
Part Number 800-1190-01
Revision: 50 of 1 July 1985

Hardware Reference Manual

for the

Sun Graphics Processor

Sun Microsystems, Inc.,
2550 Garcia A venue,

Mountain View,
Calif omia 94043
(415) 960-1300

Credits and Trademarks

Multibus is a trademark of Intel Corporation.

Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Incorporated.
Sun-2, Sun-2/xxx, Desk side, SunStation, Sun Core, Sun Windows, and DVMA are trademarks of Sun
Microsystems, Incorporated.

UNIX is a trademark of AT&T Bell Laboratories.

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15
of FCC Rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment in a residential area is likely to cause
interference in which case the user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1985 by Sun Microsyste~ Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

-ii-

Contents

Chapter 1 Introduction ··-·-·········-··· 3

Chapter 2 System Configuration-·························-········-··········-······-···············-··-·· 7

Chapter 3 Functional Description ······--······-·--·-·--·············--·······-············ 13

Chapter 4 Detailed Description ············-····-································-···-·······-·-··········· 19

Chapter 5 VME Interface ················-·······················-·········-········..................................... 41

Chapter 6 Internal Registers ····-···············-····--···········--···················-··········-··········· 51

Chapter 7 Microcode Format -···-············-·······-·---·-·············-··--·························· 65

Appendix A Graphics Processor/Graphics Buffer Specifications 89

-iii-

Contents

Preface

Chapter 1 Introduction

1.1. Overview

Chapter 2 System Configuration .. .

2.1. Overview

Chapter 3 Functional Description

3.1. Overview

3.2. Viewing Processor

3.3. Painting Processor

3.4. Graphics Buffer Board

3.5. Summary

Chapter 4 Detailed Description

4.1. Overview .. ,,

4.2. Microstore

4.3. Viewing Processor

Program Sequencer and Program Memory

Branch Register

Instruction Register Buffer

n Register .. _ -

Interprocessor Flags

Status Flags Register .. .

-v-

xiii

3

3

7

7

13

14

14

15

19

19

21

22

24

24

24

25

25

25

Contents Continued

FIFO .. ,,,,,,,,, .,,,,,,,,................ 25

Shared Memory .. 26

VP PROM and VP PROM POI!\i"'TER .. 26

4.4. Floating Point Circuitry ... 27

Overview of the Floating Point Circuitry ... 27

Floating Point Registers .. 28

Weitek Floating Point Chips .. 28

4.5. Painting Processor ... 29

Branch Register .. 32

Condition Code Select ... 32

Scratchpad Memory and Scratchpad Pointer.. 32

Interrupt ID Register ... 33

VME Bus Interface Logic .. 33

Graphics Buffer Memory ... 35

AM29L517 Integer Multiplier .. 37

Mode Register... 37

PP PROM.. 37

Chapter 5 VME Interface ... 41

5.1. Overview .. 41

5.2. Microstore Interface ... 41

5.3. Shared Memory .. 42

5.4. VME Bus Addressing (GP as a VME Slave) .. 42

Microstore Interface Registers .. 42

Shared Memory.. 43

5.5. Microstore Interface Register Formats.. 43

Board Identification ... 43

GP Control Register .. 44

GP Status Register .. 46

Microstore Address Register .. 46

Microstore Data Register .. 46

5.6. VME Interrupts ... - -.............. 47

5.7. GP as VME Master... 48

-vi-

Contents Continued

Chapter 6 Internal Registers ... 51

6.1. Viewing Processor .. 51

Shared Memory Pointer .. 51

Source A, Source B, Destination Pointers .. 51

VP PROM Pointer .. 51

Floating Point Status Register ... 51

n Register... 52

Interprocessor Flag #1 Register .. 52

Interprocessor Flag #2 Register .. 53

Status Flags/LED Register .. 53

Branch Register .. 54

Shared Memory .. 54

Floating Point Registers .. 54

VP PROM Registers ... 54

FIFO Registers ... 55

29116 Registers.. 55

6.2. Painting Processor... 56

Scratchpad Pointer ... 56

Graphics Buffer Address Pointers ... 56

VME Control Register ... 57

VME Status Register .. 57

VME Address Registers .. 58

Interrupt ID Register ... 58

PP PROM Pointer ... 58

Multiplier Mode Register... 58

n Register···-·· 59
Interprocessor Flag #2 Register.. 60

Interprocessor Flag #1 Register.. 60

Status Flag/LED Register .. 60

Branch Register .. 60

Scratchpad Memory ···········-····-···-···········-··········· 61

GB Data Registers ···-·-················--·-·················· 61

VME Data Registers ···-··-·· 61

-vii-

Contents Continued

PP PROM Registers ·····-················--·-···---········--·-·············--··········-·-·-····· 61

Multiplier X, Y, and Result Registers··--·--···-·····-·······-·--·-····--··-- 61

FIFO Registers ····-·---·-···-····-····-······-·····--············--·····-····-···-··--········ 61

29116 Registers ·········-·-····-···---·-·----·--··-····--···-·········--·-···-····- 61

Chapter 7 Microcode Format·-·····-·--··--·········-·······--·-···-·······-·-·-····-·--- 65

7.1. Viewing Processor Micror_ode ·····················--·········-······-·············""'"_,. .. _........ 65

AM29116 Instruction -············--·-····-···----·---··--········-·-····· 66

Miscellaneous Controls -····-······································--······-·····-········-·-·---- 66

Source and Destination --·········-··-·-·········-·-········-~---·-·············-····-·-·-········ 67

Hardware Protection ··-·-·················-·······--······················-·················-···-··········-··· 69

Branch Logic -·········-····-·-············-···-······-······--···-·············-·---·····--·- 70

Count Hardware ··-·····-···-···················--··-···-················-··· 71

General Field ······--·-·---·······-··-·-·-···-···-····-·······---·-····························-·· 71

Floating Point ················-············-----··--·-········-···--··················-········--······ 71

7.2. Painting Processor Microc.ode ··----···---······-·--···-··········-·-··--·· 75

AM29116 Instruction---·-----···--·-···---····---······-··········-···--···- 75

Miscellaneous Controls ··········-····-·-···-············ 76

Source and Destination -·-·····················--···················-·-···-················--·-·····-- 77

Hardware Protection ······-······-················-·····-···············-····-·-····················-··········· 80

Branch Logic··-·····--··--·-···-·-·······---····-·--···············-··-······················-··········· 81

Count Hardware·········--·-·············-·-·-·········-·· 83

General Field ····················-············--··-·························--·· 83

Graphics Buffer Board Memory (Graphics Buffer) 83

Appendix A Graphics Processor/Graphics Buff er Specifications ·--- 89

- viii-

Tables

Table 1 Sun Documentation ... xiv

Table 2 Vendor Documentation ... xv

-ix-

Figures

Figure 2-1 Sun-2/160 Color Workstation: System-Leve] View······················-· 8

Figure 2-2 Block Diagram ot the Graphics Processor ··---················· .. ··-·······-·· 9

Figure 4- i The Microsiore ·········-··········-······················-························· ······················-··· 20

Figure 4-2 Block Diagram of the Viewing Processor ························--·-········-- 23

Figure 4-3 Painting Processor Block Diagram - Part 1 ··············-··--················- 30

Figure 4-4 Painting Processor Block Diagram - Part 2 ··-····-···---·-·······---·· 31

- xi-

Summary of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Preface

Welcome to the Sun-2 Graphics Processor. This manual presents a description of
the Graphics Processor hardware from a programmer's point of view: that is,
sufficient for a programmer to be able to understand the workings of the board.

This manual has seven chapters and an appendix:

Introduction - contains a basic overview of the the Graphics Processor, its posi­
tion in the Sun-2 architecture, and associated Graphics Buffer board.

System Configuration - presents a simplified block diagram of the Graphics
Processor and Graphics Buffer boards.

Functional Description - gives a functional description of the Viewing Proces­
sor, Painting Processor, and Graphics Buffer board.

Detailed Description - gives a fairly detailed description of the circuitry intro­
duced in Chapter 3.

VME Interface - describes the interface between the Graphics Processor and the
rest of the Sun-2 Model 160.

Internal Registers - describes the format of the registers associated with the
Viewing Processor and the Painting Processor.

Microcode Format- describes the microcode instruction format for both the
Viewing Processor and the Painting Processor. It also describes hardware imple­
mentations, and limitations of which the microcoder must be aware.

Specifications - gives VME and Performance specifications for the GP and GB
boards.

Finally, to help us maintain the currency and accuracy of this material we have
supplied a reader comment sheet at the end of this guide. Please use the com­
ment sheet to list errors and omissions. Your responses will help a great deal in
our efforts to keep our documentation up to date.

- xiii -

Preface Continued

Applicable Documents

Table 1

A fev.· terms 3..L~ used Lh .. Joughout th.is document \.V!1ich, witJ1out explanation, may
seem confusing.

o Positive Logic - positive logic means that the asserted level (see below) of
a signal is a logic 1 (see below also).

o Asserted - when we say that a signal is ''asserted,'' we mean that it is in
its active, or true, state. In positive logic this means that a signal like
READ, when asserted, is equal to its most positive state. When a signal like
WRITE*, WRITE-, or WRITE\ (the three are synonymous) is asserted it is
equal to its most negative state.

o Logic 1 - in positive logic, a logic 1 stands for the more positive of the two
voltage levels. A logic 1 in negative logic stands for the more negative of
the two voltage levels.

o Logic 0 - in positive logic, a logic 0 stands for the more negative of the
two voltage levels. A logic 0 in negative logic stands for the more positive
of the two voltage levels.

o Set - means the same as logical 1.

o Clear - means the same as a logical 0.

We emphasize that this manual outlines rather than exhausts many of the topics
contained within. References to applicable documents supplied with your system
are given throughout; however, and we urge you to read these documents should
you need further information.

Sun Documentation

Sun Part Number Description

800-1191 Graphics Processor Engineering Manual

-xiv-

Preface Continued

Table 2 Vendor Documentation

Description

AMD Bipolar Microprocessor Logic and Interface Data Book

AMD Bipolar/MOS Memory Data Book

Fairchild Advanced Schottky 1TL (FAST) Data Book

Texas Instruments ALS/ AS Logic Circuits Data Book

Programmable Array Logic (PAL) Data Book

Weitek 1032/1033 floating-point processor data sheet

4501 FIFO data sheet

VMEbus Specification

-xv-

1
Introduction

Introduction... 3

1.1. Overvie\\' 3

1.1. Overview

Introduction

This manual describes the Graphics Processor (GP) board and the Graphics
Buffer (GB) boards. The Graphics Processor is an attached processor to the host
processor and can be used to perform many image display tasks. Since the
Graphics Processor is faster than and runs in parallel with the host processor,
there is a significant increase in system performance.

Floating point performance is a significant limiting factor to graphics perfor­
mance. Since floating point performance is not suitable for interactive graphics,
the intent of the GP is to provide a unit-separate from but controllable by the
host processor-which has the necessary performance. It is a microprogramm­
able unit which, when invoked by the host processor, assists in the execution of a
pre-defined task such as transforming, clipping, scaling, and rendering a two- or
three-dimensional object

~ Sun Microsystems, Inc. 3 Revision 50 of 1 July 1985

2
System Configuration

S;1stem Configuration .. 7

2.1. Overviev.' .. 7

2.1. Overview

System Configuration

The following figure shows a simplified block diagram of a Sun color worksta­
tion with a Graphics Processor attached. The GP is either a one or two board set:

o the basic GP board, and

o an optional Graphics Buffer board.

Each board uses the triple high, quad depth (366.67mm by 400mm) Eurocard
form factor.

~ Sun Microsystems, Inc. 7 Revision 50 of 1 July 1985

8 Graphics Processor Hardware Reference Manual

Figure 2-1 Sun-21160 Color Workstation: System-Level View

Host
Processor

Slave

I Memory I

VME

Graphics
Processor

Graphics
Buffer
Option

t

Master

Bus

Sun-2
Color board

(Frame Buffer)

The VME bus is used as both the system bus and the graphics bus. The host pro­
cessor passes commands and parameters to the GP which processes them and
writes pixels into the Color board. Even though the GP is logically between the
host processor and the Color board, the GP and Color board can be installed in
any VME slots. The GP and GB (Graphics Buffer) boards, however, must be
installed in adjacent VME slots with a private bus between them.

A more detailed block diagram of the GP board is shown in the next figure. As
can be seen, the GP contains three interfaces to the VME bus. The shared
memory and the microstore interface are bus slaves, used primarily to load
commands/parameters and to load microcode, respectively. The third interface
("VME Bus Interface") provides a general-purpose bus master capability, used
primarily to access the Color board.

() Sun Microsystems, Inc. Revision 50 of 1July1985

Figure 2-2 Block Diagram of the Graphics Processor

VME
'* Jt. J

Micro- Microstore

sequencer fE---1 8K-by-56

~ 16

IJI
\U

Shared AM29116
Memory Microprocessor

16K-by-16 (Viewing

Jr, Processor)

w VPBUS
FIFO

Floating

Point

Registers

2K-by-32

Weitek

103211033
Floating

Point

Processor

VP PROM

16K-by-16

- -

() Sun Microsystems, Inc.

BUS

Micro-
~ sequencer

w
AM29116

Microprocessor

- -

(Painting

Processor)

PP BUS

Scratchpad

4K-by-16

Optional

G-Buffer

(DRAM)

lM-by-16

System Configuration 9

"'~

d6

V'

VME
Bus

Interface

"'

Optional

Integer

Multiplier

and

PP PROM

Revision 50 of 1July1985

10 Graphics Processor Hardware Reference Manual

The shared memory is a dual-ported, high-speed, static RAM (random access
memory), accessible from the VME bus by the processors on the GP board.
(These are described in more detail in the next chapter.) Using the VME bus as
the system bus, the host processor can load commands and data into the shared
memory and receive requested status and data from the same memory.

The VME bus can also be viewed as the graphics bus, since the GP uses this bus
to access pixels in the Color board's frame buffer. (The GP can access any VME
location in standard or 1/0 (input/output) address space.) Providing a general­
purpose VME connection on the Color board rather than a dedicated GP-to-Color
board connection allows you to have a color workstation without a GP. It also
allows direct access to the Color board by the host processor or other devices
even with the GP installed.

~ Sun Microsystems, Inc. Revision 50 of 1 July 1985

3
Functional Description

Functional Description ... 13

3.1. Overview.. 13

3.2. Viewing Processor .. 13

3.3. Painting Processor... 14

3.4. Graphics Buffer Board .. 14

3.5. Summary .. 15

3.1. Overview

3.2. Viewing Processor

Functional Description

Refening again to the block diagram of the Graphics Processor (shown previ­
ously), the GP consists of three processors:

o two Advanced Micro Devices (AMD) 29116 microprocessors, and

o a Weitek 32-bit floating point processor chip set, the 1032/1033.

The AM29116 is a lOMHz, 16-bit Arithmetic and Logic Unit (ALU) which
evolved from bit-slice technology. The Weitek chips consist of an ALU (add,
subtract, data format conversions) and multiplier, each capable of 1.1 Mflops in
flowthrough mode and 5 Mflops in pipeline mode. Further details on these pro­
cessors are available in the vendors' documentation.

The programs for the GP are contained within the microstore. This memory is
three-ported, readable by each AM29116 section and readable/writable via the
VME microstore interface, and is configured as 8K of 56-bit words.

As shown in the block diagram, the GP consists of two sections: The Viewing
Processor (VP) and the Painting Processor (PP). These two processors form a
pipeline for the execution of graphic commands. A brief discussion of each
section's components follows.

The first AM29116, with the attached floating point processor and registers, is
called the Viewing Processor. Its function is to receive commands and parame­
ters from the host processor and perform the floating point operations needed to
transform the image from world coordinates into screen coordinates.

Shared memory was mentioned in the previous chapter. It is implemented with
sixteen 16K-by-l static RAM chips providing a 16K-by-16 memory. This
memory is time-multiplexed allowing independent access from both the VME
bus and the Viewing Processor (VPBUS).

Graphic operations are floating point intensive; hence the floating point processor
and associated registers. The floating point processor can be configured in a pipe­
line mode which allows a floating point operation to be initiated every two
cycles. This unit is used to transform, clip, and scale the graphic data from world
coordinates to screen coordinates. Maximum floating point performance is 4.16
Mflops.

The VP PROM (programmable read only memory) is used for the storage of
reciprocal estimates and other constants needed for numerical computations. For

• Sun Microsystems, Inc. 13 Revision 50of1July1985

14 Graphics Processor Hardware Reference Manual

3.3. Painting Processor

3.4. Graphics Buffer Board

example when calculating a reciprocal, the PROM is used as a look-up table con­
taining the first estimate for the iterative reciprocal algorithm.

