

THE SYM USERS: GROUP NEWSLETTER
VOLUHE IV, NUMRER 3 (ISSUE NO. 17) - HINTER 1983 (SEPIOCT/NOU/DEC)
SYM-PHYSIS was a serial publication of the SYM Users, Group SYM-PHYSIS and the SYM Users Groug (SuG) are in no way associated with Synertek Contents of SYM-PHYSIS. SYM is a registered trademark of SSC. grow, to bring forth.
We welcomed for publication all articles dealing with any aspect of the SYM-1, and its very close relatives. Authors retain all commercial copyrights. institutions of SYM-PHYSIS may be reproduced by clubs and edumay be freely gublished, with full credit piven and complimentaryconpies provided to SYM-PHYSIS and the original author (s). P
self-addressed stamped envelope with all correspondence.

$$
\begin{aligned}
& \text { Editorlpublisher: } \\
& \text { Rusinessiciirculation: } \\
& \text { office Staff: }
\end{aligned}
$$

$$
\text { H. R. "Lux" Luxenberg } \begin{aligned}
& \text { Jean Luxenberg }
\end{aligned}
$$

Hoyce Arnovick, Dean Luxenbery Haly

## SUBSCRIPTION RATES:

This is the FAREWELL ISSUE of SYM-PHYSIS, and subscriptions for future

BACK ISSUES:

Issues 7 through 16 (Volume II, 1981), are available for $\$ 10.5 \varnothing$,
US/Canada, and $\$ 14.0$, First Class/Airmail, el sewhere. Issues 11 through 14 (Volume III, 1982 ), are available for $\$ 10.50$,
US/Canada, and $14.0 日, ~ F i r s t ~ C i a s s / A i r m a i i, ~ e l s e w h e r e . ~$ Issues 15 through ${ }^{17}$ (Volume IV, 1983), are available for $\$ 10.5 \emptyset$,
US/Canada, and $\$ 14.90$, First Class/Airmail, elsewhere. L'ENVOI

Our original KIM-1, mounted on a large masonite panel, with an added 4 K of RAM, and a few assorted add-ons, is languishing in a dark corner of the garage. A second KIM-1, which was inoperative when we traded a new SYM-1 to a student for it, has been repaired, and now sits neatly boxed on a shelf. Also on the shelf is an odd lot of miscellaneous single board computers: an AIM-65, a SYM-69, a Sinclair $2 \times 81$, some RCA COSMAC VIPs, etc. None of these occupied the places in our minds and hearts
that the SYM-1 did.

While the KIM-1 got us started, with the help of the $6502 /$ KIM-1 Users Group, it was the SYM-1, with the help of so many members of the SYM down inside the operating taught us how computers actually do work, deep保

The KIM-1, so named after its 2 K ROM operating system, the Keyboard Interface Monitor (or Module) made a good entry level system, but the Interface Monitor (or Module), taught us all at a much matile sophisticated level, thanks to all of the rapabilities packed into MON 1.1, and RAE-1, which we still consider to be the very best full-featured 6592 Conditional/Macro Resident Assembler Editor around for the 6502, despite of, or perhaps even because of, its use of non(continued to page 17-6)

SYM-PHYSIS 17- 1

## A $3-D$ GRAPHICS PACKAGE

Here is the BASIC portion of a 3-Dimensional Manipulation Package developed over a year ago as a class project by a former student, Tim Calhoun. We saw it demonstrated, and $1 t$ worked very well, indeed, but we our MTU Visible Memory SYM-1 system has been much too reconfigured to permit its easy use (BAS is now in RAM UM is relocated no rassette interface, etc.) with this program.

Even though very few readers may have Visible Memories on their SYM-1 systems (our main reason for not publishing it earlier), we are publishing it at this late date for three reasons:

One is the valuable collection of $4 \times 4$ matrix manipulation subroutines; second is its adaptability to $4 \varnothing \times 24(8 \emptyset \times 48)$ graphics on the KTM-2 or $80 \times 24$ ( $166 \times 48$ ) graphics on the KTM-2/80. Third is the adaptability to the COM-64 in either the low resolution or the high resolution graphics modes. We'll provide copies of this listing to several of our friends (we no longer have students, since our retirement; they are now friends!) with Com-64s, to see what they can do with it.

In this connection, we should point out that the Visible Memory uses a direct linear mapping of its $320 \times 192$ pixels to RAM, while the COM-64 uses a mapping compatible with an $8 \times 8$ Character Generator Matrix. The Apple II/IIe uses a more "indirect" mapping (with $289 \times 192 \mathrm{grid}$ ), while dot matrix printers in their graphics modes require an additional "remapping" to accomodate the vertical stacking of the printing "pins".

All of these remappings could easily be accomplished, if desired, by adding subroutines to the published program. We needed an Apple to Visible Memory remappimg when we uploaded the public domain Apple SLIDE SHOW to our SYM-1, and will be needing a Visible Memory to COM-64 remapping when we download SLIDE SHOW to our COM-64.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| 3 | REM | PROGRAM: SYM-1 3-DIMENSIONAL MANIPULATION PACKAGE |
| 4 | REM | PROGRAMMER: TIM CALHOON |
| 5 | REM | DATE: 12-6-82 |
| 6 | REM |  |
| 7 | REM | FUNCTION: TO ALLOW THE USER TO CREATE, MANIPULATE, DISPLAY, |
| 8 | REM | AND SAVE THREE-DIMENSIONAL OBJECTS. |
| 9 REM |  |  |
| 15 | REM | HARDWARE NEEDED: SYM-1 WITH SK MEMORY, MTU VISIBLE MEMORY, |
| 11 | REM | AND KTM TERMINAL. |
| 12 | REM | EXTERNAL SOFTWARE: HUGH E. CRISWELL'S BASIC SAVE AND LOAD |
| 13 | REM | SUBROUTINES AND SYNERTEK'S TRIG-PATCH |
| 14 | REM |  |
|  |  |  |
|  | REM |  |
| 51 REM |  |  |
| 52 REM |  |  |
| 53 REM* |  |  |
| 54 | REM |  |
| 55 | REM | MAIN LINE ROUTINE: |
| 56 | REM | FIRST IT INITIALIZES SOME ESSENTIAL VALUES AND THEN IT |
| 57 | REM | SETS TEMP AND HOLD TO IDENTITY MATRICES. |
| 58 | REM | SECOND IT DISPLAYS THE MENU AND ASKS THE USER FOR |
|  | REM | A choice. |
|  | REM | LASTLY IT BRANCHES TO THE APPROPRIATE SUBROUTINE, THEN |
|  | REM | LOOPS AROUND AND RE-DISPLAYS THE MENU. |

109 DIM PROD $(4,4): P I=3.1415$
$155 \operatorname{DIMHOLD}(4,4), \operatorname{TEMP}(4,4), \mathrm{D}(7,30), \operatorname{MM}(4), \mathrm{C}(2,4)$
167 LGTH＝ø
116 GOSUB6øø
12 FORA $=1$ TO4： $\mathrm{FORB}=1$ TO4： $\operatorname{HOLD}(\mathrm{A}, \mathrm{B})=\operatorname{TEMP}(\mathrm{A}, \mathrm{B}): \mathrm{NEXT}: \mathrm{NEXT}$
150 PRINTCHR $\$$（27）＋＂E＂；：FORP＝1T09：PRINT：NEXT
179 PRINT＂1．DISPLAY＂，＂2．ADD FILE＂，＂3．LOAD FILE＂
180 PRINT＂4．SAVE FILE＂，＂5．ROTATE＂，＂6．SHIFT＂
190 PRINT＂ 7 ．SCALE＂＂8．
190 PRINT＂7．SCALE＂，＂8．ORIGINAL＂，＂9．CLEAR＂
200 PRINT＂10．DELETE＂，＂11．LIST FILE＂，＂12．EXIT＂
205 PRINT：INPUT＂INPUT NUMBER NEXT TO CHOICE＂；A
210 IFA＜10RA $>12$ THEN2ด：

259 REM＊
251 REM
252 REM PERSPECTIVE SUBROUTINE：
253 REM GOES THROUGH FILE CREATING PERSPECTIVE $x$ AND
254 REM Y VALUES FROM 3 －D COORDINATE FILE USING A DIVISION OF SIMILAR TRIANGLES METHOD WITH VIEWPOINT ON THE Z－AXIS 256 REM AND SENDING THOSE $x, y$ VALUES TO A DDA ROUTINE．
257 REM
25ロ REMPUT＂
$31 \varnothing$ FORR $=1$ TOLGTH：$Q=1$ ：FORS $=1$ TO4STEPS
$330 \operatorname{MM}(1)=D(S, R): M M(2)=D(S+1, R): M M(3)=D(S+2, R)$
335 IFS $=4$ THENQ $=2$
340 FORJ＝1TO4： $\mathrm{C}(0, J)=\varnothing$ ： $\mathrm{FORK}=1$ TO4
$359 \mathrm{C}(0, J)=\mathrm{C}(Q, J)+\operatorname{MM}(K)$＊HOLD $(K, J):$ NEXT ：NEXT ：NEXT
$390 Y 1=(C(1,2) * D S T) /(D S T+C(1,3)): Y 2=(C(2,2) * D S T) /(D S T+C(2,3))$
4 Фø $\mathrm{X} 1=(\mathrm{C}(1,1) * \mathrm{DST}) /(\mathrm{DST}+\mathrm{C}(1,3)): \mathrm{X} 2=(\mathrm{C}(2,1) * \mathrm{DST}) /(\mathrm{DST}+\mathrm{C}(2,3))$
4 4G2 REM
493 REM DDA LINE DRAWING SUBROUTINE：
404 REM THIS ROUTINE USES THE SIMPLE DDA ALOGRITHM FOR DRAWING
$\begin{array}{ll}495 \text { REM } & \text { THIS ROUTINE USES THE SIMPLE DDA ALOGRITHM FOR DRAWIN } \\ 466 \\ \text { REM } & \text { A LINE BETWEEN TWO GIVEN POINTS DEFINED BY } x 1, \times 2 \text { AND }\end{array}$
406
407 REM
408 REM
469 REM $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~(1) ~$
410 LNTH＝ABS $(X 2-X 1): \operatorname{IFABS}(Y 2-Y 1)>$ LNTHTHENLNTH＝ABS $(Y 2-Y 1): X=X 1: Y=Y 1$
$415 \mathrm{X}=\mathrm{INT}(\mathrm{X} 1+159): Y=\mathrm{INT}(Y 1+99)$
$44 \varnothing$ IFLNTH＝øTHENNEXT
$45 \varnothing \mathrm{DX}=\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right) / \mathrm{LNTH}: \mathrm{DY}=\left(\mathrm{Y} 2-\mathrm{Y}_{1}\right) / \mathrm{LNTH}$
$455 \mathrm{XA}=\mathrm{X} 1+.5: \mathrm{YA}=\mathrm{Y} 1+.5$
$46 \emptyset$ FORB $=1$ TOLNTH
$455 X A=X A+D X: Y A=Y A+D Y: X=I N T(X A+159): Y=I N T(Y A+99)$
489 GOSUB560
$49 \emptyset$ NEXT：NEXT：RETURN
50日 VM＝8192＋（（199－Y）＊4の＋INT（X／8））：BIT＝（（X／8）－INT（X／8））＊B：DOT＝2＾BIT 5 SIS IFUM $<81920 R V M>16383$ THENRETURN
（VM）：DOT $=128 / D O T:$ DOT＝MASKORDOT：POKEVM，DOT：RETURN
559 REM ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊）
551 REM
552 REM TEMP $=$ IDENTITY SUBROUTINE
554 REM THIS ROUTINE SETS THE TEMP MATRIX TO THE IDENTITY MATRIX．
558 REM

G10 FORI $=1$ TO4：TEMP $(I, I)=1$ ：NEXT：RETURN
 651 REM

DDD FILE SURROUTINE
HIS ROUTINE ACCEPTS COORDINATE VALUES FROM THE USER $S$ FOUND THEM INT THE FILE AT ITS END．IF A－999
 79月 LGTH＝LGTH＋1：PRINT＂INPUT -999 IN X1 POSITION AND $\varnothing$ IN REST TO RETURN 716 PRINT＂VECTOR＂；LGTH
729 FRINT＂INPUT $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1, \mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z2"}$
36 INPUTD（ 1, LGTH $), \mathrm{D}(2$, LGTH $), \mathrm{D}(3$, LGTH $), \mathrm{D}(4$, LGTH $), \mathrm{D}(5$, LGTH $), \mathrm{D}(6$, LGTH $)$ 35 IFD $(1$, LGTH $)=-9990$ LGTH $>3$ BTHEN75
D（1，LGTH）LGTH：GOTOTE
-1 ：RETURN

61 REM
762 REM
763 REM
764 REM
765 REM
66 REM
767 REM
DELETE SURROUTINE：
His routine deletes the lines between the starting and ENDING LINES VALUES．IT THEN MOVES THOSE LINES ABOVE THE ELETED AREA DOWN TO FILL THE SPACES LEFT AFTER THE

R8 R
BøØ INPUT＂INPUT START AND FINISH OF DELETE＂；S，
B10 IFF＞SDTHENRETURN：IFS＞FTHENRETURN
15 IFF LG IHTHENF＝LGTH
826 IF $F=$ LGTHTHENB6＠
83 6 FORI $=(F+1)$ TOLGTH：FORJ $=1$ TO7： $\mathrm{D}(\mathrm{J}, \mathrm{S})=\mathrm{D}(\mathrm{J}, \mathrm{I}):$ NEX
840 D $(7, \mathrm{~S})=\mathrm{S}: \mathrm{S}=\mathrm{S}+1$ ：NEXT：LGTH＝S－1：RETURN
866 LGTH＝LGTH－（ $(F+1)-S):$ RETURN
871 REM

872 REM
872 REM
874 REM
374 REM
376 REM
377 REM
位相
9のg INPUT＂INPUT START AND FINISH OF LISTING＂；S，F
910 FORI＝STOF
15 IFI＞LGTHTHEN94Q
929 PRINTI，D（1，I），D（2，I），D $(3,1)$
30 PRINT，D $(4,1), D(5,1), D(6, I)$
35 PRINT：NEXT
$94 \varrho$ INPUT＂INPUT 1 TO GET MENU＂；A
950 RETURN
961 REM
62 REM
63 REM
64 REM
65 REM
966 REM
967 REM
968 REM
969 REM
97の REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊）
$\varnothing \varnothing \varnothing$ XGT $=\mathrm{D}(1,1): \mathrm{XLT}=\mathrm{XGT}: \mathrm{YGT}=\mathrm{D}(2,1): \mathrm{YLT}=\mathrm{YGT}: \mathrm{ZGT}=\mathrm{D}(3,1): Z \mathrm{~T}=\mathrm{ZGT}$
Ø1ø FORI＝1TOLGTH：FORJ＝1TO4STEP3：
ø2ø IFXGT＜D（J，I）THENXGT＝D（J，I）：IFXLT＞D（J，I）THENXIT＝D（J，I）
1039．IFYGT＜D（J＋1，I）THENYGT＝D（J＋1，I）：IFYLT $>\mathrm{D}(\mathrm{J}+1, \mathrm{I})$ THENYLT＝D（J＋1，I）
ø40 IFZGT＜D $(\mathrm{J}+2, \mathrm{I})$ THENZGT＝D $(\mathrm{J}+2, \mathrm{I}):$ IFZLT $>\mathrm{D}(\mathrm{J}+2, \mathrm{I})$ THENZLT＝D $(\mathrm{J}+2, \mathrm{I})$
1056 NEXT：NEXT

