

THE SYM-1 USERS, GROUP NEWSLETTER VOLUME III, NUMBER 2 (ISSUE NO. 12) - SUAMER 1982 (APRIMAY/JUN)
 Box 319, Chico, CA 95927 . SYM-PHYSIS and the SYM-1 Users, Groug (SUG)
arre in
SSC has no associated with Synertek Systems Corporation (SSC), and SSC has no responsibility for the contents of SYM-PHYSIS. SYM is a
registered trademark of SSC.
state of growing together, to make grow to bring forth. Greek, means the
We welcome for publication all articles dealing with any aspect of the
 may be freely published, with full credit of programs for other computers provided to SYM-PHYSIS and the original author (s).

$$
\begin{array}{lr}
\text { Editorlpublisher: } & \text { H. R. "Lux" Luxenberg } \\
\text { Businessicirculation: } & \text { Jean Luxenber } \\
\text { office Staff: } \\
\text { Associate Editors: } & \text { Dennis Hallyce Arnouick } \\
& \text { Tack Brown } \\
\text { Ton Gettys, Jack Gieryic }
\end{array}
$$

SUBSCRIPTION RATES: (Volume III, 1982, Issues 11 - 14)
 BACK ISSUES ARE STILL AVAILABLE AS FOLLOWS:
 First Class/Airmail, el sewhere.
ISsues 7 through $1 \varnothing$ (Volume II, 1981), are available for $\$ 10.50$,
US/Canada, and $\$ 14 . \varnothing 日, ~ F i r s t ~ C l a s s / A i r m a i i, ~ e l s e w h e r e . ~$ RAM-BLINGS

The past quarter has been an unusually busy one for us. First, there was the four week trip to Australia and New Zealand, then a four week effort to complete the documentation for the FDC-1, then several weeks in "reorganizing" our laboratory and production facilities and our ever growing paperwork storage system, this latter to increase the liklihood of finding needed information within a short enough time for it to be of use, both to ourselves and to those who call in or write for help.

We had SYMmers from Australia, France, Switzerland, and Oregon visit with us, for from one to four days. In addition, we received many excellent programs for both publication and distribution, all of which required the usual amount of editing and testing, several new hardware items which required installation and checkout, and several excellent books for review.

We taught a weekend microprocessor course at University of California, Davis during mid-June and are preparing for a one week course on display systems engineering at University of California, Los Angeles during midAugust. of August Our writing speed and ability to read what we have written on a CRT have, unfortunately, both been diminished by cataracts developing in both eyes (one eye will be worked on at the end of August, the other in December). Thus, this issue is, as usual, later than it should be, and our correspondence and unfinished project files are as backlogged as ever

SYM-PHYSIS 12-1

GRAPHICS ON THE EPSON
An example of the output of "RADAR", a 3 -D plotting program incorporating a hidden line algorithm, by lan dil of Essex. More on "RADAR" below, but first an adaptafirst, an adapt Graphics Printer Driver for a seven bit interface.

See the "unhidden" lines on page 12-30:

While the program and examples presented below are specifically for the Epson MX-8 6 with Graftrax, and the MTU Visible Memory, the program is easily modifiable for use with any printer with point graphics capabilities, and for any visible display unit (VDU) in which each pixel is individually addressable. In fact, a VDU unit is not even required, although the absence of this capability will slow down the procedure, and waste lots of time and paper.

We received an Epson Printer/Visible Memory graphics printing routine from Ian Dillworth while we were still less than half-finished with our own version. His routine gave "strange" results because of a different method of interfacing, and we had to modify it to work with our system. Because we liked his approach, we borrowed heavily from it and give him full credit below. His page zero assignments conflicted with RAE-1, and even modified some of its parameters, causing interesting results on return to RAE after a plot!
To avoid this, and to make the routine universally callable from RAE, BAS, FORTH, PASCAL, tiny-C, etc., we added several useful features which you may wish to incorporate in those of your own programs which require extensive use of page zero and/or (temporary) modification of system vectors. These are the subroutines used on both entry into and exit from the main program to save drestore all page a JSR INSTAT to隹 for the sake of completes. printer patchitself, for the sake of comleteness.
Note that the printer patch is based on using only seven data lines to the printer, and an eighth line for the busy signal from the printer; thus only one port is needed. If your interface supports the eighth data line the necessary mods to the program should be obvious. The use of the eighth line will speed up the printing time, but

NOTE TO VISIBLE MEMORY USERS: A minor problem with the "7 bit" Epson interface (as compared to the more conventional 8 bit interface) is that three additional lines will be printed at the bottom of the picture, fill tor

There is, however, a way to get an additional four lines on the screen by cutting one trace and adding one jumper, as illustrated in the two figures below. Now, instead of your Visible Memory running, say, from $\$ 2006-\$ 3 F 3 F$, it will cover $\$ 29 \varnothing \varnothing-\$ 3 F D F$, and, instead of $326 \mathrm{H} \times 206 \mathrm{~V}$,
 mode.

SYM-PHYSIS 12-2

Recall that only $80 \varnothing \varnothing$ of the 8192 bytes are normally displayed, leaving displayed bytes and still have a reserve of 32 "invisible" bytes to be used for such utilitarian functions as page zero swap locations, cursor storage, etc. The program given above will, of course, print three of these extra four lines. Previously written programs for the visible Memory need not be modified, except for blanking out the lines, if necessary, prior to use.

The information on the Visible Memory modification came to us through Walter Glab from Dave Kemp, who alluded to it in his June 1989 MICRD article, "Slide Show for the SYM".

NOTES ON THE FDC-1

Since most (all?) FDC-1 owners read SYM-Physis, we'll communicate with them through these pages. First, some corrections to the documentation

1) Chip $U 5$ as supplied with the kit is a 74367 (non-inverting buffer). Correct Appendix F (Chip Functions) and the schematic to conform.
2) Jumpers $\mathrm{J} 1(-1793)$ and $\mathrm{J} 2(-2732)$ are already present as traces on the lower side of the board.
3) Chip 49 is an 825129 (not 825129).
4) Replace " -\$øFFF. At \$A62A-" with " -\$gFFF, at \$A62A-" on p. 5-1.
5) Replace "1 for single density" with "1 for double density" on p. 3-1
b) Replace "ABCD Ø" with "ABCD-Ø" on p. 5-3.
6) Move the " (default)"s to follow "Single" and "128" on p. 5-9.

We are ordering one specially burned 825129 PROM with the 1791 registers on page $\$ A E$ (not $\$ F$), and the control port on page \$AF (not $\$ F 1$), so that the 2 K block from कमøø-\$F7FF can be freed for better uses. If there is sufficient demand for relocation to these pages, we'll order up a batch of them. See below for how to use them. Is there anyone out there who has facilities to burn these PROMS for others on a production or custom basis, and would like to do so?
ADDING MORE I/O CAPABILITY
In Issue $5 / 6$ we described a simple method for cutting the memory space assigned to VIAs \#2 and \#3 from 1 K each (four pages) down to only two pages each. This was done to permit installing the HDE FODS controller at AB8ø. This is right in the middle of a page, and unfortunately so since the $\mathrm{FDC}-1$ assigns whole pages to each of two sets of registers.

We will shortly have a SYM system capable of supporting both fons and FDC simultaneously. Either controller will be switchable between 5 and 8" drives. This will make it possible to distribute (*) software in all four formats. Additionally, we will use the FODS subsystem as a development tool for the FDC subsystem by placing SYMDOS in RAM and booting to it from FODS. This should be lots of fun!

The FODS boot is at $\$ F \emptyset \varnothing \varnothing$, and we want to leave it there, so we'll relocate the FDC's registers to \$AEØの and \$AFøØ. Here's how:

Cut the trace (on topside of board) from pin 6 of $U 10$ to a pass-through hole. Pin 6 is AAB. Mount a 74LS32 upside down between chips 411 and U10. Solder its pin 6 into the pass-through hole. This leads to the two VIAs CS2. Pin 6 is the output of one of the four ORs on the 74LS32. Solder its pin (an input to that OR) to pin 6 of U10. Solder pin 14 U1g (GND) pin 4 of the 741 s32 (the other input to the OR) This completes the job, and it looks much neater than it sounds.

Note that in Issue $5 / 6$ it was A7 that was brought to the second input of the OR. Since there are three unused ORs left in the 74LS32, you may cascade them to generate $A 9+A B$ or $A 9+A B+A 7$, if you wish, to cut each of the VIAs down to a single or to a half page. To avoid having to relocate our FODS VIA from $\$$ AB8D, we will use A9+A7.
(*) Others systems will be used for $\operatorname{coDOS} 8^{\prime \prime}$ and cassette distribution.

