

THE SYM USERS, GRDUP NEWSLETTER
WOLUME IU, NUMBER 2 (ISSUE NO. 16) - SUMMER 1983 (MAY/JUN/JUL/AUG)
 are in no way associated with Synertek Systems Corporation (SSC), and registered trademark of SSC. SYM-PHYSIS, from the Greek, means the We welcome for publication all articles dealing with any aspect of the SYM-1, and its very close relatives, Authors retain all commercial copyrights. Portions of SYM-PHYSIS may be reproduced by clubs and edu-
cational institutions, and adaptations of programs for other computers
may be freely published, with full credit given and complimentary copies provided to SYM-PHYSIS and the original author (s). Please include
Editorlputlisher:
RusinesslCinculation:
office Staff:
H. R. "Lux" Luxentierg

SUBSCRIPTION RATES: (Volume IV, 1983, Issues $15-17$)
 Chico, CA 95927 , Telephone (916) 895-8751.
BACK ISSUES ARE AVAILABLE AS FOLLOWS:

ISSues 11 through 14 (Volume III, 1982), are available for $\$ 10.5 \%$,

ANOTHER OUTSTANDING OFFER TO THE SYM COMMUNITY

On the page to the right is a map of the environs of the Caves of Mirdarf. This map is part of the 28 page manual for "SYM-VENTURE", sent to us, along with a (KIM-speed) cassette containing the object code for "treasures" (ool and the quest, and to return home (i. e., to the house), safely, with them.

While we can't usually find the time for most computer games, we did make time for this one, for a number of very valid reasons:

1. It can be played on a $2 K$ SYM-1 WITHOUT a terminal!
2. The manual contains fully commented source code, as well as very well written instructions and the map, which will make frustating!

उ. It is very inexpensive, almost at cost of media and shipping!
4. A study of the source code will not only reveal all the "secrets" of writing money-making Adventure-type games, but, because of the clever use of the 7-segment displays to display text messages, will also teach you much about how the SYM itself works!

SYM-PHYSIS 16- 1

SYM-VENTURE (c) is an adaptation (by permission) of Robert Leedom's original KIM-VENTURE (c), which we did not know existed, back in our KIM-1 days (incidentally, KIM-1 had only $11 / 8 \mathrm{~K}$ of RAM).
You may order either KIM-VENTURE or SYM-VENTURE (or both), cassette plus manual, at $\$ 15.0 日$ each (overseas, please add $\$ 3.09$ for Air Mail), directly from Matt Ganis, Sheridan Road, R. D. \#3, Lebanon, NJ ø日833. Copies may be duplicated by clubs, or users groups for a $\$ 5.06$ per copy royalty fee (very generous, and extremely reasonable, this!). Every SYMmer should send for a copy!
P. 5. SYM-VENTURE, and "SWISS" CLOCK (see below), are ideal programs for demonstrating the potential of the SYMple (unexpanded) SYM-1!

MORE ON THE "SWISS" CLOCK
In the article "ADJUSTARLE REAL TIME (SWISS) CLOCK" (SYM-PHYSIS 13/149), we pointed out that the program was four bytes too long for an unexpanded SYM-1, or a SYM-2. The author himself, Mr. Schumacher, sent in a shortened version. We print, instead, the following postscript t a recent letter from Boris Goldowsky (author of the SYM-PHYSIS INDEX):
P. 5. To fit "SWISS CLOCK" into 1 K , use one of my favorite tricks: On lines $3469-3479 \& 3549-355$, replace LDA \#\$91 CLC with SEC. For astronomers, the clock can be made to show sidereal time by replacing ØЗB2 and ØSC7 with C2, ØЗA5 with A8, and ØउAD with CB

MORE ON PRINTERS
Our original hardcopy device was a KSR-35 TTY, long since abandoned. Next came a decwriter LA-36, still useful on the 20 mA current loop, at 600 baud, and as an "emergency" full terminal at 110 baud on SYMs with no printer driver resident. Next came the Epson MX-80F/T, to which we it we felt it was the most cost-effective printer available. we bough it we felt it was the most cost-effective printer available.

For our VIC=20 and COM-64 we purchased a VIC-1525 Graphics Printer, mainly because last December it was the ONLY choice. As of now it is still the only printer available which (easily) prints the CBM graphics characters. It does not work quite right with the Quick Brown Fox Word Processor, or with MAE, however, and we have not yet figured out the

We now have a Star Gemini $10 X$ on our COM-64, and plan on getting several more for other systems, because we feel it now holds the "Lux "Sandy" Mackay, we added the "extra" lead to our interface (we had wisely left a few spare wires in the cable) and (temporarily) interchanged the Epson and the Gemini, so that we could reprint below his letter, his demonstration, and best of all, the complete source code for the SYM/RAE/BAS-Gemini Printer Patch. The patch also works with the Epson (with care to avoid conflicting control codes and escape sequences).

A. M. Mackay p.eng., o.l.g.
 GOO SIXTH AVENUE, WEBT

July 11, 1983

OWEN BLUND, ONTARID
(519) 376-8442

Dear Jean \& Lux:-
As promised, here is the revised version of the GEMINI-10 printer driver. It is at least twice as fast as the one I sent earlier, and with fewer glitches. It runs at almost the full speed of the printer. Also, this driver will SWP your text AUTOMATICALLY. It's on the tape RAE format, double speed, three times. GE F1.

You can print this with your Epson cable if you run the version I sent you previously; but better yet, why not add an extraline to your cable, connecting Gemini (or Epson) pin 10 to AA-E (CA-1), and you can use the same cable for both the Epson and the Gemini-10. Now that's versatility! You will probably have to disable your interrupts (see lines 780-800 this version) in your Epson driver.

Further to our telecon, I would prefer having this published in S.P. rather than marketing it, being a professed glory-hound with an insatiable ego, but I originally didn't think that you'd want to bive pages on it. It is gratifying to realize that the distinguished publisher of our Bible knows quality when he sees it!

This letter and the Demo are also on the tape - GE F2 and GE F3 respectively.

Can't wait for the next issue of S.P. - I hope to convert one of my two SYM's to Jeff Lavin's Super SYM.

Keep the faith

GEMINI-10 FFINTEF DEMD

riteco ounacript nico and acall
ICA SUESECRIFT Littio 1 argor
REGULAR COMPRESSED for people with narrow paper
REGULAR ELITE nice size for personal letters
REGULAR FICA good for listings dump
DUUBLE WIDTH COMPRESSED effective block print
DOUELE WIDTH ELITE not too bad
DDUELE WIDTH FICA Etretched out
ANY OF THEBE CAN BE DOUBLE GTRIKE
THIS IS EMPHASIZED PRINT and is nice for correspondence
THIs 18 EMPHABIZED DOUBLE-STRIKE too dark - looke threatening
This is also emphasized double-strike
this 15 emphasized italics. underlined. Looks good!.
$\mathrm{A}_{1} 2+\mathrm{B}_{1}{ }^{2}=\mathrm{C}_{3}^{3}$ subscript. \& superscript
-
NO TAB TAB 10
TAB 25 TAB 50

Demo of tab setting (above), and margin setting (below):

EFT MARGIN IN 20 SFACES
 And all kinds of other goodies

NOTE (by Lux): Today's dot matrix printers are much faster and much more versatile than shaped character printers, cost much less, and the printing can be just as attractive, including proportional spacing, if desired. The Gemini will accept a down-loaded character set into its Resign this will enable it to print the CBM graphic sets, or your own design type fonts
graph
0010
0020
0020
0030
0056
9060
0070
0960
0090
0100
9110
0120
9130
0140 ;
0150
0160
0170

0240

2290

```
0190 Sym-1 exactly as deseribed in Sym-Fhysis 9:5 (Alternative
0190 ; Wiring List), EXCEFT that "BUSY" is not used. Instead connect 0200 ; Gemini pin 10 "ACK" to pin AA-E (CA1).
6220 ; If \(X\)-RAV is being used. driver must be running for
Q230; ; KTN to accept Gemini-10 commands.
0250 ; RU \$5Eøø, then \(\uparrow \mathrm{E}\) to take printer off line
O260 ; Tw puts printer back on line. To print RAE source,
0270 ; type Fritw. Don't forget \(\uparrow E\) when finished.
by A. M. Mackay
    000 bth Ave. West
    wen Sound, Ontario
    Canada N4K 5E7
    July o, 1983 Rev.
CODOS FILE
GEMINX-1G PEINTEE DEINEE
GEMINI-10 PARALLEL FRINTER FATCH FOR SYM-1 AND KTM
(DISPLAYS CONTROL CODES AND ESCAPE SEQUENCES)
Many CTRL sequences used by the Gemini-10 conflict with
```


SYM-PHYSIS 16- 5

is it a shift alpha? raise flag for "n"
is it shift esc?
raise flag for next char.
send $+1-$ to CRT
and esc to printer
strip off ASCII "S"?

FHA
LDA STRIFFL
DEC ROD.ESC
FiLA TOUT
JSR TOUT
SEC \#\$30 SEC \#\$30
JMF FR. OU

LDA NFL
BFL H.NYB
LDA ESCFL
BMI TEST*
CLA ;
BEG SETSTRI
CMF \#’B
BEQ SETSTRIF
CMF \#'S
BEA SETSTRIF
CMF \#'U
ECC ITEST
BCS IPTEST
INC STRITFFL
INC STRIFFL
JMF TEST *

