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Preface 

This book describes the formal specifications of the protocols 
and the electrical and mechanical features of the SBus. 

This book contains five chapters, three appendices, and a 
glossary. 

Chapter 1, "Introduction," provides general information about 
the SBus specification. 

Chapter 2, "SBus Overview," explains the philosophy and 
principles upon which the SBus is based, and describes the basic 
SBus protocols. 

Chapter 3, "Protocol Design," describes the SBus protocols to 
transfer information across the SBus. 

Chapter 4, "Electrical and Mechanical Design," describes SBus 
profiles, and the electrical and mechanical specifications of the 
SBus. 

Chapter 5, "FCode Drivers for SBus Cards," describes the FCode 
programming language for writing SBus device PROMs. 

xv 



Changes from Version A.2 

Changes from 
Version A.2 

xvi 

Preface 

Appendix A, "Specification Compliance," describes how SBus 
slaves, masters, and systems may comply with the SBus 
specification. 

Appendix B, "SBus Extensions," describes extensions to the 
SBus that may be implemented in some systems, including the 
new 64:...bit SBus extension. 

Appendix C, "FCode Reference," describes FCodes currently 
supported by the Open Boot PROM, as well as new 2.0 FCodes. 

The glossary defines terms used in this book. 

The following SBus features are new with this revision of the 
SBus specification: 

o SBus ExtendedTransfer protocols to perform 64-bit per 
clock cycle transfers. 

This new information appears in Appendix B. 

o SBus Profiles which define a minimum SBus card/ 
controller feature set to guarantee plug compatibility 
between SBus cards and hosts. 

This new information appears in Chapter 4. 

The following changes are also new with this revision of the 
SBus specification: 

o Atomic restrictions in Chapter 3. 

o DC changes in Chapter 4. 

o VME/Futurebus mechanical drawings in Chapter 4. 

o New 2.0 FCodes in Appendix C. 
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Conventions 

SBus Name 

Signal Names 

Conventions 

This book uses the following conventions: 

The name SBus is always written as SBus, not as sbus, Sbus, 
S-Bus, etc. 

Signal names are indicated with Helvetica font. At the first 
mention of a signal in a chapter or appendix, the full signal 
name appears with its abbreviation in parentheses. After its 
first mention, the signal is referred to by its abbreviation. 
For example: 

At first mention, Request* (BR*). Thereafter, BR*. 

Signal Vector A signal name followed by a range in parenthesis, for example 
D(31 :0), represents a vector of logically related signals. The first 
number in the range indicates the most significant bit. 

Asterisk An asterisk is appended to a signal name, for example Ack(2:0)*, 
to indicate that the signal is asserted in the low state, and 
unasserted in the high state. 

Words Used with Care Care has been taken in the use of the words must, may, only, 
might, can, could, should, and driven. 

must only, may only The phrase" An SBus device (master, slave, controller, 
system ... ) must (may only) ... " means the function is required of 
all SBus devices and that failure to implement the function as 
described will likely cause failure or malfunction of the SBus 
device and pOSSibly the entire system. 
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should 

driven 

Signal 

xviii 

t 
Driven, 
but don't 
care 

t 

Preface 

The phrase "An SBus device (master, slave, controller, system ... ) 
should ... " means that a designer need not implement the 
function, but that implementing the function is recommended 
because the function is valuable. Design and market trade-offs 
should be weighed carefully before any decision is made to 
omit the recommended function. A device that does not 
implement a recommended feature will work in any SBus 
system, but in some cases the device's ability to operate with 
other SBus devices may be limited. 

The term driven means that an output driver is sourcing or 
sinking current. Driven low means that an output is driving the 
signal to 0 volts. Driven high means that an output is driving the 
signal to 5 volts. If a vector of signals is shown as driven (but not 
specifically as high or low), each signal in the vector is stable 
and in its appropriate state. In the specific case of Ack(2:0)*, 
however, the driven convention indicates that at least one of the 
three signals in this vector is driven low - that is, Ack(2:0)* is 
asserted. 

Figure P-l. Timing Diagram Conventions 

Driven 

t 
Driven high Un driven, but t pulled high 

~-------..~ 

l' l' 
Un driven, 
but don't 
care 

Undriven, but 
pulled low 

Driven or 
undriven, 
but don't care 
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Clock Edge The term clock edge means the rising edge (the transition from 0 
volts to 5 volts) of the Clock signal. 

Special Notes Many parts of the specification contain three special notes, 
called a profile recommendation, recommendation, and observation. 
The information in these notes is interpreted according to the 
following definitions. 

Profile Recommendation Implementing features and functions described in a profile 
recommendation results in a device or system that is in 
compliance with the SBus Profile recommendations. This 
ensures compatibility with other systems or devices that are 
also compliant with the SBus specification. 

Recommendation Implementing features and functions described in a 
recommendation results in an SBus device or system that is 
higher in performance, operates better, or is more robust. 
SBus designers should omit these features only after careful 
consideration of the design trade-offs. Nevertheless, such 
omissions will not prevent the SBus device or system from 
working properly. 

Observation The information in an observation provides additional 
information about the operation of the SBus, constructing SBus 
devices and systems, and other related topics. 
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1 

Introduction 

The computer bus described in this book is a high-performance 
system and I/O interconnect for use in today's highly
integrated computers. The SBus addresses the issues of high
performance, low-power, high-integration, and small 
mechanical form factor. Unlike previous workstation buses, the 
SBus is not designed for use as a backplane bus. 

TypicalSBus systems consist of a motherboard (containing the 
central processor and SBus interface logic), a number of SBus 
devices on the motherboard itself, and a modest number of SBus 
expansion connectors. 

A principal reason for this revision of the SBus specification is 
the definition of an Extended Transfer protocol to transfer 64 
bits of data each clock cycle. SBus Extended Transfers work 
only in systems and cards designed to support them. 

However, a 32-bit SBus expansion card that completely ignores 
the ExtendedTransfers will work equally well in existing 32-bit 
only SBus systems, as well as in future systems with 64-bit 
masters and slaves: 32-bit SBus masters can transfer data to and 
from 64-bit SBus slaves; 64-bit SBus masters can transfer data to 
and from 32-bit SBus slaves. 

1 



Scope 

Scope 

2 

Chapter 1: Introduction 

This book describes the logical, electrical, physical, and 
programming interfaces for integrated circuits, boards, and 
systems. Boards and systems designed according to the 
specifications in this book can operate in a variety of SBus 
environments. 

The SBus is designed for use as a chip-level interconnect 
between components in microprocessor-based systems. The 
bus is designed to span only a small physical distance; it is not 
designed for use as a general-purpose backplane interconnect, 
although such use might be possible. 

The bus is optimized for use in systems employing CMOS 
components. Slave interfaces to the bus can be implemented 
using a small number of buffers and programmable logic 
devices. 

The SBus offers the following features to bus designers: 

D Up to a 64-bit data path. 

D A 32-bit virtual address for masters. 

D A 2S-bit physical address per slave. 

D No jumpers (geographical device selection). 

D A 16.67 to 25 MHz master bus clock. 

D Completely synchronous operation (except for interrupts). 

D Up to eight masters. 

o Data transfers of 1, 2, 4, S, 16,32, and 64 bytes. 

o Error and rerun protocols. 

o Compatible with CMOS components. 

SBus Specification B.O 
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SBus Objectives 

SBus Specification B.O 

~vus uUJecrzves 

o Machine-independent code for autoconfiguration and boot 
devices. 

o Implementations can have low transfer latency. 

o Seven shared interrupt lines. 

The design objectives of the SBus are: 

o High performance. 

o Lowcost. 

o Low power dissipation. 

o Small form factor suitable for use in desktop computers. 

o Ease of use by designers and users. 

3 



SBus Objectives Chapter 1: Introduction 

4 SBus Specification B.O 



SBus Specification B.O 

2 

SBus Overview 

This chapter provides an overview of the SBus. The overview 
is neither a specification nor definitive. Its purpose is to 
introduce the following concepts that support the SBus 
specification in the remainder of this book: 

o SBus system organization. 

o SBus design philosophy and principles. 

o SBus signals. 

o SBus basic bus cycle. 

Like most computer buses, the SBus can be used in a variety of 
configurations. The differences between these configurations 
are minor in most respects. In fact, an SBus slave or DVMA 
master, in general, never needs to know the kind of system in 
which it resides. In all configurations, there are some 
centralized SBus functions that must be implemented by an 
SBus controller. 

5 



Dominant Technologies 

Dominant 
Technologies 

Protocol Concerns 

Chapter 2: SBus Overview 

The SBus is optimized; for the technolOgies expected to 
dominate in the late 1980s and early 1990s: CMOS and surface
mount. The SBus is designed for use as a chip-level bus, 
between components such as processors and memory. It can 
also be used as a motherboard I/O expansion bus in 
configurations where it is possible to control wiring distances, 
clock skew, noise, and capacitance. 

The design of the SBus protocols is based on three principles: 

o Synchronous operation. 

o Active drive. 

o No driver overlap. 

Synchronous Operation The SBus controller is responsible for generating a fixed
frequency Clock (Clk) in the range of 16.67 MHz to 25 MHz. 

-1 0 

Clk 

Signal I"" Sample points + 

All signals are sampled on the rising edge of this Clk. Signals 
must be driven so that they meet the SBus setup time and hold 
time requirements subject to the allowable Clk skew. SBus 
interrupts are allowed to be asynchronous. It is the 
responsibility of the controller to synchronize them to the 
appropriate Clk. 

Figure 2-1. Synchronous Operation 

1 2 4 7 

! / 
t t t 
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Active Drive 

Clk 

Shared 
Signal 

-1 o 

A tristate control signal, which has been asserted, is actively 
driven to its unasserted state before the source removes its 
drive. Adhering to this principle facilitates the operation of the 
bus at speeds up to 25 MHz, without the need for low-resistance 
pullup resistors and output drivers capable of sinking the 
resulting static current. 

Figure 2-2. Active Drive 

1 2 3 4 

~:---
Assert Unassert Remove Drive 

No Driver Overlap No signal (except open-drain interrupts) is driven.by two 
outputs during the same clock cycle. Adhering to this principle 
guarantees that output drivers never fight, since this can result 
in unreliable operation and excessive power dissipation. 

-1 o 
Clk 

The alternative of using open-drain outputs is not compatible 
with low-power, high-performance CMOS. 

Figure 2-3. No Driver Overlap 

1 4 

i 

Shared 
Signal :----+---,! >-+<'----+---

i t ~1' 

First driver Second driver 
turns off turns on 
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Electrical Concerns From an electrical and performance perspective, the setup, 
hold, and delay requirements of the SBus are compatible with 
many CMOS logic families and CMOS gate arrays. Circuit 
modeling and lab measurements should be performed to 
determine the compatibility and appropriateness of use for a 
given CMOS logic family. 

Total Bus Capacitance The SBus limits the total bus capacitance to 160pF for systems 
running at speeds up to and including 20 MHz, and 100pF for 
systems running above 20 MHz. SBus expansion cards may not 
add more than 20pF per signal. 

Static Power Dissipation The SBus avoids static power dissipation. Input and output 
circuitry must have minimal leakage current. 

Mechanical Concerns The SBus is designed as a board level expansion bus for use in 
desktop systems and other environments where space is 
limited. From a mechanical and packaging perspective, the 
availability of 100- to 200-pin surface-mount quad plastic flat 
packages provides substantial capability to be implemented in 
a single chip that is both small and inexpensive. 

8 SBu5 Specification B.O 



Chapter 2: SBus Overview SBus Signals 

SBus Signals 

Name 

PhysAddr(27:0) 
SlaveSelect* 
Data(31 :0) 
Size(2:0) 
Read 

Clock 
Add ressStrobe * 
Ack(2:0)* 
LateError* 
Request* 
Grant* 
Reset* 

IntReq(7:1 )* 

DataParity 

Ground (7 pins) 
+5V (5 pins) 
+12V 
-12V 

SBus Specification B.O 

The SBus uses 82 signals for information transfer and control. 
If used with an expansion connector, 14 power and ground 
connections are added, for a total of 96 pins. The following 
figure summarizes these Signals. The I/O column is from the 
perspective of a slave. 

The abbreviations for signal names are for use in schematics 
and data sheets. 

Note: During ExtendedTransfers, some of the Extended 
Transfer Information signals are multiplexed to serve 
additional functions: PA(27:0) is used for Oata(59:32)i Size(2:0) is 
used for Data(62:60); and Read is used for D(63). For more 
information, see Appendix B. 

Figure 2-4. S Bus Signals 

Abbreviation 1/0 Description Driven By 

PA(27:0) I Physical Address Controller 
Sel* I Slave Select (1 per slave) Controller 
0(31 :0) I/O Data Masters /Slaves 
Siz(2:0) I/O Transfer Size Masters 
Rd I/O Transfer Direction Masters 

Clk I SBus Clock Controller 
AS* I Address Strobe Controller 
Ack(2:0)* I/O Transfer Acknowledgment Slaves/Controller 
LErr* I/O Late Data Error Slaves 
BR* a Bus Request (1 per master) Masters 
BG* I Bus Grant (1 per master) Controller 
Reset* I Reset Controller 

IntReq(7:1 )* a Interrupt Request (open drain) Slaves 

OtaPar I/O Data Parity (optional) Masters /Slaves 

Gnd PG Ground Controller 
+5V PG Power (2 A per slot) Controller 
+12V PG Power (30 rnA per slot) Controller 
-12V PG Power (30 rnA per slot) Controller 

9 
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SBus 
Configurations 

10 

Chapter 2: SBus Overview 

Like most system interconnects, the SBus can be used in a 
number of configurations. The first design of the SBus was 
based on the notion that the CPU is a special participant on the 
SBus in that it uses a special path through the SBus controller to 
access the bus. This configuration is called a host-based SBus. 

Nominally, SBus masters use the translation hardware in the 
SBus controller to translate the virtual address which the master 
has placed on the data lines into a physical address that the 
SBus controller places on the address lines. The controller then 
starts a slave cycle by asserting AddressStrobe* (AS*). What 
makes host-based systems special is that a translation cycle 
never takes place on the SBus, because of the special path of the 
CPU. It is assumed that the CPU has a private address 
translation facility (at least, logically). 

Any SBus master may communicate with any other slave on the 
bus, regardless of system configuration. No limitations restrict 
an SBus master to DVMA operations into and out of system 
memory alone. A master may perform DVMA operations 
between itself and a slave in another slot, or even a slave in the 
same slot (most SBus masters also have slave capabilities). 

If multiple, independent SBuses are attached to anyone system 
in parallel to increase connectivity or available bandwidth, 
communication between a master in one SBus and a slave in 
another SBus depends on the system; it mayor may not be 
supported, at the discretion of the system designer. 

Note: The following information applies primarily to 32-bit per 
clock cycle transfers. For information about 64-bit per clock 
cycle transfers, see Appendix B. 
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SBus Configurations 

A host-based SBus is one in which the CPU (for example, a 
SP ARC IU, SPARC FPU, cache, and MMU) uses the SBus as its 
principal memory and I/O bus. In most high-performance 
systems, the processor is connected to the SBus via a cache and 
memory management unit. Depending on exact 
implementation details, the system bus interface in the cache 
and MMU may be the SBus interface. 

The following figure shows the logical interconnections in a 
host-based SBus system. The system shown in the figure is 
representative of a typical system. Many other configurations 
of SBus systems are possible. 

This configuration is the one for which the SBus was originally 
designed. Because the processor core incorporates the SBus 
controller, at times the processor appears to be a special SBus 
participant. The only reason an SBus cycle is divided into a 
translation cycle and a slave cycle is that, in a host-based 
configuration, the processor does not use the SBus controller's 
translation mechanism to translate virtual to physical 
addresses. 

Instead, the processor uses a direct path to the MMU for this 
purpose. One reason for implementing systems in this way is 
that the MMU may want to provide special services to the 
processor, such as a larger virtual address space and the ability 
to handle page faults. 

11 
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Chapter 2: SBus Overview 

Figure 2-5. Example of Host-based SBus System 

SBus 

Cntrl 

MMU 

SBus 

The CPU and the SBus controller can share the MMU or use 
independent MMUs. Additional details about this subject 
appear in "Direct Virtual Memory Access" later in this chapter. 
The choice of which of these two alternatives to use is an 
implementation detail, and not fundamental to the operation of 
the bus. 

In some very high performance systems it may be desirable for 
the SBus to be used only as a high-performance I/O interface, 
and not as the CPU's channel to main memory. This 
configuration may be useful in systems that embody memory 
buses which are wider than 32 bits. In this case, a processor bus 
to SBus interface must support either bidirectional transfers, or 
the SBus must have local memory for DVMA devices. 
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S Bus Configurations 

Ultimately, it is possible to have SBus systems in which each 
SBus consists electrically of a single SBus device that is 
connected via an interface IC to some other bus, such as the 
system memory bus. Such a configuration may allow multiple 
SBus devices to be accessed in parallel, since each device is on 
its own SBus. This architecture allows systems to be built in 
which the aggregate system I/O bandwidth is higher than that 
provided by a single SBus. 

Such configurations may place limitations on communication 
between SBus devices on different SBuses, and thus be designed 
principally for transfers between the CPU and SBus slaves, or 
transfers between SBus masters and system memory, or both. 

As explained in "Latency and Peformance" later in this chapter, 
different SBus configurations may have fairly different 
expected latency. As a rule-of-thumb, low-end systems which 
use the SBus as the system memory bus (for example, a Sun 
SP ARC station 1) have lower latency access to system memory 
than larger systems in which a DVMA access to main memory 
may result in the traversal of an interface to some other bus. 

An advantage of low-latency systems is that they allow I/O 
devices to be built with a modest amount of local buffering, 
thereby reducing the cost of these devices. 

13 



SBus Configurations 

Symmetric SBus 
Systems 

14 

Chapter 2: SBus Overview 

As the following figure shows, the host CPU does not have a 
special path to the SBus in symmetric configurations; it is 
identical to every other master on the bus. In this case, the SBus 
controller performs address translation for CPU accesses to the 
SBus. 

Nevertheless, nothing prevents the CPU from having private 
memory and its own MMU for translating virtual addresses 
when it accesses that memory. This latter configuration is very 
much like the host-based configuration in which the SBus is 
used only for I/O expansion. (Of course, in this configuration, 
the MMU must be reset so that the CPU is able to load the MMU 
over the SBus). 

Figure 2-6. Example of Symmetric SBus System 

SBus Cntrl 

MMU 

SBus 
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Basic S Bus Cycle 

In some SBus environments, it may be desirable or necessary to 
have more SBus slots than provided by the base system. In 
these cases, an SBus bridge can be built to extend the SBus 
electrically, providing additional SBus slots. 

Nominally, the SBus bridge is functionally transparent to SBus 
devices. However, in the case where the bridge is designed to 
plug into an existing SBus slot, a degradation in performance is 
likely for those devices in the extended SBus environment. 

A complete SBus DVMA cycle consists of two major phases: 
a translation cycle which places a physical address on the bus, 
and a slave cycle which transfers data between the master and 
slave (except in the case of an error). However, when a CPU 
master uses the SBus in host-based systems, no translation cycle 
occurs on the bus; only a slave cycle occurs. 

The following figure shows the sequence of events during a 
typical bus cycle. The timing shown is for the fastest transfer 
possible. If the transfer is to a slave which cannot respond this 
quickly, the slave extends the bus cycle by not generating a Data 
Acknowledgment until it is ready (subject to timeout). 
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Figure 2-7. Basic SBus Cycle 
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Basic SBus Cycle 

A translation cycle begins when the SBus controller, after 
detecting that some master has asserted its Request* (BR*), 
decides to grant bus access to that master. At this time: 

o The SBus controller asserts Grant* (8G*) for that master. 

o The selected master, on the following clock edge, samples 
8G* as asserted and must immediately place a virtual 
address onto Data(31 :0) (D(31 :0» for exactly one clock cycle. 

The master must also drive Size(2 :0) (Siz(2 :0» and Read (Rd) 
to their appropriate values. 

o The SBus controller samples this virtual address on the 
following clock edge. 

If the master is writing to the slave, the master must drive 
D(31 :0) at this time. 

o The SBus controller may then take an arbitrary number of 
clock cycles to translate the address. 

When the SBus controller places a physical address onto the 
PhysAddr(27:0) (PA(27:0» and asserts AS*, the translation 
cycle ends and the slave cycle begins. 

At the beginning of a slave cycle, the bus controller: 

o Asserts AS*. 

o Drives a physical address onto PA(27:0). 

o Asserts SlaveSelect* (Sel*) for the designated slave. 

If a CPU master in a host-based system caused the bus cycle, 
the CPU master also drives Rd, Siz(2:0), and D(31 :0) (if . 
performing a write) at this time. For a DVMA master, these 
signals are driven during the translation cycle. 
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The selected slave then has up to 255 clock cycles to perform the 
requested transfer and issue a non-idle acknowledgment on 
Ack(2:0)*. In the case of a burst transfer, the slave generates 
multiple acknowledgments, even though AS* remains asserted 
for the entire transfer. For single word transfers, the slave then 
drives Ack(2:0)* back to the idle (unasserted) state for one clock 
cycle and, in the following clock cycle, removes its drive. The 
slave may assert LateError* (LErr*) for exactly one clock cycle, 
exactly two clock cycles after Ack(2:0)* is asserted. 

In the case of burst transfers, a slave capable of transferring a 
word per clock cycle keeps Ack(2:0)* asserted for each clock 
cycle as a word is transferred. During write operations, the 
slave is acknowledging data on the data lines during the clock 
cycle it is asserting Ack(2:0)*. Thus, the slave samples the data at 
the same time the master samples the acknowledgment for that 
data. For read operations, the acknowledgment is pipelined. 
Thus, the slave first generates the acknowledgment and, during 
the following clock cycle, drives the data lines. 

Slaves requiring more time must drive Ack(2:0)* back to the idle 
state during the intervening time. In all cases, after the final 
Data Acknowledgment, the slave must drive Ack(2:0)* back to 
the idle state for exactly one clock cycle, and then remove its 
drive. There are 255 clock cycles available to transfer data 
during a burst transfer, not 255 clock cycles per word. 
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SBus Controller 

Central to every SBus system is an SBus controller. Unlike some 
buses in which each master contains all of the logic necessary to 
perform a bus cycle, the SBus controller is responsible for 
initiating each bus cycle. The controller does not have to be a 
physically distinct object, but may appear as part of the CPU's 
interface to the system. The SBus controller is responsible for 
the functions described in the following sections. 

The SBus system clock is a constant frequency signal to which 
all events on the SBus are synchronized. In many SBus systems, 
particularly host-based systems, the SBus clock is derived from 
an integral sub-multiple of the processor's clock to synchronize 
the SBus and processor. For this reason, a designer of an SBus 
system is allowed to select a system clock ranging from 16.67 
MHz to 25 MHz. For example, a 40 MHz CPU will probably 
operate the SBus at 20 MHz. 

Each SBus system is required to support one or more masters. 
It is the function of the SBus controller to arbitrate between 
masters for access to the bus. In order to meet the latency 
expectations (discussed in greater detail in later sections) of 
many masters, controllers must implement some form of fair 
arbitration. When access to the bus is granted to a master, the 
SBus controller is responsible for monitoring the transfer, in 
order that it can remove 8G* at the appropriate time. 
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By design, SBus masters use virtual addressing. When a master 
acquires the bus, it places a 32-bit virtual address on the data 
lines D(31 :0). The SBus controller is responsible for translating 
the virtual address into a physical address by driving the 
corresponding physical address on the physical address lines 
PA(27:0). 

The SBus controller, as well as the system in general, have 
substantial flexibility in how they perform this translation and 
handle translation misses and errors. All controllers, however, 
should provide support for separate translation for blocks of 
addresses less than or equal to 64 Kbytes. 

This enables designers of SBus cards to group registers in 
separate 64 Kbyte pages to protect them through the VA to PA 
mappings. This does not prohibit support for larger page sizes, 
but requires that support for the smaller page size be provided 
as well. 

The SBus is a geographically-addressed bus. This means that 
each SBus slave receives a unique unary encoded address 
signal, called Sel*. If asserted, this signal indicates that, if and 
after a bus cycle is initiated, the given slave is addressed. It is 
the responsibility of the SBus controller to drive the Sel* 
appropriate to the translation of the virtual address presented 
by the master. 

The SBus controller initiates a slave cycle by asserting address 
strobe. Thus, AS*, not Sel*, indicates that a slave cycle is in 
progress. 
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SBus Controller 

By definition, a master (in a properly functioning SBus) which 
initiates a bus cycle is guaranteed to receive a non-idle 
acknowledgment before AS* is unasserted. Thus, a properly 
designed slave must terminate the bus cycle after it has been 
selected. However, if an SBus device is selected but no physical 
device is present, the SBus controller terminates the blJ.s cycle by 
generating an Error Acknowledgment. This case is the only one 
in which timeouts should occur. Hence, in most systems, 
timeouts will occur only during system configuration. 

Profile recommendation: SBus devices that do not use Open 
Boot, or SBus devices installed in systems that do not 
implement Open Boot, should assert timeout themselves after 
512 clocks have elapsed following the assertion of AS*. 

Note: The 512 clock device timeout is not the same as the 256 
clock SBus controller timeout. The clock device timeout is set to 
512 clocks to allow for delays that may occur in some bus 
bridges. If an SBus device determines that the SBus controller 
will not be issuing a timeout and must therefore issue an Error 
Acknowledgment, the timeout generated by the SBus device 
must follow the 256 clocks, during which the SBus controller 
may also assert timeout. 

SBus cards that use and are installed in a host with Open Boot 
may optionally check to determine whether the host requires 
this type of behavior, and act accordingly. 

The SBus controller is also responsible for the following 
functions: 

o Generating Reset* (Reset*) on power-up. 

o Supplying power to SBus expansion slots. 
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Masters and Slaves All other SBus functions are the responsibility of the masters 
and slaves on the SBus. These functions include: 

22 

o Bus sizing. 

o Normal bus cycle termination. 

o Error detection (including optional parity error detection). 

The proper operation of the SBus depends on the proper 
operation of the masters and slaves on the bus. This is critical to 
the design of the SBus, since an improperly designed SBus 
device may cause a system to operate improperly, just as a 
properly designed (but malfunctioning) device may cause the 
system to operate improperly. 

Although the designer is occasionally tempted to make the 
controller responsible for coping with certain kinds of protocol 
violations, the SBus specification explicitly removes this 
responsibility from the controller by requiring that properly 
working masters and slaves not violate protocol. Protocol 
violations are one of thousands of ways a malfunction might 
become evident. 

Thus, it is unreasonable to devote special treatment to a few 
malfunctions that are as likely or unlikely to occur as the bulk of 
the malfunctions for which no special time outs or treatment is 
provided. 

SBus Specification 8.0 
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Direct Virtual Memory Access 

A principal objective in designing the SBus is to provide 
support for Direct Virtual Memory Access (DVMA). DVMA 
allows all masters (whether the host CPU or I/O devices) to use 
virtual addressing in performing bus cycles. The most 
important advantage of DVMA is that it simplifies operating 
system and software memory management. 

At the beginning of a bus cycle, a master places a virtual address 
on the bus, which the controller translates into a physical 
address and places on the bus. In the case of the SBus, the 
master places the virtual address on the data lines. The MMU 
may either be dedicated exclusively to the SBus controller, or 
shared between the CPU and the SBus controller (which the 
dotted boundary line represents in the figure showing a host
based SBus system earlier in this chapter). 

After the controller translates the virtual address into a physical 
address, it places the physical address on the address lines and 
begins a slave cycle. The SBus supports a 32-bit virtual address 
space. Whether each slot uses its own virtual address map or all 
SBus slots use a common map depends on the implementation. 

Among other capabilities, DVMA allows scatter/gather 
operations on a memory page by page basis. For example, a 
laser printer needing a megabyte of memory per printed page 
can specify the page as contiguous in virtual address space 
(even though the memory pages are not contiguous in physical 
address space) by setting up the MMU properly. 

One other potential benefit of using virtual addressing for I/O 
devices is that it may allow the use of demand paging during 
I/O. In some systems (for example, those with TLBs) it may be 
desirable to let the MMU walk page tables. Although this book 
does not define how such methods should be implemented, the 
definition of the translation cycle, together with Rerun 
Acknowledgments, make implementation of such methods 
possible. At the same time, other systems may choose to treat 
translation faults as an error, and abort the transfer. 
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Another principle objective in designing the SBus is to fulfill the 
need for high aggregate throughput and low-latency transfers. 
SBus performance is important because it is a critical part of 
overall system performance. The SBus is designed with this 
recognition in mind: a high perfonnance bus can reduce the 
cost of bus masters by allowing the masters to have a minimum 
of private buffer memory. To realize this capability, of course, 
a system built around the SBus must include high-performance 
system memory capable of satisfying the raw bandwidth 
requirements of the devices on the bus. 

Carefully implemented SBus systems should have no trouble 
keeping up with I/O devices, such as Ethernet or FDDI. 
Of course, since many of these systems will use the SBus as the 
CPU's memory bus, system and board designers must consider 
the impact of a master using a substantial fraction of the 
sustained bus bandwidth on CPU performance. SBus 
implementors should be aware that there are circumstances on 
desktop and especially server systems, where real-time 
response (latency), cannot be guaranteed. 

