Sun ${ }^{\text {x }}$ VME-Multibus Adapter Board User's Manual

Not Available
At This Time

Not Available
At This Time

Not Available

At This Time

Users' Manual

for the

Sun VME-Multibus Adapter Board

Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043
(415) 960-1300

Credits and Trademarks

Multibus is a trademark of Intel Corporation
Sun Microsystems and Sun Workstation are registered trademariks of Sun Microsystems, Incorporated. Sun-2, Sun-2/xxx, Sun-3, Sun-3/xxx, Deskside, SunStation, SunCore, SunWindows, and DVMA are trademarks of Sun Microsystems, Incorporated.
UNIX is a trademark of AT\&T Bell Laboratories.

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Par 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

Copyright © 1986 by Sun Microsystems, Inc.
This publication is protected by Federal Copyright Law, with all rights reserved. No pan of this publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual, electric, electronic, electro-magneric, mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Functional Description 3
Chapter 2 Switches on the VME-to-Multibus Adapter Board 9
Chapter 3 Theory of Operations 29
Appendix A Switch Setuings Worksheet 41
Appendix B Example Configurations 57

Contents

Preface $x 1$
Chapter 1 Functional Description 3
1.1. Overvieu ล
1.2. Wha: the Suitches Do s
Chapter 2 Switches on the VME-to-Multibus Adapter Board 9
2.1. Multibus Memory Addressing-DIP Switches 5, 6, 7, and 8 9
Multibus Memory Space Switch Sentings 10
2.2. Mulubus I/O Addressing-DIP Switches 1,2,3, and 4 16
Multibus I/O Space 17
2.3. Multibus Memory Address Space Size and DMA Transfer Address-DP Switch 11 19
Multibus Memory Address Space Size—DIP Switch 11, Sections 5-8 20
DMA Transfer Address-DIP Switch 11, Sections 1-4 21
2.4. Interrupt Vector-DIP Switch 12 23
Interrupt Vector PROM 24
2.5. BCLK (Bus Clock) and CCLK (Constant Clock)-JMP1 26
Chapter 3 Theory of Operations 29
3.1. Overview 29
3.2. How the Adapter Board Works 29
3.3. VMEbus to Multibus Addressing 31
3.4. Multibus to VMEbus Addressing 32
3.5. Data Transfers To and From the Adapter Board 34
3.6. Bus Reques/Bus Grant Logic 35
3.7. Intemupt Logic 36
3.8. VME DMA Cycle 36
3.9. Clock Logic 36
Appendix A Switch Settings Worksheet 41
A.1. Setting Multibus Memory Space Switches 42
Block Size Switches-Example 42
Setting the Block Size Switches on Your Board 43
Base Address Switches-Example 44
Setting the Base Address Switches on Your Board 45
A.2. Setting Multibus I/O Space 46
Block Size Switches-Example 46
Setting the Block Size Switches on Your Board 47
Base Address Switches-Example 48
Setting the Base Address Switches on Your Board 49
A.3. DIP Sưitch 11 50
DIP Switch 11, Sections 5-8-Multibus Memory Address Space Size 50
DIP Switch 11. Sections 1-4-DMA Transfer Address 51
A.4. Interrupt Vector Switch DIP 12 54
Interrupt Vector-Example 54
Interrupt Vector-Your Board 54
Appendix B Example Configurations 57
B.1. Xylogics 450 Disk Controller 57
B.2. Tapemaster $1 / 2$ Inch Tape Controller 59
B.3. DMA Tester Board 61

Tables

Table 2-1 Setting 256 to 64 K Block Sizes In Multibus Memory 14
Table 2-2 Setuing 128K to 16M Block Sizes In Multibus Memory 14
Table 2.3 Sering 2 to 256 Byte Block Sizes In Multibus I/O Space 19
Table 2-4 Settine 512 Bytc to 64 Kbite Block Sizes In Multibus I/O Space 19

Figures
Figure 1-1 VME-to-Multibus Adapter Board 3
Figure 1-2 Adapter Board Layout 4
Figure 2-1 Example of a Typical 8-Section DIP Switch 9
Figure 2.2 Multibus Memory Address Decoding 10
Figure 2-3 Address Switches for the 24-Bit Multibus Memory Space 11
Figure 2-4 Block-Size Switches for 24-Bit Multibus Memory Space 11
Figure 2-5 Memory Space Block Size Switches for a 16 Kbyte Block 13
Figure 2-6 Memory Space Base Address Switches 15
Figure 2-7 Multibus I/O Address Decoding 16
Figure 2-8 Address Switches for the Multibus I/O Space 17
Figure 2-9 Block-Size Suitches for the Multibus I/O Space 18
Figure 2-10 DIP Switch 11, Sections 5-8 20
Figure 2-11 20-Bit versus 24-Bit Addressing 21
Figure 2-12 20-bit Multibus DMA Cycle 22
Figure 2-13 DIP Switch 11, Sections 1-4 23
Figure 2-14 Switch Setting for an Interrupt Vector Number of 0×48 24
Figure 2-15 Interrupt Vector PROM 25
Figure 2-16 BCLK and CCLK Jumper, JMP1 26
Figure 3-1 VME and Mulibus Memory Address Space 29
Figure 3-2 Memory Space Switches and Comparators 30
Figure 3.3 VME and Multibus I/O Address Space 31
Figure 3-4 I/O Space Switches and Comparators 31
Figure 3-5 Address Signal Flow: VMEbus to Multibus Board 32
Figure 3-6 Address Signal Flow: Multibus Board to VMEbus 34
Figure 3-7 Data Signal Flow: Multibus Board to VMEbus 35
Figure 3-8 BCLK and CCLK Circuitry 37

Preface

Chapter 1

Chapte: 2

Chapter 3

Appendix A

Appendix B

Glossary

This manual contains three chapters and two appendices:
Functional Description - presents a basic functional description (tells you what the board does), including a description of the interrupt, DMA, and clock circuits.

Switches on the VME-to-Multibus Adapter Board - describes the purpose and function of the DIP switches on the VME-to-Multibus board.

Theory of Operations - explains in some detail the electrical operation how the board works) of the VME-to-Multibus board.

Switch Settings Worksheet - this appendix gives you space to work out the switch senings for your own Multibus board. Includes examples.

Example Configurations - gives the switch settings for Sun-provided boards.
A few terms are used throughout this document which, without explanation, may seem confusing.

- Positive Logic - positive logic means that the asserted level (see below) of a signal is the higher of the two voltage levels.
- Negative Logic - negative logic means that the assened level (see below) of a signal is the lower of the two voltage levels.
- Asserted - when we say that a signal is "asserted," we mean that it is in its active, or true, state. In positive logic this means that a signal like READ, when asserted, is equal to its most positive state. When a signal like WRITE*. WRITE-, or WRITE (the three are synonymous) is asserted it is equal to its most negative state.
- Logic 1 - in positive logic, a logic 1 stands for the more positive of the two voltage levels. In negative logic, a logic 1 stands for the more negative of the two voltage levels.
- Logic 0 - in positive logic, a logic 0 stands for the more negative of the two voltage levels. A logic 0 in negative logic stands for the more positive of the two voltage levels.
- Set - means the same as logical 1.
- Clear - means the same as a logical 0.
- ON - when it refers to a switch (or switch section) setting, is synonymous with CLOSED. This means that the signal at the input of the switch (or switch section) is shored to its output.
- OFF - when it refers to a switch (or switch section) setting, is synonymous with OPEN. This mears that the signal at the input of the switch (switch section) is NOT SHORTED (signal is not passed) to its output.
- CLOSED - when it refers to a switch (or switch section) setting, is synonymous with ON. This means that the signal at the input of the switch (switch section) is shorted to its output.
- OPEN - when it refers to a switch (or switch section) setting, is symonymous with OFF. This means that the signal at the input of the switch (switch section) is NOT SHORTED (signal is not passed) to its output.
- DIP - stands for Dual In-line Package, and refers to the physical geometry of the chip (rectangular, with pins on the two longer sides).
- DIP Switch - a multi-sectioned switch which has DIP geometry.
- Switch - a device for making or breaking an electrical circuit. A switch may have one or more sections, each of which may control a circuit.
- $0 x$ - hexadecimai prefix; the number following this prefix is in hexadecimal.

Finally, thanks to Doug Ward for all his help.

Revision History

Revision	Date	Comments
A-01	1 June 1985	First release of this Users' Manual.
A-05	25 Sepiember 1985	Corrected textual inaccuracies dealing with DIP switch 11 and described board modifications.

Functional Description

Functional Description 3
1.1. Overvieu 3
1.2. What the Suritches Do 5

Functional Description

1.1. Overview

This manual describes the VME-to-Multibus ${ }^{\text {TM }}$ adapter boand for use in the Sun VME products. This adapter board allows you to plug your own Multibus boards into Sun's VME backplane, and this manual tells you how to set the switches appropriately. \dagger

Figure 1-1 VME-to-Multibus Adapter Board

+II you aiready tnow how the swither wort and just want to set the swithes for your own Muhibus board. please see the swith senings worksheet in the approprite appendix

Figure 1-2 Adapter Board Layout

1.2. What the Switches Do

For location of the VME-to-Multibus adapter board in a Sun backplane, please see the Cardcage Slo: Assignment and Backplane Configuration Guide, pan number 813-2004, available through Sun Sales or Service.

Switches on the adapter board allow you to

- generate a Mulibus memory read or write command from the VMEbus using the Multibus board as either a 20-bit or 24-bit slave device;
- generate a Multibus IO read or write command from the VMEbus;
- generate a DMA cycle from the Muldibus board using the Multibus board as either a 20 -bit or 24 -bit bus master,
- generate single-level or multi-level vectored interrupts.

Switches are set to define
c the base address of the Multibus memory and I/O spaces, and
= the block size of the Multibus memory and I/O spaces.

2

Switches on the VME-to-Multibus Adapter Board

Switches on the VME-to-Multibus Adapter Board 9
2.1. Multibus Memory Addressing-DIP Switches 5, 6, 7, and 8 9
Multibus Memory Space Switch Settings 10
2.2. Multibus I/O Addressing-DIP Switches 1,2,3, and 4 16
Multibus I/O Space 17
2.3. Multibus Memory Address Space Size and DMA Transfer Address-DIP Suitch 11 19
Mutibus Memory Address Space Size—DIP Switch 11, Sections 5-8 20
DMA Transfer Address-DIP Switch 11, Sections 1.4 21
2.4. Interrupt Vector-DIP Switch 12 23
Interrupt Vector PROM 24
2.5. BCLK (Bus Clock) and CCLK (Constant Clock)-JMP1 26

Switches on the VME-to-Multibus Adapter Board

This section describes the DIP switches on the VME-to-Multibus Adapter boards. Appendix A contains a worksheet for use by those who already understand the function of the switches; Appendix B contains this same information along with a step-by-step explanation as help should you need to set the DIP switches yourself.

2.1. Multibus Memory
Addressing-DIP
Switches 5, 6, 7, and 8

NOTE For an explanation of some of the terms used in this (and other) sections, please see the glossary inciuded in the Preface of this manual. Brieft. a DIP switch is composed of switch sections, each section of which will short (when the switch section is set to ON) or open (when the switch section is set to OFF) its circuit

Figure 2-1 Example of a Typical 8-Section DIP Switch

The adapter board can respond to a block of addresses in the 24 -bit VME address space. When the adapter board sees an address within the selected block, it
passes all the address bits through to the Multibus board and generates a Mu:tibus Memory read or write command.

The size of the block of addresses can be any power of 2 between 2 to the 8 th power and 2 to the 24th power (256 bytes to 16 Mbytes). The starting address of the block can be any address which is a multiple of the size of the block.

Another way of saying this is that any VME address bit between A8 and A23 can either be ignored or compared against a switch section. The switches which control Multibus memory addressing are SW5, SW6. SW7, and SW8.

Figure 2-2 Multibus Memory Address Decoding

Multibus Memory Space Switch Settings

- DIP 7, DIP 5-Select the 24-bit VME space base address for accesses to the Multibus Memory space.
DIP 7 sections $1-8 \Rightarrow A 23-A 16$ respectively.
DIP 5 sections $1-8 \Rightarrow A 15-A 08$ respectively.

