
symbolics TM 

Volume2 
System Fundamentals 



Volume 2. System Fundamentals 

Copyright C 1984, Symbolics, Inc. of cambridge, Massachusetts. All rights reserved. 
Printed in USA. This document may not be reproduced In whole or in part without the 

prior written consent of Symbolics, Inc. 

Design: Schafer/LaCasse 
Cover and title page typography: Litho Composition Co. 

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600 
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics 

LGP-1 Laser Graphics Printer. 

The first Lisp Machine System was a product of the efforts of many 
people at the M.l.T. Artificial Intelligence Laboratory, and of the unique 
environment there. Portions of earliest versions of many of the documents 
in this documentation set were written at the Al Lab. 



symbolics TM 

Contents 

System 
Fundamentals 
NOTA 
Notation 
Conventions 

LMS 
Lisp Machine 
Summary 
3600 Edition 

3600 
Notes on the 3600 
for LM-2 Users 

INED 
Using the 
Input Editor 

MISCF 
Miscellaneous 
Useful Functions 



symbolics TM_ 

Documentation Map 

1 2 3 4 5 
System System Lisp Program User 
Index Fundamentals Language Development Interface 

Tools Support 
TOC NOTA PRIM TOOLS WIN DOC 
Table of Notation Primitive Program Development Using the 
Contents Conventions Object Types Tools and Window System 

INDEX LMS EVAL 
Techniques 

WIN DEX 
Index Lisp Machine Evaluation HELP Window System 

RN 
Summary 

FLOW 
Program Development Program Examples 

3600 Edition Help Facilities 
MENUS Release Notes/ Flow of Control 

Patch Notes 3600 
ARR 

ZMACS Window System 
Notes on the 3600 Zmacs Manual Choice Facilities 

NEWS for LM-2 Users Arrays and Strings 
Newsletters/ 

FUNC 
DEBUG SCROLL 

Bug Reports INED Debugger Scroll Windows 
Using the Functions 
Input Editor MAC 

MAINT MISCUI 
Maintaining Miscellaneous 

MISCF Macros Large Systems Functions 
Miscellaneous DEFS COMP Useful Functions 

Defstruct The Compiler 

FLAV MISCT 
Objects, Other Tools 
Message Passing, 
and Flavors 

COND 
Conditions 

PKG 
Packages 

6 7 8 
Utilities Networks System 
and and 1/0 Installation, 
Applications Maintenance, 

Programming 
ZMAILT STR SIG 
Zmail Tutorial Streams Software 
and Reference 

FILE 
Installation Guide 

Manual 
Files SITE 

ZMAILC 
NETIO 

Site Operations 
Zmail Concepts 
and Techniques Networks and TAPE 

FED 
Peripherals Tape 

Font Editor PROT STOR 
Networks and Storage Management 

HARD Protocols 
PROC Hardcopy System 
Processes 

CONV 
INIT Converse 
Initializations 

FSED 
INT FSEdit 

MISCU 
Internals 

Other Utilities 
and Applications 



2 MAP Documentation Map 

Symbolics, Inc. February 1984 

Map to the New Documentation System 

The documentation in this eight-volume set includes all previously published Lisp 
Machine documentation, reorganized by topics and intended use of the information. 
The most obvious aspects of the reorganization are: 

• The Lisp Machine Manual has been taken apart, and its various chapters are 
now scattered throughout the new system. 

•Release Notes and Patch Notes through Release 5.0, which had previously been 
bound separately, have been merged into their relevant sources. 

Following is a mapping of old to new documents, listed in alphabetic order by old 
document title: 

Old title New title Mnemonic 

Chaosnet Networ,ks and Peripherals NE TIO 

Chaosnet Fi.le Protocol Networks and Protocols PROT 

Font Editor Font Editor FED 

Front-End Processor Networks and Peripherals NETIO 

Introduction to Using the Window System Using the Window System WINDOC 

Lisp Machine Choice Facilities Window System Choice Facilities MENUS 

Lisp Machine Manual [See page 4.] 

Lisp Machine Summary 3600 Edition Lisp Machine Summary LMS 
3600 Edition 

LM-2 Serial 110 Networks and Peripherals NETIO 

LM-2 UNIBUS 110 Networks· and Peripherals NE TIO 

Notes on the 3600 for LM-2 Users Notes on the 3600 for LM-2 Users 3600 

Operating the Lisp Machine [Discontinued.] 

Program Development Help Facilities Program Development Help HELP 
Facilities 

Volume 

7 

7 

6 

7 

5 

5 

2 

7 

7 

2 

4 



MAP Documentation Map 3 

Symbolics, Inc. February 1984 

Old title New tit18 Mnemonic Volume 

Program Development Tools and Program Development Tools and TOOLS 4 
Techniques Techniques 

Release Notes for System 78 [Merged into related documents.] 

Release 4.0 Release Notes [Merged into related documents.] 

Release 4.1 Patch Notes [Merged into related documents.] 

Release 4.2 Patch Notes [Merged into related documents.] 

Release 4.3 Patch Notes [Merged into related documents.] 

Release 4.4 Patch Notes [Merged into related documents.] 

Release 4.5 Patch Notes [Merged into related documents.] 

Scroll Windows Scroll Windows SCROLL 5 

Signalling and Handling Conditions Conditions COND 3 

Software Installation Guide Software Installation Guide SIG 8 

Symbolics FUe System Fi,les FILE 7 

System 210 Release Notes [Merged into related documents.] 

Window System Program Examples Window System Program WIND EX 5 
Examples 

Zmail Concepts and Techniques Zmail Concepts and Techniques ZMAILC 5 

Zmail Tutorial and Reference Manual Zmail Tutorial and Reference ZMAILT 5 
Manual 

Zmacs Manual Zmacs Manual ZMACS 4 



4 MAP Documentation Map 

Symbolics, Inc. February 1984 

Lisp Machine Manual 

[Has been separated, by chapter, into the following documents:] 

Old chapter title Pages New document title Mnemonic Volume 

1. Introduction 1-6 Notation Conventions NOTA 2 

2. Primitive Object Types 7-12 Primitive Object Types PRIM 3 

3. Evaluation 13-32 Evaluation EVAL 3 

4. Flow of Control 33-51 Flow of Control FLOW 3 

5. Manipulating List Structure 52-85 Primitive Object Types PRIM 3 

6. Symbols 86-91 Primitive Object Types PRIM 3 

7. Numbers 92-106 Primitive Object Types PRIM 3 

8. Arrays 107-125 Arrays and Strings ARR 3 

9. Strings 126-135 Arrays and Strings ARR 3 

10. Functions 136-157 Functions FUNC 3 

11. Closures 158-162 Functions FUNC 3 

12. Stack Groups 163-169 Internals INT 8 

13. Locatives 170-171 Primitive Object Types PRIM 3 

14. Subprimitives 172-191 Internals INT 8 

15. Areas 192-196 Storage Management STOR 8 

16. The Compiler 197-207 The Compiler COMP 4 

17. Macros 208-232 Macros MAC 3 

18. The LOOP Iteration Macro 233-256 Flow of Control FLOW 3 



MAP Documentation Map 5 

Symbolics, Inc. February 1984 

Old chapter title Pages New document title Mnemonic Volume 

19. Defstruct 257-278 Defstruct DEFS 3 

20. Objects, Message Passing, Objects, Message Passing, FLAV 3 
and Flavors 279-313 and Flavors 

21. The 1/0 System 
21.1 314-318 Streams STR 7 
21.2 319-331 Primitive Object Types PRIM 3 
21.3-21.10 331-375 Streams STR 7 

22. Naming of Files 376-391 FU es FILE 7 

23. Packages 392-405 Packages PKG 3 

24. Maintaining Large Systems 
24.1-24.7 406-421 Maintaining Large Systems MAINT 4 
24.8 422-427 Site Operations SITE 8 

25. Processes 428-439 Processes PROC 8 

26. Errors and Debugging 
26.1 440-450 Conditions COND 3 
26.2-26.8 450-468 Debugger DEBUG 4 

27. How to Read Assembly Language 
469-486 Internals INT 8 

28. Querying the User 487-489 Miscellaneous Functions MIS CUI 5 

29. Initializations 490-492 Initializations INIT 8 

30. Dates and Times 493-498 Miscellaneous Functions MISCUI 5 

31. Miscellaneous Useful Functions 
31.1-31.3 499-504 Miscellaneous Useful Functions MISCF 2 
31.4 505 Storage Management STOR 8 
31.5-31.7 506-508 Miscellaneous Useful Functions MISCF 2 



symbolics™ 

NOTA Notation Conventions . 

Cambridge, Massachusetts 



Notation Conventions 
# 990079 

February 1984 

This document corresponds to Rel ... 5.0. 

This document was prepared by the Documentation Group of Symbolics, Inc. 

No representation or affirmation of fact contained In this document should be construed 
as a warranty by Symbolics, and Its contents are subject to change without notice. 
Symbolics, Inc. assumes no responsibility for any errors that might appear In this 
document 

Symbolics software described In this document Is furnished only under license, and may 
be used only in accordance with the terms of such license. Trtle to, and ownership of, 
such software shall at all times remain in Symbolics, Inc. Nothing contained herein 
implies the granting of a license to make, use, or sell any Symbolics equipment or 
software. 

Symbolics is a trademark of Symbolics, Inc., C8mbridge, Massachusetts. 

Copyright C 1984, 1983, Symbolics, Inc. of cambridge, Massachusetts. 
All rights reserved. Printed In USA. 
This document may not be reproduced in whole or In part without the prior written 
consent of Symbolics, Inc. 

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1 



NOTA Notation Conventions 

Symbolics. Inc. February 1984 

Table of Contents 

L Understanding Notation Conventions 

2. Notation Conventions Quick Reference 

Index 

Page 

1 

7 

9 



NOTA Notation Conventions 

Symbolics. Inc. February 1984 

1. Understanding Notation Conventions 

You should understand several notation conventions before reading the 
documentation set. 

The symbol "=>" indicates Lisp evaluation in examples. Thus, when you see 
"foo =>nil", this means the same thing as "the result of evaluating foo is (or 
would have been) nil". 

The symbol "==>" indicates macro expansion in examples. Thus, 
"(foo bar) ==> (aref bar 0)" means the same thing as "the result of macro
expanding (foo. bar) is (or would have been) (aref bar 0)". 

A typical description of a Lisp function looks like this: 

1 

function-name argl arg2 &optional arg3 (arg4 (foo 3)) Function 
The function-name function adds together argl and arg2, and then 
multiplies the result by arg3. If arg3 is not provided, the multiplication isn't 
done. function-name then returns a list whose first element is this result 
and whose second element is arg4. Examples: 

(function-name 3 4) => (7 4) 
(function-name 1 2 2 'bar) => (6 bar) 

Note the use of fonts (typefaces). The name of the function is in boldface in the 
first line of the description, and the arguments are in italics. Within the text, 
printed representations of Lisp objects are in the same boldface font, such as 
(+ foo 56), and argument references are italicized, such as argl and arg2. A 
different, fixed-width font, such as function-name, is used for Lisp examples that are 
set off from the text, as well as to indicate user input. 

The word "&optional" in the list of arguments tells you that all of the arguments 
past this point are optional. The default value can be specified explicitly, as with 
arg4, whose default value is the result of evaluating the form (foo 3). If no default 
value is specified, it is the symbol nil This syntax is used in lambda-lists in the 
language. (For more information on lambda-lists: See the section "Functions: 
Evaluation".) Argument lists may also contain "&rest", which is part of the same 
syntax. 

The descriptions of special forms and macros look like this: 

do-three-times form Special Form 
This evaluates form three times· and returns the result of the third 
evaluation. 



2 NOTA Notation Conventions 

Symbolics, Inc. February 1984 

witb-foo-bound-to-nil form... Macro 
This evaluates the forms with the symbol foo bound to nil. It expands as 
follows: 

(with-foo-bound-to-nil 
forrnl 
forrn2 ... ) == > 

(let ((foo nil)) 
forrnl 
forrn2 ... > 

Since special forms and macros are the mechanism by which the syntax of Lisp is 
extended, their descriptions must describe both their syntax and their semantics; 
unlike functions, which follow a simple consistent set of rules, each special form is 
idiosyncratic. The syntax is displayed on the first line of the description using the 
following conventions. Italicized words are names of parts of the form that are 
referred to in the descriptive text. They are not arguments, even though they 
resemble the italicized words in the first line of a function description. Parentheses 
("( )") stand for themselves. Square brackets ("[ )") indicate that what they enclose 
is optional. Ellipses (" ... ") indicate that the subform (italicized word or parenthesized 
list) that precedes them may be repeated any number of times (possibly no times at 
all). Curly brackets followed by ellipses ("{ } ••• ") indicate that what they enclose may 
be repeated any number of times. Thus, the first line of the description of a special 
form is a "template" for what an instance of that special form would look like, with 
the surrounding parentheses removed. The syntax of some special forms is 
sufficiently complicated that it does not fit comfortably into this style; the first line 
of the description of such a special form contains only the name, and the syntax is 
given by example in the body of the description. 

The semantics of a special form includes not only what it "does for a living'', but also 
which subforms are evaluated and what the returned value is. Usually this is 
clarified with one or more examples. 

A convention used by many special forms is that all of their subforms after the first 
few are described as "body ••• ". This means that the remaining subforms constitute 
the "body" of this special form; they are Lisp forms that are evaluated one after 
another in some environment established by the special form. 

This imaginary special form exhibits all of the syntactic features: 

twiddle-frob [({rob option ... )] {parameter value}... Special Form 
This twiddles the parameters of {rob, which defaults to default-frob if not 
specified. Each parameter is the name of one of the adjustable parameters of 
a frob; each value is what value to set that parameter to. Any number of 
parameter/value pairs may be specified. If any options are specified, they are 
keywords that select which safety checks to override while twiddling the 
parameters. If neither {rob nor any options are specified, the list of them 
may be omitted and the form may begin directly with the first parameter 
name. 



NOTA Notation Conventions 

Symbolics, Inc. February 1984 

frob and the values are evaluated; the parameters and options are syntactic 
keywords and are not evaluated. The returned value is the frob whose 
parameters were adjusted. An error is signalled if any safety checks are 
violated. 

Methods, the message-passing equivalent of ordinary Lisp's functions, are described 
in this style: 

3 

message-name argl arg2 &optional arg3 (of flavor-name) Method 
This is the documentation of the effect of sending a message named 
message-name, with arguments argl, arg2, and arg3, to an instance of 
flavor flavor-name. 

Descriptions of variables ("special" or "global" variables) look like this: 

typical-variable Variable 
The variable typical-variable has a typical value .... 

Most numbers shown are in octal radix (base eight). Spelled out numbers and 
numbers followed by a decimal point are in decimal. This is because, by default, 
Zetalisp types out numbers in base 8; do not be surprised by this. If you wish to 
change it: See the section "What the Reader Accepts". 

All uses of the phrase "Lisp reader", unless further qualified, refer to the part of 
Lisp that reads characters from 1/0 streams (the read function), and not the person 
reading this documentation. 

Several terms that are used widely in other references on Lisp are not used much in 
this document set, as they have become largely obsolete and misleading. For the 
benefit of those who may have seen them before, they are: "S-expression", which 
means a Lisp object; "Dotted pair", which means a cons; and "Atom", which means, 
roughly, symbols and numbers and sometimes other things, but not conses. For 
definitions of the terms "list" and "tree": See the section "Manipulating List 
Structure". 

The characters acute accent (') (also called the single quote character) and semicolon 
(;) have special meanings when typed to Lisp; they are examples of what are called 
macro characters. Though the mechanism of macro characters is not of immediate 
interest to the new user, it is important to understand the effect of these two, 
which are used in the examples. 

When the Lisp reader encounters a single quote, it reads in the next Lisp object and 
encloses it in a quote special form. That is, 'too-symbol turns into 
(quote too-symbol), and '(cons 'a 'b) turns into 
(quote (cons (quote a) (quote b))). The reason for this is that "quote" would 
otherwise have to be typed in very frequently and would look ugly. 

The semicolon is used as a commenting character. When the Lisp reader sees one, 
the remainder of the line is discarded. 



4 NOTA Notation Conventions 

Symbolics. Inc. February 1984 

The character "/" is used for quoting strange characters so that they are not 
interpreted in their usual way by the Lisp reader, but rather are treated the way 
normal alphabetic characters are treated. So, for example, in order to give a "/" to 
the reader, you must type "//", the first "/" quoting the second one. When a 
character is preceded by a "/" it is said to be slashified. Slashifying also turns off 
the effects of macro characters such as single quote and semicolon. 

The following characters also have special meanings, and may not be used in symbols 
without slashification. These characters are explained in detail elsewhere: See the 
section "Printed Representation". 

Double-quote delimits character strings. 

# Number-sign introduces miscellaneous reader macros. 

Backquote is used to construct list structure. 

Comma is used in conjunction with backquote. 

Colon is the package prefix. 

Characters between pairs of vertical-bars are quoted. 

® Circle-cross lets you type in characters using their octal codes. 

All Lisp code in this document set is written in lowercase. In fact, the reader turns 
all symbols into uppercase, and consequently everything prints out in uppercase. 
You may write programs in whichever case you prefer. 

Various symbols have the colon (:) character in their names. By convention, all 
keyword symbols in the Lisp Machine system have names starting with a colon. 
The colon character is not actually part of the print name, but is a package prefix 
indicating that the symbol belongs to the package with a null name, which means 
the keyword package. (For more information on colons: See the document 
Packages. Until you read that document, just pretend that the colons are part of 
the names of the symbols.) 

The document set describes a number of internal functions and variables, which can 
be identified by the "si:" prefix in their names. The "si" stands for 
"system-internals". These functions and variables are documented because they 
are things you sometimes need to know about. However, they are considered 
internal to the system and their behavior is not as guaranteed as that of everything 
else. 

Zetalisp is descended from Maclisp, and a good deal of effort was expended to try to 
allow Maclisp programs to run in Zetalisp. Throughout the documentation, there 
are notes about differences between the dialects. For the new user, it is important 
to note that some functions herein exist solely for Maclisp compatibility; they should 
not be used in new programs. Such functions are clearly marked in the text. 

The Lisp Machine character set is not the same as the ASCII character set used by 



NOTA Notation Conventions 5 

Symbolics, Inc. February 1984 

most operating systems. For more information: See the section "The Character 
Set". The important thing to note for now is that the Newline character is the 
same as Return, and is represented by the number 215 octal. (This number should 
not be built into any programs.) Unlike ASCII, there are no "control characters" in 
the character set; Control and Meta are merely things that can be typed on the 
keyboard. 

Many of the functions refer to "areas". The area feature is of interest only to 
writers of large systems, and can be safely disregarded by the casual user. For more 
information: See the document Storage Management. 



6 NOTA Notation Conventions 

Symbolics, Inc. February 1984 



NOTA Notation Conventions 7 

Symbolics, Inc. February 1984 

2. Notation Conventions Quick Reference 

Modifier keys are designed to be held down while pressing other keys. They do not 
themselves transmit characters. A combined keystroke like META-X is pronounced 
"meta x" and written as ri-x. This notation means press the META key and, while 
holding it down, press the x key. 

Modifier keys are abbreviated as follows: 
Key Abbreviation 
CTRL c-
META r.-
SUPER s-
HYPER h-
SHIFT sh-
SYMBOL SY".'" 

The keys with white lettering (like x or SELECT) all transmit characters. 
Combinations of these keys are meant to be pressed in sequence, one after the 
other. This sequence is written as, for example, SELECT L. This notation means 
press the SELECT key, release it, and then press the L key. 

This document set uses the following notation conventions: 
Appearance in document Representing 
send, chaos:host-up Printed representation of Lisp objects in running text. 
RETURN, ABORT, c-F Keyboard keys. 
SPACE Space bar. 
1 og in Literal type-in. 
( make-symbo 1 • foo") Lisp code examples. 
(function-name argl arg2) 

argl 

arg2 
Undo, Reply, Start 

Insert File (M-X) 

[Map Over] 
(L), (R2) 

Syntax description of the invocation of function-name. 
Argument to the function function-name, usually 
expressed as a word that reflects the type of argument 
(for example, string). 
Optional argument; you can leave it out. 
Command names in Zmacs, Zmail, and the front-end 
processor (FEP) appear with the initial letter of each word 
capitalized. 
Extended command names in Zmacs and Zmail. Use M-X 
to invoke one. 
Menu items. 
Mouse clicks: L=left, L2=click sh-left, M=middle, M2=click 
sh-middle, R=right, R2=click sh-right. 
(You can also double click on a key rather than pressing 
the SHIFT key while clicking on it.) 



8 NOTA Notation Conventions 

Symbolics, Inc. February 1984 

The following conventions are used to represent mouse actions: 

1. Square brackets delimit a mouse command. 

2. Slashes (/) separate the members of a compound mouse command. 

3. The standard clicking pattern is as follows: 

• For a single menu item, always click left. For example, the following two 
commands are exactly the same: 

[Previous] 
[Previous (L)] 

For a compound command, always click right on each menu item except 
the last, where you click left. For example, the following two compound 
commands are exactly the same: 

[Map Over I Move I Hardcopy] 
[Map Over (R) I Move (R) I Hardcopy (L)] 

4. When a command does not follow the standard clicking order, the notation for 
the command shows explicitly which button to click. For example: 

[Map Over I Move (M)] 
[Previous CR) 1 



NOTA Notation Conventions 9 

Symbolics, Inc. February 1984 

Index 

A A A 
Acute accent 1 

Acute accent 
Atom 1 

B B B 
Backquote constructing list structure 

Curly brackets 1 
Square brackets 1 

c c c 
Character set 1 

Double-quote character strings 
Macro characters 1 

Special characters 1 
Circle-cross 1 
Colon 1 
Comma 1 
Comments 1 

Back quote constructing list structure 
CONTROL key 1 

Understanding Notation Conventions 1 
Notation Conventions Quick Reference 7 

Curly brackets 1 

D D D 
do-three-times special form 
Dotted pair 1 
Double-quote character strings 

F F F 
do-three-times special form 

twlddle-frob special form 2 
function-name function 

function-name function 
Internal functions 1 

I I 
Internal functions 
Internal variables 

System internals 1 
Number-sign introducing reader macros 



10 NOTA Notation Conventions 

Symbolics, Inc. February 1984 

K K K 
CONTROL key 

META key 

L L L 
Lisp reader 1 

Backquote constructing list structure 1 

M M M 
Maclisp 1 

wlth-foo-bound-to-nll macro 2 
Macro characters 

Number-sign introducing reader macros 1 
Single quotation mark 1 

META key 

N N N 
Newline 1 

Understanding Notation Conventions 
Notation Conventions Quick Reference 7 
Number-sign introducing reader macros 1 

Radix numbers 1 

& & & 
&optional 

p p p 
User package 

Dotted pair 1 
Parentheses 

Q Q Q 
Notation Conventions Quick Reference 7 

Single quotation mark 1 

R R R 
Radix numbers 

Lisp reader 1 
Number-sign introducing reader macros 

Notation Conventions Quick Reference 7 

& & & 
&rest 



NOTA Notation Conventions 11 

Symbolics, Inc. February 1984 

s s s 
S-expression 
Semicolon 1 

Character set 1 
Single quotation mark 
Slash 1 
Slashify 1 
Special characters 1 

do-three-times special form 1 
twlddle-fr'Ob special form 2 

Square brackets 
Double-quote character strings 1 

Backquote constructing list structure 1 
System internals 

T T T 
twlddle-frob special form 2 
typical-variable variable 3 

u u u 
Understanding Notation Conventions 
User package 1 

v v v 
typical-variable variable 3 

Internal variables 1 
Vertical-bars 

w w w 
wlth-foo-bound-to-nil macro 2 



symbolics TM 

LMS Lisp Machine Summary 
3600 Edition 

Release 5.0 Update 

Cambridge, Massachusetts 



Lisp Machine Summary 3600 Edition: Release 
5.0 Update 
# 990075 

February 1984 

This document corresponds to Release 5.0. 

