

THE SYM-1 USERS, GROUP NEWSLETTER

 vOLUME III, NUMRER I (ISSUE NO, 11) - SPRING 1982 (JAN/FEB/MAR)SYM-PHYSIS is a quarterly publication of the SYM-1 Users, Group, P. O.
Box 319 , Chico, CA 95927 , SYM-PHYSIS and the SYM-1 Users, Group (SUG) are in no way associated with Synertek Systems Corporation (S5C) (SUG)
SSC has no responsibility for the contents of SYM-pHYSIS. SYM is and registered trademark of for the contents of SYM-pHYSIS. SYM is is is a
state of growing together, to make grow, to bring forthe Greek, means the

We welcome for publication all articles dealing with any aspect of the SYM-1, and its very close relatives, Authors retain all commercial
copyrights. Portions of SYM-pHYSIS may be reproduced by clubs and edu
cational institutions, and adaptations of program for other apmputers may be freely published, and adaptations of programs for other computers provided to SYM-PHYSIS and the original author (s). Please include a

$$
\begin{aligned}
& \begin{array}{l}
\text { Editorlpublisher: } \\
\text { RusinesslCimculation: } \\
\text { Office Staff: }
\end{array} \\
& \begin{array}{l}
\text { Office Staff: } \\
\text { Associate Editors: }
\end{array} \\
& \text { H. R. "Lux" Luxenberg } \\
& \begin{array}{l}
\text { Dennis Hallyce Arnowick } \\
\text { Tom Gettys. Jack Gieryic }
\end{array}
\end{aligned}
$$

SUBSCRIPTION RATES: (Volume III, 1982, Issues 11 - 14)
 BACK ISSUES ARE STILL AVAILABLE AS FOLLOWS:
Issue \varnothing, the Introductory Issue (1979), and $15 s u e s$ through o (Volume
I 1989 are available, as a package, for $\$ 12.0 \emptyset$, US/Canada, and $\$ 16 \varnothing \varnothing$, Issues 7 through $1 \varnothing$ (Volume II, 1981), are available for $\$ 19.50$,
US/Canada, and $\$ 14 . \emptyset \varnothing, ~ F i r s t ~ C l a s s / A i r m a i l, ~ e l s e w h e r e . ~$ ON LATE NEWSLETTERS

We received today, in mid-March 1982, our copy of "THE TARGET - an AIM65 newsletter" for July/December 1981. We get lots of SYM applicable ideas from Donald Clem's (R.R. \#2, Conant Road, Spencerville, OH 45887) was actually a triple issue, covering July/August, September October and November/December of 1981. So you see, SYM-PHYSIS is not really "later than you think". We are merely conforming with is not really letter tradition! Speaking seriously, though, now that we have gotten "organized" to the point of using reviewers to help evaluate, debug, and polish submitted software, and volunteers to answer requests for for and (see below), we should be able to meet the quarterly deadlines.

"HELP"

We apologize once again for not being able to answer all of your letters for help, and ask you to write again if your problems have not yet resolved themselves. We think that we will be able to provide faster response time in the future, even while we ourselves are traveling, or otherwise not available, through the following procedure:

If, and really only if, your requests for help are on separate sheets of paper from any other type of correspondence, clearly marked "HELP", and are accompanied by a self addressed, stamped (US only) return envelope, whoever opens the mail will be able to "batch" them and send the entire package to one of a number of SYMmers who have offered to provide such help. It would be unfair to ask these volunteers to also pay for your postage. Overseas reply postage costs can best be handled by enclosina low denomination local currency.

SYM DISK OPERATING SYSTEMS

The SYM-1, as it comes out of its box, is a $1 K$ RAM, $4 K$ ROM, single cassette based system, powering-up, and/or resetting, to SUPERMON. When fully loaded no external expansion, but with the Blalock RAM Board or 2114 piggy-backing considered "internal"), it becomes an 8K RAM, $26 K$ ROM, dual cassette based system, still resetting to SUPERMON, but with RAE and BASIC capabilities.

At this point all SYMs are essentially equal, and all software is fully transportable via physical cassette transfers. Most of the SYMmers with whom we have communicated have brought their cassette systems up to nearly 100% reliability (some at double and triple times the standard speed. We have managed to read every cassette we have received feven least double dumps (we use triple dumps on distribution cassettes) to provide data redundancy in the event of any glithes caused by tape dropouts.

We are very much satisfied with the SYM cassette interface as the primary means for inter-SYM data and software interchange. With a 4 K , or even an $8 K$ system, the cassette interface provides an acceptable mass storage system. With expansion to 24 K or 32 K , and the concomitant longer files, cassettes become impractical, except for backup purposes (when we had only one SYM/FODS system we backed up our mailing lists on a second disk and triple cassette dumps!). Have you ever seen a 48k Apple II system without at least a single Disk II beside it?

Note that we said Disk II; we emphasize this, because all Apple IIs use the same (or wholly compatible) controllers, drives and DOSes, thus ensuring full software transportability between Apples. It is this "universality" of software exchange that provides a large market for software entrepreneurs, thereby encouraging the development of good (and bad!) software for the Apple. Furthermore this software is distributed mainly on diskettes.

We are now too far downstream with the SYM for a universal DOS (Disk Operating System) to evolve, and perhaps this is for the best, after all. We are free to chose any combination of hardware and software that matches our needs, subject, of course, to our financial abilities. In the following paragraphs, we will briefly describe some of the disk sysems now available for SYM, but first presenting some preliminary background information on drives and disks in general.

GENERAL

For "personal" use, especially for the type of research and report preparation we do, we prefer the $51 / 4$ inch drive systems because they are quieter, more compact, and cheaper than 8 inch drive systems. Where the noise, size, and cost are not important factors, the greater access speed and on-line storage capacity of the 8 inch drives are really nice to have, and in some applications, even these might be inadequate. to have, and in some applications, even the

The choice of drive size is yours alone to make, as is the choice of make and model. The major differences between the various brands appear the rates at speeds at which the heads are loaded against the disk and controller software has built-in delays to accomodate the slowest available drives. If you use one of the faster drives it is well worth your time to customize the software to it. Disk load times can be speeded up by as much as a factor of five times. While most suppliers of DOSes guard their source codes as if they were were divine mysteries, a disassembly and study of that part of the object code containing the
(continued to page 11-36)
SYM-PHYSIS 11-2

A 40 K SYM－1 MEMORY EXPANSION BY GEORGE WELLS

Here is a memory expansion scheme for the SYM－1 that has the following features：

1．49K of RAM continuous from $\$ 60 \emptyset 0$ to $\$ 9 F F F$ ．

2．Top three 1 K groups of RAM（ $\$ 94 \varnothing \emptyset-\$ 9 F F F$ ）are write protectable．
3．EPROM or ROM can overlay RAM from $\$ 1.09$ to $\$ 8 F F F$ with automatic switching between them．

The components used in this arrangement would typically be：
1． $4 K$ on－board static RAM with modified decoding to appear at \＄90．6－\＄9FFF．
2．Blalock＇s $4 K$ static RAM expansion with modified decoding to appear at $\$ \varnothing \varnothing \varnothing \varnothing-\$ \emptyset F F F$ ．
$32 K$ dynamic RAM at $\$ 1 \varnothing \varnothing \varnothing$ to $\$ 8 F F F$（available from several sources）．
Monitor ROM at $\$ 8 \emptyset \emptyset \emptyset$ to $\$ 8 F F F$（normal）．
5．Additional EPROMs，as desired，between $\$ 196 \emptyset$ and $\$ 7 F F F$ ．
6．One IC wired to automatically switch between the RAM and ROM banks．

Anyone attempting to implement this idee should thoroughly understand it before beginning．The procedure given assumes that you can find the various signals on your PC boards and that you have some knowledge of logic design．

Before starting，the address space between $\$ 0060$ and $\$ 9 F F F$ should be clear of all memory and I／O except for the original 4K RAM，the Blalock 4K RAM，and the System Monitor ROM．Also，verify correct operation of the Write Protect feature as described in the SYM－1 Reference Manual， pages 4－26 and 5－19．
For the
following
steps in
the SYM－1
board，
refer to
refer to
matic．The
first two
steps move
steps move protectable memory to the top of the 8K RAM space．
（If you have only AK of RAM， you can perform just these first two steps now， and the remainder when you get 32 K more．）

（1）Cut the A12 trace leading to pin 3 of $U 1$ on the bottom side of the board．
（2）Insert the spare inverter by adding two wires to the bottom of the board as shown．Make sure U2－pin 2 goes to ul－pin 3.

At this point，you should again verify correct operation of the Write Protect function，but this time the three 1 K groups are $\$ 14 ø 6-\$ 17 F F$ ， $\$ 18 \emptyset 6-\$ 18 F F$ ，and $\$ 1 C \not \subset-\$ 1 F F F$ ．To write protect the last 1 K of RAM，it is only necessary to enter W i（instead of $W \not \emptyset_{1}$ ）．

The next three steps move the 4 K block of RAM currently at \＄10日a－\＄1FFF to $\$ 9 \varnothing \varnothing \varnothing-\$ 9 F F F$ ．This includes the write protectable RAM．The Blalock

（3）On the bottom of the board，cut the two traces leading to U3－pin 1 and join them with wire，leaving pin 1 out of the connection．
（4）On the top of the board，install a 3．3K pull－up resistor from pins $1 \varnothing$ and 11 of $U 1 \varnothing$ to any convenient $+5 V$ source．

At this point，the previously unused outputs of decoder U10 will go low any time an address block beginning with $\$ 0, \$ 4$ ，or $\$ C$ is accessed．
（5）On the bottom of the board，continue wiring the pull－up to jumper pads 9 and 10 and then to U3－pin 1．Make sure all other jumpers to pads 9 and 19 are removed．

Now，pin 1 of U3 will go low for block $\$ 0, \$ 4, \$ 9$ ，or $\$ C$ ；however，when block $\$ 4$ or $\$ \mathrm{C}$ is accessed，pin 2 （A14）will be high．Therefore，pin 12 of U3 will go high enabling the RAM decoder Ui）only for blocks $\$ 0$ and \＄9．Test to see that you do indeed have RAM at these two blocks and that you can write protect the three 1 K groups at $\$ 9400-\$ 97 \mathrm{FF}$ ， \＄98ø日－\＄9BFF，and \＄9Cø日－\＄9FFF．

If everything works correctly，you are ready to add the RAM／ROM ban selector．
（6）Remove the ground jumper between pads E and 3 on the SYM－1．
（7）Wire up the IC as shown in the schematic．Don＇t forget the power and ground connections．
［Note－Asterisks，＂＊＂，indicate barred signals．For example，pin 5 of the new IC must go to the clock signal that is brought out on pin Y of the expansion connector－－not pin U．J
One method of adding this IC to the SYM－1 is to cement it to the board withits pins facing up and solder wires directly to the pins． Depending on how you use the bank selection to switch between the 32 RAM expansion and EPROM，you will need to bring one or both of the RAM and ROM＊Enable signals off the SYM－1 board to the expansion board（s） Both of these are active low signals．

