
SBus Specification B.O

Written by Edward H. Frank and Jim Lyle.

Edited by Jim Lyle and Mike Harvey.

Copyright ©1990 Sun Microsystems, Inc.-Printed in U.S.A.

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, Sunlnstall, SunOS, SunView, NFS, SunLink, NeWS, SPARC, and
SPARCstation 1 are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User
Interface, which license also covers Sun's licensees.

All other products or services mentioned in this document are identified by the trademarks or service marks of their
respective companies or organizations, and Sun Microsystems, Inc. disclaims any responsibility for specifying
which marks are owned by which companies or organizations.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means-graphic, electronic, or mechanical-including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and in similar clauses in the FAR and NASA FAR Supplement.

This product is protected by one or more of the following U.S. patents: 4,777,485; 4,688,190; 4,527,232;
4,745,407; 4,679,041; 4,435,792; 4,719,569; 4,550,368 in addition to foreign patents and applications pending.

Contents

Preface .. xv
Contents .. xv

Changes from Version A.2 .. xvi

Conventions ... xvii

SBus Name ... xvii
Signal Names .. xvii
Signal Vector .. xvii
Asterisk ... xvii
Words Used with Care ... xvii
Special Notes ... xix

Chapter 1. Introduction ... 1

Purpose .. 1

Scope .. 2

SBus Objectives ... 3

Chapter 2. SBus Overview .. 5

Dominant Technologies ... 6

Protocol Concerns .. 6
Electrical Concerns ... 8
Mechanical Concerns ... 8

SBus Signals ... 9

SBus Specification B.O iii

Contents

SBus Configurations .. 10

Host-based Systems .. 11
Symmetric SBus Systems ... 14
Bus Bridges .. 15

Basic SBus Cycle .. 15

Translation Cycle .. 17
Slave Cycle ... 17

SBus Controller .. 19

SBus System Clock .. 19

Bus Arbitration .. 19
Virtual Address Translation, and Page Size
Restrictions ... 20
Slave Selects ... 20
Address Strobe .. 20
Bus Timeouts ... 21
Other Functions ... 21

Masters and Slaves .. 22

Direct Virtual Memory Access (DVMA) .. 23

Latency and Performance ... 24

Clock Rates ... 24
Transfer Rates .. 24
Latency ... 26

Addressing and Configuration .. 29

FCodes ... 29

ExtendedTransfers ... 30

Chapter 3. Protocol Design .. 31

Signal Determination .. 31

SBus Controller Signals .. 32

Clock .. 32

Reset* .. 34

PhysAddr(27:0), SlaveSelect*, and AddressStrobe* 36

Request*, Grant*, and Arbitration39
Bus Cycle ... 41

Translation Cycle .. 41

iv SBu8 Specification B.O

Contents

Slave Cycle .. 43
Atomic Transactions .. 47

Data(31 :0) .. 52

Byte/Half-word Ordering and Addressing 52

Port Locations ... 53

Alignment, Wrapping, and Burst Transfers 54

Transfer Size: Size(2:0)56

Transfer Direction: Read58

Ack(2:0)* .. 59

Data Acknowledgments .. 65
Rerun Acknowledgment ... 67

Error Acknowledgment ... 71

Bus Timeouts ... 74

LateError* ... 76
Bus Sizing .. 78

Interrupts ... 81

Other Timing Diagrams .. 83

Chapter 4. Electrical and Mechanical Design ... 85

SBus Profiles .. 85

Electrical Design ... 87

Operating Range ... 87

Power ... 87

Capacitive Loading .. 89

Stub Length ... 89

Signal TerIIlination ... 90

DC Parameters .. 91

AC Parameters .. 92
Mechanical "Design ... 94

Expansion Connector ... 94

Expansion Board Types and Sizes 100
Board Materials .. 100

Component Clearance ... 101

Backplate ... 103

Single-width SBus Card .. 104

S Bus Specification B.O v

Contents

Double-width SBus Card ... 107
SBus Retainer and Stand-off .. 110
VME/FUTUREBUS Installation .. .112

Chapter 5. FCode Drivers for SBus Cards .. .113

FCode PROMs .. 113

Program Format ... 114 .

Program Interpretation ... 115

Device Identification ... 116

FCode Language .. 117

FCodes and FORTH .. 118

Appendix A. Specification Compliance .. .119

Slave ... 119

DVMA Master .. 120

SBus Controller .. 121

Appendix B. SBus Extensions ... 123

Parity Checking .. 123

SBus 64-bit Transfer Protocols ... 125

Scope and Compatibility .. .125
Overview .. 125
Clock .. 129
Reset* .. 129
AddressStrobe* and SlaveSelect*129
PhysAddr(27:0) .. 129

Request*, Grant*, and Atomic Transactions 130
64-bit Transfer Bus Cycle ... 130

Data(63:0) .. 133

Extended Transfer Information .. 134
Size(2:0) ... 137
Read ... 137
Ack(2:0)* .. 138
Timeouts ... 140
LateError* ... 140
DataParity .. 140

vi SBus Specification B.O

Contents

Compatibility Considerations .. 140
Signal Termination ... 141

Appendix C. FCode Reference ... 143
FCode Primitives ... 143

FCode Byte Values .. 160

Glossary .. 169

Index ... 179

SBU8 Specification B.O vii

Contents

'\

/

viii SBus Specification B.O

Figures

Figure P-l. Timing Diagram Conventions xvi

Figure 2-1. Synchronous Operation ... 6

Figure 2-2. Active Drive ... 7

Figure 2-3. No Driver Overlap .. 7

Figure 2-4. SBus Signals ... 9

Figure 2-5. Example of Host-based SBus System 12

Figure 2-6. Example of Symmetric SBus System 14

Figure 2-7. Basic SBus Cycle .. 16

Figure 3-1. Example of Reset* Timing '" 34

Figure 3-2. PA(27:0), Sel*, and AS* .. 38

Figure 3-3. Timing of BR*, BG*, and AS* 40

Figure 3-4. Translation Cycle and Slave Cycle 42

Figure 3-5. Basic Slave Cycle Timing ... 44

Figure 3-6. Atomic Transaction Timing 50

Figure 3-7. Words, Half-words, and Bytes 52

Figure 3-8. Port Locations within a Word 53

Figure 3-9. Siz(2:0) Encodings ... 57

SBus Specification B.O ix

Figures

Figure 3-10. Table of Ack(2:0) Encodings 60

Figure 3-11. Sample Burst Transfer .. 64

Figure 3-12. Data Acknowledgment Semantics 66

Figure 3-13. Bus Timeouts ... 75

Figure 3-14. LErr* Timing ... 76

Figure 3-15. DVMA Cycle with Wait States 83

Figure 3-16. DVMA Burst Cycle with Wait States 84

Figure 4-1. SBus Profile Matrix ... 86

Figure 4-2. Power Parameters ... 88

Figure 4-3. Capacitive Loading ... 89

Figure 4-4. DC Parameters ... 91

Figure 4-5. AC Parameters ... 93

Figure 4-6. SBus Expansion Connectors 95

Figure 4-7. Expansion Connector Pinout.. 96

Figure 4-8. Signal Location .. 97

Figure 4-9. Male Expansion Connector 98

Figure 4-10. Female Expansion Connector 99

Figure 4-11. Expansion Board Sizes ... 100

Figure 4-12. Maximum Component Gap 101

Figure 4-13. Component Clearance .. 102

Figure 4-14. Single-width SBus Card 104

Figure 4-15. Single-width Backplate ... 105

Figure 4-16. Detail of Single-width Backplate Adapt~r 105

Figure 4-17. Single-width Backplate Assembly 106

Figure 4-18. Double-width SBus Card 107

Figure 4-19. Double-width Backplate 108

x SBus Specification B.O

Figures

Figure 4-20. Detail of Double-width Backplate adaptor 108

Figure 4-21. Double-width Backplate Assembly 109

Figure 4-22. SBus Retainer ... 110

Figure 4-23. SBus Stand -off ... 111

Figure 4-24. SBus Card Installed on VME Card 112

Figure B-1. Extended Transfer Information 126

Figure B-2. 64-bit Protocol ... 128

Figure B-3. Using D(63:0) for ExtendedTransfers 133

Figure B-4. Using 0(31 :0) for ExtendedTransfers 134

Figure B-5. ExtendedType functions .. 135

Figure B-6. ExtendedType .. 135

Figure B-7. ExtendedTransferAtomic(1 :0) 136

Figure C-l. Stack Manipulation .. 143

Figure C-2. Arithmetic Operations ... 144

Figure C-3. Memory Operations ... 145

Figure C-4. Comparison Operations 145

Figure C-5. Text Input .. 146

Figure C -6. ASCII Constants ... 146

Figure C-7. Numeric Input .. 146

Figure C-8. Numeric Primitives .. 147

Figure C -9. Nunleric Output ... 147

Figure C-I0. General-purpose Output 147

Figure C -11. Formatted Output .. 147

Figure C-12. BEGIN Loops .. 148

Figure C -13. Conditionals .. 148

Figure C-14. DO Loops .. 148

SBus Specification B.O xi

Figures

Figure C-15. Control Words .. 148

Figure C -16. Strings .. 148

Figure C-17. Defining Words .. 149

Figure C -18. Dictionary Compilation 149

Figure C -19. Dictionary Search ... 149

Figure C-20. Conversions Operators .. 150

Figure C-21. Memory Buffers Allocation 150

Figure C-22. Miscellaneous Operators 151

Figure C-23. Internal Operators .. 151

Figure C -24. Memory Allocation .. 152

Figure C-25. Non-volatile Parameters 152

Figure C -26. Device Information .. 153

Figure C-27. Commonly-used Attributes 153

Figure C-2S. Device Activation Vector Setup 153

Figure C -29. Self-test Utility Routines 154

Figure C-30. Time Utilities ... 154

Figure C-31. Machine-specific Support 154

Figure C-32. User-set Terminal Emulation Values 154

Figure C-33. Terminal Emulator-set Terminal Emulation
Values ... 154

Figure C-34. Terminal Emulation Routines 155

Figure C-35. Frame Buffer Parameter Values 155

Figure C-36. Font Operators .. 155

Figure C -37. One-bit Framebuffer Utilities 156

Figure C -38. Eight-bit framebuffer Utilities 156

Figure C-39. Package Support ... 157

xii SBus Specification B.O

Figures

Figure C -40. Asyncronous Support .. 157

Figure C -41. Miscellaneous Operations 157

Figure C-42. Interpretation .. 158

Figure C -43. Error Handling ... 158

Figure C -44. Package Attributes ... 158

Figure C -45. Atomic Access ... 158

Figure C-46. Data Exception Tests .. 159

Figure C-47. FCode Byte Values ... 1 60

SBus Specification B.O xiii

Figures

xiv SBus Specification B.O

Contents

SBus Specification B.O

Preface

This book describes the formal specifications of the protocols
and the electrical and mechanical features of the SBus.

This book contains five chapters, three appendices, and a
glossary.

Chapter 1, "Introduction," provides general information about
the SBus specification.

Chapter 2, "SBus Overview," explains the philosophy and
principles upon which the SBus is based, and describes the basic
SBus protocols.

Chapter 3, "Protocol Design," describes the SBus protocols to
transfer information across the SBus.

Chapter 4, "Electrical and Mechanical Design," describes SBus
profiles, and the electrical and mechanical specifications of the
SBus.

Chapter 5, "FCode Drivers for SBus Cards," describes the FCode
programming language for writing SBus device PROMs.

xv

Changes from Version A.2

Changes from
Version A.2

xvi

Preface

Appendix A, "Specification Compliance," describes how SBus
slaves, masters, and systems may comply with the SBus
specification.

Appendix B, "SBus Extensions," describes extensions to the
SBus that may be implemented in some systems, including the
new 64:...bit SBus extension.

Appendix C, "FCode Reference," describes FCodes currently
supported by the Open Boot PROM, as well as new 2.0 FCodes.

The glossary defines terms used in this book.

The following SBus features are new with this revision of the
SBus specification:

o SBus ExtendedTransfer protocols to perform 64-bit per
clock cycle transfers.

This new information appears in Appendix B.

o SBus Profiles which define a minimum SBus card/
controller feature set to guarantee plug compatibility
between SBus cards and hosts.

This new information appears in Chapter 4.

The following changes are also new with this revision of the
SBus specification:

o Atomic restrictions in Chapter 3.

o DC changes in Chapter 4.

o VME/Futurebus mechanical drawings in Chapter 4.

o New 2.0 FCodes in Appendix C.

SBus Specification B.O

Preface

Conventions

SBus Name

Signal Names

Conventions

This book uses the following conventions:

The name SBus is always written as SBus, not as sbus, Sbus,
S-Bus, etc.

Signal names are indicated with Helvetica font. At the first
mention of a signal in a chapter or appendix, the full signal
name appears with its abbreviation in parentheses. After its
first mention, the signal is referred to by its abbreviation.
For example:

At first mention, Request* (BR*). Thereafter, BR*.

Signal Vector A signal name followed by a range in parenthesis, for example
D(31 :0), represents a vector of logically related signals. The first
number in the range indicates the most significant bit.

Asterisk An asterisk is appended to a signal name, for example Ack(2:0)*,
to indicate that the signal is asserted in the low state, and
unasserted in the high state.

Words Used with Care Care has been taken in the use of the words must, may, only,
might, can, could, should, and driven.

must only, may only The phrase" An SBus device (master, slave, controller,
system ...) must (may only) ... " means the function is required of
all SBus devices and that failure to implement the function as
described will likely cause failure or malfunction of the SBus
device and pOSSibly the entire system.

SBus Specification B.O xvii

Conventions

should

driven

Signal

xviii

t
Driven,
but don't
care

t

Preface

The phrase "An SBus device (master, slave, controller, system ...)
should ... " means that a designer need not implement the
function, but that implementing the function is recommended
because the function is valuable. Design and market trade-offs
should be weighed carefully before any decision is made to
omit the recommended function. A device that does not
implement a recommended feature will work in any SBus
system, but in some cases the device's ability to operate with
other SBus devices may be limited.

The term driven means that an output driver is sourcing or
sinking current. Driven low means that an output is driving the
signal to 0 volts. Driven high means that an output is driving the
signal to 5 volts. If a vector of signals is shown as driven (but not
specifically as high or low), each signal in the vector is stable
and in its appropriate state. In the specific case of Ack(2:0)*,
however, the driven convention indicates that at least one of the
three signals in this vector is driven low - that is, Ack(2:0)* is
asserted.

Figure P-l. Timing Diagram Conventions

Driven

t
Driven high Un driven, but t pulled high

~-------..~

l' l'
Un driven,
but don't
care

Undriven, but
pulled low

Driven or
undriven,
but don't care

SBus Specification B.O

Preface Conventions

Clock Edge The term clock edge means the rising edge (the transition from 0
volts to 5 volts) of the Clock signal.

Special Notes Many parts of the specification contain three special notes,
called a profile recommendation, recommendation, and observation.
The information in these notes is interpreted according to the
following definitions.

Profile Recommendation Implementing features and functions described in a profile
recommendation results in a device or system that is in
compliance with the SBus Profile recommendations. This
ensures compatibility with other systems or devices that are
also compliant with the SBus specification.

Recommendation Implementing features and functions described in a
recommendation results in an SBus device or system that is
higher in performance, operates better, or is more robust.
SBus designers should omit these features only after careful
consideration of the design trade-offs. Nevertheless, such
omissions will not prevent the SBus device or system from
working properly.

Observation The information in an observation provides additional
information about the operation of the SBus, constructing SBus
devices and systems, and other related topics.

SBus Specification B.O xix

Conven tions Preface

xx SBus Specification B.O

Purpose

SBus Specification B.O

1

Introduction

The computer bus described in this book is a high-performance
system and I/O interconnect for use in today's highly
integrated computers. The SBus addresses the issues of high
performance, low-power, high-integration, and small
mechanical form factor. Unlike previous workstation buses, the
SBus is not designed for use as a backplane bus.

TypicalSBus systems consist of a motherboard (containing the
central processor and SBus interface logic), a number of SBus
devices on the motherboard itself, and a modest number of SBus
expansion connectors.

A principal reason for this revision of the SBus specification is
the definition of an Extended Transfer protocol to transfer 64
bits of data each clock cycle. SBus Extended Transfers work
only in systems and cards designed to support them.

However, a 32-bit SBus expansion card that completely ignores
the ExtendedTransfers will work equally well in existing 32-bit
only SBus systems, as well as in future systems with 64-bit
masters and slaves: 32-bit SBus masters can transfer data to and
from 64-bit SBus slaves; 64-bit SBus masters can transfer data to
and from 32-bit SBus slaves.

1

Scope

Scope

2

Chapter 1: Introduction

This book describes the logical, electrical, physical, and
programming interfaces for integrated circuits, boards, and
systems. Boards and systems designed according to the
specifications in this book can operate in a variety of SBus
environments.

The SBus is designed for use as a chip-level interconnect
between components in microprocessor-based systems. The
bus is designed to span only a small physical distance; it is not
designed for use as a general-purpose backplane interconnect,
although such use might be possible.

The bus is optimized for use in systems employing CMOS
components. Slave interfaces to the bus can be implemented
using a small number of buffers and programmable logic
devices.

The SBus offers the following features to bus designers:

D Up to a 64-bit data path.

D A 32-bit virtual address for masters.

D A 2S-bit physical address per slave.

D No jumpers (geographical device selection).

D A 16.67 to 25 MHz master bus clock.

D Completely synchronous operation (except for interrupts).

D Up to eight masters.

o Data transfers of 1, 2, 4, S, 16,32, and 64 bytes.

o Error and rerun protocols.

o Compatible with CMOS components.

SBus Specification B.O

Chapter 1: IntroauctlOn

SBus Objectives

SBus Specification B.O

~vus uUJecrzves

o Machine-independent code for autoconfiguration and boot
devices.

o Implementations can have low transfer latency.

o Seven shared interrupt lines.

The design objectives of the SBus are:

o High performance.

o Lowcost.

o Low power dissipation.

o Small form factor suitable for use in desktop computers.

o Ease of use by designers and users.

3

SBus Objectives Chapter 1: Introduction

4 SBus Specification B.O

SBus Specification B.O

2

SBus Overview

This chapter provides an overview of the SBus. The overview
is neither a specification nor definitive. Its purpose is to
introduce the following concepts that support the SBus
specification in the remainder of this book:

o SBus system organization.

o SBus design philosophy and principles.

o SBus signals.

o SBus basic bus cycle.

Like most computer buses, the SBus can be used in a variety of
configurations. The differences between these configurations
are minor in most respects. In fact, an SBus slave or DVMA
master, in general, never needs to know the kind of system in
which it resides. In all configurations, there are some
centralized SBus functions that must be implemented by an
SBus controller.

5

Dominant Technologies

Dominant
Technologies

Protocol Concerns

Chapter 2: SBus Overview

The SBus is optimized; for the technolOgies expected to
dominate in the late 1980s and early 1990s: CMOS and surface
mount. The SBus is designed for use as a chip-level bus,
between components such as processors and memory. It can
also be used as a motherboard I/O expansion bus in
configurations where it is possible to control wiring distances,
clock skew, noise, and capacitance.

The design of the SBus protocols is based on three principles:

o Synchronous operation.

o Active drive.

o No driver overlap.

Synchronous Operation The SBus controller is responsible for generating a fixed
frequency Clock (Clk) in the range of 16.67 MHz to 25 MHz.

-1 0

Clk

Signal I"" Sample points +

All signals are sampled on the rising edge of this Clk. Signals
must be driven so that they meet the SBus setup time and hold
time requirements subject to the allowable Clk skew. SBus
interrupts are allowed to be asynchronous. It is the
responsibility of the controller to synchronize them to the
appropriate Clk.

Figure 2-1. Synchronous Operation

1 2 4 7

! /
t t t

6 SBus Specification B.O

Chapter 2: SBus Overview Dominant "j'echno[ogzes

Active Drive

Clk

Shared
Signal

-1 o

A tristate control signal, which has been asserted, is actively
driven to its unasserted state before the source removes its
drive. Adhering to this principle facilitates the operation of the
bus at speeds up to 25 MHz, without the need for low-resistance
pullup resistors and output drivers capable of sinking the
resulting static current.

Figure 2-2. Active Drive

1 2 3 4

~:---
Assert Unassert Remove Drive

No Driver Overlap No signal (except open-drain interrupts) is driven.by two
outputs during the same clock cycle. Adhering to this principle
guarantees that output drivers never fight, since this can result
in unreliable operation and excessive power dissipation.

-1 o
Clk

The alternative of using open-drain outputs is not compatible
with low-power, high-performance CMOS.

Figure 2-3. No Driver Overlap

1 4

i

Shared
Signal :----+---,! >-+<'----+---

i t ~1'

First driver Second driver
turns off turns on

SBus Specification B.O 7

Dominant Technologies Chapter 2: SBus Overview

Electrical Concerns From an electrical and performance perspective, the setup,
hold, and delay requirements of the SBus are compatible with
many CMOS logic families and CMOS gate arrays. Circuit
modeling and lab measurements should be performed to
determine the compatibility and appropriateness of use for a
given CMOS logic family.

Total Bus Capacitance The SBus limits the total bus capacitance to 160pF for systems
running at speeds up to and including 20 MHz, and 100pF for
systems running above 20 MHz. SBus expansion cards may not
add more than 20pF per signal.

Static Power Dissipation The SBus avoids static power dissipation. Input and output
circuitry must have minimal leakage current.

Mechanical Concerns The SBus is designed as a board level expansion bus for use in
desktop systems and other environments where space is
limited. From a mechanical and packaging perspective, the
availability of 100- to 200-pin surface-mount quad plastic flat
packages provides substantial capability to be implemented in
a single chip that is both small and inexpensive.

8 SBu5 Specification B.O

Chapter 2: SBus Overview SBus Signals

SBus Signals

Name

PhysAddr(27:0)
SlaveSelect*
Data(31 :0)
Size(2:0)
Read

Clock
Add ressStrobe *
Ack(2:0)*
LateError*
Request*
Grant*
Reset*

IntReq(7:1)*

DataParity

Ground (7 pins)
+5V (5 pins)
+12V
-12V

SBus Specification B.O

The SBus uses 82 signals for information transfer and control.
If used with an expansion connector, 14 power and ground
connections are added, for a total of 96 pins. The following
figure summarizes these Signals. The I/O column is from the
perspective of a slave.

The abbreviations for signal names are for use in schematics
and data sheets.

Note: During ExtendedTransfers, some of the Extended
Transfer Information signals are multiplexed to serve
additional functions: PA(27:0) is used for Oata(59:32)i Size(2:0) is
used for Data(62:60); and Read is used for D(63). For more
information, see Appendix B.

Figure 2-4. S Bus Signals

Abbreviation 1/0 Description Driven By

PA(27:0) I Physical Address Controller
Sel* I Slave Select (1 per slave) Controller
0(31 :0) I/O Data Masters /Slaves
Siz(2:0) I/O Transfer Size Masters
Rd I/O Transfer Direction Masters

Clk I SBus Clock Controller
AS* I Address Strobe Controller
Ack(2:0)* I/O Transfer Acknowledgment Slaves/Controller
LErr* I/O Late Data Error Slaves
BR* a Bus Request (1 per master) Masters
BG* I Bus Grant (1 per master) Controller
Reset* I Reset Controller

IntReq(7:1)* a Interrupt Request (open drain) Slaves

OtaPar I/O Data Parity (optional) Masters /Slaves

Gnd PG Ground Controller
+5V PG Power (2 A per slot) Controller
+12V PG Power (30 rnA per slot) Controller
-12V PG Power (30 rnA per slot) Controller

9

SBus Configurations

SBus
Configurations

10

Chapter 2: SBus Overview

Like most system interconnects, the SBus can be used in a
number of configurations. The first design of the SBus was
based on the notion that the CPU is a special participant on the
SBus in that it uses a special path through the SBus controller to
access the bus. This configuration is called a host-based SBus.

Nominally, SBus masters use the translation hardware in the
SBus controller to translate the virtual address which the master
has placed on the data lines into a physical address that the
SBus controller places on the address lines. The controller then
starts a slave cycle by asserting AddressStrobe* (AS*). What
makes host-based systems special is that a translation cycle
never takes place on the SBus, because of the special path of the
CPU. It is assumed that the CPU has a private address
translation facility (at least, logically).

Any SBus master may communicate with any other slave on the
bus, regardless of system configuration. No limitations restrict
an SBus master to DVMA operations into and out of system
memory alone. A master may perform DVMA operations
between itself and a slave in another slot, or even a slave in the
same slot (most SBus masters also have slave capabilities).

If multiple, independent SBuses are attached to anyone system
in parallel to increase connectivity or available bandwidth,
communication between a master in one SBus and a slave in
another SBus depends on the system; it mayor may not be
supported, at the discretion of the system designer.

Note: The following information applies primarily to 32-bit per
clock cycle transfers. For information about 64-bit per clock
cycle transfers, see Appendix B.

SBus Specification B.O

Chapter 2: SBus Overview

Host-based Systems

SBus Specification B.O

SBus Configurations

A host-based SBus is one in which the CPU (for example, a
SP ARC IU, SPARC FPU, cache, and MMU) uses the SBus as its
principal memory and I/O bus. In most high-performance
systems, the processor is connected to the SBus via a cache and
memory management unit. Depending on exact
implementation details, the system bus interface in the cache
and MMU may be the SBus interface.

The following figure shows the logical interconnections in a
host-based SBus system. The system shown in the figure is
representative of a typical system. Many other configurations
of SBus systems are possible.

This configuration is the one for which the SBus was originally
designed. Because the processor core incorporates the SBus
controller, at times the processor appears to be a special SBus
participant. The only reason an SBus cycle is divided into a
translation cycle and a slave cycle is that, in a host-based
configuration, the processor does not use the SBus controller's
translation mechanism to translate virtual to physical
addresses.

Instead, the processor uses a direct path to the MMU for this
purpose. One reason for implementing systems in this way is
that the MMU may want to provide special services to the
processor, such as a larger virtual address space and the ability
to handle page faults.

11

SBus Configurations

CPU

Cache

MMU

12

Chapter 2: SBus Overview

Figure 2-5. Example of Host-based SBus System

SBus

Cntrl

MMU

SBus

The CPU and the SBus controller can share the MMU or use
independent MMUs. Additional details about this subject
appear in "Direct Virtual Memory Access" later in this chapter.
The choice of which of these two alternatives to use is an
implementation detail, and not fundamental to the operation of
the bus.

In some very high performance systems it may be desirable for
the SBus to be used only as a high-performance I/O interface,
and not as the CPU's channel to main memory. This
configuration may be useful in systems that embody memory
buses which are wider than 32 bits. In this case, a processor bus
to SBus interface must support either bidirectional transfers, or
the SBus must have local memory for DVMA devices.

SBus Specification B.O

Chapter 2: S Bus Overview

SBus Specification B.O

S Bus Configurations

Ultimately, it is possible to have SBus systems in which each
SBus consists electrically of a single SBus device that is
connected via an interface IC to some other bus, such as the
system memory bus. Such a configuration may allow multiple
SBus devices to be accessed in parallel, since each device is on
its own SBus. This architecture allows systems to be built in
which the aggregate system I/O bandwidth is higher than that
provided by a single SBus.

Such configurations may place limitations on communication
between SBus devices on different SBuses, and thus be designed
principally for transfers between the CPU and SBus slaves, or
transfers between SBus masters and system memory, or both.

As explained in "Latency and Peformance" later in this chapter,
different SBus configurations may have fairly different
expected latency. As a rule-of-thumb, low-end systems which
use the SBus as the system memory bus (for example, a Sun
SP ARC station 1) have lower latency access to system memory
than larger systems in which a DVMA access to main memory
may result in the traversal of an interface to some other bus.

An advantage of low-latency systems is that they allow I/O
devices to be built with a modest amount of local buffering,
thereby reducing the cost of these devices.

13

SBus Configurations

Symmetric SBus
Systems

14

Chapter 2: SBus Overview

As the following figure shows, the host CPU does not have a
special path to the SBus in symmetric configurations; it is
identical to every other master on the bus. In this case, the SBus
controller performs address translation for CPU accesses to the
SBus.

Nevertheless, nothing prevents the CPU from having private
memory and its own MMU for translating virtual addresses
when it accesses that memory. This latter configuration is very
much like the host-based configuration in which the SBus is
used only for I/O expansion. (Of course, in this configuration,
the MMU must be reset so that the CPU is able to load the MMU
over the SBus).

Figure 2-6. Example of Symmetric SBus System

SBus Cntrl

MMU

SBus

SBus Specification B.O

Chapter 2: S Bus Overview

Bus Bridges

Basic SBus Cycle

SBus Specification B.O

Basic S Bus Cycle

In some SBus environments, it may be desirable or necessary to
have more SBus slots than provided by the base system. In
these cases, an SBus bridge can be built to extend the SBus
electrically, providing additional SBus slots.

Nominally, the SBus bridge is functionally transparent to SBus
devices. However, in the case where the bridge is designed to
plug into an existing SBus slot, a degradation in performance is
likely for those devices in the extended SBus environment.

A complete SBus DVMA cycle consists of two major phases:
a translation cycle which places a physical address on the bus,
and a slave cycle which transfers data between the master and
slave (except in the case of an error). However, when a CPU
master uses the SBus in host-based systems, no translation cycle
occurs on the bus; only a slave cycle occurs.

The following figure shows the sequence of events during a
typical bus cycle. The timing shown is for the fastest transfer
possible. If the transfer is to a slave which cannot respond this
quickly, the slave extends the bus cycle by not generating a Data
Acknowledgment until it is ready (subject to timeout).

15

Basic SBus Cycle

elk

BR*

BG*

0(31 :0)
[write]

0(31 :0)
[read]

Rd

Siz(2:0)

PA(27:0)

AS*

Sel*

Ack(2:0)*

LErr*

16

Chapter 2: SBus,Overview

Figure 2-7. Basic SBus Cycle

SBus Specification B.O

Chapter 2: SBus Overview

Translation Cycle

Slave Cycle

SBus Specification B.O

Basic SBus Cycle

A translation cycle begins when the SBus controller, after
detecting that some master has asserted its Request* (BR*),
decides to grant bus access to that master. At this time:

o The SBus controller asserts Grant* (8G*) for that master.

o The selected master, on the following clock edge, samples
8G* as asserted and must immediately place a virtual
address onto Data(31 :0) (D(31 :0» for exactly one clock cycle.

The master must also drive Size(2 :0) (Siz(2 :0» and Read (Rd)
to their appropriate values.

o The SBus controller samples this virtual address on the
following clock edge.

If the master is writing to the slave, the master must drive
D(31 :0) at this time.

o The SBus controller may then take an arbitrary number of
clock cycles to translate the address.

When the SBus controller places a physical address onto the
PhysAddr(27:0) (PA(27:0» and asserts AS*, the translation
cycle ends and the slave cycle begins.

At the beginning of a slave cycle, the bus controller:

o Asserts AS*.

o Drives a physical address onto PA(27:0).

o Asserts SlaveSelect* (Sel*) for the designated slave.

If a CPU master in a host-based system caused the bus cycle,
the CPU master also drives Rd, Siz(2:0), and D(31 :0) (if .
performing a write) at this time. For a DVMA master, these
signals are driven during the translation cycle.

17

Basic SBus Cycle

18

Chapter 2: SBus Overview

The selected slave then has up to 255 clock cycles to perform the
requested transfer and issue a non-idle acknowledgment on
Ack(2:0)*. In the case of a burst transfer, the slave generates
multiple acknowledgments, even though AS* remains asserted
for the entire transfer. For single word transfers, the slave then
drives Ack(2:0)* back to the idle (unasserted) state for one clock
cycle and, in the following clock cycle, removes its drive. The
slave may assert LateError* (LErr*) for exactly one clock cycle,
exactly two clock cycles after Ack(2:0)* is asserted.

In the case of burst transfers, a slave capable of transferring a
word per clock cycle keeps Ack(2:0)* asserted for each clock
cycle as a word is transferred. During write operations, the
slave is acknowledging data on the data lines during the clock
cycle it is asserting Ack(2:0)*. Thus, the slave samples the data at
the same time the master samples the acknowledgment for that
data. For read operations, the acknowledgment is pipelined.
Thus, the slave first generates the acknowledgment and, during
the following clock cycle, drives the data lines.

Slaves requiring more time must drive Ack(2:0)* back to the idle
state during the intervening time. In all cases, after the final
Data Acknowledgment, the slave must drive Ack(2:0)* back to
the idle state for exactly one clock cycle, and then remove its
drive. There are 255 clock cycles available to transfer data
during a burst transfer, not 255 clock cycles per word.

SBus Specification B.O

Chapter 2: S Bus Overview

SBus Controller

SBus System Clock

Bus Arbitration

SBus Specification 8.0

SBus Controller

Central to every SBus system is an SBus controller. Unlike some
buses in which each master contains all of the logic necessary to
perform a bus cycle, the SBus controller is responsible for
initiating each bus cycle. The controller does not have to be a
physically distinct object, but may appear as part of the CPU's
interface to the system. The SBus controller is responsible for
the functions described in the following sections.

