
ENGINEERING
TECHNICAL

REPORT

AeROSPACE .. MARINE SYSTEMS

~~

DOCUMENT NO. Y240.A302M081 0 REV_

SKC3120

SIMULATOR

REFERENCE MANUAL

JULY 1976

ORR NO.01911 (NP) TOTAL PAGES 102

THE SINGER COMPANY. KEARFOTT DIVISION. 1150 MCBRIDE AVENUE. LITTLE FALLS, N. J. 07424

F4200'4 2/72

F4202-1 2/76

THE SINGER COMPANY
KEARFOTT DIVISION

SKC3120

S I r·1U LATOR

REFERENCE MANUAL

Prepared by:

DE PARH'!ENT 5 7G 0

Y240A302M0810 ________ REV __

Ei~GINEERlr~G PROGRAiltl,lING AND COMPUTATIO;J

JULY 1976

REV

-

REV

PAGE

!

F4201 2/72

RELEASE

-
COVER

THE SINGER COMPANY
KEARFOTT DIVISION

REVISION RECORD

DESCRIPTION

REVISION SYtttBOL OF REVISED -PAGES

i i

Y240A302M0810 REV

APPROVAL
AND DATE

fl ... : ,
.. / Jl~l\ .. ~, oi..<"

JULY 1976

-
OTHER
PAGES

Y 2 4 0 A 3 0 2 ~·1 0 8 1 0 REV
THE SINGER COMPANY

KEARFOTT DIVISION

ABSTRACT

This manual contains user information pertaining to the SKC3120
Simulator Program as well as a complete description of all user
controls and service requests. The SKC3120 Simulator util izes
the facil ities of the host machine to create a functional
reproduction of the SKC3120 Computer. User controls and a
service facility are provided to permit effective control of the
Simulator.

Proper operation of the SKC3120 Simulator requires knowledge of
the SKC3120 computer and the SKC3120 (KAL31) Assembler language.
Therefore, the following documents should be used in conjunction
with the Simulator Reference ~anua1:

Y2 1tOA301H031C

Y 2 4 0 A 3 0.0 I···j a 8 1 0

Y2l}OA301fA0811

SKC3120 A5sAmbler Language Reference Manual

SKC3120 Principles of Operation

SKC3120 Assembler/Linkage Editor/Simulator
User's !vlanual.

Since this Simulator \1as' designed to be largely machine po:--table,
it can be easily adapted to run on a variety of host machines.

This manual is Host I-lachine independent and describes the user
control commands and service routines which may be used v"ith any
;105 t t·jach i ne.

Specific operating instructions are supplied for the IBM 360/370
in the Hos t Procedu res t,anua 1 •

Y 2 4 0 A 3011'108 12

F4202-1 a/15

SKC3120 Host Procedures for the IBM 360/370
Computers

iii

THE SINGER COMPANY Y240A302M0810
KEARFOTT DIVISION REV

TABLE OF CONTENTS

PAGE

1- INTRODUCTION 1-1

2. SIMULATOR CAPABILITIES 2-1

3. SIMULATOR ENVIRONMENT 3-1

4. DEFAULT FCP 4-1

4.1 DEFAULT FCP FUNCTIONS 4-1

4.2 CONTROL COMMANDS 4-2

4.3 CONTROL COMMAND DESCRIPTIONS 4,..5

4.3.1 $TAPIN COMMAND 4 -5
4.3.2 $EXEC COMMAND 4-6
4.3.3 $TRACE COMMAND 4-7
4.3.4 $BREAK COMMAND 4-9
4.3.5 $NOTE COMMAND 4-11
4.3.6 $TERM COMMAND 4-12
4.3.7 $DUMP COMMAND 4-14
4.3.8 $IODEF COMMAND 4-16
4.3.9 $INTRPT COMMAND 4-18
4.3.10 $CHECK COMMAND 4-20
4.3.11 $RESTR COMMAND 4-21
4.3.12 $CHKSM COMMAND 4-22
4.3.13 $INPUTHX COMMAND 4-23
4.3 •. 14 $INPUTFX COMMAND 4-24
4.3.15 $OUTPTHX COMMAND 4-26
4.3.16 $OUTPTFX COMMAND 4-27
4.3.17 $INPUTFL COMMAND 4-29
4.3.18 $OUTPTFL COMMAND 4-31
4.3.19 $SETAHX COMMAND 4-32
4.3.20 $SETAFX COMMAND, 4-33
4.3.21 $SETAFL COMMAND 4-34
4.3.22 $SETBHX COMMAND 4-35
4.3.23 $SETBFX COMMAND 4-35
4.3.24 $SETX COMMAND 4-35
4.3.25 $SETR COMMAND 4-36

5. FCP ENVIRONMENT SPECIFICATIONS . 5-1

5.1 CPU CONTROL BLOCK 5-2

iv

Y240A302M0810 REV _
THE SINGER COMPANY

KEARFOTT DIVISION

TABLE OF CONTENTS (CONTINUED)

5.2 10 CONTROL BLOCK

5.3 MEMORY CONTROL BLOCK

5.4 10DEF CONTROL BLOCK

5.5 BLIST CONTROL BLOCK

6. FCP LANGUAGE SPECIFICATIONS

6.1 FCP SUBROUTINE LINKAGE AND
CALLING SEQUENCE

6.2 TYPE DECLARATION

6.3 CONTROL BLOCKS

6.4 CONTROL FUNCTIONS

6.5 FCP SERVICE REQUESTS

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16

STRACE REQUEST
SDUMP REQUEST
SINPUT REQUEST
SOUTPT REQUEST
SDVICE REQUEST
SIO REQUEST
SMEf.1RY REQUEST
SSETA REQUEST
SSETB REQUEST
SSETX REQUEST
SCHECK REQUEST
SRESTR REQUEST
STAPIN REQUEST
SNOTE REQUEST
STABLE REQUEST
SSETR REQUEST

7. I/O MODEL LANGUAGE SPECIFlCATION

APPENDIX A
APPEtW I X B

F4202-1 2./75

DEFAULT FCP PROGRAM LISTING
OPERATION OF THE SIMULATOR
IN ALTERNATE CONFIGURATIONS

V

PAGE

5-5

5-6

5-7

5 -8

6-1

6-1

6,-3

6-4

6-5

6-6

6-6
6-8
6-9
6-11
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-20
6-21
6-22
6-23

7-1

A-I
B-1

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

1. I NTRODUCT I ON

The Singer Company, Kearfott Division has developed a powerful
Simulator program to complement the development of the SKC3120
Computer and the SKC3120 Macro Assembler. The program is
executed on a host machine computer system and is intended for
use by customers, or potential customers, who do not have an
SKC3120 Computer System available for program checkout, or who
desire to avail themselves of the extensive user control and
report facil ities not normally available with the SKC3120
Computer itself.

The Simulator accepts as input the SKC3120 Macro Assembler's load
module, which is normally on magnetic tape. It loads this module
into a simulated SKC3120 memory within the host machine's memory.
The Simulator is capable of interpreting and executing SKC3120
instructions from this simulated memory; hence, it is termed an
interpretive Simulator. It processes each data word and all
arithmetic. and logical operations with bit-by-bit accuracy.

The SKC3120 Simulator consists of three major parts: the SKC3120
hardware models (Central Processing Unit (CPU), Input/Output
(I/O), Interrupt and Memory models), a service facil ity, and a
user defined FORTRAN Control Program (FCP). The FCP may be
structured to satisfy a wide variety of user requirements and
may, at the highest level, take the form of an operating system,
which would represent the Simulator control and forcing function
for t'he tasks to be performed.

Simulator ,output files contain the configuration
control input file and the on-l ine diagnostics
these files is formatted and printed as the normal
S imul ator.

file,the user
f il e. Each of
output of the

Trace output produced by the Simulator provides information
pertaihing to the instruction location, mnemonic, operand
address, index register, arithmetic registers and the time status
of simulated programs. The Report Program Generator (RPG) is used
to format and print out this information when requested by the
user.

The-Simulator Trace File may contain voluminous output, and
therefore the user may wish to put the raw data on magnetic tape
and generate the appropriate reports on another facil ity (e.g. an
off line mini-computer). To provide this mode of operation, the
source of the RPG will be provided to facilitate its conversion
to the desired computer.

1-1
F4202-1 2/75

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

The rema I nde r of th t s refe rence manua 1 Is d I V I ded I n to th ree
major parts. Sections 2 and 3 discuss Simulator capabilities and
describe the environment in which the Simulator functions.
Section 4 is presented as a tutorial; it is intended to Instruct
the user in a step-by-step manner so that he may utilize the
Simulator with the default FCP. Numerous examples are provided,
showing typical Simulator Input control statements and the
resultant output. Sections 5 through 7 contain all the
information necessary to enable a user to design and implement
his own FCP and to construct his own Input/output model programs.

1-2
F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

2. SIMULATOR CAPABILITIES

Y2~OA302M0810 REV __ _

Effectively, the SKC3120 Simulator is a functional reproduction
of the SKC3120 Computer. It possesses a Central Process~ng Unit
(CPU), Input/Output CI/O), Interrupt hardware and memory models.

In addition, the Simulator provides control and service
capabil ities to the user who may thereby effectively and
efficiently control the simulation process and request Simulator
services that are essential to the successful implementation of
user program modules.

The mechanism that is employed by the user to initiate and
complete control functions and request Simulator services is
termed the FORTRAN Control Program (FCP).

Essentially, the FCP is a user defined FORTRAN module th"at has
access to the state of the SKC3120 machine (CPU, I/O, Interrupt
hardware and memory) and thereby provides unlimited control
capabi1 ities to the Simulator user. The FCP, in the control
sense, is the functional equivalent of a pre-programmed Computer
Control Unit (CCU). In addition, the FCP possesses capabilities
not present in the physical CCU; e.g., the contents of all the
CPU registers are accessible through the FCP but not the CCU.

Access to the Simulator is through Control Command card images,
input to the Simulator via the FCP by the Host Machine FORTRAN
I/O processing routines. Standard FORTRAN notation is used in
the descriptions of the data cards. The structure of FORTRAN
records and the form of the data fields within the records are
described to the extent required by the user to recognize the
requirements of the data to be processed. Further explanations
are gIven In those cases where there is an apparent conflIct.
Typical would be the format descriPtion requiring 'A' (character)
format, but commentary is Included requiring the input to be in
hexadecimal. In these cases, the character string is processed
further by an internal subroutine or function sub-program whIch
converts the input strIng to binary for internal representation
by considering the input as a hexadecimal number of the specified
length.

The logic and decision making functions that the user would
normally make at the CCU can be programmed into the FCP and are
limited only by the Ingenuity of the Simulator user.

2-1
. F42~~-1 a/75

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

The Simulator provides diagnostic capabilities that are much more
extensive than those provided by the actual hardware. In
addition to supervision of the operational program logic and
arithmetic routines in the check-out phase,the Simulator also
performs a self test on the control actions and service requests
to val idate all user activities.

Finally, the Simulator permits the introduction of system
dynamics models and provides communication links to the models,
thereby providing an environment for real istic SKC3120 program
val idation. The user defined models may be simple ones, modeling
only those factors which are considered essential, or can be as
elaborate and accurate a representation of the actual system
dynamics as desired.

2-2
F4202-1 2/75

THE SINGER COMPANY
KEARFOn DIVISION

3. SIMULATOR ENVIRONMENT

The job control language requirements vary
installation. The user is referred to
procedures manual for the JCL which is
installation.

Y240A302M0810 REV __ _

with each computer
the appropriate host

to be used at his

A pictorial representation of the environment in which the
Simulator operates is shown In the Simulator functional flow,
Figure 3-1. This shows the resources (primary files) which are
required by the macro assembler, the Linkage Editor and the
Simulator, and illustrates the steps which are required to
srmulate an SKC3120 program.

Note that the functional flow is greatly simplified if the user
does not require I/O models and can use the default FCP. When it
is necessary for the user to provide his own FCP and/or I/O
models, it is not necessary for him to recompi Ie and reI ink these
programs e·ach time that he executes the Simulator. Once these'
user supplied programs have been debugged, a Simulator load
module which contains them may be saved and executed in place of
or in addition to the default Simulator.

Source program input card Images may be suppl ied on any medium
compatible with the host machine - usually cards, magnetic tape
or disc. The same is true for the Simulator input command
statements~ although in practice these will almost always be
suppl led on cards.

3-1
F4202-1 2/75

Y240A302r10810

KAL 31
SOURCE

STATEMENTS

SKC3120
t~AC RO

ASSEMBLER

REV _-_

SKC3120
LINKAGE
EDITOR

SKC3120
COMPUTER

THE SINGER COMPANY
KEARFOTT DIVISION

I" - SIMULATOR COMPONENTS I
I
I
I

I FCP
I SOURCE

STATEMENTS

I
I
I
I
I
I

FORTRAN
CO~1P I L ER

I ,-----L----t'

LIN KAG E
EDITOR

I/O MODEL
SOURCE

STATEMENTS

FORTRAN
COMPILER

I/O MODEL
OBJECT
MODULE

I
I
I
I
I

SKC3120 I
SIMULATOR

DEFAULT I I
I _~_---I _ ~D~ES_ ~ L ___ _

SKC3120
SIMULATOR

(WITH FCP &
I/O MODELS)

SKC3120
REPORT

PROGRAM
GENERATOR

REPORTS:
• M EM 0 R Y D U r~ P
· DIAGNOSTICS
· TRACE

SIMULATOR
COMt1AND

STATEMENTS

FIGURE 3-1. SKC3120 SIMULATOR FUNCTIONAL FLOW

F4202-1 2/75
3-2

THE SINGER COMPANY
KEARFOTT DIVISION

4. DEFAULT FCP

4.1 DEFAULT FCP FUNCTIONS

Y240A302M0810 REV __ _

The default FCP, if employed, provides a convenient mechanism by
which the user is able to control the simulation process. The
capabil ities present with the default FCP, enable the user to
simulate the SKC3120 program with a minimum effort by using
simple,one-l ine commands which are then interpreted by the
Simulator default FCP and acted upon in sequence.

These extensive controls and report facilities are provided to
permit the user to simulate the SKC3120 operational program with
capabil ities that are in addition to those normally suppl ied with
the SKC3120 computer.

The Simulator is, in effect, a reproduction of the SKC3120
computer ,and can be divided into three sectfons, the Central'
Processor, Memory and Input/Output. The controlling capability
in the Simulator environment is furnished by the FORTRAN Control
Program.

The Default FCP enables the user to define breakpoints, input or
output data to memory, establish check points, execute the
program, load memory from the output of the Linkage/Editor,
define the period of the real time interrupt, selectively trace
portions of the simulated program, output messages to the trace
file and to terminate the simulation.

