
 Synertek Systems Corporation

SYM REFERENCE MANUAL

sYm REFERENCE MANUAL

Copyright (C) by Synertek Systems Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of Synertek Systems Corporation.

SSC Pub MAN-A-260006-B
First Printing: May, 1978
Second Printing: August, 1978

SYM-1 REFERENCE MANUAL

TABLE OF CONTENTS

PAGE
Chapter 1 Introduction to the SYM Computer 1-1
Chapter 2 How to Use the SYM Reference Manual 2-1
Chapter 3 Preparing to Use Your SYM Computer 3-1
3.1 Parts Check 3-1
3.2 Caution on MOS Parts 3-1
3.3 Visual Check. 3-1
3.4 Recommended Power Supplies 3-3
3.5 Power Supply Connection 3-3
3.6 Power-On Check 3-3
3.7 Keyboard Exercise 3-3
3.8 Attaching an Audio Cassette Recorder 3-6
3.9 Save and Load Exercise 3-9
3.10 Attaching a TTY 3-10
3.11 Terminal Exercise 3-11
3.12 Attaching a CRT 3-12
3.13 CRT Exercise 3-11
Chapter 4 SYM-1 System Overview 4-1
4.1 Hardware Description 4-1
4.1.1 6502 CPU Description 4-1
4.1.1.1 Bus Structure 4-1
4.1.1.2 Summary 4-3
4.1.2 6522 Description 4-3
4.1.2.1 Processor Interface 4-4
4.1.2.2 Peripheral Interface 4-4
4.1.3 6532 Description 4-5
4.1.4 Functional Schematics 4-5
4.2 Memory Allocation 4-17
4.2.1 Standard Memory Allocation 4-17
4.2.2 Address Decoding Jumper Options 4-26
4.2.3 Off-Board Expandability 4-26
4.2.4 I/O Buffers 4-26
4.3 Software Description 4-32
4.3.1 Monitor Description - General 4-32
4.3.2 Software Interfacing 4-33
4.3.3 6502 Microprocessor Assembly Language Syntax 4-33
4.3.4 SY6502 Instruction Set. 4-34
Chapter 5 Operating the SYM 5-1
5.1 Keyboard Layout 5-1
5.2 SYM Command Syntax 5-1
5.3 SYM Monitor Commands 5-8
5.3.1 M (Display and/or Modify Memory) 5-8
5.3.2 R (Display and/or Modify User Registers) 5-11
5.3.3 G (Go) 5-12
5.3.4 V (Verify). 5-13
PAGE
5.3.5 D (Deposit) 5-14
5.3.6 C (Calculate) 5-15
5.3.7 B (Block Move in Memory) 5-16
5.3.8 J (Jump) 5-17
5.3.9 SD (Store Double Byte) 5-17
5.3.10 F (Fill) 5-18
5.3.11 W (Write Protect) 5-19
5.3.12 E (Execute) 5-20
5.4 Cassette and Paper Tape Commands 5-21
5.4.1 S1,S2 (Save Cassette Tape) 5-21
5.4.2 L2 (Load High-Speed Format Record from Tape) 5-22
5.4.3 L1 (Load KIM* Format Record from Tape) 5-23
5.4.4 SP (Save Paper Tape) 5-23
5.4.5 LP (Load Paper Tape) 5-24
5.5 User-Defined Functions 5-24
5.6 Error Codes 5-24
Chapter 6 Programming the SYM-1 6-1
6.1 Hardware 6-1
6.2 Double-Precision Addition 6-1
6.2.1 Defining Program Flow 6-1
6.2.2 Coding and "Hand Assembly" 6-4
6.2.3 Entering and Executing the Program 6-4
6.2.4 Debugging Methods 6-7
6.3 Conditional Testing 6-8
6.4 Multiplication 6-11
Chapter 7 Oscilloscope Output Feature 7-1
7.1 Introduction 7-1
7.2 Operation of Oscilloscope Output 7-1
7.2.1 Connection Procedures 7-1
7.2.2 Circuit Operation 7-1
7.3 Using Our Sample Software 7-2
Chapter 8 System Expansion 8-1
8.1 Memory Expansion 8-1
8.2 Peripheral Expansion 8-4
Chapter 9 Advanced Monitor and Programming Techniques 9-1
9.1 Monitor Flow 9-1
9.2 Monitor Calls 9-1
9.3 Monitor Calls, Entries and Tables 9-1
9.4 Vectors and Interrupts 9-1
9.5 Debug ON and Trace 9-10
9.6 User Trace Routines 9-12
9.7 Mixed I/O Configuration 9-14
9.8 User Monitor Extensions 9-16
9.8.1 Monitor Extension Example 9-16
9.8.2 SUPERMON as Extension to User Routines 9-16
9.9 Use of SAVER and REStore Routines. $9-17$

TABLE OF CONTENTS (CONTINUED)

PAGE
Appendices
A Immediate Action A-1
B Parts List, Component Layout, and Outline Drawing B-1
C Audio Tape Formats C-1
D Paper Tape Formats D-1
E SYM Compatability With KIM* E-I
F Creating and Using a Sync Tape F-I
G Monitor Addenda G-1
H Supplementary Information H-I
I SY6502 Data Sheet. I-1
J SY6522 Data Sheet. J-1
K SY6532 Data Sheet K-1
L SY2114 Data Sheet L-1
COMPLETE SUPERMON MONITOR LISTING

CHAPTER 1

INTRODUCTION TO THE SYM COMPUTER

Abstract

Whether you're a teacher or a student of computer science, a systems engineer or a hobbyist, you now own one of the most versatile and sophisticated single-board computers available today. The Synertek Systems SYM-1 is an ideal introduction to the expanding world of microprocessor technology as well as a powerful development tool for design of microcomputer-based systems. Fully assembled and thoroughly tested, the SYM-1 comes equipped with a 28-key dual-function keyboard for input and a 6-digit light emitting diode (LED) display for output. All that's needed to make your computer operational is a single 5 -volt power supply.

Based on the popular and reliable 6502 Central Processing Unit (CPU), the SYM-1 is designed to permit flexible solutions to a wide range of application problems. A system monitor (SUPERMON) is stored in 4 K bytes of Read Only Memory (ROM) furnished with the SYM-1 so you're free to concentrate on the application itself. But should you require customized system software, sockets are provided on the board for three additional ROM or Erasable PROM (EPROM) packages that can expand total ROM to 24 K bytes. And by changing connections on the jumpers that have been designed for this purpose, the SYM-1 can be set up to respond to your own system software as soon as the power is turned on.

For working with data and programs, SYM-1 comes equipped with 1 K of Random Access Memory (RAM), and sockets are available on the board for plug-in expansion up to 4 K . Should additional memory be required for your application, an expansion port is provided which will allow additional ROM, PROM, RAM or I/O to be attached to the system up to the 65,536 maximum addressable limit for an 8 -bit microprocessor.

While the keyboard and LED display included on the SYM-1 board will be sufficient for most users, other users may require the additional storage capability of audio cassette tape or the hard copy output of an RS-232 or a teletype terminal. Not only the serial interface, but also the hardware and software necessary for control of these devices is included on the SYM-1. Adding them to your system is simply a matter of properly wiring the appropriate connectors. Similarly, SYM-1 allows an oscilloscope to be added to the system to provide a unique 32-character display under software control. (Or, with the addition of the SYM-2 KB/TV interface and a common and inexpensive Radio Frequency (RF) adapter, you can turn your television set into a video display terminal.)

And that's not all. A total of 51 active Input-Output (I/O) lines (expandable to 71 with the addition of a plug-in component) permit an almost endless variety of other peripheral devices to interface to the SYM-1, from floppy disk drives to full-ASCII keyboards and other computer systems.

Other key hardware and software features of SYM-1 include jumper-selectable and program-controlled write protection for selected areas of memory, four internal timers (expandable to six), four on-board buffers for direct control of high voltage or high current interfaces, and a debug facility that may be controlled either by a manual switch or by software. We could go on, but rather than merely list what the SYM-1 is capable of doing, let's move on to the rest of the manual and learn how to put it to work.

CHAPTER 2

HOW TO USE THE SYM REFERENCE MANUAL

This manual is designed both to help you get your SYM-1 running and to teach you to use it as fully as possible. Reading over the following chapter descriptions will give you an idea of how to proceed and where to look for help when you run into a problem. Although to get the most out of this manual you should read it thoroughly before attempting to operate your SYM-1, only Chapter 3 is essential before applying power and attempting simple operations.

You should read Chapter 3 before you even unpack your SYM-1. Following the handling instructions in that chapter will help insure that you do not inadvertently damage the microcomputer components. Chapter 3 also contains instructions for connecting the power supply, and a simple keyboard exercise to acquaint you with the SYM-1 and verify that the system is working properly. In addition, directions are provided for attaching an audio cassette recorder, teletype or any RS-232 compatible terminal to the system.

Chapter 4 provides you an overview of the hardware and software features of the SYM-1. The major Integrated Circuit (IC) devices are described, and the configuration of the various edge connectors is explained. Memory assignment is also discussed, as are the various hardware jumper options on SYM-1. A complete list of machine language and assembly language commands for the 6502 CPU is included in this chapter.

Chapter 5 provides complete operating instructions for the SYM-I. The color-coded keyboard layout is explained, the keys and their functions are defined, and you're shown how to form SYM monitor commands. Instructions for operating an audio cassette recorder, teletype terminal with paper tape unit, and RS-232 terminal are included with the appropriate monitor command descriptions. In addition, the features of the SYM-1 monitor are explained in detail.

Chapter 6 is where you'll learn to program the SYM-1 to handle your applications. We'll describe the program flow and assembly code for a small sample program and explain how to prepare it for entry to the SYM-1. Then we'll discuss how to execute it and how to find problems in it if it doesn't work the way you expected it to work. After you've completed this example program, you'll have a chance to try your hand at two more programs of increasing complexity.

Chapter 7 describes how to use an oscilloscope with your SYM-1 module to obtain a unique, 32-character display similar to that of a CRT. The hardware is present on your SYM-1 to allow this usage, and the software has been designed to allow you to write your own program to send characters to the oscilloscope. A sample program implementing this feature is discussed in the chapter.

Chapter 8 explains how to expand your SYM-1 system to include additional memory or peripheral devices. I/O techniques are also discussed, including how to configure an auxiliary expansion port.

Chapter 9 consists of a system flow chart and a discussion of advanced monitor and progamming techniques which will add flexibility and expandability to your SYM system. One of the unique things about the SYM-1 is its seemingly endless flexibility in software.

For example, you can create a sub-set of new monitor commands or an entirely new monitor by taking advantage of the way the system handles unrecognized commands. You can also make use of nearly all of the monitor as subroutines in your own programs, thus saving both programming time and memory space.

In addition to the chapters described above, several appendices located at the back of the manual include important service and other reference information. Appendix A explains what to do if your SYM-1 does not operate properly, becomes defective or requires service. Appendix B contains a complete parts list and a component layout diagram. Audio cassette tape formats are described in Appendix C, and the format for data stored on punched paper tape is outlined in Appendix D.

You will find that your SYM-1 will interface many devices designed to accompany the KIM computer. This compatability with KIM-related products is described in Appendix E. Appendix F explains how to create and use a sync tape for audio cassette operation. Appendices G and H contain Monitor Addenda and supplementary information relating to use of the SYM-1. Finally, Appendices I, J, K and L provide reference information on the SY6502, SY6522, SY6532 and SY2114 RAM IC devices.

The last item in the manual, which is not an appendix but an addendum, is a complete listing of the SYM-1 SUPERMON monitor program. Nothing is held back; you have the complete listing to allow you to use it any way you wish. Once you understand how the monitor works and the essentials of 6502 assembly language programming, this listing becomes an invaluable tool for implementing your own applications.

CHAPTER 3

PREPARING TO USE YOUR SYM COMPUTER

This chapter will take you, step-by-step, through the process of unpacking the SYM-1 and making it operational. After applying power and checking to see that the keyboard and display function properly, you will learn how to attach an audio cassette recorder, TTY, or CRT to the system.

3.1 PARTS CHECK

In addition to this manual, several other items are included with your microcomputer. Packed along with the SYM-1 microcomputer itself you should find a programming card containing a summary of 6502 instruction codes and SYM commands, a programming manual, a warranty card, which you should fill out and mail to Synertek Systems as soon as possible, an optional user club card and two edge connectors, one long and one short. Also included is a red plastic strip which serves as a faceplate over the lighted display. The terms of the warranty are explained on the warranty card. Also included with the computer is a packet of small rubber feet on which to mount your SYM-1 for table-top operation.

3.2 CAUTION ON MOS PARTS

The integrated circuits on your SYM-1 are implemented with Metal Oxide Silicon (MOS) technology and may be damaged or destroyed if accidentally exposed to high voltage levels. By observing a few simple precautions you can avoid a costly and disappointing mishap.

Static electricity is perhaps the least obvious, and thus most dangerous, source of voltage potential that can damage computer components. The SYM-1 is wrapped in special conductive material to protect it in shipping, and you should be careful to discharge any possible build-up of static electricity on your body before unpacking or handling the circuit board. Walking on a carpeted floor is especially liable to produce static electricity. Always touch a ground connection such as a metal window frame or an appliance with a three-pronged plug before handling your SYM-1, and avoid touching the pin connections on the back of the circuit board. Ungrounded or poorly grounded test equipment and soldering irons are other sources of potentially dangerous voltage levels. Make sure that all test equipment and soldering irons are properly grounded.

3.3 VISUAL CHECK

While observing the precautions described in section 3.2, take the SYM-1 from its box and remove the protective packing. Next, apply the small rubber mounting feet and place the SYM-1 on a flat surface with the keyboard facing you. Using Figure 3-1 you can identify the major system components and begin to familiarize yourself with the layout of the SYM-1 board. Chapter 4 describes the system in more detail, with appropriate schematics, but for now we're just concerned with powering-up and beginning operation.

3.4 RECOMMENDED POWER SUPPLIES

The SYM-1 microcomputer requires only the addition of a power supply to become fully operational. Any unit that supplies +5 Volts DC @ 1.5 amps and has adequate overload protection is acceptable. Synertek Systems does not recommend any particular make or model. Rather than buy an assembled power supply, you may want to build your own from one of the many kits available from hobby stores and mail order houses.

3.5 POWER SUPPLY CONNECTION

Now that you've obtained a 5-volt power supply, you're almost ready to power-up the SYM-1. Find the power supply edge connector (the smaller of the two edge connectors packed along with the microcomputer), and wire it as shown in Figure 3-2. Next, slide the connector onto the power connector pins located in the middle of the top edge of the board. Check to make sure that the wiring is correct and that the connector is properly oriented before attaching it to the board.

3.6 POWER-ON CHECK

Turn on the power supply. The red light to the left of the power connection should glow to indicate that power is reaching the board. The LED display above the keyboard should be completely blank, and a tone should be heard. Press the Carriage Return (CR) key. You should again hear the audible tone that is emitted when power is turned on or a key depression is sensed, and the display should show "SY1.0 . .". Carriage Return (CR) is the key that "logs you on" to the computer when first powering up or after pressing Reset (RST). If your computer isn't responding properly, turn off the power supply. Remove the power connector from the board and make sure that all wires are connected to the proper locations and are securely attached, then repeat the power-up procedure.

If after you recheck and repeat the power-up procedure, your SYM-1 does not respond as described above, refer to Appendix A for information on returning the unit for service.

3.7 KEYBOARD EXERCISE

Now that your SYM-1 is operational, let's try a small program to verify that the system is functioning properly. The program will add together two 8-bit binary numbers and store the result. As you enter the program, addresses and data will appear on the LED display as hexadecimal digits. Addresses are 16 bits long and thus will be represented by four hexadecimal digits, while data bytes are 8 bits long and will appear as two hex digits. Before entering the program, you may want to review the following listing of assembler code for the test program. The process of converting assembler code to machine language will be explained in Chapter 6.

		MONITR	\$ $\$ 8000$	
		VALUE1	\$0200	
		VALUE2	- \$0201	
		RESULT	= \$0202	
		*	\$0203	
0203	18	START	CLC	
0204	D8		CLD	
0205	AD 0002		LDA	VALUE1
0208	6D 0102		ADC	VALUE2
020B	8D 0202		STA	RESULT
020E	4C 0080		JMP	MONITR

Figure 3-2. POWER SUPPLY CONNECTIONS

Now enter the program by following the steps listed below. Asterisks indicate the displayed data contained in the identified locations. Simulated key tops stand for function keys (e.g., (CR) for carriage return) The period displayed at the end of each entry sequence is SUPERMON's standard prompt character. As each data byte is entered, the address will automatically increment.

YOU KEY IN	DISPLAY SHOWS	EXPLANATION
(RESET)		
(CR)	SY1.0..	Keyboard log-on
(MEM) 200 (CR)	0200.**.	Display contents of location 0200.
Cl	0201.**.	Store Cl (Hex) in 0200, display next location.
05	0202.**.	Store 05 (Hex) in 0201, display contents of 0202.
00	0203.**.	Store 00 (Hex) in 0202, display 0203
Enter Program:		
18	0204.**.	Store 18 (Hex) in 0203, display 0204
D8	0205.**.	Store D8 (Hex) in 0204, display 0205
AD	0206.**.	.
00	0207.**.	.
02	0208.**.	-
6D	0209.**.	-
01	020A.**.	
02	020B.**.	
8D	020C.**.	
02	020D.**.	
02	020E.**.	
4 C	020F.**.	
00	0210.**.	
80	0211.**.	
(CR)	211.**..	

Check to see that program is entered correctly:

(MEM)	$200(\mathrm{CR})$
(\rightarrow)	$0200 . \mathrm{Cl}$.
(\rightarrow)	0201.05.
(\rightarrow)	0202.00.
(\rightarrow)	0203.18.
(\rightarrow)	$0204 . \mathrm{D}$.
(\rightarrow)	$0205 . \mathrm{AD}$.
(\rightarrow)	0206.00.
(\rightarrow)	0207.02.
(\rightarrow)	0208.6 D.
(\rightarrow)	0209.01.
(\rightarrow)	020 A .02.
(\rightarrow)	020 B .8 D.
(\rightarrow)	020 C .02.
(\rightarrow)	020 D .02.
(\rightarrow)	020 E .4 C.
(CR)	020 F .00.
	0210.80.
	$210.80 .$.

VALUE1
valuez
RESULT
Clear carry flag
Set status register for binary add
Load VALUE1 into accumulator
Address of VALUE1, low order byte
Address of VALUE1, high order byte Add VALUE2 to accumulator
Address of VALUE2, low order byte Address of VALUE2, high order byte Store accumulator
Address of RESULT, low order byte Address of RESULT, high order byte JUMP to monitor
Address of monitor, low order byte Address of monitor, high order byte Exit from memory display and modify mode

Your program is now entered and ready to execute. The two numbers you will add together, Cl (Hex) and 05 (Hex), are stored in locations 0200 and 0201 respectively. The result will be stored in location 0202. The two digit hex codes you entered in
succeeding memory locations are the addresses, operands, and 6502 instruction codes necessary to add together two 8-bit binary numbers and return to the monitor program. To execute the program and display the result, perform the following steps:
YOU KEY IN

DISPLAY SHOWS
EXPLANATION
(GO) 203 (CR)
(MEM) 202 (CR) (CR)
g 203.
0202.C6
202.C6. .

Execute program starting at location 0203
Check result stored in location 0202
Exit from memory display and modify mode

Although this is a simple problem, it demonstrates the basic procedures for entering and executing a program on the SYM-1 as well as verifying that the system is operating properly.

3.8 ATTACHING AN AUDIO CASSETTE RECORDER

The program you entered in section 3.7 will remain stored in RAM memory only as long as the power remains on. As soon as the power is turned off, RAM data is lost, so to reuse the program you would have to enter it again from the keyboard. In order to provide you with a way to permanently store data and programs, SYM-1 is equipped with the hardware and software logic necessary to "talk to" an audio cassette recorder.

Since SYM-1 audio cassette operation involves high data transfer rates (185 bytes per second for HIGH-SPEED format), you should use a good quality recorder to ensure reliable performance. The unit should be equipped with an earphone jack for output, a microphone for input, a remote jack for remote control of the motor (optional), and standard controls for Play, Record, Rewind, and Stop. An additional feature that is useful but not essential is a tape counter. By keeping a record of counter values you can locate any program of data block manually without having to search the tape under program control at Play speed.

SYM-1 is designed to allow the cassette unit to be attached to either the Applications (A) or the Terminal (T) connector (requires a DB25 connector; see section 3.12). Refer to Figure 3-1 for the board location of these two connectors. Figure $4-3$ shows how the Applications (A) edge connector should be wired for the cassette unit. The Terminal (T) connector should be wired as shown in Figure 4-3 if the unit is to be attached to the T connector. Keep the leads as short as possible and avoid running them near sources of electrical interference such as AC power cords. Always use the ground connection at the connector and do not ground directly to the power supply.

The remote control circuitry on the SYM-1 card allows a variety of cassette recorders to be used under software control. However, before you connect your remote control you must determine which type of connection is necessary for your particular recorder. Figure 3-3 illustrates the SYM-1 circuitry and eight different ways to hook it up. The following procedure can be used to determine which connection is necessary for your recorder:

1. Insert the remote control cable into your recorder. Install a tape in the unit.
2. Press play. The tape should not move. If it does, check the cable.
3. Measure the voltage at the center tip of the open end of the cable. (See Figure 3-4. Use ground reference from the EAR plug.) Record this as

AUDIO CASSETTE SYM REMOTE CONTROL CONNECTION

AUDIO CASSETTE RECORDER JACKS REMOTE CONTROL CONNECTIONS

Figure 3-3. REMOTE CONTROL TYPES AND CONNECTIONS

Table 3-1. AUDIO CASSETTE REMOTE CONTROL TYPE DETERMINATION

		READING A (center tip voltage)		
		-6 v to -8 v	GND	+6 v to +8 v
(əБe7ton ptoțs) a פNIavit	$\begin{aligned} & \overrightarrow{0} \\ & 1 \\ & 1 \\ & 0 \\ & + \\ & b \\ & 0 \end{aligned}$		```l```	
	$\underset{0}{0}$	READING C GND Type VII -8v Type VI		READING C GND Type I +8 v Type IV
	¢ + + 0 + + + +		READING C GND Type II +8 v Type III	

Reading C (shorted)

Figure 3-4. REMOTE CONTROL PLUG UNIT

Reading A. Typically this will be either +6 to +8 volts, -6 to -8 volts, or ground.
4. Measure voltage at the shield of the open end of the cable. Record this as Reading B. The same typical values stated in step 3 will apply. Readings A and B should not be the same.
5. Using a wire jumper, short the shield and center tip together. Your tape should now move. Measure the voltage at the center tip (do not remove the short). Record this as Reading C.
6. If your tape moves in step 2 or your tape does not move in step 5, check your cable for opens or shorts.
7. Use Table 3-1 to determine which type of connections to make for your recorder.
8. After you have found the proper category for your recorder, Figure 3-3 illustrates which connections to make.

3.9 SAVE AND LOAD EXERCISE

To check cassette unit operation, we'll "Save" on tape the program presented in Section 3.7, then load the program back into RAM. But before beginning tape operations, we must set the volume and tone controls on the recorder to the correct position. This is accomplished by creating and using a "sync" tape as described in Appendix F. Follow those procedures now, keeping in mind that we will save the program, and thus will also load it back into RAM, in HIGH-SPEED format.

After adjusting you recorder, enter the program from the keyboard as you did before. Insert a tape into the recorder. If your unit is equipped with remote control, place it in Record mode. Since the motor for the cassette is under software control, the tape will not advance. If your unit does not have remote control, do not place the unit in Record mode until just before pressing (CR) while entering the save command shown below including the carriage return, before placing the unit in Play Mode.

YOU KEY IN
DISPLAY SHOWS EXPLANATION
(SAV 2) 3 (-) 200 (-) 210 (CR) 0-210.
Save locations 0200 to 0210 in a record with 1D=03, in HIGH-SPEED format.

When recording starts the display will go blank. When recording is completed the display will re-light. All this should take approximately eight seconds. If your unit does not have remote control, stop the tape manually after the display re-lights.

Now rewind the tape to the starting point. If your unit has remote control, you will have to pull out the Remote jack from the recorder or keep your finger on the RST key.

To destroy the program stored in RAM, turn off system power, then turn it on again.
Log back onto the computer by pressing (CR), then place the cassette unit in Play mode if it is equipped with remote control. If you are operating the controls manually, you should first enter the load command shown below.
YOU KEY IN DISPLAY SHOWS EXPLANATION
(LD 2) 3 (CR) ..L3 Load HIGH-SPEED tape record with ID=03 into memory.

This command directs the SYM-1 to search for the tape record with ID=03. While the SYM-1 is searching, an " S " will be displayed. When reading begins, the AUDIO indicator LED will glow and the display should go blank. When the specified record has been loaded into memory the display will re-light.

If you are operating the controls manually, turn the recorder OFF. Under remote control, the motor will stop automatically.

Now follow the instructions in Section 3.7 for executing the program. The result of the addition, C6 (Hex), should appear on the display. If the "S" did not disappear when reading in the program, or if the cassette otherwise did not respond as described above, check all wiring connections, verify the settings of the volume and tone controls and repeat the recording and playback procedures, making sure that each step is performed correctly. If after rechecking connections and repeating the procedure you are still unsuccessful, refer to Appendix A.

3.10 ATTACHING A TTY

To enable you to add a hard copy output device to your system, SYM-1 interfaces to a TTY terminal. Since the Teletype Model 33ASR is widely used and easily obtained, it will be used in the procedures and diagrams in this section. To interface other terminals, use the information given in this section as a general guide and consult the terminal instruction manual for different wiring and connection options.

Your TTY should be set for 20 mA current-loop operation. If it is not, follow the manufacturer's instructions for establishing this configuration. In addition, check to make sure that your TTY is set up to operate in full-duplex mode. You need not concern yourself with the TTY data transmission rate. SYM-1 assumes 110 bits-persecond (baud) for TTY terminals.

Just like an audio cassette recorder, a TTY may be attached to either the Applications (A) connector or using a DB25 (see section 3.12), to the Terminal (T) connector connection (See Figure 3-1). Figure 3-5A shows how the edge connector should be wired if the TTY will be attached to the "A" connector. Figure 3-5B shows the proper connections if it will be attached to the "T" connector. Wire the edge connector as appropriate for your application, then slide it into position. To "log on" to the terminal enter the following command at the on-board keyboard (not on the TTY keyboard).

YOU KEY IN DISPLAY SHOWS EXPLANATION

(RESET)		
(CR)	SY1.0..	Log-on to keyboard
(SHIFT) (JUMP) 1 (CR) blank	Log-on to TTY	

The TTY should respond with a carriage return and the TTY prompt character, a period. If it does not, turn off the power and re-check your connections, then power-up again.

3.11 TERMINAL EXERCISE

After the TTY prints the prompting character (".") as shown on the first line of the chart below, perform the rest of the steps listed to become acquainted with TTY operation. You will be entering a portion of the program presented in Section 3.7.

Figure 3-5. TTY I/O CONNECTIONS

YOU KEY IN	TTY PRINTS	EXPLANATION
		Prompt
M 200 (RETURN)	$\begin{aligned} & . \mathrm{M} \mathrm{200} \\ & 0200, * * \end{aligned}$	Display contents of location 0200
Cl	$\begin{aligned} & 0200, * *, \mathrm{C} 1 \\ & 0201, * *, \end{aligned}$	Store Cl (Hex) in 0200, display 0201
05	$\begin{aligned} & 0201, * *, 05 \\ & 0202, * *, \end{aligned}$	Store 05 (Hex) in 0201, display 0202
(RETURN)		Return to monitor

3.12 ATTACHING A CRT

SYM-1 is equipped with an RS-232 interface to facilitate the use of such RS-232 devices as a full-ASCII keyboard and CRT display. Figure 3-6 shows how the proper DB25 connector, which may be easily obtained from an electronics supply house or computer hobby store, should be wired. The location of the interface on the SYM-1 board is show in Figure 3-1. Some older units may need to be wired differently. Refer to the section on jumper options in Chapter 4.

3.13 CRT EXERCISE

Operating a CRT terminal is very similar to operating a TTY. Names of keys and their functions may vary slightly depending on the device, so you should consult your CRT operating manual to find which keys correspond to the TTY keys used in the exercise in section 3.11. SYM-1 automatically adjusts to data transmission rates of 110, 300, 600, 1200, 2400, or 4800 baud for CRT operation. To set the baud rate, enter a "Q" on the CRT keyboard after powering-up (do not press any on-board keys). The CRT should respond with a ".", the terminal prompt character. Now repeat the exercise in Section 3.11 using the CRT keyboard.

In this chapter you have made your SYM-1 operational and learned how to attach several peripheral devices to the system. Let's move on to Chapter 4 and examine in detail the various features of SYM-1 hardware and software.

CRT I/O CONNECTIONS

Figure 3-6. CRT I/O CONNECTIONS

CHAPTER 4

SYM-I SYSTEM OVERVIEW

This chapter will describe your SYM-1 microcomputer system's hardware and software in sufficient detail to allow you to understand its theory of operation. Each Integrated Circuit (IC) component on the SYM-1 board is discussed and related to a functional block diagram. Each functional module is then discussed schematically and the I/O connectors are described. The system memory is then covered and the software is discussed briefly. Detailed data on the software itself is found in Chapter 5 of this manual.

4.1 HARDWARE DESCRIPTION

The SYM-1 microcomputer consists primarily of a 6502 CPU, one or more 6522 Versatile Interface Adapters (VIA), a 6532 Memory and I/O Controller and two types of memory involving any combination of several different components. Because of the flexibility of the memory structure, it is discussed in a separate section (4.2, below).

In any microcomputer system, all the components work together functionally as well as being physically interconnected. These connections are illustrated in Figure 4-1, a block diagram of the SYM-1 microcomputer system.

4.1.1 6502 CPU Description

The Central Processing Unit (CPU) of the SYM-1 microcomputer system is the 6502 microprocessor which is designed around a basic two-bus architecture-one full 16-bit address bus and an eight-bit data bus. Two types of interrupts are also available on the processor. Packaged in a 40 -pin dual-in-line package, the 6502 offers a built-in oscillator and clock drivers. Additionally, the 6502 provides a synchronization signal which indicates when the processor is fetching an instruction (operation code) from program memory.

During the following discussion of the 6502, you should refer to the Data Sheets in this manual, which describe the pin connections for all three of the major types of devices present on the SYM-1 microprocessor system.
4.1.1.1 Bus Structure. The 6502 CPU is organized around two main busses, each of which consists of a separate set of parallel paths which can be used to transfer binary information between the components and devices in the SYM-I system. The address bus transfers the address generated by the processor to the address inputs of the peripheral interface and memory devices (i.e., the 6522 and 6532 components). Note that in the Data Sheet for the 6502, the address lines originate at pins 9-20 and 22-25 of the 6502 CPU. These address lines go to pins 2-17 on the 6522 and/or to pins 2, $5-8,10-15$ and $34-40$ on the 6532. Since the processor is almost always the only source of address generation in a system, an address bus is generally referred to as "unidirectional." That is the case with the SYM-1 microcomputer system. Since the address bus consists of 16 lines, the processor may read and write to a total of 65,536 bytes of storage (i.e., program memory words, RAM words, stack, I/O devices and other information), a condition which is normally referred to as a $" 64 \mathrm{~K}$ memory capacity."

The other bus in the 6502 processor is called the data bus. It is an eight-bit bidirectional data path between the processor and the memory and interface devices. When data is moved from the processor to a memory location, the system performs a write; when the data is traveling from memory to the CPU, a read is being performed. Pins 26-33 on the 6502, 6522 and 6532 devices are all data lines connected to the data bus. The direction of the transfer of data between these pin connectors is determined by the output of the Read/Write (R/W, Pin 34) of the 6502. This line enables a write memory when it is "low" (when its voltage is below 0.4 VDC). Write is disabled and all data transfers will take place from memory to the CPU if the level is high (greater than 2.4 VDC).

One of the important aspects of the 6502 CPU is that it has two interrupt input lines available, Interrupt Request (labeled $\overline{\mathrm{RQ}}$ in the Data Sheet) and a Non-Maskable Interrupt (labelled NMI).

Interrupt handling is one of the key aspects of microprocessor system design. Although the idea of interrupt handling is fairly simple, a complicating factor is the necessity for the processor to be able to handle multiple interrupts in order of priority (usually determined by the programmer) and not "losing track" of any of them in the process. These are concepts which you as a programmer-user of the SYM-1 will be concerned with only in advanced applications. The handling of user-generated interrupts is discussed elsewhere in this manual. If you do have occasion to alter pre-determined interrupt handling, it will be helpful for you to understand how the process works for the two types of interrupts in the 6502.

There are two main differences between the $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$ signals and their handling. First, $\overline{\mathrm{IRQ}}$ will interrupt the CPU only if a specific flag--the Interrupt Disable Flag (I)--in the system's Processor Status Register is cleared, i.e., zero. If this flag is "set"-i.e., one--the $\overline{\mathrm{IRQ}}$ is disabled until the flag is cleared. But an $\overline{\mathrm{NMI}}$ request (as its name implies) always causes an interrupt, regardless of the status of the I-flag. The other main difference between the two types of interrupts is that the IRQ interrupt is "level sensitive." Any time the signal is less than 0.4 VDC and the Interrupt Disable flag is cleared, an interrupt will take place. In the case of NMI, the interrupt is said to be "edge-sensitive" because it is dependent on a sequence of timing events. This interrupt will occur only if the signal goes "high" (i.e., exceeds 2.4 VDC) and then goes back to ground (less than 0.4 VDC). The interrupt occurs on the negative-going transition past 0.4 V .

The Data Sheet contains a summary of the 40 pins on the 6502 CPU and their function. Note that three of the pins--5, 35 and 36 --are not connected on the 6502.
4.1.1.2 Summary. The 6502 CPU is a versatile processor. It was selected for your SYM-1 microprocessor system because of its overall functional characteristics, which facilitate its use in a wide variety of applications. Its role in the SYM-1 system will become clearer when we discuss programming and software in Section 4.3 and in Chapters 5 and 6.

4.1.2 6522 Description

The SY6522 Versatile Interface Adapter (VIA) is a highly flexible component used on the SYM-1 module to handle peripheral interfaces. Two of these devices are standard components on your SYM-1; a third may be added merely by plugging it into the socket (U28) provided. Control of the peripheral devices is handled primarily through the two eight-bit bi-directional ports. Each line of these ports can be programmed to act as
either an input or an output. Also, several of the peripheral I/O lines can be controlled directly from the two very powerful interval timers integrated into the chip. This results in the capability to 1) generate programmable frequencies, 2) count externally generated pulses, and 3) to time and monitor real time events.

A description of the pin designations on the SY6522 is contained in the Data Sheet enclosed with your SYM-1. It should be used in following the discussion of the operation of the component in the SYM-1 module which follows. The Memory Map of the SYM-1 module (Figure 4-10) will also be helpful during this discussion.
4.1.2.1 Processor Interface. Data transfers between the SY6522 and the CPU (6502) take place over the eight-bit data bus (DB0-DB7) only while the Phase Two Clock (D2) is high and the chip is selected (i.e., when CS1 is high and $\overline{\mathrm{CS}}$ is low). The direction of these data transfers is controlled by the Read/Write line (R / W). When this line is low, data will be transferred out of the processor into the selected 6522 register; when R/W is high and the chip is selected, data will be transferred out of the SY6522. The former operation is described as the write operation, the latter the read operation.

Four Register Select lines (RSO-RS3) are connected to the processor's address bus to allow the processor to select the internal SY6522 register which is to be accessed. There are 16 possible combinations of these four bits and each combination accesses a specific register. Because of the fact that the SY6522 is a programmable-addressable device, these RS line settings, in combination with the basic device address, form the specific register address shown in the 6522 Data Sheet.

Two other lines are used in the SY6522 interface to the 6502 processor. The Reset line ($\overline{\mathrm{RES}}$) clears all internal registers to a logical zero state (except Tl, T2 and SR), placing all peripheral lines in the input state. It also disables the timers, shift register and other on-chip functions and disables interrupting from the chip. The Interrupt Request line (IRQ) generates a potential interrupt to the CPU when an internal interrupt flag is set and a corresponding interrupt enable bit is set to a logical "1." The resulting output signal is then "wire or'ed" with other similar signals in the system to determine when and whether to interrupt the processor.
4.1.2.2 Peripheral Interface. As we mentioned earlier, peripheral interface is handled largely over two eight-bit ports, with each of the 16 lines individually programmable to act as an input or output line. Port A consists of lines PA0-PA7 and Port B of lines PB0-PB7.

Three registers are used to access each of the eight-bit peripheral ports. Each port has a Data Direction Register (DDRA and DDRB), which is used in specifying whether the pins are to act as inputs or outputs. If a particular bit in the Data Direction Register is set to zero, the corresponding peripheral pin is acting as an input; if it is set to " 1, " the pin acts as an output point.

