
PASCAL/P-CODE CROSS COMPILER FOR THE LSl-11 *

Bruce L. Hitson
Stanford Linear Accelerator Center

Stanford, California

ABSTRACT

This paper describes the implementation of a cross compiler for Pascal
that produces code that can be executed on an LSI-I I minicomputer. The
approach taken is to first compile the source Pascal program (using an
existing compiler) into an intermediate form known a.s P-Code. The P-Code
is then cross compiled to LSI- I I assembly language. Once this has been
achieved, the assembly language programs can be assembled using existing
assemblers (such as MACRO-I I) to produce relocatable load modules.
These are linked together into an absolute load module and reforma.tted for
transmission via serial line to the LSI-I I. The details of the implementation
are described. A comparison is also made betweeri the approach taken in
this implementation (cross compiling to the host machine's assembly code)
and the approach where P-Code is interpreted directly.

INTRODUCTION

This paper describes the Implementation of a cross compiler
for the LSI-I I that converts Pascal pseudo-code (P-Code)[I] into
assembly code that is suitable for processing by existing LSI-I I
software. Unlike many other implementations of Pascal for
minicomputers, this approach does not interpret P-Code, but
instead produces LSI- I I assembly code [2) by cross compiling the
P-Code statements that are output by the Pascal compiler. One of
the goals of this approach is .to generate code that will execute
significantly faster than existing interpretive implementations
without a severe increase in the total program size (program code
plus runtime support routines). We would also like to allow
programs written in Pascal and other languages such as Fortran,
PL-11[3) and assembly language to be compiled separately and
linked together into software packages that make use of the best
features of each language. We are able to protect our large
investment in existing software and yet be able to write new
programs. in a high-level language that should be easier to debug
and maintain.

HARDWARE

The· system is designed to be used on LSI-I I systems that
have a minimal hardware configuration. A minimal system might
consist of the LSI- I I processor,' an EIA RS232 serial line interface
for connection to the host computer, and a ROM kernel that can
communicate with the host computer and download LSI-I I core
images via the serial line from the host computer. In our case, the

* Work supported by the Department of Energy under contract
number EY-'76-C-03-0515.

Proceedings of the Digital Equipment Computer Users Society 819

host computer is referred to as the TRIPLEX. It consists of two
IBM 3'70{168s running OS/VS2 and a single IBM 360/91 running
OS/MVT. All three processors operate under the ASP job
management system. An alternative configuration col!ld be based
solely on an LSI-II or other PDP-I I family computer with noppy
drives and a large enough memory to execute the Pascal compiler.
We have chosen to Implement the first configuration for our
current applications.

The systems In use at Stanford Linear Accelerator Center
(SLAC) typically consist of an LSI-I I with serial line Interface, iK
of ROM kernel routines, and 2iK words of RAM. This allows
execution of reasonably large software packages without having to
be overly concerned about the efficient use of memory. Typical
programs use only a fraction of the available memory for code
storage, leaving the remainder for runtime stack and heap.

SOFTWARE

The software used to produce code that can be executed on
the LSI- I I is, for the most part, written In Pascal. The only
eicceptions to this are the Pascal runtime routines which are
written in assembly language for the sake of efficiency. The main
programs used In the process of making an LSI- I I absolute load
module are described briefly below.

l) Stanford Pascal compiler (4) - This ls a highly modified
version of the Zurich P2 compiler[5). M odlflcatlons to

produce P-Code that Is also cross compiled Into efficient IBM
370 code were done by Sassan Hazeghl of SLAC. This Is the
same P-Code that is cross compiled to LSI-I I code that
eventually runs on the LSI-I I.

San Francisco - November 1978

2) P-Code Cross Compiler (PCC) - This Is a 1500 llne Pascal
program that takes as Its Input P-Code produced by the
Stanford Pascal compiler, and produces assembly code
suitable for processing by standard LSI-I I assemblers such as
MACRO-II. The detailed implementation of this program
is the topic of the following sections.

9) Pascal runtime support - This collection of routines provides
the standard procedures of the Pascal language (e.g., PUT,
GET, EOF, etc.). It Is currently written In assembly code for
the sake of efficiency, and Is In the process of being coded In
Pascal.

4) SLAC LSI-II Software [6) This consists of
implementations of programs such as MACRO-II that run
on the TRIPLEX and are 'used for assembling, linking, and
loading LSI- I I code. This also includes routines for
downloading programs via the serial line Interface to remote
LSI-I I systems.

