ARE M-W-F 9:00 AM to 2:00 PM Pacific Time

THE SYM USERS, GROUP NEWSLETTER UOLUNE IV, NUMBER I (ISSUE NO. 15) - SPRING 1983 (JAN/FEB/MAR/APR) SYM-PHYSIS is, a thrice yearly publication of the SYM Users' Group, P(G);
BOX 319 , Chico, CA 95927 SYM-PHYSIS and the SYM Users Groug (SUG) are in no way associated with Synertek Systems Corpors ation (SSC), and SSC has no responsibility for the contents of SYM-PHYSIS. SYM is a registered trademark of SSC. SYM-PHYSIS, from the
state of growing together, to make grow, to bring forth.
We welcome for publication all articles dealing with any aspect of the copyrights. portions of SYM-PHYSIS may be reproduced by clubs and ercial cational institutions, and adaptations of programs for other computers may be freely gublished, with full credit given and complimentary copies
provided to SYM-pHYSIS and the oripinal author (s).
self-addressed stamped envelope with ali correspondence.
EditorlPublisher:
Rusinessicirculation:
offices Staff:
H. R. "Lux" Luxenberg
Joyce Arnovick, Denny Hall

SURSCRIPTION RATES: (Volume IV, 1983, Issues 15 - 17)
 Make checks payable in US dollars to "SYM
BACK ISSUES ARE AVAILARLE AS FOLLOWS:
 Issues 7 through $1 \varnothing$ (Volume II, 1981), are available for $\$ 10.50$,
US/Canada, and $\$ 14 . \emptyset \varnothing$, First Class/Airmail, elsewhere. Issues 11 through 14 (Volume CIII, 1982), are available for $\$ 1 \varnothing .5 \varnothing$,

AN OUTSTANDING OFFER TO THE SYM COMMUNITY
Our lead article (starting in the page 2 "slot") is the first of a series of guest columns by Jeff Lavin. Jeff is a relative newcomer to few times when he had questions, then called us many times to give us answers to questions we had often wondered about ourselves, but had neither the time or expertise to answer for ourself.

Jeff is a prolific writer and highly inventive. He has come up with some extremely ingenious hardware and software for the SYM-1 (and other systems as well). Some of these have been described in previous issues. Several others, notably SYM/ELIZA, a truly efficient and versatile EPROM Programmer, and a DUAL ACIA Board, will be described in the NEW PRODUCTS section.

Jeff has two very useful software packages he wishes to contribute to the SYM user community. These are BASIC TERMINAL CONTROL PATCH and RAE TERMINAL CONTROL PATCH, both based largely on material published in earlier issues of SYM-PHYSIS, but greatly enhanced by him. We have tried them both, and they vastly improve the SYM's human interface, making it truly pleasurable to use. Both patches include FDC-1 links.
He will provide complete RAE source code for both, on either cassette or FDC-1 5 1/4" double density diskette (please state which!), to all who wish copies, asking only a nominal $\$ 1 \varnothing .0 \varnothing$ to cover media, handling, and shipping charges. This is an offer you shouldn't refuse

SYM-PHYSIS 15- 1

ADDRESS DECODING, POR, and the SUPER SYM
By Jeff Lavin
January 1983
P.O. Box 1019

Whittier, CA 90609
The purpose of this article is to explain how the SYM-1 uses partial address decoding to select different devices, and how the Power-on-reset (POR) circuitry operates. In the next installment this concept will be expanded to show how the SYM may be converted to the type of machine Lux described in the \#13/14 issue of SYM-PHYSIS. If there are any topics the reader would like to see covered in this column, drop a line to Lux or myself.

When power is first applied to the SYM, a 555 timer, connected as ane-shot, applies a reset pulse to the processor and all the $1 / 0$. The $1 / 0$ is left in a known condition; the processor must be initialized, however. Quoting from the MOS Technology Programming Manual:
"... the only automatic operations of the microprocessor during reset are to turn on the interrupt disable bit and to force the program Counter EFFD and to load the specifled

In the preceeding remark, the locations being referred to are called VECTORS. A vector consists of two consecutive memory locations containing the address of a routine in the format ADL - ADH, or three for the power and flexibility of the SYM. If the ROM or EPROM containing the RESET routine were to be located at the top of memory, the vectors would be cast in silicon. In order to preserve the usefulness of being able to point vectors to new routines, the vectors in the ROM would need to point to vectors in RAM. At two bytes per vector, this would waste a lot of memory. There are other ways to accomplish this, however.

The ROM containing the RESET routine and RESET vector may be called at the top of memory on power-up or user reset, and later be replaced by RAM. This manipulation is the function of the POR circuitry.

Refering to the diagram, a NAND gate (U8) creates the signal $\overline{P O R}$. The two inputs to U8 are $\overline{F 8}$ and CA2 from VIA \#1. The RESET signal causes CA2 to be HIGH. The inclusion of $\overline{P O R}$ into U7, causes the 74 LS145 decoder to select an output higher than \#7 (U10 and U11 are actually BCD to DECIMAL decoders). The result is that POR is made LOW. U24 is an AND gate that controls the CS for the ROM, U20. An interesting point is that an AND gate acts as an OR gate for NEGATIVE LOGIC. I.E.: If both A AND $B=Y$, then $\bar{A} O R \bar{B}=Y$. Therefore, if either input of U24 is low, the ROM is selected. This causes the ROM to be selected at the RESET vector. The purpose of including POR in the address decoding done by U11 is to keep SYSTEM RAM from being addressed. Since the SYM uses on U11, anything addressed at COOO or higher will not be selected while $\overline{\mathrm{POR}}$ is active.

After the ROM is selected, the processor forces the program
counter to the address contained in the RESET vector, and loads the instruction found there. In the case of the $S Y M$, when the ROM is selected at F000 instead of 8000 , the two bytes normally addressed at 8 FFC and 8 FFD appear at FFFC and FFFD instead. The address of the reset routine is stored here, and the processor begins executing instuctions at 8B4A. Note that now, the ROM is being addressed at its normal location.

The first thing that happens in the reset routine after the stack and flag register is initialized, is to turn off POR.

8B4A A2 FF	RESET	LDX \#\$FF	Initialize stack
8B4C 9A			TXS
8B4D A9 CC	PORt to \$1FF		
8B4F 8D OC A0		LDA \#\$CC	(\%11001100)
(\%		STA PCR1	Disable POR, tape off

Bits 3-1 control CA2. Loading \#\$CC into the Peripheral Control Register (PCR, VIA \#1; hence PCR1) utilizes the bits inside the brackets to controion of bits sets CA 2 LOW. This disables POR and returns normal addressing. This concludes discussion of the $P O R$ circuitry.

Note that the same signal used to select the ROM also is connected to U7. This insures that when the TRACE function is used, it will not operate in the Monitor and cause the system to crash.

The address decoding for the $1 / 0$ on the SYM is straightforward. Full decoding is not used. The 6532 and $6522 \# 1$ are selected on their $\overline{C S 2}$ inputs by $\overline{A A O}$, giving them $2 K$ of address space (AOOO - A7FF). For the RIOT, this is modified by CS1 being selected only when Aio is high, giving an address range of $A 400$ - A7FF. The $\overline{R S}$ input is used to select RAM (L) or $1 / 0$ (H). Connected to $\overline{A g}, 1 / 0$ is selected at A400 A5FF, and RAM at A600-A7FF. For the VIA, the CS1 input is connected to Á10, selecting this chip only when A10 is low (A000-A3FF).

The $\overline{\operatorname{CS2}}$ inputs of VIAs \#2 and \#3 a re both selected by $\overline{A A \&}, ~ a l s o$ providing a 2 K address space (A800-AFFF). This is divided equally by A10. CS1 of VIA \#2 is connected to A10, giving the lower 1 K , and Alo gives VIA \#3 the upper 1 K

Earlier it was mentioned that SYSTEM RAM is selected at the top of memory, where the reset vector lives, but here it is stated that actually addressed in both places. This is the famous ECHO. System RAM located at A600-A6FF is ECHOED at F800 - FFFF. This is accomplished by tying $\frac{A A O}{A O} \frac{\overrightarrow{F B}}{}$ (Jumper $T-21$ and U-22). Anything selected by one is also enabled by the other. You may note that this wastes a lot of memory also. There is yet another way to provide vectors on power-up AND not use pointers to RAM, AND not waste memory!

In the next column, I will discuss modifying the things covered above in order to create a really useful 6502 based computer with 56 K of contiguous RAM!!! Till then, happy computing.

He

SYM-PHYSIS 15- 4

Dr. H.F. Lumenberg
GMM Users' Grous
. 0 . EOK 319
Crico, CA 95927

Dear Lu\%,
A few weeks ago, I considered the problem of how to imslement a CHAIN command on the SYM-1. The Frocedure I came we with is based on the fower-on-reset to EASIC iri Issue No. 10 . It was orily necessary to investigate some froblems associated winn and with the transfer of data between program segments.

In sour answer to a letter in Issue No. 13/14, you state that CHAIN is available as Fart of Jack Erown's enhancements. Hopefully, my method can be presented as a simple alternative.

The enclosed material consists of a printout of the assembly of the reauired machirie languge fromram, a frimtout of four short EASIC frograms used to illustrate the procedure, and a short article explaining the froblems, solutions, and constraints.

All material is duelicated on the cassette. First, the FiAE ile containing the source code is recorded twice, as Fi and F2. Next, the four EASIC Frograms are saved as A,E,C, and D. Finally, the $\mathcal{F A E}$ file contairimg the text of the article (with appropriate SWF-. 1 commands) is recorded as F3.

I have also enclosed a self-addressed stamped envelope for ans eply you would care to miake. Should you not consider the material suitable for moblicationg there is no need to return either the hard cofs or the cassette. I am hofing that sou will be able to use it.

Sincerely soursy

r. Edward Wesocki
F.0. E0\% 6257

Ealtimore, MD 21206
CONTROLLED LOAD OF EASIC FROGRAMS FROM TAFE Dr. Edward Nysocki
F.O. EON 6257

Eialtimore, MD 21206
There mas be times when you warit to run a EASIC froGram which is too large to fit iri your computer's memors. Some computer ssistems make which the segmerits ater another, Such arovision apears to ber ariro ir the gym

The short machine language frogram presented here fermits sout to use the closing commands in one EASIC Frogram to cause the loading of a new program. of course, you must have computer control of the cassette recorder and it must, be in flay, The frogram is adafted from the one in Issue No. 10 which permits power-ori-reset into EASIC or a ruminim EASIC qrograli.

In each EASIC program, one uses the FOKE to change the A in the ASCII string 'LOAD A' to the name of the frogram segment to be loaded. The subroutine to be called the first time is FiEFLY1. For each frogram segment that follows, use FEFLY1 or REFLY2 accordinig to a simple rule. If the preserit segment has irivolved any infut from the keyboard, use FEFLY1\% otherwise use FUEFLYZ.

The onily froblem which exists is the transfer of data from one program segment to the riext. Wheri the SYM executes a LOAD, it first ferforms a NEW. Eut the NEW does not cause the actual in locations \$7E: through \$88 (See A Deductive Storun. Issue No. 7) If the poirters are reset st the begining of the program No. 7). If the poiniters are reset at the begiriming of the frogran segment just loaded, the variables mas be accessed.

There are rules to be followed in the transfer of data from one program to another:

1. The first program segment must be the longest.
2. All variables must be dimensioned and defined
in the first segment, fossibly with dumy values.
3. Simple strings, those defined by a pair of Quotes, caniot be passed between segments.
4. Computed strings, those created by operations on other strings or by an INFUT, can be fassed between program segments.

If the first two rules are not followed, the storage area for variables will be disturbed. One cannot fass simple strings since the pointer to such a string points back to the program storage area. With a new program segment there, you will get some Computed strings are stored eleswhere

The transfer of data mas be halted in aris seament by not resetting the pointers at its start. Data transfer mas be Irisula regarding segment lemgh and definition of variables arwly to the riew startirig segment.

