

Sun[™]VME-Multibus Adapter Board User's Manual

1	
	atten.
į	
- 	

Part Number 800-1193-05 Revision: A of 25 September 1986

Not Available

At This Time

Support Information Ï

Not Available

At This Time

Not Available

At This Time

Part Number 800-1193-05 Revision: A of 25 September 1986 Class:3

Users' Manual

for the

Sun VME-Multibus Adapter Board

Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043 (415) 960-1300

Credits and Trademarks

Multibus is a trademark of Intel Corporation.

Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Incorporated. Sun-2, Sun-2/xxx, Sun-3, Sun-3/xxx, Deskside, SunStation, SunCore, SunWindows, and DVMA are trademarks of Sun Microsystems, Incorporated.

UNIX is a trademark of AT&T Bell Laboratories.

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

Copyright © 1986 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Functional Description	3
Chapter 2 Switches on the VME-to-Multibus Adapter Board	9
Chapter 3 Theory of Operations	29
Appendix A Switch Settings Worksheet	41
Appendix B Example Configurations	57

e de la company de la comp

Contents

Preface x	1
Chapter 1 Functional Description	3
1.1. Overview	2
1.2. What the Switches Do	S
Chapter 2 Switches on the VME-to-Multibus Adapter Board)
2.1. Multibus Memory Addressing-DIP Switches 5, 6, 7, and 8	9
Multibus Memory Space Switch Settings	C
2.2. Multibus I/O Addressing—DIP Switches 1, 2, 3, and 4 16	5
Multibus I/O Space	7
2.3. Multibus Memory Address Space Size and DMA Transfer Address—DIP Switch 11)
Multibus Memory Address Space Size—DIP Switch 11, Sections 5-8)
DMA Transfer Address—DIP Switch 11, Sections 1-4 21	
2.4. Interrupt Vector—DIP Switch 12 23	3
Interrupt Vector PROM 24	1
2.5. BCLK (Bus Clock) and CCLK (Constant Clock)—JMP1 26	}
Chapter 3 Theory of Operations 29	,
3.1. Overview 29	
3.2. How the Adapter Board Works 29	
3.3. VMEbus to Multibus Addressing	
3.4. Multibus to VMEbus Addressing	
3.5. Data Transfers To and From the Adapter Board 34	

.

3.6.	Bus Request/Bus Grant Logic	
3.7.	Interrupt Logic	
3.8.	VME DMA Cycle	
3.9.	Clock Logic	
Apper	ndix A Switch Settings Worksheet	
A .1.	Setting Multibus Memory Space Switches	
	Block Size Switches—Example	
	Setting the Block Size Switches on Your Board	
	Base Address Switches—Example	
	Setting the Base Address Switches on Your Board	
A.2.	Setting Multibus I/O Space	
	Block Size Switches—Example	
	Setting the Block Size Switches on Your Board	
	Base Address Switches—Example	
	Setting the Base Address Switches on Your Board	
A.3.	DIP Switch 11	
	DIP Switch 11, Sections 5-8—Multibus Memory Address Space Size	
	DIP Switch 11, Sections 1-4-DMA Transfer Address	
A.4.	Interrupt Vector Switch DIP 12	
	Interrupt Vector-Example	
	Interrupt Vector—Your Board	
Apper	ndix B Example Configurations	
B.1.	Xylogics 450 Disk Controller	•
B.2.	Tapemaster 1/2 Inch Tape Controller	•
B.3.	DMA Tester Board	

.

Tables

Table 2-1	Setting 256 to 64K Block Sizes In Multibus Memory	14
Table 2-2	Setting 128K to 16M Block Sizes In Multibus Memory	14
Table 2-3	Setting 2 to 256 Byte Block Sizes In Multibus I/O Space	19
Table 2-4	Setting 512 Byte to 64 Kbyte Block Sizes In Multibus I/O	
	Space	19

Sec. 4

Figures

Figure 1-1	VME-to-Multibus Adapter Board	3
Figure 1-2	Adapter Board Layout	4
Figure 2-1	Example of a Typical 8-Section DIP Switch	9
Figure 2-2	Multibus Memory Address Decoding	10
Figure 2-3	Address Switches for the 24-Bit Multibus Memory Space	1
Figure 2-4	Block-Size Switches for 24-Bit Multibus Memory Space	1
Figure 2-5	Memory Space Block Size Switches for a 16 Kbyte Block 1	13
Figure 2-6	Memory Space Base Address Switches 1	5
Figure 2-7	Multibus I/O Address Decoding	6
Figure 2-8	Address Switches for the Multibus I/O Space	7
Figure 2-9	Block-Size Switches for the Multibus I/O Space1	8
Figure 2-10	DIP Switch 11, Sections 5-8 2	20
Figure 2-11	20-Bit versus 24-Bit Addressing 2	1
Figure 2-12	20-bit Multibus DMA Cycle 2	22
Figure 2-13	DIP Switch 11, Sections 1-4	:3
Figure 2-14	Switch Setting for an Interrupt Vector Number of 0x48 2	.4
Figure 2-15	Interrupt Vector PROM 2	5
Figure 2-16	BCLK and CCLK Jumper, JMP1 2	.6
Figure 3-1	VME and Multibus Memory Address Space 2	9
Figure 3-2	Memory Space Switches and Comparators 3	0
Figure 3-3	VME and Multibus I/O Address Space 3	1
Figure 3-4	I/O Space Switches and Comparators	1

Figure 3-5	Address Signal Flow: VMEbus to Multibus Board	32
Figure 3-6	Address Signal Flow: Multibus Board to VMEbus	34
Figure 3-7	Data Signal Flow: Multibus Board to VMEbus	35
Figure 3-8	BCLK and CCLK Circuitry	37

Preface

v

	Welcome to the Sun VME-to-Multibus Adapter board. This manual presents a functional and engineering description of the VME-Multibus board, tells you how to set the switches and jumpers, and also contains tutorials to assist you in setting the configuration of the board for your particular application.
Summary of Contents	This manual contains three chapters and two appendices:
Chapter 1	Functional Description — presents a basic functional description (tells you what the board does), including a description of the interrupt, DMA, and clock circuits.
Chapter 2	Switches on the VME-to-Multibus Adapter Board — describes the purpose and function of the DIP switches on the VME-to-Multibus board.
Chapter 3	Theory of Operations — explains in some detail the electrical operation (how the board works) of the VME-to-Multibus board.
Appendix A	Switch Settings Worksheet — this appendix gives you space to work out the switch settings for your own Multibus board. Includes examples.
Appendix B	Example Configurations — gives the switch settings for Sun-provided boards.
Glossary	A few terms are used throughout this document which, without explanation, may seem confusing.
	 Positive Logic — positive logic means that the asserted level (see below) of a signal is the higher of the two voltage levels.
	 Negative Logic — negative logic means that the asserted level (see below) of a signal is the <i>lower</i> of the two voltage levels.
	Asserted — when we say that a signal is "asserted," we mean that it is in its active, or true, state. In positive logic this means that a signal like READ, when asserted, is equal to its most positive state. When a signal like WRITE*, WRITE, or WRITE (the three are synonymous) is asserted it is equal to its most negative state.

- Logic 1 in positive logic, a logic 1 stands for the more positive of the two voltage levels. In negative logic, a logic 1 stands for the more negative of the two voltage levels.
- Logic 0 in positive logic, a logic 0 stands for the more negative of the two voltage levels. A logic 0 in negative logic stands for the more positive of the two voltage levels.
- Set means the same as logical 1.
- Clear means the same as a logical 0.
- ON when it refers to a switch (or switch section) setting, is synonymous with CLOSED. This means that the signal at the input of the switch (or switch section) is shorted to its output.
- OFF when it refers to a switch (or switch section) setting, is synonymous with OPEN. This means that the signal at the input of the switch (switch section) is NOT SHORTED (signal is not passed) to its output.
- CLOSED when it refers to a switch (or switch section) setting, is synonymous with ON. This means that the signal at the input of the switch (switch section) is shorted to its output.
- OPEN when it refers to a switch (or switch section) setting, is synonymous with OFF. This means that the signal at the input of the switch (switch section) is NOT SHORTED (signal is not passed) to its output.
- DIP stands for Dual In-line Package, and refers to the physical geometry of the chip (rectangular, with pins on the two longer sides).
- DIP Switch a multi-sectioned switch which has DIP geometry.
- Switch a device for making or breaking an electrical circuit. A switch may have one or more sections, each of which may control a circuit.
- Ox hexadecimal prefix; the number following this prefix is in hexadecimal.

Finally, thanks to Doug Ward for all his help.

Revision History

A STATISTICS

Revision	Date	Comments
A- 01	1 June 1985	First release of this Users' Manual.
A-01 A-05	1 June 1985 25 September 1986	First release of this Users' Manual. Corrected textual inaccuracies dealing with DIP switch 11 and described board modifications.

Functional Description

Functional Description	3
1.1. Overview	3
1.2. What the Switches Do	5

Functional Description

1.1. Overview This manual describes the VME-to-Multibus[™] adapter board for use in the Sun VME products. This adapter board allows you to plug your own Multibus boards into Sun's VME backplane, and this manual tells you how to set the switches appropriately.[†]

tIf you aiready know how the switches work and just want to set the switches for your own Multibus board, please see the switch settings worksheet in the appropriate appendix.

Figure 1-2 Adapter Board Layout

Revision A of 25 September 1986

For location of the VME-to-Multibus adapter board in a Sun backplane, please see the Cardcage Slot Assignment and Backplane Configuration Guide, part number 813-2004, available through Sun Sales or Service.

1.2. What the Switches Do Switches on the adapter board allow you to

- generate a Multibus memory read or write command from the VMEbus using the Multibus board as either a 20-bit or 24-bit slave device;
- generate a Multibus I/O read or write command from the VMEbus;
- generate a DMA cycle from the Multibus board using the Multibus board as either a 20-bit or 24-bit bus master;
- generate single-level or multi-level vectored interrupts.

Switches are set to define

- c the base address of the Multibus memory and I/O spaces, and
- the block size of the Multibus memory and I/O spaces.

Switches on the VME-to-Multibus Adapter Board

Switches on the VME-to-Multibus Adapter Board	9
2.1. Multibus Memory Addressing-DIP Switches 5, 6, 7, and 8	9
Multibus Memory Space Switch Settings	10
2.2. Multibus I/O Addressing-DIP Switches 1, 2, 3, and 4	16
Multibus I/O Space	17
2.3. Multibus Memory Address Space Size and DMA Transfer Address—DIP Switch 11	19
Multibus Memory Address Space Size—DIP Switch 11, Sections 5-8	2 0
DMA Transfer Address—DIP Switch 11, Sections 1-4	21
2.4. Interrupt Vector—DIP Switch 12	23
Interrupt Vector PROM	24
2.5. BCLK (Bus Clock) and CCLK (Constant Clock)-JMP1	2 6

2

Switches on the VME-to-Multibus Adapter Board

This section describes the DIP switches on the VME-to-Multibus Adapter boards. Appendix A contains a worksheet for use by those who already understand the function of the switches; Appendix B contains this same information along with a step-by-step explanation as help should you need to set the DIP switches yourself.

- 2.1. Multibus Memory Addressing—DIP Switches 5, 6, 7, and 8
 - NOTE For an explanation of some of the terms used in this (and other) sections, please see the glossary included in the Preface of this manual. Briefly, a DIP switch is composed of switch sections, each section of which will short (when the switch section is set to ON) or open (when the switch section is set to OFF) its circuit.

			• • • • • • • • • • • • • • • • • • •			<u></u>	 ! ! !
(Signa!	(Signal	i i (Signal	i (Signal	i i (Signal	i i (Signal	l (Signal	i i (Signal
Rame)	name)	name)	i name)	aame)	name)	name)	name)
switch	swi tch	i switch	switch	switch	i switch	switch	i switch
section #1	section #2	section #3	section #4	section #5	section #6	section #7	section #8
	1	1	e 1	*	1	• •	1 I
	1	l I	1	1	1	1 1	t I
	1	1	1	1	1	1	1

Figure 2-1 Example of a Typical 8-Section DIP Switch

The adapter board can respond to a block of addresses in the 24-bit VME address space. When the adapter board sees an address within the selected block, it

passes all the address bits through to the Multibus board and generates a Multibus Memory read or write command.

The size of the block of addresses can be any power of 2 between 2 to the 8th power and 2 to the 24th power (256 bytes to 16 Mbytes). The starting address of the block can be any address which is a multiple of the size of the block.

Another way of saying this is that any VME address bit between A8 and A23 can either be ignored or compared against a switch section. The switches which control Multibus memory addressing are SW5, SW6, SW7, and SW8.

Figure 2-2 Multibus Memory Address Decoding

Multibus Memory Space	
Switch Settings	

 DIP 7, DIP 5—Select the 24-bit VME space base address for accesses to the Multibus Memory space.

DIP	7	sections	1-8	=>	A23-A16	respectively.
DIP	5	sections	1-8	=>	A15-A08	respectively.

Figure 2-3 Address Switches for the 24-Bit Multibus Memory Space

A switch section ON causes a match when the corresponding VME address bit is 0.

 DIP 8, DIP 6—Sets the size of the block in 24-bit VME address space that the board responds to.

