
symbolics TM

Volume3
Lisp Language

Volume 3. Lisp Language

#996030

copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed in USA. This document may not be reproduced in whole or in part without the
prior written consent of Symbolics, Inc.

Design: Schafer/LaCasse
Cover and title page typography: Lltho Composition Co.

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Machine from Bitstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine System was a product of the efforts of many
people at the M.l.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
in this documentation set were written at the Al Lab.

symbolics TM

Contents

Lisp
Language
PRIM
Primitive
Object Types

EVAL
Evaluation

FLOW
Flow of Control

ARR
Arrays and Strings

FUNC
Functions

MAC
Macros

DEFS
Defstruct

FLAV
Objects,
Message Passing,
and Flavors

COND
Conditions

PKG
Packages

syrnbolicsrM

Volume3A
Lisp Language

Volume 3A. Lisp Language

Copyright C 1984, Symbolics, Inc. of Cambridge, Massachusetts. All rights reserved.
Printed In USA. This document may not be reproduced in whole or In part without the
prior written consent of Symbolics, Inc.

Design: Schafer/Lacasse
Cover and title page typography: Lltho Composition Co.

Text typography: Century Schoolbook and Helvetica produced on a Symbolics 3600
Lisp Macbine from Bitstream, Inc., outlines; text master printed on Symbolics
LGP-1 Laser Graphics Printer.

The first Lisp Machine system was a product of the efforts of many
people at the M.l.T. Artificial Intelligence Laboratory, and of the unique
environment there. Portions of earliest versions of many of the documents
In this documentation set were written at the Al Lab.

symbolics™

Contents

Lisp
Language
PRIM
Primitive
Object Types

EVAL
Evaluation

FLOW
Flow of Control

ARR
Arrays and Strings

symbolics™

Documentation Map

1 2 3 4 5
System System Lisp Program User
Index Fundamentals Language Development Interface

Tools Support
TOC NOTA PRIM TOOLS WIN DOC
Table of Notation Primitive Program Development Using the
Contents Conventions Object Types Tools and Window System

INDEX LMS EVAL
Techniques

WIND EX
Index Lisp Machine Evaluation HELP Window System

RN
Summary

FLOW
Program Development Program Examples

3600 Edition Help Facilities
Release Notes/ Flow of Control MENUS
Patch Notes 3600

ARR
ZMACS Window System

Notes on the 3600 Zmacs Manual Choice Facilities NEWS for LM-2 Users Arrays and Strings
Newsletters/

FUNC
DEBUG SCROLL

Bug Reports INED Debugger Scroll Windows
Using the Functions
Input Editor MAC

MAINT MISCUI
Maintaining Miscellaneous

MISCF Macros Large Systems Functions
Miscellaneous DEFS COMP Useful Functions

Defstruct The Compiler

FLAV MISCT
Objects, Other Tools
Message Passing,
and Flavors

COND
Conditions

PKG
Packages

6 7 8
Utilities Networks System
and and 1/0 Installation,
Applications Maintenance,

Programming
ZMAILT STA SIG
Zmail Tutorial Streams Software
and Reference

FILE
Installation Guide

Manual
Files SITE

ZMAILC
NETIO

Site Operations
Zmail Concepts
and Techniques Networks and TAPE

FED
Peripherals Tape

Font Editor PROT STOA
Networks and Storage Management

HARD Protocols
PROC Hardcopy System
Processes

CONV
INIT Converse
Initializations

FSED
INT FSEdit

MISCU
Internals

Other Utilities
and Applications

2 MAP Documentation Map

Symbolics, Inc. February 1984

Map to the New Documentation System

The documentation in this eight-volume set includes all previously published Lisp
Machine documentation, reorganized by topics and intended use of the information.
(In addition, some documents contain information that is new as of Release 5.0.)
The most obvious aspects of the reorganization are:

• The Lisp Machine Manual has been taken apart, and its various chapters are
now scattered throughout the new system.

•Release Notes and Patch Notes through Release 5.0, which had previously been
bound separately, have been merged into their relevant sources.

Following is a mapping of old to new documents, listed in alphabetic order by old
document title:

Old title New title Mnemonic

Chaos net Networks and Peripherals NE TIO

Chaosnet FUe Protocol Networks and Protocols PROT

Font Editor Font Editor FED

Front-End Processor Networks and Peripherals NE TIO

Introduction to Using the Window System Using the Window System WINDOC

Lisp Machine Choice Facilities Window System Choice Facilities MENUS

Lisp Machine Manual [See page LMM.]

Lisp Machine Summary 3600 Edition Lisp Machine Summary LMS
3600 Edition

IM-2 Serial 110 Networks and Peripherals NETIO

IM-2 UNIBUS 110 Networks and Peripherals NETIO

Notes on the 3600 for IM-2 Users Notes on the 3600 for LM-2 Users 3600

Operating the Lisp Machine [Discontinued.]

Program Development Help Facilities Program Development Help HELP
Facilities

Volume

7

7

6

7

5

5

2

7

7

2

4

MAP Documentation Map 3

Symbolics. Inc. February 1984

Old title New title Mnemonic Volume

Program Development Tools and Program Development Tools and TOOLS 4
Techniques Techniques

Release Notes for System 78 [Merged into related documents.]

Release 4.0 Release Notes [Merged into related documents.]

Release 4.1 Patch Notes [Merged into related documents.]

Release 4.2 Patch Notes [Merged into related documents.]

Release 4.3 Patch Notes [Merged into related documents.]

Release 4.4 Patch Notes [Merged into related documents.]

Release 4.5 Patch Notes [Merged into related documents.]

Scroll Windows Scroll Windows SCROLL 5

Signalling and Handling Conditions Conditions COND 3

Software Installation Guide Software Installation Guide SIG 8

Symbolics File System Files FILE 7

System 210 Release Notes [Merged into related documents.]

Window System Program Examples Window System Program WIND EX 5
Examples

Zmail Concepts and Techniques Zmail Concepts and Techniques ZMAILC 5

Zmail Tutorial and Reference Manual Zmail Tutorial and Reference ZMAILT 5
Manual

Zmacs Manual Zmacs Manual ZMACS 4

4 MAP Documentation Map

Symbolics, Inc. February 1984

Lisp Machine Manual

[Has been separated, by chapter, into the following documents:]

Old chapter title Pages New document title Mnemonic Volume

1. Introduction 1-6 Notation Conventions NOTA 2

2. Primitive Object Types 7-12 Primitive Object Types PRIM 3

3. Evaluation 13-32 Evaluation EVAL 3

4. Flow of Control 33-51 Flow of Control FLOW 3

5. Manipulating List Structure 52-85 Primitive Object Types PRIM 3

6. Symbols 8&.-91 Primitive Object Types PRIM 3

7. Numbers 92-106 Primitive Object Types PRIM 3

8. Arrays 107-125 Arrays and Strings .ARR 3

9. Strings 126-135 Arrays and Strings ARR 3

10. Functions 136-157 Functions FUNC 3

11. Closures 158-162 Functions FUNC 3

12. Stack Groups 163-169 Internals INT 8

13. Locatives 170-171 Primitive Object Types PRIM 3

14. Subprimitives 172-191 Internals INT 8

15. Areas 192-196 Storage Management STOR 8

16. The Compiler 197-207 The Compiler COMP 4

17. Macros 208-232 Macros MAC 3

18. The LOOP Iteration Macro 233-256 Flow of Control FLOW 3

MAP Documentation Map 5

Symbolics, Inc. February 1984

Old chapter title Pages New document title Mnemonic Volume

19. Defstruct 257-278 Defstruct DEFS 3

20. Objects, Message Passing, Objects, Message Passing, FLAV 3
and Flavors 279-313 and Flavors

21. The 1/0 System
21.1 314-318 Streams STR 7
21.2 319-331 Primitive Object Types PRIM 3
21.3-21.10 331-375 Streams STR 7

22. Naming of Files 376-391 FUes FILE 7

23. Packages 392-405 Packages PKG 3

24. Maintaining Large Systems
24.1-24.7 406-421 Maintaining Large Systems MAINT 4
24.8 422-427 Site Operations SITE 8

25. Processes 428-439 Processes PROC 8

26. Errors and Debugging
26.1 440-450 Conditions COND 3
26.2-26.8 450-468 Debugger DEBUG 4

27. How to Read Assembly Language
469-486 Internals INT 8

28. Querying the User 487-489 Miscellaneous Functions MISCUI 5

29. Initializations 490-492 Initializations INIT 8

30. Dates and Times 493-498 Miscellaneous Functions MISCUI 5

31. Miscellaneous Useful Functions
31.1-31.3 499-504 Miscellaneous Useful Functions MISCF 2
31.4 505 Storage Management STOR 8
31.5-31.7 506-508 Miscellaneous Useful Functions MIS CF 2

symbolics TM

PRIM Primitive Object Types

Cambridge, Massachusetts

Primitive Object Types
990053

March 1984

This document corresponds to Release 5.0.

This document was prepared ·by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained In this document should be construed
as a warranty by Symbolics, and Its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear In this
document.

Symbolics software described In this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Cambridge,
Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced In whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Table of Contents

Page

1. Data Types 1

2. Predicates 3

3. Manipulating List Structure 11

3.1 Conses 12
3.2 Lists 19
3.3 Alteration of List Structure 27
3.4 Cdr-coding 29
3.5 Tables 32
3.6 Lists as Tables 32
3.7 Association Lists 37
3.8 Property Lists 39
3.9 Hash Tables 42

3.9.1 Creating Hash Tables 43
3.9.2 Hash Table Messages 45
3.9.3 Hash Table Functions 46
3.9.4 Dumping Hash Tables to Files 47
3.9.5 Hash Tables and the Garbage Collector 47
3.9.6 Hash Primitive 47

3.10 Sorting 49

4. Symbols 53

4.1 The Value Cell 53
4.1.1 Special Forms for Dealing with Variables 55

4.2 The Function Cell 55
4.3 The Property List 56
4.4 The Print Name 57
4.5 The Package Cell 58
4.6 Creating Symbols 58

5. Numbers 61

5.1 Numeric Predicates 64
5.2 Numeric Comparisons 65
5.3 Arithmetic 68
5.4 Transcendental Functions 74
5.5 Numeric Type Conversions 75
5.6 Logical Operations on Numbers 76

ii PRIM Primitive Object Types

Symbolics. Inc. March 1984

5. 7 Byte Manipulation Functions 78
5.8 Random Numbers 80
5.9 24-bit Numbers 82
5.10 Double-precision Arithmetic 82

6. Locatives 85

6.1 Cells and Locatives 85
6.2 Functions That Operate on Locatives 85

7. Printed Representation 89

7 .1 What the Printer Produces 89
7.2 What the Reader Accepts 93
7 .3 Macro Characters 98
7.4 Sharp-sign Abbreviations 99
7.5 Special Character Names 103
7.6 The Readtable 104

8. Input Functions 109

9. Output Functions 115

Index 119

PRIM Primitive Object Types 1

Symbolics, Inc. March 1984

1. Data Types

This section enumerates some of the various different primitive types of objects in
Zetalisp. The types explained below include symbols, conses, various types of
numbers, two kinds of compiled code objects, locatives, arrays, stack groups, and
closures. With each is given the associated symbolic name, which is returned by the
function data-type. See the function data-type.

A symbol (these are sometimes called "atoms" or "atomic symbols" by other texts)
has a print name, a binding, a definition, a property list, and a package.

The print name is a string, which may be obtained by the function get-pname.
This string serves as the printed representation of the symbol. See the section
"What the Printer Produces". Each symbol has a binding (sometimes also called the
"value"), which may be any Lisp object. It is also referred to as the "contents of the
value cell", since internally evecy symbol has a cell called the value cell that holds
the binding. It is accessed by the symeval function and updated by the set
function. (Tl_lat is, given a symbol, you use symeval to find out what its binding is,
and use set to change its binding.) Each symbol has a definition, which may also be
any Lisp object. It is also referred to as the "contents of the function cell", since
internally evecy symbol has a cell called the function cell that holds the definition.
The definition can be accessed by the fsymeval function and updated with fset.
Usually the functions fdefinition and fdefine are employed. The property list is a
list of an even number of elements; it can be accessed directly by plist and updated
directly by setplist. Usually the functions get, putprop, and remprop are used.
The property list is used to associate any number of additional attributes with a
symbol - attributes not used frequently enough to deserve their own cells as the
value and definition do. Symbols also have a package cell, which indicates which
"package" of names the symbol belongs to. This is explained further in the section
on packages and can be disregarded by the casual user. See the document Packages.

The primitive function for creating symbols is make-symbol, although most symbols
are created by read, intern, or fasload (which call make-symbol themselves.)

A cons is an object that cares about two other objects, arbitrarily named the car and
the cdr. These objects can be accessed with car and cdr, and updated with rplaca
and rplacd. The primitive function for creating conses is cons.

There are several kinds of numbers in Zetalisp. Fixnums represent integers in the
range of -2"23 to 2"23-1. Bignums represent integers of arbitracy size, but they are
more expensive to use than fIXnums because they occupy storage and are slower.
The system automatically converts between fixnums and bignums as required.
Flonums are floating-point numbers. Small-flonums are another kind of floating
point numbers, with less range and precision, but less computational overhead.
Other types of numbers are likely to be added in the future. See the section

2 PRIM Primitive Object Types

Symbolics. Inc. March 1984

"Numbers". Full details of these types and the conversions between them are
discussed there.

The usual form of compiled, executable code is a Lisp object called a "Function Entry
Frame" or "FEF". A FEF contains the code for one function. This is analogous to
what Maclisp calls a "subr pointer". FEFs are produced by the Lisp Compiler and
are usually found as the definitions of symbols. See the document The Compiler.
The printed representation of a FEF includes its name, so that it can be identified.

Another Lisp object that represents executable code is a "microcode entry". These
are the microcoded primitive functions of the Lisp system, and user functions
compiled into microcode.

About the only useful thing to do with any of these compiled code objects is to apply
it to arguments. However, some functions are provided for examining such objects,
for user convenience. See the function arglist. See the function args-info. See
the function describe. See the function disassemble.

A locative is a kind of a pointer to a single memory cell anywhere in the system.
See the section "Locatives". The contents of this cell can be accessed by cdr and
updated by rplacd.

An array is a set of cells indexed by a tuple of integer subscripts. The contents of
the cells may be accessed and changed individually. There are several types of
arrays. Some have cells that may contain any object, while others (numeric arrays)
can only contain small positive numbers. Strings are a type of array; the elements
are 8-bit unsigned numbers which encode characters. See the section "Arrays".

A list is not a primitive data type, but rather a data structure made up of conses
and the symbol nil See the section "Manipulating List Structure".

PRIM Primitive Object Types

Symbolics. Inc. March 1984

2. Predicates

A predicate is a function that tests for some condition involving its arguments and
returns the symbol t if the condition is true, or the symbol nil if it is not true.
Most of the following predicates are for testing what data type an object has; some
other general-purpose predicates are also explained.

By convention, the names of predicates usually end in the letter "p" (which stands
for "predicate").

3

The following predicates are for testing data types. These predicates return t if the
argument is of the type indicated by the name of the function, nil if it is of some
other type.

symbolp arg Function
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg Function
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg Function
listp returns t if its argument is a cons, otherwise nil. Note that this
means (listp nil) is nil even though nil is the empty list. [This may be
changed in the future.]

nlistp arg Function
nlistp returns t if its argument is anything besides a cons, otherwise nil.
nlistp is identical to atom, and so (nlistp nil) returns t. [This may be
changed in the future, if and when listp is changed.]

atom arg Function
The predicate atom returns t if its argument is not a cons, otherwise nil.

numberp arg Function
numberp returns t if its argument is any kind of number, otherwise nil

rixp arg Function
rixp returns t if its argument is a fixed-point number, that is, a fIXnum or a
bignum, otherwise nil

:ftoatp arg Function
floatp returns t if its argument is a floating-point number, that is, a flonum
or a small flonum on the LM-2 or a single- or double-precision floating-point
number on the 3600. Otherwise it returns nil

4 PRIM Primitive Object Types

Symbolics, Inc. March 1984

:f"l.Xllump arg Function
:f"l.Xllump returns t if its argument is a fIXnum, otherwise nil

bigp arg Function
bigp returns t if arg is a bignum, otherwise nil.

ftonump arg Function
ftonump returns t if arg is a (large) flonum, otherwise nil.

small-ftoatp arg Function
<LM-2 only) small-ftoatp returns t if arg is a small flonum, otherwise nil.

sys:single-ftoat-p arg Function
(3600 only) Returns t if arg is a single-precision floating-point number,
otherwise nil.

sys:double-ftoat-p arg Function
(3600 only) Returns t if arg is a double-precision floating-point number,
otherwise nil.

stringp arg Function
stringp returns t if its argument is a string, otherwise nil.

arrayp arg Function
arrayp returns t if its argument is an array, otherwise nil. Note that
strings are arrays.

functionp arg &optional allow-special-forms Function
functionp returns t if its argument is a function (essentially, something that
is acceptable as the first argument to apply), otherwise it returns nil. In
addition to interpreted, compiled, and microcoded functions, functionp is true
of closures, select-methods, and symbols whose function definition is
functionp. See the section "Other Kinds of Functions". functionp is not
true of objects that can be called as functions but are not normally thought
of as functions: arrays, stack groups, entities, and instances. If
allow-special-forms is specified and non-nil, then functionp will be true of
macros and special-form functions (those with quoted arguments). Normally
functionp returns nil for these since they do not behave like functions. As -
a special case, functionp of a symbol whose function definition is an array
returns t, because in this case the array is being used as a function rather
than as an object.

subrp arg Function
subrp returns t if its argument is any compiled code object, otherwise nil.
The Lisp Machine system does not use the term "subr"; the name of this
function comes from Maclisp.

PRIM Primitive Object Types 5

Symbolics. Inc. March 1984

closurep arg Function
closurep returns t if its argument is a closure, otherwise nil.

entityp arg Function
(LM-2 only) entityp returns t if its argument is an entity, otherwise nil.
See the section "Entities".

locativep arg Function
locativep returns t if its argument is a locative, otherwise nil.

errorp object Function
errorp returns t if object is an error object, and nil otherwise. That is:

(errorp x) <=> (typep x 'error)

typep arg &optional type Function
typep is really two different functions. With one argument, typep is not
really a predicate; it returns a symbol describing the type of its argument.
With two arguments, typep is a predicate that returns t if arg is of type
type, and nil otherwise. Note that an object can be "of' more than one type,
since one type can be a subset of another.

The symbols that can be returned by typep of one argument are:

:symbol arg is a symbol.

:f"IXnum arg is a fixnum (not a bignum).

:bignum arg is a bignum.

:flonum (LM-2 only) arg is a flonum (not a small-flonum).

:small-flonum (LM-2 only) arg is a small flonum.

:single-float (3600 only) arg is a single-precision floating-point number.

:double-float (3600 only) arg is a double-precision floating-point number.

:list arg is a cons.

:locative arg is a locative pointer. See the section "Locatives".

:compiled-function
arg is the machine code for a compiled function (sometimes
called a FEF).

:microcode-function
arg is a function written in microcode.

:closure arg is a closure. See the section "Closures".

:select-method arg is a select-method table. See the section "Other Kinds
of Functions".

:stack-group arg is a stack-group. See the section "Stack Groups".

6

:string

:array

:random

foo

PRIM Primitive Object Types

Symbolics, Inc. March 1984

arg is a string.

arg is an array that is not a string.

Returned for any built-in data type that does not fit into
one of the above categories.

An object of user-defined data type foo <any symbol). The
primitive type of the object could be array, instance, or
entity. See the section "Named Structures". See the
document Objects, Message Passing, and Flavors.

The type argument to typep of two arguments can be any of the above
keyword symbols (except for :random), the name of a user-defined data type
(either a named structure or a flavor), or one of the following additional
symbols:

:atom

:rix

:float

:number

:instance

:entity

:null

Any atom (as determined by the atom predicate).

Any kind of fixed-point number (fIXDum or bignum).

Any kind of floating-point number (flonum or small
flonum).

Any kind of number.

An instance of any flavor. See the document Objects,
Message Passing, and Flavors.

An entity. typep of one argument returns the name of
the particular user-defined type of the entity, rather than
:entity.

nil is the only value that has this type.

See also data-type.

Note that (typep nil)=> :symbol, and (typep nil ':list) =>nil; the latter
may be changed.

The following functions are some other general purpose predicates:

eq x y Function
(eq x y) => t if and only if x and y are the same object. It should be noted
that things that print the same are not necessarily eq to each other. In
particular, numbers with the same value need not be eq, and two similar
lists are usually not eq. Examples:

(eq ' a ' b) = > n i l
(eq 'a 'a) = > t
(eq (cons 'a 'b) (cons 'a 'b)) => nil
(setq x (cons 'a 'b)) (eq xx) => t

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Note that in Zetalisp equal fixnums are eq; this is not true in Maclisp.
Equality does not imply eqness for other types of numbers. To compare
numbers, use =. See the section "Numeric Comparisons".

7

neq x y Function
(neq x y) = (not (eq x y)). This is provided simply as an abbreviation for
typing convenience.

eql x y Function
eql returns t if is arguments are eq, or if they are numbers of the same
type with the same value, or (in Common Lisp) if they are character objects
that represent the same character. The predicate= compares the values of
two numbers even if the numbers are of different types. Use equal or
string-equal to compare the characters of two strings.

Examples:

(eq l ' a ' a) = > t
(eql 3 3) => t
(eql 3 3.0) => nil
(eql 3.0 3.0) => t
(eql #/a #/a) => t
(eq l (cons 'a 'b) (cons 'a 'b)) = > n i l
(eql "foo" "FOO") => nil

The following expressions might return either tor nil:

(eql '(a . b) '(a • b))
(eql "foo" "foo")

In Zetalisp:

(eql 1.0sO 1.0dO) =>nil
(eql 0.0 -0.0) => nil

equal x y Function
The equal predicate returns t if its arguments are similar (isomorphic)
objects. See the function eq. Two numbers are equal if they have the
same value and type (for example, a flonum is never equal to a fixnum, even
if= is true of them). For conses, equal is defined recursively as the two
cars being equal and the two cdrs being equal. Two strings are equal if
they have the same length, and the characters composing them are the
same. See the function string-equal. Alphabetic case is ignored. See the
variable alphabetic-case-affects-string-comparison. All other objects are
equal if and only if they are eq. Thus equal could have been defined by:

8

(defun equal (x y)
(cond ((eq x y) t)

((neq (typep x) (typep y)) nil)
((numberp x) (= x y))

PRIM Primitive Object Types

Symbolics. Inc. March 1984

((stringp x) (string-equal x y))
((listp x) (and (equal (car x) (car y))

(equal (cdr x) (cdr y))))))

As a consequence of the above definition, it can be seen that equal may
compute forever when applied to looped list structure. In addition, eq always
implies equal; that is, if (eq a b) then (equal a b). An intuitive definition
of equal (which is not quite correct) is that two objects are equal if they
look the same when printed out. For example:

(setq a '(1 2 3))
(setq b '(1 2 3))
(eq a b) => nil
(equal a b) => t
(equal "Foo" "foo") => t

not x Function
not returns t if x is nil, else nil null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something is
nil; use not to invert the sense of a logical value. Even though Lisp uses
the symbol nil to represent falseness, you should not make understanding of
your program depend on this. For example, one often writes:

(cond ((not (null lst)) • . .)
(...))

rather than
(cond (lst ...

(...))

There is no loss of efficiency, since these will compile in to exactly the same
instructions.

See the function null.

nullx Function
not returns t if x is nil, else nil null is the same as not; both functions
are included for the sake of clarity. Use null to check whether something is
nil; use not to invert the sense of a logical value. Even though Lisp uses
the symbol nil to represent falseness, you should not make understanding of
your program depend on this. For example, one often writes:

(cond ((not (null lst)) .•.)
(. . .))

rather than
(cond (lst ...

(. . .))

PRIM Primitive Object Types

Symbolics. Inc. March 1984

There is no loss of efficiency, since these will compile into exactly the same
instructions.

9

10 PRIM Primitive Object Types

Symbolics. Inc. March 1984

PRIM Primitive Object Types 11

Symbolics, Inc. March 1984

3. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures
made up of conses, such as lists and trees. It also discusses hash tables and
resources, which are related facilities.

A cons is a primitive Lisp data object that is extremely simple: it knows about two
other objects, called its car and its cdr.

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A
typical list is a chain of conses: the cdr of each is the next cons in the chain, and
the cdr of the last one is the symbol nil. The cars of each of these conses are called
the elements of the list. A list has one element for each cons; the empty list, nil,
has no elements at all. Here are the printed representations of some typical lists:

(foo bar) ;This list has two elements.
(a (b c d) e) ;This list has three elements.

Note that the second list has three elements: a, (b c d), and e. The symbols b, c,
and dare not elements of the list itself. (They are elements of the list that is the
second element of the original list.)

A "dotted list" is like a list except that the cdr of the last cons does not have to be
nil. This name comes from the printed representation, which includes a "dot"
character. Here is an example:

(a b • c)

This "dotted list" is made of two conses. The car of the first cons is the symbol a,
and the cdr of the first cons is the second cons. The car of the second cons is the
symbol b, and the cdr of the second cons is the symbol c.

A tree is any data structure made up of conses whose cars and cdrs are other
conses. The following are all printed representations of trees:

(foo . bar)
((a . b) (c . d))
((a • b) (c d e f (g • 5) s) (7 • 4))

These definitions are not mutually exclusive. Consider a cons whose car is a and
whose cdr is (b (c d) e). Its printed representation is:

(a b (c d) e)

It can be thought of and treated as a cons, or as a list of four elements, or as a tree
containing six conses. You can even think of it as a "dotted list" whose last cons
just happens to have nil as a cdr. Thus, lists and "dotted lists" and trees are not
fundamental data types; they are just ways of thinking about structures of conses.

A circular list is like a list except that the cdr of the last cons, instead of being nil,
is the first cons of the list. This means that the conses are all hooked together in a

12 PRIM Primitive Object Types

Symbolics, Inc. March 1984

ring, with the cdr of each cons being the next cons in the ring. While these are
perfectly good Lisp objects, and there are functions to deal with them, many other
functions will have trouble with them. Functions that expect lists as their
arguments often iterate down the chain of conses waiting to see a nil, and when
handed a circular list this can cause them to compute forever. The printer is one of
these functions; if you try to print a circular list the printer will never stop
producing text. See the section "Output Functions". You must use circular lists
carefully.

The Lisp Machine internally uses a storage scheme called "cdr coding'' to represent
conses. This scheme is intended to reduce the amount of storage used in lists. The
use of cdr-coding is invisible to programs except in terms of storage efficiency;
programs will work the same way whether or not lists are cdr-coded or not. Several
of the functions below mention how they deal with cdr-coding. You can completely
ignore all this if you want. However, if you are writing a program that allocates a
lot of conses and you are concerned with storage efficiency, you may want to learn
about the cdr-coded representation and how to control it. See the section "Cdr
coding''.

3.1 Conses

carx

cdrx

Returns the car of x. Example:
{car '{a b c)) => a

Function

Officially car is applicable only to conses and locatives. However, as a matter
of convenience, car of nil return nil.

Returns the cdr of x. Example:

{cdr '{a b c)) => {b c)

Function

Officially cdr is applicable only to conses and locatives. However, as a matter
of convenience, cdr of nil return nil.

caaaar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

{cddadr x) is the same as (cdr (cdr (car {cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

PRIM Primitive Object Types 13

Symbolics, Inc. March 1984

caaadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caaar x Function
All the compositions of up to four cars and cdrs are defmed as functions in
their own right. The names of the8e functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caadar x Function
All the compositions of up to four cars and cdrs are defmed as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caaddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "ams and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the saine as (cdr (cdr (car (cdr x))))

14 PRIM Primitive Object Types

Symbolics. Inc. March 1984

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cadaar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cadadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cadar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caddar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

15

cadddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

caddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their·own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdaaar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdaadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with

16 PRIM Primitive Object Types

Symbolics. Inc. March 1984

"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdaar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdadar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdaddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

PRIM Primitive Object Types 17

Symbolics. Inc. March 1984

cdar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cddaar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a"'s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cddadr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cddar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d"'s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdddar x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

18 PRIM Primitive Object Types

Symbolics, Inc. March 1984

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cddddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cdddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cddr x Function
All the compositions of up to four cars and cdrs are defined as functions in
their own right. The names of these functions begin with "c" and end with
"r", and in between is a sequence of "a'"s and "d'"s corresponding to the
composition performed by the function. Example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

The error checking for these functions is exactly the same as for car and
cdr. See the function car. See the function cdr.

cons x y Function
cons is the primitive function to create a new cons, whose car is x and
whose cdr is y. Examples:

(cons 'a 'b) = > (a . b)
(cons 'a (cons 'b (cons 'c nil))) => (ab c)
(cons 'a '(b c d)) => (a b c d)

neons x Function
(neons x) is the same as (cons x nil). The name of the function is from
"nil-cons".

xcons x y Function
xcons ("exchanged cons") is like cons except that the order of the
arguments is reversed. Example:

PRIM Primitive Object Types 19

Symbolics, Inc. March 1984

(xcons 'a 'b) => (b . a)

cons-in-area x y area-number Function
This function creates a cons in a specific area. (Areas are an advanced
feature of storage management.) See the section "Areas". The first two
arguments are the same as the two arguments to cons, and the third is the
number of the area in which to create the cons. Example:

(cons-in-area 'a 'b my-area) => (a . b)

neons-in-area x area-number Function
(neons-in-area x area-number)= (cons-in-area x nil area-number)

xcons-in-area x y area-number Function
(xcons-in-area x y area-number)= (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly constant list structure, or forms constructed by plugging variables
into a template. See the document Macros.

car-location cons Function
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; it is difficult because of the cdr-coding
scheme. See the section "Cdr-coding''.

3.2 Lists

length list Function
length returns the length of list. The length of a list is the number of
elements in it. Examples:

(length nil) => O
(length '(a b c d)) => 4
(length '(a (b c) d)) => 3

length could have been defined by:

(defun length (x)

or by:

(cond ((atom x) O)
((1+ (length (cdr x))))))

(defun length (x)
(do ((n O (1+ n))

(y x (cdr y)))

((atom y) n)))

except that it is an error to take length of a non-nil atom.

20 PRIM Primitive Object Types

Symbolics, Inc. March 1984

first list Function
This function takes a list as an argument, and returns the first element of
the list. first is identical to car. The reason these names are provided is
that they make more sense when you are thinking of the argument as a list
rather than just as a cons.

second list Function
This function takes a list as an argument, and returns the second element of
the list. second is identical to cadr. The reason these names are provided
is that they make more sense when you are thinking of the argument as a
list rather than just as a cons.

third list Function
This function takes a list as an argument, and returns the third element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

fourth list Function
This function takes a list as an argument, and returns the fourth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

fifth list Function
This function takes a list as an argument, and returns the fifth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

sixth list Function
This function takes a list as an argument, and returns the sixth element of
the list. The reason these names are provided is that they make more sense
when you are thinking of the argument as a list rather than just as a cons.

seventh list Function
This function takes a list as an argument, and returns the seventh element
of the list. The reason these names are provided is that they make more
sense when you are thinking of the argument as a list rather than just as a
cons.

restl list Function
restl returns the rest of the elements of a list, starting with element 1
(counting the first element as the zeroth). Thus restl is identical to cdr.
The reason these names are provided is that they make more sense when
you are thinking of the argument as a list rather than just as a cons.

rest2 list Function
rest2 returns the rest of the elements of a list, starting with element 2

PRIM Primitive Object Types 21

Symbolics, Inc. March 1984

(counting the first element as the zeroth). Thus rest2 is identical to cddr.
The reason these names are provided is that they make more sense when
you are thinking of the argument as a list rather than just as a cons.

rest3 list Function
rest3 returns the rest of the elements of a list, starting with element 3
(counting the first element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons.

rest4 list Function
rest4 returns the rest of the elements of a list, starting with element 4
(counting the first element as the zeroth). The reason these names are
provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons.

nth n list Function
(nth n list) returns the nth element of list, where the zeroth element is the
car of the list. Examples:

(nth 1 '(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => nil

If n is greater than the length of the list, nil is returned.

Note: this is not the same as the Interlisp function called nth, which is
similar to but not exactly the same as the Lisp Machine function nthcdr.
Also, some people have used macros and functions called nth of their own in
their Maclisp programs, which may not work the same way; be careful.

nth could have been defined by:

(defun nth (n list)
(do ((i n (1- i))

(l list (cdr 1)))
((zerop i) (car 1))))

nthcdr n list Function
(nthcdr n list) cdrs list n times, and returns the result. Examples:

(nthcdr O '(a b c)) => (a b c)
(nthcdr 2 '(a b c)) => (c)

In other words, it returns the nth cdr of the list. If n is greater than the
length of the list, nil is returned.

This is similar to Interlisp's function nth, except that the Interlisp function
is one-based instead of zero-based; see the Interlisp manual for details.
nthcdr could have been defined by:

22

(defun nthcdr (n list)
(do ((i O Cl+ i))

(list list (cdr list)))
((= i n) list)))

PRIM Primitive Object Types

Symbolics. Inc. March 1984

last list Function
last returns the last cons of list. If list is nil, it returns nil. Note that last
is unfortunately not analogous to first (first returns the first element of a
list, but last does not return the last element of a list); this is a historical
artifact. Example:

(setq x 'Ca b c d))
(1 as t x) = > C d)
(rplacd (last x) 'Ce f))

x => '(a b c d e f)

last could have been defined by:
(defun last (x)

list &rest args

(cond ((atom x) x)
((atom (cdr x)) x)
((last (cdr x)))))

list constructs and returns a list of its arguments. Example;

(list 3 4 'a (car 'Cb . c)) (+ 6 -2)) => (3 4 ab 4)

list could have been defined by:
(defun list (&rest args)

(let ((list (make-list (length args))))
(do ((1 list (cdr 1))

(a args (cdr a)))
((null a) 1 ist)

(rplaca 1 (car a)))))

Function

list* &rest args Function
list* is like list except that the last cons of the constructed list is "dotted".
It must be given at least one argument. Example:

(list* 'a 'b 'c 'd) => Cab c • d)

This is like
(cons 'a (cons 'b (cons 'c 'd)))

More examples:

(1 i st* 'a ' b) = > (a • b)
(1 i st* ' a) = > a

list-in-area area-number &rest args Function
list-in-area is exactly the same as list except that it takes an extra
argument, an area number, and creates the list in that area.

PRIM Primitive Object Types 23

Symbolics. Inc. March 1984

list*-in-area area-number &rest args Function
list*-in-area is exactly the same as list* except that it takes an extra
argument, an area number, and creates the list in that area.

make-list length &rest options Function
This creates and returns a list containing length elements. length should be
a fIXnum. options are alternating keywords and values. The keywords may
be either of the following:

:area The value specifies in which area the list should be created. See the
section "Areas". It should be either an area number (a fIXnum), or nil
to mean the default area.

:initial-value
The elements of the list will all be this value. It defaults to nil.

make-list always creates a cdr-coded list. See the section "Cdr-coding''.
Examples:

(make-list 3) => (nil nil nil)
(make-list 4 ':initial-value 7) => (7 7 7 7)

When make-list was originally implemented, it took exactly two arguments:
the area and the length. This obsolete form is still supported so that old
programs will continue to work, but the new keyword-argument form is
preferred.

circular-list &rest args Function
circular-list constructs a circular list whose elements are args, repeated
infinitely. circular-list is the same as list except that the list itself is used
as the last cdr, instead of nil. circular-list is especially useful with
mapcar, as in the expression:

(mapcar (function+) foo (circular-list 5))

which adds each element of foo to 5. circular-list could have been defined
by:

(defun circular-list (&rest elements)
(setq elements (copylist* elements))
(rplacd (last elements) elements)
elements)

copylist list &optional area force-dotted Function
Returns a list that is equal to list, but not eq. copylist does not copy any
elements of the list: only the conses of the list itself. The returned list is
fully cdr-coded to minimize storage. See the section "Cdr-coding''. If the list
is "dotted", that is, (cdr (last list)) is a non-nil atom, this will be true of
the returned list also. You may optionally specify the area in which to create
the new copy.

24 PRIM Primitive Object Types

Symbolics, Inc. March 1984

copylist• list &optional area Function
This is the same as copylist except that the last cons of the resulting list is
never cdr-coded. See the section "Cdr-coding''. This makes for increased
efficiency if you nconc something onto the list later.

copyalist list &optional area Function
copyalist is for copying association lists. See the section "Tables". The list is
copied, as in copylist. In addition, each element of list that is a cons is
replaced in the copy by a new cons with the same car and cdr. You may
optionally specify the area in which to create the new copy.

copytree tree &optional area Function
copytree copies all th~ conses of a tree and makes a new tree with the
same fringe. You may optionally specify the area in which to create the new
copy.

reverse list Function
reverse creates a new list whose elements are the elements of list taken in
reverse order. reverse does not modify its argument, unlike nreverse,
which is faster but does modify its argument. The list created by reverse is
not cdr-coded. Example:

(reverse '(a b (c d) e)) => (e (c d) b a)

reverse could have been defined by:
(defun reverse (x)

(do ((1 x (cdr 1))
(r nil

(cons (car l) r)))
((null l) r)))

scan down argument,
putting each element
into list, until
no more elements.

nreverse list Function
nreverse reverses its argument, which should be a list. The argument is
destroyed by rplacds all through the list (see reverse). Example:

(nreverse '(a b c)) => (c b a)

nreverse could have been defined by:

(defun nreverse (x)
(cond ((null x) nil)

((nreversel x nil))))

(defun nreversel (x y) ; auxiliary function
(cond ((null (cdr x)) (rplacd x y))

((nreversel (cdr x) (rplacd x y)))))
;; this last call depends on order of argument evaluation.

Currently, nreverse does something inefficient with cdr-coded lists, because it
just uses rplacd in the straightforward way. See the section "Cdr-coding''.

PRIM Primitive Object Types 25

Symbolics, Inc. · March 1984

This may be fixed someday. In the meantime reverse might be preferable
in some cases.

append &rest lists Function
The arguments to append are lists. The result is a list that is the
concatenation of the arguments. The arguments are not changed (see
nconc). Example:

(append '(a b c) '(d e f) nil '(g)) => (ab c d e f g)

append makes copies of the conses of all the lists it is given, except for the
last one. So the new list will share the conses of the last argument to
append, but all the other conses will be newly created. Only the lists are
copied, not the elements of the lists.

A version of append that only accepts two arguments could have been
defined by:

(defun append2 (x y)

(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made (relying
on car of nil being nil):

(defun append (&rest args)
(if (< (length args) 2) (car args)

(append2 (car args)
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real
definition minimizes storage utilization by cdr-coding the list it produces,
using cdr-next except at the end where a full node is used to link to the last
argument, unless the last argument is nil in which case cdr-nil is used. See
the section "Cdr-coding".

To copy a list, use copylist; the old practice of using append to copy lists is
unclear and obsolete.

nconc &rest lists Function
nconc takes li~ts as arguments. It returns· a list that is the arguments
concatenated together. The arguments are changed, rather than copied. See
the function append Example:

(setq x '(a b c))
(setq y '(d e f))
(nconc x y) => (a b c d e f)
x => (a b c d e f)

Note that the value of xis now different, since its last cons has been
rplacdd to the value of y. If the nconc form is evaluated again, it would
yield a piece of "circular" list structure, whose printed representation would
be (a b c d e f d e f d e f ...), repeating forever.

26 PRIM Primitive Object Types

Symbolics. Inc. March 1984

nconc could have been defined by:

(defun nconc (x y) ;for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.

(t (rplacd (last x) y) ;hooky onto x
x))) ;and return the modified x.

nreconc x y Function
(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it
is more efficient. Both x and y should be lists.

nreconc could have been defined by:

(defun nreconc (x y)
(cond ((null x) y)

((nreversel x y))))

using the same nreversel as above.

butlast list Function
This creates and returns a list with the same elements as list, excepting the
last element. Examples:

(butlast '(a b c d)) => (a b c)
(butlast '((a b) Cc d))) => ((a b))

(butlast '(a)) => nil
(butlast nil) =>nil

The name is from the phrase "all elements but the last".

nbutlast list Function
This is the destructive version of butlast; it changes the cdr of the second
to-last cons of the list to nil. If there is no second-to-last cons (that is, if the
list has fewer than two elements) it returns nil Examples:

(setq foo '(a b c d))

(nbutlast foo) => (a b c)
foo => (a b c)
(nbutlast '(a)) => nil

firstn n list Function
firstn returns a list of length n, whose elements are the first n elements of
list. If list is fewer than n elements long, the remaining elements of the
returned list will be nil Example:

(firstn 2 '(a b c d)) => (a b)
(firstn O '(a b c d)) => nil
(firstn 6 '(a b c d)) => (a b c d nil nil)

nleft n list &optional tail Function
Returns a "tail" of list, that is, one of the conses that makes up list, or nil
(nleft n list) returns the last n elements of list. If n is too large, nleft will
return list.

PRIM Primitive Object Types 27

Symbolics. Inc. March 1984

(nleft n list tail) takes cdr of list enough times that taking n more cdrs
would yield tail, and returns that. You can see that when tail is nil this is
the same as the two-argument case. If tail is not eq to any tail of list,
nleft will return nil.

ldiff list sublist Function
list should be a list, and sublist should be one of the conses that make up
list. ldiff (meaning "list difference") will return a new list, whose elements
are those elements of list that appear before sublist. Examples:

(setq x '(a b c d e))
(setq y (cdddr x)) => (d e)
(ldiff x y) => (ab c)

but:

(ldiff '(ab c d) '(c d)) => (ab c d)

since the sublist was not eq to any part of the list.

3.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in existing list
structure, that is, to change the cars and cdrs of existing conses.

The structure is not copied but is physically altered; hence you should be cautious
when using these functions, as strange side effects can occur if portions of list
structure become shared unknown to you. The nconc, nreverse, nreconc, and
nbutlast functions and the delq family have the same property.

rplaca x y Function
(rplaca x y) changes the car of x toy and returns (the modified) x. x must
be a cons or a locative. y may be any Lisp object. Example:

'(setq g 'Ca b c))
(rplaca (cdr g) 'd) => (d c)
Now g = > Ca d c >

rplacd x y Function
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must
be a cons or a locative. y may be any Lisp object. Example:

(setq x 'Ca b c))
(rplacd x 'd) => (a . d)
Now x = > Ca • d >

28 PRIM Primitive Object Types

Symbolics, Inc. March 1984

subst new old tree Function
(subst new old tree) substitutes new for all occurrences of old in tree, and
returns the modified copy of tree. The original tree is unchanged, as subst
recursively copies all of tree replacing elements equal to old as it goes.
Example:

(subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane)))

=> (Shakespeare wrote (The Tempest))

subst could have been defined by:

(defun subst (new old tree)
(cond. ((equal tree old) new) ;if item equal to old, replace.

((atom tree) tree) ;if no substructure, return arg.
((cons (subst new old (car tree)) ;otherwise recurse.

(subst new old (cdr tree))))))

Note that this function is not "destructive"; that is, it does not change the
car or cdr of any existing list structure.

To copy a tree, use copytree; the old practice of using subst to copy trees is
unclear and obsolete.

Note: certain details of subst may be changed in the future. It may possibly
be changed to use eq rather than equal for the comparison, and possibly
may substitute only in cars, not in cdrs. This is still being discussed.

nsubst new old tree Function
nsubst is a destructive version of subst. The list structure of tree is altered
by replacing each occurrence of old with new. nsubst could have been
defined as

(defun nsubst (new old tree)
(cond ((eq tree old) new)

((atom tree) tree)
(t

;if item eq to old, replace.
;if no substructure, return arg.
;otherwise, recurse.

(rplaca tree
(rplacd tree
tree)))

(nsubst new old (car tree)))
(nsubst new old (cdr tree)))

sublis alist tree Function
sublis makes substitutions for symbols in a tree. The first argument to
sublis is an association list. See the section "Tables". The second argument
is the tree in which substitutions are to be made. sublis looks at all symbols
in the fringe of the tree; if a symbol appears in the association list,
occurrences of it are replaced by the object with which it is associated. The
argument is not modified; new conses are created where necessary and only
where necessary, so the newly created tree shares as much of its
substructure as possible with the old. For example, if no substitutions are
made, the result is just the old tree. Example:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

(sublis '((x • 100) (z • zprime))
'(plus x (minus g z x p) 4))

=> (plus 100 (minus g zprime 100 p) 4)

sublis could have been defined by:
(defun sublis (alist sexp)

(cond ((symbolp sexp)
(let ((tem (assq sexp alist)))

(if tem (cdr tem) sexp)))
((listp sexp)
(let ((car (sublis alist (car sexp)))

(cdr (sublis alist (cdr sexp))))
(if (and (eq (car sexp) car) (eq (cdr sexp) cdr))

sexp
(cons car cdr))))

(t
(sexp))))

29

nsublis alist tree Function
nsublis is like sublis but changes the original tree instead of creating new.

nsublis could have been defined by:

(defun nsublis (alist tree)
(cond ((atom tree)

3.4 Cdr-coding

(let ((tem (assq tree alist)))
(if tem (cdr tem) tree)))

(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree)))

This section explains the internal data format used to store conses inside the Lisp
Machine. It is only important to read this section if you require extra storage
efficiency in your program.

The usual and obvious internal representation of conses in any implementation of
Lisp is as a pair of pointers, contiguous in memory. If we call the amount of storage
that it takes to store a Lisp pointer a "word", then conses normally occupy two
words. One word (say it is the first) holds the car, and the other word (say it is the
second) holds the cdr. To get the car or cdr of a list, you just reference this
memory location, and to change the car or cdr, you just store into this memory
location.

Very often, conses are used to store lists. If the above representation is used, a list
of n elements requires two times n words of memory: n to hold the pointers to the
elements of the list, and n to point to the next cons or to nil. To optimize this

30 PRIM Primitive Object Types

Symbolics, Inc. March 1984

particular case of using conses, the Lisp Machine uses a storage representation called
"cdr coding'' to store lists. The basic goal is to allow a list of n elements to be stored
in only n locations, while allowing conses that are not parts of lists to be stored in
the usual way.

The way it works is that there is an extra two-bit field in every word of memory,
called the "cdr-code" field. There are three meaningful values that thjs field can
have, which are called cdr-normal, cdr-next, and cdr-nil. The regular, noncompact
way to store a cons is by two contiguous words, the first of which holds the car and
the second of which holds the cdr. In this case, the cdr cooe of the first word is
cdr-normal. (The cdr code of the second word does not matter; as we will see, it is
never looked at.) The cons is represented by a pointer to the first of the two words.
When a list of n elements is stored in the most compact way, pointers to then
elements occupy n contiguous memory locations. The cdr codes of all these locations
are cdr-next, except the last location whose cdr code is cdr-nil. The list is
represented as a pointer to the first of then words.

Now, how are the basic operations on conses defined to work based on this data
structure? Finding the car is easy: you just read the contents of the location
addressed by the pointer. Finding the cdr is more complex. First you must read
the contents of the location addressed by the pointer, and inspect the cdr-code you
find there. If the code is cdr-normal, then you add one to the pointer, read the
location it addresses, and return the contents of that location; that is, you read the
second of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any more reading; that is, you return a
pointer to the next word in the n-word block. If the code is cdr-nil, you simply
return nil.

If you examine these rules, you will find that they work fine even if you mix the
two kinds of storage representation within the same list. There is no problem with
doing that.

How about changing the structure? Like car, rplaca is very easy; you just store into
the location addressed by the pointer. To do an rplacd you must read the location
addressed by the pointer and examine the cdr code. If the code is cdr-normal, you
just store into the location one greater than that addressed by the pointer; that is,
you store into the second word of the two words. But if the cdr-code is cdr-next or
cdr-nil, there is a problem: there is no memory cell that is storing the cdr of the
cons. That is the cell that has been optimized out; it just does not exist.

This problem is dealt with by the use of "invisible pointers". An invisible pointer is
a special kind of pointer, recognized by its data type (Lisp Machine pointers include a
data type field as well as an address field). The way they work is that when the
Lisp Machine reads a word from memory, if that word is an invisible pointer then it
proceeds to read the word pointed to by the invisible pointer and use that word
instead of the invisible pointer itself. Similarly, when it writes to a location, it first
reads the location, and if it contains an invisible pointer then it writes to the

PRIM Primitive Object Types 31

Symbolics, Inc. March 1984

location addressed by the invisible pointer instead. (This is a somewhat simplified
explanation; actually there are several kinds of invisible pointer that are interpreted
in different ways at different times, used for things other than the cdr coding
scheme.)

Here is how to do an rplacd when the cdr code is cdr-next or cdr-nil. Call the
location addressed by the first argument to rplacd l. First, you allocate two
contiguous words (in the same area that l points to). Then you store the old
contents of l (the car of the cons) and the second argument to rplacd (the new cdr
of the cons) into these two words. You set the cdr-code of the first of the two
words to cdr-normal. Then you write an invisible pointer, pointing at the first of
the two words, into location l. (It does not matter what the cdr-code of this word
is, since the invisible pointer data type is checked first, as we will see.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the
initial reading of the word pointed to by the Lisp pointer that represents the cons
will find an invisible pointer in the addressed cell. When the invisible pointer is
seen, the address it contains is used in place of the original address. So the newly
allocated two-word cons will be used for any operation done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything
works the same way whether or not compact representation is used, from the point
of view of the semantics of the language. That is, the only difference that any· of
this makes is in efficiency. The compact representation is more efficient in most
cases. However, if the conses are going to get rplacd'ed, then invisible pointers will
be created, extra memory will be allocated, and the compact representation will be
seen to degrade storage efficiency rather than improve it. Also, accesses that go
through invisible pointers are somewhat slower, since more memory references are
needed. So if you care a lot about storage efficiency, you should be careful about
which lists get stored in which representations.

You should try to use the normal representation for those data structures that will
be subject to rplacding operations, including nconc and nreverse, and the compact
representation for other structures. The functions cons, xcons, neons, and their
area variants make conses in the normal representation. The functions list, list*,
list-in-area, make-list, and append use the compact representation. The other
list-creating functions, including read, currently make normal lists, although this
might get changed. Some functions, such as sort, take special care to operate
efficiently on compact lists (sort effectively treats them as arrays). nreverse is
rather slow on compact lists, currently, since it simply uses rplacd, but this will be
changed.

(copylist x) is a suitable way to copy a list, converting it into compact form. See
the function copylist.

32 PRIM Primitive Object Types

Symbolics, Inc. March 1984

3.5 Tables

Zetalisp includes functions that simplify the maintenance of tabular data structures
of several varieties. The simplest is a plain list of items, which models
(approximately) the concept of a set. There are functions to add (cons), remove
(delete, delq, del, del-if, del-if-not, remove, remq, rem, rem-if, rem-if-not),
and search for (member, memq, mem) items in a list. Set union, intersection, and
difference functions can be easily written using these.

Association lists are very commonly used. An association list is a list of conses. The
car of each cons is a "key" and the cdr is a "datum", or a list of associated data.
The functions assoc, assq, ass, memass, and rassoc may be used to retrieve the
data, given the key. For example:

((tweety . bird) (sylvester • cat))

is an association list with two elements. Given a symbol representing the name of
an animal, it can retrieve what kind of animal this is.

Structured records can be stored as association lists or as stereotyped cons-structures
where each element of the structure has a certain car-cdr path associated with it.
However, these are better implemented using structure macros. See the document
Defstruct.

Simple list-structure is very convenient, but may not be efficient enough for large
data bases because it takes a long time to search a long list. Zetalisp includes hash
table facilities for more efficient but more complex tables, and a hashing function
(sxhash) to aid you in constructing your own facilities. See the section "Hash
Tables".

3.6 Lists as Tables

memq item list Function
(memq item list) returns nil if item is not one of the elements of list.
Otherwise, it returns the sublist of list beginning with the first occurrence of
item; that is, it returns the first cons of the list whose car is item. The
comparison is made by eq. Because memq returns nil if it does not find
anything, and something non-nil if it finds something, it is often used as a
predicate. Examples:

(memq 'a '(1 2 3 4)) => nil
(memq 'a 'Cg Cx a y) c a d e a f)) => (a d e a f)

Note that the value returned by memq is eq to the portion of the list
beginning with a. Thus rplaca on the result of memq may be used, if you
first check to make sure memq did not return nil. Example:

PRIM Primitive Object Types

Symbolics. Inc. March 1984

(let ((sublist (memq x z)))
(if (not (null sublist))

(rplaca sublist y)))

memq could have been defined by:

(defun memq (item list)
(cond ((null list) nil)

;search for x in the list z.
; if it is found,
;replace it with y.

((eq item (car list)) list)
(t (memq item (cdr list)))))

memq is hand-coded in microcode and therefore especially fast.

33

member item list Function
member is like memq, except equal is used for the comparison, instead of
eq.

member could have been defined by:

(defun member (item list)
(cond ((null list) nil)

((equal item (car list)) list)
(t (member item (cdr list)))))

mem predicate item list Function
mem is the same as memq except that it takes an extra argument that
should be a predicate of two arguments, which is used for the comparison
instead of eq. (mem 'eq a b) is the same as (memq a b).
(mem 'equal ab) is the same as (member ab).

mem is usually used with equality predicates other than eq and equal, such
as=, char-equal or string-equal. It can also be used with noncommutative
predicates. The predicate is called with item as its first argument and the
element of list as its second argument, so:

(mem II ' < 4 l is t)

finds the first element in list for which (< 4 x) is true; that is, it finds the
first element greater than 4.

find-position-in-list item list Function
find-position-in-list looks down list for an element that is eq to item, like
memq. However, it returns the numeric index in the list at which it found
the first occurrence of item, or nil if it did not find it at all. This function is
sort of the complement of nth; like nth, it is zero-based. See the function
nth. Examples:

(find-position-in-list 'a '(ab c)) => O
(find-position-in-list 'c '(ab c)) => 2
(find-position-in-list 'e '(ab c)) =>nil

34 PRIM Primitive Object Types

Symbolics, Inc. March 1984

find-position-in-list-equal item list Function
find-position-in-list-equal is exactly the same as find-position-in-list,
except that the comparison is done with equal instead of eq.

tailp sublist list Function
Returns t if sublist is a sublist of list (that is, one of the conses that makes
up list). Otherwise returns nil. Another way to look at this is that tailp
returns t if (nthcdr n list) is sublist, for some value of n. tailp could have
been defined by:

(defun tailp (sublist list)
(do ((list list (cdr list)))

((null list) nil)
(if (eq sublist list)

(return t))))

delq item list &optional n Function
(delq item list) returns the list with all occurrences of item removed. eq is
used for the comparison. The argument list is actually modified (rplacded)
when instances of item are spliced out. delq should be used for value, not
for effect. That is, use:

(setq a (delq 'b a))

rather than:

(delq 'b a)

These two are not equivalent when the first element of the value of a is b.

(delq item list n) is like (delq item list) except only the first n instances of
item are deleted. n is allowed to be zero. If n is greater than or equal to
the number of occurrences of item in the list, all occurrences of item in the
list will be deleted. Example:

(delq 'a 'Cb a c (a b) d a e)) => (b c (ab) d e)

delq could have been defined by:

(defun delq (item list &optional (n -1))
(cond ((or (atom list) Czerop n)) list)

((eq item (car list))
(delq item (cdr list) (1- n)))

Ct (rplacd list (delq item (cdr list) n)))))

If the third argument (n) is not supplied, it defaults to -1, which is effectively
infinity, since it can be decremented any number of times without reaching
zero.

delete item list &optional n Function
delete is the same as delq except that equal is used for the comparison
instead of eq.

PRIM Primitive Object Types 35

Symbolics, Inc. March 1984

del predicate item list &optional n Function
del is the same as delq except that it takes an extra argument that should
be a predicate of two arguments, which is used for the comparison instead of
eq. (del 'eq ab) is the same as (delq ab). See the function mem.

remq item list &optional n Function
remq is similar to delq, except that the list is not altered; rather, a new list
is returned. Examples:

(setq x '(a b c d e f))

(remq 'b x) => (a c d e f)
x => (a b c d e f)
(remq 'b '(ab c b ab) 2) => (a ca b)

remove item list &optional n Function
remove is the same as remq except that equal is used for the comparison
instead of eq.

rem predicate item list &optional n Function
rem is the same as remq except that it takes an extra argument that
should be a predicate of two arguments, which is used for the comparison
instead of eq. (rem 'eq ab) is the same as (remq ab). See the function
mem.

union &rest lists Function .
Takes any number of lists that represent sets and creates and returns a new
list that represents the union of all the sets it is given. union uses eq for
its comparisons. You cannot change the function used for the comparison.
(union) returns nil

intersection &rest lists Function
Takes any number of lists that represent sets and creates and returns a new
list that represents the intersection of all the sets it is given. intersection
uses eq for its comparisons. You cannot change the function used for the
comparison. (intersection) returns nil.

nunion &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the union of. all the sets it is given, by destroying any of the lists
passed as arguments and reusing the conses. (nunion) returns nil.

nintersection &rest lists Function
Takes any number of lists that represent sets and returns a new list that
represents the intersection of all the sets it is given, by destroying any of the
lists passed as arguments and reusing the conses. (nintersection) returns
nil.

36 PRIM Primitive Object Types

Symbolics, Inc. March 1984

subset predicate list &rest extra-lists Function
predicate should be a function of one argument. A new list is made by
applying predicate to all of the elements of list and removing the ones for
which the predicate returns nil. One of this function's names (rem-if-not)
means "remove if this condition is not true"; that is, it keeps the elements
for which predicate is true. The other name (subset) refers to the
function's action if list is considered to represent a mathematical set.

If extra-lists is present, each element of extra-lists (that is, each further
argument to subset) is a list of objects to be passed to predicate as
predicate's second argument, third argument, and so on~ The reason for this
is that predicate might be a function of many arguments; extra-lists lets you
control what values are passed as additional arguments to predicate.
However, the list returned by subset is still a "subset" of those values that
were passed as the first argument in the various calls to predicate.

rem-if-not predicate list &rest extra-lists Function
predicate should be a function of one argument. A new list is made by
applying predicate to all of the elements of list and removing the ones for
which the predicate returns nil One of this function's names (rem-if-not)
means "remove if this condition is not true"; that is, it keeps the elements
for which predicate is true. The other name (subset) refers to the
function's action if list is considered to represent a mathematical set.