SUPPRESSING THE "ECHO" AT \$FBg

As we know, the $65 \emptyset 2$ expects its NMI, RST, and IRQ vectors to reside at \$FFFA-\$FFFF. During power-on, or after the RST key on the SYM has been pressed, the RST vector is "fetched" from the third and fourth bytes from the top of whatever chip is in socket Pø/U2月. This is normally SUPERMON, resident at $\$ 89 \varnothing \emptyset-\$ 8 F F F$. It is, of course, possible to power N on reset (POR) to any other ROM socket just by changing the jumpers to N, PGR R In SUPEMON WOR After this, all interrupt requests use the actual \$FFFX addresses.

Note that jumper $U-22$ enables the Monitor RAM (SYSRAM), as well as everything else resident in the 2 K block at \$AøxX (jumper T-21), whenever the 2 K select line fFBxX is active (low). Thus, the NMI and IRQ vectors are now obtained from SYSRAM, to which the default vectors definitely an advantage to have these vectors in RAM rather than ROM or EPROM, so that they may be dynamically changed under program control, it "hurts" to lose the entire 2 K block to this "echo" of the system RAM at the top of memory.

DEAN GARTH, in a recent letter, showed how the echo may be supressed by cutting jumper $u-22$, while still retaining the advantages of interrupt vectors in RAM. The $2 K$ block from $\$$ F8øø-\$FFFF may (must!) then be filled with an EPROM, although RAM will do if your Por program transfers the default vectors to it. If you wish your RST vector at \$FFFC-D to be different from that in SUPERMON, you must disable the POR signal at jumper $N-19$. Your new NMI and IRQ vectors must now point to addresses within your EPROM in which you have placed indirect jumps to the appropriate SYSRAM locations, i.e., the top of your EPROM should contain a program similiar to the following:

GRAPHICS ON THE EPSON (continued from page 12-4)

B\＆W GRAPHICS ON THE SYM
The SYM can be used to generate＂typewriter－style＂graphics on even as simple a terminal as the ASR－33 TTY， 72 columns wide by as long as desired．Of course，any printing terminal can be used．The SYM－PHYSIS logo used on Issues \emptyset through 6 （all of Volume I）were produced in this way，on a decwriter II（LA 36）printer，until Chuck Lundgren did the artwork for our current logo．

Video terminals，such as the KTM－3 or KTM－3／86，will work in the same manner，but with $4 \emptyset$ or $8 \emptyset$ columns，respectively，and，of course，only 24 their added graphics font，con the use of the 16 2r2 block，can provide more interesting graphics，and point－elements across the width of the screen to 80 and 16Ω ， respectively．

A CRT terminal such as the KTM－2／8ø，which can display some 8 gx 24 characters on the screen，stores each of these characters in one byte of RAM，and has a built in character generator to convert from ASCII to picture elements（pixels）during the scanning process．Less than 2 K of RAM is needed $(8 \emptyset \times 24=192 \varnothing$ bytes）．

For high resolution graphics more RAM is required，typically around 8 K ， since each pixel requires one bit of RAM．A hardware character generator is now not required，but the hardware to scan the CRT and display each bit must be present．With static RAM（SRAM）the scanning process must be handled on a DMA（direct memory access）basis；with dynamic RAM（DRAM）the scanning is combined with the refresh．

A memory board with built in video generation capabilities is called a VDU（video display unit）．Many SYMmers，both in the USA and abroad， have designed and built their own VDUs，but the video standards differ． Several of these individuals are exploring the possibilities of marketing two versions of their VDUs，NTSC（USA／Canada），and PAL／SECAM （most other places）．We should very shortly be receiving a sample of one such unit for evaluation．

Meanwhile，for NTSC systems，the GK Visible Memory，made by MTU，and available through the Users＇Group，is one of the best VDUs available， with lots of software around．Visible Memories can be，and have been， combined，with bank switching to permit assigning them all to the same address block，for generating RGB color，providing a gray scale，or allowing for off－screen（invisible）editing．

The Epson MX－ $8 \emptyset$ now comes with the Graftrax option installed（to meet the competition！），and many other printers in the same price range also have inbuilt point graphics capabilities．Thus you can get high resolution，hard copy，point graphics even without a VDU on which to edit and preview．Tom Gettys did some beautiful work with a very inexpensive printer and no VDU．

We paid extra for the FT option on the MX－8ø，thinking that we would be using the friction feed option for handling single sheets of preprinted letterheads，but have never once used it for that purpose．Nor have we ever used any of the paper rolls on the FT（we had some around from our TTY days）．We did receive some printouts from someone on a roll of paper towel stock，however！

Our answer to the letterhead problem was to first get the graphics printing patch going（that＇s now been done）and then to design a letterhead for the Epson to generate on an as－requested basis．We would
also then do a new logo for SYM－PHYSIS．Perhaps we should have a contest for our readers，offering a free lifetime subscription to the wi nner？

We print below a reproduction of extracts from a letter sent by one of our readers showing a very nice computer generated letterhead，done on a Centronics 739 printer．We wrote Mr．Wuethrich asking for permission to reproduce it；rather than answering our letter，he dropped in（all the way from Switzerland！）to give us his OK in person．Dan and a friend were our overnight guests．While here he picked up an FDC－1 kit to carry back with him．He had it assembled and ready for checkout on our test system in about $11 / 2$ hours；it worked immediately！

ibw

TNG
INGENIEURBERO WテTHRICH BRUGG
Hardware Mikroprozessor－Software Prozesssteverungen Prototup－Entwicklungen Kleinserien
\＃排非\＃\＃\＃\＃\＃\＃\＃\＃\＃

ibw

Ingenieurbüro Wüthrich
SYMーPHYSIS
Zimmermannstrasse 29
YM－1 Users＇Group
5200 Brugg
Chico，CA 95927
Tel： 056414365
United States of America

Postcheck：80－153983
SBG Brugg ：DK 586．855 L1 Q
5200 Brugg，3．19．82
Dear Jean，
For Your information some remarks about my system：
SYM－1 expanded Memory－Mate Expansion Board
36 k RAM， 24 k ROM／EPROM， 150 I／O lines－Synertek KTM－3 with Leedex Video－100 monoitor Write protect and parity check（ 9 bit RAM）－Centronics 739 Printer
－EPROM－Programmer－Marantz－Tape－Deck SD 1020 （2 speeds）

I would like to attach a Floppy－or Winchester－Disk to my system．Can You please answer the following questions：
－What type of disk－drive
－What type of disk－controller ？
－Do You sell a Software－driver for the SYM－1，so that I can still use all the features of BASIC and RAE together with the disk？

I would be very glad if could write the answer of these question as soon as possible，
Finally just 5 words about Your SYM－issues：KEEP ON GOING LIKE THIS ！！！

SYM－cerly
Dan
Daniel Wuethrich

MORE VISITORS，MORE FDC－1
Just the week before Dan＇s visit，Olivier Garbe，from Paris，France， also dropped by，for just a few hours，to pick up his FDC－1 kit！And， just a few weeks earlier，Ken Curry，whom we visited in Australia，spent the 4th of July weekend with us，viewing our local fireworks show（we were in Australia on Anzac Day）．

Ken took ten FDC－1 kits back to Australia with him for resale．and left a fully expanded AIM 65 with us so that we could adapt the FDC－1 soft－ ware（SYMDOS to AIMDOS［？］）to it．The SYM－1 can easily talk to the AIM 65 either through the KIM－1 cassette format or through the TTY interface using the＂DEMON＂punched paper tape format common to both systems． This should be a fun project，and will certainly take longer than even our most pessimistic estimate．

SYM－PHYSIS 12－10

Ken runs Energy Control, P. 0. Box 6502, Goodna, Australia, Phone (67) 2882757 (near Brisbane; note the box number!). Energy Control is a distributor for both Rockwell International and Synertek Incorporated, and his catalog prices for their products are lower than any other prices we saw in the Australian magazine advertisements. He understands the products he sells, and fully supports those products. We suggest that our readers in Australia/New Zealand check with him, first, for hardware products, and with us for software and those hardware items he does not carry.

HOW TO USE THE NEW EPROMS

Table 4.3 of the SYM-1 Reference Manual shows how to install 2 K (2316), $4 \mathrm{~K}(2332)$, and 8 K (2364) ROMS, and $2 \mathrm{~K}(2716)$ EPROMS into the 24 pin sockets at U21, U22, U23, and U24

The following note and the accompanying figures, provided by Alan L. Foster, Granville Technical College, New South Wales, Australia, should help you in installing the newer $4 K$ and $8 K$ EPROMS in these same sockets.

Notice that the 2732 and the 2532 differ in the choice of which pin is used for the All address line and in the polarity to be applied to the pin not used for A11. They are definitely NOT interchangeable!

Note also that while the 2532 and 2332 both use pin 18 as the All line, they differ in the polarity applied to pin 21 , as do the 2716 and the KTM-2 master 2316 ROM has an active high CS).

