
i8X8X8X8X~X8i

I I
x I I x
I I
I I
8 I I 8
X I
18x8x8x8x8x8x8x8x8x8x8x8x8x8x8x8xax8x8x8x8x8x8x8x8x8x

USERS MANUAL

)

SlEDD A DIGITAL SYSTEMS

t

(

)

/

X6800

USER MANUAL FOR THE
6800 X8 SERIES CROSS-ASSEMBLER ON THE PDP8-E.

APRIL 1976

SIERRA DIGITAL SYSTEMS
1440 WESTFIELD AVE.
RENO, NEVADA 89509
702-329-9548

ALTHOUGH THE INFORMATION IN THIS MANUAL HAS
BEEN CHECKED FOR ACCURACY, NO RESPONSIBILITY
IS ASSUMED FOR ERRORS. THIS DOCUMENTATION IS
$UB~ECT TO CHANGE WITHOUT NOTICE.

PDP AND OS/8 ARE REGISTERED TRADEMARKS OF
DIGITAL EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS.

TABLE OF CONTENTS: SECTION •

INTRODUCTION .. , 1. O. 0

OPERATION. .. 2. O. 0
LOADING THE CROSS-ASSEMBLER. .. 2. 1. 0
CALLING SEQUENC~ .. 2. 2 0
INPUT/OUTPUT FILE EXTENSIONS 2.3.0
RUN-TIME OPTIONS , 2. 4.0

ASSEMBLER CHARACTER SET. .. 3. O. 0

STATEMENT FORMAT. .. 4. ~ 0
COD I NG CONVENT IONS. .. 4. 1. 0
LABELS. .. 4.2.0
OPERATORS. .. 4.3.0
OPERANDS. .. 4. 4. 0
TERMS AND EXPRESSIONS. .. 4. 5. 0

NUMERIC CONSTANTS. .. ~ O. 0
CONSTANTS WITH RADIX INDICATORS.................... 5. 1. 0
CONSTANTS WITH ASCII INDICATORS 5.2.0

SYMBOLS ;. .. 6. O. 0
PERMANENT SYMBOLS. .. 6. 1. 0
USER DEF I NED SYMBOLS. .. 6. 2. 0
LOCAL SYMBOLS. .. 6. 3. 0

CURRENT LOCATION COUNTER. .. 7. O. 0

ARITHMETIC OPERATOR SET. .. 8. O. 0
UNARY OPERATORS. .. 8. 1. 0

BYTE ACCESS OPERATORS (AL AND AM>' 8. 1. 2
THE COMPLEMENT OPERATOR (AC).................... a 1.3
? OPERATOR. .. 8. 1.4

B I NARY OPERATORS. .. 8. 2. 0

PSEUDO-OPERATORS , 9. O. 0
ASSIGNMENT PSEUDO-OPS. .. 9. 1. 0

· EQU. .. 9. 1. 1
· SET .. 9. 1.2
· DINST. .. 9. 1.3
· ORG. .. 9. 1.4

DEFAULT RADIX PSEUDO-OPS........ 9.2.0

TABLE OF CONTENTS: (CONT.) SECTION ..

DATA STORAGE PSEUDO-OPS. .. 9. 3. 0

· BYTE. 9. 3. 1
· DBYTE. .. 9.3.:2
· ADDR. .. 9.3.3
· ZERO. .. 9. 3. 4

LlSTING CONTROL DIRECTIVES. .. 9. 4. 0
· LIST. .. 9. 4. 1
· PAGE. .. 9. 4. 2
· TITLE. .. 9.4. 3

CONDITIONAL ASSEMBLY PSEUDO-OPS. 9. 5. 0
· IFZERO. .. 9. 5. 1
· IFNZRO. .. 9. 5. 2
· IFDEF. .. 9. 5. 3
· IFNDEF. .. 9. 5. 4
· ENDC. .. 9. 5. 5

. END PSEIJDO-OP. .. 9.6.0

ERROR MESSAGES '. 10. O. 0

MODIFICATION NOTES 11. 0, 0

CROSS ASSEMBLER SPECIFICS , , , 12. O. 0
CROSS-ASSEMBLER FILE NAMES 12. 1. 0
ADDRESSING MODE REQUIREMENTS 12.2.0
RESERVED CHARACTERS 12. 3. 0
LISTING FILE FORMA~ 12. 4. 0
BINARY FILE OUTPUT 12. ~ 0
ADDITIONAL ERROR MESSAGES 12. 6. 0
SAMPLE PROGRAM 12. ~ 0

MICROPROCESSOR INSTRUCTION SET , , , 13. O. 0

APPEND ICES. • 14. O. 0
RUN-TIME OPTIONS APPENDIX A
INDICATOR SET APPENDIX B
PSUEDO-Opa APPENDIX C
ERROR MESSAGES APPENDIX 0

'\ ,

#1. O. 0
1. O. 0 I NTRODUCT ION.

THIS MANUAL DESCRIBES ONE OF THE XS (CROSS EIGHT) SERIES OF MICRO
PROCESSOR CROSS-ASSEMBLERS SIERRA DIGITAL SYSTEMS HAS DEVELOPED FOR
POPS USERS. THE XS SERIES WILL HANDLE ALL OF THE POPULAR MICRO
PROCESSORS WITHIN A UNIVERSAL ASSEMBLER FORMAT. THIS COMMON BASE
OF ASSEMBLER DIRECTIVES AND TECHNIQUES IS A SELECTED COMBINATION OF
DESIRABLE FEATURES OBSERVED IN A SURVEY OF MANY EXISTING MINI
COMPUTER AND "MICROPROCESSOR ASSEMBLERS. THE INSTRUCTION MNEMONICS
AND ASSOCIATED SYNTAX OF EACH PARTICULAR MICROPROCESSOR ARE
RETAINED UNCHANGED.

THIS MANUAL DESCRIBES THE USAGE OF ONE OF THE MICROPROCESSOR CROSS
ASSEMBLERS FROM THE SIERRA DIGITAL X8 SERIES. IN ORDER TO SIMPLIFY
THE LEARNING PROCESS FOR INDIVIDUALS USING MORE THAN ONE CROSS
ASSEMBLER FROM THE SERIES, THIS MANUAL HAS BEEN DIVIDED INTO TWO
MAJOR PARTS. SECTIONS 1 THROUGH 11 DOCUMENT THE UNIVERSAL ASSEMBLER
FORMAT AS IT APPLIES TO ALL CROSS-ASSEMBLERS IN THE SERIES. THESE
SECTIONS WILL BE IDENTICAL IN EVERY CROSS-ASSEMBLER MANUAL.
SECTION 12 PRESENTS INFORMATION ON APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO THE SPECIFIC MICROPROCESSOR CROSS-ASSEMBLER.
SECTION 13 PRESENTS A SUMMARY OF THE MNEMONIC INSTRUCTION CODES
ASSIGNED BY THE MICROPROCESSOR VENDOR A~D RECONIZED BY THE CROSS
ASSEMBLER. NO ATTEMPT HAS BEEN MADE TO DESCRIBE THE OPERATION OF
THE MICROPROCESSOR ITSELF. SUCH INFORMATION MUST BE OBTAINED FROM
THE MICROPROCESSOR VENDOR OR OTHER SOURCES. SECTION 14, THE APPEN
DICES, CONTAINS SUMMARY TABLES FOR QUICK REFERENCE ONCE THE USER
GAINS EXPERTISE IN USING THE CROSS-ASSEMBLER.

WE AT SIERRA DIGITAL LOOK FORWARD TO DEVELOPING MORE ASSEMBLERS IN
OUR X8 SERIES TO PROVIDE YOU, THE USER, WITH THE MEANS OF
PIONEERING THE NEW WORLD OF MICROPROCESSORS.

2. O. 0 OPERATION.

SIERRA DIGITAL~S CROSS-ASSEMBLER IS AN SK, TWO PASS ASSEMBLER WHICH
RUNS UNDER THE OS/S OPERATING SYSTEM. THE CROSS-ASSEMBLER IS CODED
IN PDP/S ASSEMBLY LANGUAGE (PALS) TO GIVE FAST EXECUTION TIMES.
(LESS THAN 30 SECONDS FOR A NORMAL 4K BYTE PROGRAM IS TYPICAL).

PASS 1 READS THE INPUT FILES AND SETS UP THE SYMBOL TABLES. PASS 2
THEN GENERATES THE OUTPUT FILE IN THE BINARY (OBJECT) FORMAT OF THE
PARTICULAR MICROPROCESSOR THE OUTPUT FILE CAN BE CHANGED TO BNPF
FORMAT THROUGH USE OF THE /B RUN-TIME OPTION.

/ A THIRD ASSEMBLY PASS IS DONE WHEN A LISTING OUTPUT FILE IS SPECI
FIED. WHEN NO BINARY FILE IS SPECIFIED, THE ASSEMBLER GOES DIRECTLY
TO THE PASS 3 LISTING.

#2. O. 0

THE CROSS-ASSEMBLER IS NOT RESTARTABLE. IF AN ATTEMPT IS MADE TO
RESTART THE ASSEMBLER WITH A . ST COMMAND, THE KEYBOARD MONITOR
RETURNS A .. NO! !" .

TYPING CTRL/C WILL HALT ASSEMBLY AND CAUSE AN IMMEDIATE EXIT TO THE
KEYBOARD MONITOR.

TYPING CTRL/O AT THE KEYBOARD DURING ASSEMBLY WILL SUPPRESS THE
LISTING OF ERROR MESSAGES TO THE CONSOLE DURING PASSES 1 AND 2. THE
OUTPUT FILE WILL STILL SHOW THE ERROR MESSAGES IMMEDIATELY BEFORE
THE LINE THAT IS IN ERROR.

2. 1. 0 LOADING AND SAVING THE CROSS-ASSEMBLER.

THE CROSS-ASSEMLER IS PROVIDED IN BINARY' FORMAT ON PAPER TAPE OR IN
BOTH BINARY AND IMAGE FORMATS ON FILE-STRUCTURED MEDIA.

TO LOAD THE ASSEMBLER FROM PAPER TAPE AND SAVE IT, PLACE THE TAPE
IN THE READER AND CALL THE ABSOLUTE LOADER:

· R ABSLDR
*PTR:$

· SAVE SYS: XNAME

FROM FILE STRUCTURED MEDIA, THE IMAGE FORMAT PROGRAM MAY BE COPIED
DIRECTLY TO THE SYSTEM DEVICE OR THE BINARY FORMAT FILE MAY BE
LOADED WITH THE ABSOLUTE LOADER MODIFICATIONS TO THE IMAGE FILE,
SUCH AS INVERTING THE SENSE OF A RUN-TIME OPTION, MAY BE
IMPLEMENTED ACCORDING TO THE NOTES IN SECTION # 11. O. 0 .

2 2. 0 CALLING SEQUENC~

ONCE LOADED AND SAVED, THE CROSS-ASSEMBLSR IS CALLED FROM THE
SYSTEM DEVICE BY TYPING:

· R XNAME

THE ASSEMBLER CALLS THE COMMAND DECODER WHICH RESPONDS WITH AN
ASTERISK IN THE LEFT HAND MARGIN. THE USER MAY THEN TYPE IN THE
INPUT AND OUTPUT FILE SPECIFICATIONS AND RUN-TIME OPTIONS:

*DEV:BIN,DEV:LIST<DEV: IN1, ... DEV: IN9/0PT

(
\,

THE FIRST OUTPUT FILE IS THE MICROPROCESSOR BINARY OBJECT FILE ~
WRITTEN IN THE FORMAT SPECIFIED BY THE VENDOR OF THE PARTICULAR
MICROPROCESSOR. (SEE SECTION 12. O. 0 FOR THE FORMAT SPECIFICATIONS),

-- -------------- - ~---

2. 2. 0

THE SECOND OUTPUT FILE IS THE OPTIONAL LISTING. WHEN ONLY THE FIRST
OUTPUT FILE IS SPECIFIED, THE ASSEMBLER ASSUMES THAT IT WILL BE THE
BINARY OUTPUT FILE AND THE LISTING IS OMITTED.

THE FOLLOWING EXAMPLE SPECIFIES FILE "IN1" TO BE READ FROM DECTAPE
o AND THE BINARY (OBJECT) FILE TO BE OUTPUT TO THE PAPER TAPE PUNCH
WITH NO LISTING:

· R XNAME
*PTP:<DTAO: IN1

THIS EXAMPLE SPECIFIES 2 FILES AS THE SOURCE INPUT (FROM THE DSK:
DEVICE) WITH ONLY THE PASS 3 LISTING BEING OUTPUT TO THE LINE
PRINTER:

· R XNAME
*, LPT: <IN!' IN2

UP TO NINE INPUT FILES CAN BE SPECIFIED AS ONE PROGRAM WHERE THE
LAST FILE IS TERMINATED WITH AN . END STA'TEMENT.

2. 3. 0 INPUT/OUTPUT FILE EXTENSIONS.

IF THE EXTENSION TO AN INPUT FILE NAME IS OMITTED, THE ASSEMBLER
ASSUMES THE . MS EXTENSION. IF THERE IS NO FILE WITH THAT NAME AND
AN . MS EXTENSION, THE ASSEMBLER ASSUMES THE NULL EXTENSION. UNLESS
EXTENSIONS ARE SPECIFIED, THE . MB AND . LS EXTENSIONS ARE ADDED TO
THE OUTPUT BINARY AND LISTING FILES.

· MB - MICROPROCESSOR BINARY OUTPUT FILE EXTENSIO~
· LS - OIJTPUT LISTING FILE EXTENSION.
· MS - MICROPROCESSOR SOURCE FILE EXTENSION.

2 4. 0 RUN-TIME OPTIONS.

TABLE #1 DESCRIBES THE OPTIONS WHICH MAY BE SPECIFED AT RUN-TIME
IN THE INPUT LINE TO THE COMMAND DECODER.

IF ONE OR MORE OF THESE OPTIONS IS CONTINUALLY CALLED, THE USER
SHOULD CONSIDER MODIFYING THE ASSEMBLER TO INVERT THE SENSE OF THE
OPTION. THE MODIFICATION NOTES IN SECTION #11. O. 0 EXPLAIN HOW THIS
MAY BE DONE. FOR EXAMPLE, A USER WHO PREFERS TO OUTPUT FILES IN
BNPF FORMAT RATHER THAN BINARY CAN INVERT THE SENSE OF THE /B
OPTION. THEN THE BINARY FILES ARE NORMALLY WRITTEN IN BNPF FORMAT.
USE OF THE /B OPTION THEN CAUSES THE OUTPUT FILE TO BE WRITTEN IN
THE STANDARD MICROPROCESSOR BINARY CODE. SPACE IS PROVIDED IN
TABLE #1 TO CHECK OFF WHICH OPTIONS HAVE BEEN INVERTED FOR YOUR
REFERENCE.

TABLE :ttl. RUN-T I ME OPT IONS. #2. 4. 0

**
OPT I ON MEAN I NG . INVERT?
**
/B THE BINARY OUTPUT FILE IS WRITTEN IN BNPF FORMAT. ------

INSTEAD OF IN THE MICROPROCESSOR VENDOR"S STANDARD
BINARY FORMAT.