If extra-lists is present, each element of extra-lists (that is, each further
argument to subset) is a list of objects to be passed to predicate as
predicate's second argument, third argument, and so on. The reason for this
is that predicate might be a function of many arguments; extra-lists lets you
control what values are passed as additional arguments to predicate.
However, the list returned by subset is still a "subset" of those values that
were passed as the first argument in the various calls to predicate.

subset-not predicate list &rest extra-lists Function
predicate should be a function of one argument. A new list is made by
applying predicate to all the elements of list and removing the ones for which
the predicate returns non-nil One of this function's names (rem-if) means
"remove if this condition is true". The other name (subset-not) refers to
the function's action if list is considered to represent a mathematical set.
The meaning of extra-lists is the same as for subset.

rem-if predicate list &rest extra-lists Function
predicate should be a function of one argument. A new list is made by
applying predicate to all the elements of list and removing the ones for which
the predicate returns non-nil pne of this function's names (rem-if) means
"remove if this condition is true". The other name (subset-not) refers to
the function's action if list is considered to represent a mathematical set.
The meaning of extra-lists is the same as for subset.

PRIM Primitive Object Types 37

Symbolics, Inc. March 1984

del-if predicate list Function
del-if is just like rem-if except that it modifies list rather than creating a
new list.

del-if-not predicate list Function
del-if-not is just like rem-if-not except that it modifies list rather than
creating a new list.

every list predicate &optional step-function Function
every returns t if predicate returns non-nil when applied to every element of
list, or nil if predicate returns nil for some element. If step-function is
present, it replaces cdr as the function used to get to the next element of
the list; cddr is a typical function to use here.

some list predicate &optional step-function Function
some returns a tail of list such that the car of the tail is the first element
that the predicate returns non-nil when applied to, or nil if predicate returns
nil for every element. If step-function is present, it replaces cdr as the
function used to get to the next element of the list; cddr is a typical
function to use here.

3.7 Association Lists

assq item alist Function
(assq item alist) looks up item in the association list (list of conses) alist.
The value is the first cons whose car is eq to x, or nil if there is none such.
Examples:

(assq "r "((a . b) Cc . d) (r • x) (s • y) (r . z)))
=> (r • X)

(assq "fooo "((foo • bar) (zoo • goo))) => nil

(assq "b "((a b c) (b c d) (x y z))) => (b c d)

You can rplacd the result of assq as long as it is not nil, if your intention
is to "update" the "table" that was assq's second argument. Example:

(setq values "((x • 100) (y • 200) (z • 50)))
(assq "y values) => (y • 200)
(rplacd (assq "y values) 201)
(assq "y values) => (y • 201) now

A typical trick is to say (cdr (assq x y)). Since the cdr of nil is guaranteed
to be nil, this yields nil if no pair is found (or if a pair is found whose cdr is
nil.)

assq could have been defined by:

38

(defun assq (item list)
(cond ((null list) nil)

((eq item (caar list)) (car list))
((assq item (cdr list)))))

PRIM Primitive Object Types

Symbolics. Inc. March 1984

assoc item alist Function
assoc is like assq except that the comparison uses equal instead of eq.
Example:

(assoc '(a b) '((x • y) ((a b) • 7) ((c • d) .e)))
=> ((a b) • 7)

assoc could have been defined by:

(defun assoc (item list)
(cond ((null list) nil)

((equal item (caar list)) (car list))
((assoc item (cdr list)))))

ass predicate item alist Function
ass is the same as assq except that it takes an extra argument that should
be a predicate of two arguments, which is used for the comparison instead of
eq. (ass 'eq ab) is the same as (assq ab). See the function mem. As
with mem, you may use noncommutative predicates; the first argument to
the predicate is item and the second is the key of the element of alist.

memass predicate item alist Function
memass searches alist just like ass, but returns the portion of the list
beginning with the pair containing item, rather than the pair itself.
(car (memass x y z)) =(ass x y z). See the function mem. As with mem,
you may use noncommutative predicates; the first argument to the predicate
is item and the second is the key of the element of alist.

rassq item alist Function
rassq means "reverse assq". It is like assq, but it tries to find an element
of alist whose cdr (not car) is eq to item. rassq could have been defined by:

(defun rassq (item in-list)
(do l in-list (cdr 1) (null 1)

(and (eq item Cedar 1))
(return (car 1)))))

rassoc item alist Function
rassoc is to rassq as assoc is to assq. That is, it finds an element whose
cdr is equal to item.

rass predicate item alist Function
rass is to rassq as ass is to assq. That is, it takes a predicate to be used
instead of eq. See the function mem. As with mem, you may use ·

PRIM Primitive Object Types

Symbolics, Inc. March 1984

noncommutative predicates; the first argument to the predicate is item and
the second is the cdr of the element of alist.

39

sassq item alist function Function
(sassq item alist function) is like (assq item alist) except that if item is not
found in alist, instead of returning nil, sassq calls the function function with
no arguments. sassq could have been defined by:

(defun sassq (item alist function)
(or (assq item alist)

(apply function nil)))

sassq and sassoc are of limited use. These are primarily leftovers from Lisp
1.5.

sassoc item alist function Function
(sassoc item alist function) is like (assoc item alist) except that if item is
not found in alist, instead of returning nil, sassoc calls the function function
with no arguments. sassoc could have been defmed by:

(defun sassoc (item alist function)
(or (assoc item alist)

(apply function nil)))

pairlis cars cdrs Function
pairlis takes two lists and makes an association list which associates
elements of the first list with corresponding elements of the second list.
Example:

(pairlis '(beef clams kitty) '(roast fried yu-shiang))
=> ((beef • roast) (clams . fried) (kitty • yu-shiang))

3.8 Property Lists

Lisp has always had a kind of tabular data structure called a property list (plist for
short). A property list contains zero or more entries; each entry associates from a
keyword symbol (called the indicator) to a Lisp object (called the value or,
sometimes, the property). There are no duplications among the indicators; a
property list can only have one property at a time with a given name.

This is very similar to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property list
entries are side-effecting operations that alter the property list rather than making a
new one. An association list with no entries would be the empty list (), that is, the
symbol nil. There is only one empty list, so all empty association lists are the same
object. Each empty property list is a separate and distinct object.

The implementation of a property list is a memory cell containing a list with an even

40 PRIM Primitive Object Types

Symbolics. Inc. March 1m

number (possibly zero) of elements. Each pair of elements constitutes a property;
the first of the pair is the indicator and the second is the value. The memory cell is
there to give the property list a unique identity and to provide for side-effecting
operations.

The term "property list" is sometimes incorrectly used to refer to the list of entries
inside the property list, rather than the property list itself. This is regrettable and
confusing.

How do we deal with "memory cells" in Lisp; that is, what kind of Lisp object is a
property list? Rather than being a distinct primitive data type, a property list can
exist in one of three forms:

1. A property list can be a cons whose cdr is the list of entries and whose car is
not used and is therefore available to the user to store something.

2. The system associates a property list with every symbol. See the section "The
Property List". A symbol can be used where a property list is expected; the
property-list primitives will automatically find the symbol's property list and use
it.

3. A property list can be a memory cell in the middle of some data structure,
such as a list, an array, an instance, or a defstruct. An arbitrary memory cell
of this kind is named by a locative. See the section "Locatives". Such locatives
are typically created with the locf special form. See the macro locf.

Property lists of the first kind are called "disembodied" property lists because they
are not associated with a symbol or other data structure. The way to create a
disembodied property list is (neons nil), or (neons data) to store data in the car of
the property list.

Here is an example of the list of entries inside the property list of a symbol named
bl that is being used by a program that deals with blocks:

(color blue on b6 associated-with (b2 b3 b4))

There are three properties, and so the list has six elements. The first property's
indicator is the symbol color, and its value is the symbol blue. We say that "the
value of bl's color property is blue", or, informally, that "bi's color property is
blue." The program is probably representing the information that the block
represented by bl is painted blue. Similarly, it is probably representing in the rest
of the property list that block bl is on top of block b6, and that bl is associated
with blocks b2, b3, and b4.

get plist indicator Function
get looks up plist's indicator property. If it finds such a property, it returns
the value; otherwise, it returns nil. If plist is a symbol, the symbol's
associated property list is used. For example, if the property list of foo is
(baz 3), then:

PRIM Primitive Object Types

Symbolics. Inc. March 1984

(get 'foo 'baz) => 3
(get 'foo 'zoo) => nil

41

getl plist indicator-list Function
getl is like get, except that the second argument is a list of indicators. getl
searches down plist for any of the indicators in indicator-list until it finds a
property whose indicator is one of the elements of indicator-list. If plist is a
symbol, the symbol's associated property list is used. getl returns the portion
of the list inside plist beginning with the first such property that it found.
So the car of the returned list is an indicator, and the cadr is the property
value. If none of the indicators on indicator-list are on the property list, getl
returns nil For example, if the property list of foo were:

(bar (1 2 3) baz (3 2 1) color blue height six-two)

then:

(getl 'foo '(baz height))
=> (baz (3 2 1) color blue height six-two)

When more than one of the indicators in indicator-list is present in plist,
which one getl returns depends on the order of the properties. This is the
only thing that depends on that order. The order maintained by putprop
and defprop is not defined (their behavior with respect to order is not
guaranteed and may be changed without notice).

putprop plist x indicator Function
This gives plist an indicator-property of x. After this is done,
(get plist indicator) will return x. If plist is a symbol, the symbol's
associated property list is used. Example:

(putprop 'Nixon 'not 'crook)

defprop symbol x indicator Special Form
defprop is a form of putprop with "unevaluated arguments", which is
sometimes more convenient for typing. Normally it does not make sense to
use a property list rather than a symbol as the first (or plist) argument.
Example:

(defprop foo bar next-to)

is the same as:

(putprop 'foo 'bar 'next-to)

remprop plist indicator Function
This removes plist's indicator property, by splicing it out of the property list.
It returns that portion of the list inside plist of which the former
indicator-property was the car. car of what remprop returns is what get
would have returned with the same arguments. If plist is a symbol, the
symbol's associated property list is used. For example, if the property list of
foo was:

42

(color blue height six-three near-to bar)

then:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

(remprop 'foo 'height) => (six-three near-to bar)

and foo's property list would be:

(color blue near-to bar)

If plist has no indicator-property, then,remprop has no side-effect and
returns nil.

There is a mixin flavor, called si:property-list-mixin, that provides messages that
do things analogous to what the above functions do. [Currently, the above functions
do not work on flavor instances; but this will be fixed.]

3.9 Hash Tables

A hash table is a Lisp object that works something like a property list. Each hash
table has a set of entries, each of which associates a particular key with a particular
value. The basic functions that deal with hash tables can create entries, delete
entries, and find the value that is associated with a given key. Finding the value is
very fast even if there are many entries, because hashing is used; this is an
important advantage of hash tables over property lists. See the section "Hash
Primitive".

A given hash table can only associate one value with a given key; if you try to add a
second value it will replace the first.

Hash tables come in two kinds, the difference being whether the keys are compared
using eq or using equal. The following discussion refers to the eq kind of hash
table; the other kind is described later, and works analogously.

Hash tables of the first kind are created by instantiating an instance of the
si:eq-hash-table flavor with the make-instance function, which takes various init
options. New entries are added to hash tables by sending them a :put-hash
message. To look up a key and find the associated value, the :get-hash message is
used. To remove an entry, use :rem-hash. Here is a simple example.

(setq- a (make-instance 'si:eq-hash-table))

(send a ':put-hash 'color 'brown)

(send a ':put-hash 'name 'fred)

(send a ':get-hash 'color)=> brown

(send a ':get-hash 'name)=> fred

PRIM Primitive Object Types 43

Symbolics. Inc. March 1984

In this example, the symbols color and name are being used as keys, and the
symbols brown and fred are being used as the associated values. The hash table
has two items in it, one of which associates from color to brown, and the other of
which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can
be any Lisp object. The Lisp function eq is used to compare keys, rather than
equal.

When a hash table is first created, it has a size, which is the maximum number of
entries it can hold. Usually the actual capacity of the table is somewhat less, since
the hashing is not perfectly collision-free. With the maximum possible bad luck, the
capacity could be very much less, but this rarely happens. If so many entries are
added that the capacity is exceeded, the hash table will automatically grow, and the
entries will be rehashed (new hash values will be recomputed, and everything will be
rearranged so that the fast hash lookup still works). This is transparent to the
caller; it all happens automatically.

The describe function prjnts a variety of useful information when called with a
hash table.

Hash tables are implemented as instances of flavors. The two ·flavors for the two
kinds of hash tables are si:eq-hash-table and si:equal-hash-table. See the section
"Hash Table Messages".

3.9.1 Creating Hash Tables

A new hash table using eq for comparisons of the key is created by making an
instance of the si:eq-hash-table flavor. (See the function make-instance.) The
function make-hash-table also will create an eq hash table, and takes the init
options to pass on to make-instance as arguments.

Hash tables using equal for comparisons are created by making an instance of the
si:equal-hash-table flavor, or by calling the make-equal-hash-table function.

si:eq-hash-table Flavor
This flavor is used to create a hash table using the eq function for
comparison of the hash keys. It accepts the following init options:

:size

:area

Sets the initial size of the hash table in entries, as a
fixnum. The default is 100 (decimal). The actual size is
rounded up from the size you specify to the next size that
is good for the hashing algorithm. An automatic rehash of
the hash table might occur before this many entries are
stored in the table depending upon the keys being stored.

Specifies the area in which the hash table should be
created. This is just like the :area option to make-array.
See the function make-array. The default is
working-storage-area.

44 PRIM Primitive Object Types

Symbolics, Inc. March 1984

:growth-factor Specifies how much to increase the size of the hash table
when it becomes full. This is a flonum that is the ratio of
the new size to the old size. The default is 1.3, which
causes the table to be made 30 percent bigger each time it
has to grow.

:rehash-before-cold
Causes disk-save to rehash this hash table if its hashing
has been invalidated. (This is part of the before-cold
initializations.) Thus every user of the saved band does
not have to waste the overhead of rehashing the first time
they use the hash table after cold booting.

For eq hash tables, the hashing is invalidated whenever
garbage collection or band compression occurs because the
hash function is sensitive to addresses of objects, and those
operations move objects to different addresses. For equal
hash tables, the hash function is not sensitive to addresses
of objects that sxhash knows how to hash but it is
sensitive to addresses of other objects. The hash table
remembers whether it contains any such objects.

Normally a hash table is automatically rehashed "on
demand" the first time it is used after the hashing has
become invalidated. This first :get-hash operation is
therefore much slower than normal.

The :rehash-before-cold option should be used on hash
tables that are a permanent part of the system, likely to
be saved in a band saved by disk-save, and to be touched
by users of that band. This applies both to hash tables in
the Lisp system itself and to hash tables in user-written
subsystems that are saved on disk bands.

si:equal-hash-table Flavor
A table of this flavor uses the equal ,function for comparison of the hash
keys. It accepts the following init option as well as those described for eq
hash tables. See the flavor si:eq-hash-table.

:rehash-threshold
Specifies how full the table can be before it must grow.
This is typically a flonum. The default is 0.8, which
represents 80 percent.

make-hash-table &rest options Function
This creates a new hash table using the eq function for comparison of the
keys. This function just calls make-instance using the si:eq-hash-table
flavor, passing options to make-instance as init options. See the flavor
si:eq-hash-table.

PRIM Primitive Object Types 45

Symbolics. Inc. March 1984

make-equal-hash-table &rest options Function
This creates a new hash table using the equal function for comparison of
the keys. This function just calls make-instance using the
si:equal-hash-table flavor, passing options to make-instance as init options.
See the flavor si:equal-hasb-table.

3.9.2 Hash Table Messages

This section describes the messages that can be sent to any hash table instance.

:get-hash key Message
Find the entry in the hash table whose key is key, and return the associated
value. If there is no such entry, return nil. Returns a second value, which
is t if an entry was found or nil if there is no entry for key in this table.

:put-hash key value Message
Create an entry in the hash table associating key to value. If there is
already an entry for key then replace the value of that entry with value.
Returns value. The hash table automatically grows if necessary.

:rem-hash key Message
Remove any entry for key in the hash table. Returns t if there was an
entry or nil if there was not.

:swap-hash key value Message
This does the same thing as :put-hash, but returns different values. If
there was already an entry in the hash table whose key was key, then it
returns the old associated value as its first returned value, and t as its second
returned value. Otherwise it returns two values, nil and nil.

:map-hash function &rest args Message
For each entry in the hash table, call function on the key of the entry and
the value of the entry. If args is supplied, they are passed along to function
following the value of the entry argument.

:clear-hash Message
Remove all the entries from the hash table.

:modify-bash key function &rest args Message
This message combines the actions of :get-hash and :put-hash. It lets you
both examine the value for a particular key and change it. It is more
efficient because it does the hash lookup once instead of twice.

It finds value, the value associated with key, and key-exists-p, which indicates
whether the key was in the table. It then calls function with key, value,
key-exists-p, and other-args. If no value was associated with the key, then
value is nil and key-exists-p is nil. It puts whatever value function returns
into the hash table, associating it with key.

46

(send new-coms ':modify-hash k foo ab c) =>
(funcall foo k val key-exists-p a b c)

PRIM Primitive Object Types

Symbolics. Inc. March 1984

:size Message
Returns the number of entries in the hash table, whether empty or filled.
This means the amount of storage allocated, not the number of hash
associations currently stored.

:filled-elements Message
Returns the number of entries in the hash table that have an associated
value.

3.9.3 Hash Table Functions

In addition to sending an instance of a hash table a message, the following functions
can also be used to manipulate a hash table. Please note that these functions are
considered obsolete and are only documented here for compatibility.

gethash key hash-table Function
Sends hash-table a :get-hash message with key as its argument. The values
returned are the same as for the :get-hash message.

gethash-equal key hash-table Function
Sends hash-table a :get-hash message with key as its argument. The values
returned are the same as for the :get-hash message.

puthash key value hash-table Function
Sends hash-table a :put-hash message with arguments of key and value.
The values returned are the same as for the :put-hash message.

puthash-equal key value hash-table Function
Sends hash-table a :put-hash message with arguments of key and value.
The values returned are the same as for the :put-hash message.

remhash key hash-table Function
Sends hash-table a :rem-hash message with an argument of key. The values
returned are the same as for the :rem-hash message.

remhash-equal key hash-table Function
Sends hash-table a :rem-hash message with an argument of key. The values
returned are the same as for the :rem-hash message.

swaphash key value hash-table Function
Sends hash-table a :swap-hash message with arguments of key and value.
The values returned are the same as for the :swap-hash message.

PRIM Primitive Object Types 47
Symbolics, Inc. March 1984

swaphash-equal key value hash-table Function
Sends hash-table a :swap-hash message with arguments of key and value.
The values returned are the same as for the :swap-hash message.

maphash function hash-table &rest args Function
Sends hash-table a :map-bash message with an argument of function,
passing args to function.

maphash-equal function hash-table &rest args Function
Sends hash-table a :map-hash message with an argument of function,
passing args to function.

clrhash hash-table Function
Sends hash-table a :clear-hash message. Returns the hash table itself.

clrhash-equal hash-table Function
Sends hash-table a :clear-hash message. Returns the hash table itself.

3.9.4 Dumping Hash Tables to Files

Instances of hash tables can be dumped to files by using any of the dump functions.
See the function sys:dump-forms-to-file. The hash table flavors have the
:fasd-form methods required to support dumping of their data to a fasd file.

3.9.5 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the
object. When the copying garbage collector changes the addresses of object, it lets
the hash facility know so that :get-hash will rehash the table based on the new
object addresses. equal hash tables also hash on the address, sometimes.

There will eventually be an init option to si:eq-hash-table that tells it to make a
"non-QC-protecting'' hash table. This is a special kind of hash table with the
property that if one of its keys becomes "garbage", that is, an object not known
about by anything other than the hash table, then the entry for that key will be
silently removed from the table. When these exist they will be documented in this
section.

3.9.6 Hash Primitive

Hashing is a technique used in algorithms to provide fast retrieval of data in large
tables. A function, known as a "hash function", is created, which takes an object
that might be used as a key, and produces a number associated with that key. This
number, or some function of it, can be used to specify where in a table to look for
the datum associated with the key. It is always possible for two different objects to
"hash to the same value"; that is, for the hash function to return the same number

48 PRIM Primitive Object Types

Symbolics, Inc. March 1984

for two distinct objects. Good hash functions are designed to minimize this by
evenly distributing their results over the range of possible numbers. However, hash
table algorithms must still deal with this problem by providing a secondary search,
sometimes known as a rehash. For more information, consult a textbook on
computer algorithms.

si:equal-hash object Function
si:equal-hash computes a hash code of an object, and returns it as a
fixnum. A property of si:equal-hash is that (equal x y) always implies
(= (si:equal-hash x) (si:equal-hash y)). The number returned by
si:equal-hash is always a nonnegative fixnum, possibly a large one.
si:equal-hash tries to compute its hash code in such a way that common
permutations of an object, such as interchanging two elements of a list or
changing one character in a string, will always change the hash code.

Here is an example of how to use si:equal-hash in maintaining hash tables
of objects:

(defun knownp Cx &aux i bkt) ;look up x in the table
(setq i (remainder (si:equal-hash x) 176))

;The remainder should be reasonably randomized.
(setq bkt (aref table i))

;bkt is thus a list of all those expressions that
;hash into the same number as does x.

(memq x bkt))

To write an "intern" for objects, one could:

(defun sintern (x &aux bkt i tern)
(setq i (remainder (si:equal-hash x) 2n-1))

;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.

(setq bkt (aref table i))
(cond ((setq tern (memq x bkt))

(car tern))
(t (aset (cons x bkt) table i)

x)))

si:equal-hash provides what is called "hashing on equal"; that is, two objects that
are equal are considered to be "the same" by si:equal-hash. In particular, if two
strings differ only in alphabetic case, si:equal-hash will return the same thing for
both of them because they are equal. The value returned by si:equal-hash does
not depend on the value of alphabetic-case-affects-string-comparison

Therefore, si:equal-hash is useful for retrieving data when two keys that are not
the same object but are equal, are considered the same. If you consider two such
keys to be different, then you need "hashing on eq", where two different objects are
always considered different. In some Lisp implementations, there is an easy way to

PRIM Primitive Object Types 49
Symbolics, Inc. March 1984

create a hash function that hashes on eq, namely, by returning the virtual address
of the storage associated with the object. But in other implementations, including
Zetalisp, this does not work, because the address associated with an object can be
changed by the relocating garbage collector. The hash tables discussed here deal
with this problem by using the appropriate subprimitives so that they interface
correctly with the garbage collector. If you need a hash table that hashes on eq, it
is already provided.

3.10 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms that always terminate no matter what sorting predicate is used, provided
only that the predicate always terminates. The main sorting functions are not
stable; that is, equal items may not stay in their original order. If you want a stable
sort, use the stable versions. But if you do not care about stability, do not use
them, since stable algorithms are significantly slower.

After sorting, the argument (either list or array) has been rearranged internally to
be completely ordered. In the case of an array argument, this is accomplished by
permuting the elements of the array, while in the list case, the list is reordered by
rplacds in the same manner as nreverse. Thus, if the argument should not be
clobbered, you must sort a copy of the argument, obtainable by fillarray or
copylist, as appropriate. Furthermore, sort of a list is like delq in that it should
not be used for effect; the result is conceptually the same as the argument but in
fact is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument
error, the state of the list or array being sorted is undefined. However, if the error
is corrected the sort will, of course, proceed correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if they
were arrays. See the section "Cdr-coding". An explanation of compact lists is in that
section.

sort table predicate Function
The first argument to sort is an array or a list. The second is a predicate,
which must be applicable to all the objects in the array or list. The predicate
should take two arguments, and return non-nil if and only if the first
argument is strictly less than the second (in some appropriate sense). The
predicate should return nil if its arguments are equal. For example, to sort
in the opposite direction from <, use>, not ~- This is because the quicksort
algorithm used to sort arrays and cdr-coded lists becomes very much slower
when the predicate returns non-nil for equal elements while sorting many of
them.

50 PRIM Primitive Object Types

Symbolics. Inc. March 1984

The sort .function proceeds to sort the contents of the array or list under
the ordering imposed by the predicate, and returns the array or list modified
into sorted order. Note that since sorting requires many comparisons, and
thus many calls to the predicate, sorting will be much faster if the predicate
is a compiled function rather than interpreted. Example:

(defun mostcar (x)
(cond ((symbolp x) x)

((mostcar (car x)))))

(sort 'fooarray
(function (lambda (x y)

(alphalessp (mostcar x) (mostcar y)))))

If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))

then after the sort fooarray would contain:

((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

When sort is given a list, it may change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side effect; only the
returned value of sort will be the sorted list. This will mess up the original
list; if you need both the original list and the sorted list, you must copy the
original and sort the copy. See the function copylist.

Sorting an array just moves the elements of the array into different places,
and so sorting an array for side effect only is all right.

If the argument to sort is an array with a fill pointer, note that, like most
functions, sort considers the active length of the array to be the length, and
so only the active part of the array will be sorted. See the function
array-active-length.

sortcar x predicate Function
sortcar is the same as sort except that the predicate is applied to the cars ·
of the elements of x, instead of directly to the elements of x. Example:

(sortcar '((3 . dog) (1 . cat) (2 . bird)) I'<)
=> ((1 • cat) (2 . bird) (3 • dog))

Remember that sortcar, when given a list, may change the order of the
conses of the list (using rplacd), and so it cannot be used merely for side
effect; only the returned value of sortcar will be the sorted list.

•

PRIM Primitive Object Types 51

Symbolics. Inc. March 1984

stable-sort x predicate Function
stable-sort is like sort, but if two elements of x are equal, that is, predicate
returns nil when applied to them in either order, then those two elements
will remain in their original order.

stable-sortcar x predicate Function
stable-sortcar is like sortcar, but if two elements of x are equal, that is,
predicate returns nil when applied to their cars in either order, then those
two elements will remain in their original order.

sort-grouped-array array group-size predicate Function
sort-grouped-array considers its array argument to be composed of records
of group-size elements each. These records are considered as units, and are
sorted with respect to one another. The predicate is applied to the first
element of each record, so the first elements act as the keys on which the
reeords are sorted.

sort-grouped-array-group-key array group-size predicate Function
This is like sort-grouped-array except that the predicate is applied to four
arguments: an array, an index into that array, a second array, and an index
into the second array. predicate should consider each index as the subscript
of the first element of a record in the corresponding array, and compare the
two records. This is more general than sort-grouped-array since the
function can get at all of the elements of the relevant records, instead of only
the first element.

52 PRIM Primitive Object Types

Symbolics. Inc. March 1984

PRIM Primitive Object Types

Symbolics, Inc. March 1984

4. Symbols

4.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object.
This object is called the symbol's binding or value, since it is what you get when
you evaluate the symbol. The binding of symbols to values allows symbols to be
used as the implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the
symbol is said to be unbound. This is the initial state of a symbol when it is
created. An attempt to evaluate an unbound symbol causes an error.

53

Symbols are often used as special variables. See the section "Variables". The symbols
nil and t are always bound to themselves; they may not be assigned, bound, or
otherwise used as variables. Attempting to change the value of nil or t (usually)
causes an error.

The functions described here work on symbols, not variables in general. This
means that the functions below will not work if you try to use them on local
variables.

set symbol value Function
set is the primitive for assignment of symbols. The symbol's value is
changed to value; value may be any Lisp object. set returns value.
Example1

(set (cond ((eq ab) 'c)
(t 'd))

'foo)

will either set c to foo or set d to foo.

set-globally works like set but sets the global value regardless of any bindings
currently in effect. See the function set.

set-globally operates on the global value of a special variable; it bypasses any
bindings of the variable in the current stack group. This function resides in the
global package.

symeval sym Function
symeval is the basic primitive for retrieving a symbol's value.
(symeval sym) returns sym's current binding. This is the function called by
eval when it is given a symbol to evaluate. If the symbol is unbound, then
symeval causes an error.

symeval-globally works like symeval but returns the global value regardless of any
bindings currently in effect. See the function symeval.

54 PRIM Primitive Object Types

Symbolics, Inc. March 1984

symeval-globally operates on the global value of a special variable; it bypasses any
bindings of the variable in the current stack group. This function resides in the
global package.

makunbound sym Function
makunbound causes sym to become unbound. Example:

(setq a 1)

a => 1
(makunbound 'a)
a = > causes an error.

makunbound returns its argument.

makunbound-globally works like makunbound but sets the global value
regardless of any bindings currently in effect. See the function makunbound

makunbound-globally operates on the global value of a special variable; it bypasses
any bindings of the variable in the current stack group. This function resides in the
global package. ·

boundp sym Function
boundp returns t if sym is bound; otherwise, it returns nil.

variable-boundp variable Special Fonn
Returns t if the variable is bound and nil if the variable is not bound.
variable should be any kind of variable (it is not evaluated): local, special, or
instance. Note: local variables are always bound; if variable is local, the
compiler issues a warning and replaces this form with t.

If a is a special variable, (boundp 'a) is the same as (variable-boundp a).

variable-makunbound variable Special Fonn
Makes the variable be unbound and returns variable. variable should be any
kind of variable (it is not evaluated): local, special, or instance. Note: since
local variables are always bound, they cannot be made unbound; if variable is
local, the compiler issues a warning.

If a is a special variable, (makunbound 'a) is the same::~
(variable-makunbound a).

value-cell-location sym
value-cell-location returns a locative pointer to sym 's value cell.
section "Locatives". It is preferable to write:

(locf (symeval sym))

instead of calling this function explicitly.

Function
See the

This is actually the internal value cell; there can also be an external value
cell. See the section "Closures". Note: the function value-cell-location

PRIM Primitive Object Types 55
Symbolics, Inc. March 1984

works on symbols that get converted to local variables. See the section
"Variables". The compiler knows about it specially when its argument is a
quoted symbol which is the name of a local variable. It returns a pointer to
the cell that holds the value of the local variable.

4.1.1 Special Forms for Dealing with Variables

value-cell-location on local variables is obsolete. In the past, the only way to
generate a locative pointer to the memory cell associated with a local variable called a
was with the form (value-ce11-location 'a). This is inelegant, since
value-cell-location is a function that concerns symbols (special variables) in
particular, rather than variables in general. See the section ''Variables: Evaluation".
This form continues to work, but the compiler issues a warning telling you that it is
obsolete. A special form replaces it:

variable-location variable Special Form
Returns a locative pointer to the memory cell that holds the value of the
variable. variable should be any kind of variable (it is not evaluated): local,
special, or instance.

If a is a local or instance variable and you use the obsolete (value-cell-location 'a)
form, the compiler issues a warning and converts it into the proper
variable-location form. So if you have programs that use this form, they will
continue to work. Similarly, the compiler issues warnings for obsolete uses of
boundp and makunbound, and generates code that works.

(value-cell-location 'a) is still a good form when a is a special variable. It behaves
slightly differently from the form (variable-location a), in the case that a is a
variable "closed over" by some closure. See the section "Closures".
value-ce11-location returns a locative pointer to the internal value cell of the symbol
(the one that holds the invisible pointer, which is the real value cell of the symbol),
whereas variable-location returns a locative pointer to the external value cell of
the symbol (the one pointed to by the invisible pointer, which holds the actual value
of the variable).

You can also use locf on variables (this has always been true). (locf a) now
expands into (variable-location a).

4.2 The Function Cell

Every symbol also has associated with it a function cell. The function cell is similar
to the value cell; it refers to a Lisp object. When a function is referred to by name,
that is, when a symbol is applied or appears as the car of a form to be evaluated,
that symbol's function cell is used to find its definition, the functional object that is
to be applied. For example, when evaluating(+ 5 6), the evaluator looks in +'s

56 PRIM Primitive Object Types

Symbolics, Inc. March 1984

function cell to fmd the defmition of+, in this case a FEF containing a compiled
program, to apply to 5 and 6.

Maclisp does not have function cells; instead, it looks for special properties on the
property list. This is one of the major incompatibilities between the two dialects.

Like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the bind subprimitive.) The
following functions are analogous to the value-cell-related functions in the previous
section.

fsymeval sym Function
fsymeval returns sym's defmition, the contents of its function cell. H the
function cell is empty, fsymeval causes an error.

fset sym definition Function
fset stores definition, which may be any Lisp object, into sym's function cell.
It returns definition.

fboundp sym Function
fboundp returns nil if sym's function cell is empty, that is, sym is
undefined. Otherwise it returns t.

fmakunbound sym Function
fmakunbound causes sym to be undefined, that is, its function cell to be
empty. It returns sym.

function-cell-location sym Function
function-cell-location returns a locative pointer to sym's function cell. See
the section "Locatives". It is preferable to write:

(locf (fsymeval sym))

rather than calling this function explicitly.

Since functions are the basic building block of Lisp programs, the system provides a
variety of facilities for dealing with functions. See the section "Functions".

4.3 The Property List

Every symbol has an associated property list. See the section "Property Lists".
When a symbol is created, its property list is initially empty.

The Lisp language itself does not use a symbol's property list for anything. <This
was not true in older Lisp implementations, where the print-name, value-cell, and
function-cell bf a symbol were kept on its property list.) However, various system
programs use the property. list to associate information with the symbol. For

PRIM Primitive Object Types 57

Symbolics, Inc. March 1984

instance, the editor uses the property list of a symbol that is the name of a function
to remember where it has the source code for that function, and the compiler uses
the property list of a symbol which is the name of a special form to remember how
to compile that special form.

Because of the existence of print-name, value, function, and package cells, none of
the Maclisp system property names (ex:pr, fex:pr, macro, array, subr, lsubr,
fsubr, and in former times value and pname) exist in Zetalisp.

plist sym Function
This returns the list which represents the property list of sym. Note that
this is not the property list itself; you cannot do get on it.

setplist sym list Function
This sets the list that represents the property list of sym to list. setplist is
to be used with caution (or not at all), since property lists sometimes contain
internal system properties, which are used by many useful system functions.
Also, it is inadvisable to have the property lists of two different symbols be
eq, since the shared list structure will cause unexpected effects on one
symbol if putprop or remprop is done to the other.

property-cell-location sym Function
This returns a locative pointer to the location of sym's property-list cell. This
locative pointer is equally valid as sym itself, as a handle on sym's property
list.

4.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short.
This string is used as the external representation of the symbol: if the string is
typed in to read, it is read as a reference to that symbol (if it is interned), and if
the symbol is printed, print types out the print-name. More information about the
reader and the printer can be found elsewhere: See the section "What the Reader
Accepts". See the section ''What the Printer Produces".

get-pname sym Function
This returns the print-name of the symbol sym. Example:

(get-pname 'xyz) => "xyz•

samepnamep syml sym2 Function
This predicate returns t if the two symbols syml and sym2 have equal print
names; that is, if their printed representation is the same. Upper- and
lowercase letters are normally considered the same. If either or both of the
arguments is a string instead of a symbol, then that string is used in place of

58 PRIM Primitive Object Types

Symbof1es. Inc. March 1984

the print-name. samepnamep is useful for determining if two symbols
would be the same except that they are in different packages. See the
document Packages. Examples:

(samepnamep 'xyz (maknam '(x y Z)) => t

(samepnamep 'xyz (maknam '(w x y)) => nil

(samepnamep 'xyz "xyz") => t

This is the same function as string-equal. samepnamep is provided mainly
so that you can write programs that will work in Maclisp as well as Zetalisp;
in new programs, you should just use string-equal.

4.5 The Package Cell

Every symbol has a package cell that is used, for interned symbols, to point to the
package to which the symbol belongs. For an uninterned symbol, the package cell
contains nil. See the document Packages. Information about package cells and
packages, in general, is found there.

4.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before
discussing them, it is important to point out that most symbols are created by a
higher-level mechanism, namely the reader and the intern function. Nearly all
symbols in Lisp are created by virtue of the reader's having seen a sequence of input
characters that looked like the printed representation of a symbol. When the reader
sees such a p.r., it calls intern, which looks up the sequence of characters in a big
table and sees whether any symbol with this print-name already exists. If it does,
read uses the existing symbol. If it does not exist, then intern creates a new
symbol and puts it into the table, and read uses that new symbol. See the function
intern.

A symbol that has been put into such a table is called an interned symbol. Interned
symbols are normally created automatically; the first time someone (such as the
reader) asks for a symbol with a given print-name, that symbol is automatically
created.

These tables are called packages. In Zetalisp, interned symbols are the province of
the package system. Although interned symbols are the most commonly used, they
will not be discussed further here. See the document Packages.

An unintemed symbol is a symbol used simply as a data object, with no special
cataloging. An uninterned symbol prints the same as an interned symbol with the
same print-name, but cannot be read back in.

PRIM Primitive Object Types 59

Symbolics, Inc. March 1984

The following functions can be used to create uninterned symbols explicitly.

make-symbol pname &optional permanent-p Function
This creates a new uninterned symbol whose print-name is the string pname.
The value and function bindings are unbound and the property list is empty.
If permanent-p is specified, it is assumed that the symbol is going to be
interned and probably kept around forever; in this case it and its pname will
be put in the proper areas. If permanent-pis nil (the default), the symbol
goes in the default area and the pname is not copied. permanent-p is mostly
for the use of intem itself.

Examples:

(make-symbol "FOO") => FOO
(make-symbol "Foo") => IFool

Note that the symbol is not interned; it is simply created and returned.

If a symbol has lowercase characters in its print-name, the printer will quote
the name using slashes or vertical bars. The vertical bars inhibit the Lisp
reader's normal action, which is to convert a symbol to uppercase upon
reading it. See the section ''What the Printer Produces".

Example:

(setq a (make-symbol "Hello"))
(princ a)

; => IHel lol
; will print out Hello

copysymbol sym copy-props Function
This returns a new uninterned symbol with the same print-name as sym. If
copy-props is non-nil, then the value and function-definition of the new
symbol will be the same as those of sym, and the property list of the new
symbol will be a copy of sym's. If copy-props is nil, then the new symbol will
be unbound and undefmed, and its property list will be empty.

gensym &optional x Function
gensym invents a print-name, and creates a new symbol with that print
name. It returns the new, uninterned symbol.

The invented print-name is a character prefix (the value of
si:*gensym-pre:rix) followed by the decimal representation of a number (the
value of si:*gensym-counter), for example, "g0001". The number is
increased by one evecy time gensym is called.

If the argument xis present and is a fixnum, then si:*gensym-counter is
set to x. If x is a string or a symbol, then si:•gensym-pre:rix is set to the
first character of the string or of the symbol's print-name. After handling
the argument, gensym creates a symbol as it would with no argument.
Examples:

60

if (gensym) => g0007
then (gensym 'foo) => f0008

(gensym 32.) => f0032
(gensym) => f0033

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Note that the number is in decimal and always has four digits, and the
prefix is always one character.

gensym is usually used to create a symbol that should not normally be seen
by the user, and whose print-name is unimportant, except to allow easy
distinction by eye between two such symbols. The optional argument is
rarely supplied. The name comes from "generate symbol", and the symbols
produced by it are often called "gensyms".

PRIM Primitive Object Types 61

Symbolics, Inc. March 1984

5. Numbers

Zetalisp includes several types of numbers, with different characteristics. Most
numeric functions will accept any type of numbers as arguments and do the right
thing. That is to say, they are generic. Maclisp contains both generic numeric
functions (like plus) and specific numeric functions (like+), which only operate on a
certain type, and are much more efficient. In Zetalisp, this distinction does not
exist; both function names exist for compatibility but they are identical. The
microprogrammed structure of the machine makes it possible to have only the
generic functions without loss of efficiency.

The types of numbers in Zetalisp are:

f1XI1um

bignum

flonum

small-fl on um

single-float

double-float

Fixnums are 24-bit 2's complement binary integers. These are
the "preferred, most efficient" type of number.

Bignums are arbitrary-precision binary integers.

(LM-2 only) Flonums are floating-point numbers. They have a
mantissa of 32 bits and an exponent of 11 bits, providing a
precision of about 9 digits and a range of about 10"300. Stable
rounding is employed.

(LM-2 only) Small flonums are another form of floating-point
number, with a mantissa of 18 bits and an exponent of 7 bits,
providing a precision of about 5 digits and a range of about 10"19.
Stable rounding is employed. Small flonums are useful because,
like fixnums, but unlike flonums, they do not require any storage.
Computing with small flonums is more efficient than with regular
flonums because the operations are faster and consing overhead is
eliminated.

(3600 only) Single-precision floating-point numbers have a precision
of 24 bits, or about 7 decimal digits. Their range is from
l.l 754944e-38 to 3.4028235e38.

(3600 only) Double-precision floating-point numbers have a
precision of 53 bits, or about 16 decimal digits. Their range is
from 2.2250738585072014d-308 to 1. 7976931348623157d308.

Generally, Lisp objects have a unique identity; each exists, independent of any other,
and you can use the eq predicate to determine whether two references are to the
same object or not. Numbers are the exception to this rule; they do not work this
way. The following function may return either tor nil. Its behavior is considered
undefined, but as this manual is written it returns t when interpreted but nil when
compiled.

62 PRIM Primitive Object Types

Symbolics. Inc. March 1984

(defun foo ()
(let ((x (float 5)))

(eq x (car (cons x nil)))))
........_

This is very strange from the point of view of Lisp's usual object semantics, but the
implementation works this way to gain efficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So, the rule is that the
result of applying eq to numbers is undefmed, and may return either t or nil at
will. If you want to compare the values of two numbers, use=.

Fixnums and small-tlonums are exceptions to this rule; some system code knows that
eq works on fIXnums used to represent characters or small integers, and uses memq
or assq on them. eq works as well as= as an equality test for fIXnums. ·small
flonums that are = tend to be eq also, but it is unwise to depend on this.

The distinction between fIXnums and bignums is largely transparent to the user.
You simply compute with integers, and the system represents some as fIXnums and
the rest (less efficiently) as bignums. cally converts back and forth between fIXnums
and bignums based solely on the size of the integer. There are a few "low level"
functions that only work on fIXnums; this fact is noted in their documentation. Also
when using eq on numbers you should be aware of the fIXnumlbignum distinction.

Integer computations cannot "overflow", except for division by zero, since bignums
can be of arbitrary size. Floating-point computations can get exponent overflow or
underflow, if the result is too large or small to be represented. Exponent overflow
always signals an error. Exponent underflow normally signals an error, and assumes
0.0 as the answer if you say to proceed from the error. However, if the value of the
variable zunderflow is non-nil, the error is skipped and computation proceeds with
0.0 in place of the result that was too small.

zunderflow Variable
If the value of zunderflow is non-nil, any floating-point computation that
results in a floating-point underflow will have zero as its result. If the value
of zunderflow is nil, any such computation will signal an error.

When an arithmetic function of more than one argument is given arguments of
different numeric types, uniform coercion rules are followed to convert the
arguments to a common type, which is also the type of the result (for functions
which return a number). When an integer meets a small-flonum or a flonum, the
result is a small-flonum or a flonum (respectively). When a small-flonum meets a
regular flonum, the result is a regular flonum. When a single-precision floating-point
number meets a double-precision floating-point number, the result is a double-float.

Thus, if the constants in a numerical algorithm are written as small-flonums
(assuming this provides adequate precision), and if the input is a small-flonum, the
computation will be done in small-flonum mode and the result will a small-flonum,
while if the input is a large-flonum the computations will be done in full precision
and the result will be a flonum.

PRIM Primitive Object Types 63

Symbolics, Inc. March 1984

Zetalisp never automatically converts between flonums and small-flonums, in the way
it automatically converts between fixnums and bignums, since this would lead either
to inefficiency or to unexpected numerical inaccuracies. <When a small-flonum meets
a flonum, the result is a flonum, but if you use only one type, all the results will be
of the same type, too.) This means that a small-flonum computation can get an
exponent overflow error even when the result could have been represented as a
large-flonum.

Floating-point numbers retain only a certain number of bits of precision; therefore,
the results of computations are only approximate. Large-flonums have 31 bits and
small-flonums have 17 bits, not counting the sign. The method of approximation is
"stable rounding". The result of an arithmetic operation will be the flonum that is
closest to the exact value. If the exact result falls precisely halfway between two
flonums, the result will be rounded down if the least-significant bit is 0, or up if the
least-significant bit is 1. This choice is arbitrary but insures that no systematic bias
is introduced.

The 3600 supports IEEE-standard single-precision and double-precision floating-point
numbers. Number objects exist that are outside the upper and lower limits of the
ranges for single and double precision. Larger than the largest number is +le= (or
+ld= for doubles). Smaller than the smallest number is -le= (or -ld= for doubles).
Smaller than the smallest normalized positive number but larger than zero are the
"denormalized" numbers. Some floating-point objects are Not-a-Number <NaN>; they
are the result of(// 0.0 0.0) (with trapping disabled) and like operations.

IEEE numbers are symmetric about zero, so the negative of evecy representable
number is also a representable number (on the 3600 only). Zeros are signed in
IEEE format, but +0.0 and -0.0 act the same arithmetically. For example:

(= +O.O -0.0)
(plusp 0.0)
(plusp -0.0)
(zerop -0.0)
(eq 0.0 -0.0)

=> t
=> nil
=> nil
=> t
=> nil

See the IEEE standard: Microprocessor Standards Committee, IEEE Computer
Society, "A Proposed Standard for Binary Floating-Point Arithmetic: Draft 8.0 of
IEEE Task P754," Computer, March 1981, pp. 51-62.

Integer addition, subtraction, and multiplication always produce an exact result.
Integer division, on the other hand, returns an integer rather than the exact
rational-number result. The quotient is truncated towards zero rather than
rounded. The exact rule is that if A is divided by B, yielding a quotient of C and a
remainder of D, then A = B * C + D exactly. D is either zero or the same sign as
A. Thus the absolute value of C is less than or equal to the true quotient of the
absolute values of A and B. This is compatible with Maclisp and most computer
hardware. However, it has the serious problem that it does not obey the rule that if
A divided by B yields a quotient of C and a remainder of D, then dividing A+ k * B

64 PRIM Primitive Object Types

Symbolics, Inc. March 1984

by B will yield a quotient of C + k and a remainder of D for all integer k. The lack
of this property sometimes makes regular integer division hard to use. New
functions that implement a different kind of division, that obeys this rule, will be
implemented in the future.

Unlike Maclisp, Zetalisp does not have number declarations in the compiler. Note
that because fixnums and small-flonums require no associated storage they are as
efficient as declared numbers in Maclisp. Bignums and (large) flonums are less
efficient; however, bignum and flonum intermediate results are garbage-collected in a
special way that avoids the overhead of the full garbage collector.

The different types of numbers can be distinguished by their printed representations.
A leading or embedded (but not trailing) decimal point, and/or an exponent separated
by "e", indicates a tlonum on the LM-2 or a single-precision floating-point number on
the 3600. If a number has. an exponent separated by "s", it is a small-flonum. If a
number has an exponent separated by "d", it is a double-precision floating-point
number. Small-flonums require a special indicator so that new users will not
accidentally compute with the lesser precision. Fixnums and bignums have similar
printed representations since there is no numerical value that has a choice of
whether to be a fixnum or a bignum; an integer is a bignum if and only if its
magnitude too big for a fixnum. See the section "What the Reader Accepts".

5.1 Numeric Predicates

zerop x Function
Returns t if x is zero. Otherwise it returns nil. If x is not a number,
zerop causes an error. For flonums, this only returns t for exactly 0.0 or
O.OsO; there is no "fuzz".

plusp x Function
Returns t if its argument is a positive number, strictly greater than zero.
Otherwise it returns nil. If xis not a number, plusp causes an error.

minusp x Function
Returns t if its argument is a negative number, strictly less than zero.
Otherwise it returns nil. If xis not a number, minusp causes an error.

oddp number Function
Returns t if number is odd, otherwise nil. If number is not a fixnum or a
bignum, oddp causes an error.

evenp number Function
Returns t if number is even, otherwise nil. If number is not a fIXnum or a
bignum, evenp causes an error.

PRIM PrimitiVe Object Types 65

Symbolics, Inc. March 1984

signp test x Special Form
signp is used to test the sign of a number. It is present only for Maclisp
compatibility, and is not recommended for use in new programs. signp
returns t if x is a number that satisfies the test, nil if it is not a number or
does not meet the test. test is not evaluated, but x is. test can be one of the
following:

I x<O

le x<O

e x=O

n X7' 0
ge x~O

g X>O

Examples:

(signp ge 12) => t
(signp le 12) => nil
(signp n 0) => nil
(signp g 'foo) => nil

See the function f"ixp. See the function floatp. See the function bigp. See the
function small-floatp. See the function sys:single-float-p. See the function
sys:double-float-p. See the function numberp.

5.2 Numeric Comparisons

All of these functions require that their arguments be numbers, and sign.al an error
if given a nonnumber. They work on all types of numbers, automatically performing
any required coercions (as opposed to Maclisp, in which generally only the spelled-out
names work for all kinds of numbers).

=xy Th~Mn
Returns t if x and y are numerically equal. An integer can be = to a
flonum.

greaterp number [&rest] more-numbers Thnction
greaterp compares its arguments from left to right. If any argument is not
greater than the next, greaterp returns nil. But if the arguments are
monotonically strictly decreasing, the result is t. Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 O) => t
(greaterp 4 3 1 2 0) => nil

66 PRIM Primitive Object Types

Symbolics. Inc. March 1984

Related topics:

The following function is a synonym of greaterp.
See the function >.

> number &rest more-numbers Function
greaterp compares its arguments from left to right. If any argument is not
greater than the next, greaterp returns nil. But if the arguments are
monotonically strictly decreasing, the result is t. Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

Related topics:

The following function is a synonym of >.
See the function greaterp.

>= number &rest more-numbers Function
> compares its arguments from left to right. If any argument is less than
the next, > returns niL But if the arguments are monotonically decreasing
or equal, the result is t.

Related topics:

The following function is a synonym of >=.
See the function >.

> number &rest more-numbers Function
>compares its arguments from left to right. If any argument is less than
the next, > returns nil. But if the arguments are monotonically decreasing
or equal, the result is t.
Related topics:

The following function is a synonym of >.
See the function>=.

lessp number [&rest] more-numbers Function
lessp compares its arguments from left to right. If any argument is not less
than the next, lessp returns nil. But if the arguments are monotonically
strictly increasing, the result is t. Examples:

(lessp 3 4) => t
(lessp 1 1) =>nil
(lessp O 1 2 3 4) => t
(lessp O 1 3 2 4) => nil

Related topics:

The following function is a synonym of lessp.
See the function <.

PRIM Primitive Object Types 67

Symbolics, Inc. March 1984

< number &rest more-numbers Function
lessp compares its arguments from left to right. If any argument is not less
than the next, lessp returns nil. But if the arguments are monotonically
strictly increasing, the result is t. Examples:

(lessp 3 4) => t
(lessp 1 1) => nil
(lessp 0 1 2 3 4) => t
(lessp O 1 3 2 4) => nil

Related topics:

The following function is a synonym of <.
See the function lessp.

<= number &rest more-numbers Function
< compares its arguments from left to right. If any argument is greater
than the next, <returns nil. But if the arguments are monotonically
increasing or equal, the result is t.

Related topics:

The following function is a synonym of <=.
See the function <.

s number &rest more-numbers Function

"x y

< compares its arguments from left to right. If any argument is greater
than the next, < returns nil. But if the arguments are monotonically
increasing or equal, the result is t.
Related topics:

The following function is a synonym of s.
See the function <=.

Returns t if x is not numerically equal to y, and nil otherwise.
Function

max &rest args Function
max returns the largest of its arguments. Example:

(max 1 3 2) => 3

max requires at least one argument.

min &rest args Function
min returns the smallest of its arguments. Example:

(min 1 3 2) => 1

min requires at least one argument.

68 PRIM Primitive Object Types

Symbolics. Inc. March 1984

5.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an error
if given a nonnumber. They work on all types of numbers, automatically performing
any required coercions (as opposed to Maclisp, in which generally only the spelled-out
versions work for all kinds of numbers, and the "$"versions are needed for flonums).

plus &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

Related topics:

The following functions are synonyms of plus.
See the function +.
See the function +$.

+ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.

Related topics:

The following functions are synonyms of +.
See the function plus.
See the function +$.

+$ &rest args Function
Returns the sum of its arguments. If there are no arguments, it returns 0,
which is the identity for this operation.
Related topics:

The following functions are synonyms of +$.
See the function plus.
See the function +.

difference arg &rest args Function
Returns its first argument minus all of the rest of its arguments.

minus x Function
Returns the negative of x. Examples:

(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args Function
With only one argument, - is the same as minus; it returns the negative of
its argument. With more than one argument, - is the same as difference;
it returns its first argument minus all of the rest of its arguments.

PRIM Primitive Object Types

Symbolics. Inc. March 1984

Related topics:

The following function is a synonym of -.
See the function -$.

69

-$ arg &rest args Function
With only one argument, - is the same as minus; it returns the negative of
its argument. With more than one argument, - is the same as difference;
it returns its first argument minus all of the rest of its arguments.
Related topics:

The following function is a synonym of -$.
See the function -.

abs x Function
Returns ttj, the absolute value of the number x. abs could have been defined
by:

(defun abs (x)
(cond ((minusp x) (minus x))

(t x)))

times &rest args Function
Returns the product of its arguments. If there are no arguments, it returns
1, which is the identity for this operation.

Related topics:

The following functions are synonyms of times.
See the function •.
See the function *$.

* &rest args Function
Returns the product of its arguments. If there are no arguments, it returns
1, which is the identity for this operation.

Related topics:

The following functions are synonyms of •.
See the function times.
See the function *$.

*$ &rest args Function
Returns the product of its arguments. If there are no arguments, it returns
1, which is the identity for this operation.
Related topics:

The following functions are synonyms of *$.
See the function times.
See the function •.

70 PRIM Primitive Object Types

Symbolics. Inc. March 1984

quotient arg &rest args Function
Returns the first argument divided by all of the rest of its arguments.

/ / arg &rest args Function
. -The name of this function is written / / . rather than / because / is the

quoting character in Lisp syntax and must be doubled. With more than one
argument, / / is the. same as quotient; it returns the first argument divided
by all of the rest of its arguments. With only one argument, (// x) is the
same as(// 1 x). The exact rules for the meaning of the quotient and
remainder of two integers are given in another_ section. See the section
"Numbers". This explaiiis why the rules used for integer division are not
correct for all applications. Examples:

(11 3 2 > = > 1 ;Fixnum division truncates.
(// 3 -2) => -1
(// -3 2) => -1
(// -3 -2) => 1
(// 3 2.0) => 1.5
(// 3 2.0sO) => 1.5s0
(// 4 2) => 2
(// 12. 2. 3.) => z
(II 4 • 0) = > • 25

Related topics:

The following function is a synonym of / /.
See the function / /$.

/ /$ arg &rest args Function
The name of this function is written / / rather than / because / is the
quoting character in Lisp syntax and must be doubled. With more than one
argument, / / is the same as quotient; it returns the first argument divided
by all of the rest of its arguments. With only one argument,(// x) is the
same as (/ / 1 x). The exact rules for the meaning of the quotient and
remainder of two integers are given in another section. See the section
"Numbers". This explains why the rules used for integer division are not
correct for all applications. Examples:

(11 3 2 > = > 1 ;Fixnum division truncates.
{// 3 -2) => -1
{// -3 2) => -1
(// -3 -2) => 1
(// 3 2.0) => 1.5
(// 3 2.0sO) => 1.5s0
(// 4 2) => 2
(// 12. 2. 3.) => 2
(// 4.0) => .25

Related topics:

PRIM Primitive Object Types 71

Symbolics, Inc. March 1984

The following function is a synonym of / /$.
See the function / /.

remainder x y Function
Returns the remainder of x divided by y. x and y must be integers (fixnums
or bignums). The exact rules for the meaning of the quotient and remainder
of two integers are given in another section. See the section "Numbers".

(\ 3 2) => 1
(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

Related topics:

The following function is a synonym for remainder.
See the function \.

\ x y Function
Returns the remainder of x divided by y. x and y must be integers (fixnums
or bignums). The exact rules for the meaning of the quotient and remainder
of two integers are given in another section. See the section "Numbers".

(\ 3 2) => 1
(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

Related topics:

The following function is a synonym for \.
See the function remainder.

mod x y Function

addlx

The same as remainder, except that the returned value has the sign of the
second argument instead of the first. When there is no remainder, the
returned value is 0.

Examples:

(mod -3 2) = > 1
(mod 3 -2) => -1
(mod -3 -2) => -1
(mod 4 -2) => O

(addl x) is the same as (plus x 1).

Related topics:

The following functions are synonyms of addl.
See the function 1+.
See the function 1+$.

Function

72

1+ x

1+$x

(addl x) is the same as (plus x 1).

Related topics:

The following functions are synonyms of 1+.
See the function addl.
See the function 1+$.

(addl x) is the same as (plus x 1).
Related topics:

The following functions are synonyms of 1+$.
See the function addl.
See the function 1+.

PRIM Primitive Object Types

Symbolics. Inc. March 1984

Function

Function

subl x Function
(subl x) is the same as (difference x 1). Note that the short name may
be confusing: (1- x) does not mean 1-x; rather, it means x-1.

Related topics:

The following functions are synonyms of subL
See the function 1-.
See the function 1-$.

1- x Function
(subl x) is the same as (difference x 1). Note that the short name may
be confusing: (1- x) does not mean 1-x; rather, it means x-1.

Related topics:

The following functions are synonyms of 1-.
See the function subl.
See the function 1-$.

1-$ x Function
(subl x) is the same as (difference x 1). Note that the short name may
be confusing: (1- x) does not mean 1-x; rather, it means x-1.
Related topics:

The following functions are synonyms of 1-$.
See the function subl.
See the function 1-.

gcd x y &rest args
Returns the greatest common divisor of all its arguments.
must be integers (fixnums or bignums).

Related topics:

Function
The arguments

PRIM Primitive Object Types 73

Symbolics, Inc. March 1984

The following function is a synonym of gcd.
See the function \ \.

\ \ x y &rest args Function
Returns the greatest common divisor of all its arguments. The arguments
must be integers (fixnums or bignums).
Related topics:

The following function is a synonym of \ \.
See the- function gcd.

expt x y Function

~ x y

Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. H the exponent is an integer a repeated
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x))).

Related topics:

The ·following functions are synonyms of expt.
See the function .. .
See the function

Function
Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. H the exponent is an integer a repeated
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x))).

Related topics:

The following functions are synonyms of ...
See the function expt.
See the function

"'$ x y Function
Returns x raised to the yth power. The result is an integer if both
arguments are integers (even if y is negative!) and floating-point if either x
or y or both is floating-point. If the exponent is an integer a repeated
squaring algorithm is used, while if the exponent is floating the result is
(exp (* y (log x))).
Related topics:

The following functions are synonyms of .. $.
See the function expt.
See the function ...

74 PRIM Primitive Object Types

Symbolics. Inc. March 1984

sqrtx Function
Returns the square root of x.

isqrt x Function
Integer square root. x must be an integer; the result is the greatest integer
less than or equal to the exact square root of x.

signum value Function
signum is a function for determining the sign of its argument.

(signum -2.5) => -1.0
(signum 3.9) => 1.0
(signum 0) => O
(signum 59) => 1

The definition is compatible with the current Common Lisp design.

*dif x y Function
(LM-2 only) This is one of the internal microcoded arithmetic functions.
There is no reason why anyone should need to write code with this explicitly,
since the compiler knows how to generate the appropriate code for plus, +,
and so on. This name is only here for Maclisp compatibility.

