

THE SYM-1 USERS, GROUF NEWSLETTER
VOLUME II, NUMBER 1 (ISSUE NO. 7) - SPRING 1981 (JAN/FEB/MAR)
SYM-FHYSIS is a quarterly publication of the SYM-1 Users, Grouf, Fio 0 . BOK 315, Chico, CA 95927. SYM-PHYSIS and the SYM-1 Users. Group (SUG) are in no way associated with Synertek Systems Corporation (SSC), and SSC has no responsibility for the contents of SYM-FHYSIS, SYM is 3 resistered trademark of SSC. SYM-FHYSIS, from the Greek, means the state of srowins tosether, to make srow, to brins forth.

We welcome for publication all articles dealins with any aspect of the SYM-1, and its very close relatives. Authors retain all commercial copyrishts. Portions of SYM-FHYSIS may be reproduced by clubs and edueas freely published, with full provided to SYM-FHYSIS and the orisinal author(s). Flease include a self-addressed stamped envelope with all corresporidence.

Editor/Fublisher:
Associate Editors:

H. K. "Lux" Luxeribers

Thomas Gettys, Jack Brown
Jack Gieryic

SUBSCRIPTION RATES (1981):

USA/Canada - $\$ 10,00$ for a volume of four issues. Elsewhere - $\$ 13.50$. Make checks payable in US dollars to "SYM-1 Users' Group', Fi. O. Eox 315, Chico, CA 95927, Telefhorie (916) 895-8751.

Issue *0, the Introductory Issue (1979), and Issues 1 throush 6 (1980), are available, as a fackase, for $\$ 12.00$, US/Canada, and $\$ 16.00$, First Class/Airmail, elsewhere.
EDITORIAL FOLICY
SYM-FHYSIS is not intended to be your typical periodical, to which new subscriptions besin with the current issue. Instead, new subscribers start out with Issue 0 and Issues 1 throush b, and, hopefully, do not start out with lssue and Issues 1 throush b, and, hopefully, do not each issue. Rather, we hope to increase the level of sophistication of our material, as we and you srow in experience with the SYM-1, and continue to make ever increasins demands on its ferformance.

We will include in each issue several prosram listinss for both EASIC and RAE users. We will also attempt to keef readers current on what is available for the SYM-1, in the way of both hardware and software, from every source of which we know, and publish any tifs or hirits for improvins the SYM's ferformance which we or our readers discover. We also hope to present concepts, ideas, thoushts, software and hardware desisn principles, fhilosofhical whimsies, etc., at least some of which should be useful, to at least some of our readers, at least some of the time.
We will try for four mailings per year, with an averase of 36 single sfaced manuscrift pases fer mailins. Outside fressures may possibly force an occasional "double-issue" (as happened with 5/6 last year!).

SYM-FHYSIS 7:1

HELF US TO HELF YOU
We are now sufficiently orsanized to keef uf with the unexfectedly larse number of letters and phone calls which arrive seven dass a week, and can even set causht up with the mail backlos after a week's abserice. We are even makins a slisht dent on the enormous backlos which accumulated before we fisured out how to handle it. Flease bear in mind, too, that we do have a full-time teachins fosition, and that fublishins SYM-FHYSI is only a leisure-time (!) activity.

There is, however, no way in which we can set back to last llecember's mail, so if we have not answered an earlier letter of yours, flease accept our afolosies, and try asain. The followins sussestions will help us to help you more efficiently:

Please use sefarate sheets of pafer (each with your name and address on it!) for each of the followins:

1. Requests for HEL.F. These will set first priority.
2. Purchase requests. These too, set friority.
3. Letters of praise, condemiation, articles, ideas, etc, These we will read at leisure, for fleasure.

It will helf sreatly if each item is so clearly obvious as to its froper catesory that even a "typical" clerk, who could riot care less about learnins to do a job well, could sort it out into the proper pile. This is one clerical task for which we still need humari helf. Our SYMs wor't help us here!

While there is no charse for the "research" involved in settiris answers to sour ausestions, because we erijos the learriris, we do fay someorie to make Xerox copies, and stuff and address the envelofes, and fostase costs are risins, You cari helf us cover these costs by slifpins a dollar or so into your erivelope occasionally. Overseas currency is OK, too, since Jean loves to travel, and will find a way to sperid it
OUR SUF'FORT FOLICY
We will fully supfort all of our software aroducts, rotifyins all purchasers of known buss and their fixes. Wher, ufsraded versions are available, pur vof
Most software fresently available for distribution sufforts only cassette $1 / 0$, and is available on cassette. Owners of fons systems may order disk versions. The disk versions are Load and go, called by RUN \%name, Disk drive turnoff and any pases 0 and 1 initialization are notices will be sent to all owners of recora. The fatches, includins source code in RAE/FODS format, will be made available for a nominal sum to cover the media, shiffins, and labor costs involved.

We re even more anxious than you are to set these patches ready for use! We have modified, or are in the process of modifyins, all existins packases to supfort FOLIS lisk. I/O. For example RAE-1, SWP-1, and BAS-1 are fully intesrated with FODS. BAS-1 now supforts . CHAIN, ,AFFENI, and +Ell (Enter Data) and LLI (Load Iata) commads. These patches were written by om Gettss. We are currently workins on the FORTH and tiny-c Disk. I/O patches.

It is a real pleasure to watch RAE-1 assemble and list a $48+k$ source code file with. CT modified to mean Continue on IIIsk, or to watch SWF-1 Frint out a 90 pase report from disk files!

MORE ON SOFTWARE "THEFT"

We received the followins fost card recently, and reprint it, in its antirety, omittins only the sisnature:

Hear Lux:

As a result of your statements on pase 4-27, I ant not renewins ns membership in SYM-FHYSIS. Theft is theft, resardless of whether the thief deems it "fair" or it "occurs sponitareously," and I cannot condone it with continued membershif. Nor will I eay prices for software inflated by the anticipation of sharins. Would you be "encourased" to teach if orily 1 out of 5 students paid the tuition that pays your salary?

We are truly sorry to lose the writer as a member of the SYM-1 Users Group, because we sense from the tone of his messase that he has giver the matter much thousht, and there is much that he could contribute to the rest of us in the was of ideas, and software, etc. We will send him a copy of this issue, so that he will know our ideas ori the matter (We have since telephoned the writer, and neither of us convinced the other, but we are still friendly!)

We have always considered ourselves to be more of a "scientist" than an "ensineer" and jokinsly described the former as arixious to accumulate a strins of fublished pafers (for the slors!), and the lother to ackuir a strins of patents (for the fiscal return). (We hope we haverit made frequentlu exchansed manuscriets, roush drafts, notes, etc, with othersy and often sent Xeroxed articles to others marked up with our comments and auestions, asking them for their ideas and sussestions on commerits and aue seen in the literature.

We have viewed this in the spirit of "research" and information exchanse, and considered it 'fair use" of published research materials. I have sent copies of my fublished articles to colleasues, and have allowed them to include cories as affendices to reforts they have submitted to their clients. The clients would never have seen the journals which published them; the publishers lost no income as a result of these "sift cofies".

I did object once, and very stronsly, too, when a "colleasue" had one of my fublished (and cofyrishted by the fublisher) articles retyfed, substituted his name and consultins firm's name for mirie and charsed one of his clients for the refort he "frefared" fot them!
We consider the unauthorized marketins of someone else's product as one's own as the real violation of the spirit and letter of the copyrisht and patent laws, not the sharins by close associates. For example, a small sroup of chess plasers misht pool their funds in order to accuire all availabie chess frosrams por their mutual use. Ori, the other hand, when a larse sroup acts as a purchasins collective for the purfose of a prof rep also reproducible), it becomes a commercial activity, and should be considered as such, even if it is a not-for-arofit orsanization.

What we think we meant in the referenced statement on fase 4-27, was to pick some arbitrars number, in this case five, as beins a "fair" upfer limit for a resource-foolins commurie! Ferhafs the number was too hish? Too low? Or what?

A BELL FOR THE KTM-2 ANH/OR KTM-2/80
You may have noticed in the KTM reference manual that pin 22 on both the Main and Auk forts of the KTM-2 (and -2/80) is labeled 'BELL'. When we first sot our KTM-2, we tried hangins a small 8 ohm speaker between pirn 22 and spound, with unsatisfactory results. The speaker made noise even when it was not enabled, so we save uF that idea immediately. One of our associates, Lew Davis, sussested we try instead a piezo-electric beeper. Lew also sussested that we we would set a better tone if we disabled the on-board oscillator, We then connected a Fiadio Shack Fiezo Buzzer (273-060) between fin 22 (rositive or red lead) and one of the sround pins. The combination tone of the beeper (4.8 kHz) and the lower frequency on-board oscillator was not fleasant, so we cut a trace and added a jumper to disconnect the oscillator.
RAE now sisnals us audibly on error messases, and also lets us know wheri we are near the end of an infut line (72 characters), we can now FRINT CHR $\$(7)$ from BASIC, instead of LET $X=$ USR ($\$$ " $8972^{\prime \prime}, 0$) when we want a beep. Dur only complaint is that the Eell Enable sisnal is too lons, nearly two seconds. One fi火 for this is to iristall a fiasher instead of series with the beeper, this will produce severalus in intensity with the one lons beep. The beeper volume may be reduced io just above R 23 , and jumper o disable just below the 1038 from the oniboard oscilla

Radio Shack also has available a much more comfact, less expensive, Piezo Element, without the built-in oscillator (273-064). We tried this device alsog tieins its red and blue leads tosether, dependins on the pleasant, oscillator to senerate the tone. The result wos ame was a little too low to alert us from across the room, but just risht in a noise-free environment (i,e., no hi-fi, TV, or conversation soins).

Another alternative would be to use the same tupe of beeper as is on the SYM-1 itself, but this is riot as readily available as the Radio shack. device, and is very likely less cost effective and more troublesome to mount on the KTM because of the exposed metal contacts.
While we are lookins at the KTM, let us remind you about piri 23 , labeled 'IIC'. This is enabled (low) by CHF\$(19) and disabled by CHF $\$(20)$; these are Control-S (LIC3), and Control-T (ILC4), respectively. 'DC' can be used, with a suitable relay, to conitrol the AC fower to your print for example (NOTE: 'HC' means 'Llevice Control', not Ilirect Current!).
CONTROLLING I/O FROM BASIC
Here, slishtly modified, are Andre Hoolandts'subroutines for switchins between a 110 baud TTY on the 20 mA loof and a 4800 baud CRT on the Fis 232 interface:

1000 X=USF $(-29818,0)$:POKE 42580, 208:FOKE 42577, 1:RETURN
2000 X=USF $(-29818,0):$ FOKE 42580,224:FOKE 42577,213:RETURN
The USR function is a JSF ACCESS, and 42580 and 42577 are the locations of TOUTFL ($\$ A 654$) and SDBYT ($\$ A 651$), respectively. The numbers poked into TOUTFL, 208 and 224 , are the decimal equivalents of $\$ 100$ and $\$ E 0$, respectively. It misht seem that these should be $\$ 60$ and $\$ 90$, but not necessarily so, Note that with the values \$LO and \$EO, CRT IN is enabled with TTY IN/OUT, and TTY IN is enabled with CRT IN/OUT, This mermits INSTAT and TSTAT to check for the BREAK key dowri on, either foris possible with MON 1.1, MON 1.0 only checked only the device on $\begin{aligned} & \text { mormally the CRT). Any keys on the unselected device durins }\end{aligned}$ the 6532, normally the CRT). Ans kess on the unselected device durinis
SYM-PHYSIS $7: 4$
an INCHR or INTCHR will, of course, produce sibberish because of the incorrect baud rate.

The $\$$ DO for the CRT choice is much better than the SYM-1 default value of $\$ B 0$, since this latter activates TTY OUT, not TTY IN, and the TTY turned off. Of course a disconnected TTY "sends" a permanent break sisnal, so you may prefer the $\$ 90$ in many cases.