Figure 2－3 Address Switches for the 24－Bit Multibus Memory Space

A．23 (1)	A．22 (2)	A．21 (3)	A20 (4)	A19 (5)	A18 (6)	A17 (7)	A16 (8)
DIP Swich 7							

DIP Switch 7

A15 (1)	A14 (2)	A13 (3)	A12 (4)	A11 (5)	A10 (6)	A9 (7)	A8 (8)

A switch section $O N$ causes a maich when the comesponding YME address bit is 0.
－DIP 8，DIP 6－Sets the size of the block in 24－bit VME address space that the board responds to．

```
DIF & sečions 1-8 m h23-R:E respeci=iveiy.
DIF E sec:ions 1-& A A:5-Rこ& respeここiveiy.
```

Figure 2－4 Block－Size Switches for 24－Bit Multibus Memory Space

There is a separate switch section for each address bit from A8 to A23．
－If the switch section is $O N$ ，that address bit is compared against the corresponding base address switch section．If the address bit matches the
switch section setting, the adapter board responds.

- If the switch section is OFF, that bit is ignored by the adapter board, and is simply passed through to the Multibus board.

To set the size of the block, all address bits whose binary weighting is larger than the size of the block should have their switch sections ON, because these bits will be decoded by the adapter board. Address bits with binary weighting smaller than the size of the block should have both their "size"' switch section and their "base address" switch section OFF, because the address bits within the block size are of interest only to the Multibus board.

Thus, if you have a block size of 1024 bytes, you would set the switch sections for address bits A8 and A9 to OFF, because the adapter board DOESN'T CARE about (won't compare) these address bits. The rest of the address bits, A10-A23. would set ON, because the adapter board DOES CARE about these bits, and will use them for comparison.

The following example explains this furher.
Let's say you want to configure your adapter board for an imaginary Multibus board which has a block size of 16 Kbytes starting at address 0×280000.

First, you want to set a block size of 16 Kbytes into the block size switches, DIPs 8 and 6. Remember that when you define block size you are telling the adapter board which address lines are to be ignored; in other words, don't compare them. Since a block size of 16 Kbytes is decoded by address lines A13-A0, address bits A13-A8 (A7-A0 are aiwas passed through) will be passed to the Multibus board on!?; the adapter board doesn't care what value is on them.

Thus the switch sections for address lines A13-A8 will be set OFF.
However, the adapter board does care what is on address lines A23-A14, because it will be decoding them; therefore these switch sections will be set to ON.

Here's how to set the switch sections on the block size switches: first convert the hex value to binary:

Next, set the switch sections for address lines A13-A8 to OFF; all the others ON. Then make this binary address correspond to the memory space block size switches, DIP 8 (upper byte) and DIP 6 (lower byte). Remember, a 0 means the switch section is ON; a 1 means the switch section is OFF.

Einazy vaiue) =	0	0	0	0	0	c	C	$こ$
DIP 8 Adesess	A2 3	A22	A2i	A20	A19	A 18	A: 7	A: ϵ
liowe = by:e								
binary value)	0	0	1	1	1	1	1	1
DIP ¢ Address =	215	114	A:3	112	A11	A10	A09	AOE

Here's what the block size switches look like when correctly set:
Figure 2-5 Memory Space Block Size Switches for a 16 Kbyte Block

$\begin{gathered} \mathrm{A} 23 \\ (\mathrm{SW} 1) \\ \mathrm{ON} \end{gathered}$	$\begin{gathered} \text { A.22 } \\ \left(5 W^{2} 2\right) \\ \text { ON } \end{gathered}$	$\begin{aligned} & \text { A.21 } \\ & (S W 3) \\ & \text { ON } \end{aligned}$	$\begin{gathered} A 20 \\ (S W 4) \\ \mathrm{ON} \end{gathered}$	$\begin{gathered} \text { A19 } \\ \text { (SW5) } \\ \text { ON } \end{gathered}$	$\begin{gathered} \text { A18 } \\ \text { (SW6) } \\ \text { ON } \end{gathered}$	$\begin{gathered} \text { A17 } \\ (\mathrm{SW} 7) \\ \text { ON } \end{gathered}$	$\begin{gathered} \text { A16 } \\ \text { (SW8) } \\ \text { ON } \end{gathered}$
DIP Switch 8							
$\begin{aligned} & \text { A15 } \\ & \text { (SW'1) } \\ & \mathrm{ON} \end{aligned}$	$\begin{gathered} A 14 \\ \left(\mathrm{SH}_{2}\right) \\ \\ \mathrm{ON} \end{gathered}$	A13 (SW3) OFF	A12 (SW4) OFF	Al1 (SW5) OFF	Al0 (SW6) OFF	A9 (SW7) OFF	$\begin{gathered} A 8 \\ (\mathrm{SW} 8) \\ \text { OFF } \end{gathered}$
DIP Switch 6							

Here's the switch section settings for the various block sizes available in the Multibus memory space.

Table 2-1 Setting 256 to 64 K Block Sizes In Multibus Memon

Suitch	DIP 8	DIP 6							
Section	All	1	2	3	4	5	6	7	8
Address	A23-AI6	AI5	Al4	AI3	AI2	AII	AIO	A9	A8
Size									
$\mathbf{2 5 6}$	ON								
512	ON	OFF							
1024	ON	OFF	OFF						
2048	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
4096	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
$\mathbf{8 1 9 2}$	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
16 K	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
32 K	ON	ON	OFF						
64 K	ON	OFF							

Table 2-2 Setting 128 K to 16 M Block Sizes In Multibus Memor;

Switch	DIP 8								DIP 6
Section	1	2	3	4	5	6	7	8	All
Address	A23	A22	A21	A20	Al9	A18	A17	A16	Al5-A8
Size									
128 K	ON	OFF	OFF						
$\mathbf{2 5 6 K}$	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
512 K	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
$1 M$	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
$2 M$	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
4M	ON	ON	OFF						
$\mathbf{8 M}$	ON	OFF							
$16 M$	OFF								

To set the base address of 0×280000, first convert the hex address to binary:

```
0x280000=0010 1000 0000 0000 10000 0000
    |<- not connected ->
    <- \lambda23-\lambda08 -> | (\lambda7-\lambda0)
```

Since the block size is 16 Kbytes and the adapter board doesn't compare address bits from within this 16 Kbyte block size, you must set address bits A13-A8 to OFF.


```
    l<- not conneczee ->
    <-A\3-AOE -> | (AT-AO)
```

Make this hexadecimal address correspond to the memory space base address switches, DIP 7 (upper byte) and DIP 5 (lower byte).

```
Switch section
1 2
3 4
luppez byte
binary vaiuel = C 0 1 C 0 0 0
    DIP 7 Address = A23 A22 A21 A20 A29 A18 A17 AI6
llowe: by:e
```



```
    DF5 Accress=A:5 A:C A:3 A:2 A:O A:O AこG Aこ&
```

Here's what the base address switches look like when correctly set:
Figure 2-6 Memory Space Base Address Switches

A23	A22	A21					
$(S W 1)$	$(S W 2)$	A20					
(SW3)	(SW4)	A19 $(S W 5)$	A18 $(S W 6)$	A17 $(S W 7)$	A16 $(S W 8 ;$		
ON	ON	OFF	ON	OFF	ON	ON	ON

DIP Switch 7

$\begin{gathered} A 15 \\ (S W: i) \end{gathered}$	$\begin{gathered} A 14 \\ \left(S W^{\prime} 2\right) \end{gathered}$	$\begin{gathered} A 13 \\ (S W 3) \end{gathered}$	$\begin{gathered} \mathrm{A} 12 \\ \left(\mathrm{~S} \not \mathrm{~F}_{4}\right) \end{gathered}$	$\begin{gathered} \text { All } \\ \text { (SWS) } \end{gathered}$	$\begin{gathered} A 10 \\ \text { (SW6) } \end{gathered}$	$\begin{gathered} \text { A9 } \\ \text { (SW7) } \end{gathered}$	$\begin{gathered} A 8 \\ (S W 8) \end{gathered}$
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF

DIP Switch 5

If you don't want the Multibus board to respond to the Multibus memory space at all, disable the VME 24-bit space decoding by setting

- all sections of DIP 8 and DIP 6 to OFF, and
- all sections of DIP 7 and DIP 5 to $O N$.
2.2. Multibus I/O

Addressing-DIP
Switches 1,2,3, and 4

The adapter board can respond to a block of addresses in the 16 -bit VME address space. When the adapter board sees an address within the selected block, it passes all the address bits through to the Multibus board and generates a Multubus I/O read or write command.

Figure 2-7 Multibus I/O Address Decoding

The size of the biock of addresses can be any power of 2 between 2 to the 1 st power and 2 to the 16th power (2 bytes to 64 Kbytes). The starting address of the block can be any address which is a multiple of the size of the block. Another way of saying this is that any VME address bit between A1 and A15 can either be ignored or compared against a switch section.

This function is controlled by DIP switches $1,2,3$, and 4.

Multibus I/O Space

- DIP 1, DIP 3-Select the 16-bit VME space base address for accesses to the Multibus I/O space.

```
DIP 3 sections 1-8 => Al5-A08 respectively.
DIP 1 sections 2-8 => A07-A01 respectively.
    (DIP I section I unused.)
```

Figure 2-8 Address Switches for the Multibus IIO Space

A15	A14	A13	A12	A11	A10	A9	A8
(1)	(2)			(4)	(5)	(6)	(7)
(8)							

DIP Switch 3

(not	A7	A6	A5	A4	A3	A2	A1
used $)$	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1)							

DIP Switch 1

A switch section ON causes a match when the corresponding VME address bit is 0.

- DIP 4, DIP 2-Sets the size of the block in 16-bit VME address space tha: the board responds to.

```
DIP 4 sections 1-8 m Al5-AOE respectively.
DIP 2 sections 2-8 => AOT-AO1 respectively.
    (DIP 2 section 1 is unused.)
```

Figure 2-9 Block-Size Switches for the Multibus I/O Space

There is a separate switch section for each address bit from A1 to A15. If the switch section is $O N$, that address bit is compared against the corresponding base address switch section. If the address bit matches the switch section setting, the adapter board responds. If the switch section is OFF, that bit is ignored by the adapter board, and is simply passed through to the Multibus board.

To set the size of the block, all address bits whose binary weighting is larger than the size of the block should have their switch sections ON, because these bits will be decoded by the adapter board. Address bits with binary weighting smaller than the size of the block should have both their "size" switch section and their "base address" switch section OFF, because the address bits within the block size are of interest only to the Multibus board. Thus, if you have a block size of 8 bytes, you would set the switch sections for address bits A1 and A2 to OFF, because the adapter board DOESN'T CARE what these bits are. A0 is always passed through.

The tables below give the switch setings for various block sizes in I/O space.

Table 2-3 Setting 2:0256 Byte Block Sizes In Multibus IIO Space

Switch	$D I P 4$	$D I P 2$						
Section	All	2	3	4	5	6	7	8
Address	Al5-A8	$A 7$	$A 6$	$A 5$	$A 4$	$A 3$	$A 2$	$A l$
Size								
2	ON							
4	ON	OFF						
$\mathbf{8}$	ON	ON	ON	ON	ON	ON	OFF	OFF
16	ON	ON	ON	ON	ON	OFF	OFF	OFF
32	ON	ON	ON	ON	OFF	OFF	OFF	OFF
64	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
128	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
256	ON	OFF						

Table 2-4 Setting 512 Byte to 64 Kbyte Block Sizes In Multibus IIO Space

Switch	DIP4								
Section	1	2	3	4	5	6	7	8	All
Address	Al5	Al4	Al3	Al2	All	AlO	A9	A8	A7-Al
Size									
512	ON	OFF	OFF						
1024	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF
2048	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF
4096	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
8192	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
16 K	ON	ON	OFF						
32 K	ON	OFF							
64 K	OFF								

If you don't want the Multibus board to respond to the Mulibus I/O space at all, disable the VME 16 -bit space decoding by setting

- all sections of DIP 4 and DIP 2 to OFF, and
- all sections of DIP 3 and DIP 1 to ON.

2.3. Multibus Memory Address Space Size and DMA Transfer Address-DIP Switch 11

DPP switch 11 handies two related functions:

1. it chooses berween 20 -bit and 24 -bit addressing for the Multibus board (using switch sections 5-8);
2. if the board does 20 -bit addressing and is a DMA controller, DIP switch 11 will provide a set of default high order address bits to fill the DMA address out to 24 bits (using switch sections 1-4).

