Gould MPX-32TM
Release 3.3
Reference Manual
Volume I

Overview and System Services

December 1986

Publication Order Number: 323-001551-300

TMMPX—32 is a trademark of Gould Inc.

== GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the applicable third-party sublicense agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the
Government is subject to restrictions
as set forth in subdivision (b) (3) (ii) of
the Rights in Technical Data and Computer
Software clause at 52.227.7013

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

MPX-32 is a trademark of Gould Inc.
CONCEPT/32 is a registered trademark of Gould Inc.

Copyright 1986
Gould Inc., Computer Systems Division
All Rights Reserved
Printed in U.S.A.

HISTORY

The MPX-32 Release 3.0 Reference Manual, Publication Order Number 323-001550-000,
was printed June, 1982,

Publication Order Number 323-001551-100, (Revision 1, Release 3.2) was printed June,
1983. '

Publication Order Number 323-001551-200, (Revision 2, Release 3.2B) was printed March,
1985.

Publication Order Number 323-001551-201, (Change 1 to Revision 2, Release 3.2C) was
printed December, 1985.

Publication Order Number 323-001551-300, (Revision 3, Release 3.3) was printed
December, 1986.

Note: For Release 3.3 of MPX-32, the reference material formerly included at the back

of each MPX-32 Reference Manual volume was placed in a separate document and
assigned Publication Order Number: 323-001550-300.

The manual contains the following pages:

Title page

Copyright page

iii/iv through xxv/xxvi
1-1 through 1-23/1-24
2-1 through 2-45/2-46
3-1 through 3-27/3-28
4-1 through 4-42

5-1 through 5-75/5-76
6-1 through 6-225/6-226
7-1 through 7-195/7-196

iii/iv

) \
i :

C

o

CONTENTS

CHAPTER 1 INTRODUCTION

1.1

1
1
1.
1
1

O

1
2
3
4
5

1.1.6

1.1.9

.

l.—l)...l’._d
[
WNH=O

.
@~

O WRN -G

1.2

e) e
NN NS

1.3

o)
(o]

T

-
.
N
i

3

3.

3.
3

el
L]
v WN

MPX-32, Vol. I

ystem Description. « e o o e et v eeeveeeeeccececsesccsscessasoassscns

Hardware INterrupts/Traps oo veececevosoessaocscnscennaes
Software Interrupt System ceeetteccrcscsosscnssnnans
Task PriorityLevels e e e e v eeeveeeeeetnnenenanenns
Supervisionand Allocationciiiei ittt ssonnssnnns
Memory Allocation ... ceveeeteeeneeesocscsososscsscnces
1.1.5.1 Dynamic Allocation cesenen
FileManagement . ..coeeeeeeessesoossssscnsssasnonnsas
1.1.6.1 Permanent Files..v o eeveeeeeeeeenscesoaonnns .o
1.1.6.2 Temporary FileS.ceesseeeesassceossscnsconnss
1.6.3 Random AccessFiles . ccvvevneeenann
1.6.4 DiscFileProtection « v e e e vttt eneccscscconnns
1.6.5 Dedicated System Files. . ¢ v et v vveentenccocnns
.1.6.6 Multiprocessor Files « o s e vt s v e e vveeeonaness
YStemM SErviCeS o e e e e oo veesosocssssssssssssoscssnsccas
Ut/Output Operations « v oo v v eveseeseosessssescssnsnns
.8.1 DirectI/O v vvevveenns
.2 Device-independent I/O v .vvveveenneeeecnnnans
3 LogicalFileCodes s v vvveeeeeeevsseoncnnansns
.8.4 File Access cveveeeneeacnnas
mmunications Facilitiescceviieerieereeeeeennconns
Intertask MessSages ¢« c o e s e s e ssoosvssssocncsnns
RUunRequestS . v o coeveeeceoscccnscosccccccsns

eleDe

e el

—
J
e}

= b
. .

O .
Ol—-'l.—‘l—‘t—‘
® ™

= b e e
o b b bt b b
\0 \0 \0 \0 \0 O

Datapool ¢ o veeeeesssesoccssssccsssssananss
Internal Communications ...t sneens
TrapProcessors.....................................
TimerScheduler « « o e e vt et teeeteineeeeeencceccnnoonss
TimeManagement . ..ceieeeeeeereneeescencsccnsncccss
System Nonresident Media Mounting Task ... e eeeeeeenns

1
2
3
A4 SharedImagescciiiiieeinieerieeeensnse
5
6

m Command Processors....... e e ceceses et s ceseenens . e

Terminal Services Manager (TSM) Cecesessscetenanen ceeeen
Operator Communications (OPCOM) .. .evvieeneeecenneenns
Batch Processing ¢ eeeeececeeeececssscoscscssssccnsssns

ram Development Utilities .« c e o e vv et eietneeeeeenn.

Task Cataloging (CATALOG) . et et eteescsconscnnsos ceeea
1.3.1.1 Privilege oo v iveiieitiiienetietencsccnecans
1.3.1.2 Overlays «coeevee.s ceeeeeen O
Task Debugger (MPXDB) e v v v vt vvvesensensecsnssnssnsens
Macro Assembler (ASSEMBLE) .4 vvieervovneensenns e
Macro Library Editor (MACLIBR)ttt eeennnnnnnennans
Subroutine Library Editor (LIBED) et cecee et -

Reference Manual

Global Common ¢ ceveeeeesecsssssccnssncosssses |

DR e e e b e

]
el e T el el el el e
HHEOOOOO\VVWOVOVMO®O®E -

]

b bt e e e b

!
—
-

1.4

1.5

1.6
1.7

1.3,6 aﬁ»apﬂﬂiEdltgr(QpEDlT}say?zs;ns'sewn’spse:ewzses'~:- 1-17
1,3,7 Tsxtﬁcﬁmkﬂﬁﬂﬁ)~-ue~-nu-e“une.“““””“u 1-17
1.3.8 VQ@MmQMMQQQF(V%M@R)assezssggsspes:aasaggagcagea 1-17
1.3,9 VQ@W’!@F@FM@%@F@VFMT?MuMmsmeuesngmnngm;L?la
1,3.10 Aﬁﬁ@mblﬁﬁ/XQZ(Ang}Z)szuusrzs.zxaygsss:s&ssxseese1%’1@
1.3,11 Macro lerarlan/X32 (MACX32) tesrereresesesranserssses 1-1B
1.3,12 leﬁct lek‘arian/xﬂ (aJXBz)»Q-azﬁvo",-a~’99a~xaa"!» 1-18
1.313 LiBKB?/XBZ(LINKx(}Z)pse»!gxssegeeeeeesz~vsfLHess&e»s 1-18
1,3,14 Symbalic Debquer/X32 (DEBUGX32) syssssessrnsrssssesss 1-18
53F¥igeutuiti§§vgersey-sa909egseg9@399ggg?pgyyvsz»naq-zsg9--e 1-19
1.4.1 sgurceupdate(uPDATE)sto-9g38€!93999g999993gegefss1"19
1.4,2 Mﬁgiﬂcqnvemign(MEDlA)!eseg»seezvsssz'?eovsszgsa-!99. 1-19
SystemManage!‘Utilltles R R R N A N N R I N N R I I I SR A SO SRR 'S 1'19
1.5.1 The MKEY Editor (KEY) sevveesnssrosaonssssssssssssess 1219
1.5.2 MPX-32 System Start-up, Generation and
Imt@l!atim(SYﬁﬁﬁN)sugnunnuu.-””g“-,--_...-,,. 1-20

Libraries reresereeaereererr e e e IR RN eSO OERL LY 1-20
Minimum Hardware Configuration for MPX-32 ., e v s svesecessesnsssse 1-21

2,1
2,2

2,3

2.4

2.5

2.6

vi

Task Identification ¢ s o e evegeresrenesnssesnssnssenrssnssnsosses 2=1
Task SLPUCLUPES o oo v oo esoocsssssetseersssssnossssrssnssasress 2=1
20201 NonbaselNonSharedTaSks??'00320~’e¢'9!?9v’90q;gg;0-o'o 21‘3
2,2,2 Base, Nonshared Tasks +ecveorsepssessssonssossrasssssss 23
2,2.3 MUltiQQPi.ﬁdTaﬁkﬁreae93?3,9997939:999v992!a!amesuﬂ~9 2-3
292-4 Shared Tasks sessrestesseresaserrrensseraresraapsrese 2°3
2.2,5 uniQUQT§§k§ezqegwszs9990999g9999939999s93929e9!999,' 2-3
TQSKEXQG!JﬁO.n,svs?aegog,pg;gyse:ggyes!?!!gx:yoweq?zszee.-99-, 2'3
2.3.1 Task Activation Sequensing (M,ACT\/, M.PTSK) ceserssrernsens 2=7
293-2 TQSkS@?ViQBAPGB(TSA)ggszsaecgsrgs.sypeq-gosg993!9!!9,2 2'8
Central Processing Unit (cPW) Scheduling o esevesnssresssnnserressss 2-8
2.4,1 EXSBUtiQ,ﬂPTiQﬂ;iEﬁaqs9&99-09999?9999999v99,~ggz:aQQOgg.2?‘5
2.4,2 Real-time Prlﬂﬂtyl—3¥31§ (1 to 54) vesresssensrrsrsnrsrerss 2-10
2.4,3 Time-distribution P!"igﬂt}' Levels (55 to 64) seessesrsrereeses 2-10

2,4,3.1 PI‘lD!‘ltyMll‘ﬂthn seserrrsrsrressssrsernsess 2-10

2.4,.3.2 Situational Priority Increments s eeseesesrerssees 2-10

2,4.3.3 Time’?quantum Caontrals 23 4 |
2.4,4 State ChainManagement . eeocessssesrssssssrssssssssss 2-11
Intefnalpfgcgssingunit(IPU)99!g?ge99e.-ev'.9929'999sgg99939-0-- 2-14
2,51 OPtiQﬂS33290999Q°9sv93av992993’999"?!sga!aprrceoe 2-14
: Biased Task Prioritization , s s e esvrsreresssesvonssseessses 2-14
Nonbiased Task Prioritization , ,espseveresrssrressssreres 2215
IPU Task Selection and Execution ., ,ces00r0s0es0sssessse 2-15
CPUExecution of IPUTasks « e s sssessseesssssssesssssesse 2215
Pripri!;yy,ergus,aigging IR R R R EEE RN EEEEEE RS] 2'1-6
IPUACCOUNLING s oesessevosossnnnsrssnsrsanssnsserssss 2-16
IPUExchtablesystem53!"!1953 sssesserssrsssessssssssss 2-14
. IPUSCthUlin99900039!!za-QOgyospvwggvsv,-e-yy.evgv-ye 2‘16
f~:'~'32T%klnterruptscthUIinggny999,-r9999-9999"0y909p~999y9 2-18

°
\n
‘0

.
.

EJ

E)

DU Wi

.

.
2

P RPN NN
W AN e

<
0
X0

TasklntBPPUPtLBVBIS R N R N I I A A S TR A S I S S N A) 2-18
2,6.],..1 TaSkInteI‘I‘upt Receiyel‘s,,.,g...,.,,,........, 2'18
2q6.102 Schedu!ingpqugooyg,g;q,ggppgggggqggggoogg2’319

™N
ad

[*a)
et

e

Reference Manual

(:/
»
&Y
i

2.6.1.3

2.6.1.4
2.6.1.5

System Service Calls from Task Interrupt

Levels s oeeeeeeeeeeeneeecccecncnossasanncns
Task Interrupt Context Storage ¢« e e e oo v v vvvveees
Task Interrupt Level Gating . .cceeeeeeeecceeees

2.6.2 User Break Interrupt Receivers (M.BRK,M.BRKXIT) «vvveeenens
2.7 Intertask Communication ..sceeeceecececececesesoceccscscssosscss
2.7.1 User End-action Receivers M. XMEAMXREA,M.XIEA)
2,7.2 User Message Receivers (M.RCVR,M.GMSGP,M.XMSGR) ...4...
2.7.3 User Run Receivers M.GRUNP,M.XRUNR) .. .cceeeenn ceeeas
2.7.4 Receiving Task SErvices «ccveeeeeeecececcccccceccncncns
2.7.4.1 Establishing Message Receivers M.RCVR) ¢ e v v
2.7.4.2 EstablishingRun Receivers « c c e e ccveeeeoscceses
2.7.4.3 Execution of Message Receiver Programs..........
2,7.4.4 Execution of Run Receiver Programs . .« s e e e e s 00 v«
2.7.4.5 Obtaining Message Parameters (M.GMSGP)
2.7.4.6 Obtaining the Run Request Parameters
(MIGRUNP) 4 itttetnneessnnnnscecosnnsnenns
2.7.4.7 Exiting the Message Receiver M.XMSGR) e
2.7.4.8 Exiting the Run Receiver Task
MEXIT,MXRUNR) ¢t eveeeossvescscenasens
2.7.4.9 Waiting for the Next Request (M.SUSP,
M.ANYW,M.EAWAIT) .. cvvvene ceeseeetsannas
2.7.5 Sending Task SErviCesS « « e e e e e v eeeeecoecnns
2.7.5.1 Message Send Service (M.SMSGR) s vvvveeerecnnns
2.7.5.2 Send Run-request Service M.SRUNR) . ..coveeenns
2.7.5.3 Waiting for Message Completion Ceececeneas
2.7.5.4 Waiting for Run-request Completionc00ceeee
2.7.5.5 Message End-action Processing M XMEA) ... vvee
2.7.5.6 Run Request End-action Processing
(MXREA) ¢t tiereenonncanecsasnsaoannans
2.7.6 Parameter Blocks o« « e s e e v v eineen
2,7.6.1 Parameter Send Block (PSB) ++cveeveennnsns oo
2.7.6.2 Parameter Receive Block (PRB) ...viveeeceencan
2.7.6.3 Receiver Exit Block RXB) v vvveeennneneans cee
2.7.7 User Abort Receivers (MSUAR) vt viteeeenrerecnennconaans
2.7.8 Task Interrupt Services SUMMArY..oeeeeeeeeenocees cesenan
2.7.9 Arithmetic ExceptionHandling .o vceeeieeeeenennes cese
2.7.9.1 Exception Handler Establishment.....v0cvvveenns
2.7.9.2 Changing a Return Address from an
ExceptionHandlerccciiiieitecnnnnns .
2,7.9.3 Exception Handler Input Arguments e v vo0eeees .
2.7.9.4 Exception Handler Restrictions . . v vt veeeeeannn
2.7.9.5 Related Arithmetic Exception Information.........

2.10.1 Structure
2.10.2
2.10.2.1
2.10.2.2
2.10.2.3
2.10.2.4
2.10.3

MPX-32, Vol. I
Reference Manual

2.8 CPU Dispatch Queue Area
2.9 I/OScheduling «vveeeeeesnesocsnsssossasnnss chteeeenene
2.10 Swap Scheduling....e.o..

Entry Conditions +.......

Exit Conditions ..

® 6 6 06060600 0000 000 0000000000000 000 o o 0 o o

@ 600000000 00

® o o0 00000 0 0 0 ® 06 0 0000000000000

Dynamic Expansion of Address Space

(M.GE/M.GD,MMEMB) . .. et eevennnnnnnns ceen
Deallocation of Memory (M.FE/M.FD,

MMEMFRE) titeeerecenennsennns
Request for Inswap....... ceececesesennas
Changein Task Status. v e v v v e eeeseennnnns .

®© o006 060600000000 000 © o 0 00000 0 0 ® o0 0 00 0 0

vii

2,11

2.10.4

Sefe(ftinon of lnswap and Outswap‘ Cmdi‘tes ®© 6 56 0 &G EES OSSO 2"}&
2.1004.1 OU’ZSWBDP‘[‘OC&SS TR KE S SO EIELEEESEGECLELGEEEGE S 2-3“9’
2’.10.4.2 Inswapprocessuo.c.‘lm&otoo.olr'xmmgiﬁquen‘,dovco 2"40

TSSkTet'minationsequenCing © 0 6 00000 EE 0L LIS EESLLEELEREGEREGSELEOLOSESE Z‘&g

2.11.1
2.11.2
2.11.3
2.11.4

Nonbase Mode Exit Task (MEXIT) ceeeveeeecscnnsasnceaces 2-40
Abort Task (MBORT) ¢ e veseocecsacacasoavnasonncanecenses 2-40
Delete Task (MDELTSK) v vecevececcoccocssncnaananoesees 240
Base Mode Exit Task (M EXIT) e e e e e eucvocaccccconoacnasses 2-40

2.12 Task-Synchronized Access to COmMMON RESOUICES « v v v veeerenvanneesss 2-43
2.13 MPX-32 Faults/Traps and Miscellaneous INterrupts . v e e v vvvevencaeeess 2-44

CHAPTER 3 RESOURCE MANAGEMENT OVERVIEW

3.1
3.2

3.3

3.4

3.5

viii

GeneralReSOUPCGMaﬂagement © © 0 0 060600 0 ¢ 00 50000000000 e éeese o0 3'}
Support for Resource TYPeS. .. ceeeacesssessscssssssssaassacnsses 3=1

3.2.1
3.2.2

Physical Resources c e e s oo evveeeeceeteeccesscnscansansee 3=l
LOgiCalReSOUPCeS ® 0 0 0 0 6065000000000t EL0LLLELIEOICEGEOLOLEOLIEOSOLOS 3‘]‘.

Support for Resource FUNCLIONS « v v e s vt o voveecetsesssscnssansnsnns 32

3.3.1
3.3.2
3.3.3

3.3.4

3.3‘7

Resource Creation «ccceeceecscocsssocscsccscsccscsnacsossse 32
Resource Deletion «c.ceeeceeccoscecocssocscscscacacaasases 372
Resource Attachment ¢ v e e e cvtececsoccccececcsnscscanssosss 3=2
3.3.3.1 Static Allocation «cceeeeevecosccsccvanvnoaceee 3=3
3.3.3.2 Dynamic Allocationcceeeeeeeevenscensneee 3-3
RESOUNCE ACCESS & v veceeseesososcsassssesoscasesssscsceses 3=3
3.3.4.1 DevicelLevel ceceereceescccecsscsoscasccsocese 3=3
3.3.4.2 Execute Channel ProgrambLevel ¢cciccieeveceneee 3-3
3.3.4.3 Logical Devicelevel oot erereecrenennae 3-3
3.3.4.4 Logical FileLevel ..cieetveeererescennncennes 34
3.3.4.5 BlockedLevel icceceeeeeeeocccscccccnnoccsnes 34
Resource Detachment e c e e e e e ccvsevsnevecccececcacsocsee =4
Resource INQUITY v ceeeseecsecossocsnocsacasaacsacossse 35
3.3.6.1 Inquiry of Unattached Resources «ceeeceeecsceeaee 3=5
3.3.6.2 Inquiry of Attached Resources....cceeveessensess 3<5
Resource Attribute Modification « c c e e e vveeeececsocccnoscseee 3=5

ReSOUPCEAttPibUtes......a........-..............-........... 3'5

3.4.1

3.4.2

Protection « oo cveeeeeeosscecccscsooocasenosscsasasescees 3-6
3.4.1.1 OWNET ¢ vveteeesesocscsocessnsnsssasssascces 36
3.4.1.2 Project Group «.ecveeceeececsvasessssncssanss 36
3.4.1.3 Othel‘s.........-.....................‘.... 3”6
Shareable RESOUrCES ¢« « o e s e e v oo veessocsnssecssscsossassces 36

3.&.2-1 EXCIUSiVBUSB............................... 3'7
3.4.2.2 Fxnlisit Uge 3.7

sNsie L AL NsUT 0 0 0 0 0 0 0 0 0 0 8 0000 L 00N 00O ee RN e e

3.4.2-3 ImpllCltUSE...-............-.o.u--o-a.-.-.. 3'7

Resource Access Attributes I I I T 2

3.5.1

3.5.2

Access Attributes for Volumes .. ceveeveeecesecereascceeass 3-8
3.5.1.1 System Volume. s e et s eescecesscecncscsnsssssas 3-8
3.5.1.2 User VOIUME . ceeeeocescccescsscccssncscsss 3-8
3.5.1.3 Multiprocessor Volume + ¢ s cvevesseecesseccossess 3=9
ccess Attributes for Directories . cceveeeiteevrcccccanees 39
1 Read ACCESS «veeesvesnssrsscoscnossssnnsscess 3-9
2 AddENtry ACCESS e et e v veveosecescocsccccsanes 39
3 Delete Entry ACCeSS e e v v e vt tvsensncsscncnsess 3-10
4 Delete Directory ACCeSS e e e s csveasvsscsenssess 3-10

5.2
5.2,
5.2
5.2,

MPX-32, Vol. I
Reference Manual

3.5.2.5 Traverse ACCESS e c e e s eveesceccsscssscsscsesss 3-10
3.5.3 Access Attributes forFiles ¢ e e e e e et evereereccescccscsses 3-10
3.5.3.1 Read ACCESS vveeeescecscscscscscsssscscsccess 3-10
Write ACCESS ¢ et cveecscccsssssscnsocssssesse 5-10

3.5.3.2
3.5.3.3 Modify ACCESS ¢ v eeeeveecccccsssssssncosssass 3-10
3.5.3.4 Update ACCeSS c v vveeoreescececccencssceseess =10
3.5.3.5 Append ACCESS ¢« e s e s e v eoecccsassssccasssasss 3-11
3.5.3.6 Delete ACCESS v cceeececccscessscsssssasssss =11
3.5.4 Access Attributes for Memory Partitions ¢ e ¢ e e v v se e e 3-11
3.5.4.1 Read ACCESS . eceeeeectcrcccscccassnscssaese 3-11
3.5.4.2 Write ACCESS ¢eeveevescesccccscscssscscssess 3-11
3.5.4.3 Delete ACCESS v o ccoeeeccsesescasssssscnssas 5-11
3.6 Management Attributes .. .ceeeeeeecocccccecccccscsccnssececssass =11
3.6.1 Extension AttribuUte . e eceeececoescecssosossscscsosesnssses 3-11
3.6.1.1 Manual Extension Attribute. . ¢ e ¢ c e e e eeeceseeess 3-11
3.6.1.2 Automatic Extension Attribute ... e e e ceees 3-12

Contiguity Attribute. . c e v et vt et ittt neenesenescnnesss 3=12
Maximum and Minimum Extension Attributes « c v e e eeeeeeeeees 3-12
Maximum File Size Attribute ... veeecevececrocsonsoes 3-13
Shared Attribute «veeeeveereersceceessceseososssscecsass 3=13
End-of-file Management Attribute....ceeeeeeeeecetreeeees 3-13
Fast Access Attribute. .o ceeveeeeeeeeseencene ceesecsess 3=13
Zero Attribute « ¢t et ettt cesteccscecsscesasnne . 3-13
File Type Attribute .. .ccvveie ettt eeetcnneccneeeess =14
0 No-save Attribute «veeeeveceeesccessscssessnssanasnses 3-14

W WA W
H OO0V EWN

3.7 Operating System Memory Allocationceeeeeesnens Ceeseeeeteeee e 3-14
3.7.1 I/OBuffer andI/O QUBUES . v ¢ e s vt v envesecessoanssonns ee. 3-14
3.7.2 Blocking Buffers for BlockedI/O vt vvvvvereneccrooncanaes 3-15
3.7.2.1 Large Buffers for BlockedFiles...ccc0eeeeeeeess 3-15
3.8 Memory Classes « o o v e veeeesecsscosesecossssssccsssscsssnssss =15
3.9 Memory Allocation for TaskS. s e eeeeeeeoeceesscasccecnnsssns ceee. 3-16
3.9.1 Static Memory Allocation...... ceesean cesessssseraaaaas 3-16
3.9.1.1 Static vs. Dynamic Shared Memoryccceeveee. 3-16
3.9.1.2 Memory Partition Applications
for Nonbase Mode Tasks v cveeeeeeeenoencnnsns . 3-17
3.9.2 Dynamic Address Space Expansion/Contraction
(M.GE, M.FE, M.GD, M.FD, MMEMB, M\MEMFRE) 3-17
3.9.3 Extended Indexed Data Space
for Nonbase Mode Tasks o s eveeerececneensessccancscnns 3-18
3.9.4 Intertask Shared Global Memory and Datapool Memory
(MJINCLUDE, MEEXCLUDE) v+ ceveeesescasosessssasssss 3-18
3.9.5 Shared Procedures for Nonbase Mode Tasks +cseeeoeocecosn .. 3-19
3.9.6 Multiprocessor Shared Memory ... oo veeeeeeesseneceess ee. 3221
3.10 Extended MPX-32 (Expanded EXecution Space) « e oo eeececececeseansns 3-21
.10. Implementing Extended MPX-32 ceeeneenn ceeeeeeees 3223
.10. SYSGEN and the Expanded Execution Area. ..cceeeeeeesecsss 3-23
. Using Expanded Execution Space ¢ . oo et eveeneeneeeennnnas 3-24