LDA BRFL
BFL L.NYB
INC BRFL
FLA
JSA TOUT
ASL A
ASL A
ASL A
ASL A
STA NYBREG
RTS ;
DEC BRFL
DEC NFL
JSF TOUT
CMF \# \ddagger SA
SEC ;

```
check for "n"
esc sequence?
;br if no
    set up for
    esc sequence
if it's a "-"
; strip next char.
less than "U"?
greater than "Y"?
flag to strip next char.
don't trigger printer
pack next two chars
into one byte
flag for 2nd char.
move to high nybble
istore it and wait
2nd char -
digit or letter?


SYM-PHYSIS 16-7


SYM-PHYSIS 16- 8

ADDRESS DECODING，POR，and the SUPER SYM－－Part II
By Jeff Lavin－July 1983
Whittier，CA 90609
This month I will describe the operation of the＂Super SYM＂ described in issue \＃13／14 of SYM－PHYSIS．This is not intended to be a constuction or＂how－to＂feature；little or no information will be given on how to modify the SYM PC board，or where to find all the hidden traces．Please DO NOT call with questions on these matters，or how to debug the completed disaster．This is not a job to be tackled by a rank beginner，nor can it be finished in an evening，or probably a weekend．On the other hand，it is not as difficult as building a ＇scope kit．Read all relevant material BEFORE you start，and make an honest evaluation as to whether this project is within your abilities． Otherwise you may end up with a \(\$ 239\) paperweight．Synertek will not repair modified boards；if you really get stuck，call or write me at AEP for shop rates．

Begin by re－reading issue \＃15 to reaquaint yourself with the operation of the＂stock＂SYM．This is vital－if you don＇t understand where you＇ve been，you won＇t know where you＇re going．The next step everything involved．The SYM should be in the ather room while this is going on．

The memory map of the Super SYM is modified in such a way as to make ECHO unnecessary．This is accomplished by actually having System Ram live at the top of address space：\＄F880－FFFF．The Monitor and other \(1 / 0\) have been moved up also．This was not strictly necessary ram，in this case 56K．All of the modifications described below were done to achieve these goals．

The first problem we run into is that the necessar，fecoding for the \(1 / 0\) at the top of memory is not present on the SYM．This is taken care of by a 74LS154 4：16 line decoder（labeled＂NEW＂on the schematic）．This decoder gets its address range from the \(\overline{F 8}\) output （active low）of U11．The primary address range of \＄F800－FFFF is split into 16 parts of \(1 / 2\) page（ 128 bytes）each．The first three outputs （also active low）from the 74LS154 are used to select UIAs \＃1， 2 and 3 on their
necessary，the active high chip selects are tied to \(+5 v\) ．Note that two chips could share the same select，as on the standard SYM，and address line A6 would be used to select either device．

Output \＃14 and 15 （ \(\overline{F F D B}\) and \(\overline{F F 86}\) ）are used to select the 6532 RIOT．Both outputs are OR＇d by 2 quarters of 44 （remember an AND gate acts as an \(O R\) gate for negative logic）．\(U 4\) is used simply 6532 device in total．Meanwhil FF8日 sneaks around and selects the RS（Ram Select）input．Referring to the 6532 select truth table from last issue，it is clear that when \(\overline{R S}\) is low，the RAM portion of the RIOT is selected，and when \(\overline{R S}\) is high，the \(I / O T\) portion is selected． Therefore，we select the RAM at \＄FF80 and the I／OT at FFF00．If you will refer to Listing 1 ，you will note that since System Ram is 128 bytes，this conveniently puts the machine vectors right where they＇ll do some good．We will get back to CS1 when we discuss the modified POR circuit．

The \(R / \bar{W}\) line for the 6532 is write protected，but only when RAM is being addressed．This is accomplished by the following logic：Bit

0 of port A（UIA \＃3）is used to write protect System Ram（WPM）When the SYM is reset，the UIA ports come up as inputs and float high． Resistor R83 makes certain this bit floats high．This signal is form the R／W linblin student to work out the logic．The reason for the address line is to prevent write protecting the I／O（TTY and CRT wouldn＇t work）．The normal address of the \(1 / 0\) is \(\$ A 400\) or \(\% 101001006000 \quad X X X X\) ，and the normal address of the RAM is \(\$ A 680\) or \(\% 10108110\) 日XXX XXXX．Note that address line A9 is high for RAM and low for \(1 / 0\) ．The new address for I／0 is \＄FF0日 or \％11111111 \(0000 \times X X X\) ，and the new address for RAM is कFF80 or \％1111 \(11111 \quad 1 \times X X\) XXXX．Note that now address line A7 is high for RAM and low for \(1 / 0\) ．This is why we must change this input from A9 to A7．It is important that this be understood as it will be used again later．

System Ram is write protected by NACESS and un－write protected by ACCESS．ACCESS causes DDRA to be an output on bit 0 and Bit 0 to be high．When the SYM powers up System Ram is not write protected．This
is why WPM can be defeated by cutting jumper 46－MM．NACESS simply makes bit 0 low．

In a similar way CA2（UIA \＃1）controls the \(\overline{P O R}\) line．Last month we discussed how POR operates．We will not repeat the discussion here，except to add the concept of selective addressing．Normally when the SYM is reset，CA2 goes high．The processor addresses the reset vector at \(\$ F F F C\) ，and it this combination；\(C A 2=h i g h ~ A N D ~ a d d r e s s ~\)
\(>=\$ F 800\) that causes \(\overline{P O R}\) to go low and select the ROM at the top of memory（and not select System Ram）．The Reset vector points to \＄8B4A， and since this is below \(\$ F 800, \overline{P O R}\) goes high and allows the ROM to be addressed at it＇s normal location．The central point here is that POR must be disabled BEFORE an address \(>\$ F 800\) is called．And it is；CAZ is set low just 8 instructions into the Reset routine AND VIA \＃1 resides below the critical address．As program execution gets underway，CA2 is set low．

Because VIA \＃1 now lives above \＄F800，this scheme will no longer serve．We have，instead，incorporated A10 into the POR circuit．This is because：The reset vector is \％111111111111118x．Note that A10 is high．The vector causes program execution（in the relocated monitor）to begin at \(\$ E B 4 A\) or \(\$ 11101011\) O10X \(X X X X\) ．Note that now A10 is low．Therefore，as long as POR is disabled before A10 goes high （address such as \＄ECXX or \＄11110 \(11 \times X X X X X X X X X\) ），the ROM will stay where it is（at \(\$ \mathrm{EOOD}\) ）and System Ram will stay where it is（at解FF80）

Returning to the RIOT for a moment，it should be clear why the \(\overline{P O R}\) line is connected to CS1．On the standard SYM，the inclusion of POR in the address decoding chip（U11）causes the 6532 to be addressed need ax，but way a need another way to disable System Ram when the Monitor is supplying RAM－we are bank switching！！This is also the reason POR was removed from the decoding circuit．Otherwise we could never select the ROM above \(\$ C 000\) when \(P O R\) is active．

The only other changes to the SYM are that the Monitor socket （U20）has been re－jumpered for a 2532 EPROM，and the socket is addressed from \(\overline{\mathrm{EO}}\) and \(\overline{\mathrm{EB}}\)（jumpers 15 and 16）

I would like to add a few cautions at this point：It is a good idea to remove all the \(65 \times X\)＂family＂chips and memory from the SYM ＂hunt＂traces（hint：they ARE all accessable without unsoldering
anything). Use a low wattage soldering pencil to keep from lifting traces.

Listing 1 is the new address definitions for the \(1 / 0\) and RAM. Since the monitor listing is available to all SYM owners (a BIG plus) all one need do is plug in the new definitions and assemble. If anyone out there hates typing, AEP will provide a free copy of the
SUPERMON source with new definitions on FDC \(51 / 4\) " DDEN disc ONLY! This is a limited time offer, and there will be a \(\$ 10\) (US) media \& shipping charge.

I have asked for suggestions for future columns. I am asking again. SYM-PHYSIS is your newsletter, if you want it, you have to put in some energy. Don't assume the other guy did and I'm already swamped. I ain't! We have been working on some neat designs here and have talked to some of you about your neat designs. How about sharing them with the SYM community? We could use a good interrupt driven input and output buffer program. If you have something good, send it to Lux or myself. See you next time...

LISTING 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8818 & \multicolumn{5}{|l|}{; >>) SOURCE CODE FOR SYM-1 MONITOR U1.1 <<<} \\
\hline \multicolumn{6}{|l|}{0828} \\
\hline 0038 & & . BA \$ \(\mathrm{Eb00}\) & ;Relocated & from \(\$ 8\) & 808 \\
\hline \multicolumn{6}{|l|}{0840} \\
\hline 0858 & ; 1/0 & LOCATIONS & & & \\
\hline \multicolumn{6}{|l|}{0068} \\
\hline 8078 & TAPIN & . DE \$F800 & ;Formerly & A888 & \\
\hline 8888 & DDRIN & . DE \$F802 & & & \\
\hline 0098 & VIAACR & . DE \$F80B & & & \\
\hline 0108 & PCR1 & .DE \$F88C & & & \\
\hline 8118 & OR3A & . DE \$F981 & ;Formerly & AC0 1 & \\
\hline 8128 & DDR3A & .DE \$F993 & & & \\
\hline 8138 & VIAPCR & .DE PCR1 & & & \\
\hline 8148 & PADA & . DE \$FF00 & ;Formerly & A480 & \\
\hline 8158 & DDRDIG & . DE \$FF81 & & & \\
\hline 0160 & PBDA & . DE \$FF82 & & & \\
\hline 8178 & TIMER & . DE \$FF06 & & & \\
\hline 0180 & TIM8 & . DE \$ FF15 & & & \\
\hline \multicolumn{6}{|l|}{8198} \\
\hline 8280 & \multicolumn{5}{|l|}{; SYSTEM RAM LOCATIONS} \\
\hline \multicolumn{6}{|l|}{0218} \\
\hline 8228 & SCPBUF & . DE \$FF80 & \multicolumn{3}{|l|}{;Formerly \$A600} \\
\hline 0238 & JTABLE & . DE SFFA0 & & & \\
\hline 8248 & TAPDEL & . DE \$FFB0 & & & \\
\hline 8258 & KMBDRY & . \(D E\) \$FFB1 & & & \\
\hline 0268 & HSBDRY & .DE \$FFB2 & & & \\
\hline 0270 & SCR3 & .DE \$FFB3 & & & \\
\hline 8288 & SCR4 & .DE \$FFB4 & & & \\
\hline 8298 & TAPET1 & .DE \$FFBS & & & \\
\hline 8380 & SCR6 & .DE \$FFB6 & & & \\
\hline 8318 & SCRB & . DE \$FFBB & 0600 & & \\
\hline 8320 & TAPET2 & . \(D E\) \$FFBC & 8610 & ; USER & REGISTERS \\
\hline 0338 & SCRD & . \(D E\) \$FFBD & 8620 & & \\
\hline 8348 & SCRE & . \(D E\) \$FFBE & 8630 & PCLR & . DE \$FFD9 \\
\hline 8358 & SCRF & . DE \$FFBF & 8648 & PCHR & . DE \$FFDA \\
\hline 8368 & disbuF & . DE \$FFC0 & 0650 & SR & . DE \$FFDB \\
\hline 8378 & RDIG & . DE \$FFC5 & 0660 & FR & . DE \$FFDC \\
\hline 8388 & & & 8670 & AR & . DE \$FFDD \\
\hline 0398 & ; PARAME & ETERS & 0688 & XR & . DE \$FFDE \\
\hline 8480 & & & 0698 & YR & . \(D E\) \$FFDF \\
\hline 8418 & PARNR & . DE \$FFC9 & 0700 & & \\
\hline 0428 & P3L & . DE \$FFCA & 0718 & ; 1/0 & VECTORS \\
\hline 0438 & P3H & . DE \$FFCB & 8728 & & \\
\hline 8448 & P2L & . DE \$FFCC & 0730 & INUEC & . DE \$FFE8 \\
\hline & & & & & SYM-PHYSIS \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 8458 & P2H & ．DE \＄FFCD & 8748 & OUTVEC & ．DE \＄FFE3 \\
\hline 0460 & PIL & ．DE \＄FFCE & 0750 & INSUEC & ．DE \＄FFE6 \\
\hline 8478 & P1H & ．DE \＄FFCF & 8768 & URSUEC & ．DE \＄FFE9 \\
\hline 0480 & & & 0778 & URCUEC & ．DE \＄FFEC \\
\hline 0498 & ；FLAGS & & 0788 & SCNVEC & ．DE \＄FFEF \\
\hline 8500 & & & 0790 & & \\
\hline 0518 & PADBIT & ．DE \＄FFD日 & 0888 & ；TRACE， & INTERRUPT VECTORS \\
\hline 8528 & SDBYT & ．DE \＄FFD1 & 0810 & & \\
\hline 0530 & ERCNT & ．DE \＄FFD2 & 0828 & EXEVEC & ．DE \＄FFF2 \\
\hline 8540 & TECHO & ．DE \＄FFD3 & 0838 & TRCUEC & －DE \＄FFF4 \\
\hline 0550 & TOUTFL & ．DE \＄FFD4 & 0848 & UBRKUC & ．DE \＄FFF6 \\
\hline 8568 & KSHFL & ．DE \＄FFDS & 0850 & UIRQUC & ．DE \＄FFF8 \\
\hline 0578 & TV & ．DE \＄FFD6 & 8860 & NMIVEC & ．DE \＄FFFA \\
\hline 8588 & LSTCOM & ．DE \＄FFD7 & 0870 & RSTVEC & ．DE \＄FFFC \\
\hline 0598 & MAXRC & ．DE SFFD8 & 8888 & IRQUEC & ．DE \＄FFFE \\
\hline
\end{tabular}

THE VIC－1541 DISK DRIVE
The VIC－1541 Single Drive Floppy Disk System，is available at around \＄30月 US，complete with built－in power supply and controller \｛actually the entire DOS）．The VIC－1541 is what might be called a＂free－standing system．Such systems are interfaced to their host computers via one of the＂standard＂communications links，e．g．，RS－232－C，IEEE－488，or，
the case of the -1541 ，a simplified（serialized）version of IEEE－488．

All that is required to interface such systems to the SYM－1 is an All that is required to interface such systems to the SYM－1 is an
understanding of the communications protocol，a two－way software driver， understanding of the communications proto

The -1541 is particularly attractive because of its very low cost，very The -1541 is particularly attractive because of its very low cost，very
modest memory requirements（simple driver and a data buffer area），and modest memory requirements（simple driver and a data buffer area），and
its widespread compatibility（SYM，KIM，AIM，as well as the CBM its widespread compatibility（SYMs KIM，AIM，as well as the CBM printouts are readble by all systems，as are binary（hex）files．Most important of all，however，is the fact that RAE and MAE source files are 99\％interchangeable．

We hope to publish full information on the interfacing in Issue No． 17 Fortunately，as the letter below indicates，we are getting excellent help from others in reaching this objective．We sent Ron Jordan a listing of our VIC＝2め Kernal disassembly，and he is continuing with the project，while we are working on the newsletter

> Dr. Ronald A. Jordan 2611 Madrono Drive Ann Arbor, MI 48103 July 12, 1983

Dear Lux：
July 12， 1983 I would like to take a few minutes to describe As you know the Commodore 1541 disk drive is relatively inexpensive and could provide a cheap disk mystem for the SYM，AIM，and other 65.52 related computers．It might also enable the \(C-64\) or Vic 26 to exchange information with the SYM．The drives are intelligent in that thay contain the Dos．To communicate with the drive the \(\mathrm{C}-64\) sends information over a serial bus．From a hardware standpoint， the task of interfacing the 1541 to a VIA port of the SYM is very easy．However，the software required for communication is much more complex．To make the SYM work with the 1541 it is necessary first to know how the C－64 or the Vic \(\mathbf{2 0}\) communicates with the drive．Presently，I have completely disassemblad the C－64 operating system（Kernal） using Dessaintes＂Disassembler，and have added labels anda
few comments．This approach has made it much easier to track down the important serial routines for the disk drive．

To facilitate the completion of this project，Don Lewis and myself have decided to collaborate．His main interest is with an AIM－1541 Link where as I am interested in the SYM－1541 Link．We both agree on the overall design of the 6502 － 1541 software interface although many of the details must be worked out．A simple block diagram of the interface software might look as follows：

\(B A S I C \leftrightarrow\) BAS


RAE \(\leftrightarrow \sqrt{\text { RAE }}\)