The FIFO (first in first out) buffer is used to transfer commands and data from the
Viewing Processor to the Painting Processor. Under control of the Viewing Pro­
cessor, the FIFO can be reversed allowing the Painting Processor to send data to
the Viewing Processor. The FIFO size is 512 16-bit words. It is the FIFO which
logically and physically separates the GP into the Viewing Processor and the
Painting Processor.

The second AM29 l l 6 section is termed the Painting Processor. Its function is to
render the graphic data (pixels) into the frame buffer on the Color board. The
components discussed below are shown in the block diagram of the Graphics
Processor board.

The scratchpad memory is a fast access, static RAM. Sequential accesses to this
memory can be done in single cycles. The memory size is 4K-by-16. The
scratchpad is a general-purpose memory useful for various algorithms.

The VME interface logic provides the capability to access VME devices from the
Painting Processor, primarily the frame buffer on the Color board. However, the
logic is general-purpose and any VME location can be accessed, including host
memory and the GP' s shared memory. In addition, this logic allows the GP to
generate an interrupt to the host processor. This intenupt is under direct micro­
code control allowing its use to be defined by the particular application.

The optional GB board contains a large memory implemented with dynamic
RAM (DRAM) chips. The size of the memory is lM 16-bit words (lM =
1,048,576). Dynamic RAMs provide large amounts of memory at slower access
times. Random accesses to the DRAM take five cycles (two cycles to load the
21-bit address and three cycles to do the read or write) but sequential reads or
sequential writes can be done in three cycles per read or write.

o A fill mode allows a data word to be written into four consecutive locations
in the time required to do one write.

o A read/modify/write mode allows a write followed by a read of the next
consecutive address to be done in five cycles.

This memory is designed to be general-purpose (font storage, anti-aliasing use,
etc.) but is especially suitable for hidden surface elimination algorithms.

Also on the optional GB board are an integer multiplier and associated PROM
for numerical constant storage. An AMD 29L517 chip is the multiplier chip
used; a multiply of two 16-bit operands producing a 32-bit result takes six cycles
(including data transfer cycles). This multiply capability greatly speeds up the
performance of advanced shading algorithms.

() Sun Microsystems, Inc. Revision 50 ofl July 1985

3.5. Summary

Functional Description 15

The pipeline architecture of the GP is well suited for graphics applications.
Graphic data are manipulated serially and independently; therefore, partitioning
the tasks for pipelining is straightforward. The intent is to divide the task so that
all three stages of the pipeline-the host processor, the Viewing Processor, and
the Painting Processor-are active as much as possible. The parallelism thus
achieved will permit high performance graphics.

~ Sun Microsystems, Inc. Revision 50 of I July 1985

4
Detailed Description

Detailed Description .. 19

4.1. Overvie\\' .. 19

4.2. Microstore .. 21

4.3. Viewing Processor .. 22

Program Sequencer and Program Memory .. 24

Branch Register.. 24

Instruction Register Buffer .. 24

n Register :... 25

Interprocessor Flags 25

Status Flags Register... 25

FIFO... 25

Shared Memory .. 26

VP PROM and VP PROM POH·-I'fER .. 26

4.4. Floating Point Circuitry ... 27

Overview of the Floating Point Circuitry ... 27

Floating Point Registers .. 28

Weitek Floating Point Chips .. 28

4.5. Painting Processor... 29

Branch Register.. 32

Condition Code Select ... 32

Scratchpad Memory and Scratchpad Pointer .. 32

Intenupt ID Register ... 3 3

Vl\1E Bus Interface Logic .. 33

Graphics Buffer Memory ... 35

AM29L517 Integer Multiplier .. 37

Mode Register "·· 37

PP PROM.. 37

4.1. Overview

Detailed Description

The Graphics Processor is actually two separate units, the Viewing Processor and
the Painting Processor, with both processors sharing the microstore. The figure
below details the common microstore. Subsequent figures contain detailed block
diagrams of the two processors. The discussion below describes these block
diagrams and the operational details of the processors.

() Sun Microsystems, Inc. 19 Revision 50of1July1985

20 Graphics Processor Hardware Reference Manual

Figure 4-1 The Microstore

VMEBUS ..._ - -'~
I 16
~

GP Status Register
VMEData

Buffer

VP pp T Status Status GP

Flags Flags Status GP

I \ ~ Control

..... T ~ it. "'
Register

Iii ~ vi

Board ID 111 Microstore "'<7"

I 1.C:: ..._
"T"-

Address
.....

Viewing
I 4-by-16

Processor 11.c;:,,,.
~

Next address data in

-~

- 1--1.S_ _,,, addresses ~~ --
Painting MICROSTORE

Processor 1 , ,

~v "T"<>

Next address

data out

56

4-b_r-16

l 1
Viewing Painting

Processor Processor

Instruction Instruction

Register Register

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

4.2. :Microstore

Detailed Description 21

Both processors can be viewed as programmable state machines running with a
120 nanosecond cycle time. During each cycle several parallel operations are
possible. On the Viewing Processor for example,

o an AM29116 instruction can be executed;

o a floating point operation performed;

o a branch executed;

o and a data word moved from a VPBUS source to a VPBUS destination.

Similarly, on the Painting Processor,

o an AM29116 instruction can be executed;

o a V:ME operation initiated;

o a branch executed; and

o a data word moved from a PPBUS source to a PPBUS destination.

The current operation of each processor is controlled by the current contents of
each processor's instruction register, containing a microinstruction. The
microinstruction format has been chosen to provide as much parallelism as possi­
ble within physical constraints (board area, power, etc.)

The microstore contains the microcode for both GP processors. The two units
run 180 degrees out-of-phase and require half of the memory bandwidth; thus the
microstore can be shared. A third port into memory is available for VME
accesses into the microstore (initial program load and verification) but can be
active only when the two processors are halted.

The microstore is built with fast, static RAMs. Twenty-eight physical RAM
locations are provided and 8K of microstore (using 4K-by-4 chips) is available.

Contained in the block diagram of the microstore is:

o the microstore,

o each processor's next address source and instruction register,

o the microstore registers accessible from the VME.

The microstore registers reside in the first 32 Kbytes of VME address space allo­
cated to the GP. (This allocation is determined by a hardware switch on the GP.)
Shared memory resides in the next 32 Kbytes.

For each processor, the first half of each cycle is used to determine the address of
the next microinstruction. In the second half-cycle, this next address is routed to
the microstore, an access is made, and the instruction register is loaded at the
beginning of the next cycle defining the new "current" instruction. The
sequence then repeats. Since the two processors are running 180 degrees out-of­
phase, the first half of a cycle on one processor is the second half for the other
processor.

() Sun Microsystems, Inc. Revision 50 of 1July1985

22 Graphics Processor Hardware Reference Manual

4.3. Viewing Processor The following figure is a block diagram of the Viewing Processor. The com­
ponents of the block diagram of the GP Board are recognizable but more detail,
especially around the AM29116 and the Weitek floating point units, is shown.
Various references are made to the microinstruction in the discussions that fol­
low. The format of this 56-bit word is defined in the chapter describing the
microcode format.

~) Sun Microsystems, Inc. Revision 50 of 1 July 1985

Detailed Description 23

Figure 4-2 Block Diagram of the Viewing Processor

E

To GP

Status

Register

if\

~
4

[Status

Flags

~

,fl

VMEBUS

1, r, eo£on
l Select

I
l

Shared Memory

~

116

16K-by-16

I~

116

Shared

Memory

Pointer

I

tl6 .------,~
Floating

~I Source A

Source B ""'-1.1..1. -- ~·

Destination

_ I Bank Select -1
----..... =-1 AM2910 l

I Microsequencer

lA

VPBUS

l
VP

PROM

"' ~

~15

Branch

Register

"'

-

t16

VI

"' ~16

VP
-11-h~ PROM

11., ...
~--,..

to microstore

..--------- from microstore

Instruction Register

AM29116

Microprocessor

~16

4

n Register

512-by-16

FIFO

#1 n
1

Point

Registers

2K-by-32

~\
Pointer 16K-by-16

~T

~
~

H6
iJ!

16

Buffer J

Weitek 1032/1033

Floating Point

Processor

/~

Status

~Register

() Sun Microsystems, Inc.

#2

----.-0
Direction Control

Inter­

processor

Flags

#1, 2

Revision 50 of 1 July 1985

24 Graphics Processor Hardware Reference Manual

Program Sequencer and
Program Memory

To make the AM29116 into a useful computer, two major components are
required: a program sequencer and program memory. The microstore is the pro­
gram memory. The sequencer used is an AM2910 which contains a program
counter, a stack for subroutine linkage, and branch control logic. A branch is con­
ditional on the state of the condition code input to the AM2910. The condition
code select logic multiplexes 16 options (either polarity of eight status flags) into
this one input. A limitation of the AM2910 is its 4K address space. The bank
select logic is used to expand this space to 32K maximum by selecting one of
eight banks. The AM2910 and the bank select provide the address to the micro­
store.

A bank switch can only be done by executing the AM2910 JMAP instruction.
This is an unconditional jump for the AM2910 and is used to flag the bank select
logic that a (potential) bank switch is to be done. During the JMAP instruction,
the bank select state is updated. When doing a JMAP instruction, the D input to
the AM2910 can be either the branch register or the general field of the microin­
struction (see below).

A JZ (jump zero) command to the AM2910 forces the microprogram counter to
0. A JZ instruction jumps to location 0 of bank 0. This command thus effects
the bank select bits, potentially executing a bank switch.

NOTE The AM2910 contains an internal R register and stack. These registers are 12-
bit only so that branches to these addresses DO NOT perform bank switches.
Care must be taken to ensure that.for example, a call is not done in one bank
and the corresponding return done in another. Also, the sequencer does not
automatically flow from one bank to the next. That is, a continue from location
FFFF (hex) in bank 0 (the last location in this bank) will go to location 0000 in
bank 0, not location 0000 in bank 1.

Branch Register The branch register is a 15-bit register that contains a possible source of the next
address selected by that AM2910. A branch to the location preloaded into the
branch register is executed if two conditions are met The branch register must
be chosen as the D input of the AM2910 (controlled by the DS microinstruction
bit), and the branch condition must be successful (determined by the AM2910
instruction and the state of the branch status flag chosen in the microinstruction).
The branch register is loaded when it is chosen as the VPBUS destination (con­
trolled by the source/destination field of the microinstruction).

Instruction Register Buffer Shown in the block diagram of the Viewing Processor are buffers enabling the
general field of the instruction register onto the VPBUS. These buffers are
turned on when the general field is chosen as the VPBUS source (controlled by
the microinstruction source/destination field). With this capability, the micro­
coder can route an assembly-time constant onto the VPBUS and route it to one of
several possible destinations, including for example, the AM29116, the shared­
memory pointer, or a floating point register pointer.

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

n Register

Interprocessor Flags

Status Flags Register

FIFO

Detailed Description 25

Several AM29116 instructions include a 4-bit field (n) to determine, for example,
the bit position to test or the number of bits to rotate. The usefuiness of these
instructions is diminished if the n value is hardcoded into the microinstruction.
Therefore, a four-bit n register is provided. Under control of the microinstruc­
tion, the n register value can be substituted for the n field in the AM29116
instruction, thereby providing a way to calculate n at runtime, not at assembly
time. The n register is loaded by chasing it as the VPBUS destination.

An interprocessor flag mechanism is provided to pass status flags between the
two processors. Two 8-bit registers are impiememed, one in each direction;
FIFO status can be read from them. Interprocessor flag #1 register can be writ­
ten by the Viewing Processor and read by the Painting Processor. It is used by
the Viewing Processor to control FIFO direction. Interprocessor flag #2 register
can be written by the Painting Processor and read by the Viewing Processor.
These registers are under total firmware control; they have no special hardware
significance.

An ninth bit is also read when the interprocessor flag is chosen as the bus source.
On the Viewing Processor this bit is read as a logic 0, and on the Painting Proces­
sor this bit is read as a logic 1. This provides a mechanism to distinguish the two
processors at reset. After a reset, both processors begin executing at microstore
location O~ both read their interprocessor flags; and then each processor branches
to its respective initialization routine.

There is a hardware constraint to the interprocessor flag register-it is not possi­
ble to read this register into the AM29116 and manipulate it in a single cycle. It
must first be read into the AM29116 D-latch and then manipulated by subsequent
instructions.

The status flags register is a four-bit VPBUS destination that provides a mechan­
ism to return general-purpose status bits to the host processor via the VME bus.
These bits can be written (chosen as a VPBUS destination) at any time by the
Viewing Processor and read at any time from the VME bus. Four LEDs (light
emitting diodes) are also driven by this register. This register also contains the
fpsel bit, which allows read-back of either set of floating point registers. For
further information, see the chapter which describes the internal registers.

The FIFO is the connection to the other processor. One ''reversible'' FIFO is
implemented but for easier understanding the following nomenclature is used:
FIFO # 1 is for VP-to-PP transfers and FIFO #2 is for PP-to-VP transfers. The
direction is controlled by two bits that are written whenever the interprocessor
flags #1 register is written. The FIFO is 512 16-bit words deep.

If FIFO #1 is chosen as the destination, the data word on VPBUS is loaded into
the FIFO. A testable status flag (a condition code select option) is used to deter­
mine if the FIFO is full or not. Hardware protection is provided to ensure that a
data word is not written to a full FIFO, but the microcode must test the status to
determine the success or failure of a FIFO load and thus determine if the FIFO
load should be re-executed.

() Sun Microsysrems, Inc. Revision 50 of 1 July 1985

26 Graphics Processor Hardware Reference Manual

Shared Memory

VP PROM and VP PROM
POINTER

If FIFO #2 is chosen as the source, the data word on the top of FIFO #2 is routed
onto VPBUS. A testable status flag is used to determine if a valid data word was
routed onto the bus. Hardware protection is provided to ensure that an empty
FIFO is not read (and thereby prevent a timing glitch which could cause the loss
of a data word), but the microcode must check the status flag to determine
whether or not another read of the FIFO is necessary to receive valid data.

Because of the asynchronous nature of the FIFO, there is a ''recovery time'' after
each FIFO access and it is therefore not possible for a FIFO to accept or supply
data every processor cycle. On FIFO writes, there is a 1 cycle recovery time, so
that writes can be done at most every other cycle. On FIFO reads, the recovery
time is 2 cycles, so that reads can be done at most every third cycle. However,
the FIFO status flags will be valid at all times.

If the FIFO direction is VP-to-PP, then VP readings of the FIFO will always
succeed, but the data returned are meaningless. If the FIFO direction is PP-to­
VP, then VP writes to the FIFO are also successful, but the data are discarded.
Read/write success is detennined by testing the FIFO status flags. This is done
to prevent the microcode from hanging by accessing the FIFO in the wrong
direction.

Shared memory has been mentioned several times. The dual-port capability is
implemented by allocating two accesses to the memory every Viewing Processor
cycle. The first half cycle is allocated for a read or write access by the Viewing
Processor. The second half cycle is allocated for VME bus reads or writes.
Obviously, a meaningful operation is not done every half cycle, but the allocation
is fixed.

Before accessing shared memory, the Viewing Processor must load the shared­
memory pointer. This register points to the location at which subsequent Viewing
Processor accesses will be made. Under microcode control, this pointer can be
incremented, decremented, or cleared.

The shared-memory access is executed by chosing the shared memory as the
VPBUS source or destination. By also counting the pointer when making the
access, sequential reads or writes can be done at the rate of one per cycle.

Because of the shared-memory architecture, writes to the shared memory (and
increments or decrements of the shared-memory pointer when done coincident
with the write) are done in the cycle immediately following the cycle with the
write instruction. This means that a read of shared memory cannot be done in the
cycle immediately following a cycle doing a shared memory write. An incre­
ment or decrement of the shared-memory pointer executed in the next cycle is
thus redundant unless the shared memory is coincidentally selected as the
VPBUS destination.

When selecting the VP PROM as the VPBUS source, the location pointed to by
the VP PROM pointer is routed to the VPBUS. The functional VP PROM is
implemented with two 16K-by-8 erasable PROMs providing for 16K of 16-bit
words. After loading the VP PROM pointer with the address of the location to
be read, a two cycle delay must be incurred before selecting the VP PROM as the
VPBUS source to allow for the slow access time of the PROM.