The upshot is that either a 2516 or a 2716 may be substituted for a (standard) 2316, and a 2532 for a 2332 if pin 21 is moved from GND for the ROMs to $+5 V$ for the EPROMS, and an MCM68764 directly for a 2364, once programmed, of course. On the MCM68764, pins 18, 19, and 21 are A11, A10, and A12, while pin $2 \varnothing$ is E/Vpp (enable low).

We appreciate Alan providing us with this very helpful summary of the available EPROM options; we had not known of the Motorola chip before. EPROM_PROBLEMS_AND_SYM COMPATIRILITY

One of the features which makes the SYM an ideal single board computer is the presence of the four sockets U2ø - U23. These are normally dedicated to such chips as MON1.1, BAS1, RAE1 etc, but lassuming that gk versions or "piggy-backs" are used) one normally has at least one socket free for user applications. If a $2 k$ EPROM is placed in U21 say, there is no problem with the commonly available EPROMS. In this case, the Intel 2716 and the TMS2S16 are interchangable. All the relevant chip select pins and address pins require the same voltage levels (see fig. 1). The only EPROM (ROM?) that requires a slightly different configuration is the Synertek 2316 , which requires that the Vpp line (pin 21) be at 6 volts for a read, as opposed to the $2516 / 2716$ which require pin 21 to be at +5 volts for a read. The 4k versions of these chips are a slightiy differ (pins problem. 2G) Intel have decided lines (pins 18 and 26 , , and place the extra address line required (All) of the chip select lines, and replacing it with All. (see fig. 2). This is still really no great problem, as the jumper options available on the SYM allow us to use either philosophy. So, what is the point of this article? Simply, in the upgrade from 4 k to 8 k , both Intel and Texas have article ? Simply, in the upgrade from $4 k$ to $8 k$, both Intel and fexas have the 24 pin SYM user sockets. (It can be done by using flying leads, but the 24 pin SYM user sockets. (It can be done by using flying leads, but their eyes on $16 k$ and even $32 k$ EPROMS in 28 pin packages, and they wish to provide pin compatible upgrades from the 8k chips. Motorola, on the other hand have just produced an 8 K EPROM which is called the MCM68764, which, thankfully, is in a 24 pin package. Even more thankfully, it is

SYM-PHYSIS 12-11
upwards compatible with the Texas philosophy, so for upgrading the approach to use is $2516 / 2716$ to 2532 to MCM68764 All these chips require the same programming voltage (+25 volts), however, the 68764 requires that this only be applied for two milliseconds instead of the normal $5 \varnothing$ milliseconds. This is easy to accomodate using any of the timers on the 6522's or the 6532. Incidentally, the Intel 2732 A EPROM must not have +25 volts applied to pin 21. It only requires a programming supply of 21 volts. Exceeding 21.5 volts will blast the chip, not the data. Occasionally, 2732A's have been known to accidentally slip into a batch of 2732 's, with consequent disastrous results for the purchasers.

Pin Number	Function		Read		Program		Stand by	
	2716	2516	2716	2516	2716	2516	2716	2516
18	CẼ	PD/PGM	ϕ_{v}	ϕ_{V}	Pulsed	$\phi_{v} \rightarrow+S_{v}$	$+5 v$	$+5 v$
19	A_{10}	A_{10}	-	-	-	-	-	
2¢	$\overline{O E}$	$\overline{C S}$	\varnothing_{v}	ϕ_{v}	$+5 v$	$+5 v$	Don't	Care
21	Vpp	Vpp	$+5 v$	$+5 v$	$+25 v$	$+2.5 v$	+5v	$+5 v$
Figure 1								
	27322532		2732	2532	27322532		27322532	
18	$\overline{C e}$	A_{11}	ϕ_{v}	-	ϕ_{V}	-	$+5 v$	-
19	A_{10}	A_{10}		-	-			-
2中	$\overline{O E} /$	PD/PGM	ϕv	ϕv	$+25 v$	$\mathrm{V}_{\text {PH }} \rightarrow \mathrm{Pulsed}^{\text {a }}$	Don't Cate	$+5 v$
21	A_{11}	\checkmark Pp	-	$45 v$	-	$+25 v$	-	$+5 v$

A CASSETTE DATA HANDLER - BY JOE HOBART
Below is a very interesting approach to implementing a very useful cassette utility into BAS-1. We have not tried it ourselves because we job, and we also are familiar with the orit looks like it should do the we did try. Joe is also into disks, himself, now, as he received one of the first half-dozen or so prototypes of the FDC-1 for testing.

For those who are curious about the machine language portion of the program, we have appended a disassembly, done with Dessaintes Disassembler (DESDIS). This disasembler automatically creates a sorted . DE file, inserts the proper. $B A$, adds the .EN, or if the new source is too long, a .CT, and ";" lines after branches, jumps, and returns. After each \#\$XX it provides the ASCII equivalent of the $X X$ as a ";" comment. In these comments "." indicates the sign bit is set, and the up-arrow indicates a control character. The labels are made up of the actual hex address where they were found, preceeded with Z for zero page, J for jump, B for branch, S for subroutine, or A for absolute.

The original DESDIS did a . CT (continue to tape), and Tom Gettys added the capability of .CT XXXXX, where XXXXX is a five character filename, forcing a continue to disk. Ever since, we've been disassembling everything we see!

SYM-PHYSIS 12-12

PUTTING A CASSETTE BASED DATA SAVE/RELOAD ROUTINE IN A BASIC PROGRAM Here is a technique for putting a machine language data save and re-load routine inside a BASIC program. This technique will work for any other machine language program as well. The save/reload routine is a modified version of one by John Blalock that appeared in the April, 1989, issue Terminal Control Patch.

The following steps will incorporate the routine into a BASIC program:
A. Enter the following as the first three lines of the BASIC program: (There are 49 X 's in each line.)

3 REMXXX
B. Exit BASIC to the monitor and change the contents of memory location $\$ \not 201$ from $\$ 38$ to $\$ A 6$ so BASIC will skip over lines 2 and 3
C. Enter the following code from $\$$ g2ø6 to $\$ \varnothing 2 A 3$:

6206 $2686882088818 \mathrm{BD} 4 \mathrm{E}, 35$
G20E AG A9 $61 \quad 29 \quad 108$ 8D 4 D AG, 3 C
216 8D 4B AS A9 65 8D $4 C$ AG, 49

922E 7 D 8D 4C A6 AS 7E 8D 4D,10
9236 A6 A5 81 8D 4A AG A5 82,80

0246 BE A9 2A 2047 BA Aの $8 \emptyset, F 9$
Ø24E AS 838 BD 4 C AS AS $848 \mathrm{BD}, 56$
0256 4D AG AS 87 8D 4A AG AS,97
Ø25E 88 8D 4B A6 EE $4 E$ A6 $20,9 F$
026687 BE 4C C4 812086 8B,76
$926 E 28$ 88 81 BD AE AG AS D3,98
027685 EE AS D4 85 F1 20 78,92
$027 E$ 8C A9 2A 20478 A 40 80, 62
Ø286 EE $4 E$ AB 2678 8C A9 2 A , DB
$\begin{array}{lllllll}628 E & 26 & 47 & 8 A & A \varnothing \\ 6 \emptyset & E E & 4 E & A 6, C E\end{array}$
62962678 BC AS EE 85 D3 AS, 82
O29E F1 85 D4 4 C C4 $81,5 \mathrm{D}$
D. Verify the machine code to ensure accuracy
E. Return to BASIC. A list of the program will show a long and unusual looking line number 1. Lines 2 and 3 will no longer exist.

I use the following BASIC subroutines to call the save/reload routine:
50600 REM *CASSETTE DATA SAVE SUBROUTINE*
50010 Q=FRE (0$)$
$5 \varnothing 62 \varnothing$ PRINT"START THE CASSETTE IN RECORD MODE AND PRESS ANY KEY " $50636 \mathrm{Q}=\mathrm{USR}(-36120,-11957,0): \operatorname{PRINTCHR} \$(Q / 256)$
รøø40 Q=USR(\&"ø2ø6", 384)
$5 \varnothing \varnothing 5 \varnothing$ PRINT"DATA SAVED" : RETURN
GØøø REM *CASSETTE DATA RELOAD ROUTINE*
\$øø10 PRINT"START CASSETTE PLAYBACK"
Q $=$ USR ($\&$ " $026 \mathrm{~B}, 384$)
Gø63@ PRINT"DATA LOADED" : RETURN

A few comments and cautions are in order. The addresses in statements number 59946 and $6962 \varnothing$ assume the machine code resides from $\$ 6266$ to $\$ \emptyset 2 A 3$. Statement $5 \not \boxed{6} 1 \varnothing$ compresses the string storage area to eliminate superseded strings. Statement 5 gø3ด is a neat GETKEY and PRINT function that I use in almost all my programs. Once data has been saved from a BASIC program, the overall length of that program must not be changed if the data is to be reloaded successfully. This technique may be used with other machine code, but since BASIC uses $\$ \varnothing \varnothing$ as a delimiter between each line, $\$ \varnothing \emptyset$ cannot be used in code so saved

The machine language is completely relocatable. It can be added to an existing program as well as used to begin a new one. I have had very Editor (COMPUTE for February, 1982) and with several adventure games. To save time, I recorded the machine code on tape ($\$ 0206-\$ 02 A 3$) and just load it in for step C above instead of having to type it in each time.