*plus x y Function
(LM-2 only) This is one of the internal microcoded arithmetic functions.
There is no reason why anyone should need to write code with this explicitly,
since the compiler knows how to generate the appropriate code for plus, +,
and so on. This name is only here for Maclisp compatibility.

*quo x y Function
(LM-2 only) This is one of the internal microcoded arithmetic functions.
There is no reason why anyone should need to write code with this explicitly,
since the compiler knows how to generate the appropriate code for plus, +,
and so on. This name is only here for Maclisp compatibility.

*times x y Function
<LM-2 only) This is one of the internal microcoded arithmetic functions.
There is no reason why anyone should need to write code with this explicitly,
since the compiler knows how to generate the appropriate code for plus, +,
and so on. This name is only here for Maclisp compatibility.

5.4 Transcendental Functions

These functions are only for floating-point arguments; if given an integer they will
convert it to a flonum. If given a small-flonum, they will return a small-flonum.

PRIM Primitive Object Types 75

Symbolics, Inc. March 1984

exp x Function
Returns e raised to the xth power, where e is the base of natural logarithms.

log x Function
Returns the natural logarithm of x.

sinx Function
Returns the sine of x, where x is expressed in radians.

sindx Function
Returns the sine of x, where x is expressed in degrees.

cos x Function
Returns the cosine of x, where x is expressed in radians.

cosdx Function
Returns the cosine of x, where x is expressed in degrees.

atan y x Function
Returns the angle, in radians, whose tangent is ylx. atan always returns a
nonnegative number between zero and 2•.

atan2 y x Function
Returns the angle, in radians, whose tangent is ylx. atan2 always returns a
number between and •.

5.5 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced,
when desired.

rIX x Function
Converts x from a flonum (or small-flonum) to an integer, truncating towards
negative infinity. The result is a flXIlum or a bignum as appropriate. If x is
already a fixnum or a bignum, it is returned unchanged.

fixr x Function
Converts x from a flonum (or small-flonum) to an integer, rounding to the
nearest integer. If x is exactly halfway between two integers, this rounds up
(towards positive infinity). rixr could have been defined by:

(defun fixr (x)
(if (fixp x) x (fix (+ x 0.5))))

76 PRIM Primitive Object Types

Symbolics, Inc. March 1984

float x Function
Converts any kind of number to a flonum on the LM-2 and to a single
precision floating-point number on the 3600. Note that, on the 3600, float
reduces a double-precision argument to single precision.

small-float x Function
(LM-2 only) Converts any kind of number to a small-flonum.

dfloat x Function
(3600 only) Converts any kind of number to a double-precision floating-point
number.

5.6 Logical Operations on Numbers

Except for lsh and rot, these functions operate on both flXllums and bignums. lsh
and rot have an inherent word-length limitation and hence only operate on 24-bit
fixnums. Negative numbers are operated on in their 2's-complement representation.

logior number &rest more-numbers Function
Returns the bit-wise logical inclusive or of its arguments. At least one
argument is required. Example:

(logior 4002 67) => 4067

logxor number &rest more-numbers Function
Returns the bit-wise logical,excl~si~e or of its arguments. At least one
argument is required. Example·:

(logxor 2531 7777) => 5246

logand number &rest more-numbers Function
Returns the bit-wise logical and of its arguments. At least one argument is
required. Examples:

(logand 3456 707) => 4D6
(logand 3456 -100) => 3400

lognot number Function
Returns the logical complement of number. This is the same as logxoring
number with -1. Example:

(lognot 3456) => -3457

boole fn &rest numbers Function
boole is the generalization of Iogand, logior, and logxor. fn should be a
fixnum between 0 and 17 octal inclusive; it controls the function that is
computed. If the binary representation of fn is abed (a is the most
significant bit, d the least) then the truth table for the Boolean operation is
as follows:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

y
0 1

OI a c
x I

11 b d

77

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) z)

With two arguments, the result of boole is simply its second argument. At
least two arguments are required.

Examples:

(boole 1 x y) = (logand x y)
(boole 6 x y) = (logxor x y)

(boole 2 x y) = (logand (lognot x) y)

Iogand, logior, and Iogxor are usually preferred over the equivalent forms
of boole, to avoid putting magic numbers in the program.

bit-test x y Function
bit-test is a predicate that returns t if any of the bits designated by the l's
in x are l's in y. bit-test is implemented as a macro which expands as
follows:

(bit-test x y) ==> (not (zerop (logand x y)))

lsh x y Function
Returns x shifted lefty bits if y is positive or zero, or x shifted right b1 bits if
y is negative. Zero bits are shifted in (at either end) to fill unused positions.
x and y must be fixnums. (In some applications you may find ash useful for
shifting bignums.) Examples:

(lsh 4 1) => 10 ;(octal)
(lsh 14 -2) => 3
(lsh -1 1) => -2

ash x y Function
Shifts x arithmetically lefty bits if y is positive, or right -y bits if y is
negative. Unused positions are filled by zeroes from the right, and by copies
of the sign bit from the left. Thus, unlike lsh, the sign of the result is
always the same as the sign of x. If x is a fixnum or a bignum, this is a
shifting operation. If x is a flonum, this does scaling (multiplication by a
power of two), rather than actually shifting any bits.

rot x y Function
Returns x rotated lefty bits if y is positive or zero, or x rotated right b1 bits
if y is negative. The rotation considers x as a 24-bit number (unlike Maclisp,

78 PRIM Primitive Object Types

Symbolics, Inc. March 1984

which considers x to be a 36-bit number in both the PDP-10 and Multics
implementations). x and y must be fixnums. (There is no function for
rotating bign.ums.) Examples:

(rot 1 2) => 4
(rot 1 -2) => 20000000
(rot -1 7) => -1
(rot 15 24.) => 15

haulong x Function
This returns the number of significant bits in ~- x may be a fi:xnum or a
bignum. Its sign is ignored. The result is the least integer strictly greater
than the base-2 logarithm of ~- Examples:

(haulong O) => 0
(haulong 3) => 2
(haulong -7) => 3

haipart x n Function
Returns the high n bits of the binary representation of ~' or the low -n bits
if n is negative. x may be a fi:xnum or a bignum; its sign is ignored.
haipart could have been defined by:

(defun haipart (x n)
(setq x (abs x))
(if (minusp n)

(logand x (1- (ash 1 (- n))))
(ash x (min (- n (haulong x))

0))))

5.7 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous
bits appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous
set of bits is called a byte. Note that we are not using the term byte to mean eight
bits, but rather any number of bits within a number. These functions use numbers
called byte specifiers to designate a specific byte position within any word. Byte
specifiers are fixnums whose two lowest octal digits represent the size of the byte,
and whose higher (usually two, but sometimes more) octal digits represent the
position of the byte within a number, counting from the right in bits. A position of
zero means that the byte is at the right end of the number. For example, the byte
specifier 0010 (that is, 10 octal) refers to the lowest eight bits of a word, and the
byte-specifier 1010 refers to the next eight bits. These byte-specifiers will be stylized
below as ppss. The maximum value of the ss digits is 27 (octal), since a byte must
fit in a fixnum although bytes can be loaded from and deposited into bignums.
(Bytes are always positive numbers.) The format of byte-specifiers is taken from the
PDP-10 byte instructions.

PRIM Primitive Object Types 79

Symbolics, Inc. March 1984

ldb ppss num Function
ppss specifies a byte of num to be extracted. The ss bits of the byte starting
at bit pp are the lowest ss bits in the returned value, and the rest of the bits
in the returned value are zero. The name of the function, ldb, means "load
byte". num may be a fIXnum or a bignum. The returned value is always a
fIXnum. Example:

(ldb 0306 4567) => 56

load-byte num position size Function
This is like ldb except that instead of using a byte specifier, the position and
size are passed as separate arguments. The argument order is not analogous
to that of ldb so that load-byte can be compatible with Maclisp.

ldb-test ppss y Function
ldb-test is a predicate that returns t if any of the bits designated by the
byte specifier ppss are l's in y. That is, it returns t if the designated field is
nonzero. ldb-test is implemented as a macro which expands as follows:

(ldb-test ppss y) ==> (not (zerop (ldb ppss y)))

mask-field ppss num Function
This is similar to ldb; however, the specified byte of num is returned as a
number in position pp of the returned word, instead of position 0 as with
ldb. num must be a fIXnum. Example:

(mask-field 0306 4567) =>~

dpb byte ppss num Function
Returns a number that is the same as num xcept in the bits specified by
ppss. The low ss bits of byte are placed in ose bits. byte is interpreted as
being right-justified, as if it were the resu of ldb. num may be a fIXnum or
a bignum. The name means "deposit b e". Example:

(dpb 23 0306 4567) => 4237

deposit-byte num position size byte Function
This is like dpb except that instead of using a byte specifier, the position
and size are passed as separate arguments. The argument order is not
analogous to that of dpb so that deposit-byte can be compatible with
Maclisp.

deposit-field byte ppss num Function
This is like dpb, except that byte is not taken to be right-justified; the ppss
bits of byte are used for the ppss bits of the result, with the rest of the bits
taken from num. num must be a fIXnum. Example:

(deposit-field 230 0306 4567) => 4237

80 PRIM Primitive Object Types

Symbolics, Inc. March 1984

byte size position Function
Creates a byte specifier for a byte size bits wide, position bits from the right
hand (least-significant) end of the word.

Example:

(ldb (byte 3 4) #012345) => 6

byte-size byte-specifier Function
Extracts the size field of byte-specifier. You can use sett on this form:

(setq a (byte 3 4))
(setf (byte-size a) 2)
(byte-size a) => 2

byte-position byte-specifier Function
Extracts the position field of byte-specifier. You can use setf on this form:

(setq a (byte 3 4))
(setf (byte~position a) 2)
(byte-position a) => 2

The behavior of the following two functions depends on the size of fixnums, and so
functions using them may not work the same way on future implementations of
Zetalisp. Their names start with 9'%" because they are more like machine-level
subprimitives than the previous functions.

%logldb ppss fixnum Function
%logldb is like ldb except that it only loads out of fixnums and allows a
byte size of 30 (octal), that is, all 24. bits of the fixnum including the sign
bit.

%logdpb byte ppss fixnum Function
%logdpb is like dpb except that it only deposits into fIXnums. Using this to
change the sign-bit will leave the result as a fIXnum, while dpb would
produce a bignum result for arithmetic correctness. %logdpb is good for
manipulating fixnum bit-masks such as are used in some internal system
tables and data structures.

5.8 Random Numbers

The functions in this section provide~ pseudorandom number generator facility.
The basic function you use is random, which returns a new pseudorandom number
each time it is called. Between calls, its state is saved in a data object called a
random-array. Usually there is only one random-array; however, if you want to
create a reproducible series of pseudorandom numbers, and be able to reset the state
to control when the series starts over, then you need some of the other functions
here.

PRIM Primitive Object Types 81

Symbolics. Inc. March 1984

random &optional arg random-array Function
(random) returns a random fixnum, positive or negative. If arg is present,
a fixnum between 0 and arg minus 1 inclusive is returned. If random-array
is present, the given array is used instead of the default one. Otherwise, the
default random-array is used (and is created if it does not already exist). The
algorithm is executed inside a without-interrupts so two processes can use
the same random-array without colliding. See the special form
without-interrupts.

A random-array consists of an array of numbers, and two pointers into the array.
The pointers circulate around the array; each time a random number is requested,
both pointers are advanced by one, wrapping around at the end of the array. Thus,
the distance forward from the first pointer to the second pointer, allowing for
wraparound, stays the same. Let the length of the array be length and the distance
between the pointers be offset. To generate a new random number, each pointer is
set to its old value plus one, modulo length. Then the two elements of the array
addressed by the pointers are added together; the sum is stored back into the array
at the location where the second pointer points, and is returned as the random
number after being normalized into the right range.

This algorithm produces well-distributed random numbers if length and offset are
chosen carefully, so that the polynomial x"'length+x"'offset+l is irreducible over the
mod-2 integers. The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderately
random, to make the algorithm work. The contents get initialized by a simple
random number generator, based on a number called the seed. The initial value of
the seed is set when the random-array is created, and it can be changed. To have
several different controllable resettable sources of random numbers, you can create
your own random-arrays. If you don,t care about reproducibility of sequences, just
use random without the random-array argument.

si:random-create-array length offset seed &optional (area nil) Function
Creates, initializes, and returns a random-array. length is the length of the
array. offset is the distance between the pointers and should be an integer
less than length. seed is the initial value of the seed, and should be a
flXIlum. This calls si:random-initialize on the random array before
returning it.

si:random-initialize array &optional new-seed Function
array must be a random-array, such as is created by
si:random-create-array. If new-seed is provided, it should be a flXIlum, and
the seed is set to it. si:random-initialize reinitializes the contents of the
array from the seed (calling random changes the contents of the array and
the pointers, but not the seed).

82 PRIM Primitive Object Types

Symbolics, Inc. March 1984

5.9 24-bit Numbers

Sometimes it is desirable to have a form of arithmetic that has no overflow checking
(which would produce bignums), and truncates results to the word size of the
machine. In Zetalisp, this is provided by the following set of functions. Their
answers are only correct modulo 2 .. 24.

These functions should not be used for "efficiency"; they are probably less efficient
than the functions which do check for overflow. They are intended for algorithms
which require this sort of arithmetic, such as hash functions and pseudorandom
number generation.

%24-bit-plus x y Function
(LM-2 only) Returns the sum of x and y modulo 2"24. Both arguments
must be fixnums.

%24-bit-difference x y Function
(LM-2 only) Returns the difference of x and y modulo 2"24. Both arguments
must be fixnums.

%24-bit-times x y Function
(LM-2 only) Returns the product of x and y modulo 2"24. Both arguments
must be fixnums.

5.10 Double-precision Arithmetic

These peculiar functions are useful in programs that do not want to use bignums for
one reason or another. They should usually be avoided, as they are difficult to use
and understand, and they depend on special numbers of bits and on the use of
two's-complement notation.

%multiply-fractions numl num2 Function
(LM-2 only) Returns bits 24 through 46 (the most significant half) of the
product of numl and num2. If you call this and %24-bit-times on the same
arguments numl and num2, regarding them as integers, you can combine
the results into a double-precision product. If numl and num2 are regarded
as two's-complement fractions, -1 < num < 1, %multiply-fractions returns
112 of their correct product as a fraction.

%divide-double dividend[24:46J dividend[0:23J divisor Function
(LM-2 only) Divides the double-precision number given by the first two
arguments by the third argument, and returns the single-precision quotient.
Causes an error if division by zero or if the quotient will not fit in single
precision.

PRIM Primitive Object Types 83

Symbolics, Inc. March 1984

%remainder-double dividend[24:46J dividend[0:23J divisor Function
(LM-2 only) Divides the double-precision number given by the first two
arguments by the third argument, and returns the remainder. Causes an
error if division by zero.

%float-double high24 low24 Function
(LM-2 only) high24 and low24, which must be f1Xnums, are concatenated to
produce a 48-bit unsigned positive integer. A flonum containing the same
value is constructed and returned. Note that only the 31 most-significant bits
are retained (after removal of leading zeroes.) This function is mainly for the
benefit of read.

84 PRIM Primitive Object Types

Symbolics, Inc. March 1984

PRIM Primitive Object Types 85

Symbolics, Inc. March 1984

6. Locatives

6.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer to a cell. Locatives are
inherently a more "low-level" construct than most Lisp objects; they require some
knowledge of the nature of the Lisp implementation. Most programmers will never
need them.

A cell is a machine word that can hold a (pointer to a) Lisp object. For example, a
symbol has five cells: the print name cell, the value cell, the function cell, the
property list cell, and the pack.age cell. The value cell holds (a pointer to) the
binding of the symbol, and so on. Also, an array leader of length n has n cells, and
an art-q array of n elements has n cells. (Numeric arrays do not have cells in this
sense.) A locative is an object that points to a cell; it lets you refer to a cell, so that
you can examine or alter its contents.

There are a set of functions that create locatives to cells; the functions are
documented with the kind of object to which they create a pointer. See the
function ap-1. See the function ap-leader. See the function car-location. See
the function value-cell-location. The macro locf can be used to convert a form
that accesses a cell to one that creates a locative pointer to that cell.

For example:

(locf (fsymeval x)) ==> (function-cell-location x)

locf is very convenient because it saves the writer and reader of a program from
having to remember the names of all the functions that create locatives.

6.2 Functions That Operate on Locatives

Either of the functions car/ and cdr may be given a locative, and will return the
contents of the cell at which the locative points. See the section "Conses".

For example:

(car (value-cell-location x))

is the same as:

(symeval x)

When using locf to return a locative, you should use cdr rather than car to access
the contents of the cell to which the locative points. This is because
(locf (cdr list)) returns the list itself instead of a locative.

86 PRIM Primitive Object Types

Symbolics, Inc. March 1984

Similarly, either of the functions rplaca and rplacd may be used to store an object
into the cell at which a locative points.

For example:

(rplaca (value-cell-location x) y)

is the same as:

(set x y)

If you mix locatives and lists, then it matters whether you use car and rplaca or
cdr and rplacd, and care is required. For example, the following function takes
advantage of value-cell-location to cons up a list in forward order without special
case code. The first time through the loop, the rplacd is equivalent to
(setq res ...); on later times through the loop the rplacd tacks an additional cons
onto the end of the list.

(defun simplified-version-of-mapcar (fen 1st)
(do ((1st 1st (cdr 1st))

(res ni 1)

(loc (value-cell-location 'res)))
((null 1st) res)

(rplacd loc
(setq loc (neons (funcall fen (car 1st)))))))

You might expect this not to work if it was compiled and res was not declared
special, since nonspecial compiled variables are not represented as symbols. However,
the compiler arranges for it to work anyway, by recognizing value-cell-location of
the name of a local variable, and compiling it as something other than a call to the
value-cell-location function.

location-makunbound and location-boundp are versions of makunbound and
boundp that can be used on any cell in the Lisp Machine. They take a locative
pointer to design.ate the cell rather than a symbol. (makunbound is restricted to
use with symbols.) The following two calls are equivalent:

(location-boundp (locf a))
(variable-boundp a)

The following two calls are also equivalent. When a is a special variable, they are
the same as the two calls in the preceding example too.

(location-boundp (value-cell-location 'a))
(boundp 'a)

location-makunbound loc &optional variable-name Function
location-makunbound has been changed to take a symbol as an optional
second argument: variable-name of the location that is being made unbound.
Previously, it used to take one required argument.

location-makunbound uses variable-name to label the null pointer it stores
so that the Debugger knows the name of the unbound location if it is

PRIM Primitive Object Types

Symbolics, Inc. March 1984

referenced. This is particularly appropriate when the location being made
unbound is really a variable value cell of one sort or another, for example,
closure or instance.

87

88 PRIM Primitive Object Types

Symbolics, Inc. March 1984

PRIM Primitive Object Types 89

Symbolics, Inc. March 1984

7. Printed Representation

People cannot deal directly with Lisp objects, because the objects live inside the
machine. In order to let us get at and talk about Lisp objects, Lisp provides a
representation of objects in the form of printed text; this is called the printed
representation. This is what you have been seeing in the examples throughout this
manual. Functions such as print, prinl, and prine take a Lisp object, and send
the characters of its printed representation to a stream. These functions (and the
internal functions they call) are known as the printer. The read function takes
characters from a stream, interprets them as a printed representation of a Lisp
object, builds a corresponding object and returns it; it and its subfunctions are
known as the reader. See the section "What Streams Are".

This section describes in detail what the printed representation is for any Lisp
object, and just what read does. For the rest of the chapter, the phrase "printed
representation" will usually be abbreviated as "p.r.".

7.1 What the Printer Produces

The printed representation of an object depends on its type. In this section, we will
consider eacJ:t type of object and explain how it is printed.

Printing is done either with or without slashification. The unslashified version is
nicer looking in general, but if you give it to read it will not do the right thing.
The slashified version is carefully set up so that read will be able to read it in. The
primary effects of slashification are that special characters used with other than
their normal meanings (for example, a parenthesis appearing in the name of a
symbol) are preceded by slashes or cause the name of the symbol to be enclosed in
vertical bars, and that symbols which are not from the current package get printed
out with their package prefixes (a package prefix looks like a symbol followed by a
colon).

For a fixnum or a bignum: if the number is negative, the printed representation
begins with a minus sign ("-"). Then, the value of the variable base is examined.
If base is a positive fixnum, the number is printed out in that base (base defaults
to 8); if it is a symbol with a si:princ-function property, the value of the property
will be applied to two arguments: minus of the number to be printed, and the
stream to which to print it (this is a hook to allow output in Roman numerals and
the like); otherwise the value of base is invalid and an error is signalled Finally, if
base equals 10. and the variable *nopoint is nil, a decimal point is printed out.
Slashification does not affect the printing of numbers.

90 PRIM Primitive Object Types

Symbolics. Inc. March 1984

base Variable
The value of base is a number that is the radix in which fixnums are
printed, or a symbol with a si:princ-function property. The initial value of
base is 8.

*nopoint Variable
If the value of *nopoint is nil, a trailing decimal point is printed when a
fIXnum is printed out in base 10. This allows the numbers to be read back
in correctly even if ibase is not 10. at the time of reading. If •nopoint is
non-nil, the trailing decimal points are suppressed. The initial value of
*nopoint is nil

For a flonum: the printer first decides whether to use ordinary notation or
exponential notation. If the magnitude of the number is too large or too small, such
that the ordinary notation would require an unreasonable number of leading or
trailing zeroes, then exponential notation will be used. The number is printed as an
optional leading minus sign, one or more digits, a decimal point, one or more digits,
and an optional trailing exponent, consisting of the letter "e", an optional minus
sign, and the power of ten. The number of digits printed is the "correct" number;
no information present in the flonum is lost, and no extra trailing digits are printed
that do not represent information in the flonum. Feeding the p.r. of a flonum back
to the reader is always supposed to produce an equal flonum. Flonums are always
printed in decimal; they are not affected by slashification nor by base and
*nopoint.

For a small-flonum: the printed representation is vecy similar to that of a flonum,
except that exponential notation is always used and the exponent is delimited by "s"
rather than "e".

Ratios print in the current ibase, not always in decimal.

For a symbol: if slashification is off, the p.r. is simply the successive characters of the
print-name of the symbol. If slashification is on, two changes must be made. First,
the symbol might require a package prefix in order that read work correctly,
assuming that the package into which read will read the symbol is the one in which
it is being printed. See the document Packages. The package name prefix is
explained there. Secondly, if the p.r. would not read in as a symbol at all (that is, if
the print-name looks like a number, or contains special characters), then the
p.r. must have some quoting for those characters, either by the use of slashes ("/")
before each special character, or by the use of vertical bars <"I") around the whole
name. The decision whether quoting is required is done using the readtable, so it is
always accurate provided that readtable has the same value when the output is
read back in as when it was printed. See the variable readtable.

Uninterned symbols are printed preceded by #:. You can tum this off by evaluating
(setf (si:pttbl-unintemed-pref"ix readtable) "").

For Common Lisp, character objects always print as #\char.

PRIM Primitive Object Types 91

Symbolics, Inc. March 1984

For a string: if slashification is off, the p.r. is simply the successive characters of the
string. If slashification is on, the string is printed between double quotes, and any
characters inside the string that need to be preceded by slashes will be. Normally
these are just double-quote and slash. Compatibly with Maclisp, carriage return is
not ignored inside strings and vertical bars.

For an instance or an entity: if the object has a method for the :print-self message,
that message is sent with three arguments: the stream to print to, the current
depth of list structure, and whether slashification is enabled. The object should
print a suitable p.r. on the stream. See the document Objects, Message Passing,
and Flavors. Instances are documented there. Most such objects print like "any
other data type" below, except with additional information such as a name. Some
objects print only their name when slashification is not in effect (when princed). ·

For an array that is a named structure: if the array has a named structure symbol
with a named-structure-invoke property that is the name of a function, then that
function is called on five arguments: the symbol :print-self, the object itself, the
stream to print to, the current depth of list structure, and whether slashification is
enabled. A suitable printed representation should be sent to the stream. This
allows you to define your own p.r. for his named structures. See the section
"Named Structures". If the named structure symbol does not have a
named-structure-invoke property, the printed-representation is like that for
random data types: a number sign and a less-than sign ("<"), the named structure
symbol, the numerical address of the array, and a greater-than sign (">").

Other arrays: the p.r. starts with a number sign and a less-than sign ("<"). Then
the "art-" symbol for the array type is printed. Next the dimensions of the array
are printed, separated by hyphens. This is followed by a space, the machine address
of the array, and a greater-than sign (">").

Conses: The p.r. for conses tends to favor lists. It starts with an open-parenthesis.
Then, the car of the cons is printed, and the cdr of the cons is examined. If it is
nil, a close parenthesis is printed. If it is anything else but a cons, space dot space
followed by that object is printed. If it is a cons, we print a space and start all over
(from the point after we printed the open-parenthesis) using this new cons. Thus, a
list is printed as an open-parenthesis, the p.r.'s of its elements separated by spaces,
and a close-parenthesis.

This is how the usual printed representations such as (ab (foo bar) c) are
produced.

The following additional feature is provided for the p.r. of conses: as a list is
printed, print maintains the length of the list so far, and the depth of recursion of
printing lists. If the length exceeds the value of the variable prinlength, print will
terminate the printed representation of the list with an ellipsis (three periods) and a
close-parenthesis. If the depth of recursion exceeds the value of the variable
prinlevel, then the list will be printed as "**". These two features allow a kind of
abbreviated printing that is more concise and suppresses detail. Of course, neither

92 PRIM Primitive Object Types

Symbolics. Inc. March 1984

the ellipsis nor the "**" can be interpreted by read, since the relevant information is
lost.

prinlevel Variable
prinlevel can be set to the maximum number of nested lists that can be
printed before the printer will give up and just print a "**". If it is nil,
which it is initially, any number of nested lists can be printed. Otherwise,
the value of prinlevel must be a fixnum.

prinlength Variable
prinlength can be set to the maximum number of elements of a list that
will be printed before the printer will give up and print a " ••• ". If it is nil,
which it is initially, any length list may be printed. Otherwise, the value of
prinlength must be a fixnum.

For any other data type: the p.r. starts with a number sign and a less-than sign,
the "dtp-" symbol for this data type, a space, and the octal machine address of the
object. Then, if the object is a microcoded function, compiled function, or stack
group, its name is printed. Finally, a greater-than sign is printed.

Including the machine address in the p.r. makes it possible to tell two objects of this
kind apart without explicitly calling eq on them. This can be very useful during
debugging. It is important to know that if garbage collection is turned on, objects
will occasionally be moved, and therefore their octal machine addresses will be
changed. It is best to shut off garbage collection temporarily when depending on
these numbers.

None of the p.r.'s beginning with a number sign can be read back in, nor, in
general, can anything produced by instances, entities, and named structures. See
the section "What the Reader Accepts". This can be a problem if, for example, you
are printing a structure into a file with the intent of reading it in later. The
following feature allows you to make sure that what you are printing may indeed be
read with the reader.

si:print-readably Variable
When si:print-readably is bound to t, the printer will signal an error if
there is an attempt to print an object that cannot be interpreted by read.
When the printer sends a :print-self or a :print message, it assumes that
this error checking is done for it. Thus it is possible for these messages not
to signal an error, if they see fit.

sys:printing-random-object (object stream . keywords) &body Macro
body

The vast majority of objects that define :print-self messages have much in
common. This macro is provided for convenience, so that users do not have
to write out that repetitious code. It is also the preferred interface to
si:print-readably. With no keywords, si:printing-random-object checks

PRIM Primitive Object Types 93

Symbolics, Inc. March 1984

the value of si:print-readably and signals an error if it is not nil. It then
prints a number sign and a less-than sign, evaluates· the forms in body, then
prints a space, the octal machine address of the object, and a greater-than
sign. A typical use of this macro might look like:

(si:printing-random-object (ship stream)
(princ (typep ship) stream)
(tyo #\space stream)
(prinl (ship-name ship) stream))

This might print #<Ship "ralph" 23655126>.

The following keywords may be used to modify the behavior of
si:printing-random-object:

:no-pointer

:typep

This suppresses printing of the octal address of the object.

This prints the result of (typep object) after the less-than sign.
In the example above, this option could have been used instead of
the first two forms in the body.

If you want to control the printed representation of some object, usually the right
way to do it is to make the object an array that is a named structure, or an
instance of a flavor. See the section "Named Structures". See the document Objects,
Message Passing, and Flavors. However, occasionally it is desirable to get control
over all printing of objects, in order to change, in some way, how they are printed.
If you need to do this, the best way to proceed is to customize the behavior of
si:print-object, which is the main internal function of the printer. See the
function si:print-object. All of the printing functions, such as print and princ, as
well as format, go through this function. The way to customize it is by using the
"advice" facility. See the special form advise.

7.2 What the Reader Accepts

The purpose of the reader is to accept characters, interpret them as the p.r. of a
Lisp object, and return a corresponding Lisp object. The reader cannot accept
everything that the printer produces; for example, the p.r.'s of arrays (other than
strings), compiled code objects, closures, stack groups, and so on cannot be read in.
However, it has many features that are not seen in the printer at all, such as more
flexibility, comments, and convenient abbreviations for frequently used unwieldy
constructs.

This section shows what kind of p.r.'s the reader understands, and explains the
readtable, reader macros, and various features provided by read.

In general, the reader operates by recognizing tokens in the input stream. Tokens
can be self-delimiting or can be separated by delimiters such as whitespace. A token

94 PRIM Primitive Object Types

Symbolics, Inc. March 1984

is the p.r. of an atomic object such as a symbol or a number, or a special character
such as a parenthesis. The reader reads one or more tokens until the complete
p.r. of an object has been seen, and then constructs and returns that object.

The reader understands the p.r.'s of fIXnums in a way more general than is
employed by the printer. Here is a complete description of the format for fIXnums.

Let a simple fixnum be a string of digits, optionally preceded by a plus sign or a
minus sign, and optionally followed by a trailing decimal point. A simple fIXnum will
be interpreted by read as a fIXnum. If the trailing decimal point is present, the
digits will be interpreted in decimal radix; otherwise, they will be considered as a
number whose radix is the value of the variable ibase.

ibase Variable
The value of ibase is a number that is the radix in which fIXnums are read.
The initial value of ibase is 8.

read also understands a simple fIXnum, followed by an underscore (_) or a
circumflex ("'), followed by another simple fIXnum. The two simple fIXnums are
interpreted in the usual way, then the character in between indicates an operation
to be performed on the two fIXnums. The underscore indicates a binary "left shift";
that is, the fIXnum to its left is doubled the number of times indicated by the
fIXnum to its right. The circumflex multiplies the fIXnum to its left by ibase the
number of times indicated by the fIXnum to its right. (The second simple fIXnum is
not allowed to have a leading minus sign.) Examples: 645_6 means 64500 (in
octal) and 645"'3 means 645000. Here are some examples of valid representations of
fIXnums to be given to read:

4
23456.
-546
+45A.+6
2_11

The syntax for bignums is identical to the syntax for fIXnums. A number is a
bignum rather than a fIXnum if and only if it is too large to be represented as a
fIXnum. Here are some examples of valid representations of bignums:

72361356126536125376512375126535123712635
-123456789.
105_1000
105_1000.

The syntax for a flonum is an optional plus or minus sign, optionally some digits, a
decimal point, and one or more digits. By default, such a flonum or a simple
fIXnum, followed by an "e" (or "E") and a simple fIXnum, is also a flonum; the
fIXnum after the "e" is the exponent of 10 by which the number is to be scaled.
(The exponent is not allowed to have a trailing decimal point.) See the variable
cl:*read-default-float-format* for ways of changing this default. If the exponent

PRIM Primitive Object Types

Symbolics. Inc. March 1984

is introduced by "s" (or "S") rather than "e", the number is a small-flonum. Here
are some examples of printed-representations that read as flonums:

0.0
1.5
14.0
0.01
.707
-.3
+3. 14159
6.03e23
lE-9
1.e3

Here are some examples of printed-representations that read as small-flonums:

OsO
1.559
-4253
1.s5

The reader accepts all Common Lisp floating-point exponent characters.

Floating-point Exponent Characters

95

Following is a summary of floating-point exponent characters and the way numbers
containing them are read on the 3600 and LM-2.

Character 3600 LM-2

B orb single-precision fl on um

Dor d double-precision fl on um

E ore depends on value of depends on value of
cl:*read-default-float-format* cl:*read-default-float-format*

For f single-precision flonum

Lor l double-precision fl on um

Sor s single-precision small-flonum

The variable cl:*read-default-float-format• controls how floating-point numbers
with no exponent or an exponent or an exponent preceded by "E" or "e" are read.

cl:*read-default-float-format• Variable
Controls how floating-point numbers with no exponent or an exponent
preceded by "E" or "e" are read. Following is a summary of the way possible
values cause these numbers to be read on the 3600 and LM-2:

96 PRIM Primitive Object Types

Symbolics. Inc. March 1984

Value 3600 LM-2

cl:single-float single-precision fl on um

cl:double-ftoat double-precision fl on um

cl:sbort-ftoat single-precision small-fl on um

cl:long-ftoat double-precision flonum

The default value is cl:single-ftoat.

Two integers separated by\ are read as a ratio of the integers. Ratios are read in
the current ibase, not in decimal.

A string of letters, numbers, and "extended alphabetic" characters is recognized by
the reader as a symbol, provided it cannot be interpreted as a number. Alphabetic
case is ignored in symbols; lowercase letters are translated to uppercase. When the
reader sees the p.r. of a symbol, it interns it on a package. See the document
Packages. Symbols may start with digits; you could even have one nained "-345T";
read will accept this as a symbol without complaint. If you want to put strange
characters (such as lowercase letters, parentheses, or reader macro characters) inside
the naine of a symbol, put a slash before each strange character. If you want to
have a symbol whose print-naine looks like a number, put a slash before some
character in the name. You can also enclose the naine of a symbol in vertical bars,
which quotes all characters inside, except vertical bars and slashes, which must be
quoted with slash.

Examples of symbols:

f oo
bar/(bazl)
34w23
IFrob Salel

When a token could be read as either a symbol or an integer in a base larger than
ten, the reader's action is determined by the value of
si:*read-extended-ibase-unsigned-number• and
si:*read-extended-ibase-signed-number*.

si:*read-extended'."ibase-unsigned-number• Variable
Controls how a token that could be a number or a symbol, and does not
start with a + or - sign, is interpreted when ibase is greater than ten.

nil

t

:sharpsign

It is never a number.

It is always a number.

It is a symbol at top level, but a number after #X or
#nR.

PRIM Primitive Object Types 97

Symbolics, Inc. March 1984

:single It is a symbol except immediately after #X or #nR.

The default value is :single.

si:*read-extended-ibase-signed-number• Variable
Controls how a token that could be a number or a symbol, and starts with a
+ or - sign, is interpreted when ibase is greater than ten.

nil

t

:sharpsign

:single

It is never a number.

It is always a number.

It is a symbol at top level, but a number after #X or
#nR.

It is a symbol except immediately after #X or #nR.

The default value is :sharpsign.

The reader will also recognize strings, which should be surrounded by double-quotes.
If you want to put a double-quote or a slash inside a string, precede it by a slash.
Examples of strings:

"This is a typical string."
"That is known as a /"cons eel 11" in Lisp."

When read sees an open parenthesis, it knows that the p.r. of a cons is coming,
and calls itself recursively to get the elements of the cons or the list that follows.
Any of the following are valid:

(foo . bar)
(foo bar baz)
(foo . (bar . (baz • nil)))
(foo bar . quux)

The first is a cons, whose car and cdr are both symbols. The second is a list, and
the third is exactly the same as the second (although print would never produce it).
The fourth is a "dotted list"; the cdr of the last cons cell (the second one) is not nil,
but quux.

Whenever the reader sees any of the above, it creates new cons cells; it never
returns existing list structure. This contrasts with the case for symbols, as very
often read returns symbols that it found interned in the package rather than
creating new symbols itself. Symbols are the only thing that work this way.

The dot that separates the two elements of a dotted-pair p.r. for a cons is only
recognized if it is surrounded by delimiters (typically spaces). Thus dot may be freely
used within print-names of symbols and within numbers. This is not compatible
with Maclisp; in Maclisp (a.b) reads as a cons of symbols a and b, whereas in
Zetalisp it reads as a list of a symbol a.b.

Tokens that consist of more than one dot, but no other characters, are legal symbols

98 PRIM Primitive Object Types

Symbolics. Inc. March 1984

in Zetalisp but errors in Common Lisp. For Common Lisp, the variable
si:*read-multi-dot-tokens-as-symbols* should be set to nil.

si:*read-multi-dot-tokens-as-symbols* Variable
When t, for Zetalisp, tokens containing more than one dot, but no other
characters, are read as symbols. When nil, for Common Lisp, tokens
containing more than one dot but no other characters signal an error when
read. Default: t.

If the circle-X (®) character is encountered, it is an octal escape, which may be
useful for including weird characters in the input. The next three characters are
read and interpreted as an octal number, and the character whose code is that
number replaces the circle-X and the digits in the input stream. This character is
always taken to be an alphabetic character, just as if it had been preceded by a
slash.

7.3 Macro Characters

Certain characters are defined to be macro characters. When the reader sees one of
these, it calls a function associated with the character. This function reads
whatever syntax it likes and returns the object represented by that syntax. Macro
characters are always token delimiters; however, they are not recognized when
quoted by slash or vertical bar, nor when inside a string. Macro characters are a
syntax-extension mechanism available to the user. Lisp comes with several
predefined macro characters:

Quote (') is an abbreviation to make it easier to put constants in programs.
'foo reads the same as (quote foo).

Semicolon (;) is used to enter comments. The semicolon and everything up through
the next carriage return are ignored. Thus a comment can be put at the end of
any line without affecting the reader.

Backquote (') makes it easier to write programs to construct lists and trees by using
a template. See the section "Backquote".

Comma (,) is part of the syntax of backquote and is invalid if used other than inside
the body of a backquote. See the section "Backquote".

Sharp sign (#) introduces a number of other syntax extensions. See the section
"Sharp-sign Abbreviations". Unlike the preceding characters, sharp sign is not a
delimiter. A sharp sign in the middle of a symbol is an ordinary character.

The function set-syntax-macro-char can be used to define your own macro
characters.

Reader macros that call a read function should call si:read-recursive.

PRIM Primitive Object Types 99

Symbolics, Inc. March 1984

si:read-recursive stream Function
si:read-recursive should be called by reader macros that need to call a
function to read. It is important to call this function instead of read in
macros that are written in Zetalisp but used by the Common Lisp readtable.
In particular, this function must be called by macros used in conjunction with
the Common Lisp #n= and #n# syntaxes.

stream is the stream from which to read. This function may be called only
from inside a read.

For example, this is the reader macro called when the reader sees a quote ('):

si:(defun xr-quote-macro (list-so-far stream)
list-so-far ;not used
(values (list-in-area read-area 'quote (read-recursive stream))

'list))

7.4 Sharp-sign Abbreviations

The reader's syntax includes several abbreviations introduced by sharp sign (#).

These take the general form of a sharp sign, a second character which identifies the
syntax, and following arguments. Certain abbreviations allow a decimal number or
certain special "modifier" characters between the sharp sign and the second
character. Here are the currently defined sharp-sign constructs; more are likely to
be added in the future.

#\or#/
#\X (or #/x, which is identical) reads in as the number that is the character
code for the character x. For example, #\a is equivalent to 141 but clearer
in its intent. This is the recommended way to include character constants in
your code. Note that the slash causes this construct to be parsed correctly
by the editors, EMACS and Zwei.

As in strings, upper- and lowercase letters are distinguished after #\. Any
character works after #\, even those that are normally special to read, such
as parentheses.

#\name (or #/name) reads in as the number which is the character code for
the nonprinting character symbolized by name. A large number of character
names are recognized. See the section "Special Character Names". For
example, #\return reads in as a fnrn.um, being the character code for the
Return character in the Lisp Machine character set. In general, the names
that are written on the keyboard keys are accepted. The abbreviations er
for return and sp for space are accepted and generally preferred, since
these characters are used so frequently. The page separator character is
called page, although form and clear-screen are also accepted since the
keyboard has one of those legends on the page key. The rules for reading

100 PRIM Primitive Object Types

Symbolics. Inc. March 1984

name are the same as those for symbols; thus upper- and lowercase letters
are not distinguished, and the name must be terminated by a delimiter such
as a space, a carriage return, or a parenthesis.

When the system types out the name of a special character, it uses the same
table as the#\ reader; therefore, any character name typed out is acceptable
as input.

#\ (or#/) can also be used to read in the names of characters that have
control and meta bits set. The syntax looks like #\control-meta-b to get a
"B" character with the control and meta bits set. You can use any of the
prefix bit names control, meta, hyper, and super. They may be in any
order, and upper- and lowercase letters are not distinguished. The last
hyphen may be followed by a sing!e character, or by any of the special
character names normally recognized by#\. If it is a single character, it is
treated the same way the reader normally treats characters in symbols; if you
want to use a lowercase character or a special character such as a
parenthesis, you must precede it with a slash character. Examples:
#\Hyper-Super-A, \meta-hyper-roman-i, #\CTRL-META-/(.

The character can also be modified with control and meta bits by inserting
one or more special characters between the I and the \. This syntax is
obsolete since it is not mnemonic and it generally unclear. However, it is
used in some old programs, so here is how it is defined. la\X generates
Control-x. #1]\X generates Meta-x. lhc\X generates Super-x. llA \X generates
Hyper-x. These can be combined, for instance Int)\& generates Super-Meta
ampersand. Also, 11£. \X is an abbreviation for llal]\X. When control bits are
specified, and x is a lowercase alphabetic character, the character code for the
uppercase version of the character is produced.

In Common Lisp, #\char (or #/char) can cause char to read as a character
object instead of an integer, depending on the readtable.

#... # ... x is exactly like #alx if the input is being read by Zetalisp; it generates
Control-x. In Maclisp x is converted to uppercase and then exclusive-or'ed
with 100 (octal). Thus # ... x always generates the character returned by tyi if
the user holds down the control key and types x. (In Maclisp #atx sets the
bit set by the Control key when the TTY is open in f"IXnum mode.)

#' #'foo is an abbreviation for (function foo). foo is the p.r. of any object.
This abbreviation can be remembered by analogy with the ' macro-character,
since the function and quote special forms are somewhat analogous.

#, #,foo evaluates foo (the p.r. of a Lisp form) at read time, unless the compiler
is doing the reading, in which case it is arranged that foo will be evaluated
when the QF ASL file is loaded. This is a way, for example, to include in
your code complex list-structure constants that cannot be written with
quote. Note that the reader does not put quote around the result of the
evaluation. You must do this yourself if you want it, typically by using the '
macro-character. An example of a case where you do not want quote
around it is when this object is an element of a constant list.

PRIM Primitive Object Types 101

Symbolics, Inc. March 1984

#. #.foo evaluates foo (the p.r. of a lisp form) at read time, regardless of who is
doing the reading.

#: #:name reads name as an unintemed symbol. It always creates a new
symbol. Like all package prefixes, #: can be followed by any expression.
Example: #:(a b c).

#B #Brational reads rational (an integer or a ratio) in binary (radix 2).
Examples:

#81101 <=> 13.
#81100\100 <=> 3

#0 #0 number reads number in octal regardless of the setting of ibase.
Actually, any expression can be prefixed by #0; it will be read with ibase
bound to 8.

#X #X number reads number in radix 16. (hexadecimal) regardless of the setting
of ibase. As with #0, any expression can be prefixed by #X. The number
can contain embedded hexadecimal "digits" A through F as well as the 0
through 9.

#R #radixR number reads number in radix radix regardless of the setting of
ibase. As with #0, any expression can be prefixed by #radixR; it will be
read with ibase bound to radix. radix must consist of only digits, and it is
read in decimal. number can consist of both numeric and alphabetic digits,
depending upon radix.

For example, #3R102 is another way of writing 11. and #llR32 is another
way of writing 35.

#Q #Q foo reads as foo if the input is being read by Zetalisp, otherwise it reads
as nothing (whitespace).

#M #M foo reads as foo if the input is being read into Maclisp, otherwise it reads
as nothing (whitespace).

#N #N foo reads as foo if the input is being read into NIL or compiled to run in
NIL, otherwise it reads as nothing (whitespace). Also, during the reading of
foo, the reader temporarily defines various NIL-compatible sharp-sign
abbreviations (such as #! and #") in order to parse the form correctly, even
though its not going to be evaluated.

#+ This abbreviation provides a read-time conditionalization facility similar to, but
more general than, that provided by #M, #N, and #Q. It is used as
#+feature form. If feature is a symbol, then this is read as form if
(status feature feature). is t. If (status feature feature) is nil, then this
is read as whitespace. Alternately, feature may be a boolean expression
composed of and, or, and not operators and symbols representing items
which may appear on the (status features) list. (or lispm amber)
represents evaluation of the predicate
(or (status feature lispm) (status feature amber)) in the read-time
environment.

102 PRIM Primitive Object Types

Symbolics, Inc. March 1984

For example, #+lispm form makes form exist if being read by Zetalisp, and is
.thus equivalent to #Q form. Similarly, #+maclisp form is equivalent to
#M form. #+(or lispm nil) form will make form exist on either Zetalisp or
in NIL. Note that items may be added to the (status features) list by
means of (sstatus feature feature), thus allowing the user to selectively
interpret or compile pieces of code by parameterizing this list. See the special
form sstatus.

#- #-feature form is equivalent to #+(not feature) form.

#I #I begins a comment for the Lisp reader. The reader ignores everything
until the next 1#, which closes the comment. Note that if the I# is inside a
comment that begins with a semicolon, it is not ignored; it closes the
comment that began with the preceding #I. #I and I# can be on different
lines, and #l···I# pairs can be nested.

#< This is not valid reader syntax. It is used in the p.r. of objects that cannot
be read back in. Attempting to read a #< will cause an error.

#~ #~ turns infix expression syntax into regular Lisp code. It is intended for
people who like to use traditional arithmetic expressions in Lisp code. It is
not intended to be extensible or to be a full programming language. We do
not intend to extend it into one.

(defun my-add (a b)
#+a+b+)

The quoting character is backslash. It is necessary for including special
symbols (such as -) in variable names.

! reads one Lisp expression, which can use this reader-macro inside itself.

#~ supports the following syntax:

Delimiters Begin the reader macro with #~, complete it with ~.

H+a+b-c+

Escape characters
Special characters in symbol names must be preceded with
backslash (\). You can escape to normal Lisp in an infix
expression; precede the Lisp form with exclamation point(!).

Symbols Start symbols with a letter. They may contain digits and
underscore characters. Any other characters need to be
quoted with \.

Operators It accepts the following classes of operators. Arithmetic
operator precedence is like that in FORTRAN and PL/I.
Operator Infix Lisp

Assignment
Functions

x:y
f(x,y)

Equivalent
(setf x y)
(f x y) - also

PRIM Primitive Object Types 103

Symbolics, Inc. March 1984

Array ref
Unary ops
Binary ops
Conditional

Grouping:

a[ij]
+ - not
+ - * I " = :,& < < > > and or
if p then c
if p then c else a
(a, b, c)

works for
defstruct
accessors,
and so on.
(aref a i j)
same
same
(if p c)
(if p c a)
(progn ab c)
- even works
for (1+2)/3

The following example shows matrix multiplication using an infix expression.

{defun matrix-multiply {a b)
(let ({n {array-dimension-n 2 a)))

{unless {= n (array-dimension-n 1 b))
{ferror "Matrices -s and -s do not have compatible dimensions") a b)

{let ((dl (array-dimension-n 1 a))
(d2 {array-dimension-n 2 b)))

{let {(c #~ make\-array(list(dl, d2), !':type, art\-float)~))
(dot imes (i dl)

(dotimes (j d2)
#~ c[i,j] : !(loop for k below n sum#~ a[i,k]*b[k.j] ~)~))

c))))

The line containing the infix expression could also have been written like
this:

(let ((sum 0))
(dotimes (kn) #~ sum:sum+a[i,k]*b[k,j] ~)
#~ c[i,j]:sum ~)

The function set-syntax-#-macro-char can be used to define your own sharp sign
abbreviations.

7.5 Special Character Names

The following are the recognized special character names, in alphabetical order except
with synonyms together and linked with equal signs. These names can be used
after a#\ to get the character code for that character. Most of these characters
type out as this name enclosed in a lozenge. First we list the special function keys.

abort
delete=vt
hand-r;ght

break
end
hand-up

call
hand-down
help

c:lear-;nput=c:lear
hand-left
hold-output

104 PRIM Primitive Object Types

Symbolics, Inc. March 1984

roMan-i
1 ine=lf

roMan-ii roMan-iii roMan-iv
Macro=back-next network

overstrike=backspace=bs page=clear-screen=forM
quote resuMe retµrn=cr rubout
space=sp status stop-output systeM
tab terMinal=esc

These are printing characters that also have special names because they can be hard
to type on a PDP-10.

altMode
integral

circle-plus
laMbda

delta
plus-Minus

gaMMa
up-arrow

The following are special characters sometimes used to represent single and double
mouse clicks. The buttons can be called either I, m, r or 1, 2, 3 depending on
stylistic preference. These characters all contain the %%kbd-mouse bit.

mouse-L-l=mouse-1-1
mouse-M-1 =mouse-2-1
mouse-R-l=mouse-3-1

7 .6 The Readtable

mouse-L-2=mouse-l-2
mouse-M-2=mouse-2-2
mouse-R-2=mouse-3-2

A data structure called the readtable that is used to control the reader. It contains
information about the syntax of each character. Initially it is set up to give the
standard Lisp meanings to all the characters, but you can change the meanings of
characters to alter and customize the syntax of characters. It is also possible to have
several readtables describing different syntaxes and to switch from one to another by
binding the symbol readtable.

readtable Variable
The value of readtable is the current readtable. This starts out as a copy
of si:initial-readtable. You can bind this variable to temporarily change the
readtable being used.

si:initial-readtable Variable
The value of si:initial-readtable is the initial standard readtable. You
should never change the contents of either this readtable or
si:initial-readtable; only examine it, by using it as the from-readtable
argument to copy-readtable or set-syntax-from-char. Change readtable
instead.

You can program the reader by changing the readtable in any of three ways. The
syntax of a character can be set to one of several predefined possibilities. A
character can be made into a macro character, whose interpretation is controlled by
a user-supplied function that is called when the character is read. You can create a

PRIM Primitive Object Types 105

Symbolics, Inc. March 1984

completely new readtable, using the readtable compiler (sys: io; rte) to define new
kinds of syntax and to assign syntax classes to characters. Use of the readtable
compiler is not documented here.

copy-readtable &optional from-readtable to-readtable Function
from-readtable, which defaults to the current readtable, is copied. If
to-readtable is unsupplied or nil, a fresh copy is made. Otherwise to-readtable
is clobbered with the copy. Use copy-readtable to get a private readtable
before using the following functions to change the syntax of characters in it.
The value of readtable at the start of a Lisp Machine session is the initial
standard readtable, which usually should not be modified.

set-syntax-from-char to-char from-char &optional to-readtable Function
from-readtable

Makes the syntax of to-char in to-readtable be the same as the syntax of
from-char in from-readtable. to-readtable defaults to the current readtable,
and from-read.table defaults to the initial standard readtable.

set-character-translation from-char to-char &optional readtable Function
Changes readtable so that from-char will be translated to to-char upon read
in, when readtable is the current readtable. This is normally used only for
translating lowercase letters to uppercase. Character translations are turned
off by slash, string quotes, and vertical bars. readtable defaults to the
current readtable.

set-syntax-macro-char char function &optional readtable Function
Changes readtable so that char is a macro character. When char is read,
function is called. readtable defaults to the current readtable.

function is called with two arguments: list-so-far and the input stream.
When a list is being read, list-so-far is that list (nil if this is the first
element). At the "top level" of read, list-so-far is the symbol :toplevel.
After a dotted-pair dot, list-so-far is the symbol :after-dot. function may
read any number of characters from the input stream and process them
however it likes.

function should return three values, called thing, type, and splice-p. thing is
the object read. If splice-p is nil, thing is the result. If splice-p is non-nil,
then when reading a list thing replaces the list being read - often it will be
list-so-far with something else nconc'ed onto the end. At top level and after
a dot if splice-p is non-nil the thing is ignored and the macro character does
not contribute anything to the result of read. type is a historical artifact
and is not really used; nil is a safe value. Most macro character functions
return just one value and let the other two default to nil.

function should not have any side effects other than on the stream and
list-so-far. Because of the way the input editor works, function can be called

106 PRIM Primitive Object Types

Symbolics, Inc. March 1984

several times during the reading of a single expression in which the macro
character only appears once.

char is given the same syntax that single-quote, backquote, and comma have
in the initial readtable (it is called :macro syntax).

set-syntax-#-macro-char char function &optional readtable Function
Causes function to be called when #char is read. readtable defaults to the
current readtable. The function's arguments and return values are the same
as for normal macro characters, documented above. When function is called,
the special variable si:xr-sharp-argument contains nil or a number that is
the number or special bits between the # and char.

set-syntax-from-description char description &optional readtable Function
Sets the syntax of char in readtable to be that described by the symbol
description. The following descriptions are defined in the standard readtable:

si:alphabetic An ordinary character such as "A".

si:break A token separator such as "(". (Obviously left parenthesis
has other properties besides being a break.)

si:whitespace A token separator that can be ignored, such as " ".

si:single A self-delimiting single-character symbol. The initial
readtable does not contain any of these.

si:slash The character quoter. In the initial readtable this is "/".

si:verticalbar The symbol print-name quoter. In the initial readtable
this is ·r.

si:doublequote The string quoter. In the initial readtable this is '"'.

si:macro

si:circlecross

si:bitscale

si:digitscale

A macro character. Do not use this; use
set-syntax-macro-char.

The octal escape for special characters. In the initial
readtable this is "®".

A character that causes the fixnum to its left to be
doubled the number of times indicated by the fixnum to its
right. In the initial readtable this is "-"· See the section
"What the Reader Accepts".

A character that causes the fixnum to its left to be
multiplied by ibase the number of times indicated by the
fixnum to its right. In the initial readtable this is """.
See the section "What the Reader Accepts".

si:non-terminating-macro
A macro character that is not a token separator. This is a
macro character if seen alone but is just a symbol

PRIM Primitive Object Types

Symbolics, Inc. March 1984

107

constituent inside a symbol. You can use it as a character
of a symbol other than the first without slashing it. (#
would be one of these if it were not built into the reader.)

These symbols will probably be moved to the standard keyword package at
some point. readtable defaults to the current readtable.

setsyntax character arg2 arg3 Function
This exists only for Maclisp compatibility. The above functions are preferred
in new programs. The syntax of character is altered in the current
read table, according to arg2 and arg3. character can be a furn.um, a symbol,
or a string, that is, anything acceptable to the character function. arg2 is
usually a keyword; it can be in any package since this is a Maclisp
compatibility function. The following values are allowed for arg2:

:macro

:splicing

:single

nil

a symbol

The character becomes a macro character. arg3 is the
name of a function to be invoked when this character is
read. The function takes no arguments, can tyi or read
from standard-input (that is, can call tyi or read
without specifying a stream), and returns an object which
is taken as the result of the read.

Like :macro, but the object returned by the macro
function is a list that is nconced into the list being read.
If the character is read not inside a list (at top level or
after a dotted-pair dot), then it may return(), which
means it is ignored, or (obj), which means that obj is read.

The character becomes a self-delimiting single-character
symbol. If arg3 is a furn.um, the character is translated to
that character.

The syntax of the character is not changed, but if arg3 is
a furn.um, the character is translated to that character.

The syntax of the character is changed to be the same as
that of the character arg2 in the standard initial readtable.
arg2 is converted to a character by taking the first
character of its print name. Also if arg3 is a furn.um, the
character is translated to that character.

setsyntax-sharp-macro character type function &optional Function
readtable

This exists only for Maclisp compatibility. set-syntax-#-macro-char is
preferred. If function is nil, #character is turned off, otherwise it becomes a
macro that calls function. type can be :macro, :peek-macro, :splicing, or
:peek-splicing. The splicing part controls whether function returns a single
object or a list of objects. Specifying peek causes character to remain in the
input stream when function is called; this is useful if character is something

108 PRIM Primitive Object Types

Symbolics, Inc. March 1984

like a left parenthesis. function gets one argument, which is nil or the
number between the# and the character.

PRIM Primitive Object Types 109

Symbolics. Inc. March 1984

8. Input Functions

Most of these functions take optional arguments called stream and eof-option. stream
is the stream from which the input is to be read; if unsupplied it defaults to the
value of standard-input. The special pseudostreams nil and t are also accepted,
mainly for Maclisp compatibility. nil means the value of standard-input (that is,
the default) and t means the value of terminal-io (that is, the interactive terminal).
This is all more or less compatible with Maclisp, except that instead of the variable
standard-input Maclisp has several variables and complicated rules. See the section
"What Streams Are". Streams are documented in detail in that section.

eof-option controls what happens if input is from a file (or any other input source
that has a definite end) and the end of the file is reached. If no eof-option
argument is supplied, an error is signalled. If there is an eof-option, it is the value
to be returned. Note that an eof-option of nil means to return nil if the end of the
file is reached; it is not equivalent to supplying no eof-option.

Functions such as read that read an "object" rather than a single character always
signal an error, regardless of eof-option, if the ·file ends in the middle of an object.
For example, if a file does not contain enough right parentheses to balance the left
parentheses in it, read complains. If a file ends in a symbol or a number
immediately followed by end-of-file, read reads the symbol or number successfully
and when called again, sees the end-of-file and obey eof-option. If a file contains
ignorable text at the end, such as blank lines and comments, read does not consider
it to end in the middle of an object and obeys eof-option.

These end-of-file conventions are not completely compatible with Maclisp. Maclisp's
deviations from this are generally considered to be bugs rather than features.

The functions below that take stream and eof-option arguments can also be called
with the stream and eof-option in the other order. This functionality is only for
compatibility with old Maclisp programs, and should never be used in new programs.
The functions attempt to figure out which way they were called by seeing whether
each argument is a plausible stream. Unfortunately, there is an ambiguity with
symbols: a symbol might be a stream and it might be an eof-option. If there are
two arguments, one being a symbol and the other being something that is a valid
stream, or only one argument, which is a symbol, then these functions interpret the
symbol as an eof-option instead of as a stream. To force them to interpret a symbol
as a stream, give the symbol an si:io-stream-p property whose value is t.

Note that all of these functions echo their input if used on an interactive stream
(one that supports the :rubout-handler operation. The functions that input more
than one character at a time (read, readline) allow the input to be edited using
rubout. tyipeek echoes all of the characters that were skipped over if tyi would
have echoed them; the character not removed from the stream is not echoed either.

