EDITED ANI REFRINTEII MAY 1981

SSSS	5		5	S		S		SSSS	S	S	S	5			SSS	SSSS	
$5 \quad 5$	5		5	SS		5		$5 \quad 5$	S	5	5	5	5	S	S	S	S
5	5		5	5	55	5		5 s	5	5	5	5	5		S	S	
Ssss		Sss		5	5	5	SSS	SSSS	SS						5		
s		S		5		5		5	5	5				S	S		5
$5 \quad \mathrm{~S}$		S		5		5		5	s	5			5	5	5	5	5
SSSS		5		5		5		5	5	5					sss		

THE SYM-1 USERS, GROUF NEWSLETTER ISSUE NUMBER 1 - JANUARY/FEERUARY 1980

SYM-PHYSIS is a bimonthly fublication of the SYM Users, Grous, Fi, 0 ,
Box 315, Chico, CA. 95927 . SYM-FHYSIS and the SYM Users. Grour (SUG are in no was associated with Ssnertek Sustems Corforation (SSC), and SSC has no responsibility for the contents of SYM-FHYSIS, SYM is a
resistered trademark of SSC. SYM-FHYSIS, from the Greek, means the state of srowins tosether, to make srow, to brins forth.
We welcome for publication all articles dealiris with any aspect of the SYM-1, and its very close relatives. Authors retain all commercial copsrishts. Fortions of SYM-PHYSIS masy be refroduced by clubs and edmay be freely published, with full may be freely published, with full credit siven and complimentary cofies self-addressed stameed envelope with all corresponidence. iriclude a

Editor/Publisher:
Business/Circulation:
H. R. "Lux" Luxeribers

Jean Luxenbers
SUBSCRIPTION RATES:
USA/Canada $\$ 9.00$ for a volume of 6 issuest overseas $\$ 12.50$. Make check.s payable in US dollars to "SYM Users" Grouk," F. O. Box 315 , Chico,
CA 95927 , Telephone (916) $895-8751$.

Copies of the Iritroductory Issue, while they last, are available for 1.50 postpaid answhere in the world. EDITOR'S NOTES:
We were quite unprepared for the deluse of subscriptions, articles for ublication, and furchase orders which besan arrivins within a few days of the mailins of the Introductory Issue, We were especially surfrised so many SYM-1s had been sold abroad.

We wish to thank Syriertek Sustems Corforation for their helf and cooperation in settins the SYM-1 Users' GrouF and SYM-FHYSIS soiris, by the printins and mailins of the Introductors Issue, and we hofe that the SYM-biotic relationhip between SSC and SUG continues.

We did expect many questions about features of the SYM-1 hardware and firmware and many questions besinnins with . How do I.....", so we were not too surfrised by these. Where the answers were easy, we wrote immediately, Where the Questions were not so easy to aniswer, we are
still researchins, and we will answer as soon as possible. Many of still "researchins," and we will answer as soon as fossible, Many of
your questions about the features of SUPERMON are ariswered in the frosrams and articles in this issue.
This issue and the Introductory Issue both emfhasize Utility Prosrams We feel that havins frosrams such as RELOCATE, DISASSEMBLE, FINI, RENUMBER, MERGE, etc, on call, make frosrammins a less frustratins task

Now that the most important utility prosrams are available, future issues will conceritrate on afplications.
One of our colleasues, Tom Gettys, Lecturer in Mathematics at Califorria State University, Chicoy and I are just besinniris to interface dual mini-disks to our systems. RAE has built iri linkases for disk (these are not described in the manual), BASIC liriks for SAUE and LOAD are in fase zero, and can be trapped to transfer to disks, and MON cani have. 53 and Lh added for disk transfers. We are also feekins around in bAsic so that we can use its subroutines for our own furfoses. We will keef you posted on our prosress in these areas.

We have been asked by manis subscribers for our recommendations on how to implement the expansion capabilities of the SYM-1, i,e., what sort of motherboard should they buy? Believe it or not, we have no recommendations to make. Our system is laid out flat on a $2 \mathrm{ft} \times 2 \mathrm{ft}$ board, which sits on a work table. The various add-on boards lie flat on the supportins board. We have a 16 K memory board desisned for the Motorola EXORCTSOR Buss cabled to the expansion fort, and will be addins a disk. controller desisned for the KIM-4 Buss in farallel to the expansion fort, Various D/A boards and frototypins sockets are cabled to the afflications connectors. The system does set dusty but it is workiris. If we had ary which you would like the best. Note that while Commodore is "sureorting" the KIM-4 Buss, the other two suppliers of the $65 \times \mathrm{f}$ failu, Sunertek and Rockwell International, are supfortins the EXORCISOR Fuss; this will mean increased commonality between $65 X X$ and $68 X X$ systems.

We are tabulatins the data on the subscriftion blanks you sent in ta determine what the tyrical SYM System looks like, and there is no such thins. There is no such person as a typical SYM user either, We do feel, however, that ferhafs half of the material in each issue will be of value to each user or system, no matter what his (there are no hers!) back-
sround or system capabilities. We certainly hore so.
There were more articles submitted then we had room for, and this will continue to be the case, since the majority of subscribers voted for commented source code, rather than the space-savins object code dumps. We had some excellent tutorial articles on the kesboard/display interface, power-on reset, cassette froblems, etc. There were some sreat we will publish the titles and descriftions of authors sive fermission, them for sale bu the Not beins facetious half-ounce (2 pases plus erivelope fer half-ourice) COMING ATTRACTIONS:

In Issue No 2 we will (really) set around to sraphics and music, with both hardware and software considerations (e.s., I/A converters), and lots of references. We will include oscilloscope and terminal grafhics and include a erosram by Carl Moser (part BASIC/part 6502) which shows how to mar the CRT terminal memory into a fortion of the SYM mewory to frovide for more interactive cafability. Also a number of very short, but sweet, utilities will be published.
SPECIAL NOTICE RE RAE-1/2
The two chip version of RAE-1/2 is now available throush the SYM Users Group. If you have been worried about not havins enoush Rom sockets on the SYM to hold both BAS-1 and the two chis version of RAE-1/2, see the article by Georse Wells, on pase 18 of this issue, for how to make the sockets do double duty. The addition of RAE to BAS and SUFERMON make today. We would not have even considered publishins SYM-PHYSIS without the use of RAE as a word processor. Orderins information on back pase.

