

ISSUES NUMBERS 5 \& $6-$ SEPTEMBER/OCTOBER/NOUEMBER/DECEMBER 1980

SYM-FHYSIS is a bimonthly publication of the SYM Users' Grous, P. 0 . Box 315, Chico, CA. 95927, SYM-FHYSIS and the SYM Users' Group (SUG) are in no way associated with Synertek. Sustems Corforation (SSC), and SSC has no responsibility for the contents of SYM-PHYSIS. SYM is a
resistered trademark. of SSC, SYM-FHYSIS, from the Greek, means the state of srowins tosether, to make srow, to brins forth.
We welcome for publication all articles dealins with ans aspect of the SYM-1, and its very close relatives. Authors retainall commercial copsrishts. Fortions of SYM-FHYSIS mas be reproduced by clubs and educational institutions, and adartations of prosrams for other computers may be freely published, with full credit siven and complimentary cories provided to SYM-FHYSIS and the orisinal author(s). Flease include a self-addressed stamped envelofe with all correspondence.

> Editor/Fublisher: Publisher/Manaser: Associate Editors
H. R. "Lux" Luxeribers

Thomas Gettys, Jack Libers

SUBSCRIFTION RATES:

USA/Canada $\$ 9.00$ for Issues Numbers 1 throush 6; overseas airmail \$12.50, payable ir US dollars to 'SYM Users' Group, "F. D. Box 315, Chico, CA 95927, Telefhone (916) 895-8751.

The Introductory Issue, Number 0 , dated Sertember 1979 , is not fart of the first year's subscription, but is available separately, postraid first class or air mail, for $\$ 1.50 \mathrm{ir}$ USA/Canada, $\$ 2.00$ elsewhere.

COMMENTS ANI REMARKS

This double issue marks the end of our first year of publication as a bimonthly. Many of our readers reauested that we su monthly....No way!!! Our own inclination was to drof the newsletter entirely, and to retire to a subtropical paradise
necessary power to oferate a sym.

Computer newsletters seem to have short (but merry?) lives. Eric Kehrike's KIM-1/6502 USER NOTES did not quite make it throush its third sear. Eric is now with Rockwell International, editins their in-house newsletter, INTERACT, for the AIM-65, we read it resularly, for any doas which we can Fossibly assymilate into our own ssstems. UIFER, the newsletter for the RCA COSMAC VIF (Versatile Interface Processor, an Fet Gazette also had a short life span. Fortunately, compure. is carryins on with the mission of these newsletters.

Well, we're not yet reads to quit, thoush we do feel mishty tired at times, so we'll try for another year. To ease the frequency of the fain
somewhat, while possibly increasing its intensity accordinsls, we wil 3o Quarterly. Insted of 24 pases six times a year, SMM-FHYSIS will be 36 pases, four times a year. Ans advertisins materials will be on extra wases, and no editorial material will be sacrificed.
We afpreciate the many letters and telephone calls which we have received, thankins us for the services frovided by the Users' Grous, These kind words do make our efforts seem worthwhile, and provide the incentive to continue, we are now orily about a month benind in our Cores months late on RAE NOTES No. 3. At least, we are able to keer UF with wour telephoned puestions!

Incidentally, if ansone is frefarins an index (for personal use) in FAE format, on cassette, of the miaterial in Issues 0 throush 6 , we would be pleased to publish it in Issue 7 ; we're sure other readers would also aFFreciate it.
SYM AS A FERSONAL COMFUTER \& THE EIUCATIONAL/ACADEMIC MARKET
GYM-1, like many other sinsle board computers, was intended to serve primarily as a simple, versatile, relatively inexpensive, sustem test and evaluation vehicle, and as a "learnins sustem" for the particular family of chifs sourced by its manufacturer.

As was the case with several other sinsle board comfuters, users Ruickly realized that SYM could form the basis for a fowerful "personal" computer; fersonal, not only in the sense that it is personally affordable, but because it can be "fersonalized" to match the user's needs, and personality. As of this writins, there are about 20,000 SYMs out there, and we have about 1000 subscribers. Many of our subscribers have more thari one SYM, and many non-subscribers read borrowed copies. SYM-PHYSIS thus reaches at least 5% of the SYM owners, and perhars as mans as lak. than could ever have been forseen. in far more sofnisticated wass than could ever have been forseer.; for for infig
add

The only major accessories or expansion products marketed by Syriertek Systems Corporation which are priced at the fersonal computerists price level are BAS-1, $\operatorname{RAE}-1$, and the KTM-2s (now, also the -35). As is the case with Affle, Pet, TRS-80, etc., numerous entrepreneurs are providins SYM compatible accessories and exparisions at frices far lower than the "orisinal source" can frofitably meet at low volume. Sunertek Systems sees its major market as the larse volume, OEM/Industrial user, not the educational/academic or fersonal ssstem user, and has oriented its marketins and customer supfort services accordinsly, as mariy SYM owners are discoverins. Where then, are the non-DEM/Industrial users to find the technical (both software and hardware) support for their sustems?
The oftimum suffort that a computer manufacturer can provide for its educational/academic and fersonal systenl customers is to support a users' srous, which can then frovide a vehicle for "self-support." We Peel that Synertek. Systems is frovidins us (as the Users' Group) all of continue to increase as we continue to erove that we, in turn, are passins this support on to SYM users. In short, we believe that SSC is providins excellent, and ani increasins amount, of user supfort, throush their surfort of the SYM Users' Group.

We feel that the educational/academic market for sustems built arourid the SYM-1 : BAS-1 : RAE-1 : KTM-2/80 nucleus is far sreater thar (continued on pase 5/6-24)

UERY CHEAF EFROM ERASER
In BYTE, Vol.2, No, 1, Januars 1977, mary years aso, Lawrence Burbes described how to 'Build the "Coffee Cari Special" EROM Eraser.' We can sussest an even cheaper approach; skif the coffee can!
Nearly four weeks after we asked our local appliance dealer to order some for us, we received three of the Sulvaria 4 W Germicidal Lamps, Tsfe B. These lamps are less than $1 / 2$ inches in diameter, and require ari adaftor (their base is like that of an outdoor christmas tree lamp,
known as "Intermediate") to fit into a standard lamp socket. We obtained two wall mountins lamp sockets and wired them in series, fut and 25 W lamp in the other. The 25 W 1 mm slowed the sfe b in one, and Type B lamp besan to slow after a few seconds of warm-us time. The series lams is required for current limitins, otherwise the Type b will Series lamp is required for current limitins, otherwise the type B will
go poof: and probably spread mercurs vapor all around. The 40 W seemis So "poof and probably spread mercury vapor all around. The 40 W seems
risht, so I didn't move up to a bo. The Type B ran very cool, so I placed a "loaded" (incorrectly) 2716 EFROM directly on tor of the 1 amF. After 10 minutes the EFROM read all $\mathrm{FF}^{\prime} \mathrm{s}$ when checked out in the SYM.

No, I didn't use the coffee can recommended by Burbee, nor did I use the pair of bread-bakins tins recommended (for eye-safety) by L. B. Golter in 'Build a Low-Cost EfROM Eraser,' EYTE, Afril, 1980. The corrusated paper in which the Type B lamp was wrapped had the followins warnins:

$$
\begin{aligned}
& \text { The eses and skin should be protected from the } \\
& \text { direct rays of this sermicidal lamp. Ordinary } \\
& \text { window slass, ofarue materials, or clothins are } \\
& \text { adequate protection. }
\end{aligned}
$$

I used a piece of cardboard for protection. A second warrins appears on the wrapper:

This lamp emits some ultraviolet wavelenstins which produce ozone in the air. Where the sharf odor of ozone is detected, fersonal exposure should be avoided as ininalation for refeated periods or over a irritation,

Yes, there was a mirior ozone odor within an inch or two of the lamp, but none at a distance of one foot, 50 I see no froblem here. I have no data on lamp life, but I have written Sylvania for a spec sheet or, the Type . They are suffosed to last years in clothes driers (as "sermicidal" lamps), however. And one more "fact': U. S. postase stamps fluoresce beautifully in the short-wave" ultraviolet radiation
emitted by this type of lamp, but not under lonser wave, so-called emitted by this type
"hlack lisht" radiation.
MORE ON THE TYFE 'B' LAMF'
We now have more information on the Type " B ' Lamp recommended above as a chear EFROM Eraser. Type B refers to the type of slass used, this thfe of slass transmits ozone seneratins radiation at 4 W lame), as well as erasins" radiation at 254 nm (100 mm for the 4 W lame). The ozone itself has no odory the odor commonls attributed to ozone is actually that of the nitrous oxide it forms in combination with atmosfheric nitrosen. The Type B lamp will neutralize objectionable odors, such as stale tobacco smoke, or mildew, etc., and, from what I can sather, if you cannot smell the nitrous oxide, the ozone has reverted to oxysen, and presents no hazard.

The specification sheet for the lamp states that the slass used in ordinary eyeslasses provides adequate eye protection, and that the skin can stand conitinuous radiation at an irradiance of $0.1 \mathrm{uW} / 5 \mathrm{sq} . \mathrm{cm}$. Since the 4 W lamp produces an irradiance of $1.2 \mathrm{UW} / \mathrm{sq}, \mathrm{cm}$. at one meter, it would be "skin-safe" at 3 meters.

Answay, I ant now convinced that suitable ese/skin protection is frovided by the cardboard tube from a toilet tissue roll, which fits ricely over the lamp. The tube can be cut to be slishtly lonser than the lamp, and 3 fiece of conductive foam in which the EFFOM to be erased is inserted can serve as the "lid." What could be cheafer? And deodorize the room
at the same time, if the air is circulatins?

The lamp is rated at 0.35 A at 10.5 V (I measured 10.5 VAC when in series with the 40 W incandescent lame), and has a rated life of 4000 hours.

CASSETTE INTEFFACE COMMENTS

Orily two of our furchasers of cassette software have not beeri able to read our cassettes. We sent these two subscribers new cassettes, plus a cassette with a 6 minute synch sisnal on one side, and a refeated seauence of one pase blocks on the other side, to sive them flenty of time to adjust volume controls. This must have done the job, since we have not heard further from them

We received a review cofs of 6502 FORTH from Eric Rehnike, and could not read it, He replaced it with a KIM format tare, which we did read, Also, we have had problems readins Jack. Brown's tafes. We tried six recorders and three SYMs with no luck. One of our subscribers in Wales will be visitins us this monith, arid he asked us to furchase a number of items for himincludins two Sanyo 1530 A recorders. We purchased for him instead two Model 1540A recorders. These are a better bus, since the have EJECT, and include the AC Adartors.

While checkins these out I tried Jack Brown's tapes on these machines. Throush serendifity (the oscilloscope was connected to the risht foint and the read flus didn't fit risht in the earfhone jack), I discovered that the input wave shape was much more nearly symmetrical, when the plus was in only fart way, leavins the internal sfeaker coninected. I was able to read Jack's tapes ther, but the noise was deafeniris. I will look into this matter further, and refort next issue. In the meantime I am sendins Jack one of my recorders to ensure settins a readable cory of
the source code for SYM-FORTH. (Since my writins the above, Jack has switched from his "hish-quality" recorder to one of Radio Shack's chearest models, and I now read him just fine. Seems that price correlates inversely with reliability!)

On the other hand, I received a cassette today from Stephen Cole of Hants, Ensland at 2800 Baud, twice normal SYM speed, which I read easily. We have alwass thousht of the KIM format as a fallback if the SYM format doesn't work, but the KIM speed takes 21 times as lons. Cole's tape made me realize that we could also send the SYM format at half or quarter speed, if necessary. In computins SYM Vs KIM format speeds note that each SYM byte requires 9 bits SYM and 18 bits KIM.

RECOMMENDEII REAIIING
The two bimonthlies, COMPUTE., which deals with 6502-based Sustem Computers, and compute II., which covered the 6502- and 1802-based Single Board Computers, are mersins into a sinsle monthly, COMFUTE. This is welcome newsy indeed, since, 35 you will see elsewhere in this Spel SM owners can benefit from frosrams for, and information ahout

ENHANCING THE: SYM-1 I/O CAFABILITIES AT (AL.MOST) NO COST
Perhars souy too, miay have wondered why Sunertek "spoiled" one of the two 8-bit parallel forts in VIA \#1, at $\$ A 000$, bs assisnins fB ${ }^{\text {B }}$ to ON
BOARI CASSETTE IN. The reason was to provide "compatibility" with KIM-1, which lacked PB of for a very sood reason.

KIM used a pair of 6530's to frovide its I/O-TIMER cafabilities, and to hold the 2 K KIM (Kesboard Iriterface Monitor) firmware. The 6530, which Rockwell calls the RRIOT (for ROM-RAM-I/O-TIMER), is very much like the also includins a 1 K ROM. In the 6530 , PB6 was sacrificed to free its win to be used as one of the FOM addressins lines. Sunertek "reflaced the pair of 65305 on the KIM with one 6522 (VIA) and one 6532 (RIOT), and put the 4 K UIM (Versatile Interface Monitor, now called SUFERMON) into a sinsle 4 K FOM. Since KIM lacked FB 6, the SYM desisners felt free to dedicate PB 6 to one of the system functions.

With my KIM I used an, 8-bit disital to analos converter (IIAC) on the Port for music seneration, and then added a b-bit DAC on the B Fort. was then able to senerate 64 by 64 vector srafhics ori ari oscilloscofe I didn't even use the full 8-bit fort because of 5 K RAM!)

With one of my SYMs, there is 32 K of memory for handins vector srafhics. While detailed vector graphics on an oscilloscofe would present flicker problems, ms intention is to deflect a larse screen laser displas, where the flicker would be fart of the ambience, asain not a problem.

Thus, I want 256 by 256 laser srafhics (4 K of memory and pixels) and the two 8-bit DACs. Also, see elsewhere in this issue, I want two 8 bit DACs for my new Stereo Music Sunthesizer software packase from Micro Technolosy, Unilimited (MTU). For these, and mans other reasons, I have lons been lookins for, and and firially found, a simple was to recover the use of FB 6.

I recently received, almost as a sift, a used dual trace oscilloscofe, which I have been usins to "study" the performance of the cassette iriterface some to fing atio sime mille the pBe wired me tofind a vers simrle was to restore

PB 6 is available on the Expansion Connector as fin E-X (AUn TEST). You can brins a wire from there (or from any of a number of places on SYM) to near the Application Connector. Since sou are unlikely to need all of the sisnals on the A connector you can reflace any one of them with PB 6. Now for the simple 'fix. By biasins the invertins imput (pin 3) of the LM 311 comparator (U26) very slishtly nesative with resfect to directly to FB 6) will .float. hish when there is no cassette infut otherwise it will. "read" the cassette iriput values froferly. This biasins is easily, and vers cheaply, done by connectins a one mesohm resistor from fin 3 of $U 26$ to sround. This mas not be the oftimum value of resistance but it does work well. And, now, PB 6 is free for use as an output when not infuttins tape. Have not tried usins it as direct input, because I don't need it, but I see no reason why active low sisnals (inactive durins cassette infiut) could not be wire-ored to PE 6 as infuts. I do flan to use Fort. B indirectly as an infut thoush, and either the unused $C A 1$ or $C B 2$, in analos to disital conversions, as soon as I work out the details.

ENHANCING THE SYM-1 TIMER CAFABILITIES AT NO COST
And now, let's examine the timer situation. KIM used two timers, one in each 6530. These timers are of the 6532 (not 6522) tyre. One was were written usins the interrupt carabilities of the $6530 / 6532$ timer. These mas be adaeted directly to SYM. Contrary to the misinformation on the tos of pase 4-20 of the SYM-1 Fieference Manual, all 32 of the 6532 adresses are zvailable (althoush many of these are redundant). In addresses are available (althoush many of these are redundant) it Se lines 0256 and 0257 of the cassette interface fortion of MON $1+1$.

The four Write Timer addresses at \$A41C-\$A41F Eriable Iriterruft. The four Write Timer addresses at \$A414-\$A417 Disable Iriterruft. Read Timer at $\$$ A404 Disables Interrupt. Read Timer at \$A40C Enables Interrupt) So so ahead and wire uf the IRQ output of the 6532, and take advantase of the timer interrupt and the FA 7 edse detect interruft carabilities if you need them.
Iricidentally, while MON 1.0 used the 6522 timer in its cassette software, MON 1.1 uses the Divide by 8 feature of the 6532. Since the count of this clock is compared with HSELRY for the $0 / 1$ decision, it is apparent that HSBDFY is the rumber of 8 (not 5 !) microsecond initervals. Aridy now, the default value for HSBDRY $\$ 46=70$ dec) is actual HSBARY Hot 50w

It was Gene Zumhakiof Niasara Micro uesisio Inc.
t was Gene Zumchak, of Niasara Micro Liesist, Inc., 1700 Niasara St., Buffalo, NY 14207, who foirited out to me the 8 vs 5 usec error ir the description of the new (MON 1.1) SYM Hish Speed Tafe Format. Gerie column for COMFUTE, and has develofed some (

TOLIAY SYM-FORTH, TOMORROW SYM-FASCAL!
am not siven to beins overly enthusiastic about computer lansuases. have not yet jumped on the Fiascal bandwason, althoush my academic colleasues wish to banish BASIC totally from the curriculum, and reslace it with Fascal. Risht now, however, my enthusiasm for FORTH is srowins more rapidly with each use. I am willins to predict that the special issue on FORTH of BYTE Masazine, Vol, 5, No. 8, Ausust 1980, will do more to spread the pofularity of it us to that issue, and that FORTH may even overtake FASCAL in "popularity."

My first impression of FORTH was similar to my first impression of the H-F calculatorsy both based on an aversion to havins to store in mis own head. The a knowledse of what both I and the calculator had put on, and s soon realized that never did I have to kees track of more thar, few items at once

Whs all the enthusiasm? While preparins for this issue, we had the opportunity to learn and use nearly all of the hisher level lansuases available for SYM. These and their orisins and sources will be reviewed elsewhere in this issue. FORTH has been placed in the public domain and humerous versions are available, as can be realized at once by scannins the ads in the referenced issue of BYTE. Eric Rehnke kindly lent me a review cofy of 6502 FORTH, tosether with a source listins and extensive documentationg and examifles of its use. I would, and do recommend hi version hishly, because of the ufdatins service and extensi documentation he is frovidins, for any 6502 system other than the SYM.