The SBus system clock is a constant frequency signal to which
all events on the SBus are synchronized. In many SBus systems,
particularly host-based systems, the SBus clock is derived from
an integral sub-multiple of the processor's clock to synchronize
the SBus and processor. For this reason, a designer of an SBus
system is allowed to select a system clock ranging from 16.67
MHz to 25 MHz. For example, a 40 MHz CPU will probably
operate the SBus at 20 MHz.

Each SBus system is required to support one or more masters.
It is the function of the SBus controller to arbitrate between
masters for access to the bus. In order to meet the latency
expectations (discussed in greater detail in later sections) of
many masters, controllers must implement some form of fair
arbitration. When access to the bus is granted to a master, the
SBus controller is responsible for monitoring the transfer, in
order that it can remove 8G* at the appropriate time.

19

SBus Controller

Virtual Address
Translation, and Page
Size Restrictions

Slave Selects

Address Strobe

20

Chapter 2: SBus Overview·

By design, SBus masters use virtual addressing. When a master
acquires the bus, it places a 32-bit virtual address on the data
lines D(31 :0). The SBus controller is responsible for translating
the virtual address into a physical address by driving the
corresponding physical address on the physical address lines
PA(27:0).

The SBus controller, as well as the system in general, have
substantial flexibility in how they perform this translation and
handle translation misses and errors. All controllers, however,
should provide support for separate translation for blocks of
addresses less than or equal to 64 Kbytes.

This enables designers of SBus cards to group registers in
separate 64 Kbyte pages to protect them through the VA to PA
mappings. This does not prohibit support for larger page sizes,
but requires that support for the smaller page size be provided
as well.

The SBus is a geographically-addressed bus. This means that
each SBus slave receives a unique unary encoded address
signal, called Sel*. If asserted, this signal indicates that, if and
after a bus cycle is initiated, the given slave is addressed. It is
the responsibility of the SBus controller to drive the Sel*
appropriate to the translation of the virtual address presented
by the master.

The SBus controller initiates a slave cycle by asserting address
strobe. Thus, AS*, not Sel*, indicates that a slave cycle is in
progress.

SBus Specification B.O

Chapter 2: SBus Overview

Bus Timeouts

Other Functions

SBus Specification B.O

SBus Controller

By definition, a master (in a properly functioning SBus) which
initiates a bus cycle is guaranteed to receive a non-idle
acknowledgment before AS* is unasserted. Thus, a properly
designed slave must terminate the bus cycle after it has been
selected. However, if an SBus device is selected but no physical
device is present, the SBus controller terminates the blJ.s cycle by
generating an Error Acknowledgment. This case is the only one
in which timeouts should occur. Hence, in most systems,
timeouts will occur only during system configuration.

Profile recommendation: SBus devices that do not use Open
Boot, or SBus devices installed in systems that do not
implement Open Boot, should assert timeout themselves after
512 clocks have elapsed following the assertion of AS*.

Note: The 512 clock device timeout is not the same as the 256
clock SBus controller timeout. The clock device timeout is set to
512 clocks to allow for delays that may occur in some bus
bridges. If an SBus device determines that the SBus controller
will not be issuing a timeout and must therefore issue an Error
Acknowledgment, the timeout generated by the SBus device
must follow the 256 clocks, during which the SBus controller
may also assert timeout.

SBus cards that use and are installed in a host with Open Boot
may optionally check to determine whether the host requires
this type of behavior, and act accordingly.

The SBus controller is also responsible for the following
functions:

o Generating Reset* (Reset*) on power-up.

o Supplying power to SBus expansion slots.

21

Masters and Slaves Chapter 2: SBus Overview

Masters and Slaves All other SBus functions are the responsibility of the masters
and slaves on the SBus. These functions include:

22

o Bus sizing.

o Normal bus cycle termination.

o Error detection (including optional parity error detection).

The proper operation of the SBus depends on the proper
operation of the masters and slaves on the bus. This is critical to
the design of the SBus, since an improperly designed SBus
device may cause a system to operate improperly, just as a
properly designed (but malfunctioning) device may cause the
system to operate improperly.

Although the designer is occasionally tempted to make the
controller responsible for coping with certain kinds of protocol
violations, the SBus specification explicitly removes this
responsibility from the controller by requiring that properly
working masters and slaves not violate protocol. Protocol
violations are one of thousands of ways a malfunction might
become evident.

Thus, it is unreasonable to devote special treatment to a few
malfunctions that are as likely or unlikely to occur as the bulk of
the malfunctions for which no special time outs or treatment is
provided.

SBus Specification 8.0

Chapter 2: S Bus Overview

Direct Virtual
Memory Access
(DVMA)

SBus Specification B.O

Direct Virtual Memory Access

A principal objective in designing the SBus is to provide
support for Direct Virtual Memory Access (DVMA). DVMA
allows all masters (whether the host CPU or I/O devices) to use
virtual addressing in performing bus cycles. The most
important advantage of DVMA is that it simplifies operating
system and software memory management.

At the beginning of a bus cycle, a master places a virtual address
on the bus, which the controller translates into a physical
address and places on the bus. In the case of the SBus, the
master places the virtual address on the data lines. The MMU
may either be dedicated exclusively to the SBus controller, or
shared between the CPU and the SBus controller (which the
dotted boundary line represents in the figure showing a host
based SBus system earlier in this chapter).

After the controller translates the virtual address into a physical
address, it places the physical address on the address lines and
begins a slave cycle. The SBus supports a 32-bit virtual address
space. Whether each slot uses its own virtual address map or all
SBus slots use a common map depends on the implementation.

Among other capabilities, DVMA allows scatter/gather
operations on a memory page by page basis. For example, a
laser printer needing a megabyte of memory per printed page
can specify the page as contiguous in virtual address space
(even though the memory pages are not contiguous in physical
address space) by setting up the MMU properly.

One other potential benefit of using virtual addressing for I/O
devices is that it may allow the use of demand paging during
I/O. In some systems (for example, those with TLBs) it may be
desirable to let the MMU walk page tables. Although this book
does not define how such methods should be implemented, the
definition of the translation cycle, together with Rerun
Acknowledgments, make implementation of such methods
possible. At the same time, other systems may choose to treat
translation faults as an error, and abort the transfer.

23

Latency and Performance

Latency and
Performance

Clock Rates

Transfer Rates

24

Chapter 2: SBus Overview

Another principle objective in designing the SBus is to fulfill the
need for high aggregate throughput and low-latency transfers.
SBus performance is important because it is a critical part of
overall system performance. The SBus is designed with this
recognition in mind: a high perfonnance bus can reduce the
cost of bus masters by allowing the masters to have a minimum
of private buffer memory. To realize this capability, of course,
a system built around the SBus must include high-performance
system memory capable of satisfying the raw bandwidth
requirements of the devices on the bus.

Carefully implemented SBus systems should have no trouble
keeping up with I/O devices, such as Ethernet or FDDI.
Of course, since many of these systems will use the SBus as the
CPU's memory bus, system and board designers must consider
the impact of a master using a substantial fraction of the
sustained bus bandwidth on CPU performance. SBus
implementors should be aware that there are circumstances on
desktop and especially server systems, where real-time
response (latency), cannot be guaranteed.

Raw SBus performance is provided by allowing the SBus clock
to operate at frequencies up to 25 MHz. In view of the boards
and systems built by many different manufacturers, 25 MHz
provides a good balance between high performance and ease of
system design and integration.

Potentially, a slave can transfer a word per clock cycle. Thus,
the peak data rate at 25 MHz is 100 MB per second. Regarding
sustainable transfer rates, the SBus provides for burst transfers
of up to 16 words (64 bytes), with the opportunity for the slave
to transfer one word per clock cycle.

SBus Specification BoO

Chapter 2: S Bus Overview

SBus Specification B.O

Latency and Performance

In the case of a host-based SBus - where a CPU master can
overlap address translation with earlier bus cycles - as few as
two clock cycles of overhead are possible, thereby providing a
burst transfer rate of 64 bytes every 18 clock cycles or 88 MB per
second. In practice, memory subsystem overhead may make it
difficult to sustain this transfer rate.

DVMA masters will incur at least two additional clock cycles of
overhead for the translation cycle, resulting in a minimum of 20
clock cycles to transfer 64 bytes, or 80 MB per second at 25 MHz.
Again, the inability of a memory system to provide data at this
rate and the inability of the MMU to translate an address in a
single clock cycle would result in reduced performance.

For example, the Sun SP ARCstation 1 implements a 20 MHz
SBus and has burst transfers of 16 bytes only. As a result of the
implementation of the SBus controller and system memory, a 16
byte burst transfer by the CPU takes 11 clock cycles, and has a
burst transfer rate of approximately 29 MB per second.
DVMA masters require two additional clock cycles for address
translation, and thus have a burst transfer rate of about 25 MB
per second.

Note: The foregoing information applies primarily to 32-bit per
clock cycle transfers. For information about 64-bit per clock
cycle transfers, see Appendix B.

25

Latency and Performance

Latency

26

Chapter 2: SBus Overview

Latency is another important parameter affecting performance.
Depending on the type of device connecter! to the SBus,
designers must consider expected latency, as well as worst case
latency. The former applies to devices requiring sustained
throughput, but which can tolerate an occasional underrun or
overrun (network interfaces and fast disks are typical
examples). The latter applies to devices which may malfunction
if they underrun or overrun, such as real-time data capture
devices or space shuttles.

Latency is a function of the following factors:

D The number of masters.

D The arbitration method.

D The time it takes to translate a virtual address - that is,
length of a translation cycle.

D The time it takes for the addressed slave to complete the
transfer - that is, the length of the particular slave cycle.

The SBus has a limit of 8 masters, requires fair arbitration, and
slaves must respond within 255 clock cycles. The length of a
translation cycle is the only parameter not bounded by
definition.

Even ignoring the time it takes to translate an address, a DVMA
master that wants to work under all latency assumptions needs
to cope with a potential request to request latency of
approximately 8*256 clock cycles, or about 120 /lS at 16.67 MHz.
Worst case translation cycles in some high-end systems may be
as bad as (or even worse than) 10 /lS, which would result in a
worst case latency of 200 /lS or more. Thus, a master requiring
a guaranteed response time may need a substantial amount of
private buffering.

SBus Specification B.O

Chapter 2: SBus Overview

SBus Specification B.O

Latency and Performance

Expected latency in SBus systems which have high
performance memory on the SBus (for example, the Sun
SP ARC station 1) may be one to two orders of magnitude better.
In these systems, a DVMA access to memory will likely require:

D Two to three clock cycles for the translation cycle.

D One to two clock cycles per word of data.

D Two clock cycles of overhead.

If 8 masters are all performing 64 byte (16 word) burst transfers,
a master might incur approximately 300 clock cycles
(8*(3+32+2» or approximately 18 J.LS of latency between the start
of successive transfers. Because it is unlikely that all 8 masters
are requesting use of the bus, expected latency will generally be
significantly less.

Note: Worst case latency numbers are based on 8 masters, and
reflect the worse case delay from the start of a particular
master's transaction to the start of the same master's following
transaction. In many machines, there will be fewer than 8
masters (The Sun SP ARCstation 1 has a maximum of 4,
including the CPU), and thus the worst case latency in a
particular system may be substantially lower than these figures.

27

Latency and Performance

28

Chapter 2: S Bus Overview

Designing a DVMA master requires careful consideration of the
performance requirements of the device, as the considerations
in this section make clear. It is not possible to offer a firm
recommendation about how much buffering the master should
include, though some guidelines can be provided. For typical
low-end systems (for example, desktop systems), a master
should be able to tolerate around 5 /JS of latency.

Thus, a master which needs to sustain a 5 MB per second
transfer rate should have at least 32 bytes of buffer, and use
burst transfers whenever possible. For high-end systems (for
example, servers), masters may need to tolerate latency several
times this figure.

SBus Specification B.O

Chapter 2: S Bus Overview

Addressing and
Configuration

FCodes

SBus Specification B.O

Aaaressmg ana LonJzguratlOn

One final objective in designing the SBus is to make system
configuration and the installation of new SBus devices as trivial
as possible. Because each SBus slave device has its own private
Sel*, the slave does not need to know its own address in system
physical address space. As a result, no address jumpers are
required.

Each SBus device is also self-identifying. Beginning at
location 0 of each SBus slave's address space is a string of bytes
which describes the device. Nominally, these bytes are a special
header followed by ASCII text which includes such information
as the name of the card's manufacturer and the model number.

In more complex cases, the bytes following the header can
consist of an executable byte-coded program that configures the
card at system power-up, and provides information to the
operating system about the type of the device, as well as which
device driver to load. For such devices as disk drive interfaces,
network interfaces and frame buffers, if this program is written
to adhere to the boot-time programming interface, the system
can boot from the device or display boot-time information
before the operating system and its drivers are loaded.

As explained in Chapter 5, the byte-coded instruction set used
with the SBus is an extended version of the FORTH
programming language. There is nothing magical about using
FORTH for this application. The language already exists, has
reasonably machine-independent semantics, and is easily
interpreted.

To take advantage of these capabilities, the host CPU must have
a FORTH interpreter in its own boot ROM. Some system
designers may also wish to provide a user interface to the
interpreter for use in system debugging. The nature of such a
user interface is beyond the scope of this document.

29

t:.xtenaeal ransJers Lnapter L: :;'l5US uvervzew

ExtendedTransfers A new addition to the SBus specification is a protocol for
transferring 64-bits of data each clock cycle. Systems and SBus
devices that implement the Extended Transfers are fully
backwards compatible with 32-bit SBus systems and devices.
Conversely, current 32-bit systems and devices are fully
forwards compatible with the new Extended Transfer protocols.

30

SBus Extended Transfers provide substantially greater system
performance by doubling the peak system bandwidth from 100
MB to 200 MB per second, and increasing the sustainable
bandwidth for 64 byte transfers from 80 MB per second to 133
MB per second at 25 MHz. The maximum sustainable
performance using a 128 byte ExtendedTransfer at 25 MHz is
160 MB per second, or twice what is available using 32-bit
transfers.

The following chapters describe the specifications for the
protocol, electrical, mechanical, and programmatic operation of
SBus slaves, masters, and controllers in detail.

SBus Specification B.O

Signal
Determination

SBus Specification B.O

3

Protocol Design

This chapter describes the specifications for the SBus protocols
used to transfer information across the SBus. Devices and
systems can conform to this specification without
implementing all features of the protocols. Devices must be
designed to work even if the optional features of the protocol
are not implemented by other parts of the system.

The protocols described in this chapter apply primarily to 32-bit
data transfers. Although the function of many signals is the
same for 32- and 64-bit transfers, there are sequencing
differences between the signals. For information about the
ExtendedTransfer protocol, see Appendix B.

All SBus signals - except shared interrupt lines - must be
driven so that they meet the SBus setup time requirement of 15
ns with respect to the SBus clock. They must also be driven so
that they meet the SBus hold time requirement of 2.5 ns with
respect to the SBus clock. The setup and hold time
requirements must be met at all allowable frequencies of the
SBus clock.

31

SBus Controller Signals

SBus Controller
Signals

Clock

32

Chapter 3: Protocol Design

Signal names ending with an asterisk are asserted by driving
them to VOL (known as the low state), and unasserted by

driving them to V OH' (known as the high state). All other SBus

signals are asserted by driving them to the logic 1 state and
unasserted by driving them to the logic 0 state.

With the exception of the shared interrupt signals, an SBus
device must not drive a signal during any clock cycle in which
the signal is driven by another device. This restriction includes
those clock cycles during which the other device's output
drivers are turning off (becoming tristated).

Certain shared signals must be driven to their inactive
(unasserted) state before being tristated, as described in what
follows.

Every SBus must contain logic which controls the overall
operation of the bus. This logic is called the SBus controller.

Every SBus must have a free-running oscillating signal, called
Clock (Clk), which provides a master clock reference for all SBus
devices. For any given SBus system, the clock frequency must
be fixed within the range of 16.67 MHz to 25 MHz. Every SBus
expansion device must be fully functional throughout this
range of clock frequencies.

The physical and electrical design of the SBus must restrict the
total clock skew between any two clock inputs to no more than
2.5 ns. The SBus clock must have rise and fall times not
exceeding 3 ns into 160pF. For more timing information, see
Chapter 4.

SBus devices must sample bus signals only on the rising edge of
Clk (hereafter referred to as the clock edge).

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

SBus Controller Signals

Recommendation: Since the SBus elk may vary in frequency
from system to system, designers should not use elk as a known
frequency source. Doing so may restrict the systems in which
the device can be used - that is, if a device needs a clock that
always runs at 10 MHz, the device should have its own 10 MHz
oscillator. It should not divide the SBus elk.

Observation: Using the falling edge of elk to sample signals is
dangerous: do not use the signal for this purpose.

Some SBus devices may be able to change the number of clock
cycles required to perform various activities, such as memory
reads and writes, as a function of the SBus elk frequency.
These devices can use FCodes to determine the frequency of the
elk signal in the current system, and initialize themselves
accordingly. For more information about FCodes, see
Chapter 5.

Although sampling must be done only with the rising edge of
elk, SBus devices may take advantage of the SBus setup time
(15ns) by placing some amount of combinatorial logic either
before the sampling register or after a flow-through latch.

There is no restriction on which edge of elk a device may use to
drive output signals. However, at 25 MHz, meeting the setup
time into a 100 pF load makes it difficult to begin driving the
signal at the trailing edge of elk. Also note that the elk duty
cycle is not guaranteed to be symmetrical.

33

SBus Controller Signals

Reset*

elk

Reset*

Power
OK i
[not an SBus signal]

34

Chapter 3: Protocol Design

Every SBus must have a signal called Reset* (Reset*) which
properly initializes all SBus devices after power-up. The SBus
controller must assert Reset* after power-up. The SBus
controller may be designed to allow Reset* to be asserted at
other times by software or a push-button.

In all cases, Reset* must be asserted for at least 512 clock cycles
before being unasserted. In the case of system power-up, power
must be stable before these 512 clock cycles begin. The leading
edge of Reset* mayor may not meet setup times with respect to
elk. The trailing edge of Reset* must meet setup and hold times
with respect to elk. The SBus controller may keep Reset*
asserted for more than 512 clock cycles.

After detecting the assertion of Reset*, an SBus device must
perform whatever internal operations are required to initialize
itself. While Reset* is asserted, an SBus device must not assert
any bus signal. When Reset* becomes unasserted, masters may
assert Request*, and slaves may assert IntReq(7:1)* (lntReq(7:1)*).

Because Reset* may be generated as a result of a software reset,
an SBus device must not rely on internal power-OK detection
alone to perform initialization.

Figure 3-1. Example of Reset* Timing

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

SBus Controller Signals

Recommendation: Designers of SBus controllers should
provide a software reset mechanism. In most systems, it is
desirable to provide an input to the SBus controller that
connects either directly to the power supply's power OK signal
or to some other hard ware reset signal generated by another
part of the system.

SBus controllers should assert Reset* as soon as possible after
power is applied to the system.

Observation: The SBus does not provide a direct method for
arbitrary SBus devices to reset a system. In many systems,
software may force a reset via the SBus controller after certain
internal error conditions, such as watch-dog timer interrupts.

35

SBus Controller Signals

PhysAddr(27:0),
SlaveSelect*, and
AddressStrobe*

36

Chapter 3: Protocol Design

Every SBus controller must have:

o 28 physical address lines, called PhysAddr(27:0) (PA(27:0).

o One or more decoded address lines, called SlaveSelect*
(Sel*).

o A signal called AddressStrobe* (AS*).

These signals must be driven by the SBus controller only.

Note: During ExtendedTransfers, PA(27:0) is also used for
D(59:32).

The SBus controller is responsible for driving PA(27:0) and Sel*,
given either a virtual address from a DVMA master or, in host
based systems, a physical address from the CPU master.
The SBus controller must generate a separate Sel* for each slave
on the SBus. The decoding of physical addresses to generate
slave select depends on the system.

'-

PA(27:0) and every Sel* must be driven to a valid state by the
SBus controller no later than the clock cycle during which AS* is
asserted. PA(27:0) and Sel* must remain stable until the clock
cycle after AS* becomes unasserted. Sel* mayor may not remain
asserted for additional clocks; its behavior is not guaranteed
except where qualified by AS*. Thus, slaves must qualify Sel*
with AS* to determine whether a transfer is in progress.

A slave must not rely on Sel* alone, and controllers are under no
obligation to keep Sel* (Read (Rd), PA(27:0) stable, except when
AS* is stable. Sel* must be stable from a setup time before the
clock edge following the assertion of AS* until the clock cycle
following AS* being unasserted.

In all cases, the controller must keep AS* asserted at least until
the clock cycle following the final Data Acknowledgment for
the transfer, a rerun, or Error Acknowledgment. After one of
these acknowledgments, the controller must unassert AS* for at
least one clock cycle.

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

SBus Controller Signals

After a slave has been selected - that is, AS* and the slave's Sel*
are asserted - the slave must generate an acknowledgment to
terminate the bus cycle within 255 clock cycles. If the physical
address presented to the slave is inappropriate, the slave must
generate an Error Acknowledgment. Although most
controllers unassert AS* during the clock cycle following the
final acknowledgment, slaves must not make this assumption.
Thus, a slave must check for AS* becoming unasserted to
delineate successive bus cycles.

The following figure shows the general relationship among
these Signals.

In general, all accesses addressed to a particular SBus slot
generate a slave select for that slot. The only exception to this
rule is a write to address 0 within a slot's address space.
These writes are reserved for bus expansion hard ware (bridge
hardware) which may not be visible within the address space of
the slot that accommodates the bridge. Bridge hard ware may
intercept these writes to update their own state or to send
DVMA information to a known location. The slave is not
required to decode this location specially. It should handle any
writes that it receives.

To allow for multiple bridges, the upper byte of data is defined
as a key. To coexist with other hardware that intercepts writes
to address 0, the bridge or other hardware must compare its key
with the key in the data field, and intercept the write only if the
keys match. A mechanism that implements this feature will be
defined to provide unique keys to hardware.

Slaves should map registers that are read-only into the lower 64
Kbytes of their address space. By eliminating the need for the
software to map the lower 64 Kbyte block as writable,
inadvertent writes to address 0 are prevented. If there is a
device that holds boot code which must be written, the boot
code can be decoded in two locations within the slot's address
space: one read -only and one read -write.

37

SBus Controller Signals

elk

PA(27:0)

Sel*

AS*

38

Chapter 3: Protocol Design

Profile recommendation: SBus devices that do not use Open
Boot, or SBus devices installed in systems that do not
implement Open Boot, should only require the use of the
PA(24:00) signals to achieve maximum interoperability.

Recommendation: SBus controllers should unassert AS*
during the clock cycle immediately following the final
acknowledgment. boards should use the minimum amount of
address space pOSSible, and should not be extravagant with
address space in general, since this might result in an inefficient
use of mapping resources.

Also, addresses used should be concentrated in the low-end of
the address space for maximum compatibility with systems
which may not support the full 28-bit physical address space
available.

Observation: The Sun SPARCstation 1 drives PA(27:2S) to an
unspecified value. Thus, devices requiring more than 25 bits of
physical address may need additional selection hardware to
work properly in the SP ARCstation 1.

Figure 3-2. PA(27:0), Sel*, and AS*

SBus Specification B.O

Chapter 3: Protocol Design

Request*, Grant*, and
Arbitration

SBus Specification B.O

SBus Controller Signals

Each SBus master must have a signal, called Request* (BR*)
which acquires mastership of the bus. For every SBus master,
the SBus controller must provide a signal, called Grant* (SG*)
which indicates to a requesting master that it has mastership of
the bus. There is a unique SR* and BG* pair for each master in
the system.

An SBus system must not have more than 8 masters.

Only one of the BG* lines may be asserted during any clock
cycle. The SBus controller must arbitrate among requesting bus
masters for use of the bus. Arbitration among DVMA masters
must be fair, as defined by the following two rules:

o A DVMA master granted use of the bus during clock cycles
T m through Tn must not be allowed to use the bus again

until all other masters which asserted their respective
Request* during any clock T <= Tn have been granted use of

the bus (except during an atomic transaction).

o Within the above constraint, requests do not need to be
processed in chronological order.

After asserting SR*, the master must leave it asserted until it
receives BG*. During the clock cycle immediately following the
assertion of SG*, the master must unassert SR* for at least one
clock cycle (except if it is performing an atomic transaction), in
which case the master must leave BR* asserted. For more
information, see" Atomic Transactions" later in this chapter.

The SBus controller must keep 8G* asserted until the end of the
bus cycle.

39

SBus Controller Signals

elk

BR*

BG*

AS*

40

Chapter 3: Protocol Design

Observation: To reduce I/O latency, some systems may give
higher priority to DVMA masters than to CPU masters.
Thus, an SBus master attempting to use up all extra bus
bandwidth by constantly requesting the bus may find that the
CPU is never able to perform a bus cycle. In a system with only
one such device, the device could wait until one or two clock
cycles after its BG* became unasserted before reasserting its BR*.
However, this technique will not work in a system containing
multiple devices of this kind.

If a master (re-)asserts BR* while its BG* is asserted, the master
needs to prepare to start the second request as soon as one clock
cycle after BG* becomes unasserted.

The 8 master limitation is somewhat arbitrary. It is included as
an aid to designers who must know absolute worst case
conditions on the bus. In practice, most systems will have fewer
masters. The number of slaves is not limited and does not affect
performance per se. Nevertheless, the restrictions on maximum
capacitive loading enforce a practical limit on the number of
masters and slaves in most SBus systems.

Note: The number of clock cycles between BG* and AS* is a
function of system translation time, and is therefore variable.

Figure 3-3. Timing of BR*, BG*, and AS*

-1 o 1 2 3 4 5 6

SBus Specification B.O

Chapter 3: Protocol Design

Bus Cycle

Translation Cycle

. SBus Specification B.O

Bus Cycle

Every SBus bus cycle consists of a translation cycle and a slave
cycle, with one exception - that in host-based systems, the CPU
master may perform address translation without using the bus.
In this case (as viewed on the SBus) it will appear as though the
CPU master is performing slave cycles only.

Note: During Extended Transfers,certainsequencingdetails for
Oata(31 :0), PA(27:0), Read, and Size(2:0) are changed.
For more information, see Appendix B.

The assertion of BG* begins a translation cycle on the bus.
During the clock cycle immediately after it detects 8G* has been
asserted, the master must drive a virtual address onto Oata(31 :0)
(0(31 :0», and drive Size(2:0) (Siz(2:0» and Read (Rd)
appropriately. The master must drive the virtual address on
0(31 :0) for exactly one clock cycle. If the master is performing a
read, it must tristate the bus during the following clock cycle.
If it is performing a write, it must drive the first datum onto
0(31 :0). Unless the master is performing an atomic transaction,
it must unassert BR* for at least one clock cycle, beginning in the
clock cycle after it receives 8G*.

The SBus controller is responsible for translating the virtual
address into a physical address. After translating the virtual
address into a physical address, the controller must drive the
physical address onto PA(27:0), assert the appropriate Sel*, and
assert AS*. The SBus controller may drive the previous signals
as soon as two clock cycles after asserting 8G*, beginning in the
clock cycle after receiving the virtual address. There is no
predefined limit on the number of cycles the controller may take
to translate the address.

If, as a result of a translation fault or access violation, the SBus
controller needs to abort the bus cycle, it must not assert any
Sel* and must signal this error to the current master with an
Error Acknowledgment. The controller does not need to assert
AS* when aborting the bus cycle in this manner, although it is
free to do so. The SBus controller may assert LateError* (LErr*) as
desired .

41

Bus Cycle

42

elk

BR*

BG*

0(31 :0)

Rd

Siz(2:0)

PA(27:0)

AS*

Sel*

Ack(2:0)*

Chapter 3: Protocol Design

The method for translating a virtual address depends on the
system. However, all SBus controllers must provide support
for separate translation for blocks of addresses less than or
equal to 64 Kbytes. This requirement allows designers of SBus
cards to group registers to protect them through the V A to P A
mappings: it does not prohibit support for page sizes larger
than this limit; it simply requires support for at least one page
size within this limit, in addition to any others that may be
supported.

The bus controller may unassert 8G* as early as the clock cycle
in which it unasserts AS*. Under no circumstances may the
controller unassert 8G* or AS* until all words of data have been
transferred, or the slave has issued an Error or Rerun
Acknowledgment, or a timeout has occurred.

Figure 3-4. Translation Cycle and Slave Cycle

SBus Specification B.O

Chapter 3: Protocol Design

Slave Cycle

SBus Specification B.O

Bus Cycle

Observation: Because each master has its own BR* signal, the
SBus controller can easily implement a separate translation
table for each master, with context registers and all.

Sun systems use a variety of MMU structures. In the
SP ARCstation 1, the MMU is shared between the CPU and the
SBus. However, only a single context is provided for all SBus
DVMA masters.

If the master asserts Siz(2:0) and Rd at the same time it asserts
the virtual address, the MMU can perform various checks on
the transfer. Moreover, no other timing would work, since the
assertion of AS* is controlled by the bus controller.
The minimum translation cycle requires two clock cycles:
the first for asserting 8G*; and the second for asserting the
virtual address.

A slave cycle begins when the SBus controller asserts AS*.
The controller must keep AS* asserted until after the current
slave gives its final Data Acknowledgment, or a Rerun or Error
Acknowledgment. Thus, the SBus controller must monitor
Siz(2:0) and Ack(2:0)* (Ack(2:0)*).

The SBus controller must be certain that PA(27:0) and Sel* are
stable whenever AS* is asserted, beginning with the first clock
edge at which a slave can sense AS* as asserted. Thus, PA(27:0),

Sel*, Siz(2:0), and Rd must remain asserted until one clock cycle
after AS* becomes unasserted.

The current master must keep Siz(2 :0) and Rd stable until the
earlier of BG* or AS* becoming unasserted. During the clock
cycle following 8G* becoming unasserted, the current master
must stop driving Siz(2:0), and Rd. During a slave cycle, the
SBus controller must keep BG* asserted at least as long as AS*.

43

Bus Cycle

elk

AS*

Sel*

PA(27:0)

Rd

Siz(2:0)

D(31 :0)
[write]

Df31 :Ol
read

Ack(2:0)*

44

-1 o

Chapter 3: Protocol Design

When writing data to a slave, the master must drive the first
datum onto the bus during the clock cycle following the virtual
address (DVMA master), or in the same clock cycle in which AS*
is asserted (CPU master). The master must keep the write data
stable until acknowledged by the slave, and may tristate the
data lines as late as the cycle after 8G* has been unasserted (this
makes the timing identical to the Rd and Siz signals).

A slave, however, may not depend on the data remaining valid
after it acknowledges the data, which it may do as soon as one
clock cycle following the assertion of AS*. During a burst
transfer, the master must drive each successive word of data
onto the data lines during the clock cycle immediately
following the slave's acknowledgment of the previous word.
Thus, when a slave generates an acknowledgment during a
particular clock cycle of a write, it is acknowledging the data on
the data lines during that clock cycle.

Figure 3-5. Basic Slave Cycle Timing

n n+ 1 n+2 n+3 n+4

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification BoO

Bus Cycle

When data is read from a slave, the slave may generate an
acknowledgment at any time (subject to timeout), beginning
with the clock cycle following the assertion of AS*. 0(31 :0) may
be driven by the slave (but need not be valid) as early as the
clock cycle after that in which AS* and Sel* have been asserted.
The slave must drive 0(31 :0), which must be valid during the
clock cycle immediately following the corresponding
acknowledgment. During a burst read transfer, the slave must
drive the data lines with the appropriate word of data at each
clock cycle in which a word is transferred.

A slave cycle ends only after the slave acknowledges the last
word of data, or when the slave issues a Rerun or Error
Acknowledgment. The types of SBus acknowledgments are
described later in this chapter.

A DVMA master must use its 8G* signal to perform all of its
sequencing (except for the data sequencing, which is driven by
Ack(2:0)*). The master needs to use the leading edge of 8G* to
know when to place a virtual address on the data lines.
Similarly, the master must use the trailing edge of 8G* to
indicate that it should remove Rd, Siz(2:0), and 0(31 :0).
The master must not use or make assumptions about AS* during
a DVMA cycle, because the SBus controller may not assert AS*
in some cases (for example, if the slave is a device that is
logically but not physically connected to the SBus, or if the
controller aborts a cycle due to a DVMA translation error).

As noted previously, DVMA masters must assert Siz(2:0) and
Rd in the clock cycle following 8G*. However, for CPU masters,
Siz(2:0) and Rd are asserted at the same time as AS*.

45

Bus Cycle

46

Chapter 3: Protocol Design

Observation: The intent of the relative timing of AS*, Sel*,

PA(27:0), Siz(2:0), and Rd is that a simple slave does not need to
latch any of the above signals (with the exception of AS*).
Hence, the reason for requiring the signals other than AS* to
remain valid for one clock cycle after AS* becomes unasserted.
However, AS* must always be sampled with elk.

The minimum slave cycle requires three clock cycles:

1. The first for asserting AS*.

2. The second for asserting Ack(2:0)*.

3. The third for unasserting AS*.

For CPU masters in host-based systems, this timing means that
n words could be transferred in n+2 clock cycles, assuming that
a CPU read is not followed immediately by a CPU write. In this
latter case, one additional clock cycle is required to prevent two
different devices from simultaneously driving the bus
(assuming that a CPU read is not immediately followed by a
CPU write).