Additional control in a dynamic environment may be exercised by
generating a user supplied FCP as discussed In Section 6. In
general, the default FCP supports control and service directives,
execution time computations, and operational program
interruption.More detailed dynamic control and service request
actions, I/O modeling, expansion of memory and re-definition of
the memory structure, expansion of breakpoint list size, more
elaborate error handlers, elapsed time and instruction count
controls are possible through user definitions of the FCP and I/O
model programs.

4-1
F4202-1 a/75

Y240A302M0810 REV

4.2 CONTROL COMMANDS

THE SINGER COMPANY
KEARFOn DIVISION

The medium by which the user may communicate the desired control
and service requests to the default FCP is usually card input.
The commands must be in a specified format. Table 4-1 lists each
of these commands with a brief functional description, and
indicates the section where the command is more fully described.

The control statements for the various control and service
requests and the required fixed formats are described in detail
in Section 4.3. This includes examples and describes the results
oOr output produced by the command. The defau 1 t FCP 1 i st i ng
appears in Appendix A.

Where command statement formats are shown, the, following method
is used:

1 ••• 5 •.• 10 ••• 15 ••• 20 ••• 25 ••. 30 .•• 35 Format.f.
XXXXXXXX aaaa •••• bbb..... AS,lX,A8

The numbers represent card columns. Immediately below these
numbe rs a re the cont ro 1 s tatemen t commands and, if requ i red, one
or more operands. Characters which appear in upper c~se must be
present exactly as shown. User suppl ied values are substituted
for operands which appear in lower case. These operands are
described after the format description. The format shown at the
right is the FORTRAN fixed format specification that is used for
reading the command statement and is furnished to give the user
an insight to the Command card handling by the FORTRAN I/O
processors.

Several commands require additional information which must
on one or more successive input statements according to
specification; e.g., the $DUMP command must be followed
dump region specification(s) and a del imiter.

appear
format
by the

In all cases,the delimiter as specified in the descriptions of
the control commands is the mnemonic 'END' starting in column 1.

An example of the $DUMP command is furnished in the following
statements.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 .•• 35
$DUMP

END

F4202-1 2/15

00000200 Q00005FF
00001000 OOaOllCa

4-2

TABLE 4-1

THE SINGER COMPANY
KEARFOTT DIVISION

DEFAULT FCP COMMANDS

Y240A302M0810 REV __ _

+---+
1 Command 1 Functional Description 1 Section I
+---+

$BREAK User definition of the set of simulation 4.3.4

$CHECK

$CHKSM

$DUMP

$ EXEC

$INPUTFX

$INPUTHX

$INTRPT

$IODEF

$NOTE

$OUTPTFX

$OUTPTHX

$RESTR

$TAPIN

$TERM

$TRACE

break points and related action

Request to take a checkpoint

Request to calculate memory check sum

Request to dump simulated memory
region(s)

Control to Initiate or resume simulation
at a specified program counter or at the
current program counter value

Request to patch using 'FIX' conversion

Request to patch using hex input

User definition of interrupt flag
(INTFLG)

User definition of real-time clock
interrupt number, memory speed and
real-time clock period

User message

Request to output using 'FIX' conversion

Request to output a value in hex

Request to restart simulation from last
checkpoint

Request for computer load

Request to terminate simulation

User definition of trace flag (TRCFLG)

4.3.10

4.3.12

4.3.7

4.3.2

4.3.14

4.3.13

b.3.9

4.3.8

4.3.5

4.3.16

4.3.15

4.3.11

4.3.1

4.3.6

4.3.3
+---+

4-3
F4202-1 a/75

Y240A302M0810

TABLE 4-1

REV __
THE SINGER COMPANY

KEARFOn DIVISION

DEFAULT FCP COMMANDS (continued)

+-------------------------------------~-------------------------+
1 Command 1 Functional Description 1 Section 1
+---+

$INPUTFL

$OUTPTFL

$SETAHX

$SETAFX

$SETAFL

$SETBHX

$SETBFX.

$SETX

$SETR

Request to patch using floating input

Request to output using float conversion

Sets the A register using hex option

Sets the A register using fix option

Sets the A register using float option

Sets the B register using hex option

Sets the B register using fix option

Sets the index register

Sets a selected CPU register (B1,B2,IXR)

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

4.3.23

4.3.24

4.3.25

+---+

4-4
F4202-1 2/15

THE SINGER COMPANY
KEARFOTT DIVISION

4.3 CONTROL COMMAND DESCRIPTIONS

4.3.1 $TAPIN Command

Y24QA302M0810
Rf;V __ _

The $TAPIN (tape-in) command permits the user to request a
computer load. This causes the Simulator to read the absolute
load module into simulated memory. This is the normal way of
initializing memory and corresponds to reading a perforated tape
into the memory of an actual SKC3120 Computer. An alternate
method for accompl ishing this is via the $INPUTHX and $INPUTFX
commands, which would correspond to entering a program into the
SKC3120 Computer by using the switches on the CCU. Note that
this alternate method may be viable for certain small programs,
since it obviates the need for executing the SKC3120 Macro
Assembler and Linkage-Editor programs.

The format of this command statement is shown below. There are
no operands and no additional statements are required.

1 ••• 5 ••• 10 ••• 15 ••. 20 ••• 25 ••• 30 ••• 35
$TAPIN

Format •••
A8

Normally, the $TAPIN command will appear before the first $EXEC
command, to assure that a program is in simulated memory before
attempting to execute it. If additional $TAPIN commands appear,
each will cause the next segment of the absolute load module to
be read into simulated memory. If an overlay results, it is
transparent to the Simulator and the user must be aware that the
overlay might affect the Command statements that follow.

4-5
F4202-1 2/75

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

4.3.2 $EXEC Command

The $EXEC (execute)command causes the Simulator to begin
"execution" of the program being simulated. It also allows the
user to specIfy the address at which this execution is to begin
or resume.

The format of this command is shown below. There is one optional
operand. No additional statements are required.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Format •••
A8,lX,A8 $EXEC loc •••••

I oc ••••• specifies the location at whIch executIon is to
begin or resume. If this operand is omitted, then
simulation starts at the default program counter
value or resumes using the current program counter
value.

A location must be specified as an
hexadecimal number, right justified
the left with zeros

eight digit
and padded on

When the- Simulator reads a valid $EXEC command, processing of the
input commands is suspended and the Simulator begins to execute
the problem program. Execution will continue until a user
specified breakpoint is reached (see Section 4.3.4>. The
Simulator then takes the action specified by the user. The user
is able to simulate a program with only the $TAPIN and $EXEC
commands, but, he will not be able to exercise any control over
the progress of the simulation, nor will he get much meaningful
output. Operating In such a mode corresponds to loading a
program into an actual SKC3120 Computer and executing it.

The commands described in- the following sections provide the user
with the means of getting much more useful output from the
Simulator and for controlling the execution of his program.

4-6
F4202-1 2/715

4.3.3 $TRACE Command

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __ _

The $TRACE (print state of the CPU) command permits the user to
define the setting of the trace flag, TRCFlG.

The format of this command is shown below. There are no
operands, but a second statement Is required to indicate the
state desired for the trace flag.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Format •••
AS $TRACE

f

f

1 1

specifies the value to be assigned TRCFlG:
If f = 1, tracing is turned on.
If f = 0, tracing is turned off.

When the trace option is on (TRCFlG = 1), the Simulator will'
produce output information for each instruction which is
executed. The RPG will use this information to produce a trace
report. Table 4-11 describes the items included in the Trace
Report. The trace feature of the Simulator should generally be
used only for relatlvel~ short programs or for small portions of
larger programs, since a large volume of data can be generated by
a short amount of simulated time. The trace can be turned on and
off by using the $BREAK command which is described in Section
4.3.4.

A selectlve trace can be generated by setting a break point at
the start of the trace area and another at the end of the trace
area. The user can then turn trace on at the first breakpoint
and turn it off at the second, so that each time the code to be
traced is entered, the tracing will be activated.

4-7
F42Q2-1 2/75

Y240A302t10810 REV_-
THE SINGER COMPANY

KEARFOTT DIVISION

TABLE 4-1 I TRACE REPORT HEADINGS

OPCD Operation code mnemonic of the instruction executed.

ILOC Instruction location counter value (hex address).

PC Program counter value after instruction execution.

IR Contents of the instruction register.

SR Status register contents after execution.

IMR Interrupt mask register contents after execution.

A A register contents after execution.

B B register contents after execution.

OAR Operand address register.

XR Index register contents after execution.

131 Base registerl contents after execution.

B2 Base register 2 contents after execution.

IXR Inactive Index register contents after execution.

CBO Carry bit after execution.

DATUM Contents of address specified by OAR.

fA I C RO SEC. Cumulative execution time in decimal micro-seconds.

Unless otherwise indicated, all of the above items are printed in
hexadecimal.

4-8

F4202-1 2./75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

4.3.4 $BREAK Command

The $BREAK (break point) command permits the user to add or
delete break points in the array BRKLST. This array contains
zero or more program counter values at which the Simulator is to
take special action. The default FCP provides an array,
sufficient for 25 break points. The user specifies each break
point and the action associated with it.

The format of this command is shown below. There are no operands
on the $BREAK statement, but one or more break points and a
del imiter are specified on successive statements.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Forma t. ••
A8
5X,A8,lX,A4
A4

$BREAK
1 oc. . • •• ac tn

END

1 oc

actn

specifies the program counter value to be used as a
break point.

A location must be specified as an
hexadecimal number, right justified
the left with zeros

eight digit
and pudded on

specifies the action associated with the break point.
The following values are permitted:

"TERM" Simulation wi 11 be terminated.

"OLTE" Delete break point from BRKlST.

" " FCP reads additional command statements.

Some examples of the use of the $BREAK command are presented here
to clarify its function. A descriPtion of each command appears
to the right of the command.

4-9
F4202-1 2/75

Y240A302M0810
REV

THE SINGER COMPANY
KEARFOTT DIVISION

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$TAPIN
$BREJ\K

END

00005000
0000SBE4 TERM

$EXEC 00005B80
$NOTE
PROGRAM REACHED 5000
$BREAK

END
$EXEC

00005BE4 OLTE
00005C88 TERM

Read in load module
Set break points
Read more commands
Terminate if get to 5BE4

Begin execution at 5B80
User message (see 4.3.5)

Set break points
Delete this addr from list
Termin~te if get to 5C88

Continue execution at 5000

This sequence of commands effectively breaks the program
simulation into two parts. In the first part, the program is
executed from 5B80 (its starting address) to 5000, at which time
the Simulator stops execution at the completIon of the last
instruction before executing the instruction at 5000 and reads
additional command statements. If the program counter had a
valu~ of 5BE4 during this time, the simulation would have been
terminated. Assuming the program counter got to 5000, th~ $NOTE
command (described in SectIon 4.3.5) would be processed. Then
the break point at sBE4 would be removed from the list; either we
no longer care if the program counter has this value or we just
want to maintain the minimum number of entries in BRKLST.
Finally, a break point is set to terminate the sImulation at
program counter value SC88 and execution is resumed where it was
suspended.

4-10
F4202-J 2/76

4.3.5 $NOTE Command

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

The $NOTE (message) command permits the user to transmit a
message to the Simulator which in turn transmits it to the output
file for documentation purposes; i.e., the message will be
printed on the reports generated by the RPG.

The format
operands.

of th i s command Is shovm be low. The re
The message is suppl ied on a second statement.

1 ..• 5 ••• 10 .•• 15 ••• 20 ••• 25 ••• 30 ••• 35
$NOTE
message •••••••••. ~

Format ••.
A8
2QA4

are

message •.• specifies any string of up to 80 characters •.

no

An example of how this statement might be used is included in'
the command sequence presented in the example in Section 4.3.4.

4-11
F42c)2-1 2/15

Y240A302M0810 REV __

4.3.6 $TERM Command

THE SINGER COMPANY
KEARFOn DIVISION

The $TERM (terminate) command permits the user to terminate the
simulation. Often, this command is used in conjunction with the
$NOTE command so that the reason for termination can be specified
in the output produced by the Simulator. Functionally, this
command causes the same action to take place as the "TERMII
operand used with the $BREAK command.

The format of this command is shown below. There are no operands
nor any additional statements required.

1 .•• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Format •••
$TERM ' AS

Note that the following two command sequences are equivalent.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••. 25 ••• 30 ••• 35
$TAPIN
$ BREAK

00004100
END
$EXEC
$TERM

00004000

1 ••• 5 .•• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$TAPIN
$BREAK

00004100 TERM
END
$EXEC 00004000

In the first sequence, since no action is specified with the
break point, the FCP will read the commands following the $EXEC
statement. The $TERM statement will cause the simulation to be
terminated. In the second sequence the simulation will be
terminated as soon as the break point is reached because of the
"TERW' act I on spec If i ed.

One might wonder why the first sequence would be used, since the
second one accomplishes the same functions with fewer statements.
To better understand this, consider the following command
sequence:

",

4-12
F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$TAPIN
$BREAK

00004100
END
$EXEC 00004000
$NOTE
TEST PROGRAM REACHED LOC 4100
$TERt-4

Y240A30 2"10810 REV_" __

Observe that in this case, it is possible to print a message
before terminating the simulation. This would not be possible
when the "TERM" action of a break point is used. Another example
of the use of this command is shown in Section 4.3.11.

4-13
F4202-1 2/75

Y240A302M0810 REV

4.3.7 $DUMP Command

THE SINGER COMPANY
KEARFOTT DIVISION

The $DUMP (list memory contents) command allows the user to dump
one or more regions of simulated memory.

The format of this command is presented below. There are no
operands on the $DUMP statement, but one or more region
specifications and a del imiter are specified on successive
statements.

1 ••• 5 ••• 10 ••• 15 •.• 20 ••. 25 ••• 30 ••• 35
$DUMP

start ..• stop .•.
END

Format •••
A8
5X,A8,lX,A8
A4

start ••• specifies the absolute SKC3120 starting address
of the region to be dumped

stop .••• specifies the absolute SKC3120 ending address of
the region to be dumped.

Note. A location must be specified as an
hexadecimal number, right justified
the left with zeros

eight digit
and padded on

Any number of region specification statements can be present.
The starting and ending locations of each dump region may include
SKC3120 memory of different types; e.g., LSI scratchpad and core
memory. ~'Jhen such "memory boundaries" are crossed, the Simulator
service routine SDUMP takes the appropriate action. Note that
the actual dump format will differ with different types of
memory.