(~ Sun Microsystems, Inc. Revision 50of1July1985

4.4. Floating Point Circuitry

Overview of the Floating
Point Circuitry

Detailed Description 27

This section covers the floating point registers, the pointers into these registers7

and the Weitek floating point chips. All floating point operations are done
through the floating point registers. The Weitek chips receive their input from
these registers and all floating point results are loaded back into these registers.

There are three pointers into the floating point registers:

o source A, and

o source B, and

o destination.

Each of these pointers is 11 bits wide (2K addressing capability) and .can be
loaded as a destination from the VPBUS. Under microcode control these
pointers can be incremented at the end of a cycle.

The floating point registers are implemented with 4K-by-4 static RAMs, provid­
ing 4K of 16-bit words. But since floating point numbers are 32-bits wide, these
registers are treated as 2K 32-bit registers, explaining the 11-bit width of the
pointers. The high (most significant) or low (least significant) word of the 32-bit
floating point number is selected by the h/l bit in the current microinstruction. If
h/l = 0 then the most significant word is selected; if h/l = 1 then the least
significant word is selected.

The source A pointer is used to select

1. the register that is routed to VPBUS when a floating point register has been
chosen as the source of data onto VPBUS, or

2. the A operand to the Weitek chips.

The source B pointer is used to select the B operand to the Weitek chip.

Tne destination pointer is used to select

1. the floating point register into which the Weitek result is loaded, or

2. the location into which the VPBUS data word is loaded when a floating
point register is chosen as the VPBUS destination.

For diagnostic purposes, it is possible to route the data pointed to by the source B
pointer onto the VPBUS. A flag under microcode control (as part of the
status/LED register) detennines whether the source A or source B pointer is used
to detennine the data word read.

NOTE A hardware implementation detail: the floating point registers are implemented
as two banks in order to increase the bandwidth of these registers. The source A
pointer points to bank A and the source B pointer points to bank B. The destina­
tion pointer points to both banks. Whenever a write is done, both banks are writ­
ten; therefore, the banks are duplicates. Normally, when the floating point regis­
ter is chosen as the VPBUS source, bank A is read. However for diagnostics, it
is possible to read bank B directly by controlling the floating point flag described
previously.

When the floating point registers are chosen as the VPBUS destination, the data
word is first loaded into a holding buffer. It is actually written into the registers

() Sun Microsysrems, Inc. Revision 50of1 July 1985

28 Graphics Processor Hardware Reference Manual

Floating Point Registers

Weitek Floating Point Chips

in the next cycle. When the floating point register is the VPBUS destination and
the destination pointer count is enabled, the count, like the data load, is executed
in the next cycle. An increment the destination pointer executed in the next
cycle is thus redundant unless a floating point register is coincidentally selected
as the VPBUS destination.

Similar to the shared memory, the floating point registers operate at twice the fre­
quency of the AM29l16 cycle. The first half cycle is used to read the register file
and supply data for either the Weitek chips (A and B operands) or VPBUS. The
second half cycle is used to store VPBUS data or Weitek chip results into the
registers if so instructed by the microinstruction.

A hardware restriction is that on consecutive cycles, the floating point registers
cannot be used as the destination of a VPBUS operation and then as the destina­
tion of a floating point result. In addition, the source A pointer is used to select
both the A operand to the Weitek chips and the data word routed to the VPBUS
when selected as the source. It is unlikely that the source A pointer can be used
to select the VPBUS source data and the Weitek chip source A in a single
microinstruction.

The Weitek Floating Point chips are controlled by fields within a microinstruc­
tion. The following three operations are possible:

1. (Source A pointer) op (Source B pointer),

2. Weitek result op (Source B pointer),

3. Weitek result--> (Destination pointer).

1 and 2 are mutually exclusive. 3 can be done in the same microinstruction as
either 1 or 2.

The operations of the Weitek chips take several cycles to complete. The micro­
coder must be aware of this and not attempt to use a Weitek result before it is
ready. In pipeline mode, it takes two cycles to load the 32-bit operands, 6 cycles
of execution delay, 2 cycles of unload instructions, and 2 cycles to output the
result. But because of the pipeline, a new operation can be started every two
cycles.

To minimize hardware, floating point registers are treated as 32-bit numbers.
The microcoder must take care to control the h/l (hi/low word) bit and cause the
proper data word (most or least significant word) to be utilized at the proper time.
This is of concern in the following operations:

o Floating point register as VPBUS source,

o Floating point register as VPBUS destination,

o Initiating a floating point operation to the Weitek chips,

o Enabling an unload of the Weitek chip result,

o Unloading the Weitek chip result.

The h/l bit directly controls the least significant bit of the address to the floating
point registers and the UO bit of the Weitek chips .

• Sun Microsystems, Inc. Revision 50 of 1 July 1985

4.5. Painting Processor

Detailed Description 2 9

The Weitek chips provide status coincident with each result. This status infor­
mation is made available on an individual operation and on an accrued basis as
part of the floating point status register.

The following figures are the block diagrams for the Painting Processor. As
before, the functional blocks of the block diagram of the Graphics Processor
board are expanded now in greater detail.

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

30 Graphics Processor Hardware Reference Manual

Figure 4-3

..... _ l'l -- --
to microstore

- 11., -- -.--

from microstore

4

n Register

Painting Processor Block Diagram-Part 1

.-------- ---
Bank Select

----~ ---AM2910

Microsequencer

IC£ ~

"'
Instruction

Register

A15

n I-----'

AM 29116

Microprocessor IC!J

if\

Branch

Register

116 i16

Scratch

Pad

Pointer_

qi

Condition
_. _ _J_f/.__ Code ---

Select

~

4

Scratch pad
,, Memory -

4K-by-16

~

116

PPB US 1JJ
11

L' ~1 (to VME Interface Logi~)

512-by-16

FIFO

#1

~ ~ -1.1...6.__,,,, -
#2

"IE- +- tE- '-14

""o Direction Conlrol

Inter-

~
processor
~ Flags

#1, 2

Status

Flags

4

To GP

Status

Register

116 high

data out

Memory

Pointer

itio
\

address

low

Optional DRAM

(Graphics Buff er)

lM-by-16

~16

Write

Data

data in

. optional Graphics Buffer board

_ ..

(). Sun Microsystems, Inc. Revision 50of1July1985

-

Detailed Description 31

Figure 4-4 Painting Processor Block Diagram - Part 2

I I
I Interrupt I

~
~

"'

I VME l
j Control J

If\

V}.1E BUS

VME

Status

"PPBUS

VME Interface Logic

VME

Address

J

High 18 Lowl/16

Write

Data

,,
Read

Data

~16 116

\lt

...... r. ~~:plier J ~ :·~
I Mode A16 .16

•••••••••••••••• Jj:i .•••••.••••••

l Y' tJ' '¥'
x y

AM29517
116 PP PROM PP PROM

Integer Multiplier Pointer 16K-by-16

Result (high or low)

optional Graphics Buffer board

As the figure suggests, much of this section is the same as the Viewing Processor.
These components include

o an AM2910 microsequencer,

o bank select logic,

'() Sun Microsystems, Inc. Revision 50 of 1 July 1985

32 Graphics Processor Hardware Reference Manual

Branch Register

Condition Code Select

Scratchpad Memory and
Scratchpad Pointer

0 branch register,

0 general field,

0 n register,

0 interprocessor flag registers,

0 status flag register,

0 reversible FIFO.

The branch register and the branch restrictions for this section are basically the
same as for the Viewing Processor. The only difference is the method to perfonn
on unconditional branch (or call or rerum). On the Viewing Processor a logic 1
is input to the condition select multiplexer and, if selected, causes a "pass" con­
dition to the AM2910. On the Painting Processor the eight multiplexer inputs are
otherwise occupied (see the chapter describing the microcode format) so that the
AM2910 condition code enable signal is a microinstruction bit and is used to
force a "pass" condition.

A difference also exists in the condition code select. When initiating a V:ME bus
operation (described below), it is possible to do a 3-way branch. With the proper
microinstruction, the following is possible:

1. If the VME busy flag is set, branch to the location specified in the general
field.

2. If the VME busy flag is not set, then test another selectable condition (for
example, negative) and either

a) branch to the location specified in the branch register for a pass condi­
tion, or

b) branch to the next instruction for a fail condition.

The scratchpad memory is 4 K words by 16 bits per word of one-cycle access
memory. If chosen as the source, the data word pointed to by the scratchpad
pointer is loaded onto PPB US. If chosen as the destination, the data word on the
bus is loaded into the location selected by the scratchpad pointer. The pointer
can be cleared or incremented under microcode control.

Because of the scratch pad-memory architecture, writes to the scratchpad memory
(and increments or decrements to the scratchpad-memory pointer when done
coincident with the write) are done in the cycle immediately following the cycle
with the write instruction. This means that a read of scratchpad memory cannot
be done in the cycle immediately following a cycle doing a scratchpad memory
write. An increment the scratchpad pointer executed in the next cycle is redun­
dant unless the scratchpad is coincidentally selected as the PPBUS destination.

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

Interrupt ID Register

VME Bus Interface Logic

Detailed Description 3 3

The byte-wide interrupt ID register is used to trigger an interrupt on the VME
bus. Loading a value into the register (selecting it as the PPBUS destination)
causes the following:

1. the interrupt flag in the GP status register is set;

2. if the interrupt enable flag (in the GP control register) is set, a VME inter­
rupt request is generated;

3. in response to the interrupt acknowledge, the value in the interrupt ID regis-
ter is returned to the host processor as the interrupt vector.

If the interrupt enable is not set, the interrupt flag can be polled. If the interrupt
flag is set when loading the interrupt ID register (signifying that the last interrupt
has not been acknowledged by the host processor), the interrupt ID register con­
tents are overwritten and the indication of the previous interrupt is lost. By read­
ing the VME control register (see below), the microcoder can determine if L'1ere
is a pending interrupt since the interrupt flag is replicated in this register as the
interrupt pending bit.

A major component of the Painting Processor is the VME bus interface. Six
registers interface this logic to PPBUS. The internal register format section of
this document contains details of these registers.

The VME control register controls the data transfer width (byte or word) and the
VME bus address modifier bits. The VME status register contains information
on the results of the last VME bus operation, accrued results, and the interrupt
status (pending or not pending).

Two registers are used to generate the 24-bit VME bus address: the high and low
VME address registers. These registers are implemented as a 24-bit counter:

o the low address register is the low 16 bits of the counter, and

o the high address register is the high 8 bits.

This counter can be incremented or decremented under microcode control.

In addition, the counter is buffered before being routed to the bus so that these
two registers can be updated while a VME data transfer is active. The VME
address registers specify a byte in VME address space. If doing word transfers,
the least significant address bit should be zero. (If it is not zero, the hardware
will execute the VME access as if it were zero but will flag an error.) If using the
increment or decrement capability when executing word transfers, the micro­
coder must count the VME address register twice.

The read- and write-data registers are used to store the data fetched on a VME
bus read cycle and the data to be written on a VME write cycle.

The following steps are used to execute a VME bus write:

1. The VME control register is initialized.

2. The VME address registers are loaded.

3. The VME write-data register is loaded.

+ Sun Microsystems, Inc. Revision 50 of I July 1985

34 Graphics Processor Hardware Reference Manual

4. The write is started using the miscellaneous control section of the microin­
struction.

5. Step 4 automatically causes the VME busy flag to be set

6. When the VME write completes, the VME ready flag (the complement of
the busy flag) is automatically set.

7. A new write or read can be initiated.

Steps 1-3 can be done in any order. Step 4 could be coincident with step 1or3
(but NOT 2) after the other registers are loaded. When the VME busy flag is set,
the VME control register and the VME write-data register cannot (hardware pro­
tected) be altered. The address registers can be updated when the VME busy flag
is set.

The following steps are used to execute a VME bus read:

1. The VME control register is initialized.

2. The VME address registers are loaded.

3. The read is started using the miscellaneous control section of the microin­
struction.

4. Step 3 automatically causes the VME busy flag to be set.

5. The requested data word or byte is loaded into the VME read-data register.

6. Step 5 automatically causes the VME ready flag to be set.

7. The VME read-data register is read by the Painting Processor.

8. A new read or write can be initiated.

Steps 1 and 3 can be done in the same microinstruction after step 2. Reading the
VME read-data register will return garbage while the VME busy flag is set. Test­
ing the busy flag will detennine when a valid data word is read. The VME
address registers can be altered when the VME busy flag is set.

If doing byte accesses, only the low half (bits 7 to 0) of the VME read and write­
data registers are used. The hardware routes the desired byte to/from the correct
VME data lines.

NOTE The remaining sections of the Painting Processor are located on the optional GB
board. That is, the GB board will contain all of the following features:

o Graphics Buffer Memory

o Integer Multiplier

o Mode Register

o PPPROM

If the optional board is not installed, no hardware restrictions exist on the GP
board but the firmware should not attempt to use any of the GB board features.

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

Graphics Buffer Memory

Detailed Description 35

The GB board memory is implemented with 64 DRAM chips providing lM 16-
bit words. As shown in the block diagram of the Painting Processor, there are
two data registers and one address pointer interfacing the DRAM to the PPBUS.
The Graphics Buffer ready flag is a testable branch condition and indicates
whether the hardware is ready to accept an address change or to execute a
DRAM access.

The DRAM has two operation modes: Normal and Read-Modify-Write (RMW).
In normal mode, the DRAM is a linear array with hardware assist for sequential
access. Fill mode is a submode of normal mode; a fill-mode write causes data to
be written into four consecutive locations in the same time required to write a
single location. The RMW mode is similar except that reads followed by a write
can be done to a single location. RMW mode is useful for the inner loops of hid­
den surface elimination algorithms.

Normal mode works as foliows: the address pointer is initialized by loading the
high and low Graphics Buffer address pointers. If a start-read command,
specified in the miscellaneous control field of the microinstruction, is coincident
with the load of the low address pointer, then a DRAM read is initiated. When
the read is complete three cycles later, the fetched data word is loaded into the
Graphics Buffer read-data register and can be read by selecting this register as
the PPBUS source.

The next sequential location can be read by executing a start-read command.
This command may be done coincident with a read of the Graphics Buffer read­
data register--or not, as desired. When the start-read command is received, the
Graphics Buffer address pointer is incremented and a memory read initiated.
When the read is complete three cycles later, the fetched data word is loaded into
the Graphics Buffer read-data register and can be read by selecting this register
as the PPB US source. In this way sequential reads can be performed.

Sequential writes start the same way: the high and iow Graphics Buffer address
pointers are loaded. But no start-read is done. Instead, a write to the Graphics
Buffer write-data register is done. The value just loaded into the write-data
register is then written into memory at the address in the pointer. When the
memory write completes, the pointer is incremented. It takes three cycles for the
memory write to finish.

Reads and writes can be mixed. The rules are:

o a start-read increments the pointer (unless coincident with a write to the low
address pointer),

o executes a read, and

o loads the Graphics Buffer read-data register.

A load of the Graphics Buffer write-data register

o executes a write, and then

o increments the address.

Fill mode can be used only in normal mode and only when doing writes. No
hardware protection is provided to prevent using fill mode with reads or in RMW

~) Sun Microsystems, Inc. Revision 50 of 1 July 1985

36 Graphics Processor Hardware Reference Manual

mode (other than to protect the hardware from damage) and results will be
indeterminate.

Fill mode is entered by writing the appropriate bits in the Graphics Buffer high
address pointer (see the chapter describing microcode format). Then the low
address pointer is loaded to define the location of the write. The low order two
address bits are ignored so that 4 consecutive locations on a modulo 4 boundary
are loaded. The actual memory write is triggered by choosing the Graphics
Buffer write-data register as the PPBUS destination. The value written into the
write-data register is the value written into the 4 memory locations. After the
write completes, the address pointer is incremented by 4 so that the next group of
4 locations can be written with a single load of the Graphics Buffer write-data
register.

In summary, fill-mode writes work similar to normal-mode writes except that 4
locations are written per load of the Graphics Buffer write-data register and the
address pointer is incremented by 4 following each write.

RMW mode works as follows: as above, the address pointer is initialized by load­
ing the high and low Graphics Buffer address pointers. A start-read command
must be coincident with the load of the low address pointer (the microcoder must
ensure this because there is no hardware protection), and a DRAM
read/modify/write (RMW) cycle is initiated. When the read is completed four
cycles later, the fetched data word is loaded into the Graphics Buffer read-data
register and can be read by selecting this register as the PPBUS source. But the
DRAM remains in the RMW state.

Reading the Graphics Buffer read-data register merely routes the register con­
tents to the PPBUS destination. The DRAM remains in the RMW state.

