
V,·System 5.0 11e1e renee Manual

Erk 1. Bcrglund. Per Bothner. Kenneth P. Brooks. David R. Cheriton.
Stephen E. Deering, 1. Craig Dunwoody. Ross S. Finlayson. David R. Kaclbling.

Keith A. Lantz. Timothy P. Mann. Robert J. Nngler. William I. Nowick.i.
Paul J. Roy, M41rvin M. Theimer. Willy H. Zwaenepocl

Computer Systems I.aboratory
Departments of Computer Science and Electrical Engineering. ., ,

Stanford University

18 Octobcr 1984

Copyright © Eric J. Berglund. Per Botlmcr. Kenncth P. Brooks, David R. Cheriton.
Stephen Eo Deering. J. Cruig Dunwoody. Ross S. Finlnyson. David R. Kaclbling.

Keith A. l..4l1ltz. Timothy P. Mann. Robert J. Nuglcr. \Villiam I. Nowick.i,
.. Paul J. Roy, Marvin M. Theimer, Willy E. Zwaencpocl

This research was supported by the Defense Advanced Research Projects Agency under contracts
MDA903-80-C-OI02 alld NOOOJ9-83-K-0431.

TABLE OF CONTENTS

1. Introduction

1.1. The User Model
1.2. 'TIle System ~fodel

Table of Contents

1.2.1. The Distributed Kernel
1.2.2. Servers

1.3. The Application Model
1.4. Outline

Pa rt I. Commands

2. Using the V Executive

2.1. J ntroduction
2.2. Running the V Executive
2.3. Contexts and th(~ Local Name Server

2.3.1. Ch~lOging the Current Context
2.3.2. Getting Context Names
2.3.3. Defining and Undeflning Names

2.4. Sessions
2.4.1. Login
2.4.2. Logout
2A.3. Accessing Files Without a Session

2.5. Remote Progmm Execution on a Scs..'iion Server
2.6. Remote Exccution on a Designated V Host
2.7~· Exccutive Facilities for Command Specification and Modification

. 2.7.1.. Line Editing Facilities
2.7.2. Command History References

. 2.7.3. Command Ali~lSCS
2.7.4. I/O Redircction and Pipes
2.7.5. Cuncurrcnt Commands

. 2.7.6. Execution of Commands on Another Host
3. The View Manager

3.1. VGTS Conventions
3.2. View MtlOuger Menus
3.3. Paged Output Mode
3.4. Mouse Ec;cape Sequcnces
3.5. MOllsc Emulation Vitl the Keyboard

4. Command Summa ry

4.1. W orKstc:1tion Commands
4.2. Commands on Scssion I-losts

5. Executive Control Commands

V~SYSl'EM 5.0 REFERENCE MANUAL

1

1
2
2
2
3
3

5

7

7
7
8
8
9
9
9
9

10
10
10
11
II
11
12
12
l3
l3
14

15

15
15
17
18
18

21

2i
25

27

II

6. The V Debugger

6.1. Synopsi~
6.2. Description .

6.2.1. Invoking the Debugger With a Program
6.2.2. Postmortem Debugger
6.2.3. Common Usage·

6.3. Commands
6.3.l. Definitions
6.3.2. f:Xccution Control Commands
6.3.3. Display Commands
6.3.4. Replacement and Search Commands
6.3.5. Help Commands

6.4. Bugs
7. Ved: A Text Editor

7.1. Starting up
7.2. Molion
7.3. Paging and Scrolling
7.4. Simple Editing
7.5. File Access
7.6. The Mouse .

7.6.1. Editing With the Mouse
7.6.2. fixed Menu

7.7. Searching ,md Replacing
7.8. The Right Hand and the Left
7.9. Mark and Region
7.10. Windows and Buffers
7.11. Crash Rccovery
7.12. Hints on Usage

8. Draw: A DrawingEditor

8.1. Conceptual Model
8.2. Screen r .41yout
8.3. Command I nptlt
8.4. Control Poi'nts <lnd Slicky Points
8.5. Mouse Buttons
8.6. Selccting Objects
8.7. Action Commands
8.8. Object Types
8.9. Default-setting Commands
8.10. Permanent Menu Commands

9. bits: a bitmap and font editor

9.1. Command Input
9.2. Ra.'lters
9.3. Changing Raster Size
9.4. Oitmap 110
9.5. Painting
9.6. Inverting a Raster
9.7. Raster Operations (Bitntt)
9.8. Reflection and Rotation

V-SYSTEM 5.0 REFERENCE MANUAL

TABLE or CONTENTS

29

29
29
29
29
29
30
30
30
31
33
33
33

35

35
35
36
36
37
38
38
38
38
39
40
40
41
42

43

43
43
44
44
45
46
46
47
48
49

51

51
51
51
51
52
52
52
52

TABLE OF CONTENTS

9.9. [Replace in table]
9.10. Making a Copy of the Screen
9.11. FontS

9.11.1. Displaying Fonts
9.11.2. Font parameters

9.12. Sample Texts
9.13. Printing a Rastc:r
9.14. BuSs and Problems.

10. Amaze
11. Fscheck: File System Checking Program

11.1. Invocation
11.2. Commands
11.3. Initializing a new disk subsystem

11.3.1. Creating a new tile system
11.4. Checking file system integrity

12. Standalone Commands

12.1. Vloud
12.1.1. J Mbit Ethernet
12.1.2. Excelan Ethernet
12.1.3. JCorn Ethernet

12.2. Postmortem
12.3.lpwatch
12.4. Diskdiag
12.5. OfflQad and Oflload38

Part II. Program Environment

13. Program Environment Overview

13.1. Groups of Functions
13.2. Header Files

14. Program Construction and Execution

14.1. Writing the C Program
14.2. Compiling and Linking
14.3. Program Execution

14.3.1. Execution With the Executive
14.3.2. B(lre Kernel Mode

14.4. '111e Team Root Message
14.5. The Per-Process Area

15. The V·System Configuration Database

15.1. Introduction
15.2. Contiguration Database
15.3. [mplementation

16. Input and Output

16.1. Standard CliO Rout!llcs
16.2. V 1/0 Conventions
16.3. V 1/0 ROlltines

16.3.1. Opening; Files

V-SYSTEM S.O REFERENCE MANUAL
I'

III

52
52
52
53
53
53
53
54

55

59

59
59
60
60
61

63

63
63
64
65
66
66
66
67

69

71

72
72

75

75
75
75
76
76
76
77

79

79
79
80

83

83
83
84
84

IV

16.3.2. Closing Files
16.3.3. Byte Mode Operations
16.3.4. Block Mode Operations
16.3.S. Server-Speci fic Operations
16.3.6. Miscellaneous 110 Functions

17 .. Numeric and Mathematical Functions

·17.1. Numeric Functions
17.2. Mathematical Functions

1 S. Memory Management
19. Processes and Interprocess. Communication

19.1. Kernel Operations
19.2. Other Functions

20. Naming

21. Program Execution Functions

21.1. Program Execution
21.2. Other Functions

22. Control of Executives

23. Service Registration and Selection Functions

23.1. Registration Facilities
23.2. Scl~'Ction Facilities

24. Graphics Functions

24.1. Terminology
24.2. SDF Primitive Types
24.3. SDF Manipulation Procedures
24.4. VaTs and Views
24.5. Graphical ;.ind Character Input
24.6. Defining and Using Fonts
24.7. Ustng the VGTS

24.7.10 Cooking Your Pads·
24.7.2. Other Interface Routines

24.8. Example Program
25. Fields: Using a Pad as a Menu

25.1. Formats .
25.2. The Field Table as a Menu: Selecting an Action
25.3. Displaying Fields
25.4. User Input to Fields
25.5. An Example .
25.6. l.imitations

26. SUN PROM Monitor E~ulator Traps

27. Miscellaneous Functions

27.1. Time Manipulation Functions
27.2. Strings

27.2.1. Unix String Functions
27.2.2. Vercx String Functions

27.3. Other Functions

V-SYSTEM 5.0 IWFERENCE MANUAL

TADLE OF CONTENTS

85
86
87
88
90
93

93
93

95
97

97
104

105
107

107
109

111
113

113
113

115

115
116
117
119
120
121
121
122
122
124

127

127
128
128
129
129
130

131
133

133
133
133
134 .
135

TABLE OF CONTENTS

Part III .. Servers

28. Servers Overview

28.1. Mcssage Format Conventions
28.2. Standard System Request Codes
28.3. Standard System, Rcply Codes

29. The V-System IlO Protocol

29.1. CREATE INSTANCE
29.2. QUERY INSTANCE
29.3. RELEASE INS'rANCE
29.4. READ INSTANCE
29.5. WRITE INSTANCE
29.6. Sgr INSTANCE OWNER
29.7. SEr BREAK PROCESS
29.8. SEI' PROMPT
29.9. QUERY FILE and NQUERY FILE
29.10. MODIFY Fll.E and NMODIFY FILE

30. The V-System Naming Protocol

30.1. Character String Names
30.2. Contexts and Context Ids
30.3. Well-Known Context Ids
30.4. Nmne Request Format
30.5. Name Parsing and Forwarding
30.6. Standard CSNH Server Requests

30.6.1. a ... :r CONTEXT II)
30.6.2. GET CONTEXT NAME
30.6.3. GET FILE NAME
30.6.4. ADD CONTEXT NAME
30.6.5. DELETE CONTEXT NAM E

30.7. Context Directories and Object I)e~cript()rs
30.7.1. READ DI':SCRI PTOR and NREAD Dl~SCRIIYrOR
30.7.2. WRITE DESCRIPTOR and NWRITE DESCRIPTOR

3 '1. Device Server

31.1~ Ethernet
31.2. Mouse: 'Ille Graphics Pointing Device
31.3. Serial Line
31.4. Console
31.5. Null Devices

32. Exception Server
33. Pipe Server
34. Internet Server

34.1. Running the Intemet Server
34.2. Accessing the Internet Server
34.3. DARPA Internet Protocol (IP)
34.4. DARPA Transmi&iioll Control Protocol (TCP)
34.5. Xerox PUP Protocol
34.6. Adding New Protocols

34.6.1. External Client Interface

V-SYSTEM 5.0 REFERENCE MANUAL

v

137

139

139
139
139,

143

145
146
147
147
148
149
149
149
150
150

153

153
153
154
154
155
155
155
156
156
157
L57
158
159
159

161

L61
162
162
163
163

165
167
169

169
169
170
170
171
171
172

VI

34.6.2. Internal Protocol Interfacze
34.6.2.1. A Brief Overview Of The Internet Server's Structure
34.6.22. 'nle Packet Buffer Module
34.6.2.3. Process Interactions
34.6.2.4. Protocol-Independent Interface Routines and Data Structures
34.6.2.5. Protocol-Specific Interface Routines and Data Structures

35. V Storage Server

35.1. Running the V storage server
35.2. Accessing the V stomge server
35.3. Creating a context for the V storage server

36. Unix Server

36.1. Sessions
36.2. File Access
36.3. Program Execution
36.4. Filc Descriptors
36.5. Server Name Lookup

37. Service Server

37.1. Ovcrview
37.2. Registering an Object
37.3. Listing Registcred Objects
37.4. Retril!ving Scts of Registered Objects

38. Exec Server
39. Terminal Agents

39.1. hnplcmcntation of Terminal Agents
40. Virtual Graphics Terminal Server

40.1. Current VGTS Ve~ions
40.2. VGTS Philosophy
40.3. VGTs. Views. and Instances
40.4. Pad P.scape Sequences
40.5. VGTS Mcssugc Interface
40.6. Inl~rnal Organization

40.6.1. Ex(.'Cutive Interface
40.6.2. Frame Buffer Interface

41. Simple Terminal Server

41.1. Input Editing Facilities
41.2. l-Iurdwarc Environment'

42. Context Prefix Server

42.1. Nmnc Syntax
42.2. Additiunal F~aturcs

43. Team Server

43.l. Overview
43.2. Team Loading
43.3. Team Termination
43.4. St4ltllS of Running Teams
43.5. Remote Execution

V-SYSTEM 5.0 REFERENCE MANUAL

TABLE OF CONTENTS

172
173
173
174
176
177

181

181
181
182

183

183
183
184
185
185

187

187
187
188
188

189
191.

191
193

193
193
193
194
195
196
197
197

199

199
200

203

203
204

205
205
205
205
205
206

TABLE OF CONTENTS

Part IV. Kernel

44. Kernel Overview

44.1. Process and Memory Management
44.2. Interprocess Communication
44.3. Naming
44.4. Time Nlanagement
44.5. Device Management
44.6. InitiaHzation
44.7. Distributed Operation
44.8. Application-Level Model

45. Kernel Operations
46. Exceptions and Kernel Exception Handling

47. Performance

47.1. Space Requir(~ments
47.2. Kernel Operaltion Times
47.3. 'Interrupt Disable Time

48. Kernel Internal Structu ra

48.1. Teams
48.2. Processes
48.3 .. Kernel Synchmnization
48.4. Interrupt Routines
48.5. Kernel Traps
48:6. Kcme1 Process
48.7. Device Server Process
48.8. Process Switching
48.9. Processor Allc)C;ttion
48..1 O. Process Creation and Destruction
48.11. Message Primitives
48.12 Time Primitives
48.13. Distributed Opemtion

49. K~rnel Modific.ation and Maintenance

49.1. Kernel Configuration Parameters
49.2. Adding New Device Support
49.3. Adding Kernel Operations

Part V. Appendices'

Appendix A. C Programming Style

A.1. General Format
A.2. Names
A.3. Comments
A.4. Indenting
A.S. File Contents
A.6. Parentheses
A.7. McsSc:'lgcs

V-SYSTEM 5.0 REFERENCE MANUAL

VII

207

209

209
210
2.10
210
210
210
211
211

213

·215
217

217
217
218

219

219
219
219
220
220
220
220
220
221
221
221
221
222

223

22J
223
223

225

227

227
227
22~

22~

225
231
231

VIII

Appendix B. Installation Notes

B.1. V-Syste.m Distribution
B.2. 68000 Tools
B.3. ~faking the V-System

Index

V-SYSTEM 5.0 REFERENCE MANUAL

TABLE OF CONTENTS

233

233
233
234

237

UST OF TABLES

List of Ta biles

Table 47-1: SUN W.0rkstation Kernel Memory Requirements
Table 47-2: SUN Workstation Times for Kernel Operations (in milliseconds)
Table 47-3: SUN Workstation Ethernet Output

Y"SYSTEM 5.0 REFERENCE MANUAL :

IX

217
217
218

INTROUUCflON 1

~1-
Introduction

The V-System is a mrcssnge-based distributed operating system designed primarily for high-perfonnance
workstations connected by local networks. It pennits the workstation to be treated as multi-function
component of the distrilbuted system. rather Ulan solely as a intelligent terminal or personal computer.
Ultimately, it is intended to provide a general-purpose program execution environment similar to some
degree to UNIX. The programs are intended to interact with each other, and with programs running on
traditional timesharing systems. to produce an integrated distributed system.

1.1. The Use r MOldel

One of Ule most important functions for the workstation is to provide stnte-or"the-art user interface support.
In particular. the workstation should function as a fro"1 ('ud to ~lll available resources. whether local to Ule
workstution or remote. To do so. the V-System adheres to three fundamental principles:

1. The interface to application programs is (reasonably) independent of particular physical devices or
intervening networks.

2. The user is allowed to perform mUltiple tasks simultaneously.

3. Response to user interaction is fast.

In addition, fllcilities arc: being developed to permit (l consistcnt interaction disciplinc across applications.

When U1C user boots his workstation he may communicate with one of two entities: nn ('xeculiv(' or the view
manager. The uscr executes commands (applicCltion programs) from within an executive. which is the
equivalent of a UNIX shell or '1'01>5-20 EXI~c. Thc applications may mil local to Ule worKst,ltion or remote.
'lney may be writtcn with thc particular workstHtion in mind. or mn in "lerminal emulation" mode. They
may require I/O modalities other thmt traditional text, namely. graphics.

Euch application mHY be associated with one or more separate, device-indepcnucnt virlLwl graphics
terminals (VGT). 1\ VO'!' may be cre,lted by the lIser (vin Ule view manager) or by the activity itselt~ Each
VaT may be used to cmulate either a page-mode Vr-IOO terminal or a 2-dimcnsional raster graphics
terminal.

When U1C lIser wishes to initiate a new application concurrent with existing applications. he must first create
a new VGT. with an associated executive. To do so. me user cOlnmunicutcs with the view manager. The
executive serves as a commund interpreter from which the desired activity may be initiated. The lI$er can
create it new executive. with VGT. at any lime.. asynchronous to any existing activities. When i.1 particulur
activity requires aodiLiollnl virtuul tertninnls. it is free to creuLe them. These VaTs will be ueallocalcd when
the activity tennimltcs. whereas VaTs createo by U1C user may only be deallocated by the tlser.

Virtual terminals are mapped to me screen when and wherc the user dc.~ircs. Each slich mapping is teInlcd
a view. When an activity creates a new VOT. it prompts the user to specify the def~lllit view. Thereaftcr, the
user may create as many additional views as he wishes. To some extent. he may manipulate views of UtC same
VaT independent of un other views of that VaT. for example. pan or zoom. All VaT management is
performed via the view manager.

V"SYSTEM 5.0 RFFERrNC"E MANUAL

2 INTRODUCTION

1.2. The System Model

'nlC V-System adheres to the server model: Thc world consists of a collection of resuurces accessible by
elien/s1 and managed by servers. A server defines the abstract representation of its resource(s) and the
opemtions on this representation. A resource may only be accessed Of manipulated through its ,server.
Because servers arc constntcted with well-defined intertaces, the implementation d~ti.lils of a resource arc of
concenlonly to its server. Note that a server frequently acts as a client when it accesses resources managed by
other servers. Thus. cliellt an~ server arc merely roles played by a process or module.

Clients and servers may be distributed throughout the (inter)network. I3y dcfault. access to reSOUfces is
network transparent; a client may access a remote resource with the same semantics as it accesses a local
resource. '111e result is an environment in which clients may communicate with scrvers without regard for the
topology of the distributed system as a whole. However. we do not intend that a client cannot determine or
influence the location of a particular resource. rather that a transparent mechanism is available. Moreover, we
allow for clients and servers that were not written with network-transparent access in mind.

Logically, then, the V-System consists of a distributed kernel and a distributed set of server processes. A
stc1ndard progmm environment is detined. the principal instance of which is the C program library. The C
library indudcs nliltime support for standard C and UNix-like libmry functions to i11ciliwtc the porting of
existing C programs.

1.2.1. The Distributed Kernel

Thc distributed kernel provides nctwork-transparcnt intcrpr()cC5.c; communication based on synchrollous
mes."agc-passing. It consists of the collection of kernels resident on the participating machines. The host
kernels may be implemented at a base le"el (as on the SUN workstation) or a gues, lel'rt (as under V AX/UNIX).
The host kernels arc integrated via a luw-overhead inter-kernel protocol that supports transpurcnt intcrproccss
communication between machines.

1.2.2. Servers

Servers include:

virtual graphics terminal server
Provid~'S all termimll manugement functions. One per workstation.·

III/ernet server Provides ARPA Internet IP/TCP support

pipe server Provides asynchronous. butTered communication fucilities similar to UNIX pipes.

leam server Provides team creation. destruction, and management One per workstation.

excep/io" server Fields process exceptions and dispatches them to l-cgistered handlers. such as dcbuggers.
One per workstation.

storage server Provides disk storage.

device server(s) Intertllccs to a specific physical device. Stich tiS thc consolc. mousc. seriullinc. or disk.

loea/Ilame server Provides locally defined character string names for (po~5ibly) remote resources. One per
workstation.

1 A dlentl" a program rcquC!\till~ ncccss to n resource. typically on behalf of n human user.

V-SYSTEM 5.0 I~PFERENCF MANUAL

'11m APPLICATION MODEL 3

1.3. The Applicaition Model

Using the kernel well requires understanding the model of processes and messages that the kernel provides,
and how they are intended to be used. Processes represent logical activities within the application. They are
intended to be sufficiently inexpensive to allow the use of multiple processes to achieve the desired level of
concurrency. J n particular. multiple process\!s may share the same address spac.e or (eam, to facilitate tine
grain shming of code and data. A team must be entirely contained on a single machine.

Processes can be dynamica1ly created and destroyed. When a process is created, it is assigned a unique
process identifier that is used subsequently to specify that process. .

Synchronolls message-passing facilitates communication between processes that looks to the sender like a
procedure cull. That is. the sen·der blocks until a reply to his request is received. Grcater flexibility is
provided to the receiver to allow scheduling of request". Mcssages are addressed to the process identifier of
the recipient; there is no concept of a mailbox or pori distinct from a process.

Messages are short and fixed-length. To fllcilitate transfer of large amounts of data. a separate data transfer
f.:1dlity is provided. Specifically. a process can pass. in a message. access to an area in its team space. This
fltcility follows the procedure paradigm in being used primarily to aCCC$S what afe logically "call-by
retcrencc" p;arameters. Synchronizution bctween the two processes involved in thc data transfer is guarantcl.!d
by virtue of the fact that the recipicnt will not reply to the scnder (and hence awaken him) until the lransfer is
complete.

The kerncl implements a low-level naming service thnt provides emcient access to server processes. 1\
process can register it~ process identifier ,is corresponding to a particular logical process idcntifier. Client'; can
subsequcntly query the kernel as to thc process identificr corresponding to a specific logical process identifier.

Process scheduling is strictly priority-bascd. The effective priority of a process is the sum of its process
priority. which is defined and fixed whcn the process is created. and its leam priori/yo Team priorities can be
dynamic;'llJy varied by a server process to provide time-sliced schcduling.

1 .. 4. Outline

"111e remainder of this manmll consists of nve parts:

Part 1

Part 2

Part 3

Part 4

Part 5

Commands: describcs thc ·lIser interf41ce and available application programs.

I'rogr:un li:nvironment: defines the VeSyslem prognllTI ellvironm\!nt in terms of Ule
existing C program library.

Servers: defines the st41ndurd 110 protocol and presents U1C server interfaces.

Kernel: describes the distributed kernel.

Appendices

Any part of tile V-System IIwy change witllOut notice. Tlwre/ore, tllis documentation SIIOIlIll be regarded as
advisory.

V-SYSI'EM 5.0 I~FFlmFN(,E M"NUAL

4 INTRODUCTION

V-SYSTFM 5.0 REFE1{ '~N(,r. MANUAL COMI\"ANDS

COMMANDS 5

Pa rt I:

Commands

Y-SYSTFM 5.0 RFFERENCE MANUAL COMMANDS

6 USING THE V EXECUT~VE

V-SYSTFrvI5.0 RFFFRFNCE MANUAL COMMANDS

USING TIlE V EXECUTIVE 7

~2-
Using the V Executive

2. 1. Int roductioln

The V executive is the part of the V system that accepts user commands from the keyboard and causes them
to be executed. It corresponds to the Unix shell 01' Tops-20 Exec. There are currently several versions of the
executive, including two called exec and vglsexec.2 The two versions differ only in their handling of terminal
1/0. The exec program nms a single excclltive. which uses the kernel console device. while the vgtsexec uses
the Sun Virtual Graphics Terminal Service to provide any number of simultaneous execs. Although initially
thc vgtsexee provide:s onc executivc, the user can create and delete executives llsing the Exec
Control command of the view manager, described in the ncxt chapter.

Thc basic operation of the executive is to read I.:ommund lines and execute commands. The first fielJ on a
command line is the command name; the rest are arguments to be pussed to the command. Fields are
separated by spaces. A command name can be a built-in exec command. the name of a file conli.lining a
progmm compiled to run under the V system, or the name of a program to be run on a server. slich as Unix.
The excclltive provides n simple search path mechanism for commands. It looks first. fbr a V progrum in the
current context (i.e •• dircctory), ncxt in the current [bini context, and tinally in the [public] context. If it still
cannot find it, it will try to execute the command remotely. on the server that is providing your current
context

The exccutive waits for ench command to exit. unless the last field on the command line is the singlc
character &. In this case. the command runs in the background, whilc the cxeclltive continues to accept
commands from Ule keyboard. In thc vgtsexee. there is a view manager option to terminate a program
running in the foreground. but the plain exec currently provides no way to do this. "program running in thc
buckground may be terminated using the des'''(J),command (sec chapter 4). .

Other exec tcatures are described in section 2.7.

2 .. 2 .. Running the V Executive

Whel1 you come up to an idle Sun workstltion. it may be in one of several states. I f the screen is blan k, it is
probably running V, but idle. The VGTS blanks U,C screen on idlc worksultions atter a lew minutes of
inactivity. Move thc mouse slightly or press any key on U,C keyboard to restore thc display. "previous user
may have left one or more of his sessions (see below) active. The command

logout

will tenninute them all and get you ofT to a frcsh start.

If thc workstation is nllliling some other program, dead, powered down, or the like, it wilt be necessary to
reboot it, as described nn the thllowing paragraphs.

There arc several brands of Sun workstltion in existence. and booting procedures vary depending on the
brand.. The two majior kinds are those made by Cadlinc, which are black, nnd those made by Sun
Microsyslems (SMI), which are white. Many other computers based on the same 68000 CPU board may also
run the V system, but details may be different .

2sec section SER VEREXEC for a description of the servereXf!c. which is used only on dedicnled server machines.

V-SYSTEM 5.0 REFFRENCE MANUAL COMMANI)S

8 USING THE V EXECUTIVE

/\ Cadlinc workstation in a random state can be reset to the PROM monitor by typing
<Cl"RL><S] II Fr><BREAK>. pressing the reset button. or (in desperation) power-cycling the workstation. It is best
to try pressing the comma key on a Cadlinc's numeric keypad before resetting it [f the V kerncl is active at
that poine. this key instnlcts it to turn off the mouse, necessary for proper operation of the PROM. monitor.
Otherwise, you m'lY have to power cycle the workstation or keyboard to regain control.

On the SMl workstation. hold down ERASE EOF (White Keyboard) or SET·UP (Black keyboard) and hit the
"A" key. TIlcrc is no reset button on SMI workstations. and the SMI mouse docs not need to be shut off.

Suns that have an ordinary terminal as their console can usually be brought into the PROM monitor by
hitting the temlimll's BREAK key. Sometimes there is a reset button or switch attuched.

It is always nccessary to reset the workstation by pres.o;;ing tJle reset button or using the Sun monitor's ki
command betbre running tJle V kernel. On SMt Suns, the ki command destroys the type font used by the
PROM monitor to draw characters on the display. but this is restored by the. next b command. You can also
use k2 on SMI Suns. which repeats the power-on diagnostics and thus takes much longer than ki. but does
not destroy the font

To run the V exccutive on a Sun workstation. reset the workstation and type the command

n V

to the Sun monitor. (Usc b instead of nOll SMt Suns.) Ifyollr Sun has a frame buffer. this command 10a<.1s
the vgtsexcc, or a small version of the vgtsexec if you have 256 Kbytes of memory or less. I f you have no
fr~me buffer. the n V commHnd loads the plain exec. You can force the plain exec to be loaded by typing

n VV

to the monitor.

Both V and VV are special versions of the Vload program, "hardwired" to load a particular command. See
chapter l2.

2.3. Contexts and the Local Name Server

A cOlllext in the V system is a generalization of the direclodes provided by other systems such as Unix.
Each proces.o,; (Hnu thus cHch executive) has its own current context. /\ lilenHme is Ilormally interpreted in the
current context. unless it begins with a square bracket rr). Any filenamc Ulat begins wilh a square bracket is
sentlo the t(}C411 Ilmne server. which interprets lhe part uf U1e name in brackelo,;. Ulen forwards lhe rcqucst oil'
to the specified context. For example.

[diablo]/usr/f11es

mcans the nallle lusr/fil as is to be interpreted in the context named [diablo].

'n,e local name server predefines several context names. and others are defined by the logi1l program and
tJ1C exccutive. Users can define their own local numes using the dejillr and llIUiejille commands. The
cummand

listd1r [context]

lists the local context names currently defined.

2.3.1. Changing the Cu rrent Context

'Ille cd (change directory) command can be used to change the current context for an exec. The command
format is

cd pal/lIIalne

V·SYSTEM 5.0 RFFFRFNCE MANUAL COMMANDS

CUANOING '11 IE CURRENT CONTEXT 9

'lle pathmune is interpreted in the (previmis) current context. If the path name is omitted, [homel is assumed
(sce section 2.4.l). \Vhcn an exec is created, it., current context is set to the current value of [home]. . .

2.3.2. Getting Contuxt Names

The cOIl(exl or pwd command will print a name for a context. It tries to find the most informative of the .
possible ways of naming the context. The command fonnat is

context pathname

If the pathname is omi:ttcd. the command prints a name for the current context. This is the most common
usc.

2.3.3. Defining and Undefining Names

The command

defi ne flamel name2 .•• nameN oldname

or

def 1 n e nalllel llame2 ... nameN -1 p /ogiculpid

defines lucal nmnC!') [nc.lme 1) through [nameNl to refer to the same context as the current vallie of old name or,
if the tt_Ip" option is used •. to refer to the context corresponding to the supplied logical pid. (System logical
pids arc defined in <Venviron.h>.) I3rackets are optional on name l through nameN, while oldname is
interpreted in the current context unless surrounded by brackets. I\ny previolls meanings for name 1 through
nameN are lost.

The command

undef 1 ne llamelllame2 .•• "ameN

removes any existing IOiC<11 definitions ()f[name IJ Uuough [nameN). Brackets are optional on lhese names.

2.4. Sessions

Thc V system lIses Ule concept of a sessiol1 to provide a relntively secure fi>rtn of tile access over a local
network. To gain accc's,'i to tiles on a host ITwchine. it is necessary to create a se:o;sioll on that machine. hy
providing a vcilid L1ser Ilame anu password to a server process funning on lhe host. The session created has
that user's file acccs-c; pennissiuns. so the existence of a V server on a machine docs not aull any allditional
complications to sccurity or create any new security holes. Both the server process aud the session it creates
appear as ordinary V processes which can send and receive messages using the distributed V kernel
interproccss communication protocol.

2.4.1. Login

111C logi" command is used to create sessions. The command rorm'lt is

log i n /los/name sessiollIrame

where both the host name and session name arc optional. If the host name is omitted. the login program will
prompt for it. If the session name is omitted. it dC~111lts to be the same as the host name.

"111e login program always prompts for a user name and password. 'n,e. password is not echoed when typed.
I\n error message will be printed if the session cannot be created. or the user had an incorrect name or
password.

"n1e login program registers the user's home directory on the newly created session with the local name

Y··SYSrEM 5.0 REFFRENCF. MANUAL COMMANDS

10

server. Thus after a

login diablo

command, the name

[diablo]papers/nam1ng.mss

USING 11 IE V EXECUTIVE

refers to the tile papers/nami ng. mss under the user's home directory on the host named diablo.

TIle login program defines the local name [home1 as an alias for the user's home directory on the last session
created. and the local name [bin] as an alias for the V public directory on the host providing that session, if it
maintc1ins onc.

After the login command is nm. the exec automatically changes its current context to the new value of
[home]. Remember that this docs nol change the current context for any other process. including any of the
other execs 'that may be running on the workstation.

2.4.2. Logout

'111e logout command is used to terminate sessions. The command format is

logout sessionname ...

where the session names arc optional. I f one or, more names are given. each of the named sessions is
terminated. If no names arc given. all sessions known to the local name server arc terminatcd. After it
finishes. the logout command prints a count of lhe number of ses.'iions logged out I f a session name was
givcn and no such session was fhund. an error messagc is printed.

Logging out a session can causc thc current contexts of one or morc processes on the workstation. the name
[homc]. and/or th~ name [bin1 to become invalid. Executives try to recover from this situation. but other'
programs may not be able to. \)0 not log out a session ifsome program on your work~tltion is still using it.

2.4.3. Accessing Files Without a Session

For convenience. the V servers provide a wuy of accessing a certlin limited set of fik'S with()ut first creatil1g
a session. Any of the programs kept in the sUllH.lard V public directory may be run without creating a session.
The Imme {publit.:1 is predefined by lhc'local n'lOle server to refer lo this service.

On a workst41lioll with no sessions in existence. the numcs lhomel and [bini are normally both defined to
equal [public]. The current directory of lhe til'st exec created when V is booted is also set lo [puhlic],

'nle name {public1 has the special property thut it is mapped to a logical process id (and well-known context
id) instead of a specific server proccs.-; .. Each time the name is lIsed. it is automatically m~lpped to a currently
existing server. the onc which responds first to thc namc server's GetPid request Other nmnes which arc
defined to equut [public), as mentioned above, get its current value when they arc defined~ they do not cause a
GetPid on ench usc .

. 2.5 .. Remote Program Execution on a Session Server

If the executive fails to find an appropriatc load file for a command. it will attempt to execute the (.~ommand
on the server providing its current context by invoking the j'ex{'cUlc program. Thus. for exmnple. when a V
server on Unix is providing thc current context. alllhe standurd Unix commands like finger, make. or Is are
avail~lblc. The output of the Unix command is printed on the stlndard output file.

You can also supply input to remotc commands. The character echoing and line editing.on this input arc
done on the works~ltion. not by the ses.~ion server machine. You cml type

control-t c [return]

V-SYSTEM 5.0 REFERFNCE MANUAL COMMANDS

REMOTE PROGRAM EXECUTION ON A SESSION SERYER

to send an end of file to the remote command, or

control-~ e [r~turn]

11

to cause the remote command to exit Type control-l" twice to send a single control -1" character to the
remote command.

Since both the input and output arc done through pipes, and input is a tine at a time. many Unix programs
which expect to be run on tty devices (such as ~macs. lelfler. more. etc.) do not work in this mode. Such
programs can only be nm by logging in to the Unix machine, perhaps using one of the V tclnet programs to
connect to it (sec chapter 4).

The V servers do not provide execution of Unix commands without a session. If the executive tries to
execute a Unix command in the [public] context. the V server returns an "Illegal request" error.

2~6. Remote Execution on a Designated V Host

" command can also be executed remotely by explicitly designnting another host~ This is done by
specifying tJle process id of the team server for the host on which the command is to be run. (Synlax details
arc describcd in 2.7.6.) Remote eXl..'Cution of this type is transparent to tJle lIser in Lhat 1/0 is still dirc(.;tcd to
the local host.

2.7. Executive F,acilities fo r Command Specification and Modification

The exccutive provides various facilities for specifying and editing command Hnes and fi)l' redefining
various aspects of command execution. The syntax and semantics of each is described below.

2.7.1. Line Editing Facilities

Command Jines can be edited with Emacs-style line-editing keys. More ~pecifical1y, the following editing
commands arc' available. CrRL-x means stl'iking tJ1e Control key and the x kcy simultaneollsly: ESC-x
means striking the E\)C41PC key and then Ute x key.

CrRI:-a

CI'RI.-b

CrRI,~c

CrRI,-d

cnu.-c
CTRL-f

CrRL-g

CI'RL-h

CffiL-k

crRL-t

CrRL-u

CrRL-w

Move cursor to beginning of the command line.

Move cursor bnck one Ch'lfUcler.

KiI1sthe Break Process. usually the command running in the current executive.

Delete character under the cursor.

Move cursor to the end of the command line.

Move cursor filrwurd one char(lctcr.

"bort the commnnd. The line editor will P(lSS the comnmnu line. followed by a CrR I.-g. to
the dient program. which is responsible thr detecting Ule CrRI.·g and rC41ctillg lo it.

Delete·the chamcter before the cursur. Equivalent to the DI~L key.

Delete the comnumd line from the cursor to the end of the line.

Transpose the two characters preceding the cursor.

Delete the commmld line up to the cursor.

Del(!te·from the cursor to thc beginning ofUle current word.

Y··SYSTEM 5.0 REFFRENCE MANUAL COMMANDS

12 USING THE V EXECUTIVE

CfRL-z Causes an End of File indication to be sent to the application reading the line. This will
tcnninatc the Executive if 110 application is running.

Move cursor to the beginning of the current word.

Delete from the cursor to the end of the current word.

Move cursor past the end of the current word.

ESC-b

ESC-d

ESC-f

ESC-h Delete from the cursor to the beginning of tlle current word. Same as CI'RL-w.

Printing characters arc normally inserted at the cursor. Commands are submitted to the executive for
execution by hitting carriage return. This can be done regardless of where in dlC command line the cursor is.

2.7.2. Command History References

The executive also maintains a history of the last 20 command lines that the user has typed in. These
command lines m<lY be referenced by typing dle character 1 immediately fol1owed by a prefix of the desired
command Iinc. Thus if the command line

cp Ing/ng/V/cmds/exec/exec.c Itmp/exec.c

was typed in. then it can be referenced by typing (for example)

rcp

If a non-unique prefix is specified then the must recent command with that prefix is taken. Another speciul
fonn of reference is 1 t. which references the pre v'ious command line.

When a command line is referenced it is redisplayed for further line editing and verification. Thus in the
previous example typing

lep

will cause the executive to display

cp Ing/ng/V/emds/exee/exec.e lusrlsun/Vboot/exee.c

with dle cursor silting at the end of the line. The uscr can then hit carriage return to reexeclite the Hne or can
edit it first to derive a new command.

The command his/ory' will CHuse dle execlltive to list the command lines it has stored in its history record.
The must recently executed conllmmd wi1l be at the bottom of the list. .

2.7.3. Command Aliases

Command names can be alinsed by means of the alias command. Thus. for example. typing

alias e ved

will cause the command name "c" to be replaced by "ved" in subsequent command lines. Note that aliasing
is uone ollly fbI' command names and nol for cuamm1l1d iugumCnL'i. (Remember dlat thc commmu.l name is
Ule tirst word of a command line.)

Aliascs specify a string for replacement of the alias word. 11111S one can create anuses Stich as
alias test Ing/mmt/test/testcopy -d

Then typing something like

test fi1e1 f11e2

will cause the command

Ing/mmt/test/testcopy -d f11e1 f11e2

V-SYSTEM 5.0 RFFFRENCn MANUAL COMMANDS

COMMAND ALIASES 13

to be submitted to the c"ecutive Ibt\ execution.

A list of all defined aliases can be obtained by typing alias without any argumcnt~. 'nle command unalias is
used to remove an alias definition. Specifying a new alias definition tor a command name simply replaces the
old one.

2."7.4.110 RedirecUon and Pipes

I/O redirection and Sl)ccification of pjpes between two (or more) commands is done using the same syntax
as is used by the Unix shells. Thus input can be redirected to come from a tile by specifying

cmd < fila

and output can be redirected to a tile by specifying
·cmd > fi 1 a

or
cmd » file

The latter fonn specifics that the output should be appended to the tile whereas the tirst f-hrm will overwrite
any data already existent in the tile. Error Olttput"can be redirected by specifying >1 01' »1. The forms >&
and> >& redirect both standard output and standard error to the same tile.

!\. special fOl1n of redirection is available tor bidirectional tiles. such as the serial lines available on Suns.
Specifying

cmd <> fila

causes the command's input and output to be redirected to the same tilc. To be precise. the me is opened in
FCREJ\TE m.nde. and standard output is redirected to the instuncc thus created. Standard input is redirected
to come from an illstam:e whose id is equal to the output instance id plus 1. This malches a convention lIsed
by several VGSystem I/O servers. The lonn <>& also redirects standard error to U1C ~ll11e instance as standard
output.

Pipes can be set up between several commands by separating them with a I on Ule command line .. Thus.
fOlr example. the command litle

cmdl I cmd2 I cmd3 ~ log

wilt create two pipes and redirect 1/0 so that Ule output of cmd I will be lIsed as the input to cmd2. the output
of cmd2 will be used as the input to cmd2. and the output of cmd2 will be redirected into the me log.

All the special ch,ln"u:ters described above must be surrounded by spaces for the execulive to recognize
them. Redirection clmlses must appe"r after all arguments to be passed to the command.

2.7.5. Concu rrent Commands

Commands cnll be :;pecitied as being cUIlCLlrrelll by including an & at Ute end of the command line. This
emtscs the executive to return inlltlcdiatcly to the user Ihr (lIlother command rather Ulun waiting until the
current command completes. AI:'iO. while nunconcurrent (fbrcgroulld) cmnmancJs arc terminaled if their
executive is deleted. concurrent (background) commands will cuntinue even if the exccutive U1at initiated
them goes away.

The 8« must be precedled by a space for the executive to recogni7.e it.

V-SYSTEM 5.0 RFFFRENCE MANUAL COMMANDS

14

2.1.6. Execution of Commands on Another Host

Commands can be designated to execute on another host by including

@ TeamServerPid

USING TI IE V (1.'CECUTIVE

at the end of the command line. (Note: an & can be specified in addition to this.) Here TcamServcrPid is the
hexadecimal process id of the team server residing on the remote host where the command is to be executed.3

Remote execution is transparent to the user in that the 110 of the command is still directed to the local host
and will be displayed in the smnc manner as if the command werc executing locally.

Thc (I sign must be surrounded by spaces for the executive to recognize it. The remote execution clause, if
present, must tollow all arguments to the command (but may be intennixed freely with redirection clauses).

3Using the hc:'(pid L" a temporary measure until some fonn ofh08t name service is available.

V-SYSTEM 5.0 I~FFI~I~FNCE MANUAL COMMANDS

TilE VIEW MANAGER 15

~3-
The View Manage r

The view manager provides an interface between the tlser and the VGTS. The programmer's interface to
the VaTS is desCribed in the V-System Programming Environment ~/anual. and the internal stnlcturc of the
VGTS is described in the V-System Servers I'vlanual. ~111e program creates SDFs and objects within them, and
associates these objects with Virtual Graphics Tenninals (VOl's). Through the view manager, the lIser maps
these VOl's onto physical screens. and manipulates the resulting views. The VaTS multiplexes both the
output devices (the screen) and the input devices (keyboard and mouse) among all the programs that lise
them. The VaTS is no longer physically integrated with the executive. although the view manager docs
provide an interface to the exec server. The line-editing functions described in section 2.7.1 arc provided by
the VaTS. like any terminal agent

3.1 . VGTS Conventions

Virtual terminals appear .as white overlapping rectangles on the screen. with a black border and a lahel ncar
the top edgc. There is at most one virtual termined (usually a pnd. or tcxt-only virtual tellninai) that is getting
input from the keyboard. along with possibly other virtual terminals gctting input from the mouse. This is
indicated by a flashing bluck box for a cursor in the tcxt virtual terminal, and a black lubel on al1 the views
that arc accepting mouse input. Note that all virtual tenninnls arc always active in the sense that any
application may run or change the disptclY in any virtual tenninal at any time independent of this selection; it
only applies to input

Clicking the left or middlc button of thc mouse in a non-selected virtual tenninal witt cause it to be selected
for input. Views of selected palls wiH be brought to the top. The input pad can be changed by lIsing control
up-arrow (octal 036) 1(}lIowed by a single command churacter. The only cmnmanll characters interpreted by
the VaTS are 1-9 to select the given pud for input

'l11erc arc a few cOl1lventions f()r llsing U1C mOllse with the VGTS. 1\ "Click" consists of pressing any
numher of buttons duwn and releasing them 'It a certain point on the screen. While tJle buttons <Ire down
Ulere may be some kind uf fee<.ihuck. like an object which fbllnws Ule cursor. The click is lIsually only acted
upon when all the buttons arc released. so if you decide you hHVC made a mistake after pressing the bultons
you can s1ide the mousc to some harmless position beforc releasing the bultons. Holding all three bultons
down is also interprcted as a universal abort by most programs and U1C view managcr. The click event is sent
to the program aSS()ci~ltcd with the view in which U1C event occurrc~ (through its VaT).

When a V-System program requests thc creation of a pad. the cursor will change to the word "Pad". At this
point. hold down <my button. and an outlinc of UH: view which will bc creatcd will be trucked on U1C screen.
Position the view when! desired. and let go of the button.

3.2. View Mana~,er Menus

The view m,mager mcnus can always be invo·ked. by moving the cursor to the grey background area or any
virtual terminal not getting input (exccpt in the banner area) and pressing the Right button. The following
commands arc avuilubllc from the vicw manager menus: ..

Crcate View Creales another view of an existing VaT. Move the cursor tu the desircd position of any
one of the four corners for the new viewport. Hold any button down. and move the cursor

V~SYSTEM 5.0 REFERFNCE MANUAL ('OI\·IMANns

16 THE VIEW MANAGER

to the diagonally opposite corner. An outline of the new view will follow the cursor as it
moves with the button down. Let the button up, and then point at the VGT that you
would like to see with the left or middle buttons, or hit the right button and $elcct the VGT
from the menu. Normal1y only lIsed with graphics VGTs.

Delete View Click one view which is removed from the screen. Warning: if you delete the last view of
a VGT, it does not destroy the VGT or the process associated with it. You can still create
views of the VaT by using the right button menu in the Create View command.

Move Viewport Press any button to select a viewport to move. Whi1e the button is being held down, the
outline of the vicwport will move. following the cursor. l,ift up the button at thc desired
position. None of the other view parametcrs are changed. A shOltcut to this function is
obtained by pressing the middle button while pointing to the ban ncr of U1e desired
viewport. The viewport outline will follow the cursor until the middle button is released.

Make Top Brings the view to the top. potentially obscuring other views. "shortcut to this function is
obtained by pressing the left button while pointing to the banner of the desired viewport.

Mak.e Bottom Brings Brings the view to the bottom. potentially making visible other views. ;\ shortcllt to
this function is obtaincd by pressing the right button while pointing to the banner of the
desired viewport.

Exec Control Selects a submenu to create another executive. destroy an executive (and the tcams running
in it). kill a program. or control puged output mode. When you arc creating an executive.
the outline of the new pad will follow the cursor as you huld Ule button down. Lift the
button up at the desired position. or press ulllhree buttons to abort. "shortcut to the Exec
Control menu is obtained by prcs.'iing both the middle and right buttons while the cursor
points to the gray background or the display area of a viewport not requC'sting mouse
in formation.

Graphics Commands
SclCCl'i another menu of commands that Jrc usually only applied to graphics views. These
are described below:

Center \Vindow Click the positi(lO that you want to become the center of the viewpurt. Does not change
the position of the viewport on Ule screen, just the object within the view. Doing this to
pads is almost always a mistuke.

Move Edges Push any button down next to an edge or corner. move lhat edge or corner to the new
position. and let the hutton tip. The edge outline should Ibllow the cursor as long as you
hold Ule button down. Docs not move lhc obj\.'Ct being viewed relative to Ule screen.

Move Edges + Objl.'Ct

Zoom

Similar to the previous command. but this one drags the underlying object around with the
moved edge or corner, while the previous command keeps it St41tionary wilh respect to lhe
screen.

I nvokes a Zoom Illode. indic41tcu by a change in lhe cursor to the w()I'd "Zoom". Y ()u can
get out of this mode in two dillcrent ways: First. clicking the lell or middle bUltons when
the cursor is inside a view or a pad returns from the view manager and SelCCl'i lhat pad for
input. I\s a side c'tlect Ulat view is also brought to the··top. Secondly, you can click the
right mouse button. The cursor should change back to the normal arrow.

The left and middle butt()ns in Zoom mode 7.oom out and in respectively. Ttiat is, the left
button makes the object look smaller. and Lhe middle button makes it look larger. You can
remember Ulis because Ule "outcr" (lefl) hutton zooms out, and the '·inncr'·· (middle)
button zooms in. A shortcut to this mode is uvuiluble by clicking Ule middle and lefl:

V-gYSTFM 5.U RFFFRFNCE MANUAL COMMANDS

VIEW MANAGER MENUS 17

buttons at the same time while the cursor p()int~ to the gray background or the display area
of a viewport not selected for input

Expansion Depth Click to determine the view, then select the new expansion depth from the mentl. Symbols
will not be expanded mOfe than this many levels into the hierarchy. fnstead they will be
drawn as outlines with text foJ' their names if there is room. The delllUlt expansion depth is
infinity. so all levels will be nOlll1atly expanded.

Redraw

Toggle Grid.

Dcbug

Redraws all the views on the screen; nccessary only during debugging.

CliCK once to ulrn the grid on if it is off. or off it is on in the view you sclect The grid dots
are (~very 16 screcn pixels, and always line up with the origin.

Enables lots of extra printout.;;. for maintenance usc only. This command asks for
conJinnation. to discourage its accidental invocation. It will not tUfn on debugging unless
the response begins with the lettef y.

A shortcut to the Graphics Commands mcnu is obt<lincd by pressing both the left and right buttons whilc
the cursor points to thc gray background or the display area of a viewpOlt which is not rcquesting mOllse
in thrmation.

3.3. Paged Output Mode

When paged output mode is on. the tenninnl agent stops writing to a pad when the pad tills up with output.
'l'11C tcnninal agent then displays thc message "Type <spacc) for next pagc" and waits for the uscr to issuc a
command which unblocks thc pad. 'n,is section describcs the availablc commands.

Most commands an: optionally preceded by an intcger argument Ie. Dcfaults arc in brackcts. Star(*)
indicates that the argument becomes the ncw default.

<space)

z.Z

Display thc ncxt k lincs [current page size]

Display thc ncxt k lines [current pc.lge size]*

Display the next k lines [1] <CR), <I.F)

q. Q

s

Throwaway ull output until thc next time input is scnt to the application program.

Skip forward k lines [1]

S

f

F

Skip forward to the Ic.lst line

Skip forward k pages [1]

Skip forward to thc last page

<backspace), DEI.F.ruse the last chnractcr ofthc numeric argument

Repcat the previous command

If the user typcs a ch,lractcr which is not a valid command. thc ch<1racter is treatcd as a normal input
charactcr. If line editing modc is on. the CrRL-c and Cl'RL-z commands (sec scction 2.7.1) havc their usuaJ
cffect here.

V-SYSTEM 5.0 RFFERFNCE MANUAL COMMANDS

18 THE VIEW MANAGER

3.4. Mouse Escape Sequences

Inside a pad, when connected to some host through a telnet progn.un. the buttons have the following .effect:

Left Button Sends the sequence escape M (xXy> which positions the Emacs cursor at the position of
the click.

Middle Button Selects the clicked pad for input. and brings the view selected to the top.

Right Button View manager menu, described in the previous section.

left. + Middle Buttons'
Sends the sequence escape M (xXy> null which sets the Emacs mark to the clicked
position.

Left + Right Buttons
Sends the sequence escape M (xXy> tW which deletes in Emacs from the mark: to the
clicked position.

Middle+ Right Buttons
Sends the sequence escape M (xXy> tY which inserts the kill butTer at the clicked positioll
in Emacs.

'Inc above escape sequences arc enabled by turning on Lhe ReportEscSeq bit in the cooking mode of the
virtual tenninal. See the VGTS ~hapter of the library manunl for mure details.

3.5. MouseEmulation via the Keyboard

For the benefit of hardwarc contigurations without a working mouse. the VG'TS can intcrpret certain
keybourd escape sequences as mouse input The VGTS will only intercept ti1ese escape sequcnces if they are
sent as a rapid hurst or characters. as is the case when they are sent by pressing a function key. If U1C escape
sequences are typed manuully, the VGTS will detect the space between ch'lracters and pass them through in
the normal fushion.

'Ille fbl10wing is a list of the escape sequences lIsed and the function keys with which U1CY arc normally
associated on an ANSI (VnOo-style) keybourd. .

ESC [A (ANSI Down Arrow)
Move the mouse cursor down.

}-o~C [B (ANS[Up Arrow)
Move the mouse cursor lip.

ESC [C (ANSI Right Arrow)
Move the mouse cursor to the right.

ESC [D (ANSI I.eft Arrow)
Move the mouse cursor to tilc left.

ESC 0 P (ANSI PFl)
Toggle the value of the left. mouse button. The new value of the left mOllse button is
displayed in the view manager window.

ESC 0 Q (ANSI PF2)
Toggle the value of Ule middle mouse button. The new value of the middle mouse button
is displayed in the view manager window.

ESC 0 R (ANSI PF3)

V-SYSfEM S.O REFERENCE MANUAL COMMANDS

MOUSE EivlULATION VIA TIlE KEYBOARD 19

Toggle the value of the right mOllse button. '111e tlew value of the right mouse button is
displayed in the view manager window.

ESC 0 S (ANSI PF4)
Toggle mouse emulation mode. When mouse emulation mode is OFF. all escape
scqm~nces except for ESC 0 S (ANSI PF4) will be passed through as normal, "allowing the
associated function keys to perform application-defined functions. The new state of mouse
emui;ution mode is displayed in the view manager window.

When the VaTS rec(~ives input from a "rcat" mouse, mouse emulation is permanently disabled. If your
mouse fails, you must use the "newterm" command to create a new VGTS ill order to usc mouse emulation.

V-SYSTEM 5.0 REr:I(I~FNCE MANUAL COMMANDS

20 COMMAND SUMMAR Y

V-SYSrEM 5.0 RFFFlH~NCE MANUAL COMMANDS

COMMAND S tJrvl MAR Y 21

-4-
Command Summary.

4~ 1. Workstation Commands

The following briefly summarizes the currently available commands for V.

amaze

biopsy

bits

boise

cd

checkers

clear

" multi-person distributed game. Docs not (yet) run under the vgts. Sec chapter 10.

Prints information about all the processes on the workstation. sorted by team. Several
options are recognized. The·l option also includes the filename from which cm.:h team was
louded. (This generally makes the output longer than one screeni"ul.) The -t option
followed by a pid or the suffix of a team's lileIHlme will cause in formation to be printed
only about the team assodcltccl with the pili or liicllal11e. More lhull one picl or Iilename
can be specified· infOlmation thr each will be printed. To obtain detailed ini"()rmatiun
about one or more proccs.'ies. invoke biopsy with just the pid(s) of the relevant process(es).

A progr"m for manipublting bitmaps and font". Sec chapter 9, and the online he 1 p file.

PrinftS files on the Boise laser printer.

Sevcrul switches are allowed. preceding the filenames:

-I'

-n lIame

Print rotated, that is. in lundscnpe (horizontal) mode.

Usc n(Jl1Ie to Inbel the output. If this option is llot given, the "For user:"
field is left blank.

Use banner in the "File:" field insteud of the tilelwme.

·h }lOstname Host nume to lise instead of "V-System".

-m IllUcie

·W

Print mode. Pos.'lible modl.'S are

o

1

2

3

Line printer (the denlult). F()r printing ordinary text
files.

DVI. For printing TeX output.

Press. Not .implemented.

H P2680a. For files in H P2680a "spool file" format.

File is in the S&lil ("W" ITS") charncter ~et instend of stand'lrcl ASCII.
(Line printer moue only).

[f no tilenamcs are given. boise reuds its s~'lndard input.

Change directory: change the current context.

Lets you play a game of checkers against the workstation. This is also a good
demonstration of U1C vgts' graphics capabilities. Sec chapter 10.

Clem'S the pad.

V-SYSTEM 5.0 JU~FER ENCE MANUAL (,Oi\"l 1\1 "N DS

22

context

cp

copydir

dale

cL'\te

define

debug

destroy

dopar

doseq

draw

echo

fexecute

help

in ternetservcr

iphost

iptelnet

iptn

COMMAND SUMMARY

Prin,ts an expanded name for the current context, or if a context name is given, for that
context Also known as pwd (print working directory), by analogy with Unix.

Copy the first tile to the second file.

Invoked as:
copyd1 r fromdir todir

copics the fromdir directory subtree to todir. todir must previously exist New files are
created ill a default mode. while the mode of existing files (being updated) is left alone.

Distributed version of yet Another Layout Editor is a VLSI layout editor that provides
graphics editing of SILT chip descriptions. Documented in a Stanford CSL Technical
Report

Prints the date as maintained by the local workstation kernel. and as maintained by· the
scs.4)ion host. The kernel-maintained time on a workstation is set from a time server when
the exec is started. The command date -s sets the local time to the network time.

Dctines one or more local nnmes for a context The first argulTlent(s) are the new names to
be delined. Thc lust argument is a context name. specifying the value to be given to the
new names.

rille V debugger. Sec chapter 6.

Takes the name of a team (or any suffix) as an argument. and send:: a mes.'\nge to the team
server asking it tu dl'Stroy that team. If the argument begins with the characters Ox. it is
taken as a proce$.'\ id. and that process is destroyed. 'Il,is is useful for killing processes run
in the buckground.

A program similar to doseq. except th<1t it allows the executions of its command argument
take place in p"rallcl on difTerent 110s(..<';. The program prompt') for the names of hosts on
which to execute U,e command (fbr Ci.lch context). If .. ••• is entereu.lhen the service server
will select an 'arbitrary' available host.

This progrnm takes two string arguments: a list of context nam<.'S. and a command to
execute. The command is ex<.'Cuteo in e.lch cuntcxt in turn. doseq is otten useful in
ll1ukefi1es. donaake is a synonym nJr doseq.

An interactive drawing program U1at runs under Ule VGTS. See chapter 8.

Echos its arguments.

Force a command to be executed on the server providing the current context, as described
in section 2.S.

A program which prints out a little bit of information about the V system. he 1 p 1 prints a
list of topics on which help is available.

" version o~Ule Internet Server, as dl'SCribed in the V-System Servers manual.

If given a single host name as·an argument. iphost lists all IP addresses corresponding to
that host If no argument is given, Ule It> address of the \oc411 workstation is printed.

/\. multi-window IP/TCP telnet progrnm using the VGTS. This program has a copy of the
VGTS linked into it, su it is only useful under the bare kernel or the STS. Use lj'lll under·
the VGTS.

IPfl'CP-based telnet impiemenmlion. It can mn under the STS, or"in a VGTS window. A

V-SYSTFM 5,0 RFFFRFNCF i\IANUAf. COMI\"IANDS

WORKSTATION COMMANDS 23

listdir

login

logout

n<~wtenn

pngemodc

query

rm

serial

destination host name or addres,,<; may be given as a command argument: if none is given,
ipln prompts for one. t\ host name is a string of non-white-space characters starting with a
nonenumeric character. A host address is a string of the fOlm a.b.c.d, where a,b,c and d arc
decimal integers. 30th names and addresses may be followed by a dot and a decimal port
number (with no intervening spaces).

While connected to a remote host, iplll recognizes a set of commands prcfixed by ctrl-·r ..
Ctrl-t ? prints a list of all slich commands.

After disconnecting from a remote host, ipln prompts for another host. To exit iplll, enter
ctrl-c or ctri-z in response to the prompt.

If therc is no internet server on your workstation whcn ipln is loaded. it runs one in the
background. The -I tlag inhibits loading a local server, instcad looking for a public internct
server ntnning on another V host.

The·d flag enables debug modc. In this mode. alt transmitted and received telnet protocol
commands arc printed. and all receivcd non-printable charactcrs arc printed in an escapcd
not4ttion. Debug modc can be toggled on and off by typing ctrl-t d while connected to a
remote host

Lists the names dcfincd in a context, and prints somc information about each. If no
argumcnt is given, the current context is assumed.

Commalld to start a session on a computer running a V servcr.

Command that terminates sessions.

Change tcnninal agents. Takes onc argument, the filename of a new tenninal agent to take
the !pletce of thc existing one. All exccutives funning under the old terminal agent are
destroycd; the ncw one will prcsumubly providc means of creating a ncw one. For
example. nClYtcrm sts replaces the vgts with U1C Simple Terminal Server, which does no
graphics but simply prcsent') thc workstc.ltion as un ascii termimll. I f no argument is given,
it dctbult') to "vgts". fYa.,.n;ng: If the numcd program is not in fuet a terminal agent. you
will probably lose control of your workstation.

Rnable or disable p<lgcd output moue in U1C current executive. Takes one argument. which
may have onc or two valu(.'S: "on" or "olr'. When pagcu output Illoue is on, the lenninul
age11lt stops writing to a pad whcn the p.u.1 lills liP with output. The terminal agent then
displays thc message "Typc (space) Ihr next p,tge" and wuits Ihr the lIscr to issue a
commnnd which unblocks the pud. The user interface thr paged output mode is described
in S(.':Ction 3.3.

Prints out the result of pcrthrming various 'qucry' opcrations. In particular. que ry
kernel print", the result of the QueryKernel operation. query conf1g prints the
contents ofU\c workstation's configuration file. and query ethernet prints Ule result of
qucrying the "ctherneC devicc. query 1 lists thc possible options.

Takf,:s one or morc tilenumes as argumcnts. and removes c41ch filc.

This: program providcs a full-duplex cunversntion between its s~1ndard input nnd output.
and a dcvice connected to onc of U,C serial ports of U,e workstation. Thc argumcnt is a
device name. specifying the Iinc to be opcned. It detauit') to [deviceJserialO if omitted.
Namcs of Ule form [drvicrjserialn (with 11 a single digit) can be abbreviated by giving only
the digit. If the. serial line is connected to a modem or a tcrminal port on another
computer, this progrmn allows thc Sun to act aSH tcrminal. The tlag -b b1trate can be
uscd to specify the bit rate (buud rate) of U1C conncction; it detaults to 9600 bps.

