value to counter (K l-K20t 

Sends message to OPCOM console. 

Moves bytes in one buffer to another buffer. 

10-1 



OPTION 

READ 

REWIND 

SETC 

SKIPFILE 

SKIPREC 

VERIFY 

WEOF 

WRITE 

10 -t3 

10-15 

JD-\(p 

IO-llp 

I e-I~ 

10.2 Files and File Assignments 

Modifies default output characteristics for 
devices. 

Copies to buffer. Provides count by bytes, 
half words, or words. 

Rewinds a device or file (returns MEOlA to first 
record following last EOF or file pointer to first 
record in file). 

Sets counter (K l-K20) to specified value. 

Positions file forward n files. 

Positions a file n records forward. 

Compares records on one file or device to 
records on another file or device. 

Writes an EOF on the file. 

Copies from buffer. Provides count by bytes, 
half words, or words. 

All device and file assignments are made to logical file codes via job control $ASSIGNn " 
statement(s) which precede the $EXECUTE MEDIA statement or by equivalent TSM 
ASSIGN statements. Table 10-1 describes MEDIA file assignments. Up to 64 static 
assignments may be specified for MEDIA. 

10-2 



~ ~c: ~ 

Table 10-1. 
MEOlA Flie Asslgnment!l 

Prevlou!l 
Input/Output logical A!I!llgnments Processor How lipeclfled 
Description File Code for MEOlA Assignment for MEOlA Comment 

Directive File ·IN Default: Work file built EOT>8ATCH r-or further de!lcrlptlon . 
~SSIGN2 u!llng EOIT. !lee "Acce!l!llng MEOlA". 
IN" SYC Permanent file bollt EDT> 8A TCH Jobflle 

using EOIT or MEOlA. or 
??8ATCH {D,devmnc} 

Card!l. F,Jobflle 

Other device medium Same route shown 
e.g., magnetic tape, for cards. 
where Jobflle was 
copied from card!! or 
a file via MEOlA. 

Interactively. See 
"Accessing MEOlA". 

Input Flle(s) User-defined No default. User Input flies can be Input flies are 
ASSIGN's flIets) cards, permanent manipulated by referring 
or devlce(s) to flies, built via • to the 10flcal file 
user-specified EDIT or MEDIA, or code Ufc specified 
lids), e.g., other device media In an AS<iIGN statement. 
ASSIGN) such as magnetic MEOlA recognizes a 
INP" CROOOI. tape. hexadecimal 'OF' record 

on card reader or card 
reader/punch devices 
only. Whether a file or 
tape I!I blocked or 
unblocked should be 
specified with ASSIGN. 

listed Output ·OT Default: N/A 
File ~SSIGN2 

OT" SlO,SOO 

Output Flle(s) User-defined. No default. Disc flies must be Output file!! are 
User ASSIGN's created (via the manipulated by referring 
filets) or FllEMGR or equivalent to the logical file code 
devlce(s) to utility) before they (Ife) specified In an 
user-specified can be assigned for A<iSIGN statement. <iee 
lid's), e.g., MEOlA. note!! on 'OF' and 

- ASSIGN I blocking for Inpllt flies. 
0 OUT" MYFllE. 
I 

\,0) 



10.3 Options 

The $OPTION statement is not applicable to MEDIA. 

10.4 Using MEDIA 

Directive and processing errors result in diagnostic messages, but an abort (MOO l/MD02) 
is generated at the end of the run instead of a normal termination so that conditional 
batch processing directives may be used. 

If an I/O error occurs, the status for the device is printed. 

If a loop was being executed where record/file information is accumulated, this 
information will be printed even if an error (and now an abort) occurs. 

10.4.1 Labels 

Any MEDIA directive can be preceded by a label (up to 8 digits long) that will allow the 
user to branch to it via a GOTO directive. If used, the label must be numeric and it must 
start in column 1. If a label is not used, the directive can start in column 1. The label 
number need have no relationship to the physical sequence of directives on the control 
file, i.e., it is a label and not an absolute sequence number. If a label is used, it must be 
terminated with a comma. 

10.5 Accessing MEDIA 

To access MEDIA as part of a batch job, create a job file using the EDITOR, punch cards, 
or other media as described in Table 10-1. The job file can be read to SYC and the job 
activated in several ways: 

from the OPCOM console: 

" < Attention> " 

??BATCH ~ F,jobfile ( 
( D,devmnc \ 

from the OPCOM program: 

TSM>OPCOM 

??BATCH 

10-4 

IF,jobfHe ( 
D,devmnc\ 

( 

....... )1,. 

/.' I 

I, .y 



from the EDITOR: 

TSM>EDIT 

EDT>BA TCH [jobfile] 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate MEDIA and run online, use the TSM ASSIGN commands to make MEDIA 
assignments equivalent to those preceding the EXECUTE MEDIA command on a jobfile, 
then proceed to access MEDIA and enter MEDIA directives. (SELECT and OBJECT 
statements are not available when running MEDIA online.) The logical file *OT (MEDIA 
diagnostic output) can be redirected to the terminal for online use. 

TSM>MEDIA 
MED> 

10.6 MEDIA Directives 

10.6.1 General 

MEDIA directives establish the logical flow of the MEDIA utility. Each directive has a 
label field, a directive field, and a parameter field. If used the label field must start in 
column one and be terminated with a comma. The directive field may start in any 
column, including column one. Fields and parameters within a field are separated by 
commas. Blank columns are ignored. All numeric parameters are specified in decimal 
and are limited to seven digits. 

MEDIA contains two types of predefined areas which the user may reference within the 
MEDIA directives. They are predefined buffer areas and counters. 

Two predefined buffers exist within MEOlA. These buffers are referenced by the names 
BOI and B02, and each buffer is defined as 2048 words in length. The user also has the 
option of defining additional buffer areas (B03-B09) by using the 'BUFFER statement (up 
to 3K bytes total for B03-B09). Buffer names other than BOI-B09 are illegal. 

Twenty predefined counter cells exist within MEDIA. These counters are referenced by 
the names K 1 through K20. Counters may be used as program flags, record counters, file 
counters, etc., and may contain any positive decimal value within the range of 0 to 
99,999,999. 

A maximum of 256 directives may be specified by the user for MEOlA. 

10-5 



10.6.2 BACKFILE Directive 

The BACKFILE directive causes the specified file to be positioned backwards by the 
number of files specified in the count field. 

Syntax: 

where: 

10.6.3 

BACK FILE, lfc, count 

lfc 

count 

BACKREC Directive 

is the 1- to 3-character logical file code. 

is the 1- to 8-digit field specifying the number of files 
to be skipped over. 

The BACKREC directive causes the specified file to be positioned backwards by the 
number of records specified in the count field. 

Syntax: 

where: 

10-6 

BACKREC, lfc, count 

lfc 

count 

is the 1- to 3-character logical file code. 

is the 1- to 8-digit field specifying the number of 
records to be skipped over. 



( 

10.6.4 BUFFER Directive 

The BUFFER directive defines the specified buffer according to the specified size or 
resets the current buffer read address to the buffer starting address. The space 
allocated to the specified buffer is allocated from a 3000-byte buffer pool, which is the 
maximum allowable additional buffer. 

Syntax: 

where: 

10.6.5 

BUFFER buffer ~ nbytes ~ , , I R ~ 

buffer 

R 

nbytes 

CONVERT Directive 

is the 3-character name of the buffer, B03-B09. Buffer 
names must be defined via the BUFFER directive 
before being used. 

specifies reset buffer pointer. 

is the size of the buffer, in decimal bytes. 

The CONVERT directive results in the conversion of the specified buffer to the specified 
code. 

Syntax: 

where: 

CONVERT, buffer, code [,nbytes] 

buffer 

code 

nbytes 

is the 3-character name of the buffer, B01-B09. Buffer 
names must be defined via the BUFFER directive before 
being used. 

is the 4-character code specifying the type of 
conversion: 

2629 
ASBC 
BCAS 
ASEB 
EBAS 

026 to 029 
ASCII to BCD 
BCD to ASCII 
ASCII to EBCDIC 
EBCDIC to ASCII 

the number of bytes to be converted. If this parameter 
is absent, the count is obtained from the total number 
of bytes read and/or moved into the buffer. 

10-7 



10.6.6 COpy Directive 

The COpy directive causes the specified input file to be copied, record by record, to the 
specified output file until an EOF is encountered on either file. The end-of-file is not 
copied to the output file. 

Syntax: 

where: 

10.6.7 

COPY, lfc1, lfc2 

lfc1 

lfc2 

DUMP Directive 

is the 1- to 3-character lfc identifying the input file to 
be copied. 

is the 1- to 3-character lfc identifying the file to which 
the copy is made. 

The DUMP directive causes the file specified by file code 1 to be input record by record, 
converted to ASCII-coded hexdecimal with side-by-side ASCII translation, and output to 
the file specified by file code 2. The dump is terminated when an end-of-file is 
encountered on either file or when the optionally specified number of records have been 
dumped. 

Syntax: 

where: 

10-8 

DUMP, lfc1, lfc2 [,recordcount] 

lfc1 

lfc2 

recordcount 

is the 1- to 3-character identifier of the file to be 
dumped. 

is the 1- to 3-character identifier of either the line 
printer or SLOe Normally, *OT is the lfc assignment 
which is referenced. 

is the number of records in the file to be dumped. If not 
specified, the dump terminates at EOF on lfc 1. 

o 



( 

10.6.8 END Directive 

The END directive indicates the end of the MEDIA directives and control is transferred 
to the specified directive. If no directive number is specified, control will go to the first 
MEDIA directive. 

Syntax: 

where: 

10.6.9 

END [,label] 

label 

EXIT Directive 

is a numeric label associated with a directive. 
Transfers control to that directive. 

The EXIT directive indicates that a normal program exit is to be taken. 

Syntax: 

EXIT 

10-9 



10.6.10 GOTO Directive 

The GOTO directive transfers control to the specified directive unconditionally when no 
optional arguments are specified. Conditional control transfer occurs when the specified 
counter is equal to the specified value, whenever an input/ output error occurs on the 
specified file, or whenever an end-of-file is encountered on the specified file. If none of 
the conditional specifications are satisfied, control proceeds to the next MEDIA 
directive. When the ERR parameter is specified, the GO TO directive must directly 
follow an input/output directive such as READ or WRITE. 

Syntax: 

GOTO, label, 

where: 

label 

counter 

value 

EOF 

lfc 

ERR 

10-10 

[
counter, value]. 
EOF,lfc 
ERR,lfc 

is the numeric label, if any, associated with a 
directive. Transfers control to that directive. 

is a user-controlled indicator of the state of the 
program. Valid counter names are KOI-K20. (See the 
INCR and SETC directives.) 

is a countervalue that specifies when control is to be 
transferred. 

specifies that conditional transfer should occur at end 
of file. 

is the 1- to 3-character logical file code indicating 
which file to apply EOF or ERR conditions to. 

specifies that conditional transfer should occur upon an 
I/o error. 

t·
····~· 

:~, : ' : 

J 



10.6.11 INCR Directive 

The INCR directive causes the specified value to be added to the specified counter. 

Syntax: 

where: 

10.6.12 

INCR, counter, value 

counter 

value 

MESSAGE Directive 

is the 3-character name of the counter: KOI through 
K20. 

is the 1- to 8-digit decimal number to be used as an 
increment. 

The MESSAGE directive results in the output of the specified alphanumeric string to the 
OPCOM console. A maximum of 256 bytes of message information can be stored. 

Syntax: 

MESSAGE, 'message' 

( where: 

'message' is a 3- to 72-character alphanumeric message to be 
displayed on the OPCOM console; the single quotes are 
required. 

10-11 



10.6.13 MOVE Directive 

The MOVE directive causes the specified number of bytes to be written into the specified 
position of buffer 2 from the specified position of buffer 1 (zero origin). The starting 
byte position for buffer 1 and buffer 2 may be specified as an absolute byte number or as 
a counter. 

Syntax: 

where: 

10-12 

MOVE, nbytes, buffer 1, 1 counter t ,buffer2 
startbyte\ 

[ ,counter 1 
,startbyteJ 

nbytes 

buffer 1 

counter 

startbyte 

buffer2 

is the number of bytes to be moved. 

is the buffer 3-character name of the buffer containing 
the data to be moved, BOI-B09. Buffer names must be 
defined via the BUFFER directive before being used. 

is the name of a counter indicating the starting byte 
position. Valid counter names are K l-K20. If neither 
counter or byte number is specified, the current read 
address for buffer name 2 is used. 

is an absolute indicator of the starting byte position. 

is the 3-character name of the buffer to which data are 
to be moved, B03-B09. Buffer names must be defined 
via the BUFFER directive before being used. If neither 
counter nor starting byte number is specified, the 
current read address for buffername2 is used. 

c 



( 

10.6.14 OPTION Directive 

The OPTION directive allows the specification of nonstandard options for the specified 
file. Options which are assumed by default are defined according to Table 10-2. 

Syntax: 

where: 

OPTION, lfc [,BLOCKED] r,B20F] [,B80F]r,E] [,H] 
L,B20N ,B80N l,o ,L 

lfc 

BLOCKED 

B20F 
B20N 

B80F 
B80N 

E 
0 

H 
L 

is the 1- to 3-character logical file code specified by 
the user in a job control or TSM ASSIGN statement. 

is the blocked option. This option is permitted, but does 
not affect processing. The ASSIGNs are the only way to 
control blocked/unblocked. 

indicates the bit 2 option is either on or off (refer 
to Table 10-2). 

indicates the bit 8 option is either on or off (refer to 
Table 10-2). 

indicates the even/odd parity option (refer to Table 
10-2). 

indicates the density option (refer to Table 10-2). 

10-13 



T~ble lO-~. Media Option Definitions 

DEVICE BLOCKED OPTION BIT 2 OPTION BIT 8 OPTION PARITY DENSITY 

CARD READER *B20F-Automatic N/A 
READER/PUNCH N/A Mode Select 

BZON- Interpret B80F-Forced N/A N/A 
Bit 8 ASCII 

B80N-Forced 
Binary 

PAPER TAPE *B20F-Read N/A 
READER Fonnatted 

Skipping Leader 
N/A BZON-Read BI:lOF-Do Not N/A N/A 

Unformatted Skip Leader 
B80N-Skip 
Leader 

PAPER TAPE *BZOF-Punch in N/A 
PUNCH N/A Fonnatted Mode N/A N/A 

BZON-Punch N/A 
Unformatted 

LINE PRINTER, *B20F-First N/A 
TELETYPE N/A Character is N/A N/A 

Carriage Control 
B2CN-No Carriage 
Control 

9-TRACK Blocked I/O 
MAG TAPE N/A N/A N/A N/A 

7-TRACK BloCked I/O *BZOF-Read/Write N/A E H(SOO 
MAG TAPE Packed (Binary) (Even bpi 

Mode Parity) L(556 
BZON- Interpret BSOF-Inter- C(Odd bpi 
Bit S change (BCD Parity) 

aSON-Packed 
(Binary) 

MOVING-MEAD. Blocked I/O 
FIXED-HEAD N/A N/A N/A N/A 
DISC 

*Standard Options 
N/A - Not Applicable 

10-14 



( 

( 

c 

10.6.15 READ Directive 

The READ directive causes one record to be read from the specified file into buffer B01 
or into the optionally specified buffer, starting at the current buffer address. The current 
buffer address is advanced after read and is reset only by a write from the specified 
buffer or by a buffer reset via the BUFFER directive. 

Syntax: 

where: 

10.6.16 

READ, lfc , [buffer] [,count] 

lfc 

buffer 

count 

REWIND Directive 

is the 1- to 3-character logical file code. 

is the 3-character name of the buffer, BOI-B09. Buffer 
names must be defined via the BUFFER directive before 
being used. 

is the number of bytes (B), halfwords (H), or words (W) 
to be read (e.g., B22, HIO, H2048, WI92). 

The REWIND directive causes the specified file to be rewound. If the file is being sent 
to the line printer, a top-of-form is performed. 

Syntax: 

REWIND, lfc 

where: 

Ifc is the 1- to 3-character logical file code. 

10.6.17 SETC Directive 

The SETC directive sets the specified counter to the value specified in the value field. 

Syntax: 

SETC, counter, value 

where: 

counter 

value 

is the 3-character name of the counter: K 1 through 20. 

up to 8 decimal digits specifying the value to which 
counter is to be set. 

10-15 



10.6.18 SKIPFILE Directive 

The SKIPFILE directive causes the specified file to be positioned forward by the number 
of files specified in the count field. 

Syntax: 

SKIPFILE, lfc, count 

where: 

lfc is the 1- to 3-character logical file code. 

count is the decimal number of files to be skipped. 

10.6.19 SKIPREC Directive 

The SKIPREC directive causes the specified file to be positioned forward by the number 
of records specified in the count field. 

Syntax: 

SKIPREC, lfc, count 

where: 

lfc is the 1- to 3-character logical file code. 

count is the decimal number of records to be skipped. 

10.6.20 VERIFY Directive 

The VERIFY directive causes the file specified by lfc 1 to be compared, record by 
record, with the file specified by lfc 2. The verification is terminated when an end-of
file is encountered on either file. Records which do not compare result in output 
indicating the record numbers which do not compare. 

Syntax: 

where: 

10-16 

VERIFY, lfc1, lfc2 

lfc1 

lfc2 

is the 1- to 3-character logical file codes identifying the 
file to compare to lfc 2. 

If records of unequal length are to be verified, the file 
specified by lfc I must contain the shorter record size. 



( 

10.6.21 WEOF Directive 

The WEOF directive causes an end-of-file to be written on the specified file. 

Syntax: 

WEOF, lfc 

where: 

lfc is the 1- to 3-character logical file code. 

10.6.22 WRITE Directive 

The WRITE directive causes one record to be written from buffer B01 or from the 
optionally specified buffer to the specified file. The WRITE statement resets the current 
buffer address and byte count for the output buffer. 

Syntax: 

where: 

WRITE, lfc ,[buffer [,count]] 

lfc 

buffer 

count 

is the 1- to 3-character logical filecode. 

is the 3-character name of the buffer: B01 through 
B09. If buffer name is not supplied, BOI is used by 
default. Buffer names must be defined via the BUFFER 
directive before being used. 

is the number of bytes (B), half words (H), or words (W) 
to be written (e.g., B22, HI 0, H2048, W 192). If count is 
not specified, the total number of bytes, half words, or 
words read and! or moved into the buffer will be used as 
the output count. 

10-17 



10.7 Listings 

Not supplied; they are dependent on the assignments and processing that were requested. 

10-18 

(: . '\\ 
j 

c 



( 

( 

10.8 Errors 

During the compilation or execution of any MEDIA conversion program, all detected 
errors are flagged with two digit codes. A complete list of the diagnostic codes follows: 

Code 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

20 

21 

22 

23 

24 

Definition 

Control specification invalid 

File code unassigned 

Illegal conversion code specified 

Illegal count specification 

No available FCB, excessive file assignments 

No available blocking buffers, excessive system file 
assignments 

Illegal buffer name 

Buffer already defined 

Insufficient buffer space available 

Undefined buffer 

Illegal device assignment 

Illegal counter name specified 

Insufficient message storage space available 

Illegal byte number or number of bytes specifications 

Illegal optional parameter 

Missing parameter 

Incorrect message format 

Illegal decimal or hexadecimal character 

No end statement 

Excessive number of control statements specified 

Fatal control statement error(s) 

Undefined statement number encountered 

Execution of END statement attempted 

10-19 



10-20 

Code 

25 

26 

27 

28 

29 

30 

Definition 

Length of READ/MOVE exceeds buffer size 

WRITE statement which is not preceded by READ 
statement must specify count 

End-of-medium encountered in input file 

End-of-medium encountered on output file 

Convert statement specified zero byte count 

Duplicate statement number 

o 



(~ 
10.9 Examples 

Example 1 is used to copy tape "MAST" to the output tape "COPY", and write an end-of
file to "COPY"; both tapes are rewound and then verified. 

$JOB EXAMPLEI MEYERS 
$ASSIGN3IN=MT,MAST,I,U 
$ASSIGN30T=MT,COPY,I,U 
$EXECUTE MEDIA 
COPY,IN,OT 
WEOF,OT 
REWIND,IN 
REWIND,OT 
VERIFY,IN,OT 
EXIT 
END 
$EOJ 
$$ 

Example 2 is used to read a card deck punched in 026 code, convert the data to 029 code, 
and then punch the data in 029 code. 