Loading the data write register causes new data to be written into the DRAM
thus completing the RMW cycle. The address pointer is then incremented and a
new RMW cycle initiated. Five cycles later, the next data word can be read from
the Graphics Buffer read-data register.

After reading the read-data register and while the RMW cycle is still active, it
may be determined that the data already in memory should not be modified. In
this case, a start-read command is used to abort the active RMW. After the
RMW is terminated, the address pointer is incremented and a new RMW cycle is
initiated. Four cycles later, the next data word can be read from the Graphics
Buffer read-data register.

The DRAM logic can remain in the state waiting for a write, a start-read, or an
exit from RMW mode for a maximum of 10 microseconds. This means that the
user must execute a write or a start-read (or exit) at least once every 10
microseconds while in this mode. It also means that the Painting Processor clock
cannot be halted if in RMW mode. If the clock is halted, the DRAM memory
will not be refreshed and the contents will be lost.

In normal, fill, or RMW mode, the Graphics Buffer busy (or ready, the opposite
state of the same flag) is used to synchronize the Painting Processor microcode
and the DRAM. Whenever a start-read or a load of the Graphics Buffer write­
data register is done, the flag is set to busy. Whenever a memory read completes

(~ Sun Microsystems, Inc. Revision 50 of 1 July 1985

AM29L517 Integer Multiplier

Mode Register

PP PROM

Detailed Description 37

signifying valid data in the Graphics Buffer read-data register, the flag is set to
ready. In nonnal or fill mode, the flag is also reset to ready when a memory write
completes. Thus a memory operation should not be initiated if the flag shows
that the Graphics Buffer is busy. Because of the hardware protection described
below, this test can be done coincident with the operation thereby saving micro­
code cycles.

Hardware protect is implemented in the DRAM to prevent the inadvertent initia­
tion of a new operation while the current operation is still busy. Protected opera-
•''"''" ;nl"l11f1p UVJ.1..:J J.J..a""'.&""''""'""'

o a start-read command,

o writing the high or low address JX>inters,

o writing the write-data register, or

o reading the read-data register.

Executing these operations when the Graphics Buffer busy flag is set is as if the
operations were never perfonned. If the microcode is also testing the Graphic~
Buffer busy flag, it is possible to loop on an instruction until it successfully com­
pletes.

In all modes, DRAM refresh is transparent to the user. However, refresh will
have a minor effect on the timings given above-another reason why it is neces­
sary to test the Graphics Buffer busy flag.

The AM29L5 l 7 is a single-cycle, 16-bit integer multiplier. The X and Y
operand registers are routed to the X and Y inputs of the AM29L517; each
operand register can be loaded in a single cycle. A 32-bit result is generated
which can be read in two cycles. Each independent multiply takes six cycles:
load X; load Y, delay one cycle to transfer the X and Y operands into the multi­
plier, delay one cycle to execute the multiply, read half of the result, and finally
read the other half of the result. Chained operations where X or Y does not
change or where the result is fed back into the input take less time.

The multiplier supplies a 32-bit result so that two 16-bit reads are necessary. The
high and low half results are made available on alternate reads of the result. A
bit in the mode register defines the default state as to which result half is returned
first. Each time the X or Y operand register is loaded, this default state is
engaged.

The mode register mode defines four AM29L517 inputs pertaining to unsigned
or two's complement number representations and the default state as to which
result half is returned first.

The PP PROM is identical to the VP PROM and is used for constant storage for
numeric operations (for example, reciprocal lookups} when using the
AM29L517.

'() Sun Microsystems, Inc. Revision 50 of 1July1985

5
VME Interface

VME Interface.. 41

5.1. Overview .. 41

5.2. Microstore Interface ... 41

5.3. Shared Memory .. 42

5.4. VME Bus Addressing (GP as a VME Slave) .. 42

Microstore Interface Registers .. 42

Shared Memory .. 43

5.5. Microstore Interf-ace·Register Formats.. 43

Board Identification ... 43

GP Control Register .. 44

GP Status Register .. 46

Microstore Address Register.. 46

Microstore Data Register .. 46

5.6. VME Interrupts ... 47

5.7. GP as VME Master... 48

5.1. Overview

5.2. Microstore Interface

VME lnterf ace

This section describes how the Graphics Processor looks to VME bus masters,
that is, the GP as a VME slave.

The microstore interface includes the registers to control the GP state, to deter­
mine GP status, and to load and verify the microstore. These registers are in a 32
Kbyte area in standard (24-bit) VME address space. Supervisory or non­
privileged data accesses only are allowed. The sequential access option is not
implemented.

The microstore registers include the following:

1. Board identification (8 bits),

2. GP control register,

3. GP status register,

4. Microstore address register,

5. Microstore data register.

The board identification is a fixed, 8-bit value which is read from the VME bus.
The bits are set by jumpers on the GP board, and one of the bits is used to indi­
cate the presence of a GB board. At system configuration time, this value is read
to provide a positive indication that the GP is indeed installed in the system.

The GP control register contains the bits to reset and to halt/start the Viewing
Processor and Painting Processor. In addition, the interrupt enable flag and the
clear interrupt flag are located here.

The GP status register contains Viewing Processor and Painting Processor
run/halt states, the interrupt enable state, the interrupt flag, the microstore column
state, and the eight status flags, four each under control of the Viewing Processor
and the Painting Processor.

The next two (microstore address and microstore data) registers are used to load
and read back the microstore.

o First an address is specified-a 15-bit value pointing to one 64-bit (of which
56 are used) microword.

o Then four 16-bit quantities, most significant word of the 56-bit microword
first, are loaded into the microstore data register and these four values are

• Sun Microsystems, Inc. 41 Revision 50 of 1 July 1985

42 Graphics Processor Hardware Reference Manual

5.3. Shared Memory

5.4. VME Bus Addressing
(GP as a VME Slave)

:Microstore Interface Registers

written into the microstore at the selected location. (The most significant
eight bits of the first write are the bits thrown away to make the 56-bit
word.) The microstore address is then automatically incremented by the
hardware to point to the next location and the next microword write can be
performed.

Reads are similar. The microstore address register is initialized and a series of
reads are performed to the microstore data register. Four 16-bit reads are
required to read each microword. After each set of four reads, the microstore
address register is automatically incremented by the hardware. If desired, reads
and writes can be mixed.

To simplify the hardware, word-only accesses are supported to these microstore
registers. Byte accesses are assumed to be word accesses. To simplify address
decoding, these registers are repeated 4K times in the 32 Kbyte address space.

The shared memory is a 32 Kbyte block of memory in the standard (24-bit)
address space immediately after the 32 Kbyte area used by the microstore regis­
ters. This memory is accessible via a supervisory or non-privileged data access.
Byte or word accesses can be made into the shared memory. The sequential
access option is not implemented.

The GP shared memory responds as fast as possible to VME accesses. On
writes, the data word and address are strobed into a latch and data acknowledge
is immediately returned. The data word is written into the shared memory within
360 nsec of data acknowledge. On reads, the data word is available within 360
nsec of being addressed by the VME and data acknowledge is generated at that
time.

This section describes registers affiliated with VME bus addressing, when the
Graphics Processor is acting as a slave to the VME.

The microstore interface registers respond to the following V:ME bus addresses.

Address Modifier = standard supervisory data access (3D) or

standard non-privileged data access (39)

23 16 15 14 3 2 1

+---------------+--+--------+--------+
!hardware switch! 01 XXXX !register!

+---------------+--+--------+--------+

hardware switch ::::> selects a 64 Kbyte block in VME

bit 15

xx xx
register

standard address space

::::> must be 0 to select interface registers

::::> don' t care

~ selects a microstore interface register

(see below for encoding)

() Sun Microsystems, Inc. Revision SO of 1 July 1985

Shared Memory

5.5. Microstore Interface
Register Formats

Board Identification

VME Interface 43

The hardware switch is the same as the shared memory hardware switch. The
microstore registers are:

o 00 - Board identification (read only) (write to this address will cause a bus
error acknowledgement)

o 01 - GP control register (write only)

o 01 - GP status register (read only)

o 10 - Microstore address register (read/write)

o 11 - Microstore data register (read/write)

The format of these registers is shown below. Because bits 14-3 are don't care,
these· four word locations are replicated 4K times in the 32 Kbyte page. Word­
only accesses are supported; byte accesses are interpreted as word accesses and
longword accesses cause the generation of a bus error acknowledge.

The shared memory responds to the following VME bus addresses.

Address Modifier = standard supervisory data access (3D) or

standard non-privileged data access (39)

23 16 15 14 1

+---------------+--+-----------------+
!hardware switch! 11 word

+---------------+--+-----------------+

hardware switch ~ selects a 64 Kbyte block in VME

standard address space

~ must be 1 to select shared memory bit 15

word ~ selects the word within the shared memory

The hardware switch is shared by the microstore interface registers. The word
field forms the 14-bit address into the 16K-by-16 shared memory. Byte or word
accesses are allowed into this memory. Longword accesses cause the generation
of a bus error acknowledge. (User programs may use longword read and writes to
the shared memory because the host processor will break these up into two con­
secutive word accesses.)

This section describes the microstore interface register formats, while the Graph­
ics Processor is acting as VME slave.

This read-only register contains a constant pattern, selectable as a hardware
option. This register can be read, for example at system configuration time, to
provide a positive indication that the GP is indeed installed in the system.

+ Sun Microsystems, Inc. Revision 50of1July1985

44 Graphics Processor Hardware Ref ere nee Manual

GP Control Register

NOTE

15 8 7 1 0

+------------+--~-----+--+

not used I pattern JGB!

+------------+--~-----+--+

not used ::) read as 1

pattern ~ constant 7-bit patternt defined in the hardware

GB ~ 0 indicates the GB is attached

1 indicates no GB is attached

The GB bit is a jumper, not a POSITIVE indication that the GB board is
installed. It does, however, enable signals between the boards; if this bit indi­
cates NO Graphics Buffer is present, then one cannot communicate with the GB
board even if it really is present.

The write-only GP control register is formatted as follows.

15 14 10 9 8 7 6 5 3 2 0

+-----+-----+---~+---+---+----------+----------+

lclrifl xxx lienbllxxxlrstlVP controllPP control I

+-----+-----+---~+---+---+----------+----------+

clrif clear interrupt flag: clears a pending

interrupt; must be written as a 1

to allow subsequent interrupt.

xxx

ienbl

rst

VP control ::)

PP control ::)

ignored

interrupt enable

00 interrupt

01 interrupt

10 interrupt

11 interrupt

reset

enable state

enabled

disabled

enable state

Viewing Processor control bits

Painting Processor control bits

unchanged

will toggle

The reset bit must be toggled under software control (set to logic 1 then returned
to logic 0) to generate a reset to the GP board. (If left in the 1 state, the GP board
will not function.) Reset does the following:

o puts both the VP and PP into halt mode

o disables GP-generated interrupts

o enables the reading of the floating point set A registers (set B can be read as
a diagnostic function)

o resets the FIFO and FIFO control logic

o sets the FIFO to the VP-to-PP direction

tBy current software convention, the 7-bit pattern is Ox.75.

~) Sun Microsystems, Inc. Revision 50 of 1 July 1985

o sets Graphics Buffer flag to ready.

The VP and PP control fields are fonnatted as follows.

+-----+---+----+

lstrtOlhltlcontl

+-----+---+----+

strtC => Start-from-0 is a modifier for the continue.

hlt => A halt stops the selected processor, that is,

disables its clocks.

cont => A continue starts the selected processor.

If strtO is also set, then the processor

starts at location O; otherwise it starts

at the location where it was last halted.

VME Interface 45

The software must create a rising edge with the cont and hlt signals to initiate the
desired function. This is done by first ensuring that the signal is 0 (perhaps by
writing a 0 into the bit). Then write a 1 into the desired bit to create the rising
edge. The strtO signal is sampled when the cont signal is loaded with a 1.

Asserting cont and hlt at the same time toggles the run/halt state. If this toggle
causes the processor to start, it will start at 0 if strtO is set or at the location where
it was last halted if strtO is not set.

When starting either the PP, VP, or both, the microcoder must be aware of the
pipeline nature of the instruction registers. When a continue is executed, the pro­
cessors will first execute the command already in the instruction register then
either continue with the instruction at the next address (strtO not asserted) or with
the instruction at location 0 (strtO asserted). In the latter case, the command
already in the instruction register may be bogus. Hardware protection is pro­
vided to prevent a VME bus access during this cycle but no protection exists to
prevent the possible corruption of internal GP data.

When starting up the GP, the following procedure is recommended:

1. Load all fields of location 0 in the microstore with no-ops-except for the
AM2910 field, which selects ''jump to zero.''

2. Execute a continue with strtO for both the VP and PP. (One bogus instruc­
tion will be executed, then the instruction at location 0 will be loaded and
continually executed. This primes the pipeline.)

3. Halt the VP and PP.

4. Load the desired microcode.

5. Start the VP and/or PP with a continue and strtO. The "jump to zero"
which is in the instruction register will be executed, but there will be no
negative side-effects.

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

46 Graphics Processor Hardware Reference Manual

GP Status Register

l\licrostore Address Register

l\'1icrostore Data Register

The 16-bit read-only GP status register is fonnatted as follows:

15 14 13 12 11 10 9 8 7 4 3 0

+----+---+------+--+---+--------+--------+---------+---------+
liflglien1mstorel llrstlVP statelPP statelVP statuslPP status!

I column I flags I flags

+----+---+------+--+---+--------+---------+---------+--------+

iflg ~ interrupt flag

0 = no pending interrupt

1 = pending interrupt

ien ~ interrupt enable

microstore

0 interrupt not enabled

1 interrupt enabled

column ~ indicates which microstore column will

be read or written on the next access to

microstore data register, reset to 0 on

each write to the microstore address

register (see below for column definition)

rst ~ reset, reflects the state of the GP control register

reset bit (the GP will not function if this bit is a logic li

VP state ~ Viewing Processor state

0 VP in halt state

1 = VP is run state

PP state ~ Painting Processor state

0 PP in halt state

1 = PP in run state

VP status

flags ~ four general-purpose flags set by the Viewing Processor

PP status

flags ~ four general-purpose flags set by the Painting Processor

This register is used to point into the microstore for reads and writes. The regis­
ter is fonnatted as follows for both reads and writes.

15 0

+-------------------+
I microstore address!

+-------------------+

This value points to a 56-bit microword. Bit 15 is not used when making
accesses to the microstore (a 32 Kbyte microstore is the maximum), but is other­
wise readable and writable from the VME bus.

This register is used to access the microword pointed to by the microstore
address register. The register is fonnatted as follows for both reads and writes.

() Sun Microsystems, Inc. Revision 50of1July1985

VME Interface 47

15 0

+---------------+
!microstore word!

+---------------+

The following steps are used to load the microstore:

1. Load the microstore address register to point to the first microstore word to
be written.

2. Write column 0 (bits 55 to 48) of the 56-bit microword. These eight bits
should be in the low byte (7 to 0) of the data word.

3. Write column 1 (bits 47 to 32) of the microword.

4. Write column 2 (bits 31 to 16) of the microword.

5. Write column 3 (bits 15 to 0) of the microword.

NOTE The column selected at any time is indicated by the microstore column bits which
are read back as part of the GP status register.

6. The hardware automatically increments the microstore address register.

7. Repeat steps 2-6 for the number of microinstruction words to be loaded.

Reads are similar.

NOTE Word-only accesses are allowed when accessing the microstore.

5.6. VME Interrupts The following describes the interrupt operation of the GP.

To initiate an interrupt cycle, the Painting Processor interrupt id register is loaded
(chosen as a PPBUS destination). This event will set the interrupt flag in the GP
status register if it is not already set. (If it was already set) the previous event
was not acknowledged by the host processor.) Note that the interrupt flag in the
GP status register and the pending interrupt bit in the PP VME status register are
the same bit.

If the interrupt enable bit in the GP control register is not set, no VME interrupt
cycle is initiated. Even if the interrupt enable is set later while the interrupt flag
is set, no VME interrupt cycle will be performed. Instead, the host processor
(actually, any V:rvffi master) must poll the interrupt flag. When detecting the
event (interrupt flag= 1), the host processor must clear the interrupt flag by a
write to the GP control register with the clrif bit set.

If the interrupt enable is set when the interrupt flag is set, then a VME interrupt
cycle is initiated. As per normal VME interrupt cycles, the GP will place the
interrupt id register on the VME bus when so insbUcted, and the host processor
uses this value as the interrupt vector to jump to the GP interrupt service routine.
In the interrupt service routine, the programmer must reset the interrupt flag by a
write to the GP control register with the clrif bit set. (If this bit remains set, no
further interrupts can be generated.)