ROTATION SUBROUTINE：
THIS ROUTINE FIRST FINDS A CENTER FOR THE OBJECT，
THEN TRANSLATES THE OBJECT TO THE ORIGIN，THEN
RANCHES TO THE APPOPRIATE SUBROUTINE TO EXE A ROTATION ABOUT THE $X, Y$ OR $Z$ AXIS，AND FINALIY RANSLATES THE OBJECT BACK AGAIN．

LIST FILE SUBROUTINE：
THIS ROUTINE LISTS THE RECORDS FROM A GIVEN STARTING RECORD NUMBER TO THE ENDING RECORD NUMBER．

S，F
F
$\qquad$

[^0]$\qquad$ 

| $1060 \mathrm{DX}=-((\mathrm{XGT}-\mathrm{XLT}) / 2)+\mathrm{XLT}): \mathrm{DY}=-((\mathrm{YGT}-\mathrm{YLT}) / 2)+\mathrm{YLT})$ |  |
| :---: | :---: |
| 1061 | $D Z=-(($ ZGT $-Z L T) / 2)+Z L T)$ |
| 1665 | G0SUB6ag |
| 1070 | GOSUB1497 |
| 1089 | INPUT＂INPUT 1，2，3 FOR ROTATION ABOUT X，Y，ORZ AXIS＂；B |
| 1 1085 IFB＜10RB＞STHEN1ø8ø |  |
| 1988 | INPUT＂INPUT ANGLE OF ROTATION＂；ANG |
| 1687 ANG＝ANG＊PI／18の |  |
| 1590 | ONBGOSUB12の日，136の，1406 |
| 169 ONBGOSUR12ø9， 1360,1406 | $\mathrm{DX}=-\mathrm{DX}: \mathrm{DY}=-\mathrm{DY}: \mathrm{DZ}=-\mathrm{DZ}: \mathrm{GOSUB6}$（09 |
| 1195 gosur1497 |  |
| 1116 RETURN |  |
| 1159 |  |
| 1151 REM |  |
| 1152 | REM $X, Y$ ，AND $Z$ ROTATION SUBROUTINES： |
| 1153 REM |  |
| 1154 | REM THESE ROUTINES SET VALUES IN $4 \times 4$ MATRICES AND |
| 1155 | REM CONCATENATE THEM，THROUGH MULTIPLICATION INTO |
| 1156 | REM A RESULTANT MATRIX TO BE USED TO SET TRANSFORMED |
| 1157 | REM $x, y, z$ VALUES IN THE PERSPECTIVE ROUTINE． |
| 1158 REM |  |
| 1159 REM＊＊＊＊＊＊ |  |
| 1169 REM |  |
| 1161 REM |  |
|  |  |
| 1163 | REM X－ROTATE |
| 1164 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ |  |
| 1200 | G0SUB6め |
| 121ø $\operatorname{TEMP}(2,2)=\operatorname{COS}($ ANG ）： $\operatorname{TEMP}(2,3)=\operatorname{SIN}(\operatorname{ANG}): \operatorname{TEMP}(3,2)=-\operatorname{SIN}($ ANG $)$ |  |
| 122\％ $\operatorname{TEMP}(3,3)=\operatorname{COS}($ ANG ）：GOSUB16øø |  |
| 1230 RETURN |  |
|  |  |
| 1251 | REM Y－ROTATE |
| $1252 \mathrm{REM} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$ |  |
| 13øの GOSUB6øの |  |
| 1316 $\operatorname{TEMP}(1,1)=\operatorname{COS}(\operatorname{ANG}): \operatorname{TEMP}(1,3)=-\operatorname{SIN}(\operatorname{ANG}): \operatorname{TEMP}(3,1)=\operatorname{SIN}(\operatorname{ANG})$ |  |
| 1320 G0T01220 |  |
|  |  |
| 1351 | REM Z－ROTATE |
| $1352 \mathrm{REM} * * * * * * * * * * * * * * *$ |  |
| $14 \varnothing \varnothing$ GOSUB6めの |  |
| 1416 | $\operatorname{TEMP}(1,1)=\operatorname{COS}(\operatorname{ANG}): \operatorname{TEMP}(2,1)=-\operatorname{SIN}(\operatorname{ANG}): \operatorname{TEMP}(1,2)=\operatorname{SIN}($ ANG $)$ |
| 1420 $\operatorname{TEMP}(2,2)=\operatorname{COS}($ ANG $): \operatorname{GOSUB} 1890$ |  |
| 1436 RETURN |  |
| 149 GOSUE\＆のロ |  |
|  |  |
| $\begin{aligned} & 1492 \mathrm{~F} \\ & 1493 \end{aligned}$ | REM SHIFT SUBRDUTINE： |
|  | REM SETS UP $4 \times 4$ MATRIX FOR A GIVEN SHIFT ALONG $X, Y$ ，OR $Z$ |
|  |  |
| 1495 INFUT＂INPUT SHIFT IN $X, Y, Z$＂；DX，DY，DZ |  |
| $1497 \operatorname{TEMP}(4,1)=\operatorname{DX}: \operatorname{TEMP}(4,2)=\operatorname{DY}: \operatorname{TEMP}(4,3)=\mathrm{DZ}$ |  |
| $150 \%$ GOSUB1609 |  |
| 1510 RETURN |  |
| 1529 G0sunbag |  |
|  |  |
| 1522 REM |  |
| 1523 | REM SCALE SUBROUTINE： |
| 1524 | REM SETS UF A $4 \times 4$ MATRIX FOR SCALE ON GIVEN $X, Y$ ，AND $Z$ |
| 1525 | REM AXISES． |
| 1526 |  |
| 1530 | INPUT＂AMOUNT OF SCALE $\operatorname{IN} X, Y, z \sim ; \operatorname{TEMP}(1,1), \operatorname{TEMP}(2,2), \operatorname{TEMP}(3,3)$ |
| 154\％ | GOSUE159日 |
| 1550 | RETURN |

$1660 \mathrm{DX}=-(((\mathrm{XGT}-\mathrm{XLT}) / 2)+\mathrm{XLT}): \mathrm{DY}=-(((\mathrm{YGT}-\mathrm{YLT}) / 2)+\mathrm{YLT})$,
$1661 \mathrm{DZ}=--(((\mathrm{ZGT}-\mathrm{ZLT}) / 2)+\mathrm{ZLT})$
1665 gosub 696
108ஜ INPUT"INPUT 1,2,3 FOR ROTATION ABOUT $X, Y$,ORZ AXIS ";B
ด85 IFB<10RB>3THEN1G8
O8B INPUT"INPUT ANGLE OF ROTATION ";ANG
ANG=ANG*PI/18 0
109の ONBGOSUR12の日, 13の日, 1400
$11 \propto \emptyset \mathrm{DX}=-\mathrm{DX}: \mathrm{DY}=-\mathrm{DY}: \mathrm{DZ}=-\mathrm{DZ}: \mathrm{GOSUB} 6 \varnothing$
1165 GOSUR1497
119 RETURN
150 REM 15
152 REM $X, Y$, AND $Z$ ROTATION SURROUTINES:
1154 REM THESE ROUTINES SET VALUES IN $4 \times 4$ MATRICES AND
1156 REM A RESULTANT MATRIX TO BE USED TO SET TRANSFORMED
1157 REM
1158 REM
116G REM
1161 REM

1163 REM
X-ROTATE
164 REM********
200 GOSUB6
SIN(ANG):TEMP (3,2)=-SIN(ANG)
1230 RETURN

Y-ROTATE
3. 2 REM*****
$1319 \operatorname{TEMP}(1,1)=\operatorname{COS}(\operatorname{ANG}): \operatorname{TEMP}(1,3)=-\operatorname{SIN}(\operatorname{ANG}): \operatorname{TEMP}(3,1)=\operatorname{SIN}($ ANG $)$
1320 GOTO122の
1351 REM Z-ROTATE
1352 REM*****
$141 \emptyset \operatorname{TEMP}(1,1)=\operatorname{COS}($ ANG $): \operatorname{TEMP}(2,1)=-\operatorname{SIN}(\operatorname{ANG}): \operatorname{TEMP}(1,2)=\operatorname{SIN}($ ANG $)$
$142 \emptyset \operatorname{TEMP}(2,2)=\operatorname{COS}($ ANG $): \operatorname{GOSUB} 16$ Gの
436 RETURN
49Ø GOSUR 6 の
491 REM $* * *$
1492 REM SHIFT SUBROUTINE:
1493 REM SETS UP $4 \times 4$ MATRIX FOR A GIVEN SHIFT ALONG $X, Y$, OR

1495 INPUT"INPUT SHIFT IN $X, Y, Z " ; D X, D Y, D Z$
$1497 \operatorname{TEMF}(4,1)=\mathrm{DX}: \operatorname{TEMP}(4,2)=\mathrm{DY}: \operatorname{TEMP}(4,3)=\mathrm{DZ}$
1506 GOSUB1606
1516 RETURN
1529 G0SUR6øø
1521 REM*
1523 REM SCALE SUBROUTINE:
1525 REM AXISES.
1536 INPUT"AMOUNT OF SCALE $\operatorname{IN} X, Y, z n ; \operatorname{TEMP}(1,1), \operatorname{TEMP}(2,2), \operatorname{TEMP}(3,3)$
550 GOSUB156日

```
1551 REM************************************************************
1552 REM
15S3 REM 4 x 4 MATRIX MULTIPLICATION TO CONCATENATE A FUNCTION
1554 REM INTO THE HOLD MATRIX.
15SS REM******************************************
161Ø PROD (A,B)=PROD (A,B) +HOLD (A,K) *TEMP (K,B) : NEXT:NEXT:NEXT
162\varnothing FORA=1TO4:FORB=1TO4:HOLD (A,B)=PROD (A,B) :NEXT:NEXT:RETURN
:NEXT:NEXT:RETURN
170\emptyset FORI=8192T016383:POKEI, ø:NEXT:RETURN
1751 REM CALL TO CRISWELLS DATA LOAD ROUTINE
1751 REM CALL TO CRISWELLS DATA LOAD ROUTINE 
18\sigma\emptyset INPUT"SET UP FOR CASSETTE LOAD AND INPUT FILE NUMRER "; ID
1819 X=USR (7897,256*ID):RETURN
19øø PRINT"FILE WILL BE SAVED 3 TIMES"
******************
1902 REM CALL TO CRISWELLS DATA SAVE ROUTINE
1903 REM************************************************************
1910 INPUT"SET UP FOR CASSETTE SAVE AND INPUT FILE NUMBER "; ID
1920 FORI=1TO3: X=USR (7718,256*ID) : NEXT:RETURN
1920 FORI
```

L＇ENVOI（continued from page 17－1）
standard MOS Technology pseudo op－codes fthis may be the longest non－stop one sentence paragraph we＇ve ever written！）．
We＇ll never forget all we learned from the SYM，or from the many fine SYMmers we met by mail，telephone，or personal contacts on past and future visits to us，or travels to them．Thanks to everyone from both of us．

RAM－BL INGS
In the B．C．（Before Computer）era，our home had a number of leisure－ and／or pleasure－type rooms，including，among others，a guest room，a family room with a magnificent fireplace and the main TV（＂telly＂），and a combination den／study where our SYM－1 setup lived on a corner of our desk．Jean suggested that the SYM System be set up on a card table in the family room so that there could be some＂togetherness＂，with her watching the TV while we watched the KTM－2 monitor．

Today the guest room is now Jean＇s cluttered office，the study／den is now a cluttered warehouse／storeroom，and the family room is now a cluttered computer laboratory／workshop，with desks，workbenches，book shelves，and filing cabinets along all four walls（effectively blocking the fireplace），and a custom made $4^{\prime} \times 8^{\prime}$ computer table in the center of the room．And the elegant darkroom in one corner of the garage is now unuseable，having become a catch－all storeroom．

Thus the SYM has very strongly affected our way－of－life，as well as our standard of living．By chance，or whatever，we and the SYM are retiring simultaneously，but it will probably take several years for our home to return to＂normal＂，if ever．We won＇t even begin to think about it till our European trip is over！

Being a SYMmer almost implied being a＂loner＂，somewhat akin to the ＂loneliness of the long distance runner＂，since very few of us were in a position to be able to work closely with other SYMmers，and to swap hardware，software，and，most importantly，ideas，either in a one－on－one or on a＂live＂group basis．There have never been more than two or work closely．That，in fact，was why the Users’ Group was started！At no time，however，were there more than 2006 members．

There were many times when we almost envied our Apple owning friends, and we did think occasionally of switching. It was not the cost that stopped us, it was the realization of how little we actually would be even more importantly, we had made so many new friends, by mail, telephone, and personal contacts, and thus were receiving so much more personal satisfaction from being a symmer then we could ever have gotten from the Apple.

Our five "main" SYMs are now mostly idle. One is used by Jean to handle the cassette and FODS diskette software duplication, the mailing list, and the accounts payable records. That one still gets the most use, but its active days are nearly over. Another one is used only as a test bed for KTMs. It comes up in the 2 K Synertek FORTH ROM, with a .J $g$, and a
simple one line FORTH definition "checks" out the KTMs before they are simple one line FORTH definition "checks
shipped. This gets very little useage.

A third system supports both FODS and FDC-1 (modified, and in RAM) DOSes, and is used only for making distribution copies of Wharrie's CODOS/Visible Memory SYM is used only to demonstrate the high resolution gophics, and Jack Brown's CODOS FDRTH to the orcasional visitor It is turned on so seldom that the NiCad backup batteries on Jeff Lavin's hardware real time clock never really get a full charge. Its major use in the near future will be to download its graphics images to the COM-64.

The coDos/UM SYM is truly impressive in both demonstrations, because the disk drives can transfer 8 K in either direction in a matter of a second or so, making animated graphics sequences easily possible. Also, when using the standard virtual memory management built into FORTH, only the clicking sounds from the 8 -inch drives give away the secret that the screens being requested were not already resident.

Our own "personal" SYM is used for an occasional demonstration of the MTU Advanced Music Software Package (truly astounding), and is being used to prepare this final issue of SYM-PHYSIS only because we have not yet become truly proficient in the uses of any one of the half-dozen or including Quick Brown Fox, for the VIC=26).

There are modest amounts of test gear, hand tools, miscellaneous spare There are modest amounts of test gear, hand tools, miscellaneous spare
parts and components, all useful on other systems. But there are parts and components, all useful on other systems. But there are some of which we are beginning to "recycle" for use with the 1541 drives, since we see very little future use for the data they now hold.