Some memory boards have bank switching capabilities built into them which makes the interface simple，but almost all boards provide jumper decoding in $4 K$ blocks which allow the addition of an OR－gate to provid the required gating for each $4 k$ block of RAM（see Schematie）．which share the same address space with ROM or EPROM．Until you add bank switched EPROM，the only RAM block you will need to switch is block $\$ 8$（ $\$ 8006$ to \＄BFFF）．Most EPROM expansion boards provide several iumpers to select the EPROM type and address decoding．For a 2716 ，pins 18 and 2% are usually tied together to the address decode．In such a case，bank selection is easily performed by disconnecting pin 20 from pin 18 and tying it instead to the ROM Enable signal．

SYM－PHYSIS 11－4

Theory of Operation

The key to understanding how the bank selector works is in realizing that the only way a 6592 instruction in ROM can have access to the entire address space is through one of the indirect addressing modes Which reads page zero just before accessing the desired memory location． （BASIC also accesses memory through an absolute mode instruction which fortunately was copied to page zero RAM．）Remember that BASIC does not actually execute the＂program＂in RAM－－that is really＂data＂for the they all access the RAM indirectly，treating it as＂data＂The Monitor they all also needs

Thus，all that is needed to switch between the RAM and ROM banks is a flip－flop which is set one way（to enable Rom）whenever an op－code fetch occurs（SYNC goes high）and set the other way（to enable RAM）whenever any access to page zero is made．The circuit detects page zero whenever which is labeled＂ 50 of the new IC are all low．Pin 3 goes to U1－pin 11 in steps 1 and 2．Actually，to make the hardware a little simpler，the circuit also detects page two，which is of little consequence as long as page one is excluded．（This is important so that JSRs in the Monitor or EPROM will work．）There is one other way that the ROM bank can get enabled and that is with the software－controlled Power On Reset signal coming from the CA2 output on U25（pin 39）．Without this signal it would be possible for the RAM bank to be enabled while the 6592 RESET vector was being fetched causing the CPU to go to an unknown location and possibly modifying RAM．

Special Considerations
1．If you cold start to BASIC and let it figure out how much RAM you starting at $\$$ saga and continuing until an address is reached which will not accept the $\$ 55$ or $\$ A A$ ．If you have not write protected any RAM， then the memory test will continue up to address \＄Aø月ø which is port B of VIA \＃1．If you have installed a second cassette control on bit 7 of this port \｛as per RAE requirements），then that cassette will become activated when you enter BASIC，just like it does when you enter RAE． If you have any other devices on this port，make sure they will not be damaged by BASIC＇s initialization．

2．Sometimes you may want to examine the contents of the Monitor ROM， but if you try you＇ll discover that what you are reading is the RAM－－not the ROM．A simple way to disable the bank selector is to install a switch or jumper between pins 11 and 12 of the flip－flop．Opening this connection will force all indirect memory accesses to go to the ROM bank．If you need software control of this feature，you can instead tie pin 10 of the flip－flop to a different port bit output which your software can drive high to read the ROM．However，if you do this you will have to drive it low after every reset in order to enable the bank selector．

3．If you put any machine code on page zero or two of memory，remember that all fetches or stores to bank memory will access the RAM bank

4．If you install EPROMs between addresses $\$ 1 \varnothing \varnothing \varnothing$ and $\$ 7 F F F$ ，they can only contain executable machine code and data that is accessed with absolute mode instructions．You cannot put the BASIC trig function expansion in this region since it contains data that is fetched indirectly by the BASIC interpreter．The best place to put an EPROM containing the BASIC trig functions is at \＄Fめøめ－\＄F7FF．

5．Do not try to bank switch the BASIC ROMs．They contain several data SYM－PHYSIS $11-5$

6．You can bank select the two RAE ROMs，putting either RAM or EPROM in the＂RAM＂banks．However，as with all the other RAM banks，this memory can contain only data that is accessed indirectly．This would be an ideal place to put a disk buffer or video memory（for RAM），or character generator tables，or sound generation constants for EPRBN．you could also put some $1 / 0$ in these regions as long as the programs that access them use indirect addressing．If you decide to implement any of these exotic expansions，you＇re on your own！Just make sure you know what you＇re doing．

Conclusion
Now you don＇t have to feel jealous of those other guys with their super Now you don＇t have to feel jealous of those other a fraction of the cost． Furthermore，you can understand exactly how yours works．And it sure is nice to be able to sign on to BASIC and see it print，＂ 49447 BYTES FREE＂！
RECOMMENDED SYM－1 MODS
We＂routinely＂modify all of our personal SYMs，and those going into OEM systems，as follows（listed in priority order）：

1．To improve READ performance－replace C16 with a $\emptyset .01$ ufd disc cap．
2．To improve WRITE performance－replace R88 with a 1 K resistor．
3．To improve＂From TTY Keyboard＂performance（on 26 mA current loop）－
install a 1 K resistor from the base of $Q 28$ to ground．
4．To recover the use of PB6 of VIA No． 1 （for 8 bit D／A and A／D appli－ cations）－install a 1 Meg resistor from pin 3 of U26 to ground．

The word＂improve＂is used in the sense of increasing reliability when interfacing with external equipments，i．e．，cassette recorders and cur－ rent loop terminals．
TAPE TIP
There are often times when it is desirable to determine the ending address（EAD）of a file being read in with．L2．EAD is required when using the ．L2 FF，SAD，EAD option；also，in cases where most，but not all has actually been read in up to the abort point．Find out this way：

After either a successful or an aborted ．L2，enter the ．M＜cr＞command and the address of the memory location whose contents are being dis－ played is EAD +1 or the address of the first non－read byte．Armed with this information，partial BAS－1 and RAE－1 files can be read in with． then set to match BAS－1 or RAE－1 protocol，and of otherwise＂lost then set to permit at least partial recovery of otherwise＂lost material．
＂DOUBLE－DECKING＂THE SYM
The suggestions of＂piggy－backing＂ 21145 to get 8 K of on－board RAM，and the two RAE－1／2 chips（also the two BAS－1 chips，when BAS－1 came only in the two chip version to get two Roms into one socket，were reported on three unused inverters，and gave their locations（in U2，U9，and U38）．

We have added additional logic chips to several of our SYMs by glueing them，pins－up，to the board，and wiring them in as required．Joe Hob－ art＇s suggestion，in Issue No．10，of piggy－backing a 74LSg4 thex inverter）over the 7498 （and gate）at $U 24$ ，to pick up the $+5 v$ and GND started us to thinking about the following：What other double－decking possibilities might be useful？

Perhaps logic to provide full address decoding for the VIAs and the 6532 SYM－PHYSIS 11－6
to allow more effective use of \＄Aø日G－\＄AFFF and \＄FBag－\＄FFF9？Actually， SFFFF．Full address decoding would permit installation of a 2716 EPROM （less six bytes）at $\$ F 8 \varnothing 日$.

Your first impulse might be to suppress the SYSRAM echo altogether and put your choice of NMI and IRQ into a 2716 EPROM at $\$ F 896$ ，or a 2732 at \＄Føøø．This is not too good an idea，however，since one rather＂widely used＂，＂very well－known＂，（how＇s that for＂one－upsmanship＂！）program－ ming technique for subroutine calling involves＂calling＂subroutines with BRK（not JSR！），and returning with RTI（not RTS！）．Both FODS and CODOS use this technique very effectively，and SUPERMON returns from subroutine USRENT with an RTI，just as it would from a real BRK．Since this approach requires changing IRQVEC，IRQVEC should itself be in RAM or at least point to RAM，where changes can be made．
Other possibliities for chip piggy－backing include buffer／drivers，mul－ tiplexers，flipflops，or almost any TTL chip，for that matter．If any of your 1 ，subsystems require such chips，such as，for example，a 20 m current loop to inverted directly on the sYM？3？？？

NEW BOOK REVIEW
We have long recommended Lance A．Leventhal＇s＂ 6592 Assembly Language Programming＂as one of the two books which every serious SYMmer should have on hand the other is Marvin De Jongs＂Programming \＆Interfacing the 6562，With Experiments＂）．For 6869 SYMmers we have recommended Leventhal＇s＂ 6899 Assembly Language Programming＂．

We now recommend a third book for the 65g2ers：Lance A．Leventhal and Winthrop Saville＇s＂ 6562 Assembly Language Subroutines＂，OSRORNE／McGraw－ Hill，Berkeley，California，1982．This nearly 559 page book is a veritable encyclopedia of both general programming concepts for the 6502 （with lots of carry－over to other systems）and specific subroutines， very thoroughly documented，for array manipulation，string proces

The highest praise that I can give this book is to say that even after more than four years of using the 6562 on a nearly daily basis，I will now check with Leventhal and Saville first，before starting any major programming effort，to find the＂right way＂to do it．Will save enough in ＂wasted＂development time to pay for the book many times over；the subroutines are given in a form that is immediately usable．
A BASIC VARIABLE CROSS REFERENCE LISTER
June 1ø， 1981
Dear Lux：
Enclosed is a cooy of a program which searches a BASIC text file and picks out all the new variable names．It has three distinct parts；the text search，a sorter，and a printing segment．

The first part creates a file（starting at $\$ 34 \varnothing \sigma$ ）of 5 －byte elements， one for each new variable it encounters in the text．The first byte is for the type of variable，the next two are the variable name，and the last two are the line number where the variable occurs in the text． last two are the line number where the variable occurs in the text．I have chosen the type values so that the sorting routine will put simple
real variables first，string variables second，and on through to subscripted integer variables last．All characters in a variable name subscripted integer variables last．All characters in a variable name
after the first two are ignored；if it is a one－character variable a space is substituted for the second character．The line number bytes are copied directly from the text file．

SYM－PHYSIS 11－7

New variable names can be introduced in BASIC only in certain ways；they may be the first word of a statement，or they can occur only after the reserved words DIM，FOR，INPUT，LET，READ，and DEF FN 《and in some versions after GET）．Therefore，in this program all other occurrences of variable names are ignored．

The sorting segment is a（more or less）standard bubble sort which sorts the list in place．

The printing segment has two counters which I have set for my system， but they should probably be changed for others．These are：（1）the maximum numbers of line numbers for a given variable printed for each line of output，and（2）the number of lines of output per page on the terminal screen．I have set these numbers at 8 and 15 respectively． The latter feature was included to allow time to study the list of variables before it disappears off the screen．Hitting any key causes the printout to continue．
The program ends with a simple RTS which works fine if it is run with a －G $3 ø \varnothing \sigma$ out of SYM MON 1．1．Care must be taken if the program is called in a way such that the return address is not stacked．

The program could be modified for other 6502 systems by making the appropriate changes for the reserved－word tokens and adding steps to ecognize other reserved words．Also the addresses of the BASIC routines and the MON 1.1 subroutines must be made correct for othe

Best Regards，
／5／Jim Pengra
21 February 1982
Dear Jim：
Finally getting around to going through the backlog of tapes and cassettes，after all these months．Tried the program，found one bug， and have several suggstions．

The bug is that，while it works fine when called from MON，and does what it should when called from BASIC with $X=U S R$（ORIGIN，\varnothing ）it returns to source of the bug，which is most likely traceable to＂playing＂with the source of the bug，wich is most likely traceable to＂playing with the ？TM ERROR message can be suppressed，however，by the ad hoc trick of
 galling the program with a String variable name，o．gile return to BASIC with an RTS is okay，I have gotten used to returning from USR calls with JMP $\$$ D14C， 50 I made that change in the program．

The suggestions（some posed as questions）are as follows：
（1）Rather than use space above the machine language program for temporary storage，why not use the space between the end of program space and top of memory？
（2）Instead of the format you use，how about one where you do not use the headings to indicate and separate variable types，but instead indicate the variable types by following their names with \％，\＄，（），\％）， \＄0）？（For arrays，the number of subscripts，and perhaps even the dimensions could be indicated？？？？？）
（3）The printing of eight line numbers per line is too many if four decimal digit 1 ine numbers are used，so I cut the maximum down to six． SYM－PHYSIS 11－8

(4) Since one of the reasons for a program like this is to give the user information on possible variable name conflicts, thus permitting the name?