Each of the 16 peripheral pins is also controlled by a bit in the output register (ORA and ORB) and a similar bit in the Input Register (IRA and IRB). When the pin is programmed to act as an output, the voltage on the pin is controlled by the corresponding bit in the Output Register. A " 1 " in the appropriate Output Register causes the pin to go "high" (2.4 VDC or higher), and a zero causes it to go "low (0.4 VDC or lower).

Functionally, reading a peripheral port causes the contents of the appropriate Input Register to be transferred to the Data Bus.

The SY6522 has a number of sophisticated features which allow very positive control of data transfers between the processor and peripheral devices through the operation of "handshake" lines which involve the use of Peripheral Control Lines (CA1-CA2 and CBI-CB2). These operations are beyond the scope of this manual; if you are interested in further information, you should consult the data sheet enclosed.

4.1.3 6532 Description

Like the SY6522 described above, the SY6532 is used on the SYM-1 module to control peripheral interface. Only one SY6532 is furnished with your SYM-1 and no others are provided for.

From an operational standpoint, the SY6532 is quite similar to the SY6522. One key difference, particularly on your SYM-1 module, is the presence of a 128 -byte x 8 -bit RAM within the SY6532. This is the location referred to as "System RAM" in discussions of the software operation and in the Memory Map (Figure 4-10).

A description of the pin designations on the SY6532 is included in the enclosed Data Sheet. You will notice that, like the SY6522, the SY6532 contains 16 peripheral I/O pins divided into two eight-bit ports (lines PAO-PA7 and PB0-PB7). Each of these pins can be individually programmed to function in input or output mode. $\overline{\operatorname{RQQ}}$ on the SYM-1 SY6532 is not connected.

The Address lines (A0-A6) are used with the RAM Select ($\overline{\mathrm{RS}}$) line and the Chip Select lines (CS1 and $\overline{\mathrm{CS}}$) to address the SY6532. It is in this addressing that the SY6532 differs somewhat from the SY6522's on your SYM-1 module. To address the 128-byte RAM on the SY6532, CSI must be high and $\overline{C S 2}$ and $\overline{\mathrm{RS}}$ must both be low. To address the I/O lines and the self-contained interval timer, CS1 and $\overline{\mathrm{RS}}$ must be high and $\overline{\mathrm{CS} 2}$ must be low. In other words, CS1 is high and $\overline{\mathrm{CS} 2}$ is low to address the chip; $\overline{\mathrm{RS}}$ is used to differentiate between addressing RAM and the I/O Interval Timer functions. Distinguishing between I/O lines and the Interval Timer is the function of Address Line 2 (A2), which is high to address the timer and low to address the I/O section. Again, the Memory Map in Figure $4-10$ clarifies these operations since they are largely software-directed and address-dependent.

4.1.4 Functional Schematics

Understanding the electrical interfaces among the various components may be of some interest to you as you use and expand your SYM-1 microcomputer. The figures on the following pages include segmented schematics, where each figure provides an electronic overview of the interface between the CPU and its related component devices and peripherals.

Table 4-1 describes the contents of each figure in this group of schematic segments.

Table 4-1. INDEX OF SCHEMATIC SEGMENTS FIGURES 4-2 TO 4-9

Figure	Function/Segment Diagrammed
$4-2$	TTY and CRT Interface
$4-3$	Audio Cassette Interface
$4-4$	Audio Cassette Remote Control
$4-5$	I/O Buffer
$4-6$	Keyboard/Display
$4-7$	Control Section
$4-8$	Memory Section
$4-9$	Oscilloscope Output Driver

Table 4-2 provides, in summary form, a list of the connector points on the four SYM-1 connectors. This allows you to determine pin and connector configurations for various application options.

Table 4-2. CONNECTOR POINTS AND THEIR FUNCTIONS IN VIM-1

EXPANSION (E)

1	SYNC	A	ABO
2	RDY	B	AB1
3	01	C	AB2
4	$\overline{\mathrm{IRQ}}$	D	AB3
5	RO	E	AB4
6	NMI	F	AB5
7	RES	H	AB6
8	DB7	J	AB7
9	DB6	K	AB8
10	DB5	L	AB9
11	DB4	M	AB10
f 12	DB3	N	AB11
$\checkmark 13$	DB2	P	AB12
14	DB1	R	AB13
15	DBO	S	AB14
16	$\overline{18}$	T	AB15
17	DBOUT (1)	U	02
18	$\overline{\mathrm{POR}}$	V	R/W
19	Unused	W	R/W
20	Unused	X	AUD TEST
21	+5V	Y	
22	GND	z	Ram-R/W

APPLICATION (A)

1
2
3
4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

GND	A	$+5 \mathrm{~V}$	1	GND	A	$+5 \mathrm{~V}$
APA3	B	00	2	-VN	B	+VP
APA2	C	$\overline{04}$	3	2 PA 1	C	2 PA 2
APA1	D	08	4	2 CA 2	D	2 PA 0
APA4	E	$\overline{0 C}$	5	2 CB 2	E	2 CA 1
APA5	F	$\overline{10}$	6	2 PB 7	F	2 CB 2
APA6	H	$\overline{14}$	7	2 PB 5	H	2 PB 6
APA7	J	$\overline{\text { I }}$	8	2 PB 3	J	2 PB 4
APB0	K	$\overline{18}$	9	2 PB 1	K	2 PB 2
APB1	L	Audio In	10	2 PA 7	L	2 PB 0
APB2	M	Audio Out (LO)	11	2 PA 5	M	2 PA 6
APB3	N	RCN-1 (1)	12	2 PA 3	N	2 PA 4
APB4	P	Audio Out (H1)	13	RES	P	3 CA I
APA0	R	TTY KB RTN (+)	14	3 CB 1	R	SCOPE
APB7	S	TTY PTR (+)	15	3 PB 2	S	3 PB 3
APB5	T	TTY KB RTN (-)	16	3 PB 0	T	3 PB 1
KB ROW O	U	TTY PTR (-)	17	3 PA 6	U	3 PA 7
KB COL F	V	KB ROW 3	18	3 PA 3	V	3 PA 0
KB COL B	W	KB COL G	19	3 PA 4	W	3 PA 1
KB COL E	X	KB ROW 2	20	3 PA 5	X	3 PA 2
KB COL A	Y	KB COL C	21	3 PB 5 (B)	Y	3 PB 4 (B)
KB COL D	z	KB ROW 1	22	3 PB 7 (B)	z	3 PB 6 (B)

AUXILIARY APPLICATION (AA)

(1) Jumper option
(B) Buffered

TABLE 4-2. CONNECTOR POINTS AND THEIR FUNCTIONS IN SYM-1 (Continued)

Figure 4-3. AUDIO CASSETTE INTERFACE SCHEMATIC

I/O BUFFERS

Figure 4-5. I/O BUFFERS SCHEMATIC

Figure 4-5a. I/O BUFFERS, PC LAYOUT BLOW-UP

KEYBOARD/DISPLAY

CONTROL

Figure 4-7. CONTROL SECTION SCHEMATIC

MEMORY

Figure 4-8. MEMORY SCHEMATIC

OSCILLOSCOPE OUTPUT DRIVER

Figure 4-9. OSCILLOSCOPE OUTPUT DRIVER SCHEMATIC

4.2 MEMORY ALLOCATION

This section describes the standard memory allocation in your SYM-1 microcomputer system. It makes extensive use of the detailed Memory Map contained in Figure 4-10. Also described in this section is the technique by which ROM and RAM addressing and usage may be altered by using an array of on-board jumpers which allow you to modify and expand your SYM-1 memory. Expanding RAM memory using off-board components is taken up briefly in Section 4.2.3, although a detailed discussion of this is reserved for Chapter 8, "System Expansion".

4.2.1 Standard Memory Allocation

Figure $4-10$ is a map of the standard memory allocation in your SYM-1 microcomputer. Provided with your system are IK of on-board RAM, extending from location 0000 to 03 FF in the Memory Map. Note that the top-most eight bytes (locations 00F8 to 00 FF) in Page Zero of this 1 K block are reserved for use by the system and should not be used by your programs. The remainder of Page Zero is largely similar to the rest of the RAM provided, but it also has some special significance for addressing which will become clearer in Section 4.3. Locations 0100-01FF in the 1 K memory block furnished with your system are reserved for stack usage. Your programs may use this area, but you should use it for normal stack operations incidental to operating your programs. Locations 01FF-03FF are general-use RAM for your program and data storage.

In addition to the 1 K of on-board RAM furnished with your system, sockets are provided for 3 K of plug-in RAM, allowing you to have 4 K of on-board RAM memory. These sockets occupy memory locations 0400-0FFF.

The SUPERMON monitor resides in ROM at memory locations $8000-8 \mathrm{FFF}$. (As you know, the SY6502 CPU addresses all memory and I/O identically, so that it is immaterial whether a specific address location is occupied by RAM, ROM or I/O devices.) The next 4 K block, from $9000-9 \mathrm{FFF}$, is reserved for future expasion of SUPERMON, although you may use those locations if you wish to do so, provided you remember that if you should obtain an expanded SUPERMON system in the future these addresses may be used.

Extending from A000-AFFF are the I/O devices on your SYM-1 module. As we have previously said, each port on the SY6522/SY6532 devices in SYM-1 is an addressable location. Sheets 2-6 of Figure 4-10 provide you with a detailed Memory Map breakdown of how these devices are addressed. Note that within the SY6532 is a 128 byte segment (locations A600-A7FF). This is the RAM which is resident on the SY6532 used by SYM-1 as System RAM. Sheet 4 of Figure 4-10 describes each memory location within System RAM in detail; you will need this data if you wish to make use of the capability of the system for modifications to SUPERMON. These modifications may include creating your own commands (as described in Chapter 5) which may be entered as if they were Monitor commands. Other such modifications making use of System RAM locations are described in Chapter 9 of this manual.

Memory locations B000-FF80 may be used by your programs, provided of course you have expanded memory to fill those address locations (see Chapter 8). Note, however, that if you plan to obtain the Synertek Systems 8 K BASIC module at some later date, that module will occupy locations C000-DFFF. You should plan your applications programs accordingly. Locations FF80-FFFF are reserved for special use by the system, and should not be used in any of your applications code.

Figure 4-10. STANDARD MEMORY MAP, SYM-1

REGISTER

Figure 4-10 (Cont'd). MEMORY MAP FOR SY6522 VIA \#1 (DEVICE U25)

Figure 4-10 (Cont'd). MEMORY MAP FOR SY6532 (DEVICE U27)

SYMBOL	ADDRESS	DEFAULT value	COMMENTS
IRQVEC	$\begin{aligned} & \text { A67F } \\ & \text { A67E } \end{aligned}$	80 0 F	IRQ Vector
RSTVEC	A67D	$8 B$ $4 A$	RESET Vector
NMIVEC	$\begin{aligned} & \text { A67B } \\ & \text { A67A } \end{aligned}$	80 $9 B$	NMI Vector
UIRQVC	A679 A678	80 29	User IRQ Vector
UBRKVC	A677	80 4 A	User Break Vector
TRCVEC	A675	80 $C 0$	Trace Vector
EXEVEC	A673 A672	88	'Execute' Vector
SCNVEC	A671 A670 A66F	89 06 4 C	Display Scan Vector
URCVEC	A66E A66D A66C	81 D1 4 C	Unrecognized Command Vector
	A66B A66A A669	00 00 00	Not Used
INSVEC	$\begin{aligned} & \text { A668 } \\ & \text { A667 } \\ & \text { A666 } \end{aligned}$	89 $6 A$ 4 C	In Status Vector
OUTVEC	A665 A664 A663	89 00 4 C	Output Vector
INVEC	$\begin{aligned} & \text { A662 } \\ & \text { A661 } \\ & \text { A660 } \end{aligned}$	89 BE 4 C	Input Vector
YR	A65F	00	
XR	A65E	00	
AR	A65D	00	
FR	A65C	00	User Registers
SR PCHR	A65B	FF	
PCLR	A659	4A	
MAXRC	A658	10	Max. No. Bytes/Record, Paper Tape (Note 6)
LSTCOM	A657	00	Last Monitor Command
TV	A656	00	Trace Velocity (Note 5)
KSHFL	A655	00	Hex Keyboard Shift Flag
TOUTFL	A654	B0	In/Out Enable Flags (Note 4)

Figure 4-10. SYSTEM RAM MEMORY MAP, SY6532

SYMBOL	ADDRESS	DEFAULT VALUE	COMMENTS
TECHO	A653	80	Terminal Echo (Note 3)
ERCNT	A652	00	Error Count (Note 2)
SDBYT	A651	4 C	Baud Rate (Note 1)
PADBIT	A650	01	Number of Padbits on Carriage Return
PlH	A64F	00	
PlL	A64E	00	
P2H	A64D	00	16-Bit Parameters
P2L	A64C	00	
P3H	A64B	00	
P3L	A64A	00	
PARNR	A649	00	No. of Parameters Entered
	A648	00	
	A647	00	Not Used
	A646	00	
RDIG	A645	3 F	Right-most Digit
DISBUF	A644	86	
	A643	6 E	
	A642	6D	Display Buffer
	A641	00	
	A640	00	
SCRF	A63F	00	
SCRO	A630	00	Monitor Scratch Locations SCR0-SCRF
JTABLE	A62F	D0	User Socket P3 (Jump Entry No. 7)
	A62E	00	
	A62D	C8	User Socket P2 (Jump Entry No. 6)
	A62C	00	
	A62B	03	0300 (Jump Entry 5)
	A62A	00	
	A629	02 00	0200 (Jump Entry 4)
	A628 A627	00 00	0000 (Jump Entry 3)
	A626	00	
	A625	8B	NEWDEV (Jump Entry 2) (Note 7)
	A624	64	
	A623	8B	TTY (Jump Entry 1)
	A622	A7	
	A621	C0	BASIC (Jump Entry 0)
	A620	00	
SCPBUF	A61F	--	Scope Buffer, No Defaults (32 locations)
	A600		Scope Buffer, No Defauls (32 locations)

Figure 4-10. SYSTEM RAM MEMORY MAP, SY6532 (Continued)

NOTES - SYSTEM RAM

1. BAUD RATE - | | BAUD | SDBYT |
| :--- | :--- | :--- |
| | 110 | D5 |
| | 300 | 4 C |
| | 600 | 24 |
| | 1200 | 10 |
| | 2400 | 06 |
| | 4800 | 01 |
2. ERCNT - Used by LD P, FILL, B MOV

Count of bytes which failed to write correctly And invalid checksums up to \$FF
3. TECHO - bit 7 - ECHO/NO ECHO

bit 6 - OUTPUT/NO OUTPUT | This bit is toggled everytime |
| :--- |
| a control O (ASCII 0F) is |
| encountered in the input |
| stream. |

4. TOUTFL - bit 7 = enable CRT IN
bit $6=$ enable TTY IN
bit 5 = enable TTY OUT
bit 4 = enable CRT OUT
5. TV - TRACE VELOCITY
$00=$ SINGLE STEP
non-zero - PRINT PROGRAM COUNTER AND ACCUMU-
LATOR
THEN PAUSE AND RESUME
PAUSE DEPENDS ON TV
(TRY TV = 09)
6. USER PC - DEFAULT $=8 B 4 \mathrm{~A}=$ RESET
7. NEW DEV TO CHANGE BAUD RATE ON RS-232 INTERFACE.

Figure 4-10. SYSTEM RAM MEMORY MAP, SY6532 (Continued)

Figure 4-10. MEMORY MAP FOR SY6522 VIA \#2 (DEVICE U28-USER SUPPLIED) (Continued)

Figure 4-10. MEMORY MAP FOR SY6522 VIA \#3 (DEVICE U29) (Continued)

4.2.2 Address Decoding Jumper Options

Four sockets (labeled PO-P3 on the board) for ROM PROM or EPROM are provided with your SYM-1. Each socket may contain any of four different types of Read-Only Memory devices, up to a total of 24 K . The four acceptable devices are the SY2716, the SY2316B, the SY2332 and the SY2364. Each device is slightly different, but they are all read-only memories. They may appear in any combination on a SYM-1 microcomputer system, provided their total capacity does not exceed 24 K . But since the devices have different memory capacities, it is necessary to alter normal addressing to accomodate the specific devices selected.

To serve this purpose, we have provided a set of jumpers, located just to the left of the center of the board and directly under the two 74LS145's. The schematic in Figure 4-11 illustrates each useful jumper combination and Table 4-3 outlines them in greater detail. (Note that Table 4-3 contains other jumpers available on the SYM-1, not all of which pertain to memory use.) The broken lines in Figure $4-11$ indicate the jumpers installed at the factory. Note, for example, that the first PROM socket, labeled PO (device U20) is associated with the address group beginning with 8000. (It it were necessary to change this configuration, you would remove the connection from Pin 1 of the lower address decoder (74LS145) to jumper connection 7-J so that it becomes associated with a jumper combination which addresses the device you wish to address. Table 4-3a will assist you in configuring your selection of ROM correctly.

Near the bottom of the board below the speaker unit are four jumpers labeled JJ, KK, LL and MM. These enable Write Protection on the RAM in the four 1 K blocks available on the board. Jumper $45-\mathrm{MM}$ is factory-installed, enabling Write Protection on System RAM (the 128 -byte block in the SY6532). As you add RAM later, or to Write Protect any of the on-board RAM aside from System RAM, you must connect the appropriate jumpers to enable the Write Protect function on the desired memory locations. RAM may be enabled for Write Protect in 1 K blocks.

These jumpers offer you flexibility to adapt the SYM-1 board to your particular application. The jumpers will give you the ability to do the following:

- Use $2 \mathrm{~K}, 4 \mathrm{~K}$, or 8 K byte ROM or PROM in each 24 pin socket.
- Complete flexibility in selecting user PROM addressing.
- Ability to auto power-on to any of the ROM/PROM sockets.
- Write protect expansion RAM.

4.2.3 Off-Board Expandability

SYM-1 is expandable, on-board, up to 24 K bytes of EPROM/ROM memory and 4 K bytes of RAM, with 8 K bytes of address space allocated to the on-board I / O devices. Further expansion of any combination of ROM, PROM, RAM or I/O can be implemented by using SYM's "E" (Expansion) connector to attach an auxiliary board containing the additional devices. Total expandability is limited only by the amount of addressing capability of the SY6502 CPU, i.e., 64 K bytes.

Detailed instructions for implementing off-board expansion are contained in Chapter 8, "System Expansion."

4.2.4 I/O Buffers

Your SYM-1 board comes to you equipped with four specially configured I/O buffer circuits. (See Figure 4-5.) The circuit configuration and PC Board layout allow the user to configure these buffers in many ways.

EPROM/ROM JUMPER LOCATIONS AND USAGES

Figure 4-11. MEMORY ADDRESS DECODING JUMPER OPTIONS

JUMPER LETTER	POSITION NUMBER
A,B,C,D	1,2,3
E,F,G,H	4,5,6
J,K,L,M	$\begin{aligned} & 7,8,9,10,11,12 \\ & 13,14,15,16,17,18 \end{aligned}$
N	$\begin{aligned} & 19(1) \\ & 20 \end{aligned}$
P	$\begin{aligned} & 19 \text { (1) } \\ & 20 \end{aligned}$
R	$\begin{aligned} & 19(1) \\ & 20 \end{aligned}$
S	$\begin{aligned} & 19 \text { (1) } \\ & 20 \end{aligned}$
T	21
U	22
V	23
W	24
X	25
Y	26
BB	31
CC	32
DD	$\begin{aligned} & 33 \\ & 34 \end{aligned}$
EE	$\begin{aligned} & 35 \\ & 36 \end{aligned}$
FF	$\begin{aligned} & 37 \\ & 38 \end{aligned}$
GG	$\begin{aligned} & 39 \\ & 40 \end{aligned}$
HH	41
JJ KK LL MM	42 43 44 45

DESCRIPTION

PROM/ROM Device Select (See Table 4-3a)

ADDRESS SELECT
(See Table 4-3b)
Auto Power-On to U20 (2)
Disable Auto Power-On to U20
Auto Power-On to U21 (2)
Disable Auto Power-On to U21
Auto Power-On to U22 (2)
Disable Auto Power-On to U22
Auto Power-On to U23 (2)
Disable Auto Power-On to U23
Enables Monitor RAM at A0xx (3)
Enables Monitor RAM at F8xx (3)
RCN-1 to connector $\mathrm{A}-\mathrm{N}$
Enables Software Debug ON
Enables Software Debug OFF
DBOUT to connector E-17
Connects TTY IN to PB6 @A402
Connects CRT IN to PB7 @A402
To run TTY @ +5V and GND
To run TTY @ +5V and -Vn (4)
To run TTY @ +5 V and -Vn (4)
To run TTY @ +5 V and GND
To run TTY @ +5V and GND
To run TTY @ +5V and -Vn (4)
To run RS232 @+5V and GND
To run RS232 @ +5 V and -Vn (5)
Decode line $\overline{18}$ to connector A-K
Enable software write protect 3 K block
Enable software write protect 2 K block
Enable software write protect 1 K block
Enable software write protect monitor RAM

Table 4-3. SYM-1 JUMPERS (Continued)

NOTES

1 Only one socket (U20, U21, U22, U23) should be jumpered to position 19 at one time. The remaining three sockets should be jumpered to position 20.

2 See software consideration of auto power-on in Chapter 9.
3 One or both can be connected at the same time.
4 These positions require a recommended -9 V to -15 V supply applied to the power connector pin E. R107 should be adjusted (removed and replaced) for your proper current loop requirements.

Example: (for 60ma current loops and $\mathrm{Vn}=-10 \mathrm{~V}$)
a. Connect $D D$ to 33

EE to 35
FF to 38
b. \quad R107 $=\frac{\mathrm{Vn}-5 \mathrm{~V}}{\mathrm{I}}=\frac{(10-5)}{60 \mathrm{ma}}=100$

R107 $=300 \Omega$ (as installed) for 20 ma current loop and $\mathrm{Vn}=-10 \mathrm{~V}$
5 For RS232 devices using other than LM1489 or equivalent input receivers (i.e., probably terminals older than ten years) then GG should be strapped to 40 and a -9 V to -15 V supply applied to the power connector pin E .

Table 4-3a. SYM-I PROM/ROM DEVICE SELECT

SOCKET LOCATION	SOCKET NAME	MEMORY DEVICE	JUMPER LETTER	POSITION NUMBER
U20	P0	2716	A E	$\begin{aligned} & 2 \text { or } 3 \\ & 5 \text { or } 6 \end{aligned}$
U20	PO	2316	$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 2 \text { or } 3 \end{aligned}$
U20	PO	2332	A E	$\stackrel{1}{2 \text { or }} 3$
U20	PO	2364	$\underset{\sim}{\mathrm{A}}$	1
U21	P1	2716	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 5 \text { or } 6 \end{aligned}$
U21	P1	2316	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 2 \text { or } 3 \end{aligned}$
U21	P1	2332	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$	$\stackrel{1}{2} \stackrel{\text { or }}{3}$
U21	P1	2364	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$
U22	P2	2716	$\begin{aligned} & \mathrm{C} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 5 \text { or } 6 \end{aligned}$
U22	P2	2316	$\begin{aligned} & \text { C } \\ & \text { G } \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 5 \text { or } 6 \end{aligned}$
U22	P2	2332	$\begin{aligned} & \mathrm{C} \\ & \mathrm{G} \end{aligned}$	$\stackrel{1}{2} \stackrel{\text { or } 3}{ }$
U22	P2	2364	$\begin{aligned} & \mathrm{C} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$
U23	P3	2716	$\begin{aligned} & \mathrm{D} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 5 \text { or } 6 \end{aligned}$
U23	P3	2316	$\begin{aligned} & \mathrm{D} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 2 \text { or } 3 \\ & 2 \text { or } 3 \end{aligned}$
U23	P3	2332	$\begin{aligned} & \mathrm{D} \\ & \mathrm{H} \end{aligned}$	$\stackrel{1}{2 \text { or } 3}$
U23	P3	2364	$\begin{aligned} & \mathrm{D} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$

NOTE: 2716 devices assumes Synertek, Intel or equivalent pin outs.

Table 4-3b. SYM-1 ADDRESS SELECT

High Order SYM-1 Address lines

NOTES: (1) Broken lines indicate delivered version of jumpers.
(2) Each jumper number represents a 2 K address space decode.
(3) Jumper numbers can be wire or'ed to increase the address space of the $\overline{\mathrm{CS}}$ on any socket (i.e., decoder is open collector.)

The single-stage circuit consists of a transistor and "circuit positions" for the user to add resistors, capacitors and dioders in any of many positions. This flexibility allows inverting and noninverting stages, input-resistive or capacitive coupling and much more. The user should refer to the schematic and P.C. layout in Figure 4-5a in order to completely understand this circuit.

4.3 SOFTWARE DESCRIPTION

Software on your SYM-1 microcomputer must be discussed from two perspectives. First, the SYM SUPERMON Monitor software which handles keyboard display, interrupts and other requirements for system operation must be understood. We will discuss this subject in succeeding sections. The second aspect of software is the microprocessor assembly language with which you will write your applications programs. A brief introduction to the 6502 instruction set is included later in this chapter.

In this chapter, we discuss the SYM-1 command language syntax only briefly; Chapter 5 contains a detailed discussion of each of the instructions in the set. Chapter 6 will help you through the process of using these and the 6502 language in applications programming by describing three selected sample programs.

4.3.1 Monitor Description - General

Figure 9-1 illustrates the general system flow of the SYM-I SUPERMON Monitor software. As you can tell, the main program is simple and straightforward. Its purpose is to direct processing to the appropriate I/O or command routine, and for this reason it is thought of as a "driver"--it "drives" or directs the software.

The means by which the Monitor handles the direction of software flow is one of the unique features of the SYM-1 system and is worth a brief explanation at this point. We will discuss the subject in greater detail in Chapters 5 and 8.

When the SUPERMON Monitor receives a one- or two-character command from the on-board keyboard, TTY or CRT terminal, it then accepts $0-3$ parameters associated with the command. The string of command and parameters (if any) is terminated by a carriage return. It is noteworthy that each instruction which may be entered by use of a single key on the on-board keyboard may also be entered with a similar command from a terminal.

Upon receiving a command and up to three parameters, SUPERMON checks to determine whether the command and its associated number of parameters is a defined combination. If so, the command is executed. Otherwise, an error message is printed or displayed showing the ASCII representation of the command which was not recognized.

For example, a "GO" with one parameter causes the program to pass control to the program stored at the memory location indicated by the parameter. Thus, a "GO" followed by "0200" instructs the system to begin executing the instructions stored starting at memory location 0200. A "GO" with no parameters (i.e., "GO" followed by a Carriage Return) will cause program execution to resume at the address stored in the "pseudo Program Counter" (memory locations A659 and A65A).

However, a "GO" command with two or three parameters is not a defined command in SUPERMON, and will result in a display or message of "Er 47". The "47" is the ASCII representation for a " G " and is designed to help you define the instruction or command which was not recognized.

The monitor is designed so that you can extend the range of defined command-parameter combinations by "intercepting" the error routine before it executes and designing your own series of pointers to memory locations to be associated with specific commands. Thus, you might wish to define a "GET" routine which could be entered at the keyboard with a "GO" and two parameters. You will learn how to do this in Chapter 9.

4.3.2 Software Interfacing

The SYM-1 Monitor is structured to be device-independent. Special requirements for device handling are "outside" the Monitor's central control routines, which isolate them from the Monitor's standard functions. Also, as we have indicated, SYM-1 commands may be entered from any device. It is not necessary to use the on-board keyboard to do so. This means you need not concern yourself with the details of I/O; they are handled internally.

4.3.3 6502 Microprocessor Assembly Language Syntax

The SY6502 microprocessor used on your SYM-1 is an eight-bit CPU, which means that eight bits of data are transferred or operated upon at a time. It has a usable set of 56 instructions used with 13 addressing modes. Instructions are divided into three groups.

Group One instructions, of which there are eight, are those which have the greatest addressing flexibility and are therefore the most general-purpose. These include Add With Carry (ADC), the logical AND (AND), Compare (CMP), the logical Exclusive OR (EOR), Load A (LDA), logical OR with Accumulator (ORA), Subtract With Carry (SBC) and Store Accumulator (STA).

Group Two instructions include those which are used to read and write data or to modify the contents of registers and memory locations.

The remaining 39 instructions in the SY6502 instruction set are Group Three instructions which operate with the X and Y registers and control branching within the program. You'll learn more about these instructions in the next section. More detailed information can be found in the Synertek Programming Manual for the SY 6500 family.

An assembly language instruction consists of the following possible parts:
Label - Optional. Used to allow branching to the line containing the label
Mnemonic - Required. The mnemonic is a three-character abbreviation which represents the instruction to be carried out. Thus the mnemonic to store the contents of the accumulator in a specific memory location is "STA" (STore Accumulator).
Operand(s) - Some may be required, or none may be allowed. This depends entirely upon the instruction itself and may be determined from the later discussion.
Comment - Optional. Separated from last operand (or from the command mnemonic where no operand is used) by at least one blank. These words are ignored by the assembler program but are included only to allow the programmer and others to understand the program.

The SY6502 allows 13 modes of addressing, which makes it one of the most flexible CPUs on the market. Table $4-4$ describes these addressing modes briefly. Details may be found in the Synertek Programming Manual for the SY6500 family.

You will note that some of the addressing modes make use of Page Zero, a concept introduced briefly earlier in this chapter. Page Zero addressing modes are designed to reduce memory requirements and provide faster execution. When the SY6502 processor encounters an instruction using Page Zero addressing, it assumes the high-order byte of the address to be 00, which means you need not define that byte in your program. This technique is particularly useful in dealing with working registers and intermediate values. As the Memory Map (Figure 4-10, Sheet 1) shows, memory locations 0000-00FF make up Page Zero.

4.3.4 SY6502 Instruction Set

Table 4-5 provides you with a summary of the SY6502 instruction set. Each instruction is shown with its mnemonic, a brief description of the function(s) it carries out, and the corresponding "op code" for each of its valid addressing modes. The "op code" is the hexadecimal representation of the instruction and is what will appear when the instruction byte is displayed by SUPERMON.

When creating applications programs for your SYM-1, you will typically write them in the SY6502 assembly language mnemonic structure shown in Table 4-5, then perform a "hand assembly" to generate the "op codes" and operands. The process of hand assembling code is explained in greater detail in Section 6.2.2. You will be referring to this table-or to your SYM Reference Card--quite frequently during programming.

To understand some of the instructions, you should be aware of six "status register" flags which are set and reset by the results of program execution. Generally, these flags and their functions are:
$\mathbf{N} \quad$ - Set to "I" by CPU when the result of the previous instruction is negative
Z - Set to " 1 " by CPU when the result of the previous instruction is zero
C - Set to "l" by CPU when the previous instruction results in an arithmetic "carry"
Set to "0" by CPU when the previous instruction results in "borrow" (subtract)
Also modified by shift, rotate and compare instructions.
I - When " 1, " IRQ to the CPU is held pending
D - When " 1, " CPU arithmetic is operates in decimal mode
V - Set to "l" by CPU when the result of the previous instruction causes an arithmetic overflow

The Synertek Programming Manual discusses this subject in greater detail.

Table 4-4. SUMMARY OF SY6502 CPU ADDRESSING MODES

SY6502 INSTRUCTION SET SUMMARY

Addressing Modes

*Except BRK which is two bytes when not using SUPERMON or when in DEBUG mode.

Table 4-4. SUMMARY OF SY6502 CPU ADDRESSING MODES (Continued)

Tale 4－5．SY6502 CPU Instruction Set Summary

6502 INSTRUCTION SET SUMMARY		Mode													Condition Codes						
Instr	Description	品	景	㶨	N	$\stackrel{+}{x}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	氺	$\begin{aligned} & x \\ & i \end{aligned}$	$\stackrel{\text { r }}{ }$	（	－	忽	$\underset{y}{\text { 号 }}$	N	2	c	I	D	V	B
ADC	$A+M+C \rightarrow A, C$ Add memory to accumulator with carry			69	65	75		6 D	7 D	79	61	71			＊	＊	＊	－	－	＊	－
AND	$A \Lambda M \rightarrow A$ ＂AND＂memory with accumulator			29	25	35		2D	3D	39	21	31			＊	＊	－	－	－	－	－
ASL	 Shift left one bit（memory or accumu－ lator		OA		06	16		OE	1 E						＊	＊	＊	－	－	－	－
BCC	Branch on $\mathrm{C}=0$ Branch on carry clear												90		－	－	－	－	－	－	－
BCS	Branch on $\mathrm{C}=1$ Branch on carry set												B0		－	－	－	－	－	－	－
BEQ	Branch on $Z=1$ Branch on result zexo												FO		－	－	－	－	－	－	－
BIT	$A \Lambda M, M_{7} \rightarrow N, M_{6} \rightarrow V$ Test bits in memory with accumulator				24			2 C							M_{7}	＊	－	－	－	M_{6}	－
BMI	Branch on $\mathrm{N}=1$ Branch on result minus												30		－	－	－	－	－	－	－
BNE	Branch on $\mathrm{Z}=0$ Branch on result not zero												D0		－	－	－	－	－	－	－
BPL	```Branch on N = 0 Branch on result plus```												10		－	－	－	－	－	－	－
BRK	Forced interrupt PC $\downarrow \mathrm{P} \downarrow$ Force break	00													－	－	－	1	－	－	1

Table 4-5. SY6502 CPU Instruction Set Summary (Continued)

Table 4-5. SY6502 CPU Instruction Set Summary (Continued)

	2 INSTRUCTION SET SUMMARY	Mode													Condition Codes						
Instr	Description	$\frac{a}{3}$	U	者	N	$\stackrel{x}{ }$	N	号	$\stackrel{x}{i}$	$\stackrel{1}{2}$	忒	$\stackrel{\text { a }}{\text { ® }}$	氙	号	N	Z	C	I	D	V	B
L／SR	$\left.0 \rightarrow \begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{array} 0.0 \right\rvert\, \begin{aligned} & \text { Shift right one bit (memory or accu- } \\ & \text { mulator) } \end{aligned}$		4A		46	56		4E	5E						0	＊	＊	－	－	－	－
NOP	No Operation	EA													－	－	－	－	－	－	－
ORA	$\mathrm{A} V \mathrm{M} \rightarrow \mathrm{A}$ ＂OR＂memory with accumulator			09	05	15		OD	1D	19	01	11			＊	＊	－	－	－	－	－
PHA	A \downarrow Push accumulator on stack	48													－	－	－	－	－	－	－
PHP	```\[P \downarrow \] \\ Push processor status on stack```	08													－	－	－	－	－	－	1
PLA	$A \uparrow$ Pull accumulator from stack	68													＊	＊	－	－	－	－	－
PLP	Pull processor status from stack	28													From Stack						
ROL	Rotate one bit left（memory or accu－ mulator）		2A		26	36		2 E	3E						＊	＊	＊	－	－	－	－
ROR	Rotate One Bit Right （Memory or Accumulator）		6 A		66	76		6 E	7E						＊	＊	＊	－	－	－	－
RTI	```P}\uparrow PC Return from interrupt```	40													From Stack						
RTS	$\begin{aligned} & \text { PC } \uparrow, P C+1 \rightarrow P C \\ & \quad \text { Return from subroutine } \end{aligned}$	60													－	－	－	－	－	－	－

Table 4－5．SY6502 CPU Instruction Set Summary（Continued）

	6502 INSTRUCTION SET SUMMARY	Mode													Condition Codes						
Instr	Description	$\mid{\underset{n}{n}}^{M}$	U	灵	N	$\left\lvert\, \begin{aligned} & x \\ & N \\ & N \end{aligned}\right.$	$\stackrel{\because}{N}$	会	$\left.\begin{array}{\|c\|} x \\ -1 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} x \\ \vdots \\ n \end{array}\right\|$	$\begin{aligned} & \hat{x} \\ & \hat{v} \end{aligned}$	淢	勻	曷	N	2	C	I	D	V	B
SBC	```A - M - - C }->\textrm{A Note: }\overline{\textrm{C}}=\mathrm{ Borrow Subtract memory from accumulator with borrow```			E9	E5	F5		ED	FD	F9	El	Fl			＊	＊	＊	－	－	＊	－
SEC	$\begin{aligned} 1 & \rightarrow \\ & \text { Cet carry flag } \end{aligned}$	38													－	－	1	－	－	－	－
SED	```\[1 \rightarrow D \] Set decimal mode flag```	F8													－	－	－	－	1	－	－
SEI	```l + I Set interrupt disable flag```	78													－	－	－	1	－	－	－
STA	$A \rightarrow M$ Store accumulator in memory				85	95		8 D	9 D	99	81	91			－	－	－	－	－	－	－
STX	$\begin{array}{rl} \mathrm{X} & \mathrm{M} \\ & \text { Store index } \mathrm{X} \text { in memory } \end{array}$				86		96	8 E							－	－	－	－	－	－	－
STY	```\[\mathrm{Y} \rightarrow \mathrm{M} \] \[\text { Store index } Y \text { in memory } \]```				84	94		8 C							－	－	－	－	－	－	－
TAX	$A \rightarrow X$ Transfer accumulator to index X	AA													＊	＊	－	－	－	－	－
TAY	$A \rightarrow Y$ Transfer accumulator to index Y	A8													＊	＊	－	－	－	－	－
TSX	```S -> X Transfer stack pointer to index x```	BA													＊	＊	－	－	－	－	－

Table 4-5. SY6502 CPU Instruction Set Summary (Continued)

CHAPTER 5

OPERATING THE SYM

In this chapter you will learn how to operate your SYM-1. The keyboard functions are described, formation of monitor commands is discussed, and procedures for using an audio cassette, TTY or CRT are explained.

