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INTRODUCTION

This book deals with a class of digital magnetic-core circuits
that consist of magnetic components and interconnecting conductors,
and which offer extremely high reliability, long life, and adapta-
bility to special environments, e.g., high~intensity radiation. The
history of such core-wire civcuits, as we refer to them in this
book, spans some 15 to 20 years, from the first discussions of
theoretical possibility to the large array of techniques and varia-
tions at present.

Four potential areas of study for any device and circuit tech-
nology are (1) the physics of the devices, (2) the development of
engineering models for use in circuit analysis, (3) the develop-
ment of circuit synthesis techniques, and (4) the development of
quantitative circuit-design methods. Part I is concerned with
areas (3) and (4) and is based on the use of a highly abstracted
magnetic-core model that greatly simplifies the discussion of
basic circuit principles. The bulk of the writing in Part I covers
many different core-wire techniques and represents an attempt to
integrate the published work of many different authors. Parts of
Chaps. 6 and 10 are concerned with circuit-design methods not
previously published. Part II covers areas (1) and (2), based on
use of more detailed, precise consideration of magnetic phenom-
ena, Chapter 11 provides a condensed summary of the physics
of magnetism for readers wishing some insight into the behavior
of square-loop cores. Chapter 12 covers recently developed core
models that permit accurate representation of flux switching in
square-loop cores.

Part I is a step-by-step development of the principles of
magnetic-core circuit techniques. In Chap. 1 we introduce the
language of flux linkage and current linkage, and show how ba-
sically different the circuit action is when a core is loaded with
resistive, inductive, or capacitive elements. In Chap. 2 we consider
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flux transfer from one core to another core, in which case a
change in flux linkage from the switching of a first core induces
a coupling-loop current that switches the second core; the change
in flux level, A¢, becomes our basic signal. We are primarily
interested in the ratio of received flux to transmitted flux, i.e.,
the flux-transfer ratio G, which is generally a function of the
transmitted flux level A¢,. Of special interest are the conditions
for G > 1, that is, for A¢ gain.

In Chap. 3 we show that in order to achieve bistable gain
characteristics, G must exhibit a certain form of functional
dependence on Aé,. Proper balancing of flux-gain and flux-loss
mechanisms permits the realization of the required functional
form. To maintain this transfer characteristic between two cores
embedded in a chain of similar cores, certain requirements on
forward and backward isolation must be met. It is shown how
diodes readily serve in this role, which is the basis of the well-
known core~diode logic circuits,

In Chap. 4 we introduce several varieties of core-wire cir-
cuits. This begins as an effort to replace the diodes in a core-
diode circuit by other toroidal cores. A systematic replacement
procedure is developed, and we show how any core-diode circuit
can in fact be realized in core-wire form, i.e., as a circuit con-
sisting simply of toroidal cores and interconnecting wire. We then
extend the class of core-wire circuits and develop new circuit
forms that have no equivalent core-diode forms. We also intro-
duce more complex core shapes, i.e., multileg cores, and show
their advantages over functionally equivalent arrays of simple
toroidal cores.

In Chap. 5 we show how to transform a core circuit to a
magnetic-network representation in which rate of flux change is
the flow variable. The network representation provides a common
language for flux-transfer schemes. Many schemes that super-
ficially appear different can be shown by the network representa-
tion to be functionally equivalent. Also, it is generally simpler
to convert from one type of scheme to another after transforming
to the network domain. Examples of transformations and reverse
transformations are given. In particular, it is shown that any
given network may often have many different forms of physical
realization,

In Chap. 6 we treat a specific core-wire scheme, designated
by the term MAD-R, that has been studied and applied more than
any other scheme. A quantitative design method for this form of
circuit is presented, and it is shown that circuits of this type can



INTRODUCTION Vil

be designed to operate with very wide tolerances on temperature
and power-supply conditions.

The core-wire schemes known today were invented by many
different persons and generally in a rather ad koc and random
fashion, a situation that characterizes the early advances in many
fields. In Chap. 7, a technique is described by means of which one
can search for all possible schemes for a given configuration of
magnetic elements. Certain new schemes derived in this fashion,
as well as a formal ¢‘re-inventing’’ of certain of the schemes
discussed in Chaps. 4 and 5, are given by way of example, The
method itself offers interesting insight into the operation of these
circuits,

A comment is in order on scheme identification as generally
used throughout these chapters. Because it was not easy to de-
velop nomenclature that clearly distinguishes between various
schemes (in the fashion of the terms DCTL, TRL, and the like,
as applied to transistor circuits), we decided instead to identify
a scheme or method of approach by the name of the person with
whom it is associated, as far as we know, either by patent dis-
closure or publication., We depart from this policy in the case of
better-known schemes when a name has been established (e.g., the
MAD-R scheme).

In Chaps. 8 and 9 we introduce other methods of approach to
circuit synthesis that open up whole new families of schemes,
some of which offer significant potential for future practical ap-
plication. Three different techniques are introduced in Chap. 8,
each leading to new scheme types. Together these techniques pave
the way in Chap. 9 for an important class of bipolar schemes. In
the bipolar representation, the binary states (designated oze and
zero) are symmetrically represented;i.e., they are characterized by
flux transfer of equal amplitudes but opposite polarities, as opposed
to high and low levels of flux transfer in the unipolar schemes. A
number of especially interesting schemes based on the use of co-
herent rotation of magnetization in thin films fall into the bipolar
category.

Through Chap. 9 we are concerned strictly with the develop-
ment of basic transfer schemes, i.e., flux transfer along a simple,
iterative chain of circuits, without regard to logical fan-in or
fan-out. In Chap. 10 we investigate methods of general logic
synthesis with core-wire circuits.

Part II is concerned with the magnetic devices themselves.
Chapter 11 is a highly condensed, step-by-step exposition of
the physics of magnetism that leads to the basic square-loop
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characteristic and the basic mechanisms of flux switching. It pro-
vides the reader with some background to appreciate the empirical
models for flux switching that are discussed in detail in Chap. 12.

The goal of Chap. 12 is to model the static and dynamic flux
properties of square-loop magnetic cores. It is shown that a pair
of simple mathematical equations can model the major hysteresis
loop of a typical ferrite material, from which hysteresis loops for
thick-walled toroidal cores are derived and shown to fit experi-
mental data quite accurately, Parameters derived from these
static hysteresis curves are used in the dynamic switching models.
From the results of basic flux-switching experiments, it is shown
that the familiar elastic and inelastic components of flux switch-
ing can best be modeled in terms of two components each. The
two components of elastic switching are due to rotation of mag-
netization and local domain-wall movements; the two components
of inelastic switching relate to what are referred to as minor and
major wall displacements, Mathematical equations for all four com-
ponents are derived, and it is shown how these relations quite
accurately model flux switching of ferrite cores over a large
range of drive amplitudes, conditions of loading, and switching
speed (from nanoseconds to microseconds). Computational methods
for the models are also discussed. These models are presently
being applied with considerable success to computer-aided analy-
sis of complex magnetic-core circuits,

Two primary reasons can be singled out for the erratic de-
velopment of core-wire logic circuits over the past fifteen years:
the general lack of background, training, and understanding of
magnetics by engineers who are the potential users; and the rapid
growth of semiconductor technology, which has generally offered
circuits with performance superior to that of core circuits under
most, though not all, conditions. This book was begun over seven
years before publication, and the enthusiasm for following it to
completion has been similarly erratic., We finally came to the
conclusion, independently of short-time variations in general in-
terest, that core-wire or other magnetic-core logic circuits in one
form or another will likely find their niche—if not based on rugged-
ness and reliability one year, then on radiation immunity and ab-
sence of standby power the next. This factor provided a major
impetus to complete the book. But equally important, although the
underlying thread of this book is the highly specialized technology
of core-wire circuits, much of the material is relevant to mag-
netic devices and circuits in general,
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In order to develop some background for dealing with flux trans-
fer between cores, which is basic to any digital magnetic-core
circuit, we consider in this first chapter the properties of simple
circuits utilizing a single magnetic element in combination with
certain of the more common electrical components, The primary
intent is qualitative understanding rather than engineering detail.