Note that the state of the interrupt enable does not change and thus does not have
to be turned on again under software control. However, if it is possible to service

t) Sun Microsystems, Inc. Revision 50of1July1985

48 Graphics Processor Hardware Reference Manual

5.7. GP as VME Master

a GP interrupt before the GP has executed the interrupt cycle (for example,
several devices are tied to the same vector and then a poll is perfonned), the GP
will be poised to request an interrupt even though the interrupt has already been
serviced. To prevent this, the programmer must toggle the interrupt enable bit­
reset it, then set it again. Thus the interrupt service routine needs to access the
GP control register twice-once to clear the interrupt flag and the interrupt
enable, and again to tum the interrupt enable back on.

If the interrupt flag is set when the interrupt id register is loaded from the Paint­
ing Processor, then all that happens is that the new value is written into the inter­
rupt id register potentially defining a new interrupt vector. Even if the interrupt
enable is set, no new VME interrupt cycle is perfonned. It is possible that the
host processor is clearing the interrupt flag or the VME interrupt cycle is in­
progress at the exact moment that the interrupt id register is being altered and
unpredictable things could happen; for example, vectoring to the wrong location
in the host processor. (The probability of this occurrence is very small.) To
prevent this from happening, the PP microcoder should ensure that the interrupt
flag is not set (read the interrupt pending flag in the VME status register) before
writing the interrupt id register.

The Painting Processor has the capability of acquiring the VME bus and per­
forming a data transfer.

For VME accesses, the PP must select a slave as the data source or destination.
The slave is selected by the 24 address lines and the 6 address modifier bits. As
described in this reference manual, two VME address registers are used to com­
pute the 24-bit address. The address modifier bits are specified in the VME con­
trol register.

For VME writes, a data byte or word is transferred from the GP to the selected
slave. The data value is loaded into the VME write-data register. Byte or word
is selected by bits in the VME control register.

The miscellaneous controls field of the microinstruction is used to initiate the
write. If the GP is not the current bus master, the GP requests the bus. When the
request is honored or if the GP was already the bus master, the data transfer is
executed. When the transfer ends, the GP remains master until some other VME
device requests mastership.

VME reads are similar. The read is initiated by properly encoding the microcode
miscellaneous control field. If the GP is not the current bus master, it requests
the bus. When bus mastership is granted or if the GP was already the bus master,
the data transfer is executed. The returned data value is loaded into the VME
read data register. As with writes, the GP remains bus master until another VME
master requests the bus.

() Sun Microsystems, Inc. Revision 50 of 1July1985

6
Internal Registers

Internal Registers .. 51

6.1. Viewing Processor .. 51

Shared Memory Pointer .. 51

Source A, Source B, Destination Pointers .. 51

VP PROM Pointer .. 51

Floating Point Status Register ... 51

n Register ... 52

Interprocessor Flag #1 Register .. 52

Interprocessor Flag #2 Register .. 53

Status Flags/LED Register .. 53

Branch Register.. 54

Shared Memory ····~··· 54
Floating Point Registers .. 54

VP PROM Registers ... 54

FIFO Registers ... 55

29116 Registers.. 55

6.2. Painting Processor... 56

Scratchpad Pointer ... 56

Graphics Buffer Address Pointers... 56

VME Control Register ... 57

VME Status Register .. 57

VME Address Registers .. 58

Interrupt ID Register ... 58

6.1. Vie,ling Processor

Shared Memory Pointer

Source A, Source B,
Destination Pointers

VP PROM Pointer

Floating Point Status Register

Internal Registers

This section describes those internal registers specific to the Viewing Processor
portion of the GP.

The write-only shared memory pointer is formatted as follows:

15 0

+---------------------+
up/down counter

+---------------------+

Current shared-memory size is 16 Kwords. The up/down count of this register is
under microcode control.

These write-only pointers are formatted as follows:

15 12 11 0

+-----+------------------+
I XXX I up counter

+-----+------------------+

Each counter is implemented with three 4-bit counters allowing for up to 4K of
32-bit floating point numbers. The current design only implements 2K, thus bit
11 is unused. This up-only counter is under microcode control.

The write-only VP PROM pointer is formatted as follows:

15 0

+-------------------+
pointer

+-------------------+

This 16-bit read-only status register is formatted as follows. The bits of this
register are read back in their complement state.

t) Sun Microsystems, Inc. 51 Revision 50 of 1 July 1985

52 Graphics Processor Hardware Reference Manual

n Register

Interprocessor Flag #1
Register

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+----+----+----+~--+----+----+-----+---+---+---+-~+---+---+-----+

lasgnladenlainvlainxlaundlaovrl xxx lsgnldenlinvlinxlundlovrl xxx I

+----+----T----+~--+----+----+-----+---+---+---+-~+---+---+-----+

asgn = accrued sign bit

a den = accrued denormalized input to IT1-.Jl~iplie:-

ainv = accrued invalid input

ainx = accrued inexact result

aund = accrued underflow result

aovr = accrued overflow result

xxx = don't care

sg:---i = sign of last floating point result

den = denormalized input to multiplier

inv = invalid input

inx => inexact result

und => underflow result

ovr => overflow result

xxx = don't care

These signals are active low; that is, a logic 0 indicates the condition occurred.
The ''don't cares'' are read back as logic ones.

On each floating point result, the status flags are updated. The accrued status is
updated by logically ORing the new status with the old accrued status. The
accrued status is cleared on each read of this register.

This write-only register is formatted as follows:

15 4 3 0

+-----+-----+

I xxx I n

+-----+-----+

n register values override bits 12-9 in the following four 29116 instructions:

Bit Oriented Instructions
Rotate By n Bit Instructions
Rotate and Merge Instruction
Rotate and Compare Instructions

Replacing bits 12-9 in these four instructions by the value in then register allows
assignment of runtime variables.

This write-only register is formatted as follows:

'() Sun Microsystems, Inc. Revision 50of1July1985

Interprocessor Flag #2
Register

Status Flags/LED Register

15 14 13 8 7 0

+------+-----+--~-------+

I fdir I xxx I flags il I

+------+-----+--~-------+

fdir ~ FIFO direction control

power-on default is VP-to-PP direction

00: does not change direction

01: VP-to-PP direction

10: PP=to-VP direction

11: toggle FIFO direction

Internal Registers 53

The flags are read by the PP af\ the interprocessor flag #1 register.

This read-only register is formatted as follows:

15 11 10 9 8 7 0

+-------+-------~--+--+----------+

l's !FIFO status I 01 flags #2 I

+-------+-----------+--+----------+

FIFO sta'::i..:s ~

bit lC 0: FIFO has 0 or 1 word to be read

b.:. t. 9

flags #2

1: FIFO has 1 or more words to be read

0: FIFO direction is VP-to-PP

1: FIFO direction is PP-to-VP

~ flags set by the PP

This write-only register is fonnatted as follows:

15 14 13 4 3 0

+------+-----+--~--------+

I fpsell xxx !status flagsl

+------+-----+--~--------+

fpsel ~ floating point register set select;

power-on default selects A

00: no change

01: selects set A

10: selects set B

11: toggles set

status ~ bits set by the VP and read via the

VME bus as part flags of the GP status register

+ Sun Microsystems, Inc. Revision 50 of 1July1985

54 Graphics Processor Hardware Reference Manual

Branch Register

Shared Memory

Floating Point Registers

VP PROM Registers

The status flags also drive four LEDs on the GP board. A logic 0 turns on the
LEDs.

The fpsel is a diagnostic function allowing read-back of either set of floating
point registers. The floating point register sets A and B are duplicates, necessary
to increase the bandwidth into the registers. Both are written at the same time
with the same data. Reading the same location from either set should return the
same value. During normal operation, set A is read when chosen as a VPBUS
source. These bits allow set B to be read from the VPBUS for diagnostics.

When reading from set A, floating point source A pointer is used to specify the
location fetched. When reading from set B, the source B pointer is used.

The write-only branch register is formatted as follows:

15 14 0

+---+----------------+
I x I branch address I

+---+----------------+

The shared memory registers are 16-bit data registers which are formatted as fol­
lows:

15 0

+---------------------+
data

+---------------------+

The 32-bit floating point registers are formatted as follows:

31 16 h/1

+------------------------+
I most significant half I 0

+------------------------+

15 0 h/1

+------------------------+
I least significant half I 1

+------------------------+

Data read from the VP PROM are formatted as follows:

15 0

+---------------------+
data

+---------------------+

• Sun Microsystems, Inc. Revision 50 of 1 July 1985

Internal Registers 55

FIFO Registers Data read from the FIFOs (FIFO 1 and FIFO 2) are fonnatted as follows:

15 0

+---------------------+
data

+---------------------+

29116 Registers Data transferred to or from the 29116 are fonnatted as follows:

15 0

+---------------------+
data

+---------------------+

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

56 Graphics Processor Hardware Reference Manual

6.2. Painting Processor

Scratchpad Pointer

Graphics Buffer Address
Pointers

This section describes those internal registers specific to the Painting Processor
portion of the GP.

The write-only scratchpad pointer is fonnatted as follows:

15 0

+---------------------+
up counter

+---------------------+

The scratch pad memory is 4 K words. The count of this register is under micro­
code control.

The write-only Graphics Buffer address pointers used to access the dynamic
memory located on the Graphics Buffer board are fonnatted as follows-

high address pointer:

15 14 13 12 11 5 4 0

+------+------+-~---+-------+

I mode I fill I xxx !counter!

+------+------+-~---+-------+

mode ::::::> selects normal or read-modify-write mode;

powe~-on default is normal mode

00: no change to mode

0 1 • select normal mode

10: select RMW mode

11: toggle mode

fill::::::> selects fill mode (a normal submode);

power-on default is fill mode not enabled

00: no change

01: enable fill mode

10: disable fill mode

11: toggle state

counter ::::::> high-order continuation of the address

counter from the low address pointer

low address pointer:

15 0

+-------------+
counter

+-------------+

The Graphics Buffer pointer is a 21-bit counter. The counter increments on a
start-read command or a write command. More details are given in the following
chapter, which describes the microcode fonnat.

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

VME Control Register

V:ME Status Register

Internal Registers 57

This write-only register is formatted as follows:

15 7 6 1 0

+------+--------~--------+-----------+

I xxxx I address modifier !access type!

+------+--------~--------+-----------+

address modifier ::::) the VME bus address modifier bits

access type ::::) selects the access type on VME bus data transfers

0: byte

1: word

This read-only register is formatted as follows:

15 14 5 4 3 2 1 0

+----+-----+----~+----+---+---+--+

lipndi xxx lillacc!aerrlatolerrltol

+----+-----+----~+----+---+---+--+

ipnd ::::) interrupt pending flag (same as the GP control

register interrupt flag)

xxx ::::) don't care

illacc ::::) accrued illegal access, set if a word transfer

was executed with address bit 0 set to 1.

aerr ::::) accrued bus error

ato ::::) accrued time-out error

err ::::) bus error, set if a bus error acknowledge rather tha~

the normal dtack was returned on the last GP data

transfer

to ::::) time-out error, set if no dtack or bus error was returned

within 5 µs on the last VME data transfer

These signals are active low; that is, a logic 0 indicates the condition did occur.
The don't cares are read back as logic ones.

Word accesses to VMEbus byte locations are illegal. Since the least significant
address bit (AOO) is not output onto the VMEbus, a word access to a byte loca­
tion behaves like an access to a word location. Thus if a VME word transfer with
a byte address (AOO = 1) is specified, the VME transfer is executed as if AOO = 0
but the illacc error flag in the VME status register is set.

The accrued errors are updated by ORing the previous state of the accrued error
with the current state of the corresponding error signal. The accrued errors are
cleared each time this register is read (chosen as a PPBUS source).

+ Sun Microsystems, Inc. Revision 50of1July1985

58 Graphics Processor Hardware Reference Manual

Vl\IE Address Registers

Interrupt ID Register

PP PROM Pointer

Multiplier Mode Register

These write-only registers are formatted as follows­

high address register:

15 8 7 0

+-----+---------~------+

i xxx I up/down counter !

+-----+-----------------+

low address register:

15 0

+------------------+
up/down counter !

+------------------+

These two registers form a 24-bit up/down counter.

Writing this register generates an event which sets the intenupt flag in the GP
status register and the interrupt pending flag in the VME status register. If
enabled, this event generates a VME interrupt cycle.

15 8 7 0

+-----+----------------+
I xxx I interrupt vector!

+-----+----------------+

The write-only PP PROM pointer is formatted as follows:

15 0

+-------------------+
pointer

+-------------------+

This write-only register controls the number representation into the AM29L517
multiplier, unsigned or two's complement

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

n Register

NOTE

Internal Registers 59

15 5 4 3 2 1 0

+-----+------+-----+------+---+

I xxx lmpenbll mode lformatlrndl

+-----+------+-----+------+---+

mpenbl ~ selects most significant (0) or least significant (1)

half of multiplier product to be read first (see below)

mode ~ AM29L517 XM and YM bits

format ~ AM29L517 format adjust bit

rnd ~ AM29L517 round control

A multiplier operation works as follows. First one or both of the X and Y
operand registers are loaded. A load of either the X or Y operand register causes
the mpsel flip-flop to be set if mpenbl = 1 or reset if mpenbl = O; (loading both
causes a redundant set or reset of the mpsel flip-flop.) After delaying two cyc1es
for the multiply execution, the multiplier product is read. If the mpsel flip-flop=
0, then the most significant half word is read; if the mpsel flip-flop= 1, then the
least significant half word is read. After each read of the multiplier result, the
mpsel flip-flop is toggled so that the next read enables the other half of the result.
Successive reads thus read alternative halves of the product.

It is not necessary to read both halves of a result if,for example, it is known that
the result is 16 bits or less.

If the multiplier result is routed to either the X or Y operand register, then the
half selected by the mpenbl bit will be read.

This write-only register is formatted as follows:

15 4 3 0

+-----+-----+

I xxx I n

+-----+-----+

n register values override bits 12-9 in the following four 29116 instructions:

Bit Oriented Instructions
Rotate By n Bit Instructions
Rotate and Merge Instruction
Rotate and Compare Instructions

Replacing bits 12-9 in these four instructions by the value in then register allows
assignment of runtime variables.

'() Sun Microsystems, Inc. Revision 50 of 1 July 1985

60 Graphics Processor Hardware Reference Manual

Interprocessor Flag #2
Register

Interprocessor Flag #1
Register

Status Flag/LED Register

Branch Register

This write-only register is formatted as follows:

15 8 7 0

+-----+-----------+
I xxx I flags #2 I

+-----+-----------+

The flags are read by the VP as the interprocessor flag #2 register.

This read-only register is formatted as follows:

15 11 10 9 8 7 0

+-------+-------~--+--+----------+

l's IFIFO status I 11 flags #1 I

+-------+-------~--+--+----------+

FIFO status :::::>

bit 10 0: FIFO has 0 or 1 word to be read

bit 9

1: FIFO has 1 or more words to be read

0: FIFO direction is VP-to-PP

1: FIFO direction is PP-to-VP

flags #1 :::::> flags set by the VP

This write-only register is formatted as follows:

15 4 3 0

+-----+------------+
I xxx !status flags I

+-----+------------+

These flags are read via the VME bus as part of the GP status register. They also
drive four LEDs; a logic 0 turns on the corresponding LED.

The write-only branch register is formatted as follows:

15 14 0

+---+----------------+
I x I branch address I

+---+----------------+

• Sun Microsystems, Inc. Revision 50 of 1 July 1985

Scratchoad Memorv - - - -- - - . ..

