
LEVELIýRADC,,TR-81-143

Final Technical Report
June 1981

~ COMPUTER PROGRAMMING MANUAL
!: FOR THE JOVIAL (J73) LANGUAGE

Softoch, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUYION UNLIMITED

DTIC
EWECTE

JUL 6 1981

ROME AIR DEVELOPMENT CENTER D
Air Force Systems Command
Griffiss Air Force Base, New York 13441

V.1

It -L' *•, l . ." ..

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general. public, including foreign nations.

RADC-TR-81-143 has been reviewed and is approved for publication.

APPROVED:

DONALD L. MARK
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Col, USAý
Chief, Information Sciences Division

FOR THE COMNDER:

JOHN P. HUSS
Acting Chief, Plans Office

Ii

If your address has changed or if you *ish to be removea from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. (ISIS) Griffi s APB NY 13441. This will assist .us in
maintaining a currant maýling list.

Do,not return this copy. Retain or destroy.

41

ii ii~ ~ ~ ~ *. .

1~~ --- * -

I ___ __ --.- ~. - .

UNCLASSIFIED
$Ecc V SIIC ON OF THIlS PAGE (Whomt~.ttd

REPORT DOCUMENTATION PAGE REDINSTRUCTIONS
BEOECOMPLE.TINC. FORM

R___N _ U. QORVT ACCESSION NO. 3- RECIPIENT'S CATALOG NUMBER

\ /4. TITLE 1and Subtlitt.) Oc 2A 21O= o ". P. 0

bMUTER ZROGRAMMING 4JNUAL FOR THE JOVIAL Final echni cal eet
(J73) I..ANGUAGE eD77ýa ,,

6.PERFORMINGO~OAa. RL"RT UIMBER

7. AUTIIOR(s) 6. CONTRACT OR ORAN T NLJMBER(4)

)F306pr2-78--iJ
C. PERFORMING ORGANIZATION NAME AND ADDRESS 10,1R PORA*%JM.i ELEMEJNT .Ir PJCT, T AS K

Softech, Inc. ARE A OKUI' N UMBE RS

460 Totten Pond Road 63728

11. CONTROLLING OFrICEs NAME AND ADDRESS -11. REI ORT DATE '

Rome Air Development Center (ISIS) (.iO AE ~
Griffiss APB NY 13441 390

14. MONITORING AGENCY NAME & ADORLb.a(if idiavll. I from Controling Office) Is. S9CURITY CLASS, (of thsi ?6po?,I, .

same UNCLASSIFIED
So. DECL ASSI FICATION/ DOWNGRADING

___ N/A CHEDULE

IS. DISTRIBUTION STATEMENT (of this. Af.pori) esuo10

Approved for public release; distribution unlimited. T ANi

17. DI STMI BUITION ST A TEMEN T (of th. abstract enllterd in Ulock 20, 11 different Iwro Popoff) br/

SameDitiuin
Availability Codea

IS, SUPPILEMENTARY NOTES Dit Spca

RADC Project Engineer: Donald L. Mark (ISIS)

19. KEY WORDS (Continue on reverse sid. if rocoeaaay And identify* by block nuomber)

* JOVIAL (J73)
MIL-STD-1589A
Prograumizing Manual
Higher Order Language

AgiSTRACT (Ccntlno." reon oodr. id. iIf 0 co.a.,and Identify. by block number)
This manual is a combined tutorial and reference manual for the JOVIAL
QJ73) language as defined in MIL-STD-1589A dated 15 March 1979. The
main body of the manual describes the entire language, giving motiva-
tion and examples for each feature. This manual Is intended for a

& ~reader who has hec! previous experience with assembly language or some
F ~higher order language,. It does not teach the fundamentals of programh-

mning. On the other hand, the presentation is informal and non-

ODID 1473 EDITION OF I NOV 66513 OBSOLETE UCASFE
SECUPRITY CLA3SIFICATION OF THIS PAGE (Wtien Otnie&orod)

UNCLASSIFIED

E UFITý CLASSIFICATION 0! THIS PA7- 0
4

",,' DIf S.red)

mathematical..-.

UNCLASSIFIED
SECURITY CLAUSIFICATION OF . PAGE.IWheI Deis I ord)

JUL 1, : I81 "

CONTENTS U
Preface

CHAPTER 1 INTRODUCTION 1
1.1 The Principal Features of JOVIAL 2
1.1.1 Values 2
1.1.2 Storage... 3
1.1.3 Calculations 6
1 1 .4 Operators 7
1.1.5 Built-In Functions 9
1.1.6 Flow of Control 10
1.1.7 Subroutines 12
1.1.a Programs 14
1.1.9 Compiler Directives 17
1.1.19 Compiler Macros 18
1.1.11 Advanced Features 18
1.2 Implementation Dependent Characteristics . 19
1.3 Outline of this Manual 19
1.4 Suggestions to the Reader 21

CHAPTER 2 PROGRAM ELEMENTS 23
2.1 Characters 24
2.1.1 Letters 242.1.1 Digtte s 0..... 24

2.1.3 Marks 25
2.1.4 Special Characters 25
2.2 Symbols 25
2.2.1 Names 26
2.2.2 Reserved Words 27
2.2.3 Operators#6. 27
2.2.4 Separators 27
2.2.5 Literals 28
2.2.5.1 Integer Literals 28
2.2.5.2 Real Literals 29
2.2.5.3 Bit Literals 29
2.2.5.4 Boolean Literals 30
2.2.5.5 Character Literals 30
2.2.5.6 Pointer Literals 31
2.2.6 Comments 32
2.2.7 Other Symbols 32
2.3 Program Format 32
2.3.1 Space Characters 33
2.3.2 New Lines 33
2.3.3 Formatting Conventions 34

CHAPTER 3 PROGRAM STRUCTURE ... 35
3.1 The Program 35
3.2 Modules 35
3.2.1 The Main Program Module 37

=7I

iii_,

' ~FN~? ~

CHAPTER 4 DECLARATIONS AND SCOPES 39
4.1 Declarations 39
4.1.1 The Classification of Declarations 40
4.1.2 The Null-Declaration 42
4.1.3 The Compound-Declaration 42
4.2 Scope 42
4.2.1 The Scope of a Declaration 47
4.2.2 Restrictions on Declarations 49

CHAPTER 5 DATA DECLARATIONS 51
5.1 The Classification of Data Declarations .. 52
5.2 Variables and Constants 52
5.2.1 VariableData Objects 52
5.2.2 Constant) Data Objects 53
5.3 Storage Allo cation 53
5.3.1 Automatic Allocation 54
5.3.2 Static All.6-cation 54

CHAPTER 6 ITEM DECLARATIONS # 55
6.1 Item DeclaratIons............... 55
6.2 Constant Item Declarations 56
6.3 Data Types 57
6.3.1 Integer Type-Descriptions 58
6.3.2 Floating Type-Descriptions. 59
6.3.3 Fixed Type-Descriptions 61
6.3.4 Bit Type-Descriptions 63
6.3.5 Character Type-Descriptions 64
6.3.6 Status Type-Descriptions 65
6.3.7 Pointer Type-Descriptions 67
6.4 Item-Presets 68
6.4.1. The Round-or-Truncate Attribute 69

1CHAPTER 7 TABLE DECLARATIONS 71
7.1 Table-Attributes 72
7.1.1 Allocation Permanence 72
7.1.2 Table Dimensions 72
7.1.2.1 Bounds 73
7.1.2.2 Table Size 75
7.1.2.3 Maximum Table Size 76
7.1.3 Table-Preset 76
7.2 Entry-Description 76
7.2.1 Unnamed Entry-Descriptions 78
7.3 Constant Table Declarations 79
7.4 Table Initialization 79
7.4.1 Table-Presets with Item-Declarations 80
7.4.2 Table-Presets in the Table-Attributes .. 80
7.4.3 Values 81
7.4.4 Omitted Values 82

_ 7.4,5 Preset Positioner 82
7.4.6. Repetition-Counts 84

II "W" -6

CHAPTER 8 BLOCK DECLARATIONS 87
8.1 Block-Declaration 87
8.1.1 Ne~ted Blocks 89
8.1.2 Allocation Permanence 90
8.1.3 Initial Values I 90

CHAPTER 9 TYPE DECLARATIONS 93
9.1 Type-Declaration 93
9.2 Item Type-Declaration 95
9.2.1 Allocation and Initial Values 95
9.3 Table Type Declarations 96
9.3.1 Dimension and Structure 97
9.3.2 Allocation and Initial Values 98
9.3.3 Like-Option 99
9.3.3.1 Dimensions and Like-Options 100
9.4 Block Type Declarations ..tn.............. 101
9.4.1 Initial Values 102
9.4.1.1 Omitted Values 102

CHAPTER 10 DATA REFERENCES I 3
10.1 Simple References 103
10.2 Subscripted Data References 104
10.3 Qualified Data References 10......... i15
10.3.1 Pointer-Qualified References 105
10.3.1.1 Pointers and Ambiguous Names 106
10.3.1.2 Examples 108

CHAPTER 11 FORMULAS ..&ý 111
11.1 Formula Structure il
11.1.1 Operators and Operator Precedence 112
11.1.2 Operands 115
11.1.3 Formula Types 115
11.2 Integer Formulas 116
11.2.1 Integer Addition and Subtraction 116
11.2.2 Integer Multiplication and Division ... 117
11.2.3 Integer Modulus 117
11.2.4 Integer Exponentiation 117
11.2.5 Examples 118
11.3 Float Formulas 118
11.3.1 Float Add~tion and Subtraction 119
11.3.2 Float Multiplication and Division 119
11.3.3 Float Exponentiation 120
11.3.4 Examples 120
11.4 Fixed Formulas 121
11.4.1 Addition and Subtraction 122
11.4.2 Multiplication 122
11.4.3 Division 122
11.4.4 Examples 123
11.5 Bit Formulas 124
11.5.1 Logical Operators 124
11.5.1.1 Short Circuiting 125
11.5.2 Examples 125

V

11.5.3 Relational Operators 126
11.5.4 Examples 126
11.6 Character Formulas 127
11.7 Status Formulas 127
11.8 Pointer Formulas 128
11.9 Table Formulas 128
11.10 Compile-Time-Formulas 128

CHAPTER 12 BUILT-IN FUNCTIONS 131
12.1 The LOC Function 132
12.1.1 Function Form 133
12.1.2 Examples 133
12.2 The NEXT Function 134
12.2.1 Function Form 134
12.2.2 Status Value Argimients 135
12.2.3 Pointer Value Arguttents 135
12.3 The BIT Function 136
12.3.1 Function Form 136
12.3.2 Examples 137
12.3.3 Pseudo-Variable Form 138
12.3.4 Examples 138
12.4 The BYTE FUNCTION 138' 12.4.1 Function Form 138
12.4.2 Examples 139
12.4.3 Pseudo-Variable Form 140
12.4.4 Examples 140
12.5 Shift Functions 140
12.5.1 Function For m 141
12.5.2 Examples 141
12.6 Sign Functions 142
1.2.6.2 Function Form 142
12.6.2 Examples 143
12.7 Size Functions 143
12.7.1 Function Form 144
12.7.2 Numeric Data Types 145
12.7.3 Bit and Character Types 146
12.7.4 Status Types 146
12.7.5 Pointer Types 147
12.7.6 Table Types 147
12.7.7 Blocks 148
12.8 Bounds Functions 149
12.8.1 Function Forms 149
12.8.2 Examples ISO
12.8.3 Asterisk Dimensions 150
12.9 The NWDSEN Function 151
12.9.1 Function Form 151
12.9.2 Examples 152
12.10 Inverse Functions 152
12.10.1 Function Form 152
12.10.2 Examples 153

vi

: •••. • , • ,,.•...... •.......

CHAPTER 13 CONVERSION 155
13.1 Contexts for Co nversion 155
13.2 Compatible Data Types156
13.3 Convertible Data Types 156
13.3.1 Type Descriptions 156
13.3.2 Type-Indicators 157
13.3.3 User Type-Names 158
13.4 Conversions 158
13.4.1 Conversion to an Integer Type ... 158
13.4.1.1 Compatible Types 159
13.4.1.2 Convertible Types 159
13.4.2 Conversion to a Floating Type 161
13.4.2.1 Compatible Types 161
13.4.2.2 Convertible Types 162
13.4.3 Conversion to a Fixed Type 162
13.4.3.1 Compatible Types 163
13.4.3.2 Convertible Types 16.
13.4.4 Conversion to a Bit Type 164
13.4.4.1 Compatible Types 164
13.4.4.2 Convertible Types 164
13.4.4.3 User-Specified Bit Conversion 164
13.4.4.4 REP Conversions 166
13.4.5 Conversion to a Character Type 166
13.4.5.1 Compatible Types 166
1.3.4.5.2 Convertible Types 167
13.4.6 Conversion 1-o a STATUS Type 168
13.4.6.1 Compatible Types 168
13.4.6.2 Convertible Types 169
13.4.7 Conversion to a Pointer Type 170
13.4.7.1 Compatible Types 170
13.4.7.2 Convertible Types 171
13.4.8 Conversion to a Table Type -. 171
13.4.8.1 Compatible Types 172
13.4.8.2 Convertible Types 172

CHAPTER 14 STATEMENTS 173
14.1 Statement Structure %.................. 173
14.1.1 Simple-Statements 173
14.1.2 Compound-Statements 174
14.1.3 Labels 175
14.1.4 Null-Statement 176
14.2 Assignment Statements 176
14.2.1 Simple Assignment-Statements 176
14.2.2 Multiple Assignment-Statements 177
14.3 If-Statements 178
14.3.1 Compound Alternatives 179
14.3.2 Nested If-Statements 180
14.3.3 The Dangling ELSE 181
14.3,4 Compile-Time-Constant Tests 182

vii

r -

14.4 Case-Statements 183
14.4.1 Bound Pairs 185
14.4.2 The FALLTHRU Clause 185
14.4.3 Compile-Time-Constant Conditions 186
14.5 Loop-Statements 187
14.5.1 While-Loops 187
14.5.2 For-Loops 188

14.5.2.1 Incremented For-Loops 189
14.5.2.2 Repeated Assigment Loops ... 6........ 19114.5.3 Loop-Control 6......... 192
14.5.4 Labels within For-Loops 193
14.6 Exit-Statements 193
14.7 Goto-Statements 195
14.8 Procedure-Call-Statements 196
14.9 Return-Statements 196
14.10 Abort-Statements 197
14.11 Stop-Statements 197

CHAPTER 15 SUBROUTINES 199
15.1 Procedures 199
15.1.1 Procedure-Definitions 199

115.1.2 Simple Procedure-Bodies 2
S15.1.3 Compound Procedure-Bodies 201

15.1.3.1 Formal Parameters 202
15.1.4 Procedure-Calls 22
15.1.4.1 Actual Parameters 203
15.2 Functions 204
1.5.2.1 Function Definitions 2A4
15.2.2 Function-Calls 205
15.3 Parameters 206
15.3.1 Input and Output Parameters 206
15.3.2 Parameter Binding 207
15.3.2.1 Value Binding 207
15.3.2.2 Value-Result Binding 2M8
15-3.,2 3 Reference Binding 209
15.3.3 Parameter Data Types 211
15.3.4 Parameter Declarations 211
15-3.4.1 Data Name Declarations 212
1.5.3.4.2 Statement Name Declarations 213
15.3.4.3 Subroutine-Declarations 214
15.4 The Use-Attribute 215
15.4.1 Recursive and Reentrant Subroutines ... 216
15.5 Subroutine Termination 217
15.5.1 Return-Statements 218
15.5.2 Abort-Statements 218
15.5.3 Goto-Statements 220
15.5.4 Stop-statements 220
15.6 Machine Specific Subroutines 220
15.7 The Inline-Declaration 221

vi.ii

CHAPTER 16 EXTEPNALS AND MODULES 223
16.1 External Declarations 223
16.1.1 DEF-Specifications 224
16.1.1.1 Simple DEF-Specifications 224
16.1.1.2 Compound DEF-Specifications 225 .

16.1.1.3 Allocation 225
16.1.2 REF-Specifications 226
16.1.3 Constant Data 228
16.2 Modules 228
16.2.1 Main Program Module 229
16.2.2 Compool-Modules 231
16.2.3 Procedure-Modules 237
16.3 Module Communication 239
16.3.1 Direct Communication 240

CHAPTER 1' DIRECTIVES 243
17.1 Compool-Directives 244
17.1.1 Name .s 245
17.1.2 Additional Declarations 246
17.1.3 Placement 246
17.1.4 Examples 247
17.2 Text-Directives.. 247
17.2.1 Copy-Directive 248
17.2.1.1 Placement 246
17.2.1.2 Example 248
17.2.2 Conditional-Compilation-Directives ... 249
17.2.2.1 Placement 249
17.2.2.2 Examples 249
17.3 Listing-Directives 255
±7.3.1 Placement 255
17.4 Initialization-Directive 256
17.4.1 Placement 256
17.4.2 Example 256
17.5 Allocation-Order-Directive 256
17.5.1 Placement 257
17.5.2 Example 257
17.6 Evaluation-Order-Directives 258
17.6.1 Placement................................ 258
17.6.2 Example 259
17.7 Interference-Directive 259
17,7.1 Placement................................26
17.7.2 Example 260
17.8 Reducible-Directive 260
17.8.1 Placement 261
17.8.2 Example 261
17.9 Register-Directives 261
17.9.1 Placement 262
17.3.0 Linkage-Directive 262
17.10.1 Placement 262 ¶'
17.10.2 Example 262
17.11 Trace-Directives 263
17.11.1 Placement 263

ix

CHAPTER 18 DEFINE CAPABILITY 265
18.1 Define-Declaration .,.................... 265
18.2 Define-Calls 266
18.2.1 Placement 268
18.3 The Define-String 268
18.3.1 Define-Calls in Define-Strings 268
18.3.2 Comments in Define-Declarations 270
18.4 Define Parameters 270
18.4.1 Define-Actuals 271
18.4.2 Missing Define-Actuals 271
18.5 Generated Names 272
18.5.1 Context 273
18.6 Define-Calls in Define-Actuals 273
18.7 The List Option 274

CHAPTER 19 ADVANCED TOPICS 275
19.1 JOVIAL (J73) Tables 275
19.2 Ordinary Tables 275
19.2.1 Packing 276
19.2.2 Structure 281
19.2.2.1 Serial Structure 282

419.2.2.2 Parallel Structure 282
19.2.2.3 Serial vs. Parallel Structure 283
19.2.2.4 Tight Structure 284
19.2.3 Conversion and Packed Items 287
19.3 Specified Tables 287
19.3.1 Specified Table Type Declarations 207
19.3.2 Tables with Fixed-Length Entries 289
19.3.2.1 The 0 Character 289
19.3.2.2 Overlays 290
19.3.2.3 Presets 290
19.3.2.4 Entry-Size 291
19.3.3 Tables with Variable-Length Entries .. 293
19.4 The OVERLAY Declaration 296
19.4.1 Data Names 297
19.4.2 Spacers 298
19.4.3 Nested Overlays 299
19.4.4 Storage Sharing 299
19.4.5 Allocating Absolute Data 299
19.4.6 Allocation Order 300
19.4.'7 Overlay-Declarations and Blocks 300
19.5 Specified STATUS Lists 301
19.6 DEF-Block-Instantiations 302

IX
1

APPENDIX A LANGUAGE SUMMARY A-I
A.1 Introduction A-i
A.1.1 Syntax Notation A-i
A.1.1.1 Concatenation A-2
A.1 1.2 Omission A-2
A.1.i.3 Disjunction A-3
A.1.1.4 Replication A-3
A.I.2 Identical Definitions A-5
A.1.3 Notes A-5
A.1.4 Syntax Index A-5
A.2 Syntactic Summary s A-6

Syntax Index A-46

APPENDIX B IMPLEMENTATION PARAMETERS B-i
B.i Integer Implementation Parameters B-2
B.2 Floating Implementation Parampters 3-4
B.3 Fixed Implementation Parameters B-5

Index

xi

p -'*

Chapter 1

INTRODUCTION

JOVIAL (J73) is a higher-order programming language. It is being
implemented on many computer systems and used in many
applications areas. Typical applications areas are avionics,
command and control, and missile flight control.

Sufficient capability has been provided to permit programming of
most command and control applications in JOVIAL (J73). It is
intended that assembly language programs be combined with
programs written in JOVIAL (J73) to form a total application
software package. The assembly language programs can provide
certain utility operations as well as all hardware-dependent
activities such as input, output, and interrupt services.

The language independently processes procedures and functions of
the units of an application. Standard subroutine linkage and
argument transmission with a powerful compool file can be used to
effectively modularize programs and control interfaces.

Permissable data structures are simple items, structured tables
of simple items, and composite data blocks containing simple
items and tables.

Types of data In data structures can be signed or unsigned
integers; enumeration values, floating point numbers, fixed point
(fractional) numbers, character strings, bits strings (logical),
and pointers (address of data objects).

A full complement of language constructs permits looping,
branching, conditional execution, procedure or function calls,
and assignment of values to data elements.

(,

1.1 THE PRINCIPAL FEATURSES OF JOVIAL

The following paragraphs provide an introduction to the principal
features of JOVIAL. They discuss values, storage, calculations,
operators, built-in functions, flow of control, subroutines,
programs, compiler directives, compiler macros, and, finally, the
advanced features of the language.

1.1.1 Values

The kinds of values provided by JOVIAL reflect the applications
of the language; they are oriented toward engineering and control
programming rather than, for example, commercial and business
programming. The JOVIAL values are:

1. Integer values, which are signed or unsigned whole
numbers. They are used for counting. For example, an
integer can be used to count the number of times a loop
is repeated or the number of checks performed on a
process.

2. Floating values, which are numbers with "floating" scale
factors. They are used for physical quantities,
especially when the range of measurement cannot be
accurately predicted. For example, floating values are
frequently used to represent distance, speed,
temperature, time, and so on.

3. Fixed values, which are numbers with constant scale
factors. They are sometimes used for physical
quantities (primarily to save time and/or storage) when
the range of the value is narrow and predictable. For
example, fixed values might be used in a computation
that had to run on a computer for which floating-point
hardware was not available or was too slow.

4. Bit-string values, which are sequences of binary digits
(bits). They are used for communication with "on-off"
devices or to control parts of the program itself. For
example, a bit-string could be used to represent
settings of switches on a control console.

5. Character-string values, which are sequences of
characters. They are used for communication with people.
For example, a character-string could be sent to an
operator terminal to report failure of a portion of the
system.

1: Introduction - 2 -

6. Status values, which are special words. They are used
to descrlbe the status of the system, or a particular
part of the system, at any given time. For example,
status values of "V(OK)", "V(WEAF)", or "V(BAD)" can be
used to indicate the condition of a power cell.

7. Pointer vaiues, which are data addresses, meaningful
only within the program. They are used to locate data
indirectly. For example, a list of items can use
pointers to connect each item to the next item in the
list.

8. Table values, which are collections of values gathered
together to form a single data object. They are used
for the constructs called "arrays" and "structures" in
other languages. For example, a table can be used to
store temperature readings taken every 10 seconds during
a given test period.

9. Block values, which are collections of values gathered
into one region of memory. They are used to support
memory management. For example, certain data that must
be paged in and out of memory together can be placed in
a block.

1.1.2 Storage

When a JOVIAL program is executed, each value it operates on is
stored in an item. The item has a name, which is declared and
then used in the program when the val-ue of the item is fetched or
modified.

An item is declared by a JOVIAL statement called a declaration
statement. The declaration provides the compiler with the
information it needs to allocate and access the storage for the
item. Here is a statement that declares an integer item:

ITEM COUNT U 101

This declaration says that the value of COUNT is an integer that
is stored wiLhout a sign in ten or more bits. The notation is
compact: "U" means it is an unsigned integer, "10" means it
requires at least 10 bits. We say "at least" ten bits because
the JOVIAL compiler may allocate more than ten bits. (That
alloction wastes a little data space, but can result in faster,
more compact code.)

- 3 - 1: Introduction

-91 'M1--~ -11t 1i1277ii-'

JOVIAL does not require that you give the number of bits in the
declaration of an integer item. If you omit it, JOVIAL supplies
a default value that depends on which implementation of JOVIAL
you are using. An example is:,

ITEM TIME S;

This statement declares TIME to be the name of an integer
variable item that is signed and has the default number of bits.
On one implementation of JOVIAL, this would be equivalent to the
declaration:

ITEM TIME S 15;

The item TIME occupies 16 bits (including the sign). On another
implementation, it would be equivalent tot

ITEM TIME S 31;

This and other defaults are defined in the user's manual for the
impl-imentation of JOVIAL you are using.

In this brief introduction, we cannot consider each kind of item
in detail (as we just did for integer items). Instead, a list of
examples follow, one declaration for each kind of value.

ITEM SIGNAL S 21 A signed integer item, which occupies
at least threebit-s and accomodates
values from -3 to +3.

ITEM SPEED F 30; A floating item, whose value is stored
as a variable coefficient (mantissa) >i
and variable scale factor (exponent).
The "30" specifies thirty bits for the
mantissa and thus determines the
accuracy of the value. The number of
bits in the exponent is specified by
the implementation, not the program.
It is always sufficient to accommodate
a wide range of numbers.

ITEM ANGLE A 2,13; A fixed item, whose value is stored
wiE'?xie- caling, namely two bits to
the left of the binary point and
thirteen fractional bits. Thus it
accomodates a value in the range -4 <
value < +4 to a precision of
1/(2**14).

is Introduction - 4 -

ITEM CONTROLS B 10; A bit-string item, whose value is a
sequence of ten--its. Thus it can
accommodate, for example, the settings
of ten on/off console switches.

ITEM MESSAGE C 80; A character-string item, whose value
is a sequence of eighty characters.
Thus it can accommodate, for example,
the message "WARNING: Cooling system
failure" (with plenty of character
positions left over).

ITEM INDICATOR STATUS (V(RED),V(YELLOW) ,V(GREEN));
A status item, whose value can be
thought of as "V(RED)", "V(YELLOW)",
or "V(GREEN)" but which is, in fact,
compactly stored as an integer. Thus
a programmer can assign "V(RED)" to a
variable to indicate cooling system
failure instead of using a (presumably
non-mnemonic) integer.

{ ITEM HEAD P DATA: A pointer item, whose value is the
address of a data object of type DATA.

Items are just the scalar (single-value) data of JOVIAL. JOVIAL
also has tables and blocks, which provide for arrays and other
data structures.

An example of a table declaration is:

TABLE GRID (1:10, 1:10);
BrGIN
ITEM XCOORD U;
ITEM YCOORD U;
END

The table GRID has two dimensions. Each dimension contains ten
entries. Each entry consists of two items, XCOORD and YCOORD.

An example of a block declaration is:

BLOCK GROUP;
BEGIN
ITEM FLAG B;
TABLE DATA(100)i

f ITEM POINT U;
END

The block GROUP contains the item FLAG and the table DATA.

-5 - :l Introduction

S... " "

Items, tables, and blocks can also be declared using type-names.
A type-name is defined in a type declaration. An example of a
type declaration is:

TYPE COUNTER U 10;

The type-name COUNTER can be used to declare ten-bit integers.
For example:

ITEM CLOCK COUNTER;

1. 1 .3 Calculations

In the simplest case, calculation is performed by an assignment
statement. An example is:

AVERAGE - (Xl + X2)/2;

The right-hand-side of this assignment is a formula; it forms the
sum of Xl and X2 and divides it by 2. The details of the
operation depend on how Xl and X2 are declared. If Xl and X2 are
declared float, the calculation is very likely to produce the
expected result. In contrast, if the Xl and X2 are declared
fixed, the scaling must be worked out by the programmer to make
sure the calculation will succeed. And if Xl and X2 are declared
character-string, the compiler will reject it because JOVIAL does
not automatically convert values into the types required by
operators.

In the example just given, the parentheses show that the addition
is performed before the division. When parentheses are not
given, JOVIAL recognizes the usual order of evaluation. Here is
an example:

POLY - BETA*Xl**2 - GAMMA*X2 + DELTAI

JOVIAL applies its "rules of precedence" to the formula in this
assignment and thus interprets it as,

POLY - (((BETA*(Xl*'2)) - (GAMMA*X2)) + DELTA);.

The complete precedence rules are given in Chapter 11.

1: Introduction - 6 -

,..

The examples just given i?.lustrate the use of formulas on the
right-hand side of an assignment statement. A formula can also
appear at part of the left-hand side of an assignment statement;
for example, as the subscript of an array. In addition to their
important role in assignment statements, formulas can appear in
many other places in the language: as actual parameters of
functions and procedures, as the condition in an if-statement,
and so on.

Since JOVIAL has quite a few kinds of values, it must have many
ways of converting one kind of value into another kind. In most
cases, you must explicitly indicate the conversion. An example
is.

ITEM MARK U l0;
ITEM TIME F;

MARK * (* U 10 *) (TIME):

The value of the floating item TIME is converted to a ten-bit
integer value before it is assigned to the ten-bit integer item
MARK. If you leave the conversion operator out of this
assignment, the compiler will report an error. The compiler
catches situations in which one type of value is unintentionally
assigned to or combined with a different type of variable.

1.1.4 Operators

The operations provided in JOVIAL reflect the applications of the
language: they determine what the lauguago can and cannot do.
Thus JOVIAL is strong in numerical calculation and control logic,but has minimal operations for text processing.

JOVIAL does not have any operations for input-output or file
maintenance because it is assumed that a JOVIAL program runs in a
relatively specialized environment that provides subroutines for
those operations.

Some of the operations of JOVIAL are represented by operators,
others by built-in functions.

(J

- 7 - I: £nt. eduction

Or;

"- - • • '. "--,-.....-"----'" '"'' & '• • •,,• • • • ' I ••

The JOVIAL operators are sunmmarized in the following table:

Type Operators Operation

Arithmetic + - prefix signs V
** exponentiate
* / MOD multiply, divide, and modulus
+ - infix add and subtract

Relational < > - less than, greater than, equal
<ft >= <less than or equal,

greater or equal, not equal

Logical NOT (prefix) "not"
AND OR "and", "or"
XOR EQV "exclusive or", "equivalent"

An arithmetic operator takes integer, float, or fixed value. as
its operands and produces an integer, float, fixed value as its
resuilt. Type classes cannot be mixed. For example, a fixed
value cannot be added to a float value unless one is explicitly
converted to the type of the other.

A relational operator compares any two values of the same type
and produces a Boolean value as its result. A logical operator
takes bit-string values and also produces a Boolean result. (A
Boolean value is a one-bit bit-string, representing "true" or
"false", depending on whether it is one or zero.)

The JOVIAL operators are described in detail in Chapter 11,
where, for example, you will find the rules for operations on
fixed values and for the comparison of such objects as
character-strings and pointers.

1: Introduction - 8 -

1.1.5 Built-In Functions

The JOVIAL built-in functions provide advanced, specialized
operations that are not covered by the JOVIAL operators. They
are summarized in the following table:

Function Result

LOC(r) A pointer to the object referenced by r

NEXT(p,i) A pointer to the i'th data object after
the one selected by p

NEXT(s,i) The i'th status value after status value a

BIT(b,i,n) A string of n bits starting at the i'th bit
of the bit string b

BYTE(c,i,n) A string of n characters starting at the i'th
character of the character string c

SHIPTL(b,n) Bit string b shifted left by n bits
SHIFTR(b,n) Bit string b shifted right by n bits

ABS(x) Absolute value of x
SGN(x) +1, 0, or -1 for x>O, x-0, xO

BITSIZE(x) Logical size of x in bits
BYTESIZE(x) Logical size of x in bytes
WORDSIZE(x) Logical size of x in words

LBOUND(td) Lower bound of d'th dimension of the table t
UBOUND(t,d) Upper bound of d'th dimension of the table t

NWSDEN(t) Number of bytes allocated to each entry of
the table t

FIRST(s) First status value in status list for s
LAST(s) Last status value in status list for a

An example of the use of a built-in function is:

C - BYTE("ABCDEF"1 ,2,3);

The built-in function extracts "BCD" from the string "ABCDEF".

(

- 9 - 1: introduction '

Two of the built-in functions, BIT and BYTE, can be used as
psdariables. In that form, they appear as the target of an
assignmen , a"ndare interpreted "backwards". An example is:

C - "ABCDEF";
BYTE(C,2,3) - "XYZ

This assignment changes the second, third, and fourth characters
of C to "XYZ". The value of C after the asuigment is therefore
"AXYZEF".

1.1.6 Flow of Control

For structured flow of control, JOVIAL has an if-statement, a
case-statement, and a loop-statement with an optional exit-
statement. Examples of these statements follow.

Here is an example of an if-statement:

IF SPEED < LIMIT:
FLAG - TRUE;

ELSE
BEGIN
FLAG - FALSE;
VIOLATION - VIOLATION+l;
END

If SPEED is less than LIMIT, this statement sets FLAG to TRUE and
does nothing else. If SPEED is not less than LIMIT, the
statement sets FLAG to FALSE and increments VIOLATION. The last
four lines of the example are a compound statement; the BEGIN-END
pair groups the assignments to FLAG and VIOLATION into a single
compound statement controlled by the ELSE clause.

The ELSE clause of an if-statement is optional: when it is
omitted, no action is taken when the condition is false.
Furthermore, if-statements can be nested, so complicted control
structures can be built up. When if-statements get large and
complicated, however, you can sometimes use a case-statement to
clear things up.

1t Introduction - 10 -

Here is an example of a case-statement:

CASE NUM;
BEGIN
(DEFAULT)t TYPE-V(OUT'OF'RANGE)• (I, 3,5,7,1ii, 13, 17,1q) : TYPE-V(PRIME) i

(2,4,6,8!0,12,l4.16,18,20): TYPE-V(NONPRIME)i
END

This case statement sets TYPE to one of three status valueR,
dp.pending on the value of the integer item NUM. If NUM is
ottside of the range from 1 to 20, the status value is
"V(OUT'OF'RANGE)". If NUM is in the range and is prime, the
status value is "V(PRIME)". If NUM is in the range but not
prime, the status value is "V(NONPRIME)". Each time the
statement is executed, the value of NUM is compared to the list
of values in parentheses. If it matches one of them, then the
statement on that line is executed. The notation "8:l0" means"8,9, 10.

The case-selector (NUM in the example just given) can be an
. integer, bit, character, or status formula. It is not unusual for

a routine to be dominated by a single case-statement, and case-
statements are often nested within larger case-statements.

Loop-statements are used to repeat a sequence of statements.
Here is an example of a loop-statement.

FOR 1:0 BY 1 WHILE I<10001
BEGIN
VAL - INPUTI
IF VAL < 0;

EXIT;
GIVEN(I) - VALi
END

This statement uses the function INPUT to get an input value and
assigns that value to VAL. It assigns input values to GIVEN(l),
GIVEN(2), GIVEN(3), and so on until either GIVEN(999) has been
assigned or a negative input is encountered. The examples uses
an EXIT statement, which causes immediate exit from the enclosing
loop.

S- 11 - 1: Introduction

**~ -,t~ ~,.

JOVIAL alr" has a form of loop that has just the WHILE clause; it
can be used when the loop does not require an index. Many
calculations can be written as a while loop (which keeps going
until some end condition is met) that encloses a case-statement
(which selects the proper action for each time through the loop).

JOVIAL has GO TO statements and optional statement labels to go
with them. Many programmers avoid using GO TO statements and
labels, in accordance with current programming style7 but they
are there when needed.

Finally, JOVIAL has a STOP statement. Its meaning depends on the
particular implementation; but its purpose is to provide a
controlled return to the program environment.

1. 1.7 Subroutines

A JOVIAL program is a collection of subroutines that are grouped
together in a way described later in this introduction. Ideally,
these subroutines are small. When a given subroutine gets too
big, part of it is pulled out and made into a separate
subroutine. In this way, each subroutine is small enough to be
understood, improved, tested, and, later in the life of the
program, modified.

A subroutine can-be either a procedure, which is called in a
procedure-call-statement, or a function, which returns a value
and is used in a formula.

Here is an example of a procedure:

PROC RETRIEVE(CODE:VALUE)?
BEGIN
ITEM CODE U;
ITEM VALUE F1
VALUE - -99999.;
FOR 10 BY 1 WHILE I1000;

IF CODE - TABCODE(I),
BEGIN
VALUE - TABVALUE(I);
EXITt
END

END

1% Introduction - 12 -

. .

The procedure RETRIEVE has one input parameter CODE and one
output parameter VALUE. If the value of CODE is found in the
global table to which the entry TABCODE belongs, the associated
value TABLVALUE is returned. If the value of CODE is not found,
the value -99999. is returned.

This procedure could be written as a function, as follows:

PROC FIND(CODE) F,
BEGIN
ITEM CODE U;
FIND - -99999.t
FOR 1:0 BY 1 WHILE I41000

IF CODE - TABCODE(I);
BEGIN
FIND - TABVALUE(I);
EXIT;
END

END

The function FIND has an input parameter CODE and a return value,
which is designated within the function by the function-name
FIND.

The following assignment statement has the samc result as a

procedure-call-statement on RETRIEVE.

VALUE - FIND(CODE);

The function FIND returns either the value associated with the
value of CODE in the table or the value -99999. indicating that
the value of CODE was not found.

(1

- 13 - 1: Introduction j

In these examples, the search took place in a global table with
1000 entries. 'The subroutines can be written to accept a table
of any length as a parameter. Here is the function FIND
rewritten to search a table provided as a parameter?

PROC FIND(CODE,TAB);
BEGIN
ITEM CODE U:
TABLE TAB(*);

BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END

FIND = -99999.:
FOR I.0 BY 1 WHILE I<UBOUND(TAB,O);

IF CODE = TABCODE(I);
BEGIN
FIND = TABVALUE(I);
EXIT:
END

END

This function accepts the table to be searched ar an actual
parameter. The declaration of the table formal parameter uses
the * character to indicate that the bounds are to be taken from
the bounds of the table given as the actual parameter. The
built-in function UBOUND, then, is used in the loop-statement to
control the number of times the loop is executed.

Subroutines can also be recursive or reentrant. A recursive
subroutine must have the attribute REC in its declaration and a
reentrant subroutine must have the attribute RENT in its
declaration,

1.1.8 Programs

A program is made up of modules. A module is a separately
compilable portion of a program. A program must have one, and
only one, main program module. It can have any nunber of
procedure and compool modoles.

The main program module contains the actions tc be performed in
the program. Execution of the program starts at t-he first
statement in the main program module and continues until either a
stop-statement or the last statement in the main program module
is reached.

1: Introduction - 14 -

A procedure module contains procedures that are to be shared.
Consider the following procedure module, which contains an
external declaration for the subroutine FIND:

START
ICOMPOOL 'DATA';
DEF PROC FIND(CODE,TAB);

BEGIN
ITEM CODE U;
TABLE TAB(*),

BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END

FIND - -99999.t
FOR 1:0 BY J. WHILE I<UBOUND(TAB,0),

IF CODE = TABCODE(I);
BEGIN
FIND - TABVALUE(I);
EXIT,
END

END~~TERMEN

The procedure module begins with the reserved word START and ends
with the reserved word TERM. It contains a compool-directive
that provides a link with the compool module DATA and an external
subroutine definition (indicated by the reserved word DEF).

The reserved word DEF indicates that a data declaration or
subroutine definition is external and can, therefore, be used in
other modules. The reserved word REF indicates that a data
declaration or subroutine definition is an external whose
corresponding DEF specification is given in another module.

(.

- 15 - 1: Introduction

A compool module contains information that is to be shared:

START COMPOOL DATA;
DEF TABLE PRIVILEGE(100);

BEGIN
ITEM NUMBER U;
ITEM RATING F;
END

DEF TABLE ASSIGNMENT(999);
BEGIN
ITEM KEY U;
ITEM COORDINATE F;
END

DEF ITEM LIMIT U;
REF PROC FIND(CODE,TAB) F;

BEGIN
ITEM CODE U ;
TABLE TAB(*);

BEGIN
ITEM TABCODE U:
ITEM TABVALUE F;
END

END
TERM

The compool DATA contains three external data declarations (DEF
specifications) and an external subroutine reference (REF
specification).

An example of a main program module using these procedure and
compool modules is:

START ICOMPOOL ('DATA');
PROGRAM MAIN;

BEGIN
FOR I:0 BY 1 WHILE I < UBOUND(PRIVILEGE,0)i

IF FIND(I,PRIVILEGE) - FIND(I**2,ASSIGNMENT);
STOP 21;

STOP 22;
END

TERM

This main program module uses the tables declared in the compool
module and the function FIND defined in the procedure module and
referenced in the compool module. The program consists of the
main program module, the compool module DATA and the procedure
module.

1: Introduction - 16 -

"- r --. "••'I

m._ mm n *,'n m un m J [] , ••

1.1.9 Compiler Directives

Compiler directives give information to the compiler about how to
interpret and process the program. The previous section
introduced the compool-directive, which provides for sharing data
between modules. Other directives supply information to the
compiler about optimization, register control, listing fonnat,
conditional compilation, tracing, and the like.

"o For Module Linkage:

ICOMPOOL 'Cl' (AA,BB);
ILINKAGE FORTRAN;

"o For Optimization:

ILEFTRIGHT;
IREARRANGE;
IORDER;
IINTERFERENCE XX:YYj
IREDUCIBLE;

"o For Register Control:

1BASE X'ITEM 2;
IISBASE X'ITEM 2;
1DROP 2?

"o For Listing Options:

ILIST;
INOLIS'r
I1•JECT;

o For Conditional Compilation:

IBEGIN A;
IEND;
ISKIP A?

"o Miscellaneous:

ICOPY 'INSERT';
ITRACE XX;
IINITIALIZE;

1r

- 17 - 1: Introduction

1.1.10 Compiler Macros
The define capability of JOVIAL (073) allows the definition and
use of macros. Here is an example of a simple macrot

DEFINE REDALERT "CONDITION-V(RED) AND STATIONS-V(CALLED)"r

The define-name REDALERT is assotiated with the define-string
shown above in double quotes. When a define-name is given in the
text of a program, the compiler substitutes the associated
define-string. For example, consider the following statement:

IF REDALERT;
HATTLEPLAN (1);

The compiler substitutes the define-string for the define-name
REDALERT to get the following statement:

IF CONDITION.V(RED) AND STATIONSwV(CALLED)i
BATTLEPLAN(1);

Macros are convenient because they permit a succint
representations that can be easily modified. They are powerful
because they can be used in a structured way to develop a
specialized language.

The define capability of JOVIAL (J73) also permits the use o:F
parameters in macros. In addition, list controls can be
specified in the define-declaration that determine whether the
macro is to be shown in its macro form, its expanded form, or
both.

1.1.11 Advanced Features

The advanced features of JOVIAL (073) allow the programmer to
exercise control over the way in which data is represented and
allocated. If the programmer does not specify positioning and
allocation, the compiler performs these tasks. In some cases,
however, the positioning must be nonstandard to allow for
communication with a device that requires a particular format.

1: Introduction - is -

....

Data positioning is accomplished by specified tables and
allocation by the overlay-declaration. A specified table is a
table in which the programmer supplies the starting b t-and
starting word of each item. The overlay-declaration lets the
programmer specify the allocation corder of data, the machine
address at which to allocate the data, or a physical overlay of
data.

1.2 IMPLEMENTATION DEPENDENT CHARACTERISTICS

Each implementation of JOVIAL(J73) has special characteristics.
The implementation parameters of JOVIAL help the programmer to
write programs that can be machine independent. For example, the
implementation parameter BITSINWORD gives the number of biti in a
word for a given implementation. The information that pertains
to a particular implementation of JOVIAL (J73), such as the
values of the implementation parameters and the character set, is
given in the user's guide for that implementation.(
1.3 OUTLINE OF THIS MANUAL

The first four chapters of this manual provide a general view of
the structure of a program. These chapters are:

1. Introduction
2. Program Elements
3. Program Structure
4. Declarations and Scopes

The chapter on "Program Elements" describes the characters and
symbols from which a JOVIAL (J73) program is constructed? thus it
is concerned with the smallest units of structure. In contrast,
the chapter on "Program Structure" describes the largest units of
structure, the program itself and the modules that make up the
program. Finally, the chapter on "Declarations and Scopes"
describes a different kind of structure, namely the assignment of
meanings to names through declarations.

(

S- 19 - 1: Introduction 4•
* I. * - -

1

The next five chapters of the manual are concerned with the
declaration of data. These chapters are:

5. Data Declarations
6. Item Declarations
7. Table Declarations
8. .Block Declarations
9. Type Declarations

The chapter on "Data Declarations" discusses ethe data objects of
JOVIAL (73) in a general way. The next three chapters describe
epecific kinds of data. The chapter on "Type Declarations"
des"ribea a way to g3ve a name to a data type description and
then u.e th4t name in the declaration of data. Type declarations
support the use of pointers. I

The next three chapters describe the calculation of values.
These chapters are:

10. Data References
11. Formulas
12. Built-In Functions
13. Conversion

The chapter on "Formulas" describes formulas in general, dealing
with operands, operators, and operator Precedence. Then it
describes the formulas for integer, float, fixed, bit, character,
status, pointer, and table values. Finally, it describes
formulas that can be calculated at compile time. The chapter on
"Built-In Functions" gives, for each built-in function, the form
of the function call and examples of its use. The chapter on
"Conversion" describes the conversion operators and the contexts "
in which conversion can occur. The next chapter describes all
the executable statements of JOVIAL (J73). It is:

14. Statements

This chapter begins with the assignment statement and continues
with control statements. The latter include statements for
conditional branching, two forms of iteration, unconditional
transfer, procedure invocation, and various forms of exit.

The next chapter describes the definition and call of procedures

and functions. It is:

15. Subroutines

This chapter also describes the inline-declaration, Which directs
the compiler to replace a subroutine call by the body of the
subroutine itself rather than by a jump to the subroutine.

1: Introduction - 20 -

The next two chapters describe the way modules are put together
to make a program. These chapters are:

16. Modules and Externals
17. Directives

The chapter on "Modules and Externals" describes the three
different kinds of modules and the use of external names for
communication between modules. The chapter on "Directives"
describes a facility for including instructions to the JOVIAL
(J73) compiler within a program.

The next two chapters describe special features of JOVIAL (J73).
These chapters are:

18. Define Capability
19. Advanced Topics

The chapter on the "Define Capability" describes the macro
facility of JOVIAL (J73). The chapter on "Advanced Topics"
describes the layout of tables in storage, the overlay
declaration, specified status lists, and DEF-block
instantiations.

The appendixes to this manual provide reference information.4
They are:

A. Language Summary
B. Implementation Parameters

The "Language Summary" contains a complete syntax of JOVIAL (73).
The appendix on "Implementation Parameters" describes the
parameters which specialize a program for a particular computer,
and which can be changed when the program is moved.

1.4 SUGGESTIONS TO THE READER

Probably you have read most of the introduction. From that, you
should have an idea of the scope and power of JOVIAL. If you
have worked with other high order languages, you know which
fea.ures of JOVIAL are familiar to you and which are not.

Now you probably should read through the remaining chapters of
(the manual, not stopping to study, but just getting an idea of

how the information is organized. There is more than one way to
describe any language, and you need to know how this manual is
put together.

- 21 - 1: Introduction4ý

... I .l i.ain ..u P U .S .n ..1'• .

If you have not worked with some form of syntactic notation
before, you may find the syntax of Appendix A obscure. In that
case, let it go for a while. The complete syntax given in
Appendix A becomes more useful when you have learned some of
JOVIAL and done some programming. Then you will have specific,
detailed questions, about JOVIAL, and you should find the Appendix
useful.

7,l

1: Introduction - 22 -

t , _ _,,.••.. ... ! ,

7-i

Chapter 2

PROGRAM ELEMENTS

At. the simplest level of structure, a JOVIAL (J73) module is just
a sequence of characters. These characters are the letters,
digits, and punctuation marks that are normally used for computer
input/output.

Consider the following example, which is a fragment of a JOVIAL

((J73) program:

SPEED3w20i

This example is a sequence of ten characters. It begins with the
five letters "S", "P", "E", "E", and i'D". The letters are
followed by the digit "3". Next comes the mark "-". After that
is a sequence of two digits, "2" and "0". The sequence concludes
with the mark ';".

SAt the next level of structure, beyond characters, a program is a
sequence of symbols. Each symbol is a sequence of one or more
characters that is interpreted as a single construct.

As an example, consider again the program fragment that was used

to illustrate characters:

SPEED3-2O

The ten characters of this example form four symbols. The
characters "SPEED3" form a symbol that is the name of a variable.
The single character "n" is a symbol that indicates assignment of
a value to a variable. The digits "20" are the symbol for the
number twenty. And, finally, the character ";" is the symbol
that marks the end of this construct (which is an assignment
statement).

23 - 2: Program Elements

The first two sections of this chapter define characters and
symbols, respectively. The third section describes the use of
blanks and new lines to make a program module readable.

This chapter lays the foundation for the following chapters. It
describes the symbols from which the larger constructs of JOVIAL
(J73), such as formulas, statements, and entire modules, are
built.

2.1 CHARACTERS

A JOVIAL (J73) character is a letter, a digit, a mark, or a
special character. These characters are described in the
following paragraphs.

2.1.1 Letters

JOVIAL (J73) programs can be written entirely in upper case
letters. If lower case letters are available in a given
implementation, they can be used. However, a lower case
character is considered to be identical to the corresponding
upper case character unless it appears in a character literal
(defined later in this chapter).

For example, consider the following three names:

ABC Abc abc

These names are equivalent in JOVIAL (J73). In contrast,
consider the following character literals:

'ABC' 'Abc' 'abc'

These literals are not identical in JOVIAL (073) because the
distinction between upper and lower case is retained.

2.1.2 Digits

JOVIAL (073) uses the ten digit characters, namely:

0 1 2 34 5 6 789

2: Program Elements - 24

,,.. , .',, "- iw .

2.1.3 Marks

In describing JOVIAL (J73), the word "mark" is used to describe a
character that is used as an operator, delimiter, or separator.
The blank character is a mark. In addition, the following
characters are marks:

+ - * / " . , $(' %

In some environments, certain marks are not available. In each
such case, a standard alternative character is defined. A
complete list of the alternative characters is given in Appendix
A.

2.1.4 Special Characters

The set of special characters varies from one implementation of
JOVIAL (J73) to another. These characters can be used in
character literals. They have no other role in the language, but
they may have a special purpose in a particular implementation.
Part of the documentation of a particular implementation of
JOVIAL (J73) is a list of its special characters.

2.2 SYMBOLS

The JOVIAL (J73) characters are combined to form JOVIAL (J73)

symbols. The different kinds of symbols ares

Kind of Symbol Examples

Name VERSION AZIMUTH
Reserved Word CASE IF GOTO
Operator + - **
Literal 2 3.14159 'GREY WIRE'
Status Constant V(RED) V(CASE)
Comment % Input Preparation Routine %
Define-String "IA+IB"
Define-Call TALLY (COUNT)
Index-Letter I J
Separator ,

- 25 - 21 Program Elements

2.2.1 Names

A name is a sequence of letters, digits, dollar signs, and
primes. It must begin with a letter or a dollar sign, and it
must be at least two characters long. A symbol composed of a
mingle character is not a name; instead, it is an "index letter"
and is used in conjunction with loop-statements.

The following are all valid JOVIAL (J73) names:

ALPHA AA $STATUS PART'NUMBER

o$$$0165 P1"'" $

POINT'OF'DEPARTURE'FOR'INCOMING'MESSAGES

A JOVIAL (J73) name can be any length, but the compiler only
looks at at the first 31 characters. Thus the first 31
characters of a name must distinguish the name from all other
names in the same scope. For example, the name
POINT'OF'DEPARTtTRE'FOR'INCOMING'TRAINS is considered by JOVIAL to
be the same nane as POINT'OF'DEPARTURE'FOR'INCOMING'ME6SAGES
because the first 31 characters are the same.

In some implementations, the compiler may look at fewer than the
first 31 characters of an external name. (An external name is
one that is used for communication between modules or with the
environment. These names are described in Chapter 16 on "Modules
and Externals" .) The exact rule for recognizing external names
is documented in the user's guide for the implementation.

A dollar sign in a name is translated to an implementation-
dependent representation. For example, suppose a given JOVIAL
(J73) system requires that each external name be prefixed by a
period. The use of the period in a JOVIAL (J73) name is not
allowed, but the dollar sign can be used for this purpose. The
given system can then translate dollar sign to period to obtain a
valid external name.

A prime (') can be used where a blank character (which is not
allowed in a name) would be used, as in the following names:

INITIAL'TIME FINAL'TIME RATE'OF'DESCENT

2: Program Elements - 26 -

2.2.2 Reserved Words

A reserved word is a symbol that has special meaning in the
JOVIAL (J73T- anguage. Reserved words are used as keywords in
statements and as built-in function names. They cannot be used
as names.

For example, the following are reserved words:

IF CASE ABS BIT ITEM

A complete list of the reserved words and their meanings is given
in Appendix A.

