
THE SYM－
USERS．
GROUP NEWSLETTER UOLUME II，NUMBER \＆（ISSUE NO．19）－HINTER 1981 （OCT／HOU／DEC）
 are in no way associated with Synertek Systems Corporation（SSC），and
SSC has no responsibility for the Contentsiof SYM－pHYSIS，SYM is
registered trademark of SSC．SYM－PHYIs，from the Greek，means the registered trademark of SSC．SYM－PHYSIS，from the G
state of growing together，to make grow，to bring forth．

We welcome for publication all articles dealing with any aspect of thie copyrights．Portions of SYM－pHYSIS may be reproduced by clubs and edu－ cational institutions，and adaptations of prograns for other computers provided to SYM－pHYSIS and the originai author（s）．pompleatary copies
self－addressed stamped envelope with alincorrespondence．

$$
\begin{array}{lrl}
\text { EditorlPublisher: } & \text { H. R. "Lux" Luxenterg } \\
\text { Businessicirculation: } & \text { Dean Luxenberg } \\
\text { Associate Editors: } & \text { Dennis Hall Jack Brown } \\
& \text { Tombettys, Jack Gieryic }
\end{array}
$$

SUBSCRIPTION RATES：（1982，Issues 11 －14，Volume III）
 Make checks payable in US dollars，to＂SYM－1 Users＂Group＂，P．O．Box EACK ISSUES ARE STILL AVAILABLE AS FOLLOWS：
Issue \＃g，the Introductory Issue（1979），and Issues 1 through 6 （1980） are available，as a pactirmail，el sewhere．

THE MYSTERIES OF BAS－1 REVEALED！（OR AT LEAST SOME OF THEM）
The following questions asked by James Blackshear have been asked by many readers，and if not specifically asked，must at least have occurred to many others：
＂I would like to know more about BAS－1．What is on page zero，how can we use it，and where are the useful routines in BASIC？And，is there a source listing（commented or not）available，and if so，how can we get ahold of it？＂

To answer the second question first，the source code for BAS－1 is proprietary to Microsoft and its licensee Synertek Systems Corporation （the first time we visited Jared Larsen at SSC，we observed a listing of the source code on a desktop，and started to leaf through it，but it was removed and placed out of our reach！）．Publishing a complete disassembly of BAS－1 would permit readers to by－pass purchasing the ROMs，thus reducing potential sales by the copyright owner．Thus the answer is NO！！！
On the other hand，an incomplete listing would still require the reader to purchase BAS－1 in order to obtain a working BASIC．So，to answer Jim＇s first question，we are publishing a partial disassembly of BAS－1， and，in the article MEANI4 FOR THE SYM，information on entry points for most of the floating point arithmetic subroutines．This information should provide a useful starting point for owners of BA

HOW TO POWER－UP INTO A RUNNING BASIC PROGRAM
Another frequently asked question is＂How can we arrange to have the SYM power－on－reset either to BASIC，or directiy into a working BASIC program （i．e．，in the RUN mode）？The answer to this extremely important question is the subject of our lead article：

めØ1ø ；Example of a power－on－reset program to start up－
6め2め ；and－running in a BASIC program，i．e．，a＂turnkey＂
Qg49 ；system．
＠osø ；until they are called for，and write a＂guarded＂
Q日6 ；input routine to prevent return to the direct command
Øめ7Ø；mode on a＜cr）reply to an input request．The BREAK
Q\＆8月 ；key will also cause a return to the direct conmand
øø9ø ；mode，but if the keyboard has been locked out by the
Q1め日；POKE only RESET can restart the program．
Q12Ø ；IT MIGHT BE A GOOD IDEA FOR TROUBLE SHOOTING TO RUILD Ø139 ；IN A＂SECRET KEY＂TO PERMIT EXIT TO SUPERMON．ONE WAY $\varnothing 14 \varnothing$ ；IS TO ALLOW A SPECIAL INPUT SEQUENCE TO CAUSE A JUMP
0159 ；TO A USR（USRENT，Ø）．
9160
Q170 ；This program may be tested in RAM，at any address，
פ189 ；from SUPERMON，by ．G TURNKEY，to simulate reset．
0190
9200 ；
SUPERMON ADDRESSES
פ22の INCHR
6236 OUTCHR
6249 TOUT
＠250 ACCESS
Ø26ø VECSW
62796 DFTBLK
6289 RIN
289 RIN
ØЗの日 ：
$6360 ;$
9310
$\emptyset 329$ SYSRAM
6329 SYSRAM
＠ 340 SCRA
635 TOUTFL
0350 TOUTFL
$\begin{array}{ll}\text { ．DE } \$ 8 A 18 & \text { Input character } \\ \text { ．DE } \$ 8 A 47 & \text { Output character }\end{array}$
－DE \＄8A47 Output character
DE ©BR8 6 Unprotect SYSRAM
$\begin{array}{ll}\text { DE } \$ 8 B B 7 & \text { Default } 1 / 0 \text { ter } \\ \text { DE } \$ 8 F A Q & \text { Default table }\end{array}$
DE \＄887E RAM input
SYSTEM RAM ADDRESSES

6378 ：
0389
INVEC
DE \＄A62\％
DE A651
DE A63A Baud rate constant

SYSTEM RAM VECTORS

8410
－DE \＄AG66
DE \＄Ab63
642∞ ；
SYSTEM I／O ADDRESSES
6440 PCR1－DE \＄AのøC
$645 \varnothing$
6468 ；AND NOW，HERE WE GO ！！！！
947の MND NOW，HERE WE GO ！！
Q489－BA $\$ 9896$ Or wherever，in any EPROM
6490
$95 \emptyset 6$
9890－A2 FF
9892－9A 9803－A9 CC $9805-8 D$ CC AC $9898-$ A9 94 $989 \mathrm{~A}-48$
$98 \emptyset \mathrm{~B}-28$

6526
6530
6549
0556
656\％
os
TURNKEV LDX WFF Initialize stack pointer TXS
LDA \＃\＄CC
STA PCR1 Disable POR，tape off，etc．
LDA \＃\＄${ }^{\text {W4 }}$
PHA

Disable POR，tape off，etc．
Zero flags，and disable IRQ

SYM-PHYSIS 16:4

1460 EXEC
BY＇ $\mathrm{BH}, 9060,90 E 7$＇\＄0D
3PAGE ZERO

1470
BY＇B200，9200，922F＇$\$ 00$
BASIC PROGRAM

$148 \varnothing$
496

BY＇Gの＂$\$ \varnothing D$
－BY＂$X=U S R(\& " 8 B 86 ", \varnothing)$＂\＄のD
BASIC WARM START
；ACCESS

BY＇RUN＇$\$ \varnothing D$
：TURN OFF RIN
1519
1529 ；The TOUTFL POKE should be in your BASIC program．
$153 \varnothing$ ；The ACCESS may also be in your BASIC program．It must
1530 ；The ACCESS may also be in your BASIC program．It must 1559 ；RIN can be turned off by the $\$$ gQ following RUN．
568
．EN
machine language floating point arithmetic
Perhaps the easiest way of learning to design Assemblers，Interpreters， Arithmetic Packages，Data Management Systems，Disk Operating Systems， Compilers，etc．，is to study the＂work of the masters＂and learn by ex－ ample．With this thought in mind，we have been using Hissink＇s DISARAE， and an even more powerful disassembler，to＂reverse engineer＂BAS－1， SYM／FODS，RAE－1，CODOS，and every other piece of $65 \$_{2}$ object code from which we felt we could learn something new．

We have been asked if it were possible to write a floating point package for the SYM．The answer is yes，but rather than starting from scratch， we prefer to＂research＂to see how others have done the job，and，to paraphrase Newton，＂stand on the shoulders of giants＂．A direct copy， or even a＂paraphrase＂，without permission or acknowledgement，is olagiarism．An enhancement，a major modification，a synthesis of the works of others，a conversion to another system，published or marketed in such a way as not to injure potential sales of the original product is neither illegal，immoral，nor fattening！We will now answer the floating point question in our usual roundabout way：

Apple II，the one with Integer BASIC，but not the II＋with the Applesoft（Microsoft！）BASIC，contains an interpreter known as SWEET16． Interpreters of this class accept programs written in a set of＂pseudo－ operation＂codes designed to make programming easier for a specialized class of problems．The SWEET16 interpreter makes a 6592 system＂behave＂ as if it were a 16 bit（integer）processor．

While Apple＇s Integer BASIC handles 16 bit integer arithmetic，it does so very slowly，compared to machine language（ML）equivalents．SWEET16 interprets at a rate closer to ML，but is easier to program，since the be assembed by hand or by SWEETIG aseembler In fact RAE－1 hes a ＂f assembled by hand，or by a SWEET16 assembler．In fact RAE－1 has a matter）may be＂patched＂to RAE－1 making use of all of RAE＇s text diting assembler for SWEETic mnemonics．

MEAN14，by R．M．Mottola，works with Applesoft BASIC to provide five byte floating point arithmetic at least ten times faster than the BABIC． We have been working off－and－on to rewrite MEAN14 for the SYM－1／BAS－1 system，but have not yet finished the task．For those who have asked， we print below our INCOMPLETE conversion，leaving the completion as an ＂exercise for the student＂，and refer the reader to Mr．Mottola＇s articles，cited below，for the necessary detailg．For＂extra credit＂， why not add the trig functions as well？A good follow－up＂exercise＂，of SYM－1 users the entire 6562 community would be a MEANi4 $\$ 0132$ ．