What's to become of all of this stuff? That we'll leave to the future to decide. We had thought of giving the stuff to students, but it has been our sad experience that such "gifts" were not always useful to the recipients. Unless they themselves had put up some of their own hard earned cash to get started, there was too little motivation to continue. In the old days, several students started with the SYM-1, and as they showed that they were finding the time to learn how to use what they already had, they got "good deals" on RAEs, BASes, KTMs, etc. Today they are much smarter to start out with the VIC=29, the COM-64, the Timex-Sinclair, etc.

And that brings us up to our known plans for the foreseeable near uture: to learn as much as we can about the inner workings of the IC=20 and the Com-64, so that we can help students and others to get the most our of theire systems (or even more, since they are so much more versatile, and there is so much more to learn) as we once did on the SYM-PHYSIS 17-
sYMs! We did build up a valuable skill during the process. We can now switch from one system or DOS to another, and our mind automatically shifts to the proper memory bank which contains the "smarts" for that system or DOS; we no longer become schizophrenic at each shift!

## OPEN LETTER TO THE SYM COMMUNITY FROM JEFF LAVIN

ANNOUNCEMENT OF SYMDOS2 BY KIN-PING KWOK

ALTERNATIVE ENERGY PRODUCTS
P.O. Box 329

6008 Running Springs Road
Ukiah, California 95482
707:462-9244
Members of the SYM community:
In this, the last issue of SYM-PHYSIS, we would like to thank all the people who have made the SYM USER'S GROUP the spawning ground for such a preponderance purcha and energy. We especially want to those of you who have purchased

First of all, don't worry, we will continue to offer our products for as long as current supplies hold out. We will also continue to repair SYMs, FDCs, etc. (NO KTMs) Please direct all future orders directly to AEP at the above address.

Secondly, we are very happy to announce a new DOS written for the FDC by Kin-ping Kwok. Those of you familiar with Kwok's previous work need no further assurance regarding the quality of his programs. would like to say, though, that he has outdone himself. We have excerpted the introduction and list of commands from the SYMDOS2 manual (they are reproduced following this article). In addition to the features mentioned here, the dos defaults to a $32 K$ system. Also, there programming, and a very extensive directory search routine is included. Those of you familiar with FLEX (trademark of TSC) will recognize the three character filename extensions; the protocol is to name your file according to type e.g. .RAE .COM .OBJ. TXT etc

A very useful and important feature of SYMDOS2 is the creation of a "cold-start sector". Upon cold start, the DOS will read the first sector of track zero into memory and test for an "IDMARK". If the mark exists, the DOS will transfer control to a user program. Can anyone think of a use for this?!!!

SYMDOS2 will be available by the time you read this and will consist of: a 5.25" floppy disc, a 2732 EPROM to replace the one on the FDC and a documentation manual. Although SYMDOS2 will support 8 drives, we will only be supporting 5.25" drives for two reasons: One, 5.25" drives are the de facto standard for personel computers; two, only a few people using the FDC are known to use $8^{\prime \prime}$ drives AND we aren't one of them! The price is \$180 U.S. (shipping included). Please specify if you whesire ther will if road ancwhereibesids is where they will be if you do not sperify elsewhere.

Those of you who do not yet own FDCs, and desire to, may still have an opportunity to purchase one. As of this writing we have 17 boards These may be purchased as assembled and tested units, as kits, or as bare boards. Call or write for information.

The preceeding information about SYMDOS2 leads us into our last bit of news. We are going to start a special interest group/newsletter for quarterly basis, devoted to programs written for the SYM/FDC combination. There will in all likelihood also be included things of general interest from time to time, but the starting intention is as stated. We hope to include hardware and software improvements and tutorials, shopping guide (maybe to include advertisements) and, of
course, programs. We will also distribute SYMDOS2 compatible programs on a royalty basis for any interested parties. The newsletter will cos $\$ 15$ in the United States and Canada, \$18.50 elsewhere per 4 issue volume. Make checks payable in U.S. funds to Alternative Energy Products, P.o. Box 329, UKiah, CA 95482. To those of you who implored us to continue the SYM USER'S GROUP, we are sorry, but this is the best we can do. We do not have the time or energy to devote that Lux did. Most of our articles will be written by readers, and programs will not be edited as much - only checked to insure they at least run and seem to do what the author says they win do. We will have a smaller, and it hoped closer, user s group than Sug; hence the higher per member cos

After the SYM-PHYSIS has gone to press, we will be mailing a letter to all FDC owners. To the rest of you, this is probably our last contact UNLESS

Peace,

## /s/ Jeff Lavin

## INTRODUCTION to SYMDOS2

Copyright August 1983 - by Kin-ping Kwok
The FDC-1 is a disk controller for the SYM with a 4 K DOS on board. However, there are bugs in the dOS. The undeletable file format is very inconvenient. The user has to reformat a diskette very often. The design of the DOS also limits its expansion or the above reasons, I replace the original one

SYMDOS2 directly replaces the original DOS. It can operate with either a $5^{\prime \prime}$ or $8^{\prime \prime}$ dual drive system. See the FDC-1 manual for the configuration required. It can also operate up to fou using the on-board keyboard you have to change the vector yourself as in the origional dos.

SYMDOS2 can operate in as small as a 1 K system. The defaul is for a 32 K system. The diskette format defaults to $5^{\prime \prime}$ single density 128 bytes/sector or $5^{\prime \prime}$ double density 256 bytes/sector see ALTERATION for change of defaults. Diskettes formatted by the original DOS may be used by SYMDOS2. However, the directory format is not compatible.

SYMDOS2 has been carefully checked to eliminate bugs. If you find any bugs, please drop me a note.

Finally I hope you like sYmDOS2.
SUPERMON
BAS-1
RAE-1

FUNCTION: Link to SYMDOS2
.G $9006 \quad X=U S R\left(\& " 9000^{\circ \prime}, 0\right) \quad>R U \$ 9003$

FUNCTION: Save to disc
. 53
SAVE u:"filename"
>EN filename u
filename, u, sa,ea
FUNCTION: Load from dise
.L3 LOAD u:"filename" >LO filename u
filename, u
FUNCTION: Load and relocate or append
.L3 LOAD U:A,"filename"
>LO filename u A
filename, u,sa
FUNCTION: Delete files
filename,
>DC KILL filename u

FUNCTION: Rename file
. So
newname, ol dname,
FUNCTION: List directory

$$
\begin{aligned}
& . L 7 \text { u } \\
& \text { or } \quad . L 7 \\
& \text { filename, u }
\end{aligned}
$$

>DC DIR
or >DC DIR filename u

FUNCTION: Continue to disc
>nnnn . CT filename u

This is an example of the two types of directory listing:
FIO3 RAE :FIO3 XRF :DDI2 RAE :DDI2 XRF :FORMAT RAE :FORMAT XRF XRF11A RAE :XRF11A DOC :

> or you can have it this way:


MORE ON FDC-1
Reprinted below is a letter from Alan Foster, whom we very much enjoyed meeting during our visit to Australia He is offering some enhancements meeting during our visit to Australia. he is offering some enhancements, which we will answer here:

First, he asked our opinion regarding a fair price for the package, we feel that $\$ 25 . \emptyset g$ U.S., postage prepaid anywhere, should cover his handling and shipping costs, and give him a little extra to pay for more equipments. So, write him directly, if interested.
Second, he asked if there would be any copyright problems, in excerpting so heavily from the object code in the FDC-1 EPROM. The answer is not at all, for the following reason: The SYM Users' Group, was given, in riting, all software, firmware, and hardware righs toure fights to the hereby, officially, surrend

## 28 GAVIN PLACE, KINGS LANGLEY, NSW, AUSTRALIA, 2147

12 NOVEMBER 1983
Dear Lux,
Received your letter re FDC-1 and am enclosing details of my version. Having disassembled and reassembled the FDC-1 firmware I believe I now have a completely bug free version as well as a number of enhancements. Some of the changes are listed below.

Fixes for all firmware bugs mentioned in SYM-PHYSIS have been incorporated. This includes a fix for the "File Save Bug" mentioned in Issue \#15 (no solution available at that time).

I have also included a fix for the fact that supermon's execute command will not work in conjunction with FDC commands. This also allows XRAY's execute command to work with FDC. The execute commands can now be used for copying disks.

This version also includes a power on reset routine which, among other things, initialises the DOS.

On initialising FDC, an expandable table of vectors to $F D C$ routines is moved into RAM. This means that no matter what changes I make to the DOS, or even if I am running an experimental version in RAM, it will always look the same to RAE, FORTH, BASIC etc. The alternative would require that these systems be changed every time the DOS is changed.

Dos memory usage is now as follows:
96gの-97FF RAM for DOS variables and buffers
98gø-98FF SYMDOS DISK DRIVE INTERFACE
Føøø-F1FF CONTROL PORT \& 1791
FBøØ-FFFF SYMDOS INTERFACE, AND POR ROUTINE
SYSRAM is no longer used by the DOS
If a file is saved with a name which already exists on the disk, the user is prompted with the following options:

Choose a new name (to avoid smudging the existing file)
Smudge the old file.
Overwrite the old file (new file must fit in the space available).
As a separate package I have written a RAE interface which corrects several bugs and deficiencies in the original firmware.

I have also written several disk copy and associated routines as one package. These provide the following:

SYM-PHYSIS 17-11

1. List the directory of the disk to be copied and prompt for selections from this list (up to 20). Selected files will then be copied to a second disk.
2. As above, but files are copied to tape in "named format" with a header file which contains the file name.
3. Copy selected files from tape to disk.
4. Read one tape in named format into memory.
5. Re-initialise a previously initialised disk. (Much faster as it only writes a zero to the first byte in the directory.)

The source code for all of the above plus details of hardware changes for the POR routine are available on $51 / 4$ " diskette at nominal cost, and may be obtained by writing to me at the above address.

Regards,
A.L.Foster.

## miscellanea

BORIS GOLDOWSKY, 23 Culver Hill, Southampton, NY 11968, sent us the object code for an "Etch-a-Sketch" (tm) type program using the MTU Visible Memory and a joystick (analog-type, we believe). We have not yet been able to test the program, since our VM is not at the same location as his. Those of you with Visible Memories may wish to contact him directly for a copy

We are definitely a creature of habit, and find it hard to adapt to new ways of doing things. Although we have three different Assemblers and ways of doing things. Although we have three different Assemblers and and SWP 2.5 on the "good ol" SYM" for most of our serious work.

We have been comparing all of the assemblers available for the COM-64, and MAE (for Macro Assembler Editor, a variant of RAE, for Resident Assembler Editor) is the only one we have found in which the Editor portion and the Assembler portion are coresident. In all others the Editor prepares the text file which must then be dumped to mass storage. The Assembler must then be loaded, and it must recall the text file from mass storage for assembly, etc. This back-and-forth switching is inconvenient, to say the least.

MAE also comes with an improved SWP, and an extended Machine Language Monitor (with even more useful commands than SYM's SUPERMON). The ATUG (ASM/TED Users, Group - MAE also goes by the name of ASseMbler/TExt same high level as Dessainte's Disassembler into RAE. It even has the additional convenience feature that it can be advised NOT to attempt to disassemble certain ranges which the simple disassembler built into the ML monitor has "advised" you contain text, tables and/or vectors; it treats these ranges as being composed of easily edited ". BY" pseudoopcodes.

This means that when we really get going seriously on the CoM-64 we'll not have to break too many old habits! And, too, we hope to be able to swap RAE and MAE files between the SYM and the COM-64 when we get our 1541 Drive interfaced to the SYM.

AN FDC-1 BASIC PATCH
BILL CRAMER, 5699 N . Colony Blvd., The Colony, TX 75656, sent along an DC-1 diskette with the RAE source code for a BASIC DATA SAVE/LOAD routine which permits data files to be passed between BASIC programs, and permits BASIC programs to access multiple files.

The ability to access multiple files is a particularly valuable feature since otherwise the data files would be size-limited by RAM avail ability.

It is based on the cassette versions published in previous issues, but is fully linked to the FDC-1 system. We suggest that you contact Bill directly for a copy.

An alternative approach to saving data files which we have been investigating lately is the concept of "sequential" files (and the related concept of "relative" files), as implemented in the various Commodore systems.

In this approach, the data is (are?) dumped to disk as "text" files, and ead back in the inverse fashion. The disk system is, in effect, reated as an alternate ASCII terminal interfaced through an IEEE (or serial equivalent) bus. The Commodore disk drives are "intelligent", handling their own buffering and file management. The SYM-1 would have O handle these two tasks, either for FDC-1 or FODS, but this capability is already built into codos.

CHEAP RAM FOR SYM AND HAIR-LINE CRACKS
RALPH TEICHEL, P.O. Box 426, Elsternwick 3185, Melbourne, Victoria, Australia, had problems with RAE not storing data past \$2øøg. We advised him that the fault was probably not with RAE, but with his RAM others have reported similar problems with both RAE and BAS, "fixed" by getting their RAM to work correctly). Sure enough, he found hair-line cracks on his RAM board. One seldom suspects such faults, but we have un into them ourselves.

How to find them? First isolate the problem to the particular board, based on the "behaviour" of the error, and then good luck! This is one of the reasons we recommend "flexing" the boards. This will either chose the crack, or break it wide open. In the first case, great!; in steady-state one, which is much easier to find.

The main reason for publishing this brief note, is Ralph's suggestion that VIC=2g RAM expansion boards work well with the SYM also. He got his free from a friend (?) who had used them briefly, and then gave them away (Ralph now understands why!).

Ralph calls his SYM "F.R.E.D.", for reasons "not too polite". Since he was too polite to tell us, can anyone else explain the acronym?

AN INTERESTING OFFER AND AN OBJECT CODE TRANSFER PROGRAM
As you know, object code (and BASIC programs as stored in tokenized form) cannot be transmitted directly, byte for byte, since ASCII format handles only seven of the eight bits per byte. Instead, each byte must be broken into two nibbles, and the value of each nibble, corresponding So hex digits $\emptyset$ through $F$, is sent as the corresponding ASCII character. Some protocol is required concerning message length, load address, Refer ence Manual, as the Faper Tape Format.

An alternate protocol is the Intel Hex Format, mentioned in the letter reproduced below. The letter is published for general interest, and for the interesting offer. A program for the SYM-1 to receive Intel Hex have a Modem Progr We have not yet had the time to try it, although we format. Our lag in testing this program is that we have never installed modem "permanently" on any of our SYMs; besides we will be transfering object code from SYM-1 to COM-64 (but not the other way) via 541 diskettes.

10-29-83

## Dear Lux:

I enjoyed our conversation on the telephone regarding hex file transfer from an assembler using the paper tape read function on the SYM-1. I never did get that mode to work, but wound up writing a ML program for the sym to accomplish this. Since I was writing the program myself, I chose to use the more standard Intel Hex Format instead of the KIM format as we discussed. enclose the source code for the program as an attachment to this letter. I will be glad to supply the program in SYM tape form to anyone sending a tape and a SASE large enough to return the tape and with sufficient postage. The program is written in RAE-1 format. Use of this program allows one to assemble 6502 source code using the AVOCET 6502 assembler on either an IBM-PC or on a CPM based computer and then to transfer the resulting HEX file to the SYM-1. This makes a very nice development system.

