
SunView 1.80 Update Appendix

Part Number: 800-4738-10
Revision A of 27 March, 1990

Sun Workstation, SunCore, SunCGI and the Sun logo
are registered trademarks of Sun Microsystems, Incorporated.

SunOS and Sun View are trademarks of Sun Microsystems, Incorporated.

UNIX® is a registered trademark of AT&T.

All other products or services mentioned in this document are identified
by the trademarks or service marks of their respective companies
or organizations.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,1904,527,2324,745,407
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending.

Contents

Appendix D SunView 1.80 Update ... 1

0.1. SunView Help Mechanism ... 1

Basics of Spot Help in SunView 1.80 ... 2

Help Keys .. 2

Limitations of Spot Help ... 2

The Help Directory ... 2

Help Text: A Simple Example .. 2

Spot Help Program Interface .. 3

Providing More Specific Spot Help .. 4

HELP_DATA for Active and Disabled Objects 4

Spot Help Example .. 7

More Help .. 11

More Help Functions ... 12

More Help Example ... 13

Help on the More Help Server ... 14

0.2. Programmable Alarms ... 16

Shell Command Interface 16

Program Interface 17

Data Structure .. , ... " <i, , , " •• ~.~ •• ," ..

Function Calls .. ; ~ ... ~; ... , ;;.;.;, ; ;.;, ... , ;." .. .:-

Programmable Alarm Example ;;;;; : ;" ;,; ... ,,;;, ... ; .. ,.,., ,.

Programmable Alarms with Help ; , , : ... : :::::>

0.3. Colored Panel Items 26

Color Panel Example .. ;..................... 26

- iii-

Contents - Continued

D.4. 24 Bit Color ... 28

Additional Documentation .. 28

Plane Groups ... 29

Colonnaps: Index Color vs. True Color Frame Buffers 29

D.S. Double Buffering .. 30

CANVAS _ COLOR2 4 Attribute and Compatibility....................................... 30

8-Bit Color Mode .. 31

Summary of 24 Bit Color Usage .. 31

Memory Pixrects ... 32

Transparent Overlay .. 33

Cursor .. 34

Command Line Options .. 34

D.6. Keyboard Support .. 35

Limits to Assigning Keys ... 37

D.7. Programming Hints ... 37

Memory Leaks From Button Images ... 37

Counting File Descriptors .. 38

File Descriptor Leakage .. 38

Null Pointers .. 38

pixwin and pixrect .. 38

Limitations of icon _load _ mpr () ... 39

Hardware for Multiple Desktops .. 39

ws_set_favor Default Value Changed To O. 39

TEXTSW_WRAPAROUND_SIZE attribute ... , 39

notify_flushyending ... 39

Interposing Scroll Handlers .. 39

Additional auto_sigbits .. 39

FBIONREAD .. 40

FRAME_SHADOW and FRAME_SHOW _SHADOW
incorrectly documented ... 40

not all pixwin functions are documented .. 40

SCROLL_NORMALIZE attribute ... 40

Subframes Cannot Be Iconified .. 41

-iv-

Contents - Continued

FRAME_INHERIT_COLOR behavior .. 41

Destroying A Window Without Returning To The Notifier 42

Using window_create without Error Message 42

.sunview and Environment Variable Expansion ... 42

Tools Off Sreen .. 43

pw_putattributes ... 43

Filename Completion .. 44

Sticky Secondary Selections 44

Summary of SunView 1.80 Bug Fixes ... 44

Keyword Summary of Fixed Bugs ... 48

Index ... 55

-v-

Figures

Figure D-1 Disabled Sun View Flags ... 34

-vii-

Tables

Table D-1 Enable/Overlay Planes for CG4 and CG81CG9 29

Table D-2 rop Operations (Limitations) .. 31

Table D-3 Color Attribute Usage Summary ... 32

Table D-4 Sun View Overlay Colors .. 34

Table D-5 Sunview 1.80 Fixed Bugs .. 44

Table D-6 Keyword Index to Fixed Bugs ... 49

-ix-

D.I. SunView Help
Mechanism

D
SunView 1.80 Update

The major features of SunView 1.80 are described in detail here:

o an online help mechanism, allowing application developers to provide Spot
Help for their users,

o programmable alarms for dramatically notifying users,

o keyboard support

type 4 keyboard

upgraded description of the . textswrc file

o enhanced color capabilities

colored panel items,

support for 24-bit true color,

o changes to the defaults database

o several user changes,

o various bug fixes.

Not described in this Update are changes to the Defaults Editor database or new
user features, which are contained in the SunView User's Guide.

Note that there is not a separate update document for the Sun View System
Programmer's Guide, the information for which appears here.

The new release of Sun View offers two related mechanisms for providing online
help to users:

o Spot Help, a cursor-position sensitive facility to display one 32 x 80 charac
ter panel of online help,

o More Help, to provide additional information when the one panel of Spot
help is not enough .

• \sun
• microsvstAms

Revision A of March 27, 1990

2 Sun View 1.80 Update

Basics of Spot Help in
Sun View 1.80

Help Keys

Limitations of Spot Help

The Help Directory

Help Text: A Simple Example

To get help, the user places the pointer over the object (panel, button, etc) of
inquiry and then strikes the ~ key. Whatever infonnation is available is
then displayed.

On a Type3 keyboard, the Help Key is (Meta-f) , obtained by pressing the (Meta]
key and the m key at the same time. There are two Meta keys, which are
immediately to the left and right of the long space bar on the bottom center of the
keyboard.

On a type 4 keyboard, the (Meta-/) combination works, and there is an explicit
~keyalso.

o The (Meta I keys are in the same place as on the Type 3 keyboard, beside the
space bar, marked with a diamond, +.

o ~ is the double-width key located at the bottom of the left hand block of
function keys (the ones labeled CS!Qjl) , I Agam] ,etc).

There are two limitations to the use of Spot Help on SunView 1.80:

o At this time, only the mechanism for Spot Help is provided; no actual Help
Text is provided. Available resources do not allow the development of Help
Text for Sun View itself, but the mechanism is being made available to
developers who want to provide cursor-position sensitive help in their appli
cations.

o Also note that Spot Help supports a single window of text, 32 lines by about
80 characters (longer lines are not supported at this time). To obtain longer
messages, you must use the More Help feature. This is a user implemented
feature called by the More button on the help window. See More Help,
below.

A new category of defaults, Help, has been added to Defa ul t Editor to
support Spot Help. Inside this category, the default Help/Directory is used
to identify the directory where Help Text for an application resides. By default,
this directory is /usr / lib/help, but it can be changed to any directory.

The following simple experiment will show you how to add Help Text for a Sun
View text subwindow. This experiment is intended only as a quick way to see
the action of Spot Help.

Bring up a tool that uses a text subwindow (textedit, or mailtool, for
example). Place the cursor in the subwindow and press~. You should see a
message saying:

(No help is available for textsw:textsw.

To remedy this, create a file named textsw. info in the /usr/ lib/help
directory. (You can create the file anywhere else if you remember to change the
Defaults Editor Help/Directory entry to point to it.) Put in the key
: textsw and the Help Text you want. For example:

]

Revision A of March 27,1990

Spot Help Program Interface

Appendix D - Sun View 1.80 Update 3

:textsw:
1. This is a text subwindow
line 2
line 3

4. line 4

Now bring up a new tool containing a text subwindow, again position the cursor
in the window, and press ~.

This time you should see the text you entered in the file.

You can do this for any feature in Sun View: put the cursor over the item and
press ~ to see the message:

No help is available for package:feature .

In the example, the filename and the key were both textsw. In general, of
course, this is not the case.

Create (or append to) a file named package. info an entry following the key
word .feature.

The . info file has the following fonnat:

comments
:keyword] [keyword2 [keyword3]] [:more _help _key
message text

You can include comment lines in your. info files by preceding them with the
number sign. Use an initial colon to denote a line containing a keyword or key
words. If several keywords pertain to the same help message, place them on the
same line, with spaces separating them. The message text supplied appears in the
Spot Help window whenever this. info file and keyword], keyword2, or key
word3 are values for the HELP DATA attribute.

Several examples of . info files are shown below, following the discussion of
the Spot Help mechanism.

This section explains how to create Spot Help messages for text subwindow,
panel, canvas, alert, tty, and menu window objects, as well as for individual
menu, scroll bar, and panel items. It assumes you are familiar with Sun View pro
gramming concepts; for more infonnation, consult the Sun View Programmer's
Guide

The two basic steps to include Spot Help for a window object are:

1. Add the HELP_DATA attribute to the object or to an item within the object.
You can add this attribute like other Sun View attributes, such as through a
null-terminated attribute list

2. Write the help file in the format specified above.

Revision A of March 27,1990

4 SunView 1.80 Update

Providing More Specific Spot
Help

HELP DATA for Active and
Disabled Objects

When a user presses the key, the HELP_DATA attribute is retrieved from the
current window or item. The text specified by the HELP _DATA value is then
displayed in the Spot Help window.

The value for the HELP _DATA attribute must be a two-part string, enclosed in
quotation marks, in the fonnat:

("ftle.-keyword" J

file is the name of the text file containing the help description. file must be
located in the default help directory and must end with the suffix. info (such as
myapplication. info). Although all Spot Help files must end with the
. info extension, include only the base of the file name, not the extension, as
the value of the HELP _DATA attribute. The Help mechanism automatically
appends" the . info extension to the file name that you supply, and then looks
in the default help directory (/usr / lib/help initially) for that file.

keyword is a word within the . info file that is associated with the specific
help text that will appear when help is requested. Each. info file can contain
multiple keywords, but no two keywords can be alike within the same. info
file.

For example, a HELP _DATA attribute could be

(HELP_DATA, "accounting:w4"

When help is requested on this object, the Help facility:

1. Finds the accounting. info file.

2. Locates the keyword w4.

3. Displays the text associated with that keyword in a Spot Help window.

The . info File Fonnat section contains more details about the structure and
placement of . info file text. The next section describes how you can use the
HELP _DATA attribute to make your Spot Help messages more helpful for users.

J

You can change the HELP _DATA attribute of various window objects to suit par
ticular circumstances, for instance if a menu item is active or disabled, or a frame
is open or iconic. If you do, you can provide users with more context-sensitive
Spot Help, as described in this section.

For example, you might give all disabled objects (such as greyed-out menu
items) a new HELP DATA attribute where you disable them in the code, and
again where you activate them, as described below:

sun
microsystems

Revision A of March 27, 1990

Appendix D - Sun View 1.80 Update 5

/* this menu item invokes a save function */
Menu item

/* here the save function becomes disabled */
menu_set <mi_save, MENU_INACTIVE, TRUE,

HELP_DATA, "myapp:mi_save_disabled" ,
0) ;

/* and here it becomes active */
menu_set <mi_save, MENU_INACTIVE, FALSE,

HELP_DATA, "myapp:mi_save" ,
0) ;

A corresponding Spot Help message for the "save" function above could be:

Save menu item
Stores the current version of the file you have loaded.

The Spot Help message when the save function is disabled could be:

Save menu item [DISABLED]
Stores the current version of the file you have loaded.
This item is disabled because you have not loaded a file.

The myapp. info file to display the above messages would look like

:mi save
Save menu item
Stores the current version of the file you have loaded.
:mi save disabled - -
Save menu item [DISABLED]
Stores the current version of the file you have loaded.
This item is disabled because you have not loaded a file.

Alternatively, a single message might be used to cover Spot Help forhoth situa
tions. This is achieved by a multiple-key entry in the myapp. info file, such
as:

:mi save mi save disabled - --
Save menu item
Stores the current version of the file you have loaded.
This item is disabled if you have not loaded a file.

