A

Gould MPX-32TM tilities
Release 3.0

Reference Manual

July 1987

Publication Order Number: 323-004590-000

TMMPX--32 is a trademark of Gould Inc.

== GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the applicable third-party sublicense agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the
Government is subject to restrictions
as set forth in subdivision (b) (3) (ii) of
the Rights in Technical Data and Computer
Software clause at 52.227.7013

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

MPX-32 is a trademark of Gould Inc.
CONCEPT/32 is a registered trademark of Gould Inc.

Copyright 1987
Gould Inc., Computer Systems Division
All Rights Reserved
Printed in U.S.A.

HISTORY

The Gould MPX-32 Utilities Release 3.0 Reference Manual, Publication Order Number
323-004590-000, was printed July, 1987.

This manual contains the following pages:

Title page
Copyright page
iii/iv through xxi/xxii

OVERVIEW

1-1 and 1-2
2-1 through 2-3/2-4

CATALOGER

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-25/2-26
3-1 through 3-22

4-1 through 4-4

5-1 through 5-5/5-6

DATAPOOL EDITOR

Title page

iit and iv

1-1 and 1-2

2-1 through 2-8

3-1 through 3-3/3-4
4-1 and 4-2

5-1/5-2

FILE MANAGER

Title page

iii/iv

1-1 through 1-3/1-4
2-1 through 2-8

3-1 through 3-10
4-1 and 4-2

5-1/5-2

MACRO ASSEMBLER

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-16

3-1 through 3-29/3-30
4-1 through 4-33/4-34
5-1 through 5-6

6-1 through 6-12

A-1 through A-3/A-4
B-1/B-2

C-1and C-2

D-1 and D-2

MACRO LIBRARY EDITOR

Title page
iiifiv

1-1 and 1-2

2-1 through 2-4
3-1 through 3-4
4-1 and 4-2

5-1 and 5-2

MEDIA CONVERSION

Title page

iii/iv

1-1 and 1-2

2-1 through 2-3/2-4
3-1 through 3-10
4-1 and 4-2

5-1 through 5-4

Continued

iii

iv

SOURCE UPDATE

Title page

iii and iv

1-1 and 1-2

2-1 through 2-8

3-1 through 3-9/3-10
4-1 through 4-3/4-4
5-1 through 5-4

SUBROUTINE LIBRARY EDITOR

Title page

ii/iv

1-1/1-2

2-1 through 2-5/2-6
3-1/3-2

4-1/4-2

5-1 and 5-2

SYMBOLIC DEBUGGER

Title page

iii through v/vi

1-1 through 1-6

2-1 through 2-26

3-1 through 3-29/3-30
4-1 through 4-10

5-1 through 5-12

TEXT EDITOR

Title page

iii and iv

1-1 through 1-3/1-4
2-1 through 2-6

3-1 through 3-25/3-26
4-1 through 4-4

CONTENTS

GOULD MPX-32 UTILITIES OVERVIEW

Section

1 - USING THE MPX-32 UTILITIESMANUALo v v e e

2 - DOCUMENTATION CONVENTIONS ceerennan

MPX-32
Utilities

CATALOGER (CATALOG)

Section
1 - OVERVIEW
1.1 General Description « v cveveesersteseeecsosocosossossssssssssssneeos 1-1
1.2 Directive SUMMArY .« oot e eeteceesnecncccoccssanns cecevcce eeee 1-1
2 - USAGE
2.1 Accessing CATALOGcccveveene e e s e esecessesssss s seennn 2-1
2.2 Logical File Code Assignmentsceceeeeeeeocscsoscosccacnscoconesns 2-1
2.2.1 Source INput (SYC) & v vttt eneenncencnans B 2 A
2.2.2 Object Modules from Compilation or
Assembly (SGO) e e s v vevesesossesesensssossssssosssass 22
2.2.3 Object Modules from Subroutine Libraries
(LIS, LIB,and Lnn) e e e e v e v eeenencnanne 4
2.2.4 Subroutine Library Directories ,
(LID,DIR, and DNN) s e sveeesesosccnsncnnnns ceeeeesenss 2-3
2.2.5 DATAPOOL Variables Dictionary (DPD). ¢ vt v v v v e oeeeaseess .o 2-4
2.2.6 . DPOOLO00-DPOOLY99 Variables Dictionaries (P00-P99).....ccvv.. 2-4
2.2.7 System Listed Output (SLO) .+ evvvvneennn Cereeeenn ceseees 2-4
2.2.8 Symbol Table Output (SYM). . et vviveenennnns ceceseneaasess 225
2.2.9 Symbol Table as Input (SYD) . .vvvenn A, 2-5
2,210 LFCSUMMAErY «eoesseesosoccsansss)
2.3 Options v e veeoe cecccesccnccsssans csessssssascsccss ceeeeeees 2-7
2.4 Exiting CATALOG . .veevveesnse c e e eecctcecnceassssaeaeene ceee. 2-8
2.5 Object Modules and L.oad Modules Ceeeccecccscsaens cesseeess 2-8
2.5.1 LoadModules...ceeeeeeeeeeeenss D .es 229
2.5.2 Absolute Load Modules ceecssecsseseesssenssens 2-9
2.6 The Cataloging Process. « « e e v v e v et eeeereeneeceonsane ceesenneens 229
2.6.1 Selective Retrieval of Object Modules Ceeee sttt ennnas 2-10
2.6.2 Allocation and Use of Global Common and
Datapool Partitions . « e ¢ ¢ e e e e v cesesvecsosons csesescns 2-10
2.6.3 Allocation of Local Commons ceeestaesenenn cesseees 2-11
2.7 Load Module Information e ceereecsctaeeasssscennn e 2-12
2.8 Resource Requirements ccscececsnsscsssensnaas ceceecnns 2-13
2.9 Sectioned and Nonsectioned Tasks 2 1
2.10 Segmented and Nonsegmented Taskscvveeveeeceeenn cesesseses 2-15
2,11 OverlayLoad ModuleS. « s s e et e e vvesstssccscascsssnssssscssacss 2-16
2.11.1 Single and Multiple Disc File Modes cessseses ceteenan 2-16
2,11.2 Overlaylevels...oeene 2 1)
2.11.3 Modifying Overlay Origins. « « « c et e v v e eeeeeeneeceneeesss 2-18
2.11.4 The Overlay Transient Areaeceeceeoeescoscsases eeeee 2-20
2.12 Local Common Allocation and Global Symbol Resolution
inSegmented Tasks o« st et vsvvseencecsssssssssssnsnosssssssss 2-20
2.12.1 Local Common Allocation .. .ceeeeeeeecesene ceteeseenees 2-21
2.12.2 Global Symbol Resolution « e eeveeeeencsssscossscossnsesss 2-22
2.13 Cataloging a Segmented Task iNnStages «veeeeeeeeevveescocenenoeses 2-23
2.13.1 RecatalogingaloadModulecceeeeeeeeecens ceecenes 2-23
2.13.2 Limitations on Catalogingin Stagescceeeeecccccccecsss 2-24
2.14 Cataloging a Nonsegmented Task. « e eeessocessssscecsscssasesasss 2-24
MPX-32
vi Utilities

-

w

Section

3 - DIRECTIVES

3.1 o8 oo 1o [T3 4 a1 3-1
3.2 Directive Order Requirements. v v v oot e v st ot oeosesssossssscsssosns 3-1
3.3 ABSOLUTE DIireCtive v o e vttt v eeeseesosescssossscssssssssssssos 3-2
3.4 ALLOCATE Directive e o o v oo e s e v esesonens cese e e s aes ce e . 3-2
3.5 ASSIGN DireClIVe e ¢t o v ottt et eeeeotoeesosossossossssssssssssnsose 3-3
3.6 ASSIGNL DB IVE ¢ v v ot ettt e e eeeneeeesenecossosesoesssasenossos 3-7
3.7 ASSIGN 2 DI CEIVE ¢ ¢t v ot et et ot eooeeeeoeosocosossosossosscscssoneses 3-8
3.8 ASSIGNS DIreClIVE ¢t v v ettt et ososeosssesssssassssesssssssssese 3-9
3.9 ASSIGNSL DIreCtIVE ¢ v v v v vt ettt e eeeenoesssessssoscsssssssesosasse 3-10
3J0 BUFFERS DITeCtIVE ¢ttt ottt veveeoeeocesesoecososcsscssnsss .e. 3-10
3.11 CATALOG and BUILD Directives v .eeeeeees oo c e e et e eacseeceees 3-11
3.12 CONNECT DIreCliVe oo eeeeuseoeeeeesssssscscsosossssscsssssosaes 3-12
3.13 ENVIRONMENT DireCtiVe e ¢ o e o o e ot e veoseoecosccscsoscsosccoseses 3-13
304 EXCLUDE DIirBCLIVE e ¢ o o t ¢ e s oo oo eossoecssoscescocosecasnceccsses 3-14
305 EXIT Directive e e o e vt e vt oot e eoeecsosecssossssscsssscssssssscssoss 3-14
316 EXTDMPX DITECLIVE ¢ e ettt vt v eeeeeosescosassoscsssscocssssssesaes 3-14
307 FILES DIrBClIVE ¢ vt vt v et e et ovssnsesoscssocscssoscsossocssocssccsons 3-15
3.18 INCLUDE Directive v v eeeeeeeeeeosseocccocces ce e e c e ee e .o 3-16
3.19 LINKBACK DIrTeCtivVe ¢ « e o vt et eeeeeecesscecssoscsocssssssssss . . 3-16
320 LMPATH DIreCliVe . ¢ ¢ o v e et et eveseeesssosccscssscsssccssscsss .. 3-16
3.21 LORIGINDirective . e eeeeeeeeesoees cees e esecs s e et esennne .. 3-17
322 MOUNT DIireCtiVe « e v e oo et oeeeessesosecssosssssssscsosssscsoans 3-17
3.23 OPTION Directive «oeveeeeees c et e et e e cse s s st et et et s e sen s .e. 3-18
3.2 ORIGIN DIireCtiVE. e e o et oot s v seeesssacssescsoesssscsacsasas eeee 3-19
3.25 PASSWORD DireCtiVe e o e o ot et oo eoeoeossoscsscssssossssscssssess 3-19
3,26 PROGRAMDITECEIVE ¢ vttt eteeeeecossossesssaasasssnnscsssssasns 3-19
3.27 PROGRAMX Directive « ¢ e e e e e 0o c et e s es s e s e et e et ennnenen 3-19
328 RECATALOG DITECLIVE vt vttt eeesoossocsscsccsssosoccssscssnse .. 3-20
3,29 SEGFILES Directive « ¢ v v e 0o cetet et ceereesenae ce e eeeae 3-20
330 SPACE DITECLIVE vttt v vt v osoveeoeososssssosssccscssses c e e e 3-20
331 SYMT AB DIreCliVe ¢ o v vttt vt oveeeececseoscssoccscossossssssscnssaes 3-21
332 VOLUMES DireCtive ¢ ot ottt e et eeoososseosscossssososssssssosses 3-21
4-ERRORS AND ABORTSttt teneeeeonceoenes e eeseesences e 4-1
4.1 Error Overviewceeeee. C e ec s sttt e e e e e cees e e ees eees b4-1
4.1.1 Phase One ETTOTS ¢ e e v v e e v v e e < 1 |
4.1.2 Phase TWOEITOrS v v vt eeevveneeesoneses c e e et 4-2
4.1.3 Errors from MPX-32 (Phase One and TWO) « v e v v eeeeenenoens .. 42
4.1.4 Conditions that Cause Incomplete
load Modules . vt v et ee vt eetossoescasassascssns ceees 4-2
4.2 Abort Codes. v vvvveeeeennns c e e et e s s e s es e et en e ans ceees e . 4-4
5-EXAMPLES. Gt et bt e s e e e L
MPX-32

Utilities vii

FIGURES

CATALOG I/O Overview. e« e e e v e v s cesssnne et eecenenneneeasaaes 2-7
Single Overlay Structure . . e v e v v e v e eene 2 V)
Multilevel Overlay Structureo v et cecrecccccsecscsnsesaccns 2-17
Default Memory Allocation for Overlays «cooeeeeeeeeeeeeennns ceee. 2-19
Modified Memory Allocation for Overlays Al
Recataloging Illustration..... e s e s e seeseeseses s et esssssosne . 2-25

TABLES
CATALOGLchummBI‘y.. ooooooo ® o 0o 0 0 0 ® 6 0 0 0 0 0 00 00 0000000 00000 2-6

LMPATH/BUILD/CATALOG Interactioncev0e. ceeseees ceseens 3-22

DATAPQOOL EDITOR (DPEDIT)

Section

1 - OVERVIEW

1.1

1.2

General Description « e ceeeieeeeeenn
1.1.1 Datapool Dictionaries .« e e e oo et csesessessecnns ceseoceeen
1.1.2 Static versus Dynamic Datapool Ceeesecnsenen .o
Directive Summary...... ceecesons ceeceanes

2 - USAGE

2.1
2.2

2.3
2.4
2.5
2.6

Accessing DPEDIT & ittt ittt eneeeeeesesscennnososnosososcsscnssans
Logical File Code Assignmentseeeeeeeeeenn ceesscsseccenenos .
2.2.1 Dictionary (DPD) v cvevuens c e e esessscsessesesetseanaens
Source INpUL (SYC) v vttt terensosesnesesososssscsnsnnss
Listed Output and Error Listings (LOandER) . v v v v veveeenenans
Save and Remap Files(OT andIN) . ¢t v v vt evseenscnscncnnns
Scratch Files(Uland XUL) v et v vveverncsososocncncsnocnsns
2.2.6 LFCSUMMArY «eteveeeeseoccsonssneosnnnns cesennoe
Exiting DPEDIT @ittt eesessoccscossssssssssosssssasssnsssscsce
Input Data Format « v oo e e eveoseceosssssossssssocssssssssssssccscs
Dictionary ReCOrds. « « « e s e e s s e s ccesscsossssssssosccscsssonsassae £

Listings-oooa-oco'Qoooovo-oooootoouooco-oooooaoo'oo.oonoooo

]

NNNNNI'\JNNNNNN
ONUVELEHEWHWNN

2
2
.2

2

NINNN
Ve WN

3 - DIRECTIVES

.

W AW AW W W W W
NOONWVMES W -

D

viii

Introduction .. eeveeeeereoeecscsssassssessssssssscssssssscsse 3=1
JOPD DireCtive «oeeeeseeseeececscscecoscscossssosscsscsaocssses 31
JENTER Directive «eeeeeeens s 1 |
JLOG DIirECtiVe «oeeeeeeeeeeesessoosessesosasasossancocncecssees 3-2
JREMAP DirBCtiVe « o o e c oo vveeoreeocesceessssossasencscesenees 3-2
JSAVE DireCtiVe . e oot oo e veeeeseccacssoscssssosssssccsssnccesnses 3-3
JVERIFY DireCtive « o e s s o v eveeseososoecossncosscenscsancessescses 3=3

MPX-32
Utilities

VR

Section

4 - ERRORS AND ABORTS

4.1 DPEDIT Error Codes. « v st v e et o vesssoossasossssssssssssssssscsas

4.2 DPEDIT Abort Codes v v vt vttt nnnneansns C et et ec e

4.3 Console Messages « « v et e vttt eenennenneens O

S-EXAMPLES. . ..ttt t ittt it it e s cee e
FIGURES

2-1 DPEDIT Data Record FOrmat v v e oo e veooessoesccsssscssscssoccssas

2-2 Datapool Dictionary Entry Format..... Ceseenaeens crese s

2-3 DPEDIT Listed Output FOrmat v v v e e e e e eeeeeeeeeeeosnooncascncosss
TABLES

2-1 DPEDIT LFC SUMmMary « e e e e e s s s o

FILE MANAGER (FILEMGR)

1 - OVERVIEW

1.1 General DesCription « v ot ene ettt teetesoseenseeeecscssssososoess
1.2 Directive SUMMArY .. e e oo s eesesosassceoss
2 - USAGE
2.1 Accessing FILEMGRo v vt v e e cesessennen oo
2.2 Saving, Restoring, and Creating Files. T S
2.3 Computing the Size of aFile........ cesens cecessesetcssnseseenens
2.4 The System Master Directory (SMD) + vt v vt vt etneososevsocsssonnnns
2.5 Logical File Code Assignments
2.5.1 Source INpUL (SYC) &t vttt et neseseessssncasssnssnsnsans
2.5.2 Listed Output (SLO) cv v v v e vsennns et easensen ceseeseas
2.5.3 Input for Restores (IN) v vt vttt enreeseesenscooscnonnns
2.5.4 Output for Saves (OUT) . v v vt vt et s tesessoessassssnsons .
2.5.5 LFC Summary «...... ces e essecsssaseasan
2.6 File-to-Tape Transfers v oo veeeeeeee ittt einenneteeesncannns o e
2.7 Options . v . oo v teceseseeas Cecsesesesssenss e
2.8 ExmngFILEMGR cteeecssss s ssernese e an

3 - DIRECTIVES

3.1 Introduction....... s e e s e ce e ee e ceee c e ees et neseserenne
3.2 BACKFILE Directive «eeeeeeeeese . . cesesesess e ceaes
3.3 CREATEandCREATEUDlrectlves t et e e et e e ses e e eses e eann
3.4 CREATEMDirective «.veeeeeeess ce e
3.5 DELETE and DELETEU Directives...... I, ce e
3.6 DELETEW Directive ¢ o e ot et v e eveeseneocososones ce s e e e esenann
3.7 EXIT Directive .o e v eeeeeenoocnosnns t it e s e s s e s e e e e s s e senene
3.8 EXPAND and EXPANDU Dlrectlveso ceeans ceessansae
MPX-32

Utilities

-l-\-!r\-l}
N = b

2-4

ooV ERERPEWWNFH

\A\A\A\{J\N\N\A\N
ANV EWN M-

Section

LOG, LOGU, and LOGC Directives v v veveeveesssssssosossossccsess
PAGE Directive « ¢ e o et o e v eveeess c et et e e eeesesssssssssaeesenn
RESTORE and RESTOREU Directives «.eeeeeeeoeee cecestesessesenens
REWIND Directive ¢ e v e vt 0o v e cec e e ceecenee
SAVE and SAVEU DIirectives ¢ e v e e e vt et sveoeosscessssssoscsoscsccssas
SAVELOG Directive ¢« e e s e et v eeness t et ecssesesc st e e e P
SKIPFILE Directive «ceeceeeeeeooess ceeseeceness e B 2
USERNAME DIirective «ceoeeeeeeecsceosocsnn R T

R R B BV BV R
[S R TR
OUVEWN~O

OOV ®®IO O

ERRORS AND ABORTS

4 -

4.1 AbOl‘tCOdeS......-..-.o.......-....-..... ooooooo oo.o-oo-.ooa‘"’l
4.2 ErTOr MESSAgES e ¢ o o o e e s oo s ssssssssssescssssssassssccnccsns ceees 4-1
5

~EXAMPLES. . ittt ittt ittt ettt er et ettt ceeseann e . 5-1

FIGURES

2-1 File-to-Tape Transfers .o cveeteeereeeoesscencenons cesveccss oo 2-7

TABLES

2-1 FILEMGR LFC SummMary..«seso oo ceseeecsensens ceeseseennenes 2-5

MACRO ASSEMBLER (ASSEMBLE)

1 - OVERVIEW

1.1 General Description ¢ oo eeeeeeeesosssosossssscsscssssossossscocsscsss 1
1.1.1 Macro Assembler Features e |
1.1.2 Macro Assembler Operationceeeeee.. coeee e cesess oo 1-
1.2 Directive SUMMAry ..o eeeeeeeeeeeesecescssssessocsscsosnnnscs |

