

THE SYM－1 USERS，GROUP NEWSLETTER UOLUME II，NUMRER 3 （ISSUE NO．9）－AUTUAN 1981 （JUL／AUG／SEP） SYM－PHYSIS is，a quarterly publication of the SYM－1 Users；Group，P PYM
Box 315 ，Chico，CA 95927 SYM－PHYSIS and the SYM－1 Users，Group（SUG） arr in no way associated with Synertek Systems Corporation（SSC）and
SSC has no responsibility for the Contents of SYM－PHYIS．SYM is a
registered trademark of SSC．SYM－PHYSIS，from the Greek，means the
tron registered trademark of SSC．SYM－PHYSIS，from the
We welcome for publication all articles dealing with any aspect of the
 may be freely gublished，and adaptations of programs for other computers provided to SYM－PHYSIS and the original author（s）．
self－addressed stamped envelope with all correspondence．

$$
\begin{aligned}
& \text { Editor/Publisher: } \\
& \text { Business/Cimculation: } \\
& \text { Associate Editors: }
\end{aligned}
$$

H．R．＂Lux＂Luxenterg
Dennis Hall Lan Luxenberg
SUBSCRIPTION RATES（1981）
USA／Canada－$\$ 10.0 G$ for a volume of four issues．El sewhere－$\$ 13.50$.
Make checks payable in US dollars，to＂SYM－1 Users＂Group＂，P． 0. Make checks payable in US doliars tour isyM－1．
$\$ 15$ ，Chico，CA 95927 ，Telephone (916) 895－8751．
Issue \＃月，the Introductory Issue（1979），and Issues 1 through ${ }^{\circ}$（1980） are available，as a pa

RAE＇S SUG－GESTIONS
We have had little success in thinking of a clever title for the intro－ ductory editorial material which appears in this position in each issue． It dawned on us，as we were assembling and editing the material for this issue，that we were serving as the Resident Assembler Editor（RAE）for the SYM USER＇S GROUP（SUG）；hence the above caption．Surely some reader can provide a better heading（but certainly never a worse pun！）？

We seem to be following the，by now traditional，custom of user group newsletters in being late with each issue．We＇ll skip the apologies and excuses，to save space and time for all，and proceed to the facts：

The emphasis in this issue is on printers and RAE－1．As you must know by now，cost／effectiveness is one of the most important factors affecting our buy／no－buy decisions．In every－day words，we want to spend as little as possible on the necessities（but can easily be persuaded to pay much more for luxuries！）．We first determine our minimal requirements，then decide whether additional capabilities justify their added cost．

Take printers，for example．Our minimal requirements are for a ＂good－looking＂，easily readable page（this implies lower case descenders to us）．Also，we don＇t try to hide the fact that our correspondence is prepared on a computer；after all，computers are our way－of－life．Thus， if a dot matrix printer meets our minimal requirements，it would not be worth an additional $\$ 19 \varnothing \sigma$ to us to pay for so－called＂typographic quality＂．We might pay $\$ 1 \varnothing \varnothing$ ，or $\$ 2 \sigma \varnothing$ ，but $\$ 5 \varnothing \varnothing$ more would take a lot
more soul－searching！

As of Summer＇ 81 ，we consider the Epson $M X-8 \varnothing$ to be the＂best buy＂in SYM－PHYSIS 9：1
printers．We will be incorporating it in our OEM（SYM－based）word processing systems．IBM is following our lead in this instance，by also roviding the $M X-8$ g（under their own latel）as part of their newl announced（8g8t－based）personal computer system！According to the trade journals，the $M X-8 \varnothing$ is now the＂best－seller＂among printers，selling like Apples！

Here are some printing＂samples＂from our MX－8

FONTE

```
Compressed, Standards Expanded-Compressed, Expemmact
ionpessed, Standard. Expanded-Compressed, Ex, 隹, EOEG
```


MDDES

Normal，Double－Strike，Emphasized，Emphasized－Double

The emphasized－double－strike mode compares very favorably with a con－ ventional typewriter with cloth ribbon，but the printing rate is reduced from the normal $8 \varnothing$ cps to a mere $2 \varnothing$ cps．All of the eight type fonts the italics come only with GRAFTRAX－8g）shown above ran be printed in the normal and／or double－strike modes，but only the standard and expanded fonts can be printed in the two emphasized modes．

COOR AT THIS！

The $M X-8 \emptyset$ also has underlining capability，based on its ability to generate any desired inter－line spacing．One of our planned near－future tasks is to prepare a version of SWP which can take full advantage of this，and other features of the MX－80．These include fully selectable horizontal and vertical tabbing．Text and graphics can be intermixed， as well．Look for demonstrations of this in future issues，as we grow in our understanding of this marvelous new tool

RAE－1 is one of three features which make the SYM－1 an outstanding performer in any price class（the other two features are SUPERMON and programs for RAE（including an Epson MX－8の interface）and the announcement of several add－on programs，including a Cross Reference Lister and a Structured Programming Enhancement Package．These two add－ons，plus SWP－1，and Hissink＇s Disassembler into RAE，make RAE－1 an even more versatile software package．

And now，on with the news．．．．．．．．．
ON PRINTERS
Our first＂printer＂was a Teletype KSR－35（the＂heavy－duty＂model of the KSR－33），working at a slow，noisy，oily－smelling， 110 baud，upper case only．This was replaced by a decwriter II（LA－36），when we were offered one at a price too low to refuse（still over $\$ 1 \varnothing \varnothing \varnothing$ ，though）． We were thrilled by the lower case，and the $3 \emptyset \emptyset$ baud，which we almost ＂hand－shaking＂required at this rate，either

The LA－36 is a truly remarkable，thoroughly reliable，piece of equipment，and has needed no maintenance，preventive or otherwise，in over two years．Our only troubles were self－induced，when twice we used cheap ribbons，the lint from which clogged one of the print wires so that it would not retract．The problem was easily solved with a few squirts of TV Contact Cleaner．

We had only three objections to the LA－36．First was its lack of portability．It was a back－breaking task to get it loaded into the SYM－FHYSIS 9：2
trunk of our car（the lid wouldn＇t close either）for a demonstration． Second was the lack of descenders on the g, j, p, q ，and y ．The g was the worst appearing of the letters，and one had to look carefully to gabs，etc．Third，like the g＂disk drives，its motor runs all of the time it is poweredton，and we find the noise objectionable． As you can see，we now have a new printer．We chose the Epson MX－ $8 \varnothing$ ，
which answers all three objections，at much less cost，and with far which answers all three objections，at much less cost，and with far greater versatility．We have the FT model，in case we ever wish to
feed single sheets of letterhead，or envelopes，and have added the feed single sheets of letterhead，or envelopes，and have added the
GRAFTRAX－8ø EPROMS， 327165 ，in place of the original 2332 Rom，to give GRAFTRAX－8 italics and high resolution bit graphics（to go with the MTU visible Memory）．We are now on the parallel interface，but will switch to the current loop，via the serial interface card，to free up the VIA for other purposes．

We are only just now learning to use some its features，most of which are invoked with ESC sequences and CONTROL codes．RAE－1 users are aware that RAE does not emit most of the CONTROL codes；instead，RAE prints them as＂up－arrows＂followed by the corresponding alpha（SWP－1 won＇t print up－arrows，incidentally）．Thus RAE＇s output must be monitored for＂up－arrows＂，and when one is encountered in the output stream，if RAE is emiting it because it has encountered a control code， the actual control code itself must be sent to the printer．
Also，the ESC sequences are not＂visible＂on the terminal and two very important Epson sequences，ESC E and ESC G affect the KTM－2 by clearing the screen and setting its graphics mode．The former is disconcerting， since the number of the line which contains it is unseeable，but the latter may be nullified with an ESC g．It is therefore desirable to inhibit any ESC sequence from reaching the terminal，and substituting in ts place a coken，such as，for example，fro＂${ }^{\circ}$ ． CONTROL codes，but＂displays＂them with＂$\$$＂and＂up－arrow＂prefixes for CONTROL

Ø619	；EPSON PARALLEL PRINTER －CDEPLAYS CONTPOL GODES	
9939	：$¢ N$	ESC SEGUENCES？
あぁ4め		
¢059		． BA \＄6AD¢ ；or wherever！
2070		
Øø8¢	PBD	－DE \＄A8øø
ø¢9め	PBDD	－DE \＄A8gr
ロ10．	PCR	．DE \＄ABgC
8110		
¢120	access	．DE \＄8B86
Ø13め	OUTVEC	．DE \＄A664
6140	tout	－DE SBAAD
6150		
6160	DISKS	
6176		
Q180		
Ø250	；	THE MSB LINE OF THE EPSON MUST BE
Q260，TIED TO GROUND，STINCE IT IS NOT		
6280		
\％296	；	Bit ${ }^{\text {signal }}$ of the＂BPUT．port is the＂Busy＂
6316		
9329	；	CB2 is the＂STROBE＂signal OUTPUT．

EPSON-SYM WIRING LIST

EPSON NAME	EPSON	PIN	SYM	PIN	SYM	N	NAME
DATA 1	2		$A A-$			2 PB	
DATA 2	3		AA-	- 9		2 PB	
DATA 3	4		AA-	K		2 PB 2	
DATA 4	5		AA-	-8		2 PB	
DATA 5	6		AA-	- J		2 PB	
DATA 6	7		AA-	- 7		2 PB	
DATA 7	8		AA-			$2 \mathrm{PB6}$	
DATA 8	9		--			--	
StROBE	1		AA-	5		2 CB	
BUSY	11		AA-	- 6		2 PB 7	
LOGIC GRND	16		$A A^{-}$	- 1		RND	

Remarks: Only 10 wires go between SYM and Epson. Tie DATA 8 to ground at Epson connector. All return lines (19 thru 30) are tied to ground at the Epson.