Revision A of March 27, 1990

6 Sun View 1.80 Update

You also could include HELP _DATA attributes for frames that are open and
those that are icons (closed). The following sample program creates a base frame
and then interposes an event function in front of the frame's nonnal event
handler. This makes the program aware of when the frame opens or closes, as
well as when the program should change the frame's HELP DATA attribute.

tinclude <suntool/sunview.h>
tinclude <suntool/help.h>
tinclude <stdio.h>
main (argc, argv)

int argc;
char **argv;

Frame frame;
Notify_value sample_interpose();

/* create frame using command-line arguments */
frame = window_create (0, FRAME, FRAME_ARGS,

argc, argv, 0);
/* set HELP_DATA depending on whether frame is

open or iconic */
if «int)window_get(frame, FRAME_CLOSED»

window_set (frame,

HELP_DATA, "progname:frameJconic" ,
0) ;

} else {
window_set (frame,

HELP_DATA, "progname:frame" ,
0) ;

}

/* interpose in order to spot future open/close events */
(void)notify_interpose_event_func(frame,

sample_interpose, NOTIFY_SAFE);
window_main_loop(frame);

static Notify_value
sample_interpose(frame, event, arg, type)

Frame frame;
Event *event;
Notify_arg arg;
Notify_event_type type;

int initial_state, current_state;
Notify_value value;

/* get frame's state */
initial_state = (int)window_get(frame,FRAME_CLOSED);

/* handle the event */
value = notify_next_event_func(frame, event,arg, type);

/* if frame's state has changed, change HELP_DATA */
current_state (int)window_get(frame,FRAME_CLOSED);

sun
microsystems

Revision A of March 27. 1990

Spot Help Example

The beginning of the main loop
includes some header files and
defines some storage and some
SunViewobjects.

Appendix D - Sun View 1.80 Update 7

if (initial_state != current_state) {
if (current_state) { window_set (frame,

HELP _DATA," progname:frame Jeonie" ,
0) ;

} else { window_set (frame,

HELP_DATA, "progname:frame" ,
0) ;

return(value)i

The following program puts up a Sun View window with several panel items and
buttons and Spot Help for them.

/* client.c
* Constructs a simple panel, showing use of
* HELP DATA attributes.
*/

#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/help.h>

main (argc, argv)
int argci
char **argvi

Frame
Panel

frame;
panel;

+2.t!! Revision A of March 27, 1990

8 Sun View 1.80 Update

Note the use of the HELP DATA
attribute here. This is where the
link to the Help Text in the file is
actually made.

frame = window_create (NULL, FRAME,
FRAME_LABEL, argv[O],
FRAME_ARGS, argc, argv,

"HELP_DATA, "client:rrame" ,
0) ;

panel = window_create (frame, PANEL,
WIN_WIDTH, 200,
WIN_HEIGHT, 200,

"HELP_DATA, "client:panel",
0) ;

panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Year:",
PANEL_VALUE, "1988",

HELP_DATA, "client:year" ,
0) ;

panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Maker:",
PANEL_VALUE, "Ford",

HELP _ D A T A, "client:maker" ,
0) ;

panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Model:",
PANEL_VALUE, "Escort",

HELP_DATA, "client:model" ,
0) ;

Revision A of March 27. 1990

Note also that there are no callback
procedures defined for the buttons.
In a more real-life example, of
course they would be used.

Appendix D - SWl View 1.80 Update 9

panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_lMAGE,
panel_butt on_image (panel, "Find", 0, 0),

HELP_DATA, "client:find _button" ,
PANEL_ITEM_X, 40,
PANEL_ITEM_Y, 160,
0) ;

panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_lMAGE,
panel_button_image(panel, "Done", 0, 0),

HELP_DATA,
PANEL_ITEM_X, 110,
PANEL_ITEM_V, 160,
0);

window _ fit(frame);
window_main Joop(frame);
}

The following is the client. info file containing the Help Text for the
client "application". The point is to notice how the keys in this file are del
imited (:) and how they connect the text in this file to the objects in client. c
marked with the HELP DATA attribute.

Most of the keys in this example also have a second colon (:) and a second
string associated with them. This string is used to invoke More Help, the second
feature of the SunView 1.80 help mechanism.

Note the : find_button keyword. It has no text, but does have a second
colon and string following it. This is a shortcut to More Help.

Revision A of March 27, 1990

10 Sun View 1.80 Update

You have to include the blank lines
if you want spacing in the Spot Help
message.

Here is a key with no Help Text, but
instead a More Help string.

: frame
:More _About_the _Frame

Sample Help Client

This is the client's frame.

: panel
:More _About_the _Panel

Sample Help Client

This is the client's panel.

:year:
More _ About_the _Year_Field

Sample Help Client

This is the client's 'Year' field.

:maker:

Sample Help Client

This is the client's 'Maker' field.
(Notice that 'More Help' is not provided
for this item.)

: model
:More _ About_the _Model_Field

Sample Help Client

This is the client's 'Model' field.

:find_button:** Direct help on Find button. **
:done button
:More _About_the _Done_Button

Sample Help Client

This is the client's 'Done' button.

:end of file

Revision A of March 27, 1990

More Help

Appendix D - Sun View 1.80 Update 11

More Help is used when a single panel (32 lines x 80 characters) of Help Text
does not suffice. It also allows you to provide a hypertext help facility, if you
choose to write it.

When More Help is provided, the Spot Help panel comes up with a button saying
"More Help". The user who wants more help clicks the mouse over this button,
and SunView either finds or tries to start a More Help server. Specifically, Sun
View tries to establish an RPC socket link to the More Help server and to pass to
it the More Help string found after the second colon in the . info file.

A general More Help server is not provided with Sun View 1.80. Programmers
needing to include More Help in their application(s) must write their own.

An example is given below that shows how to hook up a More Help server to the
Sun View mechanism.

Once the selVer is written,

1. the server executable must be placed in a directory where it can be found in
the user's search path, and

2. the server's name must be registered in the / He 1 p / S e rver default in the
Defaults Editor database.

This allows Sun View to find and start the server when a user asks for More Help
and the server is not running.

When SunView starts the server, it uses the equivalent of a command like:

(
where

o server _default_name is the name of the server, and

o More _Help _string is the More Help infonnation. Sun View would have sent
this string to the server via RPC but could not because the server was not
running. So Sun View starts the server and sends the string as a command
line argument.

)

As an example, assume the user is running the client program discussed in the
previous section, with the Help file client. info. Also assume a More Help
server named my_server.

(~ ____ m_y ___ se_rv __ er ___ M_o_~_e __ A __ b_ou_t ___ th_e ___ p_an_e_1 ________________________ --J)
This command line would be produced in the following way:

1. The user requests Spot Help on the panel.

2. SunView looks in the . info file, finds the following entry, which has a
More Help string:

n:panel:More_About the Panel"

Revision A of March 27,1990

12 SWlView 1.80 Update

More Help Functions

help rpc register for a More
Help function

3. So, a More Help button is displayed in the Spot Help panel.

4. The user clicks over the More Help button.

5. SunView tries to send the More Help string More_About_the_Panel to
the More Help server (my_server).

6. The server is not running, so Sun View starts it with the command line
shown.

You can pass command line arguments to the server by making them part of the
server _default_name. For example, having as the /Help/ Server default

(my_server -flagl

would invoke my_server with flagl as a command line argument, adding
the appropriate More Help string found in the . info file when the user
requested More Help. In this case, a user wanting More Help about the panel,
might result in the More Help server being started with a command line like:

]

(~ ____ m_y ____ s_e_r_v_e_r ____ -_f __ l_a_g_l ____ M_o_r_e ___ Ab __ o_u_t __ t_h_e __ p __ a_n_e_l __________ J

Once the server is running, it will display More Help for all SunView applica
tions on demand.

Three Sun View functions support More Help. The first is:

int
help_rpc_register(

more_help June
)

void (*
more_help June
) () ;

This registers your server with the help system and causes more_help June to be
called whenever a help request is generated by the help system. more _help June
should be of the form:

void

more_help June
(request_string)

char *
request_string

where request _string is a null tenninated character string. The character variable
request _string will contain the value more_help _string that was found with the

Revision A of March 27, 1990

help set more func registers
the function that gives help on More
Help

help rpc unregister
deregTstersthe help function

More Help Example

Use of the More Help string is a
decision for the application writer.

Appendix D - Sun View 1.80 Update 13

Spot Help key . in f 0 file:

:spot_help_key:
more_help _string

text

text

This function intetprets more_help_string according to the needs of the applica
tion. It could use the string as a key for lookup in a file, along the lines of Spot
Help. Or the string could be intetpreted as both a filename and a key. Or, the
string could be used as a record ID in a database query.

The second Sun View More Help function is:

void
help_set_more_func <help_on_helpJunc}

where help _on_help June is a function similar to the one registered with
help _ rpc _ regi ster () , above. It is called when the user asks for help on
the More Help server itself. In the simplest case, the function that handles Spot
Help requests on the more Help server can be the same one that was registered
with help_rpc_register ().

The last support function unregisters the More Help server. It is good practice to
use this call when the More Help server completes, to release any RPC sockets it
used.

[~ ____ h_e_l_p ___ r_p_c ___ u_n_r_e_g_i_s_t_e_r_~_u_n_c_}_; ____________________________ ~]
This function should be called before exiting.

The following program shows how to connect a More Help server to the Spot
Help mechanism via RPC. When this is done properly, the program will receive
the More_Help_string from the . info file.

What this program does with the More Help string is not particularly exciting; it
simply makes a panel and displays the string. In more real-life situations, the
string might be used as a keyword into a file, or as a filename-keyword pair, or it
might be a record ID for a database query.

Revision A of March 27, 1990

14 Sun View 1.80 Update

Note the use of the function calls.

The help routine registered above,
is defined here. It simply creates a
panel and displays the More Help
string.

Help on the More Help Server

/* server.c */
*include <stdio.h>
*include <suntool/sunview.h>
*include <suntool/panel.h>
*include <suntool/help.h>
Panel item What_I_Got;
main (argc, argv)

int argc;
char **argv;

Frame frame;
Panel panel;
void server_rpc_in();
void server_local_req();
frame window_create (NULL, FRAME,

FRAME_LABEL, argv[O),
FRAME_ARGS, argc, argv,
0) ;

panel window_create (frame, PANEL,
WIN_WIDTH, 400,
WIN_HEIGHT, 100,
0) ;

What_I_Got = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "What I Got Was: ",
PANEL_VALUE,
0) ;

window_fit(frame);

"" ,

"help_rpc_register(server _rpc_ in)";
window_main_loop(frame);

"help _rpc _ unregister(server _rpc In)'';

/* RPC handler */
static void
server _rpc In(request _string)

char *request_string;

panel_set (What_I_Got, PANEL_VALUE, request_string, 0);
return;

The following code extends the previous example by showing how to provide
Spot Help on a More Help server itself. This is done by adding:

o HELP_DATA values for the items needing Spot Help,

o defining a function to handle Spot Help,

Revision A of March 27,1990

Note the addition of HELP DATA;
the Help Text is in a file named
server. info.

Use help set more func to
define the functIOn to handle Spot
Help requests on this More Help
program.

Appendix D - SunView 1.80 Update 15

o registering the function with help_set_IDore_func O.

Notice that in this case the Spot Help function simply turns around and calls the
same user function that displays More Help.