GB Data Registers

VME Data Registers

PP PROM Registers

Multiplier X, Y, and Result
Registers

FIFO Registers

29116 Registers

Internal Registers 61

The scratchpad registers are 16-bit data registers which are formatted as follows:

15 0

+---------------------+
data

+---------------------+

The Graphics Buffer read- and write-data registers are formatted as follows:

15 0

+---------------------+
data

+---------------------+

The VME read- and write-data registers are formatted as follows:

15 0

+---------------------+
data

+---------------------+

Data read from the PP PROM are formatted as follows:

15 0

+---------------------+
data

+---------------------+

The multiplier registers are formatted as follows:

15 0

+---------------------+
data

+---------------------+

Data read from the FIFOs (FIFO I and FIFO 2) ~formatted as follows:

15 0

+---------------------+
data

+---------------------+

Data read from the 29116 are formatted as follows:

15 0

+---------------------+
data

+---------------------+

+ Sun Microsystems, Inc. Revision 50 of 1 July 1985

7
Microcode Format

Microcode Format ... 65

7 .1. Viewing Processor Microcode ... 65

AM29 I 16 Instruction ... 66

Miscellaneous Controls ... 66

Source and Destination .. 67

Hardware Protection .. 69

Branch Logic ... 70

Count Hardware ... :... 71

General Field 71

Floating Point .. 71

7 .2. Painting Processor Microcode .. 75

AM29116 Instruction ... 75

Miscellaneous Controls ... 76

Source and Destination .. 77

Hardware Protection .. 80

Branch Logic ... 81

Count Hardware ... 83

General Field ... 83

Graphics Buffer Board Memory (Graphics Buffer) 83

PP PROM Pointer ... 58

Multiplier Mode Register ... 58

n Register... 59

Interprocessor Flag #2 Register .. 60

Interprocessor Flag #1 Register .. 60

Status Flag/LED Register 60

Branch Register .. 60

Scratchpad Memory .. 61

GB Data Registers .. 61

VME Data Registers ... 61

PP PROM Registers .. 61

Multiplier X, Y, and Result Registers... 61

FIFO Registers ... 61

29116 Registers.. 61

7 .1. Viewing Processor
Microcode

Microcode Format

The microcode for the Viewing Processor is 56 bits wide and is arranged in
twelve fields.

55 54 53 52 51 50 49 44 43 40 39 36 35 32 31 16 15 0

+--+--+--+--+--+---+--------+----~---+------+-----+----------+----~--------+

lfpldslselnsldelh/llsrc/destl2910 instlbranchl dregl29116 instlvariable field!
+--+--+--+--+--+---+--------+----~---+------+-----+----------+----~--------+

fp

ds

se

ns

de

h/l =>

src/dest

floating point type instruction, controls variable field

0: general field enabled

1: floating point operation enabled

data source to AM2910 D input

0: general field selected

1: branch register is selected

status (zero, negative, carry, overflow) update enable

0: enables status update

1: disables status update

n field select

0: instruction register n field selected

(part of the 29116 inst field)

1: n register selected

destination enable, controls use of dreg field

1: dreg is used for miscellaneous controls

0: dreg is used to select AM29116 destination

register in a 2-address instruction

high/low specifier for floating point operations (Weitek chips

and floating point registers)

0: most significant word

1: least significant word

~ selects VPBUS source and destination (see below for encoding)

2910 inst = AM2910 sequencer instruction (see AMD literature)

branch = branch condition code select

dreg =
29116 inst =

destination register or miscellaneous controls

16-bit AM29116 instruction (see AMD literature)

variable field = variable format field: general field or floating point

~) Sun Microsystems, Inc. 65 Revision 50 of 1 July 1985

66 Graphics Processor Hardware Reference Manual

AM29116 Instruction The 29116 inst, de, dreg, ns and se fields apply to the AM29 l l 6 microprocessor.
The 16-bit 29116 instruction is described in detail in the AMD literature.

The GP supports two address operations with the AM29 l l 6. For example, the
following is possible:

Rm <-- Rn op ACC

Rn is specified by the least significant 5 bits of the 29116 inst field. If de is 0,
then Rm is selected by the dreg field. (If de is 1, then m equals n; that is, the
source and destination are the same.) Since dreg is only four bits, Rm and Rn
must be in same group of 16 registers within the AM29116, 0 to 15 or 16 to 31.
If de is 1, the dreg field is used as described below in the miscellaneous controls
section, and the least significant four bits of the AM29 l l 6 instruction are not
altered.

NOTE The AM29 J J 6 does not support two address instructions with immediate instruc­
tions. For an immediate instruction, de must equal 1.

For AM29116 bit-oriented instructions (test bit, set bit, etc.), bits 12-9 of the
AM29116 instruction select n, the bit to be operated on. Having this bit hard­
coded in the microinstruction severely limits its usefulness. Therefore it is possi­
ble to substitute a runtime value (from then register) for the hardcoded value.
ns=O selects the assemble time value, ns= 1 selects the n register.

The bit se controls the updating of the status register containing the AM29116
flags: zero, negative, carry, and overflow. se=O enables updating, se= 1 disables
updating.

The carry status bit changes its meaning slightly for subtract operations. For
these operations, a logic 1 indicates no borrow and a 0 indicates borrow. This
has significance when doing double precision operations.

NOTE It is the responsibility of the microcoder to ensure that it makes sense to use the
de or ns capabilities. For example, if the microinstruction is a non-register
operation, setting de to 0 and enabling the dreg field into the AM29 J J 6 could
create havoc.

Miscellaneous Controls If de=l, then the dreg field is used for the following functions:

~) Sun Microsystems, Inc. Revision 50 of 1 July 1985

Source and Destination

Microcode Format 67

0000 no operation

0001 clear shared memory pointer

0010 count up shared memory pointer

0011 count down shared memory pointer

0100 count up floating point source A pointer

0101 count up floating point source B pointer

0110 count up floating point destination pointer

0111 count up floating point source A and B pointers

1000 count up floating point source A and destination pointers

1001 count up floating point source B and destination pointers

1010 count up floating point source A, B and destination pointers

1011 count up shared memory pointer and floating point

source A and source B pointers

1100 count up shared memory pointer and floating point

destination pointer

1101 count down shared memory pointer and count up

floating point source A and source B pointers

1110 count down shared memory pointer and count up

floating point destination pointer

1111 reserved

A single VPBUS operation can be done during each VP cycle. The
source/destination field is encoded as follows:

VPBUS source --> VPBUS destination

000000 reserved - no source or destination

000001 interprocessor flag #2 register --> AM29116
000010 AM29116 --> status flag/LED register
000011 AM29116 ~-> n register

000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100

reserved

AM29116 --> interprocessor flag fl register

AM29116 --> FIFO #1
AM29116 --> AM29116
AM29116 --> branch register

AM29116 --> VP PROM pointer

AM29116 --> shared memory

AM29116 --> floating point register
AM29llf. --> floating point source A pointer

AM29116 --> floating point source B pointer

AM29116 --> floating point destination pointer

AM29116 --> shared memory pointer

reserved

FIFO 42 --> AM29116
FIFO f 2 --> branch register

FIFO t2 --> VP PROM pointer

reserved

'() Sun Microsystems, Inc. Revision 50 of 1 July 1985

68 Graphics Processor Hardware Reference Manual

010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
lJOOOO
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110-

101111
110000
110001
110010

110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

FIFO f 2 --> shared memory pointer
shared memory --> FIFO fl
shared memory --> AM29116
shared memory --> branch register
shared memory --> VP PROM pointer
reserved
shared memory --> floating point register
shared memory --> floating point source A pointer
shared memory --> floating point source B pointer
shared memory ~-> floating point destination pointer
shared memory --> shared memory pointer
VP PROM --> FIFO tl
VP PROM --> AM29116
VP PROM --> shared memory
VP PROM --> floating point register
reserved
general field --> interprocessor flag tl register

general field --> FIFO f 1
general field --> AM29116
general field --> branch register
general field --> VP PROM pointer
general field --> shared memory
general field --> floating point register
general field --> floating point source A pointer
general field --> floating point source B pointer
general field --> floating point destination pointer

general field --> shared memory pointer
reserved
floating point status register --> AM29116
floating point status register --> shared memory
floating point status register --> floating point register

reserved
reserved
floating point register --> FIFO tl
floating point register --> AM29116
floating point register --> branch register
floating point register --> VP PROM pointer
floating point register --> shared memory
floating point register --> floating point register
floating point register --> floating point source A pointer
floating point register --> floating point source B pointer
floating point register --> floating point destination pointer

floating point register --> shared memory pointer

FIFO #1 and FIFO #2 are the same FIFO. FIFO #1 is the VP-to-PP direction and
FIFO #2 is the PP-to-VP direction.

When the AM29116 is chosen as the bus source, its internal Y bus is routed to
the VPBUS. When the AM29116 is chosen as the destination, its internal D
register is made transparent until the end of the cycle at which time it is latched
for possible use in subsequent instructions.

+ Sun Microsystems, Inc. Revision 50 of 1July1985

Hardware Protection

Microcode Format 69

When the shared memory is chosen as the VPBUS destination, the actual write
into the memory is executed in the next cycle. This means that a write followed
by a read in consecutive cycles is illegal. There is no hardware protection against
this occurrence and results are indeterminate.

Similarly when a floating point register is chosen as the VPBUS destination, the
actual write into the memory is executed in the next cycle. However because
there are separate source and destination pointers, there is no restriction for reads
on subsequent cycles. Also because of the separate pointers, it is possible to
move a floating point register from one location to another in one microinsttuc-
ti on.

In both of these cases, after the write the microcoder must wait at least one cycle
before reading the data written.

Another hardware constraint involves the interprocessor flag register. It is not
possible to read this register into the AM29116 and manipulate it in a single
cycle. It must first be read into the AM29116 D-latch and then manipulated by
subsequent instructions.

Protection is implemented in the hardware to prevent the following operations:

o reading an empty FIFO #2,

o writing a full FIFO # 1,

o reading or writing the FIFO when in the wrong direction.

If these operations are attempted, the hardware subsection never receives the
command; that is, as far as the hardware is concerned, it is as if the instruction
was never attempted. This allows the operation to be looped until successful
completion. For example, the following statement will adapt to the FIFO state:

HERE: MOVE Rn --> FIFO #1; BR HERE IF FIFO #1 IS FULL.

Note that since it is unknown how many times the instruction will be attempted,
no arithmetic operation other than the move to FIFO #1 should be performed.
For example, with the following instruction, the final value of Rn is unknown; it
will be incremented once for each unsuccessful attempt and once for the success­
ful attempt.

HERE: Rn <-- Rn+l; MOVE Rn --> FIFO tl; BR HERE IF FIFO #1 IS FULL.

FIFO #1 and FIFO #2 are actually the same "reversible" FIFO. FIFO #1 is for
VP-to-PP ttansfers and FIFO #2 is for PP-to-VP ttansfers. It is therefore
undefined for the VP to read FIFO #2 while the direction is VP-to-PP, and to
write FIFO #1 while the direction is PP-to-VP. The branch condition codes are
defined as follows:

+ Sun Microsystems, Inc. Revision 50 of 1July1985

70 Graphics Processor Hardware Reference Manual

Branch Logic

Direction Condition Code
--------- --------------
VP-to-PP FIFO n full or not full is valid
VP-to-PP FIFO #2 is always not empty
PP-to-VP FIFO n is always not full
PP-to-VP FIFO t2 empty or not empty is valid

No hardware protection is provided for reading the VP PROM before the data
word is valid.

Because slow PROMs are used to provide the needed size, there is a two cycle
delay between loading the VP PROM pointer and having access to valid data.
No hardware protect is implemented to ensure valid data; the microcode must
delay at least the minimum cycles.

The branch logic includes the AM2910 instruction, the branch condition select
field, and the ds bit. The AM2910 microsequencer is described in the AMD
literature.

The branch field selects the branch condition select option as follows:

0000 Zero
0001 Negative
0010 Carry
0011 Overflow
0100 FIFO tl not full
0101 FIFO t2 not empty
0110 Last floating point result negative
0111 Unconditional pass
1000 Not zero
1001 Non-negative
1010 No carry
1011 No overflow
1100 FIFO tl full
1101 FIFO t2 empty
1110 Last floating point result non-negative
1111 Never pass

The ds bit is used to determine whether the contents of the branch register or the
general field (see below) are routed to the D input of the AM2910, possibly the
address of the next microinstruction. ds==O selects the general field; ds= 1 selects
the contents of the branch register.

The status bits are updated at the end of each cycle (conditional update for the
zero, negative, cany, and overflow flags), and can be used at the beginning of the
next cycle for conditional branches. For example, to determine if the AM29116
Rn and accumulator are equal, the code would be as follows.

() Sun Microsystems, Inc. Revision 50 of 1July1985

Count Hardware

General Field

Floating Point

Microcode Format 71

NO DESTINATION <-- Rn - ACC, SE
NOP; BR TO EQUAL IF ZERO STATUS FLAG IS SET

The miscellaneous controls are used to enable the counting of the shared memory
pointer. If counting coincides with a shared memory read cycle or on a cycle
which is not accessing the shared memory, the count occurs at the end of the
current cycle. For a shared memorj write cycle, the count is executed at the end
of the next cycle because, as explained above, the write is done in the next cycle.
If the current cycle is a shared memory write with shared memory count enabled
then the next consecutive cycle should not be a shared memory read cycle or a
non-shared-memory-access cycle with shared memory count enabled.

The floating point register pointers can be incremented under microcode control.
Similar to the shared memory pointer, a restriction exists on the incrementing of
the floating point destination pointer after a write cycle. If the current cycle is a
VPBUS write to the floating point registers with the destination pointer incre­
ment enabled, then the next cycle should not enable the incrementing of the des­
tination pointer unless it is also a VPBUS write to the floating point registers.

The general field is a way of specifying a value in the microcode and using it in
one of several places. For example, it could be an address pointing to the possi­
ble next microinstruction (see ds bit above). It could be a constant loaded into an
AM29116 register. It could be an address pointing to a pre-defined constant in
the floating point registers. The fonnat of variable field when fp=O is as follows.

15 0

~--------------------------------~---+

general field

+--------------------------------~---+

The general field is routed onto the VPBUS bus if selected by the source field
and/or routed to the D input of the AM2910 microsequencer and bank select
logic if selected by the ds bit.

In the discussion below, it will be helpful to refer the Weitek data sheet describ­
ing the floating point processor, the Weitek 103211033. 5 MHz Weitek parts are
used in the Graphics Processor.

If the fp bit is a 1, then the instruction is a floating point operation, and the for­
mat of the variable field is as follows.

+ Sun Microsystems, Inc. Revision 50 of 1July1985

72 Graphics Processor Hardware Reference Manual

15 10 9 6 5 4 3 2 1 0

+----------+--------+----+--+----~+--+

I reserved lfunctionlloadlasjunloadjstj

+----------+--------+----+--+----~+--+

function ~ Weitek function (see Weitek literature)

Weitek load control (see Weitek literature) load

as

~

(The function and load bits are wired in parallel to

the two Weitek chips.)

~ A source (to Weitek chips) select

0 - register A set

1 - result from Weitek chips (feedback loop

for chained operation)

unload ~ select which chip receives the unload enable

00 - neither chip

st ~

01 - ALU

lC - Multiplier

11 - illegal (indeterminate results)

enables (st=l) the storing of a floating point

result into the floating point register

pc~nted to by the destination pointer

If a floating point operation is selected (fp= 1), then the microcode should not
select the general field as the source to the VPBUS or as the source to the
AM2910. However, there is no hardware protection to prevent this.

If not doing a floating point operation (fp=O), the load is forced to nop, as is
forced to 0, and the unload field and store enable are disabled.

When running in flowth.rough mode, Lhe instruction sequence for a floating point
operation is as follows.

cycle

0

1

2

3

4

5

6

7

8

9

initiate floating point operation, most significant word of

source A (or Weitek result) and source B are loaded

initiate floating point operation, load least significant word

delay - no floating point operation

delay - no floating point operation

delay - no floating point operation

delay - no floating point operation

enable unloading of most significant half

enable unloading of least significant half

unload most significant word of result C into floating point

registers and/or back into Weitek chipst

unload least significant wordt

The next floating point instruction can be started at cycle 6, or anytime thereafter.
More delays can be inserted if desired as long as another floating point operation
is not initiated.

tUnload must follow corresponding enable by two cycles.

() Sun Microsystems, Inc. Revision 50of1July1985

Microcode Format 73

When running in pipeline mode, the instruction sequence for a floating point
operation is as follows:

cycle

0 floating point operation, most significant word of

source A (or Weitek result) and source B are loaded

1 floating point operation, least significant word

2 PA (pipeline advance)

3 PA

4 PA

5 PA

6 PA

7 PA

8 PA enable unloading of most significant half

9 PA enable unloading of least significant half

10 unload most significant word of result C into floating point

registers and/or back into Weitek chipst

11 unload least significant wordt

A pipeline advance is any floating point operation. If a meaningful operation can
be done-great. If not, a dummy operation must be initiated. That is, the Weitek
chip pipeline only proceeds when new operations are input to the chip. A float­
ing point operation or pipeline advance can be done in parallel with the result
unload.

When unloading the result, four actions are possible:

1. nothing (perhaps only the status was used),

2. the result is stored in the floating point registers, in which case the st bit is
set,

3. the result is used in a chained operation in which case the as bit is set, or

4. both 2 and 3.