1-1 Introduction

Let us first review the fundamental rules governing induced
electromotive force (emf) and induced magnetomotive force (mmf).
Consider a vector field B representing magnetic flux density at
any point in space. If B changes with time, then an electric field E
is induced, as described by one of Maxwell’s equations, namely

_dB
at
By vector manipulation, Eq. (1-1) may be converted to the integral

form
fE.dzz_ifB.dA (1-2)
P at v

3

cul E = VxE = (1-1)
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usually referred to as Faraday’s law of induction, where P is any
closed path, and A is any surface bounded by P. The line integral
of E along P is the loop emf e, and | B-dA is the magnetic flux
linking the closed loop P. When the same quantity of flux ¢ is
encircled N times by the loop P, that is, a winding of N turns,
then, effectively

fB.dA = N¢ (1-3)
and for this case, Eq., (1-2) may be rewritten as
e--N® (1-4)
dt

The minus sign in Eq. (1-4) implies that the induced emf tends to
produce current with associated flux linkage opposing the original
Ndg/dt, in accordance with Lenz’s law and use of a left~hand rule.
Normally we will be concerned with a coupling loop, i.e., a closed
path formed by an electrical conductor, in which the current that
flows is such that the total voltage drop around the loop is always
equal to the induced emf e.

In core circuits we are primarily concerned with magnetic
fields that are concentrated within the surface boundariesof cores.
In Fig. 1-1, assume that the field B is confined entirely to the two
core legs A and B with total flux values of ¢, and ¢, respectively.
The flux in each of these legs closes through some external mag-
netic structure. If the closed path Pencircles these legs N, and Ng
times, as shown, then the total flux linking the path is actually

Nydyp + Ngobge

Leg A LegB ,p'
g - ego p
£ —
3:3'\‘;\ NBC{
—_;—‘J) iy N
J ¢ ¢g

Fig. 1-1. Interconnecting two magnetic legs
with a coupling loop of N4 and Ng turns;
polarities are consistent with +dpa/dt or
+d¢ g/dt inducing a positive loop current i,.

Consider next a vector current density J that generates a mag-
netic field, according to another of Maxwell’s equations
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cul H = VxH =] (1-5)

The displacement-current term dD/dt that normally belongs in this
equation is omitted here because it is generally negligible in the
circuits in which we are primarily interested. Equation (1-5) can
be converted to the integral form

fﬂ-dl:f,LdA (1-6)
jo4 A

usually referred to as Ampere’s law, where P’ is a closed path and
A" is any surface bounded by P". The line integral of H is the loop
mmf F, and [ J-dA is the total current linkage of the closed loop P".
For a set of discrete currents i ; linking P'we can rewrite Eq. (1-6)
as

F = 2oNi; (1-7)

If P’ follows along Leg B, then the component of mmf generated by
current i, is Npi,, with direction given by the familiar right-hand
rule.

From Fig. 1-1 we see that any flux change in Leg A threads
the electric loop N, times and that any loop current encircles
Leg A the same number of times. This illustrates that the number
of interlinkages between a magnetic leg and an electric loop is
actually independent of which one wraps around the other. It also
brings out the distinction between total flux linkage through an
electric loop, versus simply the flux in a magnetic leg, and simi-
larly for total current linkage through a magnetic core versus
simply the current in a conductor.

Figure 1-2 shows the general circuit configuration to be con-
sidered in the following sections, in which we analyze separately
the effects of resistive, inductive, and capacitive loads on a core
connected to a drive current i; applied through N, turns. We will
assume some highly simplified core characteristics that are ade-
quate for the purposes of this chapter, and, in fact, for most of
Part 1.

First we assume that the core exhibits the idealized static &-F
hysteresis loop shown in Fig. 1-3(a). By the term sfatic, it is
meant that this is the curve that would be traced out if the mmf F
were changed very slowly (quasi-statistically) in time and the cor-
responding ¢ values plotted. The horizontal top and bottom of the
loop represent positive and negative flux saturation levels and the
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vertical sides imply that flux changes between negative and posi-
tive saturation with |F| only slightly greater than the thveshold
value Fj. An actual curve has finite slopes at the top and bottom,
which account for an inductive component in switching, often re-
ferred to as the elastic-flux component. (The source of this com-
ponent is discussed in detail in Chap. 12,) In any case, if a
core is driven into saturation and the drive is then reduced to
zero, that is, F =0, the resulting remanent flux level is desig-
nated as ¢,.. A core with a hysteresis loop approaching the
ideal shape shown in Fig. 1-3(a) is commonly referred to as having
a square-loop characteristic.

—time

Fig. 1-2. General circuit to be analyzed with a
resistive, inductive, or capacitive load connected

separately.
¢
té,
T
T, W, F E@
L —
d o
-¢,
(a) (b) (c)

Fig. 1-3. Equivalent circuit for a core, based on an idealized ¢ - F loop.

In addition to this simple static model, we assume for most pur-
poses in Part I that dynamic change of flux ¢ = d¢/dt in the range
-¢, < ¢ < ¢, is governed by the relation

¢ = p(F - Fy forF>F,
and (1-8)
¢ = p(F + Fy) for F < -F,
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where p (the average value of the inelastic switching parameter p)
is a constant and where F is equal to the mmf > N.i.. According
to this model, the rate of flux change is proportional to the excess
mmf, i.e., the amount by which F exceeds the threshold F,. In
Chap. 12 it is shown that the switching parameters are by no
means constant, as assumed here for p and F, but depend strongly
on the instantaneous flux state, on how this state was reached, and
also on F itself. Since the models for p and F, developed in
Chap. 12 are relatively complex, we have chosen here to assume
constant values of p and F, for mathematical simplicity in demon-
strating principles. Curves subsequently calculated from the
switching model of Eq. (1-8) are therefore accurate only in their
grosser aspects.

Based on this model, there is a simple electrical equivalent
circuit for a core under the conditions that |¢| < ¢, and F 2 F,.
In Fig. 1-3(b) is shown a core with no coupling-loop load. For
simplicity, the winding for i, is drawn as if to link the core only
once, but N d linkages are assumed., The emf e g due to switching
is

F
e, = pN,(Nyiy - Fo) - Nd2;7<id - _°> (1-9)
Ng
This expression may be represented by the equivalent circuit of
Fig. 1-3(c), where the diode is assumed to have zero forward
resistance and infinite back resistance. This ideal diode and the
current generator F,/N, in parallel with it together behave as a
current sink accepting all input current i, up to the value Fy/N,,
without supporting any voltage. For i, > Fy/N, the diode is cut off
and e, > 0. The equivalent circuit is valid until the core saturates,
i.e., until a time 7 such that ¢ = +¢_or A¢ = 2¢ _, where

T 1 T
f ppdt = — f e dt = 26, (1-10)
0 Nd 0

assuming the core starts in negative saturation -¢,. When the
core saturates at +¢,, and therefore terminates switching, the
equivalent switching resistance becomes zero and the core ef-
fectively represents a short circuit except for the inductance
term due to the elastic-flux component, which is ignored in
this chapter.
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1-2 Resistive Load; A¢ Dissipation

Consider the case in which the coupling loop of Fig. 1-2 con-
nects the core T, called a transmitter core, to a resistive element.
The loop inductance is assumed negligible. The core is driven by a
step i,(t) current pulse from an initial state ¢ = -¢, . During the
the pulse the net mmf drop F in the core is N,i; - Npi, and hence
from Eq. (1-8)

bp = p(Nyiy = Npip = Fy) (1-11)

Current i, is equal to eT/R, where e = NTq'ST. Hence

Npd
fp = — L (1-12)
R
Solution of the above two equations yields
; - . R
¢p = p(Nyiz - Fg) —— (1-13)
R + Nsz
and
N, Fy T (1-14
lp = p 1, — -
4 ata = Fo) o— N )

Note that the effect of the resistive loading is to reduce the
rate of switching by the factor R/(R + NTZE), relative to the no-
load case. If R - 0, then g'i>T -» 0, and the core cannot be switched
in finite time. For the case R = 0, there is in a sense no ‘‘re-
ceiver’ in the coupling loop to accept any transmitter flux-linkage
change N,A¢p. This is a useful interpretation that is worth pur-
suing further. By integration of Eq. (1-12) with respect to time,
we have

t
NpAdyp = jo‘ Rigdt = Rq, (1-15)

where q, is the net electric charge flow in the loop. The quantity
Rq, may be viewed as an equivalent flux-linkage change NA¢ = Rq,
absorbed by the resistance. It is sometimes useful to think of this
process as ‘‘dissipation’’ of flux linkage, or alternatively as A¢
dissipation of an amount Rg,/N,. When flux transfer from a trans-
mitter core to a receiver core is considered in Chap. 2, dissipa-
tion of a A¢ in the coupling-loop resistance will be found to be an
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important loss term subtracting from the A¢ otherwise available
to the receiver core.