The 1 and the 213 are the decimal equivalents of $\$ 01$ and $\$ 15$, for rates of 4800 and 110 baud, respectively. These may be chansed to fit you own peripheral rates.
ANOTHER CASSETTE FROBLEM ANI FIX
Most of the cassette read problems on the SYM-1 seem to be "fixed" by replacins C16 with a smaller capacitor (0.01 uF), alishiris the heads, cleanins the pinch roller, etc. We recently met a SYM-1 whose outfut casied three or four SYMs and recorders to no avail. We finally decided that the output level was marsinally low, and chansed R88 from 470 ohms to 1.0 kohm, to approximately double the recordins sisnal level. This worked out fine.

THE RAE USER FUNCTION

The RAE-1 USer function allows the passins of one farameter throush the A Resister if you so desire. Enter the followins frosram at $\$ 0003$ to check it out:

$$
\begin{array}{lll}
0003- & 20 \text { AO 8A } & \text { JSR TOUT } \\
0006- & 4 C \text { AC BO } & \text { JMP RAE,WARM }
\end{array}
$$

Call this with USer (any character), and that character will be frinted The value of the parameter passed (remember it is the ASCII equivalent of the character) can be used to select one of a rumber of optional subroutines.

WIGGLE YOUR CHIF'S AND FLEX YOUR BOARIIS

While it's a sood idea from many stand-foints to socket all of your chips, rather than solder them in, soor socket contacts could sive rise (as well as we, ourselves) have traced their memory and other froblems back to these two sources. We sussest that you wissle your chifs in their sockets to increase contact likelihood, and flex the circuit board slishtly to help locate bad solder joints. The flexins may not show you where they are, but it misht "fix" them semi-permanentis.

MORE ON DISK SYSTEMS AND COMMUNICATIONS

We have been studsins Apple II IOS (3.2 and 3.3) to see how it works. Affle DOS is very elesant; we like best its ability to use lons file names. The HDE FODS is also elesarit; we frefer its conmand structure aither as blearly and FODS are both very versatile. We can Mot rate the 80 -type machines and FLEX for the 6800 systems). To do so would be like comparins apples and _------ !

One feature that Apsle DOS has is the ability to OPEN, WRITE, REAII, and CLOSE text files to the disk, from various lansuases, e.s., from either Integer or Microsoft BASIC. For the uniritiated, this mearis that wher LIST is called from BASIC, or PRirit from RAE, the output mas be buffered to a "named" file on the disk, instead of, or in addition to, afpearins on the terminal or frinter. The file is, of course, in
ASCII, with each <cr〉 followed with a <lf ASCII, with each <cr> followed with a <lf>. Next, naturally, wher

BASIC, or RAE, is awaitins infut of a file, it must be made fossible to "OPEN" the frofer riamed file and "REAKI" that file instead of expectins infut from the keyboard). Thus FAE can be used to frefare and edit prosrams for BASIC, for example.

We started to follow that fath over a year asoy before we had a disk sustem, with the MERGE prosram, which dumped the ASCII listins from BASIC into hish memors for later recall (from BASIC), Our riext stef was to allow RAE to access anid redume (edited). Why did we not follaw throush on that? Because we felt that each hisher level lansua to
should be "stand-alone"; why should a second lanisuase be required to make up for the inaderuacies of a first. Jack. Erowrip poirited out to us about that time, that SYM-BASIC could be its own editor (more on that elsewhere).

There is however, a vers valid reason for beiris able to dump ASCII to disk or memory, and we hofe to set this soins on our system durins the next Quarter. ASCII is the American Standard Code for Information Iriterchanse, between comfuters, terminals and data banks, etc, Eufferins data, in ASCII, in memory, if there is enoush, otherwise on a disk, will allow you to initerface your SYM to data services, time share, etc., throush a modem. A rumber of readers are workins on this. Our susgestion to those who asked was essenitially as follows: Lluplicate the RS232 hardware and software ln SYM (at a ficed baud rate to save memory space) and let the external system iriterrupt to set action, arotocol (use full duplew) to "handshake", usiris some of those control codes you may have wondered about. So far no pre has told us they have completed the seneral task, althoush a rumber of readers have had success in talkins between SYMs or SYMs and Affles.

Incidentally, it is a rather simple task to interface two SYMs alons the cassette interface for hex interchanse, in an ad hoc way, futtins in BASIC. We have not sone all of the was with this, automatinis the procedure so that a sisnal on the AUMIO IN line trissers an interrupt. To do this would necessitate tieins FBG of UIA *1 to either CB1 or CA1, and prosrammins the selected pin to senerate an IFQ on the "first" transition.
SYMPHYSIS 1979-80 INIEX AUAILABLE
Jack Gieryic has frefared an index coverins the contents of Issues 0 throush 6. You can order frinted copies from him for $\$ 2.00$, US/Canada, $\$ 3.00$ overseas. The index was prepared in FiAE-1 format; he sent us a copy on cassette, which we now have on disk. We will compare the relative utility of softcopy (CRT) and hard copy information retrieval, usins the index as a test vehicle. Jack's adoress is 2041-138th Ave. N.W., Aridover, MN 55303.

SPEAKING SOFTLY (ON SOFTWARE)
Some very useful software is comins in faster than we can check it out. We will describe some of the choicer items here. They are either too lons or too rumerous to publish in a resular issue. Also many are in wreliminary form, and will need additional commentins and instructional documentation before release is advisable.
>>tins-c and TECO-TYFE WORII FROCESSORく<
The ones we do plan, for sure, to market, include tinu-c (from tiris-c associates), relocated downwards to $\$ 0400$ from the orisirial SYM-1 this year, one of two (or perhaps both) TECO-tyfe word frocessors. TECO is a Text Editor available on LIEC systems, and maris SYM-1 owriers would prefer TECO to RAE, because thes learried TECO first.

Actually，there are more word Frocessors available for SYM－1 now than
we can use，but we have checked out those we know of，and feel that the choice is a matter of personal preference．If you use FORTH with its own built－in Resident Assembler Editor（that＇s RAE ！），sou may not need RAE－1 and SWF－1，so sou could opt for TECO－type（we can＇t call it TECO）．

＞＞SUFERMON EXTENSIONSく＜＜＜

One of these dass，we＇ll set up a Fackase of all of the soodies desisned by Tom Gettys as SUFERMON extensionsy to fill the 4 K sar at $\$ 9000$ ，or wherever，since you＇ll set fully commented source code on cassette，and can add，subtract，and modify to your mirid＇s conterit before burnins it into EFROM．He has added＂named＂+52 ands，L． 2 （very nice）and five or six kinds of ．V（for Verify）．These include Verify for Checksum onlyy very fast，arid a really faricy one which we publish elsewhere in this issue as a free－standins（not linked to MON as a built－in command）version，with several examples of its use．

D＞A SYMBOLIC DISASSEMBLERく＜＜＜
Durins the next Ruarter we hofe to distribute the RAE Sybolic Disassembler，beins develored by Johri Hissink．It will be a two－pass disassembler，the best kind，as RAE is a two－pass assembler．F＇erhass the combination should be called RADE？John has completed F＇ASS 2 ，the most sophisticated part，arid is addins what he calls＂all sorts of which and whistles＂．What the RSIl does is create a pseudo source cobe， of course，reseansible for reassembled as desired by RAE－1． as externals，addins the．BY for table entries and the $\#$ ，and the $\# H$ ， for all vectors within the prosram．The human alsorithm for doins this for still not well enoush defined to prosram．The user adds a EN at the end，and a bA \＄xxxx at the besinnins，makes any desired customizations，and reassembles to suit．See how easy this would make it to move all of the RIOT（KAM，I／O，Timer）block and MON $4 F$ and dowri？ We include a samele outbut elswhere for your irformation．It is a very powerful aid．Can＇t wait to try it on Microsoft BASIC！

Since even uncommented source code occupies much more memory space than its correspondins object code，the source code could be senerated in sesments and stored with the ．CT directive at the end of all sections except the last．You could also work on desired sections for studs purposes by usins．CE（Continue on Error）to fermit assembly with undefined（external to the section）labels．After you have analyzed the sections you can realace the arbitrary labels with mearinaful labels，add comments，etc．，and have your own＂unofficial＂source code． Does ansone out there really know the law on whether such a synithesized source code，bearins so much of the doer＇s sweat，blood，curses，and tears，can at least be fut into the public domain？I＇m sure Microsoft has a firm fosition on this，but has there been a test case and defiritive decision？

A DELUUCTIVE STORY（FART I）

We had flanned to publish in Issue No． 1 the first part of what we would whimsically call＂A Detective Story＂，showiris how to explore the but our plans went awry．We felt that this would be of particular interest to besinners，since，riot only was the Reference Mariual supflied interest to besinners，since，riot only was the Reference Mariual supflied
with BAS－1 quite sketchy，it was downight shot full of errors in the sections dealins with frecision and method of data storase．So，here is the lons delayed part one．We describe only the procedure．We leave it to you to find out，not＂Who did it？＂（that was Microsoft），but＂How was it done？＂

First，fill part of the memors with $A A^{\prime} s$ ，because they are eass to spot， Use the MON commands＇，F AA，O，FO＇，and＇．F AA，200，3FF＇．Next eniter GASIC with＇．J 0^{\prime} ，and answer the MEMORY SIZE？Fromft with 1024，and the WIDTH？Frompt with whatever value you wish．Later on try to find the maximum and minimum values BAS－1 will acceat．For niow，however，enter a simple prosram，such as the followins（you misht do better，perhaps，to start with orily portions of the frosram，and gradually build uf to test other features，e．s．，strins arrays and inteser arrays！）：
$100 \quad \mathrm{~A}=3$
$110 \mathrm{~B}=4$
$10 \mathrm{~B}=4$
$120 \mathrm{C}=\mathrm{SQR}(A * A+\mathrm{B} * \mathrm{~B})$
30 A $*=$＂HELLO＂
$140 \mathrm{~B} \$="$ GOODRYE＂
150 C $\$=A \$+$ A AND $^{\prime 2}+B \$ 1$
160 FOR $I=1$ TO 5
160 FOR $I=1$ TO 5
$170 \mathrm{~A}(\mathrm{I})=\mathrm{I} * \mathrm{I}$
180 NEXT
90 FRINT A $\$$ ， $\mathrm{E} \$, \mathrm{C} \$$
210 PRINT AッB，C
10 PRINT J，
230 NEXT
RUN＇the prosram，then enter MON with a RST．Now，print out the contents of the first 1 K of memory with＇．V $0,3 F F^{\prime}$ ．Note the values of the seven pointers（ 14 butes）from $\$ 0078$ throush $\$ 0088$ ，and examine the memory conterits of the six sections of memory between successive pairs of these pointers．The six sections are for：

The prosram itself
Simple variables and strins pointers
）Array variables
4）Free space
6）＂Garbase＂
Now，with the followins hirits，and the erroneous，but at least sussestive，material in the reference manual，see if sou can＂fisure it out＂．We know，from our correspondence，that maris readers are in very isolated places，where a task．like this one would actually be the most exciting thins thes could find to do on most ans siven evenins．

1）Line numbers are converted to two hex bstes，inverted order．
2）Keswords，e．s．，FRINT，FOR，USR，SQR，etc．，are converted to one byte＂tokens＂，with the hish order bits equal to 1 ．
3）In the variable storase areas and in the strins fointer area，the variable names are encoded ir，modified ASCII form（two bstes），with the two hish order bits indicatins whether the variable is inteser， floatins，or strins dependins on how thes are set．

4）Inteser variables are stored，rather wastefully，in easy to recosnize hex form，with unnecessary 00 bytes．No storase space is saved by declarins a variable as an inteser．For inteser arrass，however，it does pay to use the $\%$ ，to save memory，as experimentation will show．

5）Floatins point variables，i．e．，those variables whose＂riemes＂do not include a $\%$ or＇$\$$ ，are stored with exponerit and mantissa，with each art carruins its own sisn bit．Since the standard storase form for a floatins point number is＂normalized＂so that the mantissa is sreater than one－half and less than one，the first bit of the mantissa is always considered to be a one，so it need not be＇written＂．This convention （Continued on pase 7：17）SYM－FHYSIS 7：8

A KANSAS CITY STANLARD TAFE LIUMF

We received a very iriterestins letter and software froft John Newman, 1/14 Marine Fde, Victoria 3182, Australia. We refroduce farts of both below. Flease note that he frovides the source code orily for the Karisas City Dump, not for Load. For this reason we have not been able to test it completely. Ferhars one of our readers will be able to suffly the .aad prosram.