This document was prepared by the Documentation Group of Symbolics, Inc. 

No representation or affirmation of fact contained in this document should be construed 
as a warranty by Symbolics, and its contents are subject to change without notice. 
Symbolics, Inc. assumes no responsibility for any errors that might appear in this 
document. 

Symbolics software described in this document is furnished only under license, and may 
be used only in accordance with the terms of such license. Trtle to, and ownership of, 
such software shall at all times remain in Symbolics, Inc. Nothing contained herein 
implies the granting of a license to make, use, or sell any Symbolics equipment or 
software. 

Symbolics is a trademark of Symbolics, Inc., Gambridge, Massachusetts. 

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. 
All rights reserved. Printed in USA. 
This document may not be reproduced in whole or in part without the prior written 
consent of Symbolics, Inc. 

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 

Table of Contents 

Release 5.0 Update 

Updated Information for Release 5.0 
Introduction 
New Information on Getting Started 
Change to login 
Preferred Way to Warm Boot or Halt 
Complementing the Mouse Documentation Line 
Changes to the Keyboard in Release 5.0 
New SELECT Key Options 
New Terminal Program SELECT T 

Index of Function Keys: Lisp Machine Summary 3600 Edition 
Introduction 
ABORT 
c-ABORT 
M-ABORT 
c-M-ABORT 
BACKSPACE 
CLEAR-INPUT 
COMPLETE 
END 
ESCAPE 
FUNCTION Key: Display and Hardcopy Commands 
FUNCTION Key: Selection and Notification Commands 
FUNCTION Key: Recovering From Stuck States 
HELP 
LINE 
NETWORK 
PAGE 
REFRESH 
RESUME 
RETURN 
RUBOUT 
SELECT 
SUSPEND 
c-SUSPEND 
M-SUSPEND 
C-M-SUSPEND 
SYMBOL 
TAB 
Keys Not Currently Used 

Page 

33 

34 
34 
34 
34 
34 
34 
35 
35 
35 
37 
37 
37 
37 
37 
37 
37 
37 
37 
38 
38 
38 
39 
41 
41 
41 
41 
42 
42 
42 
42 
42 
42 
42 
42 
42 
43 
43 
43 
43 



LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 33 

Symbolics, Inc. February 1984 

Release 5.0 Update 



34 LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 

Updated Information for Release 5.0 

Introduction 
This section summarizes changes to the 3600 in Release 5.0. 

New Information 
on Getting Started 

As of FEP Version 16, >eonfiguration.fep files are now called 
Boot.boot. Files with the type .fep are now reserved for files that 
the user should never modify. 

See the section "Getting Started". 

Change to login 
The following examples illustrate several options for logging in, 
where whit is your login name. Type all punctuation and 
parentheses as shown. See the section "Getting Started". 

• to log in to the default host machine, using your init file, type 
(login 'whit) 

• to log in to the default host machine, without your init file, type 
(login 'whit :load-init-file nil) 

• to log in to another host machine "sc3", using your init file, type 
(login 'whit :host 'sc3) 

See the function login. 

Preferred Way to 
Warm Boot or Halt 

The preferred way to halt or begin a warm boot of the 3600 is now 
si:halt, not si:%halt. 

You can also press h-c-FUNCTION instead of c-FUNCTION to get to 
the FEP from Lisp. However, si:halt is a better way to stop Lisp 
than h-c-FUNCTION because h-c-FUNCTION could interrupt disk 1/0 
operations. 

See the section ''Warm Booting". See the section "Halting". See 
the function si:halt. 

Complementing 
the Mouse 
Documentation Line 

Press FUNCTION Pl-C to complement the mouse documentation line. 
Formerly, you pressed FUNCTION 1 c. 

See the section "Mouse Documentation Line". 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 35 

Symbolics. Inc. February 1984 

Updated Information for Release 5.0, cont'd. 

Changes to the 
Keyboard in 
Release 5.0 

Some 3600 keys, the characters they generate, and their functions 
have changed in Release 5.0. For details: See the section 
"Hardware Changes". 

New SELECT Key Options 
SELECT T invokes a new terminal program that replaces the former 
Telnet and Supdup programs (that were invoked by SELECT T and 
SELECT s, respectively). See the section "New Terminal Program 
(SELECT T)". 

SELECT x makes the Flavor Examiner available. See the section 
"Flavor Examiner". 

New Terminal 
Program SELECT T 

The new terminal program incorporates the functions of the former 
Telnet and Supdup programs. It is available on SELECT T. Since it 
uses the generic network system, it allows access (in the presence 
of appropriate gateways) via autodialers to dialups, as well as direct 
Chaosnet and TCP through a gateway. 

The prompt is still Connect to host:. To this you simply type the 
name of any host. (Naming of hosts, setting up host databases, 
declaring host addresses and supported login services are covered in 
the new network documentation.) The network system picks the 
best login service supported by the host and the optimum route to 
it. The specification of a particular gateway and special contact 
name or port using~ and I is gone. Such control arguments and 
new higher-level ones (such as a particular protocol to use, rather 
than the default) are naturally the province of a command 
processor and will be added to the terminal program when the 
system includes a command processor. Pressing HELP in response to 
the initial prompt gives you input editor documentation. 

Once connected, commands are given by pressing NETWORK and 
another single character. 

The following commands are available: 

A send an ATTN (in Telnet, a new Telnet 
"Interrupt Process"). 

D Disconnect. 

L Log out of remote host, and break the connection. 

Q Disconnect and deselect this window. <Quit) 



36 UIS Usp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 

Updated Information for Release 5.0, cont'd. 

M Toggle MORE processing. 

More complicated commands are entered with the extended 
command, NETIJORK x. This command would use a command 
processor; in the interim <Release 5.0), this command uses a choose 
variable values window, one of whose variables allows you to control 
overstrike processing (formerly available as NETIJORK o). 

NETIJORK x provides the capability to change the following: 

• the escape char~ter 

• whether characters overstrike or erase 

•whether MORE processing is enabled 

• in the case of Telnet, whether lmlac terminal codes are 
interpreted in host output 

These were all formerly single-letter commands. There is also a 
facility of logging host output to a file (wallpaper). 

It is no longer possible to type tlETIJORK to the Connect to host: 
prompt to change things before connecting. Again, this deficiency 
will be made up by providing full command processing. 



LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 37 

Symbolics, Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition 

. Introduction 

ABORT 

c-ABORT 

M-ABORT 

c-M-ABORT 

BACKSPACE 

CLEAR-INPUT 

COMPLETE 

This is a quick reference guide to the 3600's function keys. It 
supersedes a similar guide in the form.er document, Operating the 
Lisp Machine. 

For more information on keys: See the section "Hardware 
Changes". 

When this is read by a program, the program aborts what it is 
doing and returns to its "command loop". Lisp Listeners, for 
example, respond to ABORT by throwing back to the read-eval-print 
loop (top level or break). Note that ABORT takes effect whfill.jtjs 
read, not when it is pressed; it will not stop a running program. 

Aborts the operation currently being performed by the process you 
,g~~i!Pmg-.~t~-lliimedlateiy(iioiwlieii-ltlSreaaJ.- ·· :For .. illstance, this 
will force a Lisp Listener to abandon the present computation and 
return to its read-eval-print loop. 

When this is read by a program, the program aborts what it is 
d~!!!g ___ ~d_!~~~~~~~!!g!! __ ~J~y~~-s -~!-iii~~Q.~JP ~~--~~p-- l~y~l" . __ H_ 

Lisp Listeners, for example, throw completely out of their 
computation, including any break levels, then start a new read
eval-print loop. 

A combination of c-ABORT and M-ABORT, ~bi~jm._m~iately.thro.ws out 
of_~_! ley~~~~-~<?~e\ltation and restarts t~E!.PJ:"9Ce~~--YQ!!_~ypeJ~~jt. 

Moves the cursor back so that you can superpose two characters, 
should you really want to. 

Usually flushes the input expression you are typing. 

Completes partially typed commands. 



38 LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

END 

ESCAPE 

FUNCTION Key: 

Marks the end of input to many programs. Single-line input may 
be ended with RETURN, but END will terminate multiple-line input 
where RETURN is useful for separating lines. The END key does not 
apply when typing in Lisp expressions, which are self-delimiting. 
END terminates input you have edited: See the document Using the 
Input Editor. 

Displays the input editor history. c-ESCAPE displays the global kill 
history. Sends Escape/ Altmode (octal 033) in the Terminal 
program. 

Display and 
Hardcopy Commands 

This key is a prefix for a family of commands relating to the 
display, which you may type at any time, no matter what program 
you are running. The FUNCTION commands that control screen 
display and hardcopying are: 

RUBOUT Does nothing; press this key to cancel FUNCTION if you 
typed the latter by accident. 

CLEAR-INPUT Discards typeahead. 

REFRESH 

A 

B 

c 

c-C 

F 

H 

Clears and redisplays all windows. 

Arrests the process shown in the status line. 
FUNCTION - A resumes the process. 

Buries the currently selected window, if any - that is, 
it moves it underneath all other windows. This usually 
brings up some other window, which is automatically 
selected. 

Complements the entire screen. An argument of 1 
means white-on-black; an argument of O means black
on-white. 

Complements the selected window, with the same 
argument as FUNCTION c. 
Complements the mouse documentation line, with the 
same argument as FUNCTION c. 
Shows users logged in on the associated machine. With 
numeric arguments, it shows users logged in on various 
machines. 

Shows status of network hosts. With an argument, it 
prompts for hosts. 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 39 

Symbolics. Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

FUNCTION Key: 

M Controls global MORE processing. No argument means 
toggle, 0 means turn off, 1 means turn on. 

c-M Controls MORE processing for the selected window. 
The arguments are the same as for FUNCTION M. 

o Selects another exposed window. 

Q Hardcopies the entire screen. 

c-Q Hardcopies the selected window . 

..--Q Hardcopies the entire screen, minus the status and 
mouse documentation lines. 

Selection and 
Notification Commands 

The FUNCTION commands that control window selection and 
notification are: 
s Selects the most recently selected window. With an 

argument n (default is 2), it selects the nth previously 
selected window and rotates the top n windows. An 
argument of 1 rotates through all windows (a negative 
argument rotates in the other direction); 0 selects a 
window that requires attention (for example, to report 
an error). 

T Controls the selected window's input and output 
notification characteristics. If an attempt is made to 
output to a window when it is not exposed, one of 
three things can happen: the program can simply wait 
until the window is exposed, it can send a notification 
that it wants to type out and then wait, or it can 
quietly type out "in the background"; when the window 
is next exposed the output will become visible. 
Similarly, if an attempt is made to read input from a 
window that is not selected (and has no typed-ahead 
input in it), the program can either wait for the 
window to become selected, or send a notification that 
it wants input and then wait. 

The FUNCTION T command controls these characteristics 
based on its numeric argument, as follows: 
no argument 

0 

H output notification is off, turns 
input and output notification on. 
Otherwise turns input and output 
notification off. This essentially 
toggles the current state. 

Turns input and output notification 
off. 



40 LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics. Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

1 

2 

3 

4 

5 

Tums input and output notification 
on. 

Tums output notification on, and 
input notification off. 

Tums output notification off, and 
input notification on. 

Allows output to proceed in the 
background, and turns input 
notification on. 

Allows output to proceed in the 
background, and turns input 
notification off. 

Controls the status line. With no argument, the status 
line is redisplayed. The numeric arguments control 
what process the status line watches. The op~ions are: 

0 Gives a menu of all processes, and 
freezes the status line on the process 
you select. When the status line is 
frozen on a process, the name of that 
process appears where your user ID 
normally would (next to the date and 
time), and the status line does not 
change to another process when you 
select a new window. 

1 

2 

The status line watches whatever 
process is talking to the keyboard, and 
changes processes when you select a 
new window. This is the default 
initial state. 

Changes the status line so that it 
displays the name of the process 
instead of the name of the user. This 
also freezes the status line on that 
process; normally the status line 
switches to display a different process 
whenever the window system tells it 
to. 

Use this if you see an unexpected 
state in the status line. It will help 
you fmd out what process is in that 
state; you may find that you are not 
talking to the process you think you 
should be. 



LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 41 

Symbolics, Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

3 

4 

FUNCTION Key: 

Rotates the status line among all 
processes. 

Rotates the status line in the other 
direction. 

Recovering From 
Stuck States 

HELP 

LINE 

NETl.IORK 

The following FUNCTION commands should all be used with caution. 
ESCAPE 

c-R 

SUSPEND 

c-T 

Helps you recover from stuck states such, as "Output 
Hold" and "Sheet Lock". 

Arrests all processes except the one shown in the 
status line and critical system processes, such as the 
keyboard and mouse processes. FUNCTION - c-R 
resumes all processes arrested by this command. 

Gets to the cold-load stream. 

Deexposes temporary windows. This is useful if the 
system seems to be hung because there is a temporary 
window on top of the window that is trying to type 
out. 

c-CLERR-lttPUT 
Clears window system locks. This is a last resort, 
although not as drastic as warm booting. Use this 
when none of the windows will talk to you, when you 
cannot get a System menu, and so on. 

Usually gets you some online documentation or programmed 
assistance. 

The function of this key varies considerably. It is used as a 
command by the Debugger, and sends a line feed character in the 
Terminal program. 

This key is used to get the attention of the Terminal program. As 
such it functions as a command prefix. You must be connected to 
a ho,st via the Terminal program before you can use this key. 



42 UIS Usp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

PAGE 

REFRESH 

RESUME 

RETURN 

RUBOUT 

SELECT 

SUSPEND 

c-SUSPEND 

M-SUSPEND 

In Zmacs (in searches and after c-Q) this key inserts a page 
separator character, which displays as "page" in a box. 

Usually erases and refreshes the selected window. In Zmacs (in 
searches and after c-Q) this key inserts a page separator character, 
which displays as "page" in a box. 

Continues from the break function and the Debugger. In the 
Terminal program this sends a backspace character. 

"Carriage return" or end of line. Exact significance may vary. 

Usually erases the last character typed. 

This key is a prefix for a family of commands, generally used to 
select a window of a specified type, such as a Lisp Listener or 
Zmail. For more information, press SELECT HELP at any window. 

Usually forces the process you are typing at into a break read-eval
print loop, so that you can see what the process is doing, or stop it 
temporarily. The effect occurs when the character is read, not 
immediately. Press RESUME to continue the interrupted computation 
(this applies to the three modified forms of the SUSPEND key as 
well). 

This is like SUSPEND, but takes effect immediately rather than when 
it is read. 

Forces the process you type it at into the Debugger when it is read. 
It should type out ">>BREAK" and the Debugger prompt "+". You 
can poke around in the process, then press RESUME or c-c to 
continue. 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 43 

Symbolics. Inc. February 1984 

Index of Function Keys: Lisp Machine Summary 3600 Edition, cont'd. 

c-rra-SUSPEND 

SYMBOL 

TAB 

Forces the process you type it at into the Debugger, whether or not 
it is running. 

Acts as a modifier key to produce special characters. Pressing 
syrra-HELP produces a display of special function and special character 
keys. 

This key is only sometimes defined. Its exact function depends on 
context, but in general it is used to move the cursor right to an 
appropriate point. 

Keys Not 
Currently Used 

The following keys currently have no function: 
SCROLL 
MODE-LOCK 
REPEAT 

The following keys are reserved for use by the user (for example, to 
put custom editor commands or keyboard macros on): 
CIRCLE 
SQUARE 
TRIANGLE 

The following key is reserved for functions local to the console: 
LOCAL 

For more information: See the section "Keys Not Used by 
Standard Software". 



44 LMS Usp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics, Inc. February 1984 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 45 

Symbolics, Inc. February 1984 

Index 

• • • 
.fep file type 34 

3 3 3 
Index of Function Keys: Lisp Machine Summary 3600 Edition 37 

5 5 5 
Changes to the Keyboard in Release 5.0 35 

Introduction: Updated Information for Release 5.0 34 
Updated Information for Release 5.0 34 

Release 5.0 Update 33 

> > > 
)configuration.fep files 34 

A A A 
ABORT 37 

B B B 
BACKSPACE 37 

Preferred Way to Warm Boot or Hatt 34 
Boot.boot files 34 

c c c 
c-ABORT 37 
c-m-ABORT 37 
c-m-SUSPENO 43 
c-SUSPENO 42 
Change to logln 34 
Changes to the Keyboard In Release 5.0 35 
CLEAR-INPUT 37 

NETWORK X command 35 
FUNCTION Key: Display and Hardcopy Commands 38 

FUNCTION Key: Selection and Notification Commands 39 
Complementing the Mouse Documentation Line 34 
COMPLETE 37 

Keys Not Currently Used 43 



46 LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics. Inc. February 1984 

D D D 
FUNCTION Key: Display and Hardcopy Commands 38 

Complementing the Mouse Documentation Line 34 

E E E 
Index of Function Keys: Lisp Machine Summary 3600 Edition 37 

ENO 38 

F 

G 

H 

I 

ESCAPE 38 
Flavor Examiner 35 

Getting to the 
.fep 

}configuration. fep 
Boot.boot 

FUNCTION Key: Recovering 
log In 

sl:hatt 

Introduction: Index of 
Index of 

F 

G 

FEP 34 
file type 34 
files 34 
files 34 
Flavor Examiner 35 
From Stuck States 41 
function 34 
function 34 
FUNCTION Key: Display and Hardcopy 

Commands 38 
FUNCTION Key: Recovering From Stuck States 41 
FUNCTION Key: Selection and Notification 

Commands 39 
Function Keys 37 
Function Keys: Lisp Machine Summary 3600 

Edition 37 

F 

G 
New Information on Getting Started 34 

Getting to the FEP 34 

Preferred Way to Warm Boot or 
sl: 

FUNCTION Key: Display and 

Introduction: 

Introduction: Updated 
Updated 

New 

H 

I 

Halt 34 
halt function 34 
Hardcopy Commands 38 
HELP 41 

Index of Function Keys 37 

H 

Index of Function Keys: Lisp Machine Summary 3600 
Edition 37 

Information for Release 5.0 34 
Information for Release 5. O 34 
Information on Getting Started 34 
Introduction: Index of Function Keys 37 
Introduction: Updated Information for Release 5.0 34 



LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 47 

Symbolics, Inc. February 1984 

K K K 
SELECT T key 35 
SELECT X key 35 

New SELECT Key Options 35 
FUNCTION Key: Display and Hardcopy Commands 38 
FUNCTION Key: Recovering From Stuck States 41 
FUNCTION Key: Selection and Notification Commands 39 

Changes to the Keyboard in Release 5.0 35 
Introduction: Index of Function Keys 37 

Keys Not Currently Used 43 
Index of Function Keys: Lisp Machine Summary 3600 Edition 37 

L L L 
LINE 41 

Complementing the Mouse Documentation Line 34 
Index of Function Keys: Lisp Machine Summary 3600 Edition 37 

Logging in 34 
Change to login 34 

logln function 34 

M M M 
m-ABORT 37 
m-SUSPEND 42 

Index of Function Keys: Lisp Machine Summary 3600 Edition 37 
Complementing the Mouse Documentation Line 34 

N N N 
NETWORK 41 
NETWORK x command 35 
New Information on Getting Started 34 
New SELECT Key Options 35 
New Terminal Program SELECT T 35 

Keys Not Currently Used 43 
FUNCTION Key: Selection and Notification Commands 39 

0 0 0 
New SELECT Key Options 35 

p p p 
PAGE 42 
Preferred Way to Warm Boot or Halt 34 

Supdup program 35 
Telnet program 35 

New Terminal Program SELECT T 35 



48 

R 

s 

T 

u 

w 

x 

LMS Lisp Machine Summary 3600 Edition: Release 5.0 Update 

Symbolics. Inc. February 1984 

FUNCTION Key: 

Changes to the Keyboard In 
Introduction: Updated Information for 

Updated Information for 

New 
New Terminal Program 

FUNCTION Key: 

New Information on Getting 
FUNCTION Key: Recovering From Stuck 

FUNCTION Key: Recovering From 
Index of Function Keys: Lisp Machine 

R 

s 

T 

Recovering From Stuck States 41 
REFRESH 42 
Release 5.0 35 
Release 5.0 34 
Release 5.0 34 
Release 5.0 Update 33 
RESUME 42 
RETURN 42 
RUBOUT 42 

SELECT 42 
SELECT Key Options 35 
SELECT T 35 
SELECT T key 35 
SELECT X key 35 
Selection and Notification Commands 39 
sl:hatt function 34 
Started 34 
States 41 
Stuck States 41 
Summary 3600 Edition 37 
Supdup program 35 
SUSPEND 42 
SYMBOL 43 

New Terminal Program SELECT T 35 
SELECT T key 35 

TAB 43 
Telnet program 35 

New Terminal Program SELECT T 35 
.fep file type 34 

u 
Release 5.0 Update 33 

Updated Information for Release 5.0 34 
Introduction: Updated Information for Release 5.0 34 

Keys Not Currently Used 43 

w 
Preferred Way to Warm Boot or Halt 34 

Preferred Way to Warm Boot or Halt 34 

x 
NETWORK x command 35 

SELECT X key 35 

R 

s 

T 

u 

w 

x 



symbolics TM 

3600 Notes on the 3600 
for LM-2 Users 

Cambridge, Massachusetts 



Notes on the 3600 for LM-2 Users 
# 990105 

February 1984 

This document corresponds to Release 5.0. 

This document was prepared by the Documentation Group of Symbolics, Inc. 

No representation or affirmation of fact contained In this document should be construed 
as a warranty by Symbolics, and Its contents are subject to change without notice. 
Symbolics, Inc. assumes no responsibility for any errors that might appear in this 
document. 

Symbolics software described In this document Is furnished only under license, and may 
be used only In accordance with the terms of such license. Trtle to, and ownership of, 
such software shall at all times remain In Symbolics, Inc. Nothing contained herein 
implies the granting of a license to make, use, or sell any Symbolics equipment or 
software. 

Symbolics is a trademark of Symbolics, Inc., cambrldge, Massachusetts. 

Copyright C 1984, 1983, Symbolics, Inc. of Cambridge, Massachusetts. 
All rights reserved. Printed in USA. 
This document may not be reproduced In whole or In part without the prior written 
consent of Symbolics, Inc. 