The plan is to utilize as much of the C－64 software as possible．Communication of the 6502 computer with the 1541 orive will be through a port and will require hardware dependen be 11 sed and RAE to the C－64 routines，a software command protocol is required．It could be similar to the method used for the FDC－1 software，at least in theory．The final result will be several integrated modules which maybe easily modified， customized for a specific computer，or enhanced in the fusture．If the disk routines are basically the same as those used in the C－64，the disk file format will be the same．Therefore it will be possible to transfer Hex files between systems．Although BASIC films will not be interchangeable，it maybe possible to pass RAE files to MAE and vice versa．At present we are concentrating on the serial routines，the interface module，and MON link．When this phase is completed links to BASIC and RAE can be developed，possibly by others interested in getting involved in the project．Maybe there are other people as excited about this 6562－1541 link as I am．
ely，
MORE ON THE VIC－1541 DRIVE INTERFACE
Here＇s more on the same subject from NICK VRTIS：
Rusust 26， 1983
Nick Urtis
863 Pinetree S．E．
kentwood，MI 49508
\(\qquad\)
I suess that it is about time I wrote．I have been tryins to get to this letter since the last issue of SMM－PHY＇SIS．I wonder if I will ever catch up on the things I want to do（I hofe never） I have been busy lately．Most of the time I have been workins on a version of Forth for the UIC（and the C64），It is
beins distributed by Abacus Software．I like my UIC，but if I had to learn all about a 6502 with that machine instead of my 5 MM ．I would not know as much as I do now．It is just not conducive to how handy the Debus Key was until I huns uf the UIC for the first time．

I have also been workins an a version of Dale Holts TECO for the UIC. I suess that it's about \(3 / 4\) done. It is tough to fisure out how to maf a 'standard' ASCII keyboard ont o the UIC keyboard. I have chosen to use the Commodore key as the equivalent of the Control key (so a Comwodore+H translates to an RSCII back space). I still havent fisured out a sood key to use for the Escape, I have sone throush the Pound, the Shifted Pound, the Runstop and the shifted Ranrstop. I Moy end with functio to 'prosram' those with a series of commands.

Finally, attached to the bot tom of this letter are the comments from my version of a SYM interface to the Commodore 1541 disk drive. I have not had an ofportunity to test it extensively as I have a bad disk drive and am waiting for a replacement (due in the riddle of Seftember). So far, what I have tested works fine. I have tested all the functions, but have not exercised thein very much. The basic SYM monitor extensions and disk I/O takes uf RLL of \(2 k\). The RRE stuff is still less than \(1 k\). Note that the RRE stuff includes a. CD type of cafability! The hardware interface which I needed to build was cheap. I think the most expensive part was the DIN connector, All you need is a 7416 and some 1 k pesistors.
I have not really tested havins both the UIC and the SYM plused into the Drive at the same time. I have sotten the SYM to act as a serial device to the UIC without the disk, but I haven't gotten the SYM to talk to the drive with the UIC attached, With the price reduction on the 1541 drives by Commodore, it isn't too bad a deal. I only wish that Synertek had Vectored the tafe IN. That would make it a lot easier to interface a disk to

I learned a lot about RAE in workins on the disk interface to it. There are some thinss which are not obvious about the GET and PUT vectors. The only thins really vectored is the \(1 / 0\) portion of the routines. Also not obvious is that they get called twice for each file, once for the header, and once for the data part. I have not checked it out, but is the write of the relocatable object vectored through the PUT also? If so, how do I tell that that's how I got there? I haven't used OUT since I sot my 32k, but for completeness, it would be nice to know. It would also be nice to be able to write relocatable code out, so I could load it to the UIC.

Well, I suess I have run on enoush, I still have to extract and edit the comments fortion of this letter, so it will be a couple of days before it sets mailed at the rate thinss are settins done here. On a personal level, thinss are \(90 i n s\) pretty 900 d . Euerybody in the f have a lot to be thankful for, 0ne final auestion, how much is 1 have a 10 to be thankful for, he hal questom. how unch the 65c02? It souns surer neat, they have added some very code is not very transportable You can put it on the UIC and the SYM but not on the C64. Are they 301 is to come out with a 6510 version?

Oh well, on that note, I'll say goodbye. Have fun. Thanks asain for SYM-PHYSIS.

SMM EKTENSIONS - BY NICK URTIS 6/83
1) ADD SUPPORT FOR THE COMMODORE 1541 DISKETTE DRIVE 1) RDD SUPPORT FOR THE COMMODORE I 5 TO COLD STRRT/SETUP RRE
3) SET BASE2 UECTOR
4) ADD MONITOR EKTENSIIONS

LD - LORD FROM DISKETTE
P1 - DISK DEUICE \#
SD - SRUE TO DISKETTE
P1 - DISK DEUICE \#
P2 - STARTING ADDRESS
P3 - ENDING RDDRESS
- SEND DISKEITE COMMARND

P1 - DISK DEUICE
SR - CHECK \& DISPLR STATUS RETURN FROM DISKETTE
P1 - DISK DEUICE \#
10 - RELOCATE (P1=FROM P2=TO P3=START AT)
142 - MINI LISTER (P1=STRRT AT F2 \(=60\) UNTIL)
14 - MEMORY SEARCH
0 PRRMS - FROM 'CURAD +1 , To \(\$ 8000\)
1 PRRMS - FROM P1 TO \(\$ 8000\)
2 PRRMS - FROM F1 TO P2
3 PARNS - FOR P1 FROH P1 TO P2
US - DISPLRY RLFHA MEMORY
0 PARMS - 1 LINE FROM 'CURAD'
1 PARMS - 1 LINE FROM P
2 - pelacate load starting at p2
U6 - SETUP USER TRACE (TURNS OFF BASE2)
Y-X-a-FLAGS-STACK
R626 - INCLUSIUE STARTING ADR ( \(\$ 0000\) )
R626- INCLUSIUE STARTING ADR ( \(\$ 0000\) )
NOTE: LD, SD, AND SC WILL PROMPT FOR ADDITIONAL INFORMATION WITH A ">' AFTER THE COMITAND IS ENTERED. AN ESCAPE (\$1B) WILL ALLOW YOU TO RE-ENTER THE INFORMATION.

DISK I/O ROUTINES TO INTERFRCE A SYM-1 WITH COMMODORE 1541 DISKS
THESE ROUTINES ARE ADAPTATIONS OF THE UIC-20 ROUTINES.
HICK URTIS - STARTED \(5 / 83\)
MAJOR CHANGES:
1) SOME F.Z. DRTR MOUED TO SYM SYSTEM RAM
2) TIMING LOOPS CHANGED WHERE NECESSARY BECAUSE OF IMEGG CLOCK
3) THE USER INSTALLED 6522 ON THE SYM IS USED FOR I/O
4) 6522 PIN USRGE CHRNGED FROM THE UIC RSSIGNMENTS

BIT 7 - CLOCK IN - RR-10 ORANGE
BIT 6 - DATA IN - AR-M BLUE
BIT 1 - ATN OUT - AR-3 BROUN
BIT O - ATN IN - AR-D GREE
CB2 - DATA OUT - RR-5 RED
CR2
status bit usage
BIT 7 - \(\$ 80\) DEUICE NOT PRESENT 〔STD
BIT - \$40 EOI (STD.
BIT 42 INURLID ATN (NEW)
BIT 3 - 10 UNEXFECTED CTL CHR (NELU
BIT 2 - \(\$ 04\) UNEXPECTED SR (NEW)
BIT 1 - 502 READ TIMEOUT (STD)
BIT 1 - 01 SEND TMEOUT (STD)

NOTES:
1) ATN, DATR AND CLK ARE BI-DIRECTIONAL OPEN COLLECTOR LOGIC the controller must be high to rllow others to go low 2) OUTPUTS GO THROUGH RN IHHERTOR, SO A O COMES OUT A

IC. DEU
.DE 15
THIS DEFINES THE DEUICE \# OF THE UIC
SRL.SAUE F1-DEUICE NUMEER
P2-STARTING ADDR
PJ-ENDING RDDR +1 (SAME RS CRSSETTE)
NAME IS FNRME (MRX=30 BYTES)
NAME LENGTH I FN.LNG
SRL.LORD P1-DEUICE NUMBER
\begin{tabular}{|c|c|c|}
\hline 0790 & ; & P2-RELOCATE TO RDR (IF NEEDED) \\
\hline 0200 & ; & P3-RELOCATE FLAG (NOH-0=RELOCATE) \\
\hline 0810 & ; & NRME IS @ FNAME (MA\% \(\mathrm{C}=30 \mathrm{BYTES}\) ) \\
\hline 0820 & ; & NAME LENGTH E FN.LNG \\
\hline 0830 & ; & \\
\hline 0340 & ; & RECEIUE A LINE INTO (CURAD) \\
\hline 0850 & ; & UNTIL 1) A C-R \\
\hline 0860 & ; & 2) EOI \\
\hline 0870 & ; & 3) FN,LNG CHRS REVEIUED \\
\hline 0880 & ; & FL.LNG RETURNED WITH \# CHRS RECEIUED \\
\hline 0890 & ; & \\
\hline 0010 & ; & RAE COMMODORE 1541 DISK INTERFRCE ROUTINES \\
\hline 0020 & & FILES ARE INTERFACED THROUGH THE GET/PUT ROUTINES. \\
\hline 0030 & ; & THE FORMAT IS \\
\hline 0040 & - & GET. XXXXXXXXXX \\
\hline 0050 & & GET SXXKXXXXX \({ }^{\text {A }}\) \\
\hline 0060 & & PUT. XXXXXXXXXXX \\
\hline 0070 & ; &  \\
\hline 0080 & ; & FUT XXXXXXXXKX N1 N2 \\
\hline 0090 & : & -CT TO DISK IS IMPLEMENTED AS FOLLOUS: \\
\hline 0100 & : & .CT XXXXXXXXXXX \\
\hline 0110 & ; & THE , CT Must be on the last line of each source file \\
\hline 0120 & ; & XKXKXXKXXX IS THE DISK NAME (NO SFACES). \\
\hline 0130 & : & \\
\hline 0140 & & THE DC COMMAND IS USED FOR DISK COMMANDS AND CONTROL. \\
\hline 0150 & & DC \# - -ESTRELISHES THE DISK DRIUE \# AS H \\
\hline 0160 & ; & DC \ -GETS AND DISPLAYS THE DISK STATUS FROM THE LAST OPERATION \\
\hline 0170 & & DC ? -DISPLAY' THE DIRECTORY OF THE DISK \\
\hline 0180 & : & DC, ZZZZZZZZZZZ -TRANSMITS THE COMMAND ZZZZZZZZZZZ TO THE DISK \\
\hline 0190 & ; &  \\
\hline 0200 & : & \\
\hline 0210 & & HOTE THAT TAPE OPERATIONS STILL WORK PROPERLY, TAPE IS ENAELED \\
\hline 0220 & & IF THE DISK DRIUE \# IS ZERO (SET BY DC \#0). THE TRPE DRIUES RRE \\
\hline 0230 & : & TURHED ON/OFF BY RAE EEFORE THE EXITS GET CALLED, SO 'PUT' HAS \\
\hline 0240 & : & REOUT A 4 SECOND DELAY EUILT IN. THE EXITS TURN THE TAPE OFF FOR \\
\hline 0250 & ; & DISK OFERATIONS. \\
\hline 0260 & : & \\
\hline 0270 & & NEW ERROR CODES: \\
\hline 0280 & : & 31 - TEXt file ouerflow (but the lord whs done) \\
\hline 0290 & ; & 32 - INUALID DEUICE \# (USURLLY 0) \\
\hline 0300 & : & 33 - DISK I O ERROR (ST IS OUTPUT BEFORE THIS) \\
\hline 0310 & : & 34 - inualid file namercommand (usually none given) \\
\hline 0320 & ; & \\
\hline 0330 & : & RAE PARAMETER AREAS \\
\hline 0340 & ; & \\
\hline
\end{tabular}
three more jeff Lavin programs
The first of Jeff Lavin's three programs below shows how OUTVEC may be temporarily changed by RAE to permit a subroutine called from RAE to "print" its output directly into RAE's input buffer. Jeff is using the output from his hardware clock calendar (CLK-1/S) to "date/time stamp" his RAE source/text files (see line øøøø).

It would be instructive to compare this approach to date/timeing RAE files with the one presented by Dick Albers (with a software clock calendar) on pages 9:26 to 9:34 and pages 10:19 to 10:22.
Incidentally, Dick and Jeff are very close collaborators on both hardware and software developments ( 6899 as well as 6562), and in many fases, such as, in all probability, these programs, Dick has made significant contributions. (Dick and Jeff are a truly SYM-biotic pair, pun intended!)

The last two programs form a mutually supportive pair. As published, they permit very fast data transfer from SYM-1 to AIM-65 via direct VIA to VIA transfer. Obviously they can be modified to provide transfer in the reverse direction, or to accomodate data transfer to and from and between SYMs and VICs. [To adapt PART \({ }^{2}\) from AIM to SYM as the
"listener", just replace lines \(8 \emptyset \emptyset\) through 860 with a simple RTS.] "listener", just replace lines \(8 \emptyset \emptyset\) through \(86 \varnothing\) with a simple RTS.]

To accomodate the COM-64, which uses a CIA (6526) instead of a VIA (6522), and hence "handshakes" differently (the 6526 does not have CA1, CA2, CB1, CE2 available), additional modifications are required

Jeff's approach is far more versatile than the one we have been using to transfer data between SYMs by hard-wiring their cassette interfaces together. Also it is far simpler and much faster (parallel vs serial) than the approach we had been considering for VIC/VIC and VIC/SYM data transfer via an RS-232-C (actually inverted TTL) interface.

Actually VIC/VIC data transfer is most easily accomplished by physical transfer of floppy disks (if both have drives), since the data must be stored on a diskette if it is ever required for future use. We still use the "hard-wired cassette" method of transfering files between those
of our SYMs which do not share a common disk system cone of our SYMs does have both FODS and FDC-1 installed!), but will examine Jeff's programs for possible SYM-VIC object code transfer. Of course, when the SYM to 1541 interface is available, we'll just use that instead, to get permanent data storage at the same time.

0000 ; 21:36:15 SUNDAY JUL 191983
0.20

0020 ; This program will enter a line of text into
0030 ; RAEs input buffer, and from there into the
0040 ; Text File. Each line must be < 72 chars \&
0058 ; chars must not have bit 7 set. Line must
0060 ; start with a number (a to 9 ) or RAE will
0070 ; assume the returned input is a command.
0080 ; Commands may, of course, also be used, but
0090 ; if inualid will generate an error message.
0108 ; When used in this way, the operation is 0110 ; analogous to RIN (from the monitor).
0120
0130 ADDPAD .DE \$11A
0140 ; \#of chars in RAEs input buffer,
0150 ; including line \#, +1.
0168
0170 BUFFER .DE \(\$ 135\)
0180 ; RAEs input buffer.
0190
\(\begin{array}{ll}0208 \text { TOUT } & \text {.DE \$8AAB } \\ 0210 \text { ACCESS } & \text {.DE \$8B86 } \\ 0220 \text { TECHO } & \text {.DE \$A653 } \\ 0236 \text { OUTUEC } & \text {.DE \$A663 }\end{array}\)
9248
TXEN/DL
DE \$8264
0260 ; Calls CRTI which processes special chars
0270 ; (such as BS), and returns with \# of chars
2898 ;
9300 ; xx a command. If text, falls through
0310 ; returns to command level.
0320 , retur
0330 OUT.CRLF .DE \$E3CA
9350 ; Saves regs and print
0360 TIME - DE \$F668
0370 ; AEP Real-Time Clock/Calendar program.
0380 ; Returns what you see here in line \#0.


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 234- & B0 & E1 & 0720 & & BCS & RECU.LP & \multirow[t]{7}{*}{; Always} \\
\hline 0236- & C9 & 04 & 8730 & \multirow[t]{4}{*}{EOT.CK} & CMP & \#EOT & \\
\hline 3238- & F0 & 04 & 8748 & & BEQ & CHK.FLG & \\
\hline 823A- & A9 & 08 & 0750 & & LDA & H0 & \\
\hline 023C- & F0 & F3 & 9760 & & BEQ & FXFLG & \\
\hline 823E- & 24 & 12 & 8770 & \multirow[t]{10}{*}{CHK.FLG} & BIT & *EOTFLG & \\
\hline 0248- & 10 & DS & \[
\begin{aligned}
& 9780 \\
& 0790
\end{aligned}
\] & & BPL & RECU.LP & \\
\hline 8242- & AS & 11 & 0800 & & LDA & *FROM+1 & \\
\hline 9244- & A6 & 10 & 0810 & & LDX & *FROM & \\
\hline 2246- & 20 & 42 EA & 0820 & & JSR & WRAX & \multirow[t]{6}{*}{\begin{tabular}{l}
; Print ending addr \\
; Print space \\
; Wait for input \\
;Scroll display \\
;Go to Mon warm
\end{tabular}} \\
\hline 8249- & 28 & 3E E8 & 0830 & & JSR & BLANK & \\
\hline 924C- & 20 & 93 E9 & 0840 & & JSR & INALL & \\
\hline 024F- & 20 & 13 EA & 8850 & & JSR & CRLOW & \\
\hline 0252- & 4 C & 82 E 1 & \[
\begin{aligned}
& 8860 \\
& 8870
\end{aligned}
\] & & JMP & START & \\
\hline & & & 8888 & & . EN & & \\
\hline
\end{tabular}
 8210 8C A9 AD 81 A0 A0 00 A9 02 2C \(8 D\) A0 F0 FB AD 81,37 0220 A8 9110 E6 10 D0 02 E6 11 C9 1E D0 09 A5 12 49,F4 023888851238 BO E1 C9 04 FO 04 AS 00 FO F3 2412 , 57 024010 DS AS 11 A6 102042 EA 20 BE E 20 20 E9 20 ,F6 025013 EA \(4 \mathrm{C} 82 \mathrm{E} 1, \mathrm{~A} 2\)
27A2
ON SELECTING A (NEW) COMPUTER
First come the "reasons" (which need not necessarily be rational!), then come the budgetary considerations. Our main purpose in buying our first microcomputer, back in 1977, was to learn how they worked. The choice, at that time, was simple: either one of the 8ø8ด/S-10ด systems, one of the b8gด types, or the KIM-1. The Apple II, PET, and TRS-80 had not yet appeared on the scene.

It seemed to us that the KIM-1 would meet our requirements at the lowest possible price, so that was the route we chose, in spite of being possible price, so that was the route we chose, in spite of being