2.2.3 Operators

Operators are used in JOVIAL (J73) formulas. The operators are:

Classification Operators

Arithmetic + - * / * MOD
Bit NOT AND OR XOR EOV
Relational < < <= > >W
Dereference
Assignment =

The arithmetic, bit, and relational operators have their usual
meanings. They are described in Chapter 11 on "Formulas".

The assignment operator is used in the assignment statement, as
described in Chapter 14 on "Statements".

The dereference operator is used to obtain the object referred to
by a pointer, as described in Chapter 10 on "Data References".

2.2.4 Separators

A separator is used between list elements or logical parts of a
statement. It is also used to terminate statements, to delimit
the beginning and the end of a construct, and to mark special
constructs.

- 27 - 2: Program Elements

For example, the following characters are separators:

r : () (* *)

Consider the following procedure-call:

COMBINATIONS (THINGS, OCCURENCES)

The comma separator ",' separates the arguments in the pirameter
list. The parentheses delimit the parameter list.

A complete list of the JOVIAL (J73) separators and their purpose
in the language is given in Appendix A.

2.2.5 Literals

A literal is a data object whose value and type are inherent in
the form of its representation. JOVIAL (J73) has the following
kinds of literal:

Integer
Real
Bit
Boolean
Character
Pointer

The different kinds of literals are described in the following
paragraphs.

, ,,:

2.2.5.1 Integer Literals

Ln integer literal is a sequence of one or more digits. It is
interpreted as a decimal cepresentation of an integer value. For
example, the following are all integer literals:

25 39876 77

The type of an integer literal is a signed integer type with size
equal to the multiple of BITSINWORD -l used to represent the
minimum number of bits necessary to represent the value of the
literal. BITSINWORD is the implementation parameter that gives
the number of bits in a word for a given implementation.

2: Program Llements - 28 -

, ~ij... ., ,. ,,,,L•• U•, . • ,,+•

For example, the minimum number of bits necessary to represent
the value 25 is 5. The size, n, of the integer ltteral 25, thus
is 15 if BITSINWORD is 16.

lNote that an integer (or real) literal can be preceded by a sign,
but the sign is an operator (see Chapter 11 on "Formulas") and
not part of the literal.

2.2.5.2 Real Literals

A real literal is one of the following:

decimal number
decimal number followed by exponent
.4 nteger number followed by exponent

A decimal number is a sequence of digits that contains a decimal
point somewhere. An inte&,er number is a sequence of digits that
does not contain a decimal point. An exponent is the letter "E"
followed by an optionally signed integer number. No blank
character is permitted within a real literal.

Examples of real literals are:

67.2 7853.21E-.2 25E5 1E0 .003EO03

A real literal can be interpreted as a floating or fixed type.
The way in which it is interpreted depends on its context. The
rules for its interpretation are given in Chapter 13 on
"Conversion".

2.2.5.3 Bit Literals

A bit literal represents a bit string value. A bit literal is
composed of a string of beads. The number of bits in each bead is
given at the beginning of the bit literal as bead-size. The form
of a bit literal is:

bead-size B ' bead

This form uses some special notation. The "..." after "bead"
mneans "a sequence of one or more beads". Blanks are not(permitted anywhere in a bit literal.

- 29 2: Program Elements

The bead-size of a bit literal can be I through 5. Bead can be
any digit or any letter from A through V. The digits 0 throughi 9
represent their actual values; the letters A through V represent
the values 10 through 31, respectively.

The beads specified in the bit literal must be consistent with
the specified bead-size. For example, the bead A, which requires
four bits for its representation, cannot be used ;n a bit literal
that has a bead-size of 3.

An example of a bit literal is:

4B '•AC6'

Since the bead-size is 4, this bit literal is in hexadecimal
notation. It is equivalent to the following bit literal:

1I '0010000101011000110

In this representation, the bead size is 1, so the bit literal is 4
in binary notation.

The size of a bit literal is the product of the bead-size and the
nuumber of bits in a bead. The size of both of the the bit
literals given above is 4*5 - 20 bits.

2.2.5.4 Bfolean Literals

A Boolean literal represents a truth value. A Boolean literal can
be either TRUE or FALSE. TRUE is equivalent to the bit literal
IB'I' and FALLE to the bit literal IB'O'.

2.2.5.5 Character Literals

A character literal is a string of characters enclosed in

single-quote characters. The form is:

character ..

The sequence "...' means that one or more characters can be
given..

2t Program Elements - 30 -

- -i,

The following are character literals:

'ABCDEFG' 'RED GREEN BLUE' 'Greetings' '2+2-4'

Each blank within the delimiting single-quotes counts as a
character of the character literal. The size of the character
literal is the number of characters within the enclosing single-
quotes. For example:

Character-Literal Size

'ABC' 5
'ABC' 4
'ABC' 3

' ' 1

A single-quote mark is represented in a character literal by two
single-quote marks, and this pair counts as a single character.
Two single-quote marks indicate to the compiler that the
character literal has not yet come to an end. An example is:

('Say ''Hello'''

This character literal represents the three characters "Say",
followed by a blank character, followed by just one single-quote
character, followed by the five cheracters "Hello", followed by
one single-quote character. Thus the entire literal represents a
sequence of 11 characters.

(2.2.5.6 Pointer Literals

JOVIAL (J73) has just one pointer literal, namely:

NULL

Any pointer item, regardless of whether it is typed or untyped,
can be set to NULLS. A typed pointer is one that is declared with
an associated type-name, as described in the section on "Pointer
Type D'scriptions" in Chapter 6.

- 31 - 2: Program Elements

............

2.2.6 Comments

A comment is a sequence of characters enclosed in a pair of
double-quotes or a pair of percent signs. Thus the forms are:

"character
character ... "

A double-quote cannot be used within a comment that is enclosed
in double-quotes but a percent character can appear. For
example,

"Applies in only 10% of the cases"

Similarly, a percent cannot be used within a comment that is
enclosed in percents, but a double-quote can appear. Forexample : '

%For details, see standard publication "Formatting"%

2.2.7 Other Symbols

The following symbols are-described later in this manual:

Symbol Reference

Define-String Chapter 18
Define-Call Chapter 18
odex-Letter Chapter 14

The deiine-string and define-call symbols are used to implement
macros. The index-letter is used as a loop-variable in a loop-
statement.

2.3 PROGRAM FORMAT

Space characters and new lines can be used between symbols to
determine the format of program listings. The compiler ignores
this format, but programmers depend on good format to help them
understand the structure of a program.

2 Pg Ei

2: Program Elements - 32 - •

2.3.1 Space Characters

Space characters, or blanks, can be used between the symbols of a
JOVIAL (J73) program. Using blanks, the same statement can be
written in several different wayc. For example:

IMPACT - 20 * HEIGHT

IMPACT'- 20*HEIGHT;

IMPACTm20*HEIGHT;

These statements are all equivalent. Under varying
circumstances, each of them might be selected as "more readable"
than the others.

A blank can appear in a character literal, a comment, a define
string, or a status-constant. A blank cannot appear in any other
symbol. For example, consider the following assignment
statement;

S2 - 'Press HALT':

This statement has three blanks in it. The first two, before and
after 'a', are between symbols and therefore only affect
readability. The third one, inside the character literal,
represents the sixth character in that literal, and is just as
significant as the surrounding letters.

Now suppose a blank is inserted after "S" in the assignment

(statement just discussed. It becomes:

S 2 - 'Press HALT'V;

The insertion of a blank into the name "S2" breaks it into two
symbols, the letter "S" and the integer literal "2". That
changes the interpretation of the example and, in this case,
produces an invalid statement.

2.3.2 New Lines

A new line can be used between symbols to improve readability of
a program and, of course, to keep the lines to a manageable size.
Like the blank character, a new line can also be used in a
comment or a define string; but, unlike the blank character, a
new line cannot be used in a character literal.

- 33 - 2: Program Elements

_
_P

The way in which a new line is stored in a program file depends
on the implementation and environment of JOVIAL (J73). In one
implementation it may be a carriage-return and line-feed, in
another it may be an end of record.

2.3.3 Formatting Conventions

The use of blanks and new lines together allows statements to be
formatted. For example, you can write an if-statement in the
following way, using blanks and new lines:

IF COND - V(RED)i
COUNTI - COUNTI + 1:

ELSE
COUNT2 - COUNT2 + 11

The formatting makes the logic of the statement clear to the
reader.

The examples given in this manual follow formatting conventions
that have been found useful by some programmers. It is difficult
or even unwise to lay down strict conventions. Such rules are
difficult to express and sometimes interfere with legitimate
differences of style between programmers.

Some general suggestions ares

1. If a construct occupies more than one line, indent the -

middle lines relative to the first and last lines. (Some
programmers indent the last line, too, leaving only the first
line unindented.)

2. Use blanks between the main constructs of a line, and omit
them (where possible) from high priority operators. Thus,
for example, the assignments

ALPHA - 2*B + l1

3. Similarly, use blank lines between the main constructs of
the program modules.

4. Use comments, but place them so that they do not obscure
the indentation structure of the program.

21 Program Elements - 34 -

S• , ...• ,,• , ,,.,,., ,•: ;. ••-: ,...-, • : • • ,, j•' '•' , ,:• ' • ,• • 1 .• .".:'',••'' '•j•' ,,•I
,•r- • • i• .• , :.. • •7.1•, :.,, • . ! , . . . ' -

F -. , ; . .. ,

Chapter 3

PROGRAM STRUCTURE

A program has structure. Not only can it have several modules,
but each module can be divided into parts, and those parts can,
in turn, be divided into smaller parts. For example, a module
can contain a subroutine definition, which can contain a
statement, which can contain a formula. A formula can contain
yet another, smaller formula. Ultimately, each formula is made
up of symbols, such as: names, numbers and operators.

This chapter describes the largest parts of a program. The first
section describes the construction of the program itself from
modules. The second section describes modules in general and the
"Omain program module" in particular.

Subsequent chapters describe the smaller components of a program
-- the statements, declarations, and so on -- that are used to
build modules.

3.1 THE PROGRAM

A program is a collection of one or more modules. Each module is
created and maintained as a separate text file. The modules are
compiled separately and then linked together for execution as a
unit. The details of compilation, linking, and execution are
different for each implementation of JOVIAL (J73), and are given
in the user's guide for each implementation.

3.2 MODULES

S (A module is a sequence of symbols separated, where necessary, by
blank characters and new lines.

35 -3: Program StructureKV NM

Special constructs, the directives, can be inserted at various
paces in a module. Directives are an ad-vanced--feature-o--{JOVIAL
J7T tat provie instructions for the compiler. They are

described in Chapter 17 on "Directives".

JOVIAL (J73) has three kinds of module, as follows:

Main Program Module -- A programn must have exactly one main
program module. Execution of the program begins with
this module.

Procedure Module -- A program can have any number of proce-
dure modules, or none at all. A procedure module con-
tains data and subroutines that could be in the main
program module, but that are placed in a separate
module to improve organization of the program.

Compool Module -- A program can have any number of compool-
modules, or none at all. A compool module contains
declarations that are shared among other modules.

Procedure modules and compool modules help in the development of
large programs in several ways.

1. When one module is changed and the others are not,
only the changed module and the modules it affects
need be recompiled.

2. If the size of the main program module exceeds the
capacity of the compiler, a portion of it can be
removed and embodied in a new procedure module.)
After that, each of the resulting modules is smaller
and more likely to fit the compiler.

3. When a large project is organized, each program
module can be assigned to a specific programmer. Thus
program organization can parallel staff organization.

4. Certain modules can be shared among projects. Thus
general libraries can be developed for a JOVIAL (J73)
installation.

The description of procedure modules and compool modules is
easier to understand after the other features of JOVIAL (J73)
have been described. Therefore these modules are described much
later in this manual, in Chapter 16 on "Modules and Externals".

3: Program Structure - 36 -

-. - - ...-. ,.: ,

l•.j

Any JOVIAL (J73) program of modest size can be written as just a
main program module, without any other modules. The description
of the main program module follows.

3.2.1 The Main Program Module

The main program module combines declarations of data, executable
atatements, and subroutine definitions in a single file that can
be compiled, linked to other modules (if necessary), and
executed.

The form of the main program module is:
START PROGRAM name

BEGIN

[declaration ...]
- ,

(statement ...

C subroutine-definition ... U

END

C subroutine-definition ...

TERM

In this representation of a main program module, the "..." under
"declaration" means "a sequence of declarations", and the
notation has a analagous meaning with "statement" und
"subroutine-declaration". The square brackets around the
declarations and subroutine-definitions indicate that these
constructs can be omitted.

•"he symbols given in upper case in the form are JOVIAL (J73)

reserved words. The words in lower case are defined as follows:

name -- This name (just after PROGRAM) is the namp of the
program. It is used by the 7OVIAI (J73) environment in
referring to the program; specific details Are imple-
mentation dependent.

(1

- 37 3: Program Structuire

. .

declaration --- The declarations after BEGTN are optional.
If the body of the module does not require declarations,
none need appear here. On the other hand, each name
used in the module and not otherwise declared must be
declared here. Declarations are described in the next
chapter.

statement -- At least one statement is required. Otherwise,
the main program module, and the program as a Whole,
would do nothing. In most cases, these statements
exercise overall control of the program; that is, they
invoke subroutines that do most of the work. The
statements are described in Chapter 14 on "Statements".

subroutine-definition -- Subroutine-definitions can appear
in two places, before and after the END. They are
optional in both places; if subroutines are needed,
then they must be included. The subroutine-definitions
before the END are called "nested", and those after END
are called "non-nested". Only non-nested subroutines
can be designated as external by the use of the reserved
word DEF. External subroutines are described in Chapter --
16 on "Externals and Modules". Subroutine-definitions are
described in Chapter 15 or, "Subroutines".

Execution of the entire program begins with execution of the
first statement of the main program block. Execution proceeds
from one atatement to the next, except where redirected by a
subroutine-call, an if-etatement, or some other control-
statement. Execution of the program is complete when the last
statement of the main program block hat been executed. (There
are other ways to exit a program, but that is the only way to
complete it.)

s P,

3: Program Structure - 38 -

"•' -i '• i / • I • l i I II

Chapter 4

DECLARATIONS AND SCOPES

The main program module, described in the previous chapter,
contains declarations.' The other kinds of modules, the procedure
module and the compool module, also contain declarations. In
fact, declarations are an important part of a JOVIAL (J73)
program.

A declaration is a "non-executable" construct. That is, it does
not represent an action taken when the program is executed.
Instead of causing action, each declaration provides information
about a name that is used in the program. That information is
used by the compiler each time it encounters a use of the
declared name.

A declaration does not, in most cases, extend over the entire
program. Instead, it applies to a particular part of the
program, called the "scope" of the declaration. In fact, the
same name can be declared more than once in a program, and each
declaration will apply only to its scope. Thus you do not need
to worry about conflicts of names in unrelated parts of a
program.

The first section of this chapter describes features that all
declarations have in common and then lists the different kinds of Hi

declarations. The second section describes the scopes to which
declarations apply.

4.1 DECLARATIONS

A declaration always begins with a reserved word that specifies
the purpose of the name being declared. For example, a

1.•. declaration that begins with the reserved word ITEM specifies
that the name being declared designates storage for a scalar data
value (a JOVIAL item).

- 39 - 4: Declarations and Scopes

4

Once the purpose of the name has been established, the
declaration provides further specialized information. As an
example, consider the following declarationi

ITEM VELOCITY $ 15;

This declaration declares the name VELOCITY. The reserved word
ITEM meano that VELOCITY is the name of storage for a scalar data
valuel or, to use the technical language of JOVIAL (J73),
VELOCITY "designateu a data object". This declaration also gives
some specialized information about VELOCITY. The "S" means that
it is a signed integer, and the "15" means that it occupies
fifteen bits in addition to the sign.

As a program is compiled, the compiler refers back to the
information obtained from the declaration of the name each time
it encounters a use of that name. For example, consider the
following assignment statement;

VELOCITY - 31

In order to process this statement, the compiler must know the
type of VELOCITYr that is, its type-class and how many bits are
allocated for its absolute value. That information must come
from a declaration of VELOCITY.

4.1.1 The Classification of Declarations

A declaration is one of the following:.

Data-Declaration -- This construct declares a variable or
constant namey that is, a name that designates a data
object. Data-declarations are described in the next
chapter.

Type-Declaration -- This construct declares a name that can
be used in a data-declaration or conversion operator as
an abbreviation for a data description. Type-
declarations are described in Chapter 9.

Subroutine-Declaration -- This construct declares the name
of a subroutine. It describes the parameters of the
subroutine and (if the subroutine is a function) the
result. It may also give certain special attributes of
the subroutine itself. Subroutine-declarations are
described in Chapter 15.

41 Declarations and Scopes - 40 -

I.I

Statement-Name-Declaration -- This construct declares the
name of a statementi that it, a label. Labels are
usually defined t, the label field in a statement; this
declaration is only required for certain labels.
Statement-name-declarations and the circumstances under
which they are required are described in Chapter 15 on
"Subroutines".

Define-Declaration -- This construct declares a name that
can be used as an abbreviation for a string of JOVIAL
(J73) text. Thus it provides a limited macro facility
for use within a program. Define-Declarations are
described in Chapter 18.

External-Declaration -- This construct declares a name that
can be used in more than one module. By this means,
both subroutines and data can be shared among modules.
External declarations are described in Chapter 16 on
"Modules and Externals".

Overlay-Declaration -- This construct establishes a
relationship between previously declared data object
namea. It can specify names that designate the same
data object or it can give the absolute address of a
data object. Overlay-declarations are described in
Chapter 19 on "Advanced Topics".

Inline-declaration -- This conctruct directs the compiler to
replace a subroutine call on a given subroutine by an
inline compilation of the subroutine body instead of by
a transfer to the subroutine. Inline-declarations are
described in Chapter 15 on "Subroutines".

Readonly-declaration -- This construct informs the compiler
that the data within a subroutine is readonly and any
attempt to change the values of the data is an orror.
Readonly-declarations are described in Chapter 15 on
"Subroutines".

Null and Compound Declarations -- These declarations are
special constructs that make adjuistments in the syntax
of declarations. They are described later in this
chapter.

4

'i ' - 41 - 4: Declarations dnd Scopes "'i

4.1.2 The Nall-Declaration

The null declaration has the form:

That is, it is just a semicolon. You need this declaration when
the syntax calls for a sequence of one or mrre declarations, but
ywu have no names to declare. This case arises in the
declaration of a subroutine that does not have parameters.

I,

4.2.3 The Compound-Declaration

The compound-declaration has the korm:

BEGIN
declaration

END

The sequence "..." indicates that one or more declarations can be
given within a BEGIN-END pair.

The sequence of declarations can be empty, so that a special form
of the compound declaration is:

BEGIN
END

Compound-declarations enable a group of declarations to be
treated syntacti,.ally as a single declaration.

4.2 SCOPE

Each declaration in a program supplies information about a
particular name. However, a given declaration of a given name
dcas not necessarily apply to al:L occurrences of that name. The
occurrences of a name to which a declaration does apply is the
scope of that declaration.

Scopes are established during the compilation of module.

41 DLclý.tions and Scopes - 42 -

r , , , n

A systert-scopn and a compool-scope enclose the module being
compiled. These scopes can be diagrammed as follows:

+system-scope ---+

I +compool-scope-------------------------------

S +module-scope ----------------------+
- - - - - - - - - - - - I

I --+

I I I

I ---+

I I

The compool scope and the system scope are not actually part of
the source file for the module being compiled, but they can be
thought of that way.

All names made available from referenced compool modules, as well
as the names of the compools themselves, belong to the compoo)
scope. In addition, the name of the module being compiled is
itself considered to belong to this outer compool scope.
External names and compools are described in Chapter 16 "Modules
and Externals'. Mors examples of scope are also given in that

(mhapter.

System-defined names, such as implementation-parameters and
mactine-specific subroutines belong to the system scope. Such
names can be redefined in the enclosed scopes.

The module being compiled is a scope and has smaller scopes
within it. The module scope contains the names of any non-nested
subrouines. Within the module-scope, the module-body establishes
& scope. It contains the names declared within the module-body.
Within the module-body, subroutine-bodies establish scopes and
within subroutine-bodies, other subroutine-bodies establish
scope, and so on. Ultimately, the:e are scopes that do not
themselves contain further scopes.

(.
i '

-43 - 4: Declarations and Scopes

....

The scope of a module thus can be diagrammed as follows:

+system-scope ------------ ..------------------------------

+compool-scope ------------------------------

+module-scope -----------------------

I I
I +module-body-sc~ope ----------

I +subr-scope----------+ I

I I.II II

.+subr-scop'e----

+subr-scope-....+ I i

I I I I 11-------------I-I I I I
I I I I -----------------.- I
I I 11---------------------+I IV

I I 1 --------------------------+

I I I +subr-bo.dy --------------------- I

I I I +subr-acope -----------

I I I I+subr-sc'ope-------1 1 I

II +aubL•--cope--+÷ I

-- ------------ 4-
I I 11 ----------------- +1
I 11.--------------------4-1
I 1+-------------------------.- I I

I ..-- +

I -- +

--

4s Declarations and Sc~opsu - 44 -

For example, consider the following main-program-modul:

START PROGRAM TEST;+mnodule-scope ------ ----- ----- ----- ----- ----- ----- -----
+module-body-scope--

1BEGIN
ITEM LENGTH U:

I PROC CALCULATE (OP1,OP2:RESULT)i
+subr-scope --------------------------------

BEGIN
I ITEM OP1 F1
I ITEM OP2 FI

I I I ITEM RESULT F;
ITEM SIZE Ut

END
I I +----------------------------------- ------------ +

I I PROC COMPUTE (OPI,OP2sRESULT)i
I +subr-scope --------------------------------I ,,. BEGIN

ITEM OPI Fr
ITEM OP2 F:
ITEM RESULT Ft
ITEM SIZE U:

PROC SUBTOTAL(TOTAL:RESULT)I
I +subr-scope-----------------------
IIBEGIN

ITEM TOTAL Ur
ITEM RESULT U;

END
I I I ÷

I I I ENDI II I --------------------------------- 4 I
IEND

I I +--+

I -- +
DEF PROC REPORT(INOUT)

---+
TERM

(4

- 45 - 4: Decla-. +Jons anid Scopes

i . ~ I ,i

In addition to the system scope and the compool scope, five
additional scopes are defined. The lines in the above program
indicate the scopea. The scope of the module TEST encloses the
scope of the program-body, which encloses the scopes of the
procedures CALCULATE and COMPUTE. The scope of the procedure
COMPUTE encloses the scope of the procedure SUBTOTAL.

The scopes of the module TEST can be diagrammed as follows:

+system-scope --+

+compool-scope-------------------------------
TEST

+module-scope -----------------------

+module-body-scope ----------
LENGTH
CALCULATE
+subr-scope-y --------..
I OPl,OP2,RESULT,SXZEBI I I I

I I I I I III
I I I I *t--- ------------------- * I . I-

COMPUTE
+subr-scope ----------+.

I IOPl,OP2,RESULTSIZE I I
I ISUBTOTAL I I

I +program-body----+ I I
I ITOTAL, RESULT I I I I

I I -----------------4 I I
I I 1 ---------------------+ I I

I I I I I I

I I 1 --------------------------+
REPORT
+subr-scope------------
I IN, OUT I

I I ---------------------- +
I I +-------------------------------------+

--- +

+--+-

4t Declarations and Scopes - 46 -

.:,'.--.- 1 ."

lu • i nmlm

The item SIZE and the procedure names CALCULATE and COMPUTE are
in the scope of the procedure module. The names OP. and OP2 are
in the scope of both CALCULATE and COMPUTE. The name RESULT is
in the scope of CALCULATE, COMPUTE, and SUBTOTAL. A reference to
RESULT within SUBTOTAL refers to an output parameter of SUBTOTAL
that is an unsigned integer. A reference to RESULT within
COMPUTE refers to an output parameter of COMPUTE that is a
floating object.

4

4.2.1 The Scope of a Declaration

The scope of a declaration is the smallest scope that contains
the declaration.

Each use of a name must have a declaration. That declaration is
determined as follows:

1. If the reference to the given name does not lie in the
scope of any declaration of that name, then the program
is invalid.

2. If the reference to the given name lies in the scope of
exactly one declaration of the given name, then that
declaration applies to the given use of the name.

3. If the reference to the given name lies in the scope of
several declarations of that name, then the declaration
with smallest scope applies to the given use of the
name.

With these definitions in mind, consider another version of the
example given earlier in this chapter. This example includes
references to names.

-47 - 41 Declarations and Scopes

i .'

START PROGRAM TEST;
+module-scope- +

+module-body-scope -------- +
BEGIN N

ITEM LENGTH U; " I

PROC CALCULATE (OPl,OP2:RESULT)I
+subr-scope ...------------------------------

BEGIN
ITEM OPI F;
ITEM OP2 F1
ITEM RESULT F;
ITEM SIZE U1

LENGTH - 211

END
I +--- +

PROC COMPUTE (OP1,OP2:RESULT)+
+subr-scope ---------- ----------------------

BEGIN ...
ITEM OP1 FI
ITEM OP2 F1
ITEM RESULT F:
ITEM SIZE U:

PROC SUBTOTAL(TOTALtRESULT)I
+subr-scope -----------------------.

BEGIN .
ITEM TOTAL U, I" I
ITEM RESULT UI

iRESULT - TOTAL**2I

END

ENDI I --- +

I ------------------------------------- 4 __ ----I I END

DEF PROC REPORT(IN,OUT)i

+-------------------------------- M ------------- ------------------------. 4

TERM

4: Declarations and Scopes - 48 -

The reference to LENGTH lies within the scope of exactly one
delcaration of that name. The reference to RESULT lies within
the scope of two declarations of that name. In this case, the
declaration given in the procedure SUBTOTAL, which is the smaller
scope, applies.

412.2 Restrictions on Declarations

Thp following restrictions apply to the declaration of names:

1. Two declarations of the same name must not have the same
scope.

2. A reserved word must not be used as a name and cannot,
therefore, be declared. The reserved words are listed
in Appendix A.

3. An external name must be declared by exactly one DEF
declaration in an entire program. External declarations
are described in Chapter 16.

(

(

- 49 - 4: Declarations and •cope.

Chapter 5

DATA DECLARATIONS

A data-declaration declares a variable-name or a constant-name.
A variable-name designates storage for a value that can be
changed during program execution. A constant-name can be thought
of as designating storage for data that is set before program
execution and then does not changet in many cases, however,
actual storage is not required for the value of a constant-name.

JOVIAL (J73) provides abstract storage. Storage is ultimately
implemented as a hardware memory composed of words, bytes, arid
bits that have numeric addresses. However, JOVIAL (J73) can
screen out the irrelevant hardware details and present you with a
more convenient and logical storage structure.

Although you can, when necessary, specify an absolute otorage
address, the association of storage addresses is normally handled
for you by the compiler. Although you can, when necessary,
request that a variable be a specific word of hardware memory,
you normally describe the kind of values you want to store and
let the compiler allocate the correct amount of storage at an
appropriate location. JOVIAL (J73) permits you to ignore
hardware details when they are not important but lets you specify
them in considerable detail when considerations of efficiency and
interfacing require.

In order to emphasize this treatment of storage, this manual uses
the term data object to refer to the storage for a value or a
collection---- _vauie. You can talk of "fetching the value of a
data object" or "assigning a value to a data object" without mny
knowledge of the implementation of the data object.

- 51 - 51 Data Declarations

(. 4~I~~~~ I

The first section of this chapter introduces the three kinds of
data declarations. The second and third sections make
distinctions that apply to all data objects: the difference
between variable and constant values and between automatic and
static allocation.

5.1 THE CLASSIFICATION OF DATA DECLARATIONS

A data-declaration is one of the fo]lowing:

Item-Declaration -- This construct declares the name of a
scalar data object; that is, storage for a single value.
Item-declarations are described in Chapter 6.

Table-Declaration -- This construct declares the name of a
table data objectr that is, a collection of items.
Table-Declarations are described in Chapter 7.

Block-Declaration -- This construct declares the name of a
block data objectt that is, a collection of items and
tables. Block declarations are described In Chapter S.

5.2 VARIABLES AND CONSTANTS

A data object can be variable or constant. In an item-
declaration or table-declaration, the reserved word CONSTANT
means that the declared name designates a constant data object.
This reserved word may be placed at the beginning of any item-
declaration or table-declaration, as described in the next two
chapters. The absence of the reserved word CONSTANT means the
declared name designates a data object that is variable.

5.2.1 Variable Data Objects

A variable data object has a relatively complicated life cycle.
First, it is allocatedl that is, a portion of storage is set
aside to hold the value of the data object. As the following
section shows, allocation can occur either during or before
program execution.

5t Data Declarations - 52 -

.

After the variable data object has been allocated, it can be
initialized. Initialization occurs if the variable name is
declared with a preset, as described in the next three chapters
on item-declarations, table-declarations, and block-declarations.
Initialization also can occur through an initialize-directive, as
described in Chapter 36 on "Directives". If neither a preset nor
a directive applies, the data object is not initialized.

Next, the variable data object is used; that is, values are
assigned to it and fetched from it. If the data object was not
initialized, its first use must be as a target of an assignment
or as an output parameter of a subroutine. The value of a
variable data object that does not have an initial value and has
not yet been assigned a value is undefined.

When the execution of the program of procedure that declares the
variable is complete, the variable data object is deallocatedy
that is, the storage associated with the data object is taken
away.

5.2.2 Constant Data Objects

A constant data object has a simple life cycle. The data object
has the same value throughout program execution. That value is
supplied by the same item-preset or table-preset mechanism that
is used for initializing variable data objects, In some cases,
the value of a constant data object may require storage in data

(memory, but in many cases the value is embedded into the code of
the compiled program. A program that attempts to assign a value
to a constant data object is invalid.

5.3 STORAGE ALLOCATION

The allocation of a variable dota object can be automatic or
static. A data object has automatic allocation only if it is
declared in a subroutine body and its declaration dooi not have
the STATIC reserved word. A data object has static allocation if
it is riot in a subroutine body or it has the STATIC reserved
word. The STATIC reserved word is placed immediately after the
variable name that is being declared.

(

- 53 - 5s Data Declarations

12___,,,_ _ __ ___.,,1.-..

5.3.1 Automatic AllocatLon

For automatic allocation, the storage for a data object is
allocated and deallocated when the subroutine Jrn which the data
object is declared is entered and exited. Automatic allocation
saves storage by holding it only during execution of a
subroutine. However, the value of such a data object is lost
upon exit from a subroutine, and is therefore undefined upon each
entry to the subroutine.

5.3.2 Static Allocation

For static allocation, the storage fbr a data object is allocated
before program execution and is deallocated, at earliest, when
program execution is complete. Even when a static aata object is
declared within a subroutine, its value is retai'neO from one
execution of the subroutine to the next.

5: Data Declaration - 5-

|I

Chapter 6

ITEM DECLARATIONS

An item is a scalar variable or constant. This chapter describes
the neral form of the ýtem declaration, first for a variable
and then for a constant. It then considers the different data
types of JOVIAL J73.

(6.1 ITEM DECLARhTIO9S

An item-declaration specifies that an item-name designates a
variable or constant with a given type class and attributes. The
simplest form of an item-declaration is:

ITEM item-name type-description

This form declares an item-name that designates a scalar variable
of the type given by type-description.

For example, consider the following item-declaration:

ITEM COUNT "1 57

Item-name in this declaration is COUNT and type-description is t
5. This declaration specifies that COUNT designates a scalar
variable with the type U 5. The U indicates that the item is an
unsigned (that is, non-negative) integer. The 5 specifies that
the integer occupies 5 bitd. Data types are described In detail
later in this chapter.

S (

- 55 - 6: Item Declarations •

An item-declaration can also give information about the
allocation permanence of the variable and its initial value, as
follows:

ITEM item-name E STATIC J type-description C item-preset 1

The square brackets indicate that STATIC and item-preset are both
optional.

Consider the following item-declaration:

ITEM COUNT U 5 a 07

This declaration specifies that COUNT designates an unsignedinteger variable with the initial value 0. Item-preset, in this
case, consists of an equals sign and the initial value 0. Item-
presets are discussed in detail later in this chapter.

The STATIC attribute is provided so that items within subroutines
can have static allocation. The default allocation permanence of
data within subroutines is automatic.

Consider the following item-declaration:

ITEM COUNT STATIC U St

This declaration specifies that COUNT designates an unsigned
integer variable with STATIC allocation permanence.

6.2 CONSTANT ITEM DECLARATIONS

A constant item-declaraLion is a special form of an item-
declaration. It begins with the reserved word CONSTANT asd
concludes with an item-preset. A constant item receives its value
before the execution of the program. The value of a constant item
cannot change during the program execution.

6s Item Declarations 56 -

'Zie form of a constant item-declaration is:

CONSTANT ITEM iteim-name type-descrirtion item-preset 7

The all1 cation permanence of all constants, eve~i those within

procedures, Is STATIC. Physical storage is allocated for all
constant declarations given in a block. Por constants not
declared in a block, physical storage may not be allocated if
another tenhnique for representing the constant can be used in
the code generatc. by the compiler.

As an example of a constant item-declaration, consider the
following:

CONSTANT ITEM VERSION U - 22;

This declaration specifies that VERSION designates an unsigned
integer constant whose value is (always) 22. Throughout thesi.cpe of this declaration, VERSIOV can be used anywhere the

$' integer literal 22 could be used.

6.3 DATA TYPES

A data type consists of a type class and a set of attributes. The
scalar type classes are:

Unsiyned Integer
Signed Integer
Yloating

, Fived
Bit
Character
Stati
Pointer

In an Integer, floating, ox fixed type-description, the number
of bits occupied is given, either explicitly or by default. The

number of bits is interpreted by the compiler as the minimum
storage requirement. If it is advantageous for the compiler to
usc. more bits, it may do so.

The largest (in magnitude) value that such an Item can have,
however, is determined by the number of bits given or assumed in
its declaration, not the number of bits actually used by the
compiler. If a value that cannot be accornodated in thc number of
"bits given or assumed in its declaration is assigned to an item,
then the program ib invalid.

S- 57 - 6: Item Declarations

W SOW I- AIAI I

Type-description in an item-declaration describes the type of the
item. The following sections describe and illustrate each type-
description.

6.3.1 Integer Type-Descriptions

An integer is a signed or unsigned value that occupies a
specified number of bits. Type-description for an unsigned
int2e_ has the form:

U E integer-size] i

Type-description for a signed integer has the form:

S r integer-size]

The square brackets indicate that integer-size is optional.

Integer-size is an integer compile-time-formula. A compile-
time-formula is a formula whose value can be determined at
compile time. Compile-time-formulas are discussed in Chapter 11
on "Formulas". Integer-size determines the mi nimum number of
bits allocated by the compiler for the integer; it 4etermines the
maximum value that can be accommodated by the item. The compiler
allocates at least integer-size bits for an unsigned integer and
at least (integer-size + 1) bits for a signed integer.

Integer-size must lie in the range:

0 ý integer-size < MAXINTSIZE

MAXINTSIZE is the implementation parameter that defines the
maximum size of an integer.

The range of values that an integer can assume is machine
dependent. A signed integer can take on values in the range:

MININT (integer-size) < value < MAXINT(inieger-size)

An unsigned integer variable can take on values In the range:

0 < value < MAXINT(integer-size)

MAXINT and MININT are the Implementation parameters that define
the maximum and minimum values of an integer.

6: Item Declar:ýtions - 58 -

_...

4.

Some examlples of integer item-declarations are:

Declaration Meaning

ITEM TXME U 51 TIME designates an unsigned 5-bit
integer variable. It occupies a
minimum of 5 bits. If it is
declared in a subroutine, it has
automatic allocation; otherwise, 'it
has static allocation. Its initial
vpalue is unspecified. It can
assume the valtes 0 through
MAXINT(5).

ITEM RANGE S 10; RANGE designates a signed 10 bit
integer variable. It occupies a
minimum of 11 bits, It can assume
values in the range MININT(10)
through MAXINT(10).

ITEM POSITION U; POSITION designates an unsigned
integer variable. If BITSINWORD is
16, it occupies a minimum of 15
bits. It can assume the values 0
through MAXINT(15).

IT"M COUNT STATIC U 10; COUNT designates an umnsigned 10-bit
integer variable with STATIC
allocation permanence.

ITr.M TIME U 5 = 20; TIME designates an unsigned 5-bit
integer variable with an initial
value of 20.

CONSTANT 1TEM LIMIT U - 10A
LIMIT designates an unsigned
integer constant with the value 10.

6.3.2 Floatinsg Type-Descriptions

A floating value is expressed as a mantissa and an exponent. The

form of a floating type-description is:

F [precision)

The square brackets indicate that precision is optional.

59 - 6: Item Deeldrations

Precision is an integer compile-time-formula that determines the
minimum number of bits allocated for the mantissa of the
floating-point value. The total storage required for the item is
always more than the precision, because the representation must
include storage for the exponent and sign. Furthermore, the
compiler may allocate more bits than required.

Precision must lie in the range:

0 < precision < MAXFLOATPRECISION

MAXFLOATPRECISION is the implementation parameter that deterrine*.
the maximum precision of a floating type. If no precision is
given, the compiler uses the implementation parameter
FLOATPRECISION as the precision.

A variable of floating type can assume the following values:

MINFLOAT(precision) < value < MAXFLOAT(precision)

MINFLOAT and MAXFLOAT 6re implementation parameters.

Some examples of floating item-declarations are:

Declaration Meaning

ITEM AZIMUTH F 30: AZIMUTH designates a floating
variable with precision 30. Its k
mantissa occupies a minimum of 30
bits. If it is declared within a
procedure, it has automatic
allocation; otherwise, it has static
allocation. It is not initialized.

ITEM VELOCITY I' VELOCITY designates a floating
variable. If FLOATPRECISION is 12,
its mantissa occupies 12 bits.

ITEM DISTANCE STATIC F 24 - .001
DISTANCE designate" a floating
variable with precision 24, static
allocation, and initial value .001.

CONSTANT ITEM COEFFICIENT F - 21.36;
COEFFICIENT designates a floating
constant with the v&lue 21.36.

6: Item Declarations - 60 -

6.3.3 Fixed Type-Descriptions

A fixed number is a real number with a fixed decimal point.
Fixed point representation is used for numbers whose value range
is known to lie within a given, usually small, range. Fixed
point representation can be used for numbers that are either very
large or very small and for which only a certain number of
significant digits are required.

")\ fixed value has a fixed scale factor. Its interpretation is
described by two specifiers, scale and fraction. These
specifiers determine the position of the point and the number of
digits, as described in the next paragraph.

A fixed type-description has the following form:

A scale E , fraction .

The square brackets indicate that the fraction is optional.

When scale and fraction are both positive, scale gives the number
of bits to the left of the binary point (excluding the sign bit)
arid fraction gives the number of bits to the right of the binary
point.

For example, suppose you give the following declaration:

(ITEM AMOUNT A 11,3;

AMOUNT designates a fixed point variable with eleven bits to the
left of the binary point, 3 bits to the right of the oinary
point, and 1 bit for the sign. That is, it is laid out as
follows•

S XXXXXXXXXXX.XXX where X indicates a bit of storage
and S indicates the sign

The minimum number of bits allocated for AMOUNT is 15.

S" (,

- 61 - 6: Item Declarations

V .`. .,- .. '

If scale is negative, the binary point is assumed to be the
specified number of bits to the left of the first (non-sign) bit
of the representation. For example:

ITEM COORD A -3,9;

COORD designates a variable that requires at least 7 bits
(-3+9+1) of storage. The binary point is assumed to be three
bits to the left of first bit of the stored value. That is:

S .OOXXXXXX where X indicates a bit of storage

If fraction is negative, the binary point is assumed to be the
specified nutmber of bits to the right of the least significant
bit of representation. For example:

ITEM LIMIT A 15,-5;

The variable LIMIT requires at least 11 bits (15-5+1) of storage.
The binary point is assumed to be five bits to the right of the
last bit of the representation. That ist

S XXXXXXXXXX0000. where X indicates a bit of storage

If fraction is not given, then the compiler assumes that the
precision of the item is the implementation parameter
FIXEDPRECISION arid the fraction Is FIXEDPRECISION minus the
scale.

For example, suppose you write:

ITFJ14 FACTOR A 12;

If FIXEDPRECISION is 15, then the precision of FACTOR is 15 and
the default fraction is 3. That is:

S XXXXXXXXXXXX. XXX

Scale and fraction are integer compile-time-formulas. The value
of the scale must lie in the following range:

-127 < scale < 127.

The precision of a fixed point number is the sum of scale and
fraction. The implemented precision may be greater than the
declared precision. However, as mentioned earlier, the values
set for a fixed point item is determined by the declared
precision.

6t Item Declarations - 62 -

S...* l ,', a _ 'I CV r ' [~ * *... - - ..

The precision must lie in the range:

0 < scale+fraction < MAXFIXEDPRECISION

MAXFIXEDPRECISION is the implementation parameter that determines
the maximum precision of a fixed type.

A variable of fixed type can assume values in the ranges

MINFIXED(scale,fraction) < value < MAXFIXED(scale,fraction)

Some additional examples of fixed item-declarations are:

Declaration Meaning

ITEM SUBTOTAL A 6 , 2T SUBTOTAL designates a fixed
variable with scale 6 and fraction

(2.

ITEM TICKS STATIC A 7,4 - 2.5:
TICKS is a fixed item with scale 7
and fractional part 4. It has
static allocation arid the initial
value 2.5.

CONSTANT ITEM THRESHOLD A 10,1 - 1016.5;
THRESHOLD is a fixed constant with(. the value 1016.5.

6.3.4 Bit Type-Descriptions

A bit item is a fixed length string of bits. The form of a bit
type-description is:

B E bit-size

The square brackets indicate that bit-size is optional.

Bit-size is an integer compile-time-formula that indicates how

many bits are in the bit string. It must lie in the range:

1 < bit-size < MAXBITS

MAXBITS is the implementation parameter that defines the maxim
number of bits a bit string can occupy.

- 63 - 6t Item Declarations

I "

If bit-size is not giver), the compiler as3umes the number of bits
in the string to be 1.

Some examples of the declaration of bit items are:

Declaration Meaning

ITEM MASK B 10; MASK designates a bit variable 10
bits long.

ITEM FLAG B; FLAG designates a bit variable I bit
long.

ITEM READY STATIC B 3 1B'000';
READY designates a bit variable 3
bits long with static allocation
and an initial value of all zero
bits.

CONSTANT ITEM SWITCH B " TRUEr
SWITCH designates a bit constant
that has the value TRUE (1B'l').

6.3.5 Character Type-Descriptions

A character item is a fixed length string of characters. The
form of a character type-description is:

C E char-size "

The square brackets indicate that char-size is optiona'..

Char-size is an integer compile-time-formula. Char-size must lie

in the following range:

1 4 char-sime 4 MAXBYTES

MAXBYTES is the implementation parameter that defines the maximum
number of characters a character string can occupy.

If char-size is not given, the compiler assumes that the number
of characters in the string is 1.

6: Item Declarations - 64 -

-- -, ' . . , - *I~w~

Some examples of the declaration of character items are:

Declaration• Meaning

I ITEM ADDRESS C 26; ADDRESS designates a character
variable 26 characters long. If it
is declared within a procedure, it
has automatic allocation; otherwise,
it has static. Its initial value is
unspecified.

ITEM CODE Cr CODE designates a character variable
1 character long.

ITEM RESPONSE STATIC C 9 - 'NOT READY'?
RESPONSE designates a character
variable 9 characters long with
"tmatic allocation and an initial
value of 'NOT READY'.

"CONSTANT ITEM TITLE C 6 - 'JOVIAL';
TITLE designates a character constant
with the value 'JOVIAL'.

6.3.6 Status Type-Descriptions

A status item is an item whose value range is a specified list of
symbolic -- ` names, called status-constants. A status-constant is a
symbolic constant that has an ordering relation with the other
status constants in the list. A status constant provides an
efficient way to express values symbolically.

The simplest form of a status type-description in the reserved
word STATUS followed by a parenthesized list of status constants,
as follows:

STATUS (status-constant

The sequence ",..." indicates that one or more status-constants
separated by commas can be given within the parentheses.

- 65 - 6: Item Declarations

The form of a status-conntant is the letter "V" followed by a
parenthesized status-name, as follows:

V (status-name

A status-name can be a name, a letter, or a JOVIAL (J73) reserved
word.

The use of a name in a status-constant does not constitute a
declaration of the name or a reference to a declared name with
the same spelling. For example, the status-constant V(MOND.rýY)
declares the name V(MONDAY), not MONDAY. A status-name and a
declared name with the same spelling can exist in the same scope
without any conflict.

The status-constants are represented as the values 0 through N-i,
where N is the number of status-constants in the list. The values
0 through N-i are the default representations of the status-
constants; that is, the compile4r uses these values if a specific
representation is not given in the declaration. This form of
STATUS type-description is described in Chapter 19 on "Advanced
Topics".

Suppose you write:

STATUS (V(RED),V(GREEN),V((BLUE),V(YEiLOW))t

The status list contains four status constants. The first.
constant V(RED) is represented as the value 9, the second
V(GREEN) is represented as 1, and so on.

Even though the representation of a status-constant is an
integer, an integer value cannot be assigned to a status item
unless it is first explicitly converted to a status type.

The size of a status item is the minimum number of bits necessary
to hold the representation of the status-constant with the
largest reprentation.

Another form of the status type-description allows both the
representation of status-constants and the specification of the
status size to be given. This form i:. described in Chapter 19 on j
"Advanced Topics"

6: Item Declarations - 66 -

-A.AQU-

The representation of a status-constant determines its order for
relational operators. That Is, for the declaration given above,
the status-constants have the following relationshipi

V(RED) < V(GREEN) < V(BnUE) I V(YELLOW)

The names in any given status-list must be unique. However, the
same name can be given in more than one list. In most cases, any
ambiguity is resolved by the context in which the status-constant
is used. Sometimes, however, an explicit conversion operator
nmust be used to make the status-constant unambiguous. Chapter 13
on "Conversion" discusses both these cases.

Some examples of status items are:

Declaration Meaning

ITEM DAY STATUS DAY designates a status
(V(SUN;, V(MON), V(TUES), variable that can take on
V(WED), V(THURS), V(FRP), the values V(SUN) through
V(SAT))i V(SAT).

ITEM IVY STATIC STATUS IVY designates a status
(V(ENGLISH),V(GRAPE), variable that can take on 3
V(POISON)) - V(ENGLISH)i values. It has sta~ic

allocation and ic initialized
to the status-constant
V(ENGLISH).

CONSTANT ITEM ID STATUS ID designates L status
(V(VESIGN),V(DEBUG).V(RUN)) constant with the value V(RUN).

V V(RUIN)I

6.3.7 Pointer Type-Descriptions

A pointer item is useM to locate data. The valuee of a pointer
item are addresuas of objects.

The form of a pointer type-description is:

P E type-name I

(The square brackets indicate that. type-name is option&l.

- 67 - 6: Item Declarations

""T 7.. 7.._

A pointer that is declared without type-name is called an untyped
pointer. A pointer that is declared with type-name is called a
t~~i� Fnter. Type-names are declared by a type-declaration, as
described-in-Chapter 9 on "Type Declarations". Typed pointers -"

can point only to objects that are declared in terms of the same ,)
type-name.

Pointers are used with items, tables, and blocks that are
declared using a type-name. The pointer makes the referenes to
the data objects unombiguous. Pointers, however, must be used
when referencing data declared using a type, even if no ambiguity
is involved.

Some examples of pointer items are:

Declaration Meaning

ITEM PTR P1 PTR is an untyped pointer.

ITEM P1 P PARTS: P1 is a typed pointer: it con point
only to objects of type PARTS.

CONSTANT ITEM PDATA P SEQ w LOC(DATA);
PDATA designates a pointer constanL
with value of LOC(DATA). DATA must
be of type SEQ.

6.4 ITEM-PRESETS

The item-preset provides an initial-value for an item-declaration
and a permanent value for a constant item-declaration. The form
of an item-pxeset is:

a value

Value must be a compile-time-formula for all items except
pointers. A pointer can have a LOC function as an initial value.
(The LOC function is a built-in function that gets the address of
a data object. It is described in Chapter 12). However, if the
argument of a LOC function used in a preset is a data-name, the
data-name must designate an item with STATIC allocation
pcrmanence.

6: Item Declarations - 68

Z.

The value in an item-preset is assigned to the item before
program execution. It must be compatible with the type of the
item, as defined by the type-description. The rules for type

4 compatibility are given in Chapter 13, "Conversion".

For example, the following item-declarations all contain valid
item-presets;

ITEM COUNT U 10 01
ITEM AZIMUTH F ..011
ITEM BALANCE A 12,2 I 15.25;
ITEM MASK B 1 8-001001
ITEM ID C 5 IAWC It
ITFM CODE STATUS (V(HAWK), V(WOLF), V(TIGER), V(SNOOPY))

" V(WOLF);
ITEM PTR P - NULL;

(6.4.1 The Round-or-Truncate Attribute

The type-deucription of an integer, floating, or fixed type can
contain a round-or-truncate attribute. The round-ov-truncate
attribute is given following the s.ingle letter that identifies
the type class. It is separated from that letter by a comma.The forms are:

U [, round-or-truncate 3

(S S round-or-truncate J

F [round-or-truncate

A [, round-or-truncate

The square brackets indicate that the round-or-truncate attribute
is optional.

The round-or-truncate attribute is either an R or a T. The
attribute R indicates that rounding occurs when the value in the
preset is assigned to the item. The attribute T indicates that
truncation toward minus infinity occurs.

If a round-ot-truncate attribute is not given, truncation in a
machine-dependint manner occurs. Truncation may be either
towards zero or towards minus infinity depending on the
implementation.

- 69 - 61 Item Declarations

__
1 '*j

4
j .2 !~iY rI ' '' .. "~ A

A round-or-truncate attribute in an integer type-lescription has
no purpose in an item-declaration. However, coi.: er the
following floating item-declaration:

ITEM VELOCITY F 10 a 1200.3t

In some implementations, the value of 1200.3 may not be exactly
representable as a floating point value (e.g. in a binary number
system) and thus it must be rounded or truncated. This
declaration does not include a round-or-truncate attribute, so
thn value is truncated in a machine dependent manner. However,
if you wish the value to be rounded, you can add a round
attribute as follows:

ITEM VELOCITY FR 10 - 1200.31

The preset value is then rounded before assignment to VELOCITY.

The round-or-truncate attribute is most useful in a type-
description used as a conversion operator, as will be seen in h
Chapter 13 on "Conversion".

6: Item Declarations - 7-

Chapter 7

TABLE DECLARATIONS

A JOVIAL (J73) table is a collection of data objects. A table
can be dimensioned'or undimensioned. An undimensioned table has
only one entry. A dimensioned table is made up of one or more
entries.

The form of a table-declaration i5:

TABLE table-name E table-attributes)

entry-description

The square brackets indicate that table-attributes can be
omitted.

The following is an example of a table-declaration:

TABLE MATRIX(1:20);
BEGINLTEM XCOOnD U;

ITEM YCOORD U;
END

This der'laration declares a table named MATRIX. Table-attributes
in thi, declaration is (1:20), indicating that MATRIX has 20
entries. The first entry is referenced as MATRIX(l) and the laat
entry as MATRIX(20).

Entry-description indicates that each entry in the table contains
two items, XCOOPD and YCOORD. The instance of the item XCOORD in
the first entry is referenced as XCOORD(W).

7

.'- 71 - 7: Table Declarations ,

El !

7.1 TABLE-ATTRIBUTES

Table-attributes gives the attributes of the table. It can
specify the allocation permanence of the table, indicate whether
or not the table is dimensioned, and Provide any initial values
for the components of the table. Table-attributes has the
following form:

[STATIC J [(dimension-list) J [table-preset)

The square brackets indicate that any of the parts of table-
attributes can be omitted.

Table-attributes can also contain information about the way in
which the table is structured and packed. A description of table
structure and packing is given in Chapter 19 on "Advanced
Topics".

7.1.1 Allocation Permanence

The allocation attribute STATIC can be given in a table-
attributes..

For example, suppose you declare the table STOCKS within a
procedure and you want it to have STATIC allocation. You can
write:

TABLE STOCKS STATIC (1:10);
BEGIN
ITEM NAME C 6:
ITEM QUOTE C 3;
END

7.1.2 Table Dimensions

The table dimensions are given in dimension-list. The dimensions
of a table specify the number of entries in the table and the
number of suvbscripts required in a reference to an item in the
table.

7v Table Declarations - 72 -

'I

Dimension-list is a sequence of one or more dimensions, as

follows:

dimension ,...

A tatble can have as many as seven dimensions. Entries are
arranged in a table so that the rightmost subscripts vary
faotest, from lower-bound to upper-bound.

7.1.2.1 Bounds

ror oach dimension of a table :., *..ýcer-bound and upper-bound can
be given. The form of a dimer,:uj %: is:

E: lower-bound :) upper-bound

The square brackets indicate that lower-bound is optional.

