

ISSUE NUMBER 3 - MAY/JUNE 1980

SYM-FHYSIS is a bimonthly publication of the SYM Users' Grouf, F. 0. Box 315, Chico, CA. 95927. SYM-FHYSIS and the SYM Users' Groum (SUG) are in no way associated with Ssnertek Sustems Corforation (SSC), and SSC has no resfonsibjlity for the contents of SYM-FHYSIS. SYM is a resistered trademark of SSC. SYM-FHYSIS, from the Greek, means the state of growins tosether, to make srow, to brins forth.

We welcome for fublication all articles dealins with ans aspect of the SYM-1, and its vers close relatives. Authors retain all commercial copsrishts. Portions of SYM-FHYSIS may be reproduced by clubs and educational institutions, and adaptations of prosrams for other computers
mas be freely published, with full credit siven and complimentary cories Frovided to SYM-FHYSIS and the orisinal author(s). Flease include a self-addressed stamped erivelope with all correspondence.

Editor/Fublisher:
Business/Circulation
Associate Editor:

H. R. "Lux" Luxenbers

Jean Luxenbers
Thomas Gettys

SUBSCRIFTION RATES:

JSA/Canada $\$ 9.00$ for a volume of 6 issues; overseas $\$ 12.50$. Make checks pasable in US dollars to 'SYM Users' Group," F. O. Box 315, Chico, CA 95927, Telemhone (916) 895-8751.

FROM THE EEIITOR

This issue, as fromised, is heavily devoted to comfuter music and sraphics. First, thoush, let us point with pride to our "riew look" please observe the risht justified text. No more slopps rassed risht marsins. We'll tell you later how it was done, and tell you how you too, can make a hish-class word frocessor out of your SYM-1.
As for sraphics, we will present examples of both oscilloscope and KTM-2/80 prosrams. And for the music, we will concentrate mainly on the D/A (DAC or Iisital-to Analos Converter) approach, althoush other methods will be described. We develofed a number of music and sraphics eatched for the SYM, relocated, rodified to includ TSTAT so assembla not source code for them. We therefore will publish them ir disassenh formy and refer you to the orisinal articles for the comments.

One of our sraduate studerits develofed some scofe grafhics for the Kim as part of a sraduate project. These included a FONG same, a Eourcins Ball simulation, a Raster Graphic Hisplay, and a Vector fisplay which showed five lines of five alfhanumerics (sort of a crude tBfewriter)
All but PONG, which depends on the KIM kespad losic, have been "transcribed" for the SYM. We are now fixins up a simple-minden two-axis laser deflection sustem involvins mirrors and speakers to produce wall sized laser sraphics. Unfortunately, frosress is slow.

Happy readins, hardware put-tosetherins, prosramins, and then, watchins and hearins your SYM perform!

SYM-FHYSIS 3-1

SYM WORI FROCESSOR
This issue was "set" with an early version of Carl Moser's new sYM Word Frocessor (SWF). We were sent a preliminary version for testins and debussins. We reported the minor buss back to Carl, and sussested some new features to be added. The improved version, SWF-1, is now available on cassette. No pririted manual is provided, but, with the fully commented source code and a supflied example of a text file showins its use, the cassette material explains itself. The cassette con tains three cofies each of the complete source code, a version strifped of all commerits, and a sample text file. The strif sembly source code will permit a Rulck SWF soes not split words, that is, it will riot hysheriate for sou. In wioe columns this is not a major proalem. In riarrow columis like this one, you may want to do as we have done. If the wide spaces between worbs are objectionable, a few iterations of a manual hypherization process will fix thinss uf, as we have done here. As is our established olics, we will fulis surfort this product with improvements, corrections, sussestions er to use for text editins than FAE-1 lone, since there is no need to try to lone, since there is nio nieed to try to After seneratins the text, adoitional ines
 rouldiserted to indicate farst kid on your block to have a really ine, "up-to-date", trulu modern, word frocessor? Send for yours, TODAY! Gee back pase for orderins information.

THE KTM-2/80
Wher I first saw the list price of the KTM-2/80, I thousht it was a lot f money to put out for a keyboard and a handful of chips. That was before I saw what came for the mones. Now, I think that it is the most cost effective terminal available, and that the price is unbelievably low for what you set. The -80 has Two microprocessors, a 6502 and a 6507, two UIA's, 2 K of FAM and 12 K of ROM! It is a truly frofessional tand-alone terminal (cafabable of 9600 Baud) and 1 use it on our local timeshare system (at only 300 Baud, however). The srafhics cafabilitiesy which are actually 160 by 48 (not 80 by 24), are an adoed bonus. Surplus monitors are available for around $\$ 50$, and a cabinet maker can make a case for under $\$ 50$. Where else can you set a terminal with all of the KTM-2/80 features for $\$ 550$?
I. am actually besinnins to think of the SYM-1 as an accessory to the KTM-2/80, convertins it to a fully intellisent terminal, rather than the隹 that was around. BAS, and BK of RAM (sivins ue the hex ead and the 7-sesment diselaus) The world's perultimate Sinsle Board Comeuterl Add a sinsle evearsion board with from burner, disk controller, and 24 K of RAM, and, with all of the fine SYM software becomins available, Synertek would have a really fowerful, low-cost, sufer develosment system. Judsins by the letters we receive, many of our readers are well on their way to assemblins such dream systems, on their owri, but not packased as 'reatly" as could be.

Mans have written and calleg about uFsradins their 40 columin KTM-2 to the 80 column carability. Some bad news and some sood news. If you the newer model, Ssnertek will release a conversion kit, available throush the Users' Grouf. Wisely, Sshertek is waitins until a detailed technical manual describins the conversion frocedure is available. The conversion manual is beins frefared by an experienced sym-1 user, Bob Msers, 109 Fire Laney North Cape Mas, NJ 08204, (609) 522-7781, x 250. Contact Bob directly for availabilits informationg hofefulls we can announce the availability of the kits and manual in our next issue.

CASSETTE RECORDER TIPS
Our lons lastins froblem with unreliable cassette readoack has been solved, and in a very simple manner indeed! we can now read almost any tafe sent to us at ans settins of the volume control above a mirimum threshold. We replaced the 0.22 ufd capacitor at C16 (now on all new production, and sent with the MON 1.1 replacement kit) with the orisinal 0.01 value. The lower value blocks out low freauency hum, flutter, and wow. We have made the change on eisht of our local SYM-1s and recommended it to others, who have called concernins cassette froblems then called back to report that the fix also worked on their systems.
The SYM-1 cassette subsystem oferates at 1420 Baud. That can easily be doubled, even with inexpensive recorders, by replacins the values of TAPET1, TAPET2, and HSBIIRY with one-half their default values. The speed can also be trifled, or quadrupled, but at $4 \times$ (5.7 kBaud the hish We first became aware of this capability of SYM wheny on the same day, We received a "unreadable, tape (which sounded rather hish-ritched) from we recelveriber, and a letter from another explainins how to increase the one subscriber, and a letter found that the unireadable tape had actually been sent (unintentionally) at 2840 Baud, but was easily readable with the frofer parameter values. Try the hisher rates; thes do save time.

A number of readers who have had froblems with cassette read reliability have sent in their own "fixes", some of them requirins "heroic" measures. If the fix described here does not work for you, you misht want to try the one proposed by Jay Sinnett, elsewhere in this issue, Don't be satisfied with less than riearly 100% reliability from the cassette interface. It is capable of very hish reliability. Since we added our fix every cassette read failure was defiritely linked to a tape defect at a specific location on the tafe. Once you are sure that a particular cassette is free of "slitches" you can expect 100% readback.

One final note on readiris commercially available KIM-1 format tafes which include either the tor of fase zero, the tor of pase one, or the KIM-1 System RAM at $\$ 1780+$ (if you have no RAM there yourself): Use the FF,0200. Incidentally, MON 1,1 allows you to specify the value of KMBDRY at \$AG31, We wonder, and will probably experiment soon, whether chansins the default value to the frofer choice will permit readins KIM/HYFERTAFE formats?????

ATTENTION NEW ZEALAND SUBSCRIBERS

My colleasue, IIr, Gary Sitton, Frofessor of Computer Science, Califor ria State University, Chico, will be in residence at the Uriversity of interest include Date Base Manasement and Oferatins Systems. He would enjoy meeting with ans or all of you.
U.S. Environmental Protection Agency

Environmental Research Laboratory
South Ferry Road
Narragansett, RI 02882
The first cassette recorder I tried with my SYM for data recording worked extremely well. The volume and tone control settings were entirely noncritical, and I never failed to read a tape correctly. However, when got RAE-1, I purchased two new recorders of a different make. These recorders proved to be extremely sensitive to slight changes in volume and resetting the controls. Fortunately, I was able to use an oscilloscope and the Synertek tape diagnostic programs to completely solve the problem wi.th a hardware modification. If you have had this kind of problem, you may find this suggested hardware modification useful. If your tape recorder is reliable and easy to use, don't make any changes.

The designations left, right, etc. refer to the board when oriented so that the printing on it reads normally.

1. Carefully unsolder the right-hand ends of both CR28 and CR29.
2. Bend CR29 toward the top edge of the board, so that the body of the diode extends by the left-hand end of CR28 and R93. Bend the free lead of CR29 so it touches or wraps around the
lent-hand lear 9 and solder it ther (ground).
Bend
Solder its free
Before I made this modification, I had one extremely narrow range of workable volume settings just above the threshold of detection of Sync. After this change, my volume control could be set anywhere above threshold

The problems. digital waveform, the amplitude of positive-going and negative-going peaks are not always equal or even constant, but change according to the timing When the signal input to an unmodified SYM exceeds $1.4 V$ peak-to-peak, the diodes CR28 and CR29 conduct, causing C16 to build up a charge on each peak. This charge in turn modifies the zero crossing time, destroying the integrity of the data. The new placement of the diodes allows a signal swing of 6.4 V peak-to-peak before the diodes conduct to protect the LM311 comparator.

For the hardware purist or person who has not yet installed his hardware modification which came with the Monitor update, I also recommend adding bit of hysteresis to the new circuit to avoid noise on low-level signals. This may not be necessary in many cases

1. Change R94 and R95 to 100Ω resistors (supplied in the Synertek kit).
2. Remove R87 and R126.
3. Change R96 to $100 \mathrm{k} \Omega$ (you supply).

Install a 2.2 k resistor from the right-hand end of R94 to the
hole where the right-hand end of R126 was (you supply).
5. Install the R97 (1 k) and C16 $(0.22 \mu \mathrm{f})$ as instructed in the new monitor kit.

IN THE NEXT ISSUE

* A comparision of all known (to me) ways of expandins SYM-1.
*A discussion of "chear" video terminals, and inexpensive printers * A descriftion of Frank. Winters' TOFS (Tape OPeratins Sustem), with nearly all the convenience of a LiOS, at much slower speed, but much lower cost. *And, of course, more prosrams!

FAE NOTES
RAE NOTES No. 2 has been mailed to suoscribers No. 2 contains a full description of the disk vectors and flass built into RAE-1, arid illustrates their use with the full source code listirs of Ton Gettss' RAE/FONS Linkins Fiatch. No. 2 listed si: absolutely safe fase zero locations completely untouched by BAS, RAE, FONS, or MON Mailed with No. 2 was an annotated. Fory of Technical Not Second Cassette Recorder to SYM-1".

Also mailed with No. 2 was a USER FATCH FOR RAE-1 submitted by Jean Cur, a portion of which is beins published in this issue. As more of $\mathrm{FAE}-1$ users besin to disassemble RAE's object code and probe enhancements to be provided. One of our readers has promised to provide a patch to supfress the // at the end of PRR. Note that SWP-1, Moser's SYM Word Processor, alreads does this, and the form-feed operation in SWF-1 will force the endins $>$ " to the tof of the next Fase. No. 3 will incluge the lons promised fase zerofrase one memory mars, and will describe the use of the Frinter Control Vector built into the >HArdcofy set command.