"warned" that there was more software and hardware support available for the \(8 \not \varnothing \varnothing / 5-10 \emptyset\) systems. The hardware and hardware support available for for possible RAM expansion, since the most needed hardware add-ons for the \(S-10 g\) systems, such as cassette interface, serial interface parallel interface, etc., were already built-in on the KIM-1. All that parallel interface, etc., were already built-in on the KIM-1. All that an old TTY.

When the time came to get a second system, sometime in 1979, the SYM-1 had become the "best buy", and it remained so for nearly four years, in spite of the ever increasing competition, especially as a "learning tool".

The situation has changed dramatically within the past year, and will, in all probability, continue to do so, from this point on. The Timex ZX-81 started the new trend, and the VIC=2ळ and COM-64 accelerated it. Today, either of these latter two is more cost effective than the SYM-1, and, with the addition of a Monitor ROM or Cassette to permit direct machine language entry, disassembly, etc., the inner workings of a very impressive internal operating system, the "KERNAL", are wide open to study and to learn much from.

While the source codes for the Microsoft BASIC and KERNAL ROMs are not published, the Reference Guides for the two systems provide enough information on the memory map and subroutine entry points to make analysis of a disassembly listing (the ML Monitor includes a simple disassembler) not too difficult. Thus the VIC=2ø and COM-64 provide the
same learning potential as does the SYM-1, and both are as easily expandable, from the I/O standpoint. The VIC has a pair of 6522 VIA and the "64" has a pair of 6526 CIAs (Complex Interface Adaptors).

By now you must have gathered that we are recommending the VIC=2 or the COM-64 as the "beginner's" entry-level system over the SYM-1. But what does this mean for old on-going process), and we are as comfortable with them as with an old pair of shoes or a wife of long standing. We fully intend to keep our sym- of shoes or a wife of long standing for word processing (we're so comfortable with SWP). We will be teaching a microprocessor course built around the \(-20 /-64\) systems so that we are studying their hardware onfigurations and operating systems for teaching purposes. While doing configuratioe how they (and their peripherals) can be used as peripheral for the SYM-1, and vice versa. for
Examples: The COM-64 can be used as a 40 column (with color graphics as a "free" bonus) terminal for the SYM-1 in place of the KTM-2. The KTM-2/89 can be used as an 89 column terminal for the -20 and the -64 , can be used as a color graphics (output) terminal for the sym-1 (for our hobby of video recording). Most exciting of all would be the use of the VIC-1541 disk drives with the SYM-1.

Another point of compatibility between SYM-1 and the COM-64 is the availability of MAE (Macro Assembler Editor) and SWP (Simplified Word Processor) for the - 64 . These are first cousins to RAE and SWP, so the adaptation of the -1541 drives to the SYM- 1 will permit either the SYM-1 or the -64 to be used as a development system for the other. We hope to be able to report progress along these lines in Issue No. 17.

We understand the prices of both machines in the PAL versions are still quite high overseas, but in the United States the \(-2 \mathscr{9}\) is below \(\$ 99\), and the -64 is below \$2øg. Thus both are less expensive than the SYM-1, with far greater versatility. This would suggest that overseas user color or \(B / W\), and a voltage stepdown transformer ( \(22 \tilde{\sigma}\) or \(24 \tilde{\mathscr{q}}\) VAC to 117 VAC).

We know that the duty on colour TVs is high in some countries (when we were in Australia last year the newspapers were covering the sad story of a government official accused of bringing in, but not declaring, a PAL/SECAM countries, perhaps it would carry a lower duty???

A word of caution is in order here: Buying a COM- 64 by mail-order may be troublesome, since the infant mortality rate (or incidence of failure to operate right-out-of-the-box) seems to be unusually high, based on our own experience, and talking with both other purchasers and several discount house dealers. It might be "safer" to have someone buy and "burn-in" the unit for you; then failure to work after shipment would most likely only be a connector or chip vibrated loose.

\section*{ON "OLD" COMPUTERS}

Now that we have grown to love the VIC=26 and the COM-64, and recommend them as "entry-level" systems for beginners, provided only that the ML Monitor, on Cartridge, Cassette, or Diskette, be among the first

When we switched from KIM to SYM, the reason was to have TWO systems, one for student use at school, the other for personal use at home. SYM SYM/KIM rombination a "natural". The KIM (actually two of them) was
long ago retired to the shelf, mostly because it was not as versatile as the SYM, and would not directly take the KTM-2 terminal, requiring a

Our SYMs will not be retired. Each of our many systems was "customized" for a particular application, and will continue to be used as long as the need for those applications continues. Some of those systems will ge given to students who can put them to use, and will give them good

Our two major reasons for getting the VIC=2Ø and the COM-64 were, first, to learn how they worked, and how to use them, so that we could build a course around them, and second, to use them as peripherals for the SYM, e.g., as color graphic terminals (output only). During our learning process we found that ther for the SYM.

Also, since so much software is becoming available for the Commodore machines, e.g., MAE, spread sheets, word processors, etc., that would be more effective with an 80 column terminal, we dike to add a KTM-2/80 on the CBM RS-232-C (actually at TTL levels) port for this purpose, as output only. The Commodore would still be used for input, because of its inherent full-screen editing capability.
Thus, we're not abandoning SYM; it's just that as our needs expand into areas where little commercially available software exists for the SYM, it's more time and cost effective to get new hardware that will run the software we want, especially, when both the hardware and software are 50 inexpensive. There is so much "public domain" and published software vailable for the Commodore machines through Users's Groups that, when you "average" the cost of purchased software with the free software, the
cost per program is ridiculously low.

Our Commodores are supplementing our SYMs, not replacing them!

DOSES FOR THE SYM
We have SYMS with three different DOSes (CODOS, FODS, and FDC-1), each with (naturally) its own syntax and "personality", and our own personality seems to "split" when we shift from one DOS to another on a rapidly rotating basis.

Actually, there are five DOSes available for the SYM, since two very elegant DOSes have been devloped for use with the HDE (FODS) Disk Controller. These are the UK-SYMmers DOS, and RAE.DOS, developed by Ralph Deane and Jack Brown. The latter works only with RAE-1 (but NOT with BASIC), and provides the most sophisticated microcomputer software development environment we have ever seen. RAE has been expanded to include a completely integrated DOS, as well as enhanced editing features (a la Dean and Brown's earlier X-RAY).
[In thinking about this matter today, the thought occcured to us that our situation had something in common with polygamy, in that each of the systems makes its own set of demands on us, and each gives us satisfaction and pleasure in its own way. The closest we can come to describing our situation is polysYmmetry, but this might imply that the other systems are more like concubines than wives.]
[We also have around a number of non-DOS systems. These include two KIM-1s and an AIM-65, which we put on the shelf to avoid further confusion, a SYM-69 ( \(6869-b a s e d\) ), a Sinclair \(2 x-81\) ( \(2-89\)-based), an RCA COSMAC-VIP (18g2-based) and an SDK-8S (8ø85-based). These latter w

SYM-PHYSIS 16-24

We now have a COM－64 and a VIC＝2ด（fully expanded to 4GK RAM），both with CBM DOS V2．6（1541），and soon，an Apple II－E，with its own variety of DOSes．It should be noted that the CBM BASIC V2（by Microsoft）in both the -20 and the -64 is rather clumsily interfaced to the DOS，compared to the Version 4 BASIC，and a variety of＂WEDGES＂to improve the inter－ face is available，including one for the -64 called DOS 5.1 ；there is so much to learn！

We＇ll play with the Apple II－E for awhile，when we get it，to see how much we still remember about running the Apple II，and how the II－E don＇t really care for the changes in the II－E；but we think we can compare the two Apples more impartially．

We very much like both the VIC＝20 and the COM－64，especially on the basis of their low price，and think that these are the＂wave of the future＂（Commodore says that the VIC＝2Ø is the most widely sold and the－64，getting to know and love them，in order to help beginneers （schoolteachers，and young students，in particular）learn to do the same．

Mostly，though，we also like the low price of the VIC－1541 Disk Drive， and would very much like to be able to add，very inexpensively，CBM DOS V2．6 to the SYM－1（see elsewhere in this issue for further info）！ Concomitant with the low price of the 1541 Single Drive System， unfortunately，is its slowness，by a factor of at least eight，as compared with the more expensive Dual Drive Systems available for other CBM Computers．This is because the -1541 Drives use a serial hardware implementation of the（full parallel）IEEE－488 interface．

\section*{RAM VS ROM IN DISK－BASED SYSTEMS}

We have long favored our FODS system over our CODOS system for program development work because the FODS required only 8K of RAM（ \(\$ 6\) 6月贝－क7FFF）， while the CODOS required 16 K （ \(\$ 4960-\$ 7 F F F\) ）．We were receiving a number of CODOS disks from Jack Brown，＂Sandy＂Mackay，Lee Longstreet，Jack Gieryic，and others，which we could not use，because they had reconfigured their systems．They reasoned，and correctly so，that with a disk system the only ROM requirement is for a BOOT program．［The BOOT program could be in a POWER ON RESET ROM so that not even SUPERMON need be resident in ROM，but this would lead to system non－compatibility． 1

So，we followed their lead，and replaced the BAS－1 and RAE－1 ROMS from \＄Bøøø－\＄EFFF with RAM（also added 61162 K RAMs at \(\$ 9 \emptyset \emptyset \emptyset, \$ 99 \emptyset \emptyset\) ，and \＄FgQg）．Since RAE－1 does not require the co－residency of BAS－1，and FORTH does not need either BASIC or RAE resident，we run these from a special version of CODOS（supplied on the original distribution disk） which resides in two segments，at \＄6øøø－\＄7FFF and \＄Cøøø－\＄DFFF（vacated by BASIC！）．Eventually we＇ll relocate BAS－1 to occupy \＄BGGG－\＄BFFF and BEgQø－\＄EFFF（vacated by RAE！）so that it，too，can operate with the High RAM version of coDos．

Having pulled CODOS out of \(\$ 4 \mathscr{\circ}\) g－\＄5FFF，we relocated the visible memory from \＄2øøø－\＄3FFF，where it was＂clobbered＂by Jack Brown＇s CODOS BASIC and CODOS FORTH（the best FORTH we ve seen，to the FORTH location well above FORTH＇s working dictionary．We
buffers in the \(8 K+\) block from \(\$\) Bøgஜ－\(\$ \mathrm{D} \varnothing 日 \emptyset\) ．

Nearly two years ago Jack Brown sent us（as a Christmas gift），a cassette－based FORTH with a beautiful＂POLYSHOW＂graphics demonstration for the Visible Memory at \(\$ 4 \not \subset \varnothing \Omega\) ．Installing CoDos＂bumped＂the VM down tracked garbage through the display．It was nice to be able to give FORTH back its fast，high resolution grahics capability，again，and with

SYM－PHYSIS 16－25

CODOS this time．CODOS can SAVE or GET an \(8 K\) graphics screen within a second or so！
＂Sandy＂Mackay sent us copies of his CODX and wordx packages for the CODOS／SYM．CODX is an enhanced RAEINTERFACE which includes X－RAY［NOTE： \(X\)－RAY is not available（as yet）in a CODOS version］，and a＂souped－up＂ Version of the Gemini－10x printer oriver published elswhere in this SODOS RAY／SWP S कDFFF，however，which we now，fortunately，have．

Putting RAM at \(\$\) Bøøg－\＄EFFF is the wisest move one can make in any SYM／DOS system．Doing so in our CODOS system has made a wealth of great software available for the SYM．Since our CODOS system is our only SYM with a Visible Memory installed，and has our most powerful FORTH system so installed，we will be using it more and more as we get around （finally）to the image processing experiments we have long had in mind．
＂UPGRADE＂TO SWP 2.5
As mentioned above，＂Sandy＂Mackay，who wrote SWP－2．5，and who wrote the Gemini－1øX Printer Driver，published elswhere in this issue，provided us with a copy of his WORDX for SYM／CODOS systems．WORDX contains several enhancements to the Gemini Printer Driver stoo extensive to publish here）and one major enhancement to SWP 2．5．Our CODOS system is still using the 20 ma loop decwriter printer，since the Gemini is currently improvement．We reprint it below，however，for users of SWP：



THE END OF SYM?
Several of our readers have written to us, and also to MICRD, concerning MICRO's decision (September 1983) to abandon its support of single board systems, i.e., AIM, SYM, and KIM (the "AimSymKim", or "ASK", systems which formed its initial basis for publication.

We understand MICRO's reasons. While we are not privy to the exact figures, the number of VIC=20s out there must be approaching two million, while the number of SYMs must be way under \(196, \emptyset \emptyset \%\). This is not surprising, since the price of a single BAS-1 ROM is more than the price of a complete VIC=2ø!
As many of you have heard, Synertek will be giving up SYM/KTM production by the end of the year, and until then, delivery schedules will be "uncertain", to say the least. We also understand Synertek's reasons. Their prices are no longer competitive.

We did not feel that the SYM-2 and KTM-3 were viable improvements over the SYM-1 and the KTM-2. Dur suggestion to Synertek was to consider a package deal, with the SYM-1 with BAS-1 and RAE-1 installed (there is no replaced with a single chip version at the same price?) and a KTM-2/8g. The selling price for the combination could have been in the \(\$ 595\) region, same as the original Commodore-64 price. If Commodore can provide their Microsoft BASIC at little more than the chip cost couldn't Synertek do the same?

We even suggested that the major elements of the SYM iforget the no SYM-PHYSIS 16-27
longer needed hex pad and 7-segment displays) could be mounted in a corner of a redesigned KTM to make a really single board computer, much more powerful than the AIM-65, but were told that such a product would not fit into their planned product line.

At any rate, there will be no new SYMs or KTMs after the end of the year, unless someone elects to purchase the manufacturing rights (we'11 keep you posted on this), as was done for the KIM-1, when Commodore decided to concentrate on the PET product line.