V·SYSTEM 5.0 REFERENCE MANUAL COM 1\4" N DS

24

show

telnet

testexcept "

timekcrnel

tIl

type

undcfine

ved

COMMAND SUMMARY

Displays a • dvi file or a • press file. It is driven from a menu in the invoking pad: by
selecting thc appropriate field, you can move arollnd from page to pagc, with either
relativc movement, absolute page number or the TcX generated \countO numbers. You
can invoke it with show filename. or you can set the filename in the menu. You can
"scroll" a page by pressing a mouse button inside the view, moving the mOllse and
releasing the button. It handles the TeX generated dv 1 tiles pretty well, though
magnification is ignored and some fonts are missing. Biggest problems: it only handles a
small subs~t of press format, there are no good scr i be fonts for it, and it is a bit slow.

A multi-window PUP-based telnet program using the VGTS. This program ha., a copy of
the VaTS linked into it, so it is only useilll under the bare kernel or the STS. Use III under
the VaTS.

Simple interactive program for testing the exception server.

Program to measure the time for Send/Receive/Reply kernel primitives.

PUP user telnet program. It can be nm under the STS or in a VaTS window. III takes an
optional argument specifying the host to connect to. \Vhile funning. the following
keyboard commands are available:

ctrl-t c Close the connection.

ctrl-t d Close the connection and delete the VaT, if created by t11. (Only
available when running with the VaTS.)

ctrl-t e Close all connections and exit from tn.

ctrl-t a Create a new VGT and open another connection in it (Only ,lvailablc
when running with the VaTS.)

ctrl-t b Create 41 big (48-line) VaT and open another connection in it. (Only
available when miming with the VGTS.)

ctrl-t ctrl-t Transmit a ctrl-t character.

III is capable eilhc!' l]fusing the rt!W Ethernet device on the workst,Jtion. or going throl\gh a
local internet server. I f there is n local internet server, tn must usc i"t. sincc lhe kernel
Ethernet device is single-user. Even if there is no local internet server when tn is lom.1cd. to
be compatible with iplll. tn will load it loenl internet server <lnd work through it if there is
no public internet scrver elsewhere on the network Ulat could be lIsed by iptn. To forcc tn
to usc the raw Ethernet device if it can. invoke it with Ule command line tn raw
Jwslllame.

Only one copy oftn may be run on a workstation at one time.

Type out one or more files on Ule tClminal. Types a p~lge-full and lhen' stops and waits for
input. Pressing [SPACEl bring." up another page, while [RErURNI brings lip another line.
Hit q or 1'C to quit. "

Removes the definitions of one or more local context mlmcs.

A text editor, similar to Emacs, which runs under the vgts. Described in chapter 7.

V-SYSTFM s.o RErERFNCE l'tIANUAL COMMANDS

COMMANDS ON SESSION I lOSTS 25

4.2. Commands on Session Hosts

There are also several useful commands that can be invoked on session hosts (usually a Vax/Unix system).
Use these commands once you have logged into a machine through a tclnet connection. Most of these
commands also have v.~rsi()ns that run locally on the workstation under the vgts. and the Unix versions can
also be run remotely under the vgts. using the exec's remote execution feature (section 2.5).

dale

photo

sHed it

sHpress

A version of the Yale layout editor thut nms under the vgts.

Reads and displays a ".sun" format raster file.

A program which edits .SlT4 fOimat flIes. SIl .• a Simple Interactive Layout program, is a
graphics editor-for logic designs and illustrations.

A program which t41kes a .sil format file and produces a .press format file that can be
prin~ed on the Dover.

V-SYSTEM 5.,0 REFERENCE MANUAL COM M t\ N DS

26 EXECUTIVE CONTROL COMMANDS

V~SYSTFM 5.0 RFFER EN(,E MANUAL COf\IM/\NI)S

EXECU'I1VE CON'~ROL COMMANDS 27

-5-
Executive Control Commands

The following commands give the user access to the exccserver functions.

check execs Kilt off any exec whose standard input server or standard output server has died.

delcxec

do

ki1lprog

qucryc.xcc

startcxec

Delete an executive. specified by its exec id. The first exec created when ule workstation is
booted will always have an id of O.

Create an exec with a named me as its input. 111is file should contain a list of V
commands. exactly as you would type them. one to a line.

KiJI tile program. if any. running in the specified execlitive.

Find out the S~1tUS of the specified executive. Useful mainly for system testing. Sec
QueryExec in the Program Environment manual.

Create an exec in a new pad. The new exec will hnve the same context as the exec from
which startexec was invoked. NOT the [home) context. For most purposes the view
manager's Create ~:xccutivc commands are to be preferred over this one. as the view
manager will not work on an executive created by startcxcc. startcxcc prints out U,c exec
id und process id of the new excc.. .

V~SYSTEM S.O REFFREN(,E MANUAL COMMANDS

28 TilE V DEBUGGER

V-SYSTFM 5.0 REFERENCE MANUAL COMMANDS

'llIE V DEBUGGER

6,.1. Synopsis

debug [-d] progName progArgl -progArg2 10.

6.2. Desc ription

6.2.1. Invoking the Debugger With a Program

29

~6-
The V Debugger.

Debug is an as..'1cmbler-levci symbolic debugger for .r files created by the 68000 linker (Id68). It can be c::llled
a.'1 a command to the V exec anel takes Ule 1()lIowing arguments:

If the VGTS is available. then this argument causes an 10 pad to be created I()r the
debugger which is separate from the one used by the program to be debugged. This option
is a necessity for programs which read keyboard input via separate reader processes since
these may interfere with the debugger's keyboard input requests.

progNamc

progArgll

The name of the program to be debugged.

The nth argument of the program to be debugged.

'l1ll1s. to debug a program which is normally invoked by:

progName argl arg2

one typt.."S

debug progNama argl arg2

I fa separate 10 pad is desii'ed (jbr Vgls rC'Slllellt environme"ts Oll/Y) then one would type

debug. -d progName argl arg2

6.2.2. Postmortem Debugger

The debugger can also be lIsed as a "postmurtem t9 debugger. The V execs (both Ule Vgts-based one and the
non-Vgt'i-bused one) have been structured so that if an exception QCcurs in the program currently being fun,
the debugger is automatically loaded and given c;:ontrol.

6.2.3. Common Usage

" program invoked with t.he debugger will stm't out at the debugger's command level. Breakpoint') may be
set and the program code and globul variables may be examined. The program can then be started lIsing t.he
commands described below.

" frequent "postmortem" use of me debugger is to obtain a stack tnl'ce to find out where a program
incurred an exception and then quit This is done by typing s after. having been transferred into the
postmortem debugger 1.0 get a stack trace, and q to quit:

V~SYSTEM 5.0 I~EFFRENCE MANUAL COMMANDS

30

I orog argl arg2

Bus error on read from address
Instruction Program Counter

1010 10172
BO> 10174 4880
• .1

.~
I

stack trace

6.3. Commands

TIlE V DEBUGGER

f in process 2ed0024
Status Register

10.
main+2C extw dO

The debugger begins by displaying the line of code at which execution has paused. and then gives a period
(':) as a prompt. The user can then enter commands lIsing the keyboard. Most commands are terminated
with a carriage return: exceptions will be noted in the command descriptions. The only ~characters that may
be lIsed to crase previously typed input arc backspace (\b) and deletc (DEI.). The entirc line may be erased
by typing CTRI.-lI. When eliminating llptiOilul arguments in commanus which I1lke more than one argument.
be sure lo include the COITect number of commas ('or the command. In lhis way ule debugger can determine
which argument is lo be assumed.

6.3.1. Definitions

Within the command descriptions below. ,\0 expressioll is some combination of numeric constants. register
symbols, globally visible symbols rrom Ule program being debugged. and the operators +, '., and I,
representing 2's complement addition, subtraction. anu bitwise inclusive or. respectively. Blanks arc not
significant except ih strings. All operations arc carried out using 32-bit arithmetic and evalual<..'u strictly left to
right

Register symbols are symbols which represent the various processor registers. The tbllowing symbols arc
recognized:

%dO· %d7

%aO G % .. 7

%fp

%sp

%pc

%sr

Duta registers 0"-7.

"duress registers 0 • 7.

Frame pointcl' (synonym for %a6).

Stlck pointer (~ynonym tor %a7).

Program counter.

Status register.'

In all commands except the replace-register (rr) command a register symbol represents the contents of the
specified register. In the repluce-I'egister command it rcprcscnt~ the adures." of the register specified.

Glubnlly visible program symbols are n~mles ofprogrmn routines or globnl progrmn variables.

'111e single character .: (dot) is treuted as a symbol representing the last memory location examined. Its
value upon entrance to Ule command level of the debugger is set ll> the current vallie of the program counter.

6.3.2. Execution Control Commands

expressioll. lIuiuber, b
Set breakpoint IlUlI1ber(in lhe runge 2·15 decimal) at expression. expression must be a legal

V·SYSTFM 5.0 RErERENCE MANUAL COMMANDS

EXECUTION CONTROL COMMANDS 31

expressioll, g

expressioll, gb

expressioll, X

expressioll. Y.

xx

sp

q

instruction address. If number is omitted the first unused breakpoint number is used. If
expression is 0 the named breakpoint is cleared, or if number is omitted then all breakpoints
are cleared. If expression is omitted all breakpoints are printcd. Note: if expression is
omitted then number must also be omitted or must be preceded by a comma in order
distinguish it from being interpreted as the expressioll argument.

Go. SUtrt or resume execution at expressioll. If expressioll is omitted. then start exccution
at the current pc value.

Go past breakpoint. J .ike go with no argument. except that if we arc presently stopped at a
breakpoint. then expression counts the number of times to pass this break.point before
breaking. If expressioll is omitted. then 1 is assumed.

Execute the next expressioll instructions, starting from the current pc and printing out all
executed instnlctions. If expressioll is omitted. then 1 is assumed. Note: traps arc cxe<;utcd
as single instructions: i.c. the instructions executed in a trap rOlltine are not displayed or
counted.

Same as x except that subroutine calls are executed as single instructions; i.e. do not
descend into the called subroutinc.

xx is a synonym for y

" synonym for x. exccpt that each instntction executcd is displayed on the same line as tJle
command. providing a Inore compact display. No cnrringe return is needed to terminate
this command: tJle semi-colon triggers execution. The typeout mode referred to in tJ1C
command descriptions is described under U1C t command.

Toggle the flag that determines whether the whole team stops at an exception or just U,e
proC(!S.') that incurred tJ1C exception. The debugger's dctlJUlt behavior is to stop the whole
team when an exccption occurs. not allowing any of its proces.'iCS to proceed until one of
the ~bove Execution Commands restarts tJle teum. (Of course. at lhat point ANY of the
proc'~cs could resume execution -- i.e .• single-stepping one process could allow another to
execute indefinitcly.) I r this command is typed, un exccption in any onc process will Ilot
hall any of the other processes on the team. Typed again. the debugger goes back to its
original behavior.

Quit. Exits Ule debuggcr and kills both the debugger ano the program being debugged.

6.3.3. Display Commands

The fulluwing commands arc executed immcdi<ltc1y without waiting for a carriage-rcturn (CR) to be typed,
and their output overwrites the current line. (This provides a more compact display format.) .

expression/

expressioll \

I

\

@

expressioll@

Display the content') of expression. The typeout mode used is determined from the
program symbul table ano the currentlypeollt mode. The vallie of uot i~ set lo expression.

Display the contents of dot aftcr having respectively incremented (/) or decremented (\) it.
The typeout mode used is determined from the program symbol table and Ule current
typeoll t mode.

Display the contents of the memory locations pointed to by the value of dot or expression,

V~SYSTEM 5.0 REFERENCE MANUAL COMMANDS

32

=
expression =

THE V DEBUGGER

respectively. The typeout mode llsed is determineu from the program symbol table and
the current typeout mode. The value of dot is set to the address of the memory location
just displayed. Note that %pc will yield the contents of the memory location pointed to by
the pc register ·(Lc. the current instruction) and that %pc@ will attempt to place an
additional indirection on that memory location. %pc@ is almost always an invalid
reference.

Display the value of dot or expressioll, respectively.

The fol1owing display commands arc executed when a carriage-return is typed.

d Display the contents of all the registers.

s Print out a stack trace describing the chain of subroutine calls and their parameters.
Warning: the debugger's stack tmce examines the values of parameters a~ they currently
exist on the stack. not as they were when the routine was called. Routines which change
the values ofthcir parameters will similarly affect the stuck trace output

expressioll. IlLlllllines. n
Display the next· lIulI/lilleS memory locations, starting at expression. If expressioll is
omitted. then display start". at dol. If IIUIllIiIlCS is omitted. then 24 lines are displayed.

expression. tlllllllines. p

type, t

type, tt

basc. ir

Display the previous IlUm/illes memory locations. starting at expression. If expression is
omitted. then display starts at dot If Iluntlilles is omitted, then 24 lines are displayed.

Temporarily sct typcout modc to type where Iype is onc of:

'ct.

'b'

'w'

's', slr/,cllgIII

'i'

type out bytes as ascii characters.

type out bytes in current output radix.

type out words (2·oytcs) in CUlTent output mdix.

type out longs (4·bytes) in current olltput radix.

type out strings. Set the maximum length of strings to be slr/.englh.
'111e maximum string length determines how Illr U,e debugger is willing
to look fbr the enu of <l string. which is assu1l1eu to be <l '\0' byte. FOf"

programming languages such as Pascal which don't terminate Ulcir
strings with a '\0' byte this limit is impor~1nt to prevellt endless string
searches. The string maximulll length is sticky (i.e. it need be set to the
desired value only once). The defhult value is 80.

type out as symbolic assembler instnlctions.

Note that the type characters must be surroundeu by single quutes. I f no argument is
supplied then the dct~llIlt typeout moue is used. This Illode tries to set the typeout Illoue
bused on the type of symbol(s) being displHyed and uses T formal when tile mode is not
obvious. The new typeout mode stays in eficct until execution is resumed with one of the
Execution Control Commands.

Permanently set typeout mode to type. The typeout mode is set to the default typeout
mode if type is omitted.

Set the input radix to base. If basc is illegal (less than 2 or greater than 25. decimal) or
omitted. tilen hexauecimul is assllmed. (This is the den.lUlt radix.)

V·SYSTFM 5.0 REFERENCE MANUAL COMMANDS

DfSPLA Y COMMANDS 33

base, or

Offset, of

chareau II t. sl

Set the output radix to basco If base is illegal (less than 2 or greater than 25, decimal) Of

omitted. then hexadecimal is assumed. ('Illis is the default radix.)

Set the maximum off.')et from a symbol to offset. If ojJ')et is illegal (less than 1) or omitted.
then hexadecimal 1000 is assumed. (This is the default offset) This command is useful
when cx"lmining areas of the teum. such as the stack. which are morc accurately labeled by
hex addresses than by symbol + offset notution.

Set the maximum number of characters in a symbol which will be displayed to charcaufll.
If cJuzreount is illegal (less than 1 or greater than 128) or omitted, then 16 is assumed.

6.3.4. Replacement and Search Commands

expressionl, expression2. type, r
Replace the contents of the memory location specificd by expression I with expression 2.
exp~essi{}112 is interpretcd to have type type. Note: It is not currently possible to replace
strings with this command. and instmctions should be spc..'Cifled~ in 16-bit quantities and
replaced with type T., If exprcssion2 is omitted. thcll the value 0 is used.

register. expression. rr
Replace the contents of the speci fled register with exprrssioll. If expressiun is omitted. then
the vulue 0 is used. expression is interprcted to bc a 32-bit quantity.

expression. lowlimit. highlimit. type. r

exprl~ssi(m. In

Search tor (find) pal/ern in the range lmvlimit (inclusivc) to highlimil (exclusive).
expressioll is interpreted as an object of type type. Objects are as...;;umcd to be aligned on
word (2-byte) boundaries except for I-byte types and strings. which are aligned on byte
boundaries. /\ musk (set with the mask command) detemlilles huw Illlll;h of the exprl'ssiml
is signific4.lnt in the search. unless expressioll is a string constant. The first three argllment~
to the search command are sticky; thus if any of them are omitled lhen their previollsly
specified value is used. f is the only debugger command which allows lhc sped fication of a
str-ing constant as exprrssiol1. "string constant is delimitcd by the l:haructer " on cilher
side:: to lIS~ .. in the string iLlOielf, prccede it with Cl \. An example or il string is: "This is a
string with \" in it". The typeout limit of strings determines how much of the string is
signRficalll in the search. not lhe search mask.

Set the search mHsk to c'xpr('.'i.'iioll. I r l'xprl'ssioll is omilted lhel1 0 is uscd. -l,m Ii.u'ccs a
complete malch. t:m (that's hex f) checks only the low order 4 bits. n.m will Ilwke the
scarch pattern mulch anything.

6.3.5. Help Commands

h

w

6.4. Bugs

Print a brlcf description of ench of the debugger's commands.

Print a set of internal debugger statistics. This was implemented filr the convenience of U,e
designers and may clwnge I'requently in content and ((u'm'll. Il replaces the obsolete '1(1

, whidl. due to tlle debugger's unsophisticated command parsing will bclmve exactly as docs
q.

The debugger as it is currently implemented has some "features" one must be aware of.

Currently. each instance or the debugger can debug only one team at a time. Programs that create and load
new teams will cause problems because lhe debugger assumes that it is always dealing with U,c same program

VGSYSTFM 5.0 REFFUFNCE MANUAL CorvilVI "N DS

34 THE V DEBUGGER

image.

If a breakpoint is encountered anywhere between the receipt of a message and a later attempt to call
RereadMessageO on that message then the breakpoint exception will destroy the message value, yielding
garbage in the subsequcnt call to RereadMessngeO.

The debuggcr assumes that any trace trap cxceptions have been caused by itc; own single-stepping
mechanism. Though it will recognize the first one. and print an error message. subsequent trap exceptions
can cause intolerable behavior.

The stlckdump routines depend upon knowing the string names of the kernel routines to produce correct
stack traces which include those routines. Right now, tllis list is being kept up to datc by hand.

Putting breakpointc; in code which is shared by two or more processes can be hazardous to your mental
health.

V-SYSTFM 5.0 REFERFNCE MANUAL COMMANDS

YEO: A TEXT EDITOR 35

';""'7-
Ved: A Text Editor

Ved is the V system text editor. It runs cntirely on a Sun workstation. using a session host only for me
service. Its busickeybourd commands are a subset of Emacs. However. the mOllse adds a whole new style of
interaction with the editor. The multiple window capability of the VGTS is put to good usc. as well. And the
user will quickly notice that it responds much faster than Emacs on a normally .loaded system.

Ved manages one or more editing windows. Each window is thought of as a viewport onto a bujJer of text, a
continuollsly accurate display of some portion of that text. A change to the buffer is thl10wcd immediately by
a corresponding changi..~ to the display. rn cl.lch burter there is a cursor. which is guuranteed always to be in
the portion of the text displ~lyed. PAlch butTer nonnally has a filename associated with it. the tile from which
it wus read or the file lo which it was most recently written.

7" 1. Starting up

Ved runs under the V system executive. which is invoked as described in the previolls chapter. Once inside
the executive, type

ved

or

ved filename

The filename can be in any of the forms rccognizcd by the V exec •• a relative pathname. an absolute
pathnumc. or [session host] followed by a puthnamc of either type. Ved proceeds to read in the named me
given. tJlen requcsts a pad. it'" first editing window. This is indic~lted by the mouse pointer. which changes to
lhe word ··Pad", Move the mOll~c lo the desired upper left corner of the pad and click. any button. The pad
will appear, and in it Lhe. first screenful of lext will be tiisplayed. The pad in which veu was invoked is
reserved fhr displaying l!rror messugcs and lyping special text. such as tilenames or se~l .. ch strings, which is not
to be inserteti.intu any bun~r. In normaiusc it is convenient to shrink this window down lo a lew lines at the
bottom.

At the top of the editing window. there is a banner. When the banner is inverted, then this window is
selected fill' input either by the mouse or tJle keyboard. The bunncr spl.'Cifies tJle ved window number which
is used by the window selection comm~md (dL"SCribed in section 7.10) and the Vgt number (sec section 3.2).
'111C rightmost area is n:served for the file name associated with this window. If the me name has an asterisk
(*) prefix. lhen ved thinks that tJlis butTer has been modified since the lust write or savc of the specified lite.

As an added feature, there is a inverted line of text at the bottom of every vcd window. This is the lixcd
menu area of U,C window. It can be used to enter some f'n:quently used commumls lIsing lhe mouse inslcHti
of the keyboard (a full description of lhc fixed menu is in sL'Ction 7.6.2).

7.2. Motion

Thc following commands are available to move the cursor within a file:' .

The four arrows Move Ule.cursor in Ule direction indicated.

tF, til, backspace

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

36 VED: A TEXT EDITOR

Horizontal cursor motion.

esc f, esc b, esc backspace
Word-oriented cursor motion. esc-f goes forward to the end of a word; esc-b and esc
backspace go back to the beginning of a word.

Vertical cursor motion -- scrolling if necessary.

Cursor to beginning. end afline.

esc comma. esc period

esc <. esc >
to

tC

Cursor to top. cursor to bottom of visible region.

Cursor to beginning, end of text.

Get out of special states. Whether you have just typed Escape or tX and didn't want to, or
are busy typing a search string. or whatever, to will get you back to the DOlmal state.

Quit the editor. If there are :lny modified buffers, you will be asked if you want to save
them. Here and in similar cases. if you are warned und then decide you don't want to do
the command at all. type to to escape bHck to nonnal editing .

. Also quits. but first asks tor clInfillllatioll. which should be answered with "y" or Return if
you mean to quit tC is kept for Unix compatibility. protected with a message because a
multi-window edit can tnke some time to set up, and should not be at Ule risk of a single
keystroke, In the future. tC is intended to serve a "quit local edit" function. when ved or
something like it is a service available to programs like mail and send.

7.3. Paging and Sc rolling

tV, esc v

tL

PFl

Pf-"'2

tZ. esc z

esc PPI

cscPF2

Page down, page up.

Redraw U,e display ..

Scroll -- move the viewport down one line relative to the text

Scroll backward -- move the viewport lip one line rclutive to the text

Synonyms ror 1>1-'1. PF2 respl.'"Ctiveiy.

Moves the viewport 1/2 page down the text -- half a tV.

Movcs the viewport 1/2 page up the text.

esc downarrow. esc uparrow
Synonyms for esc PFI. esc PP2.

7.4. Simple Editing

. Typing :lny printing character, or TAB, inserts the character typed. Other special characters are hundled as
follows: .

to

DEL

cscd

Delete forward from the cursor -- the character under the cursor.

Delete backward from the cursor.

Delete word forward.

V-SYSTEM 5.0 RFFFRENCE MANUAL COMMANOS

SIMPLE EDITING 37

esc DEL. esc h Delete word backward.

Rettlrn Insert a Lillefeed. not a CR character •• gets the desired effect

to Insert a Lincfeed, leaving the cursor before it.

tK As in Emacs. Delete the contents of onc (logical) line. or thc carriage return on an empty
line. into thc ki11butTcr. A sequence of tK commands uninterrupted by any other
command causes the whole section thus deleted to go into the killbuffer. tK after any
other command restarts the killbutfcr from scratch.

tY . Yank •• insert contcnts of the killbutTer at the cursor. '11e killbuffer is unchanged. The
cursor ends up at the beginning of the inscrtion. and the Mark (see below) ends up at the
end.

esc: y Yank, but without disturbing the Mark. Thc cursor ends up ut U1e cnd of the insertion.

Lincfeed Insert a newline (Linefeed) and then indent the new line to Ule indentation of the previolls
1ine, using tabs where possible. If the previolls line is empty, it wilt look lip lIntil it tinds a
nonempty tine and lise thut as the standurd of indentation.

esc Tab Add lndentntion to this line equHI to the indentation of the previous line. I ntended lise: if
you type Return and wish you hud typed Linefeed. this will make lip the dil'tcrence.

tQ Quote the following charucter. Allows YOll to insert non-printing characters (such as the
useful tL. fOlmfced. which forces a pagc break on most printcrs) into the text.

t\ Quote the fhItowing character and insert it with the high bit set tQ and t\ are the only
exceptions to the to commHnu: tlley will qllote a fhllnwillg tG. but that simply means U,C
insertion of a character. which cun easily be deleted.

7.5. File Access

Whenevcr ved writcs a tile. it preservcs the pr~vi()lIs vcrsion of that tile (if there was one) by renaming it to
its fonncl' name Ibllowed by ··.B"K", Thus mytile.c becomes myfilc.c.BAK ,

tXtV Visit a tile, whosc nnmc will be requested. '111e new tile replaces the current one. so if the
current buller is ll1uuiticd yo'u will he ~Iskcd befbre procee<.1ing.

tXtS

tXtW

tXtl

esc -

tX b

tXc

Writ(~ the buller back to the me n'om which it was read.

Writ(~ the buffcr to a tile whose name will be requested.

Insert tile at the cursor. You will be asked fhr dle tile name. Cursor and Mark arc set just
as in t Y above. .

Forget that the butTer has been modified.

Toggle the .IlA K safety featurc. Creution of .B" K tiles Imlkes me writing t"ke about 4
times as long as it otherwise would. su if you really want tl1at specdup, this wilt tllrn off tJle
making of .B"K files. tX b again will turn it buck on.

Change current context. This'command allows a user to change Ule way character string
names are interpreted. A context is similar to a directory in tJlat it defines which object is
associ,lted with a name, The tile name represented in ·the banner of the pm! should always
be context independent. (Sec section 2.3.)

v·SYS'rEM 5.0 RFFrRENCE MANUAL COMMANDS

38 YED: A TEXr EDITOR

7.60 The Mouse

The mouse offers an altcrnative way of doing several common editing functions. such as placing the cursor
and deleting ()r.~noving text The mOllse has two functions: fixed menu selection and editing.

7.6.1. Editing With the Mouse

Left button

Middle button

Right button

Click and release it at any character in the text: sets the cursor at that character. Click it at
one character, move the mouse to another point in the window. and release: selects the
text between the point of clicking and the point of relc<lse. While you are moving the
mouse with U,e left button held down9 the region which would be sek.'Cted if you releascd it
at this moment is displayed in inverse video. When you release, your sclect.ion is defined
and remains displayed in inverse video. Carriage relums are invisible. so the selection of a
carriage return is shown by black space from the end of the text on that lim! to the end of
the window. Note that a selection and a nonnal cursor arc mutually exclusive. The
importance of this will become apparent below. If you have a selection and click the left
button. with or without moving, the former selection is deselected and a new cursor
position or selection is chosen.

When you have a selection. clicking the middle button deletes it into the killbllflcr. If you
have no selection. nothing happens. The position of U1C mOllse is irrelevant.

Brings buck the contents of the killbuffer and makes it selected. If there is nothing in the
ki11bufTcr. nothing happens. Iftherc was a selection already. its c(}ntent~ are swapped with
the contents of the kiJIbuffer. If there was no selection, thc contents of Ule ki11buffer
replace the cursor. .

7.6.2. Fixed Menu

The fixed menu that appears at the bottom of every ved window provides the lIser with mouse oriented tile
penlsul capabilities. Clicking the middle or right mouse buttons in the I1xed menu area will execute U1C
command that is nearest the mOllsc cursur. 1\11 the commands in the menu could be entered from the
keybmlrd. thercfore they are not described herc. Refer to the sections on searching. scrolling. and regions tor
descriptions.

In the fixed menu arca. the semantics of the each of the huttons diffcr. The ITIiudle button (in gencral)
means jiJrward whereas the right button me,lI1S backward. For illstclllCC. clicking Ule l1litldle button at the
It'uU-I):lgC comm~md will calise the window to be scrolled Ihrward one tilll page and the right button will cause
a reverse scroll. The commands I·hllr-p"gc. Scroll-Linc. and S,,'arch behave in this same manner. The Tag
command hilS ex,lctly the same scmant!cs for both buttons. M.uk/l1oint is the only "diftcrenC' command: in
it. the middle button causes a jump to the Mark and the right button sets the mark at the point. Note that the
left button hus no effect on menu selection. to maintain continuity during dynHmic selection. The Sc.trch and
T&lg commands will either lise the selected string as the pattern or prompt the user for one in the cnse of no
selection.

7.1. Sea rching and Replacing

tS Search for string. Prompt') for a string. nnd finds the first instance of that string alter the
cursor. Prints "Not found" if there is no such instance. I f you type Return without typing
any search string. the previous search string is lIsed -. tS Rctunl is equival<~nt to PF3 as
described below. Here and clsewhere. a newline can be in!)erted into U1C search string
using the Linefeed kcy. It is echoed .1S nn inverse-video bClckslash. Non-printing
chamcters call be searched It)r. ami are echoed as like .Ot"'·. I f the search succeeds. the
string found is selected. and several speciul commands (described in The Right I-land and

V-SYSTEM 5.0 RFFERENCE MANUAL COMMANDS

..

SEARCHING AND REPLACING 39

fR

PF3 or esc s

PF4 or esc r

cscq

escg

the L,~ft. below) are available. In particular, typing s will repeat the search.

Reverse search. Just like fS but searches backward.

Repeat search. Forward search for the string most recently used in a fS or tR command.
Works regardless of whether there is currently a selection or not.

Repeat search backward. Like esc s but searches backward.

Query Replace. Prompts for a search string, then a replacement string~ Then searches till it
finds the search string. and selects that text Type y (yes) to replace. n (no) to leave it alone
and go on. Other options are described below. These special commands are available
whenlcver there is a selection, so Query Replace is easily fe-enterable. Just use PF3 to find
and s(~lect the next instance of the search string. and away YOli go.

Go to line. Prompts for a line number, and moves the cursor to the head of th,lt line in the
file. The first line is numbered 1. If the number is too large. it will go to the end of text
and notify YOLl of the true line number therc.

7.8. The Right Hand and the Left

When there is a selec:tion, the cursor is not in a single spot. so it would not make much sense to insert
ch"rtlcters at the cursor. So various printing characters are used as speci.lI scJectionemode commands. The
most bm;ic of lhcse commands are ull assigned to left·hand keys. Thus one possible mode of operation is tor
the user to have his right hand on the mouse. selccting things. and his left hand at the llsual place on the
keybmlrd. giving commands which are not available on the mOllse buttons. Others of these commands are
designed fbr use with the search nnd replucement facility.

Non-printing characters other than those described belowdcsclect, then perform their usual function as if
the cUI~()r had been at lhe beginning of the selection.

spnce bar Deselect. The cursor lands at the beginning of the selection. A1I' printing characters not

Tab

d

e

c

g

s

r

PF3, PF4

PFl, PF2

fL

mendoned here also have this effect. but Ulespnce bar is recommended .

Dc...'Scfect. but the cursor Innds following the end of the selection.

Delete. Exactly identical to the middle mouse button.

Exchange. Exactly identical to Ule right mOllse button.

Copy in place. /\ copy of lhe current selection is inserted right aftcr it, and becomes the
new selection.

Gmb. The current selection is copied into the killbuffer without deleting it

Search for the next instance of Ule selected string. This becomes the search string, as used
in future Rcpeat Search or seurch"and-replace commands.

Reverse version of s.

Repent sc41rch -- they pe~form their usual function, using the stored search string rather
than the current selection.

Scron -- as usual. but unlike other commands they do not deselect unless the selcction is
being scrolled oft'the screen.

Redisplay, with the selection ncar thc top of the screen. Good for long selections which
run off UtC bottom of the ~reen.

V-SYSTEM 5.0 RFFERENCE MANUAL COMMANDS

40

y

n

backspace

Y

u

S

R

q

Q

YEo: ATExr EDITOR

Yes replace. Replace the selection with the stored replacement string.

No don't replace. Search for the next instance of the stored search string.

Undo replacement. Search backward for the first instance of the replacement string and
replace it with the search string. The resulting string is selected.

Yes replace but don't move on. The selectiun is replaced and the result remains selected.

Undo in place. Thc current selection (which hopefully is the replacement string) is replaced
wit~ the search string.

Search for next instance of the replacement string.

Reverse version of S.

Start query replace. Takes the cUlTent selection as the search string, and prompts for a
repl,lcement string. Replaces the current selection, and goes on to the next instance of it.
just as "y" would do.

Set replacement string. The current selection is copicd into the replacement string. This
makes it possible to aller a Query Replace in mid-flight.

7.9. Markand Region·

Vcd maintains an invisible point in the butTer called Mark. Until otherwise set. it is at the beginning. It can
be set by tXtM or Control-<!~ (Control-spacehar is tlle sume as Control-@) on some keyboards). "Region"
refers to all the text hetween Marie and the cursor. '111C following commands lISC these concept.,:

tX tM. t@

tXtX

tX tR

Se~ the Mark at the current cursor position.

Exchange Marie and cursor (changing tlle display if necessary to keep tllC cursor on lhe
screen).

KilJ Region. Region vanishes ,1Od becomes ,the ki11butTer -- so this command can be
undone with tY, NOle thal in Unix Em4lcs this function is normally bound to tWo

Write Region. Prompts Ihr a tile name, and writes the region into thal tile. The buffer is
unchanged.

7.10. Windows and Buffers

Ved is nommlly started with onc editing window. but it can support several. Each editing window is
associated with a separate editing hutTer. which includes tlle text, cursor position. selection if any. associated
filename, and whether this butTer has been modi lied. Multiple windows on the smne bufTer are not
supported. Since the correspondence is one to one. hereafter we reter to "window" meaning "window and its
us.'iocialeu buflcl''', At ;.IIlY time one window is selected fh .. cliiling. and is Ihretnost on the screen. Window
selection can be changed by clicking a mouse button in an 1I1lselected winduw, or by pressing the approprinte
number key on the keypad. Windows are numbered. starting at 1. in the order of lheir creation.

The search und replacement strings and the killbufTer arc universal across windows. Thus it is possible to
kill some text in onc window and yank it into another. It is likewise possible to search for a string in one
window. then s~lect another window and repeat-seurch on the same string.

The window from which ved was invoked is special. It cannot receive input except during certain
commands. at which time it is selected automatically. It is never receptive to mouse input.

V-SYSTFM 5.0 RFFERENCE MANUAL COMMANDS

WINDOWS AND BUr-FERS 41

tXg

tXd

tXy

1'X a

tXm

Get me. Prompts for a file name, and reads it into a new window. Ifno file name is given,
creates an empty window. Here and in all other cases, when a window is to be created the
mouse cursor will change to "Pad" and let you indicate where the window is to go. If you
abort the pad creation by pressing all three buttons. the command is aborted.

Delew the current window. Will warn you if it is modified. The next luwct numbered
window becomes selected. If the last window is deleted, ved quits. because it cannot live
without a selected window.

Yank to window. The ki11buffer is copied into a new window.

Pull Apart. Kills the Region in the current window and transfers it to a new window.

Merg(~ windows. Asks the tlser to indicate a secondary window, and transfers its contents
into the current window at the cursor position. The secondary window is then deleted.
The s<:condary window is indicated by clicking the mouse in it.

tXl-tX9 Select the corresponding window.

MOllse click in any unselected window
Select, it.

7.11. Crash Recc)very

In an ideal world. this program would never crash. But in fact it sometimes does _. but it is so designed that
it nus to crash in two stages to lose your text. Normally a crnsh only breaks the tirst ·stage, in which case you
will get the message

Edito·r crash:1 Shall I try to save this buffer?

If you have any changes.) and you value them. and the crash did not come during a save. it is probably a good
idea to answer "y". ".n" K tile will be made. so the danger of total loss is small. I f this sllcceeds you will be
asked

Try to continuet

If you answer '.y", the inner edilpr will be rccrcnted with the butTers just as they w.ere. For some display
relnted errors, a tL at this poinl will set everything right. Ilowever. you are on shaky ground. and U,e bcst
thing tu do tirst is ~lVe any mmJilieu butTers in other windows.

I f you are dumped into U,C debugger by an editor crash. the debugger communu Su i c 1 de , 9 will destroy
the process Ulat got U,e c:xception. This wil1usually activate ved's crash recovery nlcility. as described above.

Ved tries to detect the cases in which it runs out of memory. In some activities, sllch as reading in a tile, it
will simply refuse. In others. such as a kill or an insertion, you will get the message

Out of memoryl Please do one of the following:
Pick a window to delete
c '- continue (after you free something)
q - save and quit
tC - quit without saving

Ved cannot procced without more memory. and cannot exit gracefully from this activity, so you have to help
it out. To pick a window, select it with onc mouse click and signal it with a second click. It will be saved if
modified. then deleted t.o reclaim its storage. If you have anything clse going on on your SUIl, YOli C,lO delete
a view or terminate a program or delcte an exec to free some storage. Aftcr doing so. type c to continue. If
this won't work, type q to try to save everything and quit gracefully. It will save the current bulTer last. trying
to avoid the utlllgers of~1ving a hall:'modificd text. 're is a last resort, a quick and dirty quit. ...

y·gYSTFM 5.0 RFFERENC'E MANUAL COMMANDS

42 VED: A TEXT EDITOR

7.1 2. Hints on Usage

Ved has no repeat factor like the tU of Emacs. Usc the hold-repeat feature of the arrow keys to move the
cursor around -- they happen fast enough that this is rather workable. Take advantage of the scrolling
features _. you will quickly become addicted to the convenience of getting your material centered on the
screen exactly as you want it. When making scattered changes, you will find the mOllse very helpful.
Arrow-repeat will get you there fast, but a mouse click will get YOli there now. Likewise select-and-delete is
the fastest way to delete a small piece of text so you can type something to replace it.

Ved is almost too large now to run on a 256 K workstation. Usc it only with one or two page files on sllch
workstations. Attempts have been made to catch the event that ved runs out of memory, and give you a
chance to save, but this is not reliable ..

If you get into a weird state. try fL, it often restores sanity. If that fhils. a save may work anyway -- it uses
only the textual data structures. and it is the display. structures thilt usually foul up.

r.sc fonowed by a number key invokes one of the debugging routines. Avoid them.

V-SYSTEM 5.0 l~ FFFH ENCH MANUAL COMMANDS

DRA W: A ORA WING EOn-OR 43

~8-
Draw: A DrawingEditor.

The Draw program is meant to fill a specHic void in the V-System software. Specifically, thc lack of an
analog for thc Alto Draw program is addressed. Thc V Draw program is not identical to it.<; Alto counterpart,
although as much symmetry as possible was includcd. If you have any questions about the behavior of the
program. try using the Help command. [t will (hopefully) provide some meani,ngful information.

This program runs under the vgtsexec only. Since it uses splines, it will not run under thc small version of
the VGTS configured for 256k Sun workstations.

8.1. Conceptual Model

The conceptual model behind this program is om! similar to a person drawing regular objects on pieces of
paper. The dmwing pen has a number of different nibs (tips) which can be selccted. Similarly, the "ink" and
till pattern lIsed to 5had,~ areas also comes in several flavors. The ink can be either TRANSPARFNT or OPAQUE.
If transparent ink is used t() till an object, anything under the object will show through. (fopaquc ink is lIsed,
underlying objects will be obscured. The Uring to Front (raise) and Push to Ilack (lower) commands arc
useful tbr shuffling which objects lie on top of ench other. Each object lies entirely in its own plnne. 50 it is
impossible to create works similar to those poplllm;zed by M. E."iCher.

Curves are generated using H-Splincs of various orders. By default. all curves are of order J. and thus use
qlladmtic interpolation. The Alter command can be used to change the order of the interpolating splines.
Automatic filling (shadnng) of closed objects (specifically. CLOSED CURVES, ('LOSED POLYGONS. and certain
TI~MI)LATES) is possible.

A GRout) is a collection of existings objects lumped together nnd treated as a single unit. Groups ure useful
for replicating completed symbols and figures in sevcml places.

A variety of standard sh~lpcs arc provided. and are referred to us TEMPI.ATES. Templales for Arrowheads
(open and closed. wide and narrow) exist. as well as templutc:i Ihr n.'CulOgles. circles, and ovals. F.u.:h objecl
on the screen has a type. so while it is quite possible to creale a rectcmgulHr closed polygon which appears
identical to a rectHngular template. they arc of distinct type. This is important to bear in mind because
whenever you are (lsked to select an object on the screen, the program will only examine ohjects of a certain
type. and so some confusion might arise when the program doesn't find the thing you arc right on top of.

8.2. Screen Layout

When the program is first invoked. it will creale two new windows on the screen. The large empty one is
U1C main dnlwing area (known as "drawing arc,," to the VgL'iexec). and U1C smaller one is the commands
window (known as ··dmw menu" tu the Vgtsexcc). The drawing area is l.()omable (for instnlctions on how to
lISC the Vgt'lcxec. see the V Commands Manu~t1). and the grid spac.ing available at normal mngnilication is the
same as that used by the prognun. Since the program has no way of knowing what magnification you are
using. it aligns to the unzoomed grid values. The VGTS will place grid points at a constant separation.
regardless.of mngnification. You mny cre,lte additional views. move existing views. etc .• to your satisfuction.
The default drawing area is in the proportion of 8.5 by 11. and cenlered. A fmme is put around the actual size
of a drawing page to provide some reference pOinl\) if you zoom Ule view or ci14Ulge itl) centering. The frame is
normally not visible, as it tics entirely out'lide the default view. It will not appear in any OlitpUt.

V~SYSTEM 5.0 RFFFRENC'E MANUAL COMMANDS

44 DRAW: A DRAWING EDITOR

The Menu window is divided into three separate menus. One consists of action commands (Hotnte, Scale.
Move. COPY. Dnnv, Alter. F.msc. Push to B~lCk. and Bring to Front), which place the program into a state
where it is waiting for you to specify certain actions. Typic41lly, you will need to specify an object type (ALL
OBJECTS, TEXT, OPEN CURVE. CLOSED CURVE. CURRENT OBJECt', OPEN POLYGON, CLOSED POLYGON, GROUP,
or 'mMPI.ATE) and then some data points. A second series of menu, options n.ms along the bottom, of the
menu window. These arc the commands which control variolls detl111lts within the program. For example, if
you wish to change the default font which new tcxt is displayed in. select the Text default option in the lower
left corner of the menu (not the object type TEXT under the "Objects" column). and make the desircd
selection in the popup menus' which will appear. The third section of the Menu is the list of permanent menu
selections (Exit. Help, Misc. Undo. Abort. and Done). These commands arc valid most of the time. In
particular, YOll can always hit He 1 p.

The origin,lI window which you used to run the draw progmm will serve as a combination history log and
prompt fi1e~ The program will print many prompts in this window. telling you what it expects you to do next..
and what it didn't understand of your last action. When you ask for Help. it will appear in this window.

8.3. Command Input

The program accepts all command input through the mouse. Clicking the mouse nenr a command in the
Menu is suflicient to indicate to the progrnm that you wish to specify that command. Clicking the mouse in
the drawing area will eidler spL'Cify a da~1 poilll or a command. depending on which mouse buttons are used.
More on t.hat later. Sometimes input is required from the keyboard. I~ue to Iimit41tions of the VaTS, when
the program is requesting input from the keyboard. clicking the mouse will have no immediate eftcct. Once
the program gets around to asking for mouse clicks again, all of the saved clicks will be processed.

Oceae;ionally the VaTS wi1l have difficulties synchronizing communications. This almost inv,ariably occurs
when you hit a chamcter on the keyboard while the program is expL'Cting a mouse click. When this happens,
a mes..'iage similar to

Sync error· Expected 037, got 040

will appear. Arter this happens. things usually get a little strange. The program will starting complaining
about

Internal Error: fiad mouse buttons 170 at (5,89)

(maybe with other numbers) or more commonly

Missed! Please select a menu commund.

and refuse to recognize anything you do as intelligible. Do Not Despair!! The remedy thr this is to
delibenltely force more sync errors (by alternately typing a character on Lhe keyboard and attempting
innocuous commands with the mouse. like Ilcll) unlil a full cycle has been completed. This typically requires
you to force three more synchronization crrors. and then everything will be completely functional again.

8.4. Control Points and Sticky Points

When you create a curve. you will be askcel to speciry the Control Point., of the spline. These point') arc the
, phlCCS which you wish' the curve to pass neHr. '111e more control points you put in one place. the nearel' Ule

curve will come to that place. Also, plucing multiple control points at a single point will make the curve much
"sharper" at that point. Except for the end points of open curves. and multiple control points. the curve will
not pass Uuough any of the control points.

Sticky pointe; (similar to Knots) arc point., which actually tie on the curve. They are c<)icliJated by the
program to help you with Ule ,1Iignment of object'). There will bc the same number of control P9ints and
sticky point') on curves. Polygons arc a special case. in that since the control points of a polygon actually lie on
Ule "curvc", dle program considers them to be sticky points too. This means dIal U1C sticky points on

V-SYSTEM 5.0 RFFFRFNC'E MANUAL COMMANDS

CONTROL POINTS AND STICK Y POINTS 45

polygons lie at the corn1ers and in the middle of each edge. Sticky points for bounding boxes (e.g., for TEXT
objects) are the same as those for polygons.

8.5. Mouse Buttons

When the mOllse is clicked inside the Menu. it is unimportant which mouse buttons you use. 'Nithin a
popup menu (a list of choice which "pops up" after you do something). you can abort by either clicking
outside the menu or by pressing all three mouse buttons down and releasing them. In general. you don't have
to release (or press) the buttons all at once, but the mouse position is based upon where the cursor is when
you release the last button.

Clicking the mouse inside the drawing area can cause one of several different commands (and mouse
locations) to be used by the program. The use of mouse keys within the drawing area is as tollows:

Buttons

x - -
- X ,-
- - X
X X -
X - X
- X X
X X X

Effect

Specifies a data point right where you are pointing.
Requests the program to find a sticky point.
Requests the program to use the nearest grid' point.
The Almost Done command. (see below)
Requests that a Checkpoint be made.
Equivalent to the "UNDO" command.
Equivalent to the "ABORT" command.

Sticky points arc points located on or ncar existing objects on the screen. '111ey arc useful for connecting
lines to lobjects. specifying points actually on the object, etc. OROUI>S themselves do not have sticky point').
although lhe object') within a group muy. Curves have one sticky point per control point. These points are
located midway between each pair of control poinL'). When you reqm .. 'St that the program select a stkky point.
it will choose the nearest such point whkh is within a given radius (ubout 1 inch). If you arc further trying to
specify a point on a sp(~itic type of object, the seHrch for a suitable point is begun again from the previolls
result NutLirully. if thc~ original mouse click reJ()c~lted to a sticky point on an object ot'the proper type. that
will be the closest point for any further searches.

Grid' points are spaced every 16 pixels (at norm,,1 magnitication). If you wish to see these .grid points. lise
the To~lc Grid command within the YgL'iCXCC. For printed output. pixels are ClsslImcd to be distributed at
100 per inch.

The Almost none command is quite, similar to the Done command described below. in lhnt it tells the
program you are satisfied with the selections you have made. and that you wish the program to accept lhem.
Unlike the Done command. it docs not tell the program that you Clre completely finished with whatever you
were doing. Insteud, it pemlits you to. for example. crase several object~ of the same type without having to
go to the Menu euch time and specify the ~~msc command and the object type.

It differs from a ··rcpeat'· command in thnt it docs not force the program to create a chcckpoint before
beginning Ule next command. AS a special case, whcn in conjunction with the Dnaw commanu. Almost Done
amI Abort beh(1ve slightly diflcrenUy. Abort will calise Ule lust item you urew to be removed. and Undo will
subsequently remove all.~f Ule others. Nonnally. Abort would causc all changes since the commanu began to
be removed.

This comm<1nd is also quite useful when drawing a series of objccts of similar type. You can specify that
you wish to draw a closed curve. place the control points for thc curve. and lhen confirm with the fight two
mouse keys (Almost Donc). The program will complete Ule curve you have outlined. and wait lor you to
specify another closed curve, just as if you had continncd with Done. and then selected Draw Clo'sed
Curve again.

V-SYSTEM 5.0 H FFFl~ ENCE MANUAL COMMAN[)S

46 DRAW: A DRAWING EDITOR

8.6. Selecting Objects

The standard' method of selecting an object is to first choose the object type and then to point at thc desired
object on the screen. lIsing some ctHnbination of mouse buttons which specify a data point. If you select the
wrong object type, simply point at and choose a different object type before you select the object itself. As a
short cut. the program maintains a notion of what it considers to be the "Current Object'". This will be the
liolst object you selected. If you choose the object type CURRENT OBJECr, and it is unambiguous as to what the
current object is. this will suffice. After you select an object. that object will be "highlighted" on the screen.
This nonnally consists of frame or bounding box appearing around the object. (f the program misinterprets
your pointing. use the Undo command (also available by pres..,ing the right two buttons on the mouse) and
then point to a different location on the screen.

The most notable exception to this process is the method tor selecting groups. Since individual objects can
appear in several groups, a popup menu appears when you select the GROUP object type, listing all of the
existing groups. Either choose one of these groups from the menu. or click outside the menu to abort

8.7. Action Commands

'l1,cre are nine action commands. Each is useful for manipulating one or more obj\..'Cts. Typically. e41(.;h
action command will require the selection of an object type.

Rotate This command will permit you to select an object. specify a fixed point about which the

Scalc

Move

Copy

Alter

Era.c;c

rotation is to ulkc place. and lWO points which will define the angle of rotation.

Text is rol<1ted about its positioning point. Only the position of the text is changed -- the
orientation of individtmlletters is constant

This command will pemlit you to select an object. specify a fixed point for the scaling. and
two points which define the scali~lg vector. l11is command is llseful for expanding and
contracti ng objects.

Scaling text will not change it.., size or font. It will change the 10c41tion of U,e string based
upun ilS positiuning point

'l1lis command wilt permit you to select an object. and then specify a pHiI' of pointl) which
define a displacement veclor. This vector tells the program how filr and in which direction
to move the objcct. By lIsing this command. you can move existing object about on the
screen.

This command is similar to Move. except that it leaves behind an image of the object. If
you copy anything odlcr than a group. the two resulting items are completely indepcndent
Changing one will not affect the other. Groups. on the other hand. work diflcrently.
When you copy a group. it simply creates a new image of the same group, appending".
copy II" to the old group name, where II is a smallllumber.

This commnnd tet.~ yuu create new objects. Since it is ~nticipated lhat most of the timc
spent in this program will he dr,lwillg new objects. this is (so to spcak) the uctilllit
command. If you ever select an o'bject type without giving a command first. thc program
will assume that you implicitly meant to dmw an object of that type.

This command is useful for changing the characteristics of an existing object. I t will pelmit
you to move the control points on splines. change the filling and nib selections llsed to
draw objects. etc. Cu"ently Unimplemented.

ll1is command allows you to delete (crase) object') from the screen. I f you decide you just
don't want to sec an object any more. erase it. I f you decide that the last command you did
was a mistake. you probably want to use the Undo command.

V-SYS'ruM 5.0 RFFERENCE MANUAL COMMANDS

ACTION COMMANDS 47

Push to Back

Bring to Front

Also known as Lower, this command will place the selected object behind all of the other
objects. This is useful when you usc opaque ink to fill something. and it winds up
obscuring an object you want to see.

Also known as Raise. this command functions. much like the one above, except that it will
place the selected object on top of all of the other objects. Note that you can still point to
objccts you can't see _. the program will find sticky points on completely obscured objects
with no difficulty.

8u8. Object Types

There are nine selections within the Object type menu. Some of the selections are obvious, some are not.
All are meaningful for selecting existing objects, but, the "Draw All Objects" cummand is not.

All Objects This will permit you to select aU objects at once. If you decide. for example. to move
everything on the page a bit to the left. then this is the object type you want. The Cl ear
Ser.~en command (available under Mise) simply docs an "~:nlsc All Objects", and
then sets the dirty nag to false.

Text As is obvious. this will select any text string. It doesn't matter what font the text is in _. it is
all of object type text.

Opcn Curve An open curve is a spline with open end conditions. When you create one, the first and last
control point you specify will actually be on the curve. and the curve will be tangent to its
convex !\ull at these points. (It gets straight at the ends.)

Closed Curve Closcd curves are splines with closed end conditions. To crcate one. you specify all of the
control points you desire (the program will build a frume for the spline to help you
vislm1i7.c the resultant curve. You du not need to try to get the first and last control points
in the same place .~ the program wi11 close objects automatically. Closed curves can be
filled.

Current Object This wilt select the current object. if one exists. ff you attempt to "Create Current
Objl!:tet the program wi11 interpret this as a request to create un object of Lhe Stllne type
us the current object

Open l)olygon A bunch of connected straight Iincs. (Internally. these arc just splines of order 2. thus using
IineDtr interpulation.)

Closed I)olygon Also straightforward. Closed polygons can be tilled. rille program wiJI automatically add
the last edge, clpsing the polygon.

Group Groups arc a bit tricky. A group consists of severa) existing objccts. lumped together and
treated as a singled named object To create a group, you select as many existing items us
you like. and Lhey are all pl~lced into the group. Once items are inside a group you call1lol
sclcc:t them by l10rmul means. '111ey are inem .. "Cl hidden inside the group .

Template

. Groups arc useful if you hnve a complicated. complete figure which you wish to deal wiLh
as a whole. Due to internal limitation. you C41O't have more than some fixed number of
groups active at one time.

Templates are standard shapes. The broad classes of standurd shapes are arrowheads.
circles. ovals. and rectangles. Arrowheads enn either be open or- closed. Closed
arrowheads arc filled with black ink. '111e nib used to draw an arrowhcud will be the same
size a.') the Ule current nib. but will be circular.

Rectangles and Ovals are both created by specifying two points on a long dingonal of the

V·SYSTEM 5.0 RFFFRENCE MANUAL COMMANDS

48 ORA W: A ORA WING EDITOR

bounding box. You can give either the upper left and the lower right or the lower left and
the upper right. 'nlC program doesn't know the difference.

Circles arc created by specifying the center of the circle and a point on the circle. Since
circles arc actually high order splines (5th order, using quartic interpolation), they arc not
truly circular. If you dmw a really large circle, it is possible that the point you specify for
being on the circle will be otT by as much as a quarter of an inch or so. For normal sized
circles, there will be no difficulties.

8.9. Default-setting Commands

There are a number of Menu selections which control various defaults within the program. They can be
selected at any time. They are:

Text When you select this command. a popup menu will appear. You can use this menu to
specify either the method of positioning text. or the general class of font you wish to use.

Fill on/of(

Nib

It'iII

~111ere arc three differcnt ways of positioning text _. you can specify (with a data point
cntered via the mousc) cither the nottom left-hand corner of the bounding box fbr t.he text.
the center of the bottom edge of the bounding box tor the text. or the bottom right-hand
corner of the bounding nox. Initially. the program positions texl based upon the center of
the bottom edge of the text You can only specify a point on the lower edge of the text
-. the program will autumc.ltically compute where the bounding box for the parLicular piece
of text lies. If you are confused abollt where text should appear. try positioning a few
strings. lIsing thc eXclct positioning (leftmost) mousc button.

rfyou wish to change the font in whic.:h new text is displayed. choose one of the font menu
selections. "sccond popup menu will appear. listing ull of the available fonts. The
"Standard Fonts" category contains lhe fonts which can be considered to be mundane text
fonts _. variations on Helvetica. Times Roman. and a lew randoms like Clarity 12 and
Cream 12. The ··Unllsual Fonte;" selection contains everything else -- Old English 18.
Hebrew. Cyrillic. Greek. API.. Math. eM R. etc. '111erc are some fonts. like Gates 32 and
TemplHtc 64. which are very ditlicult to lise unless YOll arc quite familiar with Ulcm. They
arc included primarily fhr completeness ~lke.

This toggle controls whether or not closed objects (Closed Arrowheads. Rectangles, Circles.
Ovals. Closed Curves. and Closed Polygons) are tilled by delhult. I f you wish to lise
created tilled objccl~. set this switch to Fill on. Toggle Ule switch by pointing at it and
clicking lhc mousc.

If you wish to change lhc nib (paint bnlsh?) used to draw lines. select this comm,md.
Thcrc arc four nibs. each of which comes in four sizes. The program initially uses a
Circular nib of size 1. The four nib shapes arc Square, Circular. a horizontal Dash. and a
vertical Bur. The four sizes are (unsurprisingly) O. 1. 2. and J. Size 0 is a single pixel. so all
of the nibs look the seunc at thilt sizc. "n exmnplc of the (.;urrent nib, at Ule current sizc. is
displayed in this area.

This comm,ind allows you to change the nn pattern used to shade closed objects. "small
squarc section of the cllrrentlill pnttern appears in this area. When you scl\..'Ct Fill. a popup
menu will appe:'lr, permitting YOli to either toggle the usc of opaque vs. translucent ink or
select a general c1ac;s of fill pattern.

The "Striping Patterns" consist mostly of tines drawn at various angles. The program'
initially lIses the onc pattern least like straight lines but still considered. a slriping pattern:
Chain Link,

V-SYSTFM s.n RFFF1~FNCE MANUAL COMMANDS

DEFAULT-SrrrTlNG COMMANDS 49

The "'Gray Tones/Area Patterns" selection consists more of patterns which arc either
various shades of gray, or are regular and (to some) uninteresting. These patterns are
useful for highlighting objects.

The 'textured Patterns" are supposed to be more representative of actual textures. The
names for these patterns arc supposed to be suggestive of their appearance. but many of
the names arc nonetheless obscure.

8.10. Pe rmanent Menu Commands

There arc a few commands which arc generally useful, and arc thus considered pennanent. Not all arc
meaningful at all times. but arc still useftll enough to be given an entry on the Menu.

~:xit This command will exit the program. It can be used at any time. If you have performed
any command since either clearing the screen or writing a tile. the program will ask you to
continn that you actually wish to exit even though there arc unsclVed ch'lIlges. Typing "y"
will c:onfirm. Typing anything clse will abort the command. Note that since the program
is rending input fl'Oln the keyboard when asking you to confirm. any mOllse clicks you
make will simply be queued. and when you do type at the keyboard they will all be dealt
with. In palticular, be careful about using the Abort command here.

Help

Mise

Undo

Abort

Done

This command will provide a blief description of any other command you like. To get
help on a specific command. just select that command after you select help. To get help
with the mouse buttons. push any olle button in the drawing area. To exit help. select Help
again. You can ask for help at any timc.

This command is actually a front fi>r a collection of less frequently lIsed commands. The
various commands are for clearing the screen (only valid if no other command is in
progress), reading and writing tiles. generating press tiles. and toggling dehug printollts.
The debug printout., Ufe long and plentiful -- they are also me4lninglcss to tile uninitiated.

Reading a SUN draw tile does not clear the screen - it adds the new object., to the current
displuy. Press files cun-ently unimplemented. '.

'J"ef>l~ are actuQ1l1y two fmms of the Undo command. J f you sel~'Ct it while at the top level
(when there are IlO other commands in progre:is), the effect will be to revert to the previous
ch(.'Clcpoint. in ctlcct undoing lhe last cummand. The progralll mainulins a list or 10
chccl,p()int~. so you can undo up to 10 commmlds.

Chcc'kp()int~ arc copies of the complete sUlte of the drawing area. The program will make
one before it stlrt'i (lilY action command. In this way. the Abort command doesn't need to
keep track of incremental changes during the processing ofa command.

If you give the undo command while in the pmce5.'i or sp(.'Cifying another command. it will
attempt to undo your I"st choice. If you are specifying data point'), Undo will delete the
last point you entered. I f you are selecting (In ohj(.'Ct. Undo will 1.I1lsclect the object and

. peJ1l11it you tu chuose aga.in. .

This command will abort any command in progress. In general. Abort will also revert to
the last checkpoint, since action commands all make a checkpoint before they begin
processing.

This command is lIsed to tell the program that you arc happy with ull of your choices. and
arc done specifying parameters. After you hit Done, the program will attempt to perform
whatever command you arc executing. and will display the results. Note thut by pressing
down the left two mousc buttons while in the drawing arca, you cun give the A 1 mos t

V-SYSTEM 5.0 REFFRENCE MANUAL COMMANDS

so DRA W: A DR" WING EDITOR

Done command. which will confinn all of you selections. but not stop the command. In
this way YOlrcan, for example. create several objects at oncc. Note, however. that if you
use the Almost Done command, you are not guarantecd that a checkpoint will be made.
If you create several objects with A 1 mos t 00 n e. and then hit Abo rt, some (perhaps even
all) of the new objects may be aborted also.

v·SYS"n~M 5.0 RFFFRFN(,E MANUAL COMMANDS

BITS: A BlTMAPAND FONT EDITOR 51

~9-
bits: a bitmap and font editor.

bi ts is a special-purpose editor for working with bitmaps and fonts. It makes intensive use of the VGTS.
The VaT of the cxecutHve under which bits is started up, is used to display variolls status infonnation, as
well as being the menu of commands to execute. When started. bits will ask for you to create a new view in
which the actual editing is perfonned. lf you request to view sample text, yO~l will be asked to create a third
VGT (sec below). '111eS(: last two VGTs can be zoomed.