As you operate your SYM-1, you will be dealing with the system monitor, SUPERMON, which is a tool for entering, debugging and controlling your 6502 programs. The monitor also provides a wealth of software resources (notably subroutines and tables) which are available to your applications programs as they run on the SYM-1 system.

SUPERMON is a 4 K -byte program which is stored on a single ROM chip located at addresses $8000-8 \mathrm{FFF}$, as you learned in Chapter 4. It also uses locations 00F8-00FF for special purposes and special locations called "System RAM" located at addresses A600-A7FF. These usages were outlined in detail in Chapter 4 and in the Memory Map.

Operationally, SUPERMON gets commands, parameters and data from its input channels (the HEX Keyboard, HKB; a teletype, TTY; a CRT terminal or RAM memory and others) and, based on this input, performs internal manipulations and various outputs (to the on-board LED display, TTY or CRT terminal screen or other peripheral devices).

5.1 KEYBOARD LAYOUT

The SYM-1 keyboard (see Figure 5-1) consists of 28 color-coded dual-function keys. The characters and functions on the lower half of the keys are entered by pressing the keys directly. To enter the functions shown in the upper halves of the keys, press SHIFT before you press the key you wish to enter. Remove your finger from SHIFT before pressing the second key. Very little pressure is necessary to actuate a key, and except for DEBUG, you will hear an audible tone when the computer senses that a key has been pressed. RST will cause a beep after a short delay.

The functions included on the SYM-1 provide you with a formidable array of programming tools. You can examine and modify the contents of memory locations and CPU registers, deposit binary or ASCII data in memory, move blocks of data from one area of memory to another, search memory for a specific byte, and fill selected memory locations with a specified data byte. You can also store a double byte of data with a single command, display the two's complement of a number, or compute an address displacement.

The RST, DEBUG ON and DEBUG OFF keys do not transmit any characters to the monitor, but perform the functions indicated by their names directly using hardware logic.

5.2 SYM COMMAND SYNTAX

As we have indicated earlier, each SYM-I command entered from the on-board keyboard or other device may have from $0-3$ parameters associated with it. Each command, with its string of parameters, is terminated by a "CR" (on the HKB) or a carriage return on a terminal device.

Figure 5-1. SYM-1 KEYBOARD

Table 5-1 summarizes the SYM-1 command set. The first column indicates the command, in both HKB and terminal format. The values (1), (2), and (3) refer to the values of the first, second, and third parameters entered. The term "old" is used to mean the memory location most recently referenced by any of the following commands: M, D, V, B, F, SD, S1, S2, SP, L1, L2, LP. All of these commands use locations 00FE and 00 FF as an indirect pointer to memory; where a reference to "old" (or (OLD) in some cases) occurs, the former value remains in the memory pointer locations 00FE-00FF.

Note that in the second column of Table 5-1 we have provided you with the ASCII code for each instruction. Several of the commands do not have associated ASCII codes and use instead a computed "hash code." Hash codes are marked with an asterisk. You need not concern yourself with the means by which the hash code is determined, but you should note that SYM will display these values when the commands are entered with an incorrect syntax, i.e., if you make an error when entering these commands.

Table 5-2 provides you with a brief summary of the additional keys found on the on-board keyboard of the SYM-1. These are operational and special keys which do not generally have parameters associated with them, with the exception of the special user-function keys.

In the discussion of each monitor command which follows, the same basic format is followed. First, the appropriate segment of Table 5-1 is reproduced, for easy reference. Next, the command is described in some detail. Examples are used where they will make understanding the monitor command easier.

Because it is believed that most users of the SYM-1 will ultimately use a TTY to enter and obtain printouts of instruction strings, the remainder of Chapter 5 is designed to use the TTY keyboard function designations rather than those of the on-board keyboard. Remember, though, that both keyboards are functionally the same as far as SUPERMON is concerned. For this reason, we are also using a comma as a delimiter in the command string; the minus sign on the on-board keyboard (or, for that matter, on the TTY or CRT keyboard) may also be used for this purpose.

The examples provided were entered from a terminal device. When entering commands from the HKB, remember to use the (-) key instead of a comma to delimit parameters.

Table 5-1. SYM-1 COMMAND SUMMARY

Command	Code	Number of Associated Parameters			
HKB/TTY	ASCII	0	1	2	3
$\underset{\mathrm{M}}{\mathrm{MEM}}$	4D	Memory Examine and modify, begin at (OLD)	Memory Examine and modify, begin at (1)	Memory Search for byte (1), in locations (OLD) - (2)	Memory Search for byte (1), in locations (2) (3)
$\begin{gathered} \text { REG } \\ \text { R } \end{gathered}$	52	Examine and modify user registers PC, $\mathrm{S}, \mathrm{F}, \mathrm{A}, \mathrm{X}, \mathrm{Y}$			
$\underset{\mathrm{G}}{\mathrm{GO}}$	47	Restore all user registers and resume execution at PC	Restore user registers except $\mathrm{PC}=(1)$ $\mathrm{S}=\mathrm{FD}$, monitor return address is on stack		
$\underset{V}{\mathrm{VER}}$	56	Display 8 bytes with checksum beginning at (OLD)	Display 8 bytes with checksum beginning at (1)	Display (1)-(2), 8 bytes per line, with addresses and cumulative checksums	
$\underset{\mathrm{D}}{\mathrm{DEP}}$	44	Deposit to memory, beginning at (OLD). CRLF/ address after 8 bytes, auto spacing	Deposit to memory, beginning at (1)		
$\underset{\mathrm{C}}{\text { CALC }}$	43		Calculate 0-(1) or two's complement of (1)	Calculate (1)-(2) or displacement	Calculate (1)+(2)-(3) or displacement with offset
$\underset{\mathrm{B}}{\mathrm{BMOV}}$	42				Move all of (2) thru (3) to (1) thru (1)+(3)-(2)

Table 5-1. SYM-1 COMMAND SUMMARY (Continued)

Command	Code	Number of Associated Parameters			
HKB/TTY	ASCII	0	1	2	3
$\begin{aligned} & \text { JUMP } \\ & \text { J } \end{aligned}$	4A		Restore user registers except $\mathrm{PC}=$ entry (1) of JUMP TABLE, S=FD, monitor return on stack		
$\begin{aligned} & \text { SDBL } \\ & \text { SD } \end{aligned}$	* 10			Store high byte of (1) in (2) +1 then lo byte of in (2), good for changing vectors	
$\begin{gathered} \text { FILL } \\ \mathrm{F} \end{gathered}$	46				Fill all of (2) - (3) with data byte (1)
WP	57		Write protect user RAM according to lo 3 digits of (1)		
$\begin{gathered} \text { LD1 } \\ \text { L1 } \end{gathered}$	* 12	Load first KIM format record found into locations from which it was saved	Load KIM recor with ID = (1) into locations from which it was saved	(1) must $=\mathrm{FF}$ load first KIM record found, but start at location (2)	
$\begin{gathered} \text { LD2 } \\ \text { L2 } \end{gathered}$	* 13	Load first hi speed record found into locations from which it was saved	load hi speed record with ID $=(1)$		(1) must $=\mathrm{FF}$ load first hi speed record found into (2) - (3)
$\begin{gathered} \text { LDP } \\ \text { LP } \end{gathered}$	* 11	Load data in paper tape format. To signal end of file for tape without EOF record, type ;00 CR in on-line mode.	-		

Table 5-1. SYM-1 Command Summary (Continued)

Command	Code	Number of Associated Parameters			
HKB/TTY	ASCII	0	1	2	3
$\begin{aligned} & \text { SAVP } \\ & \text { SP } \end{aligned}$	* 1 C			Save data from locations (1) - (2) in paper tape format. To crea end of file record, unlock punch, switch to local mode, lock punch, type ;00 CR	
$\begin{gathered} \text { SAVI } \\ \text { S1 } \end{gathered}$	*1D				Save cassette tape locations (2) - (3) with ID = (1) KIM format
$\begin{gathered} \text { SAV2 } \\ \mathrm{S} 2 \end{gathered}$	*1E				Save cassette tape locations (2) - (3) with ID $=(1) \mathrm{hi}$ speed format
$\underset{E}{\text { EXEC }}$	45		Get monitor input from RAM, starting (1)	Get monitor input from RAM, starting (2) and store (1) for later use	Get monitor input from RAM, starting (3) and store (1) and (2) for later use.

* HASHED ASCII CODE

Table 5-2. OPERATIONAL AND SPECIAL KEY DEFINITION (ON-BOARD KEYBOARD ONLY)

Key	ASCII or *Hash Code	Description/Use
CR	OD	Carriage Return (terminates all command strings)
+	2B	Advance eight bytes
-	2D	Retreat eight bytes; also used to delimit parameters
\rightarrow	3 E	Advance one byte or register
\longleftarrow	3 C	Retreat one byte
USRO USRI USR2 USR3 USR4 USR5 USR6 USR7	$\begin{aligned} & * 14 \\ & * 15 \\ & * 16 \\ & * 17 \\ & * 18 \\ & * 19 \\ & * 1 A \\ & * 1 B \\ & \hline \end{aligned}$	All USR keys transmit the indicated Hash Code when entered as a command. The same hash codes can be sent from another terminal by entering UO (two char acters, no spaces) through U7 as commands. These functions are not defined in SUPERMON and will cause the monitor to vector through the unrecognized command vector. See Chapter 9 for instructions on using this SUPERMON command feature to program your own special functions.
SHIFT	None	Next key entered is upper position of the selected key.
RST	None	System RESET. System RAM reinitialized to default values
DEBUG ON	None	Turn hardware Debug function "ON"
DEBUG OFF	None	Turn hardware Debug function "OFF"
ASCII	None	Next two keys entered (Hex) will be combined to form one ASCII character (e.g., SHIFT ASCII 4 D followed by a CR is the same as MEM followed by a carriage return).

5.3 SYM-1 MONITOR COMMANDS

5.3.1 M (Display and/or Modify Mernory)

Number of Associated Parameters			
0	1	2	3
Memory Examine and modify, begin at (OLD)	Memory Examine and modify, begin at (1)	Memory Search for for byte (1), in lo- cations (OLD)-(2)	Memory Search for byte (1), in locations (2)-(3)

- The standard form for this command uses one parameter and is shown below.

M addr CR

SUPERMON will then display the address and the byte contained in the location "addr." The following options are then available:

1. Enter 2 Hex digits: $b b$ is replaced and the next address and byte are displayed.
2. Enter single quote (from terminal) and any character: bb is replaced with the ASCII code for the entered character.
3. Enter \rightarrow or \leftarrow ($>$ or $<$ from terminal): bb is left unchanged and addr +1 or addr-1, with its contents, is displayed.
4. Enter + or - : bb is left unchanged and addr +8 or addr-8 with its contents, is displayed.
5. Enter CR : Return to monitor command mode; bb unchanged.

- Another form of the display memory command uses no parameter as shown below:

M CR

This will cause SYM-1 to resume memory examine and modify at (OLD).

- The same memory (M) key may be used to search for a particular byte in memory, using three parameters in this form:

M bb,addrl,addr2 CR

This instructs the system to search for byte bb from addrl to addr2. When an occurrence of bb is found, the location and contents are displayed, and all of the standard M options described above become available. In addition, a " G " entered following any halt will continue the search.

- Similarly, the two parameter sequence:

M bb,addr CR

will resume memory search for byte bb from (OLD) to addr.
The following examples demonstrate the various uses of memory display/modify commands. Characters entered by the user are underlined.

One Parameter

$0 \frac{1}{9} \frac{2}{6}+64$

-10200
$0200 y 20 \%$ A

02029 EF C
$0208,20,2$
$\because 20001$
0200.41 .2

0201,4292
$020 \% \cdot 43:$
0203.200

0204 yal: y
*

-

-

$-\frac{20201}{020094192}$
+0200.41 .21
0202

Display memory location (OLD); return to Monitor

Display memory location A656
Put some data there; return to Monitor

Display memory location 200 Replace data with ASCII code for A
Next location displayed; replace data with ASCII B
Next location displayed; replace data with ASCII C Return to Monitor

Display memory location 200
Display next location; data unchanged
Display next location; data unchanged
Use space bar for same purpose as arrow
Return to Monitor

Display memory location 300
Display previous location; data unchanged

Return to Monitor

Display memory location 200
Advance 8 bytes and display memory
Space used to advance one location; data unchanged
Reverse 8 bytes and display memory
Return to Monitor

Display memory location 200
Return to Monitor
Display (OLD) which is still 200
Return to Monitor

Two and Three Parameters

```
* 60.9000.04000
801F.6%.%
801%,29.正
-YD
8017 29 10 FO 07 68 AA 69 28, M2
    0-02
-M 60.84002 Continue search
BOIF.60%-
8020%F6%
8021,FF, 畐
8026.60%-
802%%FBy
8028:FF:I
\(801 \mathrm{~F} \cdot 6 \mathrm{C} \cdot\) 8017．29，正
－VD
8017 2910 FO \(0768 \mathrm{AA} 6928, \mathrm{ML}\) 0202
\(60 \mathrm{~F}, \frac{60.94002}{60,} \quad\) Continue search 6020．F6\％ 0021．FF． E 8026．60\％－ \(8027, F B y\)
\(8020, F F, I\) 802 gFF 上

Continue search

Halt search

\subsection*{5.3.2 R (Display and/or Modify User Registers)}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Number of Associated Parameters } \\
\hline \multicolumn{1}{|c|}{0} & \multicolumn{3}{|c|}{1} \\
\hline Examine and mod- & & & \\
ify user registers & & & \\
PC,S,F,A,X,Y & & & \\
\hline
\end{tabular}
- The only pre-defined form of this command is with no parameters, i.e.:

\section*{R CR}

As soon as the command is entered, the contents of the PC are displayed as follows:
P 8B4A,
Using a forward arrow ( \(\rightarrow\) or \(>\) ), you may examine the next register. Registers are displayed in the order PC, S, F, A, X, Y, with wrap-around (i.e., PC is displayed after Y). Each register except PC carries a Register Number on the display or TTY printout; \(S\) is \(R 1, F\) is \(R 2, A\) is \(R 3, X\) is \(R 4\), and \(Y\) is \(R 5\) (see example below).

To modify the displayed register, enter two or four digits (four only in the case of the PC). The register will be automatically modified and the next will be displayed. A CR will cause control to return to the monitor for another command.

In the following example, we have modified the contents of the PC register to become 0200 , and the \(A\) register to be set to 16 . The other registers are not modified and at the conclusion of the complete register cycle and redisplay of \(\mathrm{PC}, \mathrm{a} \mathbf{C R}\) is used to return to monitor command mode.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\[
\dot{F} \frac{E D}{8 B A A y}
\]} & Display registers \\
\hline & PC; space is used to advance \\
\hline Fl FFy- & S \\
\hline F2 00\% & F \\
\hline \(\mathrm{F} 3 \mathrm{OO}^{2}\) & A \\
\hline \(\mathrm{F} 4 \mathrm{OO}^{\text {O- }}\) & X \\
\hline F5 00\% - & Y \\
\hline F 8EAAM & PC re-displayed; return to Monitor \\
\hline - & \\
\hline \multicolumn{2}{|l|}{+ B 2} \\
\hline \multicolumn{2}{|l|}{F 8R4Ay 0200} \\
\hline Fi. FF\% & \\
\hline \(1200 \%\) & \\
\hline \(15300 \cdot 16\) & Alter PC \(=200, A=16\) \\
\hline F4 00, 1 & \\
\hline
\end{tabular}

\subsection*{5.3.3 G (GO)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Number of Associated Parameters} \\
\hline 0 & 1 & 2 & 3 \\
\hline Restore all user registers and resume execution at PC & Restore user registers except \(\mathrm{PC}=(1)\) \(S=F D\); monitor return address is pushed onto stack & & \\
\hline
\end{tabular}
- The GO command may be used with no parameters to restore all user registers and begin execution at PC:

\section*{G CR}
- With one parameter, the command will restore user registers except that PC is set to addr, S is set to FD and SUPERMON's return address is pushed onto the stack. Thus, if a subroutine return is executed, it will result in a return to monitor command mode (with the user's stack not saved). Its format is as follows:

G addr CR
5.3.4 V (VERIFY)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline \multicolumn{1}{|c|}{0} & \multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{2} & 3 \\
\hline \begin{tabular}{l} 
Display 8 bytes \\
with checksum be- \\
ginning at (OLD)
\end{tabular} & \begin{tabular}{l} 
Display 8 bytes \\
with checksum be- \\
ginning at (1)
\end{tabular} & \begin{tabular}{l} 
Display (1)-(2), \\
8 bytes per line, \\
with addresses and \\
cumulative check- \\
sums
\end{tabular} & \\
\hline
\end{tabular}
- With one parameter, this command will result in the display of 8 bytes beginning at addr, with checksum. The format is as foilows:

\section*{\(V\) addr \(\mathbf{C R}\)}

In this example, bytes stored in locations 200-207 are displayed, along with their checksum:
```

-2 2002

```

```

 O2F3
    ```

Note that on the on-board display, only the two-byte checksum will be visible.
The checksum is a 16 -bit arithmetic sum of all of the data bytes displayed. The low byte is displayed on the data line, and the full checksum on the next. The address is not included in the checksum.
- With no parameters, the command will display 8 bytes beginning at (OLD).

\section*{\(V \quad \mathrm{CR}\)}
+V)
020041424320 AF \(89 \quad 6900 \mathrm{FF}\)
\(02 F 3\)
- With two parameters, the "V" command will display memory from addrl through addr2. Eight bytes per line are displayed, with cumulative checksums. A single byte checksum is included on each data line, and a final two-byte checksum is printed on a new line.

V addr 1,addr2 CR


\subsection*{5.3.5 D (Deposit)}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{5}{|c|}{ Number of Associated Parameters } \\
\hline \multicolumn{1}{|c|}{0} & 1 & 2 & \\
\hline \begin{tabular}{l} 
Deposit to memory, \\
beginning at (OLD),
\end{tabular} & \begin{tabular}{l} 
Deposit to memory, \\
CRLF/address after
\end{tabular} & & \\
\begin{tabular}{l} 
beginning at (1) \\
ing
\end{tabular} & & & \\
\hline
\end{tabular}
- This command is used for entering data to memory from a terminal. With one parameter, this command instructs the system to output a CR and line feed and print addr. As each two-digit byte is entered, a space is output. If you enter a space (instead of a two-digit byte), you will cause two more spaces to be output, and that memory location will remain unchanged.

D addr CR
- II 2008
\(0200 \frac{A 9}{3 A} \quad \frac{85}{65} \quad \frac{46}{44} \quad \frac{20}{84} \quad \frac{13}{45} \frac{06}{06} \frac{20}{46}\)
0210 E2 60 1
-
- As with other commands, the " D " with no parameters will deposit beginning at (OLD).

\section*{D CR}

Notice that \(V\) and \(D\) line up, so that a line displayed with \(V\) may be altered with \(D\), as shown below:


\subsection*{5.3.6 C (Calculate)}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline 0 & \multicolumn{1}{|c|}{1} & \multicolumn{1}{c|}{2} & 3 \\
\hline & \begin{tabular}{l} 
Calculate 0-(1), the \\
two's complement \\
of (1)
\end{tabular} & \begin{tabular}{l} 
Calculate (1)-(2) \\
or displacement
\end{tabular} & \begin{tabular}{l} 
Calculate \\
(1)+(2)-(3) or \\
displacement \\
with offset
\end{tabular} \\
\hline
\end{tabular}

This command is used to do Hexadecimal arithmetic. It is very useful in programming to compute branch operands required for SY6502 instructions.
- With one parameter, it calculates 0 minus addr (i.e., the two's complement).

C addr CR
- With two parameters, the " C " command will calculate addrl minus addr2 (i.e., displacement).

C addrl, addr2 CR
- With three parameters, the " C " command will calculate addr1 plus addr2 minus addr3 (i.e., displacement with offset).

C addr 1,addr2,addr3 CR
5.3.7 B (Block Move in Memory)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Number of Associated Parameters } \\
\hline 0 & 1 & 2 & 3 \\
\hline & & & \begin{tabular}{l} 
Move all of (2) \\
thru (3) to (1) \\
thru (1) (3)-(2)
\end{tabular} \\
\hline
\end{tabular}
- This command is only defined for three parameters and is demonstrated by the following examples:
- \(8200,300,3202\)
-

Move 300 thru 320 to 200 thru 220.
- B 200.220 .2502
-

Move 220 thru 250 to 200 thru 230. No data is lost, even though the regions overlap.
```

.3 220.200.2302

```
-

Move 230 thru 200 to 250 thru 220. (Note that this move occurs in the opposite direction. No data is lost.)
5.3.8 J (JUMP)
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{5}{|c|}{ Number of Associated Parameters } \\
\hline 0 & \multicolumn{1}{|c|}{ I } & 2 & \\
\hline & \begin{tabular}{l} 
Restore user regis- \\
ters except PC=entry
\end{tabular} & & \\
& \begin{tabular}{l} 
(1) of JUMP TABLE, \\
SFFD, monitor return \\
Pushed on stack
\end{tabular} & & \\
& & & \\
\hline
\end{tabular}
- This command is only defined for one parameter.

\section*{J n CR}

The parameter, \(n\), must be in the range \(0-7\). All user registers are restored, except PC is taken from the JUMP TABLE in System RAM, and S=FD. The monitor return address is pushed onto the stack.
(Because the monitor return is on the stack, a JUMP to a subroutine is allowable.)
Note also that certain useful default addresses are inserted in the JUMP TABLE at Reset. (See Memory Map.)

\subsection*{5.3.9 SD (Store Double Byte)}
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline 0 & 1 & \multicolumn{1}{|c|}{2} & 3 \\
\hline & & \begin{tabular}{l} 
Store high byte of \\
(1) in (2)+1 then low \\
byte of (1) in (2). \\
Good for changing \\
vectors
\end{tabular} & \\
\hline
\end{tabular}
- This command is defined only for two parameters and is most useful for changing vectors.

\section*{SD addr 1,addr2 CR}

The example below was used to enter the address of the Hex keyboard input routine into INVEC, in correct order (low byte-high byte). Note that this vector could not have been altered with M, because after one byte had been altered, the vector would have pointed to an invalid address.

\section*{- SI 99EEyA6GId}
5.3.10 F (Fill)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline 0 & 1 & 2 & 3 \\
\hline & & & \begin{tabular}{l} 
Fill all of (2)-(3) \\
with data byte \\
(1)
\end{tabular} \\
\hline
\end{tabular}
- Defined only for three parameters, this command will fill the defined region of memory (addr1-addr2) with a specified byte (bb).

F bb,addr1,addr2 CR
For example:
- E EAg200,300)
-

Fill the region 200 thru 300 with the byte EA, which is a NOP instruction.

\subsection*{5.3.11 W (Write Protect)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Number of Associated Parameters } \\
\hline 0 & \multicolumn{1}{|c|}{1} & 2 & \\
\hline & \begin{tabular}{l} 
Write protect user \\
RAM according to \\
3 digits of (1)
\end{tabular} & & \\
\hline
\end{tabular}
- This command is defined for only one parameter. To unprotect all of user RAM, the command is:

\section*{W \(0 \quad\) CR}

Its general form is:
\(\underline{W} d_{1} d_{2} d_{3} C R\)
Where each of \(d_{1}, d_{2}, d_{3}\) are the digits 0 (unprotect) or 1 (protect).
\[
\begin{array}{ll}
d_{1}=400-7 F F & 1 K \text { above first } K \text { of } R A M \\
d_{2}=800-B F F & 2 K \text { above first } K \text { of RAM } \\
d_{3}^{2}=C 00-F F F & 3 K \text { above first } K \text { of RAM }
\end{array}
\]

For example
- W 101.

1 protect \(400-7 \mathrm{FF}\)
0 unprotect \(800-\mathrm{BFF}\)
1 protect C00-FFF
Note that write protect applies to extended user RAM on-board, and also that it requires a jumper insertion (see Chapter 4).
5.3.12 E (Execute)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Number of Associated Parameters} \\
\hline 0 & 1 & 2 & 3 \\
\hline & Get monitor input from RAM, starting at (1) & Get monitor input from RAM, starting at (2) and store (1) for later use at A64C & Get monitor input from RAM, starting at (3) and store (1) and (2) for later user at A64E and A64C \\
\hline
\end{tabular}
- The standard form of the execute command uses one parameter.

\section*{E addr CR}

SUPERMON adjusts its INPUT vectors to receive its input from RAM, beginning at addr. It is assumed that the user has entered a string of ASCII codes into RAM locations beginning at addr, terminated by a byte containing 00 . When 00 is encountered, input vectors will be restored. The easiest way to enter these codes is to use the \(M\) command with the single-quote option (Section 5.3.1).

When \(E\) is used with two or three parameters, the additional parameters will be stored in system RAM at \(\overline{\mathrm{A} 64 \mathrm{C}}\) and A 64 E . It is the user's responsibility to interpret them. (Note that the E command is vectored; see Chapter 9.)

- \(E 3002\)
, CFFE.20042002
MrF

The sequence at 300 is part of a commonly used Calculate routine.

Notice that part of this C command came from RAM, and part was entered at the terminal.

\subsection*{5.4 CASSETTE AND PAPER TAPE COMMANDS}

The SYM-1 handles cassette I/O in two formats, KIM-compatible format ( 8 bytes \(/ \mathrm{sec}\) ), and SYM high-speed format ( 185 bytes \(/ \mathrm{sec}\) ).

The S1 and L1 commands refer to KIM format, while the S2 and L2 commands refer to SYM high-speed format.

With each Save command you specify a two-digit ID, as well as starting and ending addresses. The ID, the addresses, and the contents of all memory locations from starting to ending address, inclusive, will be written to tape. Each Save command will create one RECORD.

You should be careful to assign unique ID's to different records on the same tape, and to label the tape with the ID's and addresses of all the records it contains.

While SYM is searching for a record or trying to synchronize to the tape, an " \(S\) " will be lit in the left-most digit of the display on the on-board keyboard. If the "S" does not turn off, SYM is unable to locate or to read the requested record.

\subsection*{5.4.1 S1, S2 (Save Cassette Tape)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Number of Associated Parameters} \\
\hline 0 & 1 & 2 & 3 \\
\hline (S1) & & & Save cassette tape, locations (2) - (3) with ID = (1) in KIM format \\
\hline (S2) & & & Save cassette tape, locations (2) - (3) with \(\mathrm{ID}=(1)\) in High Speed format \\
\hline
\end{tabular}
- These commands are discussed together, as their syntax is identical. Recall that S1 refers to KIM format while S2 refers to SYM high-speed format.

Both are defined only for three parameters.

\section*{\(\mathbf{S 2}\) bb, addr \({ }_{\mathrm{s}}\), addr \(_{\mathrm{e}} \mathbf{C R}\)}

The first parameter is a 2-digit ID, which may be any value other than 00 or FF . It is followed by the starting address and the ending address. In the example below, all memory locations from 0200 thru 0280, inclusive are written to tape, and given the ID 05.
\(+615.200 .2001\)

\subsection*{5.4.2 \(\mathrm{L2}\) (Load High-Speed Format Record)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline 0 & 1 & 2 & \\
\hline \begin{tabular}{l} 
Load first Hi Speed \\
record found into \\
locations from which \\
it was saved
\end{tabular} & \begin{tabular}{l} 
Load Hi Speed record \\
with ID \(=\) (1)
\end{tabular} & & \begin{tabular}{l} 
(1) must = FF. \\
Load first Hi Speed
\end{tabular} \\
record found into \\
(2)-(3)
\end{tabular}
- The standard form of this command uses one parameter, as follows:

\section*{12 bb CR}

The parameter bb is the ID of the record to be loaded. When found, the record will be loaded into memory, using the addresses saved in the record itself.

If the record \(b b\) is not the first high-speed record on the tape, the " S " light will go out as VIM reads through, but ignores, the preceding records. After each unselected record is read, the " S " will re-display.
- With no parameters (or a single parameter of zero), the instruction will load the first high-speed format record found, without regard to its ID, using the addresses saved in the record itself.

\section*{L2 CR}
or

\section*{L2 0 CR}
- The L2 command exists in a third form, using three parameters, as follows: L2 FF, addr1, addr2, CR

This usage will load a record into a different area of memory from where it was saved. The first parameter must be FF, followed by the requested starting and ending address. It is your responsibility to supply addrl and addr2 such that their difference is the same as the difference of the addresses used to save the record.

\subsection*{5.4.3 LI (Load KIM Format Record From Tape)}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline \multicolumn{1}{|c|}{0} & \multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{2} & \\
\hline \begin{tabular}{l} 
Load first KIM \\
format record \\
found into loca- \\
tions from which \\
it was saved
\end{tabular} & \begin{tabular}{l} 
Load Kim record \\
with ID \(=\) (1) \\
into locations \\
from which it \\
was saved
\end{tabular} & \begin{tabular}{l} 
(1) must \(=\) FF. \\
Load first KIM \\
record found, \\
but start at \\
location (2)
\end{tabular} & \\
\hline
\end{tabular}
- The Ll command, used with zero or with one parameter, is identical in syntax to the L2 command (see Section 5.4.2, above).
- With two parameters, the L1 command is used to load into a different region of the memory than that with which the record was saved.

\section*{11 FF,addr CR}

The first parameter must be FF, followed by the requested starting address. No ending address is necessary, as the load operation will halt when the end of the record is found.

\subsection*{5.4.4 SP (Save Paper Tape)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Number of Associated Parameters} \\
\hline 0 & 1 & 2 & 3 \\
\hline & & Save data from locations (1) - (2) in paper tape format. To create end of file record, unlock punch, switch to local mode, lock punch, type ;00 CR & \\
\hline
\end{tabular}
- Defined only for two parameters, this command will output data from RAM in paper tape format (see Appendix D).

SP addr1, addr2 CR
For example:
-6F 200.2151
F10020034AB743FA4EBA4EBAABEAABEA4BEA4EBOन9A
\%O60210ACIBFA9BDABEOSFO
5.4.5 LP (Load Paper Tape)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Number of Associated Parameters } \\
\hline \multicolumn{1}{|c|}{0} & 1 & 2 & 3 \\
\hline \begin{tabular}{l} 
Load data in paper \\
tape in format. To \\
signal end of file \\
for tape without
\end{tabular} & & & \\
\begin{tabular}{l} 
EOF record, type \\
;00 CR in on-line
\end{tabular} & & & \\
mode & & & \\
\hline
\end{tabular}
- This command is defined for no parameters only. It will load memory with data in paper tape format (see Appendix D).

\section*{LP CR}

\subsection*{5.5 USER-DEFINED FUNCTIONS}

You may, as we have previously pointed out, write programs to be called from the on-board keyboard. You may do this by using any combination of command and number of parameters which is not already defined (e.g., B MOV with only two parameters) or by using any or all of the eight keys along the bottom two rows of the on-board keyboard (those labeled "USR 0" through "USR 7"). The exact means of implementing these special functions is discussed in detail in Chapter 9.

\subsection*{5.6 ERROR CODES}

The SYM-1 microcomputer system handles error codes in an interactive way, with codes being designed to be determined by the context in which the error occurs. No table of error conditions and their meanings is therefore provided with this manual, since these are context dependent.

However, you should be aware of the general method by which errors are handled by your SYM-1 system.

When your SUPERMON encounters an error of some type, it displays a 2-digit representation of the byte which was being processed when the error was detected. For example, if you attempt to carry out a CALC command with no parameters (and you haven't defined such a routine yourself as explained in Chapter 9), the system will display a "43." which is the ASCII representation for the "C" which represents the CALC function.

Similarly, if you attempt to use an ID of 00 or FF with either SAV1 or SAV2, the system will display the ID used in error.

After the "er" message is printed, a new prompt (decimal point) is displayed, and SUPERMON waits for a new command. Note that you do not need to RESET when an error condition occurs, since that results in System RAM being cleared and necessitates a re-start of your routine. It is also worth noting that when you carry out an EXEC command at the on-board keyboard the system does not halt when an error occurs; rather, it continues in the same fashion as if new commands were coming directly from the keyboard. The error condition therefore flashes too rapidly on the LED display for you to see it. Command sequences to be executed by EXEC should be pretested prior to such use.

Some fixed error codes do exist in the monitor. Four such codes are used in audio cassette operations and are defined in Table 5-3. Additionally, if in carrying out LD P, FILL or B MOV commands you either attempt to store data in a non-existent or WRITE-protected memory location or if during execution of one of these commands -a memory error occurs, the LED display will show the number of locations read incorrectly. This number will always stop at "FF" if it exceeds that number, so that the display will have some intelligible meaning.

Table 5-3. ERROR CODES IN AUDIO CASSETTE OPERATIONS
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|l|}{ Code Displayed } & \multicolumn{1}{l|}{ Meaning } \\
\hline \(2 F\) & \begin{tabular}{l} 
Last-character error. The last character in a tape record \\
should be a 2F. If that is not the case, the system displays \\
the error code shown.
\end{tabular} \\
\hline CC & \begin{tabular}{l} 
Checksum error. Usually indicates data transfer problems. \\
Re-position the tape and try again.
\end{tabular} \\
\hline FF & \begin{tabular}{l} 
In KIM-I format loading, this error code means a non- \\
Hexadecimal character has been encountered. This almost \\
always means a synchronization error. Restart the procedure.
\end{tabular} \\
\hline & \begin{tabular}{l} 
In High-Speed format loading, a framing (i.e., synchronization) \\
error is the cause. Restart the procedure.
\end{tabular} \\
\hline
\end{tabular}

The following examples provide some representative errors to enable you to become familiar with how they are reported on SYM-1 using a TTY or CRT.
\(-\frac{1 N}{E R} \frac{111}{01}\)
\(+\frac{92}{200.2804}\)
ER IE
.5 Ay 230.500.
VF 2 C

ER \(20092 x\)
\(+\frac{92}{\text { FFF }}\) FF \(200.280 \downarrow\)

EFAAA200.2802

6000960 FE ?
\(6001 \times 60\) " \(\boldsymbol{\underline { L }}\)
-
\(-118000 \%\)
8000 AA? Mrit
\(+\frac{200 \cdot 280 *}{44}\)

FF \(\frac{E A, 5000.6000 V}{F F}\)

Memory location 400 write protected, therefore it could not be modified. One byte only in error.

S2 is not defined for two parameters. The hash code for \(S 2\) is \(1 E\).

Three parameters only permitted.
\(X\) is not a valid Hex digit.

ID may not be FF or 00 .

ID must be FF.

No RAM at 6000, therefore it cannot be modified.

ROM at 8000 , therefore it cannot be modified

Deposit not defined for 2 parameters. D = ASCII 44.

No RAM at locations 5000-6000, therefore no modification was possible. The number of bytes which were not correctly changed is greater than or equal to 255 (decimal).

\section*{CHAPTER 6}

\section*{PROGRAMMING THE SYM-1}

Creating a program on the SYM-1 involves several steps. First, the input to the program and its desired output must be carefully defined. The flow of program logic is usually worked out graphically in the form of a flowchart. Next, the symbols on the flowchart are converted to assembly language instructions. These instructions are in turn translated into machine language, which is entered into memory and executed. If (as usual) the program does not run correctly the first time, you must debug it to uncover the errors in the program. This chapter illustrates the steps involved in creating a program to add two 16 -bit binary numbers, and provides two other programming problems with suggested solutions. All three programs are designed to communicate basic programming principles and techniques and to demonstrate a programmer's approach to simple problems.

\subsection*{6.1 HARDWARE}

All the sample programs listed here can be loaded and run on the basic SYM-1 with the minimum RAM. The only I/O devices required are the on-board keyboard and display.

If a printing or display terminal is available, by all means use it instead of the Hex keyboard provided. Both types are more comfortable for most users and allow much more data to be displayed at once.

Connect the terminal cable to the appropriate connector on the left edge of the card as described in Chapter 3. Verify that the switches on the terminal are set for full-duplex operation and no parity. The duplexing mode switch will usually be labelled HALF/FULL or H/F; the parity switch will be labelled EVEN/ODD/NO. If your terminal has a CRT, wait for it to warm up. To \(\log\) on to a terminal, enter a "Q" immediately after reset.