DIP 8 sections 1-8 => A23-A16 respectively. DIP 6 sections 1-8 => A15-A08 respectively.

Figure 2-4 Block-Size Switches for 24-Bit Multibus Memory Space

There is a separate switch section for each address bit from A8 to A23.

If the switch section is ON, that address bit is compared against the corresponding base address switch section. If the address bit matches the

switch section setting, the adapter board responds.

If the switch section is OFF, that bit is ignored by the adapter board, and is simply passed through to the Multibus board.

To set the size of the block, all address bits whose binary weighting is *larger* than the size of the block should have their switch sections ON, because these bits will be decoded by the adapter board. Address bits with binary weighting *smaller* than the size of the block should have both their "size" switch section and their "base address" switch section OFF, because the address bits within the block size are of interest only to the Multibus board.

Thus, if you have a block size of 1024 bytes, you would set the switch sections for address bits A8 and A9 to OFF, because the adapter board DOESN'T CARE about (won't compare) these address bits. The rest of the address bits, A10-A23, would set ON, because the adapter board DOES CARE about these bits, and will use them for comparison.

The following example explains this further.

Let's say you want to configure your adapter board for an imaginary Multibus board which has a block size of 16 Kbytes starting at address 0x280000.

First, you want to set a block size of 16 Kbytes into the block size switches, DIPs 8 and 6. Remember that when you define block size you are telling the adapter board which address lines *are to be ignored*; in other words, don't compare them. Since a block size of 16 Kbytes is decoded by address lines A13-A0, address bits A13-A8 (A7-A0 are *always* passed through) will be passed to the Multibus board only; the adapter board doesn't care what value is on them.

Thus the switch sections for address lines A13-A8 will be set OFF.

However, the adapter board *does care* what is on address lines A23-A14, because it will be decoding them; therefore these switch sections will be set to ON.

Here's how to set the switch sections on the block size switches: first convert the hex value to binary:

Next, set the switch sections for address lines A13-A8 to OFF; all the others ON. Then make this binary address correspond to the memory space block size switches, DIP 8 (upper byte) and DIP 6 (lower byte). Remember, a 0 means the switch section is ON; a 1 means the switch section is OFF.

Switch section	1	2	3	4	5	6	٦	8
(upper byte								
binary value) =	0	0	0	0	C	С	С	. C
DIP 8 Address =	A23	A22	A 21	A 20	A19	A18	X1 7	A16
(lower byte								
binary value) =	0	0	1	1	1	1	1	1
DIP 6 Address =	215	314	A13	112	211	310	A09	208

Here's what the block size switches look like when correctly set:

Figure 2-5 Memory Space Block Size Switches for a 16 Kbyte Block

A23 (SW1)	A22 (SW2)	A21 (SW3)	A20 (SW4)	A19 (SW5)	A18 (SW6)	A17 (SW7)	A16 (SW8)				
ON	ON	ON	ON	ON	ON	ON	ON				
			DIP S	witch 8							
A15 A14 A13 A12 A11 A10 A9 A8 (SW1) (SW2) (SW3) (SW4) (SW5) (SW6) (SW7) (SW8)											
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF				
			ס <i>מ</i> ות.	witch 6							

Here's the switch section settings for the various block sizes available in the Multibus memory space.

Switch	DIP 8			·····	DI	P 6			
Section	All	1	2	3	4	5	6	7	8
Address	A23-A16	A15	Al4	A13	A12	A11	A10	A9	A8
Size									
256	ON	ON	ON	ON	ON	ON	ON	ON	ON
512	ON	ON	ON	ON	ON	ON	ON	ON	OFF
1024	ON	ON	ON	ON	ON	ON	ON	OFF	OFF
2048	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
4096	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
8192	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
16K	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
32K	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
64K	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF

 Table 2-1
 Setting 256 to 64K Block Sizes In Multibus Memory

 Table 2-2
 Setting 128K to 16M Block Sizes In Multibus Memory

Switch				DI	P 8				DIP 6
Section	1	2	3	4	5	6	7	8	All
Address	A23	A22	A21	A20	A19	A18	A17	A16	A15-A8
Size									
128K	ON	OFF	OFF						
256K	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
512K	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
1M	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
2M	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
4M	ON	ON	OFF						
8M	ON	OFF							
16M	OFF								

To set the base address of 0x280000, first convert the hex address to binary:

```
|
0x280000 = 0010 1000 0000 0000 | 0000 0000
|<- not connected ->
<- A23-A08 -> | (A7-A0)
```

Since the block size is 16 Kbytes and the adapter board doesn't compare address bits from within this 16 Kbyte block size, you must set address bits A13-A8 to OFF.

A13-AE OFF = CC10 1000 0011 1111 | DC00 D000 |<- not connected -> <- A23-A08 -> | (A7-A0)

Make this hexadecimal address correspond to the memory space base address switches, DIP 7 (upper byte) and DIP 5 (lower byte).

Switch section (upper byte	1	2	3	4	5	6	7	8
binary value) = DIP 7 Address =					-	0 A18		
(lower byte binary value) = DIP 5 Address =					-	1 A10	-	-

Here's what the base address switches look like when correctly set:

Figure 2-6	Memory	· Space	Base	Address	Switches
------------	--------	---------	------	---------	----------

A23 (SW1)	A22 (SW2)	A21 (SW3)	A20 (SW4)	A19 (SW5)	A18 (SW6)	A17 (SW7)	A16 (SW'8)
ON	ON	OFF	ON	OFF	ON	ON	ON
			DIP S	witch 7			
A15 (SW1)	A14 (SW2)	A13 (SW3)	A12 (SW4)	A11 (S\5)	A10 (SW6)	A9 (S₩7)	A8 (SW'8)
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
			DIP S	witch 5			

If you don't want the Multibus board to respond to the Multibus memory space at all, disable the VME 24-bit space decoding by setting

- all sections of DIP 8 and DIP 6 to OFF, and
- all sections of DIP 7 and DIP 5 to ON.

2.2. Multibus I/O Addressing—DIP Switches 1, 2, 3, and 4 The adapter board can respond to a block of addresses in the 16-bit VME address space. When the adapter board sees an address within the selected block, it passes all the address bits through to the Multibus board and generates a Multibus I/O read or write command.

The size of the block of addresses can be any power of 2 between 2 to the 1st power and 2 to the 16th power (2 bytes to 64 Kbytes). The starting address of the block can be any address which is a multiple of the size of the block. Another way of saying this is that any VME address bit between A1 and A15 can either be ignored or compared against a switch section.

This function is controlled by DIP switches 1, 2, 3, and 4.

Multibus I/O Space

 DIP 1, DIP 3—Select the 16-bit VME space base address for accesses to the Multibus I/O space.

DIP 3 sections 1-8 => A15-A08 respectively.
DIP 1 sections 2-8 => A07-A01 respectively.
 (DIP 1 section 1 unused.)

Figure 2-8 Address Switches for the Multibus I/O Space

A switch section ON causes a match when the corresponding VME address bit is 0.

DIP 4, DIP 2—Sets the size of the block in 16-bit VME address space that the board responds to.

DIP 4 sections 1-8 => A15-A08 respectively.
DIP 2 sections 2-8 => A07-A01 respectively.
(DIP 2 section 1 is unused.)

A15 (1)	A14 (2)	A13 (3)	A12 (4)	A11 (5)	A10 (6)	A 9 (7)	A 8 (8)
		1	DIP Si	witch 4	I!	L	1
(noi used) (1)	A7 (2)	A6 (3)	A5 (4)	A4 (5)	A3 (6)	A2 (7)	A1 (8)
			DIP Sv	vitch 2	I	l	

Figure 2-9 Block-Size Switches for the Multibus I/O Space

There is a separate switch section for each address bit from A1 to A15. If the switch section is ON, that address bit is compared against the corresponding base address switch section. If the address bit matches the switch section setting, the adapter board responds. If the switch section is OFF, that bit is ignored by the adapter board, and is simply passed through to the Multibus board.

To set the size of the block, all address bits whose binary weighting is larger than the size of the block should have their switch sections ON, because these bits will be decoded by the adapter board. Address bits with binary weighting smaller than the size of the block should have both their "size" switch section and their "base address" switch section OFF, because the address bits within the block size are of interest only to the Multibus board. Thus, if you have a block size of 8 bytes, you would set the switch sections for address bits A1 and A2 to OFF, because the adapter board DOESN'T CARE what these bits are. A0 is always passed through.

The tables below give the switch settings for various block sizes in I/O space.

Switch	DIP 4				DIP 2			
Section	All	2	3	4	5	6	7	8
Address	A15-A8	A7	A 6	A5	A4	A3	A2	A!
Size								
2	ON	ON	ON	ON	ON	ON	ON	ON
4	ON	ON	ON	ON	ON	ON	ON	OFF
8	ON	ON	ON	ON	ON	ON	OFF	OFF
16	ON	ON	ON	ON	ON	OFF	OFF	OFF
32	ON	ON	ON	ON	OFF	OFF	OFF	OFF
64	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
128	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
25 6	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF

 Table 2-3
 Setting 2 to 256 Byte Block Sizes In Multibus I/O Space

 Table 2-4
 Setting 512 Byte to 64 Kbyte Block Sizes In Multibus I/O Space

Switch				DI	P 4				DIP 2
Section	1	2	3	4	5	6	7	8	All
Address	A15	Al4	A13	A12	A]]	A10	A 9	A 8	A7-A1
Size									
512	ON	OFF	OFF						
1024	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
2048	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
4096	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
8192	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
16K	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
32K	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
6 4K	OFF	OFF	OFF						

If you don't want the Multibus board to respond to the Multibus I/O space at all, disable the VME 16-bit space decoding by setting

- all sections of DIP 4 and DIP 2 to OFF, and
- all sections of DIP 3 and DIP 1 to ON.

2.3. Multibus Memory Address Space Size and DMA Transfer Address-DIP Switch 11 DIP switch 11 handles two related functions:

- 1. it chooses between 20-bit and 24-bit addressing for the Multibus board (using switch sections 5-8);
- 2. if the board does 20-bit addressing and is a DMA controller, DIP switch 11 will provide a set of default high order address bits to fill the DMA address out to 24 bits (using switch sections 1-4).

Multibus Memory Address Space Size—DIP Switch 11, Sections 5-8 The Multibus specification has several different variations for addressing. The address space sizes supported by the adapter board are 20- and 24-bit addressing for memory space boards, and 16-bit addressing for I/O space boards. The address lines for the first 20 bits are located on the Multibus P1 connector, while the remaining four high-order bits, A23-A20, reside on the Multibus P2 connector. However, Multibus boards which do 20-bit addressing often use the lines on the Multibus P2 connector for some other purpose; to avoid contention the adapter board provides a DIP switch to connect or disconnect lines on the P2 connector to or from the translation circuitry on the adapter board.

Sections 5-8 of DIP switch 11 connect Multibus address lines A20-A23 (respectively) from the Multibus P2 connector on the board's edge, through the adapter board's translation circuitry, to the adapter board's internal Multibus address bus. If sections 5-8 of DIP switch 11 are closed (ON)[†], address bits A20-A23 will be passed to and from the Multibus board.

- For those boards which expect 24-bit addresses, or which generate 24-bit DMA addresses, sections 5-8 of DIP switch 11 should be ON⁺.
- For those boards which expect 20-bit addresses or which generate 20-bit DMA addresses, sections 5-8 should be OFF[†].

Figure 2-10 DIP Switch 11, Sections 5-8

[†]Since the Multibus address lines use negative logic, a switch section must be set ON to provide a logic 1 to the VMEbus and OFF to provide a logic 0.

Figure 2-11 20-Bit versus 24-Bit Addressing

DMA Transfer Address—DIP Switch 11, Sections 1-4 A Multibus board which only supplies 20 bits of address may be a DMA controller. However the VMEbus requires a 24-bit address, so the adapter board is designed to supply the remaining four high-order address bits, A23-A20, by setting DIP switch sections 1-4 (respectively).

Figure 2-12 20-bit Multibus DMA Cycle

In this case, sections 5-8 of DIP switch 11 must be set OFF, to isolate the Multibus P2 connector, and the necessary four high-order address bits must be set into sections 1-4 of DIP switch 11.

Normally devices will be doing DMA into Sun main memory. Since the DVMA port on the Sun CPU board answers to addresses between 0x000000 and 0x100000, this means that the high-order address bits supplied by sections 1-4 of DIP switch 11 should all be zero (set to OFF).

Since a 20-bit master can only generate 1 Mbyte of addresses, the only time that these switches (sections 1-4) should be set to provide a different address is in the case where the board is doing DMA to some other device and NEVER to the Sun. These situations are VERY RARE!

For example, in order to direct all DMA references by a 20-bit Multibus board to an area between 3 Mbytes (0x300000) and 4 Mbytes (0x400000), sections 1-4 of DIP switch 11 must be set to 0x3:

Switch Section:	1	2	3	4
(setting)	OFF	OFF	0N	0N
(address bit)	A23	A22	A21	A20

Remember, when using switch sections 1-4, switch sections 5-8 must all be set OFF, to prevent contention.

Figure 2-13 DIP Switch 11, Sections 1-4

2.4. Interrupt Vector—DIP Switch 12 The adapter board will respond to non-bus-vectored Multibus interrupts and translate them to vectored VME interrupts.