Note that MEM（memory location）is passed to the BASIC subroutines through the A, Y register pair．We have not yet found a good entry point for converting INPUT ASCII to floating point but the subroutine at \＄DB9A converts the floating point number in FPAC1 to ASCII at 16101010 with a terminator byte of $\$$ ga，making it very simple to print out the results．Try running a program such as：
$10 A=123.456:$ REM TRY VARIOUS VALUES
$2 \varnothing$ PRINT A
30 $x=$ USR（\＆＂8のЗ5＂，凤）
RUN
From SUPERMON，．V $1 \varnothing \varnothing \varnothing, 1 \varnothing 1 F\langle C r\rangle$ to see the ASCII representation of A ， and reenter BASIC with $B g$＜cr〉．Try using values for A which will orce the E representation of the value．Incidentally， ddition course） 16 bytes are the stack，of coly
nation MEAN14 with the existing BAS－1 ROM wi
he combination a mom will provide a very easy－to－use and eas
operating at near ML speeds．

REFERENCES：
Mottola，R．M．，＂Applesoft Floating Point Routines＂，MICRO，August， 1980，pp．27：53－27：55．
Mottola，R．M．，＂MEAN 14：A Pseudo－Machine Floating Point Processor for the Apple II＂，MICRO，September，198\％，pp．28：67－28：71．
Wozniak，Stephen，＂SWEET16：The $65 \not 22$ Dream Machine＂，BYTE，November， 1977，pp．156－159．

øø1ø	＞＞＞＞＞＞＞MEAN 14 FOR THE SYM－1＜＜くくくくくく
6626	
9630	：SEE CITED ARTICLE（S）BY MOTTOLA FOR DETAILS
0646	；NOT YET COMPLETE OR OPERABLE！！！
0659	；NO WARRANTY EXPRESS OR IMPLIED
øøbの	；GOOD LUCK IN FINISHING THE JOB！
6970	
øø8ø	． BA \＄9めめ¢
969%	
8100	；Not yet sure where these should be placed，
0110	；but they are not used by BAS－1
Ø120	
Ø13Ø	TMPL ．．DE SE9
0140	TMPH－DE \＄EA
0150	MPCL $\quad . \mathrm{DE} \mathrm{\$ 4C}$
¢166	MPCH ．DE \＄4D
Ø170	
6189	；START BYTES OF THE TWO FLOATING ACCUMULATORS
0190	
5296	FPAC1 ．DE \＄B1
6218	FPAC2 ．DE \＄B9
6220	

OAD	49	C6		
CøAF-	52	45	53	¢189
CøB2-	54	4F	52	
CøRS-	C5			
C®B6-	47	4F	53	$\varnothing 19 \varnothing$
Cab9-	55	C2		
C9BE-	52	45	54	¢191
COBE-	55	52	CE	
CoC1-	52	45	CD	92
COLC4-	53	54	4F	3
CøC7-	Dø			
CaC8-	4 F	CE		
CXCA-	4 E	55	4C	9195
C\&CD-	CC			
CgCE-	57	41	49	96
C®D1-	D4			
CaD2-	4C	4F	41	9197
CODS-	C4			
CaD6-	53	41	56	
bD	C5			
DA-	44	45	C6	99
CøDD-	5\%	4 F	48	200
CのEの-	C5			
CQE1-	56	52	40	201
CQE4-	4 E	D4		
CaE6-	43	$4 F$	4E	2
CgE9-	D4			
CgEA-	4C	49	53	0203
CDED-	D4			
CaEE-	43	4C	45	4
Cole 1 -	41	D2		
COF	47	45	D4	0205
COFS-	4 E	45	D7	9206
COF9-	54	41	42	0297
C®FC-	A8			
C®FD-	54	CF		0288
$\mathrm{C} \not \mathrm{F}$	46	CE		9209
C101-	53	5%	43	0210
C194-	A8			
C105-	54	48	45	11
C108-	CE			
C109-	4E	45	D4	0212
C100-	53	54	45	0213
C16F-	D®			
C110-	AB			6214
C111-	AD			0215
C112-	$A A$			¢216
C113-	AF			6217
C114-	DE			0218
C115-	41	$4 E$	C4	0219
C118-	4F	D2		6220
C11A-	BE			Q221
C118-	ED			0222
C11C-	BC			0223
C11D-	53	47	CE	0224
C128-	49	4E	D4	6225
C123-	41	42	D3	0226
C126-	55	53	D2	\$227
C129-	46	52	C5	0228
C12C-	58	4F	D3	0229
C12F-	53	51	D2	¢230
C132-	52	4 E	C4	¢231
C135-	4 C	4 F	C7	9232
C138-	45	58	D¢	023

（SYM－PASCAL－continued from page 24）
P．S．－We took a little＂time－off＂to follow the suggestion in the SYM－Pascal manual about which sections of the object code should be disassembled；examination of the thus－obtained source code indicates that＂customization＂to match your system requirements should be a very simple task．
＞＞＞PLEASE CONTACT SATURN SOFTWARE LIMITED FOR ANY FURTHER INFORMATION＜＜＜

（continued from page 8）		
90A0－ 57 D9	1520 SUBTBL	． 31 LDAC1－1
96A2－6D 90	1530	．SI STORE－1
96A4－C4 D9	1540	．S1 TR1＞2－1
90A6－B1 D9	155\％	．SI TR2＞1－1
90AB－1C D6	1560	．S1 FPADD－1
9GAA－MC D6	1570	．SI FPSUB－1
90AC－DD D7	1580	．S1 FPMML－1
96AE－C4 D8	1599	．SI FPDV1－1
$99 \mathrm{BD}-\mathrm{BD} 90$	1600	．SI NO．OP－1
9982－F2 DC	1619	．SI FPSQR－1
9084－F9 DC	1620	． 51 FPEXP－1
9686－81 DA	1639	．SI FPINT－1
90日8－＠D DA	1640	．SI FPABE－1
90RA－EE D9	1659	．SI FPSGN－1
90BC－9F D7	1660	．SI FPLOG－1
90RE－ 719%	1670	．SI CONV1－1
96C』－8E 9\％	1680	． 31 CONVZ－1
90C2－9A 90	1690	．SI RETRN－1
	1798	
9øС4－9め øø øめ	1710 VALUE 1	．BY \＄90\％\＄002
9めС7－めめ ¢	1726	－BY \＄0め \＄00
	1730	
	1746	．EN

THE BASIC USER FUNCTION
The BAS－1 USR function has more parameter passing capability than the USR function as implemented in most earlier Microsoft BASICs．Also， there is no need to＂POKE＂the subroutine location，as in most other Microsoft BASICs．If you wish to have the values in the A，Y register pair with the correctiy，however，your machine language program must not （ $\$ \sigma \varnothing \varnothing 8$ ）The BASIC subroutine at \＄D14C converts an integer supplied to it in the A, Y register pair into a floating point number and returns to the proper reentry point in BASIC with its own RTS．This floating point value is then assigned to the variable whose＂name＂was set equal to the alue is then assigned to the variable whose＂name＂was set equal to the The purpose of this and the following brief notes is to point out parameter is also passed in the two page zero locations at \＄B4，\＄B5，as well as in A, Y ．This may prove useful if the parameters are to be used several times．Remember that although BASIC stores its integers in hex high byte first．The A, Y pair is passed as USR（LOCATION， $256 * A+Y$ ）on the first call，or as USR（256＊A＋Y）on succeeding calls to（the same） LOCATION．

Note that while Y may lie in the range $\ell<=Y<=255$ ，you cannot pass values of A greater than 127．This is no real restriction，however， since the acceptable range for A is $-128<=A<=127$ ．To pass $\$ F F$ ，set $A=-1$ ，to pass $\$ 89$ ，set $A=-128$ ，etc．
ON INTEGER VARIABLES
You may also pass parameters as BASIC integer values，P1\％，P2\％，．．．． If the first line in your BASIC program assigns dummy values to these variables，then after RUN is＂executed＂the values of these parameters are at known locations，from which your subroutines may pick them up． RUN the program：
$1 P 1 \%=1 \varnothing: P 2 \%=106: P 3 \%=100 \varnothing$
Exit BASIC with $X=$ USR（ $\%$＂ $8935 ", Q)$＜cr＞．Reentry from SUPERMON is with ．G SYM－PHYSIS 10：14

5 ＜cr＞．You will find the correct value pairs 96 GA， $6064,03 \mathrm{~EB}$ ，in the memory at the end of your BASIC program，with the pairs separated by seven bytes．The location of the first pair（high byte first！）is at the address in locations $\$ 70, \$ 7 E$（low byte first！）+2 ．This technique of passing paraneters as BASIC integers is very useful in graphics，
music，and control applications．Your BASIC program can change the values of these parameters as desired，but the locations will remain fixed．AND NOW HERE COMES THE GOOD PART！！！！！You are not restricted to returning only a single pair of bytes through（A，Y）．Return as many pairs as you wish，through $\mathrm{P} 1 \%, \mathrm{P} 2 \%$ ，．．．．

Just recently，one of our readers phoned to ask about the＂\％＂sign he had seen following variable names，and it was suggested that he reread the BAS－1 Reference Manual section on integer variables！！！！He pointed out that the Reference Manual had absolutely no mention of integer variables；much to our surprise this is true．Those of us familiar with BASIC before getting BAS－1 must just have assumed BAS－1 would have integer variables and did not realize they were not documented in the Manual！

