
THE SKOL PROGRAMMING LANGUAGE

REFERENCE MANUAL

CHARLES T. ZAHN~ JR.

CoMPUTATION RESEARCH GROUP
STANFORD LINEAR AcCELERATOR CENTER

STANFORD) CALIFORNIA 94305

Working Paper
Do ftQt quote. rJte, .~dfiPd,
.r.· ,.pr9duce . w';'the"tilri.,

• Jjetmissi.n .• f fh.~.uthof(S).
. ,

CGTI1 NO. V6

DECEMBER 1976

TABLE OF CONTENTS

SKOL: Summary and Genealogy

Syntax Notation and Syntax Flow Graphs

Basic Format Rules for Program Text and Comments

Programs, Segments, Specifications and Actions

Statements, Blocks and Sequential Control

Constants, Definitions and Text Substitution

Record Classes, References and Dynamic Allocation

Scalar Types, Subtypes and Case Statements

Character Strings, Contexts and String Modification

Routines, Coroutines, Processes and Recursion

Macro·· Procedures, Keyword Parameters and Defaul ts

General Formatted Input and Output

Augmentation Statements

Run-time Error Checks and Variable Traces

Error Diagnostics

Restrictions and Extensions Dependent on FORTRAN

Matrix Operations: An Example of Language Extension

Other Uses of DEFINE

Warnings

A Macro and Function for String Equality

References

APPENDICES
Formal Syntax of SKOL
Syntax Flow Graphs for SKOL
Control Commands for the SKOL Translator
Character String Utility Programs
Sample Programs in SKOL
Sample Precompiler Diagnostics

FORTRAN Equivalent of Two SKOL Programs
Explanation of Control Error Diagnostics

PAGE

1

6

8

8

9

14

16

20

24

28

32

33

36

36

37

38

40

42

43

45

46

A

B

C

D

E

F

G

H

THE SKOL PROGRAMMING LANGUAGE REFERENCE MANUAL

SKQL: SLttlARY AND GENEALOGY

The design of the SKOL language was subject to two fairly important con

straints. Firstly, all SKOL programs are translatable into standard FORTRAN

(with one slight exception). Secondly, the translation from SKOL to FORTRAN

is accomplished using the MORTRAN macro-translator [9, 10, 11, 12] and a set

of text-substitution rules (macros) specifically designed to translate SKOL

programs into FORTRAN.

As a natural consequence of the first constraint, SKOL has a FORTRAN

"underbelly" consisting of the syntax and semantics of identifiers (called

symbolic names in FORTRAN), logical and arithmetic 'expressions, specifications

of the types of variables, and the bounds of arrays, assignment statements, in

put-output statements, formats for conversion between binary and character

representation of data, subprograms and parameter communication. Some of this

underbelly is described in the following sections, but the user is urged to

have FORTRAN documentation available to resolve questions at this level of

language. Errors made at this level will most likely be reported by the FOR

TRAN compiler rather than the SKOL pre-compiler, so the user will have to under

stand these diagnostic messages. As a result of the second constraint, some

of the syntactic aspects of SKOL are somewhat awkward and "strong ll type-checking

(as in PASCAL) cannot be performed with complete consistency.

The major advantages which accrue as reward for accepting these two con

straints have been discussed by Cook and Shustek [9, 10], but we shall briefly

mention them here:

1) Standard FORTRAN compilers exist for many computers and, therefore~

a language translatable to standard FORTRAN, by a translator imple-

- 1 -

mented in standard FORTRAN*, inherits a wide portability.

2) Many larger computer installations have substantial 'libraries of

programs including general utilities as well as application

packages written in FORTRAN or in machine-language but callable

from FORTRAN.

3) Considerable effort has been invested by some major computer

vendors to produce optimizing compilers for FORTRAN.

4) Because the MORTRAN macro-translator is based on a general param

eterized text-substitution mechanism, any language L translated

by it to FORTRAN can be extended by the user in the same way that

the macro-translator extends FORTRAN to L~

Given SKOL's FORTRAN underbelly and the extensibility inherited from the

translation technique (i.e., MORTRAN), the remainder of the language is a hope

fully coherent assembly of features borrowed from existing languages or sug

gested in the literature, plus several features or modifications which appear

to be novel. The following list includes the most characterizing features of

SKOL and their origin:

Features

Expressions, formats, subprograms
Named constants, text-substitution
Nested blocks of statements
Record structures and references
User-defined scalar types
Character data and string variables
Flexible text output facility
Keyword-parameter macro-procedures
IF ... THEN ... ELSEIF ... ELSE ... ENDIF
Scalar CASE statement

*MORTRAN is so implemented

- 2 -

Origin

FORTRAN
PASCAL, MORTRAN
ALGOL-60
ALGOL-W, PASCAL, PL/l
PASCAL
PL/l, ALGOL-W, PASCAL
PL/l, PASCAL, SKOL
Hardgrave [5]
LISP, ALGOL-68
PASCAL

Situation CASE statement Zahn [6, 7, 8]

LOOP ... WHILE ... ENDLOOP Dahl (see [6])
Infinite open-ended FOR statement SKOL
Iteration statement for linked lists SKOL
Hierarchical scalar types and subtypes SKOL
User-defined character data type SKOL
ELSE block in scalar CASE Hoare [13J

Character substring contexts and replacement SKOL
Coroutine processes Conway [3J,

Dahl and Hoare [4J
Recursive routines ALGOL ... 60

For the convenience of those readers familiar with the borrowed features,

we include here a brief description and discussion of the features thought to

be novel. The idea to make the character data type CHAR user-defined rather

than built into SKOL was an example of the clich~ "Necessity is the mother of

invention". The way that FORTRAN treats input/output of characters to and

from text files necessitates additional processing to generate an internal form

of character represented by a small integer. Otherwise, character CASE state-

ments would be impossible. Since each character must be so processed, it costs

little extra to allow the user to define the allowable set of character con-

stants as well as their ordering within the scalar type CHAR. The only things

built in are the name CHAR and the form (i.e., quote-brackets) used to denote

most constants of the scalar type CHAR. It is natural to decompose a character

type into subtypes like ALPHABET, DIGIT, ARITHMETIC, RELATIONAL, LOGICAL, PUNC

TUATION, BRACKETS, QUOTES, SPECIAL. A lexical scanner for a language translator

might find it convenient to combine ALPHABET, DIGIT and the underbar character

into a subtype identified as NAME_SYMBOL, and to further combine ARITHMETIC,

RELATIONAL, LOGICAL, PUNCTUATION, BRACKETS and QUOTES into a subtype DELIMITER~

etc. Because of the naturalness of this example as well as others, it was de

cided to generalize the scalar type idea to include nested subtypes and to in-

- 3 -

tegrate this idea into the scalar CASE statement (see Section on IJScalar

types.~.").

Although we borrowed from PL/l the flvarying ... length character string with

fixed maximum size," the PL/l notation for substrings and associated pseudo

variables has never caught our fancy. The verbose notation "SUBSTR(CH,K,l)"

to indicate the K-th character of string CH is especially unappealing t After

considerable searching and discussion, we settled on a compact yet simple

notation for denoting intervals of a sequence which allows empty intervals to

be interpreted as positions before or after elements of the sequence. When

used for string intervals, we call this notation a string~context, and an ar

bitrary string insertion, deletion or replacement can be uniformly specified

as the replacement of a string-context by a string expression. The following

string-contexts and associated meaning reflect the generality and compactness

of the notation. The II' denotes substring length.

Notation

CH(K)
CH(1 p .3)

CH (3. t • 12)
CH(31 ... K)

CH(2 ••• 10)

CH (0 I ... 2)
CH(OI.·.LENGTH(CH))

Meaning

CH(K)
CH(l), CH(2), CH(3)
CH(3), CH(4)
CH(K-2), CH(K-l), CH(K)

before CH(2)
after CH(2)
after last character of string CH

SKOL contains a text OUTPUT statement which is a combination of ideas from

FORTRAN, PL/l and PASCAL. In PL/l, there are three flavors of text output

possible -- edit-directed, in which conversion formats must be supplied explic

itly by the programmer; list-directed, in which the conversion format is im-

plicit but dependent on the type of each variable; data-directed, in which the

symbolic name of each variable is output before the value (under type-dependent

- 4 -

format). These three kinds of output cannot, however, be mixed in a single

output statement, and the association between a variable and its explicitly

supplied format is not textually apparent, the data and format lists being

segregated rather than merged. The formatted output of FORTRAN shares this

flaw. PASCAL has a WRITE statement in which each data item may optionally be

followed by an explicit format, but the very useful data-directed output is

not available and control formats are not as flexible as in FORTRAN or PL/1.

The OUTPUT statement of SKOL requires a sequence of data and control items

which will be processed in order, the control items causing some specific modi

fication of the current output position and the data items causing character

output after formatting in any of the three ways discussed above, For example,

OUTPUT($PAGE,:10X,I:I2,') ',X(I),:/,:20X,P(I):,' Hi); causes the following to

happen on file $OUTPUT:

Page eject; Indent 10 spaces
Print integer I in field of width 2; Print ') J

Print' X(I)= '; Print X(I) with G12.5 format; Print';'
Skip to next line; Indent 20 spaces
Print P(I) with G12.5 format; Print' #'

The infinite open-ended FOR statement allows iterations in which a scalar

control-variable takes on an arithmetic progression of values, the termination

of the iteration being accomplished via a situation exit within the iterated

block. Appendix E contains a prime-generating program exhibiting the useful

ness of this feature.

When sequences are represented by linked~lists implemented via records

and reference fields, it is often required to scan through such linked-'Iists

in a fashion analogous to the way a normal FOR statement can scan through the

indices of an array_ For this purpose a LINK iteration statement is included

in SKOL; it causes a refer~nce variable to take on a succession of reference

- 5 -

values defined by a field and terminating when a NIL reference is encountered.

SYNTAX NoTATION AND SYNTAX FLOW GRAPHS

To describe the syntax of the SKOL language, we employ an extension of

BNF defined as follows:

1) Reserved words and other terminal symbol strings of the language

are enclosed in string quotes (e.g" JIF', '+').

2) Syntactic constructs are named by identifying words sometimes

including hyphens or operators, but no blanks (e.g., command,

segment- body) .

3) The notation al a2 ... an means a1 followed by a2' followed by

a3' etc.

4) The notation [a, I a2 I ~ . ~ I an] means one of the ak'

5) The notation {S}count
(J

indicates a number of repetitions of (3

separated by (J, where count specifies a restriction on the

possible number of (3. If (J is omitted, then the BS are juxta-

posed without an extra separator. The count specification in-

dicates a range of non-negative integers; we have found fre-

quent need for II zero or one" which we write as 0,1 and "n or

more" which we write as ~ n.

For example, a rule for constructing identifiers which specifies one or

more occurrences of letters A or B, followed by an optional $, can be described

by:

Most of the syntax rules we will encounter can be very nicely and com-

pactly described in the form of syntax flow graphs and we shall so describe

- 6 -

the syntax of SKOL in Appendix Bt A syntax flow graph is a directed graph with

unique start and finish nodes, terminal strings enclosed in oval nodes, and

named syntactic constructs enclosed in rectangular nodes. Any valid directed

path through the graph, from start to finish~ represents a valid symbol sequence

for the defining flow graph. The following flow graph*;s equivalent to the

above identifier rule:

Another example is the syntax described by:

{label }~l, ,., block

and by the flow graph:

*These diagrams are not graphs in the strict sense but each such diagram
corresponds to a proper directed graph whose edges correspond to "smooth"
paths between nodes of the diagram.

- 7 -

BASIC FORMAT RULES FOR PROGRAM TEXT AND COfYMENIS

Program text is essentially free~form in SKOL with nQ significance assigned

to ends-of-line or particular columns within lines. The single exception to

this is that any line with a % in the first column is interpreted as a special

control line, and no characters on this line are considered to be part of the

program text (see Appendix C).

The normal comment convention is described by:

1111 {non-lI-symbol}~O '"'

but this can be changed (via control line) to the safer:

I II I { non - II - sym bo l} ~ 0
[I II , len d "" 0 f -1 i n eJ

so that comments never extend over line boundaries.

PROGRAMS, SEGMENTS, SPECIFICATIONS AND ACTIONS

A SKOL program consists of a number of program-segments followed by a

terminator-line which contains %% in the first two columns. This can be des-

cribed by:
>1 {program-segment}-

where each program-segment is:

terminator-line

['BLOCKDATA' I :'{specifieation}~l 'ENDBLOCKDATA' ';'

I MAIN' I: t segment-body t END~1AIN' t; I I

'SUBROUTINE' Fident {parameters}O,l ':1 segment:body 'ENDSUBROUTINE' I;'

'FUNCTION' Fident parameters Ftype ':' segment-body 'ENDFUNCTION' ';IJ

and segment-body is:

{spec; fi cation }?:O {statement ... functi on f 0 {command }>-l

{routine definition~O

- 8 -

and statement~function is;

Fi dent I (I {Fi dent} ~1 I ') I 1=' Aexpr ';' ,
and command is:

[action I definition I format~declaration I pragmat]

and parameters are:

1(' {Fident}~l, I)' ,

An example of a statement function is:

ROUND(X) = INT(X+SIGN(.5,X));

It should be prefaced by declarations:

REAL X; INTEGER ROUND;

The syntax for routine-definitions is described in the section on "Routines,

Coroutines ". Specifications and actions are precisely defined in Appendix

A. An Ftype is defined by:

[I REAL' I 'INTEGER I I 'LOGICAL' I I COMPLEX I]

and a definition is any CONSTANT, DEFINE or MACRO statement as described in

the sections on IIConstants, Definitions and Text Substitution" and "Macro Pro-

cedures ... ".

A format-declaration is a FORMAT statement as described in the section

on "General Formatted Input and Output ll and a pragmat is a RUNCHECK or TRACE

statement as described in the section on "Run-time Error Checks and Variable

Traces ".

STATEMENT~ BLOCKS AND SEQUENTIAL CoNTROL

All statements in SKOL (specifications and commands) are terrninated by a

semicolon. A block is a sequence of commands. Formally, it has the form:

{command }~O

- 9 -

Notice thqt it may be an empty sequence of commands having no effect. A

command is an action, a definition, a format~declaration or a pragmat (see

Appendix A).

The most basic control statement ;s the "if" statement with the form:

'IF' {Lexpr I:' blOCk}7~LSEIF' {'ELSE' 1.1 block}o,l IENOIF' I;'

where Lexpr is a FORTRAN logical expression.

The execution of this statement is performed by testing the sequence of

one or more Lexprs until one of them is true and then executing the statements

of the corresponding block. If all Lexpr are false, then the block after ELSE

is executed; when no ELSE phrase is explicitly specified, it is just as if the

empty block has been specified.

Example:

IF A < 0

J -= J+l; P(J) ~ A;

ELSEIF A.>O .
J - J-l ; R(J) := A;

ELSE:

OUTPUT (J,S(J));

ENDIF;

Another basic control statement of rather recent vintage [6, 7, 8J is the

"situation" case statement which has the basic form:

'UNTIL' {ident}~'6R' ':' block ITHENCASE' !: 1

{{situation}~l! I:' 'BEGIN' block 'ENO,}~l 'ENDUNTIL' ';1 ,
where each situation is one of the idents in the' UNTIL phrase and every ident

appears exactly once as a situation. Within the block before THENCASE,

"situation" statements of the form:

situation I;'

- 1 a -

will cause immediate termination of the block and then execution of whichever

block is associated to that particular situation in the THENCASE part.