The four sample EASIC programs should be flaced on tare as A E, C, and D. Wher used with the machirie language program, thes should illustrate most of the princibles involved. If you relocate the program, don't forget to change the FOKE of the program name as well as the USFi calls to REFLYY1 and FEFFLY2

0010 : CONTFOLLED LOAD OF A EASIC FFROGFAM EY
0030 ; EDWARD WYSOCKI -.. JANUAFYY 1,1983
0040
0050 \%
0070 INUEC
0080 SCFIA
0090 TOUTFL
0100
0110
E0G OD AE AG 013
IE06- AD 61 AG 014
1E09- 8D 3A AG 0150
EEOC- A9 TE 0160
E11-- AQ 88 AC 18
1F13- 8062 A6 0190
$\begin{array}{lll}1 E 13- & 8 D & 62 \\ \text { AG } & 0190 \\ \text { 1E16- A9 } & 28 & 0200\end{array}$
1F18-8D FA $00-0210$

DE $\$ 887 E$
DE $\$ A 660$

- DE \$A63A
+DE \$A6SA
+EA \$1E00
+ OS
DA INUEC+2
STA SCFA +1
DA INUEC+
STA SCFA
SDA \#LRFIN
STA INUEC+1
STA INUEC+?
DA HL, EXEC
STA \$FA

1E1E-	A9	1 E		0220		LDA	\#H,EXE		
1E1D-	8D	FE	00	0230		STA	\$FE:		
1E20-	A9	00		0240		L.IDA	\#\$00		
1E22-	8D	54	Ab	0250		STA	TOUTFL.		
1E25-	$4 C^{\circ}$	4 C	D 1.	0260		JMF'	\$D14C		
1E28-	4 C	4F	41	0270	EXEC	, EY	' LDAD	$A^{\prime} \$ 0 D$	
1E2E-	44	20	41.						
1E2E-	01.								
1E2F--	30	50	4F	0280		- EYY	'OFOKE	42580,144'	\$0D
1E32-	4 E	45	20						
1E35-	34	32	35						
$1.538-$	38	30	2 C						
1E3E--	31	34	34						
1E3E-	0 D								
1E3F-	52	55	4E	0290		- EEY	'FiUN'	\$00	
1E42-	0 D								
1E43-	00			0300		+ EY	\$00		
				0310		. EN			

10 FEEM FROGFAM TO STAFT LOAD SERUENCE
$20 \quad x=0$
30 DTM A(5)
$40 \mathrm{E}=6666$
50 C $\$=4 \mathrm{AECDEF}=\mathrm{D}=\mathrm{D}=\mathrm{=} 12345$

70 FOF I=1 TO 5
80 INFUT $A(I$
90 NEXT I
100 FEM SAUE VARIAELE FOINTERS
110 FOKE 8000,FEEK(125):FOKE 8001,FEEK(126)
120 FOKE 8002,FEEK (127):FOKE 8003,FFEK(128)

150 FOKE 800 , FEEK (133):FOKE 8000,FEFK(134)
60 FEM BKE ROCFAM NAME
60 REM FOKE FFOGFAM NAME
170 FOKE 7725,66
80 X=USR(8"1E00",\&"0000")
ok
LOADED
OK
10 REM FIFST AUTO LOAD
20 FEEM FESTOFE
30 FOKE 125, FEEK (8000) :FOKE 126,FEEK(8001) 40 FOKE 127,FEEK (8002) :FOKE 128,FEEK (8003) 50 FOKE 129, FEEK (8004):FOKE 130, FEEK (8005) 60 FOKE 131, FEEK (8006) :FOKE 132,FEEK (8007)
70 FOKE 133,FEEK(8008):FOKE: 134,FEEK(8009)
80 REM OUTFUT
90 FOF $I=1$. TO 5
100 FFINT A (I)
110 NEXT I
120 FFXNT E
130 FFTNT C\$,D施, E
140 FOKE 7725.67

160 END
OK

```
10 FEM SECOND AUTO LOAD
    20 INFUTT AS
    30 FOKE 7725,68
    50 END
OK
LOADED
DK
10 REM THTRD AND FINAL AUTO LOAD
20 PRINT "SO YOU SEE,IT WOFKS!!"
30 END
```

OK

NEW CMOS 65XX CPUS

The following information originally appeared in the February 1983 issue of UPDATE ANNOUNCEMENTS, a monthly publication of the Professional Update Committee of the IEEE Philadelphia Section, and is reprinted here, with permission, for your general information.

Do any of our readers have "hands-on" experience with some of these new chips which they would like to share with others?

> MICROCOMPUTER PRODUCTS OF INTEREST

1. From GTE Microcuits:

GTE is making CMOS versions of 6500 CPUs. They are making 18 CPUs, ten that are pin compatiable with NMOS CPUs and eight that are new. The CMOS 6500 CPUs have ten new instructions and two new addressing modes. The CPUS do not have the glitches the NMOS CPUS have, for example invalid op codes cause the NMOS CPUs to hang up while the CMOS CPUS treat them as NOPS. The new CPUs which are pin compatible with the NMOS CPUs are:

G65SC02	G65SC04	G65SC06	G65SC12	G65SC14
G65SC03	G65SC05	G65SC07	G65SC13	G65SC15

The new CMOS CPUs which have DMA and multi-processor interfaces are:

G65SC102	G65SC104	G65SC106	G65SC112
G65SC103	G65SC105	G65SC107	G65SC115

For more information please contact:
SEE ALSO PAGES $15-33,34$ FOR ADDITIONAL INFORMATION

> Harry Nash Associates
> P.O Box 188
> iiliow Grove, PA 19090
> $(215) 657-2213$
\qquad

の289-60
$193 \varnothing$ BACK 1 1640

RTS Return to SUPERMON

628D- 20 ตの

				$\begin{aligned} & 124 \varnothing \\ & 1256 \end{aligned}$		；Ou	utput hex	as ASCII－coded decimal
62B1－	Aø			1260	CONH2A	LDY	\＃\＄ø8	Table pointer
62B3－	A2	ตฮ		127¢	NEXTD	LDX	\＃\＄øワ	Decimal－to－be
92B5－	AD	4A	Ab	$128 \varnothing$	SUBT	LDA	P3L	Hex value to convert
6288－	38			129ø		SEC		
9289－	F9	F5	ø2	1396		SBC	TABL－1，Y	Subtract decimal value of
62BC－	8D	4A	A6	131ø		STA	P3L	this digit from the hex
¢2BF－	AD	4B	A	1326		LDA	P 3 H	value stored in P3
ø2C2－	88			1336		DEY		until we exceed the hex
ø2C3－	F9	F5	ø2	1348		SBC	TABL－1， Y	value，then add－back one
62C6－		07		135\％		BCC	ADJOUT	
ø2C8－	8 D	4B	A 6	1360		STA	P 3 H	
62CB－	C8			137の		INY		Here is where we count
ø2CC－	E8			1389		INX		in decimal（ \varnothing＜ X ＜$=9$ ）
62CD－	Dø	E6		1390		BNE	SUBT	（Always）
				1496				
Ø2CF－	C8			1410	ADJOUT	INY		Add back 1 to P3L；
ø2Dด－	AD	4A	A 6	142の		LDA	P3L	P3H was not changed
6203－	79	F5	ø2	1436		ADC	TABL－1， Y	
¢2D6－	8 D	4A	A6	1440		STA	P3L	
ø2D9－	8 A			1450		TXA		Move decimal to A
ø2DA－	Dø	$\square 5$		1460		BNE	ASCOUT	Suppress leading zeros
ø2DC－	AE	FE	$\emptyset 2$	147\％		LDX	ZFLAG	Test leading zero flag
¢2DF－	Fø	ø8		148ヵ		BEQ	NOPR	
Ø2E1－	EE	FE	$\emptyset 2$	1496	ASCOUT	INC	ZFLAG	Indicate found non－zero
ø2E4－	$\emptyset 9$	30		15øø		ORA	\＃\＄30	Convert it to ASCII
g2E6－	29	47	8A	1510		JSR	OUTCHR	And print it
ø2E9－	88			1526	NOPR	DEY		Now adjust for next
ø2EA－	88			1530		DEY		decimal value
ø2EB－	Dの	C6		1540		BNE	NEXTD	Unless this is the last？
ø2ED－	AD	4A	A6	1550		LDA	P3L	
Ø2Fの－	99	36		1560		ORA	\＃\＄3．	Always print the last
ø2F2－	29	47	8A	157\％		JSR	OUTCHR	digit，even if it＇s zero
62F5－	$6 \varnothing$			1589		RTS		
				1590				
62F6－	øø	øA		1690	TABL	． BY	\＄0．$\$ 60$	；Decimal 10
Ø2F8－	$9 \square$	64		1619		．BY	\＄ø6 \＄64	；Decimal 1 øø
Ø2FA－	03	E8		1620		． BY	\＄03 \＄E8	；Decimal 1øøロ
¢2FC－	27	10		1630		．BY	\＄27 \＄10	；Decimal 1øøøø
				1640				
¢2FE－ $9 \varnothing$				1659	ZFLAG	．BY	\＄ $0 \square$	；Leading zeros flag
				1669				

figure below is more fully described on page 15－21
Sample DIRECTORY listing from VIC＝2の／CBM－64 1541 Disk Drive System which，it is hoped，can be adapted to the SYM－1．＂MAE＂is the CBM－64 equivalent of RAE－1 on the SYM－1．

Number 2.1

The following letter，from David W．Lewis， 1424 N．Chigwell Lane， Webster，NY 1458g，contains some very helpful information on the FDC－1： Lux：

Enclosed you will find my edited listing of EDB．Normally I would provide you with full source code．However，my system is not a standard SYM and my EDB source is greatly modified for my parallel port keyboard， memory mapped video，parallel port printer，and expanded $1 / 0$.

In the EDB listing enclosed，you will find the code for the real time clock is changed．This change prevents the clock from generating an IRQ until it is enabled and the time is set with the ．STIME command．If this change to EDB is made，it is not necessary to fix the IRQ bug in FDC－1 code unless the clock function is need．This also lets EDB run slightly faster．［Editor＇s Note：The file described here，and listed below，is a direct replacement for EDB File 50，for those of you who have copies of Jack Brown＇s EDB．］

EDB will patch in the disks when ever a cold or warm start is made र．G 2月ด，． 6203 ，or ．G after a break to MON）．I have tested all functions and found no problems．However，there are probably bugs．If you find any，please let me know．

One area of concern I have not yet investigated is the variable file loading when the BASIC source is enlarged．Also，I believe that there is a problem if HIMEM is lowered（i．e．，lowered to $\$ 4 \emptyset \varnothing \emptyset$ from $\$ 8 \emptyset \emptyset \emptyset$ ）to allow room for an assembly language program．The variable file may load over the protected code．

Enclosed with the marked EDB source you will find the EDB FDC－1 patch listing，the $I R Q$ and $D C$ command listing．Also，on tape you will find the following：

1）A copy of this letter，file FI
2）A copy of EDB FDC－1 disk handler EDB．19，file F2
3）A copy of IRQ and DC patches，file F3
Regarding the problem of CRC disk errors，I am enclosing a copy of an article on this type of disk controller．On my system with 4Ω track drives with double density storage it is not unusual to get CRC errors on the inner 5 tracks．I found that the 1791 was slowly degrading in performance until the only way it would work was to cool it with freeze spray．I found it impossible to get a Synertek 1791，so I replaced it with a Western Digital chip．To do this the +5 vde land to pin 40 was cut．Then +12 vdc from my bus was provided to pin $4 \varnothing$ of the 1791 through an unused pin on the PWB edge connector．

Another unusual error I originally had was lost data．Due to the delay through my bus buffer card，the disk controller DRQ was not detected． The s．o．（set overflow）input of a bsoris was done on my bus interface This was done on my bus interface card with a D－flip flop 74LS74

FDC－1 IRG Interupt BUG

There is a bug in the FDC－1 IRQ software IRQRTN at \＄9C5D that prevents any IRQ from being executed from the user UIRQVC location in system ram． Any IRQ will be executed thru IRQVEC at $\$ A G 7 E$ which points to the disk

RQRTN routine

software RRK．
The reason for this is simple．Whenever the 1791 Disk Controller chip is executing a command，the busy status bit is set and data transfers are controlled by the DRQ（data request line）and the $65 \emptyset 2 \mathrm{S.0}$ ．（set overflow）input．After the command is complete，the busy bit goes low and then the IRQ goes high．Therefore，the disk IRQ can never occur when the busy bit is set．

Examination of the IRQRTN code shows that the branch to the disk routine is taken whenever the busy bit is low．This is true for all IRQ＇s．

The fix for this is to test a flag，not the busy bit in the status egister：Since the only entry to to disk handing routine is DISKIO at و8ø日，the 5 calls to this routine can be pointed to a routine to set and clear the disk IRQ flag．The address selected is $\$ 978 \emptyset$（easy to remember）．If the modified IRQRTN routine is also moved here，an added bonus can be gained．The upper $2 k$ of the disk handler can be simply paged in memory with an $1 / 0$ line，providing an extra $2 k$ of memory space．
The only problem I see is finding a byte of RAM for the flag．On my system I have 2 blocks of 512 bytes of RAM for disk use in the $1 / 0$ space total $1 k$ of RAM for disk use）．So finding the the extra byte for ISK．FLAG was no problem． bug fix．

file save bug

There is a bug in the file save routine．If the last byte of a file the only byte in the last sector，the byte will not be saved．

> Example: Sector size 256 , save $2 \emptyset \varnothing-3 \emptyset \varnothing$.
> Only $2 \varnothing \varnothing-2 F F$ will be saved.