2 - USAGE

2.1 Accessing the Macro Assembler. ..o oo s eeeseeeeeecsccssssecosnoscsess
2.2 Logical File Code Assignments ... ceeeeeenceeceecncenns
2.2.1 Source Input (PRE and SI) v ivveneeeesesenssoscssnnanes
Macro Libraries MAC and MA2) v i v vevenencnens
Temporary Files(UT1 and UT2) s v v vt eeeveesonconnsnsanases
Listed Output (LO) v v o vt vinvneevovsonsesesaassancnnsnes
Object Code - BO (Binary Object) and GO
(General ObJECt) v e v v vvenesvssoscsososcsssesncscsnnsoss
2.2.6 Compressed Source (CS) Ceeescsceseseaeseassesan e
2.2.7 LFCSUMMArY «eeveeseeecsesnscssessscncsssnascnss
OptionNs s e e eeeeeeeccconoess
Exiting the Macro Assembler. ..o ee et eeeesssecscosccssscccsscasces
USINGMECT0S ¢ et e vt eeveeecccsoosossssscsscsoscssssssss
2.5.1 Macro ComponentS . e oo v eessosscccesosessscssocossocnsscs
2.5.2 Symbolic Parameters .. .ececeeeeeeesccssoscscocssncsnse

2
2.
2.
2

NDNDNN

Vi & W
NNI'\)NNN
Vs S We -

N!\)N
v & W

OOV~ ON

>
|

MPX-32
X Utilities

)

Section

2.5.3 Macro Definition o i v vttt eeeeseeeenscssoscnsannsns .. 2-10
2.5.4 MacroCall. .ttt ii i it it ci et v c e s e s e s et eesena 2-11
2.5.5 Macro EXpansion . ..eeeeesceessssoscnnsens e eeees e 2-12
2.5.6 Label Generation within Macros «...ceeeesoeess ceeenn eee. 2-12
2.5.7 Symbol Concatenation ...ccevveeeeennns ceteees e ee. 2-14
2.5.8 Nested Macros e e s e s s es s eassessessesecsessas e 2-14
2.6 Datapool + v ittt et eciasnensas N te e et s essensenen 2-16
2.7 Global Common v v vt neeesneeons et ees s sesa s ceene 2-16
3 - MACRO ASSEMBLER LANGUAGE
3.1 Introduction.....ceeee. ceseenesen senvsecssecnersecs cecessces 3-1
3.2 Source Statement Format . ..o oo eencens cseec s ceessesesss 3-1
3.2.1 Label Field .v.vevevennns cees s sesesencasan ceeeees 3-1
3.2.2 Operation Field e se e e esescs s esanns cees 3-1
3.2.3 OperandFieldcitiiiiiiiinnnenas ceseeseennnn cees 3-1
3.2.4 Comment Field e eeen C e e sessess st snsns ee. 323
3.2.5 Sequence Field....... cessesstesaeansas cesseseesns ceee -3
3.2.6 Continuation Lines ceceesennnns evsvssrasnere ceees 3-3
3.2.7 Character Set ceeenn Ceecessesans seeevresessens cees -4
3.2.7.1 Escape CharaCter.c.eeeeeeesevosccccsccsssccss 3-4
3.3 Data Representation. .« v vvveeeieeeeeenennns ceevtreenn e)
3.3.1 SYMbOlS . s ettt s tieet et eteeesssescsnncennns cesseee 3-6
3.3.2 Literals oo e e vevevoncenns cees e ss s e O]
3.3.3 Constants « ... teesesecr et e s reesscnes s nes s oo 3-7
3.3.3.1 C-Character String. « e v e e vt eeeveeeeeecncens . N
3.3.3.2 G-Character Stringe e e s o e e 00 s o cessessseeessss 3-11
3.3.3.3 Hexadecimal Constant (X). s T
3.3.3.4 Fixed Point Decimal Word (N) v v v v v eeennnnnn ee. 3-13
3.3.3.5 Fixed Point Decimal Doubleword (F) cersecees 3-16
3.3.3.6 FloatingPoint cessescans cessesessss =18
3.3.3.7 Floating Point Decimal Word (BE) vevereeecnnnnsnas 3219
3.3.3.8 Floating Point Decimal Doubleword (R) ceeee 3-20
3.3.4 EXpressions «.eeeeeeeeen ceessessesssses s cvseon s . 3-21
3.3.4.1 Expression Evaluation . e e v e evveneessseeenons oo 3-22
3.3.4.2 Expression Types ceeee e enene ceeeeeee 3=22
3.4 Addressing Techniques « .+ oeve s ees et seenn cecesssennenn 3-24
3.4.1 Location COUNtEr ¢ v ot v evensoossnsosssscssossossses ceees 3-24
3.4.2 Self-Relative Addressmg ceseserresrnase 3-25
3.4.3 Symbolic Addressing e eeeeereceeececesseans ceeenes cees 3-26
3.4.4 Relative Addressing « e cveeeeeasssss cesens ceeseseene eos 3-27
3.4.5 Absolute Addressing B T T T I ey .. 3-27
3.4.6 Literal Addressing v o eveeeesesssosssssocasssssss ces e e 3-27
3.4.7 Blank Addressing «.cvvveeeeeeecnaess ceeecrssessssssses 3-28
3.4.8 Addressing Attributes .« ¢ v vt ettt e i en ches s e s 3-28
4 - DIRECTIVES
4.1 Introduction .. cveeeeeeessn. e O
4.2 ABS Directive «eeeveeenns e XY
4.3 AC Directive v oo v v v v eeen cesesas ceeseneen cesesssecncssssssess U-2
4.4 ANOP Directive e e v e v e v v cesessesenasece ceossessscee ceseseeaess b-4
4.5 BOUND Directive.oeeeeesssooeess ces s e ennes tesescncenssss U-4
MPX-32
Utilities xi

Section

® e o e o o o o o o o

J-\J-\b&bbbbb&kb?bbbbbb#bbbb#
AR NN RN RNN NN NN e et e et bt et = \0 O~ O\

ovoNOUVAEUWUNFOVONOANUVMEWNEFO

COMMON DIireCtiVe ¢ o e e s s o s e osesossscsossesssosscsassscssscssse ceeee 84-5
COMPUTED GOTO DIrective ¢ eeeeceesssseccsssscsscssssccscsess 4-7
CSECT DIrective vvveeeeoecessesosscscscseassscssossssssssssasess U=7
DATA DIrective e s o et eeeeeeessesssessscsscsossssssnsssssnssesss 4-8
DEF Directive v ceveeeceeeossessscsscsscncsscs ceeeescscsesess 4-10
DEFM Directive e e v« « « cesescans Ceese s eens cecesssessssssssss 4-10

DSECT DIir€CLIVE v v e s oo voeosessesssssssssssessesseassensssees O-11

END DIrecCtive e e e eeeeeeeeveoscsosscscssssssssosccssssscessees 4=11
ENDM Directive s e oeeeeeeeeseseossesessessscssscssscsscsscssses 4-12
ENDR Directive e « ¢ e et e e v v seveeosscossscssscascsosssscssnssess 4-12
EQU Directive cesecesretssssses e ceseenssesssseessess 4-13
EXITM Directive «coeeeeee c e e et eecess s asessse st e seeseseene 4-13
EXT DIirective ¢ e eeeeeeeeeseesesosscascsssssasssssssnsssssss 4-14
FORMDIreCtiVe e e e e s e oo eoessesosssssosssssssscsscssnsensssass U4-16
GEN Directive ¢ e e e oo 00 v ceseesesececsesscsseseseasseressscsss 4-19
GOTO DIrEeCtiVE ¢ o ¢ e s o e o oo o sseoossssscsescsscsesosscsssscsscsscses 4-20
IFA DIrective . e oo e ot e evveeesesoscssssosssssesosssssnsos ceesess 4-20
IFF Directive e v e ot v et eeesensesscsssssnscsssanscaose cececen o oee 4-21
IFP DIirective ¢ o ¢ e et oo s eeeeeooeoscsssssosssscssssocsossscseses U=22
IFT Directive e e e e e 0 o & et e e e s eceeeses s st s eeses s ros e es e e 4-22
LIST Directive ¢ e ¢ e e e e s c e e cseesesces s et eecssssesssscsseseaess U4-23
LPOOL Directive « e e e e et eveees cees st eeeseane s ceseeseseseess 4-24
ORG Directive e e e e oo e eveecsscecoess ceeertes e cesesscne eeees 4-25
PAGE Directive ¢ e e et e o veevsesecsns e e e es s e s esene s s es e e 4-25
PROGRAMDITECEIVE ¢ttt eeeveeroestseasssccscnscaceas ceeceess 4-26
REL Directive ¢coco.. ceeeennn ceestsess e s e nae ceseenssesseeces U-26
REPT DITeCtiVe ¢ oo veeeteeseescocesssossossssssosccosnssnsssssess 84-27
RESDIrective ¢oeeeeeeeeeoecsosescsosossoscscsosssnncss ceeeess 4-28
REZ Directive v veceeeeecececes cesesesceces ceees e e ceces oo 4-30
SET Directive «.eeeeeeeeececcoososces ceceeeens ceceons ceeeseees U4-32
SETF DIireCtive «eeeeeeeeeeesossescsoscsossossssssscssssssnsssees 4-32
SETT Directive ¢ cceeeeen cees st esseses e e cesescessvsscesseses U4-32
SPACE DireCtiVe v o eveeeeeeecsscececsscsssssssccsses ceseseenes 4-33
TITLE Directive e e e e e e s 0000 e ceeces st esseseesanns cesesscsane 4-33

5 - ERRORS AND ABORTS

5.1
5.2
5.3

ErrOr COGBS ¢ ¢ v v e et evvesosoeesosacssssonsssesscsssnscssass ceees D=1
Abort Codes. e eveeeeeeesoreacsencncanns ceeens cecescaccanca e 5-3
ErrOr MESSAgES. ¢ v v s s o s s sssssessssssssosssssscsssssssscssascsce D=6

6 - OUTPUT AND EXAMPLES

.
ANV EWN -~

AN

xii

Introduction.....ccveveeee... e e eesesesesessaessasscanssanese 6-1
Source Listing « oo eeeereeessonocensossssasscssanssncnses oo 6-1
Symbol Cross-Referencevoveeeietieteteeterecseesonsneceesss 6-4
Error Diagnostics ¢« e e e e e e v vesenssocencnns cesesessesssssssecsss 6-7
Object OULPUL 4 vt eveesssessanssosssssssssesssssssscssessses 6=7
Macro Assembler Programming Examples. . e v e e 0o v e s N

MPX-32
Utilities

i

.

C

APPENDICES

Instruction Formatst i it eeeetnonecsosconeaes et s e secene e
Extended Mnemonic Codes « e v vt eeveeeens C e et s et e st eees e anne .
Compressed Source Format .,cc0vne cecsecsesccsnnsennns ceeeen
ASCII Code Set v v v v e erecenoansns ce e e

onwr

FIGURES

Macro Assembler Flow of Operation ceeesens ceteseasssees e
Assembler CodingFormvveeeeeensnnn ceeecsscesccccas e ceene
Floating Point Data Formats..... Cheessasnenas ceeeessenessenenn

Sample Assembler Listed Outputo ... crecnvrccscscassasnnoa .
Sample Symbol Cross-Reference ... vovvieieieinnneeeecens
Pass One Error List Ceseesssecaasenns ceeeessennn

1

N R A RN
W N

TABLES

1 Macro Assembler LFC SUMMArY v o e eeesssosssccssonessascsnssns
1 ASCII Control Characters
2 Addition Operations Ccceeccssesesrsessrrsaresssencens e
-3 Subtraction Operation.......... ceseeane Ceeeseeeseneacaeans
4 Multiplication/Division Operations. s o esocececeeescesssossssassons
5 Operand Code Format..... e ectes et teseaenn e

MACRO LIBRARY EDITOR (MACLIBR)

Section

1 - OVERVIEW

1.1 General Description ¢ oo e vttt ei et eeteeesssssosossssscsssscsss
1.2 Directive Summary........

2 - USAGE

AccessingMACLIBR . et ittt tnttsseeososesssocssssassscnccss
Logical File Code Assignments . .c.veeeseescscsccsoncssssss

2. .
2 .
2.2.1 Macro Library (MAC) ® & 5 & 5 & 5 0 & 0 % 0 0 0 " 0 S 20 s 0 e s s e e o

N -

.

2.2.2 Macro Input File (SD v .o v v v e, Ceteeesteseatrresnnan
2.2.3 Directives (DIR) v v vt vt eeeesevsecoscscacsncnsns
2.2.4 Listed OUtpUt (LO) ¢t v it vttt ivteencemecsssesssansssnsoss
2,2.5 LFCSUMMAry vueeeeoececnnss
2.3 OpLioNS o vt tetereteeteeeeceosososcsssccccccosossossssasoncnnsss
2.4 MACLIBR Listings .. .ccvevnin oo ceececsssesssssensese cesses
2.5 Exiting MACLIBR. ..t c e vt e s v ens s ecesescesssssesessssenessancs

3 - DIRECTIVES

3.1 Introduction....... T, ceeseccsecsnne
3.2 /APPEND Directive «veeeeeeens e
3.3 JOREATE DIreCtive ¢ v v et eeeeeeeeesseesscooocsasesecascnnsns ..
3.4 JOELETE Directive vveeeeeeees
3.5 /DISPLAY Directive v v v v v v v e et e e s eseces s e s e s e e ees s et sece e e

MPX-32
Utilities

NNN!\?(?’I'\’NNNN
S EEFWAWNNF -

\:J\.AYJVIVJ
NINN -

xiii

Section

JEND DiTeCtiVe o v oo v voeeeooeocososncessecsnscscsonsasossanesss 3-2
JEXIT DIrBCLIVE v o v o oo vvoeeoceeoocssenssssosssoesossossaseacses 3=3
JINSERT DITeCtIVE v ot v v o veeeeeeesonseeossesscssosssescsnssses 33
JLOG DITCtIVE « o v oot voeeeeeeeessoseesseesssocsssessnonssses 33
IMACLIST DIreCtiVe . ¢ v v et v e eeeeveseesesseacsaonssanoscecnsans 34
JREPLACE DIiTeCtiVe oo oo veveceessosseccscsncssccsssscnscscssces 3=U

4 - ERRORS AND ABORTS

AbO[‘tCOdeS....’.-..-o-..-......-.-.-...-..................4-1
Error Messages. e o e v v eeeeencencnes Oy 23 |
Information Messages o« e et vt et et ssssoscosscscssssnsoncsss 4-2

S-EXAMPLESo'oonooo.oco-n.cc.coon.-.o.onooooo.oooo.o.oon.ooo.- S-l

2-1

TABLES

MACLIBRLFCSummary ...llIl...........l.........ll.l.....’2-3

MEDIA CONVERSION (MEDIA)

1 - OVERVIEW

1.1
1.2

General Description v v cveee ettt oeecsosssssssssssssosnncsssns .
Directive SUMMArY.eoeeteeeetsessnecsenesssssssocssonssssssss .

e

2 - USAGE

2.1
2.2

3

L] - . . u .N

REC RV RV EVEVEVEVEVEVEVEV RS
VO NON VNS WN -

Xiv

AccessingMEDIA i ii it ceecessesesssetessstcaases
Logical File Code AsSigNMeNnts «.evovesessssosescsosssssssssansess
2.2.1 Source INpUEt (¥IN) . v v v v v e e neeonsossssscsensosscsannns
2.2.2 Listed Output (¥*OT) 4 e v cvsonssonsosessssssscnsesesossss
2,23 Input Files e e evveveeennns

2,2.4 Output Files. . v eeveeenens
2.2.5 LFCSummary «eeeeseeess
ExitingMEDIA ¢ i s it iveveeasnenes

9 6 6 60 000 2 06 000 060 0063 000000080

3 © 8 066 9 065 600 00 08000 0 0 0 e s 0 00

© © o 6 06 0 02 060 00 00 00600000 000000

NNNI'\)NNNN
WWNNN B

® & 8 0 06 00 0 0606 50 600 035 06006000600 00

- DIRECTIVES

Introduction e eeeeeeeeecesssoconns .
BACKFILE DireCtive ¢ oo eeeeeceeosssssssscssssssssssssssanssas
BACKREC DIireCtive e eeeeeeveeessecsscssssscsssscssosscasscnsss .
BUFFER DIrective v e e o v oo e e vevossssossssessscsssosssccsssscscsses
CONVERT DireCtive s s et o e o s s cvsssossescsossssscssssssasacnssss
COPY DireCtiVe s e e e e s s e vestoessssessssssssssssssssssscssanss
DUMP Directive . e oo eeeeeersessescsososssssssssoscssasscssssssscas
END DITeCtiVe ¢ oo v evsvseoessosssssassesssssasssassssssssssassas
EXITDirective s e oeeeeeecocsesecsecs s e ctececceseaenns
GOTODIreCctiVe ¢ o v st et e et esoeescsssssssssossssssssssasssssasns
INCRDITECEIVE 4o vveeveoeesvessessosssssssasesosssossosncscssss
MESSAGE Directive ¢« e e v s et e sscesvocssosscsoncssasonss
MOVE Directive « e e e o v oeoeesssssssscscscs cesssesscscecceeanne

VWUV UVNELELEWHWWNNN R -

MPX-32
Utilities

Section
314 OPTION DITECIVE v vttt vt eennvonnsnnnsonns Ceseeteaseseseeseean 3-6
3.15 READDirective ¢ v v v vvvennns Ceese s eeeanenn cetteeanaaas cseses 3-8
3.6 REWIND Directive v e v veveeeeosssnosnssnensssas s]
3.17 SETCDirective vveeeeessecesonnesss ce e ceecsesasasssssssnss 3-8
3.18 SKIPFILE Directive v v vvieeeeeeetesoenecennns creeseaen cesseee 3-9
3,19 SKIPREC Directive «eeeeeeseseosesoncassa Gt et sessesescstseesns 3-9
3.20 VERIFY Directive «veevieeeeesonases et ecseesecerenes a0 3-9
3.21 WEOF Directive .. v veeeenss ceeesessens cececesseacas s cesees 3-10
3.22 WRITE Directive cee e c ettt et etes e st eessen s aesesnaa 3-10
4 - ERRORS AND ABORTS
4.1 Error Codes ¢ v e v v evennvnnenconss ceceeen cee e e ceeos e .. 4-1
4.2 AbOrt CodesS. s v evvveerossseascnsacnsasans ceeenn ceseesesessses U-2
S-EXAMPLES.......ciieeeen cheeeeaan ceeees ceeses S 2 |
TABLES
2-1 MEDIA LFC SUMMAary...eeeeees cevseerseasanssecnse ceesesssensse 2-3
3-1 MEDIA Options «eceeeeeeeensssens ceeseseseanee ceeresseseeens 3-7
SOURCE UPDATE (UPDATE)
1 - OVERVIEW
1.1 General Description . ..o cvveeeeeess e ssscasascssorncass ceseses 1-1
1.2 Directive SUMMAry...ooeeeeoseossses cesseven s s 3 |
2 - USAGE
2.1 Accessing UPDATE ceeseesessassessssann ceseeesens ces 2-1
2.2 Logical File Code Assignments . .eoeeneeecees sesses Ceeseencoeanann 2-1
2.2.1 Directive Input (SYC) v v v v vvvnvnnnen Che ettt ceseeeeeeannes 2-2
2.2.2 Input Files (SI1,S12,and SI3) v e vt vt v eeneencncennnnns cees 2-2
2.2.3 Output File (SO) v e ceseeaae e teceeeees ceeeees 222
2.2.4 Work File (UTY) et vt v e e v nnenne Gt eeeeesceeseseeesaennnns 2-3
2.2.5 Output Image Listing (LO) s e v v v et vetnrecesononnnns ceeeees 223
2.2.6 LFCSUMMAErY «eoeeeeesccnnsoocsoss ceecsesseesseascenons 2-4
2.3 Options + v eeveeerenneeennnans cosvsassa s cesessessssansssssss 274
2.4 Compressed Source Format e« v e v s v v o eeesens cressessea e ceseees 25
2.5 Library Source Format .. .eeeevesens D sesessasenss e ceeees 2-6
2.6 ExitingUPDATE ...ttt eeceesnnnnnns cheease e ceseceenn ceeeses 2-6
3 - DIRECTIVES
3.1 Introduction .. ccoviieineniereenssoeasosnasosncasncsss ceesees 5-1
3.2 JADD Dir€CLiVE v e v vt v st eensosssnoceenssenscannaancnnssns ceeeen 3-1
3.3 J/AS1 Directive « v v e vveenen. et et ee et ceeesees 3-2
3.4 /AS} DiI‘eCtiVB ----------------- o e o o o o e o 0 0 0 0 0 0 ® e o 0 0 0 00 0 0 0 0 0 0 0 3"’2
3.5 /BKSP Directive..ceeeeeeeenns et ceaeee e 2 4
3.6 [BLKDIirective «eeeeveroeenens C et seere et eesans P 2
MPX-32

Utilities XV

Section

D) o o

))

e o o o o e o

NN RNNNRN e b et = bt = = \0 00~

VMEWNFOOVONONUVMEWNEFO

JCOMDITECEIVE v et ovvveeeooacoccennns et
JCOPY DireCtiVe v e v eeeeeeeceoosoasoceaneess Cheecereer e
JOELETE DireCtiVe oo eeeeeeeeooscsceesscceoosossscscsncsssss
J/END Directive C e e e e e ccesecettencsneeeeaseonns
JEXIT Directive « oo e eveees et eete st eeeeeseenecesasasesn e
JINSERT Directive v o oo e evvvonnons Ceecoseesascensseees

JLIST DIirective v v eeeeeeeccecoecocoes e et eeeenesseenene

IMOUNT DirectiVe « o e e vt veveeeoeesoconcnnes ceceeeees
/NBL Directive v.eeeeeeeens et eeseseeceeeeneneeeecanseene
/NOLIST Directive « e et e e e cccsectercetsenecnasnans
/NOSEQN Directive «vveeeeeeeeees e ceeeseeneenn cececensnens
/REPLACE Directive «veveveveeoeens S,
/REWIND Directive «.ceeeeeeees et e et s e eeseeccenennnneneenn
JSCAN Directive v.eeeeeo. et et eecceeeseseenneesananncs
JSELECT Directive.eeeeeeen. i e tec e ecteenesen e neenn .