ALTERNATIVE WIRING LIST

You may wish to use the A Port instead, reserving the B Port for applications requiring its Darlington drive capability, or the special purpose functions available through foo and pir. We will be making this switch ourselves. We had planned to use the 20 mA current 100 p for the printer, but instead will be converting that to inverted TTL (RS-232C compatible) for use with a modem. Here is the PORT A Wiring List:

EPSON NAME	EPSON	PIN	SYM PIN	SYM	4 NAME
DATA 1	2		$A A-D$		$2 P A C$
DATA 2	3		AA- 3		$2 \mathrm{PA1}$
DATA 3	4		AA- C		2 PA 2
DATA 4	5		$A A-12$		2 PA 3
DATA 5	6		AA- N		2 PA4
DATA 6	7		$A A-11$		$2 \mathrm{PA5}$
DATA 7	8		$A A-M$		2PA6
DATA 8	9		--		--
STROBE	1		AA- 4		2 CA 2
Busy	11		AA-1 18		2 PA 7
LOGIC GRND	16		AA- 1		GRND

A convenience feature you will wish to add based on an idea of Jeff Holtzman's) is an "IGNORE EUSY" switch. This will permit you to put the printer OFF LINE while you are entering data at the terminal which you do not wish printed. The switch will then permit terminal entry while such a function is to switch in a pull-down resistor from the BUSY input to GRND. A suitable value is around 1 K . This will also permit a quick "preview" on the terminal before the final printing.

ESCAPE SEQUENCES

```
ESS \emptyset
SC \(3 n\) Set to \(n / 216\) inch per line
```

ESC 4 Set to italics $\begin{aligned} & 4 \\ & \text { ESC } \\ & 5\end{aligned}$
ESC 8 Disables paper out error (permits single-sheet loading)

ESC : Set TRS-8g mode (not used with SYM)
ESC ;
Clear TRS-8
mode (default)
$\begin{array}{ll}\mathrm{ESC} \\ \mathrm{ESC} & \text { Set MSB (for TRS-8g } \\ \text { Clear MSB } & \text { (default) }\end{array}$ graphics from SYM)
ESC ? For redefining ESC codes
ESC ? Return to default settings, reset top-of-form
ESC Return print head to home (left) position
ESC A n Set to n/72 inch per line (see manual for details)
SC C n Set to n lines per page (default b6) D) Set horizontal tab positions (see manual for details)
ESC E Set emphasized mode
ESC G Set double-strike mode
ESC J,K,L Used for bit graphics control
ESC P Set compressed mode (same as CONT O)'
ESC Q Clear compressed mode (Same as CONT R, default)
ESC S Set expanded mode (same as CONT N)
ESC T, dear expanded mode (same as CONT T, default)
"SPECIAL" CONTROL CODES
CONT N Set expanded mode (same as ESC S
CONT (siear expanded mode (same as ESC T, default)
CONT 0 Set compressed mode (same as ESC P) R , default)
CONT $\frac{Q}{S}$ Select printer (default)
CONT
REMARKS
ESC G sets graphics mode on KTM-2; cancel with, ESC g
ESC E Clear's Screen on KTM-2' no way to cancel!
Except for CoNT Q, CONT S, ESC sequences suffice for all purposes
 \$DF with the of "symbols" made up by blacking in all possible rectangle. When operating in the condensed character mode, the TRS-8
graphics set provides 2 品

Standard Alphanumeric
Standard TRS-80 Gr aphics :

Compressed TRS-89 Graphics
Note that the "up arrow", "人", which is not printable with SWP-1, actually appears above, together with its corresponding TRS-8g graphics
symbol. SWP-1 uses the "in as a ustification subroutine not to "adjust" the spaces so indicated. The print the "" ", as in the example. We therefore, have modified our SWP absolutely no char acter for the "symbolic space" for which we can see
 shift key down while hitting the "return" key; this is no more INTER-SYM COMMUNICATIONS

[^0]SYM-FHYSIS $9: 6$

We made up an eight foot long flexible three－wire cable to enable us to interconnect any two of our SYMs．The three wires were once part of a 25－wire lat ribbon cable and micro－probe connectors are used to permit rapid changes．

To speed up the interchange by a factor of more than $6 x$ ，try the following COnly HSBDRY need be changed at the receiver，and only the others at the sender）：

1）Change $\$ \mathrm{~A} 6 \mathrm{Sg}$ from $\$ 04$ to $\$ 01$ to shorten the synch signal time from approximately 4 sec to approximately 1 sec．

2）Change $\$ 4632$ from $\$ 46$ to $\$ 0 C$ to shorten HSBDRY from $70 \times 8=560$ usec to $12 \times 8=96$ usec．

3）Change $\$ 4635$ from $\$ 33$ to $\$ 08$ to shorten TAPET1 from $51 \times 5=255$ usec to $8 \times 5=4 \varnothing$ usec．

4）Change $\$ A 63 C$ from $\$ 5 A$ to $\$ 6 F$ to shorten TAPET2 from $90 \times 5=450$ usec to $15 \times 5=75$ usec．

Since $255+450=795$ usec and $40+75=149$ usec，the baudrate is increased from 1418 to 8696．Since the data is sent byte－for－byte rather than nibbled into two ASCII bytes／data byte，the＂effective＂ baudrate is $>17 \mathrm{kHz}$ ．According to scope measurements，there appears to be around $11 / 2$ bits of＂idle＂time between bytes．Rounding this up to 2 bits，we get a transfer rate of $>17 \varnothing \varnothing$ bytes per second．

We could not work at a $19 x$ rate，and did not try any rates between t and $1 风 x$ ．

SYM TO AND FROM KIM AND AIM 65

Since the SYM－1，KIM－1，and AIM－65 all have in common the KIM cassette format，interchange between these three over the cassette interface is possible，but takes 21 times as long as the standard sym cassette dump． All three also support the＂DEMON＂paper tape format，which is not necessarily implemented at 110 baud over the TTY interface．It can also be used over the CRT interface at 4809 baud．

To try it between SYMs，ground the two SYMs together，and connect Uss－pin 2 of the transmitter to U38－pin 5 of the receiver，with a switch in the line so that the receiver echo can be turned off when desired． Enter LP 〈cr〉 on the receiver and SP SA，EA＜cr〉 on the transmitter． Close the switch，and enter＜cr＞on the transmitter．After the transmission is complete，open the switch，and enter，\％h at the receiver to exit the LP command．The switch is not required，but the echo from the receiver on the transmitter monitor may be confusing．
You should easily find the the corresponding connectioon points on the KIM and AIM systems．We understand that a number of $68 \% 6$ based systems character，also known as（aka，or alias）DCS，CONT S，or ASCII $\$ 13$ ）to char acker，also known as aka，or alias）to check out the ideas presented here with either the KIM or the AIM，but see no real problems in this area．We＇d like to，hear from any of you who succeed or fail in this area．We＇d like to，hear from any of you who succeed or fail in this
intercommunication task．Incidentally，DC1（CONT Q），DC2（CONT R），and intercommunication（CONT T），are aka x on，TAPE ON，and TAPE OFF，respectively．

Thanks to Steve Waldman，of Screen Sound Inc．，of Burbank，CA，for many of the ideas in this section in particular，and many other ideas，in general．We spent a pleasant late evening together in his lab，working out many fascinating little problems．

SYM－FHYSIS 9：7

MORE ON RECORDERS

We purchased a Radio Shack Realistic CTR－80 Cassette Recorder（this is the recorder recommended for use with the TRS－8\％）nearly a year ago，but found it to be somewhat marginal in performance with the SYM－1．We Audio 1 Kohm resistor．This improved the performance considerably，but a still better fix is described below＇ We probably also should have brought out the Audio Out（HI）signal at
pin A－P and tried it in the AUX input of the CTR－8 ，to have been completely thorough in our test．The AUX input might be better for recording．We will ask at Radio Shack which input is recommended for use with the TRS－8ø／CTR－9ø combination．

Most small recorders，however，do not have an AUX input，which is a high level＂input，for cassette to cassette，or radio to cassette， transfers；thus，only the Audio Out（LO）should be

We read somewhere that Radio Shack would upgrade the CTR－8月 to the CTR－Q日A at NO CHARGE，to improve its performance as a computer I／O peripheral（with the TRS－80，of course！）．Thus，when an internal mechanical part came＂unglued＂，and we had to have it repaired we asked for the free upgrading．The repair invoice noted that a 10 uF capacitor and a＂spike mod＂had been installed．We don＇t know the details of the upgrading，but the＂spike mod＂is the essential item to improve performance，We now find the CTR Gg＂A＂highly reliable，but the R8G modification may still be necessary．
A really nice feature of the CTR－8 8 is that the FAST－F and REWIND controls operate even when the remote control inhibits the PLAY and PLAY／RECORD actions．The Tape Counter is a useful feature for those who use longer than the $C-10$（ 50 foot， 5 minutes per side）tapes we have been using，with only a multiple dump of very few files on one cassette． the TRG 8 Co

We recently purchased a Realistic Minisette－9 for a portable system w are building．It works very well（i．e．，reliably）and is so elegant in its compactness．While it is relatively expensive，if you need or is recommended by Radio Shack for use with the TRS－8 0 Pocket Computer．

One of our readers mentioned casually that his cassette recorder worked very reliably if it was not too near his video monitor．We had similar problems when using a SYM system on a card table with a metal rimz，The the CRT yoke to the read head！The spikes showed up beautifully on a scope，together with the cassette signals we were monitoring，changing amplitude as we reoriented the monitor and／or recorder！

Although it probably does not directly affect cassette performance，it is interesting to note that we can actually＂hear＂the vertical scrolling of the terminal display through signals picked up by an unshielded cassette input lead，and passed through PB6 to our second DAC
into a speaker．We must keep the volume control on DAC No． 2 turned down when not using the music system，partly for this reason，but mostly because otherwise we would be forced to listen to the busy buzz of tape loads．Some 60 Hz hum also enters the audio system through this route．

The moral here is that some cassette problems may be caused by the video monitor．This may be checked out by seeing if reliability is enhanced by turning off the monitor．

KTM-Z MロDIFICATIDNS (AND RELATED TOFICS)

We have been using Jack Gieryic's JBP-4 KTM-2 Character Generator EPROM aurner program to replace the Character Generator 2316 B ROMs in our own TM-2 and KTM-2/8ळs with 2716 EPROMs. We particularly like the way the rogram makes full use of the KTM's cursor control capabilities, etting us use U, D, L, F, to "draw" the desired new character within an 8 by 8 rectangle indicated on the screen.