When enabling the unload, the Weitek chips always output data two cycles later.
Thus, the unloads and stores are always coupled.

Because of the shared bus lines into the floating point registers, it is illegal to
select the floating point registers as the destination of a VPBUS operation in one
cycle and to store a Weitek chip result into the floating point registers in the next
microinstruction cycle. ('The reason for the one cycle offset is because of the one
cycle delay between choosing the floating point registers as the VPBUS destina­
tion and the actual write into the floating point registers.) Results are indeter­
minate.

The h/1 bit is used to specify the least significant address bit to the floating point
registers and the most/least significant designator for the Weitek unload com­
mand. It thus defines the most and least significant words of a 32-bit floating
point number. The definition is as follows:

tUnload must follow corresponding enable by two cycles.

~ Sun Microsystems, Inc. Revision 50 of 1 July 1985

7 4 Graphics Processor Hardware Reference Manual

o 0: most significant word

o 1: least signficant word

Thus, 32-bit floating point numbers are aligned on even word boundaries.

When initiating a floating point operation, first the most significant word then the
least significant word must be routed from the floating point registers to the
Weitek chips; the h'l bit controls this procedure. If a chained operation is being
performed, the Weitek result must be unload most significant first; this is also
specified by the h'l bit When storing a Weitek result, this bit controls the unload
order from the Weitek chips and the load order into the floating point registers.
And finally when accessing the floating point registers from the VPBUS (source
or destination) this bit defines the least significant address bit into the registers.

() Sun Microsystems, Inc. Revision 50of1July1985

7 .2. Painting Processor
Microcode

Microcode Format 7 5

The microcode for the Painting Processor is 56 bits wide and is arranged in
eleven fields.

55 54 53 52 51 50 44 43 40 39 36 35 32 31 16 15 0

+----+--+--+--+--+--------+------~-+------+-----+----------+------~------+

lccenldslselnsldelsrc/destl2910 instlbranchl dregl29116 instlvariable field!

+----+--+--+--+--+--------+------~-+------+-----+----------+------~------+

AM29116 Instruction

ccen = condition code enable (AM2910 control input, see AMO

literature)

0: branch field select AM2910 pass condition

1: forces pass condition to AM2910

ds = data source to AM2910 D input

0: general field selected

1~ hr~n~h register is selected

se = status (zero, negative, carry, overflow) update enable

0: enables status update

1: disables status update

ns = n field select

0: instruction register n field selected (part of the

29116 inst field)

1: n register selected

de = destination enable, controls use of dreg field

src/dest =

2910 inst =
branch =
dreg =
29116 inst =
general field =

1: dreg is used for miscellaneous controls

0: dreg is used to select AM29116 destination

register in a 2-address instruction

selects PPBUS source and destination

(see below for encoding)

AM2910 sequencer instruction (see AMD literatu~e)

branch condition code select

destination register or miscellaneous controls

16-bit AM29116 instruction (see AMD literature)

general (or variable) field

The 29116 inst, de, dreg, ns and se fields apply to the AM29116 microprocessor.
The 16-bit 29116 instruction is described in detail in the AMD literature.

The GP supports two address operations with the AM29116. For example, the
following is possible:

Rm <-- Rn op ACC

Rn is specified by the least significant 5 bits of the 29116 inst field. If de is 0,
then Rm is selected by the dreg field. (If de is 1, then m equals n; that is, the
source and destination are the same.) Since dreg is only four bits, Rm and Rn
must be in same group of 16 registers within the AM29116, 0 to 15 or 16 to 31.
If de is 1, the dreg field is used as described below in the miscellaneous controls
section, and the least significant four bits of the AM29116 instruction are not
altered.

() Sun Microsystems, Inc. Revision 50 of I July 1985

7 6 Graphics Processor Hardware Reference Manual

l\1iscellaneous Controls

NOTE

NOTE

The AM29 J J 6 does not support two address instructions with immediate instruc­
tions. For an immediate instruction, de must equal 1.

For AM29116 bit-oriented instructions (test bit, set bit, etc.), bits 12-9 of the
AM29116 instruction select n, the bit to be operated on. Having this bit hard­
coded in the microinstruction severely limits its usefulness. Therefore it is possi­
ble to substitute a runtime value (from the n register) for the hard-coded value.
ns=O selects the assemble time value, ns= 1 selects the n register.

The bit se controls the updating of the status register containing the AM29116
flags: zero, negative, cany, and overflow. se=O enables updating, se=l disables
updating.

The cany status bit changes its meaning slightly for subtract operations. For
these operations, a logic 1 indicates no borrow and a 0 indicates borrow. This has
significance when doing double precision operations.

It is the responsibility of the microcoder to ensure that it makes sense to use the
de or ns capabilities. For example, if the microinstruction is a non-register
operation, setting de and enabling the dreg field into the AM29 J J 6 could create
havoc.

If de= 1, then the dreg field is used for the following functions:

0000 no operation
0001 increment VME address registers
0010 decrement VME address registers
0011 clear scratchpad-memory pointer
0100 increment scratchpad-memory pointer
0101 start-read: start Graphics Buffer read

(see Graphics Buffer operation described below)
0110 initiate VME bus read (if VME is ready)

(no 3-way branch option)
0111 initiate VME bus write (if VME is ready)

(no 3-way branch option)
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 initiate VME bus read (if VME is ready)

(with 3-way branch option)
1111 initiate VME bus write (if VME is ready)

(with 3-way branch option)

The 3-way branch is discussed below in the branch logic section.

(~ Sun Microsystems, Inc. Revision 50 of 1 July 1985

tdicrocodeFormat 77

Source and Destination The source/destination field is encode-d as follows. A ~1n{!le PPBUS ooeration - - ----g- - - - - &

can be done during each PP cycle.

PPBUS source --> PPBUS destination

0000000 reserved - no source or destination

0000001 interprocessor flag fl register --> AM29116

0000010 AM29116 --> status flag/LED register

0000011
0000100

0000101
0000110

0000111

0001000
0001001

0001010

0001011

0001100

0001101

0001110

0001111
0010000

0010001

0010010

0010011

0010100

0010101

0010110

0010111

0011000

0011001

0011010

0011011

0011100

0011101
0011110

0011111
0100000

0100001

0100010

0100011

0100100

0100101

0100110

0100111

0101000

0101001

AM29116 --> n register

.A...M29116 --> branch register

AM29116 --> scratchpad pointer

AM29116 --> interprocessor flag f 2

AM29116 --> PPPROM pointer

AM29116 --> FIFO f 2

AM29116 --> AM29116
AM29116 --> scratchpad memory

AM29116 --> Graphics Buffer write-data

Graphics Buff er is set busy
DO NOT USE (AM29116 --> no where)

AM29116 --> VME write-data register

AM29116

AM29116
AM29116

AM29116

AM29116

AM29116

-->
-->
-->
-->

-->
-->

multiplier X operand

multiplier Y operand

multiplier mode register

interrupt id register

VME high address register

VME low address register

AM29116 --> VME control register

DO NOT USE (AM29116 --> no where)

register and

AM29116 --> Graphics Buffer high address pointer

AM29116 --> Graphics Buffer low address pointer

PPPROM --> FIFO f 2

PPPROM --> AM29116
PPPROM --> scratchpad memory
PPPROM --> Graphics Buffer write-data register and

Graphics Buffer is set busy

DO NOT USE (PPPROM --> no where)

PPPROM --> VME write-data register

PPPROM --> multiplier X operand
PPPROM --> multiplier Y operand

DO NOT USE (no source or destination)

Graphics Buffer read-data register --> AM29116
Graphics Buffer read-data register --> VME high address register

Graphics Buffer read-data register --> VME low address register

Graphics Buffer read-data register --> branch register

Graphics Buffer read-data register --> scratchpad pointer

DO NOT USE (no source or destination)

Graphics Buffer read-data register --> PPPROM pointer

reserved

DO NOT USE (no source --> AM29116)

t) Sun Microsystems, Inc. Revision 50 of 1 July 1985

78 Graphics Processor Hardware Reference Manual

0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111
1000000
1000001

reserved

reserved

reserved

DO NOT USE (no source --> VME write-data register)

DO NOT USE (no source --> multiplier X operand)
DO NOT USE (no source --> multiplier Y operand)

reserved
reserved

reserved
reserved

reserved
reserved

reserved
reserved

reserved

VME read-data register --> AM29116
reserved
reserved

DO NOT USE (VME read-data register --> no where)

VME read-data register --> VME write-data register

VME read-data register --> multiplier X operand

VME read-data register --> multiplier Y operand

VME status register --> FIFO f 2
VME status register --> AM29116

1000010 _VME status register --> scratchpad memory

1000011 VME status register --> Graphics Buffer write-data register

and Graphics Buff er is set busy
1000100 general field --> branch register
1000101 scratchpad pointer

1000110 interprocessor flag 12
1000111 PPPROM pointer

1001000 FIFO t2
1001001 AM29116

scratchpad memory 1001010
1001011 Graphics Buffer write-data register and

1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011

Graphics Buff er is set busy
DO NOT USE (general field --> no where)
general field --> VME write-data register

general field --> multiplier X operand
general field --> multiplier Y operand

general field --> multiplier mode register

general field --> interrupt id register
general field --> VME high address register

general field --> VME low address register

general field --> VME control register

DO NOT USE (general field --> no where)
general field --> Graphics Buffer high address pointer

general field --> Graphics Buffer low address pointer

scratchpad memory --> FIFO f 2
scratchpad memory --> AM29116
reserved
scratchpad memory --> Graphics Buffer write-data register and

Graphics Buffer is set busy

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

Microcode Format 79

1011100 DO NOT USE (scratchpad memory --> no where)
1011101 scratchpad memory --> VME write-data register
1011110 scratchpad memory --> multiplier X operand
1011111 scratchpad memory --> multiplier Y operand
1100000 reserved

1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010

1110011

1110100
1110101
1110110
1110111
1111000
1111001

1111010

FIFO n --> AM29116
FIFO n --> VME high address register
FIFO n --> VME low address register
FIFO n --> branch register

FIFO u --> scratchpad pointer
reserved
FIFO tl --> PPPROM pointer
reserved
reserved
reserved
reserved
reserved
reserved
DO NOT USE (no source --> multiplier X operand)

DO NOT USE (no source --> multiplier Y operand)
scratchpad memory --> multiplier mode register
scratchpad memory --> interrupt id register
scratchpad memory --> VME high address register
scratchpad memory --> VME low address register

scratchpad memory --> branch register
-scratchpad memory --> scratchpad pointer

scratchpad memory --> Graphics Buffer high address pointer
scratchpad memory --> Graphics Buff er low address pointer
Multiplier result --> FIFO i2

Multiplier result --> AM29116
Multiplier result --> scratchpad memory

1111011 Multiplier result --> Graphics Buffer write-data register and
Graphics Buff er is set busy

1111100 DO NOT USE (multiplier result --> no where)
1111101 Multiplier result --> VME write-data register
1111110 Multiplier result --> multiplier X operand
1111111 Multiplier result --> multiplier Y operand

The result from the integer multiplier (AM29L5 l 7) is 32-bits so that the Multi­
plier result must be read twice to obtain the high and low order 16-bits. Each
time the multiplier X and/or Y operand register is loaded, either the high or low
order result is pre-enabled; (the user selects which result in the multiplier mode
register). Then each time the Multiplier result is read, the enable state is toggled
thus allowing ac.cess to both halves of the multiply result. An integer multiply
operation takes six cycles as follows:

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

80 Graphics Processor Hardware Reference Manual

Hardware Protection

LOAD X (high or low result is enabled)
LOAD Y (high or low result is again enabled)
delay for transfer from X and Y operand

registers into the multiplier
delay for multiply execution
READ RESULT (high or low result)
READ RESULT (low or high result) .

FIFO #1 and FIFO #2 are the same FIFO. FIFO #1 is the VP-to-PP direction and
FIFO #2 is the PP-to-VP direction.

When the AM29 l 16 is chosen as the bus source, its internal Y bus is routed to
the PPB US. When the AM29116 is chosen as the destination, its internal D
register is made transparent until the end of the cycle at which time it is latched.

When the scratchpad memory is chosen as the PPBUS destination, the actual
write into the memory is executed in the next cycle. This means that the PP
microcoder cannot use this value for at least one cycle. In addition because there
is only one scratchpad pointer, the data read in the cycle immediately after the
write is useless.

Another hardware constraint involves the interprocessor flag register. It is not
possible to read this register into the AM29 l 16 and manipulate it in a single
cycle. It must first be read into the AM29116 D-latch and then manipulated by
subsequent instructions.

Protection is implemented in the hardware to prevent the following operations:

o reading an empty FIFO # 1,

o reading the Graphics Buffer read-data register when the Graphics Buffer is
busy,

o rea1ing the VME read-data register when the VME bus interface is busy,

o writing a full FIFO #2,

o writing the Graphics Buffer address pointers when the Graphics Buffer is
busy,

o writing the Graphics Buffer write-data register when the Graphics Buffer is
busy,

o writing the VME control register when the V:ME bus interface is busy,

o writing the VME write-data register when the VME bus interface is busy,

o reading or writing the FIFO when in the wrong direction,

o executing a start-read command when the Graphics Buffer is busy,

o initiating a VME operation (read or write) when the VME bus interface is
busy.

-t) Sun Microsystems, Inc. Revision 50 of 1 July 1985

Branch Logic

Microcode Format 81

If these operations are attempted, the hardware subsection never receives the
command; that is, as far as the hardware is concerned, it is as if the instruction
was never attempted. This allows the operation to be looped until successful
completion. For example, the following statement will adapt to the FIFO state:

HERE: MOVE Rn <-- FIFO tl; BR HERE IF FIFO #1 IS EMPTY.

Note that since it is unknown how many times the instruction will be attempted,
no arithmetic operation other than the move from FIFO # 1 should be performed.
For example with the following instruction, the final value of Rn is unknown; it
will be incremented once for each unsuccessful attempt and once for the success­
ful attempt.

HERE: Rn<-- Rn+l; MOVE Rn<-- FIFO tl; BR HERE IF FIFO fl IS EMPTY.

FIFO #1 and FIFO #2 are actually the same "reversible" FTFO. FIFO #1 is for
VP-to-PP transfers and FIFO #2 is for PP-to-VP transfers. It is therefore
undefined for the PP to read FIFO #1 while the direction is PP-to-VP, and to
write FIFO #2 while the direction is VP-to-PP. The branch condition codes are
defined as follows:

Direction Condition Code
--------- --------------
VP-to-PP FIFO *1 empty or not empty is valid
VP-to-PP FIFO f 2 is always not full
PP-to-VP FIFO *1 is always not empty
PP-to-VP FIFO #2 full or not full is valid

No hardware protection is necessary for writes to the VME high and low address
registers because these registers are buffered.

No hardware protection is provided for the following:

o reading the PPPROM before the data word is valid,

o reading the Graphics Buffer read-data register when in fill mode,

o executing a Graphics Buffer start-read command when in fill mode,

o placing the Graphics Buffer in read/modify/write and fill modes at the same
time.

Because slow PROMs are used to provide the needed size, there is a two cycle
delay between loading the PPPROM pointer and having access to valid data. No
hardware protect is implemented to ensure valid data; the microcode must delay
at least the minimum cycles.

The branch logic includes the AM2910 instruction, the branch condition select
field, the ds bit, and the ccen bit The AM2910 microsequencer is described in
the AMO literature.

The branch field selects the branch condition select option as follows:

'() Sun Microsystems, Inc. Revision 50 of 1 July 1985

82 Graphics Processor Hardware Reference Manual

0000 Zero
0001 Negative
0010 Carry
0011 Overflow
0100 FIFO #2 not full
0101 FIFO U not empty
0110 Graphics Buff er ready
0111 VME interface ready
1000 Not zero
1001 Non-negative
1010 No carry
1011 ·No overflow
1100 FIFO #2 full
1101 FIFO U empty
1110 Graphics Buff er busy
1111 VME interface busy

The ds bit is used to determine whether the contents of the branch register or the
general field are routed to the D input of the AM2910, possibly the address of the
next microinstruction. ds=O selects the general field; ds= 1 selects the contents of
the branch register.

Since there is not a "1" option for the branch conditions, a method to execute
unconditional branches must be provided: the ccen bit. If ccen= 1, then a pass
condition is forced in the AM2910. If ccen=O, the pass condition is conditional
on the cc bit selected from the above 16 options. Unlike the VP, a fail condition
cannot be forced in a single cycle. To force a fail condition in the PP, a known
status must be created in the condition codes (for example, zero) and a ''fail''
instruction executed (for example, jump on not zero). Further details are avail­
able in the AMD 2910 literature.