We could also derive Egs. (1-13) and (1-14) by extending the
equivalent circuit introduced in Fig. 1-3. Let Eq. (1-11) be re-
written in the form

Fy N
. — . 0 T .
edszqu:dez(zd—_—_zg (1-16)
Nd Nd

The term N.j,/N, is the only one not accounted for in the previous
equivalent circuit, and it may be viewed as a current in the secon-
dary of an ideal transformer of turns ratio N,:N,, as shown in
Fig. 1-4. The ideal transformer and the load R may in turn be re-
placed by an equivalent resistance (N dz/NTZ) R, and from this
equivalent circuit Egs. (1-13) and (1-14) can be derived directly.

Ny NgiNg |
o

|
i s 9B o
|

[

Fig. 1-4. Equivalent circuit of a core driven by current i ;4 through N4
turns and loaded by resistance R across N turns.

For the simple flux~switching model assumed here, the circuit
within the dashed boundary in Fig. 1-4 is valid regardless of the
nature of the excitation and load at the terminals as long as F' > F,
and |¢| < ¢,. In conventional transformer terms, the differential
switching resistance N dzp_ is just a core-loss reésistance (in ferrite
cores, due primarily to internal damping effects rather than eddy
currents). This loss element and the current sink of value F,/N,
represent the departures from an ideal transformer. It should be
emphasized once more that for quantitative analysis of core dy-
namics, it is necessary to make use of the more accurate flux-
switching models described in Chap. 12.

1-3 Inductive Load; A¢ Storage

Let us next consider the case where the transmitter core in
Fig. 1-2 is loaded only by a linear inductance., The emf Ldi,/dt
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induced in the load must be exactly balanced by the emf across the
core, since we are assuming zero loop resistance. Hence

N dbp L dip 1-17
Toa (=17

or, by integration
NpApp = LAi, (1-18)

Recalling that self-inductance is defined as the change in flux
linkage per unit change of current in the same element, then LA,
is simply the change in flux linkage for a change Ai, in loop cur-
rent. This quantity represents all the flux linkage of the loop out-
side the core, including the contribution from wire inductance as
well as any lumped inductance in the loop.

Assume now that the step i;(t) current pulse causes the core
to switch, given the initial conditions ¢ = -¢, and i, = 0. As
flux switches, the load current i, increases according to i, =
(Np/L)A¢p. But, in accordance with Eq. (1-11), as i, increases,
the rate of flux switching necessarily decreases. By substituting
Eq. (1-11) into Eq. (1-17) we obtain

di N..25 Nop

4 T . T .
—+ ip = [—— YN i, - F,) 1-19
dt <L>g <L> d'd 0 ( )

Since i; is constant during switching, Eq. (1-19) is simply a first-
order linear differential equation whose solution is

N,i,-F —(N.2%
g - 44770 (1 _Nr ,o/L)t) (1-20)
Np

Thus, any changes in output current i, are associated with an L/R
time constant, where R = NTZE is the equivalent resistance of the
core as viewed across the N, turns.

Equation (1-20) is valid only so long as the core flux does not
reach saturation. If ¢, reaches the value +¢,, then ¢ = 0 and we
see from Eq. (1-18) that i, remains constant at the value N, (2¢)/L.
Otherwise, we see from Eq. (1-20) that i; approaches the asymptotic
value

N,i,-F
imer = 440 (1-21)
T
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and the net current linkage of the core is then equal to the thresh-
old value F.

For a given amplitude of i, there exists a unique value of in-
ductance L, for which A¢, approaches 2¢_ exactly in conjunction
with i, approaching the maximum value given by Eq. (1-21). For
this value of inductance, in other words, the net mmf N ;i a~ Npip
drops toward threshold just as the core approaches positive
saturation. From Egs. (1-18) and (1-21) we have

Np26)  Nyig - Fy

(1-22)
L, Ny
or
N.2(2¢)
L (1-23)
Ngig - Fy

For L <L, the loop current reaches it maximum value before the
core saturates, and we see from Egs. (1-18), (1-21), and (1-23)
that

Agpfinal _ LL 2¢) (1-24)

c

For L >L,, the core saturates before the loop current reaches
i™?*, and the final value of i, is

. L
i"fmal — fcifmax (1_25)

For L > L, the time - that it takes for the core to saturate can
be found by solving Eq. (1-20) for the time required for the current
to build up to 7,/"?!, We find

e‘(NTZ,B/L)T - 1- c (1-26)

or

L 1 )
T o= o In
Np“p 1 - L,/

For L = ~, (that is, for an open secondary), the simple result
7 =24 /pWNyi;~Fy can be derived from Eqgs. (1-26) and (1-23).
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A family of curves of load current as a function of time, for a
rectangular drive pulse of duration T,, is shown in Fig. 1-5. Note
that the load current is in a direction tending to switch the core
back toward -¢.. If iy > Fy/N, at ¢t = T, then for ¢t > Ty, i, decays
towards a final value of F;/N, with the same time constant L/NTZE
found in Eq. (1-20). As a result, the core switches back by the
amount (L/Ngp) lip - (FO/NT)], and the net flux change is LFO/NTZ, in
agreement with Eq. (1-18).

Ly

L:L, |
[ |
Increasing : I

__-finaI_Lc . Mmax
lg =

L

L=0—> Fo
L/e:m
7 t
01 L0 7(L-0)- % I
[ Nrp |
iq |
_O ———————————— _T >t

1

Fig. 1-5. Loop current i, as a function of time in the circuit of Fig. 1-2 with an
inductive load.

It is very useful to consider the notion of a flux-linkage change
Li,, or flux change A¢ = Li/N,, asbeing “stored”’ in the inductance.
This is based on the observation that the inductor can actually
drive the core, returning some flux linkage to it (the inductance
being the transmitter in this case), provided the loop current ex-
ceeds the core threshold F,/N, after the drive i, terminates.
However, in any actual circuit where loop resistance is not zero,
A¢ storage in inductance can only be temporary, since any flux
linkage not returned to the transmitter core is eventually dis-
sipated in the resistance.

1-4 Capacitive Load; A¢ Transformation

The effects of capacitive loading are qualitatively different
from those for inductive loading, although one might correctly
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guess that there is an RC time constant associated with the load
current, where R = NTZE is again the switching resistance of the
core, as viewed from the capacitor.

Consider the circuit of Fig. 1-2 with only the capacitor at-
tached. Assuming that the capacitor is not charged initially, the
voltage across the core winding must also be zero initially, im-
plying a starting value of load current iy = (N,i, - F4)/N,. As the
capacitor charges and its voltage increases, the load current must
decrease to permit the core to switch correspondingly faster. The
equation of voltage buildup can be obtained as follows. Substitution
of the relations i, = Cdv,/dt and vy = eq = Npdq into Eq. (1-11)
results in

dve Ve ENT(Ndid—FO)
—_—t — = — (1-27)
dt RC RC

with the solution
ve = PNp(Nyiy - F)(1 - e"RO) (1-28)

where R = NTZE . A family of curves of v, versus ¢, with C as a
parameter, is shown in Fig. 1-6. Note that all curves tend to build
to the same asymptotic value of voltage, v, = PN, (N,i, - Fy).
This is not surprising, for if the core did not saturate, equi-
librium would finally be reached with zero load current and a
constant output voltage v, = N, ésT whose value would depend only
on the drive strength. Thus, with a capacitive load, a switching
voltage Nop q’ST can be sustained without any load current i,, whereas
with an R or L load, a nonzero value of ¢ is not possible unless
a loop current i, is flowing (and changing in the latter case).

Area under each
curve =N;(2¢,)

Fig. 1-6. Output voltage v as a function of
time in the circuit of Fig. 1-2 with a capaci-
tive load.
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Integrating Eq. (1-28) in order to find the flux change, we ob-
tain

t .
NpAdp = f vedt = vRC | - = e VRO (1-29)
0 RC

From this equation we see that flux switched in the core increases
monotonically with time until the core saturates. Saturation oc-
curs at a time found by substituting Aé, = 2¢, into Eq. (1-29).
When the core saturates at +¢,, the switching resistance of the
core drops to zero, and the capacitor discharges rapidly, the
discharge current driving the core still further into positive
saturation. There is, of course, an abrupt drop in voltage when
saturation is reached, as indicated in the family of curves of
Fig. 1-6. (In actual practice, there would be a damped oscilla-
tion after saturation is reached because of the saturation induc-
tance of the core and the parasitic inductance and resistance of
the coupling loop.) The areas under the curves in Fig, 1-6 are
clearly identical, since each curve represents the same magnitude
of flux switching, namely, 2¢ .

Here we must note a very important difference between ca-
pacitive and inductive loading. An inductive load tends to maintain
the load current in the same direction after termination of drive,
whereas the capacitive discharge current is opposite to that of the
initial charging current., Thus, whereas the inductor discharge
current tends to switch the core back toward its original state,
the capacitive discharge current tends to keep the core switching
in the same direction as originally (see the examples in Fig. 12~30).