The directory will show the full file range of $2 \emptyset 0-3 \varnothing \varnothing$ ．I have not ooked into this，but I believe that the file size is computed by END．ADDRESS－START．ADDRESS，which is 1 byte short．This has a 1 in 256 or 1 in 128 （etc．）chance of missing the last byte on random length files．

Number 2.2
Here are several FDC－1 patches by Dave Lewis：

Øø10	；＊＊
の日2ø	；
øø3ロ	FDC－1 PATCHES FOR
øø4ø	；1）IRQ BUG
øø5ø	；2）PAGING OF UPPER 2 K BYTES OF FDC－1 EPROM
Ø06ø	；3）DC COMMAND FOR RAE DISK AND TAPE
øø7ø	；
øø8の	USAGE
Øロ9ด	；
0106	；DISK．FLAG
0110	；THIS FLAG IS USED to take care of the fide－1 IRQ bug．
0120	；BIT Ø OF THE FLAG IS SET TO INDICATE A DISK OPERATION
¢136	；IS IN PROGRESS．THE IRQRTN CHECKS THIS BIT，NOT THE
ø14の	； 1791 DISK CONTROLLER CHIP，TO DETERMINE THE SOURCE OF
ø156	AN IRQ．IF BIT $\varnothing=1$ ，THEN A DISK IRQ HAS OCCURRED AND
0160	；IRQRTN JUMPS TO IOCOMP AT \＄9C7D．IF BIT $\emptyset=\varnothing$ ，A USER
¢170	IRQ HAS OCCURRED AND IRQRTN JUMPS TO IRQBRK AT \＄8øøF．
0189	；
Ø190	；IRQRTN

gø3ø ；FDC－1 PATCHES FOR ：
Øø4の ；1）IRQ BUG
Øø5 \emptyset ；2）PAGING OF UPPER $2 K$ BYTES OF FDC－1 EPROM
のஜ6ø
ดด8の
890
$11 \varnothing$ ；THIS FLAG IS USED TO TAKE CARE OF THE FDC－1 IRQ BUG．
日12ø ；BIT Ø OF THE FLAG IS SET TO INDICATE A DISK OPERATION
130 ；IS IN PROGRESS．THE IRQRTN CHECKS THIS BIT，NOT THE
Ø15 ；AN DISK CONTROLLER CHIP，TO DETE TRO HAS OCCURRED AND
$016 \varnothing$ ；IRQRTN JUMPS TO IOCOMP AT \＄9C7D．IF BIT $\emptyset=\varnothing$ ，A USER
ゆ17ø
190

9850		INX		
¢860		BNE	NAME. LOOP	;forced branch
の879	NAME.END	CLC	; no error	
9880		LDA	\#\$40. ${ }^{\text {disa }}$	ble clock IRQ at 6522 chip
989\%		STA	VIAIER ; IRQ	must be off during disk access
ø๐øø		RTS	;now do disk	command, load or save file
0910	;			
9926	ADJ. READ	LDX	RDEV ; get	read device, 2 or 3
0930		BNE	ADJ.WRITE+3	;forced branch
9940	ADJ.WRITE	LDX	WDEV ; get	write device, 2 or 3
6950		INX	; adjust drive	number, force verify
0960		INX	; drive $=4$,	drive $1=5$
9970		RTS		
9980	;			
0990		***		
1 1øø	;			
1010	END.PGM	. EN		

Number 2.4
Here are some comments by Dave Lewis on the proper use of the 6502 so line. He has annotated material on page 9-16 of Leventhal's (OSBORNE/McGraw-Hil1) " $68 \emptyset \emptyset$ Assembly Language Programming."
[Note: That's right, the 68øø book! Couldn't find anything on the so in Leventhal's 6502 book. Does anyone else have inputs on the need to clock Sø with Phase 1 ???]

$$
\begin{aligned}
& \text { I found that this cirauit was required when } \\
& \text { I put my FDC-1 on my extended bus. I } \\
& \text { placed the hardware on my bus interface card. } \\
& \text { If the S.O. input is not in sync , Lost DATA } \\
& \text { Errors occur. Any use of the 5.O. input } \\
& \text { requires the } \varnothing \overline{1} \text { sync. } \\
& \text { Dave Lewis }
\end{aligned}
$$

The Set Overflow flag (SO) signal can be used to sot to 1 the Overflow bit of the
Status register. The SO input must make a high-to-low transition on the trailing edge of siatus register. The SO input must make a high-to-low transition on the trailing edge of
the $\Phi 1$ pulse in order for the Overiow bit of the Status register to be set to 1 This may the $\Phi 1$ pulse in order for the Overfiow bit of the Status register to be set to 1 . This mar

You cannot use the SO input signal in order to reset the Overfiow bit of the Status register to 0 . Note that external logic must use the $\$ 1$ clock signal in order to synchron-
ize the SO high-to-tow transition A simple 7474 flip-ilop can be used for this purpose

THE SYM－1，THE CBM－64，AND THE VIC＝2め
or many years the SYM－1 stood alone as the most cost－effective 502 －based single－board computer available．We felt that it was the deal beginner＇s computer for those with a reasonable amount of hardware background and some skill with hand tools，or who at least knew which end of a soldering iron was the handle end．

We still believe this，especially since Lance Leventhal＇s＂Micro－ computer Experimentation with the Synertek SYM－1＂is now available to go along with it．Several factors which others might consider as short－ comings，we consider to be advantages．As one example，we feel that the initial absence of BASIC and a QWERTY keyboard is a strong plus for the SYM－1，since the user is forced to learn machine language from the computer．

The required power supply and cassette recorder add less than $\$ 59$ to the initial system cost，and the necessity for interfacing these items to the SYM－1 is an integral part of the learning process．From this point on．the SYM－1 is fully expandable in any direction（s）desired by the user，and，in this sense，is the most＂personal＂computer available．

The absence of games，and a seeming＂unfriendliness＂to non－technically oriented users，makes the SYM－1 relatively non－accessable for any youngsters around the household．For this reason，as well as the desire or color graphics and wealt as second（or perhaps pven first） computers．

While we think highly of the Apple，and very soon will even have one installed in our campus office，courtesy of a special arrangement to provide all full－time computer science faculty with Apple IIE＇s，we ever considered getting one for home use．On the other hand，we now have one each VIC＝2Ø and CBM－64，to supplement several of our SYM－1 systems．Here＇s why：

The CBM－64 has probably the very best color graphics and music synthesis capabilities available at anywhere near its low cost．We installed Carl Moser＇s＂MAE＂（Macro Assembler Editor，first cousin to RAE－1），as the first order of business．As you can see from the printed＂Directory Listing of the MAE disk，among the many utilities，is one called WWP！Hence，mof what we learned on the SYM－1 is directly applicable to the CBM－64．［NDTE：Directory Listing is reproduced on page 15－14．］

MAE and RAE are also first cousins to ASSM／TED，long available on other CBM systems，including the PET，and a tremendous amount of public domain oftware is available，at $\$ 10$ per diskette，from the ATUG（ASSM／TED sers：Group），including an excellent disassembler into MAE，similar to Dessaintes＂Disassembler into RAE．

Thus，the CBM－64 is far more compatible with SYM－1 than is the Apple II， thanks to the MAE／RAE relationship，at much lower cost lat this writing neighborhopd of $\$ 350$ in the US），and we intend to make 4 primarily to develop teaching software for the VIC＝20，again as described below．

We have long felt that our computer science students were being trained by 16th century methods，for the job market as it existed three years ago（dropping the editorial＂we＂for a few paragraphs，this is my personal opinion，not necessarily shared by others on the faculty！）． This semester I am teaching an experimental course，＂Small Computer System Design＂，for juniors and seniors with absolutely no hardware
background．The objectives of the course include learning to read schematics，understanding the use of TTLs，VIAs，RAMs，ROMs，etc．，and how to use a disassembler（which most of the students had never even heard of！）to probe the inner workings of a system．

In the hope that the students would be encouraged to buy their own personal computer，I chose as the＂Model System＂the lowest cost syste available，the VIC＝2ø．While the Timex／Sinclair had an apparently lowe initial cost，it was not considered as effective，since the VIC＝2め ha more RAM（ 5 K vs 2 K ），as well as built－in serial，parallel，and RS－232－ interfaces，including both the hardware（two 65225）and software drivers （ 29 K ROM vs 8K），all of which are extra cost options on the T／S．

Additionally，the VIC＝2Ø has a better keyboard，color graphics，the more universal Microsoft BASIC，the easier to learn 6592 （vs the 280 ），and easier to learn logical the T／S are hard to come by and the knowledge gained from its study would not be applicable to other systems．

As the price of the VIC $=2 \varnothing$ dropped from $\$ 206$ to $\$ 8 \varnothing$ during the semester more students purchased their own computers，and mosi say that they wish they had started earlier．Next semester I will require that students form small study groups，with each student having at least a one－thir share of a VIC＝2ø，since this will actually cost them less than a text In adition I will place a collection of books on the VIC＝20 on Library Reserve for them to use．

Now to get back to the SYM－1！We removed the ROMs from our VIC＝20，and inserted them in place of the BAS－1 chip on one of our SYM－15．（We disassem have the disassembler into MAE running on the for the CBM－64 are only simple one－pass versions．）We dissambled their contents and edited the results，and provided copies of the listings to students for their study and annotation．The $1 / 0$ management portion of the VIC＝29 is excellent，and the method of handing the disk via a simplified IEEE interface（serial vs parallel）is well worth adopting to the SYM－1．

The 1541 single disk drive，for BOTH the VIC＝2の and the CBM－64，is the least expensive one we＇ve ever seen（around $\$ 35 \varnothing$ discounted）．The units are self contained，and only two pages of RAM（for data buffers）are required．Only the software driver is required to interface them to the SYM－1！How＇s that for hardware compatiblity？

Some readers will remember that we added color graphics to our SYM－1s first with Turpin＇s ColorMate，then with one of the RCA VP33g1 Data Ter minals．Both are directly compatible with VCRs．The former has pixel mapping（requiring 4 K of the SYM－1＇s RAM），the latter permits a user specified graphics character set，and can be used on the SYM－1’s 20 mA loop．

The VIC＝2の with its built－in RS－232－C interface（actually inverted TTL） would make an inexpensive color terminal for the SYM－1．The VIC＝2g has interlace mode permitting its output to be superimposed onto a videc image during editing of VCR recordings．Additionally，the KTM－2／Ba， when interfaced via RS－232－C with either the VIC＝29 or the CBM－64，would add the $8 \emptyset$ column display so nice for word processing．

The SYM－1 and／or the KTM－2／8ø and either or both the VIC＝2ø and CBM－64 are natural go－togethers．No additional hardware elements funlike the pples）other than connectors and cables are required for interfacing Do you see why we are so excited by these two new low priced systems？

All that is required is the time to do the software job！！！！We＇1l be SYM－PHYSIS 15－22
glad to work with any of our readers with VIC／SYM systems by providing copies of our VIC disassemblies in RAE－1 readable format．The 1541 Disk Drive software is almost directly usable in the SYM－1，providing the timing loops are modified to the ratio of the 1.622727 MHz to $1.60 \varnothing \varnothing 00$ MHz clocks（a 2% error），and that the appropriate IEEE protocol is followed．in could then be handled by a DC be relatively imple，Link the tor subroutines，except for possible relocation of the buffers．

A MORSE CODE KEYER
Here＇s a program by our Number One Son，Jim Luxenberg， 949 Hensley，San Bruno，CA 94066．He has been a SYMmer for about a year，and got his Ham IBM for many years， 50 they now have has been a Systems Analyst with addition to his SYM－1．
$1 \emptyset$ REM MORSE PROGRAM BY JIM LUXENBERG KAGWRZ 9 APRIL 1983
20 REM THIS PROGRAM ACCEPTS 3 LINES OF TEXT AND OUTPUTS MORSE CODE
25 REM THRDUGH PORT PBø．THIS PORT WILL DRIVE A RELAY WHICH CAN BE
39 REM USED TO KEY A TRANSMITTER OR CODE PRACTICE OSCILLATOR．
AD REM NOTE－PROGRAM WILL NOT ACCEPT A COMMA（，）AS INPUT．SOME OTHER 55 REM NOT COMMONLY USED PUNCTUATION MARKS HAVE BEEN LEFT
$1 \emptyset \emptyset$ CLEAR
116 PRINTCHR $\$(27)+$＂E＂：FORN＝1TO9：NEXT
$120 \mathrm{PT}=44632$
125 DIMC $\$$（ 59

$29 \varnothing C \$(38)="---": C \$(39)="--": C \$(49)=" \ldots: C \$(41)="-": C \$(42)$

220 C\＄（47）＝＂－．．．＂
259 POKEPT＋2，255
$26 \varnothing$ PRINT＂COMPUTER GENERATED MORSE CODE PROGRAM＂
$26 \varnothing$ PRINT＂COMPUTER GE
$27 \varnothing$ PRINT：PRINT：PRINT
28G INPUT＂ENTER DESIRED CODE SPEED IN WPM＂
290 S＝INT（514／S）
$3 \varnothing \varnothing$ PRINT＂ENTER THE TEXT TO BE CONVERTED TO CODE＂
$31 \varnothing$ FORB＝1TO3
$33 \varnothing A \$=A \$+A \$(B)$
330 A\＄＝A\＄＋
349 NEXT B
उ $6 \emptyset$ IFMID\＄（A\＄，E，1）＝＂＂THENGOSUB54の：NEXTE
376 X $3=$ MID $(A \Phi, E, 1)$
$38 \emptyset \mathrm{X}=\mathrm{ASC}(\mathrm{X} \$)$
$39 \varnothing \mathrm{C}=\mathrm{C}=(\mathrm{x}-43)$
$4 ø \varnothing$ FORI $=1$ TOLEN（C $\%$ ）
$41 \varnothing \operatorname{IFMID}(C \$, I, 1)="-"$ THENGOSUB52の
426 IFMID $(C \$, I, 1)="$－＂THENGOSUB51の
430 NEXTI
440 FORD＝1T0（3＊S）：NEXTD
450 NEXTE
$50 \varnothing$ END
$51 \varnothing$ POKEPT，255：FORN＝1 TOS：NEXTN：POKEPT，$\varnothing:$ FORN $=1$ TOS：NEXTN：RETURN 529 POKEPT， $255:$ FORN＝1TO（3＊S）：NEXTN：POKEPT，$\emptyset:$ FORN $=1$ TOS：NEXTN：RETURN $54 \varnothing$ FORN $=1$ TO（ $4 * S$ ）：NEXT：RETURN