Multibus Memory Address Space Size-DIP Switch 11, Sections 5-8

The Multibus specification has several different variations for addressing. The address space sizes supported by the adapter board are 20 - and 24 -bit addressing for memory space boards, and 16 -bit addressing for I/O space boards. The address lines for the first 20 bits are located on the Multibus P1 connector, while the remaining four high-order bits, A23-A20, reside on the Multibus P2 connector. However, Multibus boards which do 20 -bit addressing often use the lines on the Multibus P2 connector for some other purpose; to avoid contention the adapter board provides a DIP switch to connect or disconnect lines on the P2 connector to or from the translation circuitry on the adapter board.

Sections 5-8 of DIP switch 11 connect Multibus address lines A20-A23 (respectively) from the Multibus P2 connector on the board's edge, through the adapter board's translation circuiry, to the adapter board's intemal Multibus address bus. If sections $5-8$ of DIP switch 11 are closed (ON) \uparrow, address bits A20-A23 will be passed to and from the Multibus board.
= For those boards which expect 24-bit addresses, or which gencrate 24-bit DMA addresses, sections $5-8$ of DIP switch 11 should be $0 N^{-}$.

- For those boards which expect 20-bit addresses or which generate 20-bit DMA addresses, sections 5-8 should be OFF \dagger.

Figure 2-10 DIP Switch 11, Sections 5-8

tSince the Mulubus address lines ase negative logic, a imuch section must be sa $O N$ to provide a bogic I to the VMEbus and OFF Lo provide a logic 0 .

Figure 2-11 20-Bit versus 24-Bit Addressing

DMA Transfer Address-DIP Switch 11, Sections 1.4

A Multibus board which only supplies 20 bits of address may be a DMA contrller. However the VMEbus requires a 24 -bit address, so the adapter board is designed to supply the remaining four high-order address bits, A23-A20, by seiting DIP switch sections $1-4$ (respectively).

Figure 2-12 20-bit Multibus DMA Cycle

In this case, sections 5.8 of DIP switch 11 must be set OFF, to isolate the Multibus P2 connector, and the necessary four high-order address bits must be set into sections 1-4 of DIP switch 11.

Normally devices will be doing DMA into Sun main memory. Since the DVMA port on the Sun CPU board answers to addresses between 0x000000 and Ox100000, this means that the high-order address bits supplied by sections 1-4 of DIP switch 11 should all be zero (set to OFF).

Since a 20-bit master can only generate 1 Mbyte of addresses, the only time that these switches (sections 1-4) should be set to provide a different address is in the case where the board is doing DMA to some other device and NEVER to the Sun. These situations are VERY RARE!

For example, in order to direct all DMA references by a 20-bit Multibus board to an area between $3 \mathrm{Mbytes}(0 \times 300000)$ and 4 Mbytes (0×400000), sections $1-4$ of DIP switch 11 must be set to 0×3 :

Switch Section:	1	2	3	4
(setting)	OFF	OFF	ON	ON
(address bit)	A23	A22	A2	A2O

Remember, when using switch sections $1-4$, switch sections $5-8$ must all be sei OFF, to prevent contention.

Figure 2-13 DIP Switch 11, Sections 1-4

			A20		A 21	A22	A23
$\begin{gathered} (8) \\ O F F \end{gathered}$	$\begin{aligned} & (7) \\ & O F F \end{aligned}$	$\begin{aligned} & (6) \\ & O F F \end{aligned}$	(5) $O F F$	(4)	(3)	(2)	(1)
DIP Snickill							

2.4. Interrupt Vector-DIP Switch 12

The adapter board will respond to non-bus-vectored Multibus interrupts and translate them to vectored VME interrupts.

The VME internupt vector number is provided on the adapter board by either switch sections or a PROM. The switch sections may be used if the Multibus board interrupts on only one level, or if multiple levels vector to the same location. The PROM must be used if the Multibus board interrupts on more than one level and a separate vector is desired for each level. The suitch sections are in DIP switch 12. The PROM, if used, is installed at U402.

NOTE
Please refer to Writing Device Drivers for the Sun Workstation, part number 800-1304, when selecting an interrupt vector. (The section you want is titled "Interrupt Vector Assignments," in the Device Driver manual.) It is very important that you do not select an interrupt vector already in use.

DIP 12-Selects the VME Interrupt Vector to use if the Multibus board interrupts. Switch sections $1-8$ correspond to VME vector bits $0-7$ respectively. A switch section ON sets the corresponding bit to 0 . For example, if the desired VME interrupt vector number is 0×48, the correct switch seting is (notice that the bit-ordering goes from right to left):

Sectior:	9	2	3	4	5	6	7	8
	$O N$	$O N$	$O N$	$O F F$	$O N$	$O N$	$O F F$	$O N$
	$D O$	$D 1$	$D 2$	$D 3$	$D 4$	$D 5$	$D 6$	$D 7$
(binary)	0	0	0	1	0	0	1	0
(hex)		8				4		

Figure 2-14 Switch Setting for an Interrupt Vector Number of 0x48

DIP Switch 12

NOTE The I'ME interrupt vector number is the 68000 vector address divided by 4 . Thus VME vector 0×48 causes the 68000 to fetch its interrupt vector from memory location 0x48*4 $=0 \times 120$.

If the switch is used to set the interrupt vector, the Interrupt Vector PROM must NOT be installed in its socket If the PROM is used to set the interrupt vector, all the switch sections in DIP 12 must be set to OFF.

If the Multibus board interrupts on different levels, it is possible to configure the adapter board to provide a separate VME Intermupt Vector for each Multibus interrupt level. This is done by programming a 32 -by- 8 bipolar PROM with the desired interrupt vectors. Locations 0 through 6 in the PROM are used for the interrupt vectors for Multibus interrupt levels 7 through 1 respectively. Other locations in the PROM are not used. Note that Multibus interrupt level 0 cannot be used in any case, since the VMEbus has no level 0 interrupt.

```
FROM Data Eit 0 1 2 2 3 4 4 5 6 7
PROM Pin * 1 2 2 3 4 5 5 6 % 8
VWE Data line DO D1 D2 D3 D4 D5 D6 D7
```

Figure 2-15 Interrupt Vector PROM

If the switch is used to set the internupt vector, the Interrupt Vector PROM must NOT be installed in its socket. If the PROM is used to set the interrupt vector, all the switch sections in DIP 12 must be set to OFF.

2.5. BCLK (Bus Clock) and CCLK (Constant Clock)-JMP1

For Multibus boards which require external BCLK and CCLK (most boards!), the adapter can provide these clocks. Jumper block JMP1 controls this feature. Section 1 is for BCLK, section 2 is for CCLK. The jumpers should be installed to provide the clocks.
JMP1:

- Section 1 BCLK: NSTALL to provide BCLK to the Multibus board
- Section 2 CCLK: $\operatorname{NNSTALL}$ to provide CCLK to the Multibus board

Figure 2-16 BCLK and CCLK Jumper, JMP1

3

Theory of Operations

Theory of Operations 29
3.1. Overvieu 29
3.2. How the Adapter Board Works 29
3.3. VMEbus to Mulitibus Addressing 31
3.4. Multibus to VMEbus Addressing 32
3.5. Data Transfers To and From the Adapter Board 34
3.6. Bus Request/Bus Grant Logic 35
3.7. Internup: Logic 36
3.8. VME DMA Cycle 36
3.9. Clock Logic 36

Theory of Operations

3.1. Overview

3.2. How the Adapter Board Works

The VME-to-Multibus board is an adapter which allows the use of Multibus cards on the VMEbus of the Sun-2 and Sun-3 product line. (For an enumeration of which products and exact backplane-location within these products, please see the Cardcage Slot Assignment and Backplane Configuration Guide, par number 813-2004, available from Sun Sales or Service.)

The VME-to-Multibus card scheme is transparent to the system-there are no registers on the adapier board that sofiware can modify. This section describes hou VME signals are routed through the adapter board so that Multibus cards can be read, written, and interrupted (using programmed cycles). Functional block diagrams are included to illustrate how the adapter board works.

There are a number of switch setuings which must first be described in order to understand the functional capabilities of the VME-to-Multibus adapter board. The adapter board can respond to a block of addresses in the 24 -bit VME address space. When the adapter board sees an address within the selected block, it passes the address bits to the Multibus board and generates a read or write command to Multibus memory space.

Figure 3-1 VME and Multibus Memory Address Space

This addressing function is controlled by the DIP switches (DIPs 5, 6, 7, 8) which set up in two 8 -bit equal-to-comparators (U201, U202). If the comparators
match the addresses a select signal is asserted toward control PAL U307 on the adapter board. At this point, the PAL would assen a "memory enable" strobe to the "transfer enable" PAL (U301) on the adapter board which selects the bidirectional transceivers for a data transfer. A "data out" (DATOUT-) signal from the same PAL controls the direction of the transfer at the transceivers.

Figure 3-2 Memory Space Switches and Comparators

The adapter board can also respond to a block of addresses in the 16 -bit VME address space. Here, when the adapter board sees an address within the selected block, it passes the address bits to the Multibus board and generates a Multibus I/O read or write. This function is controlled by DIP switches on the adapter board (DIPs 1, 2, 3, 4).

Figure 3-3 VME and Multibus I/O Address Space

The 16 -bit address will be set-up in two 8 -bit equal-to-comparators (U204, U205), and assert select signals toward the control PAL at U307. This PAL then assers I/O enable to the transfer PAL (U303).

Figure 3-4 I/O Space Switches and Comparators

3.3. VMEbus to Multibus Addressing

During a VME read cycle to a Multibus card, P1 address lines A01-A23 are transferred to the Multibus adapter card in conjunction with P1 address strobe (AS) and P1 data strobes (DSO, DS1). If the Multibus board is a 24 -bit address master, the four high-order address bits (A23-A20) are passed through by setting suitch sections 5-8 of DIP switch 11 ON. Address lines which pass on to

Multibus cards are latched onto the adapter board by transparent latches (U108, U109, U110) with address strobe. After seuing up, the inverted address lines are passed onto the Multibus. The latches are enabled by the AND of address strobe (AS-) and data transfer acknowledge (B.DTACK-); their outputs are enabled by the assertion of the busy signal, M.BUSY.

Note that VME address lines are active high, and Multibus address lines are active low, which is why the signals are inverted.

Figure 3-5 Address Signal Flow: VMEbus to Multibus Board

3.4. Multibus to VMEbus Addressing

In the process of a read cycle from the Multibus to the VMEbus, Multibus address lines M.A01-A19 are enabled onto the adapter board via buffers (U104, U105, U107), which invert the lines and enable (pass) them on to the VMEbus (P1), via connector J801. For 20-bit Multibus boards, default values for address bits A23-A20 can be provided by setting DIP switch 11, sections 1-4 (respectively). Sections $1-4$ are connected to ground at their input sides and their outputs connected to a pullup before passing through inverting buffer U107. Therefore, closing any of these four swich sections will assert a logical 1 on the corresponding VME address line.

If the Multibus board provides a 24 -bit address, the four high order address bits (M.A23-M.A20) are passed to the adapter board through DIP switch 11, sections $5-8$, to invering buffer U107 to complete the 24-bit address to the VMEbus.
NOTE To prevent conflicting signals, switch sections 1-4 MUST BE SET TO OFF when switch sections 5-8 are being used, and vice versa. This is because the outpu! of switch 1 is electrically connected to the output of switch 8 , switch 2 to switch 7 , switch 3 to switch 6 and switch 4 to switch 5 .

At the end of the cycle, a P1 "data transfer acknowledge" (P1.DTACK) is sent from the VMEbus to the adapter board via a buffer (U106) which asserts "bus data transfer acknowledge" (B.DTACK-) to the transfer acknowledge PAL (U302). Refer to the block diagram below for an illustration of this function.

Figure 3-6 Address Signal Flow: Multibus Board to VMEbus

3.5. Data Transfers To and From the Adapter Board

During a transfer cycle, data is transferred from the Multibus to the VMEbus (and vice versa) via bidirectional transceivers (U101, U102, U103). Two of the transceivers (U101, U103) are used when the data transferred is a 16 -bit word. For byte transfers, U101 is used when the data is a byte at an odd address, and U102 is used when data is a byte at an even address.