$JOB EXAMPLE2 MEYERS 
$ASSIGN3 01=CR 
$ASSIGN302=CP 
$EXECUTE MEDIA 
MESSAGE,'PLACE 026 DECK IN CARD READER' 
5,READ,01 
GOTO,6,EOF,01 
CONVERT, BOl,2629 
WRITE,02 
GOTO,5 
6,EXIT 
END 
$EOJ 
$$ 

026 Card Deck 

EOF (Card with holes 2,3,iI-, and 5 punched in Column 1.) 

10-21 



Example 3 is used to dump the first 50 records of the second file on tape "T132" to an 
SLO file. A maximum of 5000 lines will be output. 

$JOB EXAMPLE3 MEYERS 
$ASSIGN3 AB=MT, TI32 
$ASSIGN2DP=SLO,5000 
$EXECUTE MEDIA 
REWIND, AB 
SKIP FILE, AB, 1 
DUMP, AB, DP, 50 
EXIT 
END 
$EOJ 
$$ 

Example 4 is used to directly output the first 40 columns of a maximum of 100 cards in 
the batchstream to the line printer. 

10-22 

$JOB EXAMPLE4 MEYERS 
$ASSIGN2IN=SYC 
$ASSIGN3 OT =LP 
$EXECUTE MEDIA 
OPTION,OT"B20N 
SETC, KI, 0 
3,READ, IN"B40 
GOTO,5,EOF,IN 
WRITE,OT 
INCR,KI,l 
GOTO,5,K 1,100 
GOTO,3 
5,EXIT 
END 
CARD DECK 
$EOJ 
$$ 



( 

( 

( 

Example 5 is used to read two source program card decks, one through the card reader 
and one through the card reader/punch. Columns 20-40 of Deck 1 will be moved to 
columns 10-30 of the output image. Columns 65-80 of Deck 2 will be moved to columns 
31-46 of the output image. The output image will be written to a tape in 120-byte 
records. 

$JOB EXAMPLE5 MEYERS 
$ASSIGN3 IN l=CR 
$ASSIGN3 IN2=CD 
$ASSIGN30T=MT,SAVE 
$EXECUTE MEDIA 
BUFFER,B04,120 
4,READ,IN I,BOl,B40 
GOTO,5,EOF ,IN 1 
READ, IN2, B02,B80 
MOVE, 21,BOl, 19, B04, 9 
MOVE, 16, B02, 64, B04 
WRITE, OT, B04, B120 
BUFFER, BOl, R 
BUFFER, B02, R 
GOTO,4 
5, WEOF, OT 
REWIND,OT 
EXIT 
END 
$EOJ 
$$ 

Deck 1 in Card Reader with EOF Card 

Deck 2 in Card Reader/Punch 

10-23 



Example 6 shows online usage (underlined text is input). 

10-24 

TSM > Al IN=FILEI OUT=FILE2 
TSM > A4 *OT=UT 
TSM> MEDIA 
MED > COPY, IN ,CUT 
COPY,IN,OUT 
MED> EXIT 
EXIT 
MED > END 0 r <CTRLC> 
END 

MEDIA CO'APILATION CO'APLETE: EXEOJTION STARTED EXEOJTION 
c:DAPLETE 000 1 FILE COP I ED 
TSM> 



( 

( 

11. SOURCE UPDATE UTILITY (UPDATE) 

The UPD ATE utility is used to add, replace, or delete lines of source code within a 
particular file. It can also be used to maintain sets of source files by adding or deleting 
complete files. 

UPDATE was designed to use in building and editing tapes containing mUltiple source 
files for software libraries. It can be used to edit or build any set of source files onto a 
single tape or disc file. Files can be positioned to end of file marks (EOF) by UPl1ATE 
directives such as IBKSP or they can be positioned symbolically by referring to a header 
record that identifies a particular file Oibrary format). Library format is a simple 
structure where source code is preceded by a header record and terminated with a single 
EOF record. Any group of source files that has been built in 'library' format can be 
positioned symbolically. 

No matter how a file is built (e.g., via MEnIA) if it is structured in library format, it can 
be positioned symbolically with UPDATE. (UPDATE also provides the ability to insert 
header records during processing.) 

11.1 General Description 

Updating is a two-pass process. In the first pass, UPDATE reads control directives and 
dating statements that may be interspersed from the SYC file. All of the directives 
detected within this control stream are scanned for errors. The control stream (with 
error diagnostics, if any) is copied to a work file (normally an SLO file) for the actual 
update processing. 

If directive errors have occurred, UPDATE exits after it encounters an IEXIT directive 
in the first pass. The user receives a listing of the control stream plus error 
diagnostics. When an IEXIT directive is encountered and directive errors have not been 
detected, the updating sequence is entered. Updating continues until all of the stored 
directives have been sequentially processed. At this point, UPDATE exits. 

11.1.1 UPDATE Directives 

A summary of UPDATE directives follows. For further details, see Section 11.6. 

Directive 

IADD I' -l,-

I AS 1 \ \ - \ -:!> 

I AS3 \\- \ ~ 

IBKSP (1-/4 

IBLK 

Function 

Adds source lines which follow (up to next directive) after the 
specified line of source. 

Reassigns input or output file codes to another permanent disc file. 

Reassigns input or output files to another configured peripheral 
device. 

Backspaces n files on current input medium. 

Causes sequence field (bytes 73 through 80) of each record to be 
filled with blanks. 

11-1 



Copies all files up to specified header record. If header is a numeric 
string, copies number of files in string. Files in library format can 
be copied in their entirety to end of source by specifying /COPY 
END. 

/DELETE II -I '5 Omits the specified input source lines from the output file. 

/END l \ -I 5' 

/EXIT 11-/ ~ 

/INSERT f f-I~ 

Indicates end of additions, deletions, and replacements. Remaining 
source lines from input media file are copied as is through EOF. 

Signals end of UPDATE process. If no errors, UPDATE processes 
directives sequentially. For library formatting operations, UPDATE 
puts a unique mark on output file and rewinds it. If errors are 
detected, UPDATE exit without processing the directives. 

Copies one file (56 bytes maximum) from current input medium. 

/LIST \ 1- \ 7 Provides an audit trail of UPDATE operations. 

/MOUNT l/-l e Allows operator to mount a new magnetic tape. UPDATE goes into 
hold (indefinite suspension) until the OPCOM CONTINUE command 
is issued. 

/NBL I I ... \ t> Terminates a /BLK directive. 

/NOLIST I \ - \ 'f Resets /LIST options or terminates the complete /LIST audit trail. 

/NOSEQN 11~19 

/REPLACE 1i .... 1~ 

Stops sequencing source statements numerically. 

Replaces source lines on output file with source lines which follow 
(up to next directive). 

/REWIND \ \ -2 0 Rewinds specified input or output file. If creating a library file 
(specified by using $OPTION2 batch statement), do not rewind the 
output file (lfc SO). 

/SCAN I { ... 2 0 Sets the number of characters to scan on the remaining directives. 

/SELECT 1\-20 The lfc for primary source input is SIl. This statement selects the 
media assigned to lfc SI2 or SI3 for input. 

/SEQUENCE 11 .. 21 Numbers source statements of current file or all files in sequential 
order. 

/USR 

I 1'2. \ 

II ~'2 2. 
/WEOF \ ,Q$ 

11-2 

Skips files up to specified header record. If header is a numeric 
string, skips number of files in string. 

Permits the username to be changed. 

Writes an EOF on output media. Not allowed when formatting a 
library file. 

~'"," 

.l\~",.,F; 



( 

11.2 Files and File Assignments 

All files that do not have cataloged assignments can be assigned via the job control 
$ASSIGNn statement. Cataloged file assignments may be overridden by the $ASSIGNn 
statement. Table 11-1 provides details of UPDATE file usage. 

Note that upon entry, UPDATE marks all unassigned file codes as unavailable to the user. 

Input files can be presented in either a compressed or standard source format. The 
output file can be produced in either format at the user's option. Also, an optional listing 
can be printed as the output file is generated. 

The output file (SO) and primary input file (SIl) are assumed blocked unless otherwise 
specified via the $OPTION job control statement. 

11-3 



...--I 
-t::" 

Input!Output 
Description 

Directiyes 
and Corrections 

Prim_, Input 
File 

Second and 
Third Input 
Fil~s 

t": 
',"", ;/ 

Lollc" 
FiI~ Code 

SYC 

511 

512 and 
sn 

Assilnments 
for Update 

Default: 

5YC = 5YC 

No default. 

$ASSIGNn 

SII = ,filenamet 
devmnc 

No defaults. 
ASSIGNn 

512 = 

SIJ = 

, filenamel 
devmnc J 
ffilenam~ I 
devmnc 

Tabl~ 11-1 
IJPOA TE FiI~ Asslgnm~nts 

previous 
Processor 
Assignment 

Work file built 
using EDITOR. 

Permanent file 
built using EDIT 
or MEDIA 

Cards. 

Other device medium 
e.g., magnetic tape, 
wh~re jobfile was 
copied f rom cards or 
a file via MEDIA. 

Interactively. See 
"Accessing Update" 

N/A 

N/A 

'<., 

How Specified 
for Update 

EDT BATCH --

EDT BATCH jobfile 

or 

?? BATCH tD,devrnnc, 
F,jobfile 

Same route shown for 
cards. 

With /SELECT 

/SELECT 15121 SIJ 

Comment 

Fot .wther description 
see "Accessing Update" 

A hexadecimal UP record 
is taken as an EOF on any 
input source. 
Source can be compressed 
or noncom pressed. (See 
Section 11 .... 1 and 
Option I.) Input is assumed 
blocked 
(MPX-12 and UPDATE 
default) unless 
UNBLOCKED is 
specified on assignment. 
If unblocked, $OPTION. 
must also be set. 

See comment on blockinl 
directives, as in:above. 

Note that additional 
input files can be 
assigned dynamically 
via /A'JJi and IAS1 
UPDA TE directives. 

~ 
\: cI 



..-I 
VI 

~ 
" .1 

Input/Output 
Description 

Output File 
for Updated 
Source 

Work File for 
Int«mediate 
Storage, and 
Directive and 
Error Listings. 

History, History 
Summary, and 
Output Image 
Listing for 
Update Proce. 

Logical 
Fill' Code 

SO 

UTY 

LO 

~ 

Table 11-1 
IJPDA TE Fill' Assignments (Continued) 

Previous 
Assignments Proct'ssor 
for Update Assignmt'nt 

No default N/A· 
ASSIGNn 

SO : {filename} 
devmnc 

Default: NIA 
ASSIGN2 
UTY = SLO,IOOO 

Default: 8y UPDATE. 
ASSIGN2 Image outlines 
LO= SLO,2000 structure of 

updated output 
Options: file. 
ASSIGNn 

LO: {1iI_e} 
devmnc 

~ 

How Specified 
for Update Comment 

Via an ASSIGN If a disc '\Ie, must be 
statement creatett via the FILEMGR 

or other means before 
running UPDATE. UPDATI 
cah generate compressed 
output. (See OPTION I). 
Other options can be 
used if merging files. 
An output file can be 
produced in library format 
(see Section 11.".2.) 
See comment on blocking 
for SII. Option CJ is 
not recommended. Note: 
additional output files 
can be assigned 
dynamically .via IASI and 
/AS3 UPDATE directives. 

Default output 
is to 1000 record 
SLO file. 

Default output is When LO Is _ilned to 
to 2000 record SLO SLO and UPDATE reaches 
file, which is output EOM, it attempts to 
to the first device allocate 2000 additional 
available for auto lines. If unsuccessful 
selection. Output or if an SLO file is 
can be redirected to not assilned. listed 
a file or device via output terminates. 
ASSIGNI or ASSIGN) 
LO : statement • 



11.3 Options 

The set or reset state of an option is declared by the following methods: 

o Job control $OPTION statement 
o UPDATE directives such as ILiST and INOLIST 
o UPDATE utility defaults 

Once declared, the state of an option remains in effect until it is changed by a directive. 

Job control options are controlled via the $OPTION statement (batch) or by a TSM 
OPTION command. The $OPTION statement is specified in the following general format, 
where n represents the numeric value of the option to be set: 

$OPTION n n n 

The user is allowed to specify multiple options for each UPDATE execution, as follows: 

$OPTION I - Creates the output file (SO) in compressed source format. 

$OPTION 2 - Creates the output file (SO) in library format. 

11-6 

$OPTION 3 - Prints the control stream (i.e., statements input from the SYC 
file). The control stream will always be printed when directive errors have been 
detected. 

$OPTION 4 - Inhibits writing end-of-file marks detected on the input file to the 
output file. The option could be used to strip off multiple files that are to be 
assembled or compiled. This option cannot be used in conjunction with 
$OPTION 2. 

$OPTION 8 - Indicates that the primary input file (511) is not blocked. If 511 file 
is unblocked, the user must specify $OPTION 8 and U (unblocked) on the 
Assignment statement for SIl. -

$OPTION 9 - Indicates that the output file (SO) is not blocked. If SO file is 
unblocked, the user must specify $OPTION 9 and U (unblocked) on the 
Assignment statement for SO. If this option is not present, the file is assumed 
blocked. 

c 

c: 



( 

(-

11.4 Using UPDATE 

UPDATE processes files sequentially, i.e., the line number specified with any directive 
must be equal to or greater than the line specified with the previous directive. For 
example, you cannot add lines after line 100 then go back and delete line 52. (The equal 
to specification applies only in the case where you delete a line; delete can be followed 
by an ADD specifying the same line.) 

Care is required in preparing a directives file so that it follows the sequence of the file 
being updated. 

11.4.1 Compressed Source Formatting 

UPDATE is capable of accepting compressed source input. The output file can be 
produced in compressed or standard source format. 

The source compression ratio will vary depending on the amount of comments contained 
in the source program. The user should expect a compression of between 4: 1 and 12: 1 for 
the average range of source decks. All compressed records output by UPDATE will be 
120 bytes long. The maximum input record size is 192 bytes. Compressed source can be 
output to or processed from disc, magnetic tape, paper tape, or cards (see Section 11.2). 

11.4.2 Library Mode of Operation 

The purpose of the library mode of operation is to create a standard format to be used 
for building library files. This mode is specified by a job control $OPTION 2 statement. 

The library mode of operation allows input files to be presented in any format, but 
ensures that the output file is created in library format (see Figures 11-2, 11-3, and 11-
4). Incorrectly formatted header records will cause the job to be aborted. If continuous 
end-of-file marks are encountered on the input file, one end-of-file mark will be written 
on the output file. Upon completion of the library update, a unique end-of-library file 
record will be written on the output file, and UPDATE will exit. 

11-7 



2 

1 3 
3 4 5 

2 4 

(1) 8-bit type code 

X'BF' and X'9F' designate compressed source image 

X'9F' indicates last record of a compressed source module 

(2) 8-bit count of bytes remaining in record 

(3) 16-bit checksum of record 

(4) 16-bit sequence number 

(5) Contiguous bytes of data 

820659 

Figure 11-1 Compressed Record Card Format 

c 
11-8 



:II: 
II: 
< 
~ 
"-

0 0 :II: 
a:1U II: 

< 0 ~ (J 

( 
IU "-II: 00 
I- a:1U 
E 0 

(J 
Z IU 
IU II: 
I II: 

IU 
0 
< 
IU 
::t 

( 
Figure 11-2. 

o 
a: o 
(J 
IU 
a: 
a: 
IU o 
< 
IU 
::t:ll: 

a: 
i 
"o 
IU 

o 
a: o 
(J 
IU 
a: 
a: 
IU o 
<:II: 1Ua: 
::t< 
~ 

Library Format (Magnetic Tape) 

o 
a: o 
(J 
IU 
a: 
a: 
IU 

~ 
IU 
::t 

820658 

11-9 



11-10 

, 
• UPDATE HEADER 

RECORD M/DIYY 

6657 8285 72 

HEADER UPDATE 

'I.\O'O---_V,----...I''-v--''-v-' 

( 

TEXT HEADER 

1.0. 

NAME 

Figure 11-3. Header Record Format 

6657 8285 72 

HEADER SSENDIT 

'I.~ ________ ~ ____ -J'~ ~~--J 
V --v---y--

BLANK TEXT HEADER 

1.0. 

NAME 

Figure 11-4. Library End-Of-Tape Format 

820667 

820660 

1( .... ·-
., 

,;~/ 



11.5 Accessing UPDATE 

To access the UPDATE utility as part of batch job, create a job file using the EDITOR, 
punch cards, or other media as described in Table 11-1. The job file can be read to SYC 
and the job activated in several ways: 

from the OPCOM console: 

" < Attention> " 

??BATCH 

from the OPCOM program: 

TSM>OPCOM 

??BATCH 

from the EDITOR: 

TSM > EDIT 

EDT>BATCH [jobfile] 

~ F,jobfile t 
~D,devmnc~ 

~ F,jobfile ~ 
ID,devmnc~ 

If the jobfile is the current EDITOR work file, issue just the BATCH command. 

To activate UPDATE and run online, use the TSM ASSIGN commands to make 
assignments equivalent to those preceding the EXECUTE UPDATE command on a jobfile, 
then proceed to issue UPDATE directives. (SELECT and OBJECT statements are not 
available when running UPDATE online.) 

TSM> ASSIGNn ••• 

LrSM > OPTION n ••• ] 
TSM> UPDATE 
U PD > / directi ve 
UPD> etc. 

11-11 



11.6 

11.6.1 

UPDATE Directives 

General 

Control directives for UPDATE have the following general forms: 

ICommand Specification 

A slash (f) in column one identifies the record as a control directive. Command is the 
symbolic identification of the control directive. Specification is a variable field which 
contains information that further describes the operation to be performed. 

The command field may be abbreviated to three characters and must be terminated by a 
blank. The specification fields are terminated by commas and/or blanks. 

Special characters should not be placed in column one of the command file. When placed 
in column one, they can be interpreted incorrectly, resulting in an UPDATE abort. For 
example, the "$" in column one is interpreted by MPX-32 as a JCL command, which will 
result in an UPDATE abort exit. 

11.6.2 I ADD Directive 

The I ADD directive indicates that the supplied statements are to be added immediately 
following the specified source line. All state"ments following the I ADD directive and up 
to the next control directive are inserted in the output file. 

Syntax: 

IADD start 

where: 

start identifies the source line after which the additions are to be inserted. A 
specification of zero (i.e., I ADD 0) will result in additions being made to the 
beginning of an existing file. 

11-12 

o 

o 



( 

11.6.3 I ASI Directive (Reassign Lfe to Disc File) 

The / ASl directive reassigns input or output file codes to another permanent disc file. 
The mode (blocked or unblocked) is not changed. 

If the / ASl directive is printed with the updates and the directive contains more than 19 
characters, only the first 19 characters are printed on the output. 

Note: This directive reassigns only previously assigned file codes and will not assign 
unassigned file codes. 

See also the'/USR and /SELECT directives. 

Syntax: 

/ ASl lfc,filename[,password] . . , 

where: 

lfc is the logical file code. 

filename is the 1- to 8-character name of a disc file. 

password is the 1- to 8-character password associated with the file. 

11~6.4 I AS3 Directive (Reassign Lfe to Device) 

The / AS3 directive reassigns input or output files to another configured peripheral 
device. The mode (blocked or unblocked) is not changed. 

Note: This directive reassigns only previously assigned files and will not assign 
unassigned files. 

See also the /SELECT directive. 

Syntax: 

/ AS3 lfc,devmnc 

where: 

lfc is the logical file code. 

devmnc is one of the following device mnemonic of a configured peripheral device: 
CD, CP, CR, M7, M9, or MT. 

11-13 



11.6.5 /BKSP (Backspace) Directive 

The IBKSP directive provides the capability for backspacing input files. The utility will 
backspace the number of specified end-of-files and position to the beginning of that file 
in order to be properly positioned in the file. Detection of beginning-of-medium will 
cause backspacing to be terminated and the next control directive will be executed. 

Syntax: 

where: 

lfc 

n 

11.6.6 

IBKSP lfc GnJ 

is the logical file code associated with the device or file to be backspaced. 

is an optional parameter that denotes the number of files to be backspaced. 
If not specified, n is assumed to be 1. 