Please make the followins correction to the RAE-1 Reference IIata Card included with No. 1: In the Rection *Rata Card included with No. it. In the PR 9999 with PR

A SORTING FATCH FOR RAE

Jean M. Cur, 29 Greenboro Crescent, Ottawa, Ontario, Canada, K1T 1WS, submitted a very nice frosram called USER PATCH FOR RAE-1, It Frovides a better Therface to a TrY, and has other nice features TO FAE NOTES subscribers. Fublished here is an shbreviated version of that portion of his prosram which eermits the printins of an alehabetically which fermits the frintins of an alfed Label File. He has not yet found a way to suppress the printins of the unsorted file. Can ansone helf him? It misht also be nice to provide another patch to permit the printins of a rumerically sorted Label File.
>ASSEMBLE LIST
0010 ;SORTING FATCH FOR RAE-
0020 FPORTION OF USER FATCH FOR RAE-1 0025 ;
0030 ; JEAN M CYK
$0040 ; 29$ GREENEORO CRESCENT
0050 ; OTTAWA, ONTARIO
0060 ; CANADA K1T 1 WS
0070 ;
007 , Editor's Note: To save space
0072 ;in the listins, Frintins of
0074 , the Macro Expansions was sup-
0075 the object code verification
0076 ;below

	0077	;	
	0085	L.BLSIz.	. IIE \$500
	0200	LEL	. IE \$0104
	0210	BUF	- TIE \$00C8
	0325	SCRN	- IIE \$FE
	0330	SCRC	- DE \$FC
	0350	Dummy	- IIE O
	0460	!!!MW	, MII (FROM TO)
	0465		LOAII (FROM)
	0470		STORE (TO)
	0475		LOAII (FROM +1)
	0480		STORE (TO+1)
	0485		. ME
	0490	;	
	0495	! ! M ${ }^{\text {c }}$	
	0500		LIir \#0
	0505	. . . MT1	LIIA (FROM),Y
	0510		STA (TO), Y
	0515		BMI . . . MT3
	0520	. . . MT2	INY
	0525		BNE ...MT1
	0530	. . . mT3	CFY $\$ 2$
	0535		ECC . . . MT2
	0540		. ME
	0545	;	
	0550	! ! STORE	. ME (ADR)
	0555		SET IUMMY = ALR
	0560		IFM IUMMMY
	0565		SET ILUMMY $=\$ 100$
	0570		***
	0575		IFF \$FF-IUMMY
	0580		STA *ALR
	0585		***
	0590		IFF IUUMMY-\$100
	0595		STA ALIR
	0600		***
	0605		. ME
	0610	;	
	0615	! ! ! LOAI	. MD (ADR)
	0620		SET LUMMY=ALIR
	0625		IFM DUMMY
	0635		***
	0630		SET LUUMY $=\$ 100$
	0640		IFF \$FF-IUMMY
	0645		LIIA *ALIR
	0650		***
	0655		IFF LUMMY-\$100
	0660		LIIA ALIR
	0665		***
	0670		. ME
	0690		+ EC
	0695		, EA \$1F71
	0700		. 05
1F71- 4C 03 B0	0710	USEREXIT	JMF \$E003
	0950	SORT	+ IEE \$1F74
	0955	SORTLBLS	MW (LBL SCRN)
	0960	NEXTLELL	MW (SCRN SCRE)
1F88- AO O2	0965		LIUY $\# 2$
$1 F 8 A-B 1$ FC	0970	NEXTCHAR	LDA (SCRC), Y
$1 F 8 C-3003$	0975		BMI COMPSTRING
1F8E- C8	0980		INY
1F8F- 10 F9	0985		BNE NEXTCHAR
1F91-20 F3 1.F	0990	COMPSTRING	JSF ADRNEXT
1F94- AO 02	0995		L.LIY $\# 2$

1F96- B1	FE	1000		LIIA (SCFN), Y
1F98-F0	17	1005		BEQ USEREXIT
1F9A- B1	FC	1010	COMFCHAF	LIIA (SCRE), Y
1F9C- 51	FE	1015		EOR (SCRN), Y
1F9E- 30	OB	1020		BMI EOS
$1 \mathrm{FAO}-\mathrm{Bl}$	FE	1025		LIIA (SCRN), Y
$1 \mathrm{FA} 2-\mathrm{II} 1$	FC	1030		CMF (SCRC), Y
1FA4-90	1 B	1035		BCC XCHANGE
:1FA6- 10	116	1040		ENE NEXTLBL
IFAB- C8		1045		INY
1FA9- 10	EF	1050		BNE COMFCHAR
1 FAB - BI .	FE	1055	EOS	LHA (SCRN), Y
$1 \mathrm{FAO}-10$	$\bigcirc \mathrm{A}$	1060		EFL EOSC
1FAF- 29	7 F	1065		ANI \#\$7F
1FB1- D 1	FC	1070		CMF (SCRC), Y
1FB3-FO	OC	1075		EEQ XCHANGE
1FES - 90	OA	1080	HIEHLOW	ECC XCHANGE
1FE7- B0	C5	1085		ECS NEXTLEL
1FB9-09	80	1090	EOSC	ORA \ddagger \$80
$1 \mathrm{FBE}-\mathrm{D} 1$	FC	1095		CMF (SCRE), Y
IFBL-FO	BF	1100		BEQ NEXTLBL
$1 \mathrm{FBF}-110$	F4	1105		ENE HIGHLOW
		1110	XCHANGE	MT (SCRC RUF)
		1115		MT (SCRN SCRC)
LFDF- 20	F3 1F	1120		JSR ALRNEXT
		1125		MT (EUF SCRN)
LFF1- BO	81	1130		BCS SORTLBLS
		1135	;	
1FF3-98		1140	ALRNEXT	TYA
IFF4-38		1145		SEC
1FF5-65	FC	1150		ALIC *SCRC
1FF7-85	FE	1155		STA *SCRN
:LFF9- A5	FI	1160		LIIA *SCRC+1
$1 \mathrm{FFB}-69$	00	1165		AILC $\geqslant 0$
LFFD- 85	FF	1170		STA *SCRN+1
1FFF- 60		1175		RTS
		1180		
		1185		. EN

After the unsorted Label File is listed, enter ORUn SORT; theny after the Warm Start re-entry messase and prompt, enter labels, to set a listins of the alfhabetically sorted Label File.
$\begin{array}{lllllllll}\text { 1F70 } & 00 & 4 \mathrm{C} & 03 & \mathrm{BO} & \mathrm{ALI} & 04 & 01 & 85,36 \\ \text { IF78 } & \mathrm{FE} & \text { AII } & 05 & 01 & 85 & \mathrm{FF} & \text { AII } & \mathrm{FE}, 16\end{array}$
IF78 FE AII 050185 FF ALI FE, 16
1 1F80 0085 FC AI FF $0085 \mathrm{FI}, \mathrm{C} 5$
1 F 88 AO 02 B 1 FC 3003 CB IO, IF $\begin{array}{llllllll}\text { IF90 F9 } 20 & F 3 & 1 F & \text { AO } 02 & \mathrm{~B} 1 & \mathrm{FE}, 5 \mathrm{FE} \\ \text { 1F98 FO }\end{array}$ 1F98 FO 177 E1 F FC 51 FE 30 OR,59 1FAO B1 FE D1 FC 90 1B 10 116,26 IFBO $7 F$ DI FC FO OC 90 OA BO, 31 1FB8 C5 09 O1 FC FO AF BO, $\begin{array}{llllllll}1 F B 8 & C 5 & 09 & 80 & \text { D1 } & \mathrm{FC} & \mathrm{FO} & \mathrm{BF} \\ \mathrm{IO}, \mathrm{CE} \\ 1 \mathrm{FFCO} & \mathrm{F} 4 & \mathrm{AO} & 00 & \mathrm{~B} 1 & \mathrm{FC} & 91 & \mathrm{C} \\ 30,95\end{array}$ IFCB 03 C8 NO F7 CO $0290 \mathrm{F9}, 72$ $1 F D 0$ AO 00 E1 FE 91 FC 3003,81 $\begin{array}{lllllllll}1 F D O & \text { AO } & 00 & \text { B1 } & \text { FE } 91 & \text { FC } & 30 & 03,81 \\ \text { 1FD8 } & \text { C8 } & \text { no } & \text { F7 } & \text { CO } & 02 & 90 & \text { F9 } & 20,7 \mathrm{E}\end{array}$ 1 FEO F3 1F AO 00 E1 C8 $91 \mathrm{FE}, 35$
 $\begin{array}{lllllll}1 F F F \\ \text { IFF } & \text { FE A5 FL } 69 & 00 & 85 & \text { FF } 65,16\end{array}$ 5316

SOME GAMES (ANI MORE) FOR THE SYM-1 WITH KTM-2/80
Mans readers have askea, Game frosrams, flease? , nearly as mans have said, "No sames, thank sou!", I thirk we cari Flease both srouFs of towards the "no same" sroup, myself, I did find these farticular sames fascinatins. The story besins with my receivins a prosram listins, in BASIC, from Jack Gieryic, for fublication. Not wishiris to publish a \&rosram without testins it first, even thoush I know the author well from havins read mans of his fublished articles, I asked Jack if he would mind sendins me a cassette dump, in place of the listins. The thousht of spendins many hours keyiris in and debussins a EASIC listins is not my idea of a sreat time. Well, Jack sent six frosram fackases on cassette: three sames, two utilities, and a sraphics demonstratio packase (GIP-1). GUP-1 is fublished here.

All six require 4 K of KAM and a KTM-2/80 (no, the prosrams will not convert easily to the 40 columri KTM-2). Jack's skill with srafhics is impressive. Jack calls his froduct line JACK BUILT FROGRAMS. No. 1 is a one-person same, DEPTH CHARGE, which requires a three dimerisional searchy and presents a simulated sonar-type display. Nos, 2 and 3 are two-person sames. Tom Gettys would rather blay asainst the comisuter
but I rather like the idea of havins a human companion around to share the pleasures of the computer with. No. 2 is the well-known OTHELLO, which I had never flayed before, but learned ouickly enoush. No. 3 is an adaftion of the old TU Game Show CONCENTRATION, asain well implemented by Jack.

My favorite, because it was not a same reauiriris fersonal competitions but provides entertainmerit, was No. 4, the Grafhics Memonstration Fackase, which also includes an example of Computer Assisted Instruction (CAI). It asks you to eriter your name, then asks you to make a selection from a "menu" (see listins). "The Square Story" is a teachins prosram. "Football Field" is a drawins of a football field. The others are dynamic sraphic shows, What Martin Garoner has 5 aid about music (see elsewhere in this issue) applies equally well to art. $\begin{gathered}\text { phrase him, Art (with a capital A) and music, to be interestins, must }\end{gathered}$ consist of the proser mixture of the "expected" and the "uriexpected" The purelu random (incoherent) patterns are dull, as are the totally resular (coherent) ones. "Ink Spots" illustrate the principle well. The patterns are remiriscent of the Rorschach (Irik Spot) Fersonality Test, except that the bilateral symmetry is missins (must ask Jack to include that feature in an updated version).