Fortunately, for SYM owriers, Jack Brown (of Brown s kasic Eninancements) has just finalized a version of forth, especially tailored to fit the GYM. It is called, naturally, SYM-FORTH! It is tailored to fully utilize all of the features present in the SYM monitor. Jack has provided additional FORTH "Screens", for those SYMmers with KTM-2s, to enhance the editins cafability within the basic FOFTH fackase. He has also sent us FORTH Screens to frovide interestins srafhics on the MTU Visible Memory. His SYM-FORTH manual and the sample Screeris provide a self-contained instruction fackase, brinsins you uf to a reasonable proficiency level within a few hours.

Incidentally, the 6502 Assembler built irito SYM-FORTH occuries less than 1. K of FAM. UF to now, Eob Denison's 2 K Symbolic Assembler, was the most compact Symbolic Assembler available (it is still the only most compact Symbolic Assembler available (it is still
"free-standins" assembler which can be useful on a 4 K SYM).

While I am ir love with RAE, and feel vers friendly toward EASIC (it beins so widely spoken, thoush despised bs the prosrammins elite), if I could have only one hisher level lansuase on my SYM, I think. I would chose FORTH. Why? Because my main apflications are word processins (I bet that I could write a sreat word frocessor ir forth), grafhics, and audio (voice and music). FORTH seems, to me, to be a "natural" for these latter two applications.
Jack is now workins on a SYM-Fascal! Havins observed both the quality of Jack's work, and the speed at which he works, we should be able to have a sood Pascal on our SyMs very soon.

MOLIFIEL EFROM BURNEF

Below is the Wirins List for Giersic's Modification of Hobart's EFROM Prosrammer. See pase 5/6-27 for more information.

$\begin{aligned} & \text { EFROM } \\ & \text { FIN } \end{aligned}$	AA CONNECTOR	SIGNAL	6522 NAME
1	6	ADIR 7	2 FB 7
2	H	ALDE 6	2FB6
3	7	ADIRR 5	$2 \mathrm{PB5}$
4	J	ALILR 4	2 PE 4
5	8	ADDR 3	2 FB 3
6	к	ADIR 2	2 PB 2
7	9	ADDR 1	2PE1
8	L.	ADDR 0	2 PBO
9	11	data 0	2 PAO
10	3	LATA 1	2 FA 1
11	c	DATA 2	2 PA 2
12	1	GROUNH (ALSO	0 FOR 25VOLT SUFPLY)
13	12	diATA 3	$2 \mathrm{~F} \cdot \mathrm{~A} 3$
14	N	LATA 4	2 PA 4
1.5	11	IIATA 5	2F'AS
16	M	data 6	2F'A6
17	10	[IATA 7	2PA7
18	4	(NOT) CE/F'GM	2CA2
19	15	AILIR 10	$3 \mathrm{FB2}$
20	5	(NOT) OE	2 CR 2
21	--	+25 VOLTS	(.1 CAF TO GROUNI)
22	T	ADDR 9	3 F B1
23	16	ALIDR 8	3 PBO
24	A	+5 VOLTS	(.47 CAF TO GROUNII)

ON FOWER SUFFLIES, EXFANSION EUFFERING, ANI SYSTEM RELIABILITY
Dur workins habits are such that we jumip from one task to another, wak. js in the midole of the risht with a sreat idea, or break. for a riaf or a thousht session in the hot tub. Thus, there is alwass something important in both of our office SYMs that we would hate to lose (we do have backup at all times, however, but it's nicer never to need it, like inisurance). Thus our sustems are left on (excert for the video monitors) at all times, except when we leave town for one reason or anothery and we want our SYMs reads at all times, and to have a much better memory than our own.

There was a feriod when our systems behaved rather flaky at times. Note to our overseas subscribers, and American" as well: "Flaky" is American slans, but very appropriate here. It means consistins of flakes," but one of the dictionars definitions of flake is "a small loose mass or bit (sic): also, flake is a symorism for chif. Flake Serives from the Norwesian word flak, which means disk. Thus flaky is lesitimate computerese jarson.) At ans rate, loose bits, or "flakes" were sivins us froblems, We susfected bad chifs, foor system desish, hatever anythins but the real causes.
The real froblems turned out to be not with the disital desisn, but in the fower supply area, We found that, when we were usins fower sufflies 3t over 75% of their sfecified current cafacity, we besan to have loose it froblems, that disaffeared when we cooled the fower sufflies with a fan. Affarentiy, a fower suffly oferated near its specified limits should not be installed in a confined sface without either forced air coolins, or beins mounted on a heat conductins surface. Dur solution was to split the loads between several fower suffliesy operatins each ore at well below rated caracity.
Next, we had lons leads from the fower sufflies to the various subsustems. Because the wire sizes (chosen randomly) and the current rains differed, we measured differences in both ground and ts levels etween, for exampleg the SYM and the disk controller (mounited with the isk.s) as hish as 0.50 . When we installed a fair of 12 -anuse leads from the fower supply to the system, and shorter leads to the subsystems, all of our problems vanished. Dur SYMs are now far more reliable than even I am.

And riow for fossible buffer problems: On our two mairi systems we do NOT buffer the expansion "bus", and we fill the 4 K "saf" at. $\$ 1000-\$ 1 \mathrm{FFF}$ with the (unbuffered) 4 K Blalock expansion board. On another system at chool we are usins a buffered motherboard which has sockets to hold 4 wo-way buffers this saf. This board has two sets of thrae eeculiarities in accessing data from this GAM block which we could oril attribute to problems with the buffers. Father than reflacins these buffer chips, which, incidentally, are puite expensive, and hard to ocate, we removed them from their sockets and reelaced then with wire jumpers. This cured the froblem.

The problem was not in readins data from this block, but whenever a STA instruction to this block was performed elsewhere, the instruction forced a break instruction to follow. While 1 don't fully understand the problemy it is possible for the sudden currerit surges caused by a number of fast actins three-state buffers chansins state simultaneously -- interfere with the control bus sicials.

While this problem was local to us, several readers have reported having similar aroblems with other buffered expansion devices for the SYM. These apfarently work well with KIM and AIM, but sive problems with some, not all SYMs. One of our readers still has not solved his froblemst we have asked him to keef us fosted on his erosress.

SYM-PHYSIS 5/6-8

VIIEO MONITORS ANI FOWER SUFFLIES

We hadn't intended to market SYM hardware; we started to do so mainly as a courtess to our overseas subscribers, who find it very experisive to murchase multiple money orders in small amounts each. On some items we buy for resale, we are siven a reasonable discount for furchases in momest Quantities. One example of the latter is a line of power sufplies, advertised in the fopular computer masazines at $\$ 24.95$ for the 3 A model. The frice to us as an OEM is also $\$ 24.95$ in lots of uF to 24.

We sre besinnins an OEM activity, assemblins sustems which include a SYM-1 with 4 K RAM, BAS-1, and RAE-1/2 installed, a KTM-2/80, a Leedex Video Monitory a Fower-Onie 5 V, 6 A power supply, a Sariso 1540A cassette recorder, all interconnectins cables, and the SWF-1 and Brown Basic Erimancement Fackase. The future adodition of a Blalock 4 K Memors Expansion Board and a friniter will frovide at least one class of users (some of ms nori-technical collese frofessor colleasues) with reasonable word frocessing and Computer Assisted Instruction carabilities at a far lower cost than available
provide their own enclosure.

As a result of this we will have in stock the Leedex Video Moritors, and the Power--One 3 A and 6 A (both with OUF) power supplies. An OEM fresumably makes his profit on the "sustem intesration" part of his job, and on the software sales, rather than on the haroware markue. The hardware components are not really purchased for individual resale.

If you wish, however, you may purchase Leedex Monitors and Fower-One power supplies from us, for MORE than you would have to pay elsewhere. These items are too heavy to justify overseas airmail costs, so we do not recommend them to overseas subscribers. With the Fower One you will be settins parts list and instructions for addins uniresulated +11 and +22 and resulated +12 V if you wish. With the Leeder Monitor, you wll be settins the assurance that the Leedex has been fersonally checked out by us for at least an hour in one of our workins systems, frior to our reshipment. Incidentally the Leedek and Fower-One items have been selected by Synertek. Systems Corforation as componients of their own Micro lleveloment Tool (MaT) Systems, and have excellent reliability records.

HUGH CAMF'BELL'S AFFLLE TAFE: LOADER

The prosram on pase $5 / 6-22$ is printed as a disassembly of the object code cassette dump sent us by Mr. Campbell. It is easily relocatable ans whole number of pases bu chansins the 13 values of $\$ 3 \mathrm{E}$. It add's the followins command to MON 1,1 , if its startins address is fatched to the Unrecosnized Command Vector (URCVEC), with SI SEOO, AGGLI(Cr):

This command loads a (machine lansuase) AfFle tafe from $x<\times x$ to ysus. The user is reminded to observe all cosyrisht restrictions concernins making backup, duplicate, or modified, cofies of furchased software.

A F'ROGRAM JUST LDAIEEI WITH GOOUIES

The followins frosram is one that frobably none of you will want in its entirets, set we fublish it comfletely because it shows exflicitly how to do what so mary of you have asked: "How can I write my owri fower-on

In addition, the erosram is loaded with marns nice features, literally too numerous to mention, althoush we'll cover as maris as possible.

First, read Mr. Cole's letter, which he sent in the form of initial comments in the source codeg this will describe the hardware complement he is usins. We are not familiar. with the s-100 Ausio we will say more lsewhere on the Beta Computer 32 k Duriamic FAM Cara

Since the source code was so lishtly commented (we're slad because it does save friritins space!), we felt oblised to ado a few, near the end.

The frosram occusies 2 K , from $\$ F 000$ to $\$ F 7 F F$. There is still unused EFFOM from \$FSIIq to \$F7FE for additions. \$F800 to \$FFFF is still available for echoins sustem RAM. It is left as "an exercise for the student" to arsue the merits of this afproach. Mr. Cole has siven bp VIA \#3 and its associated functions, to be able to assisn its address, of course, and its functions freserved, if desired, bs aboins the calls in this EFROM. But when was the last time you called on UIA \#3, excert throush ACCESS? Note that JSF ACCESS will write over several butes in the U.J.U. Notice the elesantly human-factored approach in the los-on messase and in the clock settins routine.

In summary, whether you are a besinirier or a froy whether sou skim throush this frosram or studs it in sreat detail, you have sot to lear somethins new and useful from it.

```
FRINT 0000 0370
0010;STEFHEN .E, COLEE M.I.F.R.E. T(ENIS) . C.E.I.
O020;70,SYYINEY ROAD
    030
    0040
    #21st AUGUST 1980
    0070 %2st August
    0080 ;This prosram sits at F000 and resets on fower us.
    0090 ;The U.N.U is the ITHACA AUIIO S-100 card TyPe IA-1100 and is
    0100 fat location $ACOO to $AFFF
    0110 #The ram is the beta comfuters 32k. duriamic ram card.
    0120 The ram is allocated from $1000 to $7FFF and $9000 to $9FFF;
    0130 ; the latter for fatches both rae and basic
    0140 i'm very fleased with frosress of SYM-FHYSIS
150 ;and feel the articles cover a wide ranse. Auther Rechards
1s0 ghas been thinkins about AA-Coninector Bus but thinks 3s I do
0170 that it would take ur one of the forts to control the tri-state
180 jbuffers, which would probably be the best was to control it.
0190 ;At the moment I am workins on a auto trace for BASIC to 
0190 ;At the moment I am workins on a auto trace for BasIC to 
0210 ;on how to do this?
0220 Olisks at this moment are not fossible due to cash flow.
0230 il would like to set in contact with ans other symi-phusis
240 P would like to set in contactorsanise a set tosether.
250 I work for the British Broadcastins Corforation
260, ias an ensineer on oserations and mairitance at B.B.C. T.V. (SOUTH)
2270 ,as Southameton
0280 ;Also the frosram, below reads the kesboard fort to frovide a slow
2290 Alown routine, anis the CR on the hex key pad acts as the break kes
0300 fwhich is extended outside the box on to the ascii kesboard,
0310 ;which is extended outside the box on to the ascii keyboard,
0310 %which is a full ascii type with numeric pad and cursor, control weys,
330 itt is made by a firm in Germany, RENA; have you ever heard of them?
0340 fIt is a 5 by 7 dot erinter and prints all 35 dots at once
0350 ;at 132 characters a second.
360 ;That's all for now; hope to hear from you soon.
```

0370

0380	+0S			
0390				
0400				
0410				
0415	AND CURSOR ALURESSING			
0420	;			
0430	IER	, IIE		\$AOOE
0440	IFR	- IE	\$A001	
0450	PCF	- IIE	\$A00C	
0460	ACF	, DE	\$AOOB	
0470	T1LL	- IIE	\$A006	
0480	T1HC	, DE	\$A005	
0490	COUNTCLOCK	+ IIE	\$A612	
0500	SECS	- IIE.	\$A613	
0510	MIN	- ILE	\$A614	
0520	HOUR	- IIE	\$A615	
0530	LILRA	- IIE	\$A003	
0540	ORA	- IIE	\$A00F	
0550	CURID	- IIE	\$A600	
0560	CHAR 1	- IIE	\$A601	
0570	LINENO	- HE	\$A602	
0580	KBCHAR	- IIE	\$ A603	
0590	FRFLAG	- IIE	\$A604	
0600	COUNT	, IIE	\$A605	
0610	LINBUF	- TEE	\$9F70	
0620	TECHo	+ IEE	\$A653	
0630	invec	- UE	\$ A660	
0640	outvec	. JIE	\$A663	
0650	BEEF	- UE	\$8972	
0660	IER1	- DE	\$A80E	
0670	IFR1	- DE	\$A801	
0680	F'CR1	+ DE	\$A80C	
0690	ACR1	, DE	\$A80B	
0700	DLRA1	- DE	\$A803	
0710	LDRE1	+ DE	\$A802	
0720	ORA1	- IE	\$A801	
0730	ORE 1	, DE	\$A800	
0740	RAM	+ LE	\$A600	
0750	MAF	. DE	\$A606	
0760	LA	- IE	\$A60A	
0770	SA	+ DE	\$A60E	
0780	BASIC	. DE	\$C000	
0790	BASICWARM	. IE	\$9000	
0800	RAE	. DE	\$8000	
0810	RAEWARM	+ DE	\$8003	
0820	STATUSUEC	+ DE	\$896A	
0830	UNRECUEC	. DE	\$8151	
0840	disscanvec	, DE	\$8906	
0850	EXEVEC	. DE	\$887E	
0860	tracevec	, DE	\$80C0	
0870	USERBR	, DE	\$804A	
0880	IRQUEC	. IIE	\$800F	
0890	NMI	+ IE	\$809E	
0900	OUTBYT	, DE	\$82FA	
0910	INBYTE	. IIE	\$81119	
0920	OUTCHR	+ IIE	\$8A47	
0930	MEMO	RY MA	F UIU	
0940	1 K	BLOCK		
0950	STAR	T All	RESS \$ ACOO	

				0960	;		
F000-	A2	FF		0970	FESET	LIIX	\# ${ }^{\text {FFF }}$
F002-	9 A			0980		TXS	
F003-	A9	CC		0990		L.DA	\# $\ddagger \mathrm{Cc}$
				0995	;TURN OFF	F'OR	ANI TAFE UNIT
F005-	8 I	OC	AO	1000		STA	\$AOOC
F008-	A9	()4		1010		LIAA	\# 4
FOOA-	48			1020		FHA	
FOOB-	28			1030		FLFP	
FOOC-	A2	7F		1040		LDX	\#\$7F
FOOE-	EII	CB	F4	1050	diefaul.t	LIIA	deFAUBLK, X
F0.1-	911	00	A6	1060		STA	FAM, X
FOP14-	CA			1070		IEX	
F015-	10	F7		1080		EFL.	mefault
F017-	A9	FF		1090		L.İA	* \ddagger FF
F019-	8 I	02	A8	1100		STA	[LIREI
F01C-	8 L	03	AO	1110		STA	LUDRA
F01F-	20	72	89	1120		JSR	BEEF
F022-	A9	00		1130		LIIA	\#\$00
F024-	81	05	Ab	1140		STA	COUNT
F027-	20	31	Fo	1150		JSR	UnU
F02A-	20	31	F0	1160		JSR	ULU
F02n-	A2	00		1170		LIIX	\$ $\$ 00$
FO2F-	EII	4B	F5	1180	MESS	LIAA	message, X
F032-	20	47	8A	1190		JSF	OUTCHF
F035-	E8			1200		INX	
F036-	EO	8 E		1210		CF'X	\#\$8E
F038-	10	F5		1220		BNE	MESS
FO3A-	4 C	00	80	1230		JMF'	\$8000
F030-	81	01	A	1240	vau	STA	CHAR1
F040-	A9	80		1250		L.DA	\#\$80
FO42-	CD	01	A8	1260		CMF-	ORA1
F045-	FO	OE		1270		EEQ	G0
F047-	A2	20		1280		LDX	\# ${ }^{\text {2 }}$
FO49-	AO	FF		1290	delay2	Lify	\#\$FF
F04B-	88			1300	IIELAY	LEY	
FO4C-	CO	00		1310		CPY	100
F04E-	HO	FB		1320		BNE	UELAY
F050-	CA			1330		DEX	
F051-	E.	00		1340		CFP	\#\$00
F053-	Ho	F4		1350		BNE	delay2
F055-	A9	00		1360	60	LIA	\$ $\$ 00$
F057-	CI	04	Ab	1370		CMF'	FRFLAG
FOSA-	FO	03		1380		BEQ	UnU1
F05c-	20	11	F3	1390		JSR	FRINT
FOSF-	AII	01	A6	1400	ULUU	LIAA	CHAR1
F062-	AE	00	Ab	1410		L.IX	CURII
F065-	38			1420		SEC	
Fors-	C9	20		1430		CMF'	*\$20
F068-	B0	03		1440		BCS	TB
F06A-	4 C	9A	F1	1450		JMP	CTRL
F06D-	C9	7 F		1460	TB	CMF*	\#\$7F
F06F-	Ho	05		1470		BNE	
F071-	A9	20		1480		LIA	*\$20
F073-	4 C	F8	F2	1490		JMF	close
F076-	20	06	Ab	1500	TA	JSR	MAF
F079-	E8			1510		INX	
F07A-	EO	40		1520		CFP	\# $\$ 40$
F07C-	B0	13		1530		bus	NEWLINE
F07E-	8 E	00	A6	1540	Cur	STX	CURIII
F081-	20	OA	A6	1550	F'A	JSR	LA
F084-	20	OE	A6	1560		JSR	SA
F087-	18			1570		CLC	