THREE FROM AUSTRALIA

Dear Lux:

Enclosed are three programs which may be suitable for publication in SYM-PHYSIS.

First, there are two versions of a machine language program written by my colleague, Dr . M. A. Cusiter, which will sort BASIC string arrays by sorting the pointers, instead of the strings themselves. Hence it is an extremely fast sort. Note that if there are two or more arrays to be sorted, they must have the same dimensions.
others are a program to provide BASIC with automatic line numbering, and one which will put a margin on the left of any printout.

Yours faithfully,
Alan Foster
28 Gavin Place, Kings Langley,
N.S.W., Australia, 2147

The following are two versions of an extremely fast machine language program for sorting BASIC strings.

In each case there is an example of the operation of the program followed by a listing of the program.

The first version allows a number of string arrays to be sorted independently of each other, while the second sorts a number of arrays independently of each other,

In each case the first array must be the array $Z(x)$, where x must be one greater than the number of elements to be sorted. The other arrays to be sorted must immediately follow $Z \$(x)$ in memory. The easiest way to ensure this is to use a DIM statement as in the examples.

The programs are called by $J=U S R(\& " S T A R T ", N)$ where N is the number of arrays to be sorted after the first, and START is the address assigned to the label START at the beginning of the machine language program.

6	. BA \$2906-\$10E
9620	OS
øø3¢	;
0846	;*********************************
øø5ø	; BASIC STRING SORT PROGRAM
066	;* WRITTEN BY M.A.CUSITER
$967 \square$; AND A.L.FOSTER
9689	
50990	;
0190	
0116	;This program sorts a number of BASIC string arrays.
0120	;First array to be sorted must be the matrix $\mathrm{Z} \$(\mathrm{X})$
9130	; where X must ALWAYS be at least one greater
5146	; than the number of array elements to be sorted.
0150	
¢160	; The number of arrays subsequent to $\mathrm{Z} \$$ to be sorted
0178	;is passed to BASIC via the user command:
¢180	J=USR ($\%$ "START",N)
0190	; where START is the start address of this program
ø2ø0	; and N is the number of subsequent arrays.
0210	; If there is only one array, then $\mathrm{N}=0$.
9229	; These arrays can have any name.
ø230	;

			1660	；			
1FA4－	E6	7F	1670	INCPTR	INC	＊AVST	
1 FAG－	Dø	$\emptyset 2$	1680		BNE	NEXTX	
1 FAB－	E6 8	$8 \emptyset$	1690		INC	＊AVST＋1	
1 FAA－	CA		1760	NEXTX	DEX		
$1 \mathrm{FAB}-$	D0 F	F7	1716		BNE	INCPTR	
$1 \mathrm{FAD}-$	60		1726		RTS	INC	
			1736	；			
1 FAE－	A2	め1	1746	exchange	LDX	\＃1	
1FBø－	A®	Ø3	1750		LDY	\＃ 3	
1FB2－	B5	$8 \varnothing$	1760	SHIFT1	LDA	＊AVST＋1， x	；PUT CURRENT PTRS
1 FB4－	917	7 F	1776		STA	（AVST），Y	；IN NEXT STR
1FB6－	E8		$178 \varnothing$		INX		
1FB7－	C8		1790		INY		
1FB8－	CQ	06	1800		CPY	\＃6	
1 FBA －	DC	F6	1810		BNE	SHIFT1	
1 FBC －	A 1	ロ®	1826		LDY	\＃	
1 FBE－	B5	$8 \emptyset$	1836	SHIFT2	LDA	＊AVST $+1, \mathrm{X}$	；PUT NEXT STR PTRS
1FCO－	917	7 F	1840		STA	（AVST），Y	；IN CURRENT STR
1FC2－	E8		1856		INX		
1FC3－	C8		1868		INY		
1FC4－	Cø	93	1876		CPY	\＃3	
1 FC6－	D® F	F6	1880		BNE	SHIFT2	
1FC8－	86	8 A	1898		STX	＊CHECKFL	；SET CHECKFL
1 FCA－	80		1900		RTS		
			1910	；			
1 FCE－	A® F	FF	1920	SETUP	LDY	\＃\＄FF	
1 FCD－	C8		1936	SETUP． 1	INY		
1 FCE－	B1 7	7 F	1940		LDA	（AVST），Y	；SETUP TWO ELS．INTO
1 FDG －	99	8160	1950		STA	AVST＋2，Y	； Z PAGE
1 FD3－	Cø	95	1960		CPY	\＃5	
1FDS－	Dø F	F6	1976		BNE	SETUP． 1	
1FD7－	60		1986	END	RTS		
			1990		－EN		

The following program provides BASIC with an automatic line numbering facility．It works fine as it is，however it should probably be seen as a starting point for an extended BASIC package，or perhaps it could be
built into a BASIC control patch such as the one recently published in SYM－PHYSIS．

The program is patched to BASIC via INVEC．G 1 Bøø will cold start BASIC with the auto line numbering feature included．
To start auto line numbering type CONTROL Q ．The start line and increment may then be chosen by giving values to the variables $A \%$ and 8% ．For example，$A \%=106: 8 \%=5$ will cause numbering to start at 100 with CONTROL Q may be followed by a carriage return only．This results in default values of $1 \varnothing$ for both start line and increment．

After the last program line has been typed，CONTROL R will feed a carriage return to BASIC and exit auto mode．

Other features are：CONTROL C allows exit to monitor；return to BASIC with $G\langle c r\rangle$ or G 〈cr〉．Lower case input is possible．

Note that there is a flag in page zero which is used to monitor the state of the program．There are five states：

State \varnothing－Not in auto mode．
State 1 －Partly set up－waiting for A\％，B\％
State 2 －Almost set up－output first line number．
State 3 －Output line number．
State 4 －Type characters into line．
SYM－PHYSIS 12－21

COMPUTER IMAGING

Below are portions of a recent letter from Jack Gieryic, including a computer "portrait" of him. We:ll have some additional comments to make, following the extracts:

JACK FUILT FFOGRAMS
JACK GIERYIC
$204138 T H$ AVE
AN W
ANIOVER, MNN
USA
$* ~$

Mзч 27,1982
Ilear Jeen end Lux,
Now for an explanation of the picture atove. That's me, Well there
really is more. It was done with the Iisisectar IIS-65 from MICkoworks F. O. Fox 1110, Hel Mar, CA 92014.

The risisector can disitize a video picture into 325 by 256 sot array
with 64 sres levels for each diot. It reauires a few seconos to dio this with 64 srey levels for each dot. It reauires $\overline{\text { few seconds to do this }}$
(about 10 for the above picture) and herice is not suitable for motion.
The above picture is a 160 h by 100 v consecutive dot disitization Only
4 srey levels show up in the picture resultins in o very unfair demo of the Ilisisector's carabilities. I Flan to take the date and full out idea of what can be jone
I an lookins into the possibility of usins the lisisector for inspection
One thins very critical to the Ilisisector is lisht level. I'misure this

 3
but can still set 256 horizontal resolution
The Ilisisectar interfaces very easily to the sYM. I'musins two ports On one of the UIA's on the AA connectar. I removed the 6821 on, the
Ilisisector and wired from the AA connector directly to the 6821 s socket. The software frovided, sives sood examples of how to prosran from socket. The software provided, sives sood examples of how to prosrann
the SYM as you can fisure whet's soins on and do the same thins with
your own assembit lonsuase frosram.
If enyone out there wants to try the IIS-65 then I'd be willins so send then acopy of my softwere and wirins diasran in order
SYMcerely,
Jack Rilryer
Jack Gieryic

Qur area of interest, before we left industry, in 1970, to return to Academia, was in the area of what we called "Image Technology". We bought our KIM-1 in 1978, in the hopes that someday "soon" we could, somehow or other, do some experimental image processing on our very own computer, since the University's equipment could not be used for this purpose. This has not yet come to pass, but the time is coming closer!

Jack's portrait appears rather coarse and crude (not him, the image!) because of his method of emulating half-tone images. We show below two other methods of emulating half-tone images which have been transfered from Apple II to SYM. Denny Hall has a Digisector; we'll either borrow software. We'll also try to figure out the algoriths used by Apple II for handling the gray scale.

We envy Jack for his being able to find the time to have so much fun with his SYM! And with his children, too! Here's another extract from his letter:

Note 4 - I would like to buy the RCA UP3301 data terminal. Let me Know if this 15 passible and how much. My two kids really enjoy typin on it. They are 16 months and 3 years old. Never too youns!! The 3 year old can fins the keys to spell her name. She ll actually he 3 on July 25 th.