The main reason that I'm writing, however, is to tell you about some exciting products I ve been developing for MWM Electronics. electronic ircuit development for third party manufacturing and sales (usually onder brand names). They started out several years ago manufacturing accessories for satellite television receivers and I have acted as their chief engineer since 1981.

About two years ago we decided to develop a general purpose controller for a satellite receiving station, allowing IR remote control of the entire system (antenna, polarization, channel, etc) from one's easy chair in any room in the house. To accomplish this, we used a Motorola 6802 microprocessor, primarily because we had a large inventory of these chips at the time. Since that time we have designed and built an number of types of controllers for microwave receiving systems and to control test equipment, etc. Each time, we have had to design a new printed circuit board from scratch, requiring several iterations for debugging and modifications.

Another problem we had was that of assembling M68oo source code. For one thing, I was much more familiar with the 6502, having been a long time SYM-1 and Commodore Pet owner (8032, 4032, 4040, ( M 6800 micr). For another thing, I had no computer which employed (ugh!). Later, we wrote a crude assembler in basic (it took 12 hours to assemble 4 K of code). All things considered, i became very frusterated with the M6800 and wanted to change processors, but the momentum was directed against it.

One day, I decided to develop a general purpose mother board, with an eight connector bus which was oriented toward control applications, and with almost nothing else but the processor, bus drivers, a boot ROM and zero page RAM on the mother board, thereby allowing maximum flexibility of configuration. In laying out the board, one of my engineers mentioned that by offsetting
another 40 pin socket slightly, he could arrange the PC board to accomidate either a M6802 or a 6502......WDW!!! Thus was born the SYSTEM-6000.
By way of brief description, the MWM Electronics SYSTEM-6000 mother board consists of the following:

Microprocessor ( 6502 or 6802)
Crystal
One EPROM (2716 or 2532) at top of memory
ne (optional)
power supply with +5 Volts

$$
\begin{aligned}
& +15 \text { Volts at } 0.5 \text { Amps } \\
& -15 \text { Volts at } 0.5 \text { Amps } \\
& +5 \text { Volt back up battery }
\end{aligned}
$$

A 16 key keypad (optional) connected to PAO-PA7 of the VIA
An eight digit HEX display driven by PBO-PB7 of the VIA
An eight slot Bus with using 0.1 in spaced dual 22 pin
connectors with the following pinputs:

| 1 | BAO | A | Ground |
| :---: | :---: | :---: | :---: |
| 2 | BA1 | B | NOT D400-D |
| 3 | BA2 | C | NOT DOOO-D |
| 4 | BA3 | D | NOT D800-D |
| 5 | BA4 | E | NOT C400-C7 |
| 6 | BA5 | F | NOT C800-CB |
| 7 | BA6 | H | NOT CCOO-CF |
| 8 | BA7 | 3 | NOT RESET |
| 9 | BAB | K | PHASE 2 Clo |
| 10 | BA9 | L | NOT IRQ |
| 11 | BAIO | M | BD7 |
| 12 | BA11 | N | BD6 |
| 13 | BA12 | P | BDS |
| 14 | BA13 | R | BD4 |
| 15 | BA14 | 5 | BD3 |
| 16 | BA15 | T | BD2 |
| 17 | NOT NMI | $u$ | BD1 |
| 18 | READY | $v$ | BDO |
| 19 | R/W | W | -15 VOLTS |
| 20 | +8 VOLTS UNREG | x | +15 VOLTS |
| 21 | +5 VILTS STBY | Y | +5 VOLTS RE |
| 22 | GROUND | 2 | GROUND |

In addition to the SYSTEM-6000 Mother Board, we have developed a number of plug-in cards for the bus. The cards which are either finished or in various stages of development are as follows
MEMORY BOARD (holds four either 2716 's or $6116^{\prime}$ ) MEMORY BOARD (holds four either 2716's or 6116's) 6522 BOARD
6532 BOARD
8 BIT D/A CONVERTER BOARD
TMS-991BA SPRITE VIDEO BOARD
RESOLVER/SYNCHRO INTERFACE (ANGULAR POSITION)
IR SENSOR INTERFACE
RELAYS OR OPEN COLLECTORS
STR32 INTERFACE NTROLLER BOARD
REEE INTERFACE
WIRE WRAP PLUG-IN
LED DISPLAY BOARD
Also, there will be available a Mother Board with a wire wrap section replacing the processor and its associated electronics, but including the power supply and the eight slot bus. This would greatly simplify those wanting to build a unique computer. I have used one of these (Called the BB-6000) to provide power and a bus for my SYM-1, giving me a real RS-232 port, more

SYM-PHYSIS 17-15
memory, etc available by using the plug-in's. I am in the process of interfacing one to my Commodore 8032 for the same reasons. I hope to develop interface cards and cables for the VIC-20, Commodor

We have written a small monitor for the SYSTEM-6000, called MONDEC19. It incorporates many control oriented functions, however it is not as powerful as the SYM Monitor. We hope to enhance it in the future (we will be looking for help on that),
but we also plan on writing a patch to allow the sym monitor to but we also plan on writing a patch to allow the sym monitor to rights to do that (we are in the process of negotiating for the purchase of SYNNERTEK SYSTEMS). In any case, I think an individual could plug his/her copy of the sym monitor into the SYSTEM-6000 and modity it to have a super sym system.

One last comment. We are interested in finding some competant SYM-1 owners who would like to be BETA test sites for the SYSTEM6000. They would receive a SYSTEM-6000 in consideration for certain reporting responsibilities to MWM Electronics. Interested parties should write to: SYSTEM-6000
MWM ELECTRONICS, INC
2555 CUMBERLAND PARKWAY
TI NTA
ATLANTA, GEORGIA 30339
Even if you aren't interested in becomming a BETA sight, write us and we'll put you on our mailing list for future products and/or a possible newsletter.

I'm sorry to hear of SYMPHYSIS ending, but I guess all GOOD things must come to an end sometime, and SYMPHYSIS certainly has been a good thing. Goodby and good luck with your future endeavors. 73.


ASSEMBLE LIST

0010
0020 M1
2003- OD OA 46
0203- 4F 52 4D
0206- 415420
0209- 45 5252
O2OF- OA
O210- OD OA
210- OD OA $43 \quad 0030 \mathrm{M}$
0216-48 4543
0216- 4B 5355
0219- 4D 2045
O21F- 52 OD OA

| OO40 OUTCHR | .DE $\$ 8 A 47$ |
| :--- | :--- |
| OO50 TECHO | -DE $\$ A 653$ |
| OO60 CSUM | -DE $\$ 00 F 2$ |
| OO70 PGMADH | -DE $\$ 00 F 3$ |
| OOBO PGMADL | .DE $\$ 00 F 4$ |



| O2AB- 20 47 BA | 0740 | JSR DUTCHR |
| :--- | :--- | :--- |
| O2AE- CB | 0750 | INY |
| O2AF- CO 12 | 0760 | CPY \#F12 |
| O2B1- DO FS | 0770 | BNE L2 |
| O2B3- OO | 0780 | BRK |
|  | 0790 | -EN |

USE OF NULL STRING IN RAE
Often we have wished to enter a ".BY" ASCII string with leading spaces. This cannot be entered as . BY, STRING' (in this example we assume that five leading spaces are desired), since RAE will accept at most one leading space in any ASCII string immediately following the .BY pseudo-op, as in line $2 G$ below, because of the way in which format is i mplemented.
We have been getting around this by entering the first space as $\$ 20$ or string, and entering one less leading space than desired in the actual

By rereading (for at least the tenth time!) the manual which came with our MAE for the PET systems (including the COM-64), we discovered that we could use a null string, instead, as in line $5 \varnothing$ below.

Incidentally, when Carl Moser lent us a copy of the RAE-1 source code to study, he sent us an annotated copy which he had marked up in red (we are giving up here a golden opportunity to use the word "rubric" in a sentence!) to indicate where he would "upgrade" RAE-1 into a RAE-2 MAE incorporate these modifications.

Again, incidentally, for SYMmers going to a COM-64 as their "second" system, MAE actually supports dual 1541 drives, since these are addressable as D8 and D9, instead of by the $\varnothing$ : and 1: used in so much other PET derived software. This is because MAE was actually designed to support TWO dual drive systems on the PETs!
ᄀFORMAT SET
>ASSEMBLE LIST

9293- 52494 E
0206- 47
6207-20 20 20 øø3
. $\mathrm{BY} \$ 2 \varrho^{\text {, }}$ STRING' ; FOUR SPACES ENTERED HERE
ด2øA- 262653
ต2øD- 545249
9210-4E 47

9218-54 5249
9218- 5452
Ø21D-2の $2 \varnothing 20$ Øø5 $\quad$ BY $\because, \quad$ STRING' ;FIVE SPACES ENTERED HERE
の220-20 20 53
ต223-54 52
//øøøø,ஜ228,ø228

> WARNING NOTICE

If you have entered more than one leading space in the string, your assembly will be different with Fo C than with FO S. Here, for your information, is an assembly listing of the very same program as above, but with FO C as the format option. Note that the leading spaces in the string have been assembled into the object code.
>ASSEMBLE LIST


$\begin{array}{lll}6224-20 & 20 & 53 \\ 6227-54 & 52 & 49\end{array}$
ஜ22A-4E 47
//øøøø, ø22С, ø22C
MORE ON THE 65C02
We finally got our first 65C62 today. It is an NCR6SCの2A; we specifically indicate the source, NCR, because none of the MOS Technology spec sheets (marked preliminary) we have on hand seem to indicate that their version has the added 27 new instructions and the additional addressing modes of the NCR version. Does anyone have this information on the MOS version?

The 65 C 92 may be directly substituted for the $65 \% 2$ for 1 ower power consumption, but to take full advantage of its extended instruction set an upgraded RAE-1 will be required. Here are some thoughts on the subject from Phil Kohl:

(1isting continued to page $17-21$, text continued to page 17-23)

円 $\quad \therefore-E \pi T$ E®®!
CAT LONG LAST!

The extract below, from the Electronic Engineering Times, was sent to $u s$ by William Luitje. The clipping on the right, from Sol Libes' BITS \& BYTES column in the March 1984 issue of Computers \& Electronics, was called to our attention by Dave Wagner.

16-Bit Version of 6502 Announced Sol Libes in $B \& B$

- When Commodore scrapped the 16-bit microprocessor it had been develOping for several years in favor of the Zilog Z8000, it left the market wide spen for an upward-compatible 16 -bit
version of the 6502 . Sure enough a company has seized the opportunity. Western Design Center Inc., Mesa, AZ, ha
nnounced a 16 -bit microprocessor that uns 6502 software in an emulation
mode without revision. The CMOS chip can address 16 M bytes of memory com-
pared to the 6502 's 64 K . It has an 8 -bit pared to the $6502{ }^{2}$ s 64 K . It has an 8 -bit
xternal bus and internal 16 -bit bus. The most amazing feature is that it is pin-compatible with the 6502 . You just move the 6502 from its socket and re-
lace it with the W 65 SC 816 . Then set he E -bit in the status register and it performs exactly like the 6502 . If the bit is


## WDC To Market 16-Bit Version Of $6502 \mu \mathrm{P}$

By Stan Baker
MESA, Ariz. The biggest-
selling 8-bit microprocessor, the selling 8-bit microprocessor, the
6502 , will soon have CMOS 16 bit family members with 8 -bit and 16 -bit databus versions. These parts and several major
CMOS peripherals will come from the Weripherals will come ter Inc. (WDC which developed and owns rights to the CMOS
version of the 6502 and its
CMOS peripherals.
However, WDC will not li cense the new 16 -bit units for a
one-time fee as it has the 8 -bit one-time fee as it has the 8 -bit
parts. Rather, the design firm parts. Rather, the design firm
has ambitious plans to supply chips for the first time and to
provide high-level custom chip provide high-level custom chip
design equipment, software and services.
The first chips of the 16 -bit the end of January. The first of the end of January. The first of
these CMOS chips, the 65 C 816 . will most likely come from Sant. Clara, Calif., where they are be
ing fabricated by American Mi ing fabricated by American Mi-
crodevices Inc. But GTE Microcircuits is also processing the ing bought a license to marke ing bought a license to marke
the chip. GTE wants to be its firs
volume producer.

WDC is an IC design oper ation that has specialized in de-
veloping 6502 CMOS parts and
licensing them for icensing them for one-time
fees. The $n$-channel original ersion has the highest produc ion volume of any 8-bit proces. many highly successful prod cts, such as Apple computer Atari games and computers CMOS 6502 and its CMOS pe ipherals are now licensed by
WDC to Synertek, NCR, Rock well, Plessey, and Marconi.
[ EDITOR'S NOTE: Observe that Commodore is NOT a license for the "enhanced" 65C62!]

The n-channel 6502 was de
signed in 1975 at MOS Technolgy, Valley Forge, Pa., by group led by William Mensch chines bought that firm in 1976 and Mensch left in 1977 for his ormer home of Phoenix, Ariz.
where he had been on the Mo orola team that designed the microprocessor. Afte rated Circuit Engineering orp., he founded WDC in mid 978 , and is now its president rights to the n -channel 6502 hich is made for the merchan market by Synertek and Rock only for in-house use. Mensch explained that hi
20 employees at WDC signed about 20 chips in the past 18 months and are now embarking on a program t
provide 16 -bit processors and major new peripherals and to put its design systems and ser vices at customer premises. In a major change of strategy, plier, rather than a design house nd will not license the designs of is new 16 -bit chips. "Western ee product, with GTE as secon the product, with GTE
source," Mensch said.

Larger Market Share Sought GTE Microcircuits is the
only licensee of the 65 C 816 only licensee of the 65 C 816
and its 8 -bit databus version, and 65 C 802 . Mensch ex. plained, "We are interested in other licensees, but for increasng market share
license people."
He is hoping and expectin to license large systems com panies, such as GE, Philips
and IBM, to be their house alternate sources. Large systems companies could sup
ply themselves and be licensed ply themselves and be licensed to use the WDC designs as "su
per cells" in large chips of thei
own design, Mensch said

The new 16 -b The new 16-bit processor pinouts similar to the 6502 . The
8 -bit version, 65 C 802 , will be irect pin-for-pin replacemen fr the 65 C 02 . Also, the 65 C 80 will use the same chip as the
65 C 816 . Only the pinouts wil be different.
Mensch noted that the new 8 rent 6502 without a noticeabl change in performance. But it can implement many new capa
bilities in the old socket, if the customer wishes.
The new processors will have 95 instructions, com 4 addressing modes, whil he 6502 has 13 . The 24 ad dress bults olexed.
In one phase, all 24 address
bits will be presented, with bits will be presented, with the next phase, the data lines will pass data only

> Shrinking CMOS Process
> A critical part of this pro-
gram is shrinking from the 3 micron CMOS process currenty used for the new processors, to a 1.5 -micron process now in cuits. The current process will
yield $8-\mathrm{MHz}$ to 10 MHz clockrate parts, with a minimum of tive for the 1.5 -micron process is not only to reduce the chip size, but to produce a
ily of $20-\mathrm{MHz}$ parts. Mensch is now studying the feasibility of WDC having its own fab facility, based on the
1.5 -micron CMOS process. However, he has not made a commitment to a fab facility yet.