/BLK (Blank Sequence Field) Directive 

The IBLK directive causes the sequence field (bytes 73 through 80) of each record to be 
filled with blanks. This directive is in effect until a No Blank Sequence Field (/NBL) 
directive is read, and takes precedence over Sequence (/SEQ) directives. 

This directive may be placed anywhere in the control stream. 

Syntax: 

Example: 

IBLK 

IBLK 
ICOPY 1 
ISKIP 1 
ICOPY 1 
IBKSP SI1,1 
ICOPY 1 

In this example, all three files would be copied without sequence numbers. 

11-14 

o 

c 



( 

( 

11.6.7 ICOPY Directive 

The ICOPY directive gives the user the capability of copying complete input files. Files 
that have been created in library format can be copied to the end of a library by the 
directive: ICOPY END. 

Syntax: 

where: 

header 

11.6.8 

ICOPY header 

is a 1- to 8-character delimiter. If header is an alphanumeric string, 
UPDATE will copy all files up to the header record defined by header. If 
header is a numeric string, UPDATE will copy the number of files 
represented by the string. 

/DELETE Directive 

The IDELETE directive indicates that the specified sequential source lines are to be 
omitted from the output file. 

Syntax: 

where: 

start 

end 

11.6.9 

IDELETE start [,end] 

identifies the first source line to be deleted. 

is an optional parameter that identifies the last source line to be deleted. If 
not specified, end will assume to have the same value as start. 

lEND Directive 

The lEND directive indicates that the end of an I ADD, IDELETE, or IREPLACE 
sequence for a file has occurred. The remaining source lines will be copied inclusive of 
the next EOF. At this point, UPDATE reads the next directive. 

Syntax: 

lEND 

11-15 



11.6.10 /EXIT Directive 

The /EXIT directive indicates that the end of the UPDATE control stream has been 
reached. If directive errors have been detected, UPDATE will exit. If directive errors 
have not been detected, the update sequence will be entered. When all control directives 
have been sequentially processed, UPDATE will check for the library option. If the 
library option is set, the utility will write a unique end-of-library file record on the file 
assigned to SO, rewind the file, and exit. This directive must be used to terminate an 
UPDATE control stream. 

Syntax: 

11.6.11 /INSERT Directive 

The /INSERT directive causes one complete file to be copied from the current input 
device. 

The user is allowed a maximum of 56 bytes of text for the new header. Text begins at 
the next character after the first delimiter. 

The new header record will replace the old header record in a file that already has a 
header record. 

If the /INSERT directive is printed with the updates and the directive contains more than 
19 characters, only the first 19 characters are printed on the output. 

Syntax: 

/INSERT [name ,text] 

where: 

If nothing is specified, the old header will be used. If no header exists, the first line 
of code is treated as a header. 

name,text 

11-16 

are optional parameters used to create text a header record in the 
following format: 

1-56 

text 

56-62 

header 
identification 

65-72 

name 

c 

o 



( 

c 

11.6.12 ILIST Directive 

The ILIST directive controls the generation of listed output. This directive may be 
placed anywhere in the control stream. By default, no lists will be generated during the 
updating sequence. 

When ILIST is specified without any optional parameters, an audit trail of the UPDATE 
operation will be generated. When the ILIST directive (without parameters) is followed 
by a ICOPY directive, a top-of-form eject is performed before the first record of each 
file is listed. 

More than one ILIST directive can be specified per control stream. However, the 
additional ILIST directives do not reset options. The INOLIST directive must be used to 
reset options. 

When the FRST parameter is specified without the UPDT parameter, the file number and 
the record count for each file is printed. Note that IllS FRST is intended for use only 
when checking file sizes. Use of I ADD, IDEL, or IREP can cause erroneous results. 

See also the IUSR directive. 

Syntax: 

where: 

FRST 

UPDT 

lUST [FRSTJ[,UPDT] 

is an optional parameter that indicates that the first record of each file is to 
be listed. Header records will be the first record in files created in library 
format. 

is an optional parameter that indicates that all control directives and records 
affected by I ADD, IDELETE, or IREPLACE directives are to be listed. 

11-17 



11.6.13 /MOUNT Directive 

The /MOUNT directive allows the user to mount/dismount input tapes. When performing 
symbolic editing, the directive is permitted only after the /END directive. 

The information on the directive (from column 1 to 70, exclusive of trailing blanks) is 
output to the console teletype, followed by the message 

UPDATE - MOUNT INPUT VOL ON MT UNIT! R,A,H ? 

The UPDATE utility is held until you enter a response. 

Syntax: 

/MOUNT lfc~ texd 

where: 

lfc is the logical file code to which a magnetic tape is assigned for input. 

text user comments can be output to the OpeOM console up to, but not including, 
column 70. 

11.6.14 /N8L (No 81ank Sequence Field) Directive 

The /NBL directive terminates the blanking of the sequence number field (i.e., 
terminates a /BLK directive). This directive may be placed anywhere in the control 
stream. 

Syntax: 

Example: 

11-18 

/NBL 

/eopy 1 
/SKIP 1 
/NBL 

o 



( 

11.6.15 /NOLIST Directive 

The INOLIST directive controls the generation of the control stream. Specified options 
FRST and UPDT have the same significance as for the ILIST directive. These options are 
reset for INOLIST. If neither is specified, all listing output is terminated. When the 
FRST parameter is specified without the UPDT parameter, the file number and the 
record count for each file is printed. 

See also the IUSR directive. 

Syntax: 

where: 

FRST 

UPDT 

11.6.16 

INOLIST [FRS1j[,UPDT] 

is an optional parameter that inhibits the listing of the first record of each 
file. 

is an optional parameter that inhibits the listing of all control directives and 
records affected by I ADD, IDELETE, or IREPLACE directives. 

/NOSEQN Directive 

The INOSEQN directive will terminate the sequence of source statements. This 
directive may be placed anywhere in the control stream. 

Syntax: 

INOSEQN 

11.6.17 /REPLACE Directive 

The IREPLACE directive indicates that the specified set of source lines from the input 
file are to be omitted from the output file and replaced with an alternate set. The 
alternate set may be smaller or larger than the original set of source lines. All 
statements following the IREPLACE directive· and up to the next control directive are 
inserted on the output file. 

Syntax: 

/REPLACE start[,end] 

where: 

start identifies the first source line to be replaced. 

end is an optional parameter that identifies the last source line to be replaced. If 
not specified, end will be assumed to have the same value as start. 

11-19 



11.6.18 /REWIND Directive 

The /REWIND directive provides the capability for rewinding input or output files. 

If the library option is set, the SO file must not be specified. 

Syntax: 

/REWIND lfcClfc], ••• 

where: 

lfc is the logical file code associated with the device to be rewound. 

11.6.19 /SCAN Directive 

The /SCAN directive sets the number of characters to scan on the remaining directives. 
This optional directive should be first to ensure unwanted data is not scanned. 

Syntax: 

/SCAN n 

where: 

n is the number of characters to be scanned; the value must be from 6 to 80. 

11.6.20 /SELECT Directive 

The /SELECT directive gives the user the capability of selecting alternate input 
devices. The utility always assumes that input will be from the file or device assigned to 
SIlo When an input device is selected, all subsequent control directives (with the 
exception of /BKSP, /MOUNT and /REW) will pertain to the selected device or file. 

Syntax: 

/SELECT lfc[,BLOCKED] 

where: 

lfc is the logical file code to which input is assigned. 

BLOCKED is an optional pa.rameter which though syntatically correct, should not be used 
in the MPX-32 environment. In MPX-32, the default is blocked a.nd the 
Assignment statement should be used to specify an unblocked file. 

11-20 

.,,-. 

(;, 



( 

( 

11.6.21 /SEQUENCE Directive 

The /SEQUENCE directive provides the capability to sequentially number source 
statements. This directive may be placed anywhere in the control stream. By default, 
statements will not be sequenced. 

Syntax: 

where: 

id is an optional parameter of one to three alphanumeric characters which will 
be placed in columns 73-75 of all source output records. At least one 
character must be non-numeric. If omitted, id is assumed to be blanks. 

inc is an optional parameter of one to four numeric characters which will be 
placed in columns 76-80 of all source output records. The value of inc will be 
used to increment the sequence number. If omitted, inc is assumed to be 1. 

HOLD 

11.6.22 

is an optional parameter that indicates that sequencing will be continued until 
another /SEQUENCE or a /NOSEOUENCE directive is encountered. If the 
HOLD option is specified, the beginning sequence number for all subsequent 
files will be reset to zero and the file will be sequenced as specified by the id 
and inc options. If the HOLD option is omitted, sequencing will be 
discontinued after the current file. 

/SKIP Directive 

The /SKIP directive provides the capability for skipping complete input files. 

Syntax: 

where: 

header 

/SKIP header 

is a 1- to 8-character delimiter. If header is alphanumeric, UPDATE will skip 
all input files up to the header record defined by header. If header is a 
numeric string, the utility will skip the number of files represented by the 
string. 

11-21 



11.6.23 /USR Directive 

The IU SR directive is used to access files belonging to another user. 

Note that if the user name changes at any point in the UPDATE directive sequence, 
IUSR must precede the first directive in the control stream that requires user name 
identification, i.e., the user name supplied via TSM or job control must be re-established 
to the default user name to be used by UPDATE for second pass processing. 

When a user name is not re-established, UPDATE displays a reminder message: 

Syntax: 

where: 

USERNAME WITH A KEY WAS CHANGED - THE USER MUST USE IUSR TO 
RESET 

IUSR [username[,key]] 

username is the 1- to 8-character username (blank signifies no username). 

key is the 1- to 8-character user's key (if any). 

11.6.24 /WEOF Directive 

The IWEOF directive gives the user the capability of writing an EOF on the output (SO) 
file. This directive is not allowed when output is in library format. 

Syntax: 

IWEOF 

11-22 

() 

o 



( 11.7 Listings 

Not supplied; they are dependent on the assignments and processing that were requested. 

11-23 



11.8 Errors 

The following error diagnostic messages will inhibit UPDATE from executing or cause an 
abort condition during execution. 

INVALID OPTION SPECIFICATION 

$OPTION "" cannot be specified in conjunction with $OPTION 2. 

lfc FILE IS NOT ASSIGNED 

lfc is the logical file code of the implied input file. There is no file or device 
assigned to this file code. 

INVALID UPDATE DIRECTIVE 

The directive is not a valid update directive. 

INVALID UPDATE DIRECTIVE SEQUENCE 

An lEND directive did not follow an I ADD, IREPLACE, or IDELETE 
sequence. 

UPDATE SEQUENCE ERROR 

The START or lEND address on an I ADD, IREPLACE, or IDELETE statement 
is not sequential. 

xxxxxxxx NOT FOUND 

The program represented by xxxxxxxx cannot be found. 

IMPROPER HEADER FORMAT 

An attempt was made to create a library file that contained an improperly 
formatted HEADER RECORD. 

IMAGE NOT COMPRESSED 

Illegal mixture of standard and compressed source images. 

CHECKSUM ERROR 

A checksum error was detected in the record just read. 

lfc FILE AT END-OF-MEDIUM 

The file or device assigned to this file code is at EOM 

lfc FILE, UNRECOVERABLE I/O ERROR 

o 

An I/O error has been encountered on the file or device assigned to this file 0·"'.'. 
code. 

11-2"" 



( EOF DETECTED BEFORE SPECIFIED LINE NUMBER 

An EOF was detected before the line number indicated in an / ADD, 
/REPLACE, or /DELETE directive could be found. 

LIBRARY MODE, DIRECTIVE NOT ALLOWED 

A /WEOF directive was detected in the control stream and the library mode is 
in affect. 

lfc FILE ASSIGNED TO UTY FILE 

The UTY file code cannot be assigned by the user. 

lfc FILE, INVALID BLOCKING BUFFER CONTROL POINTER 

An input operation for a blocked file assigned to this lfc was not successful. 
Either the file is unblocked or the file has been destroyed. 

PERMANENT FILE NONEXISTENT 

Indicates that a specified file name cannot be located in the SMD. 

INVALID DEVICE TYPE 

A device type is not supported by this utility. 

FILE ALLOCATION DENIED 

Allocation for file was denied. 

DEVICE ALLOCATION DENIED 

Allocation for device was denied. 

UNABLE TO ASSIGN username 

Indicates the specified user name cannot be assigned. 

11-25 



11.9 Examples 

Example 1 is used to update the first file on the tape "INPUT" and place the updated file 
on the tape "OPUT". 

$JOB EXAMPLEI MEYERS 
$ASSIGN3 SIl=MT,INPT SO=MT,OPUT 
$EXECUTE UPDATE 
IADD 25 
(statements to be added) 
IDELETE 27, 28 
IREPLACE 45,51 
(replacement statements) 
lEND 
/EXIT 
SEOJ 
$$ 

Example 2 is used to add and delete statements. I ADD 0 is used to make additions to the 
beginning of an existing file. An updated and compressed copy of PROG 11 will be output 
on tape "OPUT", and a listing of all statements affected by the update will be updated. 
Note that INPT is in library format, which allows the user to skip to the header PROGII. 
The output file, OPUT, will not be. in library format because OPTION 2 is not specified. 

11-26 

$JOB EXAMPLE2 MEYERS 
$OPTION 1 
$ASSIGN3 SIl=MT,INPT SO=MT,OPUT 
$EXECUTE UPDATE 
ILIST UPDT,FRST 
ISKIP PROG 11 
IADD 0 
(statements to be added) 
IDELETE 1,5 
IADD 5 
(statements to be added) 
lEND 
IEXIT 
$EOJ 
$$ 

o 

c 



( 

Example 3 is used to copy all files up to and including the eleventh file onto the tape 
"OPUT" and to modify and insert a program from the SI2 file. The primary input files 
will be reselected, and the remaining SI files will be copied. A listing of the updates 
made to the inserted file will be output. 

$JOB EXAMPLE3 MEYERS 
$ASSIGN3 SIl=MT,INPT SI2=MT,TAPE SO=MT,OPUT 
$EXECUTE UPDATE 
ILIST UPDT 
ICOPY 11 
ISELECT SI2 
IR EPLACE 24, 33 
(replacement cards go here) 
lEND 
ISELECT SIl 
ICOPY 51 
IEXIT 
$EOJ 
$$ 

Example 4 is used to convert a punched card deck in compressed format to a standard 
format punched deck. The standard deck will be sequenced by la, and the 3-character id 
of ABC will be placed in columns 73-75 of each card during the conversion. 

$JOB EXAMPLE4 MEYERS 
$ASSIGN2 SO=SBO, 1 000 
$ASSIGN4 SIl =SYC 
$EXECUTE UPDATE 
ISEQN ABC, 10 
ICOPY 1 
IEXIT 
(compressed deck) 
$EOJ 
$$ 

Example 5 is used to position the output tape (that was created in library format) at the 
end of the last file. The program "NEW" will be sequenced by one and inserted (with a 
header record) on the output file. A new library End-of-Tape marker will be written on 
the output file. 

$JOB EXAMPLE5 MEYERS 
$OPTION 2 
$ASSIGN3 SI2=MT,INPT"U SO=MT,OPUT 
$ASSIGN4 SIl =SO 
$EXECUTE UPDATE 
ISEQN 
ISKIP END 
ISELECT SI2 
IINSERT NEW 1, *NEW 1 REV C JULY 12, 1972 
IEXIT 
$EOJ 
$$ 

11-27 



Example 6 is used to list all the header records on the library tape "INPT". The file C--; 
number and record count for each file are printed. _ 

$JOB EXAMPLE6 MEYERS 
$ASSIGN3 Sll=MT,INPT 
$EXECUTE UPDATE 
/LIST FRST 
/COPY END 
/EXIT 
$EOJ 
$$ 

Example 7 is used to copy PROG13, PROGI6, and PROG17 from "INPT" to "OPUT", and 
to output listings of the three programs. The programs that are skipped will not be 
listed. 

$JOB EXAMPLE7 MEYERS 
$ASSIGN3 SIl=MT,INPT SO=MT,OPUT 
$EXECUTE UPDATE 
/LIST 
/SKIP PROG13 
/COPY 1 
/SKIP PROG 16 
/COPY 2 
/EXIT 
$EOJ 
$$ 

Example 8 is used to (1) copy the first, fifth, sixth, and twelfth files from "INPT"; (2) 
output compressed source to the disc file "PERM FILE"; (3) inhibit writing of EOFs 
detected on the input file to the output file; and (4) assemble all four files. 

11-28 

$JOB EXAMPLE8 MEYERS 
$OPTION 1 4 
$ASSIGN3 SIl=MT,INPT 
$ASSIGN 1 SO=PERMFILE 
$EXECUTE UPDATE 
/COPY 1 
/SKIP 3 
/COPY 2 
/SKIP 5 
/COPY 1 
/WEOF 
!EXIT 
$EOJ 
$JOB ASSEMBLE EXAMPLE8 
$ASSIGNI SI=PERMFILE 
$EXECUTE ASSEMBLE 
$EOJ 
$$ o 



( 

Example 9 is used to insert the new revision level of PROGI0 in the new master file and 
to list all the header records on the new master file. 

$JOB EXAMPLE9 MEYERS 
$OPTION 2 
$ASSIGN3 SIl:MT,MAST SI2:MT,INSE SO:MT,NEWI 
$EXECUTE UPDATE 
ILIST FRST 
ICOPY PROGI0 
ISELECT SI2 
IINSERT PROGI0,*PROGI0 REVB JULY 12, 1971 
ISELECT SIl 
ISKIP PROGll 
ICOPY END 
IEXIT 
$EOJ 
$$ 

11-29/11-30 



""- .. 

c 



( 

( 

APPENDIX A 
MPX-32 DEVICE ACCESS 

Throughout the reference manual, the generic descriptor 'devmnc' is used to indicate that 
a device can be specified. 

Under MPX-32, device addresses are specified using a combination of three levels of 
identification. They are device type, device channel/controller address, and device 
address/ subaddress. 

A device can be specified using the generic device type only, which will result in 
allocation of the first available device of the type requested. 

A second method of device specification is achieved by using the generic device type and 
specifying the channel/controller address. This results in allocation of the first available 
device of the type requested on the specified channel or controller. 

The third method of device selection requires specification of the device type, 
channel/controller, and device address/subaddress. This method allows specification of a 
particular device. 

A-I 



1. Special Device Specifications and Handling 

1.1 Magnetic Tape 

For magnetic tape, a reel identifier, multivolume number, and unblocking can be part of 
the device mnemonic. 

Syntax: 

lfc= device 

where: 

device 

reel 

volume 

U 

[
,reel ] 
,reel, volume 
,reel, volume,U 
,reel"U 

is anyone of the four levels of device specification described 
above. 

specifies a one- to four-character· identifier for the reel. 
This parameter is required in batch. This parameter is not 
required in TSM and if not specified, the default is SeRA 
(Scratch). 

if multivolume tape, indicates volume number. Default: not 
multivolume (0). 

the tape is optionally unblocked. Default: blocked. 

Commas in this specification are significant. If an option is not specified, e.g., a reel 
identifier, but another option is specified, e.g., U, commas must be inserted for all non
specified options in between, e.g., 

MTIOOO",U 

There must be no embedded blanks within the entire device mnemonic. 

When the task is activated that has an assignment to tape, a MOUNT message indicates 
the name of the task and other information on the OPCOM console: 

1: ASK l , taskname, taskno MOUNT reel VOL volume ON devmnc DEV,R,A,H? 
Jobno \ 

where: 

jobno 

taskname 

taskno 

A-2 

if the task is part of a batch job, identifies the job by job 
number. 

is the name of the task to which the tape is assigned. 

is the number of the task. 
c 



( 

( 

reel 

volume 

devmnc 

DEV,R,A,H 

Response: 

if the assignment is a multivolume tape, indicates the reel 
identifier specified in the assignment. This parameter is 
required in batch. This parameter is not required in TSM and 
if not specified, the default is SCRA. 

identifies the volume number to mount if multivolume tape. 

is the device mnemonic for the tape unit selected in response 
to the assignment. If a specific channel and subaddress are 
supplied in the assignment, the specific tape drive is selected 
and named in the message. Otherwise, a unit is selected by 
the system and its complete address is named in the message. 

the device listed in the message can be allocated and the task 
resumed (R), a different device can be selected (DEV), the 
task can be aborted (A), or the task can be held with the 
specified device deallocated (H). If an 'R' response is given 
and a high speed XIO tape drive is being used, its density can 
be changed when the software select feature is enabled on 
the tape unit front panel. If specified, it will override any 
specification made at assignment. Values are: 

N or 800 

P or 1600 
G or 6250 

indicates 800 bpi nonreturn to zero inverted 
(NRZI) 
indicates 1600 bpi phase encoded (PE) 
indicates 6250 bpi group coded recording 
(GCR) Default. 