EXAMPLES OF HALF-TONE EMULATION FROM THE APPLE II SOFTWARE LIBRARY Done on SYM-1 with MTU Visible Memory, Epson MX-8ด/FT - Graftrax 8
(The black borders on the bottom and right edges are due to the visible Memory having $320 \mathrm{H} \times 204 \mathrm{~V}$ pixels vs the Apple's $280 \mathrm{H} \times 192 \mathrm{~V}$ pixels.)

REVERSE VIDEO ON THE KTM-2
The normal mode for KTM-2 video is bright characters on a dark background. We have a Sinclair $Z x-81$ around to show to non-technical people who ask about a "cheap" way to learn something about computers. The $2 x-81$ display is dark characters on a bright background. Which is better? We do have some opinions on the subject but will not mention them at this time, except to point out that the Sinclair generates RF (channel 3 or 4) for input through the antenna terminals of a TV receiver, and any TVI (television interference) produces an unpleasant shimmering in the bright background. This would probably not be a problem with a direct video input monitor.
The shimmering might not be so noticeable on the longer persistence green phosphors which are so popular, but we don't really like to use a green phosphor at $48 \varnothing \varnothing$ baud, nor do we like dynamic graphics on a green phosphor. green cellophane), you might try setting the interlace option piece of green
on the KTM-2.

Anyway, if you wish to experiment with reverse video on the KTM-2, possibly with an RF modulator (but not with the KTM-2/8Я), with or without the interlace option, with either a green or a white phosphor, here's how to do it, according to F. H. Lassiter, of Olin Chemicals Group:

Cut the foil trace on the back of the board to pin 6 of $U 31$ and solder a jumper from pin 5 to the foil trace you have just cut (you might consider installing a SPDT switch here). Pins 5 and 6 are the input and output of $1 / 6$ of a verter, pin 11 of 141 .

We have checked several recent model KTMs and could not locate a trace on the bottom of the board frompin of US1. The trace frompin 6 apparently is (now?) closed and above-board, hidden underneath the soldered-in chip itself. Since the desired trace cannot easily be found by visual inspection, and we were too busy (lazy?) to use a continuity checker, we cheated, and looked at a schematic. The J3 end of jumper $J 3-A$ goes to pin 11 of $U 41$ and the A end of the jumper goes to pin 6 of US1. So, just remove the installed jumper. It is worth noting here that where hand-installed jumper wires were used on earlier KTMs and SYMs, the current production models use the more cost effective printed circuit traces.

We would be interested in hearing reasons and reactions from those wo make this reverse video modification.
A BETTER BELL FOR THE KTM-2
We have installed a bell on Jean's KTM-2/80, because she's a skilled typist and needs to know when she gets near the end of the line. We have no bells on our own KTMs because we would rather not have anyone else in the room hear the bells which accompany error hessages, Beuret of have not tried
Millbourne, PA:

One quick solution to the need for a nice bell on the KTM-2 is to cut the trace, as you've described earlier, and add a piezo beeper at the connector (the Sonalert has nice tonal quality). A spiffy improvement is had by adding a 10 microfarad capacitor and a 1.5 megohm resistor as follows;

The positive end of the piezo connects to BELL.
The negative end of the piezo connects to both the posi-
tive end of the capacitor, and one end of the resistor SYM-PHYSIS 12-27

The free ends of the R/C pair connect to ground.
This results in a pleasant beep which has a decay not unlike a real bell. The reason for this, is that the capacitor is being charged up while the beeper sounds, reducing the voltage across the beeper. The resistor slowly leaks the charge off the capacitor, such that activating BELL repeatediy, results in quieter beeps.

More news later. Thank you for all the supportive symmering.

> Stephen G Beuret $3 / 27 / 82$

FDC-1 SERVICE AND REPAIR
We are not prepared to troubleshoot FDC-1 kits which do not work properly upon initial assembly, to assemble kits on a production basis, or to repair boards which have failed after a period of useful service. We can only replace those components which are found by the user, and verified by us) to be defective on receipt.

The following two SYMmers have indicated their willingness to provide such services, and we will provide them with components for warranty replacements. Others will be added to this listing as more users obtain the necessary experience with the system. Please contact them directly.

JOSEPH R. HOBART

3465 North Andes Drive, Flagstaff, AZ 86øø1. Joe should be familiar to many of you through his articles in this and previous issues of SYMPHYSIS, especially the original EPROM burner. Joe has had extensive experience with 8" FDC-1 systems.

JEFF LAVIN

Alternative Energy Products, P. O. Box 1019, Whittier, CA, 90699. We are publishing one of Jeff's many program submissions in this issue, reviewing some of his new products for the SYM in this issue, and becoming a dealer for his product line. Jeff is a long time SYMmer, but as of now, we know him only through telephone conversations, letters, and his products. He will be spending a week with us very shortly, getting briefed on troubleshooting the FDC-1.
THREE NEW SOFTWARE ITEMS
We try to publish the best of the programs which are submitted each quarter, but, obviously, there is not enough room to publish them all. Aew of the submissions are so bug-ridden that they are best forgotten. if they are short, useful, instructive, of general interest, etc.

We used to have time to personally try out all of the programs submitted, but not any more! If we have previously established the credibility of the author, we do take a chance, and publish them without a thorough shakedown. If the author is unknown to us, we at least try them out in a casual manner prior to publication, but cannot guarantee them to be totally bug-free.

Very long programs, those which would occupy more than eight pages, would almost "monopolize" a single issue. If they are really good and of general interest we will offer them for sale, but only after a really thorough shakedown. For others that are good, but of less general
interest，we cannot afford the time for thorough testing．These we will review，

And，now，here is a description of the three new items：
RADAR，by IAN DILWORTH
Ian Dilworth sent us an interesting program which begins thus：

øø1の	LS
¢62の	；EXTRACT FROM IAN DILWORTH＇S＂RADAR＂
Ø030	；PARTIALLY Edited and tested by lux
Øø4ロ	； 5 August 1982
965．	
9060	；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
の日7¢	；RADAR PLOTTING ROUTINE（2）DEC 1981 I．J．D
6089	；THIS（2）ALLOWS HIDDEN LINE RLANKING．
6990	；includes visible memory source code．
910¢	；USES VIA I／P＇S TO SELECT MODE OF OPERATION
0110	；BIT 7 CONTROLS HIDDENLINE SELECTION（FAST／SLOW）
6120	；BIT 1 CONTROLS ASPECT OF PLOT，BIT 2 CONTROLS
0130	；WHETHER WE WANT TO PRINT DATA FROM THE FIRST
9140	；DATA ELEMENT OR FROM THE LAST I．E．WE CAN
9150	；EITHER DECREMENT MEMORY（DATA）OR INCREMENT
9169	；THROUGH IT．．．．．．
6170	；PRESS BREAK KEY TO CONTINUE PLOTTING．
0189	；＊＊
0190	
9260	． BA \＄CA
9210	MEM ．DS 2
ø22．	
ø230	－BA \＄86
6240	ADP1 ．DS 2
¢256	
¢260	． BA \＄C4
の270	ADP2 ．DS 2
6280	
6290	IORA ．DE \＄Aøø1
6306	DDRA ．DE \＄Aøø3
0310	
932．	UMORG ．DE \＄2øøめ
6336	DATA ．DE \＄9øøめ
9340	
6359	． BA \＄4600
9368	

It calls a DATA file at $\$ 9 \varnothing \emptyset \emptyset-\$ 9 F F F$ which apparently contains simulated terrain data．Ian uses manually operated switches on VIA \＃1 to control the processing as described above．We have two MTU DACs（for stereo VIA or to the software，preferably the to make any mods either to the running，letting＂fate＂provide ride high，we don＇t know what the DACs do to input lines ride high，we don＇t know what the dacs do to input lines．

Our Visible Memory is on the CODOS system，not on the FODS system on which we were testing the program，so we had to run＂blind＂．Thus，we an RADAR with no VIA switches and no Vis Mem，then ran the Graftrax Printer on the portion of RAM where the results were stored，to get the $12-2$ ，but the＂hidden lines＂are not hidden．The program looks like it would be very exciting when run interactively，so we？ll transfer it over to the CODOS／VM system，after first rewriting that section of the program involving the use of the VIA．

SYM－PHYSIS 12－29

We do like Ian＇s idea of using the VIA in this manner．What he has really implemented is a whole set of Option Switches which may be interrogated by any program．Provide a removable overlay on which the switches are labeled with the functions implemented for each program that uses them，and you have greatly improved the man－machine interface． We will build such a control box after we have added more VIAs to our main system（see elsewhere）．

