SSSS	5	S	5		5		SSSS		S	5	5	5			SSS	SSSS	
S	5	S	SS		5		S	S	5	5	5	5	5	5	5	5	5
ξ	5	5	5	5 S	5		5	5	5	5	5	5	S		5	5	
SSSS_{5}	$\begin{gathered} 5 S 5 \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	S	5	S5S	SSSS		${ }_{5} 5$	5				5	5 5		S
$5 \quad 5$	5		5		5		5		5	S			S	5	5	S	S
SSSS	5		S		5		5		5	5					S5s		
T H E	5 Y	M	-		U	5 E	R 5				U			5	E	T	

ISSUE NUMBER 4 - JUL.Y/AUGUST 1980

SYM-PHYSIS is a bimonthly publication of the SYM Users' Grour, F. 0. Box 315, Chico, CA. 95927. SYM-FHYSIS and the SYM Users' Group (SUG) are in no way associated with Ssnertek Sustems Corforation (SSC), and SSC has no resfonsibility for the contents of SYM-FHYSIS. SYM is a resistered trademark of SSC. SYM-FHYSIS, from the Greek, meanis the state of srowins tosether, to make srow, to brins forth.
We welcome for fublication all articles dealins with aris aspect of the SYM-1, and its vers close relatives. Authors retain all commercial cofyrishts. Portions of SYM-FHYSIS masy be reproduced by clubs and edumay be freelu published, with full credit siven and comelimentaru coeies erovided to SYM-PHYSIS and the orisinal author(s). Filease include a self-addressed stamped envelose with all corresponderice.

Eoitor/Fublisher:
Eusiness/Circulation
Associate Editors:

H. R. "Lux" Luxenbers

Thomas Gettys, Jack Brown

SUBSCRIFTION RATES:

USA/Canada $\$ 9.00$ for a volume of 6 issues; NG LIST* $\$ 12.50$. Make checks pasable in US dollars to 'SYM Users'SHOFFING U. EOK 315 , Chico, CA 95927, Telephone (916) 895-8751. GREEN
The Introductorw USE LATEST
Year's subscrflease or air mail, ur $\$ 1.50$ in $u s / C a n a d a$ ande sefarately, fostfaid first class or air mail, ur $\$ 1.50$ in US/Canada and $\$ 2.00$ elsewhere.

FROM THE EIITTOR

As many of you have discovered, by writins or phoning, the Users' Group is able to frovide answers to most of your questions, and solutions to many of your problems with SYM and its peripherals. We try to set our mone for answered within a week, and many days (weekends, too) we are on the settins easier to provide the help, because the problems have a larse commonality factor, and it is still more fur than work, because of the information exchanse, and because much of what we learn from SYM problems carries over to other areas of interest, and helps us better understand and improve our own three SYMs, a "his" and a "hers" and a "theirs", which is at the campus for student use.
Thanks to the manis readers who have sent in notes, hirits, frosrams, tips, articles, modification sussestions, hardware recommendaions, etc, which we had no room to publish. Please rest assured that we have studied them all, and did find it very hard to mizke the selectionion we cave them an ess access file, and will fass on the liformation

In Issue *5 we will describe, compare arid evaluate the merits of the
 to BAS-1).

SYM-FHYSIS 4-1

THE AULIO-VISUAL SYM
We checked out the Atari 400 and 800 the other day, and were impressed with Atari's approach to Computer Assisted Instruction (CAI). We pass on to you their audio-visual concept for implementation on your SYM.

After dumpins sour prosram to cassette tape, add music, sound effects, questions, answers, etc., usins the mike andor an audio fatch cord. Your prosram can then start and stof the cassette with the commands
 to frovide a musical backsround of computer synthesized music with abstract sraphics on our hish resolution MTU Visible Memory. We feel that the addition of audio to the visual display can very much enhance the educational frocess, as well as arovide "mere" entertainment.

Now for the technical details: Atari "plass" its cassette input throush the TV receiver sound system. Unless your video monitor has audio infut you will have to find another way. Dur afaroach is to connect a small hi-fi amplifier to the Audio In fin on the Applications connector. This provides the added bonus of fermittins audio monitorins of your cassette read-ins; very useful when adjustins your system to read other people's tapes.

Once prosram tares contain audio as well as disital data, they cannot be duplicated throush the SYM, for distribution, as we have been doins for the tapes we are marketins. As mentioned in an earlier issue, we found it practical to dub SYM cassettes from one recorder to another, usins an attenuatins patch cord available at Radio shack. We have now acquired a $3 M 10 K H z$ sine wave head azimuth alisnment tare. After we have precisely sotten our heads on straisht, we will make some Sym-1 Synch Sisnal Head Alisnment Tapes for qualits control purfoses.

Iricidentally, if you need a sood small hi-fi amplifier for the purpose described above, let us recommend the MTU DAC board, which contains the g-bit Disital to Analos Converter, as well. The audio amplifier has several inputs, as well as scope outputs, so that you can also monitor your cassette input visually, See back pase for special pricins connects directly to the Applications connector, We are using two of thean for oscillon $(X-Y$ deflection) and soon for laser staphics. APPLES UERSUS ORANGES - APPLE VERSUS SYM

The Apple II is a well ensineered, hishly cost-effective, small-system computer, desisned with sreat imasinationg and with easy to implement expansion capabilities. I purchased a cory of the new Apple II Reference Manual, to realace wy old, worn-out, cosy of the 1978 edition. Their auality of documentation has been so upsraded that the manual is now practically self-explanators! It was a real fleasure to read, which I did to see which of their desisn approaches could be applied to the SYM-1.
The Afple II and the SYM-1 are both sreat, but should not be directly compared, because thes bre different kinds of systems. The Aprle II is a small-system computer, the SYM-1 is a sinsle board computer. They are thended for different end-user tspes. The SYM-1 is intended more for save the initial outlay of dollars (or marksy or pounds, or francs; we have many overseas readers). More importantly, it is for the person who can learn most rapidly through the self-doing. These were my reasons for choosins SYM-1 over Apple II

Followins are portions of two letters, two articles, and a BASIC frosram written by Jack Giersic, 2041 - 138 th Ave. N. W., Andover, MN 55303.

Jack is one of our most prolific correspondents, and we have a larse file of written material from him. Drisinally, he was sendins frinted listinss of his BASIC prosrams (see the example below to see how time-consumins they could be for a two-finsered tyrist to enter!), until we sussested that he send cassettes, instead. Now that he has RAE-1 or which are immediately trariscribed to disks for editins and storase. How much easier life is becomins with SYM-1, RAE-1, SWF-1 and FOLIS!
Dear Lux:
SUBJECT: Bill Gowans' Hi-Density plot Routine
I have discovered the lower right character position should not be accessed by user calls to the "SET" entry point of board is positioned to and writes this this is after the keyis then positioned at the first character of the next line. Since this "next line" is the 25 th one, this results in the entire screen scrolling up one line. Now Bill's memory map no longer reflects what the user sees.

Any program using Bill's routine should avoid the following $X-Y$ coordinates where Y is the virtual row and X is the
virtual column.

KTM-2		KTM $-2 / 80$	
X	Y	X	Y
78	46	158	46
79	46	159	46
78	47	158	47
79	47	159	47

The following code inserts this fix into the demonstration program included with the article from issue 3. This fix will maximize the CRT usage. The problem doesn't occur in the demo because the lower right character position is not
referenced. I only want to show how to fix the "bug" in the event others wish to write their own interface program.

> 192 IF $Y<46$ THEN 200 194 IF $X>157$ THEN 210

Your Avid Reader,
fack Lierye
near Lux:
First a note on the 4 QUADRANT PLOT prosram I sent you on the previous tape. If possible, I would like to see Bill Gowans' code relocated to under $4 K$, and line 1 of my arosram adjusted accordinsly. Copies of the prosram would then be made under the Monitor such that the BASIC and machine code would be in the same file. That was, the user would just do a sinsle load under BASIC, and both portions would be loaded. Also, the frosram would fit in $4 K$. The user would also be siven the correct value to use for MEMORY SIZE at los-on time. Is this too much to ask?

SYM-PHYSIS 4-3

Now for this tape: I have included a cofy of yet another JACK BUIL PROGRAM.....my Grafhics Ilemo Fackase 2. If you liked the randomi fatterr senerator of the first Fackase, theri soull love this frosram. The orily it reauires about 5 K of menory. Maube you also want to publish this one in the next issue of SYM-FHYSIS

On that note, I have also included two articles I'd like you to take a look at. If you want to use them iri SYM-FHYSIS, then feel free. If any chanses are required, reat me know. I hofe they are ace why you only publish every other month. This stuff is extremely time consumins.

Sincerely,
Jack

CURSOR FOSITIONING/GRAFHICS PRIMER

with KTM-2 Examples
by Jack Gieryic
The hobbyist's CRT is probably the most under-used itell of his/her computer system. Many frosram displays are very frimitive, consistins mairily of data senerated from print statements. With the aid of cursor positionins, some srafhic characters, and a heavy helpins of
imasination, the user can make dramatic chanses in the area of data presentation. This article addresses the subjects of terminal sraphics and $X-Y$ cursor positionins. It will aid the hobbsist who has a terminal with these capabilities, and enlishten those who are considerins purchase of a terminal, or who are lackins knowledse on these subjects.

Cursor fositioning can be thousht of as the ability for a terminal to immediately pick up the cursor and place it at any character fosition on the CRT. This is done by sendins a 'sinsle' command to the terminal, which the terminal interprets as a special function. The command usually consists of several characters. It will not be displayed as function.

The first command of the strins is a non-text character. The terminal is constantly interrosatins eversthins sent to it. When this special non-text character is found, the terminal then sears ur for receipt of ine of its special function command characters may be text character numerics, punctuation)

In the case of a terminal with several different commands, the next character will tell it which command is selected, If this second character indicates cursor fositioning then the rext two characters mas be the X position (which character on the line) and the Y position (which line on the CRT). At this foint the terminal knows the command seauence is finished. No more information is needed to ferform the function, nor is a special end-of-command character required. The cursor now appears at the selected fosition. If a text messase follows then the text afrears ont the cri besinnins at the selected curso osition

Graphics is a much broader subject to address, as each terminal has its Own set of sraphic characters, if it has ary at all. Ore character its Own set of srafhic characters, if it has ariy at all. Orie character may
cause a terminal to display one particular sraphic character while on another terminal the same character may result in a radically different character or none at all. There seems to be no uniformity in the industry concernins srafhics. The number and set of characters varies from terminal to terminal.

