~ Sardent

PROGRAMMER’S
GUIDE

Copyright © 1990
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permiited by the
agreement; or (c) used for any purpose not authorized by the agreement.

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD

Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™, and Titan™ are trademarks of Stardent Computer Inc. UNIX® is a registered trademark of
AT&T.

CONTENTS

Preface

1 Program Creation & Maintenance Tools
Learning vi 1-1
The Basics Of Editing With vi 1-2
How To Start vi 1-2
Two Modes Of Operation 1-3
How To Move The Cursor 1-3
How To Enter Text 1-4
How To Delete Text 1-5
Undoing A Command 1-5
Restoring A Line That Was Most Recently Deleted 1-6
How To Save Your Work 1-6
Exiting vi 1-7
Ex Commands 1-7
Generic Form Of An ex Command 1-8
Entering Input Mode, In Detail 1-10
Moving the Cursor 1-13
Character Positioning 1-13
More Positioning By Character 1-13
Words, Sentences, Paragraphs 1-14
Moving To Explicit Onscreen Positions 1-14
Scrolling Through The Edit Buffer 1-14
Moving To A Position Defined By A Character String 1-15
Moving To A Specified Line Number 1-16
Marking and Moving To A Position In The File 1-17
Buffers In vi 1-17
Deleting Objects In Vi 1-18
Moving Text Blocks 1-19
Moving Text Blocks By An Alternate Method 1-19
Copying Text Blocks 1-20
Copying Text Blocks By An Alternate Method 1-21
Changing Text 1-21
Changing Text By An Alternate Method 1-22

Contents Programmer’s Guide iii

Using Numbered Buffers 1-23
Using Named Buffers 1-24
Deleting To, Copying To, and Appending To A
Named Buffer 1-25
Copying Text Into A Named Buffer 125
Appending Text To A Named Buffer 1-25
Commands That Delete To Or Copy To Named Buffers 1-26
Command Shortcuts 1-27
Copying A Named Buffer Into The Edit Buffer 1-28
Command Shortcuts 1-28
Moving A Block Of Text From One File To Another 1-29
Regular Expressions 1-30
Reading The Contents Of An External File or Command 1-32
Temporarily Exiting Vi To Use Other Programs 1-32
Editing Multiple Files 1-33
Repeating Commands 1-35
String Substitution- 1-36
Which Line, and Which File 1-37
Specifying Literal Characters 1-37
Vi Command Summary 1-38
Sample commands 1-38
Counts before vi commands 1-38
Interrupting, canceling 1-38
File manipulation 1-39
Positioning within file 1-39
Adjusting the screen 1-40
Marking and returning 1-40
Line positioning 1-40
Character positioning 1-40
Words, sentences, paragraphs 141
Corrections during insert 1-41
Insert and replace 1-42
Operators 1-42
Miscellaneous Operations 1-42
Yank and Put 1-43
Undo, Redo, Retrieve 143
Bibliography 1-43
2 Using The Stardent 1500/3000 Compilers
The Stardent 1500/3000 Compilation System 2-1
Functions of the Stardent 1500/3000 Compilers 2-2
Specifying the Output Files 2-2
Compilation Control 2-2
Command Line Options 2-2

iv Programmer’s Guide

Contents

Preprocessor Options 2-5
Compiler Options 2-6
Loader Options 2-10
Preprocessor Control Statements 2-12
The #include Statement 2-13
The #define Statement 2-13
The #ifdef Statement 2-14
The #ifndef Statement 2-16
The #endif Statement 2-17
The #if Statement 2-17
The #elif Statement 2-18
The #else Statement 2-19
The #undef Statement 2-20
The #line Statement 2-20
Other Forms Of Define and Include 2-20
Compiler Directives 2-21
Linking Multiple Files 2-21
Vector Reporting Facility 2-21
—vsummary 2-21
—vreport 2-22
—full_report 2-26
Vectorizer Strategy 2-31
Vectorizing C Programs 2-32
The Stardent 1500/3000 Compilation System and Fortran 2-39
Calling The Fortran Compiler 2-39
Form of the Options 2-40
Fortran Compiler Options 2-41
Compilation Control Statements 2-47
Format of the Fortran Listing 2-47
Source Code Section 2-47
Storage Map 2-48
Cross Reference 2-49
Compilation Summary 2-50
Errors and Compiler Diagnostics 2-50
The Stardent 1500/3000 Compilation System and C 2-51
Elements of the Stardent 1500/3000 C Compiler 2-52
Calling the Stardent 1500/3000 C Compiler 2-52
C Compiler Options 2-53
Extensions to the Compiler 2-54
Compilation Control Statements 2-54
Argument (Function) Prototypes 2-55
Storage Class threadlocal 2-57
Comment Delimiters 2-58
Vector Math Functions 2-58
Compiler Directives 2-59
Address (&) Arguments 2-60

Contents Programmer’s Guide v

3 Using Libraries and the Link Editor
Archive Libraries 3-1
Creating an Archive File 3-1
EXAMPLE 3-2
Loading Libraries and Their Order 3-3
Available Libraries 3-4
Creating a Library Abbreviation 3-5
The 1d command 3-5
1d and Archive Libraries 3-6

4 Methods For Debugging Code
Stardent 1500/3000 Versus Standard UNIX Systems 4-1
When to use a Debugger 4-2
Debugging Tools 4-2
dbg 4-2
nm 4-3
od 4-3
prof 4-3
size 4-4

5 Running the Debugger
A Simple Initial Session 5-1
Preparing For A Debug Session 5-5
Starting dbg 5-5
Specifying A Search Path For Source and Object Files 5-6

dbg Startup 5-6
Scope 5-7
Location Counter 5-7

dbg Commands 5-9
dbg Keyword Commands 5-10
Simple Expression Commands 5-14
Compound Expression Commands 5-14
DO ... ENDDO Statement 5-15
WHILE statement 5-15

FOR statement 5-16

IF Statement 5-16
Colon-Separated Statement 5-16
Brace-Enclosed Colon-Separated Statement 5-16
Specifying Program Locations For dbg 5-16
Typical Commands 5-17
Starting The Program Running 5-18
Starting A Post-Mortem Debug Session 5-18

vi Programmer’s Guide

Contents

Listing The Source Code 5-20
Breakpoints and Actionpoints 5-21
Setting A Breakpoint 5-21
Getting A Summary Of Breakpoints and Actionpoints ~ 5-21
Suspending Actions At Breakpoints 5-22
Restoring Actions At Breakpoints 5-23
Cancelling A Breakpoint 5-24
Continuing After A Break 5-24
Viewing or Modifying Program Variables 5-25
Using Debuggee Functions Within dbg 5-25
Getting Help 5-26
Exiting dbg 5-26
dbg Command Language 5-27
dbg Data Declarations And Operators 5-28
Applying Type Casts To Variables To Match Types 5-28
Operators Understood By dbg 5-28
Radix 5-30
The Status Command 5-31
Controlling Execution Of Debuggee Processes 5-32
Signals And Interrupts 5-32
Miscellaneous Commands 5-33
Examples of often-used dbg commands 5-35
Setting and deleting break /watch points 5-35
Printing values of variables and looking at memory 5-35
Setting dbg parameters (hex, FORTRAN, etc.) 5-36
Looking at the Floating Point Unit 5-36
Abbreviating dbg Commands 5-37
A Sample Debugging Session In C 5-37
Machine Code Related Commands 5-47
Exploring On Your Own 5-48
6 Vector & Parallel Optimization
Fundamental Concepts 6-1
Compiler Techniques 6-6
Program Transformations 6-7
Induction Variable Elimination 6-7
Constant Propagation 6-8
Dead Code Elimination 6-9
Loop Distribution 6-10
Loop Interchange 6-10
Scalar Expansion 6-12
Reduction Recognition 6-13
Contents Programmer's Guide vii

7 Efficient Programming Techniques
Write Vectorizable Loops 7-2
Write Convertable Alternate Loops 7-2
Write Vectorizable DO Loops 7-6
Use COMMON and EQUIVALENCE Carefully 7-7
Avoid EQUIVALENCES into COMMON 7-8
Avoid EQUIVALENCED Scalars 7-8
Use Recognized Patterns 7-9
Coding Conditional Vectors 7-11
Understand Conditional Vector Hardware 7-11
Use Structured IF-THEN-ELSE Statements 7-13
Avoid && and | | ' 7-15
Avoid Unnecessary Error Checks 7-16
Don'’t Single Out Specific Iterations 7-17
Choose Appropriate Conditional Hardware 7-18
Use Double Precision 7-19
Use Integers; Avoid Shorts 7-20
Loop Unrolling 7-20
Data Storage 7-21
Scalar Temporary Variables 722
Ensure The Right Loop Vectorizes 7-24
Beware Coupled Reductions 7-27
Avoid Vectorized Structures 7-28
Use —fast 7-29
Avoid Slow Operations 7-29
Summary 7-29
Unformatted I/O In Fortran 7-30
Data Alignment 7-31
Arrays Versus DO Loops 7-31
8 Explicit Parallel Programming
Serial and Parallel Programs 82
Determining Whether Explicit Parallelization Is Appropriate ~ 8-3
Levels of Parallelism 8-4
Memory Conflicts 8-5
Private Memory 8-5
Public Memory 8-6
Static Memory 8-6
Dynamic Memory 8-7
Volatile Memory 8-8
Summary Of Memory Conflict Situations 8-8
Critical Sections Of Code 8-8
Allocating Private Memory In Fortran 8-9
Using THREADLOCAL COMMON In Fortran 8-10

viii Programmer’s Guide Contents

Creating Local Stacks (Processor Private Memory)

In Fortran 8-11
Allocating Private Memory In C 8-11
Using Threadlocal Variables in C 8-12
Allocating Dynamic Threadlocal Storage In C 8-13
Creating Local Stacks (Processor Private Memory) In C 8-13
Synchronizing Through Public Memory in Fortran ‘ 8-14
Synchronizing Through Public Memory In C 8-15
Restriction On Library Access (Fortran or C) 8-17
Creating A Fortran Parallel Procedure 8-17
Calling A Parallel Fortran Procedure 8-19
A Fortran Parallel Processing Example 8-20
Summary For Fortran Parallel Programming 8-24
Miscellaneous Functions 8-25
Operating System Implementation Highlights 8-25
Parallel Processes 8-26
Creating A C Parallel Procedure 8-26
9 Tuning Code
Profiling Programs 9-1
Output Description 9-3
-ploop Option 9-4
-p Option 9-7
Interpreting Profiled Programs 9-7
Other Timing Options for mkprof 9-9
Compiler Directives 9-10
ASIS 9-12
C$DOIT ASIS 9-12
INLINE 9-12
IVDEP 9-12
C$DOIT IVDEP 9-13
IPDEP 9-13
C$DOIT IPDEP 9-13
VBEST 9-14
C$DOIT VBEST 9-14
PBEST 9-15
C$DOIT PBEST 9-15
VPROC 9-16
C$DOIT VPROC fname, vfname 9-16
PPROC 9-16
C$DOIT PPROC SUBR_NAME 9-16
THREADLOCAL 9-17
C$DOIT THREADLOCAL COMMON_NAME 9-17
STATIC 9-17
Contents Programmer’s Guide ix

C$DOIT STATIC COMMON_NAME 9-17
VREPORT 9-18
C$DOIT VREPORT 9-18
NO_PARALLEL 9-18
C$DOIT NO_PARALLEL 9-18
NO_VECTOR 9-18
C$DOIT NO_VECTOR 9-18
SCALAR 9-18
C$DOIT SCALAR 9-18
OPT_LEVEL 9-19
C$DOIT OPT_LEVEL n 9-19

10 Language Interfacing
Register Sets 10-1
CPU Registers 10-1
Scalar Registers 10-2
Vector Registers 10-2
Floating Point Computations 10-3
Stack Frame 10-18
Calling Subprograms 10-19
Data Layout In Memory 10-20
Integer Format 10-20
Short Integer Format 10-21

Real Format 10-21
Double Precision Format 10-22
Complex Format 10-23
Double Complex Format 10-24
Logical Format 10-24
Short Logical Format 10-24
Character Format 10-25

11 Porting Code
Data Types 11-2
Data Alignment 11-2
Floating Point Representation 11-3
Machine Representations: IEEE Floating Point 11-4
Error Conditions During Floating Point Operations 11-5
Trapping Arithmetic Exceptions 11-6
Performance By Data Type 11-7
Cray Directives 11-8
CDIR$ IVDEP 11-8
CDIR$ NORECURRENCE =N 11-8

X Programmer’s Guide

Contents

CDIR$ NOVECTOR =N 11-8
CDIR$ VECTOR 11-9
Stardent 1500/3000Fortran Syntax 11-9
Fortran 77 Extensions 11-9
Common Porting Questions 11-11
About DCL Define 11-11
About Async I/O 11-11
About Polling Devices 11-11
About Interfacing C and Fortran 11-14
Inline Expansion 11-14
Inline Functions 11-18
About FFT Support 11-21
One Dimensional FFT 11-22
Two Dimensional FFT 11-23
About Performance 11-23
12 Library Functions
Asynchronous I/O 12-1
Access To Command Line Arguments 12-2
Date And Time 12-2
Filing System Control 12-2
Random Number Generation 12-2
FileI/O 12-3
Miscellaneous Functions 12-3
System Interface Functions 12-4
A Asynchronous Input/Output
B Using The Postloader
List of Tables
Table 2-1. Command Line Preprocessor Options 2-3
Table 2-2. Command Line Compiler Options 2-4
Table 2-3. Command Line Loader Options 2-5
Table 2-4. Examples Of Valid Expressions for #if 2-19
Table 2-5. Form of Compiler Options 2-40
Table 2-6. Fortran Compiler Options 2-42
Table 2-7. Suboptions for -standard option 2-46
Contents Programmer’s Guide xi

Table 2-8. C Compiler Options

Table 3-1. Available Libraries for C

Table 10-1. CPU Registers

Table 10-2. Scalar Floating Point Registers
Table 10-3. Vector Registers

Table 10-4. FPU Instructions, by Mnemonic
Table 10-5. Integer Data Format (INTEGER*4)
Table 10-6. Short Integer Format (INTEGER*2)
Table 10-7. Real Format

Table 10-8. Double Precision Format

Table 10-9. Complex Format

Table 10-10. Double Complex

Table 10-11. Logical Data Format

Table 10-12. Short Logical Data Format

Table 10-13. Character Data Format

Table 11-1. BLAS Function Names

2-53

10-2

10-2

10-3

10-4
10-20
10-21
10-22
10-23
10-23
10-24
10-24
10-25
10-25
11-18

xii Programmer’s Guide

Contents

PREFACE

This manual is a guide for the Stardent 1500/3000 programming
languages. It contains information and detailed explanations that
describe tools for creating programs, how to use the Fortran and
C compilers, how to debug programs, how to create more efficient
code, as well as how to port and tune code for optimal operation
on the Stardent 1500/3000.

Here is a brief description of the contents of each chapter and the
appendices.

Chapter 1 — Creating And Maintaining Programs
Briefly describes certain tools that can be used to write and
maintain programs for the Stardent 1500/3000.

There are commercially available reference books which pro-
vide detailed tutorials about the various topics covered in
this chapter. However, Chapter 1 is designed to provide a
reference for these tools, as well as a brief introduction to
interest the user in locating and using other tutorials on
these topics for more information.

Chapter 2 — Using The Compilers
Describes the C and Fortran compilers.

Chapter 3 — Using Libraries and Linking
Describes the linker and methods for maintaining libraries of
code.

Chapter 4 — Methods For Debugging Code
Describes the tools available for debugging.

Chapter 5 — Running the Debugger
Provides a tutorial for dbg.

Structure Of This
Manual

Preface

Programmer’s Guide xiii

E |
Structure Of This Manual

(continued)

Chapter 6 — Optimization

Covers the basic theory of vectorization and parallelization
emphasizing the fact that programs may have to be written
in a certain form to allow the compiler to take advantage of
the architecture of the machine.

Chapter 7 — Efficient Programming
Expands on the basic theory and shows that certain pro-
gramming constructs run more efficiently than others.

Chapter 8 — Explicit Parallel Programming

Delves more deeply into exploiting opportunities for using
multiple processors and shows the system functions and
directives that aid in a user-directed parallel programming
effort. Both Fortran and C directives are described.

Chapter 9 — Tuning Code
Describes tools and techniques that you use to tune code for
faster operation. The chapter concentrates on the profiler.

Chapter 10 — Language Interfacing

Describes data layouts in memory and the parameter passing
conventions employed by C and Fortran, thus enabling the
creation of programs that employ multiple languages if
necessary.

Chapter 11 — Porting Code

Describes moving programs to the Stardent 1500/3000 from
other environments, including data types and precision of
the floating point values. This chapter also describes the
compiler directives that control vectorization and paralleliza-
tion and directives provided for compatibility with other
programming environments.

Chapter 12 — Library Functions

Provides a brief description of Fortran library functions.
Appendix A covers Asynchronous I/O, as implemented on
the Stardent 1500/3000.

Appendix B describes how to postload executable files from
the Stardent 1500 to the Stardent 3000.

Related Documentation

More information on Fortran, C, and the UNIX Operating System
can be found in the following Stardent 1500/3000 manuals:

Programmer’s Reference Manual, Vol. 1

Xiv Programmer’s Guide

Preface

e Programmer’s Reference Manual, Vol. 2
e Fortran Reference Manual

» Commands Reference Manual

Related Documentation
(continued)

Beginning programmers use the manual from the beginning,
learning about the tools available for creating programs and
proceding through the rest of the material.

System programmers, that is, those who need only to port exist-
ing programs to the machine with few concerns about efficiency
can begin with the compiler and debugger sections and ignore the
rest of the book.

Experienced programmers who are already well versed in creat-
ing programs and who are greatly concerned about efficiency of
their code should probably begin with the compiler section and
proceed to use the rest of the sections as well.

Using This Manual

Preface

Programmer’'s Guide xv

CREATING &
MAINTAINING
PROGRAMS

This chapter provides a tutorial for vi, a full screen visual editor.
There are certain other tools that fall into the category of program
maintenance tools. Among these tools are:

* SCCS -aSource Code Control System

* make - a file maintenance program

There are other programs that are supplied as part of the standard
system software. Though the other tools are not covered here in
detail, you can find a brief description of some of them at the end
of this chapter. Also included are references to commercially
available texts that you can use to learn more about them.

CHAPTER ONE

This section introduces vi, the terminal oriented editor. Instead of
working on a line at a time, as with some editors, vi lets you see
and edit an entire screen at a time. This section contains:

* a segment that explains many basic operations; enough to
perform the most often used editing tasks. This segment is
titled The Basics Of Editing With Vi.

* asegment that explains some of the more advanced features.
This segment begins with at the title Ex Commands.

* aquick reference segment for vi commands.
Finally, at the end of the chapter, the bibliography refers you to

commercially available textbooks and other references in which
you can find additional tutorial or reference material for vi.

Learning vi

This section provides you with enough information to do the
most basic editing tasks. As you become more adept, (and
perhaps more demanding), you can proceed at your own pace,
using other published documents about the many features that vi

The Basics Of Editing
- With vi

Program Creation & Maintenance Tools

Programmer’s Guide 1-1

L]
Learning vi
(continued)

provides.

When you edit a file, the entire file is copied into memory at the
same time and is accessible to vi as the contents of the current edit
buffer. Any changes made to the edit buffer are not written to the
file unless you explicitly issue a write command.

For editing text files, the basics you'll want to know are:

how to start the program
how to move the cursor
how to enter text

how to delete text

how to save your work
how to exit

This section begins by answering just those basic questions, then
describes a few, more advanced topics.

Note: for all of the examples in this initial basic section, the nota-
tion ESC is used to refer to the ESC key on the keyboard. This
escapes from Input mode into Command mode.

How To Start vi

This tutorial assumes that you are running under the C shell.
Assume that you want to create a new text file in your /tmp direc-
tory. First change directories to /tmp. Then copy a file into this
directory that can be used for practice.

prompt> ed /tmp
prompt> ep ~/.login /tmp/sample

To start vi, simply type ’vi sample’ at the prompt.
prompt> vi sample

If the system responds ‘vi: command not found’, it means that
your command search path does not include the location at which
the vi command is stored.

1-2 Programmer’s Guide

Program Creation & Maintenance Tools

Set the path to include /usr/uch as follows:
prompt> set path=($path /usr/ucb)
then start vi as shown above.

If you start vi without specifying a file name, your screen becomes
entirely blank, with the cursor positioned in the upper lefthand
corner and the left edge of the screen has a tilde (~) as the first
character of each line. This indicates that you are working on a
new file, containing zero characters. The tilde lines are simply
there to fill out the screen indicating that there is nothing avail-
able from the file to fill the screen area.

Note that there are many other options that you can specify on the
command line when you start vi. See the man-page for vi for an
explanation of those other options.

Two Modes Of Operation
Vi has two modes of operation: Input mode and Command mode.

In Input mode, everything that you type is inserted into the file at
the position of the cursor or is used to overwrite what might
already be onscreen. You escape from Input mode into Com-
mand mode by pressing the ESC key.

In Command mode, any keys that are typed perform some action
that either moves the cursor or has some effect on the contents of
the file. Many Command mode keys begin Input mode. Thus it is
very easy to move between the vi modes. If you are unsure of the
mode that vi is in, you can press the ESC key even though vi may
already be in Command mode. All that happens is that you ter-
minate a command that you may have partially entered, and the
terminal may beep or flash.

How To Move The Cursor

From Command Mode, use the arrow keys on the far right side of
the keyboard to move the cursor. Other methods of moving the
cursor are outlined in the vi reference section of this chapter.

Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-3

L]
Learning vi
(continued)

How To Enter Text

You enter the text by entering Input mode. In the topic Entering
Input Mode below, many different ways to start Input mode are
described. However the most common way, from Command
mode, is to move the cursor to the position that you wish to enter
text, and type an i. As noted above, you exit from Input mode
into Command mode by using the ESC key.

Try the following example:

itextESC

This enters the word text at the current cursor position. In partic-
ular, the i puts vi into Input Mode, the text types these characters
onto the screen at the current cursor position, and the ESC key
press takes you back to Command Mode.

To simply add a new blank line at the current cursor position, just
enter Input Mode and press the ENTER key.

Two other very common ways of entering Input mode are to
begin Input immediately following the current text character.

This is a good time to point out that vi recognizes commands on a
case-sensitive basis. That is, an upper case letter entered from
Command Mode often does something different than that same
letter entered as lower case. Most of the commands that are
described in this chapter are the lower-case commands. You can
find the description of the mapping of the upper-case letters in the
summary table of vi commands near the end of the chapter.

The Command mode key for appending something immediately
after the current cursor position is 4; to enter text at the end of the
current line, use an A instead (the A command automatically
moves the cursor to the end of the current line and appends fol-
lowing the last character on that line.

To try this, move the cursor to the first t of the word text. Then
enter:

aest tESC

The result is: test text

1-4 Programmer’s Guide

Program Creation & Maintenance Tools

To add to the end of the line containing this phrase, use the A
command:

A added to the endESC
The result is: test text added to the end

If you make a typing mistake when you are in Input mode, you
can use the terminal’s BACK SPACE key to move the cursor back-
ward in the line. You can then type over the text to correct it.