The Users: Group will be winding down its activities also. We will maintain a small stock of replacement (proprietary) ROMs, and fill demand. Issue \#17 will be our losing issue; our four years plus shable qualify us for a Guinness record as the longest running Users's Group qualify us for a Guinne

ON UNANSWERED LETTERS
We are able to meet most of our commitments except for answering each of the letters you write personally. It frustrates us not to be able to do so, especially when there are important questions which must be left unanswered, but to do so would require finding about four hours of "free" time each and every day, an obvious impracticality.

The letters get "stacked", and we do try to get to them, sometimes FIFO, sometimes LiFO, sometimes by random selection, but the stack continues to grow. [Just today, for example, we are answering a very well thought out, but somewhat critical letter we received back in January of 1982!]

We pride ourselves in being "organized", and wish there was some way in which our many computers could help us be even more so, but the hard copy problem is one on which we are still working. We had been feeling very guilty about all this, blaming our own inadequacies, until we came across a brief essay by Andy Rooney, seen regularly on CBS's "bQ Minutes" show, entitled "The Organized Man's Vacation", in "This World" (24 July 1983).

We now feel less lonely in our guilt, knowing that our situation is not unique, and that other, far more successful individuals share our problem. We reprint below a few paragraphs from Mr. Rooney's essay, by way of letting him do our explaining for us:
"Because it seemed like a good time for me to get caught up on all those odds and ends of papers I had around the office and in my bureau drawers at home, I packed up several boxes and a briefcase and brought them with me to the country on vacation.
"Naturally I didn't get at it the first day or two. Any time now though, I think IVII get started. I try to decide when to get at thew every morning and several times during the day. The papers are still right there in those boxes, ready to be gone over. It'll be good to get them cleaned up so \(I\) can start fresh when I get back to work.
"Last year I brought several boxes of important papers with me to go over on vacation, too. I still have those around here somewhere. don't know what happened last summer. I never did get at them. That' not going to happen this year, you can bet on that.
"I'm not exactly sure what's in the boxes. There are a lot of letters I ought to answer, I know that, and some bank statements, I think.
"What I think I'Il do is save the boxes I have the papers in, and when \(I\) get at working on them INII put them back in the boxes all carefully Then, when I go home from vacation, I can fin winter \(I\) 'll be able to put my finger on anthing \(I\) need. "SYM-PHYSIS \(16-28\)

\section*{MORE ON FORTH}

We now have three excellent disk-linked FORTHs available for SYM, both fig-FORTH and 79-STANDARD versions (fig-FORTH is easily "upgradable" to the \(79-S T A N D A R D\) by a few simple new definitions and a few simple reefinitions). The CODOS and FODS versions are by Jack Brown, and the DC-1 version is by Bill Wharrie. Both authors have provided a number of very useful application and utility "screens" (the FORTH source-code format) with their systems, and are developing others. Bill Wharrie sent us a number of screens which are too extensive to publish here.

We suggest that FORTH users work directly with the authors of their versions to form specialized users's groups for software interchange directly on the appropriate magnetic medium. We would go even further interchange screens on cassette, since their disk formats are not compatible.

We have an excellent C-64 FORTH (Datatronic AB, Stockholm, Sweden), into which we plan to key-in many of Jack's and Bill's screens. The task is slightly complicated here since the "standard" screen format of 16 lines of 64 characters ( 1024 bytes) has been replaced by a screen format of 25 lines of 4 characters (1øøळ bytes) to better conform to the video display of the COM-64.

We never cease to be amazed at the high degree of transportability of FORTH programs. Except for a few "primitive" FORTH words, and the DOS and Terminal/Video interfacing, no other modifications are required. We particularly wish to get Michel Dessaintes DECOMPILER from our SYM-FORTH into the COM-64, to study the structure of that FORTH. [Dessaintes? DECOMPILER is to FORTH as his DISASSEMBLER is to \(65 g 2\) Machine Language. \(]\) Then we will be able (someday!) to modify the Datatronic AB version to work directly with a KTM-2/8G on the RS-232-C interface with \(16 \times 64\) screens. This will be particularly useful when SYM-FORTH is interfaced to the VIC-1541 Disk Drive.

Here is some information supplied by Bill Wharrie for FDC-1 FORTH users: Lux:

August 24/83
Enclosed is some material for the next issue --
Bill Wharrie Forth CASE statement, a 'video editor' and a correction for a bug in the \(U /\) routine

First the U/ bug. I have never, to my knowledge, been
oitten by this bug -- it involves a carry error that only occurs under specific conditions. The correction is
painless to add. I would lploe the correction to be
published and added to all subsequent releases of FDC-Forth
if possible. (i.e. included in the boot-up object oode
as outlined in screen 125).
The next set of screens present the CASE statement and the video editor as one package. Screens 171-173 provide a brief explanation of the code in screens 195-197 and 190-194.

Also included in this package is a set of screens that link in the BAS-1 floating point routines for use from Forth. This work is PRELIMINARY ONLY and urvis for
and any errors trapped by the BAS-1 routines (such
division by 0) will dump you into BAS 1 which will then ivash (since is an be taken pare of with error traps in the Forth words. The solution to the first nroblom involves
inding out how to use the INPUT routine in BAS.
Execution addresses for the BAS f.p. routines nublished \(n\) SYM-PHYSIS were a great help in writing this code \(f\) you here of anyone interested in versuing this please feel free to photocony these screens and send them off.

After working out the BAS links I felt I had created monstrous kludge -- areas of page 0 have to be swanned ut as well as the problems mentioned above -- so my thinking now is to develop a floating-point package that s integrated into Forth. I'd like to buy a cony of Huey II (and charge it against my royalties) and re-write it for use in Forth. I've included this request on a separate sheet headed ORIER.

One last VERY IMPORTANT thing. There is an ERROR in the FDC-Forth Installation Instructions. About \(2 / 3\) of the way down page 1 the list of changes for a 24 K ystem is given. The address 08AF is wrong - it should be 08A3. Please publish this change if you think it is necessary and correct subsequent releases of the instructions.

That's about it for now -- I'll have more goodies for the next issue. I hope this isn't too late for the September issue.

By the way, FDC-Forth will work without modification with double-sided disks! Drive 0, side 1 contains screens with double-sided disks! Drive 0 , side 1 contain
0 to 299, drive 1 side 1 has screens 200 to 399 , to 000 to 590 and drive has sdreens 600 to 799 .

NOTE TO EARLY PURCHASERS OF FDC-FORTH
The Installation Corrections for a 24 K system are incorrectly given in the documentation provided. Here are the correct corrections:

\section*{9211:59 ø897:4D ø8A3:59 13C5:** 13Dの***}
[** means subtract \(\$ 20\) from whatever is currently in these locations] [EDITOR'S NOTE: Space limitations obviously prevent us from reprinting all of Bill's material. We suggest, therefore, that all interested ORTH users contact Bill directly. We are, however, reprinting his two screens on the "U/ "RUG'" (of which we were unaware), because of their applicability to all versions of FORTH.]

SCR \# 124
( CORRECTION FOR U/ BUG ) FORTH DEFINITIONS DECIMAL
CODE (U/) D \# LDY, N 1+ STY
BEGIN, \(\operatorname{SEC} 2+\) ROL, SEC \(3+\) ROL, \(N 1+\) ROL, SEC, SEC \(2+\) LDA, BOT SBC, TAY
\(N 1+L D A, ~ \emptyset\) SBC, \(\emptyset \#\) LDA, \(N 1+\) STA, PLA CS IF, SEC \(2+\) STY, SEC \(3+\) STA, THEN,
POP JMP, END-CODE
HEX
U \(16+\) DUP \(4 C\) SWAP C! \(1+\), (U/) SWAP !
DECIMAL
3 ;
15

\section*{PTYPE RING_LETTER.T}

\section*{SATURN RINGNEWS}

June 28, 1983
(Modified Ausust 30 for SYM-1 CONOS members)
Dear Fellows of the Riris:
This is soins to be an informal short note. We are startins
off small. Only six includins myself. They are:
T FORTH(??)

\section*{This issue will consist of the HYFER compiler which takes source for
FORTH written in FORTH plus an afflication to senerate a hew FURTH FORTH written in FORTH plus an afflication to senerate a new FURTh (headerless code). The documentation for this sustem is not complete. Study the DEMO job files and the load screens 5055 to see how \\ to operate the system.}

This sustem should not be further distributed without my written permission pu may, however use this system to senerate runtime only (headerless code) for further distribution and much personal profit - we hope.

The next Issue of RING news will be available in September. In this issue we will present Laushins Water's Mailins, and General Ledser prosrams writteri in FORTH, Bruce Carbress Floatins Flash Fackase ( four sisnificant isit floating point) and some new FokT material from lion
I flan to write a FORTH version of Bruce's Floatins Flash.
For future issues we will be lookins at 68000 FORTH for the datamover board.
I would also sussest that we exchanse addresses and telefhone numbers in the next issue. If you do not want yours released to the other rins members please let me know by next issue. Perhars we could start exchansins files by shone I have a Hayes smart modem and I thirk. Bruce and Donald also have one.

Remember, to be a member of the rins, you must send a contribution on disk plus \(\$ 3.00\) to cover cost of mailins your disk back. At this time I am pleased with our small start and will be hafey to see very slow srowth in the membership of the rins.

Please note that I will not be available durins July and Ausust. The Brown family will be stayins at a remote wilderness cabin on the shore of a lake 25 miles from the nearest roads, shones, fower, and computers!

\section*{Best ressrdsy \\ Jack Brown}

PS SYM members will have the MTU related stuff replaced by SYM related STUFF and vice versa. SYM-PHYSIS 16-32
\[
\begin{aligned}
& \text { MTU-130 CODOS members } \\
& \text { Donald Full - - - main interest FORTH } \\
& \text { Laushins Water - - - main interest FORTH } \\
& \text { SYM-1 with CODOS members } \\
& \text { Jack. Brown } \\
& \text { Sands Mackas - -- main interest ??? } \\
& \text { Marts Maciejewski - main interest ??? }
\end{aligned}
\]

\section*{BOOK RECOMMENDATIONS}

The following two books are worth noting，one for its extremely broad area of applicability，the other specifically for COM－64 users：
＂REAL TIME PROGRAMMING－Neglected Topics＂，Caxton C．Foster， Addison－Wesley Publishing Company，1982．（\＄9．95 US）

Foster is the author of the earlier recommended＂PROGRAMMING A MICRO－ COMPUTER－6592＂．His work is at the level of a Leventhal or Zumchak， which is just pbout the highest recommendation we can give an author． Definitely MUST reading．
＂64 INTERN－Das grosse Buch zum Commodore 64＂，Angerhausen，et al， Data Becker GmbH，Duesseldorf，1983．（69 Swiss Fr）

Half of this 310 page book is textual information on the com－ 64 system， the remainder is fully commented（in German）source code for the PAL version of the BASIC and KERNAL ROMs．［Having had to pass German and rench reading comprehension exams，ever so many years ago，as part to us by Norbert Thuering，to be very helpful，indeed．］

A RELocated fods
Paul Beaupre，of ECC Microwave Associates，has customized his FODS， elocating it，SUPERMON，and SYSRAM（and I／0，too，we believe）higher up in the Memory Map．Some of the details，and an offer to make copies available to interested FODS users are given in his letter，reproduced below．Following his letter is a Directory Listing for Paul＇s System isk．

ECC Microware Associates
87 Fraricis Ave．
Newingtar，Ct． 215111
The disk ericlased is a madified FODS in which all the software has beer relocated． Iristead of residing at address \(\$ 7300\) ，it is now located at address \＄B300．This relacated versian looks at an \＄E page moriter，systems RAM located at \＄FFB（d－\＄FFFF and the FODS controller located at \＄FE8』．

All files which were at \(\$ 60001\) are now at \＄月Rad．This will now give you symmers 48 K af user ram with FODS using 8K of it．\％TED has beer relocated for thase of you who use it．\％ELM has also been corrected．

Copies of the new operating system are available directly from ECC at \(\$ 55\) each．Please specify if it is for a single ar a duel disk systern．Also if you wart a 35 or 40 trac version．Copies are for a \(51 / 4^{\prime \prime}\) system orly！

Also available from ECC is a relacated RAE． This version is located at SCQBQ－कDFFF．Just mail your original ROMS and a letter if you want cast is \(\$ 30\) ，which includes the new EPROMS and return pastage．
＞DC DIR 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ø1 & \％FODS & B366 & BFFF & ø1 ø1 & \(\varnothing 2\) & \％DIR & ADøø & ADCø & ø2 \\
\hline 03 & \％CPY & ADøø & ADE9 & 0113 & \(\varnothing 4\) & \％DEL & ADøø & AD32 & ø2 \\
\hline 65 & \％FRE & ADøの & AEDE & Ø2 16 & 66 & \％＊FM & ADøø & AFED & ¢3 \\
\hline g7 & \％REA & ADøø & ADA3 & Ø3 99 & ø8 & \％NAM & ADøø & AD7F & 03 \\
\hline 09 & \％LDN & ADø日 & AD73 & 63 12 & 10 & \％FOD & ADøø & ADIE & 03 \\
\hline 11 & \％SOR & ADøø & AE74 & ø3 14 & 12 & \％PAK & ADø日 & AEAD & \(\emptyset 4\) \\
\hline 13 & \％BLM & ADø6 & AFg7 & \(94 \quad 95\) & 14 & \％NUM & ADøø & AF1C & g4 \\
\hline 15 & \％PON & ADøの & AD49 & ø4 15 & 16 & \％POF & ADøø & AD49 & 04 \\
\hline 17 & \％VER & ADø日 & AE14 & ø5 91 & 18 & \％CYR & ADøø & ADAG & ¢5 \\
\hline 19 & \％PAC & ADøø & ADDC & 9596 & 2ø & \％BYE & ADøø & AD49 & ø5 \\
\hline 21 & \％RAE & AВøб & ACB6 & ¢5 99 & 22 & \％RAY & ABøø & ACAØ & ø5 \\
\hline 23 & \％ONN & AADø & AA43 & ø6 ø1 & 24 & \％OFF & AAøø & AA43 & ø6 \\
\hline 25 & \％BAS & Аøøの & A62A & 96.03 & 26 & \％BAX & Аøøø & A96F & 06 \\
\hline 27 & \％TED & АСб6 & ABBA & ¢8 93 & 28 & \％LCP & AFE® & AFFF & ¢9 \\
\hline 29 & \％DIS & Аøø® & A45A & 9912 & 36 & \％TOM & AøøØ & A558 & 10.5 \\
\hline 31 & \％PUB & АดП¢ & A799 & 1016 & 32 & \％BOOT &  & 5øD1 & 11 \\
\hline 33 & ：BOOT & 0206 & 993 & 1202 & 34 & LI & 2 & ¢A15 & － \\
\hline
\end{tabular}

NEXT：T14 502
APPLES AND SYMS
Many of our readers use their SYMs as＂supplements＂to other systems， and／or vice versa，down－loading data from one to the other via various ingenious interfacing methods．For some，the other computer might be one of the larger＂main－frame＂computers，or a mini of some type．For others it is an Apple；increasingly now，it might be the VIC＝2月，or the COM－64．