Am now using the version of your program listed below where the output format comes closer to complying with suggestion (2) above. Studying how your program works will give readers a good insight into how BASIC itself works

A CORRECTION ON BAS-1 AND INTEGER VARIABLES

In Issue No. 10 we stated that the BASIC (BAS-1) Reference Manual made no mention of integer variables. We stand corrected. The top paragraph on page 9 contains the sentence "If the (variable) name ends in "\%", then the variable is an integer variable, and may contain only integer values."

On, well, our error is not quite as bad as that made by a writer in one of the popular 6592 journals who stated that SYM's BAS-1 did not support integer variables at all. Apparently he never tried to use the "\%" to see what would happen.
RFI (TVI) FROM THE KTM?
One of our callers asked us what measures we had taken to reduce TV interference from our KTM-2. He stated that his KTM-2 created interference on every TV in his apartment building. We told him that we had no experience with TVI, and after he hung up, we realized we had forgotten to ask whether he was using an RF modulator on his KTM-2.
We are in an area served only by one off-the-air TV station, on Channel 12, whose antenna is within 19 miles. No UHF within $9 \varnothing \mathrm{miles}$, and only marginal reception from two distant VHF stations on Channels 7 and 9. "ur entertainment video comes in by 44 channel cable (two channeld are scram), within 25 feet of three nearly-always working SYM/KTM systems, and have within 25 feet of three nearly-always working SYM/KTM systems, and have

Our understanding is that TVI may be most troublesome on Channel 2
Dur understanding is that may be most troublesome on Channel 2, any SYMmers out there bothered with TVI, and if so, what can be done to minimize the problems?
COMPUTER VIDEO
We used to carry a compact SYM-1 system along with us for demonstration purposes, and often still do, not so much now to demonstrate it, but for working purposes. We decided to give up the idea of trying to demon strate the Interface hodule GYM-1 actual ive cluding speech synthesis, music generation, high resolution black \& white graphics, color graphics, semi-automated production of distribution cassettes and disks, word processing, program development hardware development and checkout, $68 \emptyset 9$ experimentation, etc., and it is really not practical to transport all of these for show-and-tel sessions.

We now feel that it is far simpler to bring along videotaped demonstrations, instead. Most schools and governmental agencies, and many industrial facilities have, or have access to, $3 / 4$ inch U-Matic Forma VCRs. Our university video crew prepared a 28 minute tape on the SYM-1, and a Honeywell video crew videotaped a 28 minute lecture entitled How to Select a Personal Computer" for us. These tapes are so helpful that we decided it would be nice to be able to do our own, but on the $1 / 2$ inch Beta and VHS VCR formats (much less expensive?). We can then dub to a borrowed U-Matic (the computer science department has one) recorder for school use. Here are some thoughts on the subject:

The RCA VP33ø1 Video Terminal fwich we reviewed several issues ago, and for which we are dealers) turns out to be just the item for the generation of both still and animated titles, and areas of uniform color for headers and trailers, and to separate segments. The VP3301 has both RS-232C SEIA) (with inverted TTL compatibility) and 20 mA current 1 oop
(CL) interfaces.
SYM-PHYSIS $11-16$

SYM-PHYSIS 11-16

We use our VP on the $2 \Omega \mathrm{~mA}$ interface and call it with a version of our decwriter II printer patch, modified for two reasons: first the UP does not accept bag baud (which was added to our decwriter), and second, the VP requires "handshaking" at its higher baud rates. On the CL interface the rates are 119, उøळ, and 1296 baud. On the EIA interface the rates are 11\%, उ\% $1209,489 \%$, 96%, and 19,269 baud! of course the SYM-1 software stops at 48日g, but as we get going, and convert one SYM's CL interface into a second EIA interface, we'll also look into modifying the software to the 19,200 rate. What beautiful animation that could permit! As of now we're working at the $11 \varnothing$ rate, so that the titles are generated character by character, as if being hand typed

We lent Jack Gieryic, who has a VHS VCR system, a VP3361 to "play" with, in exchange for the use of any software he developed for it. The UP also has excellent music capabilities. The video output is available at an RCA phono jack, and the audio output at a built-in speaker. Two additional UPSXXX series terminals are available. The VP33g3 provides selectable), and the VP35g1 also has an an kilt-in direct-connect modem, 50 that any facility with a telephone and a "telly" can become a computer terminal location. Even if you are not into video Recording, you might want to consider the vp3xxx series terminals purely as a color graphic output device for the SYM-1, or as a "spare" terminal. We tried feeding the KTM-2/8ø video directly into a VCR, rather than using a video camera to copy the screen, and ran into two problems:
(1) The same reason that makes the use of an RF converter impractical also operates here. The 8% column format requires around 7.2 MHz bandwidth. We will try again with a KTM-2 (the 49 column terminal), since this requires only around 3.6 MHz . Meanwhile, we'll zoom in characters easily readable on a color TV.
(2) Monochromatic signals at frequencies near 3.59 MHz confuse color TV sets into thinking color signals are being received (this is how the Apple II generates its color graphics); spurious colors are then displayed (no problem on B / W sets!).

Jack Gieryic showed us some video recordings of his MTU Visible Memory graphics, with pretty, but difficult to predict, color fringing. The unreadable. The best solution here seems to be to avoid videotaping high resolution black and white graphics for later presentation on a color monitor funless you have an Apple Ill). Of course, if your computer outputs NTSC color signals there is no problem. When we reinstall our Colormate Board we’ll try videotaping its output. It has reinstall our Colormate Board we'll try videotaping its output. It has
been temporarily removed from service because it and the FDC-1 Floppy Disk Controller cannot co-reside at the $\$ 9 \not 2 \varnothing \varnothing$ block. The Colormate (and the $F D C-1$) will both be moved to an $8 K$ system and the Colormate will be restrapped to $\$ 706 \mathrm{f}$ for testing.
ANOTHER APPLE READER/WRITER?
Dave Kemp sent us many months ago a very compact Apple II Cassette Read/Write program. We didn't publish it until now because we hadn't tested it as yet. This was because he sent us only a source code isting fnot in RAE format, because he does all of his softwar development on larger system then downloads the object rode to the SYM).

Our typing is slow, so we now type in only the object code, turn Dessaintes" Disassembler loose on that, and then replace the "meaningless" labels with mnemonics from the printed listing. This gives us time to study the code as we replace the labels, as well as saving us points.

SYM-PHYSIS 11-17

To save on space, the version printed here is uncommented, and the label size was reduced to five characters with FO $S 5$ (the default is 10) so that we could get two columns to the page. Incidentally, if you have only a 4月 column terminal, you will get nicer screen listings if you dor the same, and also put all nformation
corar
We publish this now mainly in the hope that owners of PETs, OSIs, Ataris, etc., will be inspired to write equivalent programs for their wn systems so that "pure" ASCII text files, such as, for example, those generated by TECO, can be freely transportable.

Some of you might also want to compare the relative merits and speeds of the two cassette subsystems, and might perhaps even prefer to use the Apple format!

Notice also Dave's use of a D/A converter on the A Port to display the measured times during readback (the lines involving D2A and D2AD may be omitted if you do not need them). Since we have D/A converters on both the A and B Ports (for our stereo music system), we enjoyed watching both the signal itself and the measured time display on a dual trace scope.
COMMENT LINES SEXTRACTED FROM A MORE DETAILED VERSION WITH THE USE OF RAE'S ">FI " COMMAND) FOLLOW. THE UNCOMMENTED SOURCE CODE LISTING (CUT AND PASTED TO FIT A SINGLE PAGE!) APPEARS ON PAGE 19.

9316	APPLE	CPX	\#\$ø2	!TWO PARAMS			EOR	\#\$FF	!RESTART		
9340		CMP	\#\$14	! L3 HASH CODE	9940		LDY	\#\$FF			
9360		CMP	\#\$1F	! S3 HASH CODE	6969		CMP	\#\$CE	!???		
9390		LDA	\#\$67	!CONFIGURE	1010		AND	\#\$4C6	! BIT	SIX	
9410		LDA	\#\$2¢	! FIVE SEC HDR	1ø8ด	HEADR	LDY	\#\$AF	!659	USEC	
6430	WR1	LDX	\#\$90	! ZERO INDEX	1110		ADC	\#\$FE	!???		
¢510	WRBYT	LDX	\#\$10	! WRITE BYTE	1130	WRBIT	LDY	\#\$E1	! (FQ)		USEC
¢590	READ 1	LDX	\#\$FF	! INITIALIZE	1150		LDY	\#\$C2	! (E1)	599	
¢810	RBYT	LDX	\#\$ø8	! READ BYTE	1180		LDA	\#\$FF	---		
¢84¢		CMP	\#\$AB	! (DC)	1236		EOR	\#\$08	---		

SYM-PLE COPY
SYM-ple Copy is a very useful utility program for making duplicates of SYM Format tapes. It provides the user with multiple options for duplicating anything from single programs to entire cassettes, with minimal effort. SYM-ple Copy is completely relocatable, so that it can be entered far away from any programs read in.

It is necessary to have two cassette recorders, one for reading programs from the master tape, the other for recording to the copy tape. Each must have a remote jack, or the equivalent, so that both can be under computer control. In order to control them automatically, an inex pensive external circuit must be implemented, as shown in Figure 1. This circuit is essentially the same as the pila circuitry, with the exception of resistors R1 and R2.

SYM-ple Copy is actually two programs in one. After the user starts the program a question mark appears on the display. This asks the user if program a question mark appears on or option B.

Option A allows the user to start the program and leave while all programs on the master tape are duplicated to the copy tape. In answer to the "?" the user enters "F" for the "fast and easy" way of copying tapes. Immediately the tape player begins reading the first program to the copy tape. These steps are repeated until all programs have been copied.

SYM-PLE COPY (continued from page 11-18)
Option B allows the user full control over which programs are to be copied. In answer to the initial "?" the user may hit any key except "F", for example, "D", for do-it-yourself! When the key is hit the player reads in the first program and stops, and the ID and the starting address of the program are displayed. The user may enter "g" to bypass copying, if he so desires. Otherwise, if he wishes a copy to be made, he may enter either a "1" followed by two hex digits which will become the new ID, or any other character, in which case the ID will remain the same as on the source cassette. The process is repeated for each file on the master tape.

Only the first six locations in page zero are used. These are for EAL, EAH, SAL, SAH, ID, and a scratch byte, respectively. A "safe" origin for SYM-ple Copy in smaller systems would be at $\$$ gaøb, since it is good and above, and for SYM programs so do their own initialization of page zero (and page one), if required. This is because SYM will "hang-up" when reading data from cassettes which cross the page zero/page one boundary, and reading rassette data across the page one/page two boundary will clober the stack and any returns you may have saved boundar there!