The three transceivers are selected by "low word/byte" (WBL-), "high byte" (BH-), and "high word" (WH-) signals which are driven by a data transfer enable PAL (U301). The PAL is set-up by "data strobes" (DSO, DS1) and bus write conditions originating from the VMEbus (P1) during a write cycle to the Multibus. For data transfers to the VMEbus (from the Multibus), a "data out"
(DATOUT-) signal is assered to the transceivers for direction control toward the P1 data bus. DATOUT- is also set-up by the data transfer enable PAL (1301). Refer to the following block diagram for an illustration of this function.

Figure 3-7 Data Signal Flow: Multibus Board to VMEbus

3.6. Bus Request/Bus Grant Logic

For bus requests from the Multibus to the VMEbus, the requesting board will asser a "bus request" (BRQ1-) and "bus-priority-in level" (BPRN) to a handshanking PAL (U501) on the adapter board. This PAL then asserts a P1 bus request level (P1.BR3-) to the VMEbus (P1). If the bus is not busy, a Pl 'bus grant" level (P1.BG3IN-) will be sent to the handshaking PAL which then assers the bus grant as a "Multibus- priority-out" (P1.BG3OUT-) to the reques:ing Multibus board.

3.7. Interrupt Logic

3.8. VME DMA Cycle

3.9. Clock Logic

NOTE If you are using switch sections 1-4 to supply the address bits, sections $5-8$ must be set OFF, to avoid contention. If you are using switch sections 5-8 to pass the address bits, sections I-4 must be set OFF.
Vectored interrupts are not suppored on the Mulibus, however, they are suppored on the VMEbus and therefore must be translated by the adapter board. A VME internupt vector is generated on the adapter board by a switch (DIP 12), or by a PROM (U402).

The switch is used if the Multibus board interrupts on one level only, or if a multi-level interrupt vectors to the same place. If a Multibus board interrupts on more than one level and a seperate vector is required for each level, the PROM must be used.

When one of the Multibus interrupt lines (INT1-INT7) goes active, it passes through octal transceivers (U405) to the VMEbus (P1.IRQ7-P1.IRQ1). When the processor sees the interrupt, it goes into an interrupt acknowledge cycle by putting the interrupt level on the lower-order address bits (P1.A3-P1.A1), while driving P1 "internupt acknowledge" (P1.IACKIN-) and assering P1 "address strobe." Note that Pl interrupt acknowledge is bused to every board on the backplane. A version of Pl "interrupt acknowledge-in/intermupt acknowledgeout'" is daisy-chained from board to board.

When the adapter board sees this version of interrupt, it will check to see if the interrupt level specified by the address lines (P1.A3-P1.A1) is on the same level as the one on which it was trying to interript. If so, the adapter board will enable the interrupt vector (ENVEC-) through U406 NAND gates onto the VMEbus. If the interrupt level is not the one specified by the address lines, the adapter will pass the interrupt on to the next board with P1 "interrupt acknowledge-out."

The adapter board can generate a VME DMA cycle (when the adapter is the VMEbus master) in response to a DMA cycle by the Multibus board. The Multibus board can be a 20 -bit address master, or a 24 -bit address master (the adapter board is always 24 -bits-slave or master). If the Mulibus board is a 24 -bit master, the four high order bits are passed through sections 8, 7,6, and 5 (A23-A20, respectively) in DIP 11 on the adapter board. If the Multibus board is a 20 -bit master, the four high order bits are supplied by sections $1-4$ (respectively) of DIP switch 11.

The adapter board provides an extemal bus clock and constant clock for those Multibus boards (most boards) which require these clocks. The clocks originate at a 19.6608 MHz crystal (X1) and is divided down by a fip-flop (U306) to provide a 9.8304 MHz clock. A jumper block on the adapter board (J1) allows the enabling/disabling of both the bus clock and the constant clock. Pins 1 to 2 should be jumpered for the bus clock, and pins 3 to 4 should be jumpered for the constant clock. Note that the jumpers should be installed to provide the clocks.
Refer to the diagram below for an illustration of these settings.

Figure $3.8 \quad B C L K$ and $C C L K$ Circuitry

A

Switch Settings Worksheet

Switch Settings Worksheet 41
A.1. Setting Multibus Memory Space Switches 42
Block Size Switches-Example 42
Setting the Block Size Switches on Your Board 43
Base Address Switches-Example 44
Setting the Base Address Switches on Your Board 45
A.2. Setting Multibus I/O Space 46
Block Size Switches-Example 46
Setting the Block Size Switches on Your Board 47
Base Address Switches-Example 48
Setting the Base Address Switches on Your Board 49
A.3. DIP Switch 11 50
DIP Swith 11, Sections 5-8-Multbus Memory Address Space Size 50
DIP Switch 11, Sections 1-4-DMA Transfer Address 51
A.4. Interrupt Vector Switch DIP 12 54
Internupt Vector-Example 54
Interrupt Vector-Your Board 54

Switch Settings Worksheet

NOTE This appendix (Appendix A) is for those who alreacty understand the theory behind the switch settings on the adapter board, and just need a workspace to figure the settings out. For a detailed explanation of how to set the switches, see the appendix following this.

A.1. Setting Multibus Memory Space Switches

Block Size SwitchesExample

This section tells you how to set the base address and block size switches for the Multibus memory space. Included are both a

- sample switch setting (labelled "Example') and
- space for you to work out the switch settings for your own particular board.

This page gives an example of sample block size switch settings for Multibus memory space.

EXAMPLE

Block size: 0×002000
\Rightarrow Discard the low-order byte, address bits A0-A7

Block size: 0x 0020
\Rightarrow Convert to binar.

0000000000100000

CALTION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.)
\Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.
0000000000011111
\Rightarrow Set DIP 8 and DIP 6 to this value: $0=O N$ and $1=O F F$.

Setting the Block Size Suitches on Your Board

Fill in this page with your particular block size information for Multibus memor space.

> YOUR DATA.

YOUR BLOCK SIZE: OX \qquad - - \qquad
\qquad
\Rightarrow Discard the low-order byte, address bits A0-A7 YOUR BLOCK SIZE: Ox \qquad -

\Rightarrow Convert to binary:

CAITION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.)
\Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.
YOUR REVISED BIOCK SIZE IN BINARY:

\Rightarrow Enter your block size here.

\Rightarrow Set DIP 8 and DIP 6 to this value: $0=O N$ and $1=O F F$.

Base Address SwitchesExample

This page gives an example of sample base address switch settings for Multibus memory space.

EXAMPLE

\Rightarrow Find your base address.
Base address: 0x 280000
\Rightarrow Discard the low-order byte, address bits A0-A7
Base address: 0×2800
\Rightarrow Convert to binary:
0010100000000000
\Rightarrow Remember the bits you turned from zcro to one in the block size? Turn those same bits to ones here.
change 0010100000000000100010100000011121
\Rightarrow Enter your base address here

IF 7:	0	0	1	0	1	c	0	0
	$\overline{A 23}$	$\overline{A 22}$	$\overline{\mathrm{~A} 21}$	$\overline{\mathrm{~A} 20}$	$\overline{\mathrm{~A} 19}$	$\overline{\mathrm{~A} 28}$	$\overline{\mathrm{~A} 17}$	$\overline{\mathrm{~A} 16}$
ITF 5:	0	0	0	2	1	1	1	1
$\overline{\mathrm{~A} 15}$	$\overline{\mathrm{~A} 14}$	$\overline{\mathrm{~A} 13}$	$\overline{\mathrm{~A} 12}$	$\overline{\mathrm{~A} 11}$	$\overline{\mathrm{~A} 10}$	$\overline{\mathrm{~A} 09}$	$\overline{\mathrm{~A} 08}$	

\Rightarrow Set DIP 7 and DIP 5 to this value: $0=O N$ and $1=O F F$.

Setting the Base Address Switches on Your Board

Fill in this page with your particular memory space base address information．
\Rightarrow Find your base address．

YOUR DATA

YOUR BASE ADDRESS：0x \qquad
\Rightarrow Discard the low－order byte，address bits A0－A7
YOUR BASE ADDRESS： $0 \times \ldots+\ldots$
\Rightarrow Convert to binan：

\Rightarrow Remember the bits yout turncu fron：zcro to one ir the biock size？Turn those same bits to ones here．

\Rightarrow Enter the base address here．
DIP 7：
$\overline{\mathrm{A} 23} \overline{\mathrm{~A} 22} \overline{\mathrm{~A} 21} \overline{\mathrm{~A} 20}$
$\overline{A 19} \quad \overline{A 18}$
$\overline{A 17} \overline{\text { A16 }}$

ごき 5：
$\overline{A=5} \overline{A 14}$
$\overline{A: 3} \quad \overline{A: 2}$
$\overline{A Z A} \overline{A: O} \quad \overline{A C B}$
\Rightarrow Set DIP 7 and DIP 5 to this value： $0=O N$ and $1=O F F$ ．

A.2. Setting Multibus V/O Space

Block Size Switches-
Example

This section tells you how to set the base address and block size switches for the Multibus I/O space. Included are both a

- sample switch setting (labelled "Example") and
- space for you to work out the switch settings for your own particular board.

This page gives an example of sample block size switch sertings for Multibus I/O space.

EXAMPLE

```
    Block size: 0x 0 O O 8
| Ignore the low-order address bit, A0.
C Convert to binar:
    0000 0000 00001000
```

CALTION There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the nexit larger size.)
\Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.

Change $000000000000: 000$ to 0000000000000111
\Rightarrow Set DIP 4 and DIP 2 to this value: $0=O N$ and $1=O F F$.

[^0]Setting the Block Size Switches on Your Board

Fill in this page with your particular Multibus $1 / O$ space block size information.
YOUR DATA
YOUR BLOCK SIZE: OX \qquad
\Rightarrow Conver: to binar::

CAUTION
There should be only a single one-bit in your number. (If there is more than one, then your block size is not a power of two. Pick the next larger size.)
\Rightarrow Turn the one-bit to a zero-bit, and turn all the zero-bits below it to one-bits.

YOUR REVISEこ BIOCK STZE IN BTNARY:
X
-- -- -- -- 1 -- -- -- --1 -- -- -- \mid-- -- --
$\langle-------D I F 4--------->|<-------D I P 2----1$
\Rightarrow Enter your block size here.

\Rightarrow Set DIP 4 and DIP 2 to this value: $0=O N$ and $1=O F F$.

+Remember, address bil AO is not set into this DP swith

Base Address SwitchesExample

This page gives an example of sample base address switch settings for Multibus I/O space.

EXAMPIE

\Rightarrow Find your base address.
Base address: 0×0 A 0
\Rightarrow Ignore the low-order address bit, $A 0$.
\Rightarrow Convert to binary:
0000000010200000
\Rightarrow Remember the bits you turned from zero to one in the block size? Turn those same bits to ones here.

Change 0000 000: $=0: 0$ 0000 to 0000 c000 10:0 0:12
\Rightarrow Enter the base address herc

$D I P$	0	0	0	0	0	0	0	0
	$\overline{A: 5}$	$\overline{A: 4}$	$\overline{A: 3}$	$\overline{A 12}$	$\overline{A Z i}$	$\overline{A 10}$	$\overline{A C 9}$	$\overline{A 08}$

 usea)
\Rightarrow Set DIP 3 and DIP I to this value: $0=O N$ and $1=O F F$.

0	0	0	0	0	0	0	0	X	1	0	1	0	0	1	1
1	2	3	4	5	6	7	8	-	2	3	4	5	6	7	8
	(section*)														

†Rementer, address bit AO is nol sel mio this DPP swich

Setting the Base Address Switches on Your Board

Fill in this page with your particular Multibus I/O space base address information.

YOUR DAEF.
\Rightarrow Find your base address.
YOUR BASE ADDRESS: OX \qquad

NOTE Remember to ignore the low-order address bit, AO.
\Rightarrow Convert to binary:

\Rightarrow Remember the bits you turned from zero to one in the block size? Turn, those same bits to ones here.

\Rightarrow Enter the base address here.
Dif 3:

DIF 1: XXX
(not $\overline{A O T} \overline{A O G} \overline{A C S} \overline{F O S} \overline{E C B} \overline{B C Z} \overline{A O Z}$ usec)
\Rightarrow Set DIP 3 and DIP 1 to this value: $0=O N$ and $1=O F F$.