We print only those portions of Mr Newman's source code pertinent to cassette oferations, since much of the rest has been freviously號 Note that Johri oferates his SYM-1 format notse that he does not lall his saves and loads in the "usual" way, wut akes the saves throush LIST in BASIC, and FFint in RAE, by chansins OUTVEC. The data is printed in blocks on the terminal, and then dumped on cassette, in ASCII format. His loads are made by chansiris INUEC to on cassette, in ASCII format. His loads are made by chansiris INUEC to system, too. Not only can ASCII data files now be exchanged directly system, too. Not only can Ascil data files now be exchanged directly eassed indirectly between RAE and BAS via cassette, for editins purfoses.

If sou have enoush menory, you can, of course, ASCII dump and load to and from memory, speedins us the editins process. Remember we sussested this in an early issue, but never sot around to workins out all of the details? We'd like to hear from ans of you who do complete this task. As they say in the textbooks, this is left as an exercise for the reader!

We sussest two modifications to John's frosrams: First, whenever Writins to system RAM, include a JSR ACCESS. Second, when charisins OUTVEC and INUEC, as is done here, save the old entries in FAM on entry, and restore them on exit. This will eliminate the recessity for the two different exits, one for BASIC and another for RAE, as used in this prosram (we killed the BASIC exit in this listins, since the location of GETCHR vhich BASIC uses for INUEC is not available). We have not tested 11 aspects of the prosram. Those we have tested do work froperly.
Ilear Lux:
I 3 mi now runinins $32 K$ of FAM on my SYM. The boards I use for RAM are boards desisned by a colleasue to fit a 6800 bus as used by Telecom Australia, and built by muself. There is also 4 K of FAM at $\$ 9000$ to \$9FFF for utilits routines, etc.

I talk to the SYM with a KTM-2/80 and use an old Olivetti terminal 35 a printer. Unfortunately, the frinter is currently out of action and, for hard copy, I am forced to make Kanisas City Standard tapes and use them on one of the terminals at work.

To senerate k.c. tafes, I have written a routine which is included in the routines in the assembly lansuase frosrams on this tape in File 2. Other frosrams in the file (afart from those cofied from SYM-FHYSIS) isre some routines for infut and outfut of data files in BASIC. These routines are called prom BASIC by "USF" statements. They are also developed these, I didn't have vers much memory and I haven't yet sot Seveloped these, I didr't have very much memory and I haven't yet sot Fo2 which has an example of their use.

I have been workins on a "Suser-SYM" alons the lines mentioned in issue $5 / 6$ of SYM-PHYSIS, but with BASIC \& RAE-1 ir, EPROM attached to cousle of perifheral forts, instead of on disk. This arfroach will probably develop into a complete RAM simulated disk system, iri time.

SYM-F'HYSIS 7:9

I spoke to Carl Moser on the telephone about obtainins a relocated version of RAE-1, but he didn't seem very enthusiastic about the idea As I had alreads done a lot of work on disassemblins kiAE, I fersevered and now have a completely relocatable source version which works, ir RAE format, on tape.

Frices of disk systems in this country are still fairly hish, e.s. afprox A $\$ 400$ for a sinsle minifloppy drive without controller, whereas memory chips are very chear, 2114's at A\$2.95\&4116's at A\$4.90.

In case you have trouble readins this tafe, I have enclosed hard cory of the letter, and on the "B" side of the tape is a lons "SYN" track and 64 blocks of test pattern as described in "SYNERTEK TECHNICAL NOTES". There are also three copies of each file on the tape.

Yours sincerely,

ASSEMBLE LIST

1120	INDEXE	. IIE:	\$79
1130	CHRGET	. DIE	\$CC
1140	CHFGOT	- LIE	\$12
1150	FIXLNK	- LIE	\$C323
1160	Linget	. LIE	\$C7F5
1170	Floatc	- LIE	\$19FF
1180	FOUT	+ DE	\$1089A
1190	MESSUB	. IE E	\$C954
12.00	BREAKIN	, LIE	\$ DI
1210	ВАСК	. DE	\$EO
1220	ERMESS	. LIE	\$C25A
1230	guarali	, DE	\$CE63
1240	OUT	+ LIE	\$8A47
1250	OUTEYT	+ IIE	\$82F'A
1260	CRLF	+ DE	\$834D
1270	access	. DE	\$8B86
1280	INTCHR	. LEE	\$8A53
1290	SPACE	. DE	\$8342

1310 ; ROUTINE FOR OUTFUTTING TO TAFE IN KANSAS CITY STANDARI 1320 ;
1330 FINIT IIS (OUTCHT OUTVEC+1)

3166- A9 AO
316B- A9 8A

316 B
$316 \mathrm{~A}-8 \mathrm{D}$
5 A

$3170-20$ c5 31

31AE- A9 E5
31BO- BD 4C Ab
31B3-A9 31
31B5-8D 4D A6
4830
US (WORKBF+256 TEND)
$31 \mathrm{B8}-\mathrm{A}$
$31 \mathrm{EA}-8 \mathrm{E}$
4 A
A6
$31 \mathrm{BD}-\mathrm{A}$
32
$31 \mathrm{BD}-\mathrm{A} 932$
$31 \mathrm{BF}-8 \mathrm{~A} 14 \mathrm{~A}$

$\begin{array}{ll}31 C 5- & \text { A9 } \\ 36 \\ 31 C 7--8 D & 32\end{array}$

$31 C 7-1$	
$31 C A-$	A9
33	

$\begin{array}{ll}31 C A \\ 31 C C & 81 \\ 35 & A G\end{array}$
3111-80 3C A6 31114-60
4900 T2S.SET TSS (\$23 \$19 \$21)

```
3105-A9 23
31D7-8D 32 A6
31 DA- A9 19
\(31 \mathrm{DC}-8 \mathrm{D} \quad 35 \mathrm{~A} 6\)
\(31 \mathrm{DF}-\mathrm{A} 92 \mathrm{I}\)
31E1- 8 II 3C \(A 6\)
31E4- 60
31E5-
```

820 WORKBF IIS $\$ 25$
(Continued from fase 7:8)
frees the position so that it may be used as the sisn bit position. no one told you this, you could waste much time wonderins why the ploatins point number didn't 'comfute'!
6) We purfosely did not include a IIM statement so that you could observe the default value.
If we told you aris more, the furi would all be sone!
A SIMFLE LIATA SAVE ANII LIATA LOALI PROGRAM FOR BASIC
For those of you who wish to be able to save and (re)load variable files from BASIC, we publish the followins machine lansuase frosram submitted by Hush Criswell, and modified (very slishtly) by us. Note that the prosram is fully relocatable; all you reed modify, if you relocate, are the first parameters in the USF calls. It is extremely importart that the prosram which recalls the data be no lonser thar, the prosram which stored the data. Also, if you modify the callins prosram after recallins the data it (the oata) will be cleared. And, one final warnins, don't start your frosram with a FUN (since RUN includes an implicit CLEAR) ; rather, use a GOTO the approfriate line number. If you wish to fass data files between several BASIC prosrams with this type of prosram, "pad" your frosrams with ronessential REMS, so that aris data files recalled will not overlay meaninsful farts of ans of the frosrams

Of what use is this type of prosram? For orie example, you misht set, ur a data file for an inventors of a record collection, irivolvins A (I, J) and $A(I, J)$, "I" would be an index number for each item, and J would be ari index number for each fact misht be the Artist somer Ab(iche current value, Atc. wo that you gow know how to set uF Data Bases from BASIC!
ASSEMBLE LIST(IISAUZ)

GYM-F'HYSIS $7: 17$

\qquad 10°
320
330
340
0350 BAS. USRENT . DE \$ $\$ 114 \mathrm{C}$
0360 ELOCKMOUE DE $\$ 8740$
0370 WRITE . IIE \$8E87
0380 REALI , LIE \$8SF3
0390 ACCESS . DE $\$ 8886$
0400
$\begin{array}{ll}0410 & \text {. FA } \\ 0420 & \text { OLOC }\end{array}$
0420 . 05
0430
OCOC- 48
$O C O D-A O \quad O B$
OCOF- B9 7000 OC12... 9187
0C14-88
OC15-10 FB
OC17-2086 8B
OC1A-A5 81
OC1C- 8 CI
OC1F-A
O
O2 OC1C- 81 4E
OC1F-A5 82
$0 \mathrm{C} 21-8 \mathrm{I}$ 4F A
 C2B-- 81104

OC2E-- 18
OC2F-A5 87
C31-69 OB
OC33-8II 4A A6
OC36- A5 88
0 C 38 - $69 \quad 0$
OC $3 A-81 \quad 4 B \quad A 6$
OC3D-20 $40 \quad 87$
OC40- AO 80
OC42- 68
$O C 43-8114 E A 6$
C43- 81I 4E
C46- A9 00
OC48-8 8 F AG
OC4B- A5 7 II
()C4LI- BLIC A6

OC50- A5 7E
OC52- 8 CI A Ab
OC55- AS FII
(C57-- $8 \mathrm{BE} \quad 4 \mathrm{~B}$ A6
OCEA- AS FC
OCEC- 80 4A A6
044040 S0450
04600460
0470

0600 LITA *\$83
0610 STA \$AG4C
0620 LLIA * $\$ 84$
0630 STA \$AG4II
0650 CLC
0660
0670 LLIA *\$87
0680 ALIC $\$ 12-1$
0690 STA \$A64A
0700
0710
0720
0730
0740
0750 JSE ELOCKMOVE
0760 TAFE.OUT LIY $\$ \$ 80$ 0780
0790 FLA
0800 STA \$A64E
0810 ITIA $\ddagger 0$
0810 LIIA \#O
0830
0840 LIA *\$7ロ
0850 STA \$AG4C
0860 LIIA *\$7E
0870 STA \$A64II
0890 LIIA *\$FD
0900 STA \$A64E
0910 LIIA *\$FC
0930

OCOC 48 AO OB B9 $7100 \quad 9187,41$ $0 C 14 \quad 88 \quad 10$ F8 $20 \quad 86$ 8E AS 81,28 OC1C 8N AE AG AS 82 8N AF AG,52 $0 C 24$ A5 83 8N 4C A6 A5 84 8N, AF OC2C 40 A6 18 AS 87 69 OF 8LI, E7 $0 C 34$ 4A A6 AS $8869008 \mathrm{AI} 4 \mathrm{E}, 45$ OC3C A6 $20 \quad 40 \quad 87$ AO $80 \quad 68 \quad 8[1, E 7$

 $\begin{array}{llllll}O C 4 C & 71 & 80 & 4 C & A 6 & A 5 \\ O E & 8 L & 4 I 1, A 4 \\ O C 5 A & A 6 & A 5 & F I & 81 & 4 B \\ A G & A E & F C, O B\end{array}$ $\begin{array}{lllllllll}O C 5 A & A 6 & A 5 & F I & 81 & 4 E & A 6 & A S & F C, O B \\ O C 5 C & 8 I & 4 A & A O & 20 & 87 & 8 E & 38 & B O, A 5\end{array}$ $\begin{array}{llllllll}0 C 5 C & 8 \mathrm{I} & 4 \mathrm{~A} & \text { Ab } & 20 & 87 & 8 \mathrm{E} & 38 \\ \mathrm{OO}, \mathrm{AS} \\ 0 \mathrm{C} 64 & O \mathrm{D} & 48 & 20 & 86 & 8 \mathrm{~B} & 8 \mathrm{I} & 4 \mathrm{~A} \\ \mathrm{AG}, \mathrm{AB}\end{array}$ | $O C 64$ | 20 | 53 | 85 | 68 | BO F | F | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $O 5,28$ | | | | | | | | OC74 FE E9 OC 85 FE AS FF E9,2B 0 C 7 C 0085 FF AO OB B1 FE $99, \mathrm{~A} 2$ 0 C 8470008810 FB AS $83 \quad 811,64$ OC8C 4E AG A5 848 II $4 F$ AG AS,A8

 OC9C A6 AS FE 8II 4A AG AS FF, 13 $\bigcirc C A 4 \quad 8 \mathrm{O} \quad 4 \mathrm{~B}$ AG $20 \quad 40 \quad 87 \quad 4 \mathrm{C} \quad 4 \mathrm{C}, 10$ OCAC O1,E1
51E1

THE HIIE FOLIS
Mans of our readers have encuired about FOLIS, HIE's File Oriented IIisk Sustem, so we'll tell you a little about it, here. First of a11, FOnS is a complete nos, includins its own text editor, TED, assembler, ASM, evt output system, TOFS, a sreat version of Microsoft BASIC, and a very till flus a number of supfortins utilities.