/* server.c */
#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/help.h>
Panel_item What_I_Got;
main (argc, argv)

int argc;
char **argv;

Frame frame;
Panel panel;
void server_rpc_in();
void server_local_req();
frame window_create (NULL, FRAME,

FRAME_LABEL, argv[O],
FRAME_ARGS, argc, argv,

HELP_DATA, "server:frame" ,
0) ;

panel = window_create (frame, PANEL,
WIN_WIDTH, 400,
WIN_HEIGHT, 100,

HELP_DATA, "server:panel" ,
0) ;

What_I_Got = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "What_I_Got_Was: ",
PANEL_VALUE, "",

HELP_DATA, "server:What_I_Got" ,
0) ;

window_fit (frame);
help_rpc_register(server_rpc_in);

window_main_loop(frame);
help_rpc_unregister(server_rpc_in);

Revision A of March 27, 1990

16 Sun View 1.80 Update

The help routines registered above,
are defined here.

D.2. Programmable
Alarms

CAUTION

Shell Command Interface

Don't forget the : (colon) charac
ters if you try to enter the setting by
hand. You need them at the begin
ning, end, and in the middle.

/* RPC handler */
static void
server_rpc_in(request_string)

char * request_string;

panel_set (What_I_Got, PANEL_VALUE, request_string, 0);
return;

/* required when user asks for help on server itself */
static void
server _Iocat request(window, request_string, event)

Window window;
char * request_string;
Event *event;

server_rpc_in(request_string);
return;

SunView 1.80 provides programmable alanns, which "beep" and "flash" at the
user in a way that is settable from either a C program or from shell commands.

Sun View must be installed and be running for the alarms to occur, even
though you can manipulate the environment variable without Sun View.

A beep is the sounding of the bell on the user's keyboard. A flash is a color
reversal in a window; the window frame is repainted with the colors reversed,
and then painted again nonnally.

o The number of beeps and the number of flashes can be independently set.

o There is one setting, however, for the duration of both beeps and flashes, and
that setting is also the interval between successive beeps/flashes.

Note that the defaultsedit (1) values for SunView/AudibleBell
and SunView /VisibleBell will determine whether beeps and flashes,
respectively, occur at all. When an aspect of the alann is disabled by the indi
cated default, that aspect will not occur, no matter what the setting of the alarm.

SunOS 4.1 provides shell commands to set and get the characteristics of the
alarm, and to ring it. These commands rely on an environment variable:

Revision A of March 27, 1990

Program Interface

Appendix D - S\D1 View 1.80 Update 17

The setting of this variable can be performed either directly, or through the com
mand:

set_alarm: [-b b -f f -d t]

where the option arguments correspond to the fields in the environment variable.

There is a counterpart command that returns the setting, in the form shown
above:

And there is a command to actually ring the alarm:

This command gets the attributes from WINDOW_ALARM and rings the alarm
with these attributes. The alann's behavior is controlled by the SunView
defaultsedit (1) entries SunView/Audible_Bell and
SunView/visible_Bell, so the sound and flash can be disabled by the user,
regardless of WINDOW_ALARM.

set_alarm parses its arguments, encodes them into a termcap (3X) -like
string, and gives to standard output commands to set the environment. The out
put depends on the value of the SHE LL environment variable.

#For the C shell:
set noglob;
setenv WINDOW ALARM 'string';
unset noglob;

#For the Bourne shell:
export WINDOW_ALARM;
WINDOW_ALARM='string';

As a result of the above, the set_alarm command must be used in a different
manner than other commands (analogous to tset (1)). For the Bourne shell
and C shells, use this command to place the result of the call to set alarm
into the environment for future reference by the library:

eval 'set_alarm [options ...]'

With the C-Shell, it may be convenient to make an alias of the form:

alias alarm 'eval 'set alarm !*"

The interface to Sun View programmable alarms consists of two calls using the
WIN_ALARM attribute with the appropriate data structure.

Revision A of March 27, 1990

18 Sun View 1.80 Update

Data Structure

Function Calls

Shown below is the definition of a simple structure type, Wi n _ a 1 arm (which is
in window. h).

typedef struet alarmval {
int beep_num;
int flash_num;
struet timeval beep_duration;

} Win_alarm;

The values of the structure entries are:

o beep _ num is how many times to beep,

o f lash_ nurn is how many times, to flash.

o beep_duration is how long each individual beep/flash lasts. This is also
the elapsed interval between each successive beep and/or flash.

The following call parses the environment variable WINDOW ALARM and returns
a pointer to the Win_alarm structure.

alarm = (Win_alarm *) window_get(window, WIN_ALARM);

If WINDOW_ALARM is not set, it returns in the Win alarm structure the default
values of:

beep_num = 1;
flash_num = 1;
beep_duration. tv_sec = 1;
beep_duration. tv_usee = 0;

If any of the fields in WINDOW_ALARM has an illegal value, window_get
returns the default value for that field in Win alarm.

If the duration number is not set and either beep or flash is greater than zero, then
a default duration of 1 second will be returned in the structure.

The following beeps the keyboard bell and flashes the window frame.

window_set (window,WIN_ALARM,&alarm, 0)

If & a larm is NULL, then Sun View looks at the environment variable
WINDOW_ALARM and uses those values to ring the alarm. Again, if the
WINDOW_ALARM environment variable is not set, Sun View will use the default
values.

Thus, window_set (window, WIN_ALARM, 0, 0) is essentially ringing
the alarm with the values from the environment variable; it can beep, flash or
both.

The alarm's behavior is controlled by the SunView defaul ts _ edi t (1)

entries SunView/Audible_Bell and SunView/Visible_Bell, so the

Revision A of March 27. 1990

Programmable Alarm
Example

This section defines the default
attributes of the alarm, includes the
relevant • h files, and defines
several data structures.

This begins the main loop, which
will create a frame and a panel, and
define several panel text items.

Define the panel text item that
accepts user input for how many
beeps.

Define the panel text item that

Appendix D - Sun View 1.80 Update 19

sound and flash can be disabled by the user, regardless of what the call to
win_alarm specifies.

The following example brings up a Sun View window with three text items and a
button. The text items allow you to specify the characteristics of an alarm, and
the button allows you to activate it.

:fI:include <suntool/sunview.h>
:fI:include <suntool/panel.h>
:fI:define BEEP ITEM ° -
:fI:define FLASHES ITEM 1 -
:fI:define DURATION ITEM 2
:fI:define NUMBER OF ITEMS 3

void ring_the_alarm();

frame; Frame
Panel
Panel item
win alarm
Pixrect *

panel;
panel_items[NUMBER_OF_ITEMS];
example_alarm;
rr_button_image;

int
main ()
{

frame = (Frame) window_create ((Frame) NULL, FRAME,
FRAME_LABEL, "Programmable Alarms Example",

°) ;
if (frame == (Frame) NULL) {

fprintf(stderr, "SunView not available\n");
exit(l);

panel = (Panel) window_create (frame, PANEL,

°) ;

panel_items [BEEP_ITEM] =
(Panel_item) panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "beeps per alarm :",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE_STORED_LENGTH, 10,
PANEL_ITEM_X, 10,
PANEL_ITEM_Y, 10,

°) ;
/* check for null pointer */

Revision A of March 27, 1990

20 Sun View 1.80 Update

accepts user input for how many
flashes.

Define the panel item to accept user
input for duration.

Define the button to actually ring the
alarm. Notice the callback pro
cedure, ring the alarm, is
registered here. -

This is the end of the main loop: fit
everything into the frame, and put it
on the screen.

panel_items [FLASHES_ITEM] =

(Panel_item) panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "flashes per alarm:",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE_STORED_LENGTH, 10,
PANEL_I TEM_X , 10,
PANEL_I TEM_Y , 35,

°) ;
/* check for null pointer */

panel_items [DURATION_ITEM] =
(Panel_item) panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "duration (sec/10) :",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE_STORED_LENGTH, 10,
PANEL_I TEM_X , 10,
PANEL_I TEM_Y , 60,

°) ;
/* check for null pointer */

rr_button_image = (Pixrect *) panel_button_image(panel,
"Rock and Roll",
0,

°) ;
PANEL_BUTTON,

60,
85,

panel_create_item (panel,
PANEL_I TEM_X ,
PANEL_ITEM_Y,
PANEL_NOTIFY_PROC,
PANE L_LABE L_I MAGE ,

ring_the _alarm,
rr_button_image,

°);

window_fit(panel);
window_fit(frame);
window_main_loop(frame);
exit(O);

Revision A of March 27. 1990

This is the callback from the button.
It stores values from the user (if
any) into the alarm data structure,
and rings the alarm.

Notice the window set call. This
is where the alarm is actually rung.

Programmable Alarms with
Help

We also define a macro to use in
entering HELP_DATA.

Appendix 0 - Sun View 1.80 Update 21

void
ring_the_alarm()
{

example_alarm.beep_num =
(int) atoi (
panel_get(panel_items[BEEP_ITEM], PANEL_VALUE»;

example_alarm.flash_num =
(int) atoi (
panel_get(panel_items[FLASHES_ITEM], PANEL_VALUE»;

duration in tenths =
(int) atoi (
panel_get(panel_items[DURATION_ITEM], PANEL_VALUE»;

example_alarm. beep_duration. tv_usee
= (duration_in_tenths % 10) * 100000;

example_alarm. beep_duration. tv_sec
= (duration_in_tenths / 10);

window_set(frame, WIN_ALARM, & example_alarm, 0);
}

Finally, consider the following code, which adds Spot Help to the programmable
alanns example above.

#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntooVhelp.h>
#define BEEP ITEM 0
idefine
idefine
idefine

#define
void

Frame
Panel
Panel item
Win alarm
Pixrect *

FLASHES ITEM
DURATION ITEM
NUMBER OF ITEMS

1
2
3

P_ALARM_HELP(x) HELP_DATA, "p_alarms:x"
ring_the_alarm();

frame;
panel;
panel_items[NUMBER_OF_ITEMS];
example_alarm;
rr_button_image;

This example uses a macro, P_ALARM_HELP to specify the HELP DATA that
Spot Help will use.

Revision A of March 27, 1990

22 Sun View 1.80 Update

In the main loop we use the
P ALARM HELP macro to indicate
that we want to add help for the
frame and the panel.

This directs Spot Help to the entries
: frame and : panel in the
p_alarms. info file.

Here we add help for each panel
text item the user can enter, as well
as the button.

The use of the macro is the same
as in the previous figure.

Note the p_alarms field in the macro; this directs Spot Help to look in a file
named p_alarms. info in the help directory defined in the defaults database
by Defaults Editor.