Let us finally consider the case of terminating the drive cur-
rent before saturation is reached, at time ¢ in Fig. 1-7. From
the arguments above, the capacitor discharge current will keep the
core switching in the same direction for some time. The pertinent
equation in this case is

dv v oN.F
_C + _E = - T (1_30)
dt RC RC
with the solution
vg = vg (e RC — GNLF 1 - e RO (1-31)

where again R = NTZE, and v, (¢;) is the value of voltage reached
when the drive is terminated. A typical response curve is shown
in Fig. 1-7(a).
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Fig. 1-7. Changing the ratio of flux switched during the drive pulse to that switched
after the drive pulse from>11in (a) to <1lin (b), by varying the magnitude of i ;.

An important observation is that the magnitude of flux switched
subsequent to drive termination can actually be larger than that
switched by the drive itself. We can see this from the following
argument, With a stronger drive, the voltage builds towards a
higher asymptotic value, and therefore the capacitor can be
charged to the same value in shorter time. Thus, the area under
the buildup portion of the curve can, in principle, be made vanish-
ingly small, although the curve during discharge is totally un-
affected by the initial drive strength. For example, compare the
curves of Fig. 1-7(a) and (b). In the limit of very strong drive, we
have the possibility of charging the capacitor to any specified
voltage with a negligible amount of core flux being switched.

A capacitor thus offers an interesting capability of A¢ trans-
Jormation, the capacitor being able to deliver to the core more,
or less, flux linkage than the core delivers to the capacitor dur-
ing the charging phase. There is nothing particularly mysterious
about this, since there are no basic constraints on the inte-
gral of capacitor voltage, even though the voltage itself is unique
for any particular charge state. Similarly, in the case of an
inductor, the current is fixed for any given flux-linkage state,
but there is no basic constraint on the integral of current, i.e.,
on charge.

1-5 Summary

Using a very simple core model, we have treated separately
the cases of core switching with resistive, inductive, and capacitive
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loads. With a resistive load, the loop current is simply propor-
tional to ¢, and flows, therefore, only so long as flux is switch-
ing (the flux switching is dissipative). With an inductive load,
the loop current is directly proportional to the magnitude of flux
change A¢ and this we interpret simply as flux-linkage storage,
in the sense that the same magnitude of flux linkage in the core is,
so to speak, regenerated in the linear inductance. We are able to
define an L/R time constant, where R is the equivalent resistance
of the switching core as viewed from the coupling loop winding. With
a capacitive load, we find an RC time constant, where R is the same
as in the inductive case, and steady state is reached when the
voltage generated in the core winding exactly equals that across
the capacitor, and no loop current flows. In this case, the magni-
tude of equivalent flux linkage stored in the capacitor during
charge can be less than, equal to, or greater than the flux linkage
subsequently delivered from the capacitor during discharge. This
is an important property interpreted as A¢ transformation.

This simplified treatment is of little value in quantitative pre-
diction, and is primarily for developing insight into manipulation
of flux change as a signal parameter. It should be intuitively clear
that the ability to dissipate, store, and transform this parameter
is important in circuit synthesis. Quantitative analysis of core
switching with various sorts of loads, using a better engineering
model for the core, is treated in Sec. 12-6.
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In the previous chapter we saw that loading a core with a re-
sistance, an inductance, or a capacitance results in A¢ dissipation,
storage, or transformation, respectively. Now let us consider
loading a core with another core, in which case we have the possi-
bility of A¢ transfer, i.e., transmission of flux from a transmitter
core to a receiver core.

2-1 Flux Transfer Ratio G

The flux transfer takes place through an electrical coupling
loop which is assumed for the moment to be purely resistive
(Fig. 2-1(a)). For such a coupled pair of cores, we are generally
concerned with the A¢ transfer ratio

Abp
G(Adpy) = o (2-1)
T

17
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where A¢p and A¢, are the flux changes in the receiver and
transmitter, respectively. In contrast with conventional electronic
circuits, the appropriate signal parameter here is A¢, rather than
voltage or current, and of special concern are the conditions for
achieving a transfer ratio G > 1.

. Re
i Ng : Ny Loy
o WA
2 _ 2 _
5 O Ng 5 er x O Ng 7
(b)
Ry
- AN —
N% 7 NG5 ’

er Er

+ 2 _ Ngig-For 2 _Fop AS
N — Ngp 5~
L _ TP( NT ) RP NR + 1

(c)

Fig. 2-1. Flux transfer from Transmitter Core 7" to Receiver
Core R.

Assume that each of the coupled cores starts in the -¢ flux
state and switches towards the +¢_ state, as governed by the flux~
switching model of Eq. (1-8). A transmitter drive pulse i; of con-
stant magnitude is also assumed. Under these assumptions, the
rates of change of flux ¢, and ¢, are independent of time (as long
as neither core reaches positive saturation), and the transfer ratio
G is simply equal to the ratio of switching rates, or
A

* _%r 2-2)

G- %o
Abp  dp
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In this chapter we are primarily concerned with the general effects
on the transfer ratio of turns ratio, loop impedance, receiver
threshold, and receiver loading resistance.

2-2 Requirement on Turns Ratio for G > 1

In the circuit of Fig. 2-1(a), the coupling loop is assumed to
have a resistance R,, but negligible inductance. Equating the net
emf around the loop to the voltage drop in R,;, we have

Npdqp = Npdp = Ryiy (2-3)

Integrating each term with respect to time, and rearranging, we
obtain

NpAdq = NgAdp + Ryqy (2-4)

where ¢, = fot igdt. This equation is similar to Eq. (1-15) for re-
sistive loading except that of the transmitted flux linkage here,
only part, namely, R,q,, is dissipated as a loss in Ry, and the re-
mainder Np A¢p reaches the receiver core.

Based on Egs. (2-1) and (2-4), we may write

N R,q Ryq
G- T o (@-5)
NR

Ng Adqp Np Ay

where n is the turns ratio N;/N,. Thus, despite the inevitable loss
of flux linkage during transfer, transfer gain G > 1 is nevertheless
possible if » > 1 by an amount sufficient to overcome the effect of
the subtractive term quF/NT A¢p. Note that this term is just the
ratio of dissipated flux linkage to transmitted flux linkage.

2-3 Limit on Loop Resistance

Let us now assume that » > 1 and consider how large R, can be
while maintaining G > 1. Based on our simple model, the circuit of
Fig. 2-1(a) may be represented by the equivalent circuit shown in
Fig. 2-1(b). The cores are assumed identical, with the same p and
the same threshold value F, = F, = Fp, though the latter symbols
are kept distinct for the purpose of discussing transmitter and re-
ceiver thresholds separately.
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Assuming that the drive current i; is large enough to make
Npip 2 Fyp, the diodes in the core model are nonconducting and
may be neglected. Then with current generators transformed to
equivalent voltage generators, and all quantities referred to the
transformer secondary, we obtain the equivalent circuit of Fig.
2-1(c) where e, = Np ¢ and ep = Np . Under the specified condi-
tion of G >1, it is clear that the highest upper limit on loop
resistance is obtained when the effective receiver threshold is
equal to zero. This condition can be approached with strong driving
so that N,i, > F,. Alternately, the receiver threshold can be ef-
fectively reduced by applying a bias mmf N,i, - F,, as shown ap-
plied to both cores in Fig. 2-2, The term bias is used in the usual
electrical engineering sense of determining an operating point, the
bias signal by itself nominally not causing any flux switching. It
may be either a dc bias or a constant-amplitude pulse synchronized
with the current i ;.

With the transmitter and receiver
each biased to threshold, that is,

with N, i, = F,, we simply have

bp = PNgi, (2-6)

Nbib:Fo a'nd

Fig. 2-2. Use of a bias mmf to over- d)T = E(Ndid - Np ig) (2-7)
come the switching thresholds of trans-
mitter and receiver.

Equations (2-6) and (2-3) may be
solved for G in the form
b Ng%p
G- Lton_F (2-8)
P Ry + Ng©p

This result is also clear from the equivalent circuit of Fig. 2-1(c),
where, with receiver threshold cancelled out, the emf ratio
ep/er = Npdp/Npdp is readily seen tobe equal to NR25/(R2 + NR25).