Duncan Bailey sent us an excellent article，late last year，on his work with Apple／SYM systems．We dion＇t print it then，because as he indi cates in his accompanying letter，which is reprinted below，his program listing was too light for satisfactory reproduction．We asked Denny Hall to get us a camera－ready listing on his Apple system，but，for some reason，he could not read Duncan＇s diskette．
In any event，here＇s Duncan＇s letter and we suggest that Apple／SYM owners contact him directly，perhaps sending along a blank diskette and nough to cover mailing costs，to get copies of his article（very well done，indeed），and the program listing in machine readable form．
［P．S．Our own copying machine wouldn＇t sufficiently＂enhance＂the original，very lightly printed，letter to get dark enough camera ready copy，so that we had to have our printing company use their super－＂duper＂（pun intended）copying equipment to do the job．Please super－＂duper＂good fresh dark ribbons！］

\section*{609 Echo Glen}

November 24， 1982
I am enclosing a proposed article for Symphysis on my experience using an Apple II as a development system for the SYM．I am quite happy with the way it has worked，and am pleased to share my experiences with others．

As noted in the article，I bought a SYM in order to build a home control system（I would never use a nasty old z－80 as Steve Ciarcia does）．In that regard．I would be delishted to correspond with others who are doing the same thins．Dnce it is all working（my wife says＂if＂），I plan to write up some of the interesting parts for you．

Since you complained about crummy ribbons，I have enclosed an Apple diskette which includes this letter and the article in Applewriter 1.0 format，and a copy of the

SYM－PHYSIS 16－34


D0S/65
One of the major problems affecting the \(65 \emptyset 2\)-based computer user community is the lack of a "universal" DOS, such as CP/M, for \(Z-8 \emptyset / 8 \wp x x\) systems, or FLEX, for \(68 x x\) systems.
The Cedar Valley Computer Association, (P.0. Box 671, Marion, Iowa, 52302), one of the largest AIM-65 Users' Groups of which we know, publishes an excellent newsletter, which we receive regularly on an exchange basis.

We reprint the following extract from the July/September 1983 issue of their newsletter, for its general interest:
dosibs disk operating system
We are supporting two disk operating spstems for the club fioppy Dist project. The simplet one, EL DOS, will be available at the cost of
distribution, between ss and sio. We are looking at a CPIM look-alike as a high-performance DOS. DOSI65 acts identical to Digital Research's CP/M. Se information elsewhere in the newsletter. We have an OEM distribution greement with the company to distribute under a group-purchasee clause at price below the \(s 125\) minimum retail price

The club wall actively discourage illegal copying of this copywited disk operating system. All purchasers must sign an agreement not to distribute to others and not to copy except as to provide personal backup. The DOS committce recomends DOSibs for anyone wishing more than a super-fast cassette" capability from theit disk. For \(\$ 70\) you get: A floppy disk with your own serial number; an. editor; dacroassembler; Debug similar to CPM's Debug) monitor; BASiC-E/65; and 200 pages of cocumentation equivalent or better than CPIM's documentation. The disk ormat for DOS/65 is interchangable with CPIM. You can not execute CPIM icrosof on your 6502 but you can edit ASCll liles and perhaps run hoping that DOS/65 becomes a 6502 standard simular to the \(8080 / 280\) standard CPIM.

We see no reason why DOS/65 would not be usable with the FDC-1 controller, but have not had time to pursue the matter. Perhaps one of our FDC-1 users might want to follow up on this? Being able to read at least ASCII text files on CPM formatted diskettes might be worth their systems, the DOS/65 system could read certain Apple binary or source code files as well.

Here's another extract from the same issue:

\section*{INEO NEEDED}

We have been in correspondence with Don Lewis (who is working closely with Ron Jordan; see elsewhere in this issue). We are swapping COM-64 material and are providing him with SYM software in KIM cassette format (21 times as slow!) for conversion to the AIM.

We do not believe that there will ever be a "universal" 65xx DOS, but we do believe that the addition of the -1541 to SYMs and AIMs can open up a whole new world of PET/VIC/COM-64 software to users of these systems.

LOTS OF IDEAS FROM PHILIP KOHL
Philip Kohl does lots of experimental stuff with his SYM, his IBM PC, and his "company" computers. He keeps a very detailed \(10 g\) of his work. He also writes us long, rambling, letters filled with intriguing ideas, and various software tidbits.

We reprint below some of his most recent correspondence and software submissions. The first letter he sent on cassette, so that we were able to "SWP" it, and correct his abominable mis-spelling of SYM-PHYSIS, as part of our editing. The second came only as hard copy, so we publish it as-was.
e hope you get as much knowledge, and as many new ideas, out of his letters as we did, especially on the use of EEPROMs.

2465 N. W. 199 th Street
Seattle, WA 98177 Seattle, WA 98177
March 27,1983
Dear Lux and Jean:
It's been just over 3 months since you were here. Very welcome visit. And a pleasant surprise

What of my SYM?
Got a lot of ideas on reading the copious documentation that came with the IBM PC. Also got a lot of ideas while using the SYM in a day to day laboratory environment.

The need for restrapping UZด-3 every time I wanted to try out a new idea led to a modification. Lifted all the 'Address Select' jumpers, cleaned wrap pins are inserted from the bottom until the wrap pins. The wire the bottom. The holes are large enough to accept the square part of the pin, but too small to allow the rectangular shank to be forced into the board. No matter. The pins are simply soldered in place from the bottom. Then: 1) restrap with a wire-wrap tool, and 2) cut off the unneeded part of the pins protruding from the bottom of the board

Added, June 13, 1983
Thought of using DIP sockets as described in SYM-PHYSIS \#15. After some measurements, we found that the spacing wasn't quite right. Also double headers would be needed since jumpers cross the gap between the two sockets.

Original text
started to experience random, inexplicable errors in the original SYM (intentional bad pun). Decided that the 6522 at \(U 25\) had failed, so replaced it. Turned out to be a temporary fix, for the problems started to recur about a month later. So, took the SYM that was included in the cost of the June 1981 SYMposium at Chico and installed it. Everything was suddenly normal with the usual reliability that I've come to expect from the SYM.

SYM-PHYSIS 16-36

After some thought, I removed every low-profile socket from the original SYM, cleaned out the solder holes, and started installing new sockets of
 The SYM responded on first Power-On.

I copied RAE and BASIC to floppy. DRAM is now at locations \$Bøø日-\$EFFF. Found that I was spending a lot of time at 'startup' just initializing RAM so I could do what I intended. I think you may recall how long it took just to load the DRAM from floppy. And keystroke errors happened more often than not.

How could that be fixed? The memory from \$Fgøø-\$F7EF was still unused. (\$F7FG-\$F7FF is occupied by 46551 's -- terminal at 19,296 baud, printer at 9,609 baud, modem at 1,206 baud, and data exchange with the IBM at a baud rate yet to be established.) So -- developed a program called STARTUP to do all the 6551 initializations, and allow the user to select the mode needed: BASIC (actually a modified EDB), MONITOR (which returns to MON1.1), TCP (communication via modem with a remote computer), and XRAY (which loads RAE and a modified version of XRAY). The software loads all the necessary files from disk for the option selected.

So, designed and built a board (KIM-4 bus) for a 2716 to be addressed between \$Føøg and \$F7EF. Just as I finished wire wrapping the board, I realized that by the addition of an R/W signal at pin 21, I could also use a Synertek 2128 ( 2 K by 8) in the same socket for software development and testing. So I did. Then I programmed and installed a 2716. Didn't work. Removed the R/W wire from pin 21.

Pin 21 to ground. All कØø: 5 , again. Finally found the Intel documentation: pin 21 at +5 volts. Working! Probably should have a \(3.3 k\) resistor to VCC to limit the current. Come to think of it, Intel recommends that the pin be tied to VCC.

One needs a SPDT switch on pin 21. One position provides R/W for a \(2 k\) by 8 SRAM. The other position provides +5 volts for an Intel 2716 .

After using the STARTUP software for a while, I added code to tell me what file was being loaded. This is now installed on the 2716 to be discussed below

We spoke of declining SYM interest. In the past three months, I've achieved a much broader scope with respect to personal computers. Which said the SYM intensive software development effort. This after, I learned much these past few weeks by seeing what can be done. Maybe the Group is too small and it's too late. Simply put, my SYM is capable of a great deal more than I had ever imagined.

Have been working for the last 3 weeks on software to allow me to download software in Intel Hex format generated by a cross-assembler on a VAX, convert it to binary, and program an 8751 . This is the version of the 8651 with 4 K of EPROM. Expensive -- \(\$ 15 \emptyset\) each.

Last Thursday I looked at the EPROM programmer in EASIC purchased from the SUG. Decided that I just didn have desire to go in and modify it one more time. So took the Brachman subroutines, threw away almost everything that Goodman had added, and wrote a whole new front end. All the features I liked about my BASIC version were included. Plus
1. Automatic board sensing and setting of parameters for the specific EPROM to be programmed.
2. Real-time display of programming and verification -- address
and value. Found that I had plenty of time while waiting for the 50 millisecond timer to run down to generate and transfer the data. Takes about 5 milliseconds for data transfer at at 19,206 baud.

As expected, the assembler version is FAST: I've just programmed the first 2716 and am working up courage to program the 8751 .

Ruth and I wonder how you both are doing? Have not heard the results of Lux's most recent eye surgery. Nor have we heard of your exper-ience with the storms that we usually get. They appear to have been deflected to the north or south since the 1st of "83.

\author{
A long postscript:
}

April 25, 1983
First, the new EPROM programmer now functions with Intel \(2732^{\prime} 5\) as well as 2716's. Verifying 2764 capability is in the very near future. I have about 16 2764's waiting for analysis. Went past the 8751 quite quickly. The SYM is a nifty base for an EPROM programmer.

Second, after a year of occasional, but very intensive, effort, I'm now coming close to understanding the NEC \(765 /\) Intel 8272 Floppy Disk Controller. And how to write software for it. Always said it took a year to 18 months to understand a VLSI chip. And it has.

Lost Drive \(g\) about 6 weeks ago. The heads would not load. (The drives are made by Magnetic Peripherals, Inc., a CDC subsidiary). So called MiPI for documentation. Got a document number for ordering from St. Paul. MPI is in Oklahoma City. Document arrived. Good description of physical drive. Unfortunately, the data on the PCB's didn't match what I saw. PCB's? Yes. Two. Depending on whether one was dealing with hard sectored or soft sectored floppies. I was in a neither of the above environment.

So gently did a lot of looking and an occasional touch with a probe from my DVOM. As one might expect, it takes a fairly healthy transistor to control a solenoid. I inadventently shorted something to something else. To be startled by a "Thunk". More cautious probing. Occasional Thunk".

OK. The SYM is hot. Test from keyboard. Voila! Works. That was yesterday.

Had a conversation with CDC this morning. Accepted responsibility for providing insufficient informa

This evening 1 again tried Drive 0 . Still works. One day is better than none. Damned if I know what happened, Lux.

\section*{April 29, 1983}

Many of my friends are now aware of my tendency to write letters and forget to mail them. I received a letter from you that had been lost for a year. But one friend in the LA area lost one for seven years. Actually, the letter was typed, and in an addressed envelope. And we still lost it.

I wanted to report on changing sockets on the SYM. It has been an outstanding success. A couple of glitches the first couple of days; since then, rock solid. Don't underestimate the cost. Machined pin, be a couple of years before I know that it was really worth the cost and effort.

And yet another long postscript：
June 11， 1983
Am considering replacing the 2716 at \(\$ F \varnothing \varnothing \sigma\) with an EEPROM－－the 2817. Intel has removed almost all the pain of interfacing；all that＇s needed now is a +21 volt supply．All of the external circuitry that is needed average of \(10 \mathrm{mi} i \mathrm{ilseconds}\) per byte with a maximum of 75 milliseconds ．

Small DC to DC converters are now inexpensive enough to be a good alternative to 9 volt batteries for EPROM programming．Example？The Elpac／TDK CE－ 299 is \(a+5\) volt to +21 volt \(D C\) to \(D C\) converter that fits in a 24 pin DIP socket and costs \(\$ 16.56\) in quantities of 1 to 9.

Was most intriqued by the CMOS version of the 6502 with 17 added instructions．So went to get the most recent Synertek catalog only to discover that you had published all of the available information in SYM－PHYSIS．I＇m wondering if I learned enough from MEAN14 to be able to extend RAE？

Have spent the last six weeks writing software to interface an optical character reader with a VAX，or other computer．The OCR is made by Dest and has the capability of recognizing 8 of the more common IBM typewriter fonts．It cannot read proportional spacing．I think it can be made to read EPSON dot－matrix．Each font is in a pair of \(2764^{\prime} 5^{\prime}\) have had good success with uploading from EPROM and analyzing the characters．So why interpose a SYM？To obtain 3 capabilities：1）Alter the character translation table to corrrect consistent errors（example： change an 1 to a 1 or take advantage of known characteristics of of leading characters（the output from the Dest is not left justified to of leadi 1 char 3 ） column 1，and 3）provide a preview capability before uploading the text to a computer．

I＇m developing the software on my．Televideo 950，and using an ADDS Regent 60 with the OCR．The conditional assembly capability of RAE has been most useful since the＂clear screen＂and cursor addressing differs between the two terminals．Also，the location of the code is different． Tried the following and it works：
；Conditional assembly
```