Performance Considerations «vceeeeeeeeresseeseenesensss 3-24
Programming Considerations « « « c e e v eeeeeevoeceesccessess 3-26
Abort and ETror MesSages ¢ v e s o e oo sseeecccssscsssceasss 3-27

W W
I N S
0DOOPOoO
OV R WN -

CHAPTER 4 VOLUME RESOURCE MANAGEMENT

4.1 Symbolic Resource Managementc.... ceeetennesetrsaneass b-1
4.1.1 Types of Resources. e o oeeesse O cesess . 4-2

MPX-32, Vol. I
Reference Manual ix

4,2

4.3

4.5

J-\PP
@~ O\

4.9

4.10

40102 ClasﬁeSOfResoUl’CeS L R R I L A A R I I A A A I A L B LR B O QF‘Z
4.1.3 Classes of Resource USers. .. s oesseeosesscsasesnsnsnsssses 422
4.1.4 Shareable Resource Control Mechanisms «veceseeesnnsosseeas 4=2
General Resource Control e e e e coneeeeccsoavssescsssceassnansssnsess 43
4,2,1 Enqueue and Synchronous Notification Mechanism ...e¢eseveees. 4-3
4-2'2 DequeueMEChaniamov9--oopoqo00099~-oo-09.~01o99q90ooQ 4-3
Shareable Resource Access Control « . v cveevsneeccocsossacssnnsncsss 4=3
4,3.1 Shareable Resource LocKiNng oo esssocescsorocnsennssacess 4-4
4.3,2 Shareable Resource Synchronization «.cesessosscassresncees 4-0
Standard Disc StrUCLUTE « v s e v e v svvosncrrsansenssonsscnnssanssss 40
4.4,1 Directory StTUCLUTE e v et o v e v ceocesssocssssscsosocsssss 4=l
4.4.2 RoOt DIreCtOrye s e eeeeeceeoocssessssssoccssosnsnssesces -8
4.4.3 Current Working Directory . cooeeeenecessonsccenonsssss 45
Pathnames c e e et cvvvecescscssenosnsessssessescnosassssansscccs 845
4.5.1 Executing Pathnames «.cccenvessvecccccssccesssenseees U-6
4,5.2 Fully-qualified Pathnames. .« c e e et cesvecencsncenonsossses 4-6
4.5,3 Not Fully-qualified Pathpames ...cccceeeeiceneecnsessees 4-7
4.5.4 Fully-qualified Pathnames for Directories Onlycceosseee.. 4-8
4.5.5 Not Fully-qualified Directory Pathnames « .« cccvveeeeeeeeess 4-9
Resource Protection « « e e v e v v eeeennsoossecossssososnsanssssaness 8410
System Administration «.ceveeeieetcecttetectcceacasonresassess 4-10
VOolUMES s s e e sveesensceessncencccssssssseanssssasasssnsseacsess G411
4.8.1 Volume Assignment . o.eeeeeesocessarsssssscnsssassess 4=11
4.8.1.1 System VolUME e e oo eroevoncscencsannassoss 4=11

4.8.1.2 Public Volume «.cvvevevssceccenssanssones 4212

4,8.1.3 OPCOM-mounted Volume «.veeeervossnnenees 412

4.8.1.4 Nonpublic Volume . . . v e v eeveerencossansess,s 4-12

4,8.2 Mounting Formatted Volumesc.ceececscnscnesensssss 412
4.8.3 Automatic Mounting at System Boot .. eeci ettt ns oo, 4-13
4.8.4 Dismounting Formatted Volumes « c v s e et v e veeeessnncasess 4-14
4.8.5 Components of aVolume ..o vveversieneeeeosncnnsnessss 414
4.8.5.1 BootBlocK e o e vt vnvesecenccsssensosnseess 414
4.8.5,2 Volume Descriptor « .. ccvveeeeoecsssosseeass 4-16
4.8.5.3 Resource Descriptors (RDS) e e cevseeeeessseess 4-16
DIirectories «.eeeeeeerseserossecnssscscscasssscscssssssasanses 4217
9.1 Volume Root Directory ¢ o oo v eeseenseesacsoncossasseees 4-19
9.2 Creating Directories. . s oo coveeosesssnseossssersassesces 4=19
9.3 Protecting Directoriesccevevnerencscccncssnsessss 4-21
9.4 Protecting Directory Entries « c o e e v eevesevsernovonveeses 4-21
9.5 Using Directories « « o e v et st ecenarsnssensassssnesesss 4-21
T 4
10,1 File Attributes . c s e et v ev s ennesrecssssssosasoaonses 4222
.10.2 Obtaining File SPace . e v v e et erveeeersssececnssssasosss 4-23
4-10.2.1’ Gl‘anulal‘ity 5 0 9 00 060 0009800 s 000 e e 00 4'2}
Q.lU.Z.Z Contiguity.,..........g.......qoqp...... 4"2}
4,10.2.3 Extendibility «evevevececnnsrsocencnnonsssess 4-23
4.10.2.4 SiZEB. oo eeseseooncrasococossonassssscasaes 424

3 File Names and Fast ACCESS « v venvevesnssosessoonneses 84-24
4 FileProtection, coceverseeceseosseseoscasosssennsenss 04-25
5 Permanent Files e eeeeeeveeeeneenrsneososcnsaenssesees 4-25
96 Cl‘eatingFilBB LR I R R I I I I O I O S I I A I A R I I A I B R R R) a"25
7 AttBChingFiles LRI B B N R I I I B IS A I I S I I A I N B R A A A) 4'25
8 AssignNing Flles e e e e v oo eveeenereansscsenscsssncasonsss 4-26
9 Opening Files e e vseeeeeeeeeennosenscersooncsessesess U-26
.10 File Operations «..eeeeveeeeensssoccsscscnnsasansses U4-27

MPX-32, Val, |
Reference Manual

4.10.10.1 Sequential ACCESS. v veiseessenscnsessecnes 427

4.10.10.2 Random ACCeSS v v evvsesessoessssscsseasses 4-28

4.10.11 FilePositioning «cceveeeeeeeeecseeoessossssssssssansas 4-28

4.10.11.1 Absolute File Positioning Operations . ccceeeee.. 4-28

4,10.11.2 Relative File Positioning Operations ...cc000... 4-28

4.10.12 File AccessSMOdeS «ceeeveerosesesscsncsnsascnnnsssss 4-29

4.10.12.1 ReadMode..ceoeeeerienceeesnnsnoesossss 4-30

4.10.12,2 WriteMode «ceceevenerecensnensnscnnsnsss 4-30

4.10.12,3 ModifyMode c.evvieersnsnesssnnnsenensss 4-30

4.10.12.4 UpdateMode «.cvvveviveessecsesnnnsanaas 4-31

4.10.12.5 AppendMode ¢ v ciiieiii it ettt nsess 4-31

4.10.13 SharingFiles «eeceeeerreceeeeeeeeenoseecnscosnnsnosess 4-32

4.10.14 ClosingFiles . vcoceeeeeeoeeosenseessnocssssossssoccsss 4-32

4.10.15 DetachingFiles . cceeeeeecersscsesssrsoscccsssasssannee 4-32

4.10.16 DeletingFiles oo eveeeeneeeeeetsenecennsocennonssss 4-33

4.10.17 TemporaryFiles ... eeieeeesoeossssceosococossssssassens 4-33

4.10.17.1 Creating Temporary Files « e v e v v et veeeveeeees 4-33

4,10.17.2 Assigning Temporary Files .cceveeeeeeeeeness 4-33

4.10.17.3 Opening and Accessing Temporary Files . e oo e o oo . 4-34

4.10.17.4 Deleting and Detaching Temporary Files 4-34

4,10.17.5 Making Temporary Files Permanent . e v v v v 0o vss 4-34

4.11 Memory Partitions - Nonbase Mode of Addressing.....ecceeveeeeeeees 4-34

4.11.1 Creating Memory Partitions ...covecvseeeecescececccessss 4-34

4.11.2 Protecting Memory Partitions . . s v etveeeeersesesocnssss 84-35

Attaching Memory Partitionsecvvvveeennecenssarses 4-35

Accessing Memory Partitionscc0iieieieeeseeensess 435

Detaching Memory Partitions ...ccceeeeeessoveceacconeas 4-35

Deleting Memory Partitionscvitieeetinnereneeesees 436

Sharing Memory Partitions . eeeeesseseeccscssscnsesess 4-36

IMages «eeeereessneensccsecsesssecssssssssssccnsssssss 4-36

CreatedSharedImages « v e v v ecevvveesssssssssseoconasses 4-36

Protecting SharedImages .. v evevverteevesnenenoosssnses 4-37

Attaching SharedImages. .« c v et et et eeeennennsesess 4-37

Accessing SharedImages. . « o e e e et vt et eevennnnssssssss 4-37

Detaching SharedImages «.esveeeeseosccesssnosssneeee 4-37

tiprocessor SharedVolumes .o vevvveveertrsecececocssssnsssess 4-38

Multiprocessor Resources «voeeeeeoeesns senscecns ceees. 4-38

Multiprocessor Resource ACCESS «veeveeses ceesencosccesas 4-38

Mounting Multiprocessor Volumes ...cceeeeeeeeeeccssssss 4-39

Multiprocessor Resource Restrictions ...c.veeeeeeieeeasea. 4-40

4.13.4.1 EOF Management . . c e eeveveeennnosconsssss 4-40

4,13.4.2 EOMManagement ...c.cececeeeosssssasssss 4-40

4.13.,4.3 Resource Deadlocksveveveeeeeeesensens 4-40
4.13.4.4 Reserve/Release Dual-ported Disc Services

(MIRESP/MRELP) v v itveernsnnncnnneaees 441

4.13.4.5 Volume Status ... veeenereneecencesssenss 441
4.13.5 Optimum Use of Multiprocessor Resources « « e e e e v oo oo s eseee 4-41

L]
I
[Sy Sy vy

[B NI SR

Q

4.12

e o
.
M WN -

P N I S e
[}
-3

TNNDNNDN
e o e

4.13

<L
°

.
b e et e C b b e

)

FEFEF
WA W W
SEWDN -

.

CHAPTER 5 RESOURCE ASSIGNMENT/ALLOCATION AND 1/O

1 Introduction . ..ot e ierinneecennasnscenasasenss O T |
2 MPX-32 Logical Device-Independent I/O sessssssenees s sane e 5-1
5.2.1 LogicalFileCodes ..covvveeeveresencennson cererensees D=2
5.2.2 FileControl BlockS. e v e v e e eevencseenccnnssnnans veenes 52

5.
5.

MP X-32, Vol. 1
Reference Manual xi

5.3

5.4

5.5

xili -

5.2.3

5.2.4

5.2.5

5.2.2.1 Logical I/O Initiation «eeeeeeeecessesasesaces 32
Assignment vs. Allocation .. .ccceceeeececenserssesesccess 52
5.2.3.1 Determination of Resource Allocation . v caseseess 5-2
5.2.3.2 Assign/Open Resource Allocation MatriX «eeseeee. 5-3
Logical File Code Assignment « e .c.cccceeececsscccnsssasess 54
5.2.4.1 Making Assignments by Resource Requirement

Summary (RRS) sevesseescsescesssassscces 54
5.2.4.2 Temporary File Assignmentso ccveeseeeess 5-13
Opening a Resource forLogical I/O e v vvveveenennessnoeass 5-13

Resource Conflicts and Error Handling by Caller Notification
Packet(CNP).‘....C..O..".....O..C....................l. 5-14

5.3.1

Status Posting and Return Conventionsccceveessnessss 5-14

MPX-32 Volume ResouUrce ACCESS « . coceeeeocccccsccscsccsasnsosscscaes 5-17

5.4.1
5.4.2
5.4.3

Volume Resource Space Management . c c c et c e veeeessnsosss 5-17
Temporary vs. Permanent Files c oot e veveesscccososessesss 517
SystemDirectoryl'..'.Q..0......0.'..............O. 5‘18

MPX-32 DevVvice ACCESS ¢ s c e s s s s s s s sssssssssccsssscsossscsscsssces D=18

5.5.1

5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
S

Magnetic Tape « e oot et eeeeececcecccnssssssssssssscss 519
UnformattedMedia ¢..veeeeeeeeeteccecsssscosssnssss 522
Examples of Device IdentificationLevels. ., ceeeeeetsssesss 525
GPMC DEeVIiCeS e v e e s eeveseeesssoscsccssocsssssssnssses =25
NULL Device s e et eeeveveesccececnsacscssasssssssssss 325
System Console v vovseeeecececsssncscscssscocnssssssse 525
Special File Attributes ... ccccetieeeeteeeteeencsoneenes 5-26

amples...-.... 5‘26

Device Independent I/O Processing OVEIVIEW e vveeeseveecssnocssess 528

5.7.1

5.7.2

5.7.5
5.7.6

WaitI/O cieeeeeecenocnnns cesesssssssssssssssseees =28
5.7.1.1 Wait /OETITOrS +vveeevsoecscsocscsacneaes 528
5.7.1.2 Wait I/O Exit and I/O Abort Processing «.veee... 5-29
5.7.1.3 Error Processing and Status Inhibit 5-29
No-wait I/O vt ivevereerecoeeesssesososssseasosssannass 529
5.7.2.1 No-wait /O Complete Without Errors «.eoeeee.. 5-29
5.7.2.2 No-wait I/O Complete WithEFrors e o e e e eseoveess 5-30
5.7.2.3 No-wait End-action Return toIOCS . ..vcee0e... 5-30
DirectI/O ¢ v vveeenenns cesesescsecssesssesascsnscess 530
BlockedI/O v v evvvereeronsonesosesssscsossnssssneses 530
5.7.4.1 Assign/Open Block Mode Determination

MatriX e oeeeeeooeeeeoeeosansensossssses 5-31
End-of-file and End-of-medium Processing....ceeseseeoesee 532
Software End-of-file for UnblockedFiles .. cecveevvoeeeases. 5-32

Spooled Output with Print or Punch Attribute....ccveeveereeeseeeess 5-34
Setting Up File Control Blocks for Device

Independentl/o © . 6 © 0 0 0 0 00600009 000000000000 N0 0L NL e e 5"34

5.9.1

FCB Word Descriptions « e « v e e e eeseesnecssccnsosssssces 537
5.9.1.1 WordD.eeeoeooeeosns ceessecsesssessseses 937
Word 1o e eeteeeeecccocsososcascasosncoscsee 9=37
Word 2. e e e et eevescenssonscsnssscscssnssee D-UA4
WOord 3. e e cvevesestosccsossossoasassssseses 5-49
Words 4and 5. cveeeeeeecocceooscsassenssss D51
WOrd 6. e e e v voeeeeccascocscscsosnssssceses 9=51
WOrd 7 e e et veeoescecscscscsoscssnsssseses D=5]
WordB. ...ceeeeeeneonsns ceeesessecncesse 551
Word9...... e et essssssessssesscasaseses 9=52
WOPle....................-..p........ 5'52
Wordll..eoeeeowe seescessessssessssvsss D=52

\0 \0 \0 \0 N0 \0 30 Y0 Y0 O
el el el el el ul el ul v
H=WOVONOAWNESWN

)
)
.

\ﬂ.\ﬂ\ﬂ\ﬂ
o o
.

v\
D
-0

.
.

MPX-32, Val. I
Reference Manual

~

A

J

2 WOl‘d12................................ 5'52
3 Word13...ceeeeeeececconosscnsssonsssss 3-52
5.9.1.14 Wordl4....cieveecccesccccocesccncscses 953
5.9.1.15 Word15..cieteveecceesscccnscsssssssess 553
Macros (MDFCB/MDFCBE) + v veeeosecssessscsssasceases 553
Sample FCB Set-upNONMAcro...ceeeeseeeocecccsecesess 554

5.9.4 Sample FCB Set-upMacro. e seeseesecesncescencsnnessss 5-54
5.10 Setting Up Type Control Parameter Blocks (TCPB's) for the

System Console «eoeeeeeeeecroecsacssaossnscsssssssscsssssssss =55
5.11 MPX-32 Device Dependent Input/OUutput «..cceeeeeeessescsoseseess 5=55

5.9.2
5.9.3

5.11.1 Device-dependent I/O Processing OVerviewoeeeeessess 5-56
5.11.2 Operational Description of Execute Channel Program

(EXCPM) ¢ teoesesssesssasessssssesssssssssssseses =56
5.11.2.1 Logical Channel Programceoceeeceeceeess 3-57
5.11.2,2 Physical Channel Program....cececeeesoeceees 3-57

5.11.2.3 Post Programmed Controlled Interrupt (PPCI)
End-action Receiver s s v s s e eveveecneeeceses 557
5.11.2.4 Restrictions e s v s veveesveeeseeessencsssess 558

5.11.3 Setting Up File Control Blocks for EXCPM
RequestS ¢ eoeeeeessseccocssssscsssasssssosssssssssss D-58
5.11.4 Postprogram Controlled Interrupt Notification
Packet . oo eovesssesecsssssnsescnscssssssssncecsss 2-60
5.11.5 Macros (MFCBEXP) e vt v vesecesesncsssesssssssossanss =61
5.12 Resident Executive Services (HLREXS) s v e v vt evnensescsscscnnssess 3-62
5.13 Resource Management (HREMM)ttt iereeenssosossssssnsees 562
5.14 Volume Management Module (HVOMM) . .t i vvveeenesesssnscsaneess 563

5.14.1 HVOMMCoNVENtionS ¢ « o e e e o e s saseseesccssssescsscssase 5-63
5.14.1.1 Entry Point Conventions « c e e v e v s ossesseeceee 5-63
5.14.1.2 Pathnames . e coceeeoveesssccsscscssssesee D-64
5.14.1.3 Pathname Blocks «cceveeeveoccscscccsceees =64
5.14.1.4 Resource Identifiers « s e o oo covesvveecsceoese 266
5.14.1.5 AllocationUnits e « e e e ceveeceseoecosssonosee =66
5.14.1.6 File Segment Definitions. s e e e e e v s esveeseeees 5-67
5.14.2 Calling/Return Parameter Conventions «v.eeveesssesceeees 5-67
5.14.2.1 Unused Register e o s v e cosesoesesossecssoses 3-67
5.14.2.2 Specifying a Volume Resource « e v e s v e e e e eveees 5-67
5.14.2.3 Status Codes veeeeee cecceeessacesasnn eees 5-68
5.14.2.4 Caller Notification Packet (CNP) . ecvveeeeeess 5-69
5.14.2.5 Pathnames/Pathname Blocks « « v e e e e v e v e veeess 5-69
5.14.2.6 Resource Create Block (RCB) v e cvvveeeeessess 5-69

5.14.3 BadBlOCkHaﬂdling.-.......-.-..........-........... 5-74
5.14.4 SErVIiCES . e o esevosossessscscsosssssscsssssscsossssoss D=/5

CHAPTER 6 NONBASE MODE SYSTEM SERVICES

6.1 General Description v v e v eeseeeesosoccsssssssossssecsssasnsssenss 6-1
6.1.1 RTM System Services Under MPX-32ceeteeereenoseeess 6-2
6.1.2 System Services - Syntax Rules and Descriptions 6-3
6.1.3 IPU Executable Nonbase Mode System Services ...eeeessoeess 6-3
6.2 Macro-Callable System Services «csovesecesesecsssscssssscsessssss 6-4
6.2.1 M.ACTV - Activate Task. s s e e e s vovesesssssccccsssssssas 6-5
6.2.2 M.ADRS - Memory Address INQUITY v eeeeeeeeeeeenesaceness 6-6

6.2.3 M.ANYW - Wait for Any No-wait Operation Complete,
Message Interrupt, or Break Interrupt .. ceeveeecessseeeees 6-7
6.2.4 M.ASSN - Assign and Allocate ResourCe.eeeeeovooesessseess 6-8

MPX-32, Vol. 1
Reference Manual xiii

6.2.5 M.ASYNCH - Set Asynchronous Task INEErTUPL « o e s e vssosess. 6-10 ™
6.2.6 M.BACK - Backspace Record OF File o« .seeeeeoennnsonness 6-11 W
6.2.7 M.BATCH -Batch JObENtry c s v v evseessccsscsssnancsss 6-13

6.2.8 M.BBTIM - Acquire Current Date/Time in Byte

Bina!‘yFOPmat ® © 0 9 5 0 069 065 0 00 9 %000 90000000 P SN PPS OGSO 6"15
6.2.9 M.BORT - Abort Specified Task, Abort Self, or
Abort With Extended Message ¢« cvssseeeosssnsscceeesss 6-16
6.2.10 M.BRK - Break/Task Interrupt Link/Unlink. s eeesesssasseese 6-19
6.2.11 M.BRKXIT - Exit from Task InterruptLevel . e o cvvenves oo 6-20
6.2.12 M.BTIM - Acquire Current Date/Time in Binary
Format cvoeeeeeeeceeescseccncocsosonsonssssssnsesss 6-21
6.2.13 M.CLOSER - Close RESOUTCE . v e s s e e veeseccccssosnsssess 6-22
6.2.14 M CLSE -Close File cvveeceeossesssssesossssnsncasess 6-24
6.2.15 M.CMD - Get CommandLine ...seeeeeeeccscensasecesss 6-25
6.2.16 M.CONABB - Convert ASCII Date/Time to Byte
BinaryFormat « e veseveosececcnssssccccssssssncscess 6-26
6.2.17 M.CONADB - Convert ASCII Decimal toBinary «coeceseesess 6-27
6.2.18 M.CONAHB - Convert ASCII Hexadecimal toBinary.......... 6-28
6.2.19 M.CONASB - Convert ASCII Date/Time to Standard
BiNGry e o v e eeesossssecccsccssssessscscssscsncsssss 6-29

6.2.20 M.CONBAD - Convert Binary to ASCIlI Decimals¢0000e.. 6-30
6.2.21 M.CONBAF - Convert Binary Date/Time to ASCII
Format «voveeeeeeeeeeeceecescesconoccccasssensssss 6-31
6.2.22 M.CONBAH - Convert Binary to ASCII Hexadecimal 6-32
6.2.23 M.CONBBA - Convert Byte Binary Date/Time to ASCIl. 6-33
6.2.24 M.CONBBY - Convert Binary Date/Time to Byte
BiNGry ¢« oo e ot eevcsosensoesoessoscssasosscnssnsosss 6-34 N
6.2.25 M.CONBYB - Convert Byte Binary Date/Time X j/

toBiNary s e e veeeeeneoseeecsscssscsssnsssccssccccse 635
M.CONN - Connect Task toInterrupt..ceeeveceecsosssssses 6-36
M.CPERM - Create Permanent File..ceeeeeeveeresnnsssses 6-37
M.CTIM - Convert System Date/TimeFormats0eeeee.. 6-38
M.CWAT -System Console Wait ...ceeeeecescosnnsnssees 6-39
M.DASN - Deassign and Deallocate Resource «.cceeveeoseess 6-40
M.DATE -Dateand TimeInquiry..cceeeeecosoceconsssees 6-42
M.DEBUG - Load and Execute Interactive Debugger0ceo.. 6-43
M.DEFT -Change Defaults ¢ v e o cvveseenceesscoccsnonsses 6-44
MDELR -Delete ResoUrCe e e e e s ssssesssssssooccsssssss 6-45
M.DELTSK -Delete Task ¢ veeeeesesssscccscnssesssseas 6-46
M.DEVID - Get Device Mnemonicor TypeCode «..cceveeee.. 6-48
MDIR - Create Directory o c s e et vveveneecccerssssocees 6-49
M.DISCON - Disconnect Task from Interrupt ...ceevvesenes. 6-50
MDLTT -Delete Timer Entry e e s e ceveeeveeeessssessceess 6-51
M.DMOUNT -Dismount Volume «..eeseeesessssecsssesss 6-52
M.DSMI - Disable Message Task Interrupt...coeeesececsesse 6-54
M.DSUB - Disable User Break Interrupt « e o e v eeepeeseeeses. 6-55
M.DUMP - Memory Dump Request . e s v cetvvaesevesssseses 6-56
M.EAWAIT -End-actionWait «ccvevevereesesesseeseeses 657
M.ENMI - Enable Message Task Interrupt « v e e veeveveeeees.. 6-58
M.ENUB - Enable User Break Interrupt .. cceeeeenseveeeess 6-59
M.ENVRMT - Get Task Environment ...eeeveeecvasssons «s. 6-60
M.EXCLUDE - Exclude Memory Partition «c.ceoveceveosess 6-61
M.EXIT - Terminate Task Execution ,...c.civeeveeeseseess 6-63 _
MEXTD - EXEENdFile «uuuuveeeesnneesennnnsoannanens 664 U

L) . . . () L] L) . L] L] . L)
PDRRDRPRMDbDRDRDPDNDDbNBDR

0\0\0\0\0’\0\0\0\.0\0\0\0\0\0\0\0\

e e
o o

.
.