SBus Specification B.O

Chapter 3: Protocol Design

Atomic
Transactions

SBus Specification B.O

rU:urrtLl.; 1 'Urt~UI.,UUH~

An SBus master may retain ownership of the SBus for multiple
bus cycles to perform atomic transactions with a particular SBus
slave. The intent is to provide an easy-to-use hard ware
mechanism for implementing semaphores.

To retain mastership of the bus, the SBus master must keep SR*
asserted continually until it receives BG* for the last bus cycle.
For each bus cycle in which the SBus controller detects that SR*
has remained asserted (and, that it did not become unasserted
during the clock cycle after BG* became asserted), the controller
must give the same device mastership of the bus for the
following bus cycle. If a master does not wish to perform an
atomic transaction, it must unassert BR* during the clock cycle
after BG* is asserted. A master which asserts its SR* must wait
for the corresponding SG* before unasserting SR*.

Except for dummy reads (see later in this chapter), masters must
perform, at most, two bus cycles during an atomic transaction.
The first cycle must always be a read, and the second must
always be a write. If a master cannot respond immediately
with the write data (that is, by the time bus grant happens for
the write cycle), the master may retain ownership of the bus by
performing one or more dummy reads to the same address as the
original read. To do so, the master must use the data from the
first read.

Because of the way dummy read cycles are inserted to lengthen
atomic transfers, adverse effects may occur on device registers
if atomic operations are used to access them. Therefore, this
practice is not recommended. Also, Rerun Acknowledgments
must only be issued on dummy read cycles by bus couplers,
because their meaning is otherwise unclear and results cannot
be guaranteed.

If bus sizing occurs during an atomic transaction, there is no
guarantee that the follow-on cycles will be performed
atomically for an SBus DVMA master. Some systems may be
implemented in which the CPU master accesses that are bus
sized remain atomic. Such atomicity is accomplished by
designing the controller to give the CPU's follow-on accesses
higher priority than all other accesses. However, this behavior
depends on the system.

47

AtomIC ·1 "ransactions

48

Chapter 3: Protocol Design

When a slave issues a Rerun Acknowledgment during an
atomic transaction, the master must immediately unassert BR*,
if it has not already done so. The SBus controller must unassert
the corresponding BG*, as in the case of all Rerun
Acknowledgments. The master must then reassert BR*.
An SBus master, after receiving a rerun on the read bus cycle or
the write bus cycle of an atomic transaction, should restart the
atomic transaction from the beginning. However, if the master
receives a Rerun Acknowledgment on the dummy read bus
cycle, the master should continue to issue dummy reads or
proceed with the write bus cycle, since onI y a bus bridge should
generate such a Rerun Acknowledgment.

Masters must not perform atomic transactions with a slave that
issues Rerun Acknowledgments, unless the slave allows the
transaction to be restarted beginning with the first bus cycle or
the nature of the atomic transaction is such that the master can
complete the transaction properly - even though the
transaction starts at the current bus cycle instead of the first bus
cycle.

However, an SBus slave must not assume that an atomic
transaction which receives a Rerun Acknowledgment on the
write phase will be restarted with the read. Slaves should avoid
issuing reruns on the write portion of an atomic transaction,
because it may be difficult for some masters to restart an atomic
operation with the initial read.

A master that receives an Error Acknowledgment during any
bus cycle of an atomic transaction should immediately deassert
BR* for at least one bus cycle. The master may then reattempt
the transfer by reasserting BR*, or it may take other appropriate
action such as issuing an interrupt to the host.

SBus Specification B.O

Chapter 3: .Protocol veszgn

SBus Specification 8.0

Atomic Transactions

There is no limit to the number of dummy reads which a master
may perform to retain ownership of the bus. However, a master
must not hog the bus (that is, use an undue portion of the
bandwidth) with excessive use of dummy reads to itself.
SBus controllers must support byte, half-word, and word
atomic transfers, although they need not support bus sizing
during atomic transfers. While controllers may support bursts
during atomic transfers, they are not required to do so. SBus
controllers that do not support burst transfers during atomic
transfers must issue an Error Acknowledgment after the
translation cycle instead of asserting AS*.

8G* may be unasserted for only a single clock cycle between the
. bus cycles of an atomic transaction. Hence, a master may have
only two clock cycles (the first when 8G* is unasserted, and the
second when it is driving the virtual address) to modify data if
it is attempting to perform an atomic read-modify-write
transaction.

Recommendation: Avoid bus sizing during atomic
transactions (or, conversely, avoid atomic transactions to slaves
that bus size), since bus sizing works properly only in systems
that support bus sizing for the CPU master, and then work only
when the CPU master makes the access.

Avoid using bursts during atomic transactions, because there is
no guarantee that a particular host will support them.

The specification for atomic cycles provides for flexibility in the
handling of reruns during an atomic cycle. Unless there is a
good reason to do otherwise, after a rerun masters should
restart the atomic transaction beginning with the first bus cycle,
and slaves should be designed to expect the transaction to
restart with either bus cycle.

49

Atormc "1 ransactlons

elk

BR*

SG*

D(31 :0)

Rd

Siz(2:0)

PA(27:0)

AS*

Se*

Ack(2:0)*

50

Lnaprer ~: rrvwcvI vet;zgn

Figure 3-6. Atomic Transaction Timing

Observation: Except for the timing of BR* and the requirement
that no other master is allowed to access the bus, the
consecutive bus cycles in atomic transaction are just like any
other SBus cycles.

In SP ARC -based systems, the CPU master retains ownership of
the bus for multiple bus cycles to implement the SP ARC SW AP
and LDSTUB instructions.

Do not attempt to build a master that keeps SR* asserted after
receiving a Rerun Acknowledgment. Such behavior could
easily cause a system to hang as a result of deadlock.

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

Atomic Transactions

The SBus does not provide any indication to slaves that an
atomic transaction is in progress. Slaves needing to know this
information may wish to allocate part of their address space for
this purpose.

An SBus controller mayor may not check whether an atomic
transaction consists of a read, followed by an optional dummy
read, followed by a write. Thus, a master performing some
other sequence of bus cycles during an atomic transaction may
or may not receive an Error Acknowledgment. Furthermore,
whether such an illegal sequence of bus cycles performs the
intended behavior depends on the system. Even if no Error
Acknowledgment is given, there is no guarantee that an illegal
sequence of bus cycles will be performed correctly.

51

Data(31:0)

Data{31 :0)

Byte/Half-word
Ordering and
Addressing

Chapter 3: Protocol Design

Every SBus must have 32 signals, called Oata(31 :0) (0(31 :0),
which transfers data and virtual addresses.

Note: The least significant bit of the data bus is 0(0), and the
most Significant bit is 0(31).

The SBus supports three primary data formats:

o Bytes, which consist of 8 bits of data.

o Half-words, which consist of 16 bits of data.

o Words, which consists of 32 bits of data.

The SBus also supports multi-word transfers, called burst
transfers.

The SBus uses what is commonly called big-endian addressing.
As shown in the following figure, big-endian addressing means
that the Significance of bytes in a word or half-word decreases
as the address of the bytes increase.

Figure 3-7. Words, Half-words, and Bytes

Bit 31 24 23 16 15 08 07 00 31 24 23 16 15 08 07 00

Byte 0 Byte 1 Byte 2 I Byte 3 Byte 0 Byte 1 Byte 2 I Byte 3

Half word 0 Halftword 1 HaH -word 0 Half-word 1

World I Wqrd
I

! ~
000 I 001 i 010 I 011 100 101 110 111 ! Address

52 SBus Specification B.O

Chapter 3: Protocol Design

Port Locations

SBus Specification B.O

Data(31:0)

The particular subset of 0(31 :0) over which data travels depends
on the master's transfer size and the slave's Data
Acknowledgment. To specify the subset,the SBus defines byte,
half-word, and word ports on D(31 :0) as shown in the following
figure.

Figure 3-8. Port Locations within a Word

o 31 24 23 16 15 08 07 00

Byte 0/ Byte 1 Byte 2 I Byte 3

Half-word 0 Half-word 1

Word

When a master performs a byte write, it must always place the
byte data on 0(31 :24) which is byte port O. In addition, the
master must place a copy of the byte at the byte's natural
location. If the byte's address ends in 01 (binary), a copy of the
byte must be placed on 0(23:16) which is byte port 1; if it ends
in 10, a copy must be placed on 0(15:8) which is byte port 2; and
if it ends in 11, a copy must be placed on 0(7:0) which is byte
port 3. A master may place a copy of the byte at all four byte
locations, if desired.

Similarly, when a master performs a half-word write, it must
place the half-word data on 0(31 :16) which is half-word port O.
In addition, if the half-word address ends in 10, the master must
place a copy of the data on 0(15:0) which is half-word port 1.
A master may place a copy of the half-word at both half-word
locations, if desired.

When reading data from a slave, the location of the data
depends on the slave's Data Acknowledgment. For more
information, see information about "Data Acknowledgments"
later in this section.

53

Data(31:0)

Alignment, Wrapping,
and Burst Transfers

54

Chapter 3: Protocol Design

All transfers on the SBus must be aligned to their proper
address boundaries, subject to address wrapping in the case of
burst transfers. An SBus master must never issue an unaligned
word or half-word transfer. SBus slaves are not required to
signal an error on an unaligned transfer, although they are free
to do so, as long as the slave's Data Acknowledgment would
have been for a size equal to or greater than the transfer size.
For a further explanation of this constraint, see "Bus Sizing"
later in this chapter.

In detail, data transfers must always be aligned to an address
whose 10g2 (size of the transfer in bytes) least significant bit(s)
is (are) o. Thus:

o Bytes may be read and written at any address.

o Half-words may be read and written only from an address
whose least significant bit is O.

o A two/four/eight/sixteen word burst may be read and
written only from a block whose starting address's three/
four/five/six least significant bits are O.

In the case of burst transfers, although the block itself must be
properly aligned, the transfer may begin at any word within the
block. The (starting) virtual address generated by the master
need have only its two least significant bits be o. This mode of
addressing is called address wrapping.

During a burst transfer, it is the responsibility of the slave and
master to transfer the proper word during each clock cycle.
Since the slave receives only the starting address, after each
word is transferred the slave must increment the address
counter by 4, modulo the burst transfer size in bytes. If a slave
supports burst transfers, it must implement this modulo
counting.

SBus Specification 8.0

Chapter 3: Protocol Design

SBus Specification B.O

Data(31:0)

If a slave supports a 32-byte burst, it must support a 16-byte
burst as well. If it supports 64-byte bursts, it must support 32-
and 16-byte bursts.

Profile recommendation: SBus master devices that do not use
Open Boot, or SBus devices installed in systems that do not
implement Open Boot, should only perform 16-byte bursts.

Recommendation: It is recommended that a slave supporting
16,32, and/ or 64-byte bursts also support 8-byte bursts.
Moreover, the following recommendations are made:

o Use burst transfers whenever possible.

They greatly improve overall use of the bus and bus
performance.

o SBus controllers should support all burst sizes.

o A master supporting bursts to size n should support all
bursts up to size n.

o Masters using bursts should be able to perform 16-byte
bursts at minimum.

Observation: Address wrapping during burst transfers allows
a CPU master to transfer the word that caused a cache miss, and
then the rest of the words to fill up the cache line. Thus, the CPU
can begin execution immediately without having to wait for the
line to fill.

55

Transfer Size: Size(2:0)

Transfer Size:
Size(2:0)

56

Chapter 3: Protocol Design

Every SBus must have three signals, called Size(2:0) (Siz(2:0),
which the current master transmits information describing the
amount of data to be transferred during the bus cycle.

An SBus master must determine for each bus cycle how much
data it wishes to transfer. Unless an error occurs during the
middle of the transfer or the slave requests bus sizing, both the
master and slave must transfer the amount of data indicated by
Siz(2:0). The master must drive Siz(2:0) to its proper state
during the clock cycle following the assertion of 8G*. The
master must keep Siz(2:0) stable until the clock cycle following
8G* becoming unasserted.

CPU masters in host-based systems must assert Siz(2:0) no later
than the clock cycle in which the controller asserts AS*, and keep
it asserted until the clock cycle during which the controller
unasserts AS*.

A master need implement only one transfer size; a slave need
implement only one transfer size. However, a slave supporting
32-byte bursts must also support 16-byte bursts; a slave
supporting 64-byte bursts must support 16- and 32-byte bursts.

Every SBus controller must support at least byte, half-word,
word, and four word burst transfers. The SBus controller must
issue an Error Acknowledgment in response to any transfer size
it does not support. The controller must do this before initiating
slave cycle to a particular slave. When issuing an Error
Acknowledgment, it is not necessary for the controller to assert
AS*. If, however, the controller does assert AS* before issuing
Error Acknowledgment, it must not assert any Sel*.

All slaves must fully decode Siz(2:0), even though they may
support only a subset of the transfer modes. A slave must issue
an Error Acknowledgment in response to an unsupported
transfer size.

SBus Specification B.O

Chapter 3: Protocol Design

Siz(2) Siz(1)

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

Jransfer :;)lze: ~lze(L.·U)

The encodings in the following figure must be used for Siz(2:0).

Note: During ExtendedTransfers, Siz(2:0) is also used for
0(62:60). For more information, see Appendix B.

Figure 3-9. Siz(2:0) Encodings

Siz(O) Function

0 Word (four byte) transfer
1 Byte transfer
0 Half-word (two byte) transfer
1 ExtendedTransfer*
0 Four Word Burst (16 bytes)
1 Eight Word Burst (32 bytes)
0 Sixteen Word Burst (64 bytes)
1 Two Word Burst (8 bytes)

* The actual transfer size is encoded within the protocol. See Appendix B.

SBus Specification B.O

Recommendation: To work with Sun caches in SP ARC-based
systems, slaves designed to be cacheable must implement byte,
half-word, word, four and eight word burst transfers. It is also
recommended that two word bursts be implemented.

In particular, system memory is typically a cacheable device
and should, therefore, implement these burst modes.

As explained in 1/ Ack(2:0)*" later in this chapter, CPU masters
which are compatible with SunOS must implement dynamic
bus sizing. SBus controllers should support all sizes.

57

1 ransJer VlrectlOn: Keaa

Transfer Direction:
Read

58

Chapter 3: Protocol Design

Observation: Many systems (for example, the Sun
SP ARC station 1) do not implement all of the burst transfer
modes. Thus, a master desiring to use other than four word
burst transfers must be prepared to use single word transfers or
four word burst transfers if the desired transfer size is not
supported. Either the FCode driver or the device driver should
enable the use of 8, 32, or 64 byte burst transfers.

Support for burst transfers is not only a function of the master
and slave, but also of the SBus controller since it must know
how many Data Acknowledgments are needed to negate 8G*
and AS* at the proper time.

In some SP ARC -based systems, Load -double and Store-double
are performed as two 4-byte transfers, instead of as a single
8-byte transfer. Thus, a slave should not depend on these
SP ARC instructions generating only a single bus transaction.
This aspect of many implementations is an issue only for those
slaves that depend on load and store double to be executed as a
single atomic operation.

Every SBus must have a signal, called Read (Rd) which the
current master must use to signal whether it will read data from
the slave (Rd asserted) or write data to the slave (Rd unasserted).
Rd must be stable, beginning with the clock cycle following the
assertion of 8G* (DVMA masters) or the clock cycle in which
AS* is asserted (CPU masters). It must remain stable until the
clock cycle following AS* or 8G* becoming unasserted.

Slaves must gate their output drivers synchronously using Rd,
Sel*, and AS*. In particular, a read-only slave must not drive the
data lines when Rd is unasserted.

Note: During ExtendedTransfers, Rd is also used for D(63).
For more information, see Appendix B.

SBus Specification B.O

Chapter 3: Protocol Design

Ack(2:0)*

SBus Specification B.O

Ack(2:0)*

Every SBus must have three signals called Ack(2:0)* (Ack(2:0)*)
which are driven by the currently selected slave or, if a bus
timeout occurs, by the SBus controller. As a shared signal, the
currently selected slave, after asserting Ack(2:0)*, must drive
Ack(2:0)* to the idle (unasserted) state for one clock cycle before
removing its drive. The SBus controller must terminate
Ack(2:0)* with a 10 Kn resistor to +5V.

SBus cycles are terminated by one or more acknowledgments,
of which there are three general types:

o Data Acknowledgments.

These indicate the successful transfer of data between a
master and slave.

o Error Acknowledgment.

This indicates that the attempted data transfer was
unsuccessful.

o Rerun Acknowledgment.

This indicates that the selected slave was unable to perform
the requested transfer, and that the master must retry the
operation.

A slave asserts an acknowledgnlent by driving Ack(2:0)* to the
proper state for exactly one clock cycle. The slave is in complete
control of when to generate an acknowledgment, subject to the
constraints of bus timeouts.

When writing data to a slave, the master must drive the first
datum onto the bus during the clock cycle following the virtual
address (DVMA master), or in the same cycle during which AS*
is asserted (CPU master). The slave may acknowledge the data
as soon as one clock cycle following the assertion of AS*.

59

Ack(2:0)*

60

Chapter 3: Protocol Design

During a burst transfer, the master must drive each successive
word of data onto the data lines during the clock cycle
immediately following the slave's acknowledgment for the
previous word. Thus, when a slave generates an
acknowledgment during a particular clock cycle of a write, it is
acknowledging the data on the data lines during that clock
cycle.

Note: During ExtendedTransfers, data timing with respect to
acknowledgments for writes is the same as the timing for reads.
For more information, see Appendix B.

When data is read from a slave, the slave may generate an
acknowledgment at any time (subject to timeout), beginning
with the clock cycle following the assertion of AS*. The data
corresponding to the acknowledgment must be driven onto
0(31 :0) for exactly one clock cycle during the clock cycle
immediately following the Data Acknowledgment.

For all bus cycles (except burst transfers), after asserting
Ack(2:0)* for one clock cycle, the slave must drive Ack(2:0)* to the
idle (unasserted) state for exactly one clock cycle, after which
the slave must stop driving (tristate) Ack(2:0)*.

During a burst transfer, the assertion of a Data
Acknowledgment du!ing a clock cycle indicates that a word of
data has been accepted (writes) or will be transferred on the bus
during the following clock cycle (reads). Thus, word
acknowledgment can be asserted for up to 16 consecutive clock
cycles in the case of a sixteen-word burst transfer. If the slave is
unable to transfer data at the rate of a word per clock cycle, the
slave must drive Ack(2:0)* to its idle state between each word of
the transfer. In all cases, the entire burst transfer must be
completed within 255 clock cycles.

SBus Specification 8.0

Chapter 3: Protocol Design

SBus Specification B.O

Ack(2:0)*

A slave needs to be able to generate only one type of Data
Acknowledgment. Slaves do not need to be able to generate
Rerun Acknowledgment. A slave must generate an Error
Acknowledgment for any transfer request it is unable to
support.

Only the selected slave may drive Ack(2:0)*, except for those
cases in which a bus timeout or address translation error occurs.
As explained in "Bus Timeouts" later in this chapter, a slave
issuing an acknowledgment of any kind must do so no later
than the 255th clock cycle following the assertion of AS*.

All masters must operate properly, given any encoding of
Ack(2:0)*. However, a master may be designed so that a slave
may use only a particular subset of Data Acknowledgments in
response to a data transfer. The master is free to treat all other
Data Acknowledgments as though they were Error
Acknowledgments. If a master does not support a particular
type of Data Acknowledgment, it should not initiate a transfer
to a slave that generates a Data Acknowledgment which the
master does not support.

In the case where a slave requests bus-sizing, SBus masters
must not expect to see a byte or half-word acknowledgment,
since an intervening bus bridge may hide the bus sizing from the
master. Even though a master may know that a particular slave
will size an operation, a bus bridge may make it appear to the
master as though no bus sizing occurred. For example, on a
read, a bus bridge may reassemble the bytes or halfwords
before passing them back to the master; on a write, the bus
bridge may perform a single bus cycle with the master, even
though the ultimate transfer to the slave uses bus sizing.

61

Ack(2:0)*

Ack(2)* Ack(1)*

1 1
1 1
1 0
1 0
0 1
0 1
0 0
0 0

62

Chapter 3: Protocol Design

All masters must support Rerun Acknowledgment by retrying
the bus cycle. All masters must support Error
Acknowledgment. Masters must treat all reserved
acknowledgments and any unsupported data acknowledg
ments as though they were Error Acknowledgments.

All masters must be able to handle an acknowledgment as early
as the clock cycle immediately following the assertion of AS*
and Sel*. A master requesting a burst transfer must be able to
handle an acknowledgment every clock cycle for the length of
the burst. Figure 3-11 later in this section shows the use of
Ack(2:0)* for burst and non-burst transfers. The relationship of
Ack(2:0)* and the data is shown, as well as the fact that Ack(2:0)*
signals may be unasserted for a time during bursts, thereby
allowing the slave control of the data transfer rate.

The SBus controller must monitor Siz(2:0), Rd, and Ack(2:0)* so
that it is able to unassert AS* and 8G* after the slave has issued
the last possible acknowledgment for that bus cycle.

Ack(2:0)* must be encoded according to the following figure.
Slaves must not generate the reserved encodings.

Figure 3-10. Ack(2:0)* Encodings

Ack(O)* Function

1 Idle/Wait
0 Error Acknowledgment
1 Byte (Data) Acknowledgment
0 Rerun Acknowledgment
1 Word (Data) Acknowledgment
0 Double-word (Data) Acknowledgment
1 Half-word (Data) Acknowledgment
0 Reserved

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

.l'U':/q£.:VJ

Profile recommendation: SBus devices that do not use Open
Boot, or SBus devices installed in systems that do not
implement Open Boot, should check AS*, 8G*, or both. If these
signals are not negated following an Error Acknowledgment
within a burst transfer, the device must continue to provide
acknowledgments/errors until the end of the transfer. Cards
that use and are installed in a host with Open Boot may
optionally check to see if the host requires this tyPe of behavior,
and act accordingly.

Recommendation: Masters should support as many transfer
modes as possible to improve inter-operability. Masters must
be designed to accept a word acknowledgment in response to a
byte or halfword transfer, since many slaves issue only word
acknowledgments.

A master could attempt to circumvent address translation
protection checking by signaling a read to the SBus controller
during the translation cycle, and then deassert read before the
slave cycle. To detect such behavior, SBus controllers may wish
to verify that the read signal from the master remains stable
throughout the entire transfer (unless the transfer is an
ExtendedTransfer. See Appendix B).

Observation: During a transfer, a slave need not continue to
drive Ack(2:0)* after the slave has driven Ack(2:0)* to the idle
state for a clock cycle, since bus terminators (pullups) will keep
Ack(2:0)* in the idle state. However, a slave is free to actively
drive Ack(2:0)* in the idle state any time it is selected during a
slave cycle.

63

IiCIC(L:Ur

64

elk

AS*

Ack(2:0)*

D(31 :0)
[write]

D(31 :0)
[read]

Chapter 3: Protocol Design

The encoding of Ack(2:0)* is such that a slave which never
generates certain acknowledgments need not drive some of the
Ack(2:0)* wires. For example, a slave which always responds
with a word acknowledgment to all transfers need drive only
Ack(2)*. This observation may be useful for saving pins on a
gate array.

Figure 3-11. Sample Burst Transfer

SBus Specification B.O

Chapter 3: Protocol Design

Data
Acknowledgments

SBus Svecification B.O

Ack(2:0)*

Three types of Data Acknowledgments are used on the SBus:

o Byte acknowledgment.

o Half-word acknowledgment.

o Word acknowledgment.

A slave need not be able to generate all three Data
Acknowledgments.

A slave receiving a transfer request which it does not support
must issue an Error Acknowledgment. In the case where a
master requests a word or half-word transfer and the slave can
perform only a half-word ot byte transfer, the slave should
respond with a half-word or byte acknowledgment. The master
will then perform bus sizing, if it is able to do so.

A word acknowledgment is the only acceptable Data
Acknowledgment for a burst transfer. Byte and half-word Data
Acknowledgments must never be used.

The type of Data Acknowledgment is not allowed to change
during bus sizing. Within a word, a slave must use the same
acknowledgment for each port location within the word,
independent of transfer size. For example, if a slave responds
with byte acknowledgment to a word (or half-word) transfer at
address 0, it must respond with a byte acknowledgment for
each of the remaining three (or one) bytes.

A slave may issue any Data Acknowledgment in response to
any transfer request, subject to the prohibition on issuing half
word or byte acknowledgments during burst transfers, or
changing the acknowledgment as explained previously.
The Data Acknowledgment indicates the port size of the slave,
and determines where the slave must read and write data on the
data lines as the following figure shows.

65

Ack(2:0)* Chapter 3: Protocol Design

Recommendation: Although byte and half-word data is placed
at the proper port location and the proper address aligned
location on the data lines, it is recommended that slaves always
read data from the proper port location when issuing an
acknowledgment that implies use of that port location.

Observation: It is acceptable for a slave to respond with a word
acknowledgment, even though a byte or half-word transfer was
performed (similarly, half-word acknowledgment to byte
transfers). In this case, the slave must read and write data to the
proper address aligned location on the data lines. Also, the
slave need not support byte or half-word transfers.

Figure 3-12. Data Acknowledgment Semantics

Word acknowledgment
Word Transfer Slave transfers data on a1132 bits of 0(31 :0)
Half-word Transfer Slave transfers data on half-word

port indicated by PA(1)
Byte Transfer Slave transfers data on byte port

indicated by PA(1 :0)
Half-word acknowledgment

Word Transfer Dynamic Bus Sizing. Slave transfers data
on most significant half-word 0(31 :16)

Half-word Transfer Slave transfers data on most
significant half-word of data lines 0(31 :16)

Byte Transfer Slave transfers data on byte port
of most significant half-word as indicated by
PA(O)

Byte acknowledgment
Word Transfer Dynamic Bus Sizing. Slave transfers data

on most Significant byte 0(31 :24)
Half-word Transfer Dynamic Bus Sizing. Slave transfers data

on most Significant byte 0(31 :24)
Byte Transfer Slave transfers data on

most significant byte 0(31 :24)

66 SHu!> Snedfication RD

Chapter 3: Protocol Design

Rerun
Acknowledgment

SBus Specification B.O

Ack(2:0)*

A slave may issue a Rerun Acknowledgment instead of an Error
or Data Acknowledgment in response to any transfer request
subject to one constraint - that, during a burst transfer, a slave
may not issue a Rerun Acknowledgment if it has issued any
Data Acknowledgments for the current bus cycle. The Rerun
Acknowledgment must be the first and only acknowledgment
for the bus cycle.

The timing for a Rerun Acknowledgment is the same as for
Error and Data Acknowledgments: it must be issued no later
than the 255th clock cycle following the assertion of AS*.

A slave may issue a Rerun Acknowledgment on any bus cycle
that results from bus sizing. A slave is permitted to continue
issuing Rerun Acknowledgments until it is able to complete the
transfer. However, a slave is forbidden from issuing an infinite
number of Rerun Acknowledgments. Neither the SBus
controller nor SBus masters implement a mechanism for
limiting the number of Rerun Acknowledgments a slave may
issue. Slaves which might otherwise have the potential to issue
Rerun Acknowledgments forever must implement some
mechanism to avoid this possibility.

A slave cannot use rerun to control the order of accesses of
various masters. The SBus controller has complete control over
which master is granted access to the slave next. The controller
may also insist that the master which received the original
Rerun Acknowledgement from the slave be the only master
granted access to that slave until the rerun cycle is completed.

For example, a slave must not issue a Rerun Acknowledgement
to master A while waiting for an access from nlaster B.
This restriction prevents a deadlock resulting from conflicting
Rerun Acknowledgements issued by the controller and slave.

67

Ack(2:0)*

68

Chapter 3: Protocol Design

After receiving a Rerun Acknowledgment, a master must
relinquish the bus and request mastership of the bus.
After obtaining mastership of the bus again, a master must
perform the identical transfer which originally caused the slave
to issue a Rerun Acknowledgment. During atomic transactions,
this constraint may be impossible to achieve. For more
information, see /I Atomic Transactions" earlier in this chapter.

A master is not allowed to abandon (fail to retry) a transfer
terminated by a Rerun Acknowledgment. This means that a
slave is allowed to depend on the master retrying the transfer.

Recommendation: Slaves should limit their use of Rerun
Acknowledgment. It may have a negative effect on system
performance. Rerun Acknowledgment should be used only
when no other hard ware or software mechanism can
accomplish the task.

It is preferable for a slave to issue Rerun Acknowledgment early
in the bus cycle to allow other masters to access the bus.
However, there is no absolute rule about when it is better to
hold the bus in anticipation of completion versus issuing a
Rerun Acknowledgment.

If a device has master and slave capabilities, it is recommended
that they be designed so that the slave port can be accessed
regardless of whether the master is enabled. This allows the
master port to be disabled in software. The slave access may be
delayed by some number of rerun cycles if necessary, but the
designer should be careful to avoid livelock situations
(dynamically hung on continuous deadlock-backoff cycles). In
this way, a CPU can disable the master.

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

Ack(2:0)*

The use of Rerun Acknowledgment for busy-waiting is
discouraged. It may cause undesirable system performance
degradation if the slave stalls the CPU for more than a few
microseconds. In almost all cases, it is preferable to have the
CPU spin in an instruction loop to test the state of some bit, or
have the slave issue an interrupt when it is available or needs to
be serviced.

The use of buffering is encouraged as a method of avoiding
Rerun Acknowledgments.

To implement a read/write atomic transaction properly, a
master may need to violate the rule to retry the identical
operation. A Rerun Acknowledgment during the write phase
of the transaction will generally cause the master to restart the
atomic transaction beginning with the read phase. Thus, slaves
should be designed to work properly when a bus cycle, which
was a write, is retried as a read.

Slaves using Rerun Acknowledgment to implement split or
disconnected bus cycles should avoid saving state, or consider
implementing some method for distinguishing between
transfer requests so they can properly respond to multiple
masters.

In systems where multiple masters may attempt to access the
same slave concurrently and the slave can issue reruns, the SBus
controller may wish to include hardware to prevent masters
(other than the one being rerun) from accessing the slave.
The controller would rerun these other masters (or delay AS*)
while the first transfer is completed.

69

Ack(2:0)*

70

Chapter 3: Protocol Design

Observation: In some systems, deadlock can occur if an SBus
master is in a mode preventing it from servicing a slave request
as a result of its master mode requirements. An example is the
situation in which a slave request requires use of an internal bus
which is presently occupied as a result of an internal data
transfer. The only time an SBus device can simultaneously be a
master and slave is if, as master, it has been programmed to
generate addresses that cause it to be accessed as a slave. In that
case, the slave should issue an Error Acknowledgment or
complete the transfer.

The requirement that a slave not issue an infinite number of
Rerun Acknowledgments may place special requirements on
devices to avoid poor system performance or deadly embrace.
Deadly embrace is possible in a system in which two masters
are concurrently attempting to perform slave access between
themselves. If improperly designed, these two devices may
issue Rerun Acknowledgments to each other forever.

The requirement that the master retry the identical transfer is
designed to allow slaves to avoid saving state.

In multi-master systems including multiprocessors, if the
controller lacks hardware interlocks, it may be necessary to
have software prevent simultaneous access by different masters
to slaves which can issue Rerun Acknowledgments. This is
especially true if the slave saves state but is unable to
distinguish requests from different masters.

In particular, the SBus does not support any notion of master
identifier. For slaves which do not use the entire physical
address space, one possibility is to have hardware and software
use the convention that some number of high order address bits
are the master identifier. The slave can then determine which
request it is processing, and continue to issue a Rerun or Error
Acknowledgment to the others until it is able to service them.

SBus Specification 8.0

Chapter 3: Protocol Design

Error
Acknowledgment

SBus Specification B.O

Ack(2:0)*

Rerun Acknowledgment can be used to implement a form of
split or disconnected bus cycle. A slave with an access time
greater than lOllS (40ns * 255) can use Rerun Acknowledgment
to extend the transfer. The slave device starts the operation
after receiving the first request, and gives Rerun
Acknowledgments until it is able to supply the data. At that
time, it issues a Data Acknowledgment.

In designing the SBus rerun capability, it was recognized that in
some cases a master may not function properly if the slave
issues a Rerun Acknowledgment where the master needs to read
or write the data now. Although it seems to make sense to allow
the master to abandon the transfer, it was deemed cleaner to
require the master to finish the transfer, and use interrupts and
status bits in internal registers to alert the CPU to the problem.
Since the system has malfunctioned in either case, it was
deemed desirable to keep latency issues and errors independent
of Rerun Acknowledgment.

The Sun SP ARCstation 1 violates this specification by
implementing a Rerun Acknowledgment timeout for its CPU
master bus cycles. Some slaves may need to be aware of this
fact.

A slave may issue an Error Acknowledgment during a bus cycle
at any time an acknowledgment is allowed. In all cases, the
Error Acknowledgment must be issued within the timeout
period. An Error Acknowledgment aborts the transfer.
Accordingly, the SBus controller must unassert AS * and 8G*
after receiving an Error Acknowledgment.

An Error Acknowledgment may be issued instead of Data
Acknowledgment at any point in a burst transfer - that is,
before any words have been transferred or after one or more
words of data have been transferred. Such an Error
Acknowledgment aborts the transfer. The master (slave) must
not expect any more data, and the slave (master) must not send
any more data.