We never quite found the time to analyze either Jack's BASIC programs or the original ROMs to find out how the character generation is done y the KTM-2s. The following set of three short, but very elegant character generator Roms, but describes in some detail the organization of the control ROM (in particular, for the KTM-2/B0, but the KTM-2 ROM is essentially similar), and how to modify the keyboard encoding.

Two such mods we would like in our own KTM keyboard encoder are:

1) Interchange EREAK and TAE; why must we shift for BREAK?
2) Let SHIFT/SFACEBAR also enter a space; who needs the "pi"?

Synertek's 2316 B is equivalent to Intel's $2316 E$. Both have three chip select pins, numbers 20, 18, and 21. The same numbered pins in the 2716 EPROM are OE (low), CE (low), and Vpp (high). The low and high in parentheses refer to the conditions for READ. There are eight possible configurations for the set of three chip selection pins on the $2316 \mathrm{E} / \mathrm{B}$, only one of which is compatible with that of the 2716 . The control ROM of the KTM-2, (and incidentally, the Apple II ROMs) are, for some devious (?!) reason, not 2716-compatible, but this presents no obstacle ar logic probe, on th ll s substituted

The Epson $M X-90$ is delivered with its operating system and character generator in a single 4 K ROM (NEC's D2332C); the microprocessor is a NEC 8049 . Undoubtedly, users having access to an 8049 developmen system will disassemble the contents of the ROM and modify the character set to match their own personal requirements. The Graftrax B, a set of three replacement 27165 , is sold only under the sub-license agreement that the contents are trade secrets of Epson, an hat the purchaser "will not create or attempt to create, by revers thereof from the Graftrax 8 g object program." Thus only the original 2332C ROM may be analyzed, and modified, and EPROMed, as Dr. Strube has one for the KTM-2/日, to meet one s needs. It certainly might be esirable to provide identical character sets, including the graphics symbols, in both the terminal and the printer.

And now, here are the three notes, photocopied from his original manuscript. Note that his manuscript is right-justified, printed on a shaped-character printer, with all of the DIN standard characters. We wonder what printer he uses?

C U S TOMIZING THE KTM/2-80

Dr. Gerhard Strube, Sckellstr.5, D-8000 München 80 , Germany
(I) Changing the character set

SYNERTEK`s KTM/2-80 terminal board features a 1920 character display, 24 lines by 80 characters each. The characters both ASCII and graphics - are represented by a `pixel` of 8

SYM-FHYSIS $9 \neq 9$
sytes ($=8$ * 8 bits), each bit corresponding to a dot on the screen. Since a total of 256 different characters constitutes the KTM`s character font, 256 * 8 bytes, i.e 2 kbytes, are needed to store the pixel patterns. The KTM uses two identical 2 K -ROMs (type 2316-B) which are switched to give the high speed necessary for a CRT display.

How are the pixel patterns coded? Page 0 of the ROMs comprises the top 1 ine of all the 256 patterns, page 1 the next line, etc., page 7 the bottom line of each. Bit 7 corresponds to the leftmost dot, bit 0 , accordingly, to the rightmost one. Therefore, the pattern code for any character is to be found at a fixed lo-byte address (determined by the ASCII code), while the hi-byte of its address varies from 0 to 7. The lo-byte address is exactly the ASCII code of the character (0 to \$7F ASCII, \$80 to \$FF graphics), read a c k w a r d ! Graphic characters fill the 8-by-8 matrix completely, while ASCII characters leave the left and right margins empty and usually the bottom row, too.

Suppose you want to change the appearance of the tilde (\$ 7E) to ‘B`(Greek beta, or German`sharp` s). You first invert the ASCII code, reading it from right to left, which gives (in that special case, only, the same code!) \$ 7 E This is the lo-byte address. Next, you look up the codes for all pixel rows, top row first, at addresses \$07E, \$17E, ... \$77E:
$0 \begin{array}{lllllll}0 & 00 & 00 & 32 & 4 C & 00 & 00 \\ 00 .\end{array}$

Rows 4 and 5 are non-empty, resulting in the following pattern:

row 4:	$\ldots X X \ldots X$.
row 5:	. X..XX.

Let us now devise the ' B ':
row 1: ...XXX... $=\$ 38$ at address $\$ 07 \mathrm{E}$.
row 2: . $\mathrm{X} . . \mathrm{X} . \mathrm{C}=\$ 44$ at address $\$ 17 \mathrm{E}$.
row 3: . X.XX... $=\$ 58$ at address $\$ 27 E$.
row 4: .X...X.. $=\$ 44$ at address $\$ 37 E$.
row 5: . X....X. $=\$ 42$ at address $\$ 47 \mathrm{E}$.
row 6: . XX .. X.. $=\$ 64$ at address $\$ 57 \mathrm{E}$.

row 7:	$. X . X X \ldots=\$ 58$ at address $\$ 67 \mathrm{E}$.
row 8:	$. X . \ldots . .=\$ 40$ at address $\$ 77 \mathrm{E}$.

These values have to be stored to obtain a beta instead of a tilde for a $\$ 7 E$. Since the KTM character ROMS are pin-compatible with standard 2716 EPROMs, any user with access to an EPROM programming device can alter the screen appearance of all the KTM characters.

II) Changing the keyboard encoder

Another 2316-B ROM (Synertek § 02-0050A) contains program codes and the keyboard encoding table. Caution: pins 20 and 21 (unlike 2716`s) are positive chip-select; you need have them at high level in order to read the ROM. Exchanging the ROM for a 2716 EPROM requires to change the jumper settings at J 18 and J 19.

The KTM uses two input lines to check the status of the SHIFT and CONTROL keys, and an 8-by-8 matrix for checking the other keys. This lay-out requires 2 * $64=128$ bytes of storage for decoding the keys in lower-case and upper-case mode. Not all of the 64 cross-points of the matrix are used (the XTM has 51 keys apart from SHIFT and CTRL). These crosspoints are decoded by a null code. The KTM control functions ALPHA and BREAK are identified by a dedicated bit (bit $7=1$, $=0$ for all other characters). Bits 6 to 0 contain the ASCIJ code in r eversed order! For instance, the key ${ }^{-8 `}$ (ASCII \$ 38) thus encodes to $\$ 0 \mathrm{E}$.

The keyboard encoding table starts from address \$ 723 up to \$7A2. Standard KTM lay-out is (only lower-case is shown):

U2	(6522)	PB	0	1	8	7	6	5	4	3	2	1	\$	723-72A
	"	PB	1	1			TAB		-	\$7E	0	9	\$	72B-732
	"	PB	2	1	u	y	t	r	e	w	q	ESC	\$	733-73A
	"	PB	3	1			RET	LF	\$7D	p	0	i	\$	73B-742
	"	PB	4	1	j	h	g	f	d	s	a		\$	743-74A
	"	PB	5	1			PHA	DEL	\$7B	\$7C	1	k	\$	74B-752
	"	PB	6	1	m	n	b	v	c	x	z		\$	753-75A
11	(6522)	PB	5	1				SPACE		/	.	,	\$	75B-762

note: some characters I use for control (e.g., \$5F) are replaced in the table with their respective ASCII hex codes.

The information given should suffice to change the keyboard according to any desired lay-out. (E.g., my KTM now meets German standard DIN 2137 with $\ddot{A}, \ddot{O}, \ddot{U}, \quad \ddot{a}, \ddot{O}, \ddot{u}$, and B at their proper position.)
(III) Attaching a numeric keyboard

Provided you do a little soldering, you may attach any kind of extra keyboard to the XTM by hooking it onto the keyboard matrix lines shown above. You are free to either parallel an existing KTM key with a new one (e.g., the cipher keys 0 to 9), or else use the hitherto free cross-points. I combined both these approaches when attaching a pocket calculator keyboard to ease the tedious keying-in numbers when inputting to SYM-Basic. The design uses the 8 PA-lines as well as $P B 0$ and 1 , and $\S 1$ PB 5. Parallel keys are used for 0 to 9, for - and ., while unused cross-points now decode E (for entering floating-point numbers in scientific format), $\$ 5 \mathrm{~F}$ (the SYM Basic cancel character), and Return on Ul / PB 5. (The keyboard cost half an hour of work and \$ 2.- for a surplus calculator case.)

Let me conclude by expressing the hope that these suggestions will provide KTM users with a terminal both cheap and unbeatably versatile.

A RAE CROSS-REFERENCE LISTER
Kin-ping Kwok sent us three RAE-1 enhancements for review, with permission to publish two of them freely, and asking for comments on the third. The first two programs provide alphabetic and numeric sorts of the RAE-1 label file after assembly. While we ourselves have little need for the numeric sort, we publish it here for a specific reason, t be revealed below. Kwok's alphabetic sort is much faster, in general, than the earlier published alphabetic sort by Cyr, but the Cyr sort is faster if the labels are in close to the proper order.

We compared Cyr vs. Kwok on an extremely long label file. We used the label file for Brown's new Extended Disk Basic; we don't know how many labels it has, but it is some $\$ 1568$ bytes long! Kwok's numerical sort was used first, to ensure a common starting sequence for the two alphabetic sorts. We also wanted to be able to "break up" any starting alphabetization to some extent; otherwise the "bubble sort" would have an unfair advantage. Kwok is considerably faster, but when applied twice in a row, both trials take the same length of time; the second pass of Cyr is nearly instantaneous, because of the already established sequence.