NP PP DD Wow L W oW RN RN

OVONOWVMEUWNFOOUDONOONUVMEWNFOWOVONO

MPX-32, Vol, 1
xiv Reference Manual

6.2.51

6.2.52
6.2.53
6.2.54
6.2.55
6.2.56
6.2.57

6.2.58
6.2.59
6.2.60

6.2.61
6.2.62
6.2.63
6.2.64
6.2.65

o Lo

NN ON

DDA ddddddJdJ OO\ O\ ON
= o Jo6

o o . o e
e o o .

NONNNNONNNNNNNONNND

.
.« e
NV O~NONWVEUWNFOVOV®

N A= - e e e e
e o

6.2.82
6.2.83
6.2.84
6.2.85

6.2.86
6.2.87

6.2.88
6.2.89
6.2.90
6.2.91

6.2.92

6.2.93
6.2.94

6.2.95
6.2.96
6.2.97
6.2.98

MPX-32, Vol. 1

M.FD -Free Dynamic Extended Indexed

DataSpace .ceeeeeescescsccssessscsssonssscocsssnes 6-65
M.FE -Free Dynamic Task Execution Space « v s s oo eeseeeeees 6-66
M.FWRD - Advance RecordorFile . ccieeeecenccceasecess 6-67
M.BADRL - Get Address Limits «veeeveeeeerecseeaceases 6-69
M.GD - Get Dynamic Extended DataSpace «.¢.cccceeeeess. 6-70
M.GE - Get Dynamic Task ExecutionSpace ...cceeeeneeeass 6-71
M.GETDEF - Get Function From

Terminal Definition . cvociieeiiii ittt neenneeaees 6-72
M.GMSGP - Get Message Parameters...cceececeeececsccees 6-74
M.GRUNP - Get RunParameters. . ccceeeecececcscccssses 6-75
M.GTIM - Acquire System Date/Time in

ANy Format c v oo veeeeececsseseccccsccocncccssssssss 6-76
M.HOLD -ProgranHoldRequest . .c.ccveveeeeeeenenssss 6-77
M.D - Get Task NUMber ¢ « ¢ v e e eveeeeeecesssasocsnosss 6-78
M.INCLUDE - Include Memory Partition «.eeeceeeeeeoeeess 6-80
M.INQUIRY - Resource Inquiry «..cceeeeeeeeecencas ceesen 6-82
M.INT - Activate TaskInterrupt + ¢ cevccvveeveeovensseasess 6-86
MJIPUBS -Set IPUBIi@S. e e e et vvesecseessnccsaseosseess 6-87
M.LOC -ReadDescriptor ¢« e e eeeveveceecsccnssneasces 6-88
M.LOCK - Set Exclusive Resource Lock s e e v cveveeeseeeees. 6-89
M.LOGR -LogResource or Directoryceeeeeeeeeceees 6-91
M.MEM - Create Memory Partition . ccoceeeeceesecesscees 6-95
M.MEMB - Get Memory inByteIncrementsccc0veeeeee. 6-96
M.MEMFRE - Free Memory in Byte Incrementsoccc0... 6-98
M.MOD - Modify Descriptor «..ceeeeeceessecsescnceanes 6-99
M.MODU - Modify Descriptor User Area «veeeeeeceeccesess.6-101
MMOUNT -Mount Volume + v e vt ineeenrenenscensesesa6-102
M.MOVE - Move Data toUser Address . e ceeeeeeeceooesees.6-104
MMYID - Get TaskNumbercccteveeneeessscneeees.6-105
M.NEWRRS - Reformat RRSENETY ¢veeeeeeveconcnceaesss.6-106
M.OLAY -LoadOverlay Segment ...cccceeeeceeceeecees..6-108
M.OPENR - Open RESOUrCE ¢ ¢ « s s e soessseasssoscsecesesasb-110
M.PGOW - Task Option WordInquiry .. .vovveeeceeceneeess.6-113
M.PNAM - Reconstruct Pathname . v e e v st veeeeecoeeceess.6-114
M.PNAMB - Convert Pathname to Pathname Block ... s0 e e v .o .6-115
M.PRIL - Change PrioritylLevelccccciiiieeeeeee..6-116
M.PRIV - Reinstate Privilege Mode to

Privilege Task s eveeecceececoocessoscscscscocnsossssssssab-117
M.PTSK - Parameter Task Activationcceeeereeeeeesss6-118
M.QATIM - Acquire Current Date/Time in

ASCIIFOrmMat. s eeossoececcssssssssssssoscnsssssssessb-122
M.RADDR - Get Real Physical Address ...ccocoeceeecoeesss6-123
M.RCVR - Receive Message Link Addressceveeeeees..6-124
MREAD -Read Record vvveeeesscecccscessscssssssssab-125
M.RELP - Release Dual-ported Disc/

Set Dual-channel ACM Mode ¢ v et e veeteneececonenoseaesab-126
M.RENAM-RenameFile « cceveteiertenieeeeennnsnnsseeab-127
M.REPLAC - Replace PermanentFileot eeeeses..6-128
M.RESP - Reserve Dual-ported Disc/

Set Dual-channel ACMModeveveven ceeseseenessab-130
M.REWRIT - Rewrite Descriptor « o v o0 eeess ceescessssssab-131
M.REWRTU - Rewrite Descriptor User Area ...cceeeeeesss.6-132
M.ROPL - Reset OptionLowercceeveeeesnnns ceeesea6-133

M.RRES - Release Channel Reservationceceeeeeeeeese.6-134

Reference Manual XV

6.3

xVi

6.2.99

6.2.100
6.2.101
6.2.102
6.2.103
6.2.104
6.2.105
6.2.106
6.2.107
6.2.108
6.2.109
6.2.110
6.2.111
6.2.112
6.2.113
6.2.114
6.2.115

6.2.116
6.2.117
6.2.118
6.2.119
6.2.120

.2.121

(e AN e e R \Ne N e N e}
N
Ll
—
N
3

M.RSML - Resourcemark Lock «.ceeeeececcessssocsceessasb-135
M.RSMU - Resourcemark Unlock « e e e v e e ceeeeeececcensssab-136
M.RSRV -Reserve Channel ¢ « c e e cecoeeecesececcncecssssssb-137
M.RWND‘ReWindFile.on.-ooooooo-ooooo.oooo'oooo-oo6-138
M.SETS -Set User Status Word « o e v v eeeeeesea®inscceeess6-139
M.SETSYNC - Set Synchronous Resource Lock «ceeeseessese.6-140
MSETT -Create TIMEr ENtry e e e e v v e eeeeveseeecsoseesssb-142
M.SMSGR - Send Message to Specified Task « ¢ ¢ ¢ e e e v 000 s ss06-145
M.SOPL -Set OptioNLOWET . eveeeeeeececcsancsssncesssb-146
M.SRUNR - Send Run Request to Specified Task.ceeoeeseese.6-147
M.SUAR - Set User Abort Receiver Address . e e eoeeeoeosssso6-149
M.SUME - Resume Task EXecution. . eceeeeeeeececsecsessa6-150
M.SUSP - Suspend Task Execution «ccceeeeeceeseneecceessa6-151
M.SYNCH - Set Synchronous Task Interrupt «cceeceeeeeeeeesa6-152
M.TDAY - Time-of-day InqQUiry «ceeeeeeececceececenssssab-153

M.TEMP - Create TemporaryFile ¢ .o vveeeeneeeeveessess 6154

M.TEMPER - Change Temporary File to Permanent
Fileeeeeeoooosoeosssenssnscsaosnssoscscccosonssconsscsssb-156
M.TRNC - TruncateFile s s oo oo eeeeeeeeceseccceceecessssb-157
M.TSTE - Arithmetic ExceptionInquiry «cccceveeeeeeessss6-158
M.TSTS - Test User Status Word . eceeesccsscsccanseassab-159
MTSTT -Test TIMEr Entry .o ceeeeeeeeeeceseeecnaessess6-160
M.TURNON - Activate Program at Given Time

Of DAY s e eeeseeccsacescnsssoccsonssscsosssanssesnssb-161
M.TYPE -System Console TYPe.ceeeeeeeceesccssncsceesssb-163
M.UNLOCK - Release Exclusive Resource Lock .o voevveees. 6-164
M.UNSYNC - Release Synchronous Resource Lockveeee..6-166
M.UPRIV - Change Task to UnprivilegedMode6-168
MUPSP -UpSpPace «ceeeeeeseocsccscccocssoscscssssssb-169

.2.126 M.VADDR - Validate AddressRange «....ccceeeceecceessss6-170
.2.127 MWAIT -Wait I/O st vveeeeneneccssnssscsssssssanesessb-171
.2.128 MMWEOF -Write EOF .. i ivitieeeeceennoesecnssnnsssasab-172
6.2.129 MMWRIT -WriteRecordcccveeeeteetecnncecseensesab-173
6.2.130 M. XBRKR - Exit from Task InterruptLevelccv0eees . 06-174
6.2.131 M.XIEA - No-wait I/O End-action ReturN. . ceeeeeecsoeeses6-175
6.2,132 M.XMEA - Exit from Message End-action Routine6-176
6.2.133 M.XMSGR - Exit from Message Receiver ceeeesenn .6-177
6.2,134 M.XREA - Exit from Run Request End-action
ROULINE ¢ s et evvvsssscsccccsscoccnscscssscssnscesesssb-178
6.2.135 MXRUNR -Exit RUnReceiver ¢ v veeeeiteeneeceseaseesssb-179
6.2.136 MXTIME - Task CPUExecution Time ¢ v v eeveeeesosssessss6-180
Nonmacro-Callable System Services ceee ceeeees ceessses.6-181
6.3.1 Allocate FileSpace ..ceoiveesoccsccsosccsssosnsnsseessb-181

o e e o o o @
e o o o« o o D

R R R R WE T R SRR
VDA B W

D

0\0\0\0\0\9\0\0\0\0\0\0\

W NHO

Allocate Resource Descriptor e veeeeeececcscssssossssss 6-182
Create TemporaryFile c v eeeveeenneenns cecsenneesesess6-183
DeallocateFileSpace e« e e e eoveeeeeens creesseesssssess6-185
Deallocate Resource Descriptor «.ceeeeeeeesccccscscesss6-186
Debug Link SErvice. e e e v v eveeececssocsccccsoneseessssb-187
Eject/PUrge ROULINE e« c v oo v seveconssnsesessoncnnessso6-188
Eraseor Punch Trailer «.ceveeeeeeeneeceeeneeecesesssab-189
Execute Channel Program ... ceceeceeeececccsccaseessssb-190
Get Extended Memory ATTaY « « e e e s s e e oveeoosssonanssss .6-191
Read/Write Authorization File «vevvereesestencenvenneesab6-192
Release FHDPort o.cvevevenen tesesecsesssssecsesesesesb-193
Reserve FHDPort ...cccccveeececcnns Y X A

MPX-32, Vol. I
Reference Manual

O

(6.4 Compatible SEerviceS s e e s e s s s s e ssssseeosssesssscsasssssssnneassb-195

6.4.1 M.ALOC - Allocate File or Peripheral Device.....cveeeeeees.6-195
6.4.2 M.CDJS - Submit Job from DiscFile e ecceeesseoseoccessss6-198
6.4.3 M.CREATE -CreatePermanent File ¢« c e et e eceveecesscsceeesb-199
6.4.4 M.DALC - Deallocate File or Peripheral Device ¢ v v0o e e s ee..6-202
6.4.5 M.DELETE - Delete Permanent File or Non-SYSGEN

Memorypartition.......-..............-...- ooooo-6-204

6.4.6 MEXCL -FreeSharedMemory c e s c s e e e sesecscecssocseseesb6-206
6.4.7 M.FADD - Permanent File Address Inquiry . « e e e e e e e oo 0o e .6-207
6.4.8 MFILE -OpenFileseeeecsscessscssssssssesnoncssssesss6-209
6.4.9 M.FSLR - Release SynchronizationFileLock «ceeeeveeeesss.6-210
6.4.10 M.FSLS - Set SynchronizationFileLock .. eecevoeeeeeseessab-211
6.4.11 M.JFXLR - Release Exclusive FileLock ..eeeeveeeeeeceessab-212
6.4.12 M.FXLS -Set Exclusive FileLock ¢ v eeveveeeeceensaseesssb-213
6.4.13 M.INCL - Get SharedMemory c e e e s teveoeeosonsas cesssssb6-214
6.4.14 M.LOG-Permanent FileLog cceeeeecooccoscssacseocesssb-216
6.4.15 M.PDEV - Physical DeviceInquiry «ccevcveeveeveneeeess..6-218
6.4.16 M.PERM - Change Temporary File toPermanent6-220
6.4.17 M.SHARE - Share Memory with Another Taske.eeeveeeeesss.6-222
6.4.18 M.SMULK - Unlock and Dequeue Shared Memory6-224

6.4.19 MJUSER - User Name Specification « ceossseseeevoesesssssb6-225
CHAPTER 7 BASE MODE SYSTEM SERVICES

7.1 General Description « v o oo eseeososssosscssoscscssosssassssssssnes 7-1

7.1.1 IPU Executable Base Mode System Services «cvevsvececessses 7-4
TN 7.2 Macro-callable System SEerviCes. e e e s e e e evevsssesosssassssscscsces 7-5
(7.2.1 M ACTV -Activate Taske e et e veveeneecenneeeeenecnnnnas 75
7.2.2 M ADRS - Memory Address Inquiry «...... Y £
7.2.3 M _ADVANCE - Advance Record or File «vceveesnneenoneness 7-7
7.2.4 M. | ANYWAIT - Wait for Any No-wait Operation Complete,
Message Interrupt, or Break Interrupt 7-9
7.2.5 M ASSIGN - Assign and Allocate Resource « v e v v eveessssssss 7-10
7.2.6 M ASYNCH - Set Asynchronous Task Interrupt . ¢ ¢ oo vvv oo 7-13
7.2.7 M AWAITACTION -End ActionWait e eeveereeennenaaeanss 7-14
7.2.8 MBACKSPACE - Backspace Recordor File e v vvevneeeeeenss 7-15
7.2.9 MBATCH - Batch Job Entry . coveeveenene ceessessesses .o 7-17
7.2.10 MBBTIM - Acquire Current Date/Time in Byte
Binary FOPMAt v oveveeeeeeesnssnnaossennnesennns e 7-19
7.2.11 MBORT - Abort Specified Task, Abort Self or
Abort With Extended Message « ccvceveeeerreeceeeeneeas 7-20
7.2.12 M BRK - Break/Task Interrupt Link/Unlink..eeeveeeeneenne. 7-23
7.2.13 M BRKXIT - Exit from Task Interrupt Level . vveveeeenennn.. 7-24
7.2.14 ME IBTIM - Acquire Current Date/Time in Bmary

FOPMEt v vvvvenoeonensesosnsssosnssssnssssosansss 7-25
7.2.15 M CHANPROGF CB - Execute Channel Program File
Control BloCK. v s s v eesseessessssnsscosssssssnnnsses 1-26
7.2.16 M CLOSER - Close ReSOUrCe. s e o v vvsnssncsossasnsonses 7-27
7.2.17 MCLSE -Close File ccceeeeeeeenrseeeseosceasencensnss 71-29
7.2.18 MCMD - Get CommandLing «..ccvvevvvnneeennnesennnas 7-30
7.2.19 M _CONABB - Convert ASCII Date/Time to Byte
Binary FOPMAt v vuveeeeeseoeeeennoooncsoeenaennnenns 7-31
7.2.20 M CONADB - Convert ASCII Decxmal to Blnary ceeseerseeees 71-32
(‘ 7.2.21 M _CONAHB - Convert ASCII Hexadecimal toBinary 7-33
MPX-32, Vol. I
Reference Manual xvii

7.2.22 M _CONASB - Convert ASCII Date/Time to Standard

BINGBry ¢ oo veeeeeecssscccccsssccnosccncoccassoaccsss 1-34
7.2.23 M CONBAD - Convert Binary to ASCII Decimal «ccccceveeees 7-35
7.2.24 M_CONBAF - Convert Binary Date/Time to ASCII

FOl‘mat ® © 5 0 0 0.0 00060 000 00 0000000000000 0000060000000 7"36
7.2.25 M CONBAH - Convert Binary to ASCII Hexadecimal« 000 s 7-37
7.2.26 M CONBBA - Convert Byte Binary Date/Time to ASCIl. 7-38
7.2.27 M_CONBBY - Convert Binary Date/Time to Byte

BINArY « oo oveveeeeenooceeoccecoononscsssennseanss 7-39
7.2.28 M CONBYB - Convert Byte Binary Date/Time

tOBINArY e eveveesceecssccsecsscosscsscocsscsnocses /=40
7.2.29 M CONN - Connect Task toInterrupt..ccveeeeeeeeneceeeass 7-41
7.2.30 M i CONSTRUCTPATH - Reconstruct Pathname «.....ceeeeo. 7-42
7.2.31 M CONVERTTIME - Convert TiMme..eveeeesseccocssesosss 7-43
7.2.32 M:CREATEFCB - CreateFile ControlBlock. . eceeveeeseeeees 7-45
7.2.33 M CREATEP - Create PermanentFile ccocevveveeeeceneses 7-47
7.2.34 M CREATET - Create TemporaryFile c e e v e ceeveeeeveesees 7-49
7.2.35 M CTIM - Convert System Date/TimeFormat ...cceveeeeees 7-51
7.2.36 MCWAT System Console Wait . .cveeesevececcossnnaess 7-52
7.2.37 MDATE Date and TimeInquiry....cceeeeveeeeccccsoses 7-53
7.2.38 M DEASSIGN - Deassign and Deallocate Resource «.......... 7-54
7.2.39 M DEBUG - Load and Execute Interactive Debuggerc..... 7-56
7.2.40 MDEFT Change Defaults c e e cveeeeeesssessccccosnnnses 1-57 "
7.2.41 M DELETER -Delete ReSOUTCe ¢ v e v e vesesssensnassanasss 7-58
7.2.42 MDELTSK -Delete Task «eevevereocnecenssnasnennanss 7-60
7.2.43 M DEVID - Get Device Mnemonic or Type Code «.covevveeess 7-62 ‘
7.2.44 MDIR Create Directory . . e« . .. Y A°¥] (i
7.2.45 M DISCON - Disconnect Task from INterrupt «ooeeeeeeeeees. 7-64 &\J
7.2.46 M DISMOUNT - Dismount VOIUME e veeeevnsennssenssness 765
7.2.47 MDLTT -Delete TIMer ENtry e e v eveeeeecesconccnnoaeees 7-67
7.2.48 M DSMI - Disable Message Task Interrupt e e e e e oo e sseveessss 7-68
7.2.49 M DSUB - Disable User Break Interrupt ceeessnn ceo. 1-69
7.2.50 M DUMP - Memory Dump Request. e« e evveveecsssssesaess 7-70
7.2.51 M ENMI - Enable Message Task INterrupt « e e e e cveoveeeeaass 7-71
7.2.52 M ENUB - Enable User Break INterrUpt e eveeeeeesceeeaaes 772
M ENVRMT - Get Task ENVITONMENE v eveeveerossesnaaess 7-73
M EXCLUDE -Exclude SharedImage. . « « « e e eveeeeennnnn .. 1-74
MEXIT Terminate Task Execution ...ceeeeeecescsesasss 7-76
M_EXTENDFILE -ExtendFile..cceeeeeeneeenecnnnenenns 71-77
MEXTSTS -Exit withStatus. ..o veeieeeececeecnncnneees 7-79
M | FREEMEMBYTES - Free Memory in Byte Increments 7-80
MGETCTX - Get User ConteXt o e e oo soeeeeeecccsssasssss 7-81
M GETMEMBYTES - Get Memory in Byte Increments 7-82
2.61 M GETTIME - Get Current Date and Time . vvevveevneesas. 7-84
.2.62 M GMSGP - Get Message Parameters. . ceeeeeeseeecceessss 7-86
2
2

e o o o @
NINDNDNDN
e o o o o
Vi
~NoauneE W

)
NN
o e
o\
[es Vo]

.63 M GRUNP - Get RUN Parameters. . ceeeeeeeeeeeeeseasesss 7-87

.2.64 M GTIM - Acquire System Date/Time in

ANy FoOrmat c o oeeevoecocceecensosssosccsassosnsessnsss /-88

M HOLD -Program HoldRequesteceeveveeeceneenass 7-89

MID Get Task Numberceceeeeecceesssscscesssess 7-90

MINCLUDE-IncludeSharedImage...................... 7-92

MINGUIRER Resource INQUITY v veeeeeceeascncncocsss 7-94

MINT Activate Task Interrupt ...cccecevsceevesseeneoss 7-98 i(;
!

\l\l\l\l\‘\l.\l\l\l\l\l\l
N
.
n
@

.
.

\l\l\l.\!\‘\‘
NN
NN
oOwvo~NdoONWm

MIPUBS SetIPUBI@S e ceeeessteeeccccnoenscsceoansas 7299

MPX-32, Vol. 1
xviii , Reference Manual

7.2.71

7.2.72
7.2.73
1.2.74
7.2.75
1.2.76
7.2.77
7.2.78
7.2.79
7.2.80
7.2.81
7.2.82
7.2.83

.2.84

NE\?N
@ O
~N o

NNNNN NN ~
.
o]
@

7.2.93
7.2.94
7.2.95

7.2.96

7.2.97

7.2.98

7.2.99

7.2.100
7.2.101
7.2.102
7.2.103
7.2.104
7.2.105
7.2.106
7.2.107
7.2.108
7.2.109

7.2.118
7.2.119

MPX-32, Vol. I

M LIMITS - Get Base Register Task Address

Limits e v coveeesooonsseccssncsensoesssecsoccncsasssl=100
M LOCK - Set Exclusive Resource LoCK ¢ ¢ ¢ e e e s s 000 seeeeess/=-101
MLOGR -LogResource or DireCtory «eeeeeeeceeeeeessss.7-103
M MEM - Create Memory Partition «.oeeeeeeeeeeeeeeeees.?-107
M MOD - Modify Descriptor «.eeeeeeeeeeeeeceoeaoeasss.?-108
MMODU Modify Descriptor User Area . .c.ceceeeeececesss/-110
MMOLNT Mount Volume « v e e vt veneennncenseessesessl-111
M MOVE - Move Data to User Address . e veeeeeeeeeseesss.?-113
MMYID - Get Task NUMbDEL «vevveevreneeoseenennssssssl-114
MOPENR Open RESOUrCE « s s s s s o essssenesscssssssesssl=115
MOPTIONWORD - Task Option WordInquiry « e e e e e eeeeeesss7-118
MPNAMB Convert Pathname to Pathname Block « v e o s s o o o o . 7-119
MPRIL Change PrioritylLevel ...cvveeeeeeeeeeeeene...7-120
M| | PRIVMODE - Reinstate Privilege Mode to

Privilege Task «...... Y 2 A |
MPTSK - Parameter Task Activation ceceecanas 7-122
MPUTCTX -PutUser Context o e e o eovevececsssscnsessssl-126
M_QATIM - Acquire Current Date/Time in

ASCIIFOrMAt e oo v eeenoseeoscancancennons N S VA
M RADDR - Get Real Physical Addressccceveeees...7-128
M| A RCVR - Receive Message Link Address sestececscccen 7-129
MREAD ReadRecord ..cceeeeeecnececasans ceeseseeal-130

M READD - Read DesCriptor.«ceeeeeeeeceeeaseeannasssal=131
MRELP - Release Dual-ported Disc/

Set Dual-channel ACM MOde « « c v e veeeeeeeecnneenennensal-133
MRENAME -RenameFile ¢t oeeeereeeessnsscnccsseeeesl-134
MREPLACE Replace PermanentFile o vvevveevieeeeeea 7135
M RESP - Reserve Dual-ported Disc/

Set Dual-channel ACMMoOde « ¢ c e veveereeeennnnns o oo l-137
MREWIND -RewindFile «cveceeeincenceereeecrneeees.7-138
MREWRIT -RewriteDescriptor « c e et e eeevceeecenneeesss =139

M REWRTU - Rewrite Descriptor User Area «...eeeeeeeesns 7-140
MROPL Reset OptionLower «..ccvveeeeetrececneeessa/-141
M RRES - Release Channel Reservation....ceceeeeeee eeee.7-142

M RSML - Resourcemark LoCK «.eeeeeeeeeooseennanesess?-143
M RSMU - Resourcemark UnlocK e « v e v v eveeevennennneess.7-144
MRSRV -Reserve Channel . . e o et evvveeneennnenneeeneaa7-145
M SETERA - Set Exception Return Address «...eeeeeeeeess.?-146
MSETEXA -Set ExceptionHandler e e v e e e v e e v evonnneseeesl-147
MSETS SetUser StatusWordcccceeeeevececeeeenss.7-148
M_SETSYNC Set Synchronous Resource Lock «ceeeeeeeessss7-149
MSETT - Create TimerEntry « e oo eeeeveriecnceeneseaaas7-151
M SMSGR - Send Message to Specified Task o e e v 0 veeveen...7-154