The above results may be interpreted as follows: of the total
flux linkage N, A¢, injected into the loop, a fraction G/n reaches
the receiver core, and the remaining portion 1 - G/n is lost by
dissipation in R;. The exact division of transmitted flux linkage is
generally very dependent on drive magnitude N,i,, and is inde-
pendent of drive here only because of our assuming idealized
core properties and the biasing of the receiver core exactly to
threshold.
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Based on the requirement that G > 1, we obtain directly from
Eq. (2-8) an upper limit on R,, namely

Ry < (n - DNR% (2-9)
from which we see that there is no limit on the ratio RK/NRzﬁ so

long as n can be made arbitrarily large. But by rewriting Eq. (2-9)
in terms of transmitter resistance NTZE , we find

Ry < (" - 1)NT25 (2-10)

n

and thus see that the upper limit on RZ/NTZ;T is 1/4, which is ob-
tained with a two-to-one turns ratio(n = 2), inwhich case Nsz' = Ry.
In other words, for G > 1 the loop resistance can never be more than
1/4 the transmitter resistance.

There are many other important factors relevant to choice of
coupling~loop turns ratio. The simple result here is most likely
to be significant where there is practical difficulty in constructing
a low-resistance coupling loop. In that case, it may be helpful to
specify N,/Np =2 in order to allow as large a value of R, as pos-
sible relative to N,%p.

2-4 Effect on G of Transmitter and
Receiver Thresholds

It is not always possible, or even desirable, to eliminate the
core thresholds by bias, so it is necessary to understand the ef-
fects of threshold on the transfer ratio. Let us consider the case
of constant drive and no biasing at all. From the equivalent cir-
cuit of Fig, 2~1(c), we can write

21N 2

N2 N iy - Fop)/Ngl + Np25 (Fyp/Np)

iy - 0 (2-11)
Nsz + Ry + NRZE

and

, Nyig-F
ep = Npdyp = NTZ,?(_"_"’_ET_"- i¢> (2-12)

For substitution into Eq. (2~5), we obtain the ratio
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t
R f ipdt .
Ryqy tJ, 't Ryiy
- - — 2-13)

N A¢ t Np¢
T 29T ; TPT
NT-/o- Ppdt

Substitution of this ratio, as evaluated from Eqgs. (2-11) and (2-12),
into Eq. (2-5) yields

N2 WNgig - Fop) - (Ry + Ny )Fop
G-n - (2-14)
n(Ry + Ng25 ) Ngiy ~ Fop) ~ Np2pFop

Equation (2-14) is valid only if N,i; is large enough that
Npip 2 Fyp. The limiting condition G = 0, corresponding to Ny i, =
Fop»s is obtained when N;i; has the critical value

No%p

R
(Nyi), = Fyp + n<1 b ! >FOR (2-15)
For any lower value of drive, G = 0 also.

The form of G as a function of N,i, has been sketched in
Fig. 2-3. Note that for N,i, » (N,i; . G approaches asymptotically
the value given by Eq. (2-8), since the threshold terms become
relatively insignificant. Also note that if we view F, and F,, as
the effective thresholds, then for the previous case of receiver
biasing, that is, Fy, = 0, Eq. (2-14) again reduces to Eq, (2-8). In
this case, the transmitter threshold has no effect on the transfer
ratio G, although the individual rates of switching are lower than
they would be if F, were zeroalso. In fact, from Eq. (2-14) we see
that the effect of nonzero F, on G may always be overcome simply
by increasing N;i, by the amount F,, which is equivalent to bias-
ing the transmitter. The effect of nonzero F,, in reducing G,

2
__________ NRP

n ——em
/ Re+Ng 7

(Ngig)e N?l—d

Fig. 2-3. Sketch of flux-transfer ratio as a
function of drive strength, from Eq. (2-14).
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however, cannot be completely overcome with any finite value of
N i
atae

2-5 Effect on G of Coupling-Loop Inductance

The control of coupling-loop inductance L, is often as important
as the control of the resistance R;. When L, is taken into account,
the values of iy and ¢ are no longer constant in time. Omitting
detailed analysis here, it can be reasoned that storage of the flux
linkage Lyi, in L, is at least a temporary flux loss en route to the
receiver. Furthermore, if the receiver stops switching at time Tg
(whether due to saturation or to lack of sufficient mmf), then a flux
linkage equal to Lyi,(Tg) is left storedin Ly, and this is transformed
into a permanent flux-linkage loss dissipated in R, as i, decays
exponentially.

2-6 Effect on G of Receiver Loading

For the circuit of Fig. 2-2, we say that G > 1 can be obtained
for any value of R, by making the turns ratio n sufficiently large.
However, if the receiver is also loaded, it may not be possible to
obtain G > 1 for any value of n, Consider, for example, the case
in Fig. 2-4(a), where the secondary winding of the receiver con-
tains the same number of turns N, as that of the transmitter. For

2
(b) €y N;ﬁ h

+ Nyl 2
i R Np l
2 NT

Fig. 2-4. Loading the receiver with resistance Ry through a winding
of N turns.
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the special case of R, = Ry, this circuit may be viewed as deriving
from an iterative core circuit in which the next core in the chain
beyond Core R is in some manner prevented from switching.

For simplicity of analysis, and in order to minimize the effect
of receiver loading, both cores are again assumed biased to thresh-
old. The equivalent circuit of Fig. 2-1(c) may then be expanded to
include the load by connecting R, as shown in Fig. 2-4(b). Solving
for the ratio ep/e, from this circuit and noting that

(isR eR/NR
bp  eq/Ng

we obtain

n

n®(Rp/R;) + (Ry/Np2p) + 1

G =

(2-16)

For the case of equal loop resistances R; = R,, Eq. (2-16) re-
duces to

n
GnRp - — - @2-17)
n® + (Rp/Ng“p) + 1

With respect to Ry, the largest value of G,

n

G(n) =

(2-18)

|

is obtained as Ry/Np%p - 0, and maximization of Eq. (2-18) with re-
spect to the turns ratio n = N;/N, yields

G . -

max

(2-19)

DO | =

for n =1. Thus, with R; = Ry it is not only impossible to achieve
G > 1 with a large turns ratio, but rather » = 1 results in the high-
est possible value of G. Furthermore, with R 1, = Ry, we obtain the
highest gain not by making R; large, but rather for the heaviest
possible receiver loading, i.e., as R; - 0, The latter result
merely means that G is more affected by the coupling~loop resis-
tance than by the loading resistance.

Since G > 1 cannot be obtained for R; = Ry, let us derive the
minimum value of R, /R, for which the condition G =1 can be



e ARIo T

ATimy e e A o~ = AL
COUPLED PAIR OF CORES; Ap TRANSFER

\F]
(]

achieved. To emphasize the Ry/R; dependence, let us assume
that R, is already small compared with NRZE so that Eq. (2-16)
becomes

n

G =

YN 2-2

n®(Ry/R;) + 1 (2-20)
Hence, for G > 1

R, N n2

? a n — 1
For G = 1, the minimum value

Ry,

=14 -

R, (2-21)

is obtained for turns ration = 2. Thus, with all conditions idealized,
it is necessary to have loading resistance at least four times the
loop resistance to obtain G > 1. This result has considerable sig-
nificance in connection with the iterative core circuits that we
shall treat, beginning in the next chapter.

2-7 Flux Pumping

The use of a turns ratio greater than unity could be viewed as
the gain mechanism for achieving G > 1 in the manner shown in the
previous sections., We will later describe other gain mechanisms
by which it is possible to achieve G > 1 even in cases where
NT/NR < 1. To illustrate this possibility, let us show here that
by the use of multiple transfers we can ‘‘pump’’ the receiver to a
fully switched condition even when the transfer ratio is less than
unity on any single transfer.

In the circuit of Fig. 2-4(a), suppose thatboth cores are initially
in negative remanence and that we apply a symmetrical pattern of
positive and negative currents that drive the transmitter repeatedly
between -¢,  and +¢ . With G <1, the receiver will then be driven
repeatedly between -¢_ and some flux level lower than +¢ . The
resulting history is sketched in Fig. 2-5(a). With a suitable asym-
metry, however, so that the receiver switches less flux in the
negative-going direction, the operating level in the receiver ap-
proaches closer and closer to positive saturation, as suggested in
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Fig. 2~5(b). In other words, we can ultimately achieve a net gain
(G 2D relative to the A¢, transmitted during a single transfer.
This is true even if the receiver is heavily loaded with a value of
R, <R

L < e

(a)

(b)

Fig. 2-5. Ilustrating symmetrical switching cycles in (a), and
showing receiver pumping effect with asymmetrical switching
cycles in (b).