9.1. Command Intput

In this chapter, when you arc asked to do the command [xxx]. it means that you should select and dick
the mouse at the tield [xxx] of the st41tus/communu VGT. You get the same fccuback as with pop-up
menus, with the ticfd in inverse video. Some of these fields. when activated. expect you to typc in some
number Of string. In those cases, you have the full power of the linc editor, until you typ·c a <return>. (To
abort input. type Cl'RL-g.>.

9.2 .. Rasters

'l11e impOi"L1nt thing to rcmember is that bi ts handles pointers to bitmaps. These we call rasters. 1\ raster
also COlltuins size and otI"iet duta. so it can point to part of a hitmap. You can name it raster using thc [S tore
with new name] command. and later retrieve it from the Table of saved rasters. You can thus
save multiple pointcrs to the samc bitmaps under different names. I f you change biL') in onc of the bitmaps.
the hits will also change in the other rasters. since they refer to the same bitmaps. Use the [Save a fresh
copy] command tu m41ke a virgin copy of a bitmap, which is guaranteed to have no uther rasters pointing at
it.

9c3. Changing Rc)ste r Size

To clmnge the size of a raster, point at the boundary. click the middle button and 'tt11ove" the boundary to
where you want it. You CUll also change the sizc ora msler with the [Width] and [Height] commands. To
do this. select one of dl~e tields. and type in a number. The absolute vullie typed in becomes the new sizc. If
the value is positive. the old and new rasters coincide at the top left corner: if the valuc is negative, they
coancide at the bottom right comer. .

Note that when you change a raster's size. all other rasters pointing at the sume bitmap wi11 be adjustcd to
point at whntever bils they used to point at. '111is is tl1lC even when you incrr(fs(' the size. (When the sizc is
increm;eu. and the underlying biUT141P is larger lhilll the part puinted to by the current raster, thc hidden part
of the biUnc.1P will appeur. I f this isn't enough, a ncw bitmap will be allucuted. and alllhe pointers adjusted.)

9 .. 4. Bitmap 1/0

You can read and write bitmaps in • sun format (as used by the 'photo program), using the [Read
raster] and [Wr1tE~ raster] commands. To write a raw raster in hex suit4lble for putting in a C
program, lISC the [Write hex] command.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

52 BITS: A BITMAP AND FONT EDITOR

9.5. Painting

To set (blacken) a pixel, point at it with the mouse, and click the left button. To clear (whiten) a pixel in a
bitmap, use the middle button.

9.6. Inverting a Raster

Selecting [Invert black. and white] inverts thc interpretation of black and whitc pixels. This
interpretation is actually stored as part of the raster object, so no pixels are actually changed (except on the
display).

9.7. Raste r Ope rations (BitBlt)

You can do a general 2-operand BiillIt with the (Raster operation] command. lbc current
(displayed) raster is used as onc of the operands (the "destination"), so this should be selected first Then give
the [Raster operation] command. after which you will be asked to select an operation. Avuilable are
pluin copy, 'and', 'or' (paint) and 'xor', In addition. the (I nvert Source] modifier first inverts the source.
(Invert Destination] docs the same thr the destination. which means inverting the destination
opemnd alld the output result Finally, you must select the other .operand (the "source") from the name table.

You can also select (Get the empty raster] as a source, This gives you an infinitc plane of white
pixels. '111is, together with thc [Invert Source] option. al10ws you to conveniently clear or set any·
rectangle.

9.8. Reflection and Rotation

Selecting (Ref' ect/Rotate] wilt do one of these transfonnations. (A popup menu asks for the
particular transformation.) Note that U1C result is a "fresh" raster: There are no other rasters or tables
pointing at its bitmap. .

9.9. [Replace in table]

This command asks you to select an clement in the rnster tuble or the current fbnt. The clement is replaced
by the current raster. If a [Table of saved raster] clement is replaced by the Empty R41slcr, its space
is tj·ccd.

9.10. Making a Copy of the Sc reen

You cem make copy of the frame butTer. with a little bother. Select (Get framebuffer]. which gets a
pointer to the fmme-bujTcr. You should now lise (Height] and (Width] tu reduce the time and space
required to deal with it. (The framehufTer is big.) You shuuld [Save a fresh copy] to see what's going
on. and then usc the middle button tu seh.'Ct the pm'l U,at interests you. This will be sluw, since such a big

. raster is involved. and you will also have lo use the VgLS window nmnager commands.

9.11. Fonts

;\ jOllt is a collection of characters. From bits' perspective. a character is a bitmap with some extra
infornlation. bi ts currently knows about tonts in Ule following fornlats:

• sf fonnat ("Sun fonnHt"), which is specially optimized for the Sun graphics hardware. (The name

V-SYSTEM 5.0 RFFERENCEMANUAI. COMMANDS

FONTS 53

should probably be changed. since it conflicts with Xerox' Spline Format.)

• The same fommt, but the font is stored in an archive (library) of rclocatable binary files. Thus fonts can
be linked in with programs, or read in at run timc. ~f11e standard fonts are stored in
lusrlsun/lib/l1bsfsonts.a •

• Pxl format, which can be generated by MetaFont. and is used by a lot of the TeX people.

To read I write a font~ select the desired field in the Read font I Wr 1 te font table. Note that you
cannot write a font to an archive.

9.11 .1. Displaying Fonts

When a character in a font is displayed. there are funny lines sticking out of the bitmap picture. The two
horizon~11 lines show where the baseline of the character is. The lower vertical line shows the starting position
("origin") of the character. The top line indicatcs the width of the character. and shows where the next
characters should start You can select any of these lines (with the middle button), and adjust them with the
mouse.

9.11.2. Font parameters

This is a section of the pHd with magic numbers about the current font. They can all be changed. but you
should know what you are doing.

Design size is the size in points at which the fbnt is designed for. Magnif-ication is one thousand
times the number of times the image is magi tied. relative to a default Pxl resolution of200 pixel~/inch. To be
compatible with the Altos. we have decided th~lt the resolution of the Sun display should be defined to be 80
pixels/inch. This means that the 1.0 rnagnilicution will huve the magnification parameter of 400. which is
somewhat sman. Both these are TeX/Px 1 parameters.

[Raster ali gnment] is the bit boundary character biunaps should be aligned on in sf font flies. It
must be I. 8. or 16.

9. 1 2. Sample Texts

Tn study how a text sU'ing would look at no mngnificatioll. select [Sample text]. You should lhen type
in the lext you wHnt displayed. This text will be pl'l(.:ed in a new YOT. To ch<lngc the lext. just resclect
[Samp 1 e tax t]. the old text will he placed in the line editor butler. to simplify small changes. I r you edit
the Ihnt. select [Redraw] to update U1C !:Xlmpic.

Note that in the sumple. the character • \' is special. It is used to indicate speciHI non-ascii chunlcters. as in
C. Specifically. • \' fullowed by a 3-uigit octal number is the character with Ulat ordinal value. \ \ displays \,
and \b. \t. \e. \r and \n arc Ba<.:kSpuce. Horizontal Tab. l~ape. C41rridge Returen and Line Feed.
respectively. \8. \A •... _ arc control chumcters: 1'O, tAt ..• t_.

9.13. Printing a Raster

There is a Unix progr,am to convert a • sun me to a • press tile. To run it (on some Stanford VAXen). do:

/usr/sun/src/graphics/pix/sunprass -p X.press X.sun

This. together with the [Get framabuffer] command, allows you to print a hardcopy of the screen .on a
Dover printer.

V·gYSTFM 5.0 REFERENCE MANUAL COMMANDS

54 BITS: A llITMAP AND FONT EDITOR

9.14. Bugs and Problems

.sun tiles use 1 to mean 'white' while b'1ts uses O. This means that you should (Invert black and
white] after reading and before writing, if you want to usc the bitmaps for programs like sunprass and
photo.

The are some limitations on how bitmaps are displayed by the VaTS. A bitmap can only be should
magnified 1, 2. 4, 8, or 16 times. so other zoom factors will be wrong. Also, it is over·conservative when
clipping rasters, which means that a whole row of bits could be missing.

Raster operations do not take into account that rasters may be overlapping.

bi ts is not very robust against things like ntnlling out of memory. Caution would imply that you save
your work often.

V-SYSTFM 5.0 REFERENCE MANUAL COMl\IANDS

AMAZE 55

-10-
Amaze

Amaze is a game for two to five players which runs under the plain (non~ VGTS) exec (VV). If you see the
letters VaTS in a small window on your scrcen you are not running the plain excc. See section 2.2 for
instructions on how to start up the plain .exec.

To run amaze, type th(! command

amaze

If no one else is playing. it will type "New game starting" and then draw the mazc. Otherwise it responds
with "Joining game as player number x" and then draws the mazc. Your playcr token. called a monster, will
be sitting in the center of Lhe screen just above a checkered flashing door. From this point. you control your
monster through the keyboard. The commands are:

i Move the monster up.
, Move the monster down.
j Move the monster left.
1 Move the monster right.
k Hold the monster at its current position.
a Let the monster's moves be selected randomly.

e Fi re the monster's missile up.
c Fi re the monster's missile down.
s Fire the monster's missile left.
f Fire the monster's missile r'i ght.

(Note: the missile can be fired only once every six
seconds.)

h Hide the monster from other players -- no shooting allowed
wh i1 e hidden.

v Let the monster be seen again -- can shoot again, too.
(Note: monsters stay hidden for ten seconds, but once

they become visible, they remain visible for 16 seconds.)

0 Set monster velocity to o.
1 Set monster. velocity to 1.
2 Set monst.er velocity to 2.
3 Set monster velocity to· 3 -- the starting velocity.
4 Set monster velocity to 4.
5 Set monster velocity to 5.

q Quit the game. but continue to watch other players.
t Rejoin the game just above the door.
r Rejoin the game at a random corner in the maze.
Ctrl-C Terminate your involvement with the game.

Note that to leave the game entirely YOll hold down the CrRL key and type 'c'.

V-SYSrEM 5.0 REFERENCE MANUAL COMMANDS

56 AMAZE

To rejoin the game after being shot by another monster, usc either the l' or the r command. The game
currently docs not keep score ot' the number of hits you in mct or suffer.

Problems and questions should be directed to Eric Berglund -- berglund@Diablo.

checkers allows you to playa game of checkers against the computer. This version of the program executes
entirely on Ule player's workstation.

On starting the program, the view manager will prompt you for the position of the VGT representing the
checkerboard.

The player moves the 'red' (white) pieces: the program's pieces arc black. You arc expected to make the
first move. You can. however, force the program to move first by "passing". (Sec the paragnlph describing Ule
menu. to follow.) To make a move, move the mouse to tile square contnining the piece that you wish to move,
and click. either the left or the middle mouse button. If this piece can be legally moved. it will then be
highlighted. Complete the move by moving Ule mouse to the destination square 4lnd once again clicking the
left or the middle button.

If the move that you have selected is legal. your piece will be moved. and the progmm will then make its
move. Note th&ll having selected a piece to move. you can abort tilis selection by clicking an illegal destination
square (the source square itself. fl.>r example). I f a capture of an opposing (ie. black) piece is possible, your
next move must be a capture. t\ messngc indicating slIch "forced captures" wil1 be displayed just below tile
board. In such a case. the program will not allow you to make i.l move Ulat is not a Ci.lpture. Multiple captures
arc handled correclly - if you move a piece by making a capture. your move wilt not be completed until all
possible captures with this piece have been made.

rn,e standard niles of checkers apply. If a picce renches the ctghth rank of the board. it is promoted to a
king: king~ may move in any direction. t\ side wins either by capturing all of Ule opposing pieces. or if the
opposing side can make no legal move.

When it is your turn to move, you may also usc the right mouse button to select from a menu of options.
which arc described below:

Redraw This causes the VGTS to redraw Ule entire board. This command should rarely be
necessary.

Pass (skip turn) This command cun be used if you want U1C program to make the first move. You can also
usc lhis to avoid any capturing obligations.

Change search depth

Edit board

By default. the progmm searches 4 half-moves ahead when choosing its next move. That is.
it ,considers its own move. your response to this move. itt:) next move. and your response to
that. The "Change search deplh" command allows you to change the depth oflooka~ead
to any value from 1 to 8. Don't select any of the higher depths unless you have a lot of
patiencc~ huwever. The program tHkes about 20s to respond to a typical opening move
when the depth is 6. about 50s when Ule depth is 7. and about 3 minutes when the depth is
8. (These limes were taken on a 10 Mllz SMI workstc:ltion - Cadli,ncs will he slightly
sluwer.) Nute lhat you mcay lind out t.he current search dCpUl by selecting "Ch:lIlg,e search
depth", and. then clicking outside the 'depth' menu.

This command put') you into Edit mode, which allows you to cheat by adding pieces to, or
removing pieces. from. the board. Edit mode is described below.

Back up one move This allows you to retract (eg. to correct) your last move.

Resign The quick and cowardly way to end the gmne.

'nle program chooses it's move by performing a:brute-force' search. lIsing alpha-bet.a pruning. It evaluates

V~SYSTEM 5.0 REFERFNCEMANUAL COMMANDS

AMAZE 57

the board positions at d'le 'leaves' of the search tree using a simple heuristic based on the number and position
of pieces on each side. A 'value indicutor' to the right of the board indicates the value of the current position,
as seen by'the program. (If the indicator is above the hf.llfway mark. for example. then the progrillTl 'thinks'
that you arc winning.) There arc also counters immediately abovc and below the value indiCator, giving the
number of pieces on each side. The vallie indicator and dle piece counters arc updated whenever the program
completes its movc.

You can make changes to the board (between moves) in Edit mode. [n this mode. a special menu is
displayed to the right of dle board. To udd a piece to the board (or change an existing piece). click the square
in the menu that contains that piece. You may place a copy of this picce on any (shaded) square of the board.
by clicking that square .. YOll may do this repeatedly; it is not necessary to select from the menu each time.
Note that you use the 'empty square' to delete one or more pieces from lhc board. You may remove all pieces
from d1e board by clicking "Clear", When you have finished making changes to the board, click "Done" to
leave Edit mode. It will still be your tum to move next.

Mail comments Clnd/or gripes to Ross Finlayson· rsf@diablo.

Y.·SYST1~M 5.0 REFERENCE MANUAL COMMANDS

58 FSCIIECK: FILE SYSTEM CHECKlNG PROGRAM

V-SYSTEM 5.0 REFERFNCE MANUAL COMMANDS

FSClIECK: FILE SYSTEi\4 CHECKING PROGRAM 59

~11-
Fscheck: File System Checking Program

This program is a fit" system disk checker as well as simple file system editor that can be used to inspect and
modify file system disk data structures. In addition. it gives one the capability to create and initialize new file
systems. Fsheck must only be used when there is no other file system activity. It also should only be Llsed by
persons responsible fOl' maintaining the file system.

11.1 . Invocation

One can invoke f.~hcxk from within the V system executive by typing

fscheck

or

fscheck devicename

If no device name is specified. fscheck attempts to open two devices. [dcvicc]diskO and [dcvicc]diskl. Non
existence of a s(.'Cond device docs not affect correct operation of the program. Note that the devices must be
attached to the workstation from which the command is invoked and tlle kernel nmning on the workstation
must include the prop(:r disk driver (see the Kerne~ Section for details on which kernel should be booted).

11 .2. Commands

Commands arc provided to check the global. da~, stnlcture consistency of each file system. inspect and
modify individual node descriptors (ND). and initialize new tile systems.

a [+r][+sj

b block

c

f

g field

check the consistency of the file system block allocation. If + r is specitied. thc bitmap is
rcconsll'tlcted. If +s is specif1cd. error messages about blocks marked in the bitmap but
not all()C(1ted to a me are suppres.'led.

print the no number of all node descriptors that point lo the given block number.
NOImally, there is at most one. If the alloc41tion is inconsistent, a block may be allocated
mm'c than oncc.

update the checksum in the current ND. print it. and set the current field to the checksum
~L .

print the pathnamc of the current NO rcl41tive to the file system being checked.

set tllC field corresponding t<>· the given name us the current field und print the currcnl
field. .

initializc me systcm information. Prompts the user for the name. drive number, starl
bloc:k, and length of each tile systcm in the disk subsystem and writes the infOlmation inte
the file "f.'l~1b" on the root tile system. Note that tlle SL.1rt block of the first (root) flh:
syst.em should correspond to the START_FD_FILE definition (usually 40) il1
"IV Iserverslstoragc/stomgedef..,.h". Warning: this command should only be executec
wh(!n new tile systems are being created.

V-SYSTEM 5.0 REFER ENCE MA NUAL COMM"ND~

60 FSCI-IECK; FILE SYSTElvt CHECKING PROGRAM

print all links from and to the current NO.

n <path> I <nd> set the ND corresponding to the given pathname or number to be the current ND.
Pathnrulles must be specified as absolute pathnames (Le. starting with "/"). If a pathname
cannot be followed. the current NO is set to the last node visited while looking up the
pathname. This occurs if the node docs not exist or the path from the root cannot be
followed (e.g. a node in the path has a bad checksum).

p print all the fields of the current NO.

q quit.

5 number set the current tile system to be the one indicated by number.

t check the consistency of the file system tree structure.

w write the current NO back to disk. The ND number is taken from the current value of the
number field. If the current ND describes an allocated node (Le. its [lame field is not the
null string), it is written only if its checksum is correct If it describes ,1n unallocated node.

- it is written unconditiunally. Checks that the number tield is correct before writing the
current N D Ollt.

<RETURN> advance to the next field and print its name and vallie. Hitting <RETURN> after an "n"
command prints the first field.

print the current field.

t set the current field to the previous field and print it.

= <number> I <str>
store the given number or string in the CUITcnt field and print it .. The number may be
decimal. octa!fO' prefix), or hexadecimul(,$' prefix). "string is a sequence of characters
and must be encloscd by double quotes. "null string is represented by It". Strings are
accepted only when the name field is being modified. Note that modifications are not
effective until a."w" command is issued. .

11.3. Initializing a new disk su bsystem

Once the' disk drive(s) have been furmatted (using tliskdiag), the churacteristics of each of the multiple
pos .. ~ible tile systems should be specified. This can be accomplished by creating Ule root tile system (as
described below) and subsequently running the "i" command. Then. using the "s" command to successively
switch to each new file system, the rest of the tile systems should be created.

11.3.1. Creating a new file system

To huild a new file system, one should allocate blocks to the ND file (ND I) and to the bitmap file (ND 2).
(If the liIe system being created is Ute root tile system Ulen a single block should be allocated to "lsl,;,lb" (ND
3).) This is done by modilying Ulcse node de~riptors su thut e"ch rcfers to non-overlapping extents of disk
blocks. Also, the link fields in eHcll node descriptor should be updated so that a proper tree structure exists.
Le. ND 2 is U1C son of ND 1 and ND 3 isthe brother of ND 2.4 Aftcr Ulis IS done, a "t" command should be
used to check the consistency of the new tree structure. and an Ita + r" command must be issued so Ulat the
bitmap reflccts these newly allocated blocks.

41n the nc:lr fUlure, the t3.o;ic of creating a new file system will be aut~l11atcd.

V-SYSTEM 5.0 RFFERENCE MANUAL COMMANDS

CHECKING FILE SYSTEM INTEGRITY 61

11.4. Checking file system integ rity

Once the "s" command has been used to set the current file system to the one you want to check, test the
consistency of block alIocation l1sing the "a" command. Used with the + r option. it rebuilds the bitmap file
in the case of missing blocks (i.e. blocks marked as allocated in the bitmap but not actually allocated to any
file) or blocks allocated to a file, but marked as free in the bitmap. lllocks allocated more than once have to
be handled manually. rn this case, use the "bit command to determine to which ND's they are allocated. Use
the "n" and the "r' commands to determine the pathnames of those ND's. Make copics of the cont1icting
tiles and remove the old ones. Note that the information in the files may be damaged.

Second. check the trc::e structure using the "t" command. If there arc missing links, find out what they
should be using "n" and "1", If there are nodes completely disconnected from the tile system. remove them or
else determine from their father pointers where they should be in the tree structure. The ea'licst way to
remove a disconnected node is to mark the corresponding ND as unallocated (setting the name field to the
null string) and then using "a + rIO to recover the blocks that were allocated to that file.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

62 STANDALONE COMMANDS

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

STANDALONE COMMANDS 63

-12-
Standalone Commands

This chapter discusses standalone program~ i.e." programs that do not run under the V kernel, that arc
useful with the V-System.

1 2. 1-. Vload

Vload is the V-System bootstrap loader. Prhc Vlond program loads the V kernel and initial team into
memory and starts up the kernel.

There arc several versions of Vload. Currently. all versions usc the V 110 protocol and V IKC protocol to
load programs over Ule Hthernet5 On the Sun-I. the Sun 3 Mbit Ethernet board and Excel .. tn 10 Mbit
Ethernet boards are supported as boot devices. On the Sun-1.5 and Sun-2. the 3Com 10 Mbit Ethernet bmlrd
is supported.

Vload determines th(~ files to load and other actions to take at nm time. depending on what was typed on
the comm41nd line and what infonnation is stored in the configuration database tor the workstation being
booted (sec section WORKSTATIONCONFIG). For each of its parameters. Vload gives first priority to
command-line infonnation. if any. second priority to the defaults for this workstation recorded in the
configuration du tt base" if any. and third priority to a dcfault value dctermined ,It compile timc.

Team and kernel filenam~'S are interpreted in the V-System "[public)"' context. unlcs~Uley begin with a
square brat;ket. In the latter case, the name inside brackets is taken as ;1 machine name~ in the same name
spilce llsed by U1C login command. If" # t. is given as the kernel file namc. no kernel is loaded, Instead. thc
me specified as first team is londed into thc kerners memory area and exccuted as a s~1n~1Ione progrart:l.

Besidcs tile mlrnes. two other parameters are also required: '·worldt9 and "options. to The world may be
either V (production) or xV (experimental). The only option currently recognized is 'bOt which causes a break
tn the I'ROM munitor bclhre the kernel is stul'tcd.

The following sections describe thc defaults and special ch~lructcristics of Utc three versions of Vloud in use
at this writing.

12.1.1. 3 Mbit Ethernet

This versi(JO of Vload is intended for booting Ci.ldlinc. SMI Sun-I, and other Sun-l workstHtion
configurations with 3 Mbit Sun EU,ernet boards. These workstltions ordinarily use a version of U,e S~1nford
PROM munitof that inc:()rp()ml~'S PUP bootstmp code. The lirsl slep in booting t.hese work:'italiol1s is tu load
VlnmJ lIsing the hootstrap PROMS. This C:1I1 he uOlle by typing a keyboHrd com manu (b f 11 en arne thr SM I
workstatiuns. n 111 el[)ame lor others). or atilmnalic,llly on powcnlp or reset (see below) ..

For these workstations. the kernel resides from OxlOOO to Ox 10000. and teams are loaded at Ox 10000.

The compiled-in default valucs for Vload's parameters in this version arc as follows:

world V tcam

Sin the ncar future. there will be a version of Vload that ron b~t a lilcscrvcr machine ~irccllY from its local dL."k.

V-SYSTEM 5.0 RI~FERENCE MANUAL COMMANDS

64

teaml·vgts kernel
Vkemcllsunl + en options
null

STANDALONE COMMANDS

The only command line infonnation visible to Vload is the name it was invoked under. Therefore, Vload is
installed under several different names, and its action depends on its name. The names and actions are listed
below.

v

vv

xV

xVV

V10ad

xVload

/lull

others

When called under this name, V10ad wi1l1oad the team Leami-vgls and the default kernel
for this workstation. using the default options. The team and kernel arc loaded from a V
storage server (production versions) rather than an xV storage server (experimental
versions). that is. the: world parameter is set to V.

The team is leam/·sts. and the world is V.

The team is team!-vgts. and the world is xV.

The team is leam/-sts. and the world is xV .

. The user is prompted for team, kernel. and optiolls. The default value is used fot any field
where the user enters a blank line. The world is V.

Same as Vload. except that the world is set to xV.

If the name is null. Vload assumes it was autobooted. Det1ult values are used for all
parameters.

If a copy of Vlond is installed under any other name, it will use its nmne as the tcam name
to be loaded. set the options to null, and lise defaults for the kernel and world.

No spccial setup is required to get an SMI proces.~or to autoboot- it wilt do so automntic:tlly 30 seconds
after powenip or a kZ command. The PUP boot PROM requests boot me number 1 by number, which causes
a file called l.Boot to be Imlded from the first responding PUP EFTP server. We have arrangcd for this file to
be a copy o(Vload. so Ule boot action is as described under the /lull name above.

A non-SM' processor can be made to autoboot by insf(Jlling the proper jumpers in it') configuration register.
(Sce the ..)"111 Users Guide thr a full description of the configuration rcgister.) Bit') 7-4 of the conliguration
register arc 41n index into a table or booltile names stored in thc PROM. An in-place jumper or closed I)(P

switch corrc..'Spond.') to a 0 bit: no jumper or an opcn switch corresponds tu a l. These bil") should be set to the
number corresponding to the name "VlomJ:' The ··w tr' comm;.md typed to the I-ROM monitor callSt'S it to
Jist the boot file names and corresponding numbers that it knows aoout. Vloud is usually number 5,
corresponding to jumpers on bits 5 and 7. Vloud's action will be as described under the Jlull na~e above.

12.1.2. EXcelan Ethernet

'Illis version of Vload is intended for booting Cadlinc. SMI Sun-I. and other Sun-l workstation
configuratiuns with Excelan 10 Mbit Ethernet boards. Ordinurily. this version of Vloud is lIsed only with
workstCilions lIsing a special vcrsion or the PROM monitor lh,ll incorpornles TFrp boolstrap code. The first
step in booting Ulcse workst411i.ons is to load Vload using the buotstmp PROMS. This can be uone by typing a
keyboard command. not described here.

111e. compiled-in default values for Vload's parameters in this version arc as follows:

world V team
teaml-vgts kernel
Vkerncl/sunl +ex options
null

V-SYSTEM 5.0 REFERENCE MANUAL COMl\'IANDS

EXCELAN ETHERNET 65

111e only command line information visible to Vload is the name it was invoked under. Therefore. VIoad is
installed under several different names. and its action depends on its name. The names and actions are listed
below. . .

xlnV

xlnVV

xlnxV

xlnxVV

xlnVload

xlnxVload

others

When called under this name. Vload will load the team tcam/~vgts and the default kernel
for this workstation. using the default options. The team and kernel are loaded from a V
storage server (production versions) rather than an xV storage server (experimental'
versions). that is. the world parameter is set to V.

The team is learn/-sIs. and the world is V.

The team is leam/-vgls. and the world is xV.

The team is team/-SIs. and the world is xV.

The user is prompted for team. kernel. and options. The default value is used for any field
where the user enters a blunk linc. The world is V.

Same as Vload. except that the world is set to xV.

If a copy of Vloud is installed under any other name, it will lise its name as the team name
to be loaded. set the options to nult and use defaults for the kernel and world.

There is currently no way to autoboot a workstation with TFTP boot PROMs. This limitation will be
removed in the future.

12.1.3. 3Com Ethel'net
I

This version of Vload is intended for booting Sun-1.5s and Sun-2s with JCom 10 Mbit Ethernet boards.
111cse workstations boot using either a local disk or tape. or the SM I network disk protocol. The network disk
protocol docs nOt allow specifying a file name. so the V -System N D boot server is only cl.lpabJe of loading one
file- Vload. Vioad. however. can read the entire command line typed by the user.

The compiled-in default. valucs thr Vload's parameters in this version are as follows:

world V team
team I-vgts kernel
Vkernel/sun 1.5 + cc options
IIU/l

Zero or morc arguments mny· be passed on the command line to Vloud. I f the first argument to Vioad is
one of the special values described below, it is stripped off and the spccial action listed is taken. "fter this
check. the tirst three remaining argument') are respectively used to override U1C default,) for temn name. kernel
namc, and options. Values set by these arguments have priority over values that may have been set by the
first argument..

V

VV

xV

xVV

null

vrnunix

Sets the world to V. and the' tcam to Icaml-vgts. (This team name will be overridden by
the ncxt argument if present.)

The te~\m is set to leam/-sls. and the world is V.

The team is set to team /- vglS. and the world is xV .
. - .

The team is set to team/-sis. and the world is xV.

If no arguments are present. the default values are llsed for all parameters.

The SMI boot PROMs have Ulis name hardwired in for Hutobooting. so it is treated the
sarnte as a null tirst argument.

Yo5YSTEM 5.0 REFERENCE MANUAL COMMANDS

66 STANDALONE COMMANDS

others If the first argument is not one of these values. the default world is used, and the arguments
prescnt specify team name, kernel name, and options, as described above.

12.2. Postmortem

Postmortem is intended to provide some help in diagnosing system deadlocks. kernel aborts, and other
diS3strous errol'S. Any time the system seems to be hanging, you can break to the PROM monilor, and type the
command .

n postmortem

Substitute b for n on SMT workstations.

Postmortem examines the kernel data structures left behind after a crash, and prints out the state of each
process, if any exist, the pid of the currently active process. and the ready queue.

It is important not to usc the monitor k1 or k2 command or press the workstation. reset button before
running posunortem. These actions cause memory to be cleared. The PROM monitor on a Cadlinc
workstation will nut operate properly if the mOllsc is active. but fortunately, it is possible to turn off the mouse
without power cycling Ule workstation by unplugging the keyboard and plugging it back in. This should not
be necessary if you were able to press the comma key on the numeric keyboard while the kernel was still
running.

12.3. Ipwatch

The ipwatch ~1mi1y of programs provide a way of monitoring the Ethernet to debug protocol
implementations or search for the calise of strange behavior. Ipwatch knows about most common types of
packets seen on the Stanford network. including most PUP protocols. Internet protocols such ac; IP. TCP. and
(eMP. XNS protocols. and the V interkernel protocol. (t can print packet traces on the screen. or save them
in a tile. '~'nwatch is a version for the Sun J Mbit Ethernet board. while ecwatch works on the 3Com 10 Mbit
board. RxwlllClt works with the Excclan 10 Mbit board.

To run en watch. reset the workstation cumpletely, and type the command
n enwatch

for C ... dlinc worksti.ltions, or

b eriwatch

for SMI workstations. The program is menu driven. and most options are self-explanatory.

Currently. all versions of ipwaLch usc· the PUP Leaf protocol on the 3 Mbit Ethernet to write'packet traces to
tiles. and thcy run only on the Sun-1 with Stanford PROMs.

12.4. Diskdiag

'111C diskdiag program is a diagnostic program thut allows one to manuutly access specific sectors on the
disk. It is useful for verifying the correct interaction between the disk controller and disk drives. as well as for
initi,llizing a new disk. Diskdiag is configured to run on a system with a Xyiogics 450 or Interphase 2181 disk
controi1erand Fujitsu M2351 and M2284 disk drivcs. •

To run diskdiag. type the command

b ec() diskd1ag #6

6Somc SM I workstations with older PROM revillionN require that n~() be used in place of ~).

V-SYSTEM 5.0 RFFERFNCE MANUAL COMMANDS

O[SKDlAG

for SM I workstations, or

n diskdiag

67

for Cadlinc workstations. There arc commands available to format(f). reader), saek(s), and
wr1 te (w). 111e user is prompted. as necessary, for more infonnation on each of these commands.

In addition. it is possible to 1 abe 1 (1) a drive with the configuration parameters needed by the disk driver
in the kernel. Executing the fonnat command automatically labels the disk after the format is complete. The
va r 1 f Y (v) command reads the label off of disk and prints it on the console.

The part 1 t 1 on (p) command prompts the user for the start block and length of each partition on the
disk and creates a disk partition table. Existence of a disk partition table is optional as it is not needed by any
system software. The exam1 ne (x) command allows one to examine the contents of the disk partition table.

Reinitializing the diskdiag program is accomplished using the 8g a i n (a) command.

12.5. Offload and Offload38

The offload program llses PUP Eft.·P to load standalone programs into a Sun-l equipped with. a Sun 3 Mbit
Ethernet intcrface. at a user-specified memory location. This program is useful on Sun-l workstations
equipped with standard Stanford PUP boot PROMs, because thcy arc only capable of loading programs that
reside at the default address of Ox 1000.

To us~ offioad, first reset the workstation, then givc the command

n offload

to the .Sun PROM monitor. (Substitute 'b' for 'n' on SMI workstations.) The program will prompt for

1. The name of thc~ program to bc loadcd. 111e default directory is the miscscrver's standard default
d:irectory. as described undcr Vload. .

2. 111e load'origin of the program. in hex. This should be the samc value specified to cc68 or Id68 with the
-T option when the program was lin ked. Otlload will refuse to load a program that would overlap part
of the memory it uses: usc oflloc.H..138 if Ulig is a problcm (sec below).

3. Where to put a copy of the program's b.otlt header. This is usually not needed; enter '0' to omit it.

4. Whether to loud the program's symbol t..1blc into memory. This is generally not needed. Sec the Sun
User's (/uilie for a dCSt:ription of how program symbol tables ,lppear in memory.

S. Whether to jump to thc program's entry point or return to dlC PROM monitor after the program is
londed. After rcturning to the monitor. the command

9 1000

wilJ restart offload to load another file.

Offioad itself resides at Ox 1000 so that it can be loaded by Ule PROM monitor. If it is necessary to load a
program lh41t would overlap unload's detltult location. u:)e oll1oud to loud oJJloatfJ8 at OxJ8000. This program
is identic4tl tu otlluud e.xccpt for its starting address. Thc commund

9 38000

will resulrt offioad38 after a return to the monitor.

The following dialog can bc used to load a nonstandard kernel that is too large for Vload. User inp.ut is
underlined.

V-SYSTEM 5.0 REFERENCE MANUAL COMMAND~

68 STANDALONE COMMANDS

>0 offload
Sun Offset Loader'- Version 2.2 - 2 Feb 1983
Loader resides from 1000 to 60e8
Program to load: offload38
Origin (hex): ~
Place b.out header at (hex: 0 if not needed): ~
Load symbols? (yin): n
Execute? (yin): X

Sun Offset Loader - Version 2.2 - 2 Feb 1983
Loader resides from 38000 to 3eOe8
Program to load: lysrlsun/Vboot/teaml-sts
Origin (hex): ~
Place b.out header at (hex: 0 if not needed): ~
Load symbols? (yin): n .
Execute? (yin): ~.
>9 38000

Sun Off~et Lcrader - Version 2.2 - 2 Feb 1983
Loader resides from 38000 to 3eOe8
Program to load: your nonstandard kernel
Origin (hex): ~
Pl ace b. out header at (hex; ·0 if not needed): ~
Load symbols? (yin): ~
Execute? (yin): X

Using "(usrlsun/Vbootltenml-sts" as above loads the standard version of the plain exec. You can
substitute tC[tm I-vgts or your own spccial tirst tenm.

V-SYSTEM 5.0 IWFFRENCE MANUAL COMMANDS

PROGRAM ENVIRONMENT 69

Pa rt II:

Prog ram Envi ronment

V~SYSTEM 5.0 REFERENCE MANUAL PROGRAM FNVIRONMEN'

70 PROGRAM ENVIRONMENT OVER VIEW

V-SYSTEM 5.0 RFFERENCE MANUAL PROGRAM FNVIRONMENT

PROGRAM ENVIRONMENT OVER VIEW 71

-13-
Program Environment Overview

This manual. the V~System Program Environment Atfanual describes the execution environment provided
for C programs written to run in the V system (and in particular the V kernel). primarily for programs in the
C language. This program environment is designed to minimize the difficulty of porting C programs (and C
programmers) from otht::r C program environments. such as that provided by UNIX7, and to provide access to
the distributed process and message facilities provided by the V kernel and V servers.

The program environm~nt consists of three major components:

• The base C language implemented by the compiler.

• Routines that are part of the C program library in most C implementations.

• Functions that access V facilities.

The basic C language is not described here. The reader is referred to The C Programming I.,Qllguage by fl. W.
Kernighan and D. M. Ritchie, Prentice-Hall 1978 for a tutorial on the language and standard C library
routines.

Standard C library routines are only described here to the degree they dUfer in the V progrum environment
from 4>ther implementations. particularly the Unix C library. The reader is referred to the above-cited book
or The Unix Programmer's ,Uallual for details on these st41ndard functions.

The V-specific functions arc described in detli1 in the following chapters.

While there has been a strong attempt to provide a superset of the standard C program environment. there"
is no re4l1 definition of'·the standard C program environment." While C as a programming language does not
define .110 facilities, memory management. etc .• an ill-defined de facto smndard hus ilrisen n·OI11 the extensive"
usc of C with the Unix oper.lting system. Attempt" to port C programs have resulted in "a slightly more
porl<1ble stand~lrd program environment than originHlly uscd with Unix. However. there is not. to the
authors' knowledge. a definitioll uf what a purtable C program cun reHsonably expect of it') program
environment. The fUlIlctions included in the V program environment fbr C. excluding V and SUN
works~tion specific routines. constitute our proposal for stich a stc.l1ldard portable C program environment.

The differences betwc:cn the V C program environment and the Unix C program envirmlment fall into four
major categories -

• Functions that arc Unix system cans which may be provided as V library routines. C.g •• stimeO.

• Functions that arc slightly changed in their implementation. but provide (essentially) the snme
functionality. e.g .• maliocO.

• Functions that arc"SUN worksl<1tion-spccitic. because they arc not necessary in standard Unix on, say, a
VAX8. For examplc. the long division -routines are in this category. as arc the emulator traps,

• Functions that ar<: particular to the V-System.likc CreatcO and RcadyO.

7 UNlX is a lmdemark of Bell Labomtorics.

8VAX is a lmdcl1lark of Digntal Equipment Corporation:

V·SYS-l1~M 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

72 PROGRAM ENVIRONMENT OVER VIEW

13.1. Groups of Functions

The description of functions is structur~d· by subdividing them according to functional groups as fol1?ws.

emt

exec

fields

io

math

mem

naming

numeric

process

strings

time

vgts

others

C language interface to the on-board PROM monitor emulator traps. See the Sun User's
Guide for more information. .

V-System program execution functions.

Functions that enable a pad to be used as a menu, similar to a data entry te11Tlinal.

Input/output related routines.

Mathematical functions.

Memory management and allocation routines.

V-System name management functions.

Arithmetic and numeric functions.

,v-System process service functions and V kernel traps.

Character string manipul,ltion routines.

Clock and time conversion services.

Vinual Graphics TenninaJ Service interface routines.

Miscellaneous other functions.

This functional subdivision is also reflected in the structure of the program source for the V C library. where
every subdivision corresponds to a subdirectory of the C library directory.

13.2. Header Files

The following header tiles define manifest constants. type definitions and structs used as pan of the V C
progmm envirunment. They arc included ;lS usual by a" # include <headername)" directive in C programs.

Venviron.h Standanl header file for V kernel types and request/reply codes.

Vethemet.h

Vexceptions.h

Vgts.h

Vio.h

Vmousc.h

Vneth

Vprocess.h

Vserial.h

Ethernet~spccific he41der infonnation. This is very tow-level information: most tlsers will
want to lise the network server instead.

Exception types and exception request format.

Virtual graphics tenninal server interface. This should be included in any programs that
do graph ics.

1/0 Protocol header file. Types and mode constants for file manipulation functions
described in chapter of this manual~

Mouse device-specific header information. Most programs will usc the Vgts to handle
graphics input.

Network server definitions. This is included in any progr,lms that use the network.

Processor state stnlctllre and other process~spccific header intonnation.

Manifests fi)r the serial tines. Again. very low level for most users: use the higher level
library interface instead to be more portable.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

HEADER FILES

Vsession.h

Vtcams.h

Vtime.h

73

Manifesto;; and message stntcts for session services. These are remote servers, often called
Unix or V servers, that provide transparent file access over a network.

Team, header file. Stmctures used to communicate with the team server and to pass
infonnation to teams when they are created.

Structures used in time services, primarily for getting time from a session server.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM FNVlRONMENT

74 PROGRAM CONSTRUCl'ION AND EXECUTlPN

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

PROGRAM CONSTRUCTION AND EXECUTION 75

14-
Program Construction and Execution

A V-System C program is constructed and executed similar to a C program on Unix.

14.1. Writing the C Program

An application program on the V-System starts to execute as a single proccss9, with priority 4. It is allocated
an initial stack area of about 4000 bytes. just above its uninitialized data segment If this is not large enough,
one of the first actions of the team's root process should be to use the CreateO library function to create
processes with targer stacks.

Note that large dynamicany allocated areas of memory should be allocated lJsing manoc. calloc. or a similar
memory allOc4ltor, and not be allocated on Ule process stick. Warning: There is no run-time checking for
ovcrflowing the process stack allocatiop. The program behavior from stack overflow can be sutlicicntly
bizarre as to cause good p~ogrammers to seek refuge in monasteries. If Ule s~1ck overflow caused the process
in question to get an exception. the S~'\Ild41rd exception handling routine will usually detect the overflow and
print a message: howevcr. not all stack overflows cause an exception in the process that generated them. and
sometimes the stlck is back in bounds by the time the exception occurs.

The file Vellviron.h is a header file defining the types and constants that arise as part of the interface to the
kernel. It is included bY' the line .

#include <Venviron.h>

Other V header files. listed in the previous s(,."Ction. arc included similarly.

14c2. Compiling a~d Linking

When Ule application program is compiled Hnd Hnked. references to kernel operations and other standard
routines must be resolved by searching the library file JibV.a (kept in lusrlsun/lib on Samford Unix
systems). The application must be relocated so dlat its text segment start') at Ox.lOOOO. These defaults are
automatically selected with d'lc -V option of the cc68 command. The compile command:

cc6S -v -r programfile

produces a .r' tile for running with the kernel. Thle program environment provided by the lib V.a library is
given in the later sections of Ulis manual.

14.3. Program Execution

111ere arc two models for executing V C programs. namely: using the V executive and bare kernel mode.

9For a complete discussion of processes. mcs.~gc passing, and other services provided by the V kernel. see the kernel manual.

V-SYSTEM S.O REFERENCE MANUAL PROGRAM ENVIRONMENT

76 PROGRAM CONSTRUCnON AND EXECUTI,ON

14.3.1. Execution With the Executive

Use of the V executive is described in the V-System commands manual. Basically, one types the name of
the file containing the program to the command interpreter followed by zero or more command arguments.
The program is then loaded and executed.

When the V executive is used, the program execution begins at a procedure called ma 1 n (), passed a COllnt
of the number of arguments to the program and an array of pointers to the program string arguments, as
given on the command line. Each new team is passed standard input, output. and error files through the
Tcam Root message.

Thc following example shows how a program can read its command line arguments. The variable argc
contains the number of arguments including the command narnc. The arguments are kept in argv(O]
through argv(argc-l]; thc command name is argv(O]. argv(l] is the first argument,
argv[argc-l] is the last argument, and argv[argc] is NULL. This matchcs the Unix convcntion.

ma1n(argc. argv)
1nt argc;

{

}

char ·argvCJ:
1* Ec~o arguments ./

1nt 1;

forC 1 • 0; 1 < argc; ++1)
pr1ntf("~s ". argv(iJ);

putchar("\n");

'Ille executive sets the new team's team priority to 30.

14.3.2. Bare Kernel Mode

In bare kernel mode. cxecution also begins at mainO. but no arguments arc available.

Nonc of the stanOdard servers ordinarily included in the V executive arc availablc. unless the program
includes onc or mure of them itself (as described in the V servers munual).

" progmm to he executed in bare kerncl mode is loaded by a special louder program called Vloa,/:

n Vload

typcd to the SUN monitor caus\,.'S it to 1000ld and execute U1C loader. (Usc b in placc of n on SMI
workstations.) Vload thcn prompt') for thc name of a me containing Utc program. The usc of this loader is
described more fully in the Standalolle chapter of the V cummands manual.

14.4. The Team Root Message

Each team is pas.')ed a team root message at the time it is startcd. This is thc messuge passed to the team by
the Reply() c,,11 that sets it running. '111C te.lOl roolmcs.'klgc is II stnlcture oflypc RootMcs.,)llgC. ,IS dcfincd
in the stUldurd hcmJcl' file <Vtcmns.h>. " function c~lllcd TeamRoot() (autunmticully induded in every
program by the -V option of'cc(8) receives the tC41m rout mcs..,age. stores a copy of Ule team \'(Jot mcss;'lge in
an arca poi"nted to by the global vuriable RootMsg. initiulizcs the team's st.mdard i/o, and calls ma in (). If
ma1n() returns. TeamRoot() calts ex1t(). The tcam root message can be accessed from within a team
(not usually necessary) by declaring it as

extern RootMessage ·RootMsQi

rn,C team root message contains the following ficlds:

V-SYSTEM 500 REfERENCE MANUAL PROGRAM ENVIRONMENT

THE TEAM ROOT MESSAGE n

stdinserver.

stdoutserver

stdcrrscrver

stdinfil\!

stdo ut file

stdcrrtile

rootflags

namescrver

contextid

kernelpid

Process id of the ~et"Ver providing this tcam's standard input file.

Process id of the server providing this team's standard output file.

Process id of the server providing this team's standard error file.

Instance id of this team's standard input file.

Instance id of this team's standard output file.

Instance id of this team's standard error file.

/\. set of flags indicating whether the team is to overwrite or append to its standard output
and standard error, whether standard input. output, or error have been redirected, and
whether it is to release its standard input. output. or error instances upon exit.

Process id of the server providing the team's initial current cOil/ext (Le .• current working
directory).

'111e context id of the team's initial current context

Process id to which tile team is to send to obtain secondary kernel services (sce the V kernel
manua1). Normally the same as the team creator's kernel pid. provided the new team is
runnill1g 'on the same workstation as its creator.

14 .. 5. The Pe r- P r(ocess A rea

Each process has a I·egion of team memory reserved for its own lise. called its stack space. On the Sun. a
proccss's stack grows downward from the highest addrcss in this region. A portion of lhe stack spal:c. called
the per-fJrm:css area. is lIsed to store a fcwproccss-giooal variables. On Ule Sun. this area begins at U,e lowest
addrcss of the stm:k region. A teum-globnl variablc callcd PerProcess points to Ulis area. It is rcset by Ule
kerncllo point to U1C. correct area on cvery proc~~ switch.

The standard perepn)(:css arca is described by U,e Peri>roccssArea stnlcture in the header file <Vin.h>. (t
contains U1C fqltowing valucs:

stdio

namcserver

contextid

stackSizc

An array of three Filc pointers describing thc proccss's standard input. output. and error
files. <Vio.h> defim.'S Ule macros std1n, stdout. and stderr to be PerProcass->
std 1 0[0]. PerProcess-)std io[1]. and PerProcess->stdi o[2.] respectively.
Note that only pointc~ not the Filc structures thcmselves. ~lre kept in U1C per-process
areas"

Proc\.'SS id of U1C servcr providing the process's current context

Conl(!xt id of the process's current context.

The ·sizc of the proccss's stack space. in bytes.

~The TeamRoot() function initializes thc tcam root process's per-process area from the values passed in the
team root mcs.~agc. 'l1lc Create () library function. used to create new proces.')cs. initializes each new
process's pcr-process an~a to be a copy of that of-its creator (except for Ule stlckSize field). This causes each
child proccss to inheril its creator's standard I/O and current context.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

78 TIlE V-SYSTEM CONFlGURATION DATABASE

V-SYSTEM 5.0 REFERENCl! MANUAL PROGRAM ENVmONMENT

THE V-SYSTEi\1 CONFIGURATION DATABASE 79

-15-
'The V-System Configuration Database

15 .. 1. Introducti,on

When a diskless workstation boots uP. it has a limited amount of infonnation about its own configuration
and identity. A boot program can probe to see what devices are attached. and some workstations may have
configuration registers. additional switches, or a smi.lll amount of nonvolatile memory. [fa workstation has an
Ethernet board. there will be a PROM or DIP switch on the board containing its Ethernet address. There
may also be some mi.l,:hi~e·speciftc infonnation in PROMs on the processor board. If the workstation is
booted by typing a command, rather than automatically on power-up, the user may be asked to type in some
information.

From this information. the'workstation software needs to deduce several things. including at least:

1. What version of the kernel to load (68000,68010).

2. Which Ethernet board to use for interkcrncl communication, if there is more than onc.

3. What to run as the initial team.

4. Whether to run the VGTS. the STS, or somc other program as the terminal scrver.

5. What commands to cxecute before turning control over to thc lIser. if any. (For example. we may wish
to run a print server on this workstation, or aut()m~tically bring up an internet server in the
bhc.kground.) ,

6. What (nternet address to us~ for this workstation.

7. \yhat the name of this worksL1tion is (c. g .• SUN-MJ402).

8. What typc of terminal is connected to the workstllion. if thc STS is to be used.

In general. Ulere is no reliable aJgorithm fbr determining most or U,ese things. In tllCt. many are U,C result
of esscntiully arbitrary human dccisions- fhr example, U1C workstltioll namc.

15.2 .. Configu ration Database

I\s a solution to Ulh; problem. the V-System mainL1ins a configuratiun database. containing in formation
about each workstation. The inthlmation is organized as sets of keyword/value pairs, one per workstation.

'I1,Crc is one stnnuurd tibmry fUllctiun provided fhr extracting infi)rnlHlion from the conligufi.llion dalabuse:

SystemCode QueryWorkstat1onCon1ig(keyword. value, maxlength)
char ·keyword, ·value;
1nt maxlengt,h;

Given a character string representing the keyword, this routine returns the corresponding value as another
character string. The variable keyword point.~ lo the keyword. va 1 ue points to th<; place to put the valuc,
and max 1 ength is the: size of the hurler. which should include space Ihr a tenninating Ilull byte. The routine
returns a system crror code if there is no configuration information recordcd f()r Ule querying workstltion

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

80 THE V-SYSTEM CONrIGURATION DATABASE

(NOT_FOUND), there is some configuration intormauon. but no value corresponding to the given keyword
(BAD_ARGS). or the buffer was too short to hold the value (BAD_BUFFER). else returning OK. [n the
butTer-too-short casc, it will renlrn as much as there is room for. In unusual situations, other error codes may
be generatcd~ these can be treated as failures or considered equivalent to NOT_FOUND.

15.3. Implementation

Ordinarily, programs should not be aware of the implementation of the configuration databasc; this
implementation may change in the future. The QueryWorkstationContigO function should be the only
interface used. Since· there is no standard library function provided to modify the configuration database.
however, system maintainers need to be aware of it') implementation. The current implementation allows the
configuration database to be modi lied with an ordinary text editor, and the changes installed with the samc
tools that arc used for ins~lling new binary program images on storage servers.

The V configuration database is currently implemented as a set of configuration jiles, one for each
workstation. Each configuration file must be available on every publical1y-uvuilable V storage server.IO

requests from non local clients.)

The name of each workstation's configuration file is derived from its hardware Ethernet address-a
convenient unique identifier.! L The tiles arc kept in a subcontext named "con tis", under the server's public
contcxt (Sec section 30.) For a workst411ion. with ELhcrnet address 0260.8<.:01.9954 (a typical 3Com-assigned
address). the configuration. file could then be reud by a workstation as a me named
"{public]conflg/C.02608c019954'·: this is in fact how QueryWorkstationConfigO is implemented.

A configuration tile is an ASCII text tiles. consisting of a set of keyword/value pairs, arranged in no
particular order. Each keyword appears at the beginning of a new line. and is separated from its
corresponding value by a colon e:'). A line beginning with a colon serves as a continuation or U1C value on
the previous line. This fonnat has been designed to be easy to read and en.'iY to parse. (Note that spaces both·
bethre and after the colon may be considered significant by programs, so take care when creating or editing
con fig filcs.) . .

At S~1nford, Ule master copies ofconfiguratiun tiles arc kept in the directory /xV/contig un Pescadero. and
only those copi<..-s shuuld bc editcd. Thc command ··make instIll" (nan as user ds) is used to install changes.

Currently Defined Keywords·

The fi>l1uwing keywords are in usc at this writing. "list of keyword names and thcir meanings is presently
kept in the same directory as the con fig tiles themselves, in a tilc called ··keywords."

name

ip-addrcss

ip-gatcways

The name of this workstation. Should mcltch the name used in locul IP nume tables tor this
workstation's IP 41ddrcss. Thcre is no default

The workstation's Internet Protocol addrcs.c;, given in the conventional [a.b.c.dl notation.
where 41, b, c. and d are decimal integers. On the 3 Mbit Ethernet, the dcfllllit vallie of d is
thc 8-bit EUlcrnet host address, while defcmlt valucs of a, b, and c are determined by the
Internet server. For 10 Mbil Suns. tJlis keyworu shuuld always be present

Name of a tile containing a list of Internet gateways to be llsed by this workstation. The
tile nrunc is givcn relative to the standard (public) context If this keyword is omitted, the
Internet server will not forward datagrams through any gateways. i.e .• only local trafflc will

l°Publically-availablc slorngc servers are defined as lhose Ulul respond to GCli>id(STORAGE ~ SERVER, ANY - PID

llCurrcntly, on Sun-2 workstations with JCom EUlcrnel interfaces, the addrcs.'i assigned 10 the Fthcrnct boord is used, not the address
a'isi;ncd lo lhe processor.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

lMPLf:.1'AENTATlON 81

be supported. .

kernel Filename of the program to be loaded as the kernel, for use by Vload. The name is given
relative to the standard [public] context. If this keyword is omitted. Vload lIses a compiled
in default. currently Vkernel/sun1 +en for th~ 3 Mbit Ethernet version, Vkerncl/sun2 +ec
for the 10 Mbit.

team Filename of the first team, as above. If it is omitted. Vioad uses a compiled-in default,
currently team l-vgts.

wodd Either V or xV. Used by VIoad. If omitted, Vload uses a compiled-in default, currently V.

boot-options Boot options for lise. by VIoad. Currently the only option is b, meaning '"break before
starting kerne1." The default is a null string.

startup-script Filename of the startup script. Currently used only by teaml-server, for workstations that
autoboot as servers. No default. In the future. the definition of this keyword will be

. changed to allow the startup script to be placed directly in the COl)tig file, and all (01' most)
versions of the first t~am wilt use it.

alt-cther-addr Alternate ethernet uddresses for this workstation. one per line. These are addresses the
workstation may lise, other than the one the contig file is named for. 10 Mbit addresses
should be given in hexadecimal. in the form xxxx.yyyy.Zl:1.Z. 3 Mbit addresses may be

. given in octal. The default js null. This keyword must be present for usc by the Vax Unix
NO server for workstations that boot using the NO protocol under a different Ethernet
addrc:ss than the one the contig file is named for. This is true of SMI Sun-2's with PROM
revision N or later. .

ndboot The Vax Unix ND boot server looks for a configuration file when dcciding whether it
should answer boot requests, Jnd will refuse to respond if there is none or it contains the
line "ndboot:no". (This procedure allows our ND server to coexist 'with SM L Network
Disk servers on the same net) Thus. the default value for this option is "yes" if a config
exists for this workstation, otherwise "no."

termjnal~type . Type of terminal llsed as a console. Used by the STS. The default is to assume the
Stanford PRO~ terminal. emulator for CadHncs. or something ANSI-compatible (like the
SM I PROM tenninal emulator) otherwise. The only other recogni'zcd vallie for lhis option
is "1119".

Usage

In generaJ~ we have implemented programs th;'lt lise this service in such a way that if a configuration file or
specific keyword/value pair is mis..'iing. some reasonublc default is used where this is possible. Also. where it
is easy to reliably determine something by eX(lmining the hardware present, it is best to do th(lt instead of
putting the infonnntion in the conliguration l11e. Following these principles means that fewer updates to the
cOllltiguration files ,1re needed to keep workstations nmning correctly when something changes.

In some C~ the vnlue of a keyword may be the name of a file, perhaps h\.'Culisc it is more convenient for
the client to readUle inform41tion from a file, or becausc the information associated with Lhe keyword is quite
bulky. In the present implcmentltion, such tiles arc kept in the "lp.ublic]conlig/" directory along with the
c01l1figuration files themselves. Files whose names begin wilh "S." arc stlrtup. command scripts for
workstations that boot automatically. Files whose names begin with "G." are gateway information filcs used
by the iilternet server.

''''~, ... '

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT . '

82 INPUT AND OUTPUT

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENvtRONMENT

INPUT AND OUTPUT

The input and output. routines can be divided into three categories:

83

-16-
Input and Output

1. Basic 1/0 routint~s like getchar() that arc supported but differ in their i.mpiement;'ltion from the
standard Unix versions.

2.110 support routines like pri ntf() that are identical with the standard U~ix version.

3. V-specific 1/0 routines like Read() and Write() that are used in several cases to implement the
standard C routines in the V message-based world. .

16 .. 1. Standard C I/Q Routines

the following standard CliO routines are available:

chdir() clearerr() fclose()
ferror() fflush() fgetc()
fopen() fprintf() fputc()
fread() freopen() fscanf()
ftell() fwrite() gete()
gets() getw(} printf()
putchar(} iputS() . putw()
scanf() sprintf() setbuf()
ungetc(}

feof()
fgets()
fputs()
fseek()
getchar()
putc()
rewind()
sscanf()

However. fopen () returns a pointer value of type *File, where File is defined in <Vio.h> and is a totally
different record structure from that used by. for instance, the Unix standard I/O. Also, setbuf () is a no·op
under V. .

16.2 •. V I/O Conventions

Program input and output arc provided on files. which may include disk files. pipes. mail-boxes. terminals.
program memory. printers. and other dcviccs.

To operate on a tile. it is first "opened" lIsing OlPen() if the file is specified by a pati1name. othcrwise by
OpenF 11 e () if U1C tile is spc..'Cilied by a server and instance identifier. The moue is one of the 11)lIowing:

FREAD

FCREATE

FAPPEND

FMOD1FY

No write operations arc "lInwed .. File remains unchanged.

Any da~1 previously assuciated with the described tile is to be ignored and a new lite is to
be created. Both read and write operations may be allowed. depending on the tile type
described below.

DaUl previollsly as.')ociated with the described file is to remain unchangcd. W rit<::
opemtions arc required only to append data to the existing data.

Existing data is to be modified and possibly appended to. Both read and write operatiom
arc allowed.

V~SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENl

84 INPUT AND OUTPtrf

Both open functions return a pointer to an open file descriptor that is used to specify the tile for subsequent
operations. Close () removes access to the tile. Seek.() provides random access to the byte positions in the
file. Note: the ·value returned from a byte position that has not been written is not defined.

Each program is executed with standard input. output and error output files, r.eferred to as std 1 n,
stdout, and stderr respectively.

The file type indicates the operations that may be performed on the open tile as well as the semantics of
these operations. The file type is specified a:i some combination of the following attributes.

READABLE The file can be read.

WRITEABLE The file can be written.

APPEND_ONLY

STREAM

Only bytes after the last byte of the data previously associated with the file can be written.

All reading or writing is strictly sequential. No seeking is allowed. A tile instance without
the STREAM attribute must store its associated data for non-sequential access.

FIXED_I.ENGTH
The file instance is fixed in length. Otherwise the tile instance grows to accommodate the
data written, or the length of the tile instance is not known as in the case of terminal input.

VARIABLE_BLOCK
Blocks shorter than the full block size may be returned in response to read operations other
than due to end-of-tile or other exception conditions. For example,. input frames from a
communication line may differ in l~ngth under normal conditions.

With a tile instance that is V ARIABLE_IlLOCK. WRITEABLE. and not STREAM,
blocks that arc written with less than a full block size number of bytes return exactly the
amount written when read subseq~ently.

MUL~I1_11LOCK Read and write operations are allowed that specify a number ofbytcs larger th"n the block
size.

INTERACl'IVE rille open me is a text-oriented stream. It also has the connotation of supplying
in terncti vcly (human) gencruted input.

Not all of the pos.'iible combinnliolls of attributes yield a useful tile type.

folies may also be used in a bluck-oriented mode by specifying PBI.OCK_MODR as part of the mode when
opening the file. No byte-oriented operations are allowed on a tile opened in block mode.

See the V-System Servers Mallual for more details on the semantics of the variolls possible file types and
~~. .

16.3. V 1/0 Routines

16.3.1. Opening Files

File ·Open(pathname, mode, error)
char ·pathname; unsigned short mode; SystemCode -error;

Open the tile spccified by pathname with Ute specified mode nnd return a file pointer for use with
subsequent tile operations.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

OPEN (NO FILES 85

mode must be onc of FREAD. ·FCREATE, FAPPEND. or FMOOIFY, with FBLOCK_MODE if block
mode is required. If O,)en() fails to open the file, it returns NULL and the location pointed to by error
contains a standard syst<!m reply code indicating the rcason. If an error occurs and error is NULL, Open ()
calls abort().