Raw SBus performance is provided by allowing the SBus clock 
to operate at frequencies up to 25 MHz. In view of the boards 
and systems built by many different manufacturers, 25 MHz 
provides a good balance between high performance and ease of 
system design and integration. 

Potentially, a slave can transfer a word per clock cycle. Thus, 
the peak data rate at 25 MHz is 100 MB per second. Regarding 
sustainable transfer rates, the SBus provides for burst transfers 
of up to 16 words (64 bytes), with the opportunity for the slave 
to transfer one word per clock cycle. 
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Latency and Performance 

In the case of a host-based SBus - where a CPU master can 
overlap address translation with earlier bus cycles - as few as 
two clock cycles of overhead are possible, thereby providing a 
burst transfer rate of 64 bytes every 18 clock cycles or 88 MB per 
second. In practice, memory subsystem overhead may make it 
difficult to sustain this transfer rate. 

DVMA masters will incur at least two additional clock cycles of 
overhead for the translation cycle, resulting in a minimum of 20 
clock cycles to transfer 64 bytes, or 80 MB per second at 25 MHz. 
Again, the inability of a memory system to provide data at this 
rate and the inability of the MMU to translate an address in a 
single clock cycle would result in reduced performance. 

For example, the Sun SP ARCstation 1 implements a 20 MHz 
SBus and has burst transfers of 16 bytes only. As a result of the 
implementation of the SBus controller and system memory, a 16 
byte burst transfer by the CPU takes 11 clock cycles, and has a 
burst transfer rate of approximately 29 MB per second. 
DVMA masters require two additional clock cycles for address 
translation, and thus have a burst transfer rate of about 25 MB 
per second. 

Note: The foregoing information applies primarily to 32-bit per 
clock cycle transfers. For information about 64-bit per clock 
cycle transfers, see Appendix B. 
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Latency is another important parameter affecting performance. 
Depending on the type of device connecter! to the SBus, 
designers must consider expected latency, as well as worst case 
latency. The former applies to devices requiring sustained 
throughput, but which can tolerate an occasional underrun or 
overrun (network interfaces and fast disks are typical 
examples). The latter applies to devices which may malfunction 
if they underrun or overrun, such as real-time data capture 
devices or space shuttles. 

Latency is a function of the following factors: 

D The number of masters. 

D The arbitration method. 

D The time it takes to translate a virtual address - that is, 
length of a translation cycle. 

D The time it takes for the addressed slave to complete the 
transfer - that is, the length of the particular slave cycle. 

The SBus has a limit of 8 masters, requires fair arbitration, and 
slaves must respond within 255 clock cycles. The length of a 
translation cycle is the only parameter not bounded by 
definition. 

Even ignoring the time it takes to translate an address, a DVMA 
master that wants to work under all latency assumptions needs 
to cope with a potential request to request latency of 
approximately 8*256 clock cycles, or about 120 /lS at 16.67 MHz. 
Worst case translation cycles in some high-end systems may be 
as bad as (or even worse than) 10 /lS, which would result in a 
worst case latency of 200 /lS or more. Thus, a master requiring 
a guaranteed response time may need a substantial amount of 
private buffering. 
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Latency and Performance 

Expected latency in SBus systems which have high
performance memory on the SBus (for example, the Sun 
SP ARC station 1) may be one to two orders of magnitude better. 
In these systems, a DVMA access to memory will likely require: 

D Two to three clock cycles for the translation cycle. 

D One to two clock cycles per word of data. 

D Two clock cycles of overhead. 

If 8 masters are all performing 64 byte (16 word) burst transfers, 
a master might incur approximately 300 clock cycles 
(8*(3+32+2» or approximately 18 J.LS of latency between the start 
of successive transfers. Because it is unlikely that all 8 masters 
are requesting use of the bus, expected latency will generally be 
significantly less. 

Note: Worst case latency numbers are based on 8 masters, and 
reflect the worse case delay from the start of a particular 
master's transaction to the start of the same master's following 
transaction. In many machines, there will be fewer than 8 
masters (The Sun SP ARCstation 1 has a maximum of 4, 
including the CPU), and thus the worst case latency in a 
particular system may be substantially lower than these figures. 
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Designing a DVMA master requires careful consideration of the 
performance requirements of the device, as the considerations 
in this section make clear. It is not possible to offer a firm 
recommendation about how much buffering the master should 
include, though some guidelines can be provided. For typical 
low-end systems (for example, desktop systems), a master 
should be able to tolerate around 5 /JS of latency. 

Thus, a master which needs to sustain a 5 MB per second 
transfer rate should have at least 32 bytes of buffer, and use 
burst transfers whenever possible. For high-end systems (for 
example, servers), masters may need to tolerate latency several 
times this figure. 
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One final objective in designing the SBus is to make system 
configuration and the installation of new SBus devices as trivial 
as possible. Because each SBus slave device has its own private 
Sel*, the slave does not need to know its own address in system 
physical address space. As a result, no address jumpers are 
required. 

Each SBus device is also self-identifying. Beginning at 
location 0 of each SBus slave's address space is a string of bytes 
which describes the device. Nominally, these bytes are a special 
header followed by ASCII text which includes such information 
as the name of the card's manufacturer and the model number. 

In more complex cases, the bytes following the header can 
consist of an executable byte-coded program that configures the 
card at system power-up, and provides information to the 
operating system about the type of the device, as well as which 
device driver to load. For such devices as disk drive interfaces, 
network interfaces and frame buffers, if this program is written 
to adhere to the boot-time programming interface, the system 
can boot from the device or display boot-time information 
before the operating system and its drivers are loaded. 

As explained in Chapter 5, the byte-coded instruction set used 
with the SBus is an extended version of the FORTH 
programming language. There is nothing magical about using 
FORTH for this application. The language already exists, has 
reasonably machine-independent semantics, and is easily 
interpreted. 

To take advantage of these capabilities, the host CPU must have 
a FORTH interpreter in its own boot ROM. Some system 
designers may also wish to provide a user interface to the 
interpreter for use in system debugging. The nature of such a 
user interface is beyond the scope of this document. 
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ExtendedTransfers A new addition to the SBus specification is a protocol for 
transferring 64-bits of data each clock cycle. Systems and SBus 
devices that implement the Extended Transfers are fully 
backwards compatible with 32-bit SBus systems and devices. 
Conversely, current 32-bit systems and devices are fully 
forwards compatible with the new Extended Transfer protocols. 

30 

SBus Extended Transfers provide substantially greater system 
performance by doubling the peak system bandwidth from 100 
MB to 200 MB per second, and increasing the sustainable 
bandwidth for 64 byte transfers from 80 MB per second to 133 
MB per second at 25 MHz. The maximum sustainable 
performance using a 128 byte ExtendedTransfer at 25 MHz is 
160 MB per second, or twice what is available using 32-bit 
transfers. 

The following chapters describe the specifications for the 
protocol, electrical, mechanical, and programmatic operation of 
SBus slaves, masters, and controllers in detail. 
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Protocol Design 

This chapter describes the specifications for the SBus protocols 
used to transfer information across the SBus. Devices and 
systems can conform to this specification without 
implementing all features of the protocols. Devices must be 
designed to work even if the optional features of the protocol 
are not implemented by other parts of the system. 

The protocols described in this chapter apply primarily to 32-bit 
data transfers. Although the function of many signals is the 
same for 32- and 64-bit transfers, there are sequencing 
differences between the signals. For information about the 
ExtendedTransfer protocol, see Appendix B. 

All SBus signals - except shared interrupt lines - must be 
driven so that they meet the SBus setup time requirement of 15 
ns with respect to the SBus clock. They must also be driven so 
that they meet the SBus hold time requirement of 2.5 ns with 
respect to the SBus clock. The setup and hold time 
requirements must be met at all allowable frequencies of the 
SBus clock. 
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Chapter 3: Protocol Design 

Signal names ending with an asterisk are asserted by driving 
them to VOL (known as the low state), and unasserted by 

driving them to V OH' (known as the high state). All other SBus 

signals are asserted by driving them to the logic 1 state and 
unasserted by driving them to the logic 0 state. 

With the exception of the shared interrupt signals, an SBus 
device must not drive a signal during any clock cycle in which 
the signal is driven by another device. This restriction includes 
those clock cycles during which the other device's output 
drivers are turning off (becoming tristated). 

Certain shared signals must be driven to their inactive 
(unasserted) state before being tristated, as described in what 
follows. 

Every SBus must contain logic which controls the overall 
operation of the bus. This logic is called the SBus controller. 

Every SBus must have a free-running oscillating signal, called 
Clock (Clk), which provides a master clock reference for all SBus 
devices. For any given SBus system, the clock frequency must 
be fixed within the range of 16.67 MHz to 25 MHz. Every SBus 
expansion device must be fully functional throughout this 
range of clock frequencies. 

The physical and electrical design of the SBus must restrict the 
total clock skew between any two clock inputs to no more than 
2.5 ns. The SBus clock must have rise and fall times not 
exceeding 3 ns into 160pF. For more timing information, see 
Chapter 4. 

SBus devices must sample bus signals only on the rising edge of 
Clk (hereafter referred to as the clock edge). 
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SBus Controller Signals 

Recommendation: Since the SBus elk may vary in frequency 
from system to system, designers should not use elk as a known 
frequency source. Doing so may restrict the systems in which 
the device can be used - that is, if a device needs a clock that 
always runs at 10 MHz, the device should have its own 10 MHz 
oscillator. It should not divide the SBus elk. 

Observation: Using the falling edge of elk to sample signals is 
dangerous: do not use the signal for this purpose. 

Some SBus devices may be able to change the number of clock 
cycles required to perform various activities, such as memory 
reads and writes, as a function of the SBus elk frequency. 
These devices can use FCodes to determine the frequency of the 
elk signal in the current system, and initialize themselves 
accordingly. For more information about FCodes, see 
Chapter 5. 

Although sampling must be done only with the rising edge of 
elk, SBus devices may take advantage of the SBus setup time 
(15ns) by placing some amount of combinatorial logic either 
before the sampling register or after a flow-through latch. 

There is no restriction on which edge of elk a device may use to 
drive output signals. However, at 25 MHz, meeting the setup 
time into a 100 pF load makes it difficult to begin driving the 
signal at the trailing edge of elk. Also note that the elk duty 
cycle is not guaranteed to be symmetrical. 
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Every SBus must have a signal called Reset* (Reset*) which 
properly initializes all SBus devices after power-up. The SBus 
controller must assert Reset* after power-up. The SBus 
controller may be designed to allow Reset* to be asserted at 
other times by software or a push-button. 

In all cases, Reset* must be asserted for at least 512 clock cycles 
before being unasserted. In the case of system power-up, power 
must be stable before these 512 clock cycles begin. The leading 
edge of Reset* mayor may not meet setup times with respect to 
elk. The trailing edge of Reset* must meet setup and hold times 
with respect to elk. The SBus controller may keep Reset* 
asserted for more than 512 clock cycles. 

After detecting the assertion of Reset*, an SBus device must 
perform whatever internal operations are required to initialize 
itself. While Reset* is asserted, an SBus device must not assert 
any bus signal. When Reset* becomes unasserted, masters may 
assert Request*, and slaves may assert IntReq(7:1)* (lntReq(7:1 )*). 

Because Reset* may be generated as a result of a software reset, 
an SBus device must not rely on internal power-OK detection 
alone to perform initialization. 

Figure 3-1. Example of Reset* Timing 
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Recommendation: Designers of SBus controllers should 
provide a software reset mechanism. In most systems, it is 
desirable to provide an input to the SBus controller that 
connects either directly to the power supply's power OK signal 
or to some other hard ware reset signal generated by another 
part of the system. 

SBus controllers should assert Reset* as soon as possible after 
power is applied to the system. 

Observation: The SBus does not provide a direct method for 
arbitrary SBus devices to reset a system. In many systems, 
software may force a reset via the SBus controller after certain 
internal error conditions, such as watch-dog timer interrupts. 
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Every SBus controller must have: 

o 28 physical address lines, called PhysAddr(27:0) (PA(27:0). 

o One or more decoded address lines, called SlaveSelect* 
(Sel*). 

o A signal called AddressStrobe* (AS*). 

These signals must be driven by the SBus controller only. 

Note: During ExtendedTransfers, PA(27:0) is also used for 
D(59:32). 

The SBus controller is responsible for driving PA(27:0) and Sel*, 
given either a virtual address from a DVMA master or, in host
based systems, a physical address from the CPU master. 
The SBus controller must generate a separate Sel* for each slave 
on the SBus. The decoding of physical addresses to generate 
slave select depends on the system. 

'-

PA(27:0) and every Sel* must be driven to a valid state by the 
SBus controller no later than the clock cycle during which AS* is 
asserted. PA(27:0) and Sel* must remain stable until the clock 
cycle after AS* becomes unasserted. Sel* mayor may not remain 
asserted for additional clocks; its behavior is not guaranteed 
except where qualified by AS*. Thus, slaves must qualify Sel* 
with AS* to determine whether a transfer is in progress. 

A slave must not rely on Sel* alone, and controllers are under no 
obligation to keep Sel* (Read (Rd), PA(27:0) stable, except when 
AS* is stable. Sel* must be stable from a setup time before the 
clock edge following the assertion of AS* until the clock cycle 
following AS* being unasserted. 

In all cases, the controller must keep AS* asserted at least until 
the clock cycle following the final Data Acknowledgment for 
the transfer, a rerun, or Error Acknowledgment. After one of 
these acknowledgments, the controller must unassert AS* for at 
least one clock cycle. 
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After a slave has been selected - that is, AS* and the slave's Sel* 
are asserted - the slave must generate an acknowledgment to 
terminate the bus cycle within 255 clock cycles. If the physical 
address presented to the slave is inappropriate, the slave must 
generate an Error Acknowledgment. Although most 
controllers unassert AS* during the clock cycle following the 
final acknowledgment, slaves must not make this assumption. 
Thus, a slave must check for AS* becoming unasserted to 
delineate successive bus cycles. 

The following figure shows the general relationship among 
these Signals. 

In general, all accesses addressed to a particular SBus slot 
generate a slave select for that slot. The only exception to this 
rule is a write to address 0 within a slot's address space. 
These writes are reserved for bus expansion hard ware (bridge 
hardware) which may not be visible within the address space of 
the slot that accommodates the bridge. Bridge hard ware may 
intercept these writes to update their own state or to send 
DVMA information to a known location. The slave is not 
required to decode this location specially. It should handle any 
writes that it receives. 

To allow for multiple bridges, the upper byte of data is defined 
as a key. To coexist with other hardware that intercepts writes 
to address 0, the bridge or other hardware must compare its key 
with the key in the data field, and intercept the write only if the 
keys match. A mechanism that implements this feature will be 
defined to provide unique keys to hardware. 

Slaves should map registers that are read-only into the lower 64 
Kbytes of their address space. By eliminating the need for the 
software to map the lower 64 Kbyte block as writable, 
inadvertent writes to address 0 are prevented. If there is a 
device that holds boot code which must be written, the boot 
code can be decoded in two locations within the slot's address 
space: one read -only and one read -write. 
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Profile recommendation: SBus devices that do not use Open 
Boot, or SBus devices installed in systems that do not 
implement Open Boot, should only require the use of the 
PA(24:00) signals to achieve maximum interoperability. 

Recommendation: SBus controllers should unassert AS* 
during the clock cycle immediately following the final 
acknowledgment. boards should use the minimum amount of 
address space pOSSible, and should not be extravagant with 
address space in general, since this might result in an inefficient 
use of mapping resources. 

Also, addresses used should be concentrated in the low-end of 
the address space for maximum compatibility with systems 
which may not support the full 28-bit physical address space 
available. 

Observation: The Sun SPARCstation 1 drives PA(27:2S) to an 
unspecified value. Thus, devices requiring more than 25 bits of 
physical address may need additional selection hardware to 
work properly in the SP ARCstation 1. 

Figure 3-2. PA(27:0), Sel*, and AS* 
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Each SBus master must have a signal, called Request* (BR*) 
which acquires mastership of the bus. For every SBus master, 
the SBus controller must provide a signal, called Grant* (SG*) 
which indicates to a requesting master that it has mastership of 
the bus. There is a unique SR* and BG* pair for each master in 
the system. 

An SBus system must not have more than 8 masters. 

Only one of the BG* lines may be asserted during any clock 
cycle. The SBus controller must arbitrate among requesting bus 
masters for use of the bus. Arbitration among DVMA masters 
must be fair, as defined by the following two rules: 

o A DVMA master granted use of the bus during clock cycles 
T m through Tn must not be allowed to use the bus again 

until all other masters which asserted their respective 
Request* during any clock T <= Tn have been granted use of 

the bus (except during an atomic transaction). 

o Within the above constraint, requests do not need to be 
processed in chronological order. 

After asserting SR*, the master must leave it asserted until it 
receives BG*. During the clock cycle immediately following the 
assertion of SG*, the master must unassert SR* for at least one 
clock cycle (except if it is performing an atomic transaction), in 
which case the master must leave BR* asserted. For more 
information, see" Atomic Transactions" later in this chapter. 

The SBus controller must keep 8G* asserted until the end of the 
bus cycle. 
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Observation: To reduce I/O latency, some systems may give 
higher priority to DVMA masters than to CPU masters. 
Thus, an SBus master attempting to use up all extra bus 
bandwidth by constantly requesting the bus may find that the 
CPU is never able to perform a bus cycle. In a system with only 
one such device, the device could wait until one or two clock 
cycles after its BG* became unasserted before reasserting its BR*. 
However, this technique will not work in a system containing 
multiple devices of this kind. 

If a master (re-)asserts BR* while its BG* is asserted, the master 
needs to prepare to start the second request as soon as one clock 
cycle after BG* becomes unasserted. 

The 8 master limitation is somewhat arbitrary. It is included as 
an aid to designers who must know absolute worst case 
conditions on the bus. In practice, most systems will have fewer 
masters. The number of slaves is not limited and does not affect 
performance per se. Nevertheless, the restrictions on maximum 
capacitive loading enforce a practical limit on the number of 
masters and slaves in most SBus systems. 

Note: The number of clock cycles between BG* and AS* is a 
function of system translation time, and is therefore variable. 

Figure 3-3. Timing of BR*, BG*, and AS* 

-1 o 1 2 3 4 5 6 
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Every SBus bus cycle consists of a translation cycle and a slave 
cycle, with one exception - that in host-based systems, the CPU 
master may perform address translation without using the bus. 
In this case (as viewed on the SBus) it will appear as though the 
CPU master is performing slave cycles only. 

Note: During Extended Transfers,certainsequencingdetails for 
Oata(31 :0), PA(27:0), Read, and Size(2:0) are changed. 
For more information, see Appendix B. 

The assertion of BG* begins a translation cycle on the bus. 
During the clock cycle immediately after it detects 8G* has been 
asserted, the master must drive a virtual address onto Oata(31 :0) 
(0(31 :0», and drive Size(2:0) (Siz(2:0» and Read (Rd) 
appropriately. The master must drive the virtual address on 
0(31 :0) for exactly one clock cycle. If the master is performing a 
read, it must tristate the bus during the following clock cycle. 
If it is performing a write, it must drive the first datum onto 
0(31 :0). Unless the master is performing an atomic transaction, 
it must unassert BR* for at least one clock cycle, beginning in the 
clock cycle after it receives 8G*. 

The SBus controller is responsible for translating the virtual 
address into a physical address. After translating the virtual 
address into a physical address, the controller must drive the 
physical address onto PA(27:0), assert the appropriate Sel*, and 
assert AS*. The SBus controller may drive the previous signals 
as soon as two clock cycles after asserting 8G*, beginning in the 
clock cycle after receiving the virtual address. There is no 
predefined limit on the number of cycles the controller may take 
to translate the address. 

If, as a result of a translation fault or access violation, the SBus 
controller needs to abort the bus cycle, it must not assert any 
Sel* and must signal this error to the current master with an 
Error Acknowledgment. The controller does not need to assert 
AS* when aborting the bus cycle in this manner, although it is 
free to do so. The SBus controller may assert LateError* (LErr*) as 
desired . 
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The method for translating a virtual address depends on the 
system. However, all SBus controllers must provide support 
for separate translation for blocks of addresses less than or 
equal to 64 Kbytes. This requirement allows designers of SBus 
cards to group registers to protect them through the V A to P A 
mappings: it does not prohibit support for page sizes larger 
than this limit; it simply requires support for at least one page 
size within this limit, in addition to any others that may be 
supported. 

The bus controller may unassert 8G* as early as the clock cycle 
in which it unasserts AS*. Under no circumstances may the 
controller unassert 8G* or AS* until all words of data have been 
transferred, or the slave has issued an Error or Rerun 
Acknowledgment, or a timeout has occurred. 

Figure 3-4. Translation Cycle and Slave Cycle 
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Observation: Because each master has its own BR* signal, the 
SBus controller can easily implement a separate translation 
table for each master, with context registers and all. 

Sun systems use a variety of MMU structures. In the 
SP ARCstation 1, the MMU is shared between the CPU and the 
SBus. However, only a single context is provided for all SBus 
DVMA masters. 

If the master asserts Siz(2:0) and Rd at the same time it asserts 
the virtual address, the MMU can perform various checks on 
the transfer. Moreover, no other timing would work, since the 
assertion of AS* is controlled by the bus controller. 
The minimum translation cycle requires two clock cycles: 
the first for asserting 8G*; and the second for asserting the 
virtual address. 

A slave cycle begins when the SBus controller asserts AS*. 
The controller must keep AS* asserted until after the current 
slave gives its final Data Acknowledgment, or a Rerun or Error 
Acknowledgment. Thus, the SBus controller must monitor 
Siz(2:0) and Ack(2:0)* (Ack(2:0)*). 

The SBus controller must be certain that PA(27:0) and Sel* are 
stable whenever AS* is asserted, beginning with the first clock 
edge at which a slave can sense AS* as asserted. Thus, PA(27:0), 

Sel*, Siz(2:0), and Rd must remain asserted until one clock cycle 
after AS* becomes unasserted. 

The current master must keep Siz(2 :0) and Rd stable until the 
earlier of BG* or AS* becoming unasserted. During the clock 
cycle following 8G* becoming unasserted, the current master 
must stop driving Siz(2:0), and Rd. During a slave cycle, the 
SBus controller must keep BG* asserted at least as long as AS*. 
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When writing data to a slave, the master must drive the first 
datum onto the bus during the clock cycle following the virtual 
address (DVMA master), or in the same clock cycle in which AS* 
is asserted (CPU master). The master must keep the write data 
stable until acknowledged by the slave, and may tristate the 
data lines as late as the cycle after 8G* has been unasserted (this 
makes the timing identical to the Rd and Siz signals). 

A slave, however, may not depend on the data remaining valid 
after it acknowledges the data, which it may do as soon as one 
clock cycle following the assertion of AS*. During a burst 
transfer, the master must drive each successive word of data 
onto the data lines during the clock cycle immediately 
following the slave's acknowledgment of the previous word. 
Thus, when a slave generates an acknowledgment during a 
particular clock cycle of a write, it is acknowledging the data on 
the data lines during that clock cycle. 

Figure 3-5. Basic Slave Cycle Timing 

n n+ 1 n+2 n+3 n+4 
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When data is read from a slave, the slave may generate an 
acknowledgment at any time (subject to timeout), beginning 
with the clock cycle following the assertion of AS*. 0(31 :0) may 
be driven by the slave (but need not be valid) as early as the 
clock cycle after that in which AS* and Sel* have been asserted. 
The slave must drive 0(31 :0), which must be valid during the 
clock cycle immediately following the corresponding 
acknowledgment. During a burst read transfer, the slave must 
drive the data lines with the appropriate word of data at each 
clock cycle in which a word is transferred. 

A slave cycle ends only after the slave acknowledges the last 
word of data, or when the slave issues a Rerun or Error 
Acknowledgment. The types of SBus acknowledgments are 
described later in this chapter. 

A DVMA master must use its 8G* signal to perform all of its 
sequencing (except for the data sequencing, which is driven by 
Ack(2:0)*). The master needs to use the leading edge of 8G* to 
know when to place a virtual address on the data lines. 
Similarly, the master must use the trailing edge of 8G* to 
indicate that it should remove Rd, Siz(2:0), and 0(31 :0). 
The master must not use or make assumptions about AS* during 
a DVMA cycle, because the SBus controller may not assert AS* 
in some cases (for example, if the slave is a device that is 
logically but not physically connected to the SBus, or if the 
controller aborts a cycle due to a DVMA translation error). 

As noted previously, DVMA masters must assert Siz(2:0) and 
Rd in the clock cycle following 8G*. However, for CPU masters, 
Siz(2:0) and Rd are asserted at the same time as AS*. 
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Observation: The intent of the relative timing of AS*, Sel*, 

PA(27:0), Siz(2:0), and Rd is that a simple slave does not need to 
latch any of the above signals (with the exception of AS*). 
Hence, the reason for requiring the signals other than AS* to 
remain valid for one clock cycle after AS* becomes unasserted. 
However, AS* must always be sampled with elk. 

The minimum slave cycle requires three clock cycles: 

1. The first for asserting AS*. 

2. The second for asserting Ack(2:0)*. 

3. The third for unasserting AS*. 

For CPU masters in host-based systems, this timing means that 
n words could be transferred in n+2 clock cycles, assuming that 
a CPU read is not followed immediately by a CPU write. In this 
latter case, one additional clock cycle is required to prevent two 
different devices from simultaneously driving the bus 
(assuming that a CPU read is not immediately followed by a 
CPU write). 

SBus Specification B.O 



Chapter 3: Protocol Design 

Atomic 
Transactions 

SBus Specification B.O 

rU:urrtLl.; 1 'Urt~UI.,UUH~ 

An SBus master may retain ownership of the SBus for multiple 
bus cycles to perform atomic transactions with a particular SBus 
slave. The intent is to provide an easy-to-use hard ware 
mechanism for implementing semaphores. 

To retain mastership of the bus, the SBus master must keep SR* 
asserted continually until it receives BG* for the last bus cycle. 
For each bus cycle in which the SBus controller detects that SR* 
has remained asserted (and, that it did not become unasserted 
during the clock cycle after BG* became asserted), the controller 
must give the same device mastership of the bus for the 
following bus cycle. If a master does not wish to perform an 
atomic transaction, it must unassert BR* during the clock cycle 
after BG* is asserted. A master which asserts its SR* must wait 
for the corresponding SG* before unasserting SR*. 

Except for dummy reads (see later in this chapter), masters must 
perform, at most, two bus cycles during an atomic transaction. 
The first cycle must always be a read, and the second must 
always be a write. If a master cannot respond immediately 
with the write data (that is, by the time bus grant happens for 
the write cycle), the master may retain ownership of the bus by 
performing one or more dummy reads to the same address as the 
original read. To do so, the master must use the data from the 
first read. 

Because of the way dummy read cycles are inserted to lengthen 
atomic transfers, adverse effects may occur on device registers 
if atomic operations are used to access them. Therefore, this 
practice is not recommended. Also, Rerun Acknowledgments 
must only be issued on dummy read cycles by bus couplers, 
because their meaning is otherwise unclear and results cannot 
be guaranteed. 

If bus sizing occurs during an atomic transaction, there is no 
guarantee that the follow-on cycles will be performed 
atomically for an SBus DVMA master. Some systems may be 
implemented in which the CPU master accesses that are bus
sized remain atomic. Such atomicity is accomplished by 
designing the controller to give the CPU's follow-on accesses 
higher priority than all other accesses. However, this behavior 
depends on the system. 
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When a slave issues a Rerun Acknowledgment during an 
atomic transaction, the master must immediately unassert BR*, 
if it has not already done so. The SBus controller must unassert 
the corresponding BG*, as in the case of all Rerun 
Acknowledgments. The master must then reassert BR*. 
An SBus master, after receiving a rerun on the read bus cycle or 
the write bus cycle of an atomic transaction, should restart the 
atomic transaction from the beginning. However, if the master 
receives a Rerun Acknowledgment on the dummy read bus 
cycle, the master should continue to issue dummy reads or 
proceed with the write bus cycle, since onI y a bus bridge should 
generate such a Rerun Acknowledgment. 

Masters must not perform atomic transactions with a slave that 
issues Rerun Acknowledgments, unless the slave allows the 
transaction to be restarted beginning with the first bus cycle or 
the nature of the atomic transaction is such that the master can 
complete the transaction properly - even though the 
transaction starts at the current bus cycle instead of the first bus 
cycle. 

However, an SBus slave must not assume that an atomic 
transaction which receives a Rerun Acknowledgment on the 
write phase will be restarted with the read. Slaves should avoid 
issuing reruns on the write portion of an atomic transaction, 
because it may be difficult for some masters to restart an atomic 
operation with the initial read. 

A master that receives an Error Acknowledgment during any 
bus cycle of an atomic transaction should immediately deassert 
BR* for at least one bus cycle. The master may then reattempt 
the transfer by reasserting BR*, or it may take other appropriate 
action such as issuing an interrupt to the host. 
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There is no limit to the number of dummy reads which a master 
may perform to retain ownership of the bus. However, a master 
must not hog the bus (that is, use an undue portion of the 
bandwidth) with excessive use of dummy reads to itself. 
SBus controllers must support byte, half-word, and word 
atomic transfers, although they need not support bus sizing 
during atomic transfers. While controllers may support bursts 
during atomic transfers, they are not required to do so. SBus 
controllers that do not support burst transfers during atomic 
transfers must issue an Error Acknowledgment after the 
translation cycle instead of asserting AS*. 