The followins parasraphs，writter，by Tom Gettys，extracted from the RAE－1 Reference Manual，express beautifully the advantases of switching over from＂hand－assembly＂to the use of a smmbolic assembler as early as i． financially practical，that is，as soon as you can set a terminal：
Ari assembler is a frosram which allows the user to
compose and enter prosrams at the machine lansuase
cetual arnine code．
onic names for individual instructions，allows sumi－
bolic names to be assianed to memors locations and
data，provides for address arithmetic in terms of
symbolic names，and certain other features，depend－
ins on the sophistication of the assembler in ques－
tion．
It is commonly thousht that the primars feature of
fered by an assembler is that of writins machirie iri
structions in a more convenient form．However，this
is only one aspect of the advantase of an assembler，
and ferhars not even the most sisnificarit．The use
of symbolic names to resresent numbers makes vari－
ables of what most likely would have been considered
constants．The very presence of symbols bestows a
senerality and flexibility to a prosram which other－
wise misht have seemed auite risid．This encourases
the prospamer to abstract the
since the actual calculation or assismment of a val
se to a symbi can be deferred，the develoemerit of
losically separate modules can froceed freely．Fro－
srams so orsanized become much more readable and
manaseable，both in their maintenance and amenabil－
ity to revision．

The least expensive，smallest， 6502 symbolic assembler／editor I know of is Robert Denison＇s 2 K Symbolic Assembler（ 2 KSA ）；one of the best onies I know of is Synertek＇S RAE－1，in ROM．If you have onis the ori－board 4K of RA＇ mind cassette loading，consider Carl Moser＇s Macro－Assembler／Tevt Editor （ASSM／TED）for the SYM－1．The 2KSA is ioeal for mirimal sustems，ASSM／TEL and RAE－1 can also be used in word processins systems．

As you frobably have discovered by this time，there is no＂standard＂ 6502 assembly lansuase syntax．Bob Triff，irl an editorial in MICRO， No． 2 （Dec 77－Jan 78），said，（and I quote！）．．MOS Technolosy syntax is so horrible，Hal Chamberli！口，in MICRO，No． 4 （AFTil－May 1978）took a very stronsly opposins viewpoint．In any event，the controverss centers on whether the addressins mode should be indicated in the ofcode field or in the operand field．I have used both，and have no strons freference． For the benefit of newcomers to assembly lansuase prosrammins a conversion table is provided below，with notes describins minor variations in syntak within the two major schools of thousht．
Also shown below is ari example of the use of 2 KSA for a simple prosram． The full power of a symbolic assembler is apparent，however，only when it becomes necessary to modify the frosram to incorforate riew features，such as，in the example given，to relocate and to iriclude JSR EEEF．

SYM－PHYSIS 1－3

SSC Technical Note \＃49，December 1978，（Fases 12 and 13 of＂Technical． Notes＂）presents a Rotatins Display prosram in MOS Technolosy assembly form．Fresented here is the same erosram in 2KSA with the followins modifications：

1）Since $2 K S A$ occupies $0200-09 F F$ the frosram is assembled at the 2KSA default location OC8O，rather than at 0200．The prosram is named ＂DSFLY＂．

2）Since 2KSA does not permit absolute addressins within a moduley the final JMF is reslaced with CLU／BUC（other methods for forcins ar unconditional branich may be substituted）．
）FILE has been moved to OLIOO and COUNT has been moved to 0060 to avoid conflict with 2 KSA and its fase zero variables（0000－005B）

4）FILE（OL100－0106）contains the sesment codes for aHELLO＂
Followins－ASSEM to assemble，－FRINT OOTO31 to print the object／source code summary，and－SYM．．to print the orisin location and symbol table SUFERMON was called with $\$$ ．（For the purfose of this examifle，the ESC character，）The prosiam at 0100 （endins with BRK）is a patch to trans－ er selected pointers from pase zero to uriused memory in pase ob．The source code，symbol table，and pointers were then dumped to cassete．

The second printout shows the method used to reeritery relocate，modify， and store the object code for a freviously saved source code．The patch at 0100 （same as the one mentioned above）and the method for relocation of the orisin can be written in a more elesarit form．The form siven here is the KIM version affearins in the first urdate to the 2 KSA．After the object code is stored，exit is made with $\$$（or ESC）to the monitor，the ato ． at OEOO．There was no requirement to use either－FRINT or－SYM．．．，but ol tables，and the corrected object code Source eode to bse ool tables，and the corrected object code．Source code can be saved on

The addresses，－0COO，etc．，provided 35 prompts by $2 K$ SA are for the source code storase area．In the object／source code priritout，the first six columins are the object code，and the last two columins are the object code addresses relative to the orisin．The remainins columins are the source code．The 01 and 06 followins DISBUF are additive offsets to DISEUF；i＋e．，DISBUF＋1 and DISBUFt6 are beins specified．

In the printout below entries made bs the user are enclosed within frames＂今 items outside the frames are $2 K S A$－senerated frompts and outputs．

One of the interestins features of $2 K S A$ is that，due to the method of encodins the source code for storase and processing，the source code and西
his example does not show error messases（since rio errors were made！）or the full editins capability provided by－INSRT to insert，delete，cor－ rect，replace，or append lines，dependins on the line number syritax
entered．

RELOCATE FOR THE SYM-1
If you are limited to hand assembly, or even if you are rot, the frosram RELOCATE, adapted from Jim Butterfield's prosram ir, the First Book of Hont have pron this version. Eecaref with FELOCATE comments have been for RELOCATE:

1. Frosrams to be relocated should have an FF inserted after
2. the last executable instruction and before any tables. address and the FF, but assumes any addresses referrins to tables and frosrams beyond the FF and us to the pase limit tables and frosrams
3. RELOCATE will take care of all relative addresses but will sive no warnins if sou have sfread the frosram too far

- RELOCATE will take care of all absolute addresses if they are not below the start of the frosram or above the fase limit (set by default to 80).

5. RELOCATE will NOT handle vectors or addresses in tables. These must be handled "manually."
6. After usins RELOCATE use. B with three parameters to do the actual movins.
7. Sometimes, but not always, you can use . B before. f , for example, when down-movins but not when up-movins an, enitire prosram. This is because when soublock. move an entire within the prosram are now below the start of the prosram, within the prosram are nill not be modified.
The parameters have the followins mearinss:
P1 is the sisned "adjustment," e.s.
$\begin{array}{lll}0004 & \text { up } & 04 \\ 04 & \text { butes } \\ \text { FFFC } & \text { downi } & 04 \\ \text { bytes } \\ 0200 & \text { uF } & 02 \\ \text { pases } \\ \text { FE00 down } & 02 & \text { pases }\end{array}$
P_{2} is the prosram starting address.
3 is the start address of the block to be moved.
will eaual P2 if the entire prosram is to be moved It will be
or closed.

Two examples of the use of RELOCATE are siven followins the listins.
MORE SUPERMON EXTENSIONS

Elsewhere in this issue are examples of how to add riew comimands of "recosnized" syntax to the monitor, Several of you have asked about the use. Suppose you wish to include "named" tape saves and loads to the monitor, e, 52 BLACK JACK, 0200,0735 , Or 12 BLACKJACK. This wOuld be monitor, e.s,', S2 BLACKJACK,0200,0735, or L2 BLACKJACK. This would routines to do the job. Perhars we'll publish the solutionient issu Note that URSUEC is called whenever either a delimiter other thar, Note that URSUEC is called whenever either a delimiter other tharina hex character is entered. It misht be simpler to use a sfecial symbol before the file name, like \% or $\#$, since the B in BLACKJACK is a hex character, and would have been "lost" before the urirecosnized syritax was "recosnized." While we used \cdot Dl and .R with noni-recosnized numbers of parameters for our HISASSEMBLE arid RELOCATE frosrams, if there had been a conflict in numbers of Farameters, we could have used other letters, or the unimplemented user functions, wo throush U7, which are more easily called from the hex keypad.