A drawins of the various srafhic characters will show a farticular terminal's cafabilities. The user's vivid immasination is the best means of evaluatins the character set. Can firie lines (less than a character field be split irito finer pieces? Can any sfecial and arafhic characters be mixed on the CRT? Questions of this type will helf in evaluatins a terminal's cafabilities.

The remainder of this article uses commands and sequences specifically for Synertek's kTM-2/80 keyboard. The command codes for other terminal may be different, but the afproach should be similar. The reader who does not own a KTM-2/80 should try to extract the approach out of the remainder of this article. For you other lucky ories, this cari serve as your first lessori.
To enter the sraphics mode of operation the escape character is first sent to the terminal, followed by the 'enter srafhics' special function command. This first step is similar to that mentioned previously for cursor positionins. The followins statement sets the terminal into srashic mode:

FRINT CHR\$(27) + G^{*}

By itself, this statemerit will set the terminal irito trouble, as now all characters are sraphic. When a text key is hit, the correspondins letter will not be displayed, but instead the CRT will show the sraphic character associated with that key. The statement must be made fart of a BASIC prosram by assisrins a line number to it. It is advisable to also make it into a subroutirie, so that the firial frosram can so into the sraphic mode at any foint, by simply doins a GOSUE instead of the lonser PRINT statement. This subroutine will save memory and make prosraming easier. Enter this statement:

4 PCHR\$(27) ${ }^{-9} G^{\prime}$; : RETURN

The semicolon will prevent an automatic carriase return at the end of the FRINT statement, This is CRITICAL, If a prosram is printins a seauence of text, and needs a Srafhic character iniserted immediately at followed by a erint of the araehic character. The aramic character will immediately follow the text Without that semicolon the sraphi character would appear at the first fosition on the next line.

The next step is to position the cursor at some spot on the CRT. The first part of this fosition command is the same, no matter where the cursor is placed. It makes sense to also make a subroutine out of this first part, as it can be used whenever cursor fositionins is reauired in

2 PCHR\$(27) +" = : ; RETURN

Asain, the semicolon is extremely critical, as without it BASIC will automatically send a carriase return (OD) to the terminal, which will be interpreted as the Y cursor fosition. The semicolon MUST be there to prevent this. Enter the followins line and then do a RUN:

1 GOSUR2:?CHF\$(37)+CHR\$(41)+'A':ENI
The "A" will now be positioned on the 6th line, 10 th character. On cursor commands the Y fosition comes before the X fosition. This may seem backwards but that's the way it is. To set to the bth line from the first line add 5 to the home value(32) to set 37 . Iri a similar mine. The home to 32 to set from the first to the 10 th character an position value of 32,32 .

SYM-PHYSIS $4-5$

Now let's try drawins a horizontal line. The frosram will use cursor ositionins and sraphics. When firished it will need to exit the sraphic mode so the terminal will once asaini be conditioned to frimt text. This exit from the srafhic mode is done by callins the followins subroutine consistins of a print of an ESC character followed bs a lower ase "s". Asain, the prosram can call this subroutine from any point, thereby saviris memory if several calls are made. The purfose of the semicolon is to allow the prosram to print some sraphic characters, exit the sraphic mode (GOSUB6), and then print some text characters all on the same line. Without that semicolon you would get the graphic haracters on one line and the text besinnins at the left end of the next line.

6 PCHR\$(27)+CHR\$(103);:RETURN
The following FOR...NEXT loor will frint the selected sraphic character (97 in this case) on line 6, character fositions 11 thru 20. Eniter and type RUN.
1 GO TO 100
100 GOSUB4
120 FOR A $=1$ TO 10
130 GOSUB2
140 ?CHR $\$(37)+$ CHR $\$(A+41)$;
150 ?CHR $\$(97)$
160 NEXT
170 GOSUE6
180 ENI

Wouldrit it be rice if the screen were cleared first? Eniter the followins two lines, Lire 10 will fut the cursor to the home position and also clear the entire screer. The empty FOR....NEXT loor will sive the Ch time to clear the Without that enety loop your terminal mas more characters from the sym. Without miss the ne:

10 ?CHF\$(27)+"H'+CHR\$(27)+'J":FORA=1T09:NEXT:RETURN

110 G0SUB10

A small chanse will result in a vertical line instead. Tru this chanse and enter RUN. You should know enoush at this foirit to fisure out what I've done.

140 ?CHR $(A+37)+$ CHR $\$(41)$;
For your homework try to do the followins:

1. Fick a different srafhic character in line 150 2. Start at some other point on the screen. See what happens when you start too close to the botton or risht side. 3. Draw a diasonal line soins from upfer left to lower risht besinnins at a point of your choice. This line will onls be 10 characters lons Draw a diasonal line from lower left to upper risht. 5. Put a prosram tosether to draw a square.

The two areas of memors efficiency and speed are not attempted in this article, First learr BASIC and then the ins-and-outs of your KTM-2 These other two areas will come naturally with experience.

I'd like to pass alons a few prosramins hints to the adventerous KTM-2 owners:

1. If you do not want your screen to scroll, theri avoid the rishtmost character on the bottom lirie $(Y=23, X=79)$. Writins in this fosition will cause your screen to scroll no matter what sou do (as far as I know).
2. If your cursor is on the bottom line ($Y=23$) then anis arint should termiriate with a semicolon or else EASIC will sive you a carriase return which will cause your CRT to scroll. I assume you don't want to scroll.
3. BASIC keefs courit of the riumber of characters ori a line. If you use too mans continuous print statemerits all endiris with a semicolon, then this count can reach the maximum. At this point BASIC will automatically insert a carriase return. This can be very irritatins. Insertins a zero
into location 25 (decimal) will reset this count but this is by no means the onily solution to the problem.
is bs no meanis the orily solution to the probis execution your frosram has a 'bus' in the sraphic area then your error messase will come out in graphic characters. This is really toush to read.
Eliminate your GOSUB4 and rur your prosram asain. This time sou'll set a lesible error messase.

I hope this article will solve many of the initial problems for you Good luck.

COMFLEX SOUND GENERATOR CHIF - SN76477N

Jack Gieryic

The addition of sound to my SYM has been an intrisuins idea which I have been experimentins with over the past year. One requirement for the sound seneration is a mirimum of frocessor dedication. Some of the ideas I have seen, in the fast make use of the tape cassette interface to senerate tones. 'The First Book of KIM' has one such prosram which I converted over to my SYM. This prosram has sood sound quality but it requires complete processor dedication in order to produce

An ideal 'sound system' would consist of some hardware which cari be prosramed throush a port or memory marfed I/D. I would like to just turn the device on and so on to somethins else, like updatins the CRT or monitorins the keyboard. The less the frocessor needs to do the better Such a requirement is met by the Complex Sound Generator chif available at Radio Shack (part number 276-1765) for around \$3. The necessary suffort hardware for seneratins a particular sound or two mas double chip cos. A truly sreat barsain in this era of inuber of sample circuits for seneratins some of your more common sounds, such as an excellent fhasor sun, a very sood frop flane, a race car, a sun shot, an orsan, and more.
At first slance the documentation included with the chif was so extensive that I besan to wonder just what it was all about....attack, secay, envelope select, VC, SLF. Fortonately, the documeritation als Jssested ind
chematic. f this. I stronsly urse you to build such a 'bow' as it will sive you very clear picture of the capabilities and limitations of this chis. You will avoid a sreat deal of frustration and fossible disericharitment with a rather sood piece of hardware.

For my system I decided to build a heavy duty, stand alone 'bok capable of connectins to any stereo system. The reason beins, I wanted
a toy for kids to use without necessarily interfacins with the SYM Because of this, the cost was a bit hish, but this made it rather easy to vary parameters durins experimentation. I have seen an iriexpensive version usins dif switches andmiriature variable resistors which reauired some patience when huntins for new soundsy althoush it did accomplish its soal. Furthermore, by usirs a stereo amplifier conly one chaninel) I was able to obtain sreat sound reproduction, especially in the low frequency ranse. This also eliminated the hardware conriected to pins 11, 12, and 13 on the demonstrator bok schematic. Firi 13 is instead connected to the tape recorder input jack of my stereo. A Piri 15 then supplies the +5 volts for chip operation. The sYM +5 volts fower to ein 15 is used when connected to the SYM.

Essentially the sound senerator contains a super low frequency oscillatory a voltase controlled oscillator, and a noise semerator, These three sound sources cari be mixed in any combiriation with the limited amount of hardware is required for ans particular afflication. This will enable you to obtain a few sounds by means of the losic control lines to the chif. These losic control lines (fins $1,9,22$, $25,26,27$ and 28) are directly controllable thru one of the $1 / 0$ ports on your SYM. No bufferins is necessary.

If sour farticular afflication requires several sounds which cannot all e senerated by one hardware conifisuration of a sinsle sound senerator chis, then I sussest severial chips, each wired for one sourid. The SYM then need only control fin 9 of each chif to activate or deactivate the chif. One port will be able to control 8 chips.

I have intentionally refrained from any detailed discussion of the chip's inner workinss. The documentation supplied does a very adeauate job. Instead I hope to have sparked interest in a piece of hardware which is very compatible with sour SYM, can enhance man-machine interaction with the addition of sound, and has a low price tas.