8G* may be unasserted for only a single clock cycle between the 
. bus cycles of an atomic transaction. Hence, a master may have 
only two clock cycles (the first when 8G* is unasserted, and the 
second when it is driving the virtual address) to modify data if 
it is attempting to perform an atomic read-modify-write 
transaction. 

Recommendation: Avoid bus sizing during atomic 
transactions (or, conversely, avoid atomic transactions to slaves 
that bus size), since bus sizing works properly only in systems 
that support bus sizing for the CPU master, and then work only 
when the CPU master makes the access. 

Avoid using bursts during atomic transactions, because there is 
no guarantee that a particular host will support them. 

The specification for atomic cycles provides for flexibility in the 
handling of reruns during an atomic cycle. Unless there is a 
good reason to do otherwise, after a rerun masters should 
restart the atomic transaction beginning with the first bus cycle, 
and slaves should be designed to expect the transaction to 
restart with either bus cycle. 
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Figure 3-6. Atomic Transaction Timing 

Observation: Except for the timing of BR* and the requirement 
that no other master is allowed to access the bus, the 
consecutive bus cycles in atomic transaction are just like any 
other SBus cycles. 

In SP ARC -based systems, the CPU master retains ownership of 
the bus for multiple bus cycles to implement the SP ARC SW AP 
and LDSTUB instructions. 

Do not attempt to build a master that keeps SR* asserted after 
receiving a Rerun Acknowledgment. Such behavior could 
easily cause a system to hang as a result of deadlock. 
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The SBus does not provide any indication to slaves that an 
atomic transaction is in progress. Slaves needing to know this 
information may wish to allocate part of their address space for 
this purpose. 

An SBus controller mayor may not check whether an atomic 
transaction consists of a read, followed by an optional dummy 
read, followed by a write. Thus, a master performing some 
other sequence of bus cycles during an atomic transaction may 
or may not receive an Error Acknowledgment. Furthermore, 
whether such an illegal sequence of bus cycles performs the 
intended behavior depends on the system. Even if no Error 
Acknowledgment is given, there is no guarantee that an illegal 
sequence of bus cycles will be performed correctly. 
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Every SBus must have 32 signals, called Oata(31 :0) (0(31 :0), 
which transfers data and virtual addresses. 

Note: The least significant bit of the data bus is 0(0), and the 
most Significant bit is 0(31). 

The SBus supports three primary data formats: 

o Bytes, which consist of 8 bits of data. 

o Half-words, which consist of 16 bits of data. 

o Words, which consists of 32 bits of data. 

The SBus also supports multi-word transfers, called burst 
transfers. 

The SBus uses what is commonly called big-endian addressing. 
As shown in the following figure, big-endian addressing means 
that the Significance of bytes in a word or half-word decreases 
as the address of the bytes increase. 

Figure 3-7. Words, Half-words, and Bytes 

Bit 31 24 23 16 15 08 07 00 31 24 23 16 15 08 07 00 

Byte 0 Byte 1 Byte 2 I Byte 3 Byte 0 Byte 1 Byte 2 I Byte 3 

Half word 0 Halftword 1 HaH -word 0 Half-word 1 

World I Wqrd 
I 

! ~ 
000 I 001 i 010 I 011 100 101 110 111 ! Address 
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The particular subset of 0(31 :0) over which data travels depends 
on the master's transfer size and the slave's Data 
Acknowledgment. To specify the subset,the SBus defines byte, 
half-word, and word ports on D(31 :0) as shown in the following 
figure. 

Figure 3-8. Port Locations within a Word 
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When a master performs a byte write, it must always place the 
byte data on 0(31 :24) which is byte port O. In addition, the 
master must place a copy of the byte at the byte's natural 
location. If the byte's address ends in 01 (binary), a copy of the 
byte must be placed on 0(23:16) which is byte port 1; if it ends 
in 10, a copy must be placed on 0(15:8) which is byte port 2; and 
if it ends in 11, a copy must be placed on 0(7:0) which is byte 
port 3. A master may place a copy of the byte at all four byte 
locations, if desired. 

Similarly, when a master performs a half-word write, it must 
place the half-word data on 0(31 :16) which is half-word port O. 
In addition, if the half-word address ends in 10, the master must 
place a copy of the data on 0(15:0) which is half-word port 1. 
A master may place a copy of the half-word at both half-word 
locations, if desired. 

When reading data from a slave, the location of the data 
depends on the slave's Data Acknowledgment. For more 
information, see information about "Data Acknowledgments" 
later in this section. 

53 



Data(31:0) 

Alignment, Wrapping, 
and Burst Transfers 

54 

Chapter 3: Protocol Design 

All transfers on the SBus must be aligned to their proper 
address boundaries, subject to address wrapping in the case of 
burst transfers. An SBus master must never issue an unaligned 
word or half-word transfer. SBus slaves are not required to 
signal an error on an unaligned transfer, although they are free 
to do so, as long as the slave's Data Acknowledgment would 
have been for a size equal to or greater than the transfer size. 
For a further explanation of this constraint, see "Bus Sizing" 
later in this chapter. 

In detail, data transfers must always be aligned to an address 
whose 10g2 (size of the transfer in bytes) least significant bit(s) 
is (are) o. Thus: 

o Bytes may be read and written at any address. 

o Half-words may be read and written only from an address 
whose least significant bit is O. 

o A two/four/eight/sixteen word burst may be read and 
written only from a block whose starting address's three/ 
four/five/six least significant bits are O. 

In the case of burst transfers, although the block itself must be 
properly aligned, the transfer may begin at any word within the 
block. The (starting) virtual address generated by the master 
need have only its two least significant bits be o. This mode of 
addressing is called address wrapping. 

During a burst transfer, it is the responsibility of the slave and 
master to transfer the proper word during each clock cycle. 
Since the slave receives only the starting address, after each 
word is transferred the slave must increment the address 
counter by 4, modulo the burst transfer size in bytes. If a slave 
supports burst transfers, it must implement this modulo 
counting. 
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If a slave supports a 32-byte burst, it must support a 16-byte 
burst as well. If it supports 64-byte bursts, it must support 32-
and 16-byte bursts. 

Profile recommendation: SBus master devices that do not use 
Open Boot, or SBus devices installed in systems that do not 
implement Open Boot, should only perform 16-byte bursts. 

Recommendation: It is recommended that a slave supporting 
16,32, and/ or 64-byte bursts also support 8-byte bursts. 
Moreover, the following recommendations are made: 

o Use burst transfers whenever possible. 

They greatly improve overall use of the bus and bus 
performance. 

o SBus controllers should support all burst sizes. 

o A master supporting bursts to size n should support all 
bursts up to size n. 

o Masters using bursts should be able to perform 16-byte 
bursts at minimum. 

Observation: Address wrapping during burst transfers allows 
a CPU master to transfer the word that caused a cache miss, and 
then the rest of the words to fill up the cache line. Thus, the CPU 
can begin execution immediately without having to wait for the 
line to fill. 
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Every SBus must have three signals, called Size(2:0) (Siz(2:0), 
which the current master transmits information describing the 
amount of data to be transferred during the bus cycle. 

An SBus master must determine for each bus cycle how much 
data it wishes to transfer. Unless an error occurs during the 
middle of the transfer or the slave requests bus sizing, both the 
master and slave must transfer the amount of data indicated by 
Siz(2:0). The master must drive Siz(2:0) to its proper state 
during the clock cycle following the assertion of 8G*. The 
master must keep Siz(2:0) stable until the clock cycle following 
8G* becoming unasserted. 

CPU masters in host-based systems must assert Siz(2:0) no later 
than the clock cycle in which the controller asserts AS*, and keep 
it asserted until the clock cycle during which the controller 
unasserts AS*. 

A master need implement only one transfer size; a slave need 
implement only one transfer size. However, a slave supporting 
32-byte bursts must also support 16-byte bursts; a slave 
supporting 64-byte bursts must support 16- and 32-byte bursts. 

Every SBus controller must support at least byte, half-word, 
word, and four word burst transfers. The SBus controller must 
issue an Error Acknowledgment in response to any transfer size 
it does not support. The controller must do this before initiating 
slave cycle to a particular slave. When issuing an Error 
Acknowledgment, it is not necessary for the controller to assert 
AS*. If, however, the controller does assert AS* before issuing 
Error Acknowledgment, it must not assert any Sel*. 

All slaves must fully decode Siz(2:0), even though they may 
support only a subset of the transfer modes. A slave must issue 
an Error Acknowledgment in response to an unsupported 
transfer size. 
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Siz(2) Siz(1 ) 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

Jransfer :;)lze: ~lze(L.·U) 

The encodings in the following figure must be used for Siz(2:0). 

Note: During ExtendedTransfers, Siz(2:0) is also used for 
0(62:60). For more information, see Appendix B. 

Figure 3-9. Siz(2:0) Encodings 

Siz(O) Function 

0 Word (four byte) transfer 
1 Byte transfer 
0 Half-word (two byte) transfer 
1 ExtendedTransfer* 
0 Four Word Burst (16 bytes) 
1 Eight Word Burst (32 bytes) 
0 Sixteen Word Burst (64 bytes) 
1 Two Word Burst (8 bytes) 

* The actual transfer size is encoded within the protocol. See Appendix B. 
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Recommendation: To work with Sun caches in SP ARC-based 
systems, slaves designed to be cacheable must implement byte, 
half-word, word, four and eight word burst transfers. It is also 
recommended that two word bursts be implemented. 

In particular, system memory is typically a cacheable device 
and should, therefore, implement these burst modes. 

As explained in 1/ Ack(2:0)*" later in this chapter, CPU masters 
which are compatible with SunOS must implement dynamic 
bus sizing. SBus controllers should support all sizes. 
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Observation: Many systems (for example, the Sun 
SP ARC station 1) do not implement all of the burst transfer 
modes. Thus, a master desiring to use other than four word 
burst transfers must be prepared to use single word transfers or 
four word burst transfers if the desired transfer size is not 
supported. Either the FCode driver or the device driver should 
enable the use of 8, 32, or 64 byte burst transfers. 

Support for burst transfers is not only a function of the master 
and slave, but also of the SBus controller since it must know 
how many Data Acknowledgments are needed to negate 8G* 
and AS* at the proper time. 

In some SP ARC -based systems, Load -double and Store-double 
are performed as two 4-byte transfers, instead of as a single 
8-byte transfer. Thus, a slave should not depend on these 
SP ARC instructions generating only a single bus transaction. 
This aspect of many implementations is an issue only for those 
slaves that depend on load and store double to be executed as a 
single atomic operation. 

Every SBus must have a signal, called Read (Rd) which the 
current master must use to signal whether it will read data from 
the slave (Rd asserted) or write data to the slave (Rd unasserted). 
Rd must be stable, beginning with the clock cycle following the 
assertion of 8G* (DVMA masters) or the clock cycle in which 
AS* is asserted (CPU masters). It must remain stable until the 
clock cycle following AS* or 8G* becoming unasserted. 

Slaves must gate their output drivers synchronously using Rd, 
Sel*, and AS*. In particular, a read-only slave must not drive the 
data lines when Rd is unasserted. 

Note: During ExtendedTransfers, Rd is also used for D(63). 
For more information, see Appendix B. 
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Every SBus must have three signals called Ack(2:0)* (Ack(2:0)*) 
which are driven by the currently selected slave or, if a bus 
timeout occurs, by the SBus controller. As a shared signal, the 
currently selected slave, after asserting Ack(2:0)*, must drive 
Ack(2:0)* to the idle (unasserted) state for one clock cycle before 
removing its drive. The SBus controller must terminate 
Ack(2:0)* with a 10 Kn resistor to +5V. 

SBus cycles are terminated by one or more acknowledgments, 
of which there are three general types: 

o Data Acknowledgments. 

These indicate the successful transfer of data between a 
master and slave. 

o Error Acknowledgment. 

This indicates that the attempted data transfer was 
unsuccessful. 

o Rerun Acknowledgment. 

This indicates that the selected slave was unable to perform 
the requested transfer, and that the master must retry the 
operation. 

A slave asserts an acknowledgnlent by driving Ack(2:0)* to the 
proper state for exactly one clock cycle. The slave is in complete 
control of when to generate an acknowledgment, subject to the 
constraints of bus timeouts. 

When writing data to a slave, the master must drive the first 
datum onto the bus during the clock cycle following the virtual 
address (DVMA master), or in the same cycle during which AS* 
is asserted (CPU master). The slave may acknowledge the data 
as soon as one clock cycle following the assertion of AS*. 
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During a burst transfer, the master must drive each successive 
word of data onto the data lines during the clock cycle 
immediately following the slave's acknowledgment for the 
previous word. Thus, when a slave generates an 
acknowledgment during a particular clock cycle of a write, it is 
acknowledging the data on the data lines during that clock 
cycle. 

Note: During ExtendedTransfers, data timing with respect to 
acknowledgments for writes is the same as the timing for reads. 
For more information, see Appendix B. 

When data is read from a slave, the slave may generate an 
acknowledgment at any time (subject to timeout), beginning 
with the clock cycle following the assertion of AS*. The data 
corresponding to the acknowledgment must be driven onto 
0(31 :0) for exactly one clock cycle during the clock cycle 
immediately following the Data Acknowledgment. 

For all bus cycles (except burst transfers), after asserting 
Ack(2:0)* for one clock cycle, the slave must drive Ack(2:0)* to the 
idle (unasserted) state for exactly one clock cycle, after which 
the slave must stop driving (tristate) Ack(2:0)*. 

During a burst transfer, the assertion of a Data 
Acknowledgment du!ing a clock cycle indicates that a word of 
data has been accepted (writes) or will be transferred on the bus 
during the following clock cycle (reads). Thus, word 
acknowledgment can be asserted for up to 16 consecutive clock 
cycles in the case of a sixteen-word burst transfer. If the slave is 
unable to transfer data at the rate of a word per clock cycle, the 
slave must drive Ack(2:0)* to its idle state between each word of 
the transfer. In all cases, the entire burst transfer must be 
completed within 255 clock cycles. 
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A slave needs to be able to generate only one type of Data 
Acknowledgment. Slaves do not need to be able to generate 
Rerun Acknowledgment. A slave must generate an Error 
Acknowledgment for any transfer request it is unable to 
support. 

Only the selected slave may drive Ack(2:0)*, except for those 
cases in which a bus timeout or address translation error occurs. 
As explained in "Bus Timeouts" later in this chapter, a slave 
issuing an acknowledgment of any kind must do so no later 
than the 255th clock cycle following the assertion of AS*. 

All masters must operate properly, given any encoding of 
Ack(2:0)*. However, a master may be designed so that a slave 
may use only a particular subset of Data Acknowledgments in 
response to a data transfer. The master is free to treat all other 
Data Acknowledgments as though they were Error 
Acknowledgments. If a master does not support a particular 
type of Data Acknowledgment, it should not initiate a transfer 
to a slave that generates a Data Acknowledgment which the 
master does not support. 

In the case where a slave requests bus-sizing, SBus masters 
must not expect to see a byte or half-word acknowledgment, 
since an intervening bus bridge may hide the bus sizing from the 
master. Even though a master may know that a particular slave 
will size an operation, a bus bridge may make it appear to the 
master as though no bus sizing occurred. For example, on a 
read, a bus bridge may reassemble the bytes or halfwords 
before passing them back to the master; on a write, the bus 
bridge may perform a single bus cycle with the master, even 
though the ultimate transfer to the slave uses bus sizing. 
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1 1 
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1 0 
1 0 
0 1 
0 1 
0 0 
0 0 
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All masters must support Rerun Acknowledgment by retrying 
the bus cycle. All masters must support Error 
Acknowledgment. Masters must treat all reserved 
acknowledgments and any unsupported data acknowledg
ments as though they were Error Acknowledgments. 

All masters must be able to handle an acknowledgment as early 
as the clock cycle immediately following the assertion of AS* 
and Sel*. A master requesting a burst transfer must be able to 
handle an acknowledgment every clock cycle for the length of 
the burst. Figure 3-11 later in this section shows the use of 
Ack(2:0)* for burst and non-burst transfers. The relationship of 
Ack(2:0)* and the data is shown, as well as the fact that Ack(2:0)* 
signals may be unasserted for a time during bursts, thereby 
allowing the slave control of the data transfer rate. 

The SBus controller must monitor Siz(2:0), Rd, and Ack(2:0)* so 
that it is able to unassert AS* and 8G* after the slave has issued 
the last possible acknowledgment for that bus cycle. 

Ack(2:0)* must be encoded according to the following figure. 
Slaves must not generate the reserved encodings. 

Figure 3-10. Ack(2:0)* Encodings 

Ack(O)* Function 

1 Idle/Wait 
0 Error Acknowledgment 
1 Byte (Data) Acknowledgment 
0 Rerun Acknowledgment 
1 Word (Data) Acknowledgment 
0 Double-word (Data) Acknowledgment 
1 Half-word (Data) Acknowledgment 
0 Reserved 
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Profile recommendation: SBus devices that do not use Open 
Boot, or SBus devices installed in systems that do not 
implement Open Boot, should check AS*, 8G*, or both. If these 
signals are not negated following an Error Acknowledgment 
within a burst transfer, the device must continue to provide 
acknowledgments/errors until the end of the transfer. Cards 
that use and are installed in a host with Open Boot may 
optionally check to see if the host requires this tyPe of behavior, 
and act accordingly. 

Recommendation: Masters should support as many transfer 
modes as possible to improve inter-operability. Masters must 
be designed to accept a word acknowledgment in response to a 
byte or halfword transfer, since many slaves issue only word 
acknowledgments. 

A master could attempt to circumvent address translation 
protection checking by signaling a read to the SBus controller 
during the translation cycle, and then deassert read before the 
slave cycle. To detect such behavior, SBus controllers may wish 
to verify that the read signal from the master remains stable 
throughout the entire transfer (unless the transfer is an 
ExtendedTransfer. See Appendix B). 

Observation: During a transfer, a slave need not continue to 
drive Ack(2:0)* after the slave has driven Ack(2:0)* to the idle 
state for a clock cycle, since bus terminators (pullups) will keep 
Ack(2:0)* in the idle state. However, a slave is free to actively 
drive Ack(2:0)* in the idle state any time it is selected during a 
slave cycle. 
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The encoding of Ack(2:0)* is such that a slave which never 
generates certain acknowledgments need not drive some of the 
Ack(2:0)* wires. For example, a slave which always responds 
with a word acknowledgment to all transfers need drive only 
Ack(2)*. This observation may be useful for saving pins on a 
gate array. 

Figure 3-11. Sample Burst Transfer 
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Three types of Data Acknowledgments are used on the SBus: 

o Byte acknowledgment. 

o Half-word acknowledgment. 

o Word acknowledgment. 

A slave need not be able to generate all three Data 
Acknowledgments. 

A slave receiving a transfer request which it does not support 
must issue an Error Acknowledgment. In the case where a 
master requests a word or half-word transfer and the slave can 
perform only a half-word ot byte transfer, the slave should 
respond with a half-word or byte acknowledgment. The master 
will then perform bus sizing, if it is able to do so. 

A word acknowledgment is the only acceptable Data 
Acknowledgment for a burst transfer. Byte and half-word Data 
Acknowledgments must never be used. 

The type of Data Acknowledgment is not allowed to change 
during bus sizing. Within a word, a slave must use the same 
acknowledgment for each port location within the word, 
independent of transfer size. For example, if a slave responds 
with byte acknowledgment to a word (or half-word) transfer at 
address 0, it must respond with a byte acknowledgment for 
each of the remaining three (or one) bytes. 

A slave may issue any Data Acknowledgment in response to 
any transfer request, subject to the prohibition on issuing half
word or byte acknowledgments during burst transfers, or 
changing the acknowledgment as explained previously. 
The Data Acknowledgment indicates the port size of the slave, 
and determines where the slave must read and write data on the 
data lines as the following figure shows. 
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Recommendation: Although byte and half-word data is placed 
at the proper port location and the proper address aligned 
location on the data lines, it is recommended that slaves always 
read data from the proper port location when issuing an 
acknowledgment that implies use of that port location. 

Observation: It is acceptable for a slave to respond with a word 
acknowledgment, even though a byte or half-word transfer was 
performed (similarly, half-word acknowledgment to byte 
transfers). In this case, the slave must read and write data to the 
proper address aligned location on the data lines. Also, the 
slave need not support byte or half-word transfers. 

Figure 3-12. Data Acknowledgment Semantics 

Word acknowledgment 
Word Transfer Slave transfers data on a1132 bits of 0(31 :0) 
Half-word Transfer Slave transfers data on half-word 

port indicated by PA(1) 
Byte Transfer Slave transfers data on byte port 

indicated by PA(1 :0) 
Half-word acknowledgment 

Word Transfer Dynamic Bus Sizing. Slave transfers data 
on most significant half-word 0(31 :16) 

Half-word Transfer Slave transfers data on most 
significant half-word of data lines 0(31 :16) 

Byte Transfer Slave transfers data on byte port 
of most significant half-word as indicated by 
PA(O) 

Byte acknowledgment 
Word Transfer Dynamic Bus Sizing. Slave transfers data 

on most Significant byte 0(31 :24) 
Half-word Transfer Dynamic Bus Sizing. Slave transfers data 

on most Significant byte 0(31 :24) 
Byte Transfer Slave transfers data on 

most significant byte 0(31 :24) 
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A slave may issue a Rerun Acknowledgment instead of an Error 
or Data Acknowledgment in response to any transfer request 
subject to one constraint - that, during a burst transfer, a slave 
may not issue a Rerun Acknowledgment if it has issued any 
Data Acknowledgments for the current bus cycle. The Rerun 
Acknowledgment must be the first and only acknowledgment 
for the bus cycle. 

The timing for a Rerun Acknowledgment is the same as for 
Error and Data Acknowledgments: it must be issued no later 
than the 255th clock cycle following the assertion of AS*. 

A slave may issue a Rerun Acknowledgment on any bus cycle 
that results from bus sizing. A slave is permitted to continue 
issuing Rerun Acknowledgments until it is able to complete the 
transfer. However, a slave is forbidden from issuing an infinite 
number of Rerun Acknowledgments. Neither the SBus 
controller nor SBus masters implement a mechanism for 
limiting the number of Rerun Acknowledgments a slave may 
issue. Slaves which might otherwise have the potential to issue 
Rerun Acknowledgments forever must implement some 
mechanism to avoid this possibility. 

A slave cannot use rerun to control the order of accesses of 
various masters. The SBus controller has complete control over 
which master is granted access to the slave next. The controller 
may also insist that the master which received the original 
Rerun Acknowledgement from the slave be the only master 
granted access to that slave until the rerun cycle is completed. 

For example, a slave must not issue a Rerun Acknowledgement 
to master A while waiting for an access from nlaster B. 
This restriction prevents a deadlock resulting from conflicting 
Rerun Acknowledgements issued by the controller and slave. 
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After receiving a Rerun Acknowledgment, a master must 
relinquish the bus and request mastership of the bus. 
After obtaining mastership of the bus again, a master must 
perform the identical transfer which originally caused the slave 
to issue a Rerun Acknowledgment. During atomic transactions, 
this constraint may be impossible to achieve. For more 
information, see /I Atomic Transactions" earlier in this chapter. 

A master is not allowed to abandon (fail to retry) a transfer 
terminated by a Rerun Acknowledgment. This means that a 
slave is allowed to depend on the master retrying the transfer. 

Recommendation: Slaves should limit their use of Rerun 
Acknowledgment. It may have a negative effect on system 
performance. Rerun Acknowledgment should be used only 
when no other hard ware or software mechanism can 
accomplish the task. 

It is preferable for a slave to issue Rerun Acknowledgment early 
in the bus cycle to allow other masters to access the bus. 
However, there is no absolute rule about when it is better to 
hold the bus in anticipation of completion versus issuing a 
Rerun Acknowledgment. 

If a device has master and slave capabilities, it is recommended 
that they be designed so that the slave port can be accessed 
regardless of whether the master is enabled. This allows the 
master port to be disabled in software. The slave access may be 
delayed by some number of rerun cycles if necessary, but the 
designer should be careful to avoid livelock situations 
(dynamically hung on continuous deadlock-backoff cycles). In 
this way, a CPU can disable the master. 
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The use of Rerun Acknowledgment for busy-waiting is 
discouraged. It may cause undesirable system performance 
degradation if the slave stalls the CPU for more than a few 
microseconds. In almost all cases, it is preferable to have the 
CPU spin in an instruction loop to test the state of some bit, or 
have the slave issue an interrupt when it is available or needs to 
be serviced. 

The use of buffering is encouraged as a method of avoiding 
Rerun Acknowledgments. 

To implement a read/write atomic transaction properly, a 
master may need to violate the rule to retry the identical 
operation. A Rerun Acknowledgment during the write phase 
of the transaction will generally cause the master to restart the 
atomic transaction beginning with the read phase. Thus, slaves 
should be designed to work properly when a bus cycle, which 
was a write, is retried as a read. 

Slaves using Rerun Acknowledgment to implement split or 
disconnected bus cycles should avoid saving state, or consider 
implementing some method for distinguishing between 
transfer requests so they can properly respond to multiple 
masters. 

In systems where multiple masters may attempt to access the 
same slave concurrently and the slave can issue reruns, the SBus 
controller may wish to include hardware to prevent masters 
(other than the one being rerun) from accessing the slave. 
The controller would rerun these other masters (or delay AS*) 
while the first transfer is completed. 
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Observation: In some systems, deadlock can occur if an SBus 
master is in a mode preventing it from servicing a slave request 
as a result of its master mode requirements. An example is the 
situation in which a slave request requires use of an internal bus 
which is presently occupied as a result of an internal data 
transfer. The only time an SBus device can simultaneously be a 
master and slave is if, as master, it has been programmed to 
generate addresses that cause it to be accessed as a slave. In that 
case, the slave should issue an Error Acknowledgment or 
complete the transfer. 

The requirement that a slave not issue an infinite number of 
Rerun Acknowledgments may place special requirements on 
devices to avoid poor system performance or deadly embrace. 
Deadly embrace is possible in a system in which two masters 
are concurrently attempting to perform slave access between 
themselves. If improperly designed, these two devices may 
issue Rerun Acknowledgments to each other forever. 

The requirement that the master retry the identical transfer is 
designed to allow slaves to avoid saving state. 

In multi-master systems including multiprocessors, if the 
controller lacks hardware interlocks, it may be necessary to 
have software prevent simultaneous access by different masters 
to slaves which can issue Rerun Acknowledgments. This is 
especially true if the slave saves state but is unable to 
distinguish requests from different masters. 

In particular, the SBus does not support any notion of master 
identifier. For slaves which do not use the entire physical 
address space, one possibility is to have hardware and software 
use the convention that some number of high order address bits 
are the master identifier. The slave can then determine which 
request it is processing, and continue to issue a Rerun or Error 
Acknowledgment to the others until it is able to service them. 
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Rerun Acknowledgment can be used to implement a form of 
split or disconnected bus cycle. A slave with an access time 
greater than lOllS (40ns * 255) can use Rerun Acknowledgment 
to extend the transfer. The slave device starts the operation 
after receiving the first request, and gives Rerun 
Acknowledgments until it is able to supply the data. At that 
time, it issues a Data Acknowledgment. 

In designing the SBus rerun capability, it was recognized that in 
some cases a master may not function properly if the slave 
issues a Rerun Acknowledgment where the master needs to read 
or write the data now. Although it seems to make sense to allow 
the master to abandon the transfer, it was deemed cleaner to 
require the master to finish the transfer, and use interrupts and 
status bits in internal registers to alert the CPU to the problem. 
Since the system has malfunctioned in either case, it was 
deemed desirable to keep latency issues and errors independent 
of Rerun Acknowledgment. 

The Sun SP ARCstation 1 violates this specification by 
implementing a Rerun Acknowledgment timeout for its CPU 
master bus cycles. Some slaves may need to be aware of this 
fact. 

A slave may issue an Error Acknowledgment during a bus cycle 
at any time an acknowledgment is allowed. In all cases, the 
Error Acknowledgment must be issued within the timeout 
period. An Error Acknowledgment aborts the transfer. 
Accordingly, the SBus controller must unassert AS * and 8G* 
after receiving an Error Acknowledgment. 

An Error Acknowledgment may be issued instead of Data 
Acknowledgment at any point in a burst transfer - that is, 
before any words have been transferred or after one or more 
words of data have been transferred. Such an Error 
Acknowledgment aborts the transfer. The master (slave) must 
not expect any more data, and the slave (master) must not send 
any more data. 
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An Error Acknowledgment may be issued during any bus cycle 
of a bus sizing operation. After receiving an Error 
Acknowledgment, the master should abort the remainder of the 
bus sizing operation. The slave which issued the Error 
Acknowledgment should not expect to receive any more 
transfers that are part of the bus sizing operation. 

An SBus slave must issue an Error Acknowledgment in 
response to a transfer request it is unable to support, subject to 
the slave taking advantage of bus sizing when a master requests 
a (non-burst) transfer larger than the slave supports. 

The SBus controller must issue an Error Acknowledgment 
whenever a bus timeout occurs. The SBus controller must issue 
an Error Acknowledgment in response to any transfer size it 
does not support. In these latter two cases, the SBus controller 
mayor may not assert AS*. 