Example:

UNTIL MATCH OR NO_MATCH:

FOR I = 1 TO N:

IF X = TABLE(I) MATCH ENDIF

ENDFOR;

NO_MATCH;

THENCASE:

~,1ATCH : BEGIN COUNT(I) := COUNT(I) +1; END

NO t1ATCH BEGIN N .- N+1; TABLE(N) := X;

COUNT(N) .- 1;

END

ENDUNTIL;

This example shows how multiple-exit loops can be handled using the situ~

ation case.

An auxiliary form of this statement allows the suppression of the case

part when only one situation can occur; the abbreviated form is:

'UNTIL' ident 1.1 block 'ENDUNTIL' I;'

Example:

UNTIL NON BLANK

FOR I :: 1 TO 81

IF CH(I) 'j= ,I NON BLANK ENDIF;

ENDFOR;

ErJDUNTI L;

This program delivers the index of the first non-blank character in array

CH on assumption that CH(81)'~ i ,

- 11 -

The most basic repetetive statement in SKOL is the repeat statement of

the form:

'REPEAT' {Iexpr 'TIMES,}O,l ':' block 'ENDREPEAT' I;'

where Iexpr is an integer expression whose value should be non-negative. If

the optional TIMES phrase is absent, the repetition is infinite and, therefore,

the programmer must satisfy himself that eventually some "situation" statement

within the repeated block will terminate an outer block enclosing the entire

REPEAT statement.

Example:

REPEAT 5 TIMES: OUTPUT('*****') ; ENDREPEAT;

An extremely useful repetitive statement is the IIDahl-loop" which sub

sumes the familiar "while-do" and "repeat,;.until" statements from structured

programming. Its form is:

'LOOP' I:' block 'WHILE' Lexpr ':' block 'ENDLOOP' I;'

The first command sequence is executed and -if Lexpr is false, the repe

tition is terminated; if Lexpr is true, then the second command sequence is

executed, followed immediately by the first sequence and the test and possible

termination, etc.

Example:

SUM := 0.0; COUNT := 0;

LOOP: INPUT (1:15, X:F10.5);

WHILE I > 0 :

SUM := SUM + X; COUNT:= COUNT + I;

ENDLOOP;

OUTPUT ($SKIP2, COUNT, SUM);

SKOL has two forms of "for" statements, one infinite and one finite des

cribed by:

- 12 -

'FOR' Ivar '=' Iexpr 'BY' lexpr ':' block 'ENDFOR' I;'

or

'FOR' Ivar ,=, Iexpr {'BY' Iexpr}Ot l 'TO' Iexpr ':' block 'ENDFOR' ';'

where Ivar and Iexpr are any integer variables or expressions t respectively.

Ivar may be a subscripted variable and the increment expression may be negative.

In this context, integer includes any programmer defined scalar types as des

cribed later.

The second form may fail to execute block even once if the iteration

phrase specifies an empty arithmetic progress'ion of integer values as in I == 1

BYl to O. In this case, the value of Ivar will be unchanged. If a non-empty

arithmetic progression terminates normally, then Ivar will have the exact ter

minal value at completion of the FOR statement. A runtime error may occur if

the terminal expression does not differ from the initial expression by an exact

multiple of the increment expression. For example,! = 11 BY -2 TO 0 is con

sidered to be in error.

Example:

FOR P(J) = 0 BY -(INC+l) : ... ENDFOR;

FOR IND = 2 BY DELTA TO N-l : X(2,IND) := 0; ENDFOR;

FOR K = 1 TO 100 : P(K) := A(K) + B(K); ENDFOR;

The default increment value is +1 when the BY phrase is omitted.

The infinite form of FOR carries the same warning concerning termination

as was given for the analogous infinite REPEAT.

To cater for simple iterations in the most efficient way, a FORTRAN-like

"DO" statement of the following form may be used:

'DO' simpleIvar '=' simplelexpr 'TO' simplelexpr I:' block IENDDO' ';'

where simpleIvar means non-subscripted integer variable and simplelexpr means

a positive integer constant or non-subscripted integer variable.

- 13 -

CoNSTANTSI .DEF I N ITIONS AND IExr SUBSTITUTIQN

The programmer can declare that certain names are to be considered equi

valent to constant values using a constant-definition of the form:

I CONSTANT' {ident 1=' value}7l
I I;' ,

Whenever such anident occurs subsequently in the program text (preceded

and followed by blanks!), it will be replaced by the corresponding value.

Example:

CONSTANT PI = 3.14159, CM_PE~INCH = 2.54;

X := (2.0* PI * RADIUS)* CM_PER_INCH ;

CONSTANT $INPUT = 5, $OUTPUT = 10, $GENFORM = G20.7;

CONSTANT LIMIT = 50;

REAL A(LIMIT, LIMIT), B(2, LIMIT);

FOR I = 1 TO LIMIT: B(l,l) := 0; ENDFOR;

The constant-definition facility is really a special case ot a more gen

eral definition statement whose form is:

IDEFINEI '"I pattern 1111 '=1 1111 replacement " .. I;'

where pattern and replacement are sequence of characters and special "operators"

as defined in the user documentation for the MORTRAN2 macro-preprocessor [12].

Rather than repeat that description here, we will simply give several simple

examples of the use of this text sUbstitution facility.

In its simplest form, a pattern is just a sequence of characters (with I

and # and @ represented by I \ ## and @@, respectively) and replacement is simi

lar.

Example:

DEFINE I;INITIALIZE;' = ';A := 0; B := 1; P(2) := 3;1 ;

Every subsequent instance of the pattern will be replaced by a copy of

the replacement. In this form, the DEFINE is a parameterless macro facility.

- 14 -

By placing # at various places in the pattern, and by placing #0 where

o is a digit in the replacement, one can'create parameterized text substitution

rules. Indeed, SKOL is translated into FORTRAN by just such rules.

Example:

DEFINE ';SWAP(#,#);' = I ;R99999 := #1 #1:= #2 #2:= R99999; I

SWAP(A(I,J),A(J,I));

The swap statement will be translated to:

R99999 := A(I,J) ; A(I,J) ;= A(J,I) ; A(J,I) := R99'999;

Each # in pattern will match any character sequence'which is properly

parenthesized and contains no semicolon. Each #0 in replacement means the

actually matching text for the o-th # in pattern.

Macro definitions may be placed in replacement text to create some very

powerful effects.

Example:

DEFINE I;TRACE #;' =

, ; DEFINE II ; #1 : =##; I I = I I II ; II #1 : = ##1 ;,

OUTPUT(' I I '*****TRACE 1'11,#1);1 I;'

TRACE Z;

Z := F(Y)*Z; ... Z := A(2,K);

The above 3-1ine macro definition essentially extends the language by

adding a trace statement of the form:

'TRACE I variable I;'

This statement will cause all subsequent assignments to variable to be

followed by a well-annotated dump of the newly assigned va1uee The statement

TRACE Z; will be replaced by the following text:

DEFINE ';Z:=#;' =

III;" Z := #1 ; OUTPUT("*****TRACE ",Z);';

- 15 -

This macro-definition causes the statement Z := F(Y)~Z,; to be replaced

by

Z : = F (Y) *z ; ,

OUTPUT(I*****TRACE I,Z);

When Z := F(Y)*Z; is executed, a line like the following will be printed

on $OUTPUT:

*****TRACE Z = 114.72;

The double-quotes II around; are merely to prevent an infinite recursion

in the rescan mechanism of MORTRAN2.

This trace facility is actually included in the SKOL language and its im

plementation requires little more than the above 3-1ine macro.

REcORD CLASSES, REFERENCES AND lNNAMIC Au.OCATION

A record is a structure consisting of a fixed number of components called

fields, each identified by a field-identifier. Each field may be of any simple

type or array thereof or may be a reference field pointing to another record

(also possibly an array of such).

A record class consists of a fixed number of records, all of the same

form used as a pool for the dynamic creation and release of record variables

directly accessible to the programmer. Each record class is named and intro

duced via the specification:

'RECORD' 'CLASS' '(I +Iconst I)' 'OFI Fident4 I:" {field-group ,;,}~l

I ENDRECORD' I;'

where each field-group is of the form:

[, REF' I Ftype I 'CHAR'] , · " {ident {array-boundsJO,l }~1, ,

... 16 ...

array-bounds is:

'(I {+Iconst}71, I)' ,
and Fident4 is a FORTRAN symbolic name of 4 characters or less.

Example:

RECORD CLASS (100) OF PERS:

REF: NEXT,FATHER;

INTEGER: AGE, ID_NUMBER,LEAVE(12);

REAL : PAY ;

LOGICAL : MARRIED

CHAR: NAME (15) ;

ENDRECORD;

A reference variable identifies a record of a particular class once such

a record has been dynamically created and associated with the variable. Each

reference variable is restricted to refer to records of only one class and is

introduced by a specification:

IREF' ITO I class I.' {Fident {array-bounds}O,l}~l,

Example:

REF TO PERS : WORKER, FORMAN (6), p, LAST;

I. , ,

Before any use can be made of a record class, it must be initialized by

a statement of the form:

IMAKEAVAIL' class 1;1

The effect of this statement is to return all records of the designated

class to the available pool ready for re-use.

To allocate a new record to a reference variable requires a statement of

the form:

'NEW' reference';'

Analogously, a record is released by:

IFREEI reference 1;1

- 17 -

In each case, the variable designated must have been declared as a ref

erence to some record class; otherwise, a diagnostic message will ensue.

To access a field of a record associated"with a reference variable re

quires a special form called a field-designator:

'@' '(' reference '.' field ') t

The reference and/or the field may be subscripted if that corresponds to

the declarations. If the field is not among those declared for the record

class to which the reference has been bound, then an error diagnostic is given.

Notice that designators like @(@(P.NEXT).VAL) are not legal and must be

replaced by

Q := @(P.NEXT) ; ... @(Q.VAL)

where Q has been properly declared as REF to the class of records having a VAL

field.

Example:

MAKEAVAIL PERS ; NEW WORKER ;

@(WORKER.AGE) := 25; @(WORKER.LEAVE(3» := 2;

FORMAN(l) := WORKER; @(WORKER.NAME(l» := 'Z' ;

IF @(FORMAN(l).LEAVE(K» > 2 : ••• ;

FREE WORKER;

When a portion of program text concentrates its attention on a particular

record, it is possible to abbreviate the field-designators by employing a "WITH"

statement of the form:

'WITH' reference':' block 'ENDWITH' ';'

Inside the block, any fields of the record identified by the designated

reference may be accessed by the shorter form:

'@' , , fi e 1 d I I

- 18 -

Example:

WITH WORKER : @.AGE := 25; @.LEAVE(3) := 2; ENDWITH;

There is a standard identifier NIL which indicates an undefined reference

value and is often used to mark the ends of linked lists. To traverse a linked

list defined by a REF field in some record class, there is an analogue of the

familiar for statement having the form:

'LINK' reference '=' reference 'BY' field':t block 'ENDLINK' I;'

The iteration is discontinued at the first-NIL value encountered (which

may be the first).

Example:

@(FORMAN(6).NEXT) := NIL; SUM := 0;

LINK P = WORKER BY NEXT: SUM := SUM + @(P.AGE) ENDLINK;

A record class is actually an array of records so if the programmer de

sires, he may use it as a simple array while avoiding any dynamic allocations

vis a vis the record class. Access to the records must still be through vari

ables declared REF TO class, but these variables can be treated as integers~

which they actually are.

Example:

IIASSUMING NO RECORDS CURRENTLY ACTIVE FROM PERS"

LAST := NIL ;

FOR WORKER = 1 TO 50

@(WORKER.NEXT) := LAST LAST:= WORKER

ENDFOR;

TOP := 50;

LINK P = TOP BY NEXT

WITH P : @.NAME(l) := '#';@.AGE := 20; ENDWITH;

ENDLINK;

- 19 -

ScALAR TYPES J SUBTYPES J AND CASE STATEMENTS

The programmer may introduce a new finite ordered primitive type (called

a scalar) by naming it and supplying a list of the unique identifiers which

denote the constant values of the new type. The values' of the new type may be

arranged in a hierarchy of groups or named subtypes. The definition of a new

type takes the form:

'TYPE' ident '=' list-of-subtypes I;'

where list-of-subtypes has the form:

[empty I '(' {Subtype17l , I)'] ,
and subtype is

[ident I ident I = I 1 i st-of-subtypes I char-const]

The possibility of an empty list-of-subtypes is restricted to the CHAR scalar

type and char-canst is also so restricted. The definition of CHAR will be dis-

cussed later in this section.

Example:

TYPE AUTO =

(GENj10TORS = (CHEVY,PONTIAC,CADDIE),

FORD = (MUSTANG,MERCURY=(MONTEREY,COUGAR)),

FIAT = (COUPE,S128,S13l));

This declaration specifies that a value of type AUTO will be a value of

one of the subtypes GENj10TORS, FORD or FIAT. The values of subtype GEN_MOTORS

are the three constants CHEVY, PONTIAC and CADDIE. FORD consists of MUSTANG

and a subtype MERCURY, which itself consists of two constants MONTEREY and

COUGAR. finally, the subtype FIAT has three constant values as indicated. In

subsequent use, these scalar constants must be preceded and followed by a blank!

Scalar variables are declared in a fashion similar to normal FORTRAN dec-

larations:

scalar {Fident {array-boundslo,l }~l, ';' ,
- 20 -

Example:

AUTO FAMILY(2) , MINE;

The scalar case statement allows one from a group of'blocks to be executed,

the selection being determined by the current value of some scalar variable.

The form of the statement is:

'CASE' scalar-var I:' scalar 'OF'

{{label}~l, I:' 'BEGIN' block 'END,}~l{tELSEI I.' 'BEGIN' block 'END1}O,1

, ENDCASE ' '; i

where scalar may be the name of any scalar type or subtype, and each label is

a constant or subtype of that type. In the latter case, it is simply an abbre

viation for the list of all constants included in the subtype.

Example:

CASE FAMILY(K) : FORD OF

COUGAR, MUSTANG: BEGIN J := J+l; END

ELSE: BEGIN J := J-l; END

ENDCASE;

CASE MINE : AUTO OF

MERCURY,COUPE :

BEGIN END

S128 :

BEGIN END

GEN MOTORS

BEGIN

CASE MINE : GEN MOTORS OF

PONTIAC,CADDIE : BEGIN END

ELSE : BEGIN END

ENDCASE;

END
- 21 -

ELSE: "MUSTANG AND S131"

BEGIN .,. END

ENDCASE;

Each constant of the indicated scalar must occur exactly once as a label

unless an ELSE block is present. In the latter case, ELSE collects all con

stants not explicitly listed. If the scalar-var is not within the range of

values of scalar, an error has occurred which will be diagnosed at run-time if

the runcheck option is enabled for case statements.

In the first example above, the only valid labels are those constants in

subtype FORD, that is, MUSTANG, MONTEREY and COUGAR. As a consequence, the

ELSE is identical to MONTEREY. The order of occurrence of labels is completely

irrelevant except for ELSE which, if present, must come last.

In the SKOL language, the character data-type is not built-in as a lan

guage-defined primitive but is recognized as a spe~ia1 case since most constants

have the special form of a single character symbol enclosed in apostrophes (I).

The CHAR scalar type is declared explicitly by the programmer as a scalar type

and can be hierarchically substructured like any other scalar. Most constants

conform to the normal convention for characters, however.

To ease the burden for the programmer, there are some character subtypes

built-in. The subtype ALPHABET consists of the capital letters 'AI through 'I'

and DIGIT means '0' through '9'. In addition, certain installation-dependent

subtypes may be supplied; for example, RELATIONAL = ('<I, 1=', '>1) or ARITH-

METle = ('+' '-' '*' 'I') , , , .
A special facility is available to ask if a given scalar value is con

tained in a particular scalar subtype. The form of the expression is:

'IN' scalar '(' scalar-expr I)'

- 22 -

Example:

IF IN_DIGIT(CH(K» •• t

The following three functions are also 1nclud~d:

FIRST, LAST (scalar)

VALUE (digit-expr)

For example, FIRST (ALPHABET) = 'A', LAST (DIGIT) = '9 1 and VALUE (131)= 3.