As shown by Eq. (2-14), G is a function of drive strength as
long as the receiver threshold is nonzero. Hence, suitable asym-
metry could be achieved merely by using different drive strengths
in the two directions of switching, as in Fig. 2-6(a). A different
method is shown in Fig. 2-6(b), where a dc receiver bias aids the
loop current in the positive switching direction, but opposes it in
the negative switching direction.

R, Ry Re
, b , by ‘ ‘ iy
L g de

1, Iy

(a) (b) ’ (c)

Fig. 2-6. Two different ways to apply dc bias to achieve asymmetrical switching in (a, b);
pumping a single transmitter to fully switch a number of identical receiver cores in (c).

If a number of receiver cores are linked by the loop, as in
Fig. 2-6(c), all could be pumped to a fully switched level with a
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sufficient number of cycles. By doubling the number of pumping
cycles, i.e., by doubling the time, we can double the net gain. This
becomes a ‘“gain-bandwidth’’ problem for digitaltransfer (Chap. 3),
since the maximum bit rate is inversely proportional to transfer
time. Even within a single cycle there is a gain-bandwidth rela-
tion. Net gain per cycle could be increased if the amount of flux
switched back during the negative half cycle were reduced. In the
limit, if loop current magnitude during the negative half cycle were
below the effective receiver threshold, no receiver flux would
switch back at all. In this case, the loop resistance would dissipate
the entire flux linkage N,(-2¢) injected by the transmitter, and
the time for this operation would be correspondingly increased.
We will see that this is an important mode of circuit operation,
i.e., a transmitter slowly dissipating a flux-linkage change in loop
resistance.

2-8 Direct-Current Drive; Implicit Phasing

A dc mmf less than threshold can serve as a bias source in the
conventional sense of setting an operating point. A dc mmf greater
than threshold can cause significant switching, however, and there-
fore act as a driver. For example, in Fig. 2-7 a negative dc mmf
normally holds the first core in satu-
ration. Upon application of a positive N
pulse large enough to overcome thedc Ly
mmf plus the core threshold, the first
core can be switched to positive satu-
ration, and flux is transmitted to the i
second core. Upon termination of the
pulse, the dc mmf drives the first core — 1
back to its original condition. If thedc
drive is less than the net positive Fig. 2-7. Two-phase operation with
drive, then with repeated application a single pulse source and a dc mmf

. . large enough to switch the core back
of the drive pulse, the second core to its original state.
can be pumped as shownin Fig. 2-5(b).
With a dc mmf just slightly above threshold, the first core
switches back slowly, and essentially all flux linkage is dissipated
in loop resistance during the negative half cycle.

We see that it is possible to have more phases of circuit
operation than there are explicit pulse drivers. We can think of
the circuit of Fig. 2-7 as having a two-phase nature though only
one clock-pulse is needed, the second phase being achieved

Ry
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implicitly, The use of dc current for this purpose is not only
practical but often results in considerably simplified driver
systems.

There are two points to note about dc current sources in this
type of application. First, there cannot be any net energy exchange
between the dc current source and any core linked by this source.
Starting at time ¢ = 0, the net energy transferred from the current
source I;  to the core of Fig., 2-7 can be expressed simply as

t z

d

W= f Iy edt = I, f N®a - 1,NG, - 6) - 1, NAG
=0 t=0 di

where e is the induced emf in the winding, and ¢, and ¢, are the
final and initial values of the flux, respectively. Thus, there is as
much energy delivered from the current source duringone polarity
of flux change as is deliveredback tothe source during the opposite
polarity of flux change. After each complete cycle of switching,
<sz = ¢;, or A¢ = 0, and there isnonet exchange of energy, no matter
how complex the circuitry attached to the core.
A current source is often syn-
+y thesized with a large voltage source
Core V and large series resitance R
R L circuit ge series re €
[ (where V/R is the desired current),
= V being large compared to the larg-
Fig. 2-8. Use of a series inductance to  est expected voltage drop in the driv-
stabilize a dc current source of magnitude en circuitry., However, the power
lac = V/R. lost in the series resistance makes
this type of current source very inefficient. A large improvement
can generally be achieved by incorporating an inductance in series
with the load. Thus, for a relatively large L in Fig 2-8, a flux-
linkage change XN ;A¢,; across the core circuit can be absorbed, or
balanced, by a current change on the order of Al = IN;A¢./L,
which can be made arbitrarily small with a large inductance. This
is similar to the result in Eq. (1~18) where a change in flux linkage
results in a certain change in loop currentthat subsequently decays
with a time constant L/R, where R is the circuit resitance. The
use of a series inductance often simplifies the dc-source design
and permits the use of much smaller values of V and R than would
otherwise be possible. This technique is particularly useful for
magnetic~-core circuits that are cyclically operated because of the
bipolar nature of the load voltages. With unipolar loads, it would
be necessary to delay a certain number of L/R time constants
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between switching operations in order to prevent cumulative
current changes.

29 Summary

In this chapter we have treated specifically the case of a
second core acting as a load on a first core. Primary interest
is in the flux transfer ratio G, the ratio of flux change in the
recelving core to the flux change in the transmitting core, and
more particularly, in achieving transfer ratios greater than
unity, i.e., actual signal gain. An important method for achieving
G > 1 is to use a turns ratio greater than unity in the coupling loop
between transmitter and receiver. We make some basic observa-
tions on the effect on the gain of various circuit and device param-
eters such as loop resistance, loading resistance, and the static
thresholds of the transmitter and receiver elements. In particu-
lar, maximum limits on loop resistance and load resistance are
derived for the condition G > 1. Another gain mechanism, namely,
flux pumping, is also considered, although this is mainly of
academic interest. Finally, we consider the practically important
case of core switching with a dc current, which, upon termination
of a switching pulse, automatically restores the core to its
original state.



3

DIGITAL TRANSFER IN
ITERATIVE CORE CIRCUITS

3-1 Binary Shift Register . . . . . . . . ... .. ... 31
3-2 Digital Transfer . . . . . . . . ottt e e e e e e e e 32
A¢ Gain Requirements . . . . . . .. ... L L e 33
Drive-Current TOICTANCES . . . o . v v v e v e e e e e et e e e e e e 34
3-3 Gainand Loss Mechanisms . . . . . . ... ... . i 35
3-4 Forward Decoupling in a MagneticChain . . .......................... 37
3-5 Backward Isolation; Core-Diode Transfer Schemes . . . . .. ... ... ... ... ..... 38
3-6 Transfer Schemes Using Capacitance . . .. . .. ... ... .. .. n ... 41
Core-Capacitor Scheme . . . . . . ... .. i e 41
Core-Diode-Capacitor Scheme . . . . . ... ... ... ... .. ..., 43
3-7 SUMIMALY . . . ot o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 44

We wish now to consider some of the basic requirements for
synthesizing digital transfer systems. In particular, we will show
how cores and diodes, or alternately cores and capacitors, can be
used in combination to achieve circuits for digital transfer. Since
core-diode circuits are discussed in detail elsewhere, for example,
by Meyerhoff (1960), their treatment in this book is limited to the
material of this section. Discussion of core-capacitor schemes is
also limited to this section, since such circuits are mainly of
academic interest and in any case are outside the primary interest
of this book. It is considered worthwhile tointroduce these schemes
before starting the treatment of core-wire schemes in order to
develop insight into A¢ gain and loss mechanisms, and into methods
for achieving isolation between varlous parts of a magnetic core
circuit. Diodes are obvious devices for achieving isolation, and
it is therefore easy to illustrate the principles of digital transfer
with core-diode circuits. In Chap. 4 we will use certain of these

30
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core-diode schemes as an introduction to the general synthesis of
core-wire schemes.

3-1 Binary Shift Register

A general logic network is a highly interconnected network of
digital circuits through which binary variables can be stably trans-
mitted. If we follow any one path of the network, we find many other
paths merging with it (fan-in), and other paths branching off from
it (fan-out). To simplify the study of digitaltransmission, it is con-
venient to concentrate on just the requirements for stable storage
and transfer of binary variables along a simple path with no side
branches, i.e., a common binary shift register. If a particular
circuit scheme can be used to build a shift register, then the basic
scheme can almost invariably be expanded for generallogic realiza-
tion. Thus, we can profitably evaluate and compare schemes on
the basis of shift register synthesis alone, without becoming much
involved in general logic techniques.

A binary shift register is basically a chainof storage elements,
such as flip-flops or magnetic cores, so interconnected that the
stored binary pattern can be shifted along the chain. The chain
may be arbitrarily long and may be closedon itself so that a binary
pattern can be continually circulated in the closed loop. We gen-
erally speak of an N-bit shift register, where N is the capacity of
the register, i.e., the number of bits in the shifting pattern.