To add a new blank line at the end of the edit buffer, use the cur-
sor keys (or any other cursor move instruction) to move the cur-
sor as far toward the end of the file as it will go, then enter the A
(append to end of line) command. Anything you type will be
entered there, beyond the current end of the buffer, establishing a
new end position in the process.

How To Delete Text

There are several methods to delete text. This section only covers
a few of them. Later in this chapter, all of the text deletion
methods are shown in detail.

Delete a character by moving the cursor onto the character you
want to delete and use the x key. Delete from the current cursor
position to the end of a word by entering the command dw (delete
word). Delete from the current cursor position to the end of a line
by entering the command d$. Delete an entire line by using the
command dd.

Undoing A Command

You can undo a change that a command has made. Some word
processors allow you to undo several sequential changes, one
after another. Vionly allows a single level of undo. That is, if you
undo something twice, you undo what you undid before. In
other words, a second undo is treated as a redo. Once you are
safely back in Command mode, pressing the u key undoes what-
ever command you had most recently entered. This is often use-
ful for beginners to know.

T T
Learning vi

(continued)

Program Creation & Maintenance Tools

Programmer’'s Guide 1-5

Learning vi
(continued)

Restoring A Line That Was Most Recently Deleted

When you use the undo command, any text that was deleted is
replaced in exactly the same position from which the deletion
occurred. You could use a text delete command (such as, perhaps,
a line-delete) to transport the deleted text from one part of the edit
buffer to another part.

When a line is deleted, for example, using a dd command, that line
is actually copied into an internal memory area called the
unnamed buffer. The contents of the unnamed buffer can be
inserted into the edit buffer either above or below the line in
which the cursor is currently resting. The P command puts the
text above the cursor; the p command puts the text below the line
that contains the cursor. Either the P or the p command copies
text out of the unnamed buffer into the edit buffer. This means
that you can copy the same text into several places within the edit
buffer if you wish.

Each time you use a delete command of some kind to delete a
block of text, that new block of text replaces the previous block
that you deleted as the most recently deleted block. Up to 9 pre-
vious deletions are available for retrieval, as explained later in this
section (Beyond the most recent deletion, something more than
just the P or p command is required. See the explanation of the
use of the numbered buffers.

How To Save Your Work

When you make changes to the edit buffer, the changes you make
do not affect the file you are editing until you actually tell vi to
write those changes to the file. From Command mode, you write
the contents to a file by using the :w command. The :w command
takes two different primary forms:

:w If you don’t specify a file name, vi assumes that you wish to
write to the file that you had specified on the command line
when you started vi.

Example:

prompt> vi testfile

tw (writes into testfile)

1-6 Programmer’s Guide

Program Creation & Maintenance Tools

:w newfilename
To write into a different file name. Vi remembers the name
of the original file that you specified on the command line.
So that original file name remains the default. If you again
give a :w command without specifying a file name, the
default file name is again used.

Sometimes you receive a message that the file exists and you
should use :w! to overwrite it. The command :w! is the write com-
mand with the exclamation point as an option that says you really
mean to overwrite the current contents of a file.

If you discover that you are working in read-only mode, some-
times even the command :w! does not respond and you should
choose another file name or perhaps even a different directory in
which to save your file. Here is an example:

tw! /tmp/myversion
Exiting vi

You exit vi from Command mode by using the :4 command. If
you have not saved your most recent changes, vi refuses to quit,
and tells you to use :4/ to exit if you do not want to save your
changes.

Now that you have seen some of the most basic aspects of using
vi, the remaining vi section provides details about the rest of vi’s
commands. For completeness, the command reference section
that follows also includes the commands that were previously dis-
cussed.

]
Learning vi

(continued)

The vi program is a screen based editor based on a line-editor
named ex. ex commands can be made more descriptive than vi
commands. Some of the ex commands duplicate an action that is
assigned to single letters in vi.

All ex commands begin with a colon (:). The advantage to using
ex commands in place of their vi single letter equivalents is that
when you type a colon in Command Mode, the cursor jumps to
the bottom line of your editing window and you have the chance
to see the command as it is being formed. There is less chance of
an error if you can examine the entire command before you exe-
cute it by pressing the ENTER key.

Ex Commands

Program Creation & Maintenance Tools

Programmer’s Guide 1-7

S
Learning vi
(continued)

There are often different methods of accomplishing the same task
(such as deleting lines, copying blocks of text and so on). Rather
than provide a separate vi-section and ex-section, each telling you
how to accomplish a task, this section merges the two types of
commands together so that you only go to one place to find
several ways of doing a particular job. You can then choose the
method that is most comfortable for you.

Generic Form Of An ex
Command

An ex command takes the form:

: [address] [command] [!] [parameters] [count]

All of the parts of this generic command are optional, so if you
enter ex by typing the leading colon from vi's Command mode,
you can just press return. This enters a blank line as an ex com-
mand which means that there were none of the optional com-
mand components. The only result is that your cursor is moved
down one line.

The address parameter can take many different forms. Note that
all examples here are shown with the command d which is short-
hand for delete. ‘ ’

e numeric or a numeric pair to indicate either a specific num-
bered line or a range of lines inclusive of the line numbers
specified.

Examples:

:34d
deletes line 34
:12,17d
deletes lines 12-17 inclusive

e aperiod () as one of the address parameters can be used to
indicate the current line.

Examples:

:.d
deletes the current line
:15,.d
deletes from line 15 to
the current line inclusive

1-8 Programmer’s Guide

Program Creation & Maintenance Tools

a cursor move relative to the current cursor location can also
serve as an address for the current command.

Example:

., .+t12d
delete the current line and all
lines from here to 12 lines ahead
of the current line, inclusive.

a cursor move command that moves to a marked line can
also serve as the target address. The topic Marking and
Returning To A Position shows how to mark specific line
numbers and how to use them to specify an address for a
command.

[command] is a full word or an acceptable abbreviation. The

[

abbreviation for the commands is provided with
each command description. For example, the
command

:1,10de

takes the form :[address][command] and deletes
lines 1 through 10 of the edit buffer.

a line or a range of lines is to be passed to the shell
to use as the input to a command. The output of
the command replaces that range of lines in the
edit buffer. Example:

:1l,32!sort

sends lines 1-32 to the shell, executes the sort com-
mand, and returns the output of sort to the edit
buffer, replacing the original lines entirely. Be
certain to know how shell commands function
before you try this command. However, if the
command does not do what you had expected,
you can always undo the command before you do
anything else.

[parameters] are parameters (if any) for the command. The

most common parameter is the name of the buffer
into which lines of text should be placed or from
which lines are to be copied. Example:

:1,12de e

deletes 12 lines into buffer e.

L]
Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-9

Learning vi
(continued)

[count] indicates how many lines are to be involved in

this command. Count is not used when the
address portion specifies the line range. For
example, the same effect could have been
obtained by placing the cursor on line 1 of the edit
buffer and giving the command :de e 12.

Entering Input Mode, In
Detail

When you first start the program, vi begins in Command mode.
You enter Input mode using any of the following Command
mode key commands:

a

A

append—Insert text after the character on which the cursor is
now resting.

Append-to-end - Insert text at the end of the line in which
the cursor is located.

insert—Insert text to the left of the character on which the
cursor is resting.

Insert—Insert text to the left of the first non-whitespace char-
acter on the line. This means that if the text begins indented
from the left edge, and the indent consists of tabs or spaces,
the insert begins where the first real character occurs on the
line (the leftmost text character position).

open the line—Push all text lines, beneath the one the cursor
is resting on, down one position (opening up a new line on
which to type) and begin to insert characters at the leftmost
position of this new line.

Open the line—like o, but put the new line above where the
cursor is residing and insert text on that new line.

change—the change command is usually associated with an
object. That is, you specify, by means of a cursor move, what
the extent of the change will be, and the text that exists
between the current position of the cursor and the place to
which the cursor move command would move the cursor is
treated as an object. Typical objects are a word (w), a word
to the immediate left of the cursor, that is, backwards from
the cursor (b), a character to the left of the cursor (h), to the
right of the cursor (I). The topic Deleting Objects In Vi lists
additional cursor move commands that can be treated as
though they define objects.

1-10 Programmer’s Guide

Program Creation & Maintenance Tools

L e] N N
Learning vi
(continued)

Examples:

cw - change a word

c$ - change to the end of this line

c0 - change from start of this line to here
c(- change from start of sentence to here

Note that many vi commands accept a numeric parameter to
say how many times a command should be executed. For a
change command, the numeric parameter says how many
objects to change:

4cw — change the next four words

In this example, a dollar-sign appears in the edit buffer
replacing the last character of the third word following the
word in which the cursor is resting (change encompasses 4
words total). If you type fewer characters than occupied
now by those four words, all of the excess characters are
deleted when you press the ESC key to exit Input Mode,
leaving only the characters you typed.

If you continue to type beyond the end of the object for
which a change is specified, vi enters Input mode, thus con-
tinuing to accept your input instead of halting when the
change to the object has been completed.

C Change to end of the current line—this is shorthand for a c$
command which means overtype from the current cursor
position to the end of the current line. If you type past the
end of the line, vi enters Input mode which is explained for ¢
above.

s substitute for the character on which the cursor is currently
resting—if you type more than one character after an s, vi
enters Input mode in order to accept the other characters
(until Input mode is terminated).

S Substitute from where the cursor is now to the end of the
line—as with C or c$, if you type past the end of the line, you
are in Input mode.

R Replace all text—on the current line, character by character,
as you type, starting from the current character position. If
you type past the last character on the current line, vi enters
Input mode.

Program Creation & Maintenance Tools Programmer’s Guide 1~11

‘Learnlng vi
(continued)

Moving the Cursor

Character Positioning

There are many ways to move the cursor in vi. The most basic
ways are up, down, right, and left. The designers of vi made this
very easy for touch typists by assigning these motions to the
home keys for the right hand:

h Move left one character (left arrow key).
j Move down one character (down arrow key).
k Move up one character (up arrow key).

1 Move right one character (right arrow key).

Note that on the Stardent 1500/3000, the arrow keys are accept-
able alternatives to the h, j, k, and 1 keys.

More Positioning By Character

Additional positioning by characters is also possible.
0 Move to the beginning of the line.
$ Move to the end of the line.

BACKSPACE
Move back one character position.

SPACE
Move forward one character position.

A Move to the first non-tab non-whitespace character on the
line.

| Move to a specific column. Example:121 moves to col 12)

% If the cursor is on left or right parentheses, or on a left or
right curly brace, this command moves the cursor to the
matching paretheses or curly brace, moving either forward
or backward to find it. If there is no match, the cursor does
not move and the terminal bell is rung.

fx Move forward onto the next character x on this line
Fx Same as fx but move backwards to the next character x.

tx Move forward to the character just to the left of the next
character x on this line.

1-12 Programmer’s Guide

Program Creation & Maintenance Tools

Tx Same as tx but move backwards to the character just to the
left of the next character x.

; Repeat the last f, F, or T command.

p Repeat the last f, F, t or T command as the inverse of the com-
mand performed. That is, if the last command was an f,
repeat it but substitute an F in its place so as to move the cur-
sor in the opposite direction.

If the search fails for f, £, F or T, the cursor does not move at all and
the terminal bell is rung.

Words, Sentences, Paragraphs

The cursor may also be positioned on a word, sentence or para-
graph basis:
w Move to the first character of the next word.
b Move to the first character of the previous word .
Move to the end of the current word.
Move to the first character of the next sentence.

e

)

} Move to the first character of the next paragraph.

(Move to the first character of the previous sentence.
{

Move to the first character of the previous paragraph.

Moving To Explicit Onscreen Positions

You can quickly move the cursor to a specific position on the
screen such as the top, bottom, or middle of the screen:

H move to the top line on the screen

M move to the middle line on the screen

L move to the bottom line on the screen

Scrolling Through The Edit Buffer

You can ask vi to scroll through the edit buffer by using the CON-
TROL (sometimes labeled Ctrl) key in combination with other
keys. The CONTROL key with other keys is represented by a »
character preceding the key. For example, a CONTROL-F is

Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-13

Learning vi
(continued)

represented as ~F. Note that though the notation used here
shows an upper case letter, the actual letter as entered is lower-
case, along with the control key. Thus the notation refers only to
the actual keycap symbol.

Here are the scrolling moves:

AF scroll one page forward in the buffer

AB scroll one page backward in the buffer

AD scroll one half page forward in the buffer
AU scroll one half page backward in the buffer

You can move the cursor to the first nonwhitespace character on
the previous or next line as follows:

- Move to the first nonwhitespace character on the previous line.

CR Same as -, but move to the next line instead of previous
(CR stands for the ENTER key on the keyboard)

Moving To A Position
Defined By A Character
String

In this section, you see that the slash mark (/) and the question
mark (?) can be used to specify a pattern of characters for which a
search is to be conducted.

You can tell vi to find the first occurence of a character string and
move the cursor onto the first character of that character string, or
onto the nth character before or after the first character of that
string:

Ixyz search forward for character string xyz

Ixyzl this command begins to work as soon as you press the
ENTER key. If the terminating slash is not used, the
search assumes that all characters entered prior to the
ENTER key are part of the search pattern (that is, as
though the terminating slash has actually been typed
prior to the typing of the ENTER key).

?xyz search backward for the pattern xyz.

?xyz? search backward for the pattern xyz. For this form, the
terminating question mark is optional.

Ixyz/+n same as /xyz/ but go n characters beyond the start of
xXyz

1-14 Programmer’s Guide

Program Creation & Maintenance Tools

O P s N AR
Learning vi
(continued)

Ixyz/-n ~ same as /xyz/ but go n characters before the start of
xyz

?xyz?+n a backwards search version of /xyz/+n
?xyz?-n a backwards search version of /xyz/-n
n repeat the most recent / search

N same as # but reverse the search direction

The pattern defined by xyz is what is called a regular expression.
This means that instead of being able to search for the literal
occurence of an exact string of characters, you can conduct a
search for an arbitrary character sequence where special character
patterns determine rules for substitution of real character strings.

For example, if you wish to search for the words farther and
further, you could specify the pattern search as: /f.rther, where the
period (.) represents any character. As another quick example,
consider searching for the word the at the end of a line. The pat-
tern specification for this is: /the$, where the dollar sign is the spe-
cial character that represents the end of a line. See the topic Regu-
lar Expressions for more details.

Pattern match searches normally wrap around the buffer. That is,
if you begin a forward search near the end of the buffer, but that
pattern occurs somewhere towards the beginning of the buffer
instead, vi searches from the current cursor position towards the
end, then restarts the search at the beginning of the buffer. You
can use one of the vi options (shown later in this chapter) to dis-
able this automatic wrap feature.

Moving To A Specified
You can move to a specific line number by entering that line Line Number
number followed by the letter G (It must be upper case). For
example, enter:

34G

This moves the cursor to line 34. The letter G alone causes a move
to the end of the file.

Program Creation & Maintenance Tools Programmer’s Guide 1-15

1Leaming vi
(continued)

Marking and Moving To
A Position In The File

You can mark a position in the file and vi remembers that posi-
tion. Later you can move to that position, or having marked that
position, you can specify it as the object for a delete or a copy
command.

To mark a position, just issue the m command, from Command
mode, along with a letter, a-z, that you wish to use to identify that
position in the file.

m#n Mark a position in the file, where 7 is a letter from a-z.

To quickly return to that position, no matter where you are in the
edit buffer, use the command named tick, a single-quote mark (')
or backtick (). Tick moves the cursor to the line at which the
mark was placed; backtick moves the cursor to the exact character
position at which the mark had been entered. Example:

Mark a position as position a (issue the command: ma).
Move the cursor anywhere else in the file. Now return to
that position by issuing the command: "a.

Because this command is a cursor move, it quélifies as an object for
commands that demand a target address.

Buffers In vi

When you tell vi to edit a file, vi does not modify the contents of
that file until you explicitly tell it to write to that file. vi opens up
a buffer (an area in memory and on disk) that it uses to show the
changes to the file. These changes only become part of the file
when you issue the :w (write), or ZZ (write and quit) command.
The buffer in which the editing is taking place is called the edit
buffer.

There are several additional buffers that vi maintains:

* An unnamed buffer holds the most recently deleted block of
text when a delete command has been issued.

o A set of 9 numbered buffers hold the additional blocks of
deleted text so that a deletion up to 9 delete-commands ago
can be retrieved if desired. These buffers are maintained as a
push down stack. This means that if you issue three deletes,
the most recent one is in the unnamed buffer, the next most
recent is in buffer 1, and the next most recent to that is in

1-16 Programmer’'s Guide

Program Creation & Maintenance Tools

buffer 2 (and so on). The nth most recent delete could be
retrieved by accessing buffer number n where n is less than
9. Beyond that number, the block of text is permanently
deleted.

e A set of 26 named buffers (a-z) can be used to hold blocks of
text while the edit session is active. Later in this chapter,

some examples of filling and using the edit buffers are pro-
vided.

Deleting Objects In Vi

You can delete single characters or delete objects in vi. An object is
a block of text that is defined by a cursor move command of some
type. Deleted text goes into the unnamed buffer. Each new delete
command causes the unnamed buffer contents to be pushed into
numbered buffer 1, buffer 1’s contents to be pushed into buffer 2
and so on, with the most recently deleted text in the unnamed
buffer. Here are some commonly used delete commands.

X delete the character that the cursor is resting on.
dn delete the object represented by 7.

Objects include the following:

Character | Defines the Object Example
w a word dw - delete a word
4dw - delete 4 words
b a word to the db

left of the cursor

the line that contains the cursor | dd
from here to end of the line d$
from here to end of sentence d)

from here to end of paragraph d}

~ |~ | |

from here to start of paragraph | d{

Commands given here might be better treated as command
shortcuts. They offer no feedback until the command is com-
pleted. The section titled Deleting To, Copying To, and Appending
To Named Buffers describes a delete command that does provide
immediate feedback as you enter the command.

Any other cursor move command can also be treated as the object
that the delete command operates on. For example, the object n
may also be a position that you have marked.

Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-17

b]
Learning vi
(continued)

d'n If n is a position that has been marked with the mark-
command (e.g. mn), then this command tells vi to
delete the text between where the cursor is located
now, and where the mark 7 had been placed.

Experiment on your sample edit file if you wish. For example, try
deleting from the current cursor position to the first character of
the next sentence — answer: the command would be: d)

Moving Text Blocks

Deleted text can be retrieved from the unnamed buffer by putting
it somewhere in the edit buffer, either above or below the current
cursor position. Simply reposition the cursor, then type:

p to put the item immediately below the line in
which the cursor currently resides.

P to put the item immediately above that line in
which the cursor currently resides.

Examples:

8dd Delete 8 lines, including the line the cursor was
resting in, and move the block of text into the
unnamed buffer as the most recently deleted item.

P Put the contents of the unnamed buffer just above
the current cursor position. If the cursor did not
move between the 8dd delete command and the P
command, this has the same effect as an undo.

Moving Text Blocks By An Alternate Method

In the above forms of moving, the blocks of text are deleted into
the unnamed or named buffers for later use. You can directly
move text from one place in the file to another by using the move
command. It takes the form:

:[addressImove whereto

(Notice that this move command is a colon-command.)

This command moves the lines within the addressed range to the
line just following the line number specified in whereto, which may
be zero to represent the beginning of the file. The move com-
mand can be abbreviated to mo. The cursor moves to the last line
of the moved block.

1-18 Programmer’'s Guide

Program Creation & Maintenance Tools

Here are examples:

:mo 0 Move the current line to become the first line in
the file (no address range is specified, therefore it
operates on the current line.)

Ya/bm$ Move the block designated by marks 4 and b to the
end of the edit buffer.

L]
Learning vi
(continued)

In vi terminology, copying an object or a range of lines is called
yanking the object. Again an object is designated by a cursor move
command of some type. The commands for copying objects are:

yn copy the object n. See the delete command explanation for
the types of objects that can be copied.

yy copy an entire line (into the unnamed buffer for later use.)

4

y'n If n is a position that has been marked with the mark-
command (that is, mn), then this command tells vi to copy
the text between where the cursor is located now, and where
the mark n had been placed.

Examples:

10yy Copy this and the next 9 lines into the unnamed
buffer. Now move the cursor to the position
where the lines are to be inserted.

p Put the contents of the unnamed buffer at a
position immediately below where the cursor is
located now.

As with the delete command, copying text to the unnamed buffer
can be specified with any form of cursor move command defining
the terminating position of the copy (yank).

If you are editing multiple files, note that the contents of the
named and numbered buffers is preserved across file-edit boun-
daries. That is, you can still insert from a named buffer even
though you began to edit a new file. But the unnamed buffer’s
contents are lost when you switch files.

Copying Text Blocks

Program Creation & Maintenance Tools

Programmer’s Guide 1-19

E |
Learning vi
(continued)

Copying Text Blocks By An Alternate Method

In the above forms of copying, the blocks of text are placed in the
unnamed or named buffers for later use. You can also directly
copy text from one place in the file to another by using the copy
command. It takes the form:

:[address] copy whereto

This command copies the lines within the addressed range to the
line just following the line number specified in whereto, which may
be zero to represent the beginning of the file. The copy command
can be abbreviated to co or may be expressed by its synonym ¢.
The cursor moves to the last line of the copied block of text at the
destination location. Here are examples:

:co 0 Copy the current line and write it
as the first line of the current
edit buffer.

Ya'bco$ Copy the lines between mark a
and mark b to become a new segment
of text at the end of the file.

Note that the copy command modifies the contents of the
unnamed buffer (it is empty following the copy operation).

Changing Text

There are many ways to change text that you have already typed.
Here are just a few:

rn Change only the character on which the cursor is currently
resting. The command is 7, and n represents the character to
which the text is changed. For example, typing r0 changes
the current character to a zero.

R<text>ESC
An uppercase R (remember it as an abbreviation for
“Replace”’) begins a change that lets you overtype existing
text for as many characters as you wish. If, as you are typ-
ing, you go past the end of existing text on a line, vi enters
Input mode, allowing you to continue for as long as you
wish. Pressing the ESC key terminates Input Mode.

cn The c is the change command, and n represents some cursor
move command that defines the extent of the change you

1-20 Programmer’s Guide

Program Creation & Maintenance Tools

want to make. A dollar-sign ($) appears in the edit buffer at
the ending point for your change. When you wish to ter-
minate this command, press the ESC key and all text from
the cursor position to the terminating dollar sign disappears,
leaving only what you typed as changes. Here are a few
examples:

cw Change from the cursor to the end of the
current word.

c¢$ Change to the end of the line.
) Change from here to the beginning of the
next sentence.

Changing Text By An Alternate Method

The alternate method for changing text is a colon command,
:change.

: [address]change[count]

This command uses an optional [address] to specify the range of
lines that is to be replaced by the text you type. If [address] is not
included in the command, then the [count] value, if provided,
specifies how many lines (including the current one) are to be
affected by the text you type. If neither [address] or [count] is pro-
vided, ex assumes you wish to change only the current line. A
dollar-sign ($) appears at the end of the text block, and the cursor
is positioned on the first character of the text block that you have
specified.