M SOPL - Set OptionLOWEr «vveveeenannns cesesscesecens 7-155
M SRUNR - Send Run Request to Specified Task. s oo e eeeees.7-156
M SUAR - Set User Abort Receiver Address cesee..l-158
MSUME Resume Task Execution. . cvveeeeeesceceecessss?=159
M 1 SUSP - Suspend Task Execution ..o eveetenenceneaeans 7-160
M SYNCH - Set Synchronous Task Interrupt « .o oot ceeeos .. 7-161
M’ A TDAY - Time-of-day INqQUIry ¢ v vveeeereeneeeconeeenas 7-162
M | TEMPFILETOPERM - Change Temporary File

toPermanent File «.ooveen. crecsccessecssnennnne .o 7-163
M TRUNCATE - TruncateFile ceseesesseeconens 7-165

M TSTE - Arithmetic Exception Inquiry «.oeeeveeeennen.s..7-166

Reference Manual Xix

1.3

XX

7.2.120
7.2.121
7.2.122

7.2.123
7.2.124
7.2.125

7.2.126
7.2.127
7.2.128
7.2.129
7.2.130
7.2.131
7.2.132
7.2.133
7.2.134
7.2.135
7.2.136

7.2.137
7.2.138

M TSTS - Test User Status Word veceeeeeeeccccesoneeeess?-167
MTSTT Test TIMer Entry o cccveeeececocccccsocsssosssl=168
M TURNON - Activate Program at Given Time
OfDay...............-..........................7-169
M TYPE -System Console Type..ccceecececcccscsceessss-171
M _UNLOCK - Release Exclusive Resource Lock «..veeeeeso..7-172
M_UNPRIVMODE - Change Task to Unprivileged
MOde.........;................................. ‘174
M UNSYNC - Release Synchronous Resource Lock «.vceeeees.7-175
MUPSP ~UpSPACE s eveevesssncsnsscsscssansnncnsocnsssl=177
MVADDR Validate Address Range «...cceeeseccccesssss’/-178
MWAIT WaitI/O oo eiiennneecreseosssosncsssnnasassal=179
M _WRITE - Write Record «.evveeeeeeenscacasancesesess?-180
M WRITEEOF - WriteEOF ...cceveveeecececcensneessssl=181
MXBRKR - Exit from Task InterruptLevel ... vvveeeeeesssa7-182
M_XIEA - No-wait I/O End-action RetUrn e e e oo v o v v e svsesess7-183
M XMEA - Exit from Message End-action Routine «..........7-184
M XMSGR - Exit from Message RECEIVET ¢ v cceeeseescaessass =185
M _XREA - Exit from Run Request End-action

ROULING & e o v veeeenaceoencacacnsencoaeneacanesess-186
M XRUNR -ExitRunReceiver . ..ccccveeeeeececaceeess,7-187
M XTIME - Task CPUExecution Time «.veeeessseeceessssse’-188

Nonmacro-Callable System Services

7.3.1

Debug Link SErviCe. e e v oo eeessseceossosssssssccosssssesl-189
Eject/Purge ROULINE « v v oo s vvvsonncooconocscosasensanssl=190
EraseorPunch Trailer ciieeeeieeneenneeeeeesal-191
Execute Channel Program .« . v eoeeeeccoosssssscsssesacssl=192
Get Extended Memory ATTay c e e o ceseeeecssecsaccsasssssl-193
Release FHDPort ... cieeereeceeesececsecessncssessl=194
Reserve FHD POrt v o veeeveeecrosvesconsssssscesasnssel=195

MPX-32, Vol. I
Reference Manual

C

FIGURES
Page

1"1 MPX-32PPOCBSSOFS&HdUtilitieS ® 0 6 60 000 00 0060000000000 0000000 1"2
1"2 Hardwal‘e/SOftwaPBPI‘iOI‘itiBS ® 9 6 0606 060006000000 0000000000000 00 1“5
2-1 Nonbase Mode Nonshared Task Address Space.....ccceeeeeeceeess. 2-4
2-2 Nonbase MOde Sha!‘edTaSk Addl‘ess Space ®© 8 000009 0 0000000000 0000 2‘5
2-3 Base Mode Shared Task Address Space .« c e e et et ve e et ieneeeennes 2-6
2-4 Task Service Area (TSA) SETUCEUrE. v v e v s e v s eeeesesocsasassseas 29
3-1 Sample Allocation of Common Memory Partitions and

Commoncode..............0....Q.....O......O'.O.... 3-20
3-2 Extended MPX-32 Logical and Physical Memory

Allocation.O.....l..'....l"....0.0...'.....'...'.... 3‘22
3-3 Extended MPX-32 Program Flow Control s e e e e oo eeevococnnoessas 3-22
3-4 Sectioned Task's Logical Address Space Using

EXTDWX.QO......... IIIII ® & & 0 6 & 0 0 5 0 0 P O S s PO e P O S e 0o 3-25
4-1 VOlumeFOTmat ® 6 0 0 0 0 0 0 0 00 0 0 0 0 00 00 00000000000 e ® o 00 0 0 0 4'15
4-2 A Sample Hierarchical Directory Structure ..¢¢cceeveeeeceseess 4-18
4-3 LocatingaFileonaVolume ..ccoveveeeecencecccncecnnonssass 4-20
5-1 Multivolume Magnetic Tape Data Transfers on

Different Operating Systems .. e v cccee et eeeeeneseanssnsss 5-19
5-2 FileControlBlock .. cceeeeeeessenesesssasscccscscnssssss 535
5‘3 PUHChedTapeFOPmat.....................-.............. 5'47
5-4 Type Control Parameter Block ...cceeeeeeeesececsascsnsssss 555

MPX-BZ, Vol. I
Reference Manual xXi

1-2
1-3

2-1
2-2
2-3
2-4
2-5
2-6
5-1
5-2

5-5

xxii

TABLES

Page

CON@PT/}Z Trap Vectors ® 0 & 0 0 0 0 0 5 0 OO P PO OO O OO S OO PO 00O 000 o 1-6
CONCEPT/32 Interrupt Vectors. c e e coeesesvsscsssoccssosscses 1=7
MPX"'}Z DeVice Support ® 0 8 6 0 0 0 % P 0O OO " OO L PO OO S OO O OO O PSS O P OO 1-22

Nonbase Mode vs.BaseMode......ccieeereesccsssnsscnsssses 2=2
MPX-32 State QUBUES « + e v e s et s osessesecssossnsssssscsssses 2-12
Task Interrupt Operation/Services SUMMArY « oo v o s veoevsovesoess 2-31
H.JIPOF Register FiXup «eveveceeseeccsscscocssscssessnsees 2-32
Task Termination Sequencing (EXIT, ABORT, and

DELETE ..t iieireeereenesecscnossonncnnns O 2 A |
MP X F aults/Traps and Miscellaneous Interrupts «..eoeeeceseesess 2-45

Disc Description Table «ccvoeeeveeecsccccsoscoscenssenessnss 3-24
MPX-32 Device Type Codes «.vocesssssososssssssssscnsssses 927
EOF and EOM Description. e e e e e oveseeossssssssscscccsscoee 933
Nonextended I/O Device Status (2000 Level)e s e v eesevesnsnesness 536
Device Functions (Standard Devices) v v oo vvoeeseescsessessess 539
Device Functions (Terminals, Handler ActionOnly). e vveeeeocese. 542
Acceptable/Nonacceptable Device Transfers Specified in

TCW Word 1, Bits 12and 30/31 v v veeeveseasosssossnscannssss 543
Default and Special Device Formatting . ..o eceeeeccneeceessaes 545
Standard Terminal and Line Printer Carriage Control

Characters and Interpretation ¢ o s v ceeceveesecocccsssscecness 5-48
Execute Channel Program FCB Format . eseeesscvevecsssceceass 9-59
Notification Packet Layout for PPCI Receiver ¢« v e e s e veseeoocsees 9-60
Permanent and Temporary File Resource Create Block
Directory Resource Create Block (RCB).evcesessesesssssssasss 5-72
Nonbase Mode Memory Partition Resource Create

BlOCk(RCB)...-...............---........-........... 5"73

‘MPX-32, Vol. |
Reference Manual

Documentation Conventions

Notation conventions used in directive syntax and message examples throughout this
manual are described below.
lowercase letters

In directive syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

IACTIVATE taskname

means replace taskname with the name of a task. For example,
IACTIVATE DOCCONV

In messages, lowercase letters identify a variable element. For example,
BREAK ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In directive syntax, uppercase letters specify a keyword must be entered as shown for
input, and is printed as shown in output. For example,

SAVE filename

means enter SAVE followed by a file name. For example,
SAVE DOCCONV

In messages, uppercase letters specify status or information. For example,
taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces | }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

counter
startbyte

means enter the value for either counter or startbyte.

MPX-32, Vol. 1
Reference Manual xxiii

Brackets []

An element inside brackets is optional. For example,
[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you can enter one of the group
of options or none at all. For example,

base name
progname
means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example,

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.
Commas between multiple brackets within an encompassing set of brackets are semi-
optional; that is, they are not required unless subsequent elements are selected. For
example,

M.DFCB fcb,lfc [,[al,[b1,[c],[d},[e]]
could be coded as

M.DFCB FCB12,IN

or
M.DFCB FCB12,IN,,ERRAD

or

M.DF CB FCB13,0UT,,ERAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element can be repeated. For example,
name [,namel...

means one or more names separated by commas can be entered.

MPX-32, Vol. 1
xXXiv Reference Manual

@

O

Vertical Ellipsis .

The vertical ellipsis specifies directives, parameters, or instructions have been omitted.
For example,

COLLECT 1

LIST
means one or more directives have been omitted between the COLLECT and LIST
directives.
Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in parentheses. For example, (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that can
be typed by the user as an abbreviation. For example,

ACTIVATE taskname

means spell out the directive verb ACTIVATE or abbreviate it to ACTI.
RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,

TSM > EDIT

means TSM > was written to the terminal; EDIT is typed by the user.

MPX-32, Val. 1
Reference Manual xxv/xxvi

CHAPTER 1
INTRODUCTION

1.1 System Description

The Mapped Programming Executive (MPX-32) is a disc-oriented, multiprogramming
operating system that supports concurrent execution of multiple tasks in interactive,
batch, and real-time environments. MPX-32 provides memory management, terminal
support, multiple batch streams, and intertask communication.

MPX-32 employs the SelMAP to fully support the 16MB physical address space of the
CONCEPT/32 computers. Each task executes in a unique address space which may be
expanded under task control up to 2MB of memory on the 32/27 and 32/87, or 16 MB on
the 32/67 and 32/97. An integrated CPU scheduler and a swap scheduler provide
efficient use of main memory by balancing the in-core task set based on time-
distribution factors, software priorities, and task state queues. The SelMAP is used to
perform dynamic relocation of tasks during inswap.

Tasks operating under MPX-32 can be activated and/or resumed by hardware interrupts,
system service requests, interactive commands, job control directives, or by the
expiration of timers. Multiple copies of a task can be executed concurrently in
interactive, batch, or real-time environments. Through its various scheduling
capabilities, MPX-32 provides the flexibility needed to adapt system operation to
changing real-time conditions.

The MPX-32 software package is composed of various software modules including the
resident operating system (I0OCS, CPU and swap schedulers, Resource Allocator, Volume
Management Module, re-entrant system services, and device and interrupt handlers), a
Terminal Service Manager (TSM), a system generator (SYSGEN), and utilities such as a
Volume Formatter and Volume Manager. Figure 1-1 describes the system nucleus,
processors, and utilities.

The Internal Processing Unit (IPU) is a second central processor designed to work with a
CPU to increase system throughput. The IPU is attached to the SelBUS like the CPU and
shares all memory (including the resident operating system area) with the CPU. The
IPU's function is to execute user task level code in parallel with CPU operation. (The
IPU is optional hardware and must be specified during SYSGEN for use on a system.)

To avoid contention between the IPU and CPU, there are limitations on what the IPU can
do:

. It cannot communicate with peripherals (perform 1/0).
It cannot process all supervisor call (SVC) system services.

It cannot execute interrupt control instructions.

MPX-32, Vol. I
Reference Manual Introduction 1-1

1

uo139NpPOIJU]

[enue|\ 3d0ualajoy
I *IOA ‘2€-XdW

SaIN[IIN PUE $10S83301d Z¢-XdW “T-T 34nbiy

{ A
)
AN

v08S0€8

—
SYSTEM NUCLEUS
10cs
CPU SCHEDULER
SWAP SCHEDULER
RESOURCE ALLOCATOR
VOLUME MANAGEMENT MODULE
SYSTEM LANGUAGE SYSTEM PROGRAM SERVICE USER
COMMAND PROCESSORS MANAGER DEVELOPMENT UTILITIES UTILITIES
PROCESSORS R UTILITIES UTILITIES AND TASKS
TSM (1,8) ASSEMBLER (1,8) KEY (1,8) CATALOG (1,B) MEDIA (1,B) (1,8,R)
OPCOM FORTRAN (1,8) FILEMGR (1,8) DEBUG (1.8) UPDATE (1,8)
PASCAL (1,8) SYSGEN (1,8)
. . IBR (1,
COBOL (1,8) ACCOUNT (1,8) MACLIBR (1.8)
BASIC (1) COMPRESS (1,B) LIBED (1,8)
ASMX32 (1,B) PROJECT (1,B) DPEDIT (1,B)
FORTX32 (1,8) EDITOR (1,8)
VOLMGR (1,8)
VEMT (1,B)
LINKX32 (1,8)
DEBUGX32 (1,B)
MACX32 (1,8)
0BJX32 (1,8)
- 1 -t
NOTE
| = INTERACTIVE
B. = BATCH
R = REAL TIME

Therefore, the IPU and CPU manage task execution transparently around the IPU
limitations. For example, if the IPU is executing a task and encounters a service it
cannot perform, a trap is sent to the CPU, the CPU takes over execution of the task at
that point, and the task remains in the CPU until completion or reselection for IPU
execution.

MPX-32 standard features include:
. Support for the full 16MB physical addressability of the CONCEPT/32 computers
. Up to 255 tasks executing concurrently
. 64 software priority levels, 10 of which are time distributed
. Servicing of all standard XIO peripheral devices
. Standard handlers for interrupts and traps
. Intertask communications, including send/receive
. Intertask shared memory partitions, such as Global Common and Datapool
. Dynamic allocation and deallocation of memory and peripherals
Multiple batch streams, including multiple spooled input and output queues

. Wait and no-wait I/O capabilities, including automatic blocking, buffering, and
queueing

. Terminal support for up to 64 devices, including device independent operation and an
extensive repertoire of on-line commands

. Automatic task reentrancy through separation of pure code and data areas
. Reentrant system services available to all tasks

. Several levels of system security, including access restrictions based on task
ownership

. File management, assignment, and security

. Up to 245 logical files (files or devices) opened concurrently per task if both static and
dynamic assignments are used

. Project accounting capability
. Transparent support of the IPU

. Automatic mounting of public volumes at IPL

MPX-32, Vol. I
Reference Manual Introduction 1-3

MPX-32 uses hardware and software priorities for scheduling and executing tasks. Figure
1-2 shows the various MPX-32 software elements and the hardware and software priority
levels that are assigned to each.

1.1.1 Hardware Interrupts/Traps

The CONCEPT/32 computers support up to 96 hardware interrupts and traps. See Tables
1-1 and 1-2. The exact number in a particular system is dependent on the user's
requirements and the number of peripheral devices in the configuration.

The highest hardware priority levels in the system are reserved for the basic system
integrity interrupts and traps. These include the power fail/power up traps and system
override interrupts and traps. Lower levels are used for the I/O transfer interrupts,
memory parity trap, console interrupt, and I/O service interrupts.

The next lower group of interrupts and traps are used for exceptional conditions,
supervisor call requests, and real-time clock. The exceptional conditions include
nonpresent memory trap, undefined instruction trap, privilege violation trap, and
arithmetic exception interrupt.

All lower hardware priority levels are used for external interrupts. User tasks can be
connected directly or indirectly to the external interrupts.

MPX-32, Vol. 1
1-4 : Introduction Reference Manual

S

C

TRAP

INTERRUPT

RELATIVE TRAP
AND INTERRUPT
HARDWARE PRIORITIES

00
01
02
03
04
05

25-28

29
2A

6F
70

71-7F
80

POWER FAILSAFE 1P00

POWER ON/AUTOSTART IPAS

MEMORY PARITY 1P02

NONPRESENT MEMORY P03 — exec

UNDEFINED INSTRUCTION \Po4 L wons

PRIVILEGE VIOLATION 1PO5 {1 iocs
™ Fise

SUPERVISOR CALL (SVC) ~ ALOC

MACHINE CHECK 1P07 L™ TAMM

SYSTEM CHECK 1P08 - Tsm

MAP FAULT , 1P09 1 Rexs

UNDEFINED IPU INSTRUCTION 1PU L ReEMM

SIPU wucru| - vomm

ADDRESS SPECIFICATION 1POC L™ mEMM

CONSOLE ATTENTION 1P13

PRIVILEGE MODE HALT PHT

ARITHMETIC EXCEPTION 1POF

CACHE PARITY H.IP10

EXTERNAL INTERRUPTS

——— USER INTERRUPT HANDLERS

1/0 SERVICE INTERRUPTS

i

———— SYSTEM AND USER DEVICE HANDLERS |

EXTERNAL INTERRUPTS

1 USER INTERRUPT HANDLERS

REAL TIME CLOCK

—— IPCL - TIMER SCHEDULER

EXTERNAL INTERRUPTS

|——— USER INTERRUPT HANDLERS

J
|
]

INTERVAL TIMER INTERRUPT (32/27)

————— IPIT - CPU SCHEDULER

EXTERNAL INTERRUPTS

—-—l USER INTERRUPT HANDLERS

INTERVAL TIMER INTERRUPT
(ALL CONCEPT/32 COMPUTERS
EXCEPT 32/27)

————1 IPIT - CPU SCHEDULER

SOFTWARE PRIORITIES

55

REAL TIME

TASKS, PROCESSORS/UTILITIES
EXECUTE EITHER AT CATALOGED
PRIORITY OR AT TIME DISTRIBUTION

TIME DISTRIBUTION

PRIORITY, DEPENDING ON HOW
ACTIVATED.

8305328

MPX-32, Vol. I

Reference Manual

Figure 1-2. Hardware/Software Priorities

Introduction

Relative
priority

ao
01
02
03
04
05
06
07
08
09
0A
0B
oC
oD
OE
OF
10

Default Trap

"~ Table 1-1
CONCEPT/32 Trap Vectors

Vector Location (TVL)

CPU
80
84
88
8c
90
94

Trap condition

IPU
20

24
28
2C
30
34
38
3C
40
44
48
4C
50
54
58
5C
60

Introduction

Power fail trap (power down)
Autostart trap (power up)
Memory parity trap
Nonpresent memory trap
Undefined instruction trap
Privilege violation trap
Supervisor call trap

Machine check trap

System check trap

MAP fault trap
Not used

Undefined IPU instruction trap
Address specification trap

Console attention trap

Privilege mode halt trap
Arithmetic exception trap

Cache memory parity trap (all

CONCEPT/32
the 32/27)

computers except

MPX-32, Vol. I
Reference Manual

)

-

T,

\\J

C

Relative
Priority

00

17
18
19

S5E
SF
60

6F

MPX-32, Vol. 1
Reference Manual

Table 1-2

CONCEPT/32 Interrupt Vectors

Default
Interrupt
Vector
Location
(IVL)

100
104
108
10C
110
114
118
11C
120
124
128
12C
130
134
138
13C
140
144
148
14C
150

15C
160
164

278
27C
280

2BC

Interrupt condition

External/software interrupt 0O
External/software interrupt 1
External/software interrupt 2
External/software interrupt 3
I/0O channel 0 interrupt

I/O channel 1 interrupt

I/O channel 2 interrupt

I/O channel 3 interrupt

I/0O channel 4 interrupt

I/0 channel 5 interrupt

I/O channel 6 interrupt

1/O channel 7 interrupt

I/O channel 8 interrupt

I/O channel 9 interrupt

I/O channel A interrupt

I/0O channel B interrupt

I/O channel C interrupt

I/O channel D interrupt

I/O channel E interrupt

I/O channel F interrupt
External/software interrupts

External/software interrupts
Real-time clock interrupt
External/software interrupts

External/software interrupts
Interval timer interrupt (32/27)
External/software interrupts (all
CONCEPT/32 computers except the
32/27)

Interval timer interrupt (all CONCEPT/32

computers except the 32/27)

Introduction

1.1.2 Software Interrupt System

MPX-32 provides 64 software priority levels for controlling the user's application. All
system scheduling is performed by priority. Multiple tasks can be assigned to any
priority level, thereby achieving a high level of multiprogramming versatility. The
software priority levels are used by the Resource Allocator for peripheral and memory
allocation, by the I/O supervisor for the queueing of 1/O requests, and by MPX-32
whenever CPU control is allocated.

1.1.3 Task Priority Levels

Priorities 55 to 64 are time-sliced to provide for round-robin time distribution among
tasks of the same priority. Priorities 1 to 54 are not time distributed. A task's cataloged
priority will be altered based on its eligibility to run. For example, a task's priority is
boosted when an I/O operation is completed and restored after a minimal time quantum.
Priority migration ensures maximum response to real-time events.

1.1.4 Supervision and Allocation

CPU scheduling is maintained through a set of state queues including the priority state
chains and such execution states as suspended, queued for memory, queued for
peripheral, I/O wait, etc. Each CPU dispatch queue entry defines all scheduling
attributes of a single task. The entry typically migrates among the state queues as the
task's execution eligibility changes. These state chains are also used by the swap
scheduler to select candidates for swapping.

The CPU scheduler is invoked whenever a scheduling event occurs. Scheduling events
include:

. External interrupts

. I/O completion

. Timer expiration

. Resource deallocation

. System service completion

IPU scheduling is maintained through state queues consisting of biased tasks (C.RIPU)
scheduled in addition to MPX-32 normal state queues for nonbiased tasks (SQRT through
SQ64). Any biased tasks are prioritized among themselves, and are scheduled for
execution based on priority. Any nonbiased tasks are also prioritized among themselves,
and are scheduled for execution according to priority. If a nonbiased task waiting for
execution has a higher priority level than a biased task also waiting for execution, the
nonbiased task will be selected for execution.

An optional scheduling algorithm is available to allow the user to boost the priority of
IPU tasks and allow them to run in the CPU.

MPX-32, Vol. I
1-8 Introduction Reference Manual

TN

NS

O

1.1.5 Memory Allocation

The unit of memory allocation is a map block, which is 2KW on the CONCEPT/32
computer. Memory is allocated to tasks as needed. All tasks are loaded discontiguously
into a whole number of physical map blocks, utilizing the SelMAP to create their
contiguous logical address space. No partial map blocks are allocated.

The MPX-32 memory allocation scheme allows tasks to dynamically expand and contract
their address space by system service calls.

The unit of memory protection is called a protection granule and is 512W. Thus, it is
possible to have protected data areas within a map block.

1.1.5.1 Dynamic Allocation

Dynamic allocation and deallocation are performed by the allocate and deallocate system
services. These services can be used to dynamically allocate and deallocate any
peripheral device, permanent and temporary disc files, or the System Listed Output
(SLO) and System Binary Output files (SBO). By allocating peripheral devices
dynamically, each task will have exclusive use of a peripheral only during the time
required to perform the task's I/O. Therefore, when peripherals are unallocated, other
tasks can use them on an as-needed basis.

Because the allocation of system-wide peripheral devices that are requested dynamically
cannot be guaranteed, a task must be prepared to accept a denial return.

A task requesting additional memory is automatically queued until the memory can be
allocated. For peripherals and file space, the caller can optionally queue for allocation
or take alternative action.

1.1.6 File Management

In the MPX-32 operating environment, files are used in several ways. Permanent files
are created for user programs, user data, and system programs. Temporary files provide
system scratch storage, user scratch storage, and system output data storage for the
system printer and card punch. Separation is maintained among files belonging to
different users.

The file management system for MPX-32 consists of the resident Volume Management
Module and the nonresident Volume Manager. Together, they supervise all file space on
the discs.

1.1.6.1 Permanent Files

Residing in disc storage, permanent files are defined by entries in a directory which
specify each file's name, binary creation date and time, absolute block number of
resource descriptor, resource ID flag and type and other directory entry control
information. Permanent files remain defined to the operating system until they are
explicitly deleted.

MPX-32, Vol. 1
Reference Manual Introduction 1-9

All permanent files are referenced by pathname, and any number of tasks may access any
permanent file for both input and output. To locate the directory entry for each file,
MPX-32 employs a hashing technique which translates the characters in the file name to
a specific location in the directory. For a complete description of pathnames, see
Chapter 4,

Permanent files are classified as either fast or slow depending on the speed at which
their directory entries can be located. A fast permanent file is one whose entry can be
located with one disc access. Slow permanent files are not necessarily characterized by
a unique mapping of names in the directory, and, therefore, two or more disc accesses
may be required to find each file's entry.