SNTG477N COMFLEX SOUNI GENERATOR

ENUELOPE SELECT 1

GROUND

EXTERNAL NOISE CLOCK
NOISE CLOCK RES
NOISE FILTER CONTROL RES NOISE FILTER CONTROL CAF DECAY CONTROL RES
ATTACK/DECAY TIMING CAF SYSTEM ENABLE
atpack control res
AMPLITUDE CONTROL RES
AUEIO OCK RES
Uce
ENUEL.OFE SELECT 2
MIXER SELECT C
MIXER SELECT
MIXER SELECT B
ONE-SHOT CONTROL RES
ONE-SHOT CONTROL CAF
UCO SELECT
SLF OSC CONTROL CAF
SLF OSC CONTROL RES
ITCH CONTFOL
UCO CONTROL RES
UCO CONTROL CAF'
EXTERNAL VCO CONTKOL
EXTER

WORTH-WHILE REAAIING
COMFUTE, , the 6502 masazine recommended in Issue 13 , will concentrate on the "Fackased" 6502 systems, e. s., FET, AFFle, Atari, and the larser Computers based on both the 6502 and the will cover the Sinsle Boars Computers based on both FCA COSMAC UIF (1802-bssed) SBC, with tin
 f fung especially for its grashics capabilities. But, of course, the SYM-1 is still our own fersonal favorite SBC.

JACK BUIL PROGRAM - GRAFHICS IEMO FACKAGE NO. 2
Here is the demonstration packase lack mentioned in his letter
If you don't feel quite up to keyins it in yourself, you can
order it on cassette from the Users' Group, for $\$ 6.00$ postfaid
answhere.
$1 \mathrm{E}=27: \mathrm{S}=124: \operatorname{LIM}=2000:$ TH=32:G0T0100
2 PRINTCHR $\$(E)+"=" ;:$ RETURN
3 PRINTCHR\$(E)+"R";:RETURN
4 PRINTCHR\$(E)+'Gं::RETURN
5 PRINTCHF $\$(E)+C H R \$(114) ;:$ FETURN
6 PRINTCHR $\$(E)+C H R \(103);:RETURN
7 GOSUB2:FRINTCHR $\$(Y+T H)+$ CHR $\$(X+T H)+$ CHF $\$(S):$ RETURN
8 FORY=YSTOYS+YL:GOSUB 7 NEXT:RETURN
9 FORX $=$ XSTOXS + XL:GOSUB 7 :NEXT:RETURN

12 GOSUBS:GOSUB6:S=124: RETURN
12 GOSUBS:GOSUBG:S=124:RETURN
$14 \mathrm{YL}=\mathrm{INT}(21 * \mathrm{RNL}(1)): \mathrm{IFYL}\langle 3$ THEN 14
15 RETURN
16 GOSUR3:GOSUB4:GOSUB20:GOSUR25:RETURN
17 PRINTCHR (E) +'H";:FORA=1T05000 \ddagger NEXT:RETURN
18 FORA $=1$ TO2000: NEXT:RETURN
19 S=63+INT(64*RNI(1)) :RETURN
$20 \mathrm{XS}=\mathrm{INT}((79-\mathrm{XL}) * R N D(1)): Y S=I N T((21-\mathrm{YL}) * R N D(1)):$ RETURN
21. $X=X S$:GOSUB8: $Y=Y$ S:GOSUB9 \ddagger RETURN

22 X=XS:GOSUB8: $Y=Y S+Y L$:GOSUB9:RETURN
$23 Y=Y S$: GOSUB9: $X=X S+X L: G 0 S U B 8:$ RETURN
$24 Y=Y S+Y L$:GOSUB9: $X=X S+X L$: GOSUB8: RETURN
25 GOSUB22:GOSUB23:GOSUBS:GOSUB6:RETURN
$26 Y=Y S+Y L: F O R X=X S T O X S+X L$: GOSUB $7: Y=Y-1$: NEXT: RETURN
$27 Y=Y S: F O R X=X S T O X S+X L$. $: G O S U B 7: Y=Y+1:$ NEXT \ddagger RETURN
38 PRINT-YOU PERUERT*:RETURN
32 PRINT:HEY SICKD: RETUEN
34 PRINT"YOU SHOULI MAKE AN AFPOINTMENT WITH THE VET:!RETURN
36 PRINT"ARE YOU FOR REAL.? ${ }^{\prime \prime}$:RETURN
38 PRINT"TRY AGAIN DUMMY":RETURN
40 PRINT"GOON GUESS": RETURN
42 PRINT"HELLO ${ }^{\prime \prime}$ A A ${ }^{\prime \prime}$ ' ARE YOU THERE?': RETURN
44 PRINT"BETTER LUCK NEXT TIME ";A\$:RETURN
46 PRINT"ARE YOU NUTS?': RETURN
48 PRINT"THAT'S EXACTLY WHAT I THOUGHT'ःRETUKN
52 GOSUB2:PRINTCHR\$(Y+TH)+CHR\$(79-X+TH)+CHR\$(S):RETURN
54 GOSUB2:PRINTCHR $\$(23-Y+$ TH $)+$ CHF $\$(X+T H)+$ CHR $\$(S)$; :RETURN
56 IFX $>$ OTHEN5 8
57 IFY=OTHENRETURN
58 GOSUE2:FRINTCHR $\$(23-Y+$ TH $)+$ CHR $\$(79-X+$ TH $)+$ CHR $\$(S)$; : RETUFN 80
RN
81 FORA $=1$ TO4:GOSUB2:GOSUB83:NEXT:RETURN
81 FORA=1T04:GOSUB2:G0SUB83: NEXT:RETURN
82 FRRA
84 PRINTCHR $\$(E)+{ }^{\circ} H^{\prime}:$ RETURN
$85 \mathrm{X}=\mathrm{XB}: Y=Y \mathrm{Y}:$ RETURN
100 GOSUB10:GOSUB3:GOSUB4:XB=38:YB=8:G0SUB600:GOSUB5:GOSUB6
107 FORA $=1$ T03: $A(A-1)=A-2: B(A-1)=A-2:$ NEXT
110 GOSUB900:GOSUR2:PRINT'(91 RORSCHACH TEST'
116 GOSUB2:PRINT")92 FORSCHACH TEST - RANDOM GRAFHICS*
117 GOSUB2:PRINT**93 SYMMETRY*
118 GOSUB2:PRINT"+94 SYMMETRY - RANLOM GRAFHICS*

120 GOSUR2:FRTNT',95 KALEITOSCOFE*

137 IFB 1 THEN 135
137 IFB 1 THEN135
140 GOSUB10:ONBGOSUB400, 400,200,200,700,800
153 GOSUB10: GOT0110
200 GOSUB3: gosub 4 : GOSUR19: $X=20: Y=6$
210 FORK=1T0125: IFB=4THENGOSUB19
$212 \mathrm{~A}=\mathrm{INT}(3 * R N \mathrm{I}(1)):$ IFA=3THEN2.12
$214 \mathrm{~L}=\mathrm{INT}\left(3 * \mathrm{~F}^{2} \mathrm{NL}(1)\right): I F L=3$ THEN214
216 IFA $(A)<>$ THEN240
217 IFB(L)=0THEN212
$240 X=X+A(A): I F X<2$ THENX $=37$
242 IFX 39 THENX $=2$
$244 Y=Y+B(L):$ IF $Y<0$ THENY $=11$
246 IFY >11 THENY $=0$
248 GOSUB7:GOSUB52:GOSUB54:GOSUB56
$250 X=X+A(A):$ GOSUR 7 :G0SUB52:GOSUB54:GOSUB56
55 NEXT:GOSUB17:GOSUB5:GOSUEG:RETURN
410 FORK=1TO250: IFE=2THENGOSUB19
$12 \mathrm{~A}=\mathrm{INT}\left(3 * \mathrm{~F}^{2}(1)\right):$ IFA $=3$ THENA12
$414 \mathrm{~L}=\mathrm{INT}(3 * \mathrm{RND}(1)): I F L=3$ THEN414
$416 \operatorname{IFA}(A)<>O$ THEN 440
$417 \operatorname{IFB}(\mathrm{~L})=0$ THEN412
$440 X=X+A(A):$ IF $X<2$ THEN $X=37$
442 IFX >39 THENX $=2$
$444 \quad Y=Y+B(L)$: IF $Y=-1$ THEN $Y=22$
446 IFY=23THENY $=0$
448 GOSUB7:GOSUB2000: $\mathrm{X}=\mathrm{X}+\mathrm{A}(\mathrm{A}):$ GOSUB7:GOSUB2000:NEXT:GOSUB5:GOSUF6 449 GOSUB4000:RETURN
450 GOSUB3: GOSUR4:GOSUE19:X=40:Y=12
460 FORK $=1$ T0500:IFE=9THENG0SUB19
$462 \mathrm{~A}=\mathrm{INT}(3 * \mathrm{RNL}(1))!$ IFA $=3$ THEN462
$464 \mathrm{~L}=\mathrm{INT}(3 * \mathrm{RND}(1))$:IFL=3THEN464
466 IFA $(A)<>O$ THEN490
467 IFE $(L)=0$ THEN462
$90 X=X+A(A) \cdot 1 F X<2$ THEN $X=77$
92 - Y X
$94 Y=Y+B L, I F Y=-1$ THENY $=22$
O
98 GOSUB7: $X=X+A(A)$:GOSUB7: NEXT:GOSUB5:GOSUB6:RETURN
$501 \mathrm{X}=\mathrm{XB}+2: \mathrm{Y}=\mathrm{YB}: G 05 \mathrm{~GB} 82:$ RETURN
02 GOSUB85: GOSUB80 : $X=X+3:$ G0SUB81: $X=X-3: Y=Y+3$: GOSUB80: GOSUR81: $Y=Y+3$
503 GOSUB8O: RETURN
04 GOSUB85:GOSUB80: $X=X+3$:GOSUB82: $X=X-3: Y=Y+6$:GOSUBEO:GOSUB2
505 FRINTCHR $\$(Y B+35)+$ CHR $\$(X B+33)+$ CHR $\$(S)+$ CHR $\$(S):$ RETURN
506 GOSUB85:GOSUB81: $X=X+3:$ GOSUB82: $X=X-3: Y=Y+3$:GOSUB80:RETURN
507 G0SUB85:GOSUB80:G0SUB81: $Y=Y+3$:GOSUB80: $X=X+3$:G0SUB81: $X=X-3$
$508 \quad Y=Y+3$:GOSUB80:RETURN
$600 \mathrm{~S}=124$: $\mathrm{FORC}=1 \mathrm{TOS}: \mathrm{B}=6-\mathrm{C}$
610 ONBGOSUB501,502,504,506,507
615 PRINTCHR $\$(E)+{ }^{\prime} H^{\prime}$
620 FORA $=1$ TO500: NEXTA
630 GOSUB10
640 FORA $=1$ TO500: NEXTA
650 NEXTC: RETURN
700 GOSUB4:FORC=1T025:GOSUB3:GOSUB19:A=INT(4*RND(1)):IFA=1THENGOSUB5
$705 \mathrm{XN}=\mathrm{INT}$ (40 *RND (1)) : IFXN=40THEN705