71

Ack(2:0)*

72

Chapter 3: Protocol Design

An Error Acknowledgment may be issued during any bus cycle
of a bus sizing operation. After receiving an Error
Acknowledgment, the master should abort the remainder of the
bus sizing operation. The slave which issued the Error
Acknowledgment should not expect to receive any more
transfers that are part of the bus sizing operation.

An SBus slave must issue an Error Acknowledgment in
response to a transfer request it is unable to support, subject to
the slave taking advantage of bus sizing when a master requests
a (non-burst) transfer larger than the slave supports.

The SBus controller must issue an Error Acknowledgment
whenever a bus timeout occurs. The SBus controller must issue
an Error Acknowledgment in response to any transfer size it
does not support. In these latter two cases, the SBus controller
mayor may not assert AS*.

Recommendation: Error Acknowledgment should not be used
for flow control. In many high-performance systems, write
buffering may make it very difficult to signal errors in such a
synchronous fashion. Thus, for example, a master receiving an
Error Acknowledgment to indicate that a slave's input FIFO is
full may not discover this until several additional writes have
caused the FIFO to overrun. Alternative techniques, such as the
use of high/low watermarks and interrupts, should be
considered.

SBus Specification B.O .

Chapter 3: Protocol Design

SBus Specification BoO

Ack(2:0)*

Observation: In general, the error mechanism on the SBus is
designed on the assumption that the errors for which Error
Acknowledgment will be used occur rarely. Thus, no attempt
is made to make it easy to determine the source of an error.
Individual masters and slaves are responsible for capturing
whatever state is required to make error explanation and
recovery feasible.

Error Acknowledgment indicates that the requested transfer
cannot be performed correctly. Asynchronous errors not
associated with a particular transfer should be reported using
interrupts.

Even though this book specifies that in certain cases slaves
should issue an Error Acknowledgment, such as
unimplemented transfer modes, these cases should occur rarely
in systems which are operating correctly.

In some systems, the SBus controller may generate an interrupt
to the CPU if the controller receives an Error Acknowledgment
on a non-CPU DVMA cycle. In these cases, the controller may
wish to keep a copy of the original virtual address as an aid to
error tracking.

73

Ack(2:0)*

Bus Timeouts

74

Chapter 3: Protocol Design

By definition, every SBus cycle terminates as a result of one or
more acknowledgments as explained previously. In the case
where a particular Sel* is asserted and no slave responds (for
whatever reason), it is the responsibility of the SBus controller
to generate an Error Acknowledgment to terminate the bus
cycle.

To prevent a bus timeout, the selected slave must generate its
own acknowledgment no later than the 255th clock cycle
following the assertion of AS*. If the SBus controller does not
receive an acknowledgment by the 256th clock edge, it must
generate an Error Acknowledgment within two clock cycles
(although it may generate Error Acknowledgment within one
clock cycle if it wishes).

The SBus controller must do the following in sequence:

1. Drive Ack(2:0)* for exactly one clock cycle.

2. Drive Ack(2:0)* to the idle state for one clock cycle.

3. Remove its drive.

Slaves unable to respond within the timeout period, but which
do not wish to abort the transfer, must use Rerun
Acknowledgment as explained previously. A slave which does
not respond with an acknowledgment within the timeout
period is forbidden from responding to the current bus cycle.

A slave must issue an Error Acknowledgment and not depend
on bus timeout if a master addresses an unused portion of the
slave's address space.

SBus Specification B.O

Chapter 3: Protocol Design

-1 o
elk

ACk(L:Ur

Figure 3-13. Bus Timeouts

1 2 254 255 256 257 258 259

i
l
!

AS* No Ti~eout I

Ack(2"O)* " " !, I .
···.········· .. ···.·············1················\····· l l···············l················ ···············1················~················1··· l

~ I i ITimeo~t iii I (' il: \1, AS*

~I i .: .: :~: :
A(~~~ by controll~r) iii Cf7 I i

SBus Specification B.O

Recommendation: The purposeful use of timeout by a slave is
strongly discouraged. Slaves unable to fulfill a transfer request
should issue an Error Acknowledgment.

Observation: In a properly running system, bus timeout
should never occur, except during system configuration.
However, in systems allowing user mapping of the bus (for
example, SunOS), it may be possible for user-level code to
access nonexistent SBus devices.

The bus timeout frees masters from keeping track of clock
cycles. Slaves which may occasionally timeout need to be
certain that they do not accidentally drive Ack(2:0)* at the wrong
time.

There are no predefined semantics associated with an Error
Acknowledgment, except for aborting the transfer.
If appropriate, it is the master's responsibility to issue an
interrupt to the CPU.

75

Latet:.rror'"

LateError*

-1 0 1

elk

AS*

Ack(2:0)*

D(31 :0)
[write]

D(31 :0)
[read]

LErr*

76

Chapter 3: Protocol Design

Every SBus must include a signal called LateError* (LErr*) which
provides SBus slaves with a mechanism to pipeline error
checking during a data transfer.

If LErr* is asserted by a slave, it must be asserted exactly two
clock cycles after the corresponding acknowledgment, and for
exactly one clock cycle. During the clock cycle after it asserts
LErr*, the slave must drive LErr* to its unasserted (high) state.

LErr* must not be asserted at any other time - that is, LErr* must
be preceded by an acknowledgment. LErr* may be asserted at a
time when the receiving master may have started a new bus
cycle or is no longer owner of the bus. Thus, SBus devices must
be careful to always associate LErr* with the preceding
acknowledgment.

LErr* may be asserted only by the currently selected slave.

When asserted during a burst transfer, LErr* does not abort the
bus cycle. The bus master must complete the entire transfer.

Like Error Acknowledgment, no specific interpretation of LErr*
is implied by this specification; the action taken in response to
the assertion of LErr* is specific to the current master.

Figure 3-14. LErr*Timing

2 4 6 7 8 9 11

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

LateError*

Recommendation: SBus devices should use LErr* only in those
cases where it is impossible to signal the error using Error
Acknowledgment.

Although LErr* may follow a Rerun or Error Acknowledgment,
this usage of LErr* is discouraged. It is unclear what LErr* means
in such cases.

In many systems (for example, SP ARCstation 1), LErr* is used to
signal memory errors. Masters performing DVM A transfers to
system memory should check for the assertion of LErr*.
A master receiving a LErr* after a Data Acknowledgment should
assume that the preceding data transfer occurred incorrectly,
and that the master should discard the data in the case of a read,
or try to re-write the data in the case of a write (avoid infinite
retries). If the master reports an error to the CPU, the master
should retain as much state as pOSSible, particularly the
offending virtual address, to facilitate error handling.

Observation: The LErr* mechanism follows from the general
SBus philosophy of en:ors: because errors occur infrequently,
detecting and reporting them should not interfere with the
performance of the system.

LErr* provides a mechanism for memory subsystems to perform
error checking without impeding data transfer. For example, a
word of data can be transferred at the same time parity checking
begins. The results of the parity check can be reported using
LErr* during the following clock cycle.

In some systems (for example, the Sun SP ARC station 1), the
SBus controller, after determining that LErr* has been asserted,
may independently generate an interrupt to the CPU, even
though the CPU was not master of the bus. In this case, the
controller may wish to keep a copy of the virtual address to
facilitate error handling.

An SBus slave which never drives LErr* may leave it
unconnected.

77

Hus ~izing

Bus Sizing

78

Chapter 3: Protocol Design

Bus sizing allows a master to initiate a word or half-word
transfer to a slave device without regard to whether the slave
supports a transfer size that large. This design allows a master
to treat the slave as though it were a word or half-word device,
even though the slave may implement only half-word or byte
transfers.

Bus sizing can occur only during word or half-word transfers.
It cannot occur during any burst transfers. A slave unable to
support a burst transfer must issue an Error Acknowledgment
if a master attempts such a transfer. A slave must never issue a
byte or half-word acknowledgment in response to a burst
transfer.

Support for bus sizing is the responsibility of the master. Except
as recommended later in this section, masters need not support
bus sizing. However, if a master does not support bus sizing, it
should not initiate a transfer that might require bus sizing - for
example, a word transfer to a byte slave.

Unlike burst transfers, in which multiple words of data are
transferred in a single bus cycle, during bus sizing each byte or
half-word must be transferred using an independerit bus cycle.
The first element of data (the one that invoked bus sizing) must
always be transferred as part of the original bus cycle.

Thus, a half-word must be transferred in a total of two bus
cycles, whereas a word must be transferred in two bus cycles
(slave responds with two half-word acknowledgments) or four
bus cycles (slave responds with four byte acknowledgments).
The master must generate the correct address for the data being
transferred during each bus cycle of the transfer. Masters
should change only the two least significant address bits in
follow-on bus cycles.

SBus Specification B.O

Chapter 3: Protocol Design

SBus Specification B.O

Bus Sizing

A slave must respond with the same Data Acknowledgment for
each bus cycle of a bus sizing operation. This restriction means
that a slave that responds with a byte acknowledgment for the
first byte of the transfer must respond with a byte
acknowledgment for each of the remaining transfers. Within a
word, a slave must use the same acknowledgment for each port
location within the word, independent of transfer size. If a slave
responds with byte acknowledgment to a word (or half-word)
transfer at address 0, it must respond with a byte
acknowledgment for each of the remaining three (or one) bytes.
The important effect of this rule is that the type of Data
Acknowledgment is not allowed to change during bus sizing.

A master may abort the bus sizing operation after any cycle.
However, if the slave issues a Rerun Acknowledgment, the
master must rerun the current bus cycle. The master must not
restart the transfer at the original bus cycle (except as explained .
previously for atomic transactions).

The data port location is determined, as always, by the slave's
Data Acknowledgment. The type of Data Acknowledgment
returned by a slave may not depend on the transfer size; it must
be a function of its own data path width. A slave must treat
every cycle individually, with no retained state about whether
previous bus sizing cycles have occurred.

During the follow-on bus cycles, the master may keep the
Siz(2:0) signal set at the original size. This results in follow-on
cycles that appear to be unaligned transfers. Since the Data
Acknowledgment returned by the slave must be the same for
each port location within the word, these cycles are completed
with the same acknowledgment used by the slave for the first
transfer.

79

Bus Sizing

80

Chapter 3: Protocol Design

Since a slave has no knowledge of atomic transactions, bus
sizing may occur during atomic transactions. However,
because atomicity is not guaranteed if bus sizing occurs during
an atomic transaction, masters should avoid atomic
transactions to slaves which bus size. For more information, see
"Atomic Transactions" earlier in this chapter.

Recommendation: The use of bus sizing during atomic
transactions is discouraged. It dramatically increases the time
during which a master has exclusive use of the bus. However,
in some cases, software may not have any way of knowing that
bus sizing is occurring (other than prior knowledge about the
slave) and, thus, cannot prevent it from occurring during
atomic transactions.

CPU masters intended to be compatible with SunOS must
support dynamic bus sizing for both byte and half-word
devices.

Bus bridges should never initiate bus sizing, and should always
acknowledge with the size requested by the master. Thus, bus
bridges need to support all transfer sizes and
acknowledgments.

Observation: Slaves can use bus sizing to reduce software
complexity. For example, an 8-bit frame-buffer that is
otherwise functionally identical to a 32-bit frame-buffer can use
the 32-bit software without modification.

A slave requires no special hardware to take advantage of bus
sizing.

In many systems, the CPU is the only master which implements
bus sizing. However, other SBus masters may implement bus
sizing if desired (this is entirely up to the master). The fact that
the CPU implements bus sizing does not help any other master
implement bus sizing.

SBus Specification B.O

Chapter 3: Protocol Design

Interrupts

SBus Specification B.O

Interrupts

Every SBus must have seven open-drain interrupt lines, called
IntReq(7:1)* (lntReq(7:1)*) which SBus slaves can use to
asynchronously signal the CPU.

Any SBus slave may assert one or more of IntReq(7:1)* at any
time, subject to system configuration considerations. A slave
must drive the interrupt lines using open-drain output drivers.
Unlike other shared signals, interrupt lines are not driven to
their unasserted state by the slave. After an interrupt has been
serviced, the asserting slave must stop driving the interrupt line
(unassert its output). The SBus controller must pull up each of
IntReq(7:1)* with 10 Kn resistor to +5V.

The slave may assert and unassert interrupts without regard for
setup and hold times with respect to elk.

After asserting an interrupt, the slave must set a bit in an
internal register (which is readable by the CPU) to indicate that
the slave is generating an interrupt at this level. Either the act
of reading this bit must cause the slave to stop asserting the
interrupt, or the slave must include some other CPU-accessible
mechanism to clear the interrupt. Slaves must not unassert an
interrupt until polled by the CPU.

By convention, IntReq(7)* is the highest priority interrupt, and
IntReq(1)* is the lowest priority interrupt.

81

Interrupts

82

Chapter 3: Protocol Design

Recommendation: When the event causing the slave to
generate an interrupt is naturally synchronous with elk, the
slave should meet standard SBus setup and hold times with
respect to Clk to avoid any chance of metastable behavior.
SBus controllers should be designed so that meeting SBus setup
and hold times removes any opportunity for metastable
behavior. To create a synchronous interrupt Signal, a slave
device whose interrupts are naturally asynchronous to Clk
should not include a synchronizer.

The interrupt synchronizer on the SBus controller should be
carefully designed to keep the probability of metastable
behavior low.

Slave devices should include the capability to disable
interrupts. After reset, interrupts should be disabled.

Observation: Interrupts provide a mechanism for SBus devices
to interrupt the CPU. However, it is up to the system designer
to determine how this is accomplished. The assignment and
processmg of interrupts is system-specific.

Interrupts on the SBus are allowed to be asynchronous, since
they are often generated in response to external
unsynchronized events. System reliability is improved by
having a single resource, the SBus controller, perform
synchronization because the controller can be designed to have
known failure probabilities that reflect overall system MTBF
requirements.

SBus Specification B.O

Chapter 3: Protocol Design

Other Timing
Diagrams

elk

SR*

SG*

D(31 :0)
[write]

D(31 :0)
[read]

Rd

Siz(2:0)

PA(27:0)

AS*

Sel*

Ack(2:0)*

LErr*

SBus Specification B.O

Other Timing Diagrams

This section contains additional timing diagrams.
These diagrams follow directly from the specification, and
are included to help illustrate various features of the SBus.
They represent a small fraction of the possible bus sequences.

Figure 3-15. DVMA Cycle with Wait States

83

Other Timing Diagrams

84

elk

SR*

SG*

D(31 :0)
[write]

D(31 :0)
[read]

Rd

Siz(2:0)

PA(27:0)

AS*

Sel*

Ack(2:0)*

Chapter 3: Protocol Design

Figure 3-16. DVMA Burst Cycle with Wait States

SBus Specification B.O

SBus Profiles

SBU5 Specification B.O

4

Electrical and Mechanical
Design

This chapter describes the specification for the electrical and
mechanical operation of SBus slaves, masters, and controllers.
It also includes SBus profiles, which contain considerations
which might affect the electrical and mechanical design of the
SBus.

SBus profiles define a minimum SBus card/controller feature
set which guarantees plug compatibility between SBus cards
and hosts. The features affected by SBus Profiles include:

o 25- versus 28-bit physical address widths.

o Burst sizes.

o Data parity.

o Error handling.

o Bus timeouts.

o 64-bit SBus.

85

SBus Profiles

Solution

SBus card uses
Open Boot

SBus card does
not use
Open Boot

86

Chapter 4: Electrical and Mechanical Design

The effect on specific SBus specification requirements by the use
of SBus Profiles are pointed out in the affected sections of this
book. The effect is explained in a special note called a Profile
recommendation.

SBus Profiles coexist with, but do not require the use of, Open
Boot on an SBus card or host. Whereas SBus Profiles specify a
minimum feature set that must be implemented on both SBus
hosts and cards, Open Boot provides the mechanism to expand
SBus hosts and cards.

The following SBus Profile matrix shows the relationship
between SBus cards and hosts which do / do not use Open Boot,
in relation to their respective use of profiles and extension of
their feature set beyond this.

Figure 4-1. S Bus Profile Matrix

Host with Open Boot I Host without Open Boot I

SBus card may require any feature SBus card should default to the
in the profile. Otller features must profile feature set.
be optional. I

SBus card should be built along the profile guidelines.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design t:.lectrlcal ueslgn

Electrical Design

Operating Range

Power

SBus Specification B.O

TheSBus is neither strictly a TTL bus nor a CMOS bus. It is
designed to be compatible with several families of CMOS logic
including,but not limited to, CMOS gate arrays with TTL-level
pads.

SBus systems and expansion cards must operate over an
ambient temperature range, Ta, of 0 to +70 degrees centigrade.
System designers must provide adequate ventilation or forced
airflow to maintain this requirement.

SBus expansion devices and systems must conform. to the
following power supply conditions per slot. Expansion devices
occupying multiple slots may consume the amount of power
specified per expansion connector. Thus, a two-slot SBus
device may consume 4A at +5V. SBus expansion devices must
connect to all five +5V lines, and to all seven Gnd lines. Current
should be drawn equally through all pins.

The average currents (kont) specified for the +5V, + 12V, and
-12V supplies include any transient or peak currents (lpeak).
Cards drawing transient currents greater than the average must
be designed to draw a quiescent current low enough to make
the 500mS time-averaged value no more than the value given
for Icont in the following figure.

No duty cycle is specified for the instantaneous peak currents.
This is intentional: it is unnecessary as long as the time
averaged current is not exceeded, and adequate bypassing
exists in the system and on the expansion card.

87

Electrical Design Chapter 4: Electrical and Mechanical Design

Figure 4-2. Power Parameters

Parameter Condition Symbol Min. Max. Unit

+SVSupply l=2A +SV 4.75 S.2S V
+12VSupply I = 30ma +12V 11.25 12.75 V
-12VSupply I = -30ma -12V -12.7S -11.75 V
Continuous Ripple, +5V l=2A VRS -0.1 +0.1 V

Continuous Ripple, + 12V l= +30ma VR+12 -0.25 +0.25 V

Continuous Ripple, -12V I = -30ma VR-12 -0.25 +0.25 V

Continuous Current SV V = SV nominal leont5 2.0* A

Continuous Current + 12V V = + 12V nominal leont+12 .03* A

Continuous Current -12V V = -12V nominal Ieont-12 -.03* A

Peak Current SV ?eak <: 1 mS lpeakS 3 A

Peak Current + 12V peak <-1 mS Ipeak+12 .05 A

Peak Current -12V Tpeak <= 1 mS Ipeak-12 -.OS A

*Icont averaged over any SOOmS interval.

+5V

+/-12 Volts

88

An SBus expansion card must not draw more than 2 amperes
average at +5 volts with respect to ground.

The SBus controller must guarantee that the +5V supply is
within ±O.2SV.

SBus expansion cards need to provide adequate power supply
decoupling as a function of the current they draw.

An SBus expansion device must be able to tolerate negative or
positive voltage spikes of 1 volt. The duration of such spikes
must not exceed 1 J..ls.

An SBus expansion card must not draw more than 30 rnA
average at + 12 volts with respect to ground. An SBus expansion
device must not draw more than -30 rnA average at -12 volts
with respect to ground.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Electrical Design

Capacitive Loading

Stub Length

SBus Specification B.O

Because the SBus is designed to be compatible with CMOS
devices (which are capable of only modest output drive), it is
necessary to specify a maximum capacitive load per signal.
In a properly designed SBus system, each expansion device
must contribute no more than 20 pF per signal per expansion
connector. This restriction includes the capacitive effects of any
connectors and printed circuit board traces associated with the
device.

An SBus device should not connect more than a single input to
any SBus signal. Signals having a fan-out greater than 1 should
be buffered by the device.

Figure 4-3. Capacitive Loading

Parameter Condition Symbol Max.

Loading per signal Css 20pF

per SBus device

Total loading F Clock <= 20 MHz Cts 160pF

per signal 20 < F Clock <=
25 MHz Cts lOOpF

Traces for SBus signals on an SBus card should be as short as
pOSSible, and in all cases be less than 50.8 millimeters
(approximately 2-inches in length).

89

Electrical Design

Signal Termination

Chapter 4: Electrical and Mechanical Design

The SBus is designed to work only over a small physical
distance in which rise times are long compared with
propagation delay. In such an environment, signals do not
usually behave as transmission lines and, therefore, termination
is not necessary except where noted specifically.

As long as SBus leakage current or drive requirements are not
exceeded, SBus masters and slaves may have pullups,
pulldowns, or other termination; SBus controllers may use
holding amplifiers.

Ack(2:0)* and LateError* The SBus signals Ack(2:0)* (Ack(2:0)*) and LateError* (LErr*) must
be driven to their unasserted state before being undriven.

IntReq(7:1)*

Data(31 :0), Size(2:0), and
Read

90

Bus termination for these signals need only maintain the state.

The SBus controller must terminate each of these signals with a
10 Kn ±10% resistor connected to the +5V supply.

The shared SBus interrupt lines,lntReq(7:1)* (lntReq(7:1)*) do not
conform to the SBus principle of being driven to their
unasserted state before being undriven. The SBus controller
must terminate each shared interrupt line with a 10 Kg ±10%
resistor connected to the +5V supply.

To prevent excessive power dissipation as a result of floating
outputs, the SBus controller must terminate each of the data
lines with a 10 Kg resistor connected to the +5V supply. As an
alternative, holding amplifiers may be used.

SBus controllers supporting ExtendedTransfers must connect
Read (Rd) and Size(2:0) (Siz(2:0» to ground using a 2 Kn resistor,
instead of to the +5V supply; and Siz(1 :0) must be terminated to
the +5V supply using a 10 Kn resistor. As an alternative,
holding amplifiers may be used.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Electrical Design

DC Parameters

Parameter

Input Low Voltage

Input High Voltage

Output Low Voltage

Output High Voltage

Input Leakage Current

Output Leakage Current

(Driver turned off)

SBus Specification 8.0

SBus signals are neither strictly TTL compatible nor CMOS
compatible. As shown in the following figure, SBus signals are
designed to use TTL-like voltage levels while consuming
minimal static current. These parameters are compatible with
CMOS gate arrays which have TTL compatible input and
output pads, as well as other standard families of components.

SBus signals must not be driven or received using ordinary TTL
circuitry as found in standard 7400, 74LSOO, 74500, and 74FOO
families of devices, because leakage currents, pin capacitance,
or other parameters may be incompatible with SBus.

SBus signals should not be received using CMOS /NMOS input
thresholds. Inputs must be sensitive to what are commonly
referred to as TTL voltage levels.

Figure 4-4. DC Parameters

Condition Symbol Min. Max. Unit

VIL 0.8 V

VIH 2.0 V

IOL =4.0 rnA VOL -0.4 0.4 V

IOH =2.5mA VOH 2.4 5.5 V

YIn = -.5V IlL -30 30 rnA

to 5.5V
VI/O = -.5V IlL -30 30 rnA

to 5.5V

91

Electrical Design

AC Parameters

92

Chapter 4: Electrical and Mechanical Design

To provide adequate design margin, all SBus signal drivers
must be capable of meeting the timing specifications shown in
the following figure when driving the maximum capacitive
load.

All SBus devices must be capable of operating across the entire
allowable clock range.

Rise and fall times are measured from the 10% to 90% points for
worst case logic levels. Setup, hold, and delay times are
measured from midpoint of the Clock (Clk) transition to the
midpoint of the signal transition - that is, midway between
.4V VOL and 2.4V VOH'

All times are specified with respect to the SBus connector.
Any additional times due to trace or logic delays in the
expansion card or host must be added or subtracted by
designers as appropriate. These additional times are not
reflected in the figures.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Electrical Design

Figure 4-5. AC Parameters

Parameter Condition Symbol Min. Max. Unit

Clk frequency FClk 16.67 25 MHz

Clkperiod TCp 40 60 ns

Clk high time FClk= 16.67 to TCH 17 ns
25 MHz

Clklowtime FClk = 16.67 to TCL 17 ns
25 MHz

Clkskew CL = 160 pF TCS 0 2.5 ns

Clk rise and fall time CL = 160pF TCR' TCF 1 3 ns

IntReq(7:1)* fall time CL = 160 pF, TF 5 20 ns

RL = 10KW

IntReq(7:1)* rise time CL= 160 pF, TIR 5 1200 ns

RL = 10KW

Other signals, rise/fall CL = 160 pF, TR,TF 5 20 ns

RL =1KW

Rising edge of Clk to FClk <= 20 MHz TOD20 2.5 32.5 * ns

output valid @ 20 MHz CL = 160pF

Rising edge of Clk to 20 < FClk<= TOD25 2.5 22.5 ns

output valid @ 25 MHz 25 MHz,
CL = 100pF

Output hold time after CL =OpF TOH 2.5 ns

rising edge of Clk

Rising edge of Clk to TZ TCp-5 ns

OutputZ
Input setup time before CL = 160 pF TIS 15 ns

rising edge of Clk

Input hold time CL = 160pF TIH 0 ns

*This number a~plies to slostems only, which may be designed for operation at or below 20 MHz
Cards must be esigned or 25 MHz operation to ensure maximum interoperability.

SBus Specification B.O 93

Mechanical Design Chapter 4: Electrical and Mechanical Design

Mechanical Design A conforming SBus system need not have any expansion
capabilities. SBus systems that have expansion capabilities
must adhere to the mechanical specifications in this section.

Expansion Connector

94

An SBus expansion card consists of an expansion connector, a
printed circuit board, and a backplate. An external I/O
connector may be mounted on the backplate, as appropriate,
provided it does not violate the mechanical specifications in this
section.

All measurements are in millimeters unless otherwise
indicated.

The SBus uses a high-density 96-pin connector. Expansion
cards use a male connector mounted on the solder side of the
board. Motherboards use a female connector mounted to allow
proper mechanical support and electrical shielding.

Double-width cards must have two expansion connectors.

Expansion connectors may be keyed or unkeyed. A keyed
connector is identical to the unkeyed connector, except for the
addition of a small plastic tab to prevent the connector from
being incorrectly loaded into the board at manufacturing time

The following three figures provide information about the
expansion connector and connector pinout. The subsequent
two figures show the mechanical details of the keyed connector
(the unkeyed connector is not shown because it is upward
compatible with the keyed connector).

Recommendation: It is recommended that SBus expansion
cards and motherboards be laid-out with the keyed connector
PCB mounting hole pattern. This way, the keyed or unkeyed
expansion connectors may be used.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Mechanical Design

Manufacturer

Honda

Fujitsu

Observation: The following vendors supply SBus expansion
connectors. Connectors are also available from other vendors,
and can be used as long as they meet the mechanical
specifications described on the following pages.

Figure 4-6. SBus Expansion Connectors

Connector Gender Mounting Hole Pattern Part Number

Male Unkeyed PCS-96MD
Keyed II-

Female Unkeyed PCS-96FD2
Keyed PCS-96FD2KP

Male Unkeyed FCN-234P096-GO
Keyed FCN-234P096-G IY

Female Unkeyed FCN-234J096-GO
Keyed FCN-234J096-G/U

*The part number for this connector has not been assigned as of the publication of this book.
For information, please contact the SBus Technical Support Group at Sun Microsystems, Inc.

SBus Specification B.O

This specification makes no recommendation about the
suitability of parts from these or any other vendors for a
particular application.

95

Mechanical Design Chapter 4: Electrical and Mechanical Design

Figure 4-7. Expansion Connector Pinout

01. Gnd 33. PA(06) 65. 0(18)
02. BR* 34. PA(08) 66.0(20)
03. Sel* 35. PA(10) 67.0(22)
04. IntReq(1)* 36. Ack(O)* 68. Gnd
05.0(00) 37. PA(12) 69.0(24)
06.0(02) 38. PA(14) 70.0(26)
07.0(04) 39. PA(16) 71.0(28)
08.lntReq(2)* 40. Ack(1)* 72. +5V
09.0(06) 41. PA(18) 73.0(30)
10.0(08) 42. PA(20) 74. Siz(1)
11.0(10) 43. PA(22) 75. Rd
12. IntReq(3)* 44. Ack(2)* 76. Gnd
13.0(12) 45. PA(24) 77. PA(01)
14.0(14) 46. PA(26) 78. PA(03)
15.0(16) 47.0taPar 79. PA(05)
16. IntReq(4)* 48. -12V 80. +5V
17~ 0(19) 49.Clk 81. PA(07)
18.0(21) 50.8G* 82. PA(09)
19.0(23) 51. AS* 83. PA(11)
20. IntReq(5)* 52. Gnd 84. Gnd
21.0(25) 53.0(01) 85. PA(13)
22.0(27) 54.0(03) 86. PA(15)
23.0(29) 55.0(05) 87. PA(17)
24. IntReq(6)* 56. +5V 88. +5V
25.0(31) 57.0(07) 89. PA(19)
26. Siz(O) 58.0(09) 90. PA(21)
27. Siz(2) 59.0(11) 91. PA(23)
28.lntReq(7)* 60. Gnd 92. Gnd
29. PA(OO) 61.0(13) \ 93. PA(25)
30. PA(02) 62. 0(15) 94. PA(27)
31. PA(04) 63. 0(17) 95. Reset*
32. LErr* 64. +5V 96. +12V

96 SBus Specification B.O

Chapter 4: Electrical and Mechanical Design

SBus Specification B.O

Figure 4-8. Signal Location

Gnd -1q ~ elk
SR* 0 G.5O. SG*

Sel* 4 ~ AS*
IntReq(1)* b ~ Gnd

0(00) -4) ~ 0(01)
0(02) ~ ~ 0(03)
0(04) --4) ~ o (OS)

IntReq(2)* 80 ~ +SV
0(06) ~ ~ 0(07)
O(OS) 1 b ~ 0(09)
0(10) ~ ~ 0(11)

I nt Req (3)* 1b c:P9- Gnd

0(12) ~14 em-- 0(13)
0(14) 0 ~ 0(1S)
0(16) ~1 ~ 0(17)

IntReq(4)* b ~ +SV
0(19) ~ ~ 0(1S)
0(21) 1 b }#- 0(20)

0(23) ~ 20 *- 0(22)
I ntReq(S)* 0 ~ Gnd

0(25) ~ 2Q ~ 0(24)
0(27) r-¥L 0(26)

0(29) ~ ~ 0(2S)
IntReq(6)* 2b r:¥L +SV

0(31) ~ 26 ~ 0(30)
Siz(O) 0 ~ Siz(1)
Siz(2) ~ Q!L- Rd

I nt Req (7)* ~ ~ Gnd

PA(OO) ~30 Gil--- PA(01)
PA(02) 0 ~ PA(03)

PA(04) ~30 GJ:L- PA(OS)
LErr* (j&- +SV

PA(06) 4 em-- PA(07)
PA(OS) 30 ~ PA(09)

PA(10) ~3 ~ PA(11)
Aok(O)* b r-fM- Gnd

PA(12) ~ 38 ~ PA(13)
PA(14) 0 ~ PA(1S)
PA(16) ~ 40 ~ PA(17)
Aok(1)* 0 ~ +SV

PA(1S) ~ 42 #-- PA(19)
PA(20) 0 r-¥ill- PA(21)

PA(22) ~ ~ PA(23)
Aok(2)* 4b ~ Gnd

PA(24) ~ ~ PA(2S)

PA(26) 47 ~ ~ PA(27)

DtaPar ~4b ~ Reset*
-12V ~ +12V

Mechanical Design

97

Mechanical Design Chapter 4: ~lectrtCal ana Mecnamcal veslgn

98

Figure 4-9. Male Expansion Connector

PIN 1
1.27 ['OSO]

71.00 [2,79S] ===n
1----- 59,69 [2,350]

o::::::::::::::::::~.::::::::::::::::::::: _ ~j 730

/oe----- 64,06 [2,S22] -----0-1

[

9 , 30 [, 336]

1 ,SO [, OS9]

.----------~-----------~

r- 33,59 [1,322]

[.160] , ,
1.27 [,oso]L W~O

59,69 [2,3S0]----I

['047J

r S9,69 [2,3S0J -I
PIN 1 ~ 1.27 [,OSO] f

1.27 [,sao] -j
3X 1.90 ['07S] ~ 1. 1.1 I

·:·:·~:~:,:,·:r·~:~:~·:::~K
¢0,80 ['031J -.I J ¢1.S7 ±O,08 I-- 33,59 [1,322J [,062 ±,003]

PCB MOUNTING HOLE PATTERN

[,287]

3.40 [.134] LQ
1.905 [O:~~~ ~I

0.40 [,016] +-

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design

Figure 4-10. Female Expansion Connector

P
71.00 [2,795J
59.69 [2.350J -----I

1.27 [.050]

00000000000000000000000 0000000000000000000000
00000000000000000000000 00000000000000000000000

1------ 63.86 [2.514] -----I

[1.322] ---j

4.06 [.160] L I I

.1.20 ['0.'7)~ ~I I 0.40 ['016~ 1.27 (050) ~ L
59.69 [2.350J--=-=i

PIN 1

[,287]

5.00 [.197]

14.45 ['569J
[.059]

~ 59.69 [2.350J I jt 1.27 [,050] ~ PIN . n I" 1.27 [.500J

I !r) L-1: 3X L90
['075J

lZl1.57
[,062

.-11-. ~.7.:-:-=:-.7·-::7·~·r·~ \(,,-; .~:.~
±0.08 L (ZIO,80 [,031]
±.003J 33,59 [1.322J----I

PCB MOUNTING HOLE PATTERN

SBus Specification B.O

Mechanical Design

3.40 ()34) ~ M
L905 [O:~~~ ~I

0.40 [.016] +-

99

Mechanical Design Chapter 4: Electrical and Mechanical Design

Expansion Board Types Two types of SBus expansion boards are currently defined:
and Sizes

Board Materials

100

o Single-width.

o Double-width.