1.1.6.2 Temporary Files

Temporary files are files whose definitions are eliminated from the system upon
completion of the task requiring the space. Temporary file space is allocated and
deallocated by the Volume Management Module which is responsible for maintaining
space allocation maps for all available discs. Temporary files are typically used for
system scratch storage and user scratch storage.

1.1.6.3 Random Access Files

Any disc file may be accessed randomly by record number through standard IOCS calls.
The user sets a bit and specifies the relative disc block number in a File Control Block
(FCB) to utilize this feature.

1.1.6.4 Disc File Protection

File protection mechanisms are available to prevent unauthorized access to and deletion
of permanent files. Protection of individual files can be specified when the files are
created. User files can also be protected on a per user basis. If a key is associated with
an owner name in the M.KEY file, it must be entered at logon. Specific access rights are
defined for each file by owner, project group, and other.

1.1.6.5 Dedicated System Files

To increase system throughput and minimize I/O delay time, IOCS supports disc buffered
I/0 by using special system files. Four dedicated file codes exist in the system. One file
code is for buffered system input (SYC), two file codes are for buffered system output
(SLO, SBO), and one file code is for a System Object file (SGO). A system file can be
assigned to a file code in the same manner a device is assigned to a file code.

1.1.6.6 Multiprocessor Files

MPX-32 allows tasks executing in separate system environments to obtain concurrent
access to selected files. The operating system maintains resource integrity on these files
within the scope of volume management described in Chapter 4 of this manual. These
files must reside on a volume accessible by a multiported device.

MPX-32, Vol. 1
1-10 Introduction Reference Manual

1.1.7 System Services

MPX-32 offers an extensive array of resident system service routines that can perform
frequently required operations with maximum efficiency. Using the Supervisor Call
instruction, tasks running in batch, interactive, or real-time environments can call these
routines.

All system service routines are re-entrant. Thus, each service routine is always available
to the currently active task.

The system service routines are standard modular components of MPX-32, The open-
ended design of the system, however, gives each user freedom to add any service routines
required to tailor MPX-32 to a specific application.

1.1.8 Input/Cutput Operations

The Input/Output Control System (IOCS) provides 1/O services that relieve the
programmer of detailed chores. While keeping software overhead to an absolute
minimum, IOCS receives and processes all I/O requests for both user and tasks. It
performs all logical error checking and parameter validation. IOCS also logically
processes all I/O operations and assigns 1/O control to the appropriate device handler.
The device handler, in turn, executes the I/O data exchange, processes service interrupts,
and performs device testing.

Input/output operations under MPX-32 include the following general capabilities: direct
I/0, queued I/O requests, device independent I/O, device interchangeability, device
reassignment, and disc-buffered (blocked) I/O.

1.1.8.1 Direct I/O

I/O can be issued directly to acquire data at rates which prohibit the overhead of IOCS.
Mechanisms are provided in IOCS to ensure that no conflict occurs with IOCS file
operations. The interface facilities provided in IOCS for direct I/O enable a task to gain
exclusive use of an I/O channel.

1.1.8.2 Device-independent 1/0

Normal I/O operations in the system occur to and from user-specified logical file codes.

These file codes are assigned and reassigned to the physical device where the 1/0O
commands are ultimately routed.

1.1.8.3 Logical File Codes

The user logical file code consists of one to three ASCII characters. For each file code
defined and referenced by a user task, there is an entry in a File Assignment Table
(FAT). The FAT entry describes the device controller channel and the device the file is
assigned to. In the case of a disc that is a shared device, additional addressing
information is provided for complete identification of the file. Each user task is allowed
a maximum of 245 static and dynamic logical file assignments. '

MPX-32, Vol. I
Reference Manual Introduction 1-11

1.1.8.4 File Access

Both random and sequential file access is supported by IOCS. Random or sequential
access is specified by the user. All files assigned to devices other than disc are
considered sequential. A file assigned to disc may be referenced by both random and
sequential transfers. Attempts to perform a write operation on a file specified as read-
only, or attempts to circumvent disc file protection and security, are aborted.

1.1.9 Communications Facilities

MPX-32 offers complete facilities for providing communications between individual
users, internal system elements, user tasks, and the operator and the system. Users
communicate with one another through sharing permanent files, shared images, the
communication region, Global Common and Datapool partitions, and job status flags
which can be set and interrogated by system service routines. Tasks communicate with
one another by messages or run requests.

1.1.9.1 Intertask Messages

Tasks can establish message receivers for intertask communication. Messages are
buffered by MPX-32 in memory pool until the receiving task is eligible to receive. The
receiving task is interrupted asynchronously and optionally responds to the sender. The
sender optionally waits for a reply or elects to be interrupted asynchronously by a
response. Messages can be queued to an arbitrary depth.

1.1.9.2 Run Requests

A task can send a run request to any other task. A run request is similar to a message,
except that with a run request the receiver may not yet be in execution. In such cases,
the receiving task is activated before the message is queued. The receiving task can
process run requests at any time.

1.1.9.3 Global Common

Global Common is an area of memory that many programs can access by using symbolic
names to identify specific storage cells. In this respect, Global Common is comparable
to local common. Unlike local common, however, access to Global Common is not
restricted to programs within a single task. Rather, programs belonging to many
independent tasks can freely access the same data and exchange control information
within the Global Common area.

1.1.9.4 Shared Images

A shared image allows base mode tasks to share both code and data, for example, shared
subroutines and common data partitions. A shared image is built on disc by the base
mode linker (LINKX32) and is loaded into memory upon inclusion by a task. In addition,
nonbase mode tasks may include the shared image as an initialized dynamic data
partition.

MPX-32, Vol. I
1-12 : Introduction Reference Manual

/_\ \\‘

vy

Shared images are distinct from static and dynamic common in that the memory is
initialized with data from disc.

1.1.9.5 Datapool

Like Global Common, Datapool is an area of memory that many tasks can access using
symbolic references. In addition to providing all the advantages of Global Common,
Datapool provides a much wider range of structuring flexibility. For example, where
Global Common symbolic references must follow the same order as the locations of the
data in memory, symbolic references to Datapool may be entirely independent of the
actual positioning of data within the memory area.

1.1.9.6 Internal Communications

Internal system elements communicate through temporary files, system queues, and the
system communications region. The system communications region occupies
approximately 2KW of lower memory. It contains information common to all system
modules and processors.

1.1.10 Trap Processors

Trap processors are entered when any exceptional condition trap occurs. Certain traps
indicate task errors, such as a reference to nonpresent memory, a privilege violation, or
execution of an unimplemented instruction. These traps cause the violating task to be
aborted. When the arithmetic exception trap occurs, the overflow condition is noted for
use by the task in execution.

1.1.11 Timer Scheduler

The timer scheduler schedules events such as task activation, task resumption, flag
setting and resetting, and interrupt activation on a timed basis.

1.1.12 Time Management

Time is kept in two different formats. The system maintains the time as a count of
clock interrupts, and the date as an ASCII constant. In order to allow for easy time
stamping of resources with the file system capabilities, time is also kept as a binary
count of 100 microsecond units since midnight, and the date as the binary number of days
since January 1, 1960. (See Appendix H for more details.)

When entering the date and time, the user is allowed to specify that daylight savings
time is in effect and a correction factor for time zone. These features are provided for
the user who wishes to have the system use a standard time base, such as GMT, for
system operations but have the displayed values of date and time be equal to local time.
For example, if a user states that local time is 10:00:00, daylight savings time is in
effect, and there is a two-hour correction for time zone, the time kept by MPX-32 will
indicate 07:00:00. The correction factor is kept so any user access of time indicates the
local value.

MPX-32, Vol. I
Reference Manual Introduction . 1-13

Another feature allows the use of the international date format for entering the date.
Instead of entering 10/17/80, 170CT80 can be entered. The date is always displayed in
the same format as it is entered at IPL time.

1.1.13 System Nonresident Media Mounting Task

The system nonresident media mounting task, JJMOUNT, mounts both formatted and
unformatted media. J.MOUNT is normally in the Waiting for Run Request (RUNW)
queue. When a program requires a volume to be mounted, a run request is sent to
J.MOUNT which issues the mount message to the system console and then processes the
user's reply. :

1.2 System Command Processors

The Terminal Services Manager (TSM) and the interactive Operator Communications
(OPCOM) command processor provide access to MPX-32 interactive, batch. and real-
time processing environments.

1.2.1 Terminal Services Manager (TSM)

The Terminal Services Manager (TSM) provides interactive, time-shared access to the
MPX-32 system for terminals connected either through ALIM or ACM controllers. It
allows the terminal user to:

. lLogon to MPX-32

. Access any MPX-32 processor

. Communicate with on-line users or the operator

. Account for use of computer resources

. Specify and pass parameters to interactive and batch tasks

. Automate a series of tasks into a job, or submit a stream of jobs

. Request assignment of any MPX-32 resource

. Specify alternative actions conditionally

. Logoff from MPX-32

1.2.2 Operator Communications (OPCOM)

Operator Communications (OPCOM) provides commands that can be used to interrogate
the system and tune it for optimum response to changing conditions. The commands
allow the user to:

. List the status of all queues, tasks, I/O controllers, and mounted volumes

. Control spooled print and punch output

MPX-32, Vol. I
1-14 Introduction Reference Manual

C

. Hold and continue execution of tasks

. Activate and abort tasks

. Connect tasks to interrupts

. Establish resident and nonresident tasks

. Display time-of-day clock

. Create and delete timer scheduler queue entries

. Delete allocation queue entries

. Enable, disable, and trigger hardware interrupts

. Reserve devices, release them, and place them off-line or on-line

. Change the assignment of the system input device, the SGO file, and the destination
of the SLO and SBO spooled output files

. Initiate the reading of the batch stream

. Issue system debugging commands

1.2.3 Batch Processing

Batch processing consists of spooling batch jobs to disc, interpreting job control
statements, and directing listed and binary spooled output to destination files and
devices. Multiple jobs are processed concurrently within limits established by SYSGEN
and the availability of computer resources. Tasks comprising batch processing compete
with each other and with nonbatch tasks for computer resources under standard MPX-32
allocation algorithms.

Each job is spooled to a separate System Control (SYC) disc file prior to processing. Jobs
may be spooled to SYC files from card, magnetic tape, and paper tape peripheral
devices, and from blocked, temporary, and permanent disc files. The OPCOM BATCH
directive may be used to initiate spooling from peripheral devices and permanent files.
The batch job from entry system service (M.BATCH) is used by TSM, and the Text Editor
and can be invoked by a task to initiate spooling from permanent and temporary disc
files. The TSM $BATCH or $SUBMIT directives can also be used to submit batch jobs.

Job sequence numbers reflect the order in which jobs are entered and uniquely identify
each job and its tasks.

Upon job completion, a job's spooled listed and binary output is automatically routed to
usable peripheral devices if no particular device(s) or permanent file(s) are specified for
the job. Usable devices for automatic selection are specified by SYSGEN and OPCOM
directives. Spooled output destination devices include line printers, card punches,
magnetic tapes, paper tapes, and disc files. Spooled output is selected for processing
based on the software priority of jobs and, within a given priority, on the order in which
jobs complete processing.

MPX-32, Vol. I
Reference Manual Introduction 1-15

13 Program Development Utilities

MPX-32 supports both nonbase and base mode programs. Refer to Section 2.2 for the
nonbase and base task differences. Nonbase and base modes cannot be mixed; therefore,
separate program development utilities exist for each mode.

Of the following utilities, only VOLMGR and J.VFMT are included on the MPX-32 Master
SDT.

1.3.1 Task Cataloging (CATALOG)

By exercising the facilities of the cataloger, users create permanent nonbase mode load
modules that execute as tasks on the MPX-32 system. During cataloging, relocatable
object modules produced by the assembler or compilers are loaded and linked internally
and externally to library subroutines. The linked body of code thus produced is then sent
to a selected permanent file in relocatable or absolute format. In addition, the cataloger
places a preamble on this file. This preamble contains a summary of the resources
required by the task, such as memory, permanent files, and peripheral devices, and
defines special task characteristics (shared, resident, etc.). Once created, a task is
known to the system by the name of the permanent file where it resides. The task can
then be activated, saved, restored, or otherwise operated on by specifying its name in the
appropriate job control statement, system service call, or terminal directive.

1.3.1.1 Privilege

Whether a task is privileged or unprivileged can be defined by cataloger directives. The
ability to specify a privileged operation for a task can be restricted by owner name.

By specifying whether tasks are privileged or unprivileged, users can control system
security. Tasks designated to run privileged are free to execute any instruction in the
instruction repertoire. They also have read/write access to all memory locations.

1.3.1.2 Overlays

For efficient use of memory, the cataloger provides the user with facilities for dividing
large nonbase mode programs into overlays. Both the main program segment, the root,
and the overlay segments can be cataloged in relocateable format. Individual overlays
can be cataloged separately, permitting the user to modify or replace any overlay
without disturbing any of the others. Flexible symbol linkage is provided between the
root and its associated overlays and between individual overlays of various levels.

1.3.2 Task Debugger (MPXDB)

The task debugger is a directive-oriented processor that debugs a single, cataloged,
nonbase mode user task. It can be accessed with a DEBUG directive in TSM, with a
$DEBUG statement in batch, by coding an M.DEBUG service call within the cataloged
task, or by using the break key after a task has been activated with TSM, in which case
TSM provides the option of calling M.DEBUG.

If the task the debugger is connected to has a shared CSECT, the debugger must be
attached at task activation (by the DEBUG directive in TSM or $DEBUG statement in
batch). The shared CSECT task is then loaded as multicopied and breakpoints set in the
CSECT does not impact other users of the shared CSECT.

MPX-32, Vol. I
1-16 Introduction Reference Manual

Y

MPXDB directives allow the user to:
. Trace task execution
. Set debugging traps within the task

. Display and/or alter contents of the task's 1ogical address space, general purpose
registers, etc.

. Watch for privileged task entry into the operating system or other areas of memory
not usually accessed even by a privileged task

. Perform other operations that facilitate task debugging

1.3.3 Macro Assembler (ASSEMBLE)

The Macro Assembler translates nonbase assembler directives and source code into
binary instructions for the CONCEPT/32 CPU.

1.3.4 Macro Library Editor (MACLIBR)

With the Macro Library Editor, nonbase mode macros that are used frequently can be
placed in a macro library where they are available for use by the Macro Assembler.
During execution, the Macro Library Editor transfers the macros from the Source Input
File to the Macro Library File. The macros entered into the library are listed on an
output file.

1.3.5 Subroutine Library Editor (LIBED)

The Subroutine Library Editor provides facilities for creating and modifying the nonbase
mode System Subroutine Library and any number of user subroutine libraries. The user is
provided with a listing of directives, module names, external definitions, the quantity of
library and directory space remaining on the disc, and the modules that were specified
for deletion but were not located in the library.

1.3.6 Datapool Editor (DPEDIT)

The Datapool Editor provides the ability to create and maintain dictionaries for access to
static or dynamic Datapool common memory partitions.

1.3.7 Text Editor (EDIT)

The Text Editor provides directives for building and editing text files, merging files or
parts of files into one file space, copying existing text from one location to another, and,
in general, for performing editing functions familiar to users of interactive systems.

EDIT is typically used to create source files and to build job control files and general
text files. A job file built in the editor can be copied directly into the batch stream
using the editor BATCH directive.

1.3.8 Veolume Manager (VOLMGR)

The Volume Manager creates or deletes permanent disc file space, special Global
partitions, and/or a Datapool partition (one that can be dynamically allocated in memory
when required by tasks). A primary use is to provide system and user permanent file
backup.

MPX-32, Vol. 1
Reference Manual , Introduction 1-17

1.3.9 Volume Formatter (J.VFMT)

The Volume Formatter formats volumes (discs). It can operate on a fully functional
MPX-32 system or a starter system by the SDT.

1.3.10 Assembler/X32 (ASMX32)

The Assembler/X32 translates base mode assembler directives and source code into
binary base mode instructions for the CONCEPT/32 CPU.

1.3.11 Macro Librarian/X32 (MACX32)

The Macro Librarian/X32 builds and maintains base mode macro libraries that are
accessed by the Macro Assembler/X32. Frequently used base mode macros can be placed
in the macro libraries for easy access.

1.3.12 Object Librarian/X32 (OBJX32)

The Object Librarian/X32 provides facilities for creating and modifying user object
libraries. The object libraries contain object files to be used in base mode programs.
The object librarian provides a log of the number of object files entered, the names of
the object files, when each file was entered, and the amount of available library space.
1.3.13 Linker/X32 (LINKX32)

The Linker/X32 creates permanent base mode load modules that can execute as tasks on
MPX-32. During linking, object modules produced by the Macro Assembler/X32 or
compilers are loaded and linked internally and externally to library subroutines. The
linked body of code becomes an executable image.

1.3.14 Symbolic Debugger/X32 (DEBUGX32)

The Symbolic Debugger/X32 is a directive-oriented processor used to debug base mode
executable images created by the Linker/X32.

The debugger allows the user to:

. Debug interactively, with debugger directives controlling the execution of the
program

. Access program locations (memory addresses) by using hexadecimal addresses, bases,
or the global symbols defined in the source program. Addresses are displayed in
hexadecimal format or relative to a base or global symbol.

. Display data in ASCII, hexadecimal, or instruction format

. Execute program instructions one at a time, showing the result after each instruction
is executed, or set traps to allow execution to proceed through many instructions to a
designated program checkpoint

. Define bases

MPX-32, Vol. I
1-18 Introduction , Reference Manual

C

O

. Debug privileged programs

. Print a record of the debugging session
1.4 Service Utilities

1.4.1 Source Update (UPDATE)

The Source Update utility provides facilities for revising source files. It permits the user
to enter new files as well as to update existing files by adding, replacing, and deleting
source statements. Input can be in either standard or compressed format, and either
format may be selected for the output file. Source Update can also produce a listing of
the control stream as it generates the output file.

1.4.2 Media Conversion (MEDIA)

The Media Conversion utility performs functions ranging from card duplication to
merging multiple media inputs into single or multiple media outputs. It provides media
editing, media-to-media conversion, code conversion, media copying, and media

verification. Rather than restricting the user to a fixed set of functions, the Media
Conversion utility is controlled by a language of directives.

1.5 System Manager Utilities

1.5.1 MXKEY Editor (KEY)

KEY is a utility used to build an M.KEY file for the MPX-32 system. The M.KEY file
specifies valid owner names on the system and optionally sets, for each owner name:

. A key to restrict access to the owner name during logon and to the user name when
accessing files

. OPCOM indicators restricting the owner's use of OPCOM directives

. An indicator that prevents the owner from cataloging privileged tasks (tasks that use
privileged system services or privileged variations of unprivileged system services)

. An indicator that prevents the owner from activating tasks cataloged as privileged
. Default tab settings

. Default working volume and directory specification

. Default alphanumeric project names/numbers for accounting purposes

After KEY has been run, only those owners established in the M.KEY file are allowed to
logon to the system and access files.

MPX-32, Vol.]
Reference Manual Introduction 1-19

1.5.2 MPX-32 System Start-up, Generation, and Installation (SYSGEN)

Under MPX-32, the user can install a starter system by booting from the master System
Distribution Tape (SDT). Using the starter system, which is fully operational, a user-
configuration of the system can be generated with the SYSGEN utility (running either
interactively or in batch). An on-line RESTART directive is available to test user-
configured systems. When a system has been tested, the user can create his own SDT
using the VOLMGR SDT directive.

When SYSGEN runs, system tables are constructed and linked to the resident system
modules, handlers, and user-supplied resident modules and handlers as specified by
SYSGEN directives. A resident system image is formed and subsequently written to a
dynamically acquired permanent disc file. Concurrent with this process, a listing of
directives is built and a load map of the system is generated. The load map can be saved
on a system symbol table file specified by the user with the SYMTAB directive and used
subsequently in patching the system.

A system debugger can also be configured in the resident system image to assist in
patching or debugging resident system code, including user interrupt and I/O handlers.

1.6 Libraries

Subroutine Libraries

Subroutine libraries can be utilized to simplify the development of applications.
Subroutines can be added, modified, or deleted. This permits one routine to be changed
without having to reassemble or recompile all of the subroutines needed for a task. Only
the task must be recataloged.

Subroutines on a subroutine library can be used by programs written in various languages,
including Assembly. They are accessed as object modules when a task is cataloged. The
subroutine library and directory for MPX-32 are called MPXLIB and MPXDIR. User
subroutine libraries can be built and modified by the LIBED utility.

System Macro Libraries

Two macro libraries are supplied as part of the MPX-32 system. They are used only with
programs written in Assembly language. The first, M.MMPXMAC, should be accessed when
code that uses MPX-32 system services is assembled. The second, M\MACLIB, is used
when code contains RTM monitor service calls. These macro libraries provide macros
containing equates for MPX-32 communication region variables.

The user can expand, contract, or modify a macro library by using the MACLIBR utility.
Other

The Scientific Subroutine Library is optionally available. It contains math and statistical
routines for scientific and engineering applications. A user group library is also
available. It is provided by and for users.

MPX-32, Vol.]
1-20 ‘ Introduction Reference Manual

_/

(R 1.7 Minimum Hardware Configuration for MPX-32

Minimum hardware requirements for MPX-32 operation on a CONCEPT/32 computer are
as follows:

. 128KW Memory

. Magnetic tape (class F) or IOP floppy disc
. IOP console

. Extended 1/0 disc

The minimum configuration must also include the prerequisites required to support the
items listed, for example, controllers, formatters, etc.

Devices supported by MPX-32 are listed in Table 1-3. Where appropriate, the code used
to access a device is shown in parentheses. The code indicating the appropriate device,
such as TY for a terminal on an ALIM, is used when accessing devices connected with a
communications link.

C

MPX-32, Vol. I
Reference Manual Introduction . 1-21

Model
Number

Table 1-3
MPX-32 Device Support

Description

1603
1604
2345
3050
7410
8000
8001
8031
8033
8050
8055
8110
8114
8120
8121
8122
8130
8134
8140
8144
8148
8150
8155
8160
8170
8174
8175
8176
8177
8190
8191
8210
8211
8212
8255
8310
8311
8312
8313
8314
8315
8317
8410
8510

Vector Processor 3300

Vector Processor 6410

Real-Time Option Module

Multiprocessor Shared Memory System (MS)2

Analog Digital Interface (ADI)

1/O processor*

I/O processor

Line printer/Floppy disc controller (LP)

IOP dise controller

High Speed Tape Processor (HSTP) (XIO)

Disc processor II

32MB cartridge module disc*

IOP disc controller with 32MB cartridge module disc*
80MB Sealed media disc and IOP disc controller
80MB Sealed media disc processor subsystem

80MB Additional sealed media disc

80MB Disc processor subsystem

80MB Removable IOP disc subsystem

300MB Disc processor subsystem

300MB Removable IOP disc subsystem

160MB Additional disc

675MB Fixed module disc processor subsystem

675MB additional fixed module disc

Cache disc accelerator

Floppy disc with controller (FL)*

Floppy disc with controller (FL)

Dual floppy disc with controller (FL)

1.6MB additional floppy disc drive

1.6MB floppy disc drive with rack mount enclosure
Dual-port option kit

Disc processor eight-drive option

High speed tape processor subsystem 75 ips 9-Track 1600/6250 bpi (M9)*
High speed tape processor subsystem 125 ips 9-Track 1600/6250 bpi (M9)*
High speed tape processor subsystem 125 ips 9-Track 800/1600/6250 bpi (M9)
Buffered tape processor

Band printer (300 Ipm) (64 character) (LP)

Band printer (600 lpm) (64 character) (LP)

Band printer with form length select switch

Band printer with VFU (300 lpm) (64 character) (LP)
Band printer with VFU (600 lpm) (64 character) (LP) 1pm
Band printer with VFU (1000 lpm) (64 character) (LP)
96-character option set

Quarter-inch tape drive

Eight-line asynchronous communication controller*

* This product is no longer available but remains supported by MPX-32 in existing
installations.

1-22

MPX-32, Vol. I
Introduction Reference Manual

Model
Number

Table 1-3
MPX-32 Device Support (Cont.)