SYM-PLE COPY - BY: P. GLENN NORMAN, $8 \emptyset 6$ WAVECREST, HOUSTON, TX 77662
[EDITOR'S NOTE: This program will work with BAS-1 files (which all start at $\$ \not 0201$, incidentally) but Option B will not be usable with RAE-1 files. This is because RAE-1 files are dumped with an initial header in which the File Number is imbedded, and all headers and files are camped system such as Mr. Norman suggests, and so is most of Jack Brown's software, but with the write casseette remote driven by CB2 and the read cassette remote driven by PB7 of VIA \#1, rather than by PB1 and PBø as Figure 1 shows. 3

NOTE: $\begin{aligned} & \text { PBO controle the tape player } \\ & \text {, PB1 controle the tape recorder } \\ & \text { Refer to the SYM-1 Reference Me }\end{aligned}$
Refer to the SYM-1 Reference Manual for a particular recorder's hookup.
If outputs o \& D are used, A must be tied to +5 V .

Pigure 1
AUDIO CASSETTE RBMOTE CONTROL

SYM－PLE COPY			
HERE：	JSR	ACCESS	Unwrite System RAM
	LDA	\＃\＄09	Set up ability
	JSR	CONFIG	to use display
	LDA	\＃\＄53	Load＂？＂in accumulator
	STA	DIG	Put＂？＂on display
	JSR	KEYQ	Is key down on keypad？
	BEQ	EEERE	If no，keep＂？＂displayed
	JSR	GETKEY	If yes，get that key
	STA	\＄0005	and store it in \＄0005
	IDA	\＃\＄03	Configure PBO \＆PB1
	STA	\＄A002	as outputs
BEGIN：	LDA	\＃\＄01	Tape player，on
	STA	\＄4000	Tape recorder，off
	IDY	\＃\＄80	Set up mode for SYM format
	JSR	START	Initialize
SEARCH：	JSR	SYNC	Get in sync
	JSR	RDCHTX	Read first character
	CMP	＂＊${ }^{\text {\％}}$	Start of data？
	BEQ	LOAD	If so，get data
	CNIP	＂sync＂	If no，sync character？
	BNE	SEARCH	If not，start sync search
	BEQ	DATA	If yes，keep looking for＂＊＂
LOAD：	IDA	\＃\＄80	Reset to SYM mode
	STA	MODE	for tape format
	JSR	RDBYTH	Read ID off tape
	STA	DIG	Display on LED（ not decoded）
	STA	\＄04	Store ID in user buffer
	JSR	RDCHK	Get SAL from tape
	STA	BUFADL	Put in monitor buffer
	STA	\＄02	Also store in user buffer
	JSR	RDCHK	Get SAH from tape
	STA	BUFADH	Put in monitor buffer
	STA	\＄03	Also store in user buffer
	JSR	RDCHK	Get EAL from tape
	STA	EAL	Save in monitor buffer
	STA	\＄00	Also store in user buffer
	JSR	RDCHK	Get EAH from tape
	STA	EAH	Save in monitor buffer
	STA	\＄01	Al so store in user buffer
	JSR	LT7H	Ok，read data off tape
	BCC	OK	Data read in ok？
BACK：	BCS	BEGIN	No－start over
	IDA	\＄03	Pick up SAH from buffer
	JSR	OUTBYT	Display on LEDs
	IDA	\＄02	Pick up SAL from buffer
	JSR	OUTBYT	Display on LEDs
	IDA	\＄04	Pick up ID from buffer
	JSR	OUTBYT	Display on LEDs
	LDA	\＄05	Pick up operation type
	CMP	＂F＂	See if user had hit＂F＂
	BEQ	KEEP	Yes－no need to wait
	LDA	\＃\＄00	Tape recorder，off
	STA	\＄A000	Tape player，off
	JSR	GETKEY	Wait for user to hit key
	CMP	＂0＂	Is choice＝＂O＂？
	BEQ	BEGIN	Yes－then start all over
	CN．P	＂1＂	Is choice $=$＂1＂？
	BNE	KEEP	No－keep record as is
	JSR	INBYTE	If＂1＂，get ID from user
	STA	\＄04	and store in buffer
KEEP：	IDX	\＃\＄FB	Load pointer with minus 5
TABLE：	LDA	\＄05，x	Pick up all data from buffer
	STA	\＄A64F， x	Store data in monitor area

0398	E8			INX		Increment pointer
0399	D0	F8		BNE	TABLE	Keep loading if not finished
039B	A9	02		IDA	\＃\＄02	Tape player，off
039D	8D	00	AO	STA	\＄4000	Tape recorder，on
03 AO	AO	80		LDY	\＃\＄80	Load Y with SYM format
03A2	20	87	8E	JSR	DUMPT	Save data on tape
03A5	38			SEC		Ok，start
03A6	BO	BD		BCS	BACK	all over again

Here is a small section of a program sent to us by John Blalock．He has solved the problem of making the comments following one byte in－ structions line up with the comments following multi－byte instructions in a

め601	PTR	．DE \varnothing
øø02	COUNT	．DE \varnothing
øø¢3		
2540	GETCH	JSR SAVER
2556		PHP ：
2560		LDY \＃ø
2576		LDA＊COUNT
2589		BNE ONE？
259\％		INY
2609		LDA（PTR）， Y
2650		INC＊COUNT
2660		BNE NDONE
9601	ONE？	

save all registers on stack
save flag register separately clear Y register
was COUNT＝zero？
no，then branch
it was zero，add 1 to Y
；get MSD of line number
；now COUNT＝one
62の0－2011 112
6293－ 68
2204－Aஜ 90
6206－A5 96
920 － CB
の20日－B1 øø
620D－E6 90
6200－EG 920
now COUNT＝on
Display on LED（not decoded）
tore ID in user buffer
et SAL from tape
Also store in user buffer Get SAH from tape
in monitor buffer Get EAL from tape ave in monitor buffer Saver ave in monitor buffer Also store in user buffer $0 k$ ，read data off tape Data read in ok？
Pick up SAH from buffer Display on LEDs pick up SAL from buffer Pick up ID from buffer Display on LEDs see if uper had hit yes－no need to wait Tape recorder，off Wait for user to hit key s cholce＝
－ If＂1＂，get ID from user and store in buffer Pick up all data from buffer Store data in monitor area

A VERY USEFUL＂SIGNAL GENERATOR＂

Occasionally SYMmers may have troubles with their SYMs failing to operate when new RAM or ROM is added．This is often due to some added memory being＂stuck＂in the selected position so that its data is always dumping to the data lines，due to faulty decoders，or whatever．If you have a scope，or even just an inexpensive logic probe，all you need is a simple device to get your SYM to cycle through all 64 K ．

Volume 1，Issue 3，Page 1，of Commodore＇s TECHTOPICS describes just such a device，which they call a NO OP TESTER．In brief，just take a＂spare＂ $65 \varnothing 2$ ，and bend up pins 26 through 3350 that they will not fit into the socket．These pins are data lines DA7－DAD，respectively．Next，wire pins 26，27，28，3N，and 32 to pin 8 （ $+5 V$ ，and pins 29， 31 ，and 33 to pin 21 （GND）．Install your signal tracing

What you have done is forced the 6592 data lines to＂read＂\＄EA，which is the NOP code．Since NOP is a two cycle operation，the 6502 will count through all 64 K addresses in 128 K useconds，or at a 7.63 Hz rate．You should then＂probe＂address lines，decoder outputs，chip selects，etc．

Just for the fun of it，we wired up a NOOP TESTER，and checked out the address decoding chips on a working SYM with both a scope and an under $\$ 20.6 \emptyset$ logic probe from Radio Shack．We may make up a $65 \% 7$ version for KTM－2 trouble－shooting．（Thanks to Chuck Harrison，in Kiton ，fending

FORETHOUGHT PRODUCTS， $8797 \emptyset$ Dukhobar Road，Eugene，OR 97462，makes a number of accessory products for the AIM 65 which will also work with the SYM－1．We quote from their newsletter，＂The AIM－Mate Monitor＂， Vol．1，No． 3 ，some advice which is also pertinent to the SYM

SYM－PHYSIS 11－22
'A number of AIM 65 system problems have been traced to faulty ic sockets on older AIM 65 boards. These sockets, which make contact with only the outside shoulder of the IC pin, can develop a high resistance between the socket and the IC pin over time. If trouble occurs with older AIM 65 boards, try re-seating all the ICs (pressing firmly on both ends will usually do the trick) before you ship it off for repair. Keeping the ICs firmly seated in their sockets (especially the 4 ab-pin ICs) will often head off system trouble with these not-so-perfect sockets. Note: Newer AIM 65 boards use a socket type which is not subject to these problems."
We pointed out this problem as existing with some SYMs and KTMs in an earlier issue. The types of sockets used by Synertek Systems Corporation do vary from one production run to the next, and often differ from 18-pin to 24 -pin to $4 \emptyset$-pin types, so you'll just have to look at your own systems to see which you have. Meanwhile, "flexing your boards and wiggling your chips often helps, at least temporarily, in error messome of your intermittent probloaded to RAM does not check when compared sage when what has been down the disk (really a great feature). Whenimer this 16 K RAM
 problem clears up
MORE ON THE CASSETTE INTERFACE
TFAMSGOMTIMENTAL MEMD
FROM: JERRY AVINE
TD: LUX Lumeneerg
SUEJECT: SYM ThFE Interface

emifill frark
ilear Lux,
The वther tiay, I hai same trauele with a thfe that hai harkei DFTEN IN the fast, fraviden i usev a "goan" pecarier at the "right OLUME. H QUICK LOOK WITH THE DECILLDECOFE RAISED MY EYEEROWS, TUPNEI MY ETOMACH, GND GAUSED MY HEART TO SINK. THE RISETIME OF THE

HYSTERESIS (IEAI EFMII \% SNAF FOTIDH
CIFCUIT CHANGES

THE ECHEMATIL ミHGWEI THAT NO HYETERESIS IE FROVIDED, FNI EEFGRE
 - a gadi idea that I haven t gatten hrolni to yet - 1 chose ta install THE HYETERESIE. IH THE IIAGRAM, THE 1 OK RESIISTGR MAKES THE HYSTERESI FOSSIELE AND INCIDENTALLY TEMFERATUPE-GOMFENEATES THE COMFARITOR. 1 MEG RESISTGR CZULD EE YARIED TO CHANGE THE FMQUNT OF HYSTEPESIS, EUT THE NEED SHOULD NOT ARISE. THIS MOD DOESNT INTEPFERE WITH EIAEING THE CIMFARATOR TO MAKE FEG ON DES GUAILAELE. THE NEN RISETIME IE EETTEP THAN MY FUWID SCOFE GAN FOLLOW, ED THERE IE ND LONGER
 APE "RIGHT". I JUST TUPN GIF THE KNDE UHTIL THE "HUIIID LEI GLIWE DIML AMI THINES WORK FINE. INGIDENTLY, C1G AT . EE OR . 05 MICRDFARADS WORKS agodut as mell: mayee the eest vilue is in the mitide!
P.S. In a later telecon Jerry says that, in his opinion, after many experiments, a $\varnothing .22$ ufd capacitor works best at C16. We feel that the choice may depend on the recorder being used. We like the smaller values since low frequency response is not required, and the smaller values reduce the effects of any 60 Hz hum present, and permit faster "settling" if there is a DC component at the input to C16. Slow settling could (and does) prevent RAE GEts from locking onto the short synch bursts if the read recorder is started under remote control.