Example:

TYPE CHAR =

(NAME_SYMBOL = (ALPHABET=,DIGIT=, '_I),

DELI~1ETER=

(ARITHt·1ETIC=('+', I_I '*' IIi)

RELATIONAL= ('<', 1=', I>') ,

LOGICAL=(',', '&1, 'I'),
PUNCTUATION=(',', I;', ':', I'

BRACKET= (, (I, I) I) ,

QUOTE= (, II I, I I 1 I)) ,

SPECIAL=(I$', '@I, '#', 1%'),

, , . , '1') . ,

EOL "NOTICE THAT IDENTS ARE OKAY FOR CHAR CONSTS"

) ;

This flexibility of the character data-type allows the programmer to

arrange the various character subtypes and special characters in an order that

corresponds to their use in a particular application.

The declaration for the CHAR type must be followed by three constant defi-

nitions:

CONSTANT BITS_PER_BYTE = ?,

BITS PER WORD = ?,

SHORT BYTE = 1· . ,

- 23 -

where the value of SHORT_BYTE should be

2 **(BITS_PE~YTE - 1)

The user must also supply the auxiliary subprograms ROSTR9, WTSTR9, INIT99,

INCV99, IRPL99, IRPL98 and IOEL99 which are used to implement the character

facilities (see Appendix 0 and sample programs tn Appendix ~).

Special functions $INCHAR and $OUTCHAR are provided to map external char-

acters to their internal integers and vice versa; for example, with the above

declared CHAR and I containing character 'B' read under Al format, we get

$INCHAR(I) = 2 and $OUTCHAR(I_I) output under an Al format is I_I.

Each user subprogram which uses $OUTCHAR or the C format in an OUTPUT command

must contain the specification:

'CHA~COMMON' ';'

and before any character manipulation is performed, the following initializing

command must be performed:

'CHAfLSETUP' I;'

CHARACTER STRINGS. CoNTEXTS AND STRING MonIEICATION

In addition to fixed-length character arrays like CHAR CARO(8l), it is

possible to have varying length character strings with a fixed maximum length

called the size. They are declared in the form:

'STRING' {fident '(' +Iconst ')1 }~l,

Example:

STRING NAME(30), WORD(lO);

, . , ,

Built-in functions SIZE (string) and LENGTH (string) are available to

obtain the size and current length of any string. Actually, the latter is an

integer variable which can be changed by assignment, but is intended to be im-

- 24 -

plicitly reset by string updating statements, Prior to use, the string should

be initialized to the empty string by the command:

DELETE string;

which is described in the following.

To designate substrings of a string, there is a notation for string-con

text whose form is one of:

string 1 (' index {I ••• 1 index}O,l ')'

or

string 1(' index' , 1 I' length ')'

or

string 1(' length 11'1 •.. 1 index I)'

where index means a valid integer index into the string and length is a posi

tive integer.

The first form denotes the substring consisting of all indices between

the two limits inclusive. If there is only one, then the limits are equal.

The second form denotes a substring of the indicated length which begins with

the indicated index. The third form denotes a substring of the indicated

length which ends with the indicated index.

Example:

NAME (2 ... K+2)

WORD (41 ••• LENGTH(WORD»

NAME (1 ... 15)

WORD (5)

Notice the second example which denotes the last four characters of the

current value of the string WORD.

The notation introduced above for substrings can be used to denote any

- empty position in or at the ends of a string if the proper meaning is attached

- 25 -

to substring denotations involving a length of O. If we redefine the notation

(index ... I length) to mean the subsequence (possibly empty) beginning just

before index and having the given length, then the notation

WORD (2 ... I 0)

denotes the position before the second character of WORD.

Because of the symmetry of our notation, the extremes of WORD can be

described by the following two denotations

WORD (1 ... I 0)

and

WORD (0 I ••• LENGTH (WORD»

The reason for wanting to denote empty substrings within a string is so

that a single all-powerful replacement command can be indicated by a string

context and a replacing string expression.

The general string replacement statement takes the form:

'REPLACE' [string-context I string] 'BY'

['NULL' I char-expr I string-context] I;'

Example:

REPLACE WORD (2

REPLACE WORD (1

4) BY I Z' ;

I 0) BY NAt·1E (3 I ... K);

REPLACE NAME BY WORD (2);

Arbitrary substring "deletions" can be accomplished by replacement using

NULL and "insertions" using an empty (length = 0) string context. SKOL con

tains the following statement forms for this:

'DELETE' [string I string-context] I;'

'INSERT' [char-expr I string-context]

[, BEFORE' I I AFTER I] stri ng I (' index ')' '; I

- 26 -

Example:

DELETE WORD; DELETE NAME (6 ... LENGTH (NAME»;

INSERT NAME (1 ... I 3) BEFORE WORD (2);

INSERT CH AFTER WORD (LENGTH (WORD»;

For reasons of efficiency, there is a concatenation statement which is

implemented separately from the general replacement command. The form of the

statement is:

I CATENATE I string-expr 'ONTO' string 1;1

where string-expr is:

{[char-expr I string-const I string I string-Context]};!,

and 1&1 indicates concatenation.

Example:

CATENATE I@IIB' & CH & NAME (1 ... I 2) ONTO WORD;

CATENATE NAME (2 ... 4) ONTO WORD;

Becaus~ the conversion between external character format and internal

integers is not defined by FORTRAN but rather by the programmer's type declar

ation, special facilities are required for input and output of character string

data. These are of the form:

[IREAD' I IWRITE'] 'STRING' {I(I file 1)I}O,l

string {I(' index I ... ' index .),}O,l I;'

The default index range is 1 ... LENGTH (string) for WRITE and 1 ... SIZE

(string) for READ.

Example:

STRING CARD (81);

READSTRING (MYFILE) CARD (2 ... 81) ; LENGTH(CARD) := 81;

CARD (1) : = '11; II FOR PAGE-EJECT"

WRITESTRING CARD; "DEFAULT RANGE = 1 .t. LENGTH(CARD)"

- 27 -

Notice that READSTRING does not set the LENGTH; the standard files for

text input and output are the defaults 'and the initial character is used for

control on output. In the example above, the first 80 characters of the next

record of the file named MYFILE are converted to internal format and stored

into the string CARD at positions 2 through 81. This character sequence is

then listed after a page eject on the ·standard print file.

It is quite easy for the programmer to implement a MOVE statement which

has the form:

'MOVE' string-context 'TO' string~context I;'

and causes a substring of one string to replace a string-context of a second

string while being deleted from the first string.

The following macro-definition will implement such a MOVE statement:

DEFINE ';MOVE # TO #;' =

';REPLACE #2 BY #1 ; DELETE #1 • I • , ,

The meaning of the # within a define statement is explained in the section on

"Constants, Definitions and Text SUbstitution li
•

There is a special string assignment statement of the form:

'#1 string' :=' string-expr I;'

Example:

#NAME := 'JONES' & BLANK & 'JOHN'

#NOTHING : = " "SAME AS DELETE"

RolJI I NES , CoROUT I NES, PROCESSES AND REC(JRS ION

Simple parameter1ess routines can be defined and executed at different

places within a major program segment (the subprograms of FORTRAN). The rou

tine definitions are placed after the RETURN statement for that segment. The

form of the routine definition is Simply:

- 28 -

'ROUTINE' ident ':' block 'ENDROUTINE'

To invoke execution of such a'routine requires:

'EXECUTE' routine ';'

Example:

EXECUTE IN_CARD;

ROUTINE IN CARD: ... ENDROUTINE;

, . , ,

It is also possible to declare a process to' consist of several cooper

ating coroutines which resume one another or suspend the entire process. The

, main program (i.e., body of the segment) controls resumption of the suspended

process and also decides which coroutine will be invoked first. The process

declaration has the form:

'PROCESS' ident '=' , • t ,

where the list of idents refer to coroutines to be defined later. To initialize

a process so that each constituent coroutine is asleep at its beginning, and

so that the initial resumption of the process invokes a particular coroutine

requires:

'START' process 'AT' coroutine I;'

The main program resumes the process by:

'RESUME' process ';'

and any of the constituent coroutines suspend the process in favor of the main

program by:

'SUSPEND' process';'

Within a coroutine, its own execution may be postponed in favor of another co-

routine by:

'RESUME' coroutine 'FROM' coroutine ';'

The coroutines are defined (like routines) after the RETURN from the program

segment and the form is:
'COROUTINE' ident I.' block 'ENDCOROUTINE 1 I;'

- 29 -

Example:

PROCESS LIVE = (PRODUCE, CONSUME);

START LIVE AT PRODUCE;

RESUME LIVE;

COROUTINE PRODUCE , .. RESUME CONSUME FROM'PRODUCE; ... ENDCOROUTINE;

COROUTINE CONSUME

... RESUME PRODUCE FROM CONSUME; ••. SUSPEND LIVE

ENDCOROUTINE;

...

Each RESUME process in the main program "sends control back to the place

where the last SUSPEND process was executed unless a START statement has more

recently been executed. In the latter case, control passes to the beginning

of the coroutine named in the START statement. Because of this protocol, it

is convenient to view the group of coroutines (i.e., the process) as a "semi

coroutine" of the main program; there is a master/slave relationship between

the main program and the coroutine process, but each subsequent resumption of

the slave process retains the context at termination of its previous period

of activity. Our use of the word "semi-coroutine" is similar to but not quite

the same as found in Dahl and Hoare [4].

If execution of a coroutine reaches the end of the block defining its

body, a terminal error message is generated and'the program aborts.

Some routines may have integer "value" parameters, local integer vari

ables, and may freely invoke themselves recursively. Such routines must be

predeclared in a specification of the form:

- 30 -

Example:

RECUR (100) : TREE (*), WHAT (*~*), P;

This example introduces three potentially recursive routines, TREE

having one parameter, WHAT having two parameters, and P without parameters.

A stack of maximum size 100 will be used to implement the recursive executions

of these routines.

form:

The subsequent routine-definitions for such recursive routines have the

I ROUTINE' ;dent{ I (' {ident}~l, ')' }O, 1· {' LOCAL' '(' {ident}~l, I)' }O, 1 I.'

block 1 ENDROUTINE' I; I

Example:

ROUTINE TREE (TOP) LOCAL (LSON,RSON):

... ENDROUTINE;

In this example, TREE has one parameter TOP and two local variables

LSON and RSON whose values will remain intact over recursive calls, etc.

Recursive routines are invoked by execute statements of the form:

I EXECUTE' routine {I (' {expr}~l, ')' }O, 1 ';'
. ,

Example:

EXECUTE WHAT (2-J, CH);

The expressions are calculated and assigned to the formal parameters at

entry to the routine body. This mode of parameter communication is commonly

refereq to as "cal1 by value".

The use of recursive routines is subject to one rather annoying restric-

tion. If a FOR statement or DO statement in a recursive routine contains

potentially recursive calls with different increments or final values for the

iteration phrase, then unpredictable and usually incorrect behavior will re-

- 31 -

sult. Safety is provided by the use of LOOP ..• ENDLOOP, making the control,

increment, and limit variables LOCAL to the routine.

Appendix E contains a SKOL program which closely resembles a PASCAL pro

gram described in Wirth's recent book [14J to illustrate the use of recursive

routines in conjunction with recursive data.

To consistently integrate the recursive capabi"lity with the situation

terminations provided in the situation case statement, the following extension

is available. A single-situation UNTIL statement may have the form:

'UNTIL' {'GLOBAL,}O,l ident ':' block tENDUNTIL' ';'

and the presence of the word GLOBAL will cause all situation terminations with

the indicated name to reset the recursion stack to its status at entry to the

UNTIL statement.

Major subroutines (inherited from FORTRAN) are invoked by:

'CALL' subroutine {'(I {arg}~l, 1),}O,l ';' ,
where arg is defined in Appendix A.

["~CRO PROCEDURES, Kmmn PARAMETERS AND· DEEAUI IS

The programmer may define macro procedures with formal parameters some

or all of which have specified default actual parameters; these macro procedures

are invoked by a calling sequence in which the correspondence between formal

parameters ("keywords") and actual parameters is explicit and non-positional.

Unspecified formals are given the defaults associated with them in the macro

definition; if no default was specified, then an error message ensues.

A macro procedure definition has the form:

'MACRO' ident I C' {ident {'=' Xexpr}O,l }71, I)' '=' "" text ,
where text is a piece of program text. Xexpr is explained below.

- 32 -

.. ,. J. I ,

Example:

MACRO ORDER (REL=<, X,Y), =

'; IF NOT (X REL Y) : SWAP (X ~ Y); ENDIF; I

A macro procedure invocation has the form:

macro 1(1 {keyword 1=' Xexpr}~l, I)' ';' ,
where each keyword is one of the formal parameters in the definition of macro.

Example:

ORDER (X=A(2) , Y = B(K»;

ORDER (REL = >=, Y = T, X= P(J);

These two statements are translated into the following program text:

IF NOT (A(2) < B(K»:

SWAP (A(2), B(K»; ENDIF;

IF NOT (P(J) >= T)

SWAP (P(J), T); ENDIF;

Notice that formal parameters can represent relations, operators, state

ments and procedure names as well as variables and expressions. An Xexpr is

an extended expression which includes these.

GENERAl EORMATIBJ INPLJI AND OUTPUT

SKOL provides input and output statements to and from text files, em-

ploying a syntax in which the data format associated with a variable is text

ually adjacent to the variable rather than being in a separate list. All con

trol format items occur within the sequence of data items at the appropriate

positions.

In the case of output, each variable may be printed according to an ex

plicitly specified format, an implicit format appropriate to the type of vari-

able or an implicit format preceded by the name of the variable and followed

by a semicolon.

The input statement takes the form:

'INPUT' '(' {[':' control I variable':' data-format]}~l t ')' I;' ,
where control is

[{,/,}~l I {+lconst}O,l 'XI]

and data-format is a valid FORTRAN data format item.

Example:

I N PUT (: 5 X, J : I 3, A (J) : FlO. 5 , : /, : X, ~~HA T L 1) ;

The general output statement has the form:

'OUTPUT' '(I {[I:' carriage-control

where carriage-control is:

, ,
t 1 "t '] }~l ')" I . con ro output-l em , I ;, ,

['$PAGE' I '$SKIP' '$SKIP2 1 I '$OVERI]

and output-item is:

[variable' {I: I {[data-format I ICI]}O,l }O, 1 I output-text]

When variable is followed simply by : then the general type-dependent

format is used, and when variable stands alone, then its name is printed before

the data. Output-text is printed as is. The carriage-controls should come in

first position or after a 1/1 control item. In first position, the colon may

be omitted before a carriage-control. The format specification :C indicates

conversion of internal character (CHAR) representation to external text.

Example:

OUTPUT($PAGE,:3X,J:,A(J),:5X,CH:C,I$');

This statement will print on the first line of a new page (assuming J=42,

A(J)=142.36, and CH=IPI)

42 A(J) = 142.36; P$

- 34 -

The input and all ""1:;'+, ';tatemE'dts read from and write to text files $INPUT

and $OUTPUT respectively. ~'I~~~ file identifiers are associated with the

standard text input and output files unless the programmer requests otherwise

by redefining them in the program text (see section on text substitution).

The general format used in the OUTPUT statement is governed by the cur

rent definition of $GENFORM which is FORTRAN format G12.5, but can be rede~·

fi ned by the progra'mmer.

The user should especially note that the carriage-control character will

be set to blank if no explicit carriage-control has been specified!