Description

8511
8512
8520
8610
8846
8856
8858
9020
9024
9103
9109
9110
9116
9131
9132
9201
9202
9203
9223
9225
9226
9237
9245
9246
9247
9260
9264
9342
9346
9363
93717
9448-32
9460
9462
9508
9520
9521
9523
9561
9563
9567
9568
9571
9577
9733-5

Asynchronous Communication Multiplexer (ACM)
Asynchronous Communication Multiplexer (ACM)
Synchronous Communications Multiplexer (SCM)
Alphanumeric CRT (CT or TY)

160MB Disc processor subsystem

340MB Disc processor subsystem

340MB Additional disc

Low Speed Tape Processor (LSTP) (XIO)

Disc processor I (XIO)*

Extended (Class D) General Purpose Multiplexer Controller (GPMC)
Synchronous Line Interface Module (SLIM)
Asynchronous Line Interface Module (ALIM)
Binary Synchronous Line Interface Module (BLIM)
High Speed Data Interface II (HSD II)

High Speed Data Interface I (HSD I)*

KSR Teletypewriter (10 cps) (CT or TY)*
Teletypewriter (30 cps) (CT or TY)

Alphanumeric CRT (95 character) (CT or TY)*
Matrix printer (340 cps) (LP)

Line printer (300 lpm) (64 character) (LP)*

Line printer (600 Ipm) (64 character) (LP)*

Line printer (900 lpm) (64 character) (* P)*

Line printer (260 lpm) (96 character) (LP)*

Line printer (436 lpm) (96 character) (LP)*

Line printer (600 lpm) (96 character) (LP)*

Paper tape reader (PT)*

Paper tape punch/spooler (120 cps) (PT)

80mb removable expansion disc drive

300mb removable expansion disc drive

45 ips slave magnetic tape unit

75 ips slave magnetic tape unit

32 MB Cartridge module disc (XIO) (DM)*

Paper tape reader with controller (300 cps) (PT)
Paper tape reader/spooler (300 cps) (PT)

10 MB Master cartridge disc drive (DM)*

80 MB Master moving head disc (DM)*

40 MB Master moving head disc (DM)*

300 MB Master moving head disc (DM)

45 ips Master magnetic tape unit 9-track (M9)*
45 ips Master magnetic tape unit 9-track (M9)*
Low speed tape processor subsystem 45 ips 9-track 800 bpi (M9)*
Low speed tape processor subsystem 45 ips 9-track 800/1600 bpi (M9)
Low speed tape processor subsystem 75 ips 9-track 800/1600 bpi (M9)
75 ips Master magnetic tape unit 9-track (M9)*

5 MB Fixed head disc (XIO) (DF)*

* This product is no longer available but remains supported by MPX-32 in existing
installations.

MPX-32, Vol. I :
Reference Manual Introduction 1-23/1-24

R

CHAPTER 2
TASK STRUCTURE AND OPERATION OVERVIEW

2.1 Task Identification

Under MPX-32, the user can communicate with and control tasks either by task name or
task number (unless a task is multicopied, in which case the task number is required).
The task name is the name of the load module or executable image file containing the
task. The task number is assigned when the task is activated and is a sequential 24-bit
number concatenated with an eight-bit DQE index. Task numbers are unique for each
task in the system.

Each task is also associated with an owner. Valid owner names are specified in the
MKEY file, if it exists; otherwise, all owner names are valid. An owner can have any
number of tasks with the same or different task names active on the system at any point
in time.

In addition to the task numbers, each batch job is assigned a unique sequence number
when the job is entered in the batch stream.

Active tasks can be listed by:

. Task number

. Owner name

. Task name

. Batch sequence number (if batch)

. Pseudonym used by MPX-32 to further identify the task, e.g., by the terminal it is
running on

. Any combination of the above

The system provides the OPCOM LIST directives and the system service M.ID for listing
any active task by specifying a unique combination of these attributes.

2.2 Task Structures

A task is structured to meet a user's particular requirements by defining the contents of
a unique address space. A unique address space is a mapped logical address space whose
maximum size varies, according to computer type. The unique address maximum
executable code region size depends on whether the nonbase or base instruction set is
being used. See Table 2-1.

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-1

Supported On

Maximum Task Size

Code/Data Size

Data-Only Size

Shareable Area Called

Nonshareable Area
Called

Created By

Table 2-1.

Nonbase Mode vs. Base Mode

Nonbase

All CONCEPT/32
computers

2 MB (32/27, 32/87)
16 MB (All others)
0.5 MB

1.5 MB (32/27, 32/87)
15.5 MB (All Others)
CSECT

DSECT

CATALOG

Base

All CONCEPT/32
computers except
32/27

2 MB (32/87)
16 MB (All others)

2 MB (32/87)
16 MB (All others)

N/A

Read-only

Read/write

LINKER/X32

Exists On Disc As Load module Executable image

All tasks activated on a 32/27 or 32/87 have a 2MB logical address space.

Base mode tasks activated on all other CONCEPT/32 computers have a logical address
space of 2MB or 32KW plus the task size, whichever is larger. The automatic logical
address space sizing can be overridden by the SET LAS LINKX32 directive or the TSM
$SPACE directive.

Nonbase mode tasks activated on computers other than the 32/67 and 32/97 have a
logical address space of 2MB unless overridden by the $SPACE TSM directive.

A unique address space contains a copy of MPX-32 and a task that can:

. be nonshared

. share reentrant code and data with another task

. share memory (common storage or user defined use) with another task

The memory size minus the operating system size equals the maximum task size. The

operating system size includes any static memory partitions and 4KW for use by the
Volume Management Module.

Shared memory considerations are described in Chapter 3.

Task Structure and

2-2 Operation Overview Reference Manual

MPX-32, Vol. [

2.2.1 Nonbase, Nonshared Tasks

This type of address space contains a single task including its Task Service Area (TSA),
its code section (CSECT - write protected memory containing code and pure data), and
its data section (DSECT - read/write memory containing impure data). See Figure 2-1.
Tasks which are not sectioned have only a DSECT, which contains the code and all data.

2.2.2 Base, Nonshared Tasks

This type of address space contains a single task including a Task Service Area (TSA),
program stack, read/write image section, and read-only image section.

2.2.3 Multicopied Tasks

An owner or several owners can have tasks with the same name and the same load
module active concurrently. This is accomplished by cataloging the task as multicopy.
The task name is not sufficient to communicate with multicopy tasks; the task number
must be used.

2.2.4 Shared Tasks

When a task is created, the user can specify that a program section is to be shared. A
program section, CSECT or read only, consists of code and pure data. This section is
write protected and mapped into the logical address space of each copy of the task. A
separate data section, DSECT or read/write, is mapped into each logical address space,
as illustrated in Figures 2-2 and 2-3. Shared tasks are implicitly multicopied tasks.

2.2.5 Unique Tasks

Although only one copy of a task that is unique can be active on the system at a given
time, the MPX-32 run request mechanism can be used to queue run requests to the task,
so that as soon as one user stops executing, another can begin. See Intertask
Communication, Section 2.7.

2.3 Task Execution

Nonbase mode tasks are introduced to the system by a request to activate the cataloged
load module by name. Activation can be requested in several different ways.

. Batch and interactive tasks are activated by the job control or TSM $RUN and
$EXECUTE directives.

. Real-time tasks can be activated by the M.ACTV or M.PTSK system services. The
requestor uses the M.PTSK service to rename the task or to specify additional or
alternate resource requirements for the task. Real-time tasks can also be activated
by the job control statement $ACTIVATE or the OPCOM directive, ACTIVATE.

Real-time tasks can also be activated by timers or interrupts.

Base mode tasks are entered by the operating system in one of two ways: the initial
dispatch of the task, or as a result of an asynchronous event which includes messages,
breaks, or end-action notification. Regardless of which way a task is entered, entry is
through a call instruction.

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-3

G
" D225 7227777724
| MAP BLOCK
CSECT ‘ -
(PURE CODE & DATA)
MAP BLOCK
I
MAP BLOCK
- .
MAP BLOCK
A AVAILABLE FOR L
T
MAP BLOCK
N
{ \
DSECT | R
" NOTE: IF TASK 1S NOT SECTIONED, MAP BLOCK
~ DSECT CONTAINS ALL CODE & DATA | 3
PAGE = AL Ll i
TASK SERVICE AREA MAP BLOCK
r
SYSTEM BUFFERS
MAP BLOCK
P OPERATING L MAP BLOCK
' SYSTEM o~
} MAP BLOCK
LOW
830572A
Figure 2-1. Nonbase Mode Nonshared Task Address Space C
Task Structure and MPX-32, Vol. I

2-4 : Operation Overview Reference Manual

HIGH 7//////////////////////%%/////////////////////1

MAP BLOCK
—
SHARED CSECT
MAP BLOCK
MAP BLOCK
-
MAP BLOCK
AVAILABLE FOR
P akv
— DYNAMIC DSECT ~ MAPBLOCK
EXPANSION

MAP BLOCK

UNIQUE DSECT

PAGE YL LT LT LT Ll LT L 777

TASK SERVICE AREA

MAP BLOCK

MAP BLOCK

SYSTEM BUFFERS

MAP BLOCK

t

LOW

OPERATING

SYSTEM -

MAP BLOCK

%

-
} MAP BLOCK

830576A
Figure 2-2. Nonbase Mode Shared Task Address Space
MPX-32, Vol. I Task Structure and
Reference Manual 2-5

Operation Overview

AAAAAAAAAAAAAAAAAAAA
(ABSOLUTE)

EEEEEEEE

AAAAAAAAAAAAAAAAAAAA
NNNNNNNNNNNNNNNNNNNNN

(OVERLAY TRANSIENT AREA)
EEEEEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAAAAAAAA

MMMMMM

aaaaaaaaaaaaaaaa
Operation Overview

............

eeeeeeeeeeeeeee

2.3.1 Task Activation Sequencing (M.ACTV, M.PTSK)

The MPX-32 task management module performs task activation in the two following
phases:

Phase 1 -- Activation

When a task is activated on the MPX-32 system, either by the M.ACTV service or the
M.PTSK service, the MPX-32 resource manager runs for the task that issues the service
call (the activating task). In many cases, the activating task is TSM or OPCOM. Running
at the priority of the activating task, the resource manager constructs a rudimentary
Task Service Area (TSA) for the new task in the task's address space and a rudimentary
Dispatch Queue Entry (DQE) in the communications region. Data in the prototypes
include: a task number, parameters passed with the task (M.PTSK), the Load Module
Information Table (LMIT), and other basic data that define the task.

Initially, the DQE for the task is unlinked from the list of free DQE's maintained by the
CPU scheduler and linked to the preactivation state queue (PREA). See Section 2.4.4.
After the prototype TSA and DQE are constructed, the DQE is unlinked from the PREA
state queue and linked to the appropriate ready-to-run queue. A context is set up in the
prototype TSA so that the resource manager can gain control for the second phase of
activation as soon as the new task becomes the highest priority ready-to-run task on the

system. There are several cases where task activation does not continue at the end of
phase 1:

. Activation with a run request for a single-copied task that is already active

. Timer activation requests (M.SETT)

. RTM-compatible activation on an interrupt (CALM X'66' or M.CONN)

In the first case, the CPU scheduler can link the run request to an existing DQE. See
Section 2.7.3. In the last two cases, the task remains in the preactivation state queue

until the timer expires or the interrupt fires. At that point, such tasks are linked to the
appropriate ready-to-run queue as described previously.

Phase 2 -- Activation

In this phase, the resource manager operates for the new task, and runs at the new task's
specified priority. It reads in the Resource Requirements Summary (RRS) from the load
module file, merges them with static assignments, and validates the results. Resources
are allocated. The task's DQE can be linked and unlinked to various state queues as it
moves through stages of device and memory allocation.

If any parameters, assignments, or other task resource requirements specified in the load
module or by Job Control or TSM assignments are invalid, the resource manager aborts
the task during this phase and the task exits as described in Section 2.11.

When the new task has allocated all resources required for execution, it is loaded into

memory, relocated, and the resource manager transfers control to the task at its
specified transfer address.

MPX-32, Vol. I Task Structure and
Reference Manual Operation Overview 2-7

There are two exceptions to the control transfer at the end of phase 2. The first is a
task that has been initiated by the OPCOM ESTABLISH directive. This task is linked into
the suspended state queue (SUSP) instead of going into execution. The purpose is to
provide a capability within the MPX-32 structure equivalent to the capability in RTM

(Real-Time Monitor) for activating a task that resides permanently in memory (a resident

task). In MPX-32, resident means locked in memory. When an activating request occurs
for a task that has been established (a timer expires, an interrupt fires, or the task is
resumed), the task is fully ready to execute and is brought into execution with just a
context switch. If the task has been cataloged as resident, no inswap is required.

The second exception is a task that has been activated with the MPX-32 Debugger
attached (TSM or job control DEBUG task name directive). Instead of transferring
contro!l to the task, the resource manager first loads and then transfers control to the
debugger.

2.3.2 Task Service Area (TSA)

The Task Service Area (TSA) is a section of memory associated with each active task.
The size of each task's TSA is fixed for the duration of the task's execution. However,
the sizes of TSA's among tasks is variable and is dependent on the task's logical address
space size and the amount of space reserved for I/O activity.

As depicted in Figure 2-4, the number of blocking buffers, File Assignment Table (FAT)
entries, and the File Pointer Table (FPT) entries is variable among tasks. For all tasks, a
fixed number of buffers, FAT, and FPT entries are reserved for MPX-32 use; for
example, they are present in every TSA.

The pushdown stack area in the TSA provides reentrancy in calls to system modules. At
each call to a system module entry point, the stack pointer (T.REGP) is incremented to
the next 32-word pushdown level where the contents of the general purpose registers and
Program Status Doubleword (PSD) are saved. Within this 32-word level, 22 words are
available for scratchpad storage by the module entry point being called. T.REGP is
decremented to the previous pushdown level upon return to the entry point caller. Upon
context switch away from a task, the next pushdown level is used to preserve the
contents of the task's registers and PSD. Ten words are used at the context switch level.

2.4 Central Processing Unit (CPU) Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to active
tasks. Tasks are allocated CPU time based on execution priority and execution
eligibility. Execution priority is specified when a task enters (is cataloged into) the
system. Execution eligibility is determined by the task's readiness to run.

2.4.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels are
divided into two major categories. Real-time tasks operate in the priority range 1 to
54. Time-distribution tasks operate in the priority range 55 to 64.

Task Structure and MPX-32, Vol. 1
2-8 Operation Overview Reference Manual

TSA VARIABLE AREA FIXED AREA
~ T.FATA
| 170 254 “5;:"""%2”8';” PUSHDOWN STACK (T.REGS) |
ENTRIES. 11 32-WORD MODULE CALL
ARE RESERVED FOR > LEVELS
SYSTEM USE. 1 10-WORD CONTEXT
T.FPTA 1 TO 254 3-WORD FPT SWITCH LEVEL 4
ENTRIES. FIRST SIX
ARE RESERVED FOR
SYSTEM USE.
T.SEGA
SEGMENT DEFINITION
AREA. 1 16-WORD ENTRY
FOR EACH SEGMENTED
FILE RESERVATION T.REGP
IN THE FAT.
T.VATA 1 TO 255 2-WORD VAT
ENTRIES. FIRST IS
RESERVED FOR DEFAULT
WORKING VOLUME IF ITIS WORD CONTEXT SWITCH LEVEL
A NONPUBLIC VOLUME. 0
T.DXA | OVERLAY INDEX TABLE - G%'\EG:‘S"‘TZE'S" Peal o
VARIABLE LENGTH. ; P~ P~
T.RDBUFA 8
PSD
192 WORD DUAL PROCESSOR 9
SHARED VOLUME RESOURCE
DESCRIPTOR BUFFER.
WORD MODULE CALL LEVEL
192 WORD VOLUME 0
MANAGEMENT MODULE GENERAL PURPOSE
STACK AREA, :_: REGISTERS 0-7 2&:
TFSSP FILE BOUNDED. 7
T.SHIMDA 16 WORD SHARED 8 PSD
IMAGE DESCRIPTORS 9
T.BBHCA [1 TO 248 8-WORD HEAD CELLS. 10
T.BBUFA 1 TO 255 192-WORD ~_ SCRATCHPAD o, A
BLOCKING BUFFERS. N STORAGE ~N=
FIRST IS RESERVED
FOR SYSTEM USE. 31
860602
Figure 2-4. Task Service Area (TSA) Structure
MPX-32, Vol. I Task Structure and

Reference Manual

Operation Overview

2-9

2.4.2 Real-Time Priority Levels (1 to 54)

Scheduling of real-time tasks in MPX-32 occurs on a strict priority basis. The system
does not impose time-slice, priority migration, or any other scheduling algorithm which
will interfere with the execution priority of a real time task. Execution of an active
real-time task at its specified priority level is inhibited only when it is ineligible for
execution (not ready-to-run). Execution of a real-time task may, of course, always be
preempted by a higher priority real-time task that is ready-to-run.

2.4.3 Time-Distribution Priority Levels (55 to 64)

For tasks executing at priority levels 55 to 64, MPX-32 provides a full range of priority
migration, situational priority increment, and time-quantum control.

2,4.3.1 Priority Migration

The specified execution priority of a time-distribution task is used as the task's base
execution priority. Each time-distribution task's current execution priority is determined
by the base priority level as adjusted by any situational priority increment. The current
execution priority is further adjusted by increasing the priority (by one level) whenever
execution is preempted by a higher priority time-distribution task, and decreasing the
priority whenever the task gains CPU control. The highest priority achievable by a time-
distribution task is priority level 55. The lowest priority is clamped at the task's base
execution level.

2.4.3.2 Situational Priority Increments

Time-distribution tasks are given situational priority increments in order to increase
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready-to-run after having been in a natural wait state. A
task that is CPU bound will migrate toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list, and
relinked to the ready-to-run list.

Situation Priority Increment
Terminal input wait complete Base level + 2

I/0O wait complete Base level + 2

Message (send) wait complete Base level + 2

Run request (send) complete Base level + 2

Memory (inswap) wait complete Base level + 3

Preempted by real-time task Level 55

Task and Structure MPX-32, Vol. I

~ 2-10 ' Operation Overview Reference Manual

/TN

_/

C

2.4.3.3 Time-Quantum Controls

The MPX-32 system allows for the specification of two time-quantum values at
SYSGEN. If these values are not specified, system default values are used. The two
quantum values are provided for scheduling control of time-distribution tasks. The first
quantum value (stage 1) indicates the minimum amount of CPU execution time
guaranteed to a task before preemption by a higher priority time-distribution task. The
stage 1 quantum value is also used as a swap inhibit quantum after inswap. The second
quantum value represents the task's full-time quantum. The difference between the first
and second quantum values defines the execution period called quantum stage 2. During
quantum stage 2, a task may be preempted and/or outswapped by any higher priority
task. When a task's full-time quantum has expired, it is relinked to the bottom of the
priority list, at its base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value is reset when the task voluntarily
relinquishes CPU control, for example, suspends, performs wait 1/0, etc.

2.4.4 State Chain Management

The current state of a task ready-to-run, waiting for 1/0, etc., is reflected by the linkage
of the dispatch queue entry (DQE) associated with the task into the appropriate state
chain. Linkage is established via string forward and string backward addresses and a
state queue index in each DQE. The string forward address for a given DQE points to the
closest lower priority DQE and the string backward address points to the closest higher
priority DQE in a given state. The index points to a state chain head cell, which contains
the link forward/backward addresses from the DQE at the top (highest priority task) of
the state chain. At a given time, from any one DQE or from a head cell, an entire state
chain queue can be examined by moving either backward or forward through the DQE
linkages.

The state queues are divided into two major categories: ready-to-run and waiting. The
ready-to-run category is subdivided by priority, with a single queue for the real time
priorities and a separate queue for each of the time-distribution priority levels. The
waiting category is subdivided according to the resource or event required to make the
task eligible for execution.

MPX-32, Vol. I Task Structure and
Reference Manual Operation Overview 2-11

Table 2-2
MPX-32 State Queues

DQE is available (in free list)
Task activation in progress

Task is executing

Task is ready-to-run (priority level 1-54) \

Task is ready-to-run (priority level 55)
Task is ready-to-run (priority level 56)
Task is ready-to-run (priority level 57)
Task is ready-to-run (priority level 58)
Task is ready-to-run (priority level 59)
Task is ready-to-run (priority level 60)
Task is ready-to-run (priority level 61)
Task is ready-to-run (priority level 62)
Task is ready-to-run (priority level 63)
Task is ready-to-run (priority level 64)
Task is waiting for terminal input

Task is waiting for 1/0O

Task is waiting for message complete
Task is waiting for run request complete
Task is waiting for low speed output
Task is waiting for one of the following:
. Timer expiration :

. Resume request

. Message request interrupt

Task is waiting for one of the following:

. Timer expiration
Run request

State index Label Meaning
0 FREE
1 PREA
2 CURR
3 SQRT
4 SQ55
5 SQ56
6 SQ57
7 SQ58
8 SQ59
9 SQ60
10 SQ61
1 SQ62
12 SQ63
13 SQ64
14 SWTI
15 SWIO
16 SWSM
17 SWSR
18 SWLO
19 SUSP
20 RUNW
21 HOLD

2-12

Task is waiting for a continue request

Task Structure and
Operation Overview

Ready-to-
run queues

:"‘//\\\
Operation

wait queues

Execution
wait queues

MPX-32, Vol. 1
Reference Manual

State index Label
22 ANYW
23 SWDC
24 SWDV
25 N/A
26 MRQ
27 SWMP
28 SWGQ
29 CIPU
30 RIPU

Table 2-2
MPX-32 State Queues (Cont.)

Task is waiting for one of the following:
Timer expiration

No-wait I/O complete

No-wait message complete
No-wait run request complete
Message request interrupt

Break interrupt

Task is waiting for disc space allocation
Task is waiting for device allocation
Reserved

Task is waiting for memory allocation
Task is waiting for memory pool allocation
Task is waiting in general wait queue
Current IPU task

Requesting IPU execution

* See the MPX-32 Technical Manual, Volume I for further details.

MPX-32, Vol. I

Reference Manual

Task Structure and
Operation Overview

Meaning

Execution
wait queues
(continued)

Resource
wait queues

IPU state
queues*

2-13

2.5 Internal Processing Unit (IPU)

The IPU is a user-transparent device managed by the MPX-32 operating system. The IPU
is scheduled as an additional resource to offload the CPU and improve system throughput
in a multitasking environment. The IPU can be used to execute task level code and a
limited set of system services. The CPU is responsible for laoding the task from disc,
allocating memory for the task, building system resident structures identifying the task,
“rolling the task out to disc (if needed), and executing all I/O instructions.

Scheduling of tasks for IPU execution is controlled by the CPU executive (H.EXEC)
working with the IPU executive (H.CPU) for the standard scheduler. An optional
scheduler uses a different CPU executive, H.EXEC2, and a different IPU executive,
H.CPU2. The optional CPU/IPU scheduling logic is enabled by the SYSGEN DELTA
directive. The standard scheduler is more processor oriented whereas the optional
scheduler is more priority oriented. The following sections apply to both schedulers; any
differences are noted. '

2.5.1 Options

Options for the IPU can be specified at catalog or execution time by TSM. The IPU
options are:

. IPUBIAS -- When set, tasks that are IPU eligible are run by the IPU. At any point
during execution where eligibility ceases, the CPU is trapped and the task is scheduled
to execute at its Cataloged priority in the CPU.

. CPUONLY -- When set, the IPU is ignored and the task is executed by the CPU.

If not specified, the default is tasks are executed by the first eligible processor.

Tasks that are compute bound may be biased to the IPUj; tasks that are 1/0O bound may be
designated to run only in the CPU.

The CPU/IPU scheduling logic automatically adapts to tasks that alternate between
bursts of computing and bursts of I/O for NONBIASED tasks.

2.5.2 Biased Task Prioritization

Standard CPU/IPU Scheduler

If the IPU scheduler finds more than one IPU-biased task waiting for processing, they are
placed in a ready-to-run queue (C.RIPU), in priority order among themselves, and are
eligible for swapping while waiting.

Optional CPU/IPU Scheduler

Tasks that are IPU biased are not enqueued on the IPU ready to run queue (C.RIPU).
These tasks are linked to the ready to run lists SQRT thru SQ64 with other task types.
Since the IPU-biased tasks do not enter a wait state, they are less likely candidates for
swapping than tasks that are in the wait state.

IPU-biased tasks may have their priority boosted using the SYSGEN DELTA directive. If
the DELTA directive is set to zero, scheduling occurs on a priority basis only. If the

Task Structure and MPX-32, Vol.]
2-14 » Operation Overview Reference Manual

™
S

DELTA value is greater than zero and less than or equal to 54, the value will be
subtracted from the cataloged priority (boosting its priority) at scheduling time. For
example, when the DELTA is set to 5, a priority 20 IPU biased task will compete for the
IPU at priority 15. Similarly, when an IPU bias task needs the CPU for a system service,
the boosted priority (15) will be used to compete for the CPU. The DELTA does not
apply when an IPU-biased task executes task level code in the CPU.,

2.5.3 Nonbiased Task Prioritization

If the IPU scheduler finds more than one nonbiased task waiting for processing (any task
in ready state queues SQRT thru SQ64), they are placed in priority order among
themselves and scheduled for processing after execution. The highest priority IPU-
eligible task is scheduled in the IPU regardless of its bias or unbiased attribute.