Recommendation: Error Acknowledgment should not be used 
for flow control. In many high-performance systems, write
buffering may make it very difficult to signal errors in such a 
synchronous fashion. Thus, for example, a master receiving an 
Error Acknowledgment to indicate that a slave's input FIFO is 
full may not discover this until several additional writes have 
caused the FIFO to overrun. Alternative techniques, such as the 
use of high/low watermarks and interrupts, should be 
considered. 
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Ack(2:0)* 

Observation: In general, the error mechanism on the SBus is 
designed on the assumption that the errors for which Error 
Acknowledgment will be used occur rarely. Thus, no attempt 
is made to make it easy to determine the source of an error. 
Individual masters and slaves are responsible for capturing 
whatever state is required to make error explanation and 
recovery feasible. 

Error Acknowledgment indicates that the requested transfer 
cannot be performed correctly. Asynchronous errors not 
associated with a particular transfer should be reported using 
interrupts. 

Even though this book specifies that in certain cases slaves 
should issue an Error Acknowledgment, such as 
unimplemented transfer modes, these cases should occur rarely 
in systems which are operating correctly. 

In some systems, the SBus controller may generate an interrupt 
to the CPU if the controller receives an Error Acknowledgment 
on a non-CPU DVMA cycle. In these cases, the controller may 
wish to keep a copy of the original virtual address as an aid to 
error tracking. 
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By definition, every SBus cycle terminates as a result of one or 
more acknowledgments as explained previously. In the case 
where a particular Sel* is asserted and no slave responds (for 
whatever reason), it is the responsibility of the SBus controller 
to generate an Error Acknowledgment to terminate the bus 
cycle. 

To prevent a bus timeout, the selected slave must generate its 
own acknowledgment no later than the 255th clock cycle 
following the assertion of AS*. If the SBus controller does not 
receive an acknowledgment by the 256th clock edge, it must 
generate an Error Acknowledgment within two clock cycles 
(although it may generate Error Acknowledgment within one 
clock cycle if it wishes). 

The SBus controller must do the following in sequence: 

1. Drive Ack(2:0)* for exactly one clock cycle. 

2. Drive Ack(2:0)* to the idle state for one clock cycle. 

3. Remove its drive. 

Slaves unable to respond within the timeout period, but which 
do not wish to abort the transfer, must use Rerun 
Acknowledgment as explained previously. A slave which does 
not respond with an acknowledgment within the timeout 
period is forbidden from responding to the current bus cycle. 

A slave must issue an Error Acknowledgment and not depend 
on bus timeout if a master addresses an unused portion of the 
slave's address space. 
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Recommendation: The purposeful use of timeout by a slave is 
strongly discouraged. Slaves unable to fulfill a transfer request 
should issue an Error Acknowledgment. 

Observation: In a properly running system, bus timeout 
should never occur, except during system configuration. 
However, in systems allowing user mapping of the bus (for 
example, SunOS), it may be possible for user-level code to 
access nonexistent SBus devices. 

The bus timeout frees masters from keeping track of clock 
cycles. Slaves which may occasionally timeout need to be 
certain that they do not accidentally drive Ack(2:0)* at the wrong 
time. 

There are no predefined semantics associated with an Error 
Acknowledgment, except for aborting the transfer. 
If appropriate, it is the master's responsibility to issue an 
interrupt to the CPU. 
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Every SBus must include a signal called LateError* (LErr*) which 
provides SBus slaves with a mechanism to pipeline error 
checking during a data transfer. 

If LErr* is asserted by a slave, it must be asserted exactly two 
clock cycles after the corresponding acknowledgment, and for 
exactly one clock cycle. During the clock cycle after it asserts 
LErr*, the slave must drive LErr* to its unasserted (high) state. 

LErr* must not be asserted at any other time - that is, LErr* must 
be preceded by an acknowledgment. LErr* may be asserted at a 
time when the receiving master may have started a new bus 
cycle or is no longer owner of the bus. Thus, SBus devices must 
be careful to always associate LErr* with the preceding 
acknowledgment. 

LErr* may be asserted only by the currently selected slave. 

When asserted during a burst transfer, LErr* does not abort the 
bus cycle. The bus master must complete the entire transfer. 

Like Error Acknowledgment, no specific interpretation of LErr* 
is implied by this specification; the action taken in response to 
the assertion of LErr* is specific to the current master. 

Figure 3-14. LErr*Timing 

2 4 6 7 8 9 11 
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LateError* 

Recommendation: SBus devices should use LErr* only in those 
cases where it is impossible to signal the error using Error 
Acknowledgment. 

Although LErr* may follow a Rerun or Error Acknowledgment, 
this usage of LErr* is discouraged. It is unclear what LErr* means 
in such cases. 

In many systems (for example, SP ARCstation 1), LErr* is used to 
signal memory errors. Masters performing DVM A transfers to 
system memory should check for the assertion of LErr*. 
A master receiving a LErr* after a Data Acknowledgment should 
assume that the preceding data transfer occurred incorrectly, 
and that the master should discard the data in the case of a read, 
or try to re-write the data in the case of a write (avoid infinite 
retries). If the master reports an error to the CPU, the master 
should retain as much state as pOSSible, particularly the 
offending virtual address, to facilitate error handling. 

Observation: The LErr* mechanism follows from the general 
SBus philosophy of en:ors: because errors occur infrequently, 
detecting and reporting them should not interfere with the 
performance of the system. 

LErr* provides a mechanism for memory subsystems to perform 
error checking without impeding data transfer. For example, a 
word of data can be transferred at the same time parity checking 
begins. The results of the parity check can be reported using 
LErr* during the following clock cycle. 

In some systems (for example, the Sun SP ARC station 1), the 
SBus controller, after determining that LErr* has been asserted, 
may independently generate an interrupt to the CPU, even 
though the CPU was not master of the bus. In this case, the 
controller may wish to keep a copy of the virtual address to 
facilitate error handling. 

An SBus slave which never drives LErr* may leave it 
unconnected. 
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Bus sizing allows a master to initiate a word or half-word 
transfer to a slave device without regard to whether the slave 
supports a transfer size that large. This design allows a master 
to treat the slave as though it were a word or half-word device, 
even though the slave may implement only half-word or byte 
transfers. 

Bus sizing can occur only during word or half-word transfers. 
It cannot occur during any burst transfers. A slave unable to 
support a burst transfer must issue an Error Acknowledgment 
if a master attempts such a transfer. A slave must never issue a 
byte or half-word acknowledgment in response to a burst 
transfer. 

Support for bus sizing is the responsibility of the master. Except 
as recommended later in this section, masters need not support 
bus sizing. However, if a master does not support bus sizing, it 
should not initiate a transfer that might require bus sizing - for 
example, a word transfer to a byte slave. 

Unlike burst transfers, in which multiple words of data are 
transferred in a single bus cycle, during bus sizing each byte or 
half-word must be transferred using an independerit bus cycle. 
The first element of data (the one that invoked bus sizing) must 
always be transferred as part of the original bus cycle. 

Thus, a half-word must be transferred in a total of two bus 
cycles, whereas a word must be transferred in two bus cycles 
(slave responds with two half-word acknowledgments) or four 
bus cycles (slave responds with four byte acknowledgments). 
The master must generate the correct address for the data being 
transferred during each bus cycle of the transfer. Masters 
should change only the two least significant address bits in 
follow-on bus cycles. 
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Bus Sizing 

A slave must respond with the same Data Acknowledgment for 
each bus cycle of a bus sizing operation. This restriction means 
that a slave that responds with a byte acknowledgment for the 
first byte of the transfer must respond with a byte 
acknowledgment for each of the remaining transfers. Within a 
word, a slave must use the same acknowledgment for each port 
location within the word, independent of transfer size. If a slave 
responds with byte acknowledgment to a word (or half-word) 
transfer at address 0, it must respond with a byte 
acknowledgment for each of the remaining three (or one) bytes. 
The important effect of this rule is that the type of Data 
Acknowledgment is not allowed to change during bus sizing. 

A master may abort the bus sizing operation after any cycle. 
However, if the slave issues a Rerun Acknowledgment, the 
master must rerun the current bus cycle. The master must not 
restart the transfer at the original bus cycle (except as explained . 
previously for atomic transactions). 

The data port location is determined, as always, by the slave's 
Data Acknowledgment. The type of Data Acknowledgment 
returned by a slave may not depend on the transfer size; it must 
be a function of its own data path width. A slave must treat 
every cycle individually, with no retained state about whether 
previous bus sizing cycles have occurred. 

During the follow-on bus cycles, the master may keep the 
Siz(2:0) signal set at the original size. This results in follow-on 
cycles that appear to be unaligned transfers. Since the Data 
Acknowledgment returned by the slave must be the same for 
each port location within the word, these cycles are completed 
with the same acknowledgment used by the slave for the first 
transfer. 
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Since a slave has no knowledge of atomic transactions, bus 
sizing may occur during atomic transactions. However, 
because atomicity is not guaranteed if bus sizing occurs during 
an atomic transaction, masters should avoid atomic 
transactions to slaves which bus size. For more information, see 
"Atomic Transactions" earlier in this chapter. 

Recommendation: The use of bus sizing during atomic 
transactions is discouraged. It dramatically increases the time 
during which a master has exclusive use of the bus. However, 
in some cases, software may not have any way of knowing that 
bus sizing is occurring (other than prior knowledge about the 
slave) and, thus, cannot prevent it from occurring during 
atomic transactions. 

CPU masters intended to be compatible with SunOS must 
support dynamic bus sizing for both byte and half-word 
devices. 

Bus bridges should never initiate bus sizing, and should always 
acknowledge with the size requested by the master. Thus, bus 
bridges need to support all transfer sizes and 
acknowledgments. 

Observation: Slaves can use bus sizing to reduce software 
complexity. For example, an 8-bit frame-buffer that is 
otherwise functionally identical to a 32-bit frame-buffer can use 
the 32-bit software without modification. 

A slave requires no special hardware to take advantage of bus 
sizing. 

In many systems, the CPU is the only master which implements 
bus sizing. However, other SBus masters may implement bus 
sizing if desired (this is entirely up to the master). The fact that 
the CPU implements bus sizing does not help any other master 
implement bus sizing. 
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Interrupts 

Every SBus must have seven open-drain interrupt lines, called 
IntReq(7:1 )* (lntReq(7:1 )*) which SBus slaves can use to 
asynchronously signal the CPU. 

Any SBus slave may assert one or more of IntReq(7:1)* at any 
time, subject to system configuration considerations. A slave 
must drive the interrupt lines using open-drain output drivers. 
Unlike other shared signals, interrupt lines are not driven to 
their unasserted state by the slave. After an interrupt has been 
serviced, the asserting slave must stop driving the interrupt line 
(unassert its output). The SBus controller must pull up each of 
IntReq(7:1)* with 10 Kn resistor to +5V. 

The slave may assert and unassert interrupts without regard for 
setup and hold times with respect to elk. 

After asserting an interrupt, the slave must set a bit in an 
internal register (which is readable by the CPU) to indicate that 
the slave is generating an interrupt at this level. Either the act 
of reading this bit must cause the slave to stop asserting the 
interrupt, or the slave must include some other CPU-accessible 
mechanism to clear the interrupt. Slaves must not unassert an 
interrupt until polled by the CPU. 

By convention, IntReq(7)* is the highest priority interrupt, and 
IntReq(1)* is the lowest priority interrupt. 
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Recommendation: When the event causing the slave to 
generate an interrupt is naturally synchronous with elk, the 
slave should meet standard SBus setup and hold times with 
respect to Clk to avoid any chance of metastable behavior. 
SBus controllers should be designed so that meeting SBus setup 
and hold times removes any opportunity for metastable 
behavior. To create a synchronous interrupt Signal, a slave 
device whose interrupts are naturally asynchronous to Clk 
should not include a synchronizer. 

The interrupt synchronizer on the SBus controller should be 
carefully designed to keep the probability of metastable 
behavior low. 

Slave devices should include the capability to disable 
interrupts. After reset, interrupts should be disabled. 

Observation: Interrupts provide a mechanism for SBus devices 
to interrupt the CPU. However, it is up to the system designer 
to determine how this is accomplished. The assignment and 
processmg of interrupts is system-specific. 

Interrupts on the SBus are allowed to be asynchronous, since 
they are often generated in response to external 
unsynchronized events. System reliability is improved by 
having a single resource, the SBus controller, perform 
synchronization because the controller can be designed to have 
known failure probabilities that reflect overall system MTBF 
requirements. 
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Other Timing Diagrams 

This section contains additional timing diagrams. 
These diagrams follow directly from the specification, and 
are included to help illustrate various features of the SBus. 
They represent a small fraction of the possible bus sequences. 

Figure 3-15. DVMA Cycle with Wait States 
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Figure 3-16. DVMA Burst Cycle with Wait States 
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Electrical and Mechanical 
Design 

This chapter describes the specification for the electrical and 
mechanical operation of SBus slaves, masters, and controllers. 
It also includes SBus profiles, which contain considerations 
which might affect the electrical and mechanical design of the 
SBus. 

SBus profiles define a minimum SBus card/controller feature 
set which guarantees plug compatibility between SBus cards 
and hosts. The features affected by SBus Profiles include: 

o 25- versus 28-bit physical address widths. 

o Burst sizes. 

o Data parity. 

o Error handling. 

o Bus timeouts. 

o 64-bit SBus. 
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The effect on specific SBus specification requirements by the use 
of SBus Profiles are pointed out in the affected sections of this 
book. The effect is explained in a special note called a Profile 
recommendation. 

SBus Profiles coexist with, but do not require the use of, Open 
Boot on an SBus card or host. Whereas SBus Profiles specify a 
minimum feature set that must be implemented on both SBus 
hosts and cards, Open Boot provides the mechanism to expand 
SBus hosts and cards. 

The following SBus Profile matrix shows the relationship 
between SBus cards and hosts which do / do not use Open Boot, 
in relation to their respective use of profiles and extension of 
their feature set beyond this. 

Figure 4-1. S Bus Profile Matrix 

Host with Open Boot I Host without Open Boot I 

SBus card may require any feature SBus card should default to the 
in the profile. Otller features must profile feature set. 
be optional. I 

SBus card should be built along the profile guidelines. 
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Electrical Design 

Operating Range 

Power 
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TheSBus is neither strictly a TTL bus nor a CMOS bus. It is 
designed to be compatible with several families of CMOS logic 
including,but not limited to, CMOS gate arrays with TTL-level 
pads. 

SBus systems and expansion cards must operate over an 
ambient temperature range, Ta, of 0 to +70 degrees centigrade. 
System designers must provide adequate ventilation or forced 
airflow to maintain this requirement. 

SBus expansion devices and systems must conform. to the 
following power supply conditions per slot. Expansion devices 
occupying multiple slots may consume the amount of power 
specified per expansion connector. Thus, a two-slot SBus 
device may consume 4A at +5V. SBus expansion devices must 
connect to all five +5V lines, and to all seven Gnd lines. Current 
should be drawn equally through all pins. 

The average currents (kont) specified for the +5V, + 12V, and 
-12V supplies include any transient or peak currents (lpeak). 
Cards drawing transient currents greater than the average must 
be designed to draw a quiescent current low enough to make 
the 500mS time-averaged value no more than the value given 
for Icont in the following figure. 

No duty cycle is specified for the instantaneous peak currents. 
This is intentional: it is unnecessary as long as the time
averaged current is not exceeded, and adequate bypassing 
exists in the system and on the expansion card. 
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Figure 4-2. Power Parameters 

Parameter Condition Symbol Min. Max. Unit 

+SVSupply l=2A +SV 4.75 S.2S V 
+12VSupply I = 30ma +12V 11.25 12.75 V 
-12VSupply I = -30ma -12V -12.7S -11.75 V 
Continuous Ripple, +5V l=2A VRS -0.1 +0.1 V 

Continuous Ripple, + 12V l= +30ma VR+12 -0.25 +0.25 V 

Continuous Ripple, -12V I = -30ma VR-12 -0.25 +0.25 V 

Continuous Current SV V = SV nominal leont5 2.0* A 

Continuous Current + 12V V = + 12V nominal leont+12 .03* A 

Continuous Current -12V V = -12V nominal Ieont-12 -.03* A 

Peak Current SV ?eak <: 1 mS lpeakS 3 A 

Peak Current + 12V peak <-1 mS Ipeak+12 .05 A 

Peak Current -12V Tpeak <= 1 mS Ipeak-12 -.OS A 

*Icont averaged over any SOOmS interval. 

+5V 

+/-12 Volts 
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An SBus expansion card must not draw more than 2 amperes 
average at +5 volts with respect to ground. 

The SBus controller must guarantee that the +5V supply is 
within ±O.2SV. 

SBus expansion cards need to provide adequate power supply 
decoupling as a function of the current they draw. 

An SBus expansion device must be able to tolerate negative or 
positive voltage spikes of 1 volt. The duration of such spikes 
must not exceed 1 J..ls. 

An SBus expansion card must not draw more than 30 rnA 
average at + 12 volts with respect to ground. An SBus expansion 
device must not draw more than -30 rnA average at -12 volts 
with respect to ground. 
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Capacitive Loading 

Stub Length 

SBus Specification B.O 

Because the SBus is designed to be compatible with CMOS 
devices (which are capable of only modest output drive), it is 
necessary to specify a maximum capacitive load per signal. 
In a properly designed SBus system, each expansion device 
must contribute no more than 20 pF per signal per expansion 
connector. This restriction includes the capacitive effects of any 
connectors and printed circuit board traces associated with the 
device. 

An SBus device should not connect more than a single input to 
any SBus signal. Signals having a fan-out greater than 1 should 
be buffered by the device. 

Figure 4-3. Capacitive Loading 

Parameter Condition Symbol Max. 

Loading per signal Css 20pF 

per SBus device 

Total loading F Clock <= 20 MHz Cts 160pF 

per signal 20 < F Clock <= 
25 MHz Cts lOOpF 

Traces for SBus signals on an SBus card should be as short as 
pOSSible, and in all cases be less than 50.8 millimeters 
(approximately 2-inches in length). 
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The SBus is designed to work only over a small physical 
distance in which rise times are long compared with 
propagation delay. In such an environment, signals do not 
usually behave as transmission lines and, therefore, termination 
is not necessary except where noted specifically. 

As long as SBus leakage current or drive requirements are not 
exceeded, SBus masters and slaves may have pullups, 
pulldowns, or other termination; SBus controllers may use 
holding amplifiers. 

Ack(2:0)* and LateError* The SBus signals Ack(2:0)* (Ack(2:0)*) and LateError* (LErr*) must 
be driven to their unasserted state before being undriven. 

IntReq(7:1 )* 

Data(31 :0), Size(2:0), and 
Read 
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Bus termination for these signals need only maintain the state. 

The SBus controller must terminate each of these signals with a 
10 Kn ±10% resistor connected to the +5V supply. 

The shared SBus interrupt lines,lntReq(7:1)* (lntReq(7:1 )*) do not 
conform to the SBus principle of being driven to their 
unasserted state before being undriven. The SBus controller 
must terminate each shared interrupt line with a 10 Kg ±10% 
resistor connected to the +5V supply. 

To prevent excessive power dissipation as a result of floating 
outputs, the SBus controller must terminate each of the data 
lines with a 10 Kg resistor connected to the +5V supply. As an 
alternative, holding amplifiers may be used. 

SBus controllers supporting ExtendedTransfers must connect 
Read (Rd) and Size(2:0) (Siz(2:0» to ground using a 2 Kn resistor, 
instead of to the +5V supply; and Siz(1 :0) must be terminated to 
the +5V supply using a 10 Kn resistor. As an alternative, 
holding amplifiers may be used. 
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DC Parameters 

Parameter 

Input Low Voltage 

Input High Voltage 

Output Low Voltage 

Output High Voltage 

Input Leakage Current 

Output Leakage Current 

(Driver turned off) 

SBus Specification 8.0 

SBus signals are neither strictly TTL compatible nor CMOS 
compatible. As shown in the following figure, SBus signals are 
designed to use TTL-like voltage levels while consuming 
minimal static current. These parameters are compatible with 
CMOS gate arrays which have TTL compatible input and 
output pads, as well as other standard families of components. 

SBus signals must not be driven or received using ordinary TTL 
circuitry as found in standard 7400, 74LSOO, 74500, and 74FOO 
families of devices, because leakage currents, pin capacitance, 
or other parameters may be incompatible with SBus. 

SBus signals should not be received using CMOS /NMOS input 
thresholds. Inputs must be sensitive to what are commonly 
referred to as TTL voltage levels. 

Figure 4-4. DC Parameters 

Condition Symbol Min. Max. Unit 

VIL 0.8 V 

VIH 2.0 V 

IOL =4.0 rnA VOL -0.4 0.4 V 

IOH =2.5mA VOH 2.4 5.5 V 

YIn = -.5V IlL -30 30 rnA 

to 5.5V 
VI/O = -.5V IlL -30 30 rnA 

to 5.5V 
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To provide adequate design margin, all SBus signal drivers 
must be capable of meeting the timing specifications shown in 
the following figure when driving the maximum capacitive 
load. 

All SBus devices must be capable of operating across the entire 
allowable clock range. 

Rise and fall times are measured from the 10% to 90% points for 
worst case logic levels. Setup, hold, and delay times are 
measured from midpoint of the Clock (Clk) transition to the 
midpoint of the signal transition - that is, midway between 
.4V VOL and 2.4V VOH' 

All times are specified with respect to the SBus connector. 
Any additional times due to trace or logic delays in the 
expansion card or host must be added or subtracted by 
designers as appropriate. These additional times are not 
reflected in the figures. 
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Figure 4-5. AC Parameters 

Parameter Condition Symbol Min. Max. Unit 

Clk frequency FClk 16.67 25 MHz 

Clkperiod TCp 40 60 ns 

Clk high time FClk= 16.67 to TCH 17 ns 
25 MHz 

Clklowtime FClk = 16.67 to TCL 17 ns 
25 MHz 

Clkskew CL = 160 pF TCS 0 2.5 ns 

Clk rise and fall time CL = 160pF TCR' TCF 1 3 ns 

IntReq(7:1)* fall time CL = 160 pF, TF 5 20 ns 

RL = 10KW 

IntReq(7:1)* rise time CL= 160 pF, TIR 5 1200 ns 

RL = 10KW 

Other signals, rise/fall CL = 160 pF, TR,TF 5 20 ns 

RL =1KW 

Rising edge of Clk to FClk <= 20 MHz TOD20 2.5 32.5 * ns 

output valid @ 20 MHz CL = 160pF 

Rising edge of Clk to 20 < FClk<= TOD25 2.5 22.5 ns 

output valid @ 25 MHz 25 MHz, 
CL = 100pF 

Output hold time after CL =OpF TOH 2.5 ns 

rising edge of Clk 

Rising edge of Clk to TZ TCp-5 ns 

OutputZ 
Input setup time before CL = 160 pF TIS 15 ns 

rising edge of Clk 

Input hold time CL = 160pF TIH 0 ns 

*This number a~plies to slostems only, which may be designed for operation at or below 20 MHz 
Cards must be esigned or 25 MHz operation to ensure maximum interoperability. 
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Mechanical Design A conforming SBus system need not have any expansion 
capabilities. SBus systems that have expansion capabilities 
must adhere to the mechanical specifications in this section. 

Expansion Connector 

94 

An SBus expansion card consists of an expansion connector, a 
printed circuit board, and a backplate. An external I/O 
connector may be mounted on the backplate, as appropriate, 
provided it does not violate the mechanical specifications in this 
section. 

All measurements are in millimeters unless otherwise 
indicated. 

The SBus uses a high-density 96-pin connector. Expansion 
cards use a male connector mounted on the solder side of the 
board. Motherboards use a female connector mounted to allow 
proper mechanical support and electrical shielding. 

Double-width cards must have two expansion connectors. 

Expansion connectors may be keyed or unkeyed. A keyed 
connector is identical to the unkeyed connector, except for the 
addition of a small plastic tab to prevent the connector from 
being incorrectly loaded into the board at manufacturing time 

The following three figures provide information about the 
expansion connector and connector pinout. The subsequent 
two figures show the mechanical details of the keyed connector 
(the unkeyed connector is not shown because it is upward 
compatible with the keyed connector). 

Recommendation: It is recommended that SBus expansion 
cards and motherboards be laid-out with the keyed connector 
PCB mounting hole pattern. This way, the keyed or unkeyed 
expansion connectors may be used. 
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Manufacturer 

Honda 

Fujitsu 

Observation: The following vendors supply SBus expansion 
connectors. Connectors are also available from other vendors, 
and can be used as long as they meet the mechanical 
specifications described on the following pages. 

Figure 4-6. SBus Expansion Connectors 

Connector Gender Mounting Hole Pattern Part Number 

Male Unkeyed PCS-96MD 
Keyed II-

Female Unkeyed PCS-96FD2 
Keyed PCS-96FD2KP 

Male Unkeyed FCN-234P096-GO 
Keyed FCN-234P096-G IY 

Female Unkeyed FCN-234J096-GO 
Keyed FCN-234J096-G/U 

*The part number for this connector has not been assigned as of the publication of this book. 
For information, please contact the SBus Technical Support Group at Sun Microsystems, Inc. 

SBus Specification B.O 

This specification makes no recommendation about the 
suitability of parts from these or any other vendors for a 
particular application. 
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Figure 4-7. Expansion Connector Pinout 

01. Gnd 33. PA(06) 65. 0(18) 
02. BR* 34. PA(08) 66.0(20) 
03. Sel* 35. PA(10) 67.0(22) 
04. IntReq(1)* 36. Ack(O)* 68. Gnd 
05.0(00) 37. PA(12) 69.0(24) 
06.0(02) 38. PA(14) 70.0(26) 
07.0(04) 39. PA(16) 71.0(28) 
08.lntReq(2)* 40. Ack(1)* 72. +5V 
09.0(06) 41. PA(18) 73.0(30) 
10.0(08) 42. PA(20) 74. Siz(1) 
11.0(10) 43. PA(22) 75. Rd 
12. IntReq(3)* 44. Ack(2)* 76. Gnd 
13.0(12) 45. PA(24) 77. PA(01) 
14.0(14) 46. PA(26) 78. PA(03) 
15.0(16) 47.0taPar 79. PA(05) 
16. IntReq(4)* 48. -12V 80. +5V 
17~ 0(19) 49.Clk 81. PA(07) 
18.0(21) 50.8G* 82. PA(09) 
19.0(23) 51. AS* 83. PA(11) 
20. IntReq(5)* 52. Gnd 84. Gnd 
21.0(25) 53.0(01 ) 85. PA(13) 
22.0(27) 54.0(03) 86. PA(15) 
23.0(29) 55.0(05) 87. PA(17) 
24. IntReq(6)* 56. +5V 88. +5V 
25.0(31 ) 57.0(07) 89. PA(19) 
26. Siz(O) 58.0(09) 90. PA(21) 
27. Siz(2) 59.0(11) 91. PA(23) 
28.lntReq(7)* 60. Gnd 92. Gnd 
29. PA(OO) 61.0(13) \ 93. PA(25) 
30. PA(02) 62. 0(15) 94. PA(27) 
31. PA(04) 63. 0(17) 95. Reset* 
32. LErr* 64. +5V 96. +12V 
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Figure 4-8. Signal Location 

Gnd -1q ~ elk 
SR* 0 G.5O. SG* 

Sel* 4 ~ AS* 
IntReq(1)* b ~ Gnd 

0(00) -4) ~ 0(01) 
0(02) ~ ~ 0(03) 
0(04) --4) ~ o (OS) 

IntReq(2)* 80 ~ +SV 
0(06) ~ ~ 0(07) 
O(OS) 1 b ~ 0(09) 
0(10) ~ ~ 0(11) 

I nt Req (3)* 1b c:P9- Gnd 

0(12) ~14 em-- 0(13) 
0(14) 0 ~ 0(1S) 
0(16) ~1 ~ 0(17) 

IntReq(4)* b ~ +SV 
0(19) ~ ~ 0(1S) 
0(21) 1 b }#- 0(20) 

0(23) ~ 20 *- 0(22) 
I ntReq(S)* 0 ~ Gnd 

0(25) ~ 2Q ~ 0(24) 
0(27) r-¥L 0(26) 

0(29) ~ ~ 0(2S) 
IntReq(6)* 2b r:¥L +SV 

0(31) ~ 26 ~ 0(30) 
Siz(O) 0 ~ Siz(1) 
Siz(2) ~ Q!L- Rd 

I nt Req (7)* ~ ~ Gnd 

PA(OO) ~30 Gil--- PA(01) 
PA(02) 0 ~ PA(03) 

PA(04) ~30 GJ:L- PA(OS) 
LErr* (j&- +SV 

PA(06) 4 em-- PA(07) 
PA(OS) 30 ~ PA(09) 

PA(10) ~3 ~ PA(11) 
Aok(O)* b r-fM- Gnd 

PA(12) ~ 38 ~ PA(13) 
PA(14) 0 ~ PA(1S) 
PA(16) ~ 40 ~ PA(17) 
Aok(1)* 0 ~ +SV 

PA(1S) ~ 42 #-- PA(19) 
PA(20) 0 r-¥ill- PA(21 ) 

PA(22) ~ ~ PA(23) 
Aok(2)* 4b ~ Gnd 

PA(24) ~ ~ PA(2S) 

PA(26) 47 ~ ~ PA(27) 

DtaPar ~4b ~ Reset* 
-12V ~ +12V 

Mechanical Design 
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Figure 4-9. Male Expansion Connector 

PIN 1 
1.27 ['OSO] 

71.00 [2,79S] ===n 
1----- 59,69 [2,350] 

o::::::::::::::::::~.::::::::::::::::::::: _ ~j 730 

/oe----- 64,06 [2,S22] -----0-1 

[ 

9 , 30 [, 336] 

1 ,SO [, OS9] 

.----------~-----------~ 

r- 33,59 [1,322] 

[.160] , , 
1.27 [,oso]L W~O 

59,69 [2,3S0]----I 

['047J 

r S9,69 [2,3S0J -I 
PIN 1 ~ 1.27 [,OSO] f 

1.27 [,sao] -j 
3X 1.90 ['07S] ~ ........... 1. .......... 1.1 I 

·:·:·~:~:,:,·:r·~:~:~·:::~K 
¢0,80 ['031J -.I J ¢1.S7 ±O,08 I-- 33,59 [1,322J [,062 ±,003] 

PCB MOUNTING HOLE PATTERN 

[,287] 

3.40 [.134] LQ 
1.905 [O:~~~ ~I 

0.40 [,016] +-
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Figure 4-10. Female Expansion Connector 

P 
71.00 [2,795J 
59.69 [2.350J -----I 

1.27 [.050] 

00000000000000000000000 0000000000000000000000 
00000000000000000000000 00000000000000000000000 

1------ 63.86 [2.514] -----I 

[1.322] ---j 

4.06 [.160] L I I 

.1.20 ['0.'7)~ ~I I 0.40 ['016~ 1.27 (050) ~ L 
59.69 [2.350J--=-=i 

PIN 1 

[,287] 

5.00 [.197] 

14.45 ['569J 
[.059] 

~ 59.69 [2.350J I jt 1.27 [,050] ~ PIN . n I" 1.27 [.500J 

I !r ............... ) ...................... L-1: 3X L90 
['075J 

lZl1.57 
[,062 

.-11-. ~.7.:-:-=:-.7·-::7·~·r·~ \(,,-; .~:.~ 
±0.08 L (ZIO,80 [,031] 
±.003J 33,59 [1.322J----I 

PCB MOUNTING HOLE PATTERN 

SBus Specification B.O 

Mechanical Design 

3.40 ()34) ~ M 
L905 [O:~~~ ~I 

0.40 [.016] +-
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Expansion Board Types Two types of SBus expansion boards are currently defined: 
and Sizes 

Board Materials 

100 

o Single-width. 

o Double-width. 