It was desisned primarily for near "bare-bone" systems like TIM (Terminal Infut Monitor), and KIM (Keyboard Iriput Monitor), whose only factory sumplied firmware is in the $1 K$ and $2 K$ ROMS named after their consider fons to be one of the most useful of the nos's we have studied. Naturally, lick. Grabowsky, its desisner, asrees with us! We particularly afpreciate the fact that the FOLS TEL/ASM/AII packase (unilike RAE-1) is fully compatible with the orisimal MOS Technoloss syntax, makins for better transportability between 6502 systems.

Furthermore, files cari be passed between BASIC and TEH, for editins purposes, since the method of storins BASIC files is in ASCII, with the carriase returns treated the same as in TEIt you misht wish to check how BAS-1 and RAE-1 handle their carriase returns differently, and, of course, how BAS-1 keywords are actually stored on cassette in token form. We never have sotten around to addins modified SAUE, LOAD, FUT, and GET, to BAS and RAE to provide SYM with the same carability

Special versions of fons are available for AIM-65 and the SYM-1, which make use of the available factory supflied firmare, ard we have committed ourselves to fully supportins SYM/FOUS. Hick arsues that sreater software transfortability could be achieved with a standard Fons; we arsue that SYM (and Alm own have hevelopins software, hefore aurchasins the firmware, and much time in develofins sof tware, before thes are reads to invest iriafons users read their EAS-1 and RAE- 1 (and e protected i) severa dor even MON 1. . (required.

We haven't sone that far, but we do have both the SYM/FOnS and the standard fons available, hence the best of all fossible worlds. To give sou some idea of how Folls files are orsarized, we pririt below a copy of
the standard Fons Master Iisk, then a copy of our owri Sym/Fons Master Lisk, and a cofy of the first few fases of our personal System Manual:

DDC UIF 2 FOUS MASTER IISK IS ON DRIVE 2

01	\% U3. 2 x	7300	7FFF	01	0.1	02	\%SYM	65100	$6 \mathrm{H2F}$	02	11
03	\%HIASX	6000	6FFC	02	12	04	\%HIIASY	6000	6120	04	12
05	\%SSR	6000	6019	04	15	06	\%AII	6000	$6 \mathrm{CS5}$	05	01
07	\% n NT	6000	6B4C	06	10	08	\%CMT	6000	6589	08	1
09	\%TOF	6300	6 FED	08	13	10	\%LIF	6000	60CO	10	07
11	\%FRE	6000	GEOE	10	09	12	\%CFY	6100	6LEF9	10	2
13	\%DEL.	6000	6032	10	14	14	\%SOR	65100	6 674	10	5
15	\%*FM	60100	6 FEC	11	02	16	\%REA	6000	6LIA3	11	8
17	\% ${ }^{\text {FAK }}$	6000	6EAD	11	10	18	\%LIN	6100	6182	11	14
19	\%NAM	6000	617F	11	16	20	\% BL.M	6100	6507	12	01
21	\%BAS	6000	696F	12.	06	22	\%F'ON	$6 \mathrm{C6O}$	$6 C A 3$	13	9
23	\%POF	6 C 70	6CA3	13	10	24	\%TOM	6000	6499	13	11
25	\%VEF	6000	6E10	14	05	26	\%TED	6000	6EFE	14	08
27	\%ASM	6000	60EF	15	16	28	\%ONN	6 A00	6A49	16	02
29	\% OFF	6 A10	6449	16	03	30	\%NN	61100	61149	16	4
	\%FFF	6110	61149	16	05						

PDC DIR 1 SYM/FOLS MASTER DISK IS ON LIRIVE 1

01% U3. 2	7300	7FFF	01	01	02	\%IIFi	6000	6 ILCO	0211
03% REE	65100	GEOE	02	13	04	\%CFY	6100	6LIE. 9	0216
$05 \% \mathrm{DEL}$	65100	61132	03	02	06	\%SOR	61000	6E74	0303
07 \%*FM	6000	6FEC	03	06	08	\%REA	6100	6IIA3	0312
$09 \% \mathrm{FAK}$	6100	6EAII	03	14	10	\%LIN	65100	61182	0402
11 \%NAM	61100	607F	04	04	12	\%ELM	$6{ }^{1} 100$	6 F07	0405
$13 \% \mathrm{LAB}$	6100	6158F	04	10	14	\%FOL	61000	6 LIE	0412
15% NUM	60100	6F1C	04	13	16	\%TED	6000	6EBA	0502
	6000	696F	06	10	18	\%SWF	6000	6791	0713
19 \%FUB	6000	6799	08	13	20	\%TOM	6000	6499	0913
21 \%RAE	6 B 00	6С80	10	07	22	\%RAY	6B00	6CF3	$10 \quad 11$
23 \%PON	6 600	6443	10	15	24	\%F'OF	6 610	6A43	1016
25 \%TIC	0200	3143	11	01	26	\%TIB	0200	089 1	1701
27 \%FOC	0200	242 F	18	05	28	\%FOR	0200	26 AE	2210
29 \%ESB	0200	16 F 3	27	04	30	\% HUE	0200	OB21	2914
31 \% F'AC	6000	6HDC	31	01	32	\%BAS	6000	65F6	3103
33 \%UER	6000	6 E 10	31	15					

NEXT: T32 S02
PIC FRE 1 HOW MANY EYTES ARE FREE ON IRIVE 1 ?
8064 ($\$ 1$ F80) EYTES FREE
SYM/FOLS Deeratins Marual

The followins files are now on the master disk;

01	\%V3. 1	Fons
02	\%DIF	IIirectors
03	\%FRE	Free memors available?
04	\%CFY	Coss disk to disk
05	\%IIEL	Helete specified file
06	\%SOR	Sort specified file
07	\%*FM	Format new disk.
08	\%REA	Reassisn address sface to file
09	\% $\mathrm{F} \cdot \mathrm{AK}$	Fack disk to consolidate files
10	\%LIN	Load file by mumber (if name deleted!)
11	\%NAM	Chanse name of specified file
12	\%BLM	Block move data
13	\% LAB	Sort fite label file
14	\%FOR	Return to FOLIS from other sustems
15	\%NUM	Renumber BASIC prosrams
16	\%TED	HILE's Text Editor
17	\%BAX	HLIE's BAS/FOIIS Lirik.
18	\%SWF'	SYM Word Frocessor
19	\%PUB	Erihariced SWF'
20	\%TOM	Tom Gettys' SUPERMON enhancemerits
21	\%RAE	RAE/FOLIS Link.
22	\%RAY	Erimariced RAE, fermits , CT to disk.
23	\%F'ON	Frinter aztch in
24	\%FOF	Priniter patch out
	\%TIC	tiny-c
26	\%TIB	Tiris basic
27	\%FOC	Erinariced FOCAL
28	\%FOR	Enhariced FORTH
29	\%ESB	Browri's Exterided SYM/BAS
30	\%HUE	HUEY - Reverse Folish Calculator
32	\%BAS	Gettus' BAS/FOLS lirik.
	\%VEF	'Wide-Screen' Verify with ASCII added

FOLS
Ilirectors
Free memory available?
Col
Sort seecified file
Format new disk.
Keassisn address space to file
Load file by rumber (if name deleted!)
Chanse name of specified file
Block. move data
Return to FOLIS from other systems
Renumiter BaSIC erosiams
HLEE's Text Editor
HLIE'S BAS/FOLS Lirik.
SYM Word Frocessor
Enihariced SWF
RAE/FOLS
RAE/FUNS Link
Erinted RAE, pernits , CT to disk.
Friniter aatch iri
tiny-c
Tiris BASIC
Enhariced FORTH
Browri's Exterided SYM/BAS
Gettys' BAS/FOUS link
"Wide-Screen" Verify with ASCII added

The use of each of these prosrams is described briefly in the followins pases (one prosram fer fase). The storase location of the accompanuins maruals and any additional documentation, user aids, software, listiriss, etc., is also provided.

In addition to the Master Uisk, a collection of Afplications Disks is available. Each Lisk is
hamed and rumbered, and a corresfondinsly named and numbered Afplication Einder contains the supfort documentation.

Where extersive listinss or priritouts are available for reference, these are stored in riamed/rumbered polios, whose storase location is specified in the Binder.
(NOTE: The above material is extracted from a manual eins erearared for students usins the University SYM-1 System. As usual, the documentation is far behind the hardware!)

A WIDE-SCREEN HEX/ASCII MEMORY LUMP
Here is a very useful, easily relocatable, memory dumf utility. In addition to providins a "header' to help you to read the addresses more readily, and listins sixteen butes per line instead of eisht, if the hex byte is a printable ASCII code (the farity bit is not considered), the ASCII character is also printed in a separate table. This sort of dump can prove vers helfful in locatins text filles buried in a prosram. Some examples of its use follow the listins. It should be foirited out that not all Ascil characters frinted are meanirisful. For exampley the BASIC tokens will be printed in a misleadins manner.
ASSEMELE LIST
0010 ;A "WITIE-SCREEN" COMBINEII ALFHANUMERIC/HEX MEMORY HUMF 0020 (DIISFLAY IS TOO WIIE FOF THE 40 COLUMN KTM-2)

0030		
0040	A	AN IMF'ROUELI VERIF
0050	A	ALIAFTED FROM TOM
0060	F	FOLIS UERSION.
0070	L.	LINKEI TO SUFER
0080	C	CALLEI FROM MON
0090	I	ITS STARTING AI
0100		
0110	W	WHEN F'ROMF'TEL,
0120	E	BEGINNING ANI
0130	0	OF THE MEMORY
0140	C	CONTENTS YOU
0150		
0160	H	HALT LISTING WI
0170		RESUME PROGRAM
0180		
01.90		. 05
02.00		- BA \$1000
0210		
0220	S. Allf	- IIE \$FO
0230	LINF'TR	F . IIE \$F1
0240	L.N.CNT	T - DE \$FI
02.50		
0260		
0270	FAF'M	- IIE \$8220

0270 FAR'M

- IIE
-18220
$\$ 829 \mathrm{C}$

Here is an example of how ASCII UER can help in analyzins how $A A S-1$ stores its frosrams and variables.

$$
\text { FIG, } 1-\underset{ }{\text { The LISTirIs }} \rightarrow \mathbf{M E M S I Z E ? ~}=768 \text {) }
$$

FIG. 2 - The VERify
\downarrow

> 10 $\mathrm{AA}=5$ $20 \mathrm{AA}=5$ $30 \mathrm{AA} \$={ }^{\circ} \mathrm{HOGS}$ $40 \mathrm{AE} \$=\cdot \mathrm{CATS}$
$40 \mathrm{AE} \$={ }^{\circ} \mathrm{CATS}$

Enter ranse limits:
$\begin{array}{llllllllllllll}00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & O A & O B & O C & O L I \\ O E & O F\end{array}$

 $\begin{array}{lllllllllllllllllllllll} & 220 & 53 & 22 & 00 & 32 & 02 & 28 & 00 & 42 & 42 & 24 & A C & 22 & 43 & 41 & 54 & 53,2 \mathrm{E}\end{array}$
 $\begin{array}{lllllllllllllllll}0240 & 41 & 4 E & 44 & 20 & 22 & \text { A4 } & 42 & 42 & 24 & 00 & 00 & 00 & 41 & 41 & 83 & 20,36 \\ 0,\end{array}$ $0250000000 \mathrm{C1} \mathrm{C1} 000500000041 \mathrm{C1} 041 \mathrm{LI} 02 \mathrm{O}, \mathrm{E} 2$ 02600042 C 2042 C 02000043 C 3 OII EA 020000 AA, C1 0270 AA 61 0270 AA AA,O1
0280 0280 AA AA,A1 $02 A 0$ AA AA $A A$ AA $A A$ AA $A A$ AA AA $A A$ AA $A A$ AA $A A$ A AA 141 $02 B O$ AA AA,E1
$02 C O$ AA AA, 81 $02 C 0$ AA AA, 81 0210 AA AA,21 $\begin{array}{llllllllllll}02 E O & A A & A A & A A & A A & A A & A A & A A & A A & A A & 44 & 47 \\ 53 & 20 & 41,53 \\ 02 F O & 4 E & 44 & 20 & 43 & 41 & 54 & 53 & 44 & 4 F & 47 & 53 \\ 20 & 41 & 4 E & 44 & 20,70\end{array}$ 6 D 70

ZENER HIODE FROTECTION

The fower coninector on the SYM-1 is notched just the reverse of that on the older UIM-1 (Versatile Interface Modile or Moritor; we really frefer that old name!), so, naturally, we afflied fower to our first SYM-1 with reverse folaritg, durinis initial checkout? After the iritial faric, when we thousht that both the fower supply and the sym were dead, we realized that the SYM was safey but that what had saved the SYM had killed the power suprly, The 6.2 Y Zerier diode at CR34 Frotects from both overvoltase and reverse polarits. Its failure mode is not to oferi a circuit like a fuse, but to short it like the old coffer feninies we were told never to substitute for burned out fuses. Ms new fower supflies all have oup cover voltase Frotectioni, currenit limitinig, thermal mor, etc, etc., but we still thirik. it sood irisurarice to inistall CQy bu the power comiector, A series fuse to protect the power supely if the Zener does its jon risht is worth adring, also.