\subsection*{6.2 DOUBLE-PRECISION ADDITION}

Since the eight bits of the accumulator can represent positive values only in the range \(0-255\) ( \(00-\mathrm{FF}\) Hex), 255 is the largest sum that can be obtained by simply loading one 8 -bit number into the accumulator and adding another. But by utilizing the Carry Flag, which is set to "l" whenever the result of an addition exceeds 255, multiple-byte numbers may be added and the results stored in memory. A 16 -bit sum can represent values greater than 65,000 (up to FFFF Hex). Adding 16 -bit rather than 8 -bit numbers is called "double-precision" addition, using 24 -bit numbers yields triple precision, etc.

\subsection*{6.2.1 Defining Program Flow}

Flowcharting is an orderly way of representing a procedure. Much easier to follow than a list of instructions, a flowchart facilitates debugging and also serves as a handy reference when using a program written weeks or months earlier. Some common flowcharting symbols are shown in Figure 6-1. below.


Figure 6-1. COMMON FLOWCHARTING SYMBOLS
The object of our program is to add two 16 -bit numbers, each stored in two bytes of RAM, and obtain a 16-bit result. The sequence of operations the processor must perform is shown in the flowchart in Figure 6-2.

To accomplish double-precision addition, first clear the Decimal Mode and the Carry Flags. (The addition is in binary, so the system must not be expecting decimal numbers. The Carry Flag is used in the program and must start at zero.) Load the low byte of the first 16 -bit number into the accumulator and add the low order byte of the second number using an Add With Carry (ADC) command. The contents of the accumulator are the low order byte of the result. The Carry Flag is set if the low-byte sum was greater than FF (Hex).

You now store the accumulator contents in memory, load the high order byte of the first number into the accumulator, and add the high order byte of the second number. The ADC command automatically adds the carry bit if it is set. After the second addition, the contents of the accumulator are the high order byte of the result. The example below shows the addition of 384 and 128.
\begin{tabular}{lllllll}
0000 & 0001 & 1000 & 0000 & 384 & \((0180 \mathrm{Hex})\) \\
0000 & 0000 & 1000 & 0000 & 128 & \((0080 \mathrm{Hex})\)
\end{tabular}

10000000
\(1000 \quad 0000\)
Carry \(=1 \quad 00000000\)
Add high order bytes: (carry = 1)
\[
\begin{aligned}
& 00000001 \\
& 0000 \quad 0000 \\
& \text { Carry }=0 \begin{array}{l}
0000 \\
0010
\end{array} \quad \text { CARRY } \\
& \text { Result }=000000100000 \quad 0000=512(0200 \mathrm{Hex})
\end{aligned}
\]


Figure 6-2. DOUBLE-PRECISION ADDITION FLOWCHART

\subsection*{6.2.2 Coding and "Hand Assembly"}

Once you have flowcharted a program, you may "code" it onto a form like the one shown in Figure 6-3. SY6502 Microprocessor Assembly Language is described in Sections 4.3.3 and 4.3.4. Additional information is available in the Synertek "Programming Manual" for the 6500 family. Figure 6-4 shows the coding for our example.

The first step involves finding the SY6502 commands that correspond to the operations specified in the flowchart. A summary of the commands and their mnemonic codes is given in Table 4-7. Arbitrary labels were assigned to represent the addresses of the monitor, the two addends and the sum and entered in the operand field. As written, the assembly language program does not specify where in memory the program and data will be stored.

To store and execute the program, you must "assemble" it by translating the mnemonics into hexadecimal command codes and assign the program to a set of addresses in user RAM. Performing this procedure with pencil and paper, rather than with a special assembler program, is "hand assembly".

The SUPERMON monitor begins at Hex location 8000, and the addends and the sum have been arbitrarily assigned to locations 0301 through 0306. You should note that the high and low order bytes of a 16 -bit number need not be stored in contiguous locations, although they are in this example.

The program will be stored beginning in location 0200, another arbitrary choice. Data and programs may be stored anywhere in user RAM. Columns B1, B2, and B3 represent the three possible bytes in any 6502 instruction. Bl always contains the Hexadecimal operation code. B2 and B3 represent the operand(s). Looking at the coding form, you can see that the CLD and CLC instructions each occupy one byte and that the LDA instruction occupies three bytes. On your instruction set summary card, you'll see that the LDA mnemonic represents several different operation codes depending on the addressing mode chosen. AD indicates absolute addressing and specifies a three-byte command. When all the operation codes and operands have been translated into pairs of Hex digits, the program is ready to be entered into memory and executed.

\subsection*{6.2.3 Entering and Executing the Program}

The procedure for entering the double precision addition program is shown below.
\begin{tabular}{|c|c|c|}
\hline YOU KEY IN & DISPLAY SHOWS & EXPLANATION \\
\hline \multicolumn{3}{|l|}{(RST)} \\
\hline (CR) & SY1.0.. & \\
\hline (MEM) 200 (CR) & 0200.**. & Enter memory display and modify mode \\
\hline D8 & 0201.**. & Store D8 in location 0200, advance to next location \\
\hline 18 & 0202.**. & Store 18 in location 0201, advance to next location \\
\hline AD & 0203.**. & . \\
\hline 02 & 0204.**. & - \\
\hline 03 & 0205.**. & \\
\hline 6D & 0206.**. & - \\
\hline & - & \\
\hline 80 & 0217.**. & \\
\hline (CR) & 217.**.. & Exit memory display and modify mode \\
\hline
\end{tabular}
\begin{tabular}{|l||l|l|l|l|l|l|l|}
\hline ADDR & \multicolumn{2}{|c|}{ INSTRUCTIONS } & LABEL & MNEMONIC & OPERAND & \\
\hline & B1 & B2 & B3 & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Figure 6-3 SAMPIF CODING FORM
\(\qquad\)
\(\qquad\)
PROGRAMMER \(\qquad\)
DATE \(\qquad\)

DUAL-PRECISION ADD ROUTTNE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ADDR & INS & TRUCT & TONS & Labed & MNEMONIC & OPERAND & COMMEnts \\
\hline 200 & DB & & & & CLO & & CLEAR DECMAL MODE FLAC (MODE = 0) \\
\hline 201 & 18 & & & & \(c \angle C\) & & CLEAR CARRY FLAG (CARRY=O) \\
\hline 202 & \(A D\) & 02 & 03 & & \(\angle D A\) & \(\angle 1\) & LEAD LOW ORDER BYTE, FIRST NUMBER \\
\hline 205 & 6D & 04 & 03 & & \(A D C\) & \(\angle 2\) & ADD WITH CARRY, LOW ORDER BYTE, SECOND NUMBER \\
\hline 208 & 8D & 06 & 03 & & STA & \(\angle 3\) & STORE LOW DEDER BYTE, RESUT \\
\hline 203 & AD & 01 & 03 & & \(\triangle D A\) & H1 & LOAD HIGH ORDER BYTE, FIRST NUMBER \\
\hline 20E & \(6 D\) & 03 & 03 & & \(A D C\) & Hz & ADD WION CARRY HIGH ORDER BYTE, SECOND NUMDER \\
\hline 211 & BD & 05 & 03 & & STA & H3 & ITORE HIGN ORDER BYTE, RESULT \\
\hline 214 & \(4 C\) & 00 & 80 & & JMP & Start & Branch to monitor \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 301 & & & & H/ & \(=\) & \# 301 & HIGH ORDER BYTE OF FIRST NUMQER \\
\hline 302 & & & & 21 & = & \$302 & LOW droze byte of fiest number \\
\hline 303 & & & & Hz & = & \$ 303 & Hilw crose byte oe इecond number \\
\hline 304 & & & & \(\angle 2\) & \(=\) & + 304 & LOW ORDER BYTE Of SECONO NUMBER \\
\hline 305 & & & & H3 & \(=\) & \$305 & HIGH ORDER BYIE OF RESULT \\
\hline 306 & & & & \(\angle 3\) & \(=\) & \$ 306 & LOW ORDER BYTE OF RESMT \\
\hline 8000 & & & & Staper & = & \$8000 & Mowitor \\
\hline
\end{tabular}

\footnotetext{
Fignare f-n DEUL-PRECISION ADD ROIITINE
}

The program is now entered. Examine each location to make sure that all values are correct. Then store the addend values in locations 0301-0304 as shown below. We'll use the numbers that were used in the example in Section 6.2.1, 0180 (Hex) and 0080 (Hex).
\begin{tabular}{|c|c|c|}
\hline YOU KEY IN & DISPLAY SHOWS & EXPLANATION \\
\hline (MEM) 301 (CR) & 0301.**. & \\
\hline 01 & 0302.**. & Enter high order byte, first addend \\
\hline 80 & 0303.**. & Enter low order byte, first addend \\
\hline 00 & 0304.**. & Enter high order byte, second addend \\
\hline 80 & 0305.**. & Enter low order byte, second addend \\
\hline (CR) & 305.**.. & \\
\hline
\end{tabular}

To execute the program, enter the command shown below.
\begin{tabular}{lll} 
YOU KEY IN & DISPLAY SHOWS & EXPLANATION \\
(GO) \(200(\mathrm{CR})\) & g 200. & \begin{tabular}{l} 
Execute program starting at lo- \\
cation 0200.
\end{tabular}
\end{tabular}

Now use MEM to examine locations 0305 and 0306. Verify that they are high and low order bytes of the result, 02 and 00 . If you find other data at these locations, you will be pleased to know that the next section of this chapter tells you how to debug the program.

\subsection*{6.2.4 Debugging Methods}

The first step in debugging is to make sure that the program and data have been entered correctly. Use the MEM command to examine the program starting address, and use the right-pointing arrow key to advance one location at a time and verify that the contents of each are correct. If you have a terminal, you can generate a listing by entering an SP command without turning on the tape punch or by using the VER command. Also examine the locations that contain the initial data.

If the program and data are correct, but the program still does not execute properly, you may want to use the SYM-1 DEBUG function. If DEBUG is ON when the execute (GO) command is entered, the program will execute the first instruction, then return control to the monitor. The address on the display will be the address of the first byte of the next instruction. If you again press GO (CR) to execute (do not specify an address this time), the computer will execute the next instruction, then halt as before. The program may be executed one step at a time in this manner.

By entering a non-zero Trace Velocity (at location A656), execution will automatically resume after a pause during which the Accumulator is displayed. Depress any key to halt automatic resumption.

After certain instructions, you will want to examine the contents of memory locations or registers. Use the MEM or REG commands, then resume operation by entering another GO command.

To examine the Carry Flag after the low order addition, for example, use the REG command as shown below.
YOU KEY IN
(ON)
(GO) 200 (CR)
(GO) (CR)
(GO) (CR)
(GO) (CR)
(REG) (CR)
(CR)
(GO) (CR)

DISPLAY SHOWS
unimportant
0201.2 .
0202.2 .
0205.2 . 0208.2 .

P 0208.
rl Fd.
r2 63. 263. 020B. 2 .

EXPLANATION
Turn DEBUG function ON
Execute D8 instruction
Execute 18 instruction
Execute AD instruction
Execute 6D instruction, low order add with carry
Program Counter
Stack pointer
Status register
End register examination
Execute 8D instruction

The Carry Flag is the lowest (rightmost) bit of the Status Register. To determine whether the flag was set, convert the Hex digits 63 to binary. The result of this conversion is 01100011 , and since the low bit is "1", this confirms that the sum of the two low order bytes was greater than 255 (FF Hex).

You may turn the DEBUG switch OFF after any instruction. When you next press GO, the program will finish executing.

Since reading from or writing to any \(1 / O\) port is the same as reading from or writing to a memory location, the DEBUG feature may also be used to debug I/O operations. When the port address is examined with a MEM command, the two Hex digits that represent data indicate the status of each line of the port. For example, if the value C2 is displayed, pin status is as follows:
\[
\begin{aligned}
& \begin{array}{ccccccccc}
\text { PIN } & \underline{7} & \underline{6} & \underline{5} & \underline{4} & \underline{3} & \underline{2} & \underline{1} & \underline{0} \\
\text { TUS } & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} \\
& 0=\text { Low } \\
& 1=\mathrm{High}
\end{aligned}
\]

For more advanced debugging techniques, including how to write and use your own trace routines, see Sections 9.5 and 9.6.

You now know how to code, enter, and debug programs on the SYM-1. Let's go look at two more examples that illustrate useful programming concepts.

\subsection*{6.3 CONDITIONAL TESTING}

Most useful computer programs don't go in straight lines -- they don't simply execute a series of instructions in consecutive memory locations. They do perform different operations for different data by testing data words and jumping to different locations depending on the results of the test. Typical tests answer the following kinds of questions:
1. Is a selected bit of a specified data word a 1 or a 0?
2. Is a specified data word set to a selected ASCII character or numeric value?

The sample program discussed below will answer question "l". It can be patched easily to answer question "2". You can use the principles you learn in the first two examples to make many more complicated tests.

\section*{Bit Testing}

This sample program looks at the word in Hex location 31 and tests bit 3. If bit 3 is set to one, it jumps to location 8972; if bit 3 is zero, it returns to the executive. Location 8972 is a monitor subroutine that makes the SYM-1 go "beep".

The only problem involved is in isolating bit 3. The simplest way is to use a mask - a word in memory with bit 3 set and none other. If we logically AND the mask with the sample word, the resultant value will be zero if bit 3 was zero and non-zero otherwise. The BIT test performs the AND and tests the value without altering the state of the accumulator.

Here is the flow chart. The code is in Figure 6-5. The mask (F7 Hex) is in location 30 , the test value in location 31.


\section*{Hint}

If you wish to test bit 0 or bit 7 of a byte, you need not use a mask. Simply use a shift operation to place the selected bit in the CARRY status bit and use a BCC or BCS to test CARRY. This saves one or more program locations. Note that it alters the accumulator - you may have to shift it back for later processing.

\section*{Character, Value, or Magnitude Testing}

To test whether a byte is exactly equal to an ASCII character or a value, use the Compare command or first set a mask location exactly equal to the character or value. Then use the EOR command to find the exclusive OR of the two values and test the result for zero. It will be zero if and only if the values were identical. Note that this destroys the test value -- keep another copy of it if you must use it again.

To test whether a byte is greater, equal to, or less than a given value, use the Compare command or set a mask to the test values and subtract it from the test value. The test value will be destroyed. Test the result to see whether it is positive, negative, or zero (this takes two sequential tests) and skip accordingly. Try writing a program that makes a series of magnitude tests to determine whether a given byte is an ASCII control character ( \(0-1 \mathrm{~F}\) Hex), punctuation mark, number, or letter. The values of the ASCII character set are listed on the summary instruction card.
\(\qquad\)
SYNERTEK SYSTEMS CORPORATION
PROGRAM
PROGRAMMER \(\qquad\)
DATE
\(\qquad\)
\(\qquad\)

BIT 3 TEST ROUTINE


Figure 6-5. BIT 3 TEST ROUTINE

\subsection*{6.4 MULTIPLICATION}

The sample program described here multiplies two one-byte unsigned integers and stores the results in two bytes. Note that in any base of two or more, the product of two numbers may be as long as the sum of the lengths of the numbers. In decimal, 99 X 99= 9801; in Hex FF X FF= FE01.

Since many programs will involve multiplication, it is not good practice to write a multiplication routine every time the need comes up. The sample is set up as a subroutine to allow it to be used by many programs. Serious programmers will usually wind up with libraries of subroutines specialized for their applications.

How to Multiply
Multiplication is normally introduced to students as a form of sequential addition. Humans can in fact multiply 22 (decimal) by 13 by performing an addition:
\[
22+22+22 \ldots . \cdot 22=286
\]

This technique is of course foolish -- it involves a lot of work and a high probability of error. It would be easy to write a program that would multiply this way (try it) but it would be a terrible waste of time.

How then to multiply? We could use a table. Humans use memorized tables that work up to about \(10 \times 10\) :
\[
7 \times 8=56
\]

Humans cannot, however, remember well enough to know that:
\[
22 \times 13=286
\]

Computers, of course, can "remember" an arbitrarily large table. But the table for the problem at hand would have FFFF entries, which is far too many for practicality.

Humans solve the problem by breaking the multiplication down into smaller steps. We multiply one factor, one digit at a time, by each digit of the other factor in turn. Then we shift some of the partial products to the left and add:


We would multiply the binary equivalents of the numbers the same way:
10110
\(\frac{1101}{10110}\)
0
10110
\(\frac{10110}{10001110}\)


Figure 6-6. GENERAL MULTIPLICATION FLOWCHART

A little figuring will verify that the result is correct. Note that the "tables" for multiplying binary numbers by a single digit are very simple - a number times one is itself; a number times zero is zero. We can multiply, then, by using a series of additions and shifts, as shown in the flow chart below. The first factor is eight bits long; the second is extended to two bytes (the high-order byte is zero), and the result goes into two bytes set initially to zero. The flowchart in Figure 6-6 is general and not suitable for direct coding.

This procedure could be coded quite easily. Each bit test on the first factor could be made with a different mask as shown in the previous example. Note, however, that the same basic set of instructions is repeated eight times, wasting memory space. A more efficient routine would loop over the same code eight times.

The more efficient routine could also use eight masks, but there's a simpler way. Simply shift the factor to the left once per addition. The bit to be tested will wind up in the CARRY indicator, and we can simply test that. Figure \(6-7\) is a more formal flowchart of the multiply routine as it is coded that it includes the coding details. The coding chart is shown in Figure 6-8.

\section*{Testing}

The listing below shows one way to key in the program. The code occupies the RAM space from 200 to 222 Hex. The factor come from locations 21 and 22; the product goes to locations 23 and 24.

Note that the original factors are destroyed by the routine. If it is necessary to preserve them for other subroutines, simply copy them into unused memory locations and perform the multiplication on the copies.

\section*{Division}

Try to write a parallel routine for performing integer division that divides a two-byte quotient and a two-byte remainder. You may wish to test the remainder and, if its MSB is one, round the result by incrementing the quotient.

Arithmetic
The examples given so far show some basic integer arithmetic techniques. They may be expanded easily for double-precision operation. (Multiply two bytes by two bytes for a four-bit product. Use double-precision addition and fifteen shifts instead of seven.)

MULTIPLIER \(=P\)

\section*{MULTIPLICAND \(=\mathrm{Q}\)}


Figure 6-7. DETAILED MULTIPLICATION FLOWCHART

PROGRAM \(\qquad\)
PROGRAMMER \(\qquad\)
DATE \(\qquad\)

SINGLE - PRECISION MULTIPLY ROUTE


Figure 6-8. SINGLE-PRECISION MULTIPLY ROUTINE

\section*{CHAPTER 7}

\section*{OSCILLOSCOPE OUTPUT FEATURE}

\section*{7．1 INTRODUCTION}

Your SYM－1 module is hardware－equipped to allow you to use an ordinary oscilloscope as a display device．In this section，we will describe the hardware and connections between the system and the oscilloscope and also provide a listing of a software driver for this output．This listing is just one way of handling the oscilloscope output；you may wish to modify it or develop your own．

\section*{7．2 OPERATION OF OSCILLOSCOPE OUTPUT}

The circuitry shown in the detail on the schematic（Figure 4－9）enables the SYM to output alphanumeric characters to an oscilloscope．The circuitry is adapted from a published schematic and was included on the SYM to help relieve the bottleneck found on most single－board computers，i．e．，the 7 segment displays．Many things can be done with the scope－out circuit，like displaying alphanumeric characters，bar graphs，and game displays．The alphanumeric output is usually organized as 16 or 32 characters， each character being a 5－by－7 dot matrix．The characters could be English，Greek or Cuneiform，or could even be stick－men，cars，dog houses，or laser guns．

The＂video＂signal from the collector of Q10，is 3 V peak－to－peak with a cycle time of about 50 ms （using the suggested software driver included in section 7．3）．The sync pulse which begins the line should synchronize all triggered sweep scopes and most recurrent sweep scopes．In the driver which follows，sync could be brought out on a separate pin by replacing the code from SYNC to CHAR with a routine that would output a pulse on PB4 or some other output line．

\section*{7．2．1 Connection Procedures}

Connect the oscilloscope vertical input to pin \(R\) on connector AA（＂scope out＂）and connect scope ground to pin 1 of connector AA（SYM ground）．Start the software and adjust the scope for the stable 32－character display．If the sync pulse was output on PB4，connect the scope＇s trigger to pin 4 of connector AA．

\section*{7．2．2 Circuit Operation}

The operation of the circuit is simple．Basically，the circuit is a sawtooth waveform generator whose output is sometimes the sawtooth and sometimes ground．The sawtooth is generated by the current source，Q9－Q17－R42－R43，charging C9．When C9 gets up to about 3 V the discharge path，Q19－Q18－R41－R44，shorts it back to ground due to a pulse sent out by CA－2．The sawtooth waveform is shown below and forms the columns of the display．

By pulling the sawtooth to ground with Q10 any columns or portions thereof can be ＂removed＂from the display．The result of this can be seen below：


\(\%\)
The sawtooth is pulled to ground by bringing CB－2 high．

Because Q10 in the "ON" state will cause loading of C9 (thru R45) and C9 will charge a little more slowly, the time for a "dark" column should be slightly longer than for a "light" column.

If more than 8 vertical dots are desired, the charging rate of \(C 9\) must be slowed by lowering the charging current. R42 controls the charging current and can be increased up to about 10 K before the loading effects of R 45 get completely out of hand.

\subsection*{7.3 USING OUR SOFTWARE}

The program listing in Table 7-1 is one way of handling oscilloscope output. After entering the program and character table and attaching an oscilloscope to the scope output, enter the following commands:

\section*{Comments}
\begin{tabular}{|c|c|c|c|}
\hline .SD 500, A670(CR) & Change & SCANVEC. & (DISPLAY GOES BLANK) \\
\hline . SD 58C, A664(CR) & Change & OUTVEC. & \\
\hline . SD 560, A661(CR) & Change & INVEC. & \\
\hline
\end{tabular}

Now enter any stream of characters from the HKB to fill SCPBUF.
Put the scope input on AC couple and the trigger on DC couple. Adjust the time base, attenuation, and trigger until the display becomes readable. If your screen is very small, you may wish to change the number of characters per line by adjusting the value at location \(\$ 0506\).

Example: Creating translation table for scope driver.


Each byte corresponds to a single column, with each bit corresponding to a single dot.
\[
\text { sigma }=\$ C 6, \$ A A, \$ 92, \$ 82, \$ C 6
\]

Bit \(\emptyset\) is always \(\emptyset\) to raise the character off of the Ground line.

Table 7-1. OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING


Table 7-1. OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING (Continued)


\section*{Table 7－1．OSCILLOSCOPE OUTPUT DRIVER SOFTWARE LISTING（Continued）}
i
\％ \(8 \times 5\) MATRTX CHAF SET FOF GCOFE I TNE RETUEF
；CONTATNG all HEX KB CHAES
y FTRET BYTE DF TABLE MUST BE OO
y EACH CHAR ：FRES BYTE＝LEFTMOST COLUMN．

\％
＊\(=\) 中 400 FAGE \(A\) ALIOCATET TO CHARACTER SET


－BYT s4Ey\＆92，非929非92，非62 \％TWO









－BYT \(\$ 10 . \$ 10, \$ 10, \$ 10, \$ 10\) GAEH







－EYT \(\$ 80\) ， \(680 y \$ 80 . \$ 80, \$ 80\) 110


























－EYT \(\$ 40, \$ 80, \$ 8 \mathrm{Ag} \$ 90 . \$ 60\) OUESTITON
－BYT \(\ddagger\) FE \(\$ 90, \$ 90, \$ 90 . \$ 60\) 9F
－ENA

\section*{CHAPTER 8}

\section*{SYSTEM EXPANSION}

This chapter discusses the means by which you can expand your SYM-1 microcomputer system by adding memory and peripheral devices to its basic configuration. By now, you realize that data access, whether from RAM, PROM or ROM is a function of addressing interface devices (i.e., 6522's and 6532). Hardware has been built into your SYM-1 module to allow large-scale expansion of the system. A thorough understanding of the SYM-1 System Memory Map (Figure 4-10) will aid considerably in understanding how to expand your system.

\subsection*{8.1 MEMORY EXPANSION}

Your SYM-1 module comes equipped with 1 K of on-board RAM. It also contains all address decoding logic required to support an additional 3 K on-board with no changes by you. In other words, to add 3 K of on-board RAM, all you need to do is purchase additional SY2114 devices and plug them into the sockets provided on your board. Your PC board is marked for easy identification of 1 K memory blocks. RO equals the lower lK block and R3 equals the upper lK block. LO means low order data lines (D0-D3) and HI means high order data lines (D4-D7).

You will recall that the lowest 8 K memory locations are defined by an address decoder included on your SYM-1 module (a 74LS138). The eight outputs of this decoder ( \(\overline{00}-\overline{\mathrm{IC}}\) ) each define a 1 K block of addresses in the lowest 8 K of the Memory Map. Four of the outputs ( \(\overline{00}, \overline{04}, \overline{08}, \overline{0 \mathrm{C}}\) ) are used to select the on-board static RAM. The remaining four outputs ( \(\overline{10}, \overline{14}, \overline{18}, \overline{1 \mathrm{C}}\) ) are used to interface to the Application Connector (Connector "A"), where you can use them to add another 4 K of off-board memory. Again, no external decoding logic is required. By this simple means, you can convert your SYM-1 module into an 8 K device quickly. Figure \(8-1\) shows you how to interface these decode lines at the connector for your SYM-1 system.

To go beyond this 8 K size, conceivably up to the maximum 65 K addressability limit of the SYM CPU, you could build or buy an additional memory board with on-board decoding logic. In this case, you will use the Expansion Connector (Connector "E") in a manner shown schematically in Figure 8-2. Note that the three high-order address bits (AB13-AB15) not used in the earlier expansion are brought to this connector as shown. These are then used with a decoder to create outputs \(\overline{\mathrm{MO}}\) through \(\overline{\mathrm{M} 7}\), which in turn are used to select and de-select additional decoders (line receivers). You need add only as many decoders (one for each 8 K block of memory) as you need for the expansion you require.

Incidentally, the line receivers shown in Figure 8-2 are provided for electrical reasons. There are loading limitations on the address bus lines of the 6502 CPU , which require the insertion of these receivers. (For your information, each 6502 address line is capable of driving one standard TTL load and 130pf of capacity.)

You should make a careful study of the loading limitations of the required SYM-1 lines before deciding on memory expansion size and devices. It is likely you will want to use additional buffer circuits to attain "cleaner" operation of your expanded memory in conjunction with your SYM-1 system.

4K MEMORY EXPANSION


Figure 8-1. 4K MEMORY EXPANSION

\section*{MEMORY L/O EXPANSION TO 65K}


Figure 8-2. MEMORY - I/O EXPANSION TO \(\mathbf{6 5 K}\)

\subsection*{8.2 PERIPHERAL EXPANSION}

As you already know, the SYM-1 microcomputer system includes \(51 \mathrm{I} / \mathrm{O}\) lines. This means, theoretically, that you could drive as many as 51 peripheral lines (plus 4 control lines) with your SYM-1.

Using either Application Connector ("A" or "AA"), you can add most commercially available printers or other devices requiring parallel interfaces, although you will have to create your own software driver for the printer. Since the provision of that driver is, to some extent, dependent upon the printer you purchase, we do not attempt to discuss the implementation of the software in this manual.

You can expand your SYM-1 system's peripheral I/O capability easily and quickly merely by installing an additional SY6522 in the socket provided for that device. This will give you 16 additional on-board data lines with no requirement for additional work (beyond the software driver) on your part. To go beyond that level, you must use the Expansion Port (Connector "E") described earlier.

Again, we emphasize that the proper understanding and use of the Memory Map in Figure \(4-10\) will allow you to use your imagination in expanding the I/O capability of your SYM-1 system. Its flexibility is extremely broad and the fact that all I/O and memory are handled as an addressing function allows you expandability to the full capability of the 6502 CPU itself.

\section*{CHAPTER 9}

\section*{ADVANCED MONITOR AND PROGRAMMING TECHNIQUES}

This chapter contains information which you will find useful as you explore the more sophisticated capabilities of your versatile SYM-1 microcomputer system. As we have pointed out many times, the SYM-1 is the most flexible and expandable monitor of its kind. The SUPERMON monitor uses transfer vectors and other techniques to allow you to modify its operation, and these are provided in detail in this chapter. In addition, the extended use of debug and trace facilities, which are invaluable tools as your programming skill advances, are explained. The use of the Hex keyboard provided on your SYM-1 for configurations using a printer (or other serial device) without a keyboard is also described. And last, an example and discussion of extending SUPERMON's command repertoire.

\subsection*{9.1 MONITOR FLOW}

SUPERMON is the 4 K byte monitor program supplied with your SYM-1. It resides in locations \(8000-8 \mathrm{FFF}\) on a single ROM chip. It shares the stack with user programs and uses locations 00F8-00FF in Page Zero. In addition, it uses locations A600-A67F (RAM on the 6532), which are referred to as 'System RAM'. Since these locations are dedicated to monitor functions SUPERMON write protects them before transferring control to user programs.

The flowcharts in Figures 9-1 through 9-5 will demonstrate the major structure of SUPERMON. You will notice that GETCOM (and its entry, PARM), DISPAT, and ERMSG are subroutines, and therefore available for your programs' use. Note that a JSR to ACCESS to remove write protection from System RAM is necessary before using most monitor routines. Also, notice that the unrecognized command flow (error) is vectored. Thus, you can extend the monitor with your own software.

\subsection*{9.2 MONITOR CALLS}

SUPERMON contains many subroutines and entry points which you will want to use in order to save memory and code and avoid duplication of effort. Table 9-1 is a summary of calls and their addresses.

The three calls which you will most commonly use are:
\begin{tabular}{lll} 
JSR & ACCESS & (address 8B86) (must be called before using LED display) \\
JSR & INCHR & (address 8A1B) \\
JSR & OUTCHR & (address 8A47)
\end{tabular}

ACCESS is used to unwrite-protect system RAM. In performing the input/output, these routines save all registers and use INVEC and OUTVEC, so all you need be concerned with when using them are the ASCII characters passed as arguments in the accumulator.

\subsection*{9.3 MONITOR CALLS, ENTRIES AND TABLES}

Table 9-1, which occupies the next several pages of this Chapter, provides you with a comprehensive list of important subroutine symbolic names, addresses, registers and functions of SUPERMON monitor calls, entry points and tables. With this data, you can more easily utilize SUPERMON to perform a wide variety of tasks. All (except those marked with an asterisk) are callable by JSR.

Table 9-1. MONITOR CALLS, ENTRIES AND TABLES
\begin{tabular}{|c|c|c|c|}
\hline NAME & ADDRESS & \[
\begin{aligned}
& \text { REGISTERS } \\
& \text { ALTERED } \\
& \hline
\end{aligned}
\] & FUNCTION (S) \\
\hline *MONITR & 8000 & & Cold entry to monitor. Stack, D flag initialized, System RAM unprotected. \\
\hline *WARM & 8003 & & Warm entry to monitor \\
\hline USRENT & 8035 & & User pseudo-interrupt entry - saves all registers when entered with JSR. Displays PC and code 3. Passes control to monitor. \\
\hline SAVINT & 8064 & ALL & Saves registers when called after interrupt. Returns by RTS. \\
\hline DBOFF & 80D3 & A,F & Simulates depressing debug off key. \\
\hline DBON & 80E4 & A,F & Simulates depressing debug on key. \\
\hline DBNEW & 80F6 & A,F & Release debug mode to key control. \\
\hline GETCOM & 80FF & A,F & Get command and 0-3 parameters. No error: \(A=0 D\) (carriage return) Error: A contains erroneous entry. \\
\hline DISPAT & 814A & A,F & \begin{tabular}{l}
Dispatch to execute blocks. \\
Dispatch to URCVEC if error. \\
At return, if error: Carry set, A contains byte in error.
\end{tabular} \\
\hline ERMSG & 8171 & F & If Carry set, print (CR)ER NN, where NN is contents of A . \\
\hline SAVER & 8188 & None & \begin{tabular}{lc} 
Save all registers & on stack. At return, \\
like: & F \\
& A \\
& (See paragraph 9.9) \\
& X \\
& Y
\end{tabular} \\
\hline *RESXAF & 81B8 & restored & Jumped to after SAVER, restore registers from stack except A,F unchanged, perform RTS. \\
\hline *RESXF & 81BE & restored & Jumped to after SAVER, restore registers from stack except \(F\) unchanged, perform RTS. \\
\hline *RESALL & \(81 C 4\) & restored & Jumped to after SAVER, restore all registers from stack, perform RTS. \\
\hline INBYTE & 81D9 & A, F & Get 2 ASCII Hex digits from INCHR and pack to byte in A. If Carry set, V clear, first digit non-Hex. If Carry set, \(V\) set, second digit nonHex. \(N\) and \(z\) reflect compare with carriage return if Carry set. \\
\hline
\end{tabular}
*Do not enter by JSR.