Note: Not all systems support all board types. 

Figure 4-11. Expansion Board Sizes 

Type Total Length Total Width 

Single-width 146.70mm 83.B2mm 
Double-width 146.70mm 170.28mm 

Recommendation: Triple-width SBus cards are not described 
in this book. Until Sun has more operational experience with 
triple-width cards, designers are discouraged from building 
them. 

Also, even though the Sun SP ARC station 1 has three SBus 
expansion connectors, future systems may not accommodate a 
triple-width SBus card. 

The board shall be 1.60 mm, ±O.20 mm thick. The combination 
of board warpage, component lead length, and component 
height shall not exceed the specified maximum allowable 
component or lead heigth limits as shown in figure 4-13. 
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Component Clearance The following figure shows the minimum acceptable gap 
between any solder-side components and any components on 
the motherboard. This gap guarantees that, under normal 
shock and vibration, there is no unintentional contact between 
the SBus card and components on the motherboard. Ultimately, 
this places a restriction on component heights allowable on the 
motherboard, without restricting the spacing of the SBus card 
above the motherboard. 

1.52 ['060J b 
t 

I 

(20,32 [,800]) 

SBus Specification.B.O 

The maximum component height, including board thickness, is 
15.31 mm (0.60 in). The maximum component or lead height 
below the board is 4 mm (0.16 in). This spacing is sufficient to 
allow the mounting of low profile SMT devices such as 
DRAMS. See the figure on the next page. 

Figure 4-12. Minimum Component Gap 

SBUS BOARD 

7 

MOTHER 
BOARD 

/ 

/ SBUS 
CONNECTOR 

\ 

-

" II / 
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Lnapter 4: l:.leCtrzcat ana lVlecnamcat ueszgn 

There is no longer any space reserved for a possible future 
connector. This space may be used for components. 

Figure 4-13. Component Clearance 

( 160 [063] ) ~r r ~~~~ ~~~g~ ABLE . . COMPONENT OR 
~ LEAD HEIGHT 

-'---96---PI-N fi--: r- ! 

HIGH DENSITY 1 1 

CONNECTOR I I 
1 1 
1 1 

I I 
143,61 ±.40 1 1 

1 1 

[5,654 ±,016J 

I I 
1 1 

1 1 

I ! / M2 SCREW 

(2.54 UOO))L l IV [ (2X 1.3 LOS]) m 

tJ 1 I 

J I 14.3 [,56] [] 

11--- 4,00 [.157] 

(1.22 [,048]) ~- MAX, ALLO\./ ABLE 
COMPONENT OR 

1.12 [,044] - LEAD HEIGHT 

IT] AREA OCCUPIED BY M2 SCRE\./S 
SEE TOP VIEW' FOR 
COMPLETE DETAIL. 
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Backplate 

SBus Specification B.O 

Every SBus card must have a metal backplate appropriate for its 
width, as shown in the following four figures for single-width, 
and in the subsequent four figures for double-width. These 
backplates are two piece assemblies to allow them to work in 
desktop environments or constricted-height environments such 
as laptops and VME-based applications. 

It is permissible to replace double-width backplates with two 
single-width backplates appropriately spaced across the back of 
the SBus card. 

The area available for connector openings on the backplate 
must be treated as a tunnel that extends perpendicular to the 
backplate. Any connector used must fit entirely within this 
tunnel, including the connector shell and any mechanical 
restraint mechanisms used. 

After it is installed in the system, the backplate must be 
electrically connected to chassis ground by the system. It must 
not be connected to the logic ground on the SBus expansion 
card directly, via capacitive (including stray capacitance) or 
inductive means. It may be necessary to electrically isolate the 
connector or connectors of an expansion card from the 
backplate to meet this requirement. Also, it may be necessary 
in some cases to use differential, transformer, or opto-isolation 
techniques. 
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Single-width SBus 
Card 

146,70 ±,25 

[5,776 ±,OlOJ 

2,54 (JOOJ 

IT] 
[ 2X 1.3 ['05J 

Chapter 4: Electrical and Mechanical Design 

The following figure shows a single-width SBus card. 
The subsequent three figures show a single-width backplate. 

Figure 4-14. Single-width SBus Card 

83,82 ±0,25 
[3,300 ±,OlOJ 

t---- 77.47 [3,050J --~ 

1---- 68,57 [2,700J 
TO PIN 1 

(5.13 [,202]) 

COMPONENT 

SIDE 

PIN 1 

1.12 ['044J 

TO PIN 1 OF CONNECTOR 

2X <;1)3,81 

[.150J 

TOLERANCES: 
,xx = ±0,10 

,x = ±0,25 

[1J AREA OCCUPIED BY M2 SCREW'S, 
SEE SIDE VIEW' FOR 
COMPLETE DETAIL, 

M2 SCREW' 

(2'2~I,090]) ~! I-0>-- <79,24 qJ3.120J) ---I-I SBUS BACKPLATE 

104 SBus Specification B.O 



Chapter 4: Electrical and Mechanical Design 

Figure 4-15. Single-width Backplate 

2X 

2X R1.5 [,06] 

2X RO.5 [,02] 

~ 

THE AVAILABLE CONNECTOR OPENING SHOULD BE 
INTERPRETED AS A TUNNEL THAT EXTENDS ON BOTH 
SIDES OF THE SBUS BACKPLATE, THEREFORE THE 
CONNECTOR BODY AND CONNECTOR MATING PART 
SHOULD STAY "'ITHIN THIS TUNNEL. 

~ EXTRUDE AND TAP FOR M2.5-0.45 SCREW. 

Mechanical Design 

2X 02.15 THRU 
VII>4.20X90' 

[12l.090 THRU 
V¢.18X90'] 

PUNCH AND EXTRUSION 

TOLERANCES, 

X.X = 0.4 
X.XX = 0.20 

ANGLE = 0.5' 

DIRECTION 

Figure 4-16. Detail of Single-width Backplate Adaptor 

2.29 ±O.10 
[,090 ±.004] 

TOLERANCES, 

X.X = 0.4 
X.XX = 0.20 

ANGLE = 0.5' 

--~-. r---- ::--r 
I 2X RO~5 [,02] I 2X I- 2X 4.58 U80] EXTRUDE 8. TAP 

1------- 79.24 ±0.1O . FOR M2.0-0A seRE'" 
[3.120 ±.004] 

1-------- 83.82 [3.300] 

SBus Specification 8.0 

2.10 ±0.25 ---! r 
[,083 ±.010] I 

3.28 [,129]L-ijJ 

T-i1-
(1.19) --II--
(,047) 

SECTION A-A 
PUNCH AND EXTRUSION 

===C> 
DIRECTION 

105 



Mechanical Design 

106 

Chapter 4: Electrical and Mechanical Design 

Figure 4-17. Single-width Backplate Assembly 

o 
20.50 ±0.37 

°U±·OIS] 
~~----------------~--~ 

SINGLE-VIDTH SBUS BACKPLATE ADAPTOR 

SINGLE-VIDTH SBUS BACKPLATE 
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Double-width SBus 
Card 

The following figure shows a double-width SBus card. 
The subsequent three figures show a double-width backplate. 

2.54 [.100] 

137.16 
[5.400) 

Figure 4-18. Double-width SBus Card 

1----------- 170.18 ±Q.25 ---------l 
[6.700 ±.01O) 

a 
163.83 [6.450] 

1--------- 154.93 [6.100) ---------1 
TO PIN 1 

1---- 86.36 [3.400] ----I 

+.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: .••. 
••• 0 ••••••••••••••• 0 •••• 

COMPONENT 
SIDE 

OJ Ii IT] i 
(2.29 [,090]) --I '=== (82.80 [3.260) ---j IT] 

I-~>---------- (165.60 [6.520]) ---------1 

SBus Specification B.O 

P1N 1 

2X 1.12 [,044] 
TO P1N 1 OF CONNECTOR. 

146.70 ±0.25 

[5.776 ±.010] 

TOLERANCES: 
.XX = 0.10 

.X = 0.25 

3X 1.3 [,05] IT] 

SBUS BACKPLATE 
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2.29 to.10 
[,090 t.004J 

Figure 4-19. Double-width Backplate 

1---------------170.18 [6.700J --------------1 
1------------ 165.60 to.IO [6.520 t.004J -------------1 
1------- 89.15 [3,510J -------1 

3X ~2.15 THRU 
V ~4.20X90· 
[1lI,089 ~,181X90·J 

P 82,80 to,1O [3,260 t,004J ==m 
2X 78.23 [3.080] 

(2X 73.66 [2.900J) 
AVAILABLE CONNECTOR 
OPENING. SEE NOTE I. A 

==--===--==--:...-= =--=-===-=-=-=---== 71 
: : .: 19,64 

I #- -tt- I ['773J ~ L __________________ ~ L _________________ ~~ 

l J L 1270 [SOD) " R"~~::F~6l (1.19) -II-
2X 57,9 [2.29J 

~ 

CD i~iE::R~}t~L;S C~N~5~J~~ f~;~I~~T~~g~LgN B~DTH 
SIDES OF THE SBUS BACKPLATE, THEREFORE THE 
CONNECTOR BODY AND CONNECTOR MATING PART 
SHOULD STAY 'WITHIN THIS TUNNEL, 

iii EXTRUDE AND TAP FDR M2,5-0.45 SCRE'W. 

TOLERANCES. 

XX = 0.4 
X,XX = 0.20 

ANGLE = 0.5" 

([,047]) 

PUNCH AND EXTRUDE 

DIRECTION 

Figure 4-20. Detail of Double-width Backplate Adaptor 

141-------------155,40 [6,118] -------------1 
I 89.94 [3.541] 

1--'------ 80,24 [3.159] -----I 

~o [69,04 +~2'7l8] 
5.60 -0,20 .220 -,008J f~ijOO A ---, ~ 2,30 [0.91] fJ~3 t~.~ro;l r 