Note: Not all systems support all board types.

Figure 4-11. Expansion Board Sizes

Type Total Length Total Width

Single-width 146.70mm 83.B2mm
Double-width 146.70mm 170.28mm

Recommendation: Triple-width SBus cards are not described
in this book. Until Sun has more operational experience with
triple-width cards, designers are discouraged from building
them.

Also, even though the Sun SP ARC station 1 has three SBus
expansion connectors, future systems may not accommodate a
triple-width SBus card.

The board shall be 1.60 mm, ±O.20 mm thick. The combination
of board warpage, component lead length, and component
height shall not exceed the specified maximum allowable
component or lead heigth limits as shown in figure 4-13.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Mechanical Design

Component Clearance The following figure shows the minimum acceptable gap
between any solder-side components and any components on
the motherboard. This gap guarantees that, under normal
shock and vibration, there is no unintentional contact between
the SBus card and components on the motherboard. Ultimately,
this places a restriction on component heights allowable on the
motherboard, without restricting the spacing of the SBus card
above the motherboard.

1.52 ['060J b
t

I

(20,32 [,800])

SBus Specification.B.O

The maximum component height, including board thickness, is
15.31 mm (0.60 in). The maximum component or lead height
below the board is 4 mm (0.16 in). This spacing is sufficient to
allow the mounting of low profile SMT devices such as
DRAMS. See the figure on the next page.

Figure 4-12. Minimum Component Gap

SBUS BOARD

7

MOTHER
BOARD

/

/ SBUS
CONNECTOR

\

-

" II /

101

Mechanical Design

102

Lnapter 4: l:.leCtrzcat ana lVlecnamcat ueszgn

There is no longer any space reserved for a possible future
connector. This space may be used for components.

Figure 4-13. Component Clearance

(160 [063]) ~r r ~~~~ ~~~g~ ABLE . . COMPONENT OR
~ LEAD HEIGHT

-'---96---PI-N fi--: r- !

HIGH DENSITY 1 1

CONNECTOR I I
1 1
1 1

I I
143,61 ±.40 1 1

1 1

[5,654 ±,016J

I I
1 1

1 1

I ! / M2 SCREW

(2.54 UOO))L l IV [(2X 1.3 LOS]) m

tJ 1 I

J I 14.3 [,56] []

11--- 4,00 [.157]

(1.22 [,048]) ~- MAX, ALLO\./ ABLE
COMPONENT OR

1.12 [,044] - LEAD HEIGHT

IT] AREA OCCUPIED BY M2 SCRE\./S
SEE TOP VIEW' FOR
COMPLETE DETAIL.

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Mechanical Design

Backplate

SBus Specification B.O

Every SBus card must have a metal backplate appropriate for its
width, as shown in the following four figures for single-width,
and in the subsequent four figures for double-width. These
backplates are two piece assemblies to allow them to work in
desktop environments or constricted-height environments such
as laptops and VME-based applications.

It is permissible to replace double-width backplates with two
single-width backplates appropriately spaced across the back of
the SBus card.

The area available for connector openings on the backplate
must be treated as a tunnel that extends perpendicular to the
backplate. Any connector used must fit entirely within this
tunnel, including the connector shell and any mechanical
restraint mechanisms used.

After it is installed in the system, the backplate must be
electrically connected to chassis ground by the system. It must
not be connected to the logic ground on the SBus expansion
card directly, via capacitive (including stray capacitance) or
inductive means. It may be necessary to electrically isolate the
connector or connectors of an expansion card from the
backplate to meet this requirement. Also, it may be necessary
in some cases to use differential, transformer, or opto-isolation
techniques.

103

Mechanical Design

Single-width SBus
Card

146,70 ±,25

[5,776 ±,OlOJ

2,54 (JOOJ

IT]
[2X 1.3 ['05J

Chapter 4: Electrical and Mechanical Design

The following figure shows a single-width SBus card.
The subsequent three figures show a single-width backplate.

Figure 4-14. Single-width SBus Card

83,82 ±0,25
[3,300 ±,OlOJ

t---- 77.47 [3,050J --~

1---- 68,57 [2,700J
TO PIN 1

(5.13 [,202])

COMPONENT

SIDE

PIN 1

1.12 ['044J

TO PIN 1 OF CONNECTOR

2X <;1)3,81

[.150J

TOLERANCES:
,xx = ±0,10

,x = ±0,25

[1J AREA OCCUPIED BY M2 SCREW'S,
SEE SIDE VIEW' FOR
COMPLETE DETAIL,

M2 SCREW'

(2'2~I,090]) ~! I-0>-- <79,24 qJ3.120J) ---I-I SBUS BACKPLATE

104 SBus Specification B.O

Chapter 4: Electrical and Mechanical Design

Figure 4-15. Single-width Backplate

2X

2X R1.5 [,06]

2X RO.5 [,02]

~

THE AVAILABLE CONNECTOR OPENING SHOULD BE
INTERPRETED AS A TUNNEL THAT EXTENDS ON BOTH
SIDES OF THE SBUS BACKPLATE, THEREFORE THE
CONNECTOR BODY AND CONNECTOR MATING PART
SHOULD STAY "'ITHIN THIS TUNNEL.

~ EXTRUDE AND TAP FOR M2.5-0.45 SCREW.

Mechanical Design

2X 02.15 THRU
VII>4.20X90'

[12l.090 THRU
V¢.18X90']

PUNCH AND EXTRUSION

TOLERANCES,

X.X = 0.4
X.XX = 0.20

ANGLE = 0.5'

DIRECTION

Figure 4-16. Detail of Single-width Backplate Adaptor

2.29 ±O.10
[,090 ±.004]

TOLERANCES,

X.X = 0.4
X.XX = 0.20

ANGLE = 0.5'

--~-. r---- ::--r
I 2X RO~5 [,02] I 2X I- 2X 4.58 U80] EXTRUDE 8. TAP

1------- 79.24 ±0.1O . FOR M2.0-0A seRE'"
[3.120 ±.004]

1-------- 83.82 [3.300]

SBus Specification 8.0

2.10 ±0.25 ---! r
[,083 ±.010] I

3.28 [,129]L-ijJ

T-i1-
(1.19) --II--
(,047)

SECTION A-A
PUNCH AND EXTRUSION

===C>
DIRECTION

105

Mechanical Design

106

Chapter 4: Electrical and Mechanical Design

Figure 4-17. Single-width Backplate Assembly

o
20.50 ±0.37

°U±·OIS]
~~----------------~--~

SINGLE-VIDTH SBUS BACKPLATE ADAPTOR

SINGLE-VIDTH SBUS BACKPLATE

SBus Specification B.O

Chapter 4: Electrical and Mechanical Design Mechanical Design

Double-width SBus
Card

The following figure shows a double-width SBus card.
The subsequent three figures show a double-width backplate.

2.54 [.100]

137.16
[5.400)

Figure 4-18. Double-width SBus Card

1----------- 170.18 ±Q.25 ---------l
[6.700 ±.01O)

a
163.83 [6.450]

1--------- 154.93 [6.100) ---------1
TO PIN 1

1---- 86.36 [3.400] ----I

+.: .••.
••• 0 ••••••••••••••• 0 ••••

COMPONENT
SIDE

OJ Ii IT] i
(2.29 [,090]) --I '=== (82.80 [3.260) ---j IT]

I-~>---------- (165.60 [6.520]) ---------1

SBus Specification B.O

P1N 1

2X 1.12 [,044]
TO P1N 1 OF CONNECTOR.

146.70 ±0.25

[5.776 ±.010]

TOLERANCES:
.XX = 0.10

.X = 0.25

3X 1.3 [,05] IT]

SBUS BACKPLATE

107

Mechanical Design Chapter 4: Electrical and Mechanical Design

2.29 to.10
[,090 t.004J

Figure 4-19. Double-width Backplate

1---------------170.18 [6.700J --------------1
1------------ 165.60 to.IO [6.520 t.004J -------------1
1------- 89.15 [3,510J -------1

3X ~2.15 THRU
V ~4.20X90·
[1lI,089 ~,181X90·J

P 82,80 to,1O [3,260 t,004J ==m
2X 78.23 [3.080]

(2X 73.66 [2.900J)
AVAILABLE CONNECTOR
OPENING. SEE NOTE I. A

==--===--==--:...-= =--=-===-=-=-=---== 71
: : .: 19,64

I #- -tt- I ['773J ~ L __________________ ~ L _________________ ~~

l J L 1270 [SOD) " R"~~::F~6l (1.19) -II-
2X 57,9 [2.29J

~

CD i~iE::R~}t~L;S C~N~5~J~~ f~;~I~~T~~g~LgN B~DTH
SIDES OF THE SBUS BACKPLATE, THEREFORE THE
CONNECTOR BODY AND CONNECTOR MATING PART
SHOULD STAY 'WITHIN THIS TUNNEL,

iii EXTRUDE AND TAP FDR M2,5-0.45 SCRE'W.

TOLERANCES.

XX = 0.4
X,XX = 0.20

ANGLE = 0.5"

([,047])

PUNCH AND EXTRUDE

DIRECTION

Figure 4-20. Detail of Double-width Backplate Adaptor

141-------------155,40 [6,118] -------------1
I 89.94 [3.541]

1--'------ 80,24 [3.159] -----I

~o [69,04 +~2'7l8]
5.60 -0,20 .220 -,008J f~ijOO A ---, ~ 2,30 [0.91] fJ~3 t~.~ro;l r