Example usage: RN, R 1600, etc. 

Note: Do not insert blanks or commas. 

To indicate the drive specified in the MOUNT message is ready and proceed with 
the task, mount the tape on the drive and type R (Resume), optionally followed by a 
density specification if the drive is a high speed XIO tape unit. To abort the task, 
type A (Abort). To hold the task and deallocate the specified device, type H (Hold). 
The task can then be resumed by the OPCOM CONTINUE command, at which time 
a tape drive will be selected by the system and the MOUNT message redisplayed. 

To select a tape drive other than the drive specified in the message, enter the 
mnemonic of the drive you want to use. Any of the three levels of device 
identification can be used. The MOUNT message is reissued. Mount the tape and 
type R if satisfactory, or if not satisfactory, abort, override, or hold as just 
described. 

A-3 



1.2 Temporary Disc File Size 

For a temporary disc file, size must be specified and unblocking is optional. 

Syntax: 

lfc = device,size [,U] 

where: 

size specifies the number of 192;..word blocks required. 

U the file is optionally unblocked. Default: blocked. 

Examples of the three methods of device specification follow: 

Type 1 - Generic Device Class 

$ASSIGN3 DEV=M9" 1 

In this example, the device assigned to logical file code (lfe) "DEV" will be any 9-
track tape unit on any channel. The multivolume reel number is 1. The reel 
identifier is SCRA. 

Type 2 - Generic Device Class and Channel/Controller 

$ASSIGN3 DEV=M910,MORK"U 

In this example, the device assigned to logical file code (lfe) "DEV" will be the first 
available 9-track tape unit on channel 10. The specification is invalid if a 9-track 
tape unit does not exist on the channel. The reel identifier is supplied. This is not 
a multivolume tape. It is, however, unblocked. 

Type 3 - Specific Device Request 

A-4 

$ASSIGN3 DEV=M91001 

In this example, the device assigned to logical file code (lfe) "DEV" will be the 9-
track tape unit 01 on channel 10. The specification is invalid if unit 01 on channel 
10 is not a 9-track tape. The tape reel identifier is SCRA; the tape is blocked and 
is not multivolume. 

c 

c 



( 

2. GPMC Devices 

GPMC/GPDC device specifications are in keeping with the general structure just 
described. For instance, the terminal at subaddress 04 on GPMC 01 whose channel 
address is 20 would be identified as follows: 

$ASSIGN3 DEV=TY2004 

3. NULL Device 

A special device type "NU" is available for NULL device specifications. Files accessed 
using this device type generate an end-of-file (EOF) upon attempt to read and normal 
completion upon attempt to write. 

4. OPCOM Console 

Logical file codes are assigned to the OPCOM console by using the device type "CT". 

5. Special System Files 

There are four special mnemonics provided for access to special system files: SLO, SBO, 
SGO and SYC. These are assigned via the $ASSIGN2 statement, as is: 

$ASSIGN2 OUT =SLO,printlines 

For non-batch tasks, SLO and SBO files are allocated dynamically by the system and used 
to disc buffer output to a device selected automatically. For batch tasks, use of SLO and 
SBO files is identical, except that automatic selection of a device can be overridden by 
assigning a specific file or device. 

SGO and SYCassignments are used for batch processing. See Section 7.6. 

A-5 



Dev (' ':1 , 

Type 'It j 
.-- .. -",,'" 

Code Device Device Description 

00 CT Operator Console (Not Assignable) 
01 DC Any Disc Unit 
02 DM Any Moving Head Disc 
03 DF Any Fixed Head Disc 
04 MT Any Magnetic Tape Unit 
05 M9 Any 9-Track Magnetic Tape Unit 
06 M7 Any 7-Track Magnetic Tape Unit 
07 CD Any Card Reader-Punch 
08 CR Any Card Reader 
09 CP Any Card Punch 
OA LP Any Line Printer 
OB PT Any Paper Tape Reader-Punch 
OC TY Any Teletypewriter (Other than Console) 
OD CT Operator Console (Assignable) 
OE FL Floppy Disc 
OF NU Null Device 
10 CA Communications Adapter (Binary 

Synchronous/ Asynchronous) 
11 UO A vailable for user-defined applications 
12 Ul A vailable for user-defined applications 
13 U2 A vailable for user-defined applications 
14 U3 A vail able for user-defined applications ,~ 

15 U4 A vailable for user-defined applications 
16 U5 Available for user-defined applications 
17 U6 A vailable for user-defined applications 
18 U7 A vail able for user-defined applications 
19 U8 A vailable for user-defined applications 
lA U9 A vailable for user-defined applications 
IB LF Line Printer/Floppy Controller (used only with SYSGEN) 

(~, 
Table A-I: Device Type Codes 

A-6 



( 6. Samples 

A description of device selection possibilities would be constructed as follows: 

DISC 

TAPE 

DC 
OM 
DM08 
DM0801 
OF 
DF04 
DF0401 

MT 
M9 
M910 
M91002 
M7 
M712 
M71201 

CARD EQUIPMENT 

CD 
CR 
CR78 
CR7800 
CP 
CP7C 
CP7COO 

LINE PRINTER 

LP 
LP7A 
LP7AOO 

Any Disc 
Any Moving Head Disc 
Any Moving Head Disc on Channel 08 
Moving Head Disc 01 on Channel 08 
Any Fixed Head Disc 
Any Fixed Head Disc on Channel 04 
Fixed Head Disc 01 on Channel 04 

Any Magnetic Tape 
Any 9-track Magnetic Tape 
Any 9-track Magnetic Tape on Channel 10 
9-track Magnetic Tape 02 on Channel 10 
Any 7-track Magnetic Tape 
Any 7-track Magnetic Tape on Channel 12 
7-track Magnetic Tape 01 on Channel 12 

Any Card Reader-Punch 
Any CR 
Any CR on Channel 78 
CR on Channel 78 Subaddress 00 
Any CP 
Any CP on Channel 7C 
CP on Channel 7C Subaddress 00 

Any LP 
Any LP on Channel 7 A 
LP on Channel 7 A Subaddress 00 

A-7/A-8 



G 



APPENDIX B 
SYSTEM SERVICES CROSS REFERENCE CHARTS 

( 

B-1 



USER LEVEL SYSTEM SERVICES - MACRO NAME 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC I,XX E.P. SECTION 

M.ACTV ACTIVA TE TASK 52 H.MONS,15 8.2.1 

M.ADRS MEMORY ADDRESS 44 H.MONS,3 8.3.1 
INQUIRY 

* M.ALOC ALLOCA TE FILE 40 H.MONS,21 7.8.1 
OR PERIPHERAL DEVICE 

M.ANYW WAIT FOR ANY MSG, 7C H.MONS,37 8.2.2 
END ACTION, OR BRK 

M.ASYNCH SET ASYNCHRONOUS TASK lC H.MONS,68 8.2.3 
INTERRUPT 

M.BACK BACKSPACE RECORD 35 H.IOCS,9 7.8.2 
OR 
FILE 36 H.IOCS,19 

M.BORT ABORT SPEC. TASK 56 H.MONS,19 8.2.4 
OR ,( 

SELF 57 H.MONS,20 .,""'-- " 

OR 
WITH EXT. MESSAGE 62 H.MONS,28 

M.BRK BREAK/TASK 6E H.MONS,46 8.2.5 
INTERRUPT LINK 

M.BRKXIT EXIT FROM TASK 70 H.MONS,48 8.2.6 
INTERRUPT LEVEL 

** M.CDJS SUBMIT JOB FROM 61 H.MONS,27 8.2.7 
DISC FILE 

M.CLSE CLOSE FILE 39 H.IOCS,23 7.8.3 

M.CONADB CONVER T ASCII 28 H.TSM,7 5.6.3.1 
DECIMAL TO BINARY 

M.CONAHB CONVERT ASCII 29 H.TSM,8 5.6.3.2 
HEX TO BINARY 

M.CONBAD CONVERT BINARY TO 2A H.TSM,9 5.6.3.3 
ASCII DECIMAL 

*Reduced functionality under Memory-Only MPX-32 C 
**Not supported under Memory-Only MPX-32 

B-2 



USER LEVEL SYSTEM SERVICES - MACRO NAME 

(~ (CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC I,XX E.P. SECTION 

M.CONBAH CONVERT BINARY TO 2B H.TSM,lO 5.6.3.4 
ASCII HEX 

M.CONN CONNECT TASK TO 4B H.MONS,10 8.2.8 
INTERRUPT 

** M.CREATE CREA TE PERM FILE 75 H.FISE,12 7.8.4 

M.CWAT SYSTEM CONSOLE WAIT 3D H.IOCS,26 7.8.5 

* M.DALC DEALLOCA TE FILE 41 H.MONS,22 7.8.6 
OR DEVICE 

M.DATE DA TE ~ND TIME INQUIRY 15 H.MONS,70 8.2.9 

** M.DEBUG LOAD AND EXECUTE 63 H.MONS,29 8.2.10 
INTERACTIVE DEBUGGER 

( ** M.DELETE DELETE PERM FILE 77 H.FISE,14 7.8.7 

M.DELTSK DELETE TASK 5A H.MONS,31 8.2.11 

M.DEVID GET DEVICE MNEMONIC 14 H.MONS,71 8.2.12 
OR TYPE CODE 

M.DISCON DISCONNECT TASK 5D H.MONS,38 8.2.13 
FROM INTERRUPT 

M.DLTT DELETE TIMER ENTRY 47 H.MONS,6 8.2.14 

M.DSMI DISABLE MESSAGE 2E H.MONS,57 8.2.15 
T ASK INTERRUPT 

M.DSUB DISABLE USER 12 H.MONS,73 8.2.16 
BREAK INTERRUPT 

** M.DUMP MEMOR Y DUMP REQUEST 4F H.MONS,12 8.3.2 

M.EAWAIT END ACTION WAIT ID H.EXEC,40 8.2.17 

M.ENMI ENABLE MESSAGE 2F H.MONS,58 8.2.18 
TASK INTERRUPT 

(~ *Reduced functionality under Memory-Only MPX-32 
**Not supported under Memory-Only MPX-32 

B-3 



USER LEVEL SYSTEM SERVICES - MACRO NAME 

C (CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.ENUB ENABLE USER 13 H.MONS,72 8.2.19 
BREAK INTERRUPT 

M.EXCL FREE SHARED MEMORY 79 H.ALOC,14 8.3.3 

M.EXIT TERMINATE TASK 55 H.MONS,18 8.2.20 
EXECUTION 

** M.FADD PERMANENT FILE 43 H.MONS,2 7.8.8 
ADDRESS INQUIRY 

M.FD FREE DYNAMIC EXTENDED 6A H.ALOC,9 8.3.5 
INDEX DATA SPACE 

M.FE FREE DYNAMIC TASK 68 H.ALOC,ll 8.3.6 
EXECUTION SPACE 

M.FILE OPEN FILE 30 H.IOCS,l 7.8.9 
rf'---",\ 

** M.FSLR RELEASE 24 H.FISE,25 7.8.10 \"--~i 

SYNCHRONIZA TION 
FILE LOCK 

** M.FSLS SET SYNCHRONIZATION 23 H.FISE,24 7.8.11 
FILE LOCK 

M.FWRD ADVANCE RECORD 33 H.IOCS,7 7.8.12 
OR 
FILE 34 H.IOCS,8 

M.FXLR RELEASE EXCLUSIVE 22 H.FISE,23 7.8.13 
FILE LOCK 

** M.FXLS SET EXCLUSIVE 21 H.FISE,22 7.8.14 
FILE LOCK 

M.GADRL GET ADDRESS LIMITS 65 H.MONS,41 8.3.7 

M.GD GET DYNAMIC EXTENDED 69 H.ALOC,8 8.3.8 
INDEXED DATA SPACE 

M.GE GET DYNAMIC TASK 67 H.ALOC,10 8.3.9 
EXECUTION SPACE 

*Reduced functionality under Memory-Only MPX-32 C : 
**Not supported under Memory-Only MPX-32 

B-4 



USER LEVEL SYSTEM SERVICES - MACRO NAME 

( (CONTINUEq) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.GMSGP GET MSG PARAMETERS 7A H.MONS,35 8.2.21 

M.GRUNP GET RUN PARAMETERS 7B H.MONS,36 8.2.22 

M.HOLD PROGRAM HOLD REQUEST 58 H.MONS,25 8.2.23 

M.ID GET TASK NUMBER 64 H.MONS,32 8.2.24 

* M.INCL GET SHARED MEMORY 72 H.ALOC,13 8.3.10 

M.INT ACTIV A TE TASK 6F H.MONS,47 8.2.25 
INTERRUPT 

** M.LOG PERMANENT FILE LOG 73 H.MONS,33 7.8.15 

M.MYID GET TASK NUMBER 64 H.MONS,32 8.2.26 

** M.OLAY LOAD OVERLAY 50 H.MONS,13 8.2.27 

( OR 
LOAD AND EXECUTE 51 H.MONS,14 
OVERLAY 

** M.PDEV PHYSICAL DEVICE 42 H.MONS,1 7.8.16 
INQUIRY 

** M.PERM CHANGE TEMP FILE 76 H.FISE,13 7.8.17 
TO PERMANENT 

M.PGOW T ASK OPTION WORD 4C H.MONS,24 8.2.28 
INQUIRY 

M.PRIL CHANGE PRIORITY LEVEL 4A H.MONS,9 8.2.29 

M.PTSK PARAMETER TASK 5F H.MONS,40 8.2.30 
ACTIVATION 

M.RCVR RECEIVE MESSAGE 6B H.MONS,43 8.2.31 
LINK ADDRESS 

M.READ READ RECORD 31 H.IOCS,3 7.8.18 

M.RELP RELEASE DUAL 27 H.IOCS,27 7.8.19 
PORTED DISC 

("~ *Reduced functionality under Memory-Only MPX-32 
**Not supported under "'emory-Only MPX-32 

B-5 



USER LEVEL SYSTEM SERVICES - MACRO NAME 

(CONTINUED) 
(-' 
i, ... / 

~"./ 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.RESP RESERVE DUAL 26 H.I9CS,24 7.8.20 
PORTED DISC 

M.RRES RELEASE CHANNEL 3B H.IOCS,13 7.8.21 

M.RSML RESOURCEMARK LOCK 19 H.MONS,62 7.8.22 

M.RSMU RESOURCE MARK UNLOCK 1A H.MONS,63 7.8.23 

M.RSRV RESER VE CHANNEL 3A H.IOCS,12 7.8.24 

M.RWND REWIND FILE 37 H.IOCS,2 7.8.25 

M.SETS SET USER STATUS 48 H.MONS,7 8.2.32 
WORD 

M.SETT CREA TE TIMER ENTRY 45 H.MONS,4 8.2.33 

* M.SHARE SHARE MEMORY WITH 71 H.ALOC,12 8.3.11 
ANOTHER TASK 

M.SMSGR SEND MESSAGE TO 6C H.MONS,44 8.2.34 
SPECIFIED TASK 

M.SMULK UNLOCK AND DEQUEUE IF H.ALOC,19 8.3.12 
SHARED MEMORY 

M.SRUNR SEND RUN REQUEST 6D H.MONS,45 8.2.35 

M.SUAR SET USER ABORT 60 H.MONS,26 8.2.36 
RECEIVER ADDRESS 

M.SUME RESUME TASK EXECUTION 53 H.MONS,16 8.2.37 

M.SUSP SUSPEND TASK 54 H.MONS,17 8.2.38 
EXECUTION 

M.SYNCH SET SYNCHRONOUS TASK IB H.MONS,67 8.2.39 
INTERRUPT 

M.TBRKON TRAP ONLINE USER'S 5C H.TSM,6 5.6.2 
TASK 

*Reduced functionality under Memory-Only MPX-32 
(~ 
··i' 

**Not supported under Memory-Only MPX-32 

B-6 



( 

(~ 

MACRO 

M.TDAY 

** M.TSCAN 

M.TSTE 

M.TSTS 

M.TSTT 

M.TURNON 

M.TYPE 

M.UPSP 

M.USER 

M.WAIT 

M.WEOF 

M.WRIT 

M.XBRKR 

M.XIEA 

M.XMEA 

M.XMSGR 

M.XREA 

USER LEVEL SYSTEM SERVICES - MACRO NAME 

(CONTINUED) 

MODULE, REF MANUAL 
DESCRIPTOR SVC I,XX E.P. SECTION 

TIME-OF-DAY INQUIRY 4E H.MONS,11 8.2.40 

SCAN TERMINAL INPUT 5B H.TSM,2 5.6.1 
BUFFER 

ARITHMETIC EXCEPTION 4D H.MONS,23 8.2.41 
INQUIRY 

TEST USER STATUS WORD 49 H.MONS,8 8.2.42 

TEST TIMER ENTRY 46 H.MONS,5 ,. 8.2.43 

ACTIVATE PROGRAM AT IE H.MONS,66 8.2.44 
GIVEN TIME OF DAY 

CONSOLE TYPE 3F H.IOCS,14 7.8.26 

UPSPACE 10 H.IOCS,20 7.8.27 

USERNAME 74 H.MONS,34 7.8.28 
SPECIFIC A TION 

WAIT I/O 3C H.IOCS,25 7.8.29 

WRITE EOF 38 H.IOCS,5 7.8.30 

WRITE RECORD 32 H.IOCS,4 7.8.31 

EXIT FROM TASK 70 H.MONS,48 8.2.45 
INTERRUPT LEVEL 

NO-WAIT I/O END 2C H.IOCS,34 7.8.32 
ACTION RETURN 

EXIT FROM MESSAGE 7E H.MONS,50 8.2.46 
END ACTION ROUTINE 

EXIT FROM MESSAGE 5E H.MONS,39 8.2.47 
RECEIVER 

EXIT RUN REQUEST 7F H.MONS,51 8.2.48 
END ACTION ROUTINE 

**Not supported under Memory-Only MPX-32 

B-7 



USER LEVEL SYSTEM SERVICES - MACRO NAME 
(~:, 

(CONTINUED) 

MODULE, REF MANUAL 
MACRO DESCRIPTOR SVC 1,XX E.P. SECTION 

M.XRUNR EXIT RUN RECEIVER 70 H.MONS,49 8.2.49 

M.XTIME T ASK CPU EXECUTION 20 H.MONS,65 8.2.50 
TIME 

N/A ERASE OR PUNCH 3E H.IOCS,21 7.8.33 
TRAILER 

** N/A DEBUG LINK SERVICE 66 H.MONS,42 8.2.51 

N/A EXECUTE CHANNEL 25 H.IOCS,10 7.8.34 
PROGRAM 

N/A RELEASE FHD PORT 27 H.IOCS,27 7.8.35 

N/A RESERVE FHD PORT 26 H.IOCS,24 7.8.36 

N/A SET TABS IN UDT 59 H.TSM,5 N/A ,( 

C' " . 
**Not supported under Memory-Only MPX-32 

B-8 



(~" 
USER LEVEL SYSTEM SERVICES - ALPHABETIC 

REF MANUAL 
SVC I,XX MODULE E.P. SECTION 

ABORT SELF M.BORT 57 H.MONS 20 8.2.4 

ABORT SPECIFIED M.BORT 56 H.MONS 19 8.2.4 
TASK 

ABORT WITH EXTENDED M.BORT 62 H.MONS 28 8.2.4 
MESSAGE 

ACTIVATE PROGRAM AT M.TURNON IE H.MONS 66 8.2.44 
GIVEN TIME OF DAY 

ACTIVATE TASK M.INT 6F H.MONS 47 8.2.25 
INTERRUPT 

ACTIVA TE TASK M.ACTV 52 H.MONS 15 8.2.1 

ADVANCE FILE OR M.FWRD 34 H.IOCS 8 7.8".12 
RECORD 33 H.IOCS 7 7.8.12 

ALLOCA TE FILE OR M.ALOC 40 H.MONS 21 . 7.8.1 

( PERIPHERAL DEVICE 

ARITHMETIC EXCEPTION M.TSTE 4D H.MONS 23 8.2.41 
INQUIRY 

BACKSPACE FILE OR M.BACK 36 H.IOCS 19 7.8.2 
RECORD 35 H.IOCS 9 7.8.2 

BREAK/TASK INTERRUPT M.BRK 6E H.MONS 46 8.2.5 
LINK 

CHANGE PRIORITY M.PRIL 4A H.MONS 9 8.2.29 
LEVEL (PRIV) 

CHANGE TEMP FILE TO M.PERM 76 H.FISE 13 7.8.17 
PERMANENT 

CLOSE FILE M.CLSE 39 H.IOCS 23 7.8.3 

CONNECT TASK TO M.CONN 4B H.MONS 10 8.2.8 
INTERRUPT 

CONSOLE TYPE M.TYPE 3F H.IOCS 14 7.8.26 

CONVERT ASCII DECIMAL M.CONADB 28 H.TSM 7 5.6.3.1 

(. TO BINARY 

B-9 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

(CONTINUED) (~,: 
REF MANUAL 

SVC I,XX MODULE E.P. SECTION 

CONVERT ASCII HEX M.CONAHB 29 H.TSM 8 5.6.3.2 
TO BINARY 

CONVERT BINARY TO M.CONBAD 2A H.TSM 9 5.6.3.3 
ASCII DECIMAL 

CONVER T BINARY TO M.CONBAH 2B H.TSM 10 5.6.3.4 
ASCII HEX 

CREA TE PERM FILE M.CREATE 75 H.FISE 12 7.8.4 

CREATE TIMER ENTRY M.SETT 45 H.MONS 4 8.2.33 

*DATE AND TIME INQUIRY M.DATE 15 H.MONS 70 8.2.9 

DEALLOCATE FILE OR M.DALC 41 H.MONS 22 7.8.6 
DEVICE 

DEBUG LINK SERVICE N/A 66 H.MONS 42 8.2.51 

DELETE PERM FILE M.DELETE 77 H.FISE 14 7.8.7 ''- .. 

