PPG-J and PPG-S Potentiometer Digitizer Kit Instructions

The Potentiometer Digitizer is a circuit which converts the position of two potentiometers into binary data that can be fed to, and interpreted by a microcomputer. The potentiometers may be conventional circular movement potentiometers, slide controls or potentiometers attached to a joystick. The digitizer's circuitry alternately converts each potentiometer's resistance into a seven bit binary count that is fed to your microcomputer thru the input side of a standard eight bit parallel interface. An updated value of each potentiometer's position is generated by the circuitry approximately fifty times a second. The eighth bit generated by the digitizer tells the computer which potentiometer's data is being presented. A "DATA READY" strobe and its compliment are generated by the circuitry making the board usable in either polling or interrupt driven computer systems.

This product as with all other Southwest Technical Products Corp. peripherals was designed to be as universal and as software independent as possible. All of the counting, timing and latching is done by hardware on the circuit board rather than software in the computer system. This not only makes the digitizer easier to use but saves computer time in an application where the computer needs all the time it can get just to update the graphics display. Interfacing can often be done thru the input side of the same interface that feeds the graphic terminal. If the graphic terminal is interfaced thru an eight bit parallel interface as is the SWTPC GT-61. Some applications will require the use of both the joystick and linear controls. In this case it will be necessary to use two separate digitizers with separate interfaces.

The entire unit is constructed on a $3" \times 8"$ single sided circuit board. Since the voltage requirements for the board are a mere +12 to 18 VDC @ 20 ma., power for the board may be drawn from the computer system to which it is interfaced.

Circuit Board Assembly

Note: When assembling this kit, it is best that none of the components be soldered until all of the components of each group have been installed on the circuit board. This makes it much easier to interchange components if a mistake is made during assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do not use acid core solder or any type of paste flux. We will not guarantee or repair any kit on which either product has been used. Use only the solder supplied with the kit or a 60/40 alloy resin core equivalent.

- () Clean the copper side of the printed circuit board with Scotchbrite^R to remove the oxidation if there are any tarnished areas on the board.
- () Install all fifteen of the jumpers on the circuit board. Solder.
- () Install all of the resistors on the board excluding resistors Rl6 and Rl7. If you will be using the digitizer with the GT-61 Graphic Terminal, you may wish to use a different value of resistor for R6. See the "Inputting Data into your Computer" section of this instruction set. Solder.

- () Install all of the capacitors on the circuit board. Be sure to orient electrolytic capacitor C10 to match with the outline shown in the component layout drawing. Solder.
- () Install all of the diodes and transistors on the circuit board. Here again be sure to orient these components to match with the component layout drawing. Solder.

Note: MOS integrated circuits are susceptible to damage by static electricity. Although some degree of protection is provided internally within the integrated circuits, their cost demands the utmost in care. Before opening and/or installing any MOS integrated circuits you should ground your body and all metallic tools coming into contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied with the kit). The ground must be an "earth" ground such as a water pipe, and not the circuit board ground. As for the connection to your body, attach a clip lead to your watch or metal ID bracelet. Make absolutely sure you have the 1 Meg ohm resistor connected between you and the "earth" ground, otherwise you will be creating a dangerous shock hazard. Avoid touching the leads of the integrated circuits any more than necessary when installing them, even if you are grounded. On those MOS IC's being soldered in place; the tip of the soldering iron should be grounded as well (separately from your body ground) either with or without a 1 Meg ohm resistor. Most soldering irons having a three prong line cord plug already have a grounded tip. Static electricity should be an important consideration in cold, dry environments. It is less of a problem when it is warm and humid.