The VME interrupt vector number is provided on the adapter board by either switch sections or a PROM. The switch sections may be used if the Multibus board interrupts on only one level, or if multiple levels vector to the same location. The PROM must be used if the Multibus board interrupts on more than one level and a separate vector is desired for each level. The switch sections are in DIP switch 12. The PROM, if used, is installed at U402.

NOTE Please refer to Writing Device Drivers for the Sun Workstation, part number 800-1304, when selecting an interrupt vector. (The section you want is titled "Interrupt Vector Assignments," in the Device Driver manual.) It is very important that you do not select an interrupt vector already in use.

> DIP 12—Selects the VME Interrupt Vector to use if the Multibus board interrupts. Switch sections 1-8 correspond to VME vector bits 0-7 respectively. A switch section ON sets the corresponding bit to 0. For example, if the desired VME interrupt vector number is 0x48, the correct switch setting is (notice that the bit-ordering goes from right to left):

Section:	1 ON D0	ON	ON	OFF	ON	ON	7 OFF D6	-
(binary)	0	0	0	1	0	٥	1	0
(hex)		8				4		

Figure 2-14 Switch Setting for an Interrupt Vector Number of 0x48

NOTE The VME interrupt vector number is the 68000 vector address divided by 4. Thus VME vector 0x48 causes the 68000 to fetch its interrupt vector from memory location 0x48 * 4 = 0x120.

> If the switch is used to set the interrupt vector, the Interrupt Vector PROM must NOT be installed in its socket. If the PROM is used to set the interrupt vector, all the switch sections in DIP 12 must be set to OFF.

Interrupt Vector PROM If the Multibus board interrupts on different levels, it is possible to configure the adapter board to provide a separate VME Interrupt Vector for each Multibus interrupt level. This is done by programming a 32-by-8 bipolar PROM with the desired interrupt vectors. Locations 0 through 6 in the PROM are used for the interrupt vectors for Multibus interrupt levels 7 through 1 respectively. Other locations in the PROM are not used. Note that Multibus interrupt level 0 cannot be used in any case, since the VMEbus has no level 0 interrupt.

 PROM Data Bit
 0
 1
 2
 3
 4
 5
 6
 7

 PROM Pin #
 1
 2
 3
 4
 5
 6
 7
 8

 VME Data Line
 D0
 D1
 D2
 D3
 D4
 D5
 D6
 D7

Figure 2-15 Interrupt Vector PROM

If the switch is used to set the interrupt vector, the Interrupt Vector PROM must NOT be installed in its socket. If the PROM is used to set the interrupt vector, all the switch sections in DIP 12 must be set to OFF.

 2.5. BCLK (Bus Clock) and CCLK (Constant Clock)—JMP1
 For Multibus boards which require external BCLK and CCLK (most boards!), the adapter can provide these clocks. Jumper block JMP1 controls this feature. Section 1 is for BCLK, section 2 is for CCLK. The jumpers should be installed to provide the clocks.

JMP1:

- Section 1 BCLK: INSTALL to provide BCLK to the Multibus board
- Section 2 CCLK: INSTALL to provide CCLK to the Multibus board

Figure 2-16 BCLK and CCLK Jumper, JMP1

Theory of Operations

Theory of Operations	29
3.1. Overview	29
3.2. How the Adapter Board Works	29
3.3. VMEbus to Multibus Addressing	31
3.4. Multibus to VMEbus Addressing	32
3.5. Data Transfers To and From the Adapter Board	34
3.6. Bus Request/Bus Grant Logic	35
3.7. Interrupt Logic	3 6
3.8. VME DMA Cycle	36
3.9. Clock Logic	36

Theory of Operations

3.1. Overview

The VME-to-Multibus board is an adapter which allows the use of Multibus cards on the VMEbus of the Sun-2 and Sun-3 product line. (For an enumeration of which products and exact backplane-location within these products, please see the Cardcage Slot Assignment and Backplane Configuration Guide, part number 813-2004, available from Sun Sales or Service.)

The VME-to-Multibus card scheme is transparent to the system—there are no registers on the adapter board that software can modify. This section describes how VME signals are routed through the adapter board so that Multibus cards can be read, written, and interrupted (using programmed cycles). Functional block diagrams are included to illustrate how the adapter board works.

 3.2. How the Adapter Board Works
 There are a number of switch settings which must first be described in order to understand the functional capabilities of the VME-to-Multibus adapter board. The adapter board can respond to a block of addresses in the 24-bit VME address space. When the adapter board sees an address within the selected block, it passes the address bits to the Multibus board and generates a read or write command to Multibus memory space.

Figure 3-1 VME and Multibus Memory Address Space

This addressing function is controlled by the DIP switches (DIPs 5, 6, 7, 8) which set up in two 8-bit equal-to-comparators (U201, U202). If the comparators

match the addresses a select signal is asserted toward control PAL U307 on the adapter board. At this point, the PAL would assert a "memory enable" strobe to the "transfer enable" PAL (U301) on the adapter board which selects the bidirectional transceivers for a data transfer. A "data out" (DATOUT-) signal from the same PAL controls the direction of the transfer at the transceivers.

Figure 3-2 Memory Space Switches and Comparators

The adapter board can also respond to a block of addresses in the 16-bit VME address space. Here, when the adapter board sees an address within the selected block, it passes the address bits to the Multibus board and generates a Multibus I/O read or write. This function is controlled by DIP switches on the adapter board (DIPs 1, 2, 3, 4).

Figure 3-3 VME and Multibus I/O Address Space

The 16-bit address will be set-up in two 8-bit equal-to-comparators (U204, U205), and assert select signals toward the control PAL at U307. This PAL then asserts I/O enable to the transfer PAL (U303).

3.3. VMEbus to Multibus Addressing During a VME read cycle to a Multibus card, P1 address lines A01-A23 are transferred to the Multibus adapter card in conjunction with P1 address strobe (AS) and P1 data strobes (DS0, DS1). If the Multibus board is a 24-bit address master, the four high-order address bits (A23-A20) are passed through by setting switch sections 5-8 of DIP switch 11 ON. Address lines which pass on to

Multibus cards are latched onto the adapter board by transparent latches (U108, U109, U110) with address strobe. After setting up, the inverted address lines are passed onto the Multibus. The latches are enabled by the AND of address strobe (AS-) and data transfer acknowledge (B.DTACK-); their outputs are enabled by the assertion of the busy signal, M.BUSY.

Note that VME address lines are active high, and Multibus address lines are active low, which is why the signals are inverted.

3.4. Multibus to VMEbus Addressing

In the process of a read cycle from the Multibus to the VMEbus, Multibus address lines M.A01-A19 are enabled onto the adapter board via buffers (U104, U105, U107), which invert the lines and enable (pass) them on to the VMEbus (P1), via connector J801. For 20-bit Multibus boards, default values for address bits A23-A20 can be provided by setting DIP switch 11, sections 1-4 (respectively). Sections 1-4 are connected to ground at their input sides and their outputs connected to a pullup before passing through inverting buffer U107. Therefore, closing any of these four switch sections will assert a logical 1 on the corresponding VME address line.

If the Multibus board provides a 24-bit address, the four high order address bits (M.A23-M.A20) are passed to the adapter board through DIP switch 11, sections 5-8, to inverting buffer U107 to complete the 24-bit address to the VMEbus.

NOTE To prevent conflicting signals, switch sections 1-4 MUST BE SET TO OFF when switch sections 5-8 are being used, and vice versa. This is because the output of switch 1 is electrically connected to the output of switch 8, switch 2 to switch 7, switch 3 to switch 6 and switch 4 to switch 5.

> At the end of the cycle, a P1 "data transfer acknowledge" (P1.DTACK) is sent from the VMEbus to the adapter board via a buffer (U106) which asserts "bus data transfer acknowledge" (B.DTACK-) to the transfer acknowledge PAL (U302). Refer to the block diagram below for an illustration of this function.

Figure 3-6 Address Signal Flow: Multibus Board to VMEbus

3.5. Data Transfers To and From the Adapter Board During a transfer cycle, data is transferred from the Multibus to the VMEbus (and vice versa) via bidirectional transceivers (U101, U102, U103). Two of the transceivers (U101, U103) are used when the data transferred is a 16-bit word. For byte transfers, U101 is used when the data is a byte at an odd address, and U102 is used when data is a byte at an even address.

The three transceivers are selected by "low word/byte" (WBL-), "high byte" (BH-), and "high word" (WH-) signals which are driven by a data transfer enable PAL (U301). The PAL is set-up by "data strobes" (DS0, DS1) and bus write conditions originating from the VMEbus (P1) during a write cycle to the Multibus. For data transfers to the VMEbus (from the Multibus), a "data out"

(DATOUT-) signal is asserted to the transceivers for direction control toward the P1 data bus. DATOUT- is also set-up by the data transfer enable PAL (U301). Refer to the following block diagram for an illustration of this function.

Figure 3-7 Data Signal Flow: Multibus Board to VMEbus

3.6. Bus Request/Bus Grant Logic

For bus requests from the Multibus to the VMEbus, the requesting board will assert a "bus request" (BRQ1-) and "bus-priority-in level" (BPRN) to a handshanking PAL (U501) on the adapter board. This PAL then asserts a P1 bus request level (P1.BR3-) to the VMEbus (P1). If the bus is not busy, a P1 "bus grant" level (P1.BG3IN-) will be sent to the handshaking PAL which then asserts the bus grant as a "Multibus- priority-out" (P1.BG3OUT-) to the requesting Multibus board.

3.7. Interrupt Logic	Vectored interrupts are not supported on the Multibus, however, they are supported on the VMEbus and therefore must be translated by the adapter board. A VME interrupt vector is generated on the adapter board by a switch (DIP 12), or by a PROM (U402).
	The switch is used if the Multibus board interrupts on one level only, or if a multi-level interrupt vectors to the same place. If a Multibus board interrupts on more than one level and a seperate vector is required for each level, the PROM must be used.
	When one of the Multibus interrupt lines (INT1-INT7) goes active, it passes through octal transceivers (U405) to the VMEbus (P1.IRQ7-P1.IRQ1). When the processor sees the interrupt, it goes into an interrupt acknowledge cycle by put- ting the interrupt level on the lower-order address bits (P1.A3-P1.A1), while driving P1 "interrupt acknowledge" (P1.IACKIN-) and asserting P1 "address strobe." Note that P1 interrupt acknowledge is bused to every board on the backplane. A version of P1 "interrupt acknowledge-in/interrupt acknowledge- out" is daisy-chained from board to board.
	When the adapter board sees this version of interrupt, it will check to see if the interrupt level specified by the address lines (P1.A3-P1.A1) is on the same level as the one on which it was trying to interrupt. If so, the adapter board will enable the interrupt vector (ENVEC-) through U406 NAND gates onto the VMEbus. If the interrupt level is not the one specified by the address lines, the adapter will pass the interrupt on to the next board with P1 "interrupt acknowledge-out."
3.8. VME DMA Cycle	The adapter board can generate a VME DMA cycle (when the adapter is the VMEbus master) in response to a DMA cycle by the Multibus board. The Multibus board can be a 20-bit address master, or a 24-bit address master (the adapter board is always 24-bits—slave or master). If the Multibus board is a 24-bit master, the four high order bits are passed through sections 8, 7, 6, and 5 (A23-A20, respectively) in DIP 11 on the adapter board. If the Multibus board is a 20-bit master, the four high order bits are supplied by sections 1-4 (respectively) of DIP switch 11.
NOTE	If you are using switch sections 1-4 to supply the address bits, sections 5-8 must be set OFF, to avoid contention. If you are using switch sections 5-8 to pass the address bits, sections 1-4 must be set OFF.
3.9. Clock Logic	The adapter board provides an external bus clock and constant clock for those Multibus boards (most boards) which require these clocks. The clocks originate at a 19.6608 MHz crystal (X1) and is divided down by a flip-flop (U306) to pro- vide a 9.8304MHz clock. A jumper block on the adapter board (J1) allows the enabling/disabling of both the bus clock and the constant clock. Pins 1 to 2 should be jumpered for the bus clock, and pins 3 to 4 should be jumpered for the constant clock. Note that the jumpers should be installed to provide the clocks.

Refer to the diagram below for an illustration of these settings.

•

Figure 3-8 BCLK and CCLK Circuitry

Switch Settings Worksheet

Switch S	Settings Worksheet	41
A.1. S	Setting Multibus Memory Space Switches	42
	Block Size Switches—Example	42
	Setting the Block Size Switches on Your Board	43
	Base Address Switches—Example	44
	Setting the Base Address Switches on Your Board	45
A.2. S	Setting Multibus I/O Space	46
	Block Size Switches—Example	46
	Setting the Block Size Switches on Your Board	47
	Base Address Switches—Example	48
1	Setting the Base Address Switches on Your Board	49
A.3. I	DIP Switch 11	50
	DIP Switch 11, Sections 5-8—Multibus Memory Address Space Size	5 0
•	DIP Switch 11, Sections 1-4-DMA Transfer Address	51
A.4. I	nterrupt Vector Switch DIP 12	54
•	Interrupt Vector—Example	54
	Interrupt Vector—Your Board	54

.