Many recorders do not have a DC-blocking capacitor at the earphone jack. For example, our Radio Shack Realistic CTR 日Q(A) puts out -6.47 V at the earphone jack when in STOP; this jumps to over 5.2 V and settles down to 2.77 V when in PLAY. When we parallel the jack with an 8 ohm earphone and then remove the earphone the polarity reverses (this DC shift is one reason we recommend leaving an earphone in; the other is for proper loading).

MORE ON COPYRIGHTS

ITEM 1

We received, through Jack Gieryic, a copy of the Honeywell Computer Club Newsletter, dated February/March 1981 (sic, it should have said 1982!), with an article by Dan Buchler, entitled "Copyright Software Con siderations for Microprocessor Users", from which we quote the following sentence:
". . . If you have two persons using a program on the same or different systems, you may not copy a copyright program simply for the convenience of the second person who wants to use the system.

We feel that the home environment is so distinctively different from the traditional academic and industrial environments in which computers once exclusively resided, that whatever family members do with their "family" computers in t

We treat purchased software much as we do a reference book (with the exception that we immediately make a backup copy). We buy only one copy, and each family member uses it as required. Since we have elected to satisfy our family requirements by providing individual systems for each user, rather than with a single time-shared multi-user system, each of the systems has a copy available on its own mass storage device. This is for convenience mainly, and it is very unlikely that two copies are being used simultaneously.

ITEM 2

We have just received a copy of Saturn Software's SK-FDRTH 79 (Release 2. .1 , and a beautiful package it is, indeed. The two manuals which come with the package are extremely thorough, and, of course, are coprighted!

We worked with Jack Brown on the production of the manuals for Release 1.ஜ, and we know how much time and effort went into those, and what the printing costs for a small production run can be, so we have a pretty good idea of how many copies of Release 2.0 must be sold in order for Jack Brown to break even on his production costs, let alone grow exor bitantly rich on the profits.

We certainly hope that Jack finds it worth his time and effort to continue publishing such quality software, with full source code available. He can only do this if enough copies are sold. This means that we, as users, should ask ourselves how we would feel if Jack were giving away, or swapping, copies of similiar quality software we ourselves were trying to market, whenever we are tempted to exchange a copy of FORTH for a copy of Pascal, or whatever!

ITEM 3
Source code is protected under the copyright law in much the same manner as any other "literary" work. But what about object code, in ROMs, for ex ample?

Richard H. Stern, in the February 1982 issue of Computer Design, Vol. 21, No. 2 (pp. 131-144), in an article entitled "Copying RoMs: Right or Wrong" cites the two following court decisions, which should answer the question(?).
(1) 1979: Chicago Federal Trial Court, in Data Cash Systems, Inc v IS\&AA Group, Inc - - ROMs ARE NOT protected under copyright law
(2) 1981: San Francisco Federal Trial Court, in Tandy Corp v Personal Micro Computers, Inc - ROMs ARE protected under copyright law.

Take your choice!
ON ROMS, SRAMS, AMD EPROMS
We will be rebuilding our EPROM burner (s) to handle 25325 and/or 27325, and, while we are at it, we will add some "convenience" features to be polarities different from "standard" in particular those with chip-select plug into a SYM for reading. Examples of such ROMs are those in the Apple II, and, closer to home, the "main" ROM in the KTM.

We have D(ynamic)RAM at $\$ 9 \varnothing \varnothing \varnothing$ ("surplus" from the 32 K Beta Board) on our main development system in which we test and debug programs to be burned $2 \mathrm{~K} \times 8$ S(tatic)RAMs, (same CMOS) - Hitachi 6116, TMM 2016, NEC 446 and 447, Toshiba 5516, etc. - is now available which are pin compatible with the 2716s, and may be used for similiar program development. We prefer RAM to ROM, anyway, in disk systems (except for a BOOT ROM), and so will be putting a 6116 in at $\$ F \varnothing \varnothing \varnothing$ in our CODOS system.

If you plan to use only 2K EPROMs or SRAMs in the SYM sockets, you might wish to abandon the wiring convention suggested for 27165 used on the SYM, as described in Table 4-3a of the SYM-1 Reference Manual. This convention was adopted so that pin 26 could be used for chip selection for all ROMS and EPROMs used on the SYM. The standard convention for 27165 is to use pin 18 as the Chip Enable (low) and to tie pin 29 - Output Enable (low) to ground. This choice has the added advantage that the 27165 are placed in a low power "standby" mode when not selected. Pin 21 should remain connected to $+5 V$. The only change then needed when installing a $2 K \times 8$ SRAM in place of a 2716 is to rewire pin 21 to RAM R/W (Read-High/Write-Low), which is available at pin Z of the Expansion Connector (E).

Mitchell G. VanOchten, of Livonia, MI, recommends the following method of installing SRAMS in U21, U22, and/or U23:

Tie K, L, and/or M (pins 2ø) to ground at jumper position $2-3$.
Tie F, G, and/or H (pins 21) to RAM R/W at E-Z.
Tie B, C, and/or D (pins 18) to the desired 2 K address block at the appropriate jumper point, with external 2.2 K pull-up resistors to +5 V .

SYM-PHYSIS 11-25

Mr: VanOchten reports that he had spurious addressing problems when using pins 20 for chip selection, and that the method presented above eliminated the troubles. We have not yet installed our "sample" SRAM, so we don't know if the "fix" he suggests is necessary. We would prefer to use the pull-up resistors already on board at K, L, and M. Dur own suggestion would be to tie K, L, and M to the $2 K$ address block jumpers, as recommended in the reference manual, but then tie B, C, and D to H, L, and M, respectively, so that CE (pins 18) and $O E$ (pins 2\%) are tied together. The power-saving standby mode is thus still enabled.
SYNERTEK ROMS
Here is a list of the Synertek proprietary ROMs used in the SYM-1. We do not have any information on the ROMs used in the SYM-2, MDT-1øøळ, KTM-3, etc.

Ø2-0.12A	2332	(4K)	MON 1	(SY 1.0)
62-0612B	2332	(4K)	*MON 2	(SY 1.1)
ø2-øø53A	2364	(8K)	RAE-1	(Requires inversion of A12)
Ø2-ø¢53B	2364	(8k)	*RAE-1	(Current one chip version)
92-0023A, 24A	2×2332	($4 \mathrm{~K}, 4 \mathrm{~K}$)	*RAE-1/2	(Two chip version)
ø2-6ø58A	2364	(8k)	*BAS-1	(One chip version)
の2-9019A, 20A	2×2332	(4K, 4K)	BAS-1	(Two chip version)

NOTES: The suffixes " A " and " B " in some production runs are replaced by "-ळ1" and "-ळ2", respectively. "*" indicates current production. KTM-2/8ø CHIPS

The $2 K$ ROM ($2316 E$) currently being supplied with the KTM-2/86s bears the house number $\emptyset 2-\emptyset \varnothing 59-\emptyset 2$ (the $-\emptyset 2$ indicates a "B" version). Our original disassembled possible that the differences may be significant when when you replace the ROM with an EPROM of your own programming.

The KTM-2s use the $\boldsymbol{0}_{2}-9016 \mathrm{~B}$ as the main ROM. The very, very, ald KTM-2s used the 62-0日16-61 (we had one of these), and the display was much too wide for the typical overscanning type of monitor, or a TV set (with RF input) to handle. Switching from the -01 (or A) ROM to the -62 (or B) ROM required also a change of the crystal from 12.598 MHz to the current 14.31818 MHz value.

All KTMs use $\emptyset 2-6017 \mathrm{~B}$ ROMs for character generation; unlike all other Synertek $2316 E s$ these are directly replaceable by 2716 EPROMs, since the three CS lines have the same polarity specifications.

Bob Myers asked us to point out that some KTMs use 20 -pin 8304s at U34 and U35, while others use 18-pin 8T245s. The board will accept either type, although all the manuals we have seen specify the $83 g 4$. The 8364 is described in the manual as a port, bi-directional. The $8 T 245$ is similiar to the 74245 , but has a different pinout.
MODIFYING KTM-2/8ø ESCAPE SEQUENCES
The following extracts from a recent letter from Dr. Strube provide additional information on KTM-2/86 customization. Note that he, too, is an experimental psychologist. The FORMATTER he describes is even more we must first "recustomize" it for our own system as yet, because which differ from his in memory mapping, our His instruction manual is superb. We,ll be contacting him sale. Werlor ser it

CONVERTING TTY OUT TO A SECOND CRT OUT

thank you for including my notes on the KTM in the atest a real wealth of ESC codes (not all compatible with the KTM), I should like to point out how to 'customize' KTM escape sequences.
The $2 k$ KTM program (let us assume addresses from $\$ 000$ to $\$ 7 F F)^{\text {tests }}$ for ESC at locations $\$ 58 C$ and $\$ 50 B$ by CPX $\$ \$ 08$ (backwards as usual, so SD8 actually means \$1B). Ensuing CPX commands test for ail the ESC sequences:

LOCATION	CPX §\$	MEANING	
\$5C9	BC	$=$	abs. cursor addr.
\$5D7	D4	+	rel. cursor addr.
\$5E3	A2	E	form feed
\$5EA	12	H	home
\$5F4	52	\checkmark	clear EOS
\$5FB	D2	K	clear EOL
\$602	E2	G	enter graphics mode
\$60F	4A	R	enter reverse mode
\$617	E6	g	leave graphics mode
\$624	4 E	r	leave reverse mode
\$62C	36	1	aux. port off
\$639	32	L	aux. port on

I am glad to credit my colleague, Dr. Werner Schubö, for the discovery of these addresses. On my system, I have changed the ESC 1 to an ESC CR in order to avoid having printed an '1' when I switch off my printer (which is connected to the KTM aux port).

My printer, by the way, is an Olivetti typewriter which uses daisy-wheels and prints up to 30 chars. per second. As youl may have guessed, it is the most expensive part of my system (about $\$ 1600$), but, since 1 use it for all my manuscripts, it is indispensable. The rest of the system consists of a SYM, together with a Computerist DRAM, a Philips Mini-DCR (digital cassette recorder, 6 kBaud , ECMA norm), and an Anderson-Jacobson modem (connecting my SMM to a Cyber KTM are both handled by interrupt. - I use a second, 'naked' SYM are SM, exper mer statistical analysis, and get the them to the cyber for statistical analysis, and get the experimental psychologist, by the way).

[^0]Here's a very simple way to convert SYM's 20 mA Current Loop (CL) output to Inverted TTL output. Remember that Inverted TTL is accepted by most modern modems (DCE - Data Communication Equipments) and/or terminals and specifications. All Satal Equipments) which conform to RS $1488 / 1489$ specifications. All such equipments designed around the $1488 / 1489$ serial interface adapters accept Inverted TTL, so that if you want to free your parallel interface for more interesting uses, such as Voice I/O, EPROM burning, or whatever, here is how to do so.

Incidentally, the SYM-1 is configured as a DCE, the main port on the KTM as a DTE, and the aux port on the KTM as a DCE. When interconnecting DCEs to DTEs, wire 2 to 2 and 3 to 3 . When interconnecting DCEs to DCEs or DTEs to DTEs, wire 2 to 3 and 3 to 2 . In all cases 7 is the signal ground on both. Be careful in using pin 1 as a signal ground, as on some equipments it is connected to the third wire of the power cord, and accidents can happen in this area.