File *OpenFile(server. instanceident1fier, mode, error)
Processld server; Instanceld instance1dent1t1er;
unsigned short mode; SystemCode *error;

Open the tile instance specified by the server and instance1dent1fier arguments and return a file
pointer to be used with subsequent file <?pcrntions.

mod$ must be one of FREAD. FCREATE. FAPPEND. or F1v100rFY, with FBLOCK_MODE if block
mode is required. If the instance is to be released when Close () is called 'on this tile pointer,
FRELF.ASE_ON_CLOSE must also be specified as part of the mode. If OpenF 11 e () fails to open the file,
it returns NULL and the location pointed to by error contains a st41ndard system reply code indicating the
reason. If an error OCCUI/'S and error is NULL, OpenF 11e () calls abort(). .

File *_Open(req, mode, server, error)
CreatelnstanceRequest *req: unsigned short mode:
Processld server; SystemCode *error;

Open a file by sending the specified I/O protocol request message req to the server specified by server and
return a tile pointer to be used with subsequent file operations. This function is only used when additional
server-dependent in formation must be passed in the request message, or the tile is to be opened on a server
that cannot b~ speci tied by a character string path name as in Op e n () .

111e request req may be either a Create I nst41nce Requcst or a QuerylnstanceRequest mode must be one of
FREAD. FCREATE, FAPPEND, or FMODIFY. with FBLOCK_MODE if block mode is required. If
_Open~) i:1i1S to open the file, it returns NULL and the location pointed to by error (.;ontains a standard
system reply code indicating the re'lSOIl. Ifan error occurs and error is NULl.. _O~en() C;;lItS abort().

SystemCode Creatolnstance(pathnama, mode, req)
char *pathnalllle; uns 19ned short mode; CreatelnstanceRequest *req;

Open the tile spccified by pathname in the given mode using the specified CreatelnstanccRcqucst. but do
not set up a File stmcture for it. A CreatclnstanccReply is returned at the location pointed to by req. The
function returns a standard syste~ reply code. which will be OK if the operation was successful.

16.3.2. Closing Files

Close(111e)
File *1118;

Remove access to the specified file, and free the storage allocated for the File structure and associated buffers.
If the tile is WRITEABLE and not in FBLOCK_MODE, the output buffer is flushed..

SpecfalClose(fils, releasemode)
File *f11e: unsigned releasemode;

Close the specified tile" as in Close (). If Speci a 1 Close () releases the file inSr4lOCe associatcd with the

V·SYSlT-M 5.0 REFERENCE MANUAL PROGRAM FNV1RONMENT

86 INPUT AND OUTPUT

specified File structure. the release mode will be set to re 1 easemode. Cl ose() sets the release mode to
zero. See the 1/0 protocol section of the V servers manual for ,1 explanation of release modes.

Releaselnstance(f11eserver, fi1e1d, re1easemode)
Proc8ssId f11eserver; Instanceld f11eid; unsigned releasemode;

Close the file instance specified by f11 eserver and f1 1 81 d, using the specified release mode. This
function is used only when there is no File structure for the given file.

16.3.3. Byte Mode Operations

The sL1ndard Unix functions mentioned above may be used on files opened in byte mode (i.e .• not opened
in FBLOCK_MODE). Several other functions are also available on such files~ as described below.

int Seek(file, offset, origin)
File ·f11e; 1nt offset. origin;

Set the current byte position of the specified open file to that specified by offset nnd ori 91 n and return
TRUE (nonzero) if successful.

If or1 g1 n is AIlS_Ilr ,K or A13S_BYrF~ the byte position is set to the offset-th block or byte in the file
starting from O. If origin is REt_BITE. offset specifics a signed offset relative to the current byte
position. (forigin is riLE_END, offset is the signed byte offset from the end of file.

If the file is FIXED_LENGTH, an attempt to seek beyond the end of tile causes Seek to return FALSE
and the byte position to remain unchanged. The end of filc position is one bcyond the last byte written. The
value of bytes in the file previous to the end of file thut have not been explicitly written is undefined.

Seek() muy not be used on files opened in block mode. SeekS lock () should be llsed on such files.
Seek() is identical·to fseek().

unsigned BytePos1tion('ile)
File "file;

Return the current byte position in the specified file. The value returned is correct only if the current byte
position is lcs.\) than MAX_UNSIGN ED. This function is identical tu fte 11 ().

F1ush(file)
File' ·f11e;

Flush any butTered data a.c;sociated with the file. providing it is \VlUTEA 1l1.E. Flushing a file causes local
butTered ch~mg\.'S tu the file data to be cummunicated to lhe real file. If the file is in block mode or not
WR ITEA Ill, .E, no action is perfhnncd. '111is function is identkal to 'f 1 us h ().

Resynch(f1le)
File ·f11e;

Rcsynchronize the next block to read and write in the file with the server. "ny butTered bytes arc lost. This
operation is only valid for stre'lms. and is only needed when lhere is more than one File structure associated,
with a single file instance. This will happen, for example. if two temns arc ~haring the same stundard output.
Normally it should not be needed tbr tiles used in a single team. .

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

BITE MODE OPERATIONS 87

SystemCode Eof(file)
File *f11e;

Any of the byte mode read or write operations may return EOF (Exception On File) as a special value
indicating an inability to read or write further in the file. Eof returns a standard system reply code in<.licating
the nature of the exception. This may be a true end-of-file. Le .• the current byte position exceeds "the last byte
position of the file, or some type of error.

ClearEof(f11e)
File *f11e;

Clear the exception on the spccified file. This only clears the local record of the exception; it docs not affect
the circumstances that caused the exception to occur. See Eof ().

1nt BufferEmpty{11le)
File *f11e;

Test whcther or not a file's local buffer is empty. If this function returns TRUE (nonzero), the next getc()
will cause an actual read. If it returns FALSE (zero), the next getc() will return immediately with a byte
from the buffer.

16.3.4. Block Mode Operations

The foltowing functions arc most useful on files opened in block mode. Unless ot~crwisc" noted. they may
also be used on fl)cs op<:ned in byte mode.

unsigned Read(file. buffer, bytes)
File *f11e; char *buffer; unsigned bytes;

Read the specified number of bytes from the me s~lrting at the beginning of the current block location of the
file and slore contiguously intp the byte army starting at buffer, returning the actmll Iluinbcr ofbytc~rrcad.

If the number of bytes read i:\ Icss than the numbcr of bytes requested. the reason is indicatcd by the
standard reply code returned by F11eExcept1on(). The number of bytes rcqucslC"d may not be more lhan
the block size of the m<: (returned by BlockS1ze{» unless the file has lhe type attribute MULTI_BLOCK.
Readf) is intended for usc on files opened in block mode only. Note: Read() docs 1101 increment the
current block number stored in the File structure for the given file.

unsigned Wr1te(f11e" buffer, bytes)
File ·file: char *buffer; unsigned bytes;

Write the specified Ilumber of contiguous bytes from the buffer to the tile starting at the beginning of the
current bluck location ofUle Iile. and return the actlml number ofbytcs written.

The number of byt.es to be written must be less Ulan or equnl to the block size (as returned by
BlockS1ze(» unless the tile has the type attribute MUI:I'IJ1LOCK. lrUle number of bytes written is less
than the number of bytes requested. Ule reason is indicated by 'the standard reply code returned by
F11 eExcept 1on().

Wr 1 te () should be used only on files opened in block mode. Note: Wr i te () docs "/lot increment the
current block number stored in the File stnlcture tor the given file.

V"SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

88

unsigned BlkslnFile(file)
File ·file;

INPUT AN 0 OUTPUT

Return the number of blocks in thc specified file. Meaningful if the file is FIXED_LENGTH or is a
\VRITEABLE. non-VARIABLE_BLOCK., STREAM file.

unsigned BlockPosition(file)
File ·fi1e;

Return the current block position in the specified file.

SeakBlock(file. offset. origin)
File *f11e; 1nt offset; int origin;

Set the current block position of the specified open tile to that spccified by or1gi n and offset. ll1c new
block position is the block offset from the spccified block origin. or i g1 n is one of FILE_BEG INNING,
FILE_END or FIl.E_CURRENT _POSe

unsigned alockSize(file)
File *f11e;

Retunl the block size in bytes of the specified file.

unsigned F11eException(f11e)
File ·file;

Return the standard reply code indicating the last exception incurred on the specified file. 't11is is lIsed
primarily on tiles opened in FBLOCK_MODE. Eof () is lIsed on byte-oriented files.

16.3.5. Server-Specific Operations

This section describes routines in. the I/O library which are specific to particular servers.

SystemCode CreateP1peInstance(readOwner. writeOwner, buffers, reply)
Processld readOwner. writeOwner; 1nt buffers;
CreateInstanceReply *reply;

Intert1ct with the pipe server to create a pipe. with the spccified owners thr the reading and writing ends of the
pipe. i.md the specified number of butTers. buffers should be between 2 and 10 inclusive. The reply to the
create instance reqm .. 'St is returned at the location puinted to by rep 1 y: it contilins the file instance id of the
wrileable end oflhe pipe. The id oflhe readable end is equal to tllis vulue plus 1. OpenFile() may be used
to setup File stnacturcs fur either OF both ends of the pipe. CreateP1pelnstance() returns a standard
system reply code, which will be OK if tlle operation WClS successful.

File ·OpenTcp(localPort. foreignPort, foreignHost. active,
precedence, security, error)

unsigned short localPort, foreignPort; unsigned long foretgnHost;
int active. precedence, security; SystemCode *error;

Interact with the Internet server to cre~\te a Tep network ins~1nce. and return a pointer"to a File structure
opened in byte mode that can be used to send data.on the corresponding TCP connection.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENvtRONMENT

SERVER-SPECIFIC OPERATIONS

To obtain a second File structure that can· bc used to rend from the connection, usc the call

f2.- OpenFile(FileServer(f1), Fileld(fl) + 1,
FREAD +. FRELEASE_ON_CLOSE, &error)

89

where fl is the valuc returned by OpenTcp(). Note that it is necessary to release both the readable and
writeable instances to cause the connection to be deallocated. Releasing thc writcablc instance closes the
caUer's end of the connection. Data can still be read from the readable instance until it is released, or other·
end closes (resulting in an END_OF _FILE indication).

The parameters local Port, foreignPort. and foreignHost specify the sockets on which the TCP
connection is to· be opened. active specifics whether the connection should be active (Le., send a
connection "syn" pacKet). or passive (i.e., listen for an incoming "syn" packet). precedence and
secur 1 ty specify the precedence and security values to be used for the connection. Specifying zero for
these parameters will cause appropriate default values to bc used.

If the open is unsuccessful, OpenTcp() returns NULL. and a standard system reply code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location.

File ·Openlp(protocol, error)
char protocol; SystemCode ·error;

Interact with the [nternet server to create an IP network instance~ and renlrn a pointer to a File structure
opened in block mode (hat'can be used to write IP packets to the network.·

To obtain a second File structure that can be used to read IP packets~ lise the call.

f2 - OpenFile(FileServer(fl), Fileld(fl) + 1,
FREAD + FBlOCK_MODE + FRELEASE_ON_CLOSE, &error)

where f1 is the value returned by Openlp(). Note th41t it is necessary to release both the read,lblc and
writeable ins~1nces even if only one of Ulem is used.

The protocol spedties which vallie of the protocol field in the IP packet headers is of interest. The
readablc insruncc will only return packets with the requested protocol vullle, and Ule client program should
only write packets with the specitied protocol field to U1e writeable instance~ though this is not currently
checked by the server. It: protoco 1 is zero. it specities "promiscuous" mode. in· which all I P packets are
returned which are not of protocol ·types Ulat have been requested by another client, and packets of any
protocol type may.be written.

If the open is unslIC'ccs:o;ful. Openlp() returns NUI.L. and a stnndard system reply code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location.

File ·OpenPup(socket, error)
unSigned long socket; SystemCode ·error;

Interact with the Internet server to create a PUP network instnnce. and return a pointer to a File structure
opened in block mode lhat can be uscd to write PU Ps to Ule network.

To obtain a second File stnlcturc that can be used to read PUPS. usc the call
f2·· OpenFile(FileServer(fl), Fileld(fl) + 1,

FREAD + FBLOCK_MOOE + FRELEASE_ON_CLOSE, &error)

where fl.is the value returned by OpenPup(). Note that it is necessary to release both the readable and
writeable instances even if only one of them is used.

111e socket parameter specifics which value of the JockeL field in the PUP headers is of interest. The

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

90 INPUT AND OUrpUT

readable instance will only retllrn packets sent to the requested socket, and the client program should only
write packets with Ule specified source socket to the writeable instance. though this is not currently chccked
by the servcr. If socket is lero, it specifics "promiscuous" mode. in which all PUPs are returned which are
not to sockets that have been requested by another client, and packets with any source socket number may be
written.

If the open is unsllccessful, OpenPup() returns NULL, and a standard system reply code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location.

16.3.6. Miscellaneous 1/0 Functions

InstanceJd F11eld(f11e)
File -file;

Return the file instance identifier associated with the opcn fl1e. This was eithcr generatcQ. as part of Open ()
or specified as an argumcnt to thc Op e n F 11 e () opcration that opened the filc,'

Processld FileServer(file)
File -file;

Return the file scrvcr identifier associated with the opcn filc. This was eithcr gcnerated as part ofOpen() or
specified as an argument to thc OpenF i 1 e () operation that opcned the file.

unsigned F11eType(f11e)
F11 e -fi 1-.;

Return the file type, which indicates the operations that may be performed on the open file as wcll as the
semantics of thesc opcrations.

unsigned Interactive(file)
File -file;

Return TRUE (nonzero) ifthc me has lhe type attribute INTERACnVE, elsc FAI.SE (zero).

File ·OpenStr(str, size, error)
unsigned char -str; unsigned size: SystemCode -error;

Make thc specified string look like a file. The file is FIXED_LENGTH, with one block of size s 1 Z9. and Ule
end of tile set to U1C cnd of this block. s tr must point to an area at least size bytes in length. " tile opencd
by OpenStr() is identificd as stich by its file server (as returned by F1l eServer(» being equal to O.

. SystemCode RemoveF11e(pathname)
char -pathname;

Removc (delete) the file specified by pathname.

SystemCoda SetBreakProcess(file, breakprocess)
File -file; Processld breakprocess;

Sel') U1C break process associated with the specified lite (which must be lNTERACl'IVE) to breakprocess.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

MISCELLANEOUS 110 FUNCl'IONS 91

If a break occurs on the tile after a break process has been set. the 10_BREAK reply will be returned to any
outstanding read requests. ~nd the specified break process will be destroyed.

SystemCode SetlnstancaOwner(f1leserver, f1leid, owner)
Processld f11eserver, owner; Instanceld f11e1d;

Set the owner of the spcdfied file instance to be owner.

Pr1ntF11e(name. file)
char -name; File ·f11e;

Print the value of each field in the given File structure on the standard output. identifying the tile by the
name name. Useful in debugging servers and I/O routines.

SystamCode ChangeDirectory(name)
char·name;

Change the current context for the calling process to be the context specificd by name. and return a standard
system reply' code indicuting OK if successful. else the reaSon for failure. name is intcrpretcd in the
(prcviolls) currcnt context. This function is identical to chd 1 r (). except that the latter returns 0 to indicate
success or -I to indicate failure.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

92 NUMERIC AND MATHEMATICAL FtJNCfrONS

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

NUMERIC AND MATHEMA"nCAL FUNCTIONS 93

-17-
Numeric and Mathematical Functions

17.1. Numeric Functions

Most of the functions in the numeric section of the library are not called directly in user programs; they arc
accessed by the C compiler as needed. The following functions arc useful in user programs:

unsigned abs(value)
int value

Integer absolute value.

int rand()
Random number generator. Genenltes pseudo-random numbers in the range from 0 to 23] -1. This is a very
poor generator. identical to the one provided in Berkeley Unix 4.1.

srand(see~)
unsigned seed;

Reseed the rand() random number generator.

17.2 .. Mathematical Functions

'nlC math .. related functions in the V library are listed below. 11ley arc similar to the "section 3M" functions
of the Unix library. Sec lh~ Unix mumml thr dOClImentHtion.

s i n(l cos() tan() asin()
acos() atan() atan2() s;nh()
cosh() tanh() jOe} jl()
jn() yO() yl() yn()
hypot() cabs() gamma() fabs()
foote) ceil() exp() loge)
loglO() pow() sqrt()

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

94 MEMORY MANAGEM~NT

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

MEMOR Y MANAGEMENT 95

18-
Memory Managemen1

Blocks within a managed pool of memory can be dynamically allocate,,- and freed within the address space
of a team using the functions described below. Note that there is one pool of free storage for all processes in
the te'lm. Programm'crs must be careful to synchronize the processes allocating and freeing this· storage.
These routincs provide essentially the same functionality as the standard C l\brary. The memory allocation
routines arc provided on a per-tcam basis.

char ·mal10c(s1ze)
unsigned size::

Returns a pointer to a memory block that is s 1 ze bytes long. NULL is returned if there is not enougl1
memory available.

free(ptr)
char *ptr:

The memory pointed to is returned to the free storage pool. ptr must point to a block ailocated by one of the
routines listed. here. . : I

char *real10c(ptr, size)
char *ptr; unsigned size;

Changes the size of the block pointed to by ptr to be size bytes. Returns a possibly moved pointer.

char ·cal10c(elements, size)
unsigned elements. size;:1

Equivalent to mall 0(:(e 1 ements*s i ze). except· the nrea is c1em'ed to zero. Provided for allocating arrays,
: ; ~ ...

. , "·1

cfree(ptr. elements, size)
char *ptr; unsigned elements. size; ... l!.

Frecsstorage al10cated hy call0c(}. Actually, this function is identical to free(ptr). which may b~ lIsee
instead. elements and size arc ignored. .

·1 ... :) I I

t. .' L

unsigned Copy(destination, source, count)
char *destination. ·source; unsigned count;

A block trunsfcr function. Transfers count bytes from source to des t 1 nat 1 on. Returns count.
I:

unsigned blt(destination, source, count)
char *destination, ·source; unsigned count:

V-SYSTEMS.O REFERENCE MANUAL PROGRAM ENVJRONMEN

96 MEMORY MANAGEMENT

Identical to Copy().

char *Zero(ptr, n)
char *ptr; unsigned n;

Zero memory. Writes n bytes of zeros starting at ptr, and returns ptr.

clear(ptr, n)
char *ptr; unsigned n:

Clear memory. Writes n bytes of zeros starting at ptr.

swab(pfrom, pto, n)
char *pfrom, ·pto: unsigned n;

Swap the bytes in n 16-bit words starting at the location pfrom into a block stalting at the location pto.

The following functions arc of interest only to those managing memory (using the kernel primitives) in
addition to that provided by thc above routines. The current implementation of ma 11 oc () prevent') these
routines from adding space below the current top of the pool.

~iveToMalloc(start,length) .
char *star~; 1nt length;

Add the 1 ength ~ytcs of memory at start to thc pool used by the allocators described above, returning the
number ofbytcs (lctually instilled after alignment and error-Ghccking is donc.

char * GetMoreMallocSpace(min,actual)
1nt min, *actual;

Mall oc () calls this function to acquire morc spucc tbr its pool: a defuult version is supplied. which is
replaced if the programmer supplies ~l routine of this name. GetMoreMall ocSpace () shoukl rcturn a
pointer tu at lel.lst mi n hyt<..'S of space ,lI1d sct *actual to the number of bytes Illaue availuble: NULL may be
returned if no mure spnce is to be aulled to the pool.

]n thc defilllit version. frec memory is dctclmined nnd extended bascd on the mcmory map anel memory
usage of the team (using the V kcrnel (~perati()ns GetTeamS1ze() and SetTeamS1ze(».

V-SYSrEM S.O RErERENCE MANUAL PROGRAM ENVIRONMENT

PROCESSES AND INTERPROCESS COMMUNICATION 97

-19-
Processes and Interprocess Communication

'Il1e process-related functions in the V C library provide services and/or interfaces between processes and
the V kernet They havE~ no direct analog in the standard Unix C library.

19.1 • Ke rnel Op~! rations

These functions provid~ a convenient interface to kernel-provided services. Some of the functions cxccute
kernel trap instructions, while others send messagcs to a pseudo-process inside the kernel..

A kernel operation exccutes as a single indivisible function call as far as the C programmer is concerned.
Each kcrnel operation takes zero or morc argumellt.() and returns a single value.

In the descriptions bdow. the 'active process or invoking process always refers to the process that executcd
the kenlcl operation.

Some operations such as SetTeamPriority and SetTime are intended to be used only by "operating system"
or management processes and should not be used by application programs.

1nt Awa1t1ngReply(frompid. awa1tingp1d)
ProcessId fromp1d. wait1ngp1d;

Return tme (n.on1.ero) if awa1tingpid is awaiting reply from fromp1d; othcrwisc return false. Notc: if
awa1tingpid is send blockcd on frompid. bue frompid has not yet received the message, this function
will rcturn false. '

ProcessId Creator(p1d)
,ProcassId pi d;

Return the process id of the process that crcated pid. If p1d is zcro, return the creator of thc invoking
process. If p i d docs not cxist or is the root process of the initial tcam, return O.

ProcessId CreateProcess(pr1ority. 1nitialpc. initialsp)
short priority; char *1n1tialpc. *1nitialsp;

Create a new process with dle specified priority. inili4.l1 program counter and ini'tial st.lck pointcr and return its
unique process identifier.

The priority must be between 0 and 127 incJusive. wilh 0 the highest priority. 1 nit i a 1 pc is thc address of
the first instnlction of the proccs.~ to be exccl-Ited outsidc of the kerncl. Generally. in i t 1a1 s p specifics the
initialization of the sta(;k and general registers and is proccssor-specific. In the casc of the Motorola 68000.
1 nit i a 1 sp is a simplc~ long word value that is assigncd to the tlser stack pointer.

The process is created awaiting reply from the invoking process and in the samc team spacc. Thc segmcnt
access is set up to provide read and writc access to the entirc teum space of the ncwly crcated process. The
crcator must reply to U1C· newly crc41ted proccs.., beforc it can execute. If Ulcre a~c IlO resources to CrC4\te the
process or the priority is illegal. a pid of 0 is returncd.

V-SYS"I1!M 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

98 PROCESSES AND INTERPROCESS COMMUNICATION

Usually programmers will prefer the Create () call described later in this chapter.

Processld CreateTeam(priority. in1tialpc, in1tialsp)
short priority; char -1n1tfalpc, ·1nitialsp;

Create a new team with initial or root process having the specified priority, initial program counter. and initial
stack pointer.

CreateTeam(} is similar to CreateProcess() except the new process is created on a new team. The
new tcam initially has a null terun space. It is intended that the creator of the teaIn will initialize the team
address space and root process state using SetTeamSize(). MoveTo(), and Wri teProcessState().

CreateTeam returns 0 if there are no resources to create the team or the root· process. or the priority is
illegal.

Delay(seconds. clicks)
unsigned seconds. clicks:

Suspend the execution of the invoking process for the specified number of seconds and clicks (where a click is
a machine-specific unit, usually one clock interrupt).

De 1 ay () returns 0 after the ~me period has passed. or the number of clicks remaining in the delay time if
the process has been unblocked by Wakeup (). A clock interrupt on the SUN workstation is 10 milliseconds.

SystemCode DestroyProcess(pid)
Procassld pid;

Dcstroy the specified" process and an processes that it created. When a process is destroyed. it stops cxecutin¥i
its pid becomes invalid. and all procesScs blocked on it become unblocked (eventually).

DestroyProcess () returns OK if pi d if successful. else a reply code indicating the reason for failure.
DestroyProcess (O) is suicide. .

Usually programmers will prefer the Destroy() call described later in this chapter.

Processld Forward(msg, frompid, topid)
Message msg; Processld frompid. topid:

Forward the message pointed to by ms g to the process specified by top 1 d as though it had been sent by the
process f romp 1 d.

The process speCified by fromp i d must be awaiting reply from the' invoking process. The effect of this
operation is the'snme as if frompi d had sent directly to top 1 d. except that the invoking process is noted as
the forwarder of the message. Note that Forward() docs not block.

Forward{) returns topid if it was successful, 0 if unsuccessful. If topid is invalid, frompid is
unblocked with an indication that its Send() failed.

Processld Forwarder(pid)
Processld p1d:

12Proccsscs blocked on a noncxilltent processes arc detected and unblocked by the clock interrupt routine checking periodically. . .

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

KERNEL OPERATIONS 99

Return the process id that forwarded the last message received from pi d, providing p 1 d is still awaiting reply
from the invoking process. If the message was not forwarded, p 1 d is returned. If P 1 d does not exist or is not
awaiting reply from the invoking process, 0 is returned.

Processld GetP1d(1og1cal1d, scope)
int logicalid, scope;

Return the pid of the process registered using SetPi d () with the specified log i ca 11 d and scope, or 0 if
not set.

The scope is one of:

LOCAL_PID Retulrn a locally registered process only.

REMOTE_PID Retu:rn a remotely registered process only.

ANY _PID . Return a local or remote process pid.

If 10gicali d is J\CnVE_PROCESS, the pid of the invoking process'is returned. If a scope of remote is
specified, the kernel broadcasts a request for a process identifier. registered as this logical id to other
workstations running the V kernel on thc network. If the scope is any, the kernel first looks for a locally
registered proce5.l): if one is not found, it then looks for a remote process. In this way, a kernel can discover
the process idcntificrs of the standard server processes from other kerncls., or at least from the kernel that is
running the server process of interest..

Proc8ssId GetTeamRoot(p1d)
Proc8$sId p1d;

Return the process identifier of the root process of the team containing pi d, or zero if p 1 d is not a valid
process identificr. A p1 d of zero specifics thc invoking process.

char ·GetTeamS1ze(pid)
Processld p1d;

Return thc first unused location in the team space associated with pid~ assct by SetTeamS1ze(). Ifp1d is
zero. tJ~c sjze of tJ1C invoking process's team is rcturncd. If p i d docs not exis4 0 is r~turncd.

unsigned GetT1me(clicksptr)
unsigned ·cl1cksptr;

Return the current tim(: in seconds. Thc standard is to reprcsent time as seconds since January 1. 1970 GMT.
If cl1 cksptr is not NUL~ tJ1C numbcr ofc1ock interrupts since thc last second is stored at tJlat location.

SystemCode MoveFrom(srcp1d. dest. src, count).
Proc8ssId srcpid; char ·dest, ·src; unsigned count:

Copy count bytes from thc mcmory segmcnt st.llting at src in thc"tcam space of srcp1d to the scgment
starting at dest in thc invoking process's spacc, and return the standard systcm reply code OK.

The s rep 1 d process must bc awaiting reply from thc invoking process and mllst have provided read access
to the segment of m(~mory in its space lIsing thc message fonnat con ventions described for Sen d ().
Mover rom() returns ill standard system reply code indicating the reason for failure i(any of these conuitions
arc violated ..

v·SYS"n~M 5,0 REFERENCE MANUAL PROGRAM ENV1RONMENl
.: .. :

100 PROCESSES AND INTERPROCESS COMMUNICAT10N

SystemCode MoveTo(destpid, dest, s~c, count)
Processld destpid; char ·dest, ·src; unsigned count;

Copy count b'ytes from the segment starting at src in the invoking process's team space to the segment
starting at dest in the team space of the destp 1 d process. and return the standard system reply code OK.

The destpid process must be awaiting reply from the invoking process and must have provided write
access to the segment of memory in its space using the message format conventions described under Sand().
MoveTo() renlrns a standard system reply code indicating the reason for failure ifany of these conditions arc
violated.

QueryKernel(pid, groupSelect. reply)
Processld p1d; int groupSelect; Message reply;

Query the kernel on the host where process pi d is resident A p 1 d of zero specifics the invoking process's
kernel. \

The groupSel ect field specifics what infonnation is to be returned in the reply message. The available
group selection codes arc Mt\CHlNE-CONF1G. to return infonnution about tJ1C processor configuration.
PERIPtIERAI.-CONFIG. to return a list of peripherals available on the machine, KERNEL-CON FIG. to
return the kernel's contiguration parameters. MEMORY -STATS. to return memory lIsage stutistics. and
KERNEL- STATS. to return other kernel statistics. Th,-'Se cudes, and the corresponuing structures that may
be returned. are defined in the s~nd41rd header file <Vquerykernel.h>.

Processld QueryProcessState(p1d, pb)
Processld p1d; ProcessB14ck ·pb;

Copy the state of the proccs.'l into the structure pointed to by pb. '111e various fields in thc stnlcture are
defined in <Vprocess.h>. Their meanings should be self-explamltory.

The message butTer is only available if pi d is the invoking pr()ccs..~ or is awaiting reply from the invoking
proces.'l. I f not. the "ppropriate tields in lhe structure are l.emed.

Ifp1d is zero. the process stntc of the invoking process is returned. Ifpid docs not exist. 0 is retllrned~
otherwise, p 1 d is returned.

Processld ReadProcessState(pid. state)
Processld p1d: Processor_state ·state;

Copy the machine-specific processor state into the stnlcture pointed to by state. The infi.mnation returned
is a subset of that returned by QueryProcessState().

If pi d is zero. the processor state of the invoking process is returned. If pi d docs not exist. 0 is returned;
otherwise. pi d is returned.

Processld Receive(msg)
Message msg:

Suspend the invoking process until a me~'ge is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by ms g.

Processld ReceiveW1thSegment(msg, segbuf, segsize)
Message msg: char ·segbuf: unsigned ·segs1ze;

V-SYSTEM 5.0 RFFERFNC'E MANUAL PROGRAM ENVIRONMENT

KERNEL OPERATIONS 101

Suspend the invoking process until a message is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by msg and at most the first ·sags i za bytes of the
segment included with the message in the buffer starting at sagbuf. The actual number of bytes in the
portion of the segment received is returned in ·sags1ze.

Processld Rece1vaSpacific(msg, pid)
Message msg; . Processld pid;

Suspend the invoking process until a message is available from the specified process, returning the pid of this
process. and placing the message in the array pointed to by ms g.

If pi d is not a valid process identifier, ReceiveSpecific returns O.

Processld Reply(msg, p1d)
Message msg; Processld pid;

Send the specified reply messnge to the process specified by pi d and retul:n pi d.

1be specified process must be awaiting reply from the invoking process. Zero is returned if the process
docs not exist 01' is not awaiting reply.

ReplyWithSegment(msg. pid. src. dest ll bytes)
Message msg; Processld pid; char ·src, ·dest; unsigned bytes;

Send the specified reply mcs.~(lge and segment to the process specified by pi d and return pi d.

The specified process must be awaiting reply from the invoking process. Zero is returned if the process
does not exist or is not awaiting reply. The segment size is currently limited to 1024 bytes. A
Rep lyWi thSegment() with a nonzero segment size may only be used to reply to an idempotent request
(see Send(».

RereadMsg(msg. pid)
Message msg; Processld pid;

Reread into msg the m4:ssage receivec.J from the process sp\.'Cified by pi d. providing it is still Clw<liting reply
from the invoking process.

RereadMsg() copies the contents or the message butTer last received from pi d into the array msg.
providing U,e process specified by p 1 d still exjst~ ilnd ha.-; not been repliec.J to. If P 1 d is zero, it is taken to
mean the invoking process Hnd rereads the last reply message. 'Ibis operation also allows a newly created
process to reud the initial reply message from its creator.

int SameTeam(p1dl. pid2)
Processld pidl, pid2:

Return tme (nonzero) if Ule proccs.l)cs specified both exist and are on·the same team; otherwise return false.
If either pid is zero, the .invuking process is a"1Sumed.

Processld Send(msg, pid)
Message msg; Procassld pid;

Send tile message in msg to Ule specified process, blocking the invoking process until the mes.')age is both

V-SYSTEM 5.0 I~EFFRENCE MANUAL PROGRAM ENVIRONMENT

102 PROCESSES AND INTERPROCESS COMMUNICA'110N

received and replied to. The array specified by msg is assumed to be 8 long words. The reply message
overwrit(,.'S the original message in the array.

If Send() completes successfully. it returns the pid of the process that replied to the message. The pid
returned will differ from that specified in the call if the message is forwarded by the receiver to another
process that in turn replies to it. If the send fails (fOf instance. because the intended receiver does not exist),
Sand() returns the pid of the process the me$(lge was last forwarded to (the pid it was sent to. ifit was never
forwarded). The kernel indicates the reason fOf the failure by overwriting the first 16 bits of the messuge with
a standard system reply code. (This places it in the rep/ycode field for reply messages that follow the standard
system fonnat)

An messages must follow the kernel ~essage format conventions as follows. The first 16 bits of the message
are considered to be a request code Of reply code. The highest order 6 bits are as.c;igned special meanings.

Bit 0 is 0 if a request message is being sent, or 1 if a reply message.

Bit 1

Bit 2

Bit 3

Bit4

BitS

is 1 if the request code or reply code is considered a standard system code. Applications
can use spccial request codes and reply codes internal to their programs but usc standard
ones thr interfacing to other programs and the system. The remaining 4 bits arc
interpreted with the tolluwing spcci411 mei.lning.~ only if IllC message is a requcst

is I if the request is considered to be idempotent. This is just a hint to discriminute
between requcsts that do not need c.Iuplicate suppression and those that do.

is 1 if the request specifics a segment If 1. the kernel interprets the last 2 words of the
message as specifying a pointer to the start of the segment and the size in bytes of the
segment. respectively. The kernel then makes the segment available to the receiving
process lIsing MoveTo and MoveFrom. Access to the segment is controlled by the
following two bits. which only have meuning if bit 3 is 1.

is 1 if re"d access is provided to the segment

is 1 if write access is provided to the segment.

It is intended and assumcd that most request.~ can he a.'\signed a request code tlmt is stored in the first 16 bits
of the request messuge. so thut the bit.') are set correctly tU .. tile request by tile value of the requcst coue.

SetP1d(log1calid, p1d, scope)
int log1calid, scope; ProcessId p1d;

Associate p1d with the specified logicnl id within the spccifed scope. Subsequent calls to GatPid() with
this logicalid and scope return 1l1is pid. This provides an etlicient, low-level naming service.

The scope is one of:

LOCAL_PID Register the process in thc local scope only.

REMOTEJ>ID Register the process in the remute scope only.

ANY_PI D Register the· process in both tile toc,\l and remote scopes.

The local scope is intended for servers serving only the l(lcal workstation. The remote scope is for network
accessed server processes serving several workstations (but not the local workstation). '111C allY scope permits
both local and remote access.

SetTaamPrior1ty(pid, priority)
ProcessId p1d; short priority;'

V-SYSTFM 5,0 REFJmFNC'E MANUAL PROGRAM ENVIRONMFNT

KERNEL OPERATIONS 103

Set the team priority of'the team associated with pi d to the specified priority and return the previous team
priority.

Each process effectiv'ely runs with the absolute scheduling priority of its team's priority plus the priority
specified when the process was created. SetTaamPr1ority() changes the absolute scheduling priority of
each proces.~ on the team by modifying the tcam priority. This operation, is intended for implementing
macro-level scheduling and may eventually be restricted in usc to the first team.

If p i d is zero, the inVl)king process's te~lm priority is set

char *SetTeamSizo(p1d, addr)
Processld p1d; char *addr;

Sets the first unused address for the team containing pi d to addr. The new team size may be either greater
or smaller than the previous size. The new team size is returned; this will normally be equal to addr. [fthere
was nut enough memory available to grant the request; the return value will be les.'i than addr: if addr was
below the stlfting address tor team spaces on the host machine. the team space will be set to null and its
starting address will be returned. Thus SetTeamSize(p1d, 0) is a mnchine-indepcndcllt way ofsctling a
team space to null.

A pid of 0 specifics the invoking process. Only. the crCi.ltor of the team or mcmbers of the team may change
the team size and (cons'::quently) the specified proccs..~ mllst be local.

SetTime(seconds, clicks)
unsigned seconds, clicks;

Set the kernel~maintained time to that specified by seconds and cli cks.

The stundurd' time representation lIsed is the number of seconds since January 1. 1970 GMT. plus U,e
number of clock intefnlpts since the last second.

Processld Wakeup(p1d)
Processld pid;.

Unblock the specified process if it is uelaying llsing De 1 ay () and return pi d. I f the process uoes not exist or
is not delaying. rcturn O. .

int ValidP1d(p1d)
Processld p1d;

Return true (nonzero) if pi d is a valid process identitier: otherwise "return false.

Processld WriteProcessState(pid, state)
Processld pid; Processor_state *state;

Copy the ~pecitied process state record into the kcrnel stIle of the ~roccss specificd by pi d and return pi d.

The specified process must be the invoking process. or awaiting reply from the invoking process.
Wri teProcessState() returns 0 if the proces.') docs not exist. is not awaiting reply or there is a problem
with the stlte record. The kernel checks that the new stute cannot compr{Hnise the integrity or security of the
kernel.

Api d of 0 specifics the invoking process. /\ proccs.~ that writes its own processor state affects only the

V-SYSTEM 5.0 RFFFRENCE MANUAL PROGRAM I~NV1RONMENT

104 PROCESSr:S AND INTERPROCESS COMMUNICATION

machine-independent per-process area information kept as part of the state record (sec section 14.5).

19.2. Other Functions

Processld Create(pr1or1ty, function, stacksize)
short priority; ,char -function; unsigned stacksiz8

Crente a new process executing the specified function with the specified priority and stack size. The new
process is blocked. waiting for a reply from the creator. The function Raady() should be used to start the
process running. The new process is on the same team as its creator, and inherits the creator's standard input,
output, and error tiles, and the creator's current context (current working directory).

Create returns the pid of the new process. or zero ,if a process could not be created. This function is
usually preferable to calling the kernel operation CreateProcess() directly.

Processld Ready(pid, nargs, al •.•• , an)
Processld p1d; unsigned nargs; Unspec al, ••• , an;

Set up the SUlek of the specified process and reply to it. thus placing it Oil the ready queuc. The values al,
• • •• an 'appear as i.lrgumenl.~ to thc mot function of the new process, while nargs is the numher of
arguments passed. Zero is returned if there is a problem. else pi d is returned.

Destroy(pid)
P'rocessld. pi d;

Destroy the specified process. If the destroyed process was on the samc team as the invoking process, the
memory allocated to its stack hy Create() is freed. \V~lrnillg: Do not invoke Destroy() on a process that
wus nut cre,lted by Create(); use DestroyProcess () in that casco

Suic1de()
I~troy the invoking pmccs.~ "nd free its stIck. Suicide() is identical to Destroy(O), and the same
warning applies.

axite)
Terminate the exccution of the tcam (i.e., program), after closing nil open tilcs. Using the V executive, control
is returned to the command interpreter. In bure kernel mode. control is returned to the PROM munitor.

abort()

Abort exccution OftJlc'tenm by causing an exception in the calling process.

V-SYSTFM 5.0 IU~FERFNCE MANUAL PROGRAM ENVIRONMENT

NAMING lOS

-20-
Naming

The naming section of the library includes a number of functions that provide a convenient interface to
V-System naming protOl:ol messages. Functions for creating and terminating storage server sessions arc also
included.

SystemCode AddContextName(name, serverpid. contextid)
char ·name; Processld serverpid; Contextld contextid;

Add name as a local name for the context specified by (serverp i d, context 1 d). and return OK. or a
standi.lrd system reply code if an error occllrred. This function creates and sends an
ADD_CONTEXT_NJ\ME request mess,lge to the context pretix server.

SystemCode AddLogica1Name(name, log1calpid)
char ·name; Processld log1ca1p1d:

Add name as a local name fhr the default context specified by log i ca 1 p 1 d. and return OK. or a standard
system reply code ifan (:rror occurred. This function creates and sends an I\DD_CONTEXT_NI\ME request
message to the context prefix server.

SystemCode A11asContextName(newname, oldname)
char ·~ewname, ·oldname;

Define newname as a local name for the context specified by 01 dname. 01 dname is interpreted in the
current context. Returns OK if the nume was defined sliccessfully. or a standard system coue indicating lhc
reason thr fa.ilure. .

SystemCode CreateSess1on(host, user, password, sess10nname, owner)
char ·host, ·user, ·password. ·sess10nname;
Process·ld owner;

Create, a S\.'SSion on the storage server (usually a Unix server) specified by host. lIsing the given llser name
and password. and define s e s s 1 0 n name as a loc~:tl name for the user's home di rectory on th is session. If
owner is nonzero. the session owner is set to be the specified proccs.~: otherwise. the invoking process
becomes the s,-'ssion owner. 1\ session is automatically temlinuted when it') owner no longer exists.

The given session nnme is consklered the primary name for the scs.~ion (the SESSION bit is set in its
descriptor), and its detinitioll should not be removed until the session is lermin41ted.

CreateSession() returns OK ifsucccssful~ else a standard system code indicating the renson for failure.

SystemCode DeletoContextName(name)
char ·name;

Remove the definition of the context name oame. but do not delete the context it refers to. Return OK if

V-SYSTEM s.n I~FFERENC'E MANUAL PROGRAM FNVtRONMENT

106 NAMING

successful, else a system reply code indicating the reason for failure.

The name is interpreted directly by thc. context prefix server. not in the current context. since the function is
ordinarily used only to remove namcs from the context prefix server's directory.

Processld 01rectToCurrentContext(request)
NameRequest ·request;

Direct a request to the current context. or to the context prefix server if the name begins with a square bracket
C['). The function returns the pid to which the requcst should be sent. and puts the proper context id into the
NameRequcst message. This routine is provided to avoid duplicating the code that implements the square
bracket convention in a large number of functions. r'3quest may be of any request type that tits thc
standard NamcRequest template given in <Vnaming.h). .

SystemCode GetContextld(name. serverp1d. context1d)
char ·name; Processld ·serverpid; Contextld ·context1d;

Interpret the given name in thc'current context. and rcturn a corresponding (serverpic.J. contcxtid) pair in lhe
locations pointcd to by serverp i d and context i d. The function returns OK if successful, or a standard
system error code if an error is detected. such as thc given name specifying an object that is nota context.

SystemCode GetContextName(name·. namel en. serverp1d. context 1 d. nameserver)
char name(]: unsigned ·namelen;
Processld ·serverpid; Contextld ·context1d:
Processld nsmaserver;

Perform an inverse mapping from the specified (serverpid. contextid) pair to a character string context name.
'111e requcst is sent to lhc server specified by namaserver. The array name must be ·name 1 en characters
in length: ·namelen is modified to contain the ,u;tuallenglh of the name upon rcturn. ·serverp1d and
·context 1 d are modified upon return to indicate the context in which the name is valid.
GetContextNsme() returns OK if the mi.lpping was successtLII. or a stAlIldard system error code if a tllilufe
occurred.

SystemCode GetFileName(name, nsmalen. serverp1d. contextid. instanceid)
char name(]; unsigned ·namelen:
Processld ·serverp1d; Contextld ·context1d;
Instanceld 1nstance1d;

Perfonn an inverse mnDPing from the specified (serverpid. instanceid) pair to a character string tile name.
'l11c array name must be ·name 1 en characters in length: ·name 1 en is 'modified to contain the actuallcngth
of the name upon return. ·serverp 1 d and ·context 1 d arc modified upon return to indicate the context
in which the name is valid. GetContextName() returns OK if lhe mapping was successful. or a standard
system error ctxJe if a fililure occurred.

SystemCode Term1nateSess1on(sess1onname)
char ·sess1onname;

Terminute the session specified by sess 10nname and invalidate the name. Return OK on success, else a
stundard system code indicating the reason for failure. The session name is interpreted by the loc4d context
prefix server. The function checks that the SESSION bit is set in the name's descriptor; if it is not,
NONEXISTENT_SESSION is retunled.

V-SYSTEM 5.0 IH!FERENCF MANUAL PROGRAM ENVIRONMENT

PROGRAM EXECUTION FfJNCnONS 107

-21-
Program Execution Functions

This chapter describes a number of functions relating to program execlltion. Most of these functions are
used internally in the V executive: some of them may also be useful in user·levcl programs that need to stalt
up other programs as part of their operation. All the functions in this chapter arc subject to ch.angc.

21.1. Program Execution

ProcessX'd LoadProg (argv. con.current. teamServer, rtMsg. drtMsg, error)
char *argv[]: int concurrent; Processld teamServer;
RootMessage *rtMsg. *drtMsg; SystemCode *error;

LoadProg() interacts with the team server to crente a new temn and loud a program image into the new
team space. It includes path searching code. which currently always looks tor the program along the default
path of

1. The current context
2. The context "[binr
3. The context "[pubHcr

If an these fail. LoadProg () loads the jexecule program. which. when started. will attempt to exccute the
progmm on the storage server that is providing the current context. .

'11e army argv conL~ins pointers to the character string arguments to be passed to the new tcam. By
convention. argv[O] should point to the name of the program. The last clement of tJ1C" array must be a null
pointer. The concurr'ent ilrgumelll spccifies whether Ule team is to be "owned" by lhe pnx:css cxeclIting
the LoadProg() call (if concuprent is zero) or by the team server it")elf(if it is nonzero). The tcam server
destroys any leUln whose owner ccmies to exist: thus. programs to be rlln "in the background" should be
tlaggeq as concurrent. The teamServer argument spccities which leam server is to create lhc team. This is
useful for nllming pr~}grmns remotely. If teamSer"er is zero. the program is rlln locally.

The rtMsg argument holds the root mcs~mge to be passed to the new team. This message specities tile
insulOccs to be lIscd for smndard input. output. and error. U1e initial current context. and some other
information. The fields in the message are described in section 14.4. 'Inc drtMsg argument is the root
message to be used to start lip the postmortem debugger if a process team on U,e new team incurs an
exception. The debugger root mC~1ge should specify a real keyboard ,md display as standard input and
output. cven if the st.1ndard i/o for the program beil1lg loaded is redirected. These root messages arc stored by
the teum server.

The function returns the process id of the new t~lm's root process. or 0 in case of an error. /\ stmldurd
system code is returned! in the location pointed to by error. The. new team can be started nmning by
replying to the pid returned9 using the same root message as was passed to LoadProg.

Processld ExecProg(argv, concurrent. teamServer. rtMsg. drtMsg. error)
char *argv[]; int concurrent; Processld teamServer; .
RootMessage *rtMsg. *drtMsg; SystemCode *error;

V-SYSTEM S.O RFFERENC'E MANUAL PROGRAM FNVIRONMENT

108 PROGRAM EXECUTION FUNCTIONS

ExecProg () interacts with the team server to create a new team and load a program inluge into the new
team space, as in LoadProg(). It then starts the new team running by replying to it The arguments to
ExecProg() arc exactly Ule same as those to LoadProg().

Processld RunProgram(argv, concurrent, teamServer. error)
char -argv[]; int concurrent; Processld teamServer;
RootMessage -rtMsg. -drtMsg; SystemCode -error;

RunProgram() pcrfbmls the same function as ExecProg() except that it uses the standard I/O bindings
to initialize the rtMsg and drtMsg parameters that arc passed in to ExecProg().

Processld LoadNewTeam(teamServer, name, concurrent. argy,
rtMsg. drtMsg. error)

Processld teamServer; char -name; 1nt concurrent; char -argv[]:
RootMessage -rtMsg. -drtMsg; SystemCode -error;

LoadNewTeam() is an internal routine called by LoadProg(). It does no path searching: Lhe name of the
file lo loau the program image from is givcn by the name argument The olher six argumcnt.s arc as described
above. under LoadProg(), though they appear in a different order.

LoadNewTeam() calls Va 11 dProgram() to check whether the sp<..'Cified file tlppears to contain a valid
program ilT1;)gc, intef<.\cts with the team server to crcate the new team, and sets up the urgumcnts on the new
te,lm . s ~t.1C k.

Processld LoadTeam(filename, priority, stacksize, error)
char -filename; short priority;
int stacksize; SystemCode -error;

Create a new learn with the specitied root process priority. and load the program contained in the specified
lile into it. The number ui' hytes specifiecJ by stacks 1 ze is allocated at the cnd of thc team space as a slack
area fur the tC41m root proccs.") lInles.~ stacks 1 ze is -I. in which Cilse the defilllit 4000 bytes "re ullocated. 1 f
the operation is successful. the pid of lhe new teum's root p~ocess is rcturned; otherwise 0 is returned. If
error is nut NUI.I.. a sl41noard system reply code is returned in the location to which it points.

This function docs not rcqucst the team servcr to crente and load the temn; it creates lhe tcum and performs
the temn loud itself. It is normully preterablc to lise one or the other ItlOclions described above, all of which
make usc of the team server.

SystemCode RemoteExecute(processF1le, programname, argv, mode)
File -processF11e[2]: char -programname:
char -argv[]: unsigned short mode;

Cause the sp<..'Citied pr()grmn to be execuled un lhe servcr mnchine proviuing Lhe invoking pruces.')·s current
cuntext by opening a file in F~~XECUTE mode. This function is used by Ule[eXl!('utc progt'tlm .

. TIle argv parameter is an arr41Y of null-terminated strings which "re to pmiscd as argument') to the program.
The array itself is tcnnimlted by a null pointer. mode should be FREAD or FCREATH. A File stnlcturc
describing a stream from which the program's stundard output can be read is returned in processF1le[O].
If the mode is FCREATE, a File stnlctufe describing a writeable strcam that is fcd into the program's
standard input is returned in processF 11 e(1]. RemoteExecute () returns OK if slIcccssli.t1. clse a .
stmdnrd system code de~ribing Ule error condition.

Closing the writeable tile passes an end-of-file iAdication on to the remote program: Closing the rcnd,lble

V-SYSI"FM 5.0 REFFRFNC'E MANUAL PROGRAM ENVijRONMFNT

PROGRAM EXECUTION 109

me tcnninatcs the program.

21.2. Other Functions

File *Val1dProgram(filaname, error)
char *f11ename; SystemCode *arror;

This ftmction opens the file specified by f11 ename and checks whether it has a valid "magic number,"
marking it as an executable V program image. If it is a valid program, Va 1 i dProgram() returns a pointer
to a File structure describing the open tile: if no~ it closes the file again and returns NUl.L. t\ standard system
codc is returned in the location pointed to by error. 'I11e error code END_OF _fILE indicZltes that the file
was too short to be a valid program, while BAD_STATE indicates that the magic number was invalid.

SetUpArguments(pid. argyl
Procassld pid: char *argv(];

SetUpArguments() is the fUllction called by LoadProg() to ~et lip the arguments on a newly created
team's st41ck. Users wi11 not nonnally need to call it directly. The array argv has the format described under
LoadProg (). above. The process id p.1 d specifics the root process of the team whose urgulTIents arc to be
set up.

ParseLine(start. argY, maxArgs)
char *start; char *argv(]; 1nt maxArgs;

Par saL i ne() parses a command line into sepnratc words. null terminating each one, and l"illing in an array
of pointers to c,ich word. Spaces and t.:lbs arc recognized as word separators. This rouline is llsed by the V
executive tocunstructan argv array to puss to LoadProg(}.

The start argument p()int~ to the command line. which should be a null-terminated character string. The
string is modified by inserting null characters after each word. The array oj' pointers created is returned in
argv. which should he detined in the calling program to be of size maxArgs. ParseL 1 na () terminates lhe
array wilh a null pointer. If lhere arc too muny words in Ule command line to lit in the array. only the
leftmust maxArgs - 1 words are returned.

V-SYSTEM 5.0 RFFERENCE MANUAL PROGRAM I .. :NVIRONMENT

110 CONTROL OF l1'(ECUTIVES

V-SYSTFM 5.0 REFER'~NCE MANUAL . PROGI~AM ENVIRONMENT

CONTROL OF EXECUTIVES 111

-22-
Control of Executives

Instances of the V executive. or command interpreter, are normally created and controlled directly by the
user interacting with the sytstem. However, this control is also avaiJable to programs through the following
fUllctions:

int CreateExec(execserver. 1nserver, 1nf11e, outserver, outf11e,
errserver, errf11e, nameserver,context. flags. execp1d,
error)

Processld execserver;
Processld 1nserver, outserver, errserver;
Instanceld 1n111e, outfiTe. errf11e;
Processld nameserver;
Contextld context;
short f1ags:
Processld ·execp1d;
SystemCode ·error;

Create an instance of the executive with the specified standard input. standard output. standard error output.
and context. Each of the three standard i/o files is specitied by two. parameters. the server pid and the
instnncc identifier within that server. This means that all these instances must be opened bcthre Crc~ltc II:XCC

is called. Context is specified by two purmneters. a name server pid and a context identifier within that
nmneserver. 'I;he GctColltcxtld function will map a context name into such a pair. Il;xccscrvcr is Ule pid of .
the exec server to which the request is being mude. '111e Fl ags parameter uetennincs whkh if any of lhe
sUUldurd i/o instances are to be owned by the newly cre:'lled executive: it muy be (lny comhination of
REI.EASE-INPUT.REI.EASE- OUTPUT. Hnd RHLEASE- ERR. If tbr example REI.F/\SE-INPUT is
sp<."Citied. the executive will own its stnndurd input inSti.ll1ce and will rcie41se it on termination.

Crcatc~:xcc returns ~111 exec indenlitier. a smal1 integer which will he lIsed to refer to this executive in other
exccutive control rpquests. In the location pointed to by exccJ)id it returns the process id of the new executive.
In the location pointed to by error it returns a system error code: if this code is not OK. the exec identilier and
exccpid are meaningless..

WARNING: a server proccs." C41nnot cull Crcatcll:~tcc with a tile instance pointing to that server itself. or the
server and the execserv'cr will become deadlocked waiting for euch other. A server that necds to do this
shouJd:crcate a subprocess to cull Crc~ltcl·:xcc.

SystemCode De1eteE~ec(execserver. eX9c1d)
Processld execserver;
1nt exec1d;

Delctc the executive specified by cxccid. along with the program running under it if any. It need not have
been crealed by this process: there is no concept of owncrship of execs. Notc that this is not the only .way
executives vanish: they also terminate on end of filc on the standard input DclctcExcc will return
NOT- FOUND ifexcciid is invalid.

V-SYSTEM 5.0 REFERENCE MANUAL PROORAI\-f FNVIRONMENT

112 CONTROL OF EXECUTIVES

System •••.••
Inquire abollt the state of the specified exec. If successful. it returns a code of OK. and the following
infonnation: incxccpid the process id of the exec; in program, the process id of the program funning under it,
if any; in stutus, the status of the exec. Status can be one of

EXEC- FREE Exec is waiting for a command.

EXEC-LOADING
exec is in the process ofloading a program.

EXEC-RUNNING·
A program is running under this exec. In this case and this case only. program returns
relevant intormation.

EXEC- HOLD Exec has been created but not yet started. Hopefully this state should never be observed,
as it is taken care of within Create Exec.

SystemCode K111Program(execserver, exec1d)
Processld execserver;
1nt exec1d;

Kill the program. if any. running under the. specified exec. Returns OK is successful, NOT - FOUN J) if
execid was invalid. NONEXISTENT- PROCESS if there wu." no program running undcr thut exec.

SystemCode CheckExecs(execserver)
Processld execserver;

Causes the execservcr to do a check on all executives. Any of them whose standard input server or standard
output server (but NOT standard error server) hClS died is destroyed during the check. This should be called
after an action that might have destroyed un i/o server which wus providing Sl4lOdard i/o fhr one or more
executivcs.

V-SYSTEM 5,0 REFERENCE MANUAL PROGRAM FNVIRONMENT

SER VICE REGISTRATION AND SELECfION FUNCrIONS 113

-23-
Service Registration and Selection Functions

This chapter describes a number of functions which deal with the globally visible service server; which
provides registration u.nd selection facilities for globally visible services. A description of the service server
and the details of how to interact with it are provided in its servers manual chapter. This chapter assumes that
dle reader is tllmiliar with the servers manual chapter and bases the form of its explanations on that
assumption. All the functions in this chapter are subject to change.

23.1. Regist ration Facilities

Instancald RegisterServer(nameType. namelndex. typelndex.
ownerPid. desc, descLen, error)

1 nt· nameTYP6l;
int namelndex;
1nt typelndex:
Processld ownerPid;
char *desc;
int descLen:
SystemCode *error

RegisterServer rc~gisters dle server descriptor (actually any object descriptor) pointed lo by desc with
the service server. descLen indicates how long dlC descriptor is in hytes. Thc owner of the descriptor is
spccified by ownerP 1 d. It is assumcd that the descriptof I:ontains both a valid server name and type tielli,
whose stlrting indices within thc descriptor are given by namelndex und typelndex. The type tielt! is
assllmed to he a nul1-telmimlted string field. There arc two types of Ilame licit! allowed: a process id or a
null-temlil1<1ted string tield. nameType spccilies which typc of name field is being lIsed. Thc allowable
valucs for nameType are detined in U1C Vservi ce. h indudc tile. error is uscd to return a status vaillc
indic~lting whether thc operal ion wa." sllccessful Of why it 11lilco. I r the operation is slIccessful then
Regi sterServer returns un ill numbcr for the server's registnttion entry. This is LISCO thr lInregistering thc
server (and possibly other U,ings in thc futurc).

SystemCode UnregisterServer(serverld)
Instanceld serverld;

Unregi sterServer remoVl.'S a servcr's registration entry from the service scrver's databasc. It takes as
argument the id number returned from dlC origimJl Reg 1 s terSe rver operation.

23.2. Selection Facilities

Instanceld CreateSelect1onlnstance(serverType. pattern, patternFcn,
howMany, desc, descLen, erro~)

char *serverType;
char *pattern;

V-SYSTFM 5.0 I~FFFRENCI! MANUAL l'ROGRAM ENVIRONMENT

114

1nt patternFcn;
1nt howMany;
char -desc;
1nt descLen;
SystemCode -error;

SER VICE REGISTRA'nON AND SELECnON rUNcno,NS

CreateSelectionlnstance() specifics a set of registered objects to associate with a selection instance
and returns the first entry uf the instance in desc. descLan specifics the maximum size that the descriptor
renlrned may be. If the selected descriptor is larger than that then only the first des cLen bytes are returned.
The server type under which selection is to take place is specified by the serverType fiel~ which is a
nult-tenninated string. The pattern-matching function to be used is specified by patternF en. Values that
this parameter may assume are defined in the Vserv1ce. h include file. The pattern to match against
registered d(..'SCriptor entries is pointed to by pattern. The fonnat of the pattern as far as this function is
concerned (its interpretation within the service server will depend on which pattern-matching function is
specified) is a null-terminated string. howMany specifics whether onc or more selections is desired. If only.
one selection is desired then that selection is returned in desc alld I/O selection ins/alice is crealed. This
provides a means of circumventing the overhead of establishing a full-blown connection fbr obtaining just
one selection. error is used to return the statliS of the operation perfonned. If the operation is stlccessH.ti
then CreateSe 1 ect i on Instance returns an instance id for the selection ins~lncc established. (This
value is mc:mingless if howMany equals 1.)

V-SYSTEM 5.0 REFERENCE MANUAL I'ROGRAM ENVIRONMFNT

GRAP[J(CS FUNCl'IONS 115

""";24-
Grapllics Functions,

The Virtual Graphics Tenninal Service (VGTS) allows the display of structured graphical objects on a
workstation mnning the V system. This chapter describes the interface of a client (application) program to
the VaTS to provide faciJities for the creation, destructiun, and editing of structured display tiles (SDFs).
The user interface to the VGTS is, described in the View Manager chapter ,(chapter 3) of the Commands
Manual. For simple text applications, the VGTS implements the standard I/O protocol. The functions in
this chapter are primarily for graphics applications.

24.1. Terminolo~JY

The central concept of the VGTS is that application pmgrmns should only have to deal with creating and
maintaining aos[r:lct graphical objects. The details of viewing these objecL~ are taken care of by the VGTS.
This is in contrast to traditionul graphics,systems in which users perfolm the operations uireclly on the screen,
or on an area of the scree,n referred to as a viewport or window. Thus tJ1C VGTS deals with declarative
information ruther than procedural: you describe what the objects are rather than how to draw them.

'[be tbllowing are the types of objects managed by the VaTS:

SDF " structured display file is a :name spaee in which symbols and items are defined. Each
item can be given a uniquc identifier by the client

[tern

Symbol

VGT

Event

View

Items can be either graphical primitives such as rectangles, lines, or tcxt. or symbols, which
consist of other items.

" list of items (primitives or calls to other symbols) lIsed to represent tJle hierurchic~\l
structure of the display tile.

" virtwl1 graphics terminal. can be citJlcr an emulation of an "NSI stll1u"rd text tcrminal,
or a gencral graphics termim,1 which can display an instance of a symbol in somc SDF.

Graphica) input is in tenns of events in tJle coordinate space of some virtual graphics
termnna1. For example, " mouse dick used to select a displayed object.

Both applications and users can create views of Virtual Graphics Terminals. "view
consists of a vicwport on some screen of some, workstntion. a window onto some VGT
giving thc world coordinates of the viewed area, and some other viewing panlmeters. The
same VaT can appear in several diITerent views, with independent control of all
parameters.