When you finish typing, press ESC and the replacement of that
block will be complete. If you type more text than is in the
marked block, vi enters Input Mode allowing all of your text to be
entered.

Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-21

Learning vi
(continued)

Using Numbered Buffers

Numbered buffers hold the 9 most recently deleted blocks of text
and operate as a pushdown stack, along with the unnamed buffer.
As an example, if there is a deleted line currently in the unnamed
buffer, and another line is deleted, then the first line is pushed
into numbered buffer 1, and the unnamed buffer now has the
most recently deleted line or block of text. The former contents of
buffer 1 are pushed into buffer 2, the contents of 2 goes to 3 and so
on, for a total of 9 numbered buffers.

To reinsert any blocks of text from these buffers, you use the put
command (p or P) as follows. Assume you want to restore some-
thing that you deleted three deletes ago. The unnamed buffer
contains the most recent deletion, Buffer 1 the second most recent,
and buffer 2 contains that third most recent deletion, the one you
wish to restore. Move the cursor to the postion at which to insert
the text and type:

ll2p

The double—quote character says that you are referring to a buffer.
The 2 is the number of the buffer that you are using. Finally the p
is the command to put the contents into the edit buffer.

The contents of all of the numbered buffers remains the same until
the next delete happens, even across edit-file boundaries.

An interesting trick is possible using vi’s undo command. Lets
say you know that what you want to insert somewhere was
deleted recently (within the last 9 block deletes), but you are not
quite certain which one of those deletes it was. You can use the
repeat command () feature, along with undo, to view the con-
tents of the numbered buffers sequentially as shown in the exam-
ple here. First, issue a command that inserts the first of these
numbered buffers:

" 1p
If this is not the one you want, issue the command

u.

This has the same effect as though you had typed "2p. Internal to
vi, the effect is to increment the buffer number, undo your original
put, and try it again with the next numbered buffer.

1-22 Programmer’'s Guide

Program Creation & Maintenance Tools

If you wish to try this command, create a text file that contains the
following lines:

9th deleted line
8th deleted line
7th deleted line
6th deleted line
5th deleted line
4th deleted line
3rd deleted line
2nd deleted line
1st deleted line
Here is where to put the stuff
The bottom line

Place the cursor somewhere in the first line, then enter the follow-
ing command characters:

(dd followed by 8 periods) This fills all 9 delete buffers, one with
each sentence. Now position the cursor in the line containing the
word Here, and issue the command:

" 1p
It brings back the line Ist deleted line. Now issue the command:

u.

Each time you issue this command, the current deleted line disap-
pears and is replaced by the next one in sequence. Whatever was
the deleted block, in each case, appears in response to this com-
mand. The deleted block might contain a word, a line, or a large
block of text. The only disadvantage to using the double-quote
commands is that there is no user feedback provided until you
complete the command. However, you can always use undo if
you discover you have made a mistake.

L]
Learning vi
(continued)

Named buffers, like numbered buffers, retain their contents even
when a new file is to be edited. Thus named buffers are good for
moving blocks of text from one file to another.

Using Named Buffers

Program Creation & Maintenance Tools

Programmer’s Guide 1-23

Learning vi
(continued)

Filling a numbered buffer is done automatically as noted above,
as a result of performing a delete command. Filling a named
buffer must be done explicitly by yanking or deleting blocks of
text and specifying to which buffer the yank or delete is to go.

There are 26 buffers, named a-z. You refer to a named buffer with
the double-quote sign while in Command mode.

You copy items TO a named buffer by yanking or deleting some-
thing. You copy items FROM a named buffer by putting the
named buffer’s contents into the edit buffer. Here are a couple of
examples that show filling of a named buffer. There are many
examples of copying and deleting to named buffers in the next
section (Deleting To, Copying To, and Appending To A Named Buffer).

Examples:

idej Delete the current line into buffer j.

‘a/byak Copy the range of lines from that
line marked as line 4 to that
line marked as line b into buffer k.

Deleting To, Copying To,
and Appending To A
Named Buffer

Copying Text Into A Named Buffer

Instead of using the command shortcuts (such as the d or the y
command) to delete or yank (that is, copy) blocks of text to the
unnamed buffer, you might choose to save a block of text for
future use in a named buffer. You do this by using a colon com-
mand for the yank or delete, and specify one of the 26 available
buffers (a-z) as the target into which the block of text should be
placed.

Appending Text To A Named Buffer

Instead of selecting a buffer by specifying its name as a lower case
letter, you can tell vi to append the newly deleted text or block of
text to a named buffer by specifying its name in uppercase letters
A-Z. The same buffer is used, only the type of operation on the
buffer is different.

1-24 Programmer’s Guide

Program Creation & Maintenance Tools

Commands That Delete To Or Copy To Named Buffers

Here are the commands that fill or append to named buffers.
There are shortcuts for these same commands in the next subto-
pic, but this form provides immediate feedback (you can see what
you are typing).

:[address] yank [buffer] [count]
:[address] delete [buffer] [count]

The yank command can be abbreviated ya or simply as y. The
delete command can be abbreviated as de or simply as d.

[address] is optional and can be represented by an explicit line
number or by the name of a marked line, along with the tick
mark, such as ‘a to refer to the line number marked as a. The
range of lines between the line marked as line g4, and the line
marked as line b would be represented as an address with the
notation “a,’b. If [address] is not provided, the target of the com-
mand is the line in which the cursor currently resides. This
address is also known by the name “.” (that is, “dot”).

[buffer] is the single character name of the buffer to use. Use a-z as
a name to replace the current contents of the buffer with the new
contents, or A-Z to append the new contents to the end of that
named buffer.

[count] is the count of the number of lines to operate on. This is
used only when the [address] parameter is missing or is specified
as dot.

Examples:

:1,12yab Copy lines 1 - 12 into buffer b.

tyac12 Copy the current line and the next
11 lines into buffer c.

:15ya e Copy line 15 into buffer e.

Yaya d Copy the line marked as a
into buffer d.

Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-25

Learning vi
(continued)

Yayad8 Copy 8 lines from the position marked
as line 4 into buffer d.

:,.+5de H Delete the line on which the cursor
rests and the next five lines and
append them to the end of buffer h.

Command Shortcuts

The command shortcut for using named buffers is a double-quote
mark, followed by the name of the buffer, followed by a delete or
yank command of some form. Using this shortcut should prob-
ably be considered as something only for the advanced user
because double-quote shortcuts on named or numbered buffers
offer no feedback while you are typing in the command. Nothing
appears on the bottom line to tell you that you are indeed hitting
the right keys. If you feel you might have made a typing mistake
along the way, you can either complete the command and undo
something if there was an error. Or you can hit the ESC key a few
times to exit the command you were typing and start over. Here
are some examples.

"a3dd Delete this and the next two lines, and
put them into named buffer a.

"bdG Use buffer b;
the command is id; d operates on an object,
which, in this case, is represented by a
cursor move to the end of the edit buffer.
So, delete from here to the end of the main
buffer and put that block of text into
named buffer b.

"c10yy Copy this and the next 9 lines into named
buffer c.

"fd$ Delete from here to the end of the line and
put the text into buffer f.

"jy3w Use buffer j;
y is the command;

1-26 Programmer's Guide

Program Creation & Maintenance Tools

3w is the object
yank this and the next two words.

"ny’a Use buffer n;
y is the command to use on an object
‘a is the object. This means copy the text block
between here and wherever the 2 mark has
been placed.

Learning vi
(continued)

Once a named buffer has been filled, you can put the contents of
that named buffer back into the edit buffer wherever you wish.
Putting the contents into the edit buffer copies the contents of the
named buffer, leaving it intact. The put command is specified as:

:[address] put [buffer]

The put command can be abbreviated as pu. Here are some exam-
ples.

:pud Copy the contents of named buffer d
to become lines immediately below where
the cursor is now resting.

:0puf Copy the contents of named buffer f
to a position immediately below line 0.
That is, the put block appears as the first
lines in the edit buffer (specifying address
zero puts things before the first actual
numbered line in the buffer. The cursor
moves to the position of the last line
that has been copied.

Command Shortcuts
Using the double-quote shortcut, you can copy the named buffer’s
contents by putting the contents from the buffer below (p) or

above (P) the current cursor position. Here are some examples.

"ap Put the contents of buffer a2 below the current

Copying A Named Buffer
Into The Edit Buffer

Program Creation & Maintenance Tools

Programmer’s Guide 1-27

:Leaming vi
(continued)

position of the cursor.

"nP Put the contents of buffer n above the current -
position of the cursor.

Moving A Block Of Text
From One File To
Another

Here is a more complete example that shows how a block of text
can be moved by using a named buffer. Suppose that you have
two files, named filel and file2. There is a block of text in filel that
should be moved to file2. The block of text begins with the words
For all starting at the beginning of the first line of that block, and
this sequence, in that file, does not exist anywhere else. The block
to be moved ends with the words anywhere else.. Here is a
sequence of commands, including the command that starts vi
itself, that accomplishes that move. There are two columns to this
example. The left column shows the command that is entered.
The right column is a running commentary about the command
and its effects.

prompt> vi filel Start the program

/AFor all - Find the start of the block

ma Mark and remember this as position a

/anywhere else. Move to the end of the block

:,/ade b From marked position 4 to the current
cursor position, delete (de) the text into
buffer b.

W Write the current file, with this block
missing.

te file2 Edit file2 without leaving vi so that the

named buffer is still intact.

/Insert That Text Here Find the position to put that block

:pub Put the block there.

1-28 Programmer’s Guide

Program Creation & Maintenance Tools

(

Learning vi
(continued)

Pattern searching is done with what is called regular expressions.
Certain characters are interpreted as control characters by wvi.
When forming patterns, these characters are not taken to
represent the character itself, but rather a condition. For example,
you can search for something that occurs only at the beginning of
a line, or at the end of a line. You can search for a character that is
within a particular group of characters, or substitute any character
for a specific character position. This section defines the regular
expression pattern characters and the special meanings that each
has. Several examples are provided to illustrate the use of these
items.

To search for that special character, instead of treating it as part of
a pattern match specification, you precede the character by a
backslash (\). In other words, vi is told to take this character
literally. The special control characters are listed below. There
are two columns to this example. The left column shows the char-
acter that is entered. The right column is a running commentary
about the effects that the character has on a regular expression.

A The pattern should be matched only if it is at the begin-
ning of a line.

$ The pattern should be matched only if it is at the end of a
line.

Example: Monely$

matches the word lonely if it is the only word on a
line with no spaces or tabs before it or after it. A
line that matches has the first character of the word
lonely as the first character on the line, at the left-
most position on the line and whose rightmost
character is the last character on the line before a
line feed.

Match any single character
Example: f..ther
Matches further, farther, feather.

* Matches zero or more characters. of a specific type.

Regular Expressions

Program Creation & Maintenance Tools

Programmer’s Guide 1-29

Learning vi
(continued)

Example: ba*
Matches b or ba or baa or baaaaaa.

Example: first.*$
Matches the word first, followed by one or
more occurences of any character proceding
to the end of the current line.

[] Match any single character by examining whatever char-
acters are enclosed in the brackets.

Example: [abc]
Matches a, b, or c. in a specific position.
Example: [Ff]ortran
Matches fortran or Fortran.
[a-d] Matches any single character from a choice of any char-
acter in the specified range. Both single characters and
character ranges may appear in this specification.

Example: [a-zA-Z0127]

Matches any single lowercase or uppercase
character, or any of the digits 0, 1,2, or 7.

< Match the beginning of a word.
> Match the end of a word.

With either of these, you can mark the start and end of a
word so that only a whole word (surrounded by whi-
tespace or punctuation marks of some type) are matched.

Example: <other>

Matches other, but does not match an embed-
ded other, such as in the word bothered.

1-30 Programmer’s Guide Program Creation & Maintenance Tools

Learning vi
(continued)

You can add the contents of an external file to your edit buffer by
reading it into the buffer. You use the read command to insert the
complete contents of the file into the edit buffer immediately
below the current cursor location.

:read filename

The read command can be abbreviated re or simply as r. The
filename may be a complete path name or whatever minimal form
of name that is required for vi to find the file.

It is sometimes necessary to read data that has been generated by

executing a command. The read command is used for this pur-

pose as well as reading text files. The syntax of this command is:
:read /command

For example, if you are documenting a Fortran program that has
several modules, you might have a sentence in your edit buffer
that says: The program consists of the following major modules: and
the next few lines are to list the .f files which are in the current
directory whose contents are being documented. You would
enter the command:

tread !ls *.f

The following could appear on the line below the cursor:
filel.f file2.f file3.f

Reading The Contents
Of An External File or
Command

You can exit your editing session by using the command ZZ to
suspend operation of vi temporarily, returning to the shell, and fg
to return to vi. Or you can begin a shell process from within vi by
using the shell command (the format is :shell). When you finish
with the shell, issue the command exif to terminate the shell and
return to vi. Both methods keep the editing cursor at exactly the
same position and preserve the state of your file. Before you per-
form an exit of this kind, it is wise to do a write command to save
your work. Though the system generally preserves edit files in
the event of a system crash, not necessarily all of the latest edits
will be available in a save file. Your explicit save, however, will
preserve all edits intact.

Temporarily Exiting Vi To
Use Other Programs

Program Creation & Maintenance Tools

Programmer’s Guide 1-31

‘L‘eaming vi
(continued)

Editing Multiple Files
In the brief tutorial section at the beginning of this chapter, we
described saving the edit buffer to a file. We'll repeat that infor-
mation here so that all of the file-related commands are together.

:'w Write into the file that was specified on the command line
when vi was started

‘w newfilename
Write into a different file name. The original file name
remains as the default.

w >>filename

Append the current edit buffer to the end of a specified file
name.

w!

:w! filename
Overwrite an existing file if vi refuses in response to an nor-
mal write command (w filename).

:w lcommand ,
Write the edit buffer as the input to an external command to
be executed by the shell from which vi was invoked. Notice
the distinction between w! and w /command; the placement of
a space between the w and the ! decides the interpretation of
the command.

Note that all of the forms of write (:w) commands can be accom-
panied by an optional address parameter, that is,

:[address]w ...

The [address] parameter can specify a range of lines to be written
to the external file, or as the input for an external command. The
default address is 1,$, which means the entire contents of the edit
buffer.

:e filename
Edit a file by the name filename. This command works only
if the buffer in which you have been working has not been
changed since the start of the edit session.

1-32 Programmer’s Guide Program Creation & Maintenance Tools

:e! filename
Edit a file but tells vi to throw away any editing changes that
have been made since the most recent save of the edit buffer
and instead begin to edit the new file.

The significance of the ‘e (or :e/) command is that while vi is run-
ning, its environment (all of its internal settings and buffers)
remains intact. The contents of all buffers, EXCEPT the unnamed
buffer (described below) remain intact when the new file is
visited. Thus it is possible to use the numbered buffers and the
named buffers as a means of copying text from one file and insert-
ing it into another file.

If you want to use vi to edit multiple files, such as all of the Fortran
files in the current directory, then either specify the files explicitly
when starting vi, or use a shell wildcard character to cause the
shell to select all of the files that you wish to edit. You'll be able
to edit them sequentially using the :n command as shown below.

Examples vi test.f mystuff.f more.f
vi *.f

vi presents the files to you one at a time for editing. To switch
from one to another (in sequence as you specified them individu-
ally, or in alphabetical order as the shell presents them when a
wildcard is used), when you are finished editing, use the save
command (:w) to save the edits, then the :n command to get the
next file to be edited. If you have chosen not to save your edits,
the :n/ command throws away current edits and begin to edit the
next file. When vi has no more files as input, it reports no more
files to edit.

mn Begin to edit the next file. If you have not saved your work
before you issue this command, vi reminds you that some
edits have not been saved.

:n! Discard edits that have not been saved and go on to edit the
next file.

At any time, you can find out how many files are being edited by
asking vi to show you the list of arguments with which vi was
called. If you used a shell wild card character, it is possible that
there are many file names that are in line to be edited. (A pattern
that includes a valid pattern matching specification for the shell
will expand into possibly several file names to be edited.) The
command to view the set of file names being edited is args.

|]
Learning vi

(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-33

~

Learning vi
(continued)

:args List all files being edited in this session, enclosing the name
of the the current file being edited in square brackets. This
allows the user to see which file is to be edited next as well as
to determine the name of the current file being edited. (An
alternate method to obtain the name of the current file is
AG). Here is an example. Assume that the current directory
contains the names filel, file2 and file3, and no other file
names in the current directory match the pattern fil*:

prompt> vi fil*

Then, when vi has begun, if you type the command :rgs, here is
the response from vi on the bottom line of the display:

[filel] file2 file3

When you reach the end of the sequence of files (when :n tells you
there are no more files to edit), you can ask vi to begin again,
using the first file name in the list by issuing a rewind command.

rewind
Finish editing the current buffer and restart with the first file
in the argument list. This command may be abbreviated rew.
If you have not saved the current buffer and get the message
"No write since last change (rewind! overrides)", enter
:rewind! or :lrew. This discards the most recent set of changes
and begins editing at the start of the argument list.

Repeating Commands

To repeat a command that you just entered, type a period (.).
There is an example that uses a period several times to delete suc-

cessive lines. The example is located in the section titled Using
Numbered Buffers.

To perform a single command several times, precede the com-
mand with the number of times it is to be performed.

Examples:

Delete 10 lines 10dd
Delete 5 words 5dw
Change 3 words ~ 3cw

Repeating works with most of the vi commands.

1-34 Programmer’s Guide

Program Creation & Maintenance Tools

T~

Learning vi
(continued)

String Substitution
vi provides string substitution commands that take the form:

: [address]s/[regexp_stringll[replacement_stringll[g]

The command is substitute, and it may be abbreviated s as shown
in the command template above.

[address] is optional. If there is no address specified, vi assumes
that you mean to operate on the current line. Common address
expressions are:

1,$ This address means all lines in the entire edit buffer.
% This notation is shorthand for 1,$
.~+10 This entry means this line and next ten lines
‘a/b This address specifies the range of lines
from the line marked a to the
line marked b inclusive.

[regexp_string] is a string that forms a regular expression as
described in the topic Regular Expressions above. By using a regu-
lar expression, you can replace occurences of several different
source expressions with a single, corrected expression. For exam-
ple, the command :1,$s/[fFlortran/FORTRAN/g will replace all
occurences of the word “fortran” or “Fortran” with the word
“FORTRAN", no matter where they appear on the lines in the
edit buffer.

replacement_string is the set of characters that you want to use to
replace the text that matched the regular expression. The replace-
ment string is optional, so you can replace the matched character
string with nothing if you wish (deleting the strings that match
your specification).

[g], if present, means “global”. That is, make the substitution any-
where and however many times something occurs on any line
within the addressed range in the edit buffer. The default is to
replace the first occurence on a line only.

Examples:

1,$s/UNIX/Unix[tm]/g
Replace this anywhere that it occurs in the edit buffer and if
it happens several times on a single line, replace them all.

Program Creation & Maintenance Tools Programmer’s Guide 1-35

Learning vi
(continued)

"a,.s/" [TABKEY]/
From the position marked as line a, to the line on which the
cursor is resting, replace any tabs that occur in the first
column of the line with nothing (undo a physical indent).

Which Line, and Which
File

To determine the line number of the buffer and the name of the
file that you are editing, type a CONTROL-G (*G). If you posi-
tion the cursor on the last line of the file (by using the G com-
mand) and then use AG, vi tells you the name of the file, the
number of the last line, and the number of characters in the file.

Specifying Literal
Characters

Sometimes it is necessary to embed literal characters in a file you
are editing. For example, a line feed is a CONTROL-L. While you
are typing, certain literal characters are taken by vi as commands.
If you wish to insert a literal character, you can quote the character
to tell vi to take it literally instead of as a command. The quote
character is CONTROL-V. Anything preceded by CONTROL-V
(except for a carriage return) is inserted literally in your file while
vi is in insert mode. Example: AVAL inserts a CONTROL-L (a
formfeed character). On the screen, it shows up as AL, and if you
move the cursor across it, you can see that it takes up only one
character position in the file and in the file’s edit buffer.

1-36 Programmer’s Guide

Program Creation & Maintenance Tools

Learning vi
(continued)

Sample commands

<1 1-> arrow keys move the cursor
hjkl same as arrow keys
itextESC insert text abc
cwnewESC change word to new
easESC pluralize word

X delete a character

dw delete a word

dd delete a line

3dd ... 3 lines

u undo previous change
77 exit vi, saving changes
:q!CR quit, discarding changes
/textCR search for text

AU D scroll up or down
:excmdCR any ex or ed command

Counts before vi commands

Numbers may be typed as a prefix to some commands. They are
interpreted in one of these ways.

z G |
AD NU
most of the rest

line/column number
scroll amount
repeat effect

Interrupting, canceling

ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts

AL reprint screen if DEL scrambles it
"R reprint screen if AL is -> key

Vi Command Summary

Program Creation & Maintenance Tools

Programmer’s Guide 1-37

S
Learning vi
(continued)

File manipulation

:wCR write back changes
:qCR quit

:q!CR quit, discard changes
:e nameCR edit file name

:e!CR reedit, discard changes
e + nameCR edit, starting at end

:e +nCR edit starting at line n
e #CR edit alternate file

synonym for :e #
:w nameCR write file name
:w! nameCR overwrite file name

:shCR run shell, then return

lemdCR run cmd, then return

nCR edit next file in arglist

n argsCR specify new arglist

G - show current file and line

ita tagCR to tag file entry tag

N :ta, following word is tag In general,

any ex or ed command (such as substitute
or global) may be typed, preceded by a
colon and followed by a CR.

Positioning within file

AF forward screen

B backward screen

D scroll down half screen

AU scroll up half screen

G go to specified line (end default)
/pat next line matching pat

?pat prev line matching pat

n repeat last / or ?

N reverse last / or ?