> Electronic Engineering Times
> Monday, January 9, 1984
LISTING（continued from page 17－19）

| 6309 | ． BY ＂TAY | 6940 |  | －BY \＄39 |  |  |  |  |  |  | 1570 |  | ．BY | ＇LDX |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢310 | ．BY \＄A8 | 9950 |  | ． BY ＇${ }^{\text {BNE＇}}$ |  |  |  |  |  |  | $158 \%$ |  | －BY | \＄A5 \＄A2 |  |  |  |  |  |
| 6320 | ．BY＇TSX＇ | ¢960 |  | －BY \＄Dø |  |  |  |  |  |  | 1599 |  | ．BY | \＄AE \＄BE | \＄A6 | \＄B6 | \＄A2 |  |  |
| ¢339 | ．BY \＄BA | 6970 |  | ． BY ＇ BPL ］ |  |  |  |  |  |  | 1606 |  |  |  |  |  |  |  |  |
| ¢349 | －BY＇TXA＇ | 6980 |  | ． BY \＄19 |  |  |  |  |  |  | 1619 |  | ． BY | ＇LDY＂ |  |  |  |  |  |
| 635\％ | －BY \＄8A | 9990 |  | ． BY ＇ $\mathrm{BVC}^{\prime}$ |  |  |  |  |  |  | 1620 |  | ． BY | \＄C5 \＄C2 |  |  |  |  |  |
| の360 | ．BY＇TXS＇ | 16．9． |  | －BY $\$ 50$ |  |  |  |  |  |  | 1639 |  | ．BY | \＄AC \＄BC | \＄A4 | \＄B4 | \＄AØ |  |  |
| の370 | ．BY \＄9A | 1010 |  | ．$B Y$＇BVS＇ |  |  |  |  |  |  | 1649 |  |  |  |  |  |  |  |  |
| 6389 | ．BY＂TYA＂ | 1020 |  | ． BY \＄79 |  |  |  |  |  |  | $165 \emptyset$ |  | ． BY | ＂LSR |  |  |  |  |  |
| 6390 | ．BY \＄98 | 1036 |  | ． BY ＇ $\mathrm{BRA}^{\prime}$ |  |  |  |  |  |  | 1669 |  | ． BY | \＄C4 \＄C1 |  |  |  |  |  |
| 64øø | ．BY＇CLC＇ | 1040 |  | ．BY \＄89 |  |  |  |  |  |  | 1670 |  | ．BY | \＄4E \＄5E | \＄46 | \＄56 | \＄4A |  |  |
| 6410 | ．BY \＄18 | 1056 |  | －BY \＄ 90 |  |  |  |  |  |  | 1689 |  |  |  |  |  |  |  |  |
| 6420 | － BY ＇ CLD ＇ | 1869 |  |  |  |  |  |  |  |  | 1690 |  | ．BY | ＇SR＇ | ；J | from | previous | s by | te |
| 6430 | －BY \＄D8 | 1679 | MU．OP | －BY＂ADC＂ |  |  |  |  |  |  | 1790 |  | ．BY | \＄81 \＄0¢ |  |  |  |  |  |
| 6440 | －BY＂CLI＇ | 1689 |  | －BY \＄F9 \＄DA |  |  |  |  |  |  | 1719 |  | ．BY | \＄2め |  |  |  |  |  |
| ¢459 | －BY \＄58 | 1996 |  | ． BY \＄6D \＄7D | \＄79 \＄72 | \＄65 $\$$ | \＄75 | \＄71 | \＄61 | \＄69 | 1729 |  |  |  |  |  |  |  |  |
| 6469 | － BY ＂CLV＂ | 1190 |  |  |  |  |  |  |  |  | 1730 |  | ．BY | ＇ORA＇ |  |  |  |  |  |
| 6479 | －BY \＄88 | 1119 |  | ．BY＂AND＂ |  |  |  |  |  |  | 1740 |  | ．BY | \＄F9 \＄DA |  |  |  |  |  |
| 6489 | －BY＇SEC＂ | 1129 |  | －BY \＄F9 \＄DA |  |  |  |  |  |  | 1759 |  | ．BY | \＄gD \＄1D | \＄19 | \＄12 | \＄05 \＄15 | \＄11 | \＄01 \＄09 |
| の490 | －BY $\$ 38$ | 1130 |  | ． BY \＄2D \＄3D | \＄39 \＄32 | \＄25 \＄ | \＄35 | \＄31 | \＄21 | \＄29 | 1769 |  |  |  |  |  |  |  |  |
| 65¢¢ | － BY ＇＇SED＇ | 1140 |  |  |  |  |  |  |  |  | 1779 |  | ． BY | ＇ROL＂ |  |  |  |  |  |
| 6510 | －BY \＄F8 | 1159 |  | ．BY＂ASL＂ |  |  |  |  |  |  | 1789 |  | ．BY | \＄C5 \＄C1 |  |  |  |  |  |
| ¢520 | －BY＂SEI＂ | 1160 |  | ． BY \＄CS \＄C1 |  |  |  |  |  |  | 1790 |  | ． BY | \＄2E \＄3E | \＄26 | \＄36 | \＄2A |  |  |
| 9539 | －BY \＄78 | 1170 |  | －BY \＄gE \＄1E | \＄066 \＄16 | \＄®A |  |  |  |  | 1890 |  |  |  |  |  |  |  |  |
| 6540 | －BY＂NOP＂ | 1180 |  |  |  |  |  |  |  |  | 1810 |  | ． BY | ＂SBC＂ |  |  |  |  |  |
| ¢559 | －BY \＄EA | 1190 |  | －BY＂BIT＂ |  |  |  |  |  |  | 1829 |  | ．BY | \＄F9 \＄DA |  |  |  |  |  |
| 6569 | －BY＂RTI＂ | $129 \%$ |  | －BY \＄C5 \＄C2 |  |  |  |  |  |  | 1839 |  | ．BY | SED \＄FD | \＄F9 | \＄F2 | \＄E5 \＄F5 | \＄F1 | \＄E1 \＄E9 |
| 657\％ | －BY \＄40 | 1215 |  | ． BY \＄2C \＄3C | \＄24 \＄34 | \＄89 |  |  |  |  | 1849 |  |  |  |  |  |  |  |  |
| 9589 | －BY＇RTS＇ | 1229 |  |  |  |  |  |  |  |  | 1859 |  | ．BY | ＇ROR＂ |  |  |  |  |  |
| 9590 | －BY \＄60 | 1239 |  | ． BY ＂CMP＂ |  |  |  |  |  |  | 1860 |  | ．BY | \＄C5 \＄C1 |  |  |  |  |  |
| 6609 | －BY＇DEX＇ | 1240 |  | ．BY \＄F9 \＄DA |  |  |  |  |  |  | 1879 |  | ．BY | \＄6E \＄7E | \＄66 | \＄76 | \＄6A |  |  |
| 9610 | －BY \＄CA | 1259 |  | ． BY \＄CD \＄DD | \＄D9 \＄D2 | \＄C5 | \＄D5 | \＄D1 | \＄C1 | \＄C9 | 1889 |  |  |  |  |  |  |  |  |
| 0629 | ． BY ＇ $\mathrm{DEY}^{\prime}$ | 1268 |  |  |  |  |  |  |  |  | 1890 |  | ．BY | ＂STA＂ |  |  |  |  |  |
| 9639 | ．BY \＄88 | 1279 |  | ． BY ＂CPX， |  |  |  |  |  |  | 1960 |  | ．BY | \＄Fs \＄D8 |  |  |  |  |  |
| 6640 | －BY＇INX＂ | 1289 |  | －BY \＄83 \＄82 |  |  |  |  |  |  | 1910 |  | ． BY | \＄8D \＄9D | $\$ 99$ | \＄92 | \＄85 \＄95 | \＄91 | \＄81 |
| 6650 | －BY \＄E8 | 1290 |  | ．BY \＄EC \＄E4 | \＄E® |  |  |  |  |  | 1920 |  |  |  |  |  |  |  |  |
| 6669 | －BY＇INY＇ | 1309 |  |  |  |  |  |  |  |  | 1930 |  | ． Br | ＂STX＂ |  |  |  |  |  |
| 6670 | －BY \＄C8 | 1310 |  | － BY ＂CPY＂ |  |  |  |  |  |  | 1940 |  | ．BY | \＄83 \＄AC |  |  |  |  |  |
| 0689 | －BY＂PHA | 1320 |  | －BY \＄83 \＄82 |  |  |  |  |  |  | 1959 |  | ．BY | \＄8E \＄86 | \＄96 |  |  |  |  |
| 9690 | ．BY \＄48 | 1336 |  | ． BY \＄CC \＄C4 | \＄Cの |  |  |  |  |  | 1969 |  |  |  |  |  |  |  |  |
| 67øø | －BY＂PHP＂ | 1340 |  |  |  |  |  |  |  |  | 1970 |  |  | ＂STY＂ |  |  |  |  |  |
| 6710 | －BY \＄08 | 1359 |  | ． BY ＇ DEC ＇ |  |  |  |  |  |  | 1989 |  | ．BY | \＄83 \＄Cの |  |  |  |  |  |
| 6726 | －BY＇PLA＇ | 1369 |  | －BY \＄CS \＄C1 |  |  |  |  |  |  | 1990 |  | ． BY | \＄8C \＄84 | \＄94 |  |  |  |  |
| 6736 | －BY $\$ 68$ | 1379 |  | －BY \＄CE \＄DE | \＄C6 \＄D6 | \＄3A |  |  |  |  | 2 2．øの |  |  |  |  |  |  |  |  |
| 6740 | －BY＂PLP＇ | 1389 |  |  |  |  |  |  |  |  | 2010 |  | ．BY | ＇STZ＂ |  |  |  |  |  |
| 6750 | －BY \＄28 | 1396 |  | ．BY＇EOR＂ |  |  |  |  |  |  | 2620 |  | ．BY | \＄C4 \＄CQ |  |  |  |  |  |
| 6760 | －BY＂PHY＊ | $146 \square$ |  | ．BY \＄F9 \＄DA |  |  |  |  |  |  | 2930 |  | ．BY | \＄9C \＄9E | \＄64 | \＄74 |  |  |  |
| ¢77¢ | －BY \＄5A | $141 \varnothing$ |  | ．BY \＄4D \＄5D | \＄59 \＄52 | \＄45 | \＄55 | \＄51 | \＄41 | \＄49 | 2640 |  |  |  |  |  |  |  |  |
| 9780 | －BY＂PLY＇ | 1429 |  |  |  |  |  |  |  |  | 2059 |  | ．BY | ＇TRB＇ |  |  |  |  |  |
| の790 | －BY \＄7A | 1439 |  | ． BY \％INC＂ |  |  |  |  |  |  | 2065 |  | －BY | \＄82 \＄89 |  |  |  |  |  |
| ロ8¢ด | －BY＂PHX＇ | 1440 |  | －BY \＄C5 \＄C1 |  |  |  |  |  |  | 2670 |  | －BY | \＄1C \＄14 |  |  |  |  |  |
| 9810 | －BY \＄DA | 1459 |  | －BY \＄EE \＄FE | \＄E6 \＄F6 | \＄1A |  |  |  |  | 2080 |  |  |  |  |  |  |  |  |
| 9820 | －BY＇PLX＇ | 1460 |  |  |  |  |  |  |  |  | 2699 |  | ． BY | ${ }^{\prime}$ TSB＇ |  |  |  |  |  |
| 9830 | －BY \＄FA | 1479 |  | ．BY＇JMP＇ |  |  |  |  |  |  | 21øの |  | ． BY | \＄82 \＄89 |  |  |  |  |  |
| 9846 | － BY ＂ BRK ＂ | 1489 |  | ． BY \＄93 \＄68 |  |  |  |  |  |  | 2110 |  | ．BY | \＄$¢$ C $\$ 04$ |  |  |  |  |  |
| 9859 | －BY \＄$\$ 0 \square$ | 1499 |  | ． BY \＄4C \＄6C | \＄7C |  |  |  |  |  | 2129 |  |  |  |  |  |  |  |  |
| 0869 | －BY \＄0¢ | 15¢Ø |  |  |  |  |  |  |  |  | 2130 |  | ．BY | \＄øø |  |  |  |  |  |
| 9870 | －BY＂BCC＇ | 1510 |  | ． BY \＄øø |  |  |  |  |  |  | 2149 |  |  |  |  |  |  |  |  |
| 6889 | －BY \＄90 | 1520 |  |  |  |  |  |  |  |  | 2159 |  | ．CT | RAE3 |  |  |  |  |  |
| 9890 | ． BY ＇ BCS ＂ | 1539 | MU．OP2 | ．BY＇LDA＂ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6986 | －BY \＄${ }^{\text {BY }}$ ，${ }^{\text {a }}$ | 1540 |  | －EY \＄F9 \＄DA |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6910 | －BY＇BEQ＇ | 1559 |  | ． BY \＄AD \＄BD | \＄89 \＄82 | \＄A5 | \＄B5 | \＄B1 | \＄A1 | \＄A9 |  | $\begin{aligned} & \text { Note that } \\ & \text { INA, \$1A, } \end{aligned}$ |  | odes DEA not cons | $\begin{aligned} & \$ 3 f \\ & \text { sider } \end{aligned}$ | A, anc |  |  |  |
| 6920 |  | 1560 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | －BY BM |  |  | SYM－PHYSIS | 17－21 |  |  |  |  |  |  |  |  |  |  |  | SYM－PH | HYSIS | 17－22 |

What is the above listing all about? Well, it is a portion of the "source code" for an "unoffical RAE-2", sent us by Phil Kohl. As you can see by the "non-mnemonic" labels in lines $ø \sigma 9 \varnothing$ and $\varnothing \varnothing 13 \varnothing$, Phil has disassembled Carl Moser's RAE-1, analyzed and commented it, and then extended it to include the new op-codes for the 65SCg2 (apparently an alternate name for the non-CBM 65Cø2). For copyright reasons we cannot make available his source code in its entirety, but we publish the portion above to give those among you who wish to do the same a head start, by showing how and where additional op-codes may be added to RAE-1.