Items within an SDF are named with 16 bit identifiers chosen by tJle application. It is assumcd tJlat tJ1C
applicntion will muintain some higher-level data stnlctures. along with the appropriate mapping to these
internal item mImes. 1tems that will never be referenced can be given item number zero. The item names are
global to e~lch SDF. but applications may also have several SDFs for different name spaces. The item
identifiers arc hashed into a symbol table, so there are no constraints on their values. Item numbers can refcr
to both definitions of symbols and their instances.

For example. a pictttl·e of a bicycle might define a symbol fi)r a wheel. This definition of the wheel symbol
is given item number 4. There may then be two instances of item number 4, that arc given itcm numbers 5

V-SYSrEM 5.0 I~FFERENCE MANUAL PRO(jRAM ENVIRONMENT

116 GRAP(IICS FUNCrIONS

and 6. The individual spokes of the wheel are components of symbol number 4, but are all given item
number O. since we will never want to refer to any of them. if it is desired to delete or move any individual
spoke. then the items may be given numbers.

Each item has the following parameters:

Item A 16 hit unique (within the SDF) identifier for this object. or zero. 'fbis identifier is
referenced by the client when performing editing operations.

Type

TypcData

Xmin

Xmax

Ymin

Ymax

Pointer

Sibling

One of the predefined types described below, either a primitive type or one to indicate
structure. Currently eight bits arc allocated to this.

Eight bits of type-dependent information. like the stipple pattern number for a filled
rectangle. Other attributes are stored here. such as the font index for general text

Minimum X coordinate of the bounding box. All coordinates are in "world" coordinates.
stored as signed 16 bit signed integers.

Maximum X coordinate of the bounding box.

Minimum Y coordinale of the bounding box.

Maximum Y coordinate of the bounding box.

Depending on the type. this is either a pointer to some data like an ASCI [text string. or tor
symbol culls. a pointer to the called symbol.

All the component items in a symbol are linked together via this chain. Nunnally it should
not be visible to the client. unless the client wants to step through a symbol definition in
9rder.

24.2. SDF Primitive Types

Some of the meanings of the fields depend on the type of the item. The following arc the types of items
th,lt occur in display records in a structured displ~lY tile:

SDF_FILI .ED_REel't\ NGLE
t\ filleu recUlngie. The TypeDala field determines the stipple pattern, or color on the Iris
system. Refer to Ule Vgts. h incluuc tile Ihr the avuilable colors.

SDF_I-IORIZONTAI._LINE
Horizontal line from (Xmin.Ymin) to (Xmax,Ymin). Ymax is ignored.

SD~~ VERT1CAI..._I..lNE
Vertical line from (Xmin.Ymin) to (Xmin.Ymax). Xmax is ignored.

1\ point. which usually appears as a 2by 2 pixel square at (Xmin. Ymin).

SDF_SI M PI.E.:rEXT
A simple text string. which appears ut (Xmin. Ymin) us its lower left corner. Currently only
a single fixed-width font is available. The values of Xmax and Ymax need not surround
the text. but they are used as aids for redrawing. so should correspond roughly to the real
bounding box.

SDF _GENERAL_LINE
A generalized line. from (Xmin.Ymin) to (Xmax.Ymax). Note that Xmin etc. are slightly
mislcuding names. The SDF manager actually sorts the endpoints and calculates the
bounding box correctly.

V·SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMFNT

SDF PRIMITI VE TYPES 117

SDF _OUTLINE Outline for a selected symbol. Xmin, Xmax. Ymin and Ymax give the box for the outline.
"[be TypeData ficld specifics bits to select each of the edges: LcftEdgc. RightEdge.
TopEdge or BottomEdge.

SDF _HORIZONTAL_REF
A horizontal reference tine at (Ymin + Ymnx)/2. Reference tines consist of a thick line
with two tick marks at the ends. and some associated text. They are intended for use in
computer aided design applications like thc Yale layout editor.

SDF _ VERTICAL_REF
A vcrtical reference line at (Xmin + Xmax)l2.

SDF _SEL_HORIZ_REF
A thick (selected) horizontal reference line at (Ymin + Ymax)/2.

SDF _SEL_ VERT_REF
A thick (selected) vertical reference line at (Xmin + Xmax)/2.

SDF_TEXT A string of general text. with a lower left corner at (Xmin.Ymin). The Typel)ata field
determines the font number. Xmax is rec'ltculatcd tj·om the width in f()rmi.ltion tor the
font See section 24.6 for an exumple.

SDF _Ri\STER A gcneral raster bit-map with a lower left corner at (Xmin.Ymin). and upper right corner at
(Xmax. Ymax). The TypeData field determines if the raster is written with ones as black or
whit<:. The pointer field points to the actual bitmap. in 16 bit-wide swaths.

SDF_SPl.INE A spHne object. of which a special case is a polygon. The pointer field points to a SPLINE
structure as defined in the include tile <splines.h).

Thcre are a few other types thut are not visible to the user. For example. symbol definitions and calls arc
represented as items wit.h most of the same .. ttributes.

Note: The fhllowing SDF item types are not yet implemented for the SMI model 120 framebllffer:
SDF2usOTEXT. SI)F21.1s()R/\STER, SDF211s0GENERAI.-I.lNEan<.i SDF2usOSPIJNE.

24.30 SDF Manipulati'on Procedu res

'111C fhllowing are lhc~ currently uetined procedures lIsed to manipulate thc SDF. When calleu from C. ;;111
return valucs except lhe: actual C expression valuc ure pusscd via pointer purmnctcrs. If Hny pointer is NUl J "
no value is returned for Ulat purameter.

short CreateSDF()
Create,a structured display file. and return it. Return ~1 if U1C VGTS nms out of resources. This must be
done bethre any symbols are defined.

short OeletaSDF(sdf)
short sdf:

Return all the items defined in the given SnF to free storage. 'n,is includes all strings, polygon structures, and
spline structur~ associated with items in the SDF. Returns sdf.

short Oef1naSymbol(sdf. item, te.xt)
short sdf t i·tam;

VuSYSTEM 5.0 IH~FERENC:E MANUAL l'ROGRAM FNVlRONMENT

118 GRAPHICS FUNCTIONS

char ·text;
Enter symbol into the symhol table. and open it for editing. The sdf is returned from a previolls CrcateSDF
call. '111e tex"t is an optional descriptive name for the symbol. useu in the hit selection routines for
disambiguating selections. Returns' item if successful, or zero on some error.

short EndSymbol(sdf, item, vgt)
short sdf, item, vgt;

Close the given symbol so no more insertions can be done. and cause the VGT to be redrawn to reflect the new
SDP. Called at the end of a list of Addltem() and AddCal1 () calls defining a symbol. started with
Oef i neSymbo 1 () or Ed i tSymbo 1 (). Returns 1 tem if successful. Note that the VGT number is only a
Hhint." because an object can exist in several different VOl's. The client can always.call 01 spl ayltem() to
force a VOT to be redrawl~.

short Addltem(sdf, item, xmin. xmax, ymin. ymax,
typedata, type. string)

short sdf, item, xmin. xmax, ymin, ymax;
unsigned char type, typedata; char ·string;

Add an item to the currently open symbol. Returns the item name ifsuccessful. or zero on errors. stri ng is
an optiollul puinter to a text stril)g used only tor text types and reference lines. or special object descripturs tbr
rasters and splines. The item number can be zero to indicate lhat the item will never be retcrenced.

short AddCal1(sdf, item, xoffset. yoffset. cal1edSymbol)
short sdf, item, xoffset, yoffset, calledSymbol:

Add an instance of the called symbol to the currcntly open symbol. The called symbol instance is placed at
(X 0 tr.-,et. Yoffsct). Rcturns item if successful. 0 otherwisc.

short Oeleteltem(sdf, item)
short sdf, item;

Delete an item rrom Ule currcntly open symbol delinition. '111C item Ilmne will be removed from the Iwsh
~lble. Symbol c41Hs Clln be c.lcleted just like mlY other item. but symhol dclinitions are deleted by thc
DelctcSyrnbol function. "suin. returns zero on errors. U1C item name ifsuccessful.

short Inquireltem(sdf, item, xmin, xmax,
ymin, ymax, typedata, type. string)

short sdf, item; short ·xmin, ·xmax, ·ymin. ·ymax;
unsigned char ·type, ·typedata; char ·string;

"II pClrtlmelers exccpt sdf and 1 tem :Irc pointers. For cach !lon-null pointer. thc vallie or the ticld fur that
item is returned. Zcro is returned if the item could not be tbulld; otherwise 1 tem is returned.

short InqutreCal1(sdf, item)
short sdf, item;

Return the item name of the symbol called by the indicated item. Returns zero if the item is not a caB, or
cuuld not be found.

V·gYSTFM 5.0 RFFERENCE MANUAL PROGRAM ENVIRONMFNT

SOP MANIPULATION PROCEDURES

short Changeltem(sdf, item, xmin, xmax,
ymin. ymax, typedata. type, string)

short sdf, item, xmin. xmax, ymin, ymax;
unsigned char type, typedata; char ·string;

1.19

Change the parameters 'Of an already existing item. Renlrn zero if the item did not exist, otherwise i tam.
This is equivalent to delc~ting an item and then reinserting it, so the item mllst be part of the open symbol.

short EditSymbol(sdf, item)
short sdf, item;

Open an already exisLing symbol definition for modification. This has the effect of calling
Oef i neSymbo 1 () and inserting all the already existing entries to the definitions list The editing process is
ended'in the same way a'S the initial definition process _. a call to EndSymbo 1 (). Returns 1 tem ifslIcccssful.
o otherwise.

short OeleteSymbol(sdf. item)
short sdf, 1 tern;

Delete the definition uf a symbol. i tern must be a symbol definition. Any dangling instances of this symbul
will remain. but wilt contain nothing. Returns 1 tem if sllccessful. else O.

To continue Lhe example of the previolls section, to create the bicycle figure we would use code like the
following:

short sdf;

sdf • CreateSDF();
DefineSymbol(sdf,4,"Wheel");

Addltem(sdf,O,xmin,xmax.ymin.ymax,O,SDF_GENERAL_LINE,NULL):

(add the components of the wheel symbol)

EndSymbol(Sdf.4.0): .

DefineSymbol(sdf.3."B1cicle"):
AddCall(sdf,5.xl.ymin.4):
AddCal1(sdf.6.x2,ymin,4):
EndSymbol(sdf.4,O);

24.4 .. VGTs and "iews '

Once a client h~lS defined some graphic411 oojects, it also needs to provide information on which objecL'; can
be viewed. Every VCiT (Virtual Gmphics TerminHI) is an item (usmllly a stnsctured symbol) that is associated
wilh onc or more views .. that m.:tunlly appear on the screen. Each VGT can exist in zero or more views, hut
e:lch view has exactly one vaT m;'"lociuteo with it. Thc "SDF Numbers" call he thoughl of ilS separate ohject
dejinitiun SPi.ll;~. while the v(J'rs 41re object illstallce spaces. Symbul definitions are shared between VGTS, but
insUlnces of symbols arc 110t.

Pille VGTS lets a user view objcclC; in any VGTS anywhere on the screen in views. Each view has a zoom
thetor, a winduw on the world coordinates of some VGT, and screen coordinates which determine its viewport.
Although the client can create default views. the VGTS lIser C,lO change them with Lhe window manager, and
create and destroy more of tlleln. Routines for the client's manipulation of VGTs and views:

int CreateVGT(sdf, type, topltem, string)

V-SYSTEM 5.0 REFFltENCE MANUAL PROGRAM ENVIRONMI~NT

120 GRAPHICS FUNCnONS

short sd1; int type; short topltam; char ·string:

Create a VGT. return the VGT number, and put the indicated item as the top-level item in the VaT. The type
can be some combination of TTY, GRAPH1C~, and ZOOMABLE. The Pads created by making l'TY VOTS
can presently only be manipulated by the VaTS or through the 110 protocol interface (See the description of
OpenPad in section 24.7.2). If the ZOOMAllLE bit is set, the view zooming factor can be changed by the
user. The topltem can be zero to indicate a blank VOl'. Returns negative on errors.

int DeleteVGT{vgt)
short vgt:

Destroy the given VOl'. All the views of the VOl' will also be destroyed.

D1splayltam(sdf. topltem, vgt)
short sdf, topltem: int vgt;

Change the top-level item in a VOTe The new item is displayed in evcry view that contains the VaT.

int DefaultView(vgt, width, height. wXmin, wYmin.
zoom. showGrid, pWidth. pHe1ght)

short vgt. width, height. wXmin. wYmin. zoom, showgr1d;
short ·pW1dth. ·pHeight:

Create a view of the given VOT, with the user detennining the position on the screen with the grnphics input
device. '111e wi dth Hnd he i ght parameters give the initial size of the view if they are positive. Zero (or
negative) values indicate Lhat the user should dctennine the size with the mouse at nm-time. See thc View
Manager section of the commnnds manual (chapter 3) Ihr more intbnnation about the user interface.

If the pWi dth and pHe1 ght pointers are non-NULL. then the shorts which they point to receive the
seh . .'cted widLh and height. wXmi nand wYmi n are thc world coordinates to map to Ule Icft and boltom edges
of Ule viewport. The zoom t11ctur is the power of two to multiply world coordinates to get screen coordimlles.
The zoom flu.:tor may bc negative. Lo denote Ulat a view is zoomed out. If showGr1d is non-zero a grid of
points every 16 pixels is displayed in U,e window. Returns negative on error.

24.5. Graphical and Character Input

'111c VGTS maintains an event quelle for c~lch instmlce. and the VGTS associated with Lhe given file instance.
The mode bits of the inswnce give the kind of evcnts tll'lt will be quclled. The fhllowing funcLions arc
av"ilable lu handlc thc event queues:

LISTTYPE F1ndSelectedObject(sdf. x, y, vgt. searchType)
short sdt, x. y, vgt:
charsearchType:

Return a list of items that arc ,it or ncar tllC selected location within tile VOTe Along with each item is a set of
edges. to indicate that the hit was ncar one or m'ore edges of the object. The searchType selects one of
several modes of hit detection. as givcn in tllC <VglC).h) include file. Usually the constant valuc All will be
used. The return type LlSTI'YPE is also defined in this file.

V-SYSTEM 5,0 REFEI~ENCE MANUAL PRO(jRAM ENVIRONMENT

GRAPHICAL AND CHARACTER INPUT

typedef struct MinElement
{

.short
short
struct MinElemeni

} MINREC. *MINPTR;

typedef struct Listlnfo
{

item;
edgeset;

*next;

MINPTR
short

Header~
NumOfElements;

} LISTT~PE;

short popup(menu)
PopUpEntry menu[];

121

Provide a "Pop-Up" menu. The menu argument points to an array of J>opUpEntry structl\n .. ~. each of which
is a string and a code. rll1e array is terminated by a NULL string. The code of the menu item selected by the
user is returned. I f the user clicks out'iide the menu a negative value is returned.

typedef struct
{

char ·string: '* String to display. *'
unsigned char menuNumber; '* Number returned if entry selected. *'

} PopUpEntry;

24 .. 6. Defining and Using Fonts

short Def1neFont(name. fileName)
char "name, I·f 11 eName;

Defines a tbnt lo be lIsed in subsequent SDF-,fnXT items. The name is a pointer to a string giving the name
of t-he font. for example. ··HelveticalOB". The ttHlt is read by the VGTS from U,e file with the pathnnme
given as the second argument. The 111 eName argument call be null to indicate a read from the standard
place. The fhnllD retumed hy lhis cull iSlIscd as the TypeDuta field of the Addltem can for these characters.
A negative return v;'llue indicates an error. Fur exmnple.

short ~oma~ • OefineFont("TimesRoman12". NULL):

AddItem(sdf, 0., A. X. y. y, roman. SOF_TEXT. "Hello")

will display U,e string "Helton in the Timcs Roman font at l2 point size. at the position (x.y) on U,e screen.

24.7. Using the 'VGTS

rn,e constant') for mOllsc search types. VGT usage types, etc. are found in the include file Vgts • h. The stub
routines arc availuble in the defllult V library. so just including the option -Von your cc68 cOllllnunu line for
linking should work. 1>0 NOT include the -lVgts option on yourcomtmmdlinc.

Use -lVgts on your cc command line thr transparently running progmms on a Unix system. Use
-I/usrlsun/inc1ude to get the fi1e Vgts. h. This package uses an escape sequence which can be used
through PUP Telnet. ~p Telnet. or with the remote command execution tucility of Ule executivc. Plcase
contact thc author for the details of this protocol if you wish tu implement it on some other operating systems.
Thcre already are efforts underway tor using this protocol from TOPS-20 assembler programs (c.g. SUDS)
and IntcrLisp.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

122 GRAPHICS FUNCTIONS

24.7. 1. Cooking You r Pads

The following mode bits arc maintained for each pad to indicate the amount of rawness of the 1/0:

CR_Input Change the CR (return) character to LF (UNIX newline) on input. This is for the benefit of
UNIX programs which expect '\n' as a line tenninator.

Echo

LineBuffer

PagcOutput

Change LF to CR -LF on output. That is, every line-feed operation is preceded by a return.

Echo input characters. This bit should be off for programs which can also run on the kernel
console device:

Wait for a Hne of input betore returning. The user interface to the line editing feature is
described in section 2.7.l.

Block the writer each time a pad fills up with outpu~ and wait for the user to issue a
command which unblocks the pad. The user interface to the PagcOutput feature is
described in section 3.3. '11is bit is "on" by default

PageOutputEnable ,
When turned on in a ModifyPad request. this bit causes the new value of the PageOutput
bit to be assigned to a user-controlled, "sticky" enable/uiS41ble bit. The PageOutputEnabte
bit should only be used by "privileged" programs (sueh as executives) as a means to allow
the user to "pennanently" disable paged output mode. A QUER Y _FILE request will
return the actual value of the PageOutputHnable bit.

DiscardOutput When set, this bit eauses all output to a pad to be ignored. It is autumatically set when the
user types 'q' to a pud that is blocked at the end of a page in PageOutput mode. It is
automatic4.llly cleared whenever the VGTS sends input to a program that is reading tj'om
the pad. The bit may also be cleared "manually" via ModifyPad. Application programs
should call ModifyPad to clear this bit betbre sending a prompt to a pad, to insure that the
prompt is not discarded along with any previous output that was discarded at the user's
request.

ReportTransition Report every ch~mge of buttons on the graphical input device us a signific(1n't event.

RcportClick

NoCursor

Report events only When all the buttons have been relensed on the gmpl~ic411 input device.

1)0 not display a clirsor in the indicated pHd.

'Ille defilUJt when pads arc created. or comrn4l1lds arc initially nan by the excclltive. is for "lithe keyboard bit~
to be on, and the mouse bits to be off.

24.7.2. Other Interface Routines

'[be t(>lIowing routines to communicate with the VaTS via the 1/0 protocol interface ,lre in the V library:

File *OpenPad(name,11nes,co1umns,error)
char *name;
short lines, columns:
SystemCode *error:

Retum~1 tile descriptor for a new pnd. error is a pointer to the reply code, normally OK. " NULL pointer is
returned on an error. Note that the me descriptor returned is open fur writing. If you want to 'read from it.
YOli must use Open File to create another file descriptor with the SCJme tileserver and filcid.

V-SYSTEM 5.0 RFFERENCE MANUAL PROGRAM ENVIRONMENT

OTIIER INTERFACE ROUTINES

SelectPad(,file)
File ·f11e;

Causes the indicated file to be selected for input, and brought to the top.

Mod1fyPad(file,mode)
File ·fi1e;
int mode;

123

Sets the Cooked mode of the file. mode is some combination of the bits described in the previous subsection.

int QueryPad(f1le)
File ·file;

Returns the Cooked mode ofthc file. somc combination of the bits described in the previous subsection.

1nt QueryPadS1ze(f11e,plines,pcols)
File ·fi1e;
short ·plines, ·peols;

Gets the number of rows and columns of the specified pad, storing them in thc shorts pointed to by p 1 i nes
and peo 1 s. The valuc returned is the same as for thc preceding function.

GetT!Y()
Pul'i the terminal in raw mode. The UNIX version of this routine docs the appropriate UNIX operation if
s~1nu41rd input is a tty device. otherwise it sends the proper code for the remote executj~)I1 facility.

ResetTTY()
Rcstor~s the mode before the last GetTTY(). RUlls under UNIX as well, chccking standard input properly.

GetGraph1csEvent(f1le,px,py,pbuttons)
File "f i "I e ;
short "px, "py, ·pbuttons;

Waits for a graphicaJ event in the indicated vaT. and returns the world X and Y coordiiultes in the shorl'i
pointed to by px and p,y. '111c stnte of the buttons is returned in t.he short pointed to by pbuttons. Use the
file pointer std1 n to gl::t events in VGTS that were created with CreateVGT ().

SystemCode GetGraphiesStatus(file,px,py,pbuttons)
File "file;
short ·px," "py, ·pbuttons;

Returns after any motion the world X and Y courdinates in the shorts pointed to by px and py. The state of
the buttons is returned in the short pointed to by pbuttons. The value returned will be EOF if the graphics
cursor is not within a view of the given VOTe

GetEvent(file,px,py,pbuttons.ebuf)
File ·f11e; .

V~SYSTP.M 5.0 REFFRENCE MANUAL PROGRAM ENVIRONMFNT

U4

short ·px t .py, ·pbuttons;
char ·cbuf;

GRAPlIlCS FUNCnONS

Waits for any event in the indicated VGT, and returns the world X and Y coordinates in the shorts pointed to
by px and py, and the buttons in the short pointed to by pbuttons if the event is graphical. or else returns
the characters in the butTer pointed to by cbuf. The return value is zero for a graphical event and the byte
count for keyboard events.

RedrawPad(111e)
Waits until the indicated pad. is redrawn.

PadF1ndPoint(vgt,nlines.x,y,pl1ne,pcol)
short vgt, nlines, x. y';
short ·pline. ·pcol:

Convert') a set of world coordinates in x and y into a line and column position within a pad. Currently the
vgt parameter is unused. and the number of lines must be spccified in n 11 nes .

. 24.8. Example Program

The tbllowing program can be nm either under Unix or under the V system ex(,.'Cutivc. -111e #1 fdef VAX
directives allow the programmer to conditionally compile code for one enviro'lmcnt or the other. rt first
creates an SDF and VGT, then displays 100 random objects of various kinds.

,-
- test.c - a test of the remote VGTS implementation
- 8ill Nowicki September 1982
-/

, include <Vgts.h>
, include <Vio.h>

, define Objects 100

short sdf. vgt;

Quit()
(

}

OeleteVGT(vgt.l);
OeleteSOF(sdf);
ResetTTYO;
eltHO;

moinO
{

int i;
short item;
lon~ start. end;

V-SYSTEM 5.0 REFERENCE MANUAL

,- number of objects -/

PROGRAM ENVIRONMENT

EXAMPLE PROGRAM

1# ifdef VAX
p~1ntf("R~mote VGTS test program\n");

1# else VAX
printf("VGTS test program\n");

1# endH VAX
fflush(stdout);
GetTTY() ;
sdf • Crea~eSOF();
OefineSymbol(sdf. 1. "test");
Addltem(sdf. 2. 4. 40. 4. 60. NM. SOF_FILLEO_RECTANGLE. NULL);
EndSymbol(3df. 1. 0);
vgt • CreateVGT(sdf. GRAPHICS+ZOOMABLE. 1. "random objects");
OefaultView(vgt. 500. 320, 0,. 0, O. O. O. 0);

time(&start);
for (1-12; 1<Objects; 1++)

{
short x - Random(-2. 156) ;
short y • Random(-10. 169) ;
short top .. y + Random(6, 100) :
short right .. x ~ Random(4, 120
short layer • Random(HM.

EditSymbol(sdf, 1):
Oe1eteltem(sdf, ;-10):
switch (Random(l. 6))

{
case 1:

NG);
) ;

Addltem(sdf. 1, x, righ't. y, top. layer.
SDF_FILLED_RECTANGLE. NULL);

break:

case 2:
Addltem(sdf. i. x, x+1000, y, y+16. O. SOF_SIMPLE_TEXT,

"Here is some simple text");
break' :

case 3:
AddHem(sdf, i. x, right. y. y+1. O.

SDF_HORIZONTAL_LINE, NULL);
break;

case 4:
Addltem(3d'. i. x. x+l. y. top. O.

SDF_VERTICAL_LINE. NULL);
break;

case 5:
Addltem(sd', 1, x, right. y. top. O.

SDF_GEHERAL_LINE. NULL);
break;

125

V-SYSfEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

126

}

case 6:

}

Addltem(sdf, 1. x. right. top. y, 0,
SOF_GENERAL_LINE, NULL);

break;

EndSymbol(sdf, 1, vgt);
}

time(&end) ;
if (end--start) end - start+l;
printf("~d objects in ~d seconds, or ~d objects/se~ond\r\n".

Objects. end-start. ~bjects/(end-start»;
pr1ntf("Oonel\r\n");
QuitO;

Random(first. last)
{

}

I·
• generates a random number
• between "first" and "last" inclusive.

*' int value • rand()/2;
value %- (last - first + 1);
value +- first;
return(value);

\

V-SYSTEM 5.0 REFE1~FNCn MANUAL

GRAPlIICS FUNCnONS . .

PROGRAM ENVIRONMI·:NT

FIELDS: USING A PAD AS A MENU 127

-25-
Fields: Using a Pad as a·i\t1enu

These routines allow you to set up a table of fields in a pad. They can be selected with the mOllse. so that
you can have a menu. The advantages over the standard pop·up menu are that you can have more choices.
you can display more in formation with each choice. and the menu is always there.

With each fieJd. you c:an associate a value. which c:an be displayed and edited.

lbe menu is an array of Fie 1 ds. These are defined in <f 1 e 1 ds • h). Each Fie 1 d consists of:

typedef struct
{

short row;
short cOIl;
short width;
long ·value;
int (*pr'oc)();
char *fOlrmat;

} Field;

, /. field's row number in pad * /
/ * Icftmost character of field * /
/ * width of tield * /

/* format in which to display *val ue ""/

row and co 1 indicate where in the pad thc field bcgins. (row = 1 and col = 1 is the top left comcr of thc pad.)
width is the length ofthc field in characters. Only one-linc fields are supported. proc is not used by thc
p,ackage it.4;jelf. Thc intended llscage is:

field ~ GetField(...);
if (field) (*field->proc»(field->value);
or perhaps:
if (field) (*fie)d->proc»(field);

forma t is discusscd b<:~I()w.

25.1,. Fo rmats

format is a format like thosc used by pr1ntf and scanf. Together with the valu'e. it determines thc
string to be displaycd in dlC field. :rhis string must bc a Icast wi dth chanlctcrs tong. It is ;'1 zero·lerminateu C
(asci1.) string. Formats arc of the form:

prejix [conversion] suffIX

Here prefix and suffix is constant text which is displayed. I f a % is to be displayed. it must be written as %%.
The following utility routinc will du a :-;tring copy analogous to strncpy. except that %8 <Ire automalically
copied: .

char * StrToFormat(f. s. n)
char *f; '* destination string buffcr where '%'s are to be doubled *'
char *s; /. source string .,
int n; /* cOllntubuffersize *'

The optional COli versiON describes how val ue is to be displayed/read. It.., form is:

%{[-}[O lfieldwidlll}[• precision}fAjc

V-SYS11~M S.O IWFER FNCE MANUAL PROGRAM ENVIRONMENT

128 FIELDS: USING A PAD AS A ME~U

\
Here the % indicates the beginning of the conversion specification. 111C conversion type lctter c marks the end
of the conversion specification." The format is exactly as used by pr1 ntf. except that there may be a data
lengthspecificationA. Ifvalueisashort *ratherthanaint *,Amllstbegivenash. Iftheva1ueisa
doub 1 e * rather than a f1 oat *,. A must be 1, or the conversion type lettcr c must be capitalized.

When fields are displayed. spr1ntf L<; used to do the conversion. The lcngth specification A is only used
to dereference va 1 ue (except for fields where the conversion type letter is s); it is stripped from the format
before being passed to spr1ntf.

On input to fields. only the length specification i\ and the typc code c are passed to sscanf. [f the type
code is e or g. it is changed to f.

25.2. The Field Table as a Menu: Selecting an Action

Field * GetFie1d(menu, menuLength, buttons, pad)
Field *menu:
int menuLength;
short buttons;
File ·pad; '* output pad *'

Ifbutton I- O. it is assumed that the mouse is duwn on procedure entry. GetField returns when the
button state changes: if it changes to non-zero. GetFie1d fai1s by returning zero. If button •• O.
GetF 1 e 1 d will first wait tor an event. (It will tail unless it is a mouse button being pressed down.)

As 10ng as the user keeps the mouse button down. display the selected field (if any) in inverse video. \Vhen
the user releases the button. return the 1a.~t selected Fie 1 d. 01· if none. return O.

The menu is temlinated by the first negative row field. or when the menuLength count is exhausted.

25.3. Displaying Fields

PutField(buffer, field)
char *buffer; '* uc..~tination string buffer *'
Field *field; '* suurce thnnatand v~llue *'

More or less like spri ntf (buffer, fie 1 d-)format, *1 i e1 d-)va 1 ue).

Disp1ayFields(menu, menuLength. pad)
Field *menu;

. 1 nt menuLength; ,- see GetF1e1d function *'
File ·pad; '* output pad where fields are to be written -,

Displ .. y in the pau all Ule string lielus. at U1C positions given by thc row and col components.

. The wi dth components arc ignored. This allows convenient display of material which the user cannot
select ("write-protected" fields) either by using fields with width <. 0 or by having a string tonger than
the width.

V-SYSTFM 5.0 IWF1-:IU~NCE MANUAL PROGRAM ENVIRONMENT

USER INPUT TO fo'IELDS

25.4. User Input to Fields

EditField(field, stuff. out. in)
Field ·field; ,. fleldwhose ·value is to be edited */
1 nt stuff; /. 0: old text should be cleared: 1: stuff into editor ./
File *out, *1n; /* inplltandoutputsidesufpadtouse */

129

Move the cursor to the conversion part of the fie'ld. Ifstuff is O. the old value is cleared from the screen;
if it js 1. the old value is placed in the line editing buffer. Enter line-edit mode, and wait for the user to type
in a line. If the usc!r types 'tG, abort, redisplay old value and return·1. Else parse the line L1sing
f1eld-)format. If this succeeds, update *f1 Iald-)value, returning I, else (}. In any case, redisplay
things correctly.

EditStdFld(field)

Equivalent to EditF1eld(field. 1, stdout. stdin}

ReadStdFld(f1eld)

EqllivalenttoEd1tField(f1eld. 0. stdout. stdin)

25.5. An Example

'* This is a program which adds up integers, optionally scaled *'
#include <stdio.h>
#include cfields.h>
double S~ale ~ 1.0, Total • 0.0;
int Value" 0;

QuitO { .. e c:leanup actions. e.; exit(-l);}

NewValue(f)

(

}

Field ·f;

if (ReadStdFld(f) •• 1)
Total ~. Value • Scale;

Fields Menu(] •
('* VAL (definod in fields.h) coerces pOinters and values to (1nt *) -,

(1. 41. 10. VAL &Scale, EditStdFld, "Scale: %G ").
(1. 1. 15. VAL &Value. NewValue. "New value: ~-8d").
·{2. 1. O. VAL &Total. O. "Total: ~G. "}.
{5. 1. 8. O. Quit. "--Quit--"}.
LASTFIELD ,- defined in fields.h .,

} :

main()
(Field ·field;
. whi 18 (1)

(.
putc('L' & 31. stdout); ,- write FormFeed to clear screen -,
OisplayFields(Menu, 999, stdout);

}
}

field • GetField(Menu. 999. 0, stdout):
if (field) (·(f1eld->proc» (field);

V~SYSTEM 5,0 REFERENCE MANUAL PROGRAM r.NVtt~ONMEN"1

130 FlELDS: USING A PAD AS A MENU

Since the screen is updated every time, here. we do not have to worry about garbage being left behind when
the field becomes shorter. However. I have shown two solutions which can be lIsed when this is not desired:
In the Va 1 ue field, we make sure tile field doesn't become shorter. by left justification if needed. This loses if
we want to Olltput punctuation after the value, as in the Total field. 'In this case, we can make sure that we
output enough trailing spaces to erase the garbage.

25.6. Limitations

No facilities yet for arrays.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

SUN PROM MONITOR G\lULATOR TRAPS 131

-26-
SUN PROM MonitorEmu,lator Traps

The emulator trap interface functions in the V C library are listed below. These are extremely dependent
on the version of the SUN workst:ltion PROM monitor being used. The usc of these functions should be
avoided if at all possible: none of them are present in the Unix C library. For more information see the Sun
User's Guide. Note that not all the traps mentioned there are available under the V kernel, since processes
always run in user state.

1nt emt_getconf1g()
Retll rns the cu rrent value of the "con figuration register.·o

1nt emt_getmemsize()
Returns the size of the on-board RAM in bytes.

char emt_getchar()
Busy~wait input from the console. 'Nill not work unless the kernel console device is closed to prevent it from
"stealing" the characters.

1nt ~mt_putchar(c)
char c;

Busy-wait output to the;: console.

int ~mt_t1cks{)
Returns the number of milliseconds since the monitor was last booted. Incremented ut cnch memory refresh.

1nt emt_version()
Returns U1C version numbcr of the PROM monitor.

1nt fbmode(newmode)
1nt newmode;

Queries/sets the frame buffer mode.

setecho(f1ag)
int l1ag;

Controls whether characters read using emt_getchar() .are echoed.

V-SYSTEM 5.0 IU~FERENCE MANUAL PROGRAM ENVIRONMENT

132 MISCELLANEOUS FUNCrIONS

V-SYSTEM 5.0 REFFIWNCE MANUAL PROGRAM ENVIRONMENT

MISCELLANEOUS fUNCI'1rONS 133

-27-
Miscellaneous Functions

27.1. Time Manipulation Functions

The time-related functions in the V C library arc described below. A few of them are not present in the
Unix C library.

stime(). time(). ftime()

These are Unix system <:alls and are implemented here with simple library functions which emulate the Unix
functions by pcrfonning the appropriate V kernel operations SetTime() und GetTime(). They have the
same interface and functionc.tlity as in Unix: however. ft i me() has the limezone hardwired as Pacitic Time.
since the V-System provides no time zone information.

ct1me(). localt1me(). gmt1me(). asctime(). timezone()

Thcse are identical to the Unix library functions.

sleep(sec6nds)
unsigned seconds:

The invoking process is suspended from execution for the specified number of seconds. The actual time may
be considerably longer rJlan that specified if the proccs.."i is not the highest priority ready process when it., sleep
time expires. sleep () i~ not sensitive to Wakeup ()'s. Use the V system cilll De 1 ay (). tl>r a
Wakeup()-able suspension.

unsigned GetRemoteTime()

Returns Ule time according to the TIM E_SHRVER in seconds since January 1. 1970. GMT. Returns zero if it
fails. e.g .• no time serveli responded. Currently the Unix servers act as time servers.

27.2. Strings

The string-related functions in the V-System C library are described below.

27.2.1. Unix Siring Functions

The following functions are identical to the functions of the same name provided by U nix. See the Unix
Programmer's Alanual for documentltion.

atof()
ecvt()
strcat()
strcpy()

atoi()
gcvt()
strncat()
strncpy()

V·SYSTEM 5.0 RErt~RFNCE MANUAL

atol()
index()
strcmp()
strlen

crypt()
rindex()
strncmp()

PHOGRAM ENvmONMENT

134 MISCELLANEOUS fUNCl'I9NS

27.2.2. Verex String Functions

lbere is also another set of string manipulation functions which were ported from Verex. These include the
following:

int Any(c, string)
char c; char ·string;

Determine whether there is any occurence of the byte c in the string string. and return true (nonzero) ifso.
else false (zero).

char *Concat(dest, s1, s2, s3)
char *dest, *s1, *s2, ·s3;

Concatenate the strings s1. s2. and s3, store the result in dest. and return dest. dest must have enough
room to store the resulting string. If any of s 1. s2. s3 are null pointers. the remaining arguments are
ignored.

int Convert_num(string, delim, base)
char *string; char ··delim;. unsigned base;

Parse the given string to extract a number of base base and return its value. [f base is zero, the initial
character of the string determines the base, as follows

/I Base2
o (zero) Ruse 8

S 1t1se 16
otherwise Base 10

Upon return. ·dal1m is mudified to contain a pointer to the delimiter that terminated the number.

char *Copy_str(string)
char ·string:

Copy the gi·vcn string into a newly allocated region of memory and return a pointer to the copy. The new
region is allucated lIsing malloc() and may thus be freed using free() when the copy is no longer needed.

1nt Equal(s1, s2)
char ·s1. *s2;

Compufe the string., s1 and s2. Return true (nonzero) if the strings are equaJ, else false (zero). Strings are
cunsidered lo he equal if and only if they arc of equal length (up to the terminating null byte) and each
corresponding byte is the same.

1nt Hex_value(c)
char c;

Return the value of c, interpreted as a hex djgit Return -I if c is not a hex digit

char *Lower(str1ng)

V-SYSTFM S.O RFFERFNCE MANUAL PROGRAM ENVIRONMENT

VEREX STRING RJNCfIONS

char ·stringj
Convert al~ alphabetic charactcrs in s ~ r in g to lower case and return s t r in g.

unsigned Null_str(string)
char ·stri ng:: .

135

Return true (nonzcro) if string is a null string (Le .• oflcngth zero). clse return false (zero).

char ·Sh1ft_left(string. chars)
char ·string: unsigned chars:

Delete the leftmost chars characters of stri ng by shifting thc remaining characters to the tcft. and return
str i ng. str i ng must be at least chars charactcrs long. but this condition is not checked.

unsigned Size(str1ng)
char ·string:

Return the number ofcharactcrs in the given string. Lc., the index of the null byte that terminatcs the string.

char ·Upper(string)
char ·string:

Convert all alphabetic c:haracters in stri ng to upper case and return str1 ng.

27.3. Other Funtctions

qsort(base. ne1. width, compare)
char ·base; int nel, width; int (·compare)():

Implements the quicksort algorithm. base is a pointer to the buse of the datil; ne 1 is the number of
clements: wi dth is til': width of an clemcnt in bytes; and compara is a function to compare two clel1lcnts.
The functiun compare must return an intcger less than. equul to. or greater than zcro. if the first argument is
less than. equal to. or greater than the sccund. respectivcly.

setjmp(anv)
jmp_buf anv;

longjmp(env. value)
jmp_buf env; int value;

setjmp() savcs the s:l41ck environment in any. ·SO lhnt a later c;JII lo longjmp() wilt act like a return was
made from the function which contained U1C cull to setjmp (), with return vallie va 1 ua.

char ·ErrorStr1ng(error)
Sys~emCode error;

Returns a pointcr to n string describing the system request or reply code error, in human readablc tcnns.
Usc tllis in error messages instead of printing the numeric value of Ule code.

Y·SYSrEM 5.0 I~EFFRENCH MANUAL PROGRAM ENVIRONMEN't'

136 MISCllLLANEOUS FUNCTIONS

PrintError(error, msg)
SystemCode error; char ·msg:

Prints the string" msg and an exptan?tion -utthe SystemCode error on the standard error file.

v-SYSn:M 5.0 RFF1~REN(,E MANUAL PROGRAM ENVIRONMENT

SERVERS 137

Pa rt III:

Servers

V-SYSTFM 5.0 IH~FERENCE MANUAL SFRvm~s
• Ii'

138 SERVERS OVERVIEW

V-SYSTFM 5.0 RFFFRENCE MANUAL SERVFRS

SERVERS OVERVIEW 139

-28-
Servers Overview

All system services other than those implemented by the kernel are provided by sending a message to one of
the system server' processes. This manual describes the protocol for requesting these services. including the
fOimat of the request message. the format of the reply message, the possible values for the message fields. and
the process that handles Lhe request. This information is generally not requir~d by application programmers
because the protocol is implemented in a library of standard functions that provide system services via simple
function calls. The library is described in the V-System program environment manual. More sophisticated
usc of the system requires the more detailed information in this manual.

This ch<lpter describes some gencml mes.o;age format standards used in communicating with servers. The
next two chupters give details of two swndard protocols. the V-System I/O Protocol and V-System Naming
Protocol. The remaining chapters give the t1ct41ils of the particular servers. describing which oj" lhese protucols
they implement. additionul server-specific reqm.'St types they provide. and the server-specific semantics of the
services and requests each implements. ,

28 .. 1. Message Format Conventions

System server protlx:ois obey several system-wide conventions. 'n,e tiest short word of every request
message contains a requcst code indicating the service requested. The first short word of every reply message
contains a co<ieindicating the successful completiun of the request execution or the reason lhat the I:equest
was nol executed n0I111al1y. 1\ requcsting proceSs can assume that the request hus been completely executed
when the reply messag<! is received with a sliccessful reply code (although in cases Stich as disk write-behind
this may not be strictly tme).

28s2 .. Standa rd System Request Codes

Each system requC!lt is allocated a uniqllc request code to he placed in lhe lirst word of the request message
when requesting that service. '111e request codes obey the mes.'mge lhrmat conventions imposed by the kernel,
as described thr Send() in the V environment OlJlnual. The manifest constant definitions for these request
codes are uetined in the sttnd"lrd C include tile <Venviron.h).

28 .. 3 .. Standard System Reply Codes

The rcply code retUlrJ1ed in a mes.~lge from a server is nonnally one of the following standard system
replies:

OK

ABORTED

Operation successful.

An operation was aborted. For example. a ~etwork connection thilt has been aborted
retums this code.

BAD_AD~RESS Request contains an invalid memory address.

Request contains flcld(s) with illegal or inconsistent values.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

140 SERVERS OVERVIEW

The block number specified in an 1/0 request docs not specify an existing blocK. If the file
instance has attribute STREAM. the block number does not specify the block which is
sequentially next in reading or writing.

BAD_BUFFER A buffer specified in the request lies (perhaps partially) outside the client's address s?ucc.

BAD_BYrE_COUNT
The byte count is larger (or smaller) than that supported by the scrver. On a file instance
without the MUL'n_BLOCK attribute. this is returned if the number of bytes requested to
read or write is greater than the block size.

BAD_PROCESS_PR10RITY

BAD_STATE

BUSY

The request specified an illegal value for a process priority.

Request invalid at this time.

111C server cannot satisfy thc request at this time. probably because the requested resources
arc allocated to another client. .

CURRENT_CONTEXT_INV AI.ID
Normally only returned by library routines. not servers. The routine has detected lhat Lhe
current context of the calling proc,css is invalid. probably because its process-id component
refers to a nonexistent pro~cs.');

DEVICE_ERROR
File or device-dependent error has occurred.

DUPIJCATH_NAMH
The request attempted to assign the same name to two different objects.

END_OF_FlI,E Attcmpt to read beyond file boundaries.

U.LEOAI,_REQUPST
Invalid request code. The requcst was probably sent to the wrong type of server. one which
could nut perfht:m that function. .

INTERNAl ,_ERROR .
'l1lc server detectcd an inconsistency in its own sUIte. This error code InUY indicate a bug in
the server.

I NV ALI D_CONTEXT
'Ille request contained a context idcntiJier (see chapter 30) that was invnlid.

INV ALID_FIl.E_ID
The request contained an invalid file instance identifier.

INV"LlD_MODE
rille mode specified <lS pnrt ofa CREATE_INSTANCE request is not valid.

10_BREAK Ret\lrned from interactive files.

KERN EL_TI M·EOUT ..
A timeout occured in the kernel when trying to send to a remote process. This error dilTers
from NONEXISTENT_PROCESS in that the sending kernel did not receive a negative
acknowledgement from the remote kernel. but for most purposes it can be handled in the
same way. 'Illis error code is only generated by the kernel. but may be passed on by other
servers.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

STANDARD SYSTEM REPLY CODES 141

The mode specified as part of a CREATE_INSTANCE request is not supported by this
server ..

NO_MEMORY The server was not able to obtain enough memory to satisfy the request.

NO_POS The server was not able to create a process or team needed to satisfy the request.

NO_PERMISSION
Some kind of restricted operation was attempted.

NO_SER VER_RESOURCES
The server has (temporarily) inadequate resources to satisfy the request

NONEXISTENT_PROCESS
The request was sent or forwarded to a nonexistent process, or a nonexistent process was
speciticd in the request This error code is only generated by the kernel. but may be passed
on by other servers.

NONEXISTENT_SESSION
The request referred to a session (see chapter 36) which docs not exist. or to an ohject
which is not a session.

NOT_A W AITINGREPLY
The process specified in a request was not awaiting reply from the client.

NOT _~OUN 0 The object named in the request was not found.

NOT _R RA 1)/\ BLE
Specified file instance docs not have the attribute READABLE which is required for the
reqm:sted operation.

NOT_ WRITEABI.E
Specified me instance docs not have the attribute \VRITEAnI.E which is required for the
requested operation.

POWER_Ft\II.URE
Operation was unsucessful due to a power t:1ilure.

REQUEST_NOT_SUPPORTED
The ~erver recognizes the request. but docs not support it.

RETRY Client should repeat requcst

SER VER_NO'I'_RESPON DING

TIMEOUT

Thc server tailed to receive a response from another server specified in the request

An attempt to satisfy the request failed because of a timeout Usuully applied to network
connections.

'111C ErrorStr 1 n9 () function described in the V Fnvirollment manual will return a character string
version· of nmny of the· system reply and request codes. The string furm is much more in fbnnative than
printing the codes in numeric fonn.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

L42 TIlE V-SYSTThVt 110 PROTOCOL

V-SYSTI~M 5.0 REFERENCE MANUAL SERVERS

'nm V~SYSTEM 110 PROTOCOL 143

-29-
The V·System I/O Protocol

A standard input/output protocol is defined in V to provide transfer of data between processes in a unifonn
fushion. Using this protocol, a clienl process views and accesses data managed by a server process as afl/e. A
file is a ··view" of the data associuted with an object or activity managed by a server. An object viewed as a
file is a sequcnce of variable-size records or blocks.

To operate on an objc:ct viewing it as a file. it is necessary to create an instance of that file. The protocol is
object-based in the sense that it is defined in terms of operations on a object. the me instance. File instance
operations include: creating a file instance. querying a me instance, setting the file instance owner, reading,
writing. and relca.4iing file instances. There are also operations for setting a prompt string and break process
associated with a tile instance which are restricted to interactive tile instnnces. A server that supports lhis
protocul is called an I/O server or tile instlnce server. (The tenn .. tile server" might be more appropriate if it
did not have a ditTerent established meaning in the research literature on distributed systems).

/\ me instance is creat.ed by a server in response to a client request. which specifics the me. i.e. the object or
d,1~1 and the particulur view and usage required. Conceptually. a me instance is an object which is created at
the time of the client's CREATE_INSTANCE request. and (possibly) initialized to contain the same data as
an existing. pennanent tile. When the instance is rcie,lscd by the client. the data contained in the instance is
atomicaJly written back to the corresponding penmment file. For some servers (for example, the inlernetwork
server). however. there is no pemlanent me corresponding to an instmce. while for olhers (thr example. the
device server). there is ctlcctivcly no distinction between the instance and the pelmanent file •• changes in the
ins~1nce are immediately reflected in the underlying tile or 110 device. The current implementation of some
storage servers (e.g .• the V Unix server) also causes changes in an instance to be immediately reflected in the
underlying file~

/\ tile ins~1nce is uniquely identified by the server process identifier and the ills/alIce idel1tifier returned by
the CREATE_INSTANCE request. '1l1e creating process is mude the owner of the tile instlllce. The lifetime
of the me instance and the valiJity of the insulIlcc identifier docs not exceeu that of the owner of the tile
instl111ce. The owner of a file insl,lIlce can be chungcd by the SEr_INSTANCI~_OWNER request.

'Ille reply mcs..'.;age to a CREATE_INSTANCE or QUERY_INSTANCE request specities the server. me
instance identifier. block length in bytes, tile type, last block (written) in the Iile instance, nllmber of bytes in
the last block. and the next block to rend.

The file type indicates the operations that may bc perfonned on the tile instc1nce as well as dle semantics of
these t'perations. Thesc types are defined in the include tile <Vio.h>; file types arc specified as some
combination of dle Ihltowing attributes.

READt\BLE READ_INSTANCE opcl1ltions are allowed on the me inst41nce.

WRITEABLE WRITE_INSTANCE operations are allowed olllhe me instance.

APPEND_ONLY WRrrE_INSTANCE operations arc only effective to bytes in the file instc111ce beyond the
last byte associated with the instance at the time it was created.

STREAM All reading and writing is strictly sequential. The first READ_INSTANCE operation rpust
specify the block number returned as /lextblock in the reply to the CREATE_f NSTANCE
request This next block number to rend is incremented aftcr c41ch READ_INSTANCE
operation. Its current value is returned by a QUER Y _INSTANCE. A server must store

Y·SYSTEM 5.0 RFFERENCE MANUAL SFRVERS

]44 THE V-SYSTf:M (f0 PROTOCOL

the last block read and allow it to be read again, to provide duplicate suppression on
requests.

Similarly. each WRn'E_INSTANCE operation must specify the block number returned as
las/block by CREATE_INSTANCE or QUERY_INSTANCE. This block number is
incremented after every write operation. A server must ignore requcsts to rewrite the Jast
block written, returning a reply code of OK, to provide duplicate suppression on requests.

A tile instance without the STREAM attribute stores its associated dau\ for non-sequential
("random:') access. That is. on a non-stream file, for any n. block n may be read or written
at any time. and reading block n wi11 return the same data as was last written to block II.

Since each tile models a single sequcnce of dum blocks. objects which provide bidirectional
communication. such as serial lines or nctwork connections~ are most appropriately
modeled as a pair of tile instances. one a R RADA nLE STREAM. the other a
WRITEABLE STREAM. Some servers may allow both instances to be created by a single
CREATE_INSTANCE request 13

FIXED_LENGTH "
The file instance is fixed in length. The length is spccitied by thc lust block and last byte
returned from n create or qucry instancc requcst. Otherwise the tile instance grows to
accommodate Ule data written or else the length of the file instance is not known (as in the
case of terminal input).

v ARIABLE_I1LOCK
Blocks shortcr than the ful1 block size may be returned in response to read opcrntinns other
than due to end-of-tilc or other exception conditions. For example, input frames from a
communication line may differ in length under nonnal conditions.

With a tile instance that is V ARIABIJ~_BI.OCK, WRrI'EABLr~ and not STREAM,
blocks that are written with less than <1 tllll block size number of bytes return exactly the
amount written when read subscquently.

MULT,-BLOCK Read and write operations are allowed that speciry a number of bytes larger than the block
size.

I NTERACl'IVE '111e file instn"nce is a text linc-oriented input strcnm on which a prompt can be set lIsing the
SI'T_PROMIYI' request and a break proces.~ can he detinecJ lIsing the
SE1'_BR EA KJ>ROCESS request. It alst) h~,s the connolation of supplying interactively
(human) generated input.

Not all of the possible combinutions of attributes yield a useful me type. The tile instance types supported
by C<lch server arc documented with each server.

A client must specify a mnde of usage fhr the me instance when creating it. '111e mode is one of FREAD,
FCREAT'-: .. FMODIFY and FAPPEND. The modes ofusnge have the tbl10wing semantics.

No write opcratiuns are to be pcrfor~ned. only re41ds. I'READ

FCREATE Any data previously associated with the described tile is to be ignored and a new file

13 A few existing servers bend thi~ rule by a.c;signing the s.1me instance id Lo the input and output streams, even though block number n
of the input stn.-nm" Lot unrelatcd to block number n of the output strc:lm. Strictly !I"pC'J.king, this behavior is in violation of the protocol,
and we plan to change these servers eventually. A single STRFJ\M thut is both READABLE and WRITEAIlI.E would have to return
the dntn written to hloclc n ir block n Lot later read back. ·111i. .. type of file might be used to model a Unix-like pipe. but in fact, Ihe
V-System pipe server (l'iCC chal)ler 33) talces a diITerellt approach, creatinQ a scparo.lc instance for each end of the pipe, with lhe
connection belween them invi."iiblc 10 the protocol.

V-SYSTFM 5.0 I~FFERENCE MANUAL SERVERS

TI IE V-SYSTEM I/O PROTOCOL 145

FAPPEND

FMODIFY

instance is to be created. Write operations are pcmittcd; read operations are also
permitted if the file instance has type attribute READABLE.

Data previously associated with the described ftle remain unchanged. Write operations are
permitted only to append data to the existing d~ta.

Exist:ing data is to be modified and possibly appended to. Both read and write operations
are required. This is only supported on file instances that are not STREAM.

A server creates a file instance of a suitable type for the specified usage mode if it can. For example. the
storage server provides file instances with type attributes READABLE. FIXED_LENGTH and
MULTCBLOCK in response to a CREATE_INSTANCE request specifying FREAD usage mode.

One of three modifiers may be used on the mode field ofa CREATE_INSTANCE request.

FDIRECTORY fndicates that the given name specifics a context directory. See section 30.7.

FEXECUTE

FSESSION

Specifics that the given file is to be executed ac; a program on the storage server machine.
The mode must be FREAD or FCREATH. Respectively. one or two file instances are
returned, which allow reading from the program's Stllnd,lrd output, and optionally (in
FCREATE mode) writing into its stand4lrd input When two instances arc created. the
meiu of the sccond (readable) file instancc is obtained by adding 1 to the mcid of the
writeable instance (which is returned in the reply message). This mode modificr need not
be supported by all storage servers.

Spccifics that 41 session is to be created on the server machine. llsing the (milt-separated)
user name and pussword passed in the tilcnull1e field of tile· CREATE_INSTANCE
request. The file server pid returned is the proccs..", id of the session. Releasing the tile
insul1I1ce id returncd will tenninate thc session. The session will also bc tenninilled after
the death of tile instance owner. This mode modifier is only supported by storage servers
tllat lise the concept of "session:' See section 36.

The following sllbsc(;tions give the fimnat of lIle' request mes.~1ge and the filrmat of the reply, pillS a
description of the semHlltics tor each operation in the protocol. These message fonnats are detined in the C
include file <Yioprotocol.h). . .

29.1. CREATE INSTANCE

requcstcodc CREATE_INSTANCE

tilenameindex '111e index of the first byte in the filename to use in tile name mapping.

type Type: of file to creat~an instmce of. This is used. for example, to specify the device to the
device server and protocol to dle internet server.

filemudc: Desired usage mode indicating I.'READ. FCRF"T"~ FAPPEND or FMODIFY, plus
. optionally FDIRECrORY, FHXECUTr~ or FSESSION.

unspecified Server-dependent in formation specifying the file to ·be created.

contextid Specifies the context within the server in which tile fllename is to be interpreted. (See
section 30.2.)

filename· Pointer to a byte army containing the symbolic name of the server or. tile.

filenamelen . Number of bytes in tilenamc. not including the terminating null byte.

V~SYSTFM S.O REFERENCE MANUAL SERVERS

146

replycode

fileid

fileserver

blocksize

tiletype

filelastb lock

filelastbytes

fi]enextblock

TIlE V·SYSTEM 1/0 PROTOCOL

Standard system reply. If the reply code is not OK. the file instance was not created and
the remainder of the reply is not defined.

File instance identifier. This is the number used in subsequent operations on the file.

Process identifier of the server manuging this tile. This is not necessarily the same as the id
to which the request was sent.

Maximum size in bytes of a block.

Type attributes oftl}e file instance as described at the beginning of this section.

Index of the last block in the me or of the last block written to the file instance if it is a
STREAM tile. Indexing is O-origin.

Number of bytes in the last block. For file instances which arc not WRITEABLE and not
FIXED_I.ENOTH. this field and the jile/aslblm.:k field should return the maximum
unsigned integer.

Number of the next block that cnn bc reud if this file is a READA BLE STREAM.

'nlC CREATE_INSTANCE requcst is issued cither directly to the server or sent via a name server process.
I n the thrmer cnse. the use of the tields of the requcst is server-dependent and is documented for each server.
In the latter cusc. the ullspedjietl field is not tilled in by the client The name server mups the symbolic name
to a server and a server-dependent description of the file and then forwurds the request to the appropriate
server. "n I/O server may not use the filename. jilename/ell. and jilellam()index tields if it docs not support
symbolic nilming.

'111e jileid and ji/cserver uniquely identil,'y the tile instance created. The tile instmce exists until released or
until the requ(.'Sting process ceases to exist.

29~2. QUERY INSTANCE

requcstcode,

tileid

replycode

tileid

tileserver

'blocksize

flletype

filelnstblock

tileiastbytes

File instunce identi tier.

A standard system reply. If the reply code is not OK. the file instance was not queried 'and
the remainder of lhe reply is not defined.

File instmce identifier. SHme ns the request for compatibility with the reply to the
CR I ~TE_I NSTA NCE request.

Server proC~ identifier.

The maximum sizc in bytes of a block.

Type attributes of the tile instance as described at thc beginning of the section.

Index of the Inst block in the tile or the last block written to thc file ins~lnce if it is a'
STREAM me. Indexing is O-origin.

'11C number of bytes in the Inst block.

V-SYSTEM 5.0 I~FFERFN('E MANUA" SERVERS

QUER Y INSTANCE 147

tilenextblock Number of the next block that can be read if the file is a READABLE STREAM.

In response to a QUERY_INSTANCE request message. the server queries the file instance specified by
fileid for the parameters supplied in the reply message. The reply message has the,same fOimat and semantics
as the reply to a CREATE_INSTANCE request except for the reply code. For example, a reply code of
NOT_FOUND to a CREATE_INSTANCE request indicates that the file specified does not exist. while a
reply code of INY ALID_FILE_ID to a QU ER Y _INSTANCE request indicates the file instance docs not
exist

29.3. RELEASE INSTANCE

requestcode

tilcid

re!ea..-;cmode

replycode

RELEASE_INSTANCE

Pile instance identifier

Servcr·uependent acti()n to perfolm when releasing the instance. This field is set to zero
on a normal close.

A standard system reply code .

. In response to a RELEASE_INSTANCE requcst. the server invalidutes the instttnce idenlilicr, reclaims
server resources dedicated to the insulnce and possibly pertbnns some server·dependent function with the tile
insumce data. A releasf:'lIlocie of 0 indicates nonnal (;ompletion of the usc of the file instance. For example. in
the cnse of the printer server. the tile instance data is printed. In the case of the storage server, tile data
atomically replaces the previolls version of the stored file data. A non-zero release mode causes the data to be
discarded.

A server may release a tile inst;.mce with a non-zero release mode if it detect., that the process that created
the inst4mce no longer exists. A server should 1n4lximize the time bctbre rellsing a file instance identi tier.

29.4. READ INSTANCE

requcstcode

fileid

block number

butTerptr

bytccount

rcplycodc.

fileid

shortbuffer

File ~nstance identifier

lnde:" of the block in the me from which the read is to begin,.

Address of the data buffer in which the duta is to be moved if more Ulan
IO_MSG_IlUFFER bytes are rcnd. That is, IO_MSG_BUFFER is thc maximuHI number
of data bytes that tit in the mcssnge.

Number ofbytcs to be read.

Standard system reply code.

Sum.! as in request.

IO_MSG_BUFFER bytes containing the data bytes read if less th4ln or equal to

V-SYSTFM 5.0 REFERnNCE MANUAL SERVERS

148

bytecount

IO_MSG_BUFFER bytes.

Number of bytes read.

TIlE V-SYSTEM 1/0 PROTOCOL

In response to a READ_INSTANCF. request. the server transfers up to bytecoullt bytes from the file
instance stc1rting at the block numbered bloekllumber. If the number of bytes read is lcs.~ than the number
requested. the reply code indicates the reason. If the tile instuncc has the type attribute VARIA B1JLBLOCK
and the block being read was not the full block size specified for the tile instance, this case is not an error, and
the reply may be OK, or END_OF_FILE if the last block was read. Note that a client may ignore the reply
code if the returned byte count is equal to the requested byte count. so servers should set the byte count to
zero on error conditions.

If the number of bytes read is less than or equal to IO_MSG_BUFFER. the data read is contained in the
reply mess.:1ge sturting at sJlOrlbuffer. If it is greater than IO_MSG_BUFFER. the datc'\ read is transferred into
the space of the requesting process starting at the address buJJerpl',

If the file instc1nce has the type attribute STREAM, the block number specified must be thc next block to
re41d for this instance. which is incremented after the read. Read'\ always start at the beginning of the
sp(.'Cified block. 'Inc values of bytes reud that were not explicitly written are undefined. The number of bytes
requested must be less than or equnl to U1C block size unless thc tile insti.lnce has Ule type attribute
MULTCBLOCK.