Each bound must be a compile*.t'vIe-formula of either status or
integer type. Only status i -a with default representations can
be used as bounds. Lower-' Rr.ist be less than or equal to
upper-bound.

A one-dimensional table is a table for which only a single
dimension is specified. For example, to declare a one-
dimensional table with lower-bound 1 and upper-bound 5, you can
wr- the following declaration:

TABLE TEST (1:5)r
ITEM SUCCESS U 5;

The table TEST contains the following five integers:

SUCCESS (1)
SUCCESS (2)
SUCCE;SS(3)
SUCCESS (4)
SUCCESS(S)

If only upper-bound is given, then the compiler assumes a lower-
bound based on the type of upper-bound. There are two cases, one
for type integer and one for type status.

7bI

S- 73 - 7: Table Declarations

ilL

If upper-bound is an integer, it must be a positive integer. In
this case, the coripiler assumes a lower-bound of 0. For example,
to declare a one-dimensional table with lower-bound 0 and upper.-
bound 5, you can write the following declaration:

TABLE TEST(5):
ITEM SUCCESS U 51

This table contains si~x entries. The first entry is the integer
SUCCESS(0) and the sixth entry is the integer SUCCESS(5).

If upper-bound is a status value, the status value must be
associated with only one status type. A status-value that is
associated with more than one status type is ambiguous in this
context and must be disambiguated by a conversion operator, as
discussed in Chapter 13 on "Conversion".

For an unambiguous status type, the compiler assumes that lower-
bound is the first status-constant in the status type of the
upper-bound. For example, suppose you have the following
declarations:

ITEM INDEX STATUS (V(IRELAND), V(ENGLAND), V(FRANCE));

TABLE VOYAGE4 (V(FRANCE))l
ITEM TIME U,

V(FRANCE) is a member of the status list associated with the item
INDEX. The compiler assumes that lower-bound is V(IRELAND). The
table VOYAGE4, therefore, has three entries. The first itein is
referred to as TIME(V(IRELAND)), the second as TIME(V(ENGLAND)),
and the third as TIME(V(FRANCE)).

7t Table Declarations - 74 -

7.1.2.2 Table Size

The total number of entries in a table is calculated by
* multiplying the number of entries in each dimension. If the

bounds of a dimension are integers, the number of entries in that
dimension is found by subtracting lower-bound from upper-bound
and adding 1. Suppose you have the following table declaration:

TABLE INSTALLATIONS (5,2:6,10t20)i
ITEM ID U;

The first dimension of the table INSTALLATIONS has lower-bound 0
and upper-bound 5 the second dimension has lower-bound 2 and
upper-bound 61 the third dimension has lower-bound 10 and upper-
bound 20. The number of entries, therefore, is:

(5-0+l)*(6-2+l)*(20-l0+l) - 6*5*11 a 330

That is, the table INSTALLATIONS contains 330 entries.

(If the bounds are status values, the number of entries is found
by subtracting the position of lower-bound in the list of status
constants from the position of upper-bound in that list and
adding 1.

Suppose you have the declarations:

ITEM SEASON STATUS
(V(SPRING),V(SUMMER),V(FALL),V(WINTER));

TABLE WEATHEh(88GV(FALL));
ITEM RAINFALL U;

The first dimension has lower-bound 0 and upper-bound 88 and thus
contains 89 entries.

The second dimension has lower-bound V(SPRING) and upper-bound
V(FALL). The status constant V(SPRlNG) is the first constant in
the status list given in the declaration of SEASON and the
constant V(FALL) is the third constant on that list. The second
dimension, therefore, contains 3 entries.

The total number of entries in the WEATHER table, therefore, is:

S(88-0+1)*(3-±+1) - 89*3 - 267

- 75 -7 Table Declarations

7.1.2.3 Maximum Table Size

The number of words occupied by a table must not exceed the
following quotient:

MAXBITS/BITSINWORD

MAXBITS is the implementation parameter that gives the maximum
value for a bit string and BITSINWORD is the implementation
parameter that gives the number of bits in a word.

7.1.3 Table-Preset

The initial values that a table is automatically assigned on
allocation are given by table-preset. Initializing a table is
described later in this chapter after the discussion of the entry
description.

7.2 ENTRY-DESCRIPTION

Entry-description describes the components that make up an entry.
An entry-description can be either simple or compound.

A table with a simple entry-description does not need the BEGIN
END brackets. It has only one item per entry. A table-
declaration with a simple entry-description has the following
form:)

TABLE table-name E table-attributes J

table-option

The square brackets indicate that table-attributes is optional.

A table-option is either a table item-declaration or a null-
declaration. A table item-declaration is the same as an item-
declaration, except that it can have a table-preset, which sets
one or more instances of the item, instead of an item-preset,
which sets only one instance. Table-presets are described later
in this chapter.

7s Table Declarations - 76 -

if

Consider the following example of a table with a simple entry-
description:

TABLE TRIAL (5)1
ITEM TIME U 10;

This declaration declares a table TRIAL, Table-attributes in
this declaration indicates that the table is dimensioned and
contains 6 entries, indexed from 0 through 5. Entry-description
indicates that each entry contains an unsigned ten-bit integer.
The integer in the first entry is referred to as TIME(0), the
integer in the second as TIME(l), and so on.

A compound entry-description encloses one or more table-options
between a BEGIN END pair. The form of a table-declaration with a
compound entry-description is:

TABLE table-name E table-attributes 1

BEGIN

table-option ...

END

The square brackets indicate that table-attributes is optional.
The rotation "..." indicates that any number of table-options can
be given within the BEGIN END pair.

Table-option is either an item-declaration or a null-declaration.

Consider the following example of a table declaration with a
compound entry-description:

TABLE SPECIFICATIONS (50);
BEGIN
ITEM LENGTH U 5:
ITEM WIDTH U 9;
ITEM HEIGHT U 5:
END

This table declaration declares the table SPECIFICATIONS, which
has one dimension. The entry-description in this table indicates
that each entry contains three items.

7D

- 77 - 7. Table Declarations

L ' •..-- . , N m • •_ m I w ,••• m l • • .

This table can be diagrammed as follows:

SPECIVICATIONS(50)-----------

SPECIFICATONS(1) -.--------- -
SPECIFICATIONS(0) ----------- +I ~II

+LENGTH------------+ I

------------------- + III 1 II

+HEIGHT -------...........,I , II
-+.---------------+ I

+WIDTH --------------+ ------- +
II + I-+
I --------------------------- 4

+---------------------------------------

The first item in the first entry is referred to as LENOTH(0),
the second item in the first entry as WIDTH(O), ant so on.

7.2.1 Unnamed Entry-.Descriptions

One additional form of the table-declaration is allowed, namely:
one with an unnamed entry-description. This form is:

TABLE table-name C table-attributes J

type-description

As an example of this form, consider the following table-
declaration:

TABLE SCORE(1000) U 5S

The table SCORE contains 1001 unnamed entries. These entries can
be referenced as SCORE(M), SCORE(l), and so on. The type of
these references, however, is table &nd so their use is limited.

71 Table Declarations - 78 -

t

77.3 CONSTANT TABLE DECLARATIONS

A constant table-declaration is a table-declaration preceded by
the word CONSTANT, as follows:

CONSTANT TABLE table-name table-attributes i

entry-description

Constant tables are always allocated in static storage, so
table-attributes in a constant declaration does not have an
allocation attribute. Any of the other table attributes,
however, can be declared, A constant table can be dimensioned or
undimcnsioned. A constant table must have some initial values,
but not all the components need be initialized. A partially-
initialized constant table can be used, for example, to set and
reset the constant part of a variable table.

The values in a constant table cannot change during program
execution. That. is, a component of a constant table cannot be
used in a context in which its value can be changed.

An example of a constant table is:

CO•STANT TABLE THRESHOLDS(1:-1);
ITEM LEVEL U - 2,12,26,45,99,20,315,500,1000,100•00

The elements of a constant table cannot be changed during the
course of program execution. These elements, however, cannot be

¶ used in a compile-time-formula.

7.4 TABLE INITIALIZATION

Some or all of the items in a table can be set to initial values.
The set of Initial values is called a table-preset. It can be
given either for an item within tlte table or Tn-t-e table-
attributes.

(7

S- 79 - 7: Table Declarations[
S•V

7.4.1 Table-Presets with Item-Declarations
The table-preset for an item follows the type-description, as

follows:

TABLE table-name C table-attributes]

BEGIN

ITEM item-name type-description table-preset;

END

Consider the following example, which uses a table-preset in an
item-declaration.

TABLE STOCKS(l:10);
BEGIN
ITEM NAME C 6 - "AAA", "ACE", "ACME";
ITEM QUOTE C 3;
END

This preset Anitializes the first three NAME items. That is, it
is equivalent to the following:

NAME(1)-"AAA"
NAME(2)-"ACE"
NAME (3) -"ACME"

7.4.2 Table-Presets in the Table-Attributes

A table-preset for a table is given as the last part of the
table-attributes, as described earlier in this chapter.

Tf a table-declaration containe a table-preset in its table-
attributes, then no table-presets can be given for the item-
declarations within the table.

71 Table Declar&tions - so -

Consider the following table-declaration, which includes a
table-preset in the table-attributes:

TABLE T0(1:3) - 1,7,2,4,3,8:
BEGIN
ITEM SPEED U;
ITEM DISTANCE U;
END

The above declaration is equivalent to the following declaration,
which contains table-presets with the items of the table:

TABLE T0(1,3)t
BEGIN
ITEM SPEWD U 1 l,2,31
ITEM DISTANCE U - 7,4,80END

Both versions uet the items as follows:

SPEED(1) - I

S~SPEED(2) - 2
DISTANCE(2) - 4
SPEED(3) - 3
DISTANCE(3) - 8

7.4.3 Values

A table-preset consists of a list of values, as follows:

value ,...

The notation ,... indicates that one or more values, separated
by commas, can be given.

Entries within a dimensioned table are initialized in order. The
first entry to be initial" i is the one with the lowest value of
each dimension index. Tn jxt entry is found by incrementing
the rightmost index. Th . process continues until the rightmost
index has taken on all the values in its range, then the index to
the left of the rightmost is incremented and so on.

(

- 81 - 71 Table Declarations

For example, suppose you have the following table:

TABLE GRID(l,2) - 1,2,3,4,5,6r
ITEM HITS U: -

The items are initialimed as follows:

HITS(MO) - 1
HITS(0,1) - 2
HITS(0,2) - 3
HITS(I,0) - 4
HITS(I,l) - 5
HITS(1,2) - 6

7.4.4 Omitted Values

If values are omitted in the preset, then the corresponding itemrn
are not set. An omitted value is indicated by a comma. Suppose
you want to omit setting some values in the GRID table. You can
write:.

TABLE GRID(l,2) w ,2,3,,5,6;

ITEM HITS U1

The items are initialized as follows:

HITS(0,0) (not initialized)
HITS(0,l) 2
HITS(0,2) - 3
HITS(l,o) (not initialized)
HITS(l,l) - 5
HITS(1,2) - 6

7.4.5 Preset Positioner

A positioner Is used to indicate the starting position for a set

of one or more values. The form is:

POS (index, ... : value,

The notation ",..." indicates that one or more indexes or values,
separated by commas, can be given. 4-,r,

7: Table Declarations - 82 -

The number of indexes given within the parentheses must agreewith the number of dimensions given for the table. The indexes
are subscripts and must lie within the valid range given in thedimensions.

An index is either a compile-time-integer-formula or a compile-
time-status-formula, depending on whether the dimensions are
integer or status types.

For example, suppose you want to initialize items 1, 2, 3, 25,
26, and 30. You can use the following table-preset in the
table-declaration:

TABLE SCHOOLSYSTM(l:100)i
ITEM CLASS'SIZE U - 16,21,24,POS(25):31,33,POS(30):lS1

The first three values are assigned to the first three items of
the table (1, 2, and 3), the next two values are assigned with
respect to the positioner 25 (31 and 33)and the final value with
respect to the positioner 30. That is, the preset sets the
following itemst

CLASS'SIZE(l) - 161
CLASS'SIZE(2) - 21;
CLASS'SIZE(3) - 24;
CLASS'SIZE(25) w 311
CLASS'SIZE(26) - 33;
CLASS'SIZE(30) - 18r

Suppose you have a two-dimensional table, as follows:

TABLE MATRIX(4,4);
ITEM ELEMENT F;

You can initialize the diagonal as follows:

TABLE MATRIX(4,4) - POS(0,0): 0,
POS(ii): 0,
POS(2,2) t 0,
POS(3,3): e,
POS(4,4): 0O

ITEM ELEMENT F;

8 (

S- 83 - 7: Table Declarations

7.4.6 Repetition-Counts

A repetition-count can be used in a preset to set a number of
items to the same value. The form of a repetition count is:

repetition-count (list-element

The notation ",... indicates that one or more list-elements,
separated by commas, can be given.

Repetition count is a compile-time-integer-formula that Indicates
how many times to repeat the list-elements within the
parentheses. A list-element can be a value or a repetition-count
followed by a parenthesized list, as shown above.

For example, suppoce you want to set al.l the Items of a table to
zero. You can use a repetition-count in the table-preset, as
follows.

TABLE SCHOOLSYSTEM(I:100)r
ITEM CLASS'SIZE U - 100(0);

You can set the first 50 items to I and the second 50 to 2, as
follows:

TABLE SCHOOLSYSTEM(lilOO);
ITEM CLASS'SIZE U a 50(l),50(2);

You can set the odd-numbered items to 1 and the even-numbered
items to 0, as followat

TABLE SCHOOLSYSTEM(l: 100)
ITEM CLASS'SIZE U - 50(1,0);

"You can set the items in SCHOOLSYSTEM in sets of 5. Suppose the
first four values in each set are 26 and the fifth value is 22.
You can use the following table-preset, Which contains a nested
repetition count.

TABLE SCHOOLSYSTEM(1:100):
ITEM CLASS'SIZE U - 20(4(26),22);

7s Table Declarations - 84 -

-f

Suppose you want to set a block of ten entries to zero, with each
block beginning at various positions in the table. You can write
the following declaration:

I TABLE SCHOOLSYSTEM(1:100),
ITEM CLASS'SIZE U - 10(0), POS(50)¾10(O), POS(70):10(0);

This declaration sets entries 1 through 10, 50 through 59, and 70
though 79 to zero.

(

- 85 - 7: Tabl,' Declarations

Oil -fIt

Chapter 8

BLOCK DECLARATIONS

A block groups items, tables, and other blocks into contiguous
storage. A block also gives a collection of data objects a name
so that the data can be manipulated as a whole. Blocks can, for
example, be passed as parameters tr declared external.

8.1 BLOCK-DECLARATION

The form of a block-declaration is:

BLOCK block-name

block-body

Block-body describes the components that make up the block.
Block-body can be either simple or compound. A block with a
simple block-body has only one declaration:

BLOCK block-name

declaration

Declaration is a data declaration or a null declaration.

A block-declaration with a compound block-body has the form:

BLOCK block-name
BEGIN

block-option ...

END

Block option can be a data, overlay, or null declaration.
Overlay declarations are deicribed in Chapter 19 on "Advanced
Topics".

- 87 - 8: Block Declarations

MoNam PAGM a•AI,,K- nUmv

Suppose you use the three items CODE, KEY, and LIMIT in
connection with the table INVENTORY and you want to ensure that
the items and the table are allocated togethrer so that your table
manipulating routine can access them efficicntly. Consider the
following example of a bloch-declaration:

BLOCK INVENTORY'GROUPI
BEGIN
ITEM CODE U;
ITEM KEY U;
ITEM LIMIT U;
TABLE INVENTORY(2 000)

BEGIN
ITEM ORDER'NUMBER U;
ITEM VISUAL'ID C 5;
ITEM ONHAND U;
END

END

This block can be diagrammed as follows.

+INVENTORY 'GROUP --------------------+

+CODE-------------

+----------------+

+KEY --------------+I I
+-----------------+

+LIMIT------------+

- -----------------+

I +INVENTORY ----------------
+ORDER'NUMBER----+

I -------------------- +
II iI

+VISUAL'ID -------+

I -------------------- +
Ii II

+ONHAD -----------+

I -------------------- +

I ------------------------------ +
+------------------------------------+

8s Block Declarations - Ba -

Because the items and tables are enclosed in a block, the
compiler allocates them together. However, the compiler is free
to allocate the data within the block in any order. If the order
of allocation within the block is important, you can preserve it
by giving an order directive. Tne order directive is described
in Chapter 16 on "Directives".

8.1.1 Nested Blocks

Since a data-declaration can be a block-declaration, block-
declarations can be nested.

For example, suppose you want to specify the grouping of your
data as follows:

BLOCK MAINGROUP;
BEGIN
ITEM MASTER Ur
ITEM MASTERCODE U;
ITEM MASTERID C 5;
TABLE MASTERTAB(10 ,10):

ITEM RECORD U;
BLOCK SUBGROUP:

BEGIN
ITEM MINOR U;
ITEM MINORCODE U;
ITEM MINORID C 5:
TABLE MINORTAB(100, 100):

ITEM SCORE U;
END

END

The compiler allocates this data together because of the block
MAINGROUP. Further, it allocates the items MINOR, MINORCODE, and
MINORID with the table MINORTAB because of the block SUBGROUP.

- 89 - 8: Block Declarations

i ' ' -L ."

8.1.2 Allocation Permanence

To cause a block declared within a subroutine to have static
allocation, the STATIC attribute is given in the declaration of
the block following block-name, as shown in the following
fragment.

BLOCK block-name E STATIC)

block-body

The square brackets indicate that STATIC can be omitted.

Only blocks that hýave static allocation, either explicitly or by
default, can contasio constant declarations or declarations with
presets.

A data declaration within a block cannot include an allocation
attribute.

8.1.3 initial Values

Initial values can be given for the data within a block that has
static allocation by giving presets with the data declarations in
the block.

For example, suppose you want to give the items CODE and LIMIT in
the Block INVENTORY'GROUP the initial values 0 and 180 and you
want to initialize the first 180 entries of the table. You add
presets to the items and table as shown:

BLOCK INVENTORY'GROUP;
BEGIN
ITEM CODE U = 01
ITEM KEY U;
ITEM LIMIT U - 180;
TABLE INVENTORY(2000) - 1000(,"XXXXX",O);

BEGIN
ITEM ORDER'NUMBER U;
ITEM VISUAL'ID C 5;
ITEM ONI4AND U;
END

END

8: Block Declarations - 90 -

The same rule applies to blocks within blocks. For example,
suppose you want to preset the items MASTER and MINOR:

BLOCK MAINGROUP;
BEGIN
ITEM MASTER U - 221
ITEM MASTERCODE U;
ITEM MASTERID C 5;
TABLE MASTERTAB(10,l1();

ITEM RECORD U1
BLOCK SUBGROUP;

BEGIN
ITEM MINOR U - 61
ITEM MINORCODE U;
ITEM MINORID C 5:
TABLE MINORTAB(l00, 100)7

ITEM SCORE U;
END

END

The block declaration includes presets that set MASTER to 22 and
MINOR to 6.

9D

bi

(,

- 91 - 8: Block Declarations

U
Chapter 9

TYPE DECLARATIONS

A type-declaration declares a name for a user-defined type. The
resulting name can then be used in declaring data objects in a
convenient and uniform way.

A type-name is considered to be an abbreviation for its
associated item-description, table-description, or block-
description. It can be used in a declaration to give the type
of the data name being declared or in a conversion operator todefine the type to which the operand is to be converted.

9.1 TYPE-DECLARATION

A type-declaration declares a new type by associating a name with
a data description. The form of type-declaration is:

TYPE type-name data-description I

Data-description can be ai, item, table, or block description.

For example, you can declare an item type-name by giving a type-

description in a type-declaration, as follows:

TYPE MODIFIER F 201

You can declare a table type-name by giving a table data-
description in a type-declaration, as follows:

TYPE ARRAY
TABLE (20,20)1

ITEM U POINT;

93 Type Declara .,

- 93 - 9. Type Declarations

S -• ,, , . Li..: i "' • • ' •

You can declare a block type-name by giving a block data-
description in a type-declaration, as follows:

TYPE OUTPARS
BLOCK

BEGIN
ITEM DISTANCE U;
ITEM SPEED U;
TABLE SIGHTINGS(100);

BEGIN
ITEM LONG F;
ITEM LAT F;
END

END

A type-name can also be declared in terms of another, previously
declared, type-name. For example, an item-type-name can be
declared as follows:

TYPE type-name type-name';

For example, you can declare another item type-name, as follows:

TYPE SECONDMOD MODIFIERr

Similarly, you can declare other table type-names by giving the
name of a previously defined table. That is, a table type-name
can be defined as follows:

TYPE table-type-name TABLE table-type-name

For example:

TYPE MOREPARS TABLE OUTPARSr

A type-declaration does not involve the allocation of storage.
It records the description of the type. When the type is used in
a data-declaration, storage is allocated.

The following sections consider item, table, and block type-
declarations, in detail.

91 Type Declarations - 94 -

9.2 ITEM TYPE-DECLARATION

An item type-declaration has the form:

TYPE type-name type-description 1

Type-descriptions were discussed in Chapter 6 on "Item
Declarations".

A type-name declared in this way can be used in an item-
declaration in place of type-description. This alternate form of
item-declaration is:

ITEM item-name type-name

For example, suppose you frequently use a l-bit unsigned integer
for counters. You can declare the type-name COU¶JTER as follows:

TYPE COUNTER ITEM U 10;

Then each time you declare a counter, you can give the type-name
rather than the item-description, thus:

ITEM CT1 COUNTER;
ITEM CT2 COUNTER"

CTl and CT2 are declared to be 10-bit unsigned integers by the
type-name COUNTER.

The use of a type-name in this case provides documentation about
the use of the item, ensures that all counters have the same type
and allows you to make a sweeping change at a later time with a
minimum of effort.

9.2.1 Allocation and Initial Values

Information about allocation and initial values cannot be
included in the declaration of a type-name. However, this
information can be given in a declaration that uses a type-name.

- 95 - 9: Type Declarations

For example, suppose you declare a counter CLOCKTICK within a
procedure and you want it to have static allocation and an
initial value of 0. You can write:

ITEM CLOCKTICK STATIC COUNTER - 0;

The declaration uses the type-name COUNTER, introduced in the
previous section of this chapter, to declare CLOCKTICK.

9.3 TABLE TYPE DECLARATIONS

A table type-declaration has the form:

TYPE type-name

TABLE E (dimension-list))

entry-description

The square brackets indicate that the parenthesized dimension-
list is optional.

Entry-description gives the form of each entry in the table. As
in a table-declaration, entries can be simple, compound, or
unnamed.

A table type-name can be used in a table declaration In place of

entry-description as followL:

TABLE table-riame C STATIC J [(dimension-list)]

type-name [table-preset)

The names supplied by a type are potentially ambiguous and must
be qualified by a pointer when used.

9t Type Declarations - 56-

The type-declaration capability can be used to declare a number
of tables with the same structure. Suppose, for example, that
you have three tables with the same structure. You can define a
type-name and then declare each of the three tables in terris of
that type-name. Suppose the type-declaration declares a table
type-name, as follows:

TYPE PARS'
TABLE;

BEGIN
ITEM PARTNUMBER U 5;
ITEM ONHAND U 10;
ITEM ONORDER U 101
END

You can now define tables using the type-name PART, as followst

TABLE BOLTS PART;
TABLE NUTS(100) PART;
TABLE WRENCHES(10,20) PART;

BOLTS is a table of type PART. NUTS is a one-dimensional table,
each of whose entries is of type PART. WRENCHES is a two-
dimensional table, each of whose entries is of type PART.

Observe that three tables in your program now have items with the
names PARTNUMBER, ONHAND, and ONORDER. To reference one of these
names, you must qualify it to make it unambiguous.
Qualification is achieved by the use of pointers in JOVIAL (J73).

9.3.1 Dimension and Structure

Dimensions and information about the table layout can be given in
a type-declaration. A table, however, can have at most one
dimension-list and one layout. Thus, if a table declared with a
type-name has a dimension-list, then the type-declaration must
not have a dimension-list. Conversely, if the type-declaration
has a dimension-list, then the table-declaration using the type-
name must not have a dimension-list.

- 97 - 91 Type Declarations

For example, you can define a type with dimensions as follows:

TYPE SPECIFICATIONS
TABLE (100);

BEGIN
ITEM LENGTH U;
ITEM WIDTH U;
ITEM HEIGHT U;
END

This declaration defines a type with 101 entries. Each entry
contains the items LENGTH, WIDTH, and HEIGHT.

Now you can declare a table using this type-name:

TABLE TRUCK SPECIFICATIONS 7

The table TRUCK contains 101 entries as described by the type-
name. You cannot, however, declare a table and Include a
dimension-list in the table-attributes if you use the type-name
SPECIFICATIONS in the declaration.

Control over bit]nyouts, if necessary, can be accomplished in
JOVIAL (J73). This capability is discussed in Chapter 19 on
"Advanced Topics".

9.3.2 Allocation and Initial Values

As with the item type-declaration, allocation permanence and
initial values cannot be given with a table type-declaration.
However, this information can be given in a table declaration
that uses the type-name.

For example, suppose you want to declare a ten-entry table type
name with static allocation and initialized to zero. You can
declare the ten-entry table as a type-name, as follows:

TYPE DECADE TABLE(l:l0);
ITEM EVENTS Ui

Then you can declare the table with static allocation and initial
values of zero, as follows:

TABLE FIRST'DECADE STATIC DECADE -10();

9t Type Declarations - 98 -

9.3.3 Like-Option

A like-option perynits the use a previously declared type-name
in the declaration of another tpe-name. Like-option follows
dimension-list (if present) in the type-declaration as follows:

TYPE type-name
V

TABLE E (dimension-list)) [like-option i

entry-description

The form of the like-option is:

LIKE table-type-name

Suppose you want to define two different table types. Each has a
common part, namely the first five items. The additional items
in each table, however, are different. You can give a type-
declaration for the common part and then use the like-option in
the two table type-declarations, as follows:

TYPE IDENTIFICATION TABLET
BEGIN
ITEM NAME C 10;
ITEM RANK C 5;
ITEM SERIALNUMBER C 12;
ITEM ACTIVEFLAG B 1;
END

TYPE INACTIVE TABLE
LIKE IDENTIFICATION;
ITEM RETIREDATE C 6;

"TYPE ACTIVE TABLE
LIKE IDENTIFICAT-ON;
BEGIN
ITEM STATION C 10;
ITEM REVIEWDATE C 6;
END

The INACTIVE table type contains the items NAME, RANK,
SERIALNUMBER, ACTIVEFLAG, and RETIREDATE. The ACTIVE table type
contains the items NAME, RANK, SERIALNUMBER, ACTIVEFLAG, STATION,
and REViEWDATE.

9D

-ii
- 9 9 TyeDcaain

9.3.3.1 Dimensions and Like-Options

If the type-name given in the like-option contains a dimension,
that dimension applies to the declaration that includes the
like-option.

Suppose you have the type SPECIFICATIONS with a dimension list of
100, indicaing 101 entries, and another type DESCRIPTION, which
references SPECIFICATIONS in a like-option, as follows:

TYPE SPECIFICATIONS TABLE(100);
BEGIN
ITEM LENGTH U 6;
ITEM WIDTH U 6;
ITEM HEIGHT U 6;
END

TYPE DESCRIPTION TABLE
LIKE SPECIFICATIONS:
BEGIN
ITEM WEIGHT U;
ITEM COLOR U;
END

A table declared with type DESCRIPTION contains 101 entries.
Each entry contains the items LENGTH, WIDTH, HEIGHT, WEIGHT, and
COLOR.

Since a table can have only one dimension list, a type-
declaration with a like-option for a dimensioned type cannot
contain a dimension list. Similarly, a dimensioned table cannot
have a like-option for a dimensioned type.

9: Type Declarations - 10 -0

9.4 BLOCK TYPE DECLARATIONS

A block type-declaration has the form:

TYPE type-name

BLOCK

block-body

A type-name declired in this way can be used in a block-
declaration in £ ,ce of block-body, as follows:

BLOCK block-name C allocation-spec I type-name

For example, suppose you have a standard method for managing
tables and associated with each table you maintain a size and
flag item. You can combine this information in a block type as
follows:

TYPE INVENTORY
BLOCK

BEGIN
ITEM MAXSIZE U,
TABLE PARTS (49);

BEGIN
ITEM ID C 10;
ITEM COUNT U;END

ITEM FLAG B;
END

1. Then you can declare blocks using that type, as follows:

BLOCK XSTORE INVENTORY;
BLOCK YSTORE INVENTORY;

The blocks XSTORE and YSTORE each contain a size, flag, and
table.

As with table type-declarations, the names supplied by the type
are potentially ambiguous and must be qualified by a pointer when
referenced.

,(

- 101 - 9* Type Declarations

-]

- *; l" , A

9.4.1 Initial Values

A block-declaration that includes a type-name can include a
block-preset, as followss

BLOCK block-name a allocation-spec type-name

[block-preset J

The square brackets indicate that the allocation-spec and the
block-preset are both optional.

A block-preset consists of a sequence of values. Like the
table-preset, a block-preset can contain repetition counts and
positioners. In addition, a block-preset can have parenthesized
table-presets or block-presets. A table- or block-preset within
a block is enclosed in parentheses.

Suppose you want to declare initial values for the block YSTORE.

You can write:

BLOCK YSTORE INVENTORY = 50, (50(" ",0)),FALSEj

This declaration declares a block YSTORE with an item MAXSIZE
that has an initial value of 50, a table whose items are set to
the blank string and 0, respectively, and a flag that is set to
FALSE.

9.4.1.1 Omitted Values

An omitted value in a block-preset indicates that the
corresponding item, table, or block remains uninitialized.

Suppose you want to set only the first five entries of the table
in the block and you don't want to net tho value of MAXSIZE or
FLAG. You can write the following declarations

BLOCK XSTORE INVENTORY - ,(5(' ',OM)

This declaration does not give MAXSIZE or FLAG an initial value,
but it provides initial values for the items ID and COUNT for
entries 0 through 4.

9: Type Declarations - 102 -

*3

Chapter 10

DATA REFERENCES

The way in which data is referenced depends on its declaration.
Three kinds of data reference can be made, namely:

Simple
Subscripted
Pointer-qualified

The following sections discuss each kind of data reference.

10.1 SIMPLE REFERENCES

A simple reference designates a data object that has only one
instance. A simple reference can reference an item, a table, a
block, or an item in an unsubscripted table. The form of a
simple reference is the name of the declared object, as followst

name

Consider the following declarations:

ITEM LENGTH Ur
TABLE STATISTICS;

BEGIN
ITEM COUNT U;
ITEM WEIGHT F;
END

BLOCK PARTLIST;
BEGIN
ITEM DATE C 6;
TABLE PARTS(100);

BEGIN
ITEM ID C lt
ITEM INVENTORY U1
END

END

(A simple reference can be made to the item LENGTH, the table
STATISTICS, the items COUNT and WEIGHT, the block PARTLIST, the
item DATE and the table PARTS. All these objects can be located
by a such a reference.

- 103 - 10t Data References

W imp

The table PARTS, however, contains 101 entries. Each entry
contains an instance of the item ID and the item INVENTORY. A
reference to ID or INVENTORY, therefore, must include a subscript
to indicate which in3tance is indicated.

10.2 SUBSCRIPTED DATA REFERENCES

If a data object is declared within a dimensioned table, then
there are as many instances of that object within the table as
the dimensions indicate. A reference to that object must include
subscripts to indicate the instance.

The form of a subscripted data reference is:

name (subscript ,...)

The sequence ",..." indicates that one or more subscripts can be
given separated by commas.

A reference to a table entry or a table item must contain the
same number of subscripts as there are dimensions in the table
declaration. Further, each subscript must lie within the range
specified by the bounds of the dimension.

For example, consider again the table PARTS:

TABLE PARTS(100))
BEGIN
ITEM ID C 101
ITEM INVENTORY Ur
END

This table has one dimension, with lower-bound 0 and upper-bound
100. A reference to ID or INVENTORY must contain a single
subscript in that range. For example, a reference to the item ID
in the first entry is:

ID(0)

10i Data References - 104 -

~, .

As another example, consider the following declaration:

TABLE TRIALX(5,2,6,1':20);
ITEM HITS U;

The table TRIALX has three dimensions. Thus, a reference to an
item in table TRIALX must use three subscripts and the value of
each subscript must lie within the range specified by the
dimensions, as follows:

HITS (2,2, 12)

The first subscript 2 lies within the bounds (0:5) for the first
dimension. The second subscript 2 lies within the bounds (2:6)
for the second dimension. The third subscript 12 lies within the
bounds (10:20) for the third dimension.

10.3 QUALIFIED DATA REFERENCES

A reference can be qualified by the use of a pointer.

Qualification can always be used in referencing a name, but in
some cases qualification is necessary.

If a table is declared using a type-name, the names of the
components of the table are potentially ambiguous and must be
qualified by a pointer when referenced.

10.3.1 Pointer-Qualified References

A pointer in JOVIAL (J73) can be used to locate a particular
table and, in this way, make a reference unambiguous.

A pointer-qualified reference contains a dereference. A
dereference treats the data object found at'the addreas given by
the value of the pointer as an object of the type associated with
the pointer.

- 105 - 101 Data References

, d,'. I . . .• ,,,; ,
4

4 uIi' -4- - " *' 'ý "

The forms of a pointer-qualified reference are:

name [(subscript-list) I dereference

dereference E (subscript-list) I

A dereference consists of an 4" character followed by a pointer
or a parenthesized pointer formula. That is, the two forms of a
dereference are:

@ pointer

@ (pointer-formula)

A pointer used in a dereference must be a typed pointer that
points to an object of that particular type..

10.3.1.1 Pointers and Ambiguous Names

When two or more tables are declared using a type-name,
qualification must be used to make the names of the components
unambiguous.

Consider the fol3owing declarationst

TYPE DIMENSIONS
TABLE

BEGIN
ITEM HEIGHT Ur
ITEM WIDTH Ur
ITEM LENGTH Ui
END

TABLE ROOM DIMENSIONS1
TABLE BOOKCASE DIMENSIONSi
ITEM PTR P DIMENSIONS1

1 D-r1

10: Data References - 106 -

S~~. •• , m • ii•1- -

The pointer PTR is a typed pointer of type DIMENSIONS. It can be
used, therefore, to locate items in a table declared with that
typp. Assuming the pointer is set to point to the ROOM table, a
reference can then be made unambiguously to the item LENGTH in
that table using a dereference, as follows:

LENGTH @ PTRi

The LOC built-in function, which is described in Chapter 12 on
"Built-in Functions" is used to obtain a pointer value. For
example, to get a pointer to the table ROOM, you can use the LOC
function, as follows:

PTR - LOC(ROOM)l

The LOC function returns a typed pointer if its argument is a
data object declared using a type-name. In this case, the LOC
function returns a pointer of type DIMENSIONS.

Suppose the table declared using the type-name DIMENSIONS iL a

dimensioned table, as follows:

TABLE FACTORY(9) DIMENSIONS;

The LOC function can be used to set a pointer to any given entry
in that table. For example, suppose you want to reference LENGTH
in the first entry of the table FACTORY. You can obtain a
pointer of type DIMENSIONS by using the LOC function, as follows:

PTR - LOC(FACTORY(M))l

You can then reference LENGTH as follows:

"h LENGTH @ PTR

Suppose a type-name describes a dimensioned table. Consider the
following declarations:

TYPE SPECIFICATIONS
TABLE (lt1:0)y DIMENSIONi

TABLE BOXES SPECIFICATIONS1
ITEM SPECPTR P SPECIFICATIONSi
ITEM PTR P DIMENSIONSr

The table BOXES and the pointer SPECPTR have type SPECIFICATIONS.
Each entry in the table has the type DIMENSIONS.

o- 17 - 10: Data References

II '

=mm nzw

"-4,

The pointer SPECPTR can be get to point to the table BOXES, as

follows:

SPECPTR - LOC(BOXES):

It can then be used to access the item LENGTH in the first entry
of that table, as follows:

LENGTH(1) @ SPECPTR

Another way of referencing LENGTH in the first entry of the table
BOXES is to use PTR, which has associated with it type
DIMENSIONS, to point to a particular entry, as followas

PTR a LOC(BOXES(1)),

The reference, then is:

LENGTH @ PTR

10.3.1.2 Examples

Consider the following declarations:

TYPE DATA
TABLE,

ITEM POINT Ur

TABLE FIRST DATA,
TABLE SECOND DATA,

ITEM DATAPTR P DATAr

The value of the pointer DATAPTR is set by the LOC function, as
follows:

DATAPTR - LOC(FIRST)

The LOC function returns a pointer of type DATA that points to
the Lable FIRST.

10: Data References -108-

) •.,.. . :,•!

Some examples of pointer-qualified references are:

@ DATAPTR -- This pointer-qualified reference
references the entire tdble -- every-
thing to which DATAPTR points.

POINT 0 DATAPTR This pointer-qualified reference
references the item POINT in the
t.able to which DATAPTR points. In this
way, the item POINT in table PIRST is
distinguished from the item POINT in
the table SECOND.

As another example, consider the following declarations

TYPE DIMENSIONS
TABLE (1:15)t

BEGIN
ITEM LENGTH U1
ITEM HEIGHT U;
ITEM WIDTH U;
END

TABLE ROOM DIMENSIONS;
ITEM DIMPTR P DIMENSIONS;

The value of the pointer DIMPTR is set as follows:

DIMPTR - LOC(ROOM)t

The LOC function returns a pointer of type DIMENSIONS that points
to the table ROOM.

Some examples of pointer-qualified reference are:

@ DIMPTR(13) This pointer-qualified reference
references the entire thirteenth entry
of the table to which DIMPTR points,
(in this case, the table ROOM).

LENGTH(l1) @ DIMPTR This pointer-qualified reference
references the item LENGTH in the
eleventh entry in the table to which
DIMPTR points.

- 109 - 10: Data References

4 -.

Chapter 11

FORMULAS

A formula describes the computation of a value. The value of aformula has a type associated with it.

This chepter begins with some general facts about formulas.
After that, the remaining sections describe the formulas for each
type class: integer, float, fixed, bit, character, status,
pointer, and table. For each of these, rules are given for
determining the value of a formula and the details of its type.
Then, a discussion of compile-time-constant formulas is given.

11.1 FORMULA STRUCTURE

A formula is either a single operand or a combination of
operators and operands. A formula has one of the fo•lowing{ forms:

left-operand infix-operator right-operand

prefix-operator right-operand

operand

The type of a formula is determined by the types of its operands.
The type classes of the operands of a formula must be the same.

Some examples of formulas area

ALPHA ALPHA + 1
FLAG OR STATBIT NOT MASK

.LOC(BOLTS) SIZE(INDEX) 4 BITSIHWORD
(ALPHA+l) / (BETA * GAMMA)

- ill - ll Formulas

S... • , 1 ,•J ,l ,i

JON9"AS3 N694@t IiMM
- WKW f' '

The first formula is the operand ALPHA. The second formula is the
sum of two integer operands. The next two formulas are~bit
formulas. The next is a function call. The next is a relational
expression. The last of these examples is a formula whose main
operation is diviiion (as indicated by "/") and whose operands
are, themselves, parenthesized formulas. By means of this
"nesting" of formulas, one within another, complicated
calculations can be written as a single formula.

11.1.1 Operators and Operator Precedence

The JOVIAL (J73) operators are:

Arithmetic Operators + - * / ** MOD

Logical Operators NOT AND OR XOR EQV

Relational Operators < > - <U >0 <>

The operator "+" or "-" can be used either as an infix operator
or as a prefix operator. The operator "NOT" can be used only as
a prefix operator. The remaining operators can be used only as
infix operators.

The order in which the operators and operands are combined is
determined by the precedence of the operators. The precedence of
the JOVIAL (073) operators is given in the following table:

Operators Precedence

•/MOD4

+ -3

(> 0 <= >m > 2

NOT AND OR XOR EOV 1

11: Formulas 112

For example, consider the following formula:

PI*RADIUS**2

The exponentiation operator has precedence 5, and the times
operator has precedence 4. Since the exponentiation operator has
the higher precedence, it is evaluated first, and then the result
is multiplied by PI. Thus the formula just given is equivalent
to the following:

PI*(RADIUS**2)

The effect of precedence on a formula can always be made explicit
by adding parentheses to the formula.

Operator precedence does not specify the order in which operators
of the same precedence are evaluated. Within a given level of
parentheses, the order of evaluation of operators of equal
precedence is not specified unless a ILEFTRIGHT directive is in
effect. The compiler, in evaluating operators of equal
precedence, must observe the laws of commutivity, associativity,
and distributivity. That is, the resulting formula must be
algebraically equivalent to the original formula.

For example, consider the following formula:

01+Q2+03

The compiler can compute 02 + 03 first and then add 01 to the
result or it can compute 01 + 03 and then add 02 or it can use
any computation that it algebraically equivalent to the above
sum.

1 -F u

-113 11:l Formulas

1

As another example, consider the following formula:

QE**BETA**2

The evaluation of the operators in this case cannot be rearranged
because the resulting formula is not equivalent. (QE**BETA)**2
is not equivalent to QE**(BETA**2). This formula, therefore, is
evaluate(I from left to right. It is equivalent to the following
parenthesized version:

(QE**BETA)**2

Operator precedence can be overridden by parentheses. For
example, suppose you want to express RADIUS as the product of two
other radii Rl and R2. You can write:

PI*(Rl+R2)**2

The parentheses force the addition of Rl and R2 to be performed
first. Then the exponentiation is performed. Finally the result
in multiplied by P1.

You can, and should, use parentheses when you do not feel the
grouping of operands with operators is obvious. For example,
consider the following formula:

(w3/2)/BASE

This formula has the same meaning without the parentheses. But
the formula is more readable with the parentheses because most
people do not know, without consulting the rules piven here,
which division is performed first. The use of such "extra"
parentheses does not slow down execution of the program.

11: Formulas - 114 -

11.1.2 Operands

Each operand of a formula can be any of the following:

Form Examples

Literal 28.3 'Message 3'
Implementation Parameter BITSINWORD
Variable COUNT LENGTH(I)
Constant PI
Function Call FACTORIAL(NN)

Formula) ((ALPHA+I)**2)
Conversion-operator (formula) U(2*SPEED) (*B 3*)(SPEED)

Conversion operators are discussed in Chapter 13 on "Conversion".
Function calls are discussed in Chapter 15 on "Subroutines".

Each operator imposes certain restrictions on the type and value
of its operand. For example, the addition operator cannot be
applied to a character-.literal, and the division operator cannot
have zero ag its second operand. These restrictions are given
later in this chapter, when the various types of formula are
described.

11.1.3 Formula Types

The value of each formula has a type (that is, a type class and
attributes).

Formulas are classified according to the type of thb value of the
formula. Under this classification scheme, the permitted types
of formula are!

Integer Formulas
F]oat Formulas
Fixed Formulas
Bit Formulas
Character Formulas
Status Formulas
Pointer Formulas
Table Formulas

The remainder of this chapter describes the types of formula

according to this classification.

- 115 - li Formulas

11.2 INTEGER FORMULAS

An integer formul.i is a formula whose operands are both of an
integer type and whose operator is one of the following:

+ addition
subtraction

• multiplication
/ division
S* exp~onentiation

MOD modulus

The type of the result of an integer formula is:

S n

The size, n, is the multiple of BITSINWORD minus 1 used for the
larger operand.

For example, suppose you have the following declarations:

ITEM LENGTH U 20;
ITEM HEIGHT U 10i

If you combine HEIGHT and LENGTH in a formula, the type of the
result is:

S n where if BITSINWORD is 16, n is 31 (2*16-l)
if BITSINWORD is 24, n is 23 (1*24-l)
if BITSINWORD is 32, n is 31 (l*31-)

and so on.

More examples are given later in this section.

11.2.1 Integer Addition and Subtract-'on

For an integer formula with "+" or "-" as an infix operator, the
result of the formula is the sum or difference of the operands,
respectively,

For an integer formula with "4" or "-" as a prefix operator, the
result of the formula is the operand or the negation of the
operand, respectively.

lls Formulas - 116-

-I.,,T.

I

11.2.2 Integer Multiplication and Division

For an integer formula with the "*" operator, the result is the
product of the operands.

For an integer formula with the "/" operator, the result is
computed exactly and then truncated, if necessary. No truncation
is required if the quotient is an exact integer. Integer division
is always truncated even if both operands are declared with a
round attribute. Truncation is performed in a machine-dependent
manner, either towards zero or towards minus infinity. If the
truncation is towards minus infinity, 2.5 is truncated to 2 and
-2.5 is truncated to -3. If the truncation is towards zero, 2.5
is truncated to 2 and -2.5 to -2.

The value of the second operand of 7"/ must not be zero.

11.2.3 Integer Modulus

For an integer formula with the "MOD" operator, the result is the
remainder of the division of the first operand by the second.
Suppose the values of the operands are vl and v2. Then the value
of the formula is:

vl - (vl/v2) * v2

where "/" is integer division as defined in the previous section.
Examples will be given later.

The value of the second operand of the MOD operator must not be
zero.

11.2,4 Integer Exponentiation

An integer epentiation formula is a formula whose operator is
" *"and () who perands are of type integer (as required for
all integer formulas) and (2) whose right operand has a non-
negative value that can be calculated at compile time.

- 117 - lli Formulas

40 Now

The value of an integer exponentiation formula is the same as the
value produced by repeated multiplications. If the second operand
is n, the result of the formula is the product obtained by
multiplying the first operand by itself (n-1) times. If n is 0,
the result is 1.

11.2.5 Examples

Here are examples of integer formulas. For each example, the data

type and value of the result is also given.

Suppose the following dec3arations apply*

ITEM BALANCE S 10 - St
ITEM CONTRIBUTIONS U 20 - 6;
ITEM PROFITS U 15 -101
ITEM FACTOR F - 2.671

Assuming BITSINWORD is 16 and the items still have their
initialized values at the time the formulas are evaluated, the
foliowing formulas produce the indicated results:

Formula Result

BALANCE + PROFITS Value 15, type S 15.

BALANCE-S(FACTOR) Value 3, type S 15. The floating
item FACTOR is converted to a signed
integer by the conversion operator •)
S. The conversion truncates the
value of FACTOR to 2.

BALANCE*CONTRIBUTIONS Value 30, type S 31.

PROFITS / 3 Value 3, type S 15.

PROFITS MOD 3 Value 1, type S 15.

11.3 FLOAT FORMULAS

A float formula is either a formula whose operands are both of
type float or a float exponentiation formula. A float
exponentiation formula is any formula with the "**" operator that
is not an integer exponentation formula, as defined previously.

ll Formulas - 118 -

•¶

The operator in a float formula must be one of the following:

+ addition
- subtraction
S* multiplication
/ division
• * exponentiation

The MOD operator is not defined for float operands.

The type of the result of a float formula is:

F n

The precision, n, of the formula is the precision of the
operands. If the precisions of the operands are not the same,
then the larger precision is used for the type of the result.

Floating formulas are evaluated in an implementation-dependent
manner with respect to how exact results are approximated to the
implemented precision. The round-or-truncate attribute associated
with variables or constants used as operands does not affect the
computation of a floating formula result.

11.3.1 Float Addition and Subtraction

For a float formula with '4"+÷ or "-" as infix operator, the result
f of the formula is the sum or difference of the operands,

respectively, rounded or truncated In an implementation-dependent
manner.

For a float formula with "+" or "-" as prefix operator, the
result of the formula is the operand or tt\e negation of the
operand, respectively.

11.3.2 Float Multiplication and Division

For a float formula with "*" or "/" as infix operator, the result
of the formula in the product or quotient of the operands,
respectively.

(The value of the second operand of "/" must not be 0.

- 119 - 11: Formulas

11.3.3 Float Exponentiation

A formula whose operator is "*" is a float exonentiation formula
unless it is an integer exponentiation formulal that is, unless
(1) both operands are of type integer and (2) the second operand
is a non-negative' compile-time value.

If an operand of a floating exponentiation is an integer, it is
converted automatically to a floating type using default
precision and rounding before the computation. In floating
exponentiation the left operand must not be negative (because a
floating point exponent could be a fraction and a negative number
raised to a fractional power may produce a complex value).

The value of the formula is the first operand raised to the power
specified by the second operand. The value is calculated by a
logarithmic method; that is, by the following expression:

v2*log(vl)
e

where e is 2.73..., log is the natural logarithm function, and vl
and v2 are the first and second operands, respectively.

11.3.4 Examples

Here are some examples of float formtlas. For each example, the
data type and the value of the formula is given.

11: Formulas - 120 -

Suppose the following declarations apply:

ITEM DISTANCE F 15 - 37.21
ITEM SPEED F,R 12 - 55.;
ITEM COUNT U - 3

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following formulas produce
the indicated results:

Formula Result

2.3*DISTANCE The result is a floating type with
precision 15 and the value 85.56.

DISTANCE/SPEED The result is a floating type with
precision 15 and value .6763.

SPEED**2 The result is a floating type with
precision 12 and value 3025.0.

SPEED*F(COUNT) The result is floating type. The precision
is that of the most precise operand. The
precision of SPEED is 12 and the precision
of F(COUNT) is FLOATPRECISION. The value is
165.0.

COUNT**COUNT The result is a floating type. COUNT is
automatically converted to a floating type
with precision FLOATPRECISION. Thus the
precision of the result is FLOATPRECISION.
The value of the result is 27.r.

11.4 FIXED FORMULAS

A fixed formula is a formula with one operand that is fixed and a
remaining operand (for infix operators) that ii fixed or integer.
Its operator must be one of the following:

+ addition
subtraction

* multiplication
/ division

Exponentiation and the MOD operator are not defined for fixed(operands.

- 121 - 11: Formulas

11.4.1 Addition and Subtraction

Operands of addition and subtraction must have identical scales.
For addition and subtraction the scale of the result is the scale
of the operands. The fraction of the result is the maximum of
the fractions of the operands and the precision is the maximum of
the precision of the operands.

11.4.2 Multiplication

For multiplication, two cases are distinguished, one for the case
in which one operand is an integer and the other for the case in
which both operands are fixed point.

If one operand of a multiplication is an integer, then the scale,
fraction, and precision of the result are the same as those of
the fixed point operand.

If both operands are fixed point types, then the scale, fraction,
and precision of the result are the sum of the scale, fraction,
and precision respectively of the operands. If the scale and
precision of the result exceeds MAXFI)XDPRECISION or if the scale
does not lie in the range -127 through +127, then an explicit
conversion must be applied to the result to yield a valid scale
and precision.

11.4.3 Division

For division, there are also two cases, one for the case in which
the divisor is an integer and one for the case in which both
operands are fixed point types.

If the divisor is an integer, the scale and precision of the
result are the scale and precision of the fixed point numerator.

If both the numerator and denominator are fixed point types or if
the numerator is an integer and the denominator is a fixed point
type, the result must be explicitly converted to the desired
(legal) scale and precision.

I rI

11: Formulas - 3.22 -

11.4.4 Examples

Here are some examples of fixed point formulas. For each
formula, the data type and value is given.

Suppose you have the following declarations:

ITEM TIME A 10,5 - 12.51
ITEM DELTA A 10,5.- .125;
ITEM DISTANCE A 10,-2 - 325.0'
ITEM COUNT U a 4:

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following formulas produce
the indicated results:

Formula Result

TIME+DELTA The sum of TIME plus DELTA is a fixed point
type with scale 10, fraction 5, and
precision 15. The value is 12.625.

6*TIME The product of 6 times TIME is a fixed point
formula with scale 10, fraction 5, and
precision 15. The value is 75.0.

DELTA*TIME The product of DELTA times Y4IME is a fixed
point formula with scale 20, fraction 10 and
precision 30. The value is 1.5625.

DISTANCE*TIME The product of DISTANCE times TIME is a
fixed point formula with scaLe 20, fraction
3, and precision 23. The value is 4162.5.

TIME/COUNT The quotient of TIME over CO 'INT is a fixed
point type with scale 10, fri ction 5, and
precision 15. The value is 3.125.

(* A 10,5 *)(TIME/DELTA) The quotient of TIME over DELTA is
,a fixed point type whose value is first
computed exactly and then converted to a
scale of 10 and a fraction of 5 by the
conversion operator (*A 10,5*). Conversion
operators are described in Chopter 13 on
"Conversion". The value is 100.0.

(

- 123 - 11, Formulas

S• ' , • nn - . . .Il

11.5 BIT FORMULAS?.

A bit formula consists of bit operands and a bit operator. The 4
bit operators are NOT, AND, OR, XOR, and EQV.

11.5.1 Logical Operators

The logical operator NOT produces a value that is the logical
complement of its operand. The operators AND, OR (inclusive or),
XOR (exclusive or), and EQV (equivalence) perform their usual
logical operation on a bit by bit basis, as follows:

Operand Value Result Value
-- - -- - -- - -- - -- ------------------ mumm m ,(.