Table 9-1. MONITOR CALLS, ENTRIES AND TABLES (Continued)
\begin{tabular}{|c|c|c|c|}
\hline NAME & ADDRESS & REGISTERS & FUNCTION (S) \\
\hline PSHOVE & 8208 & X, F & ```
Shove Parms down 16 bits;
Move: P2 to P1
    P3 to P2
    zeros to P3
``` \\
\hline PARM & 8220 & A, F & Get 0 to 3 parameters. Return on (CR) or error. A contains last character entered. Flags reflect compare with (CR). \\
\hline ASCNIB & 8275 & A,F & Convert ASCII character in A to 4 bits in LO nibble of A. Carry set if non-Hex. \\
\hline OUTPC & 82EE & A, X, F & Print user PC. At return, \(\mathrm{A}=\mathrm{PCL}, \mathrm{X}=\mathrm{PCH}\). \\
\hline OUTXAH & 82F4 & F & Print X,A (4 Hex digits) \\
\hline OUTBYT & 82FA & F & Print A (2 Hex digits) \\
\hline NIBASC & 8309 & A,F & Convert LO nibble of A to ASCII Hex in A. \\
\hline COMMA & 833A & F & Print comma. \\
\hline CRLF & 834D & F & Print (CR) (LF). \\
\hline DELAY & 835A & F & Delay according to TV. (Relation is approximately logarithmic, base=2). Result of INSTAT returned in Carry. \\
\hline INSTAT & 8386 & F & If key down, wait for release. Carry set if key down. (Vectored thru INSVEC) \\
\hline GETKEY & 88AF & A, F & Get key from Hex keyboard (more than one if SHIFT or ASCII key used) return with ASCII or HASH code in A. Scans display while waiting (vectored through SCNVEC). \\
\hline HDOUT & 8900 & A, X, Y, F & ASCII character from A to Hex display, scan display once, return with \(Z=1\) if key down. \\
\hline KEYQ & 8923 & A, F & \begin{tabular}{l}
Determine if key down on Hex keyboard. If down, \\

\end{tabular} \\
\hline KYSTAT & 896A & A,F & Determine if key down. If down, then Carry set. \\
\hline BEEP & 8972 & None & BEEP on-board beeper. \\
\hline HKEY & 89BE & A, F & Get key from Hex keyboard and echo in DISBUF. ASCII returned in A. Scans display while waiting (vectored thru SCNVEC) \\
\hline
\end{tabular}
*Do not enter by JSR

Table 9-1. MONITOR CALLS, ENTRIES AND TABLES (Continued)
\begin{tabular}{|c|c|c|c|}
\hline NAME & ADDRESS & REGISTERS & FUNCTION (S) \\
\hline OUTDSP & 89 Cl & None & Convert ASCII in A to segment code, put in DISBUF. \\
\hline TEXT & 8A06 & F & Shove scope buffer down, push A onto SCPBUF. \\
\hline INCHR & 8A1B & A, F & Get character (vectored thru INVEC). Drop parity, convert to upper case. If character CTL O (0F), toggle Bit 6 of TECHO and get another. \\
\hline NBASOC & 8A44 & A, F & Convert low nibble of A to ASCII, output (vectored thru OUTVEC). \\
\hline OUTCHR & 8 A47 & None & Output ASCII from A (vectored thru OUTVEC). Output inhibited by Bit 6 of TECHO. \\
\hline INTCHR & 8A58 & A, F & Get character from serial ports. Echo inhibited by Bit 7 of TECHO. Baud rate determined by SDBYT. Input, echo masked with TOUTFL. \\
\hline TSTAT & 8B3C & A, F & See if break key down on terminal. If down, then Carry set. \\
\hline *RESET & 8B4A & All & Initialize all registers, disable POR, stop tape, initialize system RAM to default values, determine input on keyboard or terminal, determine baud rate, cold monitor entry. \\
\hline *NEWDEV & 8B64 & & Determine baud rate, cold monitor entry, \\
\hline ACCESS & 8B86 & None & Un-write protect System RAM. \\
\hline NACCESS & 8B9C & None & Write protect System RAM. \\
\hline *TTY & 8BA7 & A, X, F & Set vectors, TOUTFL, and SDBYT for TTY. \\
\hline *DFTBLK & 8FA0 & Table & Default block - entirely copied into System RAM (A620 - A67F) at reset. \\
\hline *ASCII & 8BEF & Table & Table of ASCII codes and HASH codes. \\
\hline *SEGS & 8C29 & Table & Table of segment codes corresponding to ASCII codes (above). \\
\hline \multicolumn{4}{|l|}{*Do not enter by JSR} \\
\hline SPACE & 8342 & NONE & PRINTS SPACE \\
\hline
\end{tabular}

Figure 9-1. MAIN MONITOR FLOW

Figure 9-2. GETCOM FLOWCHART

Figure 9-3. PARM FLOWCHART

Figure 9-4. DISPAT FLOWCHART

Figure 9-5. ERMSG FLOWCHART

\subsection*{9.4 VECTORS AND INTERRUPTS}

A concept which is very important in understanding the SY6502 and SUPERMON is that of a transfer vector. A transfer vector consists of two or three locations at a fixed address in memory. These locations contain an address, or a Hex 4C (JMP) and an address. The address is in low-order, high-order byte order.

As an example, consider the function of outputting a character. In some cases, the character is to go to the display, in others to a terminal device. The action required in each case is radically different. It would be inefficient, in code and in time, to make the decision before outputting each character. The solution is a transfer vector. Whenever SUPERMON must output a character, it performs a JSR to OUTCHR. OUTCHR saves all registers, then performs a JSR to OUTVEC (at A663, in System RAM). If you are working at the Hex keyboard OUTVEC will contain a JMP HDOUT. HDOUT is the subroutine which will enter a character, in segment code, into the display buffer. If you are using a TTY or CRT, OUTVEC will contain a JMP TOUT. TOUT is the subroutine which sends a character, one bit at a time, to the serial I/O ports. When HDOUT or TOUT performs an RTS, control passes back to OUTCHR. OUTCHR restores the registers and performs an RTS, returning control to the caller.

Notice that the calling routine need not worry where the output is going. It is all taken care of by OUTCHR and OUTVEC.

When a vector is to be referenced by a JMP Indirect, only two bytes are required. Two-byte vectors are normally used only for interrupts.

An INTERRUPT is a method of transferring program control, or interrupting, the processor during execution. There are three interrupts defined on the SY6502:
\begin{tabular}{lll}
NMI & - & non-maskable interrupt \\
RST & - & reset/power-on \\
IRQ & -- & interrupt request
\end{tabular}

When one of these interrupts occurs, the processor pushes the PC register and the Flags register onto the stack, and gets a new PC from the INTERRUPT VECTOR. The interrupt vectors are located at the following addresses:
\[
\begin{array}{lll}
\text { FFFA,FFFB } & -- & \text { NMI } \\
\text { FFFC,FFFD } & - & \text { RESET } \\
\text { FFFE,FFFF } & - & \text { IRQ }
\end{array}
\]

These locations must contain the addresses of programs which will determine the cause of the interrupt, and respond appropriately.

In the SYM-1, System RAM (A600-A67F) is duplicated at FF80-FFFF (it is "echoed" there). On Reset, SUPERMON points these vectors to its own interrupt-handling routines. When an interrupt occurs, SUPERMON displays the address where the interrupt occurred with one of the following codes indicating the cause of the interrupt:
\begin{tabular}{ll}
0 & \(=\) \\
1 & \(=\) BRK instruction \\
2 & \(=\) IRQ \\
3 & \(=\) NMI \\
& USER ENTRY (caused by JSR to USRENT at 8035)
\end{tabular}

Because all registers are saved, a (G) (CR) will cause execution to resume at the point of interruption. The user can intercept interrupt handling by inserting pointers to user interrupt routines in TRCVEC, UBRKVC, NMIVEC, or IRQVEC. See Section 9.7.2 for a discussion of the User Entry pseudo-interrupt. Table 9-2 describes all vectors used by the Monitor.

\section*{Table 9-2. SUPERMON VECTORS}
\begin{tabular}{|c|c|c|}
\hline NAME & LOCATION & FUNCTION \\
\hline INVEC & A660-A662 & Points to input driver. \\
\hline OUTVEC & A663-A665 & Points to output driver. \\
\hline INSVEC & A666-A668 & Points to routine which determines whether or not a key is down. \\
\hline URCVEC & A66C-A66E & \begin{tabular}{l}
Unrecognized command. All unrecognized commands and parameter entry errors vectored here. Points to a sequence of: \\
SEC - Set Carry \\
RTS - Return
\end{tabular} \\
\hline SCNVEC & A66F-A671 & Points to routine which performs one scan of display from DISBUF. \\
\hline EXEVEC & A672-A673 & Points to RIN - get ASCII from RAM subroutine. \\
\hline & & The Execute (E) command temporarily replaces INVEC with EXEVEC, saving INVEC in SCRA, SCRB. The Hi byte of EXEVEC must be different from the Hi byte of INVEC. \\
\hline TRCVEC & A674-A675 & May be used to point to user trace routine after TRCOFF (See Section 9.6). \\
\hline UBRKVC & A676-A677 & May be used to point to user BRK routine after IRQVEC. \\
\hline UIRQVC & A678-A679 & May be used to point to user NON-BRK IRQ routine after IRQVEC. \\
\hline NMIVEC & A67A-A67B & Points to routine which saves registers, determines whether or not to trace, based on TV. \\
\hline IRQVEC & A67E-A67F & Points to routine which saves registers, determines whether or not BRK has occurred, and continues thru UBRKVC or UIRQVC. \\
\hline
\end{tabular}

\subsection*{9.5 DEBUG ON and TRACE}

When the DEBUG ON key on your SYM-1 is depressed, DEBUG mode is enabled. In DEBUG mode, an NMI interrupt occurs every time an instruction is fetched from an address that is not within the monitor. SUPERMON's response is to save the registers and display the PC, with code 2 (for NMI). With each (G) (CR), one instruction of the user program will be executed. This is called Single-Stepping.

In order to TRACE, alter the Trace Velocity (TV, at A656) to a non-zero value. (09 is a good value.) If you now enter (G) (CR), SUPERMON will display the PC and the contents of the accumulator, pause, and resume execution. Addresses and accumulator contents will flash by one at a time. To stop the flow, depress any key (Hex keyboard) or the BREAK key (terminal). Execution will halt. A (G) (CR) will resume execution. The length of the delay is related to TV (not linearly; try different values) and, of course, the baud rate, if you are working from a terminal.

\subsection*{9.6 USER TRACE ROUTINES}

As the complexity of your programs increases, you may wish to implement other types of trace routines. To demonstrate how this is done, an example of a user trace routine is provided in Figure 9-6. It prints the op code of the instruction about to be executed, instead of the accumulator contents.

But first of all, we don't want to be interrupted during trace mode by responding to an interrupt (a problem called recursion). SUPERMON will handle this by turning DEBUG OFF, then back ON. However, to implement this program control of DEBUG, you must add jumpers W24 and X25 to your SYM-1 board (see Chapter 4).

Now that you have added the jumpers, we are ready to enter the program UTRC and change vectors.

First, enter the program UTRC as given in Figure 9-6. Then change NMIVEC to point to TRCOFF, which will save registers, turn DEBUG OFF, and vector thru TRCVEC:

SD 80C0,A67A (CR)
Now, point TRCVEC to UTRC.
SD 0380,A674 (CR)

Enter a non-zero value in TV, depress DEBUG ON, and you're ready to trace.
NOTE: BRK instructions with DEBUG ON will operate as two-byte instructions and should be programmed as 00,EA (BRK,NOP).

Also, the first instruction after leaving SUPERMON will not be traced.
\begin{tabular}{|c|c|c|c|}
\hline TNE: & : \(1 . .100\) & & COME: \\
\hline 1002 & 0000 & & \\
\hline 1003 & 0000 & & \\
\hline 1004 & 0000 & & \\
\hline 100: & 0000 & & \\
\hline 1006 & 0000 & & \\
\hline \(100 \%\) & 0000 & & \\
\hline 1008 & 0000 & & \\
\hline 1009 & 0000 & & \\
\hline 1010 & 0000 & & \\
\hline 1011 & 0000 & & \\
\hline 1012 & 0000 & & \\
\hline 1013 & 0000 & & \\
\hline 1014 & 0000 & & \\
\hline 1015 & 0360 & 20 & 376 \\
\hline 1016 & 0.88 & AW & \(\because 9\) А \\
\hline 1017 & 0366 & \% & \(1 \%\) \\
\hline 1018 & 0388 & AO & WA Ab \\
\hline 10.9 & 0.888 & 96 & F 1 \\
\hline 0:0 & \(038 \%\) & A0 & 00 \\
\hline 021 & Oउ母F & Q1 & \(1 \because 0\) \\
\hline 02 & 0591 & 20 & 4 A ¢ a \\
\hline 623 & 0394 & AE: & \(\because 6\) ¢ 6 \\
\hline 024 & 0877 & FO & 0\% \\
\hline 025 & 639\% & 20 & W 83 \\
\hline 026 & 039 C & 96 & 0\% \\
\hline 027 & 039E: & 4 C & 0360 \\
\hline D2e & OSA1. & \(4 \%\) & 0080 \\
\hline 029 & 0 SA 4 & & \\
\hline
\end{tabular}

\section*{1 TNE}

Figure 9-6. LISTING OF SAMPLE USER TRACE ROUTINE

\section*{USER TRACE EXAMPLE}

\subsection*{9.7 MIXED I/O CONFIGURATIONS}

The Reset routine that is activated when power is turned on or RST is pressed establishes the terminal \(1 / O\) configuration by loading a specified value into a location in System RAM, TOUTFL (A654). The high-order four bits of TOUTFL define which terminal devices may be used for input and output. A "l" signifies that a device is enabled, a " 0 " that it is disabled. The meaning of each bit and the values assigned at system reset are shown below. The routine referenced by entry (1) in the JUMP table will enable the TTY for input. For other configurations, load the appropriate value into TOUTFL.
\begin{tabular}{rrllll}
TOUTFL & bit: & \(\underline{7}\) & \(\underline{6}\) & \(\underline{5}\) & \(\underline{4}\) \\
& default value: & 1 & 0 & 1 & 1 \\
& meaning: & CRT & TTY & TTY & CRT \\
& & INPUT & INPUT & OUTPUT & OUTPUT
\end{tabular}

Bits 6 and 7 of another location in System RAM, TECHO (A653), are used to inhibit serial output (bit 6) and to control echo to a terminal (bit 7). Bit 6 may be toggled by entering "(CONTROL) O" (0 F Hex) on the terminal keyboard or in software. The possible values for TECHO are shown below.
\begin{tabular}{llll}
TECHO & 80 & \begin{tabular}{l}
echo \\
output
\end{tabular} & (default value) \\
C0 & \begin{tabular}{l}
echo \\
no output
\end{tabular} \\
40 & \begin{tabular}{l}
no echo \\
no output
\end{tabular} \\
00 & \begin{tabular}{l}
no echo \\
output
\end{tabular}
\end{tabular}

With this information, you can alter the SUPERMON standard I/O configurations to suit your special needs. A common use would be routing your output to a terminal while using the Hex keyboard as an input device. Two possible ways of doing this will be discussed.

First, by merely altering SDBYT and OUTVEC, your input and echo will use the on-board keyboard and display, while Monitor and program output will go to the serial device. Choose the proper baud rate value for your device from the following table and put it in SDBYT (at A651) with the " M " command. Then enter the address of TOUT into OUTVEC from the hex keyboard as follows:
.SD 8AA0,A664 (CR)
Terminal Baud Rate
\begin{tabular}{ll}
110 & D5 \\
300 & \(4 C\) \\
600 & 24 \\
1200 & 10 \\
2400 & 06 \\
4800 & 01
\end{tabular}

Second, if you wish your input to be echoed on the terminal device, a small program must be entered. First, complete the sequence discussed above. Then, enter the following program:

UIN
\begin{tabular}{lllll}
JSR & GETKEY & 20 & AF & 88 \\
BIT & TECHO & \(2 C\) & 53 & A6 \\
BPL & UOUT & 10 & 03 & \\
JMP & OUTCHR & \(4 C\) & 47 & \(8 A\) \\
RTS & & 60 & &
\end{tabular}

Enter the program called "UIN" above at any user RAM location. Then use the "SD" command to put the address of UIN into INVEC (at A661) as follows:

> .SD (UIN),A661 (CR) (ENTER AT HKB)
where (UIN) is the address of the program UIN.

\subsection*{9.8 USER MONITOR EXTENSIONS}

Having read the section on Monitor flow, you will have noticed that unrecognized commands and parameter entries are vectored through URCVEC (A66C-A66E), which normally points to a SEC, RTS sequence at 81D1. By pointing URCVEC to a user-supplied routine in RAM or PROM, SUPERMON can easily be extended. The following example will illustrate the basic principle; many more sophisticated extensions are left to your imagination.

\subsection*{9.8.1 Monitor Extension Example}

This example will define U0 with two parameters as a logical AND. The parameters and the result are in Hexadecimal.
\begin{tabular}{llll}
LOGAND & CMP LSTCOM & ;CMD loaded? \\
& BEQ OK & \\
BAD & SEC & \\
& ;set for error print \\
OK & RTS & \\
& CMP \#\$14 ;USR0 & \\
& BNE BAD & ;branch to next \\
& & & ;command if defined \\
& CPX \#2 & ;two parms \\
& BNE BAD & \\
& LDA P2H & \\
& AND P3H & ;here's the 'and' hi \\
& TAX & \\
& LDA P2L & ;'and' lo \\
& AND P3L & ;get new line \\
& JSR CRLF & \\
& JSR SPACE & \\
& JMP OUTXAH & ;PRINT \(X\) and \(A\)
\end{tabular}

To attach LOGAND to the monitor, it must be assembled (probably by hand), entered into memory, and URCVEC altered to contain a JMP to LOGAND. Notice that more than one command could have been added, by pointing BAD to the next possible command, instead of a RTS.

\subsection*{9.8.2 SUPERMON As Extension to User Routines}

Because SUPERMON contains a user entry, it can easily be appended to your software. An example of the utility of this feature is a user trace routine, which could have an ' M ' command, which would direct it to make SUPERMON available to the user. Here's what the code would look like.

\section*{UTRACE}

Trace code
```

JSR INCHR
CMP \#'M
BNE ELSE
JSR USRENT
JMP UTRACE
-••

```

In this example, the user will type an ' \(M\) ' to get into monitor, and a (G) (CR) to return to the calling portion of UTRACE. Note that the user PC and S registers should not be modified while in monitor if a return to UTRACE is intended.

\subsection*{9.9 USE OF SAVER AND RES ROUTINES}

SAVER and the RES routines are designed to be used with subroutines. Their usage is as follows:
\begin{tabular}{|c|c|c|c|}
\hline UPROG & \[
\begin{array}{cl}
\text { JSR } & \text { USUB } \\
& \{
\end{array}
\] & USUB & \[
\begin{gathered}
\text { JSR } \quad \text { SAVER } \\
\\
\{
\end{gathered}
\] \\
\hline & (UPROG CODE) & & (USUB CODE) \\
\hline & \} & & \{ \\
\hline & & & JMP RESALL \\
\hline
\end{tabular}

In this example, UPROG calls USUB. USUB calls SAVER, performs its function, and then jumps to RESALL. RESALL restores all registers and returns to UPROG. If RESXF or RESXAF were used instead of RESALL, UPROG would receive the \(F\), or \(F\) and \(A\) registers as left by USUB.

\section*{APPENDIX A}

\section*{IMMEDIATE ACTION}

Your SYM-1 microcomputer has been thoroughly tested at the factory and carefully packed to prevent damage in shipping. It should provide you with years of trouble-free operation. If your unit does not respond properly when you attempt to apply power, enter commands from the keyboard, or attach peripheral devices to the system, do not immediately assume that it is defective. Re-read the appropriate sections of this manual and verify that all connections have been properly wired and all procedures properly executed.

If you finally conclude that your SYM-1 is defective, you should return it for repair to an authorized service representative. Specific instructions for obtaining a service authorization number and shipping your unit are contained with warranty information on the card entitled "LIMITED WARRANTY AND SERVICE PLAN" that is included with system reference material.

\section*{APPENDIX B}

PARTS LIST
MATERIALS AND ACCESSORIES
\begin{tabular}{|c|c|c|c|}
\hline QTY. & DESCRIPTION & \multicolumn{2}{|l|}{MANUFACTURER/PART NUMBER} \\
\hline 1 & CONNECTOR, DUAL 22/44 & \multicolumn{2}{|l|}{Microplastic 15622DPIS} \\
\hline 1 & CONNECTOR, DUAL 6/12 & \multicolumn{2}{|l|}{Teka TP3-061-E04} \\
\hline 6 & RUBBER FEET & \multicolumn{2}{|l|}{3M SJ5018} \\
\hline 1 & \multicolumn{3}{|l|}{SYNERTEK SOFTWARE MANUAL} \\
\hline 1 & \multicolumn{3}{|l|}{SYM-I WARRANTY/USER CLUB REFERENCE CARD} \\
\hline 1 & \multicolumn{3}{|l|}{SYM REFERENCE MANUAL} \\
\hline \multirow[t]{2}{*}{1} & \multicolumn{3}{|l|}{SYM-1 PC BOARD ASSEMBLY} \\
\hline & \multicolumn{3}{|c|}{SYM-I PC BOARD COMPONENTS} \\
\hline QTY. & DESCRIPTION & MFR. NO. & REFERENCE DESIGNATION \\
\hline 1 & CPU & SYP6502 & U5 \\
\hline 2 & VIA & SYP6522 & U25,U29 \\
\hline 1 & RAM-I/O & SYP6532 & U27 \\
\hline 2 & 4K BIT RAM & SYP2114 & U12, U13 \\
\hline 1 & 32K BIT ROM & SYP2332 & U20 \\
\hline 1 & NAND GATE & 7400 & U8 \\
\hline 1 & HEX INVERTER & 7404 & U2 \\
\hline 1 & AND GATE & 7408 & U24 \\
\hline 2 & HEX INVERTER-O.C. & 7416 & U30, U38 \\
\hline 1 & NAND GATE & 74LS00 & U4 \\
\hline 1 & HEX INVERTER & 74LS04 & U9 \\
\hline 1 & TRIPLE NOR GATE & 74LS27 & U3 \\
\hline 1 & TIMER & 555 & U6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline QTY. & DESCRIPTION & MFR. NO. & REFERENCE DESIGNATION \\
\hline 1 & DECODER & 74LS138 & U1 \\
\hline 1 & TRIPLE 3 INPUT NAND & 74LS10 & U7 \\
\hline 1 & DECODER & 74145 & U37 \\
\hline 2 & DECODER & 74LS145 & U10, Ull \\
\hline 1 & COMPARATOR & 311 & U26 \\
\hline 1 & RES-100 ohm, 1/4W, \(5 \%\) & RF14J100B & R128 \\
\hline 3 & RES-200 ohm, \(1 / 4 \mathrm{~W}\), 5\% & RF14J200B & R43, 111, 114 \\
\hline 1 & RES-300 ohm, 1/4W, 5\% & RF14J300B & R107 \\
\hline 4 & RES-470 ohm, 1/4W, \(5 \%\) & RF14J470B & R84, 88, 124, 127 \\
\hline 14 & RES-1K, 1/4W, \(5 \%\) & RF14J1KB & \[
\begin{aligned}
& \mathrm{R} 9-12,41,61-63,73,78 \text {, } \\
& 85,92,101,113,123
\end{aligned}
\] \\
\hline 1 & RES-1M, 1/4W, 5\% & RF14J1MB & R72 \\
\hline 1 & RES-2.2K, 1/4W, \(5 \%\) & RJ14J2.2KB & R103 \\
\hline 14 & RES-3.3K, 1/4, 5\% & RF14J3.3KB & \[
\begin{aligned}
& \text { R } 59,60,70,74,79-82,87,94, \\
& 95,97,98,126
\end{aligned}
\] \\
\hline 1 & RES-4.7K, 1/4W, \(5 \%\) & RF14J4.7KB & R42 \\
\hline 10 & RES-10K, /4W, 5\% & RF14JIOKB & \[
\begin{aligned}
& \mathrm{R} 45,67-69,75,76,83, \\
& 89,93,104
\end{aligned}
\] \\
\hline 3 & RES-47K, 1/W, 5\% & RF14J47KB & R44, 46,71 \\
\hline 1 & RES-330K, \(14 / \mathrm{W}\), \(5 \%\) & RF14J330KB & R77 \\
\hline 2 & RES-27K, 1/4W, 5\% & RF14J27KC & R90, 96 \\
\hline 2 & RES-150 ohm, 1/4W, 5\% & RF14J150B & R99, 110 \\
\hline 1 & RES-6.8K, 1/4W, \(5 \%\) & RF14J6.8KB & R100 \\
\hline 1 & CAP-10pf & DM15100J & Cl 3 \\
\hline 13 & CAP - . \(01 \mathrm{mfd}, 100 \mathrm{~V}\) & DB203YZ1032 & \[
\begin{aligned}
& C 1,3,5,7,10,11,16,17,19, \\
& 23,25,29
\end{aligned}
\] \\
\hline 10 & CAP - \(10 \mathrm{mfd}, 25 \mathrm{~V}\) & T368B106K025 & \[
\begin{gathered}
\text { PS } \begin{array}{l}
C 2,4,6,8,12,20,22,24, \\
26,30
\end{array}, ~
\end{gathered}
\] \\
\hline
\end{tabular}

QTY.
3
2 CAP - . 47 mfd
1 CAP - . 0047 mfd
12 NPN TRANSISTOR
11 PNP TRANSISTOR
11 DIODE, G.P.
1 DIODE, ZENER
4 SOCKET - 24-PIN DIP
5 SOCKET - 40-PIN DIP
8 SOCKET - 18-PIN DIP
1 DUAL HEADER
1 KEYBOARD
1 PC BOARD
6 7-SEGMENT DISPLAY, \(0.3^{\prime \prime}\)
2 LED
1 SPEAKER
1 CRYSTAL
TAPE - \(1 / 2^{\prime \prime} \times 2^{\prime \prime}\) STRIP
1 RES. PACK - 100 ohm
1 RES. PACK - 3.3 K ohm
2 RES. PACK - 1K ohm
1 RED FILTER

MFR. NO. REFERENCE DESIGNATION
3429-050E-104M C9, 18
C330C474M5V5EA C15
UR2025100X7R472K C14
2N2222A Q1-4, 10, 18, 19, 2729, 32, 33
2N2907A \(\quad\) Q9, 17, 20-26, 30, 31
IN914 CR25-33, 37, 38
1N4735 CR34
TIC8424-02 SK20-23
TIC8440-02 SK5, 25, 27-29
TIC8418-02 SK 12-19
AP929665-01-07 "K" Connector
KBl
PCl
MAN 71A U31-36
RL4850 CR 35,36
70057 SP1
CY1A Y1

898-3-R100 RN2
899-3-R3.3K RN1
899-3-RIK RN3, RN4

\section*{LתOXVT LNGNOdWOD}

\section*{APPENDIX C}

\section*{AUDIO TAPE FORMATS}

HIGH-SPEED FORMAT -- High speed data transfer takes place at 185 bytes per second. Every byte consists of a start bit (0), followed by eight data bits. The least significant bit is transmitted first. A "l" bit is represented by 1 cycle of 3000 Hz , while a " 0 " bit is represented by \(1 / 2\) cycles of 1500 Hz . Physical record format is shown below.

\begin{tabular}{|c|c|c|}
\hline 8 sec. "mark" & - & Allows the tape to advance beyond the leader and creates an inter-record gap. \\
\hline SYN (16 Hex) & - & ASCII synch characters that allow the SYM-1 to synchronize with the data stream. \\
\hline * (2A Hex) & - & ASCII character that indicates the start of a valid record. \\
\hline ID & - & Single byte that uniquely identifies the record. \\
\hline SAL & - & Low order byte of the Starting Address from which data was taken from memory. \\
\hline SAH & - & High order byte of the Starting Address from which data was taken from memory. \\
\hline EAL +1 & - & Low order byte of the address following the Ending Address from which data was taken from memory. \\
\hline EAH +1 & - & High order byte of the address following the Ending Address from which data was taken from memory. \\
\hline DATA & - & Data bytes. \\
\hline / (2F Hex) & - & ASCII character that indicates the end of the data position of a record. \\
\hline CKL & - & Low order byte of a computed checksum. \\
\hline CKH & - & High order byte of a computed checksum. \\
\hline EOT (04 Hex) & - & ASCII characters that indicate the end of the tape record. \\
\hline
\end{tabular}

KIM FORMAT -- Data transfer in KIM format takes place at approximately 8 bytes per second. A "l" bit is represented by 9 cycles of 3600 Hz followed by 18 cycles of 2400 Hz , while a " 0 " bit is represented by 18 cycles of 3600 Hz followed by 6 cycles of 2400 Hz . Each 8-bit byte from memory is represented by two ASCII characters. The byte is separated into two half-bytes, then each half-byte is converted into an ASCII character that represents a Hex digit. The least significant bit is transmitted first. The KIM physical record format is shown below.

The sync characters, the ASCII characters "*" (2A Hex) and "/" (2F Hex) as well as ID, SAL, SAH, CKL, CKH and EOT serve the same functions as in HIGH-SPEED format. Sync characters, *, / and EOT are represented by single ASCII characters, while the remaining record items require two ASCII characters. Note that EAL and EAH are not used in the KIM format.

\section*{APPENDIX D}

\section*{PAPER TAPE FORMAT}

When data from memory is stored on paper tape, each 8 -bit byte is separated into two half-bytes, then each half-byte is converted into an ASCII character that represents a Hex digit (O-F). Consequently, two ASCII characters are used to represent one byte of data. In the paper tape record format shown below, each \(N, A, D\), and \(X\) represents one ASCII character.
\(; \quad N_{1} N_{0} \quad A_{3} A_{2} A_{1} A_{0} \quad\left(D_{1} D_{0}\right)_{1} \quad\left(D_{1} D_{0}\right)_{2} \cdots\left(D_{1} D_{0}\right)_{n} \quad x_{3} X_{2} X_{1} x_{0}\)
; - Start of record mark
\(\mathrm{N}_{1} \mathrm{~N}_{0}\)
- Number of data bytes in (Hex) contained in the record
\(A_{3} A_{2} A_{1} A_{0} \quad\) - Starting address from which data was taken
\(\left(\mathrm{D}_{1} \mathrm{D}_{0}\right)-\left(\mathrm{D}_{1} \mathrm{D}_{0}\right)_{\mathrm{n}}\)
- Data
\(X_{3} X_{2} X_{1} X_{0} \quad-16\)-bit checksum of all preceding bytes in the record including \(N_{1} N_{0}\) and \(A_{3} A_{2} A_{1} A_{0}\), but excluding the start of record mark.

A single record will normally contain a maximum of \(16(10 \mathrm{Hex})\) data bytes. This is the system default value that is stored in system RAM at power-up or reset in location MAXRC (A658). You can substitute your own value by storing different number in MAXRC. To place an end of file after the last data record saved, place the TTY in local mode punch on, and enter ;00 followed by (CR).

\section*{APPENDIX E}

\section*{SYM COMPATABILITY WITH KIM PRODUCTS}

If you are a SYM-1 user who has peripheral devices which you have previously used with the KIM system or software which has been run on a KIM module, you'll find SYM to be generally upward compatible with your hardware and software. The following two sections describe the levels of compatability between the two systems to allow you to undertake any necessary modifications.

\section*{E. 1 HARDWARE COMPATABILITY}

Table E-1 describes the upward compatability between SYM and KIM at the Expansion (E) connector, while Table E-2 describes the compatability on the Applications (A) connector.

I/O port addresses differ between the two systems; you should consult the Memory Map in Figure 4-10 for details.

Power Supply inputs are provided on a separate connector with SYM-1, which means that if you have been using your power supply with a KIM device it will be necessary to rewire its connections to use the special connector on the SYM-1 board.

\section*{E. 2 SOFTWARE COMPATABILITY}

Table E-3 lists important user-available addresses and routines in the KIM-1 monitor program and their counterparts in SYM-1's SUPERMON. Many of the routines do not perform identically in the two systems, however, and you should check their operation in Table 9-1 before using them.

Table E-1. EXPANSION CONNECTOR (E) COMPATABILITY
\begin{tabular}{|l|c|c|c|l|}
\hline SYM DESCRIPTION & \begin{tabular}{c}
SYM \\
NAME
\end{tabular} & \begin{tabular}{c}
PIN \\
\(\#\)
\end{tabular} & \begin{tabular}{c}
KIM \\
NAME
\end{tabular} & KIM DESCRIPTION \\
\hline \begin{tabular}{c}
Jumper (Y,26) Selectable: \\
OFF - Open Pin \\
ON - Debug On/Off \\
Output (U8-8)
\end{tabular} & DBOUT & 17 & SSTOUT & \begin{tabular}{l}
From \\
(SYNC • NOT MONITOR) \\
U26-6
\end{tabular} \\
\hline \begin{tabular}{l}
Power On Reset Signal \\
\begin{tabular}{l}
Output: \\
"0" After power on \\
"1" When reset by \\
software
\end{tabular} \\
\hline
\end{tabular} & \(\overline{\text { POR }}\) & 18 & & No equivalent \\
\hline
\end{tabular}

Table E-2. APPLICATION CONNECTOR (A) COMPATABILITY
\begin{tabular}{|l|l|l|l|l|}
\hline SYM DESCRIPTION & \begin{tabular}{c}
SYM \\
NAME
\end{tabular} & \begin{tabular}{c}
PIN \\
\(\sharp\)
\end{tabular} & \begin{tabular}{c}
KIM \\
NAME
\end{tabular} & KIM DESCRIPTION \\
\hline \begin{tabular}{l}
Jumper (V,23) Selectable: \\
OFF - Open Pin \\
ON - Remote Audio \\
Control Out
\end{tabular} & AUD.RC & N & +12 V & +12 V Not required on SYM \\
\hline \begin{tabular}{l}
Jumper (HH,41) Selectable: \\
OFF Open Pin \\
ON
\end{tabular} & & K & \begin{tabular}{l}
DECODE \\
ICXX Decode Out
\end{tabular} & \\
\hline
\end{tabular}

Table E-3. SYM-KIM SOFTWARE COMPATABILITY
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{SYM} & \multicolumn{2}{|r|}{KIM} & FUNCTION \\
\hline Label & Address(es) & Label & Address(es) & \\
\hline PCLR & A659 & PCL & 00EF & Program Counter - low \\
\hline PCHR & A65A & PCH & 00F0 & Program Counter - high \\
\hline FR & A65C & PREG & 00F1 & Status Register \\
\hline SR & A65B & SPUSER & 00F2 & Stack Pointer \\
\hline AR & A65D & ACC & 00F3 & Accumulator \\
\hline YR & A65F & YREG & 00F4 & Y - Register \\
\hline XR & A65E & XREG & 00F5 & X - Register \\
\hline SCR6 & A636 & CHKHI & 00F6 & Checksum - low \\
\hline SCR7 & A637 & CHKSUM & 00F7 & Checksum - high \\
\hline P2L & A64C & SAL & 17F5 & Start Addr Low - audio/paper tape \\
\hline P2H & A64D & SAH & 17H6 & Start Addr High - audio/paper tape \\
\hline P3L & A64A & EAL & 17F7 & End Addr+1 Low - audio/paper tape \\
\hline P3H & A64B & EAH & 17F8 & End Addr +1 High - audio/paper tape \\
\hline P1L & A64E & ID & 17F9 & ID Byte audio Tape \\
\hline NMIVEC & A67A-B & NMIV & 17FA-B & NMI Vector \\
\hline RSTVEC & FFFA-B & RSTV & FFFA-B
\(17 \mathrm{FC}-\mathrm{D}\) & Reset Vector \\
\hline & & & FFFC-D & \\
\hline IRQVEC & A67E-F FFFE-F & IRQV & 17FE-F FFFE-F & IRQ Vector \\
\hline DUMPT & 8E87 & DUMPT & 1800 & Dump memory to audio tape \\
\hline LOADT & 8C78 & LOADT & 1873 & Load memory from audio tape \\
\hline CHKT & 8 E 78 & CHKT & 194C & Compute checksum for audio tape \\
\hline OUTBTC & 8F4A & OUTBTC & 195E & Output one KIM byte \\
\hline HEXOUT & 8F52 & HEXOUT & 196F & Convert LSD of A to ASCII AND write to audio tape \\
\hline
\end{tabular}

Table E-3. SYM-KIM SOFTWARE COMPATABILITY (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{SYM} & \multicolumn{2}{|r|}{KIM} & FUNCTION \\
\hline Label & Address(es) & Label & Address(es) & \\
\hline OUTCHT & 8F5D & OUTCHT & 197A & Write one ASCII character to audio tape \\
\hline RDBYT & 8E2C & RDBYT & 19F3 & Read one byte from audio tape \\
\hline PACKT & 8E3E & PACKT & 1 A00 & Pack ASCII to nibble \\
\hline RDCHT & 8E61 & RDCHT & 1 A 24 & Read one character from audio tape \\
\hline RDBITK & 8 E 0 F & RDBIT & 1 A41 & Read one bit from tape \\
\hline SVNMI & 809B & SAVE & 1 C 00 & Monitor NMI entry \\
\hline RESET & \(8 \mathrm{B4}\) A & RST & 1 C 22 & Monitor RESET entry \\
\hline OUTPC & 82EE & PCCMD & 1 CDC & Display PC \\
\hline INCHR & 8A1B & READ & 1C6A & Get character \\
\hline LP2B+7 & 841 E & LOAD & ICE7 & Load paper tape \\
\hline SP2B+4 & 869 C & DUMP & 1 D 42 & Save paper tape \\
\hline OUTS2 & 8319 & PRTPNT & 1E1E & Print pointer \\
\hline OUTBYT & 82FA & PRTBYT & 1E3B & Print 1 byte as 2 ASCII character \\
\hline INCHR & 8A1B & GETCH & 1E5A & Get character \\
\hline DLYF & 8AE6 & DELAY & 1ED4 & Delay 1 bit time \\
\hline DLYH & 8AE9 & DEHALF & 1EEB & Delay \(1 / 2\) bit time \\
\hline INSTAT & 8386 & AK & 1EFE & Determine if key is down \\
\hline OUTDSP & 89 Cl & SCAND & 1F19 & Output to LED display \\
\hline SCAND & 8906 & SCANDS & 1F1F & Scan LED display \\
\hline INCCMP & 82B2 & INCPT & 1 F63 & Increment pointer \\
\hline GETKEY & 88AF & GETKEY & 1F6A & Get key \\
\hline CHKSAD & 82DD & CHK & \(1 \mathrm{F91}\) & Compute checksum \\
\hline INBYTE & 81D9 & GETBYT & 1F9D & Get 2 Hex characters and pack \\
\hline
\end{tabular}

\section*{APPENDIX F}

\section*{CREATING AND USING A SYNC TAPE}

To read serial data from tape, the SYM-I makes use of synchronizing (sync) characters that are part of every tape record. For a complete description of audio tape record formats, refer to Appendix C.

When the SYM-1 searches for a record, an "S" is displayed until the sync characters are recognized and data transfer begins. However, if the volume and tone controls on the recorder are not set correctly, the sync characters will not be recognized, the " S " on the display will not go out, and the record will not be loaded into memory.

Before attempting to save and load data for the first time, or whenever the control levels have been changed since the recorder was last used, you should perform a load operation using a tape containing only sync characters. By adjusting the volume and tone controls until the displayed "S" goes out, you can set the control levels properly for actual data.

You may want to generate two sync tapes, one for HIGH-SPEED format, the other for KIM format, just once, and save them for future use.

To generate a sync tape, enter the sync character generation program for one of the formats into RAM starting in location 0200 (Hex). The assembly language code and the machine language code for both formats are shown below. Read the pairs of Hex digits from left to right and top to bottom. For example, the code for HIGH-SPEED format should be entered in the following sequence: A0 8020 B6 8D A9

Next, insert a tape into the cassette unit. If the unit is equipped with remote control, place it in Record mode. Set the volume and tone controls to mid-range, then enter the command to execute the program:
\[
\begin{array}{ll}
(\mathrm{GO}) & 200 \\
\text { (CR) }
\end{array}
\]

If you are operating the cassette controls manually, place the unit in Record mode after entering the command, but before entering (CR). Remote controlled units will advance the tape automatically. Let the tape run for several minutes, then press RST to end the program. For manual operation, also press STOP on the tape unit.

To set the volume and tone controls for loading data into memory, rewind the tape to the beginning (you may need to pull out the Remote jack or keep your finger on RST), then place the unit in Play mode if it is equipped with remote control. Next, enter the load command for the appropriate format ((LD 1) for KIM, (LD 2) for HIGH-SPEED, followed by a carriage return (CR)).

If you have a manually operated unit, place it in Play mode after entering the command. While the tape advances, adjust the volume and tone controls until the "S" on the display goes out and remains out, then press RST and stop the tape.

You can now remove the sync tape and proceed to save and load actual programs and data.
\(\qquad\) Of
PROGRAM SYNC TAPE
PROGRAMMER SYNERTEK SYSTEMS
DATE \(\qquad\) 5-78

\section*{Adjusting Your Recorder}

The audio signal appears on the T and A connectors in two forms: Aud Out (HI) and Aud Out (LO). The only difference between these signals is their magnitude. For most recorders, the best arrangement is to run Aud Out (LO) into the MIC input of the recorder. Some recorders also have an AUX input, which bypasses the MIC pre-amp, and may work better if Aud Out (HI) is wired into AUX.

Read Appendix F , and follow the procedure for creating a "SYNC" tape. Rewind the tape and enter the LD command appropriate to the SYNC tape you created. Adjust the tone and volume controls, observing the \(S\) on the display. Leave the controls in the middle of the range where the \(S\) remains off. (If there are two ranges of volume which cause the \(S\) to turn off, the higher range should be used. If a sharp tap causes the \(S\) to relight and remain lit, you are in the wrong range.)

If your recorder has an automatic-recording-level defeat switch, it will probably work better in the engaged position.

Now write a short record to tape and read it back to verify correct operation. (Do not use the memory form \$F8 to \$FF, or the stack area ((page 1)), as these are used by the cassette software.)

\section*{Recommended Tape Equipment}

Most moderate quality tape recorders should produce satisfactory results. (A tone control is recommended.) The following models have been used successfully at Synertek Systems:

Sanyo M2533A
Sony TC-205
Sony TC-62

GE IC \#3-5002B
Superscope C-190
Realistic Ctr-40

Almost any tape will suffice, so long as it winds smoothly (does not produce a jittery tape motion). A very short tape will be more convenient. The following tapes have been used successfully at Synertek Systems:

TDK
AMPEX
MALLORY
REALISTIC

\section*{APPENDIX G}

\section*{MONITOR ADDENDA}
1. While tracing or single stepping, SUPERMON uses GOIENT (\$83FA) to return to the user program. GOIENT write protects System RAM. If you must trace a program that needs access to System RAM, use a user trace routine and go to GO1ENT +3 , or remove jumper MM-45 (enables System RAM protect).
2. The DEBUG-ON switch bounces, therefore it should not be used to interrupt user programs while using a user trace routine or while OUTVEC points to a user routine. (This will cause recursive interrupts.)
3. The audio cassette software will not read or write location \$FFFF. Use \$A67F (\$A600 thru \$A67F is echoed at \$FF80 thru \$FFFF).

\section*{APPENDIX H \\ SUPPLEMENTARY INFORMATION}

\section*{Changing Automatic Log-On}

After power is applied to the SYM, SUPERMON waits for the keyboard or the device connected to PB7 on the 6532 (normally the RS232 device) to become active. PB6 (the current loop device) is ignored because a disconnected current loop always looks active.

If you expect always to log-on a current-loop device, the following jumper change will eliminate the necessity of entering (SHIFT) (JUMP) (1):

Change \(\mathrm{CC}-32\) and \(\mathrm{BB}-31\)
to CC-31 and BB-32
Now the log-on for your current loop device is simply a "Q", entered at the device. (Note that you cannot now log-on automatically to the keyboard unless the current loop device is connected, and powered-up.)

\section*{Using On-Board LED Display}

Because of the extensive use of transfer vectors in SUPERMON, the same monitor calls can be used to activate the LED display as for terminal devices. The major difference is that you must call ACCESS (address 8B86) before outputting the first character in order to remove write-protection from the display buffer (DISBUF, address A640 thru A645).

If the SYM-1 was logged-on to from the HKB, each call to OUTCHR (address 8A47) will examine the ASCII character in the Accumulator, look up its segment code, shift everything in the display buffer of segment codes left one digit, place the new code in the rightmost digit, and scan the display once.

If the SYM-1 was logged-on to the HKB, each call to INCHR (address 8A1B) will scan the display from the codes in DISBUF continuously until a key is depressed (2 keys in the case of SHIFT keys, 4 in the case of SHIFT ASCII keys). The key will be fully debounced, the beeper beeped, the ASCII or HASHED ASCII code taken from a table, and passed back to the caller in the Accumulator. The Flags will reflect a compare with carriage-return.

Other useful routines are:
GETKEY Same as description of INCHR above, but disregard log-on and no compare (88AF) performed.

OUTDSP Same as description of OUTCHR above, but disregard log-on.

KEYQ Test for key depressed on HKB. On return, \(Z\) Flag \(=1\) if key down.

SCAND Scan display once from segment codes in DISBUF. On return, Flags (8906) reflect call to KEYQ.

INSTAT If logged-on to HKB, check for key down (else check for BREAK key). On return, carry set if key down (or BREAK key). Leading edge of key debounced.

See also chapter 9 for discussion of monitor calls.
Adding DEBUG Indicator
While using trace routines which turn DEBUG on and off, it is of ten desirable to have an external indication of the DEBUG state. The addition of an LED and a resistor as follows will achieve this.

U8 is a 14 pin package located above the beeper.
The LED will remain on while DEBUG is on.

APPENDIX I
SY6502 DATA SHEET

3050 Coronado Drive, Santa Clara, CA. 95051
(408) 984-8900 TWX 910-338-0135

\section*{SY6500 MICROPROCESSORS}

\section*{The SY6500 Microprocessor Family Concept ---}

The SY6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock osscillators and drivers. All of the microprocessors in the SY6500 group are software compatible within the group and are bus compatible with the M6800 product offering.

The family includes five microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz and 2 MHz ("A" suffix on product numbers) maximum operating frequencies.

\section*{Features of the SY6500 Family}
- Single five volt supply
. N channel, silicon gate, depletion load technology
- Eight bit parallel processing
. 56 Instructions
- Decimal and binary arithmetic
- Thirteen addressing modes
- True indexing capability
- Programmable stack pointer
- Variable length stack
- Interrupt capability
- Non-maskable interrupt
- Use with any type or speed memory
- Bi-directional Data Bus
- Instruction decoding and control
- Addressable memory range of up to 65 K bytes
. "Ready" input
- Direct memory access capability
- Bus compatible with MC6800
. Choice of external or on-board clocks
- 1 MHz and 2 MHz operation
- On-the-chip clock options * External single clock input
* RC time base input
* Crystal time base input
. 40 and 28 pin package versions
. Pipeline architecture

Members of the Family
\begin{tabular}{|c|c|}
\hline Microprocessors with On-Board Clock Oscillator & Microprocessors with External Two Phase Clock Input \\
\hline
\end{tabular}

The data sheet is constructed to review first the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

Note: 1. Clock Generator is not included on SY6512,13,14,15
2. Addressing Capability and control options vary with each of the SY6500 Products.

SY6500 Internal Architecture
maximum ratings
\begin{tabular}{|c|c|c|c|c|}
\hline RATING & SYMBOL & Value & UNIT & \multirow[t]{5}{*}{This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating.} \\
\hline SUPPLY VOLTAGE & Vec & -0.3 to +7.0 & Vdc & \\
\hline INPUT VOLTAGE & Vin & -0.3 to +7.0 & Vdc & \\
\hline OPERATING TEMPERATURE & \(\mathrm{T}_{\text {A }}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) & \\
\hline STORAGE TEMPERATURE & \({ }^{\text {T STG }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS (Vce \(=5.0 \mathrm{~V} \pm 5 \% . V_{s s}=0, T_{A}=25^{\circ} \mathrm{C}\))}
\(\emptyset_{1}, \emptyset_{2}\) applies to SY6512, \(13,14,15, \emptyset_{0}(\) in) applies to \(S Y 6502,03,04,05\) and 06
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN. & TYP. & MAX. & UNIT \\
\hline \[
\begin{aligned}
& \text { Input High Voltage } \\
& \qquad \emptyset_{1}, \emptyset_{2}, \emptyset_{o(i n)}
\end{aligned}
\] & \(\mathrm{V}_{\mathbf{I H}}\) & \[
\begin{aligned}
& V s s+2.4 \\
& V c c-0.2
\end{aligned}
\] & - & \[
\begin{gathered}
\text { Vce } \\
V c c+0.25
\end{gathered}
\] & Vde \\
\hline ```
Input Low Voltage
Logic, }\mp@subsup{|}{0}{\prime},\mp@subsup{|}{2}{\prime
``` & \(V_{\text {IL }}\) & \[
\begin{aligned}
& \text { Vss }-0.3 \\
& \text { Vss }-0.3
\end{aligned}
\] & - & \[
\begin{aligned}
& V_{s s}+0.4 \\
& V_{s s}+0.2
\end{aligned}
\] & Vdc \\
\hline Input High Threshold Voltage
\[
\begin{aligned}
& \overline{\operatorname{RES}}, \overline{\mathrm{NMI}}, \mathrm{RDY}, \overline{\text { IRQ }}, \text { Data, } \\
& \text { S.O. }
\end{aligned}
\] & \(\mathrm{V}_{\text {IHT }}\) & \(\mathrm{Vss}+2.0\) & - & - & Vde \\
\hline Input Low Threshold Voltage
\[\)\begin{tabular}{l}
\text { RES, NMI , RDY, IRQ, Data, } \\
\text { S.O. }
\end{tabular}\(.
\] & \(v_{\text {ILT }}\) & - & - & \(\mathrm{Vss}+0.8\) & Vdc \\
\hline \[
\begin{gathered}
\text { Input Leakage Current } \\
\left(V_{\text {in }}=0 \text { to } 5.25 \mathrm{~V}, \text { Vcc }=0\right) \\
\text { Logic (Excl.RDY, S.O.) } \\
0_{1}, 0_{2} \\
0_{0(1 n)}
\end{gathered}
\] & \(\mathrm{I}_{\text {in }}\) &  &  & \[
\begin{array}{r}
2.5 \\
100 \\
10.0
\end{array}
\] & HA \(\mu \mathrm{A}\) \(\mu_{A}\) \\
\hline Three-State (Off State) Input Current
\[
\begin{gathered}
\left(V_{\text {in }}=0.4 \text { to } 2.4 \mathrm{~V}, \mathrm{Vcc}=5.25 \mathrm{~V}\right) \\
\text { Data Lines }
\end{gathered}
\] & \(\mathrm{I}_{\text {TSI }}\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline ```
Output High Voltage
    (I
        SYMC,Data,A0-A15,R/W
``` & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{Vss}+2.4\) & - & - & Vde \\
\hline ```
Output Low Voltage
 (I LOAD }=1.6mAdc,vcc=4.75V
 SYMC,Data,A0-A15, R/W
``` & \(\mathrm{V}_{\mathrm{OL}}\) & - & - & \(\mathrm{V}_{58}+0.4\) & Vdc \\
\hline Power Dissipation & \(\mathrm{P}_{\text {D }}\) & - & . 25 & . 70 & W \\
\hline  & \[
\begin{aligned}
& \mathrm{c} \\
& \mathrm{c}_{\text {in }} \\
& \mathrm{c}_{\text {out }} \\
& \mathrm{c}_{0_{0(\text { in })}} \\
& \mathrm{c}_{0_{1}} \\
& \mathrm{C}_{0_{2}}
\end{aligned}
\] &  & -
-
-
-
30
50 & \[
\begin{aligned}
& 10 \\
& 15 \\
& 12 \\
& 15 \\
& 50 \\
& 80
\end{aligned}
\] & pF \\
\hline
\end{tabular}