An example of a $DUMP command follows:

1 ••• 5 ••. 10 ••• 15 •.• 20 ••• 25 ••• 30 ••• 35
$DUMP

END

F4202-1 2/75

00000200 0000020E
000005FE 00000650
OOOOOFFE 00001100

4-14

THE SINGER COMPANY
KEARFOTT DIVISION

y 240A30 2~·10810 REV __ _

The $DUMP command is acted upon as soon as It is encountered by
the FCP. Thus a memory dump of the load module may be obtained
by dumping the region of memory it occupies immediately following
the $TAPIN command. This is one of the easiest ways of obtaining
an SKC3120 memory dump. Of course, the $DUMP command can be
processed after a specified break point has been reached to
determine tIle contents of memory after a portion of a program has
been executed. The command sequence shown below mIght be used to
accomplish this:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$TAPIN
$DUMP

00000200 000005FF
00001000 0000llCO

END
$BREAK

0000.11BC
END
$EXEC 00001000
$NOTE
PROGRAM EXECUTION COMPLETE AT LOC 11BC
$DUMP

00000200 000005FF
00001000 000011CO

$TERt1

Both SDUMP commands in the above sequence dump the same regions
of memory, the first before the program is executed and the
second after it has completed execution. A comparision of these
two dumps would enable the user to determine which locations had
been changed, either Intentionally or inadvertently, by the
program.

4-15
F42Q2-f 2./75

Y240A302M0810 REV --
THE SINGER COMPANY

KEARFOn DIVISION

4.3.8 $IODEF Command

The $IODEF (real time clock definition) command allows the user
to define the real time clock, level of interrupt and the memory
speed to be used in execution time computations, and the real
time clock period.

The format of
operands, but
necessary data.

this command is shown below. There are no
a second statement is required for specifying the

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Format •••
A8 $IODEF

ci mems i rtcl k 12, IX, 14, IX, 110'

ci

mems

i rtcl k,

specifies the real time clock interrupt number (1)
where ci is interpreted as 2**ci i.e. If ci=O the'n
interruPt number is 2**0 or 1.

specifies the memory speed. The scaling of the least
significant digit is 10**-3 MHZ.lf this value i~ zero,
no time computations are performed.

specifies the real time clock period In nano-seconds.

If this statement is used, it must appear once before the first
$EXEC statement. If this statement does not appear anywhere in
the command sequence, before the first $EXEC card, then default
values will be used.

The default values assigned are:

mems
irtclk

1228
o

Note that on the SKC312b Computer, the real time interrupt
number is usually 1, and thus ci=O should be specified when the
$IODEF command Is used. It is recommended that the user specify
a memory speed of zero to inhibit time computations unless
simulated 'execution time is required; this allows the Simulator
to operate more efficiently.

4-16

F4202-1 2/15

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

Use of this command is Illustrated in the following examples:

1 •.. 5 ••• 10 ••• 15 ••• 20 ••. 25 ••• 30 ••• 35
$IODEF

1 1750 00005000

1 .•• 5 ••• 10 ••• 15 ••• 20 ••• 25 .•• 30 •.• 35
$IODEF

1 0 00006125

REV __ _

In both examples, the real time interrupt number is set to 1. In
the first example, a CPU clock period of 1.75 micro-seconds (1750
nano-seconds) is specified, with a 5 ms real time clock period.
In th~ second example, the memory speed is specified as 0 so that
no . ex.ecut i on time computat Ions wi 11 be pe rformed, and the rea 1
time clock period is set at 6.125 milll-second~. Since no time
computations are performed, the occurrence of the real time
interrupt ·Is Inhibited.

4-17
F420?-J 2/15

Y240A302M0810 REV

4.3.9 $INTRPT Command

THE SINGER COMPANY
KEARFOTT DIVISION

The $INTRPT (interrupt) command permits the user to set the
interrupt flag, INTFLG.

The format of this statement' is shown
operands, but a second statement is
interrupt flag value.

below. There are no
required to specify the

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$INTRPT

Fo rma t •••
A8

intf

intf

A4

specifies the setting of the interrupt flag, INTFLG.
If intf = 1, interrupt 1 is present.
If intf = 2, interrupt 2 is present.
If intf = 3, both interrupts 1 and 2 are present.

An example of how this command might be used to cause interrupt 2
to occur when the program reaches location 4COO is shown in the
example which follows:

1 ••• 5 ••• 10 ••• 15 .•• 20 ••. 25 ••• 30 ••• 35
$ TAP IN
$BREAK

00004COO
END
$EXEC 00004800
$INTRPT

2
$EXEC

When the b~eak point at 4COO is reached, the Simulator will read
and process the $INTRPT command, which specifies that interrupt 2
is to be set, and will then continue execution where it was
suspended.

4-18
F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Notes on the generation of interrupts.

Y240A302M0810 REV __ _

Note 1: Interrupt 1 is usually the interrupt number assigned to
the real time clock. Such an interrupt will occur each time that
the real time clock period, specified on an $IODEF command, has
elapsed, provided that interrupts have not been disabled by the
program being simulated. Interrupt 1 is the interrupt which is
usually scheduled to occur at regular time intervals. Interrupt
2, which is normally the interrupt generated by the interrupt
status register hardware, can be generated by use of the $IODEF
command for an application where regular occurrence of interrupt
2 would be meaningful.

Note 2: The user should note the difference in specification of
interruPts in this command and the $IODEF command.

$IODEF refers to the interrupt as a power of two.

$INTRPT refers to the interrupt directly as an integer.

Note 3: The interruPts generated by the commands $INTRPT and
$IODEF make use of simulated hardware scratch pad locations 3,4,5
and 6 as described in the SKC3120 Principles of Operation.

4-19
F4202-1 2/75

Y240A302M0810 REV

4.3.10 $CHECK Command

THE SINGER COMPANY
KEARFOn DIVISION

The $CHECK (check point) command permits the user to invoke the
checkpoint service. This will cause the current state of the
program being simulated to be saved on secondary storage, so that
It may later be recovered by using the $RESTR command.

The format of this command is shown below.
arguments.

1 ••• 5 ••• 10 ••• 15 .•• 20 ••• 25 ••• 30 ••• 35
$CHECK

Format •••
A8

There are no

An example of how this command is used in conjunction with the
$RESTR command is shown in Section 4.3.11.

'4-20
F4202·/ 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

4.3.11 $RESTR Command

The $RESTR (restart) command permits the user to invoke the
restart service. This will restart the Simulator from the
previous checkpoint.

The format of this command is shown below.
arguments.

1 .•• 5 .•• 10 •.• 15 ••• 20 ••• 25 ••• 30 .•• 35
$ RESTR

Format •••
A8

There are no

An example of how the checkpoint and restart commands are used. is
given below:

1 ••• 5 •.• 10 •.• 15 ••• 20 ••• 25 ••• 30 ••• 35
$TAPIN
$CHECK
$BREAK

000011FO
END
$EXEC 00001000
$RESTR
$INPUTHX

000010E4 OOOOAOOI
END
$EXEC 00001000
$RESTR
$INPUTHX

000010E4 0000A002
END
$EXEC
$TERM

00001000

The $CHECK command saves the state of the computer before program
execution has begun. This is used later by the two $RESTR
commands to restore everything to the initial condition. The
problem program is executed three times, each time with a
different instruction at location 10E4. After the third
execution, the simulation is terminated.

4-21
F4202-1 2/75

Y240A302M0810
REV

THE SINGER COMPANY
KEARFOTT DIVISION

4.3.12 $CHKSM Command

The $CHKSI\1 (check sum) command di rects the Simulator to read the
load module produced by the loader and compute a checksum, i.e.,
a 2's complement of the sum of the contents of all
read-only-memory cells. In addition, the $CHKSM control
specifies the location of a ROM cell, which will ultimately
contain the computed checksum, and directs the Simulator to
generate a new load module file containing the checksum
information.

The format of this command is shown below. There is one
argument.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$ CH KSM 1 oc •••••

Format
A8,lX,AS

1 oc a string of 8 hexadecimal characters specifying
the ROM location that will receive the computed
checksum

NOTE: The string must be left padded with zeros to fill the 8
character field.

4-22
F4202-1 2./15

4.3.13 $INPUTHX Command

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __ _

The $INPUTHX (input hex) command allows the user to patch
simulated memory with hex data. The format of this command is
shown below. There are no operands, but one or more data
specification statements and a delimiter are required.

1 •• fS ••• l0 ••• 1S ••• 20 ••• 2S ••• 30 ••• 35
$INPUTHX

loc •••.• data ••••
END

Format •••
A8
5X,A8,lX,A8
A4

1 oc specifies the absolute SKC3120 address into which
the data is to be plac~d.

da ta •••• specifies the hex data which is to be entered into
the location specified.

Both loc and data are eight character hexadecimal number strings
right justified and padded on the left with zeros. An example is
shown below to illustrate the use of this command:

1 ••• 5 ••• 10 ••• 15 ••. 20 ••• 25 ••• 30 ••• 35
$INPUTHX

END

00000200 OOOOFFFF
000012CC OOOOAOOI
000012EO 00008FFF

The above command would cause the following actions to take
place:

FFFF would be inserted into location 200 (constant area), this
might be a constant or perhaps a flag or a mask.

Similarily, A001 is placed in location 12CC and 8FFF is place in
location 12EO.

The $INPUTHX command may appear anywhere in the command sequence.
The Simulator acts on this command as soon as it is encountered.
Often, this command can be used for initializing data before the
program execution has begun, or for changing data or instructions
for a subsequent execution during the same simulation run (see
the example in Section 4.3.11).

The function of "this command can be likened to patching a program
in actual SKC3120 memory via the CCU. Sometimes, are-assembly
can be avoided by simply patching those locations which have to
be modified.

4-23
F4202-f 2./75

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

4.3.14 $INPUTFX Command

The $INPUTFX (input fixed point) command allows the user to patch
simulated memory with conversion from host machine floating point
to target machine (SKC3120) fixed point with scaling.
Ordinarily, this command would be used for patching data; the
$INPUTHX command would be used for patching instructions.

The format of this command is shown below. There are no
operands, but one or more data specification statements and a
delimiter are required.

1. .. 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35'
$INPlJTFX

Format •••
A8
5X,A8,lX,E14.7,lX,~14.7
A4

loc ••••• data •••••••••• scale.
END

1 oc •••••

data •••••

scale •••••

specifies the absolute SKC3120 address into which
the data Is to be placed. This address is
specified as an eJght character hexadecimal number
and must be padded on the left with zeros.

specifies the value of the data which is to be put
into the location specified. The value is expressed
as a decimal floating point number.

specifies the scal ingof the least significant bit
(LSB) of the resulting fixed point quantity. It Is
expressed as a decimal floating point number.

A few examples are shown below to illustrate the use of this
command:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$ I NPlJTFX

OOOOOOE4
OOOOOOE5
OOOOOOE6

END

F4202-1 2./75

512.
512.

12345.67

1.
4.

17.5

4-24

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302r-10810 R~V __ _

Note that the data and scale values may be suppl ied in either "E"
or "F" format; the Simulator will automatically convert values
given in "F" format to "E" format. In fact, the above command
would appear in the command output listing as:

1. .. 5 •.• 1 O •.. 15 •.• 20 ••• 25 ..• 30 ••• 35
$INPUTFX

OOOOOOE4
OOOOOOES
OOOOOOE6

END

O.5120000E+03
0.5120000E+03
0.1234567E+05

O.1000000E+Ol
0.4000000E+Ol
0.1750000E+02

Note that in the last set of values, some conversion error will
have occurred.

The above command would cause
place; after processing the
locations specified would be:

Location

OOOOOOE4
OOOOOOE5
OOOOOOE6

Contents

00200
00080
002Cl

the following
command, the

actions to
contents . of

take
the

The $INPUTFX command may appear anywhere in the command sequence.
The Simulator acts on this command as soon as it is encountered.
Often, this command may be used for initializing data before
beginning program execution, or for modifying this data for a
subsequent execution during the same simulation run.

The function of this command, as the $INPUTHX command, can be
likened to patching a program in actual SKC3120 memory via the
CCU. Of course, this command also performs a conversion
function, which cannot be done on the CCU.

4-25
F4202-1 2/75

Y240A302M0810
REV

THE SINGER COMPANY
KEARFOTT DIVISION

4.3.15 $OUTPTHX Command

The $OUTPTHX (output hex) command allows the user to output a
value from simulated memory directly in hex format.

The format of this command is shown below. There are no
operands, but one or more address specification statements and a
del imiter are required.

1 ••• 5 ••• 10 ••• 15 •.• 20 ••• 25 ••• 30 ••• 35
$OUTPTHX

Format .••
AS

1 oc
END

1 oc

5X,A8
A4

specifies the absolute SKC3120 address from which
the data is to be written. The address is
specified as an eight character hexadecimal number
and must be padded on the left with zeros.

An example will illustrate how this command may be used. Note
that the action is similar to that caused by the $DUMP statement.

1. .. 5 ••• 10 ••• 15 ••• 20 ••• 25 ••. 30 ••• 35
$OUTPTHX

OOOOOOEO
000041C8

END

This command will cause the contents of locations "EO" and "41C8"
to be printed in hex. It may be likened to examining the
contents of a memory word via the CCU.

4-26
F4202-1 2./15

4.3.16 $OUTPTFX Command

THE SINGER COMPANY
KEARFOn DIVISION

Y240A302M0810 REV __ _

The $OUTPTFX (output fixed point)
output a value from simulated
machine floating point format.

command allows the user to
memory and convert itto host

The format of this command is shown below. No operands are
required, but one or more address specification statements and a
del imiter are n~eded.

1 .•• 5 ••• 10 ••• 15 .•• 20 ••. 25 ••• 30 ••• 35
$OUTPTFX

loc ••••• scale ••••.•••.•
END

Format •••
AS
5X,A8,1X,E14.7
A4

1 oc .•••• specif)es the absolute SKC3120 address from which
the data Is to be written. The address is
specified as an eight character hexadecimal number'
and must be padded on the left with zeros.

scale..... specifies the scaling of the least significant bit
(LSB) of the quantity' In SKC3120 simulated memory.
It is expressed as a decimal floating point ~umber.

A few examples are shown below to Illustrate how this command
might be'used:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$OUTPTFX

000000E4
000000E5
000000E6

END

1.
4.

17.5

As with the $INPUTFX command, the scale value may be specified in
either "E" or "F" format; the Simulator will automatically
convert values specified In "F" format to "E" format. The above
command would appear in the output command listing as:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••. 30 ••• 35
$OUTPTFX

000000E4
000000E5
000000E6

END

F4202-1 2./75

0.1000000E+01
0.4000000E+01
0.1750000E+02

'.