Left Right AND OR XOR EOV 4
0 0 0 0 0 1
1 0 0 1 1 0 " P:

S---------------- ------------------------

The operands used with a logical operator must have the type bit.
When the number of bits in the two operands is not equal, the
smaller operand is padded with zero bits on the left until the
two operands are the same size. The result has type bit with
size equal to the number of bits in the larger operand. "

4
If a formula contains only one kind of logical operator, it can U-
be written without parentheses. For example:

FLAG AND STATBIT AND 1B'1lI' J'i

The formula is evaluated in any order unless a ILEFTRIGHT

directive is in effect. .

However, if a formula contains more than one kind of logical
operator, it must contain parentheses to indicate the order of
evaluation. For examples

FLAG AND (STATBIT OR lB'll1') or
(FLAG AND STATBIT) OR 1B'111'

The NOT operator can be used as a prefix operator only. The
other operators are infix operators.

U.: Formulas - 124-

"--" 4-- -

11.5.1.1 Short Circuiting

If the value of a bit formula containinq operands of type B 1 is
determined before all the operators are evaluated, the evaluation
of the remaining operators is omitted or "short-circuited".

For example, consider the following formula:

I 100 OR COEF(I) > 0

If the relational expression 1100 is computed first and if its
value im TRUE, the value of the bit formula is TRUE and the
relational expression COEF(I)<>O is not evaluated.

11.5.2 Examples

For exampple, suppose you have the following declarationax

ITEM FLAG B 3 w WB'OWlO'
ITEM STATBIT B 5 - IB'00100'1

Assuming the items still have their initialized values at the
time the formulas are evaluated, the following fonrulas produce
the indicated results:

Bit Formula Result

FLAG AND STATBIT The AND of FLAG and STATBIT is a bit type
five bits long. The shorter item FLAG is
padded with zeroes on the left to produce
the bit string lB'00010'. The value of
the formula is 1B'00•00'.

FLAG OR 1B'1I' The OR of FLAG and the literal 1B'10' is
a bit type three bits long. The literal
is padded and the value of the formula is

FLAG OR (STATBIT AND I'5111'
The AND of STATBIT and the literal
produces a five bit string with the value
IB'00100'. The OR of FLAG and this
formula is a five bit string with thevalue IB'00110'.

(

- 125 - 11, Formulas

J~

11.5.3 Relational Operators

A relational operator compares two operands, The result of
applying a relational operator to its operand is a relational
expression. A relationa3 expression has type bit with size 1.

The relational operators are:

Operator Meaning

- Equals
C Lese than
- Greater than

Not Equal
<- Less than or Equal to

Greater than or Equal to

The operands in a relational expression must be both of the same
type. They can be integer-formulas, floating-formulas, fixed-
formulas, character-formulas, status-formulas, or pointer-
formulas.
Integer, floating, and fixed comparisons are made on the basis of
the value of the operands. Character comparisons are made on the
basis of the collating sequence of the character set for a given
implementation. Status comparisons are made on the basis of the
representation of the status values. Pointer comrarisons are
made on a target machine dependent basis.

The equals (w) and not equals (4>) operators can be used with bit
operands. But the other relational operators cannot be used as
no collating sequence is associated with a bit string.

The type of a relational expression is B 1. The value IS'!'
represents the Boolean literal TRUE and the value 1B1011"the
Boolean literal FALSE.

11.5.4 Examples

Here are some examples of relational expresmions. For each
example, the data type and the value of the formula is given.

11: Formulas - 126 -

,,. .- 7.

Suppose the following declarations apply:

ITEM COUNT U a 5;
ITEM TIME U - 127
ITEM DISTANCE F 15 - 37.2;
ITEM SPEED F,R 12 • 55.;

Assuming the items still have their initialized values at the
time the formulas ars evaluated, the following formulas produce
the indicated results:

Formula Result

COUNT(TIME The type is B 1. The value is TRUE.

SPEED-DISTANCE The type is B 1. The value is FALSE.

11.6 CHARACTER FORMULAS

A character formula consists of a variable, constant, literal, or
function call of type character. In addition, a character
formula can be a parenthesized character formula or a bit formula
to which a character conversion operator is applied.

Some examples of character formulas are:

'Out of Bounds'

*C 10 *)(CODE)

The sequence (* C 10 *) is a conversion operator. Conversion
operators are described in Chapter 13 on "Conversion".

No character operators are defined in JOVIAL (J73).

11.7 STATUS FORMULAS

A status formula consists of a variable, constant, literal,
function call, or parenthesized formula of type status or a
formula converted to type status by a conversion operator.

- 127 - Il: Formulas

tI

Some examples of status formulas are:

V(rED)

V (SUNDAY)

11.8 POINTER FORMULAS

A pointer formula consists of a variable, constant, litern2,
function call, or parenthesized formula of type pointer or
formula converted to type pointer by a conversion operator.

Some examples of pointer formulas are:

LOC (CODETAB)

NULL

11.9 TABLE FORMULAS

A table formula consists of a variable, constant, or
parenthesized formula whose type class is table or a formula
converted to type table by a conversion operator.

Some examples of table formulas are:

GRTD

GRID(3)

SPEC(IX*5)

No table operators are defined in JOVIAL (J73).

11.10 COMPILE-TIME-FORMULAS

A compile-time-formula is a formula whose value is required to be
computed at compile time by al. JOVIAL (J73) compilers. While
values of some other formulas are known at compile-time by some
or all compilers, they cannot be used where compile-time-formulas
are required.

11: Formulas - 128 -

.4.

A formula is a compile-time-formula if its operands are taken
from the following list:

0 A literal

s A status-constant

• An implementation parameter

0 A constant item, except for a constant item of type
pointer or an item from a constant table.

* A type conversion, except a REP conversion, provided
the value of the formula being converted is a
compile-time-formula.

* A formula whose operands are compile-time-formulas.

* One of the following built-in functions, subject to the

given restrictions:

Function-Name Restriction

LBOUND I
FIRST none
LAST I

UBOUND The argument cannot be a table
with * dimensions.

NEXT I
BIT I
BYTE I The arguments of the functions
SHIFTL must be compile-time-formulas.
SHIFTR

SGN

NWDSEN Its argument must not contain a
reference to a name whose
declaration is not completed
prior to the point at which
the function appears.
For example, a table TI cannot
contain an item that is preset
to NWDSEN(Tl).(!

- 129 - Ii Formulas

[L______~ '

BITSIZE] Their arguments must be compile-
BYTESIZE } time-formulas. An argument must
WORDSIZE] not be either a block or a table

with * dimension. An
argument must not contain a
reference to a name whose
declaration is not completed
prior to the point at which
the function appears.

Consider the folluwing declarations:

CONSTANT ITEM V.RSION U -
CONSTANT ITEM FACTOR F = 2.36;
CONSTANT ITEM ALPHABET C 26 - 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Some compile-time-formulas are:

2*5-3
VERSION+l
FACTOR* *3B ITS INWORD*8

r) .

BYTE (ALPHABET, 3,6)

11, Formulas - 330 -

.m.4

Chapter 12

BUILT-IN FUNCTIONS

A built-in function is a function that is predefined as part of
the JOVIAL (J73) language. Such functions are called in the same
way that user-functions are called, but, unlike user-functions,
no definition is necessary.

The JOVIAL (J73) built-in functions provide a way of getting
information that would otherwise be inaccessible to the user.
For example, they provide information about the physical address
or physical representation of a data object, the sign of a data
object, or the limits of bounds or status lists.

In addition, two functions BIT and BYTE are supplied. These
functions select a substring from a bit or character formula,
respectively. These functions can also be used as pseudo-
variables on the left-hand-side of an assignment statement or
other target contexts to set the values of the selected bits.

- 131 - 12: Built-in Functions

•" •••- -- ••-:: :'= -:• •: •:: : ... - . .. -• "/ ' i'" •i'"' : • '• '- .'-:__ _ _...... -•" ''*,".......--.-....

The JOVIAL (J73) built-in functions are summarized on the
following page.

Function-Name Purpose

LOC To find the machine address of a
data obect, subroutine, or statement.

NEXT To obtain the arithmetic sum of a
pointer argument and an increment,
or to obtain the successor or
predecessor of a status argument.

BIT To select a substring from a bit-
formula.

BYTE To select a substring from a
character-formula.

SHIFTL To shift a bit-formula left or
SHIFTR right an indicated number of bits. 4

ABS To get the absolute value of a
numeric-formula.

SGN To determine if a numeric-formula
is negative, zero, or positive.

BITSIZE To return the logical size in bits.
BYTESIZE To return the logical size in bytes.
WORDSIZE To return the logical size in words.

LBOUND To get the lower or upper bound
UBOUND of a given dimension.

NWDSEN To get the number of words of
storage allocated to each entry
in a table.

FIRST To find the lowest or highest
LAST value in the status-list argument.

12.1 THE LOC FUNCTION

The LOC function is used to find the machine address of the word
in which its argument is contained.

121 Built-in Functions - 132 -

'": i' ,.'Uwe,

12.1.1 Function Form

The form of the LOC function is:

LOC (argument)

The argument of the LOC function can, be a data object name, a
statement-name, a procedure-name or a function-name. The LOC
function returns a pointer value. If the argument of a LOC
function is declared using a type-name, then the LOC function
returns a typed pointer for the type given in the declaration.
Otherwise, the LOC function returns an untyped pointer.

The LOC function is used most often to obtain a value for a
pointer to be used in a pointer-qualified reference.

If the argument of a LOC function is a statement-name,
procedure-name, or function-name, the LOC function returns the
machine address used to access the designated statement or
subroutine. The LOC function cannot be used, however, to get the
address of a built-in function.

The LOC of a subroutine whose name appears in an inline-
declaration or of a statement name within an inline subroutine is
implementation defined.

12.1.2 Examples

Suppose you have the following declarationst

TYPE GRID
TABLEI

BEGIN
ITEM XCOORD U;
ITEM YCOORD U1
END

TABLE BOARDl(20) GRID;
TYPE DIMENSIONS

TABLE(10))
BEGIN
ITEM LENGTH U1
ITEM HEIGHT U1
ITEM WIDTH U:
END

TABLE ROOM DIMENSIONS;

- 133 - 121 Built-in Functions

7I..

You can obtain the machine address of the first entry in the
table BOARDI by using the following LOC function:

LOC(BOARD1 (0))

The LOC function of BOARDI(0) returns a value whose type is
pointer and whose pointed-to attribute is GRID. You can then use
that pointer to reference an item 'in that entry of BOARD1. For
example, you can write:

XCOORD @ (LOC(BOARDI(0)))

You can obtain the address of the table ROOM by using the
following LOC function:

LOC (ROOM)

This LOC function returns the address of the table ROOM. The
type of this value is pointer with a pointed-to attribute of
DIMENSIONS. You can reference an item in the ROOM table as
follows:

HEIGHT(I) @ (LOC(ROOM))

This pointer-qualified-reference locates the item HEIGHT in the
Ith entry of the table ROOM. ,

12.2 THE NEXT PUNCTION

The NEXT function has two separate purposes, depending on the
type of its argument. It can be used either to obtain the
arithmetic sum of a pointer argument and an increment or to
obtain a successor or predecessor of the value of a status
formula.

12,2.1 Function Form

The form of the NEXT function is:

NEXT (argument, increment

The argument can be either a status formula or a pointer. The
increment is an integer formula.

1W

121 Built-in Functions - 134 -

" --. - -[;" .- •. ,II-II I -l l .

12.2.2 Status Value Argments

If the argument is a status formula, the NEXT function returns a
successor of the value of the status argument if the increment is4positive, oi predecessor if the increment is negative.

For example, suppose you have the following status item:

ITEM SPECTRUM STATUS
V(RED), V(ORANGE), V(YELLOW)',V(GREEN), V(BLUE), V(VIOLET))i

Now suppose you set the status variable SPECTRUM to V(YELLOW) and

then apply the NEXT function as follows:

NEXT(SPECTRUM,1)

Since the increment is 1, the NEXT function returns the first
successor, the status value V(GREEN).

If you give a negative increment, the NEXT function returns the
predecessor indicated by the argument. For example, suppose the
value of SPECTRUM is V(YELLOW) and you give the following NEXT
function:

NEXT(SPECTRUM,-2)

Since the increment is -2, the NEXT function returns the second
predecessor, the status value V(RED).

The increment must not cause the NEXT function to return a value
that is outside the status list. Further, the argument of a NEXT
function cannot be a status-constant that belongs to more than
one status type, unless it is explicitly disambiguated by a
conversion operator.

12.2.3 Pointer Value Arguments

If the argument is a pointer formula, the NEXT function returns
the arithmetic sum of the pointer formula and the product of the
increment times the implementation parameter LOCSINWORD. The type
of the result is a pointer of the same type as that of the
argument.

- 135 - 12: Built-in Functions

I• '"; ' , ' "•~i•:• '•- :-• - " q •' :* * ': •

, I - . .I,. . , • • I "

For example, consider the use of the NEXT function in the
following program fragment:

TYPE FORM
TABLE (100)1

ITEM CODE U;
TABLE CIPHER FORMr
FOR I:LOC(CIPHER) THEN NEXT(I,5) WHILE CODE@I<> 01i

ACTION(CODE@I)

The for-loop examines every fifth entry of the table for a zero
code. If the code is not zero, the procedure ACTION is called.

The value oE the pointer-formula and the value of the sum of the
pointer va3ue and the increment must lie in the implementation-
defined set of valid values for a pointers of the given type.
The argument of the NEXT function cannot be the pointer literal
NULL.

12.3 THE BIT FUNCTION

The BIT function selects a eubstring from a bit formula. It can
be used as a function or as a pseudo-variable.

12.3.1 Function Form

The form of the bit-function is:-

BIT (bit-formula, first-bit, length

First-bit and length are integer formulas. First-bit indicates
the bit at which the substring to be extracted starts. Length
specifies the number of bits in the subetring. Bits in a bit
string are numbered from left to right, beginning with zero.
Length must be greater than zero. The sum of first-bit and
length must. not exceed the length of the bit-formula. [
The type of the result returned by the BIT function is a bit
string with size attribute equal to the size attribute of the
bit-formula argument. Zeros are automatically added on the left'
of the value of the result to produce the correct size.

121 Built-in Functions - 136 -

A

$J

12-•3.2 Exaýmles

Suppose you have the following item declaration:

ITEM MASK B 10 B'I0100110001'

And suppose you apply the following BIT functions

BIT (MASK, 3,4)

TheBIT function returns a bit string whose rightmost bits have
the value of bits 3 through 6 of the bit item MASK. The type of
the result is a bit string of length 10. Assuming the item MASK
still contains the preset value before the function call, the
value of the function isc

lB8'00000001101

This result is produced by taking bits 3 through 6 of MASK and
then padding on the left with zeros to get a 10-bit string.

Since padding and truncation are automatically applied by the
compiler for bit strings, you can assign the BIT function to a
string of the appropriate length and get the expected result.
For example, suppose you have the following declarations

ITEM SUBMASK B 41

You can write the following stater'ent to assign bits 3 through 6
to SUBMASK:

SUBMASK - BIT(MASK,3,4)1

The result of the BIT function is a ten--bit string as indiecated
above. The six zeros that were automatici'lly used as p'mLdding on
the execution of the function are automatically truncated when
the result ti assigned to SUBMASK. Assuming tb"- iten MASK still
contains its preset value, the value of SUBMASK afterv the
execution of the above statement is:

IB '0110'

(

- 137 - 12: Built-in Functions

' '• ,,•1•i,•i,:, , ,,OI, NO

12.3.3 Pseudo-Variable Form

The BIT function can also be used as a pseudo-variable. It can
be given on the left-hand side' of an assignment statement or as
an output parameter. The first argument of a BIT function used
as a pseudo-variable must be a variable and not a formula. The
form is:

BIT (bit-variable, first-bit, length

The BIT pseudo-variable designates a specified substring of the
bit-variable.

12.3.4 Examples

For example, suppose you want to change only the first bit of

MASK. You can write the following assignment statement:

BIT(MASK,0,l)ulB1':

Assuming that MASK has its initial value before this assignment
statement, then its value after the assignment is.

lB '1100110001'

12.4 THE BYTE FUNCTION

The BYTE function seltcts a substring from a character formula. '7)
It can be used as a function or as a pseudo-variable.

1ý.4,1 Function Form

The form of the BYTE Zunction ist

BYTE (character-formula, first-byte, length)

First-byte and length are integer formulas. First-byte indicates
the character where the substring to be extracted starts, and
length apecifies tha number of charttters in the substring to be
extracted. Characters are numbered fro, left to right, starting
at zero. Length must be greater than zero. The sum of first-
byte and length must not exceed the number of cbaracterc in the
character formula.

121 Built-in Functions - 138 -

-. . -. ,-.. -. ."-7.

The type of the result returned by the BYTE function is character
with a size attribute equal to that of the character-formula
argument. Blanks are automatically added on the right to produce
the correct size.

12.4.2 Examples

Suppose you have the following item-declaration:

ITEM ALPHABET C 26 w 'ABCDEFGHIJKkMNOPQRSTUVWXYZ' i

And suppose you apply the BYTE function as follows:

BYTE (ALPHABET, 8,4)

The BYTE function returns a character string with size attribute
26. Assuming -the item ALPHABET still contains its preset value
before the function call, the value of the function is:

IIJKL

That is, it consists of the character sequence IJKL followed by
22 blanks.

Just as in the case of the BIT function, you can assign the BYTE
function to a string of the appropriate length and get the
expected result since padding and truncation are automatically
applied to character strings.

For example, suppose you have the following declaration:

ITEM SUBSET C 4;

You can write the following statement to assign characters 8
through 11 to SUBSET:

SUBSET a BYTE(ALPHABET,8,4)1

The result of the BYTE function is a 26 character string as
indicated above. The 22 blanks that are automatically added to
the selected characters on the execution of the function are
automatically truncated when the result is assigned to SUBSET.
Assuming ALPHABET still has its preset value, the vaue of SUBSET
after the execution of the above statement is,

IJKL,

- 139 - 12: Built-in Functions

•~ ~~ ~ -. ..• .- ..l .l ~ .-.m .I.l.

12.4.3 Pseudo-Variable Form

The BYTE function can also be used as a pseudo-variable on the
left-hand side of an assignment statement or as an output
parameter. The form is:

BYTE (character-variable, first-byte, length)

The BYTE function in this came designates a specified substring
of the character-variable.

12.4.4 Examples

Suppose you have the following:

ITEM CODE C 10i
CODE a 'ABQFGHIAAZ'i

And suppose you want to change characters 5 through 9 of CODE.
You can write the following assignment statement:

BYTE(CODE,5,5) - 'ZXXXY'r

Assuming that CODE has the value shown above before this
assignment statement, then its value after the assignment is:

'ABQFC3ZXXXYI

12.5 SHIFT FUNCTIONS

The shift functions perform logical shifting of a bit formula.
Two shift functions are defined, one for left shifting and one
for right shifting.

12s Built-in Functions - 140 -

I,• . . ., , ;• ; ,i,.it;,: .. • , ..

12.5.1 Function Form

The form of the shift functions is as follows:

SHIFTL (bit-formula , shift-count)

SHIFTR (bit-formula , shift-count)

Execution of shift function shifts the bit-formula specified as
the first argument by thr number of bits specified by the shift-
count. Bits that are vacated as a result of the shift are filled
with zeros and bits that are shifted out are lost.

Shift-count is an integer-formula. The value of the shift-count
must be leoo than or equal to the implementation parameter
MAXBITS, whi'ch 'is the maximum supported value for a bit string.
Further, the shift-count must not be negative. If the shift-
count is zero, no shift occurs. If the shift-count is greater
than or equal to the size of the bit-formula to be shifted, then
the result of the function in a bit-string with all3 zero bits.

The type ok the value returned by the shift functions is the same
as the type of the bit-formula given as the first argument.

12.5.2 Examples

Suppose you have the following item declaration:

ITEM MASK B 5 - IB'I010l't

Suppose you apply the SHIFTL function to shift MASK left 3 bits,
as follows:

SHIFTL(MASK, 3)

The SHIFTL function returns a bit string of length 5. Assuming
MASK still contains its preset value before the shift, the value
of the SHIFTL function is:

The first three bits were shifted out and lost. The last two
bits were shifted left three positions. The remaining three bit(positions were filled with zeros.

- 141 - 12: Built-in Functions

•i" '! • as' • ' r~~c'•'•:•l 'l .• • i~•''• .'l• ' 1]• •",, :r -' . ," *.• . .• _

12.6 SIGN FUNCTIONS

Two sign functions can be applied to numeric formulas, the ABS
function and the SGN function.

12.6.1 Function Form

The forms of the sign functions are:

ABS (numeric-formula

SGN (numeric-formula)

The ABS function produces a value that is the absolute value of
the numeric forrnla. ThL SGN function returns a value according
to whether the numeric-formula is positive, zero, or negative, as
follows:

Value of Formula Value of SGN Function - -

> 0 +1

< 0 -

The type of the result produced by the ABS function is the same
as the type of the numeric-formula argument. The type of the
result produced by the SGN function is a signed one-bit integer
1s ult.

12: Built-in Functir-ns - 142 -

:• " 1 ...- I"I I VI,: : : . .

12.6.2 Examples

For example, suppose you have the following declarationst

ITEM TIME U 5 -21
ITEM VELOCITY F- 2.3561ITEM RANGE S 10 -t -251

Assuming these items still contain their preset values before the

function calls, the sign functions produce the indicated values:

Functiol! Call Function Value

ABS (RAN:.. t) 25
ABS (TIME) 2
ABS(RANGE/TIME) 12 or 13, depending an implementation

SGNB(VELOCITY) +1
SGN(RANGE) -1
"SGN(TIME/RANGE) 0 or -1, depending on implementation(.

12.7 SIZE FUNCTIONS

The size functions ret'arn the logical size of the argument given.
Three size functions are defined. BITSIZE returns the size in
bits, BYTESIZE returns the size in bytes, anr WORDSIZE returns
the size in words.(.

- 143 - 12: Built-in Functions
pIn

L
, i: !

12.7.1 Function Form

The forms of the size functions are:

BITSIZE (sizq-argument)

BYTESIZE (size-argument)

WORDSIZE (size-argument)

The values returned by the BYTESIZE and WORDSIZE functions are
defined in terms of BITSIZE, as follows:

Function Value Condition

BYTESIZE BITSIZE/BITSINBYTE BITSIZI MOD BITSINBYT -0

BITSIZE/BITSINBYTE+l BITSIZE MOD BITSINBYTE <>

WORDSIZE BITSIZE/BITSINWORD BITSIZE MOD BITSINWORD 0

BITSIZE/,BITSINWORD+l BITSIZE MOD BITSINWORD (0 0

The value returned by the BITSIZE function is defined for each
of the data types to which the function can be applied in the
following sections.

1F

",)*

12: Built-in Functions - 144 -

3.2.7.2 Numeric Data Types

The bitaize of integer and fixed type'- -:., related to the size
given in the declaration. The bitsize of a floating item is the
number of bits actually occupied by the item. The bitsizeu for

U numeric data types are defined as follows:

Dat__a Type Bitsize

U integer-size integer-size

S integer-size integer-size + 1

F 'The number of bits actually occupied
by the floating item

A scale, fraction scale+fraction+l

For example, consider the following declarations:

ITEM TIME U 5S
ITEM RANGE S 10;
ITEM POSITION U1

ITEM AZIMUTH F 301
ITEM VELOCITY F7

ITEM SUBTOTAL A 0,21

The following calls return the following valuess

SFunction Call Function Value

BITSIZE(RANGE) 11
BITSIZE(POSITION) BITSINWORD-l
BITSIZE(AZIMUTH) actual number of bits
BITSIZE(VELOCITY*5) actual number of bits
BITSIZE(SUBTOTAL) 9

Assuming that BITSINWORD is 16 and BITSINBYTE is 8, the following
function calls have the following values:

Function Call Function Value

BITSIZE(POSITION) 15
BYTESILE(POSITON) 2
WORDSIT'E(POSITION) 1
BITSIZE(AZIMUTH) actual number of bits

- 145 - 121 Built-in Functions

•,'.,-•" • , IL . T - : "''• -=.-•-,:;"•,• • .',•, • u:,;L% .,•.• ;,• ?;• • '• • 'i... •""' "•''"'il'lil'i~i' •' " '_ • ' ' I I[."....." 1. .".....

12.7.3 Bit and Character Types

The bitsize of a bit type is the bit-size associated with the
item in its declaration. The bitsize of a character type is the
char-size associated with the item times BITSINBYTE. That lot

Data•Zype Bitsize

B bit-size bit-size

C char-size char-size * BITSINBYTE

Suppose you have the following declarations:

ITEM MASK B 10Y
ITEM FLAG BI
ITEM ADDRESS C 26t
ITEM CODE C;

Some examples of the result of the BITSIZE ftinction for bit and
character types are:

Function Call Function Value

BITSIZE(MASK) 10
BITSIZE(FLAG) 1
BITSIZE(MASK AND FLAG) 10
BITSIZE(ADDRESS) 26*8
BITSIZE(CODE) 1*8

12.7.4 Status Types

The bitsize of an item with status type is the status size V

associated with the item in its declaration. The status size is
determined by the number of bits necessary to accomodate the
representation. The status-size can also be specified in the
type-description, as will be seen in Chapter 19 on "Advanced
Topics".

121 Built-in Functions - 146 -

*V1m

Suppose you have the following declarations:

ITEM LETTER STATUS(V(A),V(B),V(C),V(D),V(E),V(F),V(G),V(H));
3 ITEM SWITCH STATUS

(V(ON) ,V(OFF)

The following calls produce the following values:

Function Call Function Value

BITSIZE(LETTER) 3
BITSIZE(SWITCH) 1

12.7.5 Pointer Types

The bitsize of an item with pointer type is BITSINPOINTER, the
implementation dependent parameter that defines the length of a
pointer.

12.7.6 Table Types

The bitsize of a table depends on its structure. Table structure
is discussed in Chapter 19, "Advanced Topics". Briefly, a table
that is specified to have tight structure is one in which as many
entries as possible are packed within a word. If the table is
not tightly structured, the bitsize of a table or table entry is
the number of bits from the leftmost bit of the first word
occupied to the rightmost bit of the last word occupied.

For a tightly structured table, the bit~ize of the table is the
number of bits from the leftmost bit of the first word to the
rightmost bit of the last entry. The bitsize of a table entry is
either the number of bits specified in the declaration as the
size of the entry or, if no size is specified, the number of bits
needed for each entry.

- 147 - 12: Built-in Functions

SI.,

Suppose you have the following declarations:

TABLE ATTENDANCE (I,10) T 6;
ITEM COUNT U 5:

TABLE CONDITION(20) T)
BEGIN
ITEM ALERT B;
ITEM CONTROL Bi
END

TABLE SPECIFICATIONS (99):
BEGIN
ITEM LENGTH U 51
ITEM WIDTH U 91
ITEM HEIGHT U St
END

The table ATTENDANCE has tight structure with 6 bits per entry.
The table CONDITION has tight structure, but the number of bits
per entry is not qiven. The default entry-size is 2.

The following function calls have the following valuds:

Function Call Function Value

BITSIZE(ALERT(I)) 1
BITSIZE(CONDITION(I)) 2
BITSIZE(ATTENDANCE(I)) 6
BITSIZE(SPECIFICATIONS) 3*10M*BITSINWORD

12.7.7 Blocks

The bitsize of a block is the number of words in the block
times BITSINWORD.

Suppose you have the following block declaration:

BLOCK GROUPt
BEGIN
ITEM COUNT Ur
ITEM VELOCITY F;
TABLE TIMES(99)1

ITEM SECONDS U:
END

The block GROUP occupies 102 words. Thus the value of
BITSIZE(GROUP) is 102*BITSINWORD.

12, Built-in Functions - 148 -

•{,! !- w " -- •~~ "p 3'•- / " T " " .,• ,r ., •.

12.8 BOUNDS FUNCTIONS

The bounds functions obtain the bound of a specified dimension of
a given table. Two bounds functions are supplied, one to obtain
the lower bound and one for the upper bound.

12.8.1 Function Forms

The forms of the bounds functions area

LBOUND (argument , dimension-number)

UBOUND (argument , dimension-number)

Argument io a table-name.

The LBOUND function returns the lower bound of dimension-number
of argument. The UBOUND'function returns the upper bound. The
dimensions of a table are numberod from left to right, starting
at zero.

Dimension-number is a compile-time-integer-formula. It must be
greater then or equal to zero and less than the actual number of
dimensions for the specified table.

(' The type of the function value is either integer or status,
depending on the declaration of the given table.

S(

•-149 - 12a Built-in Functions

2: (~Tj7T

12.8.2 Examples

Suppose you have the following, declarations:

TABLE DATA (lt.ý0,2t20,3030);
ITEM DATAPOINT F;

ITEM SEASON STATUS
(10 V(SPRING), V(SUMMER), V(FALL), V(WINTER),

TABLE WEATHER(88V(WINTER);
ITEM RAINFALL U1

The following calls return the indicated values:

Function Call Function Value

LBOUND(DATA,0) 1
UBOUND(DATA,0) 10
LBOUND(DATA,I) 2
UBOUND(DATA,2) 30
LBOUND(WEATHER,) V(SPRING)
UBOUND(WEATHER, 1) V(WINTER)

12.8.3 Asterisk Dimensions

If a bounds function is applied to a table that is a formal
parameter declared with an asterisk (*) dimension, the bounds
function returns the bounds of the table that is the actual
parameter, normalized to begin at zero.

The use of the bounds functions makes the following routine a
general routine for any two dimensional table with entry
attributes that match those of the formal parameter.

PROC CLEAR (sTABNAME)i IL

BEGIN
TABLE TABNAME (*,*)i 4

ITEM TABENT U1
FOR 10 BY 1 WHILE I 4m UBOUND(TABNAME,0)t

FOR J3. BY 1 WHILE J 4a UBOUND(ThBNAME,l)1
TABENT(I,J) - Oy

END

The LBOUND function always returns the value 0 for a tabledeclared with asterisk dimensions. Thus, the value 0, rather than
the LROUND function is used in this example.

%I

12: Built-in Functions - 150 -

,,~~ ~~~~~~~~ T",: . .", . . • , ,

¶

You can clear the following two tables using CLEAR:

TABLE GRAPH (I11,2:20);
ITEM POINT Ut

ITEM SEASON STATUS
(10 V(SPRING), V(SUMMER), V(WINTER), V(FALL)i

TABLE WEATHER(88,V(FALL)i
ITEM RAINFALL Ut

CLEAR (GRAPH) i
CLEAR(WEATHER);

As a result of the execution of calls on CLEAR, all the items in
the table GRAPH and all the items in the table WEATHER are set to
zero.

12.9 THE NWDSEN FUNCTION

The NWDSEN function returns the number of words of storage
allocated to each entry in the table or table type given as an
argument.

12.9.1 Function Form

The form of the NWDSEN function ist

NWDSEN (argument

The argument can be either a t8ble-name or a table-type-name.

The return type is a signed integer with default size.

,(

- 151 - 121 Built-in Functions

12.9.2 Examples

Suppose you have the following declarations,

TYPE PART TABLEI
BEGIN
ITE4 PARTNUMBER U 5:
ITEM ONHAND U 101
ITEM ONORDER U 10i
END

TABLE BOLTS PARTI
TABLE NUTS(100) PART:

A table entry of type PART occupies three words. The following
calls on NWDSEN produce the following values:

Function Call Function Value

NWDSEN(PART) 3
NWDSEN(BOLTSý 3
NWDSEN(NUTS) 3

12.10 INVERSE FUNCTIONS

The inverse functions are used to find the lowest and highest
permissable values for their argument.

12.10.1 Function Form

The forms of the inverse functions are:

FIRST (argument.

LAST (argument

The argument can be either a status formula or a status type-
name.

The type of the result returned by an inverse function is the
same as the type of the argument.

12: Built-in Functions - 152 -

I.

The FIRST function gives the value of the lowest valued status-
constant in the status-list associated with the argument and the
LAST function gives the value of the highest valued status-
constant in that list.

12.10.2 Examples

Suppose you have the follo~4:; declarationst

ITEM LETTER STATUS(V(A) ,V(B) ,V(C) ,V(D) ,V (•),V (i),V(G) ,V(H))t
ITEM SWITCH STATUS(V (0N),V(OF))t

The following functions have the following results.

Function Call Function Value

FIRST(LETTER) V(A)
LAST(LETTER) V(H)
FIRST(SWITCH) VW(O)

,, (

- 153 - 121 Built-in Functions

1j ,. ,

, ' ' . .. : -•,". ,•,• • • • 't •p /•,'•,•:• ' ... " "i.i- •" # ! • .• • J •

Chapter 13

CONVERSION

JOVIAL (J73) requires that if a value with one data type is
assigned to a data object with a different data type, the source
data type must be converted to the target data type. In some
cases, the compiler performs the conversion automatically. In
other cases, an explicit conversion operator must be supplied.

The following sections discuss contexts for conversion, type
equivalence, automatic conversion, and the conversion operators.
Then, each data type is considered separately and the data types
that are compatible with and convertible to that data type are
discussed.

13.1 CONTEXTS FOR CONVERSION

A context that requires conversion is one in which a target and
courme data object exist, such as: an assignment statement or a
subroutine-call. The type of the source data object, in such
cases, must be converted to the type of the target data object.

In an assignment statement, the target data object is given on
"the left-hand-side of the assignment operator (-) and the source
data object on the right. Closely related to assignment
statements aro loop control clauses and presets.

In a subroutine-call, only parameters that are passed by value or
value-result are Pubject to conversion. in these cases, the
formal parameter is the target parameter and the actual parameter
is the source parameter on entry to the subroutine and, for
value-result parameters, the actual parameter is the target and
the formal parameter is the source on ex3t from the subroutine.

- 155 - 131 Conversion

kw,':ii* aa u "e° " "

. '' "- :,'' , , i . .

,-..

13.2 COMPATIBLE DATA TYPES

Data objects are comeatible if their types are equivalent or if
the compiler automatically converts the source type to the target
type.

A data object is equivalent to another data object only if it
agrees in type and attributes. The one exception to this rule is
a table, in which the names of the items within the tables need
not agree for compatible tables.

A data object is automatically convertible to another data type
if the compiler performs the conversion. A necessary but not
sufficient condition for automatic conversion is that the type
classes agree. The cases in which automatic conversion occurs
are given for each data type later in this chapter.

13.3 ('flNVERTIBLE DATA TYPES

A data object is convertible to anoher data type if a conversion
operator can be addad to make the type of the source equivalent
to the type of the target. Three kinds of conversion operator
are provided:

(* type-description *)
type-indicator
user-type-name

The following sections consider each kind of conversion operator
in detail.

13.3.1 Type Descriptions

The first kind of conversion operator is a type-description
enclosed in the special conversion brackets '(*' and '*)'. The
type-description can give the type-class and attributes. The form
is:

(* type-description *) (formula

The forms of the type-description were given in Chapter 6 in
connection with item-declarations.

13: Conversion - 156 -

For example, suppobo you went to assign the floating item RANGE
to a 10-bit signed integer and you want the floating item to be
rounded before assignment. You can do this by applying a
conversion operator that gives the full type-description enclosed
in conversion brackets, aL follows:

INTRANGE - (* SR 10 *)(RANGE);

If the value of RANGE is 12.526, the value assigned to INTRANGE
is 13.

13.3.2 Type-indicators

Type-indicators are single letter keywords that are used in
type-descriptions:

Type-Indicator Type

U Unsigned integer(S Signed integer
F Floafiing
B Bit
C ChaL z.er
P Pointer

The type-indicator for a fixed type, A, is not prek. it in this
list because the scale of a fixed type must be given. In all
other cases, the attributes of the type-description have
defaults.

The type-indicators can be used as conversion operators without
thn special conversion brackets. The form is"

type-indicator (formula

When a type-indicator is used, the attributes assur-8d are the
same as those assumed for omitLed attributes in a declaration.

For example, suppose you want to assign a floating item RANGE to
a signed integer. You can do this by using a type-indicator to
convert the source data object RANGE, as fo~lows:

FIELDRANGE = S(RANGE);

The floating item RANGE is converted to a signed integer with the
default size BITSINWORD - 1. RANGE is truncated in a machine-
dependent wuarner before assignment.

- 157 - 13: Conversion

'.

If FIELDRANGE is declared to be a signed integer of default size,
then RANGE is converted and assigned. If FIELDRANGE is declared
to be a signed ten-bit integer, then RANGE is converted first to
a signed integer of default size by the type-indicator and then
to a ten-bit integer by automatic conversion.

13.3.3 User Type-Names

A user type-name is one that is declared in a type-declaration.
A user type-name can be used as an abbreviation for a type-
description. Like a type-indicator, it can be used as a
conversion operator without the conversion brackets, as follows:

type-name (formula

For example, if you have a type-name declared for a 10-bit
rounded signed integer, then you can use that type-name to get
the same result as the example in which a bracketed type-
description was used.

TYPE SF S,R 10;
INTRANGE - SF (RANGE);

The type-name SF describes the type and attributes of an item
and, when it is applied as a conversion operator, the compiler
converts RANGE to a ten-bit, rounded, signed integer.

13.4 CONVERSIONS

The following sections consider, for each data type, the types
that are compatible with that type and the types that can be
onverted to that type.

13.4.1 Conversion to an Integer Type

An integer type is one of the type classes S or U with an
associated size attribute. An integer type is compatible with
any other integer type. Numeric, bit, and pointer typep can be
converted to an integer type.

13.4.1.1 Compatible Types

An integer type is equivalent to another integer type if both are
either S or U and if their size attributes are equal.

13: Conversion - 158 -

. - ' ,• ," , " , ' ,', ,,<'"' :' " +.: ,• ,+, • m "ii• +•+'l ,,+ ,i,,. 4-

An integer type is automatically converteA to any other integer
type. For example, suppose you haJe the following declarations:

< I ITEM CARGO'Q2 U,R 20;
ITEM BOX U,T 107

You can write the following assignments.

CARGO'02 - BOX;
BOX - CARGO'Q2;

In the first case, BOX is automatically converted to a 20-bit
integer type. In the second case, CARGO'02 is automatically
converted to a 10-bit integer type.

If the value of the 20-bit integer CARGO'Q2 requires more than
ten bits and if the implemented precision of BOX is not
sufficient to hold the value, then some significant bits are
truncated. Suppose BITSINWORD is 16. The implemented precision
of BOX is 15 and the implemented precision of CARGO'02 is 31. If
the value of CARGO'02 requires more than 15 bits, truncation
occurs when it is assigned to BOX.

13.4.1.2 Convertible Types

Data objects of the following type can be explicity converted by
a user-specified conversion operator to an integer type.

integor

float
fixed
bit
pointer

Numeric Conversion -- An integer, floating, or fixed type is
converted with the rounding or truncation that is either given or
assumed in the conversion operator. Suppose you have the
following declarations.

ITEM DISTANCE U 10i
ITEM MEASURE F-112.687

- 159 - 13: Conversion

Assuming MEASURE has its preset value, the following assignments
produce the following values of DISTANCE:

Assig nment Value of DISTANCE

DISTANCE-(*U 10*)(MEASURE): 112

DISTANCE=(*U,R i0*) (MEASURE)i 113

The use of a conversion operator results in the lose of most
significant digits only if the conversion is from one implemented
precision to another. Suppose, for example, DISTANCE is
declared to be a five bit integer. That is, we have the
following declarations:

ITEM DISTANCE U 5S
ITEM MEASURE P-112.68;

Consider the following assignment:

DISTANCE - (*U 5*)(MEASURE)i

The value of MEASURE (112.68) is converted to the implemented
precision for a five bit integer. Suppose BITSINWORD is 16. The
implemented precision then is 15, which is sufficient to hold the
value 112, and the value 112 is assigned to DISTANCE.

Bit Conversion -- Conversion of a bit string is legal only if the
s--e of the bit string is less than or equal to the bit-size of
the integer type. If the size of the bit string is less than the
bit-size of the integer, the string is padded on the left with
zeroes. For example, suppose you have the following
declarations:

ITEM MASK B 31

MASK can be explicitly converted to a five-bit integer as
followe:

(*U 5*)(MASK)

The size of the bit string is 3, so it is padded on the left with
two zeros. However, MASK cannot be directly converted to a one
or two-bit integer.

13: Conversion - 160-

MJ~- t

Pointer Conversion -- Converting a pointer to an integer type is
equivalent to ffrit converting the pointer to type B
BITSINPOINTER and then converting the bit string to integer. For
example, suppose BITSINPOUNTER is 24. The following conversion
ia legal:

(*U 24*)(PTR)

However, conversion to an integer type whose size is less than
BITSINPOINTER is illegal.

13.4.2 Conversion to a Floating Type

A floating type has the type-class F and a precision attribute.
A floating type is compatible with any other floating type of
equal or greater precision. Integer, floating, fixed, or bit
types can be converted to a floating type.

13.4.2.1 Compatible Types

A floatlng type is equivalent to another floating type if the
precisiox. attributes of both are equal.

A floating type is automatically converted to a floating type of
greater precision, ?or example, suppose you have the following
items:

ITEM POWER F 30;
ITEM FACTOR F 15;

You can assign FACTOR as defined above to POWER but not POWER to
FACTOR. That is:

POWER - FACTOR; permitted

FACTOR - POWER; not permitted

1 (

- 161 - 13: Conversion

i:1'

S " - • •, • . .. 5• • • • - ' "°•-_ _....._"__ _ _ _ I h" •: :Z " ' , • • " ,,• •' •_'%

A real-literal is automatically converted to a floating-literal
when it is used as a preset, assignment-value, operand, actual
parameter, or initial-value for a loop in connection with a
floating data object. The real-literal take. the type of the
target value, even if that entails the loss of precision. For
example:

CONSTANT ITEM PI F - 3.1415926535;

Since no precision is given in this declaration, the precision is
given by the implementation parameter FLOATPRECISION. If
necessary, the value "3.14159265351 is truncated to fit in the
number of bits indicated by FLOATPRECISION.

13.4.2.2 Convertible Types

Data objects of the following types can be converted to a
floating type by a user-specified-conversion operator:

integer
fixed
float
bit

A user-specified-conversion operator can also be applied to
real-literals to convert them to floating types.

Numeric Conversion -- An integer, fixed, or floating type is
converted to a floating type with the rounding or truncation
specified in the conversion operator. Rounding end truncation are
performed with respect to the implemented precision of the type
specified by the conversion.

Bit Conversion -- Conversion of a bit string to a floating type
is-legal only if the size of the bitstring equals the actual
number of bits used to represent the floating type. The actual
number of bits can be found by using the BITSIZE built-in
function, which is described in Chapter 12.

13.4.3 Conversion to a Fixed Type

A fixed type has a type-class A and scale and fractior
attributes.

13s Conversion - 162 -

. ,...

13.4.3.1 Compatible Types

A fixed type is equivalent to another fixed type data object if
the scale and fraction attributes of both are equal.

A fixed type is automatically converted to another fixed type
with greater scale and fraction attributes. For example,
suppose you have the following itemst

ITEM HEIGHT A 11,4;
ITEM LATITUDE A 10,21
ITEM LONGITUDE A 10,3;

You can assign either LATITUDE or LONGITUDE to HEIGHT, but you
cannot assign LONGITUDE to LATITUDE without applying a conversion
operator. That is:

HEIGHT a LATITUDE;

LATITUDE is automatically converted to a fixed type with scale 11
and fraction 4. The assignment of LONGITUDE to LATITUDE requires
a conversion operator, as follows:

LATITUDE - (*A 10,2*)LONGITUDE:

A real-literal is automatically converted to a fixed-literal when
it is used as a preset, assignment-value, operand, actual
parameter, or initial-value for a loop in connection with a fixed(data object.

13.4.3.2 Convertible Types

A user-specified-conversion-operator for fixed conversion can be
applied to data object of type integer, fixed, float, and bit.
It can also be applied to real-literals.

Numeric Conversion -- An integer, fixed, or floating type is
converted to a fMed type with the rounding or truncation
specified in the conversion operator. As in the case for floating
types, rounding or truncation is performed with respect to the
implemented precision of the type specified by the conversion.: (I

- 163 - 13: Conversion

. .

Bit Conversion -- Conversion of a bit string to a fixed type is
legal only if the size of the bitstring equals the BITSIZE of the
fixed type.

13.4.4 Conversion to a Bit Type

A bit type has a type class B and a size attribute.

13.4.4.1 Compatible Types

A data object of type bit is equivalent to another data object of
type bit if the size attributes of both are equal.

A bit type is automatically converted to a bit type with a
different size attribute by truncating or adding zeros on the
left. For example, suppose you have the following items:

ITEM MASK B 3 - 1B-0101
ITEM FLAG B - IB'1',

You can assign MASK to FLAG or FLAG to MASK. In the first case,
the value of MASK is truncated on the left to produce the value
1BI ', which is then assigned to FLAG.

13.4.4.2 Convertible Types

A bit conversion can be given for any data object except a block.
Two types of bit conversion are defined, a user-specified-bit-
conversion and a RE, P conversion.

13.4.4.3 Ue-ecified Bit Conversion

A user-specified-bit-conversion to a type B NN takes the
rightmost NN bits of the data object's representation. If the
data object being converted contains loss than NN bits, the
object is padded on the left with zeros.

13s Conversion - 164 -

~- - - • i..• .. , - , • •

If the object being converted is a table or table entry, all
filler bits are included in the string. However, if the data
object being-converted is a character string, filler bits between
bytes and unused bytes following the end of the string are not

* included.

, a

Suppose you have the following declarations

TABLE COEFFICIENTS (3) T 8 - 4(63)1
ITEM CC U 61

This declaration specifies a tight table. A tight table is one
in which as many entries as possible are packed within a word.
Tight tables are described in Chapter 19 on "Advanced Topics".
The table COEFFICIENTS consists of 6-bit unsigned integers, each
of which has the decimal value 63, packed in an 8-bit field. The
bit pattern of each item equals.

63(decinal) - 77(octal) - IB'lllll1'(binary)

Assuming BITSZNWORD is 16, the table COEFFICIENTS has the
following patterns

0x----- x-----wor
xxllllllxxllllll word 0

xxllllllxxllllll word 1

The character "x" indicates a filler bit. That is, a bit that is
not set or used.

Now if you apply the following user-specified-conversions, you

get the following results%

Conversion Operator Value

(*B 6*) 1B'1111)1'
(*B 8*) lB'xxllllll' where x is a filler bit
(*B 16*) lB'xxllllllxxllllll'
(*B 20*) lB'llllxxllllllxxllllll'

(*B 36*) 1B'OOgxxllllllxxllllllxxllllllxxllllll'

- 165 - 131 Conversion

13.4.4.4 REP Conversions

A REP-conversion obtains the representation of a data object. It
converts a data object to a bit string whose size ts the actual
number of bits occupied by the object.

The form of the REP conversion is:

REP

Suppose you have the fotlowing declarationi

ITEM COUNT U 3 a 7t

If BITSINWORD is 16, the result of the REP conversion ist

REP(COUNT) -- > 1B'000000000•000111'

A REP-conversion can be appplied to named variables only.
However, it cannot be applied to tables with * dimensions or to
entries in parallel tables,

A REP-conversion can be used on the left-hand-side of an
assignment statement.

A

13.4.5 Conversion to a Character Type

A character type has the type class C and a size-attribute that
indicates the number of bytes occupied by the character string.

13.4.5.1 Compatible Types

A character data object is equivalent to another character data
object if the size attributes of both are equal.

I.

13: Conversion - 166 -

W 1 . . . -. .' •" .

A character string is automatically converted to a character
string by truncating or adding blanks on the right. For
example, ouppovie you have the following declarationsu

ITEM BOY C 6 a "NORMAN";
ITEM GIRL C 5 - "TRACY";

If you assign the item BOY to the item GIRL, the value of BOY is
truneated on the right and the value "NORMA" is assigned to GIRL.

13.4.5.2 Convertible Types

A user-epecified-character-conversion can be applied to data
objects of bit or character type.

Conversion of a bit string to a character type is legal only if
the size of the bitstring equals the actual number of bits used
to represent the character type, excluding filler bits between
bytes, which can be found by using the BITSIZE built-in function
described in Chapter 12. The number of bits in the character
string, including filler bits, can be found by first using a
REP-conver sion.

Consider the following declaration:

TABLE NAMES;
ITEM FIRSTNAME C 81

If BITSINWORD in 36 and BITSINBYTE is B, the following functions
yield the given results,

Call Result

BITSIZE(NAMES) 72
BITSIZE(FIRSTNAME) 64
BITSIZE(REP(NAMES)) 72
BITSIZE(REP(FIRSTNAME)) 72

A character string is converted to type C NN by taking the
leftmost NN characters. If the data object to be converted
contains fewer than NN characters, the value is padded on the(right with blanks.

- 167 - 131 Conversion

13.4.6 Conversion to a STATUS Type

A status type has type class STATUS and an attribute consisting
of a list of status-constants. It can also have a size and
specified representations for its status-constants, as described
in Chapter 19 on "Advanced Topics".

13.4.6.1 Compatible Types

A data object of type status is equivalent to another data object
of type status if both status lists contain the same status
values in tho same order. In addition, the status size and the
representation of the status-constants must also agree.

A status constant thet belongs to more than one status list is
automatically interpreted unambiguously in the following
contextst

a When it is the source value of an assignment statement, it K
takes the type of the target variable. 4.

0 When it is an actual parameter, it takes the type of the
corresponding formal parameter.

0 When it is in a table subscript or used in a preset to
specify an index, it takes the type of the corresponding
dimension in that table's declaration.

0 When it is a loop initial-value, it takos the type of the
loop-control variable. 7

* When it is in an item-preset or table-preset, it takes
the type of the itenm or table item being initialized,

0 When it is an operand of a relational operator, it takes
the type of the other operand.

* When it is in a case-index-group, it takes the type of the
case-selector.

* When it is a lower-bound or upper-bound, it takes the type
of the other bound.

131 Conversion - 168 -

- -*-.*..... . •, -.

For example, suppose you have the following declarationst

ITEM COLOR STATUS (V(RED),V(ORANGE),V(YELLOW),V(GREEN),
V(BLUE),V(VIOLET));

ITEM CONDITION STATUS ((V(RED),V(YELLOW),V(GREEN))r

The status constants V(RED), V(YELLOW), and V(GREEN) all appear
on both the list for COLOR and the list for CONDITION. However,
in any of the contexts given above, any ambiguity is
automatically resolved by the compiler. For example, if you
write:

CONDITION - V(RED)

The compiler assumes that the type of V(RED) is the same as the
type of CONDITION.

The compiler also performs automatic conversion between status
types that are the same except for the size attribute.

13.4.6.2 Convertible Types

A user-specified status-conversion can be applied to a data
object of bit or status type.

Conversion of a bit string to a status type is legal only if the
size of the bitstring equals the actual number of bits used to
represent the status type and the range of values of the bit
string is within the range of values for the status type. The
actual number of bits can be found by using the BITSIZE built-in
function, which is described in Chapter 12.

For example, suppose you have the following declarationus

TYPE COLOR STATUS (V(RED),V(ORANGE),V(YELLOW),V(GREEN),
V(BLUE),V(VIOLET))l

ITEM BITS B 3 n lB'I00'
ITEM SIXBITS B 6 a iB'000001'r

You can convert BITS to the status type COLOR because COLOR
requires three bits for its representation. Thus, the size of
BITS and its value are both valid for conversion purposes. You
can convert SIXBITS to the status type COLOR if you provide a

(conversion operator, as follows:

COLOR((*B 3*)(SIXBITS))

- 169 - 13: Conversion

A status-conversion for a status type is necessary only when the
status constant is given in more than one list and is not used in
one of the contexts given above.

For example, suppose you give the status-constant V(GREEN) as an
upper-bound in a table declaration. If no lower-sound is given
or if the lower-bound is also ambiguous, you muFt use a
conversion operator to indicate the type of the status-constant.
You can write it as follows:

TABLE DATA((*COLOR*)(GREEN));
ITEM POINT Fi

13.4.7 Conversion to a Pointer Type

A pointer type has type class P and an attribute that associates
a type-name with the pointer.

13.4.7.1 Compatible Types

A pointer data object is equivalent to another pointer data
object only if both data objects are untyped or if both are typed
with the same type-name attribute. Type-name attributes are
considered the same if the names are identical and they are
declared in the same type declaration.

A typed pointer is automatically converted to an untyped pointer.
For example, suppose you have the following declarations:

ITEM Pl P:
ITEM P2 P SUMMARYi
TYPE SUMMARY TABLEr

ITEM COUNT U;

You can assign the typed pointer P2 to the pointer P1. The
compiler automatically converts P2 to an untyped pointer. You
cannot, however, assign P1 to P2 without first applying an
explicit conversion to P1.

13.4.7.2 Convertible Types

A user-spec.-fied-pointer-conversion can be applied to a bit,
integer or pointer data object.

13: Conversion - 170 -

Conversion of a bit string to a pointer type is legal only if the
size of the bitstring equals the actual number of bits used to
represent the pointer type. The actual number of bits can be
found by using the BITSIZE built-in function, which is described
in Chapter 13.