A FERSONAL INFORMATION MANAGEMENT SYSTEM (FIMS)
We would like to recommend for sour conisideratiom the book from SCELBI Publications, F. O. Box 3133, Milford, CT 06460, bearins the above title (contact SCELBI, or your own book or computer dealer, NOT us!). It contains the complete listins of a BASIC frosram to provide what the title implies. It was written iri RFS-80 Microsoft, but you will have to modify only two instructions (eass to do). You will, however, reed to add a SAVE UARIABLES/LOAI VARIABLES Fatch. One such fatch was fublished in an earlier issueg another is included in $\mathrm{EBE}-1$ and EEE-2, and still another is fublished in this issue.
ro load in machine lansuases fatches easily from BASIC, dump them from MON's 92 with an th for which you know the ASCII ERHivalerit, e.s., a ION tape dump with III =A1 can be reas from EAS with a LOAII A, etc. Be sure to leave memory!

The frosram, while not the ultimate, can easily be customized, and extended to fit your needs; we added a disk patch to our version, and made a number of converience and "cosmetic" chanses. Sreakins of theft", as we were elsewhere in this issue, one of our correspondent which he picked up on (the il is for latal MONITOR/CASSETTE: INTERFERENCE FFORLEMS?

Jack Brown, who has lons used a dual cassette system, one for read, the other for write, both SYM controlled, reforted ari interestins froblem the other das, He reversed the roles of the two recorbers, and had read/write froblems for the first time. Dre of the recorders is much roduced bu the transformer aridor yokes in the moritor could have been the source of the problem. After this issue has sorie to press, we will
 Wavins a bulk tape eraser near a recorder, first while recordins a lons riser Goore. Will rerort results rowt issue. ts re\%t issue.
HOW WE PREFARE FOR FURLISHING
The camera-reads copy for SYM-FHYSIS is fresared on a $24 K$ SYM/FOLS sstem, and fririted on a decwriter II. The entire cops for a 40 Fase rormationy we print tre disk directory for that Fart of the current issue which is ready as of this date.

The ":" indicates a RAE file, the ". a BASIC file, the "\&" a hex file, etc. Each system (tins-c, FORTH, FOCAL, etc.) senerates its own file
identifyins character, or what is more commonly referred to as its extension, Fons fermits only sinsle symbol extensions and five weakness for short-memoried feofle such as ourselves. Weeks later, or even only hours later, we find that we have forsotten what the crupt mnemonic file names mean!

LIC UIR 2 Conterits of SYM-FHYSIS Issue No. 7

	: Logo	0200	0486	01	01	02	: MAST	0200	0857	1)
)3	: EDIT	0200	0740	02	04	04	: HELF	0200	$09 \mathrm{E8}$	02	15
05	:SUFF'	0200	07C4	03	15	06	: THEFT	0200	OFC3	04	11
07	: BELL	0200	0057	06	07	08	: BASIO	0200	0844	07	14
09	! FIX	0200	044F	08	11	10	: RaEus	0200	0418	08	6
11	:FLEX	0200	048B	09	05	12	: IISK	0200	OF6E	09	11
13	! INDEX	0200	0410	11	06	14	: SOFT	0200	1143	11	11
15	: KCS	0200	OACO	13	10	16	: NEW1	0200	OBFE	14	12
17	:NEW2	0200	1594	15	16	18	:S\&L	0200	082A	18	8
19	! cisave	0200	OBE9	19	05	20	: IIETEC	0200	1166	20	09
21	+FOH1	0200	0C70	22	08	22	:FOn2	0200	OA3E	23	3
23	:UER2	0200	04C6	24	14	24	:VEF1	0200	0 EF 9	25	04
25	\%UER	1000	1OFE	26	08	26	: VERS	0200	030C	26	10
27	- VER	0201	024C	26	13	28	:ZENER	0200	06511	26	14
29	:CASS	0200	0552	27	07	30	:FIMS	0200	0769	27	14
31.	: NUMS	0200	0362	28	09	32	: WISNI	0200	OEDA	28	12
33	: TECO	0200	03C4	30	06	34	, WISNI	0201	ODBA	30	10
35	: SYM69	0200	OBEO	32	01	36	: FUELI	0200	0581	33	05

NEXT: T34 S06
AN ALTERNATE BASIC INFUT TECHNIQUE
One of BASIC's basic (!) failinss is its ofter frustratins behaviour when the wrons kind, and/or number, of data infuts is entered. If the cr> is the first kes entered, BAS-1 is not vers forsiving no pportunits for correctins this "boo-boo' is frovided. This

Jeff Wisnia, of Burlinston, MA 01803, sent in a partial solutiony which did erevent the frosram "abort" in the event of an initial carriase returny but did not permit character or line correction, We fublish essentialls his prosram below, but with our comments and error correction (but onls before the cr>!) features added. We included the CONT X, CONT H, and DEL as well as the the "e" and the "\&" used bs BAS-1, since these are frequently used in other BASICs. If sou do wish to abort, use the BREAK kes. You misht also wish to add a CONT C exit, since this is used to cause an abort in many BASIC systems.

Since some users misht try to use the ESC kes to abort, this should 3.so be allowed for. Don't forset to send out at least one null to the KTM-2/80, because the next character sent after ani ESC is not printed. This caused us lots of worry in tryins to set TECO uF on our ssstem. TECO uses ESC for control purposes, and is prosrammed to echo " "\$" in its flace. Not havins the "\$" show ur was disconcertins, and it was a tisht squeeze to set in the five bstes necessary to echo both a null and the "\$". TECO was orisinally desisned for I/O devices which isnored ESC. While sou are rolishins df the followiris frosramy gou misint wish to have CONT H echo a SFACE ($\$ 2$) and another CONT H (H) to clean ur the screen 35 sou correct sour errors. Alsog the cul or A more echo the "\" and the deleted character. With followins "IEL."s echo only the deleted character. With the first replacement character, echo the " $\$ " first, and then the new character.

SYM-FHYSIS $7: 27$

This form of infut is farticularly useful in certain afflications, where the data stream mas include commas and quotesy since strinss containins commas need not be delimited by Quotes; and Ruotes do a strins but not "Lux" Luxenbers. In other words, leading quotes are not accepted, but embedded quotes are.

Now that you know how to enter commas easily as fart of strinss, when you set around to implement "FIMS" (see elsewhere in this issue), you can enter a CITY, STATE ZIF item as a sinisle strinis, with comma, and use the comma as a delimiter to indicate the start of the STATE ZIF part of the item for SORT purfoses, while still permittins the item to be frinted on a sinsle line.

A sood frosramer, whose prosrams are initenided to be used by novicesp should make evers effort to "idiot-proof" his frosrams, i.e., he should anticipate errors in inpllt protocol, and suard asainst thell. Jack Giersic's newest prosrams are beautif respect, and are well worth stud
100 FEM WISNIA/LUX ALMOST "TIIOT-FFROOF" BASIC INFUT SURFOUTINE
110 :
120 REM
1.40 REM

150 REM
160 :
170 :
明
190 :
200 REM Now so where the action is!!!!!
210 :
220 GOSUB 58
230 :
240 REM Your strins mas contain lower caseg commas, quotes
250 FEM line feeds, etc., in fact ans character exceft the
260 REM
270 :
280 REM
290 REM
300 REM
310 REM
320 REM
330 RE
350 REM
350 REM
370 : line feeds, etc, in fact any
special ones tested for below.
ACTUALLY, THEFE IS ANOTHER WAY TO GET OUT OF THIS WITHOUT USING THE BREAK KEY; THE FROGFAM WILLL HALT ITSELF WITH A BRK AFTEF EITHEF THE MAXIMUM "GARBAGE: GENERATEI BY THE STKING CONCATENATIONS CAUSES YOU TO FUN OUT OF MEMORY.

IT MIGHT BE WORTHWHILE TO AMI BOTH A CONTROL C AND AN ESCAFE EXIT.

380 :
390 FRINT:FRINT:FRINT "The strins you entered was: * A\$
400 :
410 REM Your strins may be a pure rumeric and you
420 REM can check the rumber asainst ranse limits
430 REM before accepting it, if desired.
$450 \mathrm{~A}=\mathrm{VAL}(\mathrm{A} \$)$
460 FRINT "The rumeric value of your strins was:" A
470 :
480 REM Continue till sou are convinced it works, or
490 REM till you set tired. Exit (to BASIC) with BREAK.
500 :
510 FRINT:GOTO 180
520 :
530 REM Here is the main show. Above is only a
540 REM simple test frosram

SYM-F'HYSIS 7:28
$550:$
560 REM
$570:$

590 :
600 REM
610 REM
620 REM
630 REM
640 REM
650 :
660 REM
660 REM
670 REM
680 REM
690 FEM
690 REM
$700:$
$710 \quad$ X=
$710 \quad \mathrm{X}=\mathrm{L}$
720 :
First, of course, make sure each character is not
740 REM
750 :
60 REM Check for <cr>, but NOT as the first elemerit.
780 IF $Y=13$ ANI LEN $(A \$)<0$ THEN RETURN
800 REM Mon't accept an initial <cr>.
800 REM
810 : $\mathrm{IF}=13$ THEN GOTO 1020
830 !
840 REM Check for ' CH^{\prime} ', ' $<-$ ', or ' IIELETE
850 :
850 : $\quad 860$ IF $Y=8$ OR $Y=95$ OR $Y=127$ THEN GOTO 980
870 :
880 REM Check for ' X X' or 'at symbol' (canriot frint it here!)
890 : 900 IF $Y=24$ OR $Y=64$ THEN GOTO 1020
910 !
920 REM The character should be accefted
930 :
$940 \mathrm{~A} \$=\mathrm{A} \$+\mathrm{CHF} \$(\mathrm{Y}):$ GOTO 710
950 :
960 REM Ilelete the last character accepted
970 : 980 LEN $(A \$) \ll$ THEN $A \$=\operatorname{LEFT} \$(A \phi, \operatorname{LEN}(A \$)-1):$ GOTO 710
980 IF LEN $(A \varnothing) \times 0$ THEN A 990 :
990 :
1000 REM In case of an emfts strins, come here....
1010 :
1020 FRINT:PRINT •
Try asair! ! \ddagger GOTO180
THE SYM-1/68 ANI SYM-1/69
Synertek Systems Corforation recently aninounced the arrival of two riew members of the SYM-1 family. Drie, the SYM-1/68, is 6800 based; the second, the SYM-1/69 is 6809 based. Also available, are conversion kits for our existins SYM-1s. The kits include the microprocessor chip, an adaptor socket, and a new monitor chif. We understand the versatility of SUFERMON was retained i^{\prime} the riew monitors.