4-27

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

Note that some minor conversion error may occur, depending on the
value Input.

The table below shows the hex contents of the locations specified
and the corresponding real values which are output by
the Simulator:

Locat ion

OOOOOOE4
OOOOOOES
000000E6

Hex value

00200
00080
002e1

Real value

O.S120000E+03
0.S120000E+03
O.1234S67E+OS

Scale

O.1000000E+Ol
O.4000000E+Ol
O.1750000E+02

The $OUTPTFX command may appear anywhere in the command sequence.
The Simulator acts on this command as soon as it Is encountered.

4-28
F4202-1 2/76

THE SINGER COMPANY
KEARFOn DIVISION

Y240A30 21AO 81 0 ________ REV_

4.3.17 $INPUTFL Command

The $INPUTFL (input floating point) command allows the user to
patch simulated memory with conversion from host machine floating
point to target machine (SKC3120) floating point.

The format of this command is shown below. There are no
operands, but one or more data specification statements and a
delimiter are required.

1 .•• 5 ..• 10 ••. 15 ••• 20 ••• 25 ••• 30 •.• 35 •• Format •••
$INPUTFL

lac..... rlata
A8
5X,A8,lX,022.0
A4 END

1 oc

da ta .•..•

specifIes the absolute SKC3120 address of the first
word of the double word, into which the datum is to
be placed. This address is specified as an eight
character hexadecimal number and must be padded on
the left with zeros.

specifies .the double precision value of the datum.
The value is expressed as a decimal floating point
numbe r.

A few examples are shown below to illustrate the use of this
command:

1 •.• S •.• lu .•• 1S .•. 20 ••• 25 ••• 30 ..• 35 ••
$INPUTFL

000000E4
000000E6
000000E8

EtJD

51. 2E+01
512.

12345670-2

Note that the data values may be supplied in "0", "E", or "F"
format; the simulator will automatically convert values given in
"0" or "F" format to "E" format. However, the decimal number
must be be right-justified in the 22 character field. The above
command would appear In the command output listing as:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••. 30 ••• 35 ••
$INPUTFL

000000E4
000000E6
000000E8

END

F4202-1 2/15

0.5120000000000000 03
'0.5120000000000000 03
0.123456700000000D 05

4-29

Y24 OA30 2M08l0 REV -- THE SINGER COMPANY
KEARFOTT DIVISION

The above command would cause the fo 110\1" I np;
place; after processing the command, the
locations specified would be:

ADDR HEX HEX

OOOOOOE4 6686 6666
OODOOOE6 a08A 4000
OOOOOOES leg5 4B5A

. .

actions to take
contents of the

REAL

O.5l20000E+02
0.5l20000E+03
O.l234567E+07

The $INPUTFL command may appear anywhere in the command sequence.
The simulator acts on this command as soon as it Is encountered.
Often, this command may be used for initializing data before
beginning program execution, or for modifying this data for a·
subsequent execution during the same simulation run.

4-30

F4202-1 2/75

THE SINGER COMPANY
KEARFOn DIVISION

Y240A302M0810 ________ REV_

4.3.13 $OUTPTFL Command

The $OUTPTFL (output floating point) command allows the user to
output an SKC3120 double precision value from simulated memory
and convert it to host format.

The format of this command is shown below. No operands are
required, but one or more address specification statements and a
del imiter are needed.

1 •.. S ••• 10 ••• 1S.f.20 ••• 2S ••• 30 ••• 35
$OUTPTFL

Format •••
A8

1 oc •••••
END

1 oc

5X,A8
A4

specifies the absolute SKC3120 address of the first
word of the double precision floating point datum.
This address Is specified as an eight character
hexadecimal number and must be padded on the left
with zeros.

A few examples are shown below to illustrate how this command
might be used:

1 .•• 5 ••. 10 ••• 15 ••• 20 ••• 25 ••• 30 .•• 35
$OUTPTFL

000000E4
000000E6
000000E8

END

The table below shows the hex contents of the locations specified
and the corresponding floating point values which are output by
the simulator:

ADDR

000000E4
000000E6
000000E8

HEX

6686
008A
1C95

HEX

6666
4000
4B5A

REAL

0.5120000E+02
0.5120000E+03
0.1234567E+07

The $OUTPTFL command may appear anywhere in the command sequence.
The simulator acts on this command as soon as it is encountered.

4-31

F4202-1 2/7&

Y240A302fv10810 REV --
4.3.19 $SETAHX Command

THE SINGER COMPANY
KEARFOTT DIVISION

The $SETAHX (set A register with hex input) command allows the
user to set the A register to an input value.

The format of th is command is shown bel 0'11. There are no
operands, but one data specification statement is required.

1. •• 5 ••• 10 ••• 15 •• f20 ••• 2S ••• 30 ••• 35
$SETAHX

Fo rmat •••
A8

da ta ••••

da ta ••••

5X,A8

specifies the value to insert in the A
The data is specified as an eight
hexadecimal number and must be padded on
with zeros.

register.
character
the· left·

An exampl e wi 11 ill ustrate how th i s command may be used.
The A register will be set to 41C8.

Note

1 ••• 5 .•• 10 ••• 15 •.• 20 ••• 25 ••• 30 •• ·.35
$SETAHX.

000041C8

F4202-1 2/75

4-32

4.3.20 $SETAFX Command

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

REV --=-

The $SETAFX (set A register fixed point input) command allows the
user to set the A register to an input value.

The format of this command is shown below. There are no
operands, but one data specification statement is required.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 Format •••
$ SETAFX

data •••• scale •••••••••
A8
5X,E14.7,lX,E14.7
A4 END

da ta •••••

sea 1 e •••••

specifies the value of the data which is to be put
into the A register. The value is expressed. as a
decimal floating point number.

specifies the scaling of the least significant bit
(LSB) of the resulting fixed point quantity. It is
expressed as a decimal floating point number.

A few examples are shown below to illustrate how this command
might be.used:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$SETAFX

45. .0054932

As with the $INPUTFX command, the scale value may be specified in
either liE" or "F" format; the simulator will automatically
convert values specified in "F" format to "E" format. The above
command would appear in the output command listing as:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$SETA

HEX REAL SCALE
00002000 0.4500000E+02 0.5493201E+020E+01

The $SETAFX command may appear anywhere in the command sequence.
The simulator acts on this command as soon as it is encountered.

4-33

F4202-1 2/75

Y240A302M0810 -________ REV_

4.3.21 $SETAFL Command

THE SINGER COMPANY
KEARFOn DIVISION

The $SETAFL (set AB register to floating point value) command
allows the user to set the AB registers to an input value.

The format of this command is shown below. There are no
operands, but one data specification statement is required.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 •.• 35
$SETAFL

da ta ••••

Fo rmat •••
A8
5X,022.0

da ta •••• specifies the double precision floating point data.
Note that the data values may be supplied in "0",
"E", 0 r "F" fo rmat; the s i mu 1 ator wi 11
aut oma tic ally con v e r t val u e s g i v e n in" D II 0 r " F II
format to "E" format. However, the decimal number
must be right-justified in the 22 character field.

A few examples are shm-Jn below to illustrate how this command
might be used:

1 ••• 5 ••• 10 ••• 15 •.• 20 ••• 25 ••• 30 ••• 35
$SETAFL

$SETAFL
32767

32767003

The table below shows the hex contents of the
corresponding floating point values which
simulator:

$SETA
HEX (A)

00007FFF
$SETA

HEX (A)
00007CFF

Hex (13)
0000008F

Hex (B)
00000699

Real
O.3276700E+05

Real
0.3276699E+08

register and the
are input to the

The $SETAFL command may appear anywhere in the command sequence.
The simulator acts on this command as soon as it is encountered.

4-34

F4202-1 2/75

4.3.22 $SETBHX Command

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

REV --=-

The $SETBHX (set B register from hex input) command is identical
to the $SETAliX command except that the B register receives the
result of the conversion. Refer to Section 4.3.19, $SETAHX
command.

4.3.23 $SETBFX Command

The $SETBFX (set B register from a fixed point input) command is
identical to the $SETAFX command 'except that the B register
receives the result of the conversion. Refer to Section 4.3.20,
$SETAFX command.

4.3.24 $SETX Command

The $SETX (set XR register from a hex Input) command is identical
to the $SETAHX command except that the XR register receives the
result Of the c6nversion. Refer to Section 4.3.19, $SETAHX
command.

4-35

F4202~1 2/75

Y240A302M0810
REV

THE SINGER COMPANY
KEARFOTT DIVISION

4.3.25 $SETR Command

The $SETR (set base or inactive index register from hex input)
command allows the user to select a register and to set the
specified CPU register (i.e. Base register 1, 2, or the inactive
index register). The value is input in Hex.

The format of this command is shown below. There are no
operands, but one or more data specification statements and a
del imiter are required.

1. .. 5 ••• 10 ••• 15 •.• 20 ••• 25 ••• 30 ••. 35
$SETR

Format •••
A8

·5X,12,lX,A8

rg

rg data ••••

specifies the register into which the data is
to be placed. Register specification is shown
below.

+--+
Reg erg) I Interpretation

+--+
3 Base register one selection

4

5

Base register two selection

Inactive index register selection
+--+
da ta •••• specifies the hex data which is td be entered into

the location specified. The data is specified as
an eight character hexadecimal number and must be
padded on the left with zeros.

An example is shown below to illustrate the use of this command:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35
$SETR

03 0000789A

The Simulator will output the following.

$SETR
REG
B1

HEX
0000789A

The $SETR command may appear anywhere in the command sequence.
The simulator acts on this command as soon as it is encountered.

4-36
F4202-1 2/15

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

5. FCP ENVIRONMENT SPECIFICATIONS

REV __ _

The Simulator provides to the FORTRAN Control Program (FCP)an
interface, which is termed labeled Common Control Blocks.
Essentially, the control blocks are employed in the transmission
of the state of the machine to the FCP, which may thereby
dynamically control the simulation process and request various
Simulator services. The control and service actions performed by
the FCP are operative in response to any normal or abnormal
condition as diagnosed by the Simulator.

The following control blocks are discussed tn the sections which
fo 11 ow:

Symbol Description Section

CPU CPU state 5.1
10 Input/output model 1 i nkage 5.2
MEMORY Simulated memory definition 5.3
10DEF Memory speed, real-time clock 5.4

interrupt number and period
BllST Break point list 5.5

5-1
F420~-1 2/75

Y240A302M08l0 REV

5.1 CPU CONTROL BLOCK

THE SINGER COMPANY
KEARFOTT DIVISION

The CPU control block provides to the user the state of the CPU
and permits the user to examine and change its state, and to
initiate and complete various control functions. The information
content of the block is presented in Table 5-1.

Examination and/or modification of the CPU registers may be
performed directly by the FCP or indirectly by service requests.
The services - SSETA, SSETB, SSETX, SMEMRY, that may be invoked
for A, B, PC, OAR or XR register access are described in Section
6.5, FCP Service Requests.

The error Indicator, ERRFLG, is set by the Simulator to indicate
that the Simulator has diagnosed a user error. The user error
may have resulted from faulty program logic or from invalid user
control and service request actions. Table 5-11 presents the'
complete set of diagnostics provided by the Simulator. This
table is divided into two parts, the first for program logic or
arithmetic errors and the second for service request errors.

The interrupt flag, INTFLG,may be employed by the user to
Initiate interrupts. The Simulator, based upon the state of the
interrupt hardware, will queue, initiate if possible, and unqueue
the interrupts. The state of the interrUPt hardware is
determined by the SR, IMR, and active and pending interrupt
lists •

. The SR, IMR and Interrupt trap and save locations are accessible
to the user. The INTFLG values are presented in Table 5-1.

The trace flag, TRCFLG, may be employed by the user to turn
tracing on or off as a function of any abnormal or normal
condition. The TRCFLG settings are also included in Table 5-1.

The termination flag, TRMFLG, may be employed by the user to
terminate the simulation as a function of any condition. Again,
its values are presented in Table 5-1.

5-2
F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302r-10810 ________ REV_

TABLE 5-1 CPU CONTROL BLOCK

+--+
1 ~·Jord I Symbol Description I Init Value I
+----------------

1 A
2 B
3 PC
4 PCOLD
5 C
6 D
7 CBO
8 OAR
9 IR

10 SR
11 I t'IR
12 XR
13 PSU(3)
16 Bl
17 B2
18 IXR
19 PSU2(S7>
76 S~~R

77 TIME(2)
79 ERRFLG

80 INTFLG

81 TRCFLG

82 TRMFLG

---+
A register 0
B register 0
Pointer to next instruction 4096
Pointer to last instruction 4096
C register 0
D register 0
Carry bit 0
Pointer to datum 0
Instruction Register 0
Status Register 0
Interrupt Mask Register 0
Index register 0
3 spare 0
base register one 0
base register two 0
inactive index register 0
57 spare 0
Datum 0
Elapsed time (sec and nsec) 0
Error indicator 0
(see Table 5-1 I)
Interrupt flag 0
o = no interrupts
1 = level 1 interrupt
2 = level 2 interruPt
3 = level 1 & 2 interrupts
Trace flag 0
o = t race off
1 = trace on
Termination flag 0
o = no termination
1 = termination

+--+

5-3

F4202-1 2./75

Y240A302M0810 -________ REV_
THE SINGER COMPANY

KEARFOn DIVISION

TABLE 5-1 I SIMULATOR DIAGNOSTICS

+--+
I ERRFLG I Interpretation I Service I Action
+--+ o No error Normal

4 Fixed point overflow A = result
8 Floating point overflo\'J A = result

12 Floating point underflow A = result

20 Fixed point divide check NOP

21~ Floating point normal ization A, B = 0

28 Storage protect No store.
32 Addressabil ity (PC) NOP

Addressabil ity (OAR) NOP
44 III egal instruction NOP
48 Inval id device code (I/O) No I/O oper

52 Device not connected (I/O) t'lo I/O oper
+----------------------~-------------------------------------+

200 Invalid array size SnUMP FCP return

204 Undefined symbol

208 Inval id address

212 Invalid conversion (FIX)
(-2**16 LT x LT 2**16-1)

Inval id conversion (FLT)
.14693670-38 LE R(host)
LE .3402823039

216 Invalid CPU register
(B1, B2, IXR) selection

SINPUT FCP return
SOUTPT FCP return
STABLE Fep return

SOUt1P Next region
SIN PUT FCP return
SOUTPT FCP return
STABLE Next symbol

SOUHP Next region
S INPUT FCP return
SOUTPT FCP return
STABLE Next addr.