A II program development, compiling and linking Is currently
done on the TRIPLEX. The LSI-II is simply downloaded from
the TRIPLEX via the serial line and started executing at the
beginning of the program that was loaded. Note that complex
program systems may be. loaded which may themselves consist of
compilers, Interpreters, etc.

IMPLEMENTATION DETAILS

Memory Organization

Memory ls conceptually divided Into three areas: Pascal
monitor, program code, and runtime stack/heap. These are shown
in Figure I. The Pascal monitor performs the necessary
initialization before entering the main Pascal. program. It also
does clean-up operations when the LSI- I I has finished e~ecutlng
and before control is returned to the TRIPLEX. The program
code ls the actual code for the routines of the Pascal program that
Is to be executed. The rest of the memory space ls allocated to
runtime stack and heap. The heap starts at the end of the
program code and grows towards higher memory locations. The
stack starts at the highest memory location and grows towards
lower .memory locations.

Pascal
Mani tor

Program
Code

Runt l me
Heap
J. J.

t t· Run 1me
Stack

Figure I - Memory Organization

820

.Data T):pes

Before discussing P-Code, it is useful to know the structure
of the data that It will be referencing. There are six baslc'types of
data: addresses (A), boolean (B), character (C), integer (I), real (R),
and set (S). Boolean and character variables occupy one byte of
storage each. Addresses and Integer variables occupy one word (2

bytes) of storage each. Reals are represented in standard DEC
floating point format, and ,occupy two words (4 bytes); Sets occupy
four words (8 bytes), and can have up to 64 members. Alignment
for each data type is provided for by the compiler according to the
number of bytes It occupies. Thus, reals are aligned on 8 byte
boundaries, while characters and booleans are allgned on single
byte boundaries.

P-Code is a pseudo-assembly code designed for a mythical ·
stack computer (the P-machlne[S)). There are. 'two basic types of
instructions: Instructions that manipulate the top few Items of the
stack, and Instructions that move !;lata to and from "memory".
The "memory" is actually part of the stack, and Is accessed by
specifying a pointer into the stack. A general P-Code Instruction
consists of four fields: OP, T, P, and Q;

OP T p a

Figure 2 - P-Code Format

OP is a string of characters that specifies the operation to be
performed. T Is a single character that specifies the type of the
operand to the instruction (e.g., I•integer, R·real). P and Q.. are
used for a variety of purposes. They are most commonly used to
specify a level and offset for instructions that load or store
variables. The P-Code instruction set Is described in the paper by
Gilbert and Wall[I].

Referenclne- Variables

The P-Code produced by the Stanford Pascal compiler
references variables by specifying two numbers: a level number
and an offset. The level number specifies the lexical level of the
variable being referenced. The scoping rules of the Pascal
language require this to be interpreted as the lexical level of the
most recently invoked procedure at the level specified. The offset
specified Is the number of bytes from the base of the specified
lexical level where the variable being referenced is stored.

In order to make references to variables as quickly as
possible, we would like to use the Indexing capabilities of the
LSI- I l's general purpose registers. A number of registers, referred
to as DISPLA Y[I) .. DISPLA Y[n) are used to hold pointers to
the base of the most recent activation of the lexical level (I.e.,
procedure or function) associated with n. To access a particular
variable at lexical level n, we can use the Indexed addressing
mode of the LSI-I I. Thus, to Implement the P-Code Instruction

LOO I <level>, <offset>
which loads an integer onto the stack, we can say

MOY -<offset>(DISPLA Y[<level>)), -(SP).
A problem with this scheme Is that we may want to access

variables .in more leicical levels. than there are registers to hold
their base pointers. A solution to this problem Involves keeping

· only the most commonly us.ed DISPLAY registers In actual
registers of the LSI-I I. The remaining display registers are stored
In memory, and loaded Into registers only as they are needed. The
concept of display registers has been discussed by Gries[?] and
others.

As it turns out, the structure of many Pascal programs is
such that most variables accessed are either local to the currently
Invoked procedure or are global variables (I.e., dech,.red in the
body of the program and not in a procedure or function). Taking
advantage of this fact, only two registers are dedicated to holding
DISPLAY register pointers. DISPLA Y[Jj Is referred to
symbolically as "GMP" (Global Memory Pointer), and
DISPLA Y(n] (where n Is the level of the currently executing·
procedure) Is referred to symbolically as "CMP" (Current Memory
Pointer). References to variables in lexical levels other than those
specified by OMP and CMP require that the value of
DISPLA Y[n] first be loaded Into a temporary register which is
then used for Indexing.