SYM-FHYSIS 5/6-11

F088-	69	80		1580		AILC	\#\$80
F08A-	20	06	Ab	1590		JSR	MAF
F081-	AII	01	A6	1600	FINISH	LIIA	CHAF1
F090-	60			1610		RTS	
F091-	AC	02	Ab	1620	NEWLINE.	LIIY	LINENO
F094-	CO	OF		1630		CFY	\#\$0F
F096-	Fo	OC		1640		EEQ	SCROLL
F098-	C8			1650		INY	
F099-	8 C	02	Ab	1660		STY	LINENO
F09C-	A2	00		1670		L.IIX	*\$00
F09E-	20	17	F1	1680		JJR	LINE
FOA1. -	4C	7E	FO	1690		JMP ${ }^{\text {P }}$	CUR
FOA4-	A9	40		1700	SCROLL	LIIA	\#\$40
FOAS-	81	OB	Ab	1710		STA	Lati
FOAG-	A9	$A C$		1720		LIIA	\#\$AC
FOAB-	8 I	OC	Ab	1730		STA	L.A+2
FOAE-	80	10	Ab	1740		STA	$\mathrm{SA}+2$
FOB1-	A9	00		1750		LIIA	\#\$00
FOB3-	81	OF	Ab	1760		STA	SA+1
FOB6-	A9	CO		1770	AGAIN	LIIA	\#\$CO
FOR8-	CI	OF	A6	1780		CMF	SA+1
FORB-	00	22		1790		GNE	NOT
FOBD-	A9	AF		1800		L.LIA	\#\$AF
FOBF-	CII	10	A6	1810		CMF	SA+2
FOC2-	Do	1 B		1820		ENE	NOT
FOC4-	A9	CO		1830		L.IA	\#\$CO
FOC6-	20	8A	F2	1840		JSR	SUB1
FOC9-	A9	AF		1850		LIIA	\#\$AF
FOCB-	20	94	F2	1860		JSE	SUR2
FOCE-	A2	00		1870		Lrix	\$ $\$ 00$
FOLO-	A9	20		1880		L.IA	\#\$20
FOD2-	20	OE	A6	1890	YES	JSk	SA
FODS-	E8			1900		INX	
Fons-	EO	40		1910		CF'X	\#\$40
FOns-	H0	F8		1920		BNE	YES
FOHA-	A2	00		1930		L.IIX	\#\$00
FODC-	4 C	7E	Fo	1940		JMP	cur
FOLF-	A2	00		1950	NOT	LIIX	\# $\$ 00$
FOE1-	20	OA	A6	1960	MOREUDU	JSk	LA
FOES $4-$	20	OE	Ab	1970		JSR	SA
FOE7-	E8			1980		INX	
FOES-	EO	40		1990		CFPX	\#\$40
FOEA-	Do F	FS		2000		BNE	MOREUSU
FOEC-	18			2010		CLC	
FOED-	A9	40		2020		LIIA	\#\$40
FOEF-	61	OB	A6	2030		AIIC	L. $\mathrm{A}+1$
FOF2-	81	OB	A6	2040		STA	LA+1
FOF5-	90	09		2050		ECC	AGAIN1
FOF7-	18			2060		CL.C	
FOF8-	A9	01		2070		LIIA	\#\$01
FOFA-	61	OC	Ab	2080		AIIC	L.A+2
FOFD-	8 D	OC	A6	2090		STA	LA+2
F100-	18			2100	AGAIN1	CLC	
F101-	A9	40		2110		LIIA	\#\$40
F103-	6 D	OF	A 6	2120		AIIC	SA+1
F106-	81	OF	A6	2130		STA	SA+1
F109-	90	$A B$		2140		BCC	AGAIN
F10B-	18			2150		CLC	
Fioc-	A9	01		2160		L.LA	\#\$01
F10E-	61	10	A6	2170		ALIC	SA+2
F111-	811	10	A6	2180		STA	SA+2
F114-	4 C	B6	Fo	2190		JMF'	Again
F117-	18			2200	LINE	CLC	

SYM-PHYSIS 5/6-12

F118-	A9	40		2210		LIIA	\#\$40
F1.A-	61	07	A6	2220		AIC	MAF'+1
F1.10-	20	8A	F2	2230		JSF	SUE1
F1.20-	90	09		2240		BCC	N0
F122-	18			2250		CLC	
F123-	A9	01		2260		LIIA	\#\$01
F125-	61	08	Ab	2270		ADC	$M A F+2$
F1.28-	20	94	F2.	2280		JSF	SUB2
F1.2B-	18			2290	NO	CLC	
F1.2C-	60			2300		RTS	
F120-	38			2310	L.U1	SEC	
F12E-	AI	07	Ab	2320		L.DA	MAF'+1
F131-	E9	40		2330		SEC	\#\$40
F133-	20	8A	F2	2340		JSR	SUB1
F136-	B0	09		2350		BCS	LU2
F138-	38			2360		SEC	
F1.39-	AII	08	A6	2370		L.LA	$\mathrm{MAF}+2$
F1.3C-	E9	01		2380		SBC	\# ${ }^{\text {01 }}$
F13E-	20	94	F2.	2390		JSK	SuE2
F1.41-	60			2400	L.U2	RTS	
F1.42-	20	F7	F1	2410	LU	JSk	Cl.CUR
F145-	20	OE	Ab	2420		JSF	SA
F148-	20	2D	F1	2430		JSR	L.U1
F14B-	AC	02	A6	2440		LDY	LINENO
F14E-	88			2450		DEY	
F14F-	CO	FF		2460		CPY	\#\$FF
F151-	110	OC		2470		ENE	LU3
F153-	AO	OF		2480		LIY	\# 0 O
F155-	A9	AF		2490		LDA	*\$AF
F157-	20	94	F2	2500		JSR	SUB2
F15A-	A9	C0		2510		LDA	\#\$CO
F15C-	20	8A	F2	2520		JSF	SUB1
F15F-	8 C	02	A6	2530	LU3	STY	LINENO
F1.62-	4C	7 E	Fo	2540		JMF	CUR
F165-	20	F7	F1	2550	OFEN	JSF	Clcur
F168-	20	OE	A6	2560		JSR	SA
F16B-	4C	E4	F2	2570		JMF'	OPENSUR
F1.6E-	A2	3F		2580	CLINE:	LIIX	\# $\ddagger 3 \mathrm{~F}$
F170-	A9	20		2590		LILA	*\$20
F172-	CA			2600	CLINE 1	UEX	
F173-	20	OE	Ab	2610		JSR	SA
F176-	10	FA		2620		BNE	CLine 1
F1.78-	4C	7 E	FO	2630		JMF'	CUR
F17B-	20	F7	F1	2640	START	JSR	Clcur
F17E-	20	OE.	Ab	2650		JSR	SA
F181-	A2	00		2660		LIIX	+\$00
F183-	4C	7E	F0	2670		JMF'	CUR
F186-	A9	C3		2680	FR1	LHA	*\%11000011
F188-	81	OC	AB	2690		STA	PCR1
F18B-	AO	FF		2700		LuY	\# $\mathrm{FFF}^{\text {F }}$
F180-	88			2710	Y7	DEY	
F1.8E-	co	00		2720		CFY	*\$00
F190-	no	FB		2730		BNE	Y7
F192-	A9	E3		2740		LIA	\#\%11100011
F194-	81	OC	A8	2750		STA	FCR1
F197-	4 C	CII	F2	2760		JMF	FR2
F19A-	C9	OD		2770	CTRL	CMF'	\#\$011
F19C-	Fo	63		2780		BEQ	CR
F19E-	C9	01		2790		CMF-	*\$01
F1.AO-	Fo	19		2800		BEQ	START
F1A2-	C9	11		2810		CMF'	\#\$11
F1A4-	FO	BF		2820		BEQ	OPEN
F1A6-	C9	OE		2830		CMF'	\ddagger ¢ O

F1A8-	Fo	C4		2840		BEQ	CLINE
F1AA-	C9	10		2850		CMF'	\#\$10
F1AC-	FO	118		2860		BEQ	FR1
F1AE-	C9	OB		2870		CMF	\#\$0E
F180-	DO	0.3		2880		ENE	CAREYON
F182-	4 C	42	F1	2890		JMF'	L.U
F1B5-	C9	00		2900	CAFFiYON	CMF'	\# $\$ 00$
F1.B7-	Fo	26		2910		BEQ	CLEAR
F189-	C9	09		2920		CMF	\#\$09
F1BE-	FO	71		2930		BEQ	TAB
F18D-	c9	08		2940		CMF'	\# $\$ 08$
F1.EF-	FO	79		2950		BEQ	BS
F1C.	C9	10		2960		CMF-	* $1^{1 /}$
Fic3-	FO	45		2970		BEQ	HOME
F1C5-	C9	07		2980		CMP	*\$07
F1C7-	FO	6 6		2990		BEQ	BELL
F1C9-	C9	03		3000	CTRLC	CMF'	\#\$03
F1CB-	Do	$O A$		3010		ENE	RET
Fica-	A9	CC		3020		LIA	\#\$CC
F1CF-	CI	OC	AO	3030		CMF	\$AOOC
F102-	FO	06		3040		EEQ	ON
F1D4-	81	OC	AO	3050		STA	\$AOOC
F゙1ロ7-	4 C	80	FO	3060	FET	JMF*	FINISH
F1LA-	A9	EC		3070	ON	LIIA	\#\$EC
Finc-	81	OC	AO	3080		STA	\$AOOC
				3090	;		
				3100	;		
FinF-	A9	20		3110	CLEAF	LIIA	*\$20
F1E1-	A2	00		3120		LIIX	\# $\$ 00$
F1E3-	9 II	00	AC	3130	CL	STA	\$ ACOO, x
F1E6	9 II	00	AII	3140		STA	\$ALLOO, X
F1E9-	91	00	AE	3150		STA	\$AEOO, X
FiEC-	91	00	AF	3160		STA	\$AF00, X
FiEf-	E8			3170		INX	
F1FO-	EO	00		3180		CFP	\$\$00
F1F2-	Do	EF		3190		BNE	CL
F1F4-	4 C	OA	F2	3200		JMF'	HOME
				3210	;		
				3220	;		
F1F7-	AE	00	Ab	3230	Clcuk	LIXX	CURII
FiFA-	20	$\bigcirc \mathrm{A}$	Ab	3240		JSR	L.A
FiFi-	18			3250		CLC	
F1FE-	69	80		3260		ADC	\#\$80
F200-	60			3270		FTS	
				3280	;		
				3290	;		
				3300	,		
F201-	20	F7	F1	3310	CR	JSR	ClCUR
F204-	20	OE	A6	3320		JSR	SA
F207-	4 C	91.	Fo	3330		JMF'	NEWL.INE
				3340	;		
				3350	;		
F20A-	20	F7	F1	3360	HOME	JSF	cl.cuF
$\mathrm{F} 20 \mathrm{D}-$	20	06	Ab	3370		JSR	MAF
F210-	A9	00		3380		LILA	\# $\$ 00$
F212-	AA			3,390		TAX	
F213-	A8			3400		TAY	
F214-	81	00	Ab	3410		STA	CURIII
F217-	81	02	Ab	3420		STA	LINENO
F21A-	20	BA	F2	3430		JSR	SUE1
F210-	A9	AC		3440		LIIA	\ddagger ¢ AC
F21F-	20	94	F2	3450		JSR	SUB2
F222-	20	OA	Ab.	346C		JSR	LA

F2AB-	Fo	FB		4100		BEQ	KBWAIT
F2AD-	AI	01	A8	4110		LIA	ORA1
$\mathrm{F} 2 \mathrm{BO}-$	18			4120		CLC	
F2B1-	69	80		4130		ALIC	\#\$80
F2B3-	81	03	Ab	4140		STA	KBCHAF
F2R6-	AD	OD	A8	4150		LIIA	IFR1
F2B9-	81	OD	A8	4160		STA	IFR1
F2BC-	A9	80		4170		LILA	\#\%10000000
F2BE-	2C	53	A6	4180		BIT	TECHO
F2C1-	FO	06		4190		BEQ	NOECHO
F2C3-	AD	03	A6	4200		LIA	KBCHAR
F2C6-	20	3D	Fo	4210		JSR	UIU
F2C9-	AI	03	A6	4220	NOECHO	LIIA	KBCHAF
F2CC-	60			4230		RTS	
F2CD-	A9	00		4240	FR2	LDA	\# $\ddagger 00$
F2CF-	CII	04	A6	4250		CMF	FRFLAG
F202-	FO	07		4260		BEQ	PR3
F2014-	81	04	Ab	4270		STA	PRFLAG
F2D7-	AI	01	Ab	4280		LIIA	CHAR1
F2bA-	60			4290		RTS	
F2LB-	A9	01		4300	FR3	LIAA	\#\$01
F2DD-	8 D	04	A6	4310		STA	frFlag
F2EO-	AD	01	A6	4320		LIIA	CHAR1
F2E3-	60			4330		RTS	
F2E.4-	A8			4340	OPENSUB	TAY	
F2E5-	E8			4350		INX	
F2E6-	20	OA	Ab	4360		JSF	LA
F2E9-	81	01	Ab	4370		STA	CHAR1
F2EC-	98			4380		TYA	
F2ED-	20	OE	A6	4390		JSR	SA
F2F0-	AD	01	Ab	4400		LDA	CHAR1
F2F3-	EO	40		4410		CFP	\#\$40
F2F5-	D0	ED		4420		BNE	OFENSUB
F2F7-	60			4430		RTS	
F2F8-	A2	3 F		4440	CLOSE	LIIX	\#\$3F
F2FA-	A8			4450	closesub	TAY	
F2FB-	CA			4460		DEX	
F2FC-	20	OA	A6	4470		JSR	LA
F2FF-	81	01	A6	4480		STA	CHAR1
F302-	98			4490		TYA	
F303-	20	OE	A6	4500		JSR	SA
F306-	AD	01	A6	4510		LDA	CHARI
F309-	EC	00	A6	4520		CF'X	CURII
F30C-	Do	EC		4530		BNE	closesub
F30E-	4 C	81	Fo	$\begin{aligned} & 4540 \\ & 4550 \end{aligned}$		JMP	F'A
F311-	AI	01	A 6	4560	FRINT	LIIA	CHAR1
F314-	C9	OA		4570		CMF'	\#\# ${ }^{\text {a }}$
F316-	FO	17		4580		BEQ	LFF'
F318-	C9	OII		4590		CMF	\#\$01
F31A-	Fo	4 C		4600		BEQ	FRINTOUT
F31C-	C9	OC		4610		CMF	$\ddagger ⿻ \mathrm{OC}$
F31E-	FO	24		4620		EEQ	FFF
F320-	C9	OB		4630		CMP	\# $\ddagger 0 \mathrm{~B}$
F322-	FO	32		4640		BEQ	UTF
F324-	AE	05	A6	4650		LIIX	COUNT
F327-	9 D	70	9 F	4660		STA	LINBUF, X
F32A-	E8			4670		INX	
F32B-	8 E	05	A 6	4680		STX	COUNT
F32E-	60			4690		RTS	
F32F-	A9	04		4700	L.FF'	L.IIA	\$\%00000100
F331-	8 L	OF	AO	4710		STA	ORA
F334-	AO	00		4720		LIIY	\$ $\$ 00$

F336-	C8			4730	Y2	INY	
F337-	CO	80		4740		CFY	\#\$80
F339-	Ho	FB		4750		ENE:	Y2
F33B-	A9	00		4760		LIIA	\#\$00
F330-	81	OF	AO	4770		STA	ORA
F340-	81	05	Ab	4780		STA	COUNT
F343-	60			4790		RTS	
F344-	A9	08		4800	FFF'	LIA	\#\%00001000
F346-	81	OF	AO	4810		STA	ORA
F349-	AO	00		4820		LIIY	\#\$00
F348--	C8			4830	Y3	INY	
F34C-	C0	80		4840		CPY	\$\$80
F34E-	H0)	FE		4850		ENE	Y3
F350-	A9	00		4860		LIIA	\#\$00
F352-	81	OF	A0	4870		STA	ORA
F355-	60			4880		RTS	
F356-	A9	10		4890	UTF	LIIA	*\%00010000
F358-	81	OF	AO	4900		STA	DRA
F35B-	AO	00		4910		LIIY	\#\$00
F350-	C8			4920	Y1	INY	
F35E-	CO	80		4930		CFY	*\$80
F360--	$\underline{10}$	FB		4940		ENE	Y1
F362-	A9	00		4950		LDA	\#\$00
F364-	81	OF	AO	4960		STA	ORA
F367-	60			4970		RTS	
F368-	A2	00		4980	FRINTOUT	LDX	\#\$00
F36A-	AI	0 O	A8	4990	STROBE	LIIA	IFF1
F361-	81	OD	A8	5000		STA	IFR1
F370-	A9	C7		5010		LIIA	\#\%11000111
F372-	81	OL	A8	5020		STA	PCR1
F375-	AO	FF		5030		LIIY	*FFF
F377-	88			5040	Y6	LEY	
F378-	CO	00		5050		CFY	* $\$ 00$
F37A-	H0	FB		5060		BNE	Y6
F37C-	A9	E. 7		5070		L.DA	\#\%11100111
F37E.-	81	OC	A8	5080		STA	FCR1
F381-	18			5090		CLC	
F382-	AI	OD	A8	5100	TEST	LIIA	IFR1
F385-	6A			5110		ROR	A
F386-	90	E2		5120		BCC	STROBE
F388-	BD	70	9 F	5130		LDA	LINEUF, X
F38B-	81	00	A8	5140		STA	ORB1
F38E-	EC	05	Ab	5150	C01	CPX	COUNT
F391-	Fo	04		5160		EEQ	CRF'1
F393-	E8			5170		INX	
F394-	4C	6 A	F3	5180		JMP	STROBE
F397-	A9	02		5190	CRF'1	LIIA	\#\%00000010
F399-	81	OF	AO	5200		STA	ORA
F39C-	C8			5210	Y	INY	
F391-	CO	80		52.20		CFY	* $\$ 80$
F39F-	L10	FB		5230		BNE.	Y
F3A1-	A9	20		5240		LIAA	\#\$20
F3A3-	81	00	A8	5250		STA	ORE1
F3A6-	4 C	2 F	F3	5260		JimF'	LFF'
F3A9-	A9	14		5270	clockstart	LIAA	\#\$14
F3AB-	81	12	A6	5280		STA	COUNTCLOCK
F3AE-	8L	OB	AO	5290		STA	ACR
F3B1-	A9	CO		5300		LIA	$\#$ ¢ CO
F383-	8 II	OE	AO	5310		STA	IEF
F3B6-	A9	FO		5320		LDA	\#\$F0
F3B8-	8II	06	A 0	5330		STA	TiLL
$\mathrm{F} 3 \mathrm{BB}-$	A9	C2		5340		LIAA	\#\$C2
$\mathrm{F} 3 \mathrm{BD}-$	81	05	A0	5350		STA	T1HC