Set terminal = \$g\varnothing for Televideo 95%

```
Set terminal \(=\$ 01\) for ADDS Regent 6
set terminal \(=\$ \emptyset \varnothing\)
```

ife terminal
-ba \$7めøø
ifn terminal
-ba \$990g
-mc \$7øøø

```
 most often for programming EPROMs．（My DOS is at \＄9øøø．）

Have entertained myself with Dick Albers utilities from SYM－PHYSIS \＃15． Have not tried the＇wild card＂memory search program yet．But did find what I think is an omission in the hex－dec dec－hex converter：
\begin{tabular}{lll}
619 & JSR INCHR & Get next character \\
615 & CMF \＃\＄のD & Carriage return？ \\
629 & BNE D2H & Not CR；continue
\end{tabular}
\(\begin{array}{ll}\text { CMP \＃कดD } & \text { Carriage return？} \\ \text { BNE D2H } & \text { Not CR；continue }\end{array}\)

The statement I numbered 615 is the one I think was omitted．I also let RAE figure out the decimal to hex conversions for me as follows：
\begin{tabular}{|c|c|}
\hline \(16 \underline{T}\) TABL & ．SI 16 \\
\hline 1610 & ．SI 100 \\
\hline 1629 & ．SI 10øø \\
\hline 1630 & ．SI 1øめஜ \\
\hline
\end{tabular}

This reverses the bytes from what Dick had and hence requires three modifications to the table lookup statements．It＇s not that my approach is better；just wanted to see if it could be done．
Most cordially，

Philip H．Kohl
August 29， 1983
Dear Lux and Jean：
This is being written with a GTE Microsystems 65SCO2 plugged in to the space that had been occupied with a Synertek 6502 ．Did that：about two hours ago．The date code on the \(655 C 02\) is 8331．

As a test I modified＂prompt＂and installed it in my EEPROM． Which exercizes PHY and FLy．Code enclosed．

Have spent the idle moments of the past two weeks disassembling RAE－1．Idea？Extend to include the new op－codes．Where am I？ Just finished with the code from EC4A to EFFF．

Went to a fair amount of trouble to obtain the of 65scoz＇s that I now have．Called the number published in the last issue of SYM－ FHASIS．That got me a 1 －800 number in Tempe，\(A Z\) ．That got me the names and phone numbers of a local rep and 2 local distributors． It also resulted in a 16 －pege brochure from GTE on the \(655 C \times \%\) ． And the information that there will be a 655 C 21 ， \(655 \mathrm{C} 22,655 \mathrm{C} 2\), and 655C51．

Called one of the local distributors and found out I knew more than they did．Also checked with a Synertek distributor to learn that they would have them 4083 at the earliest．As a result of my interest，one GTE distributor decided to stock them．Which requires an investment，as I＇m sure you well know．Boeing＇s cost？ Just under \(\$ 10\) each in quantities of 6 ．

September 5． 1983

Called Jean last Wednesday for a copy of SWF－2．5．Arrived on Friday． Attempted to load the tape．Odd，low sound．The LED＂S＂didn＇t even go out．Easy problem．Tape recorder was set to \(15 / 16\) ths ips．So SWF is now on floppy，and listed．Waiting＂til I get around to nstalling it．Most of which is changing the dos code so as to long enough to require more than the space between \(\$ 1000\) and \(\$ 4 \mathrm{FFC}\) ． check enclosed．

The \(655 C 02\) seems to be working nicely．The occasional errors I thought came from a 1 bit change in memory and／or dirty contacts seem to be of replacing the BETA dynamic RAM boards with RAM have been pushed well down in the stack．

The major effort of this Labor Day weekend is the continuing under－
SYM－PHYSIS \(16-4 \varnothing\)
standing of FAE. The disassembly is complete and \(I\) m buried in paper-. Looked for clues via RAE Notes, SYMM-FHASIS, Saturn Softnews, and purchased software. Found some clues. Eut my admiration for Carl Moser grows. RAE is elegant -- including the traps for the unwary. not all of which 1 ve found.
[EDITOR'S NOTE: This program is NOT for a 6502 . It is for the 65SCø2. Phil has "manually" added the OPCODEs for the two "new" operations, PHY and PLY. These, plus the other new OPCODEs in the 65SCØ2, could also have been added to RAE as MACROs. While this program, or variants of it, has been published widely and frequently, we reprint it here as our very first 65SCg2 program!]

[And here is a program for those of you who are fortunate enough to be using EEPROMS. This is also for the \(655 C 62\). For those using the 6502 , replace line 9340 (BRA restore) with BEQ restore. BRA is the 65SCg2 mnemonic for BRanch Always.I



SKF-FORTH FOR THE FDC-1
Here is a brief note from Peter Ashby, c/o Victor Harbor H/S, Victor Harbor, SA 5211, Australia, giving the single screen necessary to add FDC I/O capability to Brown's SKF FORTH. We still continue to be amazed at FORTH's ever so easy extendability!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
Conversion of SK.F. (Browr's Forch) to run with F. Note chat y. can only use 4 of tho 5 sectors in each double density trach. (For some reason my SHUCART dr lochs up on che stort of the 5 ch track). \\
Note abo that 4 use no header information ard store sin to trachs and sectors. This may be of some use \(t \bar{o}\) othars \\
LIST \\
reen \(1 \quad 1\) hex \\
0: WORD. IN DUP + [COMPILE] \(\quad+\); IMMEDIATE \\
1 : FEFLACED.BY [COMPILE]: \(2-5 W A P\); IMMEDIATE \\
30 may
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

1 : REFLACED. BY [COMPILE]; \(2-\) SWAP ! ; IMMEDIATE
2 CODE (MDISK.F) GEBG JSR, \(94 \mathrm{IM}, \mathrm{LDA}, 9800\) JSR, XSAVE LDX, YSAVE LDY, NEXT JMF:
5 END-CODE
6 CODE (MDISK.W) 日BBG JSF,
7
XSAVE STX, YSAVE STY, 05 IM, LDA, 9800 JSR,
8 XSAVE LDX, YSAVE LDY, NEXT JMF,
9 END-CODE HEX 4 /MOD A691 C! \(1+\) A692 C!
16
11
12 R) IF (MDISK.R) ELSE (MDISK.W) THEN: DECIMAL
136 WORD. IN (SET) REFLACED. BY (SET1) 1 , S/BLK
15 WORD. IN DRW REFLACED. BY (SET) 1 WORD. IN DRW REPLACED.BY EXIT

A BASIC APPLICATION PROGRAM
As you must have noticed, most of the programs published in SYM-PHYSIS are "utilities", rather than applications, and utility programs are more efficient in ML than in BASIC (this "aside" is to explain away what may seem to be a double-bias against both applications and BASIC programs).
We received a BASIC application program on cassette from R. Dale Barber, and tried it out. Unfortunately, since we did not understand the application, we had no idea of how to answer the input requests, e.g., order-of-manitude) inut values? Since our inputs were "garbage" 50 were our outputs; GIGO: Garbage In, Garbage Dut. We pointed this out to Dale, and he sent along the necessary documentation.

Since the program (and the documentation) are quite lengthy, and the application is so highly specialized, our first thought was to "shelve" the material. On the other hand, it is important to show that the SYM can and does earn its keep. Additionally, many SYMs were originally bought by non-EEs, e.g., Mechanical and Civil Engineers (to list only non-engineering, disciplines), primarily for self-training in the computer field.

This we know, and certainly do appreciate, since so many of them have falled us for help during their first few weeks with the SYM! After that, we hear from many of them only much later, when they send along an example showing how much they have learned on their own, and how the SYM has more than repaid for itself.

Here then, is Barber's CHANNEL FLOW COMPUTATION program for the civil (or uncivil, to quote Dale!) engineers, among you:
1 PRINT"WRITTEN BY R.D. BAREER, P.E. - AUGUST, 1982"
10 PRINT"CHEZY-KUTTER CHANNEL FLOW COMPUTATION"
20 PRINT"FOR TRAPEZOIDAL CHANNELS OF WIDTH W AND SIDE SLOPES SS: \(1^{\prime \prime}\) 22 DIM DR(190,5):PRINT"NOTE: THIS PROGRAM WILL HANDLE UP TO 1 Gの INCREME

23 PRINT"OF DEPTH. PLEASE TURN PRINTER ON FOR SOFTWARE CONTROL IF HARDC 24 FRINT"IS DESIRED.
25 PRINT
26 INPUT"ENTER YOUR JOB NAME ";JO"
27 INPUT"ENTER THE DATE (MO/DAY/YR) ";DA\$
28 INPUT"TO SKIP TABLE OF N VALUES ENTER 1,OTHERWISE 2 "; J
29 ON J GOTO 145
30 PRINT"THE FOLLOWING TARLE GIVES THE RELATIVE ROUGHNESS FACTORS" 40 PRINT"FOR VARIOUS CHANNEL CONDITIONS. SELECT THE FACTOR WHICH" \(5 \emptyset\) PRINT"BEST FITS YOUR PRORLEM."

\(7 \emptyset\) FRINT"WOOD PLANK LINED FLUMES - . \(01 \varnothing\) (BEST) TO . 016 (ROUGHEST)"
8® PRINT"CEMENTED RUBBLE LINING - . 017 TO . \(93 \emptyset "\)
96 FRINT"SMOOTH STEEL PLATE - .911 TO . \(615 "\)
109 PRINTT"STRAIGHT MNIFORM EARTH CANALS
120 PRINT"ROUGH WEEDY EARTH CANALS 025 T0 T0 . \(025^{\prime \prime}\)
130 PRINT"SMOOTH UNIFORM NATURAL CHANNELS - 025 TO
PRINT"WIO
40 PRINT" 145 PRINT
50 INPUT"ENTER THE VALUE SELECTED FOR N: "; \(N\).
52 PRINT"ENTER THE MAXIMUM DEPTH OF INTEREST AND INCREMENTS IN FEET" 154 INPUT D, I
160 PRINT"NOW ENTER BOTTOM WIDTH IN FT., AND SIDE SLOPES (2 FOR 2: 1)
179 INPUT \(W\), SS
189 INPUT"NOW ENTER THE CHANNEL GRADE IN PERCENT "; G SYM-PHYSIS 16-44
\(211 \mathrm{DE}=\mathrm{C}\)
220 FOR \(A=1\) TOINT ( \(D / I\) )
\(23 \varnothing\) gosub 10めด
249 NEXT A
245 POKE42576,216
250 PRINTCHR ( 17 ): REM TURN ON PRINTER
260 PRINTCHR ( 31 ): REM SET BOLD TYPE
27め PRINTSPC(6) "CHANNEL FLOW COMPUTATION"
275 PRINTCHR\$ (3פ): REM SET NORMAL TYPE
28ø PRINT:PRINT"FOR: ";JO\$, "DATE: ";DA\$
29Ø PRINT;PRINT"CHANMEL WIDTH="; W; "FT.", "SIDE SLOPES="; SS; ": 1"
3Dg PRINT"GRADE=";G;"\%" "N FACTOR=";
319 PRINT:PRINT"DEPTH", "CFS", "VEL.", "AREA", "HY RAD"
320 FOR \(A=1\) TOINT ( \(D / I\) )
3
350 ( \(\mathrm{A}, \mathrm{B}\) )
350 NEXTB
370 NEXTA
\(38 \%\)
FRINT
38\% FRINTCHR\$ (12): REM FORMFEED
390 POKE42576, \(01:\) REM RESET TERMINAL SPEED
395 FORJ=1T05øøø: NEXTJ:REM DELAY TIL FF FINISHED
396 PRINTCHR\$ (19): REM PRINTER OFF
\(4 \emptyset \emptyset\) PRINT"TO RUN ANOTHER VARIATION UNDER THIS TITLE, ENTER *Y"
410 INPUT"OTHERWISE JUST HIT CARRIAGE RETURN TO ESCAPE";RU\$
420 G0TO145
420 GOTO
1909 REM CALCULATIONS
1916 \(\mathrm{DE}=\mathrm{DE}+\mathrm{I}\)
1026 \(A R=D E * W+S 5 * D E * D E: R E M\) AREA
1922 AR=INT (100*AR+.5)/100
1Ø3 \(\varnothing\) PE=W+2*SQR (SS*SS+1) *DE:REM PERIMETER
\(1040 \mathrm{R}=\mathrm{AR} / \mathrm{PE}: \mathrm{R}=\mathrm{INT}(10 \mathrm{\sigma} \cdot \mathrm{R}+.5) / 10 \mathrm{D}\)
\(1641 \mathrm{~F}=.281 / \mathrm{G}+41.66\)
\(1642 \mathrm{C}=(1.811 / N+F) /(N / S Q R(R) * F+1)\)
\(1044 \mathrm{~V}=\mathrm{C} * \operatorname{SQR}(\mathrm{R} * \mathrm{G} / 10 \emptyset)\)
\(1045 \mathrm{~V}=\mathrm{INT}(10 \varnothing * V+.5) / 10 \varnothing\)
\(1046 Q=A R * V: Q=1 N T(109 * Q+.5) / 190\)
\(1060 \mathrm{DR}(\mathrm{A}, 1)=\mathrm{DE}\)
\(1679 \mathrm{DR}(A, 2)=0\)
\(108 \emptyset \operatorname{DR}(A, 3)=V\)
1696 DR \((A, 4)=A R\)
100 DR (A, 5
1129 RETURN
R. DALE BARBER
consulting engineer SETON VILLAGE SANTA FE, NEW MEXICO 87501 505-983-702 7/2e/83
Dear 'Luk' \& Jearı
It is embarrassing to admit that I forget that the rest of the world doesn't talk, ENGINEER'. The program I sent you was missing the sketch showing what a ditch looks like, and the related terminglogy. The equations used were developed empirically early in the certury and are called the Chezy-Kutter formulas. They were fairly formidable to face with a slide rule, and published tables were most commanly used for practical work. Computers make duck soup out of the formulas, and this Charrel Flow Comoutation program prints out a custom set of tables for virtually ary ditch corfiguration.

The variables which determine how much water will flow in a ditch or channel are: 1 . The cross-sectional area, computed from the depth of flaw, width of the bottom, and geametry of the sides. E. The roughmess of the charmel surface, selected from an empirical table af values listed ir the program. 3. the hydraulic the channel area to the wetted oerimeter, called ho of the chaminel in 100 ft . of horizantal ruri).

Once the prggram has received the essential data, includimo the job name and date, it constructs a set of tables for nicrements of water deoth soecified in the input showing the fow in cubic feet oer second, the water velocity in feet per the hydraulic radius, a dimensionless ratio

If you like your answer in gallars per mirute, multiply CFS by 448.8. For a charimel with vertical walls the slode is zero. Enclosed with the sketch is a priritout of a typical problem. The program is useful ta determime how much improvement in flow can be attained by lining with a smoother material, such as concrete (changing the ' \(N\) ' factor)

If there are any other civil (or uncivil) engineers out there interested in exchariging programs, I also have a Hardy Crass orogram (It reiteratively solves comolex pipe retwork flow oroblems to you other folks), and a drainage runoff orogram based on the U.S. Sail Corservation publication 'Estimating Runoff for Small Drainage Areas' which will ccommodate over 100 drainage areas and oririts the estimated rumoff for 10 ard 100 year storms in tabular form.

The great utility orograms published in SYM-PHYSIS have beer the nuts and bolts to assemble a dowerful machine for my work. Most of the commercially available programs for other computers are overpriced garbage, so it has been ro disadvantage to write awn saftware ari the SYM. It may be time for specialty user proups to form around the nucleus of SYM-PHYSIS and start pooling our combiried efforts. There is certairly very little electronic and computer field. You have already published some letters from people in the medical arts, so where are all the SYMgirieers?
I am sending you the BASIC file for the Hardy-Cross pipe network (tape file 3) that you expressed an interest in because of it's iterative solutior, but will warr you in advance, ever setting up a problem for it is a formidable task if you aren't familiar with hydraulics engineering. The problem is similar to wiring up a large grid of interconriected resistors of different values to resemble a street man, comecting different constant current sources to ground at each intersectior, to simulate the local usage, applying several voltages at then computing the current and voltage drop across each then computirg the current and voltage drop across each around the whole system.

As a matter of fact, exactly such a machine was built and sold in the 1920's to solve pipe network problems, but it was very expersive and toak weeks ta set up a problem. The resistor values represented the solution of nonlinear hyoraulic equations based on the diameter, roughriess, flow velocity, arid ength ar meter across ressure drop

The mathematical solution to the problem is indetemminate, but the Hardy-Cross solution computes a discrete solution from assumed variables fork lag (Theverin equivalent) and updates the assumed values for the next iteration. Depending an the complexity of the network, the program will coriverge to a reasonable set of values within five or six iterations,
sometimes setting up interesting oscillations in portions of sometimes setting up interesting oscillations in portions of
the net. The solution in Basic for fifty or sixty pipes can the met. The solution iri Basic for fifty or sixty pipes can would be rice, but I dor't have a year of spare time to write it.

Hugh Criswell＇s Basic Data Save routine（7：17）enables me to save the data from these runs on tape．Almost all my programs， including the double entry book－keepirg system rely heavily on that neat subroutine．

I have rambled on enough and must exit．Am looking forward to the Forth to see how it will apply to control applications． Will send information on my new burglar alarm（the old one was wiped out by lightring）using Radio Shack optoisolators with TRIAC output as soon as it is up and working．


CHANNEL FLDW CDMPUTATIDN

FOR：GOPHER GULLY DRAINAGE SYSTEM
DATE：7／e2／83
CHANNEL WIDTH＝ 6 FT．SIDE SLOPES＝ \(2: 1\)
GRADE \(=.56 \%\) N FACTOR \(=.02\)
\begin{tabular}{llccc} 
DEPTH & CFS & VEL． & AREA & HY RAD \\
.5 & 9.8 & 2.8 & 3.5 & .42 \\
1 & 35.2 & 4.4 & 8 & .76 \\
1.5 & 75.87 & 5.62 & 13.5 & 1.06 \\
2. & 133 & 7.65 & 20 & 1.34 \\
2.5 & 307.35 & 7.54 & 27.5 & 1.6 \\
3 & 30.24 & 8.34 & 36 & 1.85 \\
3.5 & 548.25 & 9.1 & 45.5 & 2.1 \\
4 & & 9.73 & 56 & 2.34
\end{tabular}

ILLUSTRATIVE CROSS SECTION OF A CHANNEL SHOWING DIMENSIONS CONTROLLING FLOW


Channel Grade \％is the fall in ft ．per 100 ft ．along the flowline．

Side Slope is the horizontal distance for 1 ft ．of rise． e． \(2: 1\) slope \(=2 \mathrm{ft}\) ．ho 1 ft ．vert．

A CRYPTOGRAPHIC PROGRAM
Dale Barber sent along several BASIC programs，as mentioned in his letter（above）．One was a stock market simulation，called＂BLACK FRIDAY＂，of which these are the opening lines：
```