4Remember, address bit $A 0$ is not set into this DP switch

A．3．DIP Switch 11
 DIP Switch 11，Sections 5．8－ Multibus Memory Address Space Size

This section tells you how to set the switch sections for DIP switch 11．There are both
－sample settings（labelled＂Example，＇＂）and
－space for you to figure out the settings for your own board（labelled＂Your Board＇＇）．

DIP switch 11 is divided into two functional parts：
1．sections $1-4$ control DMA transfer address
2．sections 5－8 control Multibus memory address space size．
When using one functional part（either switch sections 1－4 or sections 5－8）the other functional par must be set OFF to avoid contention．

For 24－bit addressing，set sections 5－8 of DIP switch 11 ON（allowing address bits A23－A20 to pass through）．

For 20－bit addressing．set sections 5－8 of DIP switch 11 OFF（isolating the Multibus P2 connector from the adapter board＇s address logic）．

NOTE For 24－bit address boards，sections 1－4 of DIP switch 11 should be OFF，even if your board does not do DMA transfers．（See the following section，＂DIP Switch 11．Sections 1－4－DMA Transfer Address．＇）

```
SETTING MENORY ADDRESS SPACE SIZE:
    EXFMミこE EORスコ
```

For a 24－bit Multibus board：
\Rightarrow Set sections 5.8 of DIP 11 ON（allowing A23－A20 to pass through）．
（switch）Sec．Sec．Sec．Sec．
$\begin{array}{llll}5 & 6 & 7\end{array}$
DIP 11：ON ON ON ON
$\overline{\mathrm{A} 20} \quad \overline{\mathrm{~A} 21} \quad \overline{\mathrm{~A} 22} \quad \overline{\mathrm{~A} 23}$（pass these bits through the board）

SEIIING MEMORY RDDEESS SPACE SIZE: YOUR BOARD

\Rightarrow For a 24-bit Multibus board: set sections 5-8 ON.
\Rightarrow For a 20-bit Multibus board: set sections 5-8 OFF .

Sec. Sec. Sec.	Sec.		
5	6	7	8
DIP $12:$			

DIP Switch 11, Sections 1-4DMA Transfer Address

If your Muhibus board handies 24-bit addressing, then set sections $1-4$ of DIP 11 to OFF.

If your Multibus board does DMA uransfers, but only provides 20 address bits, sections 1-4 of DIP switch 11 can be used to provide the 4 high-order bits of the 24-bit address which the VMEbus requires. In order to access Sun main memory via D\MA iransfers, these bits must be sct to zero!' The only time these swith sections (sections 1-4) should be sc: to provide any other value than zero is in the case where the board will be doing DMA to some other device and NEVER to the Sun memory. These situations are very rare:'

```
2L-EIT MUITISUS BORRD: EXRNPIE
```

For a 24 -bit Multibus board:
\Rightarrow Set sections 1-4 of DIP II OFF.
(switch) Sec. Sec. Sec. Sec.
123

DIF 11: OFF OFF OFE OFE

20－BIT MASTER DOING DVIA TO SUN MEMORY：
 EXAMPLE

The DVMA por on the Sun CPU board responds to addresses in the $0-1$ Mbyte range．Since 20 bits address a 1 Mbyte range，the high order address bits（A23－ A20）must be set to a binary zero（0000）in order for a 20 －bit Multibus board to do DVMA to Sun memory．

For a 20 －bit Multibus board：

```
A Set the binary value 0000 into sections 1-4 of DIP 11. Remember:0 = OFF
        and l=ON. }
(switch) Sec. Sec. Sec. Sec.
            1 2 3 4
DIP 2:: 0 0 0 0
    CEF \overline{OES \overline{OEF EEE}}\mathbf{CE}
```

```
20-BIT MASTER DOING DMA ONLY
TO FNOTシER PERIPHERス:
    EXFMミここ
```

In a 20－bit master，the remaining（top）four address bits，A23－A20，must be sup－ plied by DIP switch 11，sections 1－4．

The only time that these switches should be set to any other value than zero is in the case where the board is doing DMA only to some other device and NEVER to Sun memor：These situations are VERY RARE！
\Rightarrow Determine the value to be set into switches $1-4$（let＇s choose an arbitrary value of $0 x C) .0 x C=($ binary $) 1100$ ．
\Rightarrow Set this binary value（1100）into sections 1－4 of DIP 11．Remember， $0=$ OFF and $l=O N . \dagger$

（switch）	Sec．	Sec．	Sec．	Sec．
	1	2	3	4
DIP 11：	1	1	0	0
	$\overline{O N}$	$\overline{O N}$	$\overline{O F F}$	$\overline{O F F}$

[^1]
DIP SWITCE 11, SECTIONS 1-4:
 YOUR BOARD

- If your board handles 24-bit addressing: set sections 1-4 OFF
- If your board handles 20 -bit addressing but does not do DMA: set sections 1-4 OFF.
- If your board handles 20-bit addressing and will be doing DMA to SUN memory: set sections 1-4 to OFF.

```
(switch.) Sec. Sec. Sec. Sec.
    1 2 3 4
DIP 11: OFE OFE OEE OFE
```

= If your board handles 20 -bit addressing and will be doing DMA only to some other device and never to Sun memory then:
\Rightarrow Determine the value you want to be set into switches 1-4.

Your value is $0 x$ \qquad which is equal to binary \qquad
\Rightarrow Set these four bits into sections $1-4$ of DIP 11 . Remember: $0=O F F$ and $1=$ ON.:

E:P 11:

A23 A22
$\overline{A 21} \quad \overline{\mathrm{~A} 20}$

The Muhibus is seuve low, so these seaings are the reverse of aher switches.

A.4. Interrupt Vector Switch DIP 12

This section tells you how to set the switches for the the interrupt vector. There are both

- sample settings (labelled "Example,') and
- space for you to figure out the settings for your own board.
\Rightarrow Convert the hex value of the vector to binary:

EXAMPLE

```
    0xA6 = 1010 0110
```

\Rightarrow Set this value into DIP 12:0 $=O N$ and $1=O F F$.

Interrupt Vector-Your $\quad \Rightarrow$ Convert the hex value of the vector to binary:
Board
YOUR SOARD
ex \qquad
\Rightarrow Set this value into DIP 12:0 $=O N$ and $1=O F F$.

B

Example Configurations

Example Configurations 57
B.1. Xylogics 450 Disk Controller 57
B.2. Tapemaster $1 / 2$ Inch Tape Controller 59
B.3. DMA Tester Board 61

Example Configurations

B.1. Xylogics 450 Disk Controller

```
Multibus Memory Space: Not Used
Multibus I/O Space: 8 bytes sta=ting at OxEE40
DNA adcress size: 24 bits
Ir:erこupt vecこc:: 0x48
BCIK, CCLK: Needs external clocks
```

NOTE Configure the Xylogics board for 24-bit operation
Suitch Settings:

- For No Multibus Mcmory Space Response:

```
DIF &-R:I OES
DIP 6-R21 OFF
DIP 7-ALI ON
DIF 5-R2i ON
```

- For I/O space size 8:

DIF 2	Sectior.	1	2	3	4	5	6	7
	X	ON	ON	ON	$0 N$	$O N$	$O E F$	$O E F$

DIP 4 AII ON

- For I/O base address OxEE40:

DIP 1		Section	1	2	3	4	5	6	7	8	
		X	ON	OFE	ON	ON	ON	OFF	OFE		
DIP 3			Section	1	2	3	4	5	6	7	8
			OEF	OFF	OFE	ON	OFE	OEE	OFE	ON	

- For 24-bit Multibus DMA addressing:

```
DIP 11 Sections 1-4 All OFF Sections 5-8 Ail ON
```

- For Interrupt Vector 0x48:

```
DIP 12 Section: 1 2 2 3 4
    ON ON ON OFF ON ON OFF ON
```

- For BCLK and CCLK:

```
JMF: Section 1 INSTALIED Section 2 INSTALIED
```

Following is a diagram of the switch settings (0 is ON, X is OFF).
<VME P1 Connector> <VME P2 Connector>

			DIP2
			x00000xX
	DIPE	DEF6	
	XXXXXXXX	SxXXXXXX	
			DIP:
			00x000xx
	ここ?7	DIPS	
	00000000	00000000	
			DIP3
			XXX0xxx0
DIP:2	DIP1:	DIPG	JMP 1
$000 \times 00 \times 0$	XXXX0000	00000000	00
(jumpers in)			

<Multibus P2 Connector>

B.2. Tapemaster $1 / 2$ Inch Tape Controller

```
Multibus Memory Space: Nc: Used
Multibus I/O Space: 2 bytes starting at 0x00A0
DMA address size: 20 bi=s
Interrupt Vector: 0x60
BCLK, CCLK: Needs external clocks
```

Switch Settings:

- For No Multibus Memory Space Response:

```
DIP 8-All OFF
DIP 6-All OFF
DIP 7-AII ON
DIP 5-Al1 ON
```

- For I/O space size 2:

$D I F$	2	Section	1	2	3	4	5	6
		7	8					
		$O N$						

DIP \& ALI ON

- For I/O base address 0x00A0:

DIP 1	Section	1	2	3	4	5	6	7	8
		X	$O F E$	$O N$	$O E F$	$O N$	$O N$	$O N$	$O N$
DIP 3 Section	1	2	3	4	5	6	7	8	
		$O N$							

= For 24-bit Multibus DMA addressing:

DIP 11 Sections 1-4 A:1 OFF Sections 5-8 All ON

- For Interrupt Vector 0×60 :

$D I F$	12	Section	1	2	3	4	5	6	7
	$O N$	$O F F$	$O F F$	$O N$					

- For BCLK and CCLK:

IMP: Section 1 INSTALEED Section 2 INSTALLED

Following is a diagram of the switch settings (0 is ON, X is OFF).

```
<VME P1 Connector> <VME P2 Connector>
```


<Muitibus P2 Connector>
B.3. DMA Tester Board

```
Multibus Memory Space: 16k bytes starting at 0x280000
Multibus I/O Space: Not Used
DMA address size: 20 bits
Interrupt vector: 0\times48
BCLK, CCLK: Needs external clocks
```

Switch Settings:

- For No Multibus I/O Space Response:

$$
\begin{array}{lll}
\text { DIP } & 2-A 11 & \text { OFF } \\
\text { DIP } & 4-A 11 & \text { OFF } \\
\text { DIP } & 1-A 11 & \text { ON } \\
\text { DIP } & 3-A 11 & \text { ON }
\end{array}
$$

- For Memory space size 16 K :

$D I P$	6	Section	1	2	3	4	5	6	7
	$O N$	$O N$	$O F F$						

DIP 8 All ON

- For Memory base address 0×280000 :

DIF	5	Seこtios	1	2	3	4	5	ϵ	7	8
			ON	ON	CEE	OES	OE:	OE:	ofr	OEF
DIP	7	Section	1	2	3	4	5	6	7	8
			ON	ON	OFF	ON	OFE	ON	ON	ON

- For 20-bit Multibus DMA addressing, using zeroes as the high-order 4 bits:

DIF i: Secions i-4 Ail OFE Sections 5-8 All OEF

- For Internupt Vector 0×48 :

$D I P$	12	Section	1	2	3	4	5	6	7
		$0 N$	$O N$	$O N$	$O F F$	$O N$	$O N$	$O F F$	$O N$

- For BCLK and CCLK:

JMP1 Section 1 INSTALLED Section 2 INSTALLED

Following is a diagram of the switch settings (0 is ON, X is OFF).

```
<VME P1 Connector> <VME P2 Connector>
```

1				
1			DIP2	
1				DXXXXXXX

```
<MuItibus P2 Connector>
```


Index

8

8-Section DIP Switch example of, 9

A

asserted, xi

B
base address, 12
Muluibus memory space. 15
BCLK (Bus Ciock)
JMP1. 26
block size, 9, 12, 18

C

CCLK (Constant Clock)
JMP1. 26
clear, xi
Clock Logic. 36
CLOSED, xi

D

Data Transfers, 34
DIP, xi
switch x
DIP 12,36
DIP swith 1. 16, 30
DIP Switch 11, 19, 32
DIP Switch 12, 23
DIP switch 2 16, 30
DIP switch 3, 16, 30
DIP switch 4, 16, 30
DIP switch 5,9
DIP switch 6,9
DIP swich 7.9
DIP switch 8.9
DMA Adrress Switch DP 11, 50
DMA Cycle
DIP Switch 11, 19