If a particular sequence of data-format and'control items is used in

several places in a program, then this IIformat" may be named and defined by a

FORMAT definition of the form:

'FOR~1AT' ident '=1 '(I format-list I)' I;'

where format-list is:

{[control/data-format / output-text / +Iconst '(I format-list 1)1]}~1,

These formats can then be used in read and write statements of the form:

[tREAD' /'WRITEI] '(I file ',I format 1)1 {variable}~O. 1;1 ,
where format is the name of a previously defined format sequence.

Example:

FORMAT PERSON = (lX, 215, F10.2);

READ ($MYFILE , PERSON) @(WORKER.AGE),J,@.PAY

FORMAT PRETTY = (11', lX, 13, I) I, F10.5,/,' I);

WRITE ($OUTPUT , PRETTY) K, B(K);

- 35 -

,

. AUGMENTATION $rAtEMENIS

Because of the ubiquitous requirement to update the values of variables

by incrementing or decrementing their current values, the SKOL language pro

videsan augmentation statement of the form:
. 0 1

['INCR' I 'DECR'] variable {'BY' expr} , ';'

The BY phrase defaults to BY 1 if omitted, and INCR, DECR mean, respectively,

"add to", "subtract from".

RUN-TIME ERROR UiECKS AND VARIABI E TRACES

The SKOL/FORTRAN precompiler will insert run-time consistency checks

into the target FORTRAN code for certain statement forms, but the decision of

when and where to insert checks is under very precise user control. For this

purpose, there is a runcheck option statement of the form:

'RUNCHECK I '(' {{ I _ I} 0, 1 [' ALL I I' FOR' I"CASE l I i UNTIL' I' TRACE' }~! I ') I ';'

A minus means suppress checks for the designated class of statements and the

absence of minus means insert checks until told otherwise. The ALL means all

the others. When TRACE is enabled, major control flow is traced by printout.

This means that CALL, EXECUTE, RESUME and SUSPEND generate output messages,and

for each repetition of a LOOP ... WHILE ... ENDLOOP,REPEAT ... ENDREPEAT,FOR ... ENDFOR

or LINK ... ENDLINK an output message is generated.

It is quite easy to suppress run-checks for short time-critical loops

while leaving them on for less critical portions of a large program.

A variable tracing statement is available of the form:
. >1 'TRACE' {variable}~ , I;' ,

and causes subsequent assignments of new values to variable to be accompanied

by a "dump" of the variable name and the new value. The section on "Constants,

- 36 -

Definitions, and Text Substitution" describes how this is accomplished.

Example:

RUNCHECK (ALL,-FOR);

TRACE A(K),@.VAL,P;

These two statements cause run-time checks to be inserted everywhere but

in FOR statements, and tracing of all assignments of "the" form A(K) := expr,

@.VAL := expr or P := expr. Implicit assignments generated by the implemen

tation of iterations and the NEW statement are also traced.

ERROR DIAGNOSTICS

Every effort has been made to diagnose errors in the non-FORTRAN features

of SKOL at the time of the SKOL to FORTRAN precompilation. The degree to which

this has been achieved is somewhat surprising for precompilers, not to mention

macro-implemented precompilers. In particular, the compile-time checks on the

use of records, references and the CASE statement approach what could be accom

plished by a very good compiler. Appendix F contains a sample of SKOL diag

nostics with explanations. Appendix H explains messages which diagnose serious

control syntax errors.

Run-time error messages are issued for zero increments in FOR statements,

final value not exact in iteration phrases of FOR statements, terminations of

UNTIL blocks without encountering a situation statement, expressions out-of

range in CASE statements, space exhausted in record classes, illegal termination

of coroutines, attempts to read or write illegal characters, character string

modifications which exceed the maximum size allowed, collision in character

mapping (usually a duplicate occurrence of the same character constant in the

CHAR type specification), stack underflow and overflow in invocations and re

turns for recursive routines.

- 37 -

RESTR IctIONs . AND .' ExreN$ IONS DepENDENT ON' EORTRM '

Whenever Fident appears ';'n the syntax' of SKOL, it means any val id iden

tifier (symbolic name) in the FORTRAN language dialect being used. However,

if portability 'is desired, each Fident'should be of form:

letter {[letterldigit]}o ... 5

where a •.. b means any integer between a and b inclusive.

The name of a record class must be an Fident4 which must be a valid

FORTRAN identifier after the appending of two d.i'gits. For standard FORTRAN,

this means:

letter {[letterldig;t]}O .•. 3

Other names indicated as s'imp'ly ident should conform to:

[letterlspecial-symbol] {[letterlspecial-symbolldigit]}~O

where special-symbol is any non-alphanumeric chara'cter which is not used as a

meaningful symbol of FORTRAN or SKOL. The simplest rule is to avoid everything

in the 48-character FORTRAN set,

is okay).

, .' . , t ; " t @', '"', 'I', t & t and ' -1 (bu t '$ t

A few FORTRANs (including the standard) do not allow an integer subscript

expression to be itself a subscripted array element (e.g., A(P(K)) is illegal).

When such a restriction is in effect, it implies the following restriction in

SKOL:

Reference variables may not be arrays

For example, REF TO class: S(5); would be illegal. Note that @(@(P.NEXT)

.AGE) must be expressed by use of a temporary reference variable Q, as follows:

Q := @(P.NEXT);

... @(Q.AGE) ...

Some dialects of FORTRAN (notably IBM FORTRAN IV) allow the programmer

to indicate what should be done in case an input (i.e., READ) statement encoun-

- 38 -

ters an end-of~file or the attempted read results in an error. In this case,

SKOL is extended so that the new syntax" of READ statement (not including

string version) is:

'READ' '(I file I,' format' {',I 'END' '=' situationlO,l

"{',' 'ERR' '=1 situationlO,l ')'" {variab1ef.0, ';1 ,
Other non-standard features available in a local dialect of FORTRAN may

be used with a certain loss of portabi'lity. Such features might include mul

tiple ENTRYs to a subprogram, direct-access I/O, etc. Warning: the direct

access I/O available in IBM FORTRAN IV may not be used in SKOL because that

extension uses the single-quote character as a separator. Such statements can

be used only if the SKOL precompiler is turned off temporarily (see Appendix C).

The optional data portion of a variable specification ;s not strictly

standard FORTRAN so on some compilers the programmer wi"11 be forced to use the

separate FORTRAN DATA statement.

Items of " the form

variable ':1 data-format

may be replaced by

iterated-data 1:1 +Iconst 1(' format-list I)'

in READ, WRITE, INPUT and OUTPUT commands where iterated-data has the form:

'(I 'FORI simp1elvar 1=' simp1eIexpr 'TO' simplelexpr ':1

{[iterated-datalvariab1e]};1, ')1 ,
Example:

INPUT ((FOR 1=1 TO 3 : (FOR J=l TO 3 : I,J,A(I,J))) : 3(3 (212,F10.5,5X),//));

Coroutine resume and suspend are not legal within DO iteration statements

for some FORTRAN compilers (e.g., WATFIV) which donlt implement the extended DO.

The remedy is to simply change such a DO to the more general FOR statement pro

vided by SKOL.

- 39 -

·.

M4m IX OPERATIONS: AN ExAMPLE OF LANGUAGE mENS tON

To give a general feeling for the kind of language extension that can be

implemented with a modest amount of effort by someone reasonably familiar with

the use of the MORTRAN2 macro-translator [12J, we shall describe the implemen

tation of some simple operations on matrices of REAL values. First, the syntax

of the new features:

Matrices are declared in the form:
>1 , t~ATR I X ' {f ide nt' (I + I con s t ',' + I can st') '}" , ';' ,

and are modified by simple MATRIX assignments of the form:

I SET' matrix ': =' Mexpr '; I

where Mexpr is one of:

. '(' Rexpr ')'

or

{'$.' }0,1 matrix· {['+'l'*'] {'$.' }0,1 matrix}O,l

The notation $.MAT shall indicate the transpose of matrix MAT and the paren

thesized real expression will be assigned to all positions of the matrix.

Example:

MATRIX A(5,10), B(10,10), C(5,10), D(10,5);

SET A := (0); SET B :- (1~0); SET C := (.S-X*~2);

SET A := A+C; SET D := $.A;

SET C := A*B;

SET B := $.C*C;

We make no pretense that these facilities are completely satisfying for all

possible applications. Furthermore, to simplify the implementing macros, we

have suppressed all error checking (see [12J for examples of that). The follow

ing macros will provide the above matrix· facilities. Note that text of the

form %' '= I , is a macro-definition which may appear anywhere i·n program

text.
- 4 ° -

DEFINE • ;MATRIX #;' = • II ; REAL II $%%2#1,; 4

DEFINE '$%%2#(#,#),' =

'%' , $#1 . l' I = ., #2 "

%' '$#1 .2" = " #3 "

%' '$$. #1 . 11 1 = 1 1 #3 'I

%' '$$.#1.2 1' = II #2 II

#1 (#2 , #3), $%%2' ;

DEFINE ',$%%2;' = ';'

DEFINE ';SET #:=#;' =

, II ; "@LG@LSO" DO "@LCOO I@LC02 "='1 1, $#1.2

";00" @LCOO I@LCOl "=" 1,$#1.1;$%%1#1 := #2;

@LCOO CONTINUE ;'

DEFINE 1$%%1#:=#;' =

, #1 (I@LC01,I@LC02) := #2 (I@LC01,I@LC02);@LUO ' ;

DEFINE '$%%1#:=(#);' =

, #1 (I@LC01,I@LC02) := (#2);@LUO';

DEFINE '$%%1#:=#+#;' =

, #1 (I@LC01,I@LC02) := #2 (I@LC01,I@LC02)

+ #3 (I@LC01,I@LC02);@LUQ';

DEFINE 1$%%1#:=#*#;1 =

'R@LC04 := 0.0 ";DO"@LC05 I@LC03 "=" 1,$#2.2;

@LC05 R@LC04 := R@LC04+ #2 (I@LC01,I@LC03)

* #3 (I@LC03,I@LC02); #1 (I@LC01,I@LC02) :=

R@LC04;@LUO';

DEFINE '$.#(#,#)' = ' #1 (#3 , #2)' ;

The replacement parts of these macro-definitions can be understood after

a moderate amount of study of [12J. the full list of definitions is included

here to indicate how little extra machinery is necessary to implement some use-

- 41 -

ful features. A similar example in [12] checks for errors and i·ssues warnings.

DrHBR USES OF DEFINE
The small program INPOST, in Appendix E, contains some simple but very

useful applications of the DEFINE text-substitution facility of SKOL inherited

from MORTRAN. The program converts simple expressions with infix operators

to the postfix notation using a temporary stack for operators and parentheses.

The algorithm used to implement INPOST requires commands NEXTCH to obtain

the next input character, STACK to push the current input character onto the . .

stack, UNSTACK to move the top element from the stack to the end of the par

tially completed postfix string, and POP to discard the topmost element of

the stack. An expression TOP is needed to inspect the topmost stack element.

A character string OPSTK(20) is used to implement the stack and strings

CARD(80), LINE(120) for input and output. The above commands are then imple

by the following DEFINEs:

DEFINE ';NEXTCH;' = ';INCR IC; CH := CARD(IC);' ;

DEFINE ';STACK;' = ';CATENATE CH ONTO OPSTK; NEXTCH;'

DEFINE I TOP I = 'OPSTK(LENGTH(OPSTK)), ;

DEFINE ';POP;' = ';DECR LENGTH(OPSTK);' ;

DEFINE ';UNSTACK;' = I ;CATENATE TOP ONTO LINE;POP;'

and then the program is described in terms of these composite commands. Note

that STACK employs the command NEXTCH and UNSTACK uses both TOP and POP. The

clarity of the program would probably be enhanced by an additional command de-

fined by:

DEFINE I ;PASS_THRU;' = ';CATENATE CH ONTO LINE;NEXTCH;'

- 42 -

Program INPOST also uses the DEFINE facility to allow debug output to be

incorporated into the program which will be erased or left intact, depending

on a slngle DEFINE located at the top of the program. The keyword DEBUG is

appended as prefix to any command which should only be generated when DEBUG

mode is active and then the DEBUG mode is activated or deactivated by:

or

DEFINE ';DEBUG ' = ,. , , "ON"

DEFINE ';DEBUG #;' = I;' ; "0FF"

The first DEFINE causes removal of all DEBUG prefixes and the second causes re

moval of all DEBUG-prefixed statements.

WARNINGS

FORTRAN demands that the symbolic names of variables, functions and sub-

routines be restricted to no more than 6 letters or' digits. In order to use

longer names (possibly with embedded special characters) in SKOL programs, one

should simply use the desired name (carefully delimited by blanks!!) in all

specifications and uses of the variable, function or subroutine, and then in-

sert a DEFINE before the first occurrence of the desired name; the definition

should call for replacement of the blank-embedded name by a blank-embedded valid

FORTRAN symbolic name.

Example:

DEFINE I $~LONG_NAME I = , REALOl '

CONSTANT ARRAY_MAX_SIZE = 120 ;

X := $~LONG_NAME (J)+2.5 ;

FOR I = 1 TO ARRAY MAX SIZE -1 - -

- 43 -

ENDFOR;

Notice that the constant ARRAY_MAX_SIZE does not require a DEFINE (FORTRAN

will only see 120) but all occurrences must be blank~embedded just like the

variables, functions and subroutines.

The need to embed certa i n names 'i n bl anks is an embarassment caused by

the lack of a lexical scanner in the MORTRAN translator. Given this annoyance,

the best solution is probably to systematically embed all names in blanks. It

is difficult to know exactly when the blanks are needed in the source program

since occasionally the SKOL precompiler will put them in. For example,

FOR I = 1 TO ARRAY MAX SIZE: - -

will work but

will not work!

A run-time error message indicating a "collis'ion in character mapping"

means either a duplicate occurrence of the same character constant in the user

defined CHAR data-type or else that the character' conversion scheme implemented

by the SKOL subprograms in Appendix D does not work for the given machine/char

acter code/FORTRAN combination being used.

Users are reminded to end all programs and all files included by %Ud cards

by a terminator control card with %% in the first two columns.

All SKOL statements are terminated by a semicolon and the programmer is

strongly advised to carefully make sure that no semicolons are missing. The

diagnostic capabilities of the SKOL precompiler are quite good so long as the

program isn1t missing statement terminators. Especially beware omission of

the terminating semicolon for a DEFINE statement!

The one place where semicolons are not wanted' but might be mistakenly

placed is after the END terminating a CASE group in a scalar or situation CASE

statement.

- 44 -

A &cRO AND EltiCTIOO FOR Sm IOO [QUALITY

It is very convenient in some applications to be able to test for

equality between two variable-length strings with a notation like

EQUAL (STR1, STR2)

which can be embedded in logical expressions.

To this purpose we propose th~ following macro DEFINE and supporting

LOCIGAL FUNCTION:

DEFINE' EQUAL(#,#)I = IEQU999(#1 ,

SIZE(#l), LENGTH(#l), #2 , SIZE(#2), LENGTH(#2)),

FUNCTION EQU999(STR1,Sl,Ll,STR2,S2,L2)LOGICAL:

"TEST EQUALITY OF TWO STRINGS"

INTEGER Sl,S2,Ll,L2,I;

CHAR STR1(Sl), STR2(S2);

U~TIL ALL_SAME OR MISMATCH:

IF Ll..,= L2 : MISMATCH; ENDIF;

FOR I = 1 TO L 1 :

IF STR1(I).= STR2(I) MISMATCH; ENDIF;

ENDFOR;

ALL_SA~1E;

THENCASE:

ALL SAME BEGIN EQU999 := TRUE ; END

MISMATCH BEGIN EQU999 := FALSE ; END

ENDUNTIL;

RETURN;

ENDFUNCTION;

Each subprogram in which EQUAL is used must have the specification:

LOGICAL EQU999 ;

- 45 -

PfEERENCfS

[1] N. \~irth, liThe Programming Language PASCAL," Acta Informatica, 1,

35-63 (1971).