SYM-FHYSIS 9:12

If you look at the label files following the assembly listings below, you will see why Mr. Kwok's third program really thrilled us. We must admit that RAE's normal label file looks pretty sloppy. Kwok's alphabetized cross-referenced label file adds a real touch of class to a RAE listing, and it will really be helpful in analyzing a DISARAEd listing. Note that macro names and labels (those with !!! and ... orefixes) do not appear in the listings, and that the macro "dummy (e. g.,

Mr. Kwok's preliminary version was somewhat awkward to use; it required a preliminary alphabetic sort, and some fancy manipulations if the source file was segmented, i. e., if it required one or more. CTs. The problems. We have not fully tested the. CT workings on large source programs. To speed up the testing we will first modify the program to permit. CT (Disk Filename). One problem we forsee is the possible necessity of dumping partial label files to disk or cassette, with .CTs themselves, since the Cross-Reference files replare the source code files as they are generated, and running out of space is a real possibility.

As soon as this issue goes to press we will give this program highest priority, because of its obvious utility value. We will distribute a combined cassette/disk version using conditionals to permit user selection at assembly time. See shopping list for details. Now here are the two sort programs, with cross referenced label files:

			9376	SORT
9øøA－	AC	92	9389	
9¢ดС－	B1 9	92	¢390	
9ø¢E－	Dø め	01	¢4øø	
$9010-$	60		¢410	SEND
9011－	Аळ ¢	め1	¢420	NEXTLEL
			9436	
9ø22－	Aめ \varnothing	ø2	の440	NEXTLEL 1
9024－	B1 9	92	9450	
9926－	FQ E	E8	6460	
			9470	
9032－	A \square°	91	ø48ø	COMPARE
$9034-$	B1 9	92	9490	
9836－	D1 9	94	の5øø	
99．38－	904	48	9510	
$903 \mathrm{~A}-$	Dœ 1	19	Ø520	
9035－	A2 \varnothing	¢6	9530	
963E－	A1 9	92	9540	
9ø4ø－	C1 9	94	9550	
9642－	96	3E	9560	
9044－	Dø \varnothing	めF	¢570	
9046－	C8		9589	COMPARE 1
9ø47－	B1 9	94	959\％	
9049－	362	27	¢60\％	
$904 \mathrm{~B}-$	B1 9	92	6610	
904D－	उø 2	28	662の	
904 F －	D1 9	94	9639	
9651－	902	2 F	9649	
9053－	Fg F	F1	9650	
			0669	NEXTCUR
9064－	A5 9	94	9679	
9066－	C5 9	92	¢689	
9068－	Dø	C8	9690	
966A－	A5 9	95	67＠ロ	
9065－	C5 9	93	9710	
906E－	Dø	C2	9729	
9070－	Fg 9	9 F	9730	
9072－	B1 9	92	9740	COMPARE2
9074－	998	86	9759	
9076－	2C		9760	
9977－	297	7F	ø779	COMPARE 3
9079－	D1 9	94	め780	
$967 \mathrm{~B}-$	90.	ø5	9799	
907D－	Dø D	D7	ø8ø¢	
967F－	ØA		0819	
9080－	B¢ D	D4	682の	
9682－	A ${ }^{\text {F }}$	FF	6830	INSERT
90884－	C8		の84の	SAVE
9085－	B1 9	92	ø859	
9ø87－	99	C2 9め	986ø	
908A－	10 F	F8	¢879	
968C－	Cø ø	ø2	ø88ø	
968E－	96 F	F4	9890	
9690－	A2 2	$\varnothing \varnothing$	9900	
			9910	
969A－	C8		¢920	
9098－	A5 9	96	¢930	INS 1
969D－	DO 0	ø2	9949	

のЗのø		SEC
6．310		TYA
9320		ADC＊ADDRS
の．330		STA＊ADDRS
ØЗ4め		BCC ．．．NEXT2
9356		INC＊ADDRS +1
ดЗ60	．．．NEXT2	．ME
937¢	SORT	MOVE（STST LBLPTR）
9389		LDY \＃2
9390		LDA（LBLPTR），Y
¢4øワ		BNE NEXTLBL
9410	SEND	RTS
の42の	NEXTLEL	LDY \＃1
9438		NEXT（LBLPTR）
の44¢	NEXTLBL1	LDY \＃2
6450		LDA（LBLPTR），Y
6460		BEO SEND
947Ø		MOVE（STST CURPTR）
の48®	COMPARE	LDY \＃1
6490		LDA（LRLPTR），Y
の5øø		CMP（CURPTR），Y
9510		BCC INSERT
ø52あ		BNE NEXTCUR
953．		LDX \＃\＃
0540		LDA（LBLPTR， X ）
9550		CMP（CURPTR，x ）
9560		BCC INSERT
ø57ø		BNE NEXTCUR
の589	COMPARE1	INY
Ø596		LDA（CURPTR），Y
9609		BMI COMPARE2
6610		LDA（LBLPTR），Y
662の		BMI COMPARES
9639		CMP（CURPTR），Y
9649		BCC INSERT
96596		BEQ COMPARE1
0660	NEXTCUR	NEXT（CURPTR）
9679		LDA＊CURPTR
ゆ68め		CMP＊LBLPTR
9690		BNE COMPARE
670¢		LDA＊CURPTR＋1
9710		CMP＊LBLPTR＋1
9729		ENE COMPARE
9730		BEQ NEXTLBL
9740	COMPARE2	LDA（LBLPTR），Y
9750		ORA \＃\＄8g
9760		．BY \＄2C
¢779	COMPARE3	AND \＃\＃ 7 F
め780		CMP（CURPTR），Y
9790		BCC INSERT
ø8ø¢		ENE NEXTCUR＋1
6810		ASL A
ø82の		BCS NEXTCUR＋1
6836	INSERT	LDY \＃\＄FF
ø84め	SAVE	INY
ø859		LDA（LBLPTR），Y
¢86¢		STA TEMP，Y
ø879		BPL SAVE
ø88の		CPY \＃2
6890		BCC SAVE
9960		LDX \＃¢
9910		MOVE（LBLPTR USERPTR）
9920		INY
0930	INS1	LDA＊USERPTR
¢949		BNE INS2

LABEL FILE：［／＝EXTERNAL ］\＃＝LINE DEFINED

SYMBOL／CURPTR	；Value	CROSS－REFERENCES					
	；\＄øø94	\＃øø日ø	647¢	Ø5めด	9550	6590	6630
	；	6669	0670	の70．	6789	1 10ø	1036
／LBLPTR	；\＄0092	\＃®¢70	0376	Ø396	6436	0450	6496
	；	6540	6619	ø68ø	9716	6740	ø85¢
	；	6910					
／STST	；\＄0164	\＃øø6】	9379	6470			
／USERPTR	；¢0¢96	\＃めø9め	9910	Ø930	6956	9960	¢97¢
	；	6989	9990	1926	1996		
ADDRS	；\＄0ø94	6260	ø28¢	¢326	6336	Ø350	
COMPARE	；\＄9632	\＃6480	669¢	¢72ø			
COMPARE1	；\＄9046	\＃ø589	0650				
COMPARE2	；\＄9672	\＃®740	の60ロ				
COMPARES	；\＄9077	\＃0770	6620				
FROM	；\＄9692	Ø1ロロ	6110	9129	Ø14ワ	Ø15ø	Ø18ø
	；	あ190	Ø21ø	ø220			
INS 1	；\＄9698	\＃6930	1510	1949			
INS2	；\％90A1	\＃0960	6940				
INS3	；\＄9086	\＃108ワ	1110				
INSERT	；\＄9082	\＃б83¢	ø510	Ø56め	6646	の79の	
NEXTCUR	；\＄9655	\＃0660	6529	6576	¢8®ロ	9826	
NEXTLBL	；\＄9011	\＃0429	Ø4øø	6730	1136		
NEXTLBL 1	；\＄9022	\＃0449	＊＊＊＊				
SAVE	；\＄9684	\＃Ø84Ø	ø870	б899			
SEND	；\＄9010	\＃8410	6460				
SORT	；\＄9øøぁ	\＃6379	＊＊＊＊				
TEMP	；\＄90c2	\＃1140	686ø	1980			
TO	；\＄8096	Ø10¢	617¢	¢240			

How do you like the CROSS－REFERENCED Label Files？
Note that the listings above do not include the macro expansions， ecause of the paper waste in listings with ．ES．We also did not pro－ vide hex dumps，which would，of course，have included the bytes missing from the source code listings，because every user of these programs must have RAE－1 to use them，and every user of RAE－1 will key in the source codes rather than the object codes，anyway．

Incidentally，the sorting algorithm used by Mr．Kwok in these two pro－
grams is known as the＂insertion＂sort．We have heard of it，certainly， but have never used it before this．It is definitely faster than the usual＂bubble＂－sort，unless the data to be sorted has（have？）only a very few out－of－place items．
NUMBERING RAE FILES
The use of the RAE NUmber command is not well covered in the Reference Manual．The following example shows how to set both the starting number and interval easily．Suppose you have a source code consisting of several sections，each ending with a ．CT，except the last，and you wish the numbers to continue in sequence from one section to the next．This is particularly important in using CROSS REFERENCE，where a single Cross Reference Listing is prepared to cover all sections．

Assume that the starting number of the first section is 6965，the interval is 5，and the ending number is 1755．You would like the second section to begin with 1760，with interval 5 ，etc．Use the NU command twice，as follows：NU 91755 〈cr〉，NU 17555 〈cr〉．Disregard any error message（！10，indicating line number overflow）after the first use of NU．The second section is then numbered as specified．
A NEAT RAE TRICK
The following letter from James Duckworth presents a very neat idea we wish we had thought of．．．．．Our excuse for not having thought of it first is that we call all of our supporting programs，such as SWP，PON FODS utility program area．This means we have been wasting time waiting for the disk load．We shall be rewriting many of our RAE enhancement packages，including our new XREF，to use Jin＇s trick．