Ian asked us to market this for him，if there seems to be an interest． So，if you have a Visible Memory，or any other type of vDu，let us know and we＇ll send you a copy of RADAR（RAE source code）and the DATA file which goes with it，relocated in low RAM，in case you do not have RAM at 96øø．When we get around to final editing we＇ll also change the page Graftrax Printer earlier in this issue．

We will ask Ian where the DATA file came from，and how others may be generated．This looks like the most＂fun＂program we have seen for SYM in a long time！

TECO，by DALE HOLT

and

FORMATTER，by GERHARD STRUBE

We have been using SWP－1，much augmented，as our word processor，for as long as we can remember．Apparently word processing is a very popular application for the SYM，since so many word processors have been written for it．

We did a cost comparision on SYM vs Apple as word processors，and a word processing SYM cost about $2 / 3$ as much as a word processing Apple．With the FDC－1 now available，the SYM＇s cost advantage is even more favor－ able．Be that as it may，here are two really great word processors for SYM．

TECO has been described in previous issues，and is very popular with dec＇s PDP systems．Holt＇s version is quite compatible with those when rewritten to I e interchanged between SYM and these other systems．TECO is＂free－ standing＂，i．e．，it does not require BASIC or RAE，but since it is sup－ plied in RAE source code you should have RAE installed，at least until plied in RaE source code you should have Rac installed，at least until

FORMATTER formats RAE edited text，and is，by far，the most sophisti－ cated word processor we have seen for small systems．Here are some samples of its＂input＂and＂output＂：

SYM-PHYSIS 12-31

SOFTWARE PRICES
Getting a major program ready for distribution might take around 40 hours, or so, to test, document, prepare the "automated" reproduction program for cassette and/or any of several disk formats, etc. If you do this, yourself, as a hobby, the time was paid for by the fun of the job. On the other hand, if you pay someone else a couple of hundred dollars to do the job, you don't even have the fun

After guessing how many copies might be sold, and how much money will be tied up in printed manuals sitting on the shelf, and for how long, etc., etc., etc., we came up with an average price of $\$ 36$. . 6 per major item of quality software, including shipping, with 56% of the profit going in royalties to the authors, the other $5 \varnothing \%$ to pay for the costs of editing and the labor and materials cost for reproduction, invoice handing, packing, and shipping. Software distribution frequently works out to

A BASIC PROGRAM ADAPTED BY JEFF LAVIN
We first "met" Jeff Lavin by telephone when he called to ask a few questions about getting his new SYM going. Very shorky thereafter, he sent us a bunch of CAI (Computer Aided Instruction) BASIC programs he had adapted to the SYM. We had no room to publish any of them till now.

This is one of the shorter programs he sent. We include part of a sample RUN. Sorry you can't see our answers, but our particular printer patch doesn't echo inputs, it only prints outputs. We think you will enjoy working on and extending this one. If you like it, drop us a note, and we'll print another next issue.

$1 \varnothing$ PRINT"	CCCC	LL	0000	VV VV	EEEEE"
11 PRINT"	CC	LL	0000	VV VV	EE"
12 PRINT"	CC	LL	0000	VV VV	EEEE"
13 PRINT"	CC	LL	0000	VVV	EE"
14 PRINT"	cCCC	LLLLL	0000	v	EEEEE"

13 PRINT"
14 PRINT"
15 PRINT
16 PRINT"
17 PRINT"
18 PRINT
19 PRINT
26 INPUT
21 PRINT
22 PRINTN\$", ARE YOU A MAN OR A WOMAN? (TYPE ONE WORD) ": :INPUT S\$
24 PRINT
24 PRINT"THANKS. NOW WE'RE READY TO GO.
26 PRINT"LANGUAGE AND MOST ORDINARY KINDS OF THOUGHT PROCESSES" 27 PRINT"ARE BASED ON CLASSIFICATION."
28 PRINT"WHEN I SAY "CAT", WHAT DO YOU THINK OF?
29 INPUT CT\$
30 PRINT
31 PRINT"YOU THINK OF "CT\$"? THAT'S INTERESTING.
32 PRINT"I THINK OF SOMETHING FOUR-LEGGED, WHISKERY, AND FURRY."
33 PRINT"CLOSE TO WHAT YOU PICTURED?
34 PRINT
35 PRINT"WHEN I SAY 'ANIMAL', WHAT DO YOU THINK OF?
36 INPUT Z $\$$
38 PRINT"I BET WE'RE MUCH FURTHER APART ON THAT. I WAS THINKING" 39 PRINT"OF SOMETHING BULBOUS, SLIMY, AND STICKY-TONGUED.
40 PRINT
41 PRINT"*ANIMAL" IS A MORE GENERAL LABEL THAN "CAT', OR CONVERSELY,"
42 PRINT"'CAT' IS MORE SPECIFIC THAN 'ANIMAL'."
43 PRINT "CAN YOU ADD A WORD TO "CAT" TO MAKE IT EVEN MORE SPECIFIC?"
44 INPUT "(TYPE IT IN) ";SP\$

```
45 PRINT
46 PRINT"YOU COULD SAY TABBY CAT, OR MY CAT, OR JUNGLE CAT, OR ANY-"
PRINT"THING THAT FURTHER DEFINES CAT."
4 8 \text { PRINT}
49 PRINT"NOW TYPE IN A MORE GENERAL TERM FOR ANIMAL.":INPUT GL$
0. PRINT
1 PRINT"THAT"S HARDER. WHAT OCCURS TO ME"
2 PRINT"IS SOMETHING LIKE "LIVING THINGS."
5 4 ~ P R I N T
55 PRINT,GL$
56 PRINT,"ANIMAL
5 7 \text { PRINT,"CAT}
S8 PRINT,SP$" CAT"
59 PRINT
6% PRINT"YOU HAVE DONE MORE THAN JUST CLASSIFY 'BIG' TO 'LITTLLE', YOU"
S1 PRINT"HAVE ORDERED A UNIVERSE ON FOUR LEVELS."
```



```
62 PRINT"ADD TWO MORE LEVELS. YOU MAY CHANGE YOUR LABELS COMPLETELY,
63 PRINT"BUT MAKE SURE YOU HAVE SIX LEVELS - FROM MOST GENERAL TO"
4 PRINT"MOST SPECIFIC. USE THE NEXT SIX LINES."
5 \text { PRINT}
6 INPUT "(LINE 1) ";Z$
68 INPUT " (LINE 2) ";Z$
69 INPUT "(LINE 4) ";Z$
70 INPUT "(LINE 5) ",Z$
71 INPUT "(LINE &) ";Z*
7 2 ~ P R I N T
73 PRINT"BY CLASSIFYING THESE NOTIONS IN YOUR HEAD, YOU HAVE AGAIN"
74 PRINT"CREATED A PARTIEULAR KIND OF UNIVERSE. YOU CAN DESTROY IT AND
75 PRINT"CREATED A PARTIICULAR KIND OF UNIVERSE. YOU CAN DESTROY'
75 PRINT"CREATE ANOTHER SIMPLY BY RE-ORDERING THOSE SAME
7 PRINT
78 IF LEFT$ (A$,2)="NO" THEN 81
79 IF LEFT$ (A$, 2)="UH" THEN 81
8\varnothing PRINT"WELL, YOU PERFORM THIS EXERCISE DAILY.":PRINT:GOTO 82
81 PRINT"GOOD. YOU UNDERSTAND THE INFLUENCE LANGUAGE HAS ON REALITY.":P
RINT
82 PRINT"OF COURSE, YOU'RE PART OF A UNIVERSE TOO, "N$", . . . MINE."
83 PRINT
84 PRINT, "GALAXY 15Ø1"
85 PRINT,"SOLAR SYSTEM 1\emptyset"
86 PRINT, "EARTH"
87 PRINT, "UNITED STATES"
88 PRINT,"CALIFORNIA"
89 PRINT," "STANFORD"
9@ PRINT,"STANFORD "S$
1 PRINT,N$
92 PRINT,N$",S NOSE"
3 PRINT
94 INPUT "LIKE YOUR PLACE IN MY UNIVERSE ? ":Z$
95 PRINT
96 INPUT "WHY ? ";Z$
7 PRINT
8RINT"FAIR ENOUGH."
99 PRINT"YOU CAN MAKE YOUR UNIVERSE TO INCLUDE OR EXCLUDE"
1øø PRINT"WHATEVER YOU WANT."
|1 INPUT "WANT TO DO YOUR OWN ? ";A$
102 PRINT
103 IF LEFT$(A$,2)="NO" THEN 12\varnothing
104 IF LEFT$(A$, 2)="UH" THEN 12\varnothing
105 PRINT"FINE. USE THE NEXT EIGHT LINES."
106 PRINT
107 INPUT "{LINE 1) ";Z$
107 INNUT "{LINE 1) ";Z$
```