[2] K. Jensen and N. Wirth, "PASCAL: User Manual and Report," Vol. 18 of

Lecture Notes in Computer Science, edited by G. Goos and J:/ Hartmains,

Springer-Verlag, Ber1in-Heidelberg-New York, 1974.

[3] M.E. Conway, "Design of a Separable Transition-Diagram Compiler," CACM

Vol. 6, No.7, (1963), 396-408.

[4] O.J. Dahl and C.A.R. Hoare, "Hierarchical Program Structures" in

Structured Programming by Dahl, Dijkstra and Hoare, Academic Press,

New York, 1972.

[5] W.T. Hardgrave, "Positional versus Keyword Parameter Communication in

Programming Languages," SIGPLAN Notices, Vol. 11, No.5, May "1976,

pp 52-58.

[6] D.E. Knuth, "Structured Programming with GOTO Statements," Computing

Surveys, Vol. 6, No.5, (1974),261-301.

[7] C.T. Zahn, "A Control Statement for Natural Top-Down Structured Pro

gramming," in Programming Symposium: Proceedings, Co110gue sur 1a

Programmation, edited by B. Robinet, Springer-Verlag, Berlin (1974),

170-180.

[8J D.E. Knuth and C.T. Zahn, "Ill-chosen use of Event," CACM, Vol. 18,

No.6, (June 1975), 360.

[9] A.J. Cook and L.J. Shustek, "MORTRAN2, A Macro-based Structured FORTRAN

Extension," Conference Digest of Spring 1975 IEEE COMPCON.

[10] A.J. Cook, IIExperience with Extensible, Portable FORTRAN Extensions,"

SIGPLAN Notices (summer 1976).

- 46 -

[11] A.J. Cook and L.J. Shustek, "A User's Guide to MORTRAN2," Computation

Group Technical Memo No. 165, available from Computation Research

Group (Bin 88), SLAC, Stanford, Ca. 94305, U.S.A.

[12] C.T. Zahn, "A User Manual for the MORTRAN2 Macro-translator," Compu

tation Group Technical Memo No. 167 (see [11]).

[13] C. A. R. Hoare, "Notes on Data Structuri ng, " in Structured Programmi ng

(see [4]).

[14] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall,

Englewood Cliffs, N.J., 1976.

[15] P. Henderson and R. Snowdon, "An Experiment in Structured Programming,"

BIT (European), Vol. 12, 1972, pp 38-53.

- 47 -

APPENDIX A
EOIJ1l\1 . SYNTAX· (f .. SKQL

Aexpr = { sign }O,l {{{ Aprimary }~!*' }[~*' I 'I'] }[t, I '_']

Aprimary = [Aconst I '(' Aexpr ') 1 I Avar I Afunction '(" { arg }~l,') J] ,

action = [initial ;zation I assignment I invocation interruption I selection J

repetition I input-output I augmentation allocation I focussing]

allocation = ['NEW' I 'FREE'] reference I;'

arg = [expr I array-name I function I subroutine]

array-bounds = '(' {+Iconst }~l, ') 1

aSSignment =

[variable' :=1 expr J; 1 I II' string 1 :=' string-expr I;'

'REPLACE' [string-context I string] 'BY'

['NULL' I char-expr I string-context] ';'

'DELETE' [string I string-context] I;'

'INSERT ' [char-expr I string-context]

['BEFORE' I IAFTER'] string 1 (' index')' ';']

augmentation =

['CATENATE' string-expr 'ONTO' string ';' I
['INCR' I 'DECR'] variable { 'BY' expr }O,l ';']

- Al -

, ' ~O
block = { command }-

Cconst = '(I {{ sign }O,l Rconsi }~ , I)'

carriage-control =

['$PAGE' I '$SKIP' I '$SKIP2' I '$OVER']

char-canst = "" [non-I-char I """] ""

char-expr = [char-const I char~var]

command =

[action I definition I format-declaration I pragmat]

common-declaration = 'COMMON' 'Ii Fident '/'

{ Fident { array-bounds }O,l }~l, ';'

control = [{ 'Ii }~l 1 { +Iconst }O,l 'x']

data = II' { [' { '_I }O,l Aconst I Lconst I char-const I 'NIL'] }~l, '/'

data-format =

[{ +Iconst }O,l ['1'1 'L' IAI] +Iconst

a 1 0 1 ° 1 { sign} , {Iconst 'PI }' {+Iconst}'

['F' IIG' I IE' I'D'] +Iconst '.' Iconst]

- A2 -

definition ==

['CONSTANT' { ident '=' value }~l, I;' ,
IDEFINE' 1'1' pattern 1'1 I '='

, , " replacement ' 1 "
, . , I ,

'MACRO' ident ' (, .. { ident { '=' Xexpr } 0, 1 }~1
I ,

,) I ,
'=' " , , text " , , , • I] ,

exponent = lEI { sign }O,l { digit }1,2

expr = [Lexpr I Aexpr I char~expr I 'NIL']

Fident = letter { [letter I digit] JO ... S

Fident4 = letter { [letter I digit] }O ••. 3

Ftype == ['REAL' I I INTEGER' I 'LOGICAL I I 'COMPLEX']

field-group = ['REFI I Ftype I ICHAR'] I:'

{ ident { array-bounds }O,l }~l, ,

. focussing = IWITH' reference 1:1 block 'ENDWITHI 1;1

format-declaration = 'FORMAT' ident 1=1 1(1 format-list 1)1 1;1

format-1ist = { [control I data-format I output-text I
+Iconst '(I format-list 1)1] }~l, ,

- A3 -

Iconst = { digit }~l

ident = [letter I special-symbol]

{ [letter J special-symbol I digit] }~O

index = [+Iexpr I scalar-expr J

initialization =

['CHA~SETUP' ';' J

'MAKEAVAIL' class I;' I
'START' process 'AT' coroutine';']

input-output =

['INPUT' '(' { [':' control l variable':' data-format] }~l,')' ';' ,
'OUTPUT' '(I { [carriage-control I ':1 control J output-item] }~l, ')1 ';' ,

['READ' I 'WRITE'] '(' file',' format')' { variable }~O, I;'

['ENDFILE' J 'REWIND' I 'BACKSPACE'] file ';' J

['READ' J 'WRITE'] 'STRING' { '(I file I)' }O,l

string { '(I index' , index ')' } 0, 1 ';']

interruption =

['STOP' ';' I 'PAUSE' ';' J ' RETURN' ';'

'SUSPEND' process I;' J situation I;']

- A4 -

invocation =

[• CALL I subroutine { • (I { arg }7 l , ') I }a, l ';' I ,
'EXECUTE' routine { '(' {Iexpr }7l , I)' }O,l ';'

'RESUME' process ';l I

'RESUME' coroutine 'FROM' coroutine I;'

macro '(' { keyword '= J Xe!xpr }~ 1 J J)' J;']

Lconst = ['TRUE' 1 'FALSE']

Lexpr = {{ 'NOT' }O,l Lprimary }[1 0R lj'AND']

Lprimary = [Lconst J '(I Lexpr ')' J Lva~

Lfunction '(I { arg }7l , I)' J { Aexpr }2 , relop
'IN' scalar '(I scalar-var ')']

label = [scalar-const I scalar]

length = non-negative-Iexpr

list-of-subtypes = [empty J 1(' { subtype }~l, ')']

output-item = [output-text 1

variable { '.' { [data-format J 'C I
] }a,l }a,l]

output-text = "" { [non-I-symbol J """] }~l ""

parameters = '(' { Fident }~ 1, ')'

- A5 -

pragmat =

[I T RA C E 1 { va ria b 1 e } ~ 1, I;' ,
, RUNCHECK' 1 (' {{ '_'}

0, 1 [1 ALL' J 'FOR' J

, CASE' j 'UNTI L' j 'TRACE'] }~ 1, ')' ';']

process-declaration =

'PROCESS' ident ,=, '(1 { ident }7l , ')' '; 1

program { t };;:: 1 t . t 1 . = program-segmen ermlna or- lne

program-segment =

['MAl N' ':' segment- body 'ENDMAIN' '; 1

'SUBROUTINE' Fident {parameters }O,l '.'

s egment- body 'ENDSUBROUT I NE' ';' j

'FUNCTION' Fident parameters Ftype '.'

segment- body 'ENDFUNCT I ON' ';'

'BLOCKDATA' '.' { specification };;::l 'ENDBLOCKDATA' ';']

Rconst =
[{ digit };;::l '.' { digit };;::O { exponent }O,l j

{ digit};;::l exponent j , , { digit };;::l { exponent }O,l]

record-class-declaration =

'RECORD' 'CLASS' '(' +Iconst ')' 'OF' Fident4 '.'

{ ['REF' I Ftype I 'CHAR'] I.'

{ ident { array-bounds }O,l }~l, I;'

};;:: 1 'ENDRECORD' '; I

- A6 -

recursion-declaration = 'RECUR' I (I +Iconst I) I ': I

{ ident { '(' { '*' }7l , ')' }O,l }~l, ';'

re lop = ['=' J '-, =' J '<' J '>'. J '<=' J '>=']

repetition =

['REPEAT' { Iexpr 'TIMES' }O,l ':' block 'ENDREPEAT I I;' J

'LOOP' ':' block 'WHILE' Lexpr ':' block 'ENDLOOP' ';'

'FOR' Ivar '=' Iexpr 'BY' Iexpr ':' block 'ENDFOR' , . ,
, FOR' Ivar '=' Iexpr { 'BY' Iexpr } 0,1

'TO' Iexpr ' . , block 'ENDFOR' , . ,
J . ,

, LINK' reference '=' reference 'BY' field ' .' .
block 'ENDLINK' I;' J

'DO' simpleIvar '=' simplelexpr 'TO' simpleIexpr ':'

block 'ENDOO' ';']

routine-definition =

['ROUTINE' ident { '(' {ident }7', ')' }O,l ,
{ 'LOCAL' '(' { i dent }7l , ')' } 0, 1 '.'

block 'ENDROUTINE' I;' J

'COROUTINE' ident '.' block 'ENDCOROUTINE' ';']

scalar-type-definition =

'TYPE' ident '=' list-of-subtypes I;'

,

segment-body = { specification }~O { statement-function }~O

{ command }~l { routine-definition }~O

- A7 -

selection =

['IF' { Lexpr I:' block }~~LSEIF'

. { 'ELSE' ':' block } 0, 1 'ENOl F' ';' I

'UNTIL' { ident }~6R' 1.1 block ITHENCASE' I:'

{{ situation }~1, I.' 'BEGIN' block 'END' }~1 'ENDUNTIL' I;' ,
'UNTIL' { 'GLOBAL' }O,l ident I:' block 'ENDUNTIL' ';'

'CASE' scalar-var ':' scalar 'OF'

{{ 1 a be 1 } ~ 1, ':' I BEG IN' b 1 0 c k 'E NO' } ~ 1

{ 'ELSE' I.' 'BEGIN' block 'END' }O,l IENDCASE 1
1;1]

sign = ['+' I '-']

simpleIexpr = [+Iconst J simpleIvar]

special-symbol =

[1$' I symbo1-not-in-FORTRAN-set-and-not-:;@"I&-;]

specification =

[definition I pragmat J format-declaration I

scalar-type-definition I record-class-dec1aration

variable-declaration process-declaration I recursion-declaration

common-declaration I 'CHAR COMMON' ';'

, EXTERNAL I { Fi dent }~ 1, I; I]

statement-function =

Fi dent I (' { Fi dent }~ 1. ') 1 I = I Aexpr '; I

- A8 -

string-const = I I I I { [non-'-char J 1'1", J }~O It"

string-context = string '('

[index' { ' •.. ' index }O, l I index • , 'I' length J

1 ength I J' I I index] I)'

string-expr =

{ [char-expr I string-const I string I string-context] }~i,

subscri pts = I (' { I expr }~ 1
I ')'

subtype = [ident I char-const I ident '=' list-of-subtypes]

terminator-line = line-with-%%-in-first-two-columns

text = { [non-'@#-symbol I 1'1'" J I@@! J '##'] }~O

value = [Aconst J '(I '-' Aconst I)' I Lconst I char-const J 'NIL ']

variable = [Fident { subscripts }O,l J

I@I '(I reference I.' field I)' J i@' , I field' ,]

variable-declaration =

['STRING' { Fident 1(' +Iconst ')' }~l, I; I ,
[Ftype scalar I 'REF' ITO' class ': I]

{ Fident { array-bounds }O,l { data }O, 1 }~l, '; I]

Xexpr = text-without-semicolons

- A9 -

APPENDIX B

SYNTAX FLOW GRAPHS FOR SKOL

The following pages contain syntax flow graphs for a large part

of the SKOL language. Those syntactic categories whose definition

seemed to be readily understandable from the linear notation of

Appendix A have been omitted.

- Bl -

Notes:

1) Scalar, class, reference, field, subroutine, routine, process,

coroutine, macro, keyword, situation, string, file, integer

and format must be identifiers for objects of the type des

cribed by the word.

2) Capital letters, I, R, L, C, A are codes for integer, real, logical,

complex, arithmetic where the latter includes integer, real and

complex. The character 1+1 means strictly positive.

3) ?var, ?expr, ?function, ?const mean, respectively, variable,

expression, function, constant of type ?, where? is one of the

built-in or programmer declared types.

- A10 -

, ,

j: program-segment
L-

ENJ)BLOC\<DATA

. recursion-declaration

- RECUR

- B2 -

01"- def inition .. ~:~"
.•. ".,",l~'~ , ."
,('"",.....-' ----.

voJ'Ae. 1-----~----..,....rW

t

DEFINE f~rn

variable-declaration

............ OMOA4,.- _

~ __ ~ b~~~ ~--~

- 83 -

< routine-definition "~
! •• ~

...... - CoROUTINE EN DCOROuTltJE ...--rtaI

ROUTINE

record-class-declaration

------ RECORD

ENDRECORt>

· ':" :l~,- praguuu. ?" J
. I

1

RUNCHECK

TRAcE

invocation

C~"---""'-I

,
- B5 -

~ .

input-output

- 86 -

, selection

- B7 -

repetition . ~ .
I

. \ .

............. REPEAT

E Nt> LI N ~ to--o--_---

Rconst

t---.r-~----------,..-+I e?(P<Me+tt -_,

- B8 -

, asslgnment \
, " ' j •

"",','-:'1'" \'
~-.....

~-----

................ s~d-~ I--....,...-----~

~....-----

INSERT

string-context

---s~~

- 89 -

format-list

---.--....-........ --.... CcMtrol

I~-----~ ~Cl-fOvmak 1-----""""1

1""-----..... outp-«- te,d:------""1

-hrtMat: - \ lS t

data-format

output-item

- B10 -

char-const.

string-const

output-text-

- 811 -

· APPENDIX C

CoNTROL ~NDS FOR THE SKOL T BAN SLATOR

The translator can be controlled by lines with % in column 1, according

to the following command formats in which no embedded blanks are allowed:

Command

%%

%Ui or %Uij

%F

%M

%Cij

%AO

%Al

\!%A2

%QO

%Q1

%L

%N

%E

Action

Resume reading input characters from the previous file used
for input. If current file was the first, then no more
characters are read.

Start reading input from device given by decimal digit i
or digits ij.

Assume subsequent text is FORTRAN.

Resume reading SKOL input.

Read subsequent input from columns 1 through n where n is
given by the two decimal digits ij.

SKOL source text is not output as FqRTRAN comments.

SKOL source text is output as FORTRAN comments.

Each line of SKOL text is listed on two FORTRAN comment cards
using columns 41-80.

SKOL comments must be between pairs of II.

SKOL comments are terminated by an end-of-1ine unless closed
by II on the same line.