/pat/+n nthline after pat
?pat?-n nth line before pat

1 next section/function

[previous section/function
(beginning of sentence

) end of sentence

1-38 Programmer’s Guide

Program Creation & Maintenance Tools

{ beginning of paragraph
} end of paragraph
% find matching () { or}

Adjusting the screen

AL clear and redraw

AR retype, eliminate @ lines

zCR redraw, current at window top
z-CR ... at bottom

z.CR ... at center

/pat/z-CR pat line at bottom

zn.CR use n line window

"E scroll window down 1 line

Y scroll window up 1 line
Marking and returning

i

move cursor to previous context
... at first non-white in line
mx mark current position with letter x

124

x move cursor to mark x

'x ... at first non-white in line

Line positioning

H top line on screen

L last line on screen

M middle line on screen .
+ next line, at first non-white

previous line, at first non-white
CR return, same as +

| .

|

or j next line, same column
ork previous line, same column
Character positioning

N first non white

Y
Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-39

Learning vi
(continued)

beginning of line
end of line

hor-> forward
lor<- backwards

"H
space
fx

Fx

tx

Tx

%

same as <-

same as ->

find x forward

f backward

upto x forward

back uptox

repeat lastf Ftor T
inverse of ;

to specified column
find matching ({) or }

Words, sentences, paragraphs

word forward

back word

end of word

to next sentence

to next paragraph
back sentence

back paragraph
blank delimited word
back W

to end of W

Corrections during insert

AH
W
erase
kill

ESC
DEL
D

| "D
0"D

erase last character

erase last word

your erase, same as “H

your kill, erase input this line
quotes “H, your erase and kill
ends insertion, back to command
interrupt, terminates insert
backtab over autoindent

kill autoindent, save for next

... but at margin next also

1-40 Programmer’s Guide Program Creation & Maintenance Tools

"V quote non-printing character
Insert and replace

a append after cursor

i insert before cursor

A append at end of line

I insert before first non-blank
0 open line below

@) open above

rx replace single char with x

RtextESC replace characters

Operators

Operators are followed by a cursor motion, and affect all text that
would have been moved over. For example, since w moves over
a word, dw deletes the word that would be moved over. Double
the operator, e.g., dd to affect whole lines.

d delete

change

yank lines to buffer

left shift

right shift

filter through command
indent for LISP

TV AN

Miscellaneous Operations

change rest of line (c$)
delete rest of line (d$)
substitute chars (cl)
substitute lines (cc)
join lines

delete characters (dl)
... before cursor (dh)
yank lines (yy)

K XX —=W0ne gn

L
Learning vi
(continued)

Program Creation & Maintenance Tools

Programmer’s Guide 1-41

Learning vi
(continued)

Yank and Put

Put inserts the text most recently deleted or yanked. However, if
a buffer is named, the text in that buffer is put instead.

P put back text after cursor
P put before cursor

"xp put from buffer x

"xy yank to buffer x

"xd delete into buffer x

Undo, Redo, Retrieve

u undo last change

U restore current line

. repeat last change

"dp retrieve d’th last delete

Bibliography

The following books provide additional tutorial and reference
material that you might find useful in exploring various program-
ming tools.

Unix System V Release 3.2 Programmer’s Guide, Vol I and II;
AT&T; Prentice Hall, 1989

Managing Projects With Make; Steve Talbott; O'Reilly & Asso-
ciates, Inc., 1988

Learning C; Stephan Kochan; Hayden Books, 1988

Unix Text Processing; Dale Dougherty and Tim O'Reilly; Hay-
den Books, 1988

Word Processing On The Unix System; Morris Krieger;
McGraw Hill Books, 1985

Exploring The Unix System; Stephen Kochan and Patrick
Wood; Hayden Books, 1989

The AWK Programming Language; Alfred Aho, Brian Kerni-
gan, Peter Weinberger; Addison Wesley Publishing, 1988

1-42 Programmer's Guide

Program Creation & Maintenance Tools

USING THE
1500/3000
COMPILERS

This chapter describes how to compile Stardent 1500/3000 Fortran
and Stardent 1500/3000 C source programs into object modules
that you can execute. This chapter describes

e The functions of the compilers.

e How to call the compilers.

* How to use the compiler options.

e The formats of the listings produced by the compilers.

* How to locate and correct run-time errors.

This chapter is divided into three sections. The first section con-
tains a general discussion of the functions of the compilers, the
options that are common to both languages, preprocessor control,
and linking. The last two sections contain the details of calling the

compilers, options to the compilers, and locating errors in Fortran
and C, respectively.

CHAPTER TWO

The Stardent 1500/3000 compilers construct object files from
source language files. The Stardent 1500/3000 compilers execute
under UNIX. The compilers generate binary object files; these files
may be combined by the loader with one another and with system
libraries to create executable programs. Ordinarily, specifications
of these files are of little interest, but a simplified description of
the contents is found in Chapter 5, Running dbg— The Stardent
1500/3000 Debugger.

The Stardent 1500/3000
‘Compilation System

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-1

-]
The Stardent 1500/3000
Compilation System
(continued)

Functions of the Stardent
1500/3000 Compilers

The Stardent 1500/3000 compilers perform the following func-
tions.

e They check that your program is correct. If your program is
not correct, they tell you where you have made errors.

¢ They translate your source program into machine language
instructions which the Stardent 1500/3000 can execute.

* They group these executable instructions into object modules
which may be linked (by the loader) into a complete execut-
able program.

In addition to the executable instructions, the compilers also gen-
erate lists of all subroutines and common blocks defined and used
in each module. The loader combines object modules into com-
plete programs, adding additional routines from user and system
libraries as needed. During the loading process, a symbol defined
in one routine is linked to all the other routines which use the
symbol. The compilers and the loader also communicate to pass
debugging information to the debugger.

Specifying the Output
Files

You use compiler options to specify what kind of output is to be
produced. For example, the -S option produces an assembly
language file. Refer to the option lists for each language later in
this chapter for more information about controlling output.

Compilation Control

There are three ways to control the compilation of your program:
command line options, compilation control statements, and com-
piler directives. This section discusses only those options and
statements that can be used from either Fortran or C.

Command Line Options

The following three tables list all possible options that can be used
in both Fortran and C. Detailed descriptions and explanations of
these options are discussed following the table. Defaults are indi-
cated in italics. The negative form of the option only applies to
Fortran. Options are case-sensitive; upper and lower case options
have different meanings.

2-2 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

~

If the Fortran command line compiler option -cpp is not specified
when coding in Fortran, most of the command line preprocessor
options are ignored. The options -P and -E always invoke the
preprocessor, however the others do not do this unless the -cpp
option is specified.

Table 2-1. Command Line Preprocessor Options for Fortran and C

Option Negative Form Description
-Dname Define name to have a value of 1
-Dname=val Define name to have a value of val
-E Preprocess only; output modified source
to the file defined as stdout
(often the user’s terminal)
-1 Do not search for included files in default directory
-I1dir Search for included files in dir
-i Do not include information created
by the #ident preprocessor option
in the output of the preprocessor step
-P Preprocess only; put the results in file.i
-Uname Undefine name

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-3

Compilation Control
(continued)

Table 2-2. Command Line Compiler Options for Fortran and C

Option

Negative Form.

Description

~C

Compile only; do not link

-catalog=name.in

Create a database of inlined functions

-cpp

Pass a Fortran program
through the C language
preprocessor before doing the
Fortran compile

-full_report Invoke vector reporting facility
-fullsubcheck Add code to check each linear array subscript
-g -nodebug - Add debug data to object file

-inline Inline functions

-Npaths=name.in Use inlined functions from name.in

-00 -nooptinﬁze Turn off optimization

-01 Perform scalar optimization
-02 Perform -O1 and vectorization
-03 Perform -O2 and parallelization
-0 '

Same as -O1

Table 2-2, Command Line Compiler Options for Fortran and C (continued)

Option Negative Form Description
-o filename Put output into filename
-ploop Profile each loop separately
-5 Generate assembly language source file
-subcheck Add code to check linear array subscripts
-V Print version information
-vreport Invoke vector reporting facility

with a particular kind of output
-vsummary Invoke vector reporting facility

with a particular kind of output
-w Suppress warning messages during compilation
-43 Use BSD capability

2-4 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

Table 2-3. Command Line Loader Options for Fortran and C

Option Negative Form | Description

-Bhhhhhhhh a.out has bss address at hkhhhhhh
-Dhhhhhhhh a.out has data address at hhhhhhhh

-esym Set default entry point address

-L Do not search for libraries in /lib or Jusr/lib
-Ldir Search for libraries in dir

-ltag Search library called tag.a

-m Generate a simple load map

-n Generate NMAGIC file type

-opct Produce count of FPU ops

P -noprofile Generate profiling code

-r Produce a relocatable output file

-s Strip line numbers/symbol table information
-Thhhhhhhh a.out has text address at hhhhhhhh

-t Turn off certain warnings

-yname Trace name

Preprocessor Options

-Dname

Define name to have the value of 1 to the preprocessor. This
option may be used in place of explicitly including a #define
statement within the program itself. It is particularly useful
if more than one file is specified on the command line since
the definition of the name is valid for the compilation of all
files specified.

-Dname=uval

Define name to have the value of val to the preprocessor.

This option stops the compilation process after all macros
and conditional compilation expressions have been
expanded. Passing source through a preprocessor often
causes an increase in the physical bulk of the file, the prepro-
cessed material is often called the expanded source. Thus the
option is selected by an E. The expanded source is directed
to stdout (the standard output, most commonly the user’s

Compilation Control
(continued)

NOTE
The notation hhhhhh indicates an
8-digit machine address given in
hexadecimal notation. Normally
hexadecimal numbers are
specified as OXNNNNNNNN.

or use with these options,
hexadecimal numbers are
expected; thus the “0x” should
not be used.

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-5

Compilation Control
(continued)

terminal.) A “real” compilation does not take place. Output
of the preprocessor appears on standard output.

When the preprocessor encounters a #include statement in a
C language program, it searches for a file named in that
statement in the directory [usrfinclude. Specifying the -I
option suppresses the search of this default directory. This

© option is useful if the user has a customized version of a par-

ticular file in a specific directory other than the current direc-
tory and wants this alternate file to be included instead of
that which the system would normally find during its search
process. The -I option is often used with the -Idirectory_name

‘ option to tell the compiler where to look, if not the default

=Idir

directory. This does not affect the Fortran INCLUDE state-
ment that searches the default directory.

Search for preprdcessor include-files in dir. This does not
affect items that might have been specified with the Fortran
INCLUDE statement.

Suppress the automatic production of #ident information.

Preprocess only; the resulting output (from x.c or x.f) goes to
x.i rather than standard out.

-Uname

Undefine name.

Compiler Options

This is an abbreviated list of options, describing only those
options that are common to both Fortran and C. For a complete
list of the options that are unique to Fortran and a detailed expla-
nation of their effects, see Chapter 7, Fortran Compiler Options in the
Fortran Reference Manual.

-C

Compile the source files, but do not invoke the loader. Gen-
erate only object code output.

2-6 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

-catalog=filename.in

Create a database of functions that are frequently inlined. Be
aware that the use of -catalog creates two files; the database
and a filename.in. This can use up a large amount of disk
space, as the use of this option adds to an existing catalog.

To create a catalog in Fortran, specify the following on the
command line:

fc -catalog=filein filename

To create a catalog in C, you only need to specify filename.in
on the command line, without using the -catalog option. The
compiler assumes the creation of the catalog from this, so
long as -inline is not specified.

-full_report

Selecting this option invokes the vector reporting facility.
The report that is generated shows you how your program
statements have been vectorized, shows you the code the
compiler generated, and explains why certain choices (code
reorganization, for example) have been made. The
full_report is the most detailed report that is generated by
the vector reporting facility. Refer to the section Vector
Reporting Facility later in this chapter for examples and com-
plete descriptions of the output produced by invoking any of
the three options -vsummary, -vreport, or -full_report. This
output is in a notation that strongly resembles Fortran.

-fullsubcheck

Generate code to check that every subscript in every array
reference is within the bounds of the appropriate array
dimensions. For example, if the DIMENSION A(10,10) is
declared, A(11,5) definitely violates the conditional definition
of the -fullsubcheck option. The testing that is performed is
more stringent than that of option -subcheck.

8
Generate information for the Stardent 1500/3000 debugger.
It is synonymous with the option -debug.

-inline

When -inline is specified and a catalog is listed in -Npaths,
the compiler inlines all legal functions found in the catalog.
For example

NOTE

Compilation Control
(continued)

Use of this option increases object
code size and decreases execution

speed.

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-7

Compilation Control
(continued)

If you specify fc -inline withouta -Npaths,

then the compiler inlines from /usr/lib/libbF77.in which con-
tains the BLAS subroutines. In addition to inlining BLAS,
the compiler will also inline very short subprograms from
your source code.

If you specify
fc -inline -Npaths=mycat.in

then the compiler inlines from mycat.in and the standard sys-
tem catalog [usr/lib/libbF77 .in.

If you specify
fc -inline -Npaths= -Npaths=mycat.in

then the compiler inlines only from mycat.in and very short
subprograms in your source code, ignoring the standard sys-
tem catalog.

If you specify
fc -inline -Npaths=

then the compiler inlines only very short subprograms from
your source code.

The Stardent 1500/3000 compiler can inline virtually any
type of function into any language construct. However,
there are some exceptions. The compiler does not inline
character-valued functions or functions that take character
arguments. C functions which appear to be varargs (variable
number of arguments—the address of the argument is taken)
cannot be inlined. Finally, the compiler does not inline any
function into the WHILE condition of a loop.

-Npaths=filename.in

Instruct the compiler to make use of the database of inlined
functions (filename.in). Specifying -Npaths= avoids getting
system functions.

Turn off all optimizations.

2-8 Programmer’s Guide

Using-The Stardent 1500/3000 Compilers

()

Compilation Control
(continued)

-01
Perform scalar optimizations, including common subexpres-
sion elimination and instruction scheduling.

-02
Perform -O1 and vectorization.

-03
Perform -O2 and parallelization.

-0
This is the same as -O1.

-0 filename
Place the output into filename.

-ploop
Profile each loop in a single routine separately. Refer to
Chapter 8, Tuning and Porting Code for detailed information
on using this option. You may also refer to the Commands
Reference Manual.

-S
Do not generate object files; instead, generate assembly
language source files.

-subcheck

Produce code to check at runtime to ensure that each array [AJIOTEf . .

: ; se of this option increases object
e}emgnt accessed is actually part of the appropriate array. 4 "o = ¢ decreases S reoubion
Consider the following fragment speed.

REAL SAM(10,20,30)

. = SAM(I,J,K)

If I has any value between 1 and 10,] between 1 and 20, and
K between 1 and 30, then the access to an element of array
SAM is legal. However, because of the way Fortran arrays
are stored in memory, the reference still lies in the storage
allocated for SAM when 1=25, J=2 and K=4; in fact, the
selected element is SAM(5,44). In general, there are an
infinity of ways to write subscripts that are not strictly legal,
but which name an element lying in the array. If used, this
option warns only about an access that falls completely

Using The Stardent 1500/3000 Compilers Programmer’s Guide 2-9

Compilation Control
(continued)

outside of the storage for an array. In other words, this
option does not check array subscripts individually, but sim-
ply checks that the result of the calculation of the array
element’s location is actually within the bounds of the array.

Print version information.

-vreport

This invokes the vector reporting facility and is used to tell
the user what vectorization has been done to the program. A
detailed listing is provided of exactly what the compiler did
to each loop nest. This option does not include suggestions
on how to achieve better performance. Refer to the section
later in this chapter titled Vector Reporting Facility for detailed
information. The output from this option is in a notation
that strongly resembles Fortran.

-vsummary

This invokes the vector reporting facility and is used to tell
the user what vectorization has been done to the program.
This option, -vsummary, prints out what statements are and
are not vectorized in each loop nest.

This option suppresses warning messages during compila-
tion.

If this option is invoked by a C program, this option sup-
ports BSD capabilities. This consists of a BSD header file and
a number of BSD libraries. Use this option immediately after
the cc command. If this option is invoked by a Fortran pro-
gram, the effect of this option is to add the Berkeley library
libc.a to the end of the load line.

Loader Options

-Bhhhhhhhh

Generate an a.out file with the bss address at hhhhhhhh.

-Dhhhhhhhh

Generate an a.out file with the data address at hhhhhhhh.

~ 2-10 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

-esym
Set the default entry point address for the output file to be
that of sym.

-L

Do not search for libraries specified on the command line
with a lower case L in /Iib or Jusr/lib.

-Ldir

Search for libraries specified on the command line with a
lower -1libraries in dir.

-ltag

For libraries to be included in the executable file, search a
library called libfag.a. The name of the library is formed by
prepending lib to the word given with the -1 option. The
default is to search first in /lib and then in /usr/lib. As noted
above, the -L options can be used to override the default
search path.

-m Generate a simple load map on standard output.

-n Generate NMAGIC file type. This option is not normally
selected, and is documented here only for completeness.
This is one of the options (-O is another) that affects the for-
mat of the header of the a.out file. The file types are called
the following:

o ZMAGIC, the standard form of an a.out file, that is, an
executable file. In this form of file, the text and data
segments are placed such that the data segment begins
at an even page boundary, allowing the loader to page
the program in directly from the file.

o NMAGIC, by comparison to ZMAGIC, has the data
segment immediately following the text segment, and
thus makes the object file smaller. It is primarily used
by diagnostics programmers.

o OMAGIC, (the format of the file is to be that of a file.0).
This is a non-executable file and will contain object code
that has unresolved references. In other words, to
create a final a.out file, a .o file must be passed through
the link editor before it will become an executable file.

o SMAGIC is reserved for shared library object files. The
method of generating this type of file is not docu-
mented here.

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-11

Compilation Control
(continued)

-opct
Insert code into the program that dynamically produces a
count of all the FPU operations executed by the program.

-p Generate code to profile the source file during execution.
Refer to Chapter 8, Tuning and Porting Code for detailed infor-
mation on using this option.

-r Produce a relocatable output file.

-s On most UNIX systems, this option strips debugging infor-
mation from the output object file. On the Stardent
1500/3000, this option performs no action; it is provided
only for compatibility with other systems. To remove
debugging information, use the strip command explicitly.

-Thhhhhhhh
Generate an a.out file with the text address at hhhhhhhh.

-t Turn off warnings about multiply defined symbols that are
not the same size.

-yname :
Trace name and print out all uses and definitions.

Preprocessor Control
Statements

In addition to the compilation control options that you specify on
the command line, you can communicate with the Stardent
1500/3000 preprocessor by including certain statements in your
source code.

* The #include statement specifies that an external source file is
to be copied into the source code and to be processed with
the file.

» The #define statement establishes values for symbols that you
use in your source code or that simply act as preprocessor
symbols to otherwise control the inclusion of other source
code. The #undefine statement undefines, or removes the
value associated with a symbol. .

o The #ifdef and #ifndef statements simply test whether or not
you have defined a particular symbol, that is, have you given
it any value, numeric or alphabetic.

2-12 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

e The #endif statement terminates an #if, #ifdef or #ifndef state-
ment, allowing nested test conditions to be formed.

e The #if statement lets you apply integer arithmetic tests
against the integer value of a symbol and choose to include
or not include sections of source code based on the results of
the test.

e The #elif and #else statements allow you to include alterna-
tive source code if the tested conditions are found to be false.

* The #line statement lets you label lines of source code allow-
ing you to have the compiler more accurately report the loca-
tion at which a runtime error occurs.

The #include Statement

Using an include statement tells the compiler to copy the contents
of the specified file into the source code during the preprocessing
stage. This material then becomes a part of the source code when
it is finally processed by the compiler.

An include file normally contains data structures and data
definitions that may be common to many different programs you
write. This saves you from a need to copy the source code into
each program, allowing the preprocessor to do it for you as the
program is compiled. Here is an example of an include statement.

#include <definitions.h>

The preprocessor normally looks in two places for included files:
the current directory (the first choice, where a local copy of some
file name is considered more important than that same named file
located elsewhere), and /usr/include. If an included file is in nei-
ther of these places, the search fails. You can override the default
search places, however, by using the -I switch on the compiler
command line. This tells the compiler not to search /ust/include
(although it will still search the current directory, even when this
switch is specified). Or you can provide additional places to
search by specifying -I<new_directory> where new_directory is an
explicit path (from the root) to the directory where the include file
is located.

The #define Statement

This statement is most commonly used to assign values to sym-
bols, although any kind of text can be substituted for an identifier.

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-13

Compilation Control
(continued)

Once the assignment has been made, that value is now avallable
to all statements that follow in the module. '

This statement is commonly used to make your source code easier
to read by specifying symbols in place of constants. In particular,
it makes it unnecessary to generate code for assigning constant
values to various symbols, and instead directs the compiler to
actually substitute the constant where the symbol occurs as the
compilation occurs.

A programmer might write the following code:

REAL*8 PI,RADIUS,R
PI = 3.14159
RADIUS = PI * R * R

Instead of that format, the programmer could instead write it as
follows:

#define PI 3.14159
RADIUS = PI * R * R

Following the run of the preprocessor (the -E option of the com-
piler), the preprocessed source code would then have substituted
3.14159 for every occurrence of PI, does not save code space, how-
ever it does help performance.

Using the #define statement is not the only way to establish a
string value for a variable named in your source code. The com-
piler option -D can also be used. Typically this option is used
simply to establish a nominal value of 1. This defines the variable
as a preprocessor constant symbol. Now this symbol can be used
in #ifdef ("is this constant 'defined’?"), or #ifndef ("is this constant
‘undefined’?") where there is no explicit #define statement in the
code, nor an explicit -DITEM=1 on the command line defining it.
ITEM is the name of a string variable to define and what is to the
right of the equals sign is the definition for that variable.

The #ifdef Statement

This directive allows conditional inclusion of source statements in
your program if the preprocessor identifier is defined. No values
are tested with this statement, only a test for a definition of an
argument.

There are three methods that a programmer can use to explicitly
define a symbol such that the preprocessor, using the #ifdef

2-14 Programmer’'s Guide

Using The Stardent 1500/3000 Compilers

statement will recognize a symbol as being defined:

» Explicitly define the symbol by using a #define statement:

#define DEBUG 1

e Specify a null defined value on the command line by using
the -D command line option:

-DDEBUG

e Specify a symbolic value by using the -D option on the com-
mand line:

-DDEBUG=<integer value>

If the #ifdef statement is determined to be true (the item has been
defined by one of the three available methods), the source state-
ments included between the #ifdef and the #endif statement
become part of the preprocessed source code presented to the
compiler.

Here are examples. Note that the #endif statement terminates a
block of statements controlled by the #ifdef statement. As shown
later in this section, #endif terminates statement blocks begun with
#ifndef or #if as well.

C Fortran Example
#ifdef DEBUG
WRITE (6,100)
100 FORMAT (' ERROR IN DATA SPECIFICATION, TRY AGAIN');
#endif DEBUG

/* C example */
#ifdef DEBUG

printf ("reached this statementO);
#endif DEBUG

The #ifdef, #else, and #endif statements can be used not only to
determine whether to use or not use explicit source statements,
but can also enclose other compilation control statements, such as
#include or other conditional conditions, forming nesting levels of
tests.

The statements #ifdef, #ifndef, and #else are often used where mul-
tiple include files may have interdependencies. If a particular
file’s parents have not already been included, this type of state-
ment includes them. If one or more of the file’s parents have been
included, the preprocessor symbol definitions prevent the com-
piler from including them more than once, thereby preventing
multiply defined symbols. The section that describes #ifndef

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-15

Compilation Control
(continued)

includes such an example.

The #ifndef Statement

This directive allows conditional inclusion of source statements in
your program only if the preprocessor identifier is not defined.
This statement is the reverse of the #ifdef statement.

Here are two files, one of which requires that its parent also be
loaded to complete the definitions:

/* sample file name is links.h */

#ifndef LINKS_H
#define LINKS H 1

struct header {
struct header *next;
unsigned long value;
};
#endif LINKS_H
/* end of file links.h */

/* sample file name is uses.links.h */

#ifndef LINKS_H
#include "links.h"
#endif LINKS H

struct sampie {
struct header sampleHead;
int otherstuff[20];

};

/* end of uses.links.h */

If you are not aware that the file dependencies exist, you might
add the following line to your program:

#include "uses.links.h"

Since the preprocessor symbol LINKS_H is undefined, the include
file itself automatically adds to the source code the statement
include "links.h". The definitions get completed automatically.