I -.l r 507 to,25 . I
~~~~~~1~-~~1~~~~~~~~~~~~~~f~~~~~~~~~§~~~~~i~[~UW ~ 

~ 
-~,;~- -1---- ---,- 3.28 L129JI 11-

3X A ----1 (1.19) --H-
EXTRUDE 8. TAP ([,047]) 

1---- 82.80 :to.10 [3,260 t.004J FOR M2,0-0,4 SCRE'w' 

2,29 to,lO 
[,090 t,004] 

1----------- 165,60 to,lO [6,520 t,004] -------------1 

108 

1--------------165,60 [6,520]---------------1 

1--------------170.18 [6,700J ----------------/ 

IDI ERANCES: 

X,X = 0.4 
X.XX = 0.20 

ANGLE = 0.5" 

SECTION A-A 

PUNCH AND EXTRUSION 

DIRECTION 

SBus Specification B.O 



Chapter 4: Electrical and Mechanical Design Mechanical Design 

Figure 4-21. Dauble-width Backplate Assembly 

I [,059 ±,OlO] 1
1- 1.50 ±0,25 

t C=°o 1_~_~~~C] l@J _____ ~ _~ _~]~o°---'--->-20.50 ±0.37 
o 0 [,807 ±.015] 

l 

DOUBLE-VIDTH SBUS BACKPLATE ADAPTOR 

..... 

"M2~0.4X4.0MMFLT HD.PHIL SCRE~ 
3 PL 

DOUBLE-VIDTH SBUS BACKPLATE 

SBus Specification B.O 109 



Mechanical Design 

SBus Retainer and 
Stand-off 

Chapter 4: Electrical and Mechanical Design 

The following figure details the SBus retainer. The retainer 
assists the insertion or removal of the SBus card, and provides 
mechanical restraint for it against shock and vibration in a 
desktop environment. 

Figure 4-22. SBus Retainer 

1------- 77.80 -------1 

-
R 3.0", 
2X 

Ar 

110 

t- 2.5 
REF 

2X 

" 

t 6.5 1 

~~ RI.O 
4X / 

f 19.3 

R3.0 --.L ~ 
'A 

I 

2X f~ 
1------71.QO~~:~------1/-- l, L7~2.0 2X 

ALL ~~~ I- 1.70±Q.l 

2X 

3.2±1{.1 f 1.6±Q.I 
fI) 3.6±Q.l 

R 1.8±0.1 

SECTION A-A 
SCALE, 8/1 

o 

NOTES ' UNLESS DTHERIJISE SPECIFIED . 

1 INTERPRET ALL DIMENSIONS AND TOLERANCES PER ANSI Y145M-82 

2 ALL DIMENSIONS ARE IN MILLIMETERS 

3. MA TERIAL : POL YCARBONATE, LEXAN 141, BLACK 

4 FINISH, SPI-SPE 112. 

5. ALL DRAFT ANGLES TO BE 5 DEGREES MAX PER SIDE 

[§J PARTING LINE MISMATCH IN SECTION A-A TO BE 0.05 MAX 
(2 PLCS), ALL OTHER AREAS TO BE 0.1 MAX. 

7. TOLERANCES, 
O.X = ± 0.2 
Q.XX = ± 0.10 
ANGLES = ± 0.5 DEGREE 

SBus Specification B.O 



Chapter 4: Electrical and Mechanical Design Mechanical Design 

".60["8:]~ 

0.90 ['035]:r==~ 

In other non-<iesktop applications such as laptops and VME
based applications, the retainer may not be necessary and can 
be easily removed. In these applications, a pair of stand-offs 
such as those in the following figure may be used. 

These stand -offs mount to the SBus card using the same holes to 
which the retainer otherwise mounts. Some mechanical means 
must be provided to retain the SBus card in its slot. 

Figure 4-23. SBus Stand-off 

040 [,0'6]11 rm-l r 'i' 
<4.05 : US9] z..:§8. - -- -_. ~=--,---L-0-3'7-0-Y-: [.]46] 

1.80 ['07}~ I. 0.40 [.016] III 
3.60 [.142] -I ~ 2.00 [,079] ~ 

AV~ 0;.30 Ll69] 

~~ l1.00 ['039J 

-- - 3.80 L150] 

1 EQUAL TO ENGAGED HEIGHT OF SBUS CONNECTORS. 

2 EQUAL TO THICKNESS OF MOTHER BOARD. 

3. MATERIAL: NYLON 6/6. 

SBus Specification B.O 111 



Mechanical Design 

VMEIFUTUREBUS 
Installation 

112 

Chapter 4: Electrical and Mechanical Design 

The following figure shows how an SBus backplate is installed 
on a VME rear panel. 

Figure 4-24. SBus Card Installed on VME Card 

/ 

SBUS BACKPLATE 
(ADAPTOR REMOVED) 

,~ M2.5-0.45-8.0MM,FLT HD,PHL 

VME REAR PANEL 

SBus Specification B.O 



FCodePROMs 

SBus Specification B.O 

5 

FCode Drivers for SBus 
Cards 

This chapter describes the programmatic operation of SBus 
slaves, masters, and controllers. Each SBus expansion card 
must have a Programmable Read-Only Memory (PROM) which 
identifies the device and contains an optional software driver to 
allow the card to be used as a boot device or as a display device 
during booting. This driver may also contain diagnostic, self
run routines. 

SBus device PROMs must be written in the FCode 
programming language. FCode has the following advantages: 

o Source format is machine and system independent. 

o Binary format is machine, system, and position 
independent. 

o Binary format is compact. 

o Binary format may be interpreted easily and efficiently. 

o Programs are easy to develop and debug. 

o Source format can be easily translated into binary format. 

o Binary format can be untranslated back to a source format. 

113 



Program Format 

Program Format 

114 

Chapter 5: FCode Drivers for SBus Cards 

The FCode PROM must begin at address 0 within the SBus 
card's physical address space. Its size may range from 30 bytes 
up to the entire physical address space of the SBus card. 
Typical sizes are 60 bytes (for a simple card that identifies itself 
but does not need a driver) and 1-4 Kbytes (for a card with a 
boot driver or on-board diagnostics, or both). 

The FCode PROM must be organized as follows: 

o Header (8 bytes) containing the following information: 

o Magic number. 

o Version number. 

o Length. 

o Checksum. 

o Body (0 or more bytes) containing the FCode program. 

o End Token (a zero byte). 

SBus Specification B.O 



Chapter 5: FCode Drivers for SBus Cards Program Interpretation 

Program 
Interpretation 

SBus Specification 8.0 

For each SBus slot, the FCode program is interpreted as follows: 

o Location 0 of the SBus card is read with a 32-bit access. 

The card must return the first 4 bytes of the PROM, or return 
the first byte and respond with a byte acknowledgment so 
that the CPU can perform bus sizing for the remaining 3 
bytes. 

o If there is no response (meaning there is no card in that slot), 
the slot is subsequently ignored. 

o If the high-order byte of the value returned from that access 
is not the FCode magic number Oxfd or other values 
OxfO - Oxf3, the slot is subsequently ignored. 

o Otherwise, the PROM IS assumed to contain a valid FCode 
program. 

The FCode PROM is then interpreted by starting at 
location O. Reading one byte at a time, the procedure 
associated with the value of that byte is executed. 

o When a byte containing 00 is interpreted, interpretation 
ceases. 

Note: Configuration parameters stored in non-volatile memory 
on the CPU board control the order in which the various SBus 
slots are interpreted. 

115 



Device Identification 

Device 
Identification 

116 

Chapter 5: FCode Drivers for SBus Cards 

An FCode PROM must identify its device. The identification 
information must at least include the driver name of the card. 
Identification information may describe additional 
characteristics of the device for the benefit of the operating 
system and the CPU boot PROM. 

Each property must have a name and a value. The name is a 
string; the value is an array of bytes which may encode strings, 
numbers, various other data types, and combinations thereof. 

Properties may be created arbitrarily by FCode PROMs. 
The CPU boot PROM understands certain property names 
which inform it about such things as the type of the device 
(for example, whether it is a disk, tape, network, display). 
The CPU boot PROM may use this information to determine 
how to use the device (if at all) during the booting process. 

Observation: In most systems, the CPU's FCode interpreter 
stores each device's identification information in a device tree 
that contains a node for each device. Each device node contains 
a property list to identify and describe the device. The property 
list is created as a result of interpreting the program in the 
FCodePROM. 

The UNIX® operating system understands other property 
names that provide information for configuring the operating 
system automatically. These properties include the driver 
name (which is treated as a hint), the addresses and sizes of the 
device's registers, and the interrupt levels and interrupt vectors 
used by the device. 

Other properties may be used by individual UNIX device 
drivers. The names of such properties and the interpretation of 
their values are subject to agreement between the writers of the 
FCode PROM and the UNIX driver, but may otherwise be 
arbitrarily chosen. For example, a display device might declare 
width, height, and depth properties to allow a single UNIX driver 
to automatically configure itself for one of several similar but 
different devices. 

SBus Specification B.O 



Chapter 5: FCode Drivers for SBus Cards FCode Language 

FCode Language 

. SBus Specification 8.0 

The FCode programming language is closely related to the 
FORTH-83 programming language. FCode is essentially 
FORTH-83 with extensions appropriate to its use for device 
identification and boot drivers. Additionally, FCode has a well
specified binary format, whereas FORTH-83 specifies only the 
source format. In contrast to FORTH-83, FCode is based on a 
32-bit stack width and 32-bit arithmetic. 

Observation: FCode may be thought of as byte-coded FORTH. 
FCode PROMs are developed by writing FORTH source code; 
then a simple tokenizer program is used to convert the source 
code to the binary (byte code) format. The binary version is 
then loaded into a PROM and installed on the SBus card. 

In most cases, each FORTH source code corresponds to a single 
FCode binary code. For some FORTH commands, the tokenizer 
provides macros to convert a single FORTH source code 
command into a sequence of several FCode binary codes. 
A version of the tokenizer program (for Sun-4 workstations) is 
available through the Sun SBus Technical Support Group . 

117 



FCodes and FORTH Chapter 5: FCode Drivers for SBus Cards 

FCodes and FORTH For information about FCode primitives currently supported by 
the Open Boot PROM, see Appendix C. For information about 
FCodes and the FORTH programming language, see one of the 
following books: 

118 

o Writing FCode Programs for SBus Cards, a Sun Microsystems, 
Inc. publication, part number 800-5673-10. 

o Starting FORTH, 2d edition 
by Leo Brodie 
(Prentice-Hall). 

o Mastering FORTH 
by Anita Anderson and MartinTracy 
(Brady Publishing). 

o FORTH: A Text and Reference 
by Nicholas Spies and Mahlon Kelley 
(Prentice-Hall) . 

SBus Specification B.O 



Slave 

SBus Specification B.O 

A 

Specification Compliance 

This appendix describes the minimal requirements for SBus 
cards to be compliant with the SBus specification. SBus slaves, 
masters, and systems can be compliant with the specification 
without supporting all SBus features, as described in this 
appendix. 

To be a compliant SBus slave, an SBus device must at least: 

D Use Clock (Clk) to determine signal validity. 

D Meet all setup, hold, and delay times. 

D Meet all AC and DC electrical specifications. 

D Use at least AddressStrobe* (AS*) and SlaveSelect* (Sel*) to 
determine whether it should participate in the current bus 
cycle. 

D Drive Data(31 :0) (D(31 :0» in accordance with the Read (Rd) 
signal. 

D Sense all Size(2:0) (Siz(2:0» signals, and support at least one 
transfer size. 

At least one non-burst transfer size must be supported, a 
byte, half-word or word. 

119 



DVMAMaster 

DVMAMaster 

120 

Appendix A: Specification Compliance 

D Drive the Ack(2:0)* (Ack(2:0)*) signals, and be able to respond 
with at least one kind of Data Acknowledgment. 

D Respond with a valid acknowledgment within the bus 
timeout period. 

Otherwise, no response should be given. 

D Have an FCode PROM beginning at physical address o. 

To be a compliant SBus master, an SBus device must at least: 

D Use the SBus elk to determine signal validity. 

D Meet all setup, hold, and delay times. 

D Meet all AC and DC electrical specifications. 

D Assert Request* (BR*) to access the bus. 

However, never keep BR* asserted for more than two 
consecutive bus cycles, except during an atomic transaction 
which causes bus sizing or uses dummy reads. 

D Sense Grant* (BG*), and place virtual addresses on D(31 :0) at 
the appropriate time. 

D Drive all Siz(2:0) signals, and support at least one transfer 
size. 

D Drive Rd to indicate the transfer direction. 

D Drive D(31 :0) in accordance with the Rd signal. 

D Sense all of the Ack(2:0)* signals, and terminate the bus cycle 
after receiving appropriate acknowledgment. 

o Support Error Acknowledgment by aborting the bus cycle, 
and Rerun Acknowledgment by reissuing the bus cycle. 

To be compliant, a master may not terminate a bus cyQ:le 
until the slave (or, in the case of a timeout, the SBus 
controller) has terminated the bus cycle. 

SBus Specification B.O 



Appendix A: Specification Compliance SBus Controller 

SBU8 Controller 

SBus Specification B.O 

To be a compliant SBus controller, the controller must: 

o Provide a elk in the range of 16.67 MHz to 25 MHz. 

o Drive AS*, Sel*, PhysAddr{27:0) (PA{27:0», and Reset*. 

o Support at least one bus master. 

In host-based systems, this master may be just the CPU. 
In a system with DVMA masters, the controller must 
arbitrate fairly among the master's BR*, and issue the 
appropriate 8G*. 

o Provide address translation facilities for all DVMA masters. 

o Issue an Error Acknowledgment in case of a bus timeout. 

o Support 1-, 2-,4- and 16-byte transfers. 

o Support rerun. 

121 



SBus Controller Appenclix A: :ipeciJication Compliance 

122 SBus Specification 8.0 



Parity Checking 

SBus Specification B.O 

B 

SBus Extensions 

This appendix describes extensions to the SBus. These 
extensions provide recommendations about implementing 
certain features which are not a standard part of the SBus 
specification. 

In some systems, it may be desirable to be able to check whether 
data is transferred properly between master and slave, and that 
no data corruption has occurred while traversing chip pins, 
connectors, and wiring. 

When the SBus is reset, all extended parity checking must be 
disabled. An SBus device using extended parity checking must 
use its FCode program to determine whether the system 
supports extended parity checking. Extended parity checking 
must remain disabled, unless supported by the system. 

Note: The following information applies primarily to 32-bit per 
clock cycle transfers. For information about 64-bit per clock 
cycle transfers, see the next section in this appendix. 

123 



Parity Checking 

124 

Appendix B: SBus Extensions 

Devices that compute extended parity checking must do so only 
over the bits of Oata(31 :0) (0(31 :0», and for all values placed 
onto 0(31 :0), including virtual addresses during translation 
cycles. Odd parity is computed. The SBus device currently 
driving 0(31 :0) must drive OtaPar so that XORing the OtaPar 
signal with 0(31 :0) results in a logic 1. The OtaPar signal must 
be driven with the same timing as 0(31 :0). In the case of byte or 
half-word transfers, devices supporting extended parity must 
drive the high-order bits of the data lines to compute parity 
correctly. 

The receiving SBus device is responsible for detecting parity 
errors. During translation cycles, the SBus controller must 
check the parity of the virtual address, and issue an Error 
Acknowledgment. The master must then abort the bus cycle, or 
retry it as desired. 

When data is written by a master, the master must generate 
parity on 0(31 :0) for each datum transferred, and the slave must 
check the parity of 0(31 :0). If the slave detects a parity error, it 
should generate an Error Acknowledgment or LateError* (LErr*), 
or both. When data is read by a master, the slave must generate 
parity on 0(31 :0) for each datum transferred, and the receiving 
master must check the parity of 0(31 :0). If the master detects 
parity error, it should generate an interrupt (but the master 
must not use LErr* or Error Acknowledgment). 

Observation: When a device is driving data, data parity may 
always be generated or driven. Data parity must not be 
checked, unless it is supported by the system. 

SBus Specification B.O 



Appendix B: SBus Extensions 

SBus 64-bit 
Transfer Protocols 

Scope and 
Compatibility 

Overview 

SBus Specification B.O 

S Bus 64-bit Transfer Protocols 

This section describes a set of extensions to the basic SBus 
protocols to transfer 64 bits of data each clock cycle instead of 
only 32 bits each clock cycle. 

The 64-bit SBus extensions apply to all SBus systems and 
environments. SBus systems and devices conforming to the 
specifications in this section will operate both in existing 32-bit 
SBus environments, as well as in the 64-bit SBus environment. 

SBus masters and slaves using only the 32-bit protocols will 
work correctly in systems that implement the 64-bit protocols; 
and, conversely, SBus masters and slaves using the 64-bit 
protocols will operate correctly in systems that implement only 
32-bit protocols. Furthermore, 32-bit SBus masters and slaves 
can transfer data to and from 64-bit slaves and masters. 

The 64-bit SBus protocols provide a means to improve SBus 
band wid th and reduce SBus latency while maintaining forward 
and backward compatibility. To achieve these goals, the 64-bit 
SBus protocols use the same signals as the existing 32-bit 
protocols. 

However, they take advantage of time-multiplexing the 
PhysAddr(27:0) (PA(27:0», Size(2:0) (Siz(2:0», Read (Rd), and 
Data(31 :0) (D(31 :0» signals to create a 64-bit wide path capable 
of transferring a double-word of data every clock cycle. 
The 64-bit transfer SBus extension also provides for 128 byte 
transfers. 

125 



SBus 64-lJit Transfer Protocols 

126 

AppenalX l:S: :il:Sus extensIons 

Figure B-2 shows the nature of the 64-bit protocol. The master 
asserts its Request* (BR*) signal the same as for all SBus requests. 
After receiving Grant* (BG*), the master begins a translation 
cycle. As for all transfers, the master drives a virtual address 
onto 0(31 :0), drives Rd to the proper state, and sets Siz(2:0) to 
Extend ed Transfer. In the fastest possible case, the SBus 
controller then drives a physical address onto PA(27:0), and 
asserts AddressStrobe* (AS*). 

At the same time, the requesting master drives Rd to a 
(indicating a write), independent of the actual transfer 
direction. It also drives 0(31 :0) with the following Extended 
Transfer Information: 

Figure B-1. Extended Transfer Information 

0(31) 
0(30:28) 
0(27) 
0(26:25) 
0(24:0) 

ExtendedType. 
Extended Size 
Read/write. 
Atomic transaction 
Reserved 

If an SBus slave supports Extended Transfers, it must latch the 
physical address on PA(27:0) and the cycle information on 
0(31 :21) on the clock edge following the assertion of AS*. 
Unlike 32-bit transfers, where this information remains valid 
throughout the bus cycle, in an ExtendedTransfer this 
information is valid only at the clock edge following the 
assertion of AS*. 

SBus Specification B.O 



Appendix B: S Bus Extensions 

SBus Specification B.O 

S Bus 64-bit Transfer Protocols 

During the clock cycle after the assertion of AS·, the SBus 
controller must tristate PA(27:0), while the SBus master must 
tristate Siz(2:0), Rd, and 0(31 :0). The SBus controller must have 
pulldown resistors on Rd and Siz(2), and pullup resistors on 
Siz(1 :0) to maintain them in the proper state. 

As early as this same clock cycle but no later than 255 clock 
cycles after the assertion of AS·, an SBus slave supporting 
Extended Transfers should assert double-word 
acknowledgmentAn SBus slave which does not support 
ExtendedTransfers should issue an Error Acknowledgment. 
Until the acknowledgment is received, the master must 
continue to keep 0(31 :0), Rd, and Siz(2:0) tristated, while the 
controller must continue to keep PA(27:0) tristated. 

During a write, in the cycle following the acknowledgment, the 
master must drive the first double-word of data onto 
0(63:0) - that is, Rd, Siz(2:0), PA(27:0), and 0(31 :0). During a 
read, in the cycle following the acknowledgment, the slave 
must drive D(63:0). 

In both cases, the data lines are driven for exactly one clock 
cycle. In the case of a burst transfer, the next double-word 
acknowledgment can come as soon as the cycle during which 
the double-word is driven. Thus, Extended Transfer timing for 
both reads and writes is the same as 32-bit timing for reads. 

127 



SBus 64-bit Transfer Protocols 

elk 

BR* 

8G* 

PA(27:0) 

Sel* 

AS* 

Siz(2:0) 

Rd 

D(31 :0) 

Ack(2:0) 

LErr* 

128 

Appendix B: SBus Extensions 

Figure B-2. 64-bit Protocol 

SBus Specification B.O 



Appendix B: SBus Extensions 

Clock 

Reset* 

AddressStrobe* and 
SlaveSelect* 

PhysAddr(27:0) 

SBus Specification B.O 

S Bus 64-bit Transfer Protocols 

The remainder of this appendix describes the specifications for 
performing Extended Transfers. 

The specification for the SBus elk signal remains unchanged for 
Extended Transfers. 

The specification for the SBus Reset* (Reset*) signal remains 
unchanged for Extended Transfers. 

The specification for the SBus AS* remains unchanged for 
Extended Transfers. In Extended Transfers, AS* is asserted in the 
clock cycle during which physical address is driven onto 
PA(27:0) by the SBus controller. AS* remains asserted 
throughout the entire transfer. 

However, during a 32-bit transfer, a master may use 8G* for all 
of its timing, and need not look at AS*. During an 
Extended Transfer, a master must look for the assertion of AS* to 
determine when to stop drivingSiz(2:0), Rd, and D(31 :0). 

The specification for SlaveSelect* (Sel*) remains unchanged for 
Extended Transfers. 

During an Extended Transfer, the SBus controller must drive a 
physical address onto PA(27:0) for exactly one clock cycle, no 
sooner than two clock cycles following the assertion of 8G* to 
some master, and no later than the clock cycle in which it asserts 
AS*. In this respect, 64-bit transfers and 32-bit transfers use of, 
and timing for, PA(27:0) are identical. 

In the clock cycle following the assertion of AS*, the SBus 
controller must tristate (stop driving) PA(27:0), and leave this 
signal undriven until at least two clock cycles after it deasserts 
the latter of 8G* or AS*. For each slave, the physical address 
space for Extended Transfers must be the same as for 32-bit 
transfers. It must be possible to access data using the same 
physical address with 32- Or 64...;bit transfers. 

129 



SBus 64-bit Transfer Protocols 

Request*, Grant*, and 
Atomic Transactions 

64-bit Transfer Bus 
Cycle 

Translation Cycle 

130 

Appendix B: SBus Extensions 

The specification for BR* and BG* remain unchanged for 
Extended Transfers. The sequence of events for atomic 
transactions also remains unchanged. However, if the first bus 
cycle of an atomic transaction uses an ExtendedTransfer, all bus 
cycles in the atomic transaction (including any dummy reads) 
must also use ExtendedTransfers. 

For 32-bit transfers, a master may use 8G* for all of its timing 
and need not look at AS*. However, for ExtendedTransfers, a 
master must look for the assertion of AS* to determine when to 
stop driving Siz(2:0), Rd, and 0(31 :0). 

Observation: Restricting all bus cycles of an atomic transaction 
to the same transfer size simplifies the design of bus couplers. 

An Extended Transfer bus cycle consists of two phases: a 
translation cycle and a slave cycle. 

Like 32-bit transfers, an ExtendedTransfer (64-bit) translation 
cycle begins when the SBus controller asserts BG*. During the 
clock cycle immediately following BG*, the master must drive a 
virtual address onto 0(31 :0), drive Rd appropriately for the 
direction of data transfer and, unlike 32-bit transfers, drive 
Siz(2:0) to ExtendedTransfer. In the second clock cycle 
following the assertion of 8G*, the SBus master must drive Rd to 
logic level 0, independent of the direction of transfer. 

During this same clock cycle, the master must drive 0(31 :0) with 
Extended Transfer Information. The master must continue to 
drive these signals until the clock cycle after which the SBus 
controller asserts AS* (which it may do as early as the second 
clock cycle after the assertion of 8G*). However, the SBus 
controller is allowed to take more than one clock cycle to 
translate the virtual address. After translating the virtual 
address, the SBus controller must drive the corresponding 
physical address onto PA(27:0), and assert AS* and the 
appropriate Sel*. 

SBus Specification B.O 



Appendix B: SBus Extensions 

Slave Cycle 

SBus Specification B.O 

S Bus 64-bit Transfer Protocols 

If an SBus controller does not support Extended Transfers, it 
should issue an Error Acknowledgment instead of asserting 
AS*. Nevertheless, a master should be enabled to issue 
ExtendedTransfers only in systems supporting 
ExtendedTransfers and to slaves supporting 
ExtendedTransfers. Thus, an Error Acknowledgment occurs 
only if a master is misprogrammed. 

Like 32-bit transfers, an ExtendedTransfer slave cycle begins 
with the assertion of AS*. At the clock edge following the 
assertion of AS*, the selected 64-bit slave must latch the physical 
address, the Extended Transfer Information on 0(31 :0), and the 
fact that an Extended Transfer is being performed as indicated 
by Siz(2:0). 

thus, unlike 32-bit transfers, PA(27:0) is valid during this first 
clock cycle only. During the clock cycle following the assertion 
of AS*, the master must tristate Rd, Siz(2:0), and 0(31 :0), while 
the SBus controller must tristate PA(27:0). After tristating these 
signals, the controller must not drive PA(27:0) again until the 
latter of two clock cycles following the last acknowledgment, or 
one clock cycle after it unasserts 8G* and AS*. 

As soon as one clock cycle after the assertion of AS*, the selected 
slave may drive Ack(2:0)*. Slaves requiring additional time may 
wait to drive Ack(2:0)*, as long as the entire transfer is completed 
within 255 clock cycles after AS* is asserted - that is, the SBus 
tim out period remains unchanged for Extended Transfers. 

If the selected slave does not support ExtendedTransfers, it 
must issue an Error Acknowledgment. If the selected slave 
does support ExtendedTransfers, it should generate a double
word acknowledgment. In the case of a read (as indicated by 
ExtendedTransferRead) the slave must drive 0(63:0) with the first 
8 bytes of data during the clock cycle following its 
acknowledgment, for exactly one clock cycle. 

131 



SBus 64-bit Transfer Protocols 

132 

Appendix B: SBus Extensions 

In the case of a write (as indicated by ExtendedTransferRead, not 
the Rd signal), the master must drive the first double-word of 
data during the clock cycle following the slave's 
acknowledgment. Thus, whereas 64-bit read transfers follow 
the same timing as 32-bit read transfers, 64-bit write transfers do 
not. Instead, 64-bit write transfers use the same timing as 64-bit 
read transfers. 

If more than 8 bytes of data are transferred (as indicated by 
ExtendedTransferSiz(2:0», the slave must continue to generate 
double-word acknowledgments. 

The controller may unassert AS* and 8G* as early as one clock 
cycle following the last double-word acknowledgment for the 
bus cycle. As for 32-bit transfers, following the last 
acknowledgment, the slave must drive Ack(2 :0)* to the logic 1 
state for one clock cycle, after which the slave must stop driving 
Ack(2:0)*. By the latter of two clock cycles after the last 
acknowledgment or the clock cycle following 8G* being 
unasserted, the slave (in the case of a read) or the master ( in the 
case of a write) must tristate D(63:0). 

As for 32-bit transfers, LErr* may be used to indicate errors. If it 
is used, its timing is the same as for 32-bit read transfers: it must 
be asserted two clock cycles after the corresponding double
word acknowledgment, for exactly one clock cycle, after which 
it must be driven to the logic 1 state of one clock cycle. In the 
case of burst transfers, it may remain asserted for each double
word in error. 

SBus Specification B.O 



Appendix B: SBus Extensions SBus 64-bit Transfer Protocols 

Data(63 :0) For ExtendedTransfers, 8 bytes of data are transferred on the 
SBus signals 0(63:0). SBus masters, slaves, and controllers must 
use the following mapping between 0(63:0) and the standard 
SBus signals. 

SBus Specification B.O 

Figure B-3. Using 0(63:0) for ExtendedTransfers 

ExtendedTransfer 

0(63) 
0(62:60) 
0(59:32) 
0(31 :0) 

Standard SBus Signal 

Rd 
Siz(2:0) 
PA(27:0) 
0(31 :0) 

Note: 0(63) is the most significant bit of the double-word; 
0(0) is the least significant bit. 

When used to transfer data during a slave cycle, 0(63:0) must be 
driven no sooner than the clock cycle following the assertion of 
the first non-idle acknowledgment; and it must be tristated no 
later than the latter of the second clock cycle following the last 
acknowledgment, or one clock cycle after 8G* is unasserted. 
For Extended Transfers, each double-word of data is driven for 
one clock cycle beginning with the clock cycle following the 
associated acknowledgment. Unlike 32-bit transfers, this 
timing is the same for both reads and writes. 

Since addressing is big-end ian, 0(63:56) is the most significant 
byte and is located at address A mod 8 = O. Byte 7 (0(7:0» is 
located at address A mod 8 = 7. Similarly, the words at address 
A mod 8 = 0 and A + 4 are placed on 0(63:32) and 0(31 :0), 
respectively. 

Observation: Port locations for bytes, half-words, and words 
are not defined for Extended Transfers, since Extended Transfers 
always take place in multiples of 8 bytes. 

133 



SBus 64-mt Transfer Protocols 

Extended Transfer 
Information 

134 

Appendix B: SBus Extensions 

Every SBus master supporting Extended Transfers must drive 
Extended Transfer Information onto 0(31 :0), beginning with the 
second clock cycle following the assertion of 8G*, until the clock 
cycle following the assertion of AS*, at which time the master 
must tristate 0(31 :0). 

Every SBus slave supporting ExtendedTransfers must latch the 
Extended Transfer Information driven on 0(31 :0) at the clock 
edge following the assertion of AS*. 

The following mapping must be used between the Extended 
Transfer Information signals and 0(31 :0). 

Figure B-4. Using 0(31 :0) for ExtendedTransfers 

ExtendedTransfer 

ExtendedTransferType 
ExtendedTransferSize(2:0) 
ExtendedTransferRead 
ExtendedTransferAtomic(1 :0) 
ExtendedTransferReserved(22:0) 

Standard SBus Signal 

0(31) 
0(30:28) 
0(27) 
0(26:25) 
0(24:0) 

SBus Specification B.O 



Appendix B: SBus Extensions SBus 64-bit Transfer Protocols 

ExtendedTransferType During an ExtendedTransfer, the ExtendedType signal must be 
set to 64-bit Transfer as the following figure shows. Masters 
performing ExtendedTransfers must not use the reserved 
encoding of ExtendedType. Slaves that support 
ExtendedTransfers and detect ExtendedType set to the reserved 
value must generate an Error Acknowledgment. 

Figure B-5. ExtendedType functions 

ExtendedTransferType 

o 
1 

Function 

64-bit Transfer 
Reserved 

Observation: The ExtendedType signal provides a mechanism 
for future extensions to the SBus. 

ExtendedTransferSize(2:0) For ExtendedTransfers, ExtendedTransferSize(2:0), not Siz(2:0), 
determines how many bytes of data are transferred during a 
bus cycle. The following encodings for ExtendedTransferSize 
must be used. 

Figure B-6. ExtendedType 

ETSize (2) EfSize (1) ETSize (0) Fundion 

0 0 0 Reserved 
0 0 1 Reserved 
0 1 0 Reserved 
0 1 1 8 bytes 
1 0 0 16 bytes 
1 0 1 32 bytes 
1 1 0 64 bytes 
1 1 1 128 bytes 

SBus Specification B.O 135 



SBus 64-bit Transfer Protocols 

ExtendedTransferRead 

ExtendedTransferAtomic 
(1 :0) 

Appendix B: SBus Extensions 

Masters must not generate the reserved values of 
ExtendedTransferSize. Slaves should issue an Error 
Acknowledgment if they detect a reserved value of 
ExtendedTransferSize. 

A master may implement only a subset of the 
ExtendedTransferSizes. A slave may support only a subset of the 
ExtendedTransferSizes. A master or slave supporting an 
ExtendedTransferSize of size n, must support all extended 
transfer sizes up to size n. 

Observation: 1,2, and 4 byte transfers must be performed 
using normal 32-bit SBus protocols. 

During a Extended Transfer, the master must drive 
ExtendedTransferRead to 0 to perform a write, and to 1 to 
perform a read. 

The value of ExtendedTransferRead must be identical to the 
value the master drives onto the SBus signal Rd during the clock 
cycle following the assertion of 8G*. 

ExtendedTransferAtomic should be set to Normal (ObOO) except 
for bus cycles that are part of an atomic transaction. Masters 
performing atomic transactions should drive 
ExtendedTransferAtomic(1 :0) as the following figure shows. 

Figure B-7. ExtendedTransferAtomic(1 :0) 

ET Atomic (1) ETAtomic (0) Function 

o 
o 
1 
1 

136 

o 
1 
o 
1 

Normal bus cycle (non-atomic bus cycle) 
First bus cycle of an atomic transaction 
Intermediate bus cycle of an atomic transaction 
Last bus cycle of an atomic transaction 

SBus Specification B.O 



Appendix B: SBus Extensions SBus 64-bit Transfer Protocols 

Size(2:0) TheSBus master must drive Siz(2:0) to ExtendedTransfer 
(encoding Ob011), beginning with the clock cycle following the 
assertion of 8G* until the clock cycle following the assertion of 
AS*. Beginning with the clock cycle following the assertion of 
AS* until the slave asserts a non-idle acknowledgment, the 
master must tristate Siz(2:0). Beginning with the clock cycle 
following the acknowledgment, Siz(2:0) signals are used as 
0(62:60) and must follow 0(63:0) timing described previously. 

Read 

SBus Specification B.O 

SBus controllers supporting ExtendedTransfers must terminate 
Siz(2) using a 2 Kn resistor to ground or a holding amp lifer. 
The SBus controller must terminate Siz(1 :0) using a 10 Kn 
resistor to the +5V supply or a holding amplifer. 

Observation: The termination requirement for Siz(2:0) keeps 
this signal in the proper state of ExtendedTransfer during the 
time in which the bus is turned around. 

The SBus master must drive Rd to a logic 0 state (in the case of a 
write) or a logic 1 state (in the case of a read), beginning with the 
clock cycle immediately following the assertion of 8G*, for 
exactly one clock cycle. Beginning with the second clock cycle 
following the assertion of 8G*, until the clock cycle following 
the assertion of AS*, the master must drive Rd to a logic 0 state, 
even if the master is performing a read. Beginning with the 
clock cycle following the assertion of AS* until the slave asserts 
a non-idle acknowledgment, the master must tristate Rd. 
Beginning with the clock cycle following the acknowledgement, 
Rd is used as 0(63) and must follow D(63:0) timing described 
previously. 

137 



SBus 64-bit Transfer Protocols 

Ack(2:0)* 

138 

Appendix B: SBus Extensions 

ExtendedTransferRead must be set to the same value that Rd has 
during the clock cycle following the assertion of 8G*. 

SBus controllers supporting ExtendedTransfers must terminate 
Rd with a 2 Kn resistor to ground or a holding amp lifer. 

Observation: In the event a 32-bit slave is selected accidently, 
Rd is driven to logic 0 state after the first clock cycle of the 
translation cycle to ensure that the drivers of the slave and 
master do not fight during the clock cycle following the 
assertion of AS*. 

The termination requirement for Rd keeps it in the proper state 
of logic 0 during the time in which the bus is turned around. 

The timing and use of Ack(2:0)* is largely the same for 64-bit and 
32-bit transfers. However, the meaning of byte, half-word, and 
word acknowledgments is undefined during an 
ExtendedTransfer and, therefore, should not be used. 

As explained earlier, the timing for writing D(63:0) with respect 
to Ack(2:0)* is not the same for 32-bit and 64-bit transfers. 
For Extended Transfers, D(63:0) signals are driven with data one 
clock cycle after Ack(2:0)* is asserted for both reads and writes. 

Bus sizing is not supported for Extended Transfers. Only 
multiples of 8 bytes can be transferred. 

SBus Specification B.O 



Appendix B: SBus Extensions 

SBus Specification B.O 

5 Bus 64-bit Transfer Protocols 

The following acknowledgments apply to ExtendedTransfers: 

D Word Acknowledgment. 

A slave must not generate a word acknowledgment during 
an Extended Transfer. A master or controller receiving a 
word acknowledgment during an Extended Transfer must 
abort the bus cycle. 

D Double-word Acknowledgment. 

A slave must generate a double-word acknowledgment 
(encoding ObOlO) to indicate it is ready to transfer a double
word of data during the next clock cycle. 

D Error Acknowledgment. 

The use of Error Acknowledgment remains unchanged for 
Extended Transfers. 

Note: Because write data comes after the corresponding 
acknowledgment, it may be necessary for a slave to use LErr* 