In order to allow recursive procedures and functions, the
value of CMP must be saved at each Invocation. This process is
described In the section on the Runtime Stack. 7he value of
OMP need not be saved and Is, in fact, fixed for the duration of a
programs eicecution since a Pascal program (as opposed to a Pascal
procedure or function) is not allowed to call another program at
leiclcal level I.

Runtime Stack

The format of the runtime stack Is shown in Figure 3.
Starting at the high end of memory, we have the stack frame for
the main program. This ·consists of the return address to the
Pascal monitor. Following this are five words of system variables,
and three words of I/0 buffer addresses. The 1/0 buffer
locations contain pointers to buffers for up to six different devices.
The default I/0 device Is the tty. The global variables are stored
after the 110 buffer addresses.

When a procedure or function is invoked, a new stack frame
is allocated. The first word of this stack frame is the return
address to the procedure that invoked it. (In the case of the first
procedure call, this will be the main procedure). The value of the
CMP register must ·also l;)e updated. This consists of I) save the
old value of DISPLA Y[<level>] In the next stack location 2) load
DISPLA Y[<level>] with the current value of CMP 3) load CMP
with a pointer to the return address that was pushed onto the
stack In step 1...thls Is the base of the new stack frame.

The neict four words on the stack are used to store the result
of calls to routines that are functions. These four words are
unused If the routine Is a procedure. Local variables (variables
declared in the level that we are now entering) appear next on the
stack.· The code for the routine whose stack frame was just
created is now executed. At some random point in this routine,
another procedure or function call may occur. If the call Is to a
function that is embedded In a calculation, some Intermediate
results of the calculation being done may be stored on the top of
the stack. These are referred to in the diagram as temporary

821

variables since they represent intermediate results.At this point, a
new stack frame for the function being called Is created, and
execution proceeds as described above.

func rs It I Function result

func rslt I Function result

old disp ·1 Old DISPLA Y[n]

CMP .. ret addr I Return to previous level

Temporary variables

Local variables

Arguments to proc/func

func rs It Function result

func rs It Function resu It

func rs It Function resu It

func rslt Function result

old disp Old DISPLA Y[n]

.. ret addr Start of first proc/func

.
f i I e addr I 110 file addresses

I
1/0 file addresses f i I e addr I

file addr I I I 0 file addresses

file addr I 1/0 file addresses

I System variables

I System variables

I
·System variables

System variables

GMP .. ret addr I Return to Pascal monitor

Figure 3 - Runtime Stack Format

OPTIMIZATION

At the present time, only a slight degree of optimization has
been implemented. This manifests Itself as not executing the
standard system calls to do the Initial resetfrewrite of the tty (since
the tty is already Initialized by the Pascal monitor). Also, routines
to "start 1/0 (SIO)" and to "end .110 (EIO)" to the tty have been
optimized out for the same reasons.

There are many· places where the LSl-11 translation of a
sequence of P-Code statements are relatively Inefficient. Consider
the Pascal statement "l:~I+ I". If the variable "I" Is an Integer
located at an offset of 14 In level I (the main program), the
following P-Code might be produced:

LODI 1,14 ;Get variable "I" onto stack
LDC I I ;Load the constant "I" onto stack
ADD I ;(Top- I)+-Top+(Top-1); Top:• Top- I ;
STO I 1,14 ;Store the value back in "i"

The LSl-11 assembly code produced would be:
. MOY -14(GMP),-(SP) ;SRC•> LOO I 1,14

MOY •l,-(SP) ;SRC·> LDC I I
ADD (SP)+,(SP) .. ;SRC•> ADD I
MOY (SP)+, -14(GMP) ;SRC•> STO I 1,14

Obviously, this is not the optimum solution since the single
LSI-11 assembly statement

INC -14(GMP)
would have had the desired result. The Increment instruction
takes two words of memory, whereas the sequence produced above
takes seven words!! This Inefficiency is due largely to the
differing architectures of the register oriented LSl-11 and the
stack oriented P-machine. Efforts are currently under way by
various people to produce optimized P-Code[SJ. that would
eliminate some of the more obvious inefficiencies. We are
working on a much less extensive optimization of replacing the
above <load><load><operatton><store> operations with a more
nearly optimal solution. This should have a fairly significant effect
in reducing program size.

INTERFACE TO OTHER LANGUAGES

One of the i:naln objectives in cross compiling Pascal to
LSI- I I assembly code was to allow Pascal routines to be linked
together with routines fr<!m other languages. In this way, our
existing software library of Fortran, PL- I I, and assembler routines
can be used along with Pascal routines to produce significant
software systems. Also, this allows the use of a language that Is
most appropriate for the problem at hand. As an example, It is
fairly Inefficient to deal with low.:.level concepts such as bit
masking or trap handling through Pascal routines (although not
Impossible). These routines can be implemented In PL-I I or In
assembly language and linked in with the Pascal 'routines to
produce a usable software package.