F

functional description, 3

G

glossary
asserted xi
clear, xi
CLOSED, xi
DIP, xi
negative logic, $x i$
OFF, xi
ON, xi
OPEN, xi
positive logic, xi
set xi
swich xi
switch section, xi
I
IO Address Decoding. 16
Internupl Logic, 36
Internpi Vector
DIP Switch 12, 23
Interrupt Vecior PROM, 24
Invernut Vector Swich DIP 12, 54

J

MMP1, 26
M
Memory Address Space, 29
Mernory Spece Bese Address Switches, 44, 45
Memory Space Block Size Switches, 42,43
Multibus LO Address Decoding. 16
Multibus IO Addrescing
DIP switch 1, 16
DP swich 2,16
DIP switch 3,16
DP switch 4, 16
Mutribus IO Space, 17
bloct size switches. 18
Muhiber 10 Spece Bece Address Switch Sedings, 48, 49
Muliber IO Spece Block Size Swich Setinge, 46, 47
Muhiber I/O Space Swich Senings, 46
Multibus Mernory Address Decoding, 10
Multibus Memory Address Space Size
DIP Swich 11, 19
Multibus memory address space size DIP 11. 50
Multibus Memory Addressing

Mulubus Memory Addressing, conlinued
DIP swich 5, 9
DIP swich 6,9
DIP switch 7,9
DIP swich 8.9
Multibus io VMEbus Addressing, 32

N

negative logic, $x i$

0

OFF, xi
ON, xi
OPEN, xi

P

PAL U307, 30
positive logic, x

S

Sample Configuration
DMA Tester Board. 61
Tapemaster 1/2 Inch Tape Controller, 59
Xylogics 450 Disk Convoller, 57
sen xi
Seting Mulubus Memory Space Switches, 42
signal
B.DTACK, 33

BH. 34
BPRN, 35
BRQ1-. 35
DATOLT-, 35
ENVEC. 36
Pl.A3-Pl.Al, 36
P1BG3IN. 35
P1BG3OUT-, 35
P1 BR3-, 35
PI.DTACK. 33
PIIACKIN-, 36
WBL. 34
WH., 34
switch xj
switch section, xj
Switch Setrings
24-Bir Multibus Memory Spece, 11
Multibus Memory Spece, 10
Switch Setrings Worksheet, 41
switches
whet they do, 5
T
terms
asserted, xi
clear, xi
CLOSED, x
DIP, xi
negative logic, xi
OFF, x
ON, xj
OPEN, xi
positive logic, xi
terms, continued
set, x
switch xi
swich section, xi
Theory of Operations, 29

U

U101, 34
U102. 34
U103, 34
U104, 32
U105, 32
U106, 33
U107, 32
U108, 32
U109, 32
U110, 32
U201, 30
U202. 30
U204, 31
U205, 31
U301. 30.34
U302. 33
U303. 31
U306. 36
U307, 31
U402, 36
U405, 36
U406, 36
U501, 35

V

VME DMA Cycle 36
VMEbus to Multibus Addressing. 31

Not Available

At This Time

Not Available

At This Time

Not Available

At This Time

VME to Multibus Adapter Card

VME to Multibus Adapter Card

This card allows Multibus protocol 2-high cards to work with Sun VMEbus protocol 3-high systems.

The 2-high controller card (example: Xylogics 451 SMD disk) is plugged into the adapter and the entire assembly is plugged into the proper slot as if it were all one card.

VME to Multibus Adapter Layout

VME/MB MOUNTING

VME to Multibus Adapter Layout

- Each DIP has 8 switches 1-8.
- On is up, off is down.
- Do not use lead pencil to change switches.

The prom socket, usually unstuffed, is for special order Sun Proms which would provide the customer with multiple interrupt vectors.

VME/MB Switch Settings for Xylogics 450/451 Controller Boards

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	ON	OFF	OFF	ADDR $0 \times 40 \quad 1 / 0$
2	OfF	ON	ON	ON	ON	ON	OFF	OFF	$1 / 0$ space $=8$
3	OFF	OFF	OFF	ON	OFF	OfF	OfF	ON	ADDR OXEE
4	ON	$1 / 0$ space $=8$							
5	ON	24-bit addr space							
6	OFF	24-bit bolck size							
7	ON	24-bin addr space							
8	OFF	24-bit block size							
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Set addr A23-A20
12	ON	ON	ON	OFF	ON	ON	OFF	ON	Int Vec at 0×48
J1	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIRST SMD (DISK) CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	OFF	OFF	OFF	ADDR $0 \times 481 / 0$
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/Ospace=8
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR OxEE
4	ON	VME addr space							
5	ON	24-bit addr space							
6	OFF	24-bit block size							
7	ON	24-bit addr space							
8	OFF	24-bit block size							
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
12	OFF	ON	ON	OFF	ON	ON	OFF	ON	Int Vec 0x49
$J 1$	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

SECOND SMD (DISK) CONTROLLER

VME/MB Switch Settings for Xylogics 450/451 Controller Boards

Note: Switch 11, positions 5, 6, 7 and 8 are on for all cards except: - Xylogics 472's.

- Gateway's.

VME/MB Settings For Gateway and Sunlink Controllers

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ADDR 0×00							
2	OFF	OFF	OFF	OFF	OFF	OFF	CFF	OFF	No response to l/O space
3	ON	ADDR 0x00							
4	OFF	No response to $1 / 0$ space							
5	OFF	24-bit addr space							
6	OFF	OFF	OFF	OFF	CFF	OFF	OFF	OFF	24-bit block size
7	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	24-bit addr space
8	ON	ON	ON	ON	OFF	OFF	OFF	OfF	24-bit block size
11	OFF	Sets addr A23-A20							
12	OFF	ON	OFF	ON	OFF	OfF	OFF	ON	Int Vec 0×75
$J 1$		Install p	ins 1-	2 for	CLK			all pin	3-4 for CCLK

SECOND ETHERNET

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	ON	ON	ON	OFF	OfF	OFF	ADDR 0×800
2	ON	ON	ON	ON	ON	OFF	OfF	OFF	$1 / 0$ space $=16$
3	ON	ON	ON	ON	OfF	ON	ON	ON	ADDR 0×0800
4	ON	VME addr space							
5	ON	24-bit addr space							
6	OFF	24-bit block							
7	ON	24-bit addr space							
8	OFF	24-bit block							
11	OFF	Sets addr A23-A20							
12	ON	ON	OFF	OFF	ON	ON	ON	OFF	Int Vec 0x8C
$J 1$	Install pins 1-2 for BCLK					install pins 3-4 for CCLK			

FIRST SUNLINK CONTROLLER

VME/MB Settings for Xylogics 472 Tape and Systech ALM 1 Controllers

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	ON	ON	OFF	OFF	ON	\cdots	OFF	OFF	Addr 0x60 1/0
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space $=8$ bytes
Dip 3	OFF	OFF	OFF	ON	OFF	OFF	OfF	ON	Addr OxEE for $1 / 0$
DIP 4	ON	$1 / 0$ space $=8$							
Dio 5	ON	24-bit addr space							
Dip 6	OFF	24-bit block size							
Dip 7	ON								
Dip 8	OFF								
Dip 9	OFF								
Dip 10	OFF								
Dip 11	OFF	Set A23 to A20							
Dip 12	\cdots	ON	OFF	ON	ON	OFF	OFF	ON	Int vector set to 0x64
JUMPERS	Install pins 1-2 for BCl\|Kinstall pins 3-4 for CCLK								
** set ON for xtc0 . set OFF for xtc1									

GCR (6250) $1 / 2-\operatorname{INCH}$ TAPE CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	OFF	ON	ON	OFF	ON	ON	OFF	OFF	Addr 0×20 for 1/0
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	$1 / 0$ space $=8$
Dip 3	ON	ON	ON	ON	ON	OFF	OFF	ON	Addr 0×06 for $1 / 0$
Dip 4	ON	$1 / 0$ space $=8$							
Dio 5	ON	VME 24-bit addr space							
Dip 6	OFF	24-bit block size							
Dip 7	ON	24-bit addr space							
Dip 8	OFF	24-bit block size							
Dip 9	---	---	---	---	---	---	---	---	Not Used
Dip 10	---	---	---	---	---	---	---	---	Not Used
Dip 11	OFF	Sets addr A23-A20							
Dip 12	ON	ON	ON	OFF	ON	ON	ON	OFF	Int Vec at 0x88
JUMPERS	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

SYSTECH ALM 1 (MTI) INTERFACE CONTROLLER

CHAPTER SEVEN SECTION 7C:

VME-MULTIBUS ADAPTER

OVERVIEW

The VME to Multibus board is an adapter which allows the use of Multibus cards on the VME bus for Sun 3 pedestal products. The VME to Multibus card scheme is transparent to the system in that there are no registers on the adapter board that software can modify. The following text defines how VME signals are routed through the adapter so that Multibus cards can be read and written, as well as interrupted using programmed cycles. Functional block diagrams have been included to illustrate how the adapter operates. The following block illustrates the VME interface to the adapter:

FIGURE 7C-1: VME INTERFACE

7C. 1 ADAPTER CONFIGURATION CONSIDERATIONS

There are a number of switch settings which must first be described in order to better understand the functional capabilities of the VME to Multibus board. The adapter board can respond to a block of addresses in the 24-bit VME address space. When the adapter board sees an address within the selected block, it throughputs the address bits to the Multibus board and generates a Multibus
read or write command. The addressing can range from 256 K to 16 M bytes for Multibus memory address decoding.

This addressing function is controlled by the dip switches (DIP's $5,6,7,8$, which set up in three 8 -bit equal-to-comparators. If the comparators match the addresses a select signal is asserted toward a control PAL on the adapter board. At this point, the PAL would assert a 'memory enable' strobe to the 'transfer enable' PAL on the adapter board which selects the bidirectional transceivers for a data transfer. A 'dataout' signal from the same PAL controls the direction of the transfer at the transceivers. Dips 5 and 7 (see Figure 7C-2) select the 24 -bit VME space base address for access to the Multibus memory space.

The adapter board can also respond to a block of addresses in the 16 -bit VME address space that the board responds to.. Here, when the adapter board sees an address within the selected block, it throughputs the address bits to the multibus board and generates a Multibus read or write. This function is controlled by dip switches on the adapter board (DIP's 8 and 6).

For Multibus $1 / O$ addressing, the adapter board can respond to a block of addresses in the 16 -bit VME address space. When the adapter sees an address within the block set up by the switches, it passes the address bits to the Multibus board and asserts a Multibus I/O read or write. The address range of these blocks is from 2 Bytes to 64 K bytes. This function is set-up in dip switches 1 through four.

The 16 -bit address will be set-up in two 8 -bit equal-to-comparators, and assert select signals toward the control PAL. This PAL then asserts I/O enable to the transfer PAL. Figure 7C-2 illustrates the configuration selects for the adapter board.

FIGURE 7C-2: CONFIGURATION SELECTS

7C-2 VME BUS TO MULTIBUS ADDRESSING

During a VME read cycle to a Multibus card. P1 address lines A01-A23 are transferred to to the multibus adapter card in conjunction with P1 address strobe (AS) and P1 data strobes (DS0,DS1). Address lines which pass on to Multibus cards are latched onto the adapter by transparent latches with address strobe. After setting up, the inverted address lines are passed onto the Multibus with the assertion of Multibus 'read'.

Note that VME address lines are active high, and Multibus address lines are active low. Address lines are inverted by the latches on the adapter card.

A transfer PAL is used to set up the Multibus read command using address and data strobes. While active, the read signal allows the addresses to pass to the Multibus at connector J700. At the end of the read cycle, the Multibus board will respond by asserting a 'transfer acknowledge' to the adapter, which asserts P1 'data transfer acknowledge', thus, completing the cycle. The following block diagram illustrates this function:

FIGURE 7C-3: VME/MULTIBUS ADDRESSING

7C. 3 MULTIBUS TO VME BUS ADDRESSING

In the process of a read cycie from the iviultious to the Vivie bus, muitious address lines M.A01-A19 are enabled onto the adapter via buffers, which invert the lines and enable (pass) them on to the VME (P1) bus, via connector J801. A dip switch at DIP 11, furnishes the high order address bits (M. A20-A23) to the inverting buffer to complete the 24 bit address to the VME bus.

At the end of the cycle, a P1 'data transfer acknowledge' is sent from the VME bus to the adapter board via a buffer which asserts 'bus data transfer acknowledge' to the transier acknowledge PAL. Refer to the block diagram above for an illustration of this function.