SYM-PHYSIS 1-7

MERGE ANI DELETE FOR SYM BASIC
The purfose of this routine is to provide a machine lansuase means for mersins two BASIC prosrams on the SYM-1, As a side benefit, selective deletion (actually selective retention) is also fossible.

The merse is accomplished in 2 stefs, First, the current frosram is saved in ASCII format at the tor of the memory allocated to BASIC. output stream is traseed and sent to hish memory instead of to the teroutput stream is traffed and sent to hish memory instead of to the tertions. A new BASIC prosram mas be entered by usins the NEW command and tions. A new BASIC prosram may be entered by usinis the NEW commanid anid may be LOADed. When you are ready to MERGE in the freviously saved frosram, the input vector is altered so that the ASCII infut stream is obtained from hish memory instead of the keyboard.

The instructions for use are simple: Call MERGE via the USR command. The prompt symbol it will be frinted. There are orily three valid commands; LIST, MERGE and E.

LIST causes the current prosram to be saved iri hish memory. If ranse is specified (e.s., LIST 100-10000) orily those lines within that ranse will be transferred.

MERGE (or any word besinnins with M) causes the code saved in hish memory to be retrieved. If MERGE is terminated with a slash (/), instead of a carriase returri, terminal echo will be suffressed durins the transfer.

E

exits to BASIC.
To delete a block of lines, use the LIST command and specify the lines to be kept. Now type NEW to clear away the current frosram, and then enter MERGE asain and use the MERGE command.

This prosram may be interfaced with the EASIC Terminal Control Fatch SNEHR the last issue of SYM-PHYSIS by simply changinis the address NCH in the macro at line 1310 to the adoress of GET.CHR in the Ter may also wish to modify it to allow you to call MERGE with some special character, as for example, CTRL M, instead of with USR.
THE USR FUNCTION IN BASIC
The first time you call the MERGE function, described elsewhere in this issue, you must call it as $X=\operatorname{USR}(4096,0)$ or $X=\operatorname{USR}\left(\& .1000^{\prime \prime}, 0\right)$. All future calls mas be of the simpler form $X=U S F(0)$, since any time you future calls mas be of the simpler form $\begin{gathered}\text { call USR with just one parameter, the location of the previous call is }\end{gathered}$ assumed. This makes it much easier to use. Note that you must pass at least one parameter, even when not needed, so that the A and Y resister are not preserved. If you wish USR to return a value to the callins variable your subroutine must load A with the hish byte and Y with the low byte, and return, not with RTS, but with JMF to \$lli4C, USR ir SYM not too many similar BASICs allow this feature.

NEW PUBLICATION: Add to your list of feriodicals "COMPUTE. The Journa for Prosressive Computins." This is the successor to the FET Gazette, and now covers all 6502 systems. Six issue subscription $\$ 9+00$ us and Canada, $\$ 22.50$ Europe Air Mail, elsewhere incuire for rates. Contact Bob Lock, Small Systems Services, Inc., P.O. Box 5119, Greensboro,
NC 27403. ALL PRICES OBSOLETE
SYM-FHYSIS 1-8

LABEL FILE: [/ = EXTERNAL.]

/URCUEC=A66C	/URSUEC=A669	/WARM $=8003$
$/$ ACCESS=8886	/F3L=A64A	/F2L=A64C
/P1L=A64E	/F2SCR=829C	/FAGLIM $=0080$
$/$ POINT $=00 \mathrm{FE}$	/ALOC=00F3	/LIMIT $=00 \mathrm{~F}^{4}$
/IISASSEM2=2000	PATCH $=2200$	RELOCATE $=2216$
DISASSEM $=221 \mathrm{E}$	ERROR=2226	RELOCATE $1=2228$
DISASSEM $1=222 \mathrm{~B}$	RELOCATE2=2261	START $=2264$
LOOP=226C	FOUND=2278	SKIF $=227 \mathrm{~F}$
TNEX $=2285$	TRIF $=228 \mathrm{~A}$	CONTINUE $=22 \mathrm{EF}$
$\mathrm{BRAN}=22 \mathrm{~A} 3$	QUER $=22 \mathrm{B7}$	ADJUST $=22 \mathrm{CF}$
TES2=2201	OUT $=22 \mathrm{E} 8$	$T A B 1=22 E A$
TAB2=22F1	TAB3 $=22 \mathrm{~F} 8$	
/10000,2300,2300		

F AA,2231,2260 *

- $2200,22 \mathrm{FF}$

22002086 8K A9 16811 6II A6,90 2208 80 GA AG A9 22 8II GE AG,99 $\begin{array}{lllllllll}2210 & 8 \mathrm{C} & 6 \mathrm{~B} & \mathrm{~A} & 4 \mathrm{C} & 03 & 80 & C 9 & 52,21 \\ 2218 & \mathrm{H} & 04 & \mathrm{EO} & 03 & \mathrm{FO} & 0 A & C 9 & 44, \mathrm{TL}\end{array}$ $\begin{array}{lllllllll}2218 & \text { DO } & 04 & \text { EO } 03 & \text { FO OA C9 } & 44 \text {, LIF } \\ 2220 & \text { DO } & 04 & \text { EO } & 02 & \text { FO } & 05 & 38 & 60,22\end{array}$ 2228 4C 6122 AD 4 A A6 $85 \mathrm{~F} 2,05$ 2230 AD 4 C AG 85 FO AI 4 II AG, B9 223885 F1 AC 0020 AA AA AA,99 2240 AA AA AA AA AA AA AA AA,E9 2248 AA AA AA AA AA AA AA AA, 39 2250 AA AA AA AA AA AA AA AA, 89 2258 AA AA AA AA AA AA AA AA, 119 2260 AA $209 C 82 \mathrm{DB}$ AO OO E1, EA 2268 FE AB A2 0798 31 E9 22,19 2270 51 FO 22 FO 03 CA HO F4,09