Begin listing lines of SKOL text.

Stop listing SKOL text.

Start new page in SKOL listing.

Default modes are %Ul, %M, %C80, %AO, %QO, %N

- C1 -

APPENDIX D

CHARACTER STR I NG UrI LITY PROOIW,1S

The following seven subprograms are required for character and

string manipulations. They will usually be installed on a file so

that their inclusion into the user program requires only one control

card. The declaration for the CHAR data type must precede the in

clusion of character utilities and both must lie outside other pro

gram segments (see examples in Appendix E).

- D1 -

"ROUTINES FOR BASIC CHARACTER SETUP AND INPUT/OUTPUT"
" AISO STRING REPLACEMENT "
"THESE ROmINES SHOULD WORK IF: "

1--- MACHINE INTEGER ARITHMETIC IS l-COOPLEMENT, "
2-CCMPLEMENr, OR SIGN-MAGNITUDE AND IS "
FULL WORDLENGI'H. "

2--- SIGN-BIT IS LEFTMOST IN WORD. "
3--- A SINGLE CHARACTER READ INTO AN INTEGER UNDER"

Al FORMAT IS LEFT ADJUSTED IN THE WORD WITH
BLANK FILL.

4--- THE BIT REPRESENTATION FOR CHARACTER ZERO IN
YOUR f.1ACHINE I S CODE IS Nor ALL ZEROES.

ON CDC 6000 OR 7000 SERIES USE THE Rl FORMAT OF
" EXTENDED FORTRAN AND REIMPLEMENT THE CONVERSION
" PORTIONS OF RDSTR9,WI'STR9,INIT99 AND INCV99.
"
"PDP/II ALSO REQUIRES SCME WORK • . ,
RUNCHECK(-ALL):
"THESE 3 CONsrrANTS ARE MACHINE DEPENDENT"
" SHORT BYTE = 2**(BITS PER BYTE - 1) "
CONSTANT SHORT BYTE=1281~TIS PER WORD=32,BITS PER BYTE=8;
SUBROUTINE RDSTR9(NDEV AKl:<AY;SIZ-;N1,N2): --

"READ ARRAY(Nl ••• N2~ FRCM DEVICE NDEV AND CONVERT TO II

" INTERNAL CODES FOR CHAR. STRING LENGI'H IS Nor SET."

e~G~~g~Y'~56~~t~~~I~~6bttH9(1))((T(1,1),INCH9(1,1));
INTEGER C (LAST (CHAR)), T (2, bHORT BYTE);
INTEGER I,J~W,WSTARiINDTAB,BUFFER(200),NCHARi
FORMAT STR9~9=(200A);

"READ RECORD OF CHARS INTO SUBARRAY"
READ(NDEV6STR999) (FOR I=Nl TO N2:ARRAY(I));
00 I=Nl T N2:

W:=ARRAY(I) ;
WSTAR:=IABS(W)/BSHIFT+li
IF W < 0:

INIJrAB: =1 i
ELSE:

INDrAB:=2i
ENDIF;
ARRAY (I) : =T (INDTAB, WSTAR) i
IF ARRAY(I) = 0:

CALL RUNERR ($CONVERT);
ENDIFi

ENDOO;
RETURN;

ENDSUBROurINE i

- D 2 -

SUBROlITINE WTSTR9(NDEVlARRAy,SIZ6N1~N2):
"WRITE STRING ARRAY (Nl ••• N2) NTU DEVICE NDEV "
" AFTER APPROPRIATE CONVERSION FRClv1 INTERNAL "
" CHAR CODES TO Al FORMAT. It

~~~~~Y'~66~~t~~~r~~6~H9(1»)«T{I,I),INCH9(1,1»: 
INTEGER C ( LAST (CHAR) ), T ( 2, bHORT BYTE n 
INTEGER fLJ~W,V~TARIINDTAB,BUFFER(700),NCHAR; 
FORMAT STK9~9=(200A ); 
NCHAR:=N2-Nl+li 
IF NCHAR < 1: RETURN i ENDIF i 
00 I=Nl TO N2: 

IF IN CHAR(ARRAY{I): 
IF\: (ARRAY (I)J -, = 0 : 

BOFFER(1-Nl+1):=C(ARRAY(I»; 
ELSE: 

CALL RUNERR ( $CONVERT ) i 
ENDIFi 

ELSE: 
CALL RUNERR ( $CONVERT ); 

ENDIFi 
ENDOO; 
WRITE(NDEV,STR999) (FOR 1=1 TO NCHAR :BUFFER(I»; 
REWRN-

ENDSUBROurINEi 

SUBROUTINE INIT99: 
"INITIALIZE CHARACTER CONVERSION TABLES" 
CHAR COMMON; EQUI~LENCEfC~I)SOUTCH9(1»(T(I,I),INCH9(1,1»; 

im~~ i ~ J ~~~£~~ fNMJ, BUF~~~~i651~ NtiIAR i 
BSHIFT:=2**( BITS PER WORD - BITS PER BYTE ); 
00 1=1 TO 2: - - - -

00 J=1 TO SHORT BYTE: 
T ( I , J ) : =0 ; -

ENDOOi 
ENDOOi 

DO 1=1 TO IASTbCHAR): 
IF 1~I6(I) < 6: 

IN1J!'AB : =1 ; 
ELSE: 

INDTAB:=2; 
ENDIF; 
WSTAR:=IABS(C(I»/BSHIFT+lj 
IF T ( INDrAB, WSTAA) -, = 0: 

CALL RUNERR ( $CHARMAP ); 
ENDIF; 
T ( INDTAB, WSTAR) : =1 ; 

ENDIFi 
ENDOO-

ENDSUBROUrINE; 

FUNCTION INCV99(CH) INTEGER: 
"C~lPurE INTERNAL CODE FOR CHAR CH READ BY Al FORMAT" 
CHAR CGlMON-
INTEGERCH, CHSTAR IND; 
CHSTAR:=IABS(CH)/BSHIFT +1; 
IF CH < 0: 

IND:=I; 
ELSE: 

IND:=2; 
ENDIF
INCV9~:=INCH9(IND,CHSTAR); 
IF INCV99 = 0: 

CALL RUNERR ( $CONVERT ); 
ENDIF-

ENDFUNCTfON; 

- 03 -



"STRING UPDATING ROUTINES" 
FUNCTION IRPL99(S,SI~Z LEN,I1,I2,TL K1,K2) INTEGER: 

"REPLACE S(I1 ••• I2 BY T(K1 ••• K2) AND REWRN " 
" THE NEW CURRE LENGTH OF S, " 
" WHILE CHECKING THAT S DOES Nor OVERFLatV " 
" ITS MAXIMUM SIZE, SIZe " 
INTEGER SIZL S(SIZ),T(K2),SHIFT; 
SHIFT:=(K2-K1J-(I2-I1); 
IF SHIFT < 0: 

FOR 1=12+1 TO LEN: 
S(I+SHIFT):=S(I); 

ENDFOR; 
ELSEIF SHIFT> 0: 

IF LEN+SHIFT > SIZ: 
CALL RUNERR ( $REPL ); 

ENDIF; 
FOR I=LEN BY -1 TO 12+1: 

S(I+SHIFT):=S(I); 
ENDFOR; 

ENDIF; 
FOR K=K1 TO K2: 

S(I1+(K-K1)):=T(K); 
ENDFOR; 
IRPL99 := LEN + SHIFT 
REWRN; 

ENDFUNCTION; 

FUNCTION IRPL98(S,SIZ(LEN,I1L I2
f

CH) INTEGER: 
"REPLACE S(I1 ••• 12) BY THt; S NGLE ELEMENT CH, " 
" orHERWISE LIKE I.RPL99 " 
INTEGER SIZ~S(SIZ),SHIFT,CH; 
SHIFT:=I1-IL; 
IF SHlf"r < 0: 

FOR 1=12+1 TO LEN: 
S(I+SHIFT):=S(I); 

ENDFOR; 
ELSEIF SHIFT > 0: 

IF LEN+SHIFT > SIZ: 
CALL RUNERR( $REPL ); 

ENDIF; 
FOR I=LEN BY -1 TO 12+1: 

S(I+SHIFT):=S(I); 
ENDFOR; 

ENDIF; 
S(I1):=CH; 
IRPL98 := LEN + SHIFT ; 
REWRN-

ENDFUNCTI6N i 

Flfr~TION IDEL99(S,SIZ,LEN,I1L~2) INTEGER: 
"DELETE S(I1 ••• 12) AND RETURN THE NEVJ CURRENT " 
" LENGI'H OF S. " 
INTEGER SIZ~S(SIZ),SHIFT; 
SHIFT:= -(IL-I1+1); 
FOR 1=12+1 TO LEN: 

S(I+SHIFT):=S(I); 
ENDFOR; 
IDEL99 := LEN + SHIFT; 
REWRN-

ENDFUNCTI6N; 
RUNCHECK(ALL) ; 

%L 
%% 

- 04 -



APPENDIX E 

SAMPLE PROGRAMS IN SKOL 

This appendix contains four SKOL programs which are briefly 

described as follows: 

1. Generate the first 100 prime numbers. 

2. Build and print a perfectly balanced binary tree. 

3. Read and print listing of a stream of telegrams (see 

reference [15J). 

4. Convert simple expressions from infix to postfix 

operator notation (see pp 73-75 of reference [2J). 

- E1 -



%L 
%A0 
" SKOL PROGRAM TO GENERATE PRIMES II 

RUNCHECK(-ALL); 
MAIN: 

CONSTANT NPRIME=100; 
INTEGER PRIME( NPRIME ) ,TRIAL,ITEST,NXTPRM,IPR; 

PRIME(l) :=2; PRIME(2) :=3; 
FOR IPR=3 TO NPRIME: 

UNTIL FOUND NEXT PRIME: 
FOR TRIAL=PRIME(IPR-l)+2 BY 2: 

UNTIL IS PRIME OR IS COMPOSITE: 
FOR ITEST=2 TO IPR-l: 

IF MOD(TRIAL,PRIME(ITEST)) = 0 
IS COMPOSITE; 

ELSEIF PRIME(ITEST) **2 > TRIAL 
IS_PRIME; 

ENDIF; 
ENDFOR; 
IS_PRIME; 

THENCASE: 
IS PRIME: 

BEGIN NXTPRM:=TRI.A.L; FOUND_NEXT_PRIME; END 
I S COMPOS prE: 

BEGIN END 
ENDUNTIL; 

ENDFOR; 
ENDUNTILi 
PRIME(IPR) :=NXTPRM; 

ENDFOR; 

OUTPUT($PAGE,:5X,'THE ',IPR:I4,'-TH PRIME IS ',PRIME( NPRIME ):); 
ENDMAIN; 
%% 

- E2 -



%L 
"PRCGRAfJI TO BUILD PERFECTLY BALANCED BINARY TREE" 
II SEE PROGRAM 4.3 ON PAGE 196 OF N. WIRTH'S NEW" 
" BOOK ON ALGORITHMS + DATA STRUCTURES = PROGRAMS" 
TYPE CHAR= (' ',' X ' , , . I ) ; 

%U3 "INCLUDE CHAR FACILITIES" 
MAIN: 
PROCESS NEXT_NUMBER=(GETNUM); 
RECORD CLASS(30) OF NODE: 

INTEGER:KEY; REF:LEFT,RIGHT; 
ENDRECORD; 
REF TO NODE:NEWNOD,ROOT,T; 
INTEGER NUM,ARRAY(20) ,I,DEPTH; 
STRING OUTLIN(50),BLANKS(5); 
CHAR COMMON; 
RECUR(100) :TREE(*),PRINT_TREE(*,*); 

RUNCHECK(-ALL) ; 
MAKEAVAIL NODE; CHAR SETUP; START NEXT NUMBER AT GETNUM; 
DELETE BLANKS; REPEAT 5 TIMES: CATENATE' , ONTO BLANKS; ENDREPEAT; 
RESUME NEXT NUMBER; 
DEPTH:=0; K:=I; 
LOOP: WHILE NUM )= K: INCR DEPTH; K:=2*K; ENDLOOP; 
DECR DEPTH; 
"2**DEPTH < = NUM < 2**(DEPTH+l)" 
EXECUTE TREE(NUM); . 
OUTPUT($PAGE,:20X,'INDENTED TREE' ,:/,:$SKIP2); 
EXECUTE PRINT TREE (ROOT,0) ; 
OUTPUT($PAGE)~ 
REirURN; 

COROUTINE GETNUM: "ALIAS FOR PROCESS NEXT NUMBER" 
"DELIVERS NEXT INPUT VALUE IN GLOBAL Nui" 
REPEAT: 

INPUT((FOR 1=1 TO 20: ARRAY(I)):2014); 
FOR 1=1 TO 20: 

NUM:=ARRAY(I); SUSPEND NEXT_NUMBER; 
ENDFORi 

ENDREPEAT; 
ENDCOROUTINEi 

ROUTINE TREE(N) LOCAL (NL,NR,NEWNOD) : 
"BUILD BALANCED N-NODE BINARY TREE" 
"RETURNS REF TO TOP NODE IN GLOBAL ROOT" 
IF N = 0: 

ROOT:= NIL ; 
ELSE: 

NL := N /2; NR := N - NL -1; 
RESUME NEXT_NUMBER; 
NEW NEWNOD ; 
WITH NEWNOD: 

@.KEY := NUMi 
EXECUTE TREE( NL ) i@.LEFT :=ROOT; 
EXECUTE TREE( NR );@.RIGHT :=ROOT; 

ENDWITH; 
ROOT:= NEWNon ; 

ENDIFi 
ENDROUTINE; 

- E3 -



%% 

ROUTINE PRINT TREE(T,H): 
"PRINT BINARY TREE T WITH INDENTATION H" 
IF T = NIL: 

IF H <= DEPTH: 
DELETE OUTLIN; CATENATE ' , ONTO OUTLIN; 
REPEAT H TIMES: 

CATENATE BLANKS(1 ••. 5) ONTO OUTLIN; 
ENDREPEAT; 
CATENATE '.' ONTO OUTLIN; 
WRITESTRING OUTLIN; 

ENDIF; 
ELSE: 

WITH T: 
EXECUTE PRINT TREE(@.LEFT , H +1); 
DELETE OUTLIN: CATENATE ' , ONTO OUTLIN; 
REPEAT H TIMES: 

CATENATE BLANKS(1 .•. 5) ONTO OUTLIN; 
ENDREPEAT; 
CATENATE 'X' ONTO OUTLIN; 
WRITESTRING OUTLIN; 
OUTPUT($OVER,:60X,@.KEY :); 
EXECUTE PRINT_TREE(@.RIGHT , H +1); 

ENDWITH; 
ENDIF; 

ENDROUTINE; 

ENDMAIN; 

- E4 -



%L 
TYPE CHAR=(ALPHABET=,DIGIT=,' ','*',','): 
%U3 
%A2 

MAIN: 
"HENDERSON ET AL TELmRAM PROBLEM, COROUTINE SOLUTION" 
RUNCHECK(-TRACE)-
CONSTANT OVERLENGrH LIMIT=5LSPACE=' v; 
STRING TERMWD (4) ,NOCHRG (4) ,;:;PACES (3) ; 
CHAR CIL-
STRING WORD(10), LINE(31),BUFFER( 80 ); 
INTEGER CWC,I6K~IBP; 
LCX;ICAL 0rV, EQ 9~9; 
CHAR COMrvDN; 
DEFINE' EQUAL (#,#) '= 'EQU999( #1 , SIZE(#l), LENGTH(#l), 

#2 , SIZE (#2), LENGTH (#2» , ; 
PROCESS HENDERZAHN= (NEXT INPUT LE'ITER ,NEXT INPUT mRD, 

TELEGRAM_READER,OUTPUT_LISTING) ; --

CHAR SE'IUP: 
IF S~E(WORD) > SIZE(LINE)-l: 

OUTPLJr ($PAGE, 'WORDSIZE TOO BIG FOR LINE') ; 
RETURN; 

ENDIF; 
START HENDERZAHN AT OUTPUT LISTING; 
RESUME HENDERZAHN; -
RErIURN; 

COROUTINE OUTPUT LISTING: 
#SPACES := ' - ,
OUTPUT ($PAGE) : ' 
UNTIL LAST TELEGRAM: 

REPEAT:- "EACH TELEGRAM" 
RESUME TELEGRAM READER FROM OUTPUT LISTING; 
IF LENGTH (WORD) ==0 : LAST TELFl3RAM; ENDIF; 
OUTPUT($SKIP2); -, 
UNTIL END OF TELEGRAM: 

REPEAT: ~ACH OUTPUT LINE OF TELEGRAM" 
#LINE:=' ,-
LOOP: "EACH TELEGRAM w)RD" 

CATENATE mRD ONID LINE; 
RESUME TELEGRAM READER FROM OUTPUT LISTING; 
IF LENGTH (VVORD) ==0 : END OF TELEGRAM: ENDIF-

WHILE LENGTH (LINE) + LENGTH (SPACES) + LENGTH (mRD) 
<= SIZE(LINE): 
CATENATE SPACES ONTO LINE; 

ENDLOOP; 
~TES~NG LINE; 

ENDREPEAT; 