DELETE TASK M.DELTSK 5A H.MONS 31 8.2.11 

DELETE TIMER ENTRY M.DLTT 47 H.MONS 6 8.2.14 

DISABLE MESSAGE M.DSMI 2E H.MONS 57 8.2.15 
TASK INTERRUPT 

*DISABLE USER BREAK M.DSUB 12 H.MONS 73 8.2.16 
INTERRUPT 

DISCONNECT TASK FROM M.DISCON 5D H.MONS 38 8.2.13 
INTERRUPT 

ENABLE MESSAGE M.ENMI 2F H.MONS 58 8.2.18 
T ASK INTERRUPT 

*ENABLE USER BREAK M.ENUB 13 H.MONS 13 8.2.19 
INTERRUPT 

END ACTION WAIT M.EAWAIT ID H.EXEC 40 8.2.17 

ERASE OR PUNCH N/A 3E H.IOCS 21 7.8.33 
TRAILER (~ 
*NEW 

B-I0 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

( (CONTINUED) 
REF MANUAL 

SVC 1,XX MODULE E.P. SECTION 

EXECUTE CHANNEL N/A 25 H.IOCS 10 7.8.34 
PROGRAM 

EXIT FROM MSG RCVR M.XMSGR 5E H.MONS 39 8.2.47 

EXIT FROM MSG END M.XMEA 7E H.MONS 50 8.2.46 
ACTION ROUTINE 

EXIT FROM TASK M.BRKXIT 70 H.MONS 48 8.2.6 
INTERRUPT LEVEL M.XBRKR 8.2.45 

EXIT RUN RCVR M.XRUNR 7D H.MONS 49 8.2.49 

EXIT FROM RUN M.XREA 7F H.MONS 51 8.2.48 
REQUEST END ACTION 
ROUTINE 

FREE DYNAMIC EXT M.FD 6A H.ALOC 9 8.3.5 
INDEX DATA SPACE 

( FREE DYNAMIC TASK M.FE 68 H.ALOC 11 8.3.6 
EXECUTION SPACE 

FREE SHARED MEMORY M.EXCL 79 H.ALOC 14 8.3.3 

GET ADDRESS LIMITS M.GADRL 65 H.MONS 41 8.3.7 

*GET DEVICE MNEMONIC M.DEVID 14 H.MONS 71 8.2.12 
OR TYPE CODE 

GET DYNAMIC EXTENDED M.GD 69 H.ALOC 8 8.3.8 
INDEXED DATA SPACE 

GET DYNAMIC TASK M.GE 67 H.ALOC 10 8.3.9 
EXECUTION SPACE 

GET MSG PARAMETERS M.GMSGP 7A H.MONS 35 8.2.21 

GET RUN PARAMETERS M.GRUNP 7B H.MONS 36 8.2.22 

GET SHARED MEMORY M.INCL 72 H.ALOC 13 8.3.10 

GET TASK NUMBER M.ID 64 H.MONS 32 8.2.24 
M.MYID 8.2.26 

(: *NEW 

B-11 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

(CONTINUED) (; 
REF MANUAL 

SVC 1,XX MODULE E.P. SECTION 

LOAD AND EXECUTE M.DEBUG 63 H.MONS 29 8.2.10 
INTERACTIVE DEBUGGER 

LOAD OVERLAY AND M.OLAY 50 H.MONS 13 8.2.27 
LOAD AND EXECUTE 51 H.MONS 14 8.2.27 
OVERLAY 

MEMORY ADDRESS INQUIRY M.ADRS 44 H.MONS 3 8.3.1 

MEMORY DUMP REQUEST M.DUMP 4F H.MONS 12 8.3.2 

NO-W AIT I/O END M.XIEA 2C H.IOCS 34 7.8.32 
ACTION RETURN 

OPEN FILE M.FILE 30 H.IOCS 1 7.8.9 

PARAMETER TASK M.PTSK 5F H.MONS 40 8.2.30 
ACTIVATION (PRIV) 

PERMANENT FILE ADDRESS M.FADD 43 H.MONS 2 7.8.8 
INQUIRY 

PERMANENT FILE LOG M.LOG 73 H.MONS 33 7.8.15 

PHYSICAL DEVICE M.PDEV 42 H.MONS 1 7.8.16 
INQUIRY 

PROGRAM HOLD REQUEST M.HOLD 58 H.MONS 25 8.2.23 

READ RECORD M.READ 31 H.IOCS 3 7.8.18 

RECEIVE MESSAGE M.RCVR 6B H.MONS 43 8.2.31 
LINK ADDRESS 

RELEASE CHANNEL (PRIV) M.RRES 3B H.IOCS 13 7.8.21 

RELEASE DUAL PORTED M.RELP 27 H.IOCS 27 7.8.19 
DISC 

RELEASE EXCLUSIVE M.FXLR 22 H.FISE 23 7.8.13 
FILE LOCK 

RELEASE FHD PORT (PRIV) N/A 27 H.IOCS 27 7.8.35 

(~, 
.. J' 

*NEW 

B-12 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 

( (CONTINUED) 
REF MANUAL 

SVC 1,XX MODULE E.P. SECTION 

RELEASE M.FSLR 24 H.FISE 25 7.8.10 
SYNCHRONIZA TION 
FILE LOCK 

RESERVE CHANNEL (PRIV) M.RSRV 3A H.IOCS 12 7.8.24 

*RESERVE DUAL PORTED M.RESP 26 H.IOCS 24 7.8.20 
DISC 

RESERVE FHD PORT (PRIV) N/A 26 H.IOCS 24 7.8.36 

RESOURCEMARK LOCK M.RSML 19 H.MONS 62 7.8.22 

RESOURCEMARK UNLOCK M.RSMU 1A H.MONS 63 7.8.23 

RESUME TASK EXECUTION M.SUME 53 H.MONS 16 8.2.37 

REWIND FILE M.RWND 37 H.IOCS 2 7.8.25 

SCAN TERMINAL M.TSCAN 5B H.TSM 2 5.6.1 

( INPUT BUFFER 

SEND MESSAGE TO M.SMSGR 6C H.MONS 44 8.2.34 
SPECIFIED TASK 

SEND RUN REQUEST M.SRUNR 6D H.MONS 45 8.2.35 

SET ASYNCHRONOUS TASK M.ASYNCH 1C H.MONS 68 8.2.3 
INTERRUPT 

SET EXCLUSIVE M.FXLS 21 H.FISE 22 7.8.14 
FILE LOCK 

SET SYNCHRONIZATION M.FSLS 23 H.FISE 24 7.8.11 
FILE LOCK 

SET SYNCHRONOUS TASK M.SYNCH 1B H.MONS 67 8.2.39 
INTERRUPT 

SET TABS IN UDT N/A 59 H.TSM 5 N/A 

SET USER STATUS WORD M.SETS 48 H.MONS 7 8.2.32 

SET USER ABORT M.SUAR 60 H.MONS 26 8.2.36 
RECEIVER ADDRESS 

(~ 
*NEW 

B-13 



UNPRIVILEGED USER LEVEL SYSTEM SERVICES - ALPHABETIC 
j ( -, 

(CONTINUED) >/ 

REF MANUAL 
SVC I,XX MODULE E.P. SECTION 

SHARE MEMORY WITH M.SHARE 71 H.ALOC 12 8.3.11 
ANOTHER TASK 

SUBMIT JOB FROM M.CDJS 61 H.MONS 27 8.2.7 
DISC FILE 

SUSPEND TASK EXECUTION M.SUSP 54 H.MONS 17 8.2.38 

SYSTEM CONSOLE WAIT M.CWAT 3D H.IOCS 26 7.8.5 

T ASK CPU EXECUTION TIME M.XTIME 20 H.MONS 65 8.2.50 

T ASK OPTION WORD M.PGOW 4C H.MONS 24 8.2.28 
INQUIRY 

TERMINATE TASK M.EXIT 55 H.MONS 18 8.2.20 
EXECUTION 

TEST TIMER ENTRY M.TSTT 46 H.MONS 5 8.2.43 

TEST USER STATUS WORD M.TSTS 49 H.MONS 8 8.2.42 '\ .. 

TIME-OF-DAY INQUIRY M.TDAY 4E H.MONS 11 8.2.40 

TRAP ONLINE USER'S M.TBRKON 5C H.TSM 6 5.6.2 
TASK 

UNLOCK AND DEQUEUE M.SMULK IF H.ALOC 19 8.3.12 
SHARED MEMORY 

*UPSPACE M.UPSP 10 H.IOCS 20 7.8.27 

USERNAME SPECIFICATION M.USER 74 H.MONS 34 7.8.28 

WAIT I/O M.WAIT 3C H.IOCS 25 7.8.29 

WAIT FOR ANY MSG, M.ANYW 7C H.MONS 37 8.2.2 
END ACTION, OR BRK 

WRITE EOF M.WEOF 38 H.IOCS 5 7.8.30 

WRITE RECORD M.WRIT 32 H.IOCS 4 7.8.31 

*NEW 
'C~."·· , 

, 

B-14 



USER LEVEL SYSTEM SER VICES - SVC ORDER 

( REF MANUAL 
SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

DO-OF RESERVED 

10 UPSPACE H.IOCS,20 M.UPSP 7.8.27 

11 RESERVED 

12 DISABLE USER BREAK H.MONS,73 M.DSUB 8.2.16 
INTERRUPT 

13 ENABLE USER BREAK H.MONS,72 M.ENUB 8.2.19 
INTERRUPT 

14 GET DEVICE MNEMONIC H.MONS,71 M.DEVID 8.2.12 
OR TYPE CODE 

15 DATE AND TIME INQUIRY H.MONS,70 M.DATE 8.2.9 

16 RESERVED 

17 ADII/O H.ADIO,8 N/A N/A 

( 18 ADI EAI H.ADIO,9 N/A N/A 

19 RESOURCEMARK LOCK H.MONS,62 M.RSML 7.8.22 

lA RESOURCEMARK UNLOCK H.MONS,63 M.RSMU 7.8.23 

IB SET SYNCHRONOUS TASK H.MONS,67 M.SYNCH 8.2.39 
INTERRUPT 

lC SET ASYNCHRONOUS H.MONS,68 M.ASYNCH 8.2.3 
T ASK INTERRUPT 

10 END ACTION WAIT H.EXEC,40 M.EAWAIT 8.2.17 

IE ACTIVATE PROGRAM AT H.MONS,66 M.TURNON 8.2.44 
GIVEN TIME OF DAY 

IF UNLOCK AND DEQUEUE H.ALOC,19 M.SMULK 8.3.12 
SHARED MEMORY 

20 RESERVED 

21 SET EXCLUSIVE H.FISE,22 M.FXLS 7.8.14 
FILE LOCK 

(> 

B-15 



USER LEVEL SYSTEM SERVICES - SVC ORDER 
. (CONTINUED) (' " " 

REF MANUAL =,/ 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

22 RELEASE EXCLUSIVE H.FISE,23 M.FXLR 7.8.13 
FILE LOCK 

23 SET SYNCHRONIZATION H.FISE,24 M.FSLS 7.8.11 
FILE LOCK 

24 RELEASE H.FISE,25 M.FSLR 7.8.10 
SYNCHRONIZA TION 
FILE LOCK 

25 EXECUTE CHANNEL H.IOCS,10 N/A 7.8.34 
PROGRAM 

26 RESER VE FHD PORT H.IOCS,24 N/A 7.8.36 
RESERVE DUAL PORTED H.IOCS,24 M.RESP 7.8.20 
DISC 

27 RELEASE FHD PORT H.IOCS,27 N/A 7.8.35 
RELEASE DUAL PORTED H.IOCS,27 M.RELP 7.8.19 
DISC 

28 CONVERT ASCII H.TSM,7 M.CONADB 5.6.3.1 
DECIMAL TO BINARY 

29 CONVERT ASCII H.TSM,8 M.CONAHB 5.6.3.2 
HEX TO BINARY 

2A CONVER T BINARY H.TSM,9 M.CONBAD 5.6.3.3 
TO ASCII DECIMAL 

2B CONVERT BINARY H.TSM,lO M.CONBAH 5.6.3.4 
TO ASCII HEX 

2C NO-W AIT I/O END H.IOCS,34 M.XIEA 7.8.32 
ACTION RETURN 

20 TASK CPU EXECUTION TIME H.MONS,65 M.XTIME 8.2.50 

2E DISABLE MESSAGE H.MONS,57 M.DSMI 8.2.15 
TASK INTERRUPT 

B-16 



USER LEVEL SYSTEM SERVICES - SVC ORDER 

( (CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

2F ENABLE MESSAGE H.MONS,58 M.ENMI 8~2.18 
T ASK INTERRUPT 

30 OPEN FILE H.IOCS,1 M.FILE 7.8.9 

31 READ RECORD H.IOCS,3 M.READ 7.8.18 

32 WRITE RECORD H.IOCS,4 M.WRIT 7.8.31 

33 ADVANCE RECORD H.IOCS,7 M.FWRD 7.8.12 

34 ADVANCE FILE H.IOCS,8 M.FWRD 7.8.12 

35 BACKSPACE RECORD H.IOCS,9 M.BACK 7.8.2 

36 BACKSPACE FILE H.IOCS,19 M.BACK 7.8.2 

37 REWIND FILE H.IOCS,2 M.RWND 7.8.25 

( 
38 WRITE EOF H.IOCS,5 M.WEOF 7.8.30 

39 CLOSE FILE H.IOCS,23 M.CLSE 7.8.3 

3A RESER VE CHANNEL (PRIV) H.IOCS,12 M.RSRV 7.8.24 

3B RELEASE CHANNEL (PRIV) H.IOCS,13 M.RRES 7.8.21 

3C WAIT I/O H.IOCS,25 M.WAIT 7.8.29 

3D SYSTEM CONSOLE WAIT H.IOCS,26 M.CWAT 7.8.5 

3E ERASE OR PUNCH TRAILER H.IOCS,21 N/A 7.8.33 

3F CONSOLE TYPE H.IOCS,14 M.TYPE 7.8.26 

40 ALLOCA TE FILE OR H.MONS,21 M.ALOC 7.8.1 
PERIPHERAL DEVICE 

41 DEALLOCA TE FILE OR H.MONS,22 M.DALC 7.8.6 
DEVICE 

42 PHYSICAL DEVICE H.MONS,1 M.PDEV 7.8.16 
INQUIRY 

( 

B-17 



USER LEVEL SYSTEM SERVICES - SVC ORDER 

(CONTINUED) 
(-" 

-"'~ 

REF MANUAL 
SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

43 PERMANENT FILE H.MONS,2 M.FADD 7.8.8 
ADDRESS INQUIRY 

44 MEMORY ADDRESS H.MONS,3 M.ADRS 8.3.1 
INQUIRY 

45 CREATE TIMER ENTRY H.MONS,4 M.SETT 8.2.33 

46 TEST TIMER ENTRY H.MONS,5 M.TSTT 8.2.43 

47 DELETE TIMER ENTRY H.MONS,6 M.DLTT 8.2.14 

48 SET USER STATUS H.MONS,7 M.SETS 8.2.32 
WORD 

49 TEST USER STATUS H.MONS,8 M.TSTS 8.2.42 
WORD 

4A CHANGE PRIORITY H.MONS,9 M.PRIL 8.2.29 
LEVEL (PRIV) "f" -, 

',,- ' 

4B CONNECT TASK TO H.MONS,10 M.CONN 8.2.8 
INTERRUPT 

4C T ASK OPTION WORD H.MONS,24 M.PGOW 8.2.28 
INQUIRY 

40 ARITHMETIC H.MONS,23 M.TSTE 8.2.41 
EXCEPTION INQUIRY 

4E TIME-OF -DA Y H.MONS,11 M.TDAY 8.2.40 
INQUIRY 

4F MEMORY DUMP H.MONS,12 M.DUMP 8.3.2 
REQUEST 

50 LOAD OVERLAY H.MONS,13 M.OLAY 8.2.27 

51 LOAD AND EXECUTE H.MONS,14 M.OLAY 8.2.27 
OVERLAY 

52 ACTIV ATE TASK H.MONS,15 M.ACTV 8.2.1 

53 RESUME TASK H.MONS,16 M.SUME 8.2.37 
EXECUTION C 

B-18 



USER LEVEL SYSTEM SERVICES - SVC ORDER 
(-

(CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

... ;. 