2278 EC F8 2230 OHFO 24 E6, 16 2280 FE DO O2 E6 FF 88 HO F7,1A 2288 FO DA C8 $10021860 \mathrm{CB}, \mathrm{FE}$ $2290 \mathrm{B1} \mathrm{FE} \mathrm{AA}$ C8 B1 FE $20 \mathrm{CF}, \mathrm{BH}$ $\begin{array}{llllll}2298 & 22 & 91 & \mathrm{FE} & 88 & 8 \mathrm{~A} \\ 21 & \mathrm{FE} & \mathrm{AO}, \mathrm{AF} \\ 22 \mathrm{AO} & 03 & 10 \mathrm{DC} & \mathrm{CB} & \mathrm{Ab} & \mathrm{FE} \\ \mathrm{AS} & \mathrm{FF}, \mathrm{AE}\end{array}$ 22 AO 0310 DC C8 A6 FE AS FF, AE $\begin{array}{llllllllll}22 A 8 & 20 & \text { CF } & 22 & 86 & \text { F3 } & \text { A2 } & \text { FF } & \text { B1, } 8 A \\ 22 B 0 & \text { FF } & 18 & 69 & 02 & 30 & 01 & \text { E8 } & 86, A A\end{array}$ $\begin{array}{lllllllll}22 \mathrm{BO} & \mathrm{FE} & 18 & 69 & 02 & 30 & 01 & \mathrm{E} 8 & 86, \mathrm{AA} \\ 22 \mathrm{~B} & \mathrm{FA} & 18 & 65 & \mathrm{FE} & \text { AA AS } & \mathrm{FA} & 65, \mathrm{C1}\end{array}$ 22 CO FF 20 CF 22 CA CA 8 A 38,27 22C8 E5 F3 91 FE C8 10 BO C9, DIF 220080 BO 15 CD 4 B A6 $1003, \mathrm{BE}$ $2208 \mathrm{EC} 4 \mathrm{~A} A 6 \quad 90$ OB 48 8A 18,16 $22 E 06 I 14 E$ AG AA $686 I 1 \mathrm{~F}$ A $6, \mathrm{~EB}$ $\begin{array}{lllllll}22 E 0 & 4 \mathrm{FF} \\ 22 \mathrm{~F} & 60 \mathrm{FF} \text { OC } 1 \mathrm{~F} \text { On } 87 \text { 1F } \mathrm{FF}, 27\end{array}$ $\begin{array}{lllllllll}22 \mathrm{~F} O & 03 & O C & 19 & 08 & 00 & 10 & 20 & 03,8 \mathrm{a}\end{array}$ 22 F 8 02 FF FF 010100 FF FE, 89 8889

EXAMFLE 1: Eliminate the NOF's (EA) in the "trivial" frosram below.

- 12800

2800 4C 0528 EA EA LIO FG FF
2808 AA AA AA AA AA AA AA AA
2810
. 62200
Fi FFFE, 2800,2805
. 12800
800 4C 0328 EA EA 110 FB FF, 15
0515
H 2803,2805,280F
4
.4800
280
800 4C 0328 DO FE FF AA AA, 95
0495

EXAMFLE 2: Interchanse the locations of RELOCATE and IISASSEMELE.
(2000-22FF with possible sarbase at 223L1-2260. IISASSEMBLE is at 2000-21FF. Do the followins:

1. Irisert FF at 211 A followiris last instruction
-F AA,223D,2260 to kill sarbase
. R 0100,2000,2000 to relocate

- B 2300,2000,21FF to save temporarily.
- F 2000,2200,22FF to COFY RELOCATE

7. . F FEOO, 2000, 2000 to relocate
8. B $2100,2300,24 \mathrm{FF}$ to fosition correctly
9. Correct addresses as follows:

200 C from 22 to 20
203C from 1 E to 21
0. G 2000 to reasatch correctly
11. Save 2000-22FF on cassette

1078- A9 35
107A- 81 FA 00
$107 \mathrm{D}-\mathrm{A9} 01$
$107 \mathrm{~F}-8 \mathrm{~F}$ FB 00

1090
IS (IONE SCKA)
1082- A9 A1 $1.084-8113 A ~ A 6$
$1087-A 910$ $1.087-A 9$
$1089-81$
$3 B$

1100
IS (RIN INUEC+1)
$108 \mathrm{C}-\mathrm{A9} 7 \mathrm{E}$
108E- 811 61. A6 1.091- A9 88 $1093-8162$ A6

1110
IIS (OUTFUT OUTVEC+1)
1096- A9 CD
1098-81 64 A6
$109 \mathrm{~B}-\mathrm{A9}$
$109 \mathrm{I}-8 \mathrm{l}$
65
10AO- 60
1120
1130
$1130 ;$
1140 ;
1160 DONE
10A1- 18
10A2- A5 93
10A4-69 03
10AC- 8593
10A8- A5 94
10AA- 6900
$\begin{array}{ll}12210 \\ & 1220\end{array}$
$10 \mathrm{AE}-\mathrm{A} 900$
10BO- A8
10B1-9193
1240
1250
1260 ;
1270 ;
1280 ;
1280 ;
1300 IIONE 1
10B3- A9 A0
10B5-8D 64 A6
10B8- A9 8A
10BA- 8D 65 A6
1310
10BII- A9 58
$10 \mathrm{BF}-80 \quad 61 \mathrm{~A} 6$
10C2- A9 8A
$1.0 \mathrm{C} 4-8 \mathrm{II} 62 \mathrm{Ab}$
1007-20 41183 1320
10CA- 4C TE C2
1330
1340 ;
1350 ;
1360

1380
1390
1400

IIS (INTCHR INUEC +1)

1360 COUTPUT CMF 1370 IF CHARACTER A LF?
1380 BEQ OUT +RTN IF SO, IGNORE IT
RTS
$-=($ AFTER LISTING, COME HERE $)=-$
CLC AIIJUST FOF THE "OK"
LDA *TXT,FTR
ADC $\# 3$
STA *TXT,FTR
LDA *TXT.FTR +1
ADC $* 0$
STA *TXT.FPTR+1
LDA $\geqslant 0$ FL.AG ENII OF TEXT
tay
STA (TXT.FTK), Y
RESTORE TRANSFER UECTORS
IS (TOUT OUTVEC+1)
JSF CRLF
JMF BASIC. WARM
$=($ SAVE ASCII TEXT IN MEMORY) =-
CMF \#\$A IF CHARACTER A LF?
BER OUT.RTN IF SO, IGNORE IT
LDY \#O
STA (TXT.FTR),Y

JSR CRLF
JMF BASIC. WARM

LDY *0
STA (TXT.FTR), Y

1015-20 EE 101410 10118-60 1420 OUT.RTN
1.430 ;