~~~~NG LINE-
OUTPUT ($SKIP ,ewc: 13 ' OOIDS CHARGED')-
IF OW: OUTPUT ('Vl:>RDLENGTH EXCEEDS " 6VERLENGTH LIMIT :13); ENDIF;

ENDREPEATi -
ENDUNTIL;
OUTPUT($SKIP2,'*****',:5X,'ALL TELEGRAMS LISTED',:5X,'*****');
SUSPEND HENDERZAHN;

ENDCOROUTINE i

- E5 -

COROUTINE TELEGRAM READER:
#TERMWD:='ZZZZ'T #NOCHRG:='STOP';
REPEAT: "EACH TELEGRAM"

~iL0fE~~~~~~~fNATED:
REPEAT: "E1\CH mRD"

RESUME NEXT INPUT WJRD FROM TELEGRAM READER;
I F EQUAL (WJRD TERlt'IWD): -

DELETE mID; TELEGRAM TERMINATED;
ENDIF; -
IF NOT (EQUAL (IDRD JBOCHRG)): INCR ewc; ENDIF 1.
IF LENGTH (mRD) > Ovt;RLENGTH LIMIT : 00:= TRUt;
RESUME OUTPUT LISTING FROM TELEGRAM READER;

ENDREPEAT i - -
ENDUNTIL;
RESUME OUTPUT LISTING FROM TELEGRAM READER;

ENDREPEAT; - -
ENDCOROUTINE;

COROUTINE NEXT INPUT WJRD:
RESUME NEXT"INPUTLETTER FROM NEXT INPUT mRD;
REPEAT: - - --

EXECUTE SKIP BLANKS;
UNTIL END OFWORD:

FOR LENGTH (IDRD) =1 'IO SIZE (IDRD) :

~OO~EL~~Hi~m)L~~~~LbROM NEXT INPUT WORD;
IF CIL= SPACE : END OF WJRD; ENDIFf -

ENDFOR; - -
mRD (LENGTH (mRD)) := '*' i
REPEAT:

RESUME NEXT INPUT LETTER FROM NEXT INPUT WORD;
IF CIL = SPACE : END OF mID; END IF: -

ENDREPEAT; - -
ENDUNTILi
RESUME TELffiRAM READER FROM NEXT INPUT WORD:

ENDREPEAT; - --
ENDCOROUTINE i

ROUTINE SKIP BLANKS:
UNTIL NOtrSPACE:

REPEAT:
IF CIL -= SPACE

NON SPACE:
ELSE: -

RESUME NEXT INPUT LETTER FROM NEXT INPUT WORD i
ENDIF; - - --

ENDREPEAT:
ENDUNTILi

ENDROUTlNE;

COROUTINE NEXT INPUT LETTER:
REPEAT: - -

READSTRING($INPUT)BUFFER
FOR IBP=l TO SIZE(BUFFER~:

CIL:=BUFFER(IBP);
RESUME NEXT INPUT WORD FROM NEXT INPUT LETI'ER:

ENDFOR: - - --
ENDREPEATi

ENDCOROUTlNE ;

ENDMAIN;

- E6 -

ENDIFi

FUNCTION EQU999(STRl,~1~L1~!R2~S2,L2) LOGICAL:
"TEST EQUALITY OF 'l~ STKlNG::;"
INTEGER Sl~S2,L~~2~Il
CHAR STRl(::;1),S'rKL(::;2};

UNTIL ALL SAME OR MISMATCH:
IF L1 -= L2 : MISMATCH; ENDIF;
FOR 1=1 10 L1:

IF STRl(I) -= STR2(I): MISMATCH; ENDIF;
ENDFOR;
ALL SAME;

THENC.ASE:
ALL SAME: BEGIN EQU999 := TRUE ; END
MI~TCH: BEGIN EQU999 := FALSE ; END

ENDUNTIL;
RETURN;

ENDFUNCTION;

%%

- E7 -

%L
"SKOL PR03RAM TO CONVERT INFIX TO POSTFIX"
TYPE CHAR= (ALPHABET=,' ',' ~' , ,) , ,ADD= ('+' , '- ,) , , * ,) i

%U3 "INCLUDE CHAR UTILITIES'
MAIN:

CHAR COMMO~p CHAR C~~ STRING CARD(80),LINE(120)i
STRING OPSTK (20) i INTffiER IC-
DEFINE 'iDEBUG #-'= '; , ; RUNCHECK(-ALL)-
DEFINE 'iNEXTCH-'= 'iINCR IC; CH:=CARD(IC~;' ;
DEFINE '; STACK i ~ = • -CATENATE CH ONTO OPSTK - NEXTCH;

DEBUG OUTPUT (, , STAyK t ,);' i
DEFINE ' TOP '= OPSTK (LENGTH (OPSTK)) i
DEFINE 'i POP; '= ' ; DECR LENGrH (OPSTK) ;' ;
DEFINE 'i UNSTACK; '= ' ; CATENATE 'lDP ONTO LINE-

DEBUG OUTPUT (' '_UNSTACK ", TOP :C) ;POP;';

CHAR SE'lUPi DELETE LINE; CATENATE ' , ONTO LINE;
READ'STRING CARD; IC:=I; CH:=CARD (IC) ;
CATENATE CARD (1 ___ SIZE (CARD)) ONTO LINE;
WRITESTRING LINE; OUTPUT ~$SKIP2) ;
DELETE LINE; CATENATE' ONTO LINE;
LOOP: WHILE CH = ' , : NEXTCH; ENDIOOP;
DELETE OPSTK; CATENATE I (. ONTO OPSTK;
UNTIL FINISHED:

REPEAT:
DEBUG OUTPUT(CH:C);
CASE CH:CHAR OF

ALPHABET:
BffiIN
CATENATE CH ONTO LINE; NEXTCH;
DEBUG OUTPUT (, PASS THRU');
END -

, (': BEGIN STACK - END
, , ')' - I

BEGIN
IF TOP = • ('

POP;
IF CH = ' ': FINISHED; ENDIF;
NEXTCH;

ELSE:
UNSTACK;

ENDIF-
END I

ADD:
BEGIN
IF TOP = '(': STACK; ELSE: UNSTACK; ENDIF;
END

'*' :
BEGIN
IF TOP = '*': UNSTACK; ELSE: STACK; ENDIF;
END

ENDCASE;
ENDREPEAT;

~Ws4hlNG LINE;

ENDf.tz\IN;

%%

- E8 -

APPENDIX F

SAMPLE PRECOMPILER DIAGNOSTICS

The following listing was produced by the SKOL compiler and

illustrates most of the diagnostic facilities. There are notes

after the listing to explain some of the less obvious messages.

Appendix H should be consulted to decode the control error diagnostics

"UNCLOSED x FOUND AT y".

- Fl -

109.
110.
Ill.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.

o MAIN;
o "TEST OF SKOL DIAGNOSTICS" o TYPE CHAR=(ALPHABET=('A','B','C'),EOL,TAB,' I); o CHAR CH· o STRING STRl(20),-STRJ,STR4(10);

??? 0 BAD 08g~~~D~~i~i~i6~~~IM=2;
kr TYPE COLOR= (REDS= (RED,PINK) ,GREEN,BLUE,BLACK); o COLOR HUE; o SCALI SC1,SC2; COLOR:C1,C2;

??? UNEXPECI'ED COLON
kr RECORD CLASS (N) OF WHAT: o COLOR:C1;CHAR:CH1;REF:LL,RL;

??? BAD TYPE COLOR IN FIELD LIST
kr ENDRECORD;
o REF TO WHAT:P LO (4) ; o REF TO NONa: .1:'2;

??? RECORD CLASS NONO UNDECLARED
~ PROCESS XYZ=(AA~BB); o RECUR(100):XI,X~(*); o
o MAKEAVAIL NONa; START XYZ AT Xl; CHAR_SETUP;

??? RECORD CLASS NONO UNDECLARED
??TlJNDECLARED COROUTINE Xl
~ DELETE STRl· o REPLACE sTRi(1 ••• 10) BY 'A' ;
o MACRO MAC1(KEY1=0,KEY2)='ZZ:= KEY1 ;Z2(KEY2):= KEY1 +1' o UNTIL Sl OR S2 OR S3: o IF P: 84· ENDIF; o DELETE SCI; CATENATE 'AS' ONTO STR2(1 ••• 3);

??? UNDECLARED STRING SCI
??TlJNDECLARED STRING STR2 1 ••• 3
??TlJNDECLARED STRING STR2 1 ••• 3
??TlJNDECLARED STRING 5TR2 1 ••• 3
??TlJNDECLARED STRING STR2 1 ••• 3
??TlJNDECLARED STRING 5TR2 1 ••• 3
??TlJNDECLARED STRING STR2 1 ••• 3

kr MAC1(KEY2=3);
o ~~C1(3.2,4);

??? BAD KEYWORD PARAMETER 3.2
??r--BAD KEYWORD PARAMETER 4
??~BLIGATORY PARAMETER KEY2 MISSING

l1 LOOP:
??? 0 UNDEFINED F(i~Mli;l~ERS~ ($ INPUT, PERSON)LI5T;
~ IF A = 0: REPEAT 7 TIMES:
o ENDLOOp·
o FOR 1=10 BY -1 00 BEGIN END; 52;

??? UNCLOSED D FOUND AT X
??r-uNCLOSED Z FOUND AT X
??:---MISSING WHILE
??~AD SYNTAX AT---I=10 BY -1 DO BEGIN END
??~XPECTED BEGIN

- F2 -

162. 0 THENCA8E:
163. 0 85: BroIN WRITE STRING($MYFILE)NON STRING; END
164. ??? srruATloN LABEL S5 NOT DECLARED -
165. ??T--r3AD $
166. ??TJ3AD SYNTAX
167. ??~AD
168. ??r-BAD SYNTAX
169. ??r--uNDECLARED STRING NON STRING
170. ??r-DNDECLARED STRING NON"'"STRING
171. -W- Sl,S3: -
172. 0 BroIN J: = LENGTH (STR2) i
173. ??? UNDECLARED STRING STR2
174. ". 00 1=1 TO 10 A:=0j ENDooi
175. ???:= HAS HAD ITS : INTERPRETED AS COLON
176. -W- IF SIZE(STR2) = 0:
1 77 • ??? UNDECLARED STRING STR2
178. --w- STRl (2):='?' i
1 79. ??? UNKNOWN CHARACTER I? 1
180. ,- ELSE:
181. 0 DELETE STR2i
182. ??? UNDECLARED STRING STR2
183. -W- INSERT '+' AFTER STRl(SIZE(STRl))i
184. ??? UNKNOWN CHARACTER 1+1
185. ~ CATENATE EOL ON'IO STR4i OUTPUT (EOL:C) i
186. ??? UNDECLARED STRING STR4
187. ??r--uNDECLARED STRING STR4
188. ??~llNDECLARED STRING STR4
189. ??~HAR EOL CANNOT BE OUTPUT
190."kj- CASE I:SCAL2 OF
191. ??? L~ECLARED SCALAR TYPE SCAL2
192. ??r--uNDECLARED SCALAR TYPE SCAL2
193. ??~l]NDECLARED SCALAR TYPE SCAL2
194. ~ 2:BEGIN END
1950 0 ELSE:
196. 0 BroIN
197. 0 CASE CH:ALPHABET OF
198. 0 'A' , 'D' : BEGIN END
199. 0 WHILE B <= N: A:=l:
200. ??? CASE LABEL AND BroIN MISSING
201. ??r-uNCLOSED C roUND AT A
202. ??r-uNCLOSED B FOUND AT A
203. ??r-uNCLOSED C roUND AT A
204. ??r-uNCLOSED W roUND AT A
205. ??~NCLOSED Y FOUND AT A
206$??r-uNCLOSED T FOUND AT A
207. ??r--MISSIl'X; LOOP
208.'- LINK P=Q (2) BY NEXT:
209. ??? BAD FIELD NEXT
210. -rr END
211. 0 ENDCASE:
212. ??? UNCLOSED J FOUND AT B
213. ??~ISSING BEGIN
214. T- ENDIF:
215. 0 END
216. 0 ENDUNTIL;
217. ??? MISSING IF
218. ??~SSING BEGIN
219. -W- UNTIL A OR B:
220. 0 EXECUTE X2(1,0.4);
221. ??? MISSING tMrIL
222. ??~NG NUMBER OF PARMS FOR X2
223. -W- FOR A(1) TO N: K:=2:
224. ??? BAD FOR PHRASE
225. -r 00 7 TIMES:
226. 0 FOR 1=10 BY -1:
227. 0 ENDDO:
228. ??? BAD SYNTAX AT---7 TIMES: FOR 1=10 BY -1: ENDOO
229. ??r-uNEXPECTED COLON
230. -,- ENDUNT1Li

- F3 -

231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.