There are many ways to structure a register. Suppose, for
example, that we have an N-bit binary patternheld in Cells 1 through
N of a closed ring of N + 1 storage cells, such as in Fig. 3-1. Upon
application of clock pulse C,, the bit
stored in the first cell is advanced
into Cell N + 1,formerly empty. Upon
application of clock pulse C,, the bit
stored in Cell 2 is advanced into Cell
1, and so on. The shifting occurs in
caterpillar fashion in this case, and
shifting an N-bit pattern requires
N + 1 clock sources.

A more common method of struc-
turing is to arrange for shifting all
data simultaneously. This mode re-
quir es more stor age cells but only a Fig. 3-1. N-bit register with (V + 1) cores
small, fixed number of clockdrivers, and (V + 1) clock sources.
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independent of the number of bits N. A common arrangement uses
two storage cells per bit and two clock pulses, as shown sche-
matically in Fig. 3-2, where the square boxes represent storage
cells and the arrowed lines represent interconnecting circuitry.
It is common to refer to the alternate cells as O (for odd) and E
(for even). To shift an N-bit pattern that is stored in the O-rank,
we activate the coupling circuitry between each O-cell and its
right-hand E neighbor, and thereby simultaneously shift the pattern
to the E-rank., This is referred to as an O - E shift, Next we ac-
tivate an E - O shift, and the pattern is transferred back to the
O -rank, but shifted one place to the right as required. The shifting
rvate, or bit vate, depends onthe time it takes to complete this basic
two-phase shift cycle.

E, £ j-1 £ i E j+1 Ey
Fig. 3-2. N-bit register with 2V cores and two clock sources.

An important aspect of binary transfer is the isolation required
between adjacent storage cells. In the transfer from Cell O ;o E;,
during an O - E transfer, the switching of E; must be prevented
from affecting the following O, ,, cell, i.e., forward isolation is re-
quired, and the switching or readout from 0; must be prevented
from acting on E 10 which is acting as a receiver from Cell Oj—l’
i.e., back isolation is also necessary. During an E - O transfer,
the roles must be reversed, the inactivated paths becoming ac-
tivated, and vice versa.

Although there are other possible shifting schemes, we con-
centrate primarily on this simultaneous shifting technique, which
is the most common. This results in no particular loss of gen-
erality.

3-2 Digital Transfer

In the previous section, we represented bistable storage cells
symbolically without specifying any particular device technology.
Pursuing this symbolic approach, we can derive some important
requirements for digital transfer between cells.
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A¢p Gain Requivements., The register circuit of Fig. 3-2 is re-
drawn along a single row in Fig. 3-3(a), with cells renumbered in
sequence. Let us follow just one of the bits of the pattern as it
moves along the chain. Suppose that the particular bit of interest
is initially stored in Cell j - 1. At the next shift pulse, there is a
transfer from Cell j - 1 to Cell j with A¢ transfer ratio

AQSJ.

Ad, 4
where A¢; represents the magnitude of flux switched in Cell j, and
Agp i1 is the magnitude of flux simultaneously switchedin Cell j - 1.
We will assume here that the value of A¢p when the cell is acting as
a transmitter is the same as the value of A¢ switched when the
same cell was previously a receiver (though there are important
exceptions, as we shall see in later chapters).

G (3-1)

j-! i j+1 j*2

.
| L
| Lo
BN
Dy Dy By Dby B Doy Dy Doy DyhgyDg  Doj-y
(b) (c)

Fig. 3-3. Flux-gain requirements for multistable flux transfer.

|
|
|
|

If the transfer ratio were exactly unity in each transfer, inde-
pendent of the magnitude of A¢, then we would have a very useful
‘‘analog delay line’’; any level of A¢ injected at one end of the chain
would emerge unchanged at the far end at a later time. However,
the transfer ratio generally depends on many different circuit pa-
rameters, and it is impossible to keep these parameters sufficiently
controlled to actually achieve unity transfer ratio over a range of
A¢ levels. Instead, let us consider different ranges of signal level,
and ask what form of gain characteristic G(A¢) is required to en-
sure that an initial signal level within any one range should be main-
tained within that range regardless of the length of the transmis-
sion chain, A form of G(A¢) characteristic that would satisfy this
requirement is indicated in Fig. 3-3(b). In some regions G > 1, in
other regions G < 1. At signal levels marked A, through A¢,, the
gain is exactly unity, but only levels A¢,, A¢s, and A¢; represent
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stable levels. By this we mean the following: if initially A¢y < A¢ <
Ad,, then G <1, or if initially A¢, < A¢ < A¢g, then G > 1, so that
in either case the level will monotonically approach A¢, during
subsequent transfers. If the initial signal level is exactly equal to
A¢,, then any noise in the system will shift the signal level away
from level A¢, toward either level A¢; or Ag,. Thus the levels Ad,
and A¢, are unstable points of unity transfer ratio.

The curve of Fig. 3-3(b) can be translated into the curve
of Fig. 3-3(c), known as a A¢-transfer curve, where the 45° line
is the locus of the stable and unstable unity-gain points., In the
case of binary transmission, the transfer curve has the form
shown in Fig. 3-4(a). We define the lower stable signal level as
the binary zero level, labeled A¢;, and the upper level as the bi-
nary one level, labeled A¢;. The intermediate, unstable unity-gain
point is labeled A¢;. This type of transfer curve applies to what is
generally referred to as a unipolar representation (based on a high
magnitude of signal for a one and a low magnitude of signal for a
zero). An alternate data representation is shown in Fig. 3-4(b)
where the two states have signal levels of equal magnitude but of
opposite polarity. This is referred to as a bipolar data represen-
tation (which is employed in the circuits discussed in Chap. 9).

Fig. 3-4. Flux-gain requirements for stable binary transmission: (a) unipolar mode;
and (b) bipolar mode.

Dvive-Curvent Tolevances. For achieving wide operatingtoler-
ances, the objective of design is to maintain the transfer curve
within proper bounds over as wide a range of drive currents as
possible. Here we wish only to point out the general nature of the
effect of current variations on the transfer curve.

Consider a register of the two-phase type shown in Fig. 3-2,
with drive currents having magnitudes I, and I_,. Assume that
one of the currents, say I E-0° is held at a nominal operating value,
and let us consider the effect of variations in the magnitude of the
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other current lo-g- As ly.p in- Do max
creases, the gain ratio G normally
increases for all values of A¢ i1 be- |
cause of lower percentage losses in |
coupling loops, as explained in Sec. |
2-4 for a coupled pair of cores. | i As.
Therefore, the entire transfer curve b ngM" N
shifts upward as drive current in-

creases. But there is a maximum Fig. 3-5. Limits on drive pulse amplitude
permitted value of I,., which cor- for bistable transfer.

responds to the lower portion of the

transfer curve becoming tangent to the 45° line, as indicated
in Fig. 3-5. Any further increase in current results in G > 1
for all values of A¢ < Ag, and the loss of a stable lower level.
Similarly, there is a minimum permitted value of I, below
which there is no stable upper level. If we plot the permitted
range in I, for each value of I;_,;, we obtain a two-dimensional
region, or vange map, of allowable drive values (as illustrated
later).

3-3 Gain and Loss Mechanisms

A gain or loss mechanism tends to raise or lower the transfer
curve relative to the 45° line, as shown in Fig. 3-5. Since the
overall effect of all the gain and loss mechanisms operating to-
gether must be nonlinear, at least one of the individual mechanisms
must be nonlinear. Gain is often obtained primarily by use of
coupling-loop turns ratio n > 1, and this is a linear effect. There-
fore, a nonlinear loss mechanism must be used if no other signifi-
cant gain mechanism is present. We consider two such nonlinear
loss mechanisms in this section.

Given a zero-impedance coupling loop, and turns ratio » > 1,
then the relation between Aqu and A¢ i1 is represented by the
dashed line of Fig. 3-6(a). Note that receiver saturation causes
the curve to flatten at a value of A¢ j = 2¢,. Clipping away a certain
portion of the transmitted flux A¢ i-1 shifts the curve to the right
(solid curve of Fig. 3-6(a)), and we then have the desired bistable
form, We wish to illustrate two basic types of flux clipping, one
exemplified by the use of an explicit clipping toroid in the loop
(énelastic clipping) and the other exemplified by coupling loop in-
ductance (elastic clipping).
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Fig. 3-6. Synthesizing a binary transfer characteristic with turns ratio n > 1 as the gain mech-
anism and a flux clipper as a nonlinear loss element.