LABEL FILE: $[/=$ EXTERNAL

/COUNT $=006 \mathrm{C}$	/MEM. ENLI $=0083$	/TXT, FTFE=0093
$/ \mathrm{FAM}+\mathrm{FTR}=00 \mathrm{FA}$	$/ \mathrm{BUF}=0135$	/SUF'RESS $=809 \mathrm{~A}$
$/$ CRL F $=834 \mathrm{D}$	$/ \mathrm{RIN}=887 \mathrm{E}$	/RES \times AF $=8 \mathrm{~A}$ 3E
/INTCHR=8A58	$/$ TOUT $=8$ AAO	/ $\mathrm{ACCESS}=8 \mathrm{B86}$
/BASIC.WARM=C27E	/SCRA=A63A	/ INUEC=A660
/OUTVEC=A663	PROMPT $=1000$	MERGE $=101 \mathrm{~A}$
LIATA $=8$ A58	ADIRS $=$ A661	MERGE , 1=1031
L.IST $=104 \mathrm{~B}$	LIST, $1=1050$	LONE $=10 \mathrm{~A} 1$
DONE + $1=10 \mathrm{~B} 3$	OUTPUT $=10 \mathrm{CI}$	OUT, RTN $=10118$
GET, CHR=1009	$\mathrm{DEC} . \mathrm{PTR}=10 \mathrm{EE}$	IEC. $\mathrm{FTS}=10 \mathrm{FB}$

-U $1000,10 \mathrm{FF}$
$100020 \quad 4 \mathrm{D} .83$ A9 3 A 20 AO $8 \mathrm{~A}, 1 \mathrm{I}$ $100820 \quad 58$ BA 29 7F C9 AC FO,CC 1010 3A C9 4I FO 05 C9 $45 \mathrm{DO}, \mathrm{EF}$ $\begin{array}{lllllllll}1018 & E 7 & 60 & 20 & 58 & 8 \mathrm{~A} & 29 & 7 \mathrm{~F} & \mathrm{C9}, \mathrm{A9} \\ 1020 & \text { OII } & \mathrm{FO} & 0 \mathrm{E} & \mathrm{C} & 2 \mathrm{~F} & 20 & \mathrm{~F} 3 & \mathrm{~A} 9,18\end{array}$ 1020 OII FO OE CQ 2F DO F3 A9,18 10289 A 8064 A6 A9 8081165,64 1030 AS 38 AD 8300 ED 6 C 00, CE 10388593 A5 84 E9 $008594,0 \mathrm{E}$ 1040 A9 1998061 A6 A9 10 8II,6A $\begin{array}{lllllllll}1048 & 62 & \text { A6 } & 60 & \text { AO } & 05 & 99 & 30 & 01,41 \\ 1050 & C 8 & 20 & 58 & 8 A & 29 & 7 \mathrm{~F} & 99 & 30,7 \mathrm{C}\end{array}$ $\begin{array}{llllllll}1050 & \text { C8 } & 20 & 58 & 8 A & 29 & 7 F & 99 \\ 1058 & 01 & \mathrm{C} & 18 & \mathrm{FO} & \mathrm{A} 3 & \mathrm{CQ} & \text { OH } \\ 100,97\end{array}$ $\begin{array}{lllllllll}1058 & 01 & C 9 & 18 & \mathrm{FO} & \text { A3 } & \text { C9 OLI LO, } 97 \\ 1060 & \mathrm{EF} & \text { A9 } & 00 & \mathrm{CB} & 99 & 30 & 01 & 8 \mathrm{C}, 4 \mathrm{D}\end{array}$ $\begin{array}{lllllllll}1060 & \mathrm{EF} & \text { A9 } & 00 & \mathrm{CB} & 99 & 30 & 01 & 8 \mathrm{C}, 4 \mathrm{D} \\ 1068 & 6 \mathrm{C} & 00 & \text { AS } & 83 & 85 & 93 & \text { AS } & 84,22\end{array}$ $1070859420 \mathrm{EE} 1020868 \mathrm{~B}, 8 \mathrm{~A}$ 1078 A9 35 8D FA 00 A9 01 8D, 26 $\begin{array}{llllllll}1078 & \text { A9 } & 35 & 8 D & F A & 00 & \text { A9 } & 01 \\ 108,26 \\ 1080 & \mathrm{FB} & 00 & \text { A9 A1 } & 8 D & 3 A & \text { AG A9,81 }\end{array}$ $10881080 \quad 3 \mathrm{~B}$ A6 A9 7E 8I 61,14

1090 A6 A9 888162 AG A9 CII,FO 10988064 AS A9 $1080 \quad 65$ AG, 1 LE $1040 \quad 6018$ A5 $9369 \quad 03 \quad 85 \quad 93,12$ 10AB AS 9469008594 A9 00,76 1.0 BO AB 9193 A9 AO 8 D 64 A6, 22 $10 \mathrm{B8}$ A9 8 AABD 65 AG A9 $588 \mathrm{BX}, 7 \mathrm{~B}$ $\begin{array}{llllllll}10 C 0 & 61 & \text { A6 } & \text { A9 } & 8 A & 8 D & 62 & A 6 \\ 100,6 A\end{array}$ $\begin{array}{llllllll}10 C 8 & 40 & 83 & 4 C & 7 E & C 2 & C 9 & O A \\ 10 & F 0,89 \\ 1000 & 07 & \text { AO } & 00 & 91 & 93 & 20 & \text { EE }\end{array} 10.72$ $101007 \mathrm{AO} 00919320 \mathrm{EE} 10,72$ 101860 AO 00 B1 93 FO [14 20,9A LOE8 84 C 9 OD 4 CE BA C6 93,08 10FO A5 93 CO FF 0 O 0 C 94,08 $10 F 8$ OO AA AA AA AA AA AA AA, 3 703A

To relocate a whole number of To relocate a whole number of
pases, chanse the underlined pases, chanse the underlined number.

In the TCF source listinss fublished in the Introductory Issue we forsot to include the FAE-1 Fseudo-of. ES (ExFansion Set). The default is $+E C$ Expansion elear so bire macroexpansions were not isted, The Thig. macro expansions:

ODE ${ }^{-}$	A9	F5		OLIFS-	A9	68		OE12-	A9	21		OE87-	A9	58		OE9C-			
ODEA-	81	61	A6	ODF7-	81	C4	00	OE14-	81	61	A6	OE89-	85	61	Ab	OEPE	81	6	1 Ab
ODEE-	A9	O1		ODFA-	A9	OF		OE17-	A9	OE		OE8	A9	8A		OE	A9	0	E
OLEF-	81	62	A6	ODFC-		C5	00	OE19-		62	A6	OE8	81	62	A6	OEA3-	81	6	2

INFUT LOWER-CASE WITH (OR IN SFITE OF) SUFERMON
By Gary K. Humbhrey
AFO San Frameisco, CA 96367
The SYM Technical Notes fackase contains a short routine which allows input of lower case characters. I have been usins a different method which is even shorter (see prosram listing). Just flace these iristructions answhere in memors (I have them at the entry to ms video driver) and chanse INUEC to point to them. The return address stored on the stack will be chansed so that your ingut routine will return to the monitor at INRT1 (8A2D), therebs avoiding the SUFERMON routirie which converts lower-case characters to upper-case.

NOTE: the jump at $1 E O E$ can be charised to foirit to your own irisut routine, if different.