No. 5, FLOT, is a multifle mathematical srafh orawins utilitg, and No. 6, BAR, is a very versatile Bar Chart (vertical bars) drawins utilits. If you have the KTM-2/80 you will enjoy these frosramsi if you have the mones to spend on luxury. items, like the KTM-2/a0, you prob ably don't have the time to key in lons prosrams. Fortunately, all of the JACK BUILT FROGRAMS are available on cassette. See the back pase of this issue for orderins information, A prelinary version of the
GRAPHICS DEMONSTRATION FACKAGE is printed here for your information. It is definitely convertible to 40 columns. See what I meant about keyins in a lons misic frosram?
$1 \mathrm{E}=27: \mathrm{S}=124: \mathrm{LIM}=2000 \div \mathrm{TH}=32:$ GOT0100
2 FRINTCHF\$(E) $+^{\circ}={ }^{\circ} ;:$ RETURN
3 PRINTCHR\$(E) ${ }^{*} \mathrm{R}^{-}$:RETURN
4 FRINTCHR' (E) + ${ }^{\circ} G^{\prime}$: RETURN
5 PRINTCHR $\$(E)+C H R \(114);:RETURN
6 PRINTCHR $\$(E)+C H R \(103);:RETURN
7 GOSUB2 \ddagger FRINTCHR $\$(Y+T H)+$ CHR' $\$(X+T H)+C H F \$(S): R E T U R N$
8 FORY=YSTOYS + YL: GOSUB 7 : NEXT: RETURN
9 FORX=XSTOXS +XL:GOSUB7:NEXT:RETURN

$11 X=\operatorname{INT}(77$ *RND(1)):Y=INT(23*RND(1)):GOSUB7:RETURN
1.2 GOSUB5 \ddagger GOSUB6: $S=124$:RETURN

13 GOSUB10:GOSUE3:G0SUB4: RETUFN
1.4 YL =INT (21*RNI (1)):IFYL_3THEN1

15 RETURN
16 GOSUB3:GOSUR4:GOSUR20:GOSUB25:RETURN
17 FORA $=1$ TOS000: NEXT:RETURN
18 FOFA $=1$ TO2000 19 NEXT : RETUFN
$19 \mathrm{~S}=63+$ INT $(64$ RRND (1$))$: KETURN

21 $X=X S: G O S U B 8: Y=Y S: G O S U E 9$:RETURN
$22 X=X S: G 0 S U B 8: Y=Y S+Y L: G 0 S U B 9:$ RE TURN
$23 Y=Y S: G 0 S U B 9: X=X S+X L$:GOSUR8. RETURN
25 GOSUB22:GOSUB23:GOSUB5:GOSURB:RETURN
$26 Y=Y S+Y L: F O R X=X S T O X S+X L: G O S U B 7: Y=Y-1$:NEXT:RETURN
$27 Y=Y S: F O R X=X S T O X S+X L: G O S U B 7: Y=Y+1 ; N E X T:$ RETURN
28 FRINTCHR $\$(Y+T H)+$ CHR $\$(X+T H)$;A:RETURN
100 GOSUB10:GOSUB2:FRINT" (*HI. I AM YOUR COMFUTER. I WOULII LIKE TO *
102 GOSUB2:PRINT") *KNOW WHO YOU ARE. FLEASE TYFE YOUR NAME"
104 GOSUB2:PRINT"**AND THEN HIT THE KEY MARKEL RETURN.

108 GOSUB2:PRINT'! \&HERE IS A LIST OF THINGS I CAN IIO FOR YOU ";N\$;"*
110 GOSUB2:FRINT*非\&TYPE THE NUMBER OF YOUR CHOICE ANII THEN HIT *

118 GOSUB2:PRINT"*-5 KANDOM":GOSUB2:FRINT"+-6 RANLOM GRAFHICS"*
120 GOSUB2:FRINT", -7 INUERSE RANDOM GRAFHICS"
122 GOSUB2:FRINT"--8 INK SFOTS":GOSUB2:FRINT* - -9 FANLIOM INK SFOTS"
124 GOSUB2:PRINT"/-10 FOOTBALL FIELLI"
135 FRINT" ": INPUT"YOUR CHOICE IS ";B;GOSUB10
137 IFB<1THEN 108
139 IFB >10 THEN 108
150 ONBGOSUB $1000,2000,900,200,700,800,800,400,400,500$
152 GOSUB17:G0SUB10:GOTO108
199 END
200 GOSUB3: GOSUB4:FORK=1T010:GOSUB14:XL=YL:GOSUB20:GOSUB19
$205 \mathrm{YL=}=1+I N T(Y L / 2) ; X L=Y L: G O S U B 26 ; Y S=Y S+Y L ; G O S U B 27 ; X S=X S+X L ; Y S=Y S-Y L$
205 YL=1YINTYLY
300 GOSUB14:XL=2*YL:GOSUB16:RETURN
400 GOSUB3:G0SUB4:G0SUB19:X=40:Y=12
402 FORA $=1 T 03: A(A-1)=A-2: B(A-1)=A-2: N E X$
410 FORK $=1 \mathrm{TO500}$; IFB=9THENGOSUB19
$412 \mathrm{~A}=\mathrm{INT}\left(3 * \mathrm{~F}^{2} \operatorname{NI}(1)\right):$ IFA $=3$ THEN412
$414 \mathrm{~L}=\mathrm{INT}(3 * \mathrm{RNL}(1)) \ddagger$ IFL=3THEN414
416 IFA(A)<>OTHEN440
$417 \operatorname{IFB}(\mathrm{~L})=$ OTHEN412
$440 \mathrm{X}=\mathrm{X}+\mathrm{A}(\mathrm{A})$: IF $\mathrm{X}<2$ THE $\mathrm{NX}=77$
442 IFX>77THENX=2
$444 \mathrm{Y}=\mathrm{Y}+\mathrm{B}(\mathrm{L}):$ IF $Y=-1$ THENY $=22$
446 IFY $=23$ THENY $=0$
448 GOSUB7: $X=X+A(A)$; GOSUB7 : NEXT \ddagger GOSURS: GOSUB6 \ddagger RETURN

512 NEXT:S=126:FORX=XSTOXS+3:GOSUB590:NEXT:FORX=XS+44TOXS $+47:$ GOSUB590
515 NEXT:S=113:Y=YS-1:FORX=XSTOXS+47:GOSUB7:NEXT:GOSUB5:S=103:X=XS-1
572 OOS
0
575 NEXT:A $=50:$ FORX $=X$ TOXS 42 STEF $4:$ GOSUB $2: A=A-10:$ GOSUE $28:$ NEXT:FETUFN
590 FORY $=$ YSTOYS + B: GOSUB 7 : NEXTY:RETURN
600 GOSUB14:XL=1+INT(75*RND(1)):GOSUB16ःRETUFN
600
700
GOSUB14:
GOSUB

$715 \mathrm{Y}=$ INT (23*RNH(1)):GOSUB7:NEXT:GOSUB5:GOSUB6:RETURN
800 GOSUB13:IFE=6THENGOSUB5

900 GOSUB3:GOSUB4:FORK=1TO10:GOSUB14:XL.:YL. :GOSUB20:GOSUB19
$905 \mathrm{~B}=\mathrm{INT}(5 * \mathrm{FND}(1))$: IFB=5THEN905
91.0 TFB 1 THEN905

915 ONEGOSUR21,22,23,24
920 ONEGOSUB26,27,27,26
925 NEXTK:GOSUB5:GOSUB6: RETURN
1000 GOSUB2:FRINT"**A SQUARE IS A SPECIAL CASE OF A FARALLELOGRAM. ALL
1010 GOSUB2:PRINT*\$*FOUR SIDES ARE EQUAL IN LENGTH ANI ALL FOUR ANGLES ARE "
1020 GOSUB2:PRINT"\%*RIGHT ANGLES (90 LIEGREES). I WILL NOW LIRAW AN EXAM PLE "

1030 GOSUB2:PRINT"\&*FOK YOU ";N\$ ${ }^{\prime}$ ", " \ddagger GOSUB17
$1040 \mathrm{~S}=124$:YL=12:XL=24:YS=8:XS=3:GOSUB3:GOSUE4:GOSUB25;GOSUB17
1043 GOSUB2:FRINT")ATHE SMALL SQUARE IN THE CORNER:
1044 GOSUB2:PRINT"*AMEANS THIS IS A FiIGHT ANGLE.*"GOSUB18
 1046 GOSUB5: GOSUB6:GOSUB17
1048 GOSUR2:FRINT",ALOOK WHERE THE ARROW IS FOINTING."

1052 GOSUB3:GOSUB2:FRINT") \& ${ }^{*}+$ CHF $\$(113)+$ CHR $\$(113)$
1053 GOSUB2:PRINT"* ${ }^{2}+$ CHR $\$(92)$:GOSUB2 \ddagger FRINT" ${ }^{\prime \prime}$ " + CHR $\$(92)$:GOSUB5:GOSUB6: GOSUB17
1054 GOSUB2:PRINT".AI WILL NOW DRAW SOME SQUARES FOR YOU, "iN\$;",
1056 G0SUB17:F0RL=1T010:G0SUB10:G0SUB19:G0SUB300:GOSUB18:NEXT
1060 FORL $=1$ T010:G0SUB19:G0SUB300:NEXT:FETURN
$2000 \mathrm{~S}=63+$ INT (64 *RNII(1)):F0FL=1T010:GOSUB600:NEXT:RETURN

OK

Here is what a fartial $k U N$ looks like on a printins terminal. The $"=$ " sish (which followed a nori-frintins "ESC") sisnals the KTM-2 that the followins two characters are absolute Y, X cursor coordiriates. The "HJ" seems to be a residue from the screen-clear oferation.
$=(* H I$. I AM YOUR COMFUTEF., I WOULI LIKE TO
=) *KNOW WHO YOU ARE. PLEASE TYFE YOUR NAME
=) *KNOW WHO YOU ARE. PLEASE TYFE YOUR
$=* * A N D$ THEN HIT THE: KEY MARKED RETURN.
$=-4$
$=$! \&HERE IS A LIST OF THINGS I CAN IIO FOR YOU LUX.
$=\$ \& T Y P E$ THE NUMBEF OF YOUR CHOICE AND THEN HIT
$=\$ \& T H E$ RETURN KEY. I'M WAITING FOR YOU, LUX.
$=\&-1$ THE SQUARE STORY
$=1-2$ RECTANGLES
$=1-3$ TRIANGLES
$\Rightarrow-4$ DIAMONLIS
$=*-5$ RANHIOM
$=+-6$ RANIOM GRAFHICS
$=-, 7$ INUERSE: RANHIOM GRAFHICS
:---8 INK SFOTS
$=-9$ RANIOM INK SFOTS
yOUR CHOICE IS
**A SQUARE IS A SFECIAL CASE OF A FARALLELOGRAM. ALL
$=\$ * F O U R$ SIDES ARE EQUUAL IN LENGTH ANII ALL FOUR ANGLES ARE $=\%$ RFOR YOU LUX.

MICRO TECHNOLOGY UNLIMITEII SOFTWARE FOR THE SYM-1
Micro Technolosy Unilimited has, for many years, marketed an 8 bit LiAC Board, K-1002, for music seneration, and the $8 K$ FAM Visible Memors Board, k-1008, for hish resolution srafhics. These are available from MTU, tosether with excellent manuals, K-1002-1L, and K-1008-1L, respectively, written for the KIM-1. The two manuals, tosether with the SYM-1 Users, Grour. The SYM-1 Susplement to the K-1002-11 Marual, the SYM-1 Users Group. The SYM-1 SuFplement to the K-1002-1L Manual, Sufplement to the $K-1008-1 \mathrm{~L}$ Manual, ${ }^{\text {Grafhic/Text }}$ Subroutines and Hemonstrations"y will be available lure 1980. In addition, the Users, Grous will have available sym-1 readable object code, on cassettes, for Grous will have available SYM-1 readable object code, on cassettes, for MTU has arransed for the Users, supfort the SYM-1 versions of their software products.
HARIWARE RECOMMENLIATION
Orie of the froblems with a "component" system like sym, as ofposed to a "Fackased" system like the Apfle II, is where to flus in all of the power cords. There's the power supfly, the monitor, the recorder fower supls, the scofe, the modem, the Fririter, the solderiris irori, etc. , Plopay disk system is temporarily (perhaps indefinitelu!) using its own pair of sower system is temporarily (perhars indefiritely!) usiris its own pair of power sufflies, I can't even besin to count the number of fower oscilloscope to completely "crash" the system whenever it (the scope) was turned on or off. Thus the scose had to be wurned on first, and left runinins as lons as the system was in use.