- () Install the integrated circuits on the circuit board. Integrated circuits ICl thru IC3 are not MOS but IC4 thru IC7 are and should be installed as directed in the note above. Be sure to orient the IC's as shown in the component layout drawing. Solder.
- () Attach the fifteen pin female Molex connector to the edge of the circuit board. Solder.
- () Insert the small nylon indexing plug into the female connector pin marked with a small triangle on the bottom side of the board.
- () If you are building the joystick version of the digitizer, cut the four mounting tabs on the frame of the joystick using a pair of heavy duty wire cutters.
- () Depending upon which version of the digitizer you have, attach either the joystick or the slide controls to the Rl6 and Rl7 positions on the circuit board. Solder.
- Carefully check the board over to be sure that all components have been installed correctly and that all connections have been soldered. This completes the PC board assembly.

How It Works

The joystick or potentiometer is wired as a voltage divider with its output going to an integrated, voltage to frequency converter. The voltage to frequency to converter (VFC for short) does just as its name implies. It generates a pulse output whose frequency is dependent upon the input voltage.

The relationship is linear so that no voltage in gives zero frequency out, maximum voltage in gives F_m frequency out and half voltage in gives $F_{m/2}$ frequency out. A separate VFC, ICl and IC2, is provided for each potentiometer. A two input multiplexer alternately gates the output of either one or the other converter into seven bit counter, IC7. A separate timebase oscillator, IC3, constantly oscillates at a frequency of approximately 100 Hz. This oscillator's output is inverted by multiplexer IC5A where it appears as the "NEW DATA" strobe. Upon the negative transition of this strobe, seven bit counter IC7 is reset and starts counting at a rate dependent upon the frequency of the VFC being gated into the counter. Upon the positive transition of the "NEW DATA" strobe, six bit latch IC4 and D flip-flop IC6B latch onto and hold the counter's data until the completion of the next measuring cycle. This same positive transition flips D flip-flop IC6A to let the computer gate in the ouput of the other VFC and being that it is the V/H output lets the computer know which VFC data is being presented at its outputs. A logical one at the V/H output means the vertical or IC2 data is being presented while a logical zero at the output . means that horizontal or ICl data is being presented. Of course the vertical/horizontal terminology depends on the orientation of the circuit board so in this case vertical is defined to be in the same axis as the length of the board while horizontal is in the same axis as the width of the board. Power for the board is provided by two integrated on board regulators. One provides the 5 VDC required by the CMOS IC's while the other provides the +8 VDC power required by the two VFC's.

Attaching the Unit to your System

All connections to the board are made thru a fifteen pin connector along the edge of the circuit board. A minimum, twelve wire multiconductor or flat ribbon cable (not supplied with the kit) is recommended for connecting the board to the computer's parallel interface. The drivers on the digitizer are CMOS for simplicity and low power consumption and thus require that you kiip your interconnecting cable as short as possible. Do not try to drive a load greater than one standard TTL load with any of the data or data ready outputs. A chassis has not been provided for the digitizer since some users will wish to have more than one board mounted in the same enclosure.

Inputting Data into your Computer

New data is latched into the data holding registers IC4 and IC6B every time the "NEW DATA" line goes high and the "NEW DATA" line goes low. If you try to simultaneously latch this data into your computer's interface latches, you may have problems because the "NEW DATA" strobe gets to the interface before the new data does. This problem can best be solved by clocking data into your computer's interface on the falling edge of the "NEW DATA" strobe. If your interface will respond to rising edges only, then use the "NEW DATA" output. If you try to use the full seven bits that are output by the unit, you will not get valid data if the count is so high that it overflows and starts the counter over again. To avoid this problem, it is best to just use six of the seven available data bits and use the seventh bit to check for overflow. Having six bits will give you a miximum count of 111111_2 or 40_{16} which is more than enough resolution. When inputting data, you should first look at bit seven, the overflow bit, and if set, define the data as 40_{16} in your program.