A

Switch Settings Worksheet

NOTE This appendix (Appendix A) is for those who already understand the theory behind the switch settings on the adapter board, and just need a workspace to figure the settings out. For a detailed explanation of how to set the switches, see the appendix following this.

2 . The second the second

A.1. Setting Multibus Memory Space Switches	 This section tells you how to set the base address and block size switches for the Multibus memory space. Included are both a sample switch setting (labelled "Example") and space for you to work out the switch settings for your own particular board. 													
Block Size Switches— Example	This page gives an example of sample block size switch settings for Multibus memory space.													
	EXAMPLE													
	Block size: 0x 0 0 2 0 0 0													
	\Rightarrow Discard the low-order byte, address bits A0-A7													
Block size: 0x 0 0 2 0														
	\Rightarrow Convert to binary:													
	0000 0000 0010 0000													
CAUTION	There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.)													
	\Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.													
	0000 0000 0001 1111													
	\Rightarrow Set DIP 8 and DIP 6 to this value: 0 = ON and 1 = OFF.													
	0 0 0 0 0 0 0 0 0 0 1 1 1 1 1													
	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 (section #)													
	(32CLDN #) <dip 8=""> <dip 6=""></dip></dip>													

Revision A of 25 September 1986

Fill in this page with your particular block size information for Multibus memory Setting the Block Size Switches on Your Board space. YOUR DATA YOUR BLOCK SIZE: 0x ____ \Rightarrow Discard the low-order byte, address bits A0-A7 YOUR BLOCK SIZE: 0x \Rightarrow Convert to binary: <-----DIP 8-----> | <----DIP 6-----> CAUTION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.) \Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits. YOUR REVISED BLOCK SIZE IN BINARY: Į. 1 1 <-----DIP 8-----> | <-----DIP 6-----> \Rightarrow Enter your block size here. DIP 8: A23 A22 A21 A20 A19 A16 A17 A16 DIP 6: A15 A14 A13 A12 A11 A10 A09 80A \Rightarrow Set DIP 8 and DIP 6 to this value: 0 = ON and 1 = OFF. 1 1 1 -- -- | -- ---- | -- -1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 (section #) <-----DIP 8-----> | <-----DIP 6----->

Base Address Switches— Example This page gives an example of sample base address switch settings for Multibus memory space.

EXAMPLE

 \Rightarrow Find your base address.

Base address: 0x 2 8 0 0 0 0

 \Rightarrow Discard the low-order byte, address bits A0-A7

Base address: 0x 2 8 0 0

 \Rightarrow Convert to binary:

0010 1000 0000 0000

⇒ Remember the bits you turned from zero to one in the block size? Turn those same bits to ones here.

change 0010 1000 0000 0000 10 0010 1000 0001 1111

\Rightarrow Enter your base address here.

DIP	7:	C	0	1	C	1	С	0	0
		A23	A22	A21	A20	A19	A18	A17	A16
DIP	5:	0	0	0	1	1	1	1	1
		A15	A14	A13	A12	A11	A10	A09	AOB

 \Rightarrow Set DIP 7 and DIP 5 to this value: 0 = ON and 1 = OFF.

•	0	. 1	0		1	0	0	0	1	0	0	0	1		1	1	1	
				1					1					1				-
1 2	2	3	4		5	6	7	8	Ì	1	2	3	4		5	6	7	8
		-	-		-	-				n#)	-	-	-		•	-		

Fill in this page with your particular memory space base address information. Setting the Base Address Switches on Your Board \Rightarrow Find your base address. YOUR DATA YOUR BASE ADDRESS: 0x _____ \Rightarrow Discard the low-order byte, address bits A0-A7 YOUR BASE ADDRESS: 0x _____ \Rightarrow Convert to binary: <-----DIP 7-----> | <-----DIP 5-----> ⇒ Remember the bits you turned from zero to one in the block size? Turn those same bits to ones here. 1 1 1 <----DIP 7-----> | <----DIP 5-----> \Rightarrow Enter the base address here. DIP 7: A23 A22 A21 A20 A19 A18 A17 A16 DIP 5: A15 A13 ALL A14 01A A12 A09 80A \Rightarrow Set DIP 7 and DIP 5 to this value: 0 = ON and 1 = OFF. T 1 -- | -- -- -- -- | -- -- ---- | -- -- -- --1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 (section#) <-----DIP 7-----> | <----DIP 5----->

A.2. Setting Multibus I/O Space	This section tells you how to set the base address and block size switches for the Multibus I/O space. Included are both a
	sample switch setting (labelled "Example") and
	space for you to work out the switch settings for your own particular board.
Block Size Switches— Example	This page gives an example of sample block size switch settings for Multibus I/O space.

EXAMPLE

Block size: 0x 0 0 0 8

 \Rightarrow Ignore the low-order address bit, A0.

 \Rightarrow Convert to binary:

0000 0000 0000 1000

CAUTION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.)

 \Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.

Change 0000 0000 0000 1000 to 0000 0000 0111

 \Rightarrow Set DIP 4 and DIP 2 to this value: 0 = ON and 1 = OFF.

†Remember, address bit A0 is not set into this DIP switch.

Switches on Your Board YOUR DATA YOUR BLOCK SIZE: 0x ____ \Rightarrow Convert to binary: Xt <-----DIP 4-----> | <----DIP 2-----> CAUTION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.) \Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits. YOUR REVISED BLOCK SIZE IN BINARY: Xt <-----DIF 4-----> | <----DIP 2-----> ⇒ Enter your block size here. DIP 4: A15 A14 A13 A12 All A10 A09 80A DIP 2: XXX A07 ADE A05 A04 A03 A02 AOI (not used) \Rightarrow Set DIP 4 and DIP 2 to this value: 0 = ON and 1 = OFF. Xt -- -- --1 -- -- -- -- ! -- --5 6 7 8 1 1 2 3 4 5 6 7 8 1 2 3 4 (section #) <-----DIP 4-----> | <-----DIP 2----->

Fill in this page with your particular Multibus I/O space block size information.

†Remember, address bit A0 is not set into this DIP switch.

Setting the Block Size

Base Address Switches— Example This page gives an example of sample base address switch settings for Multibus I/O space.

EXAMPLE

 \Rightarrow Find your base address.

Base address: 0x 0 0 A 0

- \Rightarrow Ignore the low-order address bit, A0.
- ⇒ Convert to binary: 0000 0000 1010 0000
- ⇒ Remember the bits you turned from zero to one in the block size? Turn those same bits to ones here.

Change 0000 0000 1010 0000 10 0000 0000 1010 0111

 \Rightarrow Enter the base address here.

DIP	3:	C	C	C	0	0	0	0	0
		A15	A14	A13	A12	A11	A10	A09	804
DIP	1:	XXX	1	C	1	0	0	1	1
		(not used)	A07	90A	A05	A04	A03	A02	A01

 \Rightarrow Set DIP 3 and DIP 1 to this value: 0 = ON and 1 = OFF.

†Remember, address bit A0 is not set into this DIP switch.

Setting the Base Address Switches on Your Board Fill in this page with your particular Multibus I/O space base address information.

YOUR DATA

⇒ Find your base address.
YOUR BASE ADDRESS: 0x _____

NOTE Remember to ignore the low-order address bit, A0.

 \Rightarrow Convert to binary:

-----DIP 3-----> | <----DIF 1---->

⇒ Remember the bits you turned from zero to one in the block size? Turn those same bits to ones here.

 \Rightarrow Enter the base address here.

DIP	3:								
		A15	A14	A13	A12	<u>711</u>	<u>A10</u>	A 09	80 A
DIP	1:	xxx							
		(not used)	A 07	A06	AC5	AC4	A03	AC2	A01

 \Rightarrow Set DIP 3 and DIP 1 to this value: 0 = ON and 1 = OFF.

	X†															
				1				1					1			
1	2	3	4	5	6	7	8	ł	1	2	3	4	5	6	7	8
	(section #)															
<			-DIP	3			>	1	<			-DIP	1			->

tRemember, address bit A0 is not set into this DIP switch.

A.3. DIP Switch 11 This section tells you how to set the switch sections for DIP switch 11. There are both

- sample settings (labelled "Example,") and
- space for you to figure out the settings for your own board (labelled "Your Board").

DIP switch 11 is divided into two functional parts:

- 1. sections 1-4 control DMA transfer address
- 2. sections 5-8 control Multibus memory address space size.

When using one functional part (either switch sections 1-4 or sections 5-8) the other functional part must be set OFF to avoid contention.

DIP Switch 11, Sections 5-8— Multibus Memory Address Space Size For 24-bit addressing, set sections 5-8 of DIP switch 11 ON (allowing address bits A23-A20 to pass through).

For 20-bit addressing, set sections 5-8 of DIP switch 11 OFF (isolating the Multibus P2 connector from the adapter board's address logic).

NOTE For 24-bit address boards, sections 1-4 of DIP switch 11 should be OFF, even if your board does not do DMA transfers. (See the following section, "DIP Switch 11, Sections 1-4-DMA Transfer Address.")

SETTING MEMORY ADDRESS SPACE SIZE:

EXAMPLE BOARD

For a 24-bit Multibus board:

 \Rightarrow Set sections 5-8 of DIP 11 ON (allowing A23-A20 to pass through).

(switch)		Sec. 6		
DIP 11:	ON	ON	ON	ON
	A20	A21	A22	A23 (pass these bits through the board

SETTING MEMORY ADDRESS SPACE SIZE: YOUR BOARD

 \Rightarrow For a 24-bit Multibus board: set sections 5-8 ON.

 \Rightarrow For a 20-bit Multibus board: set sections 5-8 OFF.

Sec. Sec. Sec. Sec. 5 6 7 8

DIP 11: _____

DIP Switch 11, Sections 1-4---DMA Transfer Address If your Multibus board handles 24-bit addressing, then set sections 1-4 of DIP 11 to OFF.

If your Multibus board does DMA transfers, but only provides 20 address bits, sections 1-4 of DIP switch 11 can be used to provide the 4 high-order bits of the 24-bit address which the VMEbus requires. In order to access Sun main memory via DVMA transfers, *these bits must be set to zero*! The only time these switch sections (sections 1-4) should be set to provide any other value than zero is in the case where the board will be doing DMA to some other device and NEVER to the Sun memory. These situations are very rare!

24-BIT MULTIBUS BOARD: EXAMPLE

For a 24-bit Multibus board:

 \Rightarrow Set sections 1-4 of DIP 11 OFF.

(switch) Sec. Sec. Sec. Sec. 1 2 3 4 DIP 11: OFF OFF OFF OFF

20-BIT MASTER DOING DVMA TO SUN MEMORY:

EXAMPLE

The DVMA port on the Sun CPU board responds to addresses in the 0-1 Mbyte range. Since 20 bits address a 1 Mbyte range, the high order address bits (A23-A20) must be set to a binary zero (0000) in order for a 20-bit Multibus board to do DVMA to Sun memory.

For a 20-bit Multibus board:

 \Rightarrow Set the binary value 0000 into sections 1-4 of DIP 11. Remember: 0 = OFF and 1 = ON.[†]

(switch) Sec. Sec. Sec. Sec. Sec. $1 \quad 2 \quad 3 \quad 4$ DIP 11: 0 0 0 0 $\overline{CFF} \quad \overline{OFF} \quad \overline{OFF} \quad \overline{OFF}$

20-BIT MASTER DOING DMA ONLY

TO ANOTHER PERIPHERAL:

EXAMPLE

In a 20-bit master, the remaining (top) four address bits, A23-A20, must be supplied by DIP switch 11, sections 1-4.

The only time that these switches should be set to any other value than zero is in the case where the board is doing DMA only to some other device and NEVER to Sun memory. These situations are VERY RARE!

- \Rightarrow Determine the value to be set into switches 1-4 (let's choose an arbitrary value of 0xC). 0xC = (binary) 1 1 0 0.
- \Rightarrow Set this binary value (1100) into sections 1-4 of DIP 11. Remember, 0 = OFF and 1 = ON.[†]

(switch)		Sec. 2		Sec. 4
DIP 11:	1	1	0	0
	ON	ON	OFF	OFF

†The Multibus is active low, so these settings are the reverse of other switches.

DIP SWITCH 11, SECTIONS 1-4:

YOUR BOARD

- D If your board handles 24-bit addressing: set sections 1-4 OFF
- If your board handles 20-bit addressing but does not do DMA: set sections 1-4 OFF.
- If your board handles 20-bit addressing and will be doing DMA to SUN memory: set sections 1-4 to OFF.

(switch)	Sec.	Sec.	Sec.	Sec.
	1	2	3	4
DIP 11:	OFF	OFF	OFF	OFF

- If your board handles 20-bit addressing and will be doing DMA only to some other device and never to Sun memory then:
- \Rightarrow Determine the value you want to be set into switches 1-4.

Your value is 0x_____

which is equal to binary _____

 \Rightarrow Set these four bits into sections 1-4 of DIP 11. Remember: 0 = OFF and $1 = ON.^{+}$

(switch)		Sec. 2		
DIP 11:	A23	A22	A21	A20

The Multibus is acuve low, so these settings are the reverse of other switches.