725 A=INT($3 * R N D(1)$) IFA $=3$ THEN 725
$725 \mathrm{~A}=1 \mathrm{NT}(3)$
$735 \mathrm{~A}=\mathrm{INT}\left(3 * \mathrm{RNLI}^{2}(1)\right):$ IFA $=3$ THEN735
$740 \times I=A(A)$
741 IFXI < $>$ OTHEN745
742 IFYI=OTHEN725
$745 X=X+X I: Y=Y+Y I: I F X>39$ THEN 770
752 IFY >11 THEN770
754 IFX<OTHEN770
758 GOSUB7:G0SUB52:GOSUB54:G0SUB56:G0T0745
770 NEXTB:NEXTC:GOSUB5:G0SUB6:G0SUB17:RETURN
$800 \mathrm{X}=\mathrm{INT}(63 * \operatorname{RNO}(1)): Y=I N T(11 * R N I(1))$
$805 \mathrm{C}=2+$ INT (9 *RNL (1)) $\ddagger \mathrm{IFF}=11$ THEN805
$810 \mathrm{~A}=\mathrm{INT}$ ($4 *$ RNL (1)): IFA $=4$ THEN810
$815 \mathrm{SU}=123$: IF $A=0$ THE $\mathrm{NS} \mathrm{J}=110$
816 IFA $=1$ THENSU $=122$
817 IFA $=2$ THENSU $=125$
820 GOSUB2:FRINTCHR $\$(Y+33)+$ CHR $\$(X+32)$: : FFINTC
822 GOSUB2: PRINTCHR $\$(Y+41)+$ CHR $\$(X+42)$; : FRINTC
824 GOSUB3:GOSUB4:GOSUB2:FRINTCHR $\$(Y+33)+$ CHR $\$(X+35)+$ CHR $\$(S U)$
826 GOSUR
828 GOSUR PR
830 GOSU

836 ONCGOSUR852, $852,853,854,855,856,857,858,859,860$.NEX
830 GOSUB5:GOSUB6:FRINTCHR\$ (E) +'H' : :GOSUB18:RETURN
852 GOSUB870:GOSUB872:RETURN
853 G0SUB852:GOSUE871:RETURN
854 GOSUB875:G0SUB877:RETURN
855 GOSUB854:GOSUB871:RETURN
856 GOSUB870:GOSUB875:GOSUR877:G0SUB872:RETURN
857 GOSUR854:GOSUB853:RETURN
858 GOSUB854:GOSUB873:GOSUR879:RETURN
859 GOSUB858:GOSUB870:RETURN
860 GOSUB859:G0SUB872:RETURN
870 GOSUB2:FRINTCHR $\$(Y+35)+$ CHR $\$(X+39)+$ CHR $\$(S U):$ RETURN 871 GOSUB2:PRINTCHR $\$(Y+37)+$ CHR $\$(X+39)+$ CHR $\$(S U):$ RETURN 872 GOSUB2: PRINTCHR $\$(Y+39)+$ CHR $\$(X+39)+$ CHR $\$(S U):$ RETURN 873 GOSUB2:PRINTCHR $\$(Y+34)+$ CHR $\$(X+37)+$ CHR $\$(S U)$
875 GOSUR :FRINTCHR $(Y+36)$ CHR $(X+37)+$ CHE $\$(S U)$ RETURN
876 GOSUR2 IPRINTCHR $(Y+36)+$ CHR $(X+41)+C H R(S U)$
877 GOSUR2*PRTNTCHR $\$(Y+38)+$ CHR $\$(x+37)+$ CHR $\$(S U)$ RETURN
878 GOSUR2: FRINTCHR $\$(Y+38)+C H R \$(X+41)+C H R \$(S U)$
878 GOSUR :PRINTHR $(Y+40)$ CHR $\$(X+47)$ CHR $\$(S U)$ RETURN
880 GOSUB2 \ddagger PRINTCHR $\$(Y+40)+C H R \$(X+41)+C H R \$(S U)$:RETURN
900 GOSUB2:PRINT**<GRAFHICS DEMO FACKAGE 2^{*}
910 GOSUB3:GOSUB4:GOSUB2:FRINT:!:";:FORA=1T027:FRINTCHF\$(108); ; NEXT
920 FORA $=1$ T04:GOSUB2!FRINTCHR $\$(A+33)+{ }^{\circ} 9^{*}+$ CHR $\$(107):$ NEXT
930 GOSUB2:PRINT"\%:";:FORA=1T028:FRINTCHF\$(106);:NEXT
940 FORA $=1$ T04:GOSUB2:PRINTCHR $\$(A+32)+^{*} U^{\prime}+C H K \(108) : NEXT
950 GOSUB2:PRINT" $9^{\prime \prime} ;$:FORA=1T029:PRINTCHF\$(113);:NEXT
960 FORA $=1$ TO5 \ddagger GOSUB2:PRINTCHR $\$(A+32)+^{\prime} U^{*}+$ CHF $\$(97):$ NEXT

980 FORA $=1$ T05:GOSUB2:FRINTCHR $\$(A+32)+8^{*}+$ CHR $\$(103)$: NEXT:GOSUE6:RETURN 2000 GOSUB2:PRINTCHR $\$(Y+$ TH $)+$ CHR $\$($ TH $+79-X)+$ CHR $\$(S):$ RETURN

4010 GOSUB10
4015 A $=$ TNT ($10 *$ FNH(1)) : IFA $=10$ THEN 4015
4020 GOSUB2:FRINT ${ }^{\prime}+{ }^{\circ}$;
4030 ONAGOSUE $30,32,34,36,38,40,42,44,46,48$
4040 FORA $=1$ TO2000:NEXT:RETURN
OK

In Issue $\ddagger 3$, fase 25 , we mentioned a Tafe Dferatins Sustem for SYM, bs Frank Winter, of the University of New South Wales, Australia, and promised more information in this issue. We, both Jack Erown and I, have studied the source code, and are much impressed with its speed, at a much lower cost. The source code is not sufficeritly commented to fermit easy adaptation for other system confisurations, and is therefore not quite reads for publication. In fact, when we tried to print his manuscript on our IECwriter, whatever character he was usins for $T A B$ printed as a lower case "a".

We did ask frank to rewrite his handwritten descriftion of tops on a RAE cassette; he was kind enoush to do so, and we print it here for your information. If sou want more details on rofs we sussest sou contact Frank directly (his full address is on pase 3-25).

TOFS - a tape operatins system for the SYM:
by Frank. Winter

Most computiris machines may be conceptualized to consist of
the followins parts:
A central processor which ferforms some marifulations on
information fresented to it
A device which fermits fresentation of data to the central frocessor
A device which eermits reception of the results of the manifulation to the data presenter
An advantase of definins the functional elements of a computer in
this way is that the freseriter mas be a variety of devices including RAM, ROM, tafes, disks or humans. With the exception of RoM, the same ' oevices' can also act as receivers. For a more detailed exposition of these concerts, see C.E. Shafinon \& J. McCarthy (eds.) 'AUTOMATA STUIIES', Frinceton Univesrsity Press, Frinceton NJ:1956.

An afflied implication is that, at least conceptually, all resenters and receivers are interchanseable. We mas chose any convenient 'device' such as RAM and substitute it with another, say, tafe.

The function of an operatins system is to make this exchanse process as simple as possible from the oferators' poinits of view, process as simple as purposes, are people who desire to achieve a specific biective throush the arelicztion of a set of alsorithms

TOFS was desisned to provide a wide ranse of commands, usually only found in IISK based operatins systems. In its preserit form TOPS only only works in the BAS-1 environment but its basic desisn is such that it can be altered to runi in any hisher lansuase environment, includins RAE. Virtually an unlimited BASIC USR function to call routines by name as well as passins any variety of parameters.

Freseritly, TOFS can use uf to 2 tape urits. One of these may have editins features such as remote fast-forward, fast rewind, record, and plasback which are controlled throush the resident 6522 UIA. Tafes may be formatted to permit creation
and deletion of files (both frosram \& data) on tafe. With formatted tapes and usins a transfer rate of 2400 baud, e c60 audio tape can store uf to $254 k$ butes. We fresently use $4 K$ storase blocks to achieve this. If 1 K storase blocks are C90 or C120 simplest form. ToFs masy be used with one standard tare init which fermits the creation of sequential files such as those used in mailins lists. Ufdatins such files in a minimal SYM ssstem mas be accomplished bu usins 2 standard recordersy one for readins data and one for writins data.

Howevery to take full advantase of the 'IISK like features of TOFS, you do need a recorder with remote controls. The recorder must also be able to monitor the tafe while it is beins transforted TOF'S counts the inter-recorg safs to position the tiafe. We have inexpenisively modified addins solenoids to ferform the required functions. Jot cost, includins the recorder and our arse, jurk box, was about $\$ 65$. Hi-Fi decks are now beins marketed in Australia with the reauired features.

TOF'S allows sou to save all or contisous parts of ans BASIC frosram. The frosrams mas be re-loaded or re-loaded and affended complete with interleavins. This fart uses a technique sometimes called 'fast typist mode'. Fresentiy all prosrams and data are stored as ASCII rather than binary. The afrendins oftion is a very fowerful feature which permits self modification of prosrams which can be used to simulate batch processiris for really larse jobs.

LIata files can use one of two buffers, one of two drives, and may be referenced by name. The options are set once for each file, usually at the besininins of a erosram sesment and are then referenced by name only. That is, you 'SET' Charly, dat to the realired oftion and then 'OFEN and 'CLOSE' this file as Charly, dat' whenever you read or write to this file.