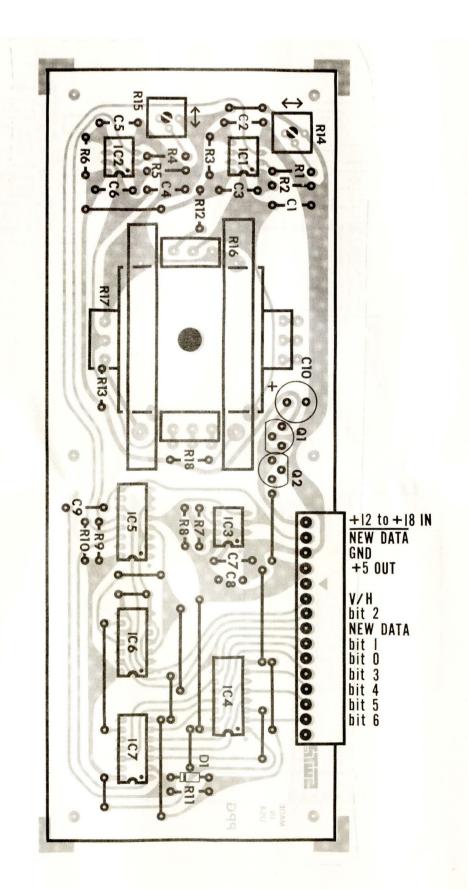
This gives the unit 64_{10} vertical and 64_{10} horizontal data positions which is more than enough resolution for most applications.

If you are using the unit with the SWTPC GT-61 Graphic Terminal, you will find it advantageous to make the unit's vertical count a maximum of 96₁₀ or 60_{16} rather than 40_{16} to match the vertical count of the GT-61 Graphic Terminal. This may be done by changing resistor R6 from a 6.8K ohm 1/4 watt resistor to a 4.7K ohm 1/4 watt resistor. You will then have to look at the full seven bits of data in your program and define the output as being 60_{16} if the count output is greater than 60_{16} .

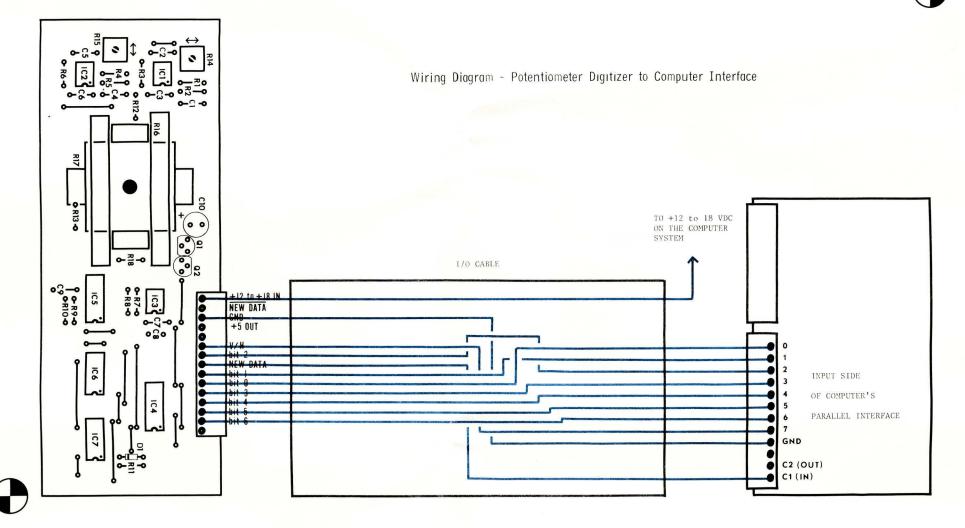
Testing and Calibration

To calibrate the unit you will need to write a program to continually read and display the data outputs of the digitizer. You should then set the joystick control or potentiometers for maximum count and adjust potentiometers Rl4 and Rl5 for the maximum numerical count that you desire from the board. You will see a maximum one digit fluctuation in the count being displayed. This is normal and if it creates a problem in your particular application, it can be taken care of in software. A sample program for the SWTPC 6800 Computer System is listed and may be used for reference if you will be using the digitizer with a computer other than a SWTPC 6800.