SUPERMON EXTENSIONS

Elsewhere in this issue is the frosram RELOCATE, and in the introductory issiue apfeared the prosram IIISASSEMBLE. MON 1.1 currently has the zero arameter command tr for REGISTER and the zero or one parameter commarid ol for DEFOSIT. The listins for RELOCATE Shows how to add a two parameter. D for OISASSEMBLE and a three parameter, Ri for FELOCATE,
If you have entered DISASSEMBLE at 2000 and FEL.OCATE (includins the montor patch) at 2200, you can patch the new commands to MON 1.1 by usiris. the command oG 2200 after every RESET.

It should be obvious from the listing how other commands can be added and how the default values entered into system FAM by RESET can be realaced at the same time. The CLC prior to the FT S at line 228 E is to ensure that no error messase will be printed at the return from FELOCATE, and mas be required in your other extensions.

To call DISASSEMBLE enter, for example, , Il 2200,16. The 2200 is the start of the prosram to be disassembled, the 16 will give you 22 lines on a CRT terminal.

SYM-PHYSIS 1-1.7

A FROGFAM TO IIISFLAY SYM-1 LEII SEGMENT CONES

By Mourie Mu Fen
 -0. Box 257
 indifieldy NSW 2070
 Australia

COrsinalls written Nov '78' modified and documented bs the editor Nov '79 This short but elesant frosram should arove very helpful to those sym-作S who wrote in askins for more information on how SUFERMON subroutines can be used in their own prosrams. It illustrates how IISEBUF and FIIG A A640-A645 are usedy but even more importantly, it illustrates the use of TV at A656 and DELAY at 835A. The value of TV (=09) at $0203 \leq 1 v e s$ chosen value of TU, since every time any kes on the Hex kespad (or or the terminal, if you started the prosram with the terminal) is hit, an additerminal, if you started the prosram with the terminal is hit, ari acoitwo left hex disits will count from $00-\mathrm{FF}$ and the risht-most disit will display the symbol for which these disits are the sesmerit code.

After you have this prosram entered and workins you can replace the redundant JSF ACCESS at 0223 and the JSF SCAND at 0244 with NOF's (since SCANI is included in DELAY) and practice usins RELOCATE and BLOCKMOVE to save the 6 bytes. The FF at 024F marks the end of the instructions (for use of RELOCATE). From 0250 to $025 F$ are the sesment codes for the hex disits 0 to F.
. V 200,25F
02002086 8B A9 098156 A6,6C 0208 A9 0085 F 3 A9 $5085 \mathrm{FG}, 01$ 0210 A9 0285 F7 L18 AS F3 4A, E2 0218 4A 4A 4A 85 F5 AS F3 29,FB 0220 OF 85 F4 2086 8B A4 F5,4I 0228 H1 F6 80 40 A6 A4 F4 B1, BO

0230 F6 811 41 A6 A9 00 811 42,92 0238 A6 80 43 A6 8D 44 AG A5,CA 0240 F3 8145 A6 $20 \quad 0689$ 20,04 248 5A 83 E6 F3 4C $1502 \mathrm{FF}, 1 \mathrm{C}$ $\begin{array}{lllllllll}0250 & 3 F & 06 & 5 B & 4 F & 66 & 6 \mathrm{D} & 7 \mathrm{D} & 07,62 \\ 0258 & 7 \mathrm{~F} & 67 & 77 & 7 \mathrm{C} & 39 & 5 \mathrm{~F} & 70 & 71, \mathrm{EC}\end{array}$ 2 FBC
\qquad

SUGGESTEII HARILWARE MOLIFICATION

By Georse Wells, 1620 Victoria Flace, La Verrie, CA 91750

I have a very simple solution to the problem of not havins enoush FROM sockets on board the SYM-1. All you do is stack the ROM's one on tof of the other on one socket and hardwire individual chif-selects with pull-up resistors to each of them except the bottom one. I have done is with my two BASIC 716 EPROM This wh I did 1. Remove jumper $L-13$
2. Add $3.3 k$ resistor from pad 13 to feed-throush pad near pin 16 of I.C. U11 (+5U).
3. Remove ROM 02-0020-01 from socket U22 and sprins its leads slishtly inward except for pin 20 (chip select) which should be bent
slishtly outward.
4. Flace ROM 02-0020-01 on tof of FOM 02-0019-01 makins sure that all correspondins pins are makins contact with each other except of course pin 20. Secure with tape if desired.
5. Hand wraf a piece of 30 -sause wire around firi 20 of the tof ROM and brins the other end to the jumper between fads 13 and 14 .

Everybody ousht to set Blalock's 4K FAM exfansion board. Imasine that-3OK of ROM/RAM on board the SYM. I'm soins to have to set a new fower supply!

SYM-PHYSIS $1-18$

FAST FOURIER TRANSFORM

Here is a Fast Fourier Transform frosram for those who requested it The sraph drawing portion has been omitted because it was termirial dependent; you will have to add your own. This prosram is based very closely on the prosram siven by Williami II. Stariles and Steveri, J. Feterson in "Fast Fourier Transforms on Your Home Computer,
lecember, 1978. First a sample run, then the listins:

RUN
Number of samples? 16
The infut furiction is of the form
$\sin (2 \mathrm{pi} p \mathrm{f})+0.5 \cos (4 \mathrm{pi} f()$,
where f is the freauency.

Frequency? 3				
List	input function	? Y		
N	Real	Imas	Mas	Fhase
-				
0	. 500000001	0	+500000001	0
1	. 570326142	0	. 570326142	0
2	. 707106782	0	. 707106782	0
3	-. 0291300428	0	. 0291300428	180
4	-1.5	0	1.5	180
5	-. 0291300383	0	. 0291300383	180
6	. 707106781	0	. 707106781	0
7	. 570326143	0	. 570326143	0
8	. 499999997	0	. 499999999	0
9	-1.27743292	0	1.27743292	180
10	-. 707106773	0	. 707106779	180
11	. 736236824	0	. 736236825	0
12	. 5	0	. 5	0
13	. 736236823	0	. 736236823	0
14	-. 707106791	0	. 707106792	180
15	-1.27743292	0	1.27743292	180
16	. 500000001	0	. 500000001	0
Scalins				
Computins the FFT				
Resequencins				
List	transform? Y			
N	Real	Imas	Mas	Fhase
-				
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	-. 5	+ 5	270
4	0	0	0	
5	0	0	0	
6	. 25	0	. 25	0
7	0	0	0	
8	0	0	0	
9	0	0	0	
10	. 25	0	. 25	0
11	0	0	0	
12	0	0	0	
13	0	. 5	. 5	90
14	0	0	0	
15	0	0	0	
16	0	0	0	