I -.l r 507 to,25 . I 
~~~~~~1~-~~1~~~~~~~~~~~~~~f~~~~~~~~~§~~~~~i~[~UW ~ 

~ 
-~,;~- -1---- ---,- 3.28 L129JI 11-

3X A ----1 (1.19) --H-
EXTRUDE 8. TAP ([,047]) 

1---- 82.80 :to.10 [3,260 t.004J FOR M2,0-0,4 SCRE'w' 

2,29 to,lO 
[,090 t,004] 

1----------- 165,60 to,lO [6,520 t,004] -------------1 

108 

1--------------165,60 [6,520]---------------1 

1--------------170.18 [6,700J ----------------/ 

IDI ERANCES: 

X,X = 0.4 
X.XX = 0.20 

ANGLE = 0.5" 

SECTION A-A 

PUNCH AND EXTRUSION 

DIRECTION 
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Figure 4-21. Dauble-width Backplate Assembly 

I [,059 ±,OlO] 1
1- 1.50 ±0,25 

t C=°o 1_~_~~~C] l@J _____ ~ _~ _~]~o°---'--->-20.50 ±0.37 
o 0 [,807 ±.015] 

l 

DOUBLE-VIDTH SBUS BACKPLATE ADAPTOR 

..... 

"M2~0.4X4.0MMFLT HD.PHIL SCRE~ 
3 PL 

DOUBLE-VIDTH SBUS BACKPLATE 
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SBus Retainer and 
Stand-off 

Chapter 4: Electrical and Mechanical Design 

The following figure details the SBus retainer. The retainer 
assists the insertion or removal of the SBus card, and provides 
mechanical restraint for it against shock and vibration in a 
desktop environment. 

Figure 4-22. SBus Retainer 

1------- 77.80 -------1 

-
R 3.0", 
2X 

Ar 

110 

t- 2.5 
REF 

2X 

" 

t 6.5 1 

~~ RI.O 
4X / 

f 19.3 

R3.0 --.L ~ 
'A 

I 

2X f~ 
1------71.QO~~:~------1/-- l, L7~2.0 2X 

ALL ~~~ I- 1.70±Q.l 

2X 

3.2±1{.1 f 1.6±Q.I 
fI) 3.6±Q.l 

R 1.8±0.1 

SECTION A-A 
SCALE, 8/1 

o 

NOTES ' UNLESS DTHERIJISE SPECIFIED . 

1 INTERPRET ALL DIMENSIONS AND TOLERANCES PER ANSI Y145M-82 

2 ALL DIMENSIONS ARE IN MILLIMETERS 

3. MA TERIAL : POL YCARBONATE, LEXAN 141, BLACK 

4 FINISH, SPI-SPE 112. 

5. ALL DRAFT ANGLES TO BE 5 DEGREES MAX PER SIDE 

[§J PARTING LINE MISMATCH IN SECTION A-A TO BE 0.05 MAX 
(2 PLCS), ALL OTHER AREAS TO BE 0.1 MAX. 

7. TOLERANCES, 
O.X = ± 0.2 
Q.XX = ± 0.10 
ANGLES = ± 0.5 DEGREE 
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".60["8:]~ 

0.90 ['035]:r==~ 

In other non-<iesktop applications such as laptops and VME
based applications, the retainer may not be necessary and can 
be easily removed. In these applications, a pair of stand-offs 
such as those in the following figure may be used. 

These stand -offs mount to the SBus card using the same holes to 
which the retainer otherwise mounts. Some mechanical means 
must be provided to retain the SBus card in its slot. 

Figure 4-23. SBus Stand-off 

040 [,0'6]11 rm-l r 'i' 
<4.05 : US9] z..:§8. - -- -_. ~=--,---L-0-3'7-0-Y-: [.]46] 

1.80 ['07}~ I. 0.40 [.016] III 
3.60 [.142] -I ~ 2.00 [,079] ~ 

AV~ 0;.30 Ll69] 

~~ l1.00 ['039J 

-- - 3.80 L150] 

1 EQUAL TO ENGAGED HEIGHT OF SBUS CONNECTORS. 

2 EQUAL TO THICKNESS OF MOTHER BOARD. 

3. MATERIAL: NYLON 6/6. 
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VMEIFUTUREBUS 
Installation 
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The following figure shows how an SBus backplate is installed 
on a VME rear panel. 

Figure 4-24. SBus Card Installed on VME Card 

/ 

SBUS BACKPLATE 
(ADAPTOR REMOVED) 

,~ M2.5-0.45-8.0MM,FLT HD,PHL 

VME REAR PANEL 
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FCode Drivers for SBus 
Cards 

This chapter describes the programmatic operation of SBus 
slaves, masters, and controllers. Each SBus expansion card 
must have a Programmable Read-Only Memory (PROM) which 
identifies the device and contains an optional software driver to 
allow the card to be used as a boot device or as a display device 
during booting. This driver may also contain diagnostic, self
run routines. 

SBus device PROMs must be written in the FCode 
programming language. FCode has the following advantages: 

o Source format is machine and system independent. 

o Binary format is machine, system, and position 
independent. 

o Binary format is compact. 

o Binary format may be interpreted easily and efficiently. 

o Programs are easy to develop and debug. 

o Source format can be easily translated into binary format. 

o Binary format can be untranslated back to a source format. 
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Program Format 
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Chapter 5: FCode Drivers for SBus Cards 

The FCode PROM must begin at address 0 within the SBus 
card's physical address space. Its size may range from 30 bytes 
up to the entire physical address space of the SBus card. 
Typical sizes are 60 bytes (for a simple card that identifies itself 
but does not need a driver) and 1-4 Kbytes (for a card with a 
boot driver or on-board diagnostics, or both). 

The FCode PROM must be organized as follows: 

o Header (8 bytes) containing the following information: 

o Magic number. 

o Version number. 

o Length. 

o Checksum. 

o Body (0 or more bytes) containing the FCode program. 

o End Token (a zero byte). 

SBus Specification B.O 
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Program 
Interpretation 

SBus Specification 8.0 

For each SBus slot, the FCode program is interpreted as follows: 

o Location 0 of the SBus card is read with a 32-bit access. 

The card must return the first 4 bytes of the PROM, or return 
the first byte and respond with a byte acknowledgment so 
that the CPU can perform bus sizing for the remaining 3 
bytes. 

o If there is no response (meaning there is no card in that slot), 
the slot is subsequently ignored. 

o If the high-order byte of the value returned from that access 
is not the FCode magic number Oxfd or other values 
OxfO - Oxf3, the slot is subsequently ignored. 

o Otherwise, the PROM IS assumed to contain a valid FCode 
program. 

The FCode PROM is then interpreted by starting at 
location O. Reading one byte at a time, the procedure 
associated with the value of that byte is executed. 

o When a byte containing 00 is interpreted, interpretation 
ceases. 

Note: Configuration parameters stored in non-volatile memory 
on the CPU board control the order in which the various SBus 
slots are interpreted. 
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Device 
Identification 
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Chapter 5: FCode Drivers for SBus Cards 

An FCode PROM must identify its device. The identification 
information must at least include the driver name of the card. 
Identification information may describe additional 
characteristics of the device for the benefit of the operating 
system and the CPU boot PROM. 

Each property must have a name and a value. The name is a 
string; the value is an array of bytes which may encode strings, 
numbers, various other data types, and combinations thereof. 

Properties may be created arbitrarily by FCode PROMs. 
The CPU boot PROM understands certain property names 
which inform it about such things as the type of the device 
(for example, whether it is a disk, tape, network, display). 
The CPU boot PROM may use this information to determine 
how to use the device (if at all) during the booting process. 

Observation: In most systems, the CPU's FCode interpreter 
stores each device's identification information in a device tree 
that contains a node for each device. Each device node contains 
a property list to identify and describe the device. The property 
list is created as a result of interpreting the program in the 
FCodePROM. 

The UNIX® operating system understands other property 
names that provide information for configuring the operating 
system automatically. These properties include the driver 
name (which is treated as a hint), the addresses and sizes of the 
device's registers, and the interrupt levels and interrupt vectors 
used by the device. 

Other properties may be used by individual UNIX device 
drivers. The names of such properties and the interpretation of 
their values are subject to agreement between the writers of the 
FCode PROM and the UNIX driver, but may otherwise be 
arbitrarily chosen. For example, a display device might declare 
width, height, and depth properties to allow a single UNIX driver 
to automatically configure itself for one of several similar but 
different devices. 
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FCode Language 

. SBus Specification 8.0 

The FCode programming language is closely related to the 
FORTH-83 programming language. FCode is essentially 
FORTH-83 with extensions appropriate to its use for device 
identification and boot drivers. Additionally, FCode has a well
specified binary format, whereas FORTH-83 specifies only the 
source format. In contrast to FORTH-83, FCode is based on a 
32-bit stack width and 32-bit arithmetic. 

Observation: FCode may be thought of as byte-coded FORTH. 
FCode PROMs are developed by writing FORTH source code; 
then a simple tokenizer program is used to convert the source 
code to the binary (byte code) format. The binary version is 
then loaded into a PROM and installed on the SBus card. 

In most cases, each FORTH source code corresponds to a single 
FCode binary code. For some FORTH commands, the tokenizer 
provides macros to convert a single FORTH source code 
command into a sequence of several FCode binary codes. 
A version of the tokenizer program (for Sun-4 workstations) is 
available through the Sun SBus Technical Support Group . 

117 



FCodes and FORTH Chapter 5: FCode Drivers for SBus Cards 

FCodes and FORTH For information about FCode primitives currently supported by 
the Open Boot PROM, see Appendix C. For information about 
FCodes and the FORTH programming language, see one of the 
following books: 
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o Writing FCode Programs for SBus Cards, a Sun Microsystems, 
Inc. publication, part number 800-5673-10. 

o Starting FORTH, 2d edition 
by Leo Brodie 
(Prentice-Hall). 

o Mastering FORTH 
by Anita Anderson and MartinTracy 
(Brady Publishing). 

o FORTH: A Text and Reference 
by Nicholas Spies and Mahlon Kelley 
(Prentice-Hall) . 

SBus Specification B.O 



Slave 

SBus Specification B.O 

A 

Specification Compliance 

This appendix describes the minimal requirements for SBus 
cards to be compliant with the SBus specification. SBus slaves, 
masters, and systems can be compliant with the specification 
without supporting all SBus features, as described in this 
appendix. 

To be a compliant SBus slave, an SBus device must at least: 

D Use Clock (Clk) to determine signal validity. 

D Meet all setup, hold, and delay times. 

D Meet all AC and DC electrical specifications. 

D Use at least AddressStrobe* (AS*) and SlaveSelect* (Sel*) to 
determine whether it should participate in the current bus 
cycle. 

D Drive Data(31 :0) (D(31 :0» in accordance with the Read (Rd) 
signal. 

D Sense all Size(2:0) (Siz(2:0» signals, and support at least one 
transfer size. 

At least one non-burst transfer size must be supported, a 
byte, half-word or word. 
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D Drive the Ack(2:0)* (Ack(2:0)*) signals, and be able to respond 
with at least one kind of Data Acknowledgment. 

D Respond with a valid acknowledgment within the bus 
timeout period. 

Otherwise, no response should be given. 

D Have an FCode PROM beginning at physical address o. 

To be a compliant SBus master, an SBus device must at least: 

D Use the SBus elk to determine signal validity. 

D Meet all setup, hold, and delay times. 

D Meet all AC and DC electrical specifications. 

D Assert Request* (BR*) to access the bus. 

However, never keep BR* asserted for more than two 
consecutive bus cycles, except during an atomic transaction 
which causes bus sizing or uses dummy reads. 

D Sense Grant* (BG*), and place virtual addresses on D(31 :0) at 
the appropriate time. 

D Drive all Siz(2:0) signals, and support at least one transfer 
size. 

D Drive Rd to indicate the transfer direction. 

D Drive D(31 :0) in accordance with the Rd signal. 

D Sense all of the Ack(2:0)* signals, and terminate the bus cycle 
after receiving appropriate acknowledgment. 

o Support Error Acknowledgment by aborting the bus cycle, 
and Rerun Acknowledgment by reissuing the bus cycle. 

To be compliant, a master may not terminate a bus cyQ:le 
until the slave (or, in the case of a timeout, the SBus 
controller) has terminated the bus cycle. 
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SBU8 Controller 
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To be a compliant SBus controller, the controller must: 

o Provide a elk in the range of 16.67 MHz to 25 MHz. 

o Drive AS*, Sel*, PhysAddr{27:0) (PA{27:0», and Reset*. 

o Support at least one bus master. 

In host-based systems, this master may be just the CPU. 
In a system with DVMA masters, the controller must 
arbitrate fairly among the master's BR*, and issue the 
appropriate 8G*. 

o Provide address translation facilities for all DVMA masters. 

o Issue an Error Acknowledgment in case of a bus timeout. 

o Support 1-, 2-,4- and 16-byte transfers. 

o Support rerun. 
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Parity Checking 

SBus Specification B.O 

B 

SBus Extensions 

This appendix describes extensions to the SBus. These 
extensions provide recommendations about implementing 
certain features which are not a standard part of the SBus 
specification. 

In some systems, it may be desirable to be able to check whether 
data is transferred properly between master and slave, and that 
no data corruption has occurred while traversing chip pins, 
connectors, and wiring. 

When the SBus is reset, all extended parity checking must be 
disabled. An SBus device using extended parity checking must 
use its FCode program to determine whether the system 
supports extended parity checking. Extended parity checking 
must remain disabled, unless supported by the system. 

Note: The following information applies primarily to 32-bit per 
clock cycle transfers. For information about 64-bit per clock 
cycle transfers, see the next section in this appendix. 
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Devices that compute extended parity checking must do so only 
over the bits of Oata(31 :0) (0(31 :0», and for all values placed 
onto 0(31 :0), including virtual addresses during translation 
cycles. Odd parity is computed. The SBus device currently 
driving 0(31 :0) must drive OtaPar so that XORing the OtaPar 
signal with 0(31 :0) results in a logic 1. The OtaPar signal must 
be driven with the same timing as 0(31 :0). In the case of byte or 
half-word transfers, devices supporting extended parity must 
drive the high-order bits of the data lines to compute parity 
correctly. 

The receiving SBus device is responsible for detecting parity 
errors. During translation cycles, the SBus controller must 
check the parity of the virtual address, and issue an Error 
Acknowledgment. The master must then abort the bus cycle, or 
retry it as desired. 

When data is written by a master, the master must generate 
parity on 0(31 :0) for each datum transferred, and the slave must 
check the parity of 0(31 :0). If the slave detects a parity error, it 
should generate an Error Acknowledgment or LateError* (LErr*), 
or both. When data is read by a master, the slave must generate 
parity on 0(31 :0) for each datum transferred, and the receiving 
master must check the parity of 0(31 :0). If the master detects 
parity error, it should generate an interrupt (but the master 
must not use LErr* or Error Acknowledgment). 

Observation: When a device is driving data, data parity may 
always be generated or driven. Data parity must not be 
checked, unless it is supported by the system. 
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SBus 64-bit 
Transfer Protocols 

Scope and 
Compatibility 

Overview 
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S Bus 64-bit Transfer Protocols 

This section describes a set of extensions to the basic SBus 
protocols to transfer 64 bits of data each clock cycle instead of 
only 32 bits each clock cycle. 

The 64-bit SBus extensions apply to all SBus systems and 
environments. SBus systems and devices conforming to the 
specifications in this section will operate both in existing 32-bit 
SBus environments, as well as in the 64-bit SBus environment. 

SBus masters and slaves using only the 32-bit protocols will 
work correctly in systems that implement the 64-bit protocols; 
and, conversely, SBus masters and slaves using the 64-bit 
protocols will operate correctly in systems that implement only 
32-bit protocols. Furthermore, 32-bit SBus masters and slaves 
can transfer data to and from 64-bit slaves and masters. 

The 64-bit SBus protocols provide a means to improve SBus 
band wid th and reduce SBus latency while maintaining forward 
and backward compatibility. To achieve these goals, the 64-bit 
SBus protocols use the same signals as the existing 32-bit 
protocols. 

However, they take advantage of time-multiplexing the 
PhysAddr(27:0) (PA(27:0», Size(2:0) (Siz(2:0», Read (Rd), and 
Data(31 :0) (D(31 :0» signals to create a 64-bit wide path capable 
of transferring a double-word of data every clock cycle. 
The 64-bit transfer SBus extension also provides for 128 byte 
transfers. 
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Figure B-2 shows the nature of the 64-bit protocol. The master 
asserts its Request* (BR*) signal the same as for all SBus requests. 
After receiving Grant* (BG*), the master begins a translation 
cycle. As for all transfers, the master drives a virtual address 
onto 0(31 :0), drives Rd to the proper state, and sets Siz(2:0) to 
Extend ed Transfer. In the fastest possible case, the SBus 
controller then drives a physical address onto PA(27:0), and 
asserts AddressStrobe* (AS*). 

At the same time, the requesting master drives Rd to a 
(indicating a write), independent of the actual transfer 
direction. It also drives 0(31 :0) with the following Extended 
Transfer Information: 

Figure B-1. Extended Transfer Information 

0(31) 
0(30:28) 
0(27) 
0(26:25) 
0(24:0) 

ExtendedType. 
Extended Size 
Read/write. 
Atomic transaction 
Reserved 

If an SBus slave supports Extended Transfers, it must latch the 
physical address on PA(27:0) and the cycle information on 
0(31 :21) on the clock edge following the assertion of AS*. 
Unlike 32-bit transfers, where this information remains valid 
throughout the bus cycle, in an ExtendedTransfer this 
information is valid only at the clock edge following the 
assertion of AS*. 
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S Bus 64-bit Transfer Protocols 

During the clock cycle after the assertion of AS·, the SBus 
controller must tristate PA(27:0), while the SBus master must 
tristate Siz(2:0), Rd, and 0(31 :0). The SBus controller must have 
pulldown resistors on Rd and Siz(2), and pullup resistors on 
Siz(1 :0) to maintain them in the proper state. 

As early as this same clock cycle but no later than 255 clock 
cycles after the assertion of AS·, an SBus slave supporting 
Extended Transfers should assert double-word 
acknowledgmentAn SBus slave which does not support 
ExtendedTransfers should issue an Error Acknowledgment. 
Until the acknowledgment is received, the master must 
continue to keep 0(31 :0), Rd, and Siz(2:0) tristated, while the 
controller must continue to keep PA(27:0) tristated. 

During a write, in the cycle following the acknowledgment, the 
master must drive the first double-word of data onto 
0(63:0) - that is, Rd, Siz(2:0), PA(27:0), and 0(31 :0). During a 
read, in the cycle following the acknowledgment, the slave 
must drive D(63:0). 

In both cases, the data lines are driven for exactly one clock 
cycle. In the case of a burst transfer, the next double-word 
acknowledgment can come as soon as the cycle during which 
the double-word is driven. Thus, Extended Transfer timing for 
both reads and writes is the same as 32-bit timing for reads. 
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PA(27:0) 

Sel* 

AS* 
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LErr* 
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Figure B-2. 64-bit Protocol 
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Clock 

Reset* 

AddressStrobe* and 
SlaveSelect* 

PhysAddr(27:0) 
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The remainder of this appendix describes the specifications for 
performing Extended Transfers. 

The specification for the SBus elk signal remains unchanged for 
Extended Transfers. 

The specification for the SBus Reset* (Reset*) signal remains 
unchanged for Extended Transfers. 

The specification for the SBus AS* remains unchanged for 
Extended Transfers. In Extended Transfers, AS* is asserted in the 
clock cycle during which physical address is driven onto 
PA(27:0) by the SBus controller. AS* remains asserted 
throughout the entire transfer. 

However, during a 32-bit transfer, a master may use 8G* for all 
of its timing, and need not look at AS*. During an 
Extended Transfer, a master must look for the assertion of AS* to 
determine when to stop drivingSiz(2:0), Rd, and D(31 :0). 

The specification for SlaveSelect* (Sel*) remains unchanged for 
Extended Transfers. 

During an Extended Transfer, the SBus controller must drive a 
physical address onto PA(27:0) for exactly one clock cycle, no 
sooner than two clock cycles following the assertion of 8G* to 
some master, and no later than the clock cycle in which it asserts 
AS*. In this respect, 64-bit transfers and 32-bit transfers use of, 
and timing for, PA(27:0) are identical. 

In the clock cycle following the assertion of AS*, the SBus 
controller must tristate (stop driving) PA(27:0), and leave this 
signal undriven until at least two clock cycles after it deasserts 
the latter of 8G* or AS*. For each slave, the physical address 
space for Extended Transfers must be the same as for 32-bit 
transfers. It must be possible to access data using the same 
physical address with 32- Or 64...;bit transfers. 
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64-bit Transfer Bus 
Cycle 
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The specification for BR* and BG* remain unchanged for 
Extended Transfers. The sequence of events for atomic 
transactions also remains unchanged. However, if the first bus 
cycle of an atomic transaction uses an ExtendedTransfer, all bus 
cycles in the atomic transaction (including any dummy reads) 
must also use ExtendedTransfers. 

For 32-bit transfers, a master may use 8G* for all of its timing 
and need not look at AS*. However, for ExtendedTransfers, a 
master must look for the assertion of AS* to determine when to 
stop driving Siz(2:0), Rd, and 0(31 :0). 

Observation: Restricting all bus cycles of an atomic transaction 
to the same transfer size simplifies the design of bus couplers. 

An Extended Transfer bus cycle consists of two phases: a 
translation cycle and a slave cycle. 

Like 32-bit transfers, an ExtendedTransfer (64-bit) translation 
cycle begins when the SBus controller asserts BG*. During the 
clock cycle immediately following BG*, the master must drive a 
virtual address onto 0(31 :0), drive Rd appropriately for the 
direction of data transfer and, unlike 32-bit transfers, drive 
Siz(2:0) to ExtendedTransfer. In the second clock cycle 
following the assertion of 8G*, the SBus master must drive Rd to 
logic level 0, independent of the direction of transfer. 

During this same clock cycle, the master must drive 0(31 :0) with 
Extended Transfer Information. The master must continue to 
drive these signals until the clock cycle after which the SBus 
controller asserts AS* (which it may do as early as the second 
clock cycle after the assertion of 8G*). However, the SBus 
controller is allowed to take more than one clock cycle to 
translate the virtual address. After translating the virtual 
address, the SBus controller must drive the corresponding 
physical address onto PA(27:0), and assert AS* and the 
appropriate Sel*. 
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Slave Cycle 
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If an SBus controller does not support Extended Transfers, it 
should issue an Error Acknowledgment instead of asserting 
AS*. Nevertheless, a master should be enabled to issue 
ExtendedTransfers only in systems supporting 
ExtendedTransfers and to slaves supporting 
ExtendedTransfers. Thus, an Error Acknowledgment occurs 
only if a master is misprogrammed. 

Like 32-bit transfers, an ExtendedTransfer slave cycle begins 
with the assertion of AS*. At the clock edge following the 
assertion of AS*, the selected 64-bit slave must latch the physical 
address, the Extended Transfer Information on 0(31 :0), and the 
fact that an Extended Transfer is being performed as indicated 
by Siz(2:0). 

thus, unlike 32-bit transfers, PA(27:0) is valid during this first 
clock cycle only. During the clock cycle following the assertion 
of AS*, the master must tristate Rd, Siz(2:0), and 0(31 :0), while 
the SBus controller must tristate PA(27:0). After tristating these 
signals, the controller must not drive PA(27:0) again until the 
latter of two clock cycles following the last acknowledgment, or 
one clock cycle after it unasserts 8G* and AS*. 

As soon as one clock cycle after the assertion of AS*, the selected 
slave may drive Ack(2:0)*. Slaves requiring additional time may 
wait to drive Ack(2:0)*, as long as the entire transfer is completed 
within 255 clock cycles after AS* is asserted - that is, the SBus 
tim out period remains unchanged for Extended Transfers. 

If the selected slave does not support ExtendedTransfers, it 
must issue an Error Acknowledgment. If the selected slave 
does support ExtendedTransfers, it should generate a double
word acknowledgment. In the case of a read (as indicated by 
ExtendedTransferRead) the slave must drive 0(63:0) with the first 
8 bytes of data during the clock cycle following its 
acknowledgment, for exactly one clock cycle. 
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In the case of a write (as indicated by ExtendedTransferRead, not 
the Rd signal), the master must drive the first double-word of 
data during the clock cycle following the slave's 
acknowledgment. Thus, whereas 64-bit read transfers follow 
the same timing as 32-bit read transfers, 64-bit write transfers do 
not. Instead, 64-bit write transfers use the same timing as 64-bit 
read transfers. 

If more than 8 bytes of data are transferred (as indicated by 
ExtendedTransferSiz(2:0», the slave must continue to generate 
double-word acknowledgments. 

The controller may unassert AS* and 8G* as early as one clock 
cycle following the last double-word acknowledgment for the 
bus cycle. As for 32-bit transfers, following the last 
acknowledgment, the slave must drive Ack(2 :0)* to the logic 1 
state for one clock cycle, after which the slave must stop driving 
Ack(2:0)*. By the latter of two clock cycles after the last 
acknowledgment or the clock cycle following 8G* being 
unasserted, the slave (in the case of a read) or the master ( in the 
case of a write) must tristate D(63:0). 

As for 32-bit transfers, LErr* may be used to indicate errors. If it 
is used, its timing is the same as for 32-bit read transfers: it must 
be asserted two clock cycles after the corresponding double
word acknowledgment, for exactly one clock cycle, after which 
it must be driven to the logic 1 state of one clock cycle. In the 
case of burst transfers, it may remain asserted for each double
word in error. 
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Data(63 :0) For ExtendedTransfers, 8 bytes of data are transferred on the 
SBus signals 0(63:0). SBus masters, slaves, and controllers must 
use the following mapping between 0(63:0) and the standard 
SBus signals. 

SBus Specification B.O 

Figure B-3. Using 0(63:0) for ExtendedTransfers 

ExtendedTransfer 

0(63) 
0(62:60) 
0(59:32) 
0(31 :0) 

Standard SBus Signal 

Rd 
Siz(2:0) 
PA(27:0) 
0(31 :0) 

Note: 0(63) is the most significant bit of the double-word; 
0(0) is the least significant bit. 

When used to transfer data during a slave cycle, 0(63:0) must be 
driven no sooner than the clock cycle following the assertion of 
the first non-idle acknowledgment; and it must be tristated no 
later than the latter of the second clock cycle following the last 
acknowledgment, or one clock cycle after 8G* is unasserted. 
For Extended Transfers, each double-word of data is driven for 
one clock cycle beginning with the clock cycle following the 
associated acknowledgment. Unlike 32-bit transfers, this 
timing is the same for both reads and writes. 

Since addressing is big-end ian, 0(63:56) is the most significant 
byte and is located at address A mod 8 = O. Byte 7 (0(7:0» is 
located at address A mod 8 = 7. Similarly, the words at address 
A mod 8 = 0 and A + 4 are placed on 0(63:32) and 0(31 :0), 
respectively. 

Observation: Port locations for bytes, half-words, and words 
are not defined for Extended Transfers, since Extended Transfers 
always take place in multiples of 8 bytes. 

133 



SBus 64-mt Transfer Protocols 

Extended Transfer 
Information 

134 

Appendix B: SBus Extensions 

Every SBus master supporting Extended Transfers must drive 
Extended Transfer Information onto 0(31 :0), beginning with the 
second clock cycle following the assertion of 8G*, until the clock 
cycle following the assertion of AS*, at which time the master 
must tristate 0(31 :0). 

Every SBus slave supporting ExtendedTransfers must latch the 
Extended Transfer Information driven on 0(31 :0) at the clock 
edge following the assertion of AS*. 

The following mapping must be used between the Extended 
Transfer Information signals and 0(31 :0). 

Figure B-4. Using 0(31 :0) for ExtendedTransfers 

ExtendedTransfer 

ExtendedTransferType 
ExtendedTransferSize(2:0) 
ExtendedTransferRead 
ExtendedTransferAtomic(1 :0) 
ExtendedTransferReserved(22:0) 

Standard SBus Signal 

0(31) 
0(30:28) 
0(27) 
0(26:25) 
0(24:0) 
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ExtendedTransferType During an ExtendedTransfer, the ExtendedType signal must be 
set to 64-bit Transfer as the following figure shows. Masters 
performing ExtendedTransfers must not use the reserved 
encoding of ExtendedType. Slaves that support 
ExtendedTransfers and detect ExtendedType set to the reserved 
value must generate an Error Acknowledgment. 

Figure B-5. ExtendedType functions 

ExtendedTransferType 

o 
1 

Function 

64-bit Transfer 
Reserved 

Observation: The ExtendedType signal provides a mechanism 
for future extensions to the SBus. 

ExtendedTransferSize(2:0) For ExtendedTransfers, ExtendedTransferSize(2:0), not Siz(2:0), 
determines how many bytes of data are transferred during a 
bus cycle. The following encodings for ExtendedTransferSize 
must be used. 

Figure B-6. ExtendedType 

ETSize (2) EfSize (1) ETSize (0) Fundion 

0 0 0 Reserved 
0 0 1 Reserved 
0 1 0 Reserved 
0 1 1 8 bytes 
1 0 0 16 bytes 
1 0 1 32 bytes 
1 1 0 64 bytes 
1 1 1 128 bytes 
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Masters must not generate the reserved values of 
ExtendedTransferSize. Slaves should issue an Error 
Acknowledgment if they detect a reserved value of 
ExtendedTransferSize. 

A master may implement only a subset of the 
ExtendedTransferSizes. A slave may support only a subset of the 
ExtendedTransferSizes. A master or slave supporting an 
ExtendedTransferSize of size n, must support all extended 
transfer sizes up to size n. 

Observation: 1,2, and 4 byte transfers must be performed 
using normal 32-bit SBus protocols. 

During a Extended Transfer, the master must drive 
ExtendedTransferRead to 0 to perform a write, and to 1 to 
perform a read. 

The value of ExtendedTransferRead must be identical to the 
value the master drives onto the SBus signal Rd during the clock 
cycle following the assertion of 8G*. 

ExtendedTransferAtomic should be set to Normal (ObOO) except 
for bus cycles that are part of an atomic transaction. Masters 
performing atomic transactions should drive 
ExtendedTransferAtomic(1 :0) as the following figure shows. 

Figure B-7. ExtendedTransferAtomic(1 :0) 

ET Atomic (1) ETAtomic (0) Function 

o 
o 
1 
1 
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o 
1 
o 
1 

Normal bus cycle (non-atomic bus cycle) 
First bus cycle of an atomic transaction 
Intermediate bus cycle of an atomic transaction 
Last bus cycle of an atomic transaction 
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Size(2:0) TheSBus master must drive Siz(2:0) to ExtendedTransfer 
(encoding Ob011), beginning with the clock cycle following the 
assertion of 8G* until the clock cycle following the assertion of 
AS*. Beginning with the clock cycle following the assertion of 
AS* until the slave asserts a non-idle acknowledgment, the 
master must tristate Siz(2:0). Beginning with the clock cycle 
following the acknowledgment, Siz(2:0) signals are used as 
0(62:60) and must follow 0(63:0) timing described previously. 

Read 
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SBus controllers supporting ExtendedTransfers must terminate 
Siz(2) using a 2 Kn resistor to ground or a holding amp lifer. 
The SBus controller must terminate Siz(1 :0) using a 10 Kn 
resistor to the +5V supply or a holding amplifer. 

Observation: The termination requirement for Siz(2:0) keeps 
this signal in the proper state of ExtendedTransfer during the 
time in which the bus is turned around. 

The SBus master must drive Rd to a logic 0 state (in the case of a 