The other field in the macro, x, is a variable that is replaced with the key that
Spot Help used to find the actual text in the file.

int
main ()
{

frame = (Frame) window_create(NULL, FRAME,
FRAME_LABEL, "Programmable Alarms Example",
P _ALARM_HELP(trame),
o) ;

if (frame == (Frame) NULL) {
fprintf(stderr, "SunView not available\n");
exit(l);

panel (Panel) window_create (frame, PANEL,
P _ ALARM_ HELP(panel),
o) ;

/* check for null pointer */

panel_items [BEEP_ITEM] (Panel_item) panel_create_item(
panel, PANEL_TEXT,
PANE L_LABEL_STRING, "beeps per alarm :",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANE L_VALUE_STORED_LENGTH, 10,
PANEL_ITEM_X, 10,
PANEL_ITEM_Y, 10,
P _ALARM_ HELP(beeps),
o) ;

/* check for null pointer */
panel_items [FLASHES_ITEM]

(Panel_item) panel_create_item(
panel, PANEL_TEXT,
PANEL_LABEL_STRING, "flashes per alarm:",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE_STORED_LENGTH, 10,
PANEL_ITEM_X, 10,
PANEL_ITEM_Y, 35,
P _ ALARM_ HELP(Oashes),
o) ;

/* check for null pointer */

Revision A of March 27, 1990

More panel items

Appendix D - Sun View 1.80 Update 23

panel_items [DURATION_ITEM] =
(Panel_item) panel_create_item(
panel, PANEL_TEXT,
PANEL_LABEL_STRING, "duration (sec/10) :",
PANEL VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE_STORED_LENGTH, 10,
PANEL_ITEM_X, 10,
PANEL_ITEM_Y, 60,
P _ALARM _ HELP(duration),
o) ;

/* check for null pointer */

rr_button_image (Pixrect *) panel_button_image(panel,
"Rock and Roll",
0,
o) ;

panel_create_item
(panel, PANEL_BUTTON,
PANEL_ITEM_X, 60,
PANEL_ITEM_Y, 85,
PANEL_NOTIFY_PROC, ring_the_alarm,
PANEL_LABEL_IMAGE, rr_button_image,
P _ALARM _ HELP(rock _and _roll_button),
o);

Revision A of March 27, 1990

24 Sun View 1.80 Update

Nothing needs to be added to the
end of the main loop or to the call
back.

window_fit(panel);
window_fit(frame);
window_main_loop(frame);
exit(O);

void
ring_the_alarm()
{

int duration in_tenths;
example_alarm.beep_num = (int) atoi(

panel_get(panel_items[BEEP_ITEM], PANEL_VALUE»;

example alarm.flash num = (int) atoi(
panel_get(panel_items[FLASHES_ITEM], PANEL_VALUE»;

duration_in_tenths = (int) atoi(
panel_get(panel_items[DURATION_ITEM], PANEL_VALUE»;

example_alarm.beep_duration.tv_usec
= (duration_in_tenths % 10) * 100000;

example_alarm.beep_duration.tv_sec
= (duration_in_tenths / 10);

window_set(frame, WIN_ALARM, & example_alarm, 0);

Now, let's look at the file containing the Spot Help text.

Revision A of March 27, 1990

the frame,

the panel,

the beeps panel text item,

Next, we have the flashes panel text
item,

the duration panel text ~em,

the rock & roll button,

and the end of the file.

Appendix D - SWl View 1.80 Update 25

: frame
Help for Programmable Alarms: frame

:panel
Help for Programmable Alarms panel

This program illustrates the use of programmable alarms,
new with SunOS 4.1. They allow SunView programmers
to set the number of bells per alarm, the duration of the
bell, and whether each bell is audible, visible, or both.

This tool contains three text items to set the
parameters of the alarm, and a button that rings it.

: beeps
Help for Programmable Alarms: beeps

Enter an integer into this text item to control
how many times the alarm beeps. If you don't
hear a beep, use the default editor to make
sure that the audible bell is enabled.

: flashes
Help for Programmable Alarms: flashes

Enter an integer into this text item to control
how many times the alarm flashes. If you don't
see a flash, use the default editor to make
sure that the visible bell is enabled.

: duration
Help for Programmable Alarms: duration

This text item controls the duration of each
flash/beep of the alarm. The units are tenths
of a second. Enter an integer! Non-zero!

:rock and roll button - - -
Help for Programmable Alarms: rock_and_roll button

Hit this button to see and hear what your settings
do to the beeps, flashes, and duration.

:end of file

Revision A of March 27,1990

26 Sun View 1.80 Update

D.3. Colored Panel Items

Color Panel Example

Include the colormap header file.

The main loop.

ems rainbowset up () is a macro
defined in ems rainbow. h.

Set and name the colormap.

SunView 1.80 offers the PANEL_llEM_COLOR attribute to support colored panel
items. Its use is simple:

The color should be given as an index into a colormap, such as is found in
sunwindow/cms_rainbow.h.

In this example, a frame and panel are created with a variety of colored panel
items.

*include <stdio.h>
*include <suntool/sunview.h>
*include <suntool/panel.h>
#include <sunwindow/ems _rainbow .h>

Frame
Panel
Panel item
Panel item
Panel item
Pixwin
u char
Pixrect *

main ()
{

frame;
panel;
orange_button, red_choice, indigo_toggle;
indigo_toggle, green_message;
green_message, blue_text, violet_slider;
*pw;
red[8], blue[8], green[8];

button_image;

frame (Frame) window_create (NULL, FRAME, 0);
if (frame == (Frame) NULL) {

fprintf(stderr, nSunView not available\nn);
exit(l);

panel = (Panel) window_create (frame, PANEL, 0);
/* check for null pointer */

ems _rainbowsetup(red,green,blue);
pw = (Pixwin *) window_get(panel,WIN_PIXWIN);

pw_setcmsname(pw,"colorpanel n);

pw_putcolormap(pw,0,8,red,green,blue);

]

Revision A of March 27, 1990

Now add an orange button panel
item,

a multiple choice in red,

display a message in green,

some blue panel text,

Appendix D - SunView 1.80 Update 27

button_image = (Pixrect *) panel_butt on_image (
panel, "Orange", 0, 0);

orange_button = (Panel_item) panel_create_item(
panel, PANEL_BUTTON,
PANEL_LABEL IMAGE, button image,
PANEL_ITEM_COLOR, ORANGE,
PANEL_I TEM_Y , ATTR_ROW(3) ,
PANEL_ITEM_X, ATTR_COL(O) ,
0) ;

/* check for null pointer */

red_choice = (Panel_item) panel_create_item(
panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Red Choice",
PANEL_CHOICE_STRINGS, "one", "two", "three", 0,
PANEL_ITEM_COLOR, RED,
PANEL_I TEM_Y , ATTR_ROW(5) ,
PANEL_ITEM_X, ATTR_COL(O) ,
0) ;

/* check for null pointer */

green_message = (Panel_item) panel_create_item(
panel, PANEL_MESSAGE,
PANEL_LABEL STRING, "This is a Green message",
PANEL_ITEM_COLOR, GREEN,
PANEL_I TEM_Y , ATTR_ROW(7) ,
PANEL_I TEM_X , ATTR_COL(O) ,
0) ;

/* check for null pointer */

blue_text = (Panel_item) panel_create_item(
panel, PANEL_TEXT,
PANE L_LABEL_STRING , "Color: ",
PANEL_VALUE, "Blue",
PANEL_ITEM_COLOR, BLUE,
PANEL_ITEM_Y, ATTR_ROW(9) ,
PANEL_I TEM_X , ATTR_COL(O) ,
0) ;

/* check for null pointer */

Revision A of March 27, 1990

28 Sun View 1.80 Update

a toggle in indigo,

and finally, a violet slider.

The end of the program

D.4. 24 Bit Color

Additional Documentation

indigo_toggle = (Panel_item) panel_create_item(
panel, PANEL_TOGGLE,
PANEL_LABEL_STRING, "Indigo Toggle",
PANEL_CHOICE_STRINGS, "one", "two", "three", 0,
PANEL_ITEM_COLOR, INDIGO,
PANEL_I TEM_Y , ATT~ROW(ll),

PANEL_I TEM_X , ATTR_COL(O) ,
0) ;

/* check for null pointer */

violet_slider = (Panel_item) panel_create_item(
panel, PANEL_SLIDER,
PANE L_LABEL_STRING, "Violet Slider",
PANE L_MIN_VALUE, 0,
PANEL_MAX_VALUE, 10,
PANEL_VALUE, 5,
PANEL_ITEM _ COLOR, VIOLET,
PANEL_ITEM_Y, ATTR_ROW(13) ,
PANEL_ITEM_X, ATTR_COL(O) ,
0) ;

/* check for null pointer */

window_rnain_loop(frarne);
exit(O);
}

The CG8 and CG9 frame buffers provide 24-bit true color, supported by the Pix
reet and Sun Viewllibraries. This section describes the CG9 hardware and how
it differs from previous Sun frame buffers. The subsequent sections explain how
these differences are seen by an application programmer, and address compatibil
ity issues with existing applications.

When reading this section, it may be useful to have read, or have available, the
following manuals:

o Pixrect Reference Manual, for a detailed discussion of plane groups,

o SunOS Command Reference Manual, for shelltool and cmdtool,

o SunView 1 Programmer's Guide, for ttysw, textsw, and panels,

o CG9 Release Notes, for more specific information on the hardware.

Revision A of March 27,1990

Plane Groups

Table D-l

Colormaps: Index Color vs.
True Color Frame Buffers

Appendix D - Sun. View 1.80 Update 29

Like the CG4, the CG8 and the CG9 have three plane groups. There is a color
plane group, which for the CG8 and the CG9 is 24-bits per pixel, and there is a
monochrome overlay plane group with an associated overlay-enable plane group.
The overlay is provided for fast monochrome perfonnance of text windows.

The CG8 and the CG9 have an enhanced overlay/overlay-enable implementation
compared to the CG4. A zero in the CG4 overlay-enable causes the 8-bit plane
group value for that pixel to be displayed rather than the overlay I-bit value. The
CG8 and CG9 requires both the overlay-enable and the overlay planes be zero to
show the 24-bit color plane group value. The CG8 and CG9 thereby allow three
overlay colors rather than the two available with the CG4. The two implementa
tions are compared in the following table.

Enable/Overlay Planes for CG4 and CG8/CG9

Overlay Enable
Plane Plane CG4 CGS/CG9

0 0 8-bit color 24-bit color
0 1 color 0 color 1
1 0 8-bit color color 2
1 1 color 1 color 3

Sun color frame buffers display at each pixel a 24-bit color value, defined by 8-
bits (256 shades) of each of red, green, and blue. This yields 16.7 million dif
ferent possible colors (224

). However, previous frame buffers limit the number of
different 24-bit colors that can be shown simultaneously.

The CG4 column of Table A-I refers to 8-bit color, color 0, and color 1. The 8-
bit color value that is stored in the frame buffer's memory is actually an index
into a color lookup table of 256 entries of 24-bit color values. For example, a
pixel value of zero indicates to the frame buffer to display the 24-bit value con
tained at entry zero of the color lookup table. Additionally, the overlay has a two
entry color lookup table associated with it.

The entries color 0 and color 1 in the table refer to 24-bit colors in the overlay
color lookup table. Because different applications may desire a different set of
colors selected from the 16.7 million different colors, methods for colonnap
changing, sharing, and swapping have been required. (See pr_putcolormap
in the Pixrect Reference Manual, and pw_setcmsname and
pw_putcolormap in the SunView Programmer's Guide.)

The CG8 and CG9 are true color framebuffers. Each pixel located in the CG9
frame buffer's memory can hold an entire 24-bit color value. Therefore, index
ing is not necessary and, although the CG9 has a colonnap, it serves a different
purpose. The CG9 colonnap has 256 entries for each of red, green, and blue.
These entries are changed only for gamma-correction of a color monitor.

Because pr_putcolormap and pwyutcolormap are frequently used in
existing software, the semantics of these functions have been left intact and are
ignored by the CG9 with regard to the actual hardware color lookup tables.

Revision A of March 27, 1990

30 Sun View 1.80 Update

D.S. Double Buffering

CANVAS_COLOR24 Attribute
and Compatibility

However, recognizing that application programs might want to change the
hardware color lookup tables, pryutlut and pr_getlut commands have
been created (lut is an abbreviation of look-up table). Likewise, the colormap
commands have had a specific meaning to the overlay plane group and this
meaning is unchanged, although the CG9 has three colors rather than two in its
overlay. pryutlut and pr_getlut provide the new semantics in this case
as well. The CG9 Release Notes, Chapter 2 gives the differences among
pryutcolormap,pr_getcolormap,pryutlut,andpr_getlut.