Incidentally，the use of integer variables instead of floating point variables saves no space，and very little time，if any．The major ad－ vantage of using integer variables is the space saving in arrays integers．A second advantage of integer variables is the close relation to hexaderimal form as illustrated above．Has any reader studied Microsoft BASIC enough to let us know under what conditions the use of integer variables will reduce computation time？

A PATCH FOR DISARAE
Here is an improvement for Hissink＇s DISARAE，extracted from a letter from Dick Albers：

As originally published in SYM－PHYSIS，DISARAE wastes one，or，for cer－ tain instructions，two bytes per line，by inserting $\$ A \varnothing$（ $\$ A \varnothing=\$ 80+\$ 2 \varnothing$
$=$＂negative space＂）as an end－of－line indicator．That can be a lot of bytes for a large program，such as RAE－1，or RAS－1．These new lines will correct the＂problem＂and save the bytes：

3906				3924		DEC	＊PGM．PTR＋ 1
3916	END．LINE	PHP		3926	MRKEND	LDY	\＃\＄ø口
3912		STY	＊Ysave	3928		LDA	（PGM．PTR），V
3914	DECPTR	LDY	＊PGM．PTR	3939		CMP	\＃ 20
3916		DEY		3932		BEQ	DECPTR
3918		STY	＊PGM．PTR	3934		ORA	\＃\＄8め
3926		CPY	\＃\＃FF	3936		BMI	A．STORE＋S
3922		BNE	MRKEND	3940			

floating point and huey il
So that you may better understand how Microsoft BASIC does its arithmetic，including series evaluations，we publish below a＂derived＂ source code for the RAS－1 TRIG PATCH；this is well worth studying．

We would also like to remind you of HUEY II，a free－standing floating－ point program，available in Manual form only，and only from the 6562 Program Exchange．If you really want to understand floating point arithmetic，including conversions to－and－fro，sophisticated computa－ tional algorithms，and＂macro－string＂programming，the HUEY II Manual is a must：
While we are not officially dealers for HUEY II，we do have permission to distribute a RAE－1 Format Source Code Cassette for HUEY II to those who order the HUEY II Manual and Cassette as a package．

2960－A9 Aด
2062－A9 日E
2094－ 85 C4
2008－ 60

Gg19 ；SOURCE CODE FOR（MODIFIED）BAS－1 TRIG PATCH
6936 ；The＂original＂source code appearing here was gø40 ；recreated by Tom Gettys from a study of the 0650 ；published object code．It was slightly modi－ 0660 ；ifed and compacted by Jack Brown to generate 0970 ；a shorter object code than the published one． वø日ぁ
0990 ；Wherever you choose to relocate this patch， 0109 ；remember that it is the address of TRIGST 9110 ；that is to be installed in TRIGP，not the 0120 ．BA address，i．e．，include the following G130 ilink in your initialization：
9149
 6169

```
－BA \(\$ 2080\) ；OR WHEREVER
```

LINK
LDA \＃L，TRIGST
LDY \＃H，TRIGST
STA＊TRIGP＋1
STY＊TRIGP＋2
RTS
6190 STA＊TRIGP＋1

020の	STY TRIGP＋2
日210	RTS

0230 ；Jack Brown has given us permission to repri 6240 ；here the following（slightly modified）extract 6259 ；from his copyrighted SYM－BASIC extensions．
6268
6270 ；絃 COPYRIGHT 1989 BY J．W．BROWN 6289 ；＊＊
6290 9310 9320 CEFLG 6336 FUNDIS 9340 FACTC 0350 FACTA 0360 FACTB 9370 ASCFAC g38．TRIGP
6390
6409 ；施
6410
9420 KEYWD 6430 OPENUP 6440 INIT 6459 ERRMES $646 \emptyset$ BAWARM 6479 FIXLNK g480 LNKFIX 6490 FINDLN 65 G\％SCRATCH g52g PROCES 0526 PROCES 6540 BADLOD 9559 EADGOTO 6569 LINGET 6569 LINGET 9570 BASRET 958ด MESSUB ØGดด NUMERIC 0610 EVARG Ob26 CRBRAK Ø630 CLBRAK Ø649 CCOMMA 9659 GVARAD

ALL RIGHTS RESERVED
PAGE ZERO DEFINITIONS
．DE \＄16
．DE \＄9E POINTER TO FUNCTION DESCRIPTION －DE \＄A7
－DE \＄B1 FLOATING PT REGISTER A －DE －B9 FLOATING PT REGISTER B ．DE \＄CI ASCII REP OF FACTA ．DE \＄C3 TRIG JUMP

NTERNAL BASIC ROUTINES

$. \mathrm{DE}$		START KEYWORDS
DE	\＄ C 229	INITIALIZE
．D	\＄C258	ERRIR MES SUB
．DE	\＄C27E	BASIC WARM START
．DE	\＄C323	FIX LINE LINKS JUMP
DE	\％C32C	FIX LINE LINKS
．DE	\＄C427	Locate line in tex
．DE	\＄C458	
．DE	\＄C46D	RESET PTRS AND CLR
．DE	\＄C5D1	EXECUTE LINE OF TEX
．DE	\＄C6DD	SAVE ERROR EXIT
．DE	\＄CGEF	LOAD ERROR EX
E	\＄C732	END GOTO
．DE	\＄C7F5	ASCII TO BINARY
．DE	\＄C8F6	HERE WITH FULL BUFF
．DE	\＄C954	SEND MESSAGE HI
．D	\＄CA2E	RETURN FROM GET
．D	\＄CA46	NUMERIC GET
．DE	\＄CB43	EVAL ARG AS 2 byte
E	\＄CCAS	CHK FOR RT BRACKET
．DE	\％CCAB	CHK FOR LFT BRACKET
．DE	\＄CCAB	CHK FOR COMMA
DE	\＄CESF	GET VARIABLE ADDRESS

RAE CLOCK CORRECTIONS - DICK ALBERS ${ }^{2990}$
13: $09: 53$ WED DEC 36, 1981
Dear Lux,
Here are the last of the corrections to RAE CLOCK.
As you can see, the actual corrections are simple. The important ones are in line(s) 1959, and lines 3596 to 389%, since these portions do not run properly as published under many conditions. The other corrections are not as critical, since those problems only occur under certain unlikely conditions.
BRKFIX, INXIRQ, and OUTXIRQ are the subroutines that "should have been in SUPERMON" that you mentioned in the introduction to the program. These routines are general enough to be used any time IRQs may occur during $1 / 0$ (unless you are using IRQs for interrupt driven input)

I too, would like to see an interrupt driven input program for SYM, but additionally, with the use of an ACIA or UART for serial/parallel, parallel/serial conversion.

The inspiration for this program was a similar one which you sent me that had appeared in an early issue of MICRO magazine (I found it in THE BEST OF MICRO, Vol. 3), written by Casmir J. Suchyta, III, and Paul W. Zitzewitz. That program was designed to be used with BASIC, and you was received as a challenge, and RAE CLock is the result

SYM-PHYSIS 10:19

Thanks also to Jack Brown for pointing out an expier mistake of using the same timer as SUPERMON uses for tape timing. Everything was fine by you in issue 2 of SYM-PHYSIS for it is the one at sAøXX, and was used have been using various versions of that have beed in ing various versions of SYM, and I had never wondered "why?"

An easy way to make these changes without changing the original line numbers (so they can still be used for reference?, is to enter the new ines after the end of the program, and then Move them to their final ocation. $1 f$ you really want to, you can renumber lines fr

3799	NYR	LDA TSTAB, X Index for prompt
3795		TAY
3899		BNE PMOR If done, fall thru
3895		
3850	******	Line 3876 may be changed to:
3860		
3870		JSR INVEC Get any character
3889		
3889		To allow any character to start the clock.
388\%		(INBYTE requires a non-hex character.)
3889		
3890		Finally, you may delete lines 3890 and 3960 ,
3996		since both are included in START.
3910		
3920		
3938	!!!!!!	If you would like a more "standard" formatz
3940		
3950		; Ø0:14:49 SUN NOV 18, 1981
3960		
3970	!!!!!!	Make these additional changes on the indicated liness
3986		
1615		. BY \$2C ; Comma
2576		LDA BUFF+ 17
2616		STA BUFF+\$17
274\%		ADC \#\$1F Add 31 bytes
2860		ADC \# ${ }^{\text {S }} 15$
4140	DRTAB	- BY \$C9 \$CA ©C9 \$63 \$CA \$92 CCA \$01
4159		. BY \$84 \$C9 \$86 \$05 \$CC \$C9 \$68 \$67 \$60

old problems and new software policy

There is now far more quality software available for the SYM-1 than we (not editorial "we" this time, but us, you and me!) would ever have thought possible a year ago. Actually, we started the Users' Group with the selfish thought that it would provide us with "free" software, and the "noble" thought that we could expiate our selfishness by passing the software on to the rest of the SYM-1 community.

In practice however, we now have guilt-feelings about having become a bottleneck in the distribution system, since the better programs are, in general, much too long to publish in SYM-PHYSIS. The only alternatives sette and/or disk, and charge, not what the traffic will bear, but enough to pay for all actual costs incurred: media, printing, shipping, handling, outside labor, etc., plus at least minimum rate for the time send in editing. After all, consulting would be much more remunerative!