29.5. WRITE INSTANCE

requestcode

tileid

blocknumber

shortbufTer

bufferptr

bytccount

replycode

bytccount

WRITE_INSTANCE, or WRfTESl-IORT_INSTANCE if byleC()UIII is less than or equal to
IO_MSG_BUFFER.

File instance identifier.

Index of lhc block in thc tile insumce at which the write is to begin.

Data bytes to be written iftess than or equul to IO_MSG_BUFFER.

Addres.~ of the data huffer if no more lhan IO_MSG_BUFFER bytes arc being written.
Otherwise, this lielc.l nmy he overwritten by Ule d~lta bytes.

Number of bytes to be written.

Standard system reply code.

Number of bytes written.

In response ttl a WRITE_INSTANCE or WRITESJIORT_INSTANCE request. the server tmllsters lip to
by'reou", byt<.'S to U1C' file instHllce stm'ting at the block numbered b/(}ckJllllllbrr. I f the numher of bytes
written is less thun the numher requcsted. the reply code indicates the reason. As with READ_INSTANCE. a
client may ignore the reply code if the returned byte count is equal to the requested byte count. so servers
should set the byte count to zero on crror conditions.

If the number of bytes to write is less than or equal ttl IO_MSG_BUFFER. the data is as.'ltIrncd to be
contained in the request message stlrting at slwrtbuffcr. If it is greater than IO_MSG_BUFFER. the dati is
transFerred from the spnce of the requcsting process starting at the address bt(Oer,,'r. Writes always slart at the
beginning of the specified block. Note Ulut U1C separate request code WRITESlIORT_INSTANCE is used

V·SYSTEM 5.0 RFFERFNCE MANUAL SERVERS

WRITE INSTANCE 149

when the da~'l is contained in the message only to be consistent with the kernel message fOimat conventions.
'111ere is no REAnSHORT_INSTANCE needed because the data is passed back in the reply. That is.
vVRITE_[NSTANCE specifies that segment access is being passed while WRITESHORT_INSTANCE
specifies no segment access.

If thc tilc insmncc has typc attributc STREAM. Utc block nllmher specified must be one greater than the
last block in this tile instancc. which is incremcnted ~lftcr thc writc. The number of bytes to writc must bc less
than or equal to the block size unless the tile instance has thc type attribute MULTI_BLOCK.

29.6. SET INSTANCE OWNER

requcstcode SE"l'_.INSTANCE_OWNER

filcid File instance identifier

instanceowner Process identi fier of new tile instance owner.

replycode Standurd systeill reply code.

In response to a SE'I'_INSTI\NCE_OWNER request. the server sets the file instance owner process to that
specified by iIlSLanCl'mVfler. The reqw. .. 'Sting process must be the current owner of the tile instance. The initial
owner of a tile instance is the procC8.'t that created the instance.

29.7. SET BREAK PROCESS

req 1I estc ode

tileid .

brc~lkprocess

replycode

S .·n·_.I~R EA K_PROCESS

File instance identifier

Procc!SS to be "broken" when next brenk gener~lted on this tile instnllce.

Stand,lrd system reply code.

(n response to a SETJlREAK_PROCESS request. the server sets the break proces..~ associated with the file
instance to the process specified by breakprocess. When a break is generated on this file (the IO_BREAK
reply returned to any outstanding read operations). the server isslies a l)cstroyl'rocess kernel operation on the
spcci tied process.

This requcst is only supported 011 tile instlf1ccs wilh type attribute INTERACI'IVE.

29.8. SET PROMPT

. requcstcodc

fl1cid

SET.'pROMPT

File instance identifier

V-SYSTEM 5.0 RI~I"lmENCE MANUAL SI~Rvm~s

150 TIlE V~SYSTEl''yl I/O PROTOCOL

promptstring Prompt string. which must be iess than IO_MSG_BUFFER bytes long.

replycode Standard system' reply code.

In response to a SKr_PROMPT request. the server set') the' prompt string output previolls to every read
operation to that specified. This request is only supported on file instances with type attribute
INTERACl'IVE.

29.9. QUERY F1LE and NQUERY F1LE

requcstcode QU RR Y _FILE

fileid File instancc identifier

requestcodc NQUER Y _FII.E

numeindcx The index of the first byte in the tile mlme to usc in the name mapping.

unspecified Up to the lasl three 32-bit words in the message.

namccontextid Context in which dle name is to be interpreted.

nameptr Pointer to a memory segment containing the file name.

namclength I ,ength of the segment in bytes.

rep I ycode Standard system reply code.·

unspecified Server dependent infOlmation.

In response to a QUER Y _FII.E or NQUI~RY _FILE requcst. the server returns server specilic information
abuut the file or file instancc. For example. the VGTS returns the ··cooking" bits. and the internet server
returns connectiun inlormnlion. t\ QUER Y _FILE requcst specifics lhe tile using '1Il insumce identitier, while
a NQU ER Y _FlI.H request uses a ChiliJcter-string n41me. Buth types of request return the same infhrmation.

29.10. MODIFY FILE and NMODIFY FILE

requestcode

fileid

unspecified

requcstcodc

nameindex

MODI FY _1'1 I.E

File instance identifier

Server-dependent information.

NMODIFY _FILE

rIlle index of the first byte in the me nnme to use in the nnme mapping.

Y·SygTFM 5.0 RFFERFNC'E MANUAL SFRYERS

MODIFY RLE AND NMODIFY RLE 151

unspecified Server-dependent information. Up to the last three 32-bit words in the message.

namecontcxtid Context in which the name is to be interpreted.

nameptr Pointc:r to a memory segment containing thc file name.

namelengt~ I.ength of the segment in bytes.

rcplycode Standard system reply code.

The MODIFY_FILE and NMODIFY _FILE requests are supported by some servers to modify some
attributes of the tile or file instancc. For example. thc VGTS uses MODIFY_FILE to turn echoing on and
off.

A MOD{f~_F)LE request spccifies which tile is to be modified by passing an instancc identifier, while an
NMOlJlFY _FILE reqll(~t passes a character string name. .

V-SYSTEM 5.0 RFFFRFNCE MANUAL SERVERS

152 THE Y·SYSTEM NAMING PROTOC;OL

Y-SYSTFM 5.0 REFERENCE MANUAL SERVERS

'nIH V-SYSTEM NAMING PROTOCOL 153

~30-
The V-System Naming Protocol

A nu~ber of V-System services use character string names to specify. the objects to be operated on. and
many standard message types include space for such a name. Exmnples include the CREATE_INSTANCE
request and several other requests described above as part of the 110 Protocol.

Name mapping in the V-System is performed by a collection of cooperating server processes rather than a
single. monolithic "name server," The V-System Namillg Protocol consists of a unifonn format t()r request
messages that contain symbolic mImes. and a sman set of request types which must be handled specially by
any server that implements the protocol. 'nle protocol also specifics conventions for «)rwarding partial1y·
interpreted requcsts from one server to another.

30.1. Character String Names

Syntactically. a character sIring flame (CSllamc) is ;J. sequence of zero or more bytes. of a spcciticd length or
else terminated by a null byte. Openttionally. a charucter string name is a byte string as above lhat is useu to
specify an object relative to ;J. server that C4tn interpret the name. There is no universal limit on the length of
character string names .. Two CSnames ure cqunl if and only if they arc byte-wise identical and cqllul in length
(where 41 null in the name tukes precedence over the length specification).

Although CSmmles may COIlt..1ill arbitrary bytes. they are generally specified or chosen by the client (as
opposed to the server) and arc lIslmlly hUITIan-reuuable ASCII strings.

The term characler slrillg IUlUle hanciling serv('r (C. .. \tN H server) retcrs to any server that perfonns character
string !lame mapping. regnrdlcss of what else 'it docs. The tenn C.';'lIame requesl describes any request
contilining a character string nmne that must be mapped in order to perfoml the requested operation.

I

30.2. Contexts .and Context Ids

In general. Ule interpretation of a string nHme depends on the context in which the name is used. Formally.
a context is a set or (name. objcct)-tuples. A context can have an arbitrary set of members in theory. In the
V-System. the context of a name includes (1) Ute server to which Ute nume is to be sent. and (2) the place
within that server's naming hier.archy where interpret41tion is to begin. or more generally, the context within
the server. A server is specified by its process id. while a context within a server is specified by a cOlltext
identifier. A context identifier is it 32-bit identitier assigned by the server. Thus in general, a context is
specified by a (server-pid. context-id) pair, .

'Illis definition does not specify detailed semantics thr contexts. le4lving it to individual servers. This is
similar to the I/O protocol where. thr example. the senmntics of writing lo a file instance is not specified but is
server-dependent. '(hus. each name server must spccify the semantics of its contexts. For example. while a
tile server may implement a purely hierarchical name space and. only implement contexts that modify the
semantics of so-called rel~ltive puthnames. a internetwork server may implement contexts that correspond to
different networks. or sets of hosts talking particular protocols. etc.

" context-id has the same lifetime as the server. Thus. after a context-id is acquired by a client, there is no
need (and no way) to release it when the client is finished using it. A context-id identities lhe context itselt:
not an Uinstance'o of the context Therefore, we have made context-ids rcl~llivcly long (32 bits).

V~SYSTEM 5.0 REFFJH~N(,E MANUAL SFRVERS

154 TIlE V·SYSTEM NAMING PROTOCOL

Basically, character string name mapping is structured as three levels: server, context and CSnamc.
However. a CSname may be structured hierarchically, as in the case of a filesystem pathnmnc. The naming
protocol is independent of this structure, though llsually each component in a hierarchical name will be the
character string name of a context in which the rest of the name is interpreted.

It is expected that. given a character string name. a server and a context id. the interpretation of that
character string name is fully specified independent of the operation requested.

30.3. Well-Known Context Ids

We require that context-id 0 (called DEFAULT_CONTEXT) represent a valid context on every CSNH
server. In general. DEFI\ULT_CONTrXr should be a reasonable default for clients that are not sure which
context within a server a name should be mapped in. but do know the server. For example. a server that
provides access to a Unix tile system should map DEFAUI:J'_CONTEXT to the root directory (known as
•• rO). A server that provides only one context should number it O.

Other small context identifiers (less than 16. say) are reserved fhr use as ··well-known'· context"i. There is a
nced tbr some servers to publish certain context ius. similar to DEFAULT_CONTEXT. anu some servers
may provide ccrtuin context~ which have spccial properties. Currently uefincd well-known context..; include

DEFAUl:r_CONTEXT
I\s described abovc.

PUBLIC_CONTEXT
Holds publically-availnblc V programs on storage scrvers.

LOG IN_CONTEXT
:t'hc homc directory of thc owner of a scssion. on storage scrvcrs that implement the
conccpt of a session.

ANY _CONTEXT
A special valuc used with U,C GEI'_FII..H_NI\ME and GH'r_CONTEXI'_NAME
opcrations. When returned by one of these opcmtions. it indicates the namc is an
"absolutc" nmne. vnlid in any context on thc siven scrvcr. 'When passcd in the contextid
field ofa GI--71'_COt.fI'EXI'_NAME requcst. it llCt'i as a willi curd. Le .. the server receiving
the rcquest muy rcturn thc name of any context on thc server specified in the requcst.

30.4. Name Request Format

All V-Systcm request messages that contain CSnamcs are built on a common skcleton. dcfined as thc
NameRcqucst stnlcturc in U,C stundard hCilder file <Vnaming.h).

reqllcstcode I\ny villid request code that grants read access to a segment.

nnOleindex 'J1,c bytc oIT.')et of U,C namc. within U,C sesment specified by thc last two long words of U1C
m~ge.

unspecificd Requcst-specific information, up to U1C last three long words in thc message.

namecontextid 1\ 32-bit identifier for the context in which this name is to be interpreted.

namcptr Pointer to thc segmcnt containing thc symbolic namc.

namelength Length of U,C segment containing the namc.

V·SYSTFM S.O RFFERFNCE MANUAL SERVERS

NAME REQUEST fORMAT 155

1ne reply is not specified by this protocol because it is generally dependent on the operation requested.

The mune need not be first in the segment but is considered to start at the byte offset specified by
Ilameinde.:c. If the name is not last in the segment. it must be terminated by a null. A CSNH server may reject
a requcst if the total segment size is too long for it to handle.

30.5. Name Parsing and Forwarding

A CSNH server follows the following algorithm in handling a request containing a CSname.

If the server does not provide pointers to contexts in other servers as part of its name space, it may interpret
the name in any way it chooses. .

Otherwise, the server begins by looking at the name itself, not the request code. Since this request may
have been directed to another server (to which it will eventually be forwarded by this algorithm), tilc request
code is irrelevant at this point

Names arc ordinarily interpreted left-to-right. if the server implements hierarchical naming. The serve I'
initializes the v:.triuble Curren/Coil/ext to the context id spccilied in the request. ;\s c.lch component of Lhe
mune is parsed. it is looked up in the current context. I f the name spccities a context. Currell/Cull/ext is
updated .. If the new context is implemented by some other server. the 1I11llle;lIdex tield in the request mcssage
is updc.ucd to point to the tirst character of the name not yet parsed. the 1U11IU!colI/extid tield is sct to
Currell/Coll/ext. and the request is forwarded to the server that implements the context.

A server with a flat name space may ignore the contextid field of requests. but it must set this tield when
forwarding requcsts to other servers.

30.6. Standard CSNH Server Requests

'l1lcre are seyeral standard CSNH requcsts. which. should be implemented by all CSNH servers. and others
which need only be implemented by context pretlx servers (see chapter 42). but may be implemcnted by
others ,lS well. ;\11 of tJle requC!it and reply formats described below ~;lfe subseL'\ of the ContcxtRcquest
stntcturc denned in tile stand41rd system header liIe <Vnaming.h). . .

30.6.1. GET CONTEXT 10

requestcode GE"I'-CONTHXT_ID

nameindex The byte offset of the namc, within the segment specified by the last two long words of the
mCSSc1ge.

namccontcxtid Context in which to interpret the given name.

mameptr Pointer to the segment contuining the symbolic name.

namelength Length of the segment containing the name.

replycode StlOdard system reply code.

scrverpid 'lnc serverpid component of the named context.

contcxtid 111e contcxtid component of lhe named context.

V-SYSTEM S.O REFERENCE MANUAL SFRVERS

156 THE V-SYSTEM NAMING PROTOCOL

entrytype

instanccid

otherinfo

Optional, server-specific type in formation.

File instancc id associ~ted with the context. if any. Servcr-specific.

Optional. server-specific information.

Given a CSname that names a context. this requcst returns a (serverpid. contcxtid) pair which identifies the
same context

30.6.2. GET CONTEXT NAME

requestcodc

serverpid

contextid

nameptr

namelength

rcplycode

serverpid

contextid

nameptr

·namelcngth

GEf_CONTEXT_NAME

The serverpid component of the context for which a name is to be found.

The contcxtid component of the context

Pointer to a buffer in which the name is to be returned.

Size of the butTcr.

SL1ndard system reply code.

The serverpid component of the co.ntext in which the returned name is valid.

'inc contextid component of the context in which the returned name is valid.

The value provided is returned unchanged.

I Jcngth of the returned namc.

Returns a CSnmnc corresponding to the spl.'Citied (serverpid. contextid) pair. if one is known to the server
receiving U1C requcst. pillS the server and context-id required to fully qualify the CSnHine. The context-id
returnell wil1 be ANY _CONTEXT. if possible. ,md ~le server will ordinarily be the one to whidl the request
W<IS sent.

Since the inverse mapping from (serverpid, contextid) to CSnamc is not well-defined in gener'll. a server
may sometimes filii to satisfy this requcst despitc its b(."St efforts. Also, there muy be many possible choices tor
the namc th(lt is to be returned. Servers should alte,mpt to return a name thal is as intonnativc to a human
user a.~ possible.

30.6.3. GET FILE NAME

rcqllcstcode

insL1nceid

nameptr

nameiength

A file instance id for the tile whose name is desired.

Pointer to a bllJTer in which the name may be returned.

Si7.c of the buffer.

V-SYSTFM 5.0 RFFt~RI~NCE MANUAL SERVERS

G1:1 FILE NAME 157

rcptycodc Standard system ·rcply codc.

serverpid 111e serverpid component of the context in which the returned name is valid.

con tex tid 111e contextid component of the context in which the returned name is valid.

nameptr The value provided is returned unchanged.

namelength Length of the returned name.

Returns a CSname for the file associated with the specified file instance. plus the server and context-id
required to fully qualify the file name. The context-id returned will be ANY_CONTEXT, if possible, and the
server will ordinarily be the one to which the request was sent.

30.6.4. ADD CONTEXT NAME

rcquestcode AI)()_CONTEX('_NAME

namejndex The byte offset of the mllne. within the segment spccified by the last two long words of the
message.

servcrpid Server pid to assign to namc.

con tex tid Context id to as.~ign to name.

erntrytype Server-specific type information.

instanceid Instance id associated with context, if any_

othcrin fo Server-specific.

·namccontextid Context in which to interpret (or define) the given name.

nameptr Pointer to the segment containing the symbolic name.·

name length I,ength of Ule segment conttlining Lhe name.

replycode S~1ndard system reply code.

'11e ADD_CONTEXT_NAMH operation defines a new CSnmne to refer to an existing context. The
existing context is specified in Ule (serverpid. contextid) fields of the request. The specitied CSname is
interpreted according to the naming rrotocol. in dlC context specified by Ilamccolllexlid. until the mapping
algorithm reaches a context in which U1C remainder of Ule name is not defincd, at which point it is aaded to
Lhat cuntext.

This operation need only bc implemented by context prefix scrve~ but of course all CSN H servers must be
able to forward it in accordance with Ule numing protocol.

30.6.5. DELETE CONTEXT NAME

requcstcode

nameindex The byte offset of Ule name, within the segment specified by the last two long words of the

V-SYSTFM 5.0 REf'l~RFNCE MANUAL SERVERS

158 THE V-SYSTFM NAMING PROTO~OL

message.

namccontextid Context in which to interpret the given name.

nameptr Pointer to the segment containing the symbolic name.

namelength Length of the segment containing the name.

rcplycode Standard system reply code

serverpid The serverpid component of the name's former value.

contextid Thecontextid component of the name's fonner v~ue.

entrytype Server-specific type in fonnation fonnerly a.<;sociated with the name.

instanceid File instunce identificr formerly associated with the name. ifany.

otherinfo , Server-specif1c in formation fonnerly as..~()ciated with the namc.

Delete thc spccified contcxt name. mtlking it no longer meaningful. The context us.c;ociated with this name
is not deleted. This operation nced only be implemented by context prefix servcrs. but of course all CSN H
servers must be able to forward it in accurdancc with the naming protocol.

30.7. Context Directories and Object Descriptors

t-:.ach context consists of a set' of (name. objcct)-tuplcs and is implemented by a server process. '111C

discussion so far has conccntrated on perfonning operations on specific ohjects and thc protocol for
specifying a particular objcct. However. (In important aspect of system operation is supporting query
opcrations about objects or set') of objccts. 1\ simple examplc is that of listing the names of all objccts in a
givcn context. In gcneral. one may wish to list a v,lriety of information "bout obj\..'Cts in a context. perhaps
ignoring some of the objects based on Ulcir properties.

Euch CSN H server implement')' one or more cOil/ext directories of ohjects th41t it mnnages. 1\ context
dircctory nppears as a file of recurds. with cm;h rc . .'cord specifying un uhject in thc associated context. A
directory file is accessed using U,C 110 protocol with U1C CRF"TE_INSTI\NCE requcst spccifying the name
ofUle context to he used. '111C FDIRHt'TORY hit is sct in Ule modc licld ufsuch it requcst. 1\ dient cun lhen
lise the stcllldard 110 routincs to reud the contcnt') of the directory and derive the information required. The
sclection of thc information rcquired is done by thc client. not the server. 'll1C client may also be able to
modify some or all of the lields uf a directory record by writing it. using the standard 110 protocol. A server
is not obligated to make all fields presented in a directory modifiable. I f a client attempts to changc a
n(}n-moditi~lble field. that field should be lcft unaltercd. but any other changes indicated in the request should
be c41rricd out.

rl1lc FDrRECTORY bit is primarily for thc hcnefit of Verex-like tile systems. which pennit each nodc in
U1C naming hicmrchy to be (in Unix terms) both a file and a directory. It discriminates betwccn access to U,e
data content of such a node. and Ule context dir\..'Cwry associatcd with it. "Iso. servers that du not implement
chumcter sting nmning at all can lise Ulis bit to distinguish between requests to access one of the objects they
manage and rcquests to read Uleir context directory.

Each record in a directory start') with a descriptor-type field that specifics the format of the record describing
the object. For space economy. this field is an idcntifier that spccifics a description of the record fonnat·
stored clsewhere in a systcm database of such fommts. (The standard fonnats nnd descriptor type identifiers
are dctined in thc header tile. <Vdirectory.h>.) Applications can rend a directory and extract the required
infhrmation by referring to Ule dcscriptor-type ti(:ld and Ulesc fommt descriptions. even when a directory

V·SYSTI~M S.O RFFERFNCE MANUAL SERVERS

CONTEXT D(RECl'ORIES AND OHJEer DESCRIPTORS 159

contains heterogeneous records.

1\ similar query activity involves ;;tccessing the descriptor of 0. single object. For etliciency and consistency,
this is supported by a separato READ_DESCRIlYJ'OR function on the object (as opposed to being subsumed
by the context directory facility), which returns the same record as found in the context directory. A
corresponding 'vVR1TE._DESCR1PTOR operation is available for modifying an objl.:ct's descriptor.

There is no implication that a server need store information about objects as it is presented in a context
directory. For instance. the Unix file system stores the names of files separate from their descriptors with the
association provided by so-called "i-node numbers." 1\ context directory entry in this case is fabricated
dynamically by replacing the i-node number in euch record by its descriptor.

The standard descriptor reading and writing operations arc described below. The message format') used are
described by the DescdptorRequest and DescriptorReply stmctures defined in'(Vdirectory.h).

30.7.1. READ DESCRIPTOR and NREAD DESCRIPTOR

requestcodc REt\D_DEscRIlyroR or NREAl)_I)ESCRIP'!'OR

nameindex 'l1le byte offset of the name. within the segment specitied by the last two long words of the
message (NREA1)_I)ESCRIP'I'OR only).

fileid File instance id of the file whose descriptor is to be read (READJ)ESCRIPTOR only).

dataindex The byte offset trom the sWrt' of the specified segment where the returned descriptor is to
be placed. '

namecontextid 'Ille context iel of the context in which the given name is to be interpreted
(NREAD_DESCRlIyrOR only).

scgmentptr Pointer to a buffer which contains the objl'Ct name (for NREAD_DESCRlIyrOR), and in
whkh U1C descriptor is to bc fe,turncd.

scgmentlen Length nfthe butTer.

rep I ycode Swndurd system reply code.

dutaindex Returned unchanged.

segmentptr Returned unchanged.

scgmentlcn Returned unchanged.

'111esc request types provide a wuy of reading the descriptor (context directory entry) of a single object
RHAI)_DESCRllyrOR spl'Cilil'S the ohject by lite instance ide while NREAD_DI':SCRIIYI'OR specifics it by
CSname.

30.7.2. WRITE, DESCRIPTOR and NWRITE DESCRIPTOR-

requestcode

nameindex

WRl'l'E_DESCRIIyrOR or NWR1TE_DESCRIlY['OR'

'Ille byte ()tTset of the name. within the segment specified by the last two tong words of the
message (NWRrrE_lJESCRIIY\,OR only).

V-SYSTEM 5,0 RFFFRFNCE MANUAL SFRVERS

160

fileid

dataindex

namecontextid

scgmentptr

segmentlen

rep lyc ode

dataindex

segmentptr

segmentlen

11·m V-SYSTEM NAM[NG PROTOCOL

File instance itl of the file whose descriptor is to be modified (WRITE_DESCR1PTOR
only).

The byte offset from the start of the specified segment where the new descriptor value
begins.

l'hecontext id of the context in which the given name is to be interpreted
(NWRITE_DESCRIlYfOR only).

Pointer to 'a buffer which contains the object name (for N\VRn"E_DESCRIPTOR). and
the new descriptor value.

Length of the butTer.

Standard system reply code.

Returned unchanged.

Returned unchanged.

Returned unchanged.

'l1,cse request types provide a wny of modifying the descriptor (context directory entry) of a single object.
WR1TE_Db:SCRIPTOR specifics the object by liIe instance id. while NWRITE_DESCRllyrOR specifics it
by CSname. The server will modify each tield in the object's descriptor for which the value written differs
from the existing vulue. if the field is client-modifiable and the new value is legal. A client normally lIses one
of these operations by first reading the descriptor. then modifying the flcld(s) of interest. and tinally writing it
back. . '

V-SYSTEM 5.0 RFFFRENCr. MANUAL SERVERS

DEVICE SERVER 161

-31-
Device Server

The device server provides access to the raw kernel-supported devices via the IIO protocol. It is
implemented directly by the kernel as a pseudo-process as opposed to being a normal process like other
system servers. Consequently, it is always configured when the V kernel is used. However, the device server
behaves as any other 110 server process as far as applications are concerned.

The device server appears as a single process that supports different types of devices using the same I/O
protocol. Access to a device is established by sel!1ding a create instance request to the pid returned by
GetPid(DEVICF._SER VER. LOCALJ)ID). or, if the standard context prefix server has been contigurcd. by
prefixing the device name with the context name "[devicer in a create instance request or OpenO call. Using
the standard· in formation returned by the create instc.l11ce request. the device can then be accessed lIsing 110
protocul messages. eith<!r directly or by means of the standurd 110 librury routines described in chapter .
There arc also some device-specific operations defined for some devices. The currently supportcd devices are
described below.

31.1. Ethernet

The Ethernet interfhc(: is accessed by specifying a device name of the form elletts. where t is replaced by the
Ethernet type. either J for 3 Mbit experimental Ethernet. or 10 for standard EU,ernet. and s is a suri1x. which
is null thr the first Eth(!rnet intertbce. a for the second. b for the third. and so forth. Currently only one
Ethernet instance may exist at a time and only one Ethernet intertllce is supported. and the name ellierllet is
defined as an aJias for either ellelJ or ellet/O. whichever is present.

'l1,e stmdard header file <Vetherneth> defines Ethernet-specific infi)rmation, including U1e Ethernet
packet fbl1nat i.11ld vurious conSl41nts slIch as ENEI'_MAX_DATA. the maximum size of the d41tc.l portion of .
an I ~lhernet packet.

I n a create installce requcst. the' fitemode must be FCR HATE. The lype of an Elhernet instance is always a
rem.luble. writeable. variuble block stream.

Re,ld and write instance requcst" are standard ex(:ept for U1e EU,ernet block format. 'l1,e Ethernel is only
sensibly accessed as a block (or packet) device. as opposed to a byte stream. The Ethernet block fbrmat is
exactly that expected by the interf~lce. namely. on the 3 Mbit EUlernet. one byte for destination, one byte for
source. two bytes tbr Ethernet packet type, fhllowcd by some number of dU~1 oyt<..'S. and on the 10 MBit
Ethernet. six bytes fhr dcstinntion. six bytes tor source. two byt<..'S thr packet type. followed by d,lta bytes. The
numher of bytes specified in a write and returned by a reud includes the destimltion. source and type bytes as
well as· the data bytes.

An Elhernet-spccitic QUERY_FILE request is supported lhut returns the host number. the number of
collisions. receiver overflows. CRe errol's. receiver synchronization errors. tl'ansmission timeollL'; detected,
and lhe number of valid packets received. The host number should be lIsed as Ule source addl'cs.'i thr every
paCKet tmnsmitted. Th(~ format tor the request and reply messages is given by the Query HnetRcquest struct
defined in <Vetherneth:>.

V-SYSTEM S.O RFFFRFNCE MANUAL SERVERS

162 DEVICE SERVER

31.2. Mouse: The Graphics Pointing Device

The mouse is a graphics pointing dcyice. It provides a means of indicating a coordinate position plus
signalling different states via its three buttons. The device server provides access to the mouse through the
I/O protocol. thus viewing it as a tile.

The mouse file appears as a 10-byte file divided into 3 major fields. The first two bytes specify the mouse
button positions. the three buttons being the low-order three bits of the second byte. 1\ bit with value 0
indicates the button is up, otherwise down. The next 4 bytes specify its current X coordinate. The last 4 bytes
specify its current Y coordinate. The kernel updates this file according to the input from the devicc. Thcse
fields are specified in <Vmouse.h> as bUlLO"S. xC(Jordinate and ycoordinate with MBUTTON1. MBUTTON2
and MBUTTON3 specifying the button bit field assignments in the buttons field.

" create instnnce request for a mouse specifics the name mouse in the tilemlme field. Only one mOllse and
one instance of that mouse arc currently supported. The filcmode field of the create instance request must be
fCREA TE. The mouse file ins~1nce created is initialized to have X and Y coordinates of O. It has type
attributes READABI.J':", WRITEABLE. and FIXED_LENGTH.

Rend and write requcsts must specify block 0 and u byte count of to bytes. 1\ re41d instance request returns
10 bytes specifying lhe current state of the mouse '"tile." 1\ read ins(ancc request is quelled until u change to
the mouse file occurs. providing no change has occurred sim;e lhe last read request. Thus. thr instance. a
mOllse reader process that repeatedly reads from the mouse and updates a cursor is suspended when the
mOllse is not being moved and no button positions <.lre changing. Conversely. the read return::> every time a
change dues occur. .

A write instance operation cnangcs the kernel-maintained record of the mouse button positions and the X
and Y coordimltcs to that specified by the 10 bytes in the buffer. Setting the mouse buttons in the kernel has
no signiticnnt eftt'Ct because this record is updated to agree with the actual button positions on the next input
(or "squeak") received from the mOllSC.

There is no need to provide a query function· that simply returns the current mouse position hecause that
should always be stored uut~ide the kernel. That is. the application decides where the mouse is: the kernel
simply updatcs the position reb.live to the absolute position specified.

The kernel does not provide any sculing of mouse movemenlc;. Thut is left to the application.

31.3. Serial Line

The kemel device server provides acccs..~ to raw serial lines through the serial device. Two seriul tines are
supported.. but only one instance for each may exist at a time.

In a create instance requcst. the name s£'ria/O or sedall specifics a serial line. The jilemode must be
FCRRATE. The instance id returned is used thr output: the instance id·+ 1 is lIsed for input. Parameters fi>r
the input instance can be obtained using Querylnstilnce.

I ~ach serinl line is a pair of streams. nne readahle and one write:lhle. Chamcters read from each serial line
arc ouncred in the kernel until a prucess rc~tls from the device. bUllhe butTer is rather small. so a user who is
interested in input from a serialHne should keep a pnx.:cs.'t "listening" to it at all limes. The serial line device
docs not provide any echoing of input ch~ructers. nor docs it convert input editing or conversion of newline
characters to a carriage retum/tine feed sequence on output

The serial device drivers support OueryFite and ModifyFile operations to allow changing such purameters
as the data rate. bits per character. and the stute or lhe modem control outputs DTR and RTS. The necessary
message stnlctllres and constanl~ for lhese operations are detined in the s~lndard header tile <Vserial.h). (At
this writing. the Query and Modify openttiol1s are not implemented in the Sun- L seri~lt device driver.)

V·SYSTEM 5.0 RI~FFI~ENCE MANUAL SERVFRS

CONSOLE 163

31 .4. Console

1110 kernel console device is intended to provide a measure of hardware independence to programs doing
interactive character stream input and output The console device provides access to the console keyboard
and display of the workstation the kernel is mnning on, independent of tho type of workstation. On
workstations whose keyboards arc connected to serial line O. reading from the console device reads from serial
line 0: on others. it reads from the port to which the keyboard is connected. Likewise. on workstations with
frame buffers. writing to the console device draws characters on the frame buffer: for those without. writing to
the console sends output to serial line O. (n cases where the console llSes scrial1ine 0, ins~'lnces for serial line 0
and the console may not both exist at the same time.

A create instance request must specifyfilemodc FCREATE. and name console. The console device is a pair
of streams. one readable and one writcable. As with the serial line device, the instance fd returned by a
Create.{nstance is writeable, and that instance id + 1 is readable. The parameters of the second instance can
be obtained using Quel'y[nstance. Both instances are marked INTERACnVE. but SET_PROM?'£' and
Sr:r_BRE/\ K_PROCESS arc not supported.

Console device input is butTered in the same way as serial line input (sec above). The console device does
not. provide ~my echoing or output conversion. but it docs make an effort to sOllnd the workstation's beeper
when an t\SCll BEL character is Olilplit.

The console device is Jutomatically opened by the kernel upon crealion of the first team, and is ordinarily
never closed.

31.5. Null Devices

Two null devices are available. and arc normally configured into all versions of the V kernel. The nullin
device is a readable stre~lm that returns an cnd-of-me indication on every read attempt The flu/loul device is
an endless sink tbr output.

V-SYSI'rM S.O RFFFRENCE MANUAL SFRVERS

164 EXCEPTION SER VER

V-SYSTEM 5.0 RFFERI':NCE MANUAL SERVERS

G'XCEP'I10N SERV~R 165

-32-
Exception S'e rve r

The exception server handles processes that have incurred a processor exception during their exccution. It
is included in programs that run dircctly under the V kernel by including a call to
InitExcept1onServer() at the beginning of the program. 'Illis call returns the pid of the exception
server if successful. cls(~ O. If an exception server already exists. In i tExcept i onServer () will not start
another. The pid of the exception scrver is also returned by

GetPid(EXCEPTION_SERVER. LOCAL_PID)
TI1C standard V executives automatical1y stc1rt up an exception server.

When a process incurs an exception. it causes a trap which is fielded by the kerne1. The kernel effectively
cuuses the process to send it message to the exception server with the contents of the me!')sage describing the
exception incurred. 1f there is no exception server'. the kernel disables the tlJulting process by causing it to
send to itself: which perm,lnently blocks the process.

The exception server checks to see if another exception handler 11m;; registered for this process or an
ancestor. (f so, it forwards the mesS41ge to the hundler. For ordinary programs. arrangements are mude for
Stich messages to be pussed on to the V debugger (described in the V-.. \'yslcm Commands Alalluaf). The (()rmat
of the exception request and registration messages are defined in <Vexceptions.h>. The only request t.ypcs
supported are EXCEIY)'JON_REQUEST and REGISTER_~'IANDLER. The REGISTP.R_IIANDI.ER
request code 'is lIsed both thr registering and dercgistering handlers. EXCEPTIONJ{EQU EST 'messages
should only be generated by the kernel.

If no process was registered. the exception server prints a message on the screen indicating the type of
exception. the rid of the! tlltllting process. and Lhe instnlction. program counter and status register at thc time
the exception occurred.. The exception server then ucstroys the thulting process. UHlS prcventing it (i'om
doing further harm. Note: the program counter m,)y hClve hcen incremented beyond t.he actual instruction
incurring the exception so it shmild not he considered eX~lCt. although the crror mes.~lgc routine 41ttempts to
find the cnrrect PC by s(!arching thr U,C opcode of the instruction thut was repurted in the exception message.

The exceptiun server and its s~lfld41rd mes..c:;age printing routine are induded in a spt..'Ciul V exceptions
library. The loader may be instructed to search Lhis library lIsing the -lVexcept option on its command
line. The crror printing routine is ~1Vailllblc to other exception hundlers as

short ·StandardExceptionHandler(req, pid, fout)
ExceptionRequest ·req;
Processld p1d;
File ·folUt;

where req points to Ul'C exception requcst'ml.'S..'mgc. pi d is lhe proces.." id of the pnx;ess lhat inculTeu the
cxception. and fout is tJle file on which the 1111.'SSiJgc is lo be printed. Thc routine returns the PC value at the
time of the cxception. corrected as described "bove.

V-SYSTEM 5.0 RFFERENCE MANUAL SERVERS

166 PIPE SERVER

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

PIPE SERVER 167

-33-
Pipe Se rve r ,

The pipe server is an I/O server that implements a synchronized stream file called a pipe. A pipe is a
unidirectional tlow-controlled communication channel between two processes using the standard [fO
protocol. V pipes are similar to Unix pipes.

A pipe file instance is type STREAM, V I\RIABLE_BLOCK, and READABLE (for the read end) or
WRITEABLE (for the write end).

(n response to a CREATltlNSTANCE request, the pipe server creates an ins~1nce of a pipe. which is
actual1y two file instances representing the read and write ends of the pipe. The file id returned in the reply to
the CREATE_I NSTt\NCE request is the lile id of the write end. The file id of the tile instance for the read
end is one greater than t.he liIe id Ibr U1e write end. The tile instances arc owned initially by the processes
specified in the rea£iowllcr and wrUemvller nclds of U1e CreatePipcRequest. When a pipe is created. it is
allocated a fixed number of buffers between 2 and 10 as specified by the bullets field of the
CreatePipeRequest. Indude <Vpipc.h) in a program to define CreatePipeRequest.

Pipe synchronii'.ation provides thut a request to read a block that has not yet been written is quelled until
that block is written. Also. a requcst to write a block when the current bufrer limit for the pipe is exceeded is
queued until 'buffer space is available. 14 1\ requcst to read from an empty pipe whose write file instancc has
been released is replied to with an END_Of4_FILE reply code. When the read end tile instance is released.
unread dati.1 is discardcd .. lOd the data of subsequent writes to the write insti.mce arc discarded with the write
returning successful1y. 1\ pipe no longer exist., when both the rend and write instances arc released. The pipe
server periodically checks that the owners of both file inSti.lOCeS of the pipe exist. When the scrver determines
that the owner of an instance no longer exist",. it ctTcctively releases that instance.

The pipe server is located by

server_pid = GetPid(PIPE_SERVER.ANY_PID)

where the pipe server m:ay be locallo the workstation or locntcd on a server node.

The pipe server can be compiled as an indcpendent V progl'am or included in another program. To include
the pipe server directly in a V program. cull U,e function In1tPipeServer() at U,C start of the program
and causc UlC linker to sC41rch U1e pipe server library when lunding the program (Le .• add -IVpipe on the C
compihltion command line). '111e sti.mdard V command pipeserver may be run in U1e background to provide a
local pipe server on any workstltion. The V exccutive automnlically Sti.lrts up a local pipe server if there is not
one availHble when a pipe is needed. '

14 Actually only one rende:r and one writer arc queued: the rest arc replied to with a R lrrR Y reply code.

V~SYSTEM 5.0 REFlm.ENCE MANUAL SERVERS

"

168 INTERNET SER VER

V-SYSTFM 5.0 REFERENCE MANUAL SERVERS

INTERN ET SERVER 169

-34-
Internet Server

The internet server is an TlO server that provides network communications using any of several protocols.
It is essentially a protocoi cOllverter which allows applications which communicate by means of the V I/O
protocol to communicat.e with hosts which can only (or prefer to) be reached by some other protocol. As
such. the server has been stntctured in a manner' which allows easy addition and deletion of protocols as
needed. The server consists of a general framework. which is independent of the particular protocols being
supported, and one or more protocol-specific modules. Each module implements a particular protocol and
must interface that prot.ocol to the requirements and ft.lcilities provided by the server's general tramework.
Currently the DARPA Internet protocols IP and TCP. and the Xerox PUP datagram protocol arc supported.

34.1. Running the Internet Server

The internet server CHn be compiled as an independent V program. or linked into another program.

The standard V command "internetserver" may be nm in the background to provide a loc411 internet server
on any· workstation. The internetserver program by defilUlt will only register thc server thr the logical id
INTERNEr_SERVER on a local basis. Spccifying the -g option to the internetscrvcr program will cause it to
register, itself globally SOl that it c"n create connections for arbitrary hosts in the V systcm. This fhcility allows
locull1t;sts to avoid spending some LOOK of mcmory for this server. is Two additiomll switches are availuble
with the internet server.. -d turns on debugging print-ollLc;: and -q starts lip a "query" process which can be
used to query thc internal state of thc server trom the user's keyboard. Normal uscrs should not need to
concern them~elves with these options: they are intended mainly for people who are adding additional
proux;ols to the server.

To include the internet server in another V program. have it create a process which executes the function
InitlnternetServer(qFlag, localFlag, debugFlag)
. int qFlag; /* Set up query process for runtime

diagnostics if qFlag is true .• /
int local Flag;
int debugFlag;

/. True if internetserver should be local. */
/* True if debug output should be printed. */

and cause the linker to :search the V internet library when loading the program (Le. add -IVinternet on the C
compilation command line). It is generally prefcrable to nm U1C internet server on it') own tcam by 'invoking
the internetserver progr;:lm described above. rather than linking it into another program.

34.2. Accessing the Internet ServeI'

Once the internet server hns bcen started it can be accessed using the 1/0 protocol plus the protocol-specific
requests and parametcm specified in <Vneth>.

A CREATE_INSTANCE request to the internet server mustspccify the mode FCREATE. It results in th~
creation of two instancc:8. one of type READABLE. VARIABLE_BLOCK. and STREAM. the other of typc
WRITEABLE. V ARIAIlLILBLOCK. and STREAM. '111e pt.lr~lmeters of U1C writeable instance are returned

is'll1is can degrade pcrfonmmce however. For bursty ;pplications such as lei net connections it usua'lIy not a problem.

V-SYSTEM 5.0 REFERENC1.~ MANUAL SERVERS

170 INTERNET SERVER

in the CrealelnstanceReply. '111e readable instance has an instance id equul to the id of the writenblc instance
plus 1; ilS parameters can be obtained using QU ER Y _INSTANCE.

. .
An internet server connection is owned by the process which requested its creation. If that process should

die then the connection is aborted. Ownership of a connection can be passed on to another process by means
of the SEI'_INSTANCE_OWNER request

34.3. DARPA Internet Protocol UP)

Possession of an IP network instance provides a process access to the network for sending and receiving IP
packets of a specific IP protocol type. DitTering [P instances are delineated by the protocol field in the lP
packets. Any protocol id vallie may be specified when creating the instance except for those valucs already
taken. For example. the value for TCP. is already taken by the TCP implementation inside the internet server
itself. Creating an instance with protocol 0 yields a "promiscuous" instance that receives all protocol types
which have not been specitied by any other active IP instc'mca

IP network instances expect WRITE_fNSTANCE to supply completely packaged IP packets.
READ_INSTANCE similarly will return complete II> packet';. This appronch ~llIows IP instances to remnin
connectionlcss in concept and thus avoids the overheuu of establishing a network connection instance for each
different set of IP packet parameters. (Remember lhat READ and WRITE under the [/0 protocul don't
allow for specification of parameters.)

To open an IP network instance. use CREATE_INSTANCE and specify the protocol by overlaying the
IpPanns stnlcture definition in Vneth onto the ullspec:ijied field of the Createinstc11lceRequcst stnlcture.
QUERY_FILE will return the value of the protocol field for an IP instance. MODIFY _FILE lUIS no meaning
for these instanccs. A standard library routine. Open Ip. is provided to allow creating an IP instance and
allocaling a File structure for it. for usc with other 1/0 library routin(.'S.

34.4. DARPA Transmission Control Protocol (TCP)

TCP file instances created by'the internet server implement DARPA TCP byte stream connections. There
are three minor difTerences from the specification in the 1)/\ RPA Internet Hunubook. First. the "push tlHg"
is always set •• d~llcl written is transmitted over the network as S(XUl as possible. (Buffering of data is
perthnned by the 1/0 Iihrary routines and would thus be reuundant.) Second. the urgent data flag is not set
as part of a write opemtion. I nstead. a MOI)I FY _FII.I ~ reqll(.~t is lIsed to set lhe urgenl data Ilag immcliiately
bethre a write operation contuining urgent data. '111e urgent dat~l flag is reset immediately afler lhe write
opemtiun and thus mllst be set using a MODIFY _"'11 ,E requcst before each urgent JaW write operation.
Third. there is not concept of connectiun timeout provided. Connections arc aborted if their owner process
gocsaway.

Two variants of CREATE_INSTANCE arc pennilted on instlnccs, of type TCP, correspondIng to the
Active and PaC)Sive opens of the I nternet Handbook. Note that the foreign host must be specified completely
when issuing a CREATE_INSTANCE reques~ with the active bit set. A stmdard libntry routine. OpenTcp, is
provided to allow creuting a 'rep insWnce and al1oc41ling a File structure fur i~ for use with olher 1/0 library
routines.

Two types of release mode are supported for RELEASEJNSTANCE requests corresponding to the Close
and Abort primitives of the DARPA specification. respeclively REL_STANDARD (equal to O. the normal
release mode defined by the V 1/0 protocol) and REt_ABORT. Releasing the writeable instance closes lhe
client's end of the connection. Data can stilt be read from the readable instmce until the other end closcs. It
is necessary to rdease both the readable and writeable inslunces to deallocate a connection.

Since TCl> supports the concept of a byte stream. the READ_INSTANCE and \VRiTE_INSTANCE
operi.llions do not segment the data tlow in any way. The presence of unread urgent uala in U1e receive burter

V-SYSl'EM 5.0 REFERFNCE MANUAL SERVERS

DARPA TRANSMISSION CONTROL PROTOCOL (TCP) 171

of a Tep instance is signaled by -the UrgentData reply code to READ_INSTANCE and QUERY_FILE
requests until the urgent data has been read by the client. Any READ_INSTANCE requests outsu1I1ding
when a TCl> connection closes for whatever reason are replied to with a replycode indicating the reason. An
attempt to read from a closed connection is signaled by an END_OF_FILE reply code.

The QUERY_FILE operation may be used on TCP instances to find out the state of the TCP·connection.
MOOlFY _FnJ~ may be used to change various parameters of the connection. The structure TcpPatmsl in
Vnet.h defines the pan:uneters which can be set both at CREATE_INSTANCE time and by means of a
MODlFY _FILE request The meaning of the fields are defined in the Internet handbook. TcpParms2
defines both parameters which may be set and state variables which may not be set but whose values arc
returned if QUERY _F1LE is executed with TcpParms2 specified. The p~lrameter in TcpParms2 which may
be set is sndUrgFlag. This parameter is used to signal urgent data. TIle rcvUrgFlag field returns whether or
not urgent data has been sent from the remote host and not yet received. The bytesA vail' field indicates how
many bytes of data are waiting to be received by th<: user. The state field indicates what state the connection
is in with respect to being open, listening, establishccl closed-waiting-for-remote-ciose. etc. (see the [nternet
handbook).

34.5. Xerox PUP Protocol

Possession of a PUP network instance provides a process access to the network for sending and recdving
PUP packets on a specilic local PUP port. Different PUP instances are delineated by the local socket field in
the PUP pnckets. (Net and host fields will be the same for all PUP packets received by the local host. of
COUfSC.) Opening sock,ct 0 yields a ··prorniscuous" instance that fields all PU P packets ,whose local socket
numbers have not been explicitly registered for. .

PUP network instances CXPf..'Ct WRITE_INSTANCE to supply completely packaged PUP packets.
READ_INSTANCE simil,lrly will return complete PUP packets. This approach allows PUP instnnces to
remain connectioniess in concept and thus avoids the overhead of establishing a network connection instance
for each di fTerent set of PU P packet parameters.

Since PUP instances nre connectionless. MODlfoY_FI.1.E has no meaning for Ulcse network instmlces.
QUERY_FILE will return the vallie of Ule local socket field for an PUP instance. (QUER Y _I NSTA NeE will
only return whether;:l0 insulI1ce is IP, TCPt or PUP.)

A sl:.t1ndnrd lihrary routine. OpcnPup. is provided to allow creating a Pup illstancc and allocating a File
structure fhr it. Ihr usc with other I/O Iibmry routines.

34.6. Adding New Protocols

This section should be of interest only to persons who wish to add an additional protocol to (or remove one
from) the internet server. It describes the specifications governing the interactions between particular
communications proto,:ols unu Ute genernl fmmework of Ule internet server.

'11erc are two interf~lccs lhCll a protocol must de41t with: Ule external interface to client~ of the internet
server. and lhe internal internlce to Ule general communications n.lcililics provided by the server's framework.
The external inlerface (;onsists of the opemlions. mess~lge fonnats. etc. U,ul the protocol must understand in
order to interface with a client's V 1/0 connection. The internal intcrtllce consists of the routines. message
butTer conventions. etc. Ulut the protocol implementation mllst respeCtively lise or provide in order to send
packets to U,e network and receive packets from the network.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS
.' .

172 INTERNET SER VER

34.6.1. External Client Interface

The external interface to a protocol is dictated for the most part by the V 110 protocol specification.
Interaction between a client and the internet server is by means of a V 110 connection and the only variations
that can be effected arc by means of the QueryFile and ModifyFile operations. Thus clients open a
connection by means of the Createlnstance operation. they read and write datAl by means of the Readlnstance
and Write[nstance operations, they determine the general sUite of a connection by means of the
Querylnstance operation. and they close a connection with the Releaselnstancc operation.

A connection is "owned" by the client process which sent its CreatcInstance request, but can be transferred
by means of a SetinstanccOwner request The semantics of ownership are that a connection must be aborted
if its owner process dies. One of the general facilities provided by the internet server is monitoring of the
existence of connections' owners. However. the protocol impiemenultion module is responsible for providing
an abortion routine.

Protocol-specific interactions arc handled by means of the QueryFite and ModifyFile operations. Protocol-'
specific instantiation parnmeters can also be specified as part of the Createlnstance operntion. The Query File
operation is used by the client to determine the state of protocol-specific connection variables; the ModityFile
operation is lIsed to modify these variables. Thus the manner in which tl1ing.~ such as the "Urgent Data
Notification" thcility in TCP must be implemented is the following:

1. The client's Readlnsumce operation returns an exception code indicating that something out of the
nOlmal has happened.

2. The client docs n QueryFiIe operation to detelmine the protocol-specific state of tl1e connection and
ob~1ins the "Urgent Data- Notification" on return.

Similarly. a :client wishing to signal "Urgent Data" on a Tep connection must do so with a ModifyFile
operation.16 _

34.6.2. Internal Protocol Interface

Protocol implementations must interface both to the external internet server client and also to the internal
environment of tlle server itself. This internal interface consisLS of the lfJllowing comp()nent~:

1. A network packet butTer module which all pro(Ocnls mllst usc. '111is module provides a pool of packet
butlers which have a standardized header thnnat su that various gcncml facilities can manipulate them.

2. A process stmcture spccinc,nion for the protocol. All protocol implemcntations must define certain
processes and be aware of the existence of certain other processcs. Part of this specification is a
sp<.,'Cification of tlle message interactions between these processes.

3. A set of protocol-independent routines supplied by the server which all protocol implementations must
usc for such things as writing p~lckets out to the nctwork. obtaining and returning packet buffers. etc.

4. A set of protocol"specific routines supplied by the protocol implementation which nre used by the
general server facilities to return incoming network packets to a conm.'Ction, signal timeout conditions.
etc.

These components will be dci:ribed in more detail in the following subsections.

16.111e reason why the V 1/0 flrotocol specHication ha.'i been structured in this manner L'i ror reasons of efficiency. The vast majority of
emt:. read and write opcrnliolls done 'on a connection arc d()l~c with "normal" sellings ror Ole connection pammelers. By removing
parameter ~ipccifiCllion rrom the read nnd write opcrations these opcrntions can-be C.\ccutcu morc quickly.

V-SYSTEM 5.0 REFERENCE MANUAL SERvm~s

A DRIEF OVER VIEW or TI IE INTERNET SER VUR'S STRUCTURE

34.6.2.1. A Brief Overview Of The Internet Server's Structure

Thcinternct server consists of the following processes:

173

1. A connection"cstablishn'lent process. This process registers itself as the internet server logical id and
waits for connection creation requests from new clients. For each new connection creation request it
invokes a creation routine for the protocol specified in the request. This routine is responsible for
setting up a conn1cction and it.., associated data structures and handling process(es).

2. Connection handling processes. Each protocol connection is handled by one or more separate
processcs. 'It is up to thc protocol implementation to decide how to structure the connection handling
processes for a connection. However, one of these must be designated the "primary" connection
process. This process will be responsible for handling all communications with the rest of the internet
server.

3. A network readcr process. Thc V kernel allows only onc network dcvice instance to exist at any time.
1'lle network reader process reads packets from the network device and calls a protocol-specific routine
for each protocol being supported. The protocol-specific routines invoked are responsible for
determining which connection of their protocol type a pm;ket should be given to. The network reader
process nms at the highest priority allowed so that it can reatl anti multiplex incoming network packets
betore they arc overwritten by subsequent packets in the kernel device.

4_ Two timer processes. The first timer is a timeout timer which wak<.'S up periodically anti invokes a
timeollt checking routine for each connection. Jf the timeout check for a connection returns a time
which is less than the current time then a message is sent to that connection's primary connection
handling process. Thc timer detennin<.'S how long to sleep before waking up again by keeping track of
thc minimum timeout time beyond the current time. The sccond timer checks whether any connection
owners have died. t\ message is sent to the primary connection handling process of each connection
whose owner has died signalling that the connection should be aborted. '111is second timer wa,kes lip
once every. 5 seconds. '

34.6.2.2. The Packet Buffer Module

The packet butler module provides a set of routnncs which manage a pool of packet buffers which arc used
as the mediulll of data lransmis.'tion inside the internet server. These pncket bulTcrs are IHmded between
various parts of the internet server by means of pointers (to avoid copy operations) and their header format
must be understood hy all parts of Ule internet server.

The header thrmat for packet bufTers is the 1i.)l1owing:
t'ypedef struct pbuf

{
struct pbuf *next;
int length;
char *dataptr:

unSigned unspecified[2];
char data[MAXPBUFSIZE];

} *PktBuf;

'* General purpose link field.*'
'* Length of the data in the buffer. *'
'* Location of the start of the

data. *'
/* Scratchpad fields. *'
/* The actual packet buffer. *'

~I1le next field allows packet buffers to be placed in various queueing data stntctures. '111c d:ltal)tr field points
to the stlft of U1C data in the data array. Packets are typically COllstntcted stll-ting from the buck of the data
array, with various headers progressively added on to tile front. The unspecified fields are intended for
storing various packet-specific items of intbnnation. They arc llsed as scratchpnd working areas.
MAXPBUFSIZE must be largc cnough to accommodate all packets encountered by the internet server. It i~

V·SYSTEM 5,0 I~EFERENCE MANUAL SERVERS

174

set to the maximum allowed packet size of the physical network.17

'The routines provided by packet buffer module arc the following:

PktBuf AllocBuf();

Oeal1ocBuf(pkt);
PktBuf pkt;

INTERNET SER VER

Buffers are handed out onc at a time by means of calls to i\J1ocBuf(). ButTers are returned to the free pool by
calling Dc:dlocDufO. These routines manipulate the buffer pool in an atomic manner; so that they can be
used from mUltiple processes without conflict

34.6.2.3. Process Interactions

The implementation of a protocol connection must deal with the network reader and the two timer
proccs.~es in a prescribed manner. In order for these processes to know whom to send messugcs to each
connection must have a "primary" process associated with it. The process ids of these primary processes are
stored in a global dat) stnlcture main~1ined by the internet server which contains one entry per connection.
The de~lils of this data structure will be described in a later subsection.

Network I~cadcr Interactions

The network reader process must ntn at high priority and cannot afford to do much processing beculise it
must always be ready to accept incoming network packets before they are overwritten in the kernel device by
subsequent packets. 8 This has lead to an interface thrmnt between the network reader and thc various
connection handling processes where communication is by means of atomically upcic1ted queucs of packct
butTers. '1l1e network reader process enqueues paCKets tor a connection by calling the)·:nQueucS11f O routine,
which places a packet in a specified connection queuc. This routine is non·blocking (Le. no message traftic
involved) so that the reuder process cun immediately continue on to process any additionul packet'i that may
have arrived from the network. The connection handling processes then remove packet butTers from their
queucs by calling the DcQucucSufl'O routine. The definitions for thesc two rOlltines are as follows:

EnQueueSafe(pkt, q)
PktBuf pkt;
RingQueue *q;

OeQueueSafe(q)
.R1 ngQueue *q;

RingQuclies are atumically updated quellcs which are defincd in the general internet server module. They
must be initialized wilh caUs to thc InitSafcQucucO routine:

In1tSafeQueue(q, r1ngBufs)
R1ngQueue .q; '* Queue header. *'
R1ngBufRec ringBufs[]; ,. An array of MAX~RING~BUFS queue

records .• ,

RingQlIclies cunsist of U,e t()lIowing lwo duta ty·plOS:·

17 Note lhntlherc is only onc paclccl buffer size for Lhe entire internct :;crvcr. A single burrcr size wall choSen primarily lor reasons of
simplicity. F:ttcnding Lhe packet bulTcr module tu handle multiplc hurrcr sizes would not be difficult

181.c. it musl be able to kcep up with thc (possibly mnny) hOSL'i lhat are :;cnding it packcts.

VcSYSTEM 5.0 REFERENCE MANUAL srm.VFRS

PROCESS INTERAcrIONS

typedef struct
{

RingBuf head;
RingBuf tail;

} RingQueue;

typedef struct RingBufType
{

PktBuf pkt;
struct RingBufType *next;

} R1ngBufRec, *RingBuf;

175

The RingQuelle structure defines' a header record for the queue. Ringllufficcs are the actual queue clements,
and are placed in a circular list by the InitSafcQucucO routine. 19 The pkt tield of a RingBufRcc is used to
point to the packet buffer which is cnqueued by it. -

Note that at most MAX - RING - BUFS packet buffers can be enqueued in a RingQueue. ~:nQucucSafcO
returns 0 ifit can't enqueue a packet buffer.

There is one caveat to the above dcscription of how the network reader intcracts with individual
connections. The primary connection handling proccss for a connection may be blocked waiting on client
reqltes~20 so lhut the packct buffer quclie cannot be proccsscd until a request message is rcceivcd. To take
carc of this case each primary connection proccss must also sct a variable indic;'lting whethcr it is blocking
awaiting c1i<mt requcst4) or not. The nctwork I"cadcr checks this variable when enqucueing a packet for a
connectiun and sends the connection a "wakeup" message if it is blocked. The process receiving the message
must reply immediately to this message in order to minimize thc time that U,C network reader is blocked.

Another point to bc made here is Ulat the acti()ns for the network reader described above (Le. invocation of
":nQucucS~lfcO and checking to see if a "WUkCllP" message must be sent) are actually part of the protocol
specific "network reader" routine that cach protocol must supply as part of its implementation. "Illis will be
described in more dctlillater.

Timer fntcr.ictions

The two timer processes- communicate with connections by means of "timeout" messages. Whenever a
timeolit condition is detected by a timer process it sends a message to the relevant connection process
indica~ing U1Ht a timeout condition has occurred. Thc message thrm~lt employed is the following:

struct timeoutMsg
{

};

SystemCode requestcode; '* Standard message request code
field. *'

short unused;
unsigned timeoutCondition; '* Which timeout has occurred .• /
unsigned unusedl[6];

The rcqllcstcode ficld is thc same ns that used for nil other messuge request'). Howevcr. instead of a
"stundard" V 110 prol:ocol request code an intcrnet server-specitic rcquest codc signnlling timeout is used.
The timcoutConditioll ftCid spt.'Citics which timeout condition has occurred.

19The reason why a circular queue of this fonn i.~ nceded stems from the problem of maintaining these queues in an atomic mann~r.

2O.Inc protocol implementations to date have consist~d of a single proccs.'\ per connection which alternately wails on client requcsL,
and procC5.<;CS it packet buffer queue.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

176 INTERNET SER VER

34.6.2.4. Protocol-Independent Interface Routines and Data Structures

GJobal Data Structures

There is one global data stntcturc that must be maintained by all active connections in the internet server.
This is the NctinstTablc. which contains an entry for ench connection specifying variolls V I/O protocol
spccifie parameter values, the process id of the primary connection hundling proce:iS, and a pointer to a
control block associated with that connection. The V 110 protocol parameter intbrmation is used by the
Qucrylnst~mcc() routine for answering Query [nstance requests about connections.21 The process id is Llsed by
the network reader and timer processes to find the primary process for a given connection. The control block
pointer is used to access connection-specific information. It is intended for usc by the protocol-specific
network. reader and timeout checking routines.

The primary manner in which connections manipulate the NetlllstT~lblc is through the following two
routines:

int AllocNetlnst(prot, ownerPid, pid, rblocksize, wblocksize, tcBId)
int prot; /* Connection protocol type

(TCP, PUP, etc.) */
ProcessId ownerP1d; /* Process id of owner ·of the

connection. */
Processld pid; /* Process id of primary connection

handling process. */
int rblocksize, wblocks~ze; /* Block sizes for· resp. read and write

V I/O connection instances. $/
unsigned tcbld; 1* Pointer to the control block for

DeallocNetlnst(index)
1nt in~ex;

this connection. $/

/* Index of NetlnstTable entry to
deallocate. */

AllocNctfnstO returns an index into the t.1ble where the newly altocnted entry has been placed. individual
fields cun then be set by indexing lhrough this value into the table. (E.g. SetlnstanceOwl1cr requests woul<.l be
dealt wilh in tllis manner.)