SYM-FHYSIS 5/6-15

F3C0-				5360		RTS	
F3C1-				5370	CLOCKIRQ	F'HF'	
F3C2-	48			5380		FHA	
F3C3-	F8			5390		SEL	
F3C4-	A9	FO		5400		L.IIA	\#\$F0
F3C6-	81	06	AO	5410		STA	Till
F3C9-	A9	C2		5420		L.LA	*\$C2
F3CB-	81	05	A 0	5430		STA	T1HC
F3CE-	CE	12	A6	5440		HEC	COUNTCLOCK
F301-	[0)	3B		5450		BNE	EXIT
F3D3-	A9	14		5460		L.DA	\#\$14
F3D5-	81	12	A6	5470		STA	countclock
F3D8-	A9	01		5480		LIIA	\#\$01
F3DA-	18			5490		CLC	
F3DB-	6 B	13	A 6	5500		ADC	SECS
F3IE-	81	13	A6	5510		STA	SECS
F3E1-	C9	60		5520		CMF	*\$60
F3E3-	10	29		5530		ENE	EXIT
F3ES-	A9	00		5540		L.DA	\#\$00
F3E7-	80	13	A6	5550		STA	SECS
F3EA-	A9	01		5560		LLIA	\#\$01
F3EC-	18			5570		CLC	
F3EI-	6 D	14	A 6	5580		ADC,	MIN
F3F0-	81	14	Ab	5590		STA	MIN
F3F3-	C9	60		5600		CMF	*\$60
F3FS-	D0	17		5610		BNE	EXIT
F3F7-	A9	00		5620		LDA	*\$00
F3F9-	80	14	Á	5630		STA	MIN
F3FC-	A9	01		5640		L.IA	\#\$01
F3FE-	18			5650		CLC	
F3FF-	61	15	A6	5660		ALC	HOUR
F402-	8D	15	A6	5670		STA	HOUR
F405-	C9	24		5680		CMF	\#\$24
F407-	D0	05		5690		BNE	ExIT
F409-	A9	00		5700		L.LIA	*\$00
F40B-	80	15	A6	5710		STA	Hour
F40E--	68			5720	EXIT	FLA	
F40F-	28			5730		FLP	
F410-	40			5740		FTI	
F411-	A2	00		5750	clockset	LDX	\ddagger \$00
F413-	B1	82	F4	5760	HR	LLIA	HRMESS, X
F416-	20	47	8A	5770		JSR	OUTCHF
F419-	E8			5780		INX	
F41A-	EO	OII		5790		CFX	*13
F41C--	D0	FS		5800		BNE	HR
F41E-	20	199	81	5810		JSR	INBYTE
F421-	81	15	A6	5820		STA	HOUR
F424-	A2	00		5830		LIIX	*\$00
F426-	HL	8 F	F 4	5840	MI	LIIA	MINMESS, X
F429-	20	47	8 A	5850		JSK	OUTCHF
F42C-	E8			5860		INX	
F420-	EO	OF		5870		CF'X	\#15
F42F-	no	FS		5880		BNE	MI
F431-	20	1.9	81	5890		JSR	InEYTE:
F434-	81	14	A6	5900		STA	MIN
F437-	A2	00		5910		LLIX	*\$00
F439-	BI	9E	F4	5920	SE	LIIA	SECSMESS, X
F43C-	20	47	8 A	5930		JSK	OUTCHF
F43F--	E8			5940		INX	
F440-	EO	OF		5950		CFX	*15
F442-	10	FS		5960		BNE	SE
F444-	20	09	81	5970		JSR	INEYTE
F447-	81	13	A6	5980		STA	SECS

SYM-FHYSIS 5/6-16

REAIING APFLE TAFPES

Published below are portions of two letters from Hush Campbell, one of our many Australian subscribers.

We concur with Mr. Campbell's remark about Microchess at the current state-of-the-art. But, for its time, Feter Jennins's 1.1 K Microchess for the unausmented KIM was a real tour de force. It seemed a riear miracle to be able to have that neat little assembly of electronic farts tell us, on its little display, where it wished us to move its pieces. We converted our Microchess from KIM to SYM many months back, anid it was just as much fun as on the KIM, in spite of our increased sophistication (both SYM and us!).

For awhile, we considered makins arransements to market our SYM version, until we found that one was alreads available from the 6502 Frosram Exchanse, very resretably, this version makes use of a terminal, so the old charm is sone. We decided asainst recommendiris that version when we found that, if we were in check, and made no attemifto forotect our kins, Microchess also ignored the check, and turned its attention elsewhere!

Sarson is well known to us by refutation, and one of our colleasues reports that Fastsamion provides a worths opfonent. So that you can reelas and "post-mortem" a same, Fastsammon sives you the option to repeat the frevious sequence of dice-throws with each restart. We Fublish below a cosy of Mr. Campolls Affle Loader Frosramy so that you can purchase some of the Apfle (machine lansuase only) frosrams on cassette for your use on SYM.

We have rot been able to try the Apple Loader Frosram, ourselves, as we are still waitins for delivery of the Apple Tape "Slide Show", which we orderes. We ordered this tafe because of Iave Fi, Kemp's (develoeer of the SF-1 "Speak \& Spell" interface for the SYM) article "Slibe Show for the SYM", in MICRO, Issue Number 25, Jurie 1980. In this article Mr. kemp shows how to, not only read machine lansuase dumps of the Apfle srafinic disflays into the sym, but how to convert them from AF\&le display format into MTU's Visible Memors format in the process.

We will be sending copies of this issue to Hayden Books and to Quality Software, sussestins that thes consider marketins SYM cassette versions of their frosrams. Qualits Software, accordins to Mr. Campbell, does not attempt to "protect" their software. Hasden does "protect" their Apple software, but as you can see from Mr. Campbell's lettery such कrotection cari be "broken".

17 Ausust 1980
Llear Lum
19 Brushy Creek Foad l.enah Valley Australia

Thank you for your riote about my SYM-1 modifications to Affle II sames. Yes - you can load Afrle machine code cassettes into a SYM by using
a modification of the Affle cassette load from their monitor. By a stroke of luck or somethins, the speed of the tapes is almost risht. have to slow down my Suferscope recorder by about a Quarter of a turn of the speed control. It was one of those "I wonder if 's..." that worked. It even worked with the MON - 1.0 that I was usins when I found how to read Apple tares.

Loadins into SYM-1 helfs to break security cones. when Mon 1.0 or 1.1 meets an Apsle monitor adoress it returns to monitor without destroyins the coder 35 the AFEle does on FESET,

I have the code for loadins Affle tafes, tosether with workins modifications of :

Personal's Microchess and Checker Kiras
Quality's Fastsammon
All are modified to run on a SYM-1 and a 40 character KTM-2, with rimitive srafhics. You really reed a sefarate board for chess; the other two are OK on the vilu.

I have not relocated ans of the frostams, since I have only the code that I disassembled msself to work. from, and flents of RAM besides. The frostams use the followins RAM.

SARGON:-800-2CFF
SARGON II :- EOO-2FFF
CHECKEF KING:--3 $310-1$ FFF
I have not listed Microchess
It is not worth tryins when the Garsons are available.

SYM-FHYSIS 5/6-20

FASTGAMMON is a sood one to try first, because that does not need any code-breakins. It just needs the translation from Afple I/O to SYM I/O. None of mu modifications is very tids or elesant. I simply chansed what I meeded and left the rest of the AFFle code as it was. I the Sarson that I have sent to souy the ten move ofenins books" are not the Sarson that I have

Would you like to helf me to do somethins with the Affle loader and sames? Distance and time are both a bit much for nesotiatins from her in Australia.

I have serit you the first SARGON with instructions so that you ca see what I am talkins about, I actually sent that off to Hayden about year aso, but heard nothins from them. I suspect that they could no

You can see what I think of SWF-1. What do you think of Sarson? Yours faithfulls

Dear Lux
Thank sou for sour note dated 7 Sestember. I look forward to hearins whether Hasder Book will cooperate.

The other side of this tape contains my loader for Affle tafes. As you will see, it is orily 196 bytes, and so it is loaded almost before sou know it. It is located at 3EOO-3EC4, but it relocates easily by charisins the six or 50 3E butes. To use the frosram iri its fresent
 return. $x \times x \times$ and $y s y s$ are the start and end addresses on the Apple instructions for loadins. I have to fiddle a bit with speed and tone, Most tapes load with both controls set about where thes are on the trere wis FF. You an overcome this bu seeins where the code besins or the aren and saving the carriase return till that point. A sood load returns to monitor in the usual way.

As for translatins the Afsle prosrams to SYM-1. Well, that is eass sometimes, and sometimes not. With an Apple memory maf such as the one SYM monitor adoresses (CONK lace, Several days later, you can play an Affle same on a SYM.

Anti-cofyins codes are a problem. It depends how much trouble has been taken. The sood thins is that, since SYM does not recosnise Apple monitor instructions, it does not delete or chanse code, and so all the bootstrafs and so on are still on your tafe. If you are lucky, the tafe has some recosnisable ASCII on it somewhere, You can senerally count on th xk at with a hidden code before besininins the same. Sarsori 11 also collects the wrons code for the EOR, and deletes part of the bootstrap anyway. It is all part of the challense.

Also on the tafe is a SYM version of Quality Software's Fastsammon It is the only Apple tape I have found that makes no attempt at all to confuse the user. QS are also in California.

Resards

HUGH CAMPEELIS AFPLE TAFE LOADER FROGRAM: See precedins letters, and short article on pase $5 / 6-9$ for information on usins this prosram.

3E00-	AII	57	A6	L.IIA	A657	3E78-		80		CFY		\#80
3E03-	C9	41		CMF	\$41	3E7A-	60			RTS		
3E05-	Do	07		ENE	3EOE	3E7B-	AII	02	AO	LIIA		A002
3E07-	AI	49	A6	LIIA	A649	3E7E-	29	BF		AND		4 BF
3EOA-	C9	02		CMF'	* 02	3E.80-	8 D	02	AO	STA		A002
3EOC-	F0	03		BEQ	3E11	3E83-	A9	00		LIA		\$00
3EOE-	4 C	D1	81	JMF'	81 LH 1	3E85-	81	OB	A0	STA		AOOF:
3E11--	Al	4D	A6	LIIA	A 6411	3E88-	20	69	3E	JSR		3E69
3E14-	85	3 II		STA	311	3E8B-	A9	16		LIIA		\#16
3E16-	AD	4 C	A6	LIAA	A64C	3E8D-	20	37	3E	JSR		3 E 37
3E19-	85	3 C		STA	3 C	3E90-	85	2 E		STA		2 E
3E1B-	AD	4B	A6	LIA	A64E	3E92-	20	69	3 E	JSR		3E69
3E1E-	85	3 F		STA	3 F	3E95-	AO	21		L.DY		\#21
3E20--	AD	4A	A6	LIIA	A64A	3E97-	20	6 C	3 E	JSR		3E6C
3E23-	85	3E		STA	3 E	3E9A-	B0	F9		ECS		3 E 95
3E25-	4 C	7E	3 E	JMP	3E7B	3E9C-	20	6C	3E	JSR		3E6C
3E28-	A5	3C		LDA	3C	3E.9F-	AO	37		L.DY		\#37
3E2A-	C5	3 E		CMF	3E	3EA1-	20	5A	3 E	JSF		3E5A
3E2C-	A5	3II		LLIA	3 I	3EA4-	81	3C		STA		(3C, X)
3E2E-	E5	3F		SBC	3 F	3E.A6-	45	2 E		E.OR		2 E
3E30-	E6	3 C		INC	3C	3EAB-	85	2 E		STA		2 E
3E32-	no	02		ENE	3 E36	3EAA-	20	28	3 E	JSR		3E28
3E34-	E6	31		INC	3 L	3EAD-	AO	31		Liv		\#31
3E36-	60			RTS		3EAF-	90	FO		ECC		3EA1
3E37-	AO	4B		Lify	\#4E	3EB1-	20	5A	3 E	JSR		3E5A
3E39-	20	49	3 E	JSK	3 E 49	3EB4-	C5	2 E		CMF'		2 E
3E3C-	10	F9		GNE	3 E37	3EB6-	F0	0 A		EEQ		$3 \mathrm{EC2}$
3E3E-	69	FE		ALIC	\#FE	3EB8-	A9	07		L.IA		\# 07
3E.40-	B0	F5		ECS	3 E 37	3EBA-	20	47	8A	JSR		8 A 47
3E42-	AO	21		LDY	*21	3EBD-	A9	FF		L.LA		\#FF
3E44-	20	49	3 E	JSk	3E49	3EBF-	4 C	D1	81	JMFP'		81 LI
3E47-	C8			INY		3EC2-	4 C	03	80	JMF'		8003
3E.48-	C8			INY								
3E49-	88			DEY								
3E4A-	10	FI		BNE	3E49	3 O 00 A	115	A6	C9	41 110	07	AD,38
3E4C-	90	05		BCC	3E53	3E08	9 Ab	C9	02	F0 03	4C	[11,02
3E.4E-	AO	32		LITY	\#32	3 E 10	1 AD	4 L	Ab	85 311	All	$4 \mathrm{C}, \mathrm{DE}$
3E50-	88			DEY		3 E 18	685	30	All	4B Ab	85	3F,A7
3E51-	no	FI		BNE	3 E50	3E20	D 4A	A6	85	3E 4C	7B	3E,OC
3E53-	AC	FF	FF	LITY	FFFF	3 E 28	A 30	C5	3 E	A5 311	E5	3F,F6
3E56-	AO	2C		LDY	*2C	3E30	630	DO	02	E. 630	60	AO,OI
3E58-	CA			IEX		3 E 38	B 20	49	3 E	no F9	69	FE, 2F
3E59-	60			RTS		3 E 40	0 Fs	AO	21	2049	3E	C8,04
3ESA-	A2	08		L.DX	\%08	3 E 48	88	D0	FII	$90 \quad 5$	AO	32,88
3E5C-	48			F.HA		3E50	8 Do	FI	AC	FF FF	A0	2C,53
3E5D-	20	69	3E	JSR	3E69	3 E 58	A 60	A2	08	4820	69	3E,36
3E60-	68			PLA		3E60	8 2A	AO	3A	CA do	F5	60,91
3E61-	2A			ROL	A	3E68	020	60	3E	88 All	00	AO, 30
3E62-	AO	3A		Liy	\#3A	3E70	940	C5	2 F	FO F6	85	2F,27
3E64-	CA			IEX		3 E 78	080	60	AII	02 AO	29	BF, FE
3E.65-	D0	F5		BNE	3ESC	3 E 80	D 02	AO	A9	0081	OB	AO,OE
3E67-	60			RTS		3 E 88	069	3E	A9	1620	37	3E, 29
3E68-	00			BRK		3 E 90	5 2E	20	69	3E AO	21	20,84
3E69-	20	6 C	3 E	JSR	3E6C	3 E 98	C 3E	B0	F9	20 6C	3E	A0,41
3E6C-	88			IEY		3EAO	3720	5A	3 E	813 C	45	2E,60
3E651-	AD	00	AO	LDA	A000	了EAB	5 2E	20	28	3E AO	31	90,FA
3E70-	29	40		AND	\$40	3ERO	O 20	5 A	3 E	CS 2E	Fo	OA, 8F
3E72-	C5	2 F		CMP	2 F	$3 \mathrm{ER8}$	9907	20	47	8A A9	FF	4C, 24
3E.74-	Fo	F6		BEQ	3E6C	3ECO D	181	4 C	03	80,45		
3E76-	85	2 F		STA	2 F	5845						

H. F. LUXENEERG
, SYM-1 USERS' GROUF NEWSLETTER P. O. BOX 315 CHICO,CA 95927

Lux.
JUST A SHORT CASSETTE TO EXFRESS MY AFFFRECIATION DF SYMFHYSIS. YOUR MATERIAL HAS GREATLY HASTENEI MY EVOLUTION OUT OF SIMFLESYMIOM. I AM COMFOSING THIS FILE USING MY SYM, A SURFLUS XEROX KEYBOARI FROM CALIFORNIA IIIGITAL, ANII FAIA ELECTRONICS' TUT 6-5/8 (CHEAF UIDEO), I REMEMBER SEEING IN ISSUE 3 OF SYM-FHYSIS A FROMISE TO DISCUSS "CHEAF" UIDEO TERMINALS, WHICH I WAITEII ANXIOUSLY FOR, BUT IIII NOT SEE I HAUE JUST ADAPTEI CHEAF UIDEO TO THE SYM-1 ANI THOUGHT OTHERS MIGHT RE INTERSTEN IN MY EXPEFIENCE.

CHEAF UIDEO FOR THE SYM	JOHN MATTOX
	102 NW 27 TERRACE
	GAINESUILLE FL 32607

$$
\begin{aligned}
& 102 \mathrm{NW} 27 \text { TERRACE } \\
& \text { GAINESUILLE FL } 32607
\end{aligned}
$$

FAIA ELECTRONICS SELLS A BARE BDNES VINEO DRIVER KIT (TUTO-S/8) TUT CONSISTS OF SEUEN INTEGRATEI CIRCUITS; AN UFFER CASE CHARACTER GENERATOR IS SUPFLIED WITH THE KIT. THE IMFLEMENTATION OF AN UPPER-LOWER CASE GENERATOR IS IISCUSSEI.