54 SUSPEND TASK H.MONS,17 M.SUSP 8.2.38 
EXECUTION 

55 TERMINATE TASK H.MONS,18 M.EXIT 8.2.20 
EXECUTION 

56 ABORT SPECIFIED TASK H.MONS,19 M.BORT 8.2.4 

57 ABORT SELF H.MONS,20 M.BORT 8.2.4 

58 PROGRAM HOLD REQUEST H.MONS,25 M.HOLD 8.2.23 

59 SET TABS IN UDT H.TSM,5 N/A N/A 

5A DELETE TASK H.MONS,31 M.DELTSK 8.2.11 

5B SCAN TERMINAL H.TSM,2 M.TSCAN 5.6.1 
INPUT BUFFER 

( 5C TRAP ONLINE H.TSM,6 M.TBRKON 5.6.2 
USER'S TASK 

5D DISCONNECT TASK H.MONS,38 M.DISCON 8.2.13 
FROM INTERRUPT 

5E EXIT FROM H.MONS,39 M.XMSGR 8.2.47 
MESSAGE RECEIVER 

5F PARAMETER TASK H.MONS,40 M.PTSK 8.2.30 
ACTIV A nON (PRIV) 

60 SET USER ABORT H.MONS,26 M.SUAR 8.2.36 
RECEIVER ADDRESS 

61 SUBMIT JOB FROM H.MONS,27 M.CDJS 8.2.7 
DISC FILE 

62 ABORT WITH EXTENDED H.MONS,28 M.BORT 8.2.4 
MESSAGE 

( ., 

., 

B-19 



USER LEVEL SYSTEM SERVICES - SVC ORDER 

(CONTINUED) (~; 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

63 LOAD AND EXECUTE H.MONS,29 M.DEBUG 8.2.10 
INTERACTIVE 
DEBUGGER 

64 GET TASK NUMBER H.MONS,32 M.ID 8.2.24 
M.YID 8.2.26 

65 GET ADDRESS LIMITS H.MONS,41 M.GADRL 8.3.7 

66 DEBUG LINK SERVICE H.MONS,42 N/A 8.2.51 

67 GET DYNAMIC TASK H.ALOC,10 M.GE 8.3.9 
EXECUTION SPACE 

68 FREE DYNAMIC TASK H.ALOC,11 M.FE 8.3.6 
EXECUTION SPACE 

69 GET DYNAMIC EXTENDED H.ALOC,8 M.GD 8.3.8 
INDEXED DATA SPACE 

6A FREE DYNAMIC EXTENDED H.ALOC,9 M.FD 8.3.5 ,--
INDEX DATA SPACE 

6B RECEIVE MESSAGE H.MONS,43 M.RCVR 8.2.31 
LINK ADDRESS 

6C SEND MESSAGE TO H.MONS,44 M.SMSGR 8.2.34 
SPECIFIED TASK 

60 SEND RUN REQUEST H.MONS,45 M.SRUNR 8.2.35 

6E BREAK/TASK H.MONS,46 M.BRK 8.2.5 
INTERRUPT LINK 

6F ACTIV ATE TASK H.MONS,47 M.INT 8.2.25 
INTERRUPT 

70 EXIT FROM TASK H.MONS,48 M.BRKXIT 8.2.6 
INTERRUPT LEVEL M.XBRKR 8.2.45 

71 SHARE MEMORY H.ALOC,12 M.SHARE 8.3.11 
WITH ANOTHER TASK 

72 GET SHARED MEMORY H.ALOC,13 M.INCL 8.3.10 

73 PERMANENT FILE LOG H.MONS,33 M.LOG 7.8.15 (" .J' 

B-20 



USER LEVEL SYSTEM SERVICES - SVC ORDER 

( (CONTINUED) 
REF MANUAL 

SVC 1 DESCRIPTION MODULE,EP MACRO SECTION 

74 USERNAME H~MONS,34 M.USER 7.8.28 
SPECIFICA TION 

75 CREA TE PERM FILE H.FISE,12 M.CREATE 7.8.4 

76 CHANGE TEMP FILE H.FISE,13 M.PERM 7.8.17 
TO PERMANENT 

77 DELETE PERM FILE H.FISE,14 M.DELETE 7.8.7 

78 RESER VED FOR 
FUTURE USE 

79 FREE SHARED MEMORY H.ALOC,14 M.EXCL 8.3.3 

7A GET MSG PARAMETERS H.MONS,35 M.GMSGP 8.2.21 

7B GET RUN PARAMETERS H.MONS,36 M.GRUNP 8.2.22 

7C WAIT FOR ANY MSG, H.MONS,37 M.ANYW 8.2.2 

( 
END ACTION, OR BRK 

70 EXIT RUN RECEIVER H.MONS,49 M.XRUNR 8.2.49 

7E EXIT FROM MESSAGE H.MONS,50 M.XMEA 8.2.46 
END ACTION ROUTINE 

7F EXIT FROM RUN H.MONS,51 M.XREA 8.2.28 
REQUEST END ACTION 
ROUTINE 

B-21/B-22 



c 



( APPENDIX C 

MPX-32 ABORT AND CRASH CODES 

C-l 



CODE 

ADOI 

AD02 

AD03 

ADOlf. 

C-2 

Address Specification Trap Handler (J-i.IPOC) c 
DESCRIPTION 

Address specification occurred within the operating system. 

Address specification occurred within the current task. 

Trap occurred while no tasks were in active state. 

Trap occurred within another interrupt trap routine. 

c 



( 

( 

CODE 

ALOI-AL06 

AL07 

AL08 

AL09 

ALIO 

ALll 

ALI2 

ALl3 

ALI4 

ALl5 

ALl6 

ALl7 

ALl8 

ALI9 

AL20 

AL2! 

AL22 

AL23 

The Allocator (H.ALOC) 

DESCRIPTION 

Reserved 

The combined number of file assignments for a task exceeds 
number specified. The cataloged assignments are combined with 
those defined by $ASSIGN statements. See cataloger FILES 
directive and recatalog if needed. 

An assigned permanent file is nonexistent. 

An assigned device is not configured in the system. An assigned 
device is off-line. 

Reserved 

Reserved 

Unable to load program because of I/O error or addressing 
inconsistencies in load module preamble. 

An unrecoverable I/O error has occurred during the read of the 
task preamble into the TSA. 

Reserved 

An assigned device type is not configured in the system. 

A resident request has been issued for a task requiring an SLO, 
SBO, SGO or SYC file. Resident tasks cannot use system files. 

Reserved 

Reserved 

A file code to file code assignment (ASSIGN4) has been made to an 
undefined file code. A file code must be defined before a second 
file code can be equated by an ASSIGN4. 

User attempted deallocation of TSA. 

Destroyed task MIDL was detected while attempting to allocate 
dynamic execution space. 

A software checksum error has occurred during task loading. 

An invalid user name is cataloged with the task. The user name is 
either not contained in the user name file M.KEY or a correct user 
key is not present. Also: task has attempted to deallocate TSA. 

C-3 



AL24 

AL25 

AL26 

AL27 

AL28 

AL29 

AL30 

AL3! 

AL32 

AL33 

AL34 

AL35 

AL36 

AL37 

AL38 

AL39 

AL40 

AL41 

AL42 

AL43 

C-4 

Access to an assigned permanent file is by password only, and a 
valid password was not included on the cataloged assignment or Job 
Control statement assignment. 

Undefined Resource Requirement Summary (RRS) type (internal 
format of an assignment statement is wrong). 

The task has requested more blocking buffers than were specified 
during catalog. See Cataloger BUFFER directive and recatalog if 
needed. 

There are no free entries in shared memory table for GLOBAL, 
DATAPOOL, CSECT, or other shared areas. 

Task is attempting to share an undefined GLOBAL or DATAPOOL 
memory partition. 

Task is attempting to exclude undefined memory partition. 

The requested device is already assigned to the requesting task via 
another file code. Use ASSIGN4 or deallocate before reallocating. 

Logical file code has already been allocated by caller (e.g., a card 
reader may already be assigned to lfc IN and a magnetic tape 
cannot be assigned to the same file code). Use ASSIGN4 or 
deallocate before reallocating. 

Dynamic common block may not be assigned via ASSIGN 1 
directive. 

Shared memory definition conflicts with caller's address space. 

Shared memory partition not defined in SMD. 

Attempt to share an SMD entry that is not a memory partition. 

Invalid password specified for shared memory partition. 

Attempt to exclude undefined shared memory partition. 

Attempt to activate a privileged task by unauthorized owner. 

Shared memory entry not found. 

Partition definition not found on SMD. 

SMD definition not a dynamic definition. 

Invalid password for this partition. 

Task has attempted to allocate an unshared resource that was not 
available during task activation in a memory-only environment. 

.("'. I' 
j 

c 



AL44 

(~ 
AL45 

AL46 

AL47 

AL48 

AL49 

AL50 

AL51-AL54 

AL55 

(' 
AL56 

AL57 

Unable to resume 'SYSBUILD' task during initial task activation in 
a memory-only environment. 

Unable to deallocate input device after dynamic task activation in 
a memory-only environment. 

Task has attempted to share memory via a dynamic memory 
partition in a memory-only environment. 

Dynamic memory partitions cannot be greater than 1 megabyte. 

The user has attempted to exclude a shared partition whose 
associated map blocks are not designated as being shared in the 
task's TSA. 

The task's DSECT space requirements overlap the task's TSA space 
requirements. 

The task's DSECT space requirements overlap the task's CSECT 
space requirements, or if no CSECT, load module is too large to fit 
in user's address space. 

Reserved 

The sum of the CSECT, DSECT, and the operating system sizes is 
greater than the total amount of memory configured. 

Unrecoverable I/o error to the SMD. 

File Lock Table (FL T) is full. 

C-5 



CODE 

ASOI 

AS02 

AS03 

AS04 

AS05 

AS06 

AS07 

AS08 

AS09 

ASIO 

ASl1 

ASl2 

ASl3 

ASl4 

ASl5 

AS16 

ASl7 

C-6 

Assembler 

DESCRIPTION 

Physical end-of-file encountered on write to the General Object 
(GO) file. 

Physical end-of-file encountered on write to the Binary Output 
(BO) file. 

Physical end-of-file encountered on write to the Listed Output 
(LO) file. 

Physical end-of-file encountered on write to the scratch (UT 1) file 
(i.e., $ASSIGN3 UTI = DC, ????). 

Physical end-of-file encountered on write to the cross-reference 
(UT2) file (i.e., $ASSIGN3 UT2 = DC, ????). 

There does not exist a prime number of three-word entries in the 
allocated core for the symbol table. 

Unrecoverable I/O error on the Binary Output (BO) file. 

Unrecoverable I/O error on the General Object (GO) file. 

Unrecoverable I/O error on the Listed Output (LO) file. 

Unrecoverable I/O error on the Source Input (SI) file. 

Unrecoverable I/O error on the intermediate compressed source 
(UTI) file. 

Physical end-of-file encountered on write to the Compressed 
Source Output (CS) file. 

Checksum error on compressed source input either during pass I 
while reading compressed source from the Source Input (SI) file or 
during pass 2 while reading the intermediate scratch compressed 
source (UT I) file. 

The file the Assembler is using as the macro library was not 
successfully created by the macro library generator. The file is 
invalid. 

Unrecoverable I/O error on the Macro Library (MAC) file. 

Unrecoverable I/O error on the cross-reference (UT2) file. 

Unrecoverable I/O error on the Compressed Source Output (CS) 
file. 

((: .~ 
,./ 



( 

( 

AS18 

AS19 

AS20 

AS21 

AS22 

AS23 

AS24 

AS25 

AS26 

AS27 

AS28 

AS29 

AS30 

AS31 

AS32 

AS33 

Invalid blocking buffer control pointer encountered on the Binary 
Output (BO) file. 

Invalid blocking buffer control pointer encountered on the General 
Object (GO) file. 

Invalid blocking buffer control pointer encountered on the Listed 
Output (LO) file. 

Invalid blocking buffer control pointer encountered on the Source 
Input (SI) file. 

Invalid blocking buffer control pointer encountered on the Scratch 
Compressed Source (UT 1) file. 

Invalid blocking buffer control pointer encountered on the 
Compressed Source Output (CS) file. 

Invalid blocking buffer control pointer encountered on the cross
reference (UT2) file. 

The macro library (MAC) file is unblocked. 

End of file on MA2 file. 

Unrecoverable I/o error on MA2 file. 

Invalid blocking buffer control pointer on MA2 file. 

MAC assigned to illegal device. 

MA2 assigned to illegal device. 

Potential abort conditions have been detected during program 
assembly. An abort status flag within the job's TSA has been set 
during assembler termination processing. Conditional job control 
directives may be used to test status prior to job continuation. 

Unrecoverable I/O error on the prefix (MPXPRE) file. 

Invalid blocking buffer control pointer encountered on the prefix 
(MPXPRE) file. 

C-7 



CODE 

AU01 

AU02 

AU03 

AUOl/. 

AU05 

CODE 

DB01 

DB02 

CODE 

CMOI 

CM02 

CM03 

CMOl/. 

CM05 

C-8 

Auto-Start Trap Processor (H.IP AS) 

DESCRIPTION 

Trap occurred on auto-start. 

Trap occurred in another interrupt trap routine. 

Reserved 

Reserved 

User was unmapped when trap occurred. 

Debugger 

DESCRIPTION 

End of medium error on lfc IIOT in batch mode. 

Fatal I/O error on lfc contained in the abort message. 

Call Monitor Interrupt Processor (H.IP27 and H.IPOA) 

DESCRIPTION 

Physical end-of-file encountered on write to the compressed source 
output (CS) file. Call monitor interrupt processor cannot locate 
the CALM instruction. 

Expected CALM instruction does not have CALM (X'30') opcode. 

Invalid CALM number. 

CALM number too low (out of bounds). 

CALM number too big (out of bounds). 

( ..... -' .. : r: 

j 



CODE 

CTOI 

CT02 

CT03 

CT04 

CT05 

CT06 

Catalog 

DESCRIPTION 

Physical end-of-file encountered on subroutine library. The lfc of 
the library in question is displayed. This results from the library 
being updated by another user while it is allocated by the 
Cataloger. 

Load module file specified with CATALOG cannot be allocated. 

Unrecoverable I/O error encountered on the OAT APOOL dictionary 
file assigned to DPD. 

Listed output space is deleted and additional SLO space cannot be 
allocated. 

Unrecoverable I/O error on file or device assigned to SBM for 
SYMT AB output. 

An error occurred during the cataloging process and the reason is 
described in the SLOe 

C-9 



CODE 

DPOI 

DP02 

DP03 

DP04 

DP05 

DP06 

DP07 

DP08 

DP09 

DP10 

DPll 

DP12 

DP13 

DP14 

DP15 

DP16 

DP17 

DP18 

DP19 

DP20 

DP21 

DP22 

DP99 

C-IO 

Datapool Editor (DPEDIT) 

DESCRIPTION 

Unrecoverable I/O error while reading or writing the DATAPOOL 
dictionary. 

Dictionary file code (DPD) unassigned. 

Unrecoverable error on error audit trail (ER) file. 

Unrecoverable error on audit trail (LO) file. 

Unable to allocate additional SLO space for audit trail after initial 
file is filled. 

Unable to allocate additional SLO space for error audit trail after 
initial file is filled. 

Invalid directive. 

The name 'DAT APOOL' is not defined as a core partition. 

Dictionary overflow. 

Unable to reassign the DPD file. 

End-of-tape or illegal end-of-file encountered on IN. 

Physical end-of-media encountered on OT. 

Unrecoverable error on IN. 

Unrecoverable error on OT. 

File code OT unassigned and the SAVE function requested. 

File code IN unassigned and the REM AP function requested. 

Sequence error on dictionary entry record (accessed through file 
code IN). 

Checksum error on dictionary entry record (accessed through file 
code OT). 

Invalid specification on REMAP directive. 

Invalid specification on DPD directive. 

Unrecoverable error on directive input (SYC) file. 

Dictionary size is less than the required minimum (five records). 

A non-fatal error occurred. 



(" CODE 

ECll 

ECl2 

ECl3 

ECl4 

ECl5 

ECl6 

ECI? 

ECl8 

ECl9 

(~ EC20 

EC21 

EC22 

EC23 

EC24 

EC25 

ERnn 

Error Condition Codes for DPEDIT 

DESCRIPTION 

Attempt to delete a symbol not found in the dictionary. 

Attempt to delete a symbol that is used as a base for another 
variable. 

A change is requested for a symbol used as a base that may result 
in a change in the relative address. 

The calculated relative address does not fall on the specified 
boundary (precision). 

The referenced base symbol is not in the datapool dictionary. 

Attempt to add a symbol that is already defined in the dictionary. 

The calculated relative address is not within the range of the 
datapool core partition. 

The datapool variable does not reside in the dictionary at the 
location computed by the hash coding scheme. 

Invalid specification on directive. 

Log function deleted, not enough memory to sort data. 

Log function deleted, the scratch sort file is not enough to contain 
the necessary data. 

Log function deleted, unrecoverable I/o error on the scratch sort 
file. 

Attempted to change a symbol not found in the dictionary. 

Computed relative address does not agree with actual. 

Entries are multiply defined. 

Error encountered in processing data card fields. The column 
number in which the error was detected is specified by "nn". 

C-ll 



EDIT 

CODE DESCRIPTION 

EDOl User terminal I/O hardware error. 

ED02 Internal line linkage invalid. 

ED03 Reserved (RTM Only). 

ED04 Internal logic error. 

{ 

C-l2 



(-

( 

CODE 

FMOl 

FM02 

FM03 

FM04-

FM05 

FM06 

FM07 

FM08 

FM09 

FMlO 

FMll 

FM12 

FM13 

FMl4-

FM15 

FMl6 

FM17 

FM18 

FMl9 

FM20 

FM21 

FM24-

FM25 

File Manager (FILEMGR) 

DESCRIPTION 

Invalid command verb on directive. 

Required argument(s) absent from a directive. 

Create requested for an existing file. 

Device specified is invalid for this command. 

Decimal number specification contains non-decimal digits. 

Hexadecimal number specification contains non-hexadecimal 
characters. 

Specified file is password protected and correct password not 
specified. 

Attempt to expand a core partition. 

Cannot create or expand file due to unavailability of disc space for 
allocation. 

Attempt to create a fast file which mapped into an existing fast 
file in the SMD. 

DELETE, SAVE, or EXPAND requested for a disc file which does 
not exist. 

Insufficient file assignment table space for I/O to the SMD. 

Unrecoverable I/O error to the SMD. 

Unrecoverable I/O error to the SYC file. 

Unrecoverable I/O error to the SLO file. 

Unrecoverable I/O error to the IN file. 

Unrecoverable I/O error to the OUT file. 

Invalid argument. 

Cannot allocate required file. 

Unrecoverable I/O error on SAVE/RESTORE file. 

Unexpected EOF on IN file. 

File specified for RESTORE not found. 

Too many prototypes specified. 

C-13 



FM26 

FM41 

FM42 

FM99 

C-14 

EOF expected on IN file not found. 

End of medium on lfc SLOe 

Invalid username or key. 

Directive errors have been detected during execution of the File 
Manager. An abort status flag within the job's TSA has been set 
during File Manager termination processing. Conditional job 
control directives may be used to test status prior to job 
continuation. 



(~--
CODE 

FSOl 

FS02 

FS03 

FS04 

FS05 

FS06 

FS07 

FS08 

CODE 

FTOl 

FT02 

FT03 

FT04 

FT05 

FT06 

( "" 
" 

File System 

DESCRIPTION 

Unrecoverable I/o error to the System Master Directory (SMD). 

Unrecoverable I/O error to a disc allocation map. 

Attempt to add a new file, but the System Master Directory (SMD) 
is full. 

A disc allocation map checksum error was detected. 

A ttempt to allocate disc space that is already allocated. 

Attempt to deallocate disc space that is not allocated. 

Reserved. 

Unrecoverable I/O error occurred while zeroing a file during 
creation. 

Fortran 

DESCRIPTION 

Fortran scratch file *u 1 must be expanded (i.e., $ASSIGN3 
*u 1 =DC, ????). 

Fortran scratch file *U2 must be expanded (i.e., $ASSIGN3 
*U2=DC, ????). 

Binary output (BO) file must be expanded if a disc file (i.e., 
$ASSIGN2 BO=SLO, ???? or a direct assignment to the card punch -
$ASSIGN3 BO=CP). . 

The compiled program caused the SGO file to overflow. The size 
of the SGO file can be increased via SYSGEN or may be assigned to 
tape via Operator Communications. 

End of medium on nonspooled SLO file. File must be expanded if a 
disc file or a direct assignment made to the line printer -
$ASSIGN3 LO=LP. 

Potential abort conditions have been detected during program 
compilation. An abort status flag within the job's TSA has been set 
during compiler termination processing. Conditional job control 
directives may be used to test status prior to job continuation. 

C-l5 



CODE 

HTOI 

HT02 

HT03 

HT04 

HT05 

C-16 

Halt Trap Processor (H.IPHT) 

DESCRIPTION 

Trap occurred in user's map area. 

Trap occurred in another interrupt trap routine. 

Trap occurred while no other tasks were in the active state. 

Reserved. 

User was unmapped when trap occurred. 



(~ 

( 

CODE 

1001 

1002 

1003 

1004 

1006 

1007 

1008 

1009 

1010 

1011 

Input/Output Control Supervisor (H.IOCS) 

DESCRIPTION 

An I/O operation has been attempted for which the FCB is not 
properly linked to a File Assignment Table (FAT) entry. Since this 
linkage is established by 10CS when the file is opened, either the 
user task has not properly opened the file or the FCB has been 
inadvertently destroyed subsequent to the time the open file 
operation was performed. 

An I/O operation has been attempted on an unopened file. This 
abort code will normaUy be issued when a user has opened a file, 
subsequently closed the file, then attempted an I/O operation on 
the file. 

An unprivileged task is attempting to read data into an area of 
core which is not allocated for its use. This type of abort is usuaUy 
caused by an invalid TCW in the task's FCB. 

The control specifications in the FCB specify random access. 
However, the random access address contained in the FCB does not 
fall within the limits of the file. 