110 PRIM Primitive Object Types

Symbolics, Inc. March 1984

read &optional (stream standard-input) eof-option Function
· input-editor-options

read reads in the printed representation of a Lisp object from stream, builds
a corresponding Lisp object, and returns the object. For details: See the
section "Input Functions".

(This function can take its arguments in the other order, for Maclisp
compatibility only.)

read-preserve-delimiters Variable
Certain printed representations given to read, notably those of symbols and
numbers, require a delimiting character after them. (Lists do not, because
the matching close parenthesis serves to m8:1'k the end of the list.) Normally
read throws away the delimiting character if it is "whitespace", but preserves
it (with a :untyi stream operation) if the character is syntactically
meaningful, since it may be the start of the next expression.

If read-preserve-delimiters is bound to t around a call to read, no
delimiting characters are thrown away, even if they are whitespace. This
may be useful for certain reader macros or special syntaxes.

read-or-end &optional (stream standard-input) eof-option Function
input-editor-options

This function is like read, except that if it is reading from an interactive
stream and the user presses END as the first character or the first character
after only whitespace characters, it returns two values, nil and :end. If it
encounters any nonwhitespace characters, END has the same meaning as for
read. eof-option has the same meaning as for other reading functions.
input-editor-options are passed to the input editor if the stream supports, it.

The :expression-or-end and :eval-form-or-end options for
prompt-and-read invoke si:read-or-end.

tyi &optional stream eof-option Function
tyi inputs one character from stream and returns it. The character is
echoed if stream is interactive, except that Rubout is not echoed. The
Control, Meta, and so on shifts echo as prefix c-, m-, and so on.

The :tyi stream operation is preferred over the tyi function for some
purposes. Note that it does not echo. See the message :tyi.

(This function can take its arguments in the other order, for Maclisp
compatibility only)

read-for-top-level &optional (stream standard-input) eof-option Function
input-editor-options

This is a slightly different version of read. It differs from read only in that
it ignores close parentheses seen at top level, and it returns the symbol

PRIM Primitive Object Types 111

Symbolics, Inc. March 1984

si:eof if the stream reaches end-of-file if you have not supplied an eof-option
(instead of signalling an error as read would). This version of read is used
in the system's "read-eval-print" loops.

readline &optional (stream standard-input) eof-option Function
input-editor-options

readline reads in a line of text. If called from inside the input editor or if
reading from a stream that does not support the input editor, the line is
terminated by a Newline character. If the stream supports the input editor
and readline is called from outside the input editor, the line is terminated
by RETURN, LINE, or END.

This function is usually used to get a line of input from the user. If stream
supports the input editor, readline calls read-delimited-string, and
input-editor-options is passed as the list of options to the input editor.

readline returns four values:

• The line as a· character string, without the Newline character.

• An eof flag, if eof-option was nil. This is t if the line was terminated
because end-of-file was encountered, or nil if it was terminated because
of a RETURN, LINE, or END character. .

• The character that delimited the string.

•Any numeric argument given the delimiter character.

See the function read-delimited-string.

readline-trim &optional (stream standard-input) eof-option Function
input-editor-options

readline-trim trims leading and trailing whitespace from string input.
"Whitespace" means spaces, tabs, or newlines. It takes the same arguments
as the normal readline and returns the same four values.

Examples:

(readline-trim) exciting option RETURN =>
Hexciting optionff
NIL
141
NIL

(readline-trim)RETURN =>
'"'
NIL
141
NIL

112

The :string-trim option for prompt-and-read and
tv:cboose-variable-values uses readline-trim.

PRIM Primitive Object Types

Symbolics, Inc. · March 1984

read.line-or-nil &optional (stream standard-input) eof-option Function
input-editor-options

Like read.line-trim, except that it returns a first value of nil instead of the
empty string if the input string is empty.

The :string-or-nil option for prompt-and-read and the :string-or-nil
choose-variable-values keyword use read.line-or-nil.

See the function read.line-trim.

read-delimited-string &optional (delimiters #\end) (stream Function
standard-input) (eof nil) (input-editor-options
nil) &rest (make-array-args
'(100. :type art-string))

delimiter is either a character or a list of characters. Characters are read
from stream until one of the delimiter characters is encountered. The
characters read up to the delimiter are returned as a string. This function
may be invoked from inside or outside the input editor. If invoked from
outside the input editor, the delimiter characters are set up as activation
characters. The eof argument is treated the same way as the eof argument
to the :tyi message to noninteractive streams. input-editor-options are passed
on as the first argument to the :rubout-handler message, after having an
:activation entry prepended. make-array-args are arguments to be passed
to make-array when constructing the string to return.

read-delimited-string returns four values:

•The string

• An eof flag, if the eof parameter was nil

• The character that delimited the string

•Any numeric argument given the delimiter character

This function is used by read.line, qsend, and the :delimited-string option
for prompt-and-read.

Examples:

The following reads characters until END is typed and returns a string at least
200. characters long with a leader-length of 3:

(read-delimited-string #\end standard-input nil nil 200. :leader-length 3)

The following is the same as (read.line), except that it does not echo a
Newline after the string is activated:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

(read-delimited-string '(#\return #\line #\end))

A simple word parser:

(read-delimited-string '(#\space 11. II.#/?))

113

For a more complex example of a sentence parser that uses
read-delimited-string: See the section "Examples of Use of the Input Editor".

readch &optional stream eof-option Function
This function is provided only for Maclisp compatibility, since in the Zetalisp
characters are always represented as fixnums. readch is just like tyi, except
that instead of returning a fixnum character, it returns a symbol whose print
name is the character read in. The symbol is interned in the current
package. This is just like a Maclisp "character object". (This function can
take its arguments in the other order, for Maclisp compatibility only; see the
note above.)

tyipeek &optional peek-type stream eof-option Function
This function is provided mainly for Maclisp compatibility; the :tyipeek
stream operation is usually clearer.

What tyipeek does depends on the peek-type, which defaults to nil With a
peek-type of nil, tyipeek returns the next character to be read from stream,
without actually removing it from the input stream. The next time input is
done from stream the character will still be there; in general,
(= (tyipeek) (tyi)) is t. See the message :tyipeek.

If peek-type is a fl.mum less than 1000 octal, then tyipeek reads characters
from stream until it gets one equal to peek-type. That character is not
removed from the input stream.

If peek-type is t, then tyipeek skips over input characters until the start of
the printed representation of a Lisp object is reached. As above, the last
character (the one that starts an object) is not removed from the input
stream.

The form of tyipeek supported by Maclisp in which peek-type is a flXIlum
not less than 1000 octal is not supported, since the readtable formats of the
Maclisp, reader and the Zetalisp reader are quite different.

Characters passed over by tyipeek are echoed if stream is interactive.

The following functions are related functions that do not operate on streams. Most
of the text at the beginning of this section does not apply to them.

read-from-string string &optional (eof-option 'si:no-eof-option) Function
(start 0) end

The characters of string are given successively to the reader, and the Lisp
object built by the reader is returned. Macro characters and so on will all
take effect. If string has a fill-pointer it controls how much can be read.

114 PRIM Primitive Object Types

Symbolics. Inc. March 1984

eof-option is what to return if the end of the string is reached, as with other
reading functions. start is the index in the string of the first character to be
read. end, if given, is used instead of (array-active-length string) as the
integer that is one greater than the index of the last character to be read.

read-from-string returns two values: The first is the object read and the
second is the index of the first character in the string not read. If the
entire string was read, this is the length of the string.

Example:

(read-from-string •ca b c)•) => (a b c) and 7

readlist char-list Function
This function is provided mainly for Maclisp compatibility. char-list is a list
of characters. The characters may be represented by anything that the
function character accepts: fIXDums, strings, or symbols. The characters
are given successively to the reader, and the Lisp object built by the reader is
returned. Macro characters and so on will all take effect.

If there are more characters in char-list beyond those needed to define an
object, the extra characters are ignored. If there are not enough characters,
an "eof in middle of object" error is signalled.

See the special form with-input-from-string.

PRIM Primitive Object Types 115

Symbolics. Inc. March 1984

9. Output Functions

These functions all take an optional argument called stream, which is where to send
the output. If unsupplied stream defaults to the value of standard-output. If
stream is nil, the value of standard-output <that is, the default) is used. If it is t,
the value of terminal-io is used (that is, the interactive terminal). If stream is a
list of streams, then the output is performed to all of the streams (this is not
implemented yet, and an error is signalled in this case). This is all more or less
compatible with Maclisp, except that instead of the variable standard-output
Maclisp has several variables and complicated rules. See the section ''What Streams
Are". Streams are documented in detail in that section.

print x &optional stream Function
print outputs the printed representation of x to stream, with slashification.
x is returned. See the section ''What the Printer Produces".

print-then-space x &optional stream Function
prinl-tben .. space is like print except that output is followed by a space.

print x &optional stream Function
print is just like print except that output is preceded by a carriage return
and followed by a space. x is returned.

princ x &optional stream Function
princ is just like print except that the output is not slashified. xis
returned.

tyo char &optional stream Function
tyo outputs the character char to stream.

terpri &optional stream Function
terpri outputs a carriage return character to stream.

The format function is very useful for producing nicely formatted text. See the
function format. It can do anything any of the above functions can do, and it
makes it easy to produce good-looking messages and such. format can generate a
string or output to a stream.

The grindef function is useful for formatting Lisp programs. See the special form
grindef.

See the special form with-output-to-string.

stream-copy-until-eof from-stream to-stream &optional leader-size Function
stream-copy-until-eot inputs characters from from-stream and outputs them

116 PRIM Primitive Object Types

Symbolics. Inc. March 1984

to to-stream, until it reaches the end-of-file on the from-stream. For example,
if x is bound to a stream for a file opened for input, then
(stream-copy-until-eof x terminal-io) will print the file on the console.

If from-stream supports the :line-in operation and to-stream supports the
:line-out operation, then stream-copy-until-eof will use those operations
instead of :tyi and :tyo, for greater efficiency. leader-size will be passed as
the argument to the :line-in operation.

beep &optional beep-type (stream terminal-ioJ Function
This function is intended to attract the user's attention by causing an
audible beep, or flashing the screen, or something similar. If the stream
supports the :beep operation, then this function sends it a :beep message,
passing type along as an argument. Otherwise it just causes an audible beep
on the terminal. type is a keyword selecting among several different beeping
noises. The allowed types have not yet been defined; type is currently
ignored and should always be nil. See the message :beep.

cursorpos &rest args Function
This function exists primarily for Maclisp compatibility. Usually it is
preferable to send the appropriate messages. See the document Using the
Window System.

cursorpos normally operates on the standard-output stream; however, if
the last argument is a stream or t (meaning terminal-io) then cursorpos
uses that stream and ignores it when doing the operations described below.
Note that cursorpos only works on streams that are capable of these
operations, such as windows. A stream is taken to be any argument which
is not a number and not a symbol, or a symbol other than nil with a name
more than one character long.

(cursorpos) => (line • column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it
succeeds and nil if it does not.

(cursorpos op) performs a special operation coded by op, and returns t if it
succeeds and nil if it does not. op is tested by string comparison, is not a
keyword symbol, and can be in any package.

F Moves one space to the right.

B Moves one space to the left.

D Moves one line down.

U Moves one line up.

T Homes up (moves to the top left comer). Note that t as the last
argument to cursorpos is interpreted as a stream, so a stream must
be specified if the T operation is used.

PRIM Primitive Object Types 117

Symbolics, Inc. March 1984

Z Home down (moves to the bottom left comer).

A Advances to a fresh line. See the :fresh-line stream operation.

C Clears the window.

E Clear from the cursor to the end of the window.

L Clear from the cursor to the end of the line.

K Clear the character position at the cursor.

X B then K.

exploden x Function
exploden returns a list of characters (as fixn.ums) that are the characters
that would be typed out by (princ x) (that is, the unslashified printed
representation of x). Example:

(exploden '(+ 112 3)) => (50 53 40 61 62 40 63 51)

explodec x Function
explodec returns a list of characters represented by symbols that are the
characters that would be typed out by (princ x) (that is, the unslashified
printed representation of x). Example:

(explodec '(+ 112 3)) => (I(+ I 11 12 I 13 I)

(Note that there are slashified spaces in the above list.)

explode x Function
explode returns a list of characters represented by symbols that are the
characters that would be typed out by (print x) (that is, the slashified
printed representation of x). Example:

(explode '(+ 112 3)) => (I(+ I II 11 12 I 13 I)

<Note that there are slashified spaces in the above list.)

ftatsize x Function
flatsize returns the number of characters in the slashified printed
representation of x.

flatc x Function
flatc returns the number of characters in the unslashified printed
representation of x.

118 PRIM Primitive Object Types

Symbolics. Inc. March 1984

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Index

®
Circle-X (®) character 93

':/:
7' function 67

$
S function 67

2!
~function 66

reader macros 99
#' 99

Sharp sign (#) macro character 98
#+ 99
#, 99
#- 99
#. 99
#I 99
#(99
#B reader macro 101
#M 99
#N 99
#0 99
#Q 99
#R 99
#X 99
#\ 99
#A 99

$ $ $
*$function 69

' ' '
Quote (') macro character 98

120

* *

+ +

' ' Comma

- -

I I

1 1

Radix

2 2
Addition of

Multiplication of
Subtraction of

8 8
Radix

• •
' ' Semicolon

• function 69

+ function 68
+ S function 68

(,) macro character

- function 68
-S function 69

II function 70
11$ function 70

1 + function 72
1 + S function 72
1- function 72
1-S function 72
16 99

24-bit Numbers 82
24-bit numbers 82
24-bit numbers 82
24-bit numbers 82

PRIM Primitive Object Types

Symbolics. Inc. March 1984

*

+

' 98

I

1

2

%24-blt-dlfterence function 82
%24-blt-plus function 82
%24-blt-times function 82

8
8 99

•
' (;) macro character 98

PRIM Primitive Object Types

Symbolics, Inc. March 1984

<

--

>

A
Function

Sharp-sign

Wha1 the Reader

Memory
sl:

:macro
:single

:splicing
nll

:atom
:entity

:fix
:float

:Instance
:number

Double-precision

Numeric
Printed representation of

Sorting

<
< function 67
< = function 67

-- = function 65

>
) function 66
> = function 66

A
abbreviation 99
Abbreviations 99
abort 103
abs function 69
Absolute value 69
Accepts 93
add1 function 71
Addition 68, 71, 72
Addition of 24-blt numbers 82
Alis1 32
allocation of conses 29
alphabetic syntax description 106
Alteration of List Structure 27
Altmode 103
append function 25, 29
apply function 4
Arctangent 7 4, 75
:area lnlt option for sl:eq-hash-table 43
:area keyword for make-list 23
:area option for make-llst 12
argument to setsyntax 107
argument to setsyntax 107
argument to setsyntax 107
argument to setsyntax 107
argument to typep 5
argument to typep 5
argument to typep 5
argument to typep 5
argument to typep 5
argument to typep 5
Arithmetic 68
Arithmetic 82
Array 1, 4
:array returned by typep 5
arrayp function 4, 42
arrays 1
arrays 89
arrays 49
ash function 77
ass function 38
assoc function 38

121

<

>

A

122 PRIM Primitive Object Types

Symbolics, Inc. Marth 1984

Symbol associated with property llst 39
Association lists 32. 37, 39
assq function 37
lllan function 75
atan2 function 75
Atom 1, 3
:atom argument to typep 5
atom function 3
Atomic symbol 1
Attribute 39

B B B
back-next 103
Backquote C> macro_ character 98
bacbpace 103
bMe variable 90
beep function 116

Printed representation of a blgnum 89, 93
:blgnum returned by typep 5
Blgnums 1, 4, 61
blgp function 4

Raad rational number In binary 101
Binary Integers 61
Binding 1, 53
Bit manipulation n
bit-test function n

Least bits 78
Rotate bits n

Shift bits n
Significant bits 78

Blocks 39
boole function 76
Boolean operations 76

Truth 1able for the Boolean operations 76
bourq, function 54, 55
break 103

al: break syntax description 106
ba 103
butlaat function 26
Byte 78
byte function 80
Byte Manipulation Functions 78

Create a byte specifier 80
Extract slZe field of a byte specifier 80

Byte specifiers 78
byte-position function 80
byte-size function 80

Extract position field of a byte-specifier 80

c c c
caaur function 12
caaadr function 13
caas function 13
caadar function 13
C8lddr function 13

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Function
Package

The Function
The Package

The Value
Value

Memory

Backquote (') macro
Circle-X (®)

Comma (,) macro
Macro

Quote r> macro
Semicolon (;) macro

Sharp sign (#) macro

Reading octal

Echo
Special

Character code for nonprinting

caadr function 13
caar function 14
cadaar function 14
cadadr function 14
cadar function 14
caddar function 14
cadddr function 15
caddr function 15
cadr function 15
call 103
Car 11
car function 12, 85
car-location function 19
cdaaar function 15
cdaadr function 15
cdaar function 16
cdadar function 16
cdaddr function 16
cdadr function 16
cdar function 17
cddaar function 17
cddadr function 17
cddar function 17
cdddar function 17
cddddr function 18
cdddr function 18
ccklr function 18
Cdr 11
cdr function 12, 85
Cdr-code field 29
Cdr-coding 11, 29
Cdr-next 29
Cdr-nil 29
Cdr-normal 29
Cell 85
cell 1, 55
cell 1, 58
Cell 55
Cell 58
Cell 53
cell 1, 53, 85
cell as property list 39
Cells and Locatives 85
character 98
character 93
character 98
character 98
character 98
character 98
character 98
Character code 99
Character code for nonprinting characters 99
character codes 93
Character constants 99
character input 109
Character Names 103
Character object 113
characters 99

123

124

Floating-point Exponent
Macro

Quoting
Special

81:

Character
Executable
Character

Reading octal character

Hash Tables and the Garbage

Greatest
Greatest

Sorting
Cons

Number
Numeric

Object
String

Double-precision
Read-time

Printed representation of a

Memory allocation of
Read function Interpretation of

Hash table
Character

Characters 95
Characters 98
characters 89
characters 103
Circle-plus 103

PRIM Primitive Object Types

Symbolics. Inc. March 1984

Clrcle-X (®) character 93
clrclecrosa syntax description 106
Circular list 11
clrcular-list function 23
Circumflex n In flxnum syntax 93
cl:*read-default-float-format* variable 95
cl:doubl•float format 95
cl:long-float format 95
cl:short-float format 95
cl:slngl•float format 95
clear 103
:clear-hash message 45
clear-Input 103
clear-screen 103
Closure 5
:closure returned by typep 5
closurep function 5
clrhash function 47
clrhash-equal function 47
code 99
code 1
code for nonprinting characters 99
codes 93
Coercion rules 61
Collector 47
Comma(,) macro character 98
Comments in macros 98
common denominator 72, 73
common divisor 72
Common Lisp readtable 99
Compact lists 29
compact lists 49
comparisons 7
comparisons 6, 65
Comparisons 65
comparisons 6
comparisons 7
:compiled-function returned by typep 5
Complement logical operation 76
concatenation 82
conditionalization facility 99
Cons 1, 3, 11
cons 89
Cons as property list 39
Cons comparisons 7
cons function 18, 29
cons-In-area function 19
Conses 12
conses 29
conses 93
Conses represented as pointers 29
considerations while using multiprocessing 42
constants 99

PRIM Primitive Object Types

Symbolics. Inc. March 1984

D

Naming convention 3
Conversion of numbers 61

Numeric Type Conversions 75
copy-readlable function 105
copyallst function 24
copyllst function 23, 29
copyllst* function 24
copysymbol function 59
copytree function 24

Special Forms for
Trailing

Symbol

Greatest common

sl:alphabetic syntax
sl:break syntax

sl:clrclecross syntax
sl:doublequote syntax

sl:macro syntax
sl:slngle syntax
sl:slash syntax

sl:vertlcalbar syntax
sl:whltespace syntax

Double-precision
Integer

Greatest common

D

cos function 75
cosd function 75
Cosine 7 4, 75
er 103
Create a byte specifier 80
Creating Hash Tables 43
Creating Symbols 58
cursorpos function 116

Data type 1, 3
Data Types 1
Dealing with Variables 55
decimal point 90
Definition 1
definition 55
defprop special form 41
Degrees In trigonometric functions 7 4, 75
del function 35
del-lf function 37
del-lf-not function 37
delete 103
delete function 34
delq function 34
Delta 103
denominator 72, 73
deposit-byte function 79
deposit-field function 79
Depth of recursion of printing lists 89
describe function 42
description 106
description 106
description 106
description 106
description 106
description 106
description 106
description 106
description 106
dftoat function 76
*dlf function 7 4
difference function 68
Disembodied property list 39
%divide-double function 82
Division 70
division 82
division 61
divisor 72

125

D

126

E

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Dotted list 11, 93
cl: doubl•float format 95

sys: doubl•float-p function 4
Double-preci.sion Arithmetic 82
Double-precision concatenation 82
Double-precision division 82
Double-precision muttiplicatlon 82

al: doublequote syntax description 106
._,., function 79

List
Maximum number of list

Printed representation of an

Microcode
Function

Hashing on

:area ·1nit option for sl:
:growth-factor inlt option for sl:

:rehash-before-cold lnit option for sl:
:size lnlt option for sl:

sl:

eq versus
Hashing on

sl:
:rehash-threshold lnlt option for al:

sl:

Testing for

Floating-point

E
s

E

Dumping Hash Tables to Flies 47

E exponential representation 61, 89
Echo character Input 109
elements 11
elements to be printed 92
end 103
End-of-file on Input streams 109
entity 89
:entity argument to typep 5
entttyp function 5
entry 1
Entry Frame 1
eq 47
eq function 6, 61
eq versus equal 6, 7
eq-hash-table 43
eq-hash-table 43
eq-hash-table 43
eq-hash-table 43
eq-hash-table flavor 43
eql function 7
equal 6, 7
equal 47
equal function 7
equal-hash function 48
equal-hash-table 44
equal-hash-table flavor 44
errorp function 5
esc 103
even number 64
evenp function 64
every function 37
Exclusive or 76
Executable code 1
exp function 75
explode function 117
explodec function 117
exploden function 117
Exponent Characters 95
Exponent overflow 61
Exponent underflow 61
Exponential notation 89
exponential representation 61, 89
exponential representation 61, 89
Exponentiation 73
expt function 73

E

PRIM Primitive Object Types

Symbolics, Inc. March 1984

F
Hash table

Read-time conditionalization
Hasharray

Cdr-code
Extract size

Extract position

Dumping Hash Tables to

Printed representation of a

Circumflex r> In
Underscore (_) in

al:eq-hash-table
al:equal-hash-table

Printed representation of a
Small

defprop special
let-globally special

algnp special
varlable-boundp special
varlable-locatlon special

varlable-makunbound special
cl:double-float

cl:long-float

F

Extract position field of a byte-specifier 80
Extract size field of a byte specifier 80

facilities 32
facility 99
facility of Interlisp 42
lboundp function 56
FEF 1
field 29
field of a byte specifier 80
field of a byte-specifier 80
fifth function 20
Files 47
:filled-elements message 46
find-position-in-list function 33
find-position-in-list-equal function 34
first function 20
flrstn function 26
:fix argument to typep 5
fix function 75
Fixed-point number 3
Fixnum 1, 4. 61
fixnum 89. 93
Flxnum radix 94
:flxnum returned by typep 5
fixnum syntax 93
fixnum syntax 93
flxnump function 4
flxp function 3
fixr function 75
flatc function 117
flatslze function 117
flavor 43
flavor 44
:float argument to typep 5
float function 76
%float-double function 83
Floating-point Exponent Characters 95
Floating-point numbers 1, 3, 61
floatp function 3
Flonum 3, 61
flonum 89. 93
flonum 3
:ftonum returned by typep 5
flonump function 4
Flonums 1
fmakunbound function 56
form 103
form 41
form 55
form 65
form 54
form 55
form 54
format 95
format 95

127

F

128 PRIM Primitive Object Types

Symbolics, Inc. March 1984

cl:short-floal format 95
cl:alngl•floal format 95

formal function 115
Special Forms for Dealing with Variables 55

fourth function 20
Function Entry Frame 1

f88t function 1, 56
fsymeval function 1, 56
Function 4

:,& function 67
:S function 67
~ function 66
*$ function 69
* function 69
+ function 68

+S function 68
function 68

-s function 69
II function 70

11$ function 70
1+ function 72

1+$ function 72
1- function 72

1-S function 72
%24-btt-dlfference function 82

%24-bit-plus function 82
%24-btt-tlmes function 82

< function 67
<= function 67
= function 65
> function 66

>= function 66
abs function 69

add1 function 71
append function 25, 29

apply function 4
arrayp function 4, 42

ash function n
ass function 38

assoc function 38
assq function 37
atan function 75

atan2 function 75
atom function 3
beep function 116
blgp function 4

btt-teat function n
boole function 76 \

boun• function 54, 55
butlast function 26

byte function 80
byte-position function 80

byt••lze function 80
caaaar function 12
caaadr function 13
caur function 13

caadar function 13
caaddr function 13

PRIM Primitive Object Types 129

Symbolics, Inc. March 1984

caadr function 13
caar function 14

cadam' function 14
cadadr function 14
cadar function 14

caddar function 14
cadddr function 15

caddr function 15
caclr function 15
cs function 12, 85

car-location function 19
cdaaar function 15
cdaadr function 15
cdaar function 16

cdadar function 16
cdaddr function 16

cdadr function 16
cdar function 17

cdda.- function 17
cddadr function 17
cddar function 17

cdddar function 17
cddddr function 18

cdddr function 18
cddr function 18
cdr function 12, 85

clrcular-llst function 23
closurep function 5

clrhash function 47
clrhaah-equal function 47

cons function 18, 29
cons-In-area function 19

copy-readlable function 105
copy all st function 24
copyllst function 23, 29

copyllst* function 24
copysymbol function 59

copytree function 24
cos function 75

cosd function 75
cursorpos function 116

del function 35
del-lf function 37

del-lf-not function 37
delete function 34

delq function 34
deposit-byte function 79
deposlt-fleld function 79

describe function 42
dftoal function 76

*dlf function 74
difference function 68

%divide-double function 82 - function 79
entltyp function 5

eq function 6, 61
eql function 7

equal function 7

130

errorp
evenp
every

exp
explode

explodec
exploden

expl
lboundp

fifth
find-position-In-Hsi

find-position-In-I 1st-equal
first

flratn
fix

flxnump
flxp
flxr

fl ate
flat size

float
%float-double

floatp
ftonump

fmakunbound
formal
fourth

f88I
fsymeval

function-cell-locatlon
functlonp

gcd
gensym

get
get-pname

gethash
gethash-equal

getl
greaterp

halpart
haulong

Intersection
lsqrt
last
ldb

ldb-test
ldltr

length
lessp

llst
llst*

llst*-ln-area
Hsi-In-area

llstp
load-byte

locatlon-boundp
locatlon-makunbound

locatlvep

function 5
function 64
function 37
function 75
function 117
function 117
function 117
function 73
function 56
function 20
function 33
function 34
function 20
function 26
function 75
function 4
function 3
function 75
function 117
function 117
function 76
function 83
function 3
function 4
function 56
function 115
function 20
function 1, 56
function 1, 56
function 56
function 4
function 72
function 59
function 40
function 57
function 46
function 46
function 41
function 65
function 78
function 78
function 35
function 74
function 22
function 79
function 79
function 27
function 19
function 66
function 22. 29
function 22, 29
function 23
function 22. 29
function 3
function 79
function 86
function 86
function 5

PRIM Primitive Object Types

Symbolics, Inc. March 1984

PRIM Primitive Object Types 131

Symbolics, Inc. March 1984

log function 75
log and function 76

%log- function 80
loglor function 76

%1oglclb function 80
log not function 76
logxor function 76

lsh function n
make-equal-hash-table function 45

mak•hash-table function 44
mak•llst function 23, 29

make-symbol function 59
makunbound function 54, 55

maphash function 47
maphash-equal function 47

mask-field function 79
mu function 67

mem function 33
mem- function 38
member function 33

memq function 32
min function 67

minus function 68
minusp function 64

mod function 71
%muhlply-fractlons function 82

nbutlast function 26
neonc function 25, 29
neons function 18, 29

neons-In-area function 19
neq function 7

nlntersectlon function 35
nleft function 26

nllstp function 3
not function 8

nreconc function 26
nreverse function 24, 29

nsublls function 29
nsubst function 28

nsymbolp function 3
nth function 21

nthcdr function 21
null function 8

numberp function 3
nun Ion function 35
~ function 64

palrlls function 39
pllst function 57
plus function 68

*plus function 74
plusp function 64
prln1 function 115

prln1-then-space function 115
prlnc function 115
print function 115

property-cell-location function 57
puthash function 46

put hash-equal function 46

132 PRIM Primitive Object Types

Symbolics. Inc. March 1984

putprop function 41
•quo function 74

quotient function 70
random function 81 function 38
rassoc function 38
rassq function 38
read function 29, 89, 110

read-dellmlted-strlng function 112
read-for-top-level function 110
read-from-string function 113

read-or-end function 110
readch function 113

readllne function 111
readllne-or-nll function 112
readlln•trlm function 111

readllst function 114
rem function 35

rem-If function 36
rem-If-not function 36
remainder function 71

%remainder-double function 83
rem hash function 46

rem hash-equal function 46
remove function 35

rem prop function 41
remq function 35
rest1 function 20
rest2 function 20
rest3 function 21
rest4 function 21

reverse function 24
rot function n

rplaca function 27, 29, 85
rplacd function 27, 29, 85

aarnepnamep function 57
S880C function 39

sassq function 39
second function 20

set function 53
set-character-translation function 105
set-syntax-#-macro-char function 99, 106

set-syntax-from-char function 105
set-syntax-from-description function 106

set-syntax-macro-char function 98, 105
setpllst function 57

setsyntax function 107
setsyntax-sharp-macro function 107

seventh function 20
al:equal-haah function 48

sl:random-create-array function 81
sl:random-lnltlallze function 81

al:read-recurslve function 99
sign um function 74

sin function 75
slnd function 75
sixth function 20

small-float function 76

PRIM Primitive Object Types 133

Symbolics, Inc. March 1984

amall-ftoatp function 4
some function 37

sort function 29, 49
sort-grouped-array function 51

sort-grouped-array-group-key function 51
sort car function 50

lqrt function 74
atabl•sort function 51

atabl•sortcar function 51
etremn-copy-untll-eof function 115

strlngp function 4
aub1 function 72

aublls function 28
aubrp function 4

subset function 36
subset-not function 36

subst function 28
awaphash function 46

swap hash-equal function 47
ax hash function 32

symbolp function 3
aymeval function 1, 53

ays:doubl•ftoal-p function 4
ays:slngl•ftoat-p function 4

tallp function 34
terprl function 115
third function 20

*times function 74
times function 69

tyl function 110
tylpeek function 113

tyo function 115
typep function 5
union function 35

value-cell-location function 54, 55
xcona function 18, 29

xcons-ln-area function 19
zerop function 64

\ function 71
\\ function 73

function 73
·s function 73

Function abbreviation 99
Function cell 1, 55

The Function Cell 55
Function Entry Frame 1

Read function Interpretation of conses 93
Read function Interpretation of numbers 93
Read function Interpretation of strings 93
Read function of symbols 93

functlon-cell-locatlon function 56
functlonp function 4

Byte Manipulation Functions 78
Degrees In trigonometric functions 74. 75

Hash Table Functions 46
Input Functions 109

Output Functions 115
Radians In trigonometric functions 74, 75

134

G

H

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Slashlflcatlon-related output
Transcendental

Trigonometric

functions 117
Functions 74
functions 74, 75
Functions That Operate on Locatives 85

G
Gamma 103

Hash Tables and the Garbage Collector 47
gcd function 72

Seed for random number generator 80
gensym function 59
get function 40
:get-hash message 45
get.pnarne function 57
gethash function 46
gethash-equal function 46
aetl function 41
areaterp function 65
Greatest common denominator 72, 73
Greatest common divisor 72

G

:growth-factor inlt option for sl:eq-hash-table 43

H
halpart function 78
hand-down 103
hand-left 103
hand-right 103
hand-up 103
Hash Primitive 47
Hash table 48
Hash table considerations while using

multiprocessing 42
Hash table facilities 32
Hash Table Functions 46
Hash table keys 42

Objects as hash table keys 42
Trees as hash table keys 42

Hash Table Messages 45
Hash Tables 42

Creating Hash Tables 43
Hash Tables and the Garbage Collector 47

Dumping Hash Tables to Files 47
Hasharray facility of Interlisp 42
Hashing 47
Hashing on eq 47
Hashing on equal 47
haulong function 78
help 103
Hexadecimal 99
hold-output 103

H

PRIM Primitive Object Types

Symbolics, Inc. March 1984

I

Property llst
:area

:growth-factor
:rehash-before-cold

:size
:rehash-threshold

al:

Echo character

Tokens In the

End-of-file on
Printed representation of an

K

L

Binary

Hasharray facility of

Read function
Read function
Read function

Hash table
Objects as hash table

Trees as hash table
:area

:lnltlal-value
Property list

I

K

L

lbue variable 94, 99
Inclusive or 76
Indicator 39
Indicators 39
lnlt option for sl:eq-hash-table 43
lnlt option for sl:eq-hash-table 43
lnlt option for sl:eq-hash-table 43
lnlt option for sl:eq-hash-table 43
lnlt option for sl:equal-hash-table 44
lnltlal-readtable variable 104
:lnltial-value keyword for make-list 23
:lnltlal-value option for make-Hat 12
Input 109
Input Functions 109
Input stream 93
Input stream specification 109
Input streams 109
Instance 89
:Instance argument to typep 5
Integer division 61
Integer square root 7 4
Integers 1, 61
Integers 61
Integral 103
Interactive streams 109
Interlisp 42
Interned symbol 58
Interpretation of conses 93
interpretation of numbers 93
interpretation of strings 93
Intersection function 35
Invisible pointer 29
lsqrt function 74

keys 42
keys 42
keys 42
keyword for make-Hat 23
keyword for make-Hat 23
keywords 39

Lambda 103
last function 22
ldb function 79
ldb-test function 79
ldlft function 27

Trim leading and trailing white space 111
Least bits 78
length function 19
leap function 66
let-globally special form 55

135

I

K

L

136

Common

Circular
Cons as property

Disembodied property
Dotted

Memory cell as property
Property

Symbol associated with property
The Property

Maximum number Of

Property
Property

Alteration Of
Manipulating

Property

Association
Compact

Depth Of recursion Of printing
Printing nested

Property
Sorting

Sorting compact

Cells and
Functions That Operate on

Natural

Complement

cl:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

If 103
Hne 103
Lisp readtable 99
List 1. 11
list 11
list 39
list 39
list 11. 93
list 39
list 1, 39
list 39
List 56
List elements 11
list elements to be printed 92
Hat function 22, 29
list Indicators 39
list keywords 39
:Hat returned by typep 5
List Structure 27
List Structure 11
list values 39
Hat* function 22. 29
1181*-ln-area function 23
Hat-In-area function 22, 29
llstp function 3
Lists 19
lists 32, 37. 39
lists 29
lists 89
lists 92
Lists 39
lists 49
lists 49
Lists as Tables 32
load-byte function 79
locatlon-boundp function 86
locatlon-makunbound function 86
Locative 1, 5
:locative returned by typep 5
locallvep function 5
Locatives 39, 85
Locatives 85
Locatives 85
locf macro 55
locl macro 85
log function 75
logand function 76
logarithms 7 4, 75
"logdpb function 80
logical operation 76
Logical Operations on Numbers 76
loglor function 76
"logldb function 80
lognot function 76
logxor function 76
long-ftoat format 95
lsh function n

PRIM Primitive Object Types

Symbolics, Inc. March 1984

M

#B reader
locf
loci

ays:prlntlng-randorn-obJect

Backquote (')
Comma(,)

Quote(')
Semicolon (;)

Sharp sign (#)

al:
#reader

Comments In
Sharp sign reader

:area keyword for
:area option for

:lnttlal-value keyword for
:lnttlal-value option for

Bit
Byte

:clear-hash
:ftlled-elementa

:get-hash
:map-hash

:modify-hash
:print-self
:put-hash

:rem-hash
:size

:swap-hash
Hash Table

M
Macllsp 55
Maclisp property names 56
Macllsp system property names 56
macro 103
macro 101
macro 55
macro 85
macro 92
:macro argument to setsyntax 107
Macro character 98
macro character 98
macro character 98
macro character 98
macro character 98
macro character 98
Macro Characters 98
macro syntax description 106
macros 99
macros 98
macros 99
make-equal-hash-table function 45
mak•hash-table function 44
mak•llst 23
mak•llst 12
mak•llst 23
mak•llst 12
make-list function 23, 29
mak•symbol function 59
makunbound function 54, 55
makunbound-alobally 54
Manipulating List Structure 11
Manipulating the readtable 104
manipulation n
Manipulation Functions 78
:map-hash message 45
maphash function 47
maphash-equal function 47
mask-field function 79
max function 67

137

M

Maximum number of list elements to be printed 92
mem function 33
memasa function 38
member function 33
Memory allocation of conses 29
Memory cell as property list 39
memq function 32
message 45
message 46
message 45
message 45
message 45
message 89
message 45
message 45
message 46
message 45
Messages 45

138

N

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Microcode entry 1
:microcode-function returned by typep 5
min function 67
minus function 68
mlnuep function 64
mod function 71
:modify-hash message 45
mouae-1-1 103
mouae-1-2 103
mouae-2-1 103
mouse-2-2 103
mouae-3-1 103
mouae-3-2 103
mouae-1-1 103
mouse-1-2 103
mouae-m-1 103
mouae-m-2 103
mouse-r-1 103
mouse-r-2 103
Multlpllcatlon 69

Double-precision multiplication 82
Multiplication of 24-blt numbers 82
%muttlply-fractlon• function 82

Hash table considerations while using multiprocessing 42

N
Print name 1, 57

The Print Name 57
Printed representation of a named structure 89

Macllsp property names 56
Macllsp system property names 56

Special Character Names 103

Testing for

Printing

Character code for

Exponential

Naming convention 3
Natural logarithms 7 4, 75
nbutlast function 26
nconc function 25, 29
neons function 18, 29
ncon•ln-area function 19
negative number 64
neq function 7
nested lists 92
network 103
nll argument to aetayntax 107
nil symbol 53
nlntersectlon function 35
nleft function 26
nllstp function 3
:no-pointer option to

sl:prtntlng-random-obJect 89
nonprtnting characters 99
*nopolnt variable 90
not function 8
notation 89

, nreconc function 26
nrevene function 24. 29
nsubll• function 29
nsubst function 28

N

PRIM Primitive Object Types

Symbolics, Inc. March 1984

0

Fixed-point
Testing for even

Testing for negative
Testing for odd

Testing for positive
Testing for sign of a

Seed for random
Read rational

Maximum

24-blt
Addition of 24-blt

Conversion of
Floating-point

Logical Operations on
Multiplication of 24-bit

Random
Read function Interpretation of

Subtraction of 24-blt
Types of

Character

Reading
Testing for

Funcflons That
Complement logical

Boolean
Truth table for the Boolean

Logical
:area

:lnltlal-value
:area lnlt

:growth-factor inlt
:rehash-before-cold inlt

:size init
:rehash-threshold inlt

:no-pointer
:typep

nsymbolp function 3
nth function 21
nthcdr function 21
null function 8
Number 3, 61
number 3
number 64
number 64
number 64
number 64
number 65
:number argument to typep 5
Number comparisons 6, 65
number generator 80
number In binary 101
number of list elements to be printed 92
numberp function 3
Numbers 61
Numbers 82
numbers 82
numbers 61
numbers 1, 3, 61
Numbers 76
numbers 82
Numbers 80
numbers 93
numbers 82
numbers 1
Numeric arrays 1
Numeric Comparisons 65
Numeric Predicates 64
Numeric Type Conversions 75
nunlon function 35

0
object 113
Object comparisons 6
Objects as hash table keys 42
Octal 99
octal character codes 93
odd number 64
oddp function 64
Operate on Locatives 85
operation 76
operations 76
operations 76
Operations on Numbers 76
option for make-list 12
option for make-list 12
option for sl:eq-hash-table 43
option for sl :eq-hash-table 43
option for sl:eq-hash-table 43
option for sl :eq-hash-table 43
option for sl:equal-hash-table 44
option to sl:printlng-random-object 89
option to sl:printlng-random-object 89
Output Functions 115

139

0

140

p

Slashification-related
Exponent

The

Trailing decimal

Invisible
Subr

Conses represented as
Extract

Testing for

Numeric
Hash

The
sl:

Maximum number of list elements to be

What the
Depth of recursion of

:no-pointer option to al:

p

PRIM Primitive Object Types

Symbolics. Inc. March 1984

output functions 117
overflow 61
overstrike 103

P.r. 89
Package cell 1, 58
Package Cell 58
Package system 58
page 103
palrll• function 39
Plist 39
pllst function 57
plus function 68
*plus function 74
Plus-minus 103
plusp function 64
point 90
Pointer 85
pointer 29
pointer 1
pointers 29
position field of a byte-specifier 80
positive number 64
Ppss 78
Predicate 3
Predicates 3
Predicates 64
Primitive 47
prln1 function 115
prln1-then-space function 115
prlnc function 115
prlnlength variable 92
prlnlevel variable 92
print function 115
Print name 1, 57
Print Name 57
print-readably variable 92
:print-self message 89
printed 92
Printed representation 1, 89
Printed representation of a blgnum 89, 93
Printed representation of a cons 89
Printed representation of a fixnum 89, 93
Prjnted representation of a flonum 89, 93
Printed ,representation of a named structure 89
Printed representation of a small-flonum 89, 93
Printed representation of a string 89
Printed representation of a symbol 89, 93
Printed representation of. an entity 89
Printed representation of an Instance 89
Printed representation of arrays 89
Printer 89
Printer Produces 89
printing lists 89
Printing nested lists 92
printing-random-object 89

p

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Q

R

:typep option to sl:
aya:

What the Printer

Cons as
Disembodied

Memory cell as
Symbol associated with

The

Maclisp
Maclisp system

printing-random-object 89
printing-random-object macro 92
Produces 89
Property list 1, 39
property list 39
property list 39
property list 39
property list 39
Property List 56
Property list Indicators 39
Property list keywords 39
Property list values 39
Property Lists 39
property names 56
property names 56
property-cell-locatlon function 57
:put-hash message 45
puthash function 46
puthash-equal function 46
putprop function 41

Q

R

*quo function 74
quote 103
Quote (') macro character 98
quotient function 70
Quoting characters 89

Radians In trigonometric functions 74, 75
Radix 90

Flxnum radix 94
Specifying radix 99

Radix 16 99
Radix 8 99
random function 81

Seed for random number generator 80
Random Numbers 80
:random returned by typep 5
Random-array 80

81: random-cteate-array function 81
81: random-lnttlallze function 81

rau function 38
rassoc function 38
rassq function 38

Read rational number In binary 101
read function 29, 89, 110
Read function Interpretation of conses 93
Read function Interpretation of numbers 93
Read function interpretation of strings 93
Read function of symbols 93
Read rational number In binary 101

cl: *read-defauft-ftoat-fonnal* variable 95
reacklellmtted-strlng function 112

141

Q

R

81: *read-extended-lbase-algne6-number* variable 97

142

81:

st:

al:

What the
#8

* Sharp sign

Common Lisp
Manipulating the

The

Structured
Depth of

E exponential
Printed

S exponential
Printed
Printed
Printed
Printed
Printed
Printed
Printed
Printed
Printed
Printed
Printed
Conses

PRIM Primitive Object Types

Symbolics. Inc. March 1984

read-exte~lbaae-unslgned-number
variable 96

read-for-top-level function 110
read-from-string function 113
read-multl-dot-token symbols variable 98
read-or-end function 110
read-preserve-dellmlters variable 110
read-recursive function 99
Read-time condltionallzatlon facility 99
readch function 113
Reader 89, 93
Reader Accep1s 93
reader macro 101
reader macros 99
reader macros 99
Reading octal character codes 93
readllne function 111
readllne-or-nll function 112
readllne-trlm function 111
readllat function 114
Readtable 104
readtable 99
readtable 104
Readtable 104
readlable variable 104
records 32
recursion of printing lists 89

· Rehash 47
:rehash-before-cold lnlt option for

sl:eq-hash-table 43
:rehash-threshold inlt option for

sl:equal-hash-table 44
rem function 35
:rem-hash message 45
rem-If function 36
rem-If ~not function 36
remainder function 71
.. remainder-double function 83
remhash function 46
remhash-equal function 46
remove function 35
remprop function 41
remq function 35
representation 61, 89
representation 1, 89
representation 61, 89
representation Of a blgnum 89, 93
representation of a cons 89
representation Of a flxnum 89, 93
representation Of a ftonum 89, 93
representation Of a named structure 89
representation of a small-ftonum 89, 93
representation of a string 89
representation Of a symbol 89, 93
representation of an entity 89
representation of an Instance 89
representation of arrays 89
represented as pointers 29

PRIM Primitive Object Types

Symbolics, Inc. March 1984

s

:array
:blgnum
:closure

:complled-functlon
:flxnum
:flonum

:llst
:local Ive

:microcode-function
:random

:select-method
:small-flonum

:stack-group
:string

:symbol

Integer square
Square

Coercion

s

rest1 function 20
rast2 function 20
rest3 function 21
reat4 function 21
resume 103
return 103
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
returned by typep 5
reveru function 24
roman-I 103
roman-II 103
roman-Ill 103
roman-Iv 103
root 74
root 74
rot function n
Rotate bits n
Rounding 61
rplaca function 27, 29, 85
rplacd function 27. 29, 85
rubout 103
rules 61

s exponential representation 61, 89
samepnamep function 57
.-soc function 39
sasq function 39

Table searches 32
second function 20
Seed for random number generator 80
:select-method returned by typep 5
Semicolon (;)macro character 98
Set 32
set function 53
set-character-translatlon function 105
set-globally 53
set-syntax-#-macro-char function 99, 106
set-syntax-from-ch• function 105
set-syntax-from-description function 106
set-syntax-macro-cha' function 98, 105
setpllst function 57

:macro argument to setsyntax 107
:single argument to setsyntax 107

143

s

144

:splicing argument to
nll argument to

cl:

:area lnlt option for
:growth-factor lnlt option for

:rehash-before-cold lnlt option for
:size lnlt option for

:rehash-threshold lnlt option for

:no-pointer option to
:typep option to

Sharp
Testing for

Sharp

al:

cl:
sys:

Extract

al:

PRIM Primitive Object Types

Symbolics, Inc. March 1984

setsyntax 107
aetayntax 107
setsyntax function 107
aetayntax-aharp-macro function 107
seventh function 20
Sharp sign (#) macro character 98
Sharp sign reader macros 99
Sharp-sign Abbreviations 99
Shift bits n
ahort-ftoal format 95
al:*read-extended-ll>Me-slgned-number*

variable 97
al:*read-extended-lbase-unslgned-number*

variable 96
ai:*read-muttl-clot-tokens-a-aymbola* variable 98
sl:alphabetlc syntax description 106
al:break syntax description 106
al:clrclecron syntax description 106
al:doublequote syntax description 106
al:eq-hash-table 43
al:eq-hash-table 43
al:eq-hash-table 43
al:eq-hash-table 43
al:eq-hash-table flavor 43
al:equal-hash function 48
al:equal-hash-table 44
sl:equal-hash-table flavor 44
al:lnltlal-readtable variable 104
sl:macro syntax description 106
al:prtnt-readably variable 92
al:prlntlng-random-object 89
al:prlntlng-random-obJect 89
al:random-create-array function 81
al:random-lnltlallze function 81
al:read-racurslve function 99
al:slngle syntax description 106
al:alash syntax description 106
al:vertlcalbar syntax description 106
al:whlteapace syntax description 106
sign (#) macro character 98
sign of a number 65
sign reader macros 99
Significant bits 78
algnp special form 65
algnum function 74
sin function 75
alnd function 75
Sine 74, 75
:alngle argument to setsyntax 107
alngle syntax description 106
Single-character symbol 106
alngle-floal format 95
alngle-float.p function 4
sixth function 20
size field of a byte specifier 80
:size lnlt option for al:eq-hash-table 43
:size message 46
al•h syntax description 106

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Printed representation of a

Trim leading and trailing white

defprop
let-globally

slgnp
varlable-boun~
varlabl•locallon

varlabl•makunbound

Input stream
Create a byte

Extract sfze field of a byte
Byte

Integer

Tokens In the Input
Input

End-of-file on Input
Interactive

Printed representation of a

Read function Interpretation of
Alteration of List
Manipulating List

Printed representation of a named

Slashlflcatlon 89
Slashlflcatlon-related output functions 117
Small flonum 3
small-float function 76
small-floatp function 4
Small-flonum 61
small-flonum 89, 93
:small-flonum returned by typep 5
Small-flonums 1
some function 37
sort function 29, 49
sort-groupect.array function 51
sort-grouped-array-group-key function 51
sortcar function 50
Sorting 49
Sorting arrays 49
Sorting compact lists 49
Sorting lists 49
ap 103
apace 103
space 111
Special Character Names 103
Special characters 103
special form 41
special form 55
special form 65
special form 54
special form 55
special form 54
Special Forms for Dealing with Variables 55
specification 109
specifier 80
specifier 80
specifiers 78
Specifying radix 99
:splicing argument to setsyntax 107
sqrt function 7 4
Square root 7 4
square root 7 4
stabl•sort function 51
stable-sortcar function 51
:stack-group returned by typep 5
status 103
stop-output 103
stream 93
stream specification 109
stream-copy-until-eof function 115
streams - 109
streams 109
string 89
String comparisons 7
:string returned by typep 5
strlngp function 4
Strings 1, 4
strings 93
Structure 27
Structure 11
structure 89

145

146

T

PRIM Primitive Object Types

Symbolics, Inc. March 1984

Atomic
Interned

nll
Printed representation of a

Sing le-character
t

Unbound
Unlntemed

Creating
Read function of

Circumflex r> In fixnum
Underscore (_) In fixnum

•l:alphabetlc
•l:break

sl:clrclecrou
sl:doublequote

al:macro
sl:slngle
•l:•l•h

sl:vertlcalbar
sl:whHespace

Package
Macllsp

T

Structured records 32
sub1 function 72
subll• function 28
Subr pointer 1
subrp function 4
subsel function 36
subset-not function 36
subst function 28
Substitution 27
Subtraction 68, 69, 72
Subtraction of 24-blt numbers 82
:swap-hash message 45
swaphash function 46
swaphash-equal function 47
sxhash function 32
symbol 1
symbol 58
symbol 53
symbol 89, 93
symbol 106
symbol 53
symbol 53
symbol 58
Symbol associated with property llst 39
Symbol definition 55
:symbol returned by typep 5
symbolp function 3
Symbols 1, 3, 53
Symbols 58
symbols 93
symeval function 1, 53
syntax 93
syntax 93
syntax description 106
syntax description 106
syntax description 106
syntax description 106
syntax description 106
syntax description 106
syntax description 106
syntax description 106
syntax description 106
sys:doubl•ftoal-p function 4
sys:prlntlng-random-obJect macro 92
sys:slnal•ftoat-p function 4
system 103
system 58
system property names 56

t symbol 53
tab 103

Hash table 48

T

Hash table considerations while using multiprocessing 42
Hash table facllltles 32
Truth table for the Boolean operations 76
Hash Table Functions 46

PRIM Primitive Object Types

Symbol/cs, Inc. March 1984

Hash
Objects as hash

Trees as hash
Hash

Creating Hash
Hash

Lists as
Hash

Dumping Hash

Functions

Trim leading and

Degrees In
Radians In

Data
Numerte

:array returned by
:atom argument to

:blgnum returned by
:closure returned by

:complled-functlon returned by
:entity argument to

:ftx argument to
:ftxnum returned by

:float argument to
:ftonum returned by

:Instance argument to
:Hat returned by

:locative returned by
:microcode-function returned by

:number argument to
:random returned by

:eelect-method returned by
:small-ftonum returned by

table keys 42
table keys 42
table keys 42
Table Messages 45
Table searches 32
Tables 32
Tables 43
Tables 42
Tables 32
Tables and the Garbage Collector 47
Tables to Flies 47
tallp function 34
terminal 103
terprt function 115
Testing for even number 64
Testing for negative number 64
Testing for odd number 64
Testing for positive number 64
Testing for sign of a number 65
Testing for zero 64
Tha1 Operate on Locatives 85
third function 20
*times function 74
times function 69
Tokens In the Input stream 93
Tralllng decimal point 90
tralllng white space 111
Transcendental Functions 74
Tree 11
Trees as hash table keys 42
Trigonometric functions 7 4, 75
trigonometric functions 7 4, 75
trigonometric functions 7 4, 75
Trim leading and tralllng white space 111
Truth table for the Boolean operations 76
tyl function 110
tylpeek function 113
tyo function 115
type 1, 3
Type Conversions 75
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typ8p 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5
typep 5

147

148

u

v

w

:stack.group returned by
:string retumed by

:symbol returned by

Data

u

typep 5
typep 5
typep 5
typep function 5

PRIM Primitive Object Types

Symbolics, Inc. March 1984

:typep option to sl:prlntlng-random-object 89
Types 1
Types ~ numbers

u
Unbound symbol 53

Exponent underftow 61

Absolute

The

Property llst .,..
cl:*read-defauft.ftolll.fonnlll* ...

•nopolnt
prlnlengtf?

prlnlev•I
read-prnerve-dellmltera

readlable
sl:*read-extended-lbme-slgned-number*

sl:*read-extended-lbae-unslgned-number*
11:•reec1-mum-c1ot-token symbo11•

sl:lnttlal-readlable
•l:prlnl·readablt

zunclerftoVt

Special Fonns for Dealing with
eq
II:

Hash table considerations
Trim leading and trailing

II:

v

Underscore (_) In ftxnum. syntax 93
Unlnterned symbol 58
union function 35
Up-arrow 103

value 69
Value cell 1, 53, 85
Value Cell 53
value-cell-locallon function 54, 55
values 39
variable 90
variable 95
variable 94, 99
variable 90
variable 92
variable 92
variable 110
variable 104
variable 97
variable 96
variable 98
variable 104
variable 92
variable 62
varlable-boundp special form 54
varlaba.locatlon special form 55
vm1able-malwnboncl specJal form 54
Variables 55
versus equ.a 6. 7
vertlcalbs syntax description 106
YI 103

w
What the Printer Produces 89
What the Reader Accepts 93
while using multlprocesslng 42
white space 111
whitespace syntax description 106

v

w

PRIM Primitive Object Types 149

Symbol/CB, Inc. March 1984

x x x
xcon• function 18, 29
xcons-ln-aru function 19

z z z
Testing for zero 64

zerop function 64
zunderftow variable 62

\ \ \
\function 71
\\function 73

A A A

- function 73
·s function 73

Clrcumftex r> In flxnum syntax 93

Underscore -(_) In flxnum syntax 93

' ' '
Backquote (') macro character 98

symbolics™

EVAL Evaluation

Cambridge, Massachusetts

Evaluation
990056

February 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Trtle to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Gambridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983 Symbolics, Inc. of Cambridge, Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

EVAL Evaluation

Symbolics, Inc. February 1984

Table of Contents

Page

L Introduction 1

2. Variables 3

3. Functions 11

4. Some Functions and Special Forms 17

5. Multiple Values 25

Index 29

EVAL Evaluation 1

Symbolics, Inc. February 1984

1. Introduction

The following is a complete description of the actions taken by the evaluator, given a
form to evaluate.

If form is a number, the result is form.

If form is a string, the result is form.

If form is a symbol, the result is the binding of form. If form is unbound, an error
is signalled. See the section "Variables: Evaluation".

If form is not any of the above types, and is not a list, an error is signalled.

In all remaining cases, form is a list. The evaluator examines the car of the list to
figure out what to do next. There are three possibilities: this form may be a special
form, a macro form, or a function form. Conceptually, the evaluator knows specially
about all the symbols whose appearance in the car of a form make that form a
special form, but the way the evaluator actually works is as follows. If the car of
the form is a symbol, the evaluator finds the object in the function cell of the
symbol and starts all over as if that object had been the car of the list. (See the
section "Symbols".) If the car is not a symbol, then if it is a cons whose car is the
symbol macro, then this is a macro form. If it is a "special function" then this is a
special form. See the section "Kinds of Functions". Otherwise, it should be a regular
function, and this is a function form.

If form is a special form, then it is handled accordingly; each special form works
differently. See the section "Kinds of Functions". The internal workings of special
forms are explained in more detail in that section, but this hardly ever affects you.

If form is a macro form, then the macro is expanded. See the document Macros.

If form is a function form, it calls for the application of a function to arguments.
The car of the form is a function or the name of a function. The cdr of the form
is a list of subforms. Each subform is evaluated, sequentially. The values produced
by evaluating the subforms are called the "arguments" to the function. The
function is then applied to those arguments. Whatever results the function returns
are the values of the original form.

There is a lot more to be said about evaluation. See the section ''Variables:
Evaluation". The way variables work and the ways in which they are manipulated,
including the binding of arguments, is explained in that section. See the section
"Functions: Evaluation". A basic explanation of functions is in that section. See the
section "Multiple Values". The way functions can return more than one value is
explained there. See the section "Functions: Functions". The description of all of
the kinds of functions, and the means by which they are manipulated, is there. See
the document Macros. The evalhook facility lets you do something arbitrary

2 EVAL Evaluation

Symbolics, Inc. February 1984

whenever the evaluator is invoked. See the section "evalhook". Special forms are
described all over the documentation set; each special form is in the section on the
facility it is part of.

EVAL Evaluation 3

Symbolics, Inc. February 1984

2. Variables

In Zetalisp, variables are implemented using symbols. Symbols are used for many
things in the language, such as naming functions, nruning special forms, and being
keywords; they are also useful to programs written in Lisp, as parts of data
structures. But when the evaluator is given a symbol, it treats it as a variable,
using the value cell to hold the value of the variable. If you evaluate a symbol, you
get back the contents of the symbol's value cell.

There are two different ways of changing the value of a variable. One is to set the
variable. Setting a variable changes its value to a new Lisp object, and the previous
value of the variable is forgotten. Setting of variables is usually done with the setq
special form.

The other way to change the value of a variable is with binding (also called "lambda
binding''). When a variable is bound, its old value is first saved away, and then the
value of the variable is made to be the new Lisp object. When the binding is
undone, the saved value is restored to be the value of the variable. Bindings are
always followed by unbindings. The way this is enforced is that binding is only done
by special forms that are defined to bind some variables, then evaluate some
subforms, and then unbind those variables. So the variables are all unbound when
the form is finished. This means that the evaluation of the form does not disturb
the values of the variables that are bound; whatever their old value was, before the
evaluation of the form, gets restored when the evaluation of the form is completed.
If such a form is exited by a nonlocal exit of any kind, such as *throw or return,
the bindings are undone whenever the form is exited.