TUT IS DESIGNEI FOR THE KIM. THE IEESIGN REQUIRES THE IIISFLAY MEMORY DATA BUS TO BE EUFFERED (TO FROUIDE IIRECT ACCESS BY TUT WHILE THE HOST MICROFROCESSOR EXECUTES A SUBROUTINE WHICH INCREMENTS THE ADLIEESS BUS). THIS MEANS THAT ADDITIDNAL OFF-BOARD MEMORY IS REQUIREL WITH TRI-STATE DRIVERS IN BOTH IIIRECTIONS FOR THE SYM.
TUT USES THE 4 HIGHEST ADDRESS LINES AS DISFLAY INSTRUCTIONS. THIS MEANS THAT IF ONE USES THE INSTRUCTION IECODER FROM SUFFLIEI THIS IS KIEARLY UNACSEPTABLE FOR $\$ 3$ PAIA BE RESERUE FOR THE PROM FOR ONE PROGRAMMED TO USE MEMORY SFACE $\$ 2000$ THFOUGH \$OFFF THE MONITOR ENABLE JUMPER MUST BE REFLACEI WITH OFF BOARD LOGIC USING A 6522 UIA TO SWITCH BETWEEN ENABLING THE MONITOR ANI ENABLING THE TUT, ADDITIONAL EXFANSIONS WILL ALSO NEED TO BE IESSELECTABLE.

IN ADDITION TO USING 50\% OF THE AUDRESS FIELD, TUT REQUIRES UP TO 95% OF THE CPIJ TIME (THERE AIN'T NO FREE LUNCH). ALSO, FOR UISPLAYS WITH MORE THAN 40 COLUMNS, THE HORIZONTAL FREQUENCY OF THE CRT MONITOR MUST BE REDUCED.

MY CURRENT IMFILEMENTATION IS TO DISFLAY WHILE WAITING FOR KEYBOARI INFUT (WHICH IS TIME OTHERWISE WASTEII). WITH A 1 K HISPLAY MEMORY I AM USING A 64×16 DISFLAY. I AM EUILIIING AN 8 K DISFLAY MEMORY WHICH WILL ALLOW A 80×24 DISPLAY AND 256×256 BLACK \& WHITE GRAFHICS.

I INCLUDE HARDCOPY BECAUSE I AM NOT CERTAIN OF MY RECORIER. YOU MAY PUBLISH WHAT YOU WISH OF IT. IF I HAD IT TO DO OUER, I WOULD HAUE INSTEAD PURCHASED KTM-2/80.

SINCERELY,

JOHN
John: Thanks for the valuable writeup. Many of our readers will also find it helfful. Your recorder writes fine, reads easily! - Lux.
ar. H. R. Luxenbers
Editor SYM-FHYSIS
P. O. Box 315

Chico, Califorria 95927
Dear Lir. Luseribers:
I have been usins Jack. Brown's "Super TCP" and "Ultrarenumber alons with a modified version of Tom Gettys' Merse/lielete" and find them to be a marvelous enhancemerit to ms SMM. I ve put them tosether with a srafhics packase for MTU's K-1008 board, a tafe verify and tape directory sesment (after the one of Jack Giersic), and linkase to a printer, all on a pair of 2716 EFROMs (stacked, of course) with the result that I have a very nice overall operatiris system for the GYM. Ms primary use of the system risht now is to write prosrams for lecture demonstration in Physics classes usiris the TU srafhics.

In usins Ultrarenumber I discovered that if it finds reference to a nonexistent line number followins GOTO, GOSUB, etc, it sives it This means that soul caninot run a renumbered frosram until all the illesal references are individually corrected. The larsest acceetable lie number in SYM-1 BASIC is 63999 which is FgFF in hew. Therefore I chansed lines 3220-3230 in Ultra-renumber as follows:

3220	STA *FACTO-1
3222	LLIA \#\$FG
3230	STA *FACTO

Now when the above circumstance occurs, it recomputes the references to the nonexistent lines as 63999 . References to this line rumber can then be trapped out by using a statement such as:

63999 GOTO_
which takes the prosram to some appropriate point. I have not found a situation in which I could not set a satisfactory renumberins job.

I certainly enjoy SYM-FHYSIS and find it senerally very helpful. I think it is clearly the best fublication soins for "Symmers". I have found the work of Jack. Brown and Tom Gettys very rautines work. Keep up the sood work.

Sincerely,

Nefartment of Fhusics
Walla Walla, Washinston 99362
GYM AS A PERSONAL COMFUTER \& THE ELUCATIONAL/ACADEMIC MARKET
(continued from pase 5/6-2)
Striertek. affreciates, and are explorins the fossibilities of OEMins a packase built around this nucleus, with attractive discounts to individual faculty and students to encourase personal systems as well We consider wokina

We have purveyed several such systems locally, and would be interested in hearins your sussestions and comments about this class of systems.

HOW TO ALIL MORE VIAS EASILY
The SYM-1 dedicates a full 4 K of address space ($\$ A 000-\$ A F F F$) to the 6532 and the three on-board $6522 \mathrm{~s}, 1 \mathrm{~K}$ to each. The 6532 needs 128 addresses for its RAM, and 32 addresses for its I/0-TIMERS, but the 6522 s each need onily 16 addresses of their assisned 1 K blocks.

When the problem arose of adding the HDE IIisk Controller, which has its own on-board 6522, with full address decodins, we assisned it the addresses \$A88X (16 bytes only), and temporarily removed the (user
supplied) UIA $\# 2$ in U28, so that there would be no address conflicts. We could have broken the 1 K block at $\$ A 800-\$ A B F F$ in half, and assisned \$AAOO-\$ABFF to ans adoed UIAs, but decided to use onis Fase \$AB for all T/0, since the uffer half of this one rase alone would allow the addition of eisht more UIAs (with full decodins).
The first two purchasers of the HIE SYM-FONS came uF with two vers different hardware implementations of the simple losic to keer UIA $\quad 12$ Out of the uffer halves of the four pases to which it has access. These are both presented elsewhere in onis did each selected a differerit technolosy. One chose the IC aperoach, adins a chist the other chose iTL (Diode Transistor Losic) because it (the transistor) was already there.

As of now we have not added the additional UIAs we thousht we would want, One reason is that we were able to "recover" the use of FB on on "extra" ports at the Aukilliary Asflication Connector, and not load our unibuffered Address and Data Busses at the Expansion Connector down any further, even thoush we have had no problems as yet. Iri fact, we just installed the Color-Mate color sraphics system on the (unbuffered) expansion bus (addresses $\$ 9000-\$ 9 F F F$) with no problems.
Since we fulls intend to install the AY-3-8910 frosramiable Sound Generator (one of these days!), we flan to make use of its "free" built-in pair of 8 -bit I/0 forts, which can be used indefenderitly of the sound seneration function, to handle the control functions we wish. Dne
of the ports could serve as the orisin of a two-way data bus to a number of the ports could serve as the orisin of a two-was data bus to a number of other Ulas, and the second port could provide the chif select and in detail as uet, because we are still not uet certain of our requirements.

MORE FROM JOHN GIERYIC ABOUT JACK BUILT FROGRAMS
We told Jack that we didr't thirk there would be a sreat market for sames for the SYM-1/KTM-2 system. This turned out to be true; most of BEE-1 Cour new name for the Brown Basic Enhancements Fackase, siven because the Furchasins office feofle who flace orders with us feel because the purchasinis office feofle who flace orders with us feel name), has been high; the Jack Built Frosrams have not shaken the earth with fast movement.

Well, Jack has senerated some FLOT Utilities for BASIC, which work with the (built-in) Gowan Double lensits Flot and Tris Fatch machine lansuase prosrams. These additions to the Jack-Built prosrams line may be ordered throush the Users' Grouf. The best way to describe these prosrams is to reprint the instruction sheet; this we do below. He also provided some bus exterminators and a well human-ensineered EASIC EFROM Frosrammer Frosram. We will therefore turn the next few pases over to Jack. But first, a few more editorial comments (to keep our editorial license current):

SYM-FHYSIS 5/6-25

Jack is an extremely sood BASIC frosrammer, and is usins RAE to prepare dack is an extremels sood basic erosrammer, and bout the latter, since it is so eass to "SWF" his manuscrifts into camera-ready copy. His FLOT prosrams mix BASIC with MLC (Machine Lansuase Code), which is, of course, senerated by RAE. We hope we can persuade Jack to redo one of his FLOT prosrams in SYM-FORTH, and refort back to us a (not necessarily objective) comfarision of the two affroaches.

We are curious to hear what this Jack will have to say on FORTH versus BASIC, because our other Jack (Jack. Brown, that is), also very well versed in BASIC, has serit us some sraphics prosrams (for the MTU Visible Memory), and the classical "Towers of Hanoi" as a beautiful srafhics demonstration on the KTM-2/80, written in FORTH, with its own built-in Tris Fatch, and MLC fortions, compiled with FORTH'S built-in ASSEMBLER Vocabulary, We find, as only occasional" prosrammers (meanins only when we have to, because we couldn ton someone else low dan one, in spite of mans more years of BASIC experience.
from Jack built frograms
These three prosrams all require $8 K$ of KAM, a KTM-2/80 and BAS-1. Enter BASIC with 6400 bstes free. Each prosram consists of a BASIC frosram Fart and a machine lansuase part (19F0 thrl 1FFF) containins Fill Gowans' plot packase from SYM-PHYSIS Issue $\$ 3$ slus the tris furictions. Two loads are reauiredir, BASIC. The first loads the machine lansuase Fortion and the second loads the BASIC frosram. Gnce this is done the user can so to one of the other two prosram by loadion is the BASIC part of that other pros

This fackase produces a plot of two equations of the form $Y=F(X)$ over the same user-specified x ranse, while usins a different user-specified 3 ranse for each equation. This concept is similar to the dual trace oscilloscope. It allows the user to view two widely differins plots superimposed on the same "piece of srash fafer". Two equations are already in memory. Enterins the followins values in response to the
prosram prompts will sive a feel for the frosram; -1, $1,0,720,0$, rosram prompts will sive a "feel" for the frosram: 720.

 * 4 QUADRANT FLOT *

Us to four indesendent equations of the form $Y=F(X)$ are plotted on a four quadrant grid which utilizes the entire monitor screen. The user specifies the number of equations to plot, the maximum fositive x value and the maximum fositive y value. The frosram plots the equation(s) on a $160(h)$ by $48(v)$ "dot" srid. Enter the followins values in response to the prosram prompts: 2, 1, 720, This will produce four complete cycles of a sine wave and another 4 cycles of a cosine wave.

Us to four ingependent equations of the form $k=F$ (TH) are plotted on a polar stid which uses the entire monitor screer. The scalins is adjusted such that the flot of $R=5$ does affear as a circle on the monitor. The frosram frompts the user for the maximumi \mathbb{R} value, the ranse of THETA (minimum and maximum), and the increment value. For example, if the ranse of THETA is 10 to 30 desrees with ari iricrement of 4, then the frosram would flot a point every 4 desrees between 10 and 30. A mililmilm THETA of o cannot be enitered due to error checkiris by the $6,1,360,4$, This will show what the frosram O to read F=TH and enter FUN. Enter the followins values to the promets. 1, 27,1 1440, b, Enter the shold result iri an sfiral.

JACK BUILT PROGRAM BUGS
Two of mis prosrams have minor buss. I warit to tharik fon full and Cas Teisen for brinsins these to my attention, Luk already has the fixes incorporated into his source. To the mans who have alreads furchased the two prosrams, check your source. If the followins fixes are missing, then add them. Do not write over gour orisinal tafe. Copy the corrected source to a new tape. If the new tape checks out ok, theri, and onls then, should sou rewrite your orisinal tape.

BAR GRAFH

Symptoms: Very short bars (less than 8 scan lines tall) are actually 8 scan lines taller than they should be. With this fix these short bars will be the correct lensth. If the bar is too short to affear as even a sinsle scan

Fix: Insert the followins line: 526 IFC=OTHENQ=1:GOT0532

FLOT

Symptoms: Under certain conditions, a sinsle point does not affear to "follow" the plot. Instead it appears at a point somewhere below its real position and the plot has a "hole" (missins flot point) at this position. This hole will affear at the very tof line of the grafh. The bus is a very common one; a relational oferator in an If statement dia not include the "equal to" case.
Fix: Insert an' $=$ ' in line 153 so it reads as follows:
153 IFY $>=Y$ LTHENB $=39$: GOTO160
MORE ON THE EFROMMER
Dear Lux and all SYMmers:
I read with extreme interest Joe Hobart's article 'An EFROM Frosrammer for the SYM-1" in SYM-FHYSIS Issue $\# 4$. His idea was elesant and, best of all, chear! As a complement to his simple hardware desisn, I have wreat deal of fower when frosraminis the 2516 or 2716 EFROM.

SYM-FHYSIS 5/6-27

I reassisned the ports on the 6522's such that No modifications are necessary to the SYM. Simply wire the frosrammer per the directions in the enclosed article and you're ready to RUN. This allows you to use the four buffered bits on Fort ACOO for other afplications on the "A BUS * *

For you lucky users who own a KTM-2 or KTM-2/80, my frosram will utilize cursor fositionins to make the man-machine interface a bit more leasins. For you other terminal owners, all data and disflays will be left justified on your screen.
An additional feature of this erosram is the ability to turn off all oower to the EFFROM when the EFROM is not beins accessed. This enables list selection, all port bits are losic 0. If the user installs a double fole single throw switch on the +5 volts to EFFOM Fin 24 , and the +25 valts to EFROM pin 21 , the user can turn this switch off arid
 emoverrerlacelinsert EFRoms. This switch nieed be turned on only for

Wouldrit it be rice if this switch could be automated? Well, I've pro vided such a sisnal on the AA coninector fin S (3FB3). This pintwill so hish when the EFROM is accessed (oftions 1, 2, 3, 4, and 7). This sis nal can be used as a means to control a relay which would reflace the manual dest switch.
rhere is yet another method of implementins this automatic control of the +5 and +25 voltases. Iri my case, I used two SIGMA relays (fart no. 191TEIA1-5S). These are dual-in-line Fackased reed relass (14 piri DIF) with an internal suppression diode. Each relay has a sinsle fole sinsle throw switch. One relas is used to switch the +5 volts and the other to switch the +25 volts. The sisnal fromfins (3FB3) drives ani inverter (7404), which, in turn, is used to sirik current on the ts volt control
 A which is used to sink current on the +25 volt control relay coil.
rhis use of one of the buffered bits on the fort at ACOO requires a chanse on the SYM, Buffer B4 (lower lefthand of the SYM board) should have foint A jumpered to foint 3 (refer to Fisure 4-5a in your SYM
Reference Manual) and soint B jumpered to point 18 . Also, the . 47 Capacitor to EFROM pin 24 is repositioned so it is alwass coninected from sround to +5 volts. My schematic for this method is summed uf below.

SYMcerely,
Jack Gieryic
From Jack built frogriams

 * 2516/2716 EFROM PROGRAMMER *

Hardware requirements:

SYM-1

SYM BASIC
7K RAM
Terminal with at least 16 lines and at least 32 characters per line

This prosram presents the user with a list of 8 oftions from which to choose. When the selected oftion is completed the prosram will ask the user if he/she wants to so back to the oftion disflas. If the resporise is YES, then the oftion list will asain be fresented. All addresses and limits can be entered in either decimal or hex. Hex rumbers are simply

OFTIONS

1 - FROGRAM EFROM
2 - COMFARE EFROM TO MEMORY

- UERIFY EFROM IS MEMORY
- IISFLAY EFROM MEMORY
- DISFLAY MEMORY
- ENTER MEMORY HATA
- REAII EFROM TO MEMORY

8 - MEMORY mOUE
OFTION 1 - This oftion is used to prosram the EPROM. It prompts the user for the EPROM startins address, the number of bstes to frosram, and the data startins address in memors. The EFROM startins address plus does, the prosram will asain prompt the user for all of the data. If it option allows the user to frosram ans number of butes, answhere within option allows the user to prosram any number of bytes, answhere within
the EPROM, from any area of the syin memory, without disturbins the remainins locations in the EFROM. After the prosramins is completed this option will verify the data just written, and any errors will be displased in the followins format:

ERROR "EFROM address" "EPROM data" "memory address" "memory data"
If the requested parameters were entered in decimal then the error data is displayed in decimal, If the parameters were entered in hex then the error data will be displayed in hex.

OFTION 2 - This option will compare ants fortion of the EPROM to memory. The option requests 3 farameters, as does option 1. Ans errors are displayed as in option 1.

OFTION 3 - This option will verify that any part of the EFROM contains hex FF. It will reauest a startins address and the rumber of butes to check. Ans locations not containins FF will be frinted, alons with the data found in those locations. It is wise to verify if the EPROM is cleared, prior to prosrammins, as this could save a lot of time.

OFTION 4 - This option is used to view the contents of any number of contisuous bytes in the EPROM without brinsins the data into memory. The option asks for the startins address and the number of bytes to display. The data is displased in hex resardless of the format used to enter the address and bute count (decimal or hex)
OFTION 5 - This option is used to view the buffer before burnins it into the EFROM. Ans area within memory mas be viewed, and there is no limit on the number of butes to display. The display format is identical to oftion 4 .

OFTION 6 - This oftion will allow the user to hand-construct a buffer in memory for transfer to the EFROM via oftion 1. This option will also enable the user to chanse data before burnins it into an EFROM. This oftion requests a startins address (decimal or hex), and then disflays appears after the or hex), followed by the data (hex ondy hata to chanse that location, or the same data as is displayed, to skif over that location. The next address and its data are now displased, and so on, until the user enters the letters ENI, instead of data. This terminates the option.

SYM-F'HYSIS 5/6-29

OFTION 7 - This oftion allows the user to transfer ans or all of an EFFOM's data into the SYM's memory. This allows the user to chanse the data via oftion b, if desired, and ther, burn a new EFROM, via option 1 , The oftion requests the EFROM's startins address, the number of bytes to read in, and the besinins of the buffer in the SyM's memory. Make sur your memory buffer is larse enoush!

OFTION 8 - This oftion will allow the user to move any size block of OFTION - This oftion will allow the user to move aris size block of memory into another area of menors. With this oftion, the user can move it via oetion b, and then burn a new FFFOM. All this without touching the EFROM beins used in the sustem!

Note: Options 6,7 and 8 will not allow the user to use fase 0 , pase 1 , or the memory occusied by the frosram. This prevents self-destruction This prosram resides in the first $5 k$ of memory.