/SEQUENCE Directive «....

JSIKIP DITECEIVE v e oo o oo eeeeeeesessasescosonsosssses
JUSR Directive «.coeeee. et e s s s e e e eeeneseeeeeeesans
/WEOF Directive «..... C et e ecectreaeeeescnensssenesonoaenn

4 - ERRORS AND ABORTS

2-1

XVi

Abort Codes. . eeeeeeeenn ceseccsecne Ceceeccsasaccncns
Error Messages. « « « « « o« e e e s et e eesseeassesessecnssenn

FIGURES

Compressed Record Card Format ceceenns sseassecces
Library Formatcceeeeeeeeocececcennnne cesceesesnne
Header Record Format v v v v e ettt tetteeeeeeacsscecssocnnncans
End-of-Library File Record . . e v e et eevesssoocscssassssscassses

TABLES

UPDATE LFC SUMMArY oo eesosssoscessssssasssssosssscsccanscs

\NW\N\N\N\N\A\N\N\[A\N\A\N\A\M\N\N\N\N
VNV OoONNNNINONONDONV P PP WW

eee 25
«oo 2-7
... 2-8
.e. 2-8

MPX-32
Utilities

A

(

s

SUBROUTINE LIBRARY EDITOR (LIBED)

Section
1 - OVERVIEW

1 General Description . .cvvviieeveenen.
.2 Directive SUMMAry . oo e et eeseeeeesocsossossocsssnssssns

2 - USAGE

2.1 AccessingLIBED cesccses v cesvecsanseces .
2.2 Logical File Code Assignmentscceeees tececestseestscecen e

2.2.1 Control Directives (CTL) viveveneeeennsens ceeeseeanee cen
Directory (DIR) v ev e evenennenns ceersceaseeans ceeeaae
Library General Output (LGO)....... ceeenne Ceceessseaeenas
Library (LIB) Ceeeeee et eeseeseseeesesannens oo
Listed Output (LLO) Ceteetsieeas e ennas
Internal LFCs. v vveveennnnss cecrcssresssrece ceeeneeen .

MU NI SR

NN RN NN

NN NNNN

2. LFC Summary «....... ceseessesenasnnn
2.3 Options e vveeeeeeeeeeennnnns ceoees ceeestetsetetsncennn

2.4 Directory FileFormatccciiieeeeeens ceecessssessanns
2.5 ExitingLIBED cese e cheseeseeenenn

3 - DIRECTIVES
.1 DELETE Directive ¢« v e e vceeeeeeee c e e e e s e s s essces et st s s s es e e s

3

3.2 EXIT DIirective s e e o e e e o e seeesssovsssccscsssssssss cesecesene .o

3.3 LOGDirective « v e et eeveeesesoas et e e e e e s e es s e acane e cecee s o
ERRORS AND ABORTS

4 -
4.1 ADOrt Codes. e e vt eveeeereeensesesssscscscsossosscsossssscscsscss
4.2 Error Messages. . cceeeeesoosssosssss cececrecscsessssssssessene

5S-EXAMPLES........... O T T T

TABLES

2"1 LIBEDLFCSUIT\maI‘y ® © 0 6 0 0 0 00 0 0 00 00 00 0000000 O G0 L0000 o0

MPX-32
Utilities

]
VMUV EWWUWNNEE -

ll\)NNI\JNNII\)NNMNN

W
=

xvii

SYMBOLIC DEBUGGER (SYMDB)

1--OVERVIEW
1.1 General Description ¢ e ot et veteeeeeeceoccccnns B . 1-1
1.2 Local and Global Symbols Cee et esreaes s nnn ceeenenn 1-1
1.3 Accessing Program Symbols Y B4
1.4 Summary of SYMDB Capabilities . e v e e vt et e i ieneeteeeeeeneenns eese 13
1.5 Directive SUMMAry .. e oo eeeeecveeaoes ceeceseenn O B
2--USAGE
2.1 AccessingSYMDB ...ttt ittt ettt tsatcnsannes ceees e . 2-1
2.1.1 Accessing SYMDB in TSM ¢ vttt v eeeennennoseess seseeesenss 2-1
2.1.2 Accessing SYMDB via the Batch Stream et ereeteseanaaan 2-1
2.2 UsingM.DEBUG . .ttt et v iieeereeeeertsoecennns e ceeeaseeenaaan 2-3
2.3 Logical File Code Assignments «.veeeeeseeeecoonecss ceeeeeeens 2-3
2.3.1 Source Input (#IN and #03) et eeseaseeseeaans ceeenn 2-4
2.3.2 Listed Output (FOT) ¢« e v e vvveeennnsns cecessesees 2-4
2.3.3 Temporary LogFile (#01) v v v e ev e vnncnncnnnns ceeeesaeas 2-4
2.3.4 Log Output (#02) et eeeeeaeen Ceeeees Ceeteeeaas 2-5
2.3.5 Symbol Table (FSM) vt eiiieeneneneoneonssossonsnsnnns 2-5
2.3.6 LFCSUMMAErY ¢ eeeereneneeooneoonsens ceeectenenn ceeeee 2-6
2.4 Exiting SYMDB 1ttt ittt teeteeeescnnoecoanncncns ceeteenn 2-6
2.5 Attaching SYMDB toaUser Task +...... ceeeeeeseenn ceeeescnnnnss 2-7
2.6 Input/OUtput .. vvvreeneenennconnns ettt eseac s ceeesess 229
2.6.1 Terminal I/O v vevenenennennns Che et e et et 2-9
2.6.2 Command Files et eceet e creeeans ceeeeneens 2-10
2.7 Control Transfers.. e ceve vttt eeeneeeenns ceeecessesessessses 2-10
2.8 Break Handling. ceeevereccessesessesanenasens cesescenssns 2-11
2.9 Setting the Default for Symbolic References e ceeesestaaanaenone 2-12
2,10 ProgramExecution.....ceeietereetcosccscccccnseccnncns cecennn . 2-13
2.11 TrapsandTrapLists..... c e secessses s e s ecesaaaneens 2-13
212 Nested Traps v e cveveeeeenecceonens cecene ceeeeenn ceeeeene eeo 2-15
2.13 Examining Memory and Registersceeeeeeeeeccenens ceeeees 2-15
2.14 ModifyingMemory and Registers......ceeeeeeeececcccescees ceess 2-16
2,15 Selecting the Input Radix «..cceeeeesen cee ettt ctccsasssene e 2-17
2.16 EstablishingUser Bases. ... cveeeeeeeereeesseensoscocconosssseess 2-17
2.17 Selecting Relative or Absolute Addressing « . cccveeeeeneeeeceneneess 2-17
2.18 SelectinglLog/No LogFile.eeseeeeeeoeeneosenensssenssssnsonnss 2-17
2,19 SelectinglLabel FieldFormat ...eeeeeeeesssassscsccccossnas .o 2-17
2.20 Selecting Extended Memory ACCESS ¢ « s e e e oo sssossesossccsses . 2-18
2.21 SYMDB Directive EXpressions « e« e e cevvvesoecececsccsssocsccses 2-18
’ 2.21.1 Arithmetic EXpressions . ceeseeeescecscssccssssssssassss 2-19
2.21.2 Logical EXpressions «..eeeeecececeecsccnoccnns ceeeee 2-19
2.21.3 Relational EXpressions s e seseeeeecssecesscssocsssssesess 2-20
2,22 Terms used in SYMDB EXPressionS .« cceeeseeesccssssscsssssssssss 2-20
2221 INtBQErS . e o e eeesssnsssonsssssossssssssnasnan 2-20
2.22.2 Constants .eceeeeesencns Ceeecesteeesstesssnsssneesass 2-21
2.22.3 Register and Memory Contents .« cceesecoveccsossccsosees 2-22
2,22 BBSES. s s e eets ettt sstesss st sss st s st esasecsesennes 2-22
2,225 SymbolS..eeeeeececans Ceessessssessesssssasasasesss 2-24
2226 COUNT tvveeeeeecessssseensoscsssssssssssssassenssss 2=25
2227 Period (1) et v e et ie it tstscacesscsssssascsenonensese 2-25
MPX-32
xviii Utilities

(2

(’\

L%

)

Section
3--DIRECTIVES
1 Using SYMDB Directives........ Che ettt
.2 A (Address) Directive « v v vveennens e eieeae s
S ABSOLUTE Directive v v e v e vt v vt v eeeans ceesecace
4 B(Binary) Directive v v e veneeeneseeecenanneees
.5 BASE Directive v vviiite ittt enennnnnns oo
.6 BREAK Directive e v v vt ettt vnen e teeresancens
-7 CC (Condition Code) Dlrectlve
CLEARDIirective s« v v vttt veinnennoens ceseson
CM (Change Memory) Directive.vceeeeceosescens .
. CR (Change Register) Directive «...eeu.. et
DA (Display ASCII) Directive veeeveeessosscosens
. DD (Display Double Precision) Directive ceee
. DELETE Directive «vvvvveeeeenan
. DETACH Directive...cceeeeeeeenns ceesecsescnn
. DF (Display Floating Point) Dlrectlve ceen
. DI (Display Instruction) Directive «.viveveceoencns
. DN (Display Numeric) Directive «.voeeeeesoceesss

DNB (Display Numeric Byte) Directive..vceeeeo.. ..
DNH (Display Numeric Halfword) Directive + .4 vvues

e e o o ° e L) . .
oooooo
. . e e 0o 0 00 00 00 00
oooooooo L) . .
® 6 o o0 0 00 0 0 o0 . .
----------- . . .

e e 0 0 00000000 00 00

e e o0 0 0 0 ® o o 0 0 0 0 0
e e o 0 0 0 o LY LY .
o o o . DI} o o o o
s o 0 e o o o . e o 0
--------- L) L)
o e o o e . .

e e 0o 0 0 0 00 L) .
® 0o e 0 00 LY LY
@ o 00 00 00 00 s o 0
@ e 00 00 00 000 0 00

8

9

10

11

12

13

14

15

16

17

18

19

.20 DNW (Display Numeric Word) Directive o v v e veveeeesnss Ceetereeneaen
.21 DUMP Directiveeeeeeeeees c e essesessssessssen e
.22 E (Single Precision Floating Point) Directive «.eeveeeeevesessnscecns
23 ENDDIrective v v veeeeeeeees cteeesec s e s ressesassessaseasnan s
28 EXIT DireCtive .o s e eeeseesoesoeoseossssssossscsoscsscsoscsscsescass
.25 FILE Directive e e e e e e v 0 v ceeenen s ce s eesseeeserennes
26 FORMAT Directive v vevveteetocecesnsons ceecsensnns
27 GO DIrective oo vttt eeseesossessssossssssssscsossessesscsscses
28 IF DIrECIVE e v vt vt e et teneenoeoanooesoesennsnnsns Ceereeaenn
.29 LIST Directive e v v cteesesseeecnsnnens
S0 LOGDIirective e v eeeeeeecsoscoccese
31 MODE Directive. s o eeeeeseeesceesens
.32 MSG (Message) Directive «ovvu... cheseeeas .
33 NNUMEric) DITEClIVE v v vt e eeeseeesesosseeeneeosonsoscsaceoaoceess
34 PGM (Program) DireCtive v o vveeveesoosecssssssssssnsosnsss
.35 RELATIVE Directive ceets et s e eseanns cecesesescennan
36 REVIEWDirective ¢ cecoeeeeens
37 RUNDirective .o v veeeeese cecectessesesesennen
38 SET DITective voeeeeeeeeseesocccscscnscneos csesseean
39 SHOW Directive e e e e e e e e e venne Gt e e e ces e s esessesesssessnsne .
40 SNAP Directive ¢ v vt e eveveeeees ceeseeese ces o
A1 STATUS Directive v v et v e e v eeeseoncens ce e st ee et eses s et sesee s
L2 STEP Directive vvovveeeeeeeeeosocsoscssocsnes .o .
43 TIME Directive oo v e veveeeeeeen ceeeensaes ceeecccecsene et ne
A4 TRACE Directive ¢ o v o ettt et eteesecscsessssoscccccas .
A5 TRACKDIrective e e e v e e eeeeneeeceeee . cesen .o
L6 WATCHDITECHIVE ¢t vttt e et eeoseososcosossccacnocenss ceeceean
47 X (Hexadecimal) Dlrectwe e eeeeseeasseeseeeneens
MPX-32

Utilities

L L)

\'N\JJ\N\N\N\(J\N\N\N\A
WWNNFFFFOVWVVONAANUVWUVMWWNN -

Xix

Section

4--FRRORS AND ABORTS

J-\PJ-\&.J-\-‘-\QPP
VOV WN -

SYMDB File Assignment Error Messages «.veeeecescescsscsscssssoss b
Addressing Error Messages . v eeeeeeeeesecssccosssssssssosscnassss b
Trap Error Messages e e oo v enveeeenceeesssconscssosscscnsanceses b
Directive Expression Error Messages v oo oo veesevesssssosccconses oo b
Base Error MessagesS e e e o v oeveooososossssssssssssssssssssssess O-
Directive File Error Messages « o e e e e v e vssnovsonsssssesssscccnees b
Directive Argument Error Messages. « « s s s oo e evesssossssssssonssss b
Other Error Messages « o e s s s e e 0000 s o .
Abort Codes. v eeeetesseneeenssenccscscnssns cressssnsnsss «o. 4-10

5--SAMPLE DEBUGGING SESSIONS

5.1
5.2

5.3

2-1

N
(S

Debugging Session Introduction . ..o c v i ettt ii ittt ssssnseceasss 5-1
Example 1: ScanningDatainaProgramLoop «¢ceeeeeeosceosnssnss oo D=1
5.2.1 Sample Program--DBGTST .. .cceveeeeeracsssesccoconnsssas D=2
5.2.2 Sample Debugging Sessions for Program DBGTST ¢ . ceveveeeesss 5-3
Example 2: Searching Through alinkedList «..cvveteeeeeeenenenaees 56
5.3.1 Sample Program--DBGTST2 e
5.3.2 Sample Debugging Session for Program DBGTST2 o v e v v e e eeeeess -8

FIGURES

SYMDB Memory Map . eeeeeeeeeesoesossssosossssasssssnssscssss 2-8

TABLES

SYMDBLchummaI‘y.........-.-.......................o---. 2‘6
SYMDB PromptsandlLabels0c0tctieneceseessssscssssceess 2-10
Instructions that Break @ TraCe v« e v e e s e v e veoveccoccesssssscscsess 3-28

TEXT EDITOR

1 - OVERVIEW

1.1

1.2

General Description ¢ e e covseneeeossssssossssssscsssasssssscss 1-1
10101 AccessingFiles ® & & & 0 ¢ 2 0 0 0 S O 0 B S OO O S S T S O S S OO SO PO S 0 1-1
Directive SUMMAary ... eeceseeseceesocessosssssssssscsssssssssss 1-2

2 - USAGE

N -

2.
2.

XX

AccessingEDIT ...t ietereeeeseeeosssseossonsssossscnssssasss 2-1
Logical File Code Assignments s .v.eveeeeeoccscssssscccososssssssss 2-1
2.2.1 Source INPUL (TIN) 4t it eneevnseconsonscossocasscsnsans 2-1
2,2.2 Output File (TOT) e e serveosessnsosncsosassncsssesnoses 2-2
Exiting EDIT 4ottt iiiteneeieeeesssocesssssssosssnsnscsnnnsses 2-2
Linesand LineNumbersccieeeeereecssescscosssocesssnsssss 2-2
2.4.1 Line Numbers Generated by the Editors . e v evsseeeecsceaeses 2-3

MPX-32
Utilities

C

Section

2.4.2 Line Numbers at the Beginning and End of the

WorkFile «vvvievinenn Ceeeaee ce et eeseann ceceseeness 2-3
2.4.3 Physical Position of Line Numbers .« v e e et et eevvoesonssanns . 2-3
2.4.4 Text Listed without LineNumbers............. checeeseeas .o 2-4
2.5 Addressing Techniques .. .ceveteveeececananns ceeensen ceeeees 2-4
2.5.1 Special Characters « e e et v vt veeneesons ceeeses e saenanns 2-4
2.5.2 Line and Range Addressing <.« c4 . e ecesecass s cesees 2-4
2.5.3 GrOoUPS. s e oeeeessosasossssasans cececsesnsoan cesenoes . 2-5
2.5.4 Content Identifierse . e oo oo .. ce et e es e ceeescesssesas 25
2.5.5 Defaults . vveeeeeeeeaens Ceeeresesseenans Cheesecsens .. 2-6
2.6 Using the Break Key . e v e v e v e v v e enn et eeessesssenssasasans cee. 2-6
3 - DIRECTIVES
3.1 Introduction..... Ceececsseseeststse st e nans cecesesssesaaens . 3-1
3.2 APPEND Directive ¢ v e e ¢ 0 0 v e ceeeseses cheeee ceeean ceeceeenns 3-1
3.3 BATCH or RUN Directives ¢« e e eceeeeeeeeses ceeeseene Ceceees s e 3-2
3.4 CHANGE Directive «...... cheesee e ceeseeaes cetesssscssernens 3-3
3.5 CLEAR Directive v e e e et v e eevenees Ch et seeseeesassesnne ceesenes -4
3.6 COLLECTDIirective e« e e et eeeeeecscacnsossos cereseasens ceesees 35
3.7 COMMAND Directive « e e v e e 00 eewne .o ceeeeenns cetecessenean 3-6
3.8 COPY Directive . v e e v ceeann crececcas ceeseeceeens ceeersececas 3-7
3.9 DELETE Directive ¢ v eeeeeeeeoees ceesens T 1%
3.10 EXIT Directive..eeeeeeeeeecossanes ceereenns ceceses e ceesssaes 3-9
3.11 INSERT Directiveeeeeeveeeeeas Gt e e ee st s s esesesestseseens s .o 3-9
3.12 LIST Directive ¢t v e eeeeeeenes ceeanes c e e e e es s esseeressee e 3-10
3.13 MODIFY Directive « ¢ e e v e e v e ceee st ereeseenene ceeeean . ee. 3-11
3.1 MOVE Directive e s e e v et evsoceocsacconcens cesesescscenno e ees 3-12
3.15 NUMBERDIrective o eeeececeeoscccesscsss S 2 5
3.16 PREFACE Directive e« e e e e 0o 00 e cesescsseesnnen et escess et anen e 3-14
3.17 PRINT Directive «¢eeeeecececcecse cessessenes ceene creseeses 3-14
3.18 PUNCHDIrective e v e eeeeeeeeceese chesescanne ceecteseon e 3-15
3.19 REPLACE Directive e v eeeeeeeeen c et eses s e es e e esess s ns oo 3-15
3.20 RUNDirective e e e eveeeeees ceessesecanns c e et ssesessesres e n e 3-15
3.21 SAVEDirective . eceeeeeeeeses cessesenae e O R 1)
3.22 SCRATCHDirective.eeeceeeeeesen cesesess e . ¥
3.23 SETDELTA Directive..eeeeveeeeeons ceeeseeeenanas ceeseenean . 3-17
3.2 SET TABS Directive v v e v vt vt eeeeoecensoscsosocccccses ceeaseess 3-18
3.25 SET VERIFICATION Directive..... cee e ceeeneenn ceeceeceasens 3-20
3.26 SHOW Directive e v o vt v e eessveecccccnsccccscnss . ceeseanses 3-21
3,27 STORE Directive ¢ v eveeeeeeeccoseos s A
3,28 USE Directive v ceeeeeeeses cese s escesessensaen ceeseseas ceeses =24
3.29 WORKFILE Directive «v.... C et e et e ee st et e e s esssses e ssenen 3-25
4 - ERRORS AND ABORTS
4.1 Abort Codes.e.... Gt e e ecsssses e e nen ceeennn ceeseescens .o 4-1
4.2 Error MessagesS. s e eeeessoseess N e P |
MPX-32
Utilities xxif/xxii

Q

»,

GOULD MPX-32 UTILITIES OVERVIEW

SECTION 1 - USING THE MPX-32 UTILITIES MANUAL

The Gould MPX-32 utility package is a collection of the following utilities:

Cataloger (CATALOG)
Datapool Editor (DATAPOOL)
File Manager (FILEMGR)

. Macro Assembler (ASSEMBLE)

. Macro Library Editor (MACLIBR)

. Media Conversion (MEDIA)
Source Update (UPDATE)

. Subroutine Library Editor (LIBED)
Symbolic Debugger (SYMDB)

. Text Editor (EDIT)

Because the utilities can be installed on a system individually, each utility description in
this manual can be used as a stand-alone manual. To tailor this manual to a particular
system, remove the descriptions of the utilities which are not installed on the system.

tach utility description begins with a tabbed page and generally has the following
format:
Overview
Usage
Directives
. Errors and Aborts

. Examples

The Overview section describes the utility's function and summarizes its directives.