A.4. Interrupt Vector Switch DIP 12		This section tells you how to set the switches for the the interrupt vector. There are both												
	۵	sample s	ettings (labe	elled	''Ex	ample	:,'') ar	nd					
	D	space for	r you to	figu	re oi	ut the	e settir	igs for	r your	own	board	1.		
Interrupt Vector—Example	⇒	Convert	the hex	valu	ie of	the v	ector	to bin	ary:					
		EXAMPLE												
		0xA6 =	1010	011	0									
	⇒	Set this v	value int	o D.	IP 11	2:0:	= <i>ON</i>	and I	= OF	F.				
		(switch	secti	lon	#)		S1	S2	S 3	S 4	S 5	S 6	S7	S 8
0xA6 = 1	. 0	1 0	0	1	1	0	= 0	1	1	0	0	1	0	1
(bit#) 7	6	5 4	3	2	1	0	0	1	2	3	4	5	6	 7
Interrupt Vector—Your Board		Convert 0x Set this v		Y 	003	R E =_	0AR 	.D 	-	 F.				
_						S	1 S2	2 S3	s 4	s5	se	5 57	S 8	
0x =					•									
(bit#) 7 6	5	4	32	1	0	0	1	2	3	4	5	6	7	

-41

Example Configurations

Example Configurations	57
B.1. Xylogics 450 Disk Controller	57
B.2. Tapemaster 1/2 Inch Tape Controller	59
B.3. DMA Tester Board	61

B

•

Example Configurations

B.1. Xylogics 450 Disk Controller Multibus Memory Space: Not Used Multibus I/O Space: 8 bytes starting at 0xEE40 DMA address size: 24 bits Interrupt Vector: 0x48 BCLK, CCLK: Needs external clocks NOTE Configure the Xylogics board for 24-bit operation. Switch Settings: For No Multibus Memory Space Response: DIP 8-All OFF DIP 6-All OFF DIP 7-All ON DIP 5-All ON D For I/O space size 8: DIP 2 Section 1 2 3 4 5 6 7 8 X ON ON ON ON OFF OFF DIP 4 All ON D For I/O base address 0xEE40: DIP 1 Section 2 3 4 5 6 8 1 7 ON OFF Х ON ON ON OFF OFF 2 DIP 3 Section 1 3 5 7 8 4 6 OFF OFF OFF ON OFF OFF OFF ON

For 24-bit Multibus DMA addressing:

DIP 11 Sections 1-4 All OFF Sections 5-8 All ON For Interrupt Vector 0x48: DIP 12 Section: 1 2 3 4 5 6 7 8 ON ON OFF ON ON OFF ON For BCLK and CCLK:

JMP1 Section 1 INSTALLED Section 2 INSTALLED

Following is a diagram of the switch settings (0 is ON, X is OFF).

<VME P1 Connector> <VME P2 Connector>

			DIP2
			X 0000CXX
	DIP8	DIP6	
	XXXXXXXXX	XXXXXXXX	
			DIP1
			00X000XX
	DIP7	DIP5	
	00000000	00000000	
			DIP3
			XXX0XXX0
DIP12	DIP11	DIP4	JMP 1
00000000	XXXX0000	00000000	00
		(jumpe	rs in)

<Multibus P2 Connector>

B.2. Tapemaster 1/2 Inch Tape Controller	Mu DM In	ltibus A <mark>a</mark> ddr t e rrup	e	Memory Spa I/O Space: ss size: Vector: K: Nee	2 b 20 2 0х6	yt es bits 0	start	-	0 x0	0A0		
	S₩	itch Set	tir	ngs:								
	۵	For No	5 I	Multibus Men	nory S	Space I	Respon	se:				
				P 8-All OF P 6-All OF P 7-All O P 5-All O	F N							
	C	For I/C	5 :	space size 2:								
		DIP 2	•	Section	1 X	2 ON				6 0N		8 ON
		DIP 4		All ON								
	۵	For I/C	וכ	base address ()x00A	N 0:						
		DIP 1		Section	-	2 OFF	3 ON	4 OFF	5 0N	6 ИО	7 0N	8 ON
		DIP 3		Section	1 ON	2 ON	3 ON	4 0N	5 0N	6 0N	7 0N	8 ON
	D	For 24	-b	it Multibus D	MA a	address	ing:					
		DIP 1	1	Sections	1-4	A11	OFF	Sect	ions	5-8	A11	ON
	۵	For Int	eī	Tupt Vector 0	x6 0:							
		DIP 1	2	Section	1 ON			4 ON	5 ON	6 OFF	7 OFF	8 ON
	D	For BC	l	K and CCLK								
		JMP1		Section 1	I	NSTAL	LED	Sec	tion	2 INS	TALLE	D

Following is a diagram of the switch settings (0 is ON, X is OFF).

<VME P1 Connector> <VME P2 Connector>

1				
1				
1			DIP2	
1			0000000	
1	DIP8	DIP6		
1	XXXXXXXXX	XXXXXXXX		
1			DIP1	
1			0x0x0000	
	DIP7	DIP5		
1	00000000	00000000		
1			DIP3	
1				
1			00000000	
DIP12	DIP11	DIP4	JMP 1	
00000XX0	XXXX 0000	00000000	00	
1		(jumpe	rs in)	
			-	

<Multibus P2 Connector>

B.3. DMA Tester Board

Multibus Memory Space: 16K bytes starting at 0x280000 Multibus I/O Space: Not Used DMA address size: 20 bits Interrupt Vector: 0x48 BCLK, CCLK: Needs external clocks Switch Settings: For No Multibus I/O Space Response: DIP 2-All OFF DIP 4-All OFF DIP 1-All ON DIP 3-All ON D For Memory space size 16K: DIP 6 Section 1 2 3 4 5 6 7 8 ON ON OFF OFF OFF OFF OFF OFF DIP 8 All ON For Memory base address 0x280000: DIP 5 Section 2 3 1 4 5 6 7 8 ON ON OFF OFF OFF OFF OFF OFF DIP 7 Section 1 2 3 4 5 6 7 8 ON OFF ON OFF ON ON ON ON For 20-bit Multibus DMA addressing, using zeroes as the high-order 4 bits: DIP 11 Sections 1-4 All OFF Sections 5-8 All OFF For Interrupt Vector 0x48: DIP 12 Section 1 2 3 5 6 8 4 7 ON ON ON OFF ON ON OFF ON For BCLK and CCLK: JMP1 Section 1 INSTALLED Section 2 INSTALLED

Following is a diagram of the switch settings (0 is ON, X is OFF).

<VME P1 Connector> <VME P2 Connector>

			DIP2 XXXXXXXX
	DIP8	DIP6	
	00000000	00xxxxxx	
			DIP1
			0000000
	DIP7	DIP5	
	00x0x000	00xxxxxx	
			DIP3
			00000000
DIP12	DIP11	DIP4	JMP1
00000000	XXXXXXXX	XXXXXXXX	00
		(jumpe	rs in)

<Multibus P2 Connector>

Index

8

8-Section DIP Switch example of, 9

A

asserted, xi

B

base address, 12 Multibus memory space, 15 BCLK (Bus Clock) JMP1, 26 block size, 9, 12, 18

С

CCLK (Constant Clock) JMP1, 26 clear, xi Clock Logic, 36 CLOSED, xi

D

Data Transfers, 34 DIP. xi switch, xi DIP 12, 36 DIP switch 1, 16, 30 DIP Switch 11, 19, 32 DIP Switch 12, 23 DIP switch 2, 16, 30 DIP switch 3, 16, 30 DIP switch 4, 16, 30 DIP switch 5,9 DIP switch 6,9 DIP switch 7,9 DIP switch 8,9 DMA Address Switch DIP 11, 50 DMA Cycle DIP Switch 11, 19

F

functional description, 3

G

glossary asserted, xi clear, xi CLOSED, xi DIP, xi negative logic, xi OFF, xi ON, xi OPEN, xi positive logic, xi set, xi switch, xi switch section, xi

Ι

I/O Address Decoding, 16 Interrupt Logic, 36 Interrupt Vector DIP Switch 12, 23 Interrupt Vector PROM, 24 Interrupt Vector Switch DIP 12, 54

J

JMP1, 26

Μ

Memory Address Space, 29 Memory Space Base Address Switches, 44, 45 Memory Space Block Size Switches, 42, 43 Multibus I/O Address Decoding, 16 Multibus I/O Addressing DIP switch 1, 16 DIP switch 2, 16 DIP switch 3, 16 DIP switch 4, 16 Multibus I/O Space, 17 block size switches, 18 Multibus I/O Space Base Address Switch Settings, 48, 49 Multibus I/O Space Block Size Switch Settings, 46, 47 Multibus I/O Space Switch Settings, 46 Multibus Memory Address Decoding, 10 Multibus Memory Address Space Size DIP Switch 11, 19 Multibus memory address space size DIP 11, 50 Multibus Memory Addressing

Multibus Memory Addressing, continued DIP switch 5, 9 DIP switch 6, 9 DIP switch 7, 9 DIP switch 8, 9 Multibus to VMEbus Addressing, 32

N

negative logic, xi

0

OFF, zi ON, zi OPEN, zi

P

PAL U307, 30 positive logic, xi

S

Sample Configuration DMA Tester Board, 61 Tapemaster 1/2 Inch Tape Controller, 59 Xylogics 450 Disk Controller, 57 ser xi Setting Multibus Memory Space Switches, 42 signal B.DTACK, 33 BH-, 34 **BPRN**, 35 BRQ1-, 35 DATOUT-35 ENVEC-, 36 P1.A3-P1.A1, 36 P1_BG3IN-, 35 P1.BG3OUT-, 35 P1.BR3-, 35 P1.DTACK, 33 P1_LACKIN-, 36 WBL-. 34 WH-, 34 switch, xi switch section, xi Switch Settings 24-Bit Multibus Memory Space, 11 Multibus Memory Space, 10 Switch Settings Worksheet, 41 switches what they do, 5

terms asserted, xi clear, xi CLOSED, xi DIP, xi negative logic, xi OFF, xi ON, xi OPEN, xi positive logic, xi

Т

terms, continued set, xi switch, xi switch section, xi Theory of Operations, 29 U U101, 34 U102, 34 U103, 34 U104, 32 U105, 32 U106, 33 U107, 32 U108, 32 U109.32 U110.32 U201, 30 U202, 30 U204, 31 U205, 31 U301, 30, 34 U302, 33 U303, 31 U306, 36 U307, 31 U402, 36 U405, 36 U406, 36 U501, 35

V

VME DMA Cycle, 36 VMEbus to Multibus Addressing, 31

At This Time

At This Time

<u>At This Time</u>

VME to Multibus Adapter Card

İ

VME to Multibus Adapter Card

This card allows Multibus protocol 2-high cards to work with Sun VMEbus protocol 3-high systems.

The 2-high controller card (example: Xylogics 451 SMD disk) is plugged into the adapter and the entire assembly is plugged into the proper slot as if it were all one card.

VME to Multibus Adapter Layout

VME/MB MOUNTING

VME to Multibus Adapter Layout

- Each DIP has 8 switches 1–8.
- On is up, off is down.
- Do not use lead pencil to change switches.
- The prom socket, usually unstuffed, is for special order Sun Proms which would provide the customer with multiple interrupt vectors.

VME/MB Switch Settings for Xylogics 450/451 Controller Boards

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	ON	OFF	OFF	ADDR 0x40 I/O
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space=8
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR 0xEE
4	ON	ON	ON	ON	ON	ON	ON	ON	I/O space=8
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit bolck size
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bin addr space
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Set addr A23-A20
12	ON	ON	ON	OFF	ON	ON	OFF	ON	Int Vec at 0x48
J1	Inst	all pin	s 1-2	for BC	LK		Insta	all pins	3-4 for CCLK

FIRST SMD (DISK) CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	OFF	OFF	OFF	ADDR 0x48 1/0
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/Ospace=8
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR 0xEE
4	ON	ON	ON	ON	ON	ON	ON	ON	VME addr space
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
12	OFF	ON	ON	OFF	ON	ON	OFF	ON	Int Vec 0x49
 J1	Inst	all pin:	s 1-2	for BC	LK	Install pins 3-4 for CCLK			

SECOND SMD (DISK) CONTROLLER

VME/MB Switch Settings for Xylogics 450/451 Controller Boards

Note: Switch 11, positions 5, 6, 7 and 8 are on for all cards except:

- Xylogics 472's.
- Gateway's.