However, if you actually remember that one file depends on the
definitions in another file, you could specify

2-16 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

#include "links.h"
#include "uses.links.h"

By adding the #ifndef statements in uses.links.h, it prevents this file
from being included more than once, even though the user has
explicitly requested it.

The #endif Statement

This statement terminates the #if, #ifdef, and #ifndef statements. It
is also used to terminate intermediate nesting levels. In the previ-
ous examples above, the #endif statements are each shown written
with the preprocessor symbols that match the corresponding
#ifdef or #ifndef that begins the block of statements. In actuality,
the #endif statement ignores the symbol, but you may place the
symbol on the #endif line anyway, even though the symbol will
not be used. You can use this to keep track of the nesting levels
that you have created.

Here is an example of nested tests, both using #ifdef statements.
Again, the labels on the #endif are not required, but they show the
nesting and are therefore recommended. Additionally, you may
use white space (spaces or tabs) following the initial ‘#” sign to
indent and therefore more clearly show the nesting level.

#ifdef DEBUGL
#include "firstlevel.debug.functions"

ifdef DEBUG2
include '"second.level.debugs"
endif DEBUG2

#endif DEBUGL

In this example, the second level debug functions depend on func-
tions defined in the first-level group. The second level functions
should not be loaded unless the first level functions are available.
Notice that the test for the definition of DEBUG2 does not happen
unless DEBUGI is already defined.

The #if Statement

This statement allows the conditional inclusion of source state-
ments in your program. These source statements are included
only if the integer expression following #if is non-zero. The #if
statement takes the following form:

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-17

Compilation Control
(continued)

#if <constant_expression>

[these statements are included if
the integer arithmetic statement
gives a nonzero result, up to the
next #elif, #else, or #endif]
#endif

The values of all items in the expression must be known at
preprocessing time to allow the expression’s value to be deter-
mined. Thus, the item to be evaluated must be a constant expres-

sion because the preprocessor is not as sophisticated as the com-
piler.

All binary non-assignment C operators can be used in the con-
stant expression, including all of the following: ‘~', +, '*’,//’, ‘&,
N, 0&&, LV, N, N, S, s, ke, <>, ‘==, Table 2-4
contains a few examples, showing only the expressions, and not
the preceding #if, or the block of statements that would be
included. 'When an expression has a binary evaluation that is
nonzero, the block associated with that #if is included. Otherwise
it is skipped and not copied as preprocessed output.

The #elif Statement

This statement can be used with the #if, #ifdef, and #ifndef state-
ments to create nesting levels. Here is an example.

2-18 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

Table 2-4. Examples Of Valid Expressions for #if

Expression Interpretation

A-B difference between A and B
C+D sum of Cand D

E*F product of E and F

G/H quotient of G and H

A&B bitwise AND of A and B
CID bitwise OR of C and D

(E && (A -B)) both E and the result of A -B
must be nonzero for this to
be nonzero.

EI11A-B) either E or the result of A - B
must be nonzero for this to

be nonzero.
'D D must be zero... this is the 'NOT’ operator
A>B A must be greater than B
|A<=B A must be less than or equal to B
C<>D C must not equal D
G~H G exclusive-or H must evaluate
to nonzero
E==F E must equal F

(A >B)?C:D if A > B, then use C as the result
to be tested for nonzero condition,
otherwise use D.

#if (DEBUG_LEVEL >= 3)

/* debug level 3+ statements */
#elif (DEBUG_LEVEL >= 2)

/* debug level 2 statements */
#endif

The #else Statement

This statement can be used with the #if, #ifdef, and #ifndef state-
ments to create nesting levels. The statement #else defines what
should be done if the preceding test(s) are all found to be false. It
must be associated with one of the forms of #if. Its block is ter-
‘minated by an #endif statement. Here are some examples.

#ifdef TESTING

[do this if TESTING is defined]
#else

[do this if TESTING is not defined]

[in this case, is an alternative to #ifndef]
#endif

Compilation Control
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-19

Compilation Control
(continued)

#if (A > B)
[do one thing]
#elif (A < B)
[do something different]

#else
[third alternative; in this case
a substitute for #elif (A == B)]
#endif
The #undef Statement

This statement terminates the #define statement and causes the
argument to become undefined. That is, any references to the
name further down in the file result in an evaluation as a zero-
length string.

The #line Statement

This statement provides you with the ability to label lines of
source text. It takes the following form. Note that the item desig-
nated as filename must be enclosed in double-quote marks.

#line integer-constant "filename"

Generate line control information for the next pass of the C com-
piler. The integer-constant is interpreted as the line number of the
next line and filename is interpreted as the file from where it
comes. If filename is not given, the current filename is
unchanged. No additional tokens are permitted on the directive
line after the optional filename.

In other words, when the C compiler gets this information, if an
error occurs on the line following the #line statement, the com-
piler reports the following:

<filename>: line XXX — Error ZZZ

When an error occurs, the compiler relates the error to a specific
line number in a specific file instead of the line number in the file
it actually came from. Normally, this statement is not used expli-
citly by programmers; instead it is used in programs that write
other programs. For example, yacc generates a #line statement for
each line that it includes from a source file into a program that it
generates (yacc.yy.c). When errors occur, then, the compiler can
report exactly which program and which line number caused the
problem.

2-20 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

Other Forms Of Define and Include

The Fortran language also has its own individual INCLUDE and
DEFINE statements which are covered in detail in the Fortran
Reference Manual.

Compilation Control
(continued)

Compiler directives are used to override the compiler’s optimiza-

tions and influence all phases of compilation. A complete discus-
sion of these directives is located in Chapter 7, Efficient Program-
ming Techniques.

Compiler Directives

If you do not specify the -c¢ or -s option on your command line,
then a successful compilation of your program results in a file
named a.out in the same directory in which your source program
was located.

If you wish to compile several program modules individually or
you wish to compile other programming language modules to be
linked with your program, then use the -c¢ option when you com-
pile. Instead of a file named a.out, you get a file whose name is
the same as your source file name with the .f or .c removed and a
.0 appended in its place. This is the object file that you later pro-
vide to the loader. See Chapter 4, Using Libraries and the Link Editor
for more details.

Linking Multiple Files

You can tell what the compiler has done to your code by invoking
the vector reporting facility. This can be done by the use of three
different compiler options or by using a compiler directive,
VREPORT. While the examples below are given for Fortran, the
same options invoked on the C compiler will produce equivalent
output in C-like notation.

Vector Reporting
Facility

This option is designed for programs that have been tuned on
other vector machines and are being ported to the Stardent
1500/3000. The user expectation in this case is that all the key
loop nests will vectorize and parallelize. The -vsummary option
permits the user to easily confirm that this is the case or to quickly
locate the loops that do not vectorize if this is not the case. Under

-vsummary

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-21

]
Vector Reporting Facility

(continued)

this option, the compiler prints out a one-line summary for each
loop nesting either stating that all statements vectorized or indi-
cating which statements did not. The -vsummary option provides
no diagnostics as to why loops did not vectorize, nor does it indi-
cate exactly how a given loop nest vectorizes. The -vreport and
-full_report options can be used to uncover this information
about loops pinpointed by -vsummary.

-Example

The following is an example of a program fragment and the out-
put produced by compiling with -vsummary.

DOUBLE PRECISION A(100,100), B(100,100), C(100,100)
INTEGER I, J, K
DO I =1, 100
DO J =1, 100
C(I,Jd) = 0.0
DO K =1, 100
C(I,J) = C(I,J) + A(I,K) * B(K,J)
ENDDO
ENDDO
ENDDO

The -vsummary report is as follows

Vectorization summary for file x.f
skt feskok sk skok sk sk e ket ok ke sk ke ke ke ks o ek e ks ok sk

Line 3: All statements vectorized.

The report indicates the line number at which the loop nest is
located and a message indicating one of three cases: all statements
vectorized (as above), the loop was not examined by the Stardent
1500/3000 vectorizer (which happens if the loop contains a branch
that exits the loop or a function call), or some statements in the
loop were not vectorized.

-vreport

Sometimes just knowing that all the statements in a loop vector-
ized is not enough. For instance, if there are multiple loops in a
nest, it may be important that the Stardent 1500/3000 compiler
vectorize the correct loop (it only vectorizes one) since there may
be short loops or loops with bad strides. The -vreport option pro-
vides information on how and why a loop vectorizes, plus infor-
mation on other transformations that the Stardent 1500/3000 com-
piler may have performed. To illustrate, following is the output
from -vreport on the previous example.

2-22 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

L]
Vector Repotrting Facility
(continued)

Example

Vectorized Results from File x.f
Origin - - Line 3

=
-
3
[0}

Stmt Time Program

b2 100
b3 = 100
DO PARALLEL J=1, 100
DO iv=1l, 100, 32
rv = MIN(100, 31 + iv)
vl = xv - iv + 1
vl = v - iv + 1
DO VECTOR I=iv, rv
3 C(I, J) = 0.0DO
END DO
DO K=1, 100
DO VECTOR I=iv, rv
119 cC(I, J) = C(I, J) +
A(I, K) * B(K, J)
END DO
END DO
END DO
END DO

il

o ¥ ¥ ¥ oD OO
o

O X ¥ ¥ ¥ ¥ ¥ P o
Wowwood s WwWw

Q0 W
[l
N

o

At the far left of the report is a listing of the line numbers of each
statement in the original source program. In this particular exam-
ple, the line number information is not of much value, but in some
cases, the Stardent 1500/3000 compiler may change the statement
order to enhance vectorization. In those cases, the line number
information can be of great value. Asterisks in the line number
field indicate statements that were generated by the compiler and
that do not appear in the original source program.

The “Stmt” field indicates a unique statement number assigned
by the compiler. Diagnostics and suggestions printed by the com-
piler are keyed to this field, since the “Line” field is not always
unique (for instance, there are three statements derived from line
4 in the example). Again, asterisks indicate a statement which for
some reason did not receive a statement number—such state-
ments are always of little significance in the program execution.

The “Time” column is a static estimation by the compiler of
roughly the number of clock ticks the statement will take to exe-
cute. Static estimates are never very accurate, so you should not
rely on this field to estimate the execution time of your program.
It can be used to indicate the statements that should receive your
special attention. Thus, the 119 ticks required for each execution
of statement 12 (since it is a vector statement, each execution
operates on 32 elements) is probably not a good estimate of the

Using The Stardent 1500/3000 Compilers Programmer’s Guide 2-23

e]
Vector Reporting Facility

(continued)

actual time the statement will take, but it does indicate that it is
far more important that it vectorize than statement 8, which only
takes 33 ticks. '

The compiler attempts to print out the program listing itself (the
rightmost column) in a form as close as possible to the original
code. DO loops that have been parallelized (line 5) are indicated
as DO PARALLEL; vector operations are indicated by a DO VEC-
TOR loop (line 4) so that the full subscripts can be presented,
rather than one linearized version. Unless the -case_sensitive flag
is used, variables that are in the source program are printed in
upper case and temporaries generated by the compiler are printed
in lower case. Thus, I, J, and C are all variables from the original
program, whereas bl and b2 are temporaries generated by the
compiler.

Some compiler temporaries hold information that may be useful
to you. In general, variables that end with a number hold some
piece of information about the loop at the nesting level indicated
by the number—thus, the variable b2 tells something about the
loop at nesting level 2 (the original DO] loop) and b3 indicates
something about the level 3 loop (originally the DO K loop). In
fact, “b”" variables indicate the number of times the given loop
will iterate: both the DO J and DO K loops iterate 100 times each
time they are executed.

There are also “r”” variables for each loop (although the compiler
has eliminated them in this example), which indicate the upper
bound for each loop. When the Stardent 1500/3000 compiler vec-
torizes a loop, it “strip-mines” it to a vector length of 32. That is,
it breaks the loop into two loops—an inner loop, always of length
32 or less (which will become the actual vector operation), and an
outer loop (called the strip loop) to sweep the inner loop across
the full range of the original loop. By performing this transforma-
tion, the compiler guarantees that all vector operations executed
in the Stardent 1500/3000 hardware are less than 32 in length,
thereby making vector register allocation much easier.

In the vector report, strip loops are always controlled by either the
variable “iv"” or “ip” and the actual vector loop is controlled by
the original user loop variable. Thus, in the example above, the
strip loop is the outmost loop from line 4, which corresponds to
the original DO I loop, and the actual vector operations are

deeper inside.

The variables “rv”” and “rp” are used to hold the upper bound for
each vector operation during one iteration of the strip loop.

2-24 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

(

Finally, the variable “vl” is used to hold the length of vector
operations for each iteration of the strip loop. In the example, the
first three iterations of the strip loop will use a vector length of 32;
the last iteration will do a cleanup operation of length 4. “v1” will
hold these values on each respective iteration of the strip loop.
For various technical reasons, the Stardent 1500/3000 compiler
occassionally must generate multiple assignments to “vl” (as in
the example above). There is no need to worry about these cases,
as they take a very small amount of execution time.

Looking back at the example output, you can tell that the Stardent
1500/3000 Fortran compiler has significantly transformed the
source program. The compiler decided that the DO I loop—the
outmost loop in the original nest—was the best loop to vectorize,
and stripped it to a length of 32. For statement 12, it switched the
actual vector loop with the DO K loop, moving the K loop out-
ward, to get better performance. The compiler then decided that
the DO J loop (the original level-2 loop) was the best loop to run
in parallel. The more computation a parallel loop contains, the
more effective it is. So the compiler interchanged the parallel DO
] with the strip loop from the Iloop. As a result, the parallel loop
becomes the outmost loop in the nest. The resulting code makes
very effective use of the Stardent 1500/3000 hardware.

There is one other important feature of -vreport that is not evident
in this example. The Stardent 1500/3000 vectorizer is designed to
be very machine independent and vectorizes loops based on the
properties of the statements in the loop, independent of the capa-
bilities of the Stardent 1500/3000 processor. Of course, it is very
difficult to execute a vector operation for which there is no vector
hardware. As a result, the Stardent 1500/3000 compiler contains
a later, machine-dependent pass that converts vector operations
for which there is no vector hardware into an equivalent sequence
of scalar operations. Obviously, the scalar operations do not run
as fast as the vector operations, so the compiler also prints a mes-
sage in the vector report indicating the vector operation it con-
verted. The following is an example of such a message:

Following vector ops in line 4 run at scalar speed
DIV (integer)

This message lets the user know that there is no vector divide
instruction for integers on the Stardent 1500/3000, so that it might
be worthwhile coding the loop in a different way. Similarly, some
parallel loops require more memory bandwidth than the Stardent
1500/3000 hardware can deliver. In those cases, the Stardent
1500/3000 compiler will run the loop sequentially, and will warn

o
Vector Reporting Facility

(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-25

]
Vector Reporting Facility

(continued)

you in the vector report with the following message:

Parallel loop at line 3 made scalar due to memory bandwidth.

—full_report

Sometimes the Stardent 1500/3000 Fortran compiler will not vec-
torize loops that you expect to vectorize, or will vectorize dif-
ferent loops than you expect. In those cases, it is valuable to
understand why the Stardent 1500/3000 vectorizer made the
choices it did. The -full_report option provides you with this
information. In cases where loops vectorize, the -full_report
option will tell you why specific loops were chosen as vector and
parallel loops. In cases where no loops vectorize, the -full_report
option will tell you why the compiler was unable to vectorize any
loops, and will make suggestions that may speed up your pro-
gram.

Example

The following example uses the same example fragment. The fol-
lowing is the output produced when -full_report is invoked, but
with the program listing removed. The program listing for
-vreport and -full_report are identical.

Vector Parallel Statements

Stmt Parallel Choices Chosen Reason Vector Choices Chosen Reason

8
12

(2)

1, 2 2 1, 2 1 (2)
1, 2 2 1, 2, 3 1 (2)

Stride one access influenced selection of vector loop.

In the sample program, everything vectorizes and parallelizes, so
the information conveyed by the -full_report option relates
mainly to its choice of loops to vectorize and parallelize. The
-full_report option divides statements up into four categories:
“Vector Parallel” (as above), “Vector”’, “Parallel”’, and “Neither
Vector nor Parallel”. In the report above, the Stardent 1500/3000
compiler is informing the user that it has detected that the outer
two loops (loops 1 and 2) can be run in parallel, and that any of
the loops can be run in vector around either of the statements.
The Stardent 1500/3000 compiler selected the loop that was origi-
nally at nesting level 2 to run in parallel, and the loop that was
originally at nesting level 1 to run in vector. It chose the vector

2-26 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

(»

loop because it has stride-one access to the most memory
locations—while most strides are fine for accessing memotry, the
Stardent 1500/3000 hardware has been designed to do extremely
well on stride one access. Once loop 1 is chosen as the vector
loop, loop 2 is the best candidate for parallel execution.

Other examples of reporting output are used to describe program
transformations. Below is a list of all the diagnostics that may be
printed by the reporting facilities, as well as a rough description
of its meaning.

Length of vector operation influenced
selection of vector loop.

This diagnostic indicates that the vector loop was chosen because
it appeared to have the longest length of any of the vector candi-
dates. ' '

Stride one access influenced
selection of vector loop.

This diagnostic indicates that the vector loop was chosen because
it appeared to have more stride one memory accesses than any of
the vector candidates. ’

Scatter—gathers influenced
selection of vector loop.

This diagnostic indicates that the vector loop was chosen because
it had fewer scatter-gather operations than any of the other vector
candidates.

Length of loop influenced
selection of parallel loop.

This diagnostic indicates that the loop chosen to run in parallel
was selected over other loops because it appeared to have the
longest length.

Outmost possible loop selected
as parallel loop.

This diagnostic indicates that the compiler selected the outmost
possible parallel loop. While this may appear to be the obvious
choice, the Stardent 1500/3000 compiler will often interchange
better parallel candidates to the outermost position and parallel-
ize them.

L
Vector Reporting Facility

(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-27

L]
Vector Reporting Facility

(continued)

Nonlinear subscripts eliminated
some possible vector loops.

In early versions of the Stardent 1500/3000 compiler, nonlinear
subscripts (for example, A(I*I) where I is a loop variable)
prevented vectorization of some loops. This diagnostic should no
longer appear, as the Stardent 1500/3000 compiler will now gen-
erate scatter-gather code for these cases.

A function without a vector
analog prevented vectorization.

In early versions of the Stardent 1500/3000 compiler, a function
call that did not have a vector analog inhibited vectorization of
that statement. That is no longer true; such function calls get
devectorized as part of the machine-dependent phase of vectori-
zation. As aresult, this diagnostic should no longer appear.

A function without a parallel
version inhibited parallelism.

A function that cannot be called simultaneously by more than one
processors will inhibit parallelization of a loop. For technical rea-
sons, such functions also inhibit some vectorization as well. Since
all Stardent 1500/3000 math intrinsics are now written to be called
by multiple processors at the same time, this diagnostic should no
longer appear.

PBEST directive mandated
parallel loop selection.

The parallel loop was chosen because of a PBEST directive in the
code.

VBEST directive mandated
vector loop selection.

The vector loop was chosen because of a VBEST directive in the
code.

Dependencies prevent vectorization and
parallelization of some loops.

Some form of memory overlap involving this statement prevents
vectorization and parallelization of some loops. If the -full_report
option is used, the compiler will print out all dependencies that it
thinks may be involved.

2-28 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

No vector option inhibits vectorization.

The compiler did not vectorize any statements, either because of a
NO_VECTOR directive or because of the -no_vector option on the
command line.

Control branches inhibit vectorization.

The Stardent 1500/3000 compiler cannot at present vectorize
statements under the influence of conditional branches (goto s,
a551gned goto’s, and so on).

Cannot vectorize triangular
loop —- unable to interchange.

The compiler detected an outer loop that could be vectorized, but
was unable to vectorize it because an inner loop has one of its
upper bound, lower bound, or strides that depend on the outer
loop. Interchanging those loops is an extremely complicated
transformation—one that the Stardent 1500/3000 compﬂer cannot
yet do.

Loop was split into two loops to
get vector and parallel execution.

The compiler could only find one loop to vectorize and parallel-
ize, so it parallelized the strip loop. This does not always give
very effective parallelization.

Parallelization inhibited
by optimization level.

The optimization level was too low to turn on parallelization.

Wrap around scalar value
inhibits parallelization.

A scalar that wraps around from one iteration to the next permit-
ted parallelism, but not vectorization. For instance, the Stardent
1500/3000 compiler can vectorize the following;:

T = A(N)

DO I =1, N
B(I) = A(I) + T
T = A(I)

ENDDO

The result of the vectorization is shown here:

L]
Vector Reporting Facility

(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-29

]
Vector Reporting Facility

(continued)

DO iv=1l, N, 32
tv_t(l) =T
rv = MIN(N, 31 + iv)
vl = v - iv + 1
DO VECTOR I=iv, rv
tv_t(2 + I - iv) = A(I)
B(I) = A(I) + tv_t(1 + I - iv)
END DO
T =tv_t(2 + v - iv)
END DO

However, it cannot parallelize this loop because the scalar value
wraps around from iteration to iteration. Doing some minor
rewriting (unrolling one loop iteration) can typically improve the
performance of such loops.

Reduction operation can
only be done in vector.

In early versions of the Stardent 1500/3000 compiler, reduction
operations such as sum reduction, dot product, and so on could
not be done in parallel. Now, only a few, like count reductions
and IDAMAX cannot be done in parallel.

Only assignment statements
can be vectorized.

CALL statements, GOTO statements, and so on have no vector
hardware support.

Dependencies prevent vectorization.

The compiler detected some memory overlap that inhibited vec-
torization of this statement. -full_report will print out the depen-
dencies the compiler found.

Dependencies prevent parallelization.

The compiler detected some memory overlap that inhibited paral-
lelization of this statement. -full_report will print out the depen-
dencies the compiler found.

Loop length too small to
justify parallel execution.

The compiler detected that the loop could be run in parallel, but it
was so small as to not be worth it.

2-30 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

L e s
Vector Reporting Facility

(continued)

The Stardent 1500/3000 vectorizer, unlike vectorizers for many
other machines, considers all loops in a loop nest to be candidates
for vectorization. Because of this wider range of choices, the Star-
dent 1500/3000 vectorizer will usually generate code that does
better (relative to peak speed) than would be obtained by other
vectorizers. However, in a few cases, the wider range of choices
may cause the Stardent 1500/3000 vectorizer to vectorize a less
optimal loop, resulting in poor vector code. By understanding the
evaluation strategy utilized by the vectorizer, you can predict the
loop nests in your code where poor code may be generated, and
can focus in on the appropriate vreports to confirm your predic-
tions.

In a given loop nest, the Stardent 1500/3000 vectorizer will vec-
torize only one loop and will parallelize only one loop. The stra-
tegy it uses to choose those loops in each loop nest is roughly as
follows:

(1) First, it makes one pass over the nesting finding all the
loops that can correctly be performed in vector and in
parallel.

(2) Next, it determines the best vector loop. The compiler
begins to evaluate vectorization possibilities starting from
the innermost loop and moving outward.

a) If this is the first loop that has been found that can be
done in vector, then obviously choose it.

b) If this loop can be done in vector and an inner loop has
been found that can be done in vector, then choose the one
with the fewer scatter-gather operations.