We were semi-amused when one of our readers complained bitterly about the "exorbitant" prices Jack Brown was charging for his software (we felt much the same way about the prices of the 6592 Program Exchange, until we learned better, the hard way!). We were really amused when the same reader submitted a program for distribution at a far greater asking price for a very much lower quality program, explaining he had put so
The publication of SYM-PHYSIS started as a hobby, and could easily continue as just that, a "spare time" activity, actually meeting the scheduled dates. The "slippages" are due to two unanticipated added responsibilities, neither one of which we would ever even have considered as a "hobby". One is answering the tremendous volume of mail asking for help with SYM-1 problems. Some problems are easily solved and many of the questions are easily answered; often a brief note suffices. Unfortunately, the more interesting questions and problems often require many

SYM-PHYSIS 10:22
hours of "research" time, which are very frequently interrupted by sibility is one we cannot shirk; there would otherwise effectively be no source of help for SYMmers.

The second responsibility we shall give up, as explained here. To paraphrase Orson Welles (in a US TV wine commercial), our policy has been: "We shall release no program before its time". This meant that we examined each program carefully, understood its inner workings completely, exterminated as many of the bugs as we could find, tried to make it "crashproof", corrected any misspellings and grammatical errors, clarified any vague instructions, added missing documentation, and tried to give the package a "professional feel". This obviously has taken up much of our time, and has kept us from doing all of the "fun" things we got our computer for and an anded only so that this sentence will not end with a preposition!)

Occasionally, as with SWP-1, since the demand for a word processor was so great, we released a package without the usual manual, to save time, hoping that the example provided, plus the fully commented source code, also provided, would make the package immediately usable anyway (besides, eare helped get started by answering their mail or telephone inquiries.

After all, SYM users are "sharper" than the typical Apple user; their wits are honed by the exiguousness of SYM software, to mix a mean metaphor. Besides, manuals are expensive to prepares, print, handle, and mail, and the costs must be passed on to the purchaser. Since SWP-1 is an "accessory" to RAE-1, all purchasers had the ability to process the source code, which we would rather have than a manual, anyday! Some suggest they reconsider, since RAE-1'is one of the four major strong points of SYM-1 (see elsewhere for the other three). A whole brave new world will be opened up to them. Besides, RAE is needed for SYM-Pascal!

AND NOW, AT LAST, HERE IS OUR NEW POLICY ON NEW SOFTWARE:

To reduce the time delay which has up to now existed between the submission of software to be distributed by the SYM -1 Users' Group and the actual release date, all programs will be tested to see that they do work in at least a minimal acceptable way. Minor, non-catastrophic bugs which cannot be easily fixed will be annotated as such in the documentation; catastrophic bugs will, of course, be cause for rejection, and the program will not be distributed. Only a very minimum of editing and polishing will be done. RAE readable source code will be provided, and the purchaser should have RAE-1 or RAE-1/2 both are functionally equivalent, one comes in a single $8 K 2332$, the other in two
$4 K 2316 s$) installed, and the skill to read and understand, and modify 4 K 2316s) installed, and the skill to read and understand, and modify and reassemble the source code, if necessary, to eliminate any problem areas.

Only the minimum amount of hard copy documentation will be provided, i.e., just enough to get started. This will be at the very least just that provided by the author, and which was enough to get us started, and at the most we will add just enough to help the purchaser avoid all of These programs will be marked as NOT CERTIFIED We sugoest that onl Theserienced users buy these versions. As feedtark fromgearly purchany is received the program and dorumentation will be uporaded to make package suitable for less skilled users, and the program will then be marked CERTIFIED.

We hope this new policy will help get useful programs out into the using community more rapidly, and help relieve the pressure on us. We prefer to ship data on SYM cassettes because the procedure for doing this is already "automated", and is handled by a relatively unskilled operator. Shipping on FODS $51 / 4$ inch disks will require a medium surcharge. Shipping on CODOS 8 inch disks is not yet automated, and will require a surcharge for both medium cost and skilled labor. The same will hold true for FODS 8 inch disks when these are installed. The problem is that we currently do not have dual drives installed. Try making copies on a single drive system, and you'll understand!
When a program submitted to us is extremely useful but needs a major "overhaul" to bring it up to "commercial" standards we have been sending "review" copies to a few selected individuals who will either work with the authors, or do the necessary upgrading themselves, in exchange for the review copy. This is both bad news and good news. It is lots of Jack Brown and Dick Albers. Now that our new policy will hive been time brown and Dick Albers. Now that our new policy will give us the timen tore time for the "fun" things hope to use mare reviewers and hav even more time for the "fun" things

SYM-PASCAL IS READY
We just received in the mail from Saturn Software Limited (Jack Brown) a review copy of SYM-Pascal, Release $2 . \emptyset$ (16 K RAM, cassette based), by Ralph Deane. We took a few minutes off to load the cassette, transfer the contents to disk, skim the manual enough to like what waw, and

SYM-PASCAL
COPYRIGHT RALPH DEANE 1981
25BD-35BD 35C1
258D
3
If that reminds you a little of RAE-1's prompt, it should! SYM-Pascal requires that RAE-1 be installed, and makes extensive use of many of RAE's capabilities. 2SBD-3SED is the area allocated to the Pascal source text; $35 C 1$ is the start of the area where the p-code will b deposited during compilation. The 25BD on the line below is the current value of the text pointer. These values are all resettable.
To quote from the manual: "One of the reasons that SYM-Pascal is so compact is that it 'sits on top, of the RAE system and uses its editor and file system in the preparation of the Pascal source program. The compiler accepts RAE compatible text as its input." How very, very, elegant! Note that this is an Integer Pascal (hex as well as decimal).
We can say little more at this time for two reasons. First, the newsletter has highest priority; after the camera-ready copy has gone to the printer, we will have more time (?). Second, although most of Jack Users? Group, SYM-Pascal is available only direct from Saturn Software; dealerships are not yet available.

We do not list prices here because some of you may wish foDS or CODOS linked versions, and since Release 2.0 does not include the source listing, you may prefer to have the linking done for you. Actually the
linking should be easy, since all $1 / 0$ is through RAE. SYM-Pascal recognizes Put and GEt, but will give ?ED errors on ENt, LDd, and DC. These are easily trapped, however, and your existing RAE links to FODS and coDos used directly.
(continued on page 13)
SYM-PHYSIS 16: 24

BEHAVIORAL SCIENCES RESEARCH APPLICATIDNS

Here is a letter we felt was well worth sharing with all symmers!
College of Physicians \& Surgeons of Columbia University | New York, N. Y. 10032
DEPARTMENTOF PSYCHIATRY
January 6, 1982
Box 124 Psychology Department

Neurological Institute
710 W. 168th Street
New York, NY 10032
Telephone - 212-694-2214
Dr. H.R. Luxenberg
SYM Users' Group
P.O. Box 315

Chico, CA 95297
Dear Dr. Luxenberg:
Other SYM-1 users who are behavioral researchers will be interested to know that in our laboratory we have developed a group of programs for the $8-K$ SYM which present various kinds of visual and auditory stimuli on a CRT [or earphones in the case of auditory stimulil and measure, store, and perform statistical analysis on subjects' manual reaction times (in milli seconds) to those stimuli. Stimuli are presented laterally; that is, to subjects left and right visual fields [ears], as well as presented centrally [binaurally], in different conditions. The timing portion of these programs is written in assembly language. Programs for presentation of stimuli and for statistical analysis of reaction times are written in BASIC.

For the visual reaction-time experiments, the stimulus consists of a dot positioned about 10° to the right or left of a central fixation dot, or positioned in the center. The dot stays on for less letters to left and right visual fields for a brief period and recor subject reaction times. For the auditory experiments we are using the TI SN76488N complex sound generator chip to present simple tones (monaurally and binaurally in different conditions) through earphones.

The reaction time button is affixed directly to the SYM. A second button, operated by the experimenter, allows the experimenter to scratch "bad" subject responses (especially anticipatory responses).

In another ongoing project we are attempting to send our SYMcollected data over the phone lines to another, mainframe computer for large-scale statistical analyses. At present, this remains the ultimate Chinese (software) puzzle! We will inform you if we ever solve it!

Our laboratory is directed by myself and Rita G. Rudel, Ph.D. The programs and hardware modifications were made by Mr. Jack Harris We feel we have only begun to scratch the surface of SYM-1 capabilities for driving sophisticated experimental and clinical diagnostic psychological procedures. We invite other behavioral researchers interested in learning more about our programs or exchanging ideas to contact us.