Watu: \(\overline{\operatorname{IRa}}\) and NMI require 3 K pull-up resistors.

\section*{COMMON CHARACTERISTICS}



Note: "REF." means Reference Points on clocks.

CLOCK TIMING－SY6512，13，14， 15
\begin{tabular}{|c|c|c|c|c|c|}
\hline characteristic & SMMb： & \(\cdots\) x， & \％\％． & Mex． & （2） \\
\hline Cucle time & \({ }^{5} \mathrm{Cic}\) & 1000 & －－－ & －－ & nsec \\
\hline  &  & 480
40 & －－－ & －－－ & n＂． \\
\hline Fall Time
（Mrasured from \(0.2 v\) to ver－ \(0.2 v\) ） & \({ }^{\text {T }}\) F & －－－ & －－－ & ； & nッw \\
\hline De：ay Time between Clucks （Measured a：0．Iv） & \％ & 0 & －－－ & －－－ & nssed \\
\hline
\end{tabular}

CLOCK TIMING－SY6502，03，04，05， 06
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISIIC & SYMBOL & MIN． & TYP． & Max． & UNITS \\
\hline Cycle Time & \({ }^{\text {T }}\) CYC & 1000 & －－ & －－ & ns \\
\hline \(\dagger_{0(L N)}\) Pulse hidth（measured at 1.5 V ） & 「WH．\({ }_{0}\) & 460 & －－ & 520 & ns \\
\hline \(\phi_{\mathrm{O}}(\mathrm{IN})\) Rise，Fall Time & \(\mathrm{TR}_{\phi_{0}}, T{ }^{\text {，}}{ }_{0}\) & －－ & －－ & 10 & ns \\
\hline ```
Delay Time Between Clocks (measured
    at 1.5V)
``` & \(\mathrm{T}_{\mathrm{D}}\) & 5 & －－ & －－ & ns \\
\hline \(\phi_{1}\)（oUt）Pulse width（measured at 1.5 V ） & \(\mathrm{PL}^{\mathbf{W}} \mathrm{H}_{1}{ }_{1}\) & \(\mathrm{PWH}_{\mathrm{oL}}{ }^{-20}\) & －－ & \(\mathrm{PLH}^{\text {¢ }}\) OL & ns \\
\hline \(\Phi_{2 \text {（0lt）}}\) Pulse Width（measured at 1.5 V ） & \(\mathrm{PK}^{\prime} \mathrm{H}_{1}{ }_{2}\) & \(\mathrm{PWH}_{\mathrm{OH}_{\mathrm{OH}}}{ }^{-40}\) & －－ & \({ }^{\mathrm{PWH}} \mathrm{oH}^{-10}\) & ns \\
\hline & \(\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}\) & －－ & －－ & 25 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN． & TYP． & MAX． & UNITS \\
\hline Read／hrite Setup Time from SY6500 & T FWS & －－ & 100 & 300 & ns \\
\hline Address Setup Time from SY6500 & \({ }_{\text {T }}\) ADS & －－ & 100 & 300 & ns \\
\hline Memory Read Access Tine & \(\mathrm{T}_{\text {ACC }}\) & －－ & －－ & 575 & ns \\
\hline Data Stability Time Period & \({ }^{\text {T }}\) DSU & 100 & －－ & －－ & ns \\
\hline Data Hold Time－Read & \(\mathrm{T}_{\mathrm{HR}}\) & 10 & －－ & －－ & ns \\
\hline Data Hold Time－hrite & \({ }^{\text {T }}{ }_{\text {H }}\) & 30 & 60 & －－ & ns \\
\hline Data Setup Time from SY6500 & \({ }_{\text {T }} \mathrm{TLS}\) & －－ & 150 & 200 & ns \\
\hline RDY，S．O．Setun Time & \({ }^{T}\) RDY & 100 & －－ & －－ & ns \\
\hline SYNC Setup Time from SY6500 & TSYyc & \(\cdots\) & －－ & 350 & ns \\
\hline Address Hold Time & THA & 30 & 60 & －－ & ns \\
\hline R／W Hold Time & \({ }^{T}{ }^{\text {H }}\) & 30 & 60 & －－ & ns \\
\hline
\end{tabular}

\section*{CLOCK TIMING－SY6512，13，14，15，16}
\begin{tabular}{|c|c|c|c|c|c|}
\hline charactakisile & ¢צм\％\％t． & mı． & Ty\％． & max． & Ext \\
\hline Sucte lime & \({ }^{\mathrm{T}} \mathrm{CYC}\) & 500 & －－ & －－－ & nsec \\
\hline & & \[
\begin{aligned}
& 215 \\
& 235
\end{aligned}
\] & －－－ & －－－ & nse＂ \\
\hline \begin{tabular}{l}
fall time \\
（Measured trum 0．\(\because\)（u bla－ 0.2 a ）
\end{tabular} & \(\mathrm{T}_{\mathrm{r}}\) & －－－ & －－－ & 12 & nite： \\
\hline Deldy Time betworn G：orke
（Medsured at gay） & \({ }^{7}\) & 0 & －－－ & －－－ & nsec \\
\hline
\end{tabular}

CLOCK TIMING－SY6502，03，04，05，06
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN． & TYP． & max． & UNITS \\
\hline Cycle Time & \({ }^{\text {T }}\) CYC． & 500 & －－ & －－ & ns \\
\hline \(\%_{0}(\mathrm{~N})\) Pulse Width（measured at 1.5 V ） & \({ }^{\text {PWH }}\) 。 & 240 & －－ & 260 & ns \\
\hline & TR \(\phi_{0}, T F \phi_{0}\) & －－ & －－ & 10 & ns \\
\hline Delay Time Between Clocks（measured at 1.5 V ） & \(\mathrm{T}_{\mathrm{D}}\) & 5 & －－ & －－ & ns \\
\hline \({ }^{\dagger} 1\)（OUT）Pulse Width（measured at 1.5 V ） & PWH \({ }_{1}\) & PWH \({ }_{\text {OL }}{ }^{-20}\) & －－ & \({ }^{\text {PWH }}{ }^{\text {¢ }}\) OL & ns \\
\hline \(\phi_{2 \text {（0nT）}}\) Pulse Width（measured at 1.5 V ） & \(\mathrm{PWHH}_{2}\) & \(\mathrm{PWH} \mathrm{O}_{\mathrm{OH}}{ }^{-40}\) & －－ & \(\mathrm{PWH}^{\text {¢ }} \mathrm{OH}^{-10}\) & ns \\
\hline \(0_{1(O T T)} A_{2(O U T)}\) Rise，Falh Time （measured ． 89 to 2.0 v\()^{\text {lload }=30 p f}\) ＋1 T＂［L］ & \(\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}\) & －－ & －－ & 25 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN． & TYP． & MAX． & UNITS \\
\hline Read／hrite Setup Time from SY6500 A & \({ }^{T}\) FWS & －－ & 100 & 150 & ns \\
\hline Address Setup Time from SY6500 A & \({ }_{\text {T }}\) ADS & －－ & 100 & 150 & \(n \mathrm{~s}\) \\
\hline Memory Read Access Time & \({ }^{\text {P }}\) ACC & －－ & －－ & 300 & ns \\
\hline Data Stability Time Period & \({ }_{\text {T }}\) DSU & 50 & －－ & －－ & ns \\
\hline Data Hold Time－Read & \({ }_{\text {THR }}\) & 10 & －－ & －－ & ns \\
\hline Data Hold Time－Write & \({ }^{\text {T }} \mathrm{HW}\) & 30 & 60 & －－ & ns \\
\hline Data Setur Time from SY6500 A & \(\mathrm{T}^{\text {MDS }}\) & －－ & 75 & 100 & ns \\
\hline RDY，S．O．Setup Time & TRD & 50 & －－ & \(\cdots\) & ns \\
\hline SYNC Setup Time from SY6500 A & \(\mathrm{T}_{\text {SYNC }}\) & －－ & －－ & 175 & ns \\
\hline Address Hold Time & \(\mathrm{T}_{\mathrm{HA}}\) & 30 & 60 & －－ & ns \\
\hline R／W Hold Time & \({ }^{T} \mathrm{HRW}\) & 30 & 60 & －－ & ns \\
\hline
\end{tabular}

\section*{COMMON CHARACTERISTICS}

\section*{Clocke (\(\|_{1,} \theta_{2}\))}

The sy65ix requires a two phase non-overlapping clock that runs at the vec voltage level.
The syosox clocks are supplied with an internal clock generator. The frequency of these clocks is externaliy controlied. Details of this feature are discussed in the SYos02 portion of this data shest.

Addross Bus (\(\mathrm{A}_{0}{ }^{-\boldsymbol{A}_{15}}\)) (See sections on each micro for respective address lines on those devices.)
These outputs are TTL compatible, capable of driving one standard TTL load and 130pf.

\section*{Data Bus (\(D_{0}-D_{2}\))}

Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130pf.

\section*{Date Bus Enable (DBE)}

This TTL compatible input allows external control of the tri-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two (\(\emptyset_{2}\)) clock, thus allowing data output from microprocessor only during \(\emptyset_{2}\). During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low.

\section*{Ready (RDY)}

This input signal allows the user to single cycle the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one (\(\boldsymbol{l}_{1}\)) will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will renain through a subsequent phase two \(\left(\emptyset_{2}\right)\) in which the Ready signal is low. This feature allows microprocessor interfacing, with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready is low during a write cycle, it is ignored until the following read operation.

\section*{Interrupt Request (\(\overline{\text { IRO}}\))}

This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the requeat. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The wicroprocessor will then aet the interrupt mask flag high so that no further interrupts may occur. At the end of this cycla, the progran counter low will be loaded from address FFFE, and program counter high from location FFFF, cherefore transferring program control to the memory vector located at thesefaddresses. The RDY signal must be in the high state for any interrupt to be recognized. A \(3 \mathrm{~K} \Omega\) extemal resistor should be used for proper wire-OR operation.

\section*{Non-Maskable Interrupt (NMI)}

A negative going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor.
\(\overline{\text { NII }}\) is an unconditional interrupt, Following completion of the current instruction, the sequence of operationa defined for \(\overline{I R Q}\) will be perforned, regardless of the state interrupt mask flag. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby traneferring program control to the memory vector located at theae addresaes. The inatructions loaded at these locations cause the microproceasor to branch to a non-maskable interrupt routine in memory,
Nivi eleo requires an external 3 KA regiater to Vec for proper wire-OR operations,
Inputs \(\overline{I R Q}\) and \(\overline{N M I}\) are hardware interrupts lines that are sampled during \(\phi_{2}\) (phase 2) and will begin the appropriate interrupt routine on the \(h_{1}\) (phase i) following the completion of the current ingtruction.

\section*{Set Overflow Flas (S.O.)}

A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of \(\emptyset_{1}\).
SYNC
This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during \(A_{1}\) of an \(O P\) CODE fetch and gtays high for the remainder of that cycle. If the RDY line is pulled low during the \(\|_{1}\) clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the gtate until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single inatruction execution.

\section*{Reset}

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence.

After a gytem initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control.

After Vcc reaches 4,75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the \(R / W\) and (SYNC) signal will become valid.

When the reset aignal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above.

\section*{COMMON CHARACTERISTICS}

\section*{INSTRUCTION SET - ALPHABETIC SEQUENCE}
```

ADC Add Memory to Accumulator with Carry
AND "AND" Memury with Accumulator
AND AND" Memory with Accumulistor (M, Sumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result zero
BIT Test Bits in Memory with Accumulater
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Resule Plus
BRK Force Break
bvC Branci on Overflow Elear
BvS Hranch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLV Clear Overflow Flag
CND Compare Memory and Accumulator
CPX Compare Memsry and Index X
CPX Compare Memsry and Index X
CPY Compare Nemory and Index Y

```

DEC Decrement Memory by One
DEX Decrement Index \(X\) by One
DEX Decrement Index \(X\) by One
DEY Decrement Index \(Y\) by One
EOR "Exclusive-or" Memory with Accumulator
INC. Increment Memory by One
INX Increment Index \(X\) by One
INY Increment Index \(Y\) by One
JSR Jump to New Location
JSR Jump to New Location Saving Return Address
LDA Load Accumulator with Memory
LDX Load Index X wich Memory
LDY Load Index Y with Memory
LSR Shift One Bit Right (Memory or accumulator)
NOP. No Operation
ORA 'OR Menory with Accumulator
```

PHA Push Nccumulator on Stack
PHP Pushl Processor Status un Stulk
PHP Push Processor Status un Stj
PLP Pull Processor Stakus from Stack
Rotate One bit Left (Memury or Accumulator)
Rotate One Bit Right (Memory or Accumulatur
Return from Interrupt
Return from Subruutine
Subtract Memary from Accumulator with Burrow
Sec Carry Flag
Set Decimal Mode
Set [ncerrupi Disable Status
Store Accumulator in Memory
Sture Index X in Menury
Store Index Y in Memory
Transfer Accumulitor to Index X
Trensfer Accumulator to Index Y
Transfer Accumulator to lndex Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulatur
Transfer lndex X to Stack Pointer
Transfer Index Y to Accumulator

```

\section*{ADDRESSING MODES}

ACCUMULATOR ADDRESSING - This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.
IMMEDIATE ADDRESSING - In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.

ABSOLUTE ADDRESSING - In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65 K bytes of addressable memory.

ZERO PAGE ADDRESSING - The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.
INDEXED ZERO PAGE ADDRESSING - (X, Y indexing) - This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, \(X\) " or "Zero Page, \(Y^{\prime \prime}\). The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING - (X, Y indexing) - This form of addressing is used in conjunction with \(X\) and \(Y\) index register and is referred to as "Absolute, \(X\) ", and "Absolute, \(Y\) ". The effective address is formed by adding the contents of \(X\) or \(Y\) to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.
IMPLIED ADDRESSING - In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.

RELATIVE ADDRESSING - Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.
INDEXED INDIRECT ADDRESSING - In indexed indirect addressing (referred to as (Indirect, X)), the second byte of the instruction is added to the contents of the \(X\) index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING - In indirect indexed addressing (referred to as (Indirect), Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the \(Y\) index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.
ABSOLUTE INDIRECT - The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fuliy specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

\section*{COMMON CHARACTERISTICS}

INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements

\begin{tabular}{|c|}
\hline & & \multicolumn{2}{|l|}{[mumotare]} & \multicolumn{2}{|l|}{assolute} & \multicolumn{2}{|l|}{ERROPAEE} & \multicolumn{2}{|l|}{accum.} & \multicolumn{2}{|l|}{1 MPLIEO} & \multicolumn{2}{|l|}{(INO, \(x\))} & \multicolumn{2}{|l|}{IINOH. Y} & & \multicolumn{2}{|l|}{Aus, \(x\)} & \multicolumn{2}{|l|}{4as. r} & \multicolumn{2}{|l|}{netative} & \multicolumn{2}{|l|}{impontit} & \multicolumn{2}{|l|}{4,046t,} & \multicolumn{2}{|l|}{combition coeis} \\
\hline metuonc & ofthation & & \({ }^{\mathbf{N}}\) & OH & \(\cdots\) & O|N & * & & \(N *\) & O- & N \({ }^{\prime}\) & OP] N & " & OP N & \(\pm\) & Opln N & \(\mathrm{OP}^{1} \mathrm{~N}\) & * & op & \# & 0 & - & \(\mathrm{OP}^{+}\) & \(\cdots\) & OP & \({ }^{N+}\) & \(\cdots \mathrm{C}, \mathrm{c}\) & \(\bigcirc\) \\
\hline \[
\begin{aligned}
& \text { LDA } \\
& \text { LDA } \\
& \text { LSA } \\
& \text { NOP } \\
& \text { ORA }
\end{aligned}
\] & & & \[
\begin{array}{l|l}
\hline 2 \\
2 \\
2 \\
2 \\
2 & 2
\end{array}
\] & & \[
\left[\begin{array}{l}
3 \\
3 \\
3 \\
3 \\
\hline
\end{array}\right.
\] & \[
\begin{array}{|c|c}
\hline 06 & 7 \\
44 & 3 \\
45 & 5 \\
& 3 \\
05 & 3
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 7
\end{aligned}
\] & & 21 & Fa & 21 & \(0 \cdot\) & & 115 & & \[
\begin{array}{|c:c}
& 1 \\
\hline 84 & 1 \\
56 & 5 \\
5 & 2 \\
& \\
15 & 1 \\
\hline
\end{array}
\] & \[
\left.\begin{array}{|c|c}
80 \\
58 \\
51
\end{array} \right\rvert\,
\] & & \[
\begin{array}{|c|c}
\hline 68 \\
1 \\
\vdots \\
& 4 \\
& 4 \\
\hline
\end{array}
\] & \begin{tabular}{l}
J \\
.
\end{tabular} & & & & & 86 & \[
412
\] & & \\
\hline \[
\begin{aligned}
& \hline \text { PHA } \\
& \text { PNP } \\
& \text { PLA } \\
& \text { PL } \\
& \text { ROL } \\
& \hline
\end{aligned}
\] & & & & & & 76 & & & 7 & & \[
\left[\begin{array}{lll}
3 & 1 \\
3 & 1 \\
4 & 1 \\
4 & 1 \\
4 & 1 \\
1
\end{array}\right.
\] & & & & & & & & & & & & \[
i
\] & & & . & & \\
\hline & & & \[
72
\] & 6E: & & \[
\begin{array}{ll}
66 \\
56
\end{array}
\] & & 6a & & \[
\begin{array}{r}
1 \\
48! \\
60 \\
60 \\
38 \\
38 \\
50
\end{array}
\] & & & & & 2 & \[
\begin{array}{ll}
36 & 6 ; 2 \\
& 6
\end{array}
\] & \[
\int_{60}^{7 \varepsilon_{1}}
\] & & & & 1 & & & & & & & \\
\hline \[
\begin{aligned}
& S E I \\
& S \text { TA } \\
& S+X \\
& S+Y \\
& \text { TAA }
\end{aligned}
\] & \[
\begin{aligned}
& 1-1 \\
& A+m \\
& x+m \\
& y=m \\
& A-x \\
& \hline
\end{aligned}
\] & & & Ro & 3 & & & & & \[
\int_{A A_{j}}
\] & \[
71
\]
\[
17
\] & \%, & \(3 \cdot\) & 91 & 3 & 08
94. & ar & & \({ }^{99}{ }^{\text {i }}\) & & & & & & & 2 & , \({ }^{1}\) & \\
\hline & \[
\begin{aligned}
& A+y \\
& s=x \\
& x=A \\
& x=s \\
& y=A
\end{aligned}
\] & & : & & & & & & + & & \[
\begin{array}{|l|l}
\hline 2 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1 \\
\hline
\end{array}
\] & . & & + & 1
\(\vdots\) & i & \(\bigcirc\) & & , & & 1 & & & & & & & \\
\hline & & & & & SME & Page EAENT
ROAE & & & & & \begin{tabular}{l}
|vals \\
'乡! \\
A) 1 wo \\
Mimia \\
414 M
\end{tabular} & & & & & & & & * ' & & & \[
m!
\] & & \[
\begin{aligned}
& \text { Hel } \\
& \text { Alit, } \\
& \hline
\end{aligned}
\] & & & nu creles NO bytes & \\
\hline
\end{tabular}

* 65K Addressable Bytes of Memory
* \(\overline{\text { IRQ }}\) Interrupt * \(\overline{\text { MMI }}\) Interrupt
* On-the-chip Clock
\(\checkmark\) TTL Level Single Phase Input
\(\checkmark\) RC Time Base Input
\(\checkmark\) Crystal Time Base Input
* SYNC Signal
(can be used for single instruction execution)
* RDY Signal
(can be used for single cycle execution)
* Two Phase Output Clock for Timing of Support Chips

Features of SY6502

\section*{SY6503-28 Pin Package}

* 4K Addressable Bytes of Memory (AB00-AB11)
* On-the-chip Clock
* \(\overline{\text { IRQ }}\) Interrupt
* \(\overline{\mathrm{NMI}}\) Interrupt
* 8 Bit Bi-Directional Data Bus

Features of SY6503

\section*{SY6504-28 Pin Package}

* 8K Addressable Bytes of

Memory (AB00-AB12)
* On-the-chip Clock
* \(\overline{\text { IRQ }}\) Interrupt
* 8 Bit Bi-Directional Data Bus
\begin{tabular}{|c|c|c|}
\hline \(\overline{R E S}-1\) & 28 & \(-D_{2}(O U T)\) \\
\hline \(V\) S - 2 & 27 & - \(\square_{0}\) (IN) \\
\hline RDY-3 & 26 & -R/W \\
\hline \(\overline{I R Q}-4\) & 25 & - DBO \\
\hline \(V C C-5\) & 24 & -DBI \\
\hline ABO-6 & 23 & D日2 \\
\hline ABI- 7 & 22 & - DB3 \\
\hline \(A B 2-8\) & 21 & - DB4 \\
\hline \(A B 3-9\) & 20 & - DB5 \\
\hline AB4-10 & 19 & - DE6 \\
\hline AB5-11 & 18 & -087 \\
\hline AB6-12 & 17 & ABII \\
\hline \(A B 7-13\) & 16 & - ABIO \\
\hline \(A B E-14\) & & - \(A B 9\) \\
\hline
\end{tabular}
* 4 K Addressable Bytes of Memory (AB00-AB11)
* On-the-chip Clock
* \(\overline{\text { IRQ }}\) Interrupt
* RDY Signal
* 8 Bit Bi-Directional Data Bus

\section*{SY6506-28 Pin Package}

* 4K Addressable Bytes of Memory (ABOO-AB11)
* On-the-chip Clock
* \(\overline{\text { IRQ }}\) Interrupt
* Two phases off
* 8 Bit Bi-Directional Data Bus

Features of SY6506

SY6512-40 Pin Package
\begin{tabular}{|c|c|}
\hline vas \(\sqrt{1}\) & 40- \(\overline{\text { RES }}\) \\
\hline RDY -2 & \(39-8{ }^{\text {2 }}\) (0ut \\
\hline \(91-3\) & 38-s.o. \\
\hline [RG-4 & \(37-{ }^{-1}\) \\
\hline \(\mathrm{vas}^{\text {- }} 5\) & 36-08E \\
\hline NWIT - 6 & 35 \\
\hline SYNC-7 & 34-R/W \\
\hline vee - 8 & 33-080 \\
\hline \(\mathrm{ABO}^{-9}\) & \(32-081\) \\
\hline & 31-D82 \\
\hline AB2-11 & 30-D83 \\
\hline \(4 \mathrm{AB}^{1} 12\) & 29-084 \\
\hline A \(84-13\) & 28-085 \\
\hline A 8 - 14 & 27-086 \\
\hline 486 & 26-087 \\
\hline A 87 - 16 & 25-AB15 \\
\hline A Ba-17 & 24-AB14 \\
\hline AB9-18 & 23-A813 \\
\hline A B10-19 & 22-A812 \\
\hline A \(811-20\) & 21- vis \\
\hline SY6 & 512 \\
\hline
\end{tabular}
* 65K Addressable Bytes of Memory
* \(\overline{\text { IRQ }}\) Interrupt
* \(\overline{\text { NMI Interrupt }}\)
* RDY Signal
* 8 Bit Bi-Directional Data Bus
* SYNC Signal
* Two phase input
* Data Bus Enable

Features of SY6512
\begin{tabular}{|c|c|c|}
\hline -1 & 28 & ES \\
\hline \(\theta_{1}-2\) & 27 & \(8_{2}\) \\
\hline IRO-3 & 26 & -R/W \\
\hline \(\overline{N M I}-4\) & 25 & DBO \\
\hline Vcc-5 & 24 & -DB1 \\
\hline \(A B O-6\) & 23 & -D82 \\
\hline \(A B 1-7\) & 22 & -DB3 \\
\hline AB2-8 & 21 & -DB4 \\
\hline AB3-9 & 20 & -0B5 \\
\hline A B4-10 & 19 & -0B6 \\
\hline A 85-11 & 18 & 7 \\
\hline AB6-12 & 17 & - ABI \\
\hline \(A B 7-13\) & 16 & -ABI \\
\hline AB8 -14 & 15 & -AB9 \\
\hline
\end{tabular}

Features of SY6513

\section*{SY6514-28 Pin Package}

> Vss -1 28- \(\overline{\text { RES }}\)
> \(\theta_{1}\)

SY6514
Features of SY6514
\begin{tabular}{|c|c|c|}
\hline -1 & 28 & ES \\
\hline RDY - 2 & 27 & - \(0_{2}\) \\
\hline 01 -3 & 26 & / \\
\hline RQ - 4 & 25 & 80 \\
\hline c - 5 & 24 & -DB1 \\
\hline BO-6 & 23 & -082 \\
\hline B1-7 & 22 & -DB3 \\
\hline B2-8 & 21 & -DB4 \\
\hline \(A \mathrm{~A}^{-1} 9\) & 20 & -085 \\
\hline AB4 -10 & 19 & 86 \\
\hline AB5 -11 & 18 & 7 \\
\hline AB6 -12 & 17 & \\
\hline B7-13 & 6 & \\
\hline \(A B E-14\) & 5 & \\
\hline
\end{tabular}

Features of SY6515

\section*{SY6502}

\section*{SY6503, SY6504, SY6505, SY6506}

SY6503,4,5,6 Series Mode Crystal Controlled Oscillator

SY6503,4,5,6 Time Base Generation RC Network
SY6502 Time Base Generator - RC Network

APPENDIX J

\section*{SY6522 DATA SHEET}

The SY6522 Versatile Interface Adapter (VIA) provides all of the capability of the SY6520. In addition, this device contains a pair of very powerful interval timers, a serial-to-parallel/parallel-to-serial shift register and input data latching on the peripheral ports. Expanded handshaking capability allows control of bi-directional data transfers between VIA's in multiple processor systems.
Control of peripheral devices is handled primarily through two 8 -bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. Also, several peripheral I/O lines can be controlled directly from the interval timers for generating programmable frequency square waves and for counting externally generated pulses. To facilitate control of the many powerful features of this chip, the internal registers have been organized into an interrupt flag register, an interrupt enable register and a pair of function control registers.
- Very powerful expansion of basic SY6520 capability.
- N channel, depletion load technology, single +5 V Supply.
- Completely static and TTL compatible.
- CMOS compatible peripheral control lines.
- Expanded "handshake" capability allows very positive control of data transfers between processor and peripheral devices.

Figure 1. SY6522 BLOCK DIAGRAM

\section*{MAXIMUM RATINGS}
\begin{tabular}{lccc}
& Symbol & Value & Unit \\
& Vcc & -0.3 to +7.0 & Vdc \\
Supply Voltage & Vin & -0.3 to +7.0 & Vdc \\
Input Voltage & \(\mathrm{T}_{\mathrm{A}}\) & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\)
\end{tabular}

This device contains circuitry to protect the inputs against damage due to high static voltages. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages.

Electrical Characteristics (VCC \(=5.0 \mathrm{~V} \pm 5 \%, V_{S S}=0, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN & TYP & MAX & UNIT \\
\hline Input high voltage (normal operation) & \(\mathrm{V}_{\text {IH }}\) & +2.4 & - & Vcc & Vdc \\
\hline Input Low Voltage (normal operation) & VIL & -0.3 & - & +0.4 & Vdc \\
\hline Input Leakage current \(\cdot \mathrm{V}_{\mathrm{IN}}=0\) to 5 Vdc R/W, \(\overline{\text { RES }}\), RSO, RS1, RS2, RS3, CS1, \(\overline{\mathrm{CS} 2}, \mathrm{CA1}, \Phi 2\) & In & - & \(\pm 1.0\) & \(\pm 2.5\) & \(\mu \mathrm{Adc}\) \\
\hline Off-state input current \(-\mathrm{V}_{\text {IN }}=.4\) to 2.4 V
\[
\mathrm{Vcc}=\mathrm{Max}, \mathrm{D} 0 \text { to } \mathrm{D} 7
\] & ITSI & - & \(\pm 2.0\) & \(\pm 10\) & \(\mu \mathrm{Adc}\) \\
\hline \begin{tabular}{l}
Input high current \(-\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}\) \\
PA0-PA7, CA2, PB0-PB7, CB1, CB2
\end{tabular} & \(\mathrm{I}_{\mathrm{IH}}\) & -100 & -250 & - & \(\mu \mathrm{Adc}\) \\
\hline \begin{tabular}{l}
Input low current \(-V_{\text {IL }}=0.4 \mathrm{Vdc}\) \\
PA0-PA7, CA2, PB0 - PB7, CB1, CB2
\end{tabular} & IIL & - & -1.0 & -1.6 & mAdc \\
\hline \[
\begin{aligned}
& \text { Output high voltage } \\
& \text { Vcc }=\text { min, } \text { Iload }^{\text {lo }}-100 \mu \mathrm{Adc} \\
& \text { PA } 0-\mathrm{PA} 7, \mathrm{CA} 2, \mathrm{~PB} 0-\mathrm{PB} 7, \mathrm{CB} 1, \mathrm{CB} 2
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & - & - & Vdc \\
\hline Output low voltage
\[
\mathrm{Vcc}=\mathrm{min}, \mathrm{I}_{\mathrm{load}}=1.6 \mathrm{mAdc}
\] & V OL & - & - & +0.4 & Vdc \\
\hline \[
\begin{aligned}
& \text { Output high current (sourcing) } \\
& \mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{~PB} 0 \cdot \mathrm{~PB} 7, \mathrm{CB} 1, \mathrm{CB} 2
\end{aligned}
\] & IOH & \[
\begin{array}{r}
-100 \\
-3.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
-1000 \\
-5.0 \\
\hline
\end{gathered}
\] & - & \begin{tabular}{l}
\(\mu \mathrm{Adc}\) \\
mAdc
\end{tabular} \\
\hline Output low current (sinking)
\[
\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}
\] & IOL & 1.6 & - & - & mAdc \\
\hline \[
\begin{aligned}
& \text { Output leakage current (off state) } \\
& \overline{\mathrm{IRQ}}
\end{aligned}
\] & \(I_{\text {off }}\) & - & 1.0 & 10 & \(\mu \mathrm{Adc}\) \\
\hline ```
Input capacitance - TA}=2\mp@subsup{5}{}{\circ}\textrm{C},\textrm{f}=1\textrm{Mhz
 R/W, \overline{RES}, RS0, RS1, RS2, RS3, CS1, \overline{CS}2
 DO - D7, PA0 - PA7, CA1, CA2, PB0 - PB7,
 CB1,CB2
 $2 input
``` & \(\mathrm{C}_{\text {in }}\) & - & - & \[
\begin{aligned}
& 7.0 \\
& 10 \\
& 20
\end{aligned}
\] & \begin{tabular}{l}
pF \\
pF \\
pF
\end{tabular} \\
\hline Output capacitance - \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{Mhz}\) & \(\mathrm{C}_{\text {out }}\) & - & - & 10 & pF \\
\hline Power dissipation & \(\mathrm{P}_{\mathrm{d}}\) & - & - & 1000 & MW \\
\hline
\end{tabular}