Converting an integer to a pointer is equivalent to first
converting the integer to type B BITSINWORD and then converting
the bit string to a pointer.

A pointer can be converted to a pointer of another type by the
addition of a user-specified-conversion-operator.

13.4,8 Conversior to A Table Type

A table type has type clas, TABLE and the following attributes-

structure-specifier
number of dimensions
number of elements in each dimension
number of items in each entry
the type and order of each item
the paz-king of items

13.4.8.1 Compatible Types

Two tables have equivalent types if:

* Their s*ructure specifiers are the same,

* They have the same number of dimensions,

* They have the same number of elements in each dimension,

* They have the mame number of items in each entry,

* The types (including attributes) and the textual order
of the items are equivalent,

* The explicit or implied packing-spec on each of the items
is the same,

* And, the IORDER directive is either present or absent inboth tables.

- 171 - 13t Conversion

L. 4m

The names of the items, as well as the types and bounds of the
dimension, need not be the same for the tables to be equivalent.

A table entry is considered to have no dimensions.

A table whose entry contains an item-declaration is not
considered equivalent to a table whose entry is declared using an
unnamed item-description.

The compiler does not perform any automatic conversion for the
table type.

13.4.8.2 Convertible Types

A user-specified table conversion can be applied to a data object
of type bit or table.

Conversion of a bit string to a table type is legal only if the
size of the bitstring equals the actual number of bits used to
represent the table type. The actual number of bits can be found
by using the BITSIZE built-in function, which is described in
Chapter 12.

t:
A table conversion can be applied to a table object of that type
merely to assert its type. A table object cannot be converted to
a table object of a different type without first converting it to
a bit string.

13s Conversion - 172 -

i

Chapter 14

I' STATEMENTS

A statement specifies an action that is taken when a program is
executed.

14.1 STATEMENT STRUCTURE

A statement is a simple-_statement or a compound-statement. A
statement can be preceded by labels.

r Th following paragraphs describe simple-statements, compound-
statements, and labels.

14.1.* Simrle-Statements

Simple-statements perform computations, control program flow, and
call procedures. A simple-statement is one of the following:

Assignment-Statement
If-Statement
Case-Statement
Loop-Statement
Exit-Statement
Goto-Statement
Procedure-CaI1-Statement
Return-Statement
Abort-Statement
Stop-Statement
Null-Statement

Each simple-statement ia considered in its own section, later in
this chapter.

(1

-173 - 14: Stattements

14.1.2 Compound-Statements

A compound-statement groups a sequence of statements together.
The grouped sequence of statements can then be used where a
single statement is required. The form of a compound-statement
is:

BEGIN
statement

END

In this definition, the character sequence "...' below
"statement" means that a sequence of any number of statements can
appear between BEGIN and END.

Suppose you want to perform several computations if a particular
condition is satisfied. You can write:

IF LIGHT a V(RED);
BEGIN
COUNT - COUNT + 1;
FACTOR - 2.3 * PREVIOUS:
PAYOFF - ANALYSIS(FACTOR);
END

The entire example just given is an if-statement, and the last
five lines are a compound-statement. The execution of the if-
statement begins with the evaluation of the condition LIGHT *
V(RED). If the condition is true, the three statements in the)
compound-statement are executedi otherwise they are skipped. If
the statements were not grouped in a compound-statement, only the
assignment to COUNT would be execute6 conditionally.

14.1.3 Labels

A label is a name followed by a colon, as follows:

name t

Any number of labels can be placed immediately before a simple-
statement. The form is:

E label ...] simple-statement

The square brackets indicnte that the labels are optional.

14: Statements - 174 -

* I - - - -

4.

Labels can also be placed immediately before the BEGIN and/or the
END of a compound-statement. The form is:

l label ... I BEGIN
statement

[label ... I END

A statement is labelled so that it can be the destination of a
control statement. Statement labels are also useful for marking
sections of code as reference points for documentation or for
run-time debugging purposes.

An example of the use of labels is:

BEGIN
IF COUNT 4 20;

GOTO Ll;

(other statements appear here)

Ll: IF SPEED > SMAX;
GOTO L2;
(o4.her statements appear here)

L2: END

In this example, the second if-statement is labelled with the
statement-name Ll, and the END is labelled with L2. If COUNT is
less than 20, then some statements are Ikipped. If SPEED is
greater than SMAX, then the remaining statements in the
compound-statement are skipped.

The example of labels just given is valid, but it is not a
recommended programming style. JOVIAL (J73) provides better ways

directing flow of control.

-175- 141 Statements

14.1.4 Null-Statements

A null-statement fulfills the requirement for a statement but
does not perform any action. The null-statement has one of the
following forms:)

BEGIN E label ... I END

An example of the use of the null-statement is given in the
section on "The Dangling Else" later in this chapter.

14.2 ASSIGNMENT STATEMENTS

An assignment statement evaluates a formula and assigns the
result of the evaluation to one or more variables.

An assignment-statement is simple or multiple. A simple
assignment-statement sets a given var iable to the value of a
given formula. A multiple assignment-statement sets storage for
several variables.

14.2.1 Simple Assignment-Statements

-The form of a simple assignment-statement is:

variable = formula

The formula is evaluated, then the designated variable is
located, and finally the value of the formula is placed in that
variable.

The data type of the formula on the right of an assignment must
be compatible with the data type of the variable given on the
left. The data type of the variable is established by the
declaration of the variable. The data type of the formula is
determined by the data types of the operands, as described in
Chapter 11 on "Formulas".

141 Statements - 176 -

p.. -, - ,c.••,. •.., -• . _ .. .

For example, you can write:

FORCE - MASS * ACCELERATION;

This statement computes the product of MASS times ACCELERATION
and assigns that value to the variable FORCE. The data type of
the formula is determined by the data type3 of MASS and
ACCELERATION. If that data type is compatible with the data type
declared for FORCE, the assignment is valid.

14.2.2 Multiple Assignment-Statements

The form of a multiple assignment-statement is:

variable ,... - formula

The formula is evaluated first. Then the variables are
processed, from left to right. For each variable, the designated
variable is located and the value of the formula is placed in

(that variable.

For example, auppose you want to set three variables to zero.

You can write:

TIE, DPATE, STATUS , M;

The type class of all the variables on the left side of the
assignment must be the same. The type of the formula must be

(compatible with the type of each of the variables given.

For example, suppose you have the following declarations:

ITEM HEIGHT U 5;
ITEM LENGTH U 10t
ITEM SIZE U 15,

The following assignment is valid:

HEIGHT, LENGTH - SIZEI

The type class of HEIGHT and LENGTH ib the same (U). The type of
the formula is U 15, which is compatible with the type of HEIGHT
(U 5) and with the type of LENGTH (U 10).

- 1.77 - 14: Statements

________________ . ..

70k---

The order in which assignments are performed is sometimes
significant. Suppose, for example, you write the following
assignment statement

INDEX, PARTS(INDEX) - 5:

The leftmost variable INDEX is processed first and assigned the

value S. The next variable PARTS(INDEX) is processed next. Since
the value of INDEX has already been changed to 5, PARTS(S) is
assigned the value 5.

However, if you give the variables in a different order, the
result of the assignment could be different. Suppose the value
of INDEX is I and you write:

PARTS(INDEX), INDEX - 5:

This statement assigns the value 5 first to PARTS(INDEX). Since
INDEX is 1, PARTS(l) receives the value 5. Then the statement
assigns the value 5 to INDEX.

14.3 IF-STATEMENTS

An if-statement controls the flow of a program. The simplest
form of if-statement executes a statement When a given condition
is true. The form of this if-statement is:

IF test

true-alternative

Test is a Boolean formula. If the value of test is TRUE, the
true-alternative is executed: otherwise, the true-alternative is
skipped.

For example, suppose you want to call an error routine if the
value of a counter exceeds a specified threshold. You can write
the following if-statement:

IF COUNT > THRESHOLD;
ERROR(ll):

If the value of COUNT if greater than the value of THRESHOLD, the
value of test is TRUE and the true-a]ternat-ive, which invokes the
procedure ERROR, is executed. If COUNT is less than or equal to
THRESHOLD, the value of test is FALSE and control passes to the
next statement.

14: Statements - 178 -

A second form of the if-statement executes either of two given
statements, depending on the value of the test. The form is:

IF test;

true-alternative

ELSE

false-alternative

If the value of test is TRUE, then the true-alternative is
executed; otherwise, the false-alternative is executed.

The following statement is an example of the second form of if-
statement:

IF INDIC - V(RED);
COUNTl-COUNTi+lv

ELSE
COUNT2uCOUNT2+1;

This statement increments COUNT1 if INDIC - V(RED) and COUNT2
otherwise.

14.3.1 Compound Alternatives

True-alternative and false-alternative are each a single
statement. A compound-statement can be umed to include more than
one statement in a true-alternative or false-alternative.

(

S- 179 - 14:sStatements

, i*

¶

An example of a compound-statement in an if-statement appears
earlier in this chapter, under "Compound-Statements". Another
example is:

IF INDIC -V(RED);
COUNT1 COUNT1 + 1l

ELSE
BEGIN
COUNT2 a COUNT2 + 1;
MASK - FLAGS AND MONITORI
END

In this example, true-51ternative is a simple-etatement, but
false-alternative is a compound-statement that groups two
simple-statements together. When the value of test is FALSE, the
statement not only increments COUNT2 but also sets the variable
MASK.

14.3.2 NesteO If-Statements

If-statements can be nested, one inside another, to performi
complex tests. For example, suppose you want to call one of four
pzocedures based on the value of the status variable COND and the
counter COUNT, as follows:

IF COND a V(RED);
IF COUNT < TX;

CASE1 (TMAX, COUNT);
ELSE

CASE2(TMAX,COUNT);
ELSE

IF COUNT < TX;
CASE3(JMAX, THRESHOLD);

ELSE
CASE4(JMAX, THRE3HOLD),

If COND is V(RED) and COUNT is less than TX, the procedure CASEl
is called. If COND is V(RED) and COUNT is not less than TX, the
procedure CASE2 is called. If COND is not V(RED) and COUNT is
less than TX, the procedure CASE3 in called. If COND is not
V(RED) and COUNT is not less than TX, the procedure CASE4 is
called.

14t Statements - ISO -

The behavior of this if-statement is diagrammed in the following
table:

I COND -V(RED) COND <> V(RED)
S- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

COUNT < TX I COUNT >- TX COUNT 4 TX COUNT >- TX

I CASE.L CASE2 CASE3 I CASE4

14.3.3 The Dangling ELSE

In a nested if-statement, an ELSE clause that could be part of
several if-statements is sometimes called j "dangling ELSE". In
"JOVIAL, such an ELSE clause is associated with the closest of the
statements of which it Could be a part. As an example of a
dangling ELSE, consider the following:

IF COND V(RED);
IF FF - V(SET):

ACTION - lt
ELSE

ACTION - 2;

The ELSE clause is associated with the closer if-statement, which
contains the test FF - V(SET). The action taken by this if-
statement is shown in the following table:

TTICOtND -V(RED) ICOND <> V(RED)

ri -

rF - V(SET) I FF <> V(SET)II _(No action) ¶
ACTION- 1I ACTION- 2

1_ I 141 Statements

(

- 181 - 14: Steatements

If you want to associate the dangling ELSE with the test COND
V(RED) rather than with the test FF - V(SET), you can use a
compound-statement as follows:

IF COND - V(RED); IBEGIN

IF FF U V(SET);
ACTION - 1;

ELSE
ACTION - 2;

Alternatively, you can use a null-statement as the false-
alternative for the test FF -V(SET), as follows:

IF COND - V(RED):
IF PF - V(SET)r

ACTION - 1;
ELSE;

ELSE
ACTION - 2:

The action taken by these statements is equivalent. It is shown
in the following table:

COND - V(RED) COND (> V(RED)

F V(SET)I FF <>.V(SET)
F ______ T__ _______ACTION 2

ACTION 1 (No action) I

Note that the indentation of the ELSE clause in the first example
of this section is differenet from the indentation in th second
and third exanples. The purpose of the indentation is to m6Re
the intent of the code clearer to the reader. Indentation has no
effect on the syntax analysis of a JOVIAL (J73) program.

14.3.4 Compile-Time-Conotant Tests

If test in an if-statement is a compile-time-formula, the .4A

compiler evaluates test and reduces the if-statement to a single
statement. The compiler generates object code for the selected
alternative, but not for the test or the other alternative.

14: Statements - 182

,,

The compiler examines the unselected alternative at compile-time.
Thus, it must be syntactically correct and directives in the
unselected alternative are processed. However, since no object

__ code is generated for the unselected alternative, labels in that
alternative are not defined When the program is executed and
cannot be used either in goto-statements or as actual parameters
outside the alternative,

The same label cannot be used in both the alternatives even
though only one alternative is selected. All labels in a scope
must be unique.

14.4 CASE-STATEMENTS

A.case-statement provides for the execution of one or more of a
number of statements based on the value of the case-selector.
The case-statement has the following form:

CASE case-selector

BEGIN

d default-option "

case-option ...

END

The square brackets indicato that the default-option can be
omitted. The sequence "..," indicates that one or more case-
options can be given.

Case-option has the form:

case-index ,...) statement

The value of case-selector determines the option that is
executed. After the execution of that option, control passes to
the statement after the case-statement (that is, following the
END) unless a FALLTHRU clause is given. The FALLTHRU clause is
explained a little later in this section.

Case-selector can be an integer, bit, character, or status
formula. The case-indexes designate the statement to be performed
for a particular value of the case-selector.

- 183 - 141 Statements

If the value of the case-selector does not lie in the specified
ranges, then the statement associated with the DEFAULT selection,
if present, is selected. The default-option has the form:

DEFAULT) statement

For example, suppose you want to perform a calculation based on
whether a number in the range 1 through 20 is prime or non-prime.
You can write the following case-statementt

CASE FACTOR;
BEGIN
DEFAULT: ERROR(FACTOR);
(1,3,5,7,11,13,17,19): PRIME,
(2,4,6,8,9,10,12,14,15,l6,18,20); NONPRIME;
END

If the value of FACTOR is a prime number in the range from 1
through 20, the procedure PRIME is called. If the value of
FACTOR is in that range but is not a prime, NONPRIME is called.
If the value of FACTOR is outside the specified range, an error
procedure is called.

If default-option is given, it must be the first option in the
case-statement. If it is not. given, then it is an error if a
run-time value of the case-selector has a value for which there
is no case-option. In this circumstance, the effect of the
case-statement is undefined.

The type of case-index must be compati.ble with the type of case-
selector. The case-indexes must be distinct, so that a value of
the case-selector unambigously selects a case-index and an
associated case-option.

Each case-index must be known at compile time. It can be any
integer, bit, character, or status compile-time-formula.

14: Statements -184

14.4.1 Bound Pairs

A case index can be a bound-pair. The form of a bound-pair is:

first-case : last-case

For example, consider the following case-statement:

CASE ACTIONSELECTr
BEGIN
(DEFAULT): ACTION(I)i
(1-.5,101,103,105:107) ACTION(2);
(62. ft)v ACTIONal3e(11:100), ACTION(4)i
END

If the value of the case-selector ACTIONSELECT is between 1 and
5, equal to 101 or 103, or between 105 and 107, then the
procedure ACTION is called with the parameter 2. if the value of
ACTIONSELECT is between 6 and 10, then ACTION is called with
parameter 3, and so on. If the value is less than 1 or greater
than 100, then the statement associated with the default option
is executed and, in this case, ACTION is called with the
parameter 1.

14.4.2 The FALLTHRU Clause

An option in a case-statement can also hrive a ?ALLTHRU clause.
The FALLTHRU clause fo]lcws the statement in an option, as
follows:

CASE case-selector

BEGIN

E (DEFAULT) : statement F FALLTHRU • I

case-index, ..)t statement [FALLTHRU

END

The FALLTHRU clause can be present on any or all of the options
in a case-statement.

(

- 105 - 14: Statements

If, when a case--statement is executed, a FALLTHRU clause is
present on the selected option, then after the execution of the
statement in that option, the statement in the next option is
executed. Then, if that option has a FALLTHRU clause, the
statement in the next option is executed after the execution of
the statement in the current option is complete. This "falling
through" continues until the case-statement is terminated either
by an option that does not have a FALLTHRU clause or by the end
of the case statement.

Suppose you want to use the value of PROFIT to determine which of
a set of procedures is executed. You can write the following
CASE statement:

CASE PROFIT;
BEGIN
(DEFAULT): ERROR(21);
(1000:9999): DIVIDEND(PROFIT); FALLTHRU
(500:999): BALANCE(PROFIT);
(100:499): REEVALUATE;
(0:99): CLOSEOUT;

END

If the value of the case-selector PROFIT is between 1i00 anO
9999, the opticn for that case-index is executed. The procedure
DIVIDEND is called, and then, since that option has a FALLTHRU
clause, the procedure-call BALANCE, which is the statement in
the next option, is executed. If the value of PROFIT is between
500 and 999, the procedure BALANCE is called. If PROFIT is
between iMO and 499, REEVALUTE is called. If PROFIT is between O
and 99, CLOSEOUT is called. Any other value of PROFIT causes the • Y
default-option to be selected and the procedure ERROR to be
called.

14.4.3 Compile-Time-Constant Conditions

If the case-selector in a case-.statement is a compile-time-
formula, as defined in Chapter J1, the compiler evaluates it and
reduces the case-statement to the appropriate statements. In
this case, the compiler generates object code for the selected
option and, if the selected option contains a rALLTHRU clause,
for all statements selected by the FALLTHRU sequence of the
case-statement.

14-. Statements - 186 -

The compiler examines the unselected options at compile-time.
Thus, they must be syntactically correct, Directives in the
unselected options are processed. No object code, howriver, is
generated for the unselected options, and labels in those options
cannot be used either in goto-statements or as actual parameters
outside those options. The labels in an unselected option do not
exist at run time. Even so, all labels in a case-statement must
be unique.

14.5 LOOP-STATEMENTS

A loop-statement provides for the iterative execution of a
statement. A loop-statement is a while-loop or a for-loop.

14.5.1 While-Loops

A while-loop specifies a condition which, if true, calls for the
execution of the statement within the loop. As long as that
condition is true, the statement is executed. If the condition
is false, control passes to the next statement. The form of a
while-loop is:

WHILE condition ; statement

Condition is a Boolean foz~ula. The statement in a while-loop is
executed repeatedly as long as the value of the condition is
TRUE. Each repetition begins with an evaluation of the condition

(and continues, if the value of condition is TRUE, with an
execution of the statement.

- 187 - 14: Statements

____ ___ ___ ____ ___ ___ ____ ___ ___ __

For example, suppose you want to execute a case-statement as long
as the value supplied by each execution lies within a given
range. You can write the following while-loop:

WHILE READY;
CASE INDEX;

BEGIN
(DEFAULT)! READY = FALSE;
(1:10): INDEX - LEVELl(INDEX);
(11:20): INDEX - LEVEL2(INDEX);
(21-100): INDEX - PEAK(INDEX);
(ll:200)t INDEX - SUPER(INDEX);
END

In this example, the case-options each call a function that
performs some computations and returns a new value for INDEX. If
the value of INDEX Is not within the specified ranges for case-
indexes, the default-option sets READY to FALSE. Until that
circumstance arises, the case-statement is executed repeatedly.

14.5.2 For-Loops
The for-loop includes a mechanism for setting and changing a

variable, the loop-control. One form is:

FOR loop-control : initial-value

statement

The initial-value is evaluathd and assigned to loop-control and
then the statement is executed repeatedly. That is, the
execution is as follows:

1. Evaluate initial-value and assign its value to
loop-control.

2. Execute the statement.

3. Return to Step 2.

In this case, some condition within the statement must transfer
outside the loop to terminate the for-loop.

14: Statements - 188 -

The for-loop can also include a WHILE phrase, as follows:

FOR loop-control t initial-valtue [WHILE condition]

4 statement

If a WHILE phrase is given, the condition in thie WHILE phrase
governs the number of times the for-loop is executed. The
execution of the statement is as follows:

1. Evaluate initial-value and assign its value to
loop-control.

2. Evaluate the condition in the WHILE phrase.
If the value of the condition is TRUE,
continue to step 3. If the value of the
condition is FALSE, terminate the for-loop.

3. Execute the statement.

4. Return to step 2.

The for-loop can also include a clause that changes the value of
the loop-control in either of two ways, by incrementation (or
decrementation) or by repeated assignment.

14.5.2.1 Incremented For-Loops

An incremented for-loop has the following form:

FOR loop-control
: initial-value BY increment [WHILE condition 1

statement

The square brackets indicate that the WHILE phrase is optional.

A BY clause indicates that the value of increment is to be added
to loop-control.

If a WHILE phrase is not given, initial-value is evaluated and
its value assigned to loop-control, the statement is executed,
and then the value of loop-control is changed. This process
continues until some condition within the statement transfers
outside the loop to terminate the for-loop.

- 189 - 14: Statements

If a WHILE phrase is given, the condition in the WHILE phrase
governs the number of times the for-loop is executed.

The while phrase can also be given before the BY clause, as
follows:

FOR loop-control
initial-value C WHILE condition 3 BY increment

statement

The execution of the statement is as follows:

1. Evaluate initial-value and assign its value to
loop-control.

2. If a WHILE phrase is present, evaluate the
condition in the WHILE phrase. If the value
of the condition is TRUE, continue to Step 3.
Otherwise, terminate the for-loop.

3. Execute the statement.

4. Evaluate increment and add its vaue to the
value of loop-control.

5. Return to step 2.

Suppose, for example, you want to exchange the items of two
tables. Each table has 25 entries. You can write:

FOR IX:0 BY 1 WHILE IX<25;

BEGIN
TEMP - DAY(IX);
DAY(IX) - NIGHT(IX);
NIGHT(IX) - TEMPi
END

This statement sets the loop-control item IX to 0 and evaluates
the condition in the WHILE phrase. Since the value of the loop-
control IX is less than 25, the statement exchanging DAY(O) and
NIGHT(0) is executed. Then, IX is incremented by 1 and the WHILE
phrase condition is evaluated again. The value of the loop-
control is now 1, which is less than 25, and the statement is
executed again, exchanging DAY(l) and NIGHT(l). This process
continues until the loop-control is 25 and the condition is
false. Control then passes to the next statement.

14: Statements - 190 -

14.5.2.2 Repeated Assigment Loops

3 The form of a repeated assignment loop is:

FOR loop-control
: initial-value THEN formula E WHILE condition I

statement

The THEN clause indicates that the value of the formula is to be
assigned to the loop-control on each iteration of the loop.

If a WHILE phrase is given, the condition in the WHILE phrase
governs the number of times the for-loop is executed. The WHILE
phrase can be given before the THEN clause in a repeated
assignment loop just as it can be given before the TO clause in
an incremented loop.

The exccution of a repeated-assignment loop is as follows:

1. Evaluate the initial-value and assign it to the
loop-control.

2. If a WHILE phrase is present, evaluate the
condition in the WHILE phrase. If the value
of the condition is TRUE, continue to Step 3.

SOtherwise, terminate the for-lTop.

3. Execute the statement.

4. Evaluate the formula in the THEN clause and
assign it to loop-control.

5. Return to step 2.

(

- 191 141 Statements

...

As an example of the THEN clause, suppose you have the entries of
a table linked in a list. Each entry contains two items. The
first item, VALUE, contains a value and the second item, LINK,
contains an index to the next entry in the list. The beginning
of the list is given in the item LISTHEAD and the end of the list
is indicated by a 0 link. You can process each item in the list
by following the links to the end as follows:

FOR IXMLISTHEAD THEN LINK(IX) WHILE IX <> 0;
PROCESS(VALUE(IX));

This statement sets the loop-control IX to the beginning of the
list. If that value is zero, then the list is null. That is, it
contains no entries. If it is not zero, then the body of the
loop, which invokes the procedure PROCESS, is executed. Then the
link LINK(IX) is assigned to IX. If IX is not zero, the
statement is executed again. This process continues until the
end of the list is reached.

14.5.3 Loop-Control

The loop-control in a for-loop with a BY or THEN clause receives
a new value for each iteration of the loop.

Loop-control can be an item-name or a single letter. A single
letter loop-control is implicitly declared for the loop
statement. If loop-control is a declared item, the formulas g1ven
to set and change it must be compatible in type with loop-
control. If loop-control is a single letter, the values given in j
the BY or THEN clauses must be compatible with the initial-value.
In either case, the formula given in a BY clause must have data
type and value such that it can be added to the loop-control.

The value of loop-control should not be altered in a loop-
statement. The compiler does not allow the value of a single
letter loop-control to be changed in a for-loop. It allows the
value of a declared item loop-control to be changed, but it
issues a warning message in that case.

If the value of loop-control is not needed before or after the
execution of the for-loop, a single letter loop-control is
convenient. It does -.ot require declaration and its scope is the
for-loop statement itself. Thus no conflict with other loop-
controls can exist.

14: Statements - 192 -

For example, suppose you want to perform a computation for all
items, COUNT, of a table with 100 entries. You can write:

FOR 1:1 BY 1 WHILE I <- 100;
COMPUTE(COUNT(I)),

This loop calls the procedure COMPUTE for each entry in the
table.

If the value of loop-control is needed for use after the
execution of the loop statement, a declared item-name rather
than a single letter loop-control must be used.

Suppose you want to sum all the items of the table but you also
want to terminate the loop if the sum exceeds a given threshold.
If you want to know the index of the item that caused the sum to
exceed the threshold after the loop is terminated, you must use •'
declared item for loop-control, as follows:

FOR INDEX:I BY 1 WHILE INDEX <- 100;
BEGIN
SUM - SUM + COUNT(INDEX);
IF SUM > TMAXi

GOTO OVERFLOW;
END

If SUM exceeds the threshold, control is transferred to OVERFLOW
and the value of INDEX can be used to determine the item at which
the overflow condition occurred.{
14.5.4 Labels within For-Loops

A label within the body of a for-loop cannot be used outside the
for-loop. That is, control cannot be sent into a for-loop. The
body of a for-loop can be executed only by executing the for-loop
statement. A GOTO statement within the for-loop, however, can
transfer control to a labelled statement within the for-loop.

14.6 EXIT-STATEMENTS

An exit-statement is used to terminate a loop at the point within
the loop where the exit-statempnt is executed.

A

- 193 - 14: Statements

i#-

An exit-statement terminates the execution of the immediately
enclosing loop-statement. The form of the exit-statement is:

EXIT

The effect of an exit-statement is the sane as the effect of a
GOTO statement that transfers control out of the controlled-
statement to the point following the loop-statement.

For example, suppose you are processing a table of 1000 entries,
each of which contains three items, and you want to terminate if
the value of one of the items is zero. You can include a test in
the WHILE phrase as follows:

FOR 1:0 BY 1 WHILE HEIGHT(I) <> 0 AND I (- 999t
BEGIN
PROCESS (LENGTH(I));
PROCESS (HEIGHT(I)*WIDTH(I));
END

This statement performs the computations if HEIGHT(I) is not
zero. If HEIGHT(I) is zero, the for-loop is terminated.

However, suppose you want to call the procedure PROCESS for the
item LENGTH(I) before terminating if the value of HEIGHT(I) is
zero. Then you can use the exit-statement, as follows:

FOR I:0 BY 1 WHILE I (< 9997
BEGIN
PROCESS(LENGTH(I))l
IF HEIGHT(I) - 07

EXIT7
PROCESS(HEIGHT(I)*WIDTH(I)) 7
END

This statement performs the computations if HEIGHT(I) is not
zero. If HEIGHT(I) is zero, it invokes PROCESS fpr LENGTH(I) and
then terminates.

14: Statements - 194 -

14.7 GOTO-STATEMENTS

A goto-statement transfers control to the statement labelled by
the given statement-name. The form is:

GOTO statement-name

Statement-name must be known in the scope in which the goto-
statement appears. It must not be the label of a statement
within the controlled-statement of a loop-statement, unless the
goto-statement is also within that same controlled-statement or
within a nested controlled-statement. Further, it must not be
the label of a statement that is in an enclosing subroutine or in
another module.

A goto-statement should not be used for the cases in which JOVIAL
supplies another statement for the transfer of control. The
exit-statement, for example, temvinates a for-loop statement and
the return- and abort-statements terminate a subroutine. Cases
exist, however, in which the gota-statement can be effectively
used.

For example, suppose you are summing the items of a table with
two dimensions and you want to terminate the summation process if
the sum exceeds a specified threshold. Since the table has two
dimensions, the summation process requires a nested for-loop.
You can use a GOTO statement to terminate the execution of both
for-loops, as follows:

FW

FOR 1:1 BY 1 WHILE I I00;
FOR J:l BY 1 WHILE J < 100I

BEGIN
SUM - SUM + COUNT(I,J):
IF SUM > TMAX;

GOTO OVERFLOWi
END

(

- 195 - 14t Statements

.
~ ~ II~~ .

14.8 PROCEDURE-CALL-STATEMENTS

A procedure-call-statement invokes the named procedure and
associates the actual parameters of the call with the forma3
parameters of the definition. The form is:

procedure-name [(actual-list)]

[ABORT statement-name] :

Both the parenthesized parameter list and the ABORT phrase are
optional. If a procedure-definition does not declare formal
parameters then the call does not include any actual parameters.
The ABORT phrase is used to provide a statement-name to be used
in connection with any ABORT statement within the procedure or
procedures called by the procedure.

The procedure-call statement is described in detail in Chapter 15
on "Subroutines", in which subroutine definitions and subroutine
calls are considered together.

14.9 RETURN-STATEMENTS

A return-statement effects a normal return from a subroutine.
The form is:

RETURN

The return-statement sets any parameters for normal subroutine
termination and then transfers control to the point following the
invocation of the subroutine.

The return-statement is described and illustrated in Chapter 15
on "Subroutines".

14: Statements - 19L -

14.10 ABORT-STATEMENTS

An abort-stater'ent effects an abnormal return from a procedure.
The form is-

ABORT ;

When an abort-statement is executed, control passes to the
statement-name given in the most recently executed, currently
active procedure-call-statement that has an abort phrase. If no
currently-active procedure-call-statement has an abort phrase,
then the effect of an abort-statement is the same as that of a
STOP statement.

When an abort-statement is executed, all intervening subroutine
invocations are terminated and th6 parameters of these
subroutines are not set (as they would be if normal termination
of the subroutine occurred).

The abort-statement is further described and illustrated in
Chapter 15 on "Subroutines".

14.11 STOP-STATEMENTS

A stop-statement causes execution of the program to terminate.
The form is:

STOP [stop-code ;

If the stop-code is given, it is an integer formula whose value
is supplied to the environment in which the JOVIAL program is
running. The meaning of the value of the stop-code is
implementation-dependent. The range of legal values for stop-
code is defined by the implementation parameters MINSTOP through
MAXSTOP.

If a stop-statement is executed within a subroutine, the
parameters of any active subroutine are not set as they would be
on normal termination of the subroutine.

(1 S

- 197 - 14: Statements i

Chapter 15

4 SUBROUT INES

A subroutine is an algorithm that can be executed from more than
one place in a program. A subroutine can be either a procedure or
a function. A procedure is executed by a procedure-call
statement. A fu on returns a value and is executed within a
formula by a function-call.

The following sections describe the definition and use of
procedures and functions.

15.1 PROCEDURES

A procedure describes a self-contained portion of a program. A
procedure can interact with its environment through its
parameters or global data. A procedure-definition defines the
name, attributes, and logic of o procedure. A procedure-call
invokes that logic and supplies actual parameters to be used in
the execution of the procedure's statements.

15.1.1 Procedure-Definitions

A JOVIAL (J73) procedure-definition gives the procedure name,
declarations for all formal parameters and local data, the
executable statements of the procedure and the definitions of any
subroutines local to the procedure.

A procedure-definition has the following form:

PROC procedure-name

t use-attribute J E (formal-list 3

procedure-body

- 199 - 15: Subroutines

7'-7 • 0.. . . 1.3..iU,•,..,.... .

The square brackets indicate that use-attribute and the
parenthesized list of formal parameters can be omitted. Use-
attribute indicates whether the subroutine is recursive or
reentrant. The compiler uses this attribute to allocate data
within the procedure properly. Use-attribute and the parameters
are described in detail later in this chapter.

Procedure-body contains the declarations of any parameters,
declarations of any local dat'. the statements of the procedure,
and definitions of any local)routines used in the procedure.

Procedure-body can be simple or compound. In either case, it must
contain at least one executable statement.

15.1.2 Simple Procedure-Bodies

The simplest form of a procedure-body contains only an executable

statement, as follows:

statement

Only a procedure without parameters can have a simple procedure-
body, because parameters must be declared. If a procc3ure has
parameters, it must have a compound procedure-body.

As an example of the simple form of a procedure-body, suppose you
want to write a procedure TABMULT that multiplies each item in
one table by the corresponding item in another table and saves
the product in a third table. The tables to be multiplied are
declared as follows:

TABLE PHASE1(1:I000);
ITEM COUNTP1 F;

TABLE PHASE2(1:1000);
ITEM COUNTP2 F;

TABLE PHASES(l:1000);
ITEM RESULTS F;

You can write the procedure TABMULT as followst

PROC TABMULT;
FOR 1:l BY 1 WHILE I (- 1000;

RESULTS(I) - COUNTPl(1)*COUNTP2(I)i

TABMULT is a very specialized routine that only works for the .1
given tables. A more general routine for this kind of table
manipulation is described later in this chapter.

15: Subroutines - 20M -

v! _

15.1.3 Compound Procedure-Bodies

The compound form of a procedure-body can contain declarations,
statements, and definitions of subroutines used in the
computation, as follows:

BEGIN

r declaration ..

statement ...

[subroutine-definition .,. J

END

The square brackets indicate that declarations and subroutine-
definitions are optional in 9 compound procedure-body.

(Data declared in a subroutine is allocated in automatic storage
unless the declaration contains a STATIC allocation attribute.

As an example of the coipound form of a procedure, suppose you
want to dispatch on the value of variable to one of a number of
subroutines. You can write a dispatch procedure with that
variable as an input parameter as follows:

PPROC DISPATCH(CODE)r
BEGIN
ITE14 CODE INTEGER S;
CASE CODE**2;

(DEFAULT):
(0): ACTION1;
(1:25): ACTION2;(26:1000): ACTION3;
(10012500): ACTION4O
(2501:5600): ACTIONS;

END

The procedure DISPATCH has one formal parameter CODE. The
parameter CODE is declared within the procedure to be a signed
integer. The statement of the procedure is a case-statement that
uses the square of the parameter CODE to select one of five
different action routines.(

- 201 - 15: Subroutines

1L

S.. ' ' -" 2 '2W ,

15.1.3.1 Formal Parameters

The formal parameters are given in formal-list. The parameters
in formal-list are divided into input parameters and output
parameters by a colon, as follows:

Sinput-parameter ,... . [: output-parameter, ...

The square brackets indicate that formal-list can consist of only
input-parameters, only output-parameters, or both kinds. If the
list contains only output-parameters, the colon must be present
to indicate that they are output-parameters. The formal-list,
which is enclosed in parentheses, cannot be null; it must
contain at least one parameter.

Formal parameters and actual parameters are discussed later in
this chapter, after the discussion of procedure-calls.

15.1.4 Procedure-Calls

A procedure-call is a statement. It causes the invocation of the
associated procedure and the association of the actual parameters
of the call with the formal parameters of the definition.

The form of the procedure-call is:

procedure-name £ C actual-list)] C abort-phrase .

The square brackets indicate that both the parenthesized list of
actual paramoters anM the abort-phrase are optional.

The abort-phrase provides a label to which control is sent if an
abort-statement is encountered during the execution of the
procedure. The abort-phrase has the form:

ABORT statement-name

A detailed discussion and examples of the abort-phrase are given
later in this chapter.

15: Subroutines - 202 -

The simplest form of the procedure-call is used for a procedure

that is defined without parameters. That is:

procedure-name

For example, to Call the procedure TABMULT, which was declared
earlier in this chapter without parameters, you can write:

TABMULT;

The execution of the procedure multiplies each item of PHASE] by
the corresponding item of PHASE2 and saves the product in the
corresponding item of PHASES.

If the procedure has parameters, then the procedure-call consists
of the procedure-name followed by the parenthesized list of
actual parameters, as follows:

procedure-name (actual-list)l

For example to call the DISPATCH routine, which was declared
earlier in this chapter with a single parameter, you can write:

DISPATCH(4)r

The execution of the procedure squares the input parameter and
uses that result in a case-statement. This call results in
ACTION2 being called by the DISPATCH procedure.

15.±.4.1 Actual Parameters

The parameter list supplied with a subroutine invocation defines
the actual parameters to be used for that invocation.

As in the formal parameter list, the actual parameters are

divided into input and output parameters by a colon, as follows:

Sinput-actual, ... • C: output-nctual ,...

The square braclkets indicate that the list of actual parameters
can consist of only input parameters, only output parameters, or
a combination of both. The actual-list, which in enclosed in
parentheses, cannot be nulli it must contain at least one

* (paramter.

1 - 203 - 15: Subroutines

'S!

An input-actual can be a formula, a statement-name, a procedure
or function-name, or a block-reference. An output-actual must be
a variable.

The relationship between the actual parameters and the formal
parameters is discussed later in this chapter.

15.2 FUNCTIONS

A function is different from a procedure in the following wayst

0 The function-definition must contain a type description
for the result. The function returns a value of that
type.

* The funcLion-call is used in a formula (or as a formula)
and cannot be used as a statement.

0 A function-call cannot contain an abort-phrase.

15.2.1 Function Definitions

A function-definition has the following form:

PROC function-name E use-attribute J [(formal-list) f

type-description r

procedure-body

The type-description defines the type of the return value of the
function. The return value must be determined, during execution
of the function-b-ody by an assignment to the rame of the
function.

The name of the function ls used to designatý the return value.
The name of the function, when used to desig ate the return
value, can be used only on the left-hand-sidEi of an assignment
statement within the function-body. When th name of the
function is used on the right-hand-side of a assignment
statement or in other permissable contexts fb r a formula, it
designates a recursive function-call. ?

1u
15: Subroutines - 204 - 1

For example, suppose you want to write a function that gets the
factorial of its argument. The factorial is defined for non-
negative integers as follows:

I factorial(n),: 1Sfactorial(n) - *. . .(n-l) *n

You can write the following functiont

PROC FACTORIAL(ARG) Ur
BEGIN
ITEM ARG U;
ITEM TEMP U1
TEMP - It
FOR 1:2 BY 1 WHILE I<wARG;

TEMP - TEMP*I:
FACTORIAL - TEMP;
END

The value of the function is an unsigned integer, as indicated by
the type-description following the parameter list. The returnA value is set in the last statement of function-body when TEMP is
assigned to FACTORIAL. Observe that TEMP is necessary because
the name of the function can be used to designate the return
value only on the left-hand-side of an assignment statement
within the function-body.

15.2.2 Function-Calls

A function-call can be used as a formula or as an operand in a
formula. The form of the function-call is:

function-name C (actual-list) I

If the function is defined without parameters, then the
function-call is simply the function-name. If the function has
parameters, the function-call is the function-name followed by
the parenthesized list of actual parameters.

For example, suppose you want to calculate the combination of NN

obects taken KK at a time. You can use the factorial function as
followsl

C2 - FACTORIAL(NN)/(FACTORIAL(NN)-FACTORIAL(KK));

The factorial function is called three times in this statement.

- 205 - 15: Subroutines

.? '
*I . 1 - - ____,_._... .,_ . .___ .____ .__ .__' " ' __ , .,' __""n"""_.......... '" ' .__,•

15.3 PARAMETERS

The parameters given in a subroutine-definition are called formal
parameters because they represent the parameters for the purpose
of defining the computations toEe performed by the subroutine
using the parameters. The parameters given in a subroutine-call
are called actual paramaters because they are the parameters for
that invocation of the subroutine.

15.3.1 Input and Qutput Parameters

A formal input parameter designates a parameter that receives a
value from the corresponding actual parameter. A formal outut
parameter designates a parameter that receives a value from the
corresponding actual parameter when the subroutine is called and
returns a value to the corresponding actual when the subroutine
is terminated in a normal way.

If, in the course of the execution of a procedure, a formal
parameter is used in a context in which its value can be altered, A

then it must be declared as an output parameter. That is, the
value of a formal !nput parameter cannot be changed within a
subroutine.

The number of input actual parameters in the call must be the
same as the number of input formal parameters in the definition.
Similarly, the number of output actuals must be the same as the
number of output formals.

The first (leftmost) actual parameter in a call is associated
with the first (leftmost) formal parameter in the definition of
the given subroutine; the second actual is associated with the
second formal? and so on. However, the order in which the actual
parameters are evaluated is not specified. Consider the
following procedure declaration:

PROC TALLY(:Al);
BEGIN
ITEM Al U;
Al- Al + 1;
END

15: Subroutines -206-

The preceding definition defines a procedure TALLY with a single
parameter. The parameter is an output parameter. It is
incremented in the procedure body. Consider a call on TALLY:

TALLV(:COUNT)i

If the value of the item COUNT is 5 before the procedure TALLY is
called, then the value of item COUNT is 6 after TALLY is
executed.

TALLY is an unrealistically simple function. Usually a function
involves more computation. Incrementation like this can be
accomplished by a simple assignment statement or, in some cases,
by a define-call, as will be seen in Chapter 18.

15.3.2 Parameter Binding

The way in which a formal parameter is bound depends on its type
and input/output status. JOVIAL (J73) uses three types of
bindingi value, value-result, and reference.

A formal input parameter that is an item is bound by value. A
formal output parameter that is an item is bound by value-result.
A formal parameter that is a table or block is bound by
reference.

For all three types of binding, actual parameter values or the
location of actual parameter values are evaluated when the
subroutine is invoked and are not reevaluated while the
subroutine is being executed.

15.3.2.1 Value Binding

If a formal parameter is bound by value, it denotes a distinct
object of the type specified in the--•ial parameter declaration.
When the subroutine is called, the value of the actual parameter
is assigned to that object.

(

- 2•7 - 15: Subroutines

a.. , ... ,f•,, •. • , • ' -

For example, suppose you have the following procedure-
declaration:

PROC RUNTIMER(ARGI);
BEGIN
ITEM ARGI U;
FOR 1:0 BY 1 WHILE I (ARGI**2;

CORRELATE(ARGl, I);
END

Now suppose you call the procedure:

RUNTIMER(CLOCK1)t

The formal parameter ARGi is assigned the' value of CLOCK1 when
the procedure is called.

15.3.2.2 Value-Result Binding

If a formal parameter is bound by value-result, it denotes a
distinct object of the type specified in the formal parameter
declaration to which the value of the actual Is assigned when the
subroutine is called. In addition, when the subroutine is exited
normally, the value of the formal is assigned to the
corresponding actual. If the subroutine is terminated in an
abnormal way, the value of the formal is not assigned to the
actual. Normal and abnormal returns from subroutines are
discussed later in this chapter.

Suppose you define the following procedure:

PROC MINMAX(VECTOR:MIN,MAX);
BEGIN
TABLE VECTOR(99);

ITEM V1 U;
ITEM MIN U1
ITEM MAX U;
MIN, MAX - VI(0);
FOR I : 1 BY 1 WHILE I <- 99y

BEGIN
IF VI(I) 4 MIN;

MIN - Vl(I)i
IF Vl(I) > MAX;

MAX - Vl(I);
END

END

15: Subroutines - 208 - [
-~ N

Now suppose you call the procedure:

MINMAX(RETURNS:RMIN, RMAX)

The procedure MINMAX finds the minimum and maximum values in the
table RETURNS and, on completion, sets the value of RMIN to the
minimum value (MIN) arid RMAX to the maximum value (MAX).

15.3.2.3 Reference Binding

If a formal parameter is bound by reference, the actual parameter
and the formal parameter denote th-esame Fhysical object. Any
change in the formal parameter entails an immediate change in the
value of the actual parameter.

Suppose you want to square the items of a table and then
calculate the sum of the pairwise quotients. The Item SIZE gives
the number of entries in the table currently in use. SIZ. is
always an even number. You can write:

PROC MEAN(:ARGBLOCK);
BEGIN
BLOCK ARGBLOCK

BEGIN
ITEM SIZE U;
ITEM SUM Ui
TABLE ARGTAB(l:lMSO)t

ITEM VALUE S1
END

SUM - 0
FOR I : 1 BY 2 WHILE I < SIZE;

BEGIN
IF VALUE(I+1) - 0:

ABORT;
VALUE(I) - VALUE(I)**2r
VALUE(I1+) u VALUE(I+l)**2t
SL! - SUM + VALUE(I)/VALUE(I+l);
END

END

(

- 2(•9 - 15: Subroutines

!i

Suppose STATISTICS is a block that is declared as follows:

BLOCK STATISTICS;
BEGIN
ITEM STATSIZE U w 10;
ITEM STATSUM U;
TABLE STATTAB(999);

ITEM STATIVALUE S - 2,4,3,4,8,6,9,0,11,3;
END

Suppose you call the procedure MEAN with the actual parameter
STATISTICS, as follows:

MEAN(:STATISTICS);

The block STATISTICS is bound by reference to the formal
parameter ARGBLOCK. Each change to SUM results in an immediate
change to STATSUM. Similarly, a change in VALUE(I) results in a
change in STATVALUE(I). If the procedure terminates abnormally as
a result of finding a zero value in the table, STATSUM has the
value computed up to that point and the values of the table
STATTAB are changed up to the point at which the zero quotient
was encountered.

Assuming the item STATSIZE and the table STATTAB have the values
assigned in the preset, the procedure terminates abnormally when
I is 9. The values of STATSUM and STATTAB on termination are!

item Value

STATSUM 4/16 + 9/16 + 64/36

STATVALUE (C) 4
STATVALUE(2) 16
STATVALUE (3) 9
STATVALUE (4) 16
STATVALUE (5) 64
STATVALUE(6) 36
STATVALUE(7) 9
STATVALUE(8) 0
STATVALUE(9) 11
STATVALUE(10) 3

15: Subroutines - 210 -

"-,.. r •• ' | 'i......... i''-'"'t i • '• '4Wy" I r•I ..I. :4,'.

1.5.3.3 Parameter Data Types

The data type of an actual parameter must match the data type of
the corresponding formal parameter. The rules for type matching
of actual and formal parameters depend on the data types of the
parameters:

Items -- The data type of an actual parameter must be
compatible with the data type of the
corresponding formal parameter.

Tables -- The data type of the actual and formal parameter
must be equivalent. The attributes and
allocation order of all components of the table
must be equivalent.

Blocks -- The data type of a block actual matches the data
type of a block formal if (1) the types and order
of the components match exactly, (2) an IORDER
directive is either present or absent in both,
and (3) overlay declarations in both blocks have
tbe same effect.

Data type equivalence and compatibility are discussed in detail
in Chapter 13 on "Conversion".

15.3.4 Parameter Declarations

All parameters must be declared within a subroutine. A formal
input parameter can be a data-object, a label, or a subroutine.
A formal output parameter can be a data-name only.

A formal parameter cannot be declared to be a constant or a type.
Declarations of formal parameters must not contain allocation
specifiers or initial values. Formal parameters cannot be
declared to be external.

The following sections consider the declarations of data-names,
statement-names, and subroutine-names.

- 211 - 15: Subroutines

• ,'••~-, ,-, '" " i',•": ,,. ,, * .* "...4.*.~... * • •

15.3.4.1 Data Name Declarations

If a formal parameter is a data name, it is declared by an item,
table, or block declaration. The only difference between the
form of a data declaration for & data object and that for a
formal parameter occurs in the case of a table. A formal
parameter that is a table can be declared with asterisk(*)
dimensions. The bounds of a table declared in this way are
determined from the actual parameter on each invocation of the
subroutine.

The use of the asterisk dimensions allows a subroutine to handle
tables with different sire dimensions. With this capability,
general purpose subroutines for table manipulation can be
written.

For example, suppose you want to write a procedure that clears to
zero the items of a two dimensional table. You can write the
following:

PROC ZERO(:TABNAME);
BEGIN
TABLE TABNAME(*,*);

ITEM TABENT Ur
FOR I:LBOUND(TABNAME,O) rY 1 WHILE I<-UBOUND(TABNAME,0);

FOR J:LBOUND(TABNAMEI) BY 1 WHILE J<-UBOUND(TABNAME,l);
TABENT(I,J) - 0;

END

You can call the procedure ZERO with any two dimensional table.
The LBOUND and UBOUND built-in functions provide the lower and
upper bounds of the table that is the actual parameter of the
call. More information on these built-in functions is given in
Chapter 12.

For example, suppose you have the following declaration,:

TABLE SCORE(l:20,I:3);
ITEM GRADE U;

TABLE RESULTS(99,4);
ITEM RES U1

You can call ZERO as follows:

ZERO (SCORE)-
ZERO(RESULTS);

The first call on ZFRO sets the sixty items of SCORE to zero.
The second call sets the five hundred itemr of RLSULTS to zero.

15: Subroutines - 212 -

-- • Z• •:,, ,, 'ir', fllfli• a!"* /*: |" • • -

15.3.4.2 Statement Name Declarations

4 If a formal-parameter is a statement-name, it is declared by a
statement-name declaration. The form of a statement-name
declaration is:

LABEL statement-name ,...

A GOTO statement to a label that is a formal parameter results in
the subroutine being exited and control being sent to the label
that is supplied as the actual parameter.

Statement-name parameters are useful for subroutines that have
more than one possible error exit. For example, consider the
following subroutine:

PROC VERIFY(TAB,Ll,L2:5UM) -
BEGIN
TABLE TAB(*);

ITEM TABENT F;
LABEL I,1,L2;
ITEM SUM Ft
SUM = 0.0;
FOR I : LBOUND(TAB,O) BY 1 WHILE I <- UBOUND(TABM);

BEGIN
IF TABFNT(I) < THRESHOLD;

GOTO Llt
SUM - SUM + TABENT(I)**2
IF SUM > MAXSUM;(GOTO L2;
END

END

Suppose you call the procedure VERIFY as follows:

VERIFY(NEWDATA,ERRORI,ERROR5:NEWSUM)t

The procedure VERIFY is terminated abnormally under two separate
conditions. If an entry in NEWDATA is less than THRESHOLD, the
procedure is taiminated abnormally and control is sent to the
label ERROR1. If SUM iv greater than MAXSUM, the procedure is
terminated abnormally and control is sent to the label ERROR5.

The use of a statement label formal parameter to exit a
subroutine constitutes an abnormal termination from the
subroutine. Subroutine termination is discussed in detail later
in this chapter.

- 213 - IS: Subroutines

15.3.4.3 Subroutine Declarations

If a formal parameter is'a subroutine-name, it is declared by a
subroutine-declaration. A subroutine-declaration contains the
information necessary to describe a call on the subroutine.

The form of a subroutine-declaration iss

,PROC procedure-name C use-attribute J C (formal-list) J

type-description

parameter-declaration

If the subroutine has parameters, then a declaration must be
given for each parameter. If the subroutine does not have any
parameters, then a null declaration must be given instead of the
parameter declarations. No other declarations can be given in a
subroutine-declaration. Declarations of local data, as well'as
the executable statements and any local subroutine-definitions,
are not given in a subroutine-declaration; they can appear only
in the subroutine-definition.

If the subroutine-declaration includes a type-description, then
it declare6 a functionj otherwise, it declares a procedure.

15: Subroutines - 214 -

•+ • '• +• ",.t
.............+,l+,,

As an example of the use of a subroutine parameter, suppose that
in the VERIFY subroutine just given you want to call a subroutine
on an error condition instead of transferring out to a label.
You can modify the VERIFY routine as follows:

PROC VERIFY(TAB, SUB1, SUB•:SUM)
BEGIN
TABLE TAB(*);

ITEM TABENT F;
PROC SUB1;

BEGIN
END

PROC SUB2;
BEGIN
END

ITEM SUM Fr
SUM - 0.0
FOR I:LBOUND(TAB,P) BY 1 WHILE I <- UBOUND(TAB,O)t

BEGIN
IF TABENT(I) 4 THRESHOLD;

SUBI 7
SUM - SUM + TABENT(I)**2,
IF SUM ! MAXSUMI

SUB2 ;
END

Suppose you call the procedure VERIFY as follows:

VERIFY (NEWDATA,LOWDATA, OVERFLOW : NEWSUM);

If an entry within the table NEWDATA is less than THRESHOLD, the
"procedure LOWDATA is invoked. If SUM is greater than MAXSUM,
OVERFLOW is invoked.

15.4 THE USE-ATTRIBUTE

Use-attribute is used to designate a subroutine as either
reentrant or recursive.

* (

- 215 - 15: Subroutines

"......k

[I

Use-attribute is one of the following reserved words:

RENT

REC

The use-attribute follows the subroutine-name as indicated
earlier in this chapter. If a subroutine is recursive, it must be
declared with the REC use-attribute. If it is reentrant, it must
be declared with the RENT use-attribute.

15.4.1 Recursive and Reentrant Subroutines

A recursive subroutine is one that calls itself, either directly
or indirectly. A reentrant subroutine is one that can be called
from several different concurrent tasks.