Sun Education

Not to be copied

DESCRIPTION

24-bit block size

OFF Sets addr A23-A20

Int Vec 0x75

Install pins 3-4 for CCLK

1				The second s					
	ON	ON	ON	ON	ON	ON	ON	ON	ADDR 0x00
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	No response to I/O space
and an other designments of the local distribution of the local distri	ON	ON	ON	ON	ON	ON	ON	ON	ADDR 0x00
A NUMBER OF STREET, ST	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	No response to I/O space
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit addr space
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	24-bit addr space

OFF

OFF

OFF

OFF

OFF

OFF

6

7

8

OFF

ON

VME/MB Settings For Gateway and Sunlink Controllers

5

OFF

OFF

OFF

SECOND ETHERNET

					_				
SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	ON	ON	ON	OFF	OFF	OFF	ADDR 0x800
2	ON	ON	ON	ON	ON	OFF	OFF	OFF	I/O space = 16
3	ON	ON	ON	ON	OFF	ON	ON	ON	ADDR 0x0800
4	ON	ON	ON	ON	ON	ON	ON	ON	VME addr space
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block
11	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Sets addr A23-A20
12	ON	ON	OFF	OFF	ON	ON	ON	OFF	Int Vec 0x8C
J1	1	nstail p	ins 1-2	2 for B	CLK		Insta	all pins	3-4 for CCLK

FIRST SUNLINK CONTROLLER

SWITCH

1

<u>3</u> 4

5

6

7

8

11

12

J1

2

ON

ON

OFF

1

ON

OFF

OFF

3

ON

OFF

OFF

Install pins 1-2 for BCLK

4

ON

OFF

ON

VME/MB Settings for Xylogics 472 Tape and Systech ALM 1 Controllers

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	ON	ON	OFF	OFF	ON	• • •	OFF	OFF	Addr 0x60 1/0
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space = 8 bytes
Dip 3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	Addr 0xEE for I/O
DIP 4	ON	ON	ON	ON	ON	ON	ON	ON	I/O space = 8
Dip 5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
Dip 6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
Dip 7	ON	ON	ON	ON	ON	ON	ON	ON	
Dip 8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
Dip 9	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
Dip 10	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
Dip 11	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Set A23 to A20
Dip 12		ON	OFF	ON	ON	OFF	OFF	ON	Int vector set to 0x64
JUMPERS		Insta	all pins	1-2 f	or BCL	Kinsta	all pins	s 3-4 f	or CCLK
*** set O	N for >	dc0 , :	set OF	F for >	dC1				

GCR (6250) 1/2-INCH TAPE CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	OFF	ON	ON	OFF	ON	ON	OFF	OFF	Addr 0x20 for I/O
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space = 8
Dip 3	ON	ON	ON	ON	ON	OFF	OFF	ON	Addr 0x06 for 1/0
Dip 4	ON	ON	ON	ON	ON	ON	ON	ON	I/O space = 8
Dip 5	ON	ON	ON	ON	ON	ON	ON	ON	VME 24-bit addr space
Dip 6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
Dip 7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
Dip 8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
Dip 9									Not Used
Dip 10									Not Used
Dip 11	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Sets addr A23-A20
Dip 12	ON	ON	ON	OFF	ON	ON	ON	OFF	Int Vec at 0x88
JUMPERS	l Ir	nstall p	oins 1-	2 for	BCLK	Inst	tall pin	s 3-4	for CCLK

SYSTECH ALM 1 (MTI) INTERFACE CONTROLLER

Section 2

CHAPTER SEVEN SECTION 7C:

VME-MULTIBUS ADAPTER

OVERVIEW

The VME to Multibus board is an adapter which allows the use of Multibus cards on the VME bus for Sun 3 pedestal products. The VME to Multibus card scheme is transparent to the system in that there are no registers on the adapter board that software can modify. The following text defines how VME signals are routed through the adapter so that Multibus cards can be read and written, as well as interrupted using programmed cycles. Functional block diagrams have been included to illustrate how the adapter operates. The following block illustrates the VME interface to the adapter:

FIGURE 7C-1: VME INTERFACE

7C.1 ADAPTER CONFIGURATION CONSIDERATIONS

There are a number of switch settings which must first be described in order to better understand the functional capabilities of the VME to Multibus board. The adapter board can respond to a block of addresses in the 24-bit VME address space. When the adapter board sees an address within the selected block, it throughputs the address bits to the Multibus board and generates a Multibus

read or write command. The addressing can range from 256K to 16M bytes for Multibus memory address decoding.

This addressing function is controlled by the dip switches (DIP's 5,6,7,8,) which set up in three 8-bit equal-to-comparators. If the comparators match the addresses a select signal is asserted toward a control PAL on the adapter board. At this point, the PAL would assert a 'memory enable' strobe to the 'transfer enable' PAL on the adapter board which selects the bidirectional transceivers for a data transfer. A 'dataout' signal from the same PAL controls the direction of the transfer at the transceivers. Dips 5 and 7 (see Figure 7C-2) select the 24-bit VME space base address for access to the Multibus memory space.

The adapter board can also respond to a block of addresses in the 16-bit VME address space that the board responds to.. Here, when the adapter board sees an address within the selected block, it throughputs the address bits to the multibus board and generates a Multibus read or write. This function is controlled by dip switches on the adapter board (DIP's 8 and 6).

For Multibus I/O addressing, the adapter board can respond to a block of addresses in the 16-bit VME address space. When the adapter sees an address within the block set up by the switches, it passes the address bits to the Multibus board and asserts a Multibus I/O read or write. The address range of these blocks is from 2 Bytes to 64K bytes. This function is set-up in dip switches 1 through four.

The 16-bit address will be set-up in two 8-bit equal-to-comparators, and assert select signals toward the control PAL. This PAL then asserts I/O enable to the transfer PAL. Figure 7C-2 illustrates the configuration selects for the adapter board.

FIGURE 7C-2: CONFIGURATION SELECTS

7C-2 VME BUS TO MULTIBUS ADDRESSING

During a VME read cycle to a Multibus card, P1 address lines A01-A23 are transferred to to the multibus adapter card in conjunction with P1 address strobe (AS) and P1 data strobes (DS0,DS1). Address lines which pass on to Multibus cards are latched onto the adapter by transparent latches with address strobe. After setting up, the inverted address lines are passed onto the Multibus with the assertion of Multibus 'read'.

Note that VME address lines are active high, and Multibus address lines are active low. Address lines are inverted by the latches on the adapter card.

A transfer PAL is used to set up the Multibus read command using address and data strobes. While active, the read signal allows the addresses to pass to the Multibus at connector J700. At the end of the read cycle, the Multibus board will respond by asserting a 'transfer acknowledge' to the adapter, which asserts P1 'data transfer acknowledge', thus, completing the cycle. The following block diagram illustrates this function:

FIGURE 7C-3: VME/MULTIBUS ADDRESSING

7C.3 MULTIBUS TO VME BUS ADDRESSING

In the process of a read cycle from the Multibus to the VME bus, multibus address lines M.A01-A19 are enabled onto the adapter via buffers, which invert the lines and enable (pass) them on to the VME (P1) bus, via connector J801. A dip switch at DIP 11, furnishes the high order address bits (M. A20-A23) to the inverting buffer to complete the 24 bit address to the VME bus.

At the end of the cycle, a P1 'data transfer acknowledge' is sent from the VME bus to the adapter board via a buffer which asserts 'bus data transfer acknowledge' to the transfer acknowledge PAL. Refer to the block diagram above for an illustration of this function.

7C.4 DATA TRANSFERS TO AND FROM THE ADAPTER

During a transfer cycle, data is transferred from the Multibus to the VME bus (and vice versa) via bidirectional transceivers. Two of the transceivers are used when the data transferred is a 16-bit word. For byte transfers the transceivers are used when the data is a byte at an odd address, or when data is a byte at an even address. In a write cycle to the Multibus, 'multibus write' will be active. When the direction is toward the VME bus, 'multibus read' will be active on the adapter. Both signals are asserted via the transfer PAL.

The three transceivers are enabled by 'write enable' signals which are driven by a data transfer enable PAL. The PAL is set-up by 'data strobes' (DS0,DS1) and bus write conditions originating from the VME (P1) bus during a write cycle to the multibus. For data transfers to the VME bus (from the Multibus), a 'dataout' signal is asserted to the transceivers for direction control toward the P1 data bus. Dataout is also set-up by the data transfer enable PAL. Refer to the following block diagram for an illustration of this function:

FIGURE 7C-4: VME/MULTIBUS DATA TRANSFERS

7C.5 BUS REQUEST/BUS GRANT LOGIC

For bus requests from the Multibus to the VME bus, the requesting board will assert a 'bus request' and 'bus-priority-in level' to a handshanking PAL on the adapter board. This PAL then asserts a P1 bus request level to the VME (P1) bus. If the bus is not busy, a P1 'bus grant' level will be sent to the handshaking PAL which then asserts the bus grant as a 'multibus- priority-out' to the requesting Multibus board.

7C.6 INTERRUPT LOGIC

Vectored interrupts are not supported on the Multibus, however, they are supported on the VME bus and therefore must be translated by the adapter board. A VME interrupt vector is generated on the adapter board by switches (DIP 12), or by an interrupt PROM(supplied by Sun).

The switches are used if the Multibus board interrupts on one level only. Where a Multibus board interrupts on more than one level, and a separate vector is required for each level, the PROM is used.

When one of the Multibus interrupt lines (INT1-INT7) goes active, it through puts to the VME bus via an open collector buffer (U405). When the processor sees the interrupt, it goes into an interrupt acknowledge cycle by putting the interrupt level on the lower-order address bits (P1 A1-A3), while driving P1 'interrupt acknowledge' and asserting P1 'address strobe'. Note that P1 interrupt acknowledge is bussed to every board on the backplane. A version of P1 'interrupt acknowledge-in/interrupt acknowledge-out' is daisy-chained from board to board.

When the adapter board sees this version of interrupt, it will check to see if the interrupt level specified by the address lines (P1 A1-A3) is in the same level as the one its trying to interrupt on. If so, the adapter will enable the interrupt vector onto the VME bus via the buffer. If the interrupt level is not the one specified by the address lines, the adapter will pass the interrupt on to the next board with P1 'interrupt acknowledge-out'. The following block diagram illustrates this function:

FIGURE 7C-5: INTERRUPT LOGIC

7C.7 VME DMA CYCLE

The adapter board can generate a VME DMA cycle (when the adapter is the VME bus master) in response to a DMA cycle by the Multibus board. The

Multibus board can be a 20-bit address master, or a 24-bit address master (the adapter board is a 24-bit master). If the Multibus board becomes a 24-bit master, the 4-high order bits are generated by the switches on the adapter board which are in DIP 11. DIP 11 generates addresses A20-A23 toward the VME bus via the inverter address buffers.

7C.8 CLOCK LOGIC

For multibus boards which require an external bus clock and constant clock (that is most boards), the adapter provides for those clocks. The clocks originate at a 19.6608 MHz crystal (X1) and is divided down by a flip-flop to provide a 9.8344 MHz clock. A jumper block on the adapter board (J1) allows the enabling/disabling of the bus clock and the constant clock. Pins 1 to 2 should be jumpered for the bus clock, and pins 3 to 4 should be jumpered for the constant clock. Note that the jumpers should be installed to provide the clocks. Refer to the block diagram in Figure 7C–6 for an illustration of these settings.

FIGURE 7C-6: CLOCK LOGIC

The next two blocks illustrate the layout of the VME/MB adapter:

FIGURE 7C-15: VME/MB CARD LAYOUT

FIGURE 7C-16: VME/MB MOUNTING

7C.9 SUN 3 VME/MB ADAPTER SETTINGS

.

.

The following Tables list the default settings for Sun supported controller boards:

WITCH	1	2	3	4	5	6	7	8	DESCRIPTION		
1	ON	ON	OFF	ON	ON	ON	OFF	OFF	ADDR 0x40 1/0		
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space=8		
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR 0xEE		
4	ON	ON	ON	ON	ON	ON	ON	ON	I/O space=8		
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space		
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit bolck size		
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bin addr space		
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size		
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Set addr A23-A20		
12	ON	ON	ON	OFF	ON	ON	OFF	ON	Int Vec at 0x48		
J1	Install pins 1-2 for BCLK						Install pins 3-4 for CCLK				

FIGURE 7C-7: FIRST SMD CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	OFF	OFF	OFF	ADDR 0x48 1/0
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/Ospace=8
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR 0xEE
4	ON	ON	ON	ON	ON	ON	ON	ON	VME addr space
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
12	OFF	ON	ON	OFF	ON	ON	OFF	ON	Int Vec 0x49
J1	Insta	all pins	1-2 for	BCLK		Install pins 3-4 for CCLK			

FIGURE 7C-8: SECOND SMD CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	ON	ON	ON	ON	ON	ON	ADDR 0x00
2	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	No response to I/O spac
3	ON	ON	ON	ON	ON	ON	ON	ON	ADDR 0x00
4	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	No response to I/O spac
5	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit addr space
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
7	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	24-bit addr space
8	ON	ON	OŅ	ON	OFF	OFF	OFF	OFF	24-bit block size
11	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Sets addr A23-A20
12	OFF	on	off	on	OFF	off	off	ON	Int Vec 0x75
J1	In	stall pir	is 1-2 1	for BCL	.к		Inst	all pins (3-4 for CCLK

FIGURE 7C-9: SECOND ETHERNET BOARD

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION	
1	ON	ON	ON	ON	ON	OFF	OFF	OFF	ADDR 0x800	
2	ON	ON	ON	ON	ON	OFF	OFF	OFF	I/O space = 16	
3	ON	ON	ON	ON	OFF	ON	ON	ON	ADDR 0x0800	
4	ON	ON	ON	ON	ON	ON	ON	ON	VME addr space	
5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space	
6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block	
7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space	
8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block	
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20	
12	ON	ON	OFF	OFF	ON	ON	ON	OFF	Int Vec 0x8C	
J1	Install pins 1-2 for BCLK						Install pins 3-4 for CCLK			