instead of Error Acknowledgment to signal data errors. 
Error Acknowledgment can still be used to signal 
addressing or Extended Transfer Information errors. 

D Rerun Acknowledgment. 

The use of Rerun Acknowledgment remains unchanged for 
Extended Transfers. 

A slave must not generate the following acknowledgments 
during an ExtendedTransfer: 

D Byte Acknowledgment. 

An SBus master or controller receiving a byte 
acknowledgment during an ExtendedTransfer must abort 
the bus cycle. 

D Half-word Acknowledgment. 

A master or controller receiving a half-word 
acknowledgment during an Extended Transfer must abort 
the bus cycle. 

139 



SBus 64-bit Transfer Protocols Appendix B: SBus Extensions 

Timeouts The timeout rules for the SBus remain unchanged for 
Extended Transfers. 

Late Error* During ExtendedTransfers, the timing for LErr* is the same as 
for 32-bit transfers: LErr* must be asserted for one clock cycle, 
beginning two clock cycles after the associated 
acknowledgment LErr* must then be driven to its unasserted 
state for one clock cycle, after which it must be tristated. 

DataParity The use of OtaPar during ExtendedTransfers is similar to its use 
during 32-bit transfers. SBus devices should not check OtaPar 
unless they are enabled to do so. 

Compatibility 
Considerations 

140 

lf enabled, OtaPar must be generated as follows. During the 
translation cycle, OtaPar must be a check only on 0(31 :0). 
Beginning with the clock cycle after the first double-word 
acknowledgment, whenever 0(63:0) has valid data, OtaPar must 
be a check on 0(63:0). During any clock cycle in which 0(31 :0) 
must be tristated, OtaPar must also be tristated. 

Except for 128 byte transfers, an SBus device supporting 
ExtendedTransfers must support 32-bit SBus transfers of the 
same size (in number of bytes). SBus devices must also support 
1 word 32-bit transfers. 

It must be possible to program a master to perform 32-bit 
transfers only. 

An SBus master should not initiate Extended Transfers unless 
the intended slave is known via Open Boot to support 
Extended Transfers. 

SBus Specification B.O 



Appendix B: SBus Extensions 

Signal Termination 

Size(2:0) 

Read 

SBus Specification B.O 

S Bus 64-bit Transfer Protocols 

SBus controllers supporting ExtendedTransfers must pull Siz(2) 
using a 2 Kn resistor to ground and Siz(1 :0) using a 10 Kn 
resistor to the +5V supply, or use holding amplifers. 

SBus controllers supporting Extended Transfers must pull Rd 
using a 2 Kn resistor to ground or a holding amplifer. 

141 



SBus 64-bit Transfer Protocols Appendix B: SBus Extensions 

142 SBus Specification B.O 



FCode Primitives 

Byte Function Stack 
51 depth ( -- +n ) 
46 drop ( n -- ) 
52 2drop (n1 n2 -- ) 
47 dup ( n -- n n ) 

c 

FCode Reference 

This appendix contains two lists: FCode primitives and FCode 
byte values. FCode primitives are grouped according to 
function, while FCode byte values appear in hexadecimal order. 

The following figures describe FCodes currently supported by 
the Open Boot PROM. New 2.0 FCodes are indicated by the 
comment, "valid only in 2.0 or greater systems." Both the FCode 
token values and Forth names are included. A token value 
entry of CR indicates a cross-compiler-generated sequence, 
while - indicates that no FCode is generated. 

Figure C-1. Stack Manipulation 

Description 
How many items on stack? 
Removes n from the stack 
Removes 2 items from stack 
Duplicates n 

53 2dup (n1 n2 -- n1 n2 n1 n2) Duplicates 2 stack items 
Duplicates n if it is non-zero 
Copies top 3 stack items 
Discards the second stack item 

50 ?dup ( n -- n n I 0 ) 
CR 3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3 ) 
4d nip (n1 n2 -- n2) 
48 over (n1 n2 -- n1 n2 n1 ) 
54 20ver (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) 
4e pick ( +n -- n2 ) 
30 >r ( n -- )( rs: -- n) 
31 r> ( -- n )( rs: n -- ) 
* Use these FCodes cautiously. 
32 r@ ( -- n )( rs: -- ) 
4f roll ( +n -- ) 

SBus Specification B.O 

Copies second stack item to top of stack 
Copies 2 stack items 
Copies +n-th stack item 
Moves a stack item to the return stack * 
Moves item from return stack to data stack * 

Copies the top of the return stack to the data stack 
Rotates +n stack items 

143 



FCode Primitives 

4a rot 
4b -rot 
56 2rot 
49 swap 
55 2swap 
4c tuck 

(n1 n2 n3 -- n2 n3 n1 ) 
(n1 n2 n3 -- n3 n1 n2) 
(n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) 
(n1 n2 -- n2 n1 ) 
(n1 n2 n3 n4 -- n3 n4 n1 n2) 
(n1 n2 -- n2 n1 n2) 

Appendix C: FCode Reference 

Rotates 3 stack items 
Shuffles top 3 stack items 
Rotates 3 pairs of stack items 
Exchanges the top 2 stack items 
Exchanges 2 pairs of stack items 
Copies the top stack item below the second item 

Figure C-2. Arithmetic Operations 

Byte Function Stack 
20 ( n 1 n2 -- n3 ) 
1 e + ( n 1 n2 -- n3 ) 
1f ( n 1 n2 -- n3 ) 
21 1 (n1 n2 -- quot ) 
CR 1 + (n1 -- n2) 
CR 1- (n1 -- n2 ) 
59 2* (n1 -- n2 ) 
57 21 (n1 -- n2) 
27« (n1 +n -- n2) 
28» ( n 1 +n -- n2 ) 
CR «a (n1 +n -- n2 ) 
29 »a ( n 1 +n -- n2 ) 
2d abs ( n -- u ) 
ae aligned (adr1 -- adr2 ) 
23 and (n1 n2 -- n3 ) 
ac bounds ( startadr len -- endadr startadr ) 
2f max (n1 n2 -- n3) 
2e min (n1 n2 -- n3) 
22 mod (n1 n2 -- rem) 
CR */mod (n1 n2 n3 -- rem quot ) 
2a Imod (n1 n2 -- rem quot ) 
2c negate (n1 -- n2) 
26 n~ (n1-n2) 
24 or (n1 n2 -- n3) 
2b ulmod ( ul un -- un. rem un.quot ) 
58 u21 ( u 1 -- u2 ) 
25 xor (n1 n2 -- n3 ) 
* The following four FCodes are valid only in 2.0 or greater systems. 
d4 u*x ( u1 [32] u2[32] -- product[64] ) 

d5 

d8 
d9 

144 

xu/mod 

x+ 
x-

( u1 [64] u2[32] -- remainder[32] quot[32]) 

(x1 x2 -- x3) 
(x1 x2 -- x3) 

Description 
Multiplies n1 times n2 
Adds n1+n2 
Subtracts n1-n2 
Divides nlln2 
Adds one 
Subtracts one 
Multiplies by 2 
Divides by2 
Left shifts n1 by +n places 
Right shifts n1 by +n places 
Arithmetic left shifts (same as «) 
Arithmetic right shifts n1 by +n places 
Absolute value 
Adjusts an address to a machine word boundary 
Logical and 
Converts start,len to end,start for DO loop 
n3 is maximum of n1 and n2 
n3 is minimum of n1 and n2 
Remainder of nlln2 
Rem, quotient of n1*n2ln3 
Remainder, quotient of n1/n2 
Changes the sign of n1 
One's complement 
Logical or 
Unsigned 32-bit divide of ul/un 
Logical right shifts 1 bit 
Exclusive or 

Multiplies two unsigned 32-bit numbers, yields an 
unsigned 64-bit product 
Divides an unsigned 64-bit number by an unsigned 
32-bit number, yields a 32-bit remainder and quotient 
Adds two 64-bit numbers 
Subtracts two 64-bit numbers 

SBus Specification B.O 



Appendix C: FCode Reference FCode Primitives 

Figure C-3. Memory Operations 

Byte Function Stack Description 
72 ( n adr -- ) Stores a 32-bit number into the variable at adr 
Sc +! ( n adr -- ) Adds n to the 32-bit number stored in the variable at adr 
77 2! ( n1 n2 adr -- ) Stores 2 numbers at adr; n2 at lower address 
7S 2@ ( adr -- n1 n2) Fetches 2 numbers from adr; n2 from lower address 
Sd @ ( adr -- n) Fetches a number from the variable at adr 
CR ? (adr1S --) Displays the 32-bit number at adr 
75 c! ( n adr -- ) Stores low byte of n at adr 
71 C@ ( adr -- byte) Fetches a byte from adr 
CR blank (adr len --) Sets len bytes of memory to ASCII space, starting at adr 
CR cmove (adr1 adr2 u -- ) Same as MOVE 
CR cmove> (adr1 adr2 u -- ) Same as MOVE 
7a comp (adr1 adr2 len -- n ) Compares two byte arrays including case. n=O if same 
CR erase (adr len --) Sets len bytes of memory to zero, starting at adr 
79 fill ( adr u byte -- ) Sets u bytes of memory to byte 
73 I! ( I adr -- ) Stores the 32-bit number at adr, must be 32-bit aligned 
Se I@ ( adr -- I) Fetches the 32-bit longword at adr, must be 32-bit aligned 
78 move (adr1 adr2 u -- ) Copies u bytes from adr1 to adr2, handles overlap correctly. 
Sb off ( adr -- ) Stores false (32-bit 0) at adr 
Sa on ( adr -- ) Stores true (32-bit -1) at adr 
74 w! (w adr --) Stores a 1S-bit word at adr, must be 16-bit aligned 
Sf w@ (adr -- w) Fetches the unsigned 1S-bit word at adr, must be 1S-bit aligned 
70 <W@ ( adr -- n) Fetches the signed 1S-bit word at adr, must be 1S-bit aligned 

Figure C-4. Comparison Operations 

Byte Function Stack Description 
3S 0< (n -- flag) True if n < 0 
37 0<= (n -- flag) True if n <= 0 
35 0<> (n -- flag) True if n <> 0 
34 0= (n -- flag) True if n = 0, also inverts any flag 
38 0> (n -- flag) True if n > 0 
39 0>= (n -- flag) True if n >= 0 
3a < (n1 n2 -- flag) True if n1 < n2 
43 <= (n1 n2 -- flag) True if n1 <= n2 
3d <> (n1 n2 -- flag) True if n1 <> n2 
3c = (n1 n2 -- flag) True if n1 = n2 
3b > ( n 1 n2 -- flag) True if n1 > n2 
42 >= ( n 1 n2 -- flag ) True if n1 >= n2 
44 between ( n min max -- flag) True if min <= n <= max 
CR false (-- 0) The value FALSE 
CR true (-- -1 ) The value TRUE 
40 u< (u1 u2 -- flag) True if u1 < u2, unsigned 
3f u<= (u1 n2 -- flag) True if u1 <= u2, unsigned 
3e u> (u1 n2 -- flag) True if u1 > u2, unsigned 
41 u>= (u1 n2 -- flag) True if u1 >= u2, unsigned 
45 within ( n min max -- flag) True if min <= n < max 

SBus Specification B.O 145 



FCode Primitives 

Byte Function 
(text) 
\ 

CR ascii x 
CR control x 
8e key 
8d key? 
8a expect 
88 span 

(s text) 

Byte Function 
ab bell 
a9 bl 
aa bs 
CR carret 
CR linefeed 
CR newline 

Byte Function 
a4 -1 
a5 0 
a6 1 
a7 2 
a8 3 
CR bl number 

binary 
CR dlnumber 

decimal 
CR hI number 

hex 
CR 01 number 

octal 

146 

Appenaix L: FLoae Kej'erence 

Figure C-S. Text Input 

Stack 
( -- ) 
( -- ) 
(-- char) 
(-- char) 
(-- char) 
(-- flag) 
(adr +n --) 
(-- adr) 
( -- ) 

Description 
Begins a comment (ignored) 
Ignore rest of line (comment) 
ASCII value of next character 
Interprets next character as ASCII CONTROL character 
Reads a character from the keyboard 
True if a key has been typed on the keyboard 
Gets a line of edited input from the keyboard; store at adr 
Variable containing the number of characters read by EXPECT 
Begins a comment (ignored) 

Figure C-6. ASCII Constants 

Stack Description 
( -- n ) The ASCII code for the bell character; decimal 7 
(-- n) The ASCII code for the space character; decimal 32 
( -- n) The ASCii oode for the baokspaoe oharacter; decimal 8 
(-- n) The ASCII code for the carriage return character; decimal 13 
( -- n ) The ASCII code for the linefeed character; decimal 10 
(-- n) The ASCII code for the newline character; decimal 10 

Figure C-7. Numeric Input 

Stack Description 
(-- n) Constant -1 
(-- n) Constant 0 
(-- n) Constant 1 
(-- n) Constant 2 
(-- n) Constant 3 
(-- n) Interprets next number in binary 
( -- ) If outside definition, input text in binary 
( -- n) Interprets next number in decimal 
( -- ) If outside definition, input text in decimal 
(-- n) Interprets next number in hexadecimal 
( -- ) If outside definition, input text in hexadecimal 
(-- n) Interprets next number in octal 
( -- ) If outside definition, input text in octal 

SBus Specification B.O 



Appendix C: FCode Reference FCode Primitives 

Figure C-B. Numeric Primitives 

Byte Function Stack Description 
99' (+11 -- +12) Converts a digit in pictured numeric output 
97 ,> ( I -- adr +n ) Ends pictured numeric output 
96 <, ( -- ) Initializes pictured numeric output 
aO base ( -- adr) USER variable containing number base 
a3 digit (char base -- digit true I char false) Converts a character to a digit 
95 hold ( char -- ) Inserts the char in the pictured numeric output string 
9a 'S ( +1 -- 0 ) Converts the rest of the digits in pictured numeric output 
98 sign ( n -- ) Sets sign of pictured output 
The following FCode is valid only in 2.0 or greater systems. 
a2 $number ( adr len -- true I n false) Converts a string to a number 

Byte 
9d 
CR 
CR 
CR 
CR 
CR 
CR 
ge 
9f 
CR 
9b 
9c 

Byte 
CR 
CR 
91 
92 
8f 
CR 
CR 
90 

Byte 
94 
93 

Function 

binary 
.d 
decimal 
.h 
hex 
octal 
.r 
.s 
s. 
u. 
u.r 

Function 

" texf' 
.( text) 
(cr 
cr 
emit 
space 
spaces 
type 

Function 
lIine 
'out 

SBus Specification B.O 

Stack 
(n -- ) 
( -- ) 
(n -- ) 
( -- ) 
(n -- ) 
( -- ) 
( -- ) 
(n +n -- ) 
( -- ) 
(n -- ) 
(u -- ) 
(u +n -- ) 

Figure C-9. Numeric Output 

Description 
Displays a number 
If inside definition, output in binary 
Displays number in decimal 
If inside definition, output in decimal 
Displays number in hexadecimal 
If inside definition, output in hexadecimal 
If inside definition, output in octal 
Displays a number in a fixed width field 
Displays the contents of the data stack 
Displays n as a signed number 
Displays an unsigned number 
Prints an unsigned number in a fixed width field 

Figure C-10. General-purpose Output 

Stack Description 
( -- ) Compiles string for later output 
( -- ) Displays a string now 
( -- ) Outputs ASCII CR character; decimal 13 
( -- ) Starts a new line of display output 
(char -- ) Displays the character 
( -- ) Outputs a single space character 
( +n -- ) Outputs +n spaces 
(adr +n --) Displays n characters 

Figure C-11. Formatted Output 

Stack 
(-- adr) 
( -- adr) 

Description 
Variable holding the line number on the output device 
Variable holding the column number on the output device 

147 



FCode Primitives 

Byte 
CR 
CR 
CR 
CR 
CR 

Byte 
CR 
CR 
CR 

Byte 
CR 
CR 
19 
1a 
CR 
CR 
CR 
CR 

Byte 
1d 
33 

Function 
again 
begin 
repeat 
until 
while 

Function 
if 
else 
then 

Function 
do 
?do 

j 
leave 
?Ieave 
loop 
+Ioop 

Function 
execute 
exit 

Appendix C: FCode Reference 

Figure C-12. BEGIN Loops 

Stack 
( -- ) 
( -- ) 
( -- ) 
(flag -- ) 
(flag -- ) 

Description 
Ends BEGIN .. AGAIN (infinite) loop 
Starts conditional loop 
Returns to loop start 
Iftrue, exits BEGIN .. UNTILloop 
If true, continues BEGIN .. WHILE .. REPEAT loop, else exits loop 

Figure C-13. Conditionals 

Stack 
(flag -- ) 
( -- ) 
( -- ) 

Description 
If true, executes next FCode(s) 
(optional) Executes next FCode(s) if IF failed 
Terminates IF .. ELSE .. THEN 

Figure C-14. DO Loops 

Stack 
( end start -- ) 
( end start -- ) 
(-- n) 
(-- n) 
( -- ) 
(flag -- ) 
( -- ) 
(n -- ) 

Description 
Loops, index startto end-1 inclusive 
Like DO, but skips loop if end = start 
Returns current loop index value 
Returns value of next outer loop index 
Exits DO loop immediately 
If flag is true, exits DO loop 
Increments index, returns to DO 
Increments by n, returns to DO. If n<O, index start to end 

Figure C-lS. Control Words 

Stack 
(acf -- ) 
( -- ) 

Description 
Executes the word whose compilation address is on the stack 
Returns from the current word 

Figure C-16. Strings 

~ Byte 2 Function Stack Description 
CR " text" ( -- adr len) 
84 count ( pstr -- adr +n ) 
82 Icc ( char -- lower-case-char) 
83 pack ( adr len pstr -- pstr ) 
81 upc ( char -- upper-case-char) 
The following FCode is valid only in 2.0 or greater systems. 

Collects a string 
Unpacks a packed string 
Converts char to lower case 
Makes a packed string from adr len, placing it at pstr 
Converts char to upper case 

2 40 left-parse-string (adr len char -- adrR lenR adrL lenL) Splits a string at the given delimiter (which is 
discarded) 

148 SBus Specification B.O 



Appendix C: FCode Reference FCode Primitives 

Byte 
CR 
CR 

Function 
: (colon) name 
; (semicolon) 
alias newname oldname 
buffer: name 
constant name 
create name 
defer name 
field name 
struct 

Figure C-17. Defining Words 

Stack 
( -- ) 
( -- ) 
( -- ) 
(size -- ) 
(n -- ) 
( -- ) 
( -- ) 
( offset size -- offset+size ) 
(-- 0) 
( -- ) 

Description 
Begins colon definition 
Ends colon definition 
Creates newname with behavior of oldname 
Creates data array of size bytes 
Creates a constant 
Generic defining word 
Execution vector (change with IS) 
Creates a named offset pointer 
Initializes for FIELD creation 
Creates a data variable 

CR 
CR 
CR 
CR 
CR 
CR 
CR 
CR 

variable name 
value name (n -- ) Creates named VALUE-type variable (change 

with IS) 

Figure C-1B. Dictionary Compilation 

Byte Function Stack Description 
d3 (n -- ) Places a number in the dictionary 
dO c, (n -- ) Places a byte in the dictionary 
ad here (-- adr) Address of top of dictionary 
d2 I, ( I -- ) Places a 32-bit longword in the dictionary 
d1 w, (w --) Places a 16-bit word in the dictionary 
CR is name (n -- ) Changes value in a defer word or a value 

Figure C-19. Dictionary Search 

Byte Function Stack 
CR ' name ( -- acf) 
CR ['] name ( -- acf) 
cb $find ( adr len -- adr len false I acf +-1 ) 
The following FCode is valid only in 2.0 or greater systems. 
cd eval ( adr len -- ) 

SBus Specification B.O 

Description 
Finds the word (while executing) 
Finds word (while compiling) 
Finds a name in the Open PROM 

Executes FORTH commands within a 
string 

149 



FCode Primitives 

Byte 
7f 
bO 
5a 
66 
5e 
62 
80 
5c 
68 
60 
64 
7e 
7c 
5d 
69 
61 
65 
5b 
67 
5f 
63 
af 
CR 
7d 

Byte 
8b 
8c 

150 

Function 
bljoin 
bwjoin 
Ic 
Ic* 
ca+ 
ca1+ 
flip 
II 
11* 
la+ 
la1+ 
Ibsplit 
Iwsplit 
In 
In* 
na+ 
na1+ 
/w 
/w* 
wa+ 
wa1+ 
wbsplit 
wflip 
wljoin 

Function 
alloc-mem 
free-mem 

Appendix C: FCode Reference 

Figure C-20. Conversions Operators 

Stack 
( b.low b2 b3 b.hi -- I ) 
( b.low b.hi -- w ) 
(-- n) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
(w1 -- w2) 
(-- n ) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
( I -- b.low b2 b3 b.high ) 
(1-- w.low w.high) 
(-- n) 
(n1 -- n2) 
( adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
(-- n) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
( w -- b.low b.high ) 
(11 -- 12 ) 
(w.low w.high -- I) 

Description 
Joins four bytes to form a longword 
Joins two bytes to form a 16-bit word 
Address increment for a byte; 1 
Multiplies by IC 
Increments adr1 by index times IC 
Increments adr1 by IC 
Swaps the bytes within a 16-bit word 
Address increment for a 32-bit longword; 4 
Multiplies by /L 
Increments adr1 by index times /L 
Increments adr1 by /L 
Splits a longword into four bytes 
Splits a longword into two words 
Address increment for a normal; 4 
Multiplies by IN 
Increments adr1 by index times IN 
Increments adr1 by IN 
Address increment for a 16-bit word; 2 
Multiplies by IW 
Increments adr1 by index times IW 
Increments adr1 by IW 
Splits a 16-bit word into two bytes 
Swaps halves of 32-bit longword 
Joins two words to form a longword 

Figure C-21. Memory Buffers Allocation 

Stack 
( nbytes -- adr ) 
( adr nbytes -- ) 

Description 
Allocates nbytes of memory and returns its address 
Frees memory allocated by ALLOC-MEM 

SBus Specification B.O 



Appendix C: FCode Reference FCode Primitives 

Bvte 
86 
85 
CR 
00 
ff 
CR 

7b 
cc 

Figure C-22. Miscellaneous Operators 

Function Stack Description 
>body ( acf -- apf ) Finds parameter field address from compilation address 
body> ( apf -- acf ) Finds compilation address from parameter field address 
emit-byte (n --) Outputs FCode byte (use with TOKENIZERD 
endO ( -- ) Marks the end of Fcode 
end1 ( -- ) Alternates form for ENOO (not recommended) 
fcode-version1 (--) Begins FCode program 
fload filename ( -- ) Begins tokenizing filename 
headerless (--) Creates new names with NEW-TOKEN (no name fields) 
headers ( -- ) Creates new names with NAMED-TOKEN (default) 
noop ( -- ) Does nothing 
offset16 ( -- ) All further branches use 16-bit offsets (instead of 8-bit) 
tokenizer[ ( -- ) Begins tokenizer program commands 
]tokenizer ( -- ) Ends tokenizer program commands 

87 version ( -- n ) Returns the version' of the Fcode interpreter 
The following two FCodes are valid only in 2.0 or greater systems. 
CR fcode-version2 (--) Begins 2.0 FCode program, compiles START1 

external ( -- ) Creates new names with EXTERNAL-TOKEN 

Figure C-23. Internal Operators (invalid for program text) 

Bvte Function Stack Description 
1-f table'1-15 Reserved byte codes, used for 2-byte entries 
10 b(lit) (-- n) Followed by 32-bit,. Compiled by numeric data 
11 be) (--acf) Followed by a token (1 or 2-byte code). Compiled by ['] or I 

12 b(,1 (-- adr len) Followed by count byte, text. Compiled by " or ." 
c3 b(is) (n -- ) Compiled by IS 
fd version 1 ( -- ) Followed by null byte, checksum (2 bytes) , 

length (4 bytes). Compiled by FCOOE-VERSION1 , 
as the first Fcode bytes 

fe 4-byte-id ( -- ) Followed by 3 identifier bytes. First Fcode byte. Not supported. 
Used if no Fcode available, to uniquely identify device 

13 bbranch ( -- ) Followed by 8-bit offset. Compiled by ELSE or AGAIN 
14 b?branch ( -- ) Followed by 8-bit offset. Compiled by IF or UNTIL 
15 b(loop) ( -- ) Followed by 8-bit offset. Compiled by LOOP 
16 b(+loop) (n -- ) Followed by 8-bit offset. Compiled by +LOOP 
17 b(do) (end start -- ) Followed by 8-bit offset. Compiled by DO 
18 b(?do) (end start -- ) Followed by 8-bit offset. Compiled by?OO 
1b b(leave) ( -- ) Compiled by LEAVE or ?LEAVE 
b1 b«mark) ( -- ) Compiled by BEGIN 
b2 b(>resolve) ( -- ) Compiled by ELSE or THEN 
c4 b(case) ( -- ) Compiled by CASE 
c5 b(endcase) ( -- ) Compiled by ENOCASE 
c6 b{endof) ( -- ) Compiled by ENDOF 
1c b(of) ( sel testval -- sel I none) Followed by 8-bit offset. Compiled by OF 
b5 new-token ( -- ) Followed by table', code', token-type. Compiled by 

any defining word. Headerless, not used normally. 
b6 named-token ( -- ) Followed by packed string (count,text), table', code', 

token-type. Compiled by any defining word 
(: VALUE CONSTANT etc.) 

b7 be:) Token-type compiled by: 

SBus Specification B.O 151 



FCode Primitives Appendix C: FCode Reference 

b8 b(value) Token-type compiled by VALUE 
b9 b(variable) Token-type compiled by VARIABLE 
ba b(constant) Token-type compiled by CONSTANT 
bb b(create) Token-type compiled by CREATE 
bc b(defer) Token-type compiled by DEFER 
bd b(buffer:) Token-type compiled by BUFFER: 
be b(field) Token-type compiled by FIELD 
c2 be;) ( -- ) End a colon definition. Compiled by ; 
The following five FCodes are valid only in 2.0 or greater systems. 
ca external-token ( -- ) Like NAMED-TOKEN, but name header is a/ways created at 

probe time 
fO startO (-- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 

branches. Fetches successive tokens from same address 
f1 start 1 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 

branches. Fetches successive tokens from consecutive 
addresses. Compiled by FCODE-VERSION2 

f2 start2 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 
branches. Fetches successive tokens from consecutive 
16-bit addresses 

f3 start4 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 
branches. Fetches successive tokens from consecutive 
32-bit addresses 

.fu1U 
1 
1 

152 

Bvte2 
01 
02 

03 

04 
05 

OS 

Bvte2 
Of 

Function 
dma-alloc 
my-address 

my-space 

memmap 
free-virtual 

>physical 

Function 
my-params 

Figure C-24. Memory Allocation 

Stack 
( nbytes -- virt ) 
(-- phys) 

(-- space) 

Description 
Maps in nbytes of DMA space, return virt. adr 
Returns the physical adr of this plug-in device. "phys" 
is a "magic" number, usable by other routines 
Returns address space of plug-in device. "space" 
is a "magic" number, usable by other routines 

( phys space nbytes -- virt ) 
(virt nbytes -- ) 

Maps in a region, return virtual adrress 
Frees virtual memory from MEMMAP, DMA
ALLOC,or MAP-SBUS 

( virt -- phys space) Returns physical adr and space for virt. adr 

Figure C-2S. Non-volatile Parameters 

Stack 
(-- adr len) 

Description 
Returns a data array for this plug-in device. The 
data format is defined specifically for each plug-in 
device, in order to customize the device. 
Params for each device, as needed, will be 
stored in the system NVRAM 

SBus Specification B.O 



Appendix C: FCode Reference 

Bvte1 Bvte2 Function 
1 10 attribute 

11 xdrint 

12 xdr+ 

13 xdrphys 

Figure C-26. Device Information 

Stack 
( xdr-adr xdr-Ien name-adr name-len -- ) 

( n -- xdr-adr xdr-Ien ) 

(xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 --
xdr-adr1 xdr-len1 +2 ) 
( phys space -- xdr-adr xdr-Ien ) 

FCode Primitives 

Description 
Declares an attribute with the given 
value structure, for the given 
name string. 
Converts a number into a numeric 
attribute structure 
Merges two attribute structures. They 
must have been created sequentially 
Converts physical address and space 
into an attribute structure 

14 xdrstring (adr len -- xdr-adr xdr-Ien) Converts a string into a value structure 
The following FCode is valid only for 2.1 or greater systems. 
1 15 xdrbytes ( adr len -- xdr-adr xdr-Ien ) Converts a byte array into a value 

structure 

Bvte1 
1 
1 
1 
1 

Bvte2 
16 
17 
18 
19 

1a 

Function 
reg 
intr 
driver 
model 

device-type 

Figure C-27. Commmonly-used Attributes 

( phys space size -- ) 
( intr-Ievel vector -- ) 
(adr len --) 
(adr len --) 

(adr len --) 

Description 
Declares location and size of device registers 
Declares interrupt level and vector for this device 
Declares driver for this device, not supported 
Declares modell for this device, such as 
" SUNW,501-1415-01" 
Declares type of device, e.g. "display", "disk", 
" network", or" byte" 

CR name (adr len --) Declares SunOS driver name, as in "SUNW,zebra" 
The following four FCodes are valid in 2.0 or greater systems. 
2 01 device-name ( adr len -- ) Creates the "name" attribute with the given value 
2 10 processor-type ( -- processor-type) Returns a code value for the type of CPU. Defined values: 

1-MC68000, 2-MC6801 0, 3-MC68020, 4-MC68030, 
5-SPARC, 6-i80386, 7-i80486, 8-MIPS, 9-MC88000, 
A-AMD29000 

2 11 firmware-version (-- n ) Returns major/minor CPU firmware version, that is, 
Ox00020001 = firmware version 2.1 

2 12 fcode-version (-- n) Returns major/minor FCode version supported, that is, 
Ox00020000:: FCode version 2.0 

Figure C-2B. Device Activation Vector Setup 

Byte 1 Bvte2 Function Stack Description 
1 1c is-install (acf--) Identifies "install" routine to allocate a boot device 
1 1d is-remove (acf -- ) Identifies "remove" routine, to deallocate a device 
1 1e is-selftest (acf -- ) Identifies "selftest" routine for this device 
1 1f new-device ( -- ) Opens an additional device, using this driver package 
1 27 finish-device ( -- ) Closes out current device, ready for NEW-DEVICE 

SBus Specification B.O 153 



FCode Primitives Appendix C: FCode Reference 

Byte 1 
1 
1 

Byte 1 
1 
1 

Bvte1 
1 
1 

Figure C-29. Self-test utility Routines 

Bvte2 Function Stack Description 
20 diagnostic-mode? (-- flag) Returns "true" if extended diagnostics are desired 
21 display-status (n -- ) Outputs a selftest status message, with given 

statusl 
22 memory-test-suite ( adr len -- status) Calls memory tester for given region 
23 group-code 

24 mask 

Byte2 Function 
25 get-msecs 
26 ms 

Bvte2 
30 
31 

Function 
map-sbus 
sbus-intr>opu 

( -- adr) Variable, used by 
MEMORY-TEST-SUITE (obsolete) 

( -- adr) Variable, holds "mask" used by 
MEMORY-TEST-SUITE 

Figure C-30. Time Utilities 

Stack 
(-- ms) 
(n -- ) 

Description 
Returns the current time, in milliseconds, approx. 
Delays for n milliseconds. Resolution is 1 millisecond 

Figure C-31. Machine-specific Support 

Stack 
( phys size -- virt ) 
( sbus-intr' -- cpu-intr' ) 

Description 
Maps a region of memory in 'sbus' address space 
Translates SBus interrupt' into CPU interrupt' 

Note: Figures C-32 thru C-38 apply only to display device-types. 

Byte 1 
1 
1 
1 
1 

154 

Byte2 
50 

51 

Byte2 
52 
53 
54 
55 

Function 
llines 

'columns 

Function 
line' 
column' 
inverse? 
inverse-screen? 

Figure C-32. User-set terminal Emulation Values 

Stack 
(-- n) 

(-- n) 

Description 
lof lines of text being used for display. This word MUST 
be initialized (using IS). FBx-INSTALL does this 
automatically, and also properly incorporates the NVRAM 
parameter "screen-I rows" 
I of columns (charsJline) used for display. This word 
MUST be initialized (using IS). FBx-INSTALL does this 
automatically, and also properly incorporates the NVRAM 
parameter "screen-lcolumns" 

Figure C-33. Terminal Emulator-set Terminal Emulation Values 

Stack 
( -- n) 
( -- n) 
( -- flag) 
( -- flag) 

Description 
Current cursor position (linel). 0 is top line 
Current cursor position (column'). 0 is left char. 
True if output is inverted (white-on-black) 
True if screen has been inverted (black background) 

S Bus Specification 8.0 



Appendix C: FCode Reference 

Bvte1 Byte2 Function 
1 57 draw-character 
1 58 reset-screen 
1 59 toggle-cursor 
1 5a erase-screen 
1 5b blink-screen 
1 5c invert-screen 
1 5d insert-characters 
1 5e delete-characters 

5f insert-lines 

60 delete-lines 

61 draw-logo 

* DEFER-type load able routines. 

Bvte1 
1 
1 
1 
1 
1 
1 
1 
1 

Bvte2 
6c 
6d 
6f 
62 
63 
64 
65 
66 

Function 
char-height 
char-width 
fontbytes 
frame-buffer-adr 
screen-height 
screen-width 
window-top 
window-left 

FCode Primitives 

Figure C-34. Terminal Emulation Routines'" 

Stack Description 
(char -- ) Paints the given character and advance the cursor 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(n -- ) 
(n -- ) 

(n -- ) 

Initializes the display device 
Draws or erase the cursor 
Clears all pixels on the display 
Flashes the display momentarily 
Changes all pixels to the opposite color 
Inserts n blanks just before the cursor 
Deletes n characters starting at with cursor character, rightward. 
Remaining chars slide left 
Inserts n blank lines just before the current line, lower lines 
are scrolled downward 

( n -- ) Deletes n lines starting with the current line, lower lines 
are scrolled upward 

( linef: logoaddr logowidth logoheight -- ) Draws the logo 

Figure C-35. Frame Buffer Parameter Values'" 

Stack 
(-- n) 
(-- n ) 
(-- n) 
(-- adr) 
(-- n) 
(-- n) 
(-- n) 
(-- n ) 

Description 
Height (in pixels) of a character (usually 22) 
Width (in pixels) of a character (usually 12) 
f: of bytes/scan line for font entries (usually 2) 
Address of frame buffer memory 
Total height of the display (in pixels) 
Total width of the display (in pixels) 
Distance (in pixels) between display top and text window 
Distance (in pixels) between display left edge and text 
window left edge 

* These must all be initialized before using any FBx- routines. 

Bvte2 
6a 

6b 

6e 

Function 
default-font 

set-font 

>font 

SBus Specification B.O 

Figure C-36. Font Operators 

Stack Description 
( -- fontbase charwidth charheight fontbytes f:firstchar f:chars ) 

Returns default font values, plugs directly into 
SET-FONT 

( fontbase charwidth charheight fontbytes f:firstchar f:chars -- ) 
Sets the character font for text output 

( char -- adr) Returns font address for given ASCII character 

155 



FCode Primitives Appendix C: FCode Reference 

Figure C-37. One-bit Framebuffer Utilities 

Bvte1 Bvte2 Funotion Staok Desori~tion 

1 70 fb1-draw-oharacter (ohar -- ) Paints the oharaoter and advanoe the oursor 
1 71 fb1-reset-soreen ( -- ) Initializes the display device (noop) 
1 72 fbj -toggle-oursor ( -- ) Draws or erases the oursor 
1 73 fb1-erase-soreen ( -- ) Clears all pixels on the display 
1 74 fb1-blink-soreen ( -- ) Inverts the soreen, twice (slow) 
1 75 fb1-invert-soreen ( -- ) Changes all pixels to the opposite color 
1 76 fb1-insert-oharaoters (n -- ) Inserts n blanks just before the cursor 
1 77 fb1-delete-characters (n -- ) Deletes n characters, starting at with cursor character, 

rightward. Remaining ohars slide left 
78 fb1-insert-lines (n -- ) Inserts n blank lines just before the ourrent line, lower 

lines are scrolled downward 
79 fb1-delete-lines (n --) Deletes n lines starting with the current line,lower lines 

are sorolled upward 
7a fb1-draw-logo ( linellogoaddr logowidth logoheight -- ) Draws the logo 
7b fb1-install (width height Icolumns llines --) Installs the one-bit built-in 

routines 
7c fb1-slide-up (n --) Like FB1-DELETE-LiNES, but doesn't clear lines 

at bottom 

Eigure C-38. Eight-bit Framebuffer Utilities 

Bvte1 Bvte2 Funotion Staok Desoription 
1 80 fbB-draw-oharacter (ohar -- ) Paints the oharaoter and advanoe the oursor 
1 81 fbB-reset-screen ( -- ) Initializes the display device (noop) 
1 82 fbB-toggle-cursor ( -- ) Draws or erases the cursor 
1 83 fbB-erase-screen ( -- ) Clears all pixels on the display 
1 84 ·fbB-blink-screen ( -- ) Inverts the screen, twice (slow) 
1 85 fbB-invert-screen ( -- ) Changes all pixels to the opposite oolor 
1 86 fbB-insert-characters (n -- ) Inserts n blanks just before the cursor 
1 87 fbB-delete-oharacters (n -- ) Deletes n oharacters starting at with cursor character, 

rightward. Remaining ohars slide left 
88 fbB-insert-lines (n --) Inserts n blank lines just before the current line, lower 

lines are sorolled downward 
89 fbB-delete-lines (n -- ) Deletes n lines starting with the ourrent line, lower lines 

are sorolled upward 
8a fbB-draw-logo (Iinellogoaddr logowidth logoheight --) Draws the logo 
8b fbB-instail (width height loolumns lIines --) Installs the eight-bit built-in 

routines. 

156 SBus Specification B.O 



Appendix C: FCode Reference FCode Primitives 

Note: The FCodes in figures C-39 thru C-46 are valid only in 2.0 or greater systems. 

2 

2 
2 

2 
2 

2 

2 

2 

2 

2 

2 

2 

Bvte1 
2 
2 

2 

Bvte2 
02 

03 

04 
05 

06 
07 

08 

09 

Oa 

Ob 

Od 

Oe 

Of 

Funotion 
my-args 

my-self 

find-paokage 
open-paokage 

olose-paokage 
find-method 

oall-paokage 

$oall-parent 

my-parent 

ihandle>phandle 

my-unit 

$oall-method 

$open-paokage 

Bvte2 Funotion 
13 alarm 

Bvte2 
14 
36 

37 

a4 

Funotion 
(is-user-word) 
wflips 

Iflips 

mao-address 

SBus Specification B.O 

Figure C-39. Package Support 

Staok Desoription 
(-- adr len) Returns the argument string "adr len" passed when this 

paokage was opened 
( -- ihandle ) Returns the instanoe handle of ourrently-exeouting 

paokage instance 
( adr len -- false I phandle true) Finds a paokage named "adr len" 
( adr len phandle -- ihandle I 0) Opens an instanoe of the paokage 

"phandle," passes arguments "adr len" 
(ihandle --) Closes an instanoe of a paokage 
( adr len phandle -- false I aof true) Finds the method (command) 

named "adr len" within the paokage "phandle" 
( [ ... ] aof ihandle -- [ ... J) Exeoutes the method (oommand) "aof" within 

(adr len -- ) 
the instanoe "ihandle" 
Exeoutes the method (oommand) "adr len" within the 
parent's paokage 

( -- ihandle ) Returns the instanoe handle of the parent of the ourrent 
paokage instance 

( ihandle -- phandle) Converts an instanoe handle to a paokage 
handle 

( -- offset spaoe ) Returns the physioal unit number pair for this 
paokage 

( adr len ihandle -- ) Exeoutes the method (oommand) named "adr len" 
within the instanoe "ihandle" 

( arg-adr arg-Ien adr len -- ihandle I 0) Finds a paokage "adr len," 
then opens it with arguments "arg-adr arg-Ien" 

Figure C-40. Asyncronous Support 

Staok Desoription 
( aof n --) Exeoutes the method (oommand) indioated by "aor every 

"n" milliseconds 

Figure C-41. Miscellaneous Operations 

Staok 
( adr len aof -- ) 
(adr len -- ) 

(adr len -- ) 

(-- adr len) 

Desoription 
Creates a new word oalled "adr len" whioh executes "aof" 
Exohanges bytes within 16-bit words in the speoified 
region 
Exohanges 16-bit words within 32-bit longwords in the 
speoified region 
Returns the MAC address 

157 



FCode Primitives 

Bvte1 
2 
2 

2 

Bvte1 
2 

2 
2 

2 

2 
2 

Byte 1 
2 
2 
2 
2 
2 
2 

158 

Bvte2 
15 

Byte2 
16 
17 

18 

Bvte2 
1a 

1b 
1c 

1d 

1e 
1f 

1b 

Byte2 
30 
31 
32 
33 
34 
35 

Function 
suspend-fcode 

Function 
abort 
catch 

throw 

Function 
get-my-attribute 

xdrtoint 
xdrtostring 

Appendix C: FCode Reference 

Figure C-42. Interpretation 

Description Stack 
( -- ) Suspends execution of FCode, resumes later if an 

undefined command is required 

Figure C-43. Error Handling 

Stack Description 
( -- ) Aborts FCode execution, returns to the "ok" prompt 
( [ ... J acf -- [ ... J error-code) Executes "acf," returns THROW error code or a 

if THROW not encountered 
( error-code -- ) Returns given error code to CATCH 

Figure C-44. Package Attributes 

Stack Description 
( nam-adr nam-Ien -- true I xdr-adr xdr-ien faise ) 

Returns the value string for the given attribute name 
( xdr-adr xdr-Ien -- n) Converts an xdr-encoded string to an integer 
( xdr-adr xdr-Ien -- adr len) 

get-inherited-attribute 
Converts an xdr-encoded string to a normal string 

( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 

delete-attribute 
get-package-attribute 

decode-2int 

Returns the value string for the given attribute, searches 
parents' attributes if not found 

( narn-adr nam-Ien --) Deletes the attribute with the given name 
( adr len phandle -- true I xdr-adr xdr-Ien false) 

Returns the value string for the given attribute name in the 