The compiler must use dynamic storage allocation for a recursive
subroutine since the maximum number of recursive invocations and
hence the maximum number of copies of automatic data cannot be
determined at compile time. If the compiler knows the maximum
number of separate tasks that can invoke a reentrant subroutine
in a given system, it can allocate storage for the subroutine
statically. In general, though, the compiler dynamically
allocates storage for reentrant subroutines.

A6 an example of a recursive function, consider the following,
which computes the factorial.

PROC RFACT REC (ARG) U1
BEGIN
ITEM ARG U;
IF ARG - Ol

RFACT - 1:
ELSE

RFACT - RFACT(ARG-l)*ARG;
END

The function RFACT computes the factorial recursively instead of
iteratively as did the function FACTORIAL given earlier. The
function-declaration contains the use-attribute REC to indicate
that it is used recursively.

151 Subroutines - 216 -

This function illustrates the use of recursion clearly. In
practice, however, a function like this is not written
recursively because the computation is too simple to justify the
overhead associated with the repetitive function calling
mechanism. In the above example, dynamically allocated memory is
required for every integer from 1 to the value of ARG, since
there is a separate function call for each of theme values.

The function RFACT is obviously recursive because it calls
itself. Some subroutines are less obviously recursive because
they call other subroutines that, in turn, call them.

15.5 SUBROUTINE TERMINATION

The execution of a subroutine is terminated either normally or
abnormally.

The execution of a subroutine is terminated in a normal way by

one of the following:

o A return-statement

o The execution of the last statement in the subroutine

When a subroutine is terminated in a normal way, the value-result
output parameters are set.

The execution of a subroutine is terminated in an abnormal way by

one of the following:

"o An abort-statement

"o A goto-statement to a statement-name supplied as a paL'ameter

"o A stop-statement

When a subroutine is terminated abnormally, the value-result
output parameters are not set.

(

- 217 - 15: Subroutines

~L ~T~' 7? 77.717 !

Ii

15.5.1 Return-Statements

The return-statement is used to effect a normal return from a
subroutine. When a return-statement is executed, the execution
of the subroutine is terminated, any parameters that have value-
result binding are set, and control returns to the point
following the subroutine-call.

Suppose you want to search for a particular character string in a
table of character strings. You want to stop the search either
when you find the character string or when you reach the end of
the table. You can use a return-statement for the case in which
the character string match is found, as followss

PROC SEARCH(TABNAME,STRING:POSITION)7
BEGIN
TABLE TABNAME(999)1

ITEM TABSTRING C 101
ITEM STRING C 101
ITEM POSITION U-
FOR POSITION : 0 BY 1 WHILE POSITION < 1M001

IF TABSTRING(POSITION) - STRING;
RETURNt

NOTFOUND(STRING);
END

If the character string STRING is found in the table TABNAME, the
RETURN is executed and the output parameter POSITION gives the
entry number in the table where the match occurred. If the
character string is not found, the procedure NOTFOUND is called
and the output parameter POSITION contains the value 1000.

A return-statement causes a return only from the subroutine in
which it is given, not from any subroutines in which the
subroutine containing the return is nested.

15.5.2 Abort-Statements

The aburt-statement is used to effect an abnormal return from a
subroutine. When an abort-statement is executed, control passes
to the statement named in the abort-phrase of the most recently
executed, currently active procedure call that has an abort-
phrase. All intervening subroutine invocations are terminated.
No value-result parameters are set.

15: Subroutines - 218 -

For example, suppose you want to cause an abnormal terminntion
from the FACTORIAL function if the value of the argument is
larger than a specified value. You can include an abort-
statement, as follows:

PROC FACTORIAL(ARG) U;
BEGIN
ITEM ARC U1
ITEM TEMP U1
IF ARG ý MAXARGI

ABORT:
TEMP -1;
FOR I ARG BY -1 WHILE I10;

TEMP - TEMP*Ii
FACTORIAL a TEMP;
END

Suppose further that you have another function that gets the
combinations of n things taken k at a time using the factorial
routine, as follows:

PROC COMBINATIONS(NN,KK) U1
(BEGIN

ITEM NN Ur
ITEM KK U1
COMBINATIONS - FACTORIAL(NN) / (FACTORIAL(NN)-FACTORIAL(KK))i
END

And suppose you want to take the combinations of objects and
trials in a table using the following procedure:

PROC QUANTIFY(OBJECTS,TRIALS, THRESHOLD:BELOW,EQUAL,ABOVE):
BEGIN
TABLE OBJECTS(99);

ITEM OBJ U;
TABLE TRIALS(99)r

ITEM TR U:
ITEM THRESHOLD U;
ITEM BELOW U.
ITEM EQUAL U:
ITEM ABOVE U1
BELOW, EQUAL, ABOVE - 0:
FOR I 1 0 BY I WHILE I <100i

IF COMBINATIONS (OBJ(I),TR(I)) < THRESHOLD:
BELOW-BELOW+l

ELSE
IF COMBINATIONS(OBJ(I),TR(I)) - THRESHOLDi

EQUAL - EQUAL + 1;
(iELSE

AABOVE - ABOVE + 11
END

- 219 - 15: Subroutines

I'

Suppose you call QUANTIFY as followst

QUANTIFY(HITS,GAMES:SUBEQ, SUPER) ABORT ERROR22i

If any of the values in the tables HITS or GAMES results in the
factorial being given an argument that exceeds MAXARG, the ABORT
statement in the FACTORIAL function is executed and the FACTORIAL
function is exited, the COMBINATIONS function is exited, and the
QUANTIFY procedure is exited. Since the call of the QUANTIFY
procedure has an abort-phrase, control is then sent to the
statement labelled ERROR22.

Observe that the name ERROR22 does not need to be known in the
scope in which the abort-statement appears. It need be known
only in the scope in which the abort.-clause on the procedure-call
appears,

15.5.3 Goto-Statements

A goto-statement to a formal label parameter transfers control
from a subroutine prematurely. If a GOTO to a formal parameter
is executed, control is sent to the statement Whose label was
passed as an actual parameter in the subroutine call.

Value-result parameters are not set if a subroutine is exited by
transferring to a label parameter.

15.5.4 Stop.-statements

A stop-statement stops the execution of the entire program Pt the
point it is given. Value-result parameters are not set if a
stop-statement is executed in a subroutine.

15.6 MACHINE SPECIFIC SUBROUTINES

Machine specific subroutines are those subroutines provided by an
implementation to enable programs to invoke single machine
instructions peculiar to the given machine. In general,
subroutines are provided for machine instructions that cannot be
executed through the language.

15: Subroutines - 220 -

..

4,.

15.7 THE INLINE-DECLARATION

The inline-declaration directs the compiler to insert the object
code for the body of the subroutines named at the points of their
invocation instead of generating object code to call them. The
form is:

INLINE subroutine-name ,..,

The effect of an inline-declaration extends for just the name
scope in which the inline-declaration apears. It does not affect
calls in enclosing scopes. Subroutine-names whose definitions
appear in other modules cannot be used in an inline-declaration.

Suppose you have the following statements:

ITEM COUNT Up
TABLE DXI(999)t

ITEM DXCOUNT Up
INLINE TALLYr
COUNT - 0
"FOR 1:0 BY 1 WHILE I<1000;

IF DXCOUNT(I) 4 THRESHOLD;TALLY(OCOUNT);
PROC TALLY(OARG):

BEGIN
ITEM ARG Up
ARG - ARG +1;
FND

The code generated for the loop-statement is the snme as the co~e
generated for the following loop-statementf

FOR ItO BY 1 WHILE I<1P000
1F DXCOUNT(I) < THRFEHOLDr

COUNT - COUNT + 1;

If any actual parameters of a subroutine that is declared inline
are constants, the inline expansion may cause some formulas to be
evaluable at compile-time. In such a case, compile-time
evaluation of these formulas will occur and any corresponding
error messages will be generated.

Inline subroutines can contain subroutine-calls, which can in
turn be inline. However, an inline subroutine cannot contain
subroutine-definitions. Also, it is illegal to have an inline
subroutine invocation of a subroutine that is already being
expanded inline (that is, recursive invocation of inline
subroutines is not allowed).

-221 - 15: Subroutines

;9 ' .. • '- !LI *•' 9 ,

!I

Chapter 16

EXTERNALS AND MODULES

A JOVIAL (J73) program consists a main program module and one or
more compool or procedure modules. Execution of the program
begins at the first statement of the main-program module and
continues until the last statement of the program or a stop-,
statement is executed.

A module is the smallest entity in the languLige that can be
compiled separately. The modules of a program are compiled
separately and subsequently bound together for execution as a
unit.

Communication between separately compiled modules is accomplished
by external names. An external name is a name Oeclared in one
module and used in one or more other modules.

4 This chapter begins by discussing external declarations. Then it
considers the different types of module. Finally, the subject of
scope is revisited in the context of module compilation and
module communication is considered.

16.1 EXTERNAL DECLARATIONS

An external declaration declares an external name, that is: a
name with the external attribute. An external name can be made
available for use in other modules.

Two kinds of external declarations are defined in JOVIAL (J73),
DEF-specifications and REF-specifications. A DE1a-specification
declares an external name and allocates storage for that name. A
REF-sapecification provides information about an external name
that is declared in another module by a DEF-specification.

- 223 - 16: Externals and Modules

PAN ALM4W MsiAW

SI

Each DEF-specification identifies a unique object that can be
referenced by a REF-specification in any number of modules. It is
illegal to have a second DEF-specification with the same name
anyplace in the entire program, unlike other data objects, not
declared with a DEF-specification, which can have identifical
names providing scope rules prevent conflict.

The following sections describe the DEF- and REF-specifications
in detail.

16.1.1 DEF-Specifications iI•

A DEF-specification is used to declare a name that can be used in
other modules. A DEF-specification can be either simple or
compound.

16.1 • 1 . 1 Simple DEF-Specifications

The form of a simple DEF-specification is:

DEF declaration

Consider the following simple DEF-specification:

DEF TABLE GRID (20,20);
BEGIN
XCOORD U S r
YCOORD U 5r
END

"This declaration declares the table GRID and associates with it
the external attribute.

Ii

161 Externals and Modules - 224 -

II

16.1.1.2 Compound DEF-Specifications

The form of a compound DEF-specification is:

4DEF BEGIN

declaration

END

Consider the following compound DEF-specificationi

DEF
BEGIN
ITEM RATE U I0;
ITEM TIME U 15;
TABLE STOCKS(l00);

BEGIN
ITEM NAME C 61
ITEM QUOTE C 31

END

This declaration declares the items RATE and TIME and the table
STOCKS and associates the external attribute with each of those
data objects.

A DEF-specification can be used to declare an item, table, block,
or statement name. A DEF-specification can be used to define a
subroutine in a main program or procedure module, but not in a
compool module.

A DEF-specification for a statement name makes the address of the
statement available for linkage purposes. The statement name,
however, cannot be used as the target of a GOTO statement that is
in another module, or in any other way to cause control to
transfer outside the given scope.

16.1.1.3 Allocation

Data or subroutines declared by a DEF-specification in a module
are physically allocated in that module.

(A DEP-specification can only be used with data objects that are
allocated statically. Data declared external in a subroutine,
therefore, must have a STATIC allocation-spec.

- 225 - 16: Externals and Modules

II

For example, to declare the external item FLAGS within the
procedure MONITOR, you can write:

PROC MONITOR(STATE);
BEGIN
DEF ITEM FLAGS STATIC B 5;

END

The item FLAGS is declared as an external name. The declaration
includes the STATIC allocation-spec because the declaration is
given within the subroutine MONITOR.

16.1.2 REF-Specifications

A REF-specification is used to reference a name that is declared
by a DEF-specification in another module. A REF-specification
can be either simple or compound. It his one of the following two
forms:

REF declaration

REF BEGIN

declaration

END

A REF-specification can be used to declare an item, table, block,
or subroutine.

A REF-specification is used to make available within a compool-
module information about externals declared by a DEF-

specification in other modules.

16: Externals and Modules - 216 -

--

For example, you can use a REF-specification in the compool-
module SPECS to make the subroutine AVERAGE available through
that module. AVERAGE is defined in a procedure-module as
follows:

START
DEF PROC AVERAGE (TABSIZETABNAME: RESULT);

BEGIN
ITEM TABSIZE U;
ITEM RESULT U;
TABLE TABNAME(1uIs);

ITEM ENTRY Ur
RESULT -;
FOR I : 1 BY I WHILE I % TABSIZEt

RESULT - RESULT + ENTRY(I);
RESULT - RESULT/TAESIZE;
END

TERM

You can include a REF-specification in the compool-module SPECS
as follows:

START COMPOOL SPECS;
DEF ITEM RATE U 10;
DEF ITEM FLAGS B 3;
DEF TABLE SUBSCRIBERS(l0r);

BEGIN
ITEM NAME C 5;
ITEM ADDRESS C 20;
ITEM CITY C 10;
ITEM STATE C 3;
END

REF PROC AVZRAGE(TABSIZE,TABNAME: RESULT);
BEGIN
ITEM TABSIZE Ur
ITEM RESULT U;
TABLE TABNAME(i: 1')i

ITEM ENTRY U;

TERM

The REF-specification in the compool-module contains the
procedure-declaration for AVERAGE. The DEF-specification in the
procedure-modu'.e contains the procedure-definition. Since
external subroutines cannot be defined in a compool-module, a
REF-specification is the only way information about the
subroutine can be given in the compool.

(Data can also be declared physically in a non-compool module and
made available in the compool by a REF-specification.

- 227 - 16: Externals and Modules

,i

A name declared in a REF-specification must agree in name, type,
and all other attributes with the name declared in the DEF-
specification. The compiler checks the agreement of REF- and
DEF-specifications under certain circumstances, which are
discussed later in this chapter in connection with the compool-
directive.

Presets must not be given in a REF-specification for an item or a
table. Presets can be given in a REF-specification for a block
orny in ono special case, which is discussed in Chapter 19 on
"Advanced Topics".

16.1.3 Constant Data

A constant declaration cannot be declared external directly with
either a DEF- or REF-specification. However, a block containing
a constant declaration can be made external.

The following is a valid declaration:

DEF BLOCK PSEUDOBLOCKI
BEGIN
CONSTANT ITEM PI F = 3.14159;
END

16.2 MODULES

A module can be any of the following:

Main-Program-Module

Compool-Module

Procedure-Module

When a module is compiled, it exists within the two additional
sanpes described earlier in Chapter 4, the system scope and the
compool scope.

The following sections consider the form and content of each of
the three kinds of module. Then module compilation is
considered.

161 Externals and Modules - 228 -

- !
.

16.2.1 Main Program Module

A main-program-module contains a program-body and an optional
sequence of non-nested-subroutines. The form of the main-
program-module is:

START PROGRAM program- nenaMO

program-body

E non-nested-subroutine ...)

TERM

A program-body is the same as a subroutine-body. It is either a
single statement or a sequence of declarations, statements, and
subroutine-definitions, as follows:

BEGIN

(declaration ... J

statement ...

E subroutine-definition ... I

r label ...

END

The declarations and subroutine-definitions are optional, bu'{ program-budy must contain at least one executable statement.

A non-nested-subroutine is a subroutine definition that can be
made external by the addition of the DEF reserved word, as
follows:

E DEF I subroutine-definition

A non-nested-subroutine can contain nested subroutines.

When a program is executed, the statement or statements of the
program-body of the main-program-module are executed, starting
with the first and continuing until the execution is complete.

- 229 - 161 Externals and Modules

-7-~

Consider the following main-program-module:

START PROGRAM SEARCH;
BEGIN
TYPE KEY STATUS (V(RED),V(GREEN) ,V(YELLOW));
TYPE DBASE

TABLE (1000);
BEGIN
ITEM CODE KEY;
ITEM VALUE U;
END

TABLE DATA DBASE;
ITEM CURVAL U;
GETVALUE (DATA);
CURVAL-RETRIEVE (V (RED))
PROC RETRIEVE(ARG1) U;

BZGIN
ITEM ARGI KEY;
FOR 1:0 BY I WHILE I<-100;

IF CODE(I) - ARGir
RETRIEVE VALUE(I);

ERROR(20);
END

END

DEF PROC GETVALUE(ARGTAB);
BEGIN
TABLE ARGTAB DE.ASE1

END
DEF PROC ERROR(ERRNO);

BEGIN
ITEM ERRNO U;

END
TERM

This main-program-module consists of a program-body and two non-
nested subroutines. The program-body contains two type-
declarations, a table-declaration, an item-declaration, two
statements, and a nested subroutine-definition.

This inain.-program-module is independent and could be compiled and
executed. The following sections will illustrate how some of the
information in this main-prog-am-module can be put in other
modules.

16: Externals and Modules - 230 -

Oil,

m1

16.2.2 Compool-M4odules-

A compool-module provides for the communication of names between
separately compiled modules. A compool-module can contain only
declarations. The form ist

START COMPOOL compooi-name
declaration ...

TERM

The following kinds of declaration are allowed in a compool-
module:

constant declaration
type declaration
define declaration
overlay declaration
DEF-specification for a data or statement name declaration
REF-specification for a data or subroutine declaration

Constant declarations were discussed in Chapters 6 and 7. Type
declarations were discussed in Chapter 9. Define delarations
will be discussed in Chapter 18 and overlay declarations in
Chapter 19. DEF- and REF-specifications are described later in
this chapter.

As an example of a compool-declaration, consider the followingi

START COMPOOL TYPEDEPSt
TYPE FEY STATUS (V(RED),V(OGEEN),V(YELLOW))j
TYPE DBASE,

TABLE (1000)1
BEGIN
ITEM CODE KEYI
ITEM VALUE U;
END

TERM
The compool TYPEDEFS contains two type declarations, one for the
item type KEY and one for the table type DBASE.

- 231 - 16: Externals and Modules

WT. WX ,

The information in a compool-module is made available to the
module being compiled by a ICOMPOOL directive. ICOMPOOL
directives are given immediately following the START in the
module being compiled. A ICOMPOOL directive makes available
either the declarations for a set of given names or all the
declarations in the compool, depending on its form. The ICOMPOOL
directive is discussed in more detail a little later in this
chapter and fully in Chapter 17, "Directives".

With this compoo], the main-program-module given earlier could be
written using a ICOMPOOL directive to supply the necessary type-.
declartions, as follows:

START ICOMPOOL ('TYPEDEFS');
PROGRAM SEARCH;

BEGIN
TABLE DATA DBASE.
ITEM CURVAL Ur
GETVALUE(DATA);
CURVAL-RETRIEVE(V(RED));
PROC RETRIEVE(ARGI) U;

BEGIN
ITEM ARGl KEY;
FOR 1:0 BY 1 WHILE 1I41000;

IF CODE(I) - ARGlI
RETRIEVE w VALUE(I):

EnROR(20); U
END

END
DEF PROC GETVALUE(ARGTAB),

BEGIN
TABLE ARGTAB DBASE;

END
DEF PROC ERROR(ERRNO)t

BEGIN
ITEM ERRNO U:

END
TERM

The fact that the compool name TYPEDEFS is parenthesized
indicates that all the declarations in that compool are made
available to the main-program-module. Thus, the declarations for
the type KEY and the type DBASE are made available from the
compool and can be used, without declaration, in the main-
program-module.

16: Externals and Modules - 232 -

-, -• + " ,. -•• "' ': _- j ? _ '• •l • .. . ,, -....... . .. :..., '

These declarations are in the compool scope, as discussed earlier
in Chapter 4 on "Declarations and Scope". The scopes of the
main-program-module SEARCH can be diagrammed as follows:

1 +system-scope ---

+coinpool-scope --------------------------------------
DBASE, KEY, SEARCH

* +module-scope -----------------------------+

+module-body-scope ------------------
DATA, CURVAL
RETRIEVE

+subr-scope ---------..
I AROTAB I------ -------

----------------------------------- +
GETVALUE

+subr-scope ---------------
IARG1(I I I +-----------------------------..I

ERROR
+subr-scope ---------------.
I ERRNO I

I I I +----------------------------+
I I +------------------------------------ ----------------------

--- +

---+

{ The module name SEARCH and the type-names DBASE and KEY are in
the compool scope. The names of the non-nested subroutines
GETVALUE and ERROR are in the module scope. The names of the
data objects DATA and CURVAL and the name of the subroutine
RETRIEVE are in the module-body scope. The name of the formal
parameter ARGTAB is in the subr-body scope of RETRIEVE, and so
on.

Declarations are placed in a compool principally so that they are
available for use by more than one module. The use of compools
provides a logical program structure that can be readily
generalized. In some cases, declarations that are not shared are
also placed in a compool for structural purposes.

S(

- 233 - 16: Externals and Modules

'Y+ t...l ,• 1qý4 1A- , lk,ý -. ," l A, 'i" • R ! NOWm ~ I

Suppose, in our example, that the table DATA is needed in several
modules. If each module is to use the same table, that table
must be located in a compool. Consider the following compool-
declaration:

START ICOMPOOL ('TYPEDEFS')l
COMPOOL DATABASE;

BEGIN
DEF TABRTi DATA DBASEI
DEF ITEM CURVAL U1
END

TERM

This compool module contains a ICOMPOOL directive, which makes
the declarations of the compool TYPEDEFS available. Thus, the
type-names DBASE and CURVAL do not need to be declared in this
module.
The scopes during the compilation of the module DATABASE are as
follows:

+system-scope---

+compool-scope ---------------------------------------
DBASE, KEY, DATABASE

I +module-scope -------------------------------

4+module-body-scope ------------------
DATA, CURVAL II II I

I 1-----------------------------------4I I I I

I +---+

I 4---+

+---+

16: Externals and Modules @ 234 -

S' " " : •' '.- f ", " • " .. :" ' i.

.5.I

The main-program module can be written using the compool
DATABASE, as follows:

START I COMPOOL ('DATABASE');
PROGRAM SEARCH:

BEGIN
GETVALUE(DATA)iCURVAL-RETRIEVE (V (RED))
PROC RETRIEVE(ARGI) U;

BEGIN
ITEM ARGI KEY;
FOR 1:0 BY 1 WHILE I¢wl-W

IF CODE(I) - ARGI1
RETRIEVE - VALUE(I)i

ERROR(2 0);
END

END
DEF PROC GETVALUE(ARGTAB):

BEGIN
TABLE ARGTAB DBASE;

END*
DEF PROC ERROR(ERRNO)'

BEGIN
ITEM ERRNO U;

END
TERM

The data objects DATA and CURVAL are declared in the compool
DATABASE and therefore do riot neeM to be declared in the niain-
program-module. The type-names are needed only for the
declaration of the data objects and so the main-program-module
does not need to have a ICOMPOO'.J directive for the compool

TYPEDEFS. The type-names DBASE and KEY are not known in the
main-program-module.

- 235 - 16: Externals and Modules

I: _ _ _ _ _ _

The scopes during the compilation of the main-program-module can
now be diagrwumred as follows:

+system-scope--

+compool-scope -------------------------------------
DATA, CURVAL, SEARCH

+module-scope ------------------------------

+module-body-scope ------------------

RETRIEVE I
+subr-scope ----------+ II ARGTAB I

I I II +---------------------IARTB

--- +
+ +

GETVALUE
+subr-scope --------------+
I ARGl I ,

+------------------------
ERROR I

+subr-scope ---------------+ I
I ERRNO I

I I I ---------------------------------- +

I --- 4 I
, II --

4--+-

The next step in simplifying the main-program is to place the
subroutines insa module. Subroutine-definitions must be given in
a procedure-module.

16.2.3 Procedure-Modules

A procedure-module provides a way in which the subroutines of a
program can be compiled separately. A procedure module contains
leclazations and subroutine definitions. The form is:

START

d declaration ...

C C DEF I subroutine-declaration ... ,

TERM

Any typa of declaration can be given in a procedure module.

16: Externals and Modules - 236 -

I • ::,: v - p•I:,:. " + . -. + . .. ; .,.

As an example of a procedure-module, consider the following:

START ICOMPOOL ('TYPEDEFS'):
DEF PROC GETVALUE(ARGTAB);

BEGIN
TABLE ARGTAB DBASE;

END
DEF PROC ERROR(ERRNO);

BEGIN
ITEM ERRNOU;

END
TERM

The procedure module contains two external subroutine
definitions. The type-name DBASE io provided by the declaration
of DBASE in the compool TYPEDEFS.

In order to make these subroutine definitions available to a
another module, a link must be made with a compool, by including
a REF-specification in the compool and a ICOMPOOL directivo in
the procedure module.

Suppose we include the REF-specifications in the DATABASE module
as follows.

START ICOMPOOL ('PYPEDEFSn')
COMPOOL DATAPASEr

BEGIN
DEF TABLE DATA DBASEr
DEF ITEM CURVAL U;
"REF PROC GETVALUE(ARGTAB);

TABLE ARGTAB DBASEr
REF PROC ERROR(ERRNO);

ITEM ERRNO U;
END

TERM

Now, we compile the compool module DATABASE in the compool scope
which includes the declarations from TYPEDEPS.

(

- 237 - 16: Externals and Modules

A"_ N

-- a '-•,-,------L -! " * U

We then include a compool-directive for the compool DATABASE in
the procedure module, so that the compiler can check the agreement
of the corresponding DEF- and REF-specifications.

START !COMPOOL 'DATABASE' GETVALUE,ERRORI
ICOMPOOL ('TYPEDEFS');

DEF PROC GETVALUE(ARGTAB);
BEGIN
TABLE ARGTAB DBASEt

Ei;D
DEF PROC ERROR(ERRNO)7

BEGIN
ITEM ERRNO U;

END

TERM

Then we compile the procedure-module in the compool scope which
includes the REF-specifications from the compool DATABASE and the
type-declarations from the compool TYPEDEFS.

The scopes for the compilatidn of the procedure module can be
diagrammed as follows:

+system-scope --+

+compool-scope --------------------------------------
DBASE, KEY, GETVALUE, ERROR

+module-scope ------------------------------

+module-body-scope------------------

GETVALUE+subr- scope--
I AR01I
4---------------------------ERROR
+subr-scope---------------

I~ IERRNO I I
+--------------------------+

The--- ---+-~

The compiler checks that the REF-specifications in the compool.
agree with the DEF-specifications in the module being compiled.

161 Externals and Modules - 238 -

The main-program module now can be written using the compool
DATABASE, as follows:

START ICOMPOOL (DATABASE);
PROGRAM SEARCH •

BEGIN
GETVALUE(DATA)7
CURVAL-RETRIEVE (V (RED)) t
PROC RETRIEVE(ARGI) Ur

BEGIN
ZTEM ARG. KEYI
FOR I:t BY 1 WHILE 1<m1000t

IF COD\ (I) - ARGI-
RETRIEVE a VALUE(I)*

ERROR(2 0),
END

END
TERM

(16.3 MODULE COMMUNICATION

As has been illustrated in the preceding sections, moduleB can
communicate by compcol directives. If a declaration is to be used
in more than one module, it is placed in a compool. Then it can
be referenced in each module that needs it by, a compoo3-
directive.

A compool-directive can make all the declarations in a given
compoo) available or it can make a selected set of declarations
available. A compool-directive that makes mll declarations
available has the form:

I COMPOOL (compool-file)

A compool-directive that makes selected declarations available
has the form:

I COMPOOL compool-file name ,....

Only the declarations of those names given are made available in
this form.

Compool-file is a character literal designated by the
(implementation to correspond to a given compool. Name is a name

declared in the compool.

- 239 - 16: Externals and Modules

Other forms of the compool-directive, as well as a complete
discussion of this directive, are given in Chapter 16.

16.3.1 Direct Communication

If communication between modules is accomplished through
compool-directives, the compiler provides the declaration of the
shared object. If the module using that object does not use it in
.a manner that is consistent with its declaration, the compiler
detects and reports the error.

A REF-specification can be used in one module to directly
communicate with another module, but in this case, no checking
can be performed. The compiler must assume that the type class
and attributes given in the REF-specification are accurate. At
link time, the references to the name are bound together, but no
check of type or attributes can be made because that informationis not available at link time. '

Thus, if the REP-specificntion declares an object of one type and

the DEF-specification declares an object of another type, the
program that is formed by linking the separately compiled modules
is invalid and the results of its execution are unpredictable.

As an example of direct communication, suppose we have a
procedure module that contains some external subroutine
definitions as follows:

START ICOMPOOL (TYPEDEFS);
DEF PROC GETVALUE(ARGTAB);

BEGIN
TABLE ARGTAB DBASE;

END
DEF PROC ERROR(ERPRNO)

BEGIN
ITEM ERRNO U;

END
TERM

161 Externals and Modules - 240 -

-, - , -

Now, suppose that the module DATABASE does not contain a REF-
specification for the subroutine ERIZOR, but instead the main-
program module includes a REF-specification for ERROR, ns
fol lows:

START 1COMPOOL (DATABASE);
PROGRAM SEARCH;

BEGIN
REF PROC ERROR(ERRNO);

ITEM ERRNO U;
GETVALTIE (DATA),
CURVAL-RETRIEVE (V (RED)):
PROC RETRIEVE(ARG1) U;

BEGIN
ITEM ARGI KEY,
FOR 1:0 BY 1 WHILE 1<-1000;

IF CODE(I) - ARGI:
RETRIEVE - VALUE(I);

ERROR(20) ;
END

END
TERM

In this case, the REF-specification for ERROR agrees with the
DEF-specification, and the resulting program operates correctly.
However, suppose the REF-specification indicated that the
subroutine ERROR has two arguments. Thv compiler cannot detect
any error, the linker makes the connection and the resulting
program is invalid but no indication of its invalidity can be
made.

2

l - 241 - 16: Externals and Modules i

P I -

it

I.
Chapter 17

DIRECTIVES

Directives are used to provide supplemental information to the
2ompiler abcut the program. Directives affect output format,
program optimization, data and subroutine linkage, debugging
information, and other aspects of program processing.

Most directives change the way a program is processed without
j changing the computation performed by the program. Perhaps the

simplest example of such a directive is "IEJECT", which starts a
new page in the compiler's listing of the program.

In general, directives can appear after the reserved word START
and before any statement, declaration, or optionally labelled
END. Some directives can only be placed in certain positions.

This chapter describes the directives in detail and indicates the
placement of each directive. Each section considers a particular
class of directive. The classee of directives and the names and
form of the directives in each class are given on the next page.

(.

- 243 - 17: Directives

'Ii AND- M~uW1

Class Directive Form

compool ICOMPOOL (compool-file
ICOMPOOL compool-file name ,...

text tCOPY file
ISXIP letter i
IBEGIN letter
IEND

listing ILIST
INOLIST
IEJECT

initialization IINITIALIZE

allocation-order IORDER ;

evaluation-order ILEFTRIGHT
IREARRANGE

interference IINTERFERENCE datz-name : data-name ,... .

reducible IREDUCIBLE

register IBASE data-name register-number
IISBASE data-name register-number
IDROP register-number

linkage ILINKAGE symbol r

trace ITRACE (control) name ,.,.)

ITRACE name ,... I

17.1 COMPOOL-DIRECTIVES

A compool-directive is used to identify the compool and the met
of names from that compool that are to be used in the compoo3
scope for the module being compiled.

17: Directives - 244 -

!. .:[.. - . .,

Depending on its form, a compool-directive can make 7lilable all
the declarations in a compool or a selected set of declarations.
A compool-directive that provides access to all 'the definitions
declared in the compool gives the compool-file enclosed in

' I parentheses, as follows:

LCOMPOOL (compool-file)

This form makes available all the declarations in the compool.
Declarations used in the named compool that were obtained from
other compools by a compool-directive, however, are not made
available. This case was illustrated in Chapter 16.

Compool-file is an implementation-designated character literal
that identifies the given compool. If compool-file is not given,
the compiler assumes an unnamed compool.

A compool-directive that provides access to a selected set of
definitions from a compool has the following form:

ICOMPOOL compool-file name ,...

The module that contains this compool-directive has access only
to the declarations of the names given in this directive, plus
any additional names that are associated with these names and aro
automatically included.

i(17.1.1 Names

The names given in a compool-directive must be declared in the
designated compool. FurLher, a given name cannot be the name of
an entity declared in a type-declaration or the name of a formal
parameter.

(

- 245 - 17: Directives u

17.1.2 Additional Declarations

Addititnal declarations are, in some cases, made available to
permit the full use of a given name.. Additional declarations are
provided in the following cases:

"o If the name given in a compool-directive is the name of
an item, table, or block declared using a type-name,
then the declaration of the type-name is also made
available, provided it is declared within the compool
and not brought in by a compool-directive.

For a pointer item, the definition of the typo-name that
is the pointed-to type is also made available, provided
it is declared within the compool and not brought in by
a compool-directive.

"o If the given name is the name of an item within a table,
then the table name in also made available.

"o If the given name is a table name, the definitions of
any status-lists or status-type-names associated with 7
the table's dimensions are also made available, provided
they are declared in the compool.

"o If the given name is a table type-name or block type-
name, the definitions of the components are made
available.

"o If the given name is a status item name, its ansociated
status-list and status type-name (if any) are also made
available, provided they are declared in the compool.

"o If the given name is the name of a subroutine, any
type-names associated with the oubroutine's formal
parameterm or return value are also made available,
provided they are declared in the compool.

17.1.3 Placement

A compool-directive can be given only immediately following the
START reserved word of a module or following another compool-
directive.

(*)

17s Directives - 246 -

:0,4~

17.1.4 Examples

Suppose you have the following compoola

START COMPOOL BSQDATAr
DEW ITEM HEIGHT Ur
DEF ITEM WIDTH U;
DEF ITEM LENGTH U;
DEP TABLE GRID(20,20)1

BEGIN
ITEM XCOORD U1
ITEM YCOORD Ur
END

TERM

The following list gives different forms of the compool-directive
and indicates the declarations that are made available for each
form.

Directive Available Declarat::ons

I COMPOOL 'BSQDATA' LENGTH, LENGTH

ICOMPOOL 'BSQDATA' LENGTH,WIDTHI LENGTH, WIDTH

ICOMPOOL ISSQDATA' GRIDI GRID

1COMPOOL 'BSQDATA' (GRID)t GRID, XCOORD, YCOORD

1COMPOOL ('BSQDATA'); LENGTH, HEIGHT, WIDTH, GRID,
XCOORD, YCOORD

17.2 TEXT-DIRECTIVES

The text-directives are used to modify the source program. The
ICOPY text-directive is used to copy the contents of a file into
a program at a particular point and the conditional directives
are used to permit conditional compilation, by indicating those
portions of the program that are and are not to be compiled.

- 247 - 171 Directives

*- *' . !• ' ';••••••,, ,, ': : *

17.2.1 Copy-Directive

The copy-directive names the file that in to be copied into the
program at the point where the copy-directive is given. The form
of the copy-directive is:

ICOPY file s

File is a character literal that is an implementation dependent
file-name.

17.2.1.1 Placement

The copy-directive can be placed anywhere a directive can be
given.

17.2.1.2 Example

An example of the copy-directive ist

ICOPY 'IDENT.NEW'l

The compiler replaces the copy-directive by the file named in the
directive. A define-call, as will be seen in Chapter 18 lao
produces a text replacement. A copy-directive is different from
a define-call in that it refers to an external file, it cannot be
parameterized, and it can be given only in places where
directives can appear.

17.2.2 Conditional-Compilation-Directives

Three conditional-compilation-.directives are defined. The forms

of the directives are as follows:

ISKIP letter

IBEGIN letter ,

|END

The ISKIP directive identifiem the blocks of source program that
are to be skipped. The other two directives, the IBEGIN and
IEND directives delimit the block that is to be included or
skipped depending on the ISKIP directives that are included in
the program.

171 Directives - 248 -

':n

17.2.2.1 Placement

S The conditional-compilation-directives can be given anywhere a
directive can be given. The ISKIP directive must be given before
the associated IBEGIN and IEND directives. For each IBEGIN
directive, a matching IEND directive must be given.

17.2.2.2 Examples

Suppose a program includes a computation that can be written
either to execute efficiently or to conserve storage. You can
include both versions of the computation in your program and
choose between the two versions by changing the letter on the
ISKIP directive, as follows:

START PROGRAM MAINI
BEGIN

declarations and statements

ISKIP At
IBEGIN At

time efficient computatiot)

lENDr
IBEGIN Bi

space-efficient computation

IEND;
END

TERM
If the letter A is used with the ISKIP directive, as shown above,
this directive instructs the compiler to omit the conditional
block labelled A. As a result, the program uses the space-
efficient computation. If the letter B is used with the ISKIP
directive, the compiler omits the conditional block labelled B
and uses the time-efficient computation.

- 249 - 37 Diractives

,L

As another example, suppose you want to select one of two
possible functions that produce a random number, based on the
ISKIP directive. You can write:

START PROGRAM MAIN
BEGIN
tSKIP Yf
ITEM RESULT U1
ITEM COUNT U:
IBEGIN X:
REF PROC RND U1

BEGIN
END

RESULT a RNDII END:
IBEGIN Y
REF PROC RANDOM U:

BEGIN
END

RESULT w RANDOM;
I END
COUNT - r:
CASE RESULTI

BEGIN
(DEFAULT).
(1l100)i COUNT = COUNT + 1i
(101v500): COUNT - COUNT + 21
(501900): COUNT - COUNT + 3;
END

END
TERN

1)

17: Directives - 250 -

• "~~~.(•,••],•,..... .. ,

44

The ISKIP directive indicates that the information in the block
associated with Y is to be skipped. The program that is compiled
then is.

START PROGRAM MAIN
BEGIN
ITEM RESULT U1
ITEM COUNT Ur
REP PROC RND U1

BEGIN "
END

RESULT " RNDt
COUNT U0

CASE RESULTr
BEGIN
(DEFAULT),;
(1:100)i COUNT - COUNT + 1;
(101:500): COUNT - COUNT + 2;
(501:900): COUNT a COUNT + 31
END

END
TERM

Conditional compilation blocks can be nested. If a ISKIP
directive indicates that the outer block is to be skipped, then
the inner block is processed only to associate BEGIN END pairs. S

If the outer block is not shipped, then a ISKIP directive can beincluded to skip an inner block.

2(

- 2,51 - 17: D~irectives '

-. 1

suppose you want to square the result in some cases when you use
the function RANDOM. You can associate the squaring of the result
with a conditional block as follows:

START PROGRAM MAIN;
BEGIN
ISKIP X?
ITEM RESULT U;
ITEM COUNT U?
IBEGIN Xt
REF PROC RND U1

BEGIN
END

RESULT - RNDt
LENDI
IBEGIN Y
REF PROC RANDOM U1

BEGIN
END

RESULT a RANDOM;
IBEGIN Ar
RESULT - RESULT**2:
IEND:
LENDt
COUNT - 0Y
CASE RESULTI

BEGIN
(DEFAULT):
(lulOO): COUNT - COUNT + 1i
(101:500): COUNT - COUNT + 21
(501:900): COUNT - COUNT + 31
END

END

TERM

17: Directives - 252 -

, IPM

,

The ISKIP directive instructs the compiler to omit the
conditional block associated with X. The program that is
compiled is:

a START PROGRAM MAIN,
BEGIN
ITEM RESULT U;
ITEM COUNT U;
REF PROC RANDOM Ut

BEGIN
END

RESULT - RANDOM;
RESULT = RESULT**21
COUNT w 0;t .
CASE RESULT I

BEGIN
DEFAULT):;

(I:l10): COUNT - COUNT + 1I
(10ti500): COUNT - COUNT + 21
(501900)s COUNT a COUNT + 31
END

END
TEIN.

(

-253 -171 Directives

., ' . . ' .

You can then omit the squaring of RESULT by including a ISKIP

directive for A, as follows:

START PROGRAM MAIN;
BEGIN
ISKIP X;
ISKIP At
ITEM RESULT U;
ITEM COUNT U;
IBEGIN X;
REF PROC RND U;

BEGIN
END

RESULT - RND;
IENDr
! EGIN Y
REF PROC RANDOM U1

BEGIN
END

RESULT - RANDOM;
IBEGIN A;
RESULT - RESULT**21
LEND:
LEND
COUNT - 01
CASE RESULT;

BEGIN
(DEFAULT):;
(it:10): COUNT - COUNT + 1I
(101S500): COUNT - COUNT + 21
(5019000)t COUNT - COUNT + 31
END)

END
TEPM

17: Directives - 254 -

Ma:,

As a result the following program is conpiled:

START PROGRAM MAIN;
BEGIN
ITEM RESULT U;
ITEM COUNT 61
REF PROC RANDOM U;

BEGIN
END

RESULT - RANDOM;
COUNT a 0;
CASE RESULT;

BEGIN
DEFAULT):

(l110)s COUNT - COUNT + 1I
(101:500): COUNT - COUNT + 2t
(50•0i90): COUNT - COUNT + 31
END

END
TERM

(

17.3 LISTING-DIRECTIVES

The listing-directives are used to provide the compiler with
information about whiuh parts of the source listing are to
printed and where page ejects are desired. Three listing-
directives are defined:

(ILIST;

INOLIST ;

IEJECT 7

If no listing-directives are given, the compiler prints a listing
of the source program, inserting page breaks in an implementation
dependent manner. The INOLIST directive tells the compiler to
suppress the listing of the source program. The ILIST directive
tells the compiler to resume listing the source program. The
IEJECT directive tells the compiler to insert a page break.

17.3.1 Placement

t The listing-directives can be placed anywhere a directive can be
given.

- 255 - 171 Directives

rJ .-

17. 4 INITIALI.ZATION-DIPECTIVE

The initialization-directive is used to set all static data that
is not initialized by a preset to zero biLs. Tna form of the
initialization directive is:

iINITIALIZE

'ihe effect of the initialization directive extends from the point
at which it is given to the end of the current scope.

i" 4.1 Placement

The in#,i'alize-directive can only be given before a declaration.
However, it cannot be given before a declaration that is within a
table or a block. Further, it cannot be given before a
subroutine-.dec] arution.

17.4.2 Example

Consider the following program fragment:

I INITIALTZE;
ITEM COUNT U;
TABLE SPECS(100);

BEGIN
ITEM LENGTH Ur
ITEM WIDTH U - 101(5)1
ITEM HEIGHT U;
END

The initialize-directive causes COUNT and the 11 instances of
the items LENGTH and HEIGHT of the table SPECS to be initialized.
The 101 instances of the item WIDTH are preset to 5 and are,
therefore, not affec .,d by the initialize-directive.

17.5 ALLOCATION-ORDER-DIRECTIVE

The al'ocation-order-directive instructs Lhe compiler to allocate
storage fox' the data objects in a block or table in same order as
their declarations are given. If an allocation-order-directive
is not given, the compiler can rearrange the physical 'storage
layout of the data objects within a block or table to provide for
better access or better use of storage.

17: Directives - 256 -

--.- ' .- .. *,

The form of the allocation-order-directive is:

(ORDER

17.5.1 Placement

The allocation-order-directive can be given only as the first
entity in a block-description or entry-description. The effect
of an allocation-order-directive extends from the point at which
it is given to the end of the current block or table.

An allocation-order-directive can also be given in a type-
declaration. When the type-name declared in this way is used,
the allocation-order-directive applies to the object being
declared.

17.5.2 Example

Supppose you have the following table:

TABLE PARTS(1S00) D;
BEGIN
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B;
ZND

The letter D in the table-attributes indicates dense packing.
Dense packing is an advanced topic described in Chapter 19.

If the compiler is allowed to change the order of allocation, it
can allocate ID and FLAG in a single word and conserve storage.

Not all compilers perform this sort of rearrangement.)
Hcaiever, if you want to be certain that no rearrangement occurs,
you can include an allocation-order-directive as follows:

TABLE PARTS(1000) Dr
BEGIN
IORDER;
ITEM ID U 5;
ITEM NUMBER U;

"(ITEM FLAG Br
END

- 257 - 17c Directives

I

17.6 EVALUATION-ORDER-DIRECTIVES

The evaluation-order-directives are-used to indicate whether or
not the compiler can rearrange computations within a formula.

The evaluation-order-directives &re:

ILEFTRIGHT :

IRSARRANGE

The ILEFTRIGHT directive tells the compiler that it must evaluatc
operators at the same precedence level from left to right within
a formula. Th" IREARRANGE directive tells the compiler that it
can evaluate operators at the same precedence level in any order
when such a rearrangement produces more efficient code.
Evaluation order is of course, constrained by parentheses.

If no directive is given, the compiler assumes that it can
rearrange the evaluation order of operators of the same
precedence.

17.6.1 Placement

These directives can be placed anywhere a directive can be given.
{)

The effect of an evaluation-order-directive extends from the
point at which it is given to the end of the scope or to the next
evaluation-order-directive, whichever comes first.

"i")

l7, Directives 256 -

17.6.2 Example

Suppose you have the following formula:
I HEIGHT*LENGTH*WIDTH

If no evaluation-order-directive is given, the compiler can
rearrange the formula as follows:

LENGTH*HEIGHT*WIDTH

Or it can rearrange in any other way to produce efficient code.
However, if the ILEFTRIGHT directive is in effect, the compiler
must first multiply HEIGHT times LENGTH and then multiply the
result by WIDTH.

177.7 INTERFERENCE-DIRECTIVE

The interference-directive is used to inform the compiler that it
cannot assume that the storage for the given names is distinct.
The form of the interference-directive is:

IINTERFERENCE data-name : data-name ...

The interference-directive indicates that the storage for the
first data-name is not necessarily distinct from the storage for
the list of data names fo2lowing the colon.

The names given in the interference-directive must have been
previously declared.

If an interference-directive is not given, the compiler assumes
that distinct Onta names refer to distinct storage and makes
optimizations based on that assumption.

h compiler ie aware of storage that overlaps because of
langu'qe features that allow overlaying. These language
features, specified tables and overlay declarations, are
described in Vhapter 19 on "Advanced Topics". However, there are
cases in which t-':• compiler is not aware of cverleps and for
these cases an intetference directive mubt be given. For
example, if two data objects are assigned the same absolute
address in different overlay-declarations, an interference-(directive should be used to warn the compiler.

- 259 - 17: Directives

..

17.7.1 Placement

An interference-directive can be given only before a declaration.

17.7.2 Exmple

As an example of the use of the interference-directive, consider
the following:

TABLE PARTS(10)t
ITEM PARTNO Ul

ITEM SIZE P1;
ITEM ID F;
OVSRXiY POS(3310) PARTS;
OVERLAY POS(3314) SIZE;
IINTERrERENCE PARTS : SIZE, ID;

This directive informs the compiler that it should not assume
that the storage for PARTS is distinct from the storage for SIZE
and ID.

17.8 REDUCIBLE-DIRECTIVE

The reducible-directive is useM to allow additional optimizations

of function calls. The form is:

IREDUCIBLE -

A reducible function is one that has the following
characteristics:

o All calls with identically valued actual parameters
result in identical function values and output parameter
values.

o The only data that is modified by the function call is
that data declared within the function.

The compiler can, in some cases, detect -the existence of common
calls on a reducible function, save the values produced by the
first call, delete subsequent calls and use the values produced
by the first call.

10)

17: Directives - 260 -

-•.•• : ',•.,.- .,,.,. . , ,

17.8.1 Placement

A reducible-directive is given following the semicolon of the
function heading. A reducible function must have the reducible-
directive in its definition and all its declarations.

17.8.2 Example

Trigonometric functions are good examples of reducible functions.
SIN(ANGLE) always produces the same result for the same value of
ANGLE and the function has no side effects.

17.9 REGISTER-DIRECTIVES

Register-directives are used to affect target-machine register

allocation. Three register-directives are defined, namely:

I [IBASE data-name register-number;

IISBASE data-name register-number:

1DROP register-number 1

Register-number is an integer literal that specifies the register
in a target-machine-dependent way.

Both the IBASE and IISBASE directives cause the compiler to
dedicate the register to the value it currently contains. The
IBASE directive instructs the compiler to load the specified
register with the address of the given data-name. The IISBASE
directive instructs the compiler to assume th&. the specified
register contains the address of the data object.

The IDROP directive frees the specified register for other use by
the compiler.

Register allocation is not meaningful for all machines.
Register-directives are ignored for machines that do not use
registers.

2

- 261 - 17: Directives

17.9.1 Placement

The register-directives can be given anywhere a directive can be
given.

17.10 LINKAGE-DIRECTIVE

The linkage-directive is used to identify a subroutine that does
not obey standard JOVIAL (J73) linkage conventions. The form of
the linkage-directive in:

ILINKAGE symbol .q. I

Symbol in a linkage-directive is a strino-that specifies the
implementation-dependent linkage type to be used in linking the
procedure.

17.10.1 Placement,

A linkage-directive can be given only in a subroutine declaration
or a subroutine definition. It is given there between the
heading and the declaration of the formal parameters.

17.10.2 Example

Suppose you want the following subroutine to have non-standard
linkage. You can write the following subroutine-declarationt .

PROC INTERFACE(CHANNELiUNIT)i
ZLINKAGE ASSEMBLY;
BEGIN
ITEM CHANNEL U1
ITEM UNIT U;
END

1i

17; Directives - 262 -

,,V i i • 1, ' . . I' Ii i iI. I !

17.11 TRACE-DIRECTIVES

The trace-directives are used to follow program execution and
monitor data assignments. 7The trace-directive has one of the
following format

ITRACE (control) name ,...

ITRACE name ,...

The first form of the trace-directive is a conditional trace. it
causes tracinq only if control, which is a boolean formula, is
TRUE. The second form is an unconditional trace.

The names given in the trace-directive are the names to be
traced. A name can be a statement name, a subroutine name, or a
data name.

o For a statement name, the trace notes each time the
associated statement is executed.

o For a subroutine name, the trace notes each call on the
subroutine. If the subroutine name given is the subroutine
that contains the trace-directive, the trace notes both
entry to and exit from the subroutine.

o For a data name, the trace notes any modification of the
value of the data object. The new value is included in
the trace printout. If the data name is a table, the
trace notes any modification of a table item, a tab3e
entry, or the entire table. if the data name is a block,(the trace notes modification of any enclosed object.

Data names given in the control or as names to be traced must be
declared previously. Statement or subroutine names can be
declared later.

17.11.1 Placement

A trace-directive can be given only before a statement. It
applies from the point at which it is given to the end of the
scope.

- 263 - 17: Directives

.1~

S........ .' .

,.4

Chapter 18

DEFINE CAPABILITY

The define capability is used to associate a name with a string
of JOVIAL (J73) text. When the name is used in a program, the
compiler substitutes the associated string for the name.

The following sections describe the declaration and use of(define-namea.

18.1 DEFINiE-DECLARATION

The simplest form of the define-declaration simply associates a
string with a name, aa follows:

DEFINE define-name "define-string" t

The define-string Is any sequence of JOVIAL (J73) characters.

Suppose you want to defire a name MAXSIZE as the quotient of the
implementation parameters MAXBITS over BITSINWORD. You can use a
define-declaration as followsi

DEFINE MAXSIZE "MAXBITS/BITSINWORD" 7

This declaration declares the define-name MAXSIZE and associates
with it the define-string "MAXBITS/BITSINWORD".

A define-declaration can also contain parameters. The form with

parameters is:

(DEFIVE define-name (define-formal ,...) "define-string" '

The character sequence ",..." indicates that one or more define-
formals can be given separated by commas.

- 265 - 18: Define Capability

4;iu ~II Z.

44 X6W4W ra

A define-formal is a single letter. Within the parenthesized
parameter list, define-formals are indicated by that single
letter. Within the define-string, define-formals are indicated
by that letter preceded by an exclamation point. A define-formal
receives its value from the corresponding define-actual given in
a call on the define-name.

For example, to provide a convenient rotation fmr increment-tion,
you can define a name TALLY and associate it with the following
string:

DEFINE TALLY(A) "IA - IA + I"

The define-name TALLY has one define-formal, A, associated with

A define-declaration can also include a list-option, which
describes how much information is to be given in the output
listing. The general form of the define-declarations isi

DEFINE define-name [(define-formal ,..l) J list-option J '

"define-string" j

The square bracket. indicate that both the parenthesized list of
define-formals and the list option are optional.

The parameters, define-string, and list-option are discussed in
detail later in this chapter.

18.2 DEFINE-CALLS

A define-call directs the compiler to make a copy of the define-
string asmociated with the define-name, replace the define-
formals by the define-actuals in that copy, and replace the
define-call by the resulting string. The form of the define-call
is:

define-name E (define-actual ,...)]

The square brackets indicate that the parenthesized list of
define-actuals is optional. The sequence ",..." indicates that if
more than one define-actual is given, the define-actuals are
separated by commas.

18t Define Capability - 266 -

A define-call for a define-name that is declared without
parameters is simply the define-name alone.

For example, a define-call for the define-name MAXSIZE, declared

earlier in this chapter, is simplys

MAXSIZE

When the compiler sees MAXSIZE, it substitutes the associated
define-string MAXBITS/BITSINWORD. For example, you can write:

IF SIZE 4 MAXSIZE;
EXITi

The compiler substitutes the define-string associated with
MAXSIZE Lo get the following s

IF SIZE < MAXBITS/BITSINW0RDj
EXIT?