The file manaser of TOFS fermits ans lensth file riames as well as ans frintable sumbol. The only limitation is the storase caracits and gour willinaness to use lons file names. recall later Files may be deleted to make room for to aid material, and the tape contents may be displayed anu time

There are a number of 'convenience' features attached to TOFS which include a rather neat line editor which fermits easy chanse of BASIC source code. Ans individual symbol in any line may be addressed and chansed or deleted. A sreat time saver after sou discover an error in a lons line. Also new text may be inserted us to the lesal line lenstin. Line lensth is monitored and the SYM onboard beefer sounds whenever line lensth is over 60 characters. A null command entered in resfonse to an infut statement does not abort the prosram runi, Listins of lons prosrams mas be interupted and resumed by pressins one kes. The monitor mas be accessed and control returned to BASIC, asain by fressins one kes. Conversion to uffer case mas be disabled and restored as required.
would like to conclude with a BASIC source to
monstrate a tufical frosram to create a data file
 3FREINT"IOFEN'CHARLY, IAT'";REM \&rint all output to tafe AFRTNT"Uncle Charly's Mata File"
FFOR J=1 TO 100
GFREINT
7 NEXT
GFRINT!CLOSE CHARLY. LAAT':REM restore to normal
FFRINT"!ENI'CHARLY, CIAT"!FEM erIsure all soes to tafe 1OENG

Now save the frosram:
IFUT CHARL. Y. BAS
Now check the librars:
Anid SYM responds
CHARLY. IAAT CHARLY. FAS
C. If you are finished, tsfe
and all additions and deletions to the tape are saved on the tape.
TOF'S is rot firialized. There are still some minor bus sue to the size of the froject (about $4 k$ flus buffers). Also the codins has not been oftimized; our firstfrioritswas to set it workins, and not to conserve memoryg nor to gisflay our skill in writins machine lansuase prosrams. In fact I hofe that TOFS will never be firished. It is intended to be a development tool. There is ro dount that TOFs, tosether with other software now available, puts the SYM head and shoulders above personal. computers costins thousands of dollars more.

A UERY INEXFENSIUE EFFROM GURNER

Here is a portion of a letter from Joe Hobart, followed bs the hardware Here is a portion of a letter from Joe Hobart, followed bs the hardware
descriftion and software for a prommer which consists essentially of a socket, socket, an edse connector, a board, arid some wire! This is one more lustrion of now much power is elesant, too. Connection to the SMM-1 isal. The desisn fillosorhs is elesang the board when you are soins is only at the $A A$ connector just install the board when sou are solrs til use its My Seeak \& Seell interface is now 1 the other on the AA connector,

I wonder if it would be feasible to build an "AA Bus" and flus in all sorts of devices simultaneously, switchins between them at will? How should one select/deselect the devices? Would switchins the +50 do it? Or sroundins the +54 infut point? The idea of time-sharins a rumber of UIAs appeals to me much more than addins more VIAs. Anyone out there have the answer?

Buildins the EFROM prosrammer on a separate board at its own edse connector leads to the next losical step - buildins another board just to hold EPROMS and ROMS. This board would just contain a bunch of $24-$-in sockets wired in parallel. It could either plus irito the Expansion Connector, or into one of the existins ROM sockets, haver't
decided which get. No adoitional decooins is riecessary, sirice the號 ald This would be a niatural exterision of John Blalock's two-socket adartor for RAE-1/2. A further exterision would provide for redundant sockets with frosram controlled switchins between them! Switchins between FOR FOMS would then be easily implemented. Aris comments or sussestions alons these lines?

$$
\begin{aligned}
& 3465 \text { North Andes Drive } \\
& \text { 1lasstaff, AZ } 86001 \\
& 19 \text { Afril } 1980
\end{aligned}
$$

Dear Lux,
Here is an article on a 2516/2716 EFROM prosrammer for the SYM-1 The frosrammer is a joy of simplicity: U28 and U29 provide all sisnal resulated 250 supplu. I have had excellent results puttins Jack Grown reser termiral control eatch, tris furictions, ultrarenumber, and a tape directory at $\$ F 000$. I fresently have two versions: one for my $\mathrm{H}-19$ and one for the XITEX video terminals at work

My EFROM prosramins story is riot all roses. I bousht some surplus T.I. 2516 EPROMS in Fhoerijx. These IC's (all manufactured frior to 1979) showed leakase between adjacent memory cells. Apparently, TI did not test for this problem prior to 1979. I have had outstandins results with riew TI units. Unfortunately, I caninot afford Intel IC's.

I am willins to frosram EPROMS for others. For sou, there will be no charse; for others, I will charse five dollars for each EFROM frosrammed. I will need a tape of exactly what is to so on the EPROM. This could be bit of a problem as it took me three tries to correct all the addresses for my TCF. The problem is that I just do rot have any RAM at the F000 address where the EPROM soes. Fortunately, the real attraction of an

This prosrammer and associated frosram could be easily modified for 2532/2732 EPROM's. I do not think that the 32 K EFROM's flus directly into the SYM, however, so I have no flans to do this here. I have sent information on this prospammer to John Blalock and asked him to look into resisnins a board or fossibly an entire unit for EFROM prosrammins.

> Best resards, Joe Hobart (602) $779-2110$

AN EFRROM PROGRAMMER FOR THE SYM-1 - JOE HORART
The versatility of the SYM I/O ports provides an easy way to commit frequently used software to firmware. All the address and data sisrials are provided by $U 28$ and 429 throush the $A A$ connector. The only external reauirement is a resulated source of 25 volts at about 30 milliamperes. The only chanses to the SYM are to add a third 6522 at U28 and to bupass the buffer transistors $Q 1$ to $Q 4$ by installins a wire from the iriput point A to the restput point B on each buffer. Any other wires to these foints should be removed. This modification allows fort B of $U 29$ to function as both an infut and an outfut fort on all eisht lines.

I built the hardware in a few hours usiris a Radio Shack *276-156 disital breadboard, a 44 fin edse corirector with the termirials soldered to the finsers of the breadboard (so the connector will flus into the wire. The IC socket should be wired to the edse connector as follows:

SYM-PHYSIS 4-15

(3 PB2)
GROUNI (ALSO FOR 25 U SUFFLLY)
ATA 3 (3 FBB
GATA 5 (3 PBE)
IATA 6 (3 FB6)
(NOT)CE/PGM (3 FB7)
$\begin{array}{ll}\text { ADNR } 10 & (2 \mathrm{FB2}) \\ \text { (NOT)OF } & (2 \mathrm{CB2})\end{array}$
+25 VOLTS (0.1 CAF TO GROUNII)

+5 VOLTS (0.47 CAF TO GROUND

SYM-FHYSIS 4-17

1FE17-	C9	20		0990		CMF	*\$20	test flag			
15119	FO	07		1000		BEQ	LONE				
1FIEB-	A9	4E		1010		LIIA	\#\$4E	N			
1FILI-	20	47	3A	1020		JSR	OUT				
1 FEO-	10	05		1030		BFL	ONE	AL.WAYS			
1FE2-	A9	44		1040	IIONE:	LIIA	\#\$44	II			
1.FE4-	20	47	8A	1050		JSF	OUT				
1FE7-	A9	4 F		1060	ONE	L.LA	* $\$ 4 \mathrm{~F}$	0			
1 FEG-	20	47	8A	1070		JSF	OUT				
$1 \mathrm{FEC-}$	A9	4 E		1080		LIIA	\#\#4E	N			
1 FEE-	20	47	8A	1090		JSR	OUT	E	One	simple	method
1FFF1-	A9	45		1100		L. LiA	\#\$45				
$1 \mathrm{FF}^{-}$	20	47	8A	1110		JSF	OUT		for	Frovidins	the
1 1FF6-	20	41	83	1120		JSR	CRLF		+25	volts is th	three 9
1FF9-	00			1130		BRK			volt	batteries	5 in
				1140		. EN			seri	es with si	ilicor,
									diod		volt

LABEL FTLE: $[/=$ EXTERNAL $]$

10UT=8A47	/OUTEYT $=82 \mathrm{FA}$
/ACCESS=8E86	F'AGE $=1 \mathrm{~F} 1 \mathrm{~B}$
HF=1F24	WAIT $=1 F 38$
VERIFY=1F4A	FEEALY $=1 \mathrm{~F} 81$
$H E=1 F 8 \mathrm{~A}$	$\mathrm{NE} \times \mathrm{T}=1 \mathrm{FCL}$

> /CRLF $=834 \mathrm{I}$
> BYTE $=1 F 21$
> SKIF $=1 F 42$
> FEAIX $=1 F 87$
> DONE: $=1 F E 2$

Liries 80-110 of the prosram set the FGM lirie (U28 CA2) to arotect the EFROM, and then breaks to allow the oferator to turn or, the +25 volt power supfly. When G is entered, lines 130-390 transfer the data stored in memory locations $\$ 1000-\$ 17 F F$ to the EFROM. Lines 400-1130 verify the contents of the EFROM asainst the orisirial arosram and provide a listins of any errors.

This prosramer takes 50 milliseconds fer byte or about 102 seconds to completely prosram a 2 K EFROM. A fully erased EFROM has all the bits hish so this prosram skifs ans location in the data that contains FF. I routinely fill all spaces in my data with FF, so I can later add to the EFROM without havins to erase.

I have had excellent results with new T+I. 2516 EFROMS. As far as I know, they are amons the least expensive units available. I do stronsly recommend that all power be turned of when the IC is either installed in or removed from the prosrammer socket.