TELEX COMMUNICATIONS, INC
 Divisions: HY-GAIN • MAGNECORD • TURNER•

3600 Aldrich Avenue South • Minneapolis. Minnesota 55420 U.S.A • Telephone: (612) 884-4051 • telex: telexcomdi mps $29-7053$

Dear Lux

To modify the current loop output to the same configuration as the CRT output for inverted TTL output to a serial printer, an inverter and a resistor must be added. This was discussed in an earlier news letter.

An easy way to do this is to cut the foil at point "C" located on the foil side of the board between U3 and U6. Solder a wire from point "A" to pin 3 of U9 (input to inverter), and solder a wire from point "B" to pin 4 of U9 (output of inverter). Push the wires right into the feedthrough holes at points "A" and"B". You have now connected the unused inverter in 49 between PB5, pin 18 of U27, and the base resistor of Q30. (See fig. 4.2 in the Sym Reference Manual.)

Next connect a 200 or 220 ohm resistor from the emmiter of Q30 to ground.

This is done by first locating resistor R110. On the newer SYM-1's R110 is located just to the right of pins 13 and 14 of the K" connector. On the bottom of the board, solder the new resistor from the inside end (the end farthest from the "K" connector) of R110, to pin 12 of the "K" connector (ground).

However, on older boards, that have discrete resistors instead of RN1, R110 is located about $\frac{1}{2}$ inch down from the "K" connector and your new resistor should be soldered to the outside end (nearest board edge) of R110 and Pin 12 of the "K" connector. This completes the modification.

I am using this port to drive an Epson MX-80 printer, which is equiped with the 2K buffered serial interface. I have connected the "Busy" signal, pin 20 of the printer, to pin "K" of the "A" connector as prescribed by Browns Extended-Sym Basic. This allows me to operate
the KTM-2/80 at 4800 baud and the printer at 2400 baud. It works GREAT! SYM-PHYSIS 11-28

Before I connected the＂Busy＂signal I was operating the printed at 1200 baud．This worked 0 K for short listings but for longer ones，above 2.5 K or so it was too fast and I had to reduce it to

I like the serial printer interface because it frees the ports for other purposes．
Haroold Atarwie

Harold Hansen
A BASIC DISASSEMBLER
Here＇s a handy little utility program for BASIC users who have a once in－a－while need to use a disassembler to help them debug a USR function， or perhaps make a few minor changes．Dean Garth，its author，would like to organize a users＇group in his area．His address is 28619 Golden Meadow Drive，Rancho Palos Verdes，CA 96274

The workings of the disassembler are easy to figure out．It is a so－called＂table－driven＂disassembler，and by changing the table entries used in the Epsons．Following the mis，such as，for example，the 8049 as of SUPERMON，pbtained by owswering questions by \＆＂ $8 \emptyset \emptyset \sigma "$ ，and \＆＂8øFF＂，respectively

106 REM＂A BASIC DISASSEMBLER＂＂
20 REM＂ \qquad DEAN GARTH
149 DIM H\＄（15），A（15），B（15）
159 FOR $K=\varnothing$ TO 15：READ H $\$(K), A(K), B(K)=$ NEXT K
160 DIM C $\$(15,15)$
$17 \varnothing$ FOR $K=\varnothing$ TO 14
$19 \varnothing$ READ C $\$(J, k)$
Og READ Cक $\langle J, k$
290 NEXT J
220 INPUT＂START ADDRESS ？＂：x
236 INPUT＂END ADDRESS ？＂；Y＂
$24 \varnothing$ PRINT
250 PRINT
268 PRINT＂ADRESS＂；TAB（9）；＂NMEMONIC＂；TAB（21）；＂OPCODE＂

$28 \varnothing$ IF $X>\varnothing$ THEN $3 \varnothing \varnothing$
$290 \mathrm{x}=65536+\mathrm{X}$
300 IF $Y>\emptyset$ THEN 320
$310 \mathrm{Y}=65536+\mathrm{Y}$
326 C＝PEEK（ X ）
330 A1＝INT $(x / 4096): B 1=X-A 1 * 4696$
34 C $1=\mathrm{INT}(\mathrm{B} 1 / 256): \mathrm{D} 1=\mathrm{B} 1-\mathrm{C} 1$＊256
$350 \mathrm{E}=\mathrm{INT}(\mathrm{D} 1 / 16): \mathrm{F}_{1}=\mathrm{D} 1-\mathrm{E} 1 * 16$
360 PRINT H\＄（A1）；H\＄（C1）；H\＄（E1）；H\＄（F1）；TAB（9）；
$37 \varnothing$ E2＝INT（C／16）：D2＝C－E2＊16
389 IF D2＞Ø THEN $4 \varrho \varnothing$
$390 \mathrm{~F}=\mathrm{A}(E 2)-1$ ：GOTO 490
400 IF D2＞6 THEN 420
410 F＝1：GOTO 496
420 IF D2＞8 THEN44
$430 \mathrm{~F}=\varnothing$ ：GOTO 499
440 IF D2＞9 THEN 460
$459 \mathrm{~F}=\mathrm{B}(\mathrm{E} 2)-1$ ：GOTO 490
460 IF D2＞10 THEN 48
$470 \quad \mathrm{~F}=\emptyset:$ GOTO 496

489 F＝2：GOTO 496
499 PRINT C $\$(E 2, D 2)$ ；TAB（21）；H\＄（E2）； $\mathrm{H} \$(\mathrm{D} 2)$ ；：IF F＝ø THEN 55ϱ
596 FOR $K=1$ TO F
519 C＝PEEK $(X+K)$
52 D $2=1 N T(C / 16): E 3=C-D 3 * 16$
530 PRINT SPC（1）；H\＄（D3）；H\＄（E3）
540 NEXT K
55 5 PRINT
$560 \mathrm{X}=\mathrm{X}+\mathrm{F}+1$
570 IF $X>Y$ THEN 959
586 GOTO 320
$59 \emptyset$ DATA $\emptyset, 1,2,1,2,3,2,3,2,3,2,3$
$60 \emptyset$ DATA $4,1,2,5,2,3,6,1,2,7,2,3$
$61 \emptyset$ DATA $8, \emptyset, \emptyset, 9,2,3, A, 2,2, B, 2,3$
62 DATA C $2,2, D, 2,3, E, 2,2, F, 2,3$
630 DATA RRK，BPL，JSR，BMI，RTI，BVC，RTS，BVS，BCC，LDY IMM
640 DATA BCS，CPY IMM，BNE，CPX IMM，BEQ，ORA IND X，ORA IND Y 659 DATA AND IND X ，AND IND Y ，EOR IND X ，EOR IND Y $66 \boxed{ }$ DATA ADD IND x ，AND IND Y ，EER IND x ，EOR IND Y
670 DATA LDA INDX，ADC IND Y，STA IND X，STA IND Y
68% DATA SBC IND $X, S B C$ IND Y ，，，X ，CMP IND Y ．＂
680 DATA SBC IND X，SBC IND Y, ，，，，，
790 DATA LDX IMM，，，，BIT＇ 7 ＇ 7 PAGE，,
710 DATA STY＇Z＇PAGE，＇STY Z PAGE X, LDY＇Z＇PAGE，LDY Z PAGE X
$72 \emptyset$ DATA CPY z PAGE，, CPX z PAGE，, ORA z PAGE
73ϱ DATA ORA z PAGE X ，AND z PAGE，AND Z PAGE X ，EOR z PAGE
740 DATA EOR Z PAGEX，ADC Z PAGE，ADC Z PAGE，STA Z PAGE
$75 \varnothing$ DATA STA z PAGE x ，LDA z PAGE，LDA z PAGE x
76 DATA CMP z PAGE，CMP z PAGE x ，SBC z PAGE，SBC z PAGE x
$77 \varnothing$ DATA ASL z PAGE，ASL z PAGE x ，ROL z PAGE，ROL z PAGE x
789 DATA LSR z PAGE，LSR z PAGE x ，ROR z PAGE，ROR z PAGEX $79 \emptyset$ DATA STX Z PAGE，STX Z PAGE Y ，LDX Z PAGE，LDX Z PAGE Y 800 DATA DEC Z PAGE，DEC Z PAGE X ，INC Z PAGE，INC Z PAGEX
$81 \emptyset$ DATA, ，，，，，，，，，，，
320 DATA PHP，CLC，PLP，SEC，PHA，CLI，PLA，＇，SEI，DEY，TYA，TAY，CLV 830 DATA INY，CLD，INX，SED，ORA IMM，ORA ABS Y，AND IMM，AND IMM Y 849 DATA EOR IMM，EOR ABS Y ，ADC IMM，ADC ABS Y ，STA ABS Y 859 DATA LDA IMM，LDA IMM Y，CMP IMM，CMP ABS Y，SBC IMM，SBC ABS Y 860 DATA ASL A，ROL A，，LSR A，，ROR A，，TXA，TXS，TAX，TSX 870 DATA DEX，，NOP，＇${ }^{\prime}$ ，＂JMP＂ABS，，JMP＇IND，＇STY＂ 889 DATA＂＂＂，＇BIT ABS，＂JMP＇ABS＇，＇JMP＇IND＇，＇STY ABS，，LDY ABS 890 DATA LDY ABS $X, C P Y$ ABS，，CPX ABS，，ORA ABS，ORA ABS X
960 DATA AND ABS，AND ABSX，EOR ABS，EOR ABS x ，ADC ABS，ADC ABS x 910 DATA STA ABS，STA ABS x, LDA ABS，LDA ABS x, CMP ABS，CMP ABS x 930 DATA SBC ABS，SBC ABS X, ASL ABS，ASL ABS $X, R O L$ ABS，ROL ABS X 930 DATA LSR ABS，LSR ABS X，ROR ABS，ROR ABS X，STX ABS，，LDX ABS 940 DATA LDX ABS Y ，DEC ABS，DEC ABS X ，INC ABS，INC ABS X 959 END

ADRESS	NMEMONIC			OPCODE			$\begin{aligned} & 891 \mathrm{C} \\ & 8910 \end{aligned}$	TAX		AA					
				PLA		68									
8øめめ	JMP	ABS					4 C	7 C	8 B	891 E	PLP		28		
8903	JSR			20	FF	$8 \varnothing$	881 F	JMP	IND	6 C	F6	F			
8906	JSR			20	4A	81	8922	PLA		68					
8909	JSR			20	71	81	8623	TAX		AA					
8øめ	JMP	ABS		4 C	93	8 8	8624	PLA		68					
890\％	PHP			¢8			8625	PLP		28					
8910	PHA			48			8026	JMP	IND	6 C	F8				
8011	TXA			BA			8029	JSR		2¢	86	8			
8912	PHA			48			892C	SEC		38					
8013	TSX			BA			8 6 2 D	JSR		20	64	8			
8914	LDA	ABS	X	BD	04	Ø1	8 830	LDA	IMM	A9	31				
8017	AND	IMM		29	10		8932	JMP	ABS	4C	53				
8919	BEQ			F6	67		8635	PHP		98					
8018	PLA			68			8036	JSR		20					