A define-call for a define-name that is declared with parameters
can have a list of define-actuals. Define-actuals can be omitted,
if a meaningful result is produced. Examples of define-calls
with missing define-actuals are given lator in this chapt:er.

For example, the define-namt TALLY, declared earlier in thius
chapter, has one define-formal associated with it. Omitting the
define-actual does not produce a meaningful result, so a defije-
call for TALLY must have one define-actual, as follows:

TALLY(COUNT)i

In place of this define-call, the compiler uses a copy of the
define-string associated with the name TALLY in which the
define-formal A is replaced by the define-actual COUNT. That is,
it supplies the following substitutions

COUNT - COUNT + 1i

2

•2-., - • mm ~ • , •. '': •2..7 18. : Define.. C• i '2•2• .. ip il:;ity _: "5 "

4!

18.2.1 Placement

The compiler only interprets a define-call that is a symbol
within the program. It does not process the characters within
comments and character literal.. Therefore, a define-call in
either of those places is not expanded.

18.3 THE DEFINE-STRING

The define-string can consist of any string of characters within
the enclosing quotes. Since the quote and exclamation point
characters have special meaning within a define-string, these
characters must be doubled to be used as simple characters within
a define-string.

Suppose you want to define a statement that includes a comment,
as follows.

DEFINE ALERT "IF READY: ALARM, ""PHASE 1""':111

The quotes enclosing the comment are doubled so that the compiler
can interpret them as characters and not as delimiters of the
define-string.

When you use ALERT in your program, the compiler substitutes the
associated define-string, as follows:

IF READYr ALARM, "PHASE 1"

18.3.1 Define-Calls in Define-Strings

A define-string can include define-calls. The compiler, in
expanding a define-call, first makes a copy of the associated
define-string, then substitutes the define-actual. for the
define-formals, then examines the resulting string to see if it
contains any define-calls. If it does, the compiler expands
these define-calls in the same way. Expansion is complete when
the resulting string cannot be processed further, that is, does
not contain any more define-calls.

18: Define Capability - 268 -

- - -- -

II

Suppose you have the following declarations:

DEFINE Tl(A,B) "!A/1B**EXP"'
DEFINE EXP "2"1

Now consider the use of the define-name Tli

XCOORD - Tl(YCOORD,5);

The compiler first expands T1 to get the followingt

XCOORD - YCOORD/5**EXPi

It then expands EXP and substitutes the resulting string in the

assignment statement as follows:

XCOORD - YCOORD/5**2r

Suppose that two different define-declarations exist for EXP in
different scopes, as followst

PROC CALCULATEI
B BEGIN
DEFINE Tl(AB) "LA/IB**EXP"t

declarations and statements

PROC COMPi;
BEGIN
DEFINE EXP "2";

(declarations and statements

XCOORD - TI(YCOORD,5)1

statements

END
PROC COMP21

BEGXN
DEFINE EXP "5":

declarations and statements)

XCOORD v Ti(YCOORD,S)t

statements

. ENDEND
END

- 269 - 18t Define Capability

- - ', ..,, .2. *.i '"

The define-call on TI in the procedure COMPI is expanded as
follows:

YCOORD/5**2

The define-call on T1 in the procedure COMP2 is expanded as
follows:

YCOORD/5 **5

18.3.2 Comments in Define-Declarations

Comments can appear anywhere in the language except between the
define-name and the define-string. The compiler interprets the
first quoted string it finds following the define-name as the
define-string.

Suppose you write the following:

DEFINE COEF " (2*FACTORIAL(NEXT)-l) " "BEST APPROXIMATION";

Tho compiler assumes that COEF is followed by a define-string and
then a comment. Suppose you uce COEF as follows:

TERM - COEF * LAST:

The compiler substitutes the define-string as follows:

TERM - (2*PACTORIAL(NEXT)-l) * LASTi

18.4 DEFINE PARAMETERS

The define-actuals given in the define-call are associated with
the define-formals given in the define-declaration. The first
(leftmost) define-actual in the define-cal3 is associated with
the first (leftmost) define-formal in the declaration: the second
define-actual with the second define-formal, and so on.

18: Define Capability - 270 -

S!•' "'!'&' •''•: ':

18.4.1 Define-Actuals

A define-actual can be any sequence of characters. It can include
the comma character and the parentheses characters. The rule for

4 delimiting a define-actual is to use the characters up to but not
including one of the following:

1. The first right parenthesis not balanced by a left paren-
thesis that is part of the define-actual.

2. The first comma that is not within a pair of balanced
parentheces within the define-actual.

Quotes can be used around define-actuals that must include an
unbalanced right parenthesis or a comma that is not within
parentheses. Two quote characters must be used to represent a
single quote character within a define-actual that is enclosed in
quotes.

The following list gives some define-actuals for the associated
define-call.

Define-Actuals
Define-Call No. Value

TASK(AB,C) 1 A
2 B
3 C

TASK(A(B,)C) 1 A(P.,)C

TASK('4"A, ', "B," ,C) 1 A,
2 B,
3 C

TASK((A,B,C)) 1 (A,BC)

TASK("AB.. "C") 1 AB'C

18.4.2 Missing Define-Actuals

If a define-actual Is not glven for a define-formal, a null
string is substituted for the define-formal. Define-actuals can
be omitted at the end of the parameter list. Within the
paramo.ter liet, adjacent commas indicate the omission of a
define-actial.

- 271 - 18z Define Capabl)ity

Suppose you have the following define-declaration:

DEFINE :Y)MPUTE(A, Z) "VELOCITY - RATEIA/DISTANCE)Zi"

The following define-calls produce the indicated results:

Define-Call Result

COMPUTE(Q1,X2) VELOCITY - RATEQl/DISTANCEX2i

COMPUTE(l) VELOCITY - RATE1/DIrSTANCE;

COMPUTE(,OBS) VELOCITY - RATE/DISTANCEOBS;

COMPUTE() VELOCITY = RATE/DISTANCE;

18.5 GENERATED NAMES

A define-declaration can be used to generate names by the
placement of the define-formals, as shown in the declaration of
COMPUTE.

As another example, suppose you have the following define-
declaration:

DEFINE NEWSYMBOL(A) "XYZIA";

You can use the define-ca)l as a variable, as follows:

NEWSYMDOL(l) - 0;

The generated name XYZl is substituted in this statement to
produce:

XYZl - 0:

A define-call must not be used, however, as the name being
declared in a declaration. Generated names must be declared
previously in the conventional way.

18: Define Capability - 272 -

II.I

Further, define-calls cannot be used to create a new symbol by
virtue of concatenating the def:lne-call with the surrounding
text. Suppose you have the following define-declaration:

DEFINE STAR "*"!

Now, suppose you use that define-name in a statement as follows:

LENGTH - OBSERVED STAR* 2;

The compiler expands the define-call STAR, but does not interpret
the result as an exponentiation operator. It treats the
statement as having two multiplication operators and rejects it
as syntactically incorrect.

The define-name STAR can be used in a valid way as follows:

LENGTH - OBSERVED STAR CORRECTION:

The compiler expands +-he define-name STAR to create the following
valid statement:

LENGTH - OBSERVED * CORRSCTION;

13.5.1 Context

The expansion of a define-call must produce a meaningful result.

Suppose you have the following define-declaration:

DEFINE SQUARE(A) " iA - IA**2, "

The define-actual in this case must be a variable to produce a
valid statement.

18.6 DEFINE-CALLS IN DEFINE-ACTUALS

A define-call can be included in a define-actual. As described
earlier in this chapter, the compiler expands a define-call by
making a copy of the associated define-string and then
substituting the define-actuals for the define-formal&. If the
resulting string contains any define-calls, the compiler expands
them in the same way.

- 273 - 18 Define Capability

Thus a define-call that is part of a define-actual is expanded
if, after the substitution of the define-actual, the define-call
is a symbol and not part of a symbol.

Suppose you have the following define-declarations:)

DEFINE DFI(A) "IAl - IA;",
DEFINE FUNCTION "SIN";

Consider the following define-call:'

DFl(FUNCTION)

The compiler copies the define-string associated with DFl and
substitutes the define-actual FUNCTION for the define-formal A to
produce the following string:

FUNCTION1 - FUNCTION;

The first instance of FUNCTION is part of a symbol and,
therefore, the compiler does not recognize it as a define-call.
The second instance of FUNCTION is a define-call and is expanded.
The result of that expansion is:

FUNCTION1 - SIN;

The text is now fully expanded.

18.7 THE LIST OPTION

The list option lets you specify whether you want to see the
define-string in your program, or the define-call, or both. The
list options are:

LISTEXP Include the expanded define-string in the
listing in place of the define-call.

LISTINV Use the define-call in the listing and do not
include the expansion.

LISTBOTH Include both the define-call and the resulting
expansion in the listing.

The exact format of the output listing is implementation
dependent. C-

18t Define Capability - 274 -

I m I I I II I I

f~I

Chapter 19

ADVANCED TOPICS

This chapter considers some advanced topics. It begins by
describing the different ways in which you can lay out a JOVIAL
(J73) table in storage. It next describes the overlay-
declaration, Which lets you determine the data objects that can
share storage and lets you allocate data at specific machine
addresses. It then considers the way in which you can determine
the size and representation of status constants. It concludes
with a discussion of DEF-block-instantiations.

19.1 JOVIAL (J73) TABLES

A JOVIAL (J73) table can be either an ordinary table or a
specified table. An ordinary table is one in whT-chthe compiler
determines the storage layout subject to information supplied in
the declaration about the structure and packing of the table. A(specified table is one in which the declaration completely
describes the storage layout of every item.

The following sections describe these two types of tables in
detail.

19.2 ORDINARY TABLES

The declaration of ordinary tables was described in Chapter 7.
This section considers two additional specifiers that can be
included in the table-declaration for an ordinary table.

(

- 275 - 19: Advanced Topicsu

These specifiers provide information about the structure and
packing of the table. The structure-spec describes the structure
of the table in memory (serial or parallel) or the number of
entries to be packed per word (tight structure). The packing-spec
describes the way in which items within a word are packed. -

19.2.1 Packing

Table packing refers to the allocation of items within an entry
to words of storage. If a table entry contains more than one
item, the way in which the items of the entry are packed can be
specified by giving a packing-spec:

The packing-spec can be given as part of the table declaration,
as follows$

TABLE table-name d (dimensions))

C packing-spec

entry-description

The square brackets indicate that the parenthesized dimensions,
the structure-spec and the packing-spec are all optional.

A packing-spec can also be given for any item in the table, as
follows:

ITEM item-name item-description C packing-spec I

If the packing-spec is given in the table-attributes, it applies
to the entire table. That is, all items are packed according to
that packing-spec except those iteme that have a packing-spec in
their declaration.

191 Advanced Topics - 276 -

The paeking-spec is one of the following:

N No packing occurs. Each item begins in a new word.

M Medium packing occurs. The amount of packing depends
U on the implementation.

D Dense packing occurs. The compiler packs as many items
as possible within a word, making use of all available
bits within the word. However, items that occupy one
word or more are always allocated at a word boundary
and the bytes of a character item are always aligned on
a byte boundary. Further, if the structure of the table
is parallel, no item is allocated so that it crosses a
word boundary.

If a packing-spec is not given, the compiler assumes N (no
packing) for serial and parallel tables and D (dense packing) for
tables with tight structure. Table structure is described in the
next section.

29 a T

- 277 - 19: Advanced Topics

Consider the following declaration:

TABLE TRACK(1:100)y
BEGIN
ITEM DIST U 5;
ITEM SB B 3;
ITEM ANGLE S 10;
END

Suppose that BITSINWORD is 16. C Ince no structure-spec or
packing-spec is given, the compiler assumes a serial table with
no packing and allocates each item to a separate word. It can be
diagrammed as follows:

TRACK

--------------------------- +
DIST(l)

-------------------- ISB(l) TRACK(l)

ANGLE(l)
-------------------- I

+-----------------------+
DIST(100)

----------------- I
I sB(100) I TRACK(100)
------- ----------- I
I ANGLE(100) +
+--------------------

The table TRACK, in this case, requires 300 words of storage.

191 Advanced Topics _ 278 -

Now consider a table declaration for the same table that includes
a packing-spec of D:

TABLE TRACK(1:100) D;
BEGIN
ITEM DIST U 5;
ITEH4SB B 3;
ITEM ANGLE S 10;
END

Again asssuming that BITSINWORD is 16, the compiler packs as many
items of the entry as possible within a word. The total number
of bits required is .19 and thus the compiler uses two words for

.each entry. The exact layout of the items within those words is
implementation dependent. It can be diagrammed as follows:

TRACK BITSINWORD is 16

.4----------------------+
I DIST(l) I SB(l) I

ANGLE(l) I TRACK(l)

+---------------------+-
DIST(100) I SB(10) I
-------------------- I

I ANGLE(100) I TRACK(130)
+-------------------------+

(The table, in this case, requires 200 words of storage.

If BITSINWORD is 32, then the compiler is able to pack all three
items of an entry into a single word. That layout can be
diagrammed as follows:

TRACK BITSINWORD is 32

+---------------------------------------
I DIST(l) I SB(l) I ANGLE(I) I TRACK(l)

I DIST(100)I SB(100)1 ANGLE(100) I TRACK(100)
+-------------------------------------+

The table, in this case, needs only 100 words of storage.

- 279 - 19: Advanced Topics

.o

Now, consider a table declaration for the same table that includes a
D packing-spec in the table-attributes and an N packing-spec in the
item-declaration of SBt

TABLE TRACK ('l:!0) D;
BEGIN
ITEM DIST U 5;
ITEM SB B 3 N;
ITEM ANGLE S 10;
END

The packing-spec for the table indicates dense packing, but the
packing-spec for item SB indicates no packing. All other items
in the table can be packed densely, but item SB must occupy a
word by itself.

If the given implementation reorders items and if an IORDER
directive is not in effect, it can pack DIST and ANGLE in one
word and allocate SB in another word. Such a layout can be
diagrammed as follows:

TRACK BITSINWORD is 16

+-------------------------+
I DIST(1) I ANGLE()
I --------------- - - -1
I SB() TRACK(I)

+------------------------+-
DIST(100) I ANGLE(1I0) I
- m

I SB(100) I TRACK(100)

If the implementation does not perform reorde'ring or if an IORDER
directive is in effect, then the items each occupy a word and the
table requires 300 words of storage.

19: Advanced Topics - 20M-

- .'

Consider another case in which the table does not have a
packing-spec and therefore N (no packing) is assumed. Several
items within the table, however, have packing-specs of D, as
followst

TABLE SUPERTRACK(100)1
BEGIN
ITEM DIST U 5;
ITEM SB B 3 D7
ITEM ANGLE S 10;
ITEM MASK1 B 4 D
ITEM MASK2 B 2 D;
END

This declaration effectively directs the compiler to allocate a
separate word for DIST and a separate word for ANGLE and to pack
MASK1 and MASK2 within a single word.

If the implementation of the compiler performs reordering mnd if
the IORDER directive is not present, it can pack SB, MASK1, and(MASK2 in the same word.

19.2.2 Structure

Table structure refers to the way in which the entries of a table
are laid out in memory. JOVIAL (J73) permits two fundamental
types of structure, serial and paraliel.

A serial table can be structured as either an ordinary serial
table, in which the compiler starts each entry in a new word, or
a tight serial table, in which the compiler packs as many entries
as possible within a word.

The structure-spec is given in the table declaration following

the parenthesized dimension-list.

TABLE name (dimensions) t structure-spec

C packing-spec I

entry-description

The square brackets indicate that the structure-spec is optional.
Although the parenthesized dimension list is optional in a
table-declaration, a structure-spec Is meaningful only when the
table is dimensioned.

- 281 - Advanced Topics

_ _ _ _ _ _ "LWO

Structure-spec is one of the following:

PARALLEL

T E entry-size I

The square brackets indicate that entry-size is optional.

The letter T indicates a tight structure. Entry-size is a
compile-time-integer-formula that gives the number of bits for
each entry. If entry-size is not given, the compiler uses the
minimum number of bits necessary to represent the entry for
entry-size. If no structure-spec is given, the compiler assumes
that the table is an ordinary serial table.

19.2.2.1 Serial Structure

The compiler lays out a serial table by taking the first word of
the'first entry, followed by the second word of the first entry,.
and so on.

19.2.2.2 Parallel Structure

The compiler lays out a parallel table by taking the first word
(word 0) of the first entry followed by the first word of the
second entry and so on to the first word of the last entry, then
the second word (word 1) of the first entry, the second word of
the second entry, and so on.

An important restriction on the use of parallel tables is that
PARALLEL structure can be specified only for a table in which
none of the items of an entry occupy more than one word. A table
is layed out in a parallel structure on a word-by-word basis,
even for packed tables.

19: Advanced Topics - 282 -

19.2.2.3 Example of Serial vs. Parallel Structure

Consider the following two table declarations:

TABLE RACEI(100): TABLE RACE2(l00) PARALLEL;
BEGIN BEGIN
ITEM SPEED U; ITEM SPEED Ut
ITEM DISTANCE S; ITEM DISTANCE S;
END END

These declarations are the same except that table RACEI is
specified (by default) as having a serial structure and table
RACE2 is specified as having a parallel structure.

The compiler lays out these tables a follow.:

RACEl (Serial) RACE2 (Parallel)

+-----------------+ +-------------------
SPEED(() I SPEED(O)

DISTANCE(0) I SPEED(i)
------------- ----------------- I

-.SPEED(l) I I SFEED(2) .

DISTANCE(1) I I SPEED(3)---------------- I ----- -- ---
I II.. . I

------------- ---------------
I SPEED(100ý I DISTANCE(99) I
------------------ ---I-------------

DISTANCE(100) I I DISTANCE(100)
+---------------------+ --------------------- +

The serial organization of RACE1 is appropriate if your program
uses SPEED and DISTANCE together. If your program processes an
item in the first word of each entry, then later an item in the
second word of each entry, you can localize addressing by
creating a parallel table. Such localization may produce a more
efficient program, but the effect of localization depends on the
length of the table, the machine's method of addressing and many
other factors.

(

-- 283 - 191 Advanced Topics L
S....2' ' • • "L ;;• • •, i, • ,• , , ,. .

19.2.2.4 Tight Structure

If the entries of a table each occupy less than one word, the
entries can be packed. Entries in tight tables can have more
than one item, but the entire entry cannot exceed a word in

length. In fact, in order for entry packing to occur, the entry
cannot exceed half the word length.

If a tight structure is not specified, the compiler begins each
entry in a new word. Consider the following declarationt

TABLE ATTENDANCE(1ll000)j
ITEM COUNT U 5;

This declaration causes the compiler to create a serial table.
This table can be diagrammed as follows:

ATTENDANCE
4 + 1

-- --------- +
I COUNT(l) I ATTENDANCE(I)
----------------------- I

----------------------- I
I COUNT(102'0)
---------------------------- +

Each entry in the table occupies one word and thus the table is
1000 words long.

19: Advanced Topic. - 284 -

Now consider a declaration of the same table with tight
structure:

TABLE ATTENDANCE(1:I000) Tr
ITEM COUNT U 5j

The T structure-spec directs the compiler to pack as many entries
as possible within a word. Suppose BITSINWORD is 16. The
compiler can pack three entries per word. The table can be
diagrammed as follows:

ATTENDANCE BITSINWORD-16

+--------------------------------------- I------+
ICOUNTT(l) ICOUNT(2) ICOUNT(3) II - -- -- -- -- -- -- -- -- --I
ICOUNT(4) ICOUNT(5) ICOUNT(6) I
------------------------------------- I

-------------------------------- I
ICOUNT(997) ICOUNT(998) ICOUNT(999) I
I----------------------------------- I
ICOUNT(10(IO) I
+--------------------------------------+

The table now occupies 334 words.

I

(

- 285 - 19" Advanced Topics

Entry-size allows the packing to be given such that entries begin
on addressable units. For example, consider a declaration of the
same table with a specified entry-sizes

TABLE ATTENDANCE(3ilO0) T 8;
ITEM COUNT U 5t

If BITSINWORD is 16, the compiler can pack two entries per word
since it must use 8 bits for each entry. If BITSINBYTE is 8,
each entry begins on a byte boundary. This table can be
diagrammed as follows:

ATTENDANCE BITSINWORD is 16

----------------------------------- +
I COUNT(l) xxxICOUNT(2) xxxl

I COUNT(3) xxxICOUNT(4) xxxl
+------------------------------ I x indicates an unused bit

---------------------------------------I
ICOUNT(999) xxxlCOUNT(l000)xxx1
.------------------------------

This table occupies 500 words.

The default packing-spec for a tight serial table is D (dense).
A tight table uses the minimum necessary storage. For example,
suppose you declare the following tables

TABLE GRID (20) T;
BEGIN
ITEM XCOORD U 51
ITEM YCOORD U 5 ;
EWD

The compiler uses dense packing. Since entry-size iu not given,
the compiler uses the minimum number of bits necessary for an
entry - in this case, 10 bits. If BITSINWORD is 32, the compiler
can then pack three entries per word.

19.2.3 Conversion and Packed Items ¶
When an item is given in a packed table, the implementedI• precision is the same as the declared precision. Thus, an
assignment to an item in a packed table can result in loss of
significant digits in some cases.

19: Advanced Topics - 286 "

Sn

For example, automatic conversion of a fixed data object does not
change the numeric value of the data object except when the
implemented precision of the result value is laes than the
implemented precision of the value being converted. In this
case, rounding or truncation occurs with respect to the
implemented precision of the converted value. This situation
occurs only when a~signing to a packed fixed table item. The
round-or-truncate attribute of the table item determines whether
the assigned value is rounded or truncated.

For example, suppose you have the following declarations:

TABLE FACTORS (1:100) D;
BEGIN
ITEM FIRST A 2,4;
ITEM SECOND A 2,4.
ITEM LAST A 2,4;
END

ITEM TEMP A 2,41

The implemented precision of TEMP may be greater than the nominal
precision given by the scale and fraction. The precision of
FIRST, however, is 6 bits as indicated by the scale and fraction.
Assigning TEMP to FIRST(I) thus probably involves rounding or
truncating TEMP.

19.3 SPECIFIED TAPLES

A specified table-declaration contains information about the(position of each item of each entry.

19.3.1 _ecifjed Table Type Declarations

A specified table can be used in any context in which an ordinary
table can be used. In particular, it can be used in a type-
declaration to create a type for a table with a particular
layout.

op

287 -19: Advanced Topic.

I.I

A specified table has the same general form as an ordinary table,

namely:

TABLE table-name table-attributes

entry-description

The specified table-kind is given in the table-attributes instead
of a packing-spec, as follows:

[(dimensions)] [structure-spec J E table-kind J

The table-kind indicates whether the table has fixed-length
entries or variable-length entries. The forms are:

W entry-size

V

The W indicates that the table has fixed-length entries. The V
indicates thaL the table has variable-length entries. Entry-size
is an integer compile-time-formula that gives the nuniber of words
each entry occupies for a fixed length entry table.

The two kinds of specified table are considered in detail later
in this chapter.

The position of each item in a specified table entry is given by
a POS clause following the each item-description in the table, as
follows:

ITEM item-name item-description

POS (startbit, startword

Startbit and startword are integer compile-time-formulas. The
first bit of a word is numbered 0 and the first word of an entry
is numbered 0.

Item positioning must take into account the number of bits in a
word. An item that occupies one word or less must not be
positioned so that it crosses a word boundary.

19: Advanced Topics - 288 -

-!

19.3.2 Tables with Fixed-Length Entries

A specified table with fixed-length entries is indicated by the
specified-table-kind W followed by the entry size. A specified
table with fixed-length entries can contain information about the
structure and initial values. The form is:

TABLE table-name (dimensions) E structure-spec

W entry-size E table-preset 2 7

BEGIN
ITEM item-name item-description

POS (startbit , startword) [table-preset J

END

Suppose you need a table layout that corresponds to the format of
a particular peripheral device. This format consists of two words
per entry. Each word contains an unsigned, ten-bit integer left
justified in that word. You can.write the following table
declaration:

TABLE DEVICE (5) W 2:
BEGIN
ITEM CHANNEL. U 10 POS(0,0):
ITEM CHANNEL2 U 10 POS(0,l)t
END

The table is a fixed-length specified table containing six
entries. Each entry occupies two words. The first word contains
the item CHANNELl in bits 0 through 9. The second word contains
the item CHANNEL2 in bits 0 through 9.

19.3.2.1 The * Character

Every item in a specified table must be positioned. The asterisk
character "*" can be used for startbit to indicate that the item
should occupy the same amount of storage and be aligned in the
same way as if it were allocated outside the specified table. In
this way, the item can be accessed efficiently.

2I
- 289 - 19: Advanced 'I .ics .

.................. .. 7. 7 7 1 . 12. ..2.. '""•"7.-7.-:" ''.--7_

For example, suppose you use a specified table in the following
way:

TABLE SURVEY(1O) W 5;
BEGIN
ITEM FLAG B 3 POS(15,0)1
ITEM HISTORY B 10 POS(0,0);
ITEM CASE1 U POS(*,l);
IT'EM CASE2 U POS(*,2);
END

The items FLAG and HISTORY are positioned as indicated. The items
CASE1 and CASE2 are positioned for efficient usage.

19.3.2.2 overlays

The values of startbit and startword can be selected to overlay
data. For example, consider the following declaration:

TABLE PERSONNEL(1000) W 3;
BEGIN
ITEM FLAG B 3 POS(15,0)f
ITEM NAME C 10 POS(0,1);
ITEM RANK C 2 POS(0,6);
ITEM ID C 4 POS(0,l)t
ITEM RATING C 2 POS(0,3):
END

The items ID and RATING, in this declaration, overlay the iLem
NAME.

19.3.2.3 Presets

If a table-preset is given in the table-attributes, then none of
the item-declarations within the entry-description can have
table-presets. If two items overlap, only one item can be given
a preset.

191 Advanced Topici - 290 -

Suppose you have the following table-declaratý;,3n:

TABLE SPECS (100) W 2 - 2,4,,,6,8,,,10,121
BEGIN
ITEM LENGTH U POS(0,O)h
ITEM HEIGHT U POS(0,l);
ITEM HIPOINT U 8 POS(0,l);
ITEM LOPOINT U 0 POS(8,1);
END

The items are initialized in order and values are omitted for
overlayed items. The first value 2 is used to set LENGTH(M), 4
is used to set HEIGHT(O). The omitted values prevent HIPOINT and
LOPOINT from being initialized. The value 6 Is used to set
LENGTH(l), and so on.

19.3.2.4 Entry-Size

A specified table with fixed-length entries that does not have
tight structure gets its entry size from the entry-,size given
following the W in the specified-table-kinO. A specified table
with fixed-length entries and tight struct,.e gets its entry-size
from the entry-size either given or arsumed for the structure-
spec. If a specified table has tight structure, entry-size must
not be given as part of the specified-table-kind.

Suppose you declare the following table:

TABLE XR(9) T W;
BEGIN
ITEM READY B POS(0,0),
ITEM STATBIT U 5 POS(i,0),
END

Each entry containa a one-bit item and a five-bit item. Since
the structure-spec does not give the number of bits in an entry,
the compiler uses the minimum number of bits necessary to
represent an entry, namely: six bits.

- 291 - 19: Advanced Topics

........

I:

Assuming that BITSINWORD is 16, the items are allocated as
follows:

Item Word Bits

READY(O) 0 0
STATBIT(0) 0 1-5
READY(I) 0 6
STATBIT(1) 0 7-11

READY(2) 1 0
STATBIT(2) 1 1-5

The starting bit in the position clause is assumed to be relative
to the start of an entry. The item READY(l) is allocated at bit
6 of the first word. Its position, however, is bit 0 relative to
the start of the entry. Observe that bits 12-15 of each word
remain unused.

You may want to specify an entry size so that the entrias of the
table are allocated on addressable boundaries. For example,
suppose BITSINWORD is it and BITSINBYTE is 8. You can write the
following declaration 'to accomplish this:

TABLE XR(9) T 3 W;
BEGIN
ITEM READY B POS(0,0)i
ITEM STATBIT U 5 POS(0,1);
END

The items are then allocated as follows:

Item Word Bits

READY(O) 0 0
STATBIT(O) 0 1-5
READY(I) 0 8
STATBIT(l) 0 9-13

READY(2) 1 0
STATBIT(2) 1 1-5

19: Advaneed Topics - 292 -

19.3.3 Tables with Variable-Length Entries

A table with variable-length entries in JOVIAL (J73) is indicated
by the table-kind V. Such a table creates the illusion of being

* a variable length entry table, but it is, in fact, a table in
whiuh each entry is one word long.

A table with variable-length entries provides a way to save space
by eliminating unnecessary items from entries.

A specified table with variable-length entries cannot contain a

structure-spec or a table-preset. The form is simply:

TABLE table-name (dimensions) V;

BEGIN
ITEM item-name item-description POS (startbit , word

END

A physical entry in a table with variable-length entries is one
word long. A logical entry in such a table can be, and usually
is, composed of many items and may be several words long. The
dimensions in a table with variable length entries determine the
number of physical entries in the table. The number of logical
entries depends on the way in which the table is built.4 /

As a simple, but un~ealistic, example of a table with variable-
length entries, consider the following table-declaration:

TABLE ALTERNATOR(99) V;
BEGIN
ITEM Al U POS(0,0)i
ITEM A2 U POS(0,1)7
ITEM Bl U POS(0,0);
ITEM B2 U POS(0,1);
ITEM B3 U POS(0,2);
END

The table ALTERNATOR has two kinds of logical entry, a two word
entry (consisting of Al and A2) and a three word entry
(consisting oi Bl, B2, and B3).

- 293 - 19: Advanced Topics

i~ I

Suppose the table has alternating two and three word entries.
The first logical entry consists of two words (Al and A2) and
begins at word 0. The second logical entry consists of three
words (Bl, B2, and B3) and begins at word 2. The third logical
entry consists of two words and begins at word 5. And so on.

That is, the table looks as follows:

0 Al

1 A2

2 BI

3 B2

4 B3

5 Al

6 A2

99 B3

To locate an item, the beginning of the logical entry is found
and the position of the item v.ithin that entry is added to this
base. The next entry is located by adding the number of items in
the current entry to the base of the current entry.

19: Advanced Topics - 294 -

1, L~r fir~ !

Suppose you want to increment A2 in each two-word logical entry
and B3 in each three-word logical entry. You can write:

TWO'WORD-TRUE;
FOR IX:O WHILE IX<99;

IF TWO'WORD;
BEGIN
TWO'WORD-FALSE;
A2(IX)-A2(IX)+l;
IX - IX+2;
END

ELSE
BEGIN
TWO'IORD=TRUE;
B3(IX)-B3(IX)+lI
IX=IX+3;
END

This fragment takes advantage of the fact that the logical
entries alternate. It uses a switch TWO'WORD to determine which
type of logical entry it is processing. This example is
unrealistic because if the entries did alternate as shown, a
five-word entry would be used. Normally, a logical entry must
contain something within it to distinguish it.

Suppose you have a table that contains entries that are two,
three and four words long, as follows:

Two-word-entry Three-word-entry Four-word-entry

ENTRY'SIZE ENTRY'SIZE ENTRY'SIZE

PART'NUMBER PART'NUMBER PART'NUMBER

ON'HAND ON'HAND

DEFECTIVE

ENTRY'SIZE distinguishes the different kinds of logical entry.
That is, A two-word entry contains ENTRY'SIZE with the value 2
and the number of the part (PART'NUMBER). A three-word entry
contains ENTRY'SIZE with value 3, PART'NUMBER, and the number of
units of that part currently available (ON'HAND). A four-word
entry contains ENTRY'SIZE with the value 4, PART'NUMBER, ON'HAND,
and the number of units of that part that have been found to be(defective (DEFECTIVE).

- 295 191 Advanced Topics

You could use an ordinary table with four items in each entry for
this table, but two words would then be wasted in entries that
only need two words, and one word would be wasted in entries that
only need three words.

You can, instead, use a table with variable-length entries, as
follows:

TABLE PARTS (100) V1
BEGIN
ITEM ENTRY'SIZE U POS(0,0)r
ITEM PART'NUMBER C 5 POS(0,1);
ITEM ON'HAND U POS(0,2);
ITEM DEFECTIVE U POS(0,3);
END

Assuming a program has filled this table with entries, suppose
you want to calculate the total number of defective items in the
file. To do this, you look through the file and for each entry
that contains a defective count, you add that count to a counter,
COUNT.

You can locate those entries that huve a DEFECTIVE iten by the
fact that the value of ENTRY'SIZE for an entry with a DEFECTIVE
item is 4. The calculation is as follows:

COUNT = 0;
FOR 1:0 THEN ENTRY'SIZE(I)+I WHILE I <100;

IF ENTRY'SIZE(I)=4 THEN COUNT - COUNT + DEFECTIVE(I);

The loop statement uses ENTRY'SIZE to calculate the position of
thc next entry in the table. If that entry has four words, then
it contains a defective unit count and that count is added to the
counter COUNT.

19.4 THE OVERLAY DECLARATION

The overlay-declaration can be used for allocating several data
objects in the same storage, for assigning data to a specified
machine address, or for specifying the allocation order of a set
of items.

19t Advanced Topics - 296 -

The general form of the overlay-declaration is:

OVERLAY E POS (address)

overlay-expression

An overlay-expression is a sequence of one or mor& overlay-
strings separated by colons, as follows:

overlay-string :...

An overlay-string consists of one or more overlay-elements,
separated by commas, as follows:

overlay-element ...

An overlay element is a name, a spacer, or a parenthesized
overlay expression. The following sections consider these three
types of overlay-element.

The data objects in en overlay-declaration can all be statically
allocated or dynamically allocated, as long as all data objects
have the same allocation permanence. An overlay-declaration must
not be used to specify more than one physical location for any
data object.

19.4.1 Data Names

The data names given in an overlay declaration must be previously
declared. They can be item, table, or block names. But they
cannot be the names of items within a table or items or tables
within a block.

Further, an overlay-declaration can only name data that is
declared without a REF-declaration and in the same scope as the
overlay-declaration.

J

- 297 - 19: Advanced Topics

Consider the following declarations:

ITEM COUNT U;
ITEM TIME U;
ITEM MASK B 10;
ITEM RESULT F;
TABLE SPECIFICATIONS (99);

BEGIN
ITEM HEIGHT U;
ITEM LENGTH U;
ITEM WIDTH U;
END A

TABLE TEST(l:50);
ITEM SUCCESS U;

Now consider the following overlay-declarations:

OVERLAY COUNT:TIMEiRESULT;
OVERLAY SPECIFICATIONS:TESTMASK:

The first overlay-declaration contains three overlay-strings.
Each string contains one overlay-element. It specifies that the
items COUNT, TIME, and RESULT are to share the same storage.

The second overlay declaration contains two overlay-strings. The
first contains one overlay-element and the second contains two
overlay-elements. It specifies that the table SPECIFICATIONS is
to share the same storage as the table TEST and the item MASK.
The table SPECIFICATIONS occupies 300 words. The first fifty
words are shared with the table TEST and the fifty-first word is
shared with the item MASK.

19.4.2 Spacers

An overlay element can also be a spacer, which indicates how many
words to skip over when assigning storage. The form of the
spacer is:

W words-to-skip

Words-to-skip is a compile-time integer formula that indicates

how many words are to be skipperý whon allocating data in the
overlay.

19: Advanced Topics - 298 -

Suppose in the example given above, you want MASK to share the
hundredth word with SPECIFICATIONS. You can write:

OVERLAY SPECIFICATIONS:TEST,W 49,MASK;

The table SPECIFICATIONS shares the first fifty words with TEST
and the hundredth word with MASK. The words between TEST and
MASK are not shared.

19.4.3 Nested Overlays

An overlay element can also be a parenthesized overlay element.
For example, suppose you want TEST and COUNT to share the same
storage as SPECIFICATIONS, and you want TIME to occupy the same
storage as COUNT. You can write:

OVERLAY SPECIFICATIONS:TEST,(COUNT:TIME)I

The table TEST shares the first fifty words of storage with
SPECIFICATIONS and COUNT and TIME share the fifty-first word with
SPECIFICATIONS and with each other.

19.4.4 Storage Sharing

When an overlay-declaration is used for storage sharing, it must
have more than one overlay-string, as follows:

OVERLAY overlayl : overlay2 : ...

The overlay-declaration asserts that the data objects in the
first overlay occupy the same storage as the data objects in the
subsequent overlays.

19.4.5 Allocating Absolute Data

The overlay declaration can also be used to allocate data at a
specific machine address. The form of the overlay declaration
for this case includes a positioner, as follows:

OVERLAY POS (address) overlayl : ...

Address is an integer compile-time-formula that gives the address
for a word.

- 299 - 19: Advanced Topics

Suppose you want to allocate COUNT at machine word 4500. You can
write:

OVERLAY POS(4500) COUNT;

You can allocate a sequence of words, as follows:

OVERLAY POS(4500) COUNT, TIME, SPECIFICATIONS:

The item COUNT is allocated to word 4500, TIME to 4501, and
SPECIFICATIONS to 4502 through 4802, assuming that 4500 is a
decimal address.

You can also combine storage sharing with assigning absolute

addresses. For examplet

OVERLAY POS(4500) COUNT:TIME:TEST;

The items COUNT, TIME, and TEST are all allocated at machine
address 4500.

An overlay-declaration with an absolute address cannot be given
within a block.

19.4.6 Allocation Order

An overlay declaration can also be used to specify the order of
allocation. Unlike the order-directive, which is used to specify
allocation order within a table or block, the overlay-declaration
is used to specify order in a more global way.

Suppose you want the items COUNT, TIME, and TEST to be allocated

in that order. You can write:

OVERLAY COUNT, TIME, TEST:

This declarations assures the order of allocation for the three
items given there. SI

19.4.7 Overlay-Declarations and Blocks

An overlay-declaration within a block must not reference names
declared outside the block and an overlay-declaration outside a
block must not reference names declared within the block.

19: Advanced Topics - 30 -0

Further, an overlay-declaration must not be given in a block if
an order-directive is included in the block.

19.5 SPECIFIED STATUS LISTS

A status list can be given a specified representation. A
specified representation associates given values with status
constants.

The general form of a status type-description is:

STATUS E size) (status-group

The square brackets indicate that size is optional. Size is a
compile-time-integer-formula that gives the number of bits to be
used for the representation of the status-constants.

The characters ",...' indicate the one or more status-groups,
separated by commas, can be given. Each status group has the
form:

[status-index I status-constant ,...

If the status-index is not given, then the status-group has a
default representation, as described earlier in Chapter 6. If
the status-index is given, the status-group has a specified
representation. Only status types with default representations
can be used as dimensions in table declarations.(
Suppose you want the status constants A througb F to be
represented as the values 10 through 15. You can write:

STATUS (10 V(A), V(B), V(C), V(D), V(E), V(F)

If you want ALPHA to be represented as 2, BETA as 4, and GAMMA as
8, you can write:

STATUS (2 V(ALPHA), 4 V(DETA), 8 V(GAMMA)

A status type-description can begin with a default list and
continue with a specified list.

3 (
- 3•i - 19: Advanced Topics

* "L ,,.- ~~~''

Suppose you want to associate the values 0 through 2 with the
status constants CAR, VAN, and TRUCK, the values 8 through 9 with
the status constants TRAIN and AIRPLANE, and the value 20 with
the status constant SATELLITE. You can writei

STATUS CV(CAR), V(VAN), V(TRUCK), 8 V(TRAIN), V(AIRPLANE),
20 V(SATELLITE)

No two status-constants in a given status list, however, can have
the same representation.

19.6 DEF-BLOCK-INSTANTIATIONS

A def-block-instantiation is a special kind of external block
declaration. A def-block-instantiation makes the name of the
block external and allocates the block. The form ist

BLOCK INSTANCE block-name;

For each def-block-instantiation, a corresponding REF-declaration
must be given, either in the same or in another module. The
REF-declaration provides information about the components.

191 Advanced Topics - 302-

I - -,,,,,.. • •'•

F '

Appendix A

LAYGUAGE SUMMARY

This appendix provides a syntactic summary for the JOVIAL (073)
language. The summary is divided up into a sequence of logical
units. For each unit, the syntactic rules and a series of
notes are given. The notes describe some of the most important
facts and restrictions associated with the language contructo
presented in the syntactic rules. At the end of the summary,
and index to the syntactic terms is given.

A.1 INTRODUCTION

The following paragraphs define the notation used to present
the syntax of JOVIAL (J73) and discuss the organization of this
language summary.

A.1.1 Syntax Notation

A syntactic rule defines a syntactic name in terms of a string
of syntactic terms. The syntactic terms can be terminals (such(as: reserved words, separators, and the like), which are
displayed in upper-case or syntactic names, which are displayedin lower-case.

Syntactic rules are displayed in boxes. 'The box is divided
into a left-side and a right-side by a vertical line. On the
left-side, th#' syntactic name being defined is giveny on the
right-side, the string that defines the name is given. For
example, consider the following:

allocation-spec STATIC

In the above rule, the syntactic name allocation-spec is
defined to be the reserved word STATIC.

A-1 A: Language Summary

A-1.1.1 Concatenation

A concatenation is a sequence of two or more syntactic terms
written one after the other. An example of a concatenation in
a syntactic rule id:

block-preset I block-preset-value

The above rule states that a block-preset is the character $into

followed by a block-preset-value.

A.l.l.2 Omission

If a construct is optional in a syntactic rule, it is enclosed
in square brackets to indicate that it can be omitted.

An example of a rule with an omission is:

bit-type-
description P [bit-size -

This rule states that a bit-type-description is the letter B
followed by an optional bit-size. That is, it can be either of
the following:

B bit-size

A.1.1.3 Disjunction

A disjunction in a syntactic rule shows the set of possible
choices in a syntactic definition. Curly braces are used to
indicate disjunction. Within the curly braces, the choices are
either separated from one another by vertical bars or are given
on separate lines.

A: Language Summary A-2

7:U.

An example of a disjunction in which the choices are separated
by vertical bars is1

ref-specification REF { imple-ref I compound-ref

This rule states that a ref-specification is the reserved word
REF followed by either a simple-ref or a compound-ref. That
is, it can be either of the following:

REF simple-ref

REF compound-ref

An example of a disjunction in which the choices are given on
separate lines is:

name
status-constant V letterve-wrreserved-word

This rule states that a status-constant is the letter V
followed by a parenthesized name, letter, or keyword. That is,
it can be any of the following:

V name

V (letter

V C reserved-word

A.1.1.4 Replication

A replication indicates that one or more repetitions of a
construct can be given. The character sequence "..." is used
to indicate replication. If the repetitions are separated by a
punctuation character, then that character is given just before
the three periods. For example, if the repetitions are
separated by commas, the character sequenco ",... is tused.

S (

A-3 A: Language Summary

, kiiA4 ý ý.;

An example of a replication is:

positioner POS index

This rule states that a positioner is the reserved word POS •,
followed by a left parenthesis followed by one or more indexes
separated by commas followed by a right parenthesis. That is,
it can be any of the following:

POS (indexPOS (index, index i•

POS index, index, index)(and so on.) ,!

If the construct to be repeated consists of more than one
syntactic term, then curly braces are used to delimit the terms
to be repeated. For example:

table-preset-value positioner J preset-option lilt.

This rule states that a table-preset-value Is one or more pairs
of optional positioner followed by preset-option separated by
commas. That is, it can be any of the following:

C positioner 3 presets-option
E positioner J preset-option , [positioner I preset-option

and so on) .

A: Language Summary A-4

r"

A.1.2 Identical Definitions

If more than one syntactic name is defined by the same rule, a
curly brace is used on the left-side of the box to indicate
this fact. For example:

true-alternative statement
false-alternative

This rule states that a true-alternative is a statement and a
false-alternative is a statement,

A.1.3 Notes

The notes that follow a set of syntax rules list some important
or hard-to-remember facts about the rules.

A.1.4 Syntax Index

The appendix is organized so that, wherever possible, syntactic
terms that are used in a rule are defined on the same page.
However, since this organization cannot always be achieved, a
special index of syntactic terms is provided at the end of this
appendix.

For example, consider the following rule:

item-declaration ITEM item-name C STATIC]{type-description)
item-type-name [item-preset !

Item-name and type-description are defined on the same page,
but to conveniently locate the definitions for item-type-name
and item-preset, you need to use the syntax index.

('

A-5 A: Language Summary

.J
MIA

A.2 SYNTACTIC SUMMARY

module r main-program-module
compool-module
procedure-module

main-program-
module START C dir ... I PROGRAM name r

r dir ... I program-body

C C DEF J subroutine-definition ...

d dir ... J TERM

compool-module START E dir ...] COMPOOL name

[declaration ...

C dir ... I TERM

procedure-module START

C declaration ...

C C DEF I subroutine-definition ...

C dir ... 3 TERM

Notess

1. A program is a set of modules. The modules are not
necessarily all in the same file; details depend on the
implementation.

2. A program must have exactly one main-program-module. It
can have any number (perhaps none) of compool-mocules or
procedure modules.

3. A compool-module must not contain an inline-declaration
or an item, table, block, statement-name, or
subroutine declaration that does not begin with a DEF.

A: Language Summary A-6

dir ICOMPOOL [compool-list I
ICOPY character-literal I
ISKIP C letter] I
IBEGIN E letter)
IEND -
ILINKAGE symbol
ITRACE C trace-control J name ...
IINTERFERENCE interference-control
IREDUCIBLE
INOLIST 7
ILIST,;
IEJECT
IBASE data-name integer-literal
IISBASE data-name integer-literal
IDROP integer-literal 1
ILEFTRIGHT 7
IREARRANGE
AINITIALIZE
IORDER

compoo- listC compool-file I nam
compool-li({ compool-file I ae..

compool-file character-literal

trace-control (boolean-formula

interference-
control data-name : data-name ,...

data-name r item-name
table-nameLblock-name

symbol letter ...

A-7 A: Language Summary

, ,,

Notes:

1i A 1COMPOOL directive can be given only immediately after a
START or immediately following another ICOMPOOL directive.

2. The names given in the ICOMPOOL directive must be declared
in the compool module designated by compool-file.

3. A name in a ICOMPOOL directive cannot be the name of
a component of a type-declaration, nor can it be the name
of a formal parameter.

4. A ILINKAGE directive can only occur in a subroutine-
declaration or subroutine-definition between the heading
and the declarations of the formal parameters.

5. If a subroutine with a IL.NKAGE directive is declared and
defined, the ILINKAGE directive must appee% in every
declaration of the subroutine an well as in the definition.

6. All names in a ITRACE directive, including names used In
the trace-control, except for statement names, must have
been declared prior to their use in the MTRACE directive.

7. A ITRACE directive can only occur within a statement.

8. An IINTERFERElNCE directive can occur only within a
declaration.

9. A IREDUCIBLE directive can be placed only immediately
following the semicolon of the subroutine-heading for a
function.

10. If a function designated as reducible is both defined and
declared, the IREDUCIBLE directive must appear In all the
declarations as well as in the definition.

11. The IINITIALIZE directive can appear only in declarations,
but not in an entry description or in a block-body or in a
subroutine-declaration.

12. A block affected by an IORDER directive cannot contain an
overlay declaration.

13. The LORDER directive must be given first in an entry-
description or block-body.

As Language Summary A-B

program-body s impl e-body '
compound-body

simple-body statement

compound-body BEGIN

C declaration ...

statement

[subroutine-definition ..

Edir ... J C label ... END

declaration C dir ... 3 {simple-declaration }Scompound-denlarationj

compound-denlaration BEGIN

declaration ...

END

simple-declaration data-declarationr
type-declaration
subroutine-declaration
inline-declaration
estatement-ram•-declaration
external-declaration
define-declaration
overlay-declaration
null-declaration

data-declaration item-declaration
Jtable-declaration

block-declaration J•constanit-declaration

(null-declaration IBEGIN .WD}

A-9 A: Language Summary

item-declaration ITEM item-name C STATIC I

(type-description I
item-type-name j C item-preset I

type-description r integer-type-description
floating-type-description
fixed-type-description

j bit-type-description
char-type-description
status-type-description
pointer-type-description

integer-type-
description S R

fT, T [integer-size j

floating-type- ..
description fR

F C , f f C precision 1

fixed-type-description {R •
A C ,{T}J scale C fraction I

integer-size
precision integer-ctfscale 1
fraction

item-name name

A: Language Summary A-10

- .~**~,- -~.- . ,y

I¶

Notes :

1. R indicates rounding. T indicates truncation.

2. A compile-time-formula is abbreviated in this syntax to
ctf. Thus an integer-ctf is a compile-time-formula of
type integer.

3. Only items with static allocation permanence can have a

preset.

4. Integer-size must be greater than zero and less than or
equal to MAXINTSIZE. If integer-size is omitted,
BITSINWORD - 1 is assumed.

5. Precision must be greater than zero and less than or equal
to MAXFLOATPRECISION. If precision is omitted,
FLOATPRECISION i's assumed.

6. The sum of scale and fraction must be greater than zero and
less than or equal to MAXFIXEDPRECISION.

7. The value of scale must must lie in the range -127 through
+127.

* C
SA-11 A: Language Summary

.• •:'' • ' • • ;'_"• ''•'"'• ''•.• i•-"s• -........ .. ••, - ; ,_•,, ,

bit-type-
description B [bit-size J

char-type-
description C C char-size]

status-type- Z
description STATUS C status-size J (status-list

status-list default-list
{C default--list s ,pecified-list)

default-list status-const ,...

specified-list status-group

status-group status-index (status-constant 1,...

status-constant V I letter
reserved-word

pointer-type-
description P C type-name)

bit-size
char-size integer-ctf• status-size
status-index

ri tern-type-name
type-name table-type-name

block-type-name

At Language Summary A-12

J.i

Notes:

I. Bit-size must be greater than or equal to 1 and less than
or equal to MAXBITS. If bit-size is omitted, 1 is assumed.

I 2. Char-size must be greater than or equal to 1 and less
than or equal to MAXBYTES. If char-size is omitted,
1 is assumed.

3. The status-constants must be unique within a status-list.

4. All status-constants in a status-list must have a unique
spelling.

5. In a default-list, the status constants are assigned rep-
resentations starting with 0 and continuing to n-1, where
n is the number of the status-constants in the
default-list.

6. If status-size is omitted, a default status size that is
the minimum necessary to represent the largest status
constant is used to represent the value of all status-
constants in a status-list.

A-13 A: Language Summary

ti-. lm t ½Aii~~J,--

-!

table-declaration 'TABLE table-name C table-attributes

table-body

table-body i entry-description
(table-type-name [table-preset 7 r
I unnamed-entry C table-preset) J

ritem-type-name packing-spec 1
unnamed-entry type-description table-kind J

table-attributes I STATIC . C (dimension ...) .

packing-spec
structure-Spec] C table-kind J

[table-preset J

dimens ion { l lower-bound : J upper-bounO

lower-bound integer-ctf
upper-bound J status-ctf

structure-spec PARALLEL I T bits-per-entry))
bits-per-entry integer-ctf

packing-spec N I M I D

table-kind { w entry-size I V

entry-size integer-ctf

table-name name

A: Language Summary A-14

ý ... 77•i'i • • , '','_•-- "•. . .

Notes:

I. The maximum number of dimensions is 7.

2. The * dimension can be used only with a table that is a
formal parameter. If any dimension of such a table is *,
then all dimensions must be *.

3. The lower-bound and upper-bound must both be integer for-
mulas or both be status formulas.

4. If a lower-bound is not given, a lower-bound of 0 is assumed
for an integer dimension and a lower-bOund that is the first
status-constant in the status list for a status dimension
is assumed for a status dimension.

5. A packing-spec of N indicates no packing, M indicates medium
packing, and D indicates dense packing.

6. A table-kind of W indicates a fixed-length-entry table and
a table-kind of V indicates a variable-length-entry table.

7. If a table is declared in terms of a structure-spec or
packing-spec, table-kind cannot be given.

8. If a table is declared in terms of a type-name, the preset
is given following the type-name, not in the table-heading.

9. If T structure is specified for a table with a W table-kind,
entry-size must not be given. The compiler uses the
bits-per-entry either given or assumed as the size of the
entry.

4 A-15 A: Language Summary

entry-description f simple-entry-description
compound-entry-description

r
simple-entry-

description rtable-item-declaration
_ _ _ _ ~~dir '

null-declaration

table-item- fiLmtype-decrpton
declaration ITEM item-name type-tescr-ption

[{ packing-spec E! table-preset
I position I a

compound-entry-
description BEGIN

simple-entry-description ...

END

position POS (starting-bit , starting-word

starting-bit { integer-ctf I * f)
starting-word integer-ctf

Notes:

1. If the table-declaration contains a table-kand, position
must be given for every item.

2. If the table-declaration does not contain a table-kind,
packing-spec can be given.

3. If packing-spec is not given for such a table, each item
begins in a new word.

Ai Language Summary A-16

-. ! -• - .•,, , .- •1;++' '' '" •+ • + " • •' " ,

t~

II

block-declaration BLOCK block-name E allocation-spec I

a t block-type-name E block-preset Ii)

block-body s simple-block-body
compound-block-body

simple-block-body fdata-declaration
inull -declarationJ

compound-block-

body BEGIN{ data-declaration
overlay-declarationJ• ~dir

null-declaration

END

block-name name

qNotess

1. No allocation order is implied by the order of the
declarations within the block, unless an IORDER directive
is given within a compound-block-body.