SINPUT No convert
SSETA No convert
SSETB No convert

SINPUT No convert
SSETA No convert

SSETR FCP return

+--+

5-4

F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

5.2 10 CONTROL BLOCK

The Simulator permits the user to introduce models of external
devices for the purpose of dynamic simulation. The Simulator
provides the necessary 1 inkage between itself and the models, and
transmits the information content of the I/O instruction via the
10 control block. The information content of the 10 control
block is presented in Table 5-1 I I, and represents the state of
the I/O section of the Simulator.

The type of instruction that is being executed is determined by
the INOUT flag setting. DMA operations may be accomplished by
the services SINPUT and SOUTPT, which are described in Sections
6.5.3 and 6.5.4, respectively.

TABLE 5-1 I I 10 CONTROL BLOCK

+--+
I Word I Symbol I Description I Init Value I
+--+

1 LFLAG Not used 0
2 COMMND Not used 0
3 ACK Acknowledge bit 0
4 TMEDLY Time delay 0
5 INOUT Input or output operation 0

6
7
8

LaC
DATA
DC

1 = input
o = outPut
Not used
Not used
Device code

o
o
o

+--+

5-5
F4202-1 2/15

Y240A302M0810 REV

5.3 MEMORY CONTROL BLOCK

THE SINGER COMPANY
KEARFOTT DIVISION

The MEMORY control block may be employed by the user to override
the default memory size of 16K words. The size of the memory
model is specified by the dimension of the SJt~""EM array. The
width of the memory is one full-word of the host machine, which
is sufficiently large to accommodate the prescribed word lengths
of the simulated SKC3120 Computer. Table 5-IV presents the
information content of the MEMORY control block.

TABLE 5-IV MEMORY CONTROL BLOCK

+---+
I vlord I Symbol I Description 1 Initial Value I
+---+

N* I SIMMEM(N) I Simulated memory HLT's ** 'I
+---+
* N ranges from 1 to 16384

** The initial izationpattern is embedded in the Simulator
Configuration File and is normally set to the 'HLT' Instruction
code.

See Host Procedures Manual for
Simulator Configuration File.
Configuration File is described
Simulator Users Manual.

F4202-1 2/75

selection of the appropriate
The format of the Simulator
In the Assembler Linkage/Editor

5-6

5.4 IODEF CONTROL BLOCK

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 REV __ _

The IODEF control block may be employed by the user to initialize
the real time clock period and to specify the CPU clock period
for instruction execution time computations. IRTCLK may be set
to any integer value, where the least significant digit has a
value of one nano-second. This serves as the basis by which the
Simulator will initiate real-time interrupts. MEHSPD may be set
to specify the CPU clock period, where the least significant
digit scale factor is 10**-3 MHZ. The default value of 0, if not
overridden, indicates that a no-timing option is selected. The
information content of this control block is presented in Table
5-V. The IODEF control block must be initial ized before the
first instruction is executed or the' default values will be used
throughout the run.

TABLE 5-V IODEF CONTROL BLOCK

+---+
I ~Jord I Symbol I Description I Initial Value I
+---+

1 I IRTClK I Real-time clock period 0
21 MEMSPD I CPU clock period 1228

+---+

5-7
F4202-1 2/15

Y240A302M0810 REV

5.5 BLIST CONTROL BLOCK

THE SINGER COMPANY
KEARFOn DIVISION

The BLIST control block consists of the array BRKLST with a
default length of 25 words. This control block may be employed
by the user to define a set of simulation break points, SKC3120
absolute addresses at which control will be returned to the FCP.
The information content of the BLIST control block is shown in
Table 5-VI.

This 1 ist may not exceed the 25 words allocated if the default
FCP is used. The default FCP maintains a count of. the break
points in use a~d passes the count to the Simulator as Argument 1
of subroutine 'CONTRL' (see section ~.1).

If the user generated FCP is used, Argument 1 of 'CONTRL' must be
updated each time the break point list changes. The user may
also change the number of locations allocated in the BLISi
control block,as indicated in TABLE 5-VI.

The Simulator can be made to respond to symbolic references
passed to BLIST control block from a KAL31 Assembler languge
driver, assembled with the program being simulated. In some
instanc&s,there would be an advantage in using this method over
the absolute addressing required by the BLIST control block when
it is used directly.

TABLE 5-VI BLIST CONTROL BLOCK

+---+
I Word I Symbol I Description I Initial Value I
+---+

1 BRKLST(1) PC break point o

25 BRKLST(2S) o

N BRKLST(N) o
+----------------~------------------------------~----- ----------+

5-8
F4202-1 2/75

THE SINGER COMPANY
KEARFon DIVISION

Y240A302M0810

6 FCP LANGUAGE SPECIFICATIONS

REV __ _

The FORTRAN Control Program (FCP) must consist of a set of
FORTRAN (or FORTRAN compatible) statem~nts. The language and
associated rules must coincide with the level of FORTRAN chosen
by the user. The Simulator requires that the FCP be written as a
subroutine and must include linkage and calling sequences,type
declarations and allocation of common blocks as described in the
following paragraphs.

6.1 FCP SUBROUTINE LINKAGE AND CALLING SEQUENCES

The name of the FCP must be "CONTRl". The format of the FORTRAN
subroutine statement is:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 •• ~60
SUBROUTINE CONTRl (ARG1,ARG2,ARG3,ARG4)

ARG1

ARG2

ARG3

F4202-1 2017&

is a fixed ·polnt quantity which Is output fro~ the
FCP and specifies the number of user defined active
break points. The BRKlST array Ih the BLIST
control block must be at least as large as this
value. If ARG 1 = 0, then the· user desires to
single step through the simulation process; i.e.,
control will be returned to the FCP aft~r each
instruction execution.

is a fixed point quantity which Is output from the
FCP and specifies the elapsed time at which control
should be returned to the FCP. The least
significant bit (lSB) has a value of one
micro-second. If ARG 2 = 0, the function is
ignored. I.e. Elapsed time does not cause the
Simulator to return control to the FCP.

is a fixed point quantity which Is output from the
FCP and specifies the count of instructions after
which control is returned to the FCP.lf ARG 3 =0,
the function is ignored. i.e. Instruction count
does not cause the Stmulator to return control to
the FCP.

6-1

Y240A302M0810 REV --
THE SINGER COMPANY

KEARFOn DIVISION

ARG4 is a fixed point quantity which is input to the FCP
and is set by the Simulator to indicate the
condition that caused control to be transferred to
the FCP.

The calling sequence, with the exception of ARG4, is user
defined, as part of the FCP, and specifies the size of the break
point 1 ist and the instruction count or elapsed time after which
control will be returned to the FCP.

All arguments have an initial value of 0 except ARG4, which has
an Initial value of' 16. This allows the user to define or
initialize the Simulator control blocks before starting to
simulate the problem program, by co~paring the value of the
arguments and then initializing if equal to zero or processing if
not equal to zero. If the FCP is written to read an Input file
during Initialization, external control can be exercised over·
arguments 1,2 and 3 which are then passed to the Simulator from
the FCP control program.

If the Simulator diagnoses a user operational program logic or
arithmetic error, control will be returned unconditionally to the
FCP. This permits the user to define error handlers for all of
the setti.ngs of ERRFLG, as presented in Table 5-1 I.

The condition indicator, ARG4, which is set by the Simulator,
indicates the reason for transfer of control from the Simulator
to the FCP. The ARG4 settings are presented In Table 6-1.

TABLE 6-1 ARG4 SETTINGS

+---------------------------------------~--------------+
I ARG4 Value I Interpretation
+------------------------------------~--------~--------+
I 2**0 = 1
I
I 2**1 = 2
I
I 2**2 = 4
I
I 2**3 = 8
I
I 2**4 = 16

Error condition (defined by ERRFLG)

Real-time interrupt

Elapsed time interrupt

Instruction count interrupt

Break point interrupt

I
I
I
I
I
I
I
I
I

+------------------------~-----------------------------+

It is possible tfiat several bits
multiple conditions; e.g., a
indicate both an error condition
time interruPt.

F4202-1 2/75

of ARG4 are set to indicate
value of 5 (2**2 + 2**0) would
and the presence of an elapsed

6-2

6.2 TYPE DECLARATION

THE SINGER COMPANY
KEARF01'T DIVISION

Y240A302M0810 REV __ _

All information transmitted to/from the FCP via the control
blocks described in Section 3 must be integer full words. Hence,
an IMPLICIT statement or explicit INTEGER statements for each
variable must be present. The IMPLICIT statement format is:

1 .•• 5 ••. 10 ••. 15 ••. 20.~.25 ••. 30 .•• 35 •.. 40 .•. 45 •.• 50 ••• 55 ••. 60
IMPLICIT INTEGER (A-Z)

See the 1 isting of the Default FCP program in Appendix A.

6-3
F4202-' 2/75

Y240A30 2MOBIO REV---='

6.3 CONTHOL BLOCKS

THE SINGER COMPANY
KEARFOn DIVISION

Areas must be defined for Labeled Common IO,CPU,BLIST,IODEF and
MEMORY as shown in the listing of the Default FCP program in
Appendix A.

A typical definition statement follows:

1 •.. 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60
lOMMON/IO/LFLAG,COMMND,ACK,TMEDLY,INOUT,LOC,DATA,DC

6-4

F4202-1 2/75

Y240A302M0810 THE SINGER COMPANY
KEARFOTT DIVISION

_______________ REV ____ _

6.4 CONTROL FUNCTIONS

The control functions that may be dynamically performed by the
FCP are numerous and varied. A partial list is presented in
Table 6-1 I. All functions are operative in response to the
normal and abnormal conditions specified In Section 5.

TABLE 6-1 I FCP CONTROL FUNCTIONS

+--+
I Control Function I Associated Mechanism
+---------------------~--------------------------------------+ I Multiple break points
I Single step
I Multiple starting points
I Masking and unmasking
I Interruption
I Tracing (on/off)
I Termin~tion
I Error handlers
I Memory definition and size
I Initiate DMA operations
I Initiate I/O via A register

/BLI ST / BRKLST
CONTRl calling sequence
/CPU/ PC
/CPU/ SR,IMR
/CPU/ INTFLG
/CPU/ TRCFLG
/CPU/ TRMFLG
/CPU/ ERRFLG
/MEMORY/ SIMMEM
/MEMORY/SINPUT,SOUTPUT *
/10/ INOUT,SDVICE *

I
I
I
I
I
I
I
I
I
I
I

+----------------~------------------------------------ -------+

*SINPUT,SOUTPUT and SDVICE may be used to simulate the transfer
of data to and from the KAL31 Assembly language program being
simulated.

6-5
F4202..,/ 2/76

Y240A302M0810 REV

6.5 FCP SERVICE REQUESTS

THE SINGER COMPANY
KEARFOTT DIVISION

The Simulator services that are provided are listed
alphabetically in Table 6-111. This table also indicates in
which section each service request is described. The linkage
conventions that must be observed are presented in succeeding
sections. All service requests may be issued in response to any
normal or abnormal conditions as diagnosed by the Simulator.

6.5.1 STRACE REQUEST

The STRACE request may be issued by the FCP. The service
suppl led by the Simulator is to record the state of the CPU,
including elapsed time, at the point in the Simulation where
the call was made. The format of the FORTRAN statement is shown
below; there are no arguments.

1 ••• 5 .•. 10 ••• 15 •.• 20 ••• 25 ••• 30 ••• 35 .•. 40 •.• 45 •.. 50 ••. 55 ••• 60
CALL STRACE

Tracing may also be controlled by setting TRCFLG, as described in
Section 5.1.

When the trace option is on (TRCFLG = 1), the Simulator will
produce output Information for each instruction which is
executed. The RPG wIll use thIs information to produce a trace
report. Table 4-1 I describes the items included in the Trace
Report. The trace feature of the Simulator should generally be
used only for relatively short programs or for small portions of
larger programs, since a large volume of data can be generated by
a short amount of simulated time. The trace can be turned on and
off at successive break points.

A selective trace can be generated by setting a break point at
the start of the trace area and another at the end of the trace
area. The user can then turn trace on at the first breakpoInt
and turn it off at the second, so that each time the code to be
traced is entered, the tracing will be activated.

6-6
F4202-1 2/75

TABLE 6-11 I

THE SINGER COMPANY
KEARFOn DIVISION

SIMULATOR SERVICES

Y240A302M0810 _______________ REV ____ _

+--+
I Service I Function I Section I
+--+ I SCHECK
I
I SDUMP
I
I
I SDVICE
I
I
i
I SINPUT
I
I
I 510
I
I
I
I SMEMRY
I

SNOTE

SOUTPT

SRESTR

SSETA

SSETB

SSETX

SSETR

STABLE

STAP I N

STRACE

I Records state of SKC3120 machine
I
I Transmits data from specified memory
I regions
I
I Defines the data to appear on the I/O
I interface when the appropriate input
I instruction Is executed
I
I Transmits data to selected memory
I locations under format control
I
I Logically connects an I/O device code to
J the name of a subroutine to be invoked

when data is transmitted on that ~hannel

Determines a symbol's value

Transmits a'user defined message

Transmits data from selected memory
1 ocat Ions under· format control

Restarts simulation from last checkpoint

Sets the A register under format control

. Sets the B register under format control

Sets the Index register

Sets a selected CPU register (Bl,B2,IXR)

Determines value of an array of symbols

Performs a computer load

Records state of the CPU

6.5.11

6.5.2

6.5.5

6.5.3

6.5.6

6.5.7

6.5.14

6.5.4

6.5.12

6.5.8

6.5. £

6.5.10

6.5.16

6.5.15

6.5 .• 1 3

6.5.1
+---------~--- ---------+

6-7
F420~-1 2/15

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

6.5.2 SDUMP REQUEST

When the SDUMP request is issued by the user, the service
provided by the Simulator is to record the contents of the
regions of memory specified by the user. The starting and
stopping locations (dump regions) may be specified either
symbol ically or absolutely. The Simulator diagnostic action and
setting of the ERRFLG indicator are specified in Table -5-11. The
format of the FORTRAN statement is shown below:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55~ •• 60

ARG1

ARG2

ARG3

ARG4

CALL SDUMP (ARG1,ARG2,ARG3~ARG4)

Is a fixed point quantity and specifies the ARG3 and
ARG4 ar ray sizes. -

is a double-word character string (8 characters) and
specifies the deckname If the symbol]c referencing
oPtion Is selected. If ARG2 = "NODECK ", absolute
addressing is selected.

is a fixed'point or character string array which
spec~fies the dump starting locations.

is a fixed point or character string array which
specifies the dump ending locations.