LANCE LEVENTHAL＇S LATEST BOOK：
＂MICROCOMPUTER EXPERIMENTATION WITH THE SYNERTEK SYM－1＂
We have a whole bookcase（actually several bookcases！）full of computer books．There are books on computers in general，microcomputers in general，microprocessors in general，particular computers，particular particular languages，etc．etc．［Among the perks of teaching，of course，are the review eties sent us for possible class adoption． we actually buy and pay for，out of our own poret，more than half the we actully buy and pay

Most of the books we have skimmed，and placed on the shelves，never to be looked at again．Many of these books would be useful for beginners， but not truly useful for reference．We have a new city／county （Chico／Butte）library，and we are in the process of clearing out our help fill the shelves of this new building．

To amuse ourselves during this process，we made a mental list of the top twenty books，the ones we would never part with，at least not during our lifetime．Five of our＂Top $2 \varnothing$＂books are by Lance Leventhal；this should give you some idea of our respect for Dr．Leventhal＇s writing that one day we will，now that we have found，through a brief exchange of letters，that we have a mutual friend here at the university．

We have reviewed and highly recommended three of his books in earlier issues．We now review and recommend his most recent book，＂MICRO－ COMPUTER EXPERIMENTATION with the SYM－1＂，Prentice－Hall，Inc．，จ1983． To do this $59 \varnothing$ page book full justice and to illustrate its tremendous breadth and depth of coverage of the SYM－1 would require far more time than we have available and the few pages we can devote here．So，we＇ll just let the book speak for itself by reprinting its Table of Contents on pages $15-25,26$ ．You can then judge the value of the book to you for yourselves．Surely there must be at least a few topics in that listing that are＂new＂for each of us

The book is organized into 16 ＂Laboratories＂，rather than chapters， since the approach is meant to be＂hands－on＂，not just casual reading． that！）．The material could easily，be covered in a（a nice touch， that．）． eek semester The bokis al
The book is remarkably free of errors；we didn＇t find any during our quick examination（of course，our proof－reading eye still needs some minor repair work done to sharpen it $u p$ ）．We do have one very serious complaint about the book，however！Why wasn＇t it available two years ago！！！！！But then we would have had to wait

The＂SYM－1＂book is similar in format to Leventhal＇s 1981 ＂MICROCOMPUTER EXPERIMENTATION WITH THE MOTOROLA MEK $68 \emptyset \emptyset D 2 "$ ，which we examined to see if we could build a course around the ton MEK G8g日D2 kits wirh were if we could build a course around the ten MEK $680 \emptyset \mathrm{D} 2 \mathrm{kits}$ which were laying around，essentially unused，in one of the storerooms．While the book was great，we didn＇t feel that the－D2 kits were worth＂rehabil－
itating＂for laboratory use．of course we do admit to having a strong bias towards 65ø2－based systems，and when the MEK 68øøD2 kits were ordered（by another instructor，of course）we fought a losing battle to convince＂management＂that the SYM－1s would do more for less money．

THIS IS ONE BOOK WHICH EVERY SYM OWNER SHOULD HAVE！
SYM－PHYSIS 15－24

LABORATORY 0-BASIC OPERATIONS
Overview
Resetting the Computer
Examining Memory
Changing Memory
Executing a Program

LABORATORY 1-WRITING AND RUNNING SIMPLE PROGRAMS

Data Transfer Program
Entering and Running the Data Transfer Program
Processing Data
Logically ANDing Two Values
Examining Registers
Changing Registers
Common Operating Errors
Key Point Summary

LABORATORY 2-SIMPLE INPUT

6502 Input/Output Operations
Simple Input
Flags and Conditional Branches
Waiting for a Switch to Close
Special Bit Positions
Examining Flags
Waiting for Two Closures
Searching for a Starting Character
Calculating Relative Offsets with the CALC Command
Key Point Summary

LABORATORY 3-SIMPLE OUTPUT
Attaching the LEDs
6522 Input/Output Ports
Lighting an LED
Implementing a Time Delay
Lengthening the Delay
Bit Manipulation
Establishing a Duty Cycle
Key Point Summary

LABORATORY 4-PROCESSING DATA INPUTS

Handling More Complex Inputs
Waiting for Any Switch to Close
Debouncing a Switch
Counting Closures
Identifying the Switch
Using a Hardware Encoder
Key Point Summary

LABORATORY 5-PROCESSING DATA OUTPUTS
Handling More Complex Outputs
Using the On-Board Seven-Segment Displays Adding a Delay
Count Code Conversion
Counting on the Displays

Advantages and Disadvantages of Lookup Tables
Hardware/Software Tradeoffs
Key Point Summary

LABORATORY 6-PROCESSING DATA ARRAYS
Data Arrays
Processing Arrays with the 6502 Microprocessor Sum of Data
Using a Terminator
Limit Checking
Displaying an Array
Varying the Base Address
Key Point Summary

LABORATORY 7-FORMING DATA ARRAYS

Standard Procedure for Forming Arrays
Clearing an Array
Placing Values in an Array
Entering Input Data into an Array
Accessing Specific Elements
Counting Switch Closures
Arrays of Addresses
Long Arrays
Key Point Summary

LABORATORY 8-DESIGNING AND DEBUGGING PROGRAMS
Stages of Software Development
Flowcharting
Flowcharting Example 1-Counting Zeros
Flowcharting Example 2-Maximum Value
Flowcharting Example 3-Variable Delay
Debugging Tools
Breakpoints
Single-Step Mode
A Second Breakpoint
Common Programming Errors
Key Point Summary

Note that much of the material is directly applicable to 6502 systems in general.

LABORATORY 9-ARITHNETIC
Applications of Arithmetic
8-Bit Binary Sum
Binary-Coded-Decimal (BCD) Representation
8-Bit Decimal Sum
Decimal Summation
16-Bit Arithmetic
Rounding
Multiple-Precision Arithmetic
Arithmetic with Lookup Tables
Key Point Summary
LABORATORY A-SUBROUTINES AND THE STACK
Rationale and Terminology
6502 Call and Return Instructions
6502 Stack and Stack Pointer
Guidelines for Stack Management
Subroutine Linkages in the S
Saving Registers in the Stack
A Delay Subroutine
A Delay Subroutine
An Input Subroutine
An Output Subroutine
Using the Monitor Subroutines
Using the Output Subroutines
Subroutines and the Decimal Mode Flag
Calling Variable Addresses
Key Point Summary

LABORATORY B-INPUT/OUTPUT USING HANDSHAKES
Additional Factors in 1/O Transfers Basic 1/O Methods
Treating Status and Control Signals as Data
Using Data Lines for Status
Using Data Lines for Control
6522 Versatile Interface Adapter (VIA)
VIA Status Inputs
VIA Control Outputs
VIA Automatic Control Modes
Programmable IO Ports
Key Point Summary
LABORATORY C-INTERRUPTS
Functions, Advantages, and Disadvantages of Interrupt Characteristics of Interrupt Systems
6502 Interrupt System
Interrupt-Related Instructions and Features
SYM Interrupts
Keyboard Interrupt
6522 VIA Interrupts
Handshaking with Interrupt
Communicating with Interrupt Service Routines
Buffering Interrupts
Changing Values in the Stack
Multiple Sources of Interrupts
Guidelines for Programming with Interrupts
Key Point Summary

LABORATORY D-TIMING NIETHODS

Timing Requirements and Methods
Generalized Delay Routines
Waiting for a Clock Transition
Measuring the Clock Period
Programmable Timers
6522 Interval Timers
Elapsed Time Interrupts
Real-Time Clock
Longer Time Intervals
Keeping Time in Standard Units
Real-Time Operating Systems
Key Point Summary

LABORATORY E-SERIAL INPUT/OUTPUT

Implementing Serial Interfaces
Serial/Parallel Conversion
Generating Bit Rates
Using the Real-Time
Using the Set Overflow Input
Detecting False Start Bits
Generating and Checking Parity
Key Point Summary

LABORATORY F-MICROCOMPUTER TIMING

 AND CONTROLSpecial Problems in Microcomputer Hardware Design Timing and Control Functions
System Clock
Tracing Instruction Execution
Execution of 6502 Addressing Modes
Decoding Address Lines
Multiple Addresses and Memorv Expansion
Addressing $1 / 0$ Devices
Key Point Summary

```
Appendix 16502 Microcprocessor Instruction Set Appendix 2 ASCII Character Table
Appendix 3 Brief Descriptions of 6502 Family Devices
Appendix 4 Laboratory Interfaces and Parts Lists
Appendix 5 Summary of the SYM-1 Monitor (SUPERMON)
```


REFERENCES

INDEX

Table of Contents from Leventhal's "MICROCOMPUTER EXPERIMENTATION WITH THE SYNERTEK SYM-1"

ON RECURSION TECHNIQUES－BY TOM GETTYS
Recursion is an extremely powerful programming technique，as those who are versed in languages such as PASCAL and C know．

However，most do not realize that recursion can be used to benefit in BASIC also！While it is up to the user to define and maintain the parameter stack explicitly，the advantages of recursion can often still be realized．
The first example is a routine which computes the factorial of an integer．Notice how close the BASIC implementation matches the standard recursive definition of N factorial（note that no parameter stack is needed here，due to the global nature of all BASIC variables）．
The second example is a recursive solution to the ubiquitous Tower of Hanoi probem．Here three arrays are used as a parameter stack．Each time the routine is to call itself the current parameter values are ＂pushed＂on the stack．

I have used this technique to implement several algorithms which lend I have used this technique to implement several algorithms which lend QUICKSORT algorithm，etc．

Below you will find two algorithms which utilize recursion．You may enjoy trying your hand at writing these as recursive BASIC programs．

The first searches the array A（of size N ）for the first occurrence of the value x ．If $A(i)=x$ then i is returned，otherwise \emptyset is．The second determines the greatest common divisor of the integers a and b ，where $a>b$ ．

PROCEDURE SEARCH（i）

BEGIN

IF $i>N$ THEN SEARCH $=\varnothing$
IF $A(i)=x$ THEN SEARCH $=i$
ELSE SEARCH＝SEARCH $(i+1$
PROCEDURE GCD（ a, b ）
EGIN
IF $\begin{aligned} & \mathrm{b}=\emptyset \\ & \text { THEN GCD＝a }\end{aligned}$
THEN GCD＝a
ELSE GCD＝GCD（b，a MOD b）
END
1 øø INPUT＂Find the factorial of＂；N
116 ：
$12 \varnothing$ GOSUB 31の
$13 \varnothing$ PRINT N＂factorial is＂F
146 ：
15% END
$16 \varnothing:$
$17 \varnothing$ ：
$170:$
$180:$
190 REM
2 2月 REM
210 ：
238 REM
230 RE
250 REM
256 REM
260 REM
$28 \varnothing$ REM
The following routine computes the value of of N factorial by the use of recursion．

A pseudo－code version of this routine is as follows：
PROCEDURE FACT（N）
BEGIN
IF $\mathrm{N}=1$ THEN FACT＝1
END

290
396
369 ：
316 IF $=1$ THEN $F=1$ ：RETURN
$32 \varnothing$ ：
$326:$
$330 \mathrm{~N}=\mathrm{N}-1$ ：GOSUB 310
340：
$356 \mathrm{~N}=\mathrm{N}+1$ ： $\mathrm{F}=\mathrm{N} * \mathrm{~F}$ ：RETURN
1 1وø INPUT＂Number of disks：＂；N
$116:$
$12 \varnothing$ DIM $S \$(N), I \$(N), D \$(N)$
$136:$
140 S $(\mathrm{N})=$＂left＂
156 I $\$(N)=$＂center＂
$160 \mathrm{D} \$(\mathrm{~N})=$＂right
179 ：
189 GOSUB 539
$19 \varnothing$ END
206：
210 ：
230 REM

230 REM
240

240 REM
256 ：
256 ：
269 REM
276 REM
289 REM
3øø REM
31ø：
320 REM
339 REM
$34 \varnothing$ REM
35の：
$369:$
379 REM
386：
396 REM
4のø REM
416 REM
420 REM
430 REM
440 REM
456 REM
476 REM
476 REM
490 REM
5月の．
5月の：
$516:$
$526:$
526 ： 530 IF $=1$ THEN PRINT $S \$(N) "==>0$ D $\$(N)$ ：RETURN
540 ：
$550{ }^{5} \$(N-1)=5 \(N)
$56 \varnothing 1 \$(N-1)=D \(N)
$57 \varnothing D \$(N-1)=1 \(N)
$58 \varnothing \mathrm{~N}=\mathrm{N}-1$
$59 \varnothing$ GOSUB 539
69ळ ：
619 PRINT S $\$(N+1) "=\Rightarrow " D \$(N+1)$
620：
$6305 \$(N)=I \$(N+1)$
$64 \varnothing$ I\＄$(N)=$ S\＄$(N+1)$
$65 \emptyset \mathrm{D} \phi(N)=\mathrm{D} \$(N+1)$
669 GOSUB 53
679 ：
$68 \varnothing \mathrm{~N}=\mathrm{N}+1$ ：RETURN

A GGøØ BAUD TERMINAL PATCH
We received the following letter and program from Dr. A. J. Hissink several years ago (!), promptly tested it, and then "lost" the program somewhere in our almost unmanageable collection of cassettes and diskert Tom Gettys supplied us with his copy, and we publish it now

Dear Lux,
At last I'm getting around to putting a few thoughts on tape and sending in a few of my utility programs. Most of them were developed from programs in SYM-PHYSIS and adapted to my particular requirements. They may be of interest to some of the SYMaddicts.