¢) If there is a choice between two loops with equal numbers
of scatter-gather operations, then choose the loop with a
larger number of stride-one memory accesses.

d) If there is a choice between two loops with equal numbers
of scatter-gathers and equal numbers of stride-one accesses,
and they both have known lengths, choose the one with the
longer length. If the length of one is known and the other is
unknown, then choose the known length if it is larger than a
minimum threshold (length 20 at present) known to give full
vector speed. Otherwise choose the unknown length.

Vectorizer Strategy

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-31

]
Vector Reporting Facility

(continued)

3

e) If all factors listed so far are equal, then choose the inner
loop.

Determine the best loop that can be done in parallel.
a) Remove the vector loop from consideration.

b) Starting from the outermost loop, find the first loop that
is eligible.

c) If there are no candidates, choose the vector loop.

Vectorizing C Programs

Fortran is a language that was designed from its very inception to
allow optimization. C, on the other hand, was designed to pro-
vide high-level access to machine features—a design criterion that
often requires no optimization. As a result, even though the Star-
dent 1500/3000 Fortran and C compilers use the same intermedi-
ate language, vectorizer, and code generator, a program written in
Fortran may run many times faster than the identical program
written in C. However, if you pay attention to the following
language differences, you can write C programs that will run just
as fast as the analagous Fortran programs.

V)

The Fortran language guarantees the compiler that if two
parameters are passed by reference, and the subroutine to
which these parameters are passed stores a value into one
of the parameters, the other parameter is not affected. This
restriction is very important for optimizing Fortran pro-
grams, and it is not present in C. Consider the following
Fortran subroutine:

SUBROUTINE VCOPY (A, B, N)
DOUBLE PRECISION A(N), B(N)
DO I =1, N

A(I) = B(I)
ENDDO
END

It is possible for the Fortran compiler to vectorize this con-
struct because the Fortran standard guarantees that A and B
are different arrays. The Stardent 1500/3000 C compiler can-
not vectorize the equivalent C program because the C stan-
dard does not make the same guarantee.

2-32 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

void vcopy (double *a, double *b, int n)

{
while (n—-)
*at++ = *bt+;
}

It is perfectly legitimate to call the C program via the follow-
ing:

main ()
{

double a[100];

vcopy (&a[l]l, &al[0],99);
}

In this case, the vectorized vcopy subroutine not work
correctly. It is illegal in Fortran to call its VCOPY in the
equivalent way:

PROGRAM MAIN

DOUBLE PRECISION A (100)
CALL VCOPY (A(2), A(1l), 99)
END

As you might guess, the lack of this restriction in C prevents
a large number of seemingly simple programs from vectoriz-
ing. The Stardent 1500/3000 C compiler contains an option
which circumvents this problem. If you specify -safe=parms
on the command line for a C compile, you guarantee to the
Stardent 1500/3000 C compiler that all subroutines in the
compiled files will obey the Fortran aliasing convention—
any reference parameter which is into which a value is stored
is not aliased to any other reference parameter or globally
known variable. The compiler will then use that information
in vectorizing those routines, resulting in much more vector
and parallel code. Note that the compiler does not check the
assumption you have stated, so that if you incorrectly invoke
-safe=parms, you may cause the vectorizer to generate
incorrect code. Thus, if you compile the C example above
with the options -safe=parms -vreport, you will see the fol-
lowing:

Vectorized Results From File sample.c

Origin —-- Line 3
Line Stmt Time Program
3 5 4 SSR1 = $$B1;
3 * 5 for ($$iv = 1; $8iv != SR1;
3 * 9 $Srv = MIN($SR1, 31 + $Siv
* * 9 $8vl = $8rv - $Siv + 1;

.|
Vector Reporting Facility
(continued)

$Siv += 32) {
)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-33

S
Vector Reporting Facility

(continued)

Line

R S N

Stmt

* ¥ x x

M

6 DO VECTOR ($8I1 = $Siv; $S8I1 != $Srv; S$SSIl++)
11 36 *(a + ($8I1%8 — 8)) = *(b + ($8I1*8 - 8));

}
}

If you should call this routine with the C main program
above, you will get incorrect results, because you have not
maintained the assumption that you made to the compiler.

In C, it is not only possible but also very useful to obtain
pointers into dynamic storage; in Fortran, that is not possi-
ble (except in extremely limited ways). It is very difficult
for the Stardent 1500/3000 C compiler to know that refer-
ences to such pointers do not overlap in any way. For
instance, the following simple C program will not be vec-
torized by the Stardent 1500/3000 C compiler, even with
-safe=parms specified.

main ()
{
double *a, *b;
int 1i;
a = (double *) malloc (100 * sizeof (double));
b = (double *) malloc (100 * sizeof (double));
for (i=0; 1i<100; i++)
*a++ = *b++;
}

The reason that this program cannot be vectorized is that the
Stardent 1500/3000 vectorizer cannot ensure that the refer-
ences to “a” and “b” do not overlap in some way—since C
does not have the notion of an intrinsic function, the com-
piler cannot even rely on the behavior of malloc to derive this
information. For subroutines such as that above, the com-
piler option -safe=ptrs will enable the vectorizer to automati-
cally vectorize such references. This option guarantees to the
compiler that any location which is stored into through a
pointer is not also referenced through another pointer as an
input location. Thus, when the program above is compiled
-safe=ptrs -vreport, the following report is issued:

Vectorized Results From File sample.c

Origin —- Line 7

Time Program

for ($$iv = 0; $Siv != 99; $8iv += 32) {
$Srv = MIN(99, 31 + $$iv);
$8vl = $Srv - $Siv + 1;
DO VECTOR ($8I1 = $S8iv; $SI1 != $Srv; S$SI1++) {

o Y ©

2-34 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

{

(

(

(D

8 12 30 a[$$I1] = b[$SI1];
}
}

While -safe=ptrs will enable many more files to be vector-
ized, its assumptions are not always met in programs, and
users should be careful in using it. For instance, the follow-
ing variant of the program above will vectorize with
-safe=ptrs, but the resulting code will be incorrect, because
the routine does not meet the assumptions guaranteed by
-safe=ptrs.

main ()
{
double *a, *b;
int i;
a (double *) malloc (100 * sizeof (double));
b a;y
a a + 1;
for (i=0; 1i<100; i++)
*a++ = *b++;

o

mnn

}

The Fortran DO loop operates in a very consistent manner;
the lower bounds, upper bounds, and step are all
evaluated once at the beginning of the loop, and are not
allowed to vary within the loop. C for loops operate in a
different manner; the stride and the upper bound can be
legitimately changed during the execution of the loop.
This behavior does not map well to vector hardware.
Because of this variance, the C front end converts user for
loops into while loops. A pass of the vectorizer will then
convert all while loops that it can into DO loops. Since the
vectorizer only attempts to vectorize DO loops, any uncon-
verted while loop will not be vectorized. A very common
occurrence in C routines that have been written to be
called from Fortran is that the vectorizer cannot determine
that the step or bounds of a for loop does not vary within
the loop. For instance, varying the vcopy routine slightly
so that it can be called for Fortran yields:

void vcopy (double *a, double *b, int *n)

{

int i;

for (i=0; i<*n; i++)
*at+ = *bt+;

Vector Reporting Facility

(continued)

Using The Stardent 1500/3000 Compilers

Programmer’'s Guide 2-35

A ——
Vector Reporting Facility

(continued)

Lin

e

o ¥ 0

Stmt

o ¥ ¥ x ¥

Running this through the vectorizer, even with -safe=parms
will not result in vector code. The vreport that is generated
is as follows:

Vectorized Results From File sample.c

Origin -- Line 5
Line Stmt Time Program
5 * 8 while (i < #*n)
{
5 5 6 $$B1 = $$Bl + 1;
6 10 16 *a = *b;
6 16 21 a =a + 8;
6 18 21 b=D>b+ 8;
5 20 6 i=1i+4+1;
}
5 * 4 S$R1 = SB1;

As you can see, the while loop has not been converted to a
DO loop, so that none of the vector optimizations have been
undertaken. The reason that the loop has not been converted
is that the vectorizer cannot tell that the upper bounds of the
loop (#n) does not vary within the loop (the vectorizer
should be able to derive this information from the
-safe=parms option, but there are some technical subtleties
that prevent this). The compiler option -safe=loops can be
used to guarantee to the compiler that the strides and
bounds of a for loop do not vary within the loop. This does
not always enable the compiler to convert the loop into a DO
loop (for instance, the for loop may contain a branch into it),
but it does capture the majority of commonly arising cases.
When the fragment above is recompiled with the command
line options -safe=parms -safe=loops the following vreport
is the result: ’

Vectorized Results From File sample.c

Origin -- Line 5
Time Program

10 for ($%iv = 0; $8iv != *n — 1; $Siv += 32) {

14 $8rv = MIN(*n - 1, 31 + $5iv);

9 $Svl = $Srv - $$Siv + 1;

6 DO VECTOR ($$I1 = $$iv; $$I1 != $$rv; $SI1++) |
30 a[$8I1] = b[$$I1]; :

}
}

If -safe=loops does not cause a while loop to be converted
into a DO loop, and if there are no jumps into the loop, then

2-36 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

(

Y]

2)

3)

the most likely problem is that the loop increment is not in a
pattern that the vectorizer can handle. Varying the form of
the increment should yield a vectorizable loop.

Since -safe=parms -safe=loops is commonly used in vec-
torizing C programs, the Stardent 1500/3000 compiler has
provided a single option, -vector_c, that is exactly
equivalent to these two options. Note that if you wish to
specify -safe=ptrs rather than -safe=parms, you can add it
on the command line after -vector_c and it will be picked

up.

Fortran contains the notion of intrinsic functions; if you
make a call to sin in Fortran, the language guarantees that
you are calling the sin function built into the systems math
library. C does not contain such a notion; it is legitimate
for you to have your own function called sin which may
return the cosine of the argument, or behave in other ran-
dom ways. Because the compiler cannot count on the
behaviour of mathematical functions in C, it is unable to
vectorize any loop containing a call to such a function,
even though the same loop would trivially vectorize in
Fortran. The Stardent 1500/3000 compiler contains a
number of pragmas to get around this inhibition. For the
functions contained in [ibm, which are the most common
cases, the easiest way to get at vector and parallel versions
of these functions is to include the header file vmath.h in
place of math.h. The header file vmath.h contains the nor-
mal declarations that are present in math.h, plus a number
of pragmas indicating the available vector versions of rou-
tines that are present in [ibm. Note that by using vmath.h,
you must link -Im in order to resolve all references, and
you may get unexpected behaviour if you link in your own
versions of the functions present there.

Use of operators such as “&&” and ““| |”” do not map well
to the Stardent 1500/3000 vector hardware or most other
vector hardwares. Both of these operators require that the
compiler generate code that does not evaluate the right
side of them except in cases where that side may determine
the truth of the expression. Such code vectorizes poorly,
because it requires that the compiler generated a mask vec-
tor while operating under a mask vector. For instance,
when evaluating a vector &&, the compiler must carefully
make out the evaluation of the right side of the expression
in all cases where the left side is false, and must make the
result of that the mask for later vector operations. The

L]
Vector Reporting Facility

(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-37

R
Vector Reporting Facility

(continued)

“)

Stardent 1500/3000 hardware (and most other vector
machines) does not have this capability, requiring that part
of this operation be done in scalar. In many cases, use of
the “&” and “|” operators (which allow evaluation of
both sides regardless of the truth of either side) will result
in better vector code.

Because of the predominance of pointers in C, it is easy to
write loops which translate very poorly to vector
hardware. For instance, one way a C programmer might
obtain a two-dimensional array is the following:

main ()
{
double #**a;
int i;
extern init (double **);

a = (double **) malloc (100 * sizeof (double *));
for (i=0; i<100; i++)

*(a + 1) = malloc (100 * sizeof (double));
init (a);

init (double **a)

int 1i,73;
for (i=0; i<100; i++)
for (j=0; 3<100; j++)
(*(a + 1)) [J] = (double) i;
}

This type of code might be used to create a two dimensional
array with ragged dimensions. The Stardent 1500/3000 com-
piler will vectorize the “j” loop in the routine “init”; how-
ever, the resulting code will run relatively poorly, because it
is difficult for the compiler to detect that the base array refer-
ence ““a[i]’” does not vary within the vector loop. As a result,
scatter-gather code has to be generated. Furthermore, it is
possible to coerce the compiler to generate vector code for
the outer loop. Since each element of the outer loop selects a
different array to be worked on, such code runs extremely
poorly, independent of the compiler used.

As the Stardent 1500/3000 compiler becomes better attuned
to compiling C, it will do a better job of handling cases such
as the vectorizing the inner loop in the above example.
However, vectorizing the outer loop will always give poor
code, regardless of the machine on which it is run. The

2-38 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

(

summary of this is to avoid using constructs such as **p or
other more exotic pointers in order to generate good vector
code.

_
Vector Reporting Facility

(continued)

This section of the chapter discusses things that specifically apply
to using the Stardent 1500/3000 compilation system when coding
in Fortran. The topics discussed are invoking the compiler, com-
piler options (not previously discussed), compilation control state-
ments, the format of the compiler listing, and identifying errors.

The discussions in this section assume that you have read the first
section of this chapter which talks about concepts that apply to
using the compilation system for any language.

The Stardent 1500/3000
Compilation System
and Fortran

The Stardent 1500/3000 Fortran compiler command syntax allows
you to intermix multiple options and file specifications

fc [options] [filespec] [[options] [filespec]]

options : ,
is a set of options, formatted as described below.

filespec

is a UNIX file path by which a source file may be accessed.
The Stardent 1500/3000 Fortran compiler can handle a mix
of different programming languages and object files on the
same command line. For example, file names can end with
the characters .f, .c, .0, .4, or .5. If the compiler does not know
how to create or to access a file you have specified, an error
notice is generated.

EXAMPLE
An example filespec is:

/usr/test/fortran/myfort.f

In the example, the pathname part of the filespec is [ust/test/fortran
and the filename is myfort.f.

Calling The Fortran
Compiler

NOTE

Filenames or parts of pathnames
(between /’s) cannot exceed 14
characters.

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-39

e]
The Stardent 1500/3000

Compillation System and
Fortran
(continued)

Form of the Options

Stardent 1500/3000 compiler options, when uéed, take one of the
forms shown in Table 2-5.

Table 2-5. Form of Compiler Options

Form Option

-option

-option symbol_or_file_path
-option number

-option symbol

-option=number
-option=symbol_or_file_path_list

AUl W N

A symbol_or_file_path_list can be empty; if the list is not empty, the
list should be a comma-separated list of symbols and file path-
names. Generally, options have the first, fifth, or sixth forms; the
second, third, and fourth forms are loader options which are
passed on to the loader.

A symbol_or_file_path_list must not include blanks. The symbols
generally allow the use of letters, numbers, and special characters
that are not otherwise meaningful to the shell or to the option
parser.

Options are applied to the compiler in the order written on the
command line, from left to right; similarly, suboptions (the items
to the right of an equal sign in form 6) are applied to an option in
the order written, from left to right. Options for the loader are
passed to the loader in the order of the command line from left to
right. Options and filenames may be intermingled so that
libraries may be searched in the proper order with reference to
particular object files; -ltag loader options must sometimes pre-
cede filenames. However, other options are collected and applied
all at once to each of the processes invoked; placement of an
option such as -O1 after a filename still causes the -O1 option to
be applied to all files compiled.

2-40 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

P VR T
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

Options direct the compiler in its operations. Table 2-6 lists the
possible options followed by a detailed explanation. This table
does not duplicate the options already mentioned in the first sec-
tion of this chapter that apply to both Fortran and C programs.

Several options have extensive lists of possible suboptions, includ-
ing the suboptions all and none and, generally, a negative option
prefixed with the characters no. Many options appear in both
positive and negative forms (for example, -list and -nolist). These
options are switches; the last appearance in the command line
controls the position of the switch. Each option has a default posi-
tion indicated in italics.

-all_doubles

-all_doubles is useful for converting a single precision code
that has been run on a machine such as the Cray (where sin-
gles are 8 bytes long) to efficient execution on the the Star-
dent 1500/3000. When this switch is enabled, all single pre-
cision variables, regardless of declaration, are promoted to
double-precision and all complex variables are promoted to
double complex. Any calls to single precision intrinsic func-
tions are converted to the analagous double precision func-
tion. All INTEGER#4 variables are allocated eight bytes of
storage, even though arithmetic is still done only on four
bytes. All direct memory copies, even of integer variables,
are done in eight byte quantities.

In order to correctly parse single precision codes, the Star-
dent 1500/3000 compiler does not do the conversion until
after the code has been parsed. This has the effect of correctly
converting a true single precision code; however, it may
have unexpected side effects with respect to constant conver-
sion and such. For instance, the following fragment, if com-
piled -all_doubles

T = AMAX1 (1.0e40, 1.0e50)

will have the effect of setting “T” to +ee. The reason is that
the compiler first parses the code as singles (in order to
correctly parse the AMAX1); both of the constants are larger
than can be represented in a single precision number, so they
get converted to +ee.

Fortran Compiler Options

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-41

|
The Stardent 1500/3000
Compilation System and
Fortran

(continued)

Table 2-6. Fortran Compiler Options

‘Option Negative Form Description

-all_doubles All arithmetic is double precision; 8
byte integers)

-blanks72 Pad source file lines with blanks

-continuations=n Specify acceptable number of
continuation lines

-cpp Invoke the C preprocessor

-cross_reference -nocross_reference Generate a cross-reference listing in
listing file

-debug -nodebug Add debug data to object file

-double_precision | -nodouble_precision | Use double precision for all undedlared
variables

-d_lines -nod_lines Compile debug lines that start with D
in column 1

-fast Enable optimizations which may affect
precision

-implicit -noimplicit Untype all variables

-include=pathname) Specify a directory to search for
included files

-include_listing -noinclude_listing Add included files to the listing file

-id4 -noi4 Interpret all INTEGER and LOGICAL
as though declared *4

-list -nolist Generate a listing file

-messages -nomessages Allow printing of warning messages

-no_directive Do not apply directives during
compilation.

-object -noobject Generate an object file

-onetrip -noonetrip Make sure all DO loops execute at least
once

-save -nosave All variables declared are saved

-standard -nostandard Check for standard Fortran 77 usage

-verbose Use verbose message output

After the parse, the compiler converts this representation to
double-precision; however, the original information regard-
ing the value is lost, so that the resulting double-precision
numbers are also +eo. Use of the -double_precision option in
conjunction with this option can have the effect of avoiding
problems such as this, for codes that use generic functions
rather than specific intrinsics.

2-42 Programmer’s Guide Using The Stardent 1500/3000 Compilers

-blanks72

Pad all lines in the source file on the right to column 72.
Lines longer are untouched. Does not work with -cpp, -P, or
-E. Affects only f files specified in the command line; it does
not affect files that are included through the include option.
This option allows codes that have string constants or Hol-
lerith constants that expect card boundaries to compile as
expected on the Stardent 1500/3000.

-continuations=n

Set the number of continuation lines the compiler accepts for
any statement. The number n may range from 0 to 99; the
default is 19.

“ppP
Invoke the C preprocessor. If this is not used, all source lines
with a pound sign (#) in column 1 are going to be silently
ignored. The options -P and -E always invoke the preproces-
sor even if it is not used.

-cross_reference

Generate a cross-reference, if a listing is generated. The
default is -nocross_reference.

-nocross_reference
Turn off any cross-reference listing.

-debug

Generate information for the Stardent 1500/3000 debugger.
The default is -nodebug. Options -debug and -g are
synonymous.

-nodebug
Do not generate debugging information.

-d_lines

Compile source file lines with a ‘D’ or a ’d’ in column 1. The
default is -nod_lines. The ‘D’ or ’d’ is treated as if a blank
were substituted for it.

-nod_lines

Treat source file lines with a ‘D’ or a ’d’ in column 1 as com-
ments.

]
The Stardent 1500/3000
Compilation System and
Fortran

(continued)

NOTE

Line numbers on messages may
be confused when -cpp is used.
You can match up line numbers
with the source file by using the
-list option. Look at the first
column of numbers in the xx.L
file that is produced.

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-43

- - |
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

-double_precision

Change all undeclared floating point variables and all vari-
ables that are declared in REAL statements to be double pre-
cision. It does not affect variables that are declared in
REAL*4 statements. In a similar fashion, all complex vari-
ables are promoted to double complex. Constants and gen-
eric intrinsics are adjusted appropriately. Since this conver-
sion is performed at the time that routines are parsed, it can
allow for more intuitive conversion of constants than does
the -all_doubles option. However, it will not convert intrin-
sic calls that are not generic, so that codes that use specific
intrinsics will probably not compile. Integer variables are
unaffected by this option. -nodouble_precision is the
default.

Be aware that use of this option affects functions and their
arguments, which may cause them not to work. As an exam-
ple, cputim(3F) does not work with this option unless it is
explicitly declared as REAL*4. Be sure to understand the
implications of using this option with functions.

-nodouble_precision

-fast

Treat floating point variables and constants by the Fortran 77
rules; specifically, compile them as REAL*4 unless otherwise
specified in the source.

This option enables a number of optimizations that. may
slightly affect the precision of the resulting answer. For
instance, when this option is enabled the optimizer will con-
vert expressions such as a/b/c into a/(b*c), which may
change answers slightly in the last bit or two. On the Star-
dent 1500 hardware, this option at link time will also cause a
faster, but less accurate, set of math libraries to be loaded.
Faster math libraries are not loaded on Stardent 3000,
because the Stardent 3000 hardware contains added opera-
tors that allow precise answers to be obtained just as quickly
as the fast versions would obtain less precise answers. In
general, this option will provide extra speedup at some small
sacrifice in precision.

Generate information for the Stardent 1500/3000 debugger.
The default is -nodebug. Options -debug and -g are
synonyms.

2-44 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

-implicit
Make all variables in a program untyped. Using this option,
all variables must be declared or an error occurs. This option
has the same effect as an IMPLICIT NONE statement at the
beginning of each routine in a source file. -noimplicit is the
default.

-noimplicit
Follow the ordinary Fortran 77 typing rules.

-include=pathname

Specify a pathname to a directory to be searched to locate files
specified in Fortran INCLUDE statements.

-include_listing

List included source as well as the original source file when
generating a listing. The default is -noinclude_listing.

-noinclude_listing
Do not copy included source files to the listing.

-4
Interpret INTEGER and LOGICAL declarations as if they
had been written INTEGER*4 and LOGICAL#4.

-noi4
Interpret INTEGER and LOGICAL declarations as if they
had been written INTEGER#*2 and LOGICAL#*2. The default
is -i4.

-list
Generate a listing from the compilation. The listing file is
named after the source file. The default is -nolist.

-nolist
Do not generate a listing file.

-messages
Allow warning messages to be printed. The default is
—-nomessages.

-nomessages

Do not allow warning messages to be printed.

]
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-45

. |
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

-no_directive

Do not apply compiler directives. The default is to apply
directives.

-object
Generate object files from this compilation. This is not quite

the same as the -c option, which precludes loading; -noobject
precludes even the generation of object files.