PERFORMANCE EVALUATION

As was mentioned in the introduction, one of the main
motivating factors for the cross compiling Implementation of
Pascal as opposed to the Interpretive approach Is the speed with
which the code executes. A !though extensive testing has not yet
been completed, a preliminary comparison of the Pascal system
produced using PCC (PASLSI) and two other systems has been
made. The performance was also compared to DEC Fortran
running under RT-11 on the LSI-I I. A simple Integer bubble
sort was used as a benchmark. It Is a fairly good example since it
tests a combination of performance characteristics such as loop
efficiency and array indexing efficiency. Execution time was
tested for the sorting of 500 Integers (arranged In reverse order so
that every integer must be moved). Three Pascal systems were
compared: PASLSI, UCSD Pascal[9], and Stanford Pascal. The
results shown · below are typical of the three systems from
measurements made so far.

Execution time of bubble sort of 500 Integers
(measured in seconds)

Stanford Pascal (IBM 370) - 0.6
DEC Fortran (LSI-II)- 22.0

PASLSI (LSI-II)- 84.0
UCSD Pascal (LSI-I I) - 463.0

822

Based on the preliminary ·results above, we can make a couple of
comments. PASLSI seems to have a significant speed advantage
over UCSD Pascal (which uses an interpretive approac;h).
Compared to Fortran, PASLSI runs about four times slower at the
present. It shnuld be kept in mind, however, that the DEC
Fortran has been optimized to a significant extent, whereas the
PAS LSI system still has considerable room for Improvement
With some of the optimizations mentioned under "Optimizations",
it seems reasonable to assume that PASLSI in Its final f1>rm will
probably execute within a factor of two of DEC Fortran.

CONCLUSIONS

The cross compiling approach to making Pascal available
on a minicomputer such as the LSI-11 is a useful addition to our
existing software package of Fortran, PL-11, ·and assembly
language routines. It allows us to use programs written In Pascal
together with existing software written In other languages with
only minor changes to the existing software. High level programs
can be written quickly and cleanly In the block structured
environment of Pascal. Low .level routines can be written that
perform critically time dependent tasks or that can more easily
access the lower level constructs of the LSI-I I than Pascal. . Thus,
a particular task can be written in the language that Is most nearly
suited to the task (be it execution-time critical, memory usage
critical, or software development and debugging time critical).
The system Is in a continual state of improvement and extension,
and will no doubt have many new features added by the time this
paper Is printed.

ACKNOWLEDGEMENTS

I would like to thank Sassiln Hazeghl of SLAC for his help
with Stanford Pascal and for the many Pascal programs he has
graciously shared with me. I especially want to thank Les Cottrell,
whose initial encouragement got me started on this project, and
whose continued support, help, and advice keeps me going.

REFERENCES

[I] Erik J. Gilbert and David W. Wall "P.,.Code Intermediate
Assembler Language (PAIL-3)", Stanford Artificial
Intelligence Laboratory, on-line documentation, March 1978 ..

[2] Digital Equipment Corporation, "Microcomputer Handbook
1976-1977", Maynard Massachusetts.

[SJ Russell, Robert D. "PL-II: A Programming Language for
the DEC PDP-11 Computer" European Organization for
Nuclear Research (CERN), Geneva, 1974.

[4] Sassan Hazeghi, "Stanford Pascal Compiler" on line
documentation at SLAC.

[!i] K.Y. Nori, U. Ammann, K. Jensen, H. H. Nagel., "The
PASCAL <P> Compiler: Implementation Notes", Berlchte
des Instltutis fur Informatlk, Zurich.

[6) R.LA. Cottrell and C.A. Logg, "An IBM 370/360 Software
Package for Developing Stand Alone LSI-I I Systems",
Proceedings of the Digital Equipment Users Society, vol. i,
no. i, pp 985/991, April, 1978.

[7) Gries, David, "Compiler Construction for Digital
Computers", John Wiley 8c: Sons, N.Y. 1971.

[8) Sites, Richard L. "Progress Report, June 1978:
Machine-Independent Code Optimization", Department of
Applied Physics 'and Information Science, University of
California, San Diego.

[9) UCSD (Mini-Micro Computer) PASCAL Documentation,
Release Version l.i, January 1978.

823