TOM GETTY＇S＂ $3-D$ TIC－TAC－TOE＂
Tom Gettys is an extremely talented and versatile Computer Scientist Without his very close collaboration SYM－PHYSIS would never have been born．To give you just one example of how prolific he is we reproduce below the directory of a disk（HDE／FODS）which he gave us more than a year ago．The＂．which appears before each five character file name in BAS－1（with disk interface added，of course）．This disk is but one in BAS－1 of many in his disk library．

To give you an idea of the quality of his programming we also are pub－ lishing his program＂．3D＂，which is a three dimensional Tic－Tac－Toe opening graphics on the Epson but the KTM＇s cursor control ESC sequences ＂don＇t compute＂on the Epson＂incidentally，Tom showed us recently some high resolution Epson graphics he had produced with his Graftrax 80 driver routine）．

Following the opening graphics，four four－by－four grids are drawn on the screen and the computer asks：＂Who gets to move first？＂If your answer begins with＂Y＂（for＂YOU＂，meaning，in this case，the computer），it plays first．The computer plays a strong game；you may have to study the implemented algorithm if you want to increase your chances of winning！

It＇s only a very minor point，of course，but notice the＂pretty－ printing＂format Tom uses，especially the nested FOR ．．．NEXT loops in lines $768 \emptyset$ through 7119．Tom has also provided us with a very useful utility，＂PAC＂，which removes all＂null＂lines，＂surplus＂spaces，and REMs（make certain first that you never Goto a line beginning with a REM！）from a BASIC program，to allow more＂RUNning＂room．

We have often asked Tom to compile his best SYM software into book form， but he replies that no one would really be interested．We＇ll keep work－ ing on him！

＞DC	DIR 2	Dist	No．		M	Misc	us	Getty	BASIC	ro
$\emptyset 1$	．MULT	ø201	G9D6		01	02	． BIO	¢201	07F5 0^{2}	
93	．EVEN	¢201	ø4DB		13	64	．RESEQ	ø201	0516	93
65	．FIND	0201	63D4		10	06	．FFT	6201	6846 0^{3}	14
07	．HANDI	0201	ØAAS		$\square 1$	98	．WARI	6201	94FF ø6	$\emptyset 3$
99	．PLOT	0201	976C		69	16	．PLOT1	¢201	Ø7E8 07	ø4
11	．PLot2	6201	g8AA		16	12	．PLOT3	¢201	の8A1 98	14
13	．DEPTH	0201	OCD4		12	14	．OTHEL	0201	ØC76 11	$\emptyset 2$
15	．THINK	ø201	ØC52	12	ø7	16	．DEMOS	6201	DE8D 13	12
17	．PLots	0201	gazB	15	66	18	．REVRS	6291	633F 16	ø7
19	．TREE	ø201	¢482	16	19	29	：AUX	¢206	9C7D 16	16
21	．PRIM1	6201	Ø29E		65	22	．PRIM ${ }^{\text {P }}$	ロ201	647A 18	67
23	．PRIM2	¢201	93F3	18	12	24	．BINOM	¢201	665718	16
25	．SAMPL	0201	0385	19	99	26	－QKSRT	6291	886319	13
27	．PRIME	ø201	9560	26	16	28	－LIFEg	6201	66DF 21	\square_{1}
29	－LIFE	0201	1192		11	$3 \varnothing$	．LIFER	¢201	690823	11
31	． 3 D	$\emptyset 201$	19 D 4		$1 \varnothing$	32	．PIMS	¢201	1798 27	10
33	．STATS	0201	g41C	30	96	34	：LIFE	ø2øø	16 D 130	11
NE	T：T33	$5 \varnothing 5$				NOTE： ML ver much	$\begin{aligned} & \text { File } 3 \\ & \text { rsion of } \\ & \text { faster } \end{aligned}$	is R ＂The than the	AE sourc Game of Be BASIC	code for Life＂， version．

1 øøø DIM PA\％（63，6），VA\％（75）， 50%（63），WN（3）
の1ø ：
1020 REM
Define the KTM 2 display control constants
1630
640 ES $\$=$ CHR $\$$（27）
1050 ER $\$=E S \$+" R ": D R \$=E S \$+" r "$

6960 PRINT ER\＄；EG
697 PRINT ED\＄（6）
6ø8ø FOR I＝ø TO 2 ：PRINT BD\＄（1）：PRINT BD\＄（2）：NEXT
69\％PRINT BD\＄（1）：PRINT BD\＄（3）
610．
6116 PRINT DR\＄；DG $\$$
6126 RETURN

7180 ：$P A \%(I, 2)=I+4 \varnothing$
2øø NEXT
7210
7229 FOR $1=16$ TO 63 Ld d d Lr Ld Ldttl d Lr Ld Ld dds K
7230 ：$Q U=I N T(I / 16) d$ IK Kttd d d dKttd d dttddttL
24ø ：MO＝I－16＊QU
7250 ：$\quad \mathrm{PA} \mathrm{\%}(1, \varnothing)=P A \%(M O, \varnothing)+1 \varnothing * Q U$
7260 ：$\quad P A \%(1,1)=P A \%(M O, 1)+1 め * Q U$
$27 \varnothing$ ：$\quad P A \%(1,2)=P A \%(M O, 2)$
$728 \emptyset$ ：READ PA\％（I， 3 ）
7290 NEXT
7309 ：
7310 FOR $I=\emptyset$ TO 15
732の：READ 5
NOTE：On the KTM－2／89 the above gibberish reads，in large，shaded，three dimensional

7330 ：FOR $J=4$ TO 6 －$\quad 3$
7349 ：NEXT TEAD PA\％（S，J）TIC－TAC－TOE
350 ：NEXT
736 NEX
7370 ：
389 RETURN
901
日のロロ DATA＂AOOOyOOOy000yOOOB＂，＂v v v v v＂
8916 DATA＂h000p000p000p000i＂，＂COOOx000x000x000D＂
8020 ：
8930 DATA $8,60,62,9,57,8,9,65,58,9,8,66,9,61,63,8$
8940 DATA 19，69，70，19，68，18，19，71，72，19，18，75，19，73，74，18
895 DATA $28,79,69,29,72,28,29,75,68,29,28,71,29,74,73,28$
866Ø DATA 38，61，63，39，65，38，39，57，66，39，38，58，39，69，62，38
8970．
8980 DATA $9,56,68,69,3,64,79,71,12,59,72,73,15,67,74,75$
899 DATA $21,56,57,60,22,62,64,65,25,58,59,61,26,63,66,67$
B1，6 DATA $37,61,65,67,38,57,59,63,41,66,64,66,42,56,58,62$
110 DATA $48,67,76,72,51,59,69,75,66,64,68,74,63,56,71,73$
8120：
Q10 ：REM Output the game banner
9ロ2の：
9К3ø PRINT ER\＄；EG\＄
7ด40 T\％＝22
$9 \varnothing 5 \emptyset$ PRINT TAB（T\％）：

JACK BROWN＇S VISIT

Jack Brown（Mr．Saturn Software）and family visited with us overnight on their way to the 7th West Coast Computer Faire（we first met Jack in person two years ago，when he visited with us overnight on his way to the Sth West Coast Computer Faire！）．History was repeating itself，but on this visit he brought even more wonderful goodies than last time．W describe one of them below，in connection with Pascal．

X－RAY

Saturn Software＇s latest products，SYM－Pascal（Release 2．6），and X－RAY （Release 2．Ø）are by Ralph Dean，and by Ralph Dean \＆Jack Brown，respec－ tively．Pascal needs no introduction，and we did mention earlier that SYM－Pascal is integer only．

We do not find this a real limitation，since most of our interests do not require floating point arithmetic．Hal Chamberlin＇s MTU Advanced Music Synthesis package（in machine language）and Jack Brown＇s＂Turtle－ Graphics＂（in FORTH）both use simple algorithms and simple table loakups to do fairly sophisticated tasks such as Fourier Synthesis，and the like，with the lg－bit precision that is more than adequate for the jobs， and，much more important，fast enough for the jobs！The lack of float ing point is a challenge，not a handicap，to a skilled programmer．

We also mentioned earlier that Pascal operates＂under＂RAE．This means in effect，that Pascal source files are actually RAE files，and that ali RAE commands，including disk linkages and other add－ons，are built－in to Pascal．Now comes the exciting part！
X－RAY does for RAE even more than Brown＇s Enhancements do for BASIC Among other things，it adds the following commands to RAE（and henc also to Pascal）：

ADdress line\＃（gives RAM location of start of line），APpend line\＃（see below），EXecute addrs（see below），FL（for FiLe）addrs（1ets you keep several files going），Restore（recover after clear or cold start），SAv ID addrsi addrs2（for object code！），TApe 1，TApe 2 （to change tape speed to single or double！），and an improved EDit line\＃．
There is not enough space to describe all of these new commands in the detail they deserve，but here are very brief explanations of two of them：

EXecute is similiar in function to．E in SUPERMON，in that a sequence of RAE commands can be prestored in RAM，and then EXecuted by giving the are callable from RAE，any desired DOS sequen Opating System）

APpend lets you＂scroll＂through a text file by holding down the RETURN key．The vertical scrolling stops with the cursor at the end of a line when the RETURN key is released．The direction of＂vertical＂scrolling is reversed with CTRL U（up），and CTRL D（down）．The cursor may be scrolled＂horizontally＂in wrap－around fashion through a line with CTRL （BS or left），and CTRL I（TAB or right），and characters may be inserted，deleted，replaced，etc．，exactly as if you were using a memory backspacing can be used．The command is called APpend because its most ＂natural＂function（since the cursor waits at the end of a line）is to append comments to source code．

X－RAY makes text editing and source code commenting almost a pleasure． We originally purchased our SYM mainly because RAE was＂promised＂as an accessory，and we knew that RAE would be great．We are continually being surprised by RAE becoming even greater and greater with such add－ons as X－RAY．We never dreamed it could become this good
SYM DISK OPERATING SYSTEMS（continued from page 11－2）
disk＂primitives＂may let you speed up your system significantly．MTU＇s conos system comes with a builtin utility to customize your system， bless them！The program lists the default value of each built－in delay and waits for either a 〈cr〉 or the entry of a better value，which you obtain from the spec sheet on your disk drive．

DRIVES

The $51 / 4$ inch drives come in 35 track（Shugart SA－40ø）and 40 track versions（Shugart SA－40ØL）．We mention the Shugart brand name here，not as a specific recommendation，but because their models are，in a way，de facto＂standards＂．These are single－sided drives．The Shugart SA－450 types are $4 \mathscr{0}$ track double－sided drives．All of these drives may be operated either in single or double－density mode，this choice depends primarily on the capability of the disk controller and which mode（s）the software supports．Some $51 / 4$ inch drives reduce the intertrack spacing from the Shugart＂standard＂to provide twice as many tracks in the same space．

The Shugart SA－8ø日／8の1 is the single－sided 8 inch＂prototype＂，and the Shugart SA－850／851 is the double－sided version．The SA－806 may be used only with soft－sectored disks，the SA－8ص1 with hard－sector as well．The SA－85月 and SA－851 differ from each other in this same regard．The 801 （and 851）may be used with soft－sectored disks and a 34－wire cable instead of the standard 59 －wire cable（e．g．，FODS 8 inch systems）．

SYM－PHYSIS 11－36

All Shugart compatible disk drives accept the same types of power and controller cable connectors. All have an almost bewildering selection of "options", selectable by cutting traces andfor adding jumpers, and must be configured to meet any special requirements imposed by the controller and software. The factory installed jumpers are for single drive systems, and must be modified for multiple drive systens. All 5 $1 / 4$ drives require $+12 v$ and $+5 v$ regulated, and all 8 inch drives require $110 \mathrm{VAC}(U S),+24 \mathrm{~V}$, and +5 V . Some 8 inch drives also require -5 V .