The Usage section describes how to access, exit, and use the utility. Related
information, such as logical file code assignments and utility options, are also described
in this section.

The Directives section describes the function and syntax of each directive in alphabetical
order.

MPX-32 Overview :
Utilities Using the Manual 1-1

The Errors and Aborts section describes possible errors, aborts, and their messages.
Explanations of the error and abort code numbers are included.

The Examples section contains sample input and/or output illustrating the usage of the
utility.

Most utilities provide the capability to use previously created files for input sources
and/or output destinations. Valid characters for file names, directories, and other
referenced names are A-Z, 0-9, period, and underscore. Although other characters are
generally accepted, their use is not recommended.

If a complete pathname is specified, any valid file name can be used. If only a file name
is specified, the file name cannot begin with a period or a string of digits (0-9) followed
by a period.

For file names containing special characters, enclose the name in single quotes. Use this
feature only to gain access to files with names containing unrecommended characters.
After gaining access, save or store the file using a file name of recommended characters.

Files assigned to logical file codes (LFC's) will be forced to the appropriate format -
blocked or unblocked unless otherwise noted in the LF C description.

Input records to the utilities must be in 80-byte card image format.

When a utility is activated, a copyright statement is issued. If the utility is accessed in
the batch mode, the copyright is printed on the listed output. In the interactive mode,
the copyright is displayed on the user terminal. The copyright statement has the
following format:

MPX-32 UTILITIES RELEASE x.x (utility Rx.x.x)

(C) COPYRIGHT 1983, GOULD INC., COMPUTER SYSTEMS DIVISION, ALL RIGHTS RESERVED

RELEASE x.x is the release number of the MPX-32 Utilities and utility Rx.x.x is the
name of the specific utility and its internal version number.

Overview MPX-32
1-2 Using the Manual Utilities

L

SECTION 2 - DOCUMENTATION CONVENTIONS

Natation conventions used in directive syntax, messages, and examples throughout this
manual are described below.
lower case letters

In directive syntax, lower case letters identify a generic element that must be replaced
with a value. For example:

IACTIVATE taskname

means replace taskname with the name of a task. For example:
IACTIVATE DOCCONV

In messages, lower case letters identify a variable element. For example:
BREAK ON:taskname

means a break occurred on the specified task.

UPPER CASE LETTERS

In directive syntax, upper case letters specify a keyword must be entered as shown for
input, and are printed as shown in output. For example:

SAVE filename

means enter SAVE followed by the name of a file. For example:
SAVE DOCCONV

In messages, upper case letters specify status or information. For example:
taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT.

Braces | }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arqguments from the specified group. For example:

counter
startbyte

means enter the value for either counter or startbyte.

MPX-32 Overview
Utilities Documentation Conventions 2-1

Brackets []

An element inside brackets is optional. For example:
[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example:

[base name]
progname

means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example:

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be

used.

Commas between multiple brackets within an encompassing set of brackets are not
required unless subsequent elements are selected. For example:

M.DFCB fcb,lfc I:, [a], [b], [c]1, 1d], [e]]
could be coded as:
M.DFCB FCB12,IN
or
M.DF CB FCB12,IN,,ERRAD
or

M.DF CB FCB13,0UT,,ERRAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element can be repeated. For example:
name [,namel...

means one or more values separated by commas can be entered.

Overview MDX-32

2-2 Documentation Conventions Utilities

@

O

9

Vertical Ellipsis
The vertical ellipsis used in examples indicates that directives, parameters, or
instructions have been omitted. For example:

COLLECT 1

LIST

means one or more directives have been omitted between COLLECT and LIST.

Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example:

(value)

means enter the proper value enclosed in parentheses, i.e., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers, or characters that may
be used as an abbreviation. For example:

LIST filename

means spell out the directive LIST or abbreviate it to either LIS or L.

Bold

In examples, vall terminal input is printed in bold; terminal output is not. For éxample:
TSM > EDIT

means TSM > was written to the terminal and EDIT was typed by the user.

CNTRL Key

CNTRL indicates the terminal Control key. For example:
CNTRL I

means to simultaneously press the Control and I keys.

MPX-32 Overview
Utilities Documentation Conventions 2-3/2-4

Cataloger (CATALOG)

MPX-32 Utilities

N

CONTENTS
Section Page
1 - OVERVIEW
1.1 General Description « « v v eveeennn e B
1.2 Directive SUMMary coeeeeeeeecconseas ceseesencnn cesesnsass 1-1
2 - USAGE
2.1 Accessing CATALOG .. ¢ vttt neenennsnns teccenesvssecsssssnss 2-1
2.2 Logical File Code AsSSignments « ..o eeeeeeeececcccsasseecnoccnnsss 2-1
2.2.1 Source Input (SYC) .. vv .. Y
2.2.2 Object Modules from Compilation or
Assembly (SGO) . e vt e essesoeesssesossssesnssessssasssss 2-2
2.2.3 Object Modules from Subroutine Libraries
(LIS, LIB,and Lnn)e e e v oo e v C et s eceecetssesesennsenenees 2-2
2.2.4 Subroutine Library Directories
(LID,DIR, @and DNN) + ¢ e v st e esescessessosssssssassscnsas 2-3
2.2.5 DATAPOOL Variables Dictionary (DPD). c e v e eeeeeseans ceeee 2-4
2.2.6 DPOOL00-DPOOL99 Variables Dictionaries (P00-P99). .. .v v ve.. 2-4
2.2.7 System Listed Output (SLO) + v v v v vvensanesas cecessesesess 224
2.2.8 Symbol Table Output (SYM). ¢t vt vt e vnnnnss ceseesensasasaes 2-5
2.2.9 Symbol Table as Input (SYD .o vvvvennnnn. cesteseesescssases 2-5
2210 LFCSUMMArY o coeoeeseososssssssscsscsssossssssssssssss 2-6
2.3 Options + e vt veeennenens ceesessssecesscecssasssssssessssssssens 2-7
2.4 Exiting CATALOG ...ttt enesnses ceeeseses e cesessseccess 2-8
2.5 ObjectModulesandLoadModules................................2-8
2.5.1 LoadModules. ... eeieieeeeeeoseesoccseoncoscssssnas 2-9
2.5.2 Absolute Load Modules « v v e v ettt etsenccesscesssessass 2-9
2.6 The Cataloging Process. « « c e v et vttt eeeeeseeeeeessesoosonsssnas 2-9
2.6.1 Selective Retrieval ofObJectModules csseesceccscssssessss 2-10
2.6.2 Allocation and Use of Global Common and
Datapool Partitions . v « e v et v e veeeesn ceesectccncessss 2-10
2.6.3 Allocation of Local Commons .o e et ovsovvvsceoccosssassss 2-11
2.7 Load Module Informationceeeeeneeeeeceennoans ceersesenees 2-12
2.8 Resource Requirementsoeeeeeeene ciseene B 23
2.9 Sectioned and Nonsectioned Tasks « « s oo vttt vt veeenenees ceesasesss 2-14
2.10 Segmented and Nonsegmented Tasks . oo eeiteeeseeossssccocccnases 2-15
2,11 Overlay Load Modules. « c c e e e s s s sseseescssccnsssssssoscossnsssss 2-16

2.11.1 Single and Multiple Disc FileModes .« e e ettt vt iveevneeeeess 2-16
2.11.2 Overlaylevels..ocveeenn tecessseeccssnsassssesssssss 2-16
2.11.3 Modifying Overlay OriginS. « « « e e e v e v e e eeeevteneeseoeceess 2-18
2.11.4 The Overlay Transient ATEa . ccc et sevseesssccsoessssssss 2-20
2.12 Local Common Allocation and Global Symbol Resolution
inSegmented Tasks . .vvveeeereeenecenncensnns cesenvens eeee. 2-20
2.12.1 Local Common Allocationieeeetteteeeneeneconeseeass 2-21
2.12.2 Global Symbol Resolution « v vvveeet ettt enneeeeeeoonass 2-22
2.13 Cataloging a Segmented Task iNStages oo v ceevvoeesssccoocnosssees 2-23
2.13.1 Recataloging a Load Module ceeresecnnneneeeess 2-23
2.13.2 Limitations on Catalogingin Stages. .. .ceeeeeeveeccoceesess 2-24
2.14 Cataloginga Nonsegmented Task...oeoereeeeeeeeeeoosees ceeseenees 2-24

MPX-32 Cataloger (CATALOG)
Utilities Contents iii

Section

3 - DIRECTIVES

e o o o o o o 6 o © o e o o
NV OOV HES WN -

IEWEWECE R SR R OR OF SN Y C) SR VR n e I e I I I)
NEOVOARREPTUNHOOVUOAON NPT RN — O

wuuuuuuuuuuuuuuuyuuuuuuuuuuuwuuu

Introduction e v o ce e e eeeeeosseossossoscsccossossossscscssscsssosnss
Directive Order Requirements. s e s o e s o st s e e sveessssccssscosccscscs
ABSOLUTE DIireCtive « e o e e o e s oo e e sessesssssscsscsccsscssssscsss
ALLOCATE DIireCtiVe e e e e et e s oo sesocsesosscssscssssoscsssasssccss
ASSIGN DireCtiVe e e e o e e e e oo voevseososssscsssssssscsosssscscocsses
ASSIGNI Directive s c c e s e s vsssecessscsscssscscsssssssasscs
ASSIGN2Z DIireCtiVe ¢ o o e e st o s eesessssossscsossssssssosscsscscscss
ASSIGN3 DIreCtivVe ¢« o o e oo v ot v o oessscosascsoscsoscsossscscsosscsssscsnses
ASSIGNS DIireCtiVe ¢ o o ¢ o st e v v s essssssesescsssesssscsscnsnscesns
BUFFERS DIrective ¢ oo eeeeeeeeeccsscosocscsoscsscscsocscssesess
CATALOG and BUILD Directives o eceeeeo oo ceereres e ceeeecesens
CONNECT DIrective o« eeeeeecseescsscscscsssssscssssssssssssses =12
ENVIRONMENT Directive e e ceeeseeoscecscecsscessscscssssssasss 3-13
EXCLUDE Directive e e eceesescececcosccocscoscoscssns tecesesescss 3-14
EXIT Directive . s e e eeeeeseesessecsesssososcsssessesscscscnsees 3=14
EXTDMPX DIireCtive «eevoeeeeecseesesssscescsssssscssssssscscces =14
FILESDirective e e e e oo eveeeocenonces ceeescesssccenn cesecssnss 3=15
INCLUDE DIrective e e eeeeteeeeesseseccascsesssscsacsscssse ceese 3-16
LINKBACK Directive ¢ e s e e s o e s 0o o s T X Y
LMPATH DirectiVe . e v e st oo v eevesscsssesssssssscosssssssssaese .. 3-16
LLORIGIN Directive. e e oo o B, ceceseesens ceeeae ceees 3-17
MOUNT DIireCtive «eeeeeeessesoesscscassonas ceesereecececesss 3=17
OPTION Directive ¢ eeeeeceoeeees c e s e easesesssesssssesnssesss 3-18
ORIGIN Directivee e e e eveeeees c et eeecsesseenan c e e s eeseece e . 3-19
PASSWORD Directive. A B
PROGRAM Directive « e eeo e ceesecseeeseseesevee e cesecsses 3-19
PROGRAMX Directive ¢ e e e e e oo v eveeveess s T
RECATALOG DIrective «.eveeeeeeeoscccosocccscss ceesecssesseass =20
SEGFILES Directive o v e e e vt v eeveesesssoscsssssascsosssscsscsses 3=20
SPACE DIireCtivVe oo e e eeveveeesecscsscsssosssscssscssoocossssaes .e. 3-20
SYMTAB DIreCtiVe ¢« « e e e e e o s sesessecacssscsscsssossssssonsasses 3=21
VOLUMES DireCtive ¢« « s e s s e o s eeevsessssscsssssssssessasssscsse 3=21

\N\N\N\N\.N\N\N\A

Yy
bl el el 1
HOOVWVODNWNN - -

4 - ERRORS AND ABORTS

4.1

4‘2

Error OVEIrVIEW « vt ot e eevveeocanssscsssscssoscacsscsosssncsseees U=1
4.1.1 Phase ONE ETTOrS v e v oo e e vvseeseocsssscssossscssncessses O4-1
4.1.2 Phase TWOEITOrS e« e e eaaeevee e P4
4.1.3 Errors from MPX-32 (Phase One and TWO) e e e eeeeeeecceecsees 4-2
4.1.4 Conditions that Cause Incomplete Load Modules . « « e v e v s e a0 ees. 4-2
ABOrt COdES. vt s e evevesvecoesocssssossscsssssssssssoscsesss ees b4-4

5-EXAMPLESooo¢c..oooooc-oaoonn.ouo-t-ouot-o-ooooo-ooo-uvtooao 5‘1

iv

Cataloger (CATALOG) MPX-32
Contents Utilities

-~

S

)

FIGURES
2-1 CATALOG I/O OVEIVIEW e vt e st v e s e sosnososossssnsossssensnsnses 2-7
2-2 Single Overlay SETUCEUTE « ¢ v v v o vt i ettt eseeeoesoensosnossscnssesns 2-17
2-3 Multilevel Overlay Structure . v v ot o v it ettt ittt oeeseonns ee. 2-17
2-4 Default Memory Allocation for Overlays . ..o ev i it ei i ettt nnnnn 2-19
2-5 Modified Memory Allocation for Overlays ... coiie ettt 2-20
2-6 Recataloging Illustration. . .« v ottt ittt ittt enneosoeanens 2-25
TABLES
2-1 CATALOGLFC SUMMATY ¢ e e v st svsssocssssonssncssssssss covecss 2-6
3-1 LMPATH/BUILD/CATALOG Interaction e coe. 3-22
MPX-32 Cataloger (CATALOG)

Utilities Contents v/vi

CATALOGER (CATALOG)
SECTION 1 - OVERVIEW

1.1 General Description

The Cataloger (CATALOG) utility processes standard, nonbase mode object code to
produce load modules that are ready to activate in one of three task environments: real-
time, interactive, or batch.

A load module is created using job control language and CATALOG directives. The load
module resides in a permanent file specified in an LMPATH directive. If LMPATH is not
used, the file name is taken from the load module name on the first BUILD or CATALOG
directive.

CATALOG recognizes 1 to 16 character file names. Unless specified, files assigned to
logical file codes are forced to the appropriate format--blocked or unblocked.

1.2 Directive Summary

Below is a list of CATALOG directives in alphabetical order. Underlining indicates
accepted directive abbreviations. Each directive is explained in more detail in Section 3.

Directive Function

*(in Column 1) Indicates a comment line

ABSOLUTE Specifies an absolute origin for the task data section (DSECT)
in the task being cataloged

ALLOCATE Allocates additional memory for a main load module in the
task being cataloged

ASSIGN Equates system files, pathnames, RIDs, temporary files,
devices, and LFCs with an LFC in the task being cataloged

ASSIGN1 Equates a permanent disc file with an LFC in the task being

cataloged. This directive is for compatibility only; its use is
not recommended.

ASSIGN2 Equates system files SBO, SLO, SYC, or SGO with an LFC in
the task being cataloged. This directive is for compatibility
only; its use is not recommended.

ASSIGN3 Equates a device with an LFC in the task being cataloged.
Also assigns a temporary disc file. This directive is for
compatibility only; its use is not recommended.

ASSIGN4 Equates an LFC in the task being cataloged with an existing
LFC. This directive is for compatibility only; its use is not
recommended.

BUFFERS Establishes the number of blocking buffers required for

dynamic assignments in nonshared tasks. Establishes the total
number of blocking buffers required for shared tasks.

BUILD Identifies and describes a load module to be cataloged in the
current working directory or in the pathname of a previous
LMPATH directive

MPX-32 Cataloger (CATALOG)
Utilities Overview 1-1

Directive
CATALOG
CONNECT
ENVIRONMENT
EXCLUDE

EXIT
EXTDMPX

FILES

INCLUDE
LINKBACK
LMPATH
LORIGIN

MOUNT

OPTION
ORIGIN

PROGRAM
PROGRAMX

- RECATALOG

SEGFILES
SPACE

SYMTAB

1-2

Function

Identifies and describes a load module to be cataloged in the
system directory or in the pathname of a previous LMPATH
directive

Assigns a Datapool dictionary to a specified Datapool
(DPOOLO0 through DPOOL99 or DATAPOOL) partition

Describes the memory class, residency, map size, and sharing
or multicopying requirements of a task

Specifies referenced global symbol names in library object
modules to be excluded from the load module

Terminates CATALOG directive input

Positions the extended portion of MPX-32 in the logical
address space of the task being cataloged (if the expanded
space option of MPX-32 is used).

Establishes the number of dynamic disc file and device
assignments in nonshared tasks. Establishes the total disc file
and device assignments in shared tasks.

Specifies unreferenced global symbol names in library object
modules to be included in the load module

Specifies the overlay load modules at lower levels to link to
the current overlay load module

Specifies the pathname of the file where the load modules are
to be written

Establishes a new overlay level and origin for an overlay load
module

Indicates a nonpublic volume that is required by the task being
cataloged
Sets execution options for the task being cataloged

Establishes a new origin (at current level) for an overlay load
module

Specifies an object module by program name from SGO to
include in a load module

Specifies no object modules from SGO should be included in a
load module

Indicates that one or more overlay segments of a single file

~ load module are being updated. Optionally supplies the name

of the file.

Specifies the number of noncontiguous disc files to be accessed
by the task being cataloged

Allows the potential maximum task size to be increased above
the default 2MB size.