One utility will be of general interest to KTM-2 owners. I noted that the KTM-2 terminal was capable of $96 \varnothing \varnothing$ baud but the upper limit of the MON 1.1 I/O routines was $48 \emptyset \varnothing$ baud. I analysed the timing of "TOUT" and would have to be rewritten. This was desirable from another viewpoint too - the inclusion of parallel printer control.

My first attempt at the $1 / 0$ routine timing was a linear extrapolation of the lower baud rate timings. However, I found that the loop delays were more critical then they should have been so I calculated the times from scratch and found that the $49 \varnothing \varnothing$ baud was not optimum but a compromise to get the wide range of baud rates. I believe the timings in these routines are optimum. They certainly aren't critical and should work first time in all terminals.

My routines are now built into a new reset program. Howevers this program will work as is by "G" to the object code starting address. The terminal will go dead. Switch the baud rate selector on the KTM-2 to up and running. Note you don't have to send a character to get things going any more (another source of annoyance!).

Each call to the object code at label "PRINTER" will initialize the port for a 7 data bit parallel printer with "Busy" on bit 7 (ie the 8th bit) and toggle the printer I/0 on and off. Note that it uses bit \emptyset of TOUTFL to determine the printer output status.

(MORE ON 65CXX, CIA AND SID - continued from page 15-34)
tain, and Release) control capabilities. "Hard Synch", "Ring Modulation", and programmable filters are built-in, and two A/D Converters foret externally oenerated audio sionals for processing and may be laisy-chained, or gombined in various ways, for stereo et Our previous
Our previous experience with sound effects chips has been with the TI SN 76477, which we built into a stand-alone system with manually operated switches and potentiometers, and with the GI AY-3-8916 chip, which we interfaced to the SYM-1 through a VIA. Not only is the 651% SID far nore versatile than either of these previous chips, it is ever so much simpler to interface, and, because of the CBM-64 "connection", there will be lots of published software, both $65 ø 2$ ML and Microsoft BASIC, adaptable for it conly the PEEKs, POKEs, USRs, and SYSes need be changed).

Our CBM-64 has been lent to a colleague, so that we could concentrate on the VIC=2の. We expect him, in exchange for the loan, to show us how to set the alarm in the CIA, and how to get the most out of the SID.
INFORMATION RETRIEVAL PROBLEMS
As part of the pre-preparation effort for this issue, we took several days out to examine but a small fraction of the magnetic storage media hand. Here are the results of the review, and some of our conclusions:

While none of our own original materials are on cassettes, we do have a collection of over three hundred cassettes sent in by readers. Most are "neatly" organized in two attache-style cases, each holding 48 assettes, and ten plastic cassette storage boxes, each holding 15 assettes. The most recent arrivals, some $5 \emptyset$ or so, have not yet been "archived", but will be, as soon as we get more storage containers.

The only indication as to the information contained on each cassette is a small label on the visible edge of the cassette case with the name of the sender. For the more prolific contributors the label also bears a date and only a brief hint as to the contents.

Our conclusion? The inadequate indexing method makes information retrieval nearly impossible. Why didn't we do better, and what is the solution? Our excuse is that all cassettes were immediately transcribed to (FODS) diskettes, and that the cassettes were needed only for backup. We have never ever referred to the cassettes a second time. We should have "recycled" the cassettes and skipped buying the fancy storage containers.

We now have over $29 \varnothing$ sequentially numbered FODS 5 1/4" diskettes which were in-house generated, plus some $3 \varnothing$ or so sent in by contributors. We have some $2 \emptyset$ coDos 8 disks, both in-house and contributed, and a dozen or so FDC-1 $51 / 4 "$ diskettes. In the early days, we actually backed up each diskette with another. We stopped doing this long ago, and plan to reuse some $8 \emptyset$ backup disks for new materials.

With disks and diskettes retrieval problems still exist however. File names are length limited, and the abbreviations are often much too cryptic. After a few weeks the names no longer serve well as file our three systems. It should be obvious, on examining these listings, hat many of the files are essentially "lost" and would take considerable effort to recover. Only when strongly motivated to find a considerable effort to recover. Only when strongly motivated to find a (continued to page 15-35)

SYM-PHYSIS 15-32
SY65C00
CMOS 8-Bit
Microprocessor Family

PRELIMINARY

27 New Instructions			Indirect
Hex	Mnemonic	Description	In indirect addressing the second bye of the instruction
	bra	Branch Relative Always	points to a memory location on page zero whose con-
${ }_{1}^{3 A}$	INA	Decrement Accumulator	next location on page zero conta ins the high order bye
DA	PHX	Push X on Stack	ve addres
	PHY	Push Y on Stack	
	PLX	Pull X from Stack	
7 A	PLY	Pull Y from Stack	
9 C	ST	Store Zero (Absolute)	Indexed Addressing across the page boundaries will
	STR	Stora Zero (Absolute. X)	retain the last bye of, instruction address rather than an
	ST2	Store Zero (Zaro Page)	invelid page address.
	ST2	Store Zero (Zero Page, X)	Processor Hangup on certain invaidid opcocoses has been
	TRB	Test and Reset Memory Bist	eliminated.
14	tRB	with Accumulator (Absolute Test and Reset Memory Bits with Accumulator (Zero Page)	Jump Indirect across page boundaries will now increment the page address instead of wrapping around on
oc	TSB	Test and Set Memory Bits with Accumulator (Absolute)	itselt If page boundary is crossed the instruction cycle time will increase by one.
04	TSB	Test and Set Memory Bits with Accumulator (Zero Page)	Decimal operations involving addition and subtraction will take an additional cycle time. The NMOS Z,N and V
${ }^{89}$	$\mathrm{Bit}^{\text {d }}$	Test Immediate with	Hlags were invalid, the CMOS llags will be valid.
	B,	Accumulator Test Memory Bits with	Read-Modity-Write cycles will be flagged by the ML output
3^{4}		Accumulator (Absolute. X)	RDY transitioning low will cause the CPU to hatie even
34	Bn	Test Memory Bits with Accumulator (Zero Page, X)	during write operations The NMOS version allowed transitions only during read cycles
New Addressing Modes			DMA Operations on the CMOS 6502 are possible by
7	JMP	Jump (Indirect Absolute.X)	pulling BE low, thus til. stating the address and data bus
72 32	ADC AND	Add Memory to Accumulator with Carry (Indirect) AND" Memory with Accumulator Indirect	Decimal Mode Flag condition defaults to the binary mode upon a reset The NMOS version the flag was random
02	CMP	Compare Memory and Accumulator (Indirect)	New Signals
	EOR	"Exclusive OR" Memory with Accumulator (Indirect)	Memory Lock ML. an output, active low indicates the need to deter the rearbitration of the next bus cycle to
82	LDA	Load Accumulator with Memory (Indirect)	insure integrity of read-modity-write cycles in a multiprocessor environment.
	ora	"OR" Memory with Accumulator (Indirect)	Bus Enable ($\mathbf{B E}$) an input, when true allowing normal
	SBC	Subtract Memory from Accumulator with Borrow (Indirect)	R W, address and data lines, allowing true DMA opera tions. An improvement over the NMOS version, in that DBE when pulled low would only tri-state the data lin
		Store Accumulator in Memory (Indirect)	Applications Areas
Indexed Absolute Indirect (JUMP)			The CMOS version of the 6502 is ideally surted tor any low power application or application where noise immunity and potential swings on $V_{C C}$ might occur It
The contents of the seiond and third instruction byes are added to the X register. The result is a 16 .bitmemorr address that contains the low-order eight bits memorra adress that contains the low-order elght bisot the eftective adress the nex. memort location contans the high order elght buts of the eftective addresss.\qquad			harsh environment high temp and communications markets. Not only does it till the typical CMOS niche. ing the new inputs and outputs, better bus timing and tions.

MORE ON THE 65CXX MICROPROCESSOR CHIPS
ALSO, THE CIA AND THE SID
Synertek is an alternate source for the 65CXX family. We reprint above portions of three pages of descriptive material on the microprocessor members of the family. [We regret that the only material available to us for reproduction was a 79% reduction from the original $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheets, and that the additional $7 \boldsymbol{\%} \%$ reduction factor in our publication process will produce final copy at half-size of the original, so that you may need a magnifying glass to read it!]

The material is from the 1993 issue of the Synertek "Data Manual", which is obtainable through Synertek Distributors, Sales Representatives, and International Sales Offices. The "Data Manual" is fascinating reading, and well worth getting.

Leaving the CMOS technology for the moment, let us remind you that the NMOS 6526 CIA (Complex Interface Adaptor) and the 6581 SID (Sound Interface Chip), available from Commodore's MOS Technology Division, but
not yet from Synertek, are very easily interfaceable to the SYM-1. Both are used in the Commodore 64.

The 6526 CIA in an enhancement of the 6522 VIA; the most important new feature is the 24 hour (AM/PM) time-of-day clock with programmable alarm. Thus, you no longer need worry about interrupt driven real time clocks which may lose time during cassette or tape or even RS-232-C I/O operations.

The 6581 SID is a full-fledged, three voice, synthesizer with each voice having its own Tone Oscillator/Waveform Generator, Envelope Generator, and Amplitude Modulator, with a broad range of ADSR (Attack, Decay, Sus(continued to page 15-32)

SYM-PHYSIS 15-34

dc dir 2 ø1：SCOLE		16 DC	¢1	01					1	5
0 O ：FILE1	$10 \% 0$	37DF	¢7	15	054	：RAED I	1006	2AC6	12	15
95 \％BASLU	60¢¢	699A	16	05	06	．BANK	6201	1 D 9	17	99
97： 96098 E	6200	120日	21	ø1	08	：MTEST	W208	V9E7	23	05
Ø9．HANOI	0201	g7AF	24	ØЗ	10	．FACT	¢201	¢3F5	24	15
11 ．GET ${ }^{\text {\％}}$	9201	0315	25	0.3	12	：RECUR	02061	g88E	25	916
13 ：HILUX	62\％\％	Ø9E5	26	¢14	14	－BREAK	あ201	¢JøE	27	94
15 ：HISS1	6200	ØABD	27	Q7	16	：HISS2	あ2\％\％	gAFA	28	69
17 ：RECR2	Ø20¢	992A								

NEXT：T 30 S 5%
FIGURE 1：Directory of FODS Diskette from Tom Gettys

JUIF＊？？： 1
conos．z
SYSERFMMSG．Z
SUCPROC．Z
CODX．A
IIR + C
STARTUF $+J$
STARTUF $+J$
CODX．
$\operatorname{conx} \cdot \mathrm{c}$
RAE．X
COIXSIGNON．T
WOROX．A
WORIXSIGNON．T
WORQIXSWP．A
WORIIXSWP．A
WOROXSWF．
WOROXSWF．C
FIGURE 2：Directory of CODOS Disk
from A．M．Mackay
\％WANDOEMO－0200－0A5B－0201 $\begin{array}{ll}\text { \％WANDWEMO } & -0200-0 A 5 B-0201 \\ \text { \％ELIZA } & -0200-5 R C A-0212\end{array}$ $\begin{array}{ll}\text { \＃ELIZA } & -0200-5 B C A-0212 \\ \text { \％CLKORUR2 } & -0200-1 A 05-0812\end{array}$ \％ACIADRUR－O200－075A－0AOB \％EFROGRAMR－O200－－3CEA－OA13 \％KM／ .171
\％FNC／F1 $\quad-1000-4 A 84-0201$ \％FOC／F2 $\quad 1000-55 E 7-0511$ \％ $\mathrm{BTCF} / 1.0 \mathrm{G}-1000-54 \mathrm{EF}-\mathrm{OFOA}$ \％RTCF／1．4－1000－220A－1310 \％RTCF／1．4G…1000－2C19－1506