Another hardware feature of the CG9 is double buffering. (It is the double buf
fered version of the CGS.) Some CG3 and all CGS frame buffers have two
copies of the color frame buffer to allow double buffering. An application can
write to one or both buffers while displaying the other, allowing for smooth ani
mation because the viewer does not see the graphics creation. In the case of the
CG3 and CGS, both frame buffers are 8-bits deep and independently fit the same
8-bit scheme. The CG9 accomplishes double buffering by splitting a 24-bit pixel
into two 12-bit pixels. The application programmer reads and writes to each of
the double buffers as if they were 24-bit, but the CG9 hardware thresholds the
color by storing only the high-order nibble of each of red, green, and blue.

While in double-buffer mode, an application may not read the same value back
from the double buffer that was written to it.

Very little of the SunView API has changed; there is a new attribute:

(CANVAS_COLOR24 , TRUE

This section explains the aspects of programming the CG9 and CGS for the Sun
View application programmer.

A Sun View application canvas defaults to monochrome unless a
pw yutcolormap call is made to create an 8-bit canvas. This model is true
for the CG9 with slight variation. First, a new attribute has been added called
CANVAS_COLOR24, which is set TRUE if the application wants to use true color
32-bit XBGR in the canvas. In this situation, all functions such as pw _ rop and
pw _vector work on 32-bit values in XBGR* fonnat.

J

If the CANVAS_COLOR24 attribute is not set and a pw_putcolormap call is not
made, then the canvas defaults to the monochrome overlay.

In XGBR fonnat, a 32-bit word is divided into four channels of 8 bits each. The X channel (the high-order 8
bits) is currently undefined and reserved for future enhancements. The next channel contains 8 bits for the blue
color component. The other two channels hold corresponding infonnation for the green and red components.
The three components index the red, green, and blue portions of a look-up table, giving RGB components which
combine to produce a particular hue and intensity that is seen on the screen.

Revision A of March 27, 1990

Appendix D - S1D1 View 1.80 Update 31

8-Bit Color Mode If a pw _putcolormap call is made, the canvas is placed in the 24-bit plane
group but uses 8-bit indexed operations. In this situation, all functions such as
pw_ rop and pw _vector work on 8-bit indexed color values but display the
appropriate 24-bit value. There are a few cautions associated with this mode of
operation. One is that the actual depth of the canvas is 32-bits deep so operations
to a memory pixrect have the same limitations as described in Table A-2 below.
The standard rop operations between pixrects of different depths are allowed to
some extent, as summarized in the table below.

Table D-2 rop Operations (Limitations)

Summary of 24 Bit Color Usage

Operation T Allowed?
0 ~ n yes
1 ~ n yes
n ~ n yes
n ~ 1 no

24 ~ 32 no
32 ~ 24 no

The value n can be 1, 8, or 32, but not 24 (bits). Note that 8-to-32 bit and 32-to-8
bit are not supported. To translate pixel colors between 8 and 32, use the formula
shown below. This fonnat uses the 8-bit pixel value (the variable color8) with
the 8-bit colonnap to generate a 24-bit color, which is saved in the integer vari
able color24. This color2 4 variable has its true color stored in XBGR for
mat. The value can then be saved as a 32-bit pixel in the pixrect's
PIXPG_24BIT_COLOR plane group.

int color24;
unsigned char red[256],green[256],blue[256];
color24 = red[color8] +

(green[color8] « 8) + (blue [color8] « 16);

The use of this attribute is summarized below.

Revision A of March 27, 1990

32 Sun View 1.80 Update

Table D-3 Color Attribute Usage Summary

Effect Sun View Attributes
mono window _createO
8-bit indexed emulation window _createO

pw _putcolonnap

or

window_create(CANV AS_COLOR24 , TRUE)
pw _putcolonnap

24-bit window_create(CANV AS_COLOR24 , TRUE)

Memory Pixrects You can create 24-bit memory pixrects, which may be useful for synthesizing
images that are later displayed.

No double buffering in 8-bit indexed
mode.

Avoid duplicate colormap values in
8-bit indexed mode.

It can be more efficient to use a 24-bit memory pixrect first to generate an image,
and then to save that image as a 24-bit rasterfile. When pr _load () is called to
load a 24-bit rasterfile, however, it automatically loads it as a 32-bit pixrect so
that Pixrect operations run more efficiently. When pr _dump () is called, the
converted pixrect is saved in a 32-bit rasterfile.

Another caution is that double buffering uses 24-bit to 12-bit thresholding, which
tends to confuse the 8-bit indexed mode. Thus, double buffering is not supported
in 8-bit indexed mode. Furthennore, because of the differences in hardware
colormaps between 8-bit frame buffers and 24-bit frame buffers, colonnap ani
mation is also not supported.

One final caution associated with 8-bit indexed mode is related to redundant
colormap entries. If the application has multiple index entries with the same 24-
bit color value, then some operations may fail because the wrong index might be
used. This is easily overcome through minor changes to the colormap values.

When writing application programs, make sure that all entries in the colonnap
are unique. This action guarantees that reverse indexing from a true-colored
pixel value back to the index value is correct. If several entries must share the
same color, these entries can vary slightly on the lower bits, which typically does
not result in any visual difference. For example, if four entries must have the
same color of (255,0, 155), do not initialize the colormap like this:

NOT THIS WAY
struct color {unsigned char r, g, hi } cmap[]

255, 0, 155, }
255, 0, 155, }
255, 0, 155, }
255,0,155,}}i

~~ sun Revision A of March 27, 1990
, micr05ystems

Transparent Overlay

Appendix D - SunView 1.80 Update 33

Instead, initialize the colormap as follows:

THIS WAY
struct color {unsigned char r, g, b; } cmap[]

255, 0, 155, }
255, 1, 155, }
255, 0, 156, }
256, 0, 155,}};

A new feature associated with the CG9 is the ability to switch to the overlay
plane or the overlay-enable plane from a color canvas, which allows quick
rendering of text or graphics over the canvas without disrupting the underlying
24-bit image. This action is accomplished through a new Pixwin, call
pw_setylanes_directly. This function takes three parameters:

1. The Pixwin pointer to the Pixwin of the canvas.

2. The plane group to which you wish to change.

3. The planemask associated with the new plane group.

Special caution should be taken to use pw_lock and pw_unlock around this
code. Also, always restore the canvas to its original state before unlocking.

An example of the use ofpw_set_planes_directly follows:

/* Pixrect *pw from canvas, be sure to call pw_Iock */
/* save old state of canvas */

(void) pr_getattributes(pw->pw-pixrect, & planes_save);

/* all pw functions now affect the overlay on the canvas */
/* restore old state of canvas before unlocking */

/* unlock the pw region */

Note that the overlay-enable plane has a different definition than that for the
CG4. The overlay colors in the overlay colormap shown in CG9 Release Notes,
Chapter 1 are set by SunView as follows:

Revision A of March 27. 1990

34 Sun View 1.80 Update

Table 0-4

Cursor

Command Line Options

Figure 0-1

Sun View Overlay Colors

Overlay Overlay Enable Color
0 0 24-bit value
0 1 Window System Background Color
1 0 Window Foreground Color
1 1 Window System Foreground Color

The "1 0" color is set to the foreground color in order to have the cursor show up
as the correct color over the canvas.

When using this feature be aware of the following:

o Always use pw _lock (unlock) when alternating between plane groups.

o Always return to the real canvas plane group before unlocking.

o Sun View knows only about the real plane group of the canvas. Therefore,
the overlay planes cannot be retained or redisplayed by SunView. Repairing
damaged canvases is the responsibility of the application programmer.

o Since the cursor is the same color as the overlay foreground, it may disap
pear in regions filled with that color.

o 00 not call pryutlut from a Pixwin application. If you change the
overlay colormap through a pr_putlut command in a Pixwin application,
all overlay windows flash to the new color and the windowing system keeps
restoring the real colors.

Unlike the CG4, with the CG8 and the CG9, the cursor is always in the overlay.
Therefore, all cursor rop operations, such as exclusive OR's, are performed in
the overlay plane and never in the 24-bit color plane.

Unlike the CG4, neither the CG8 nor the CG9, supports access to the mono
chrome overlay and the 24-bit color plane as two distinct desktops. Thus the fol
lowing Sun View command line options are disabled.

Disabled Sun View Flags

.·]jISABLED ··do·rtofllsewith···CGS··or··CG9
.·%stinview ••• .:.8bi£lqo$Or:20ri1.y
·%'sUriview H&v¢~laYIAnly ...
%sUnv±ew"'1:ogg1¢2el'labl.¢

Text subwindows in SunView tools such as shell tool, cmdtool, and
textedit have command line arguments that allow you to specify a fore
ground and background color for a window. These command line options are as
follows:

(_____ -_W_f __ r __ g __ b __ -W_b __ r __ g __ b __ -_W_g ____________________________ ~]

Revision A of March 27, 1990

D.6. Keyboard Support

Appendix D - Sun View 1.80 Update 35

(See sunview(l) in the SunOS Command Reference Manual for a definition of
these options.) The CG9 (unlike the CG8), supports all of these options, but per
fonnance declines when using -Wg, since every pixel of every character in the
window requires 32-bit operation, instead of the I-bit operation required if the
window remained in the overlay.

A number of questions have arisen about the usage of the . text swrc file.
These are addressed here.

There are 15 keys on the right hand side (the keypad) that can have functions
assigned to them. Each key can be named:

KEY_RIGHT (n)

R(n)

Rn

where 15 ~ n ~ 1

Similarly, the top function keys each have three names:

KEY_TOP (n)

F (n)

Fn

where 12 ~ n ~ 1

The functions assigned to the keys are constructed from filters. When a function
key is pressed with a text selection, the selected text is piped through the filter
assigned to that key. The output is then piped back into the text at the carat. (If
the selection was pending-delete, the original text is removed.)

There are a number of special filters, documented in
textedit_filters (1), that are provided especially forSunViewusers.

o insert_brackets,

o remove_brackets,

o align_equals,

o shift lines.

Note, however, that any reasonable combination of shell commands can be used
as a text subwindow filter.

A function is assigned to one of these keys by including in the . text s wr c file
a statement like:

/*
* Note that:
* insert brackets /* */ does NOT work
*/

KEY_TOP (10) FILTER
insert brackets "/* " " */"

This example shows how to include C language comment markers around a piece
of text. You would enter this snippet into your. text swrc file, and save the

Revision A of March 27, 1990

36 Sun View 1.80 Update

For troff italics

Several troff command pairs,
each on its own line

parentheses,

quotes.

file. Then bring up a new textedi t tool, since the changes only become effec
tive when a tool is started. Then, select the text pending-delete, and press the
key. The text will be replaced with a copy of itself surrounded with "/* "and
"*/". Note the C-like syntax of comments in . textswrc.

The following example does the same thing, by entering the octal value for char
acters in the desired string.

KEY_TOP (10) FILTER
insert brackets "\057*\040" "\040*\057"

You might want to add a filter to remove comments:

KEY_TOP (10) FILTER
remove brackets "1* " " *1"

Several filters shown below are handy for troff users.