Specifies that symbol table references saved previously with a
CATALOG SYM option are to be used when an overlay load
module for a task is cataloged separately or recataloged

Cataloger (CATALOG) MPX-32
Overview Utilities

RN

N

Directive
VOLUMES

MPX-32
Utilities

Function

Specifies the number of nonpublic volumes that can be
dynamically mounted at any one time by the task being
cataloged

Cataloger (CATALOG)
Overview 1-3/1-4

LN

SECTION 2 - USAGE

2.1 Accessing CATALOG

CATALOG can be accessed in the batch or interactive modes in one of three ways:
. $CATALOG
. $RUN CATALOG (valid only from the system directory)
. $EXECUTE CATALOG

When accessing CATALOG interactively, the CAT> prompt is displayed:
TSM>$CATALOG
CAT>

2.2 Logical File Code Assignments

The following logical file codes are used by CATALOG:

Logical File Code Description
SYC CATALOG directive input
SGO Object modules from compilation or assembly
LIS Library assignment for object modules from the system
subroutine library (default @SYSTEM(SYSTEM)MPXLIB)
LID Directory assignment for object modules from the

system subroutine directory (default
ASYSTEM(SYSTEM) MPXDIR)

LIB or Library assignment for object modules from user
Lnn libraries (nn = 00 through 99)
DIR or Directory assignment corresponding to assigned
Dnn library (nn = 00 through 99)
DPD _ Dictionary assignment for DATAPOOL variables used in
object modules
SLO Listed output
SYI Symbol table as input
SYM Symbol table as output
P00 - P99 Dictionary assignments for DPOOL00 - DPOOL99

variables used in object modules

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-1

The following sections describe and Table 2-1 summarizes the default and optional LFC
assignments.
2.2.1 Source Input (SYC)
Source input is a file of CATALOG directives that is assigned to logical file code SYC.
SYC Default and Optional Assighments
The default assignment for SYC is to the System Control file (SYC):
$ASSIGN SYC TO SYC
There are two optional assignments for SYC:

$ASSIGN SYC TO {pathname }

DEV=devmnc
pathname is the pathname of a file containing CATALOG source input
devmne is the device mnemonic of a device containing CATALOG source
input

2.2.2 Object Modules from Compilation or Assembly (SGO)

The file of object modules from compilation or assembly is assigned to logical file code
SGO.

SGO Default and Optional Assignments

The default assignment for SGO is t6 the System General Object file (SGO):
$ASSIGN SGO TO SGO

There are two opfidnal assignments for SGO:

$ASSIGN SGO TO pathname
DEV=devmnc

pathname is the pathname of a file containing object modules from compilation
or assembly ‘

devmnc ~ is the device mnemonic of a device containing object modules from
compilation or assembly

2.2.3 Object Modules from Subroutine Libraries (LIS, LIB, and L.nn)

CATALOG links object modules from subroutine libraries assigned to logical file codes

LIS, LIB, and Lnn. LIS is used (by default) to access the system subroutine library
(MPXLIB). LIB or Lnn should be assigned to access user subroutine libraries.

Cataloger (CATALOG) MPX-32
2-2 Usage Utilities

®

)

CATALOG searches the library assigned to logical file code LIS by default and any user-
specified libraries assigned to logical file codes LIB and Lnn. The libraries are searched
in the following order: LIB, LOO through LL99, and LIS. The number of libraries searched
is limited only by the number of ASSIGNs which may be processed by TSM plus any
statically assigned user libraries added to the CATALOG load module. These LFCs are
forced unblocked by CATALOG.
LIS, LIB, and Lnn Default and Optional Assignments
The default assignment for LIS is to the system subroutine library:

$ASSIGN LIS TO @SYSTEM (SYSTEM) MPXLIB
There is one optional assignment for LIS:

$ASSIGN LIS TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

There are no default assignments for LIB and Lnn. To access user subroutine libraries,
the optional assignments for LLIB or Lnn should be specified as follows:

$ASSIGN LIB TO pathname
$ASSIGN Lnn TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

Lnn is a user-defined LFC in the range L0O0 to L99 representing a user
subroutine library
2.2.4 Subroutine Library Directories (LID, DIR, and Dnn)

The directory for a subroutine library is assigned to logical file codes LID, DIR, and
Dnn. These LFCs are forced unblocked by CATALOG.

The LID assignment is to the directory that corresponds to the LIS system subroutine
library assignment. If user subroutine libraries are assigned to LIB or Lnn, the
corresponding DIR or Dnn assignments must be made for the related directories.
LID, DIR and Dnn Default and Optional Assignments
The default assignment for LID is to the system subroutine library directory:
$ASSIGN LID TO @SYSTEM (SYSTEM) MPXDIR
There is one optional assignment for LID:
$ASSIGN LID TO pathname
pathname is the pathname of a file containing the subroutine library directory

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-3

There are two optional assignments for assigning user subroutine library directories:
$ASSIGN DIR TO pathname
$ASSIGN Dnn TO pathname

pathname is the pathname of a file containing the subroutine library directory

Dnn is a user-defined LF C representing the directory for a user subroutine
library. Directory LFCs are D00 to D99, corresponding to the user
subroutine libraries L00 to L99.

Note: There are no default assignments for DIR or Dnn.
2.2.5 DATAPQOOL Variables Dictionary (DPD)

DATAPOOL variables referenced in object modules are defined in a Datapool
dictionary. Datapool dictionaries are built using the Datapool Editor (DPEDIT) utility.
The DATAPOOL dictionary for use by CATALOG is assigned to logical file code DPD.
This LFC is forced unblocked by CATALOG.

DPD Default and Optional Assignments
There is no default assignment for DPD.
There is one optional assignment for DATAPQOOL variables:
$ASSIGN DPD TO pathname
pathname is the pathname of a file containing the DATAPOOL dictionary

Note: The DATAPQOOL dictionary can optionally be assigned using the CONNECT
directive. If this is done, LFC DPD must not be user assigned.

2.2.6 DPOOLO0O0 - DPOOL99 Variables Dictionaries (P00 - P99)

DPOOLO0 through DPOOL99 variables referenced in object modules are defined in
Datapool dictionaries. Datapool dictionaries are built using the Datapool Editor
(DPEDIT) utility. The Datapool dictionaries used by CATALOG are assigned by the
CONNECT directive to logical file codes P00 through P99.

P00 - P99 Default and Optional Assignments

There are no default or optional assignments for P00 through P99; the user must not
assign these LFCs.

2.2.7 System Listed Output (SLO)

The system listed output file contains the output of the cataloging session. The output
includes a directive log, a load map, and any error messages generated. The system
listed output file is assigned to logical file code SLO.

SLO Default and Optional Assignments
The default assignment for SLO is to the System Listed Output device (SLO):
$ASSIGN SLO TO SLO

Cataloger (CATALOG) MPX-32
2-4 Usage Utilities

»

There are three optional assignments for SLO:

$ASSIGN SLO TO | pathname

DEV=devmnc
LFC=UT
pathname is the pathname of a file to contain listed output
devmnc is the device mnemonic of a device to which the listed output will
be directed
LFC=UT assigns output to the user terminal

Note: If the origin of CATALOG is interactive, any error messages generated are
written to both UT and SLO automatically. If the user wants the load map to
appear on the terminal, SLO must bYe assigned to UT.

2.2.8 Symbol Table Output (SYM)

A symbol table is the mechanism for resolving external references when cataloging a
task with overlays in separate CATALOG runs. If a symbol table is desired for later use
with logical file code SYI, the symbol table option must be set and a file or device for
symbol table output must be assigned. The file or device to contain the symbol table
output is assigned to logical file code SYM.

SYM Default and Optional Assignments
There is no default assignment for SYM,
There are two optional assignments for SYM:

$ASSIGN SYM TO | pathname l
DEV:devmncS

pathname is the pathname of a file to contain the symbol table output
devmnc is the device mnemonic of a device where the symbol table output is
directed

2.2.9 Symbol Table as Input (SYT)

Instead of regenerating the symbol table when recataloging a load module, the symbol
table which was assigned to logical file code SYM generated by the previous cataloging
of the load module can be used as input. The file or device containing the symbol table is
assigned to logical file code SYI.

SYI Default and Optional Assignments

There is no default assignment for SYI,

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-5

There are two optional assignments for SYI:

$ASSIGN SYI TO

pathname

devmnc

2.2.10 LFC Summary

pathname
DEV=devmnc

is the pathname of a file containing the symbol table

is the device mnemonic of a device containing the symbol table

The following is a table of LFCs used by CATALOG and their default and optional

assignments:
Table 2-1
CATALOG LFC Summary
Default Optional
LFC Assignment Assignment
SYC SYC pathname
DEV = devmnc
SGO SGO pathname
DEV = devmnc
LIS @SYSTEM (SYSTEM)MPXLIB pathname
LIB none pathname
Lnn none pathname
LID @SYSTEM (SYSTEM)MPXDIR pathname
DIR none pathname
Dnn none pathname
DPD none pathname
SLO SLO pathname
DEV = devmnc
LFC =UT
SYM none pathname
DEV = devmnc
SYI none pathname
DEV = devmnc
P00 - P99 none Do not assign
Cataloger (CATALOG) MPX-32
2-6 Usage Utilities

)

Figure 2-1 illustrates the CATALOG process and the LFCs used by CATALOG.

DIRECTIVE LOAD
INPUT MODULE
SYC
.
OBJECT LISTED
MODULES CATALOG ouTPUT
SGO > SLO
J Y
SYMBOL SYMBOL
TABLE AS TABLE
INPUT SYI OUTPUT SYM
(OPTIONAL) (OPTIONAL)
SUBROUTINE
SUBROUTINE DATAPOOL
LIBRARY LIBRARY DICTIONARY
DIRECTORY 0PD
LIS,LIB,OR LID.DIR,OR “(OPTIONAL
L00-L99 D00-D99 ()

*MULTIPLE DATAPOOL DICTIONARIES MAY BE SUPPLIED BY USING THE CONNECT DIRECTIVE.

87D4K02

2.3 Options

Figure 2-1. CATALOG I/O Overview

Options used by CATALOG control various processing options. Options are specified by
number in a $OPTION job control language statement. The $OPTION statement must
appear before the $EXECUTE CATALOG statement in a jobstream.

Option

MPX-32
Utilities

1

Description

Suppress subroutine library search - Suppresses automatic search of
system and user subroutine libraries to resolve external references.
All object modules to be linked must be specified in INCLUDE
directives, or be contained on SGO.

Multiple disc files - Produces multiple disc files when cataloging
overlay tasks.

Branch references - Enforces strict on-branch linkages for local
common and global symbols. For more information, refer to Section
2.12.

Cataloger (CATALQOG)
Usage 2-7

15 Time, date, and program identification - Include the time and date
the object code was assembled or compiled and/or program
identification information as part of the load module if present in
the object code. This information is included in the object code by
setting the appropriate Macro Assembler or compiler options during
assembly or compilation. Option 15 is not supported for overlay
modules.

18 Inhibit load module generation if errors - Certain error conditions
cause CATALOG to take corrective or alternate actions. There is,
however, doubt as to the correctness and/or completeness of the
load module. This option inhibits writing the load module in these
cases. '

Note: The production of possibly incomplete load modules is
provided as an aid to the code development cycle; the
programmer can decide to use the load module or not.
Production environment jobstreams should always set
option 18.

See Section 4 (Errors and Aborts) for a description of the conditions
that cause incomplete modules.

19 Include symbolic debug information - Includes symbolic debug
information which is placed at the end of the load module. Setting
option 19 does not affect memory requirements but does increase
disc usage. Option 19 is not supported for overlay modules.

20 Inhibits memory resident directory searches. By default, the
contents of all assigned library directories are loaded into a
dynamically allocated memory buffer. This buffer is expanded
automatically as needed and is limited only by available physical
memory and the size of the logical address space (as defined by
$SPACE). Option 20 forces all directories to be searched on disc
and limits CATALOG's dynamic memory buffer to approximately
32KB. Setting option 20 significantly increases CATALOG
execution times.

TEXT(23) Causes CATALOG directives read from system file SYC or a
directive file to be echoed to the terminal. Directives are also
written to LFC SLO.

2.4 Exiting CATALOG

To exit CATALOG in the batch or interactive modes, specify the EXIT directive.

2.5 Object Modules and Load Modules

A load module is composed of one or more object modules cataloged into executable
format. A source module is the source code that produced the object module. After
source code is assembled or compiled, the object modules are normally written to the
System General Object (SGO) file for use by CATALOG. Object modules can also be
stored in a file or incorporated into a library (by LIBED) for subsequent CATALOG
access.

Cataloger (CATALOG) MPX-32
2-8 Usage Utilities

A nonbase mode object module produced by an assembly or compilation is identical in
format to any other nonbase mode object module; therefore, source modules written in
different languages may be linked into a single load module if the source languages
support a compatible call/return interface.

2.5.1 Load Modules

CATALOG combines the object code from the various object and library input files into
one or more load modules. These load modules are written to one or more permanent
disc files. In combining the input object, CATALOG resolves global symbol references
and converts the object format data into a relocatable memory image ready for loading.
CATALOG also produces the runtime resource requirement summary and optionally, the
program element information and the global and local debug symbol tables.

2.5.2 Absolute Load Modules

CATALOG can build an absolute load module. An absolute load module requires no
relocation by the loader and reduces the task activation time.

The ABSOLUTE directive resolves all relocatable addresses relative to the base address
supplied in the directive. The user is responsible for selecting a base address large
enough to be beyond the task's TSA. The TSA is allocated after the end of MPX-32 and
varies in size based on the number of files and buffers required in the task.

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32
changes. If there is an overlap between MPX-32 or the task's TSA and the ahsolute task
itself, the task aborts during the loading phase.

2.6 The Cataloging Process

CATALOG makes two passes over the file or device assigned to logical file code SGO and
the libraries to resolve external symbolic references and include the proper object
modules in the load module. ‘

On the first pass, CATALOG searches the file or device assigned to logical file code SGO
for global symbol references and definitions in the object modules. CATALOG builds a
table of all references and definitions it finds.

If CATALOG cannot find a definition to match a reference in the modules in the file
assigned to logical file code SGO, it searches the assigned user libraries, followed by the
file assigned to logical file code LIS. Any definitions in the library that resolve
references are added to the symbol table for the load module. Any new references in the
library are also added.

After the first pass the symbol table contains the names of all definitions, references,
and program names in the order they were found on: SGO, user libraries and the system
subroutine library.

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-9

On the second pass, CATALOG retrieves an object module for the occurrence of each
global symbol definition and matches the definition to its corresponding references.
Object modules are retrieved from SGO and the libraries in the order of the symbol
table. If CATALOG finds more than one definition with the same name, it uses the first
object module that contains the definition. Duplicate definitions and unresolved
references are indicated on the listed output.

The symbol table provides the communication medium between the different object
modules in the load module. It is also used to resolve references when overlay load
modules are cataloged in separate runs.

2.6.1 Selective Retrieval of Object Modules

When object modules are retrieved during CATALOG's first pass to resolve external
references and definitions, the order of search is the SGO file, user-assigned libraries,
and the file assigned to logical file code LIS. Four directives are used to manipulate the
object modules retrieved: PROGRAM, PROGRAMX, INCLUDE, and EXCLUDE.

The PROGRAM directive specifies particular object modules, by program name,
contained in the SGO file to be added to the load module. The PROGRAMX directive
suppresses all object modules in the SGO file from the load module. If neither directive
is used, all object modules from SGO are added to the load module.

Object modules in libraries that are not referenced are included in the load module by
specifying them in an INCLUDE directive. The supplied name must be a global symbol
defined in the object module.

Object modules in libraries can be excluded from the load module even though they are
referenced by specifying them in an EXCLUDE directive. The parameter of the
EXCLUDE directive is a global symbol. All global symbols defined in an object module
must be explicitly excluded to assure that the object module is not added to the load
module.

PROGRAM and PROGRAMX directives relate to object modules on SGO. The parameter
on the PROGRAM directive line is a program element (program, subroutine, function,
etc.) name.

INCLUDE and EXCLUDE directives relate to object modules in the libraries LIB, L0O -
L99, and LIS. The parameter on the INCLUDE and EXCLUDE directive lines is a global
symbol.

2.6.2 Allacation and Use of Global Common and Datapool Partitions

Global Common and Datapool are memory partitions defined at system generation
(SYSGEN) or by the Volume Manager (VOLMGR).

Labeled common blocks are identified as Global Common by the name GLOBALnNn, where
nn specifies two decimal digits from 00 to 99. When CATALOG encounters a common
block named GLOBALnNN, space is not allocated for it in the module's area. Instead, all
references to the common block are resolved using the memory partition of the same
name. Therefore, the global common memory partition must be created before a
program referencing it can be cataloged. If the definition of the partition changes, the
programs referencing the partition must be recataloged.

Cataloger (CATALOG) MPX-32
2-10 Usage Utilities

)

Datapools are structured and resolved according to the Datapool dictionaries created
with the Datapool Editor (DPEDIT) utility. Datapools are identified by the name
DATAPOOL or DPOOLNN, where nn specifies two decimal digits from 00 to 99. Datapool
references in an object module are resolved to locations in the specified Datapool
memory partition according to the corresponding user-supplied Datapool dictionary.

There are two mechanisms available to access DATAPOOL. If the corresponding
dictionary is assigned to LFC DPD, then the memory partition must be created before
the task can be cataloged. If the CONNECT directive is used and the optional starting
address and size parameters are specified, then the memory partition is not accessed.

The CONNECT directive allows a load module cataloged on one system (host) to be
executed on another system (target). Any datapools referenced are allocated during
execution and must reside on the target system. ’

When a global common or Datapool memory partition must be accessed, CATALOG
searches for the definition in directories. The order the directories are searched is:

With LMPATH and either BUILD or CATALOG:
. LMPATH target volume/directory

. Current working volume/directory
. @ SYSTEM (SYSTEM)

Without LMPATH and with BUILD:
Current working volume/directory
@ SYSTEM (SYSTEM)

Without LMPATH and with CATALOG:
@ SYSTEM (SYSTEM)

The memory allocation unit for memory partitions is one map block (2KW). If the
partitions are created by VOLMGR (dynamic), they must be allocated in map block
increments. In SYSGEN created partitions (static), protection granule allocation allows
multiple partitions within a map block. The allocation unit for the task remains one map
block. If multiple static partitions are defined within a map block, only one partition can
be included in the task's logical address space at a given time. The unused partitions in a
map block are write protected.

Static partitions are defined in @ SYSTEM (SYSTEM) by MPX-32 and are automatically
included in the referencing task's logical address space. Dynamic partitions must be
explicitly included in the logical address space at execution time. The user must be sure
that the partition included at run time matches the starting address and size values used
at CATALOG time. Also, some run time included services may require that a specific
volume and/or directory contain the partition definition.

2.6.3 Allocation of Local Commons

Common blocks with names other than GLOBALnn, DPOOLnNN, or DATAPOOL (including
BLANK) are called local common. CATALOG allocates space for local common within
the load module according to references to the common contained in the object code
being linked.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-11

When the object code contains initialization data for the common block (such as a block
data subprogram), storage for that common is allocated immediately before the program
element containing the data. The amount of memory allocated is established as the
largest size of the common block as defined in any referencing program element. If
another program declares a larger size, a warning message is issued and the extra size is
initialized to binary zeros.

When the object code contains no initialization data, CATALOG allocates storage
immediately before the first program element that defines this common. The size of the
area allocated is that of the largest definition contained in any referencing program
element.

Uninitialized common that is allocated before the first program element of a load
module is treated differently than commons allocated in the body of the load module.
CATALOG does not allocate either memory or load module file space for these common
blocks. Instead, a loading offset is supplied to the task loader and the required memory
is allocated (with unpredictable contents) at task loading time. Common blocks that are
allocated within the load module body allocate both memory and load module file space
as required. These areas are set to binary zeros by CATALOG.

Allocating uninitialized commons in the first program element can be utilized to reduce
CATALOG memory requirements and load module file size and to provide faster task
activation. For more information, refer to the Local Common Allocation and Global
Symbol Resolution in the Segmented Tasks section.

2.7 Load Module Information

The ENVIRONMENT and BUILD/CATALOG directives establish the following special
characteristics for a task:

. Residency - A task defined as resident remains memory resident until it exits or
aborts. It is not a candidate for swap to disc. The default is nonresident.

. Memory class - A task may need to execute in a special class of physical memory. E
executes in class E memory, H executes in class H or E, and S executes in any class of
memory available. The default is class S.

. Sharing:

. Multicopying - A task can be active concurrently in several logical address spaces.
The entire task is copied to physical memory each time it is activated.

. Sectioned sharing - A task can be active concurrently in several logical address
spaces. The CSECT area of the task is copied into physical memory once. A new
DSECT area is established in physical memory each time the task is activated.
DSECT areas are deallocated as sharers exit. CSECT remains allocated until all
sharers exit.

. No sharing (unique) - Only one copy of the load module can be active in one logical
address space at a time. The default for a task is unique.