2. The declaration of a constant can be given only in a block
that has static allocation permanence.

3. A data-declaration within a block must not have an
allocation-spec.

Au

A-17 A: Language Summary

constant-
declaration {constant-itern-declarationJconstant-table-declaration

constant-ite..-
declaration CONSTANT ITEM conutant-item-name

type-description
1 item-type-name J item-preset ,

declaration CONSTANT TABLE constant-table-name

E (dimension-list) J C structure-spec J

packing-specC(table-kind JJCtabl e-preset]
table-body

constant-
item-namen

name
constant-

table-name ,

Notes.

1. Somo of the items of a coiistant table must be set by a
table-preset. That presut can be given in the table-attributes
or as part of the table options.

2. The allocation permanence of all constant declarations,
even thove within subroutine definitions, is static.

3. The value of a constant item, except a pointer, can be used
in a compile-time-formula. The value of a constant table
or an item from a constant table cannot be used In a
compile-time-formula.

A: Language Summary A-18
it

A

item-preset -item-preset-value

item-preset-value (ctf
I LOC (loc-arg)

table-preset -tabla-preset-value

table-preset.-value tpositioner)preset-option

positioner POS (index ,.

preset-option item-preset-value
repetitions (preset-option

repetitions integer-ctf

block-preset mblock-preset-value

block-preset-value rpreset-option1
.((table-preset-value r
L(block-preset-value)J

Notes:

1. An item must not be initialized more than once.

2. T'he type of the initial value must be compatible with the
type of object being initialized.

3. If positioner is used, the indexes must correspond in type
and number to the dimensions of the table.

4. Repetitions must be non-negative.

A-19 A: Language Summary

"41 ,,VV

IfI

type-declaration item-type-declaration
TYPE table-type-declaration

block-type-declaration

item-type-
declaration item-type-name

type-description
item-type-name

table-type
declaration table-type-name

TABLE C (dimension-list) .

{ table-type-description
table-type-name :

table-type-
description C structure-spec J

[LIKE table-type-name J

packing-spec
table-kind

Sentry-descriptionunnamed-entry , J•

block-type-
declaration block-type-name BLOCK block-body

item-type-name
table-type-name) name
block-type-namej

"At Language Summary A-20

Notes:

1. STATIC or presets cannot be given in a type-declaration.

2. A table can have only one dimension-list. The dimension-
list can be given either in the table-declaration or in
the type-declaration. Further, if a table-type-declaration
contains a dimension-list, then it must not contain a
table-type-name, either directly or in a like-option, that
has a dimension-list.

3. The table-type-name in the like-option must agree in kind
and structure with the table-type-declaration in which it

is used.

(,

A-21 A: Language Summary
• "•: • . .. "• " '•'• • •'? • '!°• •'••- ' "•;•!X • • ' • • '• ''••!•!I;

subroutine-
declaration PROC sub-name E sub-attributes] 7

declaration

subroutine-

definition E dir ... ,

PROC sub-name E sub-attributes J

d dir .. J subroutine-body

sub-attributes E use-attribute) [(formal-list)

E type-Oes'cription

sub-name tprocedure-name function-name

use-attribute fREC I RENT

formal-list { input-forma o
inpu-fomal outurforai

input-formals data-name ,
statement-name ,

i subroutine-nameJ

output-forinals data-name

subroutine-body f simple-body }
f compound-body J

A: Language Summary A-22

inline-declaration INLINE
sub-name ,...

Sstatement-name- LABEL
declaration statement-name ,...

statement-name name

Notes:

1. If sub-attributes contain a type-description, then the
subroutine being declared or defined is a function. Other-
wise, It is a procedure.

2. A declaration must be given for all parameters in formal-
"list. Such declarations must not contain allocation-specsor presets and must not be external, constant, or typedeclarations.

3. The actual parameters in a subroutine call must match in
number and kind (input or output) the formal parameters in
the subroutine declaration or definition. Further, the
actual and formal parameters must be compatible In type.

4. Item pmrameters that are input-formals are bound by value.
Item parameters that are output-formals are bound "y value-(result. Parameters that are tables or blocks are bound by
reJerence.

5. A subroutine must not be invoked recursively unless it is
declared with the REC attribute. It must not be invoked
reentrantly unless it is declared with the REC or RENT
attr ibute.

6. A subroutine-body must contain at least one non-nul]
statement.

7. Inline subroutines may themselves contain (possible inline)
subroutine-call6, but not nested subroutine-definitions.

8. Names of subroutines whose definitions appear in other
modu'les

A-23 A: Language Summary

fi,

, •.. ... '.. ... " ... " •••" --• • - -T : •'i'22 • 1" 2I '-- • , • .• 4,*• •,• ,,,

external-
declara~tion fdef-specification

re f-speci ficat.ion

Idef-specification DEF (siniple-def Icompound-def

cornpound-def BEGIN

simp2.e-def

END

simnple-def Edr.{data-declaration
statement-name-declaration
null.-declaration

def-block-BLC srAc
instantiation BOKISAC

block-name

ref-specification REF [imple-ref Icompound-ref3

compound-ref BEGIN

simple-ref ...

END

simple-ref £dir ... J data-declaration
4 ubrouitine-dec la ration

f null-declarationJ

At Laniguage Summary A-24

Notes:

1. A data declaration in a def-specification and a correspon-
ding declaration in a ref-specification must agree in
name, type, and all attributes. However, the compiler(checks this agreement only if a connection is established
between the modules via a compool directive.

2. External data must have static allocation permanence.

3. The data-declaration in a def-specification or
ref-specification cannot be a constant declaration.

4. In a ref-specification, presets are not allowed in the
declaration of items or tables, and are permitted in the
declaration of a block only if there is a corresponding
DEF BLOCK INSTANCE.

5. For each subroutine-declaration in a ref-specification,
a corresponding subroutine-definition, preceded by DEF,
must exist in some procedure module.

(

(

I

'I(

A-25 A: Language Summary

g--._._ 'h FPU"N....

Q

overlay-declaration OVERLAIY FOPS overlay-address :J

overlay-string t...

overlay-address number

overlay-string rspacer
data-name I.

(overlay-string t6

spacer W integer-ctf

define.-declaration DEFINE define-name

C(define-formal-list)J

Clist-optionJ

define-string

define-formal-list define-formal, .

define~-formal letter

list-option LISTEXP ILISTINV ILISTBOTH}

define--string "character

define-call define-name C(define-actual-list)

define--actual-list define-actual.,

define-actual fCcharacter..
define-name{ name

A: Language Summary A-26~

Notes:

1. An overlay-declaration can only name data that is declared
without a REF declaration in the same scope in which thea overlay-declaration appears.

2. Declarations for all data names must precede the overlay-

declaration.

3. An overlay-declaration within a block-declaration must not
reference data names declared outside the block or within
nested blocks and it must not contain an overlay-address.

4. An overlay-declaration outside a block-declaration must
not reference data names declared within the block.

5. Define-actuala that are omitted are replaced by a null
string. If the number of define-formals exceeds the
number of define-actuals, a null string is substituted for
each missing defirle-actual.

6. A quotation mark within a define-actual enclosed in
quotation marks must be doubled.

7. If a define-declaration has a define-formal-list, then a
define-call on the define-name must include the
parentheses that enclose the define-actual-list, even
though the list may be null.

8. A define-call cannot be juxtaposed with surrounding
symbols to create, after substitution, a new symbol.

S9. 4 define-call must not be used as the name being declared
S4n a declaration or as a formal parameter within a
subroutine heading.

NO

A-27 As Lrnguage Summary

statement l label . 3.) E dir ... *1

(simple-statement 3
compound-statement ,

compound-

statement BEGIN E dir ...

statement ...

E label ... I END

label statement-name

simple-
statement assignment-statement

if-statementcase-statement
loop-statement
exit-statement
goto-statement
procedure-call-statement
return-statement
abort-otatement
stop-statement
null-statement

null-statement BEGIN label ... END

As Language Summary A-28

Y L

Ii

assignment-
statement variable-list - formula

variable-list variable *...

if-statement IF test 7 true-alternative

t ELSE false-alternative .

test boolean--formula

true-alternative " statement
false-alternativ2•J

case-statement CASE case-selector !r dir ...)

BEGIN

E dir ...) default-option)

a dir case-option, ,

E label ... J END

default-option (DEFAULT) statement E FALLTHRU)

case-option (case-index ,...) statement

t FALLTHRU J

came-selector formula

case-index ctf I lower-bound , uppei-bound)

A-29 Ai Language Summary

Not es:

1. In an assignment-statement, the formula is evaluated and
then the variables are evaluated and assigned the value of
the formula, starting with the leftmost variable and
proceeding from left to right to the rightmost varialle
before the equals sign.

2. The types of the varialbles in the list must be the same
and the type of the formula must be compatible with this
type.

3. The type of each case-index must be compatible with the
type of the case-selector. The valid types for
case-selector and case indexes are integer, bit,
character, and status.

4. The values specified by the case-indexes must not overlap.

5. If a default-option is not given, the value of the
case-selector must be represented by a case-index.

As Language Summary A-30

Ii

•, . . 1 " • .. - "- •' •:"":'" ' " ' " '•

loop-statement { for-loop I %lhile-loop I

(for-loop for-clause t

statement

while-loop while-phrase statement

for-clause FOR loop-control a initial-value

tcontinuation)

continuation r while-phrase E by-or-then-phrase 3]
1 by-or-then-phrase E while-phrase I

by-or-then- rBY increment
phrase THEN next-value

while-phrase WHILE condition

Loop-control { item-name I letter }

initial-value
increment 1 formula
next-value

condition boolean-formula

exit-statement EXIT I

goto-statement GOTO statement-name i

A-31 A: Language Summary

•, ':; " •"• ' L '' , t,:,.•,••• ~ •'• ,,;,•i':''•'.• •' • ,• •' ,.,,.."' 4:••f••'' ... ••. . i• .

Notes:

1. The while-phrase is performed before each execution of
the statement within the loop and the by-or-then-phrase
after the execution of that statement.

2. If loop-control is a' letter, it must not be used in a
context in which its value can be changed.

4. The type of initial-value, increment, and next-value must
be compatible with the type of loop-control. The type of
increment must be such that its value can be added to
initial-value

S. If loop-control is a letter, initial-value must not be an
ambiguous status-constant. A single letter loop-control
is implicitly declared within the loop-statement. Its
value is not known outside the loop-statement,

NIP

Aaa

A: Language Summary A-32

- . 4 .

'p •"**-* •, -, 4;4!~ '.#.= !'•i"f ii .: 1•,s''''•• i;

procedure-call procedure-name E (actual-list)
[abort-phrase J

actual-list I input-actual$C input-actuals) : output-actuals

input-actuals formulastatement-name ' ,,
Ssubroutine-name]
block-reference

output-actuals variable

abort-phrase ABORT statement-name

procedure-name {user-defined-procedure-name
machine-specpu et-procedure-name

return-otatement RETURN I

abort-statement ABORT

(stop-statement STOP C integer-formula)

machine-spei"'i fic--
proc4.dure-name naine

Notes:

1. An abort-phrase muse not be given in a procedure-call for
a machine-apecific procedure.

2. Actual parameters in the procedure-call must match the
formal rarameters of the called procedure in number, kind,
and parameter list posit.on.

3. The statement-name in an abort-phrase cr iriput-actul must be
known in the scope that contains the pvocedure-call.-statement.

A-33 A: Language Summary

I

formula r operator operand 1
operand operator operandt (formula)
relational-expression

operator { +I)*l/T**I MOD 1

AND IOR NOT IXORI EV

operand r literal 1
variable 1
constantSfunction-call

formula I
conversion (formula) j
implementation-parameter

Notes:

1. The types of the operands in a formula must agree. The
type of the formula is determined by the types of the
operands.

2. NOT is a prefix operator. The operators + and - can be
used as either infix or prefix operators. All other
operators are infix operators.

3. The precedence of the operators is defined as followit)
Precedence Operators

'•5 **

4 * / MOD
3 + -
2 W <- >- <> <C >
1 NOT AND OR. FQV XOR ' ,

If the operators in a logical formula are not the same,
parentheses must be included to indicate the ordei of
evaluation.

4. A fonnula cannot have two adjacent operators.

A: Language Summary A-34

5. The following table gives the permissable operators and

the formula type for each type of operand.

Operand Operators Formula Type

(Integer + - * / ** MOD S n-i - where n is the actual
number of bits supplied by the
implementation for a signed
integer item with the size
attribute of the larger of the
operands (for exponentiation, the
formula type is integer only if
the right operand is a non-negative
integer compile-time-formula)..

Floating + - * / ** F p - where p is the precision of
the most precise operand.

Fixed + - * / A s,f - where a and f are as
fo~lows depending on the operators

+ or - s equals the scale of the
operands and f is the
maximum of the fraction of
the operands.

If one operand is a integer, a
is the scale of the fixed
operand and f is the fraction
of the fixed operand. If both
operands are fixed, a is the
sum of the scales and f is the(sum of fractions of the
operands.

If the denominator is an
integer, a and f are the scale
and fraction of the numerator.
If the denominator is a fixed
type value, the result is exact
and must be explicitly
converted to a specified scale
and fraction.

Bit AND OR NOT B n - where n is the number of
EQV XOR bits in the longest operand..

3"S

A-35 A, Language Summary !

relationa]-expression formula relational-op formula

relational-op j < w I <= I >W <

Notes:

1. The type of the formulas in a relational expreassion must
match.

2. When both formulas are status-constants, at least one must
be unambiguously associated with a single status type.

3. When the two formulas are status formulas, their types
must be identical.

4. When the two formulas are pointer formulas, their types
must be identical cr one must be an untyped pointer.

5. When both formulas are fixed formulas, a type to which
both are automatically convertible must exist.

4

,it

At Language Summary A-36 "

.- ------------- - - - - - - - - - - -- --.- - --.

t1

literal i nteger-literal
floating-literal
fixed-literal
bit-literal

boolean-literal
character- l iteral

Lpointer-3 iteral

integer-i iteral number

floating-litera { numbere t ponent e nfixed- literal E number 3 •[number I E exponent I

exponent E C + I - J number

number digit ..

bit-literal bead-size B ' bead ... }
bead-size 1 2 13 14 5

bead {digit A -IB I . V }
!,digit {, •I. 9}

character-literal ' { character ...

pointer-literal NULL

Iu

A-37 A: Language Summary

~i

i'

Notes:

1. In a floating- or fixed-literal, a number must be given
either before or after the decimal point, or both before
and after.

2. An integer-literal denotes a decimal value. Its type is S
n, where n is IMPLINTSIZE(MINSIZE(integer-litersI)).

3. A floating- or fixed-literal denotes a decimal value. Its
type is determined from the context in which it is used,
as follows:

Use Type

preset type of the object being preset

a~signmi-nt value type of the target being assigned the
value

operand type of the other operand -

actual parameter type of the formal parameter

initial-value for type of the loop-control
loop-control

4. TRUE represent the bit value IB'11'. FALSE represents lB'O'.

5. A I character within a character-literal is represented by
two adjacent characters.

A: Language Summary A-38

i'- di -"-.i-' *r Ii C'

variable f data-reference 1
pouedo-variable
function-name

data-reference name C (subscript-list) C dereference)

subscript-list index ,

dereference I pointer-name .
pointer-formula

pseudo- *1
variable BIT C variable, fir-st, number

BYTE C variable, first, number
REP (variable)

constant f constant-name s (,ubscript-list) J
control-letter J

cfirst } integer-ctf
cnumber

constant-name r constant-item-name
4. 1constant-tabl e-name

pointer-name name

index I integer-formul. I
status-fox'mula

A,-39 A: Language Summary

I .- PON1nI-

Notest

1. Name in a dsta-reference and constant-name musg.. '• either
an item-name or a table-ndne.

2. A subscript-3i-t must be used to reference an entry of an
item in a dimensioned table. The subscript-list must'
contain the same number of indexes as the dimension-list
of the table contained dimensions.

3. Each index must agree in type with its corresponding dimen-
sion and be within the range specified by that dimension.

4. The indexes in a reference to a table that is a formal

parameter declared with * dimensiona must be integer
\formulas, even if the dimensions of an actual parameter
are status types. The value of each index must be in the
range 0 to n-1, where n is the number of entries in that
dimension.

5. A derefe-ence must be used to reference an item or table
declared using a type-declaration.

6. In a BIT pseudo-variable, the argument variable must have
type bit. In a BYTE pseudo-variable, the argument
variable must have type character.

7. A pseudo-variable or function-name cannot be used as the
argument of a REP finction.

At Language Summary A-40

S.... ,.,. •.: ,,I • ,, ,, m •i•• •.•-•,.

function-call function-name a (actual-list)]

l• (function-name r uaer-cdefined- function-name
bu iIt-in- function-rname

. machine-specific- function-name

conversion r type-description *)
(* type-name e)" type-name

type- ind1cL t or

type-indicator S 1ti IU i B Ci P

machine-specific-
function-name name

I -.

Notes:

1. User-defined-function-names are those names defined to be
functions in subroutine declarations or definition@.

2. Machine-.pecific-funntion-names are given in the user's
guide.

(

A-41 A: Language Summary

+,, i ,+• + • ,' • '
7

,Il++

•x OWN'+ ''+ ... "'

built-in-
function I LOC (loc-argument)

NEXT (next-org , incr))
BIT (bit-formula, first, number)
BYTE (char-formula , first , number)
SHIFTL (formula , count)
SHIFTR (formula , count
ABS (formula)
SON (numeric-formula)

BITSIZE (size-arg
BYTESIZE (size-org)
WORDSIZE (size-erg)
LBOUND (table-name , dim-number)
UBOUND (table-name , dim-number)
NWDSEN (nwdeen-arg)
FIRST (*tat-arg)
LAST C stat-arg)

loc-arg r data-reference "
subroutine-name J'

I statement-name

next-arg { pointer-formula I status-formula I
size-arg formula I block-name type-name }

nwdsen-arg table-name I table-type-name

stat-arg ,sttu-formula status-type-name

incr
first integer-formula
number
count

At Language Summary A-42

.4.S• J,. , ,.,.i 'j • •,1.h

Notes:

1. The LOC of a subroutine whose name appears in an inline-

declaration, or of a statement-name whose definition
appears in such a sub-routine is implementation defined.

2. First and number must not designate a substring beyond thebounds of the bit or character formula.

3. Next-arg cannot be an ambiguous status-constant or the
pointer literal NULL.

4. The type of the status-formula must be a status type with
default representation.

5. When the next-arg is a status formula, the increment must
not cause the NEXT function to return a value out of range
of the next-arg.

6. The value of the pointer formula and the value of the
pointer result must be in the implementation-defined set
of valid values for pointers of its type.

(u

(i

name { letterJ} eca
Q. ~name-cbar• • i

name-char letter digit

letter {AIBICI ... ICZ

digit { ~I1 2 9

character {letter I digit I mark i other-char "

mark

reserved-word IABORT AS AND BEGIN BIT
BITSZE i BLOCK i BY I BY.DTE1J
BYTESIZ I CASE I COMPOOL
COSTANT I DEF I DEFAULT I REP
IELSE END I OV I EXIT I ALHTRU
FALSE I RST I AOR I GOTO I IP fr
INLINE I INSTANCE I I TEM I LABEL
"LAST LBOUND I LIKE I LOC MonI EXT INOT I NIULL I NWDSEN IOR •-:
OVERLAY I PARALLEL I Pos I PROC ¢•:
PROGRAM REC IREP I RENT I REP
RETURN ISGNl I SHIPTL I SHI"FiTR "r
START STATIC I STATUS I STOP,!
TABLE TERM I ;THEN' I TRUE T IYPE "'•"

.UBOUND WHILE• WORDS:IZE IXOR ,I,

ct f
integer-ctf
integer-formula formula
floating- formula.
status- formula
pointer-formul a

At Language Summary A-44

" " -t i- -. ;-"' .i-' -•!':' ' ...

Notes:

1. Only the first 31 characters of a JOVIAL J73 name are used
to determine uniqueness. Ad'itional characters are ignored.

1 2. The other-chars are the remaining implementation-
dependent characters accepted in character literals or
comments. See the user's guide for a list of these
characters and their collating sequence.

3. The following alternate characters are provided for
implementations that do not have the given characters:

Standard Character Alternate

* 4 or7

I V

, /

A-45 A: Language SummaryI .- 0
S. . . ". , . , ,- .= I • . • -- J • -M

Syntax Index

Abort-phrase, A-33
Abort-statement, A-33
Actual-list, A-33
Assignment-statement, A-29
Bead, A-37
Bead-size, A-37
Bit-literal, A-37
Bit-size, A-12
Bit-type-description, A-12 W
Bits.-per-entry, A-14
Block-body, A-17
Block-declaration, A-17
Block-name, A-17
Block-preset, A-19
Block-preset-value,' A-19
Block-type-declarstion, A-20
Block-type-name, A-20
Boolean-literiO, A-37
Built-in-function, A-42
By-or-then-phrasE, A-31
Case-index, A-29
Case-option, A-29
Case-selector, A-29
Case-statement, A-29
Cfirst, A-39
Char-type-eescription, A-12
Character, A-44
Character-3iteral, A-57
Char-size, A-12
Cnumber, A-39
Compool-file, A-7
Compool-list, A-7
Compool-module, A-6
Compound-b] ock-body, A-i1
Compound-body, A-9
Compound-declaration, A-9
Compound-def, A-24Compound-entry-O!escription, A-16 .,
Compound-ref, A-24 A

A: Language Summary A-46

. ,% -. , I ".

'VI

Compound-statement, A-28
Condition, A-31
Constant, A-39
Constant-declaration, A-18
Constant-item-declaration, A-lI
Constant-item-name, A-18,
Constant-name, A-39
Constant-table-declaration, A-1e
Constant-table-name, A-18
Continuation, A-31
Conversion, A-41
Count, A-42
Ctf, A-44
Data-dec3aration, A-9
Data-name, A-7
Data-reference, A-39
Declaration, A-9
Def-block-inatantiation, A-24
Def-specification, A-24
Default-list, A-12
Default-option, A-29
Define-actual, A-27
Define-actual-list, A-27
Define-call, A-27
Define-declaration, A-27
Define-formal, A-27
Define-formal-list, A-27
Define-name, A-27
Define-string, A-27
Dereference, A-.9
Digit, A-37, A-44
Dimension, A-14(Dir, h-7
Entry-description, A..16
Entry-size, A-14
Exit-statement, A-31
Exponent, A-37
External-declaration, A-24
False-alternative, A-29
First, A-42
Fixed-literal, A-37
Fixed-type-description, A-10
Floating-formula, A-44
Floating-]iteral, A-37
Floating-type-description, A-10
For-clause, A-31
For-]oop, A-31
Formal-list, A-22
Formaula, A-34
Fraction, A.-11

A-47 As Language Summary

S ,m i . . .

Function-call, A-41
Function-name, A-41
Goto-statement, A-31
If-statement, A-29
Incr, A-42
Increment, A-31
Incex, A-39
Initial-value, A-31
Inline-declaration, A-23
Input-actuals, A-33
Input-formals, A-22
Integer-ctf, A-44
Integer-formula, A-44
Integer-literal, A-37
Integer-size, A-10
Integer-type-description, A-10
Interference-control, A-7
Item-declaration, A-10
Item-name, A-10
Item-preset, A-19
Item-preset-value, A-19
Item-type-declaration, A-20
Item-type-name, A-20
Label, A-28
Letter, A-44
List-option, A-27
Literal, A-37
Loc-arg, A-42
Loop-control, A-31
Loop-statement, A-31
Lower-bound, A-14
Machine-speclfic-function-narie, A-41
Machine-speci.fic-procedure-name, A-33 i
Main-progr&m-module, A-6
Mark, A-44
Module, A-6
Name, A-44
Name-char, A-44
Next-arg, A-42
Next-value, A-31
Null-declaration, A-9
Null-statement, A-28
Number, A-37
Nwsden-arg, A-42
Operand, A-34
Operator, A-34
Output-actuals, A-33
Output-formals, A-22
Overlay-address, A-27
Overlay-declaration, A-27

At Language Summary A-48

S, :~. . . ,•. • •

Overlay-string, A-27
Packing-spec, A-14
Pointer-formula, A-44
Pointer-literal, A-37
Pointer-name, A-39
Pointer-type-description, A-12
Position, A-16
Positioner, A-19
Precision, A-10
Preset-option, A-19
Procedure-call, A-33
Procedure-module, A-6
Procedure-name, A-33
Program-body, A-9
Pseudo-variable, A-39
Ref-specification, A-24
Relational-expression, A-36
Relational-op, A-36
Repetitions, A-19
Reserved-word, A-44
Return-statement, A-33
Scale, A-10
Simple-block-body, A-17
Simple-body, A-9
Simple-declaration, A-9
Simple-def, A-24
Simple-entry-description, A-16
Simple-ref, A-24
Simple-statement, A-28
Size-arg, A-42
Spacer, A-27
Specified-list, A-12
Starting-bit, A-16
Starting-word, A-16
Stat-arg, A-42
Statement, A-28
Statement-name, A-71
Statement-name-declaration, A-23
Status-constant, A-12
Status-formula, A-44
Statu&-group, A-12
Status-Index, A-12
Status-list, A-12
Status-size, A-12
Status-type-description, A-12
Stop-statement, A-32
Structure-spec, A-14
Sub-attributes, A-22
Sub-name, A-22(j Subroutine-body, A-22

, A-49 A: Language Summary

Subroutine-declaration, A-22
Subroutine-definltion, A-22

Subscript-list, A-39
Symbol, A-7
Table-attributes, A-14
Table-bodey A-14
Table-declaration, A-14Table-item-declaration, A-16
Table-kind, A-14
Table-name, A-14
Table-presot, A-19
Table-preset-value, A-19
Table-type-declaration, A-20
Table-type-description, A-20
Table-type-name, A-20
Test, A-29
Trace-control, A-7
True-alternative, A-29
Type-declaration, A-20
Type-descripticn, A-10
Type-indicato,, A-41
Type-name, A-1?
Unnamod-entry, A-14
Upper-bound, A-14
Use-attribiite, A-22I
Variable, A-39
Variable-list, A-29
While-loop, A-31
While-phrase, A-31

A: Language Summary A-50

Appendix B

IMPLEMENTATION PARAMETERS

The way in which the memory of a machine is partitioned into
addressabla urits is a fundamental part of the machine's
architecture. JOVIAL (J73) assumes the following partitions:

Bit The smallest unit of storage. It can contain one of
two values, 0 or 1.

Byte A group of bits that can hold 1 character of information.

Word A group of one or more consecutive bits that serves
as the unit of allocation of data st:' 4e.

Address Unit - The machine dependent unit used to i0entify a
location or address in memory.

The number of bits per byte, per word, and per address varies
from implementation to implementation. These quantities affect
the representation and behavior of data in a high level
language.

JOVIAL (a73) supplies implementation dependent parameters that
allow. these quantities to be referenced symbolically. The
values of these constants must be specified in the user's guide

for any implementation of JOVIAL (J73).

The following list gives the implementation parameters and a
short description of the meaning of each. First theimplementation parameters of type integer are given, then tlose
of type float, then those of type fixed.

(B R

P-l B: Implementation Parameters :

B.l INTEGER IMPLEMENTATION PARAMETERS

The implementation parameters of type integer have the same
size as an integer literal with the same value.

Paramter Meaning

BITSINBYTE Number of bits in a byte.

BITSINWORD Number of bits in a word.

LOCSINWORD Number of locations (address units)
in a word.

BYTESXNWORD Number of complete bytes in a word.

BITSINPOINTER Number of bits used for a pointer
value.

FLOATPRECISION- Number of bits supplied to hold the
value of -the mantissa of a floating
item declared with default
precision.

FIXEDPRECISION Number of bits, not including sign
bit, supplied to hold the value of a
fixed item declared with a default
fraction.

Ft-OATRADIX Base of the floating point
representation, given as an integer.

"IMPLFLOATPRECISION (precision) Number of bits, not
including sign bit, in the mantissa
for a floating point value with the
given precision.

IMPLFIXEDPRECISION (scale, fraction) Number of bits,
not including sign bit, used to
represent an unpacked fixed item
with the given scale and fraction.
This value also determines the
accuracy of fixed formula results.

IMPLINTSIZE (integer-size) Number of bits, not
including sign bit, used to
represent an unpacked U or S integer
item with the given integer-size.

B: Implementation Parameters B-2

7 -

MAXFLOATPRECISION Maximum precision that can be given
for a floating item.

MAXFIXEDFRECISION Maximpm value for the sum of the
scale and fraction of a fixed item.

MAXINTSIZE Maximum size, not including sign
bit, for signed and unsigned
integers.

MAXBYTEE Maximum value for a character string
item size. MAXBYTES must not exceeO
MAXB ITS/BITSINBYTE.

MAXBITS Maximum value for a bit string size.
The maximum value of words per entry
in a table is MAXBITS/BITSINWORD.
The maximum BITSIZE of a table is
MAXBITS.

MAXINT (integer-size) Maximum integer value
representable in integer-size + 1
bits, including sign bit.

MININT (integer-size) Minimum signed integer value
representable in integer-size + 1
bits, including sign bit, using the
implementation's method of
representing negative numbers.

MAXSTOP Maximum value that can be given for
an integer formula in a stop
"statement.

MINSTOP Minimum value that can be given for
an integer formula in a stop
statement.

MAXSIODIGITS Maximum number of significant digits
processed for a fixed or floating
point literal.

MINSIZE (integer-compile-time-formula) Minimm value of
integer-size such that the value of
the integer-compile-time-formula is
less than or equal to
MAXINT(integer-size) and greater
than or equal to MININT(integer-
size).

B-3 Bt Implementation Parameters

..........................,.gI t ,.4~*-.A.

MINFRACTION (floating-compile-time-formula) Minimum
value of n such that 2**(-n) is
greater than the value of the
floating-compile-time-formula.

MINSCALE (floating-compile-time-formula) Minimum value
of n such that 2**n is greater than
the value of the floating-compile-
time-formula.

MINRELPRECISION (floating-compile-time-formula) Minimum
value of precision such that
FLOATRELPRECISION(precision) is less
than or equal to the value of the
floating-compile-time-formula.

B.2 FLOATING IMPLEMENTATION PARAMETERS

The implementation parameters of type float have the precision
as an argument.

Parameter Meaning
Parameter .

MAXFLOAT (precision) Maximum floating point value
that can be represented in the
number of mantissa bits specified by
precision, not including sign bit.

MINFLOAT (precision) Minimum floating point value
that can be represented in the
number of mantissa bits specified by
precision, not including sign bit,
using the implementation's method of
representing negative numbers.

FLOATRELPRECISION (precision Smallest positive
floating point value that can be
represented in the number of
mantissa bits specified by
precision, not including the sign
bit, such thatt
1.0 - FLOATRELPRECISVON(precision)
is less than 1.0 and
1.0 is less than 1.0 +
FLOATRELPRECISION(precision).

B: Implementation Parameters B-4

FLOATUNDERFLOW (precision) Smallest positive floating
point value that can be represented
in the number of mantissa bits
specified by precision, not
including sign bit, such that both
FLOATUNDERFLOW(precision) and
FLOATUNDERFLOW(-precision) are
representable as floating point
values.

B.3 FIXED IMPLEMENTATXON PARAMETERS

The implementation parameters of type fixed have the scale and
fraction specified as arguments.

Parameter Meaninc

MAXFIXED (scale, fraction) Maximum fixed value that
can be represented in
scale+fraction+l bits, including
sign bit.

MINFIXED (scale, fraction) Minimum fixed value that
can be represented in
scale+fraction+l bits, including
sign bit, using the implementation's
method of representing negative
values.

Bk

B-5 Bt Implementation Parameters

INDEX

A (fixed), 61
Abnormal termination, 217
Abort-Statements, 197, 218
ABS function, 142
Actual Parameters, 203
Addition

fixed, 122
float, 119
integer, 116Additional Declarations, 246

Advanced Features, 18
Allocating Absolute Data, 299
Allocation and Initial Values, 95, 90
Allocation Order, 300
Allocation Permanence, 72, 90(1 Allocation, 225
Allocation-Order-Directive, 256

Example, 257
Placement, 257

Alternative character, 25
Assignment Statements,'176

Multiple Assignmert-Statements, 177
Simple Assignment-Statements, 176

Asterisk Dimensions, 150
Attributes{i round, 69

truncate, 69
Automatic Allocation, 54

B (bit) 63
Base

of literals, 24
Binding

reference, 209
value, 207
value-result, 208

Bit and Character Types, 146
Bit Formulas, 124

Examples, 125, 126
Logical Operators, 124

Short Circuiting, 125
Relational Operators, 126

Index-l

.~ ~ Ki .. 1 ...

BIT Function, 136
Examples, 137, 138
Function Form, 136
Pseudo-Variable Form, 138

Bit Literals, 29
Bit Type.-Descriptions, 63
Bit-size, 63
BITSINWORD

use of, 76
BITSIZE function, 143
Blanks, 33
Block Type Declarations, 101

Initial Values, 102
Omitted Values, 102

Block-body, 87 J

Block-Declaration, 87
Allocation Permanence, 90
Initial Values, 90
Nested Blocks, 89 V

Block-presets, 102
Blocks, 148

nested, 89
Boolean Literals, 30
Bound, 185
Bounds Functions, 149

Asterisk Dimensions, 150
Examples, 150
Function Forms, 149

Bounds, 73
Built-in functions, 132, 9
BY clause, 189
BYTE FUNCTION, 138

Examples, 139, 140
Function Form, 138
Pseudo-Variable Form, 140!

BYTESIZZE function, 143

C (character), 64
Calculations, 6
Carriage return, 34
case-index, 183
Case-selector, 183
Case-Statements, 183

Bound, 185
Compile-Time-Constant Conditions, 186 .
The FALLTHRU Clause, 185

Case-VariantsUnnamed Entry-Descriptions, 78

Char-size, 64
Character Formulas, 127
Character Literals, 30
Character Type-Descriptions, 64

Index-2

43

-

131]' I

Y¼''

Character
alternative, 25

Characters, 24
Digits, 24
Letters, 24
Marks, 25
Special Characters, 25

Classification of Data Declarations, 52
Classification of Declarations, 40
Comments in Define-Declarations, 270
Comments, 32
Compatible Data Types, 156
Compile-time statements

case-statements, 106
if-statement, 182

Compile-Time-Constant Conditions, 186
Compile-Time-Constant Tests, 182
Compile-Time-Formulas, 128
Compiler Directives, 17
Compiler Macros, 18
Compool-directive, 231
Compool-Directives, 244I Additional Declarations, 246

Examples, 247

N1ames, 245 I?
Placement, 246

Compool-Modul es, 231
Compound Alternatives, 179
Compound DEF-Specifications, 225
Compound Procedure-Boeies, 201

Formal Parameters, 202
Compound-Declaration, 42
Compound-Statements, 174
Condition

in If-statement, 170
in whil.e-loopz, 187

Conditional statment, 178
Conditional-Compilation-Directives, 249

Examples, 249
Placement, 249

Constant Data Objects, 53
Constant Data, 228
Constant Item Declarations, 56
Constant Table Declarations, 79
Context, 273
Contexts for Conversion, 155
Conversion and Packed Items, 287
Conversion operators, 156

Index-3

L- m , ii' ' •: • ' . .. ' '' • • ,:;€ • . • "

Conversions, 158
Conversion to a Bit Type, 164

Compatible Types, 164
Convertible Types, 164
REP Conversions, 166
User-Specified Bit Conversion, 164

Conversion to a Character Type, 166
Compatible Types, 166
Convertible Types, 167

Conversion to a Fixed Type, 162
Compatible Types, 163
Convertible Types, 163

Conversion to a Floating Type, 161
Compatible Types, 161
Convertible Types, 162

Conversion to a Pointer Type, 170
Compatible Types, 170
Convertible Types, 171

Conversion to a STATUS Type, 168
Compatible Types, 168
Convertible Types, 169

Conversion to a Table Type, 171
Compatible Types, 172
Convertible Types, 172

Conversion to an Integer Type, 158
Compatible Types, 159
Convertible Types, 159

Convertible Data Types, 156
Type Descriptions, 156
Type-Indicators, 157
User Type-Names, 158

Copy-Directive, 248
Example, 248 N
Placement, 248

D (dense packing), 277
Dangling ELSE, 181
Data Name Declarations, 212
Data Names, 297
Data type

automatically convertible, 156
of formula, 115

Data Types, 57
Bit Type-Descriptions, 63
Character Type-Descriptions, 64
compatibility, 156
Fixed Type-Descriptions, 61
Floating Type-Descriptiono, 59
Integer Type-Descriptions, 58
Pointer Type-Descriptions, 67
Status Type-DeEcriptions, 65

Decimal Digits, 24

Index-4

- ! 1~. *~-* --

Declaration
table, 71

Declarations, 39
block, 87
constant items, 56
items, 55
The Classification of Declarations, 40
The Compound-Declaration, 42
The Null-Declaration, 42
type, 93

DEF-Block-Instantiations, 302
DEF-Specifications, 224

Allocation, 225
Compound DEF-Specifications, 225
Simple DEF-Specifications, 224

Default representation
of status lists, 66

DEFAULT, 184
Define Parameters, 270

Define-Actuals, 271
Missing Define-Actuals, 271

Define-Actuals, 271
Define-Calls in Define-Actuals, 273
Define-Calls in Define-Strings, 268
Define-Calls, 266

Placement, 268
Define-Declaration, 265
Define-formal, 266
Define-String, 268

Comments in Define-Declarations, 27m
Define-Calls in Define-Strings, 268

Dense packing, 277
Dereference operator, 27
Digits, 24
Dimension and Structure, 97
Dimension-list, 73
Dimensions, 72
Direct Communication, 240
Directive

compool, 231
Division

fixed, 122
float, 119
integer, 117

Dollar sign
in names, 26

Entry-Description, 76
* compound, 77

simple, 76
Entry-size, 282, 288, 291
Equivalent data types, 156

Index-5

" Km

Evaluation-Order-Directives, 258
Example, 259
Placement, 258

Exit-Statements, 193
Explicit conversion, 156
Exponentiation j

float, 120
integer, 117

External Declarations, 221
Constant Data, 228
DEF-Specifications, 224

Allocation, 225
Compound DEF-Specifications, 225
Simple DEF-Specifications, 224

REY-Specifications, 226

F (floating), 59
FALLTHRU Clause, 185
FALLTHRU, 185
false-alternative, 179
FIRST function, 152
Fixed Formulas, 121 bY

Examples, 123
Fixed Implementation Parameters, 3-5
Fixed Type-Descriptions, 61
Float Formulas, 118, 120
Floating Implementation Parameters, B-4
Floating Type-Descriptions, 59
FLOATPRECISION

use of, 60
Flow of Control, 10
For-Loops, l8e

Incremented For-Loops, 189
Repeated Assigment Loops, 191 .

Formal Parameters, 202
Formatting Conventions, 34
Formula Structure, ill

Formula Types, 115
Operands, 115

Formula Types, 115
Fraction, 61
Function Definitions, 204
Function-Calls, 205
Function

ABS, 142
BIT, 136
BITSIZE, 143
BYTE, 138
BYTESIZE, 143
FIRST, 152
LAST, 152
LBOUND, 149

Index-6

-- •

Function (Cont'd)
LOC, 132
NEXT, 134
NWDSEN, 151
SGN, 142
SHIFTL, 140
SHIFTR, 140
UBOUND, 149
WORDSIZE, 143

Functions, 204
built-in, 132
Function Vefinitions, 204
Function-Calls, 205

Generated Names, 272
Context, 273

Goto-Statements, 195, 220

If-Statements, 178
Compile-Time-Constant Tests, 182
Compound Alternatives, 179
Nested Xf-Statements, 180

4 The Dangling ELSE, 181
Implementation Dependent Characteristics, 19
Implicit conversion, 156
Incremented For-Loops, 189
Initial Values, 102, 68, 90

for table, 76
Omitted Values, 102

Initialization-Directive, 256
Example, 256
Placement, 256

*1Inline-Declaration, 221
Input-parameters, 202
Integer Formulas, 116

Examples, 118
Integer Implementation Parameters, B-2
Integer Literals, 28
Integer operators, 116
Integer Type-Descriptions, 58
Integer-size, 58
Interference-Directive, 259

Example, 260
Placement, 260

Intrinsic functions, 132
Inverse Functions, 152

Examples, 153
Function Form, 152

Item Declarations, 55
Item Type-Declaration, 95

Allocation and Initial Values, 95
Item-Presets, 68

Index-7

•': '-•__ _ _ ._ ___ _ _ _ I. i

JOVIAL (J73) Tables, 275

Labels within For-Loops, 193
Labels, 175
LAST function, 152
LBOUND function, 149
Letters, 24

as loop-controls, 192
Like-Option, 99

100
Linkage-Directive, 262

Example, 262
Placement, 262

List Option, 274
LISTBOTH, 274
LISTEXP, 274
Listing-Directives, 255, 255
LISTINV, 274
Literals, 28

Bit Literals, 29
Boolean Literals, 30
Character Literals, 30
Integer Literals, 28 VIA,

Pointer Literals, 31
Real Literals, 29

LOC Function, 132
Examples, 133
Function Form, 133

Logical Operators, 124
Short Circuiting, 125Loop-Control, 192

Loop-Statemeiits, 187
For-Loops, 188

Incremented For-Loops, 189
Repeated Assigment Loops, 191

"Labels within For-Loops, 193
Loop-Control, 192
While-Loops, 187

Loops, 188
Lower Case Letters, 24
Lower-bound, 73

M (medium packing), 277
Machine Specific Subroutines, 220
Main Program Module, 229, 37
Marks, 25
MAXBITS

use of, 64, 76
MAXBYTES

use of, 64
MAXFIXED

use of, 63

Index-8

,-.,,,,[., ,,,•.. , ,, ... ,..........
[U • ,,,1 - ," i, "

MAXFIXEDPRECISION
use of, 63

MAXFLOAT
use of, 60

a MAXFLOATPRECISION5 use of, 60
Maximum Table Size, 76
MAXINT

use of, 58
MINFIXED

use of, 63
M INFLOAT

use of, 60
MINIMT

use of, 58
Missing Define-Actuals, 271
MOD, 117
Module Communication, 239

Direct Communication, 240
Modules, 228, 35

Compool-Modules, 231
Main Program Module, 229, 37(. Procedure-Modules, 237

Modulus
integer, 117

Multiple Assignment-Statements, 177
Multiplication

fixed, 122
float, 119
integer, 117

SN (no packing), 277
Names, 245, 26

dollar sign in, 26
Nested Blocks, e9
Nested If-Statements, 18.
Nested Overlays, 299
Nested repetition-counts, 84
Nested subroutines, 38
New Lines, 33
NEXT Function, 134

Funcý-ion Form, 134
Pointer Value Arguments, 135
Status Value Arguments, 135

Non-nested subroutines, 38
Non-nested-subroutines, 229
Normal termination, 217
Null-Declaration, 42
Null-Statements, 176
Numeric Data Types, 145

Index-9

• , - 1 , ••W r,,t•.,.,t=u,,W .•,• .. ,,W~r•t,• ,• •:L,•,,••,.a •. • . ,•liqiL• i.•..,.•.•. . .,#aja i,,,,,.•l , • e • lwt~•4~w, ,,•~s, • #,,^•,,,., 4q

NWDSEN Function, 151
Examples, 152
Function Form, 151

Omitted Values, 102, 82
Operands, 115
Operator precedence, 112
Operators, 112, 27, 7

conversion, 156
fixed, 1.21
float, 119
integer, 116

Ordinary Tables, 275
Conversion and Packed Items, 287
Packing, 276
Structure, 281

Example of Serial vs. Parallel Stru6ture, 283
Parallel Structure, 282
Serial Structure, 282
Tight Structure, 284

Outline of this Manual, 19
Output-parameters, 202
OVERLAY Declaration, 296

Allocating Absolute Data, 299
Allocation Order, 300
Data Names, 297
Nested Overlays, 299
Overlay-Declarations and Blocks, 300
Spacers, 298
Storage Sharing, 299

Overlay-Declarations and Blocks, 300
Overlays, 290

P (pointer), 67
Packing, 276
Padding

of bit strings, 164
of character strings, 167

Parallel Structure, 282
PARALLEL, 202
Parameters, 206

Parareter Binding, 207
Reterence Bincinq,,209
Value Binding, 207
Value-PResuilt Binoing, 200

Parameter Data Types, 211
ParameterI Declarations, 211

Data Name Declarations, 212
L Statement Name Declarations, 313

Subroutine Declarations, 214
Pointer Formulas, 123
Pointer Literals, 31

Index-10
olO

II i I

Pointer Type-Descriptions, 67
Pointer Types, 147
Pointer Value Arguments, 135
Pointer-Qualified References, 105

Examples, 108
Pointers and Ambiguous Names, 106

Pointers and Ambiguous Names, 106
Pointers

typed, 67
untyped, 67

POS, 288, 297
in presets, 82

Precedence
of operators, 112

Precision, 59
Preset Positioner, 82
Preset

table, 76
Presets, 290

for items, 68
Principal Features of JOVIAL, 2

Advanced Features, 18
Built-In Functions, 9
Calculations, 6
Compiler Directives, 17
Compiler Macros, 18
Flow of Control, 10
Operators, 7
Programs, 14
Storage, 3
Subroutines, 12

.f Values, 2{ Procedure-Call-Statements, 196
Procedure-Calls, 202

Actual Parameters, 203
Procedure-Definitions, 199
Procedure-Modules, 237
Procedures, 199

Compound Procedure-Bodies, 201
Formal Parameters, 202

Procedure-Calls, 202
Actual Parameters, 203

Procedure-Definitions, 199
Simple Procedure-Bodies, 200

Program Format, 32
Formatting Conventions, 34

New Lines, 33
Space Characters, 33

Programs, 14, 35
Pseudo-Variable Form, 138, 140

Index-li

I

Qualified Data References, 105
Pointer-Qualified References, 105

Examples, 108
Pointers and Ambiguous Names, 106

R (round), 69
Radix

of literals, 24
Real Literals, 29
REC, 216
Recursive subroutines, 216
Reducible-Directive, 260

Example, 261
Placement, 261

Reentrant subroutines, 216
REF-Specifications, 226
Reference Binding, 209, 209
Register-Directives, 261, 262
Relational Operators, 126
RENT, 216
REP Conversions, 366
Repeated Assigment Loops, 191
Repetition-Cour6 ts, 84
Reserved Words, 27
Restrictions on Declarations, 49
Return-Statements, 196, 218
Round attribute, 69

S (signed integer), 58
Scale, 61
Scope of a Declaration, 47
Scope, 233, 42

Restrictions on Declarations, 49
The Scope of a Declaration, 47

Separators, 27
Serial Structure, 282
Serial tables, 201
SGN function, 142
Shift Functions, 140

Examples, 141
Function Form, 141

SHIPTL function, 140
SHIFTR function, 140
Short Circuiting, 125
Sign Functions, 142

Examples, 143
Function Form, 142

Simple Assignment-Statements, 176
Simple DEF-Specifications, 224
Simple Procedure-Bodies, 200
Simple References, 103Simple-Statements, 173

Index-12

Size Functions, 143
Bit and Character Types, 146
Blocks, 148
Function Form, 144
Numeric Data Types, 145
Pointer Types, 147
Status Types, 146
Table Types, 147

Size
of table, 75

Space Characters, 33
Spacers, 298
Special Characters, 25
Specified STATUS Lists, 3Mi
Specified Table Type Declarations, 287
Specified Tables, 287

Specified Table Type Declarations, 287
Tables with Fixed-Length Entries, 289

Entry-Size, 291
Overlays, 290
Presets, 290The * Character, 289

Tables with Variable-Length Entries, 293
Standard alternative character, 25
Startbit, 288
Startword, 288
Statement Name Declarations, 213
Statement Structure, 173

Compound-Statements, 174
Labels, 175
Null-Statements, 176
Simple-Statements, 173

Statement-names, 175
Static Allocation, 54
STATIC, 72
Status Formulas, 127
Status Type-Descriptions, 65
Status Types, 146
Status Value Arguments, 135
STATUS, 65
Statua-constant, 65
Status-index, 301
Status-name, 65
Stop-Statements, 197, 220
Storage Allocation, 53

Automatic Allocation, 54
Static Allocation, 54

Storage Sharing, 299
Storage, 3(Structure, 281
Structure-epec, 281

Index-13

"LAI,.. .. "•••• •• ••• • -•... . "•.. ... •-• "•' • 2 •i: • ••-•,••, , .. .

Structure
Example of Serial vs. Parallel Structure, 283 12
Parallel Structure, 282
Serial Structure, 282
Tight Structure, 284

Subroutine Declarations, 214
Subroutine Termination, 217

Abort-Statements, 218
Goto-Statements, 220
Return-Statements, 210
Stop-statements, 220

Subroutines, 12
Subscripted Data References, 104
Subtraction

fixed, 122
float, 119
integer, 116

Suggestions to the Reader, 21
Symbols, 25

Comments, 32
Literals, 28

Bit Literals, 29
Boolean Literals, 30
Character Literals, 30
Integer Literals, 28
Pointer Literals, 31
Real Literals, 29

Names, 26
Operators, 27
Reserved Words, 27
Separators, 27

T (truncate), 69 jy
T, 282
Table Dimensions, 72

Bounds, 73
Maximum Table Size, 76
Table Size, 75

Table Formulas, 128
Table Initialization, 79

Omitted Values, 82
Preset Positioner, 82
Repetition-Counts, 84
Table-Presets in the Table-Attributes, 80
Table-Presets with Item-Declarations, 80
Values, 81

Table Size, 75
Table Type Declarations, 96

Allocation and Initial Values, 98
Dimension and Structure, 97
Like-Option, 99

Table Types, 147

Index-14 .61

r .-

Table-Attributes, 72
Allocation Permanence, 72
Table Dimensions, 72

Bounds, 73
Maximum Table Size, 76
Table Size, 75

Table-Preset, 76
Table-declaration, 71
Table-option, 77
Table-Preset, 76
Table-Presets in the Table-Attributes, 80
Table-Presets with Item-Declarations, 80
Tables with Fixed-Length Entries, 289

Entry-Size, 291
Overlays, 290
Presets, 290
The * Character, 289

Tables with Variable-Length Entries, 293
Templates, 93
Termination

of subroutines, 217
Test

in if-statement, 178
Text-Directives, 247

Conditional-Compilation-Directives, 249
Examples, 249
Placement, 249

Copy-Directive, 248
Example, 248
Placement, 248

Tight Structure, 284
Trace-Directives, 263

Placement, 263
true-alternative, 178
Truncate attribute, 69
Truncation

of bits trings, 164
of character strings, 167

Type Descriptions, 156
TYPE, 93
Type-Declaration, 93
Type-Indicators, 157
type-name, 67, 93
Type

bit, 63
character, 64
fixed, 61
floating, 59
integer, 58
pointer, 67
status, 65

Typed pointers, 67

Index-15

Types, 57

U (unsigned integer), 58
UBOUND function, 149
Unnamed Entry-Descriptions, 78
Untyped pointers, 67
upper-bound, 73
Use-Attribute, 215
User Type-Names, 158
User-Specified Bit Conversion, 164

V, 288, 65
Value Binding, 207, 207
Value-Result Binding, 208, 208
Values, 2, 81
Variable Data Objects, 52
Variables and Constants, 52

Constant Data Objects, 53
Variable Data Objects, 52

W, 288
While-Loops, 187
WORDSIZE function, 143

iI ex1
'I,

ibi

49

3;"•

MISSIONT

* Of
Rome Air Development Center

RADC ptanu and excu~teA 'te6ew~h, devetopment, .tut and
zetea~ted acqui.iLtion pi9togm6 in zuppomt o6 Command, Contv~ot
Communic~a~t~onz anjd Int et4enc~e (C31) a~ctivi-t~e.. Te~chn-ica.Z(and engn. qn6uppo'tt wi~thin ateas o4 tehnical c~ompe.te~nce
4A pitowded to' ESP PRkogtam V &kcez (PO.6) and othejt ESP
etemen~tA. The pItLncipa. t~ec hnicac mJ466ion a'teo.4 ate
commnmi~catianA, et~ectumagjnetio. guidan.e. and c~ont~ot, A&U-
veittance oý gtound and ae~uace, ob ec~t6, i.ntetttena~e data,
Ucttzton and handling, intowtma~tJon j 6gytem .technology,'

ionoz~heAic. puopaga~tion, 6oli4d .6aate 6ti-enc~eA, mic!Aowve
phy&.Zc.A and etet,'wnic Ae'iabitity, ma~intatnabi&t~it and
cornpatibit-ty.