R(l) FILTER
insert brackets "\fI" "\fP"

KEY_TOP (12) FILTER
insert brackets ".BS\n.LS\n" "\n.LE\n.BE"

The next group shows a variety of parentheses and quotes used:

1*
* Note: insert brackets "("
* insert_brackets (
*1

KEY_RIGHT (4) FILTER
insert brackets \(\)
1*

")" also works, and
also works

* Note: insert brackets "\"" "\"" does NOT work
*1

KEY_RIGHT (5) FILTER
insert brackets \" \"

1*
* Note: insert brackets "\,\'" ,,\'\'" does NOT work
*1

KEY_RIGHT (9) FILTER
insert brackets \,\, \'\'

The final example uses the 1 s command to obtain the listing of the current direc
tory and pipe it into the text subwindow after a little formatting.

Revision A of March 27, 1990

Limits to Assigning Keys

D.7. Programming Hints

Memory Leaks From Button
Images

Appendix D - SunView 1.80 Update 37

KEY_TOP (10) FILTER
ls I fnsert brackets "*List**\n" "*End**" I shift lines 4

This can be done with awk or sed scripts to great advantage.

KEY_TOP (10) FILTER
awk -f -me/mydirectory/myscript

There are a number of restrictions on the use of function keys in SunView. The
following keys are not assignable at all:

o ~isCAPS_LOCK

o (]d) is Stop, and also used with in the abort sqeuence.

Another group of keys cannot be mapped via . text s wr c unless you set the
/Input/Arrow_Keys default to "No"

o Keys (R[) , CEIID , ~ and CRm are the arrow keys;

o (R7) is Home, which moves to the beginning of the editing buffer,

o (]J!) is End, which moves to the end of the editing buffer, and

o (Rll) is the function GO_LINE_FORWARD, move to the start of next line.

The keys on the left keypad are not mapped directly. If the user sets the
/Input/Lefthanded default to "Yes", the SunView functions move from
the left keypad to the right one, and selected keys assigned to the right keypad
appear on the left one.

This section offers tips and techniques that are either not previously mentioned in
the documentation or that concern how to handle bugs or known problems.

A Sun View program may fail to reclaim memory after destroying an object.
This loss of useable memory (" memory leakage' ') is cumulative and eventually
causes the system to crash. To avoid these problems, there are precautions to
observe.

A button image is a separate object, and therefore is not destroyed with the but
ton, (and may be reused, for example, with another button). Thus, the memory
allocated by panel_button_image () for the panel button image is not
freed when the panel button is destroyed.

To avoid this leak, create the button image explicitly, so that it has a handle by
which it can be destroyed. The examples in Color Panel Example earlier in this
Appendix show how this is done.

Revision A of March 27, 1990

38 SunView 1.80 Update

Counting File Descriptors

File Descriptor Leakage

Null Pointers

pixwin and pixrect

Sun View makes heavy use of file descriptors, one result of which is that it is
often useful to know how many file descriptors are open. This can be accom
plished with the f s tat (2) system call. The method is to loop over each pos
sible fd, explicitly checking its status with f stat (2) .

The question of the upper limit of the loop can be answered either by choosing a
suitable number such as 256, or more dynamically by using the getdta
blesize (2) system call to determine the limit.

An example appears in the Kernel Interface chapter of the System Services Over
view.

window_return does not destroy the windows in addition to exiting from
window_loop.

Some programmers may not realize that window_ret urn exits from
window_loop, but does not destroy any windows. As a result the file descrip
tors associated with the windows remain in use and unavailable for other win
dows. To reclaim those file descriptors, be sure to call window_destroy.
Failure to use window_destroy, will cause error messages such as:

pr_open: open failed for /dev/fb
no more windows available
WIN ioctl number Ic: Too many open files
window: window creation failed to get new fd
/dev/win49 would not open (be created) (errno 24)
no more windows available
WIN ioctl number Ic: Too many open files
window: window creation failed to get new fd
Segmentation fault (core dumped)

Problems can arise when a Sun View function call to create an object (frame,
panel, or panel_item for example) returns NULL. You cannot blindly use such a
pointer without first checking whether it is NULL. Although it is common prac
tice not to check pointers, and usually does not create problems, it is careless pro
gramming and can lead to trouble.

The examples in this Update Appendix check for NULL pointers when creating
base frames, and indicate by comments when to do so after the creation of other
objects.

You are advised to adopt this practice in your own SunView code (and elsewhere
too).

Pixwin calls (pw *) offer a higher level of functionality than pixrect (pr *) - -
calls, and thus should be used whenever possible. Sometimes it happens that
pixwin does not offer necessary functionality. In such cases, the pixrect interface
is available, as defined in the documentation. However, the pixrect interface is
more likely to change in the future than is pixwin. Moreover, undocumented
calls are not supported, and should not be used.

Revision A of March 27, 1990

Limitations of
icon_load_mpr ()

Hardware for Multiple
Desktops

ws set favor Default - -
Value Changed To O.

TEXTSW WRAPAROUND SIZE - -
attribute

Interposing Scroll Handlers

Additional auto_sigbi ts

Appendix D - Sun View 1.80 Update 39

The present default settings for the file fonnat parameters of icons are:
Fonnat_ version = 1

Width = 64,

Height = 64,

Depth = 1,

Valid_bits_per_item = 16.

These values are currently subject to the following limitations:

Forrnat_ version must always be 1.

Width must be a multiple of 16.

Depth must always be 1.

Valid_bit s _per _ i tern can only be 16 or 32.

To run multiple desktops on a single screen, the user needs a CG4 framebuffer
(10 bit planes).

The ws _ set _ favor flag controls whether or not the window driver will try to
boost the priority of the window process (and its children) that has the current
event lock. The default is O. In very tight memory situations, setting this to 1 will
improve interactive perfonnance.

The attribute TEXTSW_WRAPAROUND_SIZE in the text subwindow package is
not documented. It is of type int and specifies the maximum allowed size (in
bytes) of the edit log file (in /trnp) associated with a text subwindow. The
lower bound of this attribute is 8096, which is silently enforced. The default
value is TEXTSW_INFINITY (allow the edit log file to grow as much as needed).

notify _flushyending removes (flushes) all pending events for a client.
If you call it after doing a window_destroy, the destroy event is removed
and the window will not be removed at all.

When trying to interpose your own scroll handler, do not use
scrollbar_scroll_to in the interposed routine, as it causes an infinite
loop by generating another scroll event. The proper approach is to have the inter
posed routine either set a flag, set a timer, or generate a secondary non-scrolling
event to be processed outside of the event handling pipeline.

The following bits in sigbitesytr should be noted by those writing their
own prioritizers:

o S IGTSTP means notify_destroy should be called with status of
DESTROY CHECKING.

o S IGTERM means benotify _ destroyshould of DESTROY_CLEANUP.

Revision A of March 27, 1990

40 Sun View 1.80 Update

FBIONREAD

FRAME SHADOW and
FRAME SHOW SHADOW - -
incorrectly documented

not all pixwin functions are
documented

SCROLL NORMALIZE
attribute

[J S IGKILL means notify_destroy should be called with status of
DESTROY PROCESS DEATH.

There is no FBIONREAD SunView function; references to it result from a typo
graphical error in the name of the correct call, FIONREAD.

Programs using FRAME_SHADOW instead of FRAME_S HOW_S HADOW to set or
inhibit a shadow, will create an error message but continue execution. All
subwindows will have shadows.

Not all the pixwin functions in / usr / incl ude/ sunwindow /pixwin. h are
documented in either the SunView Programmer's Guide or the SunView System
Programmer's Guide. Undocumented calls are not supported and are subject to
change without notice.

The default for SCROLL NORMALIZE is TRUE. When scrollbars are used
within panels, the default behavior is to scroll to the first line in view for a panel
item. This can sometimes cause problems when trying to view a panel item, such
as a choice item layed out vertically, since all PANEL_CHOICE_STRINGS
may not be visible within the scroll region and cannot be scrolled into view
because SCROLL NORMALIZE is TRUE. In those instances set
SCROLL _ NORMAL I ZE to FALSE, in addition to setting the scrollbar's
SCROLL LINE HEIGHT. For example:

sun
microsystems

Revision A of March 27, 1990

Subframes Cannot Be
Iconified

FRAME INHERIT COLOR - -
behavior

Appendix D - Sun View 1.80 Update 41

#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/scrollbar.h>
Frame frame;
Panel panel;
Panel item choice_item;
static int choice count 0;
Scrollbar sb;
main (argc,argv)
int argc;
char **argv;

frame
0) ;

window_create (NULL, FRAME,

sb = scrollbar_create(SCROLL_NORMALIZE, FALSE,
SCROLL_LINE_HEIGHT, 5,
0) ,

panel = window_create(frame,PANEL,
WIN_ROWS, 5,
WIN_VERT ICAL_SCROLLBAR, sb,
0) ;

choice_item = panel_create_item(panel,PANEL_CHOICE,
PANEL_LABEL_STRING, "Choices:",
PANEL_LAYOUT, PANEL_VERTICAL,
PANEL_CHOICE_STRINGS,
"01", "02", "03",
"04", "05", "06",
"07", "08", "09",
"10", "11", "12",
"13", "14", "15",
0,
0) ;
window_fit_height(frame);
window_main_loop(frarne);
}

Subframes (not subwindows, but frames created by calling window_create (
ba s e f r arne, FRAME)) cannot be iconified. All subframes are intended to be
transient and are not allowed to close to an icon.

If you set the FRAME_INHERIT _COLORS attribute to TRUE for subwindows
before setting up a colonnap for the frame, the subwindows will not inherit the
colors of the frame. The correct procedure is to set the attribute after the color
map.

Revision A of March 27, 1990

42 SunView 1.80 Update

Destroying A Window
Without Returning To The
Notifier

Using window_create
without Error Message

.sunview and Environment
Variable Expansion

THIS WAY
my_set_colormap_function();
window_set(frame, FRAME INHERIT_COLORS, TRUE, 0);

NOT THIS WAY
window_set(frame, FRAME_INHERIT_COLORS, TRUE, 0);
my_set_colormap_function();

The following code shows how to destroy a window without returning to the
notifier. window_destroy posts to the window a destroy event which won't
be processed until the notifier resumes.

Note that the call to notify_flushyending may be necessary to remove
pending events for the window.

destroy_subframe(sub_frame)
/* window_destroy (sub_frame) immediately */
Frame sub frame;

if (notify-post_destroy(sub_frame,
DESTROY_CHECKING,
NOTIFY_IMMEDIATE)
!= NOTIFY DESTROY_VETOED) {
(void)notify_flush-pending(sub_frame);
(void)notify_post_destroy(sub_frame,

DESTROY_CLEANUP,
NOTIFY_IMMEDIATE);
}

Occasionally an application will want to call window_create repeatedly and
yet not have it be apparent to the user when the system runs out of / dev /win
devices. Either they wish to report the error themselves, or they just want to
create as many windows as they can without making the user see an error mes
sage when the limit is reached.

Currently window_ create outputs an error message to standard error when
there are no more windows and returns NULL. SO when the program finds out
there is an error, the user has already seen the error message.

Currently, the only way around this is to redirect standard error away from the
console.

There are limits on how shell environment variables in the . sunview file are
expanded. For example, using paths like $PROGDIR/file_to_run or
-user /bin/ file_to_run does not work. For efficiency, SunView uses a
simple exec () on each line in the file, so expansion does not occur. This is
not likely to change in the future.

Revision A of March 27, 1990

Tools Off Sreen

pw~utattributes

Appendix D - Sun View 1.80 Update 43

However, you can use variables like this if the command line is a call to csh:

Sometimes, when tools come up, the bottom edge of the tool will be partially off
screen. This causes scrolling problems and/or funny characters. The effect of this
problem can be alleviated by moving the window up so that it does not extend
over the bottom of the screen.

pwyutattributes does not set the attributes of the retained memory pix
rect. Also, bitplane masks do not work on a memory pixrect. These capabilities
are necessary to do plane manipulation, for example, double buffering.