Jim did not send his letter on cassette，but rather on a thermal printout paper，and we reproduce it as a photocopy of a Xerox copy of his original letter．The printer，whose name we cannot recall at the moment，provides excellent hard copy by＂burning＂away a silvery appearing coating to reveal a black undercoating．We like the lower case descenders，and the paper Xeroxes reasonably well．
We seriously considered this printer，especially because of its low cost．We decided against it because our main＂product＂is the newsletter，and any＂rough＂handling of the printouts in the process of cutting and pasting the camera－ready copy would introduce black appearing scratch marks on the copy．If we had a plain paper copier this would have solved the problem，as we could then have cut and pasted copies．As of this writing，however，the Epson Mx－8ø is very

> JAMES J. DUCKWORTH 5 OSAGE AUENUE, ROCKAWAY, N. J. OT866 (201) $625-4413$ September 17.1981

Dear Lux，
This is just a quick note to let other SWP－1 users in on a little trick I discovered，because I got tired of typing＂RU \＄3800＂， to invoke the SWP program．The first method，which works pretty well，is to put at $\$ 0003$ through $\$ 0006$ the code＂ $4 C 8038$＂，and then call SWP with a simple＂US＂，followed by a carriage return．This method is a quite obuious use of RAE＇s USER command，which transfers control through a vector in ZERO page memory，to a users program．

A not so obvious way to call SWP is to creata a dummy labal， called＂SWP＂of course．It is done in the following way．After calling RAE，but at sometime before SWP is needed，type in the following；
1SWP

After the error message，type in

$$
D E 1 \mathrm{cr}
$$

RAE has now forgoten all about line 1 ，but a label exists in the LABEL file named＂SWP＂with an address of \＄3800．Now a call to RUM SWP does exactly that．The label and its address remain there in mamory until ovar－written or the power is shut off．Now this is what call a neat trick．It is so much easier to remember＂swp＂than some hexadecimal address．
Jim Duckworth
mLlti－purpose rae patch
The following program was intended to be a very simple patch to RAE to permit only one added feature：increasing the length of the SYNCH interval for put，for the benefit of those readers who were having troubles reading their RAE files because of sluggish recorder time－ constants．Since this involved using PUt，we decided to include the ．CT patch，which involves GEt．The program began growing in an uncontrolled fashion when we began adding explanations of how ENter and LOad influence PUt and GEt．As long as we had gone this far，we added some additional features，taking care of ALL the vectors and jumps．We could have added even more，but decided to leave the rest to you．

0016 ：
0636
6046 ；RAE－1＂ordinarily＂uses only from \＄B6 thru \＃EA
©056 ；and $\$ E E$ and $\$ E F$ on page zern．\＄B6 is initialized to
6969
6086
6088；If PHA S is given as a command，all output is vec－
6696 ；tored through \＄B6．Thus \＄B6 can be used to vector
0186 ；to your printer patch，if dewired．＞HA C disables
9118
0130 ；GEt and PUt examine the＂flags＂at EEE and SEF；if
Ø140 ；these are zero the＂normal＂cassette $1 / 0$ is sup－
9150 ；ported．If these flags are non－zera，GEt and Put are
6160 ；vectored through \＄FG／\＄F7 and \＄F4／\＄F5 respectively．
－17
0180；Three＂undocumented＂commands，Lo（for LOad，or LOok－
0199 ；up），＞EN（for ENter），and＞DC（for Disk Command）are
g200 ；available for linking to disk operating systems（DOS），
6219 ；E．g．FODS or coDOS．When not required for disk $1 / 0$
ø220 these commands may be used for other purposes，as
0230 ；shown by the following example．
6240
0256 ；Not shown in the example，however is the method by
G266 which these（and all RAE commands，for that matter）
0276 pass their parameters．At entry to the vectors the
0280 Y register contains the hex value of the position
03g\％wharac following the of
9396
9310
6326 ；If $Y=555$ ，no parameters were passed．Otherwisw the
0336 ；parameters may be＂picked－up＂and interpreted be－
0346 ；gining at $\$ 6135, Y$ ．Hence，for example，you may
0350 ；add as many＂new＂commands as you wish to RAE by
6366 ；calling $>D C$ PRINTERON，$>D C$ PRINTEROFF，$>D C$ SWP，
G370 ； $\operatorname{~DC~SORT,~}>D C$ CROSSREF，etc．
SYM－FHYSIS 9：19

6416
G429 ; GETPATCH ENABLES .CT (CONTINUE ON TAPE), BUT
6430 ;
6450;
0460
6479
6489:
0496
9566
2510
9526
6530;
6546
9550
9560
9579:
8589:
0596 ;
66619
6629
6630;
9640 :
9650
6669
0690
6766
9716 ^Y.JMP
G72ø USR.JMP .DE \$6ぁ
6730 PRNT.JMP .DE \$63
9740 RELOCBUF .DE \$B6
9756
9760 INP.FLE
677® LOD.VEC
g78月 EET.VEC DE FF
9796
ต866 OUT.FLG .DE \$EF
G818 ENT. VEC \quad DE $\$ F \varnothing$
ต82\% PUT.VEC
8836
49 DC．VEC－DE SEC ；RAE DISK COMMAND（DC）VECTOR

GETPATCH ENABLES ．CT（CONTINUE ON TAPE），BUT DISABLES THE ABILITY TO SPECIFY AN ID FDR＂GET＊
LINKED BY CALLING LDad $x\{x=$ ANY ALPHANYMERIC UNLINKED BY CALLING LOad，WITH NO PARAMETER

PUTPATCH INCREASES SYNCH DURATION FOR＂PUT＂ LINKED BY CALLING ENter $X \quad(X=$ ANY ALPHANLMERIC UNLINKED BY CALLING ENter，WITH NO PARAMETER

CALLING LOad AND／OR ENter WITH A PARAMETER SETS INP．FLG AND／OR OUT．FLG TD \＄01． THEREAFTER ALL GEES AND／OR PUES ARE VECTORED THROUGH GET．VEC AND／OR PUT．VEC．

WHEN CALLED WITHOUT A PARAMETER THEY SET THE FLAGS TO \＄øø．THIS FEATURE IS BUILT INTO LDad AND ENter TO OPEN AND CLILSE NAMED DISK FILES AUTOMATICALLY． GEts and pUtS THEN MANIPLLATE ONLY SUBFILES．

THIS PATCH ALSO MODIFIES THE DEFAULT VALUES TO BETTER SUIT A 16 K TO 32K SYSTEM．THE PATCH OCCUPIES BE PLACED IN HIGH MEMORY OR IN ROM．

```
$670 RAEPATCH .DE $09%%
.05
```

あぁ6
USR．JMP
PRNT．JMP －DE \＄BG
．DE＊C8

DE 解2 ．DE＊FG
.$D E$ WEF DE WF4

DE EEC
；RAE TAPE／DISK INPUT FLAG RAE DISK LOD VECTOR ；RAE DISK GET VECTO
；RAE TAPE／DISK OUTPUT FLAG ；RAY DISK ENT VECTOR ；RAE DISK COMMAND（DC）VECTOR

G866 ；SUPERMON ADDRESSES
6876
$\begin{array}{ll}\text { Ø88の SAVER } & \text { ．DE } \$ 8188 \\ 989 \varnothing \text { BEEP } & \text { ．DE } \$ 8972\end{array}$
の9ø6
69.6

RAE ADDRESSES
©920
G94B TXST－DE \＄$\$ 106$
6940 FILE．ND－DE $\$ 10110$ 996 RAEWARM DE \＄BGAC 0960 RAEHOT
9976 CLEAR＿ALL DE SE6G2 9989 U／LOAD̄1 ．DE \＄EFF6B 6996 TRANSFER ．DE SEFFC
1006 TAP．NEW DE \＄EFCA
1006
1010

LODPATCH	；\＄9．8c	＊1820	1140	1160
PARMS	；\＄øø5Ø	\＃1536	1570	
PRNT．PATCH	；\＄9697	\＃1956	1440	1460
PUTPATCH	；\＄697F	\＃1760	1596	1110
SET．JMPS	；\＄0．02E	\＃1290	＊＊＊＊	
SET．VECS	； 09666	\＃1946	＊＊＊＊	
USR．PATCH	；\＄099A	＊1976	1390	1416
values	； 0 ¢06D	\＃167\％	1530	158%
${ }^{\wedge}$ Y．PATCH	；\＄0991	＊1920	1340	1360

AN IMPROVED PRINTER PATCH
We moved our MX－89 printer from the B port to the A port to free PB6 and PB7 for counter／timer applications．We also modified our method of setting PCR to do so without affecting CBI and CB2 when activating the printer patch，so that these lines could be used for other purposes．
NOTE THAT THE A AND B PORTS HANDLE HANDSHAKING DIFFERENTLY；FAILURE TO ALLOW FOR THIS WILL CAUSE SYSTEM HANGUP！CB2 pulses low only after a write operation to PBD，while CA2 pulses low after either a write to or read from PAD．The BIT test for RUSY must therefore be made at the no－handshake PAD register at $\$ X X \varnothing F$
The original patch was designed to work with RAE－1，and would not handle the＂up－arrow＂of BAS－1 properly．The byte at \＄C1 is a＂JMP＂in BAS－1， and the high byte of the start address of the relocating buffer for AE－1．By checking the＂up－arrow＂occurs，the chrrect handing for BAS－1 is provided．

TILL MORE ON PRINTERS
As you can see above，we have learned to underline from RAE and SWP on the Epson！And installed a＂software switch＂to turn the printer off and on，as well．In addition，we now can also use the horizontal tab features of the Epson．

As you know，RAE handles CTRL $H, 1$ ，and Q in peculiar ways．Unfor things．Epson uses CTRL Q to enable the printer（and CTRL S to dis－ SYM－FHYSIS 9：23
ble it），CTRL I for tab control（in a manner inconsistent with RAE）and CTRL H in a manner which，in effect，allows backspacing without erasure， thereby permitting underiining，and，if desired，overstriking）．

Fortunately both RAE and the Epson treat the DELETE（ $\$ 7 F$ ）in essentially the same way（except that RAE does echo a＂\＂．As will be seen below， this feature makes for＂clean＂soft（on the CRT）copy．

The trick is to have RAE echo and output CTRL U, V ，and W（or any other unused control characters）as if they were CTRL H ，I，and Q．The first ine of the listing from which this text was formatted prints on the terminal as ${ }^{\wedge} Q$ ，although CTRL W was actually keyed in and stored in RAE． This turns on the printer．The second line contains the swp instruction L，to indicate a fresh line start．The third line contains the data ＂STILL MORE ON PRINTERS＂followed by 22 ＂＾H＂s followed by the correct sequence of underlines and spaces entered as CTRL U＇s．The last line of the listing contains a＂ns＂， entered as CTRL 5.