Both problems were solved with products of Electronic Specialists, Inc., 171 South Mair Street, Natick, MA 01760 (write for their catalos). Their Isolator ISO-2, at $\$ 55$, provides two sroups of three 3 -prons sockets, each srouF filter-isolated from the other, and from the fower 1.inet their ISO-1 (same price) provides only 3 sockets but these are isolated from each other. You car set either with a 15 A circuit breaker for $\$ 62$, or a circuit breaker and switch/filot lisht for $\$ 67$. Their ISO-3y more expensive, is similar to the ISO-1, but frovides heavier filterins, for more severe noise environments. Musassembly of power cords is now much neater, and thinss no lonser interact when wi.tched on or off.
WHITE ANI BROWN MUSIC
Martin Gardner, in the Mathematical Games section of Scientific American, Afril, 1978, has some iriterestins words to say about computer senerated music By this he means music actually "composed" bu the computer:

> "It is commonelace in musical criticism to sas that we enjoy sood music because it offers a mixture of order and
> surfrise. How could it be otherwise?"

He defines "white" music as beins completely random, i,e, complete surfrise, and "brown" music as beins a mixture of order and surprise. An example of complete order is the simple musical scale repeated over and over. Both white music and the scales are dull. He offers several examples of brown music, one of which is called $1 / f$ music. These sound surfrisinsly "sood". When I first read the article, I frosrammed the examples for my KIM. Unfortunately the listinss have been lost. Mr. Gardner describes the process for seneratins brown music so welly that you should have no trouble writins the frosram yourself, either in Assembly or BASIC. You will not need a llac ssstem, even the simplest timed loor, or VIA timer, square wave senerator will be adequate for the purpose. You should have much furl with this one!

SYM-FHYSIS 3-10
ay: Bill Gowans
254 Old Orchard Grove
Toronto, Onitario M5M2ES
(416) 488-3456

IESCRIFTION

This routine effectively quadruples the KTM-2/80 sraphics dersity by $\begin{aligned} & m a s p i n g ~ a ~ v i r t u a l ~\end{aligned} 8 \times 160$ screen onto the real 24×80 screen. This allows respectable sraphics cafability for most applications. The routirie was written to interface with the KTM-2/80 and FAS-1, however only minor chanses are needed for KTM-2/40 or Assembler initerface. In addition, the seneral technirue used can be afflied to other video terminals havins cafabilities similar to the KTM-2.

The auad denisity is achieved ay creating and mairitaining an internal memory mas of the KTM-2 screen. Each of the 1,920 (24×80) character cositions is considered as consisting of 4 sefarate elements (pixels). Thus we can have 16 possible combiriations of the 4 pixels. The KTM-2 character set contains srafhic characters for each of the 16 fixel there there are 4 pikels,we can assisn a 4-bit code witheach bit representins ararticilar picelthis gives us a series of 4-nit codes with a ranse oode to display the srarhic character required Setting or resettina ivel merelu involves turnins the approfiate bit on or off in the 4-bit code and usins the resultins value to access the niew sraphi character.

The use of a 4-bit code also allows us to compress the 1,920 character map into 960 bytes by combinins two 4-bit (Nybble) codes into one Eyte, This complicates the code slishtly but the resultant savins in memory table of pointers was created (RTAB) to allow direct indexins to the correct row. This in conjunction with the columin allow us to access the map butes without havins to perform multiply oferations. (Note-if you have a KTM-2/40, the RTAB entry increment can be chansed from +40 to +20 and the "BSS" followins the label "MAF:" can be reduced to 479)

One problem in usins the 16 sraphic characters for pixel display is that they can not all be displased in the same mode (some reauire normal mode while others reauire reverse mode), The solution to this was to allocate one bit in the fixel Mas Table (CHAR) entry to indicate the mode that the KTM-2 had to be in for proper display. The rishtmost bit was used for this purpose ($0=$ normal, $1=$ reverse) leavins the leftmost 7 bits to code the srashic character. An internal mode indicator (MONE) is used to kees track of the KTM-2's current mode ($0=$ normal, $-1=$ reverse). When the mode bit and mode indicator differ, the KTM-2 mode is chansed frior to displayins the character.
位 1241 butes for the KTM-2/80 version and 761 skin allows both plot and tris routines to used in a 4 K system with approximately 2500 bytes left for BAS-1 use.

FUNCTIONS

Four functions are provided by this routine:
CLEAR - This clears the KTM-2 screen and the internal screen mar. The mode indicator is reset to normal mode (zero).

SET - The referenced fixel will be turned 'ON' in the internal maf and the appropriate sraphic character displayed.

RESET - The referenced Fixel will be turned OFF in the internal mas and the appropriate sraphic character displayed.

TEST - The referenced fixel in the internal mar will be tested and a value returned representing its state ($0=$ "OFF", $1=$ "ON").

CLEAR" requires no earameters while the other three calls reabire that a Virtual kow ($0-47$) be fassed in the A-resister and a Virtual Columin ($0-159$ assed in the Y-resister (Note-for KTM-2/40 the Uirtual Columin can only be from 0-79). This would seem to be a problem as the BAS-1 "USR" furiction only allows one parameter to be fassed in the $A-Y$ resister fair cothers can be passed on the stack). We can slip two parameters fast AAS-1 for the price o one if we structure our call as follows:

USR (A, 256*R+C)

Where: $A=$ Address of Routine
$\mathrm{R}=\mathrm{Virtual}_{\text {ir }}$ Row $(0-47)$
$C=$ Virtual Column ($0-159$) $* *(0-79)$ for KTM-2/40**
Multiflyins by 256 effectively shifts the Virtual Row into the A-resiste while the Virtual Column remains in the Y-resister.
If the 4 entry point addresses (CLEAR,SET,TEST and RESET) are equated to the variables $C, S, T R$, and the Virtual Row/Colum to the variables
y and X then the 4 calls can be illustrated as follows:

SET - $\quad Q=\operatorname{USR}(S, 256 * Y+X)$
RESET - $\quad Q=\operatorname{USR}(R, 256 * Y+X)$
TEST - \quad Q $=$ USR(T,256*Y+X)
**Note-to use an Assembler interface,the "JMF BSRET" must be replaced with 'RTS'.

USAGE

- Prior to begininins a plot,the "CLEAR" function should be invoked and the KTM-2 placed in Graphics/Normal mode.
- Your prosram should not chanse the KTM-2 mode (Normal/Reverse) as it will cause unfredictable results on the plot.
- After plottins has been completed your prosram must reset the KTM-2 mode to whatever is required as the final state is unipredictable.

$\begin{array}{lll}48 \text {; *************** } \\ 49 \text { MAF: EQU * } \\ 50 & \text { ESS } & 959\end{array}$
50 ESS 959

2 ;**
3 ;* FIXEL CHARACTEF: MAF TABLE
55 CHAR: ERUU *

57 BYTE $\$ 93, \$ \mathrm{EC}, \$ \mathrm{C8}, \$ 94$, $\ddagger \mathrm{E} 9$, $\$ 96$, $\$ 98$, $\ddagger \mathrm{F9}$

77	CLEAF:	LIIA	\#\$0C	¢LOAII SCREEN CLEAR CHAF
78		JSR	SENI	;SENI IT OUT TO KTM-2
79		JSF	WFOFF	;TURN OFF WRITE FROTECT
80		LIIA	\#<MAF'	„SETUF THE
81		STA	ZWORK	; LOW AND
82		LIA	*>MAF	; HIGH ALILR
83		STA	ZWORK+1	; IN MONITOR
84		LIAA	\# \(
) MAFE	ANII THEN			
85		STA	\$A64A	CLEAR MAP
86		LIIA	*>MAF'E	AREA TO
87		STA	\$A64B	ALL ZEROS
88		LIIA	\#\$00	¢RESET MOLIE FLAG
89		STA	MOLE	; TO INIICATE NORMAL MONE
90		JSR	CLRM	\%USE MONITOR ROUTINE TO CLEAR
91		JMF	WF'ON	;TURN WRITE FROTECT BACK ON
92	RESET	LIDX	\$\$00	¢FLAG(0) = RESET PIXEL
93		BEQ	FLOT	gJumf TO MAIN FOUTINE
94	TEST	LIIX	\#\$80	;FLAG(-) = TEST FIXEL
95		BMI	PLOT	jJump to main routine
96	SET	LIXX	\#\$40	;FLAG(40) = SET PIXEL

1E2A:8E		19	97	FLOT:	STX	FLAG
1E2II:48			98		FHA	
1E2E:98			99		TYA	
1E2F:A2	00		100		LIIX	1900
1E31:4A			101		LSRA	
1E32:8I	EF	19	102		STA	COL
1E35:90	01		103		ECC	CEVEN
1E37:E8			104		INX	
1E38:4A			105	CEVEN:	LSRA	
1E39:8II	F2	19	106		STA	CINIX
1E3C:B0	04		107		BCS	FNIFL
1E3E:E8			108		INX	
1E3F:E8			109		INX	
1E40:E8			110		INX	
1E41:E8			111		INX	
1E42:68			112	FNIEL:	PLA	
1E43:4A			1.13		LSRA	
1E44:801	EE	19	114		STA	ROW
1E47:90	02		115		ECC	REUEN
1E49:E8			116		INX	
1E4A:E8			117		INX	
1E4E:0A			118	REVEN:	ASLA	
1E4C:A8			119		TAY	
1E4IIt B 9	FB	19	120		LIIA	RTAB, Y
1E50:85	EE		121		STA	RFTR
1E52: R 9	FC	19	122		LIIA	RTAE +1, Y
1E55:85	EF		123		STA	RF'TR+1
1E57:AC	F2	19	124		LIIY	CINIIX
1E5A:E1	EE		125		LIIA	(RPTR), Y
1E5C:2C	FO	19	126		EHT	FLAG
1ESF:10	OII		127		BFL	SETFX
1ES1:A0	00		128		LIIY	*\$00
1E63:3]	F3	19	129		ANI	MASK, \times
1E66:F0	01		130		BEC	FXOFF
1E68:C8			131		INY	
1E69:A9	00		132	FXOFF:	LIIA	\#\$00
1E6B:4C	4C	I11	133		JMP	ESRET
1E6E:1II	F3	19	134	SETPX:	ORA	MASK, X
1E71:70	03		135		BUS	RSTRB
1E73:51	F3	19	136		EOR	MASK, X
1E76:91	EE		137	RSTRE:	STA	(RFTR), Y
1E78:E0	04		138		CF'X	* $\$ 04$
1E7A: B0	04		139		BCS	LNIEL
1E7C:29	OF		140		ANI	\#\$0F
1E7E:90	04		141		BCC	GETCH
1E80:4A			142	LNIBL:	LSRA	
1E81: AA			143		LSRA	
1E82:4A			144		LSRA	
1E83:4A			145		LSRA	
1E84:AA			146	GETCH:	TAX	
1E85: BI	ER	1 I	147		LIIA	CHAR, X
1E88:4A			148		LSRA	
1E89:48			149		PHA	
1E8A: AII	F1	19	150		LIIA	MOILE
1E8I:30	06		151		EMI	MREU
1E8F:90	16		152		BCC	MNOK
1E91:A2	52		153		LIIX	*'R'
1E93: BO	04		154		BCS	MDCHG
1E95:80	10		155	MREV:	BCS	MDOK
1E97:A2	72		156		LIIX	*'r'

;STORE ACTION FLA
SAUE ROW TEMFORAFILY
MOVE COLUMN TO A-REG
IIIVIDE COLUMN EY 2
save true columín for latef
RRANCH IF COLUMN WAS EVEN
TITVITE COLUMN BY ? AGATN
SAVE MAF COLUMN INIIEX
;SAVE MAF COLUMN INDEX
; ELSE AIILI
; COLUMN
MASK INIEX
;RETRIEUE ROW
IIIUIDE ROW BY 2
SAUE AS TRUE ROOW
ERANCH IF FOW WAS EVEN
ELLSE EUMF MASK
INIEX BY 2
Multifly frue kow by 2 To USE AS ROW TABLE INDEX
GET ROW FOINTER
FROM ROW TABL
ANI STORE TN
FIIGE ZERO
RETFIEVE MAF COLUMN INIEX
GET SCREEN MAF BYTE
TEST ACTION FLAG
BFIANCH IF NOT "TEST"
CLEAR Y-REG FOR RETURN
TEST FIXEL WITH MASK.
BRANCH IF FIXEL OFR
SET RETURNED A TO ZERD
SETURN UALU A TO ZER
RETURN VALUE TO GA
FORCE PIXEL O
OTHERWISE TURIII IT RIGHT
OTHERWISE TUFN FIXEL "OFF.
CHECK NYBELE CHAP BYTE
;CHECK NYBBLE CHAR IS IN
;BFANCH IF IN LEFT NYBBLE
;IN RIGHT NYBELE- JUST MASK
;GO GET FIXEL CHARACTER
SHIFT MAF
BYTE TO GET
FIXEL INIEX
IN RIGHT HALF
TRANSFER FIXEL INDEX TO X
GET FIXEL CHAR + MOLIE BIT TRANSFER MOLE TO CARFY
SAVE CHARACTER
GET KTM-2 MOIE FLAG
ERANCH IF WE ARE IN REVERSE
BRANCH IF BOTH MONES NORMAL
;SETUP TO CHANGE TO REVERSE ;GO CHANGE MODE
BRANCH IF BOTH MONES REUERSE
SETUP TO CHANGE TO NORMAL