7C. 4 DATA TRANSFERS TO AND FROM THE ADAPTER

During a transfer cycle, data is transferred from the Multibus to the VME bus (and vice versa) via bidirectional transceivers. Two of the transceivers are used when the data transferred is a 16-bit word. For byte transfers the transceivers are used when the data is a byte at an odd address, or when data is a byte at an even address. In a write cycle to the Multibus, 'multibus write' will be active. When the direction is toward the VME bus, 'multibus read' will be active on the adapter. Both signals are asserted via the transfer PAL.

The three transceivers are enabled by 'write enable' signals which are driven by a data transfer enable PAL. The PAL is set-up by 'data strobes' (DSO.DS1)
and bus write conditions originating from the VME (P1) bus during a write cycle to the multibus. For data transfers to the VME bus (from the Multibus), a 'dataout' signal is asserted to the transceivers for direction control toward the P1 data bus. Dataout is also set-up by the data transfer enable PAL. Refer to the following block diagram for an illustration of this function:

FIGURE 7C-4: VME/MULTIBUS DATA TRANSFERS

7C.5 BUS REQUEST/BUS GRANT LOGIC

For bus requests from the Multibus to the VME bus, the requesting board will assert a 'bus request' and 'bus-priority-in level' to a handshanking PAL on the adapter board. This PAL then asserts a P1 bus request level to the VME (P1) bus. If the bus is not busy, a P1 'bus grant' level will be sent to the handshaking PAL which then asserts the bus grant as a 'multibus- priority-out' to the requesting Multibus board.

7C. 6 INTERRUPT LOGIC

Vectored interrupts are not supported on the Multibus, however, they are supported on the VME bus and therefore must be translated by the adapter board. A VME interrupt vector is generated on the adapter board by switches (DIP 12), or by an interrupt PROM(supplied by Sun).

The switches are used if the Multibus board interrupts on one level only. Where a Multibus board interrupts on more than one level, and a separate vector is required for each level, the PROM is used.

When one of the Multibus interrupt lines (INT1-INT7) goes active, it through puts to the VME bus via an open collector buffer (U405). When the processor sees the interrupt, it goes into an interrupt acknowledge cycle by putting the interrupt level on the lower-order address bits (P1 A1-A3), while driving P1 'interrupt acknowledge' and asserting P1 'address strobe'. Note that P1 interrupt acknowledge is bussed to every board on the backplane. A version of P1 'interrupt acknowledge-in/interrupt acknowledge-out' is daisy-chained from board to board.

When the adapter board sees this version of interrupt, it will check to see if the interrupt level specified by the address lines (P1 A1-A3) is in the same level as the one its trying to interrupt on. If so, the adapter will enable the interrupt vector onto the VME bus via the buffer. If the interrupt level is not the one specified by the address lines, the adapter will pass the interrupt on to the next board with P1 'interrupt acknowledge-out'. The following block diagram illustrates this function:

FIGURE 7C-5: INTERRUPT LOGIC

7C. 7 VME DMA CYCLE

The adapter board can generate a VME DMA cycle (when the adapter is the VME bus master) in response to a DMA cycle by the Multibus board. The

Multibus board can be a 20-bit address master, or a 24-bit address master (the adapter board is a 24 -bit master). If the Multibus board becomes a 24 -bit master, the 4-high order bits are generated by the switches on the adapter board which are in DIP 11. DIP 11 generates addresses A20-A23 toward the VME bus via the inverter address buffers.

7C.8 CLOCK LOGIC

For multibus boards which require an external bus clock and constant clock (that is most boards), the adapter provides for those clocks. The clocks originate at a 19.6608 MHz crystal (X1) and is divided down by a flip-flop to provide a 9.8344 MHz clock. A jumper block on the adapter board (J1) allows the enabling/disabling of the bus clock and the constant clock. Pins 1 to 2 should be jumpered for the bus clock, and pins 3 to 4 should be jumpered for the constant clock. Note that the jumpers should be installed to provide the clocks. Refer to the biock diagram in Figure 7C-6 for an illustration of these settings.

FIGURE 7C-6: CLOCK LOGIC

The next two blocks illustrate the layout of the VME/MB adapter:

FIGURE 7C-15: VME/MB CARD LAYOUT

FIGURE 7C-16: VME/MB MOUNTING

7C. 9 SUN 3 VME/MB ADAPTER SETTINGS

The following Tables list the default settings for Sun supported controller boards:

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	ON	OFF	OFF	ADDR 0x40 1/0
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	I/O space=8
3	OFF	OFF	OFF	ON	OfF	OFF	OFF	ON	ADDR OXEE
4	ON	$1 / 0$ space $=8$							
5	ON	QN	24-bit addr space						
6	OFF	24-bit bolck size							
7	ON	24-bin addr space							
8	OFF	24-blt block size							
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Set addr A23-A20
12	ON	ON	ON	OFF	ON	ON	OFF	ON	Int Vec at 0×48
J1	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-7: FIRST SMD CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	OFF	ON	ON	OFF	OFF	OFF	ADDR 0x48 $1 / 0$
2	OFF	ON	ON	ON	ON	ON	OFF	OFF	$1 /$ Ospace $=8$
3	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	ADDR OXEE
4	ON	VME addr space							
5	ON	24-bit addr space							
6	OFF	24-bit block size							
7	ON	24-bit addr space							
8	OFF	24-bit block size							
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
12	OFF	ON	ON	OFF	ON	ON	OFF	ON	Int Vec 0x49
$J 1$	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-8: SECOND SMD CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ADDR 0x00							
2	OFF	No response to $1 / 0$ spac							
3	ON	ADDR 0x00							
4	OFF	No response to $1 / 0$ spac							
5	OFF	24-bit addr space							
6	OFF	24-bit block size							
7	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	24-bit addr space
8	ON	ON	ON	ON	OFF	OFF	OFF	OFF	24-bit block size
11	OFF	Sets addr A23-A20							
12	OFF	on	off	On	OFF	Off	off	ON	Int Vec 0x75
J1	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-9: SECOND ETHERNET BOARD

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
1	ON	ON	ON	ON	ON	OFF	OFF	OFF	ADDR 0x800
2	ON	ON	ON	ON	ON	OFF	OFF	OFF	$1 / 0$ space $=16$
3	ON	ON	ON	ON	OfF	ON	ON	ON	ADDR 0x0800
4	ON	VME addr space							
5	ON	24-blt addr space							
6	OFF	24-bit block							
7	ON	24-bit addr space							
8	OFF	24-bit block							
11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
12	ON	ON	OFF	OFF	ON	ON	ON	OFF	Int Vec 0x8C
$J 1$	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-10: SUNLINK CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	ON	ON	OFF	OFF	ON	***	OFF	OFF	Addr 0x60 $1 / 0$
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	$1 / O$ space $=8$ bytes
Dip 3	OFF	OFF	OFF	ON	OfF	OFF	Off	ON	Addr OxEE for 1/O
DIP 4	ON	$1 / 0$ space $=8$							
Dip 5	ON	24-bit addr space							
Dip 6	OFF	24-bit block size							
Dip 7	ON								
Dip 8	OFF								
Dip 9	OFF	Not used							
Dip 10	OFF	Not used							
Dip 11	OFF	Set A23 to A20							
Dip 12	-	ON	OFF	ON	ON	OFF	OFF	ON	Int vector set to 0x64
JUMPERS	Install pins 1-2 for BCLK					Instail pins 3-4 for CCLK			
... set ON for xtco, set OFF for xtcl									

FIGURE 7C-11: GCR $1 / 2-\operatorname{INCH}$ TAPE CONTROLLER

SWITCH	1	2	3	4	5	6	7	8	DESCRIPTION
Dip 1	OFF	ON	ON	OFF	ON	ON	OFF	OFF	Addr 0×20 for 1/0
Dip 2	OFF	ON	ON	ON	ON	ON	OFF	OFF	$1 / 0$ space $=8$
Dip 3	ON	ON	ON	ON	ON	OFF	OFF	ON	Addr 0x06 for 110
Dip 4	ON	$1 / 0$ space $=8$							
Dip 5	ON	VME 24-bit addr space							
Dip 6	OFF	24-bit block size							
Dip 7	ON	24-bit addr space							
Dip 8	OFF	24-bit block size							
D1p 9	---	---	---	---	---	---	---	---	Not Used
Dip 10	---	---	---	---	---	---	---	---	Not Used
Dip 11	OFF	OFF	OFF	OFF	ON	ON	ON	ON	Sets addr A23-A20
Dip 12	ON	ON	ON	OFF	ON	ON	ON	OFF	Int Vec at 0×88
JUMPERS	Install pins 1-2 for BCLK					Install pins 3-4 for CCLK			

FIGURE 7C-12: ALM INTERFACE CONTROLLER

FIGURE 7C-13: ALM BOARD DIP SWITCH SETTINGS

FIGURE 7C-14: PROGRAMMABLE COMMUNICATION INTERFACE (SECOND ALM BOARD)

Not Available

At This Time

Not Available

At This Time

Not Available

At This Time

Not Available

At This Time
ธิu!.
8
0
0
0
0
0
0
0
0

Not Available

At This Time

SUMMARY SHEET

VME MULTIBUSS ADAPTER

501-1054 Rev. - 01/29/88

UPDATED PER ECO 3282 / DOCUMENTATION

NOTE: * REQUIRES DEPOT REWORK

Problem: Board layout was incorrect and dipswitch had two pins not grounded.

| 1746\| 03/52| 08/20/85 | | DOCUMENTATION |
| :---: | :---: |
| *1850\| 04/50| 09/09/85 | | REMOVE P2 CONNECTOR |
| 1725\| 04/A | 09/30/85 | | PRODUCTION RELEASE |
| 1993\| 04/B | 11/05/85 | | ADDS BAR CODE LABELS |
| 2080\| 04/C | 12/10/85 | | DOCUMENTATION |
| 2309\| 04/D | 03/18/86 | | CHANGE IN BOM |
| 2525\| 04/E | 06/26/86 | | USE KEPTON TAPE (P/N 150-1180-01) ON BOARD SUPPORTS WHERE OPTION BOARDS REST. |
| *2189 \| N/A | 06/19/86 | | SPRING FINGERS |
| Problem: Add spring fingers to pass FCC Part 15. | |
| *2748\| 05/A | 11/06/86 | | ADD THICKER INSULATION (FR4)
 P/N 330-1099-01.
 ADD DOUBLE SIDED TAPE (P/N 150-1192-01) |
| Problem: Make the spring finger insulator thicker to prevent the spring finger from shorting to the printed circuit board. | |
| $3018 \mid$ 05/B \| 03/10/87 | | DOCUMENTATION |
| $3080 \mid$ 05/C \| 08/03/87 | | Add Bar Code tabs to BOM. |

3267 | $05 / \mathrm{D} \mid 06 / 30 / 87$ | \quad locations on the printed circuit boardneed to be standardized.
3014 | 05/E | 10/12/87 | Documentation
3282 | 05/F | 10/08/87 | Documentation
Purge Notice
P.N. 649 | $06 / 02 / 87$ | PURGE DALE 10K SIP WITH DATE CODE 8649(P/N 120-1419-01).

```
ECO
        1 6 0 9
```

DATE APPROVED: 05/17/85
EFFECTIVE DATE: 05/17/85
PART NO. AFFECTED: 501-1054
ECO BOARD REV: FROM 03/50 TO 03/51
AVERAGE REWORK TIME: 15 min.

PARTS NEEDED:	DESCRIPTION	SUN PART NO.
	8 Pin Dip Switch	$150-1006-01$

ADDITIONAL MATERIALS / TOOLS: 30 guage Kynar wire

REWORK INSTRUCTION FOR 1609:

1) Dip switched Dip1 and Dip2 cut off pins 1 and 16 flush with the Dip switch body.
2) Install the two Dip switched in to the positions marked on the printed circuit board maked Dipl and Dip2 so that pin 2 of the switch goes into pin 1 on the board.
3) On the solder side of the board, jumper Dipll pins 1,2,3, and 4 to pin 8 of Dipl2.
4) Change the Printed Circuit Board revision level to a $-03 / 51$.

Comments: None

ECO 1850

DATE APPROVED: 09/09/85

EFFECTIVE DATE: 09/09/85

PART NO. AFFECTED: 501-1054
ECO BOARD REV: FROM 03/52 TO 04/50
AVERAGE REWORK TIME: 15 min .