In addition to the 65C62/65SC62, a 65C862 with 95 instructions and 24 addressing modes can be used in place of the $85 \varnothing 2$ (see the clippings on page 17-26), and some of you will, no doubt want to extend RAE to accomodate that and the 16 bit version, the 65C816, as well. We firmly approve of the type of reverse engineering and modification for personal use and for limited distribution for non profit research purposes) which is exemplified by Philzs work. Note that, wherever practical, SYM-PHYSIS has always published, and the SYM Users Group has always distributed, fully commented source code to save you the time and rouble of disasesbirs your system understanding. For those who wish to know more about the new "16-bitter", we reprint
the following paragraphs from the February 1984 Issue of the IEEE Philadelphia Section Newsletter, "Update", which we receive thanks to the courtesy of George Bodenstein:

W65SC802 and W65SC816 Microprocessors. These 16 -bit microprocessors are CMOS devices designed to replace the 6500 8-bit
microcomputer family. They operated in two modes, 6502 emulation and native. They start-up in the 6502 mode so that they can be used to replace the 6502 in any system without having to change software. The 65802 will fit in the same socket as the 6502 and ware changes to fit in a 6502 system. The 65802 and 65816 operating the native mode will execute programs up to 3.5 times faster ing the native mode will execute programs 6502 . In the native mode the processors execute all the
orginal 56 NMOS and 10 new CMOS 6502 instructions on 8 and 16 bit data. All registers can either be 8 or 16 bit wide. The processors also execute 30 new instructions which include block moves, coprocessor and system control instructions. They have $\frac{11 \text { new ad- }}{}$ $\frac{\text { dressing modes including long branches, program and stack relat }}{\text { The } 65816 \text { can address up to } 16 \text { Megabytes of memory in either a }}$ The 65816 can address up to 16 Megabytes of memory in either a coprocessor, and operating system will be the subjects of the March Update meeting.
W65SC02 CMOS Microprocessor. Hardware and software compatible with the NMOS 6502. They have 10 new instructions and two new addressing modes. Low power operation

W65SC21 Peripheral Interface Adapter. Direct replacement for the NMOS 6521 or 6821 PIAs. Low power operation.

W65SC22 Versatile Interface Adapter. Direct low powered replacement for the 6522 VIA.

For additional information, contact: The Western Design Center, Inc., 2166 East Brown Road, Mesa, AZ 852ø3, (662) 962-4545

## MORE RAE ENHANCEMENTS

John Mattox sent us a three page listing of a program which "allows RAE to produce and capture files via modem". Since the listing was not easily reproducible, we asked John to send us the program on cassette. He sent us, instead, a cassette containing the much longer program listed below. While such a program would normally be too long for SYM-PHYSIS, we make an exception in this case. As you know, the power of RAE is what attracted $u s$ to $S Y M$ in the first palce, and any enhancements to RAE are well worth disseminating.

We have not been able to fully test the program because it breaks our disk and printer links, but we have tested several sections, including the "menu" portion, and we feel that it is definitely worth studying and extracting ideas from. Note too, his links to SWP!

The listing is published exactly as submitted, with no editing on our part to compress the output lines to the $8 \varnothing$ character printer limit. We "spilled over" onto a second line in so many places anyway, because of the way John entered his line feeds directly into the by statements before the final """, rather than externally, 19 (or $\$$ a) following the final ">" This may "louse up" the listing, but it does save key the final

Contact John directly for cassette copies (his address appears in lines وø2Ø and 9749$)$. Have fun with this one!

010 ; A program to extend RAE, written by John Mattox 6920 ; 331 Nova Lane, Menlo Park, CA 94925.
gø3
; The program provides supporting commands accessed by esc.
9040
; Lines sensitive to relocaton are indicated with *>! .
My machine uses tape for storage. To free the zero page di





2DFB－ 33 FF

|  |  |  | 0760 | ；format |  | ements for SWP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2DFD－ | 702 E | 6D | Ø77ロ |  | ．by | ＇p．m $7310 め \square 3$ 3＇ | \＄ff |
| 2EQG－ | 2639 | 29 |  |  |  |  |  |
| 2E＠3－ | 3733 | 29 |  |  |  |  |  |
| 2Eb6－ | 3136 | 36 |  |  |  |  |  |
| 2Eg9－ | 3620 | 33 |  |  |  |  |  |
| 2EøC－ | FF |  |  |  |  |  |  |
| 2E9D－ | 2958 | 8A | 6789 | intchre | jsr | intchr |  |
| 2E19－ | 29 7F |  | の790 |  | and | \＃\＄7f |  |
| 2E12－ | C9 1B |  | ต8ดด |  | cmp | \＃\＄1b ？escape |  |
| 2E14－ | Fの $\square_{1}$ |  | ด810 |  | beq | escape |  |
| 2E16－ | 69 |  | ¢82¢ |  | rts |  |  |
| 2E17－ | 2958 | 8A | ø830 | escape | jsr | intchr |  |
| 2E1A－ | 29 7F |  | ø849 |  | and | \＃\＄7f |  |
| 2E1C－ | C9 63 |  | ø85の |  | cmp | \＃＇c |  |
| 2E1E－ | FO 36 |  | Ø869 |  | beq | alpha |  |
| 2E2日－ | C9 61 |  | ø879 |  | cmp | \＃＊a |  |
| 2E22－ | Fø 35 |  | ø889 |  | beq | gamma |  |
| 2E24－ | C9 73 |  | Ø896 |  | cmp | \＃＇s |  |
| 2E26－ | Fg 2B |  | Ø909 |  | beq | sp |  |
| 2E28－ | C9 62 |  | 9910 |  | cmp | \＃＇b |  |
| 2E2A－ | FG 36 |  | 6929 |  | beq | baud |  |
| 2E2C－ | C9 69 |  | Ø930 |  | cmp | \＃＇i |  |
| 2E2E－ | FG 2C |  | 9940 |  | beq | epsilon |  |
| 2E3G－ | C9 65 |  | 9959 |  | cmp | \＃＇e |  |
| 2E32－ | F6 13 |  | 9969 |  | beq | 1 amda |  |
| 2E34－ | C9 71 |  | ¢970 |  | cmp | \＃＇${ }^{\text {¢ }}$ |  |
| 2E36－ | FG 12 |  | ¢989 |  | beq | quit |  |
| 2E38－ | C9 64 |  | Ø990 |  | cmp | \＃＇d |  |
| 2E3A－ | Fg 11 |  | 100\％ |  | beq | define |  |
| 2E3C－ | C9 18 |  | 1619 |  | Cmp | \＃\＄1b ？escape |  |
| 2E3E－ | Fg 10 |  | 1 1020 |  | beq | dbl．esc |  |
| 2E40－ | C9 78 |  | 1939 |  | cmp | \＃＇p |  |
| 2E42－ | F6 1B |  | 1949 |  | beq | print |  |
| 2E44－ | 4C 76 | 2C | 1959 |  | j mp | menu |  |
| 2E47－ | 4C 9E | 30 | 1960 | 1 amda | j mp | echo |  |
| 2E4A－ | 4 C Ag | 31 | 1679 | quit | j mp | Quit |  |
| 2E4D－ | 4C 36 | 31 | 1689 | define | j mp | Define |  |
| 2E50－ | 4C øD | 31 | 1990 | dbl．esc | j mp | Dbl．esc |  |
| 2E53－－ | 4 C 36 | 37 | 1198 | sp | j mp | swp |  |
| 2E56－ | 4C 9E | 2 F | 1119 | alpha | j mp | cold |  |
| 2E59－ | 4 C C9 | 2E | 1120 | gamma | jmp | alter |  |
| 2E5C－ | 4 C 63 | 30 | 1130 | epsilon | j mp | input |  |
| 2ESF－ | 4 C 14 | 32 | 1142 | print | j mp | Print |  |
| 2E62－ | A9 8E |  | 1156 | baud | 1 da | \＃chr］ |  |
| 2E64－ | 85 EC |  | 1169 |  | sta | ＊chrindex |  |
| 2E66－ | A9 2E |  | 1170 |  | 1 da | Wh，chr $]$ |  |
| 2E68－ | 85 ED |  | 1185 |  | sta | ＊chrindex＋1 |  |
| 2E6A－ | $29 \mathrm{F8}$ | $3 \emptyset$ | 1190 |  | jsr | outputchr |  |
| 2E6D－ | 2058 | 8A | 1209 |  | jsr | intchr |  |
| 2E76－ | C9 B1 |  | 1210 |  | cmp | \＃\＄b1 |  |
| 2E72－ | Dø ø5 |  | 1220 |  | bne | two |  |
| 2E74－ | A9 4C |  | 1236 |  | 1 da | \＃\＄4c |  |
| 2E76－ | 4 C 88 | 2E | 1240 |  | j mp | setbaud |  |
| 2E79－ | C9 B2 |  | 1259 | two | cmp | \＃\＄b2 |  |
| 2E7B－ | D9 95 |  | 1269 |  | bne | three |  |
| 2E7D－ | A9 10 |  | 1278 |  | 1 da | \＃\＄10 |  |
| 2E7F－ | 4 C 88 | 2E | 1289 |  | j mp | setbaud |  |
| 2E82－ | C9 B3 |  | 1290 | three | cmp | \＃\＄b3 |  |
| 2E84－ | D 0 DC |  | 1396 |  | bne | baud |  |
| 2E86－ | A9 $0_{1}$ |  | 1310 |  | 1 da | \＃\＄ø1 |  |
| 2E88－ | 8D 51 | Ab | 1326 | setbaud | sta | sdbyt |  |
| 2E8B－ | A9 ¢D |  | 1330 |  | 1 da | \＃13 |  |
| 2E8D－ | 69 |  | 1340 |  | rts |  |  |






## USING MAE/STP ON THE COM-64

Since we"ll soon be doing much of our work in the future on the COM-64, we thought we'd give MAE/STP a try: STP, for simplified Tent Frocessor, is MAE"s equivalent of RAE"s SWF. Our first thoughts are these: We find the 40 column screen with it. larger characters easier to read, but it will take a while to get used to the narrower display,
 CTRL-F ED function used in RAE

STP hass a macro ". RU \$xxxx", where $\$ x \times x$ is the address of any machine language subroutine. The macro is used to call subroutimes for intelligent printer control. This was not needed in sWF, where escape terminal; this cannot be done on most CBM machines. These subroutines will be an early order of business.

Please see that this is the only part of any issue of SYM-PHYSIS which we did NOT do on a SYM. We feel slightly guilty about this so it" back to SYM for the rest of this last issue?

COM-64/KTM-2 COMPATIBILITY
Judging by our incoming mail, many of you out there are getting Commodore 645 as second computers. This is part of the reason so much of this issue is devoted to the compatibility between SYM and -64. For those of you who are into RAE and SWP and like the $8 \varnothing$ column display of the KTM-2/8g for your program development (with long ";" comments in your source code) and for word processing), here is some really good news, reproduced from the MAE manual:

MAE Macro Assembler/Text Editor for Commodore Computers

## 19. Connection of a serial device

A serial device may be connected to your PET and controlled by MAE software. MAE generates data in TTY (or RS232) data format on the USER port (bit pin $L=o u t p u t$, bit 6 pin $K=$ input). The data format consists
of one start, seven data, and two stop bits. Since these signals on the user port are TTL levels, circuitry may be required to provide a proper electrical interface. We have found, though, that RS232 terminals such as the Synertek KTM-80 can be connected directly to the user port. If you do provide interface circuitry, you should not invert the signals as they are in positive true state.

The commands JTI and 1 TO are provided to direct MAE to input or ourput on this serial port.
18. CONTROL CODES (for Serial Device)

The following applies to the optional serial device connected to the PET. Ascil characters whose hex values are between hex 00 and 20 are normally non-printing characters. With 冒few exceptions, these characters printable character if hex 40 was added to its value. For example, ascil 03 will be output as $\uparrow c$, and 18 as $\hat{x}$, etc.
[NOTE: STP does not support the printing of the "n", so these were added "by hand". Printing of the "^" can be provided by substitution of some other seldom used character, such as "\", for the "symbolic space" We have a special version of swp for just this purpose!]

SYM-PHYSIS 17-36

Control codes which have special functions are:

| CODE |  | DESCRIPTION |
| :---: | :---: | :---: |
| @ |  | Null (hex 00) |
| B |  | Restore zero page and go to Basic |
| C |  | Restore zero page and go to Monitor |
| G | * | Bell |
| H | * | Backspace (delete previously entered char.) |
| I | * | Horizontal tab to next 8-th char. position |
| J | * | Line feed |
| M | * | Carriage return |
| 0 |  | Continue processing but no output (same as DEL) |
| Q | * | Continue after stop via break key |
| X |  | Delete entfire line altered |
| Y |  | Restore zero page and jump to location $\$ 0000$. (you may reenter at $\$ 5003$ ) |
| z |  | Terminate processing and go to "]" level |
| [ | * | Escape character |

* $=$ Non-printing control character.
[NOTE: Compare this with page 8-1 of the RAE-1 Reference Manual.] Copyright 1982 by Eastern House PAGE 63

The manual was written for the PETs, with 6562 and VIAs, but the MAE 64 version has been modified to work with $651 \varnothing$ and CIAs. The major changes are these:

> 1) 6562 Microsoft BASIC has its USR JMP at \$øøøø. Since the 6510 uses addresses $\$ 00$ and $\$ 01$ for its internal control port, the 6519 version of Microsoft BASIC puts the USR JMP at $\$ 0316$, instead. This implies a modification in the CTRL $Y$ jump
> 2) The us
> 2) The USER port on the COM-64 differs from that on the PET, using PA2 pin $M=$ output, FLAG* pin $B=i n p u t$. Only a thre wire cable is needed; all the software is there, already.

Once this newsletter is out we'll add a KTM-2/89 to our COM-64, and then, as far as RAE and SWP (MAE/STP) are concerned, it'li be as if we were still on a SYM, giving us the best of all possible worlds. CIncidentally, MAE is the only $65 \emptyset 2$ assembler we have found where the Editor and Assembler are co-resident, and which is so beautifully integrated and co-resident with both BASIC and a very powerful, much extended ML monitor.J

WHAT TO DO WITH YOUR OLD SYM(S)
We have received so many letters of thanks and commendation that it almost makes us blush to think of them, and we are much too modest to even consider printing any of them. We make an exception in this one case, because of the extremely good suggestion of what one might do with his "retired" SYM.

Incidentally, in our four years with SYM-PHYSIS, we have received only two really harsh criticisms, and these were answered by advising the writer and the telephoner to re-read the documentation (of course, they had not yet even given it a first reading), to find out where they had
failed.

SYM-PHYSIS 17-37

Dear Lux, Jean, and company:
Im sorry to hear that the SYM line in coming to a halt, but I guess that's progress. I am especially sorry to hear the next issue will be the last, but I know (and you especially know) you've done a super job and it's probably best to quit while you're ahead. JUST WANTED YOU TO KNOW YOUR FOUR YEARS OF WORK HAVEN'T GONE UNNOTICED!!!! I still have all of my back issues, and someday when I give my grandkid my antique SYM-1, it will have a complete set of documentation and especially the entire set of user notes. Thanks for all of the good work. I look forward to the "farewell" issue. You have truly been involved in a pioneering effort and have set a standard for "interactive"
user groups. So long.


A NOTE TO JON'S GRANDKID (S)
Your grandfather wrote that note above. He really thought about you of ten, even way back then! And best wishes from us, too. /s/ Lux \& Jean

LISP, ANYONE?
NICK VRTIS sent the request for help with his SYM Version of LISP on the postal card reprohis TINY PILOT for SYM and are looking forward to trying his finished ISP We suggest that ispers get in touch with Nick and take him up on his offer of a reliminary version.

Nick has been quite proific with his SYM. He also sent along a copy of his SYM/CBM-1541 disk

$$
\begin{aligned}
& \begin{array}{ll}
\text { U(i) } 28,1584 \\
\text { Dlear } \\
\text { Lux }
\end{array} \\
& \text { Do poen ferow argeting abrat Lisp? In ceen } \\
& \text { yore give ne the mune of sonebidy with a } \\
& \text { SHM uti does. A finar almast finnsked or } \\
& \text { version, cut buge written it fhom a descuption if. } \\
& \text { the bazerage and don't hure vecere tia "seal vireim } \\
& \text { to corpau aganit. Perndel be tajpry to exchanse } \\
& \text { c corrig of the sonu fir cormento singestionfadititeoms }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KENT~OOD, MI } 99508
\end{aligned}
$$ drive software.