Above is the schematic for Jack's Automatic EPROM Frosrammer Switcher. His revised wirins list for the EPROM Prosrammer is on ease 5/6-7. Flease note that the BASIC listinss for the EPROM FROGRAMMER and for the FLOT frosrams are NOT published in this issue! Only the instructions for these five frosrams are siven here, so that you can decide whether or not they will be useful enoush to purchase in cassette form from JACK BUILT PROGRAMS.

We have tested 3 number of new froducts since Issuse No. 4, and can recommend all but one of them (that one will not be listed here). Some
of these we will be distributins. Flease note that we don't recommend because we are distributins. On the other hand, if we can recommend a product, we may try to set distribution rishts, if fossible.

The Colormate
The easiest was to describe this newest product from Micromate, F. 0. Box 50111, Indianafolis, IN 46256, is to reprint the followins extract from their brochure:

ColorMate brings the flexibility of color video display to KIM, SYM and AIM microcomputer systems. Designed around the Motorola 6847 video display generator, ColorMate offers nine modes of operation, ranging from alphanumeric to full graphic. A 12 -bit word format in the alphanumeric/semigraphic modes provides capability to mix alphanumeric with semigraphic characters. alphanumeric/semigraphic modes, providing added flexibility in many applications. Selection of the page to be displayed requires only a write to the ColorMate control register. The alphanumeric dis play format is 16 rows by 32 columns. Semigraphic modes provide colorful applications on a 48 by 6 by 128 .

The ColorMate is memory mapped, and requires a 4 K byte memory space. Decoding to 4 K boundaries is provided onboard. It interfaces to the
Expansion (E) connector of the KIM. SYM and AIM Expansion (E) connector of the KIM, SYM and AIM
microcomputers. The single 5 volt supply is provided via the interface. The PC board is a standard $41 / 2$ by $61 / 2$ inch format, with plated through holes and gold contacts. The ColorMate may be configured to drive a standard TV (ch. 3 or 4).

In adcition to a complete description of the various modes of operation,the ColorMate User Manual includes example sottware for a color video termal dnver (VewMate), a Fourier synthesis gram, and various graphics plot subroutines.

Colormate is available directly from Micromate, either as the FC boara and manual alone, for $\$ 50$, or fully assembled and tested, but without the necessary IC's, at $\$ 95$. In either case, you will have to hurit up the IC's somewhere; you can most easily obtain the complete set of IC's from Micromate, for $\$ 125$ additional. Add 2% to all prices, for shippins and handling. NOTE: The ColorMate will NOT work with FAL or SECAM color ru!!!!

While the maximum full sraphics mode resolution of $128 \mathrm{H} \times 192 \mathrm{~V}$ is less than that of the Atari ($320 \mathrm{H} \times 192 \mathrm{U}$), the Arple II ($280 \mathrm{H} \times 192 \mathrm{~V}$), or the TRS-80 Color Computer ($256 \mathrm{H} \times 192 \mathrm{U}$), the color capability is still Quite impressive, and can be very useful and effective. The Colormate reauires 4 K of address space (ours is at $\$ 9000-\$ 9 F F F$), with 3 K of Video mapped 2114 RAM on board (the remainiris K is not memory mapped, bunitor switched between the KTM-2/80 and the MTU Visible Memory with Radio Shack Coax Switch, for most purposes. The color sfaphics coexist simultaneously on a color TU set. The Coloriate has its own oni-board RF Modulator, so that connection to the TU is throush a 75 ohm to 300 ohm switchins adaftor to the UHF anterina terminals on the set. When the TV is not available for SYM use, SYM has an extra 3 K of RAM with which to play!

Several subscribers have alreads written, or shoned, to let us know they are usins, and are pleased with, Colormate. Dick Turpin has provided plenty of software in the manual with which to set started, and will be supportins a User Group. The source code is in RAE format, and we are makins arransements with Dick to provide Colormate Graphics software ir, cassette form. The board uses what we are callins the "Reverse KIM" pinout. See the next recommendation for installation sussestions.

The Ruest Expansion Board

As mans of you have discovered, not all 44-contact SYM/KIM/AIM Expansion boards are comeatible. With the exception of contacts E-16, -17, $-19,-20$, and $-x, 38$ out of 44 of the SYM, KIM, and AIM expanion out" assisnments are identical. One sroup of expansion boards (MTU, example) has, excert for E-2, and E-3 (in addition to those li above), the identical contact assisnments. For this class of boan any "mother-board" must have what we are callins the "KIM-1" Bus. connector contacts, excert for the ones listed above, are wire Farallel with the contacts on a connector into which the 5) "Flussed."

MOS Technolosy, producers of the KIM-1, devised, and marketed, for
very short time orily, the KIM-4 Motherboard. All of the lettered, two of the numbered, contacts were shifted by one position with respect to the KIM-1 Busy and some sisnals were dropfed, and others added. The Computerist, Hudson Lisital Electronics, and FNB Enterfrises, amons structure, with varsins desrees o fidelity.

Other expansion boards are available, most notably the Colormate and the Beta Computer Devices' 32 K Memory Board, which use the "Reverse KIM" Bus. These are desisned to plus directly into a connector whic extends and reslaces the edse contacts on the SYM board. Alternately soldered directly to thersed arid solder-eses or solder-tail airectly the SYM.

What's a fella to doy if, like me, he wants to add an Hile liask Conitroller (KIM-4 Bus), Colormate (Reverse KIM Bus), and an MTU Visigl Memors Board (KIM-1 Bus) to the same SYM? We found that the 44 -contact Expansion Board which was develofed by Quest Electronics, F. 0 . Bo: 4430, Santa Clara, CA 95054, for use with their Sufer Elf (an excellent RCA 1802 based, sinsle board computer) System, when fitted with an extray reverse mounted, 44-contact connectory fills the bill admirably. It can be fitted to the SYM straisht out, or at a risht ansle. If fitted at a risht ansle, the three solder tail sockets can be mounted on either side of the board, to project either forward or backward. There connectors can ber two posion to provide connectors can be installedin eithe either direct or reversed KIM-1 Bus.

There is elenty of room between the connectors to cut the appropriate traces, and the unused rows of installation holes make it eass to insert the necessary jumpers to convert one or more of the connectors to accept a KIM-4 board, e. G., the HDE Iisk Controller. These boards can also be used on the Applications Connector, to mount a pair of LIACs for stereo music or vector sraphics, for example, and also on the Auxilliars Applications Connector, for all kinds of soodies. If you make your own afplication boards, you wire the contacts to match the application DACs, you must, of course, cut and jumper the traces on the exparision boards to match.

While we are ori the subject of busses, we should mention the SYM compatible "S-44" bus, and series of memory and other cards available Fom Kathrsn Atwood Entererises, F.0. Box 5203, Oranse, CA 92667. This as is inseniously arransed so that no damase will be done if the boaro either way! This has to be the ultimate in "idiot-proofins" equifmert

The Beta Computer Llevices 32 K मuriamic RAM Eoard
The SYM is expandable to 4 K of RAM ori-board, and the Blalock Memory board froves an eass expanision to 8 K . As many of our readers have respectable system. Additional utilities are very easily fut in EPROM.

The Colormate frovides its own 3 K of RAM, if you want color sraphics If you want to add a disk sustem, you will need at least 8 k more of FAM, but once sou have the disk system uf, you will want more and more RAM, for all of the thinss the disk system will let you do.

One of our SYMs has been exfanded to 32 K , by addins MTU's 16 K dunamic RAM, and MTU's 8 K Visible Memory (also dunamic). The 8 K Visible Memory frovides the bonus of hish resolution black and white srafhics The disadvantases include the necessity for addins additional voltases to the power supply, uriresulated $+8 v$ and $+16 v$, and the need to provide a card case to hold the added cards. The srafhics cafability more than
makes us for these two minor disadvantases.

For a lons time, we have been lookins for a 32 K expansion board which would permit us to build a really portable, two piece system, which conld be our ou Sany. Mifere fiece the size and shape of an attache case, would case; the other, about the size and shape of an attache case, would hold the SYM, the KTM, the power supfly, and the cassette recorder.

Stephen Cole, whose letter affears elswhere in this issue, is usiris the Beta Computer Levices Model 6502nM Memory Board. At the same time we received Stephen's letter, another reader wrote in, askins our opinio ordered one from Eetay at 1230 West Collins, Oranse, CA 92668. Here are our comments:
The board requires onily a sinsle $+5 V$ (at 0.8 A max) supply. There is no heat seneratins resulator on-board, and the board senerates its owr resulated -5^{4} and $+12 V$. The board is $4^{\circ} \times 6^{\circ}$ and has edse finsers desisned for the S-44 Bus (see elsewhere for some commerits on this), The board has holes for mountins (supflied) risht arisled 44 contact coninector to form the conmector Pits directis on the Exransion Connector edse finsers of the SYM. The connector can be rounted ho the the the "folded" neaty and what we will use for our portablew it, wate will probably stys at second connector, so that a disk controller card can be adied for home se. We misht then bring alons our disk sustem as a third unit, if we travel by private auto

The board is dynamic RAM only. It contains no $k 0 M$ sockets, additional UIAs, or EFROM prosrammins system. We find that, for the SYM, these "omissions" are of no consequence. The SYM is "loaded" with its own ori-board UIAs, and the Hobart EFFROM Frosrammer works off the Auxilliars Afflication Connector. All 32 K of FAM mas be freely assisned in 4 K blocksy anywhere in emfty memory ssace, with absolutely no constraints. This means that, if you have the 4 K RAM sockets on board filled, you will have 36 K of RAM available. The extra 4 K can be used to fill the $\$ 3 F$ at $\$ 9000$ - \$9FFF; this would be a sood location for all of the MON/BAS utilities you are usins, The orily free memory now available is the 2 K FF800-4FFF, SFF800-SFFF, the whole tof 4 K block. One of the four oni-board kom sockets can be freed to hold one or two (Fissy-backed) EFROMS. If you
ininibit the echo, the tor six butes in EFROM must contain fixed IRR and NMI vectors. You will have to sive uf the flexibility provided by TRRUEC and NMIVEC in System RAM. SYM-FHYSIS 5/6-33
ro summarize, we like the Beta Board, and recommend it hishly, if you need no additional srafhics capability besond that provided hy the KTM-2/80 (160% 48). For our fully fortable system we are willins to huey II

Many readers have asked about addins a floatins-foirt arithmetic fackase to SYM, which can be called from assembly lansuase frosrams, o "patched" to the various tiris" lansuases, e. s., tiny-c, tiris basic, tins filot, etc.
One apfroach, if you have BAS-1 resident, is to call on its subroutines, as required. We have not done this, but refer you to ari article by Fi. M. Mottola, "MEAN 14: A Fseudo-Machine Floatins Foint Frocessor for the Apple of the name "SWEET 16", for the pseudo-machine 16 -bit frocessor package in the Aople II. MEAN 14 can be adarted to SYM bu realacins the Applesoft subroutine call addresses by the correspondins EAS-1 Adoresses. We have not done this, mostly for lack of time, but also because the real problem is to provide a free-standins floatins poirit Fackase for use without BAS-1.

The real answer is frovided by Dori Kindsbers's 'HUEY II', available from the 6502 Frosram Exchanse (address elsewhere inthis issue). We have lons been fond of the orisinal HUEY, but did not recommend it earlier because we knew that the new version was in the works, and because the old edition of the manual was incomplete, requirins the user to locate, somewhere, a cofs of the Ilecember $1977 \mathrm{Kilobaud!} \mathrm{The} \mathrm{new} \mathrm{manual} \mathrm{is} \mathrm{now} \mathrm{a}$ self-contained document.

Huey II may be used alone to make the SYM-1 act like a Reverse folish calculator, or its subroutines may be called from other hish or low evel lansuases. We recommend it hishly, even if you don't ever use it er surs if FOCAL, FAST FOCAL, XPLO, AND TEC 65
FOCAL (FORmula CALCulator) is a close relative of BASIC, with a number of elesant eninancements, orisinially develofed by DEC for the PDF systems. TEC 65 is a 6502 version of the Text Editor, TECO. XFLO is similar to Fascal and C, all three beins descendants from ALGOL.

All are available, ir sYM cassette format (we tested them all), from the 6502 Frosram Exchanse, 2920 Moana, Renio, NU 89509. Flease write them (our contact there is Dave Marsh), for information on memory eauirements, prices, and additional suffortins software availability Source code listinss are available, unfortunately not in RAE format hence not on SYM readable cassette), for all of these lansuases, 50 that you can easily adaft them to your own system confisurations.

If sou are beeaer into software than into hardware, all ot these are worth ownins for study and comparision purfoses. Each has its own unique set of good and bad features. If hardware is your major area of iriterest, you should know that all lansuases are "equivalent" ir the sense that ans lansuase can be made to do any job, althoush some may be more convenient or/and faster than others, in certain applications.

Our own feelins about lansuases, based furely on fersonal exferience, and, of course, personal bias, is that, in the microprocesscr environment, FORTH misht have the edse in speed and convenience. particularly for control applications. Of course others, with equal or sreater experience, have their own fersonal biases. The only honest recommendation that can be made here, or answhere, is to study and try
them all, and come to your own conclusion.

SYM-PHYSIS 5/6-34
tiny-c
C is a 'Pascal-like' lansuase develofed by the Eell Telefhone Lab oratories. It seems to have a reasonably wide usase, but nowhere near the mass pofularity of Fascal. tirys-C is an inteser only version, available from tins-c associates, F.0. EOK 269, Holmdel, NJ, 07733, as "A Home Computins Software Sustem"

We tried tins-c, and liked it, and found the manual and documentation to be of outstandinsly hish, truls frofessional qualits. The SYM-1 eadaize results of our tests, and our sussested fixes, back to tinu-c associates (tca), and assume that the fixes will be incorforated inito future versions. We hose to make arransements to market the SYM version for tcas but it is too early to report further on this at present.

There is neither the time nor the sface to describe tiru-c here, and we are not refortins on frices, because of a rise in overseas mailins costs early next year, and because the frice of a new text on tiny-c has not set been announced, We sussest sou write tca directly for ans additional information.

MISCELLANEA
The reason that the back of each sheet of SYM-FHYSIS mas seem to be "upside-down" with resfect to the front side is so that the issues may be punched alons the L.ONG edse for insertion into a three hole binder If the binder is then turned 90 desrees clockwise, the pases are then KIM-1/6502 USER NOTES, because we liked their format. The issues are not ere-runched for you because we are doins our best to keef all costs down. Besides, about twenty fercent of our subscribers are in " metric* countries, and we are not sure of the standards for the metric thre hole punch.

We decided asainst carryins a Besinners Column in each issue, because SYM-PHYSIS is sold only by the volume, not by the issue, bs the time new reader has finished Issue No. 2, and read some of the recommended books and articles he is no lonser a besinner. A number of new subscribers orisinally called us nearly every day, when they first set JF their SYMs, to ask very elementary questions, to which they could have found the ariswers in the kieference Manual (admittediy, that's not always easy!). Their calls became less frequent, and their questions became much more sophisticated and challensins, as the weeks went by Now they call or write only to refort on some new or excitins afplication or expansion

We will be teachiris a weekend course at the University of California at Davis (about 20 miles west of Sacramerito) on December 5-7, 1980, or "Micros rocessor Fundamentals." The $\$ 475$ fee includes a "free" SYM. If you already have all of the SYMs you need, the fee is reduced University of California, liavis, CA 95616, (916) 752-2177. We elan to offer one or more similar courses at Cal State Chico, riext spriris. please write Frof. 0. S. Madrisal, Jepartment of Computer science, California State University, Chico, CA 95929, for additional information.

John R. Robertson, of Fortland, Oreson, advised us of a comfans iri Hons Kons that makes enclosures for the SYM and the KTM-2s. We have written them concerning possible import arransements. We will report further ir mid-December.

Om Evans, WAbuTA, 20501 Hatteras St., Woodland Hills, CA 91367, would like to hear from any hams doins RTTY with the SYM.

Norrito Giorsiog 1200 Levin Ave, M Mt. View, CA 94040, is interfacins an Exatron Strinsy Flopps to his SYM.

Bruce Thompson, Cornell University, has been usins four syms in remote stations to sense the seomasnetic and seoelectric fields and record them on cassettes. These run unattended for three days on 6 V car batteries, The timins and ssnchronization are critical so he runs them with an external oscillator which is buried in the sround to reduce diurnal rate ine has fleedins Th via FB? comerted to FB6 externally jn order to set the rase necessary He cus that the syms despite the 100 desree temeeratures and 100% humiditu.

Shahrakh Ghaffari, Chemistry Llepartment, Oreson State Uriversity, CorVallis, OR 97331, sent us a note describins how to transfer BASIC Grosrams from KIM to SYM. Those readers with both KIM BASIC and SYM BASIC mas wish to contact him for the techrique
John Blalock asked us to mention that the frices for the WTAAY 4 K RAM Boardy and the WTAAY FAE-1/2 FOM Board are now $\$ 8+00$ Flus a 15 cerit (why isn't there a cent sisn on an ASCII keyboard?) self-addressed, stamped
envelope, and $\$ 16.00$ gosteaid, in the USA. F'lease order directlu from him, F. O. Bo\% 39356 , Fhoenix, AZ 85069. As ase courtess to our foreis. subscribersy and for the convenience of those orderins other items fram us at the same time, we will keef a small stock of poth on hand at all times. Overseas, please ado postase costs for one ounce, and three ounces, respectively.
FILOT is an extremely easy-to-learn CAI (Computer Assisted Iristruction) Lansuase, which younssters can learri to use nearly as soon as they are able to read and write. It has been placed in the fublic domain, and a use. Fiecent issues of MICROs are available for microcomputer systems Pilots, besinning with a SYM version by Nick Urtis, Nick sent us a cassette version of a SYM Tins Filot, tosether with a new instruction manual, sreatly enianced and imeroved over the version orisinally Fublished. We hope that Nick decides to market his new version. It will be of great value to those with youns SYMmers in their households.

SUFER-SYMS?