To turn the printer on and off from RAE＇s command mode，enter CTRL w or CTRL S，followed by a DELETE（ $\$ 77$ ，RAE echoes＂$\$＂）．The DELETE prevents an error message from cluttering up the screen．

Here is the section of the printer patch which does the job：

ต8ø币			BNE	NOT＾	
6816			LDA	＊\＄${ }^{\text {c }}$ 9	；BAS－1 Stores A \＄AC HERE
9820			CMP	轐4C	
9836			BEQ	PRINT＾	；if In basic，print the＂a＂
0840			TSX		
ø856			LDA	\＄103， X	；RAE＂stacks＂control codes
9860			CMP	\＃\＄29	
987¢			BCS	PRINT＾	；Not a control code
ø88ø			PHA		
ロ89¢			LDA	\＃\＄40	；RAE will convert to null
9966			STA	\＄163， X	
9910			LDA	\＃’	
6929			JSR	TOUT	
¢939			PLA		
9949	U＿H	＊	CMP	＊\＄15	
9959			BNE	V＿I	
6969			LDA	\＃\＄08	
6979			BPL	OK	
¢980	V＿I		CMP	＊\＄16	
9990			BNE	W＿Q	
1 1øø			LDA	\＃\＄09	
1010	W＿Q		CMP	＊＊17	
1929			BNE	OK	
1030			LDA	\＃\＄11	
1640	OK		PHA		
1059			CLC		
1060			ADC	\＃\＄46	；Make it printable！
1676			JSR	tout	

Note that to permit＂Printer Select＂from the host computer，DIP Switch 8 must be set to the＂Select Not Fixed＂position，and the printer then powers－on as＂non－READY＂．You may wish to include a LDA \＃\＄11，and a JSR OUTCHR in the Initialization Routine to make READY the＂default＂ condition．$\$ 11$ is the ASCII code for CTRL Q（DC1）．An external Amphenol connector will turn the printer on，i．e．，＂select＂it．The hardware and＂software＂switches are wire－＂or＂ed together（active low）． Dip Switch 8 essentially grounds pin 36 ；CTRL Q sets a flip－flop which does the same thing；CTRL S resets the flip－flop．

SYM－FHYSIS 9：24

ON WORD PROCESSORS
Most of our work involves the use of RAE rather than BASIC, hence we find it convenient to use SWP (a very highly customized version) as our word processor. Actually we use RAE as the Text Editor, and SWP only as the Formatter.

Many of our readers prefer BASIC to RAE, and do not even have RAE installed. For them we are distributing KWOK'S BASIC WORD PROCESSOR (BWP-1). We have tried, and liked BWP-1, but have not yet built up any real skill in its use.

We have tried TECO, a very popular Text Editor developed by DEC for their PDP- systems, and very graciously placed in the public domain by the TEC65 (en Exchange. Shortly thereafter, Dale Holt sent us a complete package for Exchange. Shortly thereafter, Dale Holt sent us a complete package for with Dale, converting source code to RAE format, and helping to debug and entance Dale's original version.

The Holt/Albers version of SYM-TECO should be ready for distribution early next year. It is stand-alone, requiring neither BAS-1 or RAE-1 (although the latter would be very helpful in customizing it).

Aside from the obvious cost savings, the major advantage of TECO lies in its "universality", in that many time-share users learn TECO as their first word processor, and TECD-type word processors are available for most systems.

Denny Hall, who uses his Apple II for most applications, feels that the SYM-1 is a better way to go for word processing, and that the cost of a SYM-based word processor to supplement his APPLE is much less than the cost of the added "cards" necessary to convert the Apple to a word processor. Also, he has found, as we have, that two individual systems can, at times, be more useful than one dual-purpose system, since they can be used simultaneously on different tasks.
(Parenthetically speaking, one of our "one-of-these-days" ambitions is to develop an interface card (and the software!) to join the Apple and Serial/Parallel I/O, Printer Interface, 89 Character/Lower Case, etc., Serial/Parallel $1 / 0$, Printer Interface, 89 Character/
add-on cards for the Apple. What a market for this!) At any rate, Denny is putting the "finishing" touches (we are sure he
will continue to provide continuing customer support) to a SYM-based will continue to provide continuing customer support) to a SYM-based
Word Processor, with special control features, for a student with limited use of his hands. Denny plans to OEM SYM-based word processors, limited use of his hands. Denny plans to OEM SYM-based word processors,
standard or customized with, for example, large character sizes on the standard or customized with, for example, large character sizes on the
CRT, verbal feedback, elimination of the need to strike two keys simultaneously as for CTRL characters, etc. He had planned to use RAE/SWP, and is doing so for his first systems, but is seriously considering SYM/TECO in EPROM instead. The student for whom he is building the first system will also be using the system as a terminal (from home) to the school's PDP-11, on which TECO is also available, and the compatibility will be a strong plus! Incidentally, we both consider "best-buy" for computer networking.

YORE ON BUFEERING

We have mentioned that "over"-buffering of the SYM's Address and Data Busses can cause the kinds of problems buffering is supposed to solve. The following extract from a recent letter presents additional experience with "overkill" in buffering:

Another point, and this is really the last one. You remember
SYM-PHYSTS 9:25

Lux that I wrote you about my memory problems some time ago when I bought FORTH. [Yes I certainly do remember, Marc, how discouraged and frustrated you were over the memory problems you were having at that time! - Lux]
Here is my mistake; perhaps it can help others: I decoded the addresses for the RAMs with 2 74LS138s. The first for the 8K blocks, the other for the 1 K blocks. Also on each card I buffered Address as well as Data lines even when they were already buffered on my mother-board. I 1 mimited the card and repl now everything works fine.

Yours SYMcerely,
Mare SYMons
Woudlaan, 50
Belgium
A RAE CLOCK/TIMER
Here is a truly powerful utility for RAE-1! It provides the time and date information on request, and even inserts the information into your RAE file at Line øøøø, so that you can mark a file with the latest revision date and time.

Here are a few precautions on its use: It will not interfere with Cassette $I / 0$ at the normal $14 \emptyset \varnothing$ baud rate, nor with serial terminal $1 / 0$ at less than 1200 baud. It also will not interfere with Disk I/O, since the DOS checks all reads and writes against check sums until it is satisfied that all has gone well (it will, of course, give up, and Tet you know about it, after a prespecified number of interrupt service time is short enough to cause no problems, except interrupt service time is short enough to cause no problems, except possibly at midnight, especially at the end of the month, and New Year's terminal for a few seconds)

Operation of the terminal at $489 \varnothing$ baud, however, could cause problems. If interrupt occurs during a character output time the character on the terminal will be garbled. This is not too serious. An interrupt during a character input time could be disasterous. What if the character was garbled into a CTRL B, which sends the SYM into BASIC, and destroys pages ø and 1?????????? Dick Albers guards against this kind of near catastrophe by calling an input program which calls SEI during character input time (this feature should have been in SUPERMON!) to inhibit interrupts.

We would like to see the matter handled by having a keystroke also create an IRQ (or maybe an NMI) as in the Moser Paddle Game in an early issue, and giving keystrokes priority over timer interrupts. It would be fun to work out the details; meanwhile we will keep the clock running whenever we are in RAE, to get some idea of the frequency of catastrophes! We are putting our faith in being able to recover any "lost" RAE files by the

It just happened!!! Hit the 〈cr〉 and an up-arrow N appeared. Hit another key and the program went into limbo..............