Resistors


Capacitors

 C1	1000 pfd film capacitor
 C2	0.01 mfd film capacitor
C3	0.022 mfd film capacitor
 C4	1000 pfd film capacitor
 C5	0.01 mfd film capacitor
 C6	0.022 mfd film capacitor
 C7	0.1 mfd film capacitor
 C8	0.1 mfd disk capacitor
 C9	1000 pfd film capacitor
 C10*	33 mfd @ 25 VDC electrolytic capacitor
	у I


Note: All components flagged with a * <u>must</u> be oriented as shown in the component layout drawing.

 Q1* Q2* D1*	78L08 voltage regulator 78L05 voltage regulator 1N4148 silicon diode
	Integrated Circuits
IC1* IC2* IC3* IC4* IC5* IC6* IC7*	4151 voltage to frequency converter (Raytheon) 4151 voltage to frequency converter (Raytheon) 555 timer integrated circuit 4174 or 14174 6 bit latch 4053 or 14053 triple 2input MUX 4012B or 14013B dual D flip-flop 4024 or 14024 7 bit counter

Note: All components flagged with a * <u>must</u> be oriented as shown in the component layout drawing.

POTENTIOMETER DIGITIZER

PPG Potentiometer Digitizer Diagnostic for the SWTPC 6800 Computer System PPGTST-1

This diagnostic is one designed to locate problems in, or calibrate the PPG Potentiometer Digitizer when it is interfaced to a SWTPC 6800 Computer System thru a MP-L Parallel Interface board. It is assumed that before loading this program, the rest of the system is functioning normally with no problems. The program itself uses 128 words of memory and it is meant to be loaded into the computer system's lower 2K memory board. The diagnostic may be loaded either from tape or instruction by instruction using Mikbug^R starting from address $\emptyset 020_{16}$ and going thru address $\emptyset 09F_{16}$. The address of the parallel interface to which the digitizer is attached must be loaded into addresses A $\emptyset 02$ and A $\emptyset 03$ using Mikbug^R before the program is initiated. The most significant byte goes into A $\emptyset 02$ while the least significant byte goes into A $\emptyset 03$. The starting addresses of the various interface ports are given below:

Por	t	Address	in Hex			
I/0	#Ø	8øøø				
I/0	#1	8øø4	(reserved	for	control	interface)
I/O	#2	8øø8				
I/O	#3	8ØØC				
I/O	#4	8Ø1Ø				
I/O	#5	8Ø14				
I/0	#6	8Ø18				
I/O	#7	8Ø1C				

The program counter addresses, AØ48 and AØ49, must also be set to ØØ2Ø before the program is initiated. The program may then be started as described in the "Go to User's Program" section of the Engineering Note 100 in the Operating System section of your yellow notebook. Once initiated, the program may be stopped only by depressing the "RESET" button. The program may then be restarted after resetting the program counter addresses to $ØØ2Ø_{16}$ and retyping a G for "Go to User Program".

The diagnostic reads the horizontal and vertical data being output by the digitizer and displays the data in hexidecimal form on the control terminal's display. The data is output in column form with the horizontal data first followed by the vertical data. The data is continually read and displayed for calibration and test purposes. As the digitizer control(s) are moved the data should change accordingly. The unit may be calibrated by setting the control(s) for maximum count and adjusting potentiometers R14 and R15 for the desired maximum numerical count which will usually be 40_{16} unless you are using the SWTPC GT-61 Graphic Terminal where you will want to make a resistor change on the digitizer as called for in its assembly instructions and set potentiometer R15 for a maximum count of 60_{16} instead of 40_{16} .

Don't forget when using the digitizer that it must get its power from the computer system to which it is interfaced, otherwise you won't get any data out of the unit. You can derive power from the SWTPC 6800 Computer System from the +12 buss available at the lower connector edge of the MP-L Parallel Interface board to which is is attached. Never install or remove the interface board when the system is powered up. Doing so is not only hazardous to the equipment, but bypasses the normal power-up sequence required by the internal registers within the 6820 integrated circuit in order to guarantee proper operation. Also be careful when attaching the computer's +12 volt supply to the digitizer board since the +12 volt buss is not fused.