If absolute addressing is selected, then ARG3 and ARG4 must be
single subscriPted arrays of dimension (ARG1) and must contain

·fixed point absolute SKC3120 addresses. If symbol ic referencing
is selected, the~ ARG3 and ARG4 must be double subscripted arrays
of dimension (4,ARG1), and all symbols must be left-justified and
padded with blanks on the right.

The starting and ending locations of each dump region may include
SKC3120 memory of different types; e.g., LSI scratchpad and core
memory. When such "memory boundaries" are crossed, the Simulator
service routine SDUMP takes the appropriate action. Note t'hat
the actual dump format will differ with different types of
memory.

6-8
F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 -________ REV_

6.5.3 SINPUT REQUEST

The SINPUT request may be issued by the FCP and the servlce
suppl led by the Simulator is to input (under format control) into
memory and record the results of the service operation. The
input starting location may be defined symbolically or
absolutely. The type of conversions may be none or host machine
floating to SKC3120 fixed point. The Simulator diagnostic
action and setting of the ERRFLG indicator are specified in Table
5-1 I. The format of the FORTRAN statement is:

1. •• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 •• f 5 0 " • 55 ••• 60
CALL SINPUT (ARGl,ARG2,ARG3,ARG4,ARGS,ARG6)

ARGI

ARG2

ARG3

ARG4

ARG5

. ARG6

F4202-1 2/75

is a full-word character string and specifies the
type of I con version desired. The following values
are permitted:

"HEX" No conversion; ARG5 must be an array of
fixed point quantities.

"FIX" ARG5 and ARG6 must be arrays of host machine
floating point quantities; the ARG6 array
represents the scale factors of the LSB's of
the resulting fixed point quantities.

"FLT" ARGS must be a double preCISion floating
point quantity. ~Jhen "FLT " option is
specified, the conversion is from host
machine floating point to SKC3120 floating
point.

is a double-word character string (8 characters) and
gives the deckname if symbolic addressing is being
used. If ARG2 = "NODECK ", absolute addressing is
used.

is a fixed point word or character string and
specifies the input memory starting location.

is a fixed point quantity and specifles the ARG5
and ARG6 array sizes.

is a floating or fixed point array of values to
input.

is a floating point array of scale factors and is
required only for conversion from host machine
floating point to SKC3120 fixed point.

6-9

Y240A302M0810 REV ---
THE SINGER COMPANY

KEARFOTT DIVISION

If absolute addressing is selected, then ARG3 must be a fixed
point scalar and contain an absolute SKC3120 address. If
symbolic referencing is selected, then ARG3 must be a single
subscripted array of dimension (4). All symbols must be
left-justified and padded with blanks on the right.

6-10
F4202-1 2/15

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

REV --=-
6.5.4 SOUTPT REQUEST

The SOUTPT request may be issued by the FCP and the service
suppl ied by the Simulator is to output (under format control)
from memory and record the results of the service operation. The
output starting location may be defined symbolically or
absolutely. The type of conversion may be none or SKC3120 fixed
point to host machine floating point. The Simulator diagnostic
action and setting of the ERRFLG indicator are specified in Table
5-1 I •. The format of the FORTRAN statement is:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 •• ~35 ••• 40 ••• 45 ••• 50 ••• 55~ •• 60
CALL SOUTPT(ARGl,ARG2,ARG3,ARG4,ARG5,ARG6)

ARG1

ARG2

ARG3

ARG4

F4202~1 2,/75

is a full-word character string and specifies the
type of'conversion desired. The following values
are permitted:

"HEX" No conversion; ARG5 must be an array of
fixed point quantities.

"FIX II ARG5 and ARG6 must be arrays of host machine
floating point quantities; the ARG6 array
represents the scale factors of the LSB's of
the fixed point quantities to be output.

"FLT" ARG5 must be a double precision floating
point quantity. i~hen "FLT " option is
specified, the conversion is from host
machine floating point to SKC3120 floating
po i nt.

is a double-word character string (8 characters) and
specifies the deckname if symbolic addressing is to
be used; if ARG2 = "NODECK ", absolute addressing
is to be used.

is a fixed point or character string array specifying
the input memory starting location.

is a fixed point quantity and specifles the ARG5 and
ARG6 array sizes.

6-11

Y240A302t.10810 ________ REV_ THE SINGER COMPANY
KEAR.FOTT DIVISION

ARG5

ARG6

is a fixed or floating point array which will receive
the quantities from memory.

is a floating point array of scale factors and is
required only for conversion from SKC3120 fixed
point to host machine floating point.

If absolute addressing is selected, then ARG3 must be a fixed
point scalar and contain an absolute SKC3120 address. If
symbolic referencing is selected, then ARG3 must be a single
subscripted array of dimension (4). All symbols must be
left-justified and padded with bl~nks on the right.

6-12

F4202-1 a/75

6.5.5 SDVICE REQUEST

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __ _

The SDVICE request may be issued by the FCP and the service
suppl ied by the Simulator is to transfer one data word to the A
register. This service permits the user to execute closed-loop
simulations without providing sophisticated models of external
devices. The Simulator diagnostic action and setting of the
ERRFLG indicator are specified in Table 5-1 I. The format of the
FORTRAN statement is:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 •• ·.35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60
CALL SDVICE (ARG1,ARG2,ARG3)

ARG1

ARG2

ARG3

is a fixed point number and specifies any legal
device code number.

is a fi~ed point number and specifies any legal
device code number.

is a fixed point quantity and represents the datum
to be transmitted to the A register.

ARG1 and·ARG2 specify a range of device codes such that if during
simulation of an input/output instruction, a device code is
generated which is within the range, then the ARG3 datum is
transmitted to the A register.

6-13

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

6.5.6 SIO REQUEST

The SIO request may be issued by the FCP and the service suppl ied
by the Simulator is to logically connect an I/O device code to
the name of a FORTRAN subroutine to be invoked when data is to be
transmitted or received on that channel. This service permits
the user to define and connect models of external devices and
thereby permits inputting and/or outputting to/from the A
register (under format control) or memory (under format control).
Refer to Section 5 for a description of the 10 control block and
to Section 7 for the I/O model specification. The Simulator
diagnostic action and the setting of the ERRFLG indicator are
specified in Table 5-1 I. The format of the FORTRAN statement is:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 •• i60

ARG1

ARG2

ARG3

CALL SIO (ARG1~ARG2,ARG3)

is a fixed point quantity and specifies the starting
number of a range of device codes.

is a fixed point quantity and specifies the ending
number of a range of device codes.

is a fixed point quantity and specifies the number
of the FORTRAN. subroutine to be invoked when a
device code in the range given by ARGI and ARG2
is specified in an input/output instruction.

The number used in ARG3 is the integer portion of the subroutines
MODO through MOD80 which are supplied as dummy subroutines and
are over-ridden by the user supplIed MODO through MOD80 as
defined by SIO.

6-14
F4202-1 a/76

THE SINGER COMPANY
KEARFOtT DIVISION Y240A302M0810 REV __

6.5.7 SMEMRY REQUEST

The SMEMRY request may be issued by the FCP and the service
suppl ied by the Simulator is to evaluate the input symbol and
return the SKC3120 absolute address. The SMEMRY request is a
statement function and thus differs from other subroutine
services. The SMEMRY, service permits the user to perform
symbolic arithmetic and logic operations using the PC and the
OAR, elements of the CPU control block. The Slmulator diagnostic
action and setting of the ERRFLG indicator are presented in Table
5-1 I. The format of the FORTRAN statement Is: .

1.~.5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••. 60

ARGI

ARG2

ASSIGN = SMEMRY (ARG1,ARG2)

Is a double-word character string specifying the
deckname.

is a character string airay and specifies the
symbol to be evaluated.

The ARG2 array must be a single subscripted array of dimension
(4). Both symbols must be left-justified and padded with blanks
on the right.

6-15
F4202-1 a/76

Y240A30 2M0810 REV --
THE SINGER COMPANY

KEARFOn DIVISION

6.5.8 SSETA REQUEST

The SSETA request may be issued by the FCP and the service
supplied by the Simulator is to set the A register as a function
of the user specified conversion type and record the results of
the operation. The type of conversion permited is none or host
machine floating point to SKC3120 fixed point. The Simulator
diagnostic action and the setting of the ERRFLG indicator are
specified in Table 5-1 I. The format of the FORTRAN statement is:

1 ••• 5 ••• 10 ••• 15 ••• 20 •• ·.25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60

ARG1

ARG2

ARG3

CALL SSETA (ARG1,ARG2,ARG3)

is a full-word character string and specifies the
type of conversion desired; the following values
are permitted:

"HEX" No conversion.

"FIX" ARG2 and ARG3 must be host machine floating
poJnt scalars, where ARG3 represents the
scale factor of the LSB of the resulting
fixed point quantity.

"FLT" ARG2 must be a double precision floating
point quantity. When "FLT " option is
specified, the conversion is from host
machine floating point to SKC3120 floating
point.

is the host machine floating or fixed point
quantity to be input.

is a fixed point quantity and represents the LSB
value of the conversion from host machine floating
point to SKC3120 fixed point.

6-16

6.5.9 SSETB REQUEST

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __

The SSETB request is identical to the SSETA request except that
the B register receives the result of the conversion. Refer to
Section 6.5.8, SSETA request.

6-17
'4202-1 a/75

Y240A302M0810 REV __
THE SINGER COMPANY

KEARFOn DIVISION

6.5.10 SSETX REQUEST

The SSETX request may be issued by the FCP and the service
supplied by the Simulator is to set the index register and record
the results of the service operation. The Simulator diagnostic
action and the setting of the ERRFLG indicator are specified in
Table 5-1 I. The format of the FORTRAN statement is shown below:

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60

ARG1

'4202-1 1/715

CALL SSETX (ARG1)

is a fixed point scalar ,quantity which Is to be
loaded into the index register, XR.

6-18

6.5.11 SCHECK REQUEST

THE SINGER COMPANY
KEARFOn DIVISION Y240A302M0810 REV __

The SCHECK request may be issued by the FCP and the service
supplied by the Simulator is to record on secondary storage the
state of the simulated SKC3120 machine for subsequent restart •.
The format of the FORTRAN statement is shown below. There are no
arguments.

1 ••• S ••• 10 ••• lS ••• 20 ••• 2S ••• 30 ••• 3S ••• 40 ••• 4S.f.SO ••• S5 ••• 60
CALL SCHECK

6-19
F4202-1 a/715

Y240A302M0810 REV

6.5.12 SRESTR REQUEST

THE SINGER COMPANY
KEARFOn DIVISION

The SRESTR request may be issued by the FCP and the service
supplied by the Simulator is to re-initial ize the SKC3120
machine to the state it had at the time of the previous
checkpoint. The Simulator diagnostic action and the setting of
the ERRFLG indicator are specified in Table 5-1 I. The format of
the FORTRAN statement is shown below. There are no arguments.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60
CALL SRESTR

6.5.13 STAPIN REQUEST

The STAPIN request may be issued by the FCP and the service'
suppl ied by the Simulator is to perform a computer memory load;
i.e., load the memory with the operational progr~m residing on
secondary storage. The Simulator diagnostic action and the
setting of the ERRFLG indicated are specified in Table 5-11. The
format of the FORTRAN statement is shown below. There ~re no
arguments.

1 ... 5 ••• 10 ••• 15 •.• 20 ••• 25 ••.• 30 ••• 35 ••. 40 ••• 45 ••• 50 ••• 55 ••• 60
CALL STAPIN

6-20
F4202-1 a/15

THE SINGER COMPANY
KEARFOn DIVISION

Y240A302M0810 REV __ _

6.5.14 SNOTE REQUEST

The SNOTE request may be issued by the FCP and the servIce
supplied by the Simulator is to record a user specifIed meSsage~
The format· of the FORTRAN statement Is:

1 .•• 5 ••• 10 ••• 15 ••• 20 ••.• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50~ •• 55 •• ~60

ARG1

ARG2

F4202-1 ane

CAll SNOTE (ARG1,ARG2)

is. a fixed point quantity and specifies the number
of characters in ARG2.

is a character string and specIfies the message to
be recorded.

6-21

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOn DIVISION

6.5.15 STABLE REQUEST

The STABLE request may be issued by the FCP and the service
suppl ied by the Simulator is to evaluate the input array of
symbols and return the corresponding SKC3120 absolute addresses.
The Simulator diagnostic action and setting of the ERRFLG
statement are presented in Table 5-11. The format of the FORTRAN
statement is:

1 ••• 5 •. ~10 ••• 15 ••• 20.~.25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 5~ ••• 60

ARG1

ARG2 '

ARG3

ARG4

CALL STABLE (ARG1,ARG2,ARG3,ARG4)

is a fixed point quantity and specifies the ARG3
and ARG4 array sizes.

is a double-word character string (8 characters)
and specifies the deckname.

is a character string array and specifies the
symbols to be evaluated.

is a.fixed point array of SKC3120 absolute
addresses.

ARG3 must be a double subscriPted array of dimension (4,ARG1).
All symbols must be left-justified and padded with blanks on the
right.

6-22
F4202-1 2/75

6.5.16 SSETR REQUEST

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810 ________ REV _

The SSETR request may be issued by the FCP and the service
suppl ied is to set the user specified CPU register (i.e. Base
register 1, 2, or the inactive index register) and record the
results of the service operation. The simulator diagnostic
action and the setting of the ERRFLG indicator are specified in
table 5-IJ.

1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 30 ••• 35 ••• 40 ••• 45 ••• 50 ••• 55 ••• 60

ARG1

ARG2

CALL SSETR (ARG1,ARG2)

is a fixed point scalar' quantity which specifies
the selected CPU register •. permlssable ARG1 values
are presented In Table 6~IV.

is a fixed point scalar quantity which is to be
loaded into the selected CPU register.

TABLE 6-IV ARG1 SETTINGS

+--------------------------~---------------------------+
1 ARG1 Value 1 Interpretation
+--~---+

3 . I Base reglst~r one selection
I

4 I Base register two selection
I

5 I Inactive index register selection
+-----------~----------------~-------------------------+

6-23

F4202',.f 2/76

Y240A302M0810

F4202-1 a/15

REV
THE SINGER COMPANY

KEARFon DIVISION

This page intentionally left blank

6-24

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810

7. I/O MODEL LANGUAGE SPECIFICATION

7.1 MODEL LINKAGE

REv __ _

The model names of the user defined external device models are
presented in Table 7-1. The mechanism that must be exercised by
the user to inform the Simulator that dynamic simulation is
desired is the SIO service request. Issuance of the SIO request
results in the Simulator action of logically connecting the
specified SIO device codes to the name of the FORTRAN model.

7.2 MODEL CONTROL FUNCTIONS

All control functions that are
permissable in the user models.
Control Functions.