Each protocul implemcntntion is expected to employ these rOlltines to mannge tlle NctlnstTablc in a correct
manner. I.e. allocalion l1nu dealloclllion of NctinstTahlc entries is 1/01 done 4lulomutically by the server's
geneml fhcilitics. .

Useful nut Not ~:SScnti:ll Routines

The internet server provides several generally useful but not essential routines which may be employed by
protocol implementations if they so chosc. These include the following:

2l1n~ requests are actually directed at the connection handling proccs"o;cs thcmsclvc:;. implying thal each conOl.'CLion could employ
its own Qucrylnslancc rouline. Ilowcvcr no bcnclil would be gained by slIch duplication.

V-SYSTEM 5.0 REFERENCE MANUAL SERYFRS

PROTOCOL-INDEPENDENT INTERFACE ROUnNES AND DATA STRUcrURES

SystemCode Querylnstance(rqMsg)
QueryInstanceRequest *rqMsg;

Boolean InvalidFileid(rqMsg)
IoRequest *rqMsg;

ReplyToRead(replycode, pid,
SystemCode replycode;
Processld pid;

packet, bufferPtr, length)

PktBuf packet;

char *bufferPtr;
int length;

QueryProcess ().

1* Reply code to send to a reader. *1
1* Process id of the reader. ~I
1* Packet buffer containing data to

return to the reader. NULL if
there is' no data to return. *1

1* Address of reader's buffer. *1
1* Length of data to return. *1

177

QuerylnstanccO returns the state of a'specified network connection. It is V I/O protocol-speci fic and hence
independent of the particular network protocol being supported by the other end of the connection. It
obtains it" infi)rmntion from the NctlnstT .. hlc cntry for the connection. Connections are specified in the
request Illessnge in the same manner as with all other V I/O connections. namely by a filcid.

II1V~llidFilcidO checks whether the filcid· field in a client's request message is reasonable; i.e. whether it maps
to an existing connL"Ction entry in NctInstT.lhlc which is in usc. /\11 incoming client requests should be
checked with this routine to avoid corruption of other connections' control blocks.

l~cplyToRcadO is a generic routine for replying to a client's read request. It perfonns the MoveTo
operation needed to move data from a packet butler to the client's read butler and packages an appropriate
reply message.

i

Qucryl)roccs..c;O is a routine which mns in its own process and is used for debugging. It provides a means
for examining ,md changing the state of the internet server while it is in operation.

34.6.2.5. Protocol .. Specific Interface Routines and Data Structu res

There are two types of protocol-specific rOlltine:l that a protocol implementation must provide: network
level routines and connection-level routines. Network-level routines are uscd by the network reader process
tu multiplex incoming network packets to the correct connection. Connection-level routines ;'Ire lIsed to
initialize a protocol. crc'ate a new connection and interface with the connecti<m timeout checking process.

Protocol implement41tions are usually done for protocol families rather than individual protocols. For
example. the current internet server implements both the IP ,md the TCI> Internet prot(x:ois. However, mlher
than implementing these two protocols a.4) separate modules. they arc implemented together, so that the Tep
mouule can make use of tacilities already defined by the II' module. This results in a situation where only the
If> module interfnce:l with the network layer and the TCP module internlces internally to the I» module. Thus
the Ill/rep protucul t;lmily implementation IUls lhree interfaces to the rcst of the internet server rathel' than
Ihur: it hus.a single net'Work·level interface and a conncctiun-lcvcJ intert11cc thr both IP and Tel' respectively.

Protocol-specific intcitucc routines arc accessed by the general server facilities through function tubles
indexed by protocol type. There are two suc·h function tables, one for the network-level routines and one for
the connection-level routines. The tonnnt of these tables is described below.

Network-level

111e network-level function table is called J>netT,lblc and is defined as follows:

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

178

struct PnetBlock
{

unsigned prot;
Boolean active: .

int (*1nitNetProt() ();

int (*rcv) ();

} PnetTable[NumPnetProtocols]:

INTERNET SER VER

1* Network protocol type. *1
1* True if a network connection is

active for this protocol. *1
1* Initialization routine for this

protocol. *1
1* Receiving routine for this

protocol. *1

The first two fields are actually not functions. The prot field is llsed to store the network protocol type id so
that the network reader process can figure out which table entry to use for a given n~twork packet.

The active field is used to allow the network reader process to "short circuit" discarding of broadcast and
invalid packets for inactive protocols. Without this field the reader proC(,.'SS would have to cull the rcvO
routine for these packets since it can't tell itself whether they should be discarded. The ~lctil'c tleld is
managed through the following two routines:

Act1vateNetProtocol(prot)
int prot;

DeactiveateNetProtocol(prot)
int prot;

prot spccifjcs which table entry to access.

Associated with the activc field is another ttble. called NctLcvclProtocol. which is used to map from
connection protocols to the network-level protocols which support them. For example. the IPrrcp protocol
implementation described previously would dcsignale "both IP's and TCP's network-level protocol as being

'IP. The definition of the table datl stnlcture. along with an example initialization is as follows:

1nt NetLevelProtocol[NumProtocols] •
{

}:

0,
0,
1,

1* IP *1
1* Tep *1
1* PUP *1

'l1,e index of each entry corresponds to the index of the corresponding protocol entry in the FUllc'i'ahlc lable.
The conlents of each cntry is Ule index of the corresponding network-level protocol in the PllctTablc table. "
Thus. in the example shown. the It'uncTablc defines the I P protocul at index O. the TCP protocol at index 1.
cUld the PUP protocol at index 2. The PnctTahlc defines the 1» network-level protocol at index 0 and the
PUP network-level protocol at index 1.22 The initNctJ»rot field specifics an initialization routine for the
protocol which is called at server boot time.

'Ille rc, field specifics a routine which is called whenever a network packet arrives which has a protocol type
eqmll to tluat spccilied in the prot field of'the entry (clOd the ~ICtivC lield is tnlc). This routine is responsible
thl' riguring which connection of its protocol, if any, should receive the pacKeL If a conncction is I()und tllen
the routinc is respunsiblc fhr enqllcueing the packet in th.lt connc..'Ction's RingQuelle (using tllc
l!:nQuCtlCSafl>() routine) and for checking to makc sure thut the conncction's proccs-\)(cs) will actually be able
to proccs.c; the enqucued packet butler. (I.e. if the connection's proccss(es) are receive-blocked awaiting client
requests then the routine must send n message to "wake" them up.) Packets t'br which no connection is found
must be returned to U1C free butfer pool with a call to Dc:lIlocllufO.

2~'he actual internet servcr code uses mnnifl'Sl const:lOts instead of integers LO lillthcsc lields • making lhings mllch more readable.
) (owcver, to iIIuslrate tJ1C principlc, no mnnifcslS were employcd.

V-SYSTEM 5.0 REFERENCE MANUAL SI~RVFRS

PROTOCOL·SPECIFIC INTERFACE ROlJrINES AND DATA STRUcrURES

The interface definition for the initNctProtO and rcvO routines is as follows:

InitN~tProtocol()

ReceiveProtocolPkts(packet)
PktBuf packet; ,'II Ptr to' the incoming network,

packet. 'II,
where InitNetProtocolO and Rcceiv·cProtocolPktsO are example names.

Connection-level

The conn~~ti()n·level function table is called FuncT~lhlc and is defined as follows:

struct FuncBlock
{

1nt (*InitProtocol) ();
SystemCode (*CreateConnection) ();
1nt (*NextTimeout) ();

} FuncTable[NumProtoc~ls];

179

The InitProtocol field specifics an initialization routine for the protocol which is called at server boot time.

The CrcatcConncction field specifies a routine which is called by the connection-cstablishment process
when a clicnt requests the crcation of a new connection insumce. Thc routine must creatc the (~ata and
process stnlcturcs for a new connection and then handle the Creatcinstance request from the client.23 This is
usually also the place where a call to the ActivutcNctProtocolO routine is made to signal that the protocol is
active.

'11e NcxtTimcout field spccifics a routine which is called by the timcout checking timcr process. This
routine returns the time of the next timcout fbr its connection. If thut time is aireudy PHst then the timer
proccss will send a timeout message to the connection's primary process. The connection's data structures arc
accessed through the tchld field of Ule connection's NctlllstTnblc entry.

'111e intcrt~lcC detinition for the InitlJrotocol(). CrcatcConncctionO. and NcxtTim~outO routines is as
tbl1ows:

InitProt()

CreateProtConnection(reqMsg, clientPid)
CreateInstanceRequest reqMsg; ,'II Create Instance request message sent

by a the cl ient .• /
Processld cl1entPid; ,'II Process 1d of the client. *'

NextProtTimeout(tcbId)
unsigned tcbld; ,'II Ptr to the control block for the

connection. *'

where Inill-rotO. Crc:ltcProtConncction(). and N,,'xtProtTimcoutO are example names.

21111C m~lhod' rccommended for doing this is to hnvc the routine crcnle the connection handling prncc~~cs) and· lllcll rorward U1C

Crcatcln!'tance reQlIest to the conncction's primary procC5.'i, ThL'l allows the connection handling procl:ss(cs) to l1Ulnipulate their own
data stnlcturcs (which arc lypically kept on the proccss(es), sUlck~s»,

V-SYSTEM 5.0 RFFFRENCE MANUAL SERVERS

180 V STORAGE SERVER

V-SYSTEM 5.0 REFERENCE MANUAL SI~RVERS

V STORAGE SERVER 181

~35-
V Storage Server,

The V storage server is a file system that implements the V 110 protocol. It is intended to nm on a "server"
machine with maSs disk storage. thus providing file access for users on the network. It provides an alternative
to the Unix Server for file storage. It implement.') a hierarchical name space with a syntax very similar to that
of the UNIX file syst(~m (Le. pathname components are separated by a "r"). Additionally, there is no
distinction between files and directories in the V storage server (Le. any file can "actlt like a directory in that it
can have descendents illl the tree stnlcture). '

One word of caution is that the V storage server is still at an "experimental" stage. thus providing limited
access facilities and no protection. Hence. users requiring robust file access and proteciton should lise the file
storage provided by the Unix Server. The robuslness of the V storage server sotlware is expected to greatly
improve in the ncar future.

35.1. Running the V storage server

One can start up the V storage server from within a Y exccutive by t~ping

storagesarver

or

storagaserver devicename

If no device name is specified. the st()n1gc server attempts to open two devices. [deviccldiskO and
[dcvice]diskl. Non-existence of a sl.'Cond device docs not affect correct operation of the program. Note that
th.e devices mllst be attached to tJle workstHLion from which the command is invoked l:II1U thc kernel funning
on thc workstation must include the proper disk driver (sec lhe Kernel Section thr details on which kernel'
should be booted).

35.2. Accessing the V storage server

When the V storage server is started it registers it.')elf as YSTORAG F._SERVER. Thus. before a client can
communicate with lhc~ V storuge server it mlist do a GetPid(VSTORAGI~_SERVER. ANY _PI D). This
function returns a pid to which a cHent will send its CREATE_INSTANCE request mcs.~agcs.

A CREATE_lNSTANCE request causes the server to attempt to open t.he named tilc. Files opened in
FREAD mode are of type READABI.E. FIXED_l.ENGTH. and MUI.TI_BI.OCK. The mo<.lcs FCREATE
and FMODIFY creat<! instances of type READt\BI.E. Wl{ITEABI.E. an<.l MUI;I'l_BI.OCK. FAPPEND
mo<.le i.ldds the further construinl of APPEND_tlNI.Y. All insulIlces arc ,·an<.lom :1CCCs.~. hut operations Illust
start on a block boundary.

If the mode is FCREA TE. and the tile docs not exist. then a new tile is created 4110ng with the associated
instance. The permission bits of Ule new tile will be the same us those of its parent node in the directory trec
stnlcturc.

, ,

If a CREATE_rNSTANCE request is successful. a file instnnce identilier is returned by the server that is
used by the client for all subsequent accesses to this instance. In addition. the server returns a ji/£' ;I/Slu1I<:£
server pid which is th(! process lo which all subsequcnt I/O request., will be directed. This pid is ditTerenl

V-SYSTEM 5.0 REFlm.ENCr. MANUAL SERVER~

182 V STORAGE STIR VER

than that of the main server because one proce5..1) (namely. the one registered as the VSTORAGE_SERVER)
handles CREATE_INSTANCE requests and other processes handle I/O requests.

Once an instance has been created. a client can perfonn I/O operations on the file represented by the
instance using READ_INSTANCE and WRITE_INSTANCE reque~ts. These requests. if legitimate, result
in the jile illstance server carrying out the desired tasks. When a client is finished accessing a file, it closes the
file by issuing a RELEASE_INSTANCE request.

The V storage server supports many other types of requests including oncs to create. remove, and rename
files and most other relevant requests associated with the V I/O and naming protocols. Note that many
applications need not be concerned with message types and fonnats as actual message constnlction usually
takes place within V commands and standard library routines. For example. CREATE_INSTANCE.
READ_INSTANCE. WRITE_INSTANCE. and RELEASE_INSTANCE requests arc encapsuluted in the
library routines OpenO. ReadO. WritcO, and CloseO, respectively.

35.3. Creating a context for the V storage server

In order to provide easy access to the V storage server and its directories. it is c()nvenient to define a context
for it llsing the def 1 ne command. Once this is done, one can simply cd to the newly created context and
subsequent rclutive pathnames will be interpreted relative to this context.

'111US. for example.

define ss [storage]
results in a context being defined for the V storage server, and

cd [ss]

causes the user's cllrrent context to be changed to its root directory.

V-SYSTEM 5.0 REFFRENCE MANUAL SERVERS

UNIX SERVER 183

-36-
Unix Server

The V Unix server is a Unix24 program (and not a V program or command) designed t~ simulate a V
kernel/storage server on a VAX2S /Unix system. It provides access to some of the Unix system services via the
V kernel interprocess <:ommunication primitives. To workstations running the V kenlcl, the Unix server
appears as a standard V server, primarily providing Unix file access using the standard V 110 protocol.

GetPi d (UNIX_SERVER, REMOTE_PIC) returns the pid of a Unix server accessible to this workstation.
With more than one, GetPi d() returns the pid of the first Unix server to respond to the request. This is the
pid of a public Unix server. Public Unix servers also register themselves under the logical pid
STORAGE_SERVER. A public storage server is the definitive source for all the standard system files and
commands whereas hosts that run non-public storage servers arc not required to be kept IIp-to-d~lte.

36.1 . Sessions

The public Unix server provides access to all files on a Unix host that are publically readable (in Unix
terminology, '·readable by others"). To get acccs.~ to other files, a client must create a session with the Unix
server. To create a session, the client sends a CREATE_INSTANCE request to the server, with the mode field
set to. FSESSION + FCRI--..:ATE. The name field of the request contains a Unix user name and pWisword
(separated by a NULL character). '111e reply me5.\)uge will contain the process id and instance id of the session.
The process id allows the client to communicate directly with the session. The session provides several Unix
system services. all running under the access privileges of the Unix uscr specificd in the
CR EATE_l NSTANCE request.

The initial owner of a se5.~iotl is specificd by a server-specific field in the CREATE_INSTANCE rcqucst.
The format of lhis requcst is dctincd in thc sumdan.i hcader file <Vsession.h>.

111e operations SET.JNSTANCE_OWNER and RELEASltlNSTANCE arc meaningful on session
instances. Other I/O protocol opemtiuns ~lre currently not supported. Relcasing a session instance terminates
the ses.tiion and invalidates its process ide

36.2 .. File Access

When a CREATE_INSTANCE request is received by the scrver (or session), and thcre are no special mode
n~lgs set (such as FSESSION), it attempts to open the named tile. As' was mentioned carlier, the file must
have o/hers access privileges in order for it to be opened by the main server. Also. the muin server docs not
allow creation of new fill'S, or writing to any file. 1\ session. 011 the other hand, !letS the snmc access privileges
m; the Unix user thnt cre41ted it.

(f lhe client has the (:orrcct permissions, ~en an instance is created, with the type field set according to the
requcst mode. Files opcned in FREAD mode are of type READABLE, FIXED_LENGTH, and
MULTI_BLOCK. '111e modes FCREATE and FMODIFY create instances of type READABLE,

24UN1X L" a trademark of I1c1l (.aborntorics.

2SVAX is :llrndcmark of Digital Equipment Corporatio~.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

184 UNIX SERVER

WRITEJ\BLE, and MULT,-BLOCK. FAPPEND mode adds the nuther constraint of APPEND_ONLY.
All instances are random access, but operations must start on a block boundary. The block size of these
instances is equal to the maximum appended segment size for V kemel messages.

If the mode is FCREATE, or it is Rtl0DlFY and the file does not exist. then a new file is created along
with the associated instance. Files arc created with Unix file protection bits ("mode bits") set to allow reading
and writing by the owner, and reading by group and others. A client may change the modc bits using a
WRrI'E_DESCRI PTOR or NWRITE_DESCRIPfOR request

36.3. Program Execution

A client can execute Unix programs through a V session by sending a CREATE_INSTANCE requcst with
the FEXECUTE nag set in the mode field 'The name and arguments of the program to be executed arc sent
in the segment with the NULL character being a field separator. The last argument need not be null
tenninated. 11\e context in which the program is to be executed is also specified in the request

Given a request. the session has a built-in search path that it uses to determine which Unix program to
execllte.26 The session tries to find the tirst file in a directory along the search path that matches the given
namc. If the Ilame contains a or, then the search pad1 mechanism is not used and only the L:ontext specified in
the request is searched. If the program is a shell script, the Bourne shell is invoked explicitly, and it
detennines which shell should execute the script based 011 dle nonnai Berkeley Unix conventions. As a
side-effect. the shell expands any wild-card characters (such as 0.' and °1') found in the arguments. 'Ibis
cxpansfon does not occu r if the U nix program is not a shell script

After an of the preliminary checking is done. the session forks and its child attempts to nlO the program.
The parent process replies to the requcstor with an OK SL1tuS. However. there is no guarantee that the
execution will be sliccessfui. ;\ fhilure ~m occur after the OK reply has been returned. since the program is
not loaded until the child has been tbrked oft· and the reply is sent asynchronously. If a failure of this nature
occurs. then an error message shuuld appear in d1C program's output.

In the reply message, the session includes an instance id for the running program. If the tile mode in the
CR EATE_I NST;\ NCE request was FR E;\ D, then the instance icl specifics an instance of type REA 1)/\ BLE.
V J\RIABLE_BLOCK, and STRE/\M. '111e client cun rcud the program's st4mdard output using this instance.

If the mode was FCREATE, FMODIFY, or FAPPEND, then the instmlce returned in the reply message is
of type WRITEABI.E,' VARIABLE_BLOCK. APPEND_ONLY, and STREAM. Dutu written into this
instance is piped into the progmm's sUlndard input An instmlce with icl 1 greater thun the onc returncd in the
reply is also crcuted. of type READABLE. V ARIABI ,E_BLOCK. and STREAM. Rcading from this instance
provides acccs.~ to the program's standard output.

When the program terminates (either nonnally or abnol1nal1y). the session rcturns an END_OF_FILE
reply to any write reqllests. Read requests will continue to be accepted as long as data is left in the pipe.
Write reqllcst~ will block if Ule pipe is full and the Unix program is not reuding from it (Unix pipcs can
butler up to 4096 bytes of data.)

A client may lenninHle the program by releasing all instances associi.lted with it. I r only one of the instlllces
is closed. dlen program will 1l0ltcrlllilmte immediately. '111is allows a client to duse the pi·ogram's input and
have it clean up betore exiting. One should be careful not to release the reudable instance before program
termination. because Unix sends a signal to any program that writes to a pipe with only one encl. The signal
will kill the Unix process, if the process is not catching or ignoring it

26To lind out lite search p:uh used'in your in~lallntion, C:H.-C:Utc the Unix command pr'intenv. ThL'i will display Lhe environment
variables that arc passed on lO programs executed v!a the session.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

FILE DESCRIPTORS 185

36.4. File Descraptors

The server supports the V context directories and descriptor requests. One can open a Unix directory with
the FDlRECfORY flag set in the mode tield and the server will automatically translate standard Unix
directory entries to V Unix file descriptors. Directories arc not writeable directly, but descriptors can be
modified using a WRITE_DESCRByrOR or NWRITE_DESCRIPTOR request. The UnixFilelJescriptor
type is defined in the system include file, <Vdirectol'y.h>.

36.5. Server Name Lookup

A client can get the pid of any Unix server by sending a LOOKUP_SERVER request to another Unix
server. The request and reply formats arc as follows

requestcode

hostname

namelength

replycode

serverpid

Pointer to the character string name of the host on which the server is running.

Length of the host name.

Standard system reply code.

Process id of Ute server.

The hos/name tield of the request gives the name of the host machine that the requested server is funning
on. The server's pid is returned in the serverpid field of the reply message. These message fonnats arc defined
in the standard include file <Vsession.h>.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

186 SER VICE SER VER

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

SERVICE SERVER

37.1. Overview

187

~37-
Service Server

The service server provides a means for. managing globally visible servers and services. [t provides facilities
for registering arbitrary objects (typically entries which describe the state and contact addrcss of a server or
service) and also for selecting a subset of these "cgistered objects for retrieval: The selection facilities take a
client-specified pattern and match it against the information in each registration entry to dctermine whcther
that entry should be induded in the retrieval set

Since any kind of obj<!Ct can be registered. the server is in t:1Ct a general "switchboard" service which can be
used for arbitrary "rendevous" between two or more client"). llowever. thc primary usage of this server is
intended to be the managcment of global servers and services: and the selection facilities provided for
reu"jeving registcrcd objccts have been structured with this goal in mind.

37.2. Registerinlg an Object

Objccts are registered with the service server by rneans of the Reg1sterServer() library routine. This
routine packuges a registration descriptor into a message and sends it to the service server. Registration is on
the basis of an object name and an object type. Object type essentially represents a subcontext within the
service server and all objects of a given type must be registered using the same registration entry 'record
stmcture. Object name distinguishes between the various registered objects within a given object type. All
selection and listing of registered objects is done with respect to a givcn object type.

The service scrver maint.1ins the concept of an owner for the objects registered with it. Registered objects
arc unregistcred when their owner dies. 'Illis is achieved by having the server periodically check each
registered object's owner's process id to see if it is still valid. The ownership of a. registered object can be
ch,mged lIsing the stand41rd SetlnstanceOwner() library routine.

The format of the registratioll entry for a particular object type is lett to the client Thus an entry can store
arbitrary sort" of in thmJation in it However, in order to be able to perform selections of regislcred objects on
the basis of inthlmation conti.1ined within their descriptors the fOlmc.lt~ of the relevant descriptor fields must
be known to the service server's pattern m41lching thcilitics. To support this, several well-known descriptor
formats have been defined in the C include file Vserv 1 ce . h. These record stnlctures are actll4111y descriptol'
format p"l'jixes since the client can append arbitrary numbers of additional fields on the end of the descriptor
structure which contain int(}rmatioil not lIsed in the selection process.

There arc various well-known object types (and associatcd registration descriptor fonnats) which are
defined in Vserv 1 ce. h. These are utilized by various existing filcilities such as the leam scrvers of all hosts
throughout the system.

Objccts can be unregistered by means of lhe Unreg1 starServer() library routine. Object') already
registered' can be reregistered with a new descriptor entry by simply invoking the Reg 1 s terServer () a
second time. '111e service server will automatically remove the original entry. '

The service server has a welt-known multicust group associated with it which it uses to send out requests for
status update when it first starts up. This allows it to reinitializc iL-;elf after crashes and other Stich events. The
welt-known multicast address is defincd in the Venv 1 ron. h header file.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

188 SERVICE SER VER

37.3. Listing Registered Objects

All registered objects' descriptors of a given type can be listed using the standard V directory listing
protocol. Similarly, a single registered object's descriptor can be listed using the NReadDescriptor request
dermed in this protocol. The fonnat for specifying an object is

objec:t-type: object-name

If no object type is specified in the Createlnstance request message then all registered objects arc
returned. '

Since the service server understands the V directory listing protocol it is possible to usc the 1 is td 1 rO and
11 stdescO programs to query it from the exec level. 111US, for example, the stmus of all running hosts
within the system can be found out by typing"

11stdir [service]host

to the V exec to query the well-known object type host.

37.4. Retrieving Sets of Registered Objects

Sets of registered objects Me retrieved from the service server by means of a combination of service
server-specific libmry routines and general V-I/O protocol library routines. The basic idea is to establish a
connection instance. just as for a V-I/O protocol connection. through which the descriptors of the selected
objects arc read as if they constituted a separate file unto themselves. The selection ins/alice is created using
the CreateSel ect 1onlnstance() routine. which specitics which set of objects to retrieve. The insta:1ce
is subsequently treated just as if it were- ~\ sL.1ndard V-J/O instance: which can be read USi"Ilg standard librc.lry
routines such as Read() and is released using the standard library routine Cl ose(). The only difference is
that the tirst descriptor associated with the selection instance is immediately returned by the
CreateSe1 ect 10nlnstance operation. "

Since there arc many cases where one wants only the first object returned from a set ofsclccted objects (e.g.
the first host from a set of hosts eligible as remote execution sites) a means is provided by which a single
object descriptor cnn be retrieved without incurring the cost of est4lbtishing a selection instance. One of the
parameters (() CreateSe 1 act 1o'nlnstance allows one to specify whether one or more than one objcCL'\ is
to be returned. If only one is sp(.'Citied then no connection is est.1blished and
CreateSe 1 ect 10nInstance merely returns the desired uescriptor record.

Selection of objects is bused on the sp(.'Ci fication of hoth 41 retrieval pattern and 41 pullern match i ng fll nclinl1.
As mentioned before. all selection is done strictly within a given object type. The pattern marching function
to specify is determined by the format of Ute descriptors for the desired object type. The include tile
Vserv1 ce. h con~1ins a list of nil aV(1ilahle pattem matching functions and descriptiuns of the descriptor
fonnaL") they expect to use. This include file also contains a description of the fonn th~\t retrieval patterns
must take as a function of which pattern matching function is to be used.

V-SYSTEM 5,0 REFERENCE r",IANUAL SERVERS

EXEC SERVER 189

-38-
Exec Server

The exec server is central control facility for all instances of the V system executive on a workstation. Its
purpose is to allow sharing of code and data (such as aliases) among all ex,-"Cutives. The intention is that while
each executive is a separate'command stream. all executives on the same workstation should present the same
command intertllce to the user. That includes customized aspects of that command interface, sllch as aliases.
Since the exec server is part of thc basic equipmcnt of the V system. such customizations do not vanish even if
the terminal agent is replaced. but ~ long as the llser is logged in.

'111e exec server is located by

GetP~d(EXEC~SERVER.LOCAL~PID

[t is present in all the standard configurations of the Vsystem.

The exec server allows programs to have instances of the exccutive (usually referred to simply as "execs")
created and destroyed. An exec is known to the server by its exec id; exec ids arc small integers starting at
O. There is currently no concept of ownership of execs-any program can destroy any exec regardless of
whether it created it or not.

The following request') are supported.

CREATE- EX ECCreatcs an executive. with standard i/o and context specified in the request message, and
returns the exec ide

START -: EXEC Under some circumstances an exec is not started by the CREATE- EXEC request,
because U1C requestor needs to do some Sctinst:mccO"ncr operations tirst.
START- EXEC Ulen allows U1C excc to start nmning. Normally all this is transparent and
is hundletl in Crcatcl~:xcc.

DELETE- EXEC Delet.e an executive. If there is a progmm running under it, it is i.lbnlptiy stopped duc to
the dC;'llh of its parent proccss.

KILL- PROGRAM
Kill the program mnning under an executive. If there was no program running under that
executive, nothing happens.

QUERY - EXEC Returns infonnation on an executive: it') St.1tuS (free. loading a program, or nanning a
program), its process id. and the process id of the program funning under it. if any.

Cl lECK·- EXEC Mnk(:s a check of all exccutivcs. If the st.1nuard input server or standard output server of
an e,ccc het5 died. Ule exec is destroyed. This is used muinly when changing terminal
agcnl~.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

190 TERMINAL AGENTS

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

TERMINAL AGENTS 191

-39-
Terminal Agents

Tenninal agents are a generic class of sesrver used in the V system. A terminal agent has the duty of
mediating between the terminal hardware. the user. and the other programs in the system. ft is responsible
for line editing functions.e.g. the fact that thc back space key docs ilOt add a backspace charactcr to thc imput
stream but deletes a character from thc "imput stream. It tmnslates the newline character '\n' into a carriage
return/tinefeed sequence on terminals that require it. It is also responsible for interacting with the exec server
to create at lcast onc executive, or providing means for the user to do so, It may, but need not. support
multiple ilo streams. Termimll c.lgents may differ for two reasons: because Uley are designed to offer diflcrent
services to the llser, or because they are designed to run on different typcs of tennina(s.

The V system currently contains two" different terminal agent'i, the Simple Terminal Server (sts) and the
Virtual Graphics Tenninal Server (vgt'i). The Simple Terminal Scrvel' is a minimal terminal agent. It
provides a single ilo stream, using the terminal fuciHties provided by U1C timlwure monitor of the workstation.
and creates one executive using Ulut ilo stream. The standard V line editing interface is provided, but no
mouse or graphics facilities are available. The Virtual Graphics Tenninal Server. in contmst. provides a very
large sct of facilities: multiple ilo streams in multiplc windows. graphics. and mOllse-controlled menus. But it
supports U,e same line editing fhcilities. A large class of programs should be able to run under eiU1er of thcse
terminal agents. or any other terminal agent. without any knowledge of which tenninril agent is present

The ncwtcl1n command allows the user to replace Ule tetminal agent on his workstation without rebooting
the workstation.

39.1 • ~mplementation of Te rminal Agents

These arc the requests that" should be supported by a tenninal agent. at Ule minimum, It should support
UlC V 1/0 protocnl for INTERI,\CnVE STREAM files. In simple cases, it !TIay give polite replies lo
CREATE-INSTANCE and R HI.HASE-INSTANCEI without really doing anything, as the sts docs. It
should also support the MODIFY - FII ,E request in the fllshion expecteu by ModifyPad: it set') the pad
mode. "with a combination of hits controlling such fcatures as line editing. echoing of input. (ll1d translation of
\n to carringe-return/linefeed. In particular.lVlodifyPml(liJc.O) sl1oul<.1 turn ofT all slIch Icatures, giving the
client access to Ule raw. unadorned terminal.

TIle following conventions should be obscrved. in order to allow U1C ncwtcrm command to work: Upon
starting up, a terminal agent should dcfine the context [screen] with itself 4IS the server. It should also support
dIe Gctl~m\'IO requcst I1tcssage~ in which dlC terminul agent tells U,e client thc server ilnd instance iu's fbr its
own stan<.1ard input and output. Presumubly Ulcse refcr to the raw tenninal.

V"SYSl'EM 5,0 REFERENCE MANUAL SERVERS

192 VIRTUAL GRAPIUCS TERM INAL SERyER

V~SYS1T".l\l 5.0 REFERENCE MANUAL SERVERS

VIRTUAL GRAPHICS TERMINAL SERVER 193

~40-
Vi rtual Graphics Terminal Server.

The Virtual Graphics Terminal Service (VGTS) allows the display of stmctured graphical objects on a
workstation nmning the: V system. This chapter describes the internal structure of the VGTS. The SDl"
manager was originally written by "Rocky" Rhodes. incorporated into the Ya 1 e program by Tom Davis, and
converted to use the V kernel by Marvin Thcimer. The current VGTS is the w9rk of Bill Nowicki.

40.1 • Cu rrent VGTS Ve rsions

There arc currently two working versions of the VGTS. sunl00vgts is used on workstmions with srvn
model 100 frmnebttffers. while sun 120vgts is used with the SM! model 120 frnmebuffer. Users lIsually will
not have to concern themselves with this. since teaml-vgts (the default first team) automatically loads the
correct version of the VGTS. Furthermore. the program vgts is a 'bOoL'Itrap' program which loads the
correct version of the VGTS (in a new .team). "nd then dies. Thus, "vgts" can be given as an argument to
newterm (sec Section 4). r~gardless of the framebuffer type.

The difference in VGTS versions is important. however. when loading special first teams that have a VGTS
already linked in. team 1 +sunlOOvgts] will run only with a SM (model 100 framebuffer, and
teaml+sun120vgts] only with a model 120 framebuffer.

40.2. VGTS Philosophy·

The central concept of the VGTS is that application programs should only have to deal with creating and
main~1ining abstr<lct graphical objects. The dewils of viewing these objects are taken care of hy the VGTS.
This is in contnlst to traditional gmphics systems in which users perform the operations directly on the screen,
or on an area of the scn!en referred to as a viewport or window. The types of objects munaged by the VGTS
arc discus.'ied in more dc!t41il in the VGTS ch'lpler of the library manual.

40 .. 3.· VGTs, Vievvs, and Instances

Once the VGTS client has defined some graphical objects. it also needs to provide in fomlation on which
objects can be viewed. Every VGTis an item (usually a structured symbol) that is associated with one or more
views, that actually applCar on the screen. "':'1ch VaT can exist in zero or more views. but e'lch view has exactly
one vaT associated with it. The "SDF Nlunbel's" can be thought of as separate object dejilliJiOfI spaces, while
the vaTS arc object installce spaces. Symbol definitions are shared between VGTS. but instances of symbols
are not.

rille VGTS lets a user view objects in any VaTs anywhere on the screen in views. r.Hch view has a zoom
&1ctor. a window on thc~ world coordimltcs of some VaT. and screen coordinates which determine its viewport.
Although the SDF client can creatc det-hult views. the VGTS uscr can change them with the window manager,
and create and destroy more of them. Routines for the client's manipulation of vaTs and views arc described
in the library manual.

The VGTS maintains an event queue for each instance. and the vaTS associated with the given tile instance.
Each VGT corresponds to an instance in the V 110 protocol. The mode bils of the instance give the kind of
events that will be quelled. The details of these functions are defined in the Iibrarymanuul.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

194 VIRTUAL GRAPHICS TERMINAL SER VER

40.4. Pad Escape Sequences

Unless otherwise· noted, all escape sequences can come with or without the optional left bracket between
the escape and the escape command character, Argument., to the escape command are decimal character
strings separnted by a semicolon. The following subset of the ANSl s~1ndard escape sequences is decoded by
the SUN VGTS tenninal emulator: .

BELL

TAB

FF

CR

LF

BS

SO

SI

NUL

DEL

ESC A

ESC [i A

ESCn

ESC [iB

ESCC

ESC [iC

ESCD

ESC [iD

ESCE

I~C [/:(.' f

ESCH

ESC [/:c H

ESCJ

ESC [II J

Causes some fonn of audio feedback (buzzer. beU, etc.) if possible. and flashes all the views
of the pad ..

Positions the cursor at next multiple of eight (plus one) columns. erasing characters
between the current cursor position and the new position.

Clears the pad.

Returns the cursor to the first column of the current lineG

NewLine -- Moves the cursor down one line. Ifit is at the last line of the pad, all lines move
up (scron).

Cursor moves back.wards one space.

Shift Out •• Select the G 1 cha~acter set. Currently ignored.

Shift Out _. Select the GO character set. Currently ignored.

Null - ignored; may be used for padding.

Delete - ignored; may bc uscd for padding.

CursorUp - move the cursor up one line.

CursorUp - move the cursor up i lines.

Ncwl-ine •• move the cursor down, as with L,F.

NewLine·· move the cursor down the i lines.

CursorForwurd -- move the cursor thrward. but du nut overwrite Ule character at tilC

current pusitiun.

CursOl'Forwnrd -- move the cursor forwnrd i ch,lractcr positions.

Index -- scroll the current scroll regiun up onc line.

CursorBackward _. move the cursor backwards i characte.· positions.

Next r -inc -- move the cursor duwn onc line. but if it is at the end of the region. scroll the
region up (Index).

CursorPositinn -- Muve the cursor ttl line I, column c, Thc lines mId columns start from U,e
upper len, which is (1,1). Specifying zero or leaving an argument blunk is eqllivalent to a
value of 1. '111 us ESClfalune will "home" Ule cursor to lhe upper lett.

(gnored. Used by some terminals to set tab stops.

CursorPosition - same as ESC f.

Clem/roROS _8 clear from the current cursor position to the end of the pa4.

Clear -- if Ule argument is 2, de~lr the entire pad. Otherwise, clear to end of pad.

V·SYSTEM S.O REFERENCE MANUAL sl:t~vm~s

PAD ESCAA)E SEQUENCES 195

ESCK

ESCL

ESC [Il L

ESCM

ESC riM

ESCP

ESC riP

ESC@

ESC[i@

ESC rim

ESC [/;b r

p..sc <:

ESC)c

ESC(c

ClearToEOL -- clear from the cursor to the end of the current line.

Inserti..ine -- insert a line at the cursor position. All the lines below and including the
current one are moved down. The bottom line goes away.

InsertLin~ -- insert Il lines at the cursor position.

Reversclndex _. move the scroll region down one line. The top line in the scroll region
becomes blank.

Delet.eLine _. delete i lines starting from the line that the cursor is on, and move all lines
below thcm up.

DeleteChar -- dc)ete thc character at thc cursor position, moving all the rest of the
characters in the line to the left one column.

Dclctc~har -- delete i characters. starting from the onc under the cursor.

InsertChar -- move all the characters to the right of the cursor to the right one column. A
space appears at the cursor position.

InsertChar -- Insert i characters at the cursor position.

If tll(! value of the argument is non-zero. standout mode is turned on. which will mean
characters appear in reverse video. A lero argument resets to nonnal video.

Specifics the top and bottom lines of a seron region. This is used in the Index and
Reverse I ndex commands.

Enter ANSI mode. Currently it is ignored. since VGTS pads are always in ANSI mode.

Select GO character set Currently it is ignored.

Select G 1 character set Currently it is ignored.

The detault size ofa VGTS pad'is 28 Iin(.'S by 80 columns. '111is is to be compatible with the "sun" terminal
type of tile Stanford Unix systems. This terminal type is just a V),-lOO with 28 lines. and a Il~w additional
escape 'sequences as described abovc. For TOPS-20. the command term VT100 will work .. On the SU-Al
WAITS system, the • tt3f sun Z8 80 command can be llsed thr display service.

40.5. VGTS Message Interface

'111e use of tfle vgt'iexec and view mamlger is given in the V-System Commands Alanual. This chapter
describes only the internal programmer's interface. Thc following requcsts of the 110 protocol are su'pported:

CREA TE_l NSTA NCE
Causes a new pHd to be created. The view manager will let the tlser decide where to put the
upper lell corner of the pnd by chnnging the cursor and hlocking the prnCl'SS until the user
clicks the mouse. The tile instunces crenled are RHAD/\BI.E. WRITEABI.E.
V ARIABI.E_BI.OCK STREAMs. The first two unspecified lictds or the message (if non
zero) arc tile number of .Jines and columns in tile new pnd. The filename field of the
message is used as the name of the VGT. USllully this is invoked only by the
OpcnPad routine described in the vaTS chapter of the Library Manual.

QUER YJNSTANCE
Returns the standard vulucs. the same as a Create Instance reply.

WRITE_.INSTANCE

V·SYS11~M 5.0 REFERENCE MANUAL SERVERS

196 VIRTUAL GRAPHICS TERMINAL SER VER

Write the bytes to thc pad corresponding to the file instance. Output conversions arc
perfonned jf the appropriate "Cooking" modes are set.

WRrrESHORT_INSTANCE
Same us WRITE_INSTANCE.

READ_INSTANCE
. Blocks until some characters are entered into the pad. If there are any characters already in

the event queue for this pad, they are returned immediately. Note that since the instance is
V ARIi\BLE_BLOCK, un unknown number of characters can be returned, up to the
blocksize. .

RELEASE_INSTANCE
The pad is deleted. along with any views of the pad. and storage is reclaimed.

QUER Y _FILE Returns the Cooking mode bits for the pad. These arc defmed in <V gts.h> and described
below.

MODlfol' _FILE The Cooking mode bit') are set for this pad. The structure ModifyMsg describes the format
of this message. .

SE1'_BREAK_PROCESS

SwitchInput

'111C brcak proccs..') for each instance is U1C process which will be killed when thc Kill
Program com.mand is illvoked from the View Manager.

Thc given pad (from the tiIeid) is selected for input. 111is is used in tile SclectPad routine.

MouseStatusRcquest
The position of the mouse is renamed immediately. This will be replaced by EvcntRcquest
in the future.

MouseEvcntRequest

EventRequest

The position of the mOllse is returned as soon as a significant event occurs, as defincd by
the MOllsemode bits described in the next section. This will bc subsumed by
EventRequcst in the future.

The first item from U1C event queue is retumed to U1C requester. I rUle event quellc is
empty. the requester is blucked until an cvent comcs in tbr the given VGT

40.6. Internal Organization

The current VGTS implementation consists of the fhllowing modules:

• Master Multiplexor. This is the only module which is operating sy.stem dependent. Upon initialization.
the appropriatc proccs." structure is 3et up. 'I"e main loop consists of wuiting thr a mcssage, dispatching
to the appropriate routine in U,C other modules. and returning a reply. Synchronization problems arc
avoided by having the duta structures accC!).')Cd only in one proccs.~

• Tenllinal emulutor. ')llis module interprets u byte stream as if it werc an ANSI stnndnrd terminal.
Printable characters are addcd to t~xt objects, and control and escupe codes Clre mappcd into the proper
SDF manipulations.

• Input handler. 'nlcre are various device-depcndent input handlers. For example. a single process reads
the keybqard and sends typed chaructcrs to U1C multiplexor. Another rcads thc mOllse and tracks lhe
cursor.

• SDF manipulatur. '111is modulc hundlcs requests of applications to create. destroy, and modify
graphicul objects in structured display meso These routines maintilin bounding boxes for symbols. and

V-SYSTEM 5.0 Rm'T~RENCE MANUAL SERVERS

INfERNAL ORGA~IZATION 197

call the appropriate rcdrawing routines when necessary. There i~ a hash table to locate items given their
client names.

• SDF interpreter. These are the highest level redrawing operations. The stnlctured display files arc
visited recursively, with appropriate clipping for bounding boxes totally outside the arca being redrawn.

• Display operations. These are the graphical operations called by the SOF interpreter. "I11ey are device
independen~ but some of the operations, like vicwport clipping. are done in hardware on the IRIS
system.

• Drawing primitives. ll1cre is one modulc which implements device dependent graphics primitives. On
the SUN workstation this is a simple interface to the RasterOp package. At this level color rcctangles
are drawn as stippl(~ patterns on monochromatic displays.

• Hit detection. TIle stnlctured display file is visited. but instead of actually drawing the primitives. the
positions are checked to match the cursor's position. i\ list of possibly selected objects (under other
optional constraint') is returned to the application.

• View manager. This module prov,ides a mode in which users can create, destroy, and modify the screen
layout. Viewports can be moved rigidly. stretched. or squeezed. Views can be zoomed or panned, all
without affecting the applications manipulating the represented objects. On the SUN workstation
zooming is by powers of two. and all motions arc done in one step. On the nus system zooming and
moving viewports arc smooth. continuous operations.

• Viewport primitives. These are the routines which perfonn the view-changing operations. invoked by
either an application program or the user through the view manager.

40.6.1. Executive Interface

Since the V-System is intended to be modular. the VaTS can be used with an executive other than the
standard one .. The VaTS module execs. c handles the Exec Control part of the view manager command. It
starts up new executives as new processes on the same team with the culling sequence: Exec(1 n tout t
err t cmd 1 n) where all of the parameters arc pointers to Files. These arc the input:, output. errqr. and
command input files. The·Executive then calls tlle functions SetVgtBanner(f11a, banner) and
SetBraakP rocess (f i 1 e, p ~ d) as commands arc executed.

40.6.? Frame Buffer Interface

The VOTS was intended to be ported to different graphics devices. Someday someone might actually do it,
and then we could have some material for this section. Right now most of the device-dcpcndel'it routines arc
in the draw. c file.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

198 SIMPLE TERMINAL SER yER

V-SYSTEM 5.0 REfERENCE MANUAL Slm.VERS

SIMPLE TI!RMJNAL SERVER 199

~41-
Simple Te rminal Sa rve r

The Simple Tenninal Server(STS) is a minimal terminal agent. It does .not use graphics, and it takes up less
memory than the· VGTS. Only one i/o stream is supported. A program that wants to do graphics directly on
the SUN hardware, not mediated by the VGTS, should be run under the STS~

The STS creates one executive. If this executive is ever destroyed, by encoimtcring end of file or by other
means, it will be replaced within a second or so. Such a replacement can be forced by the sequcnce control-t
x. A program running under the executive can be killed by control .. l" k. The normaitZ and 1'C commands also
work. hut they can be disabled by ModifyPad requests, while the control-t sequences cannot be disabled.

41.1. Input Editil'1lg Facilities

The STS provides a superset of the input editing facilities provided by the VGTS. All ModifyPad bits that
arc not related to the mouse work as they do under the VGTS: CR -Input. LF - Output,]~cho, Linebuffcr,
PageOutput. PagcOutput Knable. and DiscardOutput.

Printing characters arc: inserted at the cursor. In addition, the input buffer can be edited with Emacs-style
text-editing commands. In the following descriptions, Cl'RL-x means striking the Control key and the x key
simultaneously; ESC-x means striking thc Escape key and then the x key. Killing an object means moviilg the
object from the input buffcr to the kill buffer.

The STS supports the following·text-cditing commands:

RETURN Relcasc~ thc input bu~er, with a newline appended, to the application.

LlNEFEED Same as lun'URN.

CrRL-a Move cursor to bcginning of the current screen line.

Cl1~L-b .Move cursor back one character.

BACKSPACE Same as CrRL-b.

LEFT ARROW Same as CI'RL-b.

CI1~L-c Ki11s the Break Proccs.'). usually the command nrnning in thc current executive.

CfRL-d Delete character under the cursor.

Cl'lU.-e Muv(! cursur to the end of thc current screen line.

CI'RL-f Mov<: cursor forward one character.

RIGIn" "I{ROW Same: as CfRL-f.

CfRL-g Abort the command. The input editor wilt release the input butTer. with a CI'RL-g
appended, to thc application. which is responsible for .detecting thc CrRL-g and reu(;ting
to it.

Cl'RL-h Deletc the character before the cursor.

V-SYSTEM 5.0 REFERENCE MANUAL sr.Rvm~s

200 SlMJ>l.E TERMINAL SERVER

DEL Same as erRL-h.

CfRL-k Kill Kill from the cu~or· to the end of the current line.

erRL-t Re-display the input buffer.

efRL-n Move cursor down one screen linc.

DOWN ARROW Same as CTRL-n.

crRL-p Move cursor up one screen line.

UP ARROW Same as erRL-p.

CrRL-q Quote next character. Control characters arc displayed as 'tC'.

erRL-t Transpose the two characters preceding the cursor.

CTRL-u Kill the entire input buffer.

CTRL-w KiI1 from the cursor to the beginning of the current word.

CTRL-y Move the contents of killbutTer into the input buffer. inserting at the current cursor
position.

CrRL-z Causes an End of File indication to be sent to the application reading the input .. This will
tenninate the Executive if no application is running.

CTRL-\ Insert next character with the eighth bit set Character is displayed as '\nnn'. where nnn is
the octal representation of the character codc.

ESC-, Move cursor to the beginning of the input buffer.

110ME Same as ESC-, •

ESC-. Move cursor.to the end of the input buffer.

ESC-b Muve cursor to the beginning of the current word.

ESC-IlACKSI)ACH Same as ESC-b.

ESC-d

ESC-r

F..5C-h

ESC-DEL

ESC-t

Kill frum the cursor to lhe end of the current word.

Move cursor past the end of the current word.

Kill from the cursur to the beginning of the current word. Same as el'RL-w.

Same as ESC-h and CrRL-w.

Transpose the two words preceding the cursor.

41.2. HardwareEnvironment

The STS communicates with the user via the kernel console device •. If the workStiltion hns 41 framebllffcr,
characters arc sent to the terminul emulator built into the workstation's PROM monitor; otherwise~ characters
are sent through serial line 0 to a character terminal.

The attached'terminal or terminal emulator mllst understand the escape sequences sent to it by the STS for
cursor posilioning. The STS currently works properly with the t()l1owing tenninul emu]ntors and terminals:

• Any PROM monitor terminal emulator that supports ANSI standard escape sequences. e.g .• the SMI

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

HARDWARE ENVIRONMENT 201

PROM monitor .

• CadHnc PROM monitor terminal emulator .

• Any character tenninal that supports I\NS[standard escape sequences, c.g., VT100 or Hcath-19 in
ANSI mode. .

V-SYSTEM 5.0 REFFI~ENCE MANUAL SERVERS
. ,,"

202 CONTEXT PREFIX SER yER

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

CONTEXT PREFIX SERVER 203

~42-
Context Prefix Server

The V -System naming world is in general a forest .. with each tree corresponding to a server. Although the
naming protocol 'provides a way to link this forest into a single. connected graph, we do not anticipate that
enough pennanent cross-links wilt be set up to make the graph connected. . Note that the simplest
implementation of a cross-link requires one server to store the (server-pid •. context-id) corresponding to a
context on another serv'er. Since server processes (and hence, server pids and context ids) may be relatively
short lived compared to the objects they provide access to (e.g .• tiles on non-volatile storage), such a simple
implementation is not adequate for a pennanent cross-link.

As a partial solution to this problem. each workstation in the V-System contains a local name server process
as part of its V executive. The local name server maintains a directory of local aliases, for (server-pid.
context-id) pairs on servers of interest.

Further, since the present V kernel device server does not provide charucter string names for the devices it
implements, the local name server 'llso perfonns name mapping on behalf of the device server. The directory
oflocal aliases and the directory of devices are maintained as separatc contexts within the name server.

42.1 • Name Syntax

Whcn a client issucs a Createlnstance request lDsing the standard Open library routine. if the character
string name begins with or. the requcst is sent to the first process responding to a
GetP1 d (CONTEXT_SERVER , ANY_PIC). ordinarily thc context prefix server Oil the client's workstation.

tf the name docs not begin with a square bracket. thc' Open routine will send the request to the client
process's "current context" a (server-pid. contcxt·id) pair stored in a standard place in the clienfs stack space
(the "pcr-process areu,,).27 The context prelix server is u character string name handling server that
participates in the naming protocol described. in I.~hapter 30. including the /\DD_CONTEXT_NI\M E and
DELErE_CONTEXT_N/\M E requests. It recognizes the character 'r as a special eSC41pe which causes the
next component of a CSname (up to the next 'r character or end of string) to be interpreted in its context 0
(DEFAU LT_CONTEXT). Context 0 is the directory of contexts maintuined by the context prelix server. as
mcntioned above.

The context prefix server maps thc name in brackets (context name) to a (server-pid, context-id) pair. If the
name consists of more than just the context name, the request is fbrwarded to the proces.~ designated by
scrvel"'pid with cOlllcxt-id placed in the name request. The context pretix server adjusts the Ilameimiex tield so
the receiving name server does not look at Ule context nmne. 1r the name consists only of a context, t.he
context pretix server may handle the request itself. depending on the type of request. I"or example.
"DELE"ntCONTEX'I'_NAME Idi&lhlol'" deletes "diablo" ns the name of a context in the server. On the
other hand. "CREATE_INSTANCE [diablo!" would be forwarded to the context "(diablo)" with the name
reduced to a null string. This request could be lIsed to read the context directory lor "(diublo]".

270y "scnding a request to a conle:tl." we menn sending. the requcst to the server spcciflcd by the (server-rid. conte:otHd) pair. with the
spccifled contc:otHd placed iill the request mcss.1ge. "111is procedure causes Lhe CSllame in the requcst Lo be interpreted in Lhe given
context

V·SYSTEM 5.0 REFERENCE MANUAL SI(RVERS

204 CONTEXT PREFIX SER VER

42.2. Additional Featu res

The context prefix server provides a few other features which are useful in the present V-System
environment

An entry in the server's context directory includes space for a type indication and some flag bits. a'J well as
an associated instance id and a long word of client-defined information. Space for these is also included in
the standard context request and context reply message structures. The only bits of the entrylype field which
are client-settable are the SESSION and LOGICAL_PID bits. The SESSION bit has no meaning to the
context prefix server, but is used by other standard V software to flag the primary name assigned to a session
at the time it is created. The instance id of a session is recorded in the i~lanceid directory field.

The LOGICAL_PID bit indicates to the context prefix server that the given server pid is to be interpreted
as a logical. pid in the ANY _PID scope rather than an actual piti. Every time the server's name mapping
algorithm passes through this entry9 it will issue a GetP1 d () request to obtain the next pid to use.

V-SYS-IlM 5.0 REFERENCE MANUAL Sl~RVERS ..

1TIAM SERVER

43.1. Overview

205

-43-
Team Server

The team server loads and keeps track of teams (usually equivalent to programs -- although a program may
consist of more than one team) running on a local host. It accepts requests to load teams and tenninate teams,
and implements a directory which can be read to find out infonnation about all tcams currently running. The
team server also registers itself with the exception server as an exception handler "of last recourse." . If no
other handler registers it.s~lf for the process which incurs an exception (or its ancestors), then the leam server
wilt receive the exception message and will load a post-mortem debugger to handle matters from there on.
(Sec the command debug for a description of the debugger that is used.)

The team server resides on tJle "ftrSt team" on a host, Le .• it is considered to be a server which is always
present on a host and is loaded automatically when a host's V-System is booted.

43.2e l"eam Loading

Teams can be loaded from specific objcct code files using the library routines LoadProg(),
ExecProg(), or RunProgram() in the V library. These package up an appropriate request to the team
server and take care of matters such as setting up th(~ initial arguments to a te,lm on it'i stack. The team server
only creates a new team and loade; down its object code from a designated open file insulOce. Setting up
purameters and settinginitiaJ execution priority and sUlck size is left to the team load requestor in order to
allow control over the order of events. This is necessary for programs such as debuggers which wish to allow
users to set breakpoints and examine the code befbrc a team actually starts to run.

I.oud requests to the team server also specify who the "owner" of a team is. Teams are destroyed if their.
owner proccs.~. goes away (sHme semantics as for processes created by other processcs). Tcams can optionally
be specitied tu be owned by the temn server itself. thus pennitting them to outlive their load requcstors.

43.3. Team Tern,ination

Teams cun te·rminate by either having their root process destroyed or by sending a termination request to
the team server (the library routine ex i t() docs this). The latter fonn also cuuses the team server to destroy
thc team's root process: but in addition it allows the team server to immediilteiy update its rccord of the state
of currently running teams. The server uses a timer process to periodically query the state of all teams which
thc servcr thinks arc still running 'lIld. remuve server entries tbr UlOse that have unexpectedly gone away.

43.4. Status of Ftunning Teams

The stmunrd context directory listing pn>tocol (see section 30.7) can be used to obtain inthnnation on all
teams which arc currently nanning under the tcam server. To obtain information on a specific team only, an
NREAD.J)ESCRIPrOR request can be. made. The team of interest is specified by setting the request
message's cou{cxlid field to U1C team's root proces.1) id; the CSname in the message has no significance.

V~SYSTEM 5.0 REFERENCE MANUAL SERVERS

206 TEAM SERVER

43.5. Remote Execution

The implementation of the team server and team-loading library routines is such that load requests can be
made to both local and remote team sel'vers. thus allowing for transparent remote execution of V programs.
In order to assure U1e priority of IOC,l} requests the team server keeps track of the state of the local host with
respect to things slich as whether someone is logged in Of not. how many applications are running, etc. This
state is used to determine whether or not a remote load request will be accepted or not

Currently the only state infonnation maintained by the team server is whether or not someone has logged
into the host. Also, the current policy with respect to remote execution is to accept an requests reg,lrdlcss of
thc local host's state.

111C tcam server also interacts with tlle service server in order to globally register the current state of its host.
An update of Ule host's status is sent whenever its state changes and whenever the service server requests such
an update (e.g. when the service server first starts tip and needs to acquire the current S~'lte of all hosts in the.
system).

V-SYSTFM 5.0 RFFFRFNCE MANUAL SERVERS

KERNEL 207

. Part IV:

Kernel

V-SYSTEM S.O REFFRENCr. MANUAL Kl~RNEL

208 KERNEL OVER VIEW

V-SYSTEM 5.0 REFm~ENCE MANUAL KERNEL

KERNEL OVER VIEW 209

-44-
Kernel Overview

The V kernel is a messnge·based distributed kernel that implements a program environment of many small
processes communicating by messages. This program environment is implemented on one or more
workstations connected by a local. network. The kernel was designed to provide an cfficiell~ real-time process
model on which to build sophisticated singlc·user systcms, multi·user systcms. nelwork-accessed servers and
dedicated real-time applications. These applications may be distributed over one or more network nudes or
workstations.· The kernel is also designed to be reasonably portable over a large class of machines and'iocal
networks. 28 This manual describes the V kernel: its operations. the mechanics of lIsing the kernel. the
kernel inlernal structure. and how to maintain the kernel. namely adding kernel operations and devices.
Kerncl operations can be broadly divided into three categories: process and memory management.
interprocess communication. and device tnunagemcnt. The following sections of this chapler providc an
overview of thc kernel tacilities and their intended usc.

44.1. Process and Memory M'anagement

'nlC kcrnel manages memory as entities cal1ed team spaces. which correspond to an address space or context
on the workstltion. For example. on the SUN workstation a team space is a context as implemented by the
hardw.are mcmory mclllngement. Operations are provided for creating team spuces. querying the size of a
team space. and setting t.he size of the teulTl space. Teum spaces disappear whcn the last process conlained in
that space is destroyed. so there is no explicit operation fhr destroying a team.

1\ teum spacq is entirel,y contained on a single workstation. On some machines. the kernel is actually part of
the teum address space but this fact is trunSp4.1rent to the program. For inSl<ll1ce. on {he SUN processor board.
segments 0 [lnd 1 in evc:!ry context arc kernel space. but protection bit., are set to prevent access except in
supervisor mode.

1\ process is a logical activity thut sequentially execules instructions. Associated with each process is a
priority. state. a team sp~lce and a sl.Hck. The process priority dictates lhe preference given to lhis process with
respect' to processur allocation. The highest priority rcutly process is allocated the processor. (0 is lhe highest
priority.) The statc is es.')cnliully the m"lchine state of the processor fhr Ulat process. Thc learn space is the
area of memory to which the process h,IS direct access. The stack. is the local memory aren contnineu in the
team space thClt'the process uscs for loc,,) workspace. procedure linktlgc and return. and the like. All processes
with the same team space arc ~lid to be on the same team. '

The kernel provides support for a per-process area by associating a location and value with eHch proccss.
Whenever a proccs.~ is activated. Ule kernel stores it'-; per-process value in its per-process location. By
convcntion. c",:h pr(lCl.'S.~ on a temn lIses lhc S4.lme per·process location. and euch per-process value is a pointcr
to a swndard pcr-procl..'SS dam ~lretl within U\C process's stuck space.

Process«..'S can be dynamically created and: destroyed. \Vhen a process is created. it is nssigned a uniquc
process identifier that is used subsequently to specify that process. Also. it is created as p~lrt of the same team
as its creator. A procc:'iS is created in the initial state of awailillg-reply from itl) cretlting process. (Sec next
section on interproccss communication.) When a process is destroyed. all the processes created by this

28Currently. il has only b\,"Cn· implemented on the Mt?lorola 68QOO-bnscd SUN workstations connected by J Megabit or 10 Megabit
Ethernet. An implementation on a V AX 111150 is under way.

V-SYSTEM 5.0 RFFERENCE MANUAL KFRNEL

210 KERNEL OVERVIEW

process are also destroyed.

44.2. Interprocess Communication

Interprocess communication is provided in two fonns by the kernel. First. processes may send. receive,
reply to. ,md forward fixed-length synchronous messages. i\ proces.') sending a message is suspended ({waitillg
reply until the ml.'SSage it sent has been received and replied to by the receiving process. Messages arc
currently 8 n.lll words, where a full word is defined to be the maximum of the space required for a general
machine pointer and the space required for a Unatural" machine precision integer (32 bits on the MC68000-
based SUN workst:'ltion).

Second. a process can pass access to a single segment in its team space to the rec~pient of its message. The
recipient process can access this segment for reading or writing. depending on the access specified by the
sender. while the proccss is awaiting reply from the recipient By convention. the segment start address and
size are specified by the last two words of the message by which access to the segment was given. The
presence of a segment and its access modes are specified in the first byte of the message.