Cataloger (CATALOG) MPX-32
2-12 Usage Utilities

Privilege - A task that accesses a privileged system service must be cataloged as
privileged. A privileged task can write into any area of memory in its logical address
space, including the system area, and execute the privileged instruction set. The
default is unprivileged.

Base priority - The priority the task executes at if activated as an independent task
(by the TSM or OPCOM ACTIVATE, OPCOM ESTABLISH directive, another task, a
timer, or an interrupt). Base priorities are in the range 1 to 64. The default is 60. If
activated from TSM or in a batch stream, this priority is overridden by the SYSGEN-
defined terminal or batch priority.
Debugging - A task may prohibit attaching the debugger to it. The default is to allow
debugger attachment.

Unless otherwise defined by the ENVIRONMENT directive, a task:
is nonresident

. is unique

. is executable in any memory class available (S, H, or E)

allows debugger attachment

Unless otherwise specified by the BUILD/CATALOG directive:
The base priority of a task is 60
The status of a task is unprivileged

This information is written at the beginning of the main load module by CATALOG so
that it is available for the MPX-32 allocator and execution scheduler when the task is
activated.

2.8 Resource Requirements
The resource requirements for a task include all files and devices used by the task:

default assignments
run-time assignments that override the defaults

. run-time assignments for required or optional files or devices that do not have default
assignments '

. dynamic assignments

A task's default resource requirements, if any, are established by CATALOG ASSIGN
directives when the main load module is cataloged. Required, optional, or overriding
run-time resources are established by TSM $ASSIGN directives when the task is
activated.

Dynamic assignment of files or devices is made by the task through MPX-32 service
calls, the FORTRAN OPEN statement, or subroutine calls.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-13

A prerequisite for blocked 1/O used by a task is a blocking buffer, which the allocator
establishes in the Task Service Area (TSA). This can be controlled with the BUFFERS
directive. Files on disc and magnetic tape assume the system default for blocking unless
otherwise specified by an ASSIGN directive or a dynamic service call. Files also require
FPT/FAT table entries in the TSA. This can be controlled with the FILES and SEGFILES
directives.

CATALOG preserves resource information on the default files and devices used by a
task, including the number of blocking buffers and table entries required. At activation,
run-time assigned files and devices are allocated as specified and override default file
and device assignments. The appropriate memory is then allocated for table space and
buffers. However, if files and/or devices are allocated dynamically by the task, the
number of additional file table entries and buffers required must be indicated.

Cataloger FILES, SEGFILES, and BUFFERS directives account for dynamic
assignments. The FILES directive specifies the number of files and devices allocated
dynamically (and thus the number of table entries to leave room for). The SEGFILES
directive specifies the number of noncontiguous disc files allocated dynamically. The
BUFFERS directive specifies the number of blocking buffers required for blocked files or
devices accessed dynamically.

Resource requirements for shared tasks require special treatment because several
concurrent sharers of the task can use different run-time assignments that require
different allocation of blocking buffers and file space. FILES, SEGFILES, and BUFFERS
directives for cataloging shared tasks must reflect the maximum number of files and
devices that can be assigned: default (or override), required, optional, and dynamic. This
information is required by CATALOG to ensure that the TSA for each sharer is the same
size and that the DSECT section of the shared task begins at the same location in each
sharer's logical address space.

2.9 Sectioned and Nonsectioned Tasks
CATALOG supports both sectioned and nonsectioned tasks.

Nonsectioned tasks are allocated in a logically contiguous area immediately above the
TSA. In effect, they are structured as one large DSECT. Nonsectioned tasks can be
cataloged as multicopied or unique. Multicopied tasks are copied into physical memory
to support multiple concurrent activations. A nonsectioned task that is cataloged as
unique allows only one activation at a time. If not specified, a nonsectioned task
defaults to unique.

Sectioned tasks are created when CSECT/DSECT definitions are contained in the object
code. CSECT defines a pure code and constant data section of a task; DSECT defines an
impure, user-dependent, variable data section. CATALOG merges all CSECTs into a
write protected allocation in upper memory and all DSECTs in lower memory just above
the task's TSA. Sectioned tasks can take advantage of CSECT/DSECT sectioning to
write protect pure code and data, but the primary purpose of CSECT/DSECT is to
support sharing.

A sectioned task can be cataloged as shared, multicopied, or unique. If a sectioned task
is cataloged as shared, the CSECT of the task is copied into memory once and only the
DSECT is recopied with subsequent activations.

Cataloger (CATALOG) MPX-32
2-14 Usage Utilities

-
i

N

r

The minimum allocation for a CSECT area is a map block (2KW); DSECT is allocated in a
separate map block along with the TSA. The minimum space used for the task's DSECT
is one map block, including the TSA size. If a task is less than a map block, multicopying
and nonsectioning may allow more efficient use of memory than using sectioning.

2.10 Segmented and Nonsegmented Tasks

Two types of load modules can be part of one task: one main load module and one or
more overlay modules required to satisfy references for the task. A task that contains a
main load module and one or more overlays is segmented. A task that contains only a
main load module is nonsegmented.

Each load module is constructed by a separate BUILD/CATALOG directive. The main
and overlay modules can reside on the same disc file or on multiple disc files. Overlay
load modules are loaded and/or executed by system service calls within the programs.

A nonsegmented task can reference overlays built in separate cataloging sessions. When
a nonsegmented task references such overlays, the main module and all overlay modules
are in memory when the task is executing.

Overlays provide a way to segment tasks for more efficient memory utilization. When it
is impractical to have a large task in its entirety in memory, it can be divided into a
main load module and one or more overlay load modules. A segmented task is activated
by using the name of the file containing the main load module.

In a segmented task, only the main module and modules concurrently referenced in the
task are in memory at the same time. When modules other than the main module are no
longer needed by the task, they are replaced, or overlaid, by other referenced modules.

CATALOG supports two types of overlay load modules and several overlaying
strategies. The user may choose the type and strategy that best suits the requirements
of a particular application. The two types of overlay load modules are characterized by
the method of accessing the overlay. Overlay load modules that contain a transfer
address may be loaded and executed by a single service call. Upon completion, control is
returned to the calling load module. This overlay is referred to as a single point of call
overlay and is used when a particular portion of the application can be achieved by one or
more program elements executing off a single call. This type of structure contains no
cross module subroutine references and is more flexible with regard to cataloging in
stages or recataloging. A drawback is that the passing of parameters must be explicitly
handled by the programs.

The second overlay structure is constructed by grouping related subroutines in an overlay
load module. The load module is invoked by making the service call to load that overlay.
The caller can then reference the various subroutines directly and independently. This
type of structure is referred to as the independent subroutine type of load module and is
less flexible with regard to cataloging in stages or recataloging, but allows the user to
utilize any mechanism for parameter passing defined in the implementation language.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-15

2.11 Overlay L oad Modules

The following sections describe the use and structure of overlay load modules.
2.11.1 Single and Multiple Disc File Modes

CATALOG produces overlays in two modes: single disc files and multiple disc files.

In single disc file mode, the root and overlay load modules are produced in a single disc
file. Single disc file mode supports a maximum of 75 overlays.

Individual overlays in a single disc file can be cataloged in stages or without recataloging
the entire task by using the RECATALOG directive.

In multiple disc file mode, CATALOG produces separate files for the main load module
and each overlay. This mode is indicated by setting option two. The overlay load
modules in multiple disc file mode can be built in any directory but can only be executed
from the system directory.

In multiple file mode, individual overlay load modules can be built in stages or
recataloged by providing only the directives for the overlays involved to CATALOG. In
this mode, the LMPATH directive may not supply the filename.

Multiple disc file mode supports more than 75 overlays; for less than 75 overlays, it is
recommended that single disc file mode be used.

Symbolic debugger information is not available for overlays'even if option 19 is set at
catalog time. Time, date, and program identification information is not available for
overlays even if option 15 is set at catalog time.

2.11.2 Overlay Levels

Single point of call and independent subroutine overlay load modules can be organized
into levels. An overlay level consists of one or more overlay load modules that do not
reference each other internally and can be loaded into the same logical memory locations
within the task.

l_.ow level overlays usually represent the overlays a main load module calls in after it is
loaded. Higher level overlays which follow are associated with the root and/or one or
more of the lower level overlays.

The simplest averlay structure consists of a single overlay level as illustrated in Figure
2-2. As each overlay is accessed by a system service call, it replaces the previous
overlay in memory.

Figure 2-3 illustrates the logical structure of a task with a number of overlays and
overlay levels. This task consists of a main load module and seven overlay load
modules. The overlay load modules are grouped into levels A and B. Level A overlays
are low level; level B overlays are higher level.

A maximum of 255 overlay levels are supported. The root is always level 0. A maximum
of 32,768 overlays are supported at each level above level 0.

Cataloger (CATALOG) MPX-32
2-16 Usage Utilities

=7

MAIN

At A2

A3

87D4105
Figure 2-2. Single Overlay Structure
MAIN
A1l A2
B1 B2 B3 B4 B5

™ 87D4J09
Figure 2-3. Multilevel Overlay Structure

MPX-32 " Cataloger (CATALOG)

Utilities (Usage) 2-17

Figure 2-4 illustrates the default memory allocation for the main and overlay load
modules shown in Figure 2-3. Example 3 in Section 5 shows directives that would achieve
this structure.

Level one is automatically established by the processing of the second BUILD/CATALOG
directive. All subsequent load modules are at level one until an LORIGIN directive is
processed. Each time an LORIGIN directive is processed, the level is increased by one.

The allocation of memory (overlays above the root) depicted in Figure 2-4 is valid only if
the TRA= parameter of the BUILD/CATALOG directive has not been specified. The
TRA parameter causes CATALOG to allocate the overlay transient area below the
root. This is useful when the application performs dynamic memory allocation during
execution.

Using this default memory allocation, any second level overlay (B) can be in memory with
any first level overlay. The second level averlay can operate on behalf of the root or any
first level overlay at any time. With independent subroutine load modules, the calling
program must ensure that all overlays at any level that contains the definitions of any
global symbol referenced, are actually in memory when that symbol is referenced.

2.11.3 Modifying Overlay Origins

The ORIGIN or LORIGIN directives modify the memory allocation for the overlay
structure. For example, a different origin can be set for higher level overlays associated
with A2 (B3, B4, and B5) so that space not being used when A2 is in memory can be
used. The total program memory requirements are reduced. Figure 2-5 illustrates how
the overlay transient area is modified. Example B8 in Section 5 demonstrates these
directives.

Overriding the default memory allocation means that Bl and B2 may be loaded with
either Al or A2, but B3, B4 and B5 may be loaded only with A2 (see Figure 2-5).

If the higher level overlays are intended to operate on behalf of a particular lower level
overlay, the user's code must ensure that the correct lower level overlays are loaded.

If the higher level overlays are intended to operate on behalf of the root, any overlay
may be loaded at any level without concern for other levels. However, if B3 through B5
are loaded with Al in memory, Al must be reloaded before it can be used.

Cataloger (CATALOG) MPX-32
2-18 Usage Utilities

C

HIGH P77 VAL LA S S S SN
L VS 222227
VS A
B 5 B N B 3 82 B1
HIIIIIIIIIIYZ
V. S S S S S S S]
A2 A1
MAIN LOAD MODULE
TSA
LOW

UPPER BOUND

LEVEL B ORIGIN

LEVEL A ORIGIN

UPPER BOUND

UNUSED SPACE

87D4104
Figure 2-4. Default Memory Allocation for Overlays
MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-19

HIGHMEMORY 17 Y 77 7 A7 7 e 2 X 7 7 7 7 v
727775977, /ST UPPERBOUND IS
7222 /) 1PIII7S|
y 4
L K
B B B B B
3 2
LEVEL B ORIGIN > 4 !
BMao-gISFIBEYDUFSOIIE}G <4— LEVEL B DEFAULT ORIGIN
ORIGIN DIRECTIVE ESTABLISHED BY USE OF
» LORIGIN DIRECTIVE, FOR
B1-B2
A, Ay
<4— LEVEL AORIGIN
(AUTOMATIC)
MAIN LOAD MODULE
TSA
LOW MEMORY

87D4J08

Figure 2-5. Modified Memory Allocation for Overlays

2.11.4 The Overlay Transient Area

By default, CATALOG establishes an overlay transient area above the root (logically
higher addresses) that is of a sufficient size. In applications, where dynamic memory
- allocation above the root is required, the overlays can be directed to load in low memory
below the root. This is accomplished by specifying a transient area using the TRA=
parameter on the BUILD/CATALOG directive for the root segment. This relocates the
root higher in memory by the amount specified. It is the user's responsibility to supply a
value large enough to accommodate the overlays.

2.12 Local Common Allocation and Global Symbol Resolution in Segmented Tasks
In segmented tasks comprised of several load modules grouped into several levels, the
resolution of common and global symbol references is complicated and can lead to

unpredictable results and/or unresolvable situations unless given due consideration.

Cataloger (CATALOG) MPX-32
2-20 Usage Utilities

-

¥

S

CATALOG provides options and directives to control the resolution of these references.
The user can select an overlay strategy that best suits the requirements of the
application.

2.12.1 Local Common Allocation

An overlay load module is essentially, the same as a non-segmented load module.
Therefore, the rules in the Allocation of Local Commons section apply to all intra-load
module commons. The following discussion applies to inter-load module commons.

A common is said to be "defined" in any program element that references a datum
declared in that common. When CATALOG allocates the memory that holds the data
declared in a common within a load module, the common is said to be "allocated" in that
load module. All definitions are "linked" to the allocated location.

CATALOG Option 3 and the LINKBACK directive allow the user to control the allocation
of and references to local common. The use and effects of Option 3 and the LINKBACK
directive are described below.

Local commons defined in the root segment are allocated in the root segment. All
definitions in high level overlays are linked to the root segment allocation. This ensures
that all higher level overlays can communicate through root allocated commons
regardless of the transient area contents.

When a local common definition occurs only in higher level overlays, it is allocated in the
first, lowest level, overlay that defines it. When a common is defined in more than one
load module at the same level, it will be allocated in each defining module.

Usually, this means that the data declared in such a common will be "common" only to
the program elements of each load module. (The area cannot be used to communicate
between load modules at the same level). However, if all the load modules have the
same origin, the common is allocated in the first program element of each overlay and
this common is not initialized in any of the overlays, the data contained in the common
remains intact from one overlay to the next. This is because uninitialized common at the
beginning of a load module contains no space in the load module file and remains
unchanged by the loader. This form of cross module common allows the common to be
used for inter-module communication.

When a local common is allocated in several overlay load modules at a given level,
definitions occurring in higher level overlays are linked to the low level allocations in
several different ways depending on Option 3 and the LINKBACK directive.

With Option 3 Reset (the default), local common definitions occurring in higher level
overlays are linked to the allocation in the last lower level overlay processed by
CATALOG. This occurs regardless of the LINKBACK directive. If the conditions
described above for cross module commons are met, then the lower level allocation is at
the same place in memory for all lower level modules. It is unaffected by loading
activity and can be successfully used in any higher level overlay. In all other cases,
Option 3 must be used.

When Option 3 is set, local commons are reallocated in higher level defining overlays
unless the common is already allocated in a lower level overlay to which the current load
module is linked with the LINKBACK directive. Initialized commons follow the same
rules as uninitialized commons with the following additional requirements:

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-21

. Cross module common at the same level is unavailable to initialized common.
Each load module that initializes a common area resets the area to its initial
values as it is loaded.

. The program element that contains the initialization code must be part of the
lowest level defining overlay whenever multi-level linkages occur.

2.12.2 Global Symbol Resolution
The following describes the rules for subroutine linkage in overlay environments.

Each overlay load module is built as a complete unit. This means that all external
symbol references are resolved by including program elements which contain satisfying
definitions found in SGO or any available library in the load module.

To build an overlay structure, it is necessary to indicate to CATALOG that specific
references should remain unsatisfied (temporarily) in a load module. This can be
accomplished in several ways. By default, all object modules on SGO are processed at
the first BUILD/CATALOG directive. By wusing the PROGRAM directive only
specifically named programs are processed from SGO for any particular
BUILD/CATALOG. The PROGRAMX directive inhibits all processing of SGO. Further,
as programs are processed, all references to external symbols are retained and all
assigned libraries are searched for matching definitions. By supplying the global symbol
name in an EXCLUDE directive, CATALOG will not load a program containing a
matching definition. Alternatively, Option 1 can be set and all global symbol definitions
required are then indicated on INCLUDE directives.

Similarly, programs which contain global symbol definitions that are not otherwise
referenced can be forced into any particular load module by specifying the symbol name
in an INCLUDE directive.

The user explicitly indicates the contents of each load module by using the following:
. The PROGRAM and PROGRAMX directives to control the processing of SGO.

. OPTION 1 and the INCLUDE directive or the INCLUDE/EXCLUDE directives to
control processing of the libraries (in conjunction with each BUILD/CATALOG
directive).

Once the contents of each overlay is established, CATALOG resolves cross module
linkages of global symbols (if any exist) according to the following rules. Option 3 and
the LINKBACK directive control the resolution.

Symbols excluded from a particular load module are assumed to be defined in a higher
level overlay. CATALOG provides automatic forward linkage to higher level overlays in
two ways depending on Option 3. However, to satisfy a symbol reference to lower level
overlays, the load module must be explicitly linked to the lower level using the
LINKBACK directive.

Global symbols defined in the root segment are available to all higher level overlays and
are used first to satisfy references in any higher level (i.e there is an implicit linkback to
the root provided to all higher level overlays).

References in modules at levels above the root are satisfied first by definitions in the
root. If the symbol is not defined in the root, the first definition in lower level overlays

Cataloger (CATALOG) MPX-32
2-22 Usage Utilities

C

to which the current module is linked, in the order of the LINKBACK directives, is
used. If the symbol is not defined in any linked lower level, higher levels are used.

When Option 3 is reset (the default) a definition in any higher level module will be used.
The search is performed in the order of the CATALOG/BUILD directives, with the first
definition found being used. When Option 3 is set, only higher level which are linked
(with the LINKBACK directive) to the module containing the reference are used. The
first definition found is linked.

In all cases it is the responsibility of the calling module to ensure that the correct
overlay is actually in memory.

2.13 Cataloging a Segmented Task in Stages

A segmented task may be cataloged in one operation or in stages. The main load module
can be cataloged in one session, with or without overlay load modules. Overlay modules
can be cataloged in subsequent sessions. If the transient area size option (TRA=) is not
declared for the main load module in the BUILD or CATALOG directive, CATALOG
reserves a transient area large enough to accommodate any overlay modules cataloged in
the same run as the main load module. If overlay modules cataloged separately from the
main load module require more space, an adequate transient area size must be specified
when the main load module is cataloged.

When cataloging in stages, the main load module can be cataloged without its overlays
only when the single point of call (load and execute) methodology is used. If the main
load module contains references to external symbols that are defined in the overlays,
these overlays must be cataloged in the same run as the main.

The symbol table (SYMTAB) resolves external references when load modules are
cataloged in separate stages. The SYMTAB contains the definitions of all common blocks
and all DEFs from the previous cataloging session. All references must be resolved when
the SYMTAB is built.

The SYMTAB is saved by assigning a file or device to logical file code SYM and
specifying the SYM option on the BUILD/CATALOG directive for the main load module.
SYMTABS are restored by assigning the same file or device (used with SYM) to logical
file code SYI and using the SYMTAB directive before the first BUILD/CATALOG
directive of a subsequent run.

Common blocks defined in cataloged load modules are not reallocated when new load
modules are cataloged. Common block sizes are not expanded as a result of definitions
contained in new load modules being cataloged.

References to global common and Datapool are not affected because these areas are
allocated in a separate area of memory from the task.

2.13.1 Recataloging a Load Module

When operating in single file mode (option 2 reset), the RECATALOG directive must be

used to specify the recataloging of one or more of the overlay load modules contained in
the file.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-23

When a load module is recataloged, the new version is written over the existing version.
The disc file is automatically expanded, if needed, to accommodate the new version.
Other load modules in the file are copied to the new file.

2.13.2 Limitations on Cataloging in Stages

Care is required in recataloging some load modules. Load modules whose sizes increase
may result in allocations that overlap the address spaces of load modules that are not
being recataloged. In addition, resolution of references to external symbols and common
blocks within the task can be affected.