DISKS

The most "universal" type of disk is the soft-sectored disk, which has only a single hole to mark the "origin" for each revolution. Hardsectored disks may have 10,16 , or 32 additional holes to mark sector expensive disks are the single-sided, single-density ones. This does not necessarily mean that they cannot be used at double density, or that not necessarily mean that they cannot be used at double density, or that the second side (which is the "top" side, by the way) is not usable. By cutting out a second "write-protect" notch (on 5 if4 inch only), and punching a second erack-hole" in the protective case, most single-sided that this is not a good idea, but Apple II owners do this all the time, since the Drive II does not even require the punching of a second track-hole.

Double-sided disks have the track hole in a slightly different lacation and will not work in a single-sided drive. Double-sided drives will accept either type of disk and can be jumpered to work either as a double-sided drive when double-sided disks are used, or as, in effect, two distinct single-sided drives, callable separately if a single-sided disk is used.

HUDSON DIGITAL ELECTRONICS' - FILE ORIENTED DISK SYSTEM (FODS)
We now have two, and will soon have three, dual $51 / 4$ inch SYM-FODS systems operational, and in almost constant use, with no preventive maintenance. One system is 35 track, the other two are 40 track. Disks with 35 or fewer tracks "in-use" are freely interchangeable. FODS was our very first DOS and we learned a lot fromit. FODS is strictly a single-density, single-sided system, as it stands. We have also had on twice the clock rate (the only difference), and we think that the $51 / 4$ software could be modified to support double-density operation with the 8 inch controller.

While we have 7 mini-floppy ($51 / 4$ inch) drives around, until last week we had only one 8 inch drive, and that was "permanently" on our coDos system. We will soon be packaging a self-contained dual 8 inch drive unit on a wheeled table which can be rolled around to service three computer systems. Each will have an extension cable dangling from it so that we can plug the drive system into it. One computer system will have both 8 and $51 / 4$ inch FODS controllers installed, one at \$A888, the other at \$A88\%. Both may be co-resident and either booted up separately. This will permit us to support both foDS formats.
The FODS controllers are about 4×6 inches in size, and, being built for the KIM-4 bus, require unregulated $+8 V,-8 V$, and $+16 V$. The on-board regulators may be shorted across, and regulated $+5 v,-5 V$, and $+12 V$ supplied instead. Interface to the SYM is from the Expansion Connector to a VIA on the Controller Card, which shares space with the SYM's "extra" VIA at \$A8ø. Since FODS needs nearly 4 K of RAM at $\$ 76 \emptyset \varnothing$ for its own use, and perhaps $2 K$ of RAM in the \$6のøø block, external memory is required. FoDS goes very well with the 32K Beta DRAM board, which needs only +5 V , but generates its own +12 V and -5 V on-board enough to support the FODS controller, as well as itself.

SYM-PHYSIS 11-37

FODS stores its files sequentially on the disk, never over-writing existing files, and thus must be periodically "packed" to compact the active files. This may not be the most "popular" technique, but it is good insurance. Even when you "clear" a disk by deleting the directory (DEL INDEX!), the data is still easily recoverable by indirect methods.

UK SYM-DOS
Even though FODS source code is not published, a group of sYMmers in the United Kingdom has disassembled and studied the inner workings of FODS. As a result they have generated a new DOS (called by them UK SYM-DOS), wholly compatible with the HDE Controller and existing FODS disks. In UK SYM-DOS, they have compacted the code, speeded up the PAK operation, and worked out a way to squeeze all of of the Dos, thus speeding up all隹 atilities by avoid tilities.

They have added a number of new instructions which permit accessing individual sectors, overwriting files if desired \{avoiding the need to pack), creating EXECute files (all SYM-DOS command names are four available in well commented source code form, and studying the source is a good way to learn how disk systems really work.

While UK SYM-DOS is descended from FODS it is a wholly new creation. The authors deserve commendation for making it 106% compatible with existing FODS files. We feel it is an enhancement to FODS, and cannot hurt FODS sales in any way. In fact, UK SYM-DOS is available only on a
FODS compatible disk, which requires that the purchaser have a FODS system to begin with.

MTU'S CHANNEL ORIENTED DISK OPERATING SYSTEM (CODOS)
We have been using Micro Technology Unlimited's CODOS for over a year on our high resolution graphic system, and CODOS forms the basis for Jack Gieryic"s graphics as well. Jack Brown also has both CODOS and FODS. Both systems are excellent; they represent two completely different pro gramming philosophies and approaches to system design. The "channel orientated" concept (no time to define it here) is a very elegant tech nique for I/O management, which takes a while to get used to, but makes coDos a really versatile instrument.
Having only a single-drive system available kept us from providing the SYM/CODOS community with full support. There was just no way to automate the copying of disks (for distribution) on a single-drive system. this situation will be resolved by this summer, and we will provide full SYM/CODOS support.

We should point out that CODOS supports only 8 inch drives, up to four of them, in ddouble-density mode. Double-sided drives are supported (if double-sided disks are used, but then not all users can read your disks), and, with four double-sided drives you will have over 4 Mega CODOS, and we have followed their recommendation.

Because we had only a single Qume, and were not yet certain what our second drive would be, we never bothered to optimize our CODOS system to the Qume. When Jack Brown heard our disk drives chugging along, he asked if he could optimize one of our CODOS disks for us; he did and we could not only see the speed improvement, the system now purred, rather than chugged. Things did not have to hurry-up and then stop to wait for the software delays to time out. Except for the CODOS. Z program itself, all disk programs are independent of the optimization parameters. All MTU boards use the KIM-1 pinout (same as the SYM E-connector) and use small amounts of unregulated +8 V and +16 V .

SYM-PHYSIS 11-38

Who should consider CoDOS？If you want high resolution B／W graphics you will need the BK RAM Visible Memory．Both it and the SYM fit neatly into an MTU Card Rack．Then the CODOS controller is actually part of a $16 K$ Dynamic RAM board that fits into the same card rack．You can buy it just for the 16 K memory expansion，and add the disk drive（s）at a later date．You will then have one of the fastest，highest capacity，floppy disk systems available for any microcomputer system，bar none．Consider conos too，if your data base is likely to be on the largish side，or extremely rapid access is needed．

We will be supporting the SYM／Visible Memory software and the RAE／CODOS interface．We recommend that the EASIC／CODOS interface be handled ang Jack Brown；way all of his BASIC enhancements will be an integral part of the interface．

THE SYM USERS＇GROUP FLOPPY DISK CONTROLLER（FDC－1）
When we accepted Synertek Systems Corporation＇s offer to be allowed to ＂adopt＂the FDC－1 as＂our baby＂if we promised to support it properly， we did not fully realize what the＂child－support＂involved，or how much of an initial outlay of time and money would be required．

If we are to fully support FDC－1 with a strong software base，it would will stupid to distribute the software on cassette．This means that we $51 / 4$ inch，to do the job．That works out to lots of dollars．A dollar saving alternative is a single system on which we change controllers to switch from one size drive to the other．We＇ll start out this way．

So much for the hardware costs．Now for the software costs！
Only a preliminary partial manual in rough draft form now exists．This must be completed and edited，and we＇ll have to hire a typist and train him／her to＂SWP＂out the final version on one of our SYMs，and hire someone to do the drawings．Then there will be the printing costs， which are very high for small runs．Should we print 5め月，1øø日，2øøø， 5øøø manuals？At perhaps $\$ 3 . \emptyset \emptyset$ per copy a run of $2 \emptyset \emptyset \emptyset$ will mean a $\$ 6 \varnothing \varnothing \varnothing$ outlay immediately．

The EPROM source code was not available to us in RAE format so we had to disassemble the object code，and use RAE to replace the meaningless labels with meaningful mnemonics．Next we will append the comments．We are very thankful for Dessaintes．Disassembler and X－RAY；wi thout them the $j 0 b$ would be even more tedious than it has to be．Should we supply source cade on disk，with the higher medium and copy－time costs
should we go to a printed listing，with the higher initial costs？

We tell you our problems，not to elicit your SYMpathy，but to answer，in advance，those who are wondering why it takes 50 long，and especially assembled and tested FDC－1 at the price originally announced by SSC．

The Synertek logo will not appear on the $\mathrm{FDC}-1$ ，so we＇ll design our own． Since the FDC－1 is primarily＂for SYM－1＂，and since fruit mames are state－of－the－art these days，should the logo read＂persymone＂？
\qquad
now，
here＇s
the
bottom
line：

We will be placing initial orders for circuit boards，components，and drive cables in early April，and FDC－1 kits，complete with double－drive cables will be ready for shipment by mid－June，1982，on a first ordered， first shipped basis，at the following prices（enclose check with order）：

SYM－PHYSIS 11－39

》＞＞＞Please state whether 8 inch or $51 / 4$ inch cables are needed＜＜＜＜＜
California residents please add 6% sales tax．
Foreign residents please advise classification for lowest duty rate．
MISCELLANIA
This is a＂special＂issue for those readers who do not like special issues devoted to single topics．For those who like games，there is a in favor of assembly language，there is a BASIC DISASSEMBLER，which might even arouse a latent interest in assembly language programming．

As usual，and with regret，we must apologize for not being able to answer all of the letters requesting help．Getting out two issues in the same quarter left little＂free＂time．We will apologize in advance for the next quarter as follows：While all letters arriving durng the period mid－April through mid－May（1982）will be opened and read by the office staff while we are visiting Australia and New Zealand，few technical questions will be answered，so we request you hold your questions till later in May．
When we return we＇ll start our policy of batching questions and sending them on to those who volunteer to help（see page 1）．We would gladly like to hear from some of the more experienced SYMmers who would enjoy helping beginneers，and even non－beginners needing help．

For those readers who object to our use of the editorial＂we＂as sounding too pretentious，or pontifical，I can only reply that I was how I can，in all due modesty，use an＂I＂for an＂I＂when I was educated tow ise＂we，instead I？sorry about I for JEFF LAVIN was working very hard on preparing a questionnaire to be mailed with this issue．The answers would have gone into a computerized He sent us a preliminary draft which looked great，but we were too overloaded to get it back to him in time for this issue．It will have highest priority for Issue No． 12.

There were a number of notes to go in the space below about books writ－ ten by SYMmers，and products available from SYMmers．Since there is not enough space to include them all，and we don＇t want to upset those whose notes were not selected，we 12

We will be teaching a SYM based Microprocessor Course at the University We California at Davis，Davis，CA 95616 ．If you are interested in more information，contact Garrett Jones，c／o University Extension，phone （916）752－2177

This issue should reach Australia and New Zealand about the same time we do．We are both looking forward to an Easter in autumn，and to meeting many of our readers down－under．Look for Issue No． 12 around mid－July．

[^0]: Since you took interest in the text formatting program since you took information which, along with source included, should enable you to adapt FORMATTER to your system with little effort. I'm eager to get your