.

00010

÷	+	v	-	-	-	

00010					NAM		PPGISI-1
00020					OFT		0
00030					OPT		S
00040	0020				ORG		\$0020
00050	0020	CE	0085		LDX		#CLRSCN
00060	0023	BD	E07E		JSR		PDATA1
00070	0026	86	ЗD	START	LDA	Α	#\$3D
00080	0028	FE	A002		LDX		PARADR
00090	002B	C6	00		LDA	В	#\$00
00100	002D	E7	02		STA	В	2, X
00110	002F	A7	03		STA	Α	3, X
00120	0031	A6	03	LOOP1	LDA	Α	3, X
00130	0033	84	80		AND	Α	#\$80
00140	0035	27	FA		BEQ		LOOP1
00150	0037	A6	02		LDA	Α	2, X
00160		16			TAB		
00170		84	80		AND	Α	#\$80
00180					BNE		LOOP1
00190					AND	В	#\$7F
00200					STA		LOPOS
00210			03	LOOP2	LDA		3, X
00220					AND		#\$80
00230					BEQ	••	LOOP2
00240					LDA	Δ	2, X
00250		16	~~		TAB		
00260			80		AND	Δ	#\$80
00270					BNE	-	SKIP1
00280					LDX		ERRSTR
00290					JSR		PDATA1
00300			D9		BRA		LOOP1
00310			7F	SKIP1	AND	Ð	#\$7F
00320				SKIFI	STA		HIPOS
00330					LDA		LOPOS
				SKIP2	JSR	н	OUTHL
00400				SKIFZ	LDA	Δ	LOPOS
00420					JSR	•	OUTHR
				SKIP3	JSR		OUTS
00440				SKIFS	LDA	Δ	
				SKIP4		•	OUTHL
00520				OKIF4	LDA	^	HIPOS
00530					JSR	n	OUTHR
				SKIP5			#CRLF
00550				SKIFJ	JSR		FDATA1
00560					LDX		PARADR
00570							LOOP1
	1		HE		BRA		
00580				LOPOS			\$00
00590				HIPOS			\$00 \$00 \$00 \$10 \$10 \$10
00600	0085			CLRSCN	FUB		\$0D, \$0A, \$10, \$16, \$00, \$04
	0086						
	0087						
	8800						
	0089						
00410	008A		\ ~	-	· · ·		****
00610		AOC	2	PARADR	EWU		\$A002

PPGTST-1

NAM

00620 008B 0D 008C 0A 008D 00 008E 00 008F 00 00970 04	CRLF	FCB	\$0D, \$0A, \$00, \$00, \$00, \$04
004004 00630009153 009245 009351 009455 009545 009545 009743 009743 009743 009845 009720 009745 0097552 0097552 0097052 009704F	ERRSTR	FCC	/SEQUENCE ERROR/
0007E 02 00640 009F 04 00670 A048 0020 00690 A002 8010 00700 A002 8010 00710 E07E 00720 E067 00730 E068 00740 E000 START 0026 L00P1 0031 L00P2 0043 SKIP1 0058 SKIP2 0060 SKIP3 0069 SKIP4 006F SKIP5 0078 L0P0S 0083 HIP0S 0084 CLRSCN 0085 PARADR A002 CRLF 008B ERRSTR 0091 PDATA1 E07E	PDATA1 OUTHL OUTHR OUTS	FCB ORG FDB EQU EQU EQU EQU EQU EQU	\$04 \$A048 \$20 \$A002 \$801C \$E07E \$E047 \$E04B \$E0CC