FIGURE 3：Directories of FDC－1
Diskettes from Jeff Lavin

What are we doing to solve the problem？For FoDs（the majority of our diskettes）we keep a notebook in which each page contains a directory printout．Each printout is fully hand－annotated with sufficient hard－copy documentation（if any）may be found．This we have only begun hard－copy documentation（if any）may be found．This we have only begun to do recently；for the older diskettes we make annotations only as we
have occasion to refer back to them．（Several readers have inquired about materials which would require many hours of search time to lorate about materials which would require many hours of search time to locate on old diskettes

Since we have fewer of these，for CODOS and FDC－1 disks the directory listings are tucked into the storage envelopes．It is coincidental that an $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper folded to quarter－size fits just right into the $51 / 4$＂envelopes．

We already have a half－dozen or so diskettes，each，for the VIC＝2の and the CBM－64，and expect another batch to be provided with or for the soon－to－be－installed office Apple IIE，and pledge never to let these get out of control！Since we have so many types of systems running at once， each of our $51 / 4^{\prime \prime}$ diskettes now bears a bright color coded big dot to help prevent us from installing them in the wrong system．

SYM－PHYSIS 15－35

COMPUTER SPEECH FOR THE SYM
We have been comparing the costs and capabilities of two approaches to
 other is the Speak \＆Spell（S\＆S）interface mentioned in earlier issues （VOTRAX we tested on the VIC＝2月，$S \& 5$ on the $S Y M-1$ ）．

The costs are roughly equal．The VOTRAX chip does permit a more compact unit，but the S\＆S interface provides for greater versatility，and besides，the $5 \& 5$ is fun to play with，all by itself！

The inputs to the VOTRAX system are sequences of phoneme code numbers （ $\$ \emptyset \emptyset-\$ 3 F$ ）to access predetermined phonemes．On the other hand，the inputs to the $5 \& 5$ system are coded sequences for the necessary energy， pitch，and filter parameters to produce as many allophones as desired （allophones are phoneme variants which differ in pitch，inflection， accent，duration，etc）．
Studying this approach will provide a deeper insight into what is actually going on during the synthesis process．Also，working at this ＂lower－level＂permits for introducing subtle nuances into the spoken output，including real＂singing＂．
For those who wish to try the S\＆S approach with their SYM－15，a complete documentation package is available through the Users，Group．All items

MANUALS：

＂LPC Hardware Manual＂－This manual fully describes the theory of operation of the Speak \＆Spell（including a full schematic！），and provides schematic and construction details for a very simple（three chips－74165，74LS175，and NES5S－plus one transistor，one diode，two resistors，and two capacitors）interface between the S\＆S
port of a 6522 VIA．Primitive driver software is included
＂ 6562 Phonetic Generator Software＂－This manual provides more advanced software and a hex dump listing of a phoneme table for the hardware system above．［NOTE：This manual and the manual described below were originally written to accompany Dave Kemp＇s S\＆S interface to the SYM－1， which is no longer available，to the best of our knowledge，but the software is easily convertable to Cater＇s S\＆S interface． 1
＂ 6562 Experimenter Package＂－This manual provides still more advanced software and tables of frame data for phonemes，the alphabet，and selected words．

CASSETTE：

＂Demonstration Tape＂－This is an AUDIO tape which illustrates the capabilities of the system．
BOOK：
＂Electronically Speaking：Computer Speech Generation＂－An excellent introduction to the theory and practice of voice output．Howard W．Sams \＆Co．，Inc．Paperback．

We have been using the Kemp S\＆S Interface for several years now．This was a two－way interface，and permitted getting frame data from the S\＆S ROMS into the SYM＇s RAM for analysis．As such it was more versatile than the Cater Interface，but more complicated，in hardware，software， and interfacing．Once the analysis is available，and published，as in the manuals above，the two－way feature is no longer a vital necessity． only a different connector plug and a VIA address change are necessary in switching the speech synthesis system between $65 \not 22$ computers！

NEW PRODUCTS

The following new hardware and software products are now available
through the SYM Users＇s Group： HARDWARE

PRG－1／S EPROM PROGRAMMER－－ALTERNATIVE ENERGY PRODUCTS
COM－1／S DUAL ACIA BOARD－ALTERNATIVE ENERGY PRODUCTS
We＇ll describe both of the above together，not because they are in any way interdependent，but because of their＂common＂method of interfacing to the SYM－1．

As you know，part of the power of the $S Y M-1$ is in its built－in $1 / 0$ capabilities，with two 6522 VIAs and one 6532 RIOT．While this is far more than is available on any other system，we have found that we need much，much，more（we find that we need added I／O far more than added RAM for the kinds of things we do）．In any event，the problem was solved for us with the I／OX－122 I／0 Expansion Board，which adds up to four additional VIAs in the 1 K address space assigned to VIA \＃Z（Device U28－User Supplied），\＄ABøø－\＄ABFF，and provides additional decoding for other devices，such as the ACIAs on the Dual ACIA Board．
One of our SYMs has an I／OX－122 installed．We run the Epson off VIA \＃2， a CLK－1／S clock off one of the added VIAs，the PRG－1 from two of the added VIAs，and a cute little＂toy＂，given us as a get－well gift，by COM－1 mounts on edge fingers on the $I / O X-122$ ，and gets its chip selects from the＂extra＂decoding lines．

What Lavin has done is to provide an integrated approach to adding I／0 capability to the SYM－1 which is inexpensive and elegantly simple． capability to the SYM－1 which is inexpensive and elegantly simple． of the VIC＝2月 which contained 11 K of RAM（ $6-2214 \mathrm{~s}+4-40165$ ）and two more 6522s．This was a beautiful hand wired package，not a finished， ＂for sale＂product．J

Now that you know how the devices are most simply interfaced to the SYM－1，although other methods may be used，let＇s describe the devices， themselves：

THE＂PROMMER＂

The PRG－1／S comes complete with ALL software and ALL hardware，and ALL ＂personality＂modules needed to＂burn＂the widest variety of（ +5 V only） EPROMS you might consider using conly the $3-9 V$ alkaline batteries are not included）．The software is beautifully＂human－engineered＂，and the programming overhead time is almost trivial，at most a second or two for any size EPROM．No time is spent on＂\＄FF＂bytes，either！

So far we have burned only 27165 ，a dozen or 50 ，but we expect to try some 2732 s next．The best way to illustrate the versatility，and ease of use of the system is to reproduce some of the terminal＂dialog＂． your＂menu＂ yourges， range，where an enplanation ls given．Seldom have WEVER at surh a price as this one

PRINTED RECORD OF EPROM BURNING SESSION
M．T．U．COLIOS 1.2
－NTEF IATE（EXAMFLE：04－JUL－76）？＝： $05-$ MAY－83
IFROMMER

EFFROM PROGRAMER U1．0 COFYRIGHT 1983
ALTERNATIVE ENERGY FROLUCTS
TYPE＂p＂FOR HELF
EFROM TYFE？Here we entered：？＜cr＞

EFFOM TYFE？Here we entered：2716〈cr＞，by mistake！
NOT DEFINEI
EFROM TYFE？Here we entered： $7\langle$ cr〉
TNSERT MODULE \＃ 2716
AMMRESSES？Here we entered：？〈cr〉
TYPE IN YOUR AOURESSES IN THIS FORMAT：
FPFF，SSSS，EEEECRK
FFPF IS EFROM STARTING ADLRESS
SSSS IS BUFFER STARTING ALIWRESS
EEEE IS BUFFER ENDING ADORESS
CRF IS A CARRIAGE RETUFN
$=$ FOR CURRENT ALIDRESSES
$T=60$ TO TYFE INFUT
$\uparrow \mathrm{C}=00$ TO MON

AMORESSES？
Here we entered：$\varnothing, 2 \varnothing \varnothing \varnothing, 3 F F F\langle c r\rangle$ ，to annoy the system！

AMORESSES？Here we entered：$\varnothing, 2 \varnothing \varnothing \varnothing, 2 F F F\langle c r\rangle$ ，to annoy the system！

\＆0800 BYTES，EFROM END＝\＄07FF
READY FOR NEXT EFROM
COMMANXI？
Here we entered：？〈cr〉
$U=$ UERIFY EFROM AREA ERASER
$N=$ VERTFY ENTIRE EPROM ERASED
$\mathrm{R}=\mathrm{REAL}$ EPROM INTO BUFFER
$\mathrm{C}=\mathrm{COMFARE}$ EFRNOM TO BUFFER
$\mathrm{E}=$ TOGGLE EREOR FRINTOUT
E＝GO TO ADRRESS TNEUT
$A=G 0$ TO ALDREESS INF
$T=G 0$ TO TYFE INFUT

$\mathrm{AC}=60 \mathrm{rO} \mathrm{MON}$

COMMANLI？Here we entered：N＜Cr＞

EFROM IS ERASEI $\$ 0800$ BYTES
REALIY FOR NEXT EFROM
COMMANL？Here we entered：R〈cr〉
REEALY FOR NEXT EFROM
COMMANLI？Here we entered：W〈cr＞

FROGRAMING

Note that asterisks are printed at regular intervals
＊＊＊＊＊＊＊＊＊＊＊＊＊＊to inform you that something，at least，is happening
COMFARING
A＂compare＂is routinely made，and an error report is automatically given．
NO ERRORS $\$ 0800$ EYTES
EEADY FOR NEXT EFROM
COMMANA？Here we entered：TC＜cr＞
0470.3
0470.3

THE＂COMMUNICATIONS＂CARD－－COM－1
We have not yet had the time to do more than read over the spec sheets on this device and check over the physical unit，but we have been kept well posted as to the progress of the product development．As usual with AEP products，we know we will soon wonder how we ever got along without it．We plan to have it＂up－and－running＂within a day or two af－ ter this issue goes into the mail．

While the SYM－1 has both a 20 mA current 100 p and an（inverted TTL equi－ valent）RS－232－C interface，we have often felt the need for a second RS－ 232－C RS－232－C interface，we have often felt the need for a second RS－ 232－C channel for modem use．Now，we even feel the need for a third，to interface to get two－in－one with this new card，We＇re the just the right time，too．［We prefer to leave the $2 \emptyset \mathrm{~mA}$ current loop intact，because time，too．IWe prefer to leave the $2 \emptyset \mathrm{~mA}$ current loop intact，because our decwriter II（with $2 \emptyset \mathrm{~mA}$ card）can then be switched from system to simply using a＂．J 1＂to switch to TTY Input／Output，at $11 \varnothing$ baud． 3

We print below a few extracts from the seven pages of documentation （including a source code listing of the required software driver） supplied with each unit to give you some ideas on both its use and the thoroughness of the documentation：

The COM－1 is a serial communication board designed to perform，in hardware，the $1 / 0$ functions previously executed in software．It is especially important to relegate this task to hardware when using data links（a modem for example）．The COM－1 supports all asynchronous

SYM－PHYSIS 15－39
serial communication（RS232），uses a crystal controlled clock to generate all standard baud rates from 58 to 19,288 and may be used at non－standard baud rates with an external clock．The actual parallel／serial conversion is done by two 6551 ACIAs，providing two full duplex $1 / 0$ channels．This configuration 1 liminates much overhead for the computer and allows i／o to proceed much faster than when done in software．As recelved from the factory，the COM－1 comes with Line Recelvers，and is set up to transmit TTL level signals，but has the compatible）and an external source of $+/-12 \mathrm{U}$ ．This bers（plug specifically designed exto interface to our 1／O Expansion Board but is be adapted to other installations．

＊＊＊＊＊＊＊＊＊＊＊

As previously mentioned，the COM－1 comes from the factory equipped with Quad Line Recievers．This is done so that，if it is inaduertantly connected to equipment operating at RS232C voltage levels，the COM－1 would not be damaged．The transmit section employs 74LS8B ICs，which are plug compatible with Quad Line Drivers，but transmit TTL level signals（＋5V and ground）．There are few modern data communication devices employing RS232C older pieces of equipment may reed ibe different voltage ievels to function properly．If RS232C operation is desired，three wires from the power supplymust be brought to the three pads located between the two $1 / 0$ connectors．
＊＊＊＊＊＊＊＊＊＊
The simplest method of serial communication is the 3 －wire interface （see Fig．3a）．A 3－wire interface provides transmit data，recieve data， and a signal ground．It does not provide for handshaking．The effect of this is that both ends transmit blindly－with no indication that the reciever is recieving or，in fact，is there at all．The ACIA handily overcomes this problem by providing for handshaking signals

＊＊＊＊＊＊＊＊＊＊

It is not possible in this small user＇s manual to fully describe the RS232（C）specifications；our intent is to give you enough information to be able to intelligently connect and use the COM－1 serial communication board． If you are unfamiliar with the terms used in this discussion，turn to
The COM-1 bac two

The com－1 has two complete and separate full duplex communication channels that are compatible with the RS232 specification．Each channel can transmit and recelve at a user definable baud rate and format simultaneously．In the programning section，we will describe how to select conversion，The ACIAs handle parallel／serial and serial／parallel framing and parity errors．The ACIAs can also be und detection for interrupt driven I／O．The outputs from the ACIAs are buffered and inverted by TTL（or Line Orivers－user installed option）and the inputs to the ACIAs are buffered and inverted by Line Recelvers．The RS232 standard defines two types of communications equipment：Data Set and Data Terminal．These designations determine the connections to the standard DB－25 connector BY POSITION．For example，pin 42 is defined as signal BA and described as odata from terminal＂．This means that if the equipment were a Data Terminal，this line would be an output；if the equipment were a Data Set，the line would be an inout．The COM－1 is configured as a Data Terminal．

SOFTWARE
ELIZA－－JEFF LAVIN
ELIZA is the，by now，＂classical＂，public domained，Al（Artificial In－ telligence）demonstration program originally written in LISP（LISt Processor），by Joseph Weitzenbaum of MIT to emulate a＂human＂psycho－ analyst．（We understand that Professor Weitzenbaum now regrets having published ELIZA beacuse of its＂misuse＂by those who allege that the program＂proves＂that machines can be programmed to＂think＂．）

SYM－PHYSIS 15－49

According to Turing, a "system" demonstrates AI if a user cannot be sure whether he is dealing with a "man" or a "machine". Based on Turing's criterion, ELIZA is "intelligent", since whenever we deal with "her we robing questions and occasional enally involv "behaviour" as we probably might feel when dealing with a real "shrink".