Overlap can be detected by examining the addresses of each load module, which are
printed in the module's map. Overlap is indicated when an overlay's end address is
greater than the beginning address of a higher level overlay, or is greater than the
beginning address of the main load module (with TRA parameter).

Changing the size of the transient area with the TRA parameter changes the location of
the main module in relation to the overlay modules. If the size of the transient area is
changed, all previously cataloged overlay modules that reference the main load module
must be recataloged.

When a load module is recataloged, the resolution of addresses for global symbols and
common blocks defined within the task may also change. As a result, references to the
global symbols or common blocks by other load modules are incorrect unless they are
recataloged. Assume intermodule referencing for the task as illustrated in Figure 2-6.

In the table at the bottom of Figure 2-6, if any load module(s) are recataloged, all other
load modules which correspond to Xs in the vertical column beneath the load module
must also be recataloged. For example, if the main load module is recataloged, Al and
A2 must be recataloged. If Al and A2 are recataloged, all load modules must be
recataloged.

As a general rule, partial catalogs (with option 2 or RECATALQG in single file mode) are
only practical when the load modules are executed in the single point of call load and
execute mode. When the overlays consist of collections of independently called
subroutines, a change in size of any subroutine will invalidate all linkages to all
subroutines above the one changed in the load module.

2.14 Cataloging a Nonsegmented Task

Cataloging a nonsegmented task is similar to cataloging the main load module of a
segmented task.

Cataloger (CATALOG) MPX-32
2-24 Usage Utilities

MAIN
A1 A2
B1 B2 B3 B4 B5
LOAD MODULE REFERENCED

MAIN Al A2 B1 B2 B3 B4 B5
MAIN X X
A1 X X X
A2 X X X X
B1 X
B2 X
B3 X
B4 X
BS X

87D4I09

Usage

Cataloger (CATALOG)

Figure 2-6. Recataloging Illustration

2-25/2-26

TN
S~

F

SECTION 3 - DIRECTIVES

3.1 Introduction

CATALOG directives are summarized in the Overview section and described in detail in
this section.

All CATALOG directives begin in column one. Most directives can be abbreviated to
four characters. Valid abbreviations are indicated by underlining.

l_egal delimiters between directive parameters are commas or blanks. Commas need to
be used only where shown.

3.2 Directive Order Requirements

The following directives can appear as needed in any order after the $EXECUTE

CATALOG directive and before the first BUILD/CATALOG directive. They cannot be
used after the first BUILD/CATALOG directive.

ABSOLUTE EXTDMPX
ALLOCATE FILES
ASSIGN LMPATH
ASSIGN1 MOUNT
ASSIGN2 OPTION
ASSIGN3 RECATALOG
ASSIGN4 SEGFILES
BUFFERS SPACE
CONNECT SYMTAB
ENVIRONMENT VOLUMES

Note: When CONNECT directives require location of a Datapool partition definition,
the LMPATH target volume/directory will be searched only if the LMPATH
directive precedes the CONNECT directives.

These directives supply parameter values and static resource requirements to the task
being cataloged. Many of these directives are similar in syntax and function to TSM
directives. Directives such as ASSIGN, ALLOCATE, OPTION, etc. entered before the
$EXECUTE CATALOG directive affect the execution of the CATALOG task. Directives
entered after the $EXECUTE CATALOG directive affect the user task being built.

The following directives appear as required in the order shown after the
BUILD/CATALOG directives:

EXCLUDE
INCLUDE

(PROGRAM |

]PROGRAMX |

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-1

ABSOLUTE/ALLOCATE

When cataloging overlay load modules, the following directives appear as required in the
order shown for each overlay and following the directives for the root:

{LORIGIN \
ORIGIN
BUILD/CATALOG load module 0
LINKBACK
EXCLUDE
INCLUDE
{PROGRAM [
PROGRAMXJ

Tl;e directive stream is terminated by:
EXIT

A directive line which contains an asterisk (¥) in column one is treated by CATALOG as a
comment. Comment lines may appear anywhere between the $EXECUTE CATALOG
directive and the EXIT directive. See Section 5 for examples.

3.3 ABSOLUTE Directive

The ABSOLUTE directive builds an absolute load module. An absolute load module is one
that requires no relocation by MPX-32 at load time. The base address specified must be
higher than MPX-32 and the TSA. If the base address creates an overlap between the
task and MPX-32 or the task's TSA, the task will not load. When the task is loaded at the
specified address, memory between the end of the TSA and the start of the task is
allocated to the task and is available for use by the task.

The CSECT origin is not affected by this directive. The transient area option on the
CATALOG and BUILD directives (TRA=) has no effect when the ABSOLUTE directive is
used. Multiple ABSOLUTE directives are not allowed.
Syntax:
ABSOLUTE [base]
base is a hexadecimal logical address specifying the base address of the task. This
address is rounded up to the nearest 512 word boundary. If no base is supplied,
the default is a value of &0000(16).
3.4 ALLOCATE Directive
The ALLOCATE directive increases the memory allocation for a task at execution time.
If the ALLOCATE directive is used when cataloging a task, additional static memory is

allocated every time the task is run. The allocation cannot be reduced at run time or by
dynamic service calls.

Cataloger (CATALOG) MPX-32
3-2 Directives Utilities

-

[\ Syntax:

ALLOCATE (Cont.)/ASSIGN

ALLOCATE bytes

bytes specifies the hexadecimal number of additional bytes to allocate to the task

3.5 ASSIGN Directive

The ASSIGN directive supplies default assignments for logical file codes used by the task
being cataloged. Assignments for a task must be cataloged with the main load module.

Syntax:

SBO

SLO

SYC

SGO
@ANSITAPE(lvid)file
pathname

RID=resid

ASSIGN Ifc TO TEMP[= (volname)] [FORMAT=format] [SIZE=blocks]

DEV=devmnc
LFC=Ifc

[SHARED= bool] [GENERATION=gennum] [GENVERSION=genvum] [BSIZE=bsize]
[RECLENGTH=recsize] [ACCESS=([READTTWRITE] [MODIF Y] [UPDATE] [APPEND])]

(’ [BLOCKED-= bool] N
=)
[EXPIRE - { date}] [PRINT] G {0 }
+days BUNCH DENSITY= 800 PROTECT =) A...Z
— — 1600
6250

[MULTIVOL=number] [ID=id] [BBUF=buffers]

SB0O

SLO

SYC

SGO
@ANSITAPE
lvid

file
pathname

resid

. volname
C’

MPX-32
Utilities

treat resource as System Binary Output

treat resource as System Listed Output

treat resource as a System Control file

treat resource as a System General Object file
treat resource as an ANSI labeled tape

is the one- to six-character logical volume identifier previously
mounted by the ANSI labeled tape AMOUNT utility

is a one- to seventeen-character file identifier
is the pathname to be associated with the resource

is a unique resource identifier (including the volume name, creation
date, creation time, resource descriptor block, resource type, and
code) returned by the system when a resource is created

is the volume name on which temporary space is to be allocated. If
not specified, the default is any volume.

Cataloger (CATALOG)
Directives 3-3

ASSIGN (Cont.)

devmnc

1fc

format

blocks

SHARED

gennum

genvum

bsize

recsize

ACCESS

3-4

is the device mnemonic of a configured peripheral device. See
Appendix A.

is a one- to three-character logical file code used in the task. For an
ANSI labeled tape, only one LFC can be assigned to an lvid. Before
further assignments can be made, the M.DASN service must be used.

is the ANSI labeled tape record format. If not specified, the default
for write access is D. For read access, the format is read from the
tape. The formats are:

Format Description
F Fixed length
D Variable length
S Spanned

specifies the initial size, not greater than 65,535 blocks, of a file in
logical blocks. If not specified, the default is 16 blocks. If EOM is
encountered, the file extends automatically. This option is only valid
when used with the TEMP parameter.

if yes (Y) is specified, the resource is explicitly shared. If no (N) is
specified, the resource is exclusive. If not specified, the default is
implicitly shared. This option is only valid when used with the
pathname, RID, TEMP, and DEV parameters.

is the one- to four-decimal digit ANSI labeled tape file generation
number. On input (read access), this number must match the
generation number of the ANSI tape file that is being assigned. On
output (write, update, or append access), this value becomes the
generation number of the new ANSI tape file. If not specified, the
default is one on output; no check on input.

is the one- or two-decimal digit ANSI labeled tape file generation
version number. On input (read access), this value must match that of
the ANSI tape file. On output (write, update or append access), this
value becomes the generation version number of the new ANSI tape
file. If not specified, the default is zero on output; no check on input.

is read from the ANSI labeled tape on read access. For other types of
access, the value specifies the byte size of each data block including
the padding on an ANSI labeled tape. A maximum bsize of 2048
provides sufficient space for ANSI tape-switch label information after
the physical end-of-tape marker. If not specified, the default is 2048
bytes.

is read from the ANSI labeled tape header on read access. For other
types of access, this value specifies the record size for fixed length
records or the maximum record size for spanned and variable length
record formats. The maximum size for recsize is bsize. If not
specified, the default is 80.

specifies the type of access for resource. This must be a subset of
access allowed at resource creation. If not specified, the default is
the access specified at resource creation. This option is only valid
when used with the @ANSITAPE, pathname, RID, TEMP, and DEV
parameters.

Cataloger (CATALOG) MPX-32
Directives Utilities

F

BLOCKED

EXPIRE

date

+days

PRINT

PUNCH

DENSITY

PROTECT

MPX-32
Utilities

ASSIGN (Cont.)

For ANSI tapes, only read, write, update and append can be
specified. The ANSI default is read. ACCESS for ANSI labeled tapes,
is as follows:

Value Description
R Read existing file
W Create file at first unexpired file on tape
A Create file at end of tape
U Overwrite existing file with a new file of the same

name

if yes (Y) is specified, the resource is explicitly blocked. If no (N) is
specified, the resource is explicitly unblocked. If not specified, the
default is blocked. This option is only valid when used with the
@ANSITAPE, pathname, RID, TEMP, and DEV parameters.

specifies the termination date of an ANSI labeled tape file. If the file
has a termination date that is later than the file that physically
precedes it, the termination date is identical to the termination date
of the preceding file. If a file has a termination date that is earlier
than the file that physically precedes it, the files will expire on the
earlier termination date. If not specified, the default is +30 days
from creation.

specifies the date after which an ANSI labeled tape file can be
overwritten. The date is given in ASCII format--YYDDD where YY is
the year and DDD is the day number within the year (January 1 is
001). If the date is 00000, or a date prior to the current date, the file
has been terminated and is no longer accessible.

specifies the number of days after the creation date that an ANSI
tape file can be overwritten. This number must be preceded with a
plus (+) when entered. If not specified, default is +30 days.

WARNING: If the number of days is not preceded by a plus (+), the
number entered can be read as the date.

indicates the file is to be printed after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

indicates the file is to be punched after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

specifies density of high speed XIO tape. If not specified, the default
is 6250 BPI. This option is only valid when used with the DEV
parameter.

specifies protection for new ANSI labeled tape files. Zero specifies
owner only access. A...Z are reserved by the ANSI specification for
installation-specific protection. MPX-32 treats A..Z as owner-only
protection. If the correct protection value is not specified when using
an ANSI labeled tape, an I/O error occurs. If a user signs on as
'system', any protection value or owner name written by J.LABEL can
be overridden. If not specified, the default is no protection.

Cataloger (CATALOG)
Directives 3-5

ASSIGN (Cont.)

MULTIVOL

ID

buffers

Usage:

is a volume number for a multivolume tape. If not specified, the
default is zero (not multivolume). This option is only valid when used
with the DEV parameter.

is an identifier for an unformatted medium. If not specified, the
default is SCRA (scratch). This option is only valid when used with
the DEV parameter.

is the number of 192W blocking buffers if using a large blocking
buffer. If not specified, the default is one. This applies only to
permanent disk files.

ASSIGN SYM TO DEV=M9 DENSITY=800 BLLOC=Y

ASSIGN SGO TO OUTFILE

ASSIGN IN TO MYFILE BBUF=10

Notes:

1. To continue parameters over more than one input line, a hyphen (-) must terminate
the current input line. A blank space is required before the hyphen as shown in the
following example:

ASSIGN ABC TO DEV=M9 DENSITY=800 -
BLOCKED=Y

2. Anindividual parameter cannot be split between input lines.

Cataloger (CATALOG) MPX-32
Directives Utilities

"

ASSIGN1

3.6 ASSIGNI1 Directive

The ASSIGNI directive supplies default file assignments for logical file codes used by the
task being cataloged. This directive is for compatibility with MPX-32 1.x. Its use is not
recarnmended.

Syntax:
,password
ASSIGN1 Ife=filename ,password,lJ [lfc=...]
»U
Ifc is a logical file code used in the task to denote a generic input or output
source
filename is the name of a permanent disc file to assign to the LFC
Any one of the optional parameters following the file name may be
entered in the order shown in the syntax statement. Commas separate
options. If an option is omitted, the comma must be supplied:
filename,,U
password is ignored
U indicates the file is unblocked. If not specified, the default is blocked.
Usage:

ASSIGNL1 LIB=LIBRARY,,U DIR=DIRECTORY,,U

ASSIGN1 OT=0OUTFILE IN=INFILE,MYPASS

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-7

ASSIGN2

3.7 ASSIGN2 Directive

The ASSIGN2 directive supplies default system file assignments for logical file codes.
This directive is for compatibility with MPX-32 1,x, Its use is not recommended. At run
time, an LFC assignment to a system file results in the creation of one of the following
types of files for use by the task:

SBO System Binary Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
POD (Punched Output Device).

SLO System Listed Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
LOD (Listed Output Device).

SYC ' System Control - A temporary system file associated only with jobs
processed in the batch mode (one SYC per job). SYC is used for buffering
input from the device defined at SYSGEN or by the OPCOM SYSASSIGN
directive as SID (System Input Device). Tasks not designed to run only in
the batchstream should not make assignments to SYC. Batch tasks can
use SYC to input data records.

SGO System General Object - A system file associated only with jobs processed
in the batch mode. SGO is a permanent file used to accumulate object
code. The SGO file is deleted after the job is complete.

Syntax:
ASSIGN2 Ifc= (SBO,cards Mfec=...]
SLO,printlines
SYC
SGO
Ifc is a logical file code used in the task to denote a generic input or output
source
SBO . is the System Binary Output file
cards is the number of cards expected as abject deck output.. This number
determines the size of the SBO temporary file.
SLO is the System Listed Output file
printlines specifies the number of print lines required for listed output. This number
: determines the size of the SLO temporary file,
syC ~ is the System Control file. Use only if the task runs solely in the batch
mode. , :
SGO is the System General Object file

Cataloger (CATALOG) MPX-32
3-8 Directives ' Utilities

\ S

-

ASSIGN2 (Cont.)/ASSIGN3

Usage:

A2 INN=SYC
A2 OT=SL0,100 0T2=580,50

3.8 ASSIGN3 Directive

The ASSIGN3 directive supplies default device assignments for logical file codes used by
the task being cataloged. It also assigns a temporary disc file. This directive is for
compatibility with MPX 1.x. Its use is not recommended.

Syntax:

ASSIGN3 Ifc=devmnc, [blocks LUl [ife=...]
, [reel ,lvol]

Ifc is a logical file code used in the task to denote a generic input or output
source

devmnc is the device mnemonic of a configured peripheral device

blocks specifies the number of disc blocks (192 words) to allocate for the file

reel specifies a one to four character identifier for the reel. If not specified,

the default is SCRA (scratch).

vol indicates the volume number for a multivolume tape. If not specified, the
default is 0 (not multivolume).

U indicates that the tape or disc is unblocked. If not specified, the default
is blocked.

Usage:
Tape: A3 IN=M91000,SRCE,,U OT=PT

Disc: A3 IN=DC,20

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-9

ASSIGN4/BUFFERS

3.9 ASSIGN4 Directive

The ASSIGN4 directive associates one or more logical file codes used by the task being
cataloged with an existing LFC assignment. This assignment remains for the associated
file or device even if the original assignment is deallocated. This directive is for
compatibility with MPX 1.x. Its use is not recommended.

Syntax:
ASSIGN4 Ife=Ifc [Ifc=lfc]

Ife=Ifc is a pair of logical file codes. The first LFC is the new assignment and the
second is the LFC already associated with a file or device in any previous
ASSIGN directive, including ASSIGN4. Any number of LFC to LFC
associations can be established.

Usage:
A2 6=SYC
A3 IN=M91000,REEL

A4 OUT=IN
A4 IN2=6

3.10 BUFFERS Directive

The BUFFERS directive specifies the number of blocking buffers required to support
dynamically assigned blocked files in the task being cataloged.

Syntax:
BUFFERS buffers

buffers is the number of 768-byte blocking buffers required. The range is 0-255. If
not specified, the default is three.

If option 19 is set, the number of buffers specified is added to the three buffers required
by the Debugger. If option 19 is not set, the number of buffers specified is the number of
buffers reserved.

NOTES:

For shared tasks, BUFFERS supplles the total blocking buffer allocation for both static
and dynamic file allocations.

The total buffer count from all sources (static, dynamlc, and run time) is limited to 254
buffers at execution time.

Cataloger (CATALOG) MPX-32
3-10 - Directives Utilities

C

BUILD/CATALOG

3.11 CATALOG and BUILD Directives

The CATALOG and BUILD directives supply the load module name plus other control
information for the task being built. CATALOG creates a file whose name is equal to
the load moadule name in directory @SYSTEM (SYSTEM). BUILD creates a file whose
name is equal to the load module name in the default working volume and directory. To
create a load module file with a different file name, directory name, or volume name,
use the LMPATH directive. See the LMPATH directive and Table 3-1 for a summary.

When cataloging the main module of a task, CATALOG and BUILD specify the task's
privilege, priority, and overlay transient area. The optional parameters can be specified
in any order.

BUILD and CATALOG cannot be used in the same CATALOG job.

Syntax:

g_@LOG} loadmod | P | [TRA=size][priority] [NOM][NOP][SYM]
|50 g
O

loadmod is the name of the load module being built and, if not supplied by
LMPATH, the name of the file which contains the load module. The
name can be a maximum of eight characters. File names that begin with
the letters SYSG are loaded with a TSA address of X'60000'. This
facilitates SYSGEN's remapping between host and target systems.

P,U,0 for the main module only, specify P for a privileged task or U for an
unprivileged task (default). For an overlay module, specify O. Overlays
assume the privileged or unprivileged status of the main load module.

TRA=size is used with the main load module to specify the hexadecimal number of
bytes to allocate for the overlay transient area below the main load
module. The default is an area above the main load module which is
large enough to accommodate all overlay load modules cataloged in the
same run as the main load module.

priority for main load module only, specifies a base priority in the range 1 to
64. If not specified, the default is 60. Overlay load modules assume the
priority of the related main load module. If the BUILD or CATALOG
directive pertains to an overlay module, do not specify priority.

The priority at which a task executes depends on how the task is
activated (on-line, batch, or real time). In real time, the task maintains
its cataloged priority. If activated in TSM or in the batchstream, its
priority changes to the SYSGEN-defined priorities of either interactive

or batch.
NOM inhibits printing a main or overlay load module map
NOP inhibits output of a main or overlay load module to the file specified as

the load module file

SYM saves the symbol table for the main load module on a device or file.
This option is used when cataloging load modules of a segmented task in
different CATALOG runs. If the module is an overlay module, do not

- specify SYM.

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-11

CATALOG (Cont.)/CONNECT

Usage:

BUILD LOAD1 P TRA=40000 NOM
CATALOG LOAD2 NOP

3.12 CONNECT Directive

The CONNECT directive establishes a connection between a specified Datapool
(DATAPOOL or DPOOL00 through DPOOLY99) partition and its corresponding Datapool
dictionary. The parameters specified with this directive supply CATALOG with
information on which dictionary to access when a Datapool variable is referenced in the
- .object code.

Syntax:

CONNECT pathname TO partition [[PROTGRAN=]
number [FIRSTPAGE=] start]

pathname is the Datapool dictionary pathname
partition is the Datapool partition (DATAPOOL, DPOOL00 - DPOOL99)
number is the number of 512-word protection granules included in the partition.

If not specified, the partition must be defined prior to catalog time.

start is the beginning page number of the partition. If not specified, the
partition must be defined prior to catalog time.