WHY THE SWITCH FROM SYM?
While there are "loners" in the computer field, as in any other hobby/profession, even loners feel the occasional need of an "audience" to whom they can proudly display what they have done, are doing, and are going to do. Thus, it can be much more ego-satisfying being associated with a computer with a large user base; such popularity tends to breed greater sales, and hence even more popularity, etc.

We have often felt quite frustrated when friends and/or acquaintances asked us about our personal computer, of which they had never before heard, and certainly had never seen advertised on television. Have any of you ever felt the same? It is, of course, much different with the Commodore! And how much great software is now becoming available!

SYM-PHYSIS 17-38

We could recommend the SYM-1 only to our technically oriented friends, but the Commodore 64 is the ideal beginner's system, at a really low budget cost, for those who have not been deluded by the much over-rated sales talk of IBM or CP/M or S-1 6.6 compatibility, or the need for 16 -bits, or more than 64 K of RAM. And that is why we switched our loyalty. Our only regret is that Synertek really missed out on a truly golden opportunity here.
We suggested to Synertek Systems, over three years ago, that they had a real "sleeper" in the SYM-1/KTM-2 combination, and that if they combined these two items on a single board, and threw in BAS-1 and RAE-1 FREE, at a price of, say, $\$ 795$, they might be able to compete quite seriously with Apple, etc. Such a system would have been far "Vw" or "Model T" or "Jeep" "work-horse" of the computer field. Inced Comodore filled the void first with the VIC=20, then the with the VIC=2ळ, then th Commodore 64.

Synertek Systems management decided to go for the DEM market instead, and leave the educational/hobbyist market to others. Commodore's success in keeping costs low has been attributed, in part, at least, to success in keeping costs low has been attributed, integration", since they were in a position to make the majority of their own LSI chips. Synertek is certainly in the same position, and the parent corporation, Honeywell, does have some expertise in mass marketing.

Although we offered our services as a "Beta" test site to Synertek, we were never advised of any of their new products in advance. The first we ever heard of any of their new products, such as the SYM-2, Mod-69, KTM-3, etc., was by receiving a brochure, often long after their availability.

One product we did not even learn about until just this week, was the SYM-2/69, which uses the $68 \% 9$ instead of the $65 \% 2$. This would have been an ideal way to get started in the 6899 field, far less expensive than retrofitting the SYM-1 with the Mod-69 "upgrade" kit. This we think might have been a viable product, if anyone outside Synertek (and existence only when a former student told us that a friend had purchased one at a very low price, somewhere. He told us that it differed from the SYM-2 mainly in the fact that some of the sockets differed from the SYM-2 mainly in the fact that some of the sockets
were in alternate positions on the board. Sure enough we examined a were in alternate positions on the board. Sure enough we examined a
SYM-2, and discovered that alternate socket positions were provided for several chips. We then reexamined a SYM-2 schematic, and, sure enough, the schematic indicated that either the $65 \not 02$ or 6899 could be installed!

We have the greatest admiration for the engineering which has gone into Synertek Systems products, especially into the versatility aspect. Never before have we seen boards with so many jumper and trace cutting and alternate socket options as in the Synertek Systems product line.
Now that they are switching to a new, non computer, OEM product line, which they are not yet ready to announce publicly, we wish them great success. Meanwhile, we are very much enjoying helping many of our new friends,
especially the teenagers, and the junior/senior high school teachers, get started "right" in the computer field. This is how we'll be spending our retirement.

AN "ALl-bASIC" basic dATA SAVER
We have begun to use BASIC much more frequently then in the past,
because so many of the COM- 84 and $V 1 C=20$ programs we have seen lately are in their "natural" language, BASIC. We are much impressed with the skills which so many BASIC programmers have acquired in the use of PEEKs, POKEs, READs, and DATA statements to get the systems to do their bidding.
This is illustrated in the letter and sample program below, which shows how to modify the starting values of variables so that a SAVEd version of the program will now hold the "updated" starting values. This program is well worth studying to see how it can be done.

The SYM cassette interface is so much faster than that in the various Commodore systems that it might be well worth adapting the Commodore's idea of treating the cassette as an alternate $1 / 0$ "device", and PRINT\#ing and GET\#ing variables from an automatically managed "cassette buffer' as SEQuential files. While we have learned a lot from a study
of SYM's SUPERMON, there is a lot more to be learned, especially about I/0 and data file management, from a study of the Commodore's "KERNAL".

In passing, it should be pointed out that the SYM's implementation of USR is far more powerful than that in any other version of Microsoft BASIC, in that an essentially unlimited number of parameters may be passed. It is even more powerful than the SYSs and CALLs included ir other Microsoft BASICs.

Dear Lux,
My sonis and I have fut several games inito our SYM using
EASIC. Some of the games are rather involved arid utilize
changirig variables to make the game 'go". Dccasionally, usually
due to supfer or bedtime, a game will have to be iriterrupted.
This results in shutting down the system and reloading and re-
starting the game at another time. What we needed was a way to
save the game with its currerit farameters. This requirement led
to much experimeritation and firially a method for accomplishing
the goal. The short program which follows ish't very froductive but it does illustrate a method for saving a program with its current farameters by foking the current values into a DATA statement in the beginning of the frogram.

Hofefully, some SYM user, somewhere, may be able to make
use of it. It has proved helfful to us.


7 Enid Road
East Lyme, Ct. 06333
SYM-PHYSIS 17-46

10 DATA001,001,001,001,0 1 REM ENTER THIS LINE WITH NO SPACES !
20 READ A, B, C, D, Y: U=10: $W=U \uparrow 2: U=48$
$30 E=A+B+C+D$ : FFINTT $A, E$, $C, D, E: Y=Y+1$
$40 \quad A=A+1: \quad E=E+2: C=C+3: \quad D=D+4$
50 IF $Y=10$ THEN $Y=0$
60 FOF $F=1$ TO 1000: NEXT F: FRINT CHFま(26)
70 INFUT " (S)AUE OF (F)LAY OF (Q)UIT ? •;E\$

90 IF $A \$=" Q$ ' THEN END
100 IF $A \$=^{\circ} F^{\prime \prime}$ THEN 30
$110 \mathrm{G}=\mathrm{INT}(\mathrm{A} / \mathrm{U}): \mathrm{H}=\mathrm{INT}(\mathrm{A} / \mathrm{W}): \mathrm{J}=\mathrm{A}-\mathrm{U} \boldsymbol{\mathrm { F }} \mathrm{G}: \mathrm{K}=518: \mathrm{L}=519: \mathrm{M}=520: \mathrm{GOSUE} 200$
$120 \mathrm{G}=\mathrm{INT}(\mathrm{E} / \mathrm{U}): \mathrm{H}=\operatorname{INT}(\mathrm{E} / \mathrm{W}): J=E:-U * G: K=522: L=523: M=524:$ GOSUE 200
$130 \mathrm{G}=\mathrm{INT}(\mathrm{C} / \mathrm{U}): H=I N T(C / W): J=C-U * G: K=526: L=527: M=528: G O S U E 200$
$140 \mathrm{G}=\mathrm{INT}(\mathrm{D} / \mathrm{U}): \mathrm{H}=\mathrm{INT}(\mathrm{D} / \mathrm{W}): \mathrm{J}=\mathrm{D}-U * G: K=530: L=531: M=532:$ GOSUE:200
150 POKE 534, Y+U: PRINT: FRINT
160 PFINT "FUT IN A TAFE AND FUT TAF'E RECORDER IN RECORD MODE."
170 FFINT: INFUT "READY ? "豇\$: FRINT
180 SAVE A: FRINT * FFROGFAM SAUED AS "; CHF\$(34);"A"; CHF\$(34);
190 FRINT "WITH CUFFENT FARAMETERS. " : END
200 I=G-U*H: FOKE K, H+U: FOKE L, I+U: POKE M, J+U: FETURN
A FINAL APOLOGY FOR THE UNANSWERED LETTERS
Every letter received here is opened and read by Jean on the same day it arrives. Jean handles the "business" aspects of the letters, usually on the very same day, if at all possible. The letters requesting help go into my "incoming" basket, and it is often several months before they
can be read by me. [The truly "emergency" ones are handed to me directly, and Jean gets me to answer those at once.]
The 1 etters average some $15-2 \varnothing$ per week, and too many of them would take hours of "research" time to work out an answer. Thus, much too many of them have, of necessity, had to go unanswered. A certain percentage of the requests for help, fortunately, have been "self-answering", in the little could be found by fereading the docu ation little more carefully this time.

We have truly enjoyed working with SYM-PHYSIS; the only painful part was in being unable to keep up with the correspondence, and having to apologize for it in each issue. Again, please accept our apologies. The only time we feel less guilty about our negligence is when we realize that we are not alone (guiltiness loves company, we guess). Here's what Herb Caen, the San Francisco Chronicle columnist, has to say in his (i.e., our!) defense.

SYM-PHYSTS 17-41


## San Franciscaena

I DON'T MIND telling you that I get a lot of mail. The reason I don't mind is that I can now apologize publicly for not answering it all. Lor-
dy knows we try, but 1000 or so letters a week pile up fast. Still, every letter deserves a reply. This is not the golden age of letter-writing, and I am still impressed that some friendly stranger pen to paper and unburden his or her thoughts on this subject or that to the friendly stranger

- 'tis I! - at this end of the line. In the age of instant communication - and rather iffy mal service - this is an amazing thing. My guil
increases exponentially with the height of the pile of unanswered mail teetering on the edge of my desk. Now and then, a few letters flutter off and into the wastebasket. It pains me confess that sometimes I am too bushed to dredge them out.

ONCE, YEARS AGO, on the eve of a vacation, I picked up the entire batch and threw it had seen the top of my desk in at least a decade. The action should have brought me release and relief, but it merely spoiled my vacation. I realize that a lot of letter-writers don't expect replies. It's the world we live in. Many is the time I get a delighted "Hey, you answered my letter! Don' you know ives me another letter to answer.

ULTRA HIGH PERFORMANCE SCOPE LINE DRIVER
As the years have gone by, the programs submitted for publication have grown better and better, but, unfortunately, have also grown much too long for publication in these few pages.

This is particularly true of a program submitted last fall by Leland Goertz. Rather than just letting the program get "lost", we'll print parts of Leland's material, so that those interested can contact him directly for a copy, as suggested in his letter. In "laboratory-type" applications an oscilloscope is frequently more easily available than an environment.

The last paragraph of his letter mentions some interesting things he has done with his SYM; some of you may wish to correspond with him on these also! And we really do agree with him on his comparison of SYM-1 vs. VIC=20, in spite of any contrary impression created by our comments elsewhere in this newsletter. We remember when the Commodore PET first appeared how unhappy so many initial purchasers were because there were no ML capabilities built-in, and how Commodore had to provide an ML Monitor (Tiny Mon) on cassette to satisfy them. The VIC=29 does really need a version of MAE in ROM to bring it up to SYM-1 power, but this is highly unlikely to appear. Anyway, we have a strong affection for both.

Dear Lux and SYM-1 users,

I an submitting the enclosed program, ULTRA HIGH PERFRRMANCE SCOPE LINE DRIVER, for your consideration of publication in SYM-PHYSIS. If it is wor thy of publication, you have my o.k..

The software is roughly based on the scope ilne driver supplied by SYNERTEK in the SYM REFERENCE MANUAL. All I have done is alter the way SYNERTEK'S driver accesses character data. For a futher inquiry into the differences between the two, I suggest studying the source code of each driver.

For those who have scopes with Z-axis modulation capabilities, there is an added plus (both with this driver and SYNERTEK'S). Connect the Z-axis probe to the base of Q 10 . This will rid the display of the bright base line and makes a much easier to read display.

SYM-PHYSIS 17-42

The driver will fit in a bare bones SYM with $2 K$ of memory and still leave room for most programs that will run in 1 K of memory.
I am sor.ry that I can not supply you with RAE source code on tape and hope that the enclosed photocopy is clear enough for publication. I have, however, enclosed a tape with the object code assembled at $\$ 0200$. A G $\$ 028 C$ will start the driver. I will also supply any users' with the same tape for \$b.00. Please wr-ite or call the above address for orders.

The software is romable and contains the boot routines. The boot routines may be omitted if they are not going to be used. LOGTAB and CHRTAE can then be moved up to fill the hole that the onitted boot routines left.

I have been following Jeff Lavin's SUPER SYM article with much intrest. However, my SYM at this point in time is a $\$ 50.00$ per hour money maker. Thus. $\mathrm{I}_{\mathrm{n}}$ or my SYM, do not have the time to sit down and study the procedures on how to implement the modifications. I'm sure many other SYMmers are in a simular situation. So. I would like to suggest a step-by-step instruction sheet on how to implement the SUPER SYM. of course, a fee mould be charged, but the advantages of a SUPER SYM are worth such a fee!!!!

I arn sorry to hear the end of the user.5' group and to the end of the manufacturing of the SYM. Progress I guess. I do not. 20 and don't like it at all. I have used my SYM for a variety of thinas including a 12 projector multi-media system complete with program editor. a business security systern. an automat ic program editor. a business security system, an automatic telephone dialer, and now in the medical field as a specialized flopp reformatter. I mould hate to try to implement these
things on a VIC 20. I have been using the sYM since my colleqe davs and received a degree in computer science mainly using the SYM. Call me loval to the rayal. Nothing will ever replace my SYM.
40573 Road 84
Dinuba, CA 9361日
(209) 255-1765 $\square$ Doentz

## [SOFTWARE DESCRIPTION IS ON PAGE 17-44]

## A CALL TO COMPUTER ARTISTS

WALTER "WALLY" GLAB, a long-time SYMmer with a strong background in art, is part of a group of four artists working in the area of Computer Art. He would like to form a Special Interest Group for SYMmers, and, presumably others, working in this field, for the interchange of software and ideas. His address and telephone number are: 2538 N. Wayne, Chicago, IL 69614, (312) 525-7617.
We know that a number of readers have gotten together by mail or phone to exchange ideas and software in their own areas of interest, and hope that this wil continue in the future. As you re a your back issues others whose addresses and phone numbers were published, for "updates", enhancements, etcetera. SYM-PHYSIS 17-43

GENERAL
This software package enables SYM-1 users' to divert there output from the LED displays to a 32 character oscilloscope display. Display format is the standard $5 \times 7$ dot matrix. The driver supports the full 96 character ASCII set of printable characters. Characters may be added (up to 13,011) by writing the starting address of the new character data to PTRLO, and PTRHI.

OPERATION
The "vidio" signal is from the collector of Q10, and is 3 volts peak-to-peak with a cycle time of about borns. The sync pulse which begins the line should synchronize all triggered sweep scopes and most recurrent sueep scopes. The sync pulse may be CHAR with a routine that would output a pulse on some other qutput line.