A process that is blocked awaiting reply from a process th"lt is subsequently destroyed is unblocked with an
indication that the receiver of the message docs not exist

44.3. Naming

The kernel implements a low-level naming service that provides efficient access to server processes that
implement higher level functions. i\ process can register its process identifier as corresponding to a particular
logical process identifier. Processes can then query the kernel as to the process identifier corresponding to a
specified logical process identifier. Registration of the logical to real process identifier can be specified as
local to a workstation~ remote, or both. "

44.4. Time Management

The kernel provides operations for reading the time. setting the time, delaying for a time period. and
unblocking a deluying process. "

44.5. Device "Management

Devices mamlgcd by the kernel arc currently all accl.'ssed through the device server pseudo-process inside
the kernel. Operations are perfonncd by sending messages to the device server. The protocol llsed in these
messuges is the Vercx I/O protocol29 which is described in the V-System Servers fltlanual.

Devices thal can be controlled without special kernel support C(lfl be handled directly by processes. Special
devices thut require kernel support but do not fit the I/O model can be handled by adcJing new kernel
opemtions.

44.6. Initialization

After the kernel has completed its internal initialization. it creates an initial team space and an initial
process on this team. It assumes there is a descriptor tbllowing it in memory that describes the code and data
segments plus the starting instruction for this initial team. Enough physical memory is assigned to Ule team to

29"Distributcd I/O using an Objcct-Ilascd Protocol" by David R. Cberiton, unc Computer Science Technical report 81-1.

V-SYSTFM 5.0 REFERENCE MANUAL KFRNFI.

INITIALIZATION. 211

accommodate its code and data segments.

44.7. Oist ri b uted Ope ration

The kernel supports transparent communication among several workstations nanning the v kernel.
Processes on different workstations may send and receive messages and access segments as though all
processes were executing on the same machinc. This mode of operation requires a high-speed 10cal network
connecting thc wOrkS~'llions. Most kcrnel operations may be pcrfol1Tlcd transparcntly on non-local processes.

44.8. Application .. Level Model

Using the kernel well requires understanding the model ofprocesscs and mcssages that the kernel provides,
and how they are intended to bc uscd. Processes represent logical activities in the application. They are
intended to be sufficiently inexpensive to allow the usc of multiple processcs to achievc the desired level of
concurrency in the application. 111C process idelllifier is intended to scrve as a l()()se form of capability or
"ticket" Pos.')ession of;a process identifier is sufficient to allow the process to send a message to the specified
process. Also. because there is no notification tllcility on the destruction of a process, resources allocated to a
process should be associated with its process identiflcr if' lhey are to be reclaimed. The application (;an then
usc "Iazy reclamation" of resources by "garb~gc collecting" resoll fees associated wit.h in valid process
identifiers. However. a process may block until anothcr is destroyed lIsing ciU1cr RecciveSpecitic or Send.

111C synchronous message sending is intended to implement communication between processes thut looks
to the sender essentially like procedure calls. 'l11at is. Ule Send request message scnds lhc parameters of the
procedure and U1C reply message returns the results. '111e greater flexibility provided to Ule receiver allows
sophisticated scheduling of message handling and replies. Because message sending is totally synchronous.
concurrency must be achieved by multiple processes.

The segment access operations follow the procedure paradigm in being used primarily to access what are
logically "c41U·by-refercncc" parameters. The argument fi)r providing exactly one segment is that at Icast one
is needed. and one is sullicient for the dominant activity. namely filc access. It is expensive and difficult to
provide arbitrarily many segmcnts -- huving just one segment allows a simpler· and more efficient
implementation. Finatly. mtlltiplc segments can be linearized to one. so no functionality is lost with this
restriction.

There is no tbnn of asynchronous communication between proces.<;cs. It is intended lilat process deslJ"uctioll
be lIsed Ihl" asynchronollsly interrupting U1C activity of a process.

Teams arc intended to provide finc-grain sharing of code and inexpensive sharing of data hetween
coopentting processes. They separatc the idea of program. executable unit. and address sp~lce from that of
process.

V·SYS11~M 5.0 REFERENCE MANUAL KI~RNEL

212 KERNEL OPERATIONS

V·SYSTI~M 5.0 {H~FFRFN(,E MANUAL KERNEL

KERNEL OPERATIONS 213

~45-
(ernel Operations.

The operations provided by the V kernel can be divided into three classes: kernel traps, kernel process
operations. and kernel dc:vicc operations.

TIle most basic kernel operations. including Send(). are implemented as kernel traps. These operations
are invoked by executing a trap or system call instnlction which invokes the Kernel. 1\ number of secondary
operations are implemented by a pseudo-process running in the kernel. called· the kernel process. Such
operations arc invoked by sending to the kernel process's pid. Finally. operations on kerneHmplementcd
devices are provided by a second pseudo-process. culled the kernel device server. Such operations are
invoked by sending messages to the dcvice server's pid. lIsing the standard V-System I/O protocol.

The kernel traps include:

Forward()
MoveTo()
ReplyWithSegment()

GetPid()
ReceiveSpecific()
RereadMsg()

The kerncl process op(:rations include:

CreateProcess()
OestroyProcess()
SetPid()
SetTime()

CreateTeam()
GetTime()
SetTeamPriority()
Wakeup()

MoveF rom()
ReceiveWithSegment()
Send()

De" ay()
QueryProcessState()
SetTeamSize()
WriteProcessState()

'111esc functions are ducumentcd fully in thc V-Syslem Program fi.'l1v;romnelll Alallual. Othcr kerncl
operations described there, such as Receive(). Reply(), Val1dP1d(), etc .• are implementcd as library
functions using U1C basic opcrations listed above.

V-SYSTEM 5.0 REFERENCE MANUAL KI~RNEL

214 EXCEPnONS AND KERNEL EXCEP110N IIANDUNG

V-SYSTFM 5.0 RFfoFRFNCE MANUAL KERNEL

EXCEPTIONS AND KERNEL EXCElYrION HANDLING 215

-46-
E}(ceptions and Ke rnel Exception Handling

The V kernel handles exceptions (such as illegal instruction or bus error traps) by forcing' the erroneous
process to send a message to the exception server containing the details of the error. The exception servcr is a
process that has registered as the EXCEPTION_SERVER with the kernel using SctPid. If no cxception
server cxists. the message is sent back to the process that caused the error. blocking it permanently. I neither
case, other processes in the system can continuc to nln.

The message from the exception-incurring process to the exception server appears as a normal message and
can be received by the standard message primitives. After rcceiving the mcssage. the exception server can
read the flllllting process's state using either the kernel primitive QueryProcessState or the library function
ReadProcessState. In the Sun imp1cmetlti.ltion of the kernel, the registers in the state I·ccord reflect the
proccssor state at the time of the cxception, unless it occurred while nllming in the kernel. In that case, the
program counter and SWtus rcgister returned are those thut were saved ut the time the kcrnel trap was taken.
The other registers reflect the state at the time of the cxception. The correct program counter and status
register contents can always be obtained from the cxception meS&\gc.

The message also provides read and write access to the segment consisting of the entirc team address space
of the exccption-incurring process. This provides debuggers and exception servers with complete access to
the code and data of the process.

The fhnnat of the ex(:eption mcs.~ge is given by the ExceptionMessage strllct in <Vcxceptions.h> together
with manifest constant definitions Ii.>r the type of exception. The message tormat for the Motorola 6S000 is
given below.

requestcode

type

buserrt>rt.yp(!

code

accaddr

inslnaction

status

errpc

segment

scgmentsize

EXCEIYI'10N_REQUEST

Type of exception.' This is encoded as the address of the MC68000 exccption vector lhat
was taken.

Additional information on Ule calise of the error. if type is equal to BUS_ERROR.

In the Cilse of address errors ilnd bus errors. this contains a code returned by the processor
to idcntify thc type of memory reference Ulat caused Ule exception. Orily the low ordcr 5
bits of this word are valid: the others should be masked off. For other types of exccptions,
this word contains zero.

The access address in the case of address or bus errors. otherwise zero.

The instruction register in the case of address or bus crrurs. otherwise zero. This should be
the first word of the instnactiun thut caused the error.

The status register.

The program counter.

Starting address ofU,e team's address space. Currently at Ox 10000 on U,e SUN workstation
because the kernel uses the first two segments.

Number ofbytcs in Ule tea~'s address space.

V-SYSTFM 5.0 REFERENCE MANUAL KERNEL

216 EXCEPTIONS AND KERNEL EXCEPTION HANDLING

See the Motorola MC68000 User's Manual for a description of the types of exceptions possible and the
meaning of the information returned by dle processor and passed on in these exception messages.

Exceptions are always blamed on the currently active process. even if they occur inside the kernel. For
instance. it is possible for an exception in~idc the kernel to be caused by an invalid pointer passed by a process
when invoking a kernel operation. However, it is Cllso possible for exceptions to be caused by bug~ in the
kemel itself, though this is unlikely unless an experimental version of the kernel is being testeu.JO A
standard exception server process has been implemented and is described in the V-System Servers Nlallual.

3o.111e WOl1\t C':l.'iC l~ when the e:\ception is caused by a bug in a kernel intermp! handler, since in UlDt cnse there would he 110 relation
between I.he currently :\clive process and the code Umt Clused the exception; however. in this case. the bug is likely to crash the processor
:lIIywny.

V-SYSTFM 5.0 REFERENCE MANUAL KERNEL

PERFORMANCE 217

-47-
Performance

Two measures of pcrfonnancc for the kernel arc the speed of various operations and space requirements.
For a detailed account of the perfonnance of the V kernel, we refer the reader to The DislribUied V Kemel
and Its Perfonnance all Diskless JVorkstaliolls, by David R. Cheriton and Willy Zwacnepoel. in Proceedings
of the 9th Symposium on OperClting System Principles. October 1983 (also availablc as Technical Report
STAN"CS-83-973. Computer Science l)ep41rtment. SL.1nford University).

47.1. Space Requirements

'11e spClce requirements arc dependCllt on the machine. the number and complexity of devices supported.
and the nUlximum number of processes. teams and dcvices configured. Table 47-1 gives the codc segmcnt
size for the kernel configured to support distributed operation on the SUN workstation with support for
console device, serial interfaces. Ethernct interface and a muuse pointing dcvicc. The ulble also gives the lInit
space cost of a process descriptor and a tenm descriptor. and the total spacc requirements for a kernel
configured with a maximum of 64 processes. 16 teams and 16 device descriptors. 1\11 measuremcnts arc given
in bytes.

Table 47-1: SUN Workstation Kernel Memory Rcquirements

Componcnt Size in bytcs
code scgment
process descriptol'
team descriptor
devicc descriptor
to1411

47.2. Kernel Operation Times

31836
202

18
44

47990

T .. ,ble 47-2 gives the times tbr v(lriulis sequences of kcrnel operations on the SUN workstation lIsing a to
Megahertz Motorola 68000 processor. The times for sequences of operations are given instead of times fbr
individual oper<ltions to give a Qctter indication of the kernel overhead for higher-level operations. For
instance. the Send-Reccive-Moverrom-Reply sequence is indicative of the time to pertbrm a tile read
operation using Ule I/O protocol. These sequences are also easier to time in some cases Ulan individual
component operations.

Table 47-2: SUN Workstation Times thr Kernel Operations (in millisl...~onds)

Ge(rime
Send-Recl!ivc-Reply(O bytes)
Send-Receive-Rcply(S12 bytes)

Incul
0.06
O.1~
1.31

remote
Not Applicable

2.54
5.56

The table is not intcnd(~d to be complete but simply indicative of performance. The Send-Receive-Reply time
is indicative of the inlcrprocess communication time lIsing the kernel. The column· labeled "remote" gives the
Send-Receive-Reply time bctween two proces.')es resident on ditlcrent workstations .. The GctTimc Limc i~
indicative of the cost of a trivial kernel opcration. All other kernel operations can be expected to be fastcr
than U1C Send-Receive-Reply sequencc.

V·SYSTJ~M 5.0 REFERENCE MANUAL KERNEL

218 PERfORMANCE

Another measure of interest is the speed at which packets can be read and written oyer the Ethernet with
the overhead of sending read and write requests to the kernel device server to access the network. Table
47-3 gives perfonnance tigures for the kcrnel running on the SUN workstation connccted to a 3 Megabit
Ethernet. .

Table 47-3: SUN WorksL1tion Rthcrnet Output

Packet Size in bytes
16

512
1024

Packets per sec
2200

360
170

Throughput in Kbyteg/~ec
35

180
170

Similar throughput figures for a stand-alone Alto arc 4, 120 and 140 Kbytes per sec (approximately).

On the input side. with one SUN writing as fast as possible to another. 10000 packe~ of 1024 bytes can be
received in 5.89 seconds with 0 packets lost. yielding a throughput of about 170 Kbytes per second. which is
about 40% of the bandwidth of the net. Howeyer, for some unknown reason. packets arc dropped as the
packet size becomes smaller.

47.3. Interrupt Disable Time

The internlpt disable time for the kernel is· essentially the maximum of the time required to insert a record
in a ordered queue (the ready .queue) and the time to load the processor with the state of a new process.
Although the funner is dependent on the maximum number of ready processes, it is typically very small. For
example. on the SU N worksUltion, adding a lowest priority process to the ready queue when 32 processes are
ready to execute is estimated to result in an internlpt disable time of 164 microseconds. Under normal
circumstnnces. an intcrmpt dj~lble time of about 30 micros("'Conds can be expected.

V-SYSTEM 5.0 RFH':RENCE MANUAL KERNEL

KERNEL INTERNAL STRUCTURE 219

-48-
Kern'ellnternal Structure

The kernel is implemtmted as a simple monitor. It executes logically in its own address space in supervisor
mode with its own code, data and stack. It is invoked by trap operations and interrupts. \Vhcn a process
executes a kernel operation or an interrupt trap is taken, the kernel executes on the kernel stack.

48.1. Teams

Each team is represented by a tcam descriptor rccord (TO) that describes the team space, rccords the root
process of the team~ user associated with the team, team priority level. etc. A machinc·dcpendcnt portion of
the team descriptor describes thc tcam's'memory space.

48.2. Processes

For each process, the kernel maintains a process descriptor record (PD) that contains the process state and
sundry information about the process. When a process is running, a variable Active points at U1C process
~cscriptor of the currently active process.

48.3. Kernel Synch ronization

The kc!rnel is synchronized internally by a combination of scheduling conventions and interntpt
masking. Thc conventions arc:

• Both kernel trnp·1nvokcd and internlpt-invUKed operations only add 0" retnl>ve processes from the list
of ready processcs. '111CY cnnnot block a process in the middle of a kernel operation. The clock
intcrnapt routine that mny dl(lOgc thc state of a process blocked on a remote 01' nonexistent process only
docs so if it did not intcrrupt it kernel operation. Similarly. cthernct interrupts are disabled during the
execution of a kernel operution to prevent rcmote interkerncl paCKets from interfering with the
cxecution of the k:erllel opemtion.

• A process switch occurs at the cnd of a kernel oper4ltioll if the active or invoking process is 110 longer the
highest priority ready procCs.'i. The process switch occurs at the point of return from the kernel trap
handler aftcr cxcc:uting the kernel trap.

• A process switch occurs at the cnd of the cxecution of an internlpt service l'Outine if the active proccss is
no longer Ule highest priority ready proccs.'i ANI) the interrupt servicing did not interrupt a kernel
opcf"c.ltion. '111at is. :l process switch C411lnot occur in the middle of a kernel operation due to an interrupt
cven Lhough the interrupt cnll otherwise be serviccu.

The net rcsult is that a process executes a kernel operation indivisibly. with respcct to other proces..~es until it
blocks. However. the highest priority ready proccs..'i is allocated U,C proccssor whcnever the processor is not in
supervisor statc. Masking of interrupts is used at crucial points in manipulation of the ready qucues and
process switching so that interrupt routines do not interfere.

V-SYSTEM 5.0 REFlmENCE MANUAL KERNEL

220 KERNEL INTERNAL STRUCTVRE

48.4. Interrupt Routines

Intcrmpts are handled by first invoking a simple assembly language routine that saves some registers and
then calls a C procedure associated with that interntpt lcve), possibly passing some arguments. A macro
"Calljnthandlern generates the required assembly language routines that can the C procedure it is passed as
an argument. Interrupt-invoked routines are assumed to be short and do little in interacting with processes
other than possibly readying a process.

48.5. Kernel Traps

An assembly-language module handles trap instructions. invoking the specified kernel operation and
handling the return. On a trap. it moves the arguments onto the kernel stack and calls the spccified kernel
operation as a C function. On return, it moves the return value back to the process's stack if necessary and
checks for a higher priority ready process. If there is one. it switches to the highest priority process. If the
active proces:~ is still the highest priority ready process, the active process is allowed to continue execution at
the instruction aftcr the trap instruction in its code segment

48.6e Kernel Process

I f the speci tied pid fails to validate on a Send. the Send routine checks whcther it is the pid of thc kcrnel
process or 9f the device server process. If the kcrnel process pid was spccificd. Send calls thc SendKernel
routine to pertorm the rcquested opcration. Thus. thc ""kcrnel process" code is cxecuted by thc process
invoking the operation. not a scparate process running in the kernel. Thc message format and thc request
codes the kcrnel process supports can be found in <Venviron.h>. The kerncl process idcntiticr is a global
variable. Kcrnel_Proccss_Pid. set at the bcginning ofcach team's execution.

48.7. Device Server Process

A Send to the device scrver process r~sults in Send calling thc ScndDevicc routine to pcrfi.)nn thc requcsted
operation. Thus. the dcvice server codc is executed by thc process invoking the operation. not a separate
proccss running in thc kcrnel. A proccss thut is forwarded to the device server has its finish-up function (scc
below) set to SendDevicc. and is readicd. so that it will bcgin executing in SendDcvice as soon as it reachcs
thc head ofthc ready quelle~

48.8. Process Switching

All process switches occur in the macro function Switch that switches from the currently active procc~s to
the proccs.~ at the head of the ready queue. ...:ach process is created with its state initialized to start it at the
initial program counter in it') team space when it is readied. Switch relics on there always bcing a ready
process to execute (i.e. non-empty ready qucuc). This is guurnntced by the prescnce of an "idlc" process that
is always ready and cx,-'CulCS the procC5.4ior stop or idlc instruction.

Internapt-invokcd routin,-'S. execute as "involul1tlry" asynchronous function calls made by tJ1C currcntly
activc process und thus can alsO usc Switch.

Process switchcs always occur upon exit from the kcrnel. never in the middle of a kernel routine. "nU1S, the
kernel only requires one stack. not a separate kernel stack for cach process. I f there will still be some work to
be done on a kernel operation when a process is unblockcd. the kcrnel routine that blocks it scts the finish-up
function field in thc proces.~'s state record. I f this tield is non-zero when a process is unblocked. the specificd'
function is called befbrc dlC process cxits tJ1C kernel. A tin ish-up function can block tJ,c process again and set
another finish-up function ifncccssary.

V-SYSTEM 5.0 RFFERENCE MANUAL KERNEL

PROCESS SW(TCIIlNG 221

Note: The kernel implementation described so far should support a number of different types of kernels.
Also, this basis of trap and interrupt handling plus process switching. device management, and melTIory
management represents most of the· machine-dependent code in the kernel.

48.9. Processor Allocation

The strict priority-based processor allocation is implemented efficiently by maintnining a queue of ready
processes in order of priority. highest priority first. A state field in the process descriptor indicates the process
is ready (and thu~ in this list) or else the state in which it is blocked. Process switching incorporating this
priority-based allocation and ready queue management is implemented by two (internal) primitives.

Removeready(pd) Remove the specified process from the ready queue. The active process continues to
execute untillt exits the kernel even if it has just removed itSelf from the ready queue.

Addready(pd) Add the specified process (descriptor) to the ready queue in order of priority, after all
processes of the same priority as this process.

48 .. 10. Process Creation and Destruction

Unused process descriptors are maintained in a queue. When a process is created, a process descriptor is
removed from the queue. assigned a process identifier, and initialized to the specified priority, awaiting reply
st.lte, creator's team, etc. .

When a process is destroyed. it is removed from any system queues, such as the ready queue or any message
queues (one major usc of the PO state field is indicating presence in a queue), the process identifier is
invalidated and all its dcscend,mts are destroyed similarly. Thc resulting free process descriptors are addcd to
the end of the queuc of unused process descriptors. lbe clock internlpt routine is charged with checking for
processes blocked on non-existent processes (one per clock internlpt) so the process destruction mechanism
need not worry about this.

48 .. 11. Message Primitives

While a mes.~lgc implementation nOl1Tlally requires independent kernel mesS41ge butTers. the semantics of
the message primitives in this kernel allow the message butlcl" to be stnticully associated with the process
descriptor su we include it as part of the s4lIne C Slnlct. Thus. a mess«'lge is queued at a receiver by quelling
the process descriptor of the sender. saving on extra space for sender identifier, etc. plus time to map to the
PI) of the sender for unblocking it

Scnding to thc kernel dcvice scrver or to the kemel proccss is handled by chccking the pid of Send to sce if
it specifics U1C kernel device server or the kernel proccs..~ when lhe. pid fails to validate as a reat process. The
SendDevicc or SendKcl'ncl routine is then called directly to implcment the kernel device server or kernel
process. .

48.12. Time Primitives

Processes delaying using Delay arc maintaincd in a queue slUrting at DelaY<.Lhead ordcrcd by increasing
time to unblock. The time belhre a proccs..~ unblocks is stored in its blockcd_on ficld in tcnns of the number
of clock interrupts it must dclay aftcr the process before it in thc queuc is unblocked.

V~SYSTEM 5.0 RErERENCE MANUAL KERNEl

222 KERNEL INTERN.A.LSTRUcrURE

48.13. Distributed Operation

The process identifier contains an indication of the host in its 16 high"order bits. When an operation is
invoked that specifics a process identifier that tails to validate locally, it is assumed to be a remote process.
The operation then invokes a "nonlocal" version of the operation that fomlats a network message and
transmits it to the workstation host specified by the process identifier. The primary interface to the network is
the WriteKernelPacket routine~

In the case ofGetPid. a message is broadcast requesting the logical id to pid mapping ..

When a process is blocked sending to a remote process, the message is retransmitted periodically by the
clock interrupt routine until a reply is received. '[11e Send fails after some number of retransmissions if no
"breath ofUfe" packets have been received from the remote host in that time.

A message received on a workstation from a remote process causes a process descriptor to be allocated to
store the message and make it appear as a local message to the rest of the kernel. A process descriptor used in
this fashion is called an alien. Aliens arc destroyed an appropriate time interval after the Reply message is
scnt (This interval is 0 for idempotent requests.)

'111is description is far from complete. For a fully detniled discllS.'iiofl of the intcrkerncl protocol. see The
Distributed V Kenll'i and lIs l'erjiJrmanc:e Oil /);skless Workstations. by David R. Cheriton and Wil1y
Zwaenep()el. in Proceedings of Ule 9th Symposium on Operating System Principles. October 1983 (also
available as Technical Report STAN·CS"S3-913. Computer Science Department, Stanford University).

V-SYSTEM 5.0 RFFERENCE MANUAL KERNEL

KERNEL MODlflCATION AND MAINTENANCE 223

-49-
Kernel Modification and ~Jlaintenance

The type of kernel modifications anticipated include: changing the maximum number of processes, teams,
or devices allowed, adding or removing kernel operations, and adding support for new devices.

49.1-. Kernel Configuration Parameters

The machine-dependent tile cOllfig.h contains the kernel configuration parameters.

MAX_PROCESSES
Maximum number of processes. which must be a power of2.

MAX_TEAMS Max. number of teams. currently at most 16 on the SUN workstation.

MAX_DEVICES Max .. number of device instances. which must be a power of2.

ROOT_PRIORITY
Priority of root process of first team.

IN IT_STACK Size of initial stack for root proccs.~ of first team.

The kernel Celll be reconfigured with respect to these parameters by changing their definitions in coiifig.h
within the constraint'" mentioned above und rccompiling the kernel.

49 .. 2. Adding New Device Support

Supporting a new device llsing the kernel device manager requires writing device-specific initialization.
read. write. release. modify ,md intefn.pt-handling routines and adding an entry t()f the device in the
DeviceCreationTable detined in coujig.c. There is nOl1nally a header tile for Ule new device that defines it."
device, type thr this ulble plus other device-specific ini()I1nntiuII required by llsers of the device. The existing
devices and kernel operations arc lIseful models from which to work.

49.3. Adding Kernel Operations

Adding a kernel operation requires writing the C routines that implement the operation. adding an entry
for it to the kernel trap table. kcrnclol)s. defined in lra/J.e and possibly adding a slub for Ulis call to the C
environment library for the kernel calls. Adding u new operation to the kernel proces.'i requires defining a
new requcst cude in (Vcnviron.h>. handling this reqm,'St coue in Ute main loop of the kernel process and
writing the appropriate code for hundling the request Operations that mllst be available to remote processes
should be implemented as kernel process operations mUter Utan kernel traps.

Certain restrictions apply to kernel operations. They may not execute trap operations or call upon services
provided by other processes outside the kernel. However, they can lise other routines already available inside
the kernel. Kernel operations arc passed exuetly 5 arguments and allow one return value. r\ kernel operation
cannot take a variable number of arguments unless the number is encoded in Ule' Vi-lilieS passed. Operations
that acc(:s.~ any data modified by interrupt-invoked routines need to mask inlerrupLo; if there is 'any possibility
of inter~crcnce. Finally. operations lhat block or unblock processes shuuld lise the internal primitives

V-SYSTEM 5.0 REFERENCE MANUAL KERNEL

224 KERNEL MODIFICATION AND MAINTENANCE

Addrcady and Rcmovcready.

V-SYSTEM 5.0 REFERENCE MANUAL KERNEl.

APPENDICES 225

Pa rt V:

Appendices

V-SYSTEM 5.0 REFERENCE MANUAL APPENDlCFS

226 C PROGRAMMING STYLE

V-SYSTEM 5.0 RFFFRFNCE MANUAL APPENDlcrs

C PROGRAMM ING STYLE 127

- Appendix A -
C Programming Style

l11ere has been an effort to use a consistent style in V for writing C programs. The style and the unifonnity
it encourages are motivated by the desire for readability and maintainability of software. Although style is to
a large extent a matter of individual taste, the following describes some general practices with which most of
us agree.

A.1. General Format

Rl'Cognizing that software is written to be read by other programmers and only incidentally by compilers.
the general fonnat thlJows principles established in thrmc:ltting general English documents. Take a few more
seconds to make things more readable; it is time well spent. '

First. software is written to be printed on smndard size (8 by 1.1) paper. This means avoiding lincs longer
than about 80 columns. In general. there is one stHtement or declaration per line.

As with other documents, judicious usc of white space with short lines and blank lines is encouraged. In
particular,

1. At least 2 blank lines between individual procedures.

2. Blunk tines surround "large'~ comments.

3. Blunk lines arollnd any group of statements.

4. munk lines around cases of a switch statement.

A.2 .. Names

Num,es arc chosen when possible to indicate their semnntics and to read well in lise. for example:
if (GetOevice(Etherlnstance) •• NULL) return(NOT_FOUND):

Words should be spelled out. not shortened. "good test is to read your code aloud. You should be ablc to
communi,:ate it over a telephone eusily. without resorting to spelling out abbreviations.

In addition. character case conventions arc used to improve readability and suggest the scope and type of
the nume. Glohal variables, proceuurcs. structs. unions. typedef.'i. and mucros all begin with a capital letter,
and arc logically capitalized thereafter (e.g. Ma1nHashTable). /\ glohal varinble is one uetined ollt')ide a
proceuul'c. even lhough it lIlilY not he exported from the lite. or an external vm'iahlc. The molivation for
trcuting mucros in this war isthal they may then be chl.lnged to procedure calls without renmning.

Manifest constant') either foltow the above convention (since they are essentially macros with no
parameters) or else arc fully cupitalized with usc of the underscore to separate components of Ule name. E.g.
WRITl:tINSTANCE. .

1.ocal variables begin with a lower~case tetter. but arc either logicnlly capitalized thereafter (e.g. b 1 tW1 dth,
power. maxSumOfSquares) or else totally lower case. Fields within structures or lI,nions are treated in Ulis
manner a~so.

V~SYSTEM 5.0 REFERENCE MANUAL "PilI ~NDICF.s

228 C PROGRAMM1NG STYLE

I,ocal variables of limited scope arc often declared as register, if they arc used very often inside inner loops.
It is not only more efficient.. but usually more readable. to put a pointer to an array of complicated strllctures
(a common occurrence in object-oriented· programming) into a register valiable with a short name. For
example,

register struct Descriptor -p • DescriptorTable+objectlndex;
p->count • 0;
Initialize(p->start);
p->usage • p->default;
p->length • p->end - p->start;

instead of the inefficient and cluttered:
Descr1ptorTable(objectlndex].count • 0;
Initialize(DescriptorTable(objectlndex].start): .
DescriptorTable(objectlndex].usage • DescriptorTable(objectlndex].default:
DescriptorTable(objectlndex].length • Descr1ptorTable(objectlndex].end

- DescriptorTable(objectlndex]~start;

A.3. Comments

There arc generally two types of comment~: block-style comments, and on-the-Iine comment') or remarks.
Multi-line. block-style commenLS have the /* and */ appearing on lines by themselvcs, and the body of the
comment starting with a properly aligned *.' The comment should lIsually be surrounded by blank lines as
well. Thus it is easy to add/delete first and last lines. and it is easier to detect the common error of omitting
the * / and thus including all code up to and including the next" / in a comment

,-
* this is the first line of a multi-line comment.
- this is another line
- the last line 01 text
*/

On-line comments ur remarks are used to detail declarations, to explain single lines of code, and fbr brief
(i.e. onC line) block-style descriptive co~ments~

Procedures arc preceded by block-style comment.l.). explaining their (abstract) function in telms of their
parameters, result'), and side et1~clS. Nute thi.1t the parameter declarations arc indented. not flushed left.

SystemCode EnetCheckRequest(req)
register IoRequest ·req;

(..

,-
- Check that the read or write request has a legitimate buffer, etc. -,

register unsigned count;
register SystemCode r;

,- Check length -/
count • req->bytecount;
1f(count <- IO_MSG_BUFFER) return(OK);

req->bytecount • 0;
1f(count> ENET_MAX_PACKET

{
·r • BAD_BYTE_COUNT;

}
else

(,-

,- To be left zero if a check fails -/
)

- Make sure data pointer is valid.
- Check that on a word boundary and not in the kernel area. -,

V-SYSTEM 5.0 REFERENCE MANUAL APPENDlcrs

COMMENrs

}

}

if((I CheckUsarPo; rltar (req->bufferPo; ntar» II
(Active->taam->taamSpace.size < (req->bufferPointer + count» II
«int) req->bufferPointer) & 1)

{

}
else

{

}

req~>bytecount • count:
r • OK;

return(r);

A.4 .. Indenting

229

The above example shows many of the indcnting rules. Braces ("{" and "1") appcal' alonc on a line, and
are indcnted two spaces from thc statemcnt they are to contain. The body is indcnted two more spaces from
the braces (for a tot.al of four spuces). a1 sa's and a1 sa if's Hnc liP with lheir dominating if statement (to
avoid marching orf to U1C right. and to reflect the semantics of U1C statement).

if ((x • y) •• 0)
{

flag • 1;
printf(" the value was zero ");

}
elS8 if (y •• l)

{

}
else

sw;itch (today
(

}

case Thursday:
flag • 2;
ThursdayAction():
break;

case Friday:"
f1 ag • 3; •
FridayAction();
break;

default:
OtherOayAction():

print!(" y had ~he wrong value ");

A.S. File Contents

File contents are arranged as follows.

1. initial descriptivc commcnt (sce example hclow) contains brief.descriptive abstract of contents. Some
programmers add one or more of the following as well:

a.. a list of all dc:tined proccdures in their defincd order. or alphabetically.

b.. list of recent and major modifications in reverse chronological order with indication (initials) of
. who mnde thc change. .

2. included flIes (usc relative path names whenever possible)

V~SYSTEM 5.0 REFEHFNCE MANUAL APPENO[CES

230 C PROGRAMMING STYLE

3. external definitions (imports and exports)

4. external and forward function declarations

5. constant declarations

6. macro definitions

7. type definitions

8. global voriable declarations (use static declarations whenever possible. and group variables with the
functions that use them)

9. procedure and function definitions

Here is the beginning ofa file as an example.

* Distributed V Kern~l - Copyright (c) 1982 by David Cheriton. Willy Zwaenepoel
*
* Kernel Ethernet driver

*'
'include " .• ' .. 'libc'include'Vethernet.h"
'include "interrupt.h"
'include ~ethernet.h"
"include "ikc.h"
'include " .• 'm1'dm.h"

'* Imports *'
e~tern Process *Map-p1d();
ute' .. n SystemCode NotSupported();
e~tern DeviceInstance ~GetOevtce();

'* Exports *'
extern Syst~mCode EnetCreate();
extern SystemCode EnetRead();
extern SystemCode EnetWr1te();
extern SystemCode EnetQuery():
extern SystemCode EnetCheckRequest():
extern SystemCode EnetReadPacket();
extern SystemCode EnetPowerup();

unsigned char
InstanceId
int
short
int.
int
int
int
int
int

EnetHostNumber;
EthernetInstance;
EnetRece1veMask;
EnetStatus;
EnetfIFOempty:
EnetCol1isions • 0;
EnetOverflows • 0;
EnetCRCerrors • 0;
EnetSyncErrors • 0;
EnetTimeouts • 0;

'* physical ethernet address *' '* Instance id for Ethernet *' '* addresses to listen for *' '* Current status settings */ '* FIFO was emptied by last read *'
'* Number of collision errors *' '* Queue overflow errors *' '* Packets with bad CRC's *'
'* Receiver out of sync *'
'* Transmitter timeouts */

'Int
char

EnetValidPackets • 0;
kPa~ketArea(WOROS_PER_PACKET*BYTES_PER_WORO+20]:

kPacket
'* Save area for kernel packets *'

*kPacketSav8 • (kPack~t *) kPacketArea:
'* Pointer to kernel packet area *'

'* Macro expansion to interrupt-invoked C call to Ethernetinterrupt *'
CallHandler(Enetlnterrupt)

V-SYSTEM 5.0 REFERENCE MANUAL API'ENDICFS

PARENTlIESES 231

A.6. Parentheses

For function calls. the parentheses '''belong to" the call. so there is no space between function llame and
open parentheses. (There may be some inside the parentheses to make the argument list look nice.) When
parentheses (mciose the expression for a statement (1 f, fo r, etc.). the parentheses may be treated as
belonging to the statement (since they arc syntactically required by the statement) so there is no space
between the keyword andthe expression.

if((bytes • req->bytecount) <. IO_MSG_BUFFER
buffer • (char .) req->shortbufferj

else
return(req->bufferPointer):

Alternatively, parentheses may be treated as belonging to the expression, so there is a space between the
keyword and the parenthesized expression.

if (FuncA(»
{

}
else

{

}

Func8((a • b) •• 0);
return (Nil);

FuncC(a. b., c):
return (ToSender);

Note that spaces arc used to separate operators from operands for clarity and may be selectively omitted to
suggest precedence in evaluation.

A.7 G Mess'ages

Although V is a message-based system. most services arc available by calling standard rOll tines. so
programming at the "message level" is rarely liecessary or desirable. However. the programming of new
servers and Ule non-stundard lise of services or the use of mes.'iages within a program require message-level
programming. The following conventions have been tbllowed in V.

Space to send or recciv~ a mes.~age is declared of type Mcssa~c. as defined in '(Venviron.h>. Standard
rnl.'ssage thrmnt'i. as defined in the V !lender tiles. dccl,lre each message fonnat to be a new duta type. "ccess
to the space (hr the mes:mge is made by casting a pointer to the space to be of the type of the message Ihrmat
required. This gUClmntces thut enough space is reserved even when a message fornmt is not as lurge as the
fixed-size message used by the kernel. The tbllowing illustrates this style.

Read(fad. buffer. bytes)
File ·fad;
cha,' -buffer:
1nt bytes;

<:

/.*
• Read the specified number o(b~tes into the buffer from the
* file instance specified by fad~ The number of bytes read is
• returned.
*/

Message mag;
, register IoRequest ·request· (IoRequest *) msg~

register IoReply ·reply. (IoReply .) msg;
register unsigned r. count:

.register char ·buf;

V-SYSTEM 5.0 REFERFNCE MANUAL APPENDICES

232

10r(: :)
{

}

request->requestcode - READ_INSTANCE;
request->fileid • fad->f11eid;
request->bufferPointer • buffer;
request->bytecount • bytes;
request->blocknumber - fad->block;

if(Send(re.quest. fad->fi1eserver) •• 0)
{

}

fad->lastexception • NONEXISTENT_PROCESS;
return(0);

1f((r • reply->replycode) 1- RETRY) break:

fad->lastexcept10n • r;
count • reply->bytecount;

it(count <. IO_MSG_BUFFER
{

but - (char .) request->shortbufter:
fore r • 0; r < count; ++r) -buffer++ • *buf++;

}
return(count);

V-SYSTEM 5.0 REFERENCE MANUAL

C PROGRAMMING STYLE

APPENDICES

INSTALLATION NOTES 233

- Appendix B -
Installation Notes

11lis document is int(mded to be an infonnal collection of information about the problems involved with
installing and maintaining the V-System software. The reader should be familiar with the V-System as
documented in the V-System manuals. and with the Unix system used for development

8,.1. V .. System Distributi,on

The software should be distributed on a 1600 bpi tar format tape. Licensing infonnation and tapes can be
obtained from:

OffiGe of Technology Licensing
105 Encina Hall
Stanford University
Stan tord. C/\ 9430:5
(415) 497-0651

Please report any bugs you tind. or improvements you make. All the software is under copyright protection.
so you must get a license for any further distributions. Send comment'; on the software and documentation to
the Al:pan~t address vbugsQSU- Pescadero. ARPA. New versions of the software may be released from
time to time.

'111e first file on the tape is the entire source directory tree for the V-System. Since the first implementation
of the V-System is Ih .. the MotoroiCl MC68000. our versions of the 68000 C compi1er. assembler. anti linker arc
included as the second me on the tape.

Note: This distribution hus been booted only on Cadlinc ,md SUN MicroSystems Workstations with
MC68000s. not MC6801Os, connected to a VAX by a 3Mb experimental EUlernet. lIsing PUP boot protocols.
The next releuse will support Ule MC680 to. 10 Mb stanumod EU1ernet. Hnd booting via the SM I nelwork disk
protocol.

The first step is to nm tar x to extract the two files into directories in your file system wherever you have
roOln. Remember to usc Ule non-rewinding driver (e.g. /dev/rmtlZ) or the mt fsf command if you want
to rend the second tile. Throughout this document the V-System pnthnames will be referred to as
V /something. and the 68000 directory as sun/something.

B.2. 6.8000 Tools

We llorm<ll1y put U1C ~8000 tools into /lIsr/slIn. There are a few other required directories that arc
hardwired into a few of ule make flies. /usr/sun/include is fi)r the include (. h) files. ;'lnd /usrlsun/lib is tor
Hbmrics. 'l11e two major libraries tiHlt are needed by some of the V-System servers arc 11 bsfonts. a for the
character fonts. and 1 i bgraph 1 cs. a for the SUN graphics primitives. We put binary versions of the
sUlnd-alone booUilcs under /usl'/slIn/boottile, and put the V~System commands under lusr/sun/Vboot.

Many of the V-System makefiles invoke the "cc68" command to compile and link. Be sure you have the
latest version of the cc68 cummHmJ. with the -V option. Connect to sun/src/cmd and do a make
install. You might 'want to edit the 90mnwnu Iile to put the commands in u place other than

V-SYSTEM 5.0 REFERENCE MANUAL APPI~N()(CES

INSTALLA'flON NOTES

lusr/local/bin. Next connect to sun/src/grnphicsllib and do il make 1 nsta 11 to make the graphics library.
There will be a few warnings issued by the compiler which should be ignored. 'I11crc arc manual entries for
the 68000 software in /usr/sun/man68. . .

Our current Y·Server software requires the CMU packet-filtering Ethernet driver for4.1 or 4.2 Unix. Make
sllre the maximum packet size (MTU) is large enough to tit all the data bytes in a kernel packet plus the
header. This driver and the associated higher·lcvcl software is available to people who have purchased Xerox
1100 workstations in a separate distribution.

Users who want to do 68000 development on a 68000·based Unix machine should be able to do so with a
smal1 amount of work~ Please report your experiences back to us so that any software or infonnation can be
included in future releases.

The 1 pwatch family of programs under sun/diag/ipwatch arc very use tl.l I to 'debug network problems.
The enwatch program· is lIsed for 3Mb experimental Ethernct, and ecwatch for the 3Com interface.
Odlers could be added easily. It keeps a record of the network packets of interest which can be written to a
log file. Plemie include such a log file in all error reports.

B.3. Making the V-System

Edit the shell script under V/net1nstall to do the appropriate insWllation procedure for your system.
We huve it ftp the tiles to several other machines to automate the installation. This and a few other shell
scripts arc ns.'iumed to be in th¢ se41rch path by the V-System Maketiles. These sources are in V /tools and
should be installed into sume directory in the search path before making the rest of the system. Each
directory conwins a file called bu11df11e which L'i processed by the bu11dmake program to produce a
makef 11 e. The bu 11 df 11 e step includes conditional macro expansion.

Change directory to V/libc and do a make install-includes. This should copy the Y·SystC1n
specific include tiles into lusrlsun/include. Then do a make and then make i nsta 11 under this directory.
This should result in 11 bV. a and teamroot. b being copied into lusr/sun/lib.

Next chClnge directory to V / servers. and. do a make fhllowed by a make 1 nst.a 11. The Vscrver is
usually installed in /etc/Vserver and then ,I line is added to /etc/rc to start it up on system reboot.
Give it a Inrge argument on the command line. so that it can put lIscful information intq the area printed by
the Unix ps cOlmnnnd. It should be nlll.'lS super-user, to allow it to check acccs..'i protections correctly and
setuill to the correct user.

The following are the options available on the Vserver:

<0 d Debug flag for the major server code.

=g

=1{

=n

=p

Used if your system docs not have the simlll~1neous group feature (4.la systems and
beyond have this).

Kernel debug. Used to debug the kernel simulator.

Network debug. Used to produce a,trace of network p .. lckets sent and received.

Public modc. If this flag is set then broadcast GetPid requests arc answered. The default is
to answer only requests directed speciticly at this particular host There must be at least
one Vserver running Ule -p option on any given local network.

Then change to the V/kernel directory and do a make followed by a make install to compile the
kernel and plltthe binary into /usr/sun/bootf11e. You may havc to edit the inukefile to contigure the
kernel for your I/O devices. The default is to support the Sun MicroSystcms Experimental 3M bit Ethernet
interface. The JCom MulLibus Ethcrnet Interface can also be supported. Other devices such as disk
controllers will be supported in the next releilSC.

V-SYSTEM 5.0 REFERENCE MANUAL APPENDICES

MAKING THE V-SYSTEM 235

Change! directory to V I cmds and again do a make followed by a make ins ta 11 to compile all the
commands. This takes a while, and uses the include files, libraries. and servers.

Finally. change to the V/standalone directory. This directory is for bootstrapping and loading utilities.
Currently the kernel and system team are loaded with the PUP EFTP protocol. The Vload program is
compiled with several different flags. By default it will ask for a first team file, and possible the name of a
kernel. By defining the symbol FIRST_TEAM a specific first temn file can be used.

It is also possible to use the V protocol itself to do the bootstral)ping. In faCt, some day we might put such a
bootstrap into the PROMs to make the booting pf(x:ess eaSier.

V-SYSTEM 5.0 REFERENCE MANUAL APPENO[CES

236 INDEX

Y·SYSTEM 5.0 RErERENCE MANUAL

INDEX

68000 7

BACKSPACE 199
DEL 200
DOWN ARROW 200
HOMBkey 200
LBl'T ARROW . 199
UNSIJlliD 199
RETURN 199
RIGHT ARROW 199
UP Al(ROW 200
_Open 85

[bin] 7,10
[home] LO
(public) 7, 10

Abort 104
Abort Command 11. 199
Aborted 1:39
Abs 93
Active 219
Add Context Name iS7
AddCall liS
AddContexlName lOS
Adding devices· 223
Adding Ieernel operations 223
Addlt.cm US
Addl.ogic.1INumc lOS
Addrcndy 221. 224
AlinsConteXlNlIme lOS
Alien 222
All 120
Amaze 21
ANSI 19S
Any 134
Any Context .154
Append Only 84, 143
Arrows 35
Asynchronous communication 21l
Autubuoting b4
Awaiting-reply 209 .
AwailingRcply 97

R..1ckspace 36, 40, 194
Bnckup 37
R:ld Address 139
nad Mg.'!' 139
Bad mock No 140
nad nuner 140·
llad nylc Cuunt J40

V-SYSTEM 5.0 REFERENCE MANUAL

Index

.: t,:

Bnd Process Priority 140
Dad State 140
Bare kernel mode 75,104
Beginning of DutTer 200
Beginning of Line 11. 199
Bell 194
Biopsy 21
Bits 21.51
Black 7
Btank. lines 227
BlkslnFile 88
BlockPosilion 88
Blocks 143
BlockSize 88
Bit 95
Boise 21
Booting 7
BoUom 36
Break. Process 11,199
BufTcrEmpty 87
Busy 140

Cadlinc 8
CallJnthandlcr 220
Caltoe 95
CD 8,21
Center Window 16
Cfrcc 9S
Change Contc.'C.t 8, 31
Change Current Context .9t
Change Directory 8, 21
ChanaeDirectory 9l
Changcllcm1l9
Ch.1r.1cter Sel 195
Chcclccxccs 1:1
Clear 96. 194
Clear Pad 194
Clear To EOL 195
Clear To EOS 194
ClearEof 87
Ctiek 15
Ctlent 11S'
Clock .219
Close 85
Color 116
Compile command 1S
Conat 134
Confag Ales 19
Config.h 223
Configuration 79
Conoole 163
Context 9, 22. 153

237

238

Context Directories 158
Context Request 155
Contc.'tts 8
Control 11 199
Convert_num 134
Cooking 18. 122. 196
Copy 39.9S
Copy _str 134
Copydir 22
Cp 22
CR Input 122
Create 75. 104
Create Instance L45.195
Create View 15
CreateInstanco 85
CrcatePlpclnstilnce 88
CrcateProccss '17
CrcnteSDF 117
CrcaleSclcctinnlnstancc 114
CrcatcScs.'don LOS
Crc:lleTeam 98
CrcntcVGT 120
Creator 91
CSnamc 153
CSNlI server 153
CrRIA 200
Cl'RI.-a 11. L99
CrRL-b n. L99
Cl'lU.-d 11. 199
CrRL-c 1). 199
cl'1u.-r 11. 199 .
CrRL-, lJ. J99
CrRL-h 11. 199
CrlU.-1c 11.200
CTRI..-I 200
CrRL-n 200
CrRl.-p 200
CrRI.-q 200
CrRI.-t H. 200
CrRL-u LI. ZOO
cnu.-w 1 L. 200
CrRL-y 200
Cl1U.-z 12. 200
Current Context Invalid 140
CUr.iOl' 122
Cursor Aackward 11. 194. 199
Cursor Down 200
Cursor Forward LI, L94. 199
Cur.mr Motion 36
Cursor l'lI\ilion 194
Cursor Up 194. 200
Cursor Wurd Backward 12. 200
Cursor Word Forward 12. 200

Dale 22
Dale 22
Debug 17
Debugger 29, 165
Default View 120
Deline 9,22

V-SYSTEM 5.0 REFERENCE MANUAL

Definc Font Ul
DefillCSY01bol 118
DEL 194
Delay 98. 103. 221
Delete 36, 39
Delete Otar 19S
Delete Otaracter 11. 199
Delete Character Backward 11, 199
Delete Character I,'orward lJ. 199
Delete Context Name 157
Delete Last Character 11. 199
Delete Une 11, 195
Deletc to Beginning of Line 11
Delete to End of Line I L
Delete to Start of Line 11
Delete View l6
Delete Window 41
Delete Word 36. 37
Delete Word nackw:ud .11
Delete Word Forward 12
DcleteContexlNamc. 105
Dclcteltcm 118
DcletcSDF 117
DelctcSymbol 119
DelcteVGT 120
Delcxcc 27
Destroy 22. 104
DcslroyProcess 98
Dey icc Error 140
[)eviccscrvcr 16l. 210.218
Device lYPO 16l
DoviccCrcatiouTable 223
DevicC5 210
DircctTuCurrentContcxl 106
Di~rdOurput 122 .
Display Item l20
Distributed opcmlion 2 U. 222
Do 27
Duplicate Name 140

Echo 22.122
Editor 35
EdilSymbol 119
End of Burrer 200
End of "'ilc 12. 140. 200
End of Line LJ. 199
EndSymbol US
Eof 87
Equal 1.34
ErrorSlring 135. 14l
ESC-, 200
ESC-, 200
ESC-I1ACKSPACB 200
ESC~Dll.L 200
ESC~b 12. 200
ESC~d 12. 200
ESC-r 12. 200
ESC~h 12. 200
r~C-t 200
E.'iCapC 11. 199

INDEX

INDEX

F..sCllPC Sequences 194
Ethernet 161
Ethernet performance 218
Event 115
Event Request 196
E.'(amplc 124
[~'(ccplion Request l65
I~,<ception S(:rver 165.215
E.'(ccptionMcssage 215
E'(ccptions 165.215
E:tchange 39
F..'(cc 7.197
li'(cc Control 7, 16
E.'(ccProg t07
E'(ccutive 7, 15, 7S, 104
R'(il 104
[~'(pansion Depth 17

FAppcnd 83. 145
l~Crcalc lB. l44
r''Directory 145
FExecutc 145
[·ields 127
File Access 37
r'ile Modes 83. 144
File Types 84, 143
FilcHxccption 88
f~lcld 90
FileScrvcf 90
('ilcTyPc 90
"'illed Rectangle 116
l·indSelcctcdObj<.'Cl L20
Fixed l,cnglh 84, l44
('ixed Menu 38 .
['lush 86
I'Modify 83, 145
Fonl t21
I:orgel 37'
Forward 98
I :orwnrd~r 98
FRc:1d 83, 144
Free 9S
Fsch(.'Ck 59
FScssioli 145

General'line 116
Get Context Id lSS
GCl Conlext Nrum: l56
Getl'ile 41
Gel I'ile NlllRlC I S6 -
GctConteltl.1d 106
GClConte,''tlNamc 106
GcLEvent 124
Gcll'ileNarne 106
GctGrnphic::;Event l23
GClGraphi~<)lalliS 123
GCIMoreMallocSpacc 96
GctPid 9<>.222
GctTcamRoot 99
GctTcrunSile 99

V-SYSTEM 5.0 RFFl!RENCE MANUAL

GclTimc 99
GCllTI 123
GivcToMalloc %
GoTo 39
Grab 39
Graphics US
Graphics Commands 16-

Help 22
Hex_value 134
History 12
Hit Detection 120
IIorizontal {jne 116
Horizontal Reference Line 117

110 83
110 Protocol 115. 143, 193. 210
Idempotent 102
Idle process 220
Ignored 194
Illegal Request L40
Index 194
In it FXccplionScrver l6S
Initial priority 75
Initinl process 75
lnitinl stuck 75. 223
Initinli1Altion 210
InquircCaU 118
In<luircllcm 118
Insert 37
In~rt Char 195
Insert Line 195
Insen l.inefeed 37
Insen With mghtll Bil Set 200
Instnllation 233
Internctivc 84. 90. L44
[nternal Error 140
Internet Server 22
Interproccs." communication 210
Intcl'n1t>t disable time 218
Interntpt mc'L"lking 219
Imerrupts 220
Invalid Conte:tt 140
Invalid 1'110 Id 140
[nvalid Mode 140
Inverse Video 195
10 Break 140
101'rotocol 72
(ptelnet 22
Iptn 22
Iris 116
Item llS. 116
Item Type 116

Kernel arguments 223
Kernel configurulion 223
Kernel Ot)emtions 213
Kernel sUlck 219
Kernel Timeout 140

_ Kerncllimings 217

239

240

Kernel trnps 220
Kernelops 223
Kill 37
Kill Break 11. 199
Kill BuJTer 38
Kill (nput Buffer 200
Kill Program 1.96
Kill Region 40
Kill to End of Line 200
Kilt Word Bnckward 200
Kill Word Forward 200
Killprog 27

I.d68 29
Left Button 18. 38
Left+Middle lluttons 18
l..eft + Right Buttons 18
LF Output 122
UbV.a 75
Line 36. l16
I ,inc llu ITer 122
Line Fditing 1l
Line- Editing LS. 122
LinelCcd 37
Linking 75
List. Type 120
Ustdir 23
Loader 76
(.ooding Nonstandard Kernels
(.ondNewTcam 108
l.oodProg t07
l.oadTcam 108
1.ocal Name Server 8
Login 9.23
Login Contc.'(t 154

. l.ogoUl 10. 23
l.ongil11p US
Lower 135

Make Bottom 16
M:lkeTop 16
Malloc 7S.95
Mark 40
Math 93
Memory management 209
Menu 121. 127
Menu. View Manug9r 15
Merge Windows 41

67

M~-.;age I"onnal Conventions 139
Mc:.."'i.1J;e primitives 221
Messages 2JO
Middle nutton 18. 38
Middle+ Right Buttons 18
Mode 145 .
Mode Not Supported 141
Modes 83. 144
Modify rile ISO. 196
ModifyPad 123
Monasteries 75
Motorola oROOO 215

V-SYSTEM 5.0 RFFERENCE MANUAL

Mouse 15. 18.38. 162
Mouse emulation 18
Mouse Event Request L96
Mouse Status Request 196
Move Edges 16
Move Edges + Object 16
Movc Viewport 16
MoveFrom 99
MoveTo 100
Multi Block 84, 144

Name Request 154
Names 227
N:lming 210
Naming Protocol 153
New Une 194
Newtenn 23
Ne:t t Line 194
NModify File 150
No 40
No Memory 141
No PDs 141
No I'ennission 141
No Proc~ Dl.."iCliptors 141
No Server Resources 141
NoCursor 122
Noncl(istcnt Process 14L
Nonc.'(isb::nt Scs.."ion 14l
Not Awaiting Reply L41
Not Found 14.1
Not Readable l4l
Not Wlitcablc 141
NQuery File 150
N Read Descriptor 159
NUL 194
Null_str l35
Number of devices 223
Number of processes 223
Number of 1C:Il11S 223
Numeric 93
NWrile lA."iCriplor 159

Object Descriptors 158
OK 139
Open 84
Open rile 85.122
Opcnlp 89
Opcnl'nd 122.195
OpcnJJup 89
OpcuSlr 90
OpcnTcp 88
Outline 117

Pad IS
P:1d Escape Sequences L94
PadFindPoint 124
l':lge Down 36
Page Up 36
l'ngcd output mode 11
Pilgcmode 23

INDEX

INDEX

PageOutput. 122
PageOutpulEnable 122
ParscUne 109 .
Per·Proccss Area 77,209
Point 116
Pointer 116
Popup 121
Power Failure 141
Previous Word 12, 200
PrintError 136
Printf 83
PrintFile 91
Priority 219, 221
Process 97. 209
Process creation 221
Process dcsc.'tipt.or 219
Process desl ruction 221
Process identifier 209
ProcC5.1i mnnagcmcnt 209
Proccs.1i switching 220
Proc~1iCS 219
Processor allocution 209,221
PROM 72
PROM monitor t04
Protocol 1'39
Public 183
Public Conteltt L54
Pull Apart 41
Put' 24
Pwd 9.22

Qsort 135
Query File 150. 196
Query Instance 146. 195
Query Replac.:e 39,40
Qucrycltcc 27
Query Kernel tOO
Qucry Pad 123
Qucry I'ndSi1.c 123
QucryPrpccssSlatc 100,215
QueryWorkl'ltUlionConfig 79
Quit 36
Quote 37
Quote Character 200

Rand 93
Rastcr 117,!L8
Raw 122
R~DisplaY' Input 200
RI."3d 87·
Read Dcscrilltor L59-
Read Installlce 1.47, 196
Readnb!e 84. 143
RcadProccssStulc 100, 21S
Ready 104, 209
Real-time 209
Rcalloc 95
ncccivcSpc~cific lOl
RccciveWithScSll1ent 100
R(.'Ctansle 116

y··SYSTEM 5.0 RFFFRENCE MANUAL

Redisplay 39
Redraw 17,36
RedrawPad U4
Reference Line 117
Region 40
Rcgister Handler 165
RegislcrScrvcr 113
Relcase Input Buffer 199
Release Instance l47, 196
ReleascInslance 86
Rclocation 7S
Remotc program c.'(ccution 10
RemotcExccutc 108
RcmovcFilc 90
Removcrcady 221. 224
Rcpeat Search 39
Rcplacemcnt String 40
Rcply 101
Reply codc 139 .
ReplyWithSegmcnt .IOL
RepOit Click 122
Report Transition 1.22
Requcst code 139
Rcquest Mcss.1gc Formals l45
Request Not Supportcd 14L
RcrcadMsg 101
Rl.'SCtlTY 123
R~'Ynch 86
Rctry L41
Rcturn 37, 194
Rcvcr.ic Inde:t 195
Rcver.ic Search 39.40
Right Buuon t8,38
Root procC5S 223
RunProgrnm 108

SameTcam tOl
Sanity 42
Savc 37
Scheduling 219
Scroll 36,39
Scroll Region 195
SnF US
Search 38,39,40
Searching 38
Seck 86
Seck Block: 88
Segment 102
ScgmcnlS 210
Sclcc..1 4l
Scll.'Cted Yertical Reference Line U7
SclCClPad t23
Send LO t. 222
SClld·Rccciv~Reply 217
Serial 23
Serial line 162
Servcr Not Responding t41'
Services 139
Session 23, 73
Sessions 9

241

242

Sct Break Process L49, 196
Set Instance Owner 149
Set Mark 40
Set Prompt 149
SetUrcakProccss 90. 197
SeUnstanccOwner 9l
Sctjmp 135
SeUlid 102
Se(1'cnmPriority 102
Sc(rcnmSize 103
Sctlime 103
SctUpArgumcnt.cl 109
Sct V gtllanncr 197
Shell 7
Shift In 194
Shift Out 194
ShiftJeft 135
Show 24
Sibling 116
Size US
Sleep 133
SMI 7.8
Space Har 39
Special States 36
SpccialClnsc 8S
Spline U7. U8
Smnd 93
Slaclc 209
Staclc overflow 75
Start of Line '11. L99
SlanCltCC 27
Slipple 116
Stream 84. L43
Structured Di:-;play ("ile '115
STS hardware environment 200
STS input editing 199
Style 227
Suicide 104
Supervisor mode 219
Swab 96
Switch 220
Switch Input 196
Symbol ItS
Synchroni1.ation 219

Tab 37, 39, 194
Team 209
Tcnm descriptor 219
Team Root Message 76
TcnmRool 76
Teams 2O'J.219
Tclnct 24
'rerminal Emulator 194
TerminalcSCSliion 106
Tc:itc,'tccpt 24
Tcxt 36. l.LS. U6. 117
Time 73
Time man:lgcl11Cnl 210
'nme primitivC8 221
limclccrnel 24

V·SYSTEM 5.0 RErERENCE MI\NUAL

-rtmcout 141
Toggle Grid 17
Top 36
Tops·20 7
Transparent opcr.ltion 211
Transpose 11
Transpose Chamctcrs 200
Transpose Words 200
Trop.c 223
Type 24, 84, 116
TypeData 116
Types 143

Un·Kill 200
Undefine 9
Undo 40
Uni:(7. lO. 25.11. 73.183
UnregisterScrver 113
Upper 135

V server 9. 10. t83
V"lidPid 103
ValidProgmm 109
Variable Block 84.144
VUlt 2S
Ved 24.35
Venviron.h 75. 139
Venicnl Line 116
Vertical Reference Une 117
Vethemeth 161
Veltceplions.h 165.215
VaT 1.15. 119. 193
VGTS 7. 15. L8.29
Vgts.h 1 L6. L20. 121
VgLo;c:tCC 7
View 16. US. 119. L93
View Manag.er 7. 15. L96
View Manager Menu L5
Yio.h 143
Vioprotocul.h 145
Virtual Gmphics Tenninnl 119
Visil 37
Vlood 63.76
Vmousc.h 162

Wakeup 103
Word 36
Workstation 209
Write 37.87
Writc r)(... ~riplor 159
Write Instance L48. 196
Write Rcgion 40
Writcable 84. l43
WritcKernelPackct 222
Writel)roccssState 103
Wrilcshort Instance 196

Xmax 116
Xmin 116

INDEX

INDEX

Yale 22.117
Yank 37
Yank to window 4 L
Yes 40
Yma.{ 116
Ymin 116

Zero 96. 116
Zoom 16

V-SYSTEM 5.0 REFERENCE MANUAL

243

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243