1000 INFUT'Number of samples? ; ;N:M=LOG(N)/LOG(2)
$1020 \operatorname{DIMXR}(N), X I(N): P I=3.1415926535$
1040 FRINT:REM DEFINE THE INFUT FUNCTION
1060 PRINT "The infat function is of the form"
1080 FRINT"sin ($2 \mathrm{pi} f \mathrm{f}$) $+0.5 \cos (4 \mathrm{pif} t$),
1100 FRINT" where f is the frequency. ': FRRINT
120 INFUT Frequency? "今ेF:F=2*F*FI/N
$160 \mathrm{~F} 1=\mathrm{F}$ OTON
$1180 \times \mathrm{FR}(\mathrm{I})=\mathrm{XR}(I)+\operatorname{SIN}(F 1)$
$1200 \times I(I)=0:$ NEXT
$1220 \times R(0)=X R(0) / 2+X R(N) / 2: X R(N)=X R(0)$
1240 REM ENII OF FUNCTION DEFINITION
1260 INFUT"List input function ? " $\ddagger A$
1280 IFLEFT $(A \$, 1)=$ " Y "THENGOSUB1820
1.300 PRINT"Scaliris*

1320 FORI=OTON:XF(I)=XR(I)/N:XI(I)=XI(I)/N:NEXT
$1340 \mathrm{~W}=-1$: GOTO1380
$1360 \mathrm{~W}=+1:$ REM ENTER HERE FOR INUERSE
1.380 PRINT"Computins the FFT"
$1400 \quad I 1=N / 2: I 2=1: U=2 * F \cdot I / N$
1420 FORJ=1 TOM: $13=0: 14=11$
1440 FORK=1TOI2:X=INT(I3/I1):GOSUB2200
$1460 \quad I 5=Y: Z R=\operatorname{COS}(U * I 5): Z I=W * S I N(U * I 5$
1480 FORL $=13$ TOI 4-1:AR=XR(L.):AI=XI(L)

$1560 \times \mathrm{F}(1+\mathrm{I} 1)=\mathrm{AF}-\mathrm{BF}: \times I(1+\mathrm{I} 1)=A I-\mathrm{BI}$
1.580 NEXTL:I3 $=13+2 * I 1: I 4=14+2 * I 1$

1600 NEXTK:I $1=11 / 2: I 2=12 * 2:$ NEXT
1600 NEXTK: $11=11 / 2: 12=12 * 2: N E X R(N)=X R(0): X I(N)=X I(0)$
1.640 PRINT*Reseauencins*

1660 FORK $=$ OTON $-1: X=$ K:GOSUB 2200
1680 IFK $<=$ YTHEN 1740
$1700 T R=X R(K): T I=X I(K): X R(K)=X R(Y): X I(K)=X I(Y)$
$1.720 \times R(Y)=T R: X I(Y)=T I$
1740 NEXT
1760 INFUT'List transform? ';A
$1780 \operatorname{IFLEFT}(A \$, 1)={ }^{\prime} Y^{\prime}$ THENGOSUB1820
1800 PRINT" Finished" \ddagger ENI

860 KI XI
$880 \times I=X I(I)$
1900 IFABS (XR) $<1 E-4$ THENXR=0
1940 XM=SQR(XR~2
1940 XM=SRR (XR~2 2 XI~2
1960 IFXM=OTHENXP $=0$:GOT02040
2000 IFXR $=0$ THENXP $=$ SGN $(X I) * 90:$ GOT02040
$2020 \mathrm{XF}=180 / \mathrm{FI}$ I*ATN(XI/ABS (XR))
2040 IFXR <0 THENXP $=180-X F$
2060 IFXF <0 THENXF $=360+$ XF
$2080 \mathrm{XP}=1 \mathrm{E}-2 * \operatorname{INT}(1 E 2 * X F+$.5)
2100 FRINTI;TAB(5);XR;TAB(21);XI;
2120 PRINTTAB(37);XM;
2140 IFXM=OTHENFRINT:GOT02180
2160 FRINTTAE (53) ; XF
2180 NEXT:RETURN
$2200 \quad \mathrm{Y}=0: \mathrm{N} 1=\mathrm{N}: F \mathrm{FRI}=1$ TOM:N1=N1/2:IFX<N1THEN2240
$2220 \quad Y=Y+2^{\prime}(I-1): X=X-N 1$
2240 NEXTI:RETURN

MISCELLANEOUS GOOL THINGS

HARDWARE: If you are irito control applications, or otherwise need to do lots of prototupins, the "First Mate" provides a very serierous workins area immediately above the SYM, effectively on-board. From one to three (without interferins with motherboard connections) to sockets on First Mate. Write to Richard Turpin, Micromate, F.0. Box 50111, Indianarolis IN 46256 for information and prices.

SOFTWARE: One of the best wass to improve your frosrammins abilities is to study outstandins examples. One such example is the GFAFHICS LRAWING COMPILER for SYM, by Hall and Moser. While the GDC has value in and of itself, its real value to me was the know-how it provided on the desisn of compilers, which translate prosrams writen in hish-level lansuases into machine lansuase code for fast execution. As ani example, after you have defined Macros CAR and CLRCAR to draw and erase the imase of ar units to the risht is written in only 7 instructions, with a no loof:

DEFINE (J 10)
DO (EXIT J)
CLRCAR
OOSREL (O 1)
END
EXIT
RAE-1 and the GNC then senerate the machine lansuase code to do the job For additional information and prices write Carl Moser, Eastern House Software, 3239 Linda Drive, Winston Salem, NC 27106,
SPEECH SYNTHESIS: The SF-1 Speech Syrithesizer Interface ($\$ 49$ Kit, $\$ 69$ assembled, includins commented source listinss) is available to iriterconnect the SYM-1 to the Texas Instrumerits "Speak \& Spell (TM) toy (around $\$ 49$). The interface FC board fits irito the $5 \& 5$ ini flace of the battery and is driven throush the 6522 UIA. One of the frosranis supplied is a hex disit speaker, to read back frosrans or data you to give you verbal feedback! Much better than the beefer. For mor information contact Dave Kemp, East Coast Micro Products, 1307 Beltran Court, Odenton, MD 21113.
miscellaneous notes
If you have the first printing of the MON 1.1 Enhancement Description be aware that all addresses in the listing from 84F4 throush BC70 should be increased by 5. The missins instructions are:

Cross reference table has correct addresses. (Irifo from Nick. Urtis,)
The first frintins of the RAE-1 Reference Manual has a tuposrafhical error in reference to memory locations. RAE-1 actually resides in memory locations B000-BFFF and EOOO-EFFF, and there is ro coriflict with BAS,
which co-exists at COOO-CFFF and DOOO-LIFFF. If you were able to set the correct jumpers for BAS you should be able to fisure out how to do so for RAE, Since you will be in the nieishborhood anyway, you misht warit to rearranse the jumpers to fermit two $A A S$ chifs to live as cheaply as one in the same socket, as described elsewhere ir this issue.
The new address for the 6502 USER NOTES is: Eric Fehnke, 540 S . Fanich View Circle, Aft + 61, Anaheim, CA 92807.