1E99:49	FF		1ち7	MIICHG:	EOR	\# \ddagger FF	jfLIF MONE FLAG
1E9E:8II	F1	19	158		STA	MOLIE	;STORE AS NEW KTM-2 MOLE
1E9E:A9	18		159		LIIA	* 1 18	; ESCAFE CHARACTER
1EAO:20	47	8A	160		JSF	SENI	; SENII TO KTM-2
1EA3:8A			161		TXA		; TRANSFER MOLIE CONTROL TO
1EA4:20	47	8A	162		JSF	SENI	; SENII TO KTM-2
1EA7 \ddagger A9	1 E		163	MIIOK:	LIIA	\#\$1E	; ESCAFE CHARACTER
1EA9:20	47	8A	164		JSR	SENI	;SENII TO KTM-2
1EAC:A9	3 I		165		LIIA	\#' = '	;ABSOLUTE CURSOR ALILRESSIN
1EAE:20	47	8A	166		JSF	SEND	; SENI TO KTM-2
1EB1: AI	EE	19	167		LIIA	ROW	;GET TRUE ROW ALIIRESS
1EE4:18			168		CLC		;AIII EIAS REQUIREI
1EE5:69	20		169		AIIC	* $\$ 20$; BY KTM-2
1EB7:20	47	8A	170		JSR	SENI	; SENII TO KTM-2
1EEA:AII	EF	19	171		LIIA	COL	;GET TRUE COLUMN
1EBII: 18			172		CLC		;AII EIAS RERUIFEII
1EBE:69	20		173		ALIC	\#\$20	; EY KTM-2
1EC0:20	47	8A	174		JSR	SENI	¢SENI TO KTM-2
1EC3:68			175		FLA		jRETRIEVE FIXEL CHARACTER
1EC4:4C	47	8A	176		JMF	SENI	;SENII TO KTM-2 ANII RETURN

			MODE	2	6641	19 F
		value	MREU	2	7829	$1 \mathrm{E95}$
name	size	fec he\%	FLOT	2	7722	1E2A
ESRET	2	53580 I114C	FXOFF	2	7785	1E69
CEVEN	2	77361 E 38	RESET	2	7712	1 E 20
CHAF	2	76591 LEE	REUEN	2	7755	1E4B
CINIX	2	$664219 F 2$	RNIEL	2	7746	$1 E 42$
CLEAR	2	7675 1LFFE	ROW	2	6638	19EE
CLEM	2	345958723	RFTR	1	238	OOEE
COL.	2	6639 19EF	RSTRB	2	7798	$1 E 76$
FLAG	2	$664019 F 0$	RTAB		6651	19FB
GETCH	2	$78121 \mathrm{E84}$	SEND	2	35399	8 A47
LNIEL	2	$78081 \mathrm{E80}$	SET	2	7720	1 E 28
MAF	2	6699 1A2E	SETFX	2	7790	1E6E
MAFE	2	76581 LIEA	TEST	2	7716	$1 E 24$
MASK	2	6643 19F3	WFOFF	2	35718	8E86
MIICHG	2	7833 1E99	WPON		35740	889C
MDIOK	2	7847 1EA7	ZWORK	1	254	OOFE

100 FEM: IIEMONSTRATION FROGFIAM FOR BILL GOWANS.
110 REM: HI-DENSITY FLOT ROUTINE FOR THE KTM-2/80
110 REM: (EdIENSI Slishtly bu Lux)
19F0 $00000001020408 \quad 10,1 F$
$19 F 8 \quad 20 \quad 40 \quad 80 \quad 2 \mathrm{E} \quad 1 \mathrm{~A} 531 \mathrm{~A} 7 \mathrm{~B}, 2 \mathrm{C}$
$19 F 82040802 \mathrm{E} \quad 1 \mathrm{~A} 531 \mathrm{~A} 7 \mathrm{~B}, 2 \mathrm{C}$ $1 \mathrm{AOO} 1 \mathrm{~A} A 31 \mathrm{~A} C E 1 \mathrm{~A} F 3$ 1A $1 \mathrm{~B}, 10$ $\begin{array}{lllllllll}\mathrm{A} 08 & 1 \mathrm{~B} & 43 & 1 \mathrm{~B} & 6 \mathrm{~B} & 1 \mathrm{~B} & 93 & 1 \mathrm{~B} & \mathrm{~EB}, 78\end{array}$ 1 A 10 1B E3 1B 0 OR 1C 33 1C $5 \mathrm{CB}, 62$

A20 in 03100000000000 HA
A28 $10 \mathrm{C} 31 \mathrm{IL} 0000000000, \mathrm{BA}$ OFBA

150 ESC $\$=$ CHF $\$(27)$
$160 X=2: Y=3: X 1=1: Y 1=1$
$170 \mathrm{Q}=\mathrm{USF}(\mathrm{C}, 0)$
180 FRINT ESC $\$+{ }^{\circ}{ }^{\circ}$
190 FOF $I=1$ T02066
210 IFX $1580 \mathrm{~K}<1$ THEN $\quad X 1=-X_{1}$
220 TF $\mathrm{Y}>460 \mathrm{RY}<1$ THENY $1=-\mathrm{Y} 1$
$230 \quad X=X+X 1: Y=Y+Y 1$
240 NEXT

260 FRINT ESC $\$+^{\prime}={ }^{\prime}+$ CHR $\$(32+21)+$ CHK $\$(32+0)$
270 ENI

A bug in the ramer relocating loalier?
We received the following letter from J. J. Sullivan, 19 Sylvester zeriod when we get SYM-FHYSIS reads for the frinters, and thousht that the question fosed was worth an immediate answer:

Dear Dr. Luxenberg,
I have discovered an interesting problem with the RAE-1. I solved it, so it is no worry but I have enough curiosity for six cats.
riginally I had intended to leave the relocating loader alone add depend on your relocate programme but changed my mind for two reasons. ne was the discovery that Relocate doesn't catch everything. For example, misses several adjustments in the Ultra-Renumber programme, two that you are warned about and one that you are not warned about---except possibly by indirection and hindight. The other reason was that I read your RAE Notes and when I cross-referenced them to the manual, particularly section 4.6 , paragraph five, I started going round in ircles.

The only solution was to punch up the relocater source code and start experimenting. Eventually I got it and understood what everyone was alking about. If only someone had said "Use OU instead of PA" it would

Anyway, I had the loader in memory and I had it as a relocatable tape so I set out to load it. I followed instructions religiously---and absolutely nothing happened. I tried everything, even to disassembling the programme and laboriously checking it, byte by byte, against the code in the manual. It seemed ridiculous to suspect the programme, ince it worked for Synertek and it worked for you, but there was nothing else left.

Eventually I zeroed in on line 3810 . Why the three byte offset? I spent a long time with the monitor programme but I still couldn't see the reason. In fact, as I saw it, that offset was a guarantee that the tape wouldn't move. finally, I changed the code to 20788 c and everything worked like a charm. I loaded the tape, relocated it and

I immediately duplicated and amended the source programme and stored it for future reference.

As you can see, I have no immediate problem except this bump of curiosity. Consequently, I will be intently watching future issues of RAE Notes and the newsletter to see if there is any reference to this matter, because I don't imagine I will be the only one with this problem.
What has me baffled is the fact that the programme worked for Synertek and worked for you. I don't see how it could

Yours faithfully,

Mear M̈r Sullivari
Our early versjon of the relocatins loader affears to be ineritical to the one published in the FAE-l Feference Mandal. at least in the area in Questiong and works with MON 1.1 ; it will not work with MON 1.0. Your fix will make the loader work with both MON 1.0 and MON 1.1.

Here is the explanation for both the "why" and the "why not". If you so directis to LOADT at line 3810 Fecorder 0 (write) will start. Of course if you have turned it off this is no froblem. Since you are not in FAE when sou use the loader, you will have to turn on Fecorder 1 (read) by hand. This is no problem either, since sou eniter with 6 0200, start the tare manuallyg and stor it when the ". afpears asaint we have never bothered to add on the relas for the read recorder, since the "s" wrompt on the sym tells us when to start the read recorder. Besides, one das soon we will be all disk!

The entry at LOALIT $+\$ 3$ skifs the turnon of Recorder 0 in MON 1.1 , but could set you lost in MON 1.0 (have never tried it, and have not checked out the code since mon 1.0 is obsolete). While the startins addresses everuwhere elsey thes even use different timers (6532 vs. 6522), "Historically speakins", the chanses were made to eliminate a kIM format read bus in MON, a JMF WAKMSTART bus in BAS-1, and the need to hit RST to abort an uniwanted LOAfir. Maris other chanses were included at the same time to very much eninarice the versatilits of the UIM (Versatile Interface Moritor).

If sou replace LOALIT+\$3 with LOALIT, as sou have done, note that much of the codins between lines 3720 and 3810 can be dropfed becbuse the instructions are refeated in JSF START, which is called by LOALIT.
Hope this satisfies sour curiosits. I enjoy usins the relocatins loader, and .CT; one day soon I hofe to have disk system equivalents for both of these, And yes, it is unforturiate, but trieg that the mocat obiect Soes code dump on tape, when sou are assemblins from tapes sou must use tor the second pass!

Ms major resret these dass is that 95% of my time on the SYM is spent processins words, rather than doins all of the work with sraphics, processins words, rather than doins all of the work with sraphics, my SYM and I were destined!