Figure 2. READ TIMING CHARACTERISTICS


\section*{DYNAMIC CHARACTERISTICS}

Read Timing Characteristics (Figure 2, loading 130 pF and one TTL load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Cycle time & TCY & 1 & - & 50 & \(\mu \mathrm{s}\) \\
\hline Delay time, address valid to clock positive transition & TACR & 180 & - & - & nS \\
\hline Delay time, clock positive transition to data valid on bus & TCDR & - & - & 395 & nS \\
\hline Peripheral data setup time & TPCR & 300 & - & - & nS \\
\hline Data bus hold time & THR & 10 & - & - & nS \\
\hline Rise and fall time for clock input & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{CR}} \\
& \mathrm{~T}_{\mathrm{CF}} \\
& \hline
\end{aligned}
\] & - & - & 25 & nS \\
\hline
\end{tabular}

Write Timing Characteristics (Figure 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Cycle Time & \(\mathrm{T}_{\mathrm{CY}}\) & 1 & - & 50 & \(\mu \mathrm{S}\) \\
\hline Enable pulse width & \(\mathrm{T}_{\mathrm{C}}\) & 0.47 & - & 25 & \(\mu \mathrm{S}\) \\
\hline Delay time, address valid to clock positive transition & TACW & 180 & - & - & nS \\
\hline Delay time, data valid to clock negative transition & TDCW & 300 & - & - & nS \\
\hline Delay time, read/write negative transition to clock positive transition & TWCW & 180 & - & - & nS \\
\hline Data bus hold time & THW & 10 & - & - & nS \\
\hline Delay time, Enable negative transition to peripheral data valid & TCPW & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, clock negative transition to peripheral data valid CMOS (Vcc-30\%) & TCMOS & - & - & 2.0 & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

Figure 3. WRITE TIMING CHARACTERISTICS


Figure 4. I/O TIMING CHARACTERISTICS


\section*{PERIPHERAL INTERFACE CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Typ & Max & Unit \\
\hline Rise and fall time for CA1, CB1, CA2, and CB2 input signals. & TRF & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, clock negative transition to CA2 negative transition (read handshake or pulse mode). & TCA2 & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, clock negative transition to CA2 positive transition (pulse mode). & TRS1 & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, CA1 active transition to CA2 positive transition (handshake mode). & TRS2 & - & - & 2.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, clock positive transition to CA2 or CB2 negative transition (write handshake). & TWHS & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, peripheral data valid to CB2 negative transition. & TDC & 0 - & - & 1.5 & \(\mu \mathrm{S}\) \\
\hline Delay time, clock positive transition to CA2 or CB2 positive transition (pulse mode). & TRS3 & - & - & 1.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, CB1 active transition to CA2 or CB2 positive transition (handshake mode). & TRS4 & - & - & 2.0 & \(\mu \mathrm{S}\) \\
\hline Delay time, peripheral data valid to CA1 or CB1 active transition (input latching). & \(\mathrm{T}_{\text {IL }}\) & 300 & - & - & nS \\
\hline Delay time, CB1 negative transition to CB2 data valid (internal SR clock, shift out). & TSR1 & - & - & 300 & nS \\
\hline Delay time, negative transition of CB1 input clock to CB2 data valid (external clock, shift out). & TSR2 & - & - & 300 & nS \\
\hline Delay time, CB2 data valid to positive transition of CB1 clock (shift in, internal or external clock) & TSR3 & - & - & 300 & nS \\
\hline Pulse Width - PB6 Input Pulse & TIPW & 2 & - & - & \(\mu \mathrm{S}\) \\
\hline Pulse Width - CB1 Input Clock & TICW & 2 & - & - & \(\mu \mathrm{S}\) \\
\hline Pulse Spacing - PB6 Input Pulse & IIPS & 2 & - & - & \(\mu \mathrm{S}\) \\
\hline Pulse Spacing - CB1 Input Pulse & IICS & 2 & - & - & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

\section*{PROCESSOR INTERFACE}

This section contains a description of the buses and control lines which are used to interface the SY6522 to the system processor. Electrical parameters associated with this interface are specified elsewhere in this document.

\section*{1. Phase Two Clock ( \(\Phi 2\) )}

Data transfers between the SY6522 and the system processor take place only while the Phase Two Clock is high. In addition, \(\boldsymbol{\Phi} 2\) acts as the time base for the various timers, shift registers, etc. on the chip.

\section*{2. Chip Select Lines (CS1, \(\overline{\operatorname{CS2}}\) )}

The two chip select inputs are normally connected to processor address lines either directly or through decoding. The selected SY6522 register will be accessed when CS1 is high and \(\overline{\mathrm{CS} 2}\) is low.

\section*{3. Register Select Lines (RS0, RS1, RS2, RS3)}

The four Register select lines are normally connected to the processor address bus lines to allow the processor to select the internal SY6522 register which is to be accessed. The sixteen possible combinations access the registers as follows:
\(\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { RS3 } & \text { RS2 } & \text { RS1 } & \text { RS0 } & \text { REGISTER } & \text { REMARKS } \\
\hline \text { L } & \text { ORB, IRB } & \\
\hline \text { L } & \text { L } & \text { L } & \text { H } & \text { ORA, IRA } & \text { Controls Handshake } \\
\hline \text { L } & \text { L } & \text { H } & \text { L } & \text { DDRB } & \\
\hline \text { L } & \text { L } & \text { H } & \text { H } & \text { DDRA } & \\
\hline \text { L } & \text { H } & \text { L } & \text { L } & \text { T1L-L } & \begin{array}{c}\text { Write Latch } \\
\text { Read Counter }\end{array} \\
\hline \text { L } & \text { H } & \text { L } & \text { H } & \text { T1C-H } & \begin{array}{c}\text { Trigger T1L-L/ } \\
\text { T1C-L Transfer }\end{array} \\
\hline \text { L } & \text { H } & \text { H } & \text { L } & \text { T1L-L } & \\
\hline \text { H } & \text { T1L-H } & \text { Write Latch } \\
\hline \text { H } & \text { L } & \text { L } & \text { L } & \text { T2L-L } & \text { Read Counter }\end{array}\right]\)\begin{tabular}{c} 
Triggers T2L-L/ \\
\hline H
\end{tabular}

NOTE: \(\mathrm{L} \leqslant 0.4 \mathrm{~V}\)
\(\mathrm{H} \geqslant 2.4 \mathrm{~V}\)

\section*{4. Read/Write Line (R/W)}

The direction of the data transfers between the SY6522 and the system processor is controlled by the R/W line. If \(R / W\) is low, data will be transferred out of the processor into the selected SY6522 register (write operation). If \(R / W\) is high and the chip is selected, data will be transferred out of the SY6522 (read operation).

\section*{5. Data Bus (DB0 - DB7)}

The 8 bi-directional data bus lines are used to transfer data between the SY6522 and the system processor. The internal drivers will remain in the high-impedance state except when the chip is selected ( \(\mathrm{CS} 1=\mathrm{HI}, \overline{\mathrm{CS} 2}=\mathrm{LO}\) ), Read/Write is high and the Phase Two Clock is high. At this time, the contents of the selected register are placed on the data bus. When the chip is selected, with Read/Write low and \(\Phi 2=1\), the data on the data bus will be transferred into the selected SY6522 register.

\section*{6. Reset ( \(\overline{\mathrm{RES}}\) )}

The reset input clears all internal registers to logic 0 (except \(T 1, T 2\) and \(S R\) ). This places all peripheral interface lines in the input state, disables the timers, shift register, etc. and disables interrupting from the chip.

\section*{7. Interrupt Request ( \(\overline{\mathrm{RQ}}\) )}

The Interrupt Request output goes low whenever an internal interrupt flag is set and the corresponding interrupt enable bit is a logic 1. This output is "open-drain" to allow the interrupt request signal to be "wire-or'ed" with other equivalent signals in the system.

\section*{PERIPHERAL INTERFACE}

This section contains a brief description of the buses and control lines which are used to drive peripheral devices under control of the internal SY6522 registers.

\section*{1. Peripheral A Port (PAO-PA7)}

The Peripheral A port consists of 8 lines which can be individually programmed to act as an input or an output under control of a Data Direction Register. The polarity of output pins is controlled by an Output Register and input data can be latched into an internal register under control of the CA1 line. All of these modes of operation are controlled by the system processor through the internal control registers. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode.

\section*{2. Peripheral A Control Lines (CA1, CA2)}

The two peripheral A control lines act as interrupt inputs or as handshake outputs. Each line controls an internal interrupt flag with a corresponding interrupt enable bit. In addition, CAI controls the latching of data on Peripheral A Port Input lines. The various modes of operation are controlled by the system processor through the internal control registers. CA1 is a high-impedance input only while CA2 represents one standard TTL load in the input mode. CA2 will drive one standard TTLload in the output mode.

\section*{3. Peripheral B Port (PB0 - PB7)}

The Peripheral B Port consists of 8 bi-directional lines which are controlled by an output register and a data direction register in much the same manner as the PA port. In addition, the polarity of the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pin. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. In addition, they are capable of sourcing 3.0 ma at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor switches.

\section*{4. Peripheral B Control Lines (CB1, CB2)}

The Peripheral B control lines act as interrupt inputs or as handshake outputs. As with CA1 and CA2, each line controls an interrupt flag with a corresponding interrupt enable bit. In addition, these lines act as a serial port under control of the Shift Register. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. In addition, they are capable of sourcing 3.0 ma at 1.5 VDC in the output mode to allow the outputs to directly drive Darlington transistor switches.

Figure 5. PERIPHERAL DATA OUTPUT BUFFERS


\section*{SY6522 OPERATION}

This section contains a discussion of the various blocks of logic shown in Figure 1. In addition, the internal operation of the SY6522 is described in detail.

\section*{A. Data Bus Buffers (DB), Peripheral A Buffers (PA), Peripheral B Buffers (PB)}

The characteristics of the buffers which provide the required voltage and current drive capability were discussed in the previous section. Electrical paramenters for these buffers are specified elsewhere in this document.

\section*{B. Chip Access Control}

The Chip Access Control contains the necessary logic to detect the chip select condition and to decode the Register Select inputs to allow accessing the desired internal registers. In addition, the \(\mathrm{R} / \mathrm{W}\) and \(\boldsymbol{\Phi} 2\) signals are utilized to control the direction and timing of data transfers. When writing into the SY6522, data is first latched into a data input register during \(\boldsymbol{\Phi} 2\). Data is then transferred into the desired internal register during \(\boldsymbol{\Phi} 2 \cdot\) Chip Select. This allows the peripheral I/O lines to change states cleanly. When the processor reads the SY6522, data is transferred from the desired internal register directly onto the Data Bus during \(\boldsymbol{\Phi} 2\).

\section*{C. Port A Registers, Port B Registers}

Three registers are used in accessing each of the 8 -bit peripheral ports. Each port has a Data Direction Register (DDRA, DDRB) for specifying whether the peripheral pins are to act as inputs or outputs. A 0 in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input. A 1 causes the pin to act as an output.
Each peripheral pin is also controlled by a bit in the Output Register (ORA, ORB) and an Input Register (IRA, IRB). When the pin is programmed to act as an output, the voltage on the pin is controlled by the corresponding bit of the Output Register. A 1 in the Output Register causes the pin to go high, and a 0 causes the pin to gollow. Data can be written into Output Register bits corresponding to pins which are programmed to act as inputs; however, the pin will be unaffected.
Reading a peripheral port causes the contents of the Input Register (IRA, IRB) to be transferrred onto the Data Bus. With input latching disabled, IRA will always reflect the data on the PA pins. With input latching enabled, IRA will reflect the contents of the Port A prior to setting the CAI Interrupt Flag (IFR1) by an active transition on CA1.
The IRB register operates in a similar manner. However, for output pins, the corresponding IRB bit will reflect the contents of the Output Register bit instead of the actual pin. This allows proper data to be read into the processor if the output pin is not allowed to go to full voltage. With input latching enabled on Port B, setting CB1 interrupt flag will cause the IRB to latch this combination of input data and ORB data until the interrupt flag is cleared.

\section*{D. Handshake Control}

The SY6522 allows very positive control of data transfers between the system processor and peripheral devices through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handshake on a write operation only.

\section*{Read Handshake}

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using "Read" handshaking. In this case, the peripheral device must generate "Data Ready" to signal the processor that valid data is present on the peripheral port. This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.
In the SY6522, automatic "Read" handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The Data Ready signal will set an internal flag which may interrupt the processor or which can be polled under software control. The Data Taken signal can either be a pulse or a level which is set low by the system processor and is cleared by the Data Ready signal. These options are shown in Figure 6 which illustrates the normal Read Handshaking sequence.

\section*{Write Handshake}

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that described in Section A for Read Handshaking. However, for "Write" handshaking, the processor must generate the "Data Ready" signal (through the SY6522) and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the SY6522. CA2 or CB2 acts as a Data Ready Output in either the DC level of pulse mode and CA1 or CB1 accepts the "Data Taken" signal from the peripheral device, setting the interrupt flag and clearing the "Data Ready" output. This sequence is shown in Figure 7.

Figure 6. READ HANDSHAKE TIMING SEQUENCE

\(\overline{\text { RO OUTPUT }} 1\)


Figure 7. WRITE HANDSHAKE TIMING SEQUENCE


IRO OUTPUT2
NOTES:
1. \(R / W=0, \overline{C S 2}=0, C S 1=1, R S 3=0, R S 2=0\), \(R S 1=0, R S 0=1\).
2. Signals "data taken" to the system processor.

\section*{E. Timer 1}

Interval Timer T 1 consists of two 8 -bit latches and a 16 -bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at system clock rate, i.e., under control of the clock applied to the Phase Two input pin. Upon reaching zero, an interrupt flag will be set, and IRQ will go low. The timer will then disable any further interrupts, or will automatically transfer the contents of the latches into the counter and will continue to decrement. In addition, the timer can be instructed to invert the output signal on a peripheral pin each time it "times-out". Each of these modes is dicussed separately below.

\section*{Writing the Timer 1 Registers}

The operations which take place when writing to each of the four T1 addresses are as follows:
\begin{tabular}{|c|c|c|c|l|}
\hline RS3 & RS2 & RS1 & RS0 & \multicolumn{1}{|c|}{ Operation (R/W =L) } \\
\hline L & H & L & L & Write into low order latch. \\
\hline L & H & L & H & \begin{tabular}{l} 
Write into high order latch. \\
\hline \begin{tabular}{l} 
Write into high order counter. \\
Transfer low order latch into low order counter. \\
Reset T1 interrupt flag.
\end{tabular} \\
\hline L
\end{tabular} H \\
\hline H & H & H & H & \begin{tabular}{l} 
Write into low order latch. \\
\hline
\end{tabular} \\
\hline Write into high order latch. \\
Reset T1 interrupt flag.
\end{tabular}

Note that the processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.
The second set of addresses allows the processor to write into the latch register without affecting the count-down in progress. This is discussed in detail below.

\section*{Reading the Timer 1 Registers}

For reading the Timer 1 registers, the four addresses relate directly to the four registers as follows.
\begin{tabular}{|c|c|c|c|l|}
\hline RS3 & RS2 & RS1 & RS0 & \multicolumn{1}{|c|}{ Operation (R/W = H) } \\
\hline L & H & L & L & Read T1 low order counter. Reset T1 interrupt flag. \\
\hline L & H & L & H & Read T1 high order counter. \\
\hline L & H & H & L & Read T1 low order latch. \\
\hline L & H & H & H & Read T1 high order latch. \\
\hline
\end{tabular}

\section*{Timer 1 Operating Modes}

Two bits are provided in the Auxiliary Control Register to allow selection of the T1 operating modes. These bits and the four possible modes are as follows:
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
ACR7 \\
Output Enable
\end{tabular} & \begin{tabular}{c} 
ACR6 \\
"Free-Run" Enable
\end{tabular} & \multicolumn{1}{|c|}{ Mode } \\
\hline 0 & 0 & \begin{tabular}{l} 
Generate a single time-out interrupt each time T1 is loaded. \\
PB7 disabled.
\end{tabular} \\
\hline 0 & 1 & Generate continuous interrupts. PB7 disabled. \\
\hline 1 & 0 & \begin{tabular}{l} 
Generate a single interrupt and an output pulse on PB7 for \\
each T1 load operation.
\end{tabular} \\
\hline 1 & 1 & \begin{tabular}{l} 
Generate continuous interrupts and a square wave output \\
on PB7.
\end{tabular} \\
\hline
\end{tabular}

\section*{TIMER 1 ONE-SHOT MODE}

The interval timer one-shot mode allows generation of a single interrupt for each timer load operation. As with any interval timer, the delay between the "write TIC-H" operation and generation of the processor interrupt is a direct function of the data loaded into the timing counter. In addition to generating a single interrupt, Timer 1 can be programmed to produce a single negative pulse on the PB7 peripheral pin. With the output enabled (ACR7=1) a "write T1C-H" operation will cause PB7 to go low. PB7 will return high when Timer 1 times out. The result is a single programmable width pulse.

\section*{NOTE}

PB7 will act as an output if DDRB7 \(=1\) or if ACR7 \(=1\). However, if both DDRB7 and ACR7 are logic 1, PB7 will be controlled from Timer 1 and ORB7 will have no effect on the pin.

In the one-shot mode, writing into the high order latch has no effect on the operation of Timer 1. However, it will be necessary to assure that the low order latch contains the proper data before initiating the count-down with a "write T1C-H" operation. When the processor writes into the high order counter, the T1 interrupt flag will be cleared, the contents of the low order latch will be transferred into the low order counter, and the timer will begin to decrement at system clock rate. If the PB7 output is enabled, this signal will go low on the phase two following the write operation. When the counter reaches zero, the T1 interrupt flag will be set, the IRQ pin will go low (interrupt enabled), and the signal on PB7 will go high. At this time the counter will continue to decrement at system clock rate. This allows the system processor to read the contents of the counter to determine the time since interrupt. However, the T1 interrupt flag cannot be set again unless it has been cleared as described elsewhere in this specification.
Timing for the SY6522 interval timer one-shot modes is shown in figure 8.
Figure 8. INTERVAL TIMER "ONE-SHOT" MODE TIMING SEQUENCE


\section*{TIMER 1 FREE-RUNNING MODE}

The most important advantage associated with the latches in T 1 is the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time. This is accomplished in the "free-running" mode.
In the free-running mode (ACR6 = 1), the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter ( 16 bits) and continues to decrement from there. The interrupt flag can be cleared by writing T1C-H, by reading T1C-L, or by writing directly into the flag as described below. However, it is not necessary to rewrite the timer to enable setting the interrupt flag on the next time-out.
All interval timers in the SY6500 family devices are "re-triggerable". Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (T1C-H). However, by loading the latches only, the processor can access the timer during each down-counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next time-out period. This capability is particularly valuable in the free-running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each time-out. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown in Figure 9.

Figure 9. TIMER 1 "FREE-RUNNING" MODE


\section*{F. Timer 2}

Timer 2 operates as an interval timer (in the "one-shot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A single control bit is provided in the Auxiliary Control Register to select between these two modes. This timer is comprised of a "write-only" low-order latch (T2L-L), a "read-only" low-order counter and a read/write high order counter. The counter registers act as a 16 -bit counter which decrements at \(\Phi 2\) rate.
Timer 2 addressing can be summarized as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline RS3 & RS2 & RS1 & RS0 & R/W = 0 & R/W = 1 \\
\hline H & L & L & L & Write T2L-L & \begin{tabular}{c} 
Read T2C-L \\
Clear Interrupt flag
\end{tabular} \\
\hline H & L & L & H & \begin{tabular}{c} 
Write T2C-H \\
Transfer T2L-L to T2C-L \\
Clear Interrupt flag
\end{tabular} & Read T2C-H \\
\hline
\end{tabular}

\section*{Timer 2 Interval Timer Mode}

As an interval timer, T2 operates in the "one-shot" mode similar to Timer 1. In this mode, T2 provides a single interrupt for each "write T2C-H" operation. After timing out, the counter will continue to decrement. However, setting of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interrupt flag is cleared by reading T2C-L or by writing T2C-H. Timing for this operation is shown in Figure 8.

\section*{Timer 2 Pulse Counting Mode}

In the pulse counting mode, T2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the interrupt flag and allows the counter to decrement each time a pulse is applied to PB6. The interrupt flag will be set when T2 reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite \(\mathrm{T} 2 \mathrm{C}-\mathrm{H}\) to allow the interrupt flag to set on subsequent down-counting operations. Timing for this mode is shown in Figure 10. The pulse must be low on the leading edge of \(\Phi 2\).

Figure 10. TIMER 2 PULSE COUNTING MODE


\section*{G. Shift Register}

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.
The control bits which select the various shift register operating modes are located in the Auxiliary Control Register. These bits can be set and cleared by the system processor to select one of the operating modes discussed in the following paragraphs.

\section*{Shift Register Input Modes}

Bit 4 of the Auxiliary Control Register selects the input or output modes. There are three input modes and four output modes, differing primarily in the source of the pulses which control the shifting operation. With ACR4 \(=0\) the input modes are selected by ACR3 and ACR2 as follows:
\begin{tabular}{|c|c|c|l|}
\hline ACR4 & ACR3 & ACR2 & \multicolumn{1}{c|}{ Mode } \\
\hline 0 & 0 & 0 & Shift Register Disabled \\
\hline 0 & 0 & 1 & Shift in under control of Timer 2 \\
\hline 0 & 1 & 0 & Shift in at System Clock Rate. \\
\hline 0 & 1 & 1 & \begin{tabular}{l} 
Shift in under control of external \\
input pulses
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode 000 - Shift Register Disabled}

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR, but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to a logic 0).

\section*{Mode 001 - Shift in Under Control of Timer 2}

In this mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in external devices. The time between transitions of this output clock is a function of the system clock period and the contents of the low order T2 latch.
The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit or the shift register on the trailing edge of each clock pulse. As shown in Figure 11, the input data should change before the leading edge of the clock pulse. This data is loaded into the shift register during the system clock cycle following the trailing edge of the clock pulse. After 8 clock pulses, the shift register interrupt flag will be set and IRQ will go low.

Figure 11. SHIFTING IN UNDER CONTROL OF T2


WRITE OR READ
SHIFT REG.


\section*{Mode 010 - Shift in at System Clock Rate}

In this mode the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

\(\overline{\text { ina }}\)

\section*{Mode 011 - Shift in Under Control of External Clock}

In this mode CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shifting operation; it acts simply as a pulse counter. Reading or writing the Shift Register resets the Interrupt flag and initializes the SR counter to count another 8 pulses.
Note that the data is shifted during the first system clock cycle following the leading edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high. Timing for this operation is shown in Figure 13.

Figure 13. TIMING SEQUENCE FOR SHIFTING IN UNDER CONTROL OF EXTERNAL CLOCK CB1
\(\overline{\mathrm{RO}}\)

NOTE: DATA SHIFTED IN AT POINT A.

\section*{Shift Register Output Modes}

The four Shift Register Output Modes are selected by setting the Input/Output Control Bit (ACR4) to a logic 1 and then selecting the specific output mode with ACR3 and ACR2. In each of these modes the Shift Register shifts data out of bit 7 to the CB2 pin. At the same time the contents of bit 7 are shifted back into bit 0 . As in the input modes, CB1 is used either as an output to provide shifting pulses out or as an input to allow shifting from an external pulse. The four modes are as follows:
\begin{tabular}{|c|c|c|l|}
\hline ACR4 & ACR3 & ACR2 & \multicolumn{1}{|c|}{ Mode } \\
\hline 1 & 0 & 0 & \begin{tabular}{l} 
Shift out - Free-running mode. \\
Shift rate controlled by T2.
\end{tabular} \\
\hline 1 & 0 & 1 & \begin{tabular}{l} 
Shift out - Shift rate controlled by T2. \\
Shift pulses generated on CB1.
\end{tabular} \\
\hline 1 & 1 & 0 & Shift out at system clock rate. \\
\hline 1 & 1 & 1 & Shift out under control of an external pulse. \\
\hline
\end{tabular}

\section*{Mode 100 Free-Running Output}

This mode is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR Counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0 , the 8 bits loaded into the shift register will be clocked onto CB2 repetitively. In this mode the shift register counter is disabled.

\section*{Mode 101 - Shift out Under Control of T2}

In this mode the shift rate is controlled by T2 (as in the previous mode). However, with each read or write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CBI to control shifting in External devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt Flag is set and CB2 goes to a state determined by the CB2 Control bit (PC5) in the Peripheral Control Register.
The CB2 Control bits (PC7, PC6, and PC5) must be used to set CB2 to a manual output selecting either a high or low polarity. If the shift register is reloaded before the last time-out, the shifting will continue. This sequence is illustrated in Figure 14.

Figure 14. SHIFTING OUT UNDER CONTROL OF T2

\(\overline{\text { ino }}\)
notes:
1. DATA OUT DETERMINED BY CB2 CONTROL IN PCR.

\section*{Mode 110 - Shifting out at System Clock Rate}

In this mode the shift register operation is similar to that shown in Figure 11. However, the shifting rate is a function of the system clock on the chip enable pin ( \(\Phi 2\) ) and is independent of T2. Timer 2 resumes its normal function as an independent interval timer. Figure 15 illustrates the timing sequence for mode 110 .

1. Data out determined by CB2 control in PCR.

\section*{Mode 111 - Shift out under Control of an External Pulse}

In this mode, shifting is controlled by pulses applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialized to begin counting the next 8 shift pulses on pin CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Figure 16. SHIFTING OUT UNDER CONTROL OF EXTERNAL CLOCK


OUTPUT DATA
(CB2)

\(\overline{\mathbf{I R} \bar{Q}}\)

\section*{H. Interrupt Control}

Controlling interrupts within the SY6522 involves three principal operations. These are flagging the interrupts, enabling interrupts and signalling to the processor that an active interrupt exists within the chip. Interrupt flags are set by interrupting conditions which exist within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.
Associated with each interrupt flag is an interrupt enable bit. This bit can be set or cleared by the processor to enable interrupting the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1 , the Interrupt Request Output ( \(\overline{\mathrm{IRQ}}\) ) will go low. \(\overline{\mathrm{IRQ}}\) is an "open-collector" output which can be "wire-or'ed" with other devices in the system to interrupt the processor.
In the SY6522, all the interrupt flags are contained in one register. In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l} 
REGISTER \\
NAME
\end{tabular}} & \multicolumn{9}{|c|}{ REGISTER BIT } \\
\cline { 2 - 9 } & \(\mathbf{7}\) & \(\mathbf{6}\) & \(\mathbf{5}\) & \(\mathbf{4}\) & \(\mathbf{3}\) & \(\mathbf{2}\) & \(\mathbf{1}\) & \(\mathbf{0}\) \\
\hline \begin{tabular}{l} 
Interrupt \\
Flag \\
Register (IFR)
\end{tabular} & IRQ & T1 & T2 & CB1 & CB2 & SR & CA1 & CA2 \\
\hline \begin{tabular}{l} 
Interrupt \\
Enable \\
Register (IER)
\end{tabular} & \begin{tabular}{c} 
Set/ \\
clear \\
control
\end{tabular} & T1 & T2 & CB1 & CB2 & SR & CA1 & CA2 \\
\hline
\end{tabular}

\section*{Interrupt Flag Register}

The IFR is a read/bit-clear register. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the \(\overline{\mathrm{RQ}}\) output. This bit corresponds to the logic function: IRQ \(=\) IFR6 x IER6 + IFR5 x IER5 + IFR4 x IER4 + IFR3 x IER3 + IFR \(2 \times\) IER2 + IFR1 x IER1 + IFR0 \(\times\) IER0. Note: \(X=\) logic AND,\(+=\) Logic OR.
Bits six through zero are latches which are set and cleared as follows:
\begin{tabular}{|c|l|l|}
\hline Bit \# & \multicolumn{1}{|c|}{ Set by } & \multicolumn{1}{|c|}{ Cleared By } \\
\hline 0 & Active transition of the signal on the CA2 pin. & \begin{tabular}{l} 
Reading or writing the A port Output Register \\
(ORA) using address 0001.
\end{tabular} \\
\hline 1 & Active transition of the signal on the CA1 pin. & \begin{tabular}{l} 
Reading or writing the A Port Output Register \\
(ORA) using address 0001.
\end{tabular} \\
\hline 2 & Completion of eight shifts. & Reading or writing the Shift Register. \\
\hline 3 & Active transition of the signal on the CB2 pin. & Reading or writing the B Port Output Register. \\
\hline 4 & Active transition of the signal on the CB1 pin. & Reading or writing the B Port Output Register. \\
\hline 5 & Time-out of Timer 2. & \begin{tabular}{l} 
Reading T2 low order counter. Writing T2 high \\
order counter.
\end{tabular} \\
\hline 6 & Time-out of Timer 1. & \begin{tabular}{l} 
Reading T1 low order counter. Writing T1 high \\
order counter.
\end{tabular} \\
\hline
\end{tabular}

The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

\section*{Interrupt Enable Register (IER)}

For each interrupt flag in IFR, there is a corresponding bit in the Interrupt Enable Register. The system processor can set or clear selected bits in this register to facilitate controlling individual interrupts without affecting others. This is accomplished by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0 , each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0 , the corresponding bit is unaffected.
Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1 . In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation.
In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the \(\mathrm{R} / \mathrm{W}\) line high. Bit 7 will be read as a logic 0 .

\section*{I. Function Control}

Control of the various functions and operating modes within the SY6522 is accomplished primarily through two registers, the Peripheral Control Register (PCR) and the Auxiliary Control Register (ACR). The PCR is used primarily to select the operating mode for the four peripheral control pins. The Auxiliary Control Register selects the operating mode for the interval timers (T1, T2), and the serial port (SR).

\section*{Peripheral Control Register}

The Peripheral Control Register is organized as follows:
\begin{tabular}{|l|ccc|c|ccc|c|}
\hline Bit \# & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline Function & \multicolumn{3}{|c|}{\begin{tabular}{c} 
CB2 \\
Control
\end{tabular}} & \begin{tabular}{c} 
CB1 \\
Control
\end{tabular} & \begin{tabular}{c} 
CA2 \\
Control
\end{tabular} & \begin{tabular}{c} 
CA1 \\
Control
\end{tabular} \\
\hline
\end{tabular}

Each of these functions is discussed in detail below.

\section*{1. CA1 Control}

Bit 0 of the Peripheral Control Register selects the active transition of the input signal applied to the CA1 interrupt input pin. If this bit is a logic 0 , the CA1 interrupt flag will be set by a negative transition (high to low) of the signal on the CA1 pin. If PCR0 is a logic 1 , the CA1 interrupt flag will be set by a positive transition (low to high) of this signal.