Jeff Lavin has prepared a truly delightful SYM-1 version of ELIZA, written wholly in 6592 ML code. You will need at least 12 K to hold the object code. Lots of RAM is required to store the large vocabulary at ELIZA's command. Only object code will be provided initially, on either assette or FDC-1 diskette. RAE-1 source code will be available (requires 32 K) in the near future, again, in both media.
FORTH FOR THE FDC-1 -- BILL WHARRIE
This is a full implementation of fig-FORTH, completely integrated with the FDC-1 system. It will be supplied either on $51 / 4^{\prime \prime}$ FDC-1 diskettes, $1 ø 24$ byte per sector, double density, format, or, for those with $8^{\prime \prime}$ systems, on cassette (perhaps by the time you are ready for FORTH, we will have completed our arrangements to have Joe Hobart generate $8^{\prime \prime}$ disk copies). A variety of FORTH utility "SCREENS" will also be provided.

Below is a copy of its "VLIST" for your evaluation. This is followed by (partial) "VLIST"s for the EDITOR and ASSEMBLER VOCABULARIES. Note the conditionals" built into ASSEMBLER, to permit "structured" programming. If you like FORTH, you'll LOVE Bill's FDC-1 implementation! We're going to install an FDC-1 controller on our SUPER-SYM with this FORTH as our main language.
. 199006

- LO (ORTH2, 1
- 1500

FIG-FORTH 1.

SYM-PHYSIS 15-41

EDITOR O

P.S. For those of you with at least 24 K of RAM and no FDC-1 as yet note that this FORTH can ALSO be used on a CASSETTE based system. Ful instructions for modifying the object code are provided. You can get started on the cassette version and add the FDC-1 later: Actually, both cassette and FDC-1 can be used interchangeably. Note that the FORTH words DISK and CASSETTE appear in the FORTH VOCABULARY. These are used to select the desired $1 / 0$ medium. Just be sure to specify that you need the cassette format.

HELICOPTER -- DANIEL WUETHRICH
This is another interactive video graphics game by the author of SYMMAN Like SYMMAN, it requires a Visible Memory and an "Atari" compatible joystick. Supplied as RAE source code on cassette. Requires 32 K for assembly.

We found this to be even more fun than SYMMAN. Here are the rules, as extracted from the game "manual":

Move the helicopter with the joystick. Pressing the ACTION button makes the helicopter fire. Down on the ground gas tanks and enemy bases are generated by random control, slowly at the beginning and then faster and faster. Hitting one of the bases counts the following points:

> - Small base : $2 \mathscr{}$ points
> - medium base: 16 points
> - large base : 5 points

The bases fire at you as you fly overhead, attempting to dodge $(U, D, L$ or R) their fire, while firing at them in return.

Your helicopter uses 2 units of gas per second. You start the game with an initial 100 units. Getting more gas is done by touching a gas tank the ground with your helicopter. This gives 1 to $2 \varnothing$ units of gas according to how full the gas tank is and how fast the game is already Hitting a hales, the gas flows out in about 2b secand An empty gas tank is removed automatically after 4 seconds.

You start the game with 5 lives. One life is lost when the helicopter is hit or when you run out of gas. Each time you lose a life, you get "??????????????" is displayed. Now enter your name and fill with spaces (no CR or LF).

If you wish to save the high-score and the name after the game, then simply save the whole program back to disk or cassette.

SYM-PHYSIS 15-42

WP-1 has been the most popular word processor for the SYM-1. It is essentially a text FORMATTER for text files edited under RAE-1. At the time it was initially released there were a number of known "weaknesses" "he demand for a word processor was so urgent that it was fle the fully commented source code to guide the purchaser in its to guide the purchase use.

Because all users had RAE-1 installed, and hence had a reasonable knowledge of $65 \emptyset 2$ assembly language, they were able to "figure-out" the workings from a study of the source code. This knowledge led many of them to customize SWP-1 to fully meet their own personal requirements. We sent a copy of our own "upgrading" to Sandy Mackay as "SWP-2", and he returned it to us, with further embellishments, as "SWP-2.5". The added.

It is so much stronger than SWP-1 that we are making it available as an added cost option to all past and future purchasers of SWP-1.

SOME EXPANDING IDEAS - JAMES E. TRUESDALE
Apr11 1, 1983

Dear Lux:
I just expanded my Sym-1 to 32 K of RAM for 1 ess money than anything else that I have seen for the Sym or it's relatives. thought that you and other Symmers might be interested in hearing about it.

I bought John Bell Engineering's 81-330 RAM/EPROM Memory Board and built it myself. Here are a few of the board's features. The board is PIN FOR PIN compatable with the Sym's expansion connector, all I had to do was wire up the
connectors. It uses 6116 Rams ($2 \mathrm{~K} \times 8$) and/or 2716 EPROMS in connectors. any combination. 6116 Rams are getting pretty cheap now. I've problems), and the board only draws 500 ma at 5 v . The board is problems. and the board $5^{\prime \prime} \times 6.5^{\prime \prime}$ and has a gold coard is connector. It also seems to fit ok in my father's MTU card cage for his Kim.

I built the board in a few hours and it worked the first time that I tried it cafter I hooked it up to the expansion connector instead of the applications connector of the Sym. Boy was THAT a debuaging problem! What one will do when one is in a hurry!).

The cost breakdown looks like this -

74LS244	1.50	1.50
74LS245	1.50	1.50
74LS10	.35	.35
74LS365	.50	.50
74LS138	1.00	2.00
16 Pin IC Sockets	.75	2.25
14 Pin IC Socket	.20	.20
20 Pin IC Sockets	N/C	N/C
24 Pin IC Sockets	.40	$\mathbf{O . 4 0}$
		SYM-PHYSIS $15-43$

I bought the 24 Pin sockets at a local electronics junk house and the rest of the extra chips, caps, and sockets from my father or from my Junk box. I used monolithic caps because they take up less space than standard disc caps.

I bought the 6116 chips from Microprocessors Unlimited in Beggs, Oklahoma. They are FAST and reliable and sell only top quality chips. We ordered these chips over the phone on a Sunday and had them the following Friday. Since we had ordered from them before, they just billed us. ()ur first order was by credit card, and was equally fast. They advertise in The Computer Shopper, but call for the latest prices since they change so fast.

Enclosed is a copy of some literature for a connector that I bought for the memory board that I am going to use to build a "card cage" (The MTU card cage is WAY to expensive for me) for the memory board and the Sym (I will use standard connectors for Sym). I intend to mount them both vertically and put them either inside of my surplus CRT terminal that I use as a monitor for my KTM-2/80, or else mount them free standing behind the terminal

Sorry that this letter isn't in RAE format, but I composed this letter on my father's Radio Shack Color Computer using the Celewriter-64 Text Editor. It is just sooono neat! I printed t on my surplus GE Terminet 300 Terminal. The Co-Co is really an impressive machine even with this funky keyboard.

Well, I Just wanted to tell you and other Symmers about this (in my opinion) great way to expand a Sym for less.

[EDITOR'S NOTE]

Sincerely,

James E. Truesdale
1400 Hudson Road
Ferguson, MO 63135

RAE .CT PROBLEMS

Abstract

We have discovered a way to create camera-ready copy from materials typed with old, tired ribbons. We copy them on our office copier with the control set to darken the copy. We go through several generations until the contrast 15 sufficiently enhanced. Image quality is not degraded, since the electrostatic "opying process inherently provides process prammar correcting ferporate spelling or readable tape is still preferable.

A number of readers have had problems with the .CT pseudo-op "bug" in RAE-1. The first printing of the RAE-1 Reference Manual provided the correct fix (a patch in page zero) but all later printings put the patch in page \$פE. This is OK for a 4 K SYM-1, but the patch conflicts with text or label files which extend beyond the original 4K of RAM. You may follows:

YM-PuYSIS 15

Here are some extracts from a recent letter which describe several useful modifications to SUPERMON, implemented by replacing the original 2332 ROM with your own 2532/2732 EPROM. The major modification is to a 9669 baud CRT data rate.
Harry also describes a simple current loop to RS-232-C "converter". We haven't studied his mods enough to figure out why they produce the loss of RAE-1's CTRL C and BRK exits to SUPERMON. His reference to the RU \$9093 "fixing" the problem, is based on this being the RAE-1 "patch" to FDC-1, and this patch does modify a goodly number of vectors.

Dear Lux:

In the last issue of SYM-PHYSIS there was a little gem tucked away on $13 / 14-0$ and 331 . \#** Modified Supermon *** by Faul L. Beaupre.

This was all the help I neaded to finish my "System patch" converting my SYM 1 to run communcations at 9600 baud. I had been altering Supermon to allow lower case in basic by NOPing out the AND \#कDF now it is just a \#\#7F and the old AND command. But now, MY dream of a 9600 baud system has taken shape.

Modifications include:

1. TTY port becomes a printer port with DTR.
(DTR line is not checked if printer flag "TOUTFL" is not set.)
2. 1 stop bit instead of 2 [note: SYM 1 documentation error, page 26 of the SUPERMON FROGRAM states "start bit, 8 Data, 3 Stops" but the zero loop is not executed, therefore... 2 stops.1
3. Default value changed to start up I/O CRT only.
4. Lower case enable to BASIC.
5. Control a toggles on/off output to printer.

Now that the sales pitch is over, there is a bug. (isn't there
always?) When first entering RAE with a . G BOOO cr., the control C (ctrl c) to exit to the monitor will not work. Nor will the BRK command function. This problem went unnoticed for awhile since the cure for the bug is RU $\$ 9003 \mathrm{cr}$. I have had no problems in BASIC. Foking a 144 (CFT only) or 160 (printer only) into 42580 ($\$$ A654 TOUTFL) turns the printer on and off, leaving the break key enabled on the CRT.

Like Mr. Beaupre I have been burning an EPROM (2532) ana
then just replacing the monitor chip. References are made in the program for moving the object code to the buffer I use to program the EPROM.

SYM-PHYSIS 15-45

I have included (separate page) a copy of the hardware modification used to bring the TTY port around to a CRT way of thinking. For the inverter, I used a 4049 CMOS inverter which allows up to 18 volt inputs with 5 volt (vdd level) output. I mount this inverter external to the SYM 1 in the break out bow built to house the CRT port connector, the PFIINTEF port connector (or second CFT port), and tape I/D.
>assembled lisilime:
0010 ; 9600 baud FIX with printer data transfer reguest (dtr)
H. J. FORR JR.
$12 / 14 / 82$
symcerely,
CW Industries
. 0 s
program definitions :

HARDWARE MODIFICATIONS
THESE HARLWARE MODIFICATIONS WILL GIVE THE SYM-1 A SECOND "CRT" PORT.
sYM CONNECTOR
CRT CONNECTOR

RAE. DOS AND RELATED TOPICS
Many months ago Jack Brown (Saturn Software) sent us a collection of five diskettes with a note saying "Here is some software to play with!" Two manuals, entitled "RAE.DOS" and "MEAN14" came al
"MEAN14" we have described earlier, but "RAE.DOS" is really something "MEAN14" we have described earlier, but "RAE. Dos is realiy something require the HDE disk controller and the FODS bootstrap loader to get it the FODS Jack provides a special BOOT disk rumo disk is then removed and from that point on only RAE. DOS generated disks are used

We booted up as per instructions, and came up in what, at first glance, appeared to be RAE, and can, in effect, be treated as RAE. An examination of the accompanying manual showed however, that this was now RAE with a powerful new line editor and a truly elegant

We then removed the BOOT diskette from the System Drive and replace it with the RAE. DOS UTMLITY disk, which contained all sorts of "goodies",
in both OBJ (machine language run-time code) and. TXT (RAE source code form). The other three diskettes contained source and object code for RAE.DOS itself, MEAN14, etc, etc, etc.