PARTS NEEDED: None

ADDITIONAL MATERIALS / TOOLS: NOne

REWORK INSTRUCTIONS FOR ECO 1850:

1) Remove the P2 VME connector from the VME to Multibus adapter.
2) Change the Printed Circuit Board revision level to a $-04 / 50$.

Comments: None

ECO 2189
DATE APPROVED: 6/19/86
EFFECTIVE DATE: 6/19/86
PART NO. AFFECTED: 501-1054
ECO BOARD REV: FROM 01/C TO 02/A
AVERAGE REWORK TIME: 15 min.

PARTS NEEDED:		SUSTY.	
	Spring finger	$340-1228-03$	1
	FR4 10 mil	$330-1099-01$	1
	Foam tape	$150-1192-01$	2
	Rivets 1/8 in.	$240-1320-01$	1

ADDITIONAL MATERIALS / TOOLS: Electric Hand Drill with a $1 / 8$ inch bit 3/16 inch socket or nutdriver Bostik POPRIVETOOL 1/8"-5/32"-3/16" pop rivet tool or equivalent Small screwdriver

REWORK INSTRUCTION FOR 2189:

1. Remove one of the pop rivets from the board stiffener with the electric hand drill.
2. Remove the screws and nuts that hold the connectors to the board stiffener with the screwdriver and $3 / 16^{\prime \prime}$ socket or nut driver.
3. Pull the board stiffener away from the printed circuit board and install the spring finger.
4. Place the insulator at the edge of the printed circuit board, near the board stiffener.
5. Place the board stiffener with the spring finger onto the printed circuit board and install the nuts and screws onto the connectors.

* The springfinger should be resting on the FR4 insulator and not touching the printed circuit board.

6. Mark the revision level of the board with a -02/A.

COMMENTS: ECO 2748 requires the use of the $E R 410$ mil insulator that has been installed with this rework instruction.

DATE APPROVED: $11 / 06 / 86$
EFFECTIVE DATE: 11/06/86
PART NO. AFFECTED: 501-1054
ECO BOARD REV: FROM 04/E to 05/A
AVERAGE REWORK TIME: 15 Min.

PARTS NEEDED:	DESCRIPTION	SUN PART NO.	QTY.
	FR4 10 mil	$330-1099-01$	1
	Foam tape	$150-1192-01$	2

ADDITIONAL MATERIALS / TOOLS: NONe

REWORK INSTRUCTION FOR ECO 2748:

1. Remove any insulator under the springfinger except the FR4 10 mil insulator.
2. Install a FR4 10 mil insulator under the springfinger held in place by the 2 pieces of foam tape at each end of the insulator.
3. Mark the revision level of the board to a $-05 / \mathrm{A}$.

COMMENTS: None

Not Available

At This Time

Not Available
At This Time

VME TO MULTIBUS ADPT.

$$
501-105400
$$

Rew B

M. BUSY-:1:5;6

vcc

Contidential - Copyright (C) 1986 Sun Microsystems. All rights reserved. Thla material contains trade secrets information of sun Microsystem Inc. bse, reproduction or disciosure 1 is pronibited except under written ince
by Microsystems Inc. Use of copright notice is precautionary oniy
TItIe: VME MULTIBUS ADAPTER MOD 160 Drawing: 501-1054-05

RP13	
1K	
R9.SIP	
R1	2 M.INH2-
R2	3-M. TNH1-
R3	4 M.IOWC-; 3
R4	5 M.MWTC- 3
R5	6 M. BREQ-15
R6	7 7
R7	8 B.SYSRESET--1
R8	
R9	10

ECO	
RP15	
$\frac{1 \mathrm{~K}}{\mathrm{R9} . \mathrm{SIP}}$	
R1	
R2	3 M.CBRQ-
R3	4 M.LOCK
R4	5 M. XACK- 3
	6 - M. IORC-3 3
R6	7 M.MRDC-3 3
R7	8 M. BUSY-; 3
$\begin{aligned} & \mathrm{R} 8 \\ & \mathrm{R} 9 \end{aligned}$	$9{ }^{9}$
	0

$J 701$ D 60

D86

GND $\frac{1}{3}$	$\square{ }^{2}$ GND
Vcc 3	$\square-\mathrm{4} \mathrm{VCC}$
vcc 5	6 vcc
$+12 \mathrm{~V} 7$	- 8 +12v
$-5 \mathrm{~V}-9$	-10-5v
GND 11	$\square 12$
M. BCLK-; 3	14 B.SYSRESE
M. BPRN-:5 5	\square^{16} M. BPRO-
M. BUSY- 317	-18 M. BREQ-7 5
M.MRDC-13 19	20 M.MWTC-: 3
M. IORC-13 21	-22 M. IOWC-:3
М. ХАСК- 3 23 2	$\square 24$ M. TNH1-
M. LOCK- 25	$\square 26$ M. INH2-
M. BHEN-13 27	\square^{28} M.A16-81
M. CBRQ- 29	$\square \frac{30}{32}$ M.A17-81
M. CCLK-; 3	$\square \frac{32}{} \mathrm{M}$. A18-:1
M. INTA- 33	$\bigcirc 34$ M.A19-11
M.INT06-84 ${ }^{35}$	$\square \frac{36}{\square}$ M. TNTO7-14
M.INTO4-14 ${ }^{37}$	$\square \frac{38}{40}$ M. INTO5-14
M.INT02-14 ${ }^{39}$ -	$\square \frac{40}{40}$ M.INTO3-14
M.INT00-14 41	$\square \frac{42}{42}$ M. INT01- 4
M.A[14]-11 43	
M.A $121-11-45$	\square^{46} M.A ${ }^{\text {a }}$ (13]-: 1
M.Al10]-81 47	$\square \frac{48}{50}$ M.A(11)-11
M.A 08$\left.]-11 \frac{49}{51}\right]$	$\square \frac{50}{52} \mathrm{M}$. A 090]-11
M.A(06]-11 51	$\square 52 \mathrm{M}$ (A 07)-:1
M.A(04]-81 53	$\square \frac{54}{54}$ M.A(05)-:1
M.A[02]-11 55	$\square 56$ M.A 03$]-11$
M.A(00)-11 $\frac{57}{59}$	$\square \frac{58}{60}$ M.A ${ }^{\text {a }}$ (01)-:1
M.D(14)-11 59	$\square \frac{60}{62}$ M.D 1515$]-1$
M.D(12)-11 61	$\square \frac{62}{64}$ M.D(13)-:1
M.D(10)-11 63	$\square 64$ M.D (11)-:1
M.D(08)-11 65	$\square-66$ M.D(09)-1
M.D[06]-11 67	$\square \frac{68}{70}$ M.D ${ }^{\text {a }}$ (07]-:1
M.D[04]-11 69	$\square 70$ M.D (05)-11
M.D[02]-11 $\frac{71}{73}$	$\square 72 \mathrm{M}$ M.D(03)-11
M.D $1001-11-73$	-74 M.D(01)-:1
GND 75	$\square 76$ GND
$-12 \mathrm{~V} 79$	$-80-12 \mathrm{~V}$
VCC 81	82 VCC
Vcc 83	84 VCC
GND ${ }^{85} \square$	$\square 86$ GND

RP16	
$\frac{2.2 \mathrm{~K}}{\mathrm{R9} 9 . \mathrm{SID}}$	
R1	$\frac{2}{3}$ M.D 013 - 11
R2	$\frac{3}{4}$ M.D[03]-11
R3	$\frac{4}{5}$ M.D 050]-1
R4	5 M.D 0707 -11
R5	$\frac{6}{7}$ M.D 09$]$-81
R6	7 M.D[11]-11
R7	
R8	${ }^{9}$ M.D[15]-:1
R9	- M.D(15) 1

2.2 K
R9.SIP
R1
R2
R3
R4
R5
R6
R7
RB
R9

RP19
2.2K

RP21
1K

R
R9.SI

2.2 K	
R9.SIP	
R1	2_M.A $0001-11$
R2	3 M.A 02$]-1$
R3	$\frac{4}{5}$ M.A $(04)-: 1$
R4	5-M.A106]-:1
R5	$\underline{6}$ M.A 08$]-11$
R6	-M.A $10{ }^{\text {a }}$-11
R7	8 M. A $12{ }^{\text {8 }}$-: 1
R8	9 M.A[14]-11
R9	10

RP20
2.2 K
R9.

2.2K	
R9.SIP	
R1	2-M.A[16]-:1
R2	-M.A(17)-11
R3	$\frac{4}{5}$ M.A 18$]-1$
R4	-M.A[19]-, 1
R5	M.A(20)-11
R6	-M.A ${ }^{\text {(21]-:1 }}$
R7	- M.A 22$]-1$
R8	${ }^{9}$ M.A 23$)^{-i 1}$
R9	10 M.BHEN-3 3

microsystems and does not 1 mply publication or disclosure
$J 800$
DIN CONNECTOR
$J 801$
DIN CONNECTOR

1 P1.D $0001 ; 1$	33	3 P1.BBSY- 5	65	P1.D[08]:1
2 P1.D[01]:1	34	4 P1.BCLR-	66	P1.D[09]:1
3 P1.D[02];1	35	5 P1.ACFAIL-	67	P1.D[10]:1
4 P1.D[03];1	36	6 P1.BGOIN-; 5	68	P1.D[11];1
5 P1.D[04];1	37	7 P1.BGOOUT-:5	69	P1.D[12];1
6 P1.D[05];1	38	8 P1.BG1IN- 5	70	-P1.D[13]:1
7 P1.D[06]:1	3	9 P1.BGIOUT-: 5	71	1.D[14]:1
8 P1.D107];1	40	0 P1.BG2 IN-; 5	72	P1.D[15]:1
9 GND	41	1 P1.BG2OUT-; 5	73	
10 P1.SYSCLK; 1	42	2 P1.BG3IN-:5	74	1.5
11 GND	43	3 P1.BG30UT--5	75	1.BERR-; 1
12 P1.DS1-; 3	44	4 P1.BR0-; 5	76	1. SYSRESE
13 P1.DS0-; 3	45	5 P1.BR1-; 5	5	LWORD
14 P1.WRITE-; 3	46	6 P1.BR2-;5	58	AM5; 3
15	47	7	79	23]:2
16 P1.DTACK-; 3	48	8 P1.AMO; 3	80	1.A[22]:2
17	49	9 P1.AM1; 3	8	1.A(21):2
18 P1.AS-:3	50	0 P1.AM2; 3	82	-P1.A[20];2
19 GND	51	1 P1.AM3; 3	8	-P1.A(19];2
20 P1.IAC	5		8	[18]:2
21 P1.IACKIN-:4	5	3 P1.SERCLK; 1	85	-P1.A[17];2
22 P1.IACKOUT-;	54	4 P1.SERDAT	86	1.A[16];2
23	5		87	1.A[15];2
24 P1.A[07];2	56	6 P1.IRQ $1071-84$	88	1.A[14];2
25 P1.A 06):2	57	7 P1.IRQ(06)-i4	89	1.A(13):2
$\underline{26}$ P1.A 05$]$; 2	58	8 P1.IRQ 105]-:4	90	-P1.A[12]:2
27 P1.A 04]; 2	59	9 P1.IRQ 04]-; 4		P1.A[11]; 2
28 P1.A 103];2	6	0 P1.IRQ 103)-:4	92	-P1.A(10];2
29 P1.A[02];2	61	1 P1.IRQ[02]-; 4	93	-P1.A[09]:2
30-P1.A[01];2	6	2 P1.IRQ[01]-; 4	9	1.A108]:2
31-12v	6	3 + 5VSTDEY	95	
32 VCC	64	4 - VCC	9	- VCC

J802
DIN CONNECTOR

Not Available
At This Time

Corporate Headquarters Sun Microsystems, Inc. 2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX 287815
For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800 821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Sun House
31-41 Pembroke Broadway
Camberley
Surrey GU15 3XD
England
027662111
TLX 859017

Australia: 61-2-436-4699 Canada: 416 477-6745
France: (1) 46302324
Germany: (089) 95094-0
Japan: (03) 221-7021
The Netherlands: 0215524888
UK: 02766211

Europe, Middle East, and Africa, call European Headquarters: 027662111
Elsewhere in the world, call Corporate Headquarters:
415 960-1300
Intercontinental Sales

[^0]: +Remember, address bit AO is no sen invo this DIP switch.

[^1]: TThe Mulubus is acive low，so these seuings are the reverse of aher swisches．