write) or a logic 1 state (in the case of a read), beginning with the 
clock cycle immediately following the assertion of 8G*, for 
exactly one clock cycle. Beginning with the second clock cycle 
following the assertion of 8G*, until the clock cycle following 
the assertion of AS*, the master must drive Rd to a logic 0 state, 
even if the master is performing a read. Beginning with the 
clock cycle following the assertion of AS* until the slave asserts 
a non-idle acknowledgment, the master must tristate Rd. 
Beginning with the clock cycle following the acknowledgement, 
Rd is used as 0(63) and must follow D(63:0) timing described 
previously. 
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ExtendedTransferRead must be set to the same value that Rd has 
during the clock cycle following the assertion of 8G*. 

SBus controllers supporting ExtendedTransfers must terminate 
Rd with a 2 Kn resistor to ground or a holding amp lifer. 

Observation: In the event a 32-bit slave is selected accidently, 
Rd is driven to logic 0 state after the first clock cycle of the 
translation cycle to ensure that the drivers of the slave and 
master do not fight during the clock cycle following the 
assertion of AS*. 

The termination requirement for Rd keeps it in the proper state 
of logic 0 during the time in which the bus is turned around. 

The timing and use of Ack(2:0)* is largely the same for 64-bit and 
32-bit transfers. However, the meaning of byte, half-word, and 
word acknowledgments is undefined during an 
ExtendedTransfer and, therefore, should not be used. 

As explained earlier, the timing for writing D(63:0) with respect 
to Ack(2:0)* is not the same for 32-bit and 64-bit transfers. 
For Extended Transfers, D(63:0) signals are driven with data one 
clock cycle after Ack(2:0)* is asserted for both reads and writes. 

Bus sizing is not supported for Extended Transfers. Only 
multiples of 8 bytes can be transferred. 
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The following acknowledgments apply to ExtendedTransfers: 

D Word Acknowledgment. 

A slave must not generate a word acknowledgment during 
an Extended Transfer. A master or controller receiving a 
word acknowledgment during an Extended Transfer must 
abort the bus cycle. 

D Double-word Acknowledgment. 

A slave must generate a double-word acknowledgment 
(encoding ObOlO) to indicate it is ready to transfer a double
word of data during the next clock cycle. 

D Error Acknowledgment. 

The use of Error Acknowledgment remains unchanged for 
Extended Transfers. 

Note: Because write data comes after the corresponding 
acknowledgment, it may be necessary for a slave to use LErr* 
instead of Error Acknowledgment to signal data errors. 
Error Acknowledgment can still be used to signal 
addressing or Extended Transfer Information errors. 

D Rerun Acknowledgment. 

The use of Rerun Acknowledgment remains unchanged for 
Extended Transfers. 

A slave must not generate the following acknowledgments 
during an ExtendedTransfer: 

D Byte Acknowledgment. 

An SBus master or controller receiving a byte 
acknowledgment during an ExtendedTransfer must abort 
the bus cycle. 

D Half-word Acknowledgment. 

A master or controller receiving a half-word 
acknowledgment during an Extended Transfer must abort 
the bus cycle. 
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Timeouts The timeout rules for the SBus remain unchanged for 
Extended Transfers. 

Late Error* During ExtendedTransfers, the timing for LErr* is the same as 
for 32-bit transfers: LErr* must be asserted for one clock cycle, 
beginning two clock cycles after the associated 
acknowledgment LErr* must then be driven to its unasserted 
state for one clock cycle, after which it must be tristated. 

DataParity The use of OtaPar during ExtendedTransfers is similar to its use 
during 32-bit transfers. SBus devices should not check OtaPar 
unless they are enabled to do so. 

Compatibility 
Considerations 
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lf enabled, OtaPar must be generated as follows. During the 
translation cycle, OtaPar must be a check only on 0(31 :0). 
Beginning with the clock cycle after the first double-word 
acknowledgment, whenever 0(63:0) has valid data, OtaPar must 
be a check on 0(63:0). During any clock cycle in which 0(31 :0) 
must be tristated, OtaPar must also be tristated. 

Except for 128 byte transfers, an SBus device supporting 
ExtendedTransfers must support 32-bit SBus transfers of the 
same size (in number of bytes). SBus devices must also support 
1 word 32-bit transfers. 

It must be possible to program a master to perform 32-bit 
transfers only. 

An SBus master should not initiate Extended Transfers unless 
the intended slave is known via Open Boot to support 
Extended Transfers. 
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Signal Termination 

Size(2:0) 

Read 
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S Bus 64-bit Transfer Protocols 

SBus controllers supporting ExtendedTransfers must pull Siz(2) 
using a 2 Kn resistor to ground and Siz(1 :0) using a 10 Kn 
resistor to the +5V supply, or use holding amplifers. 

SBus controllers supporting Extended Transfers must pull Rd 
using a 2 Kn resistor to ground or a holding amplifer. 
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FCode Primitives 

Byte Function Stack 
51 depth ( -- +n ) 
46 drop ( n -- ) 
52 2drop (n1 n2 -- ) 
47 dup ( n -- n n ) 

c 

FCode Reference 

This appendix contains two lists: FCode primitives and FCode 
byte values. FCode primitives are grouped according to 
function, while FCode byte values appear in hexadecimal order. 

The following figures describe FCodes currently supported by 
the Open Boot PROM. New 2.0 FCodes are indicated by the 
comment, "valid only in 2.0 or greater systems." Both the FCode 
token values and Forth names are included. A token value 
entry of CR indicates a cross-compiler-generated sequence, 
while - indicates that no FCode is generated. 

Figure C-1. Stack Manipulation 

Description 
How many items on stack? 
Removes n from the stack 
Removes 2 items from stack 
Duplicates n 

53 2dup (n1 n2 -- n1 n2 n1 n2) Duplicates 2 stack items 
Duplicates n if it is non-zero 
Copies top 3 stack items 
Discards the second stack item 

50 ?dup ( n -- n n I 0 ) 
CR 3dup (n1 n2 n3 -- n1 n2 n3 n1 n2 n3 ) 
4d nip (n1 n2 -- n2) 
48 over (n1 n2 -- n1 n2 n1 ) 
54 20ver (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) 
4e pick ( +n -- n2 ) 
30 >r ( n -- )( rs: -- n) 
31 r> ( -- n )( rs: n -- ) 
* Use these FCodes cautiously. 
32 r@ ( -- n )( rs: -- ) 
4f roll ( +n -- ) 
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Copies second stack item to top of stack 
Copies 2 stack items 
Copies +n-th stack item 
Moves a stack item to the return stack * 
Moves item from return stack to data stack * 

Copies the top of the return stack to the data stack 
Rotates +n stack items 
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4a rot 
4b -rot 
56 2rot 
49 swap 
55 2swap 
4c tuck 

(n1 n2 n3 -- n2 n3 n1 ) 
(n1 n2 n3 -- n3 n1 n2) 
(n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) 
(n1 n2 -- n2 n1 ) 
(n1 n2 n3 n4 -- n3 n4 n1 n2) 
(n1 n2 -- n2 n1 n2) 
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Rotates 3 stack items 
Shuffles top 3 stack items 
Rotates 3 pairs of stack items 
Exchanges the top 2 stack items 
Exchanges 2 pairs of stack items 
Copies the top stack item below the second item 

Figure C-2. Arithmetic Operations 

Byte Function Stack 
20 ( n 1 n2 -- n3 ) 
1 e + ( n 1 n2 -- n3 ) 
1f ( n 1 n2 -- n3 ) 
21 1 (n1 n2 -- quot ) 
CR 1 + (n1 -- n2) 
CR 1- (n1 -- n2 ) 
59 2* (n1 -- n2 ) 
57 21 (n1 -- n2) 
27« (n1 +n -- n2) 
28» ( n 1 +n -- n2 ) 
CR «a (n1 +n -- n2 ) 
29 »a ( n 1 +n -- n2 ) 
2d abs ( n -- u ) 
ae aligned (adr1 -- adr2 ) 
23 and (n1 n2 -- n3 ) 
ac bounds ( startadr len -- endadr startadr ) 
2f max (n1 n2 -- n3) 
2e min (n1 n2 -- n3) 
22 mod (n1 n2 -- rem) 
CR */mod (n1 n2 n3 -- rem quot ) 
2a Imod (n1 n2 -- rem quot ) 
2c negate (n1 -- n2) 
26 n~ (n1-n2) 
24 or (n1 n2 -- n3) 
2b ulmod ( ul un -- un. rem un.quot ) 
58 u21 ( u 1 -- u2 ) 
25 xor (n1 n2 -- n3 ) 
* The following four FCodes are valid only in 2.0 or greater systems. 
d4 u*x ( u1 [32] u2[32] -- product[64] ) 

d5 

d8 
d9 
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xu/mod 

x+ 
x-

( u1 [64] u2[32] -- remainder[32] quot[32]) 

(x1 x2 -- x3) 
(x1 x2 -- x3) 

Description 
Multiplies n1 times n2 
Adds n1+n2 
Subtracts n1-n2 
Divides nlln2 
Adds one 
Subtracts one 
Multiplies by 2 
Divides by2 
Left shifts n1 by +n places 
Right shifts n1 by +n places 
Arithmetic left shifts (same as «) 
Arithmetic right shifts n1 by +n places 
Absolute value 
Adjusts an address to a machine word boundary 
Logical and 
Converts start,len to end,start for DO loop 
n3 is maximum of n1 and n2 
n3 is minimum of n1 and n2 
Remainder of nlln2 
Rem, quotient of n1*n2ln3 
Remainder, quotient of n1/n2 
Changes the sign of n1 
One's complement 
Logical or 
Unsigned 32-bit divide of ul/un 
Logical right shifts 1 bit 
Exclusive or 

Multiplies two unsigned 32-bit numbers, yields an 
unsigned 64-bit product 
Divides an unsigned 64-bit number by an unsigned 
32-bit number, yields a 32-bit remainder and quotient 
Adds two 64-bit numbers 
Subtracts two 64-bit numbers 
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Figure C-3. Memory Operations 

Byte Function Stack Description 
72 ( n adr -- ) Stores a 32-bit number into the variable at adr 
Sc +! ( n adr -- ) Adds n to the 32-bit number stored in the variable at adr 
77 2! ( n1 n2 adr -- ) Stores 2 numbers at adr; n2 at lower address 
7S 2@ ( adr -- n1 n2) Fetches 2 numbers from adr; n2 from lower address 
Sd @ ( adr -- n) Fetches a number from the variable at adr 
CR ? (adr1S --) Displays the 32-bit number at adr 
75 c! ( n adr -- ) Stores low byte of n at adr 
71 C@ ( adr -- byte) Fetches a byte from adr 
CR blank (adr len --) Sets len bytes of memory to ASCII space, starting at adr 
CR cmove (adr1 adr2 u -- ) Same as MOVE 
CR cmove> (adr1 adr2 u -- ) Same as MOVE 
7a comp (adr1 adr2 len -- n ) Compares two byte arrays including case. n=O if same 
CR erase (adr len --) Sets len bytes of memory to zero, starting at adr 
79 fill ( adr u byte -- ) Sets u bytes of memory to byte 
73 I! ( I adr -- ) Stores the 32-bit number at adr, must be 32-bit aligned 
Se I@ ( adr -- I) Fetches the 32-bit longword at adr, must be 32-bit aligned 
78 move (adr1 adr2 u -- ) Copies u bytes from adr1 to adr2, handles overlap correctly. 
Sb off ( adr -- ) Stores false (32-bit 0) at adr 
Sa on ( adr -- ) Stores true (32-bit -1) at adr 
74 w! (w adr --) Stores a 1S-bit word at adr, must be 16-bit aligned 
Sf w@ (adr -- w) Fetches the unsigned 1S-bit word at adr, must be 1S-bit aligned 
70 <W@ ( adr -- n) Fetches the signed 1S-bit word at adr, must be 1S-bit aligned 

Figure C-4. Comparison Operations 

Byte Function Stack Description 
3S 0< (n -- flag) True if n < 0 
37 0<= (n -- flag) True if n <= 0 
35 0<> (n -- flag) True if n <> 0 
34 0= (n -- flag) True if n = 0, also inverts any flag 
38 0> (n -- flag) True if n > 0 
39 0>= (n -- flag) True if n >= 0 
3a < (n1 n2 -- flag) True if n1 < n2 
43 <= (n1 n2 -- flag) True if n1 <= n2 
3d <> (n1 n2 -- flag) True if n1 <> n2 
3c = (n1 n2 -- flag) True if n1 = n2 
3b > ( n 1 n2 -- flag) True if n1 > n2 
42 >= ( n 1 n2 -- flag ) True if n1 >= n2 
44 between ( n min max -- flag) True if min <= n <= max 
CR false (-- 0) The value FALSE 
CR true (-- -1 ) The value TRUE 
40 u< (u1 u2 -- flag) True if u1 < u2, unsigned 
3f u<= (u1 n2 -- flag) True if u1 <= u2, unsigned 
3e u> (u1 n2 -- flag) True if u1 > u2, unsigned 
41 u>= (u1 n2 -- flag) True if u1 >= u2, unsigned 
45 within ( n min max -- flag) True if min <= n < max 
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Byte Function 
(text) 
\ 

CR ascii x 
CR control x 
8e key 
8d key? 
8a expect 
88 span 

(s text) 

Byte Function 
ab bell 
a9 bl 
aa bs 
CR carret 
CR linefeed 
CR newline 

Byte Function 
a4 -1 
a5 0 
a6 1 
a7 2 
a8 3 
CR bl number 

binary 
CR dlnumber 

decimal 
CR hI number 

hex 
CR 01 number 

octal 
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Figure C-S. Text Input 

Stack 
( -- ) 
( -- ) 
(-- char) 
(-- char) 
(-- char) 
(-- flag) 
(adr +n --) 
(-- adr) 
( -- ) 

Description 
Begins a comment (ignored) 
Ignore rest of line (comment) 
ASCII value of next character 
Interprets next character as ASCII CONTROL character 
Reads a character from the keyboard 
True if a key has been typed on the keyboard 
Gets a line of edited input from the keyboard; store at adr 
Variable containing the number of characters read by EXPECT 
Begins a comment (ignored) 

Figure C-6. ASCII Constants 

Stack Description 
( -- n ) The ASCII code for the bell character; decimal 7 
(-- n) The ASCII code for the space character; decimal 32 
( -- n) The ASCii oode for the baokspaoe oharacter; decimal 8 
(-- n) The ASCII code for the carriage return character; decimal 13 
( -- n ) The ASCII code for the linefeed character; decimal 10 
(-- n) The ASCII code for the newline character; decimal 10 

Figure C-7. Numeric Input 

Stack Description 
(-- n) Constant -1 
(-- n) Constant 0 
(-- n) Constant 1 
(-- n) Constant 2 
(-- n) Constant 3 
(-- n) Interprets next number in binary 
( -- ) If outside definition, input text in binary 
( -- n) Interprets next number in decimal 
( -- ) If outside definition, input text in decimal 
(-- n) Interprets next number in hexadecimal 
( -- ) If outside definition, input text in hexadecimal 
(-- n) Interprets next number in octal 
( -- ) If outside definition, input text in octal 
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Figure C-B. Numeric Primitives 

Byte Function Stack Description 
99' (+11 -- +12) Converts a digit in pictured numeric output 
97 ,> ( I -- adr +n ) Ends pictured numeric output 
96 <, ( -- ) Initializes pictured numeric output 
aO base ( -- adr) USER variable containing number base 
a3 digit (char base -- digit true I char false) Converts a character to a digit 
95 hold ( char -- ) Inserts the char in the pictured numeric output string 
9a 'S ( +1 -- 0 ) Converts the rest of the digits in pictured numeric output 
98 sign ( n -- ) Sets sign of pictured output 
The following FCode is valid only in 2.0 or greater systems. 
a2 $number ( adr len -- true I n false) Converts a string to a number 

Byte 
9d 
CR 
CR 
CR 
CR 
CR 
CR 
ge 
9f 
CR 
9b 
9c 

Byte 
CR 
CR 
91 
92 
8f 
CR 
CR 
90 

Byte 
94 
93 

Function 

binary 
.d 
decimal 
.h 
hex 
octal 
.r 
.s 
s. 
u. 
u.r 

Function 

" texf' 
.( text) 
(cr 
cr 
emit 
space 
spaces 
type 

Function 
lIine 
'out 
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Stack 
(n -- ) 
( -- ) 
(n -- ) 
( -- ) 
(n -- ) 
( -- ) 
( -- ) 
(n +n -- ) 
( -- ) 
(n -- ) 
(u -- ) 
(u +n -- ) 

Figure C-9. Numeric Output 

Description 
Displays a number 
If inside definition, output in binary 
Displays number in decimal 
If inside definition, output in decimal 
Displays number in hexadecimal 
If inside definition, output in hexadecimal 
If inside definition, output in octal 
Displays a number in a fixed width field 
Displays the contents of the data stack 
Displays n as a signed number 
Displays an unsigned number 
Prints an unsigned number in a fixed width field 

Figure C-10. General-purpose Output 

Stack Description 
( -- ) Compiles string for later output 
( -- ) Displays a string now 
( -- ) Outputs ASCII CR character; decimal 13 
( -- ) Starts a new line of display output 
(char -- ) Displays the character 
( -- ) Outputs a single space character 
( +n -- ) Outputs +n spaces 
(adr +n --) Displays n characters 

Figure C-11. Formatted Output 

Stack 
(-- adr) 
( -- adr) 

Description 
Variable holding the line number on the output device 
Variable holding the column number on the output device 
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Byte 
CR 
CR 
CR 
CR 
CR 

Byte 
CR 
CR 
CR 

Byte 
CR 
CR 
19 
1a 
CR 
CR 
CR 
CR 

Byte 
1d 
33 

Function 
again 
begin 
repeat 
until 
while 

Function 
if 
else 
then 

Function 
do 
?do 

j 
leave 
?Ieave 
loop 
+Ioop 

Function 
execute 
exit 
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Figure C-12. BEGIN Loops 

Stack 
( -- ) 
( -- ) 
( -- ) 
(flag -- ) 
(flag -- ) 

Description 
Ends BEGIN .. AGAIN (infinite) loop 
Starts conditional loop 
Returns to loop start 
Iftrue, exits BEGIN .. UNTILloop 
If true, continues BEGIN .. WHILE .. REPEAT loop, else exits loop 

Figure C-13. Conditionals 

Stack 
(flag -- ) 
( -- ) 
( -- ) 

Description 
If true, executes next FCode(s) 
(optional) Executes next FCode(s) if IF failed 
Terminates IF .. ELSE .. THEN 

Figure C-14. DO Loops 

Stack 
( end start -- ) 
( end start -- ) 
(-- n) 
(-- n) 
( -- ) 
(flag -- ) 
( -- ) 
(n -- ) 

Description 
Loops, index startto end-1 inclusive 
Like DO, but skips loop if end = start 
Returns current loop index value 
Returns value of next outer loop index 
Exits DO loop immediately 
If flag is true, exits DO loop 
Increments index, returns to DO 
Increments by n, returns to DO. If n<O, index start to end 

Figure C-lS. Control Words 

Stack 
(acf -- ) 
( -- ) 

Description 
Executes the word whose compilation address is on the stack 
Returns from the current word 

Figure C-16. Strings 

~ Byte 2 Function Stack Description 
CR " text" ( -- adr len) 
84 count ( pstr -- adr +n ) 
82 Icc ( char -- lower-case-char) 
83 pack ( adr len pstr -- pstr ) 
81 upc ( char -- upper-case-char) 
The following FCode is valid only in 2.0 or greater systems. 

Collects a string 
Unpacks a packed string 
Converts char to lower case 
Makes a packed string from adr len, placing it at pstr 
Converts char to upper case 

2 40 left-parse-string (adr len char -- adrR lenR adrL lenL) Splits a string at the given delimiter (which is 
discarded) 
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Byte 
CR 
CR 

Function 
: (colon) name 
; (semicolon) 
alias newname oldname 
buffer: name 
constant name 
create name 
defer name 
field name 
struct 

Figure C-17. Defining Words 

Stack 
( -- ) 
( -- ) 
( -- ) 
(size -- ) 
(n -- ) 
( -- ) 
( -- ) 
( offset size -- offset+size ) 
(-- 0) 
( -- ) 

Description 
Begins colon definition 
Ends colon definition 
Creates newname with behavior of oldname 
Creates data array of size bytes 
Creates a constant 
Generic defining word 
Execution vector (change with IS) 
Creates a named offset pointer 
Initializes for FIELD creation 
Creates a data variable 

CR 
CR 
CR 
CR 
CR 
CR 
CR 
CR 

variable name 
value name (n -- ) Creates named VALUE-type variable (change 

with IS) 

Figure C-1B. Dictionary Compilation 

Byte Function Stack Description 
d3 (n -- ) Places a number in the dictionary 
dO c, (n -- ) Places a byte in the dictionary 
ad here (-- adr) Address of top of dictionary 
d2 I, ( I -- ) Places a 32-bit longword in the dictionary 
d1 w, (w --) Places a 16-bit word in the dictionary 
CR is name (n -- ) Changes value in a defer word or a value 

Figure C-19. Dictionary Search 

Byte Function Stack 
CR ' name ( -- acf) 
CR ['] name ( -- acf) 
cb $find ( adr len -- adr len false I acf +-1 ) 
The following FCode is valid only in 2.0 or greater systems. 
cd eval ( adr len -- ) 
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Description 
Finds the word (while executing) 
Finds word (while compiling) 
Finds a name in the Open PROM 

Executes FORTH commands within a 
string 
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Byte 
7f 
bO 
5a 
66 
5e 
62 
80 
5c 
68 
60 
64 
7e 
7c 
5d 
69 
61 
65 
5b 
67 
5f 
63 
af 
CR 
7d 

Byte 
8b 
8c 
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Function 
bljoin 
bwjoin 
Ic 
Ic* 
ca+ 
ca1+ 
flip 
II 
11* 
la+ 
la1+ 
Ibsplit 
Iwsplit 
In 
In* 
na+ 
na1+ 
/w 
/w* 
wa+ 
wa1+ 
wbsplit 
wflip 
wljoin 

Function 
alloc-mem 
free-mem 
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Figure C-20. Conversions Operators 

Stack 
( b.low b2 b3 b.hi -- I ) 
( b.low b.hi -- w ) 
(-- n) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
(w1 -- w2) 
(-- n ) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
( I -- b.low b2 b3 b.high ) 
(1-- w.low w.high) 
(-- n) 
(n1 -- n2) 
( adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
(-- n) 
(n1 -- n2) 
(adr1 index -- adr2 ) 
(adr1 -- adr2 ) 
( w -- b.low b.high ) 
(11 -- 12 ) 
(w.low w.high -- I) 

Description 
Joins four bytes to form a longword 
Joins two bytes to form a 16-bit word 
Address increment for a byte; 1 
Multiplies by IC 
Increments adr1 by index times IC 
Increments adr1 by IC 
Swaps the bytes within a 16-bit word 
Address increment for a 32-bit longword; 4 
Multiplies by /L 
Increments adr1 by index times /L 
Increments adr1 by /L 
Splits a longword into four bytes 
Splits a longword into two words 
Address increment for a normal; 4 
Multiplies by IN 
Increments adr1 by index times IN 
Increments adr1 by IN 
Address increment for a 16-bit word; 2 
Multiplies by IW 
Increments adr1 by index times IW 
Increments adr1 by IW 
Splits a 16-bit word into two bytes 
Swaps halves of 32-bit longword 
Joins two words to form a longword 

Figure C-21. Memory Buffers Allocation 

Stack 
( nbytes -- adr ) 
( adr nbytes -- ) 

Description 
Allocates nbytes of memory and returns its address 
Frees memory allocated by ALLOC-MEM 
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Bvte 
86 
85 
CR 
00 
ff 
CR 

7b 
cc 

Figure C-22. Miscellaneous Operators 

Function Stack Description 
>body ( acf -- apf ) Finds parameter field address from compilation address 
body> ( apf -- acf ) Finds compilation address from parameter field address 
emit-byte (n --) Outputs FCode byte (use with TOKENIZERD 
endO ( -- ) Marks the end of Fcode 
end1 ( -- ) Alternates form for ENOO (not recommended) 
fcode-version1 (--) Begins FCode program 
fload filename ( -- ) Begins tokenizing filename 
headerless (--) Creates new names with NEW-TOKEN (no name fields) 
headers ( -- ) Creates new names with NAMED-TOKEN (default) 
noop ( -- ) Does nothing 
offset16 ( -- ) All further branches use 16-bit offsets (instead of 8-bit) 
tokenizer[ ( -- ) Begins tokenizer program commands 
]tokenizer ( -- ) Ends tokenizer program commands 

87 version ( -- n ) Returns the version' of the Fcode interpreter 
The following two FCodes are valid only in 2.0 or greater systems. 
CR fcode-version2 (--) Begins 2.0 FCode program, compiles START1 

external ( -- ) Creates new names with EXTERNAL-TOKEN 

Figure C-23. Internal Operators (invalid for program text) 

Bvte Function Stack Description 
1-f table'1-15 Reserved byte codes, used for 2-byte entries 
10 b(lit) (-- n) Followed by 32-bit,. Compiled by numeric data 
11 be) (--acf) Followed by a token (1 or 2-byte code). Compiled by ['] or I 

12 b(,1 (-- adr len) Followed by count byte, text. Compiled by " or ." 
c3 b(is) (n -- ) Compiled by IS 
fd version 1 ( -- ) Followed by null byte, checksum (2 bytes) , 

length (4 bytes). Compiled by FCOOE-VERSION1 , 
as the first Fcode bytes 

fe 4-byte-id ( -- ) Followed by 3 identifier bytes. First Fcode byte. Not supported. 
Used if no Fcode available, to uniquely identify device 

13 bbranch ( -- ) Followed by 8-bit offset. Compiled by ELSE or AGAIN 
14 b?branch ( -- ) Followed by 8-bit offset. Compiled by IF or UNTIL 
15 b(loop) ( -- ) Followed by 8-bit offset. Compiled by LOOP 
16 b(+loop) (n -- ) Followed by 8-bit offset. Compiled by +LOOP 
17 b(do) (end start -- ) Followed by 8-bit offset. Compiled by DO 
18 b(?do) (end start -- ) Followed by 8-bit offset. Compiled by?OO 
1b b(leave) ( -- ) Compiled by LEAVE or ?LEAVE 
b1 b«mark) ( -- ) Compiled by BEGIN 
b2 b(>resolve) ( -- ) Compiled by ELSE or THEN 
c4 b(case) ( -- ) Compiled by CASE 
c5 b(endcase) ( -- ) Compiled by ENOCASE 
c6 b{endof) ( -- ) Compiled by ENDOF 
1c b(of) ( sel testval -- sel I none) Followed by 8-bit offset. Compiled by OF 
b5 new-token ( -- ) Followed by table', code', token-type. Compiled by 

any defining word. Headerless, not used normally. 
b6 named-token ( -- ) Followed by packed string (count,text), table', code', 

token-type. Compiled by any defining word 
(: VALUE CONSTANT etc.) 

b7 be:) Token-type compiled by: 
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b8 b(value) Token-type compiled by VALUE 
b9 b(variable) Token-type compiled by VARIABLE 
ba b(constant) Token-type compiled by CONSTANT 
bb b(create) Token-type compiled by CREATE 
bc b(defer) Token-type compiled by DEFER 
bd b(buffer:) Token-type compiled by BUFFER: 
be b(field) Token-type compiled by FIELD 
c2 be;) ( -- ) End a colon definition. Compiled by ; 
The following five FCodes are valid only in 2.0 or greater systems. 
ca external-token ( -- ) Like NAMED-TOKEN, but name header is a/ways created at 

probe time 
fO startO (-- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 

branches. Fetches successive tokens from same address 
f1 start 1 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 

branches. Fetches successive tokens from consecutive 
addresses. Compiled by FCODE-VERSION2 

f2 start2 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 
branches. Fetches successive tokens from consecutive 
16-bit addresses 

f3 start4 ( -- ) Like VERSION1, but for version 2.0 FCodes. Uses 1S-bit 
branches. Fetches successive tokens from consecutive 
32-bit addresses 

.fu1U 
1 
1 
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Bvte2 
01 
02 

03 

04 
05 

OS 

Bvte2 
Of 

Function 
dma-alloc 
my-address 

my-space 

memmap 
free-virtual 

>physical 

Function 
my-params 

Figure C-24. Memory Allocation 

Stack 
( nbytes -- virt ) 
(-- phys) 

(-- space) 

Description 
Maps in nbytes of DMA space, return virt. adr 
Returns the physical adr of this plug-in device. "phys" 
is a "magic" number, usable by other routines 
Returns address space of plug-in device. "space" 
is a "magic" number, usable by other routines 

( phys space nbytes -- virt ) 
(virt nbytes -- ) 

Maps in a region, return virtual adrress 
Frees virtual memory from MEMMAP, DMA
ALLOC,or MAP-SBUS 

( virt -- phys space) Returns physical adr and space for virt. adr 

Figure C-2S. Non-volatile Parameters 

Stack 
(-- adr len) 

Description 
Returns a data array for this plug-in device. The 
data format is defined specifically for each plug-in 
device, in order to customize the device. 
Params for each device, as needed, will be 
stored in the system NVRAM 
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Bvte1 Bvte2 Function 
1 10 attribute 

11 xdrint 

12 xdr+ 

13 xdrphys 

Figure C-26. Device Information 

Stack 
( xdr-adr xdr-Ien name-adr name-len -- ) 

( n -- xdr-adr xdr-Ien ) 

(xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 --
xdr-adr1 xdr-len1 +2 ) 
( phys space -- xdr-adr xdr-Ien ) 

FCode Primitives 

Description 
Declares an attribute with the given 
value structure, for the given 
name string. 
Converts a number into a numeric 
attribute structure 
Merges two attribute structures. They 
must have been created sequentially 
Converts physical address and space 
into an attribute structure 

14 xdrstring (adr len -- xdr-adr xdr-Ien) Converts a string into a value structure 
The following FCode is valid only for 2.1 or greater systems. 
1 15 xdrbytes ( adr len -- xdr-adr xdr-Ien ) Converts a byte array into a value 

structure 

Bvte1 
1 
1 
1 
1 

Bvte2 
16 
17 
18 
19 

1a 

Function 
reg 
intr 
driver 
model 

device-type 

Figure C-27. Commmonly-used Attributes 

( phys space size -- ) 
( intr-Ievel vector -- ) 
(adr len --) 
(adr len --) 

(adr len --) 

Description 
Declares location and size of device registers 
Declares interrupt level and vector for this device 
Declares driver for this device, not supported 
Declares modell for this device, such as 
" SUNW,501-1415-01" 
Declares type of device, e.g. "display", "disk", 
" network", or" byte" 

CR name (adr len --) Declares SunOS driver name, as in "SUNW,zebra" 
The following four FCodes are valid in 2.0 or greater systems. 
2 01 device-name ( adr len -- ) Creates the "name" attribute with the given value 
2 10 processor-type ( -- processor-type) Returns a code value for the type of CPU. Defined values: 

1-MC68000, 2-MC6801 0, 3-MC68020, 4-MC68030, 
5-SPARC, 6-i80386, 7-i80486, 8-MIPS, 9-MC88000, 
A-AMD29000 

2 11 firmware-version (-- n ) Returns major/minor CPU firmware version, that is, 
Ox00020001 = firmware version 2.1 

2 12 fcode-version (-- n) Returns major/minor FCode version supported, that is, 
Ox00020000:: FCode version 2.0 

Figure C-2B. Device Activation Vector Setup 

Byte 1 Bvte2 Function Stack Description 
1 1c is-install (acf--) Identifies "install" routine to allocate a boot device 
1 1d is-remove (acf -- ) Identifies "remove" routine, to deallocate a device 
1 1e is-selftest (acf -- ) Identifies "selftest" routine for this device 
1 1f new-device ( -- ) Opens an additional device, using this driver package 
1 27 finish-device ( -- ) Closes out current device, ready for NEW-DEVICE 
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Byte 1 
1 
1 

Byte 1 
1 
1 

Bvte1 
1 
1 

Figure C-29. Self-test utility Routines 

Bvte2 Function Stack Description 
20 diagnostic-mode? (-- flag) Returns "true" if extended diagnostics are desired 
21 display-status (n -- ) Outputs a selftest status message, with given 

statusl 
22 memory-test-suite ( adr len -- status) Calls memory tester for given region 
23 group-code 

24 mask 

Byte2 Function 
25 get-msecs 
26 ms 

Bvte2 
30 
31 

Function 
map-sbus 
sbus-intr>opu 

( -- adr) Variable, used by 
MEMORY-TEST-SUITE (obsolete) 

( -- adr) Variable, holds "mask" used by 
MEMORY-TEST-SUITE 

Figure C-30. Time Utilities 

Stack 
(-- ms) 
(n -- ) 

Description 
Returns the current time, in milliseconds, approx. 
Delays for n milliseconds. Resolution is 1 millisecond 

Figure C-31. Machine-specific Support 

Stack 
( phys size -- virt ) 
( sbus-intr' -- cpu-intr' ) 

Description 
Maps a region of memory in 'sbus' address space 
Translates SBus interrupt' into CPU interrupt' 

Note: Figures C-32 thru C-38 apply only to display device-types. 

Byte 1 
1 
1 
1 
1 
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Byte2 
50 

51 

Byte2 
52 
53 
54 
55 

Function 
llines 

'columns 

Function 
line' 
column' 
inverse? 
inverse-screen? 

Figure C-32. User-set terminal Emulation Values 

Stack 
(-- n) 

(-- n) 

Description 
lof lines of text being used for display. This word MUST 
be initialized (using IS). FBx-INSTALL does this 
automatically, and also properly incorporates the NVRAM 
parameter "screen-I rows" 
I of columns (charsJline) used for display. This word 
MUST be initialized (using IS). FBx-INSTALL does this 
automatically, and also properly incorporates the NVRAM 
parameter "screen-lcolumns" 

Figure C-33. Terminal Emulator-set Terminal Emulation Values 

Stack 
( -- n) 
( -- n) 
( -- flag) 
( -- flag) 

Description 
Current cursor position (linel). 0 is top line 
Current cursor position (column'). 0 is left char. 
True if output is inverted (white-on-black) 
True if screen has been inverted (black background) 
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Bvte1 Byte2 Function 
1 57 draw-character 
1 58 reset-screen 
1 59 toggle-cursor 
1 5a erase-screen 
1 5b blink-screen 
1 5c invert-screen 
1 5d insert-characters 
1 5e delete-characters 

5f insert-lines 

60 delete-lines 

61 draw-logo 

* DEFER-type load able routines. 

Bvte1 
1 
1 
1 
1 
1 
1 
1 
1 

Bvte2 
6c 
6d 
6f 
62 
63 
64 
65 
66 

Function 
char-height 
char-width 
fontbytes 
frame-buffer-adr 
screen-height 
screen-width 
window-top 
window-left 

FCode Primitives 

Figure C-34. Terminal Emulation Routines'" 

Stack Description 
(char -- ) Paints the given character and advance the cursor 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(n -- ) 
(n -- ) 

(n -- ) 

Initializes the display device 
Draws or erase the cursor 
Clears all pixels on the display 
Flashes the display momentarily 
Changes all pixels to the opposite color 
Inserts n blanks just before the cursor 
Deletes n characters starting at with cursor character, rightward. 
Remaining chars slide left 
Inserts n blank lines just before the current line, lower lines 
are scrolled downward 

( n -- ) Deletes n lines starting with the current line, lower lines 
are scrolled upward 

( linef: logoaddr logowidth logoheight -- ) Draws the logo 

Figure C-35. Frame Buffer Parameter Values'" 

Stack 
(-- n) 
(-- n ) 
(-- n) 
(-- adr) 
(-- n) 
(-- n) 
(-- n) 
(-- n ) 

Description 
Height (in pixels) of a character (usually 22) 
Width (in pixels) of a character (usually 12) 
f: of bytes/scan line for font entries (usually 2) 
Address of frame buffer memory 
Total height of the display (in pixels) 
Total width of the display (in pixels) 
Distance (in pixels) between display top and text window 
Distance (in pixels) between display left edge and text 
window left edge 

* These must all be initialized before using any FBx- routines. 

Bvte2 
6a 

6b 

6e 

Function 
default-font 

set-font 

>font 

SBus Specification B.O 

Figure C-36. Font Operators 

Stack Description 
( -- fontbase charwidth charheight fontbytes f:firstchar f:chars ) 

Returns default font values, plugs directly into 
SET-FONT 

( fontbase charwidth charheight fontbytes f:firstchar f:chars -- ) 
Sets the character font for text output 

( char -- adr) Returns font address for given ASCII character 
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Figure C-37. One-bit Framebuffer Utilities 

Bvte1 Bvte2 Funotion Staok Desori~tion 