196 REM******** ATARI BLACK FRIDAY *********

```

```

126 REM :ADAPTED FOR SYH-BAS BY R.D. B*RER

```

We mention this only because Dale sent us an encrypted message，together We mention this only because Dale sent us an encrypted message，together with the required＂KEY＂，plus the program printed below

SYM－PHYSIS 16－47

First is our sample run，then the program itself．Note that the KEY was not printed out．［The garbling of the word＂INTELLIGENT＂in the decoded message is our fault，since our input was wrong．We absent－mindedly entered a＂U＂following the＂Q＂in the input text，and goofed－up on the correct next letters；GIGO！］

BAZERIES CYLINDER CRYPTOGRAPHIC SYSTEM
ADAPTED TO SYM－BASIC BY R．D．BARBER
FROM THE PROGRAM BY RINALDO F．PRISCD
PUBLISHED IN BYTE MAGAZINE JUNE 1983
COPYRIGHT－PRISCO－8／1／81

THE PROGRAM USES A 2Ø－DISK BAZERIES CYLINDER TO ENCODE MESSAGES．THE CYLINDERS ARE ROTATED TO MATCH A MINIMUM \(2 \varnothing\) LETTER KEY SENTENCE．

ENTER KEY PHRASE AT LEAST 20 LETTERS LONG
LOADING CYLINDER ．．．．．
ENTER TEXT
＜E〉NCODE OR 〈D〉ECODE？
I I IFRGYHILMLIYIHSJCIWF IHKXZYI XMRTOGQUECLULA THESTOCKMARKETGAME ISONEOFTHEMOREINTEHNIGENT

MORE TEXT？Y
ENTER TEXT
〈E〉NCODE OR 〈D〉ECODE？
JMLSLYZXKCCRIONWOXLQUNHSEKMOJHNICJE GAMESIHAVESEENFORCOMPUTERSSTOPTRYIT
MORE TEXT？\(N\)

\section*{OK}
\(1 \varnothing\) PRINT＂BAZERIES CYLINDER CRYPTOGRAPHIC SYSTEM
29 PRINT＂ADAPTED TO SYM－BASIC BY R．D．BARBER＂
\(3 \varnothing\) PRINT＂FROM THE PROGRAM BY RINADO F PRISCO＂
4g PRINT＂PUBE ISHED IN BYTE MAGAZINE JUNE 1983＂
\(5 \emptyset\) PRINT＂COPYRIGHT－PRISCO－8／1／81＂
PRINT：PRINT
7Ø PRINT＂THE PROGRAM USES A 2Ø－DISK BAZERIES CYLINDER＂ \(8 \emptyset\) PRINT＂TO ENCODE MESSAGES．THE CYLINDERS ARE ROTATED＂ \(9 \emptyset\) PRINT＂TO MATCH A MINIMUM 29 LETTER KEY SENTENCE．＂
1øø PRINT＂SEE THE BYTE ARTICLE FOR FURTHER DETAILS．＂＂
116 PRINT：PRINT
\(11 \varnothing\) PRINT：PRINT
\(1 \varnothing \emptyset \emptyset\) REM BAZERIES CRYPTOSYSTEM
\(1 \emptyset 1 \varnothing\) REM BYTE \(6 / 83\)
1 1ø2Ø REM COPYRIGHT（C）8／1／81
\(1 \emptyset 3 \varnothing\) REM RINALDO \(F\) ．PRISCO
1040 REM DEPT．OF MATHEMATICS
1956 REM SUNY AT OSWEGO，N．Y． 13126
1110 DIMDक（2の），P（2の），K\＄（2の）
112 FORI＝1TO2\％：READD\＄（I）：NEXTI
1130 INPUT＂ENTER KEY PHRASE AT LEAST \(2 \varnothing\) LETTERS LONG＂；K \(1146 \mathrm{~K}=\mathrm{ASC}(\mathrm{K} \boldsymbol{\$})\)
\(115 \varnothing\) REM ELIMINATE SPACES
1160 S \(\$=\) K \(\$\) ：GOSUB17øø：K \(\$=\) S \(\$\) ：PRINT
```

189 IFLEN(K$) 2 SGTHENK:$=LEFT\$ (K.%,20)
199 REM USE SORT ON KEY TO FERMUTE DISKS
1200 FRINT"LGADING CYLINDER
210 FORJ=LEN(K.$)-1TO2STEP-
122g}F=
230 FORI=1TO
24%}L=I+
256 1FMIDक(K$, I, 1)<=MID$(K$,L,1)THEN13%%

```

```

1262 K$=LEFT$(K$,I-1)+U$+T$+RIGHT$(k. $,LEN(K$)-1-1)
1280T$=D$(I):D$(I)=D&(L):D$(L)=T\&
1290 F=1
13@g NEXTI
131Ø IFF=ØTHEN13SO
132g NEXTJ
339 REM CYLINDER LGADED
134ø FRINT
35% INPUT"ENTER TEXT ";T\$
136@ PRINT
137@ INPUT"<E>NCODE OR <D>ECODE? ";Y$:Y }$=Y$+"
138@ IFLEFT$(Y$,1)="D"THENF=1:GOTO1390
1385 F=\emptyset
139Ø N=K-65
1406 REM ELIMINATE SPACES FROM T$
141% S$=T$:GOSUB17\emptyset0:T$=S$:PRINTT\$
429 REM LIMIT TO 2g CHARACTERS AT A TIME
1430 L=LEN(T$):IFL`2GTHENL=2Q
1440 REM ORIENT DISKS TO TEXT
1450. I=1
469% FORJ=1TO26
464 IFMID$(T$,I,1)=MID$(D\$ (I), J, 1) THEN1468
1464 IFMID
1466 NEXTJ

```

```

148ø REM SET R TO PROPER ROW NUMPER
149\emptysetN=N+1:R=N-2ø*INT (N/2\emptyset)
15øø IFR=\emptysetTHENR=1
1516 IFR=1THENR=1
520}\mathrm{ REM SET POINTERS TO ROW F
152g REM SET P
1530 FORI=1 TOL
1550 IFP(I) >26THENP (I)=P(I)-26
1560 NEXTI
1570 REM PRINT NEW TEXT
158ø FORI=1TOL
59% PRINTMID$(D$(I),P(I),1);
60% NEXTI
1610 REM ANY MORE TEXT?
629. IFL=LEN(TO) THEN1640
16.30 T$=RIGHT$(T$,LEN(T$)-L):GOTO143/
1649 PRINT:PRINT
1660 INPUT"MORE TEXT? ";Y\&:Y$=Y$+" "
167@ PRINT
16891 IFLEFT$(Y&,1)="Y"THEN1S5%
1699 END
1699 END REMOVE RLANKS FROM S$
1719 S$=" "+S$
1729 FORI=2TOLEN(S$)-2
1726 FORI=2TGLEN(S$)-2 "THEN175g
1749.S$=LEFTक(S$,I-1)+RIGHT$(S$,LEN(S$)-I)
1750 NEXTI
176@ S$=RIGHTक(S\&,LEN(S\&)-1
177g RETURN

```

Sn 30 August 1983, a three-judge panel in the 1.8 . Court of Appeals (Philadelphia) overturned a lower (district) court ruling on the copy--ight protectability of firmware hobject code in Rom, ruling in tavor of Apple Computer, Inc.s and against Frantlin Computer Corp., orie of the sakers of Apple compatible systems.

Frankiin intends to ask for a rehearing by the entire Court of Appeais, while Apple will return to the federal district court for a restraning while Apple will return to the feder

The appellate (no connection with Apple!) court ruled, in effect, that ROM chips (even if they are part of the operating system, as opposed to ROMs containing applications programs) are entitled to the same protec tion as computer programs written on paper or stored on tape.

THE FUTURE OF SYM
We have been watching with much interest Synertek's plans to find a suc cessor to carry on the SYM/KTM product line. We ourselves were not available, for a number of reasons, chief of which was our intent to retire and travel.

As of this date negotiations for transfer of the product ine are under way, and we will be meeting with the parties involved, to provide whatever assistance we can to the new vendor in establishing his custo mer support program.

We'll provide further information in Issue \#17.

\section*{IMAGE PRDCESSING}

We ordered, and are eagerly awaiting delivery of, a MicronEye "Bullet" (Com-64 version), so that we could experiment with image processing. We' 11 try it out first on the Commodore, naturally, but would then the faster operating Dos. We'll report on the MicronEye, which is a solid state video imaging system incorporating a device called the ISS2 OpticRAM. Meanwhile, we'd like to hear from others working in image processing, or with the MicronEye.

\section*{MISCELLANEA}

We had two SYMmers visit us from Switzerland this summer, Dr. ULRICH GUGGISBERG (from near Berne), and NORBERT THUERING (from near Zurich). Unfortunately, they arrived and departed within two days of each other and didn't get to meet.

Mr. Adel Madani, a Saudi Arabian student, working on his Ph.D. in Biomedical Engineering at Johns Hopkins (Baltimore, Maryland), spent three months studying with us on computer systems integration and application.

EILL CRAMER sent us a EASIC file handiing program "BASIC ADDRESS AND PHONE BOOK", together with the RAE source code for an ML program to save and retrieve the data files. We ran out of space in this issue, but Bill offers to supply the programs on FDC-1 diskettes for a \(\$ 10\) media and handling charge. His address is 5699 N . Colony Blvd., The Colony, TX 75055.

SYM-PHYSIS 16-51

RAM-BLINGS
As has become our custom, at least since Issue \#15, we send the first 48 pages of SYM-PHYSIS to a "high-volume" printer who has a slow turnaround time and can work only in multiples of eight pages at a time, but folds and staples automatically during the press run, thus saving us many hours of hand work. This gives us an extra week to do the last our pages; these are then sent to an Instant Printer. Both printers omplete their work at the same time, and we can then stuff and mail both parts together

The extra few days gained this way give us a little breathing spell to write these closing words, and to go over once again the vast amounts of Baterial which we did not have the time or space to get into this issue. He always have guilt feelings at this stage for having had to omit so ruch valuable material, but are consoled by realizing how much material we already have on hand for the next issue.

We also spend some of this time worrying if we have provided the right "mix" of programs vs editoriai opinions, simple vs advanced material, EASIC vs ML, hardware vs software, utilities vs applications, etcetera, etcetera, usw.

This time, with synertek effectively "orphaning" the SyM/kTM systems by the end of 1983 , and with our retiring from full-time teaching, also at the end of the year, we have been thinking of our own plans for 1994-??. Now that we have become a "Professor Emeritus", we are free to accept a isitig frofessorship anywhere in the world. Have computer know in whe travel." If any of our academic colleagues would be interested in basis, please let us know!

While we published (or gave a source for) two programs for the unexFanded SYM in this issue, most of the programs in recent issues required fair amounts of expansion, and most of the articles required a relatively high degree of sophistication on the part of the reader. If you have come along with us this far, you are ready to continue on you

During our twenty years in industry, followed by full-time teaching for During our twenty years in industry, followed by full-time teaching for thirteen years, the four years on sym-physis has been our longest susare saying, in effect, is that the Users? Group was a real necessity for beginners, but is far less urgent for experienced users, of whom there were very few, back in April of 1979 , when the Users: Group was started Since there will be very few new SYM beginners (for these there will till be back issues availabie) we feel that we san soon relail till be back issues availabie), we feel that we can soon relax a ittle, and turn our attention to other interests.

Thus Issue \#17 wiil be our final issue. We have gone from bimonthly to quarterly to three issues per volume. (We almost said per year, but volume 4 will spread out over more than a year!) While the number of pages per volume (or, per year, if you like) has remained essentially constant, the work load has seemed to increase. This may be due to the increasing amount of correspondence, or to the sublimination of our own research interests,
doing the same thing.

We will be starting to put Issue \#17 together during the Christmas recess, so that you should be receiving your copy early in 1984. There are more than enough good programs already on hand to fill a complete issue, so Issue \#17 will have a much higher signal/noise ratio than this one!

Regards,```