Melinda Broman, Ph.D Assistant Clinical Professor of Medical Psychology

FQ23-85	AE	0660		STA *INDEY	LET ELIFFER IHDEX = 0 IHHIEIT ECHO	
Fe225-80		06.76		STA TECHO		
Fe22- Fl -		Q6ec				
Fe2F- 85	F5	0690		STA : EDFLG	Hormal flag	
F62C-60		Q 96		ETS		
		0716	; IHPUT	CuITPUT LIHKS		
		9720				
F620-63		17564	IHFUIT	PLA	DISCARD A FHP F	
F02E-68		0749		FLA		
F62F- A4	F?	日 95		LDY : IHDEY		
Fas - Fa	QE	0769		EEQ GETCHP	E:LIFFER EMFT'Y	
F933-24	F5	Qria		EIT : EDFLG		
F635-30	E13	6786		EMI $=+4$	FLAG = EDIT MODE	
F037-40	F1	0796		THP REFDEU	EASIC REFD THE EUFFER	
Fess- Hg		-1860		LDA \#\#20	FEESET EDIT FLAG	
Fgac- 85	F5	2619		STA : EDFLG		
FGSE- 20	4R F1	0820		JSR RESOUC	RESET OUTFUT VECTORE IHFUT 1 EHE	
F641-20	B4	9836	GETCHE	TSR INTCHE		
FG44-29	7 F	1840				
		0856	; ESCAFE			
		日eec	: THEN E	ESCAPE RETURYS THE WHOLE LIHE TO EASIC		
		Qe7e	; OR CR	RETURHE THE FAR	T AT THE LEFT GF THE CUESOR.	
Fer46-C9	1 E	96ea	ESCAPE	CMF \#\#1E	EDIT 1 LINE	
Fers- 00	24	9896		EHE C:TRLH		
FC14A- CO	$\underline{46}$	0964		CFU \#G	UFLID OHLY RE FIRST CHR	
$\mathrm{FE} 4 \mathrm{C}-\mathrm{FQ}$	66	0916		EEQ $=+7$		
FG4E- 20	4083	0926		ISR CRLF	OTHEFWISE RETUFH	
F651- 40	14 Fl	0936		THP REEADEU-2		
FES4- $\mathrm{P9}$	20	19946		LDA \#L. WEITEU	CHAHGE OUTUE TO	
F656-80	E4 FE	6956		STA CUITUEL	WRITE IN ELIFFER FROM LIST	
F959-R9	F1	696.		LDA \#H. METTEU		
F95E-8D	65 RE	6976		STA CuTUEC+1		
FQSE- E9	46 F 1	0986	CMCLST	LDA LIST,	FUT"LIST" IV EUAFFER:	
FG61-99	0681	0990		STA EUAFFER: $'$ '		
FGE.4-20	H01 B^{1}	1606		TSE TOUT		
Fear- Ce		1616		INY		
	E4	1626		CP'Y \#4		
FEEA- 00	F2	1036		EHE CMDLST		
FEGEC- FO		1646		EEQ GETCHR	FUT LItHE HUM. IH EUIFFEE OE LEFT IH THE EUIFFER	
		1650	:CTFL H	H MOUES THE CUFGOR LEFT IH THE EUFFER CMP \#S LEFT TGB		
FG6E-C9	08	1668	CTELH			
F 17010	$\underline{6}$	1676		ENHE C:TRLI		
F6172-88		1096		DEY		
F073-10	E8	1090		EFL ITOUT		
FQ75-C3		1164		It, ${ }^{\text {a }}$		
FG76-10	c9	1119		EPL GETCHR		
		1120	;CTRL I			
F678-C9	69	1136	CTRLI	CMF \#9	EIGHT TAE	
F67A- 09	16	1149		EfNE CTRL2		
FG7C- C8		1156		IHY		
F970-20	84	1160	ITOUT	ISE: TOUT		
		1178		ECS GETCHE		
		1180	;CTRL 2	2 DELETES THE CH	A AT THE CUPGOE	
F682-84	FF	1190	CTELZ	STY *IHDEY		
F984- 09	19	1200		CMF \#\# 1F	DELETE A CHR	
Feres- De	ED	1210		EHE CTRLE		
Fe88-E9	(1) 91	1220	movolin	LDA EUAFFER+1: Y	MOUING EUFFER 1 LEFT	
FQ8E- 99	$\underline{101}$	1236		STA EUFFER: ${ }^{\text {Y }}$		
FGBE-C8		1249		IH'		
Ferf- CO	48	1256		CPY \#72	TILL EHO OF EUIFFER	
F991- D9	F5	126.4		EHE MOUDUN		
Fg93-F9	11	1276		EEQ FRTEUF		
		1280	;CTRL Q	a ALLCOWS IHSERTI	OH OF A CHE AT THE CUESOR	
F695- C9	11	1296	CTRLE	CMP \#\#11	OPEN A HOLE	
F097- D0	$2 E$	1304		Erte CTRLY	SYM-PHYSIS 16:27	

A SHORT, BUT VERY SWEET, COMPUTER ASSISTED INSTRUCTION PRORRA
Dear M. de le Courts
Thank you for the Christmas gift (above) for all BASIC SYMmers. While I have not tried your program out personally, it looks great, and most BASIC SYMmers will especially appreciate its line editing capability. This, plus Jack Brown's earlier published line renumbering program should allow one to really polish up the appearance of their BASIC programs.

Below is a progran for your daughter, and all SYM BASICers, which 1 did ot edit or "polish" (except to correct one misspelled word) in any way, so that SYMmers can practice using your line editor on it.

Sincenely,

EDITORIAL NOTES TO CRISWELL'S CAI BASIC PROGRAM
This, as yet unnamed, modest, mild, unassuming, little program is far SYH-PHYSIS 16:29
sore powerful and versatile than at first glance it appears to be, and I strongly recomend it to all BASIC users. It was submitted by Dr. Hugh E. Criswell, another behavioral researcher, whom I hereby formally introduce to Dr. Broman (see her letter on page 25).

Dr. Criswell also submitted the necessary object code to permit saving and recaling data files (see p. 7:17), and a set of samplequestions, with answers, as a "saved" data file. The questions so well illustrate the versatility of the program that we provide them, following the LISTing, as a "puzzle" for the reader. We used the Alphanumeric Verify published in an earlier issue to "dump" the data file in ABCII format. Readers might wish to see if they can figure out the questions and answers from this dump.

Studying this string file dump will certainly help provide an understanding of how BASIC processes and stores its strings. Remember that BASIC stores all generated strings and string arrays from the top of the memory downwards.

Although the program is far from self-explanatory, it is sufficimenty simple in structure to be easily understandable by beginners, and is highly recommended to them as a useful way to learn how to use string arrays.

10 DIM A $(29,29), B(20)$
11 REM A
15 DATA WRONG! TRY AGAIN, NOPE! REDO IT YOU TURKEY, INCORRECT! REPEAT IT
16 DATA "POOR ANSWER TRY AGAIN!"
L=1
36 PRINT"TYPE W TO WRITE A QUESTION OR L TD LOOK AT ONE": BOSUBEBge
49 IF X ${ }^{\text {b }}=$ "W"THEN GOSUB1966
5 IF X ${ }^{3}=$ "L"THEN GOSUBZGe

66 E0t030
$1690 \mathrm{~J}=9$
1091 PRINT"QUESTION \#";L,FRE(6)
1616 PRINT"TYPE A QUESTION AND END IT WITH A : AS THE LAST LINE"
$1915 \mathrm{~J}=\mathrm{J}+1$
1629 GOSUB5969, AS ($4, J)=x$
1636 IF As(L,J)<>"!"GOTO1615
1040 PRINT"THE RIGHT ANSWER 15": BOSUB5日96: $\mathrm{B}(\mathrm{L})=\mathrm{X}$
$1950 \mathrm{~L}=\mathrm{L}+1$
105 PFL2GTHENGOSUB3G9
1666 RETURN
$2991 \mathrm{I}=$ INT CHR ($1-1$ (27)+"E";
2065 REM THIS ENTERS A OUESTION INTO THE POO
$2619 \mathrm{~J}=1$: $\mathrm{X}=\mathrm{SQR}$ (2)
2912 PRINT"QUESTION "": I,FRE (6)
2929 PRINT A $\$(I, J)$
$2630 \mathrm{~J}=\mathrm{J}+1$
2640 IF A $(\mathrm{I}, \mathrm{J})\langle>$ "!"GOTO2629
2955 PRINT"WHAT'S YOUR ANSWER?"
2965 G0subse96: $A=X$
2976 IF $A=B(I) T H E N P R I N T " R I G H T!~ G O O D ~ J O B ": R E T U R N ~$
2685 READ C
2090 IFC $=$ ="POOR ANSWER TRY AGAIN!"THENRESTORE
2199 PRINTC $=$:GOTO296\%
$3 \boxminus 60$ PRINT"JUST A SECOND, I'M MEMORIZING THESE QUESTIONS
$3091 \mathrm{X}=\mathrm{USR}$ (\&"1C26", \&"ø8.96")
3919 L=5: RETURN
5069 X $\$=$ N" $: ~ X=6: W=1$
5961 REM GUARDED INPUT AND BACKSPACE
$5629 \mathrm{Y}=\mathrm{USR}(-36129, \boxed{ }): Y=127$ ANDNDTPEEK（249）
5621 IFW＞254THENRETURN
$5622 \mathrm{~W}=\mathrm{W}+1$
5639 IFY $=13$ THENPRINTCHR\＄（13）：RETURN
5935 X \＄＝X $\$+$ CHR $\$(Y)$
5640 IFY＝95ANDLEN (X) ）$>$ GTHENGOSUBS 160
＜5BTHENX＝VAL $(x \$)$
5679 GOTO5ø29
$5100 \mathrm{X} \$=$ LEFT $\$(\mathrm{X} \$$ ，LEN $(\mathrm{X} \$)-2)$ ：PRINTCHR $\$(8)$ ；CHR（ 8 ）；RETURN
ASCII DUMP OF DATA FILE（FROM \＄GCDG－\＄114F）

Abstract

fore all2，\＃of hours it took owrite this ！＂ \＃\＃！programi， of bytes of mem ory remainingnum ber？What is the strange num after the quest ion！4， 29 lines or less．．allrig ht，so it＇s a ba d question．3， 30 lines2， 26 line s1， 16 linesrun ning this progra m；How many line 5 can a question have？Just in case you didn ＇t look at the D IM statements be fores．2．V．j．i．X ．

Published below are extracts from a letter from Joe Hobart，and a manuscript describing his experiences with the FDC－1．Joe and 1 are two of the six individuals outside of Synertek who have been＂lent＂pre－ production samples for evaluakion don know the other four，since ＂Jerry＂Larsen，of Synertek Systems，a great person to work with．

My review follows Joe＇s，but first let me say this：I used to assert My review follows Joe＇s，but first let me say this：I used to assert
that there were THREE major＂selling＂points for the SYM SUPERMON （with all its vectoring and user available utilities），RAE－1（with or （with all its vectoring and user available utilities），RAE－1（with in I／0 resources（ $3-6522 \mathrm{~s}$ ； $1-6532$ ）．There will soon be a FQURTH major strength：the FDC－1 disk system！

3465 North Andes Dr Flagstaff，AZ 86901 （6ロ2）779－2118

Hi Lux：
January 15， 1982
Here is the manuscript of my first experiences with Synertek＇s new FDC－1．I hope it is suitable and not too late for inclusion in the next issue of SYM－PHYSIS．I do not know when Synertek will have the product

This is my first disk experience and I must say that there were a few frustrating moments．I zapped the controller with static electricity or something and spent a week trouble－shooting it without any kind of a schematic．I also spent some additional time getting all the jumpers in the Shugart set to the normal configuration．My brother must have had a rather unusual controller when he was using this drive．It was really a great relief when I studied the disassembled listing for the FDC soft ware，found addresses at $\$$ Fø日ぁ－F1øø，removed $m y$ EPROM，and heard the drive find track $\varnothing \varnothing$.