Invalid blocking buffer control cells have been encountered during 
a read operation performed on a blocked file. This type error is 
normally caused in one of the three ways: 

(1) The user's blocking buffer has been inadvertently destroyed. 
(2) The file being read is not a properly blocked file. 
(3) A data transfer error has occurred on input of data from the 

file. 

The task has attempted to perform an operation which is not valid 
for the device to which the user's file is assigned (e.g., a read 
operation specified for a file assigned to the line printer). 

Reserved 

The task has attempted to perform a rewind operation on the 
system SYC file. 

The task has attempted a write End-of-File operation on a file 
which has been opened in the Read-Only access mode. 

The task has attempted a write End-of-File operation on the 
system SYC file. 

C-17 



1012 

1013 

1014 

1015 

1017 

1018 

1021 

1022 

1024 

1025 

1026 

1027 

1028 

1029 

1030 

C-18 

The task has attempted an erase or punch trailer operation on a 
file which has been opened in the Read-Only access mode. 

The task has requested an illegal operation to be performed on a 
system file (backspace file, upspace, erase or punch trailer, eject, 
advance record, advance file, or backspace record). 

A task running in the unprivileged mode has attempted to reserve 
an I/O channel. 

A task has requested a type operation and the Type Control 
Parameter Block (TCPB) specified indicates that an operation 
associated with that TCPB is already in progress. 

The task has attempted an open operation on a file, and no File 
Pointer Table (FPT) entry exists with a matching file code. This 
type of abort is most often caused by an improper or missing file 
assignment directive at catalog or linking load time. This type 
abort may also occur if the logical file code portion of the task's 
FCB has been inadvertently destroyed. 

Reserved 

10CS has encountered an unrecoverable I/O error in attempting to 
process an I/O request on behalf of a task. 

An illegal IOCS entry point has been entered by a task. 

A task has specified an illegal address or transfer count in the FCB 
TCW. This type of error is usually the result of trying to output to 
a halfword device from a data area which is not on a half word 
boundary. This error may also occur if the task attempts to 
transfer other than an even multiple of half words to or from a 
half word device. 

The task has requested a data transfer operation (read or write) 
with a Transfer Control Word (TCW) which specifies a quantity of 
zero. 

Illegal sequence of operations while in read mode on either a 
system file or a blocked file. 

Illegal sequence of operations while in write mode on either a 
system file or a blocked file. 

Attempt to advance a record while in the write mode on a blocked 
file. 

Attempt to advance a file while in the write mode on a blocked 
file. 

Illegal or unexpectecd volume number encountered on magnetic 
tape. (j 



1032 

( 
1033 

1034 

1035 

1036 

1037 

1038 

1039 

1040 

1043 

1046 

1047 

1048 

1049 

1053 

1054 

(-

Calling task has attempted to perform a second read on a $ 
statement through the SYC file. 

An Invalid Device Address has been specified in the Task's 
Input/Output Control Header (lOCH). 

An unprivileged task has requested the link service. 

An unprivileged task has specified an 10CB list greater than 30 
10CB's in length. 

A SYSGEN error has occurred, and the handler HAT address is not 
in the Controller Definition Table (CDT). 

Job sequence number not found in the job table for task attempting 
to open SYC or SGO file. 

The task has requested a write operation to be performed on a file 
which has been opened in the read-only access mode. Permanent 
files to which a task has read but not write access are opened read
only even though read-write is specified when the file is opened. 

Blocked file indicated in FCB (or implied via assignment to a 
system file) but no blocking buffers available. 

User TCW is in error due to one or more of the following 
conditions: 

1. Unable to construct a valid TCW because the transfer count is 
too large. 

2. Transfer count not an even multiple of transfer type. 

3. Data address not bounded for transfer type (types = W, HW, B). 

Input/Output Control List nocL) or data address not in contiguous 
'E' memory (ASYNC,BSYNC). 

Dynamic storage space for 10CDs within 10Q exhausted. 

Class 'E' device TCW is not in class 'E' memory. This type of error 
indicates a map failure. 

Reserved 

Device access failure on OPEN. 

The user has attempted to write to SYC file in Batch mode. 

An attempt has been made to use the same logical file code in two 
or more File Control Blocks. 

C-19 



CODE 

JCOl* 

JC02* 

JC03* 

JC04* 

JC05* 

JC06* 

JCO? 

JC08* 

JC09 

JCIO* 

JCll* 

Job Control Task (J.JOBC) 

DESCRIPTION 

Unrecoverable read error from job's SYC file. 

Unrecoverable write error on SLO file. 

Unrecoverable write error on job's SGO file. 

Unable to build FAT/FPT for SLO or for SBO link file which 
indicates a program error. 

Unable to allocate disc space for SLO file. 

An entry is not available in the System Output Directory (M.SOD) 
for the definition of the job's SLO or SBO link file. 

This job's Job Table entry has been destroyed which indicates a 
program error. 

Unable to allocate the job's SYC file. 

Unrecoverable I/O error to SMO returned on call to File System 
Executive (H.FISE,10). 

Unrecoverable I/O error to disc allocation map returned by File 
System Executive (H.FISE,3 or H.FISE,4). 

Unable to allocate job's SGO file. 

* Whenever a Job Control task aborts with one of these codes, the associated job is 
deleted. 

C-20 



Loader (H.LODR) 

( CODE DESCRIPTION 

LDOl Load code section error. 

LD02 Code section checksum error. 

LD03 Bias code error. 

LD04- Code matrix checksum error. 

LD05 Load data section error. 

LD06 Data section checksum error. 

LD07 Bias data error. 

LD08 Data matrix checksum error. 

( 

(-

C-21 



CODE 

LEal 

LE02 

LE03 

LE04 

LE05 

LE06 

LEO? 

LE08 

LE09 

LEla 

LEll 

LE12 

LEl3 

LE14 

LE15 

LE16 

LEI? 

C-22 

LIBED 

DESCRIPTION 

Directive error. The last directive printed on the directive list is 
in error. 

Object record sequence error. The name of the module with the 
error will be the last line printed on the log. 

Object record checksum error. The name of the module with the 
error will be printed as the last line of output on the log. 

Object module format error. The module whose name is the 
module following that one has an invalid record code in record 1. 

Incomplete object module. An object module, whose name is the 
last printed line of the log, has no terminal record (Hex DF). 

Unrecoverable error on the SYC file. 

Unrecoverable error on the LGO file. 

Unrecoverable error on the LLO file. 

Unrecoverable error on the LIB file. 

Unrecoverable error on the DIR file. 

Unrecoverable error on either the dynamically assigned temporary 
library file or temporary directory file. 

Allocation denial on request for temporary disc space used to 
perform update function (i.e., disc space unavailable). 

Delete table overflow. A combined maximum of 255 modules may 
be deleted/replaced/added in anyone LIB ED run. 

End-of-medium encountered on temporary library. This error 
indicates the need to expand the subroutine library assigned to the 
LIB file code. The FILEMGR may be used to perform this function 
prior to another LIBED run. 

End-of-medium encountered on temporary directory. This error 
indicates the need to expand the subroutine library directory 
assigned to the DIR file code. The FILEMGR may be used to 
perform this function prior to another LIB ED run. 

End-of-medium encountered on LIB file. The assigned file .must be 
reallocated. 

End-of-medium encountered on DIR file. The assigned file must be 
reallocated. 



( 

LEl8 

CODE 

MDOI 

MD02 

CODE 

ME99 

End-of-medium encountered on either LIB or DIR file. This error 
may occur on either a log, statistics, or update run and indicates 
that a previous CREATE run terminated prior to completion with 
an uncorrectable I/O error or a LE16/LEI7 error. 

MEDIA 

DESCRIPTION 

Potential abort conditions have been detected during media 
conversion operation. An abort status flag within the job's TSA has 
been set during compilation or execution processing. Conditional 
job control directives may be used to test status prior to job 
continuation. See output on logical file Code *OT for details about 
the abort condition. 

At EOF on a SLO file. 

MACLIBR 

DESCRIPTION 

Potential abort conditions have been detected during library 
editing operation. An abort status flag within the job's TSA has 
been set during editing processing. Conditional job control 
directives may be used to test status prior to job continuation. 

C-23 



CODE 

MPOI 

MP02 

MP03 

MP04-

MP05 

C-24-

Memory Parity Trap (H.IP02) 

DESCRIPTION 

Memory error occurred in a task's logical address space. 

Memory error occurred in another interrupt trap routine (nested 
traps, context lost). 

Memory error occurred while no tasks were in the active state. 

Memory error occurred in a map block reserved for the O/S. 

Error occurred while current task was in the unmapped mode. 



( 

(' 

CODE 

MSOI 

MS02 

MS03 

MS04 

MS05 

MS06 

MS07 

MS08 

MS09 

MSIO 

MSll 

MS12 

MS16 

MS17 

MS21 

MS22 

System Services (H.MONS) 

DESCRIPTION 

Permanent file address inquiry service found a number of 
allocation units in the Unit Definition Table that do not correspond 
to any known disc. 

Invalid function code specified for request to create a timer 
entry. Valid codes are ACP (I), RSP or RST (2), STB (3), RSB (4), 
and RQI (5). 

A privileged task bit Set/Reset address is outside of the operating 
system or a static memory partition, or an unprivileged task bit 
Set/Reset address is outside of a static memory partition. 

Task has attempted to create a timer entry to request an interrupt 
with a priority level outside the range of X'12' to X'7F', inclusive, 
or the requesting task is unprivileged. 

Invalid function code has been specified for request to set user 
status word. 

Unprivileged task has attempted to reset a task priority level or a 
privileged task has attempted to reset a task priority to a level 
outside the range of I to 64, inclusively. 

Cannot load overlay segment due to software checksum or data 
error. 

Overlay is not in the SMD. 

Task has attempted to connect a task to an interrupt level not 
defined for indirectly connected tasks. 

Overlay has an invalid preamble. 

An unrecoverable I/o error has occurred during overlay loading. 

Overlay is password protected. 

Task has requested dynamic allocation with an invalid function 
code. 

File name contains characters outside range of X'20' to X'5F', 
inclusively. 

Multi-volume magnetic tape allocation request made to scratch 
(SCRA) tape. 

Multi-volume magnetic tape allocation request made on shared 
tape drive. 

C-25 



MS23 

MS24 

MS25 

MS28 

MS29 

MS30 

MS31 

MS32 

MS89 

MS90 

MS9l 

MS92 

MS93 

MS94 

MS95 

MS96 

MS97 

MS98 

MS99 

C-26 

Task has issued a MOUNT MESSAGE ONLY allocation request to a 
non-allocated drive or to a device which is not a magnetic tape. 

Task has specified an illegal volume number (0 if tape is 
multivolume; non-zero if tape is single volume). 

Operator has aborted task in response to mount message. 

A permanent file log has been requested, but the address specified 
for storage of the directory entry is not contained within the 
calling task's logical address space. 

Task has attempted to load the interactive Task Debugger overlay 
in a memory-only environment. 

Task has attempted to obtain a permanent file log in a memory
only environment. 

User attempted to go to an any wait state from an end action 
routine. 

Invalid register set-up detected in M.ID. 

An unprivileged task has attempted to reestablish an abort receiver 
(other than M.IOEX). 

Task has made a run request end action routine exit while the run 
request interrupt was not active. 

Task has attempted normal exit with a task interrupt still active. 

Task has attempted to queue a message during its exit sequence. 

An invalid Receiver Exit Block (RXB) address was encountered 
during message exit. 

An invalid Receiver Exit Block (RXB) return buffer address was 
encountered during message exit. 

Task has made a message exit while the message interrupt was not 
active. 

An invalid Receiver Exit Block (RXB) address was encountered 
during run receiver exit. 

An invalid Receiver Exit Block (RXB) return buffer address was 
encountered during run receiver exit. 

Task has made a run receiver exit while the run receiver interrupt 
was not active. 

Task has made a message end action routine exit while the message 
interrupt was not active. 



Fortran Execution Time 

(" CODE DESCRIPTION 

RS47 Invalid time interval request. 

RS48 Invalid activation request. 

RS49 Invalid run request. 

RS53 Invalid task number. 

RS60 Invalid address specified. 

RS65 Invalid delete request. 

RS66 Invalid abort request. 

RS67 Invalid resource mark request. 

RS68 Invalid disconnect request. 

RS69 Skip file or record operation requested on non-existent FCB. 

RS70 Allocation error (appears only if lOST A T and $n parameters have 
been omitted). 

( RTOI Unformatted read I/O error. 

RT02 Formatted read I/O error. 

RT03 Unformatted write I/O error. 

RT04 Formatted write I/O error. 

RT05 Reference made to non-existent device type or address. 

RT06 Unit out of 0-999 range. 

RT07 No left parenthesis on format. 

RT08 Transfer index out of range (option 7 or M:ERRFLG can be used to 
avoid an abort). 

RT09 Format error. 

RTIO The I/o transfer requirements for the data buffer are incompatible 
with the amount of available data. 

RTll Format parenthesis level in excess of two. 

(," 
RT13 Argument list exceeds logical read record. 

C-27 



RT14 

RT15 

RT16 

RT17 

RT18 

RT19 

RT20 

RT21 

RT22 

RT23 

RT24 

RT25 

RT26 

RT27 

RT28 

RT29 

RT30 

RT31 

RT32 

RT33 

RT34 

C-28 

Incorrect descriptor in format. c-

Integer descriptor but non-integer argument (option 7 or r.(~" 
M:ERRFLG can be used to avoid an abort). 

Hexadecimal descriptor but non-hexadecimal argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

D, E, F, G descriptor, not real or complex argument (option 7 or 
M:ERRFLG can be used to avoid an abort). 

Logical descriptor but non-logical argument (option 7 or 
M: ERRFLG can be used to avoid an abort). 

Attempt to read past EOF/EOM. 

Attempt to write past EOF/EOM. 

Attempt to read past EOF/EOM. 

Attempt to write past EOF /EOM. 

Attempt to backspace following EOF/EOM. 

Rewind after EOF /EOM. 

Formatted record read. 

Unformatted record read. 

Doubleword integer overflow (option 7 or M:ERRFLG can be used 
to avoid an abort). 

Byte integer input with negative sign (option 7 or M:ERRFLG can 
be used to avoid an abort). 

Byte integer overflow (option 7 or M:ERRFLG can be used to avoid 
an abort). . 

Halfword integer overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Full word integer overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Illegal character in D, E, F, G input (option 7 or M:ERRFLG can be 
used to avoid an abort). 

Underflow in floating conversion (option 7 or M:ERRFLG can be 
used to avoid an abort). 

Overflow in floating conversion (option 7 or M:ERRFLG can be 
used to avoid an abort). 



(~ 

( 

(-, 

RT35 

RT36 

RT40 

RT41 

RT42 

RT43 

RT44 

RT46 

RT50 

RT51 

RT52 

RT55 

RT61 

RT62 

RT63 

RT64 

RT65 

RT66 

RT67 

RT68 

RT69 

RT80 

RT81 

Argument list overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Argument list overflow (option 7 or M:ERRFLG can be used to 
avoid an abort). 

Attempt to free busy 10CH/IOCB entry. 

Attempt to link busy 10CH/IOCB entry. 

10CH/IOCB table overflow. 

Wait I/O returned before I/o termination. 

Status parameter not linked to ADI device prior to I/O request. 

ADI table address not on half word boundary. 

Missing or omitted parameter. 

Parameter out of range. 

End of search list reached. 

Error found in math library routine. 

List-directed I/o (input) encountered, character string split 
between two records. 

Internal file read/write past EOF /EOM with no END option 
specified. 

Block number exceeds maximum block number in file. 

Record overflow. 

Record length exceeds maximum allowable. 

Record length not specified for random access or specified for 
sequential file. 

Implicit open not allowed for or random access I/O. 

Reference to sequential operation on a file opened for direct 
access not allowed. 

Error(s) encountered on open. 

Subscript error (i.e., subscript not a decimal number, illegal 
punctuation, excessive subscripts, or subscript out of range). 

NAMELIST identifier error (i.e., column I non-blank, ampersand 
character not present, name does not immediately follow 
ampersand character, or non-blank following name). 

C-29 



RT82 

RT83 

RT84 

RT85 

RT86 

RT87 

RT88 

RT89 

RT90 

RT91 

RT92 

RT93 

RT94 

RT95 

RT96 

RT97 

RT98 

RT99 

C-30 

Symbolic name error (no equal sign after variable/array name). 

Data item error (i.e., excessive values for symbol or expected to 
find symbol). 

Illegal value {i.e., illegal punctuation, mISSing comma, zero 
Hollerith count, or illegal character in value}. 

Attempt to read past EOF /EOM. 

Attempt to write past EOF/EOM. 

Symbolic name not defined in NAMELIST statement. 

Repeat count error. 

Symbolic name exceeds eight characters. 

Invalid read/write operation. 

End-of-file status return pursuant to random access record. 

Random access partition number out-of-range (i.e., partition 
number not between 1 and 95, inclusive). 

Random access number out-of-range (i.e., record number not 
between 1 and 65,535, inclusive). 

Random access transfer length (write/read) or record size 
definition (define) out-of-range (i.e., transfer record length not 
between 1 and 65,535 bytes, inclusive). 

Invalid random access argument list length. 

FeB table overflow (16 or more files for RTM; 31 or more files for 
MPX-32). 

Diagnostic output message exceeds 100 lines. To allow more 
diagnostic messages, statically assign the DO file (i.e., $ASSIGN2 
DO=SLO,500). 

Denial return when attempting to allocate file for diagnostic 
. output message. 

Insufficient blocking buffer space (each unit assignment to a 
system file requires one blocking buffer unless one file is assigned 
to another, i.e., via $ASSIGN4). 



(-~ 
CODE 

SBOI 

SB02 

SB03 

SB04 

SB05 

SB06 

CODE 

SCOI 

SC02 

SC03 

SC04 

System Binary Output 

DESCRIPTION 

An I/o error has. been encountered on the device assigned as the 
system binary (punched) output device. 

The system output program has encountered an unrecoverable I/o 
error in attempting to read a punched output file from disc. 

Denial of file code to file code allocation for J.SOUT2 indicates 
loss of system integrity. 

System binary output aborted by operator. 

No timer entry for system binary output (system fault). 

Five echo check errors detected while attempting to punch a single 
card. 

System Check Trap Processor 

DEFINITION 

System check trap occurred at an address located within the 
operating system. 

System check trap occurred within the current task's space. 

System check trap occurred at a time when there were no tasks 
currently being executed (C.PRNO equals zero). 

System check trap occurred within another trap (C.GINT does not 
equal 1). 

C-3l 



CODE 

SGOI 

SG02 

SG03 

SG04 

SG05 

SG06 

SG07 

SG08 

SG09 

SGIO 

SGll 

SG12 

SGB 

SGl4 

SG15 

SG16 

SG17 

SG18 

C-32 

System Generator (SYSGEN) 

DESCRIPTION 

Invalid loader function code in binary object module from the 
System Resident Module (OBJ) file. 

Invalid binary record read from System Resident Module (OB) file 
(byte 0 must be X 'FF' or X'D F'). 

Sequence error in module being read from temporary file. 

CHECKSUM error in module being read from temporary file. 

Unable to find CDT and/or UDT for I/O module load. 

Unable to obtain additional memory required for resident system 
image module loading. 

Unable to obtain memory required for resident system image 
construction. 

Non-relocatable byte string encountered in binary module being 
processed from temporary file. 

Unable to allocate temporary file space. 

Overrun of SYSGEN address space by system being generated. 
Probable erroneous size specification in PA TCH or POOL 
directive. 

Sequence error while reading object module from file assigned to 
'OBJ'. 

CHECKSUM error while reading object module from file assigned 
to 'OB)'. 

Unable to allocate disc space for SYMT AB file. 

Unable to allocate disc space for SYSTEM IMAGE file. 

Maximum number (240) of symbol table/patch file entries 
exceeded. 

Missing SYSTEM or SYMT AB directive. 

Invalid IPU interval timer priority. Must not be between X'78' and 
X'7F'. 

Maximum size of 80K for target system has been exceeded. 



SG19 

SG20 

SG21 

SG23 

SG24 

SG2.5 

SG26 

SG27 

SG28 

SG99 

Attempt to define interrupt vectoring routine as system 
reentrant. Only device handlers may be system reentrant. 