1F00 $20868 B$ A9 EC $8[1$ OC A8,07 $1 F 080020868 \mathrm{E}$ A9 FF 81103,70 $1 F 18$ AB AO 10 AC 00 AB $8 C 26, C 2$ IF20 IF $8 E 01$ A 8 RII 00 10 $\mathrm{C} 9, \mathrm{AE}$ 1F20 1F 8E 01 A8 RII 00 10 C9, AE
 1 F 382 C O5 A4 10 FE A9 EC $8 \mathrm{LN}, \mathrm{FI}$ IF 40 OC AB E8 IIO IIC C8 CO 18, II 1F48 no II $120 \quad 40 \quad 83$ A9 $45 \quad 20,78$ IFSO 478 A A9 522047 8A A9, IIE $\begin{array}{lllllllllll}1 F 58 & 52 & 20 & 47 & 8 A & A 9 & 4 F & 20 & 47,80\end{array}$ $\begin{array}{llllllll}1 F 60 & 8 A & \text { A9 } & 52 & 20 & 47 & 8 A & A 9 \\ 53, F 2\end{array}$ $\begin{array}{lllllllll}1 F 68 & 20 & 47 & \text { BA A9 } & 3 \mathrm{~A} & 85 & 00 & 20,6 \mathrm{~B}\end{array}$
 $1 F 78$ O2 AC A9 CC 8II OC A8 AO,60 $1 F 80 \quad 10 \quad 8 \mathrm{C} 8 \mathrm{C}$ 1F 8C 00 A8 $8 \mathrm{E}, 69$
$1 \mathrm{~F} 88 \quad 01 \mathrm{AB} \mathrm{BD} 0010 \mathrm{CLI} 00 \mathrm{AC}, 58$ 1 F90 FO 3 B 489820 FA $82 \mathrm{BA}, 89$ 1 F98 20 FA 82 A9 202047 BA , DF $\begin{array}{lllllll}1 F A O & A D & 00 & A C & 20 & F A & 82 \\ \text { A9 } & 20,9 I I \\ 1 F A B & 20 & 47 & 8 A & A 9 & 56 & 20 \\ 47 & B A, 7 E\end{array}$ 1FAB 2047 8A A9 562047 BA, $7 E$ 1FBO A9 492047 8A A9 43 20,6I $\begin{array}{lllllllll}1 F B 8 & 47 & 8 A & A 9 & 45 & 20 & 47 & 8 A & \text { A9,C6 } \\ 1 F C 0 & 20 & 85 & 00 & 20 & 47 & 8 A & 68 & 20, E 4\end{array}$ $\begin{array}{lllllllll}1 F C O & 20 & 85 & 00 & 20 & 47 & 8 A & 68 & 20, E 4 \\ 1 F C 8 & F A & 82 & 20 & 41 & 83 & \mathrm{E} & \mathrm{IN} & \mathrm{B7}, \mathrm{BF}\end{array}$
 $\begin{array}{llllllll}1 F D O & C 8 & C 0 & 18 & \text { L1O } & \text { AC } & \text { A5 } & 00 \\ C 9,49 \\ 1 F D 8 & 20 & \mathrm{FO} & 07 & \text { A9 } & 4 \mathrm{E} & 20 & 47 \\ 8 A, 4 B\end{array}$ $\begin{array}{lllllll}1 F E O & 10 & 05 & A 9 & 44 & 20 & 47 \\ 8 A & A 9, E 4 \\ 1 F E S & 4 F & 20 & 47 & 8 A & A O & 4 E \\ 20 & 47,82\end{array}$ $\begin{array}{llllllll}1 F E O & 10 & \text { AS } & 44 & 20 & 47 & 8 A & A, 18 \\ \text { 1FE } & 4 F & 20 & 47 & 8 A & A 9 & 4 E & 20 \\ 47,82 \\ \text { 1FFO } & 8 A & \text { A9 } & 45 & 20 & 47 & 8 A & 20 \\ 4 I 1,58\end{array}$ $\begin{array}{ll}\text { IFFO } 8 \text { A } & \text { A9 } 45 \\ \text { IFF } & 83 \\ 00, \text { DB }\end{array}$
69 DB

The followins letter and BASIC prosram describe a riovel method of handlins data files in EASIC. You will have to work out your own methods of deletion and updatins. This should be not too difficult wit ideas alons these lines.

An added borms are the excellent examples of how to make sood use of the multiparameter passins capabilities built into BAS-1. (I have seen no other Microsoft BASICs with this festure; do youkriow of any which do?) Also shown is a very inserious method for ensurins that USk will returr the correct value (to make up for a "bus" in EAS-1).
Here are some farameter values which mas helf you in your analysis of the prostam:

LIEC	HEX	LABEL
42570	$=\$ \mathrm{~A} 64 \mathrm{~A}$	F3L
-31245	$=\$ 85 \mathrm{~F} 3$	L.21B+4
-32400	$=\$ 8170$	ERMSG-1
-11957	$=\$ \mathrm{LI} 14 \mathrm{~B}$	FETURN-1
-29049	$=\$ 8 \mathrm{E} 87$	IULMF'T

Note that POKE requires positive intesers above $\$ 8000$, while USR reauires nesative intesers.
April 27,1980
Dear Iir. Luxenbers,
Ever since I sot FASIC runnins on my SYM, I wondered how I could best handle Datafiles. John Blalock now frovides a partial ariswer by showins how to save and load all data residins in SYM at one time (s.
MICRO 23:21). However, what I am still after is a convenient way in which one can manipulate data records under control of BASIC prosrams.

By now I have tried several approaches and - even thoush still lookins for a better way - find that a few BASIC statements supforted orily by existins MON and BAS subroutines can frovide a halfway decent HS tape handins capability. For froduction runs you can do wtih only six erosram linest the attached listins is expanded by remarks.

The basic afproach is this: The tof fase in RAM serves as I/0 Buffer. USR-calls to the Monitor save or load the buffer, while BASIC prosrams access the area with FPEK or POKE. All this is accomplished by two takes the strins To handed to it by the main frosram, transfers its contents to the buffer and calls the monitor to write it on tape with an II eaual to $T I$ (determined by the mairi prosrami). The Tape Fead subroutine startins at line 2000 takes the II (TI), causes the appropriate record to be read by the monitor and hands its contents to the main prosram as strins T\$.

The commented version of the prosram should explairitself, except for the USR call in line 2000: In frinciple, the call is to location -31245 or hex $85 F 3$ which sets us to the LOAI, HS FMT, 1 FARM eritry of MON 1.1 , The first parameter of the call (0) is not used. When trying to return, by one and seres that as "return adoress". This sets us to hev 8171, the ERMSG entru of MON 1. Now if there has been an error duriris read, the ERMSG entry of MON 1.1. Now if there has been an error dilinis read, the carry is still set and an approfriate error messase will be frinited. Ufon return the third farameter is found and coritrol soes to hex illac, a
subroutine in BAS which makes the contents of A,Y available to

SYM-PHYSIS 4-19
subsequent BASIC frosram steps (Note that there is this flaw irl BASIC U1,1 which reauires you to JMF or JSF to $[14 \mathrm{C}$ when you warit to fass a parameter from a machine lansuase subroutirie to a EASIC prosram).
Finally the return to BASIC is made.
The value of USF at that time hafferis to be fositive if the tafe-read was successful (CHKH, the HI fart of the checksum of a short recors is alwass positive), while practically all error conditions result in a nesative value (exception: 2F, the "last character not '/'error", which by way of ERMSG at least know that somethins is wrons). In case of error then, line 2010 is executed fully; normally we froceed to 2020.

I'd hofe that all this or at least the trick with the extra farameter -11957 can be of helf to someone. It would have saved me a few hours had I known earlier about it.

I'd be interested in hearins from others tryins to imflement BASIC mata Files.
Sincerely,
Haris W. Gschwind
BASIC IIATA FILE HANILER - HANS W. GSCHWINI 30
Sindelfinser Weas
7250 Leonbers 7
West Germans
MR. GSCHWINI'S FRINTER USEE A TWO COLOR FIEBEON, SHOWING USER ENTRIES IN RED. WE HAUE USEI UNDEFLINES TO SHOW USER ENTRIE.S.
MEMORY SIZE? 3840
MEMORY
3327 BYTES FREE

COFYRIGHT 1978 SYNERTEK SYSTEMS CORF.
OK
$\begin{array}{ll}\text { LOAD } \mathrm{F} & \text { THESE LINES ARE THE "KEY" TO THE FROGRAM: } \\ \text { LOADED } & \text { UNDERLINES INDICATE FARAMETERS TO BE. } \\ \text { OK } & \text { CHANGED IF MORE MEMORY IS AUAILABLE. }\end{array}$
1000 FORI=1TOLEN(T\$):FOKE3839+I, ASC(MIL\$(T\$, I, 1)) :NEXT
1010 POKE42574,TI \$FOKE42573,15:FOKE42572,O:POKE42571,15
1020 FOKE 42570 ,LEN(T $\$) \div Q=$ USR $(-29049,128):$ RETURN
2000 T $\$=\because$: \cdot FOKE $42570, T I: Q=U S R(-31245,-11957,-32400,0)$
2010 TFQ OTHENPFINT" BACK TAFE ANI CONT ":STOP:GOTO2000
2020 FORI $=3840$ TO3839 + PEEK (254) $: T \$=T \$+$ CHR $\$($ PEEK (I)) :NEXT:RETURN

OK

$\frac{\text { LOAAI } S}{\text { LOADIEII }}$
OK
IST REMARKS HAVE REEN ADIELI TO THE "KEY" BY WAY OF EXFLANATION:
991 REM
992 REM ***** TAFE HANILING SUBROUTINES FOLLOW *****
993 REM LAST FAGE OF $4 K$ SYM SERUES AS I/O BUFFER
994 REM LIMIT MEMORY SIZE TO 3840 AT START UF'
995 REM

996 REM ******** TAPE WRITE SUBRDUTINE *******

997 REM ENTER WITH TI $=$ RECORLI II AND
998 REM $\mathrm{T} \$=$ CONTENTS (UP TO 255 CHARACTERS
999 REM FIRST DUFLTCATE T\$ TN I/O RUFFER:
1000 FORI $=1$ TOLEN(T\$) :FOKE $3839+1$, ASC (MIN (T\$y, I, 1)) :NEX
1008 REM NOW FOKE RECORII ILI, START-- ANI ENI AOLIRESS
1009 REM THEN CALL MONITOR TO SAVE BUFFER. FINALLY RETURN:
(0)
(T) $0=$ USR ($-29049,128$):RETURN