While the 6800 leaves us cold, because we frefer the 6502's Y-Fiesister to the $6800^{\prime} \mathrm{s}$ B-Resister, the 6809 is another stors. Forset the added speed of its 16 bit multiplication; its real fower is in the FAIF of 16 bit index resisters, and the FAIF of 16 bit stack. fointers (one for the sustem, the other for the user). There is also ari 8 bit Hirect Fase Resister, so that instead of beins limited to the special Zero Fase addressins modes, ANY fase mas be selected for the special adoressing
modes. If it is not obvious (and it really shoulant be!), let us foint out that these adoed features of the b809 fermit the writins of position independent code. If you have forsotten a few liries of code, or want to rearranse subroutines, just use the Block Move (, B); no need to reassemble, or use a relocatins loader or prosram. What a lot of power, there! What a "well-stacked" system!

One of the best reviews we have seen on the 6809 is in the March, 1981 issue of BYTE (both this arid the February issue are worthwhile readins for SYMmers), in the article "What's in Radio Shack's Color Computer?" (Yes, that's correct!), by Arens, Erowne, and Scales. The article also covers the capabilities of the MC6847 (Color) Video IIssplay Generator, as used in the SYM Colormate, by Turpin.

A really strong argument for the 6809 (which supports 6800 code) is that the 6800 family is compatible with the FLEX nos, and there is a lot of sreat software available out there. FLEX is to the 6800 world what CF/M is to the $80 \times \% / Z 80$ universey and what does not exist for the 6502 community.

The SYM-1/69 will, of course, be needins the equivalent of a FAE-1/69 (and, less importantly, a BAS-1/69) to complete the ssstem, if we are to use it to its fullest capabilities. We will be evaluatirs the SYM-1/69 durins the newt auarter, and refort in Issue No. 8 .

If, after you evaluate the 6809 features, you are interested, coritact SSC for additional technical information, and the sug for prices and delivery information.

THREE STATISTICAL EASIC FROGRAMS

Prof. Hush E. Criswell, Fsycholoss Deartment, East Tennessee State Uriversiyy Johnson City, TN 37614, whose BASIC Iata Save and Load frosram appears elsewhere in this issile, sent us the following note and prosrams. We publish them as received. Incidentally, several former Psycholosy Instructors are now teachins courses in Computer Science at California State, Chico, as a result of havins sotten "turriedon" by micros.

> "If sou want to set some fsycholosists interested in llicrocomputers, show them these three Analusis of variance frosrams. Thes are used a lot in the behavioural sciences; Fobably not in fhusics. Sorrs thes aren't comented, but someore experienced in in

1 REM THIS IS A ONE WAY ANALYSIS OF UARIANCE ALSO CALLEII A 2 REM SIMFLE RANDOMIZEI ANOUA. IT RUNS IN $4 K$.
$5 L=0: M=0$
10 ПIM $\mathrm{B}(6), \mathrm{C}(12), \mathrm{H}(6), \mathrm{E}(12)$
$20 \mathrm{~T}=0: \mathrm{TS}=0$
30 INFUT'* OF TESTS? \ddagger NT:FRINT NT
40 INFUT*\# OF SS'9NS:FRINTNS
45 FRINT"ENTER IIATA BY SUEJECTS.
50 FOR $I=1$ TONS
60 FOR $J=1$ TONT
70 PRINT I;J;
80 INFUT L:FFFINT L
$90 \mathrm{~B}(\mathrm{~J})=\mathrm{B}(\mathrm{J})+\mathrm{L}$
$100 C(I)=C(I)+L$
$110 \quad[1(J)=0(J)+(L * L)$
$120 \mathrm{E}(\mathrm{I})=\mathrm{E}(\mathrm{I})+(\mathrm{L} * \mathrm{~L})$
$130 \mathrm{~T}=\mathrm{T}+\mathrm{L}$

140 $\mathrm{TS}=\mathrm{TS}+(\mathrm{L} * \mathrm{~L})$
150 NEXT J
160 NEXT I
170 FOR I 1 TON
170 FOR I = 1 TONT

190 NEXT I
200 FOR I=1TONT
$210 \mathrm{U}=(\mathrm{B}(\mathrm{I}) * \mathrm{~B}(\mathrm{I})) / \mathrm{NS}$
$211 \mathrm{~V}=(\mathrm{I}(\mathrm{I})-\mathrm{U}) /(\mathrm{NS}-1)$
$12 \quad V=$ SRK (V)

220 NEXT I
$240 \mathrm{~T}=$ (T*T) /(NS*NT

250 TS $=\mathrm{TS}-\mathrm{T}$
$255 \mathrm{~L}=0$
260 FOR $I=1$ TONT
$270 \mathrm{~L}=\mathrm{L}+(\mathrm{B}(\mathrm{I}) * \mathrm{E}(\mathrm{I}))$
280 NEXT I
300 FOR I＝1TONS
$310 \mathrm{M}=\mathrm{M}$ 人（C（I）＊C（I）
320 NEXT I
$330 \quad \mathrm{NE}=(\mathrm{M} / \mathrm{NT})-\mathrm{T}$
$340 \mathrm{~N}=\mathrm{T} \mathrm{S}-\mathrm{L}$

$360 \quad 0=N S * N T-1$
$370 \mathrm{P}=\mathrm{NT}-1$
$380 \quad 0=0-F$

$400 \mathrm{~L}=\mathrm{L} / \mathrm{P}$
$410 \mathrm{~N}=\mathrm{N} / \mathrm{O}$

440） $\mathrm{R}=\mathrm{SQR}((2 * N) / N S$


```
REM THIS IS A CORRELATEII ONE WAY ANOUA OF TREATMENT EY
REM SUBJECTG DESIGN. IT ALSO SHOULD RUN IN AK.
5 L=0:M=0
10 DIM E(5),C(12),D(5),E(12)
20 T=0:TS=0 N
30 INPUT"# OF TESTS?";NT:FRINT
50 FOR I=1TONS
50 FOR I=1TONS
70 FRINTIIJ%
70 FRINT I:J%
90 B(J)=B(J)+L
100 C(I) =C(I)+1
110 D(J)=LI(J)+(L*L)
120 E(I)=E(I)+(L*L
130 T=T+L
140 TS=TS+(L*L)
150 NEXT J
160 NEXT I
170 FOR I =1TONT
180 FRINT"MEAN";I音"=*名B(I)/NS
190 NEXT I
200 FOR I=1TONT
210 U:=(B(I)*E(I))/NS 
```

3SO PRTNT＂SS（TOT）＝＊；TS；＇SS（TR）＝＊；L；SS（SS）＝＂；M；＂SS（ER）＝＂；N
360 O＝NS＊NT
$370 \mathrm{~F}=\mathrm{NT}-1$
$380 \mathrm{0}=0-\mathrm{F}-\left(\mathrm{NS}^{2}-1\right)$

$400 \mathrm{~L}=\mathrm{L} / \mathrm{P}$

$440 \mathrm{R}=\operatorname{SQR}((2 * N) / N S)$

1 REM THIS IS A TWO WAY OR A X B ANOVA．IT USED TO RUN IN 4K BUT REM I ADDED SOME FRINT STATEMENTS TO MAKE IT EASIER TO USE SO 3 REM IT MIGHT TAKE MORE SPACE．
10 IIM $\mathrm{X}(5,8), \mathrm{XS}(5,8)$
$20 \mathrm{~T}=0$ ： $\mathrm{TS}=0$

40 INFUT NR
SO FRINT＊＊OF ROWS
60 INFUT NC
70 PRINT＊OF SS／CELL．
80 INFUT NS
85 PFINT＊ENTER LIATA BY ROWS－－．．．．）＂
90 FOF $J=1$ TONR
100 FOR $K=1$ TON
110 FOR $I=1$ TONS

120 INFUT N
$130 \mathrm{X}(\mathrm{J}, \mathrm{K})=\mathrm{x}(\mathrm{J}, \mathrm{K})+\mathrm{N}$
$140 \times 5(J, K)=X S(J, K)+N * N$
$150 \quad \mathrm{~T}=\mathrm{T}+\mathrm{N}$
$160 \mathrm{TS}=\mathrm{T} 5+\mathrm{t}$
$160 \mathrm{TS}=\mathrm{TS}+\mathrm{N} * \mathrm{~N}$

180 NEXT I
190 NEXT K
201 F＇RINT＂IF YOU WANT HAKII COFY TYFE Y OTHERWISE TYFE N＊ 202 INFUT TW
203 IF TW\＄ $\mathbf{2}$－Y•GOTO210
204 TW＝USR（ $\%{ }^{\circ} 1$ CFI＂，\＆＂0000＇）
210 FOR $J=1$ TONR
220 FOR $K=1$ TONC
$230 \mathrm{M}=\mathrm{X}(\mathrm{J}, \mathrm{K}) / \mathrm{NS}$
$240 \quad V=((X S(J, K)-((X(J, K) * X(J, K)) / N S)) /(N S-1))$
250 SE＝SQR（U）
260 ME $=$ SE／ $\operatorname{SQR}(N S)$

280 NEXT K
$300 \mathrm{C}=(\mathrm{T} * \mathrm{~T}) /($ NR＊NC＊NS $) \quad 560 \mathrm{SI}=(\mathrm{TS} / \mathrm{NS})-\mathrm{C}-\mathrm{SC}-\mathrm{SR}$
$310 \mathrm{ST}=\mathrm{TS}-\mathrm{C}$
$320 \quad \mathrm{~T}=0: \mathrm{TS}=0$
330 FOR $K=1$ TONC
340 FOR J＝1TONF
$350 \mathrm{~T}=\mathrm{T}+\mathrm{X}(\mathrm{J}, \mathrm{K})$
360 NEXT J
370 TS＝TS＋（T＊T）
$380 \quad \mathrm{~T}=0$
390 NEXT K
$400 \mathrm{SC}=\left(\mathrm{TS} /\left(\mathrm{NS}^{2} N \mathrm{NF}\right)\right) \cdots \mathrm{C}$
$410 \quad \mathrm{~T}=0: \mathrm{T} 5=0$
420 FOR $J=1$ TON
430 FOR $K=1$ TO NC
450 NEXT K
450 NEXT
$460 \mathrm{TS}=\mathrm{TS}+(\mathrm{T} * \mathrm{~T})$
480 NEXT
490 SR＝（TS／（NS＊NC））－C
500 TS $=0$
510 FOR J＝1 TONR
520 FOF $K=1$ TONC
530 TS $=$ TS $+(X(J, K) * X(J, K))$
540 NEXT K
550 NEXT J

S61 SE＝ST－ $\mathrm{SI}+\mathrm{SR}+\mathrm{SC})$
565 PRINT＇SS（TOT）＝＇；ST
570 PRINT＂SS（ROWS＝＂シSR
580 PRINT＂SS（COLL）$=4$ ；S
590 FRINT＂SS（RXC）$=*$ ；SI
00 FRINT＂SS
$10 \mathrm{DE}=(\mathrm{NS})$
$\begin{array}{ll}620 & \mathrm{LR}=\mathrm{NR}-1 \\ 630 & \mathrm{IC}=\mathrm{NC}-1\end{array}$
640 $\mathrm{OI}=\mathrm{DR} *$ DC
$650 \mathrm{TIE}=\mathrm{DE}-(\mathrm{DIR}+\mathrm{DC}+\mathrm{DI})$
$670 \quad \mathrm{SF}=\mathrm{SR} / \mathrm{DR}$
$680 \mathrm{SC}=\mathrm{SC} / \mathrm{HIC}$
690 SI＝ST／TII
700 SE＝SE／UE
701 FRINT

31 FRINT

770 TW＝USR（\％＂1EC7＊，\＆＊0000＊）

MORE FROM JACK GIERYIC

As has become his custom，Jack sent iri almost enoush material to fill complete issue，and we had to fick and chose the one article below as beins of most seneral iriterest．First，let us commerit on orie major chanse we have observed in Jack＇s prosraminis style，and then describe the frosrams we didn＇t have room for．

Ir some of Jack＇s earlier prosrams the beauty of his sraphics and the continuity of his sames could be destroyed if the user entered the wrons number anid／or type of infuts，siumerical ent A which exceede had troubles with this， ssue shows one way to solve this probleni