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Table of Contents 

Page 

L Introduction to the 3600 1 

1.1 Perforin.ance 1 

2. Hardware Changes 3 

2.1 The 3600 Keyboard 3 
2.1.1 LM-2 Keys That Do Not Exist on the 3600 3 
2.1.2 Renamed Keys 5 
2.1.3 Keys Not Used by Standard Software 5 
2.1.4 No Audible Tone Yet 5 
2.1.5 Major Changes in the Keyboard 5 
2.1.6 Supdup Key Mappings 8 
2.1.7 Symbol Characters on the LM-2 and 3600 10 

2.2 Data Forin.at 11 
2.3 Peripherals 11 

3. Software Changes 13 

3.1 New Compiler 13 
3.1.1 Introduction 13 
3.1.2 Incompatible Changes 13 
3.1.3 New Features 14 
3.1.4 Internals 14 

3.2 Floating-point Numbers 15 
3.2.1 Floating Point on the LM-2 15 
3.2.2 Floating Point on the 3600 15 
3.2.3 typep on the LM-2 and the 3600 16 

3.3 self on the LM-2 and the 3600 17 
3.4 Arrays 17 

3.4.1 Change in Array Referencing 17 
3.4.2 New Primitives Replace apply and lexpr-funcall on Arrays 18 
3.4.3 Array Types on the 3600 18 
3.4.4 Subscript Bounds Checking 19 

3.5 Fonts 19 
3.6 Subprimitives 19 

3.6.1 General lnforin.ation 19 
3.6.2 Data Types 20 
3.6.3 Byte Specifiers 21 
3.6.4 Symbols Specific to the LM-2 22 
3.6.5 New Subprimitives: sys:%r1D1um and sys:%flonum 22 



ii 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

3.6.6 Analyzing Structures Remains the Same 23 
3.6. 7 Subprimitives Not Existing on the 3600 23 
3.6.8 Locking Subprimitive 24 
3.6.9 New Subprimitives 24 
3.6.10 Storage Layout Changes 25 
3.6.11 Function-calling Subprimitives 25 

4. Current Incompatibilities 27 

4.1 Differences Between the LM-2 and 3600 27 
4.1.1 Package Differences 27 
4.1.2 Numeric Argument Descriptors 27 
4.1.3 Missing Functions 27 
4.1.4 Nonlocal Exits: Differences Between the LM-2 and 3600 28 
4.1.5 Bit and Byte Manipulations 29 
4.1.6 Stack Groups 29 
4.1. 7 Areas 29 
4.1.8 Maintaining a Patchable System on the LM-2 and 3600 30 
4.1.9 Loading and Saving Disk Partitions 31 
4.1.10 Hash Tables 31 

4.2 Features Not Existing on the 3600 31 
4.2.1 Predicates 31 
4.2.2 Numeric Type Change 31 
4.2.3 Machine-dependent Numeric Functions 32 
4.2.4 entity 32 
4.2.5 Compiler Does Not Support Various Switches 32 
4.2.6 New Function for Putting Data in Compiled Code Files 32 
4.2.7 MAR 32 
4.2.8 set-memory-size 32 
4.2.9 Garbage Collector 32 

Index 33 



3600 Notes on the 3600 for LM-2 Users iii 

Symbolics. Inc. February 1984 

List of Tables 

Table 1. Comparison of the LM-2 and 3600 Keyboards in Release 4 and 6 
Release 5 

Table 2. Supdup Key Mappings on the LM-2 and 3600 9 
Table 3. Comparison of the Symbol Characters 10 



3600 Notes on the 3600 for LM-2 Users 1 

Symbolics, Inc. February 1984 

1. Introduction to the 3600 

Internally, your Symbolics 3600 is veey unlike a Symbolics LM-2; the hardware is 
completely new, the instruction set is different, and most of the operating system 
and Lisp system software have been developed recently. However, the 3600 
reimplements the same user and software environment. If you are familiar with the 
operation and programming of the LM-2, using the 3600 is easy, because in almost 
all these respects it is just like an LM-2. 

This document presents some of the differences between the two systems. Some of 
these differences are fundamental. Others are present because your 3600 is a new 
machine and some aspects of development are unfinished; differences of this latter 
sort will disappear over time as you receive new software updates (and possibly 
hardware updates in a few cases). 

1.1 Performance 

The 3600 architecture is designed to optimize different aspects of performance than 
the LM-2 architecture. Because much less of the 3600 system is written in 
microcode, system performance depends more on measurement and tuning than on 
the extensive use of microcode. 

The 3600 system has not yet received much tuning and performance optimization, 
except in the low-level architectural design. Therefore: 

• Programs whose performance is limited by the architectural limitations of the 
LM-2, such as the slow function call or the slow fixnum arithmetic, run faster 
on the 3600. 

• Programs whose performance is limited by higher-level features of the system 
might run at the same speed on the 3600 as on the LM-2; in some cases they 
might run substantially slower. For example, line drawing, implemented in 
microcode on the LM-2, is written in Lisp on the 3600. Therefore, the QIX 
program, available on the hacks:demo menu, runs more slowly on the 3600, 
as it spends most of its time drawing lines. 

Some areas of known lack of tuning include storage allocation, compiler 
optimizations, the compiler itself, paging algorithms, the network, the primitives for 
string operations, graphics primitives, the process scheduler, and real-time tracking of 
the mouse. 



2 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 



3600 Notes on the 3600 for LM-2 Users 3 

Symbolics. Inc. February 1984 

2. Hardware Changes 

2.1 The 3600 Keyboard 

The most obvious difference you will notice between machines is the keyboard. The 
3600 keyboard has fewer keys; however, many of the keys removed were not actually 
used on the LM-2. In Release 5.0, system software performs a mapping of 3600 keys 
into equivalent LM-2 keys. 

Substantial changes have been made to the arrangement of the 3600 keyboard in 
Release 5; for example, some keys have been deleted, others perform new or 
different functions, some keytops have been replaced. 

2.1.1 LM-2 Keys That Do Not Exist on the 3600 

The following keys do not exist on the 3600. In Release 5.0, these keys are not 
used by the software, so they are not missed on the 3600. 

Some of these keys are explained in greater detail below. 

Key 

CALL 

The four Roman numeral keys 
The four "hand" keys 
ALT-LOCK 
CALL 
MACRO 
QUOTE 
STOP-OUTPUT 
HOLD-OUTPUT 
STATUS 
DELETE 
ALTMODE 
GREEK 

LM-2 

Use TERMINAL BREAK to get to the 
the cold-load stream. 

3600 

Use FUNCTION SUSPEND to get to 
cold-load stream. 

HOLD-OUTPUT Use TERMINAL AL TMODE to request Use FUNCTION ESCAPE to request 

STATUS 

assistance when the window system assistance when the window system 
is stuck. is stuck. 

STATUS displays the input editor 
history. c-STATUS displays the 

ESCAPE displays the input editor 
history. c-ESCAPE displays the 



4 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

global kill history. global kill history. 

ALTMODE Escape (labelled AL TMODE) is a Use COMPLETE for command 
synonym for the Complete character completion. 
when both End and Complete are 
possible, and is a synonym for End 
otherwise (editor Search commands). 

Network remote-login software uses Network remote-login software uses 
Altmode as 33. Escape as 33. 

The "specify new user name" The "specify new user name" 
response to the password query is response to the password query 
on the AL TMODE key. is on the ESCAPE key. 

MACRO Used by keyboard-macro streams as a 
command prefix. This is different 
from c-X, because it works even in a 
noncommand context (for example, in 
the middle of an editor search string) 
and is different from FUNCTION, 
because it is associated with a partic-
ular stream, not asynchronous. 

The Macro Escape character is still c-M-FUNCTION replaces MACRO in 
the MACRO key. the editor and Zmail. 

QUOTE Not used significantly by the Not used significantly by the 
current software. current software. 

DELETE Not used significantly by the 
standard software. DELETE is 
the Complete character. 



3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

2.1.2 Renamed Keys 

The following keys have been renamed for clarity: 

LAf-2 3600 

TERMINAL 
SYSTEM 
BREAK 
TOP 
OVERSTRIKE 
CLEAR-SCREEN 

FUNCTION 
SELECT 
SUSPEND 
SYMBOL 
BACKSPACE 
REFRESH 

2.1.3 Keys Not Used by Standard Software 

Key 

SCROLL 

CIRCLE 

SQUARE 

TRIANGLE 

LOCAL 

Description 

The SCROLL key is not currently used by the software. In a 
future release it might be used by the system as a command for 
scrolling text and other objects within windows. 

The CIRCLE key is reserved for user application programs. 

The SQUARE key is reserved for user application programs. 

The TRIANGLE key is reserved for user application programs. 

The LOCAL key is not currently used by the software. 

MODE-LOCK and REPEAT 
The MODE-LOCK and REPEAT keys are not currently used by the 
software and generate no characters when pressed. You can 
sense whether they are depressed by calling tv:key-state. See 
the function tv:key-state. 

2.1.4 No Audible Tone Vet 

The audio output feature does not currently exist in the 3600, so the keyboard is 
not capable of making a beep. 

2.1.5 Major Changes in the Keyboard 

5 

Table 1, page 6, summarizes the changes in the keyboard from Release 4 to Release 
5 and the differences between the LM-2 and 3600 keyboards for .each release. 

Note that the character codes in the table are in octal. 

2.1.5.1 Some Notes on the Table 
ASCII code 33, which was formerly called Altmode, is now called the Lozenge 
character. The ESCAPE key (ALTMODE key on the LM-2) sends a different code (237) 
than it used to in Release 4. When accessing a host via SELECT T (SYSTEM T on the 



6 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Table 1. Comparison of the LM-2 and 3600 Keyboards in Release 4 and Release 5 

Character Set and Keyboard Changes 

Release 4 Release S 

LM·2 LM·2 3600 Other LM·2 LM·2 3600 3600 Other 

Character Primary Keyeap Keycap Names Primary Keycap Primary Keycap Name• 

Code Name Legend Legend Name Legend Name Legend 

33 Altmode ALTMODE ESCAPE Diamond Lozenge TOP·ALTMODE Lozenge SYMBOL-ESCAPE Diamond 

Alt-mode 
Alt 

201 BREAK BREAK SUSPEND BRK BREAK BREAK BREAK SUSPEND BRK 

203 CALL CALL SOU ARE Ob1oltt• 

20S MACRO MACRO BACKNEXT MACRO MACRO BACKNEXT 
BACK·NEXT BACK-NEXT 

210 Oventrltc OVERSTRIKE BACKSPACE BS Overstrike OVERSTRIKE Back-space BACKSPACE Backspace 

Ovcr·llritc Over-llrite 
Backspace BS 

213 Delete DELETE VT Clear-screen CLEAR·SCREEN Refrecb REFRESH 
Vertical-Tab 

214 Pace CLEAR-SCREEN PAGE Form Pace TOP· Page PAGE Form 
FF CLEAR·SCREEN FF 
Form·Fccd Form-Feed 
Form feed Form feed 

216 QUOTE QUOTE Ob1olt1t 

217 HOLD·OUTPUT HOLD-OUTPUT TRIANGLE Ob1olt1t 

220 STOP·OUTPUT STOP·OUTPUT Ob1oltlt 

223 STATUS STATUS Ob1olt1t 

225 Romaa·l ( Roman·l Roman-I ( Square SOU ARE Romaa·l 
Roman-One Roman·O:ic 

226 Romaa·ll u Roman·2 Roman·ll ll Circle CIRCLE Roman-II 
Roman-Two Roman· Two 

227 Romaa·lll Ill Romaa·3 Roman·lll Ill Triangle TRIANGLE Roman·lll 
Roman· Three Roman-Three 

230 Roman-IV IV Romaa-4 Ob1oltrt 

231 Uand·Up HAND·UP Ob1oltt• 

233 Hand· Left HAND·LEFT Left·Hand Ob1olt1t 

234 Hand·Right HAND·RIGHT Right·Haad Ob1olett 

232 Haad·Down r11-bdow11 Down-Hand Hand-Down Tl11u11bdow11 Scroll SCROLL Down·lland 
237 Altmode ALTMODE Escape ESCAPE Alt-mode 

Alt 
Esc 

240 Complete DELETE Complete COMPLETE 
241 Top-Help TOP·HELP Symbol-Help SYMBOL·HELP 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

LM-2), ESCAPE, COMPLETE, and ALTMODE <LM-2 only) all send the Lozenge character 
(33), which corresponds to the ASCII Escape character (Altmode on the LM-2). In 
the editor, Lozenge is generally treated as a printing character; END and ESCAPE 
(AL TMODE) are used interchangeably to terminate searches and the like; COMPLETE is 
not treated specially in searches. 

Obsolete characters are being phased out of the user interface. LOCAL is used only 
by the FEP, the console, or both. 

7 

The character names Delete and Vt are invalid in Release 5. Code 213 now maps to 
Refresh (Clear-screen on the LM-2). 

The LM-2 does not have separate keys for Page and Refresh. CLEAR-SCREEN 
generates the Refresh character, while TOP CLEAR-SCREEN generates the Page 
character. M-CLEAR-SCREEN inserts a Page character, as it did in Release 4 for 
different reasons. c-Q CLEAR-SCREEN inserted a Page ,character in Release 4, but in 
Release 5 inserts a Refresh character. Also, in the search commands you now have 
to press TOP CLEAR-SCREEN in order to search for a Page character. sh-CLEAR-SCREEN 
works as well here. 

When the name of a key differs between machines, each machine outputs characters 
using its own key name but will accept either name on input. For example, typing 
C format t "-:c" #0210) to a 3600 produces Back-Space, whereas typing it to an LM-2 
produces Overstrike. Both machines, however, accept #\Back-Space and #\overstrike 
as input. Various "historical" names are also accepted on input, for compatibility 
with previous systems, Maclisp, and so forth. However, we do not recommend that 
you use these names. 

2.1.5.2 Summary of Changes to Character Names 
Changes to 3600 (except where noted) since Release 4. 

These character names have new character codes (given in octal): 

Character Code Changed 
From To 

Square 203 225 
Triangle 217 227 
Escape 33 237 
Esc 204 237 
Clear-Screen 1 214 213 
Altmode 33 237 
Alt-mode 33 237 
Alt 33 237 

1LM-2 only. 



8 

These characters have been deleted: 

Delete 
Vertical-Tab 
Vt 
Local 

These are new character names: 

Lozenge 
Circle 
Scroll 
Complete 
Symbol-Help 

These character codes were unused in Release 4: 

Code New character 

237 Escape (Altmode on the LM-2) 
240 Complete (mislabelled Delete on the LM-2) 
241 Symbol-Help (Top-Help on the LM-2) 

2.1.6 Supdup Key Mappings 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 



3600 Notes on the 3600 for LM-2 Users 9 

Symbolics, Inc. February 1984 

Table 2. Supdup Key Mappings on the LM-2 and 3600 

Supdup 
character LM-2 key 3600 key 

Top-B <BRK) BREAK, QUOTE, NETWORK SUSPEND, NETWORK 
Top-C (CLR) CLEAR-INPUT CLEAR-INPUT 
Call CALL, ABORT ABORT 
Top-A (ESC) TERMINAL FUNCTION 
Backnext MACRO, STOP-OUTPUT SCROLL 
Top-H (HELP) HELP HELP 

. Rubout RUBOUT RUBOUT 
Backspace BACKSPACE BACKSPACE 
Tab TAB TAB 
LF LINE LINE 
VT not typeable not typeable 
FF CLEAR-SCREEN PAGE, REFRESH 
CR RETURN RETURN 
Control-S HOLD-OUTPUT c-S 
Control-H RESUME RESUME 
Control-~ END END 
Top-1 I SQUARE 
Top-2 II CIRCLE 
Top-3 III TRIANGLE 
Top-4 IV not typeable 
Top-u HAND-UP not typeable 
Top-d HAND-DOWN not typeable 
Top-I HAND-LEFT not typeable 
Top-r HAND-RIGHT not typeable 
~ ALTMODE ESCAPE, COMPLETE 
none STATUS, SYSTEM SELECT 



10 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

2.1. 7 Symbol Characters on the LM-2 and 3600 

Table 3. Comparison of the Symbol Characters 

Char. Name Release 5 Release 4 Release 5 
LM-2 key 3600 key 3600 key1 

• Center-Dot FRONT-' 2 sy-sh-' sy-' 
J. Down-Arrow TOP-H sy-H 
Cl Alpha CREEK-a sy-sh-A 
fJ Beta CREEK-b sy-sh-B 

" And-sign TOP-Q sy-Q 
.., Not-sign FRONT-~ sy--

• Epsilon CREEK-e sy-sh-E 
1" Pi CREEK-p sy-sh-P 
A Lambda CREEK-1 sy-sh-L 
'Y Gamma CREEK-g sy-sh-C 

' Delta CREEK-d sy-sh-D 
f Up-Arrow TOP-C sy-C 
+ Plus-Minus TOP-: 3 sy-: 
EB Circle-Plus FRONT-HAND-DOI.IN sy-=/+ sy-+ 
00 Infinity TOP-I sy-I 
a Partial-Delta TOP-P sy-P 
c Left-Horseshoe TOP-T sy-T 
::::> Right-Horseshoe TOP-V sy-V 
n Up-Horseshoe TOP-E sy-E 
u Down-Horseshoe TOP-R sy-R 
v Universal-Quantifier TOP-U sy-U 
3 Existential-Quantifier TOP-0 sy-0 
® Circle-X FRONT-HAND-LEFT sy-8/* sy-* 
t Double-Arrow TOP-L sy-L 
+- Left-Arrow TOP-J sy-J 
-+ Right-Arrow TOP-K sy-K 
~ Not-Equals TOP-C sy-C sy-= 
t Lozenge TOP-ALTMODE COMPLETE sy-ESCAPE 
:S Less-Or-Equal TOP-N sy-N sy-, 
> Greater-Or-Equal TOP-M sy-M sy-. 

- Equivalence TOP-B sy-B sy-"" 
v Or-sign TOP-I.I sy-1.1 
I Integral FRONT-/ not typeable sy-/ 

1 Blank lines indicate no change from Release 4 to Release 5. 2 FRONT is the CREEK 
key. 3 Use the : key next to the numeric 1 key. 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

2.2 Data Format 

LM-2 3600 

Fixnums are 24 bits long. Fimums are 32 bits long. 

Word addresses are 24 bits long. Word addresses are 28 bits long. 

On the 3600 the high-order 4 bits of flXIlums and flonums overlap the type-code 
field. Programs that use subprimitives (for example, %p-data-type) to access the 
type code field must take account of this. 

For a discussion of flonums: See the section "Floating-point Numbers". 

2.3 Peripherals 

Peripheral devices currently supported by the 3600 are: 

• The console, including video screen, keyboard, and mouse - but not audio 
output 

•The network (10-Mbit Ethernet) 

• Disk drives 

• The. cartridge tape drive 

• RS-232-compatible serial 1/0 devices 

Tape 110 is supported via the remote tape protocol over the network. Printed 
output is supported via the network. 

11 



12 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

3. Software Changes 

3.1 New Compiler 

3.1.1 Introduction 

The 3600 has a new instruction set and a completely new Lisp compiler to convert 
Lisp programs into this instruction set. The new compiler works the same way as 
the LM-2 compiler; you can use all the same commands to compile functions and 
files. When you invoke these commands on the 3600, the new compiler is used. 

3.1.2 Incompatible Changes 

3.1.2.1 Compiled Code File Types 

13 

The new compiler writes out a different kind of compiled file than the LM-2 
compiler. The results of the 3600 compiler are written to a .bin file. For example, 
compiling the file test.lisp on an LM-2 creates test.qbin, whereas compiling it on the 
3600 produces test.bin. This use of a different type field in the file pathname allows 
a program to be used on both the LM-2 and the 3600, even though neither machine 
can read the other machine's compiled files. 

The canonical type for bin files is :bin. The following table summarizes the file 
types for compiled files on various hosts. 

Host type FUe type for compiled files 

3600 
UNIX 
All other 

.bin 

.bn (.bin is also accepted) 

.BIN 

See the section "Canonical Types in Pathnames". This section contains a discussion 
of canonical types. 

3.1.2.2 Changed Functions 
The functions listed in column 2 of the following table replace old functions. The 
new functions work on both the 3600 and the LM-2. 

Old function Replacement 

fasload si:load-binary-f"tle 
qc-file-load compiler:compile-file-load 
qc-file compiler:compile-file 

If you used the si:unfasl tool on the LM-2, the corresponding tool for the 3600 bin 
files is called si:unbin-file. The output format from si:unbin-file is similar to that 
of si:unfasl but is improved to include disassembled code for any compiled functions 
in the bin file. 



14 3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

3.1.2.3 Assembly Language for the 3600 
The disassemble function is still available on the 3600, and the Inspector and 
Debugger still display disassembled code. The instruction set is different; however, 
the assembly language for the 3600 is very similar to that of the LM-2, and should 
not be hard to understand if you have mastered the reading of LM-2 assembly 
language. The most important difference is the way function calling works. 

The LM-2 uses an "inverted" calling sequence, as follows: 
1. The CALL instruction opens a stack frame. 

2. Argument values are pushed on the stack. 

3. The last argument value is moved to destination D-LAST. 

4. D-LAST starts the function call. 

The 3600 uses a more conventional calling sequence in that the concept of 
destination D-LAST does not exist. 

1. The arguments are all pushed on the stack. 

2. The CALL instruction is then executed. 

3. The CALL instruction (unlike the LM-2's CALL instruction) executes the 
procedure call. 

3.1.3 New Features 

3.1.3.1 Conditional Code 
In some cases it will be necessary to conditionalize pieces of programs so that one 
version runs on the LM-2 and another runs on the 3600. 

To facilitate this, the list returned by (status features) on the 3600 contains the 
Lisp object 3600 (as a fIXnum, 3600 decimal), whereas on the LM-2 it does not. To 
conditionalize a piece of a program so that it runs on both the LM-2 and the 3600, 
use the #+ conditional expressions. 

Example: Suppose a function solarize-screen that on the LM-2 expects coordinate 
pairs of the form (x,y) was changed to expect them in (y, x) order on the 3600. One 
way to write machine-dependent code is to conditionalize it, as follows: 

#+cadr (solarize-screen argl arg2) ;the LM-2 version 
#+3600 (solarize-screen arg2 argl) ;the 3600 version 

For information on sharp-sign (#) abbreviations: See the section "Sharp-sign 
Abbreviations". 

3.1.4 Internals 

The optimizer and style-checker features of the 3600 compiler work differently in the 
LM-2 compiler. You might notice some of the differences, but none requires changes 
in user procedures. The most important difference is that when an optimizer for a 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

function (not for a special form) is run, the argument forms it sees have already 
been optimized. 

3.2 Floating-point Numbers 

3.2.1 Floating Point on the LM·2 

The LM-2 supports two kinds of floating-point numbers: flonums and 
small-flonums. 

15 

The advantage of an LM-2 flonum is that it has sufficient precision and range to be 
considered a single-precision floating-point number in the usually accepted sense -
11 bits of exponent and 32 bits of mantissa. Its disadvantage is that it must be 
implemented as a pointer to a two-word block in memory, which impairs its speed 
and requires a special garbage-collection mechanism. 

The advantage of an LM-2 small-flonum is that it requires no block of memory, 
because it is implemented as an immediate datum. The disadvantage is its limited 
range and precision - 7 bits of exponent and 18 bits of mantissa. 

Both representations have the disadvantage of being nonstandard. 

3.2.2 Floating Point on the 3600 

The 3600 supports IEEE-standard single-precision and double-precision floating-point 
numbers. Single-precision floating-point numbers have a precision of 24 bits, or 
about 7 decimal digits. Their range is from 1.1754944e-38 to 3.4028235e38. Double
precision floating-point numbers have a precision of 53 bits, or about 16 decimal 
digits. Their range is from 2.2250738585072014d-308 to 1. 7976931348623157d308. 

Number objects exist that are outside the upper and lower limits of the ranges for 
single and double precision. Larger than the largest number is +le= (or +ld= for 
doubles). Smaller than the smallest number is -le= (or -ld= for doubles). Smaller 
than the smallest normalized positive number but larger than zero are the 
"denormalized" numbers. Some floating-point objects are Not-a-Number (NaN); they 
are the result of(// 0.0 0.0) (with trapping disabled) and like operations. 

IEEE numbers are symmetric about zero, so the negative of every representable 
number is also a representable number (on the 3600 only). Zeros are signed in 
IEEE format, but +0.0 and -0.0 act the same arithmetically. For example: 

(= +O.O -0.0) => t 
(plusp 0.0) => nil 
(minusp -0.0) => nil 
(zerop -0.0) => t 
(eq 0.0 -0.0) => nil 



16 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

See the IEEE standard: Microprocessor Standards Committee, IEEE Computer 
Society, "A Proposed Standard for Binary Floating-Point Arithmetic: Draft 8.0 of 
IEEE Task P754," Computer, March 1981, pp. 51-62. 