??? UNCLOSED H FOUND AT I
??~CLOSED U FOUND AT I
??~ISSING DO ,,-

o ROUTINE D:
o REPEAT J:=0; B:=3; UNTIL P < 1;

??? MISSING UNTIL
??:---ROUTINE D DECLARED BEFORE AN EXECUTE
??r--BAD SYNTAX AT---J: =0
??r--BAD SYNTAX AT---P < 1

,-- IF IN REDSPEcrRUM (Cl) THEN A:=0;
??? UNDECLARED SC1U.AR TYPE REDSPECTRUM
??r--uNDECLARED SCALAR TYPE REDSPECTRUM
??-r--:= HAS HAD ITS : INTERPRETED AS COLON

,,- OUTPUT X ,XX;
o EXECUTE 0;

??? ILLEGAL BACKWARD ROUTINE REF. D
,,- @(P.ZZ):=@(Q(2).CHl);

??? BAD FIELD ZZ
-er WITH Q (K) :
o OUTPUT(@.CHI :C,@.XX);

??? BAD FIELD XX
-er ENDWITH;
o OUTPUT (A: z·

??? BAD SYNTAX AT---A~,Z
??~EXPECTED COLON

-er RESUME XYZ; o
o COroUTINE M:

??? UNCLOSED Z FOUND AT G
??~CLOSED E FOUND AT G

,,- NEW r21~FREE Q (1) ;
??? REF P3 UNDEC~D

-er N: =0; RESUME BS FROM AA;
o CASE HUE:COLOR OF REDS:BEGIN END ENDCASE;
o ENDCOROUTINE·

??? UNTREATED CASE VALUE
??~REA'rED CASE VALUE
??TUNTREATED CASE VALUE

-er
o ROUTINE EFG:

??? ROUTINE EFG DECLARED BEFORE AN EXECUTE
-er INCR K; @(SS3.LL):= NIL

??? UNDECLARED REF SS3
~ SUSPEND XYZ;
o ENDROUTINE;
o
o ROUTINE Xl (P2) LOCAL (Zi:
o RUNCHECK(-FOR,+CASE ;

??? WRONG NUMBER OF PARMS FOR X
-er HEADSTRING CARD;

??? UNDECLARED STRING CARD
??r--uNDECLARED STRING CARD

-er IF IN DIGIT(CH):
??? UNDECLARED Scro:.AR TYPE DIGIT
??r--uNDECLARED SCALAR TYPE DIGIT -er C:= VALUE(CH);
??? UNDECLARED SCALAR TYPE DIGIT

-er ENDIF;
o EXECUTE Xl;
o EXECUTE ~
o RESUME El'\:i;

??? UNDECLARED COROUTINE EFG
,,- ENDROUTINE;
o o ROUTINE D:

??? ROUTINE D DECLARED BEFORE AN EXECUTE
,,- Z := P2 ;

??? PARM OR LOCAL OUTSIDE SCOPE
??:---FARM OR LOCAL OUTSIDE SCOPE

- F4 -

301. 0 MOVE STRI TO STR2(I ••• 3):
302. ??? UNDECh~ STRING STR2
303" ??r-illIDECLARED STRING STR2
304. ??r-tJNDECLARED STRING STR2
305. ,- REPLACE STRl (31 ••• 10) BY CH:
306. ??? INCORRECT PLACE FOR STRING LENGTH
307. ??r--INCORRECT PLACE FOR STRING LENGTH
308. -W- DELETE STR3(4 •••):
309. ??? UNDECLARED STRING STR3
310. ??-r-uNDECLARED STRING STR3
311. ??-r-uNDECLARED STRING STR3
312. ,- WRI'rESTRING OUTLIN:
313. ??? UNDECLARED STRING OUTLIN
314. ??-r-uNDECLARED STRING OUTLIN
315. -W- ENDROUTINE:
316. 0
317. 0 ENDMAIN;
318. %%
319. %L
320. 0 $BLOCKDATA$
321. 0 "END OF SKOL COMPIIATION" $FINISH$
322. %%
323. ??? MISSING MAIN
324. ??r--ROUTINE OR COROUTINE 88 NOT DEFINED
325. ??~OUTINE OR COROUTINE X2 NOT DEFINED
326. ??? ROUTINE OR COROUTINE A NOT DEFINED
327. ??~8EL LEFT ON STACK
328. ??~8EL LEFT ON STACK
329. ??~EL LEFT ON STACK
330. ??~BEL LEFT ON STACK

- F5 -

Notes on Diagnostics:

Lines

157-159

160-161

164

165-170

175

179

189

200-207

209

212

213, 217
218, 221

222

Explanation

The IF statement and REPEAT statement on line 154 are
not properly terminated and the WHILE phrase is missing
from the LOOP: ... ENDLOOP; command on lines 151-155.

The FOR statement on line 156 is incorrectly formed.

The name S5 does not occur as a situation in the UNTIL
phrase on line 136.

The names $MYFILE and NON_STRING have not been defined
or declared.

There is a missing: after 10 on line 174.

'?' is not among the characters of CHAR defined on
line 111.

Characters denoted by identifiers may not be output~

WHILE phrase on line 199 does not have a corresponding
LOOP: in the previous lines.

P has been declared as a reference to record class WHAT
on line 124, but NEXT is not among the fields declared
for WHAT on lines 120-123.

LINK statement on line 208 not terminated.

Spurious messages caused by attempt to find LOOP corres
ponding to WHILE on line 199.

X2 is declared as recursive routine with one parameter
on line 128, but invoked with two parameters on line 220.

- F6 -

231-233

237

244

249

252

260-261

267-269

280

299-300

FOR statement on line 226 not properly terminated; DO
phrase on line 225 is incorrectly formed and is not
recognized as matching the ENDDO on line 227.

Spurious message caused by foulup on lines 225-227.

THEN in line 241 should be colon.

ZZ is not a field of record class WHAT to which reference
Prefers.

@.XX is an abbreviation for @(Q(K).XX), Q is an array
of references to WHAT~ but XX is not a field in WHAT.

IF on line 241 and ROUTINE on line 235 not terminated
before COROUTINE on line 259.

Three constant values of type COLOR (namely GREEN, BLUE,
BLACK) defined in line 116 do not appear as case labels
in line 265.

Recursive routine Xl declared without parameters in line
128, but defined with one in line 278.

Z and P2 are respectively a local variable and a parameter
of recursive routine Xl on lines 278-294. The occurrences
on line 298 are outside the valid scope.

- F7 -

A~~t:NUIX (j

FORTRAN EQUIVALENT OF Two SKOL PROGRAMS

The following FORTRAN is the equivalent of the prime-generator SKOL

program in Appendix E.

INTffiER PRIME (100) ,TRIAL,ITEST,NXTPRM,IPR
PRIMEJ1)= 2
PRIME 2)= 3
11026 = 1
110264= 100
110265= 3
IF((I10264-I10265)*I10263 .LT. 0) GOTO 10266
IPR = 110265
rom 10262

10261 CONTINUE
IF(IPR .EQ. I10264)GOTO 10266
IPR = IPR +110263

10262 CONTINUE
110282= 2
TRIAL = PRIME(IPR-1)+2
GOIO 10283

10281 CONTINUE
TRIAL = TRIAL +110282

10283 CONTINUE
110313= 1
110314= IPR-1
110315= 2
IF((I10314-I10315)*I10313 .LT. 0) GOTO 10316
ITEST = 110315
rom 10312

10311 CONTINUE
IF(ITEST .EQ. I10314)GOTQ 10316
ITEST = ITEST +110313

10312 CONTINUE
IF« MOD(TRIAL,PRIME(ITEST)) .NE. 0))GOTO 10331
GOIO 10300
rom 10321

10331 CONTINUE
IF (PRIME(ITEST)**2 .LE. TRIAL))GOTO 10341
rom 10290

10341 CONTINUE
10321 CONTINUE

Gam 10311
10316 CONTINUE

rom 10290
10290 CONTINUE

NXTPRM= TRIAL
GOIO 10270
ooro 10351

10300 CONTINUE
rom 10351

10351 CONTINUE
rom 10281

10270 CONTINUE
PRIME(IPR)= NXTPRM
GO'ID 10261

10266 CONTINUE
10360 FORMAT(1H1, 5X, 4HTHE, 14,

*2.5)
WRlTE(6 ,1(360) IPR , PRIME(100
RETURN
END

- Gl -

13H-TH PRIME IS ,G1

The follow.i.ng is the FORTRAN for the SKOL program to build and print a

balanced binary tree given in Appendix E.

INTffiER NODE0
INTffiER NODE 1 (30)
INTffiER NODE 2 (30), NODE 3 (30)
I NTffi ER NEWNOD, ROOT, T
INTEGER NUM,ARRAY(20),I DEPTH
INTEGER OUTLIN (5~),110751, BLANK8 (5) 110761
COMMJN/ CHCODE / OUTCH9 (3), INCH9(2, 128) , BSHIFT
INTEGER OUTCH9 INCH9 B8HIFT
INTEGER 899999 (10~)~ T99999 /1/, B99999 /0/, RC9999 /0/
DO 10791 NODE0 = 1 3~
NODE1(NODE0)~ NODE0!1

10791 CONTINUE
NODE0= 30
CALL INIT99
AS8IGN 10720TO J10720
AS8IGN 10720TO J10690
110761= 0
110802= 5
IF{I10802.LT.1)GOTO 10801
0010811 110820=1

1
110802

110761 =110761 +
BLANKS (110761)= 1

10811 CONTINUE
10801 CONTINUE

A8SIGN 10830 TO 110690
C~ 10700

10830 CONTINUE
DEPTH= 0
K= 1

10841 CONTINUE
IF((NUM .. LT. K))GOIO 10851
DEPTH = DEPTH +1
K= 2*K
GCYro 10841

10851 CONTINUE
DEPTH = DEPTH-1
899999 (T99999)= 899999
899999 (T99999 +1)= 1
T99999 = T99999 +(2)
899999 (T99999)= NUM
T99999 = T99999 +1
899999 = T99999-(ooro 10770

1 +1)

10860 CONTINUE
10870 FORMAT (1H1 ~ 20X ~ 13HINDENTbU 'rREE, /, 1H-)

~§~~ ~ T~~~9~»)= 899999
899999 (T99999 +1)= 2
T99999 = T99999 +(2)
899999 (T99999)= ROOT
T99999 = T99999 +1
899999 (T99999)= 0
T99999 = T99999 +1
B99999 = T99999-(
GOro 10780

10880 CONTINUE
1!~890 FORMAT (1H1 1

WRITE (6 ,10890)
RETURN
RETURN

10720 CONTINUE
10901 CONTINUE

2 +1)

10910 FORMAT(2014)
READ (5 ,10910) (ARRAY (I) , I = 1, 20)
110923= 1

- G2 -

110924= 20
110925= 1
IF((II0924-II0925)*I10923 .LT. 0) GOTO 10926
I = 110925
G<Y.ro 10922

10921 CONTINUE
IF(I .EQ. I10924)GOTO 10926
I = I +110923

10922 CONTINUE
NUM= ARRAY (I)
ASSIGN 10930 TO J10690
GOTO 10710

10930 CONTINUE
GOTO 10921

10926 CONTINUE
GOTO 10901
CALLRUNERR(
RETURN

10770 CONTINUE

6)

T99999 = T99999 +(4- 1)
IF«(S99999 (B99999 + 1) .NE. 0 »GOTO 10951
ROOT= 0
GOTO 10941

10951 CONTINUE
S99999 (B99999 +
S99999 (899999 +

2
3

) = 899999 (B99999 +
) = 899999 (B99999 +

*999 + 2)-1
ASSIGN 10960 TO 110690
GOTO 10700

10960 CONTINUE
IF ((NODE0 • NE. 0)) GOTO 10981
CALL RUNERR (5)

10981 CONTINUE
S99999 (899999 + 4). = NODE0
NODE0= NODE 1 (NODE0)
NODE 1(899999 (899999 +
S99999 (T99999)= B99999

4))= NUM

S99999 (T99999 +1)= 3
T99999 = T99999 +(2)
S99999 (T99999)= S99999 (899999 +
T99999 = T~9999 +1
B99999 = T99999 -(1 +1)
GOTO 10770

2)

10990 CONTINUE
NODE 2(S99999 (B99999 +
S99999 (T99999)= B99999

4))= ROOT

S99999 (T99999 +1)= 4
T99999 = T99999 +(2)
899999 (T99999)= 899999 (899999 +
T99999 = T99999 +1
B99999 = T99999 -(1 +1)
GOTO 10770

11000 CONTINUE

3)

NODE 3(899999 (B99999 + 4»= ROOT
ROOT= 899999 (899999 + 4)

10941 CONTINUE
GOTO 99999
RETURN

t~ ~2 899999 (B99

10780 CONTINUE
IFJJ 899999 (B99999 +
IF 899999 (B99999 +

1
2

) .NE. 0 »GOTO 11021
) .GT. DEPTH »GOTO 11041

II 51= 0
110751 =110751 +1
OUTLIN (110751)= 1
111052= 899999 (B99999 + 2)

- G3 -

IF(II1052.LT.1)GOTO 11051
0011061 111070=1,111052
110751 = IRPL99(OOTLIN, 50 ,110751, ((110751)-(0)+1),(11075

*1), BLANKS ,(1), (5 »
11061 CONTINUE
11051 CONTINUE

110751 =110751 +1
OOTLIN (110751)= 3
C~L ~~STR9(6 , OUTLIN, 50, 1 ,110751)

11041 CONTINUE ooro 11011
11021 CONTINUE

599999 (T99999)= B99999
599999 (T99999 +1)= 5
T99999 = T99999 +(2)
599999 (T99999)= NODE 2(899999 (B99999 + 1»
T99999 = T99999 +1
599999 (T99999)= 599999 (B99999 + 2) +1
T99999 = T99999 +1
B99999 = T99999 -(2 +1)
ooro 10780

11080 CONTINUE
110751= 0
110751 =110751 +1
OOTLIN (110751)= 1
111092= 599999 (B99999 + 2)
IF(I11092.LT.1)GOTO 11091
0011101 111110=1,111092
110751 = IRPL99(OOTLIN, 50 ,110751, «110751)-(0)+1),(11075

* 1)..L BLANKS , (1), (5 »
11101 CONTINUE
11091 CONTINUE

110751 =110751 +1
OOTLIN (110751)= 2
CALL wrSTR9(6 , OUTLIN, 50, 1 ,I10751)

11120 FORr1.l\T(1H+ 60X ,G12.5)
WRITE(6 .t..111~0) NODE 1(899999 (B99999 -I- 1)
599999 ('L99999)= B99999
599999 (T99999 +1)= 6
T99999 = T99999 +(2)
899999 (T99999) = NO.DE 3 (899999 (899999 + 1)
T99999 = T99999 +1
599999 (T99999)= 899999 (899999 + 2) +1
T99999 = T99999 +1
B99999 = T99999 -(2 +1)
GO'ID 10780

11130 CONTINUE
11011 CONTINUE

GOTO 99999
10700 GOTO J10690,(10720,10930)
10710 GOTO 110690, (10830 t I0960)
10730 GOTO J10720, (1072~)
99999 CONTINUE

RC9999 = 399999 (B99999
T99999 = B99999-1
B99999 = 899999 (T99999)
GOTO(10860,10880,10990,11000,11080,11130), RC9999
RETURN
END
BLOCKDATA
COMMON/ CHCODE IOOTCH9(3), INCH9(2, 128) , BSHIFT
INTEX3ER OUTCH9, INCH9 , BSHIFT
EQUIVALENCE (C(1),OUTCH9(1»
INTEX3ER C (3)
DATA C(1)/ 1H I,C(2)1 1HX/,C(3)/ 1H./
END

- G4 -

APPENDIX H

ExPLANATION OF CoNTROL ERROR DIAGNOSTICS

Errors in the use of SKOL control structures are diagnosed by messages

of the form:

UNCLOSED x FOUND AT y

where x and yare single letter codes whose meanings are given below:

UNCLOSED
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II-

II

II

II

II

II

A

B

C

D

E

F

G

H

I

J

K

L

M

Q
R

S

T

U

V

W

X

Y

Z

9

means
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

- Hl -

LOOP:
BEGIN (scalar case group)
CASE ... OF
REPEAT ... TIMES:
ROUTINE
ELSEIF
COROUTINE
FOR ... BY ...
DO
LINK
MAIN
SUBROUTINE
FUNCTION
UNTIL (single situation)
WITH
FOR ... TO ...
THENCASE
UNTIL (multiple situation)
REPEAT:
ELSE
LOOP
BEGIN (sit. case group)
IF
BEGIN (unexpected)

FOUND AT A means WHILE •••
II B " END
11 C " ENDCASE
II E II ROUTINE

" F " ELSEIF
/I G " COROUTINE

" I II ENDDO

" J II ENDLINK
II K II MAIN

" L " SUBROUTINE
II M II FUNCTION
II N " ENDMAIN
II 0 " ENDSUBROUTINE

" P " ENDFUNCTION

" R " ENDWITH

" S " ENDFOR
" T /I THENCASE

" U " ENDUNTIL

" V II ENDREPEAT
II W II ELSE

" X " ENDLOOP

" Z II ENDIF
II 2 " ENDCOROUTINE
II 3 II ENDROUTINE

- H2 -