FOR THE BNPF FORMAT, THE BINARY OUTPUT IS CONVERTED
TO ASCII TEXT WHERE

"B" INDICATES THE BEGINNNING OF A BYTE,
"F" INDICATES THE END OF A BYTE,
"P" INDICATES A 1 BIT AND'
II Nil INDICATES A 0 BIT.

FOUR BYTES , SEPARATED BY SPACES, ARE WRITTEN PER
LINE. THE ADDRESS OF THE FIRST BYTE IS GIVEN IN
SIX DIGIT OCTAL AT THE BEINNING OF THE LINE.
LEADING ZEROES IN THE ADDRESS ARE CONVERTED TO
SPACES. EACH LINE IS PRECEDED BY 2 SPACES. LEADER
CONSISTS OF 100 NULL CHARACTERS WITH 20 RUBOUTS
IMMEDIATELY PRECEEDING AND FOLLOWING THE ASCII
TEXT.

EXAMPLE: THE FOLLOWING CODE IS SHOWN REWRITTEN IN
BNPF FORMAT.

. (IRG

. BYTE
100
27,C7,AF,D7,FF,72,O,DO

100 BNNPNNPPPF BPPNNNPPPF BPNPNPPPPF BPPNPNPPPF
104 BPPPPPPPPF BNPPPNNPNF BNNNNNNNNF BPPNPNNNNF

/E INHIBIT ERROR MESSAGES TO THE CONSOLE. ------
NORMALLY ERROR MESSAGES ARE OUTPUT TO THE CONSOLE
DURING ASSEMBLY PASSES 1 AND 2. SINCE ERROR MESS-
AGES ARE INCLUDED IN THE LISTING, USERS WITH SLOW
CONSOLE DEVICES SUCH AS TTY'S CAN SPEED ASSEMBLY
TIME WITH THIS OPTION.

ALSO, IF THE BINARY FILE IS TO BE OUTPUT TO THE
CONSOLE DEVICE, THE ERROR MESSAGES AND BINARY
OUTPUT LINES WILL BE INTERMIXED. THE /E OPTION WILL
INHIBIT ALL BUT FATAL ERROR MESSAGES SO THAT ONLY
THE BINARY FILE IS OUTPUT.

**

(

\

/

TABLE #1. RUN-TIME OPTIONS. (CONT.) #2.4.0

**
OPTION MEANING INVERT?
**
/H INHIBIT HEADINGS AND PAGINATION. ------

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE
OUTPUT, ADDING A HEADER TO THE TOP OF THE PAGE. USE
OF THE /H OPTION WILL ELIMINATE THE HEADING AND THE
PAGINATION.

/J LIST UNASSEMBLED STATEMENTS AND CONDITIONAL -------
ASSEMBLY PSEUDO-OPS.
STATEMENTS WHICH DO NOT GET ASSEMBLED DUE TO
CONDITIONAL ASSEMBLY PSEUDO-OPS ARE NORMALLY NOT
LISTED. NEITHER ARE THE CONDITIONAL PSEUDO-OPS
THEMSELVES. USE OF THE /J OPTION WILL ADD THESE
STATEMENTS TO THE LISTING.

/K EXPAND SYMBOL TABLE STORAGE INTO EXTRA CORE. ------
NORMALLY MOST OF FIELD 1 IS USED FOR BOTH LOCAL AND
NORMAL USER SYMBOL STORAGE. USE OF THE /K OPTIONS
EXPANDS CORE USAGE TO 12K WHERE THE LOCAL SYMBOL
TABLE RESIDES IN FIELD 2 AND THE REGULAR SYMBOL
TABLE RESIDES IN FIELD 1.

/L OUTPUT LEADER IN BINARY FILE FOR . ORG STATEMENTS ------
THIS OPTION MAY BE USED TO PHYSICALLY SEPARATE
DISCONTINUOUS SECTIONS OF THE BINARY OUTPUT ON A
PAPER TAPE.

/0 OUTPUT LISTING WITH BINARY CODE IN OCTAL FORMAT. ------
THE GENERATED BINARY CODE IS NORMALLY PRINTED IN
HEXADECIMAL AT THE LEFT OF THE PROGRAM STATEMENTS
IN THE LISTING FILE. THE /0 OPTION WILL CAUSE THE
BINARY CODE TO BE LISTED IN OCTAL INSTEAD OF
HEXADECIMAL.

/N LIST ONLY THE SYMBOL TABLE. ------
THE THIRD PASS LISTING NORMALLY CONSISTS OF THE
STATEMENT LISTING PLUS THE USER SYMBOL TABLE
LISTING. THE /N OPTION CAUSES ONLY THE SYMBOL TABLE
TO BE LISTED.

/P INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE LISTING------
SOME PSEUDO-OPS WILL NOT BE LISTED BY PASS 3 UNLESS

/S

THE /P OPTION IS USED.

OMIT THE SYMBOL TABLE FROM LISTING. -------
ONLY THE PROGRAM STATEMENTS ARE LISTED WITH THIS
OPTION.

**

TABLE tH. RUN-TIME OPTIONS. (CONT.) *2.4.0

**
OPTION MEANING INVERT?
**
/T REPLACE FORM/FEED WITH 3 CR/LF'S. ------

WHEN LISTING TO A DEVICE SUCH AS A TTY WHICH DOES
NOT HAVE A FORM/FEED CONTROL, USE OF THE /T OPTION
WILL REPLACE THE FORM/FEED WITH 3 BLANK LINES .

/W INHIBIT WARNING MESSAGEa ------
WHEN WARNING MESSAGES CAN BE SAFELY IGNORED, THIS

/0
TO /9

OPTION WILL PREVENT THEM FROM BEING OUTPUT.

USER FLAGS, USED WITH THE ? OPERATOR, SEE SECTION
+I: 8.1.4 .

**

3. O. 0 ASSEMBLER CHARACTER SET.

THE FOLLOWING CHARACTERS ARE LEGAL SOURCE CODE CHARACTERS:

1) ALPHABETICS A-Z, UPPER CASE ASCII
2) NUMERICS 0-9
3) THE SPECIAL CHARACTERS LISTED BELOW.

* /
8<

+

[J

;

" OR '
?

MULTIPLICATION
DIVISION
BOOLEAN AND
I NCUJS I VE OR
ADDITION
SUBTRACTION
PRECEDENCE INDICATORS
UNIVERSAL UNARY OPERATOR (U?ARROW). USED WITH:

AC - COMPLEMENT (UPARROW C)
AB - BINARY RADIX INDICATOR (UPARROW B)
AD - DECIMAL RADIX INDICATOR (UPARROW D)
AH - HEXADECIMAL RADIX INDICATOR (UPARROW H)
AO - OCTAL RADIX INDICATOR (UPARROW 0)
AL - LEAST SIGNIFICANT BYTE ACCESS OPERATOR
AM - MOST SIGNIFICANT BYTE ACCESS OPERATOR

COMMENT INDICATOR
ASCII INDICATOR
USER FLAG OPERATOR
CURRENT LOCATION COUNTER (PERIOD)

3. O. 0

THE CARRIAGE RETURN CHARACTER IS RECOGNIZED AS THE TERMINATOR FO~
EACH SOURCE LINE. THE LINE-FEED, RUBOUT, FORM-FEED, AND NULL
CHARACTERS ARE IGNORED BY THE ASSEMBLER. FORM-FEED CHARACTER~
OCCURING IN THE SOURCE HAVE NO AFFECT ON THE LISTING. ALL ASCII
CHARACTERS MAY BE USED IN THE COMMENT FIELD OF A STATEMENT.

4. O. 0 STATEMENT FORMAT.

STATEMENTS ARE WRITTEN IN THE GENERAL FORM:

LABEL OPERATOR OPERAND iCOMMENT

LABELS MUST START IN COLUMN 1. THEY MAY BE DIRECTLY FOLLOWED WIT~
AN OPTIONAL COMMA IF DESIREn THE MODIFICATION NOTES EXPLAIN HOW Te
REPLACE THE COMMA WITH ANOTHER DELIMITER SUCH AS A COLON.

OPERATORS MUST BE SEPARATED FROM THE LABEL WITH AT LEAST ONE SPACE
OR TAR WHEN NO LABEL IS PRESENT, THE OPERATOR MAY BEGIN IN AN'
COLUMN BEYOND COLUMN 1.

THE OPERAND (IF ANY) MUST BE SEPARATED FROM THE OPERATOR WITH Al
LEAST ONE SPACE OR TAB.

THE COMMENT (IF ANY) MUST BE SEPARATED FROM THE OPERAND (OF
OPERATOR IF THERE IS NO OPERAND BY A SEMICOLON (i).

AN INPUT LINE MAY BE UP TO 127 CHARACTERS LONG (NOT INCLUDING THE
CARRIAGE RETURN). WHEN THE INPUT LINES ARE OUTPUT TO THE LISTINC
FILE, ANY CHARACTERS AFTER THE 72D COLUMN ARE WRITTEN ON THE NEXl
LINE(S) BEGINNING AT THE 25TH COLUMN OF THE FIRST SOURCE LINE
(NORMAL COMMENT COLUMN>' SEE THE MODIFICATION NOTES IN SECTIO~
#11. O. 0 TO ADJUST FOR NARROWER OR WIDER PAGE OUTPUT. THE CARRIAGE
RETURN IS A TERMINATOR FOR BOTH THE STATEMENT AND THE LINE. ONL'
ONE STATEMENT IS ALLOWED PER 127 CHARACTER LINE.

4.1.0
4. 1. 0 CODING CONVENTIONS:

ALTHOUGH THE ASSEMBLER WILL ACCEPT PROGRAMS WRITTEN IN FREE FORMAT,
THE USE OF TABS MAKES FOR MORE READABLE CODE. TAB STOPS ARE SET
EVERY 8 CHARACTERS IN THE LINE SO THAT THE USE OF THE TAB KEY
SIMPLIFIES INPUT. GENERALLY:

LABELS
OPERATORS
OPERANDS
COMMENTS

OCCUpy THE FIRST TAB FIELD, COLUMNS 1 THROUGH 8
OCCUpy THE SECOND TAB FIELD, COLUMNS 9 THROUGH 16.
OCCUPY THE THIRD TAB FIELD, COLUMNS 17 THROUGH 24.
OCCUPY THE REMAINING FIELDS, COLUMNS 25 THROUGH 127.

4. 2. 0 LABELS.

A LABEL IS A SYMBOL WHICH PRECEDES THE OPERATOR AND MUST FOLLOW THE
SYMBOL NAMING CONVENTIONS DESCRIBED IN SECTION # 6. 2. O. IN ALL BUT
THE SYMBOL DEFINITION PSEUDO-OPS, (, EQU, . SET, . DINST) THE LABEL
IS A LOCATION TAG AND IS EQUAL TO THE VALUE OF THE CURRENT LOCATION
COUNTER.

EXAMPLE:

2 I
o 6

201 1
LABELl
LABEL2

.ORG

. EQU

. BYTE

201
6
1

iLABEL1=6
iLABEL2=LOCATION TAG=201

NOTE THAT A JUMP TO LABELl WILL TRANSFER TO ADDRESS 6 WHILE A JUMP
TO LABEL2 GOES TO ADDRESS 201.

A LABEL LACKING BOTH AN OPERATOR AND OPERAND IS SET EQUAL TO THE
VALUE OF THE NEXT ADDRESS TO BE ASSEMBLED. IF USED AT THE
BEGINNING OF THE PROGRAM, IT IS SET EQUAL TO THE VALUE OF THE FIRST
ADDRESS. WHEN A SOLITARY LABEL IS FOLLOWED BY AN . ORG STATEMENT,
IT RETAINS THE ORIGINAL VALUE ASSIGNED BEFORE THE ORIGIN CHANGE.

4. 3. 0 OPERATORS.

AN OPERATOR IS A MNEMONIC WHICH INDICATES THE ACTION TO BE
PERFORMED AND IS EITHER A PSEUDO-OP OR ONE OF THE MICROPROCESSOR
INSTRUCTIONS. PSEUDO-OPS ARE DESCRIBED IN SECTION #9. O. O. THE
MICROPROCESSOR INSTRUCTION SET IS DESCRIBED IN SECTION #13. O. 0
THESE OPERATORS SHOULD NOT BE CONFUSED WITH ARITHMETIC OPERATORS
USED IN OPERAND EXPRESSIONS.

(

4. 4. 0
4. 4. 0 OPERANDS.

AN OPERAND REPRESENTS THE PART OF THE INSTRUCTION WHICH IS TO BE
ACTED ON. IT CAN BE A TERM OR AN EXPRESSION.

THE . BYTE, . DBYTE, AND . ADDR PSEUDO-OPS CAN HAVE MULTIPLE OPERAND&

REFER TO THE EXPLANATION OF EACH OPERATOR FOR THE PROPER OPERAND
FORMAT.

IT SHOULD BE NOTED THAT OPERAND EXPRESSIONS ARE EVALUATED TO A
SINGLE NUMERICAL VALUE BY THE ASSEMBLER. BINARY CODE IS NOT
GENERATED TO MAKE THE MICROPROCESSOR EVALUATE THE EXPRESSIO~

4. 5. 0 TERMS AND EXPRESSIONS.

A TERM IS A SINGLE VALUE, A CONSTANT OR SYMBOL. THE CURRENT
LOCATION COUNTER (REPRESENTED BY A PERIOD) IS CONSIDERED A TERM.

TERMS ARE COMBINED WITH OPERAND ARITHMETIC OPERATORS TO FORM
EXPRESSIONS.

EXAMPLE: IN THE INSTRUCTION BELOW THE OPERAND IS AN EXPRESSIO~

WHICH HAS TWO ARITHMETIC OPERATORS AND THREE TERMS.

SYMBOL . EQU I+NEW * 15

16 BIT INTEGER ARITHMETIC IS USED TO EVALUATE EXPRESSIONS.

5. O. 0 NUMERIC CONSTANTS.

A CONSTANT IS A NUMERIC VALUE REPRESENTED BY A STRING OF DIGIT&
THE. DEFAULT RADIX OR TEMPORARY RADIX INDICATORS IDENTIFY THE RADIX
OF THE CONSTANT. A CONSTANT WITHOUT ANY TEMPORARY RADIX INDICATOR
IS CONSIDERED TO BE IN THE DEFAULT RADIX, WHICH IS INITIALL~

HEXADECIMAL.

EXAMPLE: THE HEXADECIMAL NUMBER 16 (22 IN BASE 10) IS STORED I~

"VALUE" :

o 16 VALUE . EQU 16

THE MAXIMUM VALUE FOR A CONSTANT IS 65535 (BASE 10 UNSIGNED).

THE MINIMUM VALUE FOR A CONSTANT IS -32768 (BASE 10 SIGNED),

5. 1. 0
5. 1. 0 CONSTANTS WITH RADIX INDICATORS.