7.3 MODEL SERVICE REQUESTS

permitted in the FCP are
Refer to Section 6.4, FCP

All services provided in· the FCP are available in the user
models. Refer to Section 6.5, FCP Service Requests.

TABLE 7-1 MODEL NAMES

+--+
I Subroutine I
I Model Names I Function
+--+

MODI I/O model
rAOD2 I/O model

· · MOD63 I/O model
HOD64 I/O model Invoked by level 1 interrupt
MOD65 I/O model Invoked by level 2 interrupt
MOD66 I/O model

· · MOD80 I/O model
+--+

7-1
F4202-1 a/7a

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

A maximum of 80 I/O model subroutines are permitted,but Models
MOD64 and MOD65 are called unconditidnally in the event that a
level 1 or level 2 interrupt occurs, respectively. MOD64 and
MOD65 are automatically connected and thus need not be specified
in an SID request, however, if any additional processing is
required because of the interruPt occurrence, that processing may
be included within a MOD64 or M0065 I/O model supplied by the
user.

7-2
F4202-1 a/7!

1'4202-, a/711

THE SINGER COMPANY
KEARFOn DIVISION

APPENDIX A

Default FCP Program Listing

Y240A302M0810 REV __ _

THE SINGER COMPANY
KEARFOTT DIVISION

APPENDIX A

C DEFAULT FORTRAN CONTROL PROGRAM (FCP)
C

Y240A302M0810 REV

SUBROUTINE CONTRLCBSIZE,ETIME,COUNT,CONDFG)
C
C FORTRAM CONTROL PROGRAM - CONTRL
C ENVIRONMENT AND LANGUAGE SPECIFICATIONS
C
C BSIZE - SIZE OF ARRAY BRKLST
C BRKLST - BREAK POINTS
C ETIME - ELASPSED TIME, SCALE LSB=l US
C COUNT - INSTRUCTION COUNT
C CONDFG - CONDITION FLAG
C CONDFG = 1 INDICATES ERROR CONDITION
C = 2 INDICATES REAL TIME CLOCK INTERRUPT
C = 3 INDICATES ELAPSED TIME INTERRUPT
C = 4 INDICATES INSTRUCTION COUNT INTERRUPT
C = S INDICATES BREAK POINT INTERRUPT
C
C
C BLOCK ALLOCATION
C

C

C
C
C
C
C
C
C
C

C

F4202-1 a/76

DIMENSION SERV(2S),ACTION(2S),NODCKC2),KARD(20)
DIMENSION MASK(S),ETIME(2)
DIMENSION ADDR(2S),ISDATA(2S),ASCALE(2S)
DIMENSION RSDATA(l),RESULT(l)
EQUIVALENCE (ISDATA(l),RSDATA(l», (ISDATA(l),RESULT(l»

COMMON/MEMORY/SIMMEM(16384)

COMf,1ON BLOCK NAME=MEMORY

NAME DEFINTION
SIMMEM - SIMULATED MEMORY (DEFAULT 16K FULL WORDS)

COMMON/IODEF/IRTCLK,MEMSPD

A-l

--

Y240A302M0810 REV __
THE SINGER COMPANY

KEARFOTT DIVISION

C
C
C
C
C
C

* C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

'C

C

F4202-1 2/15

COMMON BLOCK NAME=IODEF

NAME DEFINITION
IRTCLK - REAL TIME CLOCK PERIOD, SCALE LSB=1 US (DEFAULT 0)
MEHSPD - SPEED OF MEMORY IN NANO-SECONDS (DEFAULT 1228)

COMMON/CPU/A,B,PC,PCOLD,C,D,CBO,OAR,IR,SR, IMR,XR,PSEU1(3),
B1,B2, IXR,PSEU2(57),SWR,TIME(2),ERRFLG,INTFLG,TRCFLG,TRMFLG

COMMON BLOCK NAME=CPU

NAME DEFINITION
A A-REGISTER
B - B-REGISTER
PC - UPDATED PROGRAM COUNTER
PCOLD - CURRENT PROGRAM COUNTER
C - C-REGISTER
DO-REGISTER
OAR - OPERATION ADDRESS REGISTER
IR - INSTRUCTION REGISTER
SR - STATUS REGISTER
IMR - INTERRUPT MASK REGISTER
XR - INDEX REGISTERS (64)
SWR - SWITCH REGISTER
TIME - ELAPSED TIME IN MICRO-SECONDS
ERRFLG - ERROR INDICATOR
INTFLG - INTERRUPT FLAGS
TRCFLG - TRACE FLAG
TRMFLG - TERMINATION FLAG

COMMON/IO/LFLAG,COMMND,ACK,TMEDLY,INOUT,LOC,DATA,DC

COMMON BLOCK NAME=IO

NAME
LFLAG
LFLAG

COMtvlND
ACK
TMEDLY
INOUT
INOUT

LOC
DATA
DC

DEFINTION
- LONG OR SHORT INSTRUCTION
= 0 A REGISTER OPERATION
= 1 MEMORY OPERATION

COMMAND BIT
- ACKNOWLEDGE BIT
- TIME DELAY
- INDICATES INPUT OR OUTPUT OPERATION
= 0 INPUT OPERATION
= 1 OUTPUT OPERATION
- MEMORY LOCATION (HALF WORD ADDRESS
- DATA TRANSMITTED IN OR OUT
- DEVICE CODE

COMMON/BLIST/BRKLST(2S)

A-2

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __

C COMMON BLOCK NAME=BLIST
C
C NAME DEFINITION
C BRKLST - LIST OF BREAK POINTS
C
C
C EXPLICIT TYPE DECLARATIONS
C

C

NTEGER A,ACTION~ADDR,ACK,ACTCMD
NTEGER B, BRKLST, BSIZE, BLNK , B1, B2
NTEGER C,CBO, CORSTP, CORSTR,COUNT,CONDFG,COMMND
NTEGER 0, DMPSTR, DMPSTP, DCK, DUMPSR,DUMPSP,DATA,OC
NTEGER HED,HEXDAT
NTEGER ERRFLG,ETIME,ENDCD
NTEGER OAR,ONOFF
NTEGER PCOLD, PC, PCLOC, PSEUl, PSEU2
NTEGER RAMSTR, RAMSTP, ROMSTR, ROMSTP
NTEGER SIMMEM, SR, SRMSK, SWR, SYMBOL
NTEGER START, STOP, SHORTL
NTEGER TIME, TRCFLG, TRMFLG, TERM, TMEDLY, TMPl(8), TMP2(8)
NTEGER XR

DOUBLE PRECISION SERV,REQST,FLT,RDDATA(2S)

C DATA DEFINITIONS
C

610

600
1000

C
C
C

F4202-1 2/75

*
*
*
*
*
*

DATA SERV/8H$IODEF ,8H$BREAK ,8H$INTRPT ,BH$TAPIN ,
8H$NOTE ,8H$DUMP ,8H$INPUTHX,8H$INPUTFX,
8H$INPUTFL,8H$OUTPTHX,8H$OUTPTFX,8H$OUTPTFL,
8H$TRACE ,8H$CHECK ,8H$RESTR ,8H$TERM
8H$EXEC ,8H$CHKSM ,8H$SETAHX ,8H$SETAFX ,
8H$SETAFL ,8H$SETBHX ,8H$SETBFX ,8H$SETX

,

,
8H$SETR /

DATA ENDCD/4HEND /,BLNK/4H
DATA MASK/l,2,4,8,16/
DATA NODCK/4HNODE,4HCK I
DATA /'t1DFLAG/O/
ICNT = 0
ICNT = ICNT + 1
IFCICNT.GT.S) RETURN

/,TERM/4HTERM/

IF(IANDe MASKCICNT), CONDFG) .EQ. 0) GOTO 610
GO TO (1000, 2000, 3120, 4000, SOOO),ICNT
CONTINUE

ERROR CONDITION PROCESSING

IF(ERRFLG.EQ.32)GOTO 9001
IF(ERRFLG.EQ.44)GOTO 9002,
IF(ERRFLG.GE.76.AND.ERRFLG.LE.l1l)GOTO 9003
GO TO 610

A-3

Y 240A30 2M0810 REV THE SINGER COMPANY
KEARFOTT DIVISION

9001 CONTINUE
C
C ADDRESSABILITY ERROR
C

TRMFLG=l
CALL SNOTE(33,33HTERMINATION DUE TO ADDRESSABILITY)
RETURN

9002 CONTINUE
C
C ILLEGAL INSTRUCTION
C

TRMFLG=l
CALL SNOTE(38,33HTERMINATION DUE TO ILLEGAL INSTRUtTION)
RETURN

9003 CONTINUE
C
C RTA ERROR-CHANNEL ACTIVE BUT NOT CURRENT, OR INACTIVE OR PENDING
C

TR~1FLG=1
CALL SNOTE(36,36HTERMINATION DUE TO RTA-ADDRESS ERROR)
RETURN

2000 CONTINUE
C
C
C

REAL TIME INTERRUPT CONDITION
INTFLG SET TO INITIATE REAL TIME INTERRUPT
INTFLG=2**INTRTN

C
GO TO 610

3120 CONTINUE
C
C ELAPSED TIME INTERRUPT
C

GO TO 610
4000 CONTINUE

C
C INSTRUCTION COUNT INTERRUPT
C

GO TO 610
5000 CONTINUE

C
C BREAK POINT INTERRUPT
C

IF(BSIZE.EQ.O)GOTO 1
C
C COMMAND PROCESSOR
C

F4202-1 2/75

A-4

C

THE SINGER COMPANY
KEARFOn DIVISION Y240A302t-10810 REV __

C DETERMINE USER DEFINED ACTION
C

C

DO 400 KK=l,BSIZE
IFCPC.EQ.BRKLSTCKK»GOTO 402

400 CONTINUE
RETURN

402 CONTINUE

C TERMINATION?
C YES, THEN GOTO TERMINATION SEQUENCE

IFCACTIONCKK).EQ.TERM)GOTO 7500
C NO, THEN PARSE ADDITIONAL COMMANDS
C

1 READC4,200) REQST,TMP1
LOC = IHEXCNC8,TMP1(1»
DO 410 J=1,25
IFCREQST.EQ.SERVCJ»GO TO 420

410 CONTINUE
C
C
C

C

420

6000
C
C
C
C

C

COMMAND NOT RECOGNIZED, WRITE DIAGNOSTIC

WRITEC6,300) REQST,TMP1
GO TO 1 ,
WRITE(6,210) REQST,TMP1
GOTOC6000,6100,6200,6300,6400,6500,6600,6700,6800,6900,

* 7000,7100,7200,7300,7400,7500,7600,7700,7800,7900,8000,
* 8100,8200,8300,8400), J

CONTINUE
$IODEF - DEFINE REALTIME CLOCK INTERRUPT NUMBER

- DEFINE MEMORY SPEED
- DEFINE REAL TIME CLOCK INTERVAL PERIOD

READC4,102)INTRTN,MEMSPD,IRTCLK
WRITEC6,112) INTRTN,MEMSPD,IRTCLK
GOTO 1

6100 CONTINUE
C $BREAK - BREAK POINT LIST DEFINITION
C

'C

F4202-1 2/75

READC4,104) HED,TMPl,ACTCMD
WRITE(6,114) HED,TMP1,ACTCMD
PCLOC = IHEXCNC8,TMP1(1»
IFCHED.EQ.ENDCD) GO TO 1
CALL PCSTQPCPCLOC,ACTCMD,BSIZE,ACTION(1» .
GOTO 6100

A-5

Y240A302M0810 REV _____ THE SINGER COMPANY
KEARFOTT DIVISION

6200 CONTINUE
C $INTRRPT - INTERRUPT DEFINITION
C

C

READ(4,108) (TMPl(IDX),IDX=1,4)
WRITEC6,118) CTMPl(IDX),IDX=1,4)
INTNO=IHEXCNC4,TMPICl»
INTFLG= INTNO
GO TO 1

6300 CONTINUE
C $TAPIN - TAPE LOAD COMMAND

... C

C

CALL STAPIN
GO TO 1

6400 CONTINUE
C $NOTE -SNOTE COMMAND
C

C

REA D C 4, 10 1) (KA R D C I), I = 1, 20)
WRITEC6,111) KARD
CALL SNOTE(80,KARDCl»
GO TO 1

6500 CONTINUE
C $DUMP - DUMP REGION DEFINITION
C

C

READC4,100) HED,TMPl,TMP2
WRITEC6,110) HED,TMP1,TMP2
START = IHEXCN(8,TMPl(1»
STOP = IHEXCN(8,TMP2C1»
IF(HED.EQ.ENDCD)GOTO 1
CALL SDUMPCl,NODCKCl),START,STOP)
GOTO 6500

6600 CONTINUE
C $INPUT - INPUT DEFINITION, HEX OPTION
C

6601 NUIABER = 0
6602 READC4,100) HED,TMPl,TMP2

WRtTEC6,110) HED,TMPl,TMP2
IFCHED.EQ.ENDCD) GO TO 6603
NUMBER = NUMBER + 1
ADDRCNUMBER) = IHEXCNC8,TMP1(1»
ISDATA(NUMBER) = IHEXCNC8,TMP2(1»
IFC NUMBER .LT. 25) GOTO 6602

A-6
F4202-f 2/76

C

6603 CONTINUE

THE SINGER COMPANY
KEARFOn DIVISION

IFe NUMBER .EQ. 0) GOTO 1
KOUNT = 1
lOX = 1
IFe NUMBER .EQ. 1) GOTO 6615
DO 6610 J = 2, NUMBER
KOUNT = KOUNT + 1

Y240A302M0810 REV __

IFe ADDReJ-l) + 1 .EQ. ADDReJ)) GOTO 6610
CALL SINPUTe4HHEX ,NODCKel),ADDReIDX),KOUNT-l,ISDATAeIDX),DMY)
KOUNT = 1
lOX = J

6610 CONT I NUE ,
6615 CALL SINPUTe4HHEX ,NODCKCl),ADDRCIDX),KOUNT,ISDATA'CIDX),OMY)

IFC HEO .NE.ENDCD) GOTO 6601 '
GOTO 1

6700 CONTINUE
C $INPUT - INPUT DEFINITION, FIX OPTION
C

C

6701 NUMBER = 0
6702 READC4,106) HEO,TMP1,WORD,SCALE

IF(HED.EQ.ENDCD) GOTO 6703
NUMBER = NUMBER + 1
ADDR(NUMBER) , = IHEXCN(S,TMP1(1»
RSDATA(NUMBER) = WORD
ASCALE(NUMBER) = SCALE,
WRITE(6,116) HED,TMP1,WORD,SCALE
IF (NUMBER .LT. 25) GOTO 6702