The simplest construct for binding variables is the let special form. The do and
prog special forms can also bind variables, in the same way let does, but they also
control the flow of the program and so are explained elsewhere. See the section
"Iteration". let* is just a sequential version of let; the other special forms below are
only used for esoteric purposes.

Binding is an important part of the process of applying interpreted functions to
arguments. See the section "Functions: Evaluation".

When a Lisp function is compiled, the compiler understands the use of symbols as
variables. However, the compiled code generated by the compiler does not actually
use symbols to represent variables. Rather, the compiler converts the references to
variables within the program into more efficient references that do not involve
symbols at all. A variable that has been changed by the compiler so that it is not
implemented as a symbol is called a "local" variable. When a local variable is bound,
a memory cell is allocated in a hidden, internal place (the Lisp control stack) and the
value of the variable is stored in this cell. You cannot use a local variable without
first binding it; you can only use a local variable inside a special form that binds that

4 EVAL Evaluation

Symbolics. Inc. February 1984

variable. Local variables do not have any "top-level" value; they do not even exist
outside of the form that binds them.

The variables that are associated with symbols (the kind that are used by
noncompiled programs) are called "special" variables.

Local variables and special variables do not behave quite the same way, because
"binding'' means different things for the two of them. Binding a special variable
saves the old value away and then uses the value cell of the symbol to hold the new
value, as explained above. Binding a lOcal variable, however, does not do anything to
the symbol. In fact, it creates a new memory cell to hold the value, that is, a new
local variable.

Thus, a function may do different things after it has been compiled. Here is an
example:

(setq a 2)

(defun foo ()
(let ((a 5))

(bar)))

(defun bar ()
a)

(foo) => 5

(compile ' foo)

; Set the variable a to the value 2.

; Define a function named foo.
;Bind the symbol a to the value 5.
; Call the function bar.

; Define a function named bar.
; It just returns the value of the variable a.

; Calling foo returns 5.

;Now compile loo.

(foo) = > 2 ; This time, calling foo returns 2.

This is a very bad thing, because the compiler is only supposed to speed things up,
without changing what the function does. Why did the function foo do something
different when it was compiled? Because a was converted from a special variable
into a local variable. After foo was compiled, it no longer had any effect on the
value cell of the symbol a, and so the symbol retained its old contents, namely 2.

In most uses of variables in Lisp programs, this problem does not come up. The
reason it happened here is because the function bar refers to the symbol a without
first binding a to anything. A reference to a variable that you didn't bind yourself
is called a free reference; in this example, bar makes a free reference to a.

We mentioned above that you cannot use a local variable without first binding it.
Another way to say this is that you cannot ever have a free reference to a local
variable. If you try to do so, the compiler will complain. In order for functions to
work, the compiler must be told not to convert a into a local variable; a must remain
a special variable. Normally, when a function is compiled, all variables in it are made
to be "local". You can stop the compiler from making a variable local by "declaring"
to the compiler that the variable is "special". When the compiler sees references to a
variable that has been declared special, it uses the symbol itself as the variable
instead of making a local variable.

EVAL Evaluation

Symbolics, Inc. February 1984

Variables can be declared by the special forms defvar and defconst, or by explicit
compiler declarations. See the section "Compiler Declarations". The most common
use of special variables is as "global" variables: variables used by many different
functions throughout a program, that have top-level values.

5

Had bar been compiled, the compiler would have seen the free reference and printed
a warning message: Warning: a declared special. It would have automatically
declared a to be special and proceeded with the compilation. It knows that free
references mean that special declarations are needed. But when a function is
compiled that binds a variable that you want to be treated as a-special variable but
that you have not explicitly declared, there is, in general, no way for the compiler to
automatically detect what has happened, and it will produce incorrect output. So
you must always provide declarations for all variables that you want to be treated as
special variables.

When you declare a variable to be special using declare rather than local-declare,
the declaration is "global"; that is, it applies wherever that variable name is seen.
After fuzz has been declared special using declare, all following uses of fuzz will be
treated by the compiler as references to the same special variable. Such variables
are called "global variables", because any function can use them; their scope is not
limited to one function. The special forms defvar and defconst are useful for
creating global variables; not only do they declare the variable special, but they also
provide a place to specify its initial value, and a place to add documentation. In
addition, since the names of these special forms start with "def" and since they are
used at the top level of files, the Lisp Machine editor can find them easily.

Here are the special forms used for setting variables.

setq {variable value}... Special Form
The setq special form is used to set the value of one or more variables. The
first value is evaluated, and the first variable is set to the result. Then the
second value is evaluated, the second variable is set to the result, and so on
for all the variable/value pairs. setq returns the last value, that is, the result
of the. evaluation of its last subform. Example:

(setq x (+ 3 2 1) y (cons x nil))

xis set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

psetq {variable value}... Special Form
A psetq form is just like a setq form, except that the variables are set "in
parallel"; first all the value forms are evaluated, and then the variables are
set to the resulting values. Example:

6

(setq a 1)

(setq b 2)

(psetq a b b a)
a => 2
b => 1

EVAL Evaluation

Symbolics, Inc. February 1984

Here are the special forms used for binding variables.

let ((var value) .. .) body... Special Form
let is used to bind some variables to some objects, and evaluate some forms
(the "body") in the context of those bindings. A let form looks like this:

(let C (varl vforml)
(var2 vform2 >
...)

bfonnl
bfonn2
...)

When this form is evaluated, first the vforms (the values) are evaluated.
Then the vars are bound to the values returned by the corresponding vforms.
Thus the bindings happen in parallel; all the vforms are evaluated before any
of the vars are bound. Finally, the bforms (the body) are evaluated
sequentially, the old values of the variables are restored, and the result of the
last bform is returned.

You can omit the vform from a let clause, in which case it is as if the vform
were nil: the variable is bound to nil. Furthermore, you can replace the
entire clause (the list of the variable and form) with just the variable, which
also means that the variable gets bound to nil. Example:

(let ((a (+ 3 3))
(b 'foo)
(c)

d)

...)
Within the body, a is bound to 6, b is bound to foo, c is bound to nil, and
d ·is bound to nil.

let• ((var value) ...) body... Special Form
let• is the same as let except that the binding is sequential. Each var is
bound to the value of its vform before the next vform is evaluated. This is
useful when the computation of a vform depends on the value of a variable
bound in an earlier vform. Example:

(let* ((a (+ 1 2))
(b (+a a)))

...)
Within the body, a is bound to 3 and bis bound to 6.

EVAL Evaluation 7

· Symbolics, Inc. February 1984

let-if condition ((var value) ...) body... Special Form
let-if is a variant of let in which the binding of variables is conditional. The
variables must all be special variables. The let-if special form, typically
written as:

(1 et-if cond
((var-1 val-1> (var-2 val-2> ...)

body-forml body-form2 . .. >

first evaluates the predicate form cond. If the result is non-nil, the value
forms val-1, val-2, and so on, are evaluated and then the variables var-1,
var-2, and so on, are bound to them. If the result is nil, the vars and vals
are ignored. Finally the body forms are evaluated.

let-globally ((var value) .. .) body... Special Form
let-globally is similar in form to let. The difference is that let-globally
does not bind the variables; instead, it saves the old values and sets the
variables, and sets up an unwind-protect to set them back. The important
difference between let-globally and let is that when the current stack group
calls some other stack group, the old values of the variables are not restored.
Thus, let-globally makes the new values visible in all stack groups and
processes that do not bind the variables themselves, not just the current
stack group.

let-globally-if predicate varlist &body body... Macro
let-globally-if is like let-globally. It takes a predicate form as its first
argument. It binds the variables only if predicate evaluates to something
other than nil. body is evaluated in either case.

progv symbol-list value-list body... Special Form
progv is a special form to provide the user with extra control over binding.
It binds a list of special variables to a list of values, and then evaluates some
forms. The lists of special variables and values are computed quantities; this
is what makes progv different from let, prog, and do.

progv first evaluates symbol-list and value-list, and then binds each symbol
to the corresponding value. If too few values are supplied, the remaining
symbols are bound to nil. If too many values are supplied, the excess values
are ignored.

After the symbols have been bound to the values, the body forms are
evaluated, and finally the symbols' bindings are undone. The result returned
is the value of the last form in the body. Example:

(setq a 'foo b 'bar)

(progv (list ab 'b) (list b)
(list ab foo bar))

=> (foo nil bar nil)

8 EVAL Evaluation

Symbolics. Inc. February 1984

During the evaluation of the body of this progv, foo is bound to bar, bar is
bound to nil, b is bound to nil, and a retains its top-level value foo.

progw vars-and-vals-form body... Special Form
progw is a somewhat modified kind of progv. Like progv, it only works for
special variables. First, vars-and-val-forms-form is evaluated. Its value should
be a list that looks like the first subform of a let:

((varl val-form-1>
Cvar2 val-form-2>
...)

Each element of this list is processed in tum, by evaluating the val-form, and
binding the var to the resulting value. Finally, the body forms are evaluated
sequentially, the bindings are undone, and the result of the last form is
returned. Note that the bindings are sequential, not parallel.

This is a vezy unusual special form because of the way the evaluator is called
on the result of an evaluation. Thus, progw is mainly useful for
implementing special forms and for functions part of whose contract is that
they call the interpreter. For an example of the latter, see
sys:*break-bindings•; break implements this by using progw.

destructuring-bind variable-pattern data body ... Special Form
destructuring-bind binds variables to values, using defmacro's
destructuring facilities, and evaluates the body forms in the context of those
bindings.

First data is evaluated. If variable-pattern is a symbol, it is bound to the
result of evaluating data. If variable-pattern is a tree, the result of
evaluating data should be a tree of the same shape. The trees are
disassembled, and each variable that is a component of variable-pattern is
bound to the value that is the corresponding element of the tree that results
from evaluating data. If not enough values are supplied, the remaining
variables are bound to nil. If too many values are supplied, the excess values
are ignored. Finally, the body forms are evaluated sequentially, the old values
of the variables are restored, and the result of the last body form is returned.

As with the pattern in a defmacro form, variable-pattern actually resembles
the lambda-list of a function; it can have &-keywords. See the section
"Advanced Features of defmacro".

Example:

(destructuring-bind (a (b) &optional (c 'd))
'((x y) (z))

(values a b c))

returns (x y), z, and d.

EVAL Evaluation 9

Symbolics. Inc. February 1984

Here are the special forms for defining special variables.

defvar variable [initial-value] [documentation] Special Fonn
defvar is the recommended way to declare the use of a global variable in a
program. Placed at top level in a file,

(def var variable)

declares variable special for the sake of compilation, and records its location
for the sake of the editor so that you can ask to see where the variable is
defined. If a second subform is supplied,

(def var variable initial-value)

variable is initialized to the result of evaluating the form initial-value unless
it already has a value, in which case it keeps that value. initial-value is not
evaluated unless it is used; this is useful if it does something expensive like
creating a large data structure.

defvar should be used only at top level, never in function definitions, and
only for global variables (those used by more than one function).
(defvar foo 'bar) is roughly equivalent to:

(declare (special foo))
(if (not (boundp 'foo))

(setq foo 'bar))

C def var variable initial-value documentation)

allows you to include a documentation string that describes what the variable
is for or how it is to be used. Using such a documentation string is even
better than commenting the use of the variable, because the documentation
string is accessible to system programs that can show the documentation to
you while you are using the machine.

If defvar is used in a patch file or is a single form (not a region) evaluated
with the editor's compile/evaluate from buffer commands, if there is an initial
value the variable is always set to it regardless of whether it is already
bound. See the section "Patch Facility''.

defconst variable [initial-value] [documentation] Special Fonn
defconst is the same as defvar except that if an initial value is given the
variable is always set to it regardless of whether it is already bound. The
rationale for this is that defvar declares a global variable, whose value is
initialized to something but will then be changed by the functions that use it
to maintain some state. On the other hand, defconst declares a constant,
whose value will never be changed by the normal operation of the program,
only by changes to the program. defconst always sets the variable to the
specified value so that if, while developing or debugging the program, you
change your mind about what the constant value should be, and then you
evaluate the defconst form again, the variable will get the new value. It is

10 EVAL Evaluation

Symbolics, Inc. February 1984

not the intent of defconst to declare that the value of variable will never
change; for example, defconst is not license to the compiler to build
assumptions about the value of variable into programs being compiled.

The special form defconstant is used to declare a named constant.

def constant variable initial-value [documentation] Special Form
defconstant declares the use of a named constant in a program.
initial-value is evaluated and variable set to the result. The value of
variable is then fixed. It is an error if variable has any special bindings at
the time the defconstant form is executed. Once a special variable has been
declared constant by defconstant, any further assignment to or binding of
that variable is an error.

The compiler is free to build assumptions about the value of the variable into
programs being compiled. If the compiler does replace references to the name
of the constant by the value of the constant in code to be compiled, the
compiler takes care that such "copies" appear to be eql to the object that is
the actual value of the constant. For example, the compiler may freely make
copies of numbers, but it exercises care when the value is a list.

In Zetalisp, defconstant and defconst are essentially the same if the value
is other than a number, a character, or an interned symbol. However, if the
variable being declared already has a value, defconst freely changes the
value, whereas defconstant queries before changing the value (unless the
defconstant form is in a patch file). defconstant assumes that changing
the value is dangerous because the old value might have been incorporated
into compiled code, which would be out of date if the value changed.

In general, you should use defconstant to declare constants whose value is a
number, character, or interned symbol and is guaranteed not to change. An
example is ". The compiler can optimize expressions that contain references
to these constants. If the value is another type of Lisp object or if it might
change, you should use defconst instead.

documentation, if provided, should be a string. It is accessible to the
documentation function.

EVAL Evaluation 11

Symbolics, Inc. February 1984

3. Functions

In an earlier description of evaluation, we said that evaluation of a function form
works by applying the function to the results of evaluating the argument subforms.
What is a function, and what does it mean to apply it? In Zetalisp there are many
kinds of functions, and applying them can do many different kinds of things. See
the section "Functions: Functions". Here we will explain the most basic kinds of
functions and how they work. In particular, this chapter explains lambda lists and
all their important features.

The simplest kind of user-defined function is the lambda-expression, which is a list
that looks like:

(lambda lambda-list bodyl body2 ...)

The first element of the lambda-expression is the symbol lambda; the second
element is a list called the lambda list, and the rest of the elements are called the
body. The lambda list, in its simplest form, is just a list of variables. Assuming
that this simple form is being used, here is what happens when a lambda-expression
is applied to some arguments. First, the number of arguments and the number of
variables in the lambda list must be the same, or else an error is signalled. Each
variable is bound to the corresponding argument value. Then the forms of the body
are evaluated sequentially. After this, the bindings are all undone, and the value of
the last form in the body is returned.

This might sound something like the description of let. The most important
difference is that the lambda-expression is not a form at all; if you try to evaluate a
lambda-expression, you will be told that lambda is not a defined function. The
lambda-expression is a function, not a form. A let form gets evaluated, and the
values to which the variables are bound come from the evaluation of some subforms
inside the let form; a lambda-expression gets applied, and the values are the
arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with
other languages. Some other terminologies would refer to these as formal
parameters, and to arguments as actual parameters.

Lambda lists can have more complex structure than simply being a list of variables.
There are additional features accessible by using certain keywords (which start with
&) and/or lists as elements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with
one must only take a certain fixed number of arguments. As we know, many very
useful functions, such as list, append, +, and so on, accept a varying number of
arguments. Maclisp solved this problem by the use of lexprs and lsubrs, which were
somewhat inelegant since the parameters had to be referred to by numbers instead

12 EVAL Evaluation

Symbolics. Inc. February 1984

of names (for example, (arg 3)). (For compatibility reasons, Zeta.lisp supports lexprs,
but they should not be used in new programs). Simple lambda lists also require that
arguments be matched with parameters by their position in the sequence. This
makes calls hard to read when there are a great many arguments. Keyword
parameters enable the use of other styles of call which are more readable.

In general, a function in Zetalisp has zero or more positional parameters, followed if
desired by a single rest parameter, followed by zero or more keyword parameters.
The positional and keyword parameters can be required or optional, but all the
optional parameters must follow all the required ones. The required/optional
distinction does not apply to the rest parameter.

Keyword arguments are always C?Ptional, regardless· of whether the lambda list
contains &optional. Any &optional appearing after the first keyword argument
has no effect. &key and &rest are independent. They can both appear and they
both use the same arguments from the argument list. The only rule is that &rest
must appear before &key in the lambda list.

The caller must provide enough arguments so that each of the required parameters
gets bound, but extra arguments can be provided for some of the optional
parameters. Also, if there is a rest parameter, as many extra arguments can be
provided as desired, and the rest parameter is bound to a list of all these extras.
Optional parameters can have a default-fonn, which is a form to be evaluated to
produce the default value for the parameter if no argument is supplied.

Positional parameters are matched with arguments by the position of the arguments
in the argument list. Keyword parameters are matched with their arguments by
matching the keyword name; the arguments need not appear in the same order as
the parameters. If an optional positional argument is omitted, then no further
arguments can be present. Keyword parameters allow the caller to decide
independently for each one whether to specify it.

Here is the exact explanation of how this all works. When apply (the primitive
function that applies functions to arguments) matches up the arguments with the
parameters, it follows the following algorithm:

The positional parameters are dealt with first.

The first required positional parameter is bound to the first argument. apply
continues to bind successive required positional parameters to the successive
arguments. If, during this process, there are no arguments left but there are still
some required parameters (positional or keyword) that have not been bound yet, it is
an error ("too few arguments").

Next, after all required parameters are handled, apply continues with the optional
positional parameters, if any. It binds successive parameter to the next argument.
If, during this process, there are no arguments left, each remaining optional
parameter's default-form is evaluated, and the parameter is bound to it. This is
done one parameter at a time; that is, first one default-form is evaluated, and then

EVAL Evaluation

Symbolics. Inc. February 1984

the parameter is bound to it, then the next default-form is evaluated, and so on.
This allows the default for an argument to depend on the previous argument.

13

Now, if there are no remaining parameters (rest or keyword), and there are no
remaining arguments, we are finished. If there are no more parameters but there
are still some arguments remaining, an error is caused ("too many arguments"). If
parameters remain, all the remaining arguments are used for both the rest
parameter, if any, and the keyword parameters.

First, if there is a rest parameter, it is bound to a list of all the remaining
arguments. If there are no remaining arguments, it gets bound to nil.

If there are keyword parameters, the same remaining arguments are used to bind
them, as follows.

The arguments for the keyword parameters are treated as a list of alternating
keyword symbols and associated values. Each symbol is matched with the keyword
parameter names, and the matching keyword parameter is bound to the value that
follows the symbol. All the remaining arguments are treated in this way. Since the
arguments are usually obtained by evaluation, those arguments that are keyword
symbols are typically quoted in the call; however they do not have to be. The
keyword symbols are compared by means of eq, which means they must be specified
in the correct package. The keyword symbol for a parameter has the same print
name as the parameter, but resides in the keyword package regardless of what
package the parameter name itself resides in. (You can specify the keyword symbol
explicitly in the lambda list if you must.)

If any keyword parameter has not received a value when all the arguments have
been processed, this is an error if the parameter is required. If it is optional, the
default-form for the parameter is evaluated and the parameter is bound to its value.

There might be a keyword symbol among the arguments that does not match any
keyword parameter name. The function itself specifies whether this is an error. If
it is not an error, then the nonmatching symbols and their associated values are
ignored. The function can access these symbols and values through the rest
parameter, if there is one. It is common for a function to check only for certain
keywords, and pass its rest parameter to another function using lexpr-funcall; then
that function will check for the keywords that concern it.

The way you express which parameters are required, optional, and rest is by means
of specially recognized symbols, which are called & keywords, in the lambda list. All
such symbols' print names begin with the character "&". A list of all such symbols
is the value of the symbol lambda-list-keywords.

The keywords used here are &key, &optional and &rest. The way they are used
is best explained by means of examples; the following are typical lambda lists,
followed by descriptions of which parameters are positional, rest or keyword; and
required or optional.

14

(a b c)

EVAL Evaluation

Symbolics. Inc. February 1984

a, b, and c are all required and positional. The function must be
passed three arguments.

(a b &opt i ona 1 c) a and b are required, c is optional. All three are positional. The
function can be passed either two or three arguments.

(&optional a b c) a, b, and c are all optional and positional. The function can be
passed any number of arguments between zero and three,
inclusive.

(&rest a) a is a rest parameter. The function can be passed any number of
arguments.

(a b &optional c d &rest e)
a and b are required positional, c and d are optional positional,
and e is rest. The function can be passed two or more
arguments.

(&key a b) a and b are both required keyword parameters. A typical call
would look like

(foo ':b 69 ':a '(some elements))

This illustrates that the parameters can be matched in either
order.

(&key a &optional b)
a is required keyword, and b is optional keyword. The sample call
above would be legal for this function also; so would

(foo ':a '(some elements))

which doesn't specify b.

(x &optional y &rest z &key a b)
x is required positional, y is optional positional, z is rest, and a
and bare optional keyword. One or more arguments are allowed.
One or two arguments specify only the positional parameters.
Arguments beyond the second specify both the rest parameter and
the keyword parameters, so that

(foo 1 2 ':b '(a list))

specifies 1 for x, 2 for y, (:b (a list)) for z, and (a list) for b.
It does not specify a.

(&rest z &key a b c &allow-other-keys)
z is rest, and a, b and c are optional keyword parameters.
&allow-other-keys says that absolutely any keyword symbols can
appear among the arguments; these symbols and the values that
follow them have no effect on the keyword parameters, but do
become part of the value of z.

(&rest z &key &allow-other-keys)
This is equivalent to (&rest z). So, for that matter, is the

EVAL Evaluation 15

Symbolics, Inc. February 1984

previous example, if the function does not use the values of a, b
and c.

In all of the cases above, the default-form for each optional parameter is nil. To
specify your own default forms, instead of putting a symbol as the element of a
lambda list, put in a list whose first element is the symbol (the parameter itself) and
whose second element is the default-form. Only optional parameters can have
default forms; required parameters are never defaulted, and rest parameters always
default to nil. For example:

(a &optional (b 3))
The default-form for bis 3. a is a required parameter, and so it
doesn't have a default form.

(&optional (a 'foo) &rest d &key b Cc (symeval a)))
a's default-form is 'foo, h's is nil, and e's is (symeval a). Note
that if the function whose lambda list this is were called on no
arguments, a would be bound to the symbol foo, and c would be

-bound to the binding of the symbol foo; this illustrates the fact
that each variable is bound immediately after its default-form is
evaluated, and so later default-forms can take advantage of earlier
parameters in the lambda list. b and d would be bound to nil.

Occasionally it is important to know whether a certain optional parameter was
defaulted or not. You can't tell from just examining its value, since if the value is
the default value, there's no way to tell whether the caller passed that value
explicitly, or whether the caller did not pass any value and the parameter was
defaulted. The way to tell for sure is to put a third element into the list: the third
element should be a variable (a symbol), and that variable is bound to nil if the
parameter was not passed by the caller (and so was defaulted), or t if the parameter
was passed. The new variable is called a "supplied-p" variable; it is bound to t if the
parameter is supplied. For example:

(a &optional Cb 3 c))
The default-form for b is 3, and the "supplied-p" variable for b is
c. If the function is called with one argument, b will be bound to
3 and c will be bound to nil. If the function is called with two
arguments, b will be bound to the value that was passed by the
caller (which might be 3), and c will be bound to t.

It is possible to specify a keyword parameter's symbol independently of its parameter
name. To do this, use two nested lists to specify the parameter. The outer list is
the one which can contain the default-form and supplied-p variable, if the parameter
is optional. The first element of this list, instead of a symbol, is again a list, whose
elements are the keyword symbol and the parameter variable name. For example:

(&key ((:a a)) &optional ((:b b) t))
This is equivalent to (&key a &optional (b t)).

16 EVAL Evaluation

Symbolics. Inc. February 1984

(&key ((:base base-value)))
This allows a keyword that the user will know under the name
:base, without making the parameter shadow the value of base,
which is used for printing numbers.

It is also possible to include, in the lambda list, some other symbols, which are
bound to the values of their default-forms upon entry to the function. These are
not parameters, and they are never bound to arguments; they just get bound, as if
they appeared in a let form. (Whether you use these aux-variables or bind the
variables with let is a stylistic decision.)

To include such symbols, put them after any parameters, preceded by the &
keyword &aux. Examples:

(a &opt i ona 1 b &rest c &aux d (e 5) (f (cons a e)))
d, e, and f are bound, when the function is called, to nil, 5, and
a cons of the first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is
bound is set up in whatever way is most efficiently implemented, rather than in the
way that is most convenient for the function receiving the arguments. It is not
guaranteed to be a "real" list. Sometimes the rest-args list is stored in the function
calling stack, and loses its validity when the function returns. If a rest-argument is
to be returned or made part of permanent list-structure, it must first be copied, as
you must always assume that it is one of these special lists. See the function
copylist. The system will not detect the error of omitting to copy a rest-argument;
you will simply find that you have a value which seems to change behind your back.
At other times the rest-args list will be an argument that was given to apply;
therefore it is not safe to rplaca this list as you might modify permanent data
structure. An attempt to rplacd a rest-args list will be unsafe in this case, while in
the first case it would cause an error, since lists in the stack are impossible to
rplacd.

There are some other keywords in addition to those mentioned here. See the
section "Lambda-list Keywords".

EVAL Evaluation 17

Symbolics. Inc. February 1984

4. Some Functions and Special Forms

This section describes some functions and special forms. Some are parts of the
evaluator, or closely related to it. Some have to do specifically with issues discussed
above such as keyword arguments. Some are just fundamental Lisp forms that are
very important.

eval x Function
(eval x) evaluates x, and returns the result. Example:

(setq x 43 foo 'bar)
(eval (list 'cons x 'foo))

=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly.
If you are writing a simple Lisp program and explicitly calling eval, you are
probably doing something wrong. eval is primarily useful in programs that
deal with Lisp itself, rather than programs about knowledge or mathematics
or games.

Also, if you are only interested in getting at the value of a symbol (that is,
the contents of the symboPs value cell), then you should use the primitive
function symeval.

Note: the actual name of the compiled code for eval is "si:•eval"; this is
because use of the evalhook feature binds the function cell of eval. If you
don't understand this, you can safely ignore it.

Note: unlike Maclisp, eval never takes a second argument; there are no
"binding context pointers" in Zetalisp. They are replaced by closures. See
the section "Closures".

apply f arglist Function
(apply f arglist) applies the function f to the list of arguments arglist.
arglist should be a list; f can be any function. Examples:

(setq fred '+) (apply fred '(1 2)) => 3
(setq fred '-) (apply fred '(1 2)) => -1
(apply 'cons '((+ 2 3) 4)) =>

C C + 2 3) • 4) not C 5 • 4)

Of course, arglist can be nil. Note: unlike Maclisp, apply never takes a
third argument; there are no "binding context pointers" in Zetalisp.

Compare apply with funcall and eval.

funcall f &rest args Function
(funcall f al a2 ••• an) applies the function f to the arguments al, a2, ... ,

18 EVAL Evaluation

Symbolics. Inc. February 1984

an. f cannot be a special fonn nor a macro; this would not be meaningful.
Example:

(cons 1 2) = > (1 • 2)
(setq cons 'plus)
(funcall cons 1 2) => 3
(cons 1 2) => (1 • 2)

This shows that the use of the symbol cons as the name of a function and
the use of that symbol as the name of a variable do not interact. The cons
form invokes the function named cons. The funcall fonn evaluates the
variable and gets the symbol plus, which is the name of a different function.

lexpr-funcall f &rest args Function
lexpr-funcall is like a cross between apply and funcall.
(lexpr-funcall f al a2 ••• an l) applies the function f to the arguments al
through an followed by the elements of the list l. Note .that since it treats
its last argument specially, lexpr-funcall requires at least two arguments.
Examples:

(lexpr-funcall 'plus 1 1 1 '(1 1 1)) => 6

(defun report-error (&rest args)
(lexpr-funcall (function format) error-output args))

lexpr-funcall with two arguments does the same thing as apply.

send is the new official function to use to send messages to objects. It should be
used in the same way that funcall has been used up to now.

send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed.

Currently, send does exactly the same thing as funcall. However, in a future
release, it will be possible to send messages to objects of any data type, and send
will be changed upward-compatibly to make this work.

Another new function, lexpr-send, is to send as lexpr-funcall is to funcall.

lexpr-send object message-name &rest arguments Function
Sends the message named message-name to the object. arguments are the
arguments passed, except that the last element of arguments should be a list,
and all the elements of that list are passed as arguments. Example:

(send some-window ':set-edges 10 10 40 40)

does the same thing as

(setq new-edges '(10 10 40 40))
(lexpr-send some-window ':set-edges new-edges)

EVAL Evaluation 19

Symbolics, Inc. February 1984

Note: send-self or lexpr-send-self do not exist, because the new implementation of
Flavors eliminates any particular performance benefit. To send a message to self,
pass self as the first argument to send

Note: the Maclisp functions subrcall, lsubrcall, and arraycall are not needed on
the Lisp Machine; funcall is just as efficient. arraycall is provided for
compatibility; it ignores its first subform (the Maclisp array type) and is otherwise
identical to aref. subrcall and lsubrcall are not provided.

call function &rest argument-specifications Function
call offers a very general way of controlling what arguments you pass to a
function. You can provide either individual arguments as with funcall or
lists of arguments as with apply, in any order. In addition, you can make
some of the arguments optional. If the function is not prepared to accept all

·the arguments you specify, no error occurs if the excess arguments are
optional ones. Instead, the excess arguments are simply not passed to the
function.

The argument-specifications are alternating keywords (or lists of keywords)
and values. Each keyword or list of keywords says what to do with the value
that follows. If a value happens to require no keywords, provide () as a list
of keywords for it.

Two keywords are presently defined: :optional and :spread. :spread says
that the following value is a list of arguments. Otherwise it is a single
argument. :optional says that all the following arguments are optional. It
is not necessary to specify :optional with all the following
argument-specifications, because it is sticky. Example:

(call l'foo () x ':spread y '(:optional :spread) z () w)

The arguments passed to foo are the value of x, the elements of the value of
y, the elements of the value of z, and the value of w. The function foo
must be prepared to accept all the arguments which come from x and y, but
if it does not want the rest, they are ignored.

quote object Special Fonn
(quote x) simply returns x. It is useful specifically because x is not
evaluated; the quote is how you make a form that returns an arbitrary Lisp
object. quote is used to include constants in a form. Examples:

(quote x) => x
(setq x (quote (some list))) x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader
normally converts any form preceded by a single quote(') character into a
quote form. Example:

(setq x '(some list))

is converted by read into

20 EVAL Evaluation

Symbolics, Inc. February 1984

(setq x (quote (some list)))

function f Special Form
This means different things depending on whether f is a function or the
name of a function. (Note that in neither case is f evaluated.) The name of
a function is a symbol or a function-spec list. See the section "Function
Specs". A function is typically a list whose car is the symbol lambda;
however there are several other kinds of functions available. See the section
"Kinds of Functions".

If you want to pass an anonymous function as an argument to a function,
you could just use quote. For example:

(mapc (quote (lambda (x) (car x))) some-list)

This works fine as far as the evaluator is concerned. However, the compiler
cannot tell that the first argument is going to be used as a function; for all it
knows, mapc will treat its first argument as a piece of list structure, asking
for its car and cdr and so forth. So the compiler cannot compile the
function; it must pass the lambda-expression unmodified. This means that
the function will not get compiled, which will make it execute more slowly
than it might otherwise.

The function special form is one way to tell the compiler that it can go
ahead and compile the lambda-expression. You just use the symbol function
instead of quote:

(mapc (function (lambda (x) (car x))) some-list)

This will cause the compiler to generate code such that mapc will be passed
a compiled-code object as its first argument.

That is what the compiler does with a function special form whose subform
f is a function. The evaluator, when given such a form, just returns f; that
is, it treats function just like quote.

To ease typing, the reader converts #'thing into (function thing). So#' is
similar to ' except that it produces a function form instead of a quote form.
So the above form could be written as:

(mapc #'(lambda (x) (car x)) some-list)

If f is not a function but the name of a function (typically a symbol, but in
general any kind of function spec), then function returns the definition off;
it is like fdefinition except that it is a special form instead of a function,
and so

(function fred)

is like

(fdefinition 'fred)

which is like

EVAL Evaluation

Symbolics, Inc. February 1984

(fsymeval 'fred)

since fred is a symbol. function is the same for the compiler and the
interpreter when f is the name of a function.

Another way of explaining function is that it causes f to be treated the
same way as it would as the car of a form. Evaluating the form
<f argl arg2 ...) uses the function definition off if it is a symbol, and
otherwise expects f to be a. list that is a lambda-expression. Note that the
car of a form cannot be a nonsymbol function spec, to avoid difficult-to-read
code. This can be written as:

(funcall (function spec) args ...)

21

You should be careful about whether you use#' or'. Suppose you have a
program with a variable x whose value is assumed to contain a function that
gets called on some arguments. If you want that variable to be the ear
function, there are two things you could say:

(setq x 'car)
or
(setq x l'car)

The former causes the value of x to be the symbol ear, whereas the latter
causes the value of x to be the function object found in the function cell of
ear. When the time comes to call the function (the program does
(funcall x •••)), either of these two will work (because if you use a symbol as
a function, the contents of the symbol's function cell is used as the function,
as explained in the beginning of this chapter). The former case is a bit
slower, because the function call has to indirect through the symbol, but it
allows the function to be redefined, traced, or advised. (See the special form
trace. See the special form advise.) The latter case, while faster, picks up
the function definition out of the symbol ear and does not see any later
changes to it.

The other way to tell the compiler that an argument that is a lambda
expression should be compiled is for the function that takes the function as
an argument to use the &functional keyword in its lambda list. See the
section "Lambda-list Keywords". The basic system functions that take
functions as arguments, such as map and sort, have this &functional
keyword and hence quoted lambda-expressions given to them will be
recognized as functions by the compiler.

In fact, mapc. uses &functional and so the example given above is bogus; in
the particular case of the first argument to the function mapc, quote and
function are synonymous. It is good style to use function (or#') anyway,
to make the intent of the program completely clear.

22 EVAL Evaluation

Symbolics. Inc. February 1984

false Function
Takes no arguments and retunls nil.

true Function
Takes no arguments and returns t.

ignore &rest ignore Function
Takes any number of arguments and returns nil. This is often useful as a
"dummy" function; if you are calling a function that takes a function as an
argument, and you want to pass one that does not do anything and will not
mind being called with any argument pattern, use this.

comment Special Form
comment ignores its form and returns the symbol comment. Example:

(defun foo (x)
(cond ((null x) 0)

(t (coDlllent x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature of
the standard input syntax. This allows you to add comments to your code
that are ignored by the Lisp reader. Example:

(defun foo (x)
(cond ((null x) O)

(t (1+ (foo (cdr x)))) ;x has something in it
))

A problem with such comments is that they are discarded when the form is
read into Lisp. If the function is read into Lisp, modified, and printed out
again, the comment will be lost. However, this style of operation is hardly
ever used; usually the source of a function is kept in an editor buffer and
any changes are made to the buffer, rather than the actual list structure of
the function. Thus, this is not a real problem.

progn body... Special Form
The body forms are evaluated in order from left to right and the value of the
last one is returned. progn is the primitive control structure construct for
"compound statements". Although lambda-expressions, cond forms, do
forms, and many other control structure forms use progn implicitly, that is,
they allow multiple forms in their bodies, there are occasions when one needs
to evaluate a number of forms for their side effects and make them appear to
be a single form. Example:

(foo (cdr a)
(progn (setq b (extract frob))

(car b))
(cadr b))

EVAL Evaluation

Symbolics. Inc. February 1984

(When forml is 'compile, the progn form has a special meaning to the
compiler. See the section "Macros Expanding Into Many Forms".)

23

progl first-form body... Special Form
progl is similar to progn, but it returns the value of its first form rather
than its last. It is most commonly used to evaluate an expression with side
effects, and return a value which must be computed before the side effects
happen. Example:

(setq x (progl y (setq y x)))

interchanges the values of the variables x and y.

progl never returns multiple values. See the special form
multiple-value-progl.

prog2 first-form second-form body... Special Form
prog2 is similar to progn and progl, but it returns its second form. It is
included largely for compatibility with old programs.

See also bind, which is a subprimitive that gives you maximal control over binding.

The following three functions (arg, setarg, and listify) exist only for compatibility
with Maclisp lexprs. To write functions that can accept variable numbers of
arguments, use the &optional and &rest keywords. See the section "Functions:
Evaluation".

arg x Function
(arg nil), when evaluated during the application of a lexpr, gives the number
of arguments supplied to that lexpr. This is primarily a debugging aid, since
lexprs also receive their number of arguments as the value of their
lambda-variable.

(arg i), when evaluated during the application of a lex.pr, gives the value of
the i'th argument to the lexpr. i must be a tixnum in this case. It is an
error if i is less than 1 or greater than the number of arguments supplied to
the lex.pr. Example:

(de fun f oo nargs ;define a lex.pr f oo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ; return the sum of the first

(arg (- nargs 1)))) ;and next to last arguments.

setarg i x Function
setarg is used only during the application of a lexpr. (setarg ix) sets the
lexpr's i'th argument to x. i must be greater than zero and not greater
than the number of arguments passed to the lexpr. After (setarg ix) has
been done, (arg i) will return x.

24 EVAL Evaluation

Symbolics. Inc. February 1984

listify n Function
(listify n) manufactures a list of n of the arguments of a lex.pr. With a
positive argument n, it returns a list of the first n arguments of the lex.pr.
With a negative argument n, it returns a list of the last (abs n) arguments
of the lexpr. Basically, it works as if defined as follows:

(defun listify (n)
(cond ((minusp n)

(listifyl (arg nil) (+ (arg nil) n 1)))
(t
(listifyl n 1))))

(de fun 1 i st i fyl (n m) ; auxiliary function.
(do ((i n (1- i))

(result nil (cons (arg i) result)))
((< i m) result)))

EVAL Evaluation 25

Symbolics. Inc. February 1984

5. Multiple Values

The Lisp Machine includes a facility by which c the evaluation of a form can produce
more than one value. When a function needs to return more than one result to its
caller, multiple values are a cleaner way of doing this than returning a list of the
values or setq'ing special variables to the extra values. In most Lisp function calls,
multiple values are not used. Special syntax is required both to produce multiple
values and to receive them.

The primitive for producing multiple values is values, which takes any number of
arguments and returns that many values. If the last form in the body of a function
is a values with three arguments, then a call to that function will return three
values. The other primitive for producing multiple values is return, which when
given more than one argument returns all its arguments as the values of the prog
or do from which it is returning. The variant return-from also can produce
multiple values. Many system functions produce multiple values, but they all do it
via the values and return primitives. ,

The special forms for receiving multiple values are multiple-value,
multiple-value-bind, multiple-value-list, multiple-value-call, and
multiple-value-progl. These consist of a form and an indication of where to put
the values returned by that form. With the first two of these, the caller requests a
certain number of returned values. If fewer values are returned than the number
requested, then it is exactly as if the rest of the values were present and had the
value nil. If too many values are returned, the rest of the values are ignored. This
has the advantage that you do not have to pay attention to extra values if you don't
care about them, but it has the disadvantage that error-checking similar to that
done for function calling is not present.

values &rest args Function
Returns multiple values, its arguments. This is the primitive function for
producing multiple values. It is legal to call values with no arguments; it
returns no values in that case.

values-list list Function
Returns multiple values, the elements of the list. (values-list '(ab c)) is
the same as (values 'a 'b 'c). list can be nil, the empty list, which causes
no values to be returned.

return and its variants can only be used within the do and prog special forms and
their variants. See the section "Iteration".

multiple-value (variable ...) form Special Form
multiple-value is a special form used for calling a function which is expected

26 EVAL Evaluation

Symbolics. Inc. February 1984

to return more than one value. form is evaluated, and the variables are set
(not lambda-bound) to the values returned by form. If more values are
returned than there are variables, then the extra values are ignored. If
there are more variables than values returned, extra values of nil are
supplied. If nil appears in the var-list, then the corresponding value is
ignored (you can't use nil as a variable.) Example:

(multiple-value (symbol already-there-p)
(intern •goo•))

In addition to its first value (the symbol), intern returns a second value,
which is t if the symbol returned as the first value was already interned, or
else nil if intern had to create it. So if the symbol goo was already known,
the variable already-there-p will be set tot, otherwise it will be set to nil.
The third value returned by intern will be ignored.

multiple-value is usually used for effect rather than for value; however, its
value is defined to be the first of the values returned by form.

multiple-value-bind (variable ...) form body... Special Form
This is similar to multiple-value, but locally binds the variables that receive
the values, rather than setting them, and has a body - a set of forms that
are evaluated with these local bindings in effect. First form is evaluated.
Then the variables are bound to the values returned by form. Then the
body forms are evaluated sequentially, the bindings are undone, and the
result of the last body form is returned.

multiple-value-list form Special Form
multiple-value-list evaluates form, and returns a list of the values it
returned. This is useful for when you do not know how many values to
expect. Example:

(setq a (multiple-value-list (intern "goo•)))
a => (goo nil l<Package User>)

This is similar to the example of multiple-value; a will be set to a list of
three elements, the three values returned by intern.

multiple-value-call function body... Special Form
multiple-value-call first evaluates function to obtain a function. It then
evaluates all the forms in body, gathering together all the values of the forms
(not just one value from each). It gives these values as arguments to the
function and returns whatever the function returns.

For example, suppose the function frob returns the first two elements of a
list of numbers:

(multiple-value-call I'+ (frob '(1 2 3)) (frob '(4 5 6)))
<=> (+ 1 2 4 5) => 12.

EVAL Evaluation 27

Symbolics, Inc. February 1984

multiple-value-progl first-form body... Special Form
multiple-value-progl is like progl, except that if its first form returns
multiple values, multiple-valtJe-progl returns those values.

Due to the syntactic structure of Lisp, it is often the case that the value of a certain
form is the value of a subform of it. For example, the value of a cond is the value
of the last form in the selected clause. In most such cases, ·if the subform produces
multiple values, the original form will also produce all of those values. This
passing-back of multiple values of course has no effect unless eventually one of the
special forms for receiving multiple values is reached. The exact rule governing
passing-back of multiple values is as follows:

If X is a form, and Y is a subform of X, then if the value of Y is unconditionally
returned as the value of X, with no intervening computation, then all the multiple
values returned by Y are returned by X. In all other cases, multiple values or only
single values may be returned at the discretion of the implementation; users should
not depend on whatever way it happens to work, as it might change in the future
or in other implementations. The reason we do not guarantee nontransmission of
multiple values is because such a guarantee would not be very useful and the
emciency cost of enforcing it would be high. Even setq'ing a variable to the result
of a form, then returning the value of that variable might be made to pass multiple
values by an optimizing compiler which realized that the setqing of the variable was
unnecessary.

Note that use of a form as an argument to a function never receives multiple values
from that form. That is, if the form (foo (bar)) is evaluated and the call to bar
returns many values, foo will still only be called on one argument (namely, the first
value returned), rather than being called on all the values returned. We choose not
to generate several separate arguments from the several values, because this would
make the source code obscure; it would not be syntactically obvious that a single
form ·does not correspond to a single argument. Instead, the first value of a form is
used as the argument and the remaining values are discarded. Receiving of multiple
values is done only with the above-mentioned special forms.

For clarity, descriptions of the interaction of several common special forms with
multiple values follow. This can all be deduced from the rule given above. Note well
that when it says that multiple values are not returned, it really means that they
might or might not be returned, and you should not write any programs that
depend on which way it works.

The body of a defun or a lambda, and variations such as the body of a function,
the body of a let, and so on, pass back multiple values from the last form in the
body.

eval, apply, funcall, and lexpr-funcall pass back multiple values from the function
called.

progn passes back multiple values from its last form. progv and progw do so also.

28 EVAL Evaluation

Symbolics, Inc. February 1984

progl and prog2, however, do not pass back multiple values (though
multiple-value-progl does).

Multiple values are passed back from the last subform of an and or or form, but
not from previous forms since the return is conditional. Remember that multiple
values are only passed back when the value of a subform is unconditionally returned
from the containing form. For example, consider the form (or (foo) (bar)). If foo
returns a non-nil first value, then only that value will be returned as the value of
the form. But if it returns nil (as its first value), then or returns whatever values
the eall to bar returns.

cond passes back multiple values from the last form in the selected clause, but not
if the clause is only one long (that is, the returned value is the value of the
predicate) since the return is conditional. This rule applies even to the last clause,
where the return is not really conditional (the implementation is allowed to pass or
not to pass multiple yalues in this case, and so you should not depend on what it
does). t should be used as the predicate of the last clause if multiple values are
desired, to make it clear to the compiler (and any human readers of the code!) that
the return is not conditional.

The variants of cond such as if, select, selectq, and dispatch pass back multiple
values from the last form in the selected clause.

The number of values returned by prog depends on the return form used to
return from the prog. (If a prog drops off the end it just returns a single nil.) If
return is given two or more subforms, then prog will return as many values as the
return has subforms. However, if the return has only one subform, then the
prog will return all of the values returned by that one subform.

do behaves like prog with respect to return. All the values of the last exit-form
are returned.

unwind-protect passes back multiple values from its protected form.

•catch does not pass back multiple values from the last form in its body, because it
is defined to return its own sec-0nd value to tell you whether the •catch form was
exited normally or abnormally. This is sometimes inconvenient when you want to
propagate back multiple values but you also want to wrap a •catch around some
forms. Usually people get around this problem by enclosing the •catch in a prog
and using return to pass out the multiple values, returning through the •catch.

EVAL Evaluation

Symbolics, Inc. February 1984

&

'

A

B

c

D

E

Index

#' special form 20

&
& keywords 11

'
Single quote f) 19

A

B

c

Actual parameters 11
apply function 11, 17
arg function 23

Binding 3

call function 19
*catch special form 25
comment special form 22

Effect of compiler on variables 3

D

E

Functions:
Introduction:

Variables:

Default forms of lambda-list parameters 11
defconst special form 9
defconstant special form 10
Defining special variables 9
defvar special form 9
destructurlng-blnd special form 8
do special form 25

Effect of compiler on variables 3
eval function 17
Evalhook 17
Evaluation 1
Evaluation 11
Evaluation 1
Evaluation 3

29

&

'

A

B

c

D

E

30 EVAL Evaluation

Symbolics. Inc. February 1984

F F F
false function 22

#'special form 20
*catch special form 25

comment special form 22
defconst special form 9

defconstant special form 10
defVar special form 9

destructurlng-blnd special form 8
do special form 25

function special form 20
keyword-extract special form 11

let special form 6
let* special form 6

let-globally special form 7
let-if special form 7

multiple-value~ special form 25
multiple-value-bind special form 26
multiple-value-call special form 26
multiple-value-list special form 26

multiple-value-prog1 special form 27
prog special form 25

prog1 speeial form 23
prog2 special form 23
progn special form 22
progv special form 7
progw special form 8
psetq special form 5
quote special form 19
return special form 25

setq special form 5
unwind-protect special form 25

Formal parameters 11
Some Functions and Special Forms 17

Defaun forms of lambda-list parameters 11
Free reference 3
funcall function 17

apply function 11, 17
arg function 23
call function 19

eval function 17
false function 22

funcall function 17
Ignore function 22

lexpr-funcall function 18
lexpr-send function 18

listlfy function 24
send function 18

setarg function 23
true function 22

values function 25
values-list function 25

function special form 20
&functional keyword 20

Some Functions and Special Forms 17
Functions that return muttiple values 25
Functions: Evaluation 11

EVAL Evaluation 31

Symbolics. Inc. February 1984

G G G
Global variables 3

I I
Ignore function 22
Introduction: Evaluation

K K K
:optional keyword 19

:spread keyword 19
&functional keyword 20

&optional keyword 11
&rest keyword 11

Keyword parameters 11
Keyword symbols 11
keyword-extract special form 11

& keywords 11

L L L
Lambda list 11

Variables in lambda lists 11
Lambda symbol 11
Lambda-binding 3
Lambda-expression 11

Default forms of lambda-list parameters 11
lambda-list-keywords symbol 11
let special form 6
let* special form 6
let-globally special form 7
let-globally-If macro 7
let-if special form 7
lexpr-funcall function 18
lexpr-send function 18
Lexprs 11, 17

Lambda list 11
llstlfy function 24

Variables in lambda lists 11
Local variable 3
Lsubrs 11

M M M
let-globally-if macro 7

Send message to self 18
Sending messages 18

Multiple Values 25
Functions that return multiple values 25

multiple-value special form 25
multiple-value-bind special form '26
multiple-value-call special form 26
multlple-value-llst special form 26
multlple-value-prog1 special form 27

32 EVAL Evaluation

Symbolics. Inc. February 1984

0 0 0
&optional keyword 11
:optional keyword 19
Optional parameters 11

p p p
Parameters 11

Actual parameters 11
Default forms of lambda-list parameters 11

Formal parameters 11
Keyword parameters 11
Optional parameters 11

Positional parameters 11
Required parameters 11

Rest parameters 11
Positional parameters 11
prog special form 25
prog1 special form 23
prog2 special form 23
progn special form 22
progv special form 7
progw special form 8
psetq special form 5

Q Q Q
Single quote n 19

quote special form 19

R R R
Free reference 3

Required parameters 11
&rest keyword 11
Rest parameters 11

Functions that return multiple values 25
return special form 25

s s s
Send message to self 18

send function 18
Send message to self 18
Sending messages 18
aetarg function 23
setq special form 5
Setting variables 3
Single quote (') 19
Some Functions and Special Forms 17

#' special form 20
*catch special form 25

comment special form 22
defconst special form 9

defconstant special form 10

EVAL Evaluation 33

Symbolics, Inc. February 1984

defvar special form 9
destructurlng-blnd special form 8

do special form 25
function special form 20

keyword-extract special form 11
let special form 6

let* special form 6
let-globally special form 7

let-If special form 7
muttlple-value special form 25

muttlple-value-blnd special form 26
muttlple-value-call special form 26
muttlple-value-llst special form 26

muttlple-value-prog1 special form 27
prog special form 25

prog1 special form 23
prog2 special form 23
progn special form 22
progv special form 7
progw special form 8
psetq special form 5
quote special form 19
return special form 25

setq special form 5
unwind-protect spatial form 25

Some Functions and Special Forms 17
Special variables 3

Defining special variables 9
:spread keyword 19
Supplied-p variable 11

Lambda symbol 11
lambda-list-keywords symbol 11

Keyword symbols 11

T T T
Functions that return multiple values 25

true function 22

u u u
Unbindings 3
unwind-protect special form 25

v v v
Functions that return multiple values 25

Multiple Values 25
values function 25
values-list function 25

Local variable 3
Supplied-p variable 11

Defining special variables 9
Effect of compiler on variables 3

Global variables 3
Setting variables 3
Special variables 3

34 EVAL Evaluation

Symbolics. Inc. February 1984

Variables In lambda lists 11
Varlables: Evaluation 3

sy111bolics ™

FLOW Flow of Control

Cambridge, Massachusetts

Flow of Control
990045

March 1984

This document corresponds to Rel._ 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained in this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described in this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain In Symbolics, Inc. Nothing contained herein
implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of Cambridge,
Massachusetts.
All rights reserved. Printed in USA.
This document may not be reproduced in whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

FLOW Row of Control

Symbolics, Inc. March 1984

Table of Contents

Page

1. Introduction 1

2. Conditionals 3

3. Blocks and Exits 9

4. Transfer of Control 13

5. Iteration 15

6. Nonlocal Exits 25

7. Mapping 31

8. The Loop Iteration Macro 35

8.1 Introduction 35
8.2 Clauses 36

8.2.1 Iteration-driving Clauses 37
8.2.2 Bindings 40
8.2.3 Entrance and Exit 42.
8.2.4 Side Effects 42
8.2.5 Values 42
8.2.6 Endtests 44
8.2. 7 Aggregated Boolean Tests 45
8.2.8 Conditionalization 45
8.2.9 Miscellaneous Other Clauses 47

8.3 Loop Synonyms 48
8.4 Data Types 48
8.5 Destructuring 49
8.6 The Iteration Framework 51
8.7 Iteration Paths 52

8. 7.1 Loop Iteration Over Hash Tables 54
8. 7 .2 Predefined Paths 54
8. 7.3 Defining Paths 56

Index 81

FLOW Row of Control 1

Symbolics, Inc. March 1984

1. Introduction

Lisp provides a variety of structures for flow of control.

Function application is the basic method for construction of programs. Operations
are written as the application of a function to its arguments. Usually, Lisp programs
are written as a large collection of small functions, each of which implements a
simple operation. These functions operate by calling one another, and so larger
operations are defined in terms of smaller ones.

A function may always call itself in Lisp. The calling of a function by itself is
known as recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between
repetitions) is called iteration, and is provided as a basic control structure in most
languages. The do statement of PIJI, the for statement of ALG01160, and so on
are examples of iteration primitives. Lisp provides two general iteration facilities: do
and loop, as well as a variety of special-purpose iteration facilities. (loop is
sufficiently complex that it is explained in its own chapter later in this document.
See the section "The Loop Iteration Macro".) There is also a vecy general construct
to allow the traditional "goto" control structure, called prog.

A conditional construct is one that allows a program to make a decision, and do one
thing or another based on some logical condition. Lisp provides the simple one-way
conditionals and and or, the simple two-way conditional if, and more general multi
way conditionals such as cond and selectq. The choice of which form to use in
any particular situation is a matter of personal taste and style.

There are some nonlocal exit control structures, analogous to the leave, exit, and
escape constructs in many modem languages. The general ones are catch and
throw; there is- also return and its variants, used for exiting the iteration
constructs do, loop, and prog.

Zetalisp also provides a coroutine capability and a multiple-process facility. See the
section "Stack Groups". See the document Processes. There is also a facility for
generic function calling using message passing. See the document Objects, Message
Passing, and Flavors.

2 FLOW Row of Control

Symbolics. Inc. March 1984

FLOW Row of Control 3

Symbolics, Inc. March 1984

2. Conditionals

if Special Form
if is the simplest conditional form. The "if-then" form looks like:

c if predicate-form then-form>

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, nil is returned.

In the "if-then-else" form, it looks like:

(if predicate-form then-form else-form)

predicate-form is evaluated, and if the result is non-nil, the then-form is
evaluated and its result is returned. Otherwise, the else-form is evaluated
and its result is returned.

If there are more than three subforms, if assumes you want more than one
else-form; they are evaluated sequentially and the result of the last one is
returned, if the predicate returns nil There is disagreement as to whether
this constitutes good programming style or not.

cond Special Form
The cond special form consists of the symbol cond followed by several
clauses. Each clause consists of a predicate form, called the antecedent,
followed by zero or more consequent forms.

(cond (antecedent consequent consequent . .. >
(antecedent)
C antecedent consequent ... >
. . .)

The idea is that each clause represents a case that is selected if its
antecedent is satisfied and the antecedents of all preceding clauses were not
satisfied. When a clause is selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent
of the current clause is evaluated. If the result is nil, cond advances to the
next clause. Otherwise, the cdr of the clause is treated as a list of
consequent forms that are evaluated in order from left to right. After
evaluating the consequents, cond retu~s without inspecting any remaining
clauses. The value of the cond special form is the value of the last
consequent evaluated, or the value of the antecedent if there were no
consequents in the clause. If cond runs out of clauses, that is, if every
antecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil Example:

4

(cond ((zerop x).
(+ y 3))

((null y)
(setq y 4)
(cons x z))

(z)

(t
105)

FLOW Row of Control

Symbolics, Inc. March 1984

;First clause:
; (zerop x) is .the antecedent.
; (+ y 3) is the consequent.
;A clause with 2 consequents:
; this
; and this.
;A clause with no consequents: the antecedent is
; just z. If z is non-nil, it will be returned.
;An antecedent of t
; is always satisfied.
;This is the end of the cond.

cond-every Special Form
cond-every has the same syntax as cond, but executes evecy clause whose
predicate is satisfied, not just the first. If a predicate is the symbol
otherwise, it is satisfied if and only if no preceding predicate is satisfied.
The value returned is the value of the last consequent form in the last clause
whose predicate is satisfied. Multiple values are not returned.

and form... Special Form
and evaluates the forms one at a time, from left to right. If any form
evaluates to nil, and immediately returns nil without evaluating the
remaining forms. If all the forms evaluate to non-nil values, and returns
the value of the last form.

and can be used in two different ways. You can use it as a logical and
function, because it returns a true value only if all of its arguments are true.
So you can use it as a predicate:

(if (and socrates-is-a-person
all-people-are-mortal)

(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do:
(if (and (boundp 'x)

(eq x 'foo))
(setq y 'bar))

knowing that the x in the eq form will not be evaluated if x is found to be
unbound.

You can also use and as a simple conditional form:
(and (setq temp (assq x y))

(rplacd temp z))

(and bright-day
glorious-day
(princ "It is a bright and glorious day."))

Note: (and)=> t, which is the identity for the and operation.

FLOW Row of Control 5

Symbolics, Inc. March 1984

or form... Special Form
or evaluates the forms one by one from left to right. H a form evaluates to
nil, or proceeds to evaluate the next form. H there are no more forms, or
returns nil. But if a form evaluates to a non-nil value, or immediately
returns that value without evaluating any remaining forms.

As with and, or can be used either as a logical or function, or as a
conditional.

(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."))

Note: (or) => nil, the identity for this operation.

when test body... Macro
The forms in body are evaluated when test returns non-null. In that case, it
returns the value(s) of the last form evaluated. When test returns nil, when
returns nil.

(when (eq 1 1) (setq ab) "foo") =>
"foo"
(when (eq 1 2) (setq a b) "foo") =>
NIL

When body is empty, when always returns nil.

unless test body... Macro
The forms in body are evaluated when test returns nil. It returns the value
of the last form evaluated. When test returns something other than nil,
unless returns nil.

(unless (eq 1 1) (setq ab) "foo") =>
NIL
(unless (eq 1 2) (setq a b) "foo") =>
"foo"

When body is empty, unless always returns nil.

selectq Special Form
selectq is a conditional that chooses one of its clauses to execute by
comparing the value of a form against various constants, which are typically
keyword symbols. Its form is as follows:

(selectq key-form
(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
...)

The first thing selectq does is to evaluate key-form; call the resulting value
key. Then selectq considers each of the clauses in tum. H key matches the

6 FLOW Row of Control

Symbolics. Inc. March 1984

clause's test, the consequents of this clause are evaluated, and selectq
returns the value of the last consequent. If there are no matches, selectq
returns nil.

A test may be any of the following:

A symbol If the key is eq to the symbol, it matches.

A number If the key is eq to the number, it matches. Only small
numbers <fixnums) will work.