FIGURE 7C-10: SUNLINK CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION	
Dip 1	ON	ON	OFF	OFF	ON		OFF	OFF	Addr 0x60 I/O	
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space = 8 bytes	
Dip 3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	Addr 0xEE for I/O	
DIP 4	ON	ON	ON	ON	ON	ON	ON	ON	1/O space = 8	
Dip 5	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space	
Dip 6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size	
Dip 7	ON	ON	ON	ON	ON	ON	ON	ON		
Dip 8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
Dip 9	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Not used	
Dip 10	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Not used	
Dip 11	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Set A23 to A20	
Dip 12	•••	ON	OFF	ON	ON	OFF	OFF	ON	Int vector set to 0x64	
JUMPERS		instal	pins 1	-2 for E	BCLK	Install pins 3-4 for CCLK				

FIGURE 7C-11: GCR 1/2-INCH TAPE CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	OFF	ON	ON	OFF	ON	ON	OFF	OFF	Addr 0x20 for I/O
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space = 8
Dip 3	ON	ON	ON	ON	ON	OFF	OFF	ON	Addr 0x06 for 1/O
Dip 4	ON	ON	ON	ON	ON	ON	ON	ON	I/O space = 8
Dip 5	ON	ON	ON	ON	ON	ON	ON	ON	VME 24-bit addr space
Dip 6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
Dip 7	ON	ON	ON	ON	ON	ON	ON	ON	24-bit addr space
Dip 8	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	24-bit block size
Dip 9									Not Used
Dip 10									Not Used
Dip 11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
Dip 12	ON	ON	ON	OFF	ON	ON	ON	OFF	Int Vec at 0x88
JUMPERS	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-12: ALM INTERFACE CONTROLLER

FIGURE 7C-13: ALM BOARD DIP SWITCH SETTINGS

FIGURE 7C-14: PROGRAMMABLE COMMUNICATION INTERFACE (SECOND ALM BOARD)

At This Time

Bill Of Material (BOM

<u>Not Available</u>

<u>At This Time</u>

Engineering Change Orders

ECO Summary Sheets

SUMMARY SHEET

VME MULTIBUSS ADAPTER

501-1054 Rev. - 01/29/88

UPDATED PER ECO 3282 / DOCUMENTATION

NOTE: * REQUIRES DEPOT REWORK

ECO | REV. | EFFECTIVE | CORRECTIVE ACTION # | OUT | DATE |

1463 | 03/50 | 03/20/85 | DOCUMENTATION _____ 1607 | 03/51 | 05/17/85 | ENGINEERING RELEASE / DOCUMENTATION _ _ _ _ _ _ *1609| 03/51| 05/17/85 | ON FAB 270-1054-03 REWORK DIP SWITHES 1,2 &11. CUT PINS 162 FLUSH TO SWITCH BODY AND MOUNT PIN 2 OF SWITCH TO PIN 1 OF BOARD LOC. ON SOLDER SIDE JUMPER DIP12 PIN 8 TO DIP11 PINS 1,2,3,& 4. Problem: Board layout was incorrect and dipswitch had two pins not arounded. 1746 | 03/52 | 08/20/85 | DOCUMENTATION _____ *1850 | 04/50 | 09/09/85 | REMOVE P2 CONNECTOR _____ 1725| 04/A | 09/30/85 | PRODUCTION RELEASE _____ 1993| 04/B | 11/05/85 | ADDS BAR CODE LABELS 2080| 04/C | 12/10/85 | DOCUMENTATION 2309| 04/D | 03/18/86 | CHANGE IN BOM ______ 2525; 04/E | 06/26/86 | USE KEPTON TAPE (P/N 150-1180-01) ON BOARD SUPPORTS WHERE OPTION BOARDS REST. *2189| N/A | 06/19/86 | SPRING FINGERS Problem: Add spring fingers to pass FCC Part 15. *2748| 05/A | 11/06/86 | ADD THICKER INSULATION (FR4) P/N 330-1099-01. ADD DOUBLE SIDED TAPE (P/N 150-1192-01) Problem: Make the spring finger insulator thicker to prevent the spring finger from shorting to the printed circuit board. ______ 3018 | 05/B | 03/10/87 | DOCUMENTATION _____ 3080| 05/C | 08/03/87 | Add Bar Code tabs to BOM. ______

501-1054	
3267 05/D 06/30/87	U locations on the printed circuit board need to be standardized.
3014 05/E 10/12/87	Documentation
3282 05/F 10/08/87	Documentation

Purge Notice

P.N. # 649 | 06/02/87 |

2

PURGE DALE 10K SIP WITH DATE CODE 8649 (P/N 120-1419-01).

ECO Rework Sheets

ECO 1609

DATE APPROVED: 05/17/85

EFFECTIVE DATE: 05/17/85

PART NO. AFFECTED: 501-1054

ECO BOARD REV: FROM 03/50 TO 03/51

AVERAGE REWORK TIME: 15 min.

PARTS NEEDED: DESCRIPTION		SUN PART NO.	QTY.
	8 Pin Dip Switch	150-1006-01	1

ADDITIONAL MATERIALS / TOOLS: 30 guage Kynar wire

REWORK INSTRUCTION FOR 1609:

- 1) Dip switched Dip1 and Dip2 cut off pins 1 and 16 flush with the Dip switch body.
- 2) Install the two Dip switched in to the positions marked on the printed circuit board maked Dipl and Dip2 so that pin 2 of the switch goes into pin 1 on the board.
- 3) On the solder side of the board, jumper Dipl1 pins 1,2,3, and 4 to pin 8 of Dipl2.
- 4) Change the Printed Circuit Board revision level to a -03/51.

Comments: None

ECO 1850

DATE APPROVED: 09/09/85 EFFECTIVE DATE: 09/09/85 PART NO. AFFECTED: 501-1054 ECO BOARD REV: FROM 03/52 TO 04/50 AVERAGE REWORK TIME: 15 min.

PARTS NEEDED: None

ADDITIONAL MATERIALS / TOOLS: None

REWORK INSTRUCTIONS FOR ECO 1850:

1) Remove the P2 VME connector from the VME to Multibus adapter.

2) Change the Printed Circuit Board revision level to a -04/50.

Comments: None

ł

÷

ECO 2189 DATE APPROVED: 6/19/86 EFFECTIVE DATE: 6/19/86 PART NO. AFFECTED: 501-1054 ECO BOARD REV: FROM 01/C TO 02/A AVERAGE REWORK TIME: 15 min.

PARTS NEEDED:	DESCRIPTION	SUN PART NO.	QTY.
	Spring finger	340-1228-03	1
	FR4 10 mil	330-1099-01	l
	Foam tape	150-1192-01	2
	Rivets 1/8 in.	240-1320-01	1

ADDITIONAL MATERIALS / TOOLS: Electric Hand Drill with a 1/8 inch bit 3/16 inch socket or nutdriver Bostik POPRIVETOOL 1/8"-5/32"-3/16" pop rivet tool or equivalent Small screwdriver

REWORK INSTRUCTION FOR 2189:

- 1. Remove one of the pop rivets from the board stiffener with the electric hand drill.
- 2. Remove the screws and nuts that hold the connectors to the board stiffener with the screwdriver and 3/16" socket or nut driver.
- 3. Pull the board stiffener away from the printed circuit board and install the spring finger.
- 4. Place the insulator at the edge of the printed circuit board, near the board stiffener.
- 5. Place the board stiffener with the spring finger onto the printed circuit board and install the nuts and screws onto the connectors.* The springfinger should be resting on the FR4 insulator and not touching the printed circuit board.
- 6. Mark the revision level of the board with a -02/A.
- COMMENTS: ECO 2748 requires the use of the FR4 10 mil insulator that has been installed with this rework instruction.

ECO 2748 DATE APPROVED: 11/06/86 EFFECTIVE DATE: 11/06/86 PART NO. AFFECTED: 501-1054 ECO BOARD REV: FROM 04/E to 05/A AVERAGE REWORK TIME: 15 Min.

PARTS NEEDED:	DESCRIPTION	SUN PART NO.	QTY.
	FR4 10 mil	330-1099-01	1
	Foam tape	150-1192-01	2

ADDITIONAL MATERIALS / TOOLS: None

REWORK INSTRUCTION FOR ECO 2748:

- 1. Remove any insulator under the springfinger except the FR4 10 mil insulator.
- 2. Install a FR4 10 mil insulator under the springfinger held in place by the 2 pieces of foam tape at each end of the insulator.
- 3. Mark the revision level of the board to a -05/A.

COMMENTS: None

<u>At This Time</u>

Schematics

VME TO MULTIBUS ADPT.

501-1054-08

Rev B

	ECO	Desci	ription	Date	Approvals		
RP13 RP14 1K 1K M.INT[00:07]-74 $R9.SIP$ 1K M.INT[00:07]-74 R1 2 M.INH2- R2 4 M.INT[07]- R3 5 M.INT[05]- R4 5 M.INT[05]- 6 7 R4 6 7 R.INT[04]- R5 7 R.INT[03]- R6 7 8 9 10 R1	RP15 1K 19. SIP R1 2 R2 3 M.CBRQ- R3 4 M.LOCK R4 5 M.XACK-13 R5 6 M.IORC-13 R6 7 M.MRDC-13 R7 8 M.BUSY-13 R8 9 R9 10	RP16 2.2K R9.SIP R1 <u>3</u> M.D[01]-;1 R2 <u>4</u> M.D[03]-;1 R3 <u>4</u> M.D[05]-;1 R4 <u>5</u> M.D[07]-;1 R5 <u>6</u> M.D[09]-;1 R6 <u>8</u> M.D[11]-;1 R7 <u>9</u> M.D[13]-;1 R8 <u>10</u>	$\begin{array}{c} \text{RP17} \\ \textbf{2.2K} \\ \text{R9.SIP} \\ \text{R1} \\ \textbf{2} \\ \textbf{M.D[00]-;1} \\ \text{R3} \\ \textbf{4} \\ \textbf{M.D[02]-;1} \\ \text{R4} \\ \textbf{5} \\ \textbf{M.D[04]-;1} \\ \text{R5} \\ \textbf{6} \\ \textbf{M.D[06]-;1} \\ \text{R6} \\ \textbf{7} \\ \textbf{M.D[10]-;1} \\ \text{R7} \\ \textbf{8} \\ \textbf{M.D[12]-;1} \\ \text{R8} \\ \textbf{9} \\ \textbf{10} \\ \textbf{M.D[14]-;1} \\ \text{R9} \\ \textbf{10} $	$\begin{array}{c} \text{RP18} \\ 2.2\text{K} \\ \text{R9.SIP} \\ \text{R1} \\ 2 \\ 3 \\ \text{M.A}[00] - 1 \\ \text{R2} \\ 3 \\ 4 \\ \text{M.A}[00] - 1 \\ \text{R3} \\ 4 \\ 5 \\ \text{M.A}[00] - 1 \\ \text{R4} \\ 5 \\ \text{M.A}[00] - 1 \\ \text{R5} \\ 7 \\ \text{M.A}[00] - 1 \\ \text{R6} \\ 7 \\ \text{M.A}[10] - 1 \\ \text{R7} \\ 8 \\ \text{M.A}[12] - 1 \\ \text{R9} \\ 10 \\ \end{array}$	A		
JT00 D0 QUARTICLE QUARTICLE <td <="" colspan="2" th=""><th>$\begin{array}{c c} J701\\ D60\\ \hline P2.1;7 & 1 & 2 & P2\\ P2.3;7 & 3 & 4 & P2\\ P2.5;7 & 6 & P2\\ P2.5;7 & 7 & 6 & P2\\ P2.7;7 & 7 & 6 & P2\\ P2.9;7 & 7 & 10 & P2\\ P2.1;7 & 11 & 12 & P2\\ P2.1;7 & 15 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 36 & P2\\ P2.2;7;7 & 37 & 36 & P2\\ P2.3;7 & 35 & 36 & P2\\ P2.3;7 & 37 & 38 & P2\\ P2.4;7 & 41 & 42 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 47 & 56 & P2\\ P2.5;7 & 55 & 56 & P2\\ P2.5;7 & 57 & 56 & P2\\ P$</th><th></th><th>RP19 2.2K R9.SIP R1 $\frac{2}{3}$ M.A$[01] - +1$ R2 $\frac{3}{4}$ M.A$[03] - +1$ R3 $\frac{4}{5}$ M.A$[03] - +1$ R4 $\frac{5}{5}$ M.A$[07] - +1$ R5 $\frac{6}{7}$ M.A$[11] - +1$ R7 $\frac{8}{9}$ M.A$[13] - +1$ R7 $\frac{9}{10}$ M.A$[15] - +1$ R9 $\frac{10}{10}$ RP21 1K R9.SIP R1 $\frac{2}{3}$ P2.18,7 R3 $\frac{4}{5}$ P2.20,7 R4 $\frac{6}{6}$ P2.13,7 R6 $\frac{7}{8}$ R7 $\frac{8}{9}$ R9 $\frac{10}{10}$</th><th>RP20 2.2K R9.SIP R1 3 M.A[16]-;1 R2 4 M.A[18]-;1 R3 5 M.A[19]-;1 R5 6 M.A[20]-;1 R6 7 M.A[21]-;1 R7 8 M.A[22]-;1 R8 10 M.BHEN-;3</th><th></th></td>	<th>$\begin{array}{c c} J701\\ D60\\ \hline P2.1;7 & 1 & 2 & P2\\ P2.3;7 & 3 & 4 & P2\\ P2.5;7 & 6 & P2\\ P2.5;7 & 7 & 6 & P2\\ P2.7;7 & 7 & 6 & P2\\ P2.9;7 & 7 & 10 & P2\\ P2.1;7 & 11 & 12 & P2\\ P2.1;7 & 15 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 36 & P2\\ P2.2;7;7 & 37 & 36 & P2\\ P2.3;7 & 35 & 36 & P2\\ P2.3;7 & 37 & 38 & P2\\ P2.4;7 & 41 & 42 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 47 & 56 & P2\\ P2.5;7 & 55 & 56 & P2\\ P2.5;7 & 57 & 56 & P2\\ P$</th> <th></th> <th>RP19 2.2K R9.SIP R1 $\frac{2}{3}$ M.A$[01] - +1$ R2 $\frac{3}{4}$ M.A$[03] - +1$ R3 $\frac{4}{5}$ M.A$[03] - +1$ R4 $\frac{5}{5}$ M.A$[07] - +1$ R5 $\frac{6}{7}$ M.A$[11] - +1$ R7 $\frac{8}{9}$ M.A$[13] - +1$ R7 $\frac{9}{10}$ M.A$[15] - +1$ R9 $\frac{10}{10}$ RP21 1K R9.SIP R1 $\frac{2}{3}$ P2.18,7 R3 $\frac{4}{5}$ P2.20,7 R4 $\frac{6}{6}$ P2.13,7 R6 $\frac{7}{8}$ R7 $\frac{8}{9}$ R9 $\frac{10}{10}$</th> <th>RP20 2.2K R9.SIP R1 3 M.A[16]-;1 R2 4 M.A[18]-;1 R3 5 M.A[19]-;1 R5 6 M.A[20]-;1 R6 7 M.A[21]-;1 R7 8 M.A[22]-;1 R8 10 M.BHEN-;3</th> <th></th>		$\begin{array}{c c} J701\\ D60\\ \hline P2.1;7 & 1 & 2 & P2\\ P2.3;7 & 3 & 4 & P2\\ P2.5;7 & 6 & P2\\ P2.5;7 & 7 & 6 & P2\\ P2.7;7 & 7 & 6 & P2\\ P2.9;7 & 7 & 10 & P2\\ P2.1;7 & 11 & 12 & P2\\ P2.1;7 & 15 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.1;7 & 17 & 16 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 26 & P2\\ P2.2;7;7 & 27 & 36 & P2\\ P2.2;7;7 & 37 & 36 & P2\\ P2.3;7 & 35 & 36 & P2\\ P2.3;7 & 37 & 38 & P2\\ P2.4;7 & 41 & 42 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 45 & 46 & P2\\ P2.4;7 & 47 & 56 & P2\\ P2.5;7 & 55 & 56 & P2\\ P2.5;7 & 57 & 56 & P2\\ P$		RP19 2.2K R9.SIP R1 $\frac{2}{3}$ M.A $[01] - +1$ R2 $\frac{3}{4}$ M.A $[03] - +1$ R3 $\frac{4}{5}$ M.A $[03] - +1$ R4 $\frac{5}{5}$ M.A $[07] - +1$ R5 $\frac{6}{7}$ M.A $[11] - +1$ R7 $\frac{8}{9}$ M.A $[13] - +1$ R7 $\frac{9}{10}$ M.A $[15] - +1$ R9 $\frac{10}{10}$ RP21 1K R9.SIP R1 $\frac{2}{3}$ P2.18,7 R3 $\frac{4}{5}$ P2.20,7 R4 $\frac{6}{6}$ P2.13,7 R6 $\frac{7}{8}$ R7 $\frac{8}{9}$ R9 $\frac{10}{10}$	RP20 2.2K R9.SIP R1 3 M.A[16]-;1 R2 4 M.A[18]-;1 R3 5 M.A[19]-;1 R5 6 M.A[20]-;1 R6 7 M.A[21]-;1 R7 8 M.A[22]-;1 R8 10 M.BHEN-;3	
Confidential - Copyright (C) 1986 Sun Microsystems. This material contains trade secrets information of Use, reproduction or disclosure is prohibited except by Sun Microsystems Inc. Use of copyright notice is and does not imply publication or disclosure.	Sun Microsystem Inc. under written license	Title: VME MULTIBUS ADAPTH Sheet: 6 Engineer:	File:	501-1054-05 sh6.d Thu Oct 13 11:28:32 1988	Rev: B		