6703 CONTINUE
IF(NUMBER .EQ. 0) GOTO 1001
KOUNT = 1
lOX = 1
IFe NUMBER .EQ. 1) GOTO 6715
DO 6710 J = 2, NUMBER
KOUNT = KOUNT + 1
IFe ADDR(J-l) + 1 .EQ. ADDReJ)) GOTO 6710
CALL SINPUTC4HFIX ,NODCK(I),ADDR(IDX),KOUNT-1,

* RSDATA(IDX),ASCALE(IDX»
KOUNT = 1
lOX = J

6710 CONTINUE
6715 CALL SINPUT(4HFIX ,NODCK(l),ADDRCIDX),KOUNT,

* RSDATACIDX),ASCALECIDX»
IF(HED .NE. ENDCD) GOTO 6701
GOTO 1001

A-7
F4202-1 1./7&

Y240A302M0810 REV_
THE SINGER COMPANY

KEARFOTT DIVISION

6800 CONTINUE
C $INPUT - INPUT DEFINITION, FLT OPTION
C

C

6801 NUMBER = a
6802 READ(4,107) HED,TMPl,FLT

IFCHED.EQ.ENDCD) GOTO 6803
NUMBER = NUMBER + 1
ADDR(NUMBERl = IHEXCN(8,TMP1(1»
RDDATA(NUMBER) = FLT
WRITE(6,117) HED,TMPl,FLT
IF(NUMBER .LT. 25) GOTO 6802

6803 CONTINUE
IF(NUMBER .EQ. 0) GOTO 1fr01
KOUNT = 1
IDX = 1
IF(NUMBER .EQ. 1) GOTO 6815
DO 6810 J = 2, NUMBER
KOUNT = KOUNT + 1
IF(ADDR(J-1) + 2 .EQ. ADDRCJ)) GOTO 6810
CALL SINPUT(4HFLT ,NODCK(1),ADDR(IDX),KOUNT-1,RDDATACIDX),DMY)
KOUNT = 1
IDX = J

6810 CONTINUE
6815 CALL SINPUT(4HFLT ,NODCK(l),ADDR(IDX),KOUNT,RDDATA(IDX),DMY)

IFe HED .NE. ENDCD) GO TO 6801
GOTO 1001

6900 CONTINUE
C $OUTPT - OUTPUT DEFINITION, HEX OPTION
C

69 a 1 N Uf4 B E R = a
6902 READC4,100)HED,TMP1

WRITEC6,1101) HED,TMP1
IFCHED.EQ.ENDCD)GOTO 6903
NUMBER = NUMBER + 1
ADDR(NUMBER) = IHEXCN(8,TMP1C1»
IF(NUMBER .LT. 25) GOTO 6902

6903 CONTI NUE
IFe NUMBER .EQ. a) GOTO 1
KOUNT = 1
I DX = 1
IF(NUMBER .EQ. 1) GOTO 6915
DO 6910 J = 2, NUMBER
KOUNT = KOUNT + 1
IF(ADDReJ-1) + 1 .EQ. ADDR(J)) GOTO 6910

A-8
F4202-1 2/15

C

THE SINGER COMPANY
KEARFOTT DIVISION Y240A302M0810 REV __

CALL SOUTPT(4HHEX ,NODCK(1),ADDR(IDX),KOUNT-1,ISDATA(IDX),DMY)
KOUNT = 1
lOX = J

6910 CONTINUE
6915 CALL SOUTPT(4HHEX ,NODCK(l),ADDR(IDX),KOUNT, ISDATA(IDX),DMY)

IF(HED .NE. ENDCD) GOTO 6901
GOTO 1

7000 CONTINUE
C $OUTPT - OUTPUT DEFINITION, FIX OPTION
C

C

7001 NUMBER = a '
7002 READ(4,106) HED,TMPl,SCAtE

IFCHED.EQ.ENDCD) GOTO 7003
NUMBER = NUMBER + 1
ADDR(NUMBER) = IHEXCNC8,TMPICI»
ASCALE(NUMBER) = SCALE
WRITEe6,1161) HED,TMPl,SCALE
IFe NUMBER .LT. 25) GO TO 7002

7003 CONTINUE
IFe NUMBER .EQ. 0) GOTO 1001
KOUNT = 1
IDX = 1
IFe NUMBER .EQ. 1) GOTO 7015
007010 J = 2, NUMBER
KOUNT = KOUNT + 1
IF(ADDR(J-l) + 1 .EQ. ADDR(J)) GOTO 7010
CALL SOUTPT(4HFIX ,NODCK(I),ADDRCIDX),KOUNT-1,

* RSDATACIDX),ASCALE(IDX»
KOUNT = 1
I DX = J

7010 CONTINUE
7015 CALL SOUTPT(4HFIX ,NODCK(l),ADDRCIDX),KOUNT,

* RSDATACIDX),ASCALE(IDX»
IF(HED .NE. ENDCD) GOTO 7001
GOTO 1001

7100 CONTINUE
C $OUTPT -OUTPUT DEFINITION, FLT OPTION
C

7101 NUMBER = 0
7102 READ(4,100) HED,TMP1

IFCHED.EQ.ENDCD)GOTO 7103
NUMBER = NUMBER + 1
ADDR(NUMBER) = IHEXCN(8,TMPl(1»
WRITE(6,1101) HED,TMP1
IF(NUMBER .LT. 25) GOTO 7102

A-9
F4202-1 2/75

Y240A302M0810 REV_ THE SINGER COMPANY
KEARFOTT DIVISION

C

7103 CONTINUE
IF(NUMBER .EQ. 0) GOTO 1001
KOUNT = 1
lOX = 1
IF(NUMBER .EQ. 1) GOTO 7115
DO 7110 J = 2, NUMBER
KOUNT = KOUNT + 1
IF(ADDR(J-1) + 2 .EQ. ADDR(J)) GOTO 7110
CALL SOUTPT(4HFLT ,NODCK(1),ADDR(IDX),KOUNT-1,RDDATACIDX),DMY)
KOUNT = 1
lOX = J

7110 CONTI NUE
7115 CALL SOUTPT(4HFLT ,NODCK(l),ADDR(IDX),KOUNT,RDDATACIDX),DMY)

IF(HED .NE. ENDCD) GOTO 7101
GOTO 1001

7200 CONTINUE
C $TRACE - TRACE COMMAND
C

C

REAO(4,103) ONOFF
WRITE(6,113) ONOFF
TRCFLG = ONOFF
GO TO 1

7300 CONTINUE
C $CHECK -CHECK POINT COMMAND
C

C

CALL SCHECK
GOTO 1

7400 CONTINUE
C $RESTR - RESTART COMMAND
C

C

CALL SRESTR
GOTO 1

7500 CONTINUE
C$TERM - TERMINATION COMMAND
C

C

TRMFLG=1
RETURN

7600 CONTINUE
C $EXEC - EXECUTE SIMULATOR, START AT PC
C

F'i202-1 2/15

IF(LOC.NE.~)PC=LOC
RETURN

A-10

C

THE SINGER COMPANY
KEARFOTT DIVISION

7700 CONTI NUE
C $CHKSM - CHECKSUM COMMAND
C

C

CALL SCHKSMCLOC)
GO TO 1

7800 CONTINUE
C $SETAHX - SET A REGISTER, HEX OPTION
C

C

READC4,100)HED,TMP1
. WRITE(6,110) HED,TMP1

DATA = IHEXCNC8,TMP1(1»
CALL SSETA(4HHEX ,DATA,DMY)
GOTO 1

7900 CONTI NUE
C $SETAFX - SET A REGISTER, FIX OPTION
C

C

READC4,120) HED,WORD,SCALE
WRITE(6,121) HED,WORD,SCALE
CALL SSETAC4HFIX ,WORD,SCALE)
GOTO 1

8000 CONTINUE
C $SETAFL - SET A REGIST~R, FLT OPTION
C

C

READ(4,122) HED,FLT
WRITEC6,123) HED,FLT
CALL SSETAC4HFLT ,FLT,DMY)
GOTO 1.

8100 CONTINUE
C $SETB - SET B REGISTER, HEX OPTION
C

C

READ(4,100) HED,TMP1
WRITE(6,110) HED,TMP1
DATA = IHEXCN(8,TMP1Cl»
CALL SSETBC4HHEX ,DATA,DMY)
GOTO 1

8200 CONTINUE
C $SETB - SET B REGISTER, FIX OPTION
C

'4202-! a/75

READC4,120) HED,WORD,SCALE
WRITEC6,121) HED,WORD,SCALE
CALL SSETBl4HFIX ,WORD, SCALE)
GOTO 1

A-II

Y240A302M0810 REV __

Y240A302M0810 REV
THE SINGER COMPANY

KEARFOTT DIVISION

C
3300 CONTINUE

C $SETX - SET XR REGISTER
C

C

READ(4,100) HED, TMP1
WRITE(6,110) HED, TMP1
DATA = IHEXCN(S,TMP1(1»
CALL SSETXCDATA)
GOTO 1

S400 CONTINUE
C $SETR - SET CPU REGISTERS(B1, B2, IXR)
C

READ(4,124) HED,NUMBER,TMP1
WRITE(6,12S) HED,NUMBER,TMP1
DATA = IHEXCN(S,TMP1(l»
CALL SSETR(NUMBER,DATA)
GOTO 1

1001 WRITE(6,1102) HED
GOTO 1

100 FORMAT (A4,2(lX,8A1»
101 FORMAT(20A4)
102 FORMAT (12,lX,14,lX,110)
103 FORMAT(11) .
104 FORMAT (A4,lX,8A1,lX,A4)
105 FORMAT (SAl)
106 FORMAT (A4,lX,8A1,2(lX,E14.7»
107 FORMAT (A4,lX,8Al,lX,D22.0)
108 FORt4AT (4Al)
109 FORMAT (2(12,lX»
110 FORMAT(lX,A4,2(lX,8A1»
111 FORMAT(lX,20A4)
112 FORMAT (lX,12,lX,14,lX,110)
113 FORMAT(lX,11)
114 FORMAT(lX,A4,lX,8A1,IX,A4)
116 FORMAT(lX,A4,lX,SAl,2(IX,EI4.7»
117 FORMAT(lX,A4,lX,8A1,IX,D22.15)
118 FORMAT(lX,4A1)
119 FORMAT (IX,2(12,lX»
120 FORMAT (A4,2(lX,EI4.7»
121 FORMAT (lX,A4,2(lX,E14.7»
122 FORMAT (A4,IX,D22.0)
123 FORMAT (IX,A4,D22.15)
124 FORMAT (A4,IX,12,lX,SA1)
125 FORMAT (IX,A4,lX,12,lX,8A1)
200 FORMAT (A8 L 1X,SA1)
210 FORMAT(lX,AS,lX,8Al,S7X,18HCOMMAND RECOGNIZED)
300 FORMAT(lX,A8,lX,SA1,87X,17HUNDEFINED REQUEST)

A-12
F4202-1 2./75

THE SINGER COMPANY
KEARFOn DIVISION

1101 FORMATC1X,A4,lX,8A1)
1102 FORMATC1X,A4)
1161 FORMATC1X,A4,IX,8A1,lX,EI4.7)
9999 STOP

END
SUBROUTINE PCSTOP(PCLOC,ACT,BSIZE,ACTN)
DIMENSION ACT~(1),TVPEC3)
COMMON/BLIST/BRKLST(l)
INTEGER PCLOC,ACT,BSIZE,BRKLST,ACTN,TVPE
DATA TVPE/4H ,4HTERM,4HDLTE/

. IF(BSIZE.EQ.O)GOTO 15
DO 10 l=l,BSIZE
IFCPCLOC.EQ.BRKLST(I»GO TO' 20

10 CONTINUE
15 BSIZE=BSIZE+1

IDX = BSIZE
IF(BSIZE.GT.25)RETURN
BRKLST(IDX) = PCLOC
GO TO 30

20 I DX = I
30 DO 40 1=1,3

IF(ACT.EQ.TVPE(I»GO TO 50
40 CONTINUE

ACTN(IDX) = TVPE(I)
RETURN

50 GO TO C1,2,3),1
1 ACTNCIDX) = TVPE(1)

RETURN
2 ACTNCJDX) = TVPE(2)

RETURN
3 BRKLSTCIDX) = BRKLST(BSIZE)

ACTNCIDX) = ACTN(BSIZE)
BRKLST(BSIZE)=O
BSIZE=BSIZE-1
RETURN
END

A-13

V240A302M0810 REV __

F4202-1 2/75

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A302M0810

This page intentionally l~ft blank

A-14

REV __ _

F420200l a/71S

THE SINGER COMPANY
KEARFon DIVISION

APPENDIX B

Y240A302M0810 REV __

Operation of the Simula.tor in Alternate Configurations

"

THE SINGER COMPANY
KEARFOTT DIVISION

APPENDIX B

Y240A302M0810

Operation of the Simulator in Alternate Configurations

B 1 CONFIGURATION SELECTION

REV_

This manual may also be used to simulate other available SKC3120
series computers. The Simulator requires a 'Target Machine
Configuration File' for initialization. This file is transparent
to the user but must be selected for the target machine as
described in the Host Procedures Manual. The format of the
'Target Machine Configuration File', is described in the
Assembler/Linkage/Editor/Simulator Users Manual.

B 2 MEMORY CONTROL BLOCK

The MEMORY control block may be employed by the user to override
the default memory size of 16K words. The size of the memory
model is specified by the dimension of the SIMMEM array. The
width of the memory is one full-word of the host machine, which
is sufficiently large to accommodate 15-, 16- or 19-bit word
lengths of the simulated SKC3120 Computer. Table 5-IV presents
the information content of the MEMORY control block.

B 3 SIMULATOR DIAGNOSTICS

Simulator diagnostics are identical to those described in Table
5-11 except invalid conversion diagnostics will be generated if
the value exceeds the limits -2**16 LE x LE (2**16)-1 for 16 bit
data words and -2**19 LE x LE (2**19)-1 for 19 bit words.

B-1

THE SINGER COMPANY
KEARFOTT DIVISION

COMMENTS AND EVALUATIONS

Y240A302M0810 REV ---

Your evaluation of this document is welcomed by the Singer Company.

Any errors, suggested corrections or general comments may be made
and continued on the reverse side. Please include page number and
reference paragraph and forward to:

Name

Company Affil iation

Address

The Singer Company
Aerospace and Marine Systems
Kearfott Division
150 Totowa Road
Wayne, New Jersey 07470
Attention: Department 5760

------------------------------~---------------

--

Comments:

F4202-1 2/15