Some related functions have been added or extended. The mathematical functions, 
such as sin and log, have been modified to accept both single- and double-precision 
arguments. See the section "Numbers". 

The only floating-point data type currently provided on the 3600 is the flonum data 
type, which conforms exactly to IEEE single-precision format, including 8 bits of 
exponent and 23 bits of fraction. This representation is standard and well
documented in the literature. A 3600 flonum has the advantages of both the LM-2 
flonum and small-flonum: 

• It has sufficient range and precision to be considered a single-precision floating
point number. 

• It is implemented as an immediate datum and so has no storage overhead. 

This last advantage is made possible because of the larger word size of the 3600. 

The concept of small-flonums does not exist on the 3600. When the 3600 Lisp 
reader encounters the syntax that signifies a small-flonum, for example, 3.4s6, it 
reads it as an ordinary flonum to avoid the need to conditionalize such constants. 
The lack of a small-flonum is an incompatible difference between the LM.;2 and the 
3600 and might require you to use #+cadr conditionals in any program that uses 
small-flonums. See the section "Conditional Code". See the section "Sharp-sign 
Abbreviations". 

The trigonometric and other mathematical functions have been subjected to 
numerical analysis with respect to the new word length and other changes for 3600 
systems. 

3.2.3 typep on the LM·2 and the 3600 

If you are using typep to check for floating-point numbers, the :float type will work 
on both machines. On the LM-2, it recognizes both flonums and small-flonums. On 
the 3600, it recognizes both single- and double-precision floating-point numbers. 

On the 3600, an object of type :single-float is a single-precision floating-point 
number. An object of type :double-float is a double-precision floating-point number. 
(The :float data type is a union of these two types.) The 3600 does not recognize 
:flonum and :small-flonum as known arguments to typep. 



3600 Notes on the 3600 for LM-2 Users 17 

Symbolics, Inc. February 1984 

3.3 self on the LM-2 and the 3600 

The Lisp variable self has a special meaning to the Flavor System: Its value is the 
instance of the innermost method currently executing. Flavors are implemented 
differently on the 3600 than on the LM-2, with one important visible difference. 

• On the LM-2, self is implemented as a special variable and is lambda-bound by 
methods. 

• On the 3600, self is implemented as a lexical variable and is passed implicitly 
to methods, defun-method functions, and other parts of the Flavor System. 

This means that self is dynamically scoped on the LM-2 but lexically scoped on the 
3600. 

Any programs having functions with free references to the variable self must pass 
the value of self as an argument or bind some special variable to the value, or the 
equivalent. 

You should usually (but not always) write such functions using defun-method; this 
mechanism takes care of passing the value of self. If your program has functions 
with free references to the variable self and you neglect to change them before 
running them on the 3600, the compiler produces a warning and self is unbound at 
run time. 

3.4 Arrays 

3.4.1 Change in Array Referencing 

The 3600 does not support store and function-style array referencing. Historically 
store existed only for the sake of certain large programs written in Maclisp, most of 
which have been converted to use modem-style array referencing. store has some 
fundamental semantic problems; to provide a fully compatible implementation would 
require the saving of state in processes, which would slow down all processes. 

Use one of these two methods for altering programs that use store. 

•Although time-consuming, the preferred method is to convert to modern-style 
array reference. 

o Store arrays in variables rather than as function definitions and use aref 
and aset. You will have to change evecy occurrence of store to aset or 
setf. 

Example: Change (store (x 3 4) 14) to either (aset 14 x 3 4) or 
(setf (aref x 3 4) 14). 

An alternative method supported for compatibility relies on function-style array 
reference. 

o Change all occurrences of store to setf. 



18 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

o Use the new special form array-used-as-function, which currently 
exists only on the 3600. Place array-used-as-function as a top-level 
form near the beginning of your file to indicate that you are referencing 
an array. 

Example: (array-used-as-function x) declares that C x 3 4 > is really an 
array reference, not a function call. 

Note: If you do not include the array-used-as-function declaration, you 
can still call an array as a function; however, this method is slow, and 
setf will not recognize the array as a valid place to store values. 

3.4.2 New Primitives Replace apply and lexpr-funcall on Arrays 

Programs that use apply or le:x:pr-funcall on arrays of a run-time-varying number 
of dimensions should now use one of the following new primitives. 

These three take an array and a list of subscripts. 

sys:%le:x:pr-aref 
sys:%le:x:pr-aset 
sys:%le:x:pr-aloc 

These three take an array and a single subscript, and access the array as if it were 
one-dimensional. 

sys:%ld-aref 
sys:%ld-aset 
sys:%ld-aloc 

3.4.3 Array Types on the 3600 

The 3600 does not recognize the following LM-2 array types. The remaining array 
types exist with the same names and characteristics. 

art-error 
art-32b 
art-stack-group-head 
art-special-pd) 
art-half-f"ix 
art-reg-pdl 
art-float 
art-fps-float 

Note: art-float is not needed on the 3600 because art-q arrays can store floats 
without any storage overhead. 

The new array type for the 3600, art-boolean, is an array whose elements can take 
on the values t and nil. It uses only one bit of storage per element. 



3600 Notes on the 3600 for LM-2 Users 19 

Symbolics, Inc. February 1984 

3.4.4 Subscript Bounds Checking 

The 3600 in some cases does subscript bounds checking more carefully for 
multidimensional arrays and hence might uncover undetected bugs in programs that 
run acceptably on the LM-2. 

3.5 Fonts 

The internal representation of fonts for use on bit-mapped displays is completely 
different on the 3600. 

On the LM-2 %draw-char does not work for all characters, and its caller must 
handle wide characters by looking at the font. See the section "Format of Fonts". 

If you are using the %draw-char character-drawing subprimitive and are properly 
handling the case of wide characters on the LM-2, your code must be different for 
the 3600, which has no concept of wide characters. %draw-char works for all sizes 
of characters on the 3600. 

You should probably do one of the following: 
• Send the :draw-char message to a window. 

• Consult the system code for the :draw-char message for an example of code 
that works on both machines. 

You receive .bfd files (which can be read by either machine from the sys:fonts;tv; 
directory) for all the normal TV fonts that are not loaded into the machine already. 
If you are explicitly loading a .bfd file to get some fo:ri.t, you are probably doing 
something wrong, since the system automatically loads fonts as needed. However, 
you can use the function fed:read-font-from-bfd-f"lle on both the LM-2 and the 
3600 to load a font from a file you specify. (The function fed:find-and-load-font, 
which also exists on both machines, looks for the specified font in the same 
sys:fonts;tv; directory the system automatically searches.) 

3.6 Subprimitives 

3.6.1 General Information 

This section discusses issues related to subprimitives and contains material that is 
likely to change in future releases. As the information is mainly of benefit to 
Symbolics system programmers, most readers can safely skip over this section. 

Additional information can be found in the system definition files: 



20 

sys: I-sys; sysdef lisp 
sys: I-sys; sysdfl lisp 
sys: I-sys; opdef lisp 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

Data structure definitions 
Communication areas, escape routines 
Instruction set definition 

Most LM-2 subprimitives exist also on the 3600. Many subprimitives that are used 
only for their side effect return different values on the 3600. A few look like 
functions but are really macros. They do not evaluate their arguments in left-to
right order. Some of the LM-2's subprimitives exist on the 3600 as macros that are 
defined in terms of even more primitive subprimitives; this is true of the offset 
subprimitives, for instance: 

%p-contents-offset 
%p-ldb-offset 
%p-dpb-offset 

Many of the internal storage formats are different on the 3600, so many of the 
symbols that name data types, internal fields, and internal field values are different 
also. Where the 3600 is compatible with the LM-2, in almost all cases the same 
name was used to avoid unnecessary incompatibility. 

Several new subprimitives provide interfaces with specific pieces of 3600 hardware; 
these subprimitives are not documented here. In general, each is used by only one 
program and is simply an interface between the Lisp portion of that program and its 
microcode kernel. 

The following subsections list the differences between subprimitives used on the 
LM-2, and their use on the 3600. 

3.6.2 Data Types 

The following data types do not exist on the 3600. This mostly reflects internal 
changes in storage organization. The only real user-visible difference in functionality 
is that small-flonums, entities, and microcode-entry functions no longer exist. 

dtp-array-beader 
dtp-entity 
dtp-free 
dtp-header 
dtp-instance-header 
dtp-instance-variable-pointer 
dtp-select-method 
dtp-small-flonum 
dtp-stack-closure 
dtp-stack-group 
dtp-symbol-header 
dtp-trap 
dtp-u-entry 



3600 Notes on the 3600 tor LM-2 Users 21 

Symbolics, Inc. February 1984 

The following data type names have been changed on the 3600, because the storage 
representation associated with them has been changed. 

Old Name New Name 

dtp-fef-pointer dtp..eompiled-function 
dtp-array-pointer dtp-array 

The following data types are new and apply only to the 3600. 

dtp-element-forward 
dtp-even-pc 
dtp-float 
dtp-header-i 
dtp-header-p 
dtp-monitor-forward 
dtp-nil 
dtp-odd-pc 

The following data types are the same on the LM-2 and the 3600. 

dtp-body-forward (obsolete; being phased out of the 3600) 
dtp-closure 
dtp-extended-number (almost the same) 
dtp-extemal-value-cell-pointer 
dtp-f"IX 
dtp-gc-forward 
dtp-header-forward 
dtp-instance 
dtp-list 
dtp-locative 
dtp-null 
dtp-one-q-forward 
dtp-symbol 

Note that nil has a data type of dtp-nil, rather than dtp-symbol, and does not 
have a pointer field of zero. symbolp of nil ·remains true, and the address field 
points to the same storage representation as· all other symbols. 

The q-data-types variable has been replaced by sys:•data-types•. The 
q-data-types "function" has been replaced by si:data-types. 

3.6.3 Byte Specifiers 

The global byte specifiers %%q-flag-bit, %%q-high-halt, and %%q-low-half do not 
exist on the 3600. The LM-2's flag bit does not exist, and the halfwords are not 
intrinsically interesting. 

The new byte specifier$ %%q-f"mnum and %%q-high-type reflect the fact that the 
number of bits in a fixnum does not equal the number of bits in a pointer. 



22 3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

S~bstitute %%q-f"IXDum for some applications of %%q-pointer, %pointer, 
%p-pointer, and %p-store-pointer. 

The byte specifiers, field values, and accessor macros for the internal data structures 
are generally different. A few of the names are the same. For details, see the file 
sys: I-sys; sysdef lisp. 

The fields in a f1Xnum that represents a character remain the same (both in name 
and numerically). 

3.6.4 Symbols Specific to the LM-2 

The following symbols (and prefixes of a whole family of symbols) do not exist on the 
3600. They are specific to the LM-2 architecture, and their use is an indication of 
machine-dependent code. 

llpfrm 
QZ ... 
%initially-disable-trapping 
%q-flag-bit 
adi"'. 
array-
fef-
sg-
%arg-desc- (%%remain) 
%array-
%chaos-
%disk-
%ether-
%fef-
%fefh-
%fefhi-
%lp-
%meter-
%pht-

%sys-com
%unibus
%%adi
%%area
%%array
%%chaos
%%disk
%%fef
%%fefh
%%fefhi
%%lp
%%meter
%%m-esubs
%%m-flags
%%phtl
%%pht2-
%%sg
%%us-

The naming convention for machine-dependent source files that are maintained in 
parallel versions is Qxxx for the LM-2 and Lux for the 3600. Thus, sys:sys;qcons 
contains LM-2 storage-allocation routines, and sys:sys;lcons contains like-named 
routines that are specific to the 3600. 

3.6.5 New Subprimitives: sys:%fixnum and sys:%flonum 

The new subprimitives sys:%f"1D1um and sys:%flonum set the data type field to 
convert a flonum to a flXIlum or a flXIlum to a flonum. These new subprimitives 
are not the functions f"m and float but provide direct access to the internal bit 
representation of single-precision floating-point numbers. 



3600 Notes on the 3600 for LM-2 Users 23 

Symbolics, Inc. February 1984 

3.6.6 Analyzing Structures Remains the Same 

%find-structure-header and %find-structure-leader remain the same. However, 
the set of data types for which there is a difference between these two functions is 
machine-dependent. 

On the LM-2, an array pointer might or might not contain the address of the first 
word of storage. On the 3600, a compiled function pointer does not contain the 
address of the first word of storage. 

%structure-boxed-size does not exist on the 3600; %structure-total-size suffices, 
as all structures are made up of boxed elements. 

3.6.7 Subprimitives Not Existing on the 3600 

The following subprimitives do not exist on the 3600: 

%p-mask-field 
%p-deposit-field 
%p-mask-field-offset 
%p-deposit-field-offset 

The LM-2 allocation subprimitives %allocate-and-initialize and 
%allocate-and-initialize-array do not exist on the 3600. 

Except for sys:%halt, LM-2 1/0 subprimitives do not exist on the 3600. See the 
section "I/0 Device Subprimitives". 

See the section "The Paging System". The following paging subprimitives, which are 
described there, do not exist. 

si:wire-page 
si:unwire-page 
sys:%change-page-status 
sys:%compute-page-hash 
sys:%create-physical-page 
sys:%delete-physical-page 
sys:%disk-restore 
sys:%disk-save 

See the section "Closure Subprimitives". The subprimitives for closures described 
there do not exist. 

See the section "Microcode Variables". See the section "Meters". The variables and 
meters described in these sections are specific to the LM-2 architecture and do not 
exist on the 3600. 



24 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

3.6.8 Locking Subprimitive 

store-conditional (formerly called %store-conditional) locks out microtasks but 
cannot lock out the FEP or extemal-DMA devices. Protocols for communicating with 
such devices must use locking methods that do not depend on atomic read-modify
write, such as those based on cells that are only written by one party and only read 
by the other party. ~ 

3.6.9 New Subprimitives 

3.6.9.1 Subprimitives Existing on the LM·2 and 3600 
The following subprimitives exist on both the LM-2 and the 3600. They were added 
to facilitate writing machine-independent low-level code. 

Subprimitive 

sys:%pointer-lessp 
sys:%p-store-cdr-type-and-pointer 
sys:%instance-flavor 
sys:%change-list-to-cons 

sys:%pointerp 
sys:%pointer-type-p 

Description 

Compares two addresses. 
More general %p-store-tag-and-pointer. 
Gets the flavor structure of an instance. 
Changes a two-element cdr-coded list to a 
dotted pair by altering cdr codes. 
Returns t when its argument has an address. 
Returns t when its argument is a data type 
code that has an associated address. 

3.6.9.2 Subprimitives Existing Only on the 3600 
The following subprimitives exist only on the 3600. 

Subprimitive Description 

sys:%block-store-cdr-and-contents Takes these arguments: 
•An address 
• A number of words 
•A cdr code 
•An object 
• An increment to the object (should be 

zero if the object is not a fixnum) 

The specified contiguous region of memory is 
efficiently filled with the object and the cdr 
code. The addresses to be initialized must not 
be mapped into A memory. If the increment 
is nonzero, it must not be used to increment a 
pointer across Ge-space boundaries, or the GC 
tags will be set incorrectly. 



3600 Notes on the 3600 for LM-2 Users 25 

Symbolics, Inc. February 1984 

sys:%block-store-tag-and-pointer Similar to 
sys:%block-store-cdr-and-contents, except 
that the word to be stored is assembled from a 
tag field and a pointer field, allowing 
construction of invisible pointers. 

sys:%p-structure-offset Captures the inherent primitive underlying 
%p-ldb-offset and the like. It does 
follow-structure-forwarding on its first 
argument, then 
%make-pointer-offset dtp-locative of that 
and its second argument. 

sys:%p-store-cdr-and-contents Stores a cdr code and an object into a memory 
location, without reading the previous contents 
of that location. Use this subprimitive to store 
fixnums, as %p-store-tag-and-pointer cannot 
reasonably be used to do so. 

sys:%unsynchronized-device-read Reads registers on the rev. 2 1/0 board. It 
allows data that are not properly synchronized 
to the Lbus clock to be read without causing a 
parity error. 

3.6.10 Storage Layout Changes 

See the section "Storage Layout Definitions". The variables described there are 
largely compatible, with exceptions due to the removal of the flag bit, the removal of 
cdr-error, and the fact that the number of bits in a pointer (28) and the number of 
bits in a fixnu:m (32) are not equal. 

3.6.11 Function-calling Subprimitives 

Except for %push and %pop, the subprimitives for calling with a run-time-variable 
number of arguments, without consing a list, have been replaced by the 
%start-function-call and %f"mish-function-call special forms. This change applies 
to both the LM-2 and the 3600. %assure-pdl-room does not currently exist on the 
3600. See the section "Function-calling Subprimitives". 

%start-function-call and %finish-function-call each take the same four subforms. 
Different subsets of the subforms are ignored, depending on whether the machine is 
an LM-2 or a 3600. The subforms are: 

function 

destination 

A form evaluated to yield the function to be called. 

The disposition of its results. Not evaluated. It takes these 
values: 

Value Meaning 



26 

nil 

t 

return 

3600 Notes on the 3600 tor LM-2 Users 

Symbolics, Inc. February 1984 

Call for effect. 

Receive one value on the stack. 

Return all values from the function in which it 
is being used. 

There is no provision for receiving multiple values. 

n-arguments A form evaluated to yield the number of times %push has to be 
done. 

lexpr True if the last %push is a list of arguments rather than a single 
argument; false in the normal case. Not evaluated. 

Follow these steps: 
1. Do a %start-function-call. 

2. Do a %push on each argument. 

3. Do a %finish-function-call. 

The order of evaluation of the subforms is not guaranteed, and you must make 
certain to pass the same subform values to the %start and the %finish. Generally 
it is best to use variables and not do computations in these subforms. 

Also, you must not allocate or deallocate any local variables between the %start and 
the %finish, because on the 3600 they will get in the way of the %push 
subprimitives. Thus, the following will not work: 

(Xstart-function-call •.. ) 
(dol ist (x 1) (Xpush x)) 
(Xfinish-function-call ... ) 

Instead write: 

(let ((x 1)) 
(%start-function-call ••• ) 
(do() ((null x)) (Xpush (pop x))) 
(%finish-function-call ... )) 



3600 Notes on the 3600 for LM-2 Users 27 

Symbolics, Inc. February 1984 

4. Current Incompatibilities 

This chapter contains information covered in various other documents. 

4.1 Differences Between the LM-2 and 3600 

This section details differences between the LM-2 and the 3600. 

4.1.1 Package Differences 

The sets of symbols in the system and global packages are different. 

4.1.2 Numeric Argument Descriptors 

Numeric argument descriptors are similar but different. (These are the "magic" 
numbers returned by args-info and %args-info.) The numerical values as well as 
the field sizes have been changed. See the section "How Programs Examine 
Functions". 

The following fields remain the same in name and meaning, but not in size: 

%%arg-desc-interpreted 
%%arg-desc-max-args 
%%arg-desc-min-args 

The following fields exist only on the LM-2. Also, the single-% symbols (bit-masks) 
- except for %arg-desc-interpreted - exist only on the LM-2. 

%%arg-desc-evaled-rest 
%%arg-desc-fef-bind-hair 
%%arg-desc-fef-quote-hair 
%%arg-desc-quoted-rest 

The following fields exist only on the 3600: 

%%arg-desc-rest-arg Replaces the LM-2 scheme with 2 rest-arg bits. 
%%arg-desc-quoted Replaces the LM-2 scheme with 2 quoting bits. 

If both the above bits are set and %%arg-desc-max-args is 0, the function is a 
fexpr. Otherwise, eval must check the debug information to get the argument
quoting pattern, because some arguments are evaluated and some are quoted. 

4.1.3 Missing Functions 

The following is a list of LM-2-specific and Maclisp-compatible functions not found in 
the 3600's global package. 



28 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Old function New (unction 

+ 

• 
I 

•plus 
•dif 
•times 
•quo 
fasload 
include 
rlUlum 
ftonum 
no type 
ap-3 
ar-3 
as-3 

load or si:load-binary-file 

disk-restore 
fasd-update-rtle 
fasl-append 

aloe 
aref 
aset 
FEP Load World command 

font-next-plane 
font-rasters-per-word 
font-words-per-char 
get-list-pointer-into-array 
get-locative-pointer-into-array 
number-gc-on 
print-error-mode 
qc-file 
qc-file-load 
read-meter 
return-next-value 
set-current-band 
set-current-microload 
set-error-mode 
set-mar 
set-memory-size 
sg-retum-unsafe 
small-float 
small-ftoatp 
write-meter 
xstore 

compiler:compile-rtle 
compiler:compile-file-load 

si:set-current-world-load 

4.1.4 Nonlocal Exits: Differences Between the LM-2 and 3600 

•unwind-stack and catch-all are not supported. 



3600 Notes on the 3600 for LM-2 Users 29 

Symbolics, Inc. February 1984 

4.1.5 Bit and Byte Manipulations 

%logldb, %logdpb, lsh, and rot operate on 32-bit words rather than 24-bit words. 

Bytes can be any size that can be expressed in a byte specifier (up to 63 bits 
currently); any program that uses bytes larger than 23 bits will not run on the 
LM-2. 

4.1.6 Stack Groups 

Stack groups are conceptually the same, but: See the section "Stack Group States". 
The stack group states documented there are not compatible for the 3600. 

The following list shows the permissible options for make-stack-group. The 
options are compatible for the LM-2 and the 3600 and, except for 
:allow-unknown-keywords, are documented as follows: See the section "Stack 
Group Functions". 

:allow-unknown-keywords 
:regular-pd.I-area 
:regular-pdl-size 
:safe 
:special-pdl-area 
:special-pd.I-size 
:sg-area 

:allow-unknown-keywords permits you to specify any keyword at all, without 
causing an error. 

4.1.7 Areas 

The permissible options for make-area differ for the 3600 in the following ways. 
See the section "Area Functions and Variables". 

•These options remain the same for the LM-2 and the 3600. 

:region-size 
:representation 
·:room 
:size 
:name 
:gc 
:read-only 

The :pdl option is accepted but is ignored on the 3600. 

•:swap-recommendations is an undocumented option that is accepted on both 
the LM-2 and the 3600. :swap-recommendations sets the number of extra 
pages to be read in from disk after a page from this area is brought in due to 
demand paging. 



30 3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

•The LM-2 option sys:%%region-map-bits, whose name is not a keyword 
symbol, is not supported on the 3600. 

The 3600 has many fewer areas than the LM-2, and the names of some areas have 
been changed. The following table shows the names of these areas and their new 
3600 names. See the section "Interesting Areas". 

Old Name New Name 

sys:p-n-string pname-area 
sys:nr-sym symbol-area 
macro-compiled-program compiled-function-area 
sys:init-list-area constants-area 
sys:fasl-constants-area constants-area 

The area tables (for example, area-name and sys:region-length) still exist and 
have the same names. However, in the 3600 they are not areas in their own right 
but are simply arrays. The area sys:wired-control-tables includes the wired 
communication areas and all the permanently wired programs and data structures 
that come from the boot image, but does not include the dynamically allocated wired 
tables: PHTC, PHT, MMPT, and SMPT. 

The following LM-2 areas do not exist in any directly corresponding form on the 
3600. 

area-swap-recommendations 
fasl-table-area 
fasl-temp-area 
gc-table-area 
obt-tails 
physical-page-data 
system-communication-area 

4.1.8 Maintaining a Patchable System on the LM-2 and 3600 

Maintaining a patchable system to run on both the LM-2 and the 3600 requires 
care, because each machine has its own set of compiled files (including compiled 
patch files). Since the system must be compiled twice (once with each compiler), the 
:no-increment-patch option to make-system should be used the second time it is 
compiled, so that the two machines get the same system major version number. 
Take care not to edit source files between the two compilations in order to ensure 
that the two machines are running equivalent systems. 