For the inelastic method, an additional, small core C of flux
capacity & is included in the loop (Fig. 3-6(b)). Assume that the
number of turns N, of the small core is such that the flux-
linkage capacity N0 is relatively small (perhaps 10 to 20 per-
cent of the transmitted linkage), and that the threshold of Core C
is low compared to that of the receiver. Then, when the trans-
mitter switches, this clipper core switches first with a relatively
small loop current. When it saturates, the loop current increases
to the point where the receiver begins switching. For this circuit
we can write

NpAd, ;= Ngb + NpAg, (3-2)
or
Ny Neb
Apj = — (Bdj1 = —— (3-3)
NR NT

Assuming that the received flux will later be transmitted as A¢ i
then Eq. (3-3)isindeed represented by the solid curve of Fig. 3-6(a).
Note that for a transmitted flux less than N¢ 8/NT, no flux at all is
available to the receiver.

Elastic clipping can be achieved with loop inductance L,. As
the loop current iy builds up, flux linkage equal to Lyi, is stored in
the inductance. When the transmitter stops switching, current
still flowing in the loop inductance causes the receiver to con-
tinue switching until i, falls to F/N,, after which the remaining
flux linkage LF,/Np, stored in the inductance is dissipated in the
loop resistance. This dissipated flux is a relatively large part of
the low~-level loss subtracting from transferred flux.

This is a good point to summarize and preview some of the
known types of gain and loss mechanisms for core-wire circuits,
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exclusive of those unique to magnetic thin-film circuits, which will
be described in Chap. 9. There are four main types of gain mech-
anisms known: two of these are the use of turns ratio and the use
of ¢“soft-threshold’’ properties (described in connection with the
scheme of Sec. 4-5); the third is some type of flux pumping, intro-
duced in Sec. 2-7; the fourth is flux doubling, a circuit scheme de-
scribed in Sec. 5-5. There are three maintypes of loss mechanism,
all of which subtract an amount of A¢ from the the transmitted A¢
signal en route to the receiver. The first type is A¢ dissipation in
loop resistance. Second is elastic clipping, which may be either
undriven (necessarily so in parasitic loop inductance) or explictly
driven, as may be obtained either with use of a core of linear ma-
terial or by driving a square-loop core into saturation. Third is
inelastic clipping, which may also be driven or undriven at the
time of clipping, although the clipping element must subsequently
be cleared to its original state each cycle. The effect of receiver
threshold (Sec. 2-4), though not a loss mechanism itself, causes
the loss in loop inductance to be nonlinear., The loss in loop re-
sistance is also nonlinear due to the actual nonlinear character of
receiver resistance NRzﬁ, as shown in Chap. 12.

3-4 Forward Decoupling in a Magnetic Chain

The simplest possibility to consider for attempting to con-
struct a shift register is merely to string together a chain
of identical cores, neighboring cores being interconnected by
a set of identical coupling loops, as in Fig. 3-7. In such a
simple chain, however, receiver loading by adjacent cores (in
the sense of Sec. 2-6) is so great that G > 1cannot actually be
achieved. To achieve G > 1, it is necessary to decouple each
receiver element from the remainder of the chain. Such de-
coupling is readily achieved with a diode element inserted in
each loop in the manner of Fig. 3-8. Assume that Core j + 1is
in negative remanence (clockwise flux) and that Core j has been

Fig. 3-7. In a simple iterative core chain with no decoupling, receiver loading
results in G < 1.
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preset to a certain flux level, When Core j is explicitly cleared to
negative remanence by the current pulse i,, a coupling-loop
current i, flows and switches a certain amount of flux in Core
j+1. The diode in the output circuit of Core j + 1 prevents
receiver-loading current from flowing, and G > 1 can therefore

be obtained.

Fig. 3-8. Forward decoupling by means of a series diode in each loop.

In the transfer from Core j to Core j + 1, the diode in the out-
put circuit of Core j + 1 not only provides the necessary loop de-
coupling to achieve gain but also provides a forward isolation
function by assuring that the switching of Core j + 1 will not affect
Core j + 2, However, we must now consider a potentially serious
lack of back isolation, since the switching of Core j also results in
a back-loop current i; that might affect the switching of Core j - 1.

3-5 Backward Isolation; Core-Diode Transfer Schemes

Instead of assuming a drive only for the jth Core, as in Fig. 3-8,
let us now consider the case of interest, namely, a simultaneous
drive, first for all the O-cores, and then for all the E-cores, as in
Fig. 3-9. Each drive pulse unconditionally drives its associated
set of driven cores to their zevo condition, i.e., clockwise flux.
As described in Sec. 3-1, a basic shifting cycle thus consists of
an O > E pulse followed by an E - O pulse. With repetitive appli~
cation of clock pulses in this sequence, data is continually shifted
to the right along the string of cores (and possibly back to the first
core on the left via an end~around loop).

Let us now examine the potentially serious problem of backward
isolation. Suppose that initially Core O j-1 holds a zevo and Core O ;
a one. During the O - E pulse, a large magnitude of flux switches
in 0;, resulting in a relatively large back current i; that tends to
switch Core E; ;. The latter core shouldnominally not be switched,
except possibly for a low zevo levelof A¢ received from Core Oj_l.
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Any flux switched in Core Eiy due to current i; represents back
transfer of A¢. This A¢ would subsequently be transmitted for-
ward during the next E - O pulse, and we see then the possibility
of spurious buildup of a zero to a one as a result of this back-
transfer problem. In the present case, since N, < N, the amount
of A¢ transmitted backwards is less than thattransmitted forward,
and with sufficiently careful design this circuit can actually be made
to operate reasonably well. We will now consider three techniques
for greatly improving backward isolation, with corresponding im~
provement in performance. In effect, what we wishto do is increase
the directional asymmetry in the line. In contrast, if we were to set
Ng = Np in Fig. 3-9, there would be no asymmetry at all, and
there would be the same tendency for transfer of flux to the left as
to the right.

Fig. 3-9. Demonstrating the need for backward decoupling.

The first scheme for reducing back transfer isindicated in Fig.
3-10(a), where a shunt diode is introduced into each coupling loop.
The polarity of the diode is such thatit does not interfere with for-
ward transfer, though it short-circuits any back transfer. The re-
sistor R is necessary so that the shunt diode does not present a
short circuit to the switching core itself. Another scheme for re-
ducing back transfer is shown in Fig. 3-10(b). Here, back-to-back
diodes in each loop prevent the flow of loop current except when
one of the diodes is deliberately forward biased (by a current

(a) (b)

Fig. 3-10. Backward decoupling by means of: (a) a shunt diode in each loop; and (b) an ad-
ditional reversed diode which is forward biased only during forward transfer.
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source), so that a particular loop can be used for forward transfer,
More practical circuits of this type can be arranged so that only a
single extra pair of diodes is required, rather than one extra diode
per loop. (Both of these techniques lead to high performance, and
circuits of this type have found wide application.)

The above two methods for increasing the directional asym-
metry of the line involve the addition of extra elements per loop.
An equally important technique involves the use of additional loops.
Returning to Fig. 3-9, we see that the back current i; would cause
no harm if Core E; ; were not used as a receiver during the O; - E;
transfer. This situation can be provided by rearranging the drive
lines to the form shown in Fig. 3-11(a). Now when Core B; is the
transmitter and Core C; the receiver, Core A i is prevented from
switching by mmf applied to the winding labeled Hold. The drive
line shown is intended to provide simultaneous transfer from all
B cores to the neighboring C cores. The coupling loops between
the C and A cores are not shown completed, in order to emphasize
that the diodes prevent any forward current in these loops during
Clock Pulse B. If the A cores are held from switching, as shown,
then there can be no back transfer either, and we therefore have
achieved nominally perfect isolation during the B - C transfer.
Although not shown in the figure, if two other clock lines labeled
A and C are similarly provided and properly displaced along the
chain, then excellent performance can be achieved by applying
clock pulses in the sequence A,B,C, A, B, C, ....

Aj+1

Drive Hold Drive Hold

8 I [

(b)

Fig. 3-11. A 3-core-per-bit register requiring a three-clock driver.
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The explicit Hold windings shown in Fig. 3-11(a) can actually be
eliminated if the clock pulses are made to overlap in time in the
manner shown in Fig., 3-11(b). Thus, if the B pulse is applied be-
fore the A pulse terminates, then current through the A windings,
which previously drove each of the A cores to its reference, or
clear, state now plays the role of holding the A cores in this cleared
condition.

Note in Fig, 3-11 that if NT could be set equal to Np, then the
physical chain would be perfectly symmetrical and the direction
of shifting could be reversed merely by altering the clock sequence
to A,C,B,A,C,B,... (in the manner of reversing a three-phase
motor). Although this is not possible here, becaus