I always enjoy your letters.
Resards,
Luy
Continued from Fase 16
ILEES OO $0000 \mathrm{C1} 9997 \mathrm{~EB} 95,6 \mathrm{E}$ 1 DFO C9 BLI 9293 FC C8 $94 \mathrm{Eg}, 1 \mathrm{~A}$ 1DF 89698 F9 A9 OC 2047 8A, E7 1 EOO 20868 BE A9 2E 85 FE A9,18 $1 E 081 \mathrm{~A} 85 \mathrm{FF}$ A9 EA 81I 4A AG, C 6
 $\begin{array}{lllllllllll}1 E 18 & \text { F1 } & 19 & 20 & 23 & 87 & 4 C & 9 C & 8 E, 87\end{array}$ 1E20 A2 00 FO O6 A2 $80 \quad 30$ 02,73 1E28 A2 40 8E FO 1948 98 A2,bE $1 E 3000$ 4A 8 II EF $199001 . \mathrm{EB}, \mathrm{C} 6$
1E38 4A 8L F2 19 HO 04 E. 8 E8, 20
$1 E 40$ E8 E8 684 A 8II EE 1990,112 $1 E 4802$ E8 E8 OA A8 E9 FE 19,23 $1 E 5085$ EE B9 FC 19885 EF AC, 84 1E60 OL AO OO $31 \mathrm{~F}, 19$ FO 01,5 IE 68 C8 A9 00 4C 4 C II 111 II F3, 44 $1 E 701970 \quad 035 I I F 31991$ EE, B8 $1 E 78$ EO 04 BO 0429 OF $90 \quad 04,10$ 1E8O 4A 4A 4A 4A AA BCI EE 1II, B3 $1 E 88$ 4A 48 AD F1 $1.9300690, \mathrm{C} 2$ $\begin{array}{lllllllll}1 E 90 & 16 & A 2 & 52 & B O & 04 & \mathrm{BO} & 10 & \mathrm{~A} 2, \mathrm{E} 2\end{array}$ IE98 7249 FF BINF1 19 A9 1ByF7 1EAO 20 47 8A 8A 20 4/ 8A AYyOC 1EA8 1B 20478 A A9 3LI 2047.65 EBO BA AD EE 19 18 69 2020.8 IEB8 47 8A All EF 19186920,8
LECO $20 \quad 47$ 8A 68 4C 47 8A, 01
6601

SCOFE GRAFHICS ANI COMPUTER "GENERATEII" MUSIC
Here, combined, are a couple of riovelty demo prosrams, that have resided in our hish RAM, alons with our utility frosrams, for years. Thes have been written as subroutiries callable from MON, BAS, and RAE, and returi to the caller when the Terminal BREAK key is held down. The music prosram is based on T. C. Haver's more Music for the s502, BYTE, June 1978, The scose srafhics prosram is based on one siven by Roy Flacco in "Graphics Iriterface", which he calls "Starburst Graphics", in
 0. John Anderson' 5 "Serendifitous Circles", BYTE, Ausust, 1977. Inciclosely related

The orisinal articles fully describe how to chanse parameters to chanse the appearance of the display, or the sourid of the music. Our version of the erosrams initializes the startins values to frovide an inter estins mixture of the 'expected" and the "unexfected". Sorry there's no source code, but the arosrans are short, and the alsorithms are simple
The frosrams have been moved to low RAM for smaller SyM's, and will require two simple six-bit DAC'sy as shown in the sketch. The desisn is a modification of the one siven ir Chamberlin's music articlet the resistor values were chansed to fit values carried in stock by Radig shack. A second sketch shows an add-on to provide an eight-bit DAC. A simple, one transistor, or sinsle chip, amplifier of rearly ary type will provide the audio. The two LIAC's are connected to F'AO throush PAS and FBO throush FBS on the Afplication Connector the sketches are roush (flease forsive the quality); masbe one das SYM cari be trained to do my drawinss on pafer, as well as my tupins.

'STARBURST' SCOPE GRAFHICS					0230-	85	$\begin{aligned} & \text { EA } \\ & \text { FS } \end{aligned}$		STA LDA LSR	$\begin{aligned} & \text { EA } \\ & \text { FS } \\ & \text { A } \end{aligned}$
					0232-	A5				
					0234-	4A				
0200-	A9	F2	LIA	\#F2	0235-	85	F7		STA	F7
O202-	85	F5	STA	FS	0237-	49	FF		EOR	*FF
0204-	A9	8E	LIIA	\#8E	0239-	EA			NOF	
0206-	85	F6	STA	F6	023A-	EA			NOF'	
0208-	A9	3F	LIIA	\#3F	023B-	38			SEC	
O20A-	81	03 AO	STA	A003	023C-	69	00		ALIC	\$00
0201-	8 D	02 AO	STA	A002	023E-	85	E9		STA	E.9
0210-	A5	F6	LIIA	F6	0240-	AO	04		LIIY	+04
0212-	4A		L.Sk	A	0242-	A 6	F7		LIIX	F7
0213-	49	FE	EOR	\#FE	0244-	A5	F8		LIAA	F8
0215-	EA		NOF'		0246-	20	64	02	JSR	0264
0216-	EA		NOF		0249-	Ab	E9		LIIX	E9
0217-	38		SEC		0248-	AS	F8		LIIA	F8
0218-	65	F5	ALIC	F5	024D-	20	64	02	JSR	0264
021A-	EA		NOF*		0250-	A6	E9		LIIX	E9
0218-	EA		NOF		0252-	A5	EA		LIIA	EA
021C-	85	FS	STA	FS	0254-	20	64	02	JSF	0264
021E-	4A		L. Sk	A	0257-	A6	F7		LIIX	F7
021F-	18		CLC		0259-	A5	EA		LIIA	EA
0220-	65	F6	ALIC	F6	025B-	20	64	02	JSF	0264
0222-	EA		NOF		025E-	88			LIEY	
0223-	EA		NOP		025F-	10	E1		EF'L	0242
0224-	85	F6	STA	F6	0261-	4 C	7 C	02	JMF'	0275
0226-	4A		LSR	A	0264-	18			CLC	
0227-	85	F8	STA	F8	0265-	69	20		AIIC	\$20
0229-	49	FF	EOR	\#FF	0267-	81	00	AO	STA	A000
022B--	38		SEC		026A-	8 A			TXA	
022C-	69	00	ALIC	* 00	0268-	18			CLC	
022E-	EA		NOF'		026C-	69	20		ALC	*20
022F-	EA		NOF		026E-	81	01	AO	STA	A001

0271-	A9	20		LLIA	\#20
0273-	80	11	A4	STA	A41[1
0276-	2 C	04	A4	BIT	A404
0279-	10	FB		EFL	0276
O27B-	60			RTS	
027c-	20	86	83	JSR	8386
027F-	B0	02		ECS	0283
0281-	90	81		ECC	0210
0283--	60			RTS	

0200 A9 F2 85 F5 A9 8E 85 F6,C7 0208 A9 3F 8103 AO 8102 AO, OE 0218 GE FE EA FA 8E FE AA 18,50 022065 FG FA FA $85 \mathrm{FG} 4 \mathrm{~A} 85, \mathrm{C} 9$ 0228 F 849 FF 3869 OO EA EA, 7 FF | 0228 F8 49 FF 3869 OO EA EA,7E |
| :--- |
| 0230 |
| 85 |

 $\begin{array}{lllllll}0238 & \text { FF EA EA } & 38 & 69 & 00 & 85 & \text { E.9,78 } \\ 0240 & \text { AO } & \text { O4 A } & \text { A } & \text { AS F8 } & 20 & 64, \text { IIA }\end{array}$ $0248 \quad 02$ AG E9 AS F8 $20 \quad 64 \quad 02,8 \mathrm{E}$ 0250 AG E 9 AS EA 206402 AG, 18 ()258 F7 AS EA $20640288 \quad 10,7 \mathrm{C}$ 0260 E1 4C $7 \mathrm{C} \quad 0218 \quad 69 \quad 20 \quad 81,55$ 26800 AO 8 A $1869208 \mathrm{II} 01, \mathrm{AE}$ 0270 AO A9 $20 \quad 81151$ A4 $2 \mathrm{C} \quad 04,95$ $0278 \mathrm{~A} 410 \mathrm{FE} 60208683 \mathrm{EO}, 7 \mathrm{I}$ $\begin{gathered}0280 \\ 44 \mathrm{FC}\end{gathered} 02908 \mathrm{D} 60, \mathrm{FC}$

0284--	A9	08	LIA	\#08
0286-	85	EE	STA	EE
0288-	A9	OF	LIIA	* 0 F
028A-	85	EF	STA	EF
028C-	A9	OII	LIIA	* 01
028E-	85	F2	STA	F2
0290--	A9	3F	L.IAA	\#3F
0292-	81	03 AO	STA	A003
0295-	AO	00	LIY	\#00
0297-	98		TYA	
0298-	29	F0	ANII	*FO
029A-	4A		L.SF'	A
0298-	4A		LSR	A
929C-	4 A		L.SF	A
0291-	4A		L.SR	A
O29E-	85	Fo	STA	Fo
O2AO-	98		TYA	
02A1-	29	OF	AND	\# 0 F
02A3-	25	F0	ANI	Fo
02A5-	65	F0	ALIC	FO
02A7-	25	EF	ANII	EF
02A9-	85	FO	STA	Fo
O2AB-	A2	00	LIIX	\#00
O2AD-	A5	F2	LDA	F2
O2AF-	85	F4	STA	F 4
O2B1-	BL	$00 \quad 03$	LIA	0300,
02B4-	81	01 AO	STA	A001
O2B7-	8A		TXA	
02B8-	18		CL.C	
0289-	65	Fo	ALIC	Fo
O2, BB^{-}	AA		TAX	
028C-	C6	Fi	DEC	F1
O2BE-	DO	06	ENE	02.6

02C0--	C6	F4	[IE: C	F4
02C2--	DO	ED	ENE	02B1
02C4--	FO	04	BEQ	02CA
02C6-	EA		NOF	
02C7-	18		CL.C	
02C8-	90	E. 7	BCC	02B1
02CA-	C8		INY	
O2CB-	C6	F3	IEC	F3
O2CD-	00	C8	BNE	0297
O2CF-	A5	EE	LIIA	EE
0251-	85	F3	STA	F3
02113-	A9	02	LIIA	*02
0205-	85	Fo	STA	FO
02117-	20	8683	JSFi	8386
0211A-	90	CF	BCC	O2AB
O2nc-	60		FTS	

0284 A9 0885 EE A9 OF $85 \mathrm{EF}, 50$ 0284 A9 0885 EE A9 OF $85 \mathrm{EF}, 50$ $\begin{array}{llllll}028 C & A 9 & 01 & 85 & \text { F2 A9 3F 811 03,F5 } \\ 0294 & \text { AO AO } 00 & 98 & 29 & \text { FO } 4 A & 4 A, 7 A\end{array}$ 029 C 4 A 4 A 85 FO 9829 OF 25,78 $02 A 4$ FO 65 FO 25 EF 85 FO A2,E8 O2AC 00 AS F2 $85 \mathrm{F4} \mathrm{FD} 00 \mathrm{OJ,BR}$ $02 \mathrm{B4} 8 \mathrm{II} 01$ AO 8 A 1865 FO AA, 87 O2BC C6 F1 LOO O6 C6 F4 DO ELI,8B 02C.4 FO 04 EA 1890 E7 C8 C6,86 O2CC F3 DO C8 A5 EE 85 F3 A9,C5 021140285 FO $20868390 \mathrm{CF}, \mathrm{C}$ 02 DC 60,24

3124

HEX DUMF OF "VOICE: TABLE "MUSIL GENERATOR.