User-maintained systems do not normally contain machine-dependent patches. 
However, if they do: See the section "Making Patches". Then take these steps: 



3600 Notes on the 3600 for LM-2 Users 31 

Symbolics, Inc. February 1984 

1. Do one of the following to add ·conditional expressions: 

• Manually emt #+3600 and #+cadr conditionals into the patch files before 
you use Finish Patch (~-X). 

• Use Add Patch c~-x> to extract conditionals from conditionalized source 
files. 

2. Use Finish Patch <~-x) to install the patch file. 

3. Use si:compile-uncompiled-patches on the type of machine on which you 
did not make the patch. Specify a system name as the argument. The 
function allows you to view or edit the source of the patch file and then to run 
the compiler over any patch files that have not been compiled. 

Example: If you make patch 21.4 to the Eschatology system on the LM-2, 
running (si:compile-uncompiled-patches "Eschatology") on a 3600 that has 
that system loaded will compile patch 21.4 for the 3600. 

4.1.9 Loading and Saving Disk Partitions 

All the functions for manipulating the disk label, updating software, and installing 
new software are different on the 3600. See the section "Front-end Processor". 

· 4.1.10 Hash Tables 

Hash tables are implemented slightly differently on the 3600. For example, the 
order in which maphash traverses a hash table can be different. 

Note: The order in which maphash traverses the table is not defined as part of the 
function; therefore, your programs should not depend on the order in which 
maphash fmds the elements. 

4.2 Features Not Existing on the 3600 

This section lists features that do not work yet on the 3600 but does not include 
differences due to normal system evolution. These latter differences are covered in 
the appropriate documents. 

4.2.1 Predicates 

The functions small-ftoatp and entityp have been removed, and typep has been 
changed accordingly. 

4.2.2 Numeric Type Change 

The function small-float has been removed. 



32 3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

4.2.3 Machine-dependent Numeric Functions 

The following machine-dependent functions do not exist on the 3600. 

• Functions for manipulating 24-bit numbers. (See the section "24-bit 
Numbers".) 

• Functions for doing double-precision arithmetic with 24-bit numbers. (See the 
section "Double-precision Arithmetic".) 

4.2.4 entity 

The entity function has been removed. 

4.2.5 Compiler Does Not Support Various SWitchea 

The 3600 compiler does not support the following two variables, which are 
documented elsewhere: . See the section "Compiler Declarations". 

allow-variables-in-function-position-switch 
run-in-maclisp-switcb 

4.2.6 New Function for Putting Data in Compiled Code Files 

For both the LM-2 and the 3600, sys:dmnp-forms-to-Clle replaces the following 
functions: 

compiler:fasd-symbol-value 
compiler:fasd-font 
compiler:fasd-file-symbols-properties 

See the section "Putting Data in Compiled Code Files". 

4.2.7 MAR 

The MAR feature and the variable-monitoring feature. do not have equivalents on 
the 3600. See the section "The MAR". See the section "Variable Monitoring''. 

4.2.8 set-memory-size 

set-memory-size does not currently exist on the 3600. 

4.2.9 Garbage Collector 

The world-load compressor is not needed on the 3600. To make the world-load file 
smaller, type (gc-iR111ediately) or (si :full-gc) before doing a disk-save. 

The difference between gc-immediately and si:full·gc is that the latter garbage
collects areas that are not normally collected, and so takes longer. 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Index 

# 

* 

+ 

• 

I 

2 

3 

# 

* 

+ 

• 

I 

2 

# + conditional expressions 
#+3600 14 
#+cadr 14 

*function 27 

+ function 27 

- function 27 

. bin file type 13 

.bn file type 13 

.qbin file type 13 

I function 27 

24-blt numbers 32 
Double-precision arithmetic with 24-bit numbers 32 

3 
Areas: Differences Between the LM-2 and 3600 29 

Array Types on the 3600 18 
Assembly Language for the 3600 14 

Differences Between the LM-2 and 3600 27 
Features Not Existing on the 3600 31 

Floating Point on the 3600 15 
Hash Tables: Differences Between the LM-2 and 3600 31 

Introduction to the 3600 1 
LM-2 Keys That Do Not Exist on the 3600 3 

Maintaining a Patchable System on the LM-2 and 3600 30 
Nonlocal Exits: Differences Between the LM-2 and 3600 28 

self on the LM-2 and the 3600 17 
set-memory-size: Features Not Existing on the 3600 32 

Subprimitives Existing on the LM-2 and 3600 24 
Subprimitives Existing Only on the 3600 24 
Subprimitives Not Existing on the 3600 23 

Symbol Characters on the LM-2 and 3600 10 

33 

# 
14 

* 

+ 

• 

I 

2 

3 



34 

A 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

typep on the LM-2 and the 3600 16 
3600 compiler optimizer 14 

Predicates: Notes on the 3600 for LM-2 Users 31 
The 3600 Keyboard 3 

Compare 
Word 

Paging 
Storage 

New Primitives Replace 

Communication 

%%arg-desc-evaled-rest numeric 
%%arg-desc-fef-bind-hair numeric 

% %arg-desc-fef-quote-halr numeric 
%%arg-desc-interpreted numeric 

% %arg-desc-max-args numeric 
%%arg-desc-min-args numeric 

%%arg-desc-quoted numeric 

A 
Address size 11 
addresses 24 
addresses 11 
algorithm performance 
allocation 1 
:allow-unknown-keywords option for 

make-stack-group 29 
allow-variables-In-function-position-switch 

variable 32 
aloe function 27 
Alt character 7 
Al T -LOCK key 3 
Alt-mode character 7 
Altmode 5 

A 

· Al TMOOE key 3 
Analyzing Structures Remains the Same 23 
ap-3 function 27 
apply and lexpr-funcall on Arrays 18 
apply function 18 
ar-3 function 27 
are•swap-recommendatlons variable 29 
areas 19 
Areas: Differences Between the LM-2 and 3600 29 
aref function 17, 27 
%%arg-desc-evaled-rest numeric argument 

descriptor field 27 
%%arg-desc-fef-blnd-halr numeric argument 

descriptor field 27 
%%arg-desc-fef-quote-halr numeric argument 

descriptor field 27 
%%arg-desc-lnterpreted numeric argument 

descriptor field 27 
%%arg-desc-max-args numeric argument descriptor 

field 27 
%%arg-desc-mln-args numeric argument descriptor 

field 27 
%%arg-desc-quoted numeric argument descriptor 

field 27 
%%arg-desc-quoted-rest numeric argument 

descriptor field 27 
%%arg-desc-rest-arg numeric argument descriptor 

field 27 
%args-lnfo 27 
args-lnfo 27 
argument descriptor field 27 
argument descriptor field 27 
argument ·descriptor field 27 
argument descriptor field 27 
argument descriptor field 27 
argument descriptor field 27 
argument descriptor field 27 



3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

%%arg-desc-quoted-rest numeric 
%%arg-desc-rest-arg numeric 

Numeric 
:ftoal 

:ftonum 
:small-flonum 

Double-precision floating-point 
Single-precision floating-point 

Double-precision 
art-32b 

art-error 
art-float 

art-fps-float 
art-half-fix 
art-reg-pdl 

art-speclal-pdl 
art-stack-grou~head 

Change in 

New Primitives Replace apply and lexpr-funcall on 

B 

No 

:bin canonical type for 

Rotate 
Shift 
sys: 
sys: 

Subscript 

Keys Not Used 

Bit and 

B 

argument descriptor field 27 
argument descriptor field 27 
Argument Descriptors 27 
argument to typep 16 
argument to typep 16 
argument to typep 16 
arithmetic 15 
arithmetic 15 
arithmetic wtth 24-bit numbers 32 
array 18 
array 18 
array 18 
array 18 
array 18 
array 18 
array 18 
array 18 
Array pointer 23 
Array referencing 17 
Array Referencing 17 
Array Types on the 3600 18 
array-used-as-function special form 17 
Arrays 17 
Arrays 18 
art-32b array 18 
art-error array 18 
art-float array 18 
art-fps-float array 18 
art-half-fix array 18 
art-reg-pdl array 18 
art-speclal-pdl array 18 
art-stack-grou~head array 18 
as-3 function 27 
aset function 17, 27 
Assembly Language for the 3600 14 
%assure-pell-room function 25 
Audible tone 5 
Audible Tone Yet 5 

BACKSPACE key 5 
:bin canonical type for bin files 13 
bin files 13 
Binary file type 13 
Bit and Byte Manipulations 29 
Bit-masks 27 
bits 29 
bits 29 
block-store-cdr-and-contents function 24 
%block-store-tag-and-pointer function 24 
Bounds Checking 19 
BREAK key 5 
by Standard Software 5 
Byte manipulation functions 29 
Byte Manipulations 29 
Byte sizes 29 
Byte Specifiers 21 

35 

B 



36 

c 
Function 

:bin 

Numeric Type 

sys: 
sys: 

Data Types: Subprimitives: Software 
Fonts: Software 

General Information: Subprimitives: Software 
Hardware 
Keyboard 
Software 

Storage Layout 
Subprimitives: Software 

Major 
Summary of 
Incompatible 

Alt 
Alt-mode 

Circle 
Clear-Screen 

Complete 
Delete 

Esc 
Escape 

Local 
Lozenge 

Page 
Refresh 

Scroll 
Square 

Symbol-Help 
Triangle 

Vertical-Tab 
Vt 

Summary of Changes to 
Wide 

Symbol 
Subscript Bounds 

Lbus 
Conditional 

Conditlonalizing 
Compiled 

c 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

CALL Instruction 14 
CALL key 3 
calling 14 
calling sequence 14 
canonical type for bin files 13 
cartridge tape drive 11, 32 
catch special form 28 
catch-all macro 28 
Cdr codes 24 
Change 31 
Change In Array Referencing 17 
%change-Hsi-to-cons function 24 
%change-page-status function 23 
Changed Functions 13 
Changes 20 
Changes 19 
Changes 19 
Changes 3 
changes 3 
Changes 13 
Changes 25 
Changes 19 
Changes In the Keyboard 5 
Changes to Character Names 7 
Changes: New Compiler 13 
character 7 
character 7 
character 7 
character 7 
character 7 
character 5, 7 
character 7 
character 7 
character 7 
character 5, 7 
character 5 
character 5 
character 7 
character 7 
character 7 
character 7 
character 7 
character 5, 7 
Character codes 7 
Character Names 7 
characters 19 
Characters on the LM-2 and 3600 10 
Checking 19 
Circle character 7 
CIRCLE key 5 
Clear-screen 5 
Clear-Screen character 7 
CLEAR-SCREEN key 5 
clock 24 
Code 14 
code 14, 30 
Code File Types 13 

c 

( 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

D 

New Func1ion for Putting Da1a in Compiled 
Cdr 

Character 
Garbage 

FEP Load World 
SELECT T 
SYSTEM T 

complier: 
compiler: 

New Function for Putting Data in 

lncompa1ible Changes: New 
Internals: New 

lntroduc1ion: New 
Lisp 
New 

New Features: New 

3600 

World-load 
sys: 

#+ 

sys: 

New Function for Putting 

dtp--header-forward 
dip-array 

dip-array-header 
dip-array-pointer 
dip-body-forward 

dip-closure 
dtp-complled-functlon 

dip-entity 
dip-even-pc 

dip-extended-number 
dip-external-value-cell-pointer 

dtp-fef-polnter 
dip-fix 

dip-float 

D 

37 

Code Files 32 
codes 24 
codes 7 
Collector 32 
command 27 
command 5 
command 5 
Communica1ion areas 19 
Compare addresses 24 
compile-file func1ion 13, 27 
compile-file-load func1ion 13, 27 
Compiled Code File Types 13 
Compiled Code Files 32 
Compiled function pointer 23 
compiled-function-area variable 29 
Compiler 13 
Compiler 14 
Compiler 13 
compiler 13 
Compiler 13 
Compiler 14 
Compiler Does Not Support Various Switches 32 
compiler optimizer 14 
Compiler performance 1 
Compiler sfyle-checker 14 
compller:complle-flle function 13, 27 
compiler:complle-file-load function 13, 27 
Comple1e charac1er 7 
COMPLETE key 5 
compressor 32 
%compute-page-hash function 23 
Conditional Code 14 
conditional expressions 14 
Conditionalizing code 14, 30 
constants-area variable 29 
%create-page-physical-page function · 23 
Curren1 lncompatibillties 27 

D-LAST 14 
Da1a Forma1 11 
Data In Compiled Code Files 32 
Data structure definitions 19 
data type 20 
da1a fype 20 
da1a fype 20 
data type 20 
data fype 20 
da1a fype 20 
data type 20 
data type 20 
data type 20 
data 1ype 20 
data fype 20 
data type 20 
da1a type 20 
data type 20 

D 



38 

dip-free 
dlp-gc-forward 

dip-header 
dip-header-I 
dtp-header-p 
dtp-lnstance 

dip-Instance-header 
dtp-lnstance-varlable-polnter 

dlp-llst 
dip-locative 

dip-monitor-forward 
dtp-nll 

dip-null 
dip-odd-pc 

dtp-one-q-forward 
dip-select-method 
dtp-small-flonum 
dip-stack-closure 

dip-stack-group 
dip-symbol 

dip-symbol-header 
dip-trap 

dtp-u-entry 
Flonum 

sys: 
Instruction set 
Data structure 

sys: 

%%arg-desc-evaled-rest numeric argument 
%%arg-desc-fef-blnd-halr numeric argument 

% %arg-desc-fef-quote-halr numeric argument 
% %arg-desc-interpreted numeric argument 

%%arg-desc-max-args numeric argument 
%%arg-desc-min-args numeric argument 

%%arg-desc-quoted numeric argument 
% %arg-desc-quoted-rest numeric argument 

%%arg-desc-rest-arg numeric argument 
Numeric Argument 
RS-232-compatible 

Package 

Areas: 
Hash Tables: 

Nonlocal Exits: 
Sys:sys;qcons logical 

Number of extra pages to be read from 
Loading and Saving 

sys: 

3600 Notes on the 3600 for LM-2 Users 

data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 20 
data type 15 
Data types 20 

Symbolics. Inc. February 1984 

Data Types: Subprimitives: Software Changes 20 
*data-types* variable 20 
definition 19 
definitions 19 
defun-method special form 17 
Delete character 5, 7 
DELETE key 3 
%delete-physical-page function 23 
Demand paging 29 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
descriptor field 27 
Descriptors 27 
devices 11 
*dif function 27 
Differences 27 
Differences Between the LM-2 and 3600 27 
Differences Between the LM-2 and 3600 29 
Differences Between the LM-2 and 3600 31 
Differences Between the LM-2 and 3600 28 
directory 22 
disassemble function 14 
disk 29 
Disk Partitions 31 
disk-restore function 27 
%disk-restore function 23 
disk-save function 32 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

E 

sys: 
LM-2 Keys That 

Compiler 

cartridge tape 

sys: 

E 

39 

%disk-save function 23 
Do Not Exist on the 3600 3 
Does Not Support Various Switches 32 
Double-precision arithmetic with 24-bit numbers 32 
Double-precision floating-point arithmetic 15 
%draw-ch• function 19 
drive 11, 32 
dip-header-forward data type 20 
dip-array data type 20 
dip-array-header data type 20 
dip-array-pointer data type 20 
dip-body-forward data type 20 
dip-closure data type 20 
dip-compiled-function data type 20 
dip-entity data type 20 
dip-even-pc data type 20 
dip-extended-number data type 20 
dip-external-value-cell-pointer data type 20 
dtp-fef-polnter data type 20 
dtp-flx data type 20 
dip-float data type 20 
dtp-free data type 20 
dtp-gc-forward data type 20 
dip-header data type 20 
dip-header-I data type 20 
dtp-header-p data type 20 
dip-Instance data type 20 
dip-Instance-header data type 20 
dip-Instance-variable-pointer data type 20 
dtp-list data type 20 
dtp-locatlve data type 20 
dip-monitor-forward data type 20 
dtp-nll data type 20 
dtp-null data type 20 
dtp-odd-pc data type 20 
dtp-one-q-forward data type 20 
dip-select-method data type 20 
dlp-sman-nonum data type 20 
dip-stack-closure data type 20 
dtp-stack-group data type 20 
dip-symbol data type 20 
dip-symbol-header data type 20 
dip-trap data type 20 
dtp-u-entry data type 20 
dump-forms-to-file variable 32 

END 5 
entity 32 
entity function 32 
entltyp function 31 
Esc character 7 
Escape character 7 
ESCAPE key 5 
Escape routines 19 
Ethernet 11 

E 

LM-2 Keys That Do Not Exist on the 3800 3 



40 

F 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

Existing on the 3600 31 
Existing on the 3600 32 
Existing on the 3600 23 
Existing on the LM-2 and 3600 24 
Existing Only on the 3600 24 

Features Not 
set-memory-size: Features Not 

Subprimitives Not 
Subprimitives 
Subprimitives 

Nonlocal 
# + conditional 

Number of 

Exits: Differences Between the LM-2 and 3600 28 
expressions 14 

F 

extra pages to be read from disk 29 

fal-temp-area variable 29 
fasd-update-flle function 27 
fasl-append function 27 

sys: fasl-constants-area variable 29 
fasl-table-area variable 29 
fasload function 13, 27 

Variable-monitoring feature 32 
Features Not Existing on the 3600 31 

set-memory-size: Features Not Existing on the 3600 32 
(status features) 14 

New Features: New Compiler 14 
FEP Load World command 27 

%%arg-desc-evaled-rest numeric argument descriptor 
field 27 

%%arg-desc-fef-blnd-halr numeric argument descriptor 
field 27 

%%arg-desc-fef-quote-halr numeric argument descriptor 
field 27 

%%arg-desc-lnterpreted numeric argument descriptor 
field 27 

F 

% %arg-desc-max-args numeric argument descriptor field 27 
%%arg-desc-mln-args numeric argument descriptor field 27 

%%arg-desc-quoted numeric argument descriptor field 27 
% %arg-desc-quoted-rest numeric argument descriptor 

%%arg-desc-rest-arg numeric argument descriptor 
Type-code 

.bin 
.bn 

.qbin 
Binary 

Compiled Code 
:bin canonical type for bin 

New Function for Putting Data in Compiled Code 

field 27 
field 27 
field 11 
file type 13 
file type 13 
file type 13 
file type 13 
File Types 13 
files 13 
Files 32 
%find-structure-boxed-size function 23 
%find-structure-header function 23 
%find-structure-leader function 23 
%find-structure-total-size function 23 
%finish-function-call special form 25 
fix function 22 

New Subprimitives: sys: %flxnum and sys:%flonum 22 
flxnum function 27 

sys: %flxnum function 22 
Fixnums 11 

Identify flavor of instance 24 
Flavor System 17 
:float argument to typep 16 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Double-precision 
Single-precision 

New Subprlmltives: sys:%flxnum and sys: 

sys: 

array-used-as-function special 
catch special 

defun-method special 
%finish-function-call special 

setf special 
%start-function-call special 

store special 
throw special 

Data 
sl: 
* 
+ 

I 
aloe 
ap-3 

apply 
ar-3 
aref 
as-3 
aset 

%assure-pell-room 
compiler:complle-file 

compiler:compile-file-load 
*dlf 

disassemble 
disk-restore 

disk-save 
%draw-char 

entity 
entltyp 

fasd-update-file 
fasl-append 

fas load 
%find-structure-boxed-size 

%find-structure-header 
%find-structure-leader 

%find-structure-total-size 
fix 

flxnum 
float 

float function 22 
Floating Point on the 3600 15 
Floating Point on the LM-2 15 
floating-point arithmetic 15 
floating-point arithmetic 15 
Floating-point Numbers 15 
%flonum 22 
:flonum argument to typep 16 
Flonum data type 15 
flonum function 27 
%flonum function 22 
Flonums 11, 15 
font-next-plane function 27 
font-rasters-per-word function 27 
font-words-per-char function 27 
Fonts 19 
Fonts: Software Changes 19 
form 17 
form 28 
form 17 
form 25 
form 17 
form 25 
form 17 
form 28 
Format 11 
full-gc function 32 
function 27 
function 27 
function 27 
function 27 
function 27 
function 27 
function 18 
function 27 
function 17, 27 
function 27 
function 17, 27 
function 25 
function 13, 27 
function 13, 27 
function 27 
function 14 
function 27 
function 32 
function 19 
function 32 
function 31 
function 27 
function 27 
function 13, 27 
function 23 
function 23 
function 23 
function 23 
function 22 
function 27 
function 22 

41 



42 

non um 
font-next-plane 

font-rasters-per-word 
font-words-per-char 

gc-immediately 
get-error-mode 

get-list-pointer-Into-array 
get-locative-pointer -Into-array 

Include 
lexpr-funcall 

load or sl:load-blnary-ftle 
%1ogdbp 
%1ogldb 

lsh 
make-area 

make-stack-group 
map hash 

notype 
number-gc-on 

%p-contents-offset 
%p-deposit-fteld 

%p-deposit-field-offset 
%p-dpb-offset 
%p-lc:l>-offset 

%p-mask-fteld 
%p-mask-fteld-offset 

%p-polnter 
%p-store-polnter 

*plus 
%pointer 

print-error-mode 
qc-file 

qc-ftle-load 
•quo 

read-meter 
return-next-value 

rot 
set-current-band 

set-current-mlcroload 
set-mar 

set-memory-size 
sg-retum-unsafe 

sl:full-gc 
sl:load-blnary-ftle 

sl:set-current-world-load 
sl:unbin-file 
sl :unfasl-file 

sl:unwire-page 
sl:wlre-page 

small-float 
small-ftoatp 

%store-conditional 
store-conditional 

sys:%block-store-tag-and-pointer 
sys:%change-llst-to-cons 
sys:%change-page-status 
sys:%compute-page-hash 

sys:%create-page-physlcal-page 

3600 Notes on the 3600 tor LM-2 Users 

function 27 
function 27 
function 27 
function 27 
function 32 
function 27 
function 27 
function 27 
function 27 
function 18 
function 27 
function 29 
function 29 
function 29 
function 29 
function 29 
function 31 
function 27 
function 27 
function 19 
function 23 
function 23 
function 19 
function 19 
function 23 
function 23 
function 21 
function 21 
function 27 
function 21 
function 27 
function 13, 27 
function 13, 27 
function 27 
function 27 
function 27 
function 29 
function 27 
function 27 
function 27 
function 27, 32 
function 27 
function 32 
function 13 
function 27 
function 13 
function 13 
function 23 
function 23 
function 27, 31 
function 27, 31 
function 24 
function 24 
function 24 
function 24 
function 23 
function 23 
function 23 

Symbolics. Inc. February 1984 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

G 

sys:%delete-physlcal-page 
aya:%dlak-restore 

ays:%dlsk-save 
ays:%flxnum 
ays:%flonum 

sys:%han 
ays:%1nstance-flavor 

sys:%p-store-cdr-and-contents 
sya:%p-store-cdr-type-and-polnter 

ays:%p-structure-offsel 
sys:%polnter-lessp 

sys:%polnter-type-p 
sys:%polnterp 

sys:%unsynchronized-device-read 
sys:block-store-cdr-and-contents 

sys: Id-aloe 
sys:ld-aref 
sys:ld-asel 

sys:lexpr-aloc 
ays:lexpr-aref 
sys:lexpr-aset 

*times 
typep 

•unwind-stack 
wrltel-meter 

xstore 

New 

Compiled 

Byte manipulation 
Changed 

Machine-dependent Numeric 
Missing 

function 23 
function 23 
function 23 
function 22 
function 22 
function 23 
function 24 
function 24 
function 24 
function 24 
function 24 
function 24 
function 24 
function 24 
function 24 
function 18 
function 18 
function 18 
function 18 
function 18 
function 18 
function 27 
function 16, 31 
function 28 
function 27 
function 27 
Function calling 14 
Function for Putting Data in Compiled Code 