THE PARITY BIT "FROBLEM"
Gary Humphres's prosran 'Irfut Lower Case . . . " has a very subtle bus which can only be exterminated by usins the Synertek. fublished version. We elected to publish it "in spite of" the bus because it does (use of the stack and oecause the (Video-Filus) and mans others, but can cause hansurs on terminals which senerate parity bits, such as for exampley the KSF- 35 TTY. Sst. Humphrey is usins TINY BASIC, and probably (as do I) uses INTCHF to permit lower case infut. Those with TINY will notice that soon after the JSk to the irifut link at 06B7, the accumulator is ANIEd with 47 F to clear parity at OGBE before all the checks for NUL, RUBOUT, CRy etc. are made.
When I first used $2 K S A$, over a year aso, I used INTCHR for its irfeut and it took me many hours of experimentins spread out over several weeks to find out why 2KSA worked at school with an ASk-33 but not at home with a KSR-35. Even went to the trouble of brinsing the -33 home and the -35 to school. Only when I found that the trouble was with the terminal, and not its location, did I write a simple frosra pririt out the ASCII codes for (but it does not use lower case either) so INCHR is its reauired infut point, Can't blamenenison for this omission, since it was riot rieeded for KIM.

SYM-FATHY

One of our overseas subscribers points out that a KTM-2 costs over $\$ 700$ in his country, and that it will be a lons time before he can afford one, e does have a to himosco to

First, implement the Oscilloscope Output Feature as described in Chafter 7 of the SYM Reference Manual, and studs the listins unitil you uriderstand every line of the prosram, includins the remark following liri
0088 . If you note that the hex keypad has 25 keys whose values are assisned throush software, you will see that you can use it as a type writer keyboard by sivins each key two meaninss. Dedicate orie key to shiftins or unshiftins the followins kesstrokes, and you can then eniter 48 alphanumerics, punctuation marks, and some control characters with the hex keypad. Use a faper overlay over the fad, with the dual hames for each key written on it. Replace the ASCII table in ROM and the character set table in pase 04 by tables of your own desisn and write prosram that will enable you to use the hex keypad and the scofe as a 32 character, one line, terminal. If you add a third table to senerate the correct ASCII values for your keystrokes you can chanse INUEC and OUTVEC to point to these new I/D routines you have written If you can interface an inexpensive QWERTY kesboard to one of the IAs your input will be easier, but the output will be the san . Th output. Hardware is the bis expense for hobbuists, software costs only time and patience! Before I sot mu terminal, I modified a clock rosram for the sym (A Disital Clock Prosram for the SYM-1, Chris Sullivan, 9 Galsworthy Place, Bucklands Beach, Auckland, New Zealand, in MICRO No. 7, Oct-Nov 1978, pp 45-46) to use the scope displas in place of the LED Display, so I have a feelins for how to do the job. Will be happy to correspond with anyone who needs help, and will publish the first successful Scope Terminal Frosram submitted. I am sivins Mr. Sullivan's address as published in MICRO, for the benefit of all of our many Australia/New Zealand subscribers.

ALL PRICES GIUEN BELOW ARE NOW OBSOLETE, FLEASE USE FRICES GIVEN ON THE MOST RECENTLY ISSUED "SHOFPING LIST"

SHOPFIING LIST OF ITEMS AUAITLARLE FROM SYM-1 USERS' GROUF

2K SYMBOLIC ASSEMELER MANUAL (BY ROEERT DENISON)
$\$ 10.25$ IN US FUNIS-FIRST CLASS FOSTFAII FOR NO. AMERICAN COUNTRIES.
11.00 IN US FUNUS-AIR MAIL FOSTFAII FOR EUROFEAN COUNTFIES.
$\$ 12.00$ IN US FUNIIS-AIR MAIL POSTFAIII FOR ASIA/F'ACIFIC COUNTRIES.
2K SYMBOLIC ASSEMBLER ON CASSETTE TAPE
$\$ 5.35$ IN US FUNDS-FIRST CLASS FOSTFAII FOR NO, AMERICAN COUNTRIES. $\$ 5.75$ IN US FUNDS-AIR MAIL POSTFAID FOR EUROFEAN COUNTRIES.
$\$ 6.75$ IN US FUNDS-AIR MAIL POSTPAID FOR ASIA/FACIFIC COUNTRIES.
SYNERTEK TECHNICAL NOTES
$\$ 4+10$ IN US FUNDS-FIRST CLASS FOSTFAII FOR NO. AMERICAN COUNTRIES.
$\$ 4.60$ IN US FUNDS-AIR MAIL POSTPAID FOR EUROPEAN COUNTRIES.
$\$ 5.60$ IN US FUNDS-AIR MAIL POSTFAIII FOR ASIA/FACIFIC COUNTRIES,
SUPERMON UERSION 2(MON 1.1)
$\$ 16.00$ IN US FUNDS-FIRST CLASS FOSTPAID FOR NO. AMERICAN COUNTRIES
$\$ 17.00$ IN US FUNDS-AIR MAIL FOSTFAII FOR EUROPEAN COUNTRIES.
$\$ 18.00$ IN US FUNDS-AIR MAIL POSTPAIII FOR ASIA/FACIFIC COUNTRIES,
RAE-1/2 (THIS IS THE TWO CHIP UERSION BUT BOTH CHIPS MAY BE MOUNTED IN ONE SOCKET. FULL INSTRUCTIONS SUPFLIED ALONG WITH EXCLUIONAL FEATURES NOT

DESCRIBED IN THE SYNERTEK MANUAL).
$\$ 99$ IN US FUNDS-AIR MAILED POSTPAID-INSUREI ANYWHERE IN THE WORLI.
SCHEMATIC DIAGRAM OF SYM-1
$\$ 1.50$ IN US FUNDS-AIR MAIL POSTFAIII ANYWHERE IN THE WORLI.

Abstract

We are truly sorry to have to raise our shiffins and handinis charses but we found we underestimated the cost of the facking materials and fostase after we were swamped with orders for the above items. The prices Ruoted in the Introductory Issue did not take care of the costs, and we simply mailed the item and paid for it out of pocket. Some of our Symmers, themselves, realized our error and remitted a little more than was auoted in SYM-PHYSIS. We thank them for beins 50 thoughtful. We know our overseas buyers can save mones on the postase by lettins us send items by slow boat, but our policy is to send everythins Air Mail unless otherwise requested.

A sood Source for Cassette Tapes is HOB MYERS, 109 FIRE LANE, NORTH CAPE MAY, NJ 08204. His prices are $\$ 6.50$ US for $10-50$ foot Cassettes in sof

 plastic boxes-for hard bowes please add 50 cerits. 4th. class fostpaid.We will be teachins a week-end course called "Microprocessor Fundamentals," for the University of Ealifornia at Davis, January 25-27, 1980. The course fee is $\$ 450+00$, and each student will receive a SYM-1 flus some software soodies. If interested, Flease contact, University Extension, University of California, Davis, Davis,CA 95616.