$\begin{array}{lllllllll}3 & 300 & 32 & 34 & 35 & 36 & 36 & 37 & 38 \\ 39 & 39\end{array}$ 030839 3A 3A 3E 3E 3B 3C 3H,86 0310 3C 3C 3C 3C 3C 3C 3C 3C,66 0318 3C 3C 3C $3 \mathrm{~B} \quad 3 \mathrm{~B} \quad 3 \mathrm{~B} \quad 3 \mathrm{~B} \quad 3 \mathrm{~B}, 4$ $\begin{array}{llllllll}0320 & 3 A & 3 A & 3 A & 3 A & 3 A & 3 A & 39 \\ 032 & 39,0 F \\ 039 & 39 & 39 & 39 & 39 & 39 & 39 & 39,117\end{array}$ $\begin{array}{llllllllll}0328 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39,117\end{array}$ 03303 A 3 A 3A 3A 3A 3E 3E 3B, AA $\begin{array}{llllll}0338 & 3 \mathrm{~B} & 3 \mathrm{C} & 3 \mathrm{C} & 3 \mathrm{C} & 3 \mathrm{D} \\ 3 \mathrm{LI} & 3 \mathrm{H} & 3 \mathrm{D}, 8 \mathrm{II} \\ 0340 & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{~F} \\ 3 \mathrm{~F} & 3 \mathrm{~F} & 3 \mathrm{~F}, 81\end{array}$ $\begin{array}{lllllll}0340 & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{~F} & 3 \mathrm{~F} & 3 \mathrm{~F} \\ 3 \mathrm{~F}, 81 \\ 0348 & 3 \mathrm{~F} \\ 3 \mathrm{~F} & 3 \mathrm{~F}, 79\end{array}$ $\begin{array}{lllllll}0348 & 3 \mathrm{~F} \\ 3 \mathrm{~F} & 3 \mathrm{~F}, 79 \\ 0350 & 3 \mathrm{E} & 3 \mathrm{E} & 3 \mathrm{E} & 31 & 31 & 3 \mathrm{C} \\ 3 \mathrm{E} & 3 \mathrm{~B}, 60\end{array}$ $\begin{array}{lllllllll}0350 & \text { UE } & \text { 3E } & 3 E & 3 \mathrm{LI} & 3 \mathrm{LI} & 3 \mathrm{C} & 3 \mathrm{E} & 3 \mathrm{~B}, 62 \\ 0358 & 3 \mathrm{E} & 3 \mathrm{~A} & 39 & 38 & 38 & 37 & 36 & 35,22\end{array}$ $\begin{array}{lllllllll}0358 & 3 \mathrm{E} & 3 \mathrm{~A} & 39 & 38 & 38 & 37 & 36 & 35,22 \\ 0360 & 36 & 33 & 32 & 31 & 32 & 2 \mathrm{~F} & 2 \mathrm{E} & 2 \mathrm{II}, \mathrm{AA}\end{array}$ $\begin{array}{llllllll}0368 & 2 \mathrm{E} & 2 \mathrm{~B} & 2 \mathrm{~A} & 29 & 2 \mathrm{~A} & 27 & 26 \\ 25 & 25, F 2\end{array}$ $\begin{array}{lllllllll}0368 & 2 \mathrm{E} & 2 \mathrm{~B} & 2 \mathrm{~A} & 29 & 2 \mathrm{~A} & 27 & 26 & 25, F 2 \\ 0370 & 24 & 23 & 22 & 21 & 21 & 20 & 1 \mathrm{~F} & 1 \mathrm{~F}, \mathrm{FB}\end{array}$ $\begin{array}{lllllllll}0370 & 24 & 23 & 22 & 21 & 21 & 20 & 1 F & 1 F, F E \\ 0378 & 1 E & 1 E & 1 D & 1 \mathrm{II} & 1 \mathrm{~F} & 1 \mathrm{I} & 1 \mathrm{E} & 1 \mathrm{C}, \mathrm{E}\end{array}$ 0380 IC IC 1D 1 D ID 1 D 1I IE, CE $\begin{array}{lllllllll}0380 & 1 \mathrm{C} & 1 \mathrm{C} & 1 \mathrm{D} & 1 \mathrm{D} & 1 \mathrm{D} & 1 \mathrm{D} & 1 \mathrm{I} & 1 \mathrm{E}, \mathrm{CE} \\ 0388 & 1 \mathrm{E} & 1 \mathrm{~F} & \text { IF } & 20 & 20 & 21 & 21 & 22, \mathrm{CE}\end{array}$ $\begin{array}{lllllllll}0388 & 1 E & 1 F & 1 F & 20 & 20 & 21 & 21 & 22, \mathrm{CE} \\ 0390 & 23 & 23 & 24 & 24 & 25 & 26 & 26 & 27, F 4\end{array}$ $\begin{array}{lllllll}0398 & 28 & 28 & 29 & 29 & 29 & 2 A \\ 2 A & 2 B, 3 E\end{array}$ | $03 A O$ | 2 B | 2 B | 2 B | 2 B | 2 B | 2 A | 2 A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \mathrm{~A}, 95$ | | | | | | |
| 03 AB | 2 A | 2 A | 29 | 29 | 28 | 27 | 27 |
| 06,17 | | | | | | | | $\begin{array}{lllllllll}0 \text { OAB } & 2 A & 2 A & 29 & 29 & 28 & 27 & 27 & 26,117 \\ 03 B O & 25 & 24 & 23 & 22 & 21 & 20 & 1 F & 1 \text { II, E2 }\end{array}$ $\begin{array}{lllllllll}03 \mathrm{~B} & 1 \mathrm{C} & 1 \mathrm{~B} & 19 & 18 & 17 & 15 & 14 & 13,9 \mathrm{I}\end{array}$ O3CO 1110 OF OLI OD OB 09 08,03 $\begin{array}{lllllllll}03 C 8 & 07 & 06 & 05 & 04 & 03 & 03 & 03 & 01,23\end{array}$ $\begin{array}{lllllllll}03 \mathrm{n} 0 & 01 & 00 & 00 & 00 & 00 & 00 & 01 & 00,25\end{array}$ $\begin{array}{lllllllll}03 \mathrm{DE} & 03 & 00 & 01 & 01 & 01 & 02 & 03 & 04,34\end{array}$ O3E 07 O6 07 O8 O9 OR OC O O $1,7 \mathrm{II}$ $\begin{array}{lllllllll}03 E 8 & O F & 10 & 12 & 13 & 15 & 16 & 18 & 1 \mathrm{~A}, 1 \mathrm{E}\end{array}$ $\begin{array}{lllllllll}03 F 0 & 1 B & 10 & 1 F & 20 & 23 & 23 & 25 & 27,27\end{array}$ 278 E

SYM-FHYSIS $3-20$

COMFUTER MUSIC

ne of the most helfful articles available on computer plased (riot computer composed) music is Hal Chamberlir's 'A Samplins of Techriques for
Computer Ferformance of Music", BYTE, September 1977. This cclassical Computer Ferformance of Music", BYTE, September 1977. This classical article has been repririted in The BYTE Book of Computer Music, available at many computer stores, and will frove to be sour best startiris foirit. Next, read hal's updatiris article on Advanced keal-Time Music Sunthesis advanced techniques, at the West Coast Computer Faire in March, and were much impressed.

In the orisinal article, Mr. Chamberlin sives 6502 subroutines for tone seneration, and shows a simple one-transistor amplifier you can hans onto any output port, loops or the pair of timers in one of the UIA's to senerate any desired tone for any desired duration. We recommend that you try hoth methods. With either of these ararozches the sound timbre is limited to what you can set by chansins the duty-cscle of the square wave.

For a richer rarse of timbre, Hal (and we) recommend the DAC (disital-analos converter) approach. The article sives all circuit details necessary to build-your-own, so we will not reaeat the details here, You can also use any commercially available u/A chip. We Mr. Chamberlin's commans, Micro Technoloss Unlimited (MTU). It iniludes its own audio amplifier, and also includes a sharp cut-off low-pass filter, necessary to eliminate the "aliasing" distortion introduced by samplins a wave-form table at too hish a rate. This distortion is particularly annosins on the hisher frequency notes. A copy of the orisinal article is supplied with the board, as is a KIM emonstration tape. Sirice the KIM tape is imcompatible with SYM (Fases ero and one are included), we have made arransemerits with miv to
 risett for the SYM We will provide on Aganced Music Sof

We have been usins the Advanced Music Software fackase for nearly two sears. It contains a Fourier syrithesis subroutine for seneratins wave shafes, the NOTRAN (NOte TRANSlator) Compiler, the NOTRAN Interfreter, and a demonstration NOTRAN "Score". The SYM-1 version has beent reorsanizer to eliminate froblems with fases zero and one read-in, and is started with an . E instead a . G, to initialize the fase zero data+ Whenever visitors ask about our SYM, 'But what is it sood for?', they are most impressed with SYM'S rendition of "The Star Spansled Banner', "Exodus", the NOTRAN score and, at Christmas time, "Deck. The Halls". Onis the NOTRAN Compiler portion of the Advanced Music Software packase requires a terminal, but because the infut/outfut fortion of the frosram is written as a "patch", you may write your own, to make use of the hex pad and sesment displays.

MUSIC FOR THE SYMFLE SYM
You can flay some iriterestins music on the completely "unimproved" SYM-1. The only added "hardware" you will need, and you can borrow" that, is a "cheafie" AM radio tuned to a clear spot on the dial, and wrked near the SYM. I have a radio sittins near my floppy disk system, and the rhythm effects durins a lons disk-to-disk cofy helfs to fass the radio tupe earmhone throush a one transistor buffer. Use one of the four available transistor buffers on the SYM itself. These mas be rewired as desired, and to or from any I/0 firi. If sour cassette recorder permits monitorins durins recordins, you may use it as your audio outfut device. And, now, about software......

MORE: ON JACK BROWN'S THREE BASIC ENHANCEMENTS
Jack. Brown is now usinis RAE-1 inistead of the very sood Microware Assembler he adapted from his KIM-1 sustem. He has also replaced his Older termininal with a KTM-2/80, and he will be settins a copy of the
GYM WORD FROCESSOR (SWP-1).

We are declarins his orisinal articles 'out-of-print" (we Xeroxed cories of the orisinalsy as the orders came in, and could still make additional second edition includes 316 fase manual, and seconio editiono the source code in RAF format, which is heavilly ammerited. The dull of the code will require. CT. We think that we will also include an abbreviated source code, with the orisinal line numbers, but stripped of comments and remarks, so that it can be assembled in a sinsle pass on 16 K SYM, if fossible. The new fackase will be available 1 June 1980.

We keep careful records on what each individual subscriber buss from the Jser's Group, so we can send them errata sheets and updates. To keep faith with those who furchased any of the orisinal three Brown articles we will consider the second edition to be in the riature of an urdate and allow full credit for frevious purchases to be afplied asairist the cost of the second edition.

HIGH RESSOLUTION GRAFHICS

As you have seen in Eill Gowaris' article, ary terminal with cursor control can be used as a plotter", with resolution up to the number of cursor fositions available. If, in addition, the terminal, like eithe the KTM-2 or the KTM-2/80, frovides a set of srashics symbols, the resolution may be doubled

Self-contained systems, e.s., Fet and Aprle, do not communicate with heir built-in CRT screens over a serial oata line, Rather, a portion of memors is "mafped" onto the screen. The memory is treated by the 6502 as ordinary memory; the 6502 need not concern itself (rio software is reauired) with settins the foints on the screen.

If you wish hish resolution srafhics, like the Afples' 280×192, you will need an, 8 K memory board with video cafability. There are a number of such boards available; the one to set depends mainly on the expansion bus structure, and sustem fackase approach you select. We like MTU's ackase approach (it took us over two years to make up our minds!), so and took off a few hours from , We have had it less than a week, Checkerboard", "Swirl", and "life" Freparins this issue to set Random of 320×200 it will permit a text diselay of 22 lines of 53 characters This is better than the KTM-2, but I will still want the -2/80 for word want the $-2 / 80$ for word

The Visible Memors and a simple QWERTY keshoard can be used together in Elace of a serial terminal. Software (for KIM-1) is frovided. Nelson arar who played a larse role in desisnins SUFERMON, has sent me a oortion of his SYM version of the MTU software, to help us in our
 because of all of the utility subroutines in SUFERMON!

Note that kill Gowaris called his srafincs with a sinsle parameter USR unction, combinins Y and X into one farameter. The visible Memors will need a two parameter USF function, since $320>255$. A far better afroachy however, is to fatch a full set of Grarhics Commands to BAS. We will be workins on this ourselves, and will serve as a clearins house" for information on Visible Memory Software.

Mans SYMmers use EASIC as their first lansuase, and do their tex processins in BASIC, rather than with RAE. For the occasional short machine lansuase utilities thes write to suffort BASIC, the 2KSA is a natural. Here is a portion of a letter from Bruce Thompsor, Afflied Fhssics, Cornell University, Ithaca, NY 14853, and a copy of the frosram he mentionsy written in 2 KSA format. Speakins of 2 KSA , we will shortly be mailins out ari update sheet.

Enclosed is a short prosram called by BASIC's USF to dump or load specific memory iocations, e.s.if you POKE'd a data file into some unused memory, you can dump it under prosram controj; or you can brins in successive data files to be used by BASIC. On load the error code is returned.

Easic USR Module
LSDATA - To load or save specific menloty locatzons under prosram control.

Called b y $X=$ USR(address,flas/file,start, end)
where
address is that of the module \quad flag/file has a zero in the first byte for load
anythins else in the first byte for save
has the file no. in the second byte
start is the stare
of the data
X will be zero for no error

$$
\begin{array}{ll}
47 .=\$ 2 F & \text { no EOF } \\
255 .=\$ F F & \text { framing error } \\
204 .=\$ E C & \text { checksum error }
\end{array}
$$

 will load the next file on the tape into locations \$OCOO to \$ODFF inclusive and indicate a read error by the value of x, prouided the module is located at \$OEOU.