CONSTANTS IN A BASE DIFFERENT FROM THAT OF THE DEFAULT RADIX CAN BE
SPECIFIED THROUGH USE OF THE TEMPORARY RADIX INDICATORS. THESE
INDICATORS ARE VERY USEFUL FOR ENTERING INDIVIDUAL CONSTANTS.
HOWEVER, IF A LARGE GROUP OF VALUES IN ANOTHER RADIX MUST BE
ENTERED, IT IS MORE CONVENIENT TO CHANGE THE DEFAULT RADIX USING
THE PSUEDO-OPS DESCRIBED IN SECTION # 9. 2. 0

THE TEMPORARY RADIX INDICATORS ARE:

..... B BINARY
'''D DECIMAL
..... H HEXADECIMAL
'''0 OCTAL

THE IS THE UPARROW CHARACTER (UNIVERSAL UNARY OPERATOR).

A HEXADECIMAL CONSTANT WHICH DOES NOT BEGIN WITH A NUMBER SHOULD BE
WRITTEN WITH A LEADING ZERO TO DISTINGUISH IT FROM FROM A SYMBOL. A
RADIX INDICATOR PRECEDING A SYMBOL IS IGNORED.

EXAMPLE: THE FIRST STATEMENT IS VALID, THE SECOND IS NOT.

VALUE . EQU
VALUE . E';!U

..... HOA302

..... HA302
iVALUE=A302, BASE 16
iVALUE = SYMBOL A302

SINCE THE SYMBOL A302 MAY NOT EXIST, THE SECOND STATEMENT WILL
PROBABLY CAUSE AN UNDEFINED SYMBOL ERROR. TEMPORARY RADIX
INDICATORS AFFECT THE NEXT DIGIT STRING IN THE EXPRESSION UNLESS A
SYMBOL NAME OR BINARY OPERATOR OCCURS FIRS~ IN THAT CASE, THE
TEMPORARY RADIX INDICATOR WOULD BE IGNORED. NO ERROR MESSAGE IS
GIVEN.

5.2.0 CONSTANTS WITH ASCII INDICATORS.

THE .. AND .- INDICATORS ARE USED TO FORM THE 7 BIT ASCII VALUE OF A
CHARACTER. THERE ARE FOUR ACCEPTABLE WAYS TO WRITE THE INDICATORS:

"A" OR " A OR .- A .' OR .- A ALL EQUAL 41 (BASE 16).

NOTE THAT THE CLOSING QUOTE IS OPTIONAL BUT IF USED IT MUST MATCH
THE OPENING QUOTE. ONLY ONE CHARACTER CAN FOLLOW THE INDICATOR.

(

THE "IS SPECIALLY HANDLED IN THE . BYTE PSEUDO-OP WHERE IT IS USED ~
TO INPUT TEXT STRINGS. SEE SECTION # 9. 3. 1 . •

6. O. 0

6. O. 0 SYMBOLS.

THE WORD "SYMBOL" IS USED HERE AS A GENERAL TERM FOR ANY MNEMONII
WHICH IS TO HAVE A VALUE. THIS IS IN CONTRAST TO AN OPERATOR, WHICI
IS A MNEMONIC WHICH SPECIFIES A PROCESS.

A LABEL IS A SYMBOL THAT PRECEDES AN OPERATOR IN THE STATEMENT. II
THE LABEL IS USED TO STORE THE VALUE OF THE CURRENT LOCATIOI
COUNTER, IT IS CALLED A LOCATION TAG.

6. 1. 0 PERMANENT SYMBOLS.

PERMANENT SYMBOLS ARE THE CROSS-ASSEMBLER
MICROPROCESSOR OPERATORS. IF NECESSARY, THE . DINST
USED TO RENAME A MICROPROCESSOR OPERATOR THE
PSEUDO-OPS CANNOT BE USED IN A . DINST INSTRUCTION.
THE APPENDICES SUMMARIZE THE PERMANENT SYMBOL SET.

6. 2. 0 USER DEFINED SYMBOLS.

PSEUDO-OPS ANl
STATEMENT CAN BI

CROSS-ASSEMBLEI
THE TABLES I I

THESE SYMBOLS CAN BE LOCATION TAGS OR REPRESENT A VALUE.

A SYMBOL IS A STRING OF FROM ONE TO SIX ALPHANUMERIC CHARACTER:
DELIMITED BY A NON-ALPHANUMERIC CHARACTER. USER-DEFINED SYMBOL:
MUST CONFORM TO THE FOLLOWING RULES:

1) THE CHARACTERS MUST BE LEGAL ALPHA-NUMERICS.
(A-Z OR 0-9)

2) THE FIRST CHARACTER MUST BE ALPHABETIC (A-Z>'
3) ONLY THE FIRST SIX CHARACTERS ARE USED, ANY

OTHERS ARE IGNORED. SYMBOLS ARE STeRED IN THE
SYMBOL TABLE AND REFERENCED ONLY BY THE FIRST
S I X CHARACTERS.

4) A USER-DEFINED SYMBOL CANNOT HAVE THE SAME
NAME AS ANY OF THE PERMANENT $YMBOL NAMES.
AS THE PERIOD IS CONSIDERED AS PART OF THE
ASSEMBLER PSEUDO-OP NAME, A USER-DEFINED SYM
BOL WHICH IS IDENTICAL EXCEPT FOR THE LEADING
PERIOD IS LEGAL.

.. 6. 3. 0
.. 6. 3. 0 LOCAL SYMBOLS.

OFTEN, WHEN PROGRAMMING SHORT SECTIONS OF CODE WHICH INVOLVE
NUMEROUS JUMP OR BRANCHING INSTRUCTIONS, THE USER FINDS IT
DIFFICULT TO CREATE MEANINGFUL LABELS THAT WILL NOT CONFLICT WITH
OTHER SYMBOLS IN THE PROGRAM. IN CASES LIKE THIS, LOCAL SYMBOLS CAN
BE USED INSTEAD OF REGULAR SYMBOLa

LOCAL SYMBOLS HAVE THE FORMAT U$N" WHERE "N" IS A DECIMAL INTEGER
FROM 0-255 INCLUSIVE.

LOCAL SYMBOLS MUST
BLOCKS. LOCAL SYMBOL
ON A STATEMENT HAVING
END ON THE STATEMENT
SYMBOL LOCATION TAG.
. SET PSEUDO-OPS ARE
SYMBOL BLOCKS.

BE DEFINED AND REFERENCED WITHIN LOCAL SYMBOL
BLOCKS ARE SECTIONS OF THE PROGRAM THAT START
A REGULAR SYMBOL USED AS A LOCATION TAG AND
JUST BEFORE THE OCCURANCE OF THE NEXT REGULAR
NOTE THAT LABELS FOR THE . EQU, . DINST AND

NOT LOCATION TAGS AND DO NOT DELIMIT LOCAL

THERE IS NO EFFECTIVE LIMIT TO THE SIZE OF A LOCAL SYMBOL BLOCK.

THE SAME LOCAL SYMBOL CAN BE DEFINED AND USED
NUMBER OF LOCAL SYMBOL BLOCKS.

EXAMPLE:

TAG1 · BYTE "TEXT" i SYMBOL BLOCK BEGINS
$1 · EQU VALUE i DEFINE LOCAL $1
$2 · EQU -1 i DEF r NE LOCAL $2
VALUl · EG!U $1-$2 iCALCULATE NEW VALUE
TAG2 · BYTE "TEXT" iNEW SYMBOL BLOCK
$1 · EG!U VALU1 iDEFINE LOCAL $1
$2 · EQU -2 iDEFINE LOCAL $2

IN AN UNLIMITED

VALU2 · EQU $1*$2 i CALCULATE NEW VALUE.
TAG3 · BYTE "TEXT" iENDS SECOND BLOCK

.. 7. O. 0 CURRENT LOCATION COUNTER.

THE CURRENT LOCATION COUNTER IS INDICATED BY A PERIon IT
REPRESENTS THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED.

THE CURRENT LOCATION COUNTER CANNOT BE USED IN THE LABEL FIELD.

(

7. O. 0

AT THE BEGINNING OF THE SOURCE INPUT THE CURRENT LOCATION COUNTER
IS SET TO ZERO. IT CAN BE REASSIGNED THROUGH USE OF THE . ORG
PSEUDO-OP.

EXAMPLE:

0 60 .ORG 60 i INITIAL ADDRESS
0 0 VALUE · EQU 0 ; NO EFFECT ON .

60 22 TAG · BYTE 22 = 60 (BASE 8)
1 00 .ORG 100 REASSIGN COUNTER

100 10 TAG1 · BYTE 10 = 100

LOCATION TAGS ARE ALWAYS SET EQUAL TO THE VALUE OF THE CURRENT
LOCATION COUNTER WHEN THEY ARE ASSEMBLED. IN THE EXAMPLE ABOVE, THE
LOCATION TAG "TAG" = 60.

THE CURRENT LOCATION COUNTER IS AUTOMATICALLY UPDATED IN THE
ASSEMBLER AS SOON AS THE CURRENT INSTRUCTION IS ASSEMBLED. NOTE
THAT IN THE MULTI-OPERAND DATA STORAGE PSEUDO-OPS, C. BYTE, . DBYTE,
AND . AD DR) THE LOCATION COUNTER IS CHANGING AS THE OPERANDS ARE
ASSEMBLED.

EXAMPLE: THE LOCATION COUNTER IS USED AS AN OPERAND 3 TIMES IN AN
. ADDR PSEUDO-OP.

0 20 .ORG 20
20 20 0 . ADDR . , . , .
22 22 0
24 24 0
20 20 0

THE CURRENT LOCATION COUNTER USES THE FULL ADDRESS RANGE OF THE
MICROPROCESSOR.

8. O. 0 THE ARITHMETIC OPERATOR SET.

THERE ARE TWO TYPES OF ARITHMETIC OPERATORS: UNARY AND BINARY
OPERATORS.

UNARY OPERATORS ACT ON ONLY ONE ITEM, THE TERM OR EXPRESSION
FOLLOW I NG THEM.

BINARY OPERATORS ACT ON TWO ITEMS: THE TERM OR EXPRESSION
PRECEEDING THEM AND THE TERM OR EXPRESION FOLLCIWING THEM.

8. 1. 0
8. 1. 0 UNARY OPERATORS.

THE + (PLUS) AND - (MINUS) UNARY OPERATORS ASSIGN A POSITIVE OR
NEGATIVE SIGN TO THE EXPRESSION FOLLOWING THEM. AN EXPRESSION IS
ASSUMED TO BE POSITIVE IF NOT OTHERWISE SPECIFIED.

8. 1. 2 BYTE ACCESS OPERATORS.

THE AL AND AM (WHERE A IS THE UPARROW CHARACTER) ARE UNARY
OPERATORS WHICH PROVIDE ACCESS TO THE LEAST AND MOST SIGNIFICANT 8
BIT BYTES OF THE VALUE OF AN EXPRESSION OR TERM.

EXAMPLE: TO SET "VALUE" EQUAL TO THE MOST SIGNIFICANT BYTE OF
3B61 (BASE 16), THE STATEMENT BELOW IS USED.

VALUE . SET · ... M3B61 ; VALUE = 003B

THIS NEXT STATEMENT TAKES THE LEAST SIGNIFICANT BYTE.

VALUE . SET L3B61 ; VALUE = 0061

BYTE ACCESS OPERATORS MAY BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

S. 1. 3 THE COMPLEMENT OPERATOR.

THE AC (UPARROW C) IS A LOGICAL UNARY OPERATOR WHICH COMPLEMENTS
THE EXPRESSION FOLLOWING IT.

EXAMPLE:

VALUE . EQLI ""C7241 ; VALUE = SDBE

THE COMPLEMENT OPERATOR CAN BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

i
\,

.. 8.1.4
.. 8. 1. 4. ? OPERATOR.

THIS IS THE USER FLAG OPERATOR, A UNARY OPERATOR USED IN CONJUNC
TION WITH THE COMMAND DECODER USER FLAG OPTIONS (/0 TO /9). IT HAS
THE FORM ?EXPRESSION AND MAY BE USED IN OPERANDS LIKE ANY OTHER
TERM. THE RESULTING VALUE OF THE QUESTION MARK OPERATOR EQUALS 1 IF
THE VALUE OF ITS EXPRESSION MATCHES A USER FLAG THAT WAS SPECIFIED
TO THE COMMAND DECODER AT RUN-TIME. OTHERWISE IT EQUALS Q THIS
OPERATOR IS USEFUL FOR CONTROLLING CONDITIONAL ASSEMBLY AND LISTING
PARAMETERS WITHOUT HAVING TO MODIFY THE SOURCE FILE

EXAMPLE: THE /2 OPTION WAS SPECIFIED TO THE COMMAND DECODER AT
RUN-TIME.

. R XNAME
*BIN,LOUT(SOURCE/2

THE SOURCE FILE CONTAINS THE FOLLOWING . LIST STATEMENTS:

. LIST ?2-1

. LIST 1

AT THE FIRST . LIST STATEMENT, THE ?2 TERM EQUALS 1 SINCE /2 WAS
SPECIFED AT RUN-TIME. THE OPERAND (?2-1) EQUALS ZERQ THEREFORE
LISTING IS INHIBITED UNTIL THE SECOND . LIST INSTRUCTIO~ AS THE
OPERAND VALUE OF THIS STATEMENT IS I, LISTING IS ENABLED AGAI~
NOTE THAT IF THE /2 OPTION WAS NOT SPECIFIED, THE INSTRUCTIONS
AFTER THE FIRST . LIST WOULD BE INCLUDED IN THE IILOUT" FILE LISTING .

.. 8. 2. 0 BINARY OPERATORS.

SIX SPECIAL CHARACTERS ARE USED TO PERFORM THE FOLLOWING BINARY
OPERATIONS:

* MULTIPLICATION
/ DIVISION
~ BOOLEAN AND

INCLUSIVE OR
+ ADDITION

SUBTRACTION

8. 2. 0

THE UNARY OPERATORS TAKE PRECEDENCE OVER THE BINARY OPERATORS
DURING ASSEMBLY. THE * AND / OPERATORS ARE EXECUTED NEXT, THEN THE
OTHER BINARY OPERATORS FROM LEFT TO RIGHT. BRACKETS, [AND], ARE
USED TO CHANGE THE ORDER OF PRECEDENCE WHEN NECESSARY. A [IS A
SHIFT/K ON TTY KEYBOARDS, AND A J IS A SHIFT/M.

EXAMPLE: IN THE STATEMENT BELOW THE OPERAND EXPRESSION IS EVALUATED
IN THIS ORDER: [A* [-B J J + [r 2/0 J * (AC r ABI0l J J J

VALUE . EQU

ADDITION AND SUBRACTION ARE ACCOMPLISHED BY TWO"'S COMPLEMENT 16 BIT
ARITHMETIC. NO CHECKS FOR OVERFLOW ARE MADE.

MULTIPLICATION IS ACCOMPLISHED BY REPEATED ADDITIO~ NO CHECKS FOR
SIGN OR OVERFLOW ARE MADE.

DIVISION IS ACCOMPLISHED BY REPEATED SUBRACTION. THE QUOTIENT IS
THE NUMBER OF SUBTRACTIONS PERFORMED. THE REMAINDER IS NOT SAVED.
NO CHECKS ARE MADE FOR SIGN. DIVISION BY ZERO RESULTS IN ZER~

THE BOOLEAN AND FUNCTION
NUMBERS:

(&) IS A BIT BY BIT LOGICAL AND OF TWO

THE BOOLEAN INCLUSIVE OR (!) IS A BIT BY BIT LOGICAL OR OF TWO
NUMBERS.