1995 REM
996 REM ******** TAFE READ SUBROUTINE ********
997 REM ENTEF WITH TI=RECORD III TO BE REALI
1998 REM SUBROUTINE RETURNS T\$ TO MAIN PROGRAM
1999 REM CLEAR STRING T\$, FOKE RECORII II, CALL MON TO LOAI:
$2000 \mathrm{~T} \$=\cdot \cdot$: POKE $42570, \mathrm{TI}: \mathrm{Q}=\operatorname{USR}(-31245,-11957,-32400,0)$
2009 REM NOW FROUIDE FOR RECOUERY FROM REAII ERROR:
2010 IFQ OTHENFRINT". BACK TAFE ANII CONT ":STOF:GOTO2000
2019 REM FINALLY RECONSFUCT STRING T\$ ANII RETURN:
2020 FORI $=3840$ T03839+FEEK (254) $: T \$=$ T $\$+$ CHR $\$($ FEEK (I)) :NEXT:RETUFN ок
LOAD T
0 K
HERE: IS A IIEMONSTRATION FROGRAM ILLUSTRATING HOW THE
LIST "KEY" MAY RE USEII

10 PRINT:PRINT"ADNRESS FILE': FRFINT
15 REM INTENUEII ONLY AS EXERCISE IN
20 REM HANDLING OF MAG TAFE IN SYM BASIC
24 REM $* * * * * * * *$ GENERATE FTLE $* * * * * * * *$
35 REM ******** GENERATE FILE ********
40 A $\$=$ CHR $\$(013)+$ CHR $\$(010)$: REM CRLF (USEII REFEATEIL.Y)
50 INPUT "ACCOUNT? (* TERMINATES FILE) " $\ddagger 1 \$$
00 IFA1 $\$=$ ** ${ }^{\circ}$ GOTO120:REM GO TERMINATE FTLE
O IFA1\$="*"GOTO120:REM GO TERMINATE FIL
INPUT"NAME? ' \ddagger A2\$
90 INPUT"TOWN, STATE? ; A4\$,A5\$
100 PRINT:T $\$=A 1 \$+A \$+A 2 \$+A \$+A 3 \$+A \$+A 4 \$+", \quad+A 5 \$: R E M C O M F O S E T \$$
110 TI=2:GOSUB1000:GOTO50:REM WFITE T\& ONTO TAFE ANL GO BACK
120 T\$="**:GOSUB1000:REM WRITE EOF
130 PRINT:FRINT"FILE TERMINATEII"
134 REM
135 REM $* * * * * * * *$ FRINT FILE $* * * * * * * *$
40 INFUT"SET UF TAFE FOR FLAYBACK. THEN TYFE GO "乡A1\$
$150 \mathrm{TI}=0$:GOSUB2000: REM READ NEXT RECORO (I,E.T\$) FROM TAFE 60 IFT $\$=$ "*"THENFRINT:PRINT"END OF FTIE":END
170 REM
992 REM ***** TAFE HANILING SUGROUTINES FOL OW ****
992 REM ***** TAFE HANILING SUBROUTINES FOLLOW **
993 REM LAST FAGE OF 4 K SYM SERUES AS I/0 BUFFER
994 REM LIMIT MEMORY SIZE TO 3840 AT START UP
995 REM
996 REM $* * * * * * * *$ TAFE WRITE SURROUTINE $* * * * * * * *$ 997 REM ENTER WITH TI = RECORI ITI ANII
998 REM T\$ $=$ CONTENTS (UF TO 255 CHARACTERS)
999 REM FIRST DUFLICATE T\$ IN I/O BUFFER:
1000 FORI $=1$ TOLEN (T $\$$) :FOKE3839 +I, ASC (MIL $\$(T \$, I, 1))$) NEXT
1008 REM NOW FOKE RECORDI ID. STAFT-- AND ENH ADDRESS
1009 REM THEN CALL MONITOF TO SAUE FUFFER. FINALLY RETURN:
1010 POKE 42574,TI:POKE42573,15:FOKE42572,0!FOKE42571,15
1020 FOKE42570,LEN(T\$): $\mathrm{Q}=\operatorname{USR}(-29049,128)$:RETURN

1995 REM
996 REM ******** TAFE REAL SUBROUT NE
1998 REM ENTER WITH TI=RECORII ID TO BE REAI
O.

2009 REM NOW FROUIDE FOR RECOUERY FROM READ ERROR
2010 TFQ OTHENPRINT". BACK TAFE ANO CONT ":STOF:GOTO2OOO
2019 REM FINALLY RECONSRUCT STRING T\$ ANI RETURN:
2020 FORI $=3840$ TO3839 + FEEK $(254): T \$=T \$+\operatorname{CHR} \$($ PEEK $(I)) \div$ NEXT:RETURN OK

RUN

AMORESS FILE
SET UF TAFE FOR RECORDING

ACCOUNT? (* TERMINATES FILE) 001
NAME? SYM-1 USERS' GROUF
STREET? F. O. BOX 315
TOWN, STATE? CHICO,CA 95927

ACCOUNT? (* TERMINATES FILE) OO2 NAME? SYNERTEK SYSTEMS CORFORATION STREET? 150 SOUTH WOLFE ROAD
TOWN, STATE? SUNNYUALE, CA 94086
ACCOUNT? (* TERMINATES FILE) 003
NAME? MICRO TECHNOLOGY UNLIMITEE
STREET? F. 0. BOX 12106
TOWN, STATE? RALEIGH,NC 27605
ACCOUNT? (* TERMINATES FILE) *
FILE TERMINATED GET UF TAFE FOR FLAYBACK. THEN TYPE GO go
001
SYM-1 USERS' GROUF
F. 0. BOX 315

CHICO, CA 95927
ER FF. BACK TAFE ANI CONT
GREAK IN 2010
OK
CONT
A TAFE REALI ERROR WAS DELIBERATELY FORCED AT THIS POINT, BY STOFFING TI UUSTRATE HOW TAFE READ ERRORS ARE HANDLEL

002
SYNERTEK SYSTEMS CORFORATION
150 SOUTH WOLFE ROAI
SUNNYUALE, CA 94086
003
MICRO TECHNOLOGY UNLIMITEI
F. O. FOX 12106

RALEIGH, NC 27605

END OF FILE

KTM-2's after Serial No. 0733 can be ufsraded to 80-columin cafabilities. The process involves clearins out flussed solder holes, cuttins one trace, wirins one jumper, solderins in five dip sockets, and to make the modification, contact bob Myers (address below) for additional information and prices on the ufsrade kits. Incidentally, the -2/80 can be "switched to a 40 column display whenever you need, or wish, to use a standard TV receiver throush an RF modulator.

We have been in teleghone touch with Bob about this and other matters, these past many months, and he has sent us a number of BASIC subroutines which would be useful in a "bookkeepins" packase. Instead of just sivins his addressy we're publishins his last letter to us, which contains an interestins free offer:

Boh Myers
109 Fire Lan
109 Fire Lane
North Cafe Mas, NJ 08204
Home 609 884-0422
Work 609 522-7781 Ext. 250
15 Мау 1980
Dear Lux,
A freebie for the SUG. Because I learmed to count in octal way back when, I still think "HEX" is a curse. To that end I have done somethins useful with my SYM-1. I took an old number base conversioni frosram and added some parts to make it print up a list of the decimal and hex boundaries for each $1-K$ bste block of memory.

The size has been reduced so that it will fit inside the front cover of the SYM-1 Reference Manual (or anywhere else the same size).

Any Dctalmaticians (we that cari count without usiris our thumbs) or other SUG members who would like a copy or two can have thenl by sendins me a self-addressed and stamped enveroret if thes want a fifteen cents stamps (or the equivalent in international postase).

The whole works is on four sheets of $81 / 2$ bs 11 faper for one chart and the prosram

Sincerely,
Bob Myers
F.S. A couple of post scrifts:

1. If anisone wants an example of how not to frosram, thes set that free with the frosram. It was a kluse job to besin with. Wherl I sot done addins all the neat touches it brousht niew meanins to the Easic "wend while" command. (Or perhass "wend all the while").
2. Ain't Carl Moser's SWF-1 GREAT!

RAM

(Editor's note: That 'RAM' at the end of the letter is Bob's initials!) MORE ON SWF-1

Some of our contributors are besininim to submit their articles on cassettes, in RAE-1 format. This makes the task of editins for publication so very much simpler, we transfer from cassettes to SWP frocessins. SYM-PHYSIS 4-23

So that you cari see how this is done, we fririt below, in "roush draft" form, portion of the introductory Farasraphs to Mr. Gschwind's article (which afpears ori ease 4-19). We have thrown in some comments
(followins the macros , ") explaining how SWF-1 may be used more (followiris the macros , ") explaining how SWF-1 may be used more foln Now, when our contributnow selves, editins will becone a very minior task!

M $073 \quad 651$
NOF ILL
HANILING BASIC IIATA FILES \& MULTIFARAMETER USF FUNCTIONS

The followins letter and BASIC frosram describe a novel method of handlins data files in EASIC.
you will have to work out your own methods of deletion and updatins.
This should not be too difficult with a two recorder system.
The demonstration frosram should sive you mans ideas alons these lines.
Here are some parameter values which may helf you in sour analysis of the frosram:

- Note how the "tabulatins" mode is entered and exited here
- Ordinars text is entered as you would ordinarily eniter it, and the

ốditins "macros" are enitered later.

- In data which is to be tabulated use " $"$ instead of space.
- Note that there is no need to try to make line lensths balance, and it
\hat{y} is a sood idea to besin each sentence on a new line.
- This makes for easier editins, and fermits you to use the RAE >MOVE
- Acommand to rearranse senterice order if desired.
- One of the enhancemerits most needed in SWF-1 (SWF-2?) is the addition ;of a TAB macro of the form. TAB N1 N2 N3 N4, responinins to the TAB ik.es (CONTROL I)
. M 15
- NOFILL
- DECLL
$29049=\$ 8 E 87$ mann DUMF T
-M 0
-JUST
Note that FOKE requires positive intesers above $\$ 8000$, while USR requires nesative intesers.