CONNECTION
Connect the ascilloscope vertical input to pin $R$ on connector. $A A$ and connect the scopes ground to pin 1 of $A A$. For scopes with $z$-axis modulation, connect the $Z$-axis probe to the base of Q10. This will rid the display of the bright base line. If the sync pulse was output on a seperate pin, connect the scopes trigger to this pin.

EDOT
The software may be started 1 of 3 ways. If the software is in a prom, the boot jumpers may be altered so that the system always boots to the scope driver. Using this method, the This is the driver. A G C88C (028C) will also start the driver. The third way to start the driver is to execute the following: SD C800 (0200)-A670. This alters SCNVEC to point to the scope driver.

USAGE
Since the scope buffer resides in system ram, a JSR ACCESS must be performed before any writing to the scope buffer can occur. One scan of the scope buffer may be performed by calling LINE (\$C800 [\$020]). Line can be used in the same way that SUPERMON's

COMMENTS
This software is roughly based on the scope line dr-iver supplied it the SYM REFERENCE MANUAL. For fur ther information see chapter.

We have not yet replaced any of our $65 \emptyset 2$ chips with The Western Design Center's W65SC62 (1ist price $\$ 9.59$ ). We are doing a "paper study" of the advantages to be gained by switching, instead, to the W6SSCBD2 68g9, but gave that we were (very briefly) thinking of going to the are, or sotware W5Sc8g2 is totally compatibles just plug it in and go llist price i \$95.øø!).

There will be no advantage in making the switch UNTIL and UNLESS an upgraded RAE is available, but it is still worth looking into the new "dream" chip. Complete specs for the entire WDC product line are available upon request. We are reprinting here some extracts from their Advance Information Data Sheet, so that you can begin to make your own decision on "switching".



We are wondering what the future holds for WDC's 16-bitters. While the W65SC8g2 can be "retrofitted" into Apples, Ataris, SYMs, VICs but not COM-64s), etc., by hobbyists and experimenters, such as ourselves, we do not see this as a big market, nor do we forsee any new systems being built around this chip.

The 689øø, Z-8øøø, and the 8986/8ø88 have become so firmly entrenched that the W65SC816 will have a tough time getting established, especially since there are no semi-standard DOSes, such as FLEX, CP/M, MS-DOS, PC-DOS, built around the 65ø2. The strongest advantage it will have is that its instruction set is a superset of the 6 ben's, so that preexisting software will only need to be reconfigured for the I/O and DOS peculiar to each system, and this can still be written with 6562 assemblers.

This is similar to what was done for the COM-64 CP/M card. Although a This is Similar to what was done for the COM-64 CP/M card. Although a
Z-8ø chip is installed, the CP/M system software, including the BIOS and BDOS portions, is written in $8 ø 8 \emptyset$ syntax, and the supplied assembler and

W65SC816 Instructions (256 OP Codes)


## TAXAN MONITOR PROBLEM AND FIX

ART WILLIAMSON sent along the following note for users of Taxan monitors:

Sorry it took me so long to get this note to you about
the Taxan display problem we had.
First symptoms of our failure were display blooming and loss of focus. This was followed by a loss of display.

We found a capacitor, C 212 on our schematic to be
defective. This component is messy to replace
because it is under the shield in the horizontal
section of the circuit board.
Two of our three displays had this failure.
Hope this is helpful to other owners of the Taxan unit. Still think it is a fine display.

## PRODUCT LINE RECOMMENDATION

SERGE MATOVIC, of INCON Electronics Inc., 762 Damien Way, Mississauga, Ontario, Canada LSC 3 H 2 , (416) 273-4499, has been keeping us posted on his company's products. These include a PROGRAMMER/EMULATOR, a SIMULATOR, and a PROGRAMMABLE CONTROLLER. The EMULATOR can be used to emu late the SYM.

While we have not actually tested the products Serge offered a loan, but we had to decline because of time pressures), we have studied the detailed spec sheets and the photographs he sent, and these equipments trial environment

We suggest that anyone interested in this class of products phone or write Serge for additional information, including price and delivery schedules.

## FUTURE PLANS

As of this date there is no word as to who will be "carrying-on" the SYM-1 product line, although Synertek is still negotiating with several possible individuals and groups. It appears likely that Synertek will continue manufacturing SYMs as long as the demand remains at its present level, but not the KTM-2 series.

We will be traveling in Europe (and will try to contact or visit as many SYMmers as possible, especially those who have visited us here in Chicol from 9 April through 16 May, 1984. We have been invited to present a talk/seminar for the Department of Electrical Engineering Science of the University of Essex, by Nigel Helsby and Ian Dillworth, and we are looking forward to this, and to finally meeting them in person. We'll then spend two weeks visiting with some of our (U.S.) East Coast SYMmers.
During the months of April and May of 1984 no telephone or mail orders Will be accepted, nor will inquiries or requests for help be handled. After 1 June 1994, the Users' Group will again be available for help, and as a source of software and documentation, and we will continue to and as a source of software and documentation, and we

W65SC816 Microprocessor Op Code Matrix


## *New W65SC816 Op Codes

- W65SC02 Op Codes
Op Code Matrix Legend

| INSTRUCTION |  | ADDRESSING |
| :---: | :---: | :---: |
| MNEMONIC | (COMMENT) | MODE |
| BASE | BASE |  |
| NO BYES |  | NO. CYCLES |

Note A complete assembler syntax description is available upon request.
The final data sheet will contain the assembler syntax mnemonics.

THE SYM-1/VIC-1541 CONNECTION
Part of the reason for the lateness of this final issue is the fun we were having with our Commodore Systems. We justified our lateness, to ourselves, at least, by telling ourselves that we must delay publication until the SYM-1/VIC-1541 Connection was available. Fortunately, Ron Jordan advised $u s$ that we should be getting the prototype for test and today, so that they could go to the printer immmediately, and will publish Ron's material as a four page "quick-printed" supplement as soon as it arrives!

Our long awaited SYM－1／VIC 1541 Connection Package arrived today．We haven＇t yet tried it because the object code as supplied（at \＄70日G） \＄9øलの，so he does not have the anflict．Since Ron supalied us the RAE source，we＇ll relecate the code to कのø日G，and install it first on our conos system to download all our MTU graphics．Then we＇ll move it to our FODS／FDC－1 system at both shaøg and \＄9日ag．so that it move it to with either of these systems．Imagine，a triple－DOs SYM The unit merely plugs on the A－connector，with an additional lead to the RST merely plugs on the A－connector，with an additional lead to the RST simple，how elegant，how easily transportable，how inexpensive ithe 1541 drives are now selling for less than $\$ 250$ in the US）！Ron has been working closely with Don Lewis，who has developed an AIM－65 version of the system；you can contact Jordan and Associates for either the SYM or AIM versions．

SYM－1 DISK OPERATING SYSTEM FOR THE COMMODORE
1541 DISK DRIVE

MONITOR LINKS<br>RAE LINKS<br>BAS LINKS

COPYRIGHT（C） 1983 by Ronald A．Jordan
Distributed by
JORDAN \＆ASSOCIATES
2611 Madrono Drive
Ann Arbor，MI 48193

## INTRODUCTION

The SYM－1 DOS for the Commodore 1541 disk drive greatly expands the capability and compatibility of the SYM－1．Although several disk systems are available for the SYM－1，all are relatively expensive．In addition，each offers its own unique disk formating，which prevents disk software．The SYM－1 1541 DOS helps to fill this gap by using the Commodore 1541 disk drive to create Commodore compatible disks．Since the Commodore 1541 has the DOS built into it，the SYM－1 DOS can take advantage of the Commodore DOS features and reside in RAM or EPROM ver compactly（approx．2K）．With the installation of SYM－1 1541 DOS the SYM－1 can become a much more powerful little computer that is easier and more enjoyable to use．

Functionally，the SYM－1 1541 DOS consists of four modules：the primitive routines，the MONITOR link，the RAE link，and the BAS link．The primitives include all of the low level routines needed to communicate with the Commodore 1541 disk drive over the serial bus．The SYM－1 has several different VIA ports that could be connected to the serial bus． However，the primitive interface routines are dependent on the selected bus configuration on the VIA．The standard VIA port configuration uses VIA \＃1（Fort A）on the A－connector．Other configurations are available upon request at a nominal fee．The MONITOR link interfaces with SYM－PHYSIS 17－49

SUFERMON．All commands are vectored through the unrecognized syntax vector（URSVEC）and may be easily enhanced or altered as desired．The commands include load and save memory to disk with the option for a erectory，reading the error channel． ron channel，changing the dice number to editor（RAE）link includes the monitor diskands．The assembler mplemented through the DC command．The load and save commands use sperial forms of the FUT and GET commands．The load command will load RAE source files with the option for an append and the save will save the source files．Files may also be assembled from disk．To enter RAE， simple monitor jump command is used which then completely configures a simple monitor jump command is used which then completely configures may be reentered with a control C and all of the monitor commands are still available．To start BASIC a simple monitor jump command is also used，which configures BASIC for a $28 K$ system with $8 \varnothing$ columns and then patches in the new command processor using INVEC and OUTVEC．The disk commands are implemented through OUTVEC so that future commands may be added easily and used under program control．Examples might be OPEN and CLOSE commands which could enable writing data to disk．Numerous enhancements and utilities for all links will be available（see Utilities and Enhancements）．Currently，BASIC load and save to disk commands are supported．The other disk commands are also available in RASIC．BASIC may be exited with a control $C$ and then may be warm started with．G without the loss of the BASIC text．Normal cassette I／O is functional in BASIC，RAE，and the monitor．With some precautions， the SYM－1 1541 DOS can function concurrently with the FDC－1 disk system．

The SYM－1 1541 DOS system includes the following：
1．Hardware interface module for the serial bus connection to the SYM－1．VIA \＃1，
Port A．（optional configurations available）
2．Complete source listing for the primitives， MONITOR，RAE，and BAS links with Cross Referenced Label Listing

3．Cassette tape with object code． fnormal start address $\$ 7 \varnothing \varnothing \varnothing$ ，but others available at no charge）

4．SYM－1 1541 DOS manual．
5．EPROM with object code for primitives and MONITOR links．（optional）

6．Source files on disk or cassette． （optional）

COMMAND SUMMARY
MONITOR LINK：
1．S2 $x \times x \times$ ，yyyy／fiLENAME
save memory to disk with the name
2．L2／FILENAME load memory
L2 $2 \times x \times /$ FILENAME relocated memory load
－SC \＃x change device number
SC ！read error channel
SC ？list directory
SL ．DISkCOM send disk command
15 cold start RAE

RAE LINK:
. PUT/FILENAME save source file
GET/FILENAME load source file
3. DC \#x change device number DC ! read error channel DC ? list directory
DC . DISKCOMMAND send disk command
4. CT FILENAME continue on disk

BAS LINK:

1. CONTROL C exit to monitor
2. \#SP "FILENAME" save program to disk
3. \#LP "FILENAME" load program from disk
4. \#DC "\#x" (same as RAE LINK)
\#DC "!"
\#DC ".DISKCOMMAND"
UTILITIES AND ENHANCEMENTS
The basic SYM-1 1541 DOS provides the foundation on which future commands may be added. Several commands have already been written, such as append BASIC programs, a RUN command for BASIC to load and run a program, and OPEN and CLOSE commands to write data to disk. Some are also available such as a disk copy program and a disk sector read/write program, but many more are planned. It is hoped many new enhancements and utilities may be provided as they become available at a very reasonable cost

All prices include shipping and handling unless otherwise stated.
Please allow 4-6 weeks for delivery. Overseas orders add \$1ø.øø.
(1) SYM-1541 DOS $\$ 95.00$
(2) DOS - Special $1 / 0$ config. (add $\$ 25 . \varnothing 6)$
(3) EPROM option (add \$15.6ด)
(4) Source files on disk or cassette (add \$25.m日)

Address mail orders to the address above. For additional information, elephone on weekdays, 6:øø PM-9:øø PM EST, or weekends, 9:øø AM-6:øø PM EST, at (313) 663-6374.
A FINAL MESSAGE FROM DICK ALBERS
March 5,1984

## Dear Lux,

I hope this reaches you before publication of the last issue of SYM-PHYSIS (SYM-PHYZZLE ?). I have been meaning to write for a long time now, but must plead preoccupation; I have been learning a new system Radio Shack's Color Computer with the FLEX and OS-9 DOSes. It is an easy way to use up much more time than I really should. I recommend the CoCo to anyone who wants experience with a powerful operating system without expensive or complex hardware.

Thank you for publishing my programs. The latest ones in issue 15 caused Phil Kohl to suspect an ommission (see \#16- 39 bottom of page). I had the pleasure of visiting his home late last year (1983) and we discussed that (and many, many other things). Phil has modified MON on his SYM; we assume that is the reason he had trouble. It does point out a possible pitfall: if you modify a system, be prepared for incompatibilities.

The programs have an unusual history. Way back when, before I got RAE, I needed an editor and attempted to write my own. Although it was never finished, I learned a lot about writing programs. One of the things I learned was that hand assembly is hard and frustrating work. Efficient code is a must; the fewer bytes to key in by hand, the better.

That's where the CMP \#\$øD went; it's included in INCHR so I didn't put it in my code. Another lesson was that an assembler is a necessity for SYM-PHYSIS 17-51
serious programming. After I had RAE I didn't need my own editor, 50 work on it ceased. However, I couldn't have all that time and effort wasted so I salvaged these two subroutines and converted them to stand alone. They are very handy when I need their functions.

I have a tip for other programmers. Some time ago you published an example of RAE's conditional assembly capabilities. I can't find it in my library so I must rely on my memory and I can't refer to the issue, but I think it was written by our guru, Lux. This tip could be considered "self-defensive programming".

This should work with assemblers other than RAE, so it may be useful on other systems too. The source for a program may be assembled into two or more versions depending on the value of specific flags. considerable length of time for an assembly to complete, only to find a that Murphy has struck again.

Assume a program that can be assembled for either tape or disk but not both, and if neither flag is set the result is incomplete. In your permanent source leave both flags clear and include the first two of the conditionals shown below:


A flag-setting error will cause RAE to attempt to assemble the meaningless "code" within one of the conditionals, which will cause an will stop early. This example used only two flags so only two Boolean tests are required; more flags and more complex relationships between them will require more complex tests.

Did you know that a "Z" (control-Z) will work in place of "//" to exit RAE's auto-number mode? It will work anywhere on the input line, not just at the beginning, and any text on that line is ignored.

Finally I want to thank you and Jean for forming and continuing S.U.G. and all those who contributed their efforts. Wi thout SYM-PHYSIS I would not have been able to learn nearly as much about programing and certainly would not have had as much fun doing so. Thank you all.

Very sincerely,
Richard Albers
AND ONE FROM JEAN
Even though this is our last published contact with the SYM users community, I hope it will not be our last contact. From the very first day that Lux and I began this (ad)venture, we have made many hundreds of not just customers, but friends. Thanks to all of you, and especially to so many who very quickly turned an ordinary business call into a friendly personal one. It has been lots of fun -- let's keep in touch.

As ever, SYM-cerely yours,

SYM-PHYSIS 17-52


[^0]:    