Files 32 
FUNCTION key 5 
function pointer 23 
Function-calling Subprimitives 25 
functions 29 
Functions 13 
Functions 32 
Functions 27 

G 
Garbage Collector 32 
:gc option for make-area 29 
gc-lmmedlately function 32 
gc-table-area variable 29 
General Information: Subprimitives: Software 

Changes 19 
get-error-mode function 27 
get-list-pointer-Into-array function 27 
get-locative-pointer-into-array function 27 
global package 27 
Graphics performance 
GREEK key 3 

Stack group states 29 
Stack Groups 29 

43 

G 



44 3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

H H H 
sys: %halt function 23 

Hand keys 3 
Hardware Changes 3 
Hash Tables: Differences Between the LM-2 and 

3600 31 
HOLD-OUTPUT key 3 

I I I 
Tape 1/0 11 

110 subprlmitives 23 
Identify flavor of instance 24 
IEEE standard 15 
Include function 27 

Current Incompatibilities 27 
Incompatible Changes: New Compiler 13 

General Information: Subprimitives: Software Changes 19 
lnlt-list-area variable 29 

sys: lnlt-listl-area variable 29 
Identify flavor of Instance 24 

sys: %Instance-flavor function 24 
CALL Instruction 14 

Lisp Instruction set 13 
Instruction set definition 19 
Internals: New Compiler 14 
Introduction to the 3600 1 
Introduction: New Compiler 13 

K K K 
ALT-LOCK key 3 

ALTMODE key 3 
BACKSPACE key 5 

BREAK key 5 
CALL key 3 

CIRCLE key 5 
CLEAR-SCREEN key 5 

COMPLETE key 5 
DELETE key 3 
ESCAPE key 5 

FUNCTION key 5 
GREEK key 3 

HOLD-OUTPUT key 3 
LOCAL key 5 
MACRO key 3 

MOOE-LOCK key 5 
OVERSTRIKE key 5 

QUOTE key 3 
REFRESH key 5 

REPEAT key 5 
SCROLL key 5 
SELECT key 5 
SQUARE key 5 
STATUS key 3 

STOP-OUTPUT key 3 
SUSPEND key 5 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

L 

SYMBOL 
SYSTEM 

TERMINAL 
TOP 

TRIANGLE 
Su pd up 

Major Changes in the 
The 3600 

Hand 
Renamed 

Roman numeral 

LM-2 

Assembly 
Storage 

sys: 
sys: 
sys: 
sys: 
sys: 
sys: 

New Primitives Replace apply and 

Floating Point on the 
Symbols Specific to the 

Areas: Differences Between the 
Differences Between the 

Hash Tables: Differences Between the 
Maintaining a Patchable System on the 
Nonlocal Exits: Differences Between the 

Subprimitives Existing on the 
Symbol Characters on the 

self on the 
typep on the 

Predicates: Notes on the 3600 for 

FEP 
load or sl: 

sl: 

Sys:sys;qcons 

L 

key 5 
key 5 
key 5 
key 5 
key 5 
Key Mappings 8 
Keyboard 5 
Keyboard 3 
Keyboard changes 3 
keys 3 
Keys 5 
keys 3 
Keys Not Used by Standard Software 5 
Keys That Do Not Exist on the 3600 3 

Language for the 3600 14 
Layout Changes 25 
Lbus clock 24 
Id-aloe function 18 
ld-aref function 18 
ld-aset function 18 
lexpr-aloc function 18 
lexpr-aref function 18 
lexpr-aset function 18 
lexpr-funcall function 18 
lexpr-funcall on Arrays 18 
Lisp compiler 13 
Lisp instruction set 13 
LM-2 15 
LM-2 22 
LM-2 and 3600 29 
LM-2 and 3600 27 
LM-2 and 3600 31 
LM-2 and 3600 30 
LM-2 and 3600 28 
LM-2 and 3600 24 
LM-2 and 3600 10 
LM-2 and the 3600 17 
LM-2 and the 3600 16 
LM-2 Keys That Do Not Exist on the 3600 3 
LM-2 Users 31 
load or sl:load-blnary-file function 27 
Load World command 27 · 
load-binary-file function 27 
load-binary-file function 13 
Loading and Saving Disk Partitions 31 
Local character 7 
LOCAL key 5 
Local variables 25 
Locking Subprimitive 24 
%1ogdbp function 29 
logical directory 22 
%1ogldb function 29 
Lozenge character 5, 7 
lsh function 29 

45 

L 



46 

M 

N 

catch-all 

:gc option for 
:name option for 

:pell option for 
:read-only option for 

:region-size option for 
:representation option for 

:room option for 
:size option for 

:swap-recommendations option for 
sys:%%reglon-map-blts option for 

:allow-unknown-keywordS option for 
:regular-pdl-area option for 
:regular-pdl-slze option for 

:safe option for 
:sg-area option for 

:speclal-pdl-area option for 
:speclal-pdl-slze option for 

:no-Increment-patch option for 

Byte 
Bit and Byte 

Supdup Key 

Real-time tracking of the 

Summary of Changes to Character 

Incompatible Changes: 
Internals: 

Introduction: 
New Features: 

3600 Notes on the 3600 for LM-2 Users 

Symbolics. Inc. February 1984 

M M 

N 

Machine-dependent Numeric Functions 32 
Machine-dependent patches 30 
macro 28 
MACRO key 3 
macro-compiled-program variable 29 
Maintaining a Patchable System on the LM-2 and 

3600 30 
Maintaining parallel systems 30 
Major Changes in the Keyboard 5 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area 29 
make-area function 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group 29 
make-stack-group function 29 
make-system 30 
Making patches 30 
manipulation functions 29 
Manipulations 29 
maphash function 31 
Mappings 8 
MAR 32 
Missing Functions 27 
MODE-LOCK key 5 
mouse 1 

:name option for make-area 29 
Names 7 
Network 1, 11 
New Compiler 13 
New Compiler 13 
New Compiler 14 
New Compiler 13 
New Compiler 14 
New Features: New Compiler 14 
New Function for Putting Data in Compiled Code 

Files 32 

N 

New Primitives Replace apply and lexpr-funcall on 
Arrays 18 

New Subprimitives 24 
New Subprimitives: sys:%flxnum and 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

0 

LM-2 Keys That Do 
Features 

881-memory-slze: Features 
Subprlmitlves 

Compiler Does 
Keys 

Predicates: 
Some 

sys: 

24-bit 
Double-precision arithmetic with 24-bit 

Floating-point 
Roman 

%%arg-desc-evaled-rest 
%%arg-desc-fef-blnd-halr 

%%arg-desc-fef-quote-halr 
%%arg-desc-lnterpreted 

%%arg-desc-max-args 
%%arg-desc-mln-arga 

%%arg-desc-quoted 
%%arg-desc-quoted-rest 

%%arg-desc-rest-arg 

Machine-dependent 

Subprimitives Existing 
Primitives for string 

3600 compiler 
:gc 

:name 
:pdl 

:read-only 
:region-size 

:representation 
:room 

:size 
:swap-recommendations 
sys:%%reglon-map-blts 

:allow-unknown-keywords 
:regular-pdl-area 
:regular-pell-size 

:safe 
:sg-area 

:speclal-pdl-area 
:speclal-pdl-slze 

:no-Increment-patch 

ays:%ftonum 22 
No Audible Tone Yet 5 

47 

:no-Increment-patch option for make-system 30 
Nonlocal Exits: Differences Between the LM-2 and 

3600 28 
Not Exist on the 3600 3 
Not Existing on the 3600 31 
Not Existing on the 3600 32 
Not Existing on the 3600 23 
Not Support Various Switches 32 
Not Used by Standard Software 5 
Notes on the 3600 for LM-2 Users 31 
Notes on the Table 5 
notype function 27 
nr-sym variable 29 
Number of extra pages to be read from disk 29 
number-gc-on function 27 
numbers 32 
numbers 32 

0 

Numbers 15 
numeral keys 3 
numeric argument descriptor field 27· 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
numeric argument descriptor field 27 
Numeric Argument Descriptors 27 
Numeric Functions 32 
Numeric Type Change 31 

obt-talls variable 29 
Only on the 3600 24 
operations 1 
optimizer 14 
option for make-area 29 
option for make-area 29 
option for make-area 29 
option for make-area 29 
option for make-area 29 

. option for make-area 29 
option for make-area 29 
option for make-area 29 
option for make-area 29 
option for make-area 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-stack-group 29 
option for make-system 30 

0 



48 

p 

sya: 

sys: 
sys: 

sys: 
global 

system 

Number of extra 
Demand 

Maintaining 
Loading and Saving Disk 

Maintaining a 
Machine-dependent 

Making 

Compiler 
Graphics 

Paging algorithm 

Floating 
Floating 

Array 
Compiled function 

sys: 
sys: 
sys: 

New 

New Function for 

p 

3600 Notes on the 3600 tor LM-2 Users 

Symbolics, Inc. February 1984 

OVERSTRIKE key 5 

%p.contents-otrset function 19 
%p-deposlt-fleld function 23 
%p-deposlt-fteld-otrset function 23 
%p-dpb-offset function 19 
%p-ldb-otrset function 19 
%p-mask-fteld function 23 
%p-mask-fteld-offset function 23 
p-n-string variable 29 
%p-polnter function 21 
%p-store-cdr-and-contents function 24 
%p-store-cdr-type-and-polnter function 24 
%p-store-polnter function 21 
%p-structure-offset function 24 
package 27 
package 27 
Package Differences 27 
Page character 5 
pages to be read from disk 29 
paging 29 
Paging algorithm performance 
Paging subprimitives 23 
parallel systems 30 
Partitions 31 
Patchable System on the LM-2 and 3600 30 
patches 30 
patches 30 
:pdl option for make-area 29 
Performance 1 
performance 1 
performance 1 
performance 1 
Peripherals 11 
physical-page-data variable 29 
*plus function 27 
pname-area variable 29 
Point on the 3600 15 
Point on the LM-2 15 
pointer 23 
pointer 23 
%pointer function 21 
%polnter-lessp function 24 
%polnter-type-p function 24 
%polnterp function 24 
Predicates: Notes on the 3600 for LM-2 Users 31 
Primitives for string operations 1 
Primitives Replace apply and lexpr-funcall on 

Arrays 18 
print-error-mode function 27 
Process scheduler 1 
Putting Data in Compiled Code Files 32 

p 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

Q 

R 

s 

Number of extra pages to be 

Array 
Change In Array 

sys: 

Analyzing Structures 

New Primitives 

Escape 

Analyzing Structures Remains the 
Loading and 

Process 

Calling 
Lisp instruction 

Instruction 

49 

Q Q 
q-data-types variable 20 
%%q-flxnum variable 21 
%%q-flag-btt variable 21 
%%q-hlgh-half variable 21 
%%q-hlgh-type variable 21 
%%q-low-half variable 21 
%%q-polnter variable 21 
qc-flle function 13, 27 
qc-fll•load function 13, 27 
•quo function 27 
QUOTE key 3 

R R 

s 

read from disk 29 
read-meter function 27 
:read-only option for make-area 29 
Real-time tracking of the mouse 1 
referencing 17 
Referencing 17 
Refresh character 5 
REFRESH key 5 
%%region-map-bits option for make-area 29 
:region-size option for make-area 29 
:regular-pdl-area option for make-stack-group 29 
:regular-pdl-size option for make-stack-group 29 
Remains the Same 23 
Renamed Keys 5 
REPEAT key 5 
Replace apply and lexpr-funcall on Arrays 18 
:representation option for make-area 29 
return-next-value function 27 
Roman numeral keys 3 
:room option for make-area 29 
rot function 29 
Rotate bits 29 
routines 19 
RS-232-compatible devices 11 
run-ln-macllsp-swHch variable 32 

:safe option for make-stack-group 29 
Same 23 
Saving Disk Partitions 31 
scheduler 1 
Scroll character 7 
SCROLL key 5 
SELECT key 5 
SELECT T command 5 
self on the LM-2 and the 3600 17 
self variable 17 
sequence 14 
set 13 
set definition 19 
set-current-band function 27 

s 



50 

sl: 

load or 

Address 
Word 

Byte 

Keys Not Used by Standard 

Data Types: Subprimitives: 
Fonts: 

General Information: Subprimitives: 
Subprimitives: 

array-used-as-function 
catch 

defun-method 
%finish-function-call 

self 
%start-function-call 

store 
throw 

Symbols 
Byte 

IEEE 
Keys Not Used by 

Stack group 

3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

set-current-mlcroload function 27 
set-current-world-load function 27 
set-mar function 27 
set-memory-size function 27, 32 
set-memory-size: Features Not Existing on the 

3600 32 
self special form 17 
:sg-area option for make-stack-group 29 
sg-retum-unsafe function 27 
Shift bits 29 
sl:full-gc function 32 
al:load-blnary-flle function 13 
sl:load-blnary-flle function 27 
sl:set-current-world-load function 27 
sl:unbln-flle function 13 
sl:unfasl-flle function 13 
sl:unwlre-page function 23 
sl:wlre-page function 23 
Single-precision floating-point arithmetic 15 
size 11 
size 11 
:size option for make-area 29 
sizes 29 
small-float function 27, 31 
small-ftoatp function 27, 31 
:small-flonum argument to typep 16 
Small-flonums 15 
Software 5 
Software Changes 13 
Software Changes 20 
Software Changes 19 
Software Changes 19 
Software Changes 19 
Some Notes on the Table 5 
special form 17 
special form 28 
special form 17 
special form 25 
special form 17 
special form 25 
special form 17 
special form 28 
:speclal-pdl-area option for make-stack-group 29 
:speclal-pdl-slze option for make-stack-group 29 
Specific to the LM-2 22 
Specifiers 21 
Square character 7 
SQUARE key 5 
Stack group states 29 
Stack Groups 29 
standard 15 
Standard Software 5 
%start-function-call special form 25 
states 29 
(status features) 14 
STATUS key 3 
STOP-OUTPUT key 3 
Storage allocation 1 



3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

PrlmHlves for 
Data 

Analyzing 
Compiler 
Locking 

Function-calling 
110 

New 
Paging 

Data Types: 
General Information: 

New 

Compiler Does Not 

Compiler Does Not Support Various 

New Subprimitives: 

New Subprimitives: ays:%flxnum and 

Storage Layout Changes 25 
atore special form 17 
%store-condHlonal function 24 
atore-condttlonal function 24 
string operations 1 
structure definitions 19 
Structures Remains the Same 23 
style-checker 14 
Subprimitive 24 
Subprimitives 11, 19 
Subprimitives 25 
subprimitives 23 
Subprimitives 24 
subprimitives 23 
Subprimitives Existing on the LM-2 and 3600 24 
Subprimitives Existing Only on the 3600 24 
Subprimitives Not Existing on the 3600 23 
Subprimitives: Software Changes 19 
Subprimltives: Software Changes 20 
Subprimitives: Software Changes 19 

51 

Subprimltives: sys:%flxnum and sys:%ftonum 22 
Subscript Bounds Checking 19 
Summary of Changes to Character Names 7 
Supdup Key Mappings 8 
Support Various Switches 32 
SUSPEND key 5 
:swap-recommendations option for make-area 29 
Switches 32 
Symbol Characters on the LM-2 and 3600 10 
SYMBOL key 5 
symbol-area variable 29 
Symbol-Help character 7 
Symbols Specific to the LM-2 22 
sys:%%reglon-map-bHs option for make-area 29 
sys:%block-store-tag-and-polnter function 24 
sys:%change-llst-to-cons function 24 
ays:%change-page-status function 23 
ays:%compute-page-hash function 23 
sys:%create-page-physlcal-page function 23 
ays:%delete-physlcal-page function 23 
sys:%dlsk-restore function 23 
sys:%dlsk-save function 23 
ays:%flxnum and sys:%ftonum 22 
ays:%flxnum function 22 
ays:%flonum 22 
ays:%ftonum function 22 

· ays:%hatt function 23 
ays:%1nstance-ftavor function 24 
ays:%p-store-cdr-and-contents function 24 
ays:%p-store-cdr-type-and-polnter function 24 
sys:%p-structure-offset function 24 
sys:%polnter-lessp function 24 
sys:%polnter-type-p function 24 
ays:%polnterp function 24 
sys:%unsynchronlzed-devlce-read function 24 
sys:*data-types* variable 20 
sys:block-store-cdr-and-contents function 24 
ays:dump-forms-to-flle variable 32 



52 3600 Notes on the 3600 for LM-2 Users 

T 

Symbolics. Inc. February 1984 

sys:fasl-constants-area variable 29 
sys:lntt-llstl-area variable 29 
ays:ld-aloc function 18 
ays:ld-aref function 18 
sys:ld-asel function 18 
sys:lexpr-aloc function 18 
sys:lexpr-aref function 18 
sys:lexpr-aset function 18 
sys:nr-sym variable 29 
sys:p-n-strlng variable 29 
Sys:sys;qcons logical directory 22 

Sys: sys;qcons logical directory 22 
Flavor System 17 

SYSTEM key 5 
Maintaining a Patchable System on the LM-2 and 3600 30 

system package 27 
SYSTEM T command 5 
system-communication-area variable 29 

Maintaining parallel systems 30 
User-maintained systems 30 

T 
T command 5 
T command 5 
Table 5 

T 
SELECT 
SYSTEM 

Some Notes on the 
Hash 

Cartridge 
Tables: Differences Between the LM-2 and 3600 31 
tape drive 11, 32 

LM-2 Keys 

Audible 
No Audible 

Real-time 

.bin file 
.bn file 

.qbin file 
Binary file 

dip-header-forward data 
dip-array data 

dip-array-header data 
dip-array-pointer data 
dip-body-forward data 

dip-closure data 
dip-compiled-function data 

dtp-enttty data 
dip-even-pc data 

dtp-extended-numberdma 
dtp-extemal-value-cell-pointer data 

dlp-fef-pointer data 
dip-fix data 

dtp-floal data 
dip-free data 

Tape 1/0 11 
TERMINAL key 5 
That Do Not Exist on the 3600 3 
throw special form 28 
*times function 27 
tone 5 
Tone Yet 5 
TOP key 5 
tracking of the mouse 
Triangle character 7 
TR I ANGLE key 5 
type 13 
type 13 
type 13 
type 13 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 
type 20 



3600 Notes on the 3600 for LM-2 Users 53 

Symbolics, Inc. February 1984 

dlp-gc-forward data type 20 
dip-header data type 20 

dip-header-I data type 20 
dlp-header-p data type 20 
dip-Instance data type 20 

dip-Instance-header data type 20 
dip-Instance-variable-pointer data type 20 

dtp-llst data type 20 
dlp-locatlve data type 20 

dlp-monttor-forward data type 20 
dlp-nll data type 20 

dip-null data type 20 
dip-odd-pc data type 20 

dlp-one-q-forward data type 20 
dip-select-method data type 20 
dtp-small-flonum data type 20 
dip-stack-closure data type 20 

dip-stack-group data type 20 
dip-symbol data type 20 

dip-symbol-header data type 20 
dip-trap data type 20 

dlp-u-entry data type 20 
Flonum data type 15 

Numeric Type Change 31 
:bin canonical type for bin files 13 

Type-code field 11 
:floal argument to typep 16 

:flonum argument to typep 16 
:amall-ftonum argument to typep 16 

typep function 16, 31 
typep on the LM-2 and the 3600 16 

Compiled Code File Types 13 
Data types 20 

Array Types on the 3600 18 
Data Types: Subprimitives: Software Changes 20 

u u u 
al: unbln-flle function 13 
al: unfasl-file function 13 

sys: %unsynchronized-device-read function 24 
*unwind-stack function 28 

sl: unwire-page function 23 
Keys Not Used by Standard Software 5 

User-maintained systems 30 
Predicates: Notes on the 3600 for LM-2 Users 31 

v v v 
allow-variables-In-function-position-switch variable 32 

area-swap-recommendations variable 29 
compiled-function-area variable 29 

constants-area variable 29 
fal-temp-area Variable 29 

fas I-table-area variable 29 
gc-table-area variable 29 
lntt-llst-area variable 29 

macro-compiled-program variable 29 



54 3600 Notes on the 3600 for LM-2 Users 

Symbolics, Inc. February 1984 

obt-talls variable 29 
physical-page-data variable 29 

pname-area variable 29 
q-dat•types variable 20 

%%q-ftxnum variable 21 
%%q-ftag-bft variable 21 

%%q-hlgh-half variable 21 
%%q-hlgh-type variable 21 

%%q-low-half variable 21 
%%q-polnter variable 21 

run-ln-macllsp-swftch variable 32 
self variable 17 

symbol-area variable 29 
sys:*dat•types* variable 20 

sys:dump-forms-to-ftle variable 32 
sys:fasl-constants-area variable 29 

sys:lnlt-llstl-area variable 29 
ays:nr-sym variable 29 

sys:p-n-strlng variable 29 
system-communication-area variable 29 

Variable-monitoring feature 32 
Local variables 25 

Compiler Does Not Support Various Switches 32 
Vertical-Tab character 7 
Vt character 5, 7 

w w w 
Wide characters 19 

al: wire-page function 23 
Word addresses 11 
Word size 11 

FEP Load World command 27 
World-load compressor 32 
wrttel-meter function 27 

x x x 
xstore function 27 



symbolics™ 

INED Using the Input Editor 

Cambridge, Massachusetts 



Using the Input Editor 
# 990106 

February 1984 

This document corresponds to Rele- 5.0. 

This document was prepared by the Documentation Group of Symbolics, Inc. 

No representation or affirmation of fact contained in this document should be construed 
as a warranty by Symbolics, and its contents are subject to change without notice. 
Symbolics, Inc. assumes no responsibillty for any errors that might appear in this 
document. 

Symbolics software described in this document is furnished only under license, and may 
be used only in accordance with the terms of such license. Trtle to, and ownership of, 
such software shall at all times remain In Symbolics, Inc. Nothing contained herein 
implies the granting of a license to make, use, or sell any Symbolics equipment or 
software. 

Symbolics Is a trademark of Symbolics, Inc., C8mbridge, Massachusetts. 

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. 
All rights reserved. Printed in USA. 
This document may not be reproduced in whole or in part without the prior written 
consent of Symbolics, Inc. 

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1 



/NED Using the Input Editor 

Symbolics, Inc. February 1984 

Table of Contents 

Page 

1. Introduction 1 

2. Summary of the Major Changes 3 

3. Types of Histories 5 

4. Changes to the Yanking Commands 7 

5. Numeric Arguments 9 

6. The Displayed Default 11 

7. The Command History 13 

8. Input Editor 15 

9. Customization Variables 17 

Index 19 



/NED Using the Input Editor 

Symbolics, Inc. February 1984 

1. Introduction 

A history remembers commands and pieces of text, placing them in a history list. 
Additions to the history are placed at the top of the list, so that history elements 
are stored in reverse chronological order - the newer elements at the top of the 
history, the older elements toward the bottom. 

Yanking commands pull in the elements of a history. Top-level commands start a 
yanking sequence. Other commands perform all subsequent yanks in the same 
sequence. A yanking sequence ends when you type new text, execute a form or 
command, or start another yanking sequence. 

1 

The system has different histories for different contexts. One of these is always the 
current history. 