The entire package was a real pleasure to use and examine. RAE.DOS is one of the best software development packages we have ever seen. We commend it to all FODS users. It was with regret that we put it away, never to look at it again until today. The reason we set it aside? . ". Because it is difficult to "shift" mental "gears" between
Doses, and we are already having enough problems remaining proficient in CODOS, FODS, and FDC-1 simultaneously.
Why are we looking at it again? Because we received a RAE. DOS diskette today from one of our long-time readers. We reprint portions of his letter below for general interest, and also a few samples of his printer outputs, so that you can see its versatility the forgot to set >FO C before printing!).

SYM-PHYSIS 15-47

Dear Jean and Lux,
P.O.Box 257,

Lindfield,
N.S.W.

Australia.
15. April, 1983.

For some time I've been looking around for a second computer but finding it very difficult to make up my mind as to which one it should be. I'm very attracted to the BBC but am a bit disappointed that some of the add-ons are so siow in appearing. Also that, with the exception of games programs, there is not much to run on it that can be bought off the shelf. And that is mainly why I'm thinking of another machine - to have access to ready made programs, particularly of the visicalc kind. I can have all the programming (and hardware) fun I can find time for with the SYM.

My main purpose in getting in touch with you at this time is to send you this diskette. It is probably of little use for "SYMPHYSIS", partly because it contains a number of routines from Jeff Holtzman's "MONEX/SYM-BUG", (although whether or not he would mind I don't know), partly because the MXB9FT III printer routines are probably not compatible with the EPSON sold in your country with the same model number, 1 know they differ but you, personally, might find some of it interesting.

You may also be interested in a few details of the extensions I've added to the SYM lately and which are used by the programs on this diskette. An additional 6532 has ben added at $\$ 4500$
with its RAM at \$A700- A77F. This is mounted on a separate board with room for several more I/O chips. The processor, a 6502A, has been removed from the its usual position and relocated on another board where its data and address lines are buffered, and which also has decoding and bank switching logic for four banks of (hardware) switch selectable RAM (61165) or ROM (27165) at $\$ 9000$ - \$97FF. There are also 6116s at $\$ 9800-\$ 9 F F F$ and $\$ F 000-\$ F 7 F F$. Later I hope to replace the 27165 with 25325 and to have both SWP and XRF in the one chip. XRF will be called in somewhat the same way as swip is at present.

I've started on a board to put RAM at \$B000 \$EFFF and hope to finish it before too long. However I'm continually distracted by playing with FORTH. I wonder whether you've tried Leo Brodie's "Quick Text Formatter" described fairly recently in "FORTH IMENSIONS, ? Its really magic to be able to add words to meet special requirements just as one needs them.

Just in case you don't have RAE.DOS readily
available I'll print this letter and enclose it with the diskette.
With very best wishes to you both,

M.A. Du Feu
they differ but I don't know how

of vơourbotht Woli x truet ana miovi

Almog thatinwith thenexception of game
and also because of its hardware requirenents. However I thought you,
of it interesting. of it interesting.
...continumd
2673633^{26} fift margin
37063 3 1 aft margin

- 50

ROBOTICS

Quite a few of our readers are heavily into robotics. Several have sent us photographs and reprints of technical articles which they have had published elsewhere. We list below their names and addresses and the names of their robots, so that your robots may correspond directly with theirs!

LCDR BART EVERETT, Assistant for Robotics, (SEA-9øM3), Naval Sea Systems Command, Washington, DC 26362, sent an 8×16 (non-autographed!) glossy of "ROBART", whose specs, particulary in the sensor area, are very impressive. ROBART could easily serve as a night watchman, on the lookout for intruders, fire, smoke, floods, etc.

GENE OLDFIELD, Robot Repair, $8161 / 2$ 21st Street, Sacramento, CA 95814, GENE OLDFIELD, Robot Repair, $8161 / 2$ 21st Street, Sacramento, CA 95814, some 90 miles from us, we hope to visit him (her?) early this summer.

RICK KIRSCHBROWN, 595 Hunter Lake Drive, Reno, NV 89569 , sent us a color photo of "HOMER" (HOME Robot). Rick was a student at CSUC several years ago.

JIM GRAHAM, a current student, and our Lab Assistant, at CSUC, is working on an as yet un-named robot based on the Milton Bradley toy "Big Track" as the "vehicle" and the Polaroid Camera Ultrasonic Rangefinder as the principal sensor. The idea is to use the little "beastienis one

RAM-BLINGS
First a few personal notes for those who were kind enough to write and ask: The eye problems are finally resolved. Didn't get a wide-angle lens implant in one eye and a telephoto in the other (medical technology is not at that point, yet) but one eye is set for near vision, the other of the "dominant" can with biforals woth eyes are $2 \boldsymbol{/ 2}$, and I can actually see well enough to solder again. The muscles which change the shape of the natural lens for focusing are now "in training" to move the plastic implants to-and-fro for focusing.

Now that my vision is back to the days of my youth, I am tempted to have a rather distorted right wrist, badly shattered in a fall from a bar stool (no, I was sober, and standing on it to reach a high shelf) some years ago, rebuilt, to restore its "youthful" dexterity. No it is not coordination necessary to be a high scorer in SYMMAN, HELICOPTER, and the arcade type games on the VIC=29 and CBM-64. It is very frustrating to have nearly everyone I know able to beat my "lifetime high scores" after only a few minutes of practice.

As usual, we have fallen behind in answering the mail, and getting the newsletter out on time; for this we apologize again. At last, though, we do see a solution, beginning next year. We will retire from our teaching position, to become the Computer Science Department's first Professor Emeritus, effective 1 June, 1983. We will continue to teach one semester (fall) each academic year, but will then have eight months free each year for travel and personal research. We hope to be able to visit many of our European readers next spring.
We have no scheduled lectures or teaching assignments this summer, so that we will have a full "uninterrupted" three months to get caught up on unanswered mail and unfinished projects. We plan that the 1984 vol Ume of SYM-PHYSIS will include most of the software and articles that

SYM-PHYSIS 15-49

A 64K MEMORY BOARD WITH BANK SWITCHING

Bob Peck sent us, for evaluation and review, a sample of the 64K DRAM (Dynamic RAM) Board he is marketing for the SYM-1, SYM-2, and the AIM 65. It is a very well designed, compact package, using 8 OKI M3764-26RS DRAMs, a Motorola MC6883 as the "main" chip, sockets for a pair of 21145 for the lowest 1 K of RAM (since thia area may NOT be bank switched), buffers, a handful of TTLs and a "customizing" PROM (for either AIM or effect replaces the SYM's $1 . \sigma \emptyset 6$ crystal.

The board is installed extending out from the Expansion Connector for it may be tucked under). The SYM's $65 \not 22$ and all on-board RAM are removed. he 6502 is reinstalled in a special header socket cabled from the DRAM bard to get the new clock signal

The "new" memory map is as shown below, with bank switching accomplished with the machine language sequences indicated. To initialize the system, \log on, then .G 7øøø. SYM will then respond "64K ONLINE!" with blinking cursor, waiting for a second log-on. It's quite a thrill to see this, almost unbelievable!
FFFF

8000

LDA \$FFD5
; switch to bank 1
LDA \$FFD4
STA \$FFD5
STA \$FFD4

A retrofit kit is being planned for this card to provide Motorola 6847 Color Graphics. This will require installing a 14.3818 MHz Crystal in place of the $16.9 \varnothing \varnothing \mathrm{MHz}$ one, but a "replacement" SUPERMON EPROM will also be supplied correcting all time dependent parameters to conform to the 12% slower clock rate.

The board comes with a well written Installation and User Manual, and is one of a new line of products Bob's company, BYTE Microsystems Corporation, of Sunnyvale, CA, is introducing for the SYM/KIM/AIM family.

PROGRAMS BY TOM GETTYS

Tom Gettys wrote us recently that he has been looking over his collection of programs for the SYM-1. He sent us quite a few, two of which appear in this issue, and is "polishing" them up for distribution. Write to him directly at the address below for a listing of programs available, and prices for either cassette or FODS diskette versions.

His programs include utilities, such as COMPACT, which removes spaces and REMs, from BASIC programs, games such as "GAME OF LIFE", and a wide variety of applications programs which he developed for his own use, and
for use in teaching. His "ratalog" includes programs in both BASIC and 6502 Source Code. He prepared for Jean's use an ACCOUNTS PAYABLE program (running under Saturn Software's Extended Disk BASIC) for handling some of her book-keeping chores.

Tom Gettys, 4539 Beachcomber Court, Boulder, CO $8 \emptyset 3 \not{ }^{\prime}$
COLORMATE II BY MICROMATE
Dick Turpin, of MicroMate, has been at the Unversity of California, Davis (UCD), on sabbatical from his hame campus, for the past year. During a recent visit he showed us the spec sheets for a new product which should be available early this fall.

It will incorporate an INTEL 8 g31 single-chip microprocessor for serial interface to the host computer, with custom firmware in EPROM. It will also include two G1 AYA/D conversion subsystem, twenty I/O 1 ines, and last but not least, A/D conversion subsystem, twenty fordinary color graphics, as follows:

A Texas Instruments 9918A Video Display Frocessor
supports four modes of color video ranging from supports four modes of color video ranging from
twenty-four 40 -character rows of text to 256×192 resolution graphics, with 15 unique colors plus transparent, 35 display planes, and 32 sprites. $16 k$
bytes dynamic RAM are dedicated to the video display. The output is composite video.
Contact MicroMate at P.O. Box 5ø111, Indianapolis, IN 46259, for further information on the ColorMate II.

PROGRAM CORRECTION

Bob Peck informs us that the "FORCED CASSETTE TAPE READ ROUTINE" on page 13/14-57,58 is missing the following line:
g265 BNE INCDUN
Fortunately, the error and fix are sufficiently obvious that most readers spotted it at once, so little damage done!

A HARDWARE NOTE

MILES E. ANDERSON, KBSUW, passes along the following suggestion to make ROM/EPROM interchanging less painful:

A HARDWARE NOTE. If all the ROM addressing jumpers 1-18, 46-47, A-M are removed from the SYM board and the holes cleaned with a solder sucker, the board will then accept two l6-pin DIP sockets. Headers in these sockets will permit endless jumper changes without danger of damage to the board. I made up separate sets for the two-chip versions of BAS and RAE and can now switch from one to the other in less than half a minute. An 8-pin socket to the left of the crystal will provide similar flexibility in write-protect changes. This socket scheme is not original. My son, David, (also a Symmer) suggested it to me.

A CALL FOR HELP

[^0]Dear Lux
We are three computer amateurs (or should it be amateur computerists?) and we would very much welcome it if you could answer a few questions:

Our main problem is the following: We are designing and building our own 6502 based computer system and we have been looking for a suitable video controller. So far we haven't had any success. (One thing we found was the AMI S68g47 VDG, video display generator, from the magazine Microcomputing. February 198ø, out this chip doesn't seem to be available in Europe. Would it be possible to purchase it through the SYM-1 Users' Group?)

We would like to know if you could tell us about any system that has at least 8 color capability and preferably a 256 by 256 dot display (of course 6592 compatible). We have been looking for information all over Belgium, but we didn't find anything. You're our only hope. So please send us information about a Color Video Display system we could build, or a CRT controller chip we might be able to use. We would be very grateful. We hope it isn't much trouble and we very much hope you could help us.

Yours sincerely,
/s/ Kris Coolsaet, Jacques Buyse, Henri Deleplanque (member of SUG)
M. Buyse's address is: M. De Tayelann 33, B854ø Moorsele, Belgium. M. Deleplanque's address is: Stokerijstraat 24, B8559 Zwevegem, Belgium.

MISCELLANEA
DR. JOHN E. ALDRICH, Director, Medical Physics Department, Radiation Oncology, Victoria General Hospital, Halifax, Nova Scotia, B3H 2Y9, would very much like to get in touch with other SYM users who have developed applications programs in areas related to medical physics.

Several readers have been kind enough to send in Indexes to SYMPHYSIS. These include CHUCK HARRISON of Groton, CT, who submitted a RAE cassette version which permits using RAE's FInd to locate the proper issue number and page number. It is arranged serially by issue and page, and he has used lots of "KEYWORDS" for each article. It is best used for machine retrieval, and after we bring it up to date we'll release it on cassette. We publish as an addendum to this issue an alphabetic index contributed by BORIS GOLDOWSKY; we thank him for the many hours he put in on this difficult task

Our regular printer will only handle the newsletter in multiples of eight pages, so we sent him the first 48 pages to do, and are sending these last four pages to a "jiffy" printer. We point this out, just in case you are wondering why the extra "loose" sheet. Besides, it gave us an extra week to finish up this issue.

The hardest part is the last part, where we worry about not being able to include everything we wanted to. There is as much good material still in our backlog pile as was put in. Our summer vacation starts projects, then the pext to spend a month getting caught up on unfinished projects, then spend

If all goes as scheduled, you should receive Issue 16 early in September. A happy summer (winter to our down-under friends) from Jean Joyce, Denny, and

[^0]: We reprint in the next column portions of a letter that we did not have ime to answer in the detail Thanks, if you will.