$1 \not 99$ INPUT " (LINE 3) ";Zक
110 INPUT " (LINE 4) ";Z
$\begin{array}{ll}111 & \text { INPUT " (LINE 5) "; } \\ 112 \text { INPUT } \\ \text { " (LINE 6) } \\ \text { "; }\end{array}$
113 INPUT "(LINE 7) ";Z
113 INPUT "(LINE 7) "; 11
115 PRINT
129 PRINT"WELL "N\$", WE VE MADE SOME UNIVERSES."
121 PRINT"WE DO SHAPE REALITY BY OUR MENTAL GYRATIONS"
122 PRINT"AND OUR CHOICE OF WORDS."
123 PRINT"DOES THAT SEEM OVERSTATED? IF SO, YOU MIGHT"
124 PRINT"WANT TO PAY FURTHER ATTENTION TO THE INTERRELATIONSHIP"
25 PRINT"BETWEEN LANGUAGE/THOUGHT/REALITY."
126 PRINT
127 PRINT
128 PRINT"THAT'S ALL FOR NOW, "N
129 PRINT
130 PRINT"'BYE"
131 END
OK

CCCC	$L L$	0000	$V V$	$V V$	EEEEE
$C C$	$L L$	00	00	$V V$	$V V$
$C E$	$L L$	00	00	$V V V V$	EEEE
$C C$	$L L$	0000	$V V V$	EE	
$C C$	$L L$				
$C C C C$	$L L L L L$	0000	V	EEEEE	

BY ELLEN NOLD AND SALLIE CANNOM 8/73 ADAPTED BY JEFF LAVIN $11 / 81$

HI. WHAT'S YDUR NAME ?
LUX, ARE YOU A MAN OR A WOMAN? (TYPE ONE WORD) ?
THANKS. NOW WE'RE READY TO GO.
LANGUAGE AND MOST ORDINARY KINDS OF THOUGHT PROCESSES ARE BASED ON CLASSIFICATION.
WHEN I SAY 'CAT', WHAT DO YOU THINK OF?

YOU THINK OF AN ANIMAL? THAT'S INTERESTING.
I THINK OF SOMETHING FOUR-LEGGED, WHISKERY, AND FURRY. CLOSE TO WHAT YOU PICTURED?
?
I BET WE'RE MUCH FURTHER APART ON THAT. I WAS THINKING
OF SOMETHING BULBOUS, SLIMY, AND STICKY-TONGUED.
ANIMAL" IS A MORE GENERAL LABEL THAN "CAT', OR CONVERSELY, 'CAT' IS MORE SPECIFIC THAN 'ANIMAL'
CAN YOU ADD A WORD TO "CAT" TO MAKE IT EVEN MORE SPECIFIC? (TYPE IT IN)

YOU COULD SAY TABBY CAT, OR MY CAT, OR JUNGLE CAT, OR ANYTHING THAT FURTHER DEFINES CAT.

NOW TYPE IN A MORE GENERAL TERM FOR ANIMAL.
?
THAT'S HARDER. WHAT OCCURS TO ME
IS SOMETHING LIKE 'LIVING THINGS.

IVING THING
 ANIMAL
 CAT
 BLACK CAT

YOU HAVE DONE MORE THAN JUST CLASSIFY 'BIG' TO 'LITTLE', YOU HAVE ORDERED A UNIVERSE ON FOUR LEVELS.
ADD TWO MORE LEVELS. YOU MAY CHANGE YOUR LABELS COMPLETELY, BUT MAKE SURE YOU HAVE SIX LEVELS - FROM MOST GENERAL TO
IOST SPECIFIC. USE THE NEXT SIX LINES.

(LINE 1

OK

TWO NEW HARDWARE PRODUCTS

THE AEP-1 32 K CMOS RAM BOARD
We have long recommended the Beta $32 K$ Dynamic RAM Board, and still continue to do so, especially for those using the HDE FODS disk supply, generates its own +12 V and -5 V on-board, and there is enough extra capacity in these two supplies to also power the HDE controller, which requires these two voltages to be supplied, in addition to the usual t5 V.

We now are adding another RAM board for the SYM to our product line, the AEP-1 $32 K$ CMOS RAM Board. This board fits directly onto the SYM's Expansion Conector, "folded" beneath it, with a right-angled 44 contact edge connector, and its free edge fingers are an extension of the SYM's Expansion Connector. It uses the new 2 Kx 8 CMOS static RAMs for i ow power consumption, is easily bank-switched to provide essentially unlimited memory, and will also hold 27165 as well.

We have been using an early prototype at $\$ 0060-\$ 7 F F F$ for some time now and are thinking of adding a second one at $\$ 8 ø \omega 6$-\$FFFF in the near future, for a very much customized and far-from-standard, highly personalized, system which will be a SyM in name only, since we will be and moving all of the $1 / 0$ up to sEggg-\$FFFF. This will be our dream b5g2 system, and this is the expansion board around which we will build it The disk controller will, of course be the FDC-1 Since all these boards use the standard KIM-1 (SYM-1) bus, we will install the system in an MTU card cage, together with a bank-switched Visible Memory.

The new RAM board is a product of Alternative Energy Products (Jeff Lavin), and permits almost complete freedom in memory address selection, within either the lower or upper 32 K of memory space. Here are some extracts from Jeff's spec sheet:

20øNS LOW POWER CMOS STATIC RAM - $32 K$ draws less than 0.6 A enabling
LOW POWER CMOS STATIC RAM - $32 K$ draws less than 0.6 A enabling
the KTM-2 and the SYM-1 with $32 K$ of memory to run on a single 3 A the KTM-2 and the SYM-1 with 32 K of memory to r
power supply. Al so has greater noise immunity.

EXPANSION CONNECTOR EXTENDED - instead of worrying with other buses, the Expansion connector is available for use.

FIRST 8K ARE JUMPER SELECTABLE - this means you may keep either 4 or $8 K$ of 2114 RAM on board, and select the unused blocks somewhere else (at $\$ 996 \emptyset$ and $\$ 9896$ for example). All memory is addressed on 2 K boundaries.

COMPATIBLE WITH 2716 EPROMS - 2716 EPROMS may be substituted for RAM at any position and will operate in the power down mode.
MAY BE BANK SWITCHED - a jumper is provided for use in bank switching boards for greater memory.
STANDARD ADDRESSING - \$qøøø-\$7FFF on $2 K$ boundaries. May be optionally addressed at $\$ 8 \emptyset \varnothing \emptyset-\$ F F F F$ by using an inverted A15 address line provided externally

G-10 EPOXY/GLASS, FULL SOLDER MASK, GOLD FINGERS
FULL 1-YEAR LIMITED WARRANTY

THE AEP-2 I/O EXPANSION ROARD

Despite all of the I/O capability already built onto the SYM, we have already run out of ports! We have two DACs (Digital to Analog Converters) permanently on VIA \#1, and our Epson Printer uses half of VIA 2. Whenever we wish to burn an EPROM, or demonstrate the Speak would be nicer if all three of these devices were always on-line.

We would also like to have a real time hardware clock with battery back-up, and a multiplexed ADC (Analog to Digital Converter) always on-line. We also are now thinking of adding an Option Select Unit (see the review on Dilworth's "RADAR" program).

We told Jeff that we needed four ADDITIONAL VIAs on the SYM, and a few weeks later he shipped us a prototype AEP-2. This is a $41 / 2$ inch square board with sockets for five 6522s, and a 74LS154 4-1ine to 16-1ine decoder/demultiplexer chip. Remove VIA \#2 from the SYM, mount it on the board, and plug the board directly into the now empty socket. The VIA functions as before, with its I/O at the AA connector.

By bringing three additional address lines from the SYM board to holes on the $I / 0$ board waiting to receive them and send them to the decoder, you can get eight vis into the memary space assigned to viA .2. . The board holds only five, but the necessary signals are passed out of the
board at a 44 pin edge connector for further expansion.

Actually four address lines come to the expansion board, so that if you are willing to give up VIA \#3's assigned functions (think how seldom you really use them!) this board will let you address 16 VIAs.
P. S.: Jeff will soon be announcing his real time hardware clock card and a communications module to be used with this I/O adaptor. All VIAs (other than the "original" one) interface to the outside world through $2 \emptyset$ pin in-line connectors adjacent to the VIA sockets.

THE RADIO SHACK LINE PRINTER VIII
Here's a brief extract fron a letter showing some of the versatility of this printer which lists in the latest catalog at $\$ 799 . \emptyset 9$:

I'm writing this letter using an editor/word processor I've written in FORTH, that takes advantage of the features of the Radio Shack Line Printer VIII, This printer features a proportional (variable pitch) character set, proportional spacing commands (move the print head 1 to 9 dots) and dot addressable graphics, It also has block grahpic characters and a European character set. I wrote the word processor in FORTH since it looked like a fairly massive task to modify SWP to use the proportional character set. In fact, it looked like I would have to re-write SWP from the top down, since the line justification algorithm would be totally different, line lenoths would be specified in dots, not characters, and so on. Here are some example of what the LPVIII can do,

SYM-PHYSIS 12-36

Various fonts -- proportional, el ongated, condensed, condensed elongated Special characters -- SYMM, ©copyright, $£ 2,40$, accents acäöuée, etc.
Enclosed is a subscriptina.