The following code can be used to create this type of memory pixrect:

#include <sys/types.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_util.h>
#include <pixrect/memvar.h>
Pixrect *
mem_create_with_planemask(w, h, depth)
int w, h depth;

Pixrect *pr;
struct mprp_data *mprd;
if (pr = mem_create(w, h, depth))

if (mprd = alloctype(struct mprp_data))
mprd->mpr = *mpr_d(pr);

else {

free (mpr_d (pr)) ;
pr->pr_data = (caddr_t) mprd;
mprd->mpr.md_flags 1= MP_PLANEMASKi
mprd->planes = -0;
}

pr_destroy (pr) ;
pr = 0;
}

return pr;

A sample call to this function might look something like this:

Revision A of March 27, 1990

44 Sun View 1.80 Update

Filename Completion

/*
* Fixes a retained memory pixrect in a canvas
* pixwin by replacing it with a memory pixrect
* which supports attributes.
*/

static void
fix_retained-pixrect(win,pw)
Window win;
Pixwin *pw;

Pixrect *pr;
int w,h,d;
w = (int)window_get(win,WIN_WIDTH);
h = (int)window_get(win,WIN_HEIGHT);
d = 8;
if «pr = mem_create_with-planemask(w,h,d)) == NULL) {

fprintf (stderr, "Could not create memory pixrectO);
exit(l);

pr_destroy(pw->pw-prretained);
pw->pw-prretained = pr;

Using the I Esc I key to obtain filename completion does not work in SunOS
release 4.1.

Sticky Secondary Selections Sunview sometimes gets stuck in secondary selection mode (when things are
underlined). To correct this, go to a command window and use the
clear functions command. This should cause the selection service clients
to give up their selections, thereby clearing the selection service.

Summary of Sun View 1.80
Bug Fixes

This section consists of a table describing each bug or RFE (Request for
Enhancement) that has been fixed in SunView 1.80, collated in ascending order
by the Bug ID number (Bugid). The Bugid is the "reference number" that is
assigned to each bug when it is reported, and is used subsequently to refer to it.

Table D-5 Sunview 1.80 Fixed Bugs

bugid Summary Description
1002377 window display lock broken when window exposed
1002411 can start suntools when not at display
1002523 textedit incorrectly sizes windows with the - Ww flag
1002759 a frame created with WIN_SHOW TRUE gives WIN ioctl error
1003340 unnecessary repaint on upper split view
1003354 a blank FILTER entry in . textswrc hangs when key pressed
1003383 Prevent multiple inclusion of system include files
1003571 icon's default font not set until display time
1003581 window set FRAME CLOSED to TRUE gives "win ioctl" message

Revision A of March 27, 1990

Appendix D - Sun View 1.80 Update 45

Table D-5 Sunview 1.80 Fixed Bugs- Continued

bugid Summary Description
1003648 lockscreen does not accept passwords with control characters.
1003788 image browser 2 takes up (infinite?) CPU time on "Browse"

1003815 panel starts interval timer without keyboard focus
1003850 Too large a window number (12 B) ! message with two framebuffers
1003877 signal TTIN while reading from standard input in dbxlscripts
1004221 Inverted suntools do not work on Prism's b/w framebuffer.
1004442 shelltool (and other tools) dump core when $WINDOW_PARENT not set
1004580 textsw_file_lines_ visible () returns incorrect values
1004586 Multiple colors for panel items
1004838 ttysw uses fork () rather than vfork ()
1005102 memory leak in panel_destroy_item ()
1005499 tty subwindow goes into infinite loop if open I dev Ittyp? fails
1005729 WIN_FONT text subwindow attribute ignored
1006084 ttysw children do not exit
1006159 cmdtool does not allow Reset immediately after Store
1006173 damaging suntool's colormaps can cause "panic: bus error"
1006217 suntools does not warn you it's busy when starting up
1006222 defaultsedit does not allow setting nosunview
1006341 pw_line draws different than pw _vector given same coordinates
1006426 window_create failed to return NULL on failure for panel
1006560 Can not use - to specify icon in Sun View . rootmenu file
1006591 exit of suntools does not zero out let c I u tmp entries
1006652 screenblank dumps core if argument is missing
1007187 shell tool dumps core if given -Wt with no arguments
1007442 rectlist. h needs guard
1007443 PW DBL WRITE sets to PW DBL FORE when creating menu
1007620 screenblank persists despite keyboard activity
1007696 suntool should return windowfd when using lint in llib-l
1008155 Find and Replace loops replacing single occurrence of text
1008199 toggling TTY ARGV fails
1008457 panels do not go to back on Shift-L5
1008564 Cutting selected text in subwindow leaves selection on-screen
1008579 textedi t scrollbar bubble misplaced for very large files
1008849 faulty SunView program gives "panic: bus error"
1008949 cmdtool dumps core after bad option on command line.
1009260 tty windows fail to deallocate old frame icon pixrects
1009284 notify. h uses fd_set but does not include its definition
1009354 resizing window gives bad message
1009357 fullscreen resize option available when already fullscreen
1009507 LOC _ RGNEX I T missing when scrollbars are south and east
1009822 second ghost caret from mail tool Compose=>Inc1ude
1010462 text subwindow still uses old menu -'prompt instead of alerts
1010463 CTRL-tab in a text subwindow does not work after a tab is pressed
1010485 Find=>Selection Forward does not work in mail tool

+!!..!! Revision A of March 27, 1990

46 Sun View 1.80 Update

Table D-5 Sunview 1.80 Fixed Bugs- Continued

bugid Summary Description
1010522 shift lines will not shift left
1010557 Save layout uses current directory, not home directory

1010746 File=>Load File accelerator works too often
1010847 shift_lines -t -1 broken, also Text=>Extras and. textswrc
1010972 Pull right menu appears,then vanishes mysteriously
1011026 double-buffering and pw text interact badly

1011042 MENU_GEN_PROC creates bogus MENU_STRING_ITEM, value pair
1011090 must have a . defaults file
1011133 shift_lines requires. indent. pro file
1011234 illegal memory free in suntools

1011384 file truncated in textedi t upon save with full filesystem
1011412 alert attribute ALERT_BUTTON_YES disables right mouse menu
1011519 suntools hangs with CG3 and GPI or GP+
1011853 Exiting suntools without quitting chesstool causes machine to panic

1011938 PW_DBL_EXISTS not defined in <sunwindow/pw_dblbuf. h>
1011973 Sun-2 and Sun-3 shared library version numbers are different
1012020 textsw filters drop data
1012023 lockscreen security hole

1012414 -Wf flag for tools broken
1012415 cursor not in foreground color
1012448 cat a binary in crndtool results in a core dump.
1012506 PANEL ITEM BOXED in panel.h but not implemented

1012577 textsw_insert gets progressively slower in 3.x
1012580 scroll buttons do not work in canvas_demo
1012587 creating a tty after one has been destroyed hangs program
1012695 tools started from Sun View sometimes do not appear

1012757 tty subwindow calls signal (3) which is illegal in SunView
1012758 ESC[0;7m does not invert in shelltool on 3.x
1012774 menus cause intermittant colormap flashing in 4.0
1013745 in textedi t, a Ctrl-Delete enters undeletable character

1013746 Get/Put from cmdtool to textedit window can kill cmdtool.
1013767 variable collision causes no cursor in ttysw when using FORTRAN77
1013901 sunview -i and bad root menu file results in all black screen
1014035 8-bit characters not displayed correctly when batching on

1014075 monochrome pix win inheriting colormap of overlying cursor
1014145 window_set () should return non-zero value for success.
1014179 textedi t dies with SEGV on blink owner
1014194 memory leak every time a window is destroyed in notifier

1014751 arguments to gfxsw _ select () defined incorrectly in gfxsw. h
1014820 Incorrect use of select system call in win_bell. c
1014884 changing the monochrome colormap in 4.0 does not work correctly
1014935 Debugging messages in sunwindowdev waste bytes

1015097 at t r . h does not conform to ANSI C standard
1015167 52 menu items gives "menu_show: Menu too large for screen"

Revision A of March 27,1990

Appendix D - Sun View 1.80 Update 47

Table D-5 Sunview 1.80 Fixed Bugs- Continued

bugid Summary Description
1015181 i co n _10 ad _ mpr returns incorrect data.
1015394 MENU REPLACE ITEM causes memory·leak,menu destroy no effect
1016307 attr_rc_units_toyixels does not traverse embedded av-lists
1016479 FRAME _ICON does not reclaim memory
1016585 cframedemo dumps core under 4.0
1016660 attribute header file at tr. h uses but does not define caddr t
1016718 RFE for editable panel text items
1016820 ntfy_errno_abort_init never gets set
1016876 The -R usage for Sun View libraries is incorrect for 4.0
1017411 8-bit fonts are "eaten" by mouse if written on top of cursor
1017503 obsolete directory /usr / lib/keymaps in the distribution tape
1017814 panel will not be displayed correct on machine with GP2
1017887 MENU GEN PROC causes bus error - -
1018216 win enumall () procedure causes errors when 128 windows exist
1018599 in FrameMaker, F6 and F7 operate incorrectly
1018720 pw _line does not rasterize patterned lines consistently
1018784 cursor color incorrect
1018785 dragging a window off the screen panics the kernel.
1018963 problem with pt ys being left in bad state
1018992 selection destroys window and leaves tty device in bad state
1019086 pctool: seln_ Create failed message on 4/330
1019256 macros not defined in values. h

1019290 set_cursor caused a canvas repaint
1019359 cannot get PANEL_VALUE _FONT of a panel text item
1019398 textedi t allows user to create file with whitespace in name
1019404 request for more than 128 windows
1019664 SunView: No such file or directory message; missing / dev / *
1019891 SPARe cursor performance problem
1019897 bad cursor image size test in winio_getusercursor ()
1019907 premature crosshair cursor pixrect image data allocation
1020222 textsw_reset () does not free memory
1020319 LOC_WINEXIT events are being delivered erroneously
1020397 Too large a window number (128) ! message built into kernal
1020454 cmdtool can exit leaving pty in unusable state
1020719 window create of subframe can crash instead of return NULL -
1020730 process's nice value gets zeroed
1021270 escape sequences hang a cmdtool that is remote logged in.
1021476 makefile does not make shelltool or cmdtool target
1021477 icon code incompatible with pixrect library
1021544 pw_line does not work with retained, color canvases
1021664 win_getnewwindow () does not always return -1 failure
1022020 shift -L5 does not put windows to the back, and moves others to front
1022552 suntools -s with nonexistent filename will hang the system.
1022841 the edit log wraparound size has no effect on cmdtool

Revision A of March 27, 1990

48 Sun View 1.80 Update

Table D-5 Sunview 1.80 Fixed Bugs- Continued

bugid Summary Description

1023098 subframe destruction results in 4K memory leak
1025077 cron cannot execute the command lockscreen

1025689 Changing fonts in a tty will crash a sunview application
1025804 canvas damage is incorrectly cleared to red
1025886 lockscreen -e should log the user out
1026368 error messages from ttysw fork it () and ttysw tty restore () confused

1026613 Resize->Fullscreen dumps core
1026708 text s w edit back char botch
1026733 pressing pop-up menu button causes segmentation fault in sundiag
1026817 diamond (Meta) key on type-4 keyboard does not work under Sun View

1026818 Sun View colonnap segmentation broken
1026820 cannot place caret after last character in full panel text item
1026936 pixwins does not alow non-power of 2 colonnaps
1027435 missing file sunwindow/ ems colorcube. h

1027565 suntools.c has very poor security
1027642 No makefile in /usr/demo/SUNVIEW/SRCS/DATA.
1027650 first tool in SunView does not accept color
1027956 strdup redefined in <subwindow/ sun. h> producing syntax error

1028029 Escape sequences botched by crnd tool
1028055 typed text in colored panel text items is wrong
1028073 libsuntool make install h misses header files
1028230 linking dynamically with libsunwindow causes SunWrite core dump

1028260 8 bit emulation not working in Sun View
1028299 CDROM and FACES makefiles missing dependencies
1028366 Cursor disappears in background during fullscreen mode
1028588 creating popup window crashes Sun View tool

1028682 double click does not work properly in editable panel text items
1028685 caret not placed properly in editable panel text items
1028688 The default for pending delete is TR DE in editable panel text items
1028689 CTRL key toggle of Adjust is pending delete fails in panel text item

1028772 CANVAS _ COLOR2 4 attribute generates spurious error message on CG4
1029033 Setting WIN_SHOW to TRUE causes crash
1029088 sundiag pop-up window does not accept any input
1029598 swin (-g) gives win get focus event: Error 0

1029616 Internal API change can cause 4.x compatibility problems

Keyword Summary of Fixed
Bugs

This section consists of an alphabetical list of keywords with the corresponding
bug(s) whose fix(es) concern that keyword.