At least one of our readers is workins alons the followins lines

1. Relocate SUFERMON to \$FOOO-\$FFFF
2. Reassisn the I/0, etc., to \$EOOO-\$EFFF
3. Obtain from Carl Moser a relocated RAE at \$COOO-\$DLFFF (same as BASIC)
4. Use a second Eeta Memory Board with only 16 K of RAM to fill \$AOOO-\$DFFF
. Use a Blalock Memory Board to free $4 K$ from the first Beta Menory Hoard to be assisned to $\$ 8000-\$ 8 F F F$
5. Call BASIC, FAE, FORTH, Fiascal, and all other hisher level lansuases in from disk as needed

This approach will provide a 56 K RAM/4 K ROM SYM system, To provide more RAM, memory bank switchins is the next stef

One of our Computer Science sraduate students is addins a Z-80 board, similary in function, to that made for the Apple II by Microsoft, so bus will be $\mathrm{S}-100$. We'll kees you posted on this one

SYM-PHYSIS 5/6-36

TAKE A "BREAK"
Here are some 'trivia' on the EFK instruction and the B status bit in the status resister. While $6 R K$ is usually considered a one byte instruction, with the second bute beins isnored. If sou look us the specs on BRK in the 6502 Frosrammins Manual, you will see that BFK specs on bes the Frosram Counter to advance by 2 . It is important in frosrammins for KIM, if you wish to conitinue after a
BRK stop, to put in a dumims byte. In the SYM, the saved value of the Frosram Counter is decremented by 1 in the SAUINT subroutine, so that a dummy bute is not needed. If you have both a KIM and a SYM, it would not hurt to follow each BRK with a NOF to make the frosrams more transportable.

You will learn a lot about the 6502 interrupt capabilities, and see that BRK, in effect, senerates an IRQ in software, by studsiris the monitor interrupt subroutines from $\$ 800 \mathrm{~F}$ to $\$ 80 \mathrm{AC}$. Yous will see how MON makes returnins from a BRK ideritical to returnins from an interrupt. Iurins the RRK, you may examine and, if you wish, modify memory andor resisters. Whether sou sot to this foirit by NMl, IRQ, BRK, or USRENT reentry is via the zero parameter 6 , throush returris sou to the interrurta the defartins conditions. Very elesant prosramminis here. And we hav inflented throush NMI! The trace zrosram is also worth studing to see how NMI is used.

TRQ and BRK treat the Frosram Counter differently. BRK increments bs 2, since its instruction has been completed. IRQ does not increment, since it occurs just before the next instruction is to start. Otherwise, with but one minory but imfortant, excertion, the 6502 handles IRQ and BRK nearly the same was. For both, three bytes, FCH, FCL, and F (the status resister, i.e., flass) are fopped on the stack. Durins IkQ the f flas is poffed as a zero. Ans other tranisfer of F to the stack, as with PHF, for example, or with BRK, pofs B as a one. As was pointed out by reader (can't remember whom; will credit him in the next issue, if he reminds me) the only flace where this bit of trivia is documented is in Table 4-5 of the Reference Manual, where it is explicitly stated that PHF sets B to 1.
The 'expansion' bit (bit 5) also fors, and is therefore fulled, as a 1 Has ansone found a use for this bit, or some other way to set it (it clears on KST)? The overflow bit (bit 6) can be set from the outside world, if desired, by a riesative soiris edse at the s.0. (also called Rout ther mis of this ineut?

HOW TO MAKE SYM EXECUTE YOUR COMMANLIS
We have automated our cassette production by sivins SYM the necessary commands to Lon selected files from disk. and . S2 them to tape. This is done by makins extensive use of SuFERMON's. E (Execute) command. For those of you who are not familiar with the . E command, we sive two simple examples:

EXAMFLE 1: SuFfose sou wish to dump multifle cories of a frosram from $\$ 0200$ to $\$ 0347$ to cassette with $I D=01$. Usins either. M or .D (we prefer, ID, and the " \ddagger " for ASCII input feature, enter the followins seruence at, say, \$0100:
-1) 0100
$0100: 5: 2: 0: 1$: $: 0$: $2: 0$

The OH is ASCII Hex for CR; the 00 is the terminator for any E sequence, After enterins the above, startyour recorder soins, hit stos the recordins, and hit Ren you have made enoush coeies. You can obviously modify the sequence to dump selected blocks a fixed number of times. Before we put our lisk Bootstras into EFROM, we had it on times, Before we put our lisk Eootstrar into EFROM, we had it on cassette, we used this techriaue to fill the fassette tape with the Bootstraf, so that we never had to waste time rewindins, or look to see which side was ur.

EXAMFLE 2: A cassette save and load carirot be made over the tof of pase 0 (the cassette loader pointer is at FE,FF). Save and load over the tor of pase 1 is not a sood idea, since it clobbers the stack. Thus, prosrams which reauire initialization in pases 0 and 1 should contain their own initialization subroutines. Two alternatives are: 1) fumf the prosram in three sections, and 2) lump the frosramin one section, with the fases $0 \& 1$ blocks in hisher memory, and move these blocks down with , B 's before the G

The first alternative is "automated" by writins a loadins sequence includins $: L: 2$ On $1 \mathrm{~L}: 2$ On $: \mathrm{L}: 20 \mathrm{H} 00$, and dumpiris it to casette
 sequence, E to of the prosram.

The second alternative is "automated" by appendins a move-and-so "Execute" sequence to the prosram, which contains the necessary is's to iny start the erosram, not with a G to its startins adoress, but with a , E to the startins address of the "Execute" seauence. Hon't forset to terminate the sequence with " 00 ", and to use "Oll" for CR.

Now that you have seen examples of how to use. E, study its source code carefulls, and you may discover how to extend its carabilities sreatly, by writins your own version, and settins EXEVEC at $\$ 4672$ to point to your version.

Note that, carn acceft up to three farameters, but that the version in SUFERMON uses orily one. Your version can use the other parameters to set vectors, print out messases, call subroutines, etc. Note that EXEVEC normally points to RIN, and that Execute essentially replaces wish) You can do somethirs similar with OUTUEC to steer outeuts to RAM rather than to the terminal. You may now wish to reavamine the MEFGE/DELETE Frosram for SYM BASIC On pase 1-13 to see how this was done bu Tom Gettus.
HISKS AND TAPES ANI GRAFHICS AND AFPLES
As mentioned elsewhere in this issue, the SYM can be tausht to read Affle II senerated tapes. In fact, on the "other" SYM (the "fun-one"), Cassidy, with an excellently simulated, (B/W) picture of "HoFalons This was transfered to the sym from one of the school's apeles, dumpins to cassette the memory-mapped imase. The Apsle II maffins is not, as we mathematicians say, a continuous one-tomory maffins is not, 35 we mathematicians say, a continuous one-to-one transformation. The Apple tape sounds different from a sym tasp wher we set the time, we'll compute and compare the data rates. SYM-FHYSIS 5/6-38

This little experiment was done to check out the read-iri prosram, while waitins for two Apple Disks to be delivered to us by an extremely slow Affle liealer, from whom we ordered them, over a month aso. These disks contain two "Masic Lantern" srafhics fackases for the Apple. When they arrive, we will read them into the Apple, dump the "frames" onto cassette, read these frames into the SYM, and dump them onto cassette (later onto disk, when our srafhics SYM sets its own disk drives), for future enjosment on the SYM. We paid the askins price for these disk.s and will be usins them only on one system. The intermediate cories will be solely for the purpose of makins the machine-readable medium readable on our machine.
The thousht riaturally occurs: Why not byFass the double cassette transfer, and fix up thinss so that our SYM can directly read the Apple Oisks? We realize that the Disk II Sustem is copyrishted, but then, so too, is the Apple's Cassette Firmware; yet a variant of this was published in the open literature, If we buy Apple Software to use ori the purchased by othersi Apple likes to have others market software for the Apfle, since the existence of such software helps to sell Apples. In our case, however, we would be usins a modification of Apple's disk software, but with no advantase to Apfle. This is rather a sticky problem area, no?

I'm not sure any one can really advise on the new (1978) copyrisht law, because there have been very few test cases on the frincifle of fiair sse" of copyrishted material. Fair use implies non-commercial use, but only in ways which do not injure potential sales by the owner of cosyrisht. Commercial use, i.e., piracy, would be easy to prosecute. It would be very difficult to prove that wholesale copsins for distribution to club members, say, hurts the sales of a froduct, because the club members misht not buy, if they had to pay.
Our own standroint on the use of Afrle software for the SYM is that we will buy such Apple (or fet, or OSI, or whatever) software, for our ersonal use, if a) we want it, and b) we can fisure out a way to read for SYM use. This in spite of, and modig the software, as reauired, come vendors of Apel disk and the LOS capability to cause the disk record to 'self-destruct', if the purchaser should attempt to make a back-up cosy.

Thus, in the very near future, we shall try to teach our old SYM a few new tricks, such as how to read an Apple disk.

REMARKS RE RAE-1

Carl Moser has provided us with a listins of the source code for RAE-1, so that we can more easily answer your RAE questions, and so that RAE NOTES NO. 3 can be more definitive about certain foints. There is only one real "bus" that we have discovered in RAE. The pseudo ofcode .EJ (essentially a "form-feed") falls one line short of the 66 lines necessary for an 11 inch form.

Mans of you have objected to the '//" and the " $>$ " prompt at the end of a manuscrift. These can be suppressed by pointins OUTVEC to a patch which watches for these characters, and replaces them with nulls, before ealling ouTCHR, If you want a (sinsle) slash to appear as part of the text, your patch should store slashes each time they are sent out for frintins, and wait for the followins character to appear. If the both. If you wish the $>$ to appear as a prompt on the CRT, but not on the hard copy, your patch should examirie the "Hard Copy Flas" at \$011F.

SYM-FHYSIS 5/6-39

COMMENTS ON SWF-1
We have modified our own version of SWF-1 (with Tom Gettus' hele) to suppress the word "PAGE" (if you want the word, fut it in as part of the title or footer, as we often do, in lower case), and the leadins zeroes in the fase numbers.

Tom has also added the ability to continue a manuscript from either tafe or disk. We are now editins Jack Erown's SYM-FORTH Manual with SWF-1, arid it is still like masic to us to see SMM print out a 75 Fase manual with no human intervention, after the initial call to SWF.

We are not too hapfy with SWF's lack of a simple was to "TAB". The current way is to force spaces with a seauence of "us-arrows". Be careful with the use of spaces before and after uF-arrows (best not to use them) since SWF "kills" spaces before them, and "transfers" all sfaces after them, to the risht-hand end of the line. SWF collapses all strinss of spaces to a sinsle sface, except after o bou whil want one space after a " use an up-arrow instead of aspace. We leave it to the user to fisure out how to get SWF to put two spaces between the ? ? at the end of a sentence, and the first word of the followins senitence.

We are studuins the source code of RAE to see how it handles the tabs (only in steps of eisht columns) to see if this method may be incorforated, or improved on for SWF. When this is done we will issue a be increased by the same amounit that SWF-1 owners will be asked to send in to cover the costs of erintins and mailins a listins of the erihancements to their current version. OK?

RECOMMENIEII REAIIING

Ever since we first besain usins our KIM-1, we have looked forward to readins each of Frofessor Marvin L. De Jons's articles, first ir the KIM-1/6502 User Notes, then in MICRO and in COMFUTE, We have lons orisidered nim to be Mr. toon that Bob Feck asreed to review the book for all of us. We will add lu with our SYM this would be the one FROGRAMMING AND INTERFACING THE 6502 witin Experiments, Marvin DeJong oward W. Sams, 1980, \$13.95

Robert A. Feck
ATAPATH, F.O. EOX 2231
Sunnuvale, CA 94087
I have been teaching assembly language programming for the past year at a local. engineering college. As part of this teaching xperience, I have collected qoile large nom the ofest approach 2 bing language programmirg. This book appears to ave

Almost all other microprocessor books take the idea of introducing 311 of the addressing modes, then introduce tine whole instruction set next. Then show subroutines, I/O devices, interrupts and 50 on. This information mas occupy, as it does in many texts, as little as applications of one kind or another. As an instructor, I have tried in the past to follow the outline of the texts I have used in tinis way but have come to realize this is a lot of data to throw at. a sudent in one blob. I came away from earlier experiences
believing that these other texts could serve the student as reference material once the student had been explained the techniques of this

SYM-FHYSIS 5:/6-40
type of programming but there was no text available which coulda lead the beginning student through assembly language programming without tossing everything at the student at once，making the concept itself even more difficult to understand

Marvin has placed an understanding of the mature of the instruction stream as the prime goal of his book．He irtroduces the instruction set a few related instructions at a time．Each group is shown with as few basic addressing modes as needed for understanding of the function itself．Additional addressing modes are only shown as the progression of the instruction set explanation requires．

Ey a careful selection of the order in which the instructions are discussed，he is able to begin illustrating the functions of each by means of typical assembly language programs from the second chapter onward．Ey this means he is allowing the student immediate familiarity with the techniques the student will be using to generate his own programs．

Each grouping is then thoroughly discussed and illustrated by example and experiments which the student can do on a SYM or other 6502 unit． After the entire instruction set has been fully examined in this manimer，he includes a section on hardware interfacing to the 650 processor，cont

For ansone with an interest in learning the 6502 assembly language For ansone with an interest in learning the 6502 assembly lan
programming，with or without an instructor，I recommend this book highly．As an invitation to make your own judgement on the book highly．As ari inivitation to make your own judgement on the alongside that of any other 6502 programming book available today You will see that it is more intensively dedicated to ewactiy the business at hand，that of showing the technikues of assembly language programming than the others．It does not include some of the filler material which is＇rice＇to have at times but for a student to be able to judge what is filler and what is really necessary makes this book well worth its price in that it is all of value．

I intend to continue to use this as a text for the hardware and the programming courses in which I have future occasion to be involved． Eased on Marvin＇s approach and the completeness of this text，I orily hope that if someday I am called on to teach the $Z-80, Z-8000$ ， the 68000 ，or the 8086．I would hope that，by that time，Mr．Dejong might have had the opportunity to produce a text of this quality for this set of processors as well

A BASIC WORI FROCESSING SYSTEM

Here are two BASIC prosrams submitted by KIN－FING KWOK， 22 Tuns Choi St．，Tat Mins Blids，10／F，Flat A，Kowloon，Hons Kons，We have not had the opfortunity to test them，but the explanation of the frosrams，which appears followins the prosrams，shows the risht justified text which thes eroduce．For those users who frefer BAsIC to Assembis ansuase， who for any other reason，do not have $\mathrm{FAE-1}$ installed，and thus can use SWF－1，these frosrams will provide a word frocessins cafability
10 ST＝§＂1000＂：IIM $\times(2): \times(2)=8190+5 T$
20 GOTO 200
$100 \mathrm{CH}=\mathrm{FEEK}(\mathrm{CS}):$ IF $\mathrm{CH}=0$ THEN $\mathrm{NL}=0: \mathrm{GOTO} 200$
110 IF CH＝13 ANI NUくO THEN CN＝CA：COTO 200
120 IF $\mathrm{CH}=13$ THEN $\mathrm{NU}=-1$ ：FFINT
130 IT＝USF $\&$＂ 8 AAO＂ $9 \mathrm{CH} * 256$ ）
$140 \quad \mathrm{CS}=\mathrm{CS}+1: \mathrm{NU}=\mathrm{NU}+1: \mathrm{CA}=\mathrm{CA}+1: \mathrm{TF}$ NUK400 THEN 100 $150 \mathrm{CN}=\mathrm{CA}$
$200 \mathrm{CH}=\mathrm{INT}(\mathrm{USR}(\AA " 3 A 58 ", 8 " 014 \mathrm{~B} ", 0) / 256$ ）ANL 127

```
210 IF CHK32 THEN 500
20 FOKE ST+CA,CH
240 IF CAP8000 THEN FRINT CHR$(7)%
250 IF CA> }3190\mathrm{ THEN CA=8190:PRINT CHRक(8);
250 GOTO 200
500 IF CH,7 ANN CH&14 THEN ON CH-7 GOTO 1000,1050,1100,1150,200,1200
5 1 0 ~ T F ~ C H = 5 ~ T H E N ~ 2 0 0 0 ~
5 2 0 ~ T F ~ C H = 1 7 ~ T H E N ~ I F ~ N U = 0 ~ T H E N ~ 2 0 0 ~
5 2 5 \text { IF CH=17 THEN NU=0:CA=CN:COTO 100}
30 IF CH=6 THEN }X(0)=CA+1+5T:X(1)=Y(0)-1:CN=CN+1:CS=CS+1:GOTO 550
50 TF CHO2 THEN 2OO
545 < (0)=CA+ST: X ( 1 )=X(0)+1:CN=CN-1:CS=CS-1
50 FOR TII=0 TO?
*80 FOK(% 42574-2*TIT,X(III)-CH*256:FOKE 42575-2*IIT.CH
5%0 NEXT
595 0I=USRK&"g740",0
S00 }\times(0)=CN\cdotsCA:TF X(0)<1 THEN 200
610 FOR CH=0 TO X(0)-1
20 TT=USR(&"BAA0",25G*PEEK(CA+ST+CH))
30 NEXT
635 FRINT " "+CHFS(8)%:FOKE 25,0
640 FFRINT CHF($(27)+"+"\hat{夕}X(1)=INT((960-X(0))/40)
50 PRINT CHF$(32+X(1))+"";
53 II=960-X(0)-X(1)}+0:IF II=0 THEN 200
55 FRR CH=0 TO IT--1:PRINT CHRO(9)::NEXT
650 GOTO 200
1000 CA=CA-1:IF CA<0 THEN PRINT CHR$(9)\hat{#}=(CA=0
1010 COTO 240
1050 CA=CA+1%GOTO 240
150 CA=CA-40:IF CA<0 THEN FRINT CHR$(10);:CA=0
1160 GOTO 240
1200 FRTNT:FOKE ST+CA,CH:GOTO 230
2000 TF NU=O ANI CAOO THEN FOKE ST+CA.O
2005 FRINT
2010 INFUT "COMMANL";IN$
2020 IFF INक >"L" THEN 2010
2030 CA=0:CS=&"1000":NU=0:GOTO 100
OK
10 N=70
12 A=0:A舟="": H&="":B=0:CS=&"1000"
13 I=1:C舟=A牛:C=0:F=0:Z=0:T=2
18 X8=59:\times9=63:\times0=1.3:\times1=32:\times3=43: \4=48: X5=33: X6 =41: X7=58:E$=",
30 FOF A:LEN(A生)+I TO N
40 E=FEEK(CS):AD=A$+CHR$(B):CS=CS+I:IF B=Z THEN END
45 IF E=X0 THEN C = ="n %GOTO 500
NEXT
48 A=A-I:E=ASC(MII$(A$gA,I))
```



```
O IF E}=\times\1\mathrm{ THEN F=A-I:GOTO SO
70 GOTO 48
30 \textrm{fl==2;E1=Z:C5="}
90 E=PEEK(CS):C = C&+CHR$(E): }\textrm{H}1=\textrm{F}1+\textrm{I}:\textrm{CS}=\textrm{CS}+\textrm{I}:IF \textrm{E}=\textrm{Z}\mathrm{ THEN END
6 IF }\textrm{B}=\times1\mathrm{ OF ( }\textrm{B}>\times3\mathrm{ ANI }\textrm{B}<\times4\mathrm{ ) OR B=X5 OR }\textrm{B}=\times6\mathrm{ THEN 110
```



```
10 IF E=X1 ANI BL=Z THEN F=N:GOTO 90
120 TF P
130 ロ邦䑤
140 C=N-F
45 A=1
```


 163 IF $C=Z$ THEN 170

180 A=A I I:IF A\&F THEN 150
$200 \mathrm{~A}=\mathrm{I}$

 230 IF $\mathrm{C}=\mathrm{Z}$ THEN 170

250 IF ASF THEN 210

500 FRINT TAE 5) tas
510 A $=\mathrm{C}=\mathrm{C}$
 530 GOTO 30
RUN
The first frosam is for infut and edit. It store ASCII start from \$1000. You can use cursor control to edit the infut fassase. TBFe CTLE to end the infut. If Bou tufe L to reply Commanng the fessese will list for sou to edit. It stors when it meet $\bar{B} C R$ or $2 e r o$ or it had
list 400 characters. Use cursor control and CTL-F and CTL-B to edit, list 400 characters. Use cursor control and CTL-F and CTL-E to edit,
insert and delete. Varaible N in the second frosam is the number of characters fer line. Since the prosams are written in BASIC, the speed of the frosam is not very fast. You can chanse them into machine code prosams to increase the sfeed and that is not very difficult. At. lest, the frosams are written for KTM-2/40, chanse 40 to 80 in line 640,653 in the first prosam for KTM-2/80.