2 /NED Using the Input Editor 

Symbolics, Inc. February 1984 



/NED Using the Input Editor 

Symbolics, Inc. February 1984 

2. Summary of the Major Changes 

The Release 5.0 yank system is based on a new concept of a history, generalized 
from such concepts as the kill ring and the input editor history. The following 
summary lists the major user-visible changes that have been made to histories and 
to the yanking commands since Release 4. 

3 

• The yank system supports two top-level yanking commands - c.-v and c.-r.-v, 
whereas earlier releases used c.-V, c.-c, and c.-X AL TMODE. 

• r.-v performs all subsequent yanks in the same sequence, whereas earlier 
releases used r.-c and and c.-r.-v for this purpose. 

•The yanking commands have been made more consistent throughout the 
histories. 

Example: Pressing r.-V after a top-level yanking command retrieves 
immediately previous text in both the input editor and Zmacs. Formerly, you 
used r.-c in the input editor and r.-V in Zmacs. 

• The first element yanked by a top-level command given without an argument 
is called the origin of the history. Release 4 did not use the concept of an 
origin. 

• The origin changes as you use r.-V to cycle through a history. As a result, the 
origin is not necessarily the newest element of the history. 

• c.-v and c.-r.-V given without an argument retrieve the element at the origin, 
which is the last element yanked by r.-V in the previous yanking sequence. 
Thus, the last element yanked in a previous sequence becomes the first 
element yanked in the current sequence. Formerly, a top-level command given 
after a r.-V behaved inconsistently. 

•By default, when you display a history, element #1 is always the most recently 
added element. If the origin is not the newest element (element #1), it is 
indicated with a pointer. (Optionally, you can set the variable 
zwei:*history-rotate-if-numeric-arlf' so that the origin is labelled #1 when 
you display the history. See the section "Customization Variables".) 

Example: (+ 210 32) and (* 17 6) are both newer than the origin, 
(load-patches ':noselective). 

Lisp Listener 1 Input history: 
1: ( + 210 32) 
2: (* 17 6) 

-> 3: (load-patches ':noselective) 
4: (print-system-modifications) 
5: (print-disk-label) 
6: (login "sr") 

• By default, arguments to· c-V and c-r.-V are measured relative to the newest 



4 /NED Using the Input Editor 

Symbolics, Inc. February 1984 

element. To yank a particular element, give its number as an argument to 
c-Y or c-M-Y. (Optionally, you can set the variable 
zwei:*history-rotate-if-numeric-arg* so that arguments to the yanking 
commands are measured from the origin, whether or not it is the newest 
element in the history. See the section "Customization Variables". 

Example: c-M-4 c-M-Y yanks element #4, (print-system-modifications)", from 
the history displayed in the previous example. 

•Adding text to a history moves the origin to the newly added element. 

Example: Suppose you run the function print-herald and then redisplay the 
history list shown in the previous example. 

Lisp Listener 1 Input history: 
1: (print-herald) 
2: ( + 210 32) 
3: (* 17 6) 
4: (load-patches ':noselective) 
5: (print-system-modifications) 
6: (print-disk-label) 
7: (login "sr") 

• By default, a history remembers everything that has been typed to it since the 
last cold boot. Formerly, some histories were of fixed length; for example, the 
kill history saved only eight elements. 

• All editors now use a single kill history. This allows you to move text easily 
from one window to another, for example, from the editor to a Lisp Listener. 
See the section "Input Editor". 

•Displayed history elements are now mouse-sensitive, except in the input editor. 
If all the elements of a history are not displayed because the history is too 
long, then the screen displays a mouse-sensitive line: 
n more elements in history. Clicking left displays the rest of the history. 

•Activating yanked forms in the input editor works differently. To reexecute a 
yanked form, just press END anywhere within or at the end of the form. (You 
can, of course, edit the input first if you wish.) Formerly, a form was yanked 
without its terminating character (a close parenthesis, a Return, or a Space); 
to have the form evaluated, you had to explicitly type the terminating 
character at the end of the form. 



/NED Using the Input Editor 

Symbolics, Inc. February 1984 

3. Types of Histories 

Release 5.0 uses the following histories: 

Type 

Input 

Kill 

Replace 

Buffer 

Pathname 

Command 

Definition 

Description 

History containing text typed at the input editor; a separate 
history exists for each window. 

History of text deleted or saved in any window; a global history. 

History of arguments to Query Replace (M-X) and related 
commands. 

History of editor buffers visited in this window. 

History of file names that have been typed. 

History of editor commands that use the minibuffer, and their 
arguments. Commands that do not use the minibuffer, such as 
M-RUBOUT, are not recorded in the history. 

History of names of definitions that have been typed. 

5 

Except for the input histories, which are per-window, only a single instance of each 
of these histories exists, shared among all editors, including Zmacs, Zmail, and Dired. 



6 /NED Using the Input Editor 

Symbolics. Inc. February 1984 



/NED Using the Input Editor 7 

Symbolics. Inc. February 1984 

4. Changes to the Yanking Commands 

Cmd. Release 5.0 

c-V Yanks from the global kill history. 

Is not context-sensitive. See c-r.-V. 

c-M-V Is a top-level command. 

M-V 

Is context-sensitive; yanks from 
the appropriate history for the context. 

Replaces the old functioning of c-V in 
the minibuffer. 

Replaces the text yanked by c-V, 
c-r.-v, or r.-v with the previous 
element of the same history. 

Replaces the old functioning of c-r.-V 
in the minibuffer. 

Skips adjacent duplicate elements; 
yanks immediately preceding element. 

Yields an error if it does not 
immediately follow c-V or c-r.-V, 
except for a special case in the 
minibuffer. 
See the section "The Command History". 

Accepts a negative argument 
in the minibuffer. 

Release 4 

Yanked from the editor kill ring. 

Was context-sensitive only in the minibuffer; 
yanked either the last text typed in that 
context or the displayed default. 

Was not a top-level command, with one 
exception: it restarted the minibuffer 
command. 
See the section "The Command History''. 

Replaced text yanked by c-V or M-V with 
the previous element of the kill ring. 

Not applicable; identical pieces of text were 
not placed on the input editor history. 

Yielded an error if it did not immediately 
follow c-v. 

Did not accept a negative argument in 
the minibuffer. 



8 

M-0 M-y Displays the current history after 
a top-level yank has been done. 

c-C Obsolete. Same as c-M-V in 
the input editor. 

M-C Obsolete. Same as M-V in the 
input editor. 

c-X Obsolete. Same as c-M-V in Zwei. 
ALTMODE 

/NED Using the Input Editor 

Symbolics, Inc. February 1984 

Deleted the last text yanked but did not 
replace it with the previous element on 
the history. Use c-W to get this functioning. 

Was a top-level command. Yanked from 
the input editor history. 

Replaced text yanked by c-c with the 
previous element in the input editor history. 

Yanked from the editor command history. 



/NED Using the Input Editor 

Symbolics. Inc. February 1984 

5. Numeric Arguments 

1. A numeric argument of 0 to any yank command displays a list of the history 
and the numeric argument required to get each element of the histocy. 

Example: The input history invoked in a Lisp Listener by c-M-0 c-M-V: 

Lisp Listener 1 Input history: 
1: ( + 210 32) 
2: (* 17 6) 
3: (load-patches ':noselective) 
4: (print-system-modifications) 
5: (print-disk-label) 
6: (login "sr") 

The history is displayed in reverse chronological order - the newest element 
first, for example, C + 210 32); the oldest last, for example, C login "sr"). 

9 

2. By default, a positive argument to c-V and c-M-V specifies how far from the 
newest element into past history is the element to be yanked. The numbers 
in the history display can be used as numeric arguments. (Optionally, you can 
set the variable zwei:*history-rotate-if-numeric-arg* so that arguments to 
the yanking commands are measured relative to the origin. See the section 
"Customization Variables".) 

Example: c-M-1 c-M-V yanks element #1, C + 210 32), from the history 
displayed in step 1. 

Example: c-M-2 c-M-V yanks element #2, C * 17 6), from the history displayed 
in step 1. 

3. A positive or negative argument to M-V is measured relative to the last element 
yanked, not the newest element. 

Example: Pressing c-M-2 c-M-V yanks (* 17 6); then pressing M-4 M-V yanks 
C login "sr"), not element #4. Displaying the history at this point looks this: 

Lisp Listen-er 1 Input history: 
1: ( + 210 32) 
2: (* 17 6) 
3: (load-patches ':noselective) 
4: (print-system-modifications) 
5: (print-disk-label) 

-> 6: (login "sr") 

Element #6, marked by a pointer, is the origin. (Note: The origin is not the 
most recent element because M-V has changed the origin.) 



10 /NED Using the Input Editor 

Symbolics, Inc. February 1984 

4. A top-level command given without an argument retrieves the element at the 
origin, which is the last element yanked in the previous yanking sequence, not 
necessarily the newest element of the history. 

Example: c-"'-v yanks (login "sr") from the history displayed in step 3. 

5. A numeric argument of c-u not followed by any digits is the same as no 
numeric argument with one exception: Point is placed before the text yanked 
and mark is placed after - the reverse of the ordinary placement. 



/NED Using the Input Editor 11 

Symbolics. Inc. February 1984 

6. The Displayed Default 

When a command that reads an argument in the minibuffer displays a default, it 
puts the default onto the history temporarily. After reading and defaulting your 
input, it puts the argument onto the history instead. Thus c-... -Y always yanks the 
displayed default and c-... -2 c-Pl-Y yanks the last thing typed in that context. If no 
default is displayed, c-Pl-Y yanks the last thing typed in that context. 

The displayed default is usually not the same as the most recent item in the history; 
often it is computed according to some heuristic based on past history and the exact 
command being given. It is pushed onto the top of the history in order to allow you 
to easily yank and edit it. This is useful when the heuristic comes close but does 
not provide exactly what you want. 



12 /NED Using the Input Editor 

Symbolics, Inc. February 1984 



/NED Using the Input Editor 13 

Symbolics, Inc. February 1984 

7. The Command History 

The command history replaces c-X AL TMODE and the Release 4 definition of c-M-Y. 

This history remembers all editor commands that use the minibuffer in any way. In 
normal editor context, when you are not in the minibuffer, c-M-Y yanks from the 
command history. Yanking from this history does not insert the command into the 
text being edited; instead it reexecutes the command, giving you a chance to edit 
each argument as the minibuffer for that argument appears. Immediately after a 
c-M-Y, when you are being presented with the first minibuffer, M-Y switches to an 
earlier command on the history list. 

M-Y is a special case in the minibuffer when a command uses more than one 
minibuffer. If M-Y is typed as the first command to a minibuffer other than the 
first or is typed when a minibuffer other than the first is empty, the editor no 
longer causes an error. Instead it starts the current command over again with its 
first minibuffer. This functioning replaces the former behavior of the c-M-Y 
command. 

Example: When M-. cannot find any definitions and prompts you for a file name, 
pressing M-Y lets you cycle backward and edit the definition name. 

The same function can be achieved by pressing ABORT followed by c-M-Y, but M-Y is 
convenient and quicker. 

Note this present anomaly: In Zmail reply mode, the c-M-Y command yanks the 
message being replied to. For this reason, c-M-Y is not available for accessing history 
there; you must use the EMACS-compatibility key, c-x ESCAPE (c-X AL TMODE on the 
LM-2). 

Keep in mind that all (Zwei-based) editors use a single command history. An 
attempt to reexecute a command in a context where it does not work now gives an 
explanatory error message. Example: Trying to reexecute a Zmail command in 
Zmacs or trying to reexecute a Dired command while not in a Dired buffer gives an 
error. 



14 /NED Using the Input Editor 

Symbolics. Inc. February 1984 



/NED Usina the Input Editor 15 

Symbolics, Inc. February 1984 

8. Input Editor 

In the input editor c-M-V yanks from the history of previous inputs. For 
convenience and compatibility with Release 4, this command is also bound to c-C; for 
the same reason, M-C is synonymous with M-V. 

Because the input editor's kill history is now the same as the Zwei kill history, 
c-SPACE, c-W, M-W, c-<, c->, c-V, and related commands can be used in the input 
editor to move text back and forth between the two editors. (Press c-HELP for a 
summary of commands.) Unlike Zwei, however, the input editor does not underline 
the region. 

You can still use most Zwei editing commands on yanked forms, but reexecuting a 
yanked form is simpler: just press END anywhere within or at the end of the form. 
Formerly, a form was yanked without its terminating character; to have the form 
evaluated, you had to explicitly type the terminating character at the end of the 
form. 

ESCAPE (STATUS on the LM-2) displays the history of previous inputs. 
• With no numeric argument ESCAPE is equivalent to c-M-0 c-M-V, displaying the 

default input history. 

A numeric argument controls the length of the input history to be displayed. 
An argument of 0 displays the entire history. 

• With no numeric argument c-ESCAPE (c-STATUS on the LM-2) is equivalent to 
c-0 c-V, displaying the default kill history. 

A numeric argument controls the length of the kill history to be displayed. An 
argument of 0 displays the entire history. 



16 /NED Using the Input Editor 

Symbolics. Inc. February 1984 



/NED Using the Input Editor 17 

Symbolics, Inc. February 1984 

9. Customization Variables 

To change the behavior of the yank system, use login-forms and setq-globally to 
set the following Lisp internal variables in your init file. 

Alternatively, you can set them with Set Variable (M-X); when Set Variable prompts 
you for a variable name, supply the name given in each of the following descriptions. 

zwei:*history-menu-length* Variable 
The maximum number of histocy elements displayed. Default is 20. 

Histocy Menu Length is the name to use with Set Variable (M-X). 

zwei:*history-yank-wraparound* Variable 
Determines what happens after M-V runs off the end of a histocy or M- - M-V 
runs off the beginning of a histocy. Default is t. 

Value 

t 

nil 

Meaning 

M-y wraps around to the other end of the histocy. For 
example, after M-V yanks the oldest element in the history, 
it returns to the top of the histocy and yanks the newest 
element. 

M-V does not wrap around to the other end of the histocy. 
Instead, the 3600 flashes (the LM-2 beeps). 

History Yank Wraparound is the name to use with Set Variable (M-X). 

zwei:*history-rotate-if-numeric-arg4' Variable 
Determines what happens when c-V or c-M-V is given after M-Y. Default is 
nil. 

Value 

t 

nil 

Meaning 

A numeric argument to c-Y or c-M-V is measured from the 
origin, not the newest element in the histocy. The origin 
is always element #1. All other elements are numbered 
relative to the origin. Elements that are newer than the 
origin are assigned negative numbers, in ascending order 
with their distance from the origin. 

A numeric argument to c-Y or c-M-Y is measured from the 
the newest histocy element, not the origin. However, c-Y 
or c-M-Y given without an argument yanks the element at 
the origin; thus, the origin has meaning only when you 
use a top-level command without an argument. When you 
display a history, its elements are numbered from 1 on and 
the origin is indicated with a pointer. 



18 /NED Using the Input Editor 

Symbolics, Inc. February 1984 

History Rotate If Numeric Arg is the name to use with Set Variable <~-x). 

See the document Streams. This document contains more information on 
programming the input editor. 



/NED Using the Input Editor 19 

Symbolics, Inc. February 1984 

Index 

A A A 
Activating yanked forms 3 

c-X AL TMODE yank command 3, 7 
c-U argument to yanking commands 9 

Numeric Arguments: New Yank System 9 

B B B 
Buffer history 5 

c c c 
c-C command 3 
c-C yank command 7 
c-m-Y yank command 3, 7, 9, 13, 15 
c-U argument to yanking commands 9 
c-X AL TMODE yank command 3, 7 
c-Y yank command 3, 7, 9 

Summary of the Major Changes 3 
Changes to the Yanking Commands 7 

c-C command 3 
c-C yank command 7 

c-m-Y yank command 3, 7, 9, 13, 15 
c-X ALTMOOE yank command 3, 7 

c-Y yank command 3, 7, 9 
m-0 m-Y yank command 7 

m-C command 3 
m-C yank command 7, 15 
m-Y yank command 3, 7, 9, 13, 15 

Set Variable (m-X) command 17 
Command history 5 

The Command History 13 
c-U argument to yanking commands 9 
Changes to the Yanking Commands 7 

Editor commands 13 
Top-level yanking commands 3 

Current history 
Display current history 7, 9 

Customization Variables 17 

D D D 
The Displayed Default 11 

Definition history 5 
Display current history 7, 9 

The Displayed Default 11 
Using the mouse with displayed history elements 3 



20 /NED Using the Input Editor 

Symbolics, Inc. February 1984 

E E E 
Input Editor 15 

Using the ESCAPE key with the Input Editor 15 
Editor commands 13 

Input Editor kill history 15 
Retrieve element at origin 9 

Using the mouse with displayed history elements 3 
Using the ESCAPE key with the Input Editor 15 

F F F 
Activating yanked forms 3 

Reexecuting yanked forms 15 

G G G 
Yank from global kill history 7 

H H H 
Types of Histories 5 

Buffer history 5 
Command history 5 

Current history 1 
Definition history 5 

Display current history 7, 9 
Input history 5 

Input Editor kill history 15 
Kill history 3, 5 

Pathname history 5 
Replace history 5 

The Command History 13 
Yank from global kill history 7 

Zwei kill history 15 
Using the mouse with displayed history elements 3 

History length 3, 17 
History list 1 

zwei: *history-menu-length* variable 17 
zwel: *history-rotate-if-numerlc-arg* variable 3, 9, 17 
zwel: *history-yank-wraparound* variable 17 

I I 
Input Editor 15 

Using the ESCAPE key with the Input Editor 15 
Input Editor kill history 15 
Input history 5 
Introduction: New Yank System 

K K K 
Using the ESCAPE key with the Input Editor 15 

Kill history 3, 5 
Input Editor kill history 15 

Yank from global kill history 7 
Zwei kill history 15 



/NED Using the Input Editor 

Symbolics, Inc. February 1984 

L 

M 

N 

0 

p 

R 

s 

T 

L 
History length 3, 17 
History list 1 

Set Variable 

m-0 
Summary of the 

Zmail reply 
Using the 

Introduction: 
Numeric Arguments: 

M 

N 

0 

m-0 m-Y yank command 7 
m-C command 3 
m-C yank command 7, 15 
(m-X) command 17 
m-Y yank command 3, 7, 9, 13, 15 
m-Y yank command 7 
Major Changes 3 
Minibuffer 13 
mode 13 
mouse with displayed history elements 3 

New Yank System 
New Yank System 9 
Numeric Arguments: New Yank System 9 

Origin 3 
Retrieve element at origin 9 

p 

R 

Pathname history 5 

Reexecuting yanked forms 15 
Replace history 5 
Replace yanked text 7 

Zmail reply mode 13 
Retrieve element at origin 9 

s 
Yanking sequence 1 

Set Variable (m-X) command 17 
Summary of the Major Changes 3 

Introduction: New Yank System 1 
Numeric Arguments: New Yank System 9 

T 
Replace yanked text 7 

Top-level yanking commands 3 
Types of Histories 5 

21 

L 

M 

N 

0 

p 

R 

s 

T 



22 

v 

y 

z 

zwel:*hlstory-menu-length* 
zwel:*hlstory-rotate-lf-numerlc-arg* 

zwel:*history-yank-wraparound* 
Set 

Customization 

c-C 
c-m-V 

c-X ALTMOOE 
c-V 

m-0 m-V 
m-C 
m-V 

Introduction: New 
Numeric Arguments: New 

Activating 
Reexecuting 

Replace 
c-U argument to 
Changes to the 

Top-level 

v 

y 

z 

/NED Using the Input Editor 

Symbolics. Inc. February 1984 

variable 17 
variable 3, 9, 17 
variable 17 
Variable (m-X) command 17 
Variables 17 

yank command 7 
yank command 3, 7, 9, 13, 15 
yank command 3, 7 
yank command 3, 7, 9 
yank command 7 
yank command 7, 15 
yank command 3, 7, 9, 13, 15 
Yank from global kill history 7 
Yank System 1 
Yank System 9 
yanked forms 3 
yanked forms 15 
yanked text 7 
yanking commands 9 
Yanking Commands 7 
yanking commands 3 
Yanking sequence 1 

Zmail reply mode 13 
Zwei kill history 15 

v 

y 

z 
zwel:*history-menu-length* variable 17 
zwei:*hlstory-rotate-lf-numeric-arg• variable 3, 9, 

17 
zwel:*hlstory-yank-wraparound* variable 17 



symbolics™ 

MISCF Miscellaneous 
Useful. Functions 

Cambridge, Massachusetts 



Miscellaneous Useful Functions 
# 990102 

February 1984 

This document corresponds to Release 5.0. 

This document was prepared by the Documentation Group of Symbolics, Inc. 

No representation or affirmation of fact contained In this document should be construed 
as a warranty by Symbolics, and its contents are subject to change without notice. 
Symbolics, Inc. assumes no responsibility for any errors that might appear in this 
document. 

Symbolics software described in this document is furnished only under license, and may 
be used only in accordance with the terms of such license. Title to, and ownership of, 
such software shall at all times remain in Symbolics, Inc. Nothing contained herein 
implies the granting of a license to make, use, or sell any Symbolics equipment or 
software. 

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts. 

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology. 
All rights reserved. 

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Cambridge, 
Massachusetts. 
All rights reserved. Printed in USA. 
This document may not be reproduced in whole or in part without the prior written 
consent of Symbolics, Inc. 

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1 



MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

Table of Contents 

Page 

1. Poking Around in the Lisp World 1 

2. Utility Functions 5 

3. The Lisp Top Level 7 

4. Logging in 11 

5. Dribble Files 15 

6. status and sstatus 17 

Index 19 



MISCF Miscellaneous Useful Functions 1 

Symbolics, Inc. February 1984 

1. Poking Around in the Lisp World 

This document describes a number of functions that do not logically fit in anywhere 
else. Most of these functions are not normally used in programs, but are 
"commands", that is, things that you type directly at Lisp. 

who-calls symbol &optional pkg (do-inferiors t) (do-superiors t) Function 
symbol must be a symbol or a list of symbols. who-calls tries to find all of 
the functions in the Lisp world that call symbol as a function, use symbol as 
a variable, or use symbol as a constant. (It won't find things that use 
constants that contain symbol, such as a list one of whose elements is 
symbol; it will only find it if symbol itself is used as a constant.) It tries to 
find all of the functions by searching the function cells and properties of all 
the symbols in a certain set of packages. The set always includes the 
package pkg. If do-inferiors is true, the set also includes all packages that 
use pkg. If do-superiors is true, the set also includes all packages that pkg 
uses. pkg defaults to the global package, and so normally all packages are 
checked. 

If who-calls encounters an interpreted function definition, it simply tells you 
if symbol appears anywhere in the interpreted code. who-calls is smarter 
about compiled code, since it has been nicely predigested by the compiler. 

If symbol is a list of symbols, who-calls does them all simultaneously, which 
is faster than doing them one at a time. 

The editor has a command, List Callers (M-X), that is similar to who-calls. 

The symbol unbound-function is treated specially by who-calls. 
(who-calls 'unbound-function) will search the compiled code for any calls 
through a symbol that is not currently defined as a function. This is useful 
for finding errors such as functions you misspelled the names of or forgot to 
write. 

who-calls prints one line of information for each caller it finds. It also 
returns a list of the names of all the callers. 

who-uses symbol &optional pkg (do-inferiors t) (do-superiors t) 
who-uses is an obsolete name for who-calls. 

See the function who-calls. 

Function 

what-files-call symbol-or-symbols &optional pkg (do-inferiors t) Function 
(do-superiors t) 

Similar to who-calls but returns a list of the pathnames of all the files that 
contain functions that who-calls would have printed out. This is useful if 
you need to r~ompile and/or edit all of those files. 