That's about it for now, Good luck with Volume III,

$$
\begin{aligned}
& \text { Buì Whame } \\
& \text { Bill Wharrie } \\
& 272 \text { Erb St W } \\
& \text { Waterloo, Ontario } \\
& \text { CANADA N2L IW2 }
\end{aligned}
$$

TWO MORE RECOMMENDED BOOKS
One of the "perks" (perquisites) of being a university professor is the scores of free books we get from the publishers to review for possible adoption in our classes. Of course we can adopt only two or three a year, and for most of my advanced courses, the art is changing so rapidly that I don't adopt a textbook at all.

Most of the books go into the bookshelves, and are donated, in batches, to collection drives for underdeveloped countries. Very few are worth lending to students as recommended reading.

During this past quarter two SYMmers had their publishers send us copies of their newly published books for review. The books are entirely different in scope and intended for different audiences. Unfortunately, there is neither sufficient time nor space here to review them in the depth they deserve, so we'll do it rather informally.

Microprocessor Systems - Interfacing and Applications Robert J. Bibbero, P.E., and David M. Stern
This John Wiley and Sons book is not intended as a text, but could be assigned as required reading at the senior or graduate student level in seminar or independent study courses. Since its main area of concern is the increasing interdependence between computer technology and omblich computer engineer ssigned boing

It's the kind of book I used to look for, back when I was doing consulting work in an area that was new to me, one which would introduce me quickly to the basic concepts and technical jargon of the people I would be interfacing with.

SYM-PHYSIS $12-37$
es, I would recommend it to those of my students who are alert enough to recognize that they had better find out more about how communications echnology is affecting their future in the computer field. We do not have a graduate engineering program here at California State University, Engine but the Engineering Division will be introducing a new Computer book to those involved.

> Microcomputer Design and Troubleshooting

Eugene M. Zumchak
This Howard W. Sams Company book is up there in a class with De Jong's ook, which we think all SYM users need right next to the SYM-1 Reference Manual. Put a copy of Zumchak there, too.

While De Jong emphasizes how to apply an existing system, Zumchak helps you to find out why your existing system is giving you problems, and shows you how to build a better one.
We only had a few hours to study our review copy; Denny Hall borrowed it and won't return it until we get him another copy. Because of that, and because we feel that all SYMmers will find it useful, we're ordering a ig batch for resale.

THE DVORAK KEYBOARD
We print below part of a brief note by Jim Mott, Code 3169, Naval Weapons Center, China Lake, CA 93555, on providing a special keyboard for the KTM-3. We do not print his table because the KTM-3 ROM is not the same as the KTM-2 ROM.

Two keyboards are compared in an article "Dvorak vs. Qwerty: Will Tradition Win Again?" by Shirley Boes Neill in the June 1980 issue of Phi Delta Kappan. The keytoards are also compared in "Change Comes Slowly" by Albert C. Kolb in the February 1979 issue of CTS Journal. A Dvorak All-Electric Portable Typewriter is available from the Typewriting Institute for the Handicapped, 3162 West Augusta Ave., Phoenix, Arizona 85621 (662) 939-5344.

A special manual has been prepared by Dr. Dvorak in collaboration with Ruth Ben "Ary. The textbook can be used in a regular classroom setting or as a self teaching aid. Two KTM-3 computer terminals were available for me to try to make a Dvorak keyboard and try it. Both units have been changed and are now under evaluation. The KTM-3 is made by Synertek Systems.
The Dvorak keyboard is as follows, where the format is upper case/lower case [Editor's note - not all keys and/or symbols are shown here]:

+/; Q/q J/j K/k X/x B/b M/m W/w V/v z/z
The read-only-memory at U1冋 was modified as follows, based on the PROM's first location being assigned a value of \$øøøø. [Editor's note - table omitted] After writing the new PROM I rearranged the key caps to show the Dvorak keyboard. These terminals can be made available for demonstrations.
[Editor's note to all contributors: Please! Either use a fresh ribbon, or send your material on cassette!]

MISCELLANEA

LEE H. LONGSTREET, JR. sent us a copy of Sol Libes' BYTELINES column from the May 1982 BYTE (which we do get, but had not yet gotten around to reading!). We quote: "Commodore is expected to finally release its 16-bit microprocessor that will be software compatible with the 6562."
C. DAVID STRITT would like to see a series entitled "Biography of a System, or, See How My SYM Grew!", wherein users describe how they went about expanding their systems. Perhaps we could find room for one or two such articles???
LEE H. LONGSTREET, JR. has been sending us "goodies" at a rate faster than we can incorporate them into our CODOS system. Many months ago he sent us SUPERMON in EPROM, relocated at $\$$ Fgag, and a new CODOS master disk to on with it. We hesitated to install the new system, partiy problems with softmare interchangeability with others. Yesterday we problews with softwarw ing wisterday we follows (note the 6890 cross-assembler!):

0002	+W***		
0004	;**		**
0006	;**	CODOES'X-RA', AlH IISTEGRATED OFERRTING SY'STEM	**
0008	;**	COMPOSED OF MTU CODOS, S'tM RAE, \& SRTURN	**
0010	; ***	SUFTWFRE'S X-RF't' - OTHER USER FRIEMDL' ${ }^{\text {' }}$	**
0012	; ***	EIHHFMCEMENTS FMM CODUS IHTERGRATION	**
0014	; *:*	E't Lee H LOUGSTREET JR	**
0016	; ***		**
0018	; **:	X-RA'r FORTION ©C, $1982 \mathrm{E}^{\prime} \mathrm{T}^{\text {S SRTURN S SOFTWARE- }}$	**
0020	;**	*TIUST EE FURCHASEI FROM SRTURH SOFTWRRE*	**
0022	;**		***
0024	; **:	S'ly $/$ RAE MiA't EE OETAINED IH SEVERAL FORTS	**
0026	;**	S'M-RAE IN ROM FDRM, S'rlertek S'rstems Corp.	***
0028	;	OCCLIPIES EOOO-BFFF \& E000-EFFF	**
0030	;**		**
0032	; **	EASTERN HOUSE SOFTWRRE, OV CRSSETTE	**
0034	;**	OCLIJPIES APFX. 2000-4100	***
0036	; **:		*
0038	;**	CODOS IS RN RDVHNLCED DISK DPERATING SYSTEM	***
0040	;**	FIND HDNE. FKG, MICRO TECHNOLOGY UINLIMITED	*
0042	; ***		*:*
0044	; ***		**
0046	;**	Drsk File XRH'r1	***
0048	; ***	LAST REVISION - OT/OT/E2	**
0050			***

0054

0056 ; NOTE: TO USE OH STM WITH STD. MOHITOR LOCATIOH, CHAHGE
0053 ; MOST SIGNIFIGANT B'YTE (FFGES IN SUPERMON ROM ROUTINES
0060 ; LISTIHG TG EXKX, IE. FO $35=8035$. IN THIS CRSE,
0062 ; RAE CODE DAY BE USED RS IS, DTHERWISE USE THE RAEXXXX. J
0064 ; CODOS JOE FILE WHICH WILL RUTOMATICRLLY MRKE THE CHRNGES
0066 ; MECESSAR'T' FOR RAE TD RUN WITH S'MM MONITOR RELOCATED
0068 ; TO FOOO - FFFF
0070
0072
0074 ; ASSEMBL.'T' DATA
0078
0080
0082
0084
0088 VERSIOH
. CE
BH $\$ 9000$
BR $\quad=9000$
MC: $\quad \$ 0.000$
DS
E
; $0=$ RRE6502, 1-RAE6800

PHIL KOHL, too, has been keeping us busy with cassettes containing revised versions of Jack Gieryic's EPROM Burner which will handle 27325 and 2764s. Now all we need do is rebuild the hardware. Actually, we will start from scratch with a totally new board.

We are sitting here going through the large file of material we had planned to include, or at least mention briefly in this issue, but we see that we are now on page 46 (why do printers say -36 - to mean the end, when for $u s$ it is $-4 g-$ inflation, maybe?), and we must leave within the hour to catch a flight to Los Angeles (UCLA). So, the material will just have to wait. Apologies to those whose material is being delayed. We'll start on Issue 在13, the JUL/AUG/SEP issue, in mid-September, and you should be getting your copy before the end of October: if all goes as planned.

We will be be at UCLA for half a week, then fly back for a lens implant on Friday the 13th. DICK ALBERS and JEFF LAVIN will be visiting shortly thereafter, and we'll be working together on a multi-DOS system using many of Jeff's new products. Fall semester classes will start at CSU, Chica on 30 August.

From the Apple II Software Library - "Here's lookin' at you . . ."

"So long, folks, . . .