INEXFENSIUE II/A CONUERTER

 SEE CORRECTION IN ISSUE 4hif is a 4050. Fin 1 is +5 U . Fin 8 Ground. Fins 13 nod 16 , N.C. R is 220
rou will reed one for music, two for scope sraphics. The most isnificant bits section is optional, but you may want it for music applications.
 A common control structure is the implemeritation of a computed
Goro or GOSuB. It is not uriusual for the flow of control within a prosram to depend on data enitered by a user, as in ani editor or interactive same prosram, or ori periodic sampled infuts such as those in real-time control systems.

Here are two methods of implemeritins an indexed indirect JMF or JSR on a 6502-based machine. The first method, called "vectorins", is used extensively by the SYM monitor and is one reason the SYM is containins a hex 4 C (JMF). After the tarset address has been computed or looked ur it is placed in the next 2 butes of the vector A MF or JSF to the vector causes control to pass to the selected A JMP or JSk to the vector causes conitrol to fass to the selected

The second method, however, is the more effective and concinimate l.et's sufrose we wish to call routine X, and that the address table is structured as 2 rows: TEL.LO containins the low-order bstes and TEL. HI the hish-order butes. Consider the followins routine:

CALL. X

LIIA	TEL. HI, X	; GET	ADIDRESS	x,	HIG	EYtE
FHA		; AND	PUSH IT	T0	THE	STACK
LDA	TEL. L.O,X	; GET	ALDRESS	X,	L.OW	BYTE
FHA		; ANII	FUSH IT	0	THE	STACK
RTS		; GO T	O ROUTIN	E	X	

By doins a JMF or JSR to CALL, X ar, indexed indirect JMF or JSR will be effected to the x th routine. One point to be observed here 15 that the execution of a kis instruction pors the stack ind the table must be pre less than their actual value. table must be one less than their actual value

SYM-FHYSIS 3-24

A TAPE OFERATING SYSTEM FOR SYM

Frank Winters, School of Marketins, University of New South Wales, F, 0. Box 1, Kensinston, Ssdnes, Australia 2033, sent us a orief note, and an unreadable" tafe a few weeks aso. The tafe sourided rather hish Burow, Kapuzinerstr. 2, II-8000 Muenchen 2, West Germans, who explained how he only sot perfect cassette eerformance by lowerins C 16 to to 0.037 uFd, but could now read cassettes written at 5600 Eaud. I tried Frarik's tapes asain at 2800 Baud, and they read beautifully!

The prosram Frank sent was a "teaser". I wrote for more info and he sent a mew cassette with source code, and some handwritten notes, describing his Tafe oferatins System. He calls it TOF'S, I call it rofsy, because like Torsy in "Unicle Tom's Cabin", it seems to have just arown. He has abded solenoids to his recorders, for start, stof, fast forward and rewind, under computer control. He formats the tapes, thes contain their own index data, etc., just like a disk system. The source calls out some external addresses by hex values, so I can't relocate it too easily. Will tell sou more about it next issue.

Frank sent alons a lons voice recordins tellins me about his work and other interests; I still owe him a fersonal answer. Frank would like to hear from other hams on 20 meters. His call is UK2RLF

FIX FOR THE GUG IN MOSER'S FAIILLE GAME
Kiri-Mins Kwok, 22 Tuns Choi St., loth Floor, Flat A, Monskok, Hons Konis, offers the followins fix for the bus mentioned in the listins of the same:

000 LN $=23$
1260 FRINT CHR $\$(64$
1270 NEXT: F'RINT CHR\$(27)+CHR\$(103)
$1335 \mathrm{AA}=\operatorname{USR}(4096+132,0)$
. 770 AA=USK (AA*256): FRINT CHF\$(B)
SOFTWARE RECOMMENTIATION
Jeff Holtzman has sent us freview cofies of several very useful utility prackases for SYM-1, both on cassette and in EFROM. We have tested the cassette versions (no extra From sockets get?) and have found them very well desisned, indeed. He is offerins a sackase of SUFERMON Extensions which includes an interactive trace/debus feature, SYM-BUG, and the followins new commands:

CMD PAR.NR DESCRIPTION

0-2 Memory dumped as ASCII

0-1 Sets/deletes BRK instruction
Prints user flags as binary
Finds user string (hex and/or ASCII)
Performs 16 bit Boolean algebra - AND, OR, EOR
Dumps stack with checksum
driver (see note 1)
Program relocater - adjusts abs. and rel addresses
Enter interactive trace mod
0-2 Disassembler (see note 2)
Calculates 16 bit check sum to sys. ram loc. JUMP6
SYM-BUG, and the Command Extensions, are available in object code on cassette for $\$ 16 y$ and iri 2716 EFROM for $\$ 50$, includiris a User's Mariual. source code listins is available for $\$ 10$. Cassette versions are assembled at $\$ 0200$ or $\$ 3800$. EFROM version is assembled at $\$ F 000$. Custom assembly at other locations is an additional $\$ 2$. Overseas add $\$ 2$ for Air Mail Fostase. Flease order direct from Jeff Holtzman, 6820 Delmar \#203, St. Louisy M0 63130.

SYM-FHYSIS ≥ 25

MISCELLLANEOUS NOTES

Our HIEE, Inc., disk system is workins Ruite well, thark sou. Orily one vers minor bus that we have found; in the warm start of fous after re set, it "stutters" once, then continues froferly. Lanns Maude, of Ad Vanced Computer Froducts, 1310 Edinser, Sarita Ana, CA 92705, has a copy of our SYM/FODS System lisk, and will shortly have his own SYM-1. oferatins with the HDE Ilisk. Ssstem. Incidentally, Advanced Computer roducts is the first computer store to sell SYM-FHYSIS over the counter Thes issue a very informative catalosy if sou write for one tell em "SYM-FHYSIS sent me".

Plans for interfacins the MC 6847/AMI 68047 ULG alfhasramhics chif to SYM, at a cost of less than $\$ 60$, are now available from Marc Aasenas. Flans include a schematic, wirins check listy farts list, and driver software source code listinss. Frice in U.s. Funds is $\$ 10.00$ in the W.5." $\$ 11.00$ in Canada, and $\$ 15.00$ elsewhere. Send orders to Mar asinas, 1674 East M-36, Finckres, Mich. 4

Our SYM now speaks to us, throush Iave Kemp's SF-1 Speech Surithesizet Triterface to the Texas Instruments' "Speak. \& Spell" (tm) (see Fase 1-21). It's furi to use it with, v, to helf verifs a lons object code entrs. SYM now speaks onils "Hex", but the SF-1 Marual explains how to extend its vocabulary. If SYM can sfeak and flay music, surely I should ae able to teach it to sins! Would ans other users of the SF-1 like to swar software?

One of my associates, "Skip" Frisbee, lent me his home-built, Gerieral lristrunents AY-3-8910 chif based, computer controlled, sound seneration system. The parts cost under $\$ 50$, and it has real foteritial for music loftare soon as return his sustem to him!

Here are some tips for besimmers only, others may skif: After you have added the indispensable fower sufply, and the convenient cassette recordery start readins Lance Leventhal's "6502 Assembly Lansuase Froexaminins (see pase 2-27). Next you will warit on-board memory after addins a terminal, your finances are temforarily strained, and you need some low-cost software to exercise your terminal, consider either Tins BASTC, or the 2 KSA , dependins on your specific interests or berilications. By this time, you are no lonser a besininer, ario will the want either BAS-1 or RAE-1, or both, and an additional 4 K of on-boar memors usins the Blalock board. You misht want to add the MTU LIAC described in this issue, even before the terminal, to sive sou some interfacins experience. In the next issue we will describe memors exansion afproaches from which you can select, when you are ready to so "all the was".

Sorry that the mail comes in so fast that we have an ever increasins Queue. Have tried to answer all "crisis" mailj other letters must wait. roblen solved rober Had A TEFMINAL. TIF
To put your terminal on "LOCAL." if you warit to "doodle' with the KTM-2 while in MON, or if you warit to frint date, time, title, remarks, etc, on your TTY, or other prinitins terminal, use Control 0. After doodins or frintins, return your terminal to "LINE" with another Control o. riss feature is not-too-well explained in section 9.7 of the SYM Feference Manual.

SHOFFING LIST OF ITEMS AVAILABLE FROM SYM-1 USERS' GROUF
All prices siven below are now obsolete. Flease use prices
CAE' MOSER'S SYM WORI FROCESSOF (SWF'-1) :
CARL Moser s sMm Worn Rounce in (swr-1):
FULLY CNMMENETE STH EXAMFUES ASSETTE. THE MANUAL IS

FFICE $\$ 35.00$, FIRST CLASS/AIR MAIL WORLII WITIE.
JACK GIERYIC'S "JACK-EUILT FROGRAMS":
ON CASSETTE, WITH INSTRUCTION SHEET,

1. DEF'TH CHARGE
2. OTHELLO
3. CONCENTRATION
4. GRAF'HICS IIEMONSTRATION FACKAGE
5. FLOT
6. BAR GRAF'H

FRICE $\$ 6.00$ FOR ANY ONE, $\$ 5.50$ EACH FER ANY AIIIITIONAL FROGRAM. ALL SIX FOR $\$ 30.00$, FIRST CLASS/AIF MAIL WORLI WIIIE.
JACK BROWN'S BASIC ENHANCEMENTS:
SECONI EIIITION, SOURCE COLE ON CASSETTE IN RAE FORMAT,
WITH SIXTEEN FAGE MANUAL, THE ORIGINAL ELIITION, AS IIESCRIBEI
IN SYM-FHYSIS ISSUE 12 , IS NOW OUT-OF-FRINT. FURCHASERS O
THE ORIGINAL EDITION WILL RECEIVE FUL CREDIT TOWARIIS THE
PURCHASE OF THE SECONI ELITION.
WILL BE FROUIDEII
PRICE $\$ 35,00$, FIRST CLASS/AIF MAIL WORLII WIIE,
MICRO TECHNOLOGY UNLIMITEEI PROIUCTS (SYM UERSIONS ONLY):
IAC MUSIC EOARD WITH HARIWARE MANUAL ANI BYTE ARTICLE FEFRINT.
CASSETTE WITH OBJECT CODE AND THREE SONGS IS SUFF'LIEII.
FRICES, FIRST CLASS/AIF MAIL $\$ 51.00$ US/CANALIA, $\$ 52.00$ EUROFE
$\$ 53.00$ ASIA/FACIFIC.
ADUANCELI MUSIC SOFTWARE FACKAGE, WITH FULLY COMMENTEL
SOURCE CODE, AND OBJECT COLIE ON CASSETTE.
FRICES, FIRST CLASS/AIR MAIL $\$ 21.50$ US/CANALIA, $\$ 22.00$ EUROFE:
$\$ 23.00$ ASIA/F'ACIFIC.
UISIBLE MEMORY SOFTWARE ON CASSETTE WITH SUPFLEMENT TO
MTU MANUAL AVAILABLE 1 JUNE. FLEASE WRITE FOR FRICES.
2114 MEMORY CHIFS:
6 CHIFS (3 K) FOR $\$ 33.00$ FOR ON BOARII SOCKETS
8 CHIPS (4 K) FOR $\$ 42.00$ FOR FLALOCK MEMORY BOARI
FOR BOTH
OVERSEAS ADI $\$ 1.00$ FOR FOSTAGE

SEE ISSUE $\ddagger 2$ FOR FRICES ON THE FOLLOWING:
EXTENIELI TINY BASIC FOR SYM-1, FITTMAN
6502 ASSEMBLY LANGUAGE FROGRAMMING, LEUENTHAL
RAE NOTES UPIATING SERUICE
SEE ISSUE $\ddagger 1$ FOR FRICES ON THE FOLLOWING:
$2 K$ SYMBOLIC ASSEMBLER, DENISON
SYNERTEK TECHNICAL NOTES
SUFERMON UERSION 2
FAE-1/2
SYM-1 SCHEMATIC
WRITE: OF CALLL FOR FRICES ON OTHER
SYM FRODUCTS, SOFTWARE OR HARIIWARE.
BLALOCK ATILRESS CHANGE
John Blalock's correct adoress for the 4 k Memory Eveansion Board, and John Blalock's correct address for the 4 K Memory Exparision Board,