2 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

apropos apropos-substring &optional pkg (do-packages-used-by t) Function 
do-packages-used 

(apropos apropros-substring) tries to find all symbols whose print-names 
contain apropos-substring as a substring. Whenever it fmds a symbol, it 
prints out the symbol's name; if the symbol is defined as a function and/or 
bound to a value, it tells you so, and prints the names of the arguments (if 
any) to the function. It checks all symbols in a certain set of packages. The 
set always includes pkg. If do-packages-used-by is true, the set also includes 
all packages that use pkg. If do-packages-used is true, the set also includes 
all packages that pkg uses. pkg defaults to the global package, so normally 
all packages are searched. apropos returns a list of all the symbols it finds. 

where-is pname Function 
Find all symbols named pname and print on standard-output a description 
of each symbol. The symbol's home package and name are printed. If the 
symbol is present in a different package than its home package (that is, it 
has been imported), that fact is printed. A list of the packages from which 
the symbol is accessible is printed, in alphabetical order. where-is searches 
all packages that exist, except for invisible packages. 

If pname is a string it is converted to uppercase, since most symbols' names 
use uppercase letters. If pname is a symbol, its exact name is used. 

where-is returns a list of the symbols it found. 

The find-all-symbols function is the primitive that does what where-is does 
without printing anything. 

describe x Function 
describe tries to tell you all of the interesting information about any object 
x (except for array contents). describe knows about arrays, symbols, all 
types of numbers, packages, stack groups, closures, instances, structures, 
compiled functions, and locatives, and prints out the attributes of each in 
human-readable form. Sometimes it will describe something that it finds 
inside something else; such recursive descriptions are indented appropriately. 
For instance, describe of a symbol will tell you about the symbol's value, its 
definition, and each of its properties. describe of a floating-point number 
will show you its internal representation in a way that is useful for tracking 
down roundoff errors and the like. 

If x is a named-structure, describe handles it specially. To understand this, 
you should read the section on named structures. See the document 
Defstruct. First it gets the named-structure symbol, and sees whether its 
function knows about the :describe operation. If the operation is known, it 
applies the function to two arguments: the symbol :describe, and the 
named-structure itself. Otherwise, it looks on the named-structure symbol 
for information that might have been left by defstruct; this information 



MISCF Miscellaneous Useful Functions 3 

Symbolics. Inc. February 1984 

would tell it what the symbolic names for the entries in the structure are, 
and describe knows how to use the names to print out what each field's 
name and contents is. 

describe describes an instance by sending it the :describe message. The 
default method prints the names and values of the instance variables. 

describe always returns its argument, in case you want to do something else 
to it. 

inspect &optional object 
A window-oriented version of describe. See the window system 
documentation for details, or try it. 

Function 

disassemble function Function 
function is either a compiled function, or a symbol or function spec whose 
definition is a compiled function. disassemble prints out a human-readable 
version of the macroinstructions in function. See the document Internals. 
That document contains an explanation of the macrocode instruction set. 

The grindef function may be used to display the defmition of a noncompiled 
function. See the document Streams. 

set-memory-size n-words Function 
set-memory-size tells the virtual memory system to use only n-words words 
of main memory for paging. Of course, n-words may not exceed the amount 
of main memory on the machine. (LM-2 only) 



4 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 



MISCF Miscellaneous Useful Functions 5 

Symbolics, Inc. February 1984 

2. Utility Functions 

zwei:save-all-files Function 
This function is useful in emergencies in which you have modified material in 
Zmacs buffers that needs to be saved, but the editor is partially broken. 
This function does what the editor's Save All Files (M-X) command does, but 
it stays away from redisplay and other advanced facilities so that it might 
work if other things are broken. 

zwei:zmail-save-all-files is similar, but saves mail files from Zmail. 

print-sends &optional (stream standard-output) Function 
Prints out all messages you have received (but not messages you have sent), 
in forward chronological order, to stream. Converse is more useful for looking 
at your messages, but this function predates Converse and is retained for 
compatibility. 

print-notifications &optional (from 0) (to <1- (length Function 
tv:notification-history))) 

Reprints any notifications that have been received. The difference between 
notifications and sends is that sends come from other users, while 
notifications are asynchronous messages from the Lisp Machine system itself. 
If from or to is specified, prints only part of the notifications list. 

Example: (print-notifications o 4) prints the five most recent notifications. 

si:print-disk-error-log Function 
Prints information about the half dozen most recent disk errors (since the 
last cold boot). (LM-2 only) 

si:print-Iogin-history &optional (history si:login-history) Function 
Prints one line for each time the login function has been called in this world 
load. Each line contains the name of the user that logged in, the name of 
the machine on which the world load was running at that time, and the date 
and time. If you cold boot, log in, and then call si:print-Iogin-history, the 
last line refers to your own login and all previous lines refer to logins that 
were done before running disk-save. 

This information is useful to determine how many times a world load has 
been disk-saved, on what machines it was disk-saved, and who disk-saved it. 

The first couple of lines do not contain any date or time, because they were 
made during the initial construction of the world load before it found out the 
current time. Names of users at other sites that are not in the local site's 
namespace search list are qualified with the site's namespace name and a 
vertical bar. The user SCRCILISP-MACHINE is the dummy user used by 
si:login-to-sys-host at SCRC, the site where new world loads are created. 



6 M/SCF Miscellaneous Useful Functions 

Symbolics. Inc. February 1984 

hostat &rest hosts Function 
Interrogates the specified hosts, or all known hosts if none are specified, with 
the STATUS protocol and prints the results in columns as a table. 

uptime &rest hosts Function 
Queries the specified hosts, asking them for their "uptime"; each host 
responds by saying how long it has been up and running. uptime prints out 
the results. If uptime reports that a host is "not responding", either the 
host is not responding to the network, or it does not support the UPTIME 
protocol. 

The uptime function is a variant of hostat. 



MISCF . Miscellaneous Useful Functions 7 

Symbolics. Inc. February 1984 

3. The Lisp Top Level 

These functions constitute the Lisp top level and its associated functions. 

si:lisp-top-level Function 
This is the first function called in the initial Lisp environment. It calls 
lisp-reinitialize, clears the screen, and calls si:lisp-top-levelL 

lisp-reinitialize &optional (called-by-user t) Function 
This function does a wide variety of things, such as resetting the values of 
various global constants and initializing the error system. 

si:lisp-top-levell terminal-io Function 
This is the actual top-level loop. It reads a form from standard-input, 
evaluates it, prints the result (with slashification) to standard-output, and 
repeats indefinitely. If several values are returned by the form, all of them 
will be printed. Also the values of•, +, -, //, ++, ••, +++, and *** are 
maintained. 

break tag [conditional-form) Special Form 
break is used to enter a breakpoint loop, which is similar to a Lisp top-level 
loop. (break tag) will always enter the loop; 
(break tag conditional-form) will evaluate conditional-form and only enter 
the break loop if it returns non-nil. If the break loop is entered, break 
prints out 

;Breakpoint tag; Resume to continue, Abort to quit. 

and then enters a loop reading, evaluating, and printing forms. A difference 
between a break loop and the top-level loop is that when reading a form, 
break checks for the following special cases: If the ABORT key is pressed, 
control is returned to the previous break or Debugger, or to top level if there 
is none. If the RESUME key is pressed, break returns nil. If the list 
(return form) ·is typed, break evaluates form and returns the result. 

Inside the break loop, the streams standard-output, standard-input, and 
query-io are bound to be synonymous to terminal-io; terminal-io itself is 
not rebound. Several other internal system variables are bound, and you can 
add your own symbols to be bound by pushing elements onto the value of the 
variable sys:*break-bindings•. (See the variable sys:*break-bindings* .) 

If tag is omitted, it defaults to nil 

There are two easy ways to write a breakpoint into your program: (break) 
gets a read-eval-print loop, and (dbg) gets the Debugger. (These are the 
programmatic equivalents of the SUSPEND and ,.-SUSPEND keys on the 
keyboard.) 



8 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

prinl Variable 
The value of this variable is normally nil. If it is non-nil, then the read
eval-print loop will use its value instead of the definition of prinl to print the 
values returned by functions. This hook lets you control how things are 
printed by all read-eval-print loops-the Lisp top level, the break function, 
and any utility programs that include a read-eval-print loop. It does not 
affect output from programs that call the print function or any of its 
relatives such as print and format; if you want to do that, you will need 
more information on customizing the printer. See the document Primitive 
Object Types. If you set prinl to a new function, remember that the read
eval-print loop expects the function to print the value but not to output a 
Return character or any other delimiters. 

Variable 
While a form is being evaluated by a read-eval-print loop, - is bound to the 
form itself. 

+ Variable 
While a form is being evaluated by a read-eval-print loop, + is bound to the 
previous form that was read by the loop. 

• Variable 
While a form is being evaluated by a read-eval-print loop, • is bound to the 
result printed the last time through the loop. If several values were printed 
(because of a multiple-value return), * is bound to the first value. If no 
result was printed, * is not changed. 

11 Variable 
While a form is being evaluated by a read-eval-print loop, I I is bound to a list 
of the results printed the last time through the loop. 

++ Variable 

+++ 

++ holds the previous value of+, that is, the form evaluated two interactions 
ago. 

Variable 
+++ holds the previous value of ++. 

** Variable 
** holds the previous value of *, that is, the result of the form evaluated two 
interactions ago. 

*** Variable 
*** holds the previous value of **. 



MISCF Miscellaneous Useful Functions 9 

Symbolics, Inc. February 1984 

sys:*break-bindings• Variable 
When break is called, it binds some special variables under control of the list 
that is the value of sys:*break-bindings*. Each element of the list is a list 
of two elements: a variable and a form that is evaluated to produce the value 
to bind it to. The bindings happen sequentially. Users may push things on 
this list (adding to the front of it), but should not replace the list wholesale 
since several of the variable bindings on this list are essential to the operation 
of break. 

lisp-crash-list Variable 
The value of lisp-crash-list is a list of forms. lisp-reinitialize sequentially 
evaluates these forms, and then sets lisp-crash-list to nil. 

In most cases, the initialization facility should be used rather than 
lisp-crash-list. See the document Initializations. 



10 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 



MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

4. Logging in 

Logging in tells the Lisp Machine who you are, so that other users can see who is 
logged in, you can receive messages, and your init file can be run. An init file is a 
Lisp program that gets loaded when you log in; you can use it to set up a 
personalized environment. 

11 

When you log out, it should be possible to undo any personalizations you have made 
so that they do not affect the next user of the machine. Therefore, anything done 
by an init file should be undoable. Thus, for every form in the init file, you should 
add to the list that is the value of logout-list a Lisp form to undo its effects. The 
functions login-forms and login-setq, described below, help make this easy. 

login user-name &key host <load-init-file t) Function 
Note that although you enter the same user id for user-name as in previous 
releases, the user object that contains it now also contains the name of the 
host where your mail and init files reside. Therefore, you seldom need to 
supply a host argument to login. See the section "Network Database". 

user-name is the name of a user. host is a particular host computer. If the 
value of load-init-file is t, as it is by default, the user's init file is loaded. If 
the value of load-init-file is nil the init file is not loaded. 

You can log in as a registered user by not specifying a host, or you can log in 
to a specific host as a user on that host, not registered in the Lisp Machine 
namespace database. 

If host requires passwords for logging in, you are asked for a password. 
When logging in to a TOPS-20 host, typing an asterisk before your password 
enables any special capabilities you may be authorized to use. 

If anyone is logged into the machine already, login logs that user out before 
logging in user-name. See the function logout. login also runs the 
login-initialization-list. See the section "System Initialization Lists". 

When login loads an init file, it looks for a file whose name depends on the 
host. See the section "Init File Naming Conventions". Init files should be 
written using login-forms so that logout can undo them. Usually, however, 
you cold boot the machine before logging in, to remove any traces of the 
previous user. 

login returns t. 

A typical use of login now looks like this: 

(login 'djones) 

If you supply an unknown user id and don't specify :host, you are given an 



12 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

opportunity to specify a particular host for the current login session, and to 
add the user object thus created to the network database (accomplished via 
tv:edit-namespace-object) for subsequent logins. You can instead select 
the Retry option, which is useful when the namespace server did not respond 
to your initial login request. 

logout Function 
First, logout evaluates the forms on logout-list. Then it sets user-id to an 
empty string and logout-list to nil. Then it runs the :logout initialization 
list and returns t. See the document Initializations. 

user-id Variable 
The value of user-id is either the name of the logged in user, as a string, or 
else an empty string if there is no user logged in. It appears in the status 
line. 

site-name Variable 
The value is a keyword, the name of the site at which this machine is 
located. See the section "Site Objects". 

site-name can be used to conditionalize programs. For example: 

(when (eq site-name :acme) 
(load "apricot:>smith>cerebrum-server")) 

logout-list Variable 
The value of logout-list is a list of forms that are evaluated when a user 
logs out. 

login-forms body... Special Form 
login-forms is a special form for wrapping around a set of forms in your init 
file. It evaluates the forms and arranges for them to be undone when you 
log out. It is intended to replace login-setq and login-eval. 

login-forms always evaluates the forms, even when it does not know how to 
undo them. For forms that it cannot undo, it prints a warning message. 

In the following example, login-forms arranges for foo either to become 
unbound or to get its old value and for bar either to become undefined or to 
get its old function definition. It would warn you about quux being 
impossible to undo. 

(login-forms 
(setq foo 3) 
(defun bar Cx y) (+ x y)) 
( quux 3)) 

You can create functions to undo forms that login-forms does not recognize. 
To undo a given form, you put a property on the symbol that is the car of 
the form to undo. For example, to create a function to undo quux: 



MISCF Miscellaneous Useful Functions 13 

Symbolics. Inc. February 1984 

(defun (:property quux :undo-function) (form) 
'(undo-quux ,(cadr form))) 

The value returned by an undo function is a form to be evaluated at logout 
time. 

setq-globally {variable value}... Special Form 
setq-globally should be used with login-forms, rather than setq, for 
anything that might be bound while evaluating the login-forms. 

setq-globally works like setq but sets the global values, bypassing any 
special-variable bindings. login-forms knows how to undo this. 
setq-globally is the recommended way to set things in one's init file; for 
instance, setting base with plain setq does not work if the init file has a 
Base attribute in its-•- line, because that causes base to be bound during 
the loading of the file. 

An example: 

(login-forms 
(setq-globally base 10. 

ibase 10. 
zwei:*converse-beep-count* 4)) 

login-setq {variable. value}... Special Form 
login-setq is like setq except that it puts a setq form on logout-list to set 
the variables to their previous values. It is now obsolete; use login-forms 
instead. 

login-eval x Function 
login-eval is used for functions that are "meant to be called" from init files, 
such as zwei:set-comtab-return-undo, which conveniently return a form to 
undo what they did. login-eval adds the result of the form x to the 
logout-list. It is now obsolete; use login-forms instead. 



14 MISCF Miscellaneous Useful Functions 

Symbolics. Inc. February 1984 



MISCF Miscellaneous Useful Functions 15 

Symbolics. Inc. February 1984 

5. Dribble Files 

dribble-start filename &optional editor-p Function 
dribble-start opens filename as a "dribble file" (also known as a "wallpaper 
file"). It rebinds standard-input and standard-output so that all of the 
terminal interaction is directed to the file as well as the terminal. If editor-p 
is non-nil, then instead of opening filename on the file computer, 
dribble-start dribbles into a Zmacs buffer whose name is filename, creating 
it if it does not exist. 

dribble-end Function 
This closes the file opened by dribble-start and resets the 1/0 streams. 



16 MISCF Miscellaneous Useful Functions 

Symbolics. Inc. February 1984 



MISCF Miscellaneous Useful Functions 17 

Symbolics, Inc. February 1984 

6. status and sstatus 

The status and sstatus special forms exist for compatibility with Maclisp. Programs 
that wish to run in both Maclisp and Zetalisp can use status to determine which of 
these they are running in. Also, (sstatus feature ... ) can be used as it is in 
Maclisp. 

status Special Form 
(status features) returns a list of symbols indicating features of the Lisp 
environment. The complete list of all symbols that may appear on this list, 
and their meanings, is given in the Maclisp manual. The default list for the 
Lisp Machine is: 

(:DEFSTORAGE :LOOP :DEFSTRUCT :LISPM :SYMBOLICS 3600 :CHAOS :SORT 
:FASLOAD :STRING :NEWIO :ROHAN :TRACE :GRINDEF :GRIND) 

The value of this list will be kept up to date as features are added or 
removed from the Lisp Machine system. Most important is the symbol 
:lispm; this indicates that the program is executing on the Lisp Machine. 
The order of this list should not be depended on, and may not be the same 
as shown above. 

The following symbols in the features list can be used to distinguish different 
Lisp implementations, using the#+ and#- reader syntax. 

•Three symbols indicate which Lisp Machine hardware is running: 

:lispm 
:cadr 
:3600 

Any kind of Lisp Machine, as opposed to Maclisp 
An LM-2 or an M.l.T. CADR 
A 3600 

• One symbol indicates which kind of Lisp Machine software is running: 

:symbolics Symbolics software 

See the section "Conditional Code". See the section "Sharp-sign 
Abbreviations". 

(status feature symbol) returns t if symbol is on the (status features) list, 
otherwise nil. 

(status nofeature symbol) returns t if symbol is not on the 
(status features) list, otherwise nil. 

(status userid) returns the name of the logged-in user. 

(status tabsize) returns the number of spaces per tab stop (always 8). 
Note that this can actually be changed on a per-window basis, however the 
status function always returns the default value of 8. 



18 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

(status opsys) returns the name of the operating system, always the symbol 
:lispm. 

(status site) returns the name of the local machine, for example, 
''MIT-LISPM-6". Note that this is not the same as the value of site-name. 

(status status) returns a list of all status operations. 

(status sstatus) returns a list of all sstatus operations. 

sstatus Special Form 
(sstatus feature symbol) adds symbol to the list of features. 

(sstatus nofeature symbol) removes symbol from the list of features. 



MISCF Miscellaneous Useful Functions 19 

Symbolics. Inc. February 1984 

Index 

* * * 
•variable 8 
**variable 8 
•••variable 8 

+ + + 
+ variable 8 
+ + variable 8 
+ + + variable 8 

- variable 8 

I I I 
II variable 8 

A A A 
apropos function 2 

Poking Around in the Lisp Wor1d 

B B B 
Break loop 7 
break special form 7 

sys: *break-bindings• variable 9 
Breakpoint 7 

Write a breakpoint into a program 7 
Enter a breakpoint loop 7 

c c c 
Functions for identifying callers 1 
I List Callers (m-X) Zmacs command 

Identifying callers of variables 1 
List Callers (m-X) Zmacs command 1 

D D D 
describe function 2 
disassemble function 3 

Wor1d load disk-saves 5 
Dribble Files 15 
dribble-end function 15 
dribble-start function 15 



20 MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

E E E 
Enter a breakpoint loop 7 

Lisp environment features list 17 

F F F 
Lisp environment features list 17 

Saving terminal interactions in file 15 
Wallpaper file 15 

Dribble Files 15 
I nit files 11 

break special form 7 
login-forms special form 12, 13 

login-setq special form 13 
setq-globally special form 13 

sstatus special form 18 
status special form 17 

apropos function 2 
describe function 2 

disassemble function 3 
dribble-end function 15 

dribble-start function 15 
hostat function 6 

Inspect function 3 
lisp-reinitialize function 7 

login function 11 
logln-eval function 13 

logout function 12 
print-notifications function 5 

print-sends function 5 
set-memory-size function 3 

si:lisp-top-level function 7 
sl :llsp-top-leven function 7 

sl :print-disk-error-log function 5 
si :print-login-history function 5 

uptime function 6 
what-files-call function 1 

where-ls function 2 
who-calls function 1 
who-uses function 1 

zwei :save-all-files function 5 
Utility Functions 5 

Functions for identifying callers 

H H H 
hostat function 6 

I 
Functions for identifying callers 1 

Identifying callers of variables 
lnit files 11 

sl: lnitlal-readtable variable 7 
Inspect function 3 

Saving terminal interactions in file 15 



MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

L 

M 

N 

p 

R 

The Lisp Top 

The 
Poking Around in the 

al: 
sl: 

Lisp environment features 

World 

Break 
Enter a breakpoint 

Read-eval-print 
Top-level 

L 

M 

Level 7 
Lisp environment features list 17 
Lisp Top Level 7 
Lisp World 1 
llsp-crash-llst variable 9 
llsp-relnltlaliza function 7 
lisp-top-level function 7 
llsp-top-leven function 7 
list 17 
List Callers (m-X) Zmacs command · 
load disk-saves 5 
Logging in 11 
login function 11 
logln-eval function 13 
login-forms 13 
login-forms special form 12, 13 
logln-setq special form 13 
logout function 12 
logout-list variable 12 
loop 7 
loop 7 
loop 7, 8 
loop 7 

List Callers (m-X) Zmacs command 
Maclisp 17 

Reprint messages 5 

N 
Reprints notifications 5 

p 
Poking Around in the Lisp World 
prln1 variable 8 

sl: print-disk-error-log function 5 
sl: print-login-history function 5 

print-notifications function 5 
print-sends function 5 

Write a breakpoint into a program 7 

R 
Read-eval-print loop 7, 8 
readtable variable 7 
Reprint messages 5 
Reprints notifications 5 

21 

L 

M 

N 

p 

R 



22 M/SCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

s s s 
zwel: save-all-flies function 5 

Saving terminal interactions In file 15 
SCRCjUSP-MACHINE 5 
set-memory-size function 3 
setq-globally special form 13 
sl:lnltlal-readtable variable 7 
sl:llsp-top-level function 7 
sl :lisp-top-leveH function 7 
sl:prlnt-dlsk-error-log function 5 
sl:prlnt-logln-history function 5 
site-name variable 12 

break special form 7 
log In-forms special form 12, 13 

logln-setq special form 13 
setq-globally special form 13 

sstatus special form 18 
status special form 17 

status and sstatus 17 
sstatus special form 18 
status and sstatus 17 
status special form 17 

Unbound-function symbol 1 
sys:*break-bindlngs* variable 9 

T T T 
Saving terminal Interactions in file 15 

The Lisp Top Level 7 
Top-level loop 7 

u u u 
Unbound-function symbol 
uptime function 6 
user-id variable 12 
Utility Functions 5 

v v v 
* variable 8 

** variable 8 
*** variable 8 

+ variable 8 
++ variable 8 

+++ variable 8 
variable 8 

II variable 8 
lisp-crash-list variable 9 

logout-list variable 12 
prln1 variable 8 

reac:ttable variable 7 
sl :lnltlal-readtable variable 7 

site-name variable 12 
sys:*break-blndlngs* variable 9 

user-Id van able 12 
Identifying callers of variables 1 



MISCF Miscellaneous Useful Functions 

Symbolics, Inc. February 1984 

w w 
Wallpaper file 15 
what-files-call function 
where-ls function 2 
who-calls function 1 
who-uses function 1 

Poking Around In the Lisp World 1 

z 

World load disk-saves 5 
Write a breakpoint into a program 7 

z 
List Callers (m-X) Zmacs command 1 

zwel:save-all-flles function 5 

23 

w 

z 


	00-001
	00-002
	00-003
	00-01
	00-02
	00-03
	00-04
	00-05
	01-0001_990079_Notation_Feb84
	01-0002
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-0001_990075_3600_Summary_Feb84
	02-0002
	02-001
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	03-0001_990105_3600_for_LM-2_Users_Feb84
	03-0002
	03-001
	03-002
	03-003
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	04-0001_990106_Input_Editor_Feb84
	04-0002
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-0001_990102_Misc_Functions_Feb84
	05-0002
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23