PRINTER INTERFACING

The three most common tupes of printer interfaces are throush the RS-232 port, the 20 mA loop, and the Centronics Parallel Interface. The SYM-1 implements the first two interfaces, providins both the necessary hardware and software, at least for that class of printers which print each character 35 it is received, and the SYM allows for frovidins pad bits with each carriase return transmitted (the default

The DECwriter II, which we are usins, handes the carriase return delay by storins characters in a buffer, then frints them at a hisher rate, in a catch-up mode, returnins to the lower rate when it has causht up. The PADBIT value of $\$ 01$ is larse enoush so that the DECwriter never uses the catch-up mode. By a simple modification, costins around $\$ 3.00$ for parts, the DECwriter can be persuaded to oferate alwass at the catch-uF rate, with no damase, since it was actually desisned to handle the hisher rate, Thus the new "normal" rate for the DECwriter is now 600 baud, not 300. We save uf the 150 rate, and still have the 110 and 300 rates for use with our timeshare modem

SYM-FHYSIS 4-24

The SYM-1 can orive the KTM-2 (or any other terminal) at 4800 baud. If your printer has a lower maximum baud rate, it can not be driven from the frinter alxilliars fort on the KTM-2, unless you lower the rate on the frinter throush the 20 A rate independently. We have written can be set to its own baud ativins either the CRT alone or hoth erinter and CRT fatch which fermits Arother class of frinter can be driven at ans baud rate uf to 9600 baud, but all characters are buffered, and not frinted uritil a carriase return (\$0n) is received. An additional line between SYM and the printer is reauired to monitor the. "Frinter reads" status, and handshakins software is reauired to delas further data transmission until the fririter sisnals that it has completed its carriase return and is reads for more data, We have software for this type of pririter too.
The Centronics interface is easily inplemented throush one of the "spare" 6522 UIAs, and, yes, we also have the software driver for this. We are not makins ans 'brand name' recommendations, nor do we frefer ans one ture of interface to another. Many of the frinters on the market mizy provide two, or all three interface options, and you can select the select, if you have ans software ayes orinter or interface option sou select, if you have any software Questions, phone or write (please data and/or softwere wo wo mith the riecessary ata and/or software at no cost.
AFPLES UERSUS ORANGES (continued from pase 2)
I am sure many of us, durins periods when SYM has frustrated us, wish we had sotten the Apple instead. But, when my SYM is doins its thins, and doins it well (which is better then 99.9% of the time, once the early cassette, problems were solved), I am fleased with my choice, and the added pride of havins raised my SYM to be what I wanted it to be,

Because friends occasionally do ask us for a comsarision, or a recommendation, we did compare the two systems for cost and effectiveness. If there is room left in this issue (hishly unlikely) we will publish same amount of money outfut, the sym-i can lead to a better customized" same amount of mones outfut, the SYM-1 can lead to a better customized"
system, and, if you credit the value of the hours you have spent to the system, and, if sou credit the value of the hours you have spent to the cost standpoint. We'll discuss the software situation in the next issue.
RANDOM FILES
WE WILL be teachins a weekend course on Microprocessor Systems for the University of California at Davis (just west of Sacramento), on the weekend of December 5-7, 1980. All participants will receive a SYM-1, fee will be around $\$ 475$; for further information, contact Garrett Jones, UC Havis, Davis, CA 95616 , (916) 752-2177.

WE HEAR that a really nice enclosure for the KTM-2 (and /80) will very soon be available from an indesendent source. We'll publish frice and soon be available from an indes

WE HAVE a very heavy teachins, travelins, research, and lecture schedule planned for this fall; also we are committed to deliverins the manuscrift for the second edition of our McGraw-Hill (1968) book (with R. L. Kuehn), "Display Systems Ensineerinsy" to our riew publisher by sear's end. This mas delas Issue $\# 5$ (September/october) for awhile. If September/October/November/necember) somewhere in the midde of that four month feriod!

SYM-FHYSIS 4-25

ONCE THIS issue soes to press (and then to the fost office) we will have enoush time (?) to install and evaluate FORTH and tins c (a subset of C, a Fascal-like lansuase). We have studied the manuals and are anxious to mack Erown has nearly comeleted his own enhanced version of SYM FORTH. oth lansuases have very effective Users. Groues for erosram exchariges.

THERE ARE at least a few score SYM users in Australia and New Zealand. Johri F. Newman, 1/14 Marine Fde, St. Kilda, Vic, 3182, Australia, has evpressed an interest in formins a "local" SYM Users' Grour.

OUR COMPUTER room wall has a sallery of shotos sent in by readers, showins how they have paskased their SYM systems. What diversity, what imasination, what insenuity! And some of the SYM applications described to us are almost unbelievable.
WE PLAN to set out RAE NOTES No. 3 by the end of July. These notes will provide the detailed fases zero and one memory maps, as promised. We hofe to include information on how. CT (continue on tafe), and the Relocatins Loader can be modified for Disk. Dferatins Systems.

WE ARE very much interested, and so would our readers be, in hearins more from you about interfacins sym to Disk Sustems.

HARDWARE RECOMMENIATIONS

We are usins the "First Mate" prototyping sustem, desisned by Richard Tursin, and marketed throush MicroMate, F. O. Box S0111, Indianarolis, IN 46256, for all of our experimental interfaces to SYM. The board mounts risidly to SYM on nulon standoffs fittins into existins holes on the SYM board, without blockins the keyfad and displas. We do like it!

Dick's newest product, which we have not seen yet, is the ColorMate PC Board, a color video board for the SYM. The Colormate Board, with full cocumentation, will sell for sso.00. The Colormate is desisned around
 $61 / 2$ inch circuit board, requires a sinsle 5 volt supply and interfaces
directly to the Expansion connector. It provides nine modes of operation ransins from 192×128 full srafhics to 16 row by 32 columr alphanumerics, and uf to nine colors plus reverse video. Write Micromate for more details. Shades of the Apple, full color from SYM!

SOFTWARE RECOMMENDATIONS
We have been reviewins a number of prosrams distributed by THE 6502 FROGRAM EXCHANGE, 2920 Moana, Reno, NU 89509, and sussest that you write for their newest catalos. Flease send $\$ 1.00$, US/Canada, $\$ 2.00$ overseas. Two prosrams, in particular should interest many of you. These are a SYM version of Feter Jenninss' Microchess for KIM, ursiaded to use a terminal display (much nicer then the keypad), and HUEY. The latter is a revised version of a prosram first published in KILOBAUN, lecember 1977. With HUEY, your SYM/Terminal combination can be made to emulate a prosrammable pocket calculator. That is, of course, quite a step down and backwards from BAS-1, but HUEY is worth havins for one important reason. Haven't you ever wondered how those pocket calculators are prosrammed, and what kinds of alsorithms they use internally for arctan, los, x to the y power, etc.? HUEY will fully educate you alons those lines. Well worth the cost.
The EXCHANGE also offers a number of hisher level lansuases for SYM. These include FOCAL, XPLO, and TEC (a Text Editor). We plan to review these in the next issue; our prelimina

SHOFPING LIST ADDENDUM

All prices given below are now obsolete, Flease use frices on the most recent issuen "Chorfins List".

WE HAVE A LARGE NUMBER OF KTM-2/8OS ON HAND FDR IMMEDIATE LIELIUERY CONTACT US FOR SPECIAL SUMMER SALE PRICES.

WE HAUE MADE A SPECIAL BUY ON 2114 (450 NS) MEMORY CHIPS,
SALE PRICE $\$ 5.00$ EACH POSTFAID US/CANAIIA. OVERSEAS FLEASE ADII $\$ 1.00$ TO EACH TOTAL ORDER FOR AIRMAIL.
WE MADE A LARGE FURCHASE OF MTU DAC MUSIC BOARDS (INCLUNING HARIWWARE MANUAL, SOFTWARE, AND CASSETTE) AND ARE OFFERING THE FOLLOWING REDUCED PRICES, FIRST CLASS/AIRMAII:
$\$ 46.00$ US/CANADA, $\$ 47.00$ EUROPE, $\$ 48.00$ ASIA/PACIFIC.
NEW ITEMS (OLD ITEMS ARE ON THE BACK PAGES OF ISSUES 1, 2, AND 3) BOB PECK, AUTHOR OF THE "SYM/KIM APFENLIX TO THE FIRST BOOK OF KIM," AND THE "SYM-1 HARDWARE THEORY OF OFERATIONS MANUAL," REUIEWED IN EARLIER ISSUES, HAS A NEW AND EVEN MORE USEFUL BOOK, THE "SYM-1 MONITOR THEORY OF OPERATIONS MANUAL,' WHICH DESCRIBES THE FEATURES OF MON 1.1 , AND THE USE OF ITS SUBRDUTINES. THE "MONITOR MANUAL" IS AUAILABLE THROUGH THE USERS' GROUP FOR $\$ 8.00$ F'OSTF'AIII US/CANADA, $\$ 9.50$ AIRMAIL OUERSEAS.
COPYRIGHTS AND COFYING "RIGHTS"
time value printed matter
As noted in the masthead, clubs, educational institutions, and other nonprofit orsanizations may freely reproduce and distribute any fortions of SYM-PHYSIS.

It is probably safe to assume that this is beins done, not only with SYM-PHYSIS, but with the software offered by the SYM-1 Users' Grour. Now, two or three or four copies seem "fair" under the copyrisht laws. We ourselves share purchased software occasionally with at most one of of-purchase. Thes occur spontaneously, durins technical discussions, when we are actually workins tosether with the software, and problems arise on its use, On the other hand, purchasins one copy, with the intent of makins ten or twenty or fifty duplicates for distribution does make it seem like the orsanization or srous is in the republishins business on the side.

May we sussest that if you flan to make five or more cosies of software cassettes and listinss, and are a club devoted to the furtherance of or buy at least one cosy for each five members? That way you set an 80% discount, and still can feel that you are doins your bit to encouras the production of hish-quality, low-cost software for the SYM-1.

BLALOCK PRICE INCREASE
The prices for the 4 K Memory Board and the Double ROM Chif Holder for RAE-1/2 have been increased to $\$ 8$ and $\$ 16$ respectively. Blalock's correct address is on fase 3-27.

ERROR CORRECTION
JOHN VALENTE of Marlboro, UT, was the first to point out that we had mislabeled the pins of the 4050 chis on pase 3-24. To correct the drawins, interchanse the pin number pairs as follows: 7 and 6 , 5 and 4 ,
3 and 2. Sorry about that!

SYM-FHYSIS 4-27