Unable to find "link" device in UOT. 

Insufficient room in memory pool for download file list. 

Insufficient shared memory table entries specified with SHARE 
directive. Number of entries must be equal to or greater than the 
number of partitions specified with /PARTITION NAME directives. 

A ttempt to define partition starting mapblock number in operating 
system area. 

Attempt to define partition starting mapblock number in non
configured physical memory. 

Attempt to use a module incompatible with the target machine 
type. The offending module name is the last entry on the listing 
followed by three asterisks (***). 

The device specified in either the SMO, SWP, SID, LOD or POD 
directives is not included in the configuration being built. 

The null device specification which is required to be included in 
every configuration is missing. 

Directive errors encountered. 

C-33 



CODE 

SMOl 

SM02 

SM03 

SM04 

SMO.5 

SM06 

SM07 

SM08 

SM09 

SMIO 

SMII 

SMl2 

5MB 

SM14 

C-34 

System Output Supervisor (H.SOUT) 

DESCRIPTION 

The System Input Directory (M.SID) which is created at SYSGEN, 
does not exist. The directory may be created with the File 
Manager, but the file must be zeroed during creation. 

The Systems Output Directory (M.SOD) which is created at 
SYSGEN, does not exist. The directory may be created with the 
File Manager, but the file must be zeroed during creation. 

Unable to build a FAT /FPT for a system output task which is 
attempting to allocate an SLO or SBO file. Indicates a program 
error. 

The Job Table entry associated with a job for which end-of-job 
processing is being performed has been destroyed. Indicates a 
program error. 

Entry linkage is not consistent on the System Output Directory 
(M.SOD). The contents of M.SOD have been destroyed or a 
program error exists. 

Entry linkage has been destroyed on the System Input Directory 
(M.SID). 

Entry linkage has been destroyed on the System Output Directory 
(M.SOD). ' 

Unrecoverable I/O error on spooled link file. 

Unrecoverable I/o error on System Input Directory (M.SID). 

Unrecoverable I/O error on System Output Directory (M.SOD). 

Unrecoverable I/O error to a disc allocation map returned on call 
to File System Executive (H.FISE,4). 

Attempt to activate System Output task unsuccessful. 

Unrecoverable I/O error to the SMD returned on call to File 
System Executive (H.FISE,l). 

Attempt to access a system input or output file in a memory-only 
environment. 



(-

(-

c 

CODE 

SNOI 

SN02 

SN03 

SN04 

SN05 

SN06 

SN07 

SN08 

CODE 

STOI 

ST02 

ST03 

System Input Task (J.SSIN) 

DESCRIPTION 

Blocking buffer or FAT space is not available. 

Unrecoverable I/O error from the disc file being used as the SYC 
file. 

System Input Directory (M.SID) does not exist or an unrecoverable 
I/O error was encountered in attempting to access it. 

Job Sequence Number has been duplicated. Indicates a program 
error. 

Spooled Input Directory (M.SID) is full. 

A permanent file specified on the OPCOM BATCH command does 
not exist. 

Unrecoverable I/O error to the SMD returned on call to the File 
System Executive (H.FISE,1 or H.FISE,IO). 

Unrecoverable I/O error to the allocation map returned on call to 
the File System Executive (H.FISE.3 or H.FISE,4). 

System Output Task (J.SOUT) 

DESCRIPTION 

Unrecoverable write error on destination device for SLO or SBO 
records. 

Unable to perform file code to file code allocation for separator 
file code. . 

Unable to issue magnetic tape mount message via allocation 
service. 

Whenever a System Output task aborts, the task may be restarted with the 
OPCOM/REPRINT or REPUNCH commands. 

C-35 



CODE 

SVOl 

SV02 

SV03 

SV04 

SV05 

CODE 

SWOl 

SW02 

SW03 

SW04 

SW05 

SW06 

SW07 

CODE 

SYOl 

SY02 

SY03 

SY04 

SY05 

SY06 

SY07 

SY08 

C-36 

SVC Trap Processor (H.IP06) 

DESCRIPTION 

Abort of unprivileged task using M.CALL. 

Invalid SVC number abort. 

Abort of unprivileged task attempting use of a "privileged-only" 
service. 

Invalid SVC type abort. 

Abort of unprivileged task attempting M.R TRN. 

Swap Scheduler Task (J.SW APR) 

DESCRIPTION 

Unrecoverable I/O error. 

Reserved 

Reserved 

No 'E' memory available for SWAPR's buffer file. 

No FAT or FPT to allocate. 

Task has requested inswap but was never outswapped. 

EOM detected on swap file. 

'SYSBUILD' 

DESCRIPTION 

Unable to allocate or open input device during initial task loading. 
(Memory only MPX-32) 

Unable to activate task. (Memory only MPX-32) 

Unable to deallocate or close input device after initial task 
loading. 

IPL device is undefined. 

File is too small for the tape contents. 

Transfer count on read is zero. 

Unable to create a permanent file. 

Unable to allocate file. 

(" -.- .. -. 
/. 



( CODE 

UDOl 

UD02 

UPDATE 

DESCRIPTION 

Potential abort conditions have been detected during update 
processing. An abort status flag within the job's TSA has been set 
during execution processing. Conditional job control directives 
may be used to test status prior to job continuation. 

User requested abort from mount prompt. 

C-37 



CODE 

BTOI 

EXOI 

EX02 

MCOI 

MFOI 

MPOI 

NMOI 

OCOI 

PVOI 

TSOI 

TS02 

TS03 

UIOI 

C-38 

Miscellaneous Abort Codes 

DESCRIPTIONS 

Block mode timeout trap. 

An abort has occurred in the task exit sequence. 

An abort has occurred during the task abort sequence and has been 
changed to a delete (kill) task request. 

Machine check trap. 

A map fault trap has occurred. This is the result of a bad memory 
reference outside of the user's addressable space. 

Memory error occurred in a task's logical address space. This is an 
internal or CPU failure. Rerun task. 

Indicates a CPU failure. 

The operator has requested that the task be aborted. 

Privilege violation trap. 

User requested removal from a BREAK request. 

User requested removal from a Wait State queue. 

Task running from specified terminal was aborted when the 
terminal disconnected. 

Undefined instruction trap. 



( 
Crash Codes 

When system crash' occurs as a result of a trap handler entry, the CPU halts with the 
registers containing the following information: 

RO=PSD Word 0 (when trap generated) 
R1=PSD Word 1 (when trap generated) 
R2=Real address of instruction causing trap 
R3=Instruction causing trap 
R4=CPU status word (from trap handler} 
R5=Crash code: 

(See H.IP02 Codes) 
(Non-Present Memory - H.IP03) 
(Undefined Instruction - H.IP04) 
(Privilege Violation - H.IP05) 
(Machine Check - H.IP07) 
(System Check - H.IP08) 
(Map Fault - H.IP09) 
(Cache Parity - H.IP10) 32/87 only 
(Block Mode Timeout - H.IPOE) 

MP01=X'4D503031 ' 
NM01=X'4E4D3031 ' 
UIO 1 =X'55493031' 
PV01=X'50563031' 
MCO 1 =X'4D433031' 
SC01=X'53433031 ' 
MFOI=X'4D463031 ' 
CP01=X'42543031' 
BTOl=X'42543031' 
HTOl=X'48543031 
SWOl=X'53573031 ' 

(Privileged Halt Trap - H.IPHT) CONCEPT/32 only 
(See SW APR codes) 

R6=Real address of register save block 
R7 =C'TRAP'=X'54524150' 

For further description, see Volume 1, Section 2.10. 

C-39/C-40 





( 

( 

APPENDIX n 

NUMERICAL INFORMATION 

D-l 



('" 'l" .. I'" 
,; ~j 

I 0 t.O 
I I ... 
4 I 0.21 

• J G.l25 

" 4 0.1112 , 
32 I 0.113'125 
14 • 0.011125 
I. 7 0J1G7 "25 

2M • 0.DD3 ... 25 
112 • O.ooIIiJ 1~ 

1024 10 0.000 97. H2 5 
2CM1 " o.ooo_al~ 

TABLE OF POWERS OF TWO 
4_ 12 0.000 244 1«1'~ 
1112 13 0.000 1220703125 

11314 14 0.000011035 1506 ~ 
32 711 15 0.000 030 517 5711~ 

.536 11 0.000 015 ~ 7. 0125 
13' on 17 0.000 007 m JI4 531 ~ 
2e2 144 II 0.000003114.7 _ 62f> 
124_ \I 0.0000011073411328125 

I CMl57. 20 0.000 000 1153 674 316 «16 ~ 
1017152 21 0.000 000 476137 158 203 1~ 
4'14304 22 0.000 000 23841157.,0150625 
I.a n 0.000 000 II. :lOll :lOll 560 711 ~ 

,.77721. 24 0.000 000 059 IS04 644 775 3110 62fi 
3355443:1 ~ 0.000 000 em 10:132:l 387. 312 5 
.7 1011114 21 0.000 000 014101 ,., 193147 tIS6 25 

134 217 728 27 0.000 000 007450 sao 591 .23121 1~ 

_4~458 21 0.000 000 003 7~ 290 298 4611114 062 5 
5JIS .70 1112 21 0000 000 001162 145 14923095703125 

1073741124 30 0.000000000 1131 m 574 615 478 515 m 
21414131411 31 0.000 000 000 4a5 661 287307 7311257 .,2 5 
4:114117 _ 32 0.000 000 000 232130 143 6S31169 628!106 25 
• 58111134 582 33 0.000 000 000 1164153:11 126134114 453 1~ 

17 17111169 114 34 0000 000 000 058 207 660 913 467407226 5062 5 
34 lSI! 738 3118 lS 0.000000 000 em 103 8304506 733703 613 281 ~ 

• 7111 478 731 31 0.000000 000 014551 1115228 :166 151806 640 625 
137 4381153 472 37 0.000 000000007 275 957 814113425 903 320 312 5 
274177 11061144 38 0000 000 000 003537978107011 712951660 15&25 
... ,756113_ 311 0.000 000000001818 919 C03 ... 5 85& 475.30 078125 

1019 5\1127776 «I 0.000 000 000 000 109 494 701 772928 237115031 062 5 
2 III 023 255 552 41 0000 000 000 000 4!>4 747 3SO 186 464 11.957511153125 
4 391 04IS 511 1()& 42 0.000 000 000 000 227 373675 443 237 OS9 478 7511 76S.25 
• 711013022 D 43 0.000000000000 \13186837 711611021 73113718121125 

17 512 '.0&4411 44 0.000 000 000 000 058 14341.110 IIOB 014 l1li1119 941 40125 
~ 114 372 0lIl132 45 0.000 000 000 000 028 421 701430 4()& 007 434 144 170 703 125 
70:l1li 744 1771114 • 0000 000 000 000 014 210 .... 715 202 003 717 422 415 lSI 512 5 

1«1 737 ... JS6 321 47 0.000 000 000 000 007 lOS 417 lS7101 001 lSI 7\1 242117571125 

• U74171 710 III ... 0.000 000000 000003 562 713 871100 5OO1I2I~. 121337 _125 
112 14111153421 312 III 0.000 000 000 000 00177.3561311400 250 ..... 877110 III 14. 312' 

I 125 II1II ... 142 12" 10 0.000 000 000 000 000 .. 17.411700 125 232 l3I!106 334 472 .. 25 
22517181131152. 11 0.000 000 000 000 000 444 D8t 201150 012 11111" 412.7231321125 

.. 103 511 127 370 _ 12 0.000 000 000 000 000 :In 0&4 IS04 II2S 031 301 DI4 721 333 811 114 012 , 

.007 11I:l54 7«11112 13 0.000 000 000 000000 III on 302 4112 515 .... ()&2313 ,.109 012 031 :Ii 
II 014 _ 5011 4111114 14 0.000 000 000 000000.055 5\1 151231257 '27 021 111583 4()&"', 015 125 
31 021 717 011113 .. II 0.000 000 000000000027756 5751151211113510 510 711702 270507 112' 

72 017 514 037 127 .38 II 0.000 000 000 000 000 013 I" 787107 114 458 11i6 :lIS 3115151 I~ 2S3 ... 25 
144 115 ,.075 155 In 17 0.000 000 000 000 000 001113111131103107 221377 147 .7 1125 587121!153 125 
_ 230371 lSI 711 744 II 0.000 000 000 000 000 003 411144611511153114 '.1231411912113113471582 II 
" .... 752 303 423 _ II 0.000000000000000001734 12347S 176107 014 411124 4113111 10173821125 

1 112121 504101 ..... 71 10 0.000 000 000 000 000 000 1117 381 737 l18li 403 ... 7 205 .2 240.1153 3111 1«1125 
2 _ 143 009 213 183152 II 0.000 000 000 000000 000 433 810 6611!194 20177310:1981 120 3471178 614 570 312 5 
4 II 1186 OIl 42138110& IZ 0.000 000 000 000 000 000 2111140 434 491 100 186 801 4110 S60 173918 342215 156 25 
• nl 372 0311504 775 101 13 0.000 000 000 000 000 000 101 420 217 241 550 443 400 74& 380 016 994 171 142 571 125 

D-2 



APPENDIX E 

POWERS OF INTEGERS 

E-l 



11111 Of NWI. Of III1EEI { 
16" 16-" 

;1 

" 
0 0.10000 00000 00000 00000 • 10 

16 0.62500 00000 00000 00000 • 10- 1 

256 2 0.39062 50000 00000 00000 • 10-2 

4 096 3 0.2"" 1" 06250 00000 00000 • 10-3 

65 536 " 0.15258 78906 25000 00000 • 10-" 

1 0C8 516 5 0.95367 0431604 06250 00000 • 10-6 

16 m 216 6 0.5960.- 64477 53906 2SOOO • 10-7 

268 435 456 7 0.37252 90298 046191 40625 • 10-8 

" 294 967 296 8 0.23283 OM36 53869 62891 • 10-9 

68 719 476 736 9 0.1"551 91522 83668 51807 • 10- 10 

099 511 627 776 10 0.90949 47017 72928 23792 • 10- 12 

17 592 186 0« 416 II 0.56843 "1886 08080 14870 • 10- 13 

281 47" 976 710 656 12 0.35527 13678 80050 09294 • 10- 14 

4 503 599 627 370 496 13 0.222041 0460419 25031 30808 • 10- 15 

72 057 59" 037 927 936 '" 0.13877 78780 781"" 56755 x 10- 16 

I 152 921 50.. 606 8046 976 15 0.86736 17379 88403 54721 x 10- 18 

TAIl! Of POW£IS Of nl 

10" .!l. 10-" 

0 1.0000 0000 0000 0000 

A 1 0.1999 9999 9999 9991. 

64 2 0.28F5 C28F 5C28 FSC3 x 16-1 

3E 8 3 0.4189 3748 C6A7 EF9E x 16-2 

2710 4 0.6808 B8AC 710e 8296 x 16-3 

861.0 S OoA7C5 AC47 1847 8423 x 16-" 

F 42040 6 0.IOC6 F7AO 8SE 0 8037 x 16-4 

98 9680 7 0.IA07 F29A 8CAF 48S8 x 16-5 

SF5 fl00 8 0.2AF3 1 DC" 6118 738F • 16-6 

3891. CAOO 9 0.044188 2FAO 9BSA 52CC x 16-7 

2 5408 E400 10 0.6 OF 3 7F67 5EF6 EADF x 16-8 

17 4876 noo 11 O.AFEI FFOI C124 MFF x 16-9 

E8 D4AS 1000 12 0.1197 9981 2DEA 1119 x 16-9 

918 U72 1.000 13 0.IC2S C268 4976 81C2 x 16- 10 

SAF3 1071. 4000 14 0.2009 370D 42S7 3604 • 16- 11 

3 807E A"C6 1000 15 0.4 BOE 1E71 9D58 5660 x 16- 12 

23 86F2 6FCI 0000 16 0.734A CASF 6226 FOAE x 16- 13 

,I. 3 4578 508A 0000 17 0.8877 AA32 361.4 8449 x 16- 14 

DfO 1683 A76" 0000 18 0.1272 50[)1 0243 A8Al • 16- 14 

8ACl 2304 89E 8 0000 19 0.1083 C9H 8602 AC3S x 16- 15 

E-2 



APPENDIX F 

ASCII INTERCHANGE CODE SET 

( 

F-l 



o 2 3 4 I • 7 

IItPalitioN 
4 O· -0 0 0 0 0 0 0 0 

5 1- -0 0 0 0 1 1 1 I 
I 2 0 1 I 0 0 1 1 

~ 3 0 I 0 I 0 1 0 1 

~ 0 NUL OLE • 0 • , .. 
12-0-1-8·1 12·11 ..... , No pundt 0 1-4 11·7 '" 12·11·7 

ODDI 1 SOH DCI ! 1 A a • q 

12"" 1'''·1 12.7 1 12·1 11 .. 12-0-1 12·11 .. 

0010 2 STX DC2 " 2 I R b , 
12 ... 2 11"·2 "7 2 12·2 11" 12-0-2 12·11 .. 

0011 3 ETX DC3 • 3 C 5 c • 
12 ... 3 ""·3 1-3 3 12·3 0.2 12-0-3 11-0-2 

0100 4 EOT DC4 , 4 0 T d t 
.7 N-4 11-1-3 4 12-4 Q.3 12-0-4 11-0-3 

0101 5 ENa NAK ... 5 E U • u 
o.e.e-5 N-6 0-8-4 5 12-5 0-4 12M 11-0-4 

0110 • ACK SYN • • F V f v 
0-1 .. .. 2 12 • 12 .. Q.6 12.o.e l1.o.s 

0111 7 BEL ETI 7 G W • • 
0-1 .. ·7 o.u 1-6 7 12·7 0-8 12-0-7 11.o.e 

IODD • IS CAN I 1 H X It • 
11 .... 11 .... 12 .. -5 1 12 .. 0.7 12M 11-0-7 

1001 , HT EM ) , I Y i y 
12 .. -5 11 .... ·1 " .. -5 

, 12 .. 0-8 12-0-1 l1.o.e 

1010 A LF SUI : J Z i I 

0-1-5 '''·7 ",,-4 1·2 11·1 0-1 12·11·1 11-0-1 

1011 I VT ESC • ; K ( k f 
12·'''·3 0-1·7 12 .... 11 .... 11·2 12"·2 12·11-2 12-0 

1100 C FF FS L I I · ~"-4 \ I 
12·9"" 11·'"'' ·0-8·3 11·3 0-1·2 12·11·3 12·11 

1101 0 CR GS · M I "' 
, 

12·' .. ·5 11·' .. ·5 11 I .. 11 .. ""·2 12·11 .. 11-0 

1110 E so RS > N A n -12·' .... 11-9 .... 12"·3 0-8 .. 11-5 ""·7 12·11-5 11-0-1 

1111 F 51 us I ? 0 - 0 DEL 
12·'''·' 11·9"·' 0·1 0-1·7 11-6 0 .. -5 12·11 .. 12·1·' 

F-2 



Some positions in the ASCII code c:hlrt may hfte a diff.ent .... ic representation on v.ious devices as: 

ASCII IBM 029 

> 

Control Char-=ters: 

NUL Null DC3 Device Control 3 
SOH Start of Heading (CCI DC4 Device Control 4 (stop) 
STX Start of Text (CCI NAK Negative Acknowledge (CC) 
ETX End of Text (CCI SYN Synchronous Idle (CC) 
EOT End of Transmission (CCI ETB End of Transmission Block (CCI 
ENQ Enquiry (CC) CAN Cancel 
ACK Acknowledge (CC) EM End of Medium 
BEL Bell (audible or attention signal) SS Start of Special Sequence 
BS Backspace (F E ) ESC Escape 
HT Horizontal Tabulation (punch card skip)(FE) FS File Separator (IS) 
LF Line Feed (FE) GS Group Separator (IS) 

« VT Vertical Tabulation (FE) RS Record Separator (IS) 
FF Form Feed (FE) US Unit Separator (IS) 
CR Carriage Return (FE) DEL Delete 
SO Shift Out SP Space (normally nonprinting) 
SI Shift In (CC) Communication Control 
OLE Data Link Escape (CC) (FE) Format Effector 
DCl Device Control 1 (IS) Information Separator 
DC2 Device Control 2 

c' 
F-3/F-4 