(

+I: 9. O. 0
+I: 9. O. 0 PSEUDO-OPERATORS.

PSEUDO-OPERATORS ·ARE INSTRUCTIONS TO THE ASSEMBLER WHICH ALLO~
GREATER FLEXIBILTIY IN PROGRAMMING.

A SUMMARY OF THE PSEUDO-OPS AND THEIR FUNCTIONS IS GIVEN IN THE
APPENDIX.

+I: 9. 1. 0 ASSIGNMENT PSEUDO-OPS.

ASSIGNMENT PSEUDO-OPS ARE USED TO DEFINE VALUES, INPUT ASCII TEXl
AND REASSIGN THE LOCATION COUNTER

+I: 9. 1. 1 . EQU PSEUDO-O~

THE . EQU IS USED TO ASSIGN A VALUE TO A SYMBOL. THIS SYMBOL VALUE
CANNOT BE CHANGED ONCE DEFINEn . EQU IS USEFUL FOR ASSIGNING NAMES
TO LOCATIONS WHICH ARE NOT LOADED BY THE OBJECT CODE.

EXAMPLE:

NAME1 · EQU

+I: 9. 1. 2 . SET PSEUDO-OP.

THE . SET IS USED EXACTLY LIKE THE. EQU EXCEPT THAT THE SYMBOL CA~
BE REDEFINED WITH ANOTHER . SET AT ANY POINT IN THE PROGRAM:

EXAMPLE: THE FOLLOWING IS PERFECTLY LEGAL FOR A . SET BUT NOT A~

. EQU.

NAMEl
NAMEl

· SET
· SET

NOTE THAT IT IS GOOD PRACTICE TO USE THE . EQU
RATHER THAN THE. SET EXCEPT (OF COURSE) WHERE THERE
NEED TO REDEFINE A VALUE. tHIS HELPS PREVENT
REDEFINITION OF A VALUE IN A PROGRA~

+I: 9. 1. 3 . DINST PSEUDO-OP.

FOR ASSIGNMENT~
IS A SPECIFIC

THE Ace I DENTAL

THE . DINST IS USED TO GIVE A MICROPROCESSOR OPERATOR ANOTHER NAME.
THE ORIGINAL OPERATOR NAME WILL STILL BE VALID. NOTE THAT THE
ASSEMBLER PSEUDO-OPS CANNOT BE RENAMED.

#9. 1. 3

EXAMPLE: THE MICROPROCESSOR INSTRUCTION "OPR" IS DEFINED 'AS
"NEWOP". ANY FURTHER REFERENCES TO "NEWOP" .IN THE PROGRAM WILL BE
TREATED ACCORDING TO THE DEFINITION OF "OPR" .

NEWOP . DINST OPR

"NEWOP" IS DEFINED TO BE THE EQUIVALENT TO THE MICROPROCESSOR
INSTRUCTION "OPR" AND IS ADDED TO THE OPERATOR SET FOR THE
REMAINDER OF THE ASSEMBLY.

REFERENCES TO USER DEFINED OPERATORS ARE NOT ALLOWED TO PRECEDE
THEIR . DINST STATEMENT.

ASSEMBLER PSEUDO-OPS CANNOT BE USED IN EITHER THE LABEL OR OPERAND
FIELDS OF ANY STATEMENT AND THEREFORE CANNOT BE DEFINED WITH THE
. DINST STATEMENT.

LOCAL SYMBOLS CANNOT BE USED IN THE OPERATOR FIELDS, THEREFORE THEY
SHOULD NOT BE USED WITH A . DINST STATEMENT.

.. 9. 1. 4 . ORG PSEUDO-OP.

THE . ORG REASSIGNS THE LOCATION COUNTER.

THE LOCATION COUNTER WILL BE 0 AT THE START OF THE SOU~CE INPUT.

THE . ORG OPERAND CANNOT BE FORWARD REFERENCED, (REFERRED TO A
LABEL DEFINED FURTHER ON IN THE PROGRAM) AND CANNOT HAVE A LABEL .

.. 9. 2 0 DEFAULT RADIX PSEUDO-OPS.

INITIALLY, THE DEFAULT RADIX IS SET TO HEXADECIMAL SO THAT
CONSTANTS ARE READ IN AS BASE 16 VALUES. (SEE MODIFICATION NOTES IF
ANOTHER INITIAL DEFAULT RADIX IS DESIRED.)

AT ANY POINT IN THE PROGRAM, THE DEFAULT RADIX CAN BE REASSIGNED
THROUGH USE OF THESE PSEUDO-OPS:

· BIN
· DECM
· HEX
· OCT

i BINARY RADI X
i DECIMAL RADIX
iHEXADECIMAL RADIX
i OCTAL RADI X

THE DEFAULT RADIX PSEUDO-OPS CANNOT HAVE AN OPERAND OR A LABEL.

ADDITIONALLY, THE RADIX OF INDIVIDUAL CONSTANTS CAN BE SPECIFIED BY
THE USE OF THE AB, AD, AH AND AO INDICATORS. SEE SECTION +I: ~ 1. 0
THESE INDICATORS DO NOT CHANGE THE DEFAULT RADIX.

9. 3. 0
9. 3. 0 DATA STORAGE PSEUDO-OPS.

THREE PSEUDO-OPS CAN BE USED TO STORE DATA. THEIR FORMAT IS:

LABEL PSEUDO-OP OPERAND. OPERAND •.... i COMMENT

THE PSEUDO-OPS CAN HAVE AS MANY OPERANDS AS WILL FIT ON ONE 12?
CHARACTER LINE.

EACH OPERAND CAN BE A SYMBOL. CONSTANT. OR EXPRESSION. COMMA~
SEPARATE THE OPERANDS.

THE DOUBLE QUOTE (") CHARACTER IS USED DIFFERENTLY IN THE . BYTE
COMMAND. BUT THE SINGLE QUOTE {'} RETAINS ITS NORMAL FUNCTION.

9. 3. 1 . BYTE PSEUDO-OP.

THE . BYTE PSEUDO-OP STORES DATA IN SINGLE BYTES OF MEMORY.
NUMERICAL BYTE VALUES CAN RANGE FROM -128 TO +255 (DECIMAL).
NORMALLY, DOUBLE QUOTES AND SINGLE QUOTES ARE TREATED IDENTICALL'
AND ARE USED TO FORM THE ASCII VALUE OF A SINGLE CHARACTER
HOWEVER. IN THE . BYTE PSEUDO-OP , THE DOUBLE QUOTE IS USED TO INDI
CATE TEXT STRINGS. DATA IS STORED SEQUENTIALLY AS IT IS PROCESSED.
LEFT TO RIGHT. A TEXT STRING MUST BE CLOSED WITH A DOUBLE QUOTE.

EXAMPLE: THE ASCII VALUES OF THE TEXT ABC IS STORED:

2 00 .ORG 200
200 41 . BYTE "ABC".O. "'B
201 42
202 43
203 0
204 42

THESE STATEMENTS WOULD BE INVALID:

. BYTE

. BYTE
'ABC·'
II ABC

9. 3. 2 . DeYTE PSEUDO-OP.

iTHE'" IS NOT FOR TEXT STRINGS
; TEXT MUST END WITH A II

THE . DBYTE IS SIMILAR TO THE . BYTE EXCEPT THAT IT, STORES DOUBLE
BYTE QUANTITIES. IT DOES NOT ACCEPT TEXT STRINGS. THE THE MOS·
SIGNIFICANT BYTE IS STORED FIRST, THEN THE LEAST SIGNIFICANT BYTE.

9. 3. 3
9.3.3 . ADDR PSEUDO-OP.

THE . ADDR PSEUDO-OP IS THE SAME AS THE . DBYTE PSEUDO-OP EXCEPT THAT
THE LEAST SIGNIFICANT BYTE IS STORED FIRST. MANY MICROPROCESSORS
USE THIS REVERSED FORMAT FOR ADDRESSES. FOR EXAMPLE:

2 00
200 1 32
202 32 31

.ORG 200

. DBYTE · H3132 i HEX CONSTANT

. ADDR AH3132 iREVERSED eYTES

9. 3. 4 . ZERO PSEUDO-OP.

THE . ZERO PSEUDO-OP RESERVES THE NUMBER OF BYTES INDICATED BY THE
OPERAND AND SETS THEM TO ZERO.

EXAMPLE: 16 ADDRESSES, 1 TO 10 (BASE 16) ARE ZEROED .

o 1
1 0

11 10

. ORG

. ZERO

. BYTE

1
10
10

(
ONLY THE FIRST BYTE WILL BE PRINTED IN THE LISTING. THE LOCATION "4

COUNTER IS ADVANCED. THE OPERAND OF . ZERO CANNOT BE FORWARD REFER
ENCED, (REFERED TO A LABEL DEFINED FURTHER ON IN THE PROGRAM>'

9. 4. 0 LISTING CONTROL DIRECTIVES.

THROUGH USE OF THE . LIST, . PAGE AND . TITLE PSEUDO-OPS, PLUS SEVERAL
RUN-TIME OPTIONS, THE SOURCE PROGRAM CAN BE LISTED IN VARIOUS WAYS
AT ASSEMBLY T I ME.

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE OUTPUT, ADDING A
HEADER AT THE TOP OF THE PAGE. (NOTE THAT PAGE NUMBERS REPRESENT
THE LISTING PAGE NUMBERS, NOT INPUT FILE PAGEa)

NOT ALL PSEUDO-OPS ARE LISTED IN THE OUTPUT. THE CONDITIONAL
ASSEMBLY AND LISTING CONTROL PSEUDO-OPS ARE NOT LISTED UNLESS THE
/P OPTION IS SPECIFED. SEE RUN-TIME OPTIONS # 2. 4. 0

NORMALLY THE STATEMENTS WHICH ARE NOT ASSEMBLED
ASSEMBLY ARE NOT LISTED. USE OF THE /J COMMAND
ENABLE LISTING OF THESE STATEMENTS PLUS THE
CONDITONAL ASSEMBLY PSUEDO-OPS.

DUE TO CONDITIONAL
DECODER OPTION WILL

NORMALLY UNLISTED

THE PAGINATION AND HEADING CAN BE SUPPRESSED THROUGH USE OF THE /H ~
COMMAND DECODER OPTION.

9. 4. 0

IF THE OUTPUT DEVICE IS ONE WHICH DOES NOT PAGE ON A FORM FEED (~
TTY), THE /T DECODER OPTION CAN BE USED TO CHANGE THE FORM FEE[
(WHICH NORMALLY STARTS A NEW PAGE) TO 3 CARRIAGE RETURN/LINE FEED~
SO THAT PAGES WILL BE SEPARATF:D BY 3 BLANK LINES IN THE LISTING.

WARNING MESSAGES ARE NORMALLY OUTPUT TO BOTH THE TERMINAL AND THE
SOURCE LISTING. TO INHIBIT THESE MESSAGES, THE /W DECODER OPTION I~
USED.

9. 4. 1 . LIST PSEUDO-OP.

A LIST FLAG IS USED DURING ASSEMBLY TO INDICATE WHETHER OR NOT THE
STATEMENTS ARE TO BE LISTED. INITIALLY, THE FLAG IS ON AND STAYS O~
UNLESS A . LIST PSEUDO-OP IS ENCOUNTERED.

A . LIST PSEUDO-OP CAN BE USED WITH OR WITHOUT AN OPERANn A LABEL
CANNOT BE USED WITH THE . LIST PSEUDO-OP.

WHEN A. LIST PSEUDO-OP WITHOUT AN OPERAND IS ENCOUNTERED, THE LIS'
FLAG I S INVERTED.

EXAMPLE:
j LIST FLAG INITIALLY ON

.ORG 200 j LISTED
VALUE · SET 1 i LISTED

· LIST i LIST FLAG OFF
VALU2 · SET 70 ; NOT LISTED

· LIST iLl ST FLAG BAC.::: ON

NOTE THAT UNLESS THE /P OPTION IS USED, THE. LIST OPERATOR ITSELF
WILL NOT BE LISTEn

WHEN A . LIST PSEUDO-OP WITH AN OPERAND IS ENCOUNTERED, THEN LISTINC
IS INHIBITED IF THE OPERAND IS EQUAL TO ZERO. (THE LIST FLAG I~
SET OFF>' IF THE OPERAND IS NOT ZERO, LISTING IS ENABLED. (THE
LIST FLAG IS SET ON>'

9. 4. 2 . PAGE PSEUDO-OP.

INSERTING A . PAGE PSEUDO-OP IN THE PROGRAM WILL NORMALLY START ~
NEW PAGE BEGINNING WITH THE NEXT LINE. (THE. PAGE STATEMENT ITSELF
IS NOT NORMALLY LISTED.) IF THE /P COMMAND DECODER OPTION IS USED,
THE. PAGE STATEMENT WILL BE THE FIRST LINE (IF THE NEW PAGE.

.. 9. 4. 2

THE /H COMMAND DECODER OPTION INHIBITS THE . PAGE PSEUDO-OP.

THE . PAGE PSEUDO-OP CAN HAVE NO LABEL OR OPERAND .

.. 9. 4. 3 . TITLE PSEUDO-OP.

THE . TITLE IS USED TO REPLACE THE HEADING WITH UP TO 32 CHARACTERS
OF TEXT. ITS FORMAT IS:

· TITLE HEADING OF 32 CHARACTERS

THE FIRST CHARACTER AFTER THE. TITLE IS THE PSEUDO-OP DELIMITER
WHICH CANNOT BE AN ALPHA-NUMERIC CHARACTER THE DELIMITER IS
CONSIDERED THE FIRST CHARACTER OF THE 32 CHARACTER GROUP AND WILL
BE PRINTED OUT. ANY TEXT AFTER 32 CHARACTERS WILL BE IGNORED. TABS
CAN BE USED IN THE HEADING.

THE /H COMMAND DECODER OPTION INHIBITS THE . TITLE PSEUDO-OP.

THE /P COMMAND DECODER ENABLES THE LISTING OF THE . TITLE PSEUDO-OP.

A SEMICOLON DOES NOT DELIMIT THE HEADING TEXT.
MADE ONLY AFTER THE 32 CHARACTER HEADING GROUP.

(
COMMENTS CAN BE \

WHEN PLACED AT THE BEGINNING OF THE PROGRAM, THE . TITLE PSEUDO-OP
WILL SET THE HEADING FOR THE FIRST PAGE. THE . TITLE MUST APPEAR
BEFORE THE FIRST LINE TO BE LISTED.

EXAMPLE: THE FOLLOWING STATEMENTS WILL CAUSE THE HEADING OF THE
FIRST PAGE TO BE "*MAIN PROGRAM".

· TITLE*MAIN PROGRAM
VALUE · EQU 1

· LIST VALUE

.. 9. 5. 0 CONDITIONAL ASSEMBLY PSUEDO-OPERATORS.