I hope that Synertek does supply the cables to go between the drive and the controller．I had to modify a standard Shugart cable；those press on 5 g pin connectors require a LOT of force to seat properly use a large bench vise to do the job．

The manuscript only hints of some of the problems I encountered in getting the disk system running．I attribute most of the problems to inexperience with the system．I remember similar problems when I first got SYM－BASIC running（especially with the TCP）．As I became used to the system，the number of problems decreased very significantly．I an sure the same thing will happen with the disk system．

One of the most difficult areas is in getting the system to work in RAE with both disk and cassette．Jared suggested toggling \＄EE to get the cassette to work，but this does not always work．I have not fully checked all possibilities，but it seems that the cassette will not work if a disk save（ENter）has been done since RAE initialization．This will require some experimenting．I still do not understand what was happening to prevent me from reloading aAsic programs，but that problen seems to have gone away since I put TCP back in EPROM．Speaking of TCP， I just do not know enough about the SYM to be able to make TCP and SYM－ Dos work together．Perhaps one of the users will have some ideas．

Jared did ask me to pass along that you should not get an error indication when you verify data on a disk that was taken from a changing source．Apparently you were saving data from a clock register and then expecting to see an error on the verify．From my understanding of disk systems in general，I think that the verify only compares the data on In the IBM format this CRC is recorded in each sector near the data have two known thad disks from detert the bad area detect the bad areas these disksa 1 have not bean able to use either disk past the bad area yet，but I think several tracks have been damage by a poorly aligned drive．

Jared did pass along some information on how the R／W routines work．My next project is to modify my fig－FORTH to work with the disk．I did send Jared a copy of my fig－FORTH．After some problens getting it to load on his MDT 1øø日，he reports it works fine．By the way，Sandy McKay tried my DRAM fix of an extra ground wire between the $65 \emptyset 2$ ground and the memory ground bus with excellent results．Apparently all his memory problems and the system crashes when he turned on his teletype just vanished．Sandy used a long piece of wire（ 6 inches）too．

Enough rambling．I really do like having a disk system at last． Best regards，
／s／Joe Hobart
EXPERIENCES WITH SYNERTEK＇S NEW FLOPPY DISK CONTROLLER
For the past two weeks，I have been using an engineering prototype of Synertek＇s new floppy disk controller．During this time the controller has performed very well，providing fast and reliable mass data storage SYM－PHYSIS 16：32
observations and suggestions for using this new controller with expanded systems:

Since I have had difficulty using dynamic RAMs with my SYMs, I was very apprehensive about the physical separation between SYM and memory caused by putting a six inch controller between them. My fears were unfounded; sion port wod pither $33 k$ beta mory board a $32 k$ tached to the expan or a 4 K static memory, attarhed to the controller board Based on euper, ence with my dynamic memories, an additional ground wire between one of the SYM's $65 g 2$ ground pins and the memory ground bus would help cure any problems that develop.

The interface between SYMDOS and SUPERMON is very smooth. A simple .G $9 \varnothing \emptyset 6$ links the two and adds disk save, load, format, and list directory commands to those of the monitor. It is really nice to be able to load my $736 g$ byte FORTH in about 1 and $1 / 2$ seconds as compared to about one minute required for a cassette tape load. The FDC-1 was designed to work immediately with a 4 K SYM. For use with larger memory, it is convenient to relocate the disk buffer/workspace away from the \$gE8g-\$gFFF default location. This is accomplished by changing the contents of \$A62A-\$A62B to point at the new buffer location.

The FDC also works smoothly with RAE-1. Once in RAE, a simple >RUN $\$ 9663$ links SYMDOS to RAE and provides disk ENter, LOad, LOad and Append, and assemble multiple source files. It is while assembling multiple source files that the speed and reliability of a disk over a cassette system become especially apparent. I vividly remember some strong frustrations with my cassette system while repeatedly assembling fig-FORTH during the debugging stage. Assembling these same source files from disk was a very pleasant change.

To take full advantage of a memory larger than $4 K$, either the buffer $10-$ cation must be changed or the RAE memory allocations must be juggled to avoid this buffer area. A minor annoyance that will decrease as a user becomes more disk based, is that the cassette interface is not readily circumvented by togiling the contents of memory location \$goEe from when using disk to $ø \emptyset$ when using the cassette interface.

Interfacing SYMDOS with my BASIC was not as convenient as with SUPERMON or with RAE. The FDC uses $\$ F \emptyset \sigma 6$ - $\$ F 1 F F$ which conflicted with my EPROM containing Brown's Super TCP and Renumber and the Synertek Trig Patch. o resolve this conflict, I modified the contents of the EPROM 50 that is addressed by using $1 / 4$ of a 74 LSG2 NOR gate in the circuit below:

$$
\text { A19. EPROM pin } 18
$$

EPROM pin 18 (chip enable) must be disconnected from ground. I connected wires to $A 9$ and $A 10$ at pins 19 and 22 of the SYM ROM sockets.

I mounted the 74LS日2 over U24, and soldered pins 7 (GND) and 14 (+5 V) to the same pins of U24. All other pins are bent upward and away from U 24. $A 9$ and A1g go to pins 11 and 12 and the output is taken from pin 13, but there are three other combinations, as this is a quad NOR chip!
Once in BASIC, an $X=U S R$ ($\& " 9 \varnothing \varnothing \varnothing ", \emptyset)$ adds disk SAVE and LOAD commands.
SYM-PHYSIS 16:33
 format and list directory commands are accessible. Since BASIC is very inflexible in memory addressing, the disk buffer must be moved to take advantage of a memory larger than 4K. BASIC's top of memory and string pointers at area. While working on the modification to my rep, different BASIC top of memory and string pointers Once I finished the modifications to TCP, I hat no further probless. I recomend that no serious program saves be done until memory parameters are stable.

I saw no easy way to have SYMDOS and Brown's TCP operate simultaneously. To simplify access to disk-linked BASIC, I added a CONTROL D function to TCP. The source listing shows the changes required to Brown's TCP to enable the escape to SYMDOS. Return to TCP is by either $X=U S R(6, \sigma)$ from BASIC or G G from SUPERMON. This approach has the merit of being TCP resets all necessary vectors, et cetera, each time it is entered

Synertek should be congratulated for making available a relatively low cost disk controller that works with SUPERMON, RAE-1, and BAS-1 without requiring any modifications to the SYM-1. It is delightful to be able to load programs like my "Pirates" Adventure" in seconds instead of minutes required by cassette tape.
LUX'S COMMENTS ON THE FDC-1
The FDC-1 software will handle one or two, single or double sided, $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$, drives. $51 / 4^{\prime \prime}$ systems may be single or double density; 16. 0 MHz ; this is part of the restriction)

The hardware is factory-jumpered for $51 / 4 "$ drives; instructions for re-jumpering for 8 " systems are provided. Joe Hobart is working with 8 drives, Lux with $51 / 4^{\prime \prime}$ drives. Both report success and satisfaction.

5 1/4" systems use 34 wire cables from controllers to drives, $8^{\prime \prime}$ systems use 50 wire cables; separate connectors for both sizes of cables are provided on the controller. Actually only a single, either 59 or 34, pin connector is required. HDE uses a 34 wire cable even for their \mathbf{g}^{\prime} systems! It turns out that the 26 wire pinout used for the Apple's Disk II, and the "Shugart Standard" 34 wire pinout for $51 / 4$ " drives, are contiguous subsets of the "Shugart Standard" 50 wire pinout for 8 " drives, with at most one exception, which is easily taken care of with jumpers. The oddball" signal is related to differences between

The software is contained in a (4K) 2732 EPROM (remember this is not the same as the 2532!); I must "upgrade" my EPROMmer to handle these! This software resides at $\$ 9 \varnothing \varnothing \varnothing$, and might be considered as the long-awaited SUPERMON "Future Expansion" plus "extensions" for BAS-1 and RAE-1. From SUPERMON a .G $9 \emptyset \emptyset 6$ modifies URCVEC to point to the commands. S3, . L , .S9, and .L7, for savinsermit using up to ten character filenames, in addition to the usual numerical parameters.