2.5.4 IPU Task Selection and Execution

When the IPU task scheduler has found a task, it checks for IPU eligibility. For a task to
be eligible for IPU execution, the following conditions must be present:

. No pending task interrupts

. No system action requests, for example, aborts

. Not CPU biased

. Current execution address outside of resident O.S.

If a task fails any one of these tests, it is ineligible for IPU execution (i.e., ignored) and
the task scheduler proceeds to select the next task, if any.

If a task has been selected and is determined eligible for IPU processing, it is linked to
the current IPU task queue (C.CIPU), a Start IPU (SIPU) is executed from the CPU, the
IPU executive (H.IPU) fields the trap, loads the task's map registers (LPSDCM), and
executes the task.

Tasks running with batch priorities (55-64) are not subject to time distribution while
being executed in the IPU.

Note: Tasks running with batch priorities (55-64) can not have their priorities boosted
via the DELTA value.

2.5.5 CPU Execution of IPU Tasks

Standard CPU/IPU Scheduler

Unbiased tasks require CPU execution for code sequences requiring OS execution.
Unbiased tasks are also free to execute task level code in the CPU.

IPU biased tasks will be executed by the CPU for only those code sequences requiring OS
execution. When the PSD points back into the task, its CPU execution is terminated
immediately and the task is linked to the IPU request queue (C.RIPU). If the IPU is
running and this new task has a higher priority (lower number) than the task the IPU is

MPX-32, Vol. I Task Structure and
Reference Manual Operation Overview 2-15

executing, the executing task is preempted by the new task and replaced by the higher
priority task. If the IPU is running and the new task has a lower priority (higher number)
than the task currently under execution, the new task is placed in the IPU ready-to-run
queue (C.RIPU).

Optional CPU/IPU Scheduler

When the highest and second highest priority tasks are IPU biased, the CPU will execute
task level code of the second highest priority task. However, the task's priority will not
be boosted by the DELTA value in this case.

2.5.6 Priority versus Biasing

When there is a task in the IPU and it encounters a code sequence requiring CPU
execution, the task is linked to a ready to run state chain at its base priority.

Note: For the optional CPU/IPU scheduler, an IPU bias task will be linked to the ready
to run state at base priority minus the DELTA value for code sequences requiring CPU
execution. '

An IPU task that requires some CPU execution cannot execute in the CPU if a CPU-only
task of the same priority is in the CPU.

An IPU task that requires some CPU execution can execute in the CPU if:

. anon-CPU-only task of the same priority is in the CPU.
. the task in the CPU has a lower priority.
. there is no task in the CPU.

2.5.7 IPU Accounting

When the IPU and its interval timer handler are specified during SYSGEN, and the IPU is
used for task execution, the following message will be displayed at EOJ and when logging
off a terminal:

IPU EXECUTION TIME = xx HOURS- xx MINUTES- xx.xx SECONDS

where xX is a decimal number.
2.5.8 IPU Executable System Services

When the execution address of the task is within the resident OS, the task cannot be
scheduled to be executed by the IPU. However, when the execution address of the task is
within the task, the task can be executed by the IPU. Once the task has gained entry
into the IPU, there is a limited set of system services that the IPU can execute. These
are memory reference only system services, since the IPU cannot execute any I/0O
instructions. The system services that are executable in the IPU are listed in the
Nonbase Mode and Base Mode System Services chapters.

2.5.9 IPU Scheduling

Although the IPU is scheduled transparently by the operating system, users can restrict a
task to execute only in the CPU or bias a task to execute in the IPU. Tasks designated as

Task Structure and MPX-32, Vol. I
2-16 Operation Overview Reference Manual

CPU only cannot execute in the IPU. IPU biased tasks and unbiased tasks must meet
certain requirements to execute in the IPU:

. the task cannot have any pending or active task interrupts. For example, 1/O end
action, breaks, etc. A pending interrupt is an interrupt that has been recogmzed by
the operating system but has not yet been dispatched to the task.

. the task cannot have any system action requests, for example, abort, hold, etc.
. the task cannot have context switching inhibited

. the task cannot be temporarily inhibited from IPU execution because it contains
instructions not executable by the IPU. For example, CD, BEI, etc.

. the execution address of the task must be outside the resident operating system

. the starting logical address of the task's Task Service Area (TSA) must begin at the
end of the resident operating system (i.e., at C.TSAD). All user tasks meet this
requirement. SYSGEN and system resident modules and tasks do not meet this
requirement.

If a task does not meet the above requirements, it cannot be executed in the IPU and will
be scheduled for execution in the CPU.

Scheduling unbiased tasks includes checks for the existence of the following conditions:

. is a task currently executing in the CPU
. is a task currently executing in the CPU that is not eligible to execute in the IPU

. is a task currently executing in the CPU that is eligible to execute in the IPU

If a task is not executing in the CPU, S.EXEC20, the main scheduling routine, attempts
to schedule a task for the IPU. If IPU eligible tasks are found, the task with the highest
priority is scheduled for IPU execution. S.EXEC20 then schedules the highest priority
ready-to-run task for CPU execution. IPU eligible tasks are automatically considered to
be CPU eligible. If an eligible task for either processor cannot be found, that processor
remains idle.

Note: For the optional CPU/IPU scheduler, tasks that are IPU biased rhay run on the
CPU.

If a task is currently executing in the CPU and it is not eligible for IPU execution, it will
continue to be executed by the CPU. S.EXEC20 attempts to schedule a task for the
IPU. If an IPU eligible task cannot be found, the IPU remains idle.

If a task is currently executing in the CPU and is IPU eligible, the following factors are
also taken into consideration in the order described by S.EXEC20.

. if the current task is IPU biased and the IPU is idle, the task is scheduled for IPU
execution.

. if the current task is IPU biased and the IPU is executing a task with a higher priority
than the current task, the current task is placed in the IPU request state (RIPU). If
the current task has a higher priority than the task executing in the IPU, the task
executing in the IPU is removed from execution and the current IPU biased task is
scheduled for execution.

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-17

Note: For the optional CPU/IPU scheduler, if the current task is IPU biased, but the
IPU is executing a higher priority task, the CPU will run the current task.

. if the IPU is idle, S.EXEC20 performs a check to see if another task is requesting CPU
execution. If no other task is found, the current task remains in execution in the
CPU. If another task is found, the current CPU task is moved to the IPU for
execution. The highest priority task of the other tasks found is scheduled for CPU
execution.

Note: For the optional CPU/IPU scheduler, if the IPU is idle and the current task is
IPU eligible, the task is scheduled for the IPU.

. if the IPU is busy, S.EXEC20 performs a check to see if another task is requesting
CPU execution. If no other task is found, the current task remains in execution in the
CPU. If a nonreal time task is found, the current task remains in the CPU. If a real-
time task is found, the priority of the current task executing in the CPU is compared
with the priority of the current task executing in the IPU. If the CPU task has a
higher priority, the task in the IPU is replaced by the task in the CPU. Otherwise, the
current task remains in execution in the CPU.

These additional factors which are considered in IPU scheduling allow for a more
predictable operation and eliminate unnecessary scheduling overhead. Unless the user
can be assured of benefits through the use of IPU biasing or CPU only restrictions, it is
recommended that tasks be run unbiased, thereby allowing the MPX-32 executive to
make the decision on IPU usage.

2.6 MPX-32 Task Interrupt Scheduling

In addition to the 64 levels of execution priority available, the MPX-32 scheduler
provides a software interrupt facility within the individual task environment.

2.6.1 Task Interrupt Levels

Individual tasks operating in the MPX-32 environment may be organized to take
advantage of task unique software interrupt levels. Each task in the MPX-32 system can
have six levels of software interrupt, sometimes referred to as pseudo-interrupts:

Level priority Description
o Reserved for operating system use
1 Debug
2 Break
3 End action
4 Message
5 Normal execution - run request

2.6.1.1 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt receiver
addresses for both break and message interrupts. The debugger interrupt level is used by
the system to process tasks running in debug mode (either MPXDB or SYMDB). The end
action interrupt level is used for system postprocessing of no-wait 1/O, message, or run
requests. It is also used for executing end action routines specified by the user task. The
normal execution level is used for run-request processing and general base level task
execution.

Task Structure and MPX-32, Vol. 1
2-18 Operation Overview Reference Manual

@

C

2.,6.1.2 Scheduling

Task interrupt processing is gated by the MPX-32 CPU scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until the service returns to the user task
execution area. If service calls are nested, the scheduler defers the task interrupt until
the last service executes and returns to the user task execution area. The user can defer
task interrupts through calls to synchronize task interrupts (M.SYNCH) or disable
message interrupts (M.DSMI).

2.6.1.3 System Service Calls from Task Interrupt Levels

A task can utilize the complete set of system services from any task interrupt level. It
is prohibited, however, from making a wait-for-any call (M.ANYW, M.EAWAIT) from task
interrupt levels.

2.6.1.4 Task Interrupt Context Storage

When a task interrupt occurs, the CPU scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when the
task exits from the active interrupt level.

2.6.1.5 Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate system
service call. When the level active status is reset, any queued request is processed.

2.6.2 User Break Interrupt Receivers (M.BRK, M.BRKXIT)

A task may enable the break interrupt level by calling the M.BRK service to establish a
break interrupt receiver address. The level becomes active as a result of a break
interrupt request generated either from a hardware break or from an M.INT service call
which specified this task. When the break level is active, end action, message, and
normal execution processing are inhibited. The level active status is reset by calling the
M.BRKXIT service to exit from the pseudo-interrupt (break) level.

2.7 Intertask Communication

MPX-32 provides both message request and run request send/receive processing. Run
request services allow a task to queue an execution request with optional parameter
passing for another task. Message services allow a task to send a message to another
active task. The services provided for use by the destination tasks are called receiving
task services. Those provided for tasks which issue the requests are called sending task
services. Message and run-request services use the software interrupt scheduling
structure described in Section 2.6.

MPX-32, Vol. I Task Structure and
Reference Manual Operation Overview 2-19

2.7.1 User End-action Receivers (M. XMEA, M. XREA, M.XIEA)

When a task issues a no-wait I/O, a message request, or a run request, a user task end
action routine address can be specified. If specified, the routine is entered at the end-
action priority level from the appropriate system postprocessing routine. When the end-
action level is active, processing at the message or normal execution level is inhibited.
The level active status is reset by calling the appropriate end-action service:

End-action End-action
Type Exit Service
1/0 SVC 1,X'2C'
Send Message M.XMEA
Send Run Request MXREA

2.7.2 User Message Receivers (M.RCVR, M.GMSGP, M.XMSGR)

A task can enable the message interrupt level by calling the M.RCVR system service to
establish a message interrupt receiver address. The level becomes active as the result of
a message send request specifying this task as the destination task.

When the message level is active, normal execution processing is inhibited. The task's
receiver may optionally call a service M.GMSGP to store the message in a user receiver
buffer. After appropriate processing, the message interrupt level may be reset by calling
the M.XMSGR system service to exit from the message interrupt receiver.

2.7.3 User Run Receivers (M.GRUNP, M.XRUNR)

User run receivers execute at the normal task execution base level. The cataloged

transfer address is used as the run receiver execution address. The run receiver

mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing.

When a run request is issued by the M.SRUNR service, the task load module name may be
used to identify the task to be executed. If a task of that load module name is currently
active and single-copied, the run request is queued from its existing DQE. If the
specified task is not active, or if the task is not a single-copied task, it is activated and
the run request is then linked to the new DQE. A new copy will be activated for each run
request sent to a multicopied task by load module name or pathname vector. If the
multicopied task is waiting for a run request, for example, in the RUNW state chain, the
task number must be specified.

The task receiving the run request may optionally call a service M.GRUNP to store the
run parameters in a user receiver buffer. After appropriate processing, the run-receiver

task can exit by calling the M. XRUNR system service. Any queued run requests are then
processed.

When a task which is in run receiver mode enters its abort receiver, the run request has
already been terminated and the task issuing the run request has already received status
or call back depending on the options used. A new copy of the task is activated to satisfy
any queued run requests.

Task Structure and MPX-32, Vol. I
2-20 ‘ Operation Overview Reference Manual

2.7.4 Receiving Task Services

2.7.4.1 Establishing Message Receivers (M.RCVR)

In order to receive messages sent from other tasks, a task must be active and have a
message receiver established. A message receiver is established by calling the system
service M.RCVR, and providing the receiver routine address as an argument with the
call.

2.7.4.2 Establishing Run Receivers

Any valid task can be a run receiver. Although a set of special run-receiver services are
provided, in the most simple case, they need not be used. The run-receiver mechanism is
provided by the system to allow queued requests for task execution, with optional
parameter passing. The cataloged transfer address is used as the run receiver execution
address. The task load module name is used to identify the task to be executed. If a task
of that load module name is currently active, and is a single-copied task, the run request
is queued until the task exits. If a task of that load module name is currently active, but
is not a single-copied task, the load module is activated (multicopied) to process this
request. When a single-copied task exits, any queued run requests are executed. If a run
request is issued for a task that is not currently active, the task is activated
automatically.

2.7.4.3 Execution of Message Receiver Programs

When a task is active and has a message receiver established, it can receive messages
sent from other tasks. A message sent to this task causes a software (task) interrupt
entry to the established message receiver.

2.7.4.4 Execution of Run Receiver Programs

When a valid task is executed as a result of a run request sent by another task, it is
entered at its cataloged transfer address. A run receiver executes at the normal task
execution (base) level.

2.7.4.5 Obtaining Message Parameters (M.GMSGP)

When the message receiver is entered, register one contains the address of the message
queue entry in memory pool. The task may optionally retrieve the message directly from
memory pool, or the task may call a receiver service (M.GMSGP) to store the message
into the designated receiver buffer. If the M.GMSGP service is utilized, the task must
present the address of a five-word Parameter Receive Block (PRB) as an argument with
the call.

2.7.4.6 Obtaining the Run Request Parameters (M.GRUNP)

When the run receiver is entered, R1 contains the address of the run request queue entry
in memory pool. The task may optionally retrieve the run request parameters directly
from memory pool, or the task may call a receiver service (M.GRUNP) to store the run

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-21

request parameters into the designated receiver buffer. If the M.GRUNP service is
utilized, the task must present the address of a five-word Parameter Receive Block
(PRB) as an argument with the call.

2.7.4.7 Exiting the Message Receiver (M.XMSGR)

When processing of the message is complete, the message interrupt level must be exited
by calling the M. XMSGR service. When M. XMSGR is called, the address of a two-word
Receiver Exit Block (RXB) must be provided. The RXB contains the address of the
return parameter buffer, and the number of bytes (if any) to be returned to the sending
task. The RXB will also contain a return status byte to be stored in the Parameter Send
Block (PSB) of the sending task. After message exit processing is complete, the message
receiver queue for this task is examined for any additional messages to process. If none
exists, a return to the base level interrupted context is performed.

2.7.4.8 Exiting the Run Receiver Task (M.EXIT, M. XRUNR)

When run-request processing is complete, the task can use either the standard exit call
(M.EXIT), or the special run-receiver exit service (M.XRUNR).

If the standard exit service (M.EXIT) exits the run-receiver task, no user status or
parameters are returned. Only completion status is posted in the scheduler status word
of the Parameter Send Block (PSB) in the sending task. After completion processing for
the run request is accomplished, the run receiver queue for this task is examined, and any
queued run request causes the task to be re-executed. If the run receiver queue for this
task is empty, a standard exit is performed. :

If the special exit (M.XRUNR) exits the run-receiver task, the address of a two-word
Receiver Exit Block (RXB) must be provided as an argument with the call. The RXB
contains the address of the return parameter buffer, and the number of bytes (if any) to

be returned to the sending task. The RXB also contains a return status byte to be stored

in the Parameter Send Block (PSB) of the sending task. After completion processing for
the run request is accomplished, the exit control options in the RXB are examined. If the
wait exit option is used, the run receiver queue for this task is examined for any
additional run requests to be processed. If none exist, the task is put into a wait-state,
waiting for the receipt of new run requests. Execution of the task does not resume until
such a request is received. If the terminate exit option is used, any queued run requests
are processed. If the run receiver is empty, however, a standard exit is performed.

2.7.4.9 Waiting for the Next Request (M.SUSP, M.ANYW, M.EAWAIT)

In addition to the wait options described under the heading "Exiting the Run Receiver
Task", a task can use M.SUSP, M.ANYW, or M,EAWAIT services. When operating at the
base execution level, a task that has established a message receiver can use the M.SUSP
service call to enter a wait-state until the next message is received.

A task may also make use of the special M,ANYW service from the base software level.
The M.ANYW service is similar to M.SUSP. The difference is that whereas the M.SUSP
wait-state is ended only upon receipt of a message interrupt, timer expiration, or
resume, the M.ANYW wait-state is ended upon receipt of any message, end action, or
break software interrupt.

Task Structure and MPX-32, Vol.]
2-22 _ Operation Overview Reference Manual

M.EAWAIT is similar to M.ANYW except that if no requests are outstanding, an
immediate return is made to the caller.

2.7.5 Sending Task Services

2.7.5.1 Message Send Service (M.SMSGR)

A task can send a message to another active task, providing the destination task has
established a message receiver. The sending task must identify the destination task by
task number. When the send message service (M.SMSGR) is called, the doubleword
bounded address of a Parameter Send Block (PSB) must be provided as an argument. The
PSB specifies the message to be sent, whether or not any parameters are to be
returned, and the address of a user end-action routine. User status can be returned by
the destination task. The operating system also returns completion status in the PSB.
No-wait and no-call-back control options are also provided. An unprivileged user is
limited to five no-wait messages.

2.7.5.2 Send Run-request Service (M.SRUNR)

A task can send a run request to any active or inactive task, identifying the task by load
module name. When the run request service (M.SRUNR) is called, the doubleword
bounded address of a Parameter Send Block (PSB) must be provided as an argument. The
PSB format allows for the specification of the run request parameters to be sent, any
parameters to be returned, scheduler and user status, as well as the address of a user end
action routine. No-wait and no-call-back control options are also provided. An
unprivileged user is limited to five no-wait run requests.

2.7.5.3 Waiting for Message Completion

A message can be sent in either the wait or no-wait mode. If the wait mode is used,
execution of the sending task is deferred until processing of the message by the
destination task is complete. If the no-wait mode is used, execution of the sending task
continues as soon as the request has been queued. The operation in progress bit in the
scheduler status field of the PSB may be examined to determine completion. A sending
task can issue a series of no-wait mode messages followed by a call to the M.ANYW or
M.EAWAIT system wait service. This allows a task to wait for the completion of any no-
wait messages previously sent. The completion of such a message causes resumption at
the point after the M\ANYW or M.EAWAIT call.

2.7.5.4 Waiting for Run-request Completion

Waiting for a run-request completion follows the same form and has the same options as
waiting for message completion.

2.7.5.5 Message End-action Processing (M.XMEA)

User specified end-action routines associated with no-wait message send requests are
entered at the end-action software interrupt level when the requested message
processing is complete. Status and return parameters will have been posted as

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-23

appropriate. When end-action processing is complete, the M XMEA service must be
called to exit the end-action software interrupt level.

2.7.5.6 Run-Request End-action Processing (M. XREA)

Run-request end-action processing follows the same form and has the same options as
message end-action processing. The only difference is that the M. XREA service is used
instead of M. XMEA.

2.7.6 Parameter Blocks

Parameters for run requests and messages are passed by parameter blocks established
within the user task. The parameter blocks are described in this section.

2.7.6.1 Parameter Send Block (PSB)

The Parameter Send Block (PSB) describes a send request issued from one task to
another. The same PSB format is used for both message and run requests. The address
of the PSB (doubleword bounded) must be presented as an argument when either the
M.SMSGR or M.SRUNR services are invoked.

When a load module name is supplied in Words 0 and 1 of the PSB, the operating system
defaults to a search in the system directory only. For activations in other than the
system directory, a pathname or RID vector must be supplied.

. Task Structure and MPX-32, Vol. I
2-24 o Operation Overview Reference Manual

G
S

C

Please note that a task number, not a load module name, must be used if sending a

message request or if sending a run request to a multicopied task which is waiting for a
run request.

Word
0 7 8 15 16 23 24 31

0 Load module name (or task number if message or run request
to multicopied task). See Note 1.

1 Load module name or pathname vector or RID vector if
activation (or zero if message or run request to multi-
copied task). See Note 2.

2 Priority Reserved. Number of bytes to be sent
(PSB.PRI). (PSB.SQUA). See Note 4.

See Note 3.

3 Reserved Send buffer address (PSB.SBA). See Note 5.
Return parameter buffer Number of bytes actually

4 length (bytes) (PSB.RPBL). returned (PSB.ACRP). See
See Note 6. Note 7.

5 Reserved Return parameter buffer

address (PSB.RBA).
See Note 8.

6 Reserved No-wait request end-action

address (PSB.EAA).
See Note 9.

7 Completion Processing User Status Options
status start status (PSB.UST). (PSB.OPT) .
(PSB.CST). (PSB.IST). See See Note 12. See Note
See Note 10.]Note 11. 13.

Notes:

1. Word 0O, bits 0-31: For send message: Task number of the task to receive the
message.

For run request: Zero if using pathname vector or RID vector in word 1, else task
number (word 1 must be zero), else characters one to four of the name of the load
module to receive the run request.

MPX-32, Vol. 1 Task Structure and

Reference Manual Operation Overview 2-25

2.

10.

2-26

Word 1, bits 0-31: For send message: Zero. Y
For run request: Zero if using task number in word 0, else pathname vector or rid &)}J
vector (word 0 must be zero), else characters 5-8 of the load module to receive the -

run request.

Word 2, bits 0-7: Priority (PSB.PRI) - contains the priority of the send request (1-
64). If the value of this field is zero, the priority used defaults to the execution
priority of the sending task. This field is examined if the sending task is privileged.

Word 2, bits 16-31: Number of bytes to be sent (PSB.SQUA) - specifies the number
of bytes to be passed (0 to 768) with the message or run request.

Word 3, bits 8-31: Send buffer address (PSB.SBA) - contains the word address of the
buffer containing the parameters to be sent.

Word 4, bits 0-15: Return parameter buffer length (PSB.RPBL) contains the
maximum number of bytes (0-768) that may be accepted as returned parameters.

Word 4, bits 16-31: Number of bytes actually returned (PSB.ACRP) is set by the
send message or run request service upon completion of the request.

Word 5, bits 8-31: Return parameter buffer address PSB.RBA) contains the word
address of the buffer into which any returned parameters are stored.

Word 6, bits 8-31: No-wait request end-action address (PSB.EAA) contains the
address of a user routine to be executed at an interrupt level upon completion of
the request.

TN
Word 7, bits 0-7: Completion status (PSB.CST) is a bit encoded field that contains \\//
completion status information posted by the operating system as follows:
Bit Meaning When Set
0 Operation in progress (busy)
1 Destination task was aborted before completion of processing for this
request
2 Destination task was deleted before completion of processing for this
request
3 Return parameters truncated (attempted return exceeds return
parameter buffer length)
4 Send parameters truncated (attempted send exceeds destination task
receiver buffer length)
5 User end action routine not executed because of task abort
outstanding for this task (may be examined in abort receiver to
determine incomplete operation)
6-7 Reserved
M"W\

Task Structure and MPX-32, Vol. ’I
Operation Overview Reference Manual

11. Word 7, bits 8-15: Processing start (initial) status (PSB.IST) is a value encoded field
that contains initial status information posted by the operating system as follows:

Code

sSUEUNEFO

W

10

11
12
13
14
15

Definition

Normal initial status

Message request task number invalid

Run request load module name not found in directory

Reserved

File associated with run request load module name does not have a
valid load module format

Dispatch Queue Entry (DQE) space is unavailable for activation of the
load module specified by a run request

An 1/0 error was encountered while reading the directory to obtain
the file definition of the load module specified in a run request

An 1/0 error was encountered while reading the file containing the
load module specified in a run request

Memory unavailable

Invalid task number for run request to multicopied load module in
RUNW state

Invalid priority specification. Note: An unprivileged task may not
specify a priority which is higher than its own execution priority
Invalid send buffer address or size

Invalid return buffer address or size

Invalid no-wait mode end action routine address

Memory pool unavailable

Destination task receiver queue is full

12. Word 7, bits 16-23: User Status (PSB.UST) - As defined by sending and receiving

tasks.

13. Word 7, bits 24-31: Options (PSB.OPT) contains user request control specification.
It is bit encoded as follows:

Bit

24
25

MPX-32, Vol. 1
Reference Manual

Meaning When Set

Request is to be issued in no-wait mode.

Do not postcompletion status or accept return parameters. This bit is
examined only if bit 24 is set. When this bit is set, the request is said
to have been issued in the no call-back mode.