As we were saying, we can recover "lost" files by the method described in the RAE-1 REFERENCE DATA CARD sent out with RAE NOTES \#1, on how to recover after "accidental" CLear. If the problem occurs too frequently, we shall write the priority interrupt handling program. Incidentally, the use of an interrupt driven clock is one more justification for using interrupts can't botch up the hard copy. And now, here's the program: (15: 65:46 SUN 1 NOV 1981)

SYM-FHYSIS 9:26

9187－		66		2379		CPY	\＃\＄86	Month？					3620				
9189－	Dø	97		2389		BNE	DAY		920E－		$\varnothing \varnothing$		3630	PRT	LDA	＊\＄øø	Print line \＃as＂øøø®＂
9188－	18			2396	MON	CLC			9210－	26	FA	82	3640		JSR	OUTBYt	Print line \＃as ado
918C－	D8			2406		CLD			9213－	20	FA	82	$3 \emptyset 5 \emptyset$		JSR	outbyt	
918D－	69	1 C		2410		ADC	\＃\＄1C Add	28 to index month	9216－	A2	01		3060		LDX	\＃\＄${ }^{\text {¢ }}$	Print the rest of line
$918 \mathrm{~F}-$	EE	CB	99	2420		INC	SCRC	；Need five bytes（two spaces）	9218－	Dø	ø2		$3 ¢ 76$		BNE	OUT	Print the rest of line （Always）
				2430									उø86				
9192－	A8			2440	DAY	TAY			921A－	A2	03		3698	TIMOUT	LDX	\＃\＄ø3	Print the time
9193－	B9	CC	90	2450	NXTD	LDA	DWTAB，Y	Store day of week	9210－	E8			3100	OUT	INX		
9196－	20	3E	92	2460	SP；：	JSR	STOASC		$921 \mathrm{D}-$	BD	35	Ø1	3110		LDA	BUFF， X	
9199－	CE	CB	90	2470		DEC	SCRE	Count chars	9220－	20	47	8A	3120		JSR	OUTCHR	
9190－	Fg	BC		2480		BEQ	LRET		9223－	10	F7		3136		BPL	OUT	
919E－	C8			2490		INY			9225－				3140		RTS		
919F－	Dø	F2		2509		BNE	NXTD	（Always）					3150				
				2510					9226－	8 E	CA	90	3160	STOBCD	STX	SCRB	Save DRTAB index
91A1－	58			2520	CDONE	CLI		Allow time changes	9229－	AE	C9	90	3170		LDX	SCRA	Get BUFF index
91A2－	AE	C9	90	2530		LDX	SCRA	Get BUFF index	9225－	48			3186		PHA		Save byte to store
$9145-$	BD	34	61	2540		LDA	BLFF－1， X		9220－	4A			3196		LSR	A	Store high nibble
91 AB －	99	$8 \square$		2550		ORA	\＃\＄80	Mark line end	922E－	4A			3260		LSR	A	
91 AA －	9D	34	$\emptyset 1$	2560		STA	BUFF－1， X		922F－	4A			3210		LSR	A	
$91 \mathrm{AD}-$	AD	47	$\emptyset 1$	2570		LDA	BUFF＋\＄12		9230－	4A			3220		LSR	A	
$91 \mathrm{BD}-$	C9	30		2580		CMP	\＃\＄3\％	Test for leading zero	9231－	99	36		3236		ORA	\＃\＄30	Convert to ASCII
$9182-$	Dø	25		2590		BNE	NLZ		9233－	9 D	35	01	3246		STA	buFF，x	
$9184-$	A9	29		2606		LDA	＊\＄2ワ	Replace with a space	9236－	E8			3250		INX		
9186－	8D	47	01	2610		STA	BUFF＋$\$ 12$		9237－	68			3260		PLA		
9189－	68			2620	NLL	PLA		Check argument	9238－		6F		3270		AND	\＃${ }_{\text {¢ }}$ ¢	Store low nibble
$91 \mathrm{BA}-$	C9	59		2636		CMP	\＃＇P	Print time only？	923A－		30		3280		ORA	\＃\＄30	
$91 \mathrm{BC}-$	Fø	5C		2640		BEQ	TIMOUT		9235－	Dø	96		3296		BNE	Stob	（Always）
				2650									3360				
				2660		；MO	OVE TIME	into rae text file	$923 \mathrm{E}-$		CA	90	3310	Stoasc	STX	SCRB	Save DRTAB index
$91 \mathrm{BE}-$	20	86	8B	2680	MOVF IL	JSR	ACCESS	Move existing text	9241－ $9244-$	AE	C9	90	3320 3330	STOB	LDX	SCRA	Get BUFF index
91C1－	AD	01	¢1	2696		LDA	TXST＋1		9247－	E8			3340		INX	BuF，x	
91．4－	8D	4D	Ab	2790		STA	P 2 H		9248－	8E	C9	$9 \varnothing$	3350		STX	SCRA	Save BUFF index
91C7－	AD	g®	${ }^{6} 1$	2710		LDA	TXST		924B－	AE	CA	90	3366		LDX	SCRB	Get DRTAB index
$91 \mathrm{CA}-$	8D	4C	Ab	2726		STA	P2L		924E－	60			3376		RTS		
$91 \mathrm{CD}-$	18			2736		CLC							3380				
91CE－	69	1D		2740		ADC	＊\＄1D Add	29 bytes					3396		；SE	t time	
$9106-$	8D	4E	Ab	2756		STA	P1L						3406				
$9103-$	AD	01	$\boxed{ } 1$	2760		LDA	TXST＋1		924F－				3410	TIMSET	SEI		Inhibit time changes
$9106-$	69	の1		2776		ADC	\＃\＄06	Pick up any carry	9256－	A2	08		3420		LDX	\＃\＄68	Set index regs
91.108	8 D	4F	Ab	2786		STA	P 1 H		9252－	AØ	g1		3439		LDY	＊\＄61	
$91 \mathrm{DB}-$	A5	D3		2796		LDA	＊TPRES		9254－	B9	CD	92	3440	PMOR	LDA	MSTAB，Y	Print＜reg name＞＝
$9100-$	69	02		2809		ADC	\＃\＄®2	Include end－of－file	9257－	Fg	06		3450		BEQ	NXTR	
$91 \mathrm{DF}-$	8D	4A	Ab	2810		STA	P3L		9259－	20	47	8A	3460		JSR	OUTCHR	
$91 \mathrm{EL-}$	AS	D4		2820		LDA	＊TPRES＋1		925c－	C8			3470		INY		
91E4－	69	ø®		2836		ADC	\＃\＄60	Pick up any carry	9250－	Dø	F5		3486		BNE	PMOR	（Always）
$91 \mathrm{E6}$－	8 D	48	Ab	2846		STA	P3H						3490				
91E9－	A5	D3		2850		LDA	＊TPRES	Compute new end	925F－	20	D9	81	$356 \square$	NXTR	JSR	InByte	Get value for reg
91 EB －	69	10		2866		ADC	\＃\＄1D		9262－	48			3516		PHA		
$91 \mathrm{ED}-$	85	D3		2876		STA	＊TPRES		9263－	Bø	2 F		3520		BCS	BAD	Only decimal wanted
91 EF －	AS	D4		2889		LDA	＊TPRES＋1		9265－	29	ØF		3536		AND	\＃\＄¢F	Test low nibble
91F1－	69	$9 \square$		2896		ADC	\＃\＄68	Pick up any carry	9267－	C9	ØA		3540		CMP	\＃\＄øA	
91F3－	85	D4		2906		STA	＊TPRES＋1		9269－	Bg	29		3556		BCS	BAD	
$91 F 5-$	29	40	87	2910		JSR	BLK3＋7	Let Supermon move it	926B－	68			3560		PLA		Test high at stot
$91 F 8-$	AD	$9 \varnothing$	\square_{1}	2920		LDA	TXST		926C－	Eø	86		3570		CPX	\＃\＄66	
$91 \mathrm{FB}-$ $91 \mathrm{FD}-$	85	CA		2936		STA	＊\＄CA	Set up indirect addr	926E－	Fø	g 4		3589		BEQ	ADJUST	
91FD－	AD	Ø1	ø1	2946		LDA	TXST＋1		9270－	ED	04		3590		CPX	\＃\＄84	
9290－	85	CB		2956		STA	＊\＄CB		9272－	Dø	96		3606		BNE	Stom	
9292－	A®	øø		2960		LDY	\＃\＄6ロ		9274－	F8			3610	ADJUST	SED		
9294－	B9	35	\square^{1}	2976	MOVIT	LDA	BUFF，Y	Move from buFF to text	9275－	38			3620		SEC		
9297－	91	CA		2986		STA	（＊CA），Y		9276－	E9	01		3630		SBC	\＃\＄01 Adj	ust to JAN＝09，SUN＝09
9209－	36	03		2996		BMI	PRT		9278－	99	1A		3640		BCC	BAD	
$9298-$	C8			3060		INY			927A－	Eø	105		3656	STOM	CPX	＊${ }^{\text {¢ }}$ ¢ 5	
9200－	10	F6		3010		BPL	MOVIT	（Always）	9275－	Dø	¢6		3660		BNE	stot	

EDITOR'S NOTE:
WE PUBLISH THIS OVER DICK ALBER'S PROTESTS THAT IT IS NOT YET READY FOR PUBLICATION! HE DID APPROVE PUBLICATION IF WE CLEARLY MARKED IT AS A OF WHICH HE HAS SOLUTIONS HE HAS PROUIDED TE PROBLEM AREAS, FOHHICH AFTER DEBUGGING AND "POLISHING", WE SHALL PUBLISH IN THE NEXT ISSUE OF SYMPHYSIS.

THE FIRST TWO PRORLEM AREAS, AS MENTIONED IN THE INTRODUCTORY TEXT, REQUIRE POINTING INVEC AND OUTVEC TO SUBROUTINES WHICH INHIBIT INTERRUPTS DURING THE ACTUAL I/O OF THE SERIAL BITS.

THE THIRD PROBLEM AREA IS DUE TO THE OFTEN OVERLOOKED FACT THAT THE BREAK INSTRUCTION SETS THE I FLAG AS WELL AS THE B FLAG! THUS, ANY EXITS TO MON FROM RAE (DONE VIA THE BRK INSTRUCTION) STOP THE CLOCK. THE SOLUTION TO THIS IS TO POINT URRKVEC TO A ROUTINE WHICH INCLUDES THE NECESSARY CLI INSTRUCTION.
A BASIC TIMER
Now you will see why we moved our printer to free up the B port for more valuable uses. The following BASIC program, by Joe Hobart. provides a very informative demonstration of the use of the Timer/Counter in the BASIC ,GET Function, which shouldal program to use to BASIC users.