THE . IFZERO, . IFNZRO, . IFDEF AND . IFNDEF OPERATORS
PROVIDE FOR THE CONDITIONAL ASSEMBLY IN A PROGRAM,
OF STATEMENTS CAN BE ADDED (OR OMITTED) DURING
PROCESS. EACH IS DESCRIBED INDIVIDUALLY IN THE
FOLLOW. ALL HAVE THE GENERAL FORM:

PSEUDO-OP OPERAND ; COMMENT

ARE USED TO
SO THAT GROUPS

THE ASSEMBLY
SECTIONS THAT

9. 5. 0

EACH OPERAND MUST MEET THE CONDITIONS OF ITS PSEUDO-OP IN ORDER Fm
THE STATEMENTS THAT FOLLOW IT TO BE ASSEMBLED. IF THE CONDITIOM
ARE NOT METi THESE STATEMENTS ARE OMITTED. THE. ENDC PSEUDO-Of
INDICATES THE END OF THE GROUP OF STATEMENTS WHICH ARE AFFECTED.
EACH CONDITIONAL PSEUDO-OP MUST HAVE ONE . ENDC STATEMENT.

CONDITIONAL PSEUDO-OPS CANNOT HAVE LABELS.

CONDITIONAL PSEUDO-OPS CAN BE NESTED UP TO 4095 LEVELS.

EXAMPLE:

VALUE1 · EQU 0 iDEFINE VALUE1
· IFZERO VALUE1 i VALUE1 = o ? - YES.
· BYTE "TEXT" i ASSEMBLED.
· IFDEF VALUE2 iVALUE2 DEFINED? - NO.
· BYTE "TEXT" i OMITTED.
· ENDC i END OF INNER CONDITIONAL

DOC · EQU 17 i ASSEMBLED.
· ENDC i END OF OUTER CONDITIONAL

THE CONDITIONAL PSEUDO-OPS ARE NOT INCLUDED IN THE ASSEMBLY LISTINI
UNLESS THE /P OR /J COMMAND DECODER OPTION IS SPECIFIED.

ONE CONDITIONAL CAN INHIBIT ANOTHER.

EXAMPLE: THREE DIFFERENT RESULTS CAN OCCUR IN THE FOLLOWING TYPE 01
CONDITIONAL NESTING:

CONDITIONAL 1
i STATEMENT GROUP 1.

CONDITIONAL 2
i STATEMENT GROUP 2.

. ENDC iEND CONDITIONAL 2.
iSTATEMENT GROUP 3.

. ENDC iEND CONDITIONAL 1.

IF BOTH CONDITIONALS ARE MET, ALL THE STATEMENTS, GROUPS 1 THROUGI
3, WILL BE ASSEMBLED.

IF CONDITIONAL 2 IS NOT MET, BUT CONDITONAL 1 IS MET, THEN GROUP
AND GROUP 3 WILL BE ASSEMBLED. GROUP 2 IS NOT ASSEMBLED.

IF CONDITIONAL 1 IS NOT MET, CONDITIONAL 2 IS IGNORED AND GROUPS
THROUGH 3 WILL NOT BE ASSEMBLED.

:1+ 9.5.1
:1+ 9. 5. 1 . IFZERO PSEUDO-OP.

IF THE OPERAND OF THE . IFZERO IS:

EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.
NOT EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

:1+ 9. 5. 2 . IFNZRO PSEUD-OP.

IF THE OPERAND OF THE . IFNZRO IS:

EQUAL TO ZERO - STATEMENTS TO NEXT . EN DC ARE OMITTED.
NOT EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

:1+ 9. 5. 3 . IFDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFDEF IS:

DEFINED - ASSEMBLY IS UNAFFECTED.
NOT DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTEn

NOTE THAT. IFDEF WILL ACCEPT ONLY A
OPERAND.

SINGLE , SYMBOL NAME AS THE

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

:1+ 9. 5. 4 . IFNDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFNDEF IS:

DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT DEFINED - ASSEMBLY IS UNAFFECTED.

NOTE THAT ONLY A SINGLE SYMBOL NAME IS ALLOWED AS THE OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 5
9. 5. 5 . ENDC PSEUDO-OP.

THIS PSEUDO-OP INDICATES THE END OF A CONDITONAL ASSEMBLY GROUP.

EVERY CONDITIONAL PSUEDO-OP MUST BE PAIRED WITH A . EN DC.

9. 6. 0 . END PSEUDO-OP.

THIS INDICATES THE END OF THE SOURCE PROGRAM. IT CANNOT HAVE EITHEF
A LABEL OR AN OPERAND. A WARNING MESSAGE WILL OCCUR IF THE . EN[
STATEMENT IS LEFT OFF.

#10. O. 0 ERROR MESSAGES AND WARNINGS.

BOTH PASS #1 AND PASS #2 CAN GENERATE ERROR MESSAGES. THESE ARE
PR I NT ED ON THE CONSOLE DEV I CE AS THEY OCCUR. I F A LIST I NG I ~
SPECIFIED, PASS 3 WILL LIST THE ERROR MESSAGE ABOVE THE LINE I~

WHICH THE ERROR OCCURS.

ERROR MESSAGES WHICH ARE SENT TO THE CONSOLE HAVE THE FORM:

E:XX AT LABEL+N

WHERE "N" IS A DECIMAL NUMBER OF
LINES BEYOND THE STATEMENT WHICH
CONTAINED THE GIVEN LABEL. IF NO
LABEL WAS GIVEN, "N" IS THE NUMBER OF
LINES FROM THE BEGINNING LINE OF THE
PROGRAM.

IF THE BINARY OUTPUT FILE IS SENT TO THE CONSOLE, AND ERROF
MESSAGES OCCUR, THE OUTPUT FILE LINES AND ERROR MESSAGES WILL BE
INTERMIXED. USE OF THE /E OPTION WILL INHIBIT THE ERROR MESSAGE~
TO THE CONSOLE SO THAT ONLY THE BINARY FILE IS OUTPUT. THIS I~
US~FUL WHEN A USER WOULD LIKE TO TRY OUT CERTAIN PARTS OF A PROGRAt
AND IS NOT YET CONCERNED WITH OTHER PARTS KNOWN TO HAVE ERRORS.

tno. o. 0

INDIVIDUAL ERROR MESSAGES ARE EXPLAINED IN TABLE #2 WHICH DIVIDES
THE MESSAGES INTO THREE TYPES:

1) FATAL ERRORS- THESE ERRORS CAUSE THE IMMEDIATE
EXIT TO THE OS/8 MONITOR. THE CURRENT OUTPUT FILE
IS NOT CLOSED. /E WILL NOT INHIBIT FATAL ERROR
MESSAGES. FATAL ERROR MESSAGES ARE ALWAYS SENT TO
THE CONSOLE DEVICE.

2) WARNING MESSAGES INDICATE MINOR PROGRAM
PROBLEMS. ASSEMBLY IS NOT HALTED. GOOD PROGRAMMING
PRACTICES WILL ELIMINATE ALL WARNING MESSAGES.

3) NON-FATAL ERRORS - THE OCCURANCE OF A NON-FATAL
ERROR WILL NOT HALT ASSEMBLY. THE ASSEMBLER
ATTEMPTS TO DO AS MUCH OF THE LINE AS POSSIBLE. FOR
EXAMPLE, IF THE OPERAND CANNOT BE EVALUATED, IT
GIVES IT A VALUE OF ZERO, WRITES THE ERROR MESSAGE
AND CONT I NUES.

TABLE #2. #10. O. 0

E:DF
FILE #N

E:LT

E:OE
FILE #N

E:PE

·E:RE
FILE #N

E:ST

E:WE
FILE #N

W:EF

W:UC

**** FATAL ERRORS ****

DEVICE FULL:
THERE IS NOT ENOUGH ROOM LEFT ON THE OUTPUT DEVICE
FOR THE FILE. "Nil INDICATES WHICH OF THE TWO OUT
PUT FILES WAS IN ERROR.

LOCAL SYMBOL TABLE OVERFLOW:
THIS ERROR OCCURS ONLY IF THE /K OPTION IS IN US~
CONVERSION OF SOME OF THE LOCAL SYMBOLS TO REGULAR
SYMBOL NAMES WILL USUALLY SOLVE THIS PROBLEM. SEE
THE NOTES ON THE /K RUN-TIME OPTION.

OPEN ERROR IN OUTPUT FILE:
AN ATTEMPT WAS MADE TO OPEN AN OUTPUT FILE ON AN
INPIJT-ONLY DEVIDE. (PTR:, CDR: I ETC.) II Nil INDICATES
WHICH ONE OF THE TWO POSSIBLE OUTPUT FILES WAS IN
ERROR.

PHASE ERROR:
A LOCATION TAG HAS A DIFFERENT ADDRESS IN ONE PASS
THAN I T HAD I N THE PRE V I OUS PASS.

READ ERROR:
AN ERROR HAS OCCURRED WHILE READING FROM AN INPUT
FILE DEVICE. "Nil INDICATES WHICH ONE OF THE NINE
POSSIBLE INPUT FILES HAD THE ERROR.

SYMBOL TABLE OVERFLOW:
THE PROGRAM IS TOO LARGE. WHERE CONVENIENT, DIVIDE
IT AND ASSEMBLE EACH PART SEPARATELY. ALSO REFER TO
THE NOTES ON THE /K RUN-TIME OPTION.

WR I TE ERROR:
AN ERROR HAS OCCURRED WHILE WRITING TO AN OUTPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE TWO
OUTPUT FILES HAD THE ERROR.

**** WARNING MESSAGES.****

NO . END STATEMENT:
THE LAST INPUT FILE MUST HAVE AN . END STATEMENT.
THE ASSEMBLER PROCEEDS AS IF AN . END WERE PRESENT.

ASSEMBLY WAS CONDITIONALLY INHIBITED AT THE END OF
THE PROGRAM: EACH CONDITIONAL ASSEMBLY PSEUDO-OP
MUST BE PAIRED WITH AN . EN DC STATEMENT.

TABLE #2. (CaNT.) #10. O. 0

E:BN

E:DR

E: IL

E: 10

E:LO

E:LS

E:ML

E:MO

E:OC

E:OM

**** NON-FATAL ERRORS ***W

BAD NESTING OF BRACKETS:
EACH OPEN BRACKET MUST BE PAIRED WITH A CLOSED
BRACKET.

DIGIT OUTSIDE OF RADIX:
THE CONSTANT CONTAINS A DIGIT NOT RECOGNIZED UNDER
THE SPECIFIED RADIX. FOR EXAMPLE, THE DIGIT "2" IS
NOT RECOGNIZED IN BINARY RADIX. THE CONSTANT WILL
BE EVALUATED AS IF THAT DIGIT WERE ZERO.

ILLEGAL LABEL FIELD:
THE LABEL MAY NOT BE IN THE PROPER SYMBOL FORMAT,
SEE SECTION #6. 2. 0 ALSO, SOME PSEUDO-OPS CANNOT
HAVE LABELS.

ILLEGAL OPERAND VALUE:
REFER TO THE SECTION ON THE STATEMENT~S OPERATOR TO
DETERMINE THE ALLOWABLE OPERAND TERMS.

LINE INPUT OVERFLOW:
ONLY 127 CHARACTERS, NOT INCLUDING THE CARRIAGE
RETURN AND LINE FEED, ARE ALLOWED IN AN INPUT LINE.

LOCAL SYMBOL SYNTAX ERROR:
THE CORRECT FORMAT FOR A LOCAL SYMBOL IS $N WHERE
"N" IS A DECIMAL NUMBER FROM 0 TO 255.

MULTIPLE LABEL DEFINITION:
THE SAME LABEL HAS A DIFFERENT VALUE AND IS USED
WITH AN OPERATOR OTHER THAN A . SET PSEUDO-OP.

MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD:

OPERAND TOO COMPLEX:
TOO MANY TERMS AND OPERATORS EXIST IN THE OPERAND.
DIVIDE THE EXPRESSION USING THE . SET COMMANn

EXAMPLE: THE FIRST EXPRESSION IS DIVIDED INTO THE
TWO STATEMENTS FOLLOWING IT.

WORD

TEMP
WORD

OPERAND MISS I NG.

· EQU

· SET
· EQU

[EXPR1 J + [EXPR2 J

[EXPR1 J
TEMP + [EXPR2 J

'\

TABLE #2. (CONT.) #10. O. 0

E:OS

E:PS

E:TL

E:US

OPERAND SYNTAX ERROR.

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND:
REFER TO THE APPENDICES TABLES TO SEE WHICH NAMES
ARE USED IN THE ASSEMBLER AND MICROPROCESSOR IN
STRUCTION SETS AND RENAME YOUR SYMBOL SO THAT IT
WILL NOT CONFLIC~

LABEL DEFINED TOO LATE:
ONL Y ONE LEVEL OF FORWARD . REFERENC I NG I S ALLOWED.

UNDEFINED SYMBOL:

NOTE: REFER TO SECTION #12. O. 0 FOR ADDITIONAL ERROR MESSAGES WHICH
ARE SPECIFIC TO THE TYPE OF MICROPROCESSOR BEING USED.

#11. O. 0 MODIFICATION NOTES.

VARIOUS MODIFICATIONS CAN BE MADE TO THE ASSEMBLER FOR GREATER
OPERATING CONVENIENCE. BEFORE MAKING ANY CHANGES, THE USER SHOULD
READ THE DESCRIPTION OF EACH OPTION CAREFULLY. NO CHECKS ON PArCH
VALIDITY ARE MADE. ALSO KEEP A RECORD OF ALL CHANGES SO THAT .THE
STATUS OF THE CROSS-ASSEMBLER IS ALWAYS KNOWN.

MODIFICATIONS ARE MADE BY PATCHING LOCATIONS IN THE IMAGE <. SV)
FILE USING ODT. REFER TO THE OS/8 MANUAL FOR A DETAILED EXPLAIN
ATION OF ODT OPERATION.

THE EXAMPLE BELOW SHOWS AN ODT PATCH BEING MADE TO FILE "XNAME. SV~
WHERE THE CONTENT OF LOCATION 10107 IS CHANGED FROM 3 TO 2 .

. GET SYS: XNAME

.ODT
10107/0003 2
'''''C
. SA SYS: XNAME

#11.1.0

#11. 1. 0 CHANGING THE DEFAULT INPUT FILE EXTENSION <. MSL

PATCH LOCATION 10100 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION. .

#11.2.0 CHANGING THE DEFAULT BINARY OUTPUT FILE EXTENSION (. MB)
---~

PATCH LOCATION 10101 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11. a 0 CHANGING THE DEFAULT LISTING OUTPUT FILE EXTENSION (. LS).
---~---------------

PATCH LOCATION 10102 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.4.0 CHANGING THE BASE YEAR DATE.

IN OS/8 ONLY 3 BITS ARE PROVIDED TO INDICATE THE CURRENT YEAR.
THIS ALLOWS ONLY NUMBERS FROM 0 TO 7 WHICH MUST BE ADDED TO A BASE
YEAR TO FORM THE ACTUAL YEAR NUMBER. IN 1978 AND AT ADDITIONAL 8
YEAR INTERVALS THE BASE YEAR MUST BE CHANGED TO PROVIDE THE PROPER
DATE PRINTOUT. TO DO THIS, PATCH LOCATION 10104 TO CONTAIN THE TWO
CHARACTER 6 BIT ASCII REPRESENTATION OF THE TWO LEAST SIGNIFICANT
DIGITS OF THE YEAR.