The dictionary for DATAPOOL may be statically assigned to LFC DPD. This is provided
for compatibility; its use is not recommended.

The CONNECT directive may be continued on a subsequent line by entering a hyphen (-)
as the last nonblank character on a line. The hyphen must be preceded by a blank.

When CONNECT directives require location of a Datapool partition definition, the
LMPATH target volume/directory will be searched only if the LMPATH directive
precedes the CONNECT directives.

Usage:

CONNECT @VOLUME(SOME _DIR)POOL00.DICT TO DPOOL00 -
PROT=4 FIRST=192

Cataloger (CATALOG) MPX-32
3-12 Directives Utilities

S

ENVIRONMENT

3.13 ENVIRONMENT Directive

The ENVIRONMENT directive establishes residency, memory execution class, sharing
characteristics, and other environmental parameters for a task. The entries with this
directive supply information for the load module information area (preamble) in the main
load module.

If the ENVIRONMENT directive is not used, a task is nonresident and executable in any
available memory class (S, H, or E), UNIQUE, MAP8192, and DEBUGGABLE.

Syntax:

JE | [, UNIQUE
ENVIRONMENT [RESIDENT] |,H| |, SHARED|[,MAP2048
,S | [,MOCT1 ||,MAPB192]| [,NODEBUG]

RESIDENT specifies the task is resident in memory and cannot be swapped

E executes in class E memory only. If class E is unavailable, delay
execution until class E is available.

H executes in class H or faster memory. If both class H and E memory are
unavailable, delay execution until either one is available. If the requested
class of memory is not installed on the system, the first lower speed
memory available is allocated to the task.

S executes in any class of memory available (H, S, or E). Class S is the
default if no memory class is specified.

UNIQUE specifies the task is unique and not available for multiple concurrent
activations. Only one copy of the load module can be active in the system
at one time. This is the default and can be used with sectioned or
nonsectioned tasks.

SHARED copies the CSECT area of a sectioned task into physical memory once and
copies DSECT as needed for sharing. Use only with a sectioned task.

MULTI multicopies the entire load module into physical memory as needed for
concurrent activations. Can be used with a sectioned or nonsectioned
task.

MAP2048 indicates the map size of the target system is 2KW,. This establishes the

memory allocation and bounding requirement for the CSECT in sectioned
tasks to be 2KW. This is the default if a map size is not specified.

MAP8192 indicates the map size of the target system is 8KW. This establishes the
memory allocation and bounding requirement for the CSECT in sectioned
tasks to be 8KW.

NODEBUG indicates the Debugger cannot be attached to the load module. If not
specified, the Debugger can be attached.

Usage:
ENVIRONMENT RESI,H,MULTI,MAP2048

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-13

EXCLUDE/EXIT/EXTDMPX

3.14 EXCLUDE Directive

The EXCLUDE directive excludes object modules in the system or user libraries from the
load module being cataloged, even though the modules contain definitions for referenced
global symbols.

Object modules INCLUDEd from a library during cataloging may also reference the

EXCLUDEd object modules. The references are ignored and the specified object modules
remain excluded.

Object modules are excluded by specifying the referenced global symbol name. All
global symbols defined in an object module must be excluded for the object module to be
excluded from the load module.
Syntax:

EXCLUDE name [name] ...

name is the name of a global symbol in the object module

3.15 EXIT Directive

The EXIT directive terminates CATALOG processing. In interactive mode, control
returns to TSM. In batch mode, processing continues with the next JCL statement.

Syntax:

EXIT

3.16 EXTDMPX Directive

The EXTDMPX directive positions the extended portion of MPX-32 in the logical address
space of the task being cataloged. This directive pertains to the expanded execution
space option of MPX-32,

Syntax:
MINADDR
EXTDMPX (MAXADDR
[MBLK] = mapblock

MINADDR locates the extended portion of MPX-32 at the top of the task service
area, below the DSECT

MAXADDR locates the extended portion of MPX-32 at the top of the task's
extended data space

mapblock is a 1 to 4 digit decimal value between 64 and 2047 that specifies a
particular map block in the task's logical address space where the
extended portion of MPX-32 is to be located

At run time, values for mapblock below 64 (other than MINADDR) or above MAXADDR

cause an abnormal termination in task activation.

Cataloger (CATALOG) MPX-32
3-14 Directives Utilities

~

EXTDMPX (Cont.)/FILES
For shared tasks, the cataloged value of EXTDMPX cannot be overridden by the
EXTDMPX TSM directive.

This directive has no effect if the expanded execution space option is not in use.

3.17 FILES Directive

The FILES directive specifies the number of resources (files or devices) required for
dynamic assignments in a task.

Syntax:
FILES number

number is the number from 0 to 255 of dynamic resource assignments required
for the task. If not specified, the default is five.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number. of files
reserved.

Notes: For shared tasks, this specifies the total number of resources from all sources
(run time, static, and dynamic) that may be allocated.

The total file count at run time may not exceed 248.

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-15

INCLUDE/LINKBACK/LMPATH

3.18 INCLUDE Directive

The INCLUDE directive includes object modules from the system or user library in the
load module being cataloged, even though the modules are not referenced. If the
PROGRAMX directive is used to suppress SGO as an input source, INCLUDE must be
used to retrieve object maodules from a library.

Syntax:
INCLUDE name [name] ...

name is the name of a global symbol in the object module

3.19 LINKBACK Directive

The LINKBACK directive specifies overlay load modules at lower levels for backward
links when cataloging an overlay load module. Forward links from lower to higher level
overlay load modules are established automatically by CATALOG. ' LINKBACK allows
resolution of global symbaol references in the current load module to definitions in the
specified lower level overlays. In addition, if Option 3 is set, references to local
commons in-the current load module are resolved by corresponding local commons in the
specified lower level overlays.

Syntax:

LINKBACK loadmod [loadmod] ...
loadmod is the name of an overlay load module at a lower level. Mare than

one name can be supplied.

3.20 LMPATH Directive
The LMPATH directive specifies the pathname (including the file name) of a resource in
which to store the load module(s). LMPATH is optional. If not supplied, the file name is
the load module name taken from the first BUILD/CATALOG directive. Volume and
directory are the current default or @SYSTEM(SYSTEM) as appropriate. See the
CATALOG/BUILD directive and Table 3-1 for further information.
Syntax:

LLMPATH pathname
pathname is the pathname of a file in which the load module is cataloged
When CONNECT directives require location of a Datapool partition definition, the

LMPATH target volume/directory is searched only if the LMPATH directive precedes the
CONNECT directives.

Cataloger (CATALOG) MPX-32
3-16 Directives Utilities

@

LORIGIN/MOUNT

3.21 LORIGIN Directive

The LORIGIN directive establishes a new overlay level and origin. The default origin (no
parameter specified) is above the largest overlay load module at the preceding level.
LORIGIN does not have to be used for the lowest level of overlays, but must be used for
all higher levels.

If the second or higher level overlay is being replaced when recataloging an overlay load
module, the load module specified in the LORIGIN directive must have been previously
cataloged by a BUILD or CATALOG directive within the same CATALOG run.

Syntax:

LORIGIN [X bytesJ
loadmod

X bytes is the hexadecimal number of bytes to offset this level from the beginning
of the overlay transient area. The value is specified by X, one or more
blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module
at the previous level. This overlay does not have to be the largest overlay
at that level.

3.22 MOUNT Directive

The MOUNT directive specifies non-public volume requirements for the task being
cataloged.

Syntax:
MOUNT volname ON devmne [SYSID=id] [OPTIONS=([PUBLIC] [,[NOMSG])]

[sHARED = {}]

volname is the name of the volume to be mounted
devmnc is the device mnemonic of a configured peripheral device
id specifies the port identifier required for multiport volumes only. Must be

MPx where x is a single hexadecimal digit.

OPTIONS specifies options for the mounted volume. If PUBLIC is specified, the
volume is to be mounted for public use (valid only if task has System
Administrator attribute). If not specified, the default is nonpublic. If
NOMSG is specified, a mount message is not displayed on the operator's
console. If not specified, a mount message is displayed.

SHARED specifies sharing attributes for the volume. If yes (Y) is specified, the
resource is explicitly shared. If no (N) is specified, the resource is for
exclusive use. If not specified, the resource is implicitly shared.

Usage:

MOUNT DIR1 ON DM0202 SHARED=Y

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-17

OPTION

3.23 OPTION Directive

The OPTION directive specifies up to 32 options that become permanent attributes of
the load module being cataloged. Options 1 to 32 set bits in the option word in the task's
TSA. The bit set is determined by subtracting the option number from 32.

When activated, the task can use the M.PGOW service to return the contents of the TSA
option word, check the bit settings, and take action as required.

Options can also be specified before a task is run in the interactive or batch mode.
Options supplied at run time may override cataloged options or may be added to (ORed
with) cataloged options. Options 1 to 20 are task-dependent. Options 21 to 32 are
system-defined and available to all tasks. Refer to the MPX-32 Reference Manual for
more information.

Syntax:
OPTION n [n] ...
n is a number from 1 to 32 which sets the corresponding bit in the TSA

status word. CATALOG options are described in Section 1. System
options for the load module can be specified by name or number:

Option Option
Number Name Description

21 PROMPT displays the first three characters of the
task name (load module name) before
reading from the terminal when the task is
run in the interactive mode

22 LOWER inhibits converting lower case to upper
case. This option is only valid if the task
is run in the interactive mode.

23 TEXT echoes text to the wuser terminal
(interactive) or SLO file or device (batch)
as it is read from the SYC file

24 DUMP specifies that if the task aborts a dump of
the task's area of memory will be
generated

25 CPUONLY executes the task on the CPU only

26 IPUBIAS executes the task on the IPU if the task is
IPU-compatible

Cataloger (CATALOG) MPX-32

3-18 Directives Utilities

ORIGIN/PASSWORD/PROGRAM/PROGRAMX

3.24 ORIGIN Directive

The ORIGIN directive establishes a new origin (level unchanged) for subsequent overlay
load modules. It can be used to override the default origin for a set of overlays at a
particular level. The default origin (no parameter specified) is above the largest overlay
load module at the preceding level.

Syntax:

ORIGIN |X bytes
loadmod

X Dbytes is the hexadecimal number of bytes to offset this level from the
beginning of the overlay transient area. The value is specified by X,
one or more blanks, and the number of bytes in hexadecimal.

loadmod specifies the new origin to be at the end of a specific overlay load
module at the previous level. The specified overlay does not have to be
the largest overlay at that level. If replacing the second or higher
level overlay when recataloging an overlay load module, the loadmod
name cannot be used unless the referenced load module has been
previously cataloged by a BUILD or CATALOG directive within the
same CATALOG run.

3.25 PASSWORD Directive

The PASSWORD directive is included for compatibility and is ignored by CATALOG.
Items following this directive on the same line are ignored.

Syntax:

PASSWORD

3.26 PROGRAM Directive

The PROGRAM directive specifies object modules to include from SGO in a main or
overlay load module. If omitted, all object modules on the file or device assigned to SGO
are included.

Syntax:
PROGRAM objmod [objmod] ...

objmod is the name of the object module (such as, program/subroutine name) to
include. More than one name can be specified.

3.27 PROGRAMX Directive

The PROGRAMX directive excludes all object modules from SGO when cataloging a load
module. An INCLUDE directive is required to get object modules from a library if the
PROGRAMX directive is used.

Syntax:
PROGRAMX

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-19

RECATALOG/SEGFILES/SPACE

3.28 RECATALOG Directive

The RECATALOG directive is used when cataloging a segmented task in phases or when
recataloging one or more overlays of a segmented task, RECATALOG can only be used
with single file load modules. The load module file must exist if RECATALOG is used.

Syntax:
RECATALOG [loadmod]
loadmod is the one- to eight-character name of the permanent disc file containing

the load modules. If LMPATH supplies a file name, loadmod is ignored.

3.29 SEGFILES Directive

The SEGFILES directive specifies the number of noncontiguous disc files required for use
by the task. If this directive is not used, the default is the number of files specified in
the FILES directive. If neither the SEGFILES or FILES directives are specified, the
default is five.

Syntax:
SEGFILES number
number " is the number of noncontiguous disc files required by the task. This number
must not be greater than the number specified in the FILES directive.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number of files
reserved.

3.30 SPACE Directive

The SPACE directive allows the potential maximum task size to be increased above the
default 2MB size.

Syntax:
increment
SPACE MBLK = mapblock

increment is a 1 to 2 digit number that specifies the maximum task size in one
megabyte increments. The range is from 3 to 16MB.

mapblock is a 1 to 4 digit decimal number that specifies the maximum task size in
map blocks. The range is from 256 to 2048.

The SPACE directive establishes the maximum size to which a task can grow. No
memory is actually allocated to the task.

'For shared tasks, the cataloged value can not be overridden with the TSM SPACE
command.

The SPACE directive has no effect on tasks executed on a CONCEPT 32/27, or
CONCEPT 32/87 system.

Cataloger (CATALQOG) MPX-32
3-20 Directives Utilities

T

SYMTAB/VOLUMES

3.31 SYMTAB Directive

The SYMTAB directive loads the symbol table containing the names of all common
blocks, definitions, and references from a previous CATALOG session. The symbol table
is used when cataloging a segmented task in phases or when recataloging a segmented
task. If the SYMTARB directive is used, the SYMTAB file or device must be assigned to
logical file code SYI prior to executing CATALOG.

Syntax:
SYMTAB

3.32 VOLUMES Directive

The VOLUMES directive specifies the number of nonpublic volumes that can be
dynamically mounted by the task at one time.

Syntax:
VOLUMES number
number is the number of entries to be reserved. This number is in addition to the

current working volume plus any MOUNT directives processed. If not
specified, the default is zero.

MPX-32 Cataloger (CATALOG)
Utilities ~Directives 3-21

Table 3-1.
LMPATH/BUILD/CATALOG Interaction

Name and Location of

Load Module File Execution
LMPATH Directives
Condition BUILD X CATALOG Y
NO LMPATH @working(working) X $@working(working) X (or)

@SYSTEM(SYSTEM) Y $@SYSTEM(SYSTEM) Y

LMPATH is: @VOL(DIR)X $@VOL(DIR) X (or)
@VOL(DIR) @VOL(DIR)Y $@VOL(DIR) Y
LMPATH is: AVOL(DIRFILENAME @VOL(DIR)FILENAME $@VOL(DIR)FILENAME

AVOL(DIR) FILENAME

Notess

. X and Y are limited to eight characters and may contain any printable characters if
LMPATH has supplied the file name. If this field will be used as the file name, then
normal MPX-32 rules for file names apply. This field may optionally be enclosed in
single quotes (not counted in the eight characters).

. FILENAME may be up to 16 characters long and adheres to normal MPX-32 rules for
file names.

. Load modules are placed in execution by referencing the file that contains them.

. By default, the execution time task name is the name of the file that contains the load
module (truncated to eight characters).

M~ oa Vo (AATAT AN NAMN/ _ZD
ataluycl \\«vMm i ALy Yl N

3-22 irectives Utilities

SECTION 4 - ERRORS AND ABORTS

4.1 Error Overview

CATALOG reports error conditions as (WARNING) or <KFATAL>> depending on
severity. Fatal type errors may cause immediate termination of processing or may allow
processing to continue. In either case, any fatal error will inhibit the generation of a
load module file, and will set the task abort flag. Warning type errors never cause
process termination and inhibit the production of a load module file only in certain cases
and when option 18 is set.

These cases are conditions that CATALOG has resolved, but there is doubt as to the
correctness and/or completeness of the load module. In such cases, the process abort
flag is set; if option 18 is set, the load module file is not updated. By examining the
flagged conditions, the usability of the load module can be determined. If the abort flag
is set, CATALOG always indicates, at termination whether the load module file has heen
updated or not.

4.1.1 Phase One Errors

During phase one (the linking phase) CATALOG processes the directives and performs the
first pass over the object code. Every effort is made to complete phase one and report
as many problems as possible.

Directive errors are reported by a message of the form:
ERROR IN FIELD n: description

which is displayed immediately under the incorrect directive. The following example
demonstrates how field n is assigned:

Directive: BUILD TESTMOD P TRA=1000 NOM
Field : n= 1 2 3 4 5 6

If appropriate, a second line is displayed which provides more information on the error
and/or possible corrective actions.

Errors in the object code are of two origins:

. physically corrupted records which fail the tests for record type, checksum, or
sequence

. logically incorrect operations which, in the context of this run, direct CATALOG to
perform an inconsistent operation

Object code errors are reported in the following form:

LFC: Ifc
MODULE: module
PROGRAM: program, OBJECT REC X'nnn' - description

MPX-32 Cataloger (CATALOG)
Utilities Errors and Aborts 4-1

Ifc is the logical file code presenting the origin of the record (SGO or a

library)
madule is the load module currently being linked
program is the name of the program element currently being processed
nnn is the program's logical object record number
description indicates the nature of the error

A blank program name field indicates that the error occurred while processing the first
record of a new program element.

All directive and object code errors detected in phase one are fatal. CATALOG issues a
fatal message and terminates at the end of phase one without updating the load module
file.

4.1.2 Phase Two Errors

During phase two (the building phase) a fatal error generally causes immediate
termination of CATALOG. Warning errors are reported and always result in an updated
load module file, unless option 18 has been set.

4.1.3 Errors from MPX-32 (Phase One and Two)

When input/output operation errors occur, the File Control Block (FCB) status word,
logical file code, and other pertinent information are displayed. Such errors usually
indicate a hardware failure in the I/O device involved. See the MPX-32 Reference
Manual Volume I for a description of the FCB status word (word 3) and its interpretation
for different devices.

CATALOG also reports errors returned from MPX-32 services. The MPX-32 error/abort
code is contained in a message that supplies pertinent information. To interpret the
error/abort code, use the TSM $ERR directive, or consult Appendix C of the MPX-32
Reference Manual.

4.1.4 Conditions that Cause Incomplete Load Modules

The following paragraphs describe conditions that CATALOG has resolved, but there is
doubt as to the correctness and/or completeness of the load module.

Allowing incomplete load modules to be built is a feature that is provided to aid code
development. The programmer can assess the problems and decide whether the load
module is executable or usable in a debugging session.

The production of an incomplete load module can be inhibited by option 18. If the
replacement of an existing load module with a faulty one could cause problems, it is
recommended that option 18 be used.

Multiple Transfer Addresses

When the object code linked into a load module contains more than one transfer address,
CATALOG selects and uses the first one detected. Subsequent transfer addresses are
reported in a warning message.

Cataloger (CATALOG) MPX-32
4-2 rrors and Aborts Utilities

f"\‘

No Transfer Addresses

When the object code linked into a root load module contains no defined transfer address,
CATALOG attempts to select an address. The selection criteria is:

1) The address of the first DEFed symbol of the first program element of the load
module is selected.

2) If the first program element contains no DEFed symbols, the address of the
first noncommon word allocated in the first program element of the load
module is selected.

The selected symbol or address is displayed in a warning message and the load map
header indicates no transfer address.

Providing a transfer address allows the load module to be loaded. Even if the selected
location is incorrect, the load module can be loaded with the debugger, and execution
starts at the correct location using the appropriate DEBUG directive.

The following three conditions result from memory reference instructions for which
CATALOG cannot provide a valid address. The action taken by CATALOG is to replace
the instruction with a call to DEBUG. The effect of this is to cause the debugger to be
automatically loaded if the task is executed and the faulty instruction is encountered. If
the debugger is already loaded and a faulty instruction is executed, DEBUG signals a
BREAK occurrence.

1. Unresolved External References

When a program element references an external symbol which is not defined,
CATALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

When an external symbol is referenced several times in one program element, the
references are linked together in the object code. The warning message issued by
CATALOG provides the address of all the instructions in the list.

2. Unresolved Datapool References

When a program element references a Datapool variable and that variable is not
defined in any connected dictionary, CATALOG issues a warning message that
displays the symbol name and the program and load module relative addresses of
the reference.

3. Out of Range Datapool References

When a program element references a Datapoo! variable whose dictionary definition
causes the generated address to be beyond the bounds of the partition definition,
CATALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

In the following three conditions, the executable portion of the load module is not
affected, but the requested information is missing.

MPX-32 Cataloger (CATALOG)
Utilities<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>