PROGRAMS LIKE＂OREGON TRAIL＂USE A TIMER TO MEASURE THE INTERVAL BETWEEN THESE PROGRAMS＇STIMULUS AND A PERSON＇S RESPONSE TO THAT STIMLKUS．THE 6522 LDCATED AT U－28 PROVIDES A SIMPLE WAY TO IMPLEMENT SUCH A TIMER． TIMER THAT GAN BE KSED FROM O TO GAG OQ SECONDS THE ADDRESSES SPECIFIED REQUIRE THAT UTB MAS BEEN TNSTALIED AND THAT PBT（AA－G）BE CONNECTED TO PBS（AA－H）I USED AN EDGE CONNECTOR WITH PIN ${ }^{\circ}$ WIRED TO PIN H SO THAT IT COUP RE EASILY RE MOVED TO USE OTHER ACCESSORIES AT THE AA PORT
the program can be modified to give other ranges by changing the number STORED IN TI REGISTERS． 5 G月ø GIVES A ． 11 SECOND WAVEFORM AT PB7． $50 \% \sigma 6$ WILL GIVE A $\emptyset .1$ SECOND WAVEFORM AND A TIMER THAT WILL COUNT BY TENTHS TO SIX THOUSAND SECONDS．THE DIVISOR IN LINE 320 WILL HAVE TO BE CHANGED TO 19 TO GIVE THE CORRECT TIME，HOWEVER．NOTE THAT READING THE T2 REG－ ISTERS DOES NOT STOP THE COUNT DOWN．THE ONLY WAY TO RESET THE TIME IS tO RELOAD THE T2 REGISTERS BY POKE STATEMENTS．ONCE STARTED，THE TIMER T1 WILL PROVIDE A STEADY OUTPUT WITHOUT FURTHER ATTENTION．T2 WILL THEN DECREMENT ONCE FOR EACH PULSE FROM T1．IF LEFT UNATTENDED，T2 WILL PASS IERO AND CONTINUE COUNTING DOWN FROM 65536.

ONCE ALL THE REMARK STATEMENTS HAVE BEEN REMOVED，THE PROGRAM IS QUITE SHORT．T1 ONLY HAS TO BE INITIALIZED ONCE．T2 CAN BE LOADED OR READ AS DESIRED DURING THE PROGRAM．THE TIMER IS COMPLETELY INDEPENDENT OF ANY GTHER PROCESSING ON THE SYM．
（Added notes by Lux－We have nade up a number of patch cords with micro－ clips on both ends，and used such a cord to jumper $A A-6$ to $A A-H$ on the 44 pin connector wired to the Epson．We used the square wave generated at $\mathrm{PB}-7$ to check out the time base calibration of our scope．We have ordered a really nice frequency meter made by Albia，and we look forward to its

1 REM Program by Joe Hobart
2 REM Modified by Lux to include
3 REM＂A Simple BASIC GET Function＂
4 REM by Jack Gieryic
5 REM

1 月0 REM

110 REM CONNECT SYM AA－6 TO AA－H．U－28 MUST BE INSTALLED．
129 POKE 42579，128
136 REM INITIALIZE U－28 T1 AND INHIBIT IRQ
149 REM
159 POKE 43ø22，の ：REM INHIBIT IRQ（\＄ABøE）
160．POKE 43019,224 ：REM SET ACR（\＄ABøB）
179 REM 10 REM SI 5 TO GIVE A． 01 SECOND SQUARE WAVE AT PB7
190 REM LOAD $5 ø \sigma$ INTO TI TO GIVE A． 01 SECOND
199 REM
360 POKE 43012，136 ：REM PUT 136 IN T1L－L（\＄A864）
210 POKE 43013， 19 ：REM PUT 19 IN T1L－H（\＄A805）
226 REM
230 REM
259 PRINT＂Hit any key to start timer，then any key to stop it．＂
51 PRINT＂The time interval between keystrokes will be printed．
552 PRINT＂Exit with ESC key
253 PRINT
254 GOSUB1gøに
260 POKE 43016,96 ：REM PUT 96 IN T2C－L（\＄A8日8）
270 POKE 43017,234 ：REM PUT 234 IN T2C－H（\＄A809）
29の REM
290 REM READ T2 COUNTERS AND CALCULATE TIME INTERVAL

390 PRINT＂The timer is running．．．．．．．．．＂：PRINT
310 GOSUB1 006
$329 \mathrm{~T}=\mathrm{INT}$（ 6 6月の日－PEEK（43016）－256 4 PEEK（43017））／190
330 PRINT：PRINT＂El apsed time was＂T＂seconds．＂
331 PRINT
160ø POKE42579， $6:$ GOSUB1．0ø1：POKE42579，128：RETURN
1 ตの1 $\theta=\mathrm{HSR}(-30126,-11957$ ， 6$): \mathrm{CH}=128-(0 /(-256))$
$1 \not 02 \mathrm{IF} \mathrm{CH}=27$ THEN POKE 42579，128：END
1093 RETURN
1004 REM Lines 1900 － 1003 are based on a very ingenious BASIC＂GET＂
$19 \square 5$ REM program submitted by Jack Gieryic many months ago but not yet
$1 \not 06$ REM published due to lack of space．We present it here for your use
$1 \not 0 \emptyset 7$ REM without explanation of how it works，except to say that line
1 1ø® REM 190% controls（i．e．，suppresses echo of the＂GOTTEN＂character 1009 REM and may be omitted if desired）TECHO． OK

Hit any key to start timer，then any key to stop it． he time interval between keystrokes will be printed． Exit with ESC key

The timer is running．．．．．．．．．

Elapsed time was 2.71 seconds．
Hit any key to start timer，then any key to stop it． The time interval between keystrokes will be printed． Exit with ESC key．
OK
QN PRINTER RIBEONS
One very minor problem we have found with the Epson is a relatively short ribbon life．By this we do not mean that the ribbon becomes unuseable，but that the impression seems to weaken very rapidiy．The ribbon is not rolled tightly on a spool where it has a chance to re－ink＂itself from contact with adjacent layers．Instead it is other end．

For most applications the gradual lightening of the impression would present no real problem；just discard the ribbon whenever the printing appears too light for your taste．This does present a serious problem in preparing camera－ready copy for publication，however，in that material printed several days apart cannot easily be matched in appearance．Pasting in a corrected word or phrase in the middle of a previously printed paragraph looks bad if the new material appears much lighter or darker．We find that we must reprint the material again with the corrections made in the computer．

We tried to＂revive＂a ribbon by giving it a half－twist，and rewinding by hand to use the other edge．This made no difference．A friend passed on to us the following tip he had heard from an Epson user：Pry wo－4g one tap Diego，CA；don＇t know if it is available on a national basis）．Give the Diego，CA；don＇t know if it is available on a national basis）．Give the cartridee，and replace it in the printer．The ribbon will then have a new lease on life．

Our friend did not know how many re－leases were possible．We tried it， mostly out of curiosity，and it does seem to work．With new ribbons selling at around $\$ 15.06$ ，this could be a real money saver！We now feel challenged to see just how many WD－40 recycles a ribbon can accept in its lifetime！

SYM－FHYSIS 9：36
＂STRUCTURED＂ASSEMBLY PROGRAMMING IN RAE：
 RAE＇S built－in conditional and macro capabilities to incorporate a very gowerful set of new pseudo opcodes into its structure using the prefix ＂an as the desinator these new pseudo－ops pr

The easiest，way to explain both MAC65 and the entire concept of ＂structured＂programing is toreproduce belowthe entire concept of
 hist clear pop seudo macro
USE OF MAC65
When you wish to use MACSS，enter RAE at its cold start（\＄ROWG）and from mass storage，and parameters then megin entering your program Net pet MaCss of MACESS sust after LS）Then ASsemble your program and check 刃Sp and $\mathfrak{\text { NASST }}$ in the label file to be $\overline{6} 6 \mathscr{\prime}$（no nesting errors）．Now the Syntax of MAC65：

```
Here is a short macro-syntax description:
    Mall macro key-words begin with ita 
<block>::= macros and mnemonics 
```


Sblock

$$
\text { QWRITE }\langle\langle l a b e l\rangle, \quad \text { Text must be declared as follows: }
$$

\rightarrow IMPORTANT！Variables used in the program have to be declared （refer to example of Hi－tomaros

The macros are intended for $u s e$ with variables and constants
restricted to the range of \varnothing ，．． 255 ，or，$\$ 0 \varnothing, .$. ．$\$ F F$ ．
Do not use variables located at page zero．
GMPHYGIS 9：37

EXAMPLE：HI－LO GAME
The following example is divided in two parts：on the right is a equivalent MACbs notation．

ASSEMBLE LIST

¢019	LS
8620	；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
¢¢39	；＊
¢G49	；＊MAC65 V1．¢ DATE 23．06．81
9059	；＊
8180	；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
	；＊＊
299\％	；＊Norbert C．Thuering
01909	；＊8103 Unterengstringen
9119	；＊SWITZERLAND
\＄120	＊
9139	；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
6429	．LS
6439	
8449	；CONDITION CODES FOR MACROS
64510	EQ ．DE 0 equal
847¢	NE ．DE 1 not equal
6489	HS－DE $\frac{2}{3}$ higher or same（binary）
6496	HI ．DE 3 higher（binary）
6590	LO－DE 4 lower（binary）binary）
9510	
6536	LE DE 7 less or equal（ 2^{\prime}＇s complement）
6546	GT \quad ．DE 8 greater than \｛2＇s complement）
9556	GE ．DE 9 greater or equal（2＇s complement）
9569	IN－DE
4286	．LS
4290	
4360	；SAMPLE PROGRAM BEGINS HERE
4316	TIMER－DE \＄Aøめ8
4こうの	INBYT－DE \＄81D9

[^0]: The fastest, and perhaps simplest, method of interchanging files between
 The fastest, and perhaps simplest, method of interchanging files between two closely adjacent SYMs is via the cassette interface. First connect their grounds together, then connect the "left"-end of R9Q on the enter L 2 Cr>, and 52 ID, SA, EA <cr> on the proper SYMs.