A list If the key is eq to one of the elements of the list, then it
matches. The elements of the list should be symbols or
fixnums.

t or otherwise The symbols t and otherwise are special keywords that
match anything. Either symbol may be used; t is mainly
for compatibility with Maclisp's caseq construct. To be
useful, this should be the last clause in the selectq.

Note that the tests are not evaluated; if you want them to be evaluated use
select rather than selectq. Example:

(selectq x
(foo (do-this))
(bar (do-that))
((baz quux mum) (do-the-other-thing))
(otherwise (ferror nil "Never heard of -s• x)))

is equivalent to:
(cond ((eq x 'foo) (do-this))

((eq x 'bar) (do-that))
((memq x '(baz quux mum)) (do-the-other-thing))
(t (ferror nil •Never heard of -S" x)))

Also see defselect, a special form for defining a function whose body is like a
selectq.

select Special Form
select is the same as selectq, except that the elements of the tests are
evaluated before they are used.

This creates a syntactic ambiguity: if (bar baz) is seen the first element of a
clause, is it a list of two forms, or is it one form? select interprets it as a
list of two forms. If you want to have a clause whose test is a single form,
and that form is a list, you have to write it as a list of one form. Example:

FLOW Row of Control

Symbolics, Inc. March 1984

(select (frob x)
(foo 1)
((bar baz) 2)
(((current-frob)) 4)
(otherwise 3))

is equivalent to:
(let ((var (frob x)))

(cond ((eq var foo) 1)
((or (eq var bar) (eq var baz)) 2)
((eq var (current-frob)) 4)
(t 3)))

7

selector Special Form
selector is the same as select, except that you get to specify the function
used for the comparison instead of eq. For example:

(selector (frob x) equal
(('(one • two)) (frob-one x))
(('(three • four)) (frob-three x))
(otherwise (frob-any x)))

is equivalent to:

(let ((var (frob x)))
(cond ((equal var '(one • two)) (frob-one x))

((equal var '(three • four)) (frob-three x))
(t (frob-any x))))

typecase form clauses... Special Form
typecase is a special form for selecting various forms to be evaluated
depending· on the type of some object. It is something like select. A
typeca8e form looks like:

(typecase form
(types consequent consequent ... >
(types consequent consequent ...)

form is evaluated, producing an object. typecase examines each clause in
sequence. types in each clause is either a single type (if it is a symbol) or a
list of types. If the object is of that type, or of one of those types, then the
consequents are evaluated and the result of the last one is returned.
Otherwise, typecase moves on to the next clause. As a special case, types
can be otherwise; in this case, the clause is always executed, so this should
be used only in the last clause. For an object to be of a given type means
that if typep is applied to the object and the type, it returns t. That is, a
type is something meaningful as a second argument to typep. Example:

8

(defun tell-about-car (x)
(typecase (car x)

(:fixnum "The car is a number.•)
((:string :symbol) •rhe car i,s a name.•)
(otherwise "I don't know.•)))

FLOW Row of Control

Symbolics. Inc. March 1984

(tell-about-car '(1 a)) => •The car is a number.•
(tell-about-car '(a 1)) => •rhe car is a name.•
(tell-about-car '("word" "more•)) => •rhe car is a name.•
(tell-about-car '(1.0)) =>
"I don't know.•

dispatch Special Fonn
(dispatch byte-specifier number clauses ...) is the same as select (not
selectq), but the key is obtained by evaluating ()db byte-specifier number).
byte-specifier and number are both evaluated. See the section "Byte
Manipulation Functions". Byte specifiers and ldb are explained in that
section. Example:

(princ (dispatch 0202 cat-type
(O "Siamese.")
(1 "~ersian.")

(2 "Alley.")
(3 (ferror nil

•-s is not a known cat type.•
cat-type))))

It is not necessary to include all possible values of the byte that will be
dispatched on.

selectq-every Special Fonn
selectq-every has the same syntax as selectq, but, like cond-every,
executes evecy selected clause instead of just the first one. If an otherwise
clause is present, it is selected if and only if no preceding clause is selected.
The value returned is the value of the last form in the last selected clause.
Multiple values are not returned. Example:

(selectq-every animal
((cat dog) (setq legs 4))
((bird man) (setq legs 2))
((cat bird) (put-in-oven animal))
((cat dog man) (beware-of animal)))

caseq ~reial~nn
The caseq special form is provided for Maclisp compatibility. It is exactly the
same as selectq. This is not perfectly compatible with Maclisp, because
selectq accepts otherwise as well as t where caseq would not accept
otherwise, and because Maclisp does some error checking that selectq does
not. Maclisp programs that use caseq will work correctly so long as they do
not use the symbol otherwise as the key.

FLOW Row of Control 9

Symbolics. Inc. March 1984

3. Blocks and Exits

block and return-from are the primitive special forms for premature exit from a
piece of code. block defmes a place that can be exited, and return-from transfers
control to such an exit.

block and return-from differ from catch and throw in their scoping rules. block
and return-from have lexical scope; catch and throw have dynamic scope. See the
section "Nonlocal Exits: Flow of Control".

block name form... Special Form
block evaluates each form in sequence and normally returns the (possibly
multiple) values of the last form. However, (return-from name value) or
one of its variants (a return or return-list form) might be evaluated during
the evaluation of some form. In that case, the (possibly multiple) values that
result from evaluating value are immediately returned from the innermost
block that has the same name and that lexically contains the return-from
form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside
the block itself (or inside a block that that block lexically contains), not inside
a function called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you
can use return-from to exit from them. These blocks are named nil unless
you specify a name explicitly.

For example, the following two forms are equivalent:

(cond ((predicate x)
(do-one-thing))

(t
(format t •The value of X is -s-x• x)
(do-the-other-thing)
(do-something-else-too)))

(block deal-with-x
(when (predicate x)

(return-from deal-with-x (do-one-thing)))
(format t •The value of X is -s-x• x)
(do-the-other-thing)
(do-something-else-too))

return-from name value... Special Form
return-from is the primitive special form for exiting from a block or a
construct like do or prog that establishes an implicit block around its body.

10 FLOW Row of Control

Symbolics, Inc. March 1984

The value subforms are optional. Any value forms are evaluated, and the
resulting values (possibly multiple, possibly none) are returned ·from the
innermost block that has the same name and that lexically contains the
return-from form. The returned values depend on how many value
subforms are provided:

value subforms

None

1

>1

This means that

Values returned from block

None

All values that result from evaluating the value
subform

One value from each value subform

(return-from name, forml form2 form3)

is the same as

(return-from name (values forml form2 form3))

but the latter form is the preferred way to return multiple values, for the
sake of both clarity and compatibility with Common Lisp.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside
the block itself (or inside a block that that block lexically contains), not inside
a function called from the block.

When a construct like do or an unnamed prog establishes an implicit block,
its name is nil. You can use either (return-from nil value ...) or the
equivalent (return value ...) to exit from such a construct.

The return-from form is unusual: It never returns a value itself, in the
conventional sense. It is not useful to write (setq a (return-from name 3)),
because when the return-from form is evaluated, the containing block is
immediately exited, and the setq never happens.

For an explanation of named dos and progs: See the special form
do-named.

Following is an example, returning a single value from an implicit block
named nil:

FLOW Row of Control

Symbolics. Inc. March 1984

(do ((xx (cdr x))
(n O (* n 2)))

((null x) n)
(cond ((atom (car x))

(setq n (1+ n)))
((memq (caar x) '(sys boom bleah))
(return-from n;1 n))))

n

Following is another example, returning multiple values. The function below
is like assq, but it returns an additional value, the index in the table of the
ent:ry it found:

(defun assqn (x table)
(do ((1 table (cdr 1))

(n O (1+ n)))

((nu 11 1) n i1)
(;f (eq (caar 1) x)

(return-from nil (values (car 1) n)))))

return value... Special Form
return can be used to exit from a construct like do or an unnamed prog
that establishes an implicit block around its body. In this case the name of
the block is nil, and (return value ...) is the same as
(return-from nil value ...). See the special form return-from.

In addition, break recognizes the typed-in form (return value) specially. If
this form is typed at a break, value is evaluated and returned as the value
of break. Only the result of the first value form is returned, but if this
form itself returns multiple values, they are all returned as the value of
break. That is, (return 'foo 'bar) returns only foo, but
(return (values 'foo 'bar)) returns both foo and bar. See the special
form break.

It is legal to write simply (return), which exits from the block without
returning any values. (return) inside a break loop causes break to return
nil

If not specially recognized by break and not inside a block, return signals
an error.

return-list list Function
return-list is an obsolete function supported for compatibility with earlier
releases. It is like return except that the block returns all of the elements
of list as multiple values. This means that

(return-list list)

is the same as

.(return (values-list list))

12 FLOW Row of Control

Symbolics. Inc. March 1984

but the latter form is the preferred way to return list elements as multiple
values from a block nruned nil. To direct the returned values to a nruned
block, use:

(return-from name (values-list list)).

FLOW Row of Control 13

Symbolics, Inc. March 1984

4. Transfer of Control

tagbody and go are the primitive special forms for unstructured transfer of control.
tagbody defines places that can receive a transfer of control, and go transfers
control to such a place.

tagbody tag-or-statement... Special Form
The body of a tagbody form is a series of tags or statements. A tag is a
symbol; a statement is a list. tagbody processes each element of the body in
sequence. It ignores tags and evaluates statements, discarding the results. If
it reaches the end of the body, it returns nil

If a (go tag) form is evaluated during evaluation of a statement, tagbody
searches its body and the bodies of any tagbody forms that lexically contain
it. Control is transferred to the innermost tag that is eq to the tag in the
go form. Processing continues with the next tag or statement that follows
the tag to which control is transferred.

The scope of the tags is lexical. That is, the go form must be inside the
tagbody construct itself (or inside a tagbody form that that tagbody
lexically contains), not inside a function called from the tagbody.

do, prog, and their variants use implicit tagbody constructs. You can
provide tags within their bodies and use go forms to transfer control to the
tags.

For example, the following two forms are equivalent:

(dotimes (i n) (print i))

(let ((i O))
(when (plusp n)

(tagbody
loop
(print i)
(setq i (1+ i))
(when (< i n) (go loop)))))

go tag Special Form
go is the primitive special form for transferring control within a tagbody
form or a construct like do or prog that uses an implicit tagbody.

The tag must be a symbol. It is not evaluated. go transfers control to the
tag in the body of the tagbody that is eq to the tag in the go form. If the
body has no such tag, the bodies of any lexically containing tagbody forms
are examined as well. If no tag is found, an error is signalled.

The scope of tag is lexical. That is, the go form must be inside the

14 FLOW Row of Control

Symbolics, Inc. March 1984

tagbody construct itself (or inside a tagbody form that that tagbody
lexically contains), not inside a function called from the tagbody.

Example:

(prog (x y z)
(setq x some frob>

loop
do something
(i f some predicate (go endtag))
do something more
(if (minusp x) (go loop))

end tag
(return z))

FLOW Row of Control 15

Symbolics, Inc. March 1984

5. Iteration

do Special Fonn
The do special form provides a simple generalized iteration facility, with an
arbitrary number of "index variables" whose values are saved when the do is
entered and restored when it is left, that is, they are bound by the do. The
index variables are used in the iteration performed by do. At the beginning,
they are initialized to specified values, and then at the end of each trip
around the loop the values of the index variables are changed according to
specified rules. do allows you to specify a predicate that determines when
the iteration will terminate. The value to be returned as the result of the
form may, optionally, be specified.

do comes in two varieties.

The more general, so-called "new-style" do looks like:

(do ((var init repeat) •••)
(end-test exit-fonn ... >
body ...)

The first item in the form is a list of zero or more index variable specifiers.
Each index variable specifier is a list of the name of a variable var, an initial
value form init, which defaults to nil if it is omitted, and a repeat value form
repeat. If repeat is omitted, the var is not changed between repetitions. If
init is omitted, the var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather
than a list. In this case, the variable has an initial value of nil, and is not
changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of
the first iteration, all the init forms are evaluated, then the vars are bound
to the values of the init forms, their old values being saved in the usual way.
Note that the init forms are evaluated before the vars are bound, that is,
lexically outside of the do. At the beginning of each succeeding iteration
those vars that have repeat forms get set to the values of their respective
repeat forms. Note that all the repeat forms are evaluated before any of the
vars is set.

The second element of the do-form is a list of an end-testing predicate form
end-test, and zero or more forms, called the exit-fonns. This resembles a
cond clause. At the beginning of each iteration, after processing of the
variable specifiers, the end-test is evaluated. If the result is nil, execution
proceeds with the body of the do. If the result is not nil, the exit-fonns are
evaluated from left to right and then do returns. The value of the do is the
value of the last exit-fonn, or nil if there were no exit-fonns (not the value of
the end-test as you might expect by analogy with cond).

16 FLOW Row of Control

Symbolics, Inc. March 1984

Note that the end-test gets evaluated before the first time the body is
evaluated. do first initializes the variables from the init forms, then it
checks the end-test, then it processes the body, then it deals with the repeat
forms, then it tests the end-test again, and so on. If the end-test returns a
non-nil value the first time, then the body will never be processed.

If the second element of the form is nil, there is no end-test nor exit-fonns,
and the body of the de> is executed only once. In this type of do it is an
error to have repeats. This type of do is no more powerful than let; it is
obsolete and provided only for Maclisp compatibility.

If the second element of the form is (nil), the end-test is never true and
there are no exit-forms. The body of the do is executed over and over. The
infinite loop can be terminated by use of return or throw.

If a return special form is evaluated inside the body of a do, then the do
immediately stops, unbinds its- variables, and returns the values given to
return. See the special form return. return and its variants are explained
in more detail in that section. go special forms and prog-tags can also be
used inside the body of a do and they mean the same thing that they do
inside prog forms, but we discourage their use since they complicate the
control structure in a hard-to-understand way.

The other, so-called "old-style" do looks like:

(do var init repeat end-test body . ..)

The first time through the loop var gets the value of the init form; the
remaining times through the loop it gets the value of the repeat form, which
is reevaluated each time. Note that the init form is evaluated before var is
bound, that is, lexically outside of the do. Each time around the loop, after
var is set, end-test is evaluated. If it is non-nil, the do finishes and returns
nil. If the end-test evaluated to nil, the body of the loop is executed. As
with the new-style do, return and go may be used in the body, and they
have the same meaning.

Examples of the older variety of do:

(setq n (array-length foo-array))
(do i O (1+ i) (= i n)

(aset O foo-array i)) ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f (car zz)))))

this applies f to each element of x
continuously until f returns zero.
Note that the do has no body.

return forms are often useful to do simple searches:

FLOW Row of Control 17

Symbolics, Inc. March 1984

(do i O (1+ i) (= i n) ; Iterate over the length of foo-array.
(and (= (aref foo-array i) 5) If we find an element that

equals 5.
(return i))) then return its index.

Examples of the new form of do:

(do ((i O (1+ i)) ; This is just the same as the above example.
(n (array-length foo-array)))

((= i n)) ; but written as a new-style do.
(aset O foo-array i)) ; Note how the setq is avoided.

(do ((z list (cdr z)) ; z starts as list and is cdr'ed each time.
Cy other-list) ; y starts as other-list. and is unchanged by the do.
(x) ; x starts as nil and is not changed by the do.
w) ; w starts as nil and is not changed by the do.

(nil) ; The end-test is nil. so this is an infinite loop.
body) Presumably the body uses retum somewhere.

The construction:

(do ((x e (cdr x))
(oldx x x))

((null x))

body)

exploits parallel assignment to index variables. On the first iteration, the
value of oldx is whatever value x had before the do was entered. On
succeeding iterations, olds contains the value that x had on the previous
iteration.

In either form of do, the body may contain no forms at all. Very often an
iterative algorithm can be most clearly expressed entirely in the repeats and
exit-forms of a new-style do, and the body is empty.

The following is like (mapl ist 'f x y):

(do ((xx (cdr x))
(y y (cdr y))
(z nil (cons Cf x y) z)))

((or (null x) (null y))
(nreverse z))

)

See the section "Mapping".

;exploits parallel assignment.

;typical use of nreverse.
;no do-body required.

do• Special Form
do• is just like do except that the variable clauses are evaluated sequentially
rather than in parallel. When a do starts, all the initialization forms are
evaluated before any of the variables are set to the results; when a do•
starts, the first initialization form is evaluated, then the first variable is set

18 FLOW Row of Control

Symbolics, Inc. March 1984

to the result, then the second initialization form is evaluated., and so on.
The stepping forms work analogously.

Also see loop, a general iteration facility based on a keyword syntax rather than a
list-structure syntax.

do-named Special Form
Sometimes one do is contained inside the body of an outer do. The return
function always returns from the innermost surrounding do, but sometimes
you want to return from an outer do while within an inner do. You can do
this by giving the outer do a name. You use do-named instead of do for
the outer do, and use return-from, specifying that name, to return from
the do-named.

The syntax of do-named is like do except that the symbol do is immediately
followed by the name, which should be a symbol. Example:

·(do-named george ((a 1 (1+ a))
Cd 'foo))

((> a 4) 7)

(do ((c b (cdr c)))

((null c))

(return-from george (cons b d))
...))

If the symbol t is used as the name, it is made "invisible" to returns; that
is, returns inside that do-named return to the next outermost level whose
name is not t. (return•from t ...)returns from a do-named named t. You
can also make a do-named invisible to returns by including immediately
inside it the form (declare (invisible-block t)). This feature is not
intended to be used by user-written code; it is for macros to expand into.

If the symbol nil is used as the name, it is as if this were a regular do. Not
having a name is the same as being named nil.

progs and loops can have names just as dos can. Since the same functions
are used to return from all of these forms, all of these names are in the
same namespace; a return returns from the innermost enclosing iteration
form, no matter which of these it is, and so you need to use names if you
nest any of them within any other and want to return to an outer one from
inside an inner one.

do*-named Special Form
do*-named is just like do-named except that the variable clauses are
evaluated sequentially, rather than in parallel. See do•.

FLOW Row of Control 19

Symbolics, Inc. March 1984

dotimes (index count) body... Special Fonn
dotimes is a convenient abbreviation for the most common integer iteration.
dotimes performs body the number of times given by the value of count,
with index bound to 0, 1, and so forth on successive iterations. Example:

(dotimes (i (// m n))
(frob i))

is equivalent to:
(do ((i O (1+ i))

(count (// m n)))
((~ i count))

(frob i))

except that the name count is not used. Note that i takes on values
starting at 0 rather than 1, and that it stops before taking the value
(/ / m n) rather than after. You can use return and go and prog-tags
inside the body, as with do. dotimes forms return nil unless returned from
explicitly with return. For example:

(dotimes (i 5)
(if (eq (aref a i) 'foo)

(return i)))

This form searches the array that is the value of a, looking for the symbol
foo. It returns the fixnum index of the first element of a that is foo, or
else nil if none of the elements are foo.

dolist (item list) body... Special Fonn
dolist is a convenient abbreviation for the most common list iteration.
dolist performs body once for each element in the list which is the value of
list, with item bound to the successive elements. Example:

(do1ist (item (frobs foo))
(mung item))

is equivalent to:
(do ((1st (frobs foo) (cdr 1st))

(item))
((null 1st))

(setq item (car 1st))
(mung item))

except that the name 1st is not used. You can use return and go and
prog-tags inside the body, as with do. dolist forms return nil unless
returned from explicitly with return.

keyword-extract Special Fonn
keyword-extract is an aid to writing functions that take keyword
arguments in the standard fashion. The form:

20 FLOW Row of Control

Symbolics, Inc. March 1984

(keyword-extract key-list iteration-var
keywords flags other-clauses . .. >

will parse the keywords out into local variables of the function. key-list is a
form that evaluates to the list of keyword arguments; it is generally the
function's &rest argument. iteration-var is a variable used to iterate over
the list; sometimes other-clauses will use the form

C car C setq iteration-var C cdr iteration-var)))

to extract the next element of the list. (Note that this is not the same as
pop, because it does the car after the cdr, not before.)

keywords defines the symbols that are keywords to be followed by an
argument. Each element of keywords is either the name of a local variable
that receives the argument and is also the keyword, or a list of the keyword
and the variable, for use when they are different or the keyword is not to go
in the keyword package. Thus, if keywords is (foo (ugh bletcb) bar) then
the keywords recognized will be :foo, ugh, and :bar. If :foo is specified its
argument will be stored into foo. If :bar is specified its argument will be
stored into bar. If ugh is s~ified, its argument will be stored into bletcb.

Note that keyword-extract does not bind these local variables; it assumes
you will have done that somewhere else in the code that contains the
keyword-extract form.

flags defines the symbols that are keywords not followed by an argument. If
a flag is seen its corresponding variable is set tot. <You are assumed to have
initialized it to nil when you bound it with let or &a111) As in keywords,
an element of flags may be either a variable from which the keyword is
deduced, or a list of the keyword and the variable.

If there are any other-clauses, they are selectq clauses selecting on the
keyword being processed. These clauses are for handling any keywords that
are not handled by the keywords and flags elements. These can be used to
do special processing of certain keywords for which simply storing the
argument into a variable is not good enough. After the other-clauses there
will be an otherwise clause to complain about any undefined keywords found
in key-list.

You can also use the &key lambda-list keyword to create functions that take
keyword arguments. See the section "Functions: Evaluation".

prog Special Form
prog is a special form that provides temporary variables, sequential evaluation
of forms, and a "goto" facility. A typical prog looks like:

FLOW Row of Control

Symbolics, Inc. March 1984

(prog (varl var2 (var3 init3> var4 (vars init5»
tagl

statementl
statement2

tag2
statement3

21

The first subform of a prog is a list of variables, each of which may
optionally have an initialization form. The first thing evaluation of a prog
form does is to evaluate all of the init forms. Then each variable that had
an init form is bound to its value, and the variables that did not have an init
form are bound to nil. Example:

(prog ((at) b (c 5) (d (car '(zz • pp))))
<body>
)

The initial value of a is t, that of b is nil, that of e is the fimum 5, and
that of d is the symbol zz. The binding and initialization of the variables is
done in parallel; that is, all the initial values are computed before any of the
variables are changed. pro .. is the same as prog except that this
initialization is sequential rather than parallel.

The part of a prog after the variable list is called the body. Each element of
the body is either a symbol, in which case it is called a tag, or anything else
(almost always a list), in which case it is called a statement.

After prog binds the variables, it processes each form in its body
sequentially. tags are skipped over. statements are evaluated, and their
returned values discarded. If the end of the body is reached, the prog
returns nil. However, two special· forms may be used in prog bodies to alter
the flow of control. If (return x) is evaluated, prog stops processing its
body, evaluates x, and returns the result. If (go tag) is evaluated, prog
jumps to the part of the body labelled with the tag, where processing of the
body is continued. tag is not evaluated. return and go and their variants
are explained fully below.

The compiler requires that go and return forms be lexically within the
scope of the prog; it is not possible for a function called from inside a prog
body to return to the prog. That is, the return or go must be inside the
prog itself, not inside a function called by the prog. (This restriction
happens not to be enforced in the interpreter, but since all programs are
eventually compiled, the convention should be adhered to. The restriction
will be imposed in future implementations of the interpreter.)

See also the do special form, which uses a body similar to prog. The do,
catch, and throw special forms are included in Zetalisp as an attempt to

22 FLOW Row of Control

Symbolics, · /nc. ·March 1984

encourage goto-less programming style, which often leads to more readable,
more easily maintained code. You should use these forms instead of prog
wherever reasonable.

If the first subform of a prog is a non-nil symbol (rather than a variable
list), it is the name of the prog, and return-from can be used to return
from it. See the special form do-named Example:

(prog (x y z) ;x, y, z are prog variables - temporaries.
(setq y (car w) z (cdr w)) ;w is a free variable.

loop
(cond ((null y) (return x))

((null z) (go err)))
rejoin

err

(setq x (cons (cons (car y) (car z))
x))

(setq y (cdr y)
z (cdr z))

(go loop)

(break are-you-sure? t)
(setq z y)
(go rejoin))

prog, do, and their variants are effectively constructed out of let, block,
and tagbody forms. prog could have been defmed as the following macro
(except for processing of local declare, which has been omitted for clarity):

(defmacro prog x
(let ((block-name (and (symbolp (car x))

(neq (car x) nil)
(pop x)))

(variables (car x))
(tagbody (cdr x)))

(if b 1 ock-name
'(block ,block-name

(block ni 1
(let ,variables

(tagbody ,ltagbody))))
'(block ni 1

\
\

(let ,variables
(tagbody ,@tagbody))))))

pro~ Special Form
The prog4' special form is almost the same as prog. The only difference is
that the binding and initialization of the temporary variables is done
sequentially, so each one can depend on the previous ones. For example:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

FLOW Row of Control

Symbolics, Inc. March 1984

A variant of defun that incorporates a prog into the function body is described
elsewhere: See the macro defunp.

23

24 FLOW Flow of Control

Symbolics, Inc. March 1984

FLOW Row of Control 25
Symbolics, Inc. March 1984

6. Nonlocal Exits

catch and throw are special forms used for nonlocal exits. eatch evaluates forms;
if a throw occurs during the evaluation, eatch immediately returns (possibly
multiple) values specified by throw.

catch and throw differ from block and tagbody in their scoping rules. catch and
throw have dynamic scope; block and tagbody have lexical scope. See the section
"Blocks and Exits".

•catch and •throw are supported for compatibility with earlier releases. catch can
be used with •throw, and •catch can be used with throw. If control exits
normally, the returned values depend on whether catch or •catch is used. If
control exits abnormally, the returned values depend on whether throw or •throw
is used.

catch tag body... Special Form
catch is used with throw for nonlocal exits. catch first evaluates tag to
obtain an object that is the "tag" of the catch. Then the body forms are
evaluated in sequence, and catch returns the (possibly multiple) values of the
last form in the body.

However, a throw or •throw form might be evaluated during the evaluation
of one of the forms in body. In that case, if the throw "tag" is eq to the
catch "tag" and if this catch is the innermost catch with that tag, the
evaluation of the body is immediately aborted, and catch returns values
specified by the throw or •throw form.

If the catch exits abnormally because of a throw form, it returns the
(possibly multiple) values that result from evaluating throw's second subform.
If the catch exits abnormally because of a •throw form, it returns two
values: the first is the result of evaluating *throw's second subform, and
the second is the result of evaluating •throw's first subform (the tag thrown
to).

On the LM-2 only, •throw and ~wind-stack cause the catch to return
two additional values. If •throw is used, the third and fourth values are nil.
If *unwind-stack is used, the third and fourth values are the third and
fourth arguments to •unwind-stack (the active-frame-count and the action).

(catch 'foo form) catches a (throw 'foo form) but not a
(throw 'bar form). It is an error if throw is done when no suitable catch
exists.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

26 FLOW Row of Control

Symbolics, Inc. March 1984

On the LM-2 only, the values t and nil for tag are special: A catch whose
tag is one of these values catches throws to any tag. These are for internal
use only: unwind-protect uses t, and catch-all uses nil. The only
difference between t and nil is in the enor checking; t implies that after a
"cleanup handler" is executed control will be thrown again to the same tag,
so it is an error if a specific catch for this tag does not exist higher up the
stack. With nil, the error check is not done.

Example:

(catch 'negative
(mapcar (function (lambda (x)

y))

(cond ((minusp x)
(throw 'negative x))

(t (f x)))))

which returns a list of f of each element of y if they are all positive,
otherwise the first negative member. of y.

throw tag form Special Form
throw is used with catch to make nonlocal exits. It first evaluates tag to
obtain an object that is the "tag" of the throw. It next evaluates form and
saves the (possibly multiple) values. It then finds the innermost catch or
•catch whose "tag'' is eq to the "tag" that results from evaluating tag. It
causes the catch or •catch to abort the evaluation of its body forms and to
return all values that result from evaluating form. In the process, dynamic
variable bindings are undone back to the point of the catch, and any
unwind-protect cleanup forms are executed. An error is signalled if no
suitable catch is found.

The scope of the tags is dynamic. That is, the throw does not have to be
lexically within the catch form; it is possible to throw out of a function that
is called from inside a catch form.

On the 3600, the value of tag cannot be the symbol
sys:unwind-protect-tag; that is reserved for internal use. On the LM-2,
the values t, nil, and 0 for tag are reserved for internal use. At present you
cannot use t and nil for tag on the 3600; this will be changed in a future
release.

unwind-protect protected-form cleanup-form... Special Form
Sometimes it is necessary to evaluate a form and make sure that certain side
effects take place after the form is evaluated; a typical example is:

(progn
(turn-on-water-faucet)
(hairy-function 3 nil 'foo)
(turn-off-water-faucet))

FLOW Row of Control 27

Symbolics, Inc. March 1984

The nonlocal exit facility of Lisp creates a situation in which the above code
will not work, however: if hairy-function should do a throw to a catch
that is outside of the progn form, then (tum-off-water-faucet) will never
be evaluated (and the faucet will presumably be left running). This is
particularly likely if bairy .. funetion gets an error and the user tells the
Debugger to give up and flush the computation.

In order to allow the above program to work, it can be rewritten using
unwind-protect as follows:

(unwind-protect
(progn (turn-on-water-faucet)

(hairy-function 3 nil 'foo))
(turn-off-water-faucet))

If hairy-function does a throw that attempts to quit out of the evaluation
of the unwind-protect, the (turn-off-water-faucet) form will be evaluated
in between the time of the throw and the time at which the catch returns.
If the progn returns normally, then the (tum-off-water-faucet) is
evaluated, and the unwind-protect returns the result of the progn.

The general form of unwind-protect looks like:

(unwind-protect protected-form
cleanup-forml
cleanup-form2
...)

protected-form is evaluated, and when it returns or when it attempts to quit
out of the unwind-protect, the cleanup-forms are evaluated.
unwind-protect catches exits caused by return-from or go as well as those
caused by throw. The value of the unwind-protect is the value of
protected-form. Multiple values returned by the protected-form ·are propagated
back through the unwind-protect.

The cleanup forms are run in the variable-binding environment that you
would expect: that is, variables bound outside the scope of the
unwind-protect special form can be accessed, but variables bound inside the
protected-form cannot be. In other words, the stack is unwound to the point
just outside the protected-form, then the cleanup handler is run, and then
the stack is unwound some more.

•catch tag body... Special Form
•catch is an obsolete version of catch that is supported for compatibility
with earlier releases. It is equivalent to catch except that if •catch exits
normally, it returns only two values: the first is the result of evaluating the
last form in the body, and the second is nil. If •catch exits abnormally, it
returns the same values as catch when catch exits abnormally: that is, the
returned values depend on whether the exit results from a throw or a
•throw. See the special form catch.

28 FLOW Row of Control

Symbolics. Inc. March 1984

•throw tag form Function
•throw is an obsolete version of throw that is supported for compatibility
with earlier releases. It is equivalent to throw except that it causes the
catch or •catch to return only two values: the first is the result of
evaluating form, and the second is the result of evaluating tag (the tag
thrown to).

On the LM-2 only, •throw causes the catch or •catch to return two
additional values. The third and fourth values are nil.

See the special form throw.

•unwind-stack tag value active-frame-count action Function
(LM-2 only) •unwind-stack is a generalization of *throw provided for
program-manipulating programs such as the Debugger.

tag and value are the same as the corresponding arguments to •throw.

A tag oft invokes a special feature whereby the entire stack is unwound,
and then the function action is ealled. During this process unwind-protects
receive control, but catch-alls do not. This feature is provided for the
benefit of system progrOOns that want to unwind a stack completely.

active-frame-count, if non-nil, is the number of frames to be unwound. The
definition of a "frame" is implementation-dependent. If this counts down to
zero before a suitable •catch is found, the *unwind-stack terminates and.
that frame returns value to whoever called it. This is similar to Maclisp's
freturn function.

If action is non-nil, whenever the *unwind-stack would be ready to
terminate (either due to active-frame-count or due to tag being caught as in
*throw), instead action is called with one argument, value. If tag is t,
meaning throw out the whole way, then the function action is not allowed to
return. Otherwise the function action may return and its value will be
returned instead of value from the •catch - or from an arbitrary function if
active-frame-count is in use. In this ease the •catch does not return multiple
values as it normally does when thrown to. Note that it is often useful for
action to be a stack group.

Note that if both active-frame-count and action are nil, *unwind-stack is
identical to *throw.

catch-all body... Macro
(LM-2 only) (catch-all form) is like (*catch some-tag form) except that it
will catch a *throw to any tag at all. Since the tag thrown to is the second
returned value, the caller of catch-all may continue throwing to that tag if
he wants. The one thing that catch-all will not catch is a *unwind-stack
with a tag of t. catch-all is a macro that expands into •catch with a tag of
nil.

FLOW Row of Control 29

Symbolics, Inc. March 1984

If you think you want this, most likely you are mistaken and you really want
unwind-protect.

30 FLOW Row of Control

Symbolics. Inc. March 1984

FLOW Row of Control 31

Symbolics. Inc. March 1984

7. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces of
a list. There are several options for the way in which the pieces of the list are
chosen and for what is done with the results returned by the applications of the
function.

In general, the mapping functions take any number of arguments. For example:

(mapcar f xl x2m)

In this case f must be a function of n arguments. mapear will proceed down the
lists xl, x2, ... , .m in parallel. The first argument to f will come from xl, the second
from x2, and so on. The iteration stops as soon as any of the lists is exhausted. (If
there are no lists at all, then there are no lists to be exhausted, so the function will
be called repeatedly over and over. This is an obscure way to write an infinite loop.
It is supported for consistency.) If you want to call a function of many arguments
where one of the arguments successively takes on the values of the elements of a
list and the other arguments are constant, you can use a circular list for the other
arguments to mapcar. The function circular-list is useful for creating such J)sts.
See the function circular-list.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this
increases the clarity of the code.

Often f will be a lambda-expression, rather than a symbol; for example:

(mapcar (function (lambda (x) (cons x something)))
some-list)

The functional argument to a mapping function must be a function, acceptable to
apply - it cannot be a macro or the name of a special form.

32 FLOW Row of Control

Symbolics. Inc. March 1984

Here is a table showing the relations between the six map functions.

returns

applies function to

successive I successive
sublists I elements

---------------+--------------+---------------+
its own
second

argument
map mapc

---------------+--------------+---------------+
1 ist of the
function
results

mapl ist map car

---------------+--------------+---------------+
nconc of the

function
results

map con map can

---------------+--------------+---------------+
There are also functions (mapatoms and mapatoms-all) for mapping over all
symbols in certain packages. See the document Packages.

You can also do what the mapping fun~tions do in a different way by using loop.
See the section "The Loop Iteration Macro".

map fen &rest lists Function
map is like maplist, except that it does not return any useful value. This
function is used when the function is being called merely for its side effects,
rather than its returned values. See the function maplist.

mapc fen &rest lists Function
mapc is like mapcar, except that it does not return any useful value. This
function is used when the function is being called merely for its side effects,
rather than its returned values. See the function mapcar.

maplist fen &rest lists Function
maplist is like mapcar except that the function is applied to the list and
successive cdr's of that list rather than to successive elements of the list. See
the function mapcar.

mapcar fen &rest lists Function
mapcar operates on successive elements of each list in lists. As it goes down
the list, it calls fen, giving it an element of the list as its one argument: first
the car, then the cadr, then the eaddr, and so on, continuing until the
end of the list is reached. The value returned by mapcar is a list of the
results of the successive calls to the function. An example of the use of

FLOW Row of Control

Symbolics, Inc. March 1984

mapcar would be mapcar'ing the function ·abs over the list
(1 -2 -4.5 6.0e15 -4.2), which would be written as
(mapcar (function abs) '(1 -2 -4.5 6.0e15 -4.2)). The result is
(1 2 4.5 6.0e15 4.2).

33

mapcon fen &rest lists Function
mapcon is like maplist, except that it combines the results of the function
using nconc instead of list. See the function maplist. That is, mapcon
could have been defined by:

(defun mapcon (f x y)
(apply 'nconc (maplist f x y)))

Of course, this definition is less general than the real one.

mapcan fen &rest lists Function
mapcan is like mapcar, except that it combines the results of the function
using nconc instead of list. See the function mapcar.

34 FLOW Row of Control

Symbolics, Inc. March 1984

FLOW Row of Control 35

Symbolics, Inc. March 1984

8. The Loop Iteration Macro

8.1 Introduction

loop is a Lisp macro that provides a programmable iteration facility. The same loop
module operates compatibly in Zetalisp, Maclisp <PDP.;10 and Multics), and NIL.
loop was inspired by the "FOR" facility of CLISP in Interlisp; however, it is not
compatible and differs in several details.

The general approach is that a form introduced by the word loop generates a single
program loop, into which a large variety of features can be incorporated. The loop
consists of some initialization (prologue) code, a body that can be executed several
times, and some exit (epilogue) code. Variables that can be declared local to the
loop. The features are concerned with loop variables, deciding when to end the
iteration, putting user-written code into the loop, returning a value from the
construct, and iterating a variable through various real or virtual sets of values.

The loop form consists of a series of clauses, each introduced by a keyword symbol.
Forms appearing in or implied by the clauses of a loop form are classed as those to
be executed as initialization code, body code, and/or exit code; within each part of the
template that loop fills in, they are executed strictly in the order implied by the
original composition. Thus, just as in ordinary Lisp code, side effects may be used,
and one piece of code may depend on following another for its proper operation.
This is the principal philosophical difference from Interlisip's "FOR" facility.

Note that loop forms are intended to look like stylized English rather than Lisp
code. There is a notably low density of parentheses, and many of the keywords are
accepted in several synonymous forms to allow writing of more euphonious and
grammatical English. Some find this notation verbose and distasteful, while others
find it flexible and convenient. The former are invited to stick to do.

Here are some examples to illustrate the use of loop.

(defun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements

do (print element)))

The above function prints each element in its argument, which should be a list. It
returns nil.

(defun gather-alist-entries (list-of-pairs)
(loop for pair in list-of-pairs

collect (car pair)))

gather-alist-entries takes an association list and returns a list of the "keys"; that
is, (gatber-alist-entries '((foo 1 2) (bar 259) (baz))) returns (foo bar baz).

36 FLOW Row of Control

Symbolics. Inc. March 1984

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value

when (interesting-p number) collect number))

The above function takes two arguments, which should be fixnums, and returns a
list of all the numbers in that range (inclusive) that satisfy the predicate
interesting-p.

(defun find-maximum-element (an-array)
(loop for i from O below (array-dimension-n 1 an-array)

maximize (aref an-array i)))

find-maximum-element returns the maximum of the elements of its argument, a
one-dimensional array. For Maclisp, aref could be a macro that turns into either
funcall or arraycall depending on what is known about the type of the array.

(defun my-remove (object list)
(loop for element in list

unless (equal object element) collect element))

my-remove is like the Lisp function delete, except that it copies the list rather
than destructively splicing out elements. This is similar, although not identical, to
the Zetalisp function remove.

(defun find-frob (list)
(loop for element in list

when (frobp element) return element
finally (ferror nil "No frob found in the list -s• list)))

This returns the first element of its list argument that satisfies the predicate frobp.
If none is found, an error is generated.

8.2 Clauses

Internally, loop constructs a prog that includes variable bindings, pre-iteration
(initialization) code, post-iteration (exit) code, the body of the iteration, and stepping
of variables of iteration to their next values (which happens on eveey iteration after
executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords with
which it deals. For example:

(loop for x
in 1 do (print x)),

contains two clauses, "for x in 1" and "do (print x)". Certain of the parts of the
clause will be described as being expressions, such as (print x:) in the example above.

FLOW Row of Control 37

Symbolics, Inc. March 1984

An expression can be a single Lisp form, or a series of forms implicitly collected with
progn. An expression is terminated by the next following atom, which is taken to
be a keyword. This syntax allows only the first form in an expression to be atomic,
but makes misspelled keywords more easily detectable.

loop uses print-name equality to compare keywords so that loop forms may be
written without package prefixes; in Lisp implementations that do not have
packages, eq is used for comparison.

Bindings and iteration variable steppings can be performed either sequentially or in
parallel, which affects how the stepping of one iteration variable may depend on the
value of another. The syntax for distinguishing the two will be described with the
corresponding clauses. When a set of things is "in parallel", all of the bindings
produced will be performed in parallel by a single lambda binding. Subsequent
bindings will be performed inside of that binding environment.

8.2.1 Iteration-driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and
takes on a new value on each successive iteration. Note that if more than one
iteration-driving clause is used in the same loop, several variables are created that all
step together through their values; when any of the iterations terminates, the entire
loop terminates. Nested iterations are not generated; for those, you need a second
loop form in the body of the loop. In order to not produce strange interactions,
iteration- driving clauses are required to precede any clauses that produce "body"
code: that is, all except those that produce prologue or epilogue code (initially and
finally), bindings (with), the named clause, and the iteration termination clauses
(while and until).

Clauses that drive the iteration can be arranged to perform their testing and
stepping either in series or in parallel. They are by default grouped in series, which
allows the stepping computation of one clause to use the just-computed values of the
iteration variables of previous clauses. They may be made to step "in parallel", as is
the case with the do special form, by "joining" the iteration clauses with the
keyword and. The form this typically takes is something like:

(loop •.• for x = (f) and for y = init then (g x) ...)

which sets x to (f) on every iteration, and binds y to the value of init for the first
iteration, and on every iteration thereafter sets it to (g x), where x still has the
value from the previous iteration. Thus, if the calls to t and g are not order
dependent, this would be best written as:

(loop ... for y = init then Cg x) for x = (f) •••)

because, as a general rule, parallel stepping has more overhead than sequential
stepping. Similarly, the example:

38

(loop for sublist on some-list
and for previous • 'undefined then sublist
...)

which is equivalent to the do construct:

(do ((sublist some-list (cdr sublist))
(previous 'undefined sublist))

((null sublist) •••)
...)

in terms of stepping, would be better written as:

(loop for previous= 'undefined then sublist
for sublist on some-list
...)

FLOW Row of Control

Symbolics, Inc. March 1984

When iteration-driving clauses are joined with and, if the token following the and is
not a keyword that introduces an iteration-driving clause, it is assumed to be the
same as the keyword that introduced the most recent clause; thus, the above
example showing parallel stepping could have been written as:

(loop for sublist on some-list
and previous = 'undefined then sublist
...)

The order of evaluation in iteration-driving clauses is that those expressions that are
only evaluated once are evaluated in order at the beginning of the form, during the
variable-binding phase, while those expressions that are evaluated each time around
the loop are evaluated in order in the body.

One common and simple iteration-driving clause is repeat:

repeat expression
This evaluates expression (during the variable-binding phase), and causes the
loop to iterate that many times. expression is expected to evaluate to a
fIXnum. If expression evaluates to a 0 or negative result, the body code will
not be executed.

All remaining iteration-driving clauses are subdispatches of the keyword for, which is
synonymous with as. In all of them a variable of iteration· is specified. Note that,
in general, if an iteration-driving clause implicitly supplies an endtest, the value of
this iteration variable as the loop is exited (that is, when the epilogue code is run) is
undefined. See the section "The Iteration Framework".

Here are all of the varieties of for clauses. Optional parts are enclosed in curly
brackets. See the section "Data Types: the Loop Iteration Macro". The data-types
as used here are discussed fully in that section.

for var {data-type} in exprl {by expr2}
This iterates over each of the elements in the list exprl. If the by subclause
is present, expr2 is evaluated once on entry to the loop to supply the function
to be used to fetch successive sublists, instead of edr.

FLOW Row of Control 39

Symbolics, Inc. March 1984

for var {data-type} on exprl {by expr2}
This is like the previous for format, except that var is set to successive
sublists of the list instead of successive elements. Note that since var will
always be a list, it is not meaningful to specify a data-type unless var is a
destructuring pattern, as described in the section on destructuring. Note also
that loop uses a null rather than an atom test to implement both this and
the preceding clause.

for var {data-type} = expr
On each iteration, expr is evaluated and var is set to the result.

for var {data-type}= exprl then expr2
var is bound to exprl when the loop is entered, and set to expr2 (reevaluated)
at all but the first iteration. Since exprl is evaluated during the binding
phase, it cannot reference other iteration variables set before it; for that, use
the following:

for var {data-type} f"irst exprl then expr2
This sets var to exprl on the first iteration, and to expr2 (reevaluated) on
each succeeding iteration. The evaluation of both expressions is performed
inside of the loop binding environment, before the loop body. This allows
the first value of var to come from the first value of some other iteration
variable, allowing such constructs as:

(loop for term in poly
for ans first (car term) then (gcd ans (car term))
finally (return ans))

for var {data-type} from exprl {to expr2} {by expr3}
This performs numeric iteration. var is initialized to exprl, and on each
succeeding iteration is incremented by expr3 (default 1). If the to phrase is
given, the iteration terminates when var becomes greater than expr2. Each
of the expressions is evaluated only once, and the to and by phrases may be
written in either order. downto may be used instead of to, in which case
var is decremented by the step value, and the endtest is adjusted accordingly.
If below is used instead of to, or above instead of downto, the iteration
will be terminated before expr2 is reached, rather than after. Note that the
to variant appropriate for the direction of stepping must be used for the
endtest to be formed correctly; that is, the code will not work if expr3 is
negative or 0. If no limit-specifying clause is given, then the direction of the
stepping may be specified as being decreasing by using downfrom instead of
from. upfrom may also be used instead of from; it forces the stepping
direction to be increasing. The data-type defaults to fixnum.

for var {data-type} being expr and its path ...

for var {data-type} being {eachfthe} path •••
This provides a user-definable iteration facility. path names the manner in
which the iteration is to be performed. The ellipsis indicates where various
path-dependent preposition/expression pairs may appear. See the section
"Iteration Paths".

40 FLOW Row of Control

Symbolics, Inc. March 1984

8.2.2 Bindings

The with keyword may be used to establish initial bindings, that is, variables that
are local to the loop but are only set once, rather than on each iteration. The with
clause looks like:

with varl {data-type} {= exprl}
{and var2 {data-type} {= expr2}} •••

If no expr is given, the variable is initialized to the appropriate value for its data
type, usually nil. with bindings linked by and are performed in parallel; those not
linked are performed sequentially. That is:

(loop with a = (foo) and b = (bar) and c
...)

binds the variables like:

((lambda (ab c) •••)
(foo) (bar) ni 1)

whereas:
(loop with a= (foo) with·b =(bar a) with c .•.)

binds the variables like:

((lambda (a)
((lambda (b)

((lambda (c) •••)
ni 1))

(bar a)))
(foo))

All expr's in with clauses are evaluated in the order they are written, in lambda
expressions surrounding the generated prog. The loop expression:

(loop with a = xa and b = xb
with c = xc
ford= xd then (f d)

and e = xe then (g e d)
for p in xp
with q = xq
...)

produces the following binding contour, where t1 is a loop-generated temporary:

FLOW Row of Control

Symbolics, Inc. March 1984

((lambda (a b)
((lambda (c)

((lambda (d e)
((lambda (p tl)

xc))

xa xb>

((1 ambda (q) •••)
xq))

nil xp))
xd xe))

Because all expressions in with clauses are evaluated during the variable-binding
phase, they are best placed near the front of the loop form for stylistic reasons.

41

For binding more than one variable with no particular initialization, one may use the
construct:

with variable-list {data-type-list} {and ••• }

as in:

with Ci j k tl t2) (fixnum fixnum fixnum)

A slightly shorter way of writing this is:

with (i j k) fixnum and (tl t2) •••

These are cases of destructuring which loop handles specially. See the section "Data
Types: the Loop Iteration Macro". See the section "Destructuring".

Occasionally there are various implementational reasons for a variable not to be given
a local type declaration. If this is necessary, the nodeclare clause may be used:

nodeclare variable-list
The variables in variable-list are noted by· 1oop as not requiring local type
declarations. Consider the following:

(declare (special k) (fixnum k))
(defun foo (1)

(loop for x in 1 as k fixnum = (f x) •••))

If k did not have the f91D1um data-type keyword given for it, then loop
would bind it to nil, and some compilers would complain. On the other
hand, the fixnum keyword also produces a local fixnum declaration for k;
since k is special, some compilers will complain (or error out). The solution is
to do:

(defun foo (1)
(loop nodeclare (k)

for x in 1 as k fixnum = (f x) •••))

which tells loop not to make that local declaration. The nodeclare clause
must come before any reference to the variables so noted. Positioning it
incorrectly will cause this clause to not take effect, and may not be
diagnosed.

42 FLOW Flow of Control

Symbolics. Inc. March 1984

8.2.3 Entrance and Exit

initially expression
This puts expression into the prologue of the iteration. It will be evaluated
before any other initialization code other than the initial bindings. For the
sake of good style, the initially clause should therefore be placed after any
with clauses but before the main body of the loop.

finally expression
This puts expression into the epilogue of the loop, which is evaluated when
the iteration terminates (other than by an explicit return). For stylistic
reasons, then, this clause should appear last in the loop body. Note that
certain clauses may generate code that terminates the iteration without
running the epilogue code; this behavior is noted with those clauses. See the
section "Aggregated Boolean Tests". This clause may be used to cause the
loop to return values in a nonstandard way:

(loop for n in l

8.2.4 Side Effects

do expression

doing expression

sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count)))

expression is evaluated each time through the loop, as shown in the
print-elements-of-list example. See the section "Introduction: the Loop
Iteration Macro".

8.2.5 Values

The following clauses accumulate a return value for the iteration in some manner.
The general form is:

type-of-collection expr {data-type} {into var}

where type-of-collection is a loop keyword, and expr is the thing being "accumulated"
somehow. If no into is specified, then the accumulation will be returned when the
loop terminates. If there is an into, then when the epilogue of the loop is
reached, var (a variable automatically bound locally in the loop) will have been set to
the accumulated result and may be used by the epilogue code. In this way, a user
may accumulate and somehow pass back multiple values from a single loop, or use
them during the loop. It is safe to reference these variables during the loop, but
they should not be modified until the epilogue code of the loop is reached. For
example:

FLOW Row of Control

Symbolics. Inc. March 1984

(loop for x in list
collect (foo x) into foo-list
collect (bar x) into bar-list
collect (baz x) into baz-list

finally (return (list foo-list bar-list baz-list)))

has the same effect as:
(do ((gOOOl list (cdr gOOOl))

(x) (foo-list) (bar-list) (baz-list))
((nul 1 gOOOl)
(list (nreverse foo-list)

(nreverse bar-list)
(nreverse baz-list)))

(setq x (car gOOOl))
(setq foo-1 ist (cons (foo x) foo-1 ist))
(setq bar-list (cons (bar x) bar-list))
(setq baz-list (cons (baz x) baz-list)))

except that loop arranges to form the lists in the correct order, obviating the
nreverses at the end, and allowing the lists to be examined during the
computation.

collect expr {into var}

collecting •••
This causes the values of expr on each iteration to be collected into a list.

nconc expr {into var}

nconcing ...

append ...

appending ...

43

These are like collect, but the results are nconced or appended together as
appropriate.

(loop for i from 1 to 3
nconc (list i (* i i)))

=> (1 1 2 4 3 9)

count expr {into var} {data-type}

counting •••
If expr evaluates non-nil, a counter is incremented. The data-type defaults to
runum.

sum expr {data-type} {into var}

summing ...
Evaluates expr on each iteration, and accumulates the sum of all the values.
data-type defaults to number, which for all practical purposes is notype.
Note that specifying data-type implies that both the sum and the number
being summed (the value of expr) will be of that type.

44 FLOW Row of Control

Symbolics, Inc. March 1984 ·

maximize expr {data-type} {into var}

minimize ...
Computes the maximum (or minim.um) of expr over all iterations. data-type
defaults to number. Note that if the loop iterates zero times, or if
conditionalization prevents the code of this clause from being executed, the
result will be meaningless. If loop can determine that the arithmetic being
performed is not contagious (by virtue of data-type being fisnum, :ftonu:m, or
small-:ftonum), then it may choose to code this by doing an arithmetic
comparison rather than calling either mu or min. As with the sum clause,
specifying data-type implies that both the result of the mu or min operation
and the value being maximized or minimized will be of that type.

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form. Obviously, the types of
the collection must be compatible. collect, nconc, and append may all be mixed,
as may sum and count, and maximize and minimize. For example:

(loop for x in '(ab c) for y in '((1 2) (3 4) (5 6))
collect x
append y)

=> (a 1 2 b 3 4 c 5 6)

The following computes the average of the entries in the list list-of-frobs:

(loop for x in list-of-frobs
count t into count-var
sum x into sum-var

finally (return (quotient sum-var count-var)))

8.2.6 Endtests

The following clauses may. be used to provide additional control over when the
iteration gets terminated, possibly causing exit code (due to finally) to be performed
and possibly returning a value (for example, from collect).

while expr
If expr evaluates to nil, the loop is exited, performing exit code (if any), and
returning any accumulated value. The test is placed in the body of the loop
where it is written. It can appear between sequential for clauses.

until expr
Identical to while (not expr).

This may be needed, for example, to step through a strange data structure, as in:

(loop until (top-of-concept-tree? concept)
for concept = expr then (superior-concept concept)
...)

Note that the placement of the until clause before the for clause is valid in this

FLOW Row of Control 45

Symbolics, Inc. March 1984

case because of the defmition of this particular variant of for, which binds concept
to its first value rather than setting it from inside the loop.

The following may also be of use in terminating· the iteration:

loop-finish Macro
(loop-finish) causes the iteration to terminate "normally", the same as
implicit termination by an iteration-driving clause, or by the use of while or
until - the epilogue code (if any) will be run, and any implicitly collected
result will be returned as the value of the loop. For example:

(loop for x in '(1 Z 3 4 5 6)
collect x
do (cond CC= x 4) (loop-finish))))

=> (1 2 3 4)

This particular example would be better written as until(= x 4) in place of
the do clause.

8.2.7 Aggregated Boolean Tests

All of these clauses perform some test, and may immediately terminate the iteration
depending on the result of that test.

always expr
Causes the loop to return t if expr always evaluates non-null. If expr
evaluates to nil, the loop immediately returns nil, without running the
epilogue code (if any, as specified with the finally clause); otherwise, twill be
returned when the loop finishes, after the epilogue code has been run.

never expr
Causes the loop to return t if expr never evaluates non-null. This is
equivalent to always (not expr).

thereis expr
If expr evaluates non-nil, then the iteration is terminated and that value is
returned, without running the epilogue code.

8.2.8 Conditionalization

These clauses may be used to "conditionalize" the following clause. They may
precede any of the side-effecting or value-producing clauses, such as do, collect,
always, or return.

when expr

if expr
If expr evaluates to nil, the following clause will be skipped, otherwise not.

unless expr
This is equivalent to when (not expr)).

46 FLOW Row of Control

Symbolics, Inc. March 1984

Multiple conditionalization clauses may appear in sequence. If one test fails, then
any following tests in the immediate sequence, and the clause being conditionalized,
are skipped.

Multiple clauses may be conditionalized under the same test by joining them with
and, as in:

(loop for i from a to b
when (zerop (remainder i 3))

collect i and do (print i))

which returns a list of all multiples of 3 from a to b (inclusive) and prints them as
they are being collected.

If-then-else conditionals may be written using the else keyword, as in:

(loop for i from a to b
when (oddp i)

collect i into odd-numbers
else collect i into even-numbers)

Multiple clauses may appear in an else-phrase, using and to join them in the same
way as above.

Conditionals may be nested. For example:

(loop for i from a to b
when (zerop (remainder i 3))

do (print i)
and when (zerop (remainder i 2))

collect i)

returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a
to b.

When else. is used with nested conditionals, the "dangling else" ambiguity is resolved
by matching the else with the innermost when not already matched with an else.
Here is a complicated example.

(loop for x in 1
when (atom x)

when (memq x *distinguished-symbols*)
do (processl x)

else do (process2 x)
else when (memq (car x) *special-prefixes*)

collect (process3 (car x) (cdr x))
and do (memorize x)

else do (process4 x))

Useful with the conditionalization clauses is the return clause, which causes an
explicit return of its "argument" as the value of the iteration, bypassing any epilogue
code. That is:

when exprl return expr2

is equivalent to:

FLOW Row of Control 47
Symbolics, Inc. March 1984

when exprl do (return expr2)

Conditionalization of one of the "aggregated boolean value" clauses simply causes the
test that would cause the iteration to terminate early not to be performed unless the
condition succeeds. For example:

(loop for x in 1
when (significant-p x)

do (print x) (princ •is significant.•)
and thereis (extra-special-significant-p x))

does not make the extra-special-signifieant-p check unless the significant-p
check succeeds.
The format of a conditionalized clause is typically something like:

when exprl keyword expr2

If expr2 is the keyword it, then a variable is generated to hold the value of exprl,
and that variable gets substituted for expr2. Thus, the composition:

when expr return it

is equivalent to the clause:

thereis expr

and one may collect all non-null values in an iteration by saying:

when expression collect it

If multiple clauses are joined with and, the it keyword may only be used in the
first. If multiple whens, unlesses, and/or ifs occur in sequence, the value
substituted for it will be that of the last test performed. The it keyword is not
recognized in an else-phrase.

8.2.9 Miscellaneous Other Clauses

named name
This gives the prog that loop generates a name of name, so that one may
use the return-from form to return explicitly out of that particular loop:

(loop named sue

do (loop •.• do (return-from sue value) ...)
...)

The return-from form shown causes value to be immediately returned as
the value of the outer loop. Only one name may be given to any particular
loop construct. This feature does not exist in the Maclisp version of loop,
since Maclisp does not support "named progs".

return expression
Immediately returns the value of expression as the value of the loop, without
running the epilogue code. This is most useful with some sort of
conditionalization, as discussed in the previous section. Unlike most of the

48 FLOW Row of Control

Symbolics, Inc. March 1984

other clauses, return is not considered to "generate body code", so it is
allowed to occur between iteration clauses, as in:

(loop for entry in list
when (not (numberp entry))

return (error •••)
as frob = (times entry Z)
...)

If you instead desire the loop to have some return value· when it finishes
normally, you may place a call to the return function in the epilogue (with
the rmaily clause). See the section "Entrance and Exit".

8.3 Loop Synonyms

define-loop-macro keyword Macro
May be used to make keyword, a loop keyword (such as for), into a Lisp
macro which may introduce a loop form. For example, after evaluating:

(define-loop-macro for),

you can now write an iteration as:

(for i from 1 below n do •••)

This facility exists primarily for diehard users of a predecessor of loop. Its
unconstrained use is not recommended, as it tends to decrease the transportability of
the code and needlessly uses up a function name.

8.4 Data Types

In many of the clause descriptions, an optional data-type is shown. A data-type in
this sense is an atomic symbol, and is recognizable as such by loop. These are used
for declaration and initialization purposes; for example, in:

(loop for x in 1
maximize x flonum into the-max
sum x flonum into the-sum
...)

the ftonum data-type keyword for the maximize clause says that the result of the
max operation, and its "argument" (s), will both be flonums; hence loop may choose
to code this. operation specially since it knows there can be no contagious arithmetic.
The ftonum data-type keyword for the sum clause behaves similarly, and in addition
causes the-sum to be correctly initialized to 0.0 rather than 0. The ftonum
keywords will also cause the variables the-max and the-sum to be declared to be
ftonum, in implementations where such a declaration exists. In general,· a numeric

FLOW Row of Control

Symbolics, Inc. March 1984

data-type more specific than number, whether explicitly specified or defaulted, is
considered by loop to be license to generate code using type-specific arithmetic
functions where reasonable. ·The following data-type keywords are recognized by
loop (others may be defined; for that, consult the source code):

An implementation-dependent limited-range integer.