OUTHL E067 OUTHR E06B OUTS E0CC

TOTAL ERRORS 00000

CT-64 TERMINAL SYSTEM

- * 64 OR 32 CHARACTERS PER LINE
- UPPER AND lower case LETTERS
- FULL 8 BIT MEMORY
- * 128 CHARACTER ASCII SET
- 110/220 Volt 50-60 Hz POWER SUPPLY
- * SCROLLING OR PAGE MODE OPERATION
- CONTROL CHARACTER DECODING-32 COMBINATION
- PRINTS CONTROL CHARACTERS

CT-64 Terminal Kit

- * USABLE WITH ANY 8 BIT ASCII COMPUTER
- * REVERSED BACKGROUND HIGHLIGHTING

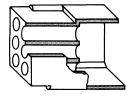
COMPLETE WITH - Chassis and cover, cursor control, 110-1200 Baud serial interface and keyboard. Optional monitor show in photo available.

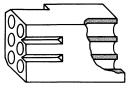
Now you can buy it. The terminal that has all the features that people have been asking us to include. The CT-64 has all the functions that you could want in a terminal and they may be operated by either switches, or through a software program.

All cursor movements, home-up and erase, erase to end of line, erase to end of frame, read on, read off, cursor on, cursor off, screen reversal, scroll, no scroll, solid cursor, blinking cursor, page selection and a beeper to warn you of end of page; all are provided for your use in the CT-64

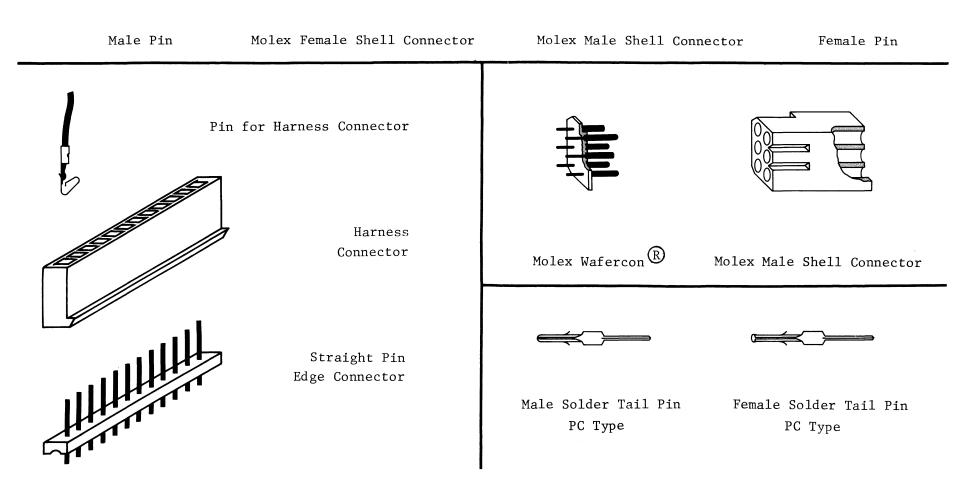
You may also switch from upper case only teletype style operation to upper-lower case typewriter style operation. You can reverse the field on individual words to highlight them, or you can reverse the whole screen.

CT-64 is complete with keyboard, power supply serial interface and case. A matching 9 inch monitor with coordinated covers is also available to make a complete system.


\$325.00


CT-64.	MM-1 Monitor (assemb	\$175.00	
	You are right, it's just what I have be Enclose is \$325.00 for the CT-64 Send the MM-1 monitor too. or BAC or MC NAME	Send Data #	
219 W. Rhapsody	ADDRESS		
San Antonio, Texas 78216	CITY	STATE	ZIP
	Southwest Technical Products Corp. 219 W. Rhapsody, San Antonio, Tex		

Connector Reference Sheet


In order to avoid confusion in distinguishing between the various connectors supplied with our many kits, we are including this connector reference sheet with the kit instruction set. We have had a great many customers interchange the male and female connector shells when assembling their kits so we have clearly illustrated each connector along with its proper name and gender on this reference sheet. All are shown actual size.