HOW TO "REWIRE" THE UIA AT \$ABOO

As mentioned elswhere in this issue, additional UIAs may be addressed in the $\$ A 800$ block by inhibitins the enablins of $U 28$ when address bit $A 7$ is hish.

Lev Barshay, of Nestle, elected to cut the existins $\overline{A A B}$ trace between CSI 6 of U10 and pin 23 of U28 (UIA \#2). Note that the latter is the "or"-ing A7 and $\overline{A A B}$ (active low) in $1 / 4$ of an osen collector $74 \mathrm{LS32}$, and usins the existing R60 as the pullup resistor. Note that if this is done properly, UIA $\$ 3$ at $\$ A C O O$ is also inhibited, since its pin 23 shares the same AAB and pull-uf resistor. Lev mounited the 74LS32 by cementins it, pins UP, to his SYM, near U24. He obtained AAB frompin o of U10, and A7 from Fin 1 of U20, althoush other convenient sources of these sisnals could have been used. The outfut of the "or" circuit soes to the "low" end of R60.

Darrell Johansen, of Serse Modular, decided to work with fin 24 of U28 This is CS1 for UIA $\ddagger 2$. He cut the existins trace to pin 24 , and used one of the four buffers in the lower left corner of SYM to fashion the previously, because of the inversion frovided by the "nor".

SYM-FFHYSIS 5/6-43

THOUGHTS ON SMALL SYSTEMS ANI MONITORS [MOSTLY THE SYM-1]
The title above is not ours; rather it is the title of an article by H. T. Gordony in IIr. Dobb's Journal of Computer Calistherics and Orthodontia, Number 48, Seftember (?), 1980.
We personally read each issue of Kilobaud Microcomputins, MICRO, BYTE, and COMFUTE., and call to your attention ans SYM relevant material, Tom Gettys reads many of the other computer masazines, and called the above mentioned article to our attention. Some of Professor Gordon's thoushts are worth quotins here; we shall do so, but recommend that you read the entire article, if you can:
"The concept that has always appealed to me is more that of the "hi-fi" enthusiasts, where a system consists of several interactins but indefendently-reflaceable comfonents, from maris competins sources. True competition, however frosressive chanse at the minimum cost to society. This eccentric, unbundled-components point of view enabled me to resist the lure of the increasinsly powerful fackased systems that have entered the market in recent years. However flexible, they must be desisned for some least-common-denominator purpose and tend to interfeters (for me a resources to thiriss like bas-cost smoothly-faved roads leadins where eversone else wants to so."
-Even the minority of prosrammers who have read the ROMS created by someone else do not fully appreciate the froblem unitil they toy with the idea of creatins their own. It's the chasm between critic and artist, or rather between a
builder of sand-castles and a sculftor in marble."

Professor Gordon soes on to discuss monitor ROMS, and terminals, arid related topics. His article inspires me to disassemble the KTM-2/80 ROM to see what kinds of enhancements could be added by realacins the ROM with my own EFROM. He closes with the following thousht:

- A brief afterthousht on FORTH. To me, FORTH has been the most tantalizing of the existins HLLs. Perhaps the word is infuriatinsy since the FORTH enthusiasts - like the mustery - won't tell you what it is. In comparison, my own much more miniscule prosrams come with a surfeit of explanatory comment (tinseled with allusions), When I slanced at a listins of FORTH, its most strikins quality was the virtual absence of comment. Adam Osborne recently observed (InfoWorld 2(8):7, 1980) that the success of an HLL depends less on its intrinsic merit than on how hard it's Fushed. Whatever the demerits of BASIC - and they are lesion - beins unexplained is not one of them. Dozens of books expound it in sreat detail, and some are brilliant.

sround up, in a painstakinsly detailed, translucent and
By HLL, Dr. Gordon means hisher level lansuases, We also very much like his use of the term "machine-linsuists" for machine lansuase Frosrammers. Our answer to his closins question is Jack Brown's Manual for SYM-FORTH, Jack Erown's FORTH prosrams are more heavily commented than most of the BASIC prosrams we have seen lately. Professor Gordon a review and comments.

SYM-PHYSIS 5/6-44

MORE ON TEXT ELIITORS ANI WORI FROCESSORS
We had just this mornins delivered the camera-ready cofy for a 44-Fase issue of SYM-PHYSIS to our frinter, when we received a cassette in the mail from Frank Winiter, whose article on TOF'S we fublished in Issue No. 4. (See pases 3-25 and 4-12.) After lookins over his word processins prosram, on cassette, iri FAE format, we decided to "stor the presses", and publish his letter and these comments. He is therefore responsible for this issue containins an extra four pages more than we had planned.

We like SYM mainly because of its RAE and SUPERMON firmware, and we use RAE as our text editor, because it is there!!! With SWP-1 added, our reauirements for a word frocessor are fully satisfied. That doesn't stop us from examinins and affreciatins others, however.

We realize that mans of you have no need for an assembler, so you have no need for the "A" fart of RAE (Fiesident Assembler Editor). What other can use BASIC for your word erocessins En EDitor That is why the EASIC word frocessins prosram by Mr. Kwok apfears in this issue.

But what do you do for a word processor, if you don't have either BASIC or RAE? Very simple; just get a copy of TEC 65 from the 6502 frosra Exchanse (adaress is elsewhere in this issue). TEC 65 is a really fin text editor. We fublish Frarik's letter to show you how TEC 65 can be sreatly extended. We will send a listins of the source code to Dave Marsh of the Frosram Exchange. Ferhaps we can work out a three way arransement to provide our readers with Frarik's Enhanced SYM Version of TEC 65. Are any of you interested? Here is Frank's letter:

Dear Lux,
I enclose a cory of some modifications to the TEC 65 text editor, which I understand you purchased some time aso.

I was auite impressed with the carabilites of this lansuase, but found the lack of formattins a froblem. This arises when you alter the orisinal text, and you still want a neat printout.

The enclosed prosram was specifically written to link UF with TOPS (by the was thanks for publishins my comments). I don't think that it would be very difficult to chanse it to suit your disk oferatins system.

The followins commands are available when you activate the formatter:

```
H10\ sets the top marsin to 10 lines
B10\ sets the bottom marsiri to }10\mathrm{ lines
\L5\ sets the left marsin, to S character spaces
\ \{ 5 8 \ ~ s e t s ~ t h e ~ l i n e ~ l e n s t h ~ t o ~ 5 8 ~ c h a r a c t e r s ~
\F\ sets the pase lensth to 60 limes
\INsets the fase lenisth to 60 linies
\E1\ ejects TWO pases. \E\ ejects to the end of the currenit
    Fase
\M\ breaks and sets line sFacins to two (ie one blark
between lines)
S2\ breaks and sfaces two lines resardless of the invoked
        linespacins
```

When the formatter is not activated the text is frinted exactly as it resides in the buffer.

Ms doctoral thesis is enterins its final stase, and 1 flan to submit it YM-FHYSIS 5/6-45
by Februars 1981. Ms next frosect 15 a text for Oferations Research, which will emphasise the use of personal computers.

I hope you are over the major hurdes of settins your book published, and I look forward to the next issue of SYM-FHYSIS. In the meantime, kind resards from down under. It is settins bloods hot now - I really should set ms office air conditioned!

Frank... .
[Editor's note: Wiriter is enijosins (!) summer in Australia risht now!]

MYSTERY FROGRAM

Here is a BASIC prosram which looks interestins, and quite useful. We don't know who submitted it, because it somehow sot separated from its transmittal letter. We vasuely remember writins the author, to ask if he would mind resubmittins on cassette, because we were too busy to key it in for test and rearoduction. Our filins sustem is such that the orisinal letter has been misfiled forever, and we don't recall ever gettins a cassette. If the author will let us know, we'll sive him full eredit in the next issue. Incidentally, here is a sood example of in complete documentation. Every prosram you write should be 'sisned and dated" in a comment lire (and even copyrishted, maybe).

NOTE: This prosram must be used with EBE-1 (Erown's FASIC Erinancements).

100 CLEAR
10 FRINTCHF\$ (27) +"E"
120 GOSUE 680:DIM A\$(
140 GOSUB 680:FRINTTAB(10);"**MENU**":FRINT:FRINT
150 FRINT"TO BUILI A FILE TYPE $1^{\prime \prime}$
160 FRINT"TO SEE FILE-TYFE 2"
170 FRINT"TO SEE INDIUIDUAL NAME TYFE $3{ }^{\prime \prime}$
180 FRINT"TO CORFECT-TYFE 4"
190 FRINT"TO SAUE FILE-TYPE 5
200 FRINT"TO GET FILE FROM TAPE TYFE 6"
210 INFUT Q:ON Q GOTO 220,320,350,430,580,640
20 INFUT"WHEN REALIY HIT RET (TO CLOSE THE FILE TYFE END FOR NAME)"; 330 FOR $I=1$ TO 50:FFINTCHF\$(27)+"E":GOSUE $680: F R I N T " E N T$ NAME
40 FRINT"HIT RETURN KEY"FINFUT N\$(I)
50 IF N\$(I)="END" THEN F1=I:GOTO 300
260 INFUT"ENT AULIK";A\$(I)
270 INFUT"ENT FHONE च゙";P\$ (I)
280 IF FRE $(X \$)<100$ GOTO 300
290 NEXT
300 FRINT"FILE CLOSEII--": INPUT"TO SEE MENU,HIT PRETURN"";
310 GOTO 130
20 FRINTCHF (27) +"E": GOSUB 680
330 FOF $I=1$ TO F1:FFINTI,TAB (7)N $\$(I)$, A\$ (I), F\$ (I) :NEXT
40 INFUT"TO SEE MENU HIT ,RETURN"" $\mathrm{X}:$:GOTO 130
F.RINTCHR $\$$ (27) +"F":FOR E=1 TO 10:NEXT:INFUT"ENT NAME";N\$

60 FOF $I=1$ TO F1:IF $N \$(I)=N \$$ THEN 390
370 NEXT
380 FRINT"NAME NOT IN FILE":GOTO 400
390 FRINTN\$ (I) , A\$ (I) , F'\$ (I)
400 FRINT:FRINT"FOF CONT TYFE 1, TO STOF TYPE 0";:INFUT X
10 IF $\mathrm{X}=1$ GOTO 350
420 GOTO 130
440 FRRINT"ENTER THE
450 FOR $I=1$ TO FI:IF $N \$=N \(I) GOTO 480

480 FRINT"ENTER COFRECTEI INFO.
490 INFUT N\$ (I), A\$ (I), Fi\$ (I)
500 FOR $\mathrm{T}=1$ TO Fi
510 IF $T=I$ THEN $T=T+1$
520 IF $N \$(I)=N \(T) THEN FRINT"EXIST ON LINE";T:FRINT
530 NEXT
540 FRINT:FRINT: FRINT"THE LINE NOW IS:":FRINTN $(I), A \$(I), F$ (I)
550 INFUT"FOF CONT. TYFE 1, TO STOF TYFE O"; X
560 IF $X=1$ GOTO 430
570 GOTO 130
580 F'RINTCHF\$ (27) +"E": GOSUB 680
590 INFUT"MAKE PREF'. FOR CASSETTE, WHEN READY HIT RETURN"; X
600 FRINT"COFYING"
610 . SAVEV 1
620 FFINT" IONE
630 INFUT"TO SEE MENU, HIT RETURN"; X:GOTO 130
640 FRINTCHR $\$(27$) +"E":GOSUB 680:INFUT"WHEN REALYY, HIT RETURN";
650 FRINT"LOADING IATA"
660 . LOALU 1
670 FRINT"IIATA LOALIED": INFUT"TO SEE MENU, HIT RETURN"; X:GOTO 130 80 REM *** TIME IIELAY RUTINE FOR CLEAR SCREEN***
690 FOR E=1 TO 10:NEXT:RETURN

$0 \times$

MORE ON SOUNIS AND MUSIC

We see from the 1981 Radio Shack Catalos, not only that TI's SN76477 has sone up in price, but more importantly, that TI has iritroduced a new oud Se (RS 276 (766) If SNO bou try it ple at $\$ 6.99$ (RS 276-1766). If any of sou try it, elease let the rest of us know your results.

We used to think that the MTU Advanced Music Fackase was the sreatest thins in the computer music business since the invention of the square Wave. But, not anymore! Now we feel that the MTU Advanced Real-Time read Hal Chamberlin'sues Packase has taken its place, We sussest you 1980, and, if this interests you, to send for the stereo audio demonstration cassette, which we have available. The MTU packase, with full source code listins, and three demonstration scores, is available from the Users' Grous in SYM readable format. The frosram is memory intensive. Only one of the three demos will work in a 8 K sustem; the other two reauire 16 K and 32 K , respectively,

KTM-2 TO KTM-2/80 CONUERSION

Bob Msers called today, just in time to set into this extra pasey to tell us that he is now reads to start shippins the KTM-2 Upsrade Kit. The Kit includes two Smnertek ROMS, full instructions, and "artwork" to show where to make the trace and jumper modifications. The cost for the Kit is $\$ 65$, plus shippins charses. You will need to buy sockets, a pair of 21145 , and a pair of other ICs, in addition to the parts supplied with the kit.

Bob asks us to advise those who have written and received no answer from him, that, while he was on an extended business trif, his office was moved from one buildins to the next, and that maris of his fafers sot "lost. durins the short haul. Please write him asain with ans questions, or to place your order. His address is on pase 4-23.

AND SOME WORLIS ABOUT WORLIS
If you have interfaced TI's "Speak \& Spell" to your SYM, you will be interested in the Fhoneme Software Fackase, available from 5.FEE,K uF SOFTWARE, 6710 Forest Berió, San Aritorio, TX, 78240.

MORE ON HISK SYSTEMS
Quite a few of our readers are besininin to add HINE File Oriented tisk. Systems (FODS) to their SYMS. We (Tom Gettys and I) provided Dick. Grabowsks of Hudson Hisital Electronics, Inc. with Version 1.0 of our SYM-FODS software packase. Since that time SYM-FOLS has been extended considerably. The major extensions have included addins, CT (name) to RAE-1 to permit Continue on Misk, and fiISK (filename) to SWF-1 to numbered document (fortunately, just in time to handle Jack Brown's very thoroush (and very lons) SYM-FORTH Manual).

SYM-FORTH has been desisned from the first to work with a simulated (cassette/RAM) Disk System, and can easily be fatched to 'for-real' Disk. System, We are makins arrangements with HDE to frovide SYM-FDUS users with all extensions on a timely, nori-frofit basis.
CHECKOUT TIME
May we wish all of you the appropriate Season's Greetinss, and a Happy New Year, even thoush a little earlu? Issue No. 7 will reach all reconcentrate first on answerins the pile of old letters, some nearly a month old. Thes come in at the rate of $2-3$ fer das, so there must be perhars 70 or so. Next, RAE NOTES ND. 3.

Teachers slory vicariously in the achievements of their students, in the same way that parents oo with their offsprins. Two years aso, in our KIM days, Steve Crescenti develofed the software for a laser srafhics system, tested on an oscilloscope. Iurins the fast year, Tom Gettys developed the foundations for a SUFERMON Extension Fackase, and Faul Close inflemented a Voice Recosnition system (12 word vocabulary, cooperative speaker, 95% recosnitionl. These tasks were parts of their Master's Desree projects. Two have sone into industry; Tom is teachins at Cal State, Chico.
This current year, Hamid Kahansi is well irito his project of Apple II/SYM-1 Complete Information Iriterchanse (ASCII?), involvins cassette, disk, and RS-232 subsystems. Fessy Leuns, our first woman student to become interested in milcros, is usins the SYM as an intelisent plotter. Alsor several students, both men and women in our Industrial plotter, Also, several students, both men and women, in our Industrial rechnolosy major, to think micro-disital! hurins the next year there should be many We know that we ourselves will not be able to advarice the state-of-the-art of Computer Music, Computer Speech, Fattern our students mas. We do hore to become very skilled in FORTH, because of our feelins that FORTH will enable us to accomplish our system desisn soals more rapidly than ans other prosrammins tool (to us lansuases are merely tools for communication).

We will close with the same words that Jack Brown used in a recent letter to us: "Mas the FORTH be with you!"