Task Structure and
Operation Overview 2-27

2.7.6.2 Parameter Receive Block (PRB)

The Parameter Receive Block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same format PRB is used for both
message and run requests. The address of the PRB must be presented when either the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

Word

0 7 8 15 16 23 24 31
0 Status Parameter receiver buffer address

(PRB.ST). (PRB.RBA). See Note 2.

See Note 1.

Receiver buffer length (Bytes) Number of bytes actually
1 (PRB.RBL). See Note 3. received (PRB.ARQ).

See Note 4.

2 | Owner name of sending task (Word 1) (PRB.OWMN). See Note 5.

3 Owner name of sending task (Word 2) (PRB.OWN). See Note 5.

4 Task number of sending task (PRB.TSKN)

Notes:

1, Status (PRS.ST) contains the status-value encoded status byte:

Code Definition
0 Normal status _
1 Invalid PRB address (PRB.ERO1)
2 Invalid receiver buffer address or size detected during parameter

validation (PRB.RBAE)
No active send request (PRB.NSRE)
Receiver buffer length exceeded (PRB.RBLE)

&S W

2. Parameter Receiver Buffer Address (PRB.RBA) contains the word address of the
buffer where the sent parameters are stored.

3. Receiver buffer length (PRB.RBL) contains the length of the receiver buffer (0 to
768 bytes).

4., Number of bytes actually received (PRB.ARQ) is set by the operating system and is
clamped to a maximum equal to the receiver buffer length.

5. Owner name of sending task (PRB.OWN) is a doubleword that is set by the operating
system to contain the owner name of the task that issued the parameter send
request.

6. Task number of sending task (PRB.TSKN) is set by the operating syste- to contain
the task activation sequence number of the task that issued the parameter send
request.

Task Structure and MPX-32, Vol. 1
2-28 Operation Overview Reference Manual

N

2.7.6.3 Receiver Exit Block (RXB)

The Receiver Exit Block (RXB) controls the return of parameters and status from the
destination (receiving) task to the task that issued the send request. It is also used to
specify receiver exit-type options. The same format R*‘B is used for both messages and

run requests. The address of the RXB must be presented as an argument when either the
M.XMSGR or M. XRUNR services are called.

Word

n 7 8 15 16 23 24 31

0 Return status| Return parameter buffer address (RXB.RBA).
(RXB.ST). See Note 2.
See Note 1.

Options Number of bytes
1 (RXB.OPT). Reserved to be returned
See Note 3. (RXB.RQ) .

See Note 4.

Notes:

1. Return status (RXB.ST) contains status as defined by the receiver task. Used to set

the user status byte in the Parameter Send Block (PSB) of the task which issued the
send request.

2. Return parameter buffer address (RXB.RBA) contains the word address of the

buffer containing the parameters which are to be returned to the task which issued
the send request.

3. Options (RXB.OPT) contains receiver exit control options. It is encoded as follows:

Value Exit Type Meaning
0 M.XRUNR Wait for next run request
M. XMSGR Return to point of task interrupt
1 M XRUNR Exit task, process any additional
run requests. If none exist,

perform a standard exit.

M. XMSGR N/A

4. Number of bytes to be returned (RXB.PQ) contains the number of bytes (0 to 768)
of information to be returned to the sending task.

2.7.7 User Abort Receivers (M.SUAR)

User abort receivers execute at the normal task execution base level. The user task can
establish an abort receiver by calling the M.SUAR service.

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-29

If an abort condition is encountered during task operation, control is transferred to the
task's abort receiver. Before entry, any active software interrupt level is reset, all
outstanding operations or resource waits are completed, and all no-wait requests are
processed. End-action routines associated with no-wait requests that complete whi'e the
abort is outstanding are not executed. Status bits reflecting this are posted in the
appropriate FCBs. Any files opened or resources allocated at the time the abort
condition is encountered remain opened and/or allocated when the abort receiver is
executed.

The TSA stack is clean. The context at the time the abort condition is encountered is
stored in T.CONTXT. When the abort receiver is entered, register five reflects task
interrupt status when the abort condition was encountered.

Bit Meaning if Set

0-18 N/A

19 User break interrupt active
20 End-action interrupt active
21 Message interrupt active
22-31 N/A

The standard exit service described in Section 2.11 exits from a task's abort receiver. If

another abort condition is encountered while a task is executing an abort receiver, the
task is deleted.

A privileged task can reestablish its abort receiver through the M.SUAR service. An
unprivileged task is not allowed to reestablish its abort receiver after an abort condition
has been encountered. An attempt to do so results in a task delete.

2.7.8 Task Interrupt Services Summary

Table 2-3 summarizes the services described in this section including required parameter
blocks. For a detailed description of the parameter blocks for run and message requests,
see Section 2.7.

2.7.9 Arithmetic Exception Handling

MPX-32 maintains a trap handler with the capability to do special handling of arithmetic
exceptions generated by a task. Provided that the arithmetic exception trap is enabled,
any task can test for the occurrence of an exception via the T.EXCP flag in the T.BIT1
field of the TSA. For certain instructions, the destination register values are modified as
a result of an arithmetic exception. The H.IPOF Register Fixup table (Table 2-4) shows
how the different instruction types are modified. This capability exists for both base and
nonbase mode tasks.

The arithmetic exception trap is enabled by the setting of the arithmetic exception bit
(bit 7) of the task's PSD. By default, this bit is set when a task is activated. Instructions
are provided in the base and nonbase mode instruction sets to manipulate this bit (see the
EAE and DAE instructions). When the trap is disabled, only the condition code results
are available to indicate that the exception has occurred, and the nature of the exception
type. '

Task Structure and ' MPX-32, Vol. I

2-30 Operation Overview Reference Manual

7 /H\\
N

[enuB|y 80UaJaay

AQ uonjetadg
puE aIn3onJig dse|

M3IAJS

1¢-¢

I °10A ‘2€-XdW

Sending
Task
Functions

Receiving
Task
Functions

Table 2-3

Task Interrupt Operation/Services Summary
Task Interrupt Priority Level 5 Level 4 Level 3 Level 2

Run Abort Message End-action End-action End-action Break
Task Interrupt Functions Requests Requests Requests Run Message 1/0 Requests
Issue Request M.SRUNR M.BORT M.SMSGR MPX MPX MPX Hardware Break

OPCOM | OPCOM Send OPCOM Break
Abort M.INT
Send Block PSB N/A PsB N/A N/A N/A N/A
Wait for Completion (wait) PS8 N/A PsB N/A N/A N/A N/A
Establish End Action Receiver PSB N/A PSB N/A N/A N/A N/A
Wait for Completion (no-wait) M.ANYW N/A M.ANYW N/A N/A N/A N/A
Call-Back Information PSB N/A PsB N/A N/A N/A N/A
Establish Receiver N/A M.SUAR M.RCVR PSB PSB FC8 M.BRK
Get Parameters M.GRUNP N/A M.GMSGP PSB PsB R1 Points to FCB N/A
Receive Block PRB N/A PRB PSB PS8 FCB TY's UDT or
Contents of T.BREAK
Exit Receiver MEXIT MEXIT M.XMSGR M.XREA M.XMEA SVC 1,X'2C' M.BRKXIT
M.XRUNR
Exit Block RXB N/A RXB N/A N/A N/A N/A
Wait for Next Request RXB N/A M.SUSP N/A N/A N/A M.ANYW
(if M. XRUNR) M.ANYW

Disable Interrupt Level N/A N/A M.DSMI N/A N/A N/A N/A
Enable Interrupt Level N/A N/A M.ENMI N/A N/A N/A N/A

Base mode provides the capability of further arithmetic exception handling within a
task. By establishing an exception handler address within the task, the user provides the

operating system an entry point to the task upon occurrence of an arithmetic exception.

Table 2-4
H.IPOF Register Fixup

Instruction Type

Exception Type

Destination
Register Results

Floating Point
Arithmetic

(ADRFW, ADRFD,
SURFW, SURFD
DVRFW, DVRFD
MPRFW, MPRFD,
ADFW, ADFD
SUFW, SUFD
DIVFW, DIVFD
MPFW, MPFD)

Exponent Under Flow-
Positive or Negative Fraction 0

Exponent Overflow -
Positive Fraction

Largest positive
number (7F...F)

Exponent Overflow -
Negative Fraction

Largest negative
number (80...1)

Division by Zero Largest positive

number (7F ...F)

Fixed Point Arithmetic

TADMB, ADMH, ADMW,
ADMD, ADR, ADRM,

ARMW, ARMD, ADI, Any No change

SUMB, SUMH, SUMW,

SUMD, SUR, SURM, (See specific CPU

SUI, DVMB, DVMH, Reference Manual)
DVMW, DVR, DVI, RND)

ABM, ABR

FIXW, FIXD No change

LNW, LND Any (See specific CPU

SLA, SLAD Reference Manual)
TRN, TRNM

The occurrence of an arithmetic exception with traps enabled causes the following
events to occur: ‘

The CPU generates a trap and transfers control to the arithmetic exception trap

The trap handler sets the T.EXCP flag in the TSA and determines what type of
instruction caused the exception. If the exception was caused by one of the floating
point arithmetic instructions, then the trap handler modifies the destination register

l.

handler (H.IPOF).
2.

values as described in Table 2-4.
3.

2-32 Operation Overview

If the exception occurred during a base mode task which has an exception handler
established, and was caused by one of the floating point arithmetic instructions that
causes register results to be changed, an argument list is constructed, and control is
passed to the handler within the task via the CALL* instruction. When the task's
exception handling routine is complete, control may be transferred back to the trap
handler by using the RETURN?# instruction.

Task Structure and MPX-32, Vol. 1

Reference Manual

C

4. The exception trap handler restores all original register and condition code values, as
well as the value of the task's current PSD, and allows the CPU to transfer control
back to the task which caused the exception. Task execution will resume at the
instruction following the trapped instruction.

Condition code values generated as a result of an arithmetic exception are defined in
each of the CONCEPT/32 reference manuals.

*This refers to Call/Return and argument passing standards established for FORTRAN
77/X32.

2.7.9.1 Exception Handler Establishment

The M_SETEXA (Set Exception Handler) system service establishes an exception handler
for base mode tasks. This service accepts as input either the address of the new handler
to be established or zero if the handler is to be ignored by the system. It provides as
output the previous handler address. This allows a procedure to establish a handler and
reset the previous handler when it no longer needs to handle exception conditions.

2.7.9.2 Changing a Return Address from an Exception Handler

The M_SETERA (Set Exception Return Address) system service can be called from an
established exception handler to change the return address. This service accepts either
the destination address where control is transferred upon exit from the handler or zero if
the destination address remains unchanged (for example, execution is continued from the
point of the trap).

2.7.9.3 Exception Handler Input Arguments

When an arithmetic exception handler exists within a task, it is entered from the
exception trap handler via the CALL¥ instruction. The use of this instruction implies an
argument list- address in base mode register 3. This list is a FORTRAN standard list
containing three arguments as follows:

. The program counter (PC) of the point of the exception
. An array containing data specific to arithmetic exceptions
. An exception type and status indicator

The arguments are passed according to the FORTRAN standard for argument list
construction. Assembly language programmers should take care in extracting desired
information.

The program counter (PC) points to the instruction causing the exception. This may be
either a left or right halfword, or a fullword instruction. The C-bits in the Program
Status Doubleword (PSD) must be interpreted to determine the type of instruction.

The array contains information relevant to the arithmetic exception, for example,
register contents at the time of the exception, the exception PSD, the register number to
which the arithmetic modification was applied by the system arithmetic exception trap
handler, and the condition codes at the time of exception.

The status value contains information used by the FORTRAN run-time routines. It
includes the severity, system group, functional group, and type of exception.

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-33

The data structure of the argument list passed to the arithmetic exception handler of a
base mode task is shown below and individual words are described immediately following.

Word

Word

2-34

0 78 15 16 31
0 4
1 Descriptor pointer
2 Address pointer
3 Array pointer
4 Status pointer
5 Address descriptor pointer
6 Array descriptor pointer
7 Status descriptor pointer
8 3 0
9 3 8
10 1 (2 0
11 4
12 8
13 [3 [0
14 Exception address
15 20
16 Exception general purpose registers
~~~ ~~
™~ g
24 Exception PSD 1
25 Exception PSD 2
26 Exception base mode registers
= ~
34 Fixed register number
35 Condition codes
36 Status value

Description

This is the number of words of pointer information that follow. In
this example, the first word is a pointer to the descriptor list pointers
for each argument in the list and the remaining three words are

pointers to the arguments themselves.

This is the address of the descriptor vector. The vector contains one
entry for each argument in the list, in this case there are three. Each
entry points to the information which describes the data type and size

of each argument.

This is the address of the word which contains the address of the
instruction causing the arithmetic exception (word 14). Care must be
taken if this parameter is used as the instruction may be a halfword

or a fullword instruction.

Task Structure and
Operation Overview

MPX-32, Vol. I
Reference Manual



C

9-12

13

14

MPX-32, Vol. I

Reference Manual

This is the address of an array of information collected when the
exception occurred (words 15-35). The first word of the array
contains the number of words in the array. This is FORTRAN
standard. The following 21 words contain the eight general purpose
registers, the PSD, the eight base mode registers, the register which
was modified by the trap handler, and the condition codes at the time
of the trap.

This is the address of a status word supplied by the handler (word 36).

Contains a pointer to the argument descriptor (word 8) for the first
argument value. The argument value itself is contained in word 14.

Contains a pointer to the argument descriptor (words 9-12) for the
second argument. The argument value itself is contained in words 15
through 35.

Contains a pointer to the argument descriptor (word 13) for the third
argument. The argument value itself is contained in word 36.

Contains the FORTRAN data descriptor for the first argument. The
'3' in the left halfword indicates this argument is a word length
integer data item. The '0' in the right halfword indicates there is no
additional descriptive information about this data item.

Four words containing descriptive information for the second
argument, the exception array. The '>' in the first halfword indicates
this argument is a word length integer data item. The '2' in the right
halfword indicates 2 more pieces of descriptive information follow.
The '1' in the first byte of word 10 indicates that data is the size in
bytes of one element of the argument. The '2' in the second byte
indicates that data is the size in bytes of the entire argument. The '4'
in word 11 indicates each element of the array is 4 bytes in length.
The '80' in word 12 is the total byte length of the array (20 elements,
4 bytes each).

Contains the FORTRAN data descriptor for the third argument. The
'3' in the left halfword indicates this argument is a word length
integer data item. The '0' in the right halfword indicates there is no
additional descriptive information about this data item.

Contains the address of the instruction causing the exception. It may
be the address of a fullword instruction, a left halfword instruction,
or a right halfword instruction. The C-bits of the exception PSD must
be interpreted to determine the type of instruction. The PSD C-bits
are interpreted as follows:

Bit 30 Bit 31 Definition
0 0 Fullword instruction
0 1 Right halfword instruction
1 0 Left halfword instruction
1 1 Invalid

Task Structure and
Operation Overview 2-35



15

16-23

24-25

26-33

34

35

36

The first word of the exception array. FORTRAN uses this word to
contain the number of entries in the array for subscript validation.

Eight words containing the contents of the 8 general purpose registers
at the time of the exception. The destination register of the
instruction causing the exception has had the modified value inserted.

Two words containing the PSD at the time of the exception. (Points

to either 2 or 4 bytes past the instruction which caused the exception,
see word 14).

Eight words containing the contents of the 8 base mode registers at
the time of the exception.

Contains the register number which was modified as a result of the
arithmetic exception processing.

Contains the 4 bit condition code value, extracted and right justified,
which was contained in the exception PSD.

Contains status information generated by the arithmetic exception
trap handler in the following format:

8 16 31

1 52 | status code ]

bits 0-3 Severity - value 1 = warning
4-7 System group - value 1 = O/S Support Library
8-15 Functional Group - value 52 = Arithmetic exception
16-31 Status code, contains:

1 - Exponent underflow, positive fraction
2 - Exponent overflow, positive fraction

3 - Exponent underflow, negative fraction
4 - Exponent overflow, negative fraction
5 - Divide by zero

6 - Fixed point exception if DQE.AF is set

2.7.9.4 Exception Handler Restrictions

Exception handlers execute with the following restrictions:

. Arithmetic exceptions encountered during execution of the user's arithmetic exception
handler are processed by the system arithmetic exception trap handler, but do not
cause the user's handler to be reentered. Using the modified registers, execution is
continued from the point of the trap or at the address specified to the set return

address service.

. A user's arithmetic exception handler can be established only by base mode tasks.

~

2.7.9.5 Related Arithmetic Exception Information

The M.TSTE (Arithmetic Exception Inquiry) system service accesses the arithmetic
exception flag, T.EXCP, in the T.BIT1 field of the task's TSA. The results of this service

2-36

Task Structure and MPX-32, Vol. 1
Operation Overview Reference Manual



(;

indicate whether an exception has occurred, and reset the T.EXCP flag. The output of
the service consists of condition code results. Once the T.EXCP flag is set, it is not
reset until this service is used or the task terminates. This is a nonbase mode system
service.

2.8 CPU Dispatch Queue Area

The CPU Dispatch Queue is a variable length table built at SYSGEN and contains a
maximum of 255 Dispatch Queue Entries (DQE's). Free DQE entries are linked into the
C.FREE head cell in the standard linked list format. When a task is activated, a DQE is
obtained from the free list and is used to contain all of the memory-resident information
necessary to describe the task to the system.

For example, the task sequence number, owner name, load module name, TSA address,
priority, and current state chain pointers are kept in the DQE, as are abort codes,
message and run receiver queue addresses, etc.

Additional (swappable) information is maintained in the Task Service Area (TSA). While
a task is active, its DQE is linked to one of the various ready-to-run or wait state chains
provided by the CPU scheduler to describe the task's current status. When a task exits,
its DQE is again linked to the free list.

2.9 1/0 Scheduling

1/0 scheduling is designed to provide efficient service to 1/O bound tasks while keeping
the CPU busy with compute-bound tasks. This allows the fullest possible utilization of
both the CPU and I/O devices.

A task that has been waiting for I/O to complete (SWTI or SWIO) is changed to an
executable state at a priority slightly higher than a similar compute-bound task when the
I/O completes as described in Section 2.4.3.2, At that time, the CPU scheduler
interrupts the execution of the compute-bound task so that the 1/O-bound task can
execute. The I/O-bound user requires minimal CPU time before initiating another 1/O
request and returning to the SWTI or SWIO state. The compute-bound task then resumes
execution. The CPU scheduler automatically adapts to tasks that alternate between
bursts of computing and bursts of I/0.

2.10 Swap Scheduling

The swap scheduler task (J.SWAPR) processes entries in the Memory Request Queue
(MRQ@). It provides memory allocation and swap scheduling as appropriate to service
individual requests for memory.

2.10.1 Structure

The swap scheduler is a memory resident, privileged task that is not operating system
resident. It executes at the priority of the highest priority task in the Memory Request
Queue. The swap scheduler always occupies the first DQE. If a task requires memory,
the swap scheduler maps the task's TSA on top of its address space.

The swap scheduler remains suspended until resumed by the executive in response to a
swap scheduler event. :

MPX-32, Vol. 1 Task Structure and
Reference Manual Operation Overview 2-37



2.10.2 Entry Conditions

The swap scheduler task is normally suspended. It is relinked to the ready-to-run queue
by the executive in response to a system service calling the executive to report a swap
scheduler event. There are four basic types of swap scheduler events.

2.10.2.1 Dynamic Expansion of Address Space (M.GE/M.GD, M.MEMB)

Whenever there is insufficient memory to satisfy a dynamic memory request for a task,
the task is linked into the memory request queue and the swap scheduler is resumed.

Memory is allocated in 2KW increments on a CONCEPT/32. These increments are called
map blocks.

2.10.2.2 Deallocation of Memory (M.FE/M.FD, MMEMFRE)

Whenever a task deallocates some or all of its memory, and the memory request queue is
not empty, the swap scheduler is resumed. Those tasks in the MRQ are then allocated
some or all of the deallocated memory.

2.10.2.3 Request for Inswap

Whenever a currently outswapped task becomes eligible for execution, it is linked into
the memory request queue. The swap scheduler is resumed to process the inswap
request.

2.10.2.4 Change in Task Status

Whenever a task which had been previously ineligible for swapping becomes eligible, the
swap scheduler is resumed. Such status changes include the completion of an unbuffered
1/0O operation, the release of a lock-in-memory flag, or the expiration of a stage one time
quantum.

2.10.3 Exit Conditions

The swap scheduler signals the executive when it cannot process any more outstanding
requests, or when the memory request queue is empty. The swap scheduler is unlinked
from the ready-to-run queue and placed in a special wait-for-memory-event state.

2.10.4 Selection of Inswap and Outswap Candidates

The swap scheduler attempts to allocate the memory required for the highest priority
task in the memory request queue. If there is insufficient free memory, the swap
scheduler examines the state queues on a priority basis, searching for the memory class
and number of map blocks required.

When the first outswap candidate that satisfies any current memory request is

determined, the task is outswapped.

Task Structure and MPX-32, Vol. 1
2-38 Operation Overview Reference Manual



When sufficient memory is available, the inswap process is initiated. The swap scheduler
processes entries in the memory request queue until the queue is empty or until an
available outswap candidate for a task requesting memory cannot be found.

Both outswap and inswap are serial processes which go to completion before the memory
request queue is reexamined. Dynamic memory requests are similar to inswap requests,
except that there is no associated disc file to read. Some tasks in the memory request
queue can be queued for both inswap and a dynamic request. There must be sufficient
memory for the inswap and dynamic requests before the inswap process can proceed.

2.10.4.1 Outswap Process

The outswap process is initiated when inswap or dynamic memory is requested. The
outswap priority order can be specified by the system administrator. See the System
Administrator Chapter in MPX-32 Reference Manual, Volume III. The default outswap
priority is:

Default
Outswap Priority Order

HOLD
SUSP
RUNW
SWDV
SWDC
SWSR
SWSM Wait queues
SWLO
SWF1
MRQ
ANYW
SWGQ
SWTI
SWIO
SWMP

SQ64

. Ready-to-run queues
SQ55

RIPU
SQRT

The TSA of the outswap candidate is mapped into the swap scheduler and used to
construct a new address space which represents the swappable map blocks in a logically
contiguous format. Then, the swap space is allocated and opened by the swap
scheduler. For F-class swap devices, a single write request is given to IOCS. Command
and data chains are built in the handler to perform the specified transfer.

Once output is complete, the memory is deallocated, and the memory request queue is
reexamined to find the highest priority candidate for inswap.

MPX-32, Vol. I Task Structure and
Reference Manual Operation Overview 2-39



2.10.4.2 Inswap Process

When sufficient memory is available, the swap scheduler allocates the memory required
by the highest priority task in the memory request queue. If the request is simply a
dynamic one, the swap scheduler adjusts the TSA of the requestor to reflect the newly
allocated memory, and informs the CPU scheduler.

If the request requires an inswap, the swap scheduler reads the swapped image into the
newly allocated memory. For F-class swap devices, a single read request is given to
IOCS. Command and data chains are built in the handler to perform the specified
transfer.

Once inswap is complete, the swap scheduler cleans its map and reexamines the memory
request queue for the next inswap candidate.

2.11 Task Termination Sequencing

Three types of task termination are provided by the MPX-32 executive: exit, abort, and
delete task execution.

2.11.1 Nonbase Mode Exit Task (M.EXIT)

The exit task service is called by a task that wishes to terminate its execution in a
normal fashion. The sequence of system processing on task exit is described in Table 2-5.

2.11.2 Abort Task (M.BORT)

The nonbase mode abort task service is called by a task that wants to terminate its
execution in an abnormal fashion. It may also be initiated by the system when a task
encounters a system trap condition (e.g., undefined instruction, privilege violation, or
nonpresent memory) or by a system service because of a parameter validation error.
This service may also be asynchronously initiated by another task of the same owner
name or by the OPCOM ABORT directive. The sequence of system processing on task
abort is described in Table 2-5.

2.11.3 Delete Task (M.DELTSK)

The delete task service is called by the system for a task that encounters a second abort
condition when processing an initial abort request. This service may also be initiated
asynchronously by another task of the same owner name or by the OPCOM KILL
directive. The sequence of system processing on task delete is reflected in Table 2-5.

2.11.4 Base Mode Exit Task (M EXIT)

The base mode task entry structure allows base mode tasks to exit in a uniform manner.
Exit sequences require a zero or an ASCII status code to be placed in R0O. Any entry into
a subroutine may be exited by the execution of a RETURN instruction.

A base mode assembler task must exit any end action receiver by a RETURN
instruction. If the exit from end action requires a Receiver Exit Block (RXB), the RXB
address must be in register one.

Task Structure and MPX-32, Vol. 1
2-40 Operation Overview Reference Manual

C



Table 2-5
Task Termination Sequencing
(EXIT, ABORT, and DELETE)

Task Has

System Action

Task Exit

Task Abort

Task Delete

Outstanding
1/0

Defers processing
until any
outstanding 1/O
is complete.

Same as exit,
except inhibits
e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>