-noobject

Do not generate object files from this compilation; check
correctness of the source code only. The default is -object.

-onetrip
Generate code to guarantee that all DO loops execute at least

once. This is a compatibility feature for programs originally
written for use with Fortran 66. The default is -noonetrip.

-noonetrip
DO loops may execute zero times.

-save
Save all declared variables. The default is -save.

-nosave

Do not save all variables. This has no effect because Stardent
1500/3000 Fortran automatically saves all variables.

-standard

Check for standard Fortran 77 usage and flag Stardent
1500/3000 extensions with warnings. This option may
appear in forms 1 or 6 with the suboptions shown in Table
2-7.

Table 2-7. Suboptions for -standard option

syntax nosyntax
source_form nosource_form
all none

The default is -nostandard. If this option appears in form 1,
it is the same as -standard=all.

2-46 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

-nostandard

Turn off checking for extensions to Fortran 77. This option
has the same structure as -standard.

-verbose

Generate more messages tracking the progress of the compi-
lation. As a default, these additional messages are
suppressed.

. :
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

In addition to the compilation control statements that are dis-
cussed in the first section of this chapter, Stardent 1500/3000 For-
tran offers one other, the OPTIONS statement. An OPTIONS
statement allows you to specify certain compiler options instead
of specifying them on the command line. The OPTIONS state-
ment is described in detail in chapter 2, Fortran Statements, in the
Fortran Reference Manual.

Compilation Control
Statements

The listing of the compiler output contains the following;:

* A section that contains your source code with line numbers
prefixed to each source line.

¢ A storage map.

* A summary of the compilation, including the settings of the
options and a summary of the number of errors.

Format of the Fortran
Listing

This section contains the program source code as it appears in
your source program. The example below shows a sample source
code listing from a subroutine.

EXAMPLE

(date) (time)
Source Listing File: /tmp/ftest.f

19 * Function subprogram unit follows.
20 INTEGER*4 FUNCTION nfunc (k)

21 nfunc = 0

22 DO 10 i = 1,k !Loop to compute sum.

Source Code Section

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-47

e
The Stardent 1500/3000
Compilation System and
Fortran

(continued)

23 nfunc = nfunc+i

24 10 CONTINUE

25 RETURN !Return value in function name.
26 END

Storage Map

After each program unit, the compiler listing includes a storage
map that lists information about the program unit. The storage
map includes the following:

e Entry points: all entry points into the program are listed. If
an entry point returns a specific data type, that data type is
declared along with the entry point.

. Stbrage blocks: the storage usage of the program is listed.

e Variables: the name and data type of each variable declared
for use in this program unit is listed, as well as its offset
addresses within the program unit.

* Arrays: the name, size, location, and type of each array is
listed.

. Intrinsic functions: all intrinsic functions that are called from
within this program unit are listed.

e Statement functions: all statement functions are listed by
name and by their declared data type.

e Externals: all externals and their declared data types are
listed.

EXAMPLE

(date) (time) :
Symbol Storage Map File: /tmp/ftest.f

ENTRY POINTS
Offset Type Name

0 1I%*4 NFUNC

STORAGE BLOCKS
Size Block

4 local
28 constants

2-48 Programmer’s Guide Using The Stardent 1500/3000 Compilers

VARIABLES
Offset Size Type Block Name
0 4 Ix*4 local I
- 4 I*4 dummy K
ARRAYS
Offset Size Type Block Name

PARAMETERS (Offset is within Storage Block ‘constants’)
Offset Type Name Value

INTRINSIC FUNCTIONS
Name

STATEMENT FUNCTIONS
Type Name

EXTERNALS
Type Unit_Kind Name

S
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

If, as part of the command line, you specify the command option
-list and -cross_reference, then a cross-reference listing is gen-
erated with the listing file. This cross-reference listing shows all
symbols and labels, listing each symbol and the line numbers on
which it appears. It also lists labels, showing the line number at
which each label is defined and the line number at which a refer-
ence to that label occurs.

EXAMPLE

(date) (time)
Symbol Cross Reference File: /tmp/ftest.f

Symbol Line Number (s)
EXONE 1

N 10 12 13
NFUNC 7 12

SUM 7 12 13

(date) (time)
Label Cross Reference File: /tmp/ftest.f

Label Defined References/(s)

33 14 13

Cross Reference

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-49

L |
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

Compilation Summary

The summary section lists the command qualifiers in effect for this
compilation as well as statistics about the source files processed.
Here is a sample compilation summary.

EXAMPLE

(date) (time)
Source Listing File: /tmp/ftest.f

COMMAND QUALIFIERS

—-optimize=0 -assemble -list
—-include=/la/cross/include /tmp/ftest.f

-BACKEND=ffe3, ffel

—~CHECK= (NOBOUNDS, OVERFLOW, NOUNDERFLOW)

—STANDARD= (NOSYNTAX, NOSOURCE_FORM)
—-INCLUDE=/la/cross/include

—~CONTINUATIONS=19 -FE FISHERBURKE —-FE_VERBOSE
-I4 -LIST . -OPTIMIZE=0 -PADDING=3 -S -WARNINGS

FRONT END STATISTICS

Input File: /tmp/ftest.f
Rase Filename: ftest.f
Source Processed: 26 lines

Errors and Compiler
Diagnostics

The Stardent 1500/3000 Fortran compiler identifies syntax errors
and language violations. It outputs various error messages to
your terminal, describing the source of the error, usually with
enough information about the error to allow you to correct it.

If you have requested a listing file to be produced (-list option),
any errors in your source file are printed immediately following
the statement containing the error.

If you need help in interpreting the error message, you'll find the

error messages and their meanings listed in Appendix A in the For-
tran Reference Manual.

2-50 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

|
The Stardent 1500/3000

Compilation System and
Fortran
(continued)

This section of the chapter discusses things that specifically apply
to using the Stardent 1500/3000 compilation system when coding
in C. The topics discussed are elements of the compiler and its
invocation, compilation control statements, extensions to the
language such as a new storage class keyword, and identifying
errors.

The discussions in this section assume that you have read the first
section of this chapter which talks about concepts that apply to
using the compilation system for any language.

A sound knowledge of the C programming language is also
assumed. C: A Reference Manual by Samuel P. Harbison and Guy
L. Steele Jr., Second Edition, Prentice-Hall, 1987 is an excellent
modern reference on the details of C, and is mentioned. in this sec-
tion. More information on the proposed ANSI standard for C
may be found in the draft standard dated October 10, 1986. Some
C language features have been derived from ideas developed in
the C++ language; more information about C++ may be found in
The C++ Programming Language by Bjarne Stroustrup.

The Stardent 1500/3000
Compilation System and
C

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-51

Elements of the
Stardent 1500/3000 C
Compiler

This section describes the elements of the Stardent 1500/3000 C
compiler, paying particular attention to the front end. The C
language front end is based on the front end distributed with Sys-
tem V Release 3 of AT&T UNIX. This includes the following pro-
grams and utilities:

cc the C language compiler

cpp the C language preprocessor
Id the link editor

cb a C program beautifier

regcmp aprogram to compile C
program regular
expressions

See the Commands Reference Manual for full details of these utili-
ties.

Stardent 1500/3000 C supports ANSI function call semantics. For
a function declared with a function prototype, the Stardent
1500/3000 C compiler enforces strict type matching rules between
the actual arguments in a call of the function and the formal argu-
ments in the definition of the function.

Calling the Stardent
1500/3000 C Compiler

NOTE
Options and file names may be
intermingled.

You invoke the Stardent 1500/3000 C compiler with the cc com-
mand.

cc [options] [filespec] [options] [filespec...]

options
is a set of options, formatted as described below.

filespec
is a UNIX file path by which your source file may be
accessed.

The compiler understands filenames ending with the suffix .c to
be C source files.

For example, cc program.c is the most basic form of the command
and performs the following actions on program.c:

2-52 -Programmer’s Guide

Using The Stardent 1500/3000 Compilers

* invokes the C preprocessor, cpp
* invokes the C compiler itself
e invokes the link editor, /4

When the whole compilation is finished, the resulting executable
file, a.out, is left in the current directory. You can rename a.out to
any legal filename.

]
Elements of the Stardent

1500/3000 C Compiler
(continued)

Options direct the compiler in its operations. Table 2-8 lists the
options followed by an explanation. This table does not duplicate
the options already mentioned in the first section of this chapter
that apply to both Fortran and C programs.

Table 2-8. C Compiler Options

Option Description
-W Fully suppress compiler warnings
-n Suppress the standard C startup routine

-safe=parms | Parameters are not affected

-safe=ptrs Pointers are not affected

-safe=loops Upper bounds do not vary

-V Use verbose message output
-vector_c Equivalent to -safe=loops -safe=parms
-W Suppress compiler warnings

-W
Fully suppresses all warning messages from the compiler.
The difference between this option and -w is that -w will
print out one warning message indicating the number of
other warning messages which have been suppressed.

-n

Suppress the standard C startup routine.

-safe=parms

The program being compiled obeys the Fortran standard
with regard to parameter passing. Storing a value through
any reference parameter does not affect any value read from
either a global variable or another reference parameter.

C Compiler Options

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-53

]
Elements of the Stardent

1500/3000 C Compiler
(continued)

-safe=ptrs

Extend -safe=parms to all pointers; a store through any
pointer does not affect any value read through any other
pointer or through a global variable.

-safe=loops

When you use this option, it guarantees to the compiler that
all for loops within the program have upper bounds that do
not vary within the loop. This is necessary for loops to vec-
torize when they have array references or (*) values as upper

bounds.
-V
Generate more messages tracking the progress of the compi-
lation. As a default, these messages are suppressed.
-vector_c

Equivalent to specifying -safe=parms -safe=loops on the
command line.

Extensions to the
Compiler

This section discusses new features that have been incorporated
into the compiler beyond those that are typically found in Ker-
nighan and Ritchie based compilers. These features include new
compilation control statements, a new storage class, argument
(function) prototypes, reference (address of a variable) arguments
in declarations and calls, and two new compiler directives.

Compilation Control
Statements

In addition to the compilation control statements that were
identified in the first section of this chapter, Stardent 1500/3000 C
supports two new control lines. The format of these statements is

#ident "comment”
#pragma identifier

The ident line puts the comment string into the .ident section of
the .o file. It is usually used for version control. The loader Id and

~ other tools interpret and list these comments. By default, all ident

sections in the .o files are concatenated in the g.out file.

An illustration of the #ident statement can be found within the
Stardent 1500/3000 system software itself. The source files to the
Stardent 1500/3000 system are kept under SCCS control; at the

2-54 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

top of every file is a control line similar to

#ident "SWS" 3G

When such a file is checked out of SCCS, SCCS replaces the W%
and %G% with the file version and the date the file was last
modified, so that during a build, all Stardent 1500/3000 software
is tagged with version control inside #ident statements. The Unix
command what will print this information to the screen, so that
you can tell exactly what versions of which files went into creating
the software. For instance, type this command

what /usr/bin/what

The output shows you the versions of the system headers and
source files used to create the what command itself.

The #pragma directive is used as a general mechanism for provid-
ing optimization information to the compiler. It may also be used
to provide runtime information which can be used to generate
more efficient code. Refer to Chapter 2, Efficient Programming Tech-
nigues for a discussion of how to use this control line.

L]
Elements of the Stardent

1500/3000 C Compiler
(continued)

Stardent 1500/3000 C includes the ability to declare the types of
arguments for functions. When prototypes are used, the compiler
will check that functions have been called with the right number
and types of arguments, thereby preventing errors resulting from
mismatched arguments. Prototypes also allow users to pass floats
as float values, rather than having them coerced to doubles as
happens in most C compilers.

Using function prototypes requires changing both the declaration
and the definition of a function. To make a declaration into a pro-
totype declaration, the types of all the parameters are listed in
order. For instance, consider the following function declaration:

extern int astwalk () ;

This function could have a prototype declaration in a header file
as follows:

extern int astwalk (int *, int, int, int (*) (int *));

This declaration states that astwalk takes four parameters: a
pointer to an integer, an integer, an integer, and a pointer to a
function which returns an integer and which takes a pointer to an

Argument (Function)
Prototypes

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-55

.. .|
Elements of the Stardent

1500/3000 C Compiler
(continued)

int

integer as an argument. In general, inserting the parameter types
is very straightforward and simple. The trickiest case, which is
illustrated above, is passing a function to another function; this
case arises rarely, however.

The function definition point is equally as simple to change.
Whereas the definition point for astwalk in a non-prototyped C
might look like the following:

astwalk (node, type of walk, walk destructive, walk function)
int *node;

int type of_ walk, walk_destructive;

int walk_function();

in prototyped form it would appear as the following:

int astwalk (int *node, int type_of_walk, int walk_destructive,

int (*walk_function) (int *))

To create a prototype, the argument types and names are moved
up into the definition statement itself. Note that the declaration
statement will also optionally take the parameter names, so that
the same format can be used for both definitions and declarations.

Because parameters are passed differently in prototyped functions
than in non-prototyped functions, you should be very careful not
to mix the two. To give a specific instance, suppose that the func-
tion foo is declared as follows:

float foo(float x)

It is called as shown below in function bar. The file that defines
function bar has no prototype declaration available.

void bar ()

{
float x, foo();
x =1.0;

x = foo(x);

}

Since there is no prototype declaration in bar, the compiler
assumes that the user is using old-style argument passing, and so
converts x to a double before calling foo. However, since foo is
compiled with a prototype definition, the compiler when compil-
ing foo expects to receive a float. This will cause unexpected
results.

For a complete discussion of this topic refer to the reference
manual by Harbison and Steele and the ANSI draft standard.

2-56 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

|
Elements of the Stardent

1500/3000 C Compiler
(continued)

Stardent 1500/3000 C includes an additional storage class key-
word, threadlocal, that permits you to allocate storage that is local
to each thread cooperating on the task to be performed. The
threadlocal keyword allows you to declare an uninitialized vari-
able that is passed to each thread. Refer to thread in the Com-
mands Reference Manual for an example of a multithreaded task.
You declare such a variable as shown in the following example:

threadlocal int i;

The loader collects all the threadlocal storage together and puts it
in a contiguous block of virtual memory. The operating system
then marks these pages so that upon a thread call, each thread gets
a separate copy of these locations.

Note that the primary place in which threadlocal should be used
is at storage definition points. For instance, to create an externally
known threadlocal variable, the following definition might be
used:

threadlocal int proc no;
main ()

{}

The position of the declaration establishes the variable proc_no as
being externally known. Note that this does not establish a
definition point for proc_no, so that the same declaration can be
used in several files and the loader will combine them together
without indicating any user error. Alternatively, proc_no can be
declared by using the following declarative statement in other
files:

extern int proc no;

The loader, when combining attributes for variables, will make an
external variable threadlocal if the threadlocal attribute appears
on any declaration. This can be particularly important, because
the Stardent 1500/3000 compiler will not let you apply both
threadlocal and extern to the same declaration.

Similarly, the attribute static can be applied to threadlocal vari-
ables, when they are to be known only within the current file. For
instance, if proc_no were only to be used within one file, then the
following declaration would be more proper:

Storage Class
threadlocal

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-57

.|
Elements of the Stardent

1500/3000 C Compiler
(continued)

static threadlocal int proc_no;
main ()

{}

When a threadlocal variable is declared within a procedure, it
automatically assumes the attribute static.

Threadlocal variables cannot be initialized by initialization state-
ments. Also, even though the Stardent 1500/3000 compiler will
accept threadlocal on a procedure definition, it should not be used
by Stardent 1500/3000 programmers. Threadlocal procedures are
used internally by Stardent in several very special cases; in those
cases, the programmer is guaranteeing that the procedure obeys
some very stringent restrictions. The pproc directive is a much
more flexible and easy to use method of creating parallel pro-
cedures.

Comment Delimiters

The Stardent 1500/3000 C compiler supports ““//”" as a form of
comment delimiter. Outside of strings and comments, everything
on a line to the right of a “///”” is interpreted by the compiler as a
comment. Here is an example:

int astwalk (node, type of walk)

int
int

{}

*node; // node is the address of the location to be walked
type_of walk // indicates the type of walk to perform

Vector Math Functions

The Stardent 1500/3000 C compiler will automatically (at higher
optimization levels) replace sequential calls to the math functions
in libm with calls to analagous vector functions, where appropri-
ate. In order to allow the compiler to perform this transformation,
you must guarantee to the compiler at compile time that you
really intend to link in ibm at link time. The easiest way to do this
is to include the header file vmath.h (from /usr/include). vmath.h
is an extension of math.h that not only includes all the declarations
present in math.h, but also additional pragmas indicating the
appropriate vector analogs for each of the math functions. Simply
changing all references to math.h to vmath.h should allow you to
take advantage of this feature.

2-58 Programmer’s Guide

Using The Stardent 150073000 Compilers

b]
Elements of the Stardent

1500/3000 C Compiler
(continued)

The Stardent C compiler supports one compiler directive that is
not directly related to optimization, and which can be very useful
on Stardent 1500 hardware. This pragma, NO_FLOAT, informs
the compiler that a program does not use the floating point unit of
the Stardent 1500. On Stardent 1500 hardware, floating point
arguments to functions are passed in the vector register file.
Because the vector register file is very large, the time to context
switch programs that touch it is longer than the time to context
switch programs that do not touch it. As a result, the Stardent
1500/3000 operating system and compilers cooperate to carefully
keep track of programs that do not use the floating point unit, and
hence can use the shorter context switch.

The one place in which this cooperation cannot work is with
vararg programs. With a vararg program, particularly one that just
immediately calls another vararg program with the same argu-
ments, the compiler must assume that floating point arguments
are present, and will make use of the floating point unit in setting
up these arguments for the next call. In many cases (such as the
Unix kernel code and system commands), no floating point values
are ever passed, and this use of the floating point unit serves only
to lengthen context switch time. The NO_FLOAT pragma exists
for users to inform the compiler that a vararg procedure does not
have any floating point arguments, so that the compiler may
avoid touch the floating point unit in argument transmission.

EXAMPLE

The following is an example of when you might want to specify
NO_FLOAT.

#include varargs
#pragma NO_FLOAT

int printf (char *format, va_del, va_list)
{
va_list ap;
va_start (ap) ;
count = duprint (format, ap, stdout);
va_end (ap);
return (error) ;

Compiler Directives

Using The Stardent 1500/3000 Compilers

Programmer’s Guide 2-59

P N i
Elements of the Stardent

1500/3000 C Compiler
(continued)

Address (&) Arguments

Stardent 1500/3000 C will allow the address of constants to be
taken as arguments, and supports the use of & arguments in
declarations and in function calls. When an & argument is used
in a function declaration, that argument is then passed by refer-
ence. The compiler will correctly generate code to dereference the
parameter in the appropriate locations, without any intervention
on the programmer’s part. The semantics for using this are the
same as in the C++ language.

EXAMPLE

main ()
{

f(&5);
}

The Stardent 1500/3000 compiler will accept this syntax, and will
create a local variable to hold the constant. The address of this
local variable will be passed down to the function.

EXAMPLE

The following is an example of coding an & argument in a func-
tion declaration in which x is passed by reference.

void f (int &x)
{
X++;

}

This function will behave exactly like the more conventionally
coded function

void £ (int *x)
{

(kx) ++;
}

2-60 Programmer’s Guide

Using The Stardent 1500/3000 Compilers

USING LIBRARIES
AND THE
LINK EDITOR

This chapter is divided into two sections:

. The first section discusses libraries, and how to create and
manipulate them using the ar command. It also provides an
informal discussion of the libraries provided on Stardent
1500/3000.

* The second section provides a general introduction to the
link editor, Id, describes some of the commonly used options
for the command, and provides information on using archive
libraries with the link editor.

CHAPTER THREE

A library is a collection of related object files or declarations that
simplify programming effort. It is common practice in UNIX sys-
tem computers to keep modules of compiled code (object files) in
archives; by convention, they are designated by a .a suffix. The
most common use of an archive file, although not the only one, is
to hold object modules that make up a library. The library can be
named on the link editor command line (or with a link editor
option on the cc command line). Specifying the link editor option
(-Ulibraryname) causes the link editor to search the symbol table of
the archive file when attempting to resolve references.

An archive file can also be used to pack together files other than
those that end in .o (object files). This can be useful when you
want to keep blocks of information stored together. Be aware that
non-object files in an archive can not be accessed by the loader.

Archive Libraries

The ar command is used to create an archive file, to manipulate its
contents and to maintain its symbol table. The structure of the ar
command is a little different from the normal UNIX system
arrangement of command line options.

Creating an Archive File

Using Libraries and the Link Editor

Programmer’s Guide 3-1

Archive Libraries
(continued)

When giving the ar command, you also must include an argument
that consists of a single letter that defines the type of action that is
to be performed. The argument is one of the following single
characters: drgtpmx. The actions include adding, deleting, replac-
ing, appending, or extracting files from the archive, moving them
within the archive, and listing the table of contents of the archive.

This command argument character may be combined with one or

more additional characters from that modify the way the
requested operation is performed. These optional characters are
vcls. The secondary options include a verbosity level for the out-
put from the command, redirection of the temporary working file
area and the ability to force a regeneration of the symbol table if
the archive is composed entirely of .o files.

The syntax of the command is as follows:

ar key [posname] afile [namel...

key is one or more characters that define the action to be
taken

posname is the name of a member of the archive; and may be
used with some optional key characters to make sure
that the files in your archive are in a particular order.

afile is the name of your archive file. By convention, the
suffix .4 is used to indicate the named file is an archive
file. (libc.a, for example, is the archive file that contains
many of the object files of the standard C subroutines.)

name is the file that is subjected to the action specified in the
key. One or more names may be furnished.

Refer to the Commands Reference Manual for specific details on the
key field and using the ar command.

EXAMPLE

The following shows a typical scenario for creating and updating
archive libraries. You can create an archive file that contains the
modules used in a sample program, restate. The command to do
this might be as follows:

3-2 Programmer’s Guide

Using Libraries and the Link Editor

ar —q rste.a restate.o oppty.o pft.o rfe.o

If these are the only .o files in the current directory, you can use
shell special purpose characters as follows:

ar —gq rste.a *.o

The -4 key creates the archive library. The next step is to reorder
the files for access, which creates a table of contents for the
archive. This is done as follows, still using the above example:

ar -ts rste.a

When you want to replace existing source files with updated files,
the following can be used.

ar —-rs rste.a oppty.o

Recent Berkeley BSD systems contain a program called ranlib,,
which is used to speed access to programs stored in a library. The
-ts option is equivalent to ranlib.

Archive Libraries
(continued)

During the link edit phase of the compilation and link edit pro-
cess, copies of some of the object modules in an archive file are
loaded with your executable code. By default the cc command
that invokes the C compilation system causes the link editor to
search [ibc.a. If you need to point the link editor to other libraries
that are not searched by default, you do it by naming them expli-
citly on the command line with the -1 option. The format of the -1
option is -ltag where tag is the library name, and can be up to nine
characters. For example, if your program includes functions from
the curses screen control package. To use the curses package,
specify the following option:

-lcurses

Using this option to the link editor causes it to search for
/lib/libcurses.a or [usr/lib/libcurses.a and use the first one it finds to
resolve references in your program.