			ECO		Description		Date	Approvals
							·	
	J800		Ċ	801			J802	
DIN (ONNECTOR		DIN CO	NNECTOR		DIN (CONNECTOR	
1	33	65	1	33	65	1	33	65
$\frac{1}{2}$ P2.2;6	$\frac{33}{34} \text{ VCC} \\ \frac{34}{35} \text{ GND} \\ \frac{35}{36} \text{ P1.A[24];2} \\ \frac{37}{37} \text{ P1.A[25];2} \\ \frac{37}{$	65 P2.1;6	$\frac{1}{2}$ P1.D[00];1	33 P1.BBSY-;5 34 P1.BCLR- 35 P1.ACFAIL-	$\frac{65}{66}$ P1.D[08];1		334556789901123456789901123455555559012890012	65 GND
3 02 6.6	34 GND 35	67 82 5.6	2 P1.D[01];1 3 P1.D[02];1	34 P1.BCLR- 35 P1.ACFAIL-	$\frac{60}{67}$ P1.D[09];1 $\frac{67}{10}$ P1.D[10];1	3 VCC	35	67 GND
4 P2 8+6	36 P1.A[24];2	$\frac{68}{69}$ P2.7;6	4 P1.D[03];1	36 P1 BC0TN-+5	68 P1.D[11];1	4 vcc	36	68 GND
5	37 P1.A[25];2		5 P1.D[04];1	37 P1.BG00UT-;5	69_P1.D[12];1	<u>5</u> vcc	37	69 CND
P2.10;6	$\frac{38}{39}$ P1.A[26];2	70 P2.11;6	6 P1.D(05):1	38 P1.BG1IN-;5	70 P1.D(13);1	6 VCC	38	70 GND
7	39 P1.A[27];2	$\frac{71}{1}$ P2.13:6	$\frac{7}{1}$ P1 D[06]:1		71_P1.D(14);1	7 vcc	39	71 GND
P2.14;6 B $P2.16;69$ $P2.18;6$	40 P1.A[28];2	72 P2.15;6	8 P1.D[07];1	40 P1.BG2IN-;5	72P1.D[15];1	8 VCC	40	72 GND
10 12.10,0	$\frac{41}{42} P1.A[29]/2$	$\frac{73}{74}$ P2.17;6	9 GND	41 P1.BG20UT-;5	73 GND	9 VCC	41	73 GND
1.2.20,0	FI.4(20)/2	F2.19/0	10 P1.SYSCLK;1	42 P1.BG3IN-;5	TE PI.SISPALL	10 VCC	42	TE GND
10	A A	50 12.21/0	12		76	$\frac{11}{12}$ VCC	44	76
$\frac{12}{13}$ P2.24;6	AF	F2.2310	12 F1.D31-,3		77 P1.SISRESE1-71	12	45	57 600
$\frac{13}{14}$ P2.26;6	$\frac{45}{46}$ VCC $\frac{46}{10}$ P1.D[16];1	77 P2.25;6 78 P2.27;6	14 F1.D30-13	45 P1.BR1-;5 46 P1.BB2-;5	78 P1.LWORD-;3 78 P1.AM5;3	$\frac{13}{14}$ vcc	46	78 GND
15 22 20.6	47 81 0(17)+1	79 P2.29;6	14 P1.WRITE-;3	40 P1.BR2-;5 47 P1.BR3-;5	79 01 0 231.2	15 VCC	47	79 GND
16 02 32.6	48 p1 p1191+1	80 P2.31;6	16 P1.DTACK-;3	48 P1.AM0;3	80 P1 A[22] +2	16 VCC	48	80 GND
17 02 34.6	49 01 01101.1	81 P2.33:6	17 GND	49 P1 AM1 3	81 P1 A[21]+2	17 vcc	49	81 GND
$\frac{18}{19}$ P2.36;6	50 = P1.D[20];1 51 = P1.D[21];1	82 P2.35:6	18 P1.AS-23	50 P1.AM2;3	82 P1 A[20] 2	18 VCC	50	82 GND
	51 P1.D[21];1	83 P2.37;6	19 GND	51 P1.AM3; 3	83 p1 a(191+2	19 VCC	51	83 GND
$\begin{array}{c} 20 \\ 21 \\ 22 \\ 22 \\ 23 \\ 23 \\ 24 \\ 24 \\ 24 \\ 24$	52 P1.D[22];1 53 P1.D[23];1	84 P2.39.6	20 P1.IACK-;3	52 GND	84 P1.A[18];2 85 P1 A[17];2	20 VCC	52	84 GND
21 P2.42;6	53 P1.D[23];1	85 P2.43;6	21 P1.IACKIN-;4 22 P1.IACKUT-;	53 P1.SERCLK;1		$\frac{21}{22}$ vcc	53	85 GND
22 P2.44;6	$\frac{54}{55} \text{GND} \\ \frac{55}{56} \text{P1.D} [24] ; 1 \\ \frac{56}{56} \text{P1.D} [25] ; 1$	86 P2.45;6	22 P1.IACKOUT-;	4 Jan Pl. SERDAT	86 P1.A[16];2 87 P1.A[15]:2	22 VCC	54	86 GND 87 GND
$\frac{23}{24}$ P2.46;6	55 P1.D[24];1	P2.4/10	P1.AM4;3	GND	FI, A(1J)/2	24	55	GIND
24 P2.48;6		00 12.4570	24 P1.A[07];2	57 P1.IRQ[07]-;4	· · · · · · · · · · · · · · · · · · ·	Jone VCC	57	GIND
$\frac{25}{26}$ P2.50;6	'no	00 12.01/0	$\frac{25}{26}$ P1.A[06];2	57 P1.IRQ[06]-;	100 1100172	26	58	GIND
$\frac{26}{27}$ P2.52;6		01 FZ. 55,0	22 FI.R(03)/2	59 P1.IRQ[05]-;	$4 \frac{90}{91} P1.A[12];2$	27 +1.24	59	01 TIZV
27 P2.54;6 28 P2.56;1;6	59P1.D[28];1 60P1.D[29];1	91 P2.55;1;6 92 P2.57;1;6	28 P1.A[04];2 28 P1.A[03];2	59 60 91.IRQ[04]-; 60 91.IRQ[03]-; 61 91.IRQ[03]-; 61	4 <u>91</u> P1.A[11];2 4 <u>92</u> P1.A[10];2	28 -124	60	$\frac{91}{92}$ +12V
29 P2.58;1;6	61 p1 p(20).1	93 p2 50.6	29 P1 A(02)+2	61 P1 TRO(02)-:		29 -12V	61	<u>93</u> -12V
30 P2.60;6	$\frac{62}{63}$ P1.D[30];1	94	30 P1 A(01) 2	62 P1. TRO[01]-	$4 \frac{94}{95} - P1.A[08];2$ $\frac{95}{95} + 12V$	30 -5V	62	94 - 5V
27 P2.54;6 28 P2.56;1;6 29 P2.58;1;6 30 P2.60;6 31 32	63 GND	95	$\frac{31}{-12V}$	62 P1.IRQ[01]-; 63 +5VSTDBY 64 VCC	95+12V	31 -5V	63	95 - 5V
32	64 VCC	96	32 vcc	64 VCC	96 VCC	32 -5V	64	96 -5V
		-		,				

SUn

Title: VME MULTIBUS ADAPTER MOD 160 Sheet: 7

Engineer:

Drawing: 501-1054-05 File: sh7.d

Thu Oct 13 11:28:52 1988

Date:

Mechanical & Assembly Drawings

Appendix ø

	Corporate Headquarters Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, CA 94043 415 960-1300 TLX 287815 For U.S. Sales Office locations, call: 800 821-4643 In CA: 800 821-4642	European Headquarters Sun Microsystems Europe, Inc. Sun House 31-41 Pembroke Broadway Camberley Surrey GU15 3XD England 0276 62111 TLX 859017	Australia: 61-2-436-4699 Canada: 416 477-6745 France: (1) 46 30 23 24 Germany: (089) 95094-0 Japan: (03) 221-7021 The Netherlands: 02155 24888 UK: 0276 62111	Europe, Middle East, and Africa, call European Headquarters: 0276 62111 Elsewhere in the world, call Corporate Headquarters: 415 960-1300 Intercontinental Sales
	annon an			
	an a su du a channa a chuir a su chuir an su chuir an san an a	an a constant and a constant and a constant of the		
		a productive doma and an experience property of the composition of the		
Management and a state of the			ativita tau niyo ta kata ati ati ati ati ati ati ati ati ati	
		n <mark>de waarde</mark> weel de veel de ve		
				
			¥	
	n a star a s			JVV.
We want the set of the		1914 - A BER AMANDAN MENUNG ADI LANJAR AMANDAN MENUNGAN AMIN'DIN DIN DANA MENUNGAN AM-1910 - E E MENUNGAN MENUNGAN		