The default values for the disk buffer area are at the top of the first 4 K of RAM; no off-board expansion is required! The defaults could be lowered to fit a 1 K system, if you would really want to! As Joe pointed out, the defaults are in SYSRAM, and should be raised for BAS and RAE. Since the program is in EPROM the best bet is to burn your own, with your own choice of defaults. Only a preliminary manual with neither schematics nor source code is as yet available.

Installation was extremely simple; the whole job took only five minutes.

The test board came with a 44-pin connector soldered to one of its sets of edge "fingers" the other set passes the signals straight through for furker expansion). We read the manual, soldered two leads (red and power supply (that's all!), mounted it on the expansion connector of an GK SYM, installed a known-to-be-working $51 / 4$ " drive system (just by connecting the drive cable), and went on to test the system.

Then came two hours of increasing fustration with peculiar responses! We finally gave up with the hardware and began on the software. We our problem. The controller"s control registers were assigned addresses at $\$ F \emptyset \varnothing \varnothing$ and up, where we already had an EPROM installed. Removing the EPROM did the trick; the system worked as described in the preliminary manual

The operating system treats the disk as a long serial medium and stores successive files sequentially. If a file name is reused the previous file with that name is not deleted; it is just no longer accessible, last-in-only-out! Utility programs for disk compacting and copying are promised, but did not come with the preliminary documentation we received.
The save-with-verify mode did not operate as we had come to expect it should. FODS includes a compare-disk-to-memory after each read or write. Several times this feature has informed us that our RAM was flakey because of a poor socket contact; we like the security of the compare.

We do not like the "wasting" of the 2 K block at $\$ F \emptyset \sigma g$ for just four register addresses $\$$ Fgøø-\$Fø日3 and the page $\$ F 1 \emptyset g-\$ F 1 F F$. These could have been assigned within the $\$ 99 \varnothing \varnothing$ block, with on-board logic to permit will also iesses co the possibility of reassigning these contraller registers to the $\$$ ABsx or कACBx area (lots of "wasted" space there now), where all such $1 / 0$ devices should go, when we get around to reburning an EPROM with more suitable default values, most likely for an gk system.

The program now occupies $\$ 9696-\$ 9779$ and $\$ 9899-\$ 9 F F F$; there is still lots of room available for more niceties in there. This would be a good place to patch in the now unused USRg through USRT as well as modifying the "useles

We have asked some of our product "reviewers" to examine the existing software to see what modifications would be required to permit reading and writing Apple II and/or CP/M (at least ASCII files) compatible disks. Since no higher level file management capabilities seven the simpler utilities such as Copy, PACK, etc., are not yet ready) exist in SYM-DOS, the opportunities exist for adapting an existing DOS (with built-in compatibility) or creating a "superior" one by incorporating the best features of various existing doses.
MORE ON DISKS AND MEMORY EXPANSION
The FDC-1 is a $41 / 4 \times 51 / 2$ inch "card" with a "Reverse KIM/SYM" pinout, intended to be installed extending outwards from the expansion connector. Our test board had a 44-pin connector soldered to it which was used for our first tests. This was later desoldered and removed, and a pair of 44-pin connectors soldered together, back-to-back, was used instead, to permit testing several alternate configurations.

Three of these alternate configurations we plan to try are as follows First, a 4 K SYM with the 32 K Beta Board "tucked under" and the FDC-1 also mounted underneath the SYM with a short cable attaching it to the SYM-PHYSIS 16:35
free" set of edge fingers on the Beta Board, in a very compact package. This package, suitably encased, will be mounted atop a pair of $51 / 4$ inch drives, also suitably encased. This configuration would be similar to our current FODS based system.

Second, an 8K (Blalock Expander Kit) SYM, plus the Quest "Motherboard" Expander Kit, in which will be installed the FDC-1 and the Turpin ColorMate Board (also Reverse KIM/SYM pinout) for color graphics. The third is the obvious one, which is too "spaced-out", in our opinion, mounting the FDC-1 directly on the expansion connector" with the Beta Board extending outward from it. This approach we will try only to confirm that it can be done, as per Joe Hobart's report above.

Joe seems to have found an easy solution to the problem so many of us an into when we tried to add memories such as the 32K Beta Board with too long an extension cable. While the Beta Manual recommended bringing in a difect $+5 V$ line because of possible dC drop and heat in the narrow printed traces, it did not explicitly mention the same situation would occur in the GND traces! In addition there certainly would be "AC" drops, i.e., ground loops, for transient signals, which could, and did cause sub-marginal performance. Thanks, Joe! The FDC-1 has separate terminals to which both power leads are to be brought; apparently a very good engineering practice to follow in multi-board systems.

WHEN AND WHENCE THE FDC-1?

Synertek Systems Corporation has offered the SYM-1 Users" Group ex clusive rights to manufacture and distribute the Floppy Disk Controller,
FDC-1, in consideration for our completing all of the necessary supporting documentation, and providing all required Customer Service and Support for the FDC-1, on a long-term, continuing basis.

The latter we can do; it would merely be an extension of what we have been doing for SYM-1, KTM-2, BAS-1, RAE-1, etc., these past two years To be rather immodest about the matter, SSC is offering us the FDCproduct line because they feel we have the ability to support it in the manner to which they have become accustoned!
Software and System Support are our areas. The idea of setting up a hardware assembly line facility never entered our thoughts, and is still something we are not yet ready for. On the other hand, the sorting and gathering of the component parts into "build it yourself kit packages we could easily do. The assembly and che is something we would have to grow towards

We plan to place a firm order with SSC by 1 April for a specific initial number of boards and components for delivery to us by 1 June 1982. We will also place an order for both $51 / 4$ and 8 inch dual-drive cables with another vendor. Our aim is to produce a complete package, in $\$ 35 . \varnothing \varnothing$ and upl); and power cables) to have a fully operational system.

Remember, though, that the FDC-1 will be available at first only in com plete kit form. It should be easy to assemble, since in addition to the sockets and connectors, there are only five resistors and six capacitors to be soldered in. Schematic and layout drawings will be provided.

The kit price should be around $\$ 175.06$ (US funds), including shipping, USA or Canada, with an additional $\$ 6.00$ for airmail to Europe, or $\$ 8.6$ for airmail elsewhere. If this interests you, please drop us a note; your feedback will let us know how large an initial order to place, and will reach you by mid-April inch cables to order. Issue No. 11, which full ordering information. Deliveries should begin in mid-June

We have accepted an invitation from the Department of Electrical Engineering of the Queensland Institute of Technology to be the keynote speaker at "A Two Day Design Workshop on $6502 / 6899$ Microcomputer Systems", to be held 14-15 April 1982, in Brisbane, Australia. Papers will be presented by Bob Tripp (MICRO), Rodnay Zaks (SYBEX), a Rockwell representative, and a number of Australian researchers. We are loaking forward to the traveling, the workshop, the "vacation", meeting many of our Australia/New Zealand/Tasmania friends, etc.

From 10 April to 10 May, approximately (see above), the Users' Group office will be "partially open" on Mondays, Wednesdays, and Fridays, from $16 A M$ to 4PM, Pacific Coast Time, to handle telephoned and mailed "business" matters. Unfortunately, there will be no one available to answer technical questions, or to help solve technical problems. These will be back-logged till our return.

Since we are OEMing a number of special purpose SYM based systems, we regularly buy various selected items at OEM prices in quantities sufficient to get good price breaks. These include Epsons (all models), hard-to-get connectors, special purpose chips, etc., and always have a few around. Because prices and stocks on hand are variable these are not listed in our flyers. Call or write if you have special needs; we
may be able to help.

ADVERTISING POLICY

We have been asked many times if we would accept advertising, and, if so, what our rates were. Up to now our answer has been "No, but if you will lend us the equipment for test, or lend us a copy of the manual, we will review the product in an "up-coming" issue." In most cases we so dealers for it, if possible. The testing did take time, howd even became dealers for it, if possible. The testing did take time, however, and

The main reason for rejecting ads, as you will see from the analysis below, is that at least four "major" advertisers are required just to break even, postage rates being what they are. We think the rates proposed below will attract enough advertisers, especially since a onetime ad will have "multiple-exposure" in a newsletter in which back issues are regularly reread.

We feel that advertising conveys useful information to the using community, and is actually an added service, provided that the editorial content is not diluted, and that the product advertised is indeed worthwhile. We will therefore begin accepting advertising for publication with future issues. The rates and the analysis leading to these rates follows:

Our present mailings come right up to the two ounce limit; any additional material would require additional postage. Paying for one additional ounce of postage would permit the mailing of up to six additional sheets of printed matter. Our added mailing cost per issue would consist of domestic first class postage for one additional ounce ($\$$. 17) to approximately $1 \not 0 \emptyset$ subscribers, and overseas airmail/printed matter postage for one additional ounce ($\$ 0.36$ - $\$ 0.46$) to approximately $3 \varnothing 6$ subscribers. This works out to about $\$ 306$ whether we insert a half-sheet or six full sheets; never mind the cost of labor for the

Beginning with Issue No. 11 (Vol. 3, No. 1) we will handle advertising on the following basis: We will accept "ready-to-stuff" $81 / 2 \times 11$ inch sheets of printed matter, and insert them in the mailing envelope with

SYM-PHYSIS 16:37

SYM-PHYSIS, which will retain its present format and size. The rate will be $\$ 125$ per sheet. We reserve the right to delay publication until multiples of four to six sheets may be mailed with each issue (if only four sheets of advertising material are available we further reserve the PHYSIS, in their pil inch pages to be reduced to $51 / 2 \times 81 / 2$ inches and nbatched" with three others on a single sheet, to be printed (by us) in SYM-PHYSIS format. The rate will be $\$ 59$ gh per page we reserve the right to delay publication until four such pages are available for batching.