Jack＇s newest prosrams are now nearly uncrashable；the＂nearly＂merely means we did our very best to crash them，and failed．It misht require what the French call an＂idiot－savant＂to finid a was．So now，the onily way we can make an error is by actually enterins incorrect values based on our own wrons decisions．The only way arourid that is to let the computer do all of our thinkins for us．But ther，there would be no sames for us to play！
＞KTM－2 CHARACTER GENERATOR FROGRAMMERくく
The character senerator $\operatorname{KOM}(\mathrm{s})$ in the KTM－2 and KTM－2／80（all are identical）are directly replaceable with 27165 ．Jack has writteri a companion frosram to so with his earlier EFROM Burner frosram which evmits customizins the character set to sour rieeds．We wish we could show sou，in print，the afpearance of the display screen durins the process．The user can disflay any existinis character，uffer or lower ease，alphanumeric or srafhic，or，direct or reverse．The character affears on the screen in a larse format，and a cursor can be moved around，only within the bounds of the display，with the U，I，L．，and F keys．Pixels can be turried on with N and off with F ．

When you are throush with your desisn the data mas be immediately EFROMmed，or taped for replas at a more converient time．We have never seen a better＂human－factored＂prosram，and this is the very firs rosram we have ever seen which we didn＇t feel we could imfrove

Our use of this frosram to date has been minimal，since we have not yet had the time to desisn the＂ideal＂छrafhics set．We did，however的 oreates sess of a disturbis zefearance in sraphics display we did this for two of our terminals．Jean didn＇t like the rectansle because t was too bis，and didr＇t like the dot，either，because it was too all！She now has her oun terminal with an＇underline＊for the cursor． Looks sreat

Ore of our students has reflaced the srafhes symbols with the Farsi （Persian）alphabet．Like Arabic，Hebrew，and other pidd－east lanisuases， Farsi is written from risht to left，and it is very intrisuins to watch his frosrams ask for（numeric）infuts in Farsi．Arabic numerals，even in the mid－east are still written left，to risht，so no problem，there， He has not yet written aris prosrams askins for Farsi input strinss！
＞HIGH RES LASER GUNくく
This $1 k$ machine lansuase prosram sresents the user with 8 tarsets travelins across the display created by MTU＇s $8 K$ Visible Memory，ard a moveable＂laser＂Sun．Gun positionins and fire control is via the he， describes．Sound effects are provided by General Instruments， Frosrammable Sound Gerierator（see below）．This is a fasciriatiris rosramy instructive iri that it shows how the＂arcade＂tyfe sames mas be prosrammed，but it does require the MTU board for its use．

SYM－FHYSIS $7: 33$

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
 ＊AY－3－8910／8912 IIE：MONSTRATOR
 ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

This packase provides a simple meanis of exercisinis the functions on General Instrument＇s AY－3－8910／8912 Prosrammable Sound Gerierator This will provide the user with a better understandiris of the PSG＇s

Hardware requirements：ok Memory
BASIC
Kesboard terminal with at least 40 characters Fer line and at least 24 lines AY－－3－8912 wired fer Table

This fackase interfaces the FSG by means of the two forts on the Application（A）conmector althoush the FSG could be memors mapfed．It is also assumed the user has a copy of the FSG＇s data manual and is horoushly familiar with its contents．This fackase orily frovides eass hands－on experience with the F＇SG．It is assumed the user understands the PSG＇s resister orsanization，
me FSG requires a mirimal amourit of haraware．It is besisned to pferate under computer software control，therebs providins a hish desree of versatility without the need to reconfisure any hardware coninected to the FSG．This means a sinsle FSG can provide a wide ranse of sound ffects and tones for ang number of prosrams as each prosram has it own software to drive the F＇SG．

FROGRAM OPERATION：LOS on to BASIC with at least 6144 bstes free． Enter the command RUN．The prosram asks the user if this is beins run min KTM－2／80 kegboard．A Y or N resfonse is sufficient，Do not hit the RETUFN key．If Y is enitered then the prosram automatically uses cursor positionins and other KTM－2／80 features to frovide a displas imilar to fisure ．N is entereb，the prosram will fause for a second or two and then provide a display per Fisure？

The NEXT OFEFATION NUMEEF can be any of the following
1， 2 or 3 －This number refresents the selected chaninel
This number refresents the selected chaninel．
This will fermit chanse to one of the functions
This will fermit chanse to one of the furictio
（Frequency，Tone，Noise or Amplitude）of the selected charinel．
4 －Fermits chanse to the NOISE FERJOO
5－Fermits charise to the NOISE PERION
6－Fermits chanse to the ENUELOFE FPERION
6 －Fermits chanse to th
Wo not hit the RETUF＇N key．
If 1 ， 2 or 3 is selected then the prosram frompts the user for an TEM SELECTION．The four fermitted responses are：

F－Fermits a frequency chanse on the selected chaninel he prosram promists the user for a coarse value（o to 15） nid then a fine valu（0）Hit the RETURN ke
N－．Fermits noise to be added to the selected chaninel＇s tone． The prosram frompts the user for a Y or N ．Ho not hit the RETURN kes．
γ－Fermits the selected channel＇s tone to be turned on（Y）or off（N），Ho not hit the FETUF＇N key．
A－Fermits a chanse of the selected charinel＇s amplitude．A valse of 0 to 16 is fermitted．Hit the RETURN key after the value is entered．Note a value of 16 will turn the milupe coritrol over to the selected erivelofe shafe scie．This value（16）sets the M bit in the selectea channel＇s amplitude resister．

SYM－FHYSIS 7：34

 NEXT OPERATION NUMBER

Fisure 1 - KTM-2/80 IISFLAY

NEXT OPERATION NUMEEF

Fisure 2 - GENERAL DISPLAY

[^0]If 6 is selected the frosram prompts the user for a new ENUELOPE FERIOD. The prosram frompts the user for a coarse value (o thru 255) FERIOD. The frosram frompts the user for a coarse value (o th
and then a fine value (0 thru 255). Hit the RETUKN kes after enterins each value.

After each oferation is completed the CFT will display the new FSG status per Fisure 1 or 2 and asain prompt the user for the NEXT OFERATION NUMBER.

ITE.M	$\begin{array}{r} 8912 \\ \text { FIN } \end{array}$	$\begin{array}{r} 8910 \\ \text { FIN } \end{array}$	$\begin{aligned} & \text { AFFLICATION (A) } \\ & \text { FIN } \end{aligned}$	
.	,	i		
GROUND	6	1	1 ($A A-1$)	
$+5$	3	40	A ($A A-A$)	
daso	28	37	14 ($A A-$ D)	
DAP	27	36	4 ($A A-3$)	
HA2	2.6	35	3 ($A A-C$)	
DA3	25	34	2 ($A A-12$)	
DA4	24	33	5 ($A A-N$)	
DAS	23	32	6 ($A A-11$)	
DAG	22	31	7 ($A A-M$)	
DA7	21	30	8 ($A A-10$)	
BC. 1	20	29	9 ($A A-L$)	
BC2	19	28	1 ($A A-1$ 1)	
BuIR	18	27	10 ($A A-9$)	
AB	17	25	11 ($A A-K$)	
NOT A9		24	1 (AA- 1)	
CLOCK	15	22	FIG. 15 IAATA	MANUAL
CH .1	5	4	FIG. 16 IAATA	MANUAL
CH .2	4	3	FIG. 16 Lata	MANUAL
CH .3	1	38	FIG. 16 IAATA	MANUAL.

TABLE 1 - WIRE LIST (ALL. "AA- * ANNOTATIONS ADDEN EY LUX)
FOR YOUF CONUENIENCE, SHOULII YOU WISH TO USE UIA \$2. ON THE AA CONNECTOF, INSTEAD OF UIA $¥ 1$ ON THE A CONNECTOR, THE PROFER FIN NUMBERS HAVE HEEN ADLEII ABOVE IN FARENTHESES.

UIA \#1 ALODRESSES EEGIN AT 40960(-24576)
UIA $\# 2$ ADDRESSES BEGIN AT 43008(-22528)
ADM 2048 TO ALL UIA ALILRESSES IN THE FROGRAM LISTING SHOULD YOU MALE THIS CHANGE

THE DATA LINES ARE CONNECTED TO THE A-FORT
THE CONTROL LINES ARE CONNECTED TO THE B-FORT
BC1 IS MRIVEN BY PEO
EC2 IS HEL I OW
GOIR IS CIRIUEN EY FR1
A8 IS DRIVEN EY FEB2
NOT A9 IS HELN LOW

1. $\mathrm{E}=27: \mathrm{S}=116 \cdot \mathrm{~T} 1=1: \mathrm{T} 2=2: \mathrm{T} 3=4: \mathrm{N} 1=8: \mathrm{N} 2=16: \mathrm{N} 3=32:$ G0T0100

2 PRINTCHR $\$(E)+{ }^{\circ}=\cdot ;$ RRETURN
3 FRINTCHR $\$$ (E) + 'R"; : RETURN
4 FRINTCHF'\$ (E) +'G'; :RETURN
5 PRINTCHF $\$(E)+$ CHR $\$(114)$): RETURN
6 PRINTCHF\$ (E) +CHF $\$(103)$;: RETUFN
7 FOKE42579,0:GOSUB8:FOKE42579,128: RETURN
8 Q $=\operatorname{USR}(-30120,-11957,0): C H=128-(Q /(-256))$: RETURN

22 POKEA1, RE:FOKEAO, 7 : POKEAO, O: FOKEA1, DT: FOKEAO, $6 \div$ FOKEAO, 0
$24 \mathrm{~K}(\mathrm{RE})=\mathrm{OT}:$ RETURN
$60 \mathrm{IT}=0$
SYM-FHYSIS 7:36

1 GOSUB7：IFCH＝13THENRETURN
2 IFCH＜48THEN6
64 FRINTCHR $\$(C H):[I T=I I T * 10+C H-48: I F D T>W T H E N R E T U R N ~$
55 GOTO61
65 GOT061
70 RE＝7：DT $=T 1+T 2+T 3+N 1+N 2+N 3: G 0 S U B 20:$ RETURN
90 FRINTCHR $\$(E)+$＇K＂$\ddagger$ ：RETURN
100 GOSUB600
101 FFINT＇IS THIS A KTM－2／80？＂$\ddagger: G 0 S U B 8: K \$={ }^{\prime} N^{*}:$ IFCH＝89THENK $\$={ }^{\circ} \gamma$＂
102 A $0=40960: A 1=40961$ ；FOKE 40962 ，7：POKE 40963,255
103 IFK $\$=$＂Y＂THENGOSUB7000
104 LIMR（16）：FORA＝1T016
110 IFK $\$\langle>\cdot Y$ •THENGOSUB 6000

120 FRINT＂NEXT OFERATION NUMBER＂；：IFK $\$=$＝＇Y＂THENGOSUB90
122 GOSUB7：IFCH＜49THEN122
123 IFCH＝84THENENI
124 IFCH >54 THEN 122
125 FRINTCHR $\$(\mathrm{CH})$ ；
$126 \mathrm{~A}=\mathrm{CH}-48$ ：FOKE 25,0 ：ONAGOSUB $200,200,200,300,400,500$
130 GOTO110
200 CL＝A：FRINT ${ }^{\prime}$ CHANNEL．${ }^{\circ}$ ；
202 IFK\＄ 2 － 204 THEN206
204 GOSUR2：FRINT＊ 2 ＇；
206 FRINT＇ITEM SELECTION－＂；
208 GOSUB7：IFCH＝84THENGOSUB1000：RETURN
$2: 11$ IFCH＝7OTHENGOSUB3000：RETURN
212 IFCH＝6STHENGOSUR2000：KETURN
213 IFCH $=78$ THENGOSUB4000：KETUN
220 IFK $\$=Y$ THEN208
230 ORSU日2＊PTNT 21
30 GOSUB2．＋FRINT 21＇；；GOTO208
301 PFITNT NOISE FEFIOU
O1 PRINT
320 IFK $\$ \varnothing$－Y＇THEN300
325 GOSUB2：F＇RINT＇15＇\ddagger ：GOSUB90：FOKE25，0：GOTO305

350 RETUFN
400 IFK $\$$ ．${ }^{\prime}$＇THENFRINT••
401 PRINT．ENUELOFE SHAFE／CYCLEE－NEW UALUE＝＂；
$405 \mathrm{w}=15$ ：GOSUB60：IFIIT 16 THEN440
420 IFK \＆＞＇Y＂THEN400
425 GOSUB2：F＇RINT＇1［＇今；GOSUB90：POKE25，0：GOTO405