The status bits are updated at the end of each cycle (conditional update for the
zero, negative, carry, and overflow flags), and can be used at the beginning of the
next cycle for conditional branches. For example, to determine if the AM29116
Rn and accumulator are equal, the code would be as follows.

NO DESTINATION <-- Rn - ACC, SE

NOP; BR TO EQUAL IF ZERO STATUS FLAG IS SET

When initiating reads or writes to the VME bus, it is possible to invoke a 3-way
branch. The microinstruction word must meet the following format:

ccen=O ds=l de=l dreg=lllx

If the VME interface is busy, then the next program counter is contained in the
general field. If the VME interface is not busy, then this instruction works like a
"normal" branch: if the branch condition selected (for example, negative) is true,
a branch to the address in the branch register is executed; otherwise, the next
sequential instruction is executed.

(~ Sun Microsystems, Inc. Revision 50of1July1985

Count Hardware

General Field

Graphics Buffer Board
Memory (Graphics Buffer)

Microcode Format 8 3

The miscellaneous controls are used to enable the counting of the scratchpad
pointer and the VME address register. Because the VME high and low address
registers are buffered, they can be counted at anytime. However restrictions exist
on count enables to the scratchpad memory. Counts enabled on scratchpad read
cycles or non-scratchpad-access cycles are executed in the current cycle. But
because the write into the scratchpad memory is delayed one cycle, the count (if
enabled) is also delayed one cycle. This means that a cycle immediately after the
write cycle with count enabled should not be a scratchpad read with scratchpad
count enabled or a non-scratchpad-access cycle with scratchpad count enabled.

Increment hardware in the Graphics Buffer logic is described in the next section.

The general field is a way of specifying a value in the microcode and using it in
one of several places. For example, it could be an address pointing to the possi­
ble next microinstruction (see ds bit above), It could be a constant loaded into an
AM29 l l 6 register. It could be an address pointing to a predefined constant in the
scratchpad memory.

The general field is routed onto the PPB US bus if selected by the source field
and/or routed to the D input of the AM2910 microsequencer and bank select
logic if selected by the ds bit (also see branch logic section above).

In order to make the dynamic random access memory (DRAM) accesses as fast
as possible, special modes of operation are designed into the GP. The DRAM
can be accessed in either of two modes: Normal or Read-Modify-Write (RMW).

In normal mode, the DRAM acts like a linear array with hardware assist for
sequential accesses. If the low address pointer is loaded coincident with start­
read (see miscellaneous control field), a read is performed at the specified loca­
tion and the fetched data word loaded into the read-data register. (A load of the
high address pointer or L"'ie low address pointer witli no start-read merely loads
the respective address pointer; there are no side-effects.) When the read-data
register is read (selected as the PPBUS source), its contents are routed to the
selected destination. If a start-read is specified coincident with this read or any­
time after, the Graphics Buffer address pointer is incremented, another memory
read is initiated, and when the fetch is completed, the data word is loaded into the
read-data register. If the write-data register is loaded (specified as the PPB US
destination), then a memory write is initiated and valuejust written into the
write-data register is written into the Graphics Buffer. After the completion of
this write, the address pointer is incremented.

Fill mode is a normal sub-mode and must only be used with writes to the write
data register. While in this mode, writes to the Graphics Buffer write-data regis­
ter cause 4 memory locations to be written with the value just written into the
write-data register. After the DRAM write completes, the Graphics Buffer
address pointer is incremented by 4 so that the next 4 memory locations can be
written. The 4 locations written are selected by the Graphics Buffer address
pointer while ignoring the least significant two bits. Thus a fill mode write starts
on a modulo 4 boundary. (The least significant two address bits are don't care in
this mode and their final value after a series of fill mode writes is indeterminate.)

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

84 Graphics Processor Hardware Reference Manual

When using the DRAM as, for example, a graphics buffer, the RMW mode is
invoked. When the low address pointer is loaded coincident with a start-read, a
RMW cycle is initiated; the fetched data word is loaded into the read-data regis­
ter, but the RMW cycle remains active. Reading the read-data register (selecting
it as the PPBUS source) causes the register to be routed to the selected destina­
tion but does not affect the active RMW cycle. Writing the write-data register
(selecting it as the PPBUS destination) causes the value just loaded into write­
data register to be written into the DRAM thus ending the RMW cycle. When
the DRAM write completes, the pointer is auto-incremented, a new RMW cycle
is initiated, and the fetched data word is loaded into the read-data register.

NOTE After entering RMW mode, a start-read must precede the first write. (Unknown
calamities could otherwise occur.) This boundary condition occurs because of
the special hardware which executes the read/modify/write cycles.

In RMW mode, a new operation is required. After reading the read-data register,
it may be determined that the data word already at that location in the DRAM is
not to be changed. In this case the start-read is used. Using the start-read instead
of the write-data register causes the active RMW to be terminated with no write.
The address pointer is auto-incremented, a new RMW cycle is initiated, and the
fetched data word read is loaded into the read-data register. To exit RMW mode,
change the mode with a write to the high address pointer, and the active RMW is
terminated with no write.

CAUTION When in RMW mode, the microcoder must be aware of two restrictions:

1. When entering RMW mode from normal mode, the microcoder must
delay at least four (4) instruction cycles before loading the low address
pointer coincident with a start-read. (This allows an active DRAM
refresh cycle to complete.)

2. Once the low address pointer is initialized, it cannot be loaded again
without first exiting RMW mode. Loading a new address while in
RMW mode could change the active bank, thus creating a runt RAS
pulse to the newly-selected memory bank. The high address pointer
may be loaded to change the mode (to normal).

The Graphics Buffer ready flag is used to determine DRAM status. If the flag is
set, then writes to the address pointers, reads of the data read register, and writes
to the write-data register are allowed. If the flag is not set, then the DRAM is
busy-a read or write is active-and these operations are inhibited (see above in
Hardware Protection section). The Graphics Buffer ready flag is reset to not
ready by a start-read command or a load of the Graphics Buffer write-data regis­
ter. The flag is set to ready automatically by the hardware when a memory read
finishes (in both nonnal and RMW modes) or when a memory write finishes (in
normal mode only).

Memory refresh is handled by the hardware, and the firmware adapts to the
longer access times during a refresh by testing the Graphics Buffer ready flag.

The Graphics Buffer operations are summarized in the following chart.

(~ Sun Microsystems, Inc. Revision 50 of 1 July 1985

Operation

load high

address

pointer

load low

address

pointer

read GBuf fer
----1 ...J-•-J...ea.u-ua. a

register

load GBuf fer

write-data

register

start-read

com.-nand

Normal Mode

no start-read with start-read

loads high

address ptr

& mode

loads low

address ptr

PPBUS source

PPBUS dest.

& does write

& increments

ptr

DO NOT USE

loads low

address ptr

& starts read

PPBUS source &
increments ptr

& starts read

PPBUS dest.

& does write

& increments

ptr

increments ptr

& starts read

Microcode Format 85

RMW mode

no start-read with start-read

loads high

address ptr

& mode

loads low

address ptr

DO NOT USE

PPBUS source

PPBUS dest.

& does write

(ends RMW) &

increments ptr

& starts RMW

DO NOT USE

loads low

address ptr

& starts RMW

PPBUS source &
terminates active

RMW & increments

ptr & starts RMW

PPBUS dest.

& does write

(ends RMW) &

increments ptr

& starts RMW

terminates active

RMW & increments

ptr & starts RMW

NOTE Start-read is ignored if executing a load the Graphics Buffer write-data register.
Also note that a change mode can be done at anytime. For example, exiting
RAflV mode will terminate the active P.MW cycle .

• Sun Microsysrems, Inc. Revision 50 of 1July1985

Graphics Processor/Graphics Buffer
Specifications

A

Graphics Processor/Graphics Buffer Specifications .. 89

Graphics Processor/Graphics Buffer

,...L - --- ...J "~----•::>UO..Lt:U .L"lCHlV.L.j'

Dual-ported
16K-by-16 bits

PERFORMANCE

360 nsec max cycle time from \~..E bus
1 cycle access time from AM29116

Floating point
Separate Multiplier and ALU
4.16 Mflop maximum performance
32-bit, IEEE standard format

AM29116 (2)
General-purpose ALU
120 nsec cycle time
BK (max) by 56-bit writable microstore
Microstore is software-partitionable

Graphics Buff er memory
2 Mbyte (1 Mword)
Overlapped accesses

VME Interface
16-bit data
24-bit address
Interrupt capability

Graphics Performance
480 nsec/pixel vector draw rate

(actual performance limited by Color board)
25K 3D-vectors/second (about .5 inch vectors)
26M pixels/second area fill rate
8.9 usec/point 3D coordinate transform rate
960 nsec/pixel (worst case) shading rate with

,... • r" •

~pec1ncat1ons

Gouraud or flat shading and hidden surf ace elimination
lK triangles/second (about .25 inch per side triangles) with

Gouraud or flat shading and hidden surface elimination

+ Sun Microsystems, Inc. 89 Revision 50 of 1 July 1985

90 Graphics Processor Hardware Reference Manual

VME BOARD SPECIFICATION

MASTER DATA TRANSFER OPTIONS
A24 :D16
ROR arbitration, level 3 request
TOUT = 5 usec
Sequential access not supported

SLAVE DATA TRANSFER OPTIONS
A24:D16 for shared memory access
A24:D16 (word access only) for microstore interface access
Sequential access not supported

INTERRUPTER OPTIONS
Level 4 interrupt

RESET OPTIONS
ACFAIL not used
SYSRESET resets board
SYSFAIL not used

ENVIRONMENTAL OPTIONS
OPERATING TEMPERATURE: 0 to 70 degrees C
MAXIMUM OPERATING HUMIDITY: 90%

POWER OPTIONS
Graphics Processor board: 20 A MAX (18 A typ) at + 5 VDC
Graphics Buffer board: 4 A MAX (3 A typ) at + 5 VDC

PHYSICAL CONFIGURATION OPTIONS
Triple wide, extended height (400mm by 366.67 mm) VME boards

() Sun Microsystems, Inc. Revision 50 of 1 July 1985

I Revision Date

50 1 July 1985

- xxi-

Revision History

Comments

First release of this Hardware Reference
Manual.

Index

A
applicable documents, xiv
asserted, xiv

B
branch register, 24

c
clear, xiv

D
detailed description, 19

branch register, 24
FIFO, 25
floating point circuitry, 27
GP as two units-VP and PP, 19
Graphics Buffer board, 35
Graphics Buffer memory, 35
instruction register buffer, 24
interprocessor flags, 25
microstore, 21
!!\Jcrostore cycles; 21
microstore ports, 21
microstore RAM, 21
microstore size, 21
n register, 25
painting processor, 29
shared memory, 26
status flags register, 25
viewing processor (VP), 22
viewing processor block diagram. 22
VP and PP cycle time, 21
VP and PP parallel operations, 21
VPPROM,26
VP PROM Pointer, 26

DRAM operation modes
fill mode, 35
normal mode, 35
read-modify-write, 36

F
FIFO, 25

direction, 25
recovery time, 26
timing, 26

floating point circuitry, 27
duplicate writes, 27

- xvii-

floating point circuitry, continued
floating point chips (Weitek), 28
h/l bit, 27
microinstruction operations, 28
overview, 27 -
pointers, 27
register cycle time, 28
registers, 27, 28
restrictions, 28
source A pointer, 27
source B pointer, 27

functional description
AM29116, 13
FIFO, 14
Graphics Buffer AMD 291.517, 14
Graphics Buffer board, 14
Graphics Buffer DRAM, 14
Graphics Buffer fill-mode writes, 14
Graphics Buffer integer multiplier, 14
Graphics Buffer read-modify-write mode, 14
microstore, 13
overview, 13
painting processor, 14
pipeline architecture, 15
scratchpad memory, 14
viewing processor, 13
VP PROM, 13

G
glossary

asserted, xiv
clear, xiv
positive logic, xiv
set, xiv

GP and GB specifications, 89
performance, 89
VME specifications, 90

Graphics Buffer board
AM29L517 integer multiplier, 3 7
components on, 34
DRAM,35
DRAM fill mode, 35
DRAM modes, 35
DRAM normal mode, 35
DRAM read-modify-write mode, 36
memory configuration, 35
mode register, 37
PPPROM,37

Index Coniinued

I
instruction register buffer, 24
internal registers, 51

painting processor, 56
PP 29116 registers, 61
PP branch register, 60
PP FIFO registers, 61
PP GB address pointers, 56
PP GB data registers, 61
PP interprocessor flag #1, 60
PP interprocessor flag #2, 60
PP interrupt ID register, 58
PP LED register, 60
PP multiplier mode register, 58
PP multiplier result register, 61
PP multiplier X register, 61
PP multiplier Y register, 61
PP n Register, 59
PP PROM pointer, 58
PP PROM registers, 61
PP scratchpad memory, 61
PP scratchpad pointer, 56
PP status flags, 60
PP VME address registers, 58
PP VME control register, 57
PP VME data registers, 61
PP VME status register, 57
VP 29116 registers, 55
VP branch register, 54
VP destination pointer, 51
VP FIFO registers, 55
VP floating point registers, 54
VP floating point status register, 51
VP interprocessor flag #1, 52
VP interprocessor flag #2, 53
VP LED register, 53
VP n register, 52
VP PROM pointer, 51
VP PROM registers, 54
VP shared memory pointer, 51
VP shared memory registers, 54
VP source A pointer, 51
VP source B pointer, 51
VP status flags, 53

interprocessor flags, 25

M
microcode format

GB memory, 83
GB operations, 84
PP AM29116 instructions, 75
PP branch logic, 81
PP count hardware, 83
PP destination field, 77
PP general field, 83
PP hardware protection, 80
PP microcode, 75
PP miscellaneous controls, 76
PP source field, 77
VP AM29116 instruction, 66
VP branch logic, 70
VP count hardware, 71
VP destination field, 67

- xviii-

microcode format, conJinued
VP FIFO control, 68
VP floating point operations, 71
VP general field, 71
VP hardware protection, 69
VP microcode, 65
VP miscellaneous controls, 66
VP source field, 67

N
n register, 25

p
painting processor, 29

block diagram, 29
branch register, 32
components of, 31
condition code select, 32
interrupt ID register, 33
scratchpad memory, 32
scratchpad pointer, 32
VME address registers, 33
VME bus logic, 33
VME bus read, 34
VME bus write, 33
VME data registers, 33

positive logic, xiv

s
set, xiv
shared memory, 26

timing,26
writes, 26

status flags register, 25
fpsel bit, 25
LEDs, 25

system overview, 7
shared memory, 10
VME bus, 8
VME bus as graphics bus, 10

T
terms

asserted, xiv
clear, xiv
positive logic, xiv
set, xiv

v
viewing processor

(AM2910), 24
(AM29116), 24
bank select logic, 24
bank sii.e, 24
bank switching, 24
program memory, 24
program sequencer, 24

VME bus addressing
microstore interface registers, 42
shared memory, 43

VME interface, 41
board identification register, 43

VME interlace, continued
GP as VME master, 48
GP control register, 44
GP status register, 46
interrupts, 47
microstore address register, 46
microstore data register, 46
microstore interlace, 41
overview, 41
shared memory, 42

VPPROM,26
VP PROM Pointer, 26

Index Continued

-xix-

READER COMMENT SHEET

Dear Customer,
We who work at Sun Microsystems wish to provide the best possible documentation for our products. To this end,
we solicit your comments on this manual. We would appreciate your telling us about errors in t.'ie content of L'lc
manual, and about any material which you feel should be there but isn't.

Typographical Errors:
Please list typographical errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Please list errors of fact by page number and acrual text of the error.

+ Sun Microsystems, Inc. Revision 50of1July1985

READER COMME1\1T SHEET Continued

Content:
Did this guide meet your needs? If not, please indicate what you think should be added or deleted in order
to do so. Please comment on any material which you feel should be present but is not. Is there material
which is in other manuals, but would be more convenient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange things? Do you find the
style of this manual pleasing or irritating? What would you like to see different?

• Sun Microsystems, Inc. Revision 50 of 1 July 1985

	00001
	00002
	00003
	00005
	00006
	00007
	00008
	00009
	00011
	00013
	00014
	00015
	001
	002
	003
	005
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	I-01
	I-02
	I-03
	replyA
	replyB