When you are programming in Fortran it is not necessary to use
the options -Im and -l¢, which cause the C math and standard
libraries to be loaded. The Fortran compiler already loads these
two libraries. In fact, using these options with Fortran can have a
negative effect if it causes things to load out of order or causes
name conflicts.

Loading Libraries and
Their Order

Using Libraries and the Link Editor

Programmer’s Guide 3-3

Archive Libraries
(continued)

In cases where you want to direct the order in which archive
libraries are searched, you may use the -Ldir option. Assuming
the -L option appears on the command line ahead of the -1 option,
it directs the link editor to search the named directory for libtag.a
before looking in /lib and /usr/lib. This is particularly useful if you
are testing out a new version of a function that already exists in an
archive in a standard directory. Its success is due to the fact that
once having resolved a reference the link editor stops looking.
That’s why the -L option, if used, should appear on the command
line ahead of any -1 specification.

More information on loading libraries them can be found in later
in this chapter and the Commands Reference Manual.

Available Libraries

The following table lists the libraries that are available. The link
editor recognizes certain abbreviations as an indicator to use
specific libraries, and these abbreviations are provided in the
table, along with and a short description of the library’s contents.

Table 3-1. Available Libraries for C

Library Abbreviation Contents

libc.a -lc Standard I/0 libraries

liberypt.a -lerypt Encryption subroutines

libcurses.a | -lcurses Teletype output

libdbm.a -ldbm UNIX database management functions
libgen.a -lgen General utilities for building commands
libl.a -11 Library for lex

libm.a -Im Math routines

libmalloc.a | -lmalloc Improved memory allocator functions

libns.a -Ins Name server library

libnsl.a -Insl Network service library

librpc.a -Irpc Remote procedure calls for the client side of NFS
librpesve.a | -lrpesve Remote procedures for the server side of NFS
liby.a -ly Library for yacc

libyp.a -lyp Yellow pages for network services

libPW.a -IPW Programmer’s Workbench functions

3-4 Programmer’s Guide

Using Libraries and the Link Editor

All libraries can be abbreviated when they are placed on the com-
mand line. This is done by removing the Iib prefix and replacing
it with -1. The .2 at the end of the filename is also removed. Refer
to the previous table of libraries for examples.

When creating your own library, you may abbreviate the name.
However, if you have not placed your library in one of the stan-
dard areas that the loader searches, you'll have to remember to
include the -L option, giving the directory to search, and follow
that by the normal abbreviation of the library name, as defined
above.

Creating a Library
Abbreviation

The basic function of the link editor is to combine object files into
an executable program. The link editor combines several object
files into one, performs relocation, resolves external symbols,
incorporates startup routines, and supports symbol table informa-
tion used by dbg. You may, of course, start with a single object file
rather than several. The resulting executable module is left in a
file named a.out. The typical user, however, seldom invokes Id
directly. A more common practice is to use a language compila-
tion control command (such as cc) that invokes Id.

The Id command invokes the link editor directly. The Id com-
mand has 11 options, but this section only describes four of the
most commonly used options. These options should be fed to the
link editor by specifying them on the cc or fc command line if you
are both compiling and linking with the single command, which
is the usual case.

The format of the Id command is as follows:

1d [options] filespec

options is a set of options; refer to the Commands Reference
Manual for a complete listing.

filespec is an object file or an archive library. Any file named
on the Id command line that is not an object file (typi-
cally, a name ending in .0) is assumed to be an archive

library.

Following are descriptions of two commonly used options for the
Id command.

The Id command

Using Libraries and the Link Editor

Programmer’s Guide 3-5

‘The Id command
(continued)

NOTE

When loading using the fc
command, it is not necessary to
use the -Im or the -lc options.
These two libraries are loaded by
fe. Alibrary is searched when its
name is encountered, so the
placement of the option on the
command line is important.

-ltag directs the link editor to search a library libtag.a,
where tag is up to nine characters. For C programs,
libc.a is automatically searched if the cc command is
used. The -ltag option is used to bring in libraries not
normally in the search path such as libm.g, the math
library. The -ltag option can occur more than once on
a command line, with different values for the fag.

The -ltag option is related to the -L option.

-Ldir changes the libfag.a search sequence to search in the
specified directory before looking in the default library
directories, usually /lib or [usr/lib. This is useful if you
have different versions of a library and you want to
point the link editor to the correct one. It works on the
assumption that once a library has been found no
further searching for that library is necessary. Because
-L diverts the search for the libraries specified by -ltag
options, it must precede such options on the command
line.

Refer to the Commands Reference Manual for a thorough explana-
tion and discussion of all of the available options.

Id and Archive Libraries

Each member of an archive library (for example libc.a) is a com-
plete object file. Archive libraries are created with the ar com-
mand from object files generated by cc or fc. An archive library is
always processed using selective inclusion. That is, only those
members that resolve existing undefined-symbol references are
taken from the library for link editing.

The -1 option is a shorthand notation for specifying an input file
coming from a predefined set of directories and having a
predefined name. By convention, such files are archive libraries.
However, they need not be so. Furthermore, archive libraries can
be specified without using the -1 option by simply giving the (full
or relative) UNIX system file path.

The ordering of archive libraries is important because for a
member to be extracted from the library it must satisfy a reference
that is known to be unresolved at the time the library is searched.
Archive libraries can be specified more than once. They are
searched every time they are encountered. Archive files have a
symbol table at the beginning of the archive. Id cycles through
this symbol table until it has determined that it cannot resolve any

3-6 Programmer’s Guide

Using Libraries and the Link Editor

more references from that library.
Consider the following example:

(1) The input files filel.o and file2.0 each contain a reference to
the external function FCN.

(2) Input filel.o contains a reference to symbol ABC.

(3) Input file2.0 contains a reference to symbol XYZ.

(4) Library liba.a, member 0, contains a definition of XYZ.

(5) Library libc.a, member 0, contains a definition of ABC.

(6) Both libraries have a member 1 that defines FCN.
If the Id command were entered as
1d filel.o -la file2.o0 -1lc
then the FCN reference is satisfied by liba.a, member 1, ABC is
obtained from libec.a, member 0, and XYZ remains undefined
(because the library liba.a is searched before file2.0 is specified).
If the 1d command were entered as
1ld filel.o file2.o0 -la -lc
then the FCN reference is satisfied by liba.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ is obtained from liba.a,
member 0.
If the 1d command were entered as

1d filel.o file2.o0 -1lc -la

then the FCN reference is satisfied by libc.a, member 1, ABC is
obtained from libc.a, member 0, and XYZ is obtained from liba.a,
member 0.

The Id command
(continued)

Using Libraries and the Link Editor

Programmer’s Guide 3-7

METHODS FOR
DEBUGGING
CODE

The Stardent 1500/3000 compilers supply debugging information
whether or not the debugger option -g is specified during compi-
lation of your program. It is necessary to understand what debug-
ging information is available and at what phase of compilation
this information is created, in order to select the appropriate
debugging tool for your program. This chapter discusses Stardent
1500/3000 versus standard UNIX compilation systems, why and
when you should use a debugger and related debugging support
tools that are available.

CHAPTER FOUR

The Stardent 1500/3000 compilation system differs from the
AT&T System V and BSD 4.3 UNIX compilation systems, and
these differences can affect your choice of debugging tools and the
specification or lack of a debug option in your program. Each
compilation system begins with compiling a source program and
producing a .o file. Next, the link editor is invoked and it pro-
duces an a.out file. A symbol table has also been created by the
compilation. Although both compilation systems produce the
same files, the contents of these files are quite different.

The Stardent 1500/3000 compilation system, without the -g
option specified, includes all of the information that is only avail-
able to the standard UNIX compilation systems when the -g option
is specified. Using the -g option with the Stardent 1500/3000
compilation system has different effects than using it with the
standard UNIX system. The -g option (on the Stardent 1500/3000)
removes all optimization. It does not allow register allocation of
variables. In addition, the a.out file becomes larger. That is, code
segments and labels are added so that the debugger can allow
debugging at the source level.

The default Stardent -1500/3000 compilation system (that is,
without the -g option,) should normally provide you with ade-
quate debugging information. The appropriate time to include

Stardent 1500/3000
Versus Standard UNIX
Compilation Systems

Methods For Debugging Code

Programmer’s Guide 4-1

the -g option is when you have already isolated the problem in

the program and need to single step through the execution of the
program. :

When to use a
Debugger

A debugger is a program revealer, used to figure out what hap-
pened to the code. When any behavior in your program is dif-
ferent than what you expect, that is the time you should use a
debugger. There are generally four circumstances in which you
would want to use a debugger.

1) The program does not work and you need to determine
what the error in logic is.

2) The program works but the answers are not what you
expected. You must isolate the differences between
your expectations and the results.

3) The program works and the answers are correct, but
the program runs extremely slowly. This situation
is usually examined by using a profiler.

4) The program works as designed but you want a post
mortem on what happened during execution.

Debugging Tools

In addition to the Stardent 1500/3000 debugger, dbg, there are a
number of other tools available to aid you in debugging and
analyzing programs. This section provides you with a brief
description and discussion of some of these debugging tools, as
well as an introduction to the Stardent 1500/3000 debugger.

dbg

dbg is the Stardent 1500/3000 debugger and can best be described
as a program revealer. It is a tool that allows you to find out what
has happened to your code. The Stardent 1500/3000 debugger
has some abilities and features which are different from the stan-
dard UNIX symbolic debugger. The most significant of these abili-
ties can be summarized as follows: '

» The debugger allows you to ask what either processor is
doing.

4-2 Programmer’s Guide

Methods For Debugging Code

e The debugger can tell you when a process goes parallel and
what the threads (that is, the individual parallel processes) are
doing.

e The debugger can be used to grab any process, and then look
at it, stop it, kill it, or take control of it.

dbg can be used for the same tasks as any other debugger, such as
controlling the execution of processes, setting breakpoints, exa-
mining the contents of memory and registers, and gaining source
and object file information. For more information on the specifics
of using dbg, refer to chapter 5, Running dbg—The Stardent
1500/3000 Debugger.

Debugging Tools
(continued)

The nm command is a tool that can be used to display the symbol
table from your g.out file. Some of the types of information that
are displayed for each symbol in the table include storage class,
type, size in bytes, source line number at which the symbol is
defined, and the object file section containing the symbol.

Output for this command may be controlled by a large number of
options, which can help you organize and sort external and static
symbols. For more information on this command, refer to the
. Commands Reference Manual.

nm

The octal dump command, od, dumps and displays a file in one or
more formats. These formats allow interpretation of certain data
types in forms that include hexadecimal, octal, and signed and
unsigned decimal.

Dumping a file may be a useful tool in debugging certain portions
of your code. Refer to the Commands Reference Manual for more
information on using od.

od

The prof command produces a report on the amount of execution
time spent in various portions of your program and the number
of times each function is called. This can be a useful tool if your
program is producing the desired results but is running very
slowly.

prof

Methods For Debugging Code

Programmer’s Guide 4-3

Debugging Tools
(continued)

To use this command, your Fortran or C program may be linked
with the -p option, and then when the program is run a file called
mon.out is produced. mon.out and a.out then become input to the
prof command.

A program may be profiled by using the mkprof command. This
requires no compilation of your program. This produces the same
kind of results as running the prof command.

For detailed information on using the prof command, refer to the
Commands Reference Manual and chapter 9, Tuning Code in this
manual.

size

- The size command is another tool which can be used to gain more

information about your program and its subsequent execution.
This command produces information on the number of bytes
occupied by the three sections (text, data, and bss) of a common
object file when the program is brought into main memory to be
run. Refer to the Commands Reference Manual for more informa-
tion.

4-4 Programmer’s Guide

Methods For Debugging Code

A~

RUNNING THE
DEBUGGER

This chapter describes dbg, the Stardent 1500/3000 symbolic
debugger. In addition to standard debugging facilities, such as
setting breakpoints, examining variables, single stepping code
and so on, it also contains Stardent 1500/3000-specific features
such as tracing code through parallel process execution and the
ability to gain control of a running process for debugging pur-
poses. In this chapter, some reformatting of the actual output that
appears onscreen has been performed to fit the text into the
displays. However the technical material presented herein is
accurate. ~

CHAPTER FIVE

Here is a short example that illustrates a few of the most often
used facilities of a debugger. Following this simple initial session,
the chapter goes into much more detail about how commands are
formed and options for the commands.

This example shows:

* How to start dbg.

* How to set a breakpoint.

* How to start a program running under dbg.

* How to display a value of a variable.

* How to continue to the next breakpoint

* How to exit dbg.

Here is the source code for this initial simple example. Note that
in the sample dbg session, what the user typed is shown in bold-
faced type. Additionally, all dbg commands that the user types
are shown in upper case letters. This is done only to provide
emphasis that certain typed commands are dbg keywords. dbg
accepts either upper or lower case letters as its command input.

A Simple Initial
Session

Running the Debugger

Programmer’s Guide 5-1

A Simple Initial Session
(continued)

/* test.c */
void showit (m)
int m;
{
printf ("\nIncoming value of m is: %d\n", m);
m = 100;
printf ("Changed local copy of m to: %d\n\n",m);
}

main ()
{
int j:
j.= 30;
printf ("\nPassing variable j (%d) to showit\n", 7j);
showit (j);
printf ("Passing a variable in C passes a COPY\n"):;
printf ("of that variable unless address of the\n");
printf ("is explicitly passed.\n");
printf ("Thus, j = %d before & after ’showit’\n\n", 3j);
}

Here is the command that creates an a.out (that is, object) file that
dbg can run. Notice that the -g option is used to ask the compiler
to provide debugging label information in the object code, there-
fore accessible to dbg.

prompt> ce -g test.c

Finally, here is a brief session with dbg, including the startup com-
mand. Comments are provided after various command entries
have been shown.

prompt> dbg a.out
dbg new version (as of date time).

Initializing FPU symbol table . . done.
No corefile)

Reading symbol table from "test.o" . . done.

Currently debugging "a.out"
Set a breakpoint in the subroutine showit.
dbg_0> BREAK IN showit

1,0: Breakpoint set at ‘showit:#4:test.o’
(pc=0x40015c)

Run the program to that breakpoint.

5-2 Programmer’s Guide Running the Debugger

dbg_ 1> RUN
Running:
a.out

Passing variable j (30) to showit
"a.out" stopped at ‘showit:#4:test.o’
(pc=0x40015¢c)

printf ("\nIncoming value of m is: %d\n", m);

dbg performs the command sequence preceding the breakpoint
and then reports where it stopped. It shows the next source line
that would be executed if a STEP command was to be issued.

A WHERE command (TRACEBACK is an alternate command that
does the same thing) asks dbg to show a stack traceback indicating
the nesting level of subroutine calls and the values of the parame-
ters at the time the subroutines are entered.

dbg_2> WHERE
"a.out" stopped
‘showit:#4:test.o?, showit (m=30),
‘main:#14:test.o?, main (),

‘_start:crt0.o', pc=0x40012c, sp=0x7fdffe38.

Typing the name of a variable is equivalent to typing the com-
mand PRINT <variable_name>. The current value assigned to
that variable name is printed, interpreted according to the data
type that the variable assumes in the current SCOPE of execution.

dbg 3> m
m: 30

The LIST command lists the source code (when available). The
double forward arrow (>>) indicates which source line is about to
be executed when a CONTINUE or STEP command is issued.

dbg 4> LIST

4>> printf ("\nIncoming value of m is: %d\n", m);

5 m = 100;

6 printf ("Changed local copy of m to: %d\n\n",m);

7 }

8

9 void main ()

10 {

11 int j;

12 J = 30;

13 printf ("\nPassing variable j (%d) to showit\n", J);
14 showit (J) ;

15 printf ("Passing a variable in C passes a COPY\n");

16 printf ("of that variable unless address of the\n") ;
17 printf ("is explicitly passed.\n");

——————————
A Simple Initial Session

(continued)

Running the Debugger

Programmer’s Guide 5-3

L |
A Simple Initial Session

(continued)

18
19

printf ("Thus, j = %d before & after ’'showit’\n\n", j);
}

Another break is installed at line #6 in the program so that the
program can be continued past a library function. A CONTINUE
command free-runs to the next breakpoint, if any. A STEP com-
mand executes the next source line, stepping into a procedure call
if it finds one. This can take quite a long time and should prob-
ably be avoided. A NEXT command executes the next source line
and does not trace into procedure calls. This form of source-line
stepping is probably the most desireable. This brief example uses
the CONTINUE command, setting a new breakpoint at a line
beyond a procedure call.

dbg_5> BREAK AT #6

2,0: Breakpoint set at ‘showit:#6:test.o’
(pc=0x40018c)
dbg_6> CONTINUE

Incoming value of m is: 30
"a.out" stopped at ‘showit:#6:test.o’
(pc=0x40018c)

printf ("Changed local copy of m to: %d\n\n",m); (j

Now the user examines the value of the local variable m, and con-
tinues.

dbg 7> m
m: 100
dbg_ 8> CONTINUE
Changed local copy of m to: 100

Passing a variable in C passes a COPY of that variable
unless the address of the variable is explicitly passed.

Thus, j = 30 before and after ’showit’

Process 0 (a.out) has exited (exit code = 40)

Finally, the user quits dbg.

dbg_ 9> QUIT
Done with dbg.

Preparing For A Debug

Session

To prepare for a debug session, you must

* Prepare your executable program file to be usable by dbg.
That is, use the -g option to compile any object modules for

5-4 Programmetr’s Guide

Running the Debugger

(.

which variables and subroutines are to be examined by
name. Note that using the -g flag forces the compiler to use
optimization level -O0 (no optimization).

e Gather your executable files, object files, source files and core
file if any, into known places, preferably the current direc-
tory. Though it is possible to provide dbg with a list of direc-
tories to search it is much more convenient if all source and
object files are in the current directory when you start dbg.

If only the core file is located in the current directory, after start-
ing dbg you can use the SOURCE and OBJECT commands to tell
dbg which directories to search. To establish a new executable
(a.out) file and core file, use the DEBUG command. The syntax
for each of these commands (SOURCE, OBJECT and DEBUG) is
given in the next section.

Preparing For A Debug
Session
(continued)

The syntax for invoking the Stardent 1500/3000 debugger is

dbg [a.outfile] [corefile]

a.outfile
defaults to a.out produced by compilation or link editing.
This may be changed to reflect your own file name.

corefile
defaults to core, and may be changed to another corefile
name, to reflect your the name of your own core file.

If you start dbg without specifying the a.outfile or the corefile, you
can use the DEBUG command to establish these file names once
dbg has been started. Here is an example.

DEBUG "a.out.l" "core.l"

! Optimization sometimes causes rearrangement of code. To allow the debugger to
match the generated code sequences with specific line numbers in the source code, no
optimization can be used.

Starting dbg

Running the Debugger

Programmer’s Guide 5-5

Starting dbg
(continued)

NOTE

For the most common usage, the
source and object files should all
be’in the current directory from
which you start dbg.

Specifying A Search Path For Source and Object Files

Before dbg can begin a debug session, it must know where to find
the source and object files. If these files are not in the current
directory, you can provide a searchpath for dbg to use to find
them by using the SOURCE and OBJECT commands.

The syntax for these commands is:

SOURCE "path [:path][:path...]"
OBJECT "path [:path][:path...]"

Note that the double-quotes are a required part of the command
syntax. Here are some examples.

dbg_nn> source
Current source path is "."

Accessible source files:
junk.c
junk2.c

dbg_nn> object ".:/usr/lib"
Current object path is ".:/usr/lib"

Accessible object files:
junk.o
junk2.0

dbg Startup

When dbg starts, it reads header information from a.outfile and
reads registers, data size and location, and stack size and location
from corefile, if corefile exists. dbg also reads your .dbgrc file from
the current directory (if this file exists) or from your home direc-
tory. The file .dbgrc contains commands that dbg will execute
before it begins to accept input from the console. You could use
commands in this .dbgrc file to establish your debug environment
or to establish shortcuts (called aliases) for commands if you wish.
The alias feature is explained later in this chapter. After executing
the commands in .dbgrc, dbg enters interactive mode and prompts
for input with

dbg _n>

n is the dbg command number, starting at zero (0), and incre-
menting once for each command that you issue. This
prompt takes a form similar to the prompt presented by csh,
the C-shell. A command history (explained later in this
chapter), is implemented, allowing you to repeat any

5-6 Programmer’s Guide

Running the Debugger

command you had issued earlier by using an abbreviated
command sequence referring to that prior command within
the command history sequence.

Starting dbg
(continued)

To understand how commands are entered and interpreted by
dbg, you must understand the concept of scope. All symbols from

your program have a scope associated with them. A scope is the

relative location of the program, which, in turn, establishes the
type definitions of variables and the value that is currently
assigned to them.

A symbol might be local to a function, local to a line range within
a function, or external. For example, there might be a symbol
named temp in function foo and a symbol named temp in func-
tion bar. The debugger must know which of these you want to
examine. This symbol takes on a different value depending on
which function is currently being debugged and the line number
within that function. As an example, temp can represent an
integer in one function, and a floating point value in another func-
tion. When dbg knows which section of your program that you
wish to examine, it can accurately determine and represent the
symbols that are used in the source.

Location Counter

dbg retains two notions of a location counter. One location
counter represents where the actual execution of a program
occurs under control of dbg, and the other is the scope location
counter used only for examining the state of the world, so to
speak, in a particular part of a program. This scope location
counter simply establishes the context for which a variable name
is valid.

When issuing commands to dbg, the scope of what you are speci-
fying must be taken into consideration and expressed correctly.
You may explicitly change the scope (reset the scope location
counter) by issuing a SCOPE command. The syntax for specify-
ing any scope is

> WHERE and TRACEBACK are synonyms.

Scope

NOTE

If a subroutine is not currently
active, that is, if it does not
appear on the display that results
from a TRACEBACK or WHERE?
command—the stack traceback,
then any symbols in that
subroutine will not have values
and cannot be examined.

Running the Debugger

Programmer’s Guide 5-7

1
Scope
(continued)

SCOPE ‘[func):[line# 1:[file 1
SCOPE ‘[line# 1:[func 1:1[file 1

func is the name of a function.
line# isan integer constant optionally preceded by a #.
file is the name of a source or object file.

If any two of func, line #, or file are missing from a scope specifier,
dbg makes the most general assumptions about the missing fields.
You must use a scope specifier to qualify an ambiguous name,
such as foo. If no arguments are present, dbg echos back the
current scope. Scope specifiers must be delimited by back—quotes.

Here are some examples. Remember that scope resets the scope
location counter.

SCOPE “bar:foo.o"

Set the scope to the first instrution of function bar in file
foo.o.

SCOPE "bar
Set the location counter and scope to the first executable
instruction of the function bar.

SCOPE "55:foo.c’
Set the location counter and scope to line 55 of source code
program foo.c.

SCOPE “bar:#55
Set the location counter and scope to line number 55 of func-
tion bar.

When the SCOPE command is entered with no parameters, the
output of this command shows which function is being debugged,
the line number within the source file containing that function,
and which source file is to be listed when a LIST command is
given. H