1 70 fb1-draw-oharacter (ohar -- ) Paints the oharaoter and advanoe the oursor 
1 71 fb1-reset-soreen ( -- ) Initializes the display device (noop) 
1 72 fbj -toggle-oursor ( -- ) Draws or erases the oursor 
1 73 fb1-erase-soreen ( -- ) Clears all pixels on the display 
1 74 fb1-blink-soreen ( -- ) Inverts the soreen, twice (slow) 
1 75 fb1-invert-soreen ( -- ) Changes all pixels to the opposite color 
1 76 fb1-insert-oharaoters (n -- ) Inserts n blanks just before the cursor 
1 77 fb1-delete-characters (n -- ) Deletes n characters, starting at with cursor character, 

rightward. Remaining ohars slide left 
78 fb1-insert-lines (n -- ) Inserts n blank lines just before the ourrent line, lower 

lines are scrolled downward 
79 fb1-delete-lines (n --) Deletes n lines starting with the current line,lower lines 

are sorolled upward 
7a fb1-draw-logo ( linellogoaddr logowidth logoheight -- ) Draws the logo 
7b fb1-install (width height Icolumns llines --) Installs the one-bit built-in 

routines 
7c fb1-slide-up (n --) Like FB1-DELETE-LiNES, but doesn't clear lines 

at bottom 

Eigure C-38. Eight-bit Framebuffer Utilities 

Bvte1 Bvte2 Funotion Staok Desoription 
1 80 fbB-draw-oharacter (ohar -- ) Paints the oharaoter and advanoe the oursor 
1 81 fbB-reset-screen ( -- ) Initializes the display device (noop) 
1 82 fbB-toggle-cursor ( -- ) Draws or erases the cursor 
1 83 fbB-erase-screen ( -- ) Clears all pixels on the display 
1 84 ·fbB-blink-screen ( -- ) Inverts the screen, twice (slow) 
1 85 fbB-invert-screen ( -- ) Changes all pixels to the opposite oolor 
1 86 fbB-insert-characters (n -- ) Inserts n blanks just before the cursor 
1 87 fbB-delete-oharacters (n -- ) Deletes n oharacters starting at with cursor character, 

rightward. Remaining ohars slide left 
88 fbB-insert-lines (n --) Inserts n blank lines just before the current line, lower 

lines are sorolled downward 
89 fbB-delete-lines (n -- ) Deletes n lines starting with the ourrent line, lower lines 

are sorolled upward 
8a fbB-draw-logo (Iinellogoaddr logowidth logoheight --) Draws the logo 
8b fbB-instail (width height loolumns lIines --) Installs the eight-bit built-in 

routines. 
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Note: The FCodes in figures C-39 thru C-46 are valid only in 2.0 or greater systems. 

2 

2 
2 

2 
2 

2 

2 

2 

2 

2 

2 

2 

Bvte1 
2 
2 

2 

Bvte2 
02 

03 

04 
05 

06 
07 

08 

09 

Oa 

Ob 

Od 

Oe 

Of 

Funotion 
my-args 

my-self 

find-paokage 
open-paokage 

olose-paokage 
find-method 

oall-paokage 

$oall-parent 

my-parent 

ihandle>phandle 

my-unit 

$oall-method 

$open-paokage 

Bvte2 Funotion 
13 alarm 

Bvte2 
14 
36 

37 

a4 

Funotion 
(is-user-word) 
wflips 

Iflips 

mao-address 

SBus Specification B.O 

Figure C-39. Package Support 

Staok Desoription 
(-- adr len) Returns the argument string "adr len" passed when this 

paokage was opened 
( -- ihandle ) Returns the instanoe handle of ourrently-exeouting 

paokage instance 
( adr len -- false I phandle true) Finds a paokage named "adr len" 
( adr len phandle -- ihandle I 0) Opens an instanoe of the paokage 

"phandle," passes arguments "adr len" 
(ihandle --) Closes an instanoe of a paokage 
( adr len phandle -- false I aof true) Finds the method (command) 

named "adr len" within the paokage "phandle" 
( [ ... ] aof ihandle -- [ ... J) Exeoutes the method (oommand) "aof" within 

(adr len -- ) 
the instanoe "ihandle" 
Exeoutes the method (oommand) "adr len" within the 
parent's paokage 

( -- ihandle ) Returns the instanoe handle of the parent of the ourrent 
paokage instance 

( ihandle -- phandle) Converts an instanoe handle to a paokage 
handle 

( -- offset spaoe ) Returns the physioal unit number pair for this 
paokage 

( adr len ihandle -- ) Exeoutes the method (oommand) named "adr len" 
within the instanoe "ihandle" 

( arg-adr arg-Ien adr len -- ihandle I 0) Finds a paokage "adr len," 
then opens it with arguments "arg-adr arg-Ien" 

Figure C-40. Asyncronous Support 

Staok Desoription 
( aof n --) Exeoutes the method (oommand) indioated by "aor every 

"n" milliseconds 

Figure C-41. Miscellaneous Operations 

Staok 
( adr len aof -- ) 
(adr len -- ) 

(adr len -- ) 

(-- adr len) 

Desoription 
Creates a new word oalled "adr len" whioh executes "aof" 
Exohanges bytes within 16-bit words in the speoified 
region 
Exohanges 16-bit words within 32-bit longwords in the 
speoified region 
Returns the MAC address 
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Bvte1 
2 
2 

2 

Bvte1 
2 

2 
2 

2 

2 
2 

Byte 1 
2 
2 
2 
2 
2 
2 
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Bvte2 
15 

Byte2 
16 
17 

18 

Bvte2 
1a 

1b 
1c 

1d 

1e 
1f 

1b 

Byte2 
30 
31 
32 
33 
34 
35 

Function 
suspend-fcode 

Function 
abort 
catch 

throw 

Function 
get-my-attribute 

xdrtoint 
xdrtostring 

Appendix C: FCode Reference 

Figure C-42. Interpretation 

Description Stack 
( -- ) Suspends execution of FCode, resumes later if an 

undefined command is required 

Figure C-43. Error Handling 

Stack Description 
( -- ) Aborts FCode execution, returns to the "ok" prompt 
( [ ... J acf -- [ ... J error-code) Executes "acf," returns THROW error code or a 

if THROW not encountered 
( error-code -- ) Returns given error code to CATCH 

Figure C-44. Package Attributes 

Stack Description 
( nam-adr nam-Ien -- true I xdr-adr xdr-ien faise ) 

Returns the value string for the given attribute name 
( xdr-adr xdr-Ien -- n) Converts an xdr-encoded string to an integer 
( xdr-adr xdr-Ien -- adr len) 

get-inherited-attribute 
Converts an xdr-encoded string to a normal string 

( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 

delete-attribute 
get-package-attribute 

decode-2int 

Returns the value string for the given attribute, searches 
parents' attributes if not found 

( narn-adr nam-Ien --) Deletes the attribute with the given name 
( adr len phandle -- true I xdr-adr xdr-Ien false) 

Returns the value string for the given attribute name in the 
package "phandle" 

( xdr-adr xdr-Ien -- phys space) Converts an xdr-coded string into a physical 
address and space 

Figure C-45. Atomic Access 

Function 
rb@ 
rb! 
rw@ 
rw! 
rl@ 
rl! 

Stack 
( adr -- byte) 
(byte adr -- ) 
( adr -- word) 
(word adr -- ) 
( adr -- long ) 
( long adr -- ) 

Description 
Reads the 8-bit value at the given address, atomically 
Writes the 8-bit value at the given address, atomically 
Reads the i6-bit value at the given address, atomically 
Writes the 16-bit value at the given address, atomically 
Reads the 32-bit value at the given address, atomically 
Writes the 32-bit value at the given address, atomically 
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Figure C-46. Data Exception Tests 

Bvte1 Bvte2 Function Stack Description 
2 20 cpeek ( adr -- false I byte true) Reads the 8-bit value at the given address, returns false 

if unsuccessful 
2 21 wpeek ( adr -- false I word true) Reads the 16-bit value at the given address, returns false 

if unsuccessful 
2 22 lpeek ( adr -- false I long true) Reads the 32-bit value at the given address, returns false 

if unsuccessful 
2 23 cpoke (byte adr -- flag) Writes the 8-bit value at the given address, returns false 

if unsuccessful 
2 24 wpoke ( word adr -- flag) Writes the 16-bit value at the given address, returns false 

if unsuccessful 
2 25 I poke ( long adr -- flag) Writes the 32-bit value at the given address, returns false 

if unsuccessful 
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FCode Byte Values The following figure lists, in hexadecimal order, currently
assigned FCode byte values. 

160 

Byte 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
o 
d 
e 
f 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1a 
1b 
10 
1d 
1e 
1f 

20 
21 
22 
23 
24 
25 
26 
27 
28 

Name 
endO 
table1 
table2 
table3 
table4 
tableS 
table6 
table7 
table8 
table9 
table10 
table11 
table12 
table13 
table14 
table15 

b(lit) 
b(,) 
be") 
bbranoh 
b?branoh 
b(loop) 
b(+loop) 
b(do) 
b(?do) 

j 
b(leave) 
b(of) 
exeoute 
+ 

I 
mod 
and 
or 
xor 
not 
« 
» 

Figure C-47. FCode Byte Values 
Staok Comment 
( -- ) 

\ then 32-bitl. 
\ then token. 
\ then ont,letters. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
\ then offset. 
(-- index) 
( -- outerindex ) 
( -- ) 

(-- n) 
(-- aot) 
(-- adr len) 
( -- ) 
( -- ) 
( -- ) 
(n --) 
( end start -- ) 
( end start -- ) 

\ then offset. 
(aot -- ) 

( seleotor testvaJ -- sel I none) 

(n1 n2 -- n3) 
(n1 n2 -- n3) 

(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 n2 -- n3) 
(n1 -- n2) 
(n1 ont -- n2 ) 
(n1 ont -- n2 ) 
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Byte Name Stack Comment 
29 »a (n1 cnt -- n2 ) 
2a Imod (n1 n2 -- rem quot) 
2b u/mod (n1 n2 -- rem quot) 
2c negate (n1 -- n2) 
2d abs (n1 -- n2) 
2e min (n1 n2 -- n3) 
2f max (n1 n2 -- n3) 

30 >r ( n --) (rs: -- n ) 
31 r> ( -- n) (rs: n -- ) 
32 r@ ( -- n) (rs: -- ) 
33 exit ( -- ) 
34 0= (n -- flag) 
35 0<> (n -- flag) 
36 0< (n -- flag) 
37 0<= (n -- flag) 
38 0> (n -- flag) 
39 0>= (n -- flag) 
3a < (n1 n2 -- flag) 
3b > (n1 n2 -- flag) 
3c = (n1 n2 -- flag) 
3d <> ( n1n2 -- flag) 
3e u> (n1 n2 -- flag) 
3f u<= ( n 1 n2 -- flag) 

40 u< (n1 n2 -- flag) 
41 u>= (n1 n2 -- flag) 
42 >= ( n 1 n2 -- flag) 
43 <= (n1 n2 -- flag) 
44 between ( n min max -- flag) 
45 within (n min max -- flag) 
46 drop (n -- ) 
47 dup (n -- n n) 
48 over (n1 n2 -- n1 n2 n1 ) 
49 swap (n1 n2 -- n2 n1 ) 
4a rot (n1 n2 n3 -- n2 n3 n1 ) 
4b -rot (n1 n2 n3 -- n3 n1 n2) 
4c tuck (n1 n2 -- n2 n1 n2) 
4d nip (n1 n2 -- n2) 
4e pick (+n -- n2) 
4f roll (+n -- ) 
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Byte Name 
50 ?dup 
51 depth 
52 2drop 
53 2dup 
54 20ver 
55 2swap 
56 2rot 
57 2f 
58 u2f 
59 2* 
5a Ic 
5b Iw 
5c /I 
5d In 
5e ca+ 
5f wa+ 

60 la+ 
61 na+ 
62 ca1+ 
63 wa1+ 
64 la1+ 
65 na1+ 
66 Ic* 
67 /w* 
68 /1* 
69 In* 
6a on 
6b off 
6c +! 
6d @ 
6e I@ 
6f w@ 

70 <w@ 
71 c@ 
72 ! 
73 I! 
74 w! 
75 c! 
76 2@ 
77 2! 
78 move 
79 fill 
7a comp 
7b noop 
7c Iws pi it 
7d wljoin 
7e Ibsplit 
7f bljoin 
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Stack Comment 
(n--Olnn) 
(--+n) 
(n1 n2 -- ) 
(n1 n2 -- n1 n2 n1 n2) 
(n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) 
(n1 n2 n3 n4 -- n3 n4 n1 n2) 
(n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(-- n) 
(-- n) 
(-- n) 
(-- n ) 
(n1 index -- n2 ) 
(n1 index -- n2) 

(n1 index -- n2) 
(n1 index -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(n1 -- n2) 
(adr -- ) 
(adr -- ) 
(n adr -- ) 
(adr -- n ) 
(adr -- L) 
(adr -- w) 

(adr -- n) 
(adr -- b) 
(n adr -- ) 
(n adr -- ) 
(n adr -- ) 
(n adr -- ) 
( adr -- n1 n2) 
(n1 n2 adr -- ) 
(adr1 adr2 cnt -- ) 
( adr cnt byte -- ) 
(adr1 adr2 cnt -- n ) 
( -- ) 
( L -- w.lo w.hi ) 
(w.lo w.hi -- L) 
( L -- b.lo b b b.hi ) 
( b.lo b b b.hi -- L) 
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Byte Name 
80 flip 
81 upo 
82 Icc 
83 pack 
84 count 
85 body> 
86 >body 
87 version 
88 span 
89 (reserved) 
8a expect 
8b alloc-mem 
8c free-mem 
8d key? 
8e key 
8f emit 

90 type 
91 (cr 
92 cr 
93 lout 
94 lIine 
95 hold 
96 <I 
97 I> 
98 sign 
99 I 
9a Is 
9b u. 
9c u.r 
9d 
ge .r 
9f .s 

aO base 
a1 (reserved) 
a2 $number 
a3 digit 
a4 -1 
a5 0 
a6 1 
a7 2 
a8 3 
a9 bl 
aa bs 
ab bell 
ac bounds 
ad here 
ae aligned 
af wbsplit 

SBus Specification B.O 

Stack Comment 
(w1 -- w2) 
(char -- upper-case-char) 
(char -- lower-case-char) 
( adr len pstr -- pstr ) 
( pstr -- adr len) 
(apf -- acf) 
(acf -- apf) 
(-- n) 
(-- adr) 

(adr +n -- ) 
(cnt -- adr) 
(adr cnt -- ) 
(-- flag) 
(-- char) 
(char --) 

(adr +n -- ) 
( -- ) 
( -- ) 
(-- adr) 
(-- adr) 
(char -- ) 
( -- ) 
(L -- adr +n) 
(n -- ) 
(+L1 -- +L2) 
(+L -- 0) 
(u -- ) 
(ucnt--) 
(n -- ) 
(ncnt--) 
( -- ) 

(-- adr) 

( adr len -- true I n false ), valid only in 2.0 or greater systems 
( char base -- digit true I char false) 
( -- -1 ) 
( -- 0) 
( -- 1 ) 
(-- 2) 
(-- 3) 
(-- n) 
(-- n) 
(-- n) 
( n cnt -- n+cnt n ) 
(-- adr) 
(adr1 -- adr2 ) 
( w -- b.lo b.hi ) 
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... '-",,~"'" "':1"'" ............. L-1,7 

Byte Name 
bO bwjoin 
b1 b«mark) 
b2 b(>resolve) 
b3 (reserved) 
b4 (reserved) 
b5 new-token 

bS named-token 
b7 be:) 
b8 b(value) 
b9 b(variable) 
ba b(constant) 
bb b(create) 
bc b(defer) 
bd b(buffer:) 
be b(field) 
bf (reserved) 

cO (reserved) 
c1 (reserved) 
c2 be;) 
c3 b(is) 
c4 b(case) 
c5 b(endcase) 
cS b(endof) 
c7- c9 (reserved) 
ca external-token 
cb $find 
cc offset1S 
cd eval 
ce - cf (reserved) 

dO c, 
d1 w, 
d2 I, 
d3 
d4 u*x 
d5 xu/mod 

dS- d7 (reserved) 
d8 x+ 
d9 x-
da - df (reserved) 

fO startO 
f1 start 1 
f2 start2 
f3 start4 
f4 - fc (reserved) 
fd version 1 
fe 4-byte-id 
ff end1 
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Stack Comment 
( bolo b.hi -- w ) 
( -- ) 
( -- ) 

\ then table', code', token-type 
\ then string, table', code', token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 
\ token-type 

( -- ) 
( n --) \ then token 
( -- ) 
( -- ) 
( -- ) 

( -- ), valid only in 2.0 or greater systems 
( adr len -- adr len false I acf +-1 ) 
( -- ) 
( adr len -- ), valid only in 2.0 or greater systems 

(n -- ) 
(n -- ) 
(n -- ) 
(n -- ) 
( u1 [32] u2[32] -- product [S4] ), valid only in 2.0 or greater systems 
(u1 [S4] u2[32] -- remainder [32] quot [32]), valid only in 2.0 or greater 
systems 

(x1 x2 -- x3 ), valid only in 2.0 or greater systems 
(x1 x2 -- x3 ), valid only in 2.0 or greater systems 

( -- ), valid only in 2.0 or greater systems 
(-- ), valid only in 2.0 or greater systems 
( -- ), valid only in 2.0 or greater systems 
(-- ), valid only in 2.0 or greater systems 

\ then Obyte, chksum(2bytes), length(4bytes) 
\ then 3 more bytes, not supported 
( -- ) 
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Appendix C: FCode Reference FCode Byte Values 

Bvte1 Bvte2 Name Stack Comment 
1 01 dma-alloc ( Ibytes -- virtual) 
1 02 my-address (-- physical) 
1 03 my-space (-- space) 
1 04 memmap ( physical space size -- virtual) 
1 05 free-virtual ( virtual len -- ) 
1 06 >physical ( virtual -- physical space) 
1 Of my-params ( -- adr len) 

10 attribute ( xdr-adr xdr-Ien name-adr name-len -- ) 
11 xdrint (n1 -- xdr-adr xdr-Ien ) 
12 xdr+ (xdr-adr1 xdr-len1 xdr-adr2 xdr-len2 -- xdr-adr1 xdr-len1 +2 ) 
13 xdrphys ( physical space -- xdr-adr xdr-Ien ) 
14 xdrstring ( adr len -- xdr-adr xdr-Ien) 
15 xdrbytes ( adr len -- xdr-adr xdr-Ien ), valid only in 2.1 or greater systems 
16 reg ( physical space size -- ) 
17 intr ( int-Ievel vector -- ) 
18 driver ( adr len -- ), not supported 
19 model (adr len --) 
1a device-type (adr len --) 
1b decode-2int ( xdr-adr xdr-Ien -- physical space ), valid only in 2.0 or greater systems 
1c is-install (acf -- ) 
1d is-remove (acf -- ) 
1e is-selftest (acf--) 
1f new-device ( -- ) 

20 diagnostic-mode? (-- flag) 
21 display-status (n -- ) 
22 memory-test-suite ( adr len -- status) 
23 group-code (-- adr) 
24 mask (-- adr) 
25 get-msecs (-- ms) 
26 ms (n -- ) 
27 finish-device ( -- ) 

30 map-sbus ( phys size -- virt ) 
31 sbus-intr>cpu ( sbus-intrl -- cpu-intrl ) 

1 50 lIines (-- n) 
1 51 Icolumns (-- n) 
1 52 linel (-- n) 
1 53 columnl (-- n) 
1 54 inverse? (-- flag) 
1 55 inverse-screen? (-- flag) 
1 57 draw-character (char -- ) 
1 58 reset-screen ( -- ) 
1 59 toggle-cursor ( -- ) 
1 5a erase-screen ( -- ) 
1 5b blink-screen ( -- ) 
1 5c invert-screen ( -- ) 
1 5d insert-characters (n -- ) 
1 5e delete-characters (n -- ) 
1 5f insert-lines (n -- ) 
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FCode Byte Values 

Bvte1 .IM.!2 Name 
1 60 delete-lines 
1 61 draw-logo 
1 62 frame-buffer-adr 
1 63 screen-height 
1 64 screen-width 
1 65 window-top 
1 66 window-left 
1 6a default-font 
1 6b set-font 
1 6c char-height 
1 6d char-width 
1 6e >font 
1 6f fontbytes 

70 fbi-draw-character 
71 fb1-reset-screen 
72 fbi-toggle-cursor 
73 fb1-erase-screen 
74 fbi-blink-screen 
75 fbi-invert-screen 
76 fb1-insert-characters 
77 fbi-delete-characters 
78 fb1-insert-lines 
79 fbi-delete-lines 
7a fb1-draw-logo 
7b fbi-install 
7c fbi-slide-up 

80 fbS-draw-character 
81 fbS-reset-screen 
82 fbS-toggle-cursor 
83 fbS-erase-screen 
84 fbS-blink-screen 
85 fbS-invert-screen 
86 fbS-insert-characters 
87 fbS-delete-characters 
88 fbS-insert-lines 
89 fbS-delete-lines 
8a fbS-draw-logo 
8b fbS-instail 

a4 mac-address 
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Stack Comment 
(n -- ) 
(linel laddr !width Iheight --) 
(-- addr) 
(-- n) 
(-- n) 
(-- n) 
(-- n) 
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( -- fontbase charwidth charheight fontbytes lfirstchar Ichars) 
( fontbase charwidth charheight fontbytes Ifirstchar lahars -- ) 
(-- n) 
(-- n) 
( char -- adr) 
(-- n) 

(char -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(-- ) 
(Ichars --) 
(Ichars --) 
(liines -- ) 
(liines -- ) 
( linel logoadr Iwidth Iheight -- ) 
(width height Icols lIines -- ) 
(liines -- ) 

(char -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
( -- ) 
(Ichars --) 
(Ichars --) 
( IIines -- ) 
(Ilines --) 
( linel ladr Iwidth Iheight -- ) 
(width height Icols lIines -- ) 

(-- adr len), valid only in 2.0 or greater systems 

SBus Specification 8.0 



Appendix C: FCode Reference FCocte Byte Values 

Note: All FCodes beginning with 02 are valid only in 2.0 or greater systems. 

Byte 1 Bvte2 Name Stack Comment 
2 01 device-name (adr len --) 
2 02 my-args (-- adr len) 
2 03 my-self (-- ihandle) 
2 04 find-package ( adr len -- false I phandle true) 
2 05 open-package ( adr len phandle -- ihandle I 0 ) 
2 06 close-package ( ihandle -- ) 
2 07 find-method ( adr len phandle -- false I acf true) 
2 08 call-package ( [ ... ] acf ihandle -- [ ... ] ) 
2 09 $call-parent (adr len --) 
2 Oa my-parent ( -- ihandle ) 
2 Ob ihandle>phandle ( ihandle -- phandle ) 
2 Od my-unit ( -- offset space ) 
2 Oe $call-method ( adr len ihandle -- ) 
2 Of $open-package ( arg-adr arg-Ien adr len -- ihandle I 0 ) 

2 10 processor-type ( -- processor-type) 
2 11 firmware-version (-- n) 
2 12 feode-version ( -- n) 
2 13 alarm (acfn--) 
2 14 (is-user-word) ( adr len acf -- ) 
2 15 suspend-fcode ( -- ) 
2 16 abort ( -- ) 
2 17 catch ( [ ... ] acf -- [ ... ] error-code) 
2 18 throw ( error-eode -- ) 
2 1a get-my-attribute ( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 
2 1b xdrtoint ( xdr-adr xdr-Ien -- n ) 
2 1c xdrtostring ( xdr-adr xdr-Ien -- adr len) 
2 1d get-inherited-attribute ( nam-adr nam-Ien -- true I xdr-adr xdr-Ien false) 
2 1e delete-attribute ( nam-adr nam-Ien -- ) 
2 1f get-package-attribute ( adr len phandle -- true I xdr-adr xdr-Ien false) 

2 20 cpeek ( adr -- false I byte true) 
2 21 wpeek ( adr -- false I word true) 
2 22 lpeek ( adr -- false I long true) 
2 23 cpoke (byte adr -- flag) 
2 24 wpoke ( word adr -- flag) 
2 25 I poke (long adr -- flag) 

2 30 rb@ ( adr -- byte ) 
2 31 rb! (byte adr -- ) 
2 32 rw@ ( adr -- word) 
2 33 rw! (word adr -- ) 
2 34 rl@ ( adr -- long) 
2 35 rl! ( long adr -- ) 
2 36 wflips (adr len --) 
2 37 Iflips (adr len --) 
2 40 left-parse-string (adr len char -- adrR lenR adrL lenL) 
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Glossary 

32-bit masterlslavel An SBus master / slave/ controller / device supporting only 
controller/device 32-bit per clock cycle transfers. 

32-bit transfers The basic SBus bus cycle in which 32-bits of data can be 
transferred each clock cycle. 

64-bit master/slave/ An SBus master / slave/ controller / device supporting 32- and 
controller/device 64-bit per clock cycle transfers. 

64-bit transfers See ExtendedTransfer. 

acknowledgment Any encoding of Ack(2:0)* to indicate that data has been 
Ack(2:0)* transferred, or that the current bus cycle should be terminated, 

or both. Valid acknowledgments are: 

o Double-word acknowledgment (Extended Transfers only). 

o Word acknowledgment (32-bit transfers only). 

o Half-word acknowledgment (32-bit transfers only). 
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Glossary 

o Byte acknowledgment (32-bit transfers only). 

o Error Acknowledgment. 

o Rerun Acknowledgment. 

address lines The SBus signals used by the SBus controller to send a physical 
PhysAddr(27:0) (PA(27:0» address to a slave. During ExtendedTransfers, the signals are 

used for Data(59:32). 

170 

address strobe The SBus signal used by the SBus controller to indicate that a 
AddressStrobe* AS* slave cycle is in progress. 

asserted The state of a signal used to initiate an action. 

atomic transaction A sequence of bus cycles in which an SBus master retains 
control of the bus to prevent any other master from accessing 
the bus. Atomic transactions are used to implement 
semaphores. 

autoconfiguration The process by which the host fetches SBus IDs and FCodes, 
beginning at location 0 of each SBus slave used to identify the 
device. 

big-endian An ordering of bytes within a word where the most significant 
byte is at the lowest address, and the least significant byte is at 
the highest address. 

board See SBus expansion card. 

burst transfer A single bus cycle in which multiple words of data are 
transferred. 
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Glossary 

bus cycle A series of clock cycles beginning (in the case of a DVMA master) 
with a particular master receiving a grant and, in all cases, 
concluding with address strobe being unasserted by the SBus 
controller. For DVMA masters, a bus cycle is divided into two 
phases: a translation cycle and a slave cycle. However, in the case 
of a CPU master, the translation cycle does not occur as part of 
the bus cycle. 

bus sizing A transfer mode in which a slave requests the master to turn a 
word (half-word) transfer into two half-words, or four (two) byte 
transfers. Each transfer is performed using a separate bus cycle. 
The first bus cycle is called the original bus cycle; remaining bus 
cycles are called follow-on bus cycles. 

byte A set of 8 signals or bits taken as a unit. 

byte acknowledgment An acknowledgment to indicate that the slave has read or 
written a byte from the most significant byte of the data lines. 
If the transfer size is greater than a byte, the master initiating the 
transfer may perform bus sizing. 

byte-addressing A determination that the smallest addressable unit of 
information is a byte. 

card See SBus expansion card. 

clock An SBus signal generated by the SBus controller which 
Clock (Clk) synchronizes all activity on the SBus. 

clock cycle One period of the SBus clock (Clock). Each bus cycle consists of 
several clock cycles. 
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Glossary 

CPU master An SBus master that includes a central processing unit with a 
private means to perform virtual address translation (in 
contrast to a DVMA master which uses the SBus controller to 
perform virtual address translation). A bus cycle initiated by a 
CPU master consists only of a slave cycle. Typical SBus systems 
have one CPU master. 

Data Acknowledgment An acknowledgment to indicate the slave has read or written a 
byte, half-word, word, or double-word. There are four types of Data 
Acknowledgment: 

o Byte acknowledgment (32-bit transfers only). 

o Hall-word acknowledgment (32-bit transfers op]y). 

o Word acknowledgment (32-bit transfers only). 

o Double-word ackno"\tYledgment (Extended Transfers only). 

data lines The SBus signals used to transfer data between masters and 
Oata(31 :0) 0(31 :0) slaves, and virtual addresses between masters and the SBus 

controller. For ExtendedTransfers, there are 64 data lines, called 
Oata(63:0). 

device See SBus device. 

Direct Virtual Memory A mechanism to allow a device on the SBus to initiate data 
Access (DVMA) transfers between it and other SBus devices, such as system 

memory. To simplify overall system design, SBus DVMA 
transfers are performed using virtual addressing. The SBus 
controller contains a Memory Management Unit (MMU) 
responsible for performing virtual to physical address 
translation. 
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Glossary 

double-word A group of 64 signals or bits taken as a unit (8 bytes of data). 

double-word An acknowledgment to indicate that the slave is ready to read 
acknowledgment or write a double-word of data. A double-word acknowledgment 

is used only for ExtendedTransfers. It is the only valid Data 
Acknowledgment during an ExtendedTransfer. 

driver overlap A situation in which two different drivers are simultaneously 
sourcing or sinking current. 

dummy read A bus cycle used by a master during an atomic transaction to 
hold the bus, so that it can process data before performing a 
write bus cycle. Dummy reads are performed to the same 
address as the original read. 

DVMA cycle A bus cycle initiated by a DVMA master. A DVMA cycle 
consists of a translation cycle and a slave cycle. 

DVMA master An SBus master able to initiate a bus cycle that uses the SBus 
controller to perform virtual address translation (in contrast to a 
CPU master which has a private means for virtual address 
translation). A bus cycle initiated by a DVMA master consists 
of a translation cycle and a slave cycle. 

Error Acknowledgment An acknowledgment to indicate that the bus cycle is terminated 
as a result of an abnormal condition. 

expansion card See SBus expansion card. 

expansion connector A 96-pin connector to allow a user to insert an SBus card. 
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Glossary 

ExtendedTransfer An extended bus cycle protocol (also called a 64-bit transfer) in 
which 64-bits of data are transferred per clock cycle during the 
slave cycle. The upper 32-bits of data are multiplexed onto the 
Size(2:0}, Read, and PhysAddr(27:0} lines. 

Extended Transfer During an Extended Transfer, the Extended Transfer 
Information Information is driven onto Data(31 :O} during the translation 

cycle, and the first clock cycle of the slave cycle. The Extended 
Transfer Information is the detailed description of the 
ExtendedTransfer, and consists of the following information: 

a ExtendedTransferType. 

o ExtendedTransferSize(2:0). 

a ExtendedTransferRead. 

a ExtendedTransferAtomic(1 :O}. 

a ExtendedTransferReserved(24:0). 

FCodes FORTH byte codes. 

follow-on bus cycle One of up to three bus cycles during a bus sizing operation that 
follows the original bus cycle. 

geographical addressing A mechanism by which a part of the physical address is 
presented to each SBus slave as an individual select signal, so 
that only one slave is selected at any given time. 

grant lines The set of SBus signals (one per master) generated by the SBus 
Grant* 8G* II inf h h h b contro er to orm masters w en t ey may access t e us. 

half-word A group of 16 signals or bits taken as a unit. 
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Glossary 

half-word An acknowledgment to indicate that the slave has read or 
acknowledgment written a half-word of data from the most significant half-word 

of the data lines. If the transfer size is greater than a half-word, 
the master initiating the transfer may perform bus sizing. 

high Driven to a voltage greater than or equal to V OH. 

late error A special SBus signal to indicate that an error occurred during 
LateError* LErr* a preceding data transfer, even though the slave issued a byte, 

half-word, word, or double-word acknowledgment. 

latency The time between when a master requests the bus and when its 
transfer is complete. 

logic 0 The logic state of a signal driven to VOL (or V OH if low 

asserted). 

logic 1 The logic state of a signal driven to V OH (or VOL if low 

asserted). 

low Driven to a voltage less than or equal to VOL. 

low asserted The property of a signal to indicate that its logical polarity is the 
opposite of its physical polarity. 

master An SBus device capable of initiating an SBus transaction. 
The term CPU master is used when a host CPU must be 
distinguished from a more generic SBus master. The term 
DVMA master is used when it is desired to explicitly exclude 
CPU masters. Any SBus master may communicate with any 
other slave on the same bus, regardless of system configuration. 
For more information, see "Configuration" in Chapter 1. 
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Glossary 

motherboard A circuit board containing the central processor, SBus controller, 
and any SBus expansion connectors. 

Open Boot With regard to SBus Profiles, Open Boot is the facility by which 
the FCode program may interrogate the host and determine the 
state of various parameters it addresses. For information, see 
the Sun Microsystems, Inc. publication Open Boot PROM Toolkit 
User's Guide. 

open-drain A bus driver or signal driven only low (sometimes referred to as 
open collector). 

original bus cyde In a bus sizing operation, the first bus cyde of the transfer 
causing the master to perform bus sizing. Every bus sizing 
operation consists of an original bus cycle, plus one to three 
follow-on bus cycles, depending on the size of the original 
transfer and the type of Data Acknowledgment issued by the 
slave. 

real-time An event or system that must receive a response to some 
stimulus within a narrow, predictable, deterministic, and 
repeatable time frame. Usually, this requires that the response 
is not strongly dependent on system performance parameters 
which are highly variable, such as processor load or interface 
latency. 

request The set of SBus signals (one per master) used by the master to 
Request* BR* request the SBus controller to grant access to the bus. 

Rerun Acknowledgment An acknowledgment to indicate that the current master should 
abort the current transfer and re-request access to the bus to 
retry the transfer. 

sample To determine the state of a signal at the rising edge Clock. 
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Glossary 

SBus Bridge SBus A device providing additional SBus slots by connecting two 
Coupler SBusses. In general, a bus bridge is functionally transparent to 

devices on the SBus. However, there are cases (for example, bus 
sizing) in which bus bridges may change the exact way a series 
of bus cycles are performed. 

SBus controller The hard ware responsible for performing arbitration, 
addressing translation and decoding, driving slave selects and 
address strobe, and generating timeouts. 

SBus device A logical device attached to the SBus. This device may be on the 
motherboard, or on an SBus expansion card. 

SBus expansion card A physical printed circuit assembly that conforms to the single
or double-width mechanical specifications, and that contains 
one or more SBus devices. 

SBus ID A special series of bytes at address 0 of each SBus slave used to 
identify the SBus device. 

slave An SBus device that responds with an acknowledgment to a 
slave select and address strobe. Any SBus master may 
communicate with any other slave on the same bus, regardless 
of system configuration. For more information, see 
"Configuration" in Chapter 1. 

slave cycle That portion of a bus cycle that begins with placing an address 
on the physical address lines, and ends with AddressStrobe* being 
unasserted. 

slave select A collection of SBus signals (one per slave) used to select which 
SlaveSelect* Sel* slave should be active during the current slave cycle. 
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slot An SBus entity for which there is an independent slave select 
wire. Slot is also used as an abbreviation for SBus expansion slot. 
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Glossary 

timeout A situation in which the SBus controller terminates a bus cycle 
which a slave has failed to acknowledge. In a correctly 
designed and operating system, timeouts should happen only 
during system configuration. 

transfer direction The SBus signal to indicate whether data is being read from or 
Read, Rd written to the selected slave. During ExtendedTransfers, the 

signal is used as Data(63). 

transfer size The SBus signals used to indicate the number of bytes to be 
Size(2:0) Siz(2:0) transferred during this bus cycle, assuming that no error occurs. 

During Extended Transfers, the se signals are used for 
Data(62:60). 

translation cycle That portion of a bus cycle between the assertion of grant and the 
placing of an address on the physical address lines by the SBus 
controller. After receiving the grant, the designated master 
places a virtual address on the SBus data lines. 

tristate An output able to remove its drive from a wire. 

TIL voltage levels The voltage levels that determine whether a signal is a logic 0 or 
a logic 1 state, with respect to TTL or TTL-compatible logic 
families. 

unasserted The state of a signal used to terminate an action. 

word A group of 32 signals or bits taken as a unit. 

wrapping The process, during burst transfers, by which the burst may 
begin at an arbitrary word boundary within the block, with the 
address incremented by 4, modulo the size of the burst in bytes. 
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flow control 72 
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FORTH 29, 117-118 

A Text and Reference 118 
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MTBF82 
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NMOS 91 
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Rerun Acknowledgment 176 
Reset* (Reset*) 9,21,34-35,96 
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