49

tixnum

ftonum

small-ftonum

An implementation-dependent limited-precision floating-number.

This is recognized in the Zetalisp implementation only, where its
only significance is for initialization purposes, since no such
declaration exists.

integer

number

no type

Any integer (no range restriction).

Any number.

Unspecified type (that is, anything else).

Note that explicit specification of a nonnumeric type for an operation that is numeric
(such as the summing clause) may cause a variable to be initialized to nil when it
should be 0.

If local data-type declarations must be inhibited, you can use the nodeclare clause.

8.5 Destructuring

Destructuring provides you with the ability to "simultaneously" assign or bind
multiple variables to components of some data structure. Typically this is used with
list structure. For example:

(loop with (foo • bar) = '(ab c) .••)

has the effect of binding foo to a and bar to (b c).

loop's destructuring support is intended to parallel if not augment that provided by
the host Lisp implementation, with a goal of minimally providing destructuring over
list structure patterns. Thus, in Lisp implementations with no system destructuring
support at all, you can still use list-structure patterns as loop iteration variables, and
in with bindings. In NIL, loop also supports destructuring over vectors.

You can specify the data-types of the components of a pattern by using a
corresponding pattern of the data type keywords in place of a single data type
keyword. This syntax remains unambiguous because wherever a data-type keyword
is possible, a loop keyword is the only other possibility. Thus, if you want to do:

50

(loop for x in 1
as i fixnum • (car x)
and j fixnum = (cadr x)
and k fixnum = (cddr x)
...)

FLOW Row of Control

Sfmbolics, Inc. March 1984

and no reference to x is needed, you may instead write:
(loop for (i j . k) (fixnum fixnum • fixnum) in 1 •••)

To allow some abbreviation of the data-type pattern, an atomic component of the
data-type pattern is considered to state that all components of the corresponding
part of the variable pattern are of that type. That is, the previous form could be
written as:

(loop for (i j . k) fixnum in 1 •••)

This generality allows binding of multiple typed variables in a reasonably concise·
manner, as in:

(loop with (ab c) and (i j k) fixnum •••)

which binds a, b, and c to nil and i, j, and k to 0 for use as temporaries during
the iteration, and declares i, j, and k to be fimums for the benefit of the compiler.

(defun map-over-properties (fn symbol)
(loop for (propname propval) on (plist symbol) by 'cddr

do (funcall fn symbol propname propval)))

maps fn over the properties on symbol, giving it arguments of the symbol, the
property name, and the value of that property.

In Lisp implementations where loop performs its own destructuring, notably Multics
Maclisp and Zetalisp, you can cause loop to use already provided destructuring
support instead:

si:loop-use-system-destructuring? Variable
This variable exists only in loop implementations in Lisps that do not provide
destructuring support in the default environment. It is by default nil. If
changed, then loop will behave as it does in Lisps that do provide
destructuring support: destructuring binding will be performed using let, and
destructuring assignment will be performed using desetq. Presumably, if
your personalized environment supplies these macros, then you should set
this variable to t; there is, however, little (if any) efficiency loss if this is not
done.

FLOW Row of Control 51

Symbolics. Inc. March 1984

8.6 The Iteration Framework

This section describes the way loop constructs iterations. It is necessary if you will
be writing your own iteration paths, and may be useful in clarifying what loop does
with its input.

loop considers the act of stepping to have four possible parts. Each iteration-driving
clause has some or all of these four parts, which are executed in this order:

pre-step-endtest
This is an endtest that determines if it ·is safe to step to the next value of
the iteration variable.

steps Variables that get "stepped". This is internally manipulated as a list of the
form (varl vall var2 val2 ...); all of those variables are stepped in parallel,
meaning that all of the vals are evaluated before any of the vars are set.

post-step-endtest
Sometimes you cannot see if you are done until you step to the next value;
that is, the endtest is a function of the stepped-to value.

pseudo-steps
Other things that need to be stepped. This is typically used for internal
variables that are more conveniently stepped here, or to set up iteration
variables. that are functions of some internal variable(s) that are actually
driving the iteration. This is a list like steps, but the variables in it do not
get stepped in parallel.

The above alone is actually insufficient in just about all iteration- driving clauses that
loop handles. What is missing is that in most cases, the stepping and testing for
the first time through the loop is different from that of all other times. So, what
loop deals with is two four-tuples as above; one for the first iteration, and one for
the rest. The first may be thought of as describing code that immediately precedes
the loop in the prog, and the second as following the body code - in fact, loop
does just this, but severely perturbs it in order to reduce code duplication. Two lists
of forms are constructed in parallel: one is the first-iteration endtests and steps, the
other the remaining-iterations endtests and steps. These lists have dummy entries
in them so that identical expressions will appear in the same position in both.
When loop is done parsing all of the clauses, these lists get merged back together
such that corresponding identical expressions in both lists are not duplicated unless
they are "simple" and it is worth doing.

Thus, one may get some duplicated code if one has multiple iterations.
Alternatively, loop may decide to use and test a flag variable that indicates whether
one iteration has been performed. In general, sequential iterations have less
overhead than parallel iterations, both from the inherent overhead of stepping
multiple variables in parallel, and from the standpoint of potential code duplication.

52 FLOW Row of Control

Symbolics, Inc. March 1984

Note also that although the user iteration variables are gµaranteed to be stepped in
parallel, the placement of the endtest for any particular iteration may be either
before or after the stepping. A notable case of this is:

(loop for i from 1 to 3 and dunny = (print 'foo)
collect i)

=> (1 2 3)

but prints foo four times. Certain other constructs, such as for var on, may or
may not do this depending on the particular construction.

This problem also means that it might not be safe to examine an iteration variable
in the epilogue of the loop form. As a general rule, if an iteration driving clause
implicitly supplies an endtest, then you cannot know the state of the iteration
variable when the loop terminates. Although you· can guess on the basis of whether
the iteration variable itself holds the data upon which the endtest is based, that
guess might be wrong. Thus:

(loop for subl on expr

finally (f subl))

is incorrect, but:

(loop as frob = expr while (g frob)

finally Cf frob))

is safe because the endtest is explicitly dissociated from the stepping.

8. 7 Iteration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses.
The interface is constrained so that the definition of a path need not depend on
much of the internals of loop~ The typical form of an iteration path is

for var {data-type} being {each I the} pathname {prepositionl exprl} ...

pathname is an atomic symbol that is defmed as a loop path function. The usage
and defaulting of data-type is up to the path function. Any number of
preposition/expression pairs may be present; the prepositions allowable for any
particular path are defmed by that path. For example:

(loop for x being the array-elements of my-array from 1 to 10
...)

To enhance readability, pathnames are usually defined in both the singular and
plural forms; this particular example could have been written as:

(loop for x being each array-element of my-array from 1 to 10
...)

Another format, which is not so generally applicable, is:

FLOW Row of Control 53

Symbolics. Inc. March 1984

for var {data-type} being exprO and its pathname {prepositionl exprl} ...

In this format, var takes on the value of exprO the first time through the loop.
Support for this format is usually limited to paths that step through some data
structure, such as the "superiors" of something. Thus, we can hypothesize the edrs
path, such that:

but:

(loop for x being the cdrs of '(ab c . d) collect x)
=> ((b c • d) (c • d) d)

(loop for x being '(a b c • d) and its cdrs collect x)
=> ((a b c • d) (b c • d) (c • d) d)

his, her, or their may be substituted for the its keyword, as may each.
Egocentricity is not condoned. See the section ''Predefined Paths". Some example
uses of iteration paths are shown in that section.

Very often, iteration paths step internal variables that the you do not specify, such
as an index into some data structure. Although in most cases the user does not
wish to be concerned with such low-level matters, it is occasionally useful to have a
handle on such things. loop provides an additional syntax with which you can
provide a variable name to be used as an "internal" variable by an iteration path,
with the using "prepositional phrase".

The using phrase is placed with the other phrases associated with the path, and
contains any number of keyword/variable-name pairs:

(loop for x being the array-elements Gf a using (index i)
...)

which says that the variable i should be used to hold the index of the array being
stepped through. The particular keywords that may be used are defined by the
iteration path; the index keyword is recognized by all loop sequence paths. See the
section "Sequence Iteration". Note that any individual using phrase applies to only
one path; it is parsed along with the "prepositional phrases". It is an error if the
path does not call for a variable using that keyword.

By special dispensation, if a pathname is not recognized, then the default-loop-path
path will be invoked upon a syntactic transformation of the original input.
Essentially, the loop fragment:

for var being frob

is taken as if it were:

for var being default-loop-path in frob

and:

for var being expr and its frob ...

is taken as if it were:

for var being expr and its default-loop-path in frob

54 FLOW Row of Control

· Symbolics, Inc. March 1984

Thus, this ''undefined pathname hook" only works if the default-loop-path path is
defmed. Obviously, the use of this "hook" is competitive, since only one such hook
may be in use,· and the potential for syntactic ambiguity exists if (rob is the name of
a defined iteration path. This feature is not for casual use; it is intended for use by
large systems that wish to use a special syntax for some feature they provide.

8.7.1 Loop Iteration Over Hash Tables

A new iteration path was added to loop to support iterating over every entry in a
hash table.

(loop for x being the hash-elements of new-coms •••)
(loop for x being the hash-elements of new-coms with-key k •••)

This provides for x to take on the values of successive values of hash table entries.
The loop runs once for every entry of the hash table. x could have the same value
more than once, since it is the key that is unique, not the value.

The with-key phrase is optional. It provides for the variable k to have the hash
key for the particular hash entry value x that you are examining.

8.7.2 Predefined Paths

loop comes with two predefmed iteration path functions; one implements a
mapatoms-like iteration path facility, and the other is used for defining iteration
paths for stepping through sequences.

8.7.2.1 The interned-symbols Path

The intemed-symbols iteration path is like a mapatoms for loop.

(loop for sym being interned-symbols •••)

iterates over all of the symbols in the current package and its superiors (or, in
Maclisp, the current obarray). This is the same set of symbols that mapatoms
iterates over, although not necessarily in the same order. The particular package to
look in may be specified as in:

(loop for sym being the interned-symbols in package ..•)

which is like giving a second argument to mapatoms.

In Lisp implementations such as Zetalisp with some sort of hierarchical package
structure, you can restrict the iteration to be over just the package specified and not
its superiors, by using the local-intemed-symbols path:

(loop for sym being the local-i.nterned-symbols {in package}
...)

Example:

FLOW Row of Control

Symbolics, Inc. March 1984

(defun my-apropos (sub-string &optional (pkg package))
(loop for x being the interned-symbols in pkg

when (string-search sub-string x)
when (or (boundp x) (fboundp x) (plist x))

do (print-interesting-info x)))

55

In the Zetalisp and NIL implementations of loop, a package specified with the in
preposition may be anything acceptable to the pkg-find-package function. The
code generated by this path will contain calls to internal loop functions, with the
effect that it will be transparent to changes to the implementation of packages. In
the Maclisp implementation, the obarray must be an array pointer, noi a symbol
with an array property.

8.7.2.2 Sequence Iteration

One very common form of iteration is that over the elements of some object that is
accessible by means of an integer index. loop defines an iteration path function for
doing this in a general way, and provides a simple interface to allow users to define
iteration paths for various kinds of "indexable" data.

define-loop-sequence-path path-name-or-names fetchfun sizefun Macro
&optional sequence-type element-type

path-name-or-names is either an atomic path name or list of path names.
fetchfun is a function of two arguments: the sequence, and the index of the
item to be fetched. (Indexing is assumed to be zero-origined.) sizefun is a
function of one argument, the sequence; it should return the number of
elements in the sequence. sequence-type is the name of the data-type of the
sequence, and element-type the name of the data-type of the elements of the
sequence. These last two items are optional.

The Zetalisp implementation of loop utilizes the Zetalisp array manipulation
primitives to define both array-element and array-elements as iteration paths:

(define-loop-sequence-path (array-element array-elements)
aref array-active-length)

Then, the loop clause:

for var being the array-elements of array
will step var over the elements of array, starting from 0. The sequence path
function also accepts in as a synonym for of.

The range and stepping of the iteration may be specified with the use of all the
same keywords that are accepted by the loop arithmetic stepper (for var from •••);
they are by, to, downto, from, downfrom, below, and above, and are
interpreted in the same manner. Thus:

56 FLOW Row of Control

Symbolics. Inc. March 1984

(loop for var being the array-elements of array
from 1 by 2

...)
steps var over all of the odd elements of array, and:

(loop for var being the array-elements of array
downto O

...)
steps in "reverse" order.

(define-loop-sequence-path (vector-elements vector-element)
vref vector-length notype notype)

is how the vector-elements iteration path can be defined in NIL (which it is). One
can then do such things as:

(defun cons-a-lot (item &restv other-items)
(and other-items

(loop for x being the vector-elements of other-items
collect (cons item x))))

All such sequence iteration paths allow you to specify the variable to be used as the
index variable, by use of the index keyword with the using prepositional phrase.
See the section "Iteration Paths".

8.7.3 Defining Paths

This section and the next might not be of interest to those not interested in
defining their own iteration paths.

A loop iteration clause (for example, a for or as clause) produces, in addition to the
code that defines the iteration, variables that must be bound, and pre-iteration
(prologue) code. See the section "The Iteration Framework". This breakdown allows
a user interface to loop that does not have to depend on or know about the
internals of loop. To complete this separation, the iteration path mechanism parses
the clause before giving it to the user function that will return those items. A
function to generate code for a path can be declared to loop with the
define-loop-path function:

define-loop-path

(def i ne-1 oop-path pathname-or-names path-function
list-of-allowable-prepositions
datum-1 datum-2 •.. >

Macro

This defines path-function to be the handler for the path(s)
pathname-or-names, which may be either a symbol or a list of symbols. Such
a handler should follow the conventions described below. The datum-i are
optional; they are passed in to path-function as a list.

FLOW Row of Control 57

Symbolics, Inc. March 1984

The handler will be called with the following arguments:

path-name The name of the path that caused the path function to be
invoked.

variable

data-type

The "iteration variable".

The data type supplied with the iteration variable, or nil if none
was supplied.

prepositional-phrases
This. is a list with entries of the form (preposition expression), in
the order in which they were collected. This may also include
some supplied implicitly (for example, an of phrase when the
iteration is inclusive, and an in phrase for the default-loop-path
path); the ordering will show the order of evaluation which should
be followed for the expressions.

inclusive? This is t if variable should have the starting point of the path as
its value on the first iteration (by virtue of being specified with
syntax like for var being expr and its pathname), nil otherwise.
When t, expr will appear in prepositional-phrases with the of
preposition; for example, for s being foo and its cdrs gets
prepositional-phrases of ((of foo)).

allowed-prepositions

data

This is the list of allowable prepositions declared for the pathname
that caused the path function to be invoked. It and data may be
used by the path function such that a single function may handle
similar paths.

This is the list of "data" declared for the pathname that caused
the path function to be invoked. It may, for instance, contain a
canonicalized pathname, or a set of functions or flags to aid the
path function in determining what to do. In this way, the same
path function may be able to handle different paths.

The handler should return a list of either six or ten elements:

variable-bindings
This is a list of variables that need to be bound. The entries in it may be of
the form variable, (variable expression), or (variable expression data-type).
Note that it is the responsibility of the handler to make sure the iteration
variable gets bound. All of these variables will be bound in parallel; if
initialization of one depends on others, it should be done with a setq in the
prologue-forms. Returning only the variable without any initialization
expression is not allowed if the variable is a destructuring pattern.

prologue-fonns
This is a list of forms that should be included in the loop prologue.

58 FLOW Row of Control

Symbolics, Inc. March 1984

the four items of the iteration specification
These are the four items: pre-step-endtest, steps, post-step-endtest, and
pseudo-steps. See the section "The Iteration Framework".

another four items of iteration specification
.If these four items are given, they apply to the first iteration, and the
previous four apply to all succeeding iterations; otherwise, the previous four
apply to all iterations.

Here are the routines that are used by loop to compare keywords for equality. In
all cases, a token may be any Lisp object, but a keyword is expected to be an atomic
symbol. In certain implementations these functions may be implemented as macros.

si:loop-tequal token keyword Function
This is the loop token comparison function. token is any Lisp object;
keyword is the keyword it is to be compared against. It returns t if they
represent the same token, comparing in a manner appropriate for the
implementation.

si:loop-tmember token keyword-list Function
The member variant of si:loop-tequal.

si:loop-tassoc token keyword-alist Function
The assoc variant of si:loop-tequal.

If an iteration path function desires to make an internal variable accessible to the
user, it should call the following function instead of gensym:

si:loop-named-variable keyword Function
This should only be called from within an iteration path function. If
keyword has been specified in a using phrase for this path, the
corresponding variable is returned; otherwise, gensym is called and that new
symbol returned. Within a given path function, this routine should only be
called once for any given keyword.

If you specify a using preposition containing any keywords for which the
path function does not call si:loop-named-variable, loop will inform you of
the error.

8.7.3.1 An Example Path Definition

Here is an example function that defines the string-characters iteration path.
This path steps a variable through all of the characters of a string. It accepts the
format:

(loop for var being the string-characters of str ...)

The function is defmed to handle the path by:

FLOW Row of Control

Symbolics. Inc. March 1984

(define-loop-path string-characters string-chars-path
(of))

Here is the function:
(defun string-chars-path (path-name variable data-type

prep-phrases inclusive?
allowed-prepositions data
&aux (bindings nil)

(prologue nil)
(string-var (gensym))
(index-var (gensym))
(size-var (gensym)))

allowed-prepositions data ; unused variables
To iterate over the characters of a string, we need
to save the string, save the size of the string,
step an index variable through that range, setting
the user's variable to the character at that index.
Default the data-type of the user's variable:

(cond ((null data-type) (setq data-type 'fixnum)))
; We support exactly one •preposition•, which is
; required, so this check suffices:
(cond ((null prep-phrases)

(ferror nil •of missing in -s iteration path of -s•
path-name variable)))

We do not support •inclusive• iteration:
(cond ((not (null inclusive?))

(ferror ni 1
•inclusive stepping not supported in -s path -
of -s (prep phrases = -:s)•

path-name variable prep-phrases)))
; Set up the bindings
(setq bindings (list (list variable nil data-type)

(list string-var (cadar prep-phrases))
(list index-var O 'fixnum)
(list size-var O 'fixnum)))

Now set the size variable
(setq prologue (list '(setq ,size-var (string-length

,string-var))))
; and return the appropriate stuff, explained below.
(1 ist bindings

prologue
'(= ,index-var ,size-var)
nil
nil

; char-n is the NIL string referencing primitive.
; In Zetalisp, aref could be used instead.
(list variable '(char-n ,string-var ,index-var)

index-var '(1+ ,index-var))))

59

60 FLOW Row of Control'

Symbolics. Inc. March 1984

The first element of the returned list is the bin~gs. The second is a list of forms
to be placed in the prologue. The remaining elements specify how the iteration is to
be performed. This example is a particularly simple case, for two reasons: the
actual "variable of iteration", index-var, is purely internal (being gensymmed), and
the stepping of it (1+) is such that it may be performed safely without an endtest.
Thus index-var may be stepped immediately after the setting of the user's variable,
causing the iteration specification for the first iteration to be identical to the
iteration specification for all remaining iterations. This is advantageous from the
standpoint of the optimizations loop is able to perform, although it is frequently not
possible due to the semantics of the iteration (for example,
for var first exprl then expr2) or to subtleties of the stepping. It is safe for this
path to step the user's variable in the pseudo-steps (the fourth item of an iteration
specification) rather than the "real" steps (the second), because the step value can
have no dependencies on any other (user) iteration variables. Using the pseudo-steps
generally results in some efficiency gains.

If you wanted the· index variable in the above definition to be user-accessible through
the using phrase feature with the index keyword, the function would need to be
changed in two ways. First, bldex-var should be bound to
(si:loop-named-variable 'index) instead of (gensym). Secondly, the efficiency
hack of stepping the index variable ahead of the iteration variable must not be done.
This is effected by changing the last form to be:

(list bindings prologue
nil
(list index-var '(1+ ,index-var))
'(= ,index-var ,size-var)
(list variable '(char-n ,string-var ,index-var))
ni 1
ni 1
'(= ,index-var ,size-var)
(list variable '(char-n ,string-var ,index-var)))

Note that although the second'(= ,index-var ,size-var) could have been placed
earlier (where the second nil is), it is best for it to match up with the equivalent
test in the first iteration specification grouping.

FLOW Row of Control 61

Symbolics, Inc. March 1984

Index

A A A
Aggregated Boolean Tests ~45
always clause 45
always keyword 45

Logical and function 4
and special form 4
append clause 42
append keyword 42
appending clause 42
appending keyword 42
Applying functions to list Items 31

Keywords In argument lists 15
as clause 56

B B B
. Bindings 40

with bindings 40
Bindings In loops 40. 49
block special form 9
Blocks and Exits 9

Aggregated Boolean Tests 45

c c c
caseq special form 8
catch 25
*catch special form 27
catch special form 25
catch-all macro 28

always clause 45
append clause 42

appending clause 42
88 clause 56

collect clause 42
collecting clause 42

count clause 42
counting clause 42

do clause 42
finally clause 42

for clause 56
If clause 45

lnttlally clause 42
loop clause 49

maximize clause 42. 48
minimize clause 42

named clause 47
nconc clause 42
never clause 45

noc1ec1 ... clause 40
retum clause 47

62

D

sum
aummlna

therel1
unleu

until
when
while
wfth

doing

Evaluation Iteration-driving
for

Iteration-driving
Miscellaneous Other

Loop exit
Loop Initialization

Keyword

Conditional
Expressions In loop

Flow of
Introduction: Flow of

Nonlocal Exits: Flow of
Program

Transfer of
Exit

Nonlocal exit

flxnum
ftonum
Integer
notype

number
small-ftonum

An Examp~ Path

FLOW . Row of Control

SymboUcs. Inc. March 1984

clause 42, 48
clause 42
clause 45
clause 45
clause 44
clause 45
clause 44
clause 40
clause expression 42
Clauses 36
clauses 37
clauses 37
Clauses 37, 51
Clauses 47
Cleanup handler 25
code 35, 42
code 35, 42
collect clause 42
collect keyword 42
collecting clause 42
collecting keyword 42
comparisons 56
cond special form 3
cond-every special form 4
Conditional construct 1
Condltionallzatlon 45
Conditionals 3
construct 1
constructs 36
control 1
Control 1
Control 25

D

control 1
Control 13
control structures
control structures 1
count clause 42
count keyword 42
counting clause 42
counting keyword 42

Data Types: the Loop Iteration Macro 48
data-type keyword 48
data-type keyword 48
data-type keyword 48
data-type keyword 48
data-type keyword 48
data-type keyword 48
defln•loop-macro macro 48
defln•loop-palh macro 56
defln•loop-sequence-path macro 55
Defining Paths 56
Definition 58
Destructurlng 49
dispatch special form 8
do clause 42

D

FLOW Row of Control

Symbolics. Inc. March 1984

E

F

Side

MDL programming
Loop

An
Entrance and

Nonlocal
Loop

Nonlocal
Blocks and

Nonlocal
doing clause

FOR

Introduction:
Nonlocal Exits:

and special
block special
caseq special

•catch special
catch special
cond special

cond-every special
dspatch special

do special
do* special

do*-named special
do-named special

dollst special

do keyword 42
do special form 15
do* special form 17
do*-named special form 18
do-nmned special form 18
doing clause expression 42
doing keyword 42
dollst special form 19
dotlmes special form 19

E

F

Effects 42
else keyword 45
Endtests 44, 51
Entrance and Exit 42
environment 35
epilogue 35, 42
Evaluation In loops 42
Evaluation Iteration-driving clauses 37
Example Path Definition 58
Exit 42
exit 25
exit code 35, 42
Exit control structures 1
exit control structures 1
Exits 9
Exits: Flow of Control 25
expression 42
Expressions In loop constructs 36

facility In lnterllslp 35
finally clause 42
finally keyword 42
fixnum data-type keyword 48
ftonum data-type keyword 48
Flow of control 1
Flow of Control 1
Flow of Control 25
for clause 56
for clauses 37
for keyword 37
form 4
form 9
form 8
form 27
form 25
form 3
form 4
form 8
form 15
form 17
form 18
form 18
form 19

63

E

F

64 FLOW Row of Control

Symbolics, Inc. March 1984

dotlmes special form 19
go special form 13, 15
If special form 3

keyword-extract special form 19
or special form 5

prog special form 20
prog* special form 22
return special form 11, 15

return-from special form 9
select special form 6

selector special form 7
aelectq special form 5

aelectq-every special form 8
tagbody special form 13

throw special form 26
typecase special form 7

unwind-protect special form 26
The Iteration Framework 51

fretum Maclisp function 28
fretum Maclisp function 28

Logical and function 4
Logical or function 5

map function 32
mapc function 32

mapcan function 33
mapcs function 32

mapcon function 33
mapllst function 32

return-list function 11
sl:loop-named-varlable function 58

sl:loop-tassoc function 58
sl:loop-tequal function 58

sl:loop-tmember function 58
*throw function 28

*unwind-stack function 28
Applying functions to list Items 31

G G G
ao special form 13, 15
Goto-less programming 20

H H H
Cleanup handler 25

Loop Iteration over Hash Tables 54
Loop Iteration path over hash tables 54

I I I
If clause 45
If keyword 45
If special form 3
Inclusive or 5
Index keyword 52, 55

Loop Initialization code 35, 42
lnftlally clause 42

FLOW Row of Control

Symbolics, Inc. March 1984

K

FOR facility In
The

Applying functions to list

Integer
List

loop
Sequence

Variable of
The

Data Types: the Loop
Introduction: the Loop

The Loop
Loop
Loop

Evaluation

always
append

appending
collect

collecting
count

counting
do

doing
else

finally
flxnum data-type
ftonum data-type

for
If

Index
Initially

Integer data-type
Its

loop
maximize
minimize

named
nconc

nconclng
never

nodeclare
notype data-type

number data-type
retum

lnltlally keyword 42
Integer data~type keyword 48
Integer iteration 19
lnterlislp 35
lntemed-symbol1 Path 54
Introduction: Flow of Control 1
Introduction: the Loop Iteration Macro 35
Items 31
Iteration 1, 15, 35
Iteration 19
Iteration 19
Iteration 56
Iteration 55
Iteration 37
Iteration Framework 51
Iteration Macro 48
Iteration Macro 35
Iteration Macro 35
Iteration OVer Hash Tables 54
Iteration path over hash tables 54
Iteration Paths 52
Iteration variables 51
Iteration-driving Clauses 37, 51
Iteration-driving clauses 37
Its keyword 52

K
keyword 45
keyword 42
keyword 42
keyword 42
keyword 42
keyword 42
keyword 42
keyword 42
keyword 42
keyword 45
keyword 42
keyword 48
keyword 48
keyword 37
keyword 45
keyword 52, 55
keyword 42
keyword 48
keyword 52
keyword 49
keyword 42
keyword 42
keyword 47
keyword 42
keyword 42
keyword 45
keyword 40
keyword 48
keyword 48
keyword 47

65

K

66

L

M

small-ftonum data-type
sum

summing
thentla
unl

untll
when
while
with

Applying functions to

Keywords In argument

Expressions In

Data Types: the
Introduction: the

The

el:
el:
el:
el:
81:

Bindings in
Evaluation In

fret um
catch-all

Data Types: the Loop Iteration
defln•loop-macro

defin•loop-palh
defln•loop-sequence-palh

Introduction: the Loop Iteration
loop-finish

The Loop Iteration
unleu

L

FLOW Row of Control

Symbolics. Inc. March 1984

keyword 48
keyword 42
keyword 42
keyword 45
keyword 45
keyword 44
keyword 45
keyword 44
keyword 40
Keyword comparisons 56
keyword-extract special form 19
Keywords In argument lists 15

list Items 31
List Iteration 19
lists 15
Logical and function 4
Logical or function 5
loop clause 49
loop constructs 36
Loop epilogue 35, 42
Loop exit code 35. 42
Loop Initialization code 35, 42
loop Iteration 56
Loop Iteration Macro 48
Loop Iteration Macro 35
Loop Iteration Macro 35
Loop Iteration Over Hash Tables 54
Loop Iteration path over hash tables 54
loop keyword 49
Loop prologue 35. 42
Loop Synonyms 48
Loop termination 42, 44
loop-finish macro 45
loop-named-variable function 58
loop-tassoc function 58
loop-tequal function 58
loop-tmember function 58
loop-uee-eystem-destructurlng? variable 50
loops 40, 49
loops 42

L

M M
Macllsp 35
Macllsp function 28
macro 28
Macro 48
macro 48
macro 56
macro 55
Macro 35
macro 45
Macro 35
macro 5

FLOW Row of Control

Symbolics, Inc. March 1984

N

0

p

when macro 5

N

0

map function 32
rnapc function 32
mapcan function 33
mapcs function 32
mapcon function 33
mapllst function 32
Mapping 31
maximize clause 42, 48
maximize keyword 42
MDL programming envlronmen1 35
minimize clause 42
minimize keyword 42
Miscellaneous Other Clauses 47

named clause 47
named keyword 47
nconc clause 42
nconc keyword 42
nconclng keyword 42
never clause 45
never keyword 45
NIL 35, 49
nodeclare clause 40
nodeclare keyword 40
Nonlocal exit 25
Nonlocal exit con1rol structures 1
Nonlocal Exits: Flow of Con1rol 25
notype data-type keyword 48
number data-type keyword 48

Inclusive or 5
Logical or function 5

or special form 5
Miscellaneous Other Clauses 47

otherwise symbol 4

The Interned-symbols
An Example

Loop Iteration

Defining
Iteration

Predefined

p
Path 54
Path Definition 58
path over hash tables 54
Pathnames 52
Paths 56
Paths 52
Paths 54
Post-step-endtest 51
Pre-step-endtest 51
Predefined Paths 54
prog special form 20
prog tags 15
prog* special form 22
Program control 1

67

N

0

p

68

R

s

Goto-less
MDL
Loop

Unwind

and
block
caseq

•catch
catch
cond

con cl-every
dispatch

do
do*

do*-named
do-named

doll st
dot Imes

go
If

keyword-extract
or

prog
prog•
return

return-from
select

selector
selectq

selectq-every
tagbody

throw

R

s

FLOW Row Of Control

Symbolics. Inc. March 1984

programming 20
programming environment 35
prologue 35, 42
pro~lon 25
Pseudo-steps 51

Recursion 1
return clause 47
return keyword 47
return special form 11, 15
return-from special form 9
return-Hat function 11

eelect special form 6
eelector special form 7
eelectq special form 5
selectq.every special form 8
Sequence Iteration 55
sl:loop-named-varlable function 58
sl:loop-tassoc function 58
sl:loop-tequal function 58
sl:loop-tmember function 58
sl:loop-use-system-deatructurlng? variable 50
Side Effects 42
small-ftonum data-type keyword 48
special form 4
special form 9
special form 8
special form 27
special form 25
special form 3
special form 4
special form 8
special form 15
special form 17
special form 18
special form 18
special form 19
special form 19
special form 13, 15
special form 3
special form 19
special form 5
special form 20
special form 22
special form 11, 15
special form 9
special form 6
special form 7
special form 5
special form 8
special form 13
special form 26

R

s

FLOW Row of Control 69

Symbolics, Inc. March 1984

typecM8 special form 7
unwind-protect special form 26

Unwinding a stack 25
Stepping 51
Stepping variables 51
Steps 51

Exit control structures 1
Nonlocal exit control structures 1

sum clause 42, 48
sum keyword 42
summing· clause 42
summing keyword 42

otherwise symbol 4
Loop Synonyms 48

T T T
Loop Iteration OVer Hash Tables 54

Loop Iteration path over hash tables 54
~ special form 13

prog tags 15
Loop termination 42, 44

Aggregated Boolean Tests 45
therels clause 45
therels keyword 45
Throw 25
*throw function 28
throw special form 26
Transfer of Control 13
typecase special form 7

Data Types: the Loop Iteration Macro 48

u u u
unless clause 45
unless keyword 45
unless macro 5
until clause 44
until keyword 44
Unwind protection 25
unwind-protect special form 26
*unwind-stack function 28
Unwinding a stack 25

v v v
Values 42

1i:loop-use-1ystem-destructurlng? variable 50
Variable of Iteration 37

Iteration variables 51
Stepping variables 51

70

w w
when clause 45
when keyword 45
when macro 5
while clause 44
while keyword· 44
wfth bindings 40
wfth clause 40
wfth keyword 40
with-key 54

FLOW Row of Control

Symbolics, Inc. March 1984

w

symbolics™

ARR Arrays and Strings

Cambridge, Massachusetts

Arrays and Strings
990047

March 1984

This document corresponds to Release 5.0.

This document was prepared by the Documentation Group of Symbolics, Inc.

No representation or affirmation of fact contained In this document should be construed
as a warranty by Symbolics, and its contents are subject to change without notice.
Symbolics, Inc. assumes no responsibility for any errors that might appear in this
document.

Symbolics software described In this document is furnished only under license, and may
be used only in accordance with the terms of such license. Title to, and ownership of,
such software shall at all times remain in Symbolics, Inc. Nothing contained herein
Implies the granting of a license to make, use, or sell any Symbolics equipment or
software.

Symbolics Is a trademark of Symbolics, Inc., C8mbridge, Massachusetts.

Copyright C 1981, 1979, 1978 Massachusetts Institute of Technology.
All rights reserved.

Enhancements copyright C 1984, 1983, 1982 Symbolics, Inc. of C8mbridge,
Massachusetts.
All rights reserved. Printed In USA.
This document may not be reproduced In whole or In part without the prior written
consent of Symbolics, Inc.

Printing year and number: 87 86 85 84 9 8 7 6 5 4 3 2 1

ARR Arrays and Strings

Symbolics, Inc. March 1984

Table of Contents

L Arrays

1.1 Extra Features of Arrays
1.2 Basic Array Functions
1.3 Getting Information About an Array
1.4 Changing the Size of an Array
1.5 Arrays Overlaid with Lists
1.6 Adding to the End of an Array
1. 7 Copying an Array
1.8 Matrices and Systems of Linear Equations
1.9 Planes
1.10 Maclisp Array Compatibility

2. Strings

2.1 Characters
2.2 Upper and Lowercase Letters
2.3 Basic String Operations
2.4 String Searching
2.5 1/0 to Strings
2.6 Maclisp-eompatible Functions

Index

Page

1

4
7

11
13
15
15
16
19
21
23

25

26
26
27
31
34
36

37

ARR Arrays and Strings 1

SymboUcs. Inc. March 1984

1. Arrays

An array is a Lisp object that consists of a group of cells, each of which may contain
an object. The individual cells are selected by numerical subscripts.

The dimensionality of an array (or, the number of dimensions that the array has) is
the number of subscripts used to refer to one of the elements of the array. The
dimensionality may be any integer from one to seven, inclusively.

The lowest value for any subscript is O; the highest value is a property of the array.
Each dimension has a size, which is the lowest number that is too great to be used
as a subscript. For example, in a one-dimensional array of five elements, the size of
the one and only dimension is five, and the acceptable values of the subscript are 0,
1, 2, 3, and 4.

The most basic primitive functions for handling arrays are:

• make-array - used for the creation of arrays

• aref - used for examining the contents of arrays

• aset - used for storing into arrays

An array is a regular Lisp object, and it is common for an array to be the binding of
a symbol, or the car or cdr of a cons, or, in fact, an element of an array. There are
many functions, described in this chapter, that take arrays as arguments and
perform useful operations on them.

Another way of handling arrays, inherited from Maclisp, is to treat them as
functions. In this case each array has a name, which is a symbol whose function
definition is the array. Zetalisp supports this style by allowing an array to be
applied to arguments, as if it were a function. The arguments are treated as
subscripts and the array is referenced appropriately. The store special form is also
supported, but it is supported on the LM-2 only. See the special form store. This
kind of array referencing is considered to be obsolete, and is slower than the usual
kind. It should not be used in new programs.

There are many types of arrays. Some types of arrays can hold Lisp objects of any
type; the other types of arrays can only hold fIXDums or flonums. The array types
are known by a set of symbols whose names begin with "art-" (for AR.ray Type).

The most commonly used type is called art-q. An art-q array simply holds Lisp
objects of any type.

Similar to the art-q type is the art-q-list. Like the art-q, its elements may be any
Lisp object. The difference is that the art-q-list array "doubles" as a list; the
function g-1-p takes an art-q-list array and returns a list whose elements are those

2 ARR Arrays and Strings

Symbolics, Inc. March 1984

of the array, and whose actual substance is that of the array. If you rplaca
elements of the list, the corresponding element of the array changes, and if you
store into the array, the corresponding element of the list changes the same way.
An attempt to rplacd the list causes an error, since arrays cannot implement that
operation.

There is a set of types called art-lb, art-2b, art-4b, art-Sb, and art-16b; these
names are short for "1 bit", "2 bits", and so on. Each element of an art-nb array is
a nonnegative fimum, and only the least significant n bits are remembered in the
array; all of the others are discarded. Thus art-lb arrays store only 0 and 1, and if
you store a 5 into an art-2b array and look at it later, you will find a 1 rather than
a 5 .

. These arrays are used when it is known beforehand that the fimums that will be
· stored are nonnegative and limited in size to a certain number of bits. Their
advantage over the art-q array is that they occupy less storage, because more than
one element of the array is kept in a single machine word. <For example, 32

·elements of an art-lb array or 2 elements of an art-16b array will fit into one
word).

There are also art-32b arrays that have 32 bits per element. Since fIXDums only
have 24 bits anyway, these are the same as art-q arrays except that they only hold
fIXDums. They do not behave consistently with the other "bit" array types, and
generally they should not be used.

Character strings are implemented by the art-string array type. This type acts
similarly to the art-Sb; its elements must be fIXDums, of which only the least
significant eight bits are stored. However, many important system functions,
including read, print, and eval, treat art-string arrays very differently from the
other kinds of arrays. These arrays are usually called strings. See the section
"Strings". That section deals with functions that manipulate these type of arrays.

An art-fat-string array is a character string with wider characters, containing 16
bits rather than 8 bits. The extra bits are ignored by string operations, such as
comparison, on these strings; typically they are used to hold font information.

An art-half-fix array contains half-size fixnums. Each element of the array is a
signed 16-bit integer; the range is from -32768 to 32767 inclusive.

The art-float array type is a special-purpose type whose elements are flonums.
When storing into such an array the value (any kind of number) will be converted to
a flonum, using the float function. The advantage of storing flonums in an
art-float array rather than an art-q array is that the numbers in an art-float
array are not true Lisp objects. Instead the array remembers the numerical value,
and when it is arefed creates a Lisp object (a flonum) to hold the value. Because
the system does special storage management for bignums and flonums that are
intermediate results, the use of art-float arrays can save a lot of work for the
garbage collector and hence greatly increase performance. An intermediate result is

ARR Arrays and Strings 3
Symbolics, Inc. March 1984

a Lisp object passed as an argument, stored in a local variable, or returned as the
value of a function, but not stored into a global variable, a non-art-float array, or
list structure. art-float arrays also provide a locality of reference advantage over
art-q arrays containing flonums, since the flonums are contained in the array rather
than being separate objects probably on different pages of memory.

The art-fps-float array type is another special-purpose type whose elements are
flonums. The internal format of this array is compatible with the PDP-llNAX
single-precision floating-point format. The primary purpose of this array type is to
interface with the FPS array processor, which can transfer data directly in and out
of such an array.

When storing into an art-fps-float array any kind of number may be stored. It will
be rounded off to the 24-bit precision of the PDP-11. If the magnitude of the
number is too large, the largest valid floating-point number will be stored. If the
magnitude is too small, 0 will be stored.

When reading from an art-fps-float array, a new flonum is created containing the
value, just as with an art-float array.

There are three types of arrays that exist only for the implementation of stack
groups; these types are ealled. art-stack-group-head, art-special-pd), and
art-reg-pdl. Their elements may be any Lisp object. See the section "Stack
Groups".

Currently, multidimensional arrays are stored in column-major order rather than
row-major order as in Maclisp. Row-major order means that successive memocy
locations differ in the last subscript, while column-major order means that successive
memory locations differ in the first subscript. This has an effect on paging
performance when using large arrays; if you want to reference every element in a
multidimensional array and move linearly through memory to improve locality of
reference, you must vary the first subscript fastest rather than the last.

array-types Variable
The value of array-types is a list of all of the array type symbols such as
art-q, art-4b, art-string and so on. The values of these symbols are
internal array type code numbers for the corresponding type.

array-types array-type-code Function
Given an internal numeric array-type code, returns the symbolic name of that
type.

array-elements-per-q Variable
array-elements-per-q is an association list that associates each array type
symbol with the number of array elements stored in one word, for an array
of that type. See the section "Association Lists". If the value is negative, it
is instead the number of words per array element, for arrays whose elements
are more than one word long.

4 ARR Arrays and Strings

Symbolics, lnci March 1984

array-elements-per-q array-type-code Function
Given the internal array-type code number, returns the number of array
elements stored in one word, for an array of that type. If the value is
negative, it is instead the number of words per array element, for arrays
whose elements are more than one word long.

array-bits-per-element Variable
The value of array-bits-per-element is an association list that associates
each array tYPe symbol with the number of bits of unsigned number it can
hold, or nil if it can hold Lisp objects. This can be used to tell whether an
array can hold Lisp objects or not. See the section "Association Lists".

array-bits-per-element array-type-code Function
Given the internal array-type code numbers, returns the number of bits per
cell for unsigned numeric arrays, or nil for a type of array that can contain
Lisp objects.

array-element-size array Function
Given an array, returns the number of bits that fit in an element of that
array. For arrays that can hold general Lisp objects, the result is 24.,
assuming you will be storing unsigned fixnums in the array.

1.1 Extra Features of Arrays

Any array can have an array leader. An array leader is like a one-dimensional art-q
array that is attached to the main array. So an array that has a leader acts like
two arrays joined together. The leader can be stored into and examined by a special
set of functions, different from those used for the main array: array-leader and
store-array-leader. The leader is always one-dimensional, and always can hold any
kind of Lisp object, regardless of the type or dimensionality of the main part of the
array.

Very often the main part of an array will be a homogeneous set of objects, while the
leader will be used to remember a few associated nonhomogeneous pieces of data. In
this case the leader is not used like an array; each slot is used differently from the
others. Explicit numeric subscripts should not be used for the leader elements of
such an array; instead the leader should be described by a defstruct. See the
macro defstruct.

By convention, element zero of the array leader of an array is used to hold the
number of elements in the array that are "active" in some sense. When the zeroth
element is used this way, it is called a fill pointer. Many array-processing functions
recognize the fill pointer. For instance, if a string (an array of type art-string) has
seven elements, but its fill pointer contains the value 5, then only elements zero
through four of the string are considered to be "active"; the string's printed

ARR Arrays and Strings

Symbolics, Inc. March 1984

representation will be five characters long, string-searching functions will stop after
the fifth element, and so on.

5

The system does not provide a way to tum off the fill-pointer convention; any array
that has a leader must reserve element 0 for the fill pointer or avoid using many of
the array functions.

Leader element one is used in conjunction with the "named structure" feature to
associate a "data type" with the array. See the section "Named Structures".
Element one is only treated specially if the array is flagged as a named structure.

Normally, an array is represented as a small amount of header information, followed
by the contents of the array. However, sometimes it is desirable to have the header
information removed from the actual contents. One such occasion is when the
contents of the array must be located in a special part of the Lisp Machine,s address
space, such as the area used for the control of input/output devices, or the bitmap
memory that generates the TV image. Displaced arrays are also used to reference
certain special system tables, which are at fixed addresses so the microcode can
access them easily.

If you give make-array a fixnum or a locative as the value of the :displaced-to
option, it will create a displaced array referring to that location of virtual memory
and its successors.

References to elements of the displaced array will access that part of storage, and
return the contents; the regular aref and aset functions are used. If the array is
one whose elements are Lisp objects, caution should be used: if the region of address
space does not contain typed Lisp objects, the integrity of the storage system and
the garbage collector could be damaged. If the array is one whose elements are
bytes (such as an art-4b type), then there is no problem. It is important to know,
in this case, that the elements of such arrays are allocated from the right to the left
within the 32-bit words.

It is also possible to have an array whose contents, instead of being located at a
fixed place in virtual memory, are defined to be those of another array. Such an
array is called an indirect array, and is created by giving make-array an array as
the value of the :displaced-to option. The effects of this are simple if both arrays
have the same type; the two arrays share all elements. An object stored in a
certain element of one can be retrieved from the corresponding element of the other.
This, by itself, is not very useful. However, if the arrays have different
dimensionality, the manner of accessing the elements differs. Thus, by creating a
one-dimensional array of nine elements that was indirected to a second, two
dimensional array of three elements by three, then the elements could be accessed in
either a one-dimensional or a two-dimensional manner. Unexpected effects can be
produced if the new array is of a different type than the old array; this is not
generally recommended. Indirecting an art-mb array to an art-nb array will do the
"obvious" thing. For instance, if m is 4 and n is 1, each element of ~he first array
will contain four bits from the second array, in right-to-left order.

6 ARR Arrays and Strings

Symbolics, Inc. March 1984

It is also possible to create an indirect array in such a way that when an attempt is
made to reference it or store into it, a constant number is added to the subscript
given. This number is called the index-offset, and· is specified at the time the
indirect array is created, by giving a fimum to make-array as the value of the
:displaced-index-offset option. Similarly, the length of the indirect array need not
be the full length of the array it indirects to; it can be smaller. The nsubstring
function creates such arrays. When using index offsets with multidimensional
arrays, there is only one index offset; it is added in to the "linearized" subscript
which is the result of multiplying each subscript by an appropriate coefficient and
adding them together.

Conformal Indirection

Multidimensional arrays on the 3600 remember their actual dimensions, separately
from the magic numbers by which to multiply the subscripts before adding them
together to get the index into the array.

As a result of this, multidimensional indirect arrays on the 3600 can have conformal
indirection. If A is indirected to B, and they do not have the same width, then
normally the part of B that is shared with A does not have the same shape as A. If
conformal indirection is used, then it does have the same shape and there are gaps
between the rows of A. For example:

(setq b (make-array '(10. 20.)))
(setq a (make-array '(3 5) ':displaced-to b ':displaced-index-offset 12.))

Now:

(aref a 1 O) = (aref b 3 1) and (aref a 1 1) = (aref b 6 1).

In contrast:

(setq a (make-array '(3 5) ':displaced-to b ':displaced-index-offset 12.
':displaced-conformally t))

(aref a 1 0) = (aref b 3 1) still, but (aref a 1 1) = (aref b 3 2). Each row of A
corresponds to part of a row of B, always starting at the same column (2).

A graphic illustration:

ARR Arrays and Strings

Symbolics, Inc. March 1984

(setq a (make-array '(6 20.)) .
b (make-array '(3 5) ':displaced-to a ':displaced-index-offset 22.)
c (make-array '(3 5) ':displaced-to a ':displaced-index-offset 22.

':displaced-conformally t))

Normal case
0 19

+--------------------+
Olaaaaaaaaaaaaaaaaaaaal

laaBBBBBBBBBBBBBBBaaal
laaaaaaaaaaaaaaaaaaaal
laaaaaaaaaaaaaaaaaaaal
laaaaaaaaaaaaaaaaaaaal

5laaaaaaaaaaaaaaaaaaaaf

+--------------------+

Conformal case
0 19

+--------------------+
Olaaaaaaaaaaaaaaaaaaaal

laaCCCCCaaaaaaaaaaaaal
laaCCCCCaaaaaaaaaaaaal
laaCCCCCaaaaaaaaaaaaal
laaaaaaaaaaaaaaaaaaaal

5laaaaaaaaaaaaaaaaaaaal

+--------------------+
Arrays are stored in column-major order, so the units in which the index-offset is
measured should be read first from left to right and then from top to bottom.

The meaning of adjus~array-size for conformal indirect arrays is undefined.

1.2 Basic Array Functions

7

make-array dimensions &rest options. Function
This is the primitive function for making arrays. dimensions should be a list
of fixnums that are the dimensions of the array; the length of the list ~ be
the dimensionality of the array. For convenience when making a one
dimensional array, the single dimension may be provided as a fixnum rather
than a list of one fimum.

options are alternating keywords and values. The keywords may be any of
the following:

:area The value specifies in which area the array should be created. It
should be either an area number (a fixnum), or nil to mean the
default area. See the section "Areas".

:type The value should be a symbolic name of an array type; the most
common of these is art-q, which is the default. The elements of the
array are initialized according to the type: if the array is of a type .
whose elements may only be fixnums or tlonums, then evecy element
of the array will initially be 0 or 0.0; otherwise, evecy element will
initially be nil. See the section "Arrays: Arrays and Strings". Array
types are described in that section. The value of the option may also
be the value of a symbol that is an array type name (that is, an
internal numeric array type code).

:displaced-to

8 ARR Arrays and Strings

Symbolics. Inc. March 1984

If this is not nil, then the array will . be a displaced array. If the
value is a ti.mum or a locative, make-array will create a regular
displaced array that refers to the specified section of virtual address
space. If the value is an array, make-array will create an indirect
array. See the section "Extra Features of Arrays".

:initial-value
This makes its value the initial value of evecy element of the array.
Example:

(make-array 5 ':type 'art-string ':initial-value #/a)
=> •aaaaa•

:leader-length
The value should be a fimum. The array will have a leader with
that many elements. The elements of the leader will be initialized to
nil unless the :leader-list option is given.

:leader-list
The value should be a list. Call the number of elements in the list n.
The first n elements of the leader will be initialized from successive
elements of this list. If the :leader-length option is not specified,
then the length of the leader will be n. If the :leader-length option
is given, and its value is greater than n, then the nth and following
leader elements will be initialized to nil. If its value is less than n,
an error is signalled. The leader elements are filled in forward order;
that is, the car of the list will be stored in leader element 0, the
cadr in element 1, and so on.

:fill-pointer
It causes make-array to give the array a fill pointer and initializes it
to the value following the keyword. Use this instead of
:leader-length or :leader-list when you are using the leader only for
a fill pointer. This keyword is compatible with the current Common
Lisp design, which has no array leaders.

:displaced-index-offset
If this is present, the value of the :displaced-to option should be an
array, and the value should be a nonnegative fimum; it is made to be
the index-offset of the created indirect array. See the section "Extra
Features of Arrays".

:displaced-conformally
(3600 only) Can be used with the :displaced-to option. If the value
is t and make-array is creating an indirect array, the array uses
conformal indirection.

:named-structure-symbol
If this is not nil, it is a symbol to be stored in the named-structure
cell of the array. The array will be tagged as a named structure.
See the section "Named Structures". If the array has a leader, then

ARR Arrays and Strings

Symbolics, Inc. March 1984

this symbol will be stored in leader· element 1 regardless of the value
of the :leader-list option. If the array does not have a leader, then
this symbol will be stored in array element zero.

Examples:

. ;; Create a one-dimensional array of five elements.
(make-array 5)
;; Create a two-dimensional array,
;; three by four, with four-bit elements.
(make-array '(3 4) ':type 'art~4b)
;; Create an array with a three-element leader.
(make-array 5 ':leader-length 3)
;; Create· an array with a leader, providing
;; initial values for the leader elements.
(setq a (make-array 100 ':type 'art-lb

':leader-list '(t nil)))
(array-leader a 0) => t
(array-leader a 1) =>nil

;; Create a named-structure with five leader
;; elements, initializing some of them.
(setq b (make-array 20 ':leader-length 5

':leader-list '(O nil foo)
':named-structure-symbol 'bar))

(array-leader b O) => O
(array-leader b 1) => bar
(array-leader b 2) => foo
(array-leader b 3) => nil
(array-leader b 4) => nil

make-array returns the newly created array, and also returns, as a second
value, the number of words allocated in the process of creating the array,
that is, the %structure-total-size of the array.

When make-array was originally implemented, it· took its arguments in the
following fixed pattern:

(make-array area type dimensions
&opt i ona 1 displaced-to leader

displaced-index-offset
named-structure-symbol>

9

leader was a combination of the :leader-length and :leader-list options, and
the list was in reverse order.

This form is obsolete and should not be used. The compiler warns about
uses of this form of make-array; however, it continues to accept the obsolete
form. -

10 ARR Arrays and Strings

Symbolics, Inc. March 1984

aref array &rest subscripts Function
Returns the element of array selected, by the subscripts. The subscripts
must be fixnums and their number must match the dimensionality of array.

ar-1 array i Function
This is an obsolete version of aref that only works for one-dimensional
arrays. There is no reason ever to use it.

ar-2 array i j Function
This is an obsolete version of aref that .only works for two-dimensional
arrays. There is no reason ever to use it.

ar-3 array i j k Function
This is an obsolete version of aref that only works for three-dimensional
arrays. There is no reason ever to use it. ar-3 is available only on the
LM-2.

aset x array &rest subscripts Function
Stores x into the element of array selected by the subscripts. The subscripts
must be fixnums and their number must match the dimensionality of array.
The returned value is x.

as-1 x array i Function
This is an obsolete version of aset that only works for one-dimensional
arrays. There is no reason ever to use it.

as-2 x array i j Function
This is an obsolete version of aset that only works for two-dimensional
arrays. There is no reason ever to use it.

as-3 x array i j k Function
This is an obsolete version of aset that only works for three-dimensional
arrays. There is no reason ever to use it. as-3 is available only on the
LM-2.

aloe array &rest subscripts Function
Returns a locative pointer to the element-cell of array selected by the
subscripts. The subscripts must be fixnums and their number must match
the dimensionality of array. See the section "Locatives".

ap-1 array i Function
This is an obsolete version of aloe that only works for one-dimensional
arrays. There is no reason ever to use it.

ap-2 array i j Function
This is an obsolete version of aloe that only works for two-dimensional
arrays. There is no reason ever to use it.

ARR Arrays and Strings 11

Symbolics, Inc. March 1984

ap-3 array i j k Function
This is an obsolete version of aloe that only works for three-dimensional
arrays. There is no reason ever to use ·it. ap-3 is available only on the
LM-2.

The compiler turns aref into ar-1, ar-2, and· so on according to the number of
subscripts specified, turns aset into as-1, as-2, and so on, and turns aloe into ap-1,
ap-2, and so on. For arrays with more than three dimensions the compiler uses the
slightly less efficient form since the special routines only exist for one, two, and
three dimensions. There is no reason for any program to call ar-1, as-1, ar-2, and
so forth explicitly; they are documented because there used to be such a reason, and
many old programs use these functions. New programs should use aref, aset, and
aloe.

A related function, provided only for Maclisp compatibility, is arraycall.

array-leader array i Function
array should be an array with a leader, and i should be a fimum. This
returns the i'th element of array's leader.· This is analogous to aref.

store-array-leader x array i Function
array should be an array with a leader, and i should be a fixnum. x can be
any object. xis stored in the i'th element of array's leader.
store-array-leader returns x. This is analogous to aset.

ap-leader array i Function
array should be an array with a leader, and i should be a fixnum. This
returns a locative pointer to the i'th element of array's leader. See the
section "Locatives". This is analogous to aloe.

fill-pointer array Function
Returns the value of the fill pointer. array must have a fill pointer.
fill-pointer is actually a subst, so it compiles inline instead of as a function
call. setf can be used on a fill-pointer form to set the value of the fill
pointer ..

Programs access the fill pointer by explicitly asking for the zeroth element of the
array leader.

1.3 Getting Information About an Array

array-type array
Returns the symbolic type of array. Example:

(setq a (make-array '(3 5)))
(array-type a) => art-q

Function

12 ARR Arrays and Strings

Symbolics, Inc. March 1984

array-length· array Function
array may be any array. This returns the tot.al number of elements in
array. For a one-dimensional array, this is one greater than the maximum
allowable subscript. (But if till pointers are being used, you may want to use
array-active-length.) Example:

(array-length (make-array 3)) => 3
(array-length (make-array '(3 5)))

~> 17 ;oct.al, which is 15. decimal

array-active-length array Function
If array does not have ·a fill pointer, then this returns whatever
(array-length array) would have. If array does have a till pointer,
array-active-length returns it. See the section "Extra Features of Arrays".
A general explanation of the use of fill pointers is in that section.

array-#-dims array Function
Returns the dimensionality of array. Note that the name of the function
includes a "#", which must be slashified if you want to be able to read your
program in Maclisp. (It does not need to be slashified for the Zetalisp reader,
which is smarter.) Example:

(array-I-dims (make-array '(3 5))) => 2

array-dimension-n n array Function
array may be any kind of array, and n should be a fixnum. If n is between
1 and the dimensionality of array, this returns the nth dimension of array.
If n is 0, this returns the length of the leader of array; if array has no
leader it returns nil. If n is any other value, this returns nil. Examples: ~

(setq a (make-array '(3 5) ':leader-length 7))
(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n O a) => 7

array-dimensions array Function
array-dimensions returns a list whose elements are the dimensions of
array. Example:

(setq a (make-array '(3 5)))
(array-dimensions a) => (3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the
list returned by (arraydims x).

arraydims array Function
array may be any array; it also may be a symbol whose function cell contains
an array, for Maclisp compatibility. See the section "Maclisp Array

·Compatibility". arraydims .returns a list whose first element is the symbolic

ARR Arrays and Strings 13

Symbolics, Inc. March 1984

name of the type of array, and whose remaining elements are its dimensions.
Example:

(setq a (make-array '(3 5)))
(arraydims a) => (art-q 3 5)

· array-in-bounds-p array &rest subscripts Function
This function checks whether subscripts is a legal set of subscripts for array,
and returns t if they are; otherwise it returns nil.

array-displaced-p array Function
array may be any kind of array. This predicate returns t if array is any ·
kind of displaced array (including an indirect array). Otherwise it returns
nil.

array-indirect-p array Function
array may be any kind of array. This predicate returns t if array is an
indirect array. Otherwise it returns nil.

array-indexed-p array Function
array may be any kind of array. This predicate returns t if array is an
indirect array with an index-offset. Otherwise it returns nil.

array-has-leader-p array Function
array may be any array. This predicate returns t if array has a leader;
otherwise it returns nil.

array-leader-length array Function
array may be any array. This returns the length of array's leader if it has
one, or nil if it does not.

1.4 Changing the Size of an Array

adjust-array-size array new-size Function
H array is a one-dimensional array, its size is changed to be new-size. H
array . has more than one dimension, its size (array-length) is changed to
new-size by changing only the last dimension.