BASE YEAR:
1978
1986
1994
2002

PATCH TO LOCATION 10104 (IN OCTAL).
6770
7066
7164
6062

SHOULD THIS PROGRAM SURVIVE UNTIL THE YEAR 2000 THE TWO MOST
SIGNIFICANT DIGITS MAY BE CHANGED BY PATCHING LOCATION 10103 TO
CONTAIN 6260.

#11.5.0

#11.5.0 CHANGING THE DEFAULT RADIX. (HEXADECIMAL)

INITIALLY THE DEFAULT RADIX IS SET TO HEXADECIMAL. THIS MAY BE
MODIFIED TO BINARY, OCTAL, OR DECIMAL BY PATCHING LOCATION 1010~

FROM THE FOLLOWING TABLE.

RADIX:

OCTAL
HEXADECIMAL
DECIMAL
BINARY

PATCH LOCATION 10105 TO:

1
2
3
4

#11.6.0 GENERATING 8 BIT ASCII CHARACTERS WITHIN THE BINARY
PROGRAM.

THE ASCII CHARACTERS GENERATED AS OPERANDS WITH THE
CHARACTERS ARE SEVEN BIT REPRESENTATIONS TYPICAL OF
MICROPROCESSOR SYSTEMS. TO GENERATE EIGHT BIT ASCII WITH
EIGHTH BIT ALWAYS SET (AS IS DONE IN SOME PDP8 SOFTWARE),
LOCATION 10106 TO CONTAIN 377. (ORIGINAL CONTENT WAS 177 >.

#11.7.0 RUNNING UNDER OS8 VERSION 2.

QUOTE
MOSl

THE
PATC ...

THE CROSS-ASSEMBLER IS SET UP TO USE THE OS/8 VERSION 3 METHOD FO~

CORE SIZE DETERMINATION. IN OS/8 V3 THE CORE SIZE IS CONTAINED I~

A MONITOR LOCATION. IN PREVIOUS VERSIONS, THE CORE SIZE MUST BE
DETERMINED BY ACCESSING EACH FIELD OF MEMORY TO SEE IF IT EXISTS O~
THE SYSTE~ THEREFORE, TO RUN THE CROSS-ASSEMLER UNDER VERSION 2,
PATCH LOCATION 10107 TO CONTAIN 2. (ORIGINAL CONTENT WAS 3>'

11. 8. 0 CHANG I NG THE NUMBER OF LINES PER PAGE. (6)

THE NORMAL NUMBER OF LINES' PER PAGE IS SET AT 66. 6 OF THE 6~
LINES ARE USED BY THE ASSEMBLER FOR THE HEADING AND MARGI~ TC
ALTER THE NUMBER OF LINES ON A PAGE, PATCH LOCATION 10110 TO BE THE
TOTAL POSITIVE LINES PER PAGE INCLUDING HEADING AND MARGIN.

#11. 9. 0

#11.9.0 CHANGING THE NUMBER OF CHARACTERS PER LINE. (72)

THE TOTAL NUMBER OF CHARACTERS PRINTED ON ONE LINE (EXCLUDING
CARRIAGE RETURN AND LINE FEED) IS SET AT 72 (BASE 10). TO MODIFY
THIS COUNT, PATCH LOCATION 10111 TO CONTAIN THE POSITIVE NUMBER OF
CHARACTERS TO BE PRINTED ON A LINE (EXCLUDING THE CR AND LF).

11. 10. 0 I NIT I AL FORM/FEED CONTROL.

SOME LINE PRINTER HANDLERS WHEN FIRST INITIALIZED WILL ISSUE AN
AUTOMATIC FORM FEED. TO AVOID EJECTING AN ADDITIONAL PAGE EACH TIME
THE ASSEMBLER IS CALLED, THE FIRST FORM FEED FROM THE HEADING HAS
BEEN SUPPRESSED. TO REENABLE THIS FIRST FORM FEED, PATCH LOCATION
10112 WITH 214 (BASE 8>'

#11. 11. 0 CHANGING LABEL DELIMINATOR (,).

TO PROVIDE COMPATIBILITY WITH OTHER ASSEMBLER FORMATS AN OPTIONAL
LABEL DELIMITER WILL BE ACCEPTED. NORMALLY, THIS DELIMITER IS A
COMMA, BUT IT CAN BE MODIFIED TO ANY OTHER NON-ALPHANUMERIC
CHARACTER (EXCEPT THE SEMICOLON OR CARRIAGE RETURN>' TO MODIFY THE
DELIMITING CHARACTER PATCH LOCATION 10113 WITH THE 8 BIT ASCII
VALUE FOR THE CHARACTER.

#11. 12.0 CHANGING FROM 8 BIT TO 7 BIT ASCII IN THE OUTPUT FILES.

ALL ASCII OUTPUT TO THE BINARY (OBJECT) AND LISTING FILES IS IN 8
BIT ASCII FORMAT. TO OUTPUT 7 BIT ASCII FORMAT PATCH LOCATION 10114
TO CONTAIN 177. (ORIGINAL CONTENT WAS 377).

#11. 13. 0
#11. 13.0 CHANGING THE SENSE OF THE RUN-TIME OPTIONS.

EACH SLASH OPTION (EXCEPT /0 TO /9) MAY HAVE ITS SENSE INVERTED B\I
PATCHING THE LOCATIONS SHOWN IN THE FOLLOWING TABLE WITH THE
DESCR I BED VALUE.

OPTION: LOCATION: STANDARD: INVERTED:

/B 10116 7650 7640
/E 10117 7640 7650
/H 10120 7650 7640
/..J 10121 7650 7640
/K 10122 7650 7640
/L 10123 0 1
/N 10124 7650 7640
/0 10125 7650 7640
/P 10126 7640 7650
/S 10127 7650 7640
/T 10130 7650 7640
/W 10131 7650 7640

~:

(

#12. O. 0
#12. O. 0 6800 CROSS-ASSEMBLER SPECIFICS.

THE FIRST ELEVEN SECTIONS OF THIS MANUAL HAVE PRESENTED SIERR~

DIGITAL"'S UNIVERSAL ASSEMBLER FORMAT AS IT IS APPLIED TO ALL CROSS
ASSEMBLERS IN THE X8 SERIES. THIS SECTION PRESENTS ADDITIONAL
INFOMATION ON THE APPLICATION OF THE UNIVERSAL ASSEMBLER FORMAT T(
A SPECIFIC CROSS-ASSEMBLER FOR THE 6800 MICROPROCESSOR. THE 680(
MICROPROCESSOR WAS DESIGNED BY MOTOROLA SEMICONDUCTOR PRODUCT~
INC., BOX 20912, PHOENIX, ARIZONA 85036. THE 6800 IS PRODUCED B'
MOTOROLA SEMICONDUCTOR PRODUCTS INC. AND ALSO SECOND SOURCED B'
AMERICAN MICROSYSTEMS, INC., 3800 HOMESTEAD ROAD, SANTA CLARA,
CALIFORNIA, 95051. NO ATTEMPT WILL BE MADE IN THIS MANUAL T(
EXPLAIN THE OPERATION OF THE MIROPROCESSOR. EXCELLENT MANUAL~
COVERING THE OPERATION AND PROGRAMMING OF THE MICROPROCESSORS ARE
AVAILABLE FROM THEIR MANUFACTURERS. SECTION #13 PRESENTS A SUMMAR'
OF THE INSTRUCTION MNUEMONIC CODES AND ADDRESSING MODES DEFINED B'
MOTOROLA AND RECOGNIZED BY OUR CROSS-ASSEMBLER.

#12. 1. 0 CROSS ASSEMBLER FILE NAMES.

THE CROSS-ASSEMBLER IS PROVIDED ON FILE STRUCTURED MEDIA UNDER THE
NAMES:

X6800. SV
X6800. BN

- FOR THE OS/8 SAVE IMAGE FILE.
- FOR THE OS/8 BINARY FORMAT FILE.

IT IS SUGGESTED THAT THE SAME NAMING CONVENTIONS BE USED WHE~
LOADING THE CROSS-ASSEMBLER FROM PAPER TAPE.

#12. 2, 0 #12. 2. 0
ADDRESSING MODE REQUIREMENTS.
----------------------------~---------

THE 6800 MICROPROCESSOR SUPPORTS SEVERAL ADDRESSING MODES AS
DESCRIBED FULL. Y BY THE MANUFACTURER"S MANUAL. A SUMMARY OF THE
IMPORTANT OPERAND REQUIREMENTS IS PRESENTED HERE. THE INSTRUCTION
TABLE IN SECTION #13 SHOWS ALL THE POSSIBLE ADDRESSING MODES FOR
EACH OPERATOR AND ITS ASSEMBLY SOURCE CODE FORMAT. THE "OPER'"
SHOWN AS AN EXAMPLE IN THE OPERAND FIELD OF MANY INSTRUCTIONS
REPRESENTS THE VALUE OR ADDRESS· TO BE OPERATED ON. THE" OPER" MAY
BE A SINGLE TERM OR A COMPLEX EXPRESSION REDUCEABLE BY THE
ASSEMBLER TO A SINGLE QUANTITY (REFER TO SECTION #4 ON STATEMENT
FOMAT>' FOR MANY INSTRUCTIONS THE VALUE OF THE OPERAND DETERMINES
THE DIFFERENCE IN ADDRESSING MODES (DIRECT VS EXTENDED>' OTHER
ADDRESSING MODES HAVE RESTRICTED VALUES ON THEIR OPERANDS AS
DESCRIBED IN THE FOLLOWING TABLE:

ADDRESSING MODE: MEANING:

INHERENT - NO OPERAND IS ALLOWED.

IMMEDIATE - THE OPERAND VALUE MUST BE IN THE RANGE -129
TO +255 (DECIMAL). TWO"'S COMPLEMENT 8 BIT
VALUES ARE USED.

DIRECT - THE OPERAND REPRESENTS AN ADDRESS IN THE BASE
PAGE AND THEREFORE MUST FALL WITHIN THE RANGE
OF 0 TO 255 (DECIMAL>'

EXTENDED - THE OPERAND REPRESENTS AN ADDRESS WITHIN THE
RANGE 0 TO 65,535 (DECIMAL), IN CASES WHERE
DIRECT MODE IS ALSO AVAILABLE, VALUES FROM
o TO 255 (DECIMAL) WILL AUTOMATICALLY USE
DIRECT (BASE PAGE) ADDRESSING.

INDEXED - THE OPERAND VALUE MUST BE A SINGLE BYTE AND
THEREFORE IS RESTRICTED TO VALUES BETWEEN
o AND 255 (DECIMAL), WHEN THE VALUE IS TO BE
ZERO, THE OPERAND (AND COMMA) MAY BE OMITTED.

RELATIV~ - THE OPERAND VALUE MUST BE AN ADDRESS WHICH IS
WITHIN -128 TO +127 BYTES FROM FIRST BYTE OF
THE NEXT INSTRUCTION.

FOR ALL INSTRUCTIONS INVOLVING ACCUMULATOR ADDRESSING, THE
CHARACTER ... A" OR .' B'- DENOT I NG THE ACCUMULATOR MAY BE COMB I NED WITH
THE INSTRUCTION MNEMONIC CODE. THUS "'ADC B OPER" MAY BE WRITTEN
AS .' ADCB OPER·'.

~\

.12. 3. 0
.12. 3. 0 RESERVED CHARACTERS.

THE SINGLE CHARACTERS .- A'- , .- B", AND .- X·' ARE RESERVED FOR USE AS
INDICATORS FOR THE TWO ACCUMULATORS AND THE X-INDEX REGISTER.
THEIR USAGE IS AS SHOWN IN THE ASSEMBLY CODE COLUMN OF THE
INSTRUCTION TABLES IN SECTION .13. THESE CHARACTERS CANNOT BE USED
AS STANDARD SYMBOL NAMES AND WILL ONLY BE RECOGNIZED WHEN USED AS
DEMONSTRATED IN THE INSTRUCTION TABLES.

*12. 4. 0 LISTING FILE FORMAT.

THE LISTING FILE IS OUTPUT WITH THE OBJECT CODE PRINTED TO THE LEFT
OF THE SOURCE CODE LINES. AS EACH MICROPROCESSOR INSTRUCTION MAV
CODE INTO ONE, TWO, OR THREE BYTES, ROOM IS PROVIDED FOR THRE~
COLUMNS OF GENERATED OBJECT CODE PLUS A COLUMN FOR THE ADDRESS. THE
ADDRESS AND OBJECT CODE ARE NORMALLY PRINTED IN HEXADECIMAL BUT
THIS MAY BE CHANGED TO OCTAL WITH THE /0 COMMAND DECODER OPTION.
SOURCE LINES WHICH EXCEED THE PRINTOUT LIMIT WILL BE CONTINUED AT
COLUMN 25 (STANDARD COMMENT TAB STOP) OF THE SOURCE PRINTOUT
PORTION. TABS OCCURING IN THE SOURCE PROGRAM ARE CONVERTED TO THE
PROPER NUMBER OF BLANK CHARACTERS BY THE ASSEMBLER. THIS IS DONE BV
THE ASSEMBLER RATHER THAN THE DEVIDE HANDLER OR DEVICE BECAUSE THE
BEGINNING OF THE SOURCE PRINTOUT DOES NOT OCCUR ON A STANDARD TAB
STOP.

#12. 5. 0
#12. 5. 0 BINARY FILE OUTPUT:

THE OB~ECT (BINARY) OUTPUT FILE CONISTS OF ASCII TEXT REPRESENTING
HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT:

LEADER STRINGS OF 100 NULL CHARACTERS PRECEED AND FOLLOW THE OB~ECT
OUTPUT. EACH LINE BEGINS WITH A RECORD TYPE DESIGNATOR, SO, Sl, OR
S9. FOLLOWING COMES A TWO HEXADECIMAL DIGIT RECORD BYTE COUNT, A
FOUR HEXADECIMAL DIGIT ADDRESS, UP TO 16 BYTES (EACH 2 HEX DIGITS),
AND A TWO HEX DIGIT CHECKSUM.

EXAMPLE:

STCCAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDXX

WHERE:

S IS AN ASCII CHARACTER'S' DENOTING START OF THE
RECORD.

T IS A SINGLE DIGIT: o FOR
1 FOR
9 FOR

HEADER RECORD
DATA RECORD
END OF FILE RECORD

CC IS THE TWO HEXADECIMAL DIGIT COUNT FOR THE TOTAL
NUMBER OF ADDRESS. DATA, AND CHEC"~SUM BYTES. (AA,
DD, XX>'

AAAA IS THE HEXADECIMAL ADDRESS FOR STORING THE FIRST
DATA BYTE. EACH ADDITIONAL DATA BYTE IS TO BE
STORED IN SEQUENTIAL ADDRESSES. THE ADDRESS IS
PRESENTED WITH ITS MOST SIGNIFICANT BYTE FIRST.

DD REPRESENTS TWO HEXADECIMAL DIGITS FOR A BYTE OF
OB.JECT (BINARY CODE>' UP TO 16 BYTES MAY BE OUTPUT
ON ONE LINE.