450 RETUFN
500 IFK゙\＄く ${ }^{\circ} \mathrm{Y}^{\prime}$ THENFRINT＂
501 PRINT＂ENUELOPE FERIOD（COARSE）＂$\ddagger \ddagger$ IFK\＄く＞＇Y＂THENFRINT＂
502 PRINT．NEW VALUE $=$ ；$:$ FOKE 25,0
$505 \mathrm{~W}=255$ ：GOSUB60：IFIIT＜256THENS 40
520 IFK\＄く＞－Y THENSOO
25 GOSUB2：FRINT： 1 ＋CHR\＄（94）；：GOSUB90：FOKE25，0；GOTO505

542 IFK $\${ }^{\circ}{ }^{\prime}$＇$^{\prime}$ THENFFINT＂
45 FRINT•（FINE）NEW UALLUE $=$＂
$550 \omega=255$ ：GOSUB60：IFIIT＜256THEN590
560 IFK \＄－Y＇THENS42
70 GOSUT：FFINT•2＂＋CHR\＄（94）：：GOSUB90：FOKE25，0：GOT0550
590 RE＝11；GOSUB20：RE＝12：LTT＝T：GOSUR20：IFK\＄－＂Y＂THENRETURN

P10 PRINT AY 3 JACK EMONSTRATOR：：FRI

010 GOSUB7：IFCH＝89THENFFINT＇YES＇：$A=1$ ：GOT01030

1015 IFCH＝78THENFFINT＂NO＂：$A=0:$ G0T01030
1020 GOTO1010
1.030 IFCL $=1$ THENT $1=1:$ IFA $=1$ THENT $1=0$

1040 IFCL $=2$ THENT $2=2:$ IFA $=1$ THENT $2=0$
1050 IFCL $=3$ THENT $3=4$ ：IFA $=1$ THENT $3=0$
1060 GOSUBTO：IFK ${ }^{\circ}{ }^{\circ} Y^{\prime}$ THENFETURN
1070 GOSUB2：FRINT＂${ }^{+}+\operatorname{CHR}(43+(10 * C L))$ ；
1080 IFA $=1$ THENFRINT＂YES＂：RETURN
1090 FRINT＂NO＂：RETURN
2000 IFK $\$$ く＞＇Y＇THENFRINT＂＊
2010 PRINT＂AMFLLTTUDE－NEW VALUE $=$＝；
$2020 \mathrm{~W}=16$ ：GOSUB60：IFLIT 17 THEN2． 240
2025 IFK \＄${ }^{2}$＂ Y^{\prime} THEN2000
2030 GOSUB2：FRINT＇2J＇；\ddagger GOSUB90：FOKE25，0：GOT02020

2050 RETURN

3001 PRINT＂FREQUENCY（COARSE）＂；：IFK\＄く＂Y＂THENFRINT＂•
3002 FRINT＂NEW UALUE $=$＂\ddagger POKE25，0
$3005 \mathrm{~W}=15:$ GOSUE60：IFLIT 16 THEN 3040
3020 IFK\＄${ }^{-Y}$ Y THEN3000
3025 GOSUR2：FRINT 2F＇；：GOSUB90：FOKE25，0：GOT03005

3042 IFK\＄＂Y＂THENFFINT＂．
3045 FRINT＇（FINE）NEW VALUE $=$＊
$3050 ~ W=255: G 0 S U B 60: U=11$
3060 IFK $\$$＂Y＂THEN 3042
3070 GOSUB2：FFINT＇3F＇；：GOSUE90：FOKE25，0：G0T03050

2094

3095 PRINT＂＂\ddagger RETURN
4000 FRINT NOISE（Y OR N）：；
4010 GOSUB7：IFCH＝89THENFRINT＇YES＇：$A=1:$ GOT04030
4015 IFCH＝78THENF＇FINT＂NO＂：$A=0: G O T O 4030$
4020 GOT04010
4030 IFCL $=1$ THENN $1=8$ ：IF $A=1$ THENN $1=0$
4040 IFCL $=2$ THENN $2=16$ ：IFA $=1$ THENN $2=0$
4050 IFCL $=3$ THENN $3=32:$ IFA $=1$ THENN $3=0$
4060 GOSUB70：IFK\＄く．＇Y＇THENRETURN
4070 GOSUB2：FFINT－\＆＂＋CHR $\$(43+(10 * C L))$ ；
4080 IFA＝1THENFRINT＂YES＂：FETUFN
4090 FRINT＂NO＂：RETURN
6000 FRINT：：FFINT＂：＂FRINT＂CH． $1 \mathrm{CH}, 2 \mathrm{CH}, 3$＂

6030 FRINT＂：＂FRINT＊NOISE
－；
$6032 \mathrm{~A}=\mathrm{R}(7) \mathrm{ANIIB}:$ IFA＝8THENFFRINT．NO：$:$ GOTOSO34
6033 FRINT＂YES＂；
6034 FRINT＂$\quad ;: A=R(7)$ ANH16：IFA＝16THENFFFINT ${ }^{*}$ NO＂ $9: G 0 T 06036$
6036 FRINT＂ $9: A=F(7) A N I I 32$ ：IFA＝32THENFRINT＂NO＂：GOTO6040
6037 FRINT＂YES＂
6040 FRINT TONE

6060 PRTNT＂ 4 NOISE FERIOD
－${ }^{\circ} \mathrm{F}(6)$
6070 FRTNT＂
6080 FRINT＂6 ENUELOFE FEEIOL（COARSE）＂引R（12）

6090 PRINT" (FINE) - F (11)
6100 FRINT" ": FORB=1T02:FORA=1TO4:FRINT" $\mathrm{F}^{\prime \prime}+\mathrm{CHR} \$(47+((\mathrm{B}-1) * 4)+\mathrm{A})$:
6110 FRINTR(A-1+((B-1)*4)) $\ddagger:$ NEXTA:FRINT":
6130 FORA $=1$ T02:PRINT" $\mathrm{R}^{\prime \prime}+\mathrm{CHR} \$(47+A) ; \mathrm{F}(9+\mathrm{A}) \dagger \ddagger$ NEXT:FFINT..

6199 PRINT**:RETURN
7000 GOSUB4:FRINTCHR (E) +"H"+CHF\$(E)+'J";:FORA=1TO10:NEXT
7010 FORA $=1$ TO78:GOSUB2:FRINT ${ }^{\circ} 0^{*}+$ CHR ${ }^{2}(A+31)+$ CHR $(S)!$ NEXT

7040 GOSUB2:FRINT" 4CH, 1':GOSUR2:FRINT* $>$ CH, 2":GOSUB2:FRINT* HCH, 3*
7050 GOSUB2:PRINT"\# FREQ (COARSE) ":GOSUB2:FRINT"\$\% (FINE)":GOSUB2:FRINT NOISE"
7060 GOSUB2:PRINT" TONE*:GOSUB2:PRINT* (AMFLITUDE*:GOSUR2;FRINT"+ 4 NO SE PERIOD:
7080 GOSUB2\#PRINT", 5 ENUELOPE SHAFE/CYCLE*:GOSUB2
7090 PRINT"- 6 ENUELOFE FERION (COARSE)":GOSUE2:FRINT". 3(FINE)": RETURN

miscellania

*** ANIREE HOOLANLTS (ON4HU), Leuseristraat 3A, 9560 Herzele, Belsium (see the article on pase 7:4), sent us a masnificent packase of material, includins a cofs of CQ QSO, June 1979 , the Eulletir of the
Belsian Radio Amateurs Union. This bilinsual publication included both Flemish and French versions of his BASIC prosram agTH-locator:. He also sent an Enslish version, but our command of written (not spoken!) French let us read the orisinal article, with much fleasure. Imasine your SYM sivins you fromets and error messases in French, or whatever lansuase sivins you frompts and error hessases in french, or whatever lansuase supforted the frosram beautifully, We sussest interested hams contact him for further info.
*** JACK BROWN has erihanced his BASIC enhancements. He has taken nearly al. 1 of the soodies from every other Microsoft BASIC and made them aVailable to SYM BASIC. These include a real time clock, LISTins with pasination (includins prosram NAME and pase rumber on each sheet), AFFEND, VERIFY (for cassette dumf reliability assurance), CHAIN, EXEC (to allow sour procedure to accept commands from within itself, rather than havins to wait for kesboarbirifuts), etc. Hex arithmetic usiris the ' $\$$ ' rather than the beastly ' \& XXXX'' structure is fully supported.

Here, extracted from the manual, is a list of the new commands:
$\$$
(2HH
emM
ess
-AFFEND id
AUTO 1n1.stef, 1n2

- CA(horzyvert, char
-CALL 3ddryp1,F2,
CHANM,
UEA 1n1-1
- HEL $\ln 1-1 n$
- LIR x, y

EXEC strins

- EXET strins
- GET Variable
-IN=value
-LIST 1ni-1n2
- LOADF io

Frefix for hex numbers
Returris current clock hours
Returns current clock miriutes
Returris current clock seconís
Append niew frosram to current prospam
Enable auto line number promptins
Absolute cursor addressins
Machine lansuase call
Relative cursor adoressins
Chairi comimano
Ranse delete command
Cassette motor control command
Evit a Frosiam line
Get one key without echo
Computed GOTO command
Set input cassette
List usins pase parameters
oad frosram from cassette

At this point we're both runinis out of sface, aris setting tired of turinss so we'll just bunch the rest of the new commands tosether, while remindins you that "id" can be a strins, such as "1980 TAX RECORAS*!

 f1, f2, f3 \hat{y} UERTFY id.

While the addition of these commads makes SYM-BASIC non-transfortable to other machinesy the added fower is worth it!
*** NICK UKTIS has siven us the so-ahead to distribute his version of Tins Filor for the SYM. He will be rewritins the source code in FAE-1 formaty and we will be working closely with him to make the ingut for what this concept imelies). SYM Tiris F.TLOT should be available bu Issue No PaE source pode will be available or cascette (or distl) coll cone will be available on cassette (or disk! to permit eass expansion or "customization".
*** RAE NOTES No. 3 should be in the mail by the end of March. Notes No. 3 will include a cofs of the first few pases of Carl Moser's orisinal source code, written in ASSM/TEH (the FET version of RAE, nearly identical). These will sive all of the fases zero and one usase. We will also list the enitry foints for user available subroutinest Ini
 note of coursey that the set of FAF Notes is available orily to those who purchaseg their FiAE-1 or FAE-1/2 directly from us, or who purchased FAAE Notes RAE Notes If sou dir No. 3 by 15 April 1981, Flease let us know.
*** IICK TURFIN sent 1 as a cors of the first issue of the Colormate Newsletter he is publishins for users of the Colormate Color Grafhics Board for the sym. We were very much imfressed and truly fleased to see this level of suffort for a froduct. Would that other vendors could do likewise!

We were very slishtly disaffointed when we first installed our boarg to find that the color resolution was not Quite uF to that of the Affle Il by a factor of two. After readins the specs on the Motorola 6847 UNG chif, we resished ourselves to this, reasonins that the hishest resolution mode required $6 K$ of dedicated $k a m$, and we orily had $4 K$ available. lick now tells us that in a few months he will have an adaptor board available to mourit on the Colormate, which will fool it into thinking that the available 4 K is really 6 K. so that the full resolution of 256×192 becomes available. He has several other riew products almost reads to announce. We will refort on these as soon as we have had a chance to evaluate them.
*** BOB MYERS asks us to remind you that the cost for the usarade kit to *** ROB MYERS asks us to remirid sou that the cost for the upgrabe kit to convert the KTM-2 to a KTM-2/80 costs $\$ 65$ for the two mairi ROM chips, or instructions included. See Issue 1 , back. Fase for his address.
*** WELL, THAT is all we have space for! we already have some very excitins material for the next issue, but no room to tell you about it all whose material we could not set into this issue, w woop our custom, make is ous ares

[^0]: If 4 is selected the frosram promets the user for a new NOISE FERIOI. Walues fromo thris 31 are permitted. Hit the RETURN key after the selected value is entered.

 If 5 is selected the frosram frompts the user for a new ENUELOFE SHAPE/CYCLE. Values from 0 thru 15 are fermitted. Hit the RETURN kes after the selected value is entered. Refer to the FSG liata Marual for the various envelofe shapes.