package "phandle" 

( xdr-adr xdr-Ien -- phys space) Converts an xdr-coded string into a physical 
address and space 

Figure C-45. Atomic Access 

Function 
rb@ 
rb! 
rw@ 
rw! 
rl@ 
rl! 

Stack 
( adr -- byte) 
(byte adr -- ) 
( adr -- word) 
(word adr -- ) 
( adr -- long ) 
( long adr -- ) 

Description 
Reads the 8-bit value at the given address, atomically 
Writes the 8-bit value at the given address, atomically 
Reads the i6-bit value at the given address, atomically 
Writes the 16-bit value at the given address, atomically 
Reads the 32-bit value at the given address, atomically 
Writes the 32-bit value at the given address, atomically 

SBus Specification B.O 



Appendix C: FCode Reference J-Loae rrzmltlves 

Figure C-46. Data Exception Tests 

Bvte1 Bvte2 Function Stack Description 
2 20 cpeek ( adr -- false I byte true) Reads the 8-bit value at the given address, returns false 

if unsuccessful 
2 21 wpeek ( adr -- false I word true) Reads the 16-bit value at the given address, returns false 

if unsuccessful 
2 22 lpeek ( adr -- false I long true) Reads the 32-bit value at the given address, returns false 

if unsuccessful 
2 23 cpoke (byte adr -- flag) Writes the 8-bit value at the given address, returns false 

if unsuccessful 
2 24 wpoke ( word adr -- flag) Writes the 16-bit value at the given address, returns false 

if unsuccessful 
2 25 I poke ( long adr -- flag) Writes the 32-bit value at the given address, returns false 

if unsuccessful 

SBus Specification B.O 159 



FCode Byte Values Appendix C: FCode Reference 

FCode Byte Values The following figure lists, in hexadecimal order, currently
assigned FCode byte values. 

160 

Byte 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
o 
d 
e 
f 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1a 
1b 
10 
1d 
1e 
1f 

20 
21 
22 
23 
24 
25 
26 
27 
28 

Name 
endO 
table1 
table2 
table3 
table4 
tableS 
table6 
table7 
table8 
table9 
table10 
table11 
table12 
table13 
table14 
table15 

b(lit) 
b(,) 
be") 
bbranoh 
b?branoh 
b(loop) 
b(+loop) 
b(do) 
b(?do) 

j 
b(leave) 
b(of) 
exeoute 
+ 

I 
mod 
and 
or 
xor 
not 
« 
» 

Figure C-47. FCode Byte Values 
Staok Comment 
( -- ) 

\ then 32-bitl. 
\ then token. 
\ then ont,letters. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
(-- index) 
( -- outerindex ) 
( -- ) 

(-- n) 
(-- aot) 
(-- adr len) 
( -- ) 
( -- ) 
( -- ) 
(n --) 
( end start -- ) 
( end start -- ) 

\ then offset. 
(aot -- ) 

( seleotor testvaJ -- sel I none) 

(n1 n2 -- n3) 
(n1 n2 -- n3) 

(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 -- n2) 
(n1 ont -- n2 ) 
(n1 ont -- n2 ) 

SBus Specification B.O 



Appendix C: FCode Reference FCode Byte Values 

Byte Name Stack Comment 
29 »a (n1 cnt -- n2 ) 
2a Imod (n1 n2 -- rem quot) 
2b u/mod (n1 n2 -- rem quot) 
2c negate (n1 -- n2) 
2d abs (n1 -- n2) 
2e min (n1 n2 -- n3) 
2f max (n1 n2 -- n3) 

30 >r ( n --) (rs: -- n ) 
31 r> ( -- n) (rs: n -- ) 
32 r@ ( -- n) (rs: -- ) 
33 exit ( -- ) 
34 0= (n -- flag) 
35 0<> (n -- flag) 
36 0< (n -- flag) 
37 0<= (n -- flag) 
38 0> (n -- flag) 
39 0>= (n -- flag) 
3a < (n1 n2 -- flag) 
3b > (n1 n2 -- flag) 
3c = (n1 n2 -- flag) 
3d <> ( n1n2 -- flag) 
3e u> (n1 n2 -- flag) 
3f u<= ( n 1 n2 -- flag) 

40 u< (n1 n2 -- flag) 
41 u>= (n1 n2 -- flag) 
42 >= ( n 1 n2 -- flag) 
43 <= (n1 n2 -- flag) 
44 between ( n min max -- flag) 
45 within (n min max -- flag) 
46 drop (n -- ) 
47 dup (n -- n n) 
48 over (n1 n2 -- n1 n2 n1 ) 
49 swap (n1 n2 -- n2 n1 ) 
4a rot (n1 n2 n3 -- n2 n3 n1 ) 
4b -rot (n1 n2 n3 -- n3 n1 n2) 
4c tuck (n1 n2 -- n2 n1 n2) 
4d nip (n1 n2 -- n2) 
4e pick (+n -- n2) 
4f roll (+n -- ) 

SBus Specification B.O 161 



FCode Byte Values 

Byte Name 
50 ?dup 
51 depth 
52 2drop 
53 2dup 
54 20ver 
55 2swap 
56 2rot 
57 2f 
58 u2f 
59 2* 
5a Ic 
5b Iw 
5c /I 
5d In 
5e ca+ 
5f wa+ 

60 la+ 
61 na+ 
62 ca1+ 
63 wa1+ 
64 la1+ 
65 na1+ 
66 Ic* 
67 /w* 
68 /1* 
69 In* 
6a on 
6b off 
6c +! 
6d @ 
6e I@ 
6f w@ 

70 <w@ 
71 c@ 
72 ! 
73 I! 
74 w! 
75 c! 
76 2@ 
77 2! 
78 move 
79 fill 
7a comp 
7b noop 
7c Iws pi it 
7d wljoin 
7e Ibsplit 
7f bljoin 

162 

Appendix C: FCode Reference 

Stack Comment 
(n--Olnn) 
(--+n) 
(n1 n2 -- ) 
(n1 n2 -- n1 n2 n1 n2) 
(n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) 
(n1 n2 n3 n4 -- n3 n4 n1 n2) 
(n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(-- n) 
(-- n) 
(-- n) 
(-- n ) 
(n1 index -- n2 ) 
(n1 index -- n2) 

(n1 index -- n2) 
(n1 index -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(adr -- ) 
(adr -- ) 
(n adr -- ) 
(adr -- n ) 
(adr -- L) 
(adr -- w) 

(adr -- n) 
(adr -- b) 
(n adr -- ) 
(n adr -- ) 
(n adr -- ) 
(n adr -- ) 
( adr -- n1 n2) 
(n1 n2 adr -- ) 
(adr1 adr2 cnt -- ) 
( adr cnt byte -- ) 
(adr1 adr2 cnt -- n ) 
( -- ) 
( L -- w.lo w.hi ) 
(w.lo w.hi -- L) 
( L -- b.lo b b b.hi ) 
( b.lo b b b.hi -- L) 

SBus Specification 8.0 



AppenatX L: r Loae l\.qerenc;e 

Byte Name 
80 flip 
81 upo 
82 Icc 
83 pack 
84 count 
85 body> 
86 >body 
87 version 
88 span 
89 (reserved) 
8a expect 
8b alloc-mem 
8c free-mem 
8d key? 
8e key 
8f emit 

90 type 
91 (cr 
92 cr 
93 lout 
94 lIine 
95 hold 
96 <I 
97 I> 
98 sign 
99 I 
9a Is 
9b u. 
9c u.r 
9d 
ge .r 
9f .s 

aO base 
a1 (reserved) 
a2 $number 
a3 digit 
a4 -1 
a5 0 
a6 1 
a7 2 
a8 3 
a9 bl 
aa bs 
ab bell 
ac bounds 
ad here 
ae aligned 
af wbsplit 

SBus Specification B.O 

Stack Comment 
(w1 -- w2) 
(char -- upper-case-char) 
(char -- lower-case-char) 
( adr len pstr -- pstr ) 
( pstr -- adr len) 
(apf -- acf) 
(acf -- apf) 
(-- n) 
(-- adr) 

(adr +n -- ) 
(cnt -- adr) 
(adr cnt -- ) 
(-- flag) 
(-- char) 
(char --) 

(adr +n -- ) 
( -- ) 
( -- ) 
(-- adr) 
(-- adr) 
(char -- ) 
( -- ) 
(L -- adr +n) 
(n -- ) 
(+L1 -- +L2) 
(+L -- 0) 
(u -- ) 
(ucnt--) 
(n -- ) 
(ncnt--) 
( -- ) 

(-- adr) 

( adr len -- true I n false ), valid only in 2.0 or greater systems 
( char base -- digit true I char false) 
( -- -1 ) 
( -- 0) 
( -- 1 ) 
(-- 2) 
(-- 3) 
(-- n) 
(-- n) 
(-- n) 
( n cnt -- n+cnt n ) 
(-- adr) 
(adr1 -- adr2 ) 
( w -- b.lo b.hi ) 

163 



... '-",,~"'" "':1"'" ............. L-1,7 

Byte Name 
bO bwjoin 
b1 b«mark) 
b2 b(>resolve) 
b3 (reserved) 
b4 (reserved) 
b5 new-token 

bS named-token 
b7 be:) 
b8 b(value) 
b9 b(variable) 
ba b(constant) 
bb b(create) 
bc b(defer) 
bd b(buffer:) 
be b(field) 
bf (reserved) 

cO (reserved) 
c1 (reserved) 
c2 be;) 
c3 b(is) 
c4 b(case) 
c5 b(endcase) 
cS b(endof) 
c7- c9 (reserved) 
ca external-token 
cb $find 
cc offset1S 
cd eval 
ce - cf (reserved) 

dO c, 
d1 w, 
d2 I, 
d3 
d4 u*x 
d5 xu/mod 

dS- d7 (reserved) 
d8 x+ 
d9 x-
da - df (reserved) 

fO startO 
f1 start 1 
f2 start2 
f3 start4 
f4 - fc (reserved) 
fd version 1 
fe 4-byte-id 
ff end1 

164 

AppenalX L: FLoele Reference 

Stack Comment 
( bolo b.hi -- w ) 
( -- ) 
( -- ) 

\ then table', code', token-type 
\ then string, table', code', token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 

( -- ) 
( n --) \ then token 
( -- ) 
( -- ) 
( -- ) 

( -- ), valid only in 2.0 or greater systems 
( adr len -- adr len false I acf +-1 ) 
( -- ) 
( adr len -- ), valid only in 2.0 or greater systems 

(n -- ) 
(n -- ) 
(n -- ) 
(n -- ) 
( u1 [32] u2[32] -- product [S4] ), valid only in 2.0 or greater systems 
(u1 [S4] u2[32] -- remainder [32] quot [32]), valid only in 2.0 or greater 
systems 

(x1 x2 -- x3 ), valid only in 2.0 or greater systems 
(x1 x2 -- x3 ), valid only in 2.0 or greater systems 

( -- ), valid only in 2.0 or greater systems 
(-- ), valid only in 2.0 or greater systems 
( -- ), valid only in 2.0 or greater systems 
(-- ), valid only in 2.0 or greater systems 

\ then Obyte, chksum(2bytes), length(4bytes) 
\ then 3 more bytes, not supported 
( -- ) 

SBus Specification 8.0 



Appendix C: FCode Reference FCode Byte Values 

Bvte1 Bvte2 Name Stack Comment 
1 01 dma-alloc ( Ibytes -- virtual) 
1 02 my-address (-- physical) 
1 03 my-space (-- space) 
1 04 memmap ( physical space size -- virtual) 
1 05 free-virtual ( virtual len -- ) 
1 06 >physical ( virtual -- physical space) 
1 Of my-params ( -- adr len) 

10 attribute ( xdr-adr xdr-Ien name-adr name-len -- ) 
11 xdrint (n1 -- xdr-adr xdr-Ien ) 
12 xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 -- xdr-adr1 xdr-len1 +2 ) 
13 xdrphys ( physical space -- xdr-adr xdr-Ien ) 
14 xdrstring ( adr len -- xdr-adr xdr-Ien) 
15 xdrbytes ( adr len -- xdr-adr xdr-Ien ), valid only in 2.1 or greater systems 
16 reg ( physical space size -- ) 
17 intr ( int-Ievel vector -- ) 
18 driver ( adr len -- ), not supported 
19 model (adr len --) 
1a device-type (adr len --) 
1b decode-2int ( xdr-adr xdr-Ien -- physical space ), valid only in 2.0 or greater systems 
1c is-install (acf -- ) 
1d is-remove (acf -- ) 
1e is-selftest (acf--) 
1f new-device ( -- ) 

20 diagnostic-mode? (-- flag) 
21 display-status (n -- ) 
22 memory-test-suite ( adr len -- status) 
23 group-code (-- adr) 
24 mask (-- adr) 
25 get-msecs (-- ms) 
26 ms (n -- ) 
27 finish-device ( -- ) 

30 map-sbus ( phys size -- virt ) 
31 sbus-intr>cpu ( sbus-intrl -- cpu-intrl ) 

1 50 lIines (-- n) 
1 51 Icolumns (-- n) 
1 52 linel (-- n) 
1 53 columnl (-- n) 
1 54 inverse? (-- flag) 
1 55 inverse-screen? (-- flag) 
1 57 draw-character (char -- ) 
1 58 reset-screen ( -- ) 
1 59 toggle-cursor ( -- ) 
1 5a erase-screen ( -- ) 
1 5b blink-screen ( -- ) 
1 5c invert-screen ( -- ) 
1 5d insert-characters (n -- ) 
1 5e delete-characters (n -- ) 
1 5f insert-lines (n -- ) 

SBus Specification B.O 165 



FCode Byte Values 

Bvte1 .IM.!2 Name 
1 60 delete-lines 
1 61 draw-logo 
1 62 frame-buffer-adr 
1 63 screen-height 
1 64 screen-width 
1 65 window-top 
1 66 window-left 
1 6a default-font 
1 6b set-font 
1 6c char-height 
1 6d char-width 
1 6e >font 
1 6f fontbytes 

70 fbi-draw-character 
71 fb1-reset-screen 
72 fbi-toggle-cursor 
73 fb1-erase-screen 
74 fbi-blink-screen 
75 fbi-invert-screen 
76 fb1-insert-characters 
77 fbi-delete-characters 
78 fb1-insert-lines 
79 fbi-delete-lines 
7a fb1-draw-logo 
7b fbi-install 
7c fbi-slide-up 

80 fbS-draw-character 
81 fbS-reset-screen 
82 fbS-toggle-cursor 
83 fbS-erase-screen 
84 fbS-blink-screen 
85 fbS-invert-screen 
86 fbS-insert-characters 
87 fbS-delete-characters 
88 fbS-insert-lines 
89 fbS-delete-lines 
8a fbS-draw-logo 
8b fbS-instail 

a4 mac-address 

166 

Stack Comment 
(n -- ) 
(linel laddr !width Iheight --) 
(-- addr) 
(-- n) 
(-- n) 
(-- n) 
(-- n) 

Appendix C: FCode Reference 

( -- fontbase charwidth charheight fontbytes lfirstchar Ichars) 
( fontbase charwidth charheight fontbytes Ifirstchar lahars -- ) 
(-- n) 
(-- n) 
( char -- adr) 
(-- n) 

(char -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(-- ) 
(Ichars --) 
(Ichars --) 
(liines -- ) 
(liines -- ) 
( linel logoadr Iwidth Iheight -- ) 
(width height Icols lIines -- ) 
(liines -- ) 

(char -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(Ichars --) 
(Ichars --) 
( IIines -- ) 
(Ilines --) 
( linel ladr Iwidth Iheight -- ) 
(width height Icols lIines -- ) 

(-- adr len), valid only in 2.0 or greater systems 

SBus Specification 8.0 



Appendix C: FCode Reference FCocte Byte Values 

Note: All FCodes beginning with 02 are valid only in 2.0 or greater systems. 

Byte 1 Bvte2 Name Stack Comment 
2 01 device-name (adr len --) 
2 02 my-args (-- adr len) 
2 03 my-self (-- ihandle) 
2 04 find-package ( adr len -- false I phandle true) 
2 05 open-package ( adr len phandle -- ihandle I 0 ) 
2 06 close-package ( ihandle -- ) 
2 07 find-method ( adr len phandle -- false I acf true) 
2 08 call-package ( [ ... ] acf ihandle -- [ ... ] ) 
2 09 $call-parent (adr len --) 
2 Oa my-parent ( -- ihandle ) 
2 Ob ihandle>phandle ( ihandle -- phandle ) 
2 Od my-unit ( -- offset space ) 
2 Oe $call-method ( adr len ihandle -- ) 
2 Of $open-package ( arg-adr arg-Ien adr len -- ihandle I 0 ) 

2 10 processor-type ( -- processor-type) 
2 11 firmware-version (-- n) 
2 12 feode-version ( -- n) 
2 13 alarm (acfn--) 
2 14 (is-user-word) ( adr len acf -- ) 
2 15 suspend-fcode ( -- ) 
2 16 abort ( -- ) 
2 17 catch ( [ ... ] acf -- [ ... ] error-code) 
2 18 throw ( error-eode -- ) 
2 1a get-my-attribute ( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 
2 1b xdrtoint ( xdr-adr xdr-Ien -- n ) 
2 1c xdrtostring ( xdr-adr xdr-Ien -- adr len) 
2 1d get-inherited-attribute ( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 
2 1e delete-attribute ( nam-adr nam-Ien -- ) 
2 1f get-package-attribute ( adr len phandle -- true I xdr-adr xdr-Ien false) 

2 20 cpeek ( adr -- false I byte true) 
2 21 wpeek ( adr -- false I word true) 
2 22 lpeek ( adr -- false I long true) 
2 23 cpoke (byte adr -- flag) 
2 24 wpoke ( word adr -- flag) 
2 25 I poke (long adr -- flag) 

2 30 rb@ ( adr -- byte ) 
2 31 rb! (byte adr -- ) 
2 32 rw@ ( adr -- word) 
2 33 rw! (word adr -- ) 
2 34 rl@ ( adr -- long) 
2 35 rl! ( long adr -- ) 
2 36 wflips (adr len --) 
2 37 Iflips (adr len --) 
2 40 left-parse-string (adr len char -- adrR lenR adrL lenL) 

SBus Specification B.O 167 



J-Loae Jjyte values AppenalX L: J-Loae Ke}"erence 

168 SBus Specification B.O 



Glossary 

32-bit masterlslavel An SBus master / slave/ controller / device supporting only 
controller/device 32-bit per clock cycle transfers. 

32-bit transfers The basic SBus bus cycle in which 32-bits of data can be 
transferred each clock cycle. 

64-bit master/slave/ An SBus master / slave/ controller / device supporting 32- and 
controller/device 64-bit per clock cycle transfers. 

64-bit transfers See ExtendedTransfer. 

acknowledgment Any encoding of Ack(2:0)* to indicate that data has been 
Ack(2:0)* transferred, or that the current bus cycle should be terminated, 

or both. Valid acknowledgments are: 

o Double-word acknowledgment (Extended Transfers only). 

o Word acknowledgment (32-bit transfers only). 

o Half-word acknowledgment (32-bit transfers only). 

SBU5 Specification B.O 169 



Glossary 

o Byte acknowledgment (32-bit transfers only). 

o Error Acknowledgment. 

o Rerun Acknowledgment. 

address lines The SBus signals used by the SBus controller to send a physical 
PhysAddr(27:0) (PA(27:0» address to a slave. During ExtendedTransfers, the signals are 

used for Data(59:32). 

170 

address strobe The SBus signal used by the SBus controller to indicate that a 
AddressStrobe* AS* slave cycle is in progress. 

asserted The state of a signal used to initiate an action. 

atomic transaction A sequence of bus cycles in which an SBus master retains 
control of the bus to prevent any other master from accessing 
the bus. Atomic transactions are used to implement 
semaphores. 

autoconfiguration The process by which the host fetches SBus IDs and FCodes, 
beginning at location 0 of each SBus slave used to identify the 
device. 

big-endian An ordering of bytes within a word where the most significant 
byte is at the lowest address, and the least significant byte is at 
the highest address. 

board See SBus expansion card. 

burst transfer A single bus cycle in which multiple words of data are 
transferred. 

SBus Specification B.O 



Glossary 

bus cycle A series of clock cycles beginning (in the case of a DVMA master) 
with a particular master receiving a grant and, in all cases, 
concluding with address strobe being unasserted by the SBus 
controller. For DVMA masters, a bus cycle is divided into two 
phases: a translation cycle and a slave cycle. However, in the case 
of a CPU master, the translation cycle does not occur as part of 
the bus cycle. 

bus sizing A transfer mode in which a slave requests the master to turn a 
word (half-word) transfer into two half-words, or four (two) byte 
transfers. Each transfer is performed using a separate bus cycle. 
The first bus cycle is called the original bus cycle; remaining bus 
cycles are called follow-on bus cycles. 

byte A set of 8 signals or bits taken as a unit. 

byte acknowledgment An acknowledgment to indicate that the slave has read or 
written a byte from the most significant byte of the data lines. 
If the transfer size is greater than a byte, the master initiating the 
transfer may perform bus sizing. 

byte-addressing A determination that the smallest addressable unit of 
information is a byte. 

card See SBus expansion card. 

clock An SBus signal generated by the SBus controller which 
Clock (Clk) synchronizes all activity on the SBus. 

clock cycle One period of the SBus clock (Clock). Each bus cycle consists of 
several clock cycles. 

SBus Specification B.O 171 



Glossary 

CPU master An SBus master that includes a central processing unit with a 
private means to perform virtual address translation (in 
contrast to a DVMA master which uses the SBus controller to 
perform virtual address translation). A bus cycle initiated by a 
CPU master consists only of a slave cycle. Typical SBus systems 
have one CPU master. 

Data Acknowledgment An acknowledgment to indicate the slave has read or written a 
byte, half-word, word, or double-word. There are four types of Data 
Acknowledgment: 

o Byte acknowledgment (32-bit transfers only). 

o Hall-word acknowledgment (32-bit transfers op]y). 

o Word acknowledgment (32-bit transfers only). 

o Double-word ackno"\tYledgment (Extended Transfers only). 

data lines The SBus signals used to transfer data between masters and 
Oata(31 :0) 0(31 :0) slaves, and virtual addresses between masters and the SBus 

controller. For ExtendedTransfers, there are 64 data lines, called 
Oata(63:0). 

device See SBus device. 

Direct Virtual Memory A mechanism to allow a device on the SBus to initiate data 
Access (DVMA) transfers between it and other SBus devices, such as system 

memory. To simplify overall system design, SBus DVMA 
transfers are performed using virtual addressing. The SBus 
controller contains a Memory Management Unit (MMU) 
responsible for performing virtual to physical address 
translation. 

172 SBus Specification 8.0 



Glossary 

double-word A group of 64 signals or bits taken as a unit (8 bytes of data). 

double-word An acknowledgment to indicate that the slave is ready to read 
acknowledgment or write a double-word of data. A double-word acknowledgment 

is used only for ExtendedTransfers. It is the only valid Data 
Acknowledgment during an ExtendedTransfer. 

driver overlap A situation in which two different drivers are simultaneously 
sourcing or sinking current. 

dummy read A bus cycle used by a master during an atomic transaction to 
hold the bus, so that it can process data before performing a 
write bus cycle. Dummy reads are performed to the same 
address as the original read. 

DVMA cycle A bus cycle initiated by a DVMA master. A DVMA cycle 
consists of a translation cycle and a slave cycle. 

DVMA master An SBus master able to initiate a bus cycle that uses the SBus 
controller to perform virtual address translation (in contrast to a 
CPU master which has a private means for virtual address 
translation). A bus cycle initiated by a DVMA master consists 
of a translation cycle and a slave cycle. 

Error Acknowledgment An acknowledgment to indicate that the bus cycle is terminated 
as a result of an abnormal condition. 

expansion card See SBus expansion card. 

expansion connector A 96-pin connector to allow a user to insert an SBus card. 

SBus Specification 8.0 173 



Glossary 

ExtendedTransfer An extended bus cycle protocol (also called a 64-bit transfer) in 
which 64-bits of data are transferred per clock cycle during the 
slave cycle. The upper 32-bits of data are multiplexed onto the 
Size(2:0}, Read, and PhysAddr(27:0} lines. 

Extended Transfer During an Extended Transfer, the Extended Transfer 
Information Information is driven onto Data(31 :O} during the translation 

cycle, and the first clock cycle of the slave cycle. The Extended 
Transfer Information is the detailed description of the 
ExtendedTransfer, and consists of the following information: 

a ExtendedTransferType. 

o ExtendedTransferSize(2:0). 

a ExtendedTransferRead. 

a ExtendedTransferAtomic(1 :O}. 

a ExtendedTransferReserved(24:0). 

FCodes FORTH byte codes. 

follow-on bus cycle One of up to three bus cycles during a bus sizing operation that 
follows the original bus cycle. 

geographical addressing A mechanism by which a part of the physical address is 
presented to each SBus slave as an individual select signal, so 
that only one slave is selected at any given time. 

grant lines The set of SBus signals (one per master) generated by the SBus 
Grant* 8G* II inf h h h b contro er to orm masters w en t ey may access t e us. 

half-word A group of 16 signals or bits taken as a unit. 

174 SBus Specification 8.0 



Glossary 

half-word An acknowledgment to indicate that the slave has read or 
acknowledgment written a half-word of data from the most significant half-word 

of the data lines. If the transfer size is greater than a half-word, 
the master initiating the transfer may perform bus sizing. 

high Driven to a voltage greater than or equal to V OH. 

late error A special SBus signal to indicate that an error occurred during 
LateError* LErr* a preceding data transfer, even though the slave issued a byte, 

half-word, word, or double-word acknowledgment. 

latency The time between when a master requests the bus and when its 
transfer is complete. 

logic 0 The logic state of a signal driven to VOL (or V OH if low 

asserted). 

logic 1 The logic state of a signal driven to V OH (or VOL if low 

asserted). 

low Driven to a voltage less than or equal to VOL. 

low asserted The property of a signal to indicate that its logical polarity is the 
opposite of its physical polarity. 

master An SBus device capable of initiating an SBus transaction. 
The term CPU master is used when a host CPU must be 
distinguished from a more generic SBus master. The term 
DVMA master is used when it is desired to explicitly exclude 
CPU masters. Any SBus master may communicate with any 
other slave on the same bus, regardless of system configuration. 
For more information, see "Configuration" in Chapter 1. 

SBus Specification B.O 175 



Glossary 

motherboard A circuit board containing the central processor, SBus controller, 
and any SBus expansion connectors. 

Open Boot With regard to SBus Profiles, Open Boot is the facility by which 
the FCode program may interrogate the host and determine the 
state of various parameters it addresses. For information, see 
the Sun Microsystems, Inc. publication Open Boot PROM Toolkit 
User's Guide. 

open-drain A bus driver or signal driven only low (sometimes referred to as 
open collector). 

original bus cyde In a bus sizing operation, the first bus cyde of the transfer 
causing the master to perform bus sizing. Every bus sizing 
operation consists of an original bus cycle, plus one to three 
follow-on bus cycles, depending on the size of the original 
transfer and the type of Data Acknowledgment issued by the 
slave. 

real-time An event or system that must receive a response to some 
stimulus within a narrow, predictable, deterministic, and 
repeatable time frame. Usually, this requires that the response 
is not strongly dependent on system performance parameters 
which are highly variable, such as processor load or interface 
latency. 

request The set of SBus signals (one per master) used by the master to 
Request* BR* request the SBus controller to grant access to the bus. 

Rerun Acknowledgment An acknowledgment to indicate that the current master should 
abort the current transfer and re-request access to the bus to 
retry the transfer. 

sample To determine the state of a signal at the rising edge Clock. 

176 SBus Specification B.O 



Glossary 

SBus Bridge SBus A device providing additional SBus slots by connecting two 
Coupler SBusses. In general, a bus bridge is functionally transparent to 

devices on the SBus. However, there are cases (for example, bus 
sizing) in which bus bridges may change the exact way a series 
of bus cycles are performed. 

SBus controller The hard ware responsible for performing arbitration, 
addressing translation and decoding, driving slave selects and 
address strobe, and generating timeouts. 

SBus device A logical device attached to the SBus. This device may be on the 
motherboard, or on an SBus expansion card. 

SBus expansion card A physical printed circuit assembly that conforms to the single
or double-width mechanical specifications, and that contains 
one or more SBus devices. 

SBus ID A special series of bytes at address 0 of each SBus slave used to 
identify the SBus device. 

slave An SBus device that responds with an acknowledgment to a 
slave select and address strobe. Any SBus master may 
communicate with any other slave on the same bus, regardless 
of system configuration. For more information, see 
"Configuration" in Chapter 1. 

slave cycle That portion of a bus cycle that begins with placing an address 
on the physical address lines, and ends with AddressStrobe* being 
unasserted. 

slave select A collection of SBus signals (one per slave) used to select which 
SlaveSelect* Sel* slave should be active during the current slave cycle. 

SBus Specification B.O 

slot An SBus entity for which there is an independent slave select 
wire. Slot is also used as an abbreviation for SBus expansion slot. 

177 



178 

Glossary 

timeout A situation in which the SBus controller terminates a bus cycle 
which a slave has failed to acknowledge. In a correctly 
designed and operating system, timeouts should happen only 
during system configuration. 

transfer direction The SBus signal to indicate whether data is being read from or 
Read, Rd written to the selected slave. During ExtendedTransfers, the 

signal is used as Data(63). 

transfer size The SBus signals used to indicate the number of bytes to be 
Size(2:0) Siz(2:0) transferred during this bus cycle, assuming that no error occurs. 

During Extended Transfers, the se signals are used for 
Data(62:60). 

translation cycle That portion of a bus cycle between the assertion of grant and the 
placing of an address on the physical address lines by the SBus 
controller. After receiving the grant, the designated master 
places a virtual address on the SBus data lines. 

tristate An output able to remove its drive from a wire. 

TIL voltage levels The voltage levels that determine whether a signal is a logic 0 or 
a logic 1 state, with respect to TTL or TTL-compatible logic 
families. 

unasserted The state of a signal used to terminate an action. 

word A group of 32 signals or bits taken as a unit. 

wrapping The process, during burst transfers, by which the burst may 
begin at an arbitrary word boundary within the block, with the 
address incremented by 4, modulo the size of the burst in bytes. 

SBus Specification 8.0 



Numerics 
32-bit master / slave/ controller / device 169 
32-bit transfers 169 
64-bit compatible 30 
64-bit master / slave/ controller / device 169 
64-bit transfers 169 
740091 
74FOO 91 
74L500 91 
7450091 

A 
Ack(O:O)* 62, 96 
Ack(1 :0)* 62,96 
Ack(2:0)* xii, xviii, 9, 18,43,46,59, 60, 61-63, 

74-75,90,96,120,169 
acknowledgment 18, 21, 38, 44-45, 120, 133, 

137, 169 
byte 61-62, 65-66, 78-79, 115, 138-139 
data 15, 18,36,43,53-54,58-62, 65-67, 71, 

77,79,120 
double-word 62, 127, 131-132, 139-140 
error 21, 36-37, 41-43, 45, 48-49, 51, 56, 59, 

61-63, 65, 67, 70-78, 120-121, 124, 

SBus Specification B.O 

Index 

127, 131, 135-136, 139 
half-word 61-62, 65-66, 78, 138-139 
rerun 23, 42-43,45,48,50,59, 61-62,67-71, 

74,79,120,139 
reserved 62 
word 60,62-66, 138-139 

active drive 6-7 
address 

037,65,79, 114, 120 
big-end ian 52 
boundaries 54 
geographical 20 
jumpers 29 
lines 10,20,23,36 
physical 9-11, 15, 17,20,23,29,36-38,41, 

70,85,114,120,126,129,130-131 
space 37-38, 51, 70, 74, 114 
translation 10, 14, 17, 20, 25-26,41,61,63, 

121 
virtual 10-11, 14, 17,20,23,26,36,41-42, 

43-45, 49, 52, 54, 59, 73, 77, 120, 
124, 126, 130 

wrapping 54-55 
address 0 37, 65 
address lines 170 

179 



address space 37-38 
address wrapping 54 
AddressStrobe* (AS*) 9-10, 17-18,36-38,41-43, 

45, 56, 58, 59, 61, 67, 71-72, 74, 119, 
121, 170, 177 . 

arbitration 19, 26, 39 
AS*9, 36,38,40, 96, 170 
ASCII 29 
asserted 170 
asynchronous 73,81-82 
atomic transaction 39,41,47-51,68-69,79-80, 

120, 130, 136, 170 
autoconfiguration 3, 170 

B 
backplate 103-105, 107-108 
bandwidth 24, 40 
SG* 9, 39-40, 96, 174 
big-endian 170 
big-endian addressing 52 
board 170 

thickness 100-101 
warpage 100 

boot 29 
boot code 37 
boot device 113 
boot driver 114 
boot PROM 116 
booting 113, 116 
SR* 9,39-40,96, 176 
bridge hardware 15, 37 
bridges 37 
buffer, write 72 
buffering 13, 26, 69 
burst 178 
burst transfer 18, 25,28, 44, 52, 54,56-57, 60, 

62,64-65,67,71,76,78, 119-120, 170 
bus cycle 171 
bus expansion hardware (bridge hardware) 

37 
bus sizing 171 

180 

bus terminators 63 
bus timeout 74-75, 120-121 
byte 171 
byte acknowledgment 171 
byte-addressing 171 

C 
cache 11,55,57 
capacitance 6, 8,91, 103 
capacitive load 89, 92 
card 171 
checksum 114 
elk 9,32,96 

Index 

Clock (Clk) xiii, 9,32-33,46,81,92-93, 119-121, 
171, 176 

clock xix, 24, 31, 171 
clock cycle 32, 36, 171 
clock edge xiii, xix, 32 
clock frequency 32 
clock skew 6, 32 
CMOS 2, 6-8,87,89,91 
CMOS compatible 7-8, 87, 89, 91 
compatible 38 

64-bit 30 
CMOS 7-8, 87, 89, 91 
forward and backward 125 
plug 85 
SunOS57,80 
TTL 91 
unkeyed connector 94 

component clearance (height) 101-102 
component height (clearance) 100-102 
connector 

expansion 9, 87,89,94-96, 100 
female 94-95, 99 
keyed 94 
male 94-95,98 
SBus 92, 95 
unkeyed 94 

SBus Specification 8.0 



Index 

controller, SBus 5-6, 9-11, 14, 17, 19-21,23,25, 
32, 34-36, 38-39, 41, 43, 45, 47-49, 51, 
55-59, 62-63, 67, 69, 71-74, 77, 81-82, 
85, 88, 90, 113, 120-121, 124, 126-127, 
129-131, 137-139, 141 

controllers, SBus 42, 133 
CPU master 172 
cycle 

bus 5, 17, 19-23, 25, 37, 39-41, 47-51, 56, 
60-62,67-69,71,74,76,78-79,119-
120, 124, 126, 130, 132, 135-136, 
139 

clock 7, 10, 17-18, 24-26, 30, 32-34, 36-40, 
42-47, 49, 54, 56, 59-63, 67, 74-77, 
125, 127, 129-134, 136-140 

deadlock 68 
duty 87 
SBus 11, 15-16,50,59, 74 
translation 10-11, 15, 17,23,25-27,41,43, 

49,63,124,126,130,138,140 

D 
096 
0(0:0) ... 0(0:3) 96 
0(0:4) 3,96 
0(0:5) ... 0(15:0) 96 
0(16:0) 66,96 
0(17:0) ... 0(23:0) 96 
0(24:0) 66, 96 
0(31 :0) 9,52,66,96, 124, 172 
Data Acknowledgment 172 
data field 37 
data lines 172 
Oata(O:O) 52, 53 
Oata(7:0) 53 
Oata(15:0) 53 
Oata( 15 :8) 53 
Oata(23:16) 53 
Oata(31 :0) 9, 15, 17, 20, 41,45,52-53, 60, 119-

120, 172 
0(31 :16) 53 

SBus Specification B.O 

0(31 :24) 53 
OataParity 124 
deadlock SO, 70 
deadly embrace 70 
debugging 29 
decoded address lines 36 
desktop 110 
device 172 
device driver 29, 58, 116 
Direct Virtual Memory Access (DVMA) 23, 

172 
disconnected (split) bus cycle 69, 71 
double-width 103 
double-word 173 
double-word acknowledgment 173 
DRAM 101 
driver overlap 173 
OtaPar 96 
dummy read 173 
DVMA 12-13, 17,25-27,84, 120, 171-172 

access 13, 27 
cycle 15, 45, 73, 83 
definition 23 
devices 12 
information 37 
master 5, 17,25-26,28,36,39-40,43-45,47, 

58-59, 121 
operations 10 
transfers 77 
translation 45 

DVMA cycle 173 
DVMA master 173 

E 
Error Acknowledgment 173 
Ethernet 24 
expansion 6,8-9, 14,21,32,37,87-89,94, 100, 

103, 113 
expansion card 173 
expansion connector 94, 173 
expansion slots 21 

181 



Extended Transfer Information 174 
Extended Transfer 174 

F 
fall time 32, 92-93 
fan-out 89 
FCode 33, 113-118, 120, 123, 174 
FDDI24 
FIFO 72 
floating outputs 90 
flow control 72 
follow-on bus cycle 174 
FORTH 29, 117-118 

A Text and Reference 118 
forward and backward compatible 125 
frame buffer 29 

G 
gate array 64, 87, 91 
geographical addressing 174 
Gnd 87, 96 
grant lines 174 
Grant* 9, 17,19, 39-45, 49, 56, 58, 62, 71, 120-

121, 174 
ground 9,88,90, 137-138, 141 

chassis 103 
logic 103 

H 
half-word 174 
half-word acknowledgment 175 
high 175 
high state 32 
hold time 6,31,81-82,93, 119-120 
hold times 34 
host-based systems 10, 15, 17, 19, 36, 41, 46, 

56, 121 

I 
initialization 34 
input thresholds 91 

182 

interpreter 116 
interrupt lines 31 
interrupt signals 32 
IntReq(1)* 81,96 
IntReq(2)* 96 
IntReq(3)* 96 
IntReq(4)* 96 
IntReq(5)* 96 
I ntReq( 6) * 96 
IntReq(7:0)* 81, 96 
IntReq(7:1)* 9,34,81,90,93 

J 
jumpers 2 

K 
key 37,94 

L 
laptop 103, 111 
laser printer 23 
late error 175 

Index 

LateError* (LErr*) 9, 18,41,76-77,90, 124, 175 
latency 3, 13, 19,24,26,40, 71, 125, 175 
LDSTUB50 
lead (component) height 101 
leakage current 8 
LErr* 9, 76, 96, 175 
logic 0175 
logic 1175 
low 175 
low asserted 175 
low state 32 

M 
mapping 75, 133-134 

PA 20, 42 
resources 38 
VA 20, 42 

mapping resources 38 
mapping, VA 128 

SBus Specification B.O 



Index 

master 39, 175 
master clock reference 32 
Mastering FORTH 118 
memory subsystems 77 
metastable behavior 82 
minimum gap 101 
MMU 11-12, 14,23,25,43, 172 
motherboard 6, 94, 101, 176 
MTBF82 
multiprocessors 70 

N 
NMOS 91 
non-volatile memory 115 

o 
Observations xiii, xix 
Open Boot 176 
open-drain 7, 176 
original bus cycle 176 
output driver 7, 32, 58, 81 

p 
PA(O:O) ... PA(0:7) 96 
PA(0:8) 696 
PA(0:9) ... PA(26:0) 96 
PA(27:0) 9, 36, 38, 96 
page size 42 
parameter 

AC93 
DC 91 

parity 22, 77, 123-124 
PCB mounting hole pattern 94 
PhysAddr(O:O) (PA(O:O» 66 
PhysAddr(1 :0) 66 
PhysAddr(27:0)9, 17,20,36,41,43,46, 121, 170 
PhysAddr(27:25) 38 
physical address 36-37 
physical address lines 36 
physical address space 38 
pinout 94, 96 

SBus Specification B.O 

pipeline 76 
plug compatible 85 
port location 65, 79 
power dissipation 90 
power OK signal 35 
power-up 21, 29, 34 
profile xiii, xix, 85-86, 101 
PROM 113-117 
propagation delay 90 
property list 116 
pulldowns 90, 127 
pullups 7, 63,90, 127 

R 
Rd 9,58, 96, 178 
Read (Rd) 9, 17, 36,41, 43-45, 58, 62, 119-120, 

178 
read -modify-write transaction 49 
read-only 37 
read-write 37 
real-time 176 
request 176 
Request* (BR*) 9, 17,34,39-41,43,47,50, 120-

121, 176 
rerun 36,67 
Rerun Acknowledgment 176 
Reset* (Reset*) 9,21,34-35,96 
retainer 110 
rise time 32, 90, 92-93 
rising edge xiii, xix 
ROM 29 

S 
sample 176 
SBus Bridge SBus Coupler 177 
SBus Clock 33 

183 



SBus controller 5-6,9-11, 14, 17, 19-21,23,25, 
32, 34-36, 38-39, 41-43, 45, 47-49, 51, 
55-59, 62-63, 67, 69, 71-74, 77, 81-82, 
85, 88, 90, 113, 120-121, 124, 126-127, 
129-131, 133, 137-139, 141, 172, 174, 
176, 177-178 

SBus controller signals 32 
SBus device 177 
SBus expansion card 177 
SBus ID 177 
SBus master 39 
Sel* 9, 36, 38, 96, 177 
semaphore 47, 170 
sequencing 45 
server 28 
setup time 6, 31, 33-34, 36, 81-82, 93, 119-120 
shielding 94 
shock and vibration 101, 110 
Signal determination 31 
signal names 9, 20, 32-36, 38-39, 43-45,52,56, 

58-59, 62-63, 76, 79, 90, 119-120, 124-
126, 129-138 

single-width 103 
Siz(O:O) 57, 96 
Siz(1 :0) 57, 96 
Size(2:0) 9, 17, 41, 43, 45, 56-57, 62, 96, 119-

120, 178 
Size 44 
slave 177 
slave cycle 15, 177 
slave select 37, 177 
SlaveSelect* (Sel*) 9, 17,20,29,36-37,41,43, 

46,62,74,119,121,177 
slot 177 
SMT 101 
software reset 34 
space shuttle 26 
SP ARCstation 1 13, 25, 27, 38, 43, 58, 71, 77, 

100 
split (disconnected) bus cycle 69, 71 
stand-off 111 

184 

Starting FORTH 118 
state, wait 83 
static current 91 
SunOS 57, 75, 80 
SunOS compatible 57, 80 
surface-mount 6, 8 
SWAP 50 
synchronizer 82 
synchronous 6, 72, 82 
system 

Index 

configuration 10-11, 21, 29, 75, 81 
host-based 10,15,17,19,36,41,46,56,121 

T 
temperature 87 
terminators, bus 63 
time 

fall 32, 92, 93 
hold 6,31,34,81-82,93, 119-120 
rise 32, 90, 92-93 
setup 6,31,33-34,36,81-82,93, 119-120 

timeout 21, 178 
tokenizer 117 
transaction 

atomic 39, 41, 47-51, 68-69, 79-80, 120, 
130,136 

transfer direction 178 
transfer size 178 
translation cycle 178 
transmission lines 90 
tristate 7, 32, 41,60, 178 
TTL 87, 91 
TTL compatible 91 
TTL voltage levels 178 

U 
unasserted 178 
UNIX 116 

SBU5 Specification B.O 



Index 

v 
VA mapping 20, 42, 128 
vector xi-xii, xvii-xviii, 116 
virtual address 36, 42 
VME 103, 111 
VOH (high state) 32, 175 
VOL (low state) 32, 175 
voltage spikes 88 

W 
wait state 83 
watch-dog timer 35 
word 178 
wrapping 178 
write-buffering 72 

SBus Specification B.O 185 



Index 

186 SBU5 Specification B.O 





sun 
microsystems 

Sun Microsystems, Inc. 
2550 Garcia Avenue 
Mountain View, CA 94043 
415960-1300 
FAX 415 969-9131 

Part Number: 800-5922-10 
Revision A of December 1990 