XX IS THE TWO HEXADECIMAL DIGIT CHECKSUM FORMED SUCH
THAT WHEN ADDED TO THE SUM OF THE COUNT, ADDRESS,
AND DATA BYTES IN THE RECORD, THE LEAST SIGNIFICANT
BYTE OF THE RESULT WILL BE ' FF" (HEX) .

HEADER RECORDS, DENOTED BY A LEADING "SO'-, CONTAIN AN ADDRESS
VALUE OF ZERO AND FROM 0 TO 6 BYTES OF DATA REPRESENTING 7 BIT
ASCII CHARACTERS OF A PROGRAM NAME. THE PROGRAM NAME IS TAKEN AS
THE BINARY OUTPUT FILE NAME (LESS EXTENSION) SPECIFIED TO THE
COMMAND DECODER. NOTE THAT A FILE NAME MAY BE ASSIGNED EVEN WHEN
THE DEV I CE I S NOT FILE STRUCTURED. THUS' * TTY: NAME <SOURCE" IS
LEGAL AND WILL CAUSE THE ASCII VALUES FOR THE FOUR CHARACTERS
"NAME" TO BE PLACED IN THE BINARY HEADER RECORD.

!

/

#12. 5. 0

END OF FILE RECORDS CONTAIN AN ADDRESS VALUE OF ZERO AND NO DAT~
BYTES.

THE BINARY OUTPUT FILE CAN BE CHANGED TO BNPF FORMAT THROUGH USE OF
THE /B RUN-TIME OPTION. SECTION #2. 4. 0 DESCRIBES THE BNPF OUTPUT.

#12. 6. 0 ADDITIONAL ERROR MESSAGES FOR THE 6800:

WARNINGS:

W:FZ FORWARD REFERENCE TO ZERO PAGE.
SINCE ADDRESSES MUST BE ASSIGNED DURING PASS 1, TWO
BYTES ARE LEFT FOR THE FORWARD REFERENCED OPERAND
ADDRESS. DURING PASS 2 THE ASSEMBLER FOUND THAT IT
ONLY NEEDED ONE BYTE BUT SINCE TWO BYTES WERE
RESERVED, EXTENDED ADDRESSING WAS USED. BY REMOVING
THE FORWARD REFERENCE, AN EXTRA BYTE MAY BE SAVED.

STANDARD ERRORS:

E:BR BRANCH IS OUT OF RANGE.
THE OPERAND ADDRESS WAS OUT OF RANGE FROM THE RE
QUIRED -128 TO +127 (DECIMAL) BYTES FROM THE FIRST
LOCATION FOLLOWING THE BRANCH.

E: BY BYTE VALUE REQU I RED.
THE OPERAND VALUE WAS GREATER THAN 255 (DECIMAL),
THUS EXCEEDING THE SINGLE BYTE VALUE RANGE REQUIRED
BY THE INDEXED ADDRESSING MODE.

E:OA ILLEGAL OPERAND ADDRESSING MODE.
THE OPERAND ADDRESSING MODE USED DOES NOT MATCH ONE
OF THE LEGAL ADDRESSING MODES FOR THE OPERATOR.

2. 7. 0 SAMPLE PROGRAM #12.7.0

X6S00
TY: SAMPLE, TTY: <SAMPLE/l/P/J
E:MO AT UPPTR + 7
E:MO AT UPPTR + 7

09000053414D504C4534
131000B65C002B28962427F7B65C022AF2DE226F
1310109C2027148D3CD~22A600B76E04C640F73F
1310206E025FF76E0220D87F002420D3DE208D6D
131030219C222711DF20A700C680F76E02D72447
1310405FF76E0220BAC620F76E025FF76E023FAA
13105020B3088C40802603CE30803941424300BF
0610603F6333B4
'030000FC

SAMPLE ROUTINE APR 9, 1976

· TITLE SAMPLE ROUTINE

X6800-VIA PAGE

THIS ROUTINE ACCEPTS 7 BIT VALUES COMING IN
FROM INPUT PORT #1 AND PUTS THE DATA IN A

1

4095 BYTE FIRST IN/FIRST OUT QUEUE. THE DATA
IS THEN RETRIEVED FROM THE QUEUE AND TRANS-
MITTED VIA OUTPUT PORT, #2 WHEN CONDITIONS
PERMIT.

5C 0 IPORTl · EQU 5COO i DEFINE I/O PORT LOCATIONS
5C 2 IPORT2 · EQU 5C02
6E 2 OPORTl · EQU 6E02
6E 4 OPORT2 · EQU 6E04

0 20 INPUT · EQU 20 iQUEUE INPUT POINTER
0 22 OUTPUT · EQU 22 iQUEUE OUTPUT POINTER
0 24 XMTFLG · EQU 24 iTRANSMIT REQUEST FLAG

30 80 BUFFER · EQU 3080 lBASE OF QUEUE BUFFER
10 0 .ORG 1000

1000 B6 5C 0 LOOP LDA A IPORTl iGET READY FLAG AND DATA
1003 2B 28 BMI RECV iFOUND READY FLAG
1005 96 24 FULL LOA A XMTFLG iCHECK XMIT REQUEST FLAG
1007 27 F7 BEQ LOOP iNO DATA TO TRANSMIT
1009 B6 5C 2 LDA A IPORT2 iCHECK FOR RECEIVER READY
100C 2A F2 BPL LOOP ; RECEIVER NOT READY
100E DE 22 LOX OUTPUT ; CHECK QUEUE POINTERS
1010 9C 20 CPX INPUT
1012 27 14 BEQ $1 ; IP=OP, QUEUE EMPTY
1014 8D 3C BSR UPPTR i INCREMENT POINTER
1016 OF 22 STX OUTPUT ; UPDATE OUTPUT POINTER
1018 A6 0 LDA A X ; GET BUFFER CONTENTS AND
lOlA B7 6E 4 STA A OPORT2 OUTPUT
101D C6 40 LDA B #· BO 1 000000 iSET HARDWARE XMIT FLAG
101F F7 6E 2 STA B OPORTl
1022 5F CLR B
1023 F7 6E 2 STA B OPORTl
1026 20 08 BRA LOOP
1028 7F 0 24 $1 CLR XMTFLG iCLEAR TRANSMIT FLAG
102B 20 03 BRA LOOP

SAMPLE ROUTINE

1020 DE 20 RECV
102F SO 21
1031 9C 22
1033 27 11
1035 OF 20
1037 A7 0
1039 C6 SO
103B F7 6E 2
103E 07 24
1040 5F
1041 F7 6E 2
1044 20 BA
1046 C6 20 $1
104S F7 6E 2
104B 5F
104C F7 6E 2

· PAGE
LOX
BSR
CPX
BEQ
STX
STA A
LOA B
STA B
STA B
CLR
STA B
BRA
LOA B
STA B
CLR
STA B

#12. 7. 0

APR 9, 1976 X6S00-V1A PAGE

INPUT
UPPTR
OUTPUT

;CHECK INPUT POINTER

$1 i FOUND QUEUE FULL
INPUT iUPDATE INPUT POINTER
X iSTORE INCOMING DATA
#· Bl0000000 ; ACKNOWLEDGE DATA RECEIVED
OPORTl
XMTFLG iALSO SET XMIT REQUEST FLAG
B
OPORTl
LOOP
#· ... BOO 1 00000 i SET HARDWARE QUEUE
OPORTl FULL FLAG
B
OPORTl

2

· IFZERO ?1
NOP

iUSER FLAG 1 IS SELECTED FOR
DEBUGGING. AN "'SWI·- IS
INSERTED FOR DEBUGGING AND A
.' NOp·- I S I NSERTED FOR NORMAL
OPERATION

· ENDC
· IFNZRO ?1

104F 3F SWI

1050 20 B3
1052 S UPPTR

· ENDC
BRA
INX
CPX
BNE
LOX
RTS
SAMPLE
· BYTE

1053 8C 40 80
1056 26 3
1058 CE 30 SO
105B 39 $1

105C 41
1050 42
105E 43
105F 0
1060 3F
1061 63
1062 33
****** E:MO

JUNK
· END

SAMPLE ROUTINE

3080 BUFFER
5C02 IPORT2

22 OUTPUT

ERRORS: 1

1005 FULL
1000 LOOP
1020 RECV

FULL
i INCREMENT POINTER ROUTINE

#BUFFER+1000 iCHECK FOR BUFFER LIMIT
$1 iNOT AT END YET
#BUFFER iSET TO BEGINNING ADDRESS

BYTE DATA COMMAND
"ABC",O,AD63,63,A063

i SAMPLE ERROR

APR 9, 1976

20 INPUT
6E02 OPORTl
1052 UPPTR

X6800-V1A

5COO IPORTl
6E04 OPORT2

24 XMTFLG

PAGE 3

#13. O. 0
#13. O. 0 MICROPROCESSOR INSTRUCTION SET.

THIS SECTION IS A SUMMARY OF THE INSTRUCTION SET OF THE 6800 MICRO
PROCESSOR AS DEFINED BY THE VENDORS. THE ASSEMBLY CODE FORMAT FOR
EACH ADDRESSING MODE IS SHOWN WITH THE HEXADECIMAL OBJECT CODE (OP
CODE>. THE ASSEMBLER WILL CODE EACH INSTRUCTION INTO THE NUMBER OF
BYTES GIVEN FOR EACH ADDRESSING MODE.

ABA - ADD ACCUMUL.ATOR B TO ACCUMULATOR A.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT ABA 1B 1

ADC - ADD WITH CARRY.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

A IMMEDIATE ADC A #OPER 89 2
A DIRECT ADC A OPER 99 2
A EXTENDED ADC A OPER B9 3
A INDEXED ADC A OPER,X A9 2
B IMMEDIATE ADC B #OPER C9 2
B DIRECT ADC B OPER 09 2
B EXTENDED ADC B OPER F9 3
B INDEXED ADC B OPER,X E9 2

ADD - ADD WITHOUT CARRY.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
A IMMEDIATE ADD A #OPER 8B 2
A DIRECT ADD A OPER 9B 2
A EXTENDED ADD A OPER BB 3
A INDEXED ADD A OPER, X AB 2
B IMMEDIATE ADD B #OPER CB 2
B DIRECT ADD B OPER DB 2
B EXTENDED ADD B OPER FB 3
B INDEXED ADD B OPER,X EB 2

#13. O. 0
AND - LOGICAL ANn

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
A IMMEDIATE AND A #OPER
A DIRECT AND A OPER
A EXTENDED AND A OPER
A INDEXED AND A OPER,X
B IMMEDIATE AND B #OPER
B DIRECT AND B OPER
B EXTENDED AND B OPER
B INDEXED AND B OPER,X

ASL - ARITHMETIC SHIFT LEFT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

ASSEMBLY CODE

ASL
ASL
ASL
ASL

A
B
OPER
OPER,X

ASR - ARITHMETIC SHIFT RIGHT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

ASSEMBLY CODE

ASR
ASR
ASR
ASR

A
B
OPER
OPER, X

BCC - BRANCH IF CARRY CLEAR.

ADDRESSING MODE ASSEMBLY CODE

RELATIVE BCC OPER

94
94
B4
A4
C4
04
F4
E4

OP CODE

48
59
78
69

OP CODE

47
57
77
67

OP CODE

24

2
2
3
2
2
2
3
2

NO. OF BYTES

1
1
3
2

NO. OF BYTES

1
1
3
2

NO. OF BYTES

2

4+13. O. 0
BCS - BRANCH IF CARRY SET.
--
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE Bes OPER 25 2

BEQ - BRANCH IF EQUAL.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BEQ OPER 27 2

BGE - BRANCH IF GREATER THAN OR EQUAL TO ZERO.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

REl.ATIVE BGE OPER 2C 2
--

BGT - BRANCH IF GREATER THAN ZERO.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BGT OPER 2E 2

BHI - BRANCH IF HIGHER.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BHI OPER 22 2

#13. o. 0
BIT - BIT TEST.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE:

A IMMEDIATE BIT A #OPER 85 2
A DIRECT BIT A OPER 95 2
A EXTENDED BIT A OPER B5 3
A INDEXED BIT A OPER,X A5 2
B IMMEDIATE BIT B #OPER C5 2
B DIRECT BIT B OPER D5 2
B EXTENDED BIT B OPER F5 3
B INDEXED BIT B OPER,X E5 2

BLE - BRANCH IF LESS THAN OR EQUAL TO ZERO.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE:

RELATIVE BLE OPER 2F 2

BLS - BRANCH IF LOWER OR SAME.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE:

RELATIVE BLS OPER 23 2

BLT - BRANCH IF LESS THAN ZERO.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE:

RELATIVE BLT OPER 2D 2

#13. O. 0
BMI - BRANCH IF MINUS.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BMI OPER 2B 2

BNE - BRANCH IF NOT EQUAL.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BNE OPER 26 2

BPL - BRANCH I F PLUS.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BPL OPER 2A 2
--

BRA - BRANCH ALWAYS.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BRA OPER 20 2

BSR - BRANCH TO SUBROUT I NE.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BSR OPER 80 2

4t13. o. 0
BVC - BRANCH IF OVERFLOW CLEAR.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BVC OPER 28 2

BVS - BRANCH IF OVERFLOW SET.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

RELATIVE BVS OPER 29 2

CBA - COMPARE ACCUMMULATORS.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT CRA 11 1

CLC - CLEAR CARRY.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT CLC OC 1

CLI - CLEAR INTERRUPT MASK.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT CLI OE 1

#13. O. 0
CLR - CLEAR.
--
ADDRESSING MODE

A
13
EXTENDED
INDEXED

ASSEMBLY CODE

CLR
CLR
CLR
CLR

A
13
OPER
OPER,X

CLV - CLEAR TWO"S COMLEMENT OVERFLOW BIT.

ADDRESSING MODE ASSEMBLY CODE

INHERENT CLV

CMP - COMPARE.

OP CODE

4F
!SF
7F
6F

OP CODE

OA

NO. OF BYTES

1
1
3
2

NO. OF BYTES

1

--
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
A IMMEDIATE
A DIRECT
A EXTENDED
A INDEXED
13 IMMEDIATE
13 DIRECT
13 EXTENDED
13 INDEXED

COM - COMPLEMENT.

ADDRESSING MODE

A
13
EXTENDED
INDEXED

CMP A #OPER
CMP A OPER
CMP A OPER
CMP A OPER,X
CMP 13 #OPER
CMP 13 OPER
CMP 13 OPER
CMP 13 OPER,X

ASSEMBLY CODE

COM
COM
COM
COM

A
13
OPER
OPER,X

Ell
91
131
A1
C1
D1
F1
E1

OP CODE

43
53
73
63

2
2
:3
2
2
2
3
2

NO. OF BYTES

1
1
3
2

CPX - COMPARE INDEX REGISTER.

ADDRESSING MODE

IMMEDIATE
DIRECT
EXTENDED
INDEXED

ASSEMBLY CODE

CPX
CPX
CPX
CPX

ttOPER
OPER
OPER
OPER,X

DAA - DECIMAL ADJUST ACCA.

ADDRESSING MODE

INHERENT

DEC - DECREMENT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

ASSEMBLY CODE

DAA

ASSEMBLY CODE

DEC
DEC
DEC
DEC

A
B
OPER
OPER, X

DES - DECREMENT STACK POINT.