If array is made smaller, the eXtra elements are lost; if array is made bigger,
the new elements are initialized in the same fashion as make-array would
initialize them: either to nil or 0, depending on the type of array. Example:

(setq a (make-array 5))
(aset 'foo a 4)
(aref a 4) => foo
(adjust-array-size a 2)
(aref a 4) = > an error occurs

14 ARR Arrays and Strings

Symbolics. Inc. March -1984

If the size of the array is being increased, adjust-array-size may have to
allocate a new array somewhere. In that case, it alters array so that
references to it will be made to the new array instead, by means of "invisible
pointers". See the function structure-forward. adjust-array-size will
return this new array if it creates one, and otherwise it will return array.
Be careful to be consistent about using the returned result of
adjust-array-size, because you may end up holding two arrays that are not
the same (that is, not eq), but that share the same contents.

The meaning of adjust-array-size for conformal indirect arrays. is undefmed.

array-grow array &rest dimensions Function
array-grow creates a new array of the same type as array, with the
specified dimensions. Those elements of array that are still in bounds are
copied into the new array. The elements of the new array that are not in
the bounds of array are initialized to nil or 0 as appropriate. If array has a
leader, the new array will have a copy of it. array-grow returns the new
array and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always creates a new array rather
than growing or shrinking the array in place. But array-grow of a
multidimensional array can change all the subscripts and move the elements
around in memory to keep each element at the same logical place in the
array.

return-array array Function
This peculiar function attempts to return array to free storage. If it is
displaced, this returns the displaced array itself, not the data that the array
points to. Currently return-array does nothing if the array is not at the
end of its region, that is, if it was not the most recently allocated nonlist
object in its area. This will eventually be renamed to reclaim, when it
workS for other objects than arrays.

If you still have any references to array anywhere in the Lisp world after
this function returns, the garbage collector can get a fatal error if it sees
them. Since the form that calls this function must get the array from
somewhere, it may not be clear how to legally call return-array. One of the
only ways to do it is as follows:

(defun func ()
(let ((array (make-array 100)))

(return-array (progl array (setq array nil)))))

so that the variable array does not refer to the array when return-array is
called. You should only call this function if you know what you are doing;
otherwise the garbage collector- can get fatal errors. Be careful.

ARR Arrays and Strings

Symbolics, Inc. March 1984

1.5 Arrays Overlaid with Lists

These functions manipulate art-q-list arrays. See the section "Arrays: Arrays and
Strings".

15

g-1-p array Function
array should be an art-q-list array. This returns a list that shares the
storage of array. Example:

(setq a (make-array 4 ':type 'art-q-list))
-(aref a 0) => nil
(setq b (g-1-p a)) => (nil nil nil nil)
(rplaca b t)
b => (t nil nil nil)
(aref a O) => t
(aset 30 a 2)
b => (t nil 30 nil)

The following two functions work strangely, in the same way that store does, and
should not be used in new programs.

get-list-pointer-into-array array-ref Function
The argument array-ref is ignored, but should be a reference to an art-q-Iist
array by applying the array to subscripts (rather than by aref). This
returns a list object which is a portion of the "list" of the array, beginning
with the last element of the last array which has been called as a function.
get-list-pointer-into-array is available only on the LM-2.

get-locative-pointer-into-array array-ref Function
get-locative-pointer-into-array is similar to get-list-pointer-into-array,
except that it returns a locative, and does not require the array to be
art-q-list. Use aloe instead of this function in new programs.
get-locative-pointer-into-array is available only on the LM-2.

1.6 Adding to the End of an Array

array-push array x Function
array must be a one-dimensional array that has a fill pointer, and x may be
any object. array-push attempts to store x in the element of the array
designated by the fill pointer, and increase the fill pointer by one. If the fill
pointer does not designate an element of the array (specifically, when it gets
too big), it is unaffected and array-push returns nil; otherwise, the two
actions (storing and incrementing) happen uninterruptibly, and array-push
returns the former value of the fill pointer, that is, the array index in which
it stored x. If the array is of type art-q-Iist, an operation similar to nconc

16 ARR Arrays and Strings

Symbolics. Inc. March 1984

has taken place, in that the element has been added to the list by changing
the cdr of the formerly last element. The cdr coding is updated to ensure
this.

array-push-extend an-ay x &optional extension Function
array-push-extend is just like array-push except that if the fill pointer
gets too large, the array is grown to fit the new element; that is, it never
"fails" the way array-push does, and so never returns nil. extension is the
number of elements to be added to the array if it needs to be grown. It
defaults to something reasonable, based on the size of the array.

array-pop array Function
an-ay must be a one-dimensional array that has a fill pointer. The fill
pointer is decreased by one, and the array element designated by the new
value of the fill pointer is returned. If the new value does not designate any
element of the array (specifically, if it had already reached zero), an error is
caused. The two operations (decrementing and array referencing) happen
uninterruptibly. If the array is of type art-q-list, an operation similar to
nbutlast · has taken-place. The cdr coding is updated to ensure this.

1.7 Copying an Array

fillarray array source Function
· an-ay may be any type of array, or, for Maclisp compatibility, a symbol whose

function cell contains an array. There are two forms of this function,
depending on the type of source.

If source is a list, then rillarray fills up array with the elements of list. If
source is too short to fill up all of array, then the last element of source is
used to fill the remaining elements of array. If source is too long, the extra
elements are ignored. If source is nil (the empty list), array is filled with the
default initial value for its array type (nil or 0).

If source is an array (or, for Maclisp compatibility, a symbol whose function
cell contains an array), then the elements of array are filled up from the
elements of source. If source is too small, then the extra elements of array
are not affected.

If an-ay is multidimensional, the elements are accessed in row-major order:
the last subscript varies the most quickly. The same is true of source if it is
an array.

fillarray returns array.

ARR Arrays and Strings 17

Symbolics, Inc. March 1984

listarray array &optional limit Function
array may be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. listarray creates and returns a list whose
elements are those of array. If limit is present, it should be a fimum, and
only the first limit (if there are more than that many) elements of array are
used, and so the maximum length of the returned list is limit.

If array is multidimensional, the elements are accessed in· row-major order:
the last subscript varies the most quickly.

list-array-leader array &optional limit Function
array may be any type of array, or, for Maclisp compatibility, a symbol whose
function cell contains an array. list-array-leader creates and returns a list
whose elements are those of array's leader. If limit is present, it should be a
fimum, and only the first limit (if there are more than that many) elements
of array's leader are used, and so the maximum length of the returned list is
limit. If array has no leader, nil is re~ed.

copy-array-contents from-array to-array Function
from and to must be arrays. The contents of from is copied into the
contents of to, element by element. If to is shorter than from, the rest of
from is ignored. If from is shorter than to, the rest of to is filled with nil if
it is a q-type array, or 0 if it is a numeric array or a string, or 0.0 if it is a
flonum array. This function always returns t.

Note that even if from or to has a leader, the whole array is used; the
convention that leader element 0 is the "active" length of the array is not
used by this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from and to are
"linearized" subscripts, and column-major order is used, that is, the first
subscript varies fastest (opposite .from fillarrayJ.

copy-array-contents-and-leader from-array to-array Function
This is just like copy-array-contents, but the leader of from (if any) is also
copied into to. copy-array-contents copies only the main part of the array.

copy-array-portion from-array from-start from-end to-array Function
to-start to-end

The portion of the array from-array with indices greater than or equal to
from-start and less than from-end is copied into the portion of the array
to-array with indices greater than or equal to to-start and less than to-end,
element by element. If there are more elements in the selected portion of
to-array than in the selected portion of from-array, the extra elements are
filled with the default value as by copy-array-contents. If there are more
elements in the selected portion of from-array, the· extra ones are ignored.
Multidimensional arrays are treated the same way as copy-array-contents
treats them. This function always returns t.

ARR Arrays and Strings

Symbolics, Inc. March 1984

Currently, copy-array-portion (as well as copy-array-eontents and
copy-array-contents-and-leader) copies one element at a time in increasing
order of subscripts (this behavior might change in the future). This means
that when copying from and to the same array, the results might be
unexpected if from-start is less than to-start. You can safely copy from and to
the same array as long as from-start ~ to-start.

bitblt alu width height from-array from-% from-y to-array to-x Function
to-y

from-array and to-array must be two-dimensional arrays of bits or bytes
(art-lb, art-2b, art-4b, art-Sb, art-18b, or art-32b). bitblt copies a
rectangular portion of from-array into a rectangular portion of to-array. The
value stored can be a Boolean function of the new value and the value
already there, under the control of alu. This function is most commonly
used in connection with raster images for TV displays.

The top-left comer of the source rectangle is
(aref from-an-ay from-x from-y). The top-left comer of the destination
rectangle is (aref to-array to-x to-y). width and height are the dimensions of
both rectangles. If width or height is zero, bitblt does nothing.

from-array and to-array are allowed to be the same array. bitblt normally
traverses the arrays in increasing order of x and y subscripts. If width is
negative, then (abs width) is used as the width, but the processing of the x
direction is done backwards, starting with the highest value of x and working
down. If height is negative it is treated analogously. When bitblting an
array to itself, when the two rectangles overlap, it may be necessary to work
backwards to achieve the desired effect, such as shifting the entire array
upwards by a certain number of rows. Note that negativity of width or
height does not affect the (x,y) coordinates specified by the arguments, which
are still the top-left comer even if bitblt starts at some other comer.

If the two arrays are of different types, bitblt works bit-wise and not
element-wise. That is, if you bitblt from an art-2b array into an art-4b
array, then two elements of the from-array will correspond to one element of
the to-array. width is in units of elements of the to-array.

If bitblt goes outside the bounds of the source array, it wraps around. This
allows such operations as the replication of a small stipple pattern through a
large array. If bitblt goes outside the bounds of the destination array, it
signals an error.

If src is an element of the source rectangle, and dst is the corresponding
element of· the destination rectangle, then bitblt changes the value of dst to
(boole alu src dst). See the boole function. The following are the symbolic
names for some of the most useful alu functions:

tv:alu-seta plain copy

ARR Arrays and Strings 19

Symbolics, Inc. March 1984

tv:alu-ior inclusive or

tv:alu-xor exclusive or

tv:alu-andea and with complement of source

bitblt is written in highly optimized microcode and goes veey much faster
than the same thing written with ordinary aref and aset operations would.
Unfortunately this causes bitblt to have a couple of strange restrictions.
Wraparound does not work correctly if from-array is an indirect array with
an index-offset. bitblt will signal an error if the first dimensions of
from-an-ay and to-an-ay are not both integral multiples of the machine word
length. For art-lb arrays, the first dimension must be a multiple of 32., for
art-2b arrays it must be a multiple of 16., and so on.

1.8 Matrices and Systems of Linear Equations

The functions in this section perform some useful matrix operations. The matrices
are . represented as two-dimensional Lisp arrays. These functions are part of the
mathematics package rather than the kernel array system, hence the "math:" in
the names.

math:multiply-matrices matrix-1 matrix-2 &optipnal matrix-3 Function
Multiplies matrix-1 by· matrix-2. H matrix-3 is supplied, multiply-matrices
stores the results into matrix-3 and returns matrix-3; otherwise it creates an
array to contain the answer and returns that. All matrices must be two
dimensional arrays, and the first dimension of matrix-2 must equal the
second dimension of matrix-1.

math:invert-matrix matrix &optional into-matrix Function
Computes the inverse of matrix. H into-matrix is supplied, stores the result
into it and returns it; otherwise it creates an array to hold the result, and
returns that. matrix must be two-dimensional and square. The Gauss
Jordan algorithm with partial pivoting is used. Note: if you want to ·solve a
set of simultaneous equations, you should not use this function; use
math:decompose and math:solve.

math:transpose-matrix matrix &optional into-matrix Function
Transposes matrix. H into-matrix is supplied, stores the result into it and
returns it; otherwise it creates an array to hold the result, and returns that.
matrix must be a two-dimensional array. into-matrix, if provided, must be
two-dimensional and have sufficient dimensions to hold the transpose of
matrix.

20 ARR Arrays and Strings

Symbolics, Inc. March 1984

math:determinant matrix Function
Returns the determinant of matrix. matrix must be a two-dimensional
square matrix.

The next two· functions are used to solve sets of simultaneous linear equations.
math:decompose takes a matrix· holding the coefficients of the equations and
produces the LU decomposition; this decomposition can then be passed to
math:solve along with a vector of right-hand sides to get the values of the
variables. If you want to solve the same equations for many different sets of right
hand side values, you only need to call math:decompose once. In terms of the
argument names used below; these two functions exist to solve the vector equation A
x = b for x. A is a matrix. b and x are vectors.

math:decompose a &optional lu ps Function
Computes the LU decomposition of matrix a. If lu is non-nil, stores the ·
result into it and returns it; otherwise it creates an array to hold the result,
and returns that. The lower triangle of lu, with ones added along the
diagonal, is L, and the upper triangle of lu is U, such that the product of L
and U is a. Gaussian elimination with partial pivoting is used. The lu array
is permuted by rows according to the permutation array ps, which is also
produced by this function. If the argument ps is supplied, the permutation
array is stored into it; otherwise, an array is created to hold it. This
function returns two values: the LU decomposition and the permutation
array.

math:solve lu ps b &optional x Function
This function takes the LU decomposition and associated permutation array
produced by math:decompose, and solves the set of simultaneous equations
defined by the original matrix a and the right-hand sides in the vector b. If
x is supplied, the solutions are stored into it and it is returned; otherwise, an
array is created to hold the solutions and that is returned. b must be a one
dimensional array.

math:list-2d-array array Function
Returns a list of lists containing the values in array, which must be a two
dimensional array. There is one element for each row; each element is a list
of the values in that row.

math:fill-2d-array array list Function
This is the opposite of math:list-2d-array. list should be a list of lists, with
each element being a list corresponding to a row. array's elements are stored
from the list. Unlike fillarray, if list is not long enough,
math:fill-2d-array "wraps around", starting over at the beginning. The lists
that are elements of list also work this way.

ARR Arrays and Strings 21

Symbolics, Inc. March 1984

1.9 Planes

A plane is an array whose bounds, in each dimension, are plus-infinity and minus
infinity; all integers are legal as indices. Planes are distinguished not by size and
shape, but by number of dimensions alone. When a plane is created, a default value
must be specified. At that moment, every component of the plane has that value.
As you cannot ever change more than a finite number of components, only a finite
region of the plane need actually be stored.

The regular array accessing functions do not work on planes. You can use
make-plane to create a plane, plane-aref or plane-ref to get the value of a
component, and plane-aset or plane-store to store into a component.
array-#-dims will work on a plane.

A plane is actually stored as an array with a leader. The array corresponds to a
rectangular,· aligned region of the plane, containing all the components in which a
plane-store has been done (and others, in general, which have never been altered).
The lowest-coordinate comer of that rectangular region is given by the plane-origin
in the array leader. The highest coordinate comer can be found by adding the
plane-origin to the array-dimensions of .the array. The plane-default is the
contents of all the elements of the plane that are not actually stored in the array.
The plane-extension is the amount to extend a plane by in any direction when the
plane needs to be extended. The default is 32.

If you never use any. negative indices, then the plane-origin will be all zeroes and
you can use regular array functions, such as aref and aset, to access the portion of
the plane which is actually stored. This can be useful to speed up certain
algorithms. In this case you can even use the bitblt function on a two-dimensional
plane of bits or bytes, provided you don't change the plane-extension to a number
that is not a multiple of 32.

make-plane rank &rest options Function
Creates and returns a plane. rank is the number of dimensions. options is a
list of alternating keyword symbols and values. The allowed keywords are:

:type The array type symbol (for example, art-lb) specifying the type of the
array out of which the plane is made.

:default-value
The default component value.

:extension
The amount by which to extend the plane. See the section "Planes".

:initial-dimensions
A list of dimensions for the initial creation of the plane. You might
want to use this option to create a plane whose first dimension is a
multiple of 32, so you can use bitblt on it. Default: the result
returned by (make-list rank ':initial-value 1).

22 ARR Arrays and Strings

Symbolics, Inc. March 1984

:initial-origins
A list of origins for the initial creation of the plane. Default: the
result returned by (make-list rank ':initial-value 0).

Example:
(make-plane 2 ':type 'art-4b ':default-value 3)

creates a two-dimensional plane of type art-4b, with default value 3.

plane-origin plane Function
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane Function
This is the contents of the infinite number of plane elements that are not
actu8Ily stored.

plane-extension plane Function
The amount to extend the plane by in any direction when plane-store is
done outside of the currently stored portion.

plane-aref plane &rest subscripts Function
plane-aref and plane-ref return the contents of a specified element of a
plane. They differ only in the way they take their arguments; plane-aref
takes the subscripts as arguments, while plane-ref takes a list of subscripts.

plane-ref plane subscripts Function
plane-aref and plane-ref return the contents of a specified element of a
plane. They differ only in the way they take their arguments; plane-aref
takes the subscripts as arguments, while plane-ref takes a list of subscripts.

plane-aset datum plane &rest subscripts Function
plane-aset and plane-store store datum into the specified element of a
plane, extending it if necessary, and return datum. They differ only in the
way they take their arguments; plane-aset takes the subscripts as
arguments, while plane-store takes a list of subscripts.

plane-store datum plane subscripts Function
plane-aset and plane-store store datum into the specified element of a
plane, extending it if necessary, and return datum. They differ only in the
way they take their arguments; plane-aset takes the subscripts as
arguments, while plane-store takes a list of subscripts.

ARR Arrays and Strings 23

Symbolics, Inc. March 1984

1.10 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility, and should
not be used in new programs.

Fixnum arrays do not exist (however, see Zetalisp's small-positive-integer arrays).
Flonum arrays exist but you do not use them in the same way; no declarations are
required or allowed. "Un-garbage-collected" arrays do not exist.

Readtables and obarrays are represented as arrays, but unlike Maclisp special array
types are not used. Information about readtables and obarrays (packages) can be
found elsewhere: See the function read. See the function intem. There are no
"dead" arrays, nor are Multics "external" arrays provided.·

The arraycall function exists for compatibility but should not be used. See the
function aref.

Subscripts are always checked for validity, regardless of the value of •rset and
whether the code is compiled or not. However, in a multidimensional array, an error
is only caused if the subscripts would have resulted in a reference to storage outside
of the array. For example, if you have a 2 by 7 array and refer to an element with
subscripts 3 and 1, no error will be caused despite the fact that the reference is
invalid; but if you refer to element 1 by 100, an error will be caused. In other
words, subscript errors will be caught if and only if they refer to storage outside the
array; some errors are undetected, but they will only clobber some other element of
the same array rather than clobbering something completely unpredictable.

Currently, multidimensional arrays are stored in column-major order rather than
row-major order as in Maclisp. See the section "Arrays: Arrays and Strings". This
issue is discussed further in that section.

load.arrays and dumparrays are not provided. However, arrays can be put into
compiled code files. See the section "Putting Data in Compiled Code Files".

The •rearray function is not provided, since not all of its functionality is available in
Zetalisp. The most common uses can be replaced by adjust-array-size.

In Maclisp, arrays are usually kept on the array property of symbols, and the
symbols are used instead of the arrays. In order to provide some degree of
compatibility for this .manner of using arrays, the array, •array, and store
functions (store on the LM-2 only) are provided, and when arrays are applied to
arguments, the arguments are treated as subscripts and apply returns the
corresponding element of the array.

store is not supported on the 3600. Supporting store would require two additional
words of state in each stack group. This would prevent storing into the last array
that was referenced by some other process, in the event of a process switch in the
middle of a store operation. Maintaining this state would slow down all stack group
switches. In addition, using arrays as functions, as in store, is many times slower

24 ARR Arrays and Strings

Symbolics. Inc. March 1984

than using functions like aref and aset on the 3600. The use of arrays as
functions is not implemented in microcode, and the macrocode has not been
optimized.

array "e symbol type &eval &rest dims Function
This creates an art-q type array in default-array-area with the given
dimensions. (That is, dims is given to make-array as its. first argument.)
type is ignored. If symbOl is nil, the array is returned; otherwise, the array
is put in the function cell of symbol, and symbol is returned.

•array symbol type &rest dims Function
This is just like array, except that all of the arguments are evaluated.

store an-ay-ref x Special Form
store stores x into the specified array element. array-ref should be a form
that references an array by calling it as a function (aref forms are not
acceptable). First x is evaluated, then an-ay-ref is evaluated, and then the
value of x is stored into the array cell last referenced by a function call,
presumably the one in array-ref.

xstore x an-ay-ref Function
This is just like store, but it is not a special form; this is because the
arguments are in the other order. This function only exists for the compiler
to compile the store special form into, and should never be used by
programs. xstore is available only on the LM-2.

arraycall ignore an-ay &rest subscripts Function
(arraycall t an-ay subl sub2 •••) is the same as (aref an-ay subl sub2 •••). It
exists for Maclisp compatibility.

ARR Arrays and Strings 25
·Symbolics, Inc. March 1984

2. Strings

Strings are a type of array that represent a sequence of characters. The printed
representation of a string is its characters enclosed in quotation marks, for example,
"foo bar". Strings are constants, that is, evaluating a string returns that string.
Strings are the right data type to use for text processing.

Strings are arrays of type art-string, where each element holds an eight-bit
unsigned fixnum. This is because characters are represented as fixnums, and for
fundamental characters only eight bits are used. A string can also be an array of
type art-fat-string, where each element holds a sixteen-bit unsigned fixnum; the
extra bits allow for multiple fonts or an expanded character set.

See the section "The Character Set". The way characters work, including multiple
fonts and the extra bits from the keyboard, is explained in that section. Note that
you can type in the fixnums that represent characters using"#/" and "#\ "; for
example, #/f reads in as the fixnum that represents the character "f", and
#\return reads in as the fixnum that represents the special "return" character.
See the section "Sharp-sign Abbreviations". Details of this syntax are explained
there.

The functions described in this section provide a variety of useful operations on
strings. In place of a string, most of these functions will accept a symbol or a
fixnum as an argument, and will coerce it into a string. Given a symbol, its print
name, which is a string, will be used. Given a fixnum, a one-character string
containing the character designated by that fimum will be used. Several of the
functions actually work on any type of one-dimensional array and may be useful for
other than string processing; these are the functions such as substring and
string-length that do not depend on the elements of the .string being characters.

Since strings are arrays, the usual array-referencing function aref is used to extract
the characters of the string as fixnums. For example:

(aref • frob• 1) = > 162 ;lower-case r

Note that the character at the beginning of the string is.element zero of the array
(rather than one); as usual in Zetalisp, everything is zero-based.

It is also legal to store into strings (using aset). As with rplaca on lists, this
changes the actual object; one must be careful to understand where side effects will
propagate to. When you are making strings that you intend to change later, you
probably want to create an array with a fill-pointer so that you can change the
length of the string as well as the contents. See the section "Extra Features of
Arrays". The length of a string is always· computed using array-active-length, so
that if a string has a fill-pointer, its value will be used as the length.

26 ARR Arrays and Strings

Symbolics, Inc. March 1984

2.1 Characters

character x Function
character coerces x to a single character, represented as a fixnum. If xis a
number, it is returned. If xis a string or an array, its first element is
returned. If x is a symbol, the first character of its pname is returned.
Otherwise, an error occurs. See the section "The Character Set". The way
characters are represented as fixnums is expl8ined in that section.

char-equal charl char2 Function
This is the primitive for comparing characters for equality; many of the string
functions call it. charl and char2 must be fixnums. The result is t if the
characters are equal ignoring case and font, otherwise nil. %%ch-char is
the byte-specifier for the portion of a character which excludes the font
information.

char-lessp charl char2 Function
This is the primitive for comparing characters for order; many of the string
functions call it. charl and char2 must be fixnums. The result is t if charl
comes before char2 ignoring case and font, otherwise nil. See the section
"The Character Set". Details of the ordering of characters are in that
section.

2.2 Upper and Lowercase Letters

alphabetic-case-affects-string-comparison Variable
This variable is normally nil. If it is t, char-equal, char-lessp, and the
string searching and comparison functions will distinguish between uppercase
and lowercase letters. If it is nil, lowercase characters behave as if they
were the same character but in uppercase. It is all right to bind this to t
around a string operation, but changing its global value to t will break many
system functions and user interfaces and so is not recommended.

char-upcase char Function
If char, which must be a fJXDum, is a lowercase alphabetic character its
uppercase form is returned; otherwise, char itself is· returned. If font
information is present it is preserved. The result of char-upcase is
undefined for characters with modifier bits.

char-downcase char Function
If char, which must be a fixnum, is an uppercase alphabetic character its
lowercase form is returned; otherwise, char itself is returned. If font
information is present it is preserved. The result of char-downcase is
undefined for characters with modifier bits.

ARR Arrays and Strings 27
Symbolics, Inc. March 1984

string-upease string &optional <from 0) to (copy-p t) Function
If copy-p is not nil, returns a copy of string, with lowercase alphabetic
characters replaced by the corresponding uppercase characters. If copy-p is
nil, uppercases characters in string itself and then returns the modified
string. from is the index in string at which to begin uppercasing characters.
If to is supplied, it is used in place of (array-active-length string) as the
index one greater than the last character to be uppercased.

string-downcase string &optional <from 0) to (copy-pt) Function
If copy~p is not nil, returns a copy of string, with uppercase alphabetic
characters replaced by the corresponding lowercase characters. If copy-p is
nil, lowercases characters in string itself and then returns the modified
string. from is the index in string at which to begin lowercasing characters.
If to is supplied, it is used in place of (array-active-length string) as the
index one greater than the last character to be lowercased.

string-capitalize-words string &optional (copy-p t) Function
Transforms string by changing hyphens to spaces and capitalizing each word.

(string-capitalize-words •Lisp-listener•) => •Lisp Listener•
(string-capitalize-words •usP-LISTENER•) => •Lisp Listener•
(string-capitalize-words •1isp--listener•) => •Lisp Listener•
(string-capitalize-words •symbol-processor-3•) => •symbol Processor 3•

· copy-p indicates whether to return a copy of the string argument or to
modify the argument itself. The default, t, returns a copy.

2.3 Basic String Operations

string x Function
string coerces x into a string. Most of the string functions apply this to
their string arguments. If xis a string (or any array), it is returned. If xis
a symbol, its pname is returned. If x is a nonnegative fimum less than 400
octal, a one-character-long string containing it is created and returned. If x
is a pathname, the "string for printing" is returned. See the section
"N mning of Files". Otherwise, an error is signalled.

If you want to get the printed representation of an object into the form of a
string, this function is not what you should use. You can use format,
passing a first argument of nil. You might also want to use
with-output-to-string.

string-length string Function
string-length returns the number of characters in string. This function
uses the s~e coercion rules as string in interpreting string as a string.
string-length returns the array-active-length if string is a string, or the
array-active-length of the pname if string is a symbol.

28 ARR Arrays and Strings

Symbolics. Inc. March 1984

string-equal stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
string-equal compares two strings, returning t if they are equal· and nil· if
they are not. The comparison ignores the extra "font" bits in 16-bit strings
and ignores alphabetic case. equal calls string-equal if applied to two
strings.

The optional arguments idxl and idx2 are the starting indices into the
strings. The optional arguments liml and lim2 are the final indices; the
comparison stops just before the final index. · liml and lim2 default to the
lengths of the strings. These arguments are provided so that you can
efficiently compare substrings. Examples:

(string-equal •foo• •foo•) •> t
(string-equal •foo• •bar•) •> nil
(string-equal •element• •select• O 1 3 4) •> t

%strhig-equal string1 indexl string2 index2 count Function
%string-equal is the microcode primitive that string-equal calls. It returns
t if the count characters of stringl starting at idxl are char-equal to the
count characters of string2 starting at idx2, or nil if the characters are not
equal or if count runs off the length of either array.

Instead of a fixnum, count may also be nil. In this case, %string-equal
compares the substring from idxl to (string-length stringl) against the
substring from idx2 to (string-length string2). If the lengths of these
substrings differ, then they are not equal and nil is returned.

Note that stringl and string2 must really be strings; the usual coercion of
symbols and fixnums to strings is not performed. This function is
documented because certain programs that require high efficiency and are
willing to pay the price of less generality may want to use %string-equal in
place of string-equal. Examples:

To compare the two strings foo and bar:

(Xstring-equal foo Obar O nil)

To see if the string foo starts with the characters "bar":

(Xstring-equal foo O •bar• O 3)

string-lessp stringl string2 &optional (idxl 0) (idx2 0) liml lim2 Function
string-lessp compares two strings using alphabetical order (as defined by
char-lessp). The result is t if stringl is the lesser, or nil if they are equal
or string2 is the lesser.

string-compare stringl string2 &optional (idxl 0). (idx2 0) liml lim2 Function
Compares the characters of stringl starting at idxl and ending just below
liml with the characters of string2 starting at idx2 and ending just below
lim2. The comparison is in alphabetical order. liml and lim2 default to the
lengths of the strings. string-compare returns:

ARR Arrays and Strings

Symbolics. Inc. March 1984

• a positive number if stringl > string2
•zero if stringl = string2
• a negative number if stringl < string2

If the strings are not equal, the absolute value of the number returned is
one more than the index (in stringl) at which the difference occurred.

string-compare uses the same rules as string in coercing stringl and
string2 into strings.

29

substring string from &optional to (area nil) Function
This extracts a substring of string, starting at the character specified by start
and going up to but not including the character specified by end. start and
end are 0-origin indices. The length of the returned string is end minus
start. If end is not specified it defaults to the length of string. The area in
which the result is to be consed may be optionally specified. Example:

(substring •Nebuchadnezzar• 4 8) => •chad•

nsubstring string from &optional to (area nil) Function
nsubstring is the same as substring except that the substring is not
copied; instead an indirect array is created that shares part of the argument
string. ·See the section "Extra Features of Arrays". Modifying one string
modifies the other.

Note that nsubstring does not necessarily use less storage than substring;
an nsubstring of any length uses at least as much storage as a substring
12 characters long. So you should not use this just "for efficiency"; it is·
intended for uses in which it is important to have a substring that, if
modified, will cause the original string to be modified too.

string-append &rest strings Function
Any number of strings are copied and concatenated into a single string.
With a single argument, string-append simply copies it. The result is an
array of the same type as the argument with the greatest number of bits per
element. For example, if the arguments are arrays of type art-string and
art-fat-string, an array of type art-fat-string is returned. string-append
can be used to copy and concatenate any type of one-dimensional array.
Example:

(string-append I/! •foo• #/!) => •!foot•

string-nconc modified-string &rest strings Function
string-nconc is like string-append except that instead of malting a new
string containing the concatenation of its arguments, string-nconc modifies
its first argument. modified-string must have a fill-pointer so that additional
characters can be tacked onto it. Compare this with array-push-extend.
The value of string-nconc is modified-string or a new, longer copy of it; in

30 ARR Arrays and Strings

Symbolics, Inc. March 1984

the latter case the original copy is forwarded to the new copy (see
adjust-array-size). Unlike nconc, string-nconc with more than two
arguments modifies only its first argument, not every argument but the last.

string-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the beginning and end. char-set is a set of characters, which can be
represented as a list of characters or a string of characters. Ex.ample:

(string-trim '(l\sp) • Dr. No •) •> •or. No•
(string-trim •ab• •abbafooabb•) => •foo•

string-left-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the beginning. char-set is a set of characters, which can be represented as a
list of characters or a string of characters.

string-right-trim char-set string Function
This returns a substring of string, with all characters in char-set stripped off
the end. char-set is a set of characters, which can be represented as a list of
characters or a string of characters.

string-reverse string Function
Returns a copy of string with the order of characters reversed. This will
reverse a one-dimensional array of any type.

string-nreverse string Function
Returns string with the order of characters reversed, smashing the original
string, rather than creating a new one. If string is a number, it is simply
returned without consing up a string. This will reverse a one-dimensional
array of any type.

string-pluralize string Function
string-pluralize returns a string containing the plural of the word in the
argument string. Any added characters go in the same case as the last
character of string. Example:

(string-pluralize •event•) => •events•
(string-pluralize "Man•) => "Men"
(string-pluralize •can•) => •cans•
(string-pluralize "key•) => "keys•
(string-pluralize "TRY•) •> •TRIES•

For words with multiple plural forms depending on the meaning,
string-pluralize cannot always do the right thing.

parse-number string &optional (from 0) (to nil) (radix nil) Function
(fail-if-not-whole~string nil)

parse-number takes a string and "reads" a number from it. It returns two

ARR Arrays and Strings 31

Symbolics, Inc. March 1984

values: the number found (or nil) and the character position of the next
unparsed character in the string. It returns nil when the fJ.rst character
that it looks at cannot be part of a number. The function currently does not
handle anything but integers. (read-from-string is a more general function
that uses the Lisp Reader; prompt-and-read reads a number from the
keyboard.)

(parse-number "123 •) => 123 3
(parse-number • 123") => NIL 0
(parse-number "-123") => -123 4
(parse-number "25.3") => 25 2
(parse-number •sss123• 3 4) => 1 4
(parse-number "123$$$• 0 nil nil nil) => 123 3
(parse-number •123$$$" O nil nil t) => NIL O

Four optional arguments:

from

to

radix

The character position in the string to start parsing. The
default is the fJ.rst one, position 0.

The character position past the last one to consider. The
default, nil, means the end of the string.

The radix to read the string in. The default, nil, means
base 10.

fail-if-not-whole-string
The default is nil nil means to read up to the fJ.rst
character that is not a digit and stop there, returning the
result of the parse so far. t means to stop at the fJ.rst
non-digit and to return nil and 0 length if that is not the
end of the string.

2.4 String Searching

string-search-char char string &optional <from· 0) to Function
string-search-char searches through string starting at the index from,
which defaults to the beginning, and returns the index of the fJ.rst character
that is char-equal to char, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search. Example:

(string-search-char I/a •banana•) => 1

%string-search-char char string from to Function
%string-search-char is the microcode primitive that string-search-char
and other functions call. string must be an array and char, from, and to
must be fixnums. Except for this lack of type-coercion, and the fact that

32 ARR Arrays and Strings

Symbolics, Inc. March 1984

none of the .arguments is optional, %string-search-char is the same as
string-search-char. This function is documented for the benefit of those
who require the maximum possible efficiency in string searching.

string-search-not-char char string &optional <from 0) to Function
string-search-not-char searches through string starting at the index from,
which defaults to the beginning, and returns the index of the first character
which is not char-equal to char, or nil if none is found. If the to argument
is supplied, it is used in place of (string-length string) to limit the extent of
the search. Example:

(string-search-not-char 1/b "banana•) => 1

string-search key string &optional <from 0) to (key-start 0) key-end Function
string-search searches for the string key in the string string. The search
begins at from, which defaults to the beginning of string. The value
returned is the index of the first character of the first instance of key, or nil
if none is found. If the to argument is supplied, it is used in place of
(string-length string) to limit the extent of the search. Example:

(string-search •an• "banana•) => 1
(string-search •an• "banana• 2) => 3

string-search-set char-set string &optional <from 0) to Function
string-search-set searches through string looking for a character that is in
char-set. The search begins at the index from, which defaults to the
beginning. It returns the index of the first character that is char-equal to
some element of char-set, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of
the search. char-set is a set of characters, which can be represented as a list
of characters or a string of characters. Example:

(string-search-set '(l/b 1/o) "banana•) => 2
(string-search-set •no• "banana•) => 2

string-search-not-set char-set string &optional (from 0) to Function
string-search-not-set searches through string looking for a character that is
not in char-set. The search begins at the index from, which defaults to the
beginning. It returns the index of the first character that is not char-equal
to any element of char-set, or· nil if none is found. If the to argument is
supplied, it is used in place of (string-length string> to limit the extent of
the search~ char-set is a set of characters, which can be represented as a list
of characters or a string of characters. Example:

(string-search-not-set '(I/a l/b) "banana•) => 2

string-reverse-search-char char string &optional from (to 0) Function
string-reverse-search-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of

ARR Arrays and Strings

Symbolics, Inc. March 1984

string, and returns the index of the first character that is char-equal to
char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. Example:

(string-reverse-search-char lln •banana•) => 4

33

string-reverse-search-not-char char string &optional from (to 0) Function
string-reverse-search-not-char searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal to
char, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. If the to
argument is supplied, it limits the extent of the search. Example:

(string-reverse-search-not-char I/a "banana•) => 4

string-reverse-search key string &optional from (to 0) (key-start 0) Function
key-end

string-reverse-search searches for the string key in the string string. The
search proceeds in reverse order, starting from the index one less than from,
which defaults to the length of string, and returns the index of the first
(leftmost) character of the first instance found, or nil if none is found. Note
that the index returned is from the beginning of the string, although the
search starts from the end. The from condition, restated, is that the
instance of key found is the rightmost one whose rightmost character is
before the from'th character of string. If the to argument is supplied, it
limits the extent of the search. Example:

(string-reverse-search •na• •banana•) => 4

string-reverse-search-set char-set string &optional from (to 0) Function
string-reverse-search-set searches through string in reverse order, starting
from the index one less than from, which defaults to the length of string,
and returns the index of the first character that is char-equal to some
element of char-set, or nil if none is found. Note that the index returned is
from the beginning of the string, although the search starts from the end.
If the to argument is supplied, it limits the extent of the search. char-set is
a set of characters, . which can be represented as a list of characters or a
string of characters.

(string-reverse-search-set •ab• •banana•) => 5

string-reverse-search-not-set char-set string &optional from (to 0) Function
string-reverse-search-not-set searches through string in reverse order,
starting from the index one less than from, which defaults to the length of
string, and returns the index of the first character that is not char-equal to
any element of char-set, or nil if none is found. Note that the index

34 ARR Arrays and Strings

Symbolics, Inc. March 1984

returned is from the beginning of the string, although the search starts from
the end. If the to argument is supplied, it limits the extent of the search.
char-set is a set of characters, which can be represented as a list of
characters or a string of characters.

(string-reverse-search-not-set '(#/a #/n) •banana•) •> O

See also intern, which given a string will return "the" symbol with that print name.

2.5 1/0 to Strings

The special forms in this section allow you to create 1/0 streams that input from or
output to a string rather than a real 1/0 device. See the section "What Streams
Are". 1/0 streams are documented there.

with-input-from-string (var string [index] [limit]) body ..•
The form:

(with-input-from-string (var string)
body)

Special Form

evaluates the forms in body with the variable var bound to a stream that
reads characters from the string which is the value of the form string. The
value of the special form is the value of the last form in its body.

The stream is a function that only works inside the with-input-from-string
special form, so be careful what you do with it. You cannot use it after
control leaves the body, and you cannot nest two with-input-from-string
special forms and use both streams since the special-variable bindings
associated with the streams will conflict. It is done this way to avoid any
allocation of memory.

After string you may optionally specify two additional "arguments". The first
is index:

(with-input-from-string (var string index>
body)

uses index as the starting index· into the string, and sets index to the index
of the first character not read when with-input-from-string returns. If the
whole string is read, it will be set to the length of the string. Since index is
updated it may· not be a general expression; it must be a variable or a
settable reference. The index is not updated in the event of an abnormal
exit from the body, such as a •throw. The value of index is not updated
until with-input-from-string returns, so you cannot use its value within the
body to see how far the reading has proceeded.

Use of the index feature prevents multiple values from being returned out of
the body, currently.

ARR Arrays and Strings 35

Symbolics, Inc. March 1984

(with-input-from-string (var string index limit)
body)

uses the value of the form limit, if the value is not nil, in place of the
length of the string. If you want to specify a limit but not an index, write
nil for index.

with-output-to-string (var [string] [index]) body... Special Form
This special form provides a variety of ways to send output to a string
through an 1/0 stream.

(with-output-to-string (var)
body)

evaluates the forms in body with var bound to a stream that saves the
characters output to it in a string. The value of the special form is the
string.

(with-output-to-string (Var string)
body)

will append its output to the string which is the value of the form string.
<This is like the string-nconc function). The value returned is the value of
the last form in the body, rather than the string. Multiple values are not
returned. string must have an array-leader; element 0 of the array-leader
will be used as the fill-pointer. If string is too small to contain all the
output, adjust-array-size will be used to make it bigger.

(with-output-to-string (var string index)
body)

is similar to the above except that index is a variable or settable reference
that contains the index of the next character to be stored into. It must be
initialized outside the with-output-to-string and will be updated upon
normal exit. The value of index is not updated until with-output-to-string
returns, so you cannot use its value within the body to see how far the
writing has gotten. The presence of index means that string is not required
to have a fill-pointer; if it does have one it will be updated.

The stream is a "downward closure" simulated with special variables, so be
careful what you do with it. You cannot use it after control leaves the body,
and you cannot nest two with-output-to-string special forms and use both
streams since the special-variable bindings associated with the streams will
conflict. It is done this way to avoid any allocation of memory.

You can to use a with-input-from-string and with-output-to-string nested within
one another, so long as there is only one of each.

Another way of doing output to a string is to use the format facility.

36 ARR Arrays and Strings

Symbolics. Inc. March 1984

2.6 Maclisp-compatible Functions

The following functions are provided primarily for Maclisp compatibility.

alphalessp stringl string2 Function
(alphalessp stringl string2) is equivalent to (string-lessp stringl string2).

getchar string index Function
Returns the indexth character of string as a symbol. Note that 1-origin
indexing is used. This function is mainly for Maclisp compatibility; aref
should be used to index into strings (however, aref will not coerce symbols or
numbers into strings).

getcharn string index Function
Returns the indexth character of string as a fixnum. Note that 1-origin
indexing is used. This function is mainly for Maclisp compatibility; aref
should be used to index into strings (however, aref will not coerce symbols or
numbers into strings).

ascii x Function
ascii is like character, but returns a symbol whose printname is the
character instead of returning a fixnum. Examples:

(asci i 101) => A
(ascii 56) =>I.

The symbol returned is interned in the current package.

maknam char-list Function
maknam returns an uninterned symbol whose print-name is a string made
up of the characters in char-list. Example:

(maknam '(a b f/O d)) => abOd

implode char-list Function
implode is like maknam except that the returned symbol is interned in the
current package.

The samepnamep function is also provided.

ARR Arrays snd Strings 37

Symbolics. Inc. March 1984

Index

#I character Identifier 25
#\ character Identifier 25

A A A
Getting Information About an Array 11

Active elements In arrays 4, 12
Adding to the End of an Array 15
adjust-array-size function 13
aloe function 10
Alphabetic case 26
alphabetlc-case-affects-strlng-comparlson

variable 26
alphalessp function 36
ap-1 function 10
ap-2 function 10
ap-3 function 11
ap-leader function 11
•-1 function 10
•-2 function 10
•-3 function 10
:area option for make-array 7
aref function 4, 10, 25

Adding to the End of an Array 15
art-16 array 4
art-1b array 4
art-2b array 4
art-4b array 4
art-Sb array 4

art-fat-string array 4, 25
art-float array 4

art-fps-float array 4
art-half-fix array 4

art-q array 4
art-q llst array 4

art-reg-pell array 4
art-speclal-padl array 4

art-stack-group-head array 4
art-string array 4, 25

Changing the Size of an Array 13
Copying an Array 16

Getting Information About an Array 11
Indirect array 4, 7, 13

Named structure array 4, 7
Maclisp Array Compatibility 23

Array dimensions 4, 12
Bit size of array elements 4

Character strings as array elements 4
Fixnums as array elements 4
Flonums as array elements 4

Half-size fixnums as array elements 4

38

Returning
Storing Into

Basic

Active elements In
Dead

Displaced
Extra Features of

Flxnum
Flonum

Multics external
Storage of

Un-garbage-collected
Arrays:

ARR Arrays and Strings

Symbolics, Inc. March 1984

array elements 10
array elements 10
*array function 24
array function 24
Array Functions 7
Array header Information 4
Array initialization 7
Array leader 4, 7, 13
Array subscripts 4, 13
Array types 4. 7
array-#-dlm• function 12
array-actlv•length function 12
array-bits-per-element function 4
array-bits-per-element variable 4
array-dlmenslon-n function 12
array-dimensions function 12
array-dlsplaced-p function 13
array-element-size function 4
array-elements-per-q function 4
array-elements-per-q variable 3
array-grow function 14
array-has-leader-p function 13
array-ln-bounda-p function 13
array-lndexed-p function 13
array-lndlrect-p function 13
array-leader function 11
array-leader-length function 13
array-length function 12
array-pop function 16
array-push function 15
array-push-extend function 16
array-type function 11
array-types function 3
array-types variable 3
arraycall function 23. 24
arraydlms function 12
arrays 4, 12
arrays 23
arrays 4, 7, 13
Arrays 4
arrays 23
arrays 23
arrays 23
arrays 4
arrays 23
Arrays and Strings 1
Arrays as functions 4
Arrays as lists 4
Arrays Overlaid with Lists 15
Arrays: Arrays and Strings 1
art-16 array 4
art-1b array 4
art-2b array 4
art-4b array 4
art-Sb array 4
art-fat-string array 4, 25
art-float array 4
art-fps-float array 4

ARR Arrays and Strings

Symbolics, Inc. March 1984

B

c
Alphabetic

#I
#\

Expanded

Maclisp Array
String

B

art-hal-flx array 4
art.q·array 4
art.q llst array 4
art-reg-pd array 4
art-epeclal.padl array 4
art-stack-group-head array 4
art-string array 4, 25
.. 1 function 10
.. 2 function 10
as-3 function 10
ascll function 36
8881 function 4, 10
Association list 4

Basic Array Functions 7
Basic String Operations 27
Bit size of array elements 4
bllbtt function 18

c
case 26
Changing the Size of an Array 13
chs-downcase function 26
ch•-equal function 26
ch•-lessp function 26
ch•-upc:me function 26
chsacter function 26
character Identifier 25
character Identifier 25
character set 25
Character strings 25
Character strings as array elements 4
Characters 26 ·
Compatibility 23
concatenation 29
Conformal Indirection 6
copy-array-contents function 17
copy-array-contents-and-leader function 17
copy-array-portion function 17
Copying an Array 16

39

B

c

D D D
Dead arrays 23

math: decompose function 20
:defautt-value option to make-plane 21

math: determinant function 20
Array dimensions 4. 12

Displaced arrays 4, 7, 13
:dlsplaced-lndex-otfsel option for make-array 4, 7
:dlsplaced-to option for make-array 4, 7
dumpsraya Macllsp function 23

40

E

F

Bit size of array
Character strings as array

Flxnums as array
Flonums as array

HaH-slze flxnums as array
Returning array

Storing Into array
Active

Adding to the
Matrices and Systems of UneaF

Simultaneous linear

Multics

Extra

math:

String representation of·

HaH-slze

PDP-11 N AX single-precision

store special
with-Input-from-string special

with-output-to-string special
PDP-11N AX slngle-preci.slon floating-point

adjust-array-size
aloe

alphalessp .-1
.-2
ap-3

.-leader
•·1
•-2
•-3 ...,

•array
array

array-#4m•
array-active-length

array-bits-per-element
array4menalon-n
array-dimensions
array-dlsplaced-p

array-element-size

E

F

ARR Arrays and Strings

Symbolics, Inc. March 1984

elements 4
elements 4
elements 4
elements ·4
elements 4
elements 10
elements 10
elements In arrays 4, 12
End of an Array 15
Equations 19
equations 19
Expanded character set 25
:extension option to make-plane 21
external arrays 23
Extra Features of Arrays 4

Features of Arrays 4
Fill pointer 4, 12
flll-2d-array function 20
fill-pointer function 11
flllarray function 16
Flxnum arrays 23
fixnums 25
Flxnums as array elements 4
fixnums as array elements 4
tloal function 4
floating-point format 4
Flonum arrays 23
Flonums as array elements 4
Font Information 4, 25
form 4. 23, 24
form 34
form 35
format 4
function 13
function 10
function 36
function 10
function 10
function 11
function 11
function 10
function 10
function 10
function 4. 10, 25
function 24
function 24
function 12
function 12
function 4
function 12
function 12
function 13
function 4

E

F

ARR Arrays and Strings

Symbolics. Inc. March 1984

111111Y-element...,er-q
array.grow

array-haa-leadar-p
array-ln-bounds-p

array-lndexed-p
sray-lndlrect-p

array-leader
array-leader-length

array-length
array-pop

mny-pulh
....,-push-extend

array-type
array-type8

..-aycall
arraydlm•

.. 1
M-2
as-3
ascll
aset

bitblt
ch•-downcae

ch•-equal
ch•-leup

char-upcme
character

copy-array-contents
copy-array-contents-and-leader

copy-array-portion
dumparrays Macllsp

fill-pointer
ftllarray

ftoal
g-1-p

aet-llst-polnter-lnto-sray
aet-locatlve-polnter-lnto-array

a etch•
aetchmn
Implode

1181-array-leader
llstarray

loadarrays Macllsp
make-array
make-plane

maknarn
math:decompose
math:determlnant
math:fill-2d-array

math:lnvert-matrlx
math:llst-2d-array

math:muttlply-mab1ces
math:IOlve

math:tranapose-matrlx
nbutlast

nsubstrlng
pane-number

plane-..r

function 4
function 14
function 13
function 13
function 13
function 13
function 11
function 13
function 12
function 16
function 15
function 16
function 11
function 3
function 23, 24
function 12
function 10
function 10
function 10
function 36
function 4. 10
function 18
function 26
function 26
function 26
function 26
function 26
function 17
function 17
function 17
function 23
function 11
function 16
function 4
function 4. 15
function 15
function 15
function 36
function 36
function 36
function 17
function 17
function 23
function 4, 7
function 21
function 36
function 20
function 20
function 20
function 19
function 20
function 19
function 20
function 19
function 16
function 4, 29
function 30
function 22

41

42

G

pl.....a
plane-clefauft

plan .. xtenelon
plane-origin

plane-raf
plane-alore

•rearray Macllsp
return-may

rplaca
rplacd

aamepnamep
alore-array-leader

airing
airing-append

alrlng-capltallze-word8

alrl~
airing

airing-equal
%string-equal
airing-left-trim

airing-length
alrlng-lesap

alrlng-nconc
alrlng-nreverse
airing-pluralize
airing-reverse

alrlng-raverae-eearch
strlng-raverse-eearch-char

alrlng-reverse-eearch-not-char
alrlng-reverse-eearch-not-eet

airing-reverse-search-set
airing-right-trim

airing-March
alrlng-eearch-ch•

%strlng-eearch-ch•
atrlng-eearch-not-ch•

atrlng-eearch-not-aet
atrlng-eearch-aet

airing-trim
alrlng-upcase

•ubatrlng
xalora

Arrays as
Basic Array

Macllsp-compatible

ARR Arrays and Strings

Symbolics. Inc. March 1984

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
functions
Functions
Functions

G

22
22
22
22
22
22
23
14
4
4
36
11
27
29
27
28
27
28
28
30
27
28
29
30
30
30
33
32
33
33
33
30
32
31
31
32
32
32
30
27
29
24
4
7
36

g-1-p function 4. 15
get-Hat-pointer-Into-array function 15
get-locatlve-polnter-lnto-array function 15
getch• function 36
getcham function 36
Getting Information About an Array 11

G

Stack groups 4

ARR Arrays and Strings

Symbolics, Inc. March 1984

H H
Haft-size fixnums as array elements 4

Array header Information 4

I

L

M

#I character
#\character

Conformal
Array header

Font
Getting

Array
math:

Array

Lowercase
Uppercase

Upper and Lowercase
Matrices and Systems of

Simultaneous
Association

art.q
math:

Arrays as
Arrays overlaid with

Upper and

:area option for
:dlsplaced-lndex.oOflset option for

:displaced-to option for
:leader-length option for

:leader-Hsi option for
:named-structure-symbol option for

I

L

M

110 to Strings 34
Identifier 25
Identifier 25
Implode function 36
Index offset 7
Index-offset 4
Indirect array 4. 7, 13
Indirection 6
Information 4
information 4, 25
Information About an Array 11
:lnltial-dlmensiona option to make-plane 21
:lnltial-orlgln1 option to make-plane 21
Initialization 7
Invert-matrix function 19

leader 4, 7, 13
:leader-length option for make-array 7
:leader-Hat option for make-array 7
letter 26
letter 26
Letters 26
Linear Equations 19
linear equations 19
list 4
Hsi array 4
llst-2d-array function 20
list-array-leader function 17
llstarray function 17
lists 4
Lists 15
loadarrays Macllsp function 23
Lowercase letter 26
Lowercase Letters 26

Macllsp Array Compatibility 23
Maclisp function 23
Macllsp function 23
Maclisp function 23
MaclisP".CQmpatible Functions 36
make-array 7
make-array 4, 7
make-array 4, 7
make-array 7
make-array 7
make-array 7

43

H

I

L

M

44

N

0

:type option for

:defautt-value ·option to
:extension option to

:lnltlal-dlmenslona option to
:lnftlal-orlglns option to

:type option to

math:

Index
Basic String

Matrix
:area

:dlsplaced-lndex-offaet
:displaced-to

:leader-length
:leader-Hat

:named-structure-symbol
:type

:defautt-value
:extension

:lnftlal-dlmenslona
:lnltlal-orlglns

:type
Row-major

Arrays

N

ARR Arrays and Strings

Symbolics. Inc. March 1984

make-array 7
make-array function 4, 7
make-plane 21
make-plane 21
make-plane 21
make-plane 21
make-plane 21
make-plane function 21
maknam function 36
math:decompose function 20
math:detennlnant function 20
math:flll-2d«ray function 20
math:lnvert-matrlx function 19
math:llat-2d«ray function 20
math:muttlply-matrlces function 19
math:aolve function 20
malh:tranapose-matrlx function 19
Matrices and Systems of Linear Equations 19
Matrix operations 19
Multics external arrays 23
muttlply-matrlcea function 19

N
Named structure array 4, 7
:named-structure-symbol option for make-sray 7
nbutlast function·· 16
nsubstrlng function 4, 29

0 0
Obarrays 23
offset 7
Operations 27
operations 19
option for make-array
option for make-array
option for make-array
option for make-array
option for make-array
option for make-array
option for make-array
option to make-plane
option to make-plane
option to make-plane
option to make-plane
option to make-plane

'corder 4
OVerlaJd with Lists 15

7
4, 7
4, 7
7
7
7
7
21
21
21
21
21

ARR Arrays and Strings

Symbolics, Inc. ··March 1984

p

R

s

Fiii
Text

String

String
Expanded character

PDP-11NAX
Changing the

Bit
math:
store

with-Input-from-string
with-output-to-string

Basic

p
.,...number function 30
PDP-11NAX single-precision ftoatlng-poln1 format
plane-..t function 22
plane-..a function 22
plane-defaun function 22
plane-extension function 22
plane-origin function 22
plane-ref function 22
plan•store function 22
Planes 21
Pluralizing words 30
poln1er 4, 12
processing 25

R

s

Readtables 23
•rearray Maclisp function 23
represen1atlon of fixnums 25
retum-array function 14
Returning ·array elemen1s 10
Row-major order 4
rplaca function 4
rplacd function 4

eamepnmnep function 36
Searching 31
set 25
Simultaneous linear equations 19
single-precision floating-point format 4
Size of an Array 13
size of array elemen1s 4
solve function 20
special form 4, 23, 24
special form 34
special form 35
Stack groups 4
Storage of arrays 4
store special form 4, 23, 24
store-array-leader function 11
Storing in1o array elemen1s 10
String concatenation 29
string function 27
String Operations 27
String representation of fixnums 25
String Searching 31
string-append function 29
strlng-capltallz•words function 27
string-compare function 28
strlng-downcase function 27
string-equal function 28
%string-equal function 28
string-left-trim function 30

45

p
4

R

s

46

T

u

v

ARR Arrays and Strings

Symbolics. Inc. March 1984

Arrays:· Arrays and
Character

1/0 to
Character

Named
Array

Matrices and

T

string-length function 27
airing-leap function 28
alrlng-nconc function 29
alrlng-nreverae function 30
airing.pluralize function 30
airing-reverse function 30
alrlng-reverae--rch function 33
airing-reverse-search-char function 32
airing-reverse-search-not-char function 33
alrlng-reverae-sean:h-not-set function 33
string-reverse-search-set function 33
airing-right-trim function 30
string-search function 32
airing-search-ch• function 31
%string-search-char function 31
string-search-not-ch• function 32
alrlng-uarch-not-set function 32
strlng-uarch-set function 32
airing-trim function 30
alrlng-upcase ·function 27
Strings 4, 25
Strings 1
strings 25
Strings 34
strings as array elements 4
structure array 4, 7
subscripts 4, 13
•ubstrlng function 29
Systems of Linear Equations 19

Text processing 25
math: transpose-matrix function 19

:type option for make-array 7
:type option to make-plane 21

Array types 4, 7

u

v

Un-garbage-collected arrays 23
Upper and Lowercase Letters 26
Uppercase letter 26

alphabetlc-case-affects-alrlng-comparlson. variable 26
array-bits.per-element variable 4

array-elements-per-q variable 3 ·
array-types variable 3

T

u

v

ARR Arrays and Strings 47
Symbolics, Inc. March 1984

w w w
wlth-lnp¥t-from-strlng special form 34
wfth.ouiput-to-atrlng special form 35

Pluralizing words 30

x x x
xstcn function 24

	00-00001
	00-00002
	00-00003
	00-0001
	00-0002
	00-0003
	00-01
	00-02
	00-03
	00-04
	00-05
	01-00001_990053_Prim_Obj_Mar84
	01-00002
	01-0001
	01-0002
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	01-009
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017
	01-018
	01-019
	01-020
	01-021
	01-022
	01-023
	01-024
	01-025
	01-026
	01-027
	01-028
	01-029
	01-030
	01-031
	01-032
	01-033
	01-034
	01-035
	01-036
	01-037
	01-038
	01-039
	01-040
	01-041
	01-042
	01-043
	01-044
	01-045
	01-046
	01-047
	01-048
	01-049
	01-050
	01-051
	01-052
	01-053
	01-054
	01-055
	01-056
	01-057
	01-058
	01-059
	01-060
	01-061
	01-062
	01-063
	01-064
	01-065
	01-066
	01-067
	01-068
	01-069
	01-070
	01-071
	01-072
	01-073
	01-074
	01-075
	01-076
	01-077
	01-078
	01-079
	01-080
	01-081
	01-082
	01-083
	01-084
	01-085
	01-086
	01-087
	01-088
	01-089
	01-090
	01-091
	01-092
	01-093
	01-094
	01-095
	01-096
	01-097
	01-098
	01-099
	01-100
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110
	01-111
	01-112
	01-113
	01-114
	01-115
	01-116
	01-117
	01-118
	01-119
	01-120
	01-121
	01-122
	01-123
	01-124
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131
	01-132
	01-133
	01-134
	01-135
	01-136
	01-137
	01-138
	01-139
	01-140
	01-141
	01-142
	01-143
	01-144
	01-145
	01-146
	01-147
	01-148
	01-149
	02-0001_990056_Evaluation_Feb84
	02-0002
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	03-0001_990045_Flow_of_Control_Mar84
	03-0002
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	04-0001_990047_Arrays_Mar84
	04-0002
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47