We will still continue to publish PRODUCT RECOMMENDATIONS, where warranted, in the following format.

> PRODUCT RECOMMENDATIONS

NOTE: There is neither enough time nor space left in this issue to do justice to the product lines of the following three sources, all of whom have enquired about advertising rates, sort of "forcing" us into making our decision re accepting advertising. It is very likely that one or more of them will be advertising their wares in the next issue, but if you need additional information before then, please contact them directly. Until the next issue, then, the following brief reviews are the best we can do:

COLUMBUS INSTRUMENTS

 Columbus Instruments International Corporation, $9 \emptyset \emptyset \mathrm{~N}$. Hague Ave., Co-lumbus, OH 43294 , (614) $488-6176$ (Dr . Jan Czekajewski), is primarily a manufacturer of bio-medical instrumentation, using the AIm-65 in their manufacturer of bio-medical instrumentation, using the AIM-65 in their
products. Their so-called Universal AIM-65 Interface Card, with 16 products. 12 bit (very high speed) A/D conversion, a battery backed-up channels of 12 bit (very high speed) A/D conversion, a battery backed-up calendar/clock, and a 16 K RAM/ROM expansion space, could just as well
be called a Universal SYM-1 Interface Card! Only a single jumper need be called a Universal SYM-1 Interface Card! Only a single jumper need be added to the SYM-1 to fully utilize all of its capabilities. Even the BASIC program Wri .
modification for the SYM.

The calendar/clock, converters, and multiplexer are assigned addresses in the $\$ 9 \varnothing \varnothing$ block. About the only difference is that the BASIC program will have to be keyed in "by hand for the SYM, no big deal. we read their ads, asked to "borrow" a manual for review, and became dealers. There are at least two SYM users who are as impressed with the interface as we are, and we do not know of any other board as versatile.
R. J. BRACHMAN ASSOCIATES, INC.
R. J. Brachman Associates, Inc., P. O. Box 1977, Havertown, PA 19ø839077, (215) 622-5495 (Dr. Michael "Mike" Brachman), recently introduced the Min mport MicroComputer (MMC) in advertisements in several of the compoffered to revi the product instead. Mike sent us samples of the entire product line and piles of documentation We will get around to actual testing after the newsletter is out, and will let you knom the results in the next issue. Part of the review loan agreement included the stipulation that publication or release of data. That's fair enough.

We might mention in passing, however, that we have an upcoming application where we will be wanting to program a large number of 2732 Programming Adaptor (EPA) option would do the job. Unfortunately, while the EPA will program both TI $2516 s$ and Intel 2716 s with the software provided, and with minimal software changes will also program the TI SYM-PHYSIS 10:38

25325, the Intel 27325 and the EPA are incompatible. If the EPA can be modified to handle 2732s, even at the cost of giving up the ability to handle 2716s, I'd buy that. Actually, we're ordering a complete system anyway; we want to try developing a stand-alone dedicated process control system. Pasted-up below are excerpts from the Product Description brochure:
The MICROsport MicroComputer (MMC), in addition to being a complete microcomputer on a $41 / 2$ " $\times 61 / 2$ " pc board, is the nucleus of a full hardware/software development system. Software can be developed for the MMC using any 6502 -based computer such as the KIM-1, AIM-65, SYM, Apple II, PET, Ohio Scientific and others. The In-Circuit Emulator (ICE) permits full MMC software/hardware debugging, then adding the EPROM Programmer Adaptor, any single +5 V EPROM such as the Intel-type 2716 or 2758 can be programmed without additional equipment or disconnecting the ICE/MMC. Of course any of these EPROM's can be progre in control/monitor systems, laboratory experiments, timing, intelligent interfaces, security systems, and other applications requiring a low cost controller

I/O . . 2 MPS6522 VIAs for a total of:
Features:
32 input/output lines,
8 edge detector/control lines,
CPU. MPS6503, operating at 1 MHz .
RAM....... 1 Kbytes, static (MPS2114).
EPROM. Socket for Intel-type 2716 or 2758
bit timer/counter/pulse generators,
2 shift registers, interrupt flag registers, and more.
8 user-defined pins on 44 pin edge connector.
Serial. 20 mA loop circuitry on-board.
Interrupts . . Power-on and manual reset, non-maskable and maskable interrupts.
Interrupts ...Power-on and manual reset, non-maskable and mat.
Also. All ICs socketed for easy maintenance.
Also. All ICs socketed for easy
Adaptor socket for expanded memory functions such as CMOS-RAM w/battery back-up.

Options In-Circuit Emulator; EPROM Programming Adaptor; MMC Development Model MMC/03D with zero insertion force sockets (3); EPROM Programming Services; and application software development.

Prices. MMC/03D Development unit \$149.00
MMC/03A Application unit $\$ 119.00$
MMC/03S Complete development system including MMC/03D; MMC/03ICE; MMC/03EPA; and software
Kits available from $\$ 89.00$.

CGS MICROTECH

CGRS Microtech, P. D. Box 162, Langhorne, PA 19647, (215) 757-6284 (Joseph T. Swope), sent us detailed information and operating manuals for the 6562PDS PETDISK Disk Operating System. This system can be adapted to work with the SYM and would be worth investigating by SYM owners who have access to PETs, or would like to be able to swap software with PET owners. It is a quite good operating system.
miscellania
JOHN R. MC DANIEL, $5557 E$ Homestead Drive, Columbus, IN 47201, would like to communicate with others working with the Votrax SC-ø1 speech synthests chip.

JEFF LAVIN, P. O. BOX 1919, Whittier, CA 96609, sent us a batch of excellent CAI (Computer Assisted Instruction) programs in BASIC (we'll try to get at least one of them printed in Issue No. 11). We discussed the idea of forming SIGs (Special Interest Groups) and he has offered to prepare the questionnaire for mailing with Issue No. 11, and to help process the returns. The idea is that if you want to get in touch with SYMmers living, say, in Ohio, who are using the ColorMate for generating animated cartoons, we can sort through the Special Interest DataBank and put you in touch with them. Jeff has prepared an excellent "Selectric/Microcomputer Interface Manual", printed on the IBM Selectric

SYM-PHYSIS 1月:39
he has interfaced to his SYM. This manual is the definitive source on the subject. Copies may be ordered from him for $\$ 10.06$. Add $\$ 2.06$ for postage North America, $\$ 4.6 \emptyset$ elsewhere.

JOHN BLALOCK, Blalock \& Associates, P. O. Box 39356, Phoenix, AZ B5969, has been working on some really elegant hardware and software items which will become part of his expanding product line. One software product for which many SYMmers have been longing is now ready for release. This is his BAS-RAE/RAE-BAS transfer program, which allows BAS-1 programs to be written and edited in RAE-1! Drop him a selfaddressed, stamped envelope for pricing information on this, and his
other fine products.

SOFTWARE DATABANK

The following new programs, reviewed in Issue No. 9 are now available on cassette (RAE-1 Source Code format) with just enough hard copy documentation to get you started and over possible hurdles:

Kwok's Cross Reference Lister, XRF-1
95\% "CERTIFIED"
95\% "CERTIFIED"
Thuring's Structured Assembler Macros, Macbs
A new disassembler program is now available which provides a table of definitions for all external addresses, and automatically generates .CT and cassette dump for extra long source codes, is now available. We have tested all but the .CT feature (we must first modify to permit dump and continue on disk). If you liked Hissink's DISARAE, you will find this program even more loveable! Minimal hard copy, but beautifully commented source code, on cassette.

Dessaintes' Disassembler, DESDIS-1
95\% "CERTIFIED"
Price for each of the above programs, and for all future programs of similar utility, size, and complexity, is $\$ 36.90$ postpaid anywhere.

Not yet ready, with prices not yet set, but perhaps by next issue, are:
Holt's TECO, a "free-standing" Text Editor and Word Processor, fully compatible with DEC's PDP-11 version.
BASIC WORD PROCESSOR (BWF-1), BAS-1 based word processor for those without RAE-1, who cannot use SWP-1.

Jack Brown has authorized us to "close-out" the present 16 K SYM-FORTH package at a $\$ 90 . \emptyset 6$ price (Object Code Cassette, Reference Manual, and Source Code Listing). Purchasers of this package can then obtain from Saturn Software the expanded $79-S t a n d a r d$ Version (requiring at least 24 K of RAM) for an additional \$59.90.

Bob Peck has authorized us to reduce the price of the FBOK Appendix Cassette to $\$ 10.00$. Because of its popularity, we will be stocking the First Book of KIM, a "must" for unexpanded SYMs; the games are really great if you have youngsters around. Price of the FBOK is $\$ 11.75$ postpaid US/Canada. Overseas add $\$ 3 . \emptyset \varnothing$ for SURFACE mailing (weight is one pound). You also will need Peck's FBOK Appendix and/or the Appendix Cassette.
FINI!
That's it for now. We already have more than enough material and ideas on hand for Issue No. 11; actually this could have been a "double" issue! We'll now "rest" a day or two, working out the details of our South Pacific trip. Next, we will spend about two weeks answering all of your accumulated letters, seeing what is on the pile of cassettes and disks still waiting for us, and rearranging the clutter of papers piled high can expect the Jan/Feb/Mar issue to be in your hands by early April!

SYM-PHYSIS 16:46