ADDRESSING MODE ASSEMBLY CODE

INHERENT DES

DEX - DECREMENT INDEX REGISTER.

ADDRESSING MODE ASSEMBLY CODE

INHERENT DEX

OP CODE

SC
9C
BC
AC

OP CODE

19

OP CODE

4A
SA
7A
6A

OP CODE

34

OP CODE

09

tt13. O. 0

NO. OF BYTE!:

3
2:
3
2:

NO. OF BYTE~

1

NO. OF BYTE~

1
1
3
2:

NO. OF BYTE~

1

NO. OF BYTE~

1

#13. O. 0
EOR - EXCLUSIVE OR.
--
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
A IMMEDIATE
A DIRECT
A EXTENDED
A INDEXED
B IMMEDIATE
B DIRECT
13 EXTENDED
13 INDEXED

INC - INCREMENT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

EOR A #OPER
EOR A OPER
EOR A OPER
EOR A OPER,X
EOR B #OPER
EOR B OF'ER
EOR 13 OPER
EOR B OPER,X

ASSEMBLY CODE

INC
INC
INC
INC

A
B
OPER
OPER,X

INS - INCREMENT STACK POINTER.

ADDRESSING MODE ASSEMBLY CODE

INHERENT INS

INX - INCREMENT INDEX REGISTER.

ADDRESSING MODE ASSEMBLY CODE

INHERENT INX

88
98
138
A8
C8
D8
F8
E8

OP CODE

4C
!'.5C
7C
e.C

OP CODE

31

OP CODE

08

2
2
3
2
2
2
3
2

NO. OF BYTES

1
1
3
2

NO. OF BYTES

1

NO. OF BYTES

1

~

.JMP - .JUMP.

ADDRESSING MODE

EXTENDED
INDEXED

ASSEMBLY CODE

.JMP

.JMP
OPER
OPER,X

.JSR - .JUMP TO SUBROUTINE.

ADDRESSING MODE

EXTENDED
INDEXED

LOA - LOAD .ACCUMULATOR

ADDRESSING MODE

ASSEMBLY CODE

.JSR

.JSR
OPER
OPER, X

ASSEMBLY CODE

OP CODE

7E
6E

OP CODE

130
AD

OP CODE

tU3. O. 0

NO. OF BYTES

3
2

NO. OF BYTES

3
2

NO. OF BYTES
--
A IMMEDIATE LOA A #OPER 86 2
A DIRECT LOA A OPER 96 2
A EXTENDED LOA A OPER 136 3
A INDEXED LOA A OPER,X A6 2
B IMMEDIATE LOA 13 #OPER C6 2
B DIRECT LOA B OPER 06 2
B EXTENDED LOA B OPER F6 3
B INDEXED LOA B OPER,X E6 2

LOS - LOAD STACK POINTER.
-----------------~--
ADDRESSING MODE

IMMEDIATE
DIRECT
EXTENDED
INDEXED

ASSEMBLY CODE

LOS
LOS
LDS
LOS

OPER
OPER
OPER
OPER,X

OP CODE

8E
9E
BE
AE

NO. OF BYTES

3
2
3
2

LDX - LOAD INDEX REGISTER.

ADDRESSING MODE

IMMEDIATE
DIRECT
EXTENDED
INDEXED

.ASSEMBLY CODE

LDX
LDX
LDX
LDX

#OPER
OPER
OPER
OPER,X

LSR - LOGICAL SHIFT RIGHT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

NEG - NEGATE.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

NOP - NO OPERATION.

ADDRESSING MODE

INHERENT

ASSEMBLY CODE

LSR
LSR
LSR
LSR

A
B
OPER
OPER,X

ASSEMBLY CODE

NEG
NEG
NEG
NEG

A

OPER
OPER,X

ASSEMBLY CODE

NOP

OP CODE

CE
DE
FE
EE

OP CODE

44
54
74
64

OP CODE

40
50
70
60

OP CODE

01

#13. O. 0

NO. OF BYTES

3
:2
3
:2

NO. OF BYTES

1
1
3
:2

NO. OF BYTES

1
1
3
:2

NO. OF BYTES

1

ORA - INCLUSIVE OR.

ADDRESSING MODE ASSEMBLY CODE

A IMMEDIATE ORA A #OPER
A DIRECT ORA A OPER
A EXTENDED ORA A OPER
A INDEXED ORA A OPER,X
B IMMEDIATE ORA B #OPER
B DIRECT ORA B OPER
B EXTENDED ORA B OPER
B INDEXED ORA B OPER,X

PSH - PUSH DATA ONTO STACK.

ADDRESSING MODE

A
B

ASSEMBLY CODE

PSH
PSH

A
B

PUL - PULL DATA FROM STACK.

ADDRESSING MODE

A
B

ROL - ROTATE LEFT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

ASSEMBLY CODE

PUL
PUL

A
B

ASSEMBLY CODE

ROL
ROL
ROL
ROL

A
B
OPER
OPER, X

OP CODE

8A
9A
BA
AA
CA
DA
FA
EA

OP CODE

36
37

OP CODE

32
33

OP CODE

49
59
79
69

4U3. O. 0

NO. OF BYTES

2
2
3
2
2
2
3
2

NO. OF BYTES

1
1

NO. OF BYTES

1
1

NO. OF BYTES

1
1
3
2

ROR - ROTATE RIGHT.

ADDRESSING MODE

A
B
EXTENDED
INDEXED

ASSEMBLY CODE

ROR
ROR
ROR
ROR

A
B
OPER
OPER,X

RTI - RETURN FROM INTERRUPT.

ADDRESSING MODE ASSEMBLY CODE

OP CODE

46
56
76
66

OP CODE

#13. O. 0 ~

NO. OF BYTES

1
1
3
2

NO. OF BYTES
--
INHERENT RTI 3B 1
--

RTS - RETURN FROM SUBROUTINE.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT RTS 39 1

SBA - SUBTRACT ACCUMULATORS.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT SBA 10 1

*13. O. 0

SBC - SUBTRACT WITH CARRY.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE~

A IMMEDIATE SBC A *OPER 82 2
A DIRECT SBC A OPER 92 2
A EXTENDED SBC A OPER B2 3
A INDEXED SBC A OPER,X A2 2
B IMMEDIATE SBC B *OPER C2 2
a DIRECT SBC B OPER 02 2
a EXTENDED sac B OPER F2 3
B INDEXED sac a OPER,X E2 2
--

SEC - SET CARRY.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE~

---~

INHERENT SEC 00 1

SEI - SET INTERRUPT MASK.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE~

INHERENT SEI OF 1

SEV - SET TWO···S COMPLEMENT OVERFLOW BIT.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE~

INHERENT SEV OB 1

#13. O. 0
STA - STORE ACCUMULATOR.
-------------------------------~----------------------------------
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

A DIRECT STA A OPER 97 2
A EXTENDED STA A OPER B7 3
A INDEXED STA A OPER,X A7 2
B DIRECT STA B OPER D7 2
B EXTENDED STA B OPER F7 3
B INDEXED STA B OPER, X E7 2
--

STS - STORE STACK POINTER.

ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

ASSEMBLY CODE

STS
STS
STS

OPER
OPER
OPER,X

OP CODE

9F
BF
AF

NO. OF BYTES

2
3
z

--

STX - STORE INDEX REGISTER.
-------------------~----------------------~-----------------------
ADDRESSING MODE

DIRECT
EXTENDED
INDEXED

SUB - SUBTRACT.

ASSEMBLY CODE

STX
STX
STX

OPER
OPER
OPER,X

OP CODE

DF
FF
EF

NO. OF BYTES

2
3
2

--
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
A IMMEDIATE SUB A #OPER 80 2
A DIRECT SUB A OPER 90 2
A EXTENDED SUB A OPER BO 3
A INDEXED SUB A OPER, X AO 2
B IMMEDIATE SUB B #OPER CO 2
B DIRECT SUB B OPER DO 2
B EXTENDED SUB B OPER FO 3
B INDEXED SUB B OPER,X EO 2

(

"

#13. O. 0
SWI - SOFTWARE INTERRUPT.

ADDRESSING MODE ASSEMBLY CODE OP CODE , NO. OF BYTE

INHERENT SWI 3F 1

-/

TAB - TRANSFER FROM ACCUMULATOR A TO ACCUMULATOR B.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE
-------------------------~---------------------------------------
INHERENT TAB 16 1

TAP - TRANSFER FROM ACC A TO PROCESSOR CONDITION CODES REG.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE

INHERENT TAP 06 1

TBA - TRANSFER FROM ACCUMULATOR B TO ACCUMULATOR A.

ADDRESSING MODE ASSEMBLY'CODE OP CODE NO. OF BYTE

'INHERENT TBA 17 1

TPA - TRANSFER FROM PROCESSOR· CONDITION CODES REG. TO ACC A.
--~--------------------
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTE

INHERENT TPA 07 1

#13. o. 0
TST - TEST.
---~------------------------
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
-------------~--
A
B
EXTENDED
INDEXED

TST
TST
TST
TST

A
B
OPER
OPER, X

4D
5D
7D
6D

TSX - TRANSFER FROM STACK POINTER TO INDEX REGISTER.

ADDRESSING MODE ASSEMBLY CODE OP CODE

INHERENT TSX 30

1
1
3
2

NO. OF BYTES

1
----~---

TXS- TRANSFER FROM INDEX REGISTER TO STACK POINTER.
--
ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES
--
INHERENT TXS 35 1

WAI - WAIT FOR INTERRUPT.

ADDRESSING MODE ASSEMBLY CODE OP CODE NO. OF BYTES

INHERENT WAI 3E 1

(

APPENDIX A - RUN-TIME OPTIONS. #14. O. 0

**
/B
/E
/H
/.J

/K

/L

/N
/0

/P

/S
/T
/W
/0 TO /9

- OUTPUT BINARY FILE IN BNPF FORMAT.
- INHIBIT ERROR MESSAGES TO CONSOLE.
- INHIBIT HEADINGS AND PAGINATION.
- LIST UNASSEMBLED STATEMENTS AND CONDITIONAL

ASSEMBLY PSEUDO-OPS.
- EXPAND SYMBOL TABLE STORAGE INTO ADDITIONAL

CORE.
- OUTPUT LEADER (NULLS) IN BINARY FILE FOR EACH

.ORG STATEMENT.
- LIST ONLY THE SYMBOL TABLE.
- OUTPUT LISTING IN OCTAL FORMAT INSTEAD OF IN

HEXADECIMAL.
- INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE

LISTING.
- OMIT THE SYMBOL TABLE FROM THE LISTING.
- REPLACE THE FORM/FEED WITH 3 CR/LF'S.
- INHIBIT WARNING MESSAGES.
- USER FLAGS. USED WITH THE ? OPERATOR.

**********~.***

APPENDIX B - INDICATOR SET.

**

+

""C
· B
· D
·····H

" OR .'
?

MULT I PL I CAT ION.
DIVISION.
BOOLEAN AND.
INCLUSIVE OR.
ADDITION.
SUBTRACT ION.
COMPLEMENT INDICATOR. (UPARROW B).
BINARY RADIX INDICATOR. (UPARROW B).
DECIMAL RADIX INDICATOR. (UPARROW D).
HEXADECIMAL RADIX INDICATOR. (UPARROW H).
OCTAL RADIX INDICATOR. (UPARROW 0).
LEAST SIGNIFICANT BYTE ACCESS OPERATOR.
(UPARROW L).
MOST SIGNIFICANT BYTE ACCESS OPERATOR.
(UPARROW M).
COMMENT INDICATOR.
ASCII CHARACTER INDICATOR.
USER FLAG OPERATOR.
CURRENT LOCATION COUNTER. (PERIOD).

**

APPENDIX C - PSEUDO-OPS. #14. O. 0

**

· ADDR
· BIN
· BYTE
. DBYTE
. DECM
. DINST
· END
· ENDC
· EQU
· HEX

IFDEF
· IFNDEF
· IFNZRO
· IFZERO
· LIST
· OCT
.ORG
· PAGE
· SET
· TITLE
· ZERO

DOUBLE BYTE DATA STORAGE I REVERSED FORMAT.
CHANGES DEFAULT RADIX TO BINARY.
SINGLE BYTE DATA STORAGE.
DOUBLE BYTE DATA STORAGE .
CHANGES DEFAULT RADIX TO DECIMAL .
RENAMES A MICROPROCESOR INSTRUCTION .
PROGRAM TERMINATOR.
ENDS CONDITIONAL ASSEMBLY.
ASSIGNS A PERMANENT VALUE TO A SYMBOL.
CHANGES DEFAULT RADIX TO HEXADECIMAL.
INCLUDE CODE TO . ENDC IF SYMBOL IS DEFINED.
INDLUDE CODE TO . EN DC IF SYMBOL IS NOT DEFINED.
INCLUDE CODE TO . EN DC IF OPERAND DOES NOT EQUAL o.
INCLUDE CODE TO . ENDC IF OPERAND EQUALS o.
PROVIDES SELECTIVE LISTINGS.
CHANGES DEFAULT RADIX TO OCTAL.
REASSIGNS THE CURRENT LOCATION COUNTER.
BEGINS NEW PAGE IN LISTING.
ASSIGNS A TEMPORARY VALUE TO A SYMBOL.
SPECIFIES HEADING.
ZEROS A SPECIFED NUMBER OF BYTES.

**

APPENDIX 0 - ERROR MESSAGES. #14. O. 0

**

E:BN
E:BR
E:BY
E:DF
E:DR
E: IL
E: 10
E:LO
E:LS
E:LT
E:ML
E:MO
E:OA
E:OC
E:OE
E:OM
E:OS
E:PE
E:PS
E:RE
E:ST
E:TL
E:US
E:WE

W:EF
W:UC

W:FZ

- BAD NESTING OF BRACKETS.
- BRANCH I S OUT OF RANGE.
- BYTE VALUE REQU I RED.
- OUTPUT FILE DEVICE FULL. (FATAL)
- DIGIT OUTSIDE OF RADIX.
- ILLEGAL LABEL FIELD.
- ILLEGAL OPERAND VALUE.
- LINE INPUT OVERFLOW.
- LOCAL SYMBOL SYNTAX ERROR.
- LOCAL SYMBOL TABLE OVERFLOW. (FATAL)
- MULTIPLE LABEL DEFINITION.
- MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD.
- ILLEGAL OPERAND ADDRESSING MODE.
- OPERAND TOO COMPLEX.
- OPEN ERROR IN OUTPUT FILE. (FATAL)
- OPERAND MISSING.
- OPERAND SYNTAX ERROR.
- PHASE ERROR, ADDRESS CONFLICt. (FATAL)

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND.
- INPUT FILE READ ERROR. (FATAL)
- SYMBOL TABLE OVERFLOW. (FATAL)
- LABEL DEFINED TOO LATE.
- UNDEFINED SYMBOL.
- OUTPUT FILE WRITE ERROR. (FATAL)

- NO . END STATEMENT IN LAST FILE.
- UNINHIBITED CONDITIONAL ASSEMBLY IN EFFECT

AT ASSEMBLY END.
- FORWARD REFERENCE TO ZERO PAGE.

**

(