Revision A of March 27,1990

Appendix D - Sun View 1.80 Update 49

Table D-6 Keyword Index to Fixed Bugs

keyword Relevant Bugs
1027565
. defaults 1011090
.indent. pro 1011133
.rootmenu 1006560
.textswrc 1003354, 1010847
/dev/* 1019664
/dev/ttyp 1005499
/etc/utmp 1006591
/usr/lib/keymaps 1017503
8-bit characters 1014035
8-bit emulation 1028260
8-bit fonts 1017411
ALERT_BUTTON_YES 1011412
CANVAS_COLOR24 1028772
CDROM 1028299
CG* 1011519,1028366,1028772,1025804
CTRL characters 1003648, 1010463, 1013745, 1028689
Escape sequences 1012758, 1021270, 1028029
FACES 1028299
FORTRAN 1013767
FRAME_ICON 1016479
Framemaker 1018599
GP 1011519,1017814
LLOC_RGNEXIT 1009507
LOC_ WINEXIT 1020319
MENU_GEN_PROC 1017887
MENU REPLACE_ITEM 1015394
Meta key 1026817
PANEL_ITEM_BOXED 1012506
PANEL_VALUE_FONT 1019359
PHIGS 1019290
PW _DBL_EXISTS 1011938
SEGV 1014179, 1026733
SPARC 1019891
Sun-2 1011973
Sun-3 1011973,1017411
Sun-386i 1017411
Sun-4 1017411,1019086
SunWrite 1028230
TTIN 1003877
WIN_FONT attribute 1005729
WIN_SHOW 1002759, 1029033
MENU GEN PRoe 1011042
icon load mpr 1015181

Revision A of March 27, 1990

50 Sun View 1.80 Update

Table D-6 Keyword Index to Fixed Bugs- Continued

keyword Relevant Bugs
lockscreen 1012023, 1025886
pw_line 1021544
sundiag 1026733, 1029088
suntools 1002411,1027565
accelerator 1010746
adjust_is_pending_delete 1028689
alert 1010462, 1011412, 1028366
attr.h 1015097, 1016660
attr_rc_units_to_pixels 1016307
av-lists 1016307
background 1028366
browse 1003788
bus error 1006173, 1008849, 1017887
caddr_t 1016660
canvas 1006173,1009507,1012580,1017411,1019290,1025804,1021544
caret 1009822, 1013767, 1026820, 1028685
cmdtool 1006159, 1008949, 1012448, 1012695, 1013746, 1020454, 1021270,

1021476, 1022841, 1028029
cms_colorcube.h 1027435
color 1004586, 1012414, 1012415, 1018784, 1027650, 1028055, 1021544
colorcube 1026936
colonnap 1006173, 1014075, 1014884, 1026818, 1026936, 1012774
compatibility 1029616
continner 1011412,1028366
console 1002411
core dump 1004442, 1006652, 1007187, 1008949, 1012448, 1016585, 1026613,

1028230
cpu time 1003788
crash 1020719, 1028588, 1029033, 1025689
cron 1025077
cursor 1012415,1013767,1014075,1017411,1018784, 1019891, 1019897,

1019907, 1028366
defaultsedit 1006222, 1022841
double buffer 1007443, 1011026
drawing 1006341
edit log 1022841
environment variables 1004442
events 1020319
fd_set 1009284
flags 1002523, 1012414
fonts 1003571,1017411,1025689
foreground 1012414
fork 1004838, 1008199
frame 1002759, 1009260

sun
microsystems

Revision A of March 27, 1990

Appendix D - Sun View 1.80 Update 51

Table D-6 Keyword Index to Fixed Bugs- Continued

keyword Relevant Bugs
frame closed 1003581
framebuffer 1020319, 1004221
framebuffers 1003850
fullscreen 1009357, 1026613, 1028366
gfxsw.h 1014751
gfxsw _select 1014751
hang 1003354, 1021270, 1022552
icon 1003571, 1009260, 1021477, 1015181
include files 1003383, 1009284, 1027956
infinite loops 1005499
install_h 1028073
itimer 1003815
keyboard 1007620, 1026817
keyboard focus 1003815
library 1007696,1011973,1016876,1021477,1028073,1028230
lint 1007696
lockscreen 1003648, 1025077
mailtool 1009822, 1010485
makefile 1021476, 1028073, 1028299, 1027642
memory 1011234
memory leak 1005102, 1014194, 1015394, 1016479, 1020222, 1023098
menu 1007443,1010972,1011412,1015167,1026733, 1028366, 1012774,

1011042
menu_destroy 1015394
menu_prompt 1010462
message 1003850
messages 1002759, 1003581, 1009354, 1014935, 1019086, 1019664, 1020397,

1029598
mouse 1011412,1017411,1028366
nice 1020730
notifier 1014194, 1029088
notify.h 1009284
ntfy _ermo_abort_init 1016820
panel 1003815, 1004586, 1006426, 1008457, 1017814
panel text 1016718, 1019359, 1026820, 1028055, 1028682, 1028685, 1028688,

1028689
panel.h 1012506
panel_destroy _item 0 1005102
panel_item 1012506
panic 1006173,1011853,1018785
passwords 1003648
pctool 1019086
perfonnanc 1019891
pixfont 1025689

Revision A of March 27, 1990

52 Sun View 1.80 Update

Table D-6 Keyword Index to Fixed Bugs- Continued

keyword Relevant Bugs
pixrect 1009260, 1019907, 1021477
pixwin 1006173, 1014075, 1026936
pty 1018963, 1020454
pw_batch_* 1014035
pw_dbl_for 1007443
pw _dbl_ write 1007443
pw_line 1006341, 1018720
pw_putcolo 1006173
pw_text 1011026,1014035
pw_vector 1006341
reboot 1011519
rectlist.h 1007442
remote login 1021270
repaint 1003340, 1019290
resize 1009357
root menu 1013901
save layout 1010557
screenblank 1006652, 1007620
scroll buttons 1012580
scrollbar 1008579, 1009507
security 1002411,1012023,1027565
select system call 1014820
selection 1008564, 1010485, 1010972, 1018992
seln_create 1019086
set_cursor 1019290
shelltool 1004442, 1007187, 1009260, 1012695, 1012758, 1021476
shift_lines 1010522,1010847,1011133
signal(3) 1012757
split view 1003340
standard input 1003877
strdup 1027956
subframe 1020719, 1023098
subwindow 1012757
sun-3 1025689
sun-4 1025689
suntools 1006173,1006217,1006560,1006591,1007696, 1010557,1011234,

1011519,1011853,1012695,1022552,1004221
sunwindowdev 1014935
swin 1029598
textedit 1002523,1008579,1011384,1013745,1013746, 1014179, 1019398
textsw 1003354, 1005729, 1008155, 1008564, 1010462, 1010463, 1010485,

1010847, 1020222, 1022841, 1026708, 1012020
textsw _file_lines_ visibleO 1004580
textsw _insert 1012577

Revision A of March 27, 1990

Appendix D - Sun View 1.80 Update 53

Table D-6 Keyword Index to Fixed Bugs- Continued

keyword Relevant Bugs
textsw _reset 1020222
toolplaces 1010557
tty 1003877, 1012587, 1012757, 1018992, 1025689
tty_argv 1008199
ttysw 1004838, 1005499, 1006084, 1009260, 1013767, 1026368
values.h 1019256
vfork 1004838
win_bell.c 1014820
win_enumall 1018216
win~etnewwindow() 1021664
window 1013746, 1014194, 1014935, 1018216, 1018785, 1018992, 1019404,

1022020, 1028588
window display lock 1002377
window_create 1006426, 1020719
window_set 1003581, 1014145
windowfd 1007696
windows 1009260,1009354,1011519,1029088
winio ~etusercursor() 1019897
wraparound 1022841

Revision A of March 27. 1990

::

Index

2
24 bit color, see SunView 24 bit color
24-bit color use, 31

A
additional auto_sigbits,39
alarms with help, 21 thru 25
auto_sigbits,39

C
color look-up table, 30
colored panel items, 26
colormap, 29

CG9,29
counting file descriptors, 38
cursor, 34

D
destroying window without returning to notifier, 42
double buffering, 30

F
FBIONREAD,40
file descriptors, counting, 38
filename completion, 44
FRAME _ INHERI T _ COLOR behavior, 41
FRAME_SHADOW and FRAME_SHOW_SHADOW incorrectly docu

mented,40

H
help on the More Help server, 14

I
interposing scroll handlers, 39

K
keyboard support, 35
keyword summary of fixed bugs, 48

-55-

L
limitations of icon_load_mpr (), 39
limits to assigning keys, 37

M
memoryleaks,37
memory pixrects, 32
More Help, example, 13
More Help, functions, 12
multiple desktops, hardware for, 39

N
not all pixwin functions documented, 40
notify_flush-pending,39
null pointers, 38

p
panel_button _image memory, 37
pixel colors

translating, 31
pixrects

memory, 32
plane group, 32

pixwin and pixrect, 38
plane group

24-bit, 29
8-bit, 29
color, 29
monochrome overlay, 29
overlay, 30

plane groups, 29
pixrect-related, 32

pointers, null, 38
pr_putcolormap,29
programmable alarms, 16, 16 .,!":,~:~,,,,:::::::
programming hints, 37 thru 44
pw_putattributes,43
pw_putcolormap,29

R
ring_alarm, 17
rop operations, 31

il!

Index - Continued

S
SCROLL_NORMALIZE attribute, 40
secondary selections, sticky, 44
set_alarm, 16
sticky secondary selections, 44
subframes, cannot iconify, 41
summary of Sun View 1.80 bug fixes, 44 thru 53
SunView

8-bit color mode, 30
Sun View 1.80 update, 1
Sun View 24 bit color, 28
• sunv iew and environment variable expansion, 42
Sun View CG9 command line options, 34
SunView help mechanism, 1 thru 16
Sun View programmable alarms, see programmable alQl'fnS

T
TEXTSW WRAPAROUND_SIZE attribute, 39
• textswrc file, 35
tools off screen, 43
true color, 28, 29, 30, 31

W
window, destroying without returning to notifier, 42
window _ create, without error message, 42
window_return, 38
ws_set_favor default,39

-56-