\section*{2. CA2 Control}

The CA2 pin can be programmed to act as an interrupt input or as a peripheral control output. As an input, CA2 operates in two modes, differing primarily in the methods available for resetting the interrupt flag. Each of these two input modes can operate with either a positive or a negative active transition as described above for CA1.
In the output mode, the CA2 pin combines the operations performed on the CA2 and CB2 pins of the SY6522. This added flexibility allows processor to perform a normal "write" handshaking in a system which uses CB1 and CB2 for the serial operations described above. The CA2 operating modes are selected as follows:
\begin{tabular}{|c|c|c|l|}
\hline PCR3 & PCR2 & PCR1 & \multicolumn{1}{c|}{ Mode } \\
\hline 0 & 0 & 0 & \begin{tabular}{l} 
Input mode-Set CA2 interrupt flag (IFR0) on a negative transition of the input \\
signal. Clear IFR0 on a read or write of the Peripheral A Output Register.
\end{tabular} \\
\hline 0 & 0 & 1 & \begin{tabular}{l} 
Independent interrupt input mode-Set IFR0 on a negative transition of the CA2 \\
input signal. Reading or writing ORA does not clear the CA2 Interrupt flag.
\end{tabular} \\
\hline 0 & 1 & 0 & \begin{tabular}{l} 
Input mode-Set CA2 interrupt flag on a positive transition of the CA2 input \\
signal. Clear IFR0 with a read or write of the Peripheral A Output Register.
\end{tabular} \\
\hline 0 & 1 & 1 & \begin{tabular}{l} 
Independent Interrupt input mode-Set IFR0 on a positive transition of the CA2 \\
input signal. Reading or writing ORA does not clear the CA2 interrupt flag.
\end{tabular} \\
\hline 1 & 0 & 0 & \begin{tabular}{l} 
Handshake output mode-Set CA2 output low on a read or write of the Peripheral \\
A Output Register. Reset CA2 high with an active transition on CA1.
\end{tabular} \\
\hline 1 & 0 & 1 & \begin{tabular}{l} 
Pulse Output mode-CA2 goes low for one cycle following a read or write of \\
the Peripheral A Output Register.
\end{tabular} \\
\hline 1 & 1 & 0 & Manual output mode-The CA2 output is held low in this mode. \\
\hline 1 & 1 & 1 & Manual output mode-The CA2 output is held high in this mode. \\
\hline
\end{tabular}

In the independent input mode, writing or reading the ORA register has no effect on the CA2 interrupt flag. This flag must be cleared by writing a logic 1 into the appropriate IFR bit. This mode allows the processor to handle interrupts which are independent of any operations taking place on the peripheral I/O ports.
The handshake and pulse output modes have been described previously. Note that the timing of the output signal varies slightly depending on whether the operation is initiated by a read or a write.

\section*{3. CB1 Control}

Control of the active transition of the CB1 input signal operates in exactly the same manner as that described above for CA1. If PCR4 is a logic 0 the CB1 interrupt flag (IFR4) will be set by a negative transition of the CB1 input signal and cleared by a read or write of the ORB register. If PCR4 is a logic 1, IFR4 will be set by a positive transition of CB1.
If the Shift Register function has been enabled, CB1 will act as an input or output for the shift register clock signals. In this mode the CB1 interrupt flag will still respond to the selected transition of the signal on the CB1 pin.

\section*{4. CB2 Control}

With the serial port disabled, operation of the CB2 pin is a function of the three high order bits of the PCR. The CB2 modes are very similar to those decribed previously for CA2. These modes are selected as follows:
\begin{tabular}{|c|c|c|l|}
\hline PCR7 & PCR6 & PCR5 & \multicolumn{1}{|c|}{ Mode } \\
\hline 0 & 0 & 0 & \begin{tabular}{l} 
Interrupt input mode-Set CB2 interrupt flag (IFR3) on a negative transition of the \\
CB2 input signal. Clear IFR3 on a read or write of the Peripheral B Output Register.
\end{tabular} \\
\hline 0 & 0 & 1 & \begin{tabular}{l} 
Independent interrupt input mode-Set IFR3 on a negative transition of the CB2 \\
input signal. Reading or writing ORB does not clear the interrupt flag.
\end{tabular} \\
\hline 0 & 1 & 0 & \begin{tabular}{l} 
Input mode-Set CB2 interrupt flag on a positive transition of the CB2 input signal. \\
Clear the CB2 interrupt flag on a read or write of ORB.
\end{tabular} \\
\hline 0 & 1 & 1 & \begin{tabular}{l} 
Independent input mode-Set IFR3 on a positive transition of the CB2 input signal. \\
Reading or writing ORB does not clear the CB2 interrupt flag.
\end{tabular} \\
\hline 1 & 0 & 0 & \begin{tabular}{l} 
Handshake output mode-Set CB2 low on a write ORB operation. Reset CB2 high \\
with an active transition of the CB1 input signal.
\end{tabular} \\
\hline 1 & 0 & 1 & Pulse output mode-Set CB2 low for one cycle following a write ORB operation. \\
\hline 1 & 1 & 0 & Manual output mode-The CB2 output is held low in this mode. \\
\hline 1 & 1 & 1 & Manual output mode-The CB2 output is held high in this mode. \\
\hline
\end{tabular}

\section*{AUXIALIARY CONTROL REGISTER}

Many of the functions in the Auxiliary Control Register have been discussed previously. However, a summary of this register is presented here as a convenient reference for the SY6522 user. The Auxiliary Control Register is organized as follows:
\begin{tabular}{|l|cc|c|cc|c|c|}
\hline Bit \# & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{tabular}\(⿻ 0\).

\section*{1. PA Latch Enable}

The SY6522 provides input latching on both the PA and PB ports. In this mode, the data present on the peripheral A input pins will be latched within the chip when the CA1 interrupt flag is set. Reading the PA port will result in these latches being transferred into the processor. As long as the CAl interrupt flag is set, the data on the peripheral pins can change without affecting the data in the latches. This input latching can be used with any of the CA2 input or output modes.
It is important to note that on the PA port, the processor always reads the data on the peripheral pins (as reflected in the latches). For output pins, the processor still reads the latches. This may or may not reflect the data currently in the ORA. Proper system operation requires careful planning on the part of the system designer if input latching is combined with output pins on the peripheral ports.
Input latching is enabled by setting bit 0 in the Auxiliary Control Register to a logic 1 . As long as this bit is a 0 , the latches will directly reflect the data on the pins.

\section*{2. PB Latch Enable}

Input latching on the PB port is controlled in the same manner as that described for the PA port. However, with the peripheral B port the input latch will store either the voltage on the pin or the contents of the Output Register (ORB) depending on whether the pin is programmed to act as an input or an output. As with the PA port, the processor always reads the input latches.

\section*{3 Shift Register Control}

The Shift Register operating mode is selected as follows:
\begin{tabular}{|c|c|c|l|}
\hline ACR4 & ACR3 & ACR2 & \multicolumn{1}{|c|}{ Mode } \\
\hline 0 & 0 & 0 & Shift Register Disabled. \\
\hline 0 & 0 & 1 & Shift in under control of Timer 2. \\
\hline 0 & 1 & 0 & Shift in under control of system clock. \\
\hline 0 & 1 & 1 & Shift in under control of external clock pulses. \\
\hline 1 & 0 & 0 & Free-running output at rate determined by Timer 2. \\
\hline 1 & 0 & 1 & Shift out under control of Timer 2. \\
\hline 1 & 1 & 0 & Shift out under control of the system clock. \\
\hline \(\mathbf{1}\) & 1 & 1 & Shift out under control of external clock pulses. \\
\hline
\end{tabular}

\section*{4. T2 Control}

Timer 2 operates in two modes. If \(\mathrm{ACR} 5=0, \mathrm{~T} 2\) acts as an interval timer in the one-shot mode. If \(\mathrm{ACR} 5=1\), Timer 2 acts to count a predetermined number of pulses on pin PB6.

\section*{5. T1 Control}

Timer 1 operates in the one-shot or free-running mode with the PB7 output control enabled or disabled. These modes are selected as follows:
\begin{tabular}{|c|c|l|}
\hline ACR7 & ACR6 & \multicolumn{1}{c|}{ Mode } \\
\hline 0 & 0 & One-shot mode-Output to PB7 disabled \\
\hline 0 & 1 & Free-running mode-Output to PB7 disabled. \\
\hline 1 & 0 & One-shot mode-Output to PB7 enabled. \\
\hline 1 & 1 & Free-running mode-Output to PB7 enabled. \\
\hline
\end{tabular}

\section*{APPLICATION OF THE SY6522}

The SY6522 represents a significant advance in general-purpose microprocessor I/O. Unfortunately, its many powerful features, coupled with a set of very flexible operating modes, cause this device to appear to be very complex at first glance. However, a detailed analysis will show that the VIA is organized to allow convenient control of these powerful features. This section seeks to assist the system designer in his understanding of the SY6522 by illustrating how the device can be used in microprocessor-based systems.

\section*{A. Control of the SY6522 Interrupts}

Organization of the SY6522 interrupt flags into a single register greatly facilitates the servicing of interrupts from this device. Since there is only one \(\overline{\mathrm{IRQ}}\) output for the seven possible sources of interrupt within the chip, the processor must examine these flags to determine the cause of an interrupt. This is best accomplished by first transferring the contents of the flag register into the accumulator. At this time it may be necessary to mask off these flags which have been disabled in the Interrupt Enable Register. This is particularly important for the edge detecting inputs where the flags may be set whether or not the interrupting function has been enabled. Masking off these flags can be accomplished by performing an AND operation between the IER and the accumulator or by performing an "AND IMMEDIATE". The second byte of this AND \# instruction should specify those flags which correspond to interrupt functions which are to be serviced.

If the N flag is set after these operations, an active interrupt exists within the chips. This interrupt can be detected with a series of shift and branch instructions.
Clearing interrupt flags is accomplished very conveniently by writing a logic 1 directly into the appropriate bit of the Interrupt Flag Register. This can be combined with an interrupt enable or disable operation as follows:

LDA \#@10010000; initialize accumulator
STA IFR ; clear interrupt flag
STA IER ; set interrupt enable flag
or:
LDA \#@00001000; initialize accumulator
STA IFR ; clear interrupt flag
STA IER ; disable interrupt
Another very useful technique for clearing interrupt flags is to simply transfer the contents of the flag register back into this register as follows:
\[
\begin{array}{ll}
\text { LDA IFR } & ; \text { transfer IFR to accumulator } \\
\text { STA IFR } & \text {; clear flags corresponding to active interrupts }
\end{array}
\]

After completion of this operation the accumulator will still contain the interrupt flag information. Most important, writing into the flag register clears only those flags which are already set. This eliminates the possibility of inadvertently clearing a flag while it is being set.

\section*{B. Use of Timer 1}

Timer 1 represents one of the most powerful features of the SY6522. The ability to generate very evenly spaced interrupts and the ability to control the voltage on PB7 makes this timer particularly valuable in various timing, data detection and waveform generation applications.

\section*{Time-of-Day Clock Applications}

An important feature of many systems is the time-of-day clock. In microprocessor-based systems the time of day is usually maintained in memory and is updated in an interrupt service routine. A regular processor interrupt will then assure that this time of day will always be available when it is needed in the main program.
Generating very regular interrupts using previously available timers presented difficulties because of the need to re-load the timer for each interrupt. Unfortunately, the time between the interrupts will fluctuate due to variations in the interrupt response time. This problem is eliminated in the Timer 1 "free-running" mode. The accuracy of these "free-running" interrupts is only a function of the system clock and is not affected by interrupt response time.

\section*{Asynchronous Data Detection}

The extraction of clock and data information from serial asynchronous ASCII signals or from any single channel data recording device relies on the ability to establish accurate strobes. As discussed previously, the period of these strobes can be seriously affected by the interrupt response time using conventional timers. However, T 1 again allows generation of very accurate interrupts. The processor responds to these interrupts by strobing the input data. The ability to reload the T1 latches without affecting the count-down in progress is very useful in this application. This allows the strobe time to be doubled or halved during data detection. This sequence of operation is as follows:

Figure 17. DETECTING ASYNCHRONOUS DATA USING TIMER 1


\section*{Waveform Generation with Timer 1}

In addition to generating processor interrupts, Timer 1 can be used to control the output voltage on peripheral pin PB7 (output mode). In this mode a single negative pulse can be generated on PB7 (one-shot mode) or, in the free-running mode, a continuous waveform can be generated. In this latter mode the voltage on PB7 will be inverted each time T1 times out.

A single solenoid can be triggered very conveniently in the one-shot mode if the PB7 signal is used to control the solenoid directly. With this configuration the solenoid can be triggered by simply writing to T1C-H.
Generating very complex waveforms can be a simple problem if T 1 is used to control PB7 in the free-running mode. During any count-down process the latches can be loaded to determine the length of the next count-down period. Figure 18 shows this timing sequence for generating ASCII serial data.

Figure 18. ASCII SERIAL DATA GENERATION USING T1

1. Load \(T\) into \(T 1\) counter and latch. Load \(T\) into \(T 2\) to trigger \(T 1\) latch reload.
2. Load \(2 T\) into \(T 1\) latch during this bit time. Load \(2 T\) into \(T 2\), as before.
3. Load \(T\) into \(T 1\) latch anytime during this period. Load \(N T\) into \(T 2 . N=\) number of 1 's or 0 's which follow.
4. A series of 1's and 0's will be generated until the T1 latch is again changed. Note that the use of T 2 to control reloading the T1 latch eliminates the need to interrupt on each transition.

An application where this mode of operation is also very powerful is in the generation of bi-phase encoded data for tape or disk storage. This encoding technique and the sequence of operations which would take place are illustrated in Figure 19.
These applications represent only a tiny portion of the potential T1 applications. Some other possibilities are pulse width modulation waveforms, sound generation for video games, \(A / D\) techniques requiring very accurate pulse widths, and waveform synthesis in electronic games.

Figure 19. GENERATING BI-PHASE ENCODED DATA

1. Load T1 counter and latch.
2. Shift \(T 1\) latch one bit to the right during this period.
3. Shift \(T 1\) latch left during this period.
4. Shift \(T 1\) latch right during this period.

\footnotetext{
Note that T1 must be accessed only when the output data changes. A string of 1's or 0's can be generated without processor intervention.
}

Figure 22. EXPANDING SYSTEM I/O USING SHIFT REGISTER


TO INPUT SWITCHES

\section*{Clock Generation Using the Shift Register}

In all output modes the data shifted out of bit 7 will also be shifted into bit 0 . For this reason the Shift Register need not be re-loaded if the same data is to be shifted out each time. A Shift Register read operation can be used to trigger the shifting operation.
This capability is very useful for generating peripheral clocks in the continuous output mode. This mode allows an 8 -bit pattern to be shifted out continuously. This is illustrated in Figure 23. Note that in this mode the shifting operation is controlled by Timer 2. A singie bit time can therefore be up to 256 clock cycles in length.

Figure 23. CLOCK GENERATION USING SR FREE-RUNNING MODE

NOTES:
1. Shift Register loaded with 111000002 initially. 2. \(\mathbf{T}\) determined by Timer \(\mathbf{2}\).



\section*{Using the SY6522 Shift Register}

The Shift Register in the SY6522 is designed primarily as a synchronous serial communications port for distributed systems. These systems can be either single-processor with distributed peripheral controllers or distributed processor systems. The most important characteristic of the Shift Register in these applications is its ability to transfer information at relatively slow data rates to allow the use of R-C noise suppression techniques. This transfer can be accomplished while the processor is servicing other aspects of the system. An example of a simple 2 -processor distributed system is shown in Figure 20. Use of the SY6522 Shift Register allows effective communication between the two systems without the use of relatively complex asynchronous communications techniques.

Figure 20. USING SHIFT REGISTER FOR INTER-SYSTEM COMMUNICATION


In a system with distributed peripherals, the Shift Register can be used to transfer data to the peripheral interface devices. This is illustrated in Figure 21 for a system with a number of distributed status displays. These displays are serviced by stand-alone controllers which actuate the lamps in the status displays with simple drivers. The data and clock lines are wired in parallel to each unit. In addition, a single SY6522 peripheral port allows selection of the display to be loaded. These select lines can be eliminated if all displays are to contain the same information. With the system shown, the status display can be updated at any time by simply selecting the desired display and then writing to the Shift Register.

Figure 21. USING THE SHIFT REGISTER FOR SERVICING REMOTE STATUS DISPLAYS


Remote input devices can be serviced in much the same manner by shifting data into the Shift Register under control of a peripheral port output as shown in Figure 21. Each set of input switches can be polled by first selecting the set to be polled and then triggering the shifting operation with a Shift Register read operation. A shift register interrupt can be used to cause the processor to read the resulting input information after shifting is complete.
The techniques described above can be utilized to expand I/O capability in a microprocessor based system. In a system with many status lamps or many input switches, simple TTL shift registers will provide the necessary I/O in a very cost effective manner. This is illustrated in Figure 22.

\section*{APPENDIX K}

SY6532 DATA SHEET

\section*{SY6532 (RAM, I/O,TIMER ARRAY)}

The SY6532 is designed to operate in conjuction with the SY6500 Microprocessor Family. It is comprised of a \(128 \times 8\) static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, a software programmable interval timer with interrupt capable of timing in various intervals from 1 to 262,144 clock periods, and a programmable edge-detect interrupt circuit.
- 8 bit bi-directional Data Bus for direct communication with the microprocessor
- Programmable edge-sensitive interrupt
- \(128 \times 8\) static RAM
- Two 8 bit bi-directional data ports for interface to peripherals
- Two programmable I/O Peripheral Data Direction Registers
- Programmable Interval Timer
- Programmable Interval Timer Interrupt
- TTL \& CMOS compatible peripheral lines
- Peripheral pins with Direct Transistor Drive Capability
- High Impedance Three-State Data Pins

Figure 1. 6532 BLOCK DIAGRAM


MAXIMUM RATINGS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ RATING } & SYMBOL & VOLTAGE & UNIT \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & -.3 to +7.0 & V \\
\hline Input/Output Voltage & \(\mathrm{V}_{\text {IN }}\) & -.3 to +7.0 & V \\
\hline Operating Temperature Range & \(\mathrm{T}_{\mathrm{OP}}\) & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{TSTG}_{\mathrm{STG}}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARATERISTICS (VCC \(=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{TA}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN. & TYP. & Max. & UNIT \\
\hline Input High Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & VSS +2.4 & & \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Input Low Voltage & VIL & VSS - . 3 & & \(\mathrm{V}_{\text {SS }}+.4\) & V \\
\hline \begin{tabular}{l}
Input Leakage Current; \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}+.5 \mathrm{~V}\) \\
\(\mathrm{A} \emptyset\) - \(\mathrm{A} 6, \overline{\mathrm{RS}}, \mathrm{R} / \mathrm{W}, \overline{\mathrm{RES}}, ~ \emptyset 2, \mathrm{CS} 1, \overline{\mathrm{CS} 2}\)
\end{tabular} & In & & 1.0 & 2.5 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Leakage Current for High Impedance State \\
(Three State); \(\mathrm{V}_{\text {IN }}=.4 \mathrm{~V}\) to \(2.4 \mathrm{~V} ; \mathrm{D} \emptyset-\mathrm{D} 7\)
\end{tabular} & \(I_{\text {ISI }}\) & & \(\pm 1.0\) & \(\pm 10.0\) & \(\mu \mathrm{A}\) \\
\hline Input High Current; \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) PA \(\emptyset\)-РA7, PB \(\emptyset\)-PB7 & IIH & -100. & -300. & & \(\mu \mathrm{A}\) \\
\hline Input Low Current; \(\mathrm{V}_{\mathrm{IN}}=.4 \mathrm{~V}\) PA \(\emptyset\)-PA7, PB \(\emptyset\)-PB7 & IIL & & -1.0 & -1.6 & MA \\
\hline \[
\begin{aligned}
& \text { Output High Voltage } \\
& \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant-100 \mu \mathrm{~A}(\mathrm{PA} \emptyset \cdot \mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7, \mathrm{D} \emptyset-\mathrm{D} 7) \\
& \qquad \mathrm{I}_{\mathrm{LOAD}} \leqslant 3 \mathrm{MA}(\mathrm{~PB} \emptyset \cdot \mathrm{~PB} 7)
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{array}{|l}
\mathrm{V}_{\mathrm{SS}}+2.4 \\
\mathrm{v}_{\mathrm{SS}}+1.5 \\
\hline
\end{array}
\] & & & V \\
\hline Output Low Voltage
\[
\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LOAD}} \leqslant 1.6 \mathrm{MA}
\] & VOL & & & \(\mathrm{VSS}^{+} .4\) & V \\
\hline \[
\begin{aligned}
& \text { Output High Current (Sourcing) } \\
& \qquad \begin{array}{l}
\mathrm{OH}
\end{array}>2.4 \mathrm{~V} \text { (PA } \emptyset \text {-PA } 7, \mathrm{~PB} \emptyset \text {-PB7, D } \emptyset \text {-D7) } \\
& \geqslant 1.5 \mathrm{~V} \text { Available for direct transistor } \\
& \text { drive (PB } \emptyset \text {-PB7) }
\end{aligned}
\] & IOH & \[
\begin{array}{r}
-100 \\
3.0
\end{array}
\] & \[
\begin{gathered}
-1000 \\
5.0
\end{gathered}
\] & & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{MA}
\end{aligned}
\] \\
\hline Output Low Current (Sinking); \(\mathrm{V}_{\mathrm{OL}} \leqslant .4 \mathrm{~V}\) & IOL & 1.6 & & & MA \\
\hline Clock Input Capacitance & \(\mathrm{C}_{\mathrm{Clk}}\) & & & 30 & pf \\
\hline Input Capacitance & \(\mathrm{C}_{\text {IN }}\) & & & 10 & pf \\
\hline Output Capacitance & COUT & & & 10 & pf \\
\hline Power Dissipation & ICC & & 100 & 125 & mA \\
\hline
\end{tabular}

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to pre-
vent unnecessary application of voltage outside the specification range.

\section*{WRITE TIMING CHARACTERISTICS}


READ TIMING CHARACTERISTICS


\section*{WRITE TIMING CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & MIN. & TYP. & MAX. & UNIT \\
\hline Clock Period & TCYC & 1 & & & \(\mu\) S \\
\hline Rise \& Fall Times & TR, TF & & & 25 & NS \\
\hline Clock Pulse Width & TC & 470 & & & NS \\
\hline R/W valid before positive transition of clock & TWCW & 180 & & & NS \\
\hline Address valid before positive transition of clock & TACW & 180 & & & NS \\
\hline Data Bus valid before negative transition of clock & TDCW & 300 & & & NS \\
\hline Data Bus Hold Time & THW & 10 & & & NS \\
\hline Peripheral data valid after negative transition of clock & TCPW & & & 1 & \(\mu S\) \\
\hline \begin{tabular}{c} 
Peripheral data valid after negative transition of clock driving CMOS \\
(Level \(\left.=V_{C C}=30 \%\right)\)
\end{tabular} & TCMOS & & & 2 & \(\mu S\) \\
\hline
\end{tabular}

\section*{READ TIMING CHARACTERISTICS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ CHARACTERISTIC } & SYMBOL & MIN. & TYP. & MAX. & UNIT \\
\hline R/W valid after positive transition of clock & TWCR & 180 & & & NS \\
\hline Address valid before positive transition of clock & TACR & 180 & & & NS \\
\hline Peripheral data valid before positive transition of clock & TPCR & 300 & & & NS \\
\hline Data Bus valid after positive transition of clock & TCDR & & & 395 & NS \\
\hline Data Bus Hold Time & THR & 10 & & & NS \\
\hline\(\overline{\text { IRQ (Interval Timer Interrupt) valid before positive transition of clock }}\) & TIC & 200 & & & NS \\
\hline
\end{tabular}

Loading \(=30 \mathrm{pf}+1 \mathrm{TTL}\) load for \(\mathrm{PA} \emptyset \cdot \mathrm{PA} 7, \mathrm{~PB} \emptyset-\mathrm{PB} 7\)
\(=130 \mathrm{pf}+1\) TTL load for \(\mathrm{D} \emptyset-\mathrm{D} 7\)

\section*{INTERFACE SIGNAL DESCRIPTION}

\section*{Reset ( \(\overline{\mathrm{RES}}\) )}

During system initialization a Logic " 0 " on the \(\overline{\mathrm{RES}}\) input will cause a zeroing of all four I/O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during Reset. Interrupt capability is disabled with the \(\overline{\mathrm{RES}}\) signal. The \(\overline{\mathrm{RES}}\) signal must be held low for at least one clock period when reset is required.

\section*{Input Clock}

The input clock is a system Phase Two clock which can be either a low level clock ( \(\mathrm{V}_{\mathrm{IL}}<0.4, \mathrm{~V}_{\mathrm{IH}}>2.4\) ) or high level clock ( \(\mathrm{V}_{\mathrm{IL}}<0.2, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Vcc}_{-.2}^{+.3}\) ).

\section*{Read/Write (R/W)}

The \(\mathrm{R} / \mathrm{W}\) signal is supplied by the microprocessor array and is used to control the transfer of data to and from the microprocessor array and the SY6532. A high on the R/W pin allows the processor to read (with proper addressing) the data supplied by the SY6532. A low on the R/W pin allows a write (with proper addressing) to the SY6532.

\section*{Interrupt Request ( \(\overline{\mathbf{R O} \mathbf{O}})\)}

The \(\overline{\mathrm{IRQ}}\) pin is an interrupt pin from the interrupt control logic. It will be normally high with a low indicating an interrupt from the SY6532. \(\overline{\mathrm{IRQ}}\) is an open-drain output, permitting several units to be wire-or'ed to the common \(\overline{\mathrm{IRQ}}\) microprocessor input pin. The \(\overline{\mathrm{IRQ}}\) pin may be activated by a transition on PA7 or timeout of the interval timer.
Data Bus (D0-D7)
The SY6532 has eight bi-directional data pins (D0-D7). These pins connect to the system's data lines and allow transfer of data to and from the microprocessor array. The output buffers remain in the off state except when a Read operation occurs.

\section*{Peripheral Data Ports}

The SY6532 has 16 pins available for peripheral I/O operations. Each pin is individually programmable to act as either an input or an output. The 16 pins are divided into two 8-bit ports, PA0-PA7 and PB0-PB7. PA7 may also function as an interrupt input pin. This feature is described in another section. The pins are set up as an input by writing a " 0 " into the corresponding bit of the data direction register. \(A\) " 1 " into the data direction register will cause its corresponding bit to be an output. When in the input mode, the peripheral output buffers are in the " 1 " state and a pull-up device acts as less than one TTL load to the peripheral data lines. On a Read operation, the microprocessor unit reads the peripheral pin. When the peripheral device gets information from the SY6532 it receives data stored in the data register. The microprocessor will read correct information if the peripheral lines are greater than 2.4 volts for a " 1 " and less than 0.4 volts for a " 0 " as the peripheral pins are all TTL compatible. Pins PB0-PB7 are also capable of sourcing 3 ma at 1.5 v thus making them capable of direct transistor drive.

\section*{Address Lines (A0-A6)}

There are 7 address pins. In addition to these, there is the \(\overline{\mathrm{RS}}\) pin. The above pins, \(A 0-\mathrm{A} 6\) and \(\overline{\mathrm{RS}}\), are always used as addressing pins. There are 2 additional pins which are used as CHIP SELECTS. They are pins CS1 and \(\overline{\operatorname{CS} 2}\).

\section*{INTERNAL ORGANIZATION}

A block diagram of the internal architecture is shown in Figure 1. The SY6532 is divided into four basic sections: RAM, I/O, Timer, and Interrupt Control. The RAM interfaces directly with the microprocessor through the system data bus and address lines. The I/O section consists of two 8-bit halves. Each half contains a Data Direction Register (DDR) and an I/O register.
RAM 128 Bytes ( 1024 Bits)
A \(128 \times 8\) static RAM is contained on the SY6532. It is addressed by A0-A6 (Byte Select), \(\overline{\mathrm{RS}}, \mathrm{CS} 1\), and \(\overline{\mathrm{CS} 2}\).

\section*{Internal Peripheral Registers}

There are four 8-bit internal registers: two data direction registers and two output registers. The two data direction registers (A side and \(B\) side) control the direction of data into and out of the peripheral I/O pins. A logic zero in a bit of the data direction register (DDRA and DDRB) causes the corresponding pin of the I/O port to act as an input. A logic one causes the corresponding pin to act as an output. The voltage on any pin programmed as an output is determined by the corresponding bit in the output register (ORA and ORB).
Data is read directly from the PA pins during a peripheral read operation. Thus, for a PA pin programmed as an output, the data transferred into the processor will be the same as the data in the ORA only if the voltage on the pin is allowed to \(\mathrm{be} \geqslant 2.4\) volts for a logic one and \(\leqslant 0.4\) volts for a zero. If the loading on the pin does not allow this, then the data resulting from the read operation may not match the contents of ORA.

The output buffers for the PB pins are somewhat different from the PA buffers. The PB buffers are push-pull devices which are capable of sourcing 3 ma at 1.5 volts. This allows for these pins to directly drive transistor circuits. To assure that the processor will read the proper data when performing a peripheral read operation, logic is provided in the peripheral B port to permit the processor to read the contents of ORB, instead of the PB pins as is the case for the PA port.

\section*{Interval Timer}

The timer section of the SY6532 contains three basic parts: preliminary divide down register, programmable 8-bit register and interrupt logic. These are illustrated in Figure 2.

The interval timer can be programmed to count up to 256 time intervals. Each time interval can be either 1T, 8T, 64 T or 1024 T increments, where T is the system clock period. When a full count is reached, and interrupt flag is set to a logic " 1 ." After the interrupt flag is set the internal clock begins counting down to a maximum of -255 T . Thus, after the interrupt flag is set, a Read of the timer will tell how long since the flag was set up to a maximum of 255 T .
The 8 -bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 00110100 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of \(1,8,64,1024 \mathrm{~T}\) are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of \(\overline{\mathrm{IRQ}}\), i.e., \(\mathrm{A}_{3}=1\) enables \(\overline{\mathrm{IRQ}}, \mathrm{A}_{3}=0\) disables \(\overline{\mathrm{IRQ}}\). In either case, when timeout occurs, bit 7 of the Interrupt Flag Register is set. This flag is cleared when the Timer register is either read from or written to by the processor. If IRQ is enabled by A3 and an interrupt occurs IRQ will go low. When the timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., \(51,50,49\), etc.
When the timer has counted down to 00000000 on the next count time an interrupt will occur and the counter will read 111111111 . After interrupt, the timer register decrements at a divide by " 1 " rate of the system clock. If after interrupt, the timer is read and a value of 11100100 is read, the time since interrupt is 28 T . The value read is in two's complement.
\[
\begin{array}{ll}
\text { Value read } & =111100100 \\
\text { Complement } & =00011011 \\
\text { Add } 1 & =00011100=28 .
\end{array}
\]

Figure 2. BASIC ELEMENTS OF INTERVAL TIMER


Thus, to arrive at the total elapsed time, merely do a two's complement add to the original time written into the timer. Again, assume time written as \(00110100(=52)\). With a divide by 8 , total time to interrupt is \((52 \times 8)+1=417 \mathrm{~T}\). Total elapsed time would be \(416 \mathrm{~T}+28 \mathrm{~T}=444 \mathrm{~T}\), assuming the value read after interrupt was 11100100 .
After interrupt, whenever the timer is written or read the interrupt is reset. However, the reading of the timer at the same time the interrupt occurs will not reset the interrupt flag.
Figure 3 illustrates an example of interrupt.

Figure 3. TIMER INTERRUPT TIMING

1. Data written into interval timers is \(00110100=5210\)
2. Data in Interval timer is \(00011001=2510\)
\[
52-8-1=52-26-1=25
\]
3. Data in Interval timer is \(00000000=010\)
\[
52-815-1=52-51-1=0
\]
4. Interrupt has occurred at \(\emptyset 2\) pulse \#416

Data in Interval timer =111111111
5. Data in Interval timer is 10101100
two's complement is \(01010100=8410\) \(84+(52 \times 8)=500_{10}\)

When reading the timer after an interrupt, A 3 should be low so as to disable the \(\overline{\mathrm{IRQ}}\) pin. This is done so as to avoid future interrupts until after another Write operation.

\section*{Interrupt Flag Register}

The Interrupt Flag Register consists of two bits: the timer interrupt flag and the PA7 interrupt flag. When a read operation is performed on the Interrupt Flag Register, the bits are transferred to the processor on the data bus, as the diagram below, indicates.

Figure 4. INTERRUPT FLAG REGISTER


The PA7 flag is cleared when the Interrupt Flag Register is read. The timer flag is cleared when the timer register is either written or read.

\section*{ADDRESSING}

Addressing of the SY6532 is accomplished by the 7 addressing pins, the \(\overline{\mathrm{RS}}\) pin and the two chip select pins CS1 and \(\overline{\mathrm{CS} 2}\). To address the RAM, CS1 must be high with \(\overline{\mathrm{CS} 2}\) and \(\overline{\mathrm{RS}}\) low. To address the I/O and Interval timer CS1 and \(\overline{\mathrm{RS}}\) must be high with \(\overline{\mathrm{CS}} 2\) low. As can be seen to access the chip CS 1 is high and \(\overline{\mathrm{CS} 2}\) is low. To distinguish between RAM or I/O Timer the \(\overline{R S}\) pin is used. When this pin is low the RAM is addressed, when high the I/O Interval timer section is addressed. To distinguish between timer and \(I / O\) address line \(A 2\) is utilized. When \(A 2\) is high the interval timer is accessed. When A2 is low the I/O section is addressed. Table 1 illustrates the chip addressing.

\section*{Edge Sense Interrupt}

In addition to its use as a peripheral I/O line, the PA7 pin can function as an edge sensitive input. In this mode, an active transition on PA7 will set the internal interrupt flag (bit 6 of the Interrupt Flag Register). When this occurs, and providing the PA7 interrupt is enabled, the \(\overline{\mathrm{IRQ}}\) output will go low.
Control of the PA7 edge detecting logic is accomplished by performing a write operation to one of four addresses. The data lines for this operation are "don't care" and the addresses to be used are found in Figure 4.
The setting of the internal interrupt flag by an active transition on PA7 is always enabled, no matter whether PA7 is set up as an input or an output.
The \(\overline{\mathrm{RES}}\) signal disables the PA7 interrupt and sets the active transition to the negative edge-detect state. During the reset operation, the interrupt flag may be set by a negative transition. It may, therefore, be necessary to clear the flag before its normal use as an edge detecting input is enabled. This can be achieved by reading the Interrupt Flag Register, as defined by Figure 4 immediately after reset.

\section*{1/O Register - Timer Addressing}

Table 1 illustrates the address decoding for the internal elements and timer programming. Address line A2 distinquishes I/O registers from the timer. When A2 is low and \(\overline{\mathrm{RS}}\) is high, the I/O registers are addressed. Once the I/O registers are addressed, address lines A1 and A0 decode the desired register.
When the timer is selected AI and A0 decode the "divide-by" matrix. This decoding is defined in Table 1. In addition, Address A3 is used to enable the interrupt flag to \(\overline{\overline{I R}}\).

Table 1 ADDRESSING DECODE
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ OPERATION } & \(\overline{\mathbf{R S}}\) & R/W & A4 & A3 & A2 & A1 & A0 \\
\hline Write RAM & 0 & 0 & - & - & - & - & - \\
Read RAM & 0 & 1 & - & - & - & - & - \\
Write DDRA & 1 & 0 & - & - & 0 & 0 & 1 \\
Read DDRA & 1 & 1 & - & - & 0 & 0 & 1 \\
Write DDRB & 1 & 0 & - & - & 0 & 1 & 1 \\
Read DDRB & 1 & 1 & - & - & 0 & 1 & 1 \\
Write Output Reg A & 1 & 0 & - & - & 0 & 0 & 0 \\
Read Output Reg A & 1 & 1 & - & - & 0 & 0 & 0 \\
Write Output Reg B & 1 & 0 & - & - & 0 & 1 & 0 \\
Read Output Reg B & 1 & 1 & - & - & 0 & 1 & 0 \\
Write Timer & & & & & & & \\
\(\quad \div\) 1T & 1 & 0 & 1 & (a) & 1 & 0 & 0 \\
\(\div 8 T\) & 1 & 0 & 1 & (a) & 1 & 0 & 1 \\
\(\div 64 T\) & 1 & 0 & 1 & (a) & 1 & 1 & 0 \\
\(\div 1024 T\) & 1 & 0 & 1 & (a) & 1 & 1 & 1 \\
Read Timer & 1 & 1 & - & (a) & 1 & - & 0 \\
Read Interrupt Flag & 1 & 1 & - & - & 1 & - & 1 \\
Write Edge Detect Control & 1 & 0 & 0 & - & 1 & (b) & (c) \\
\hline
\end{tabular}

NOTES: \(\quad-=\) Don't Care, " 1 " = High level \((\geqslant 2.4 \mathrm{~V})\), " 0 " = Low level \((\leqslant 0.4 \mathrm{~V})\)
(a) \(\mathrm{A} 3=0\) to disable interrupt from timer to \(\overline{\mathrm{IRQ}}\)
\(A 3=1\) to enable interrupt from timer to \(\overline{\text { IRQ }}\)
(c) \(\begin{aligned} \mathrm{A} 0 & =0 \text { for negative edge-detect } \\ \mathrm{A} 0 & =1 \text { for positive edge-detect }\end{aligned}\)
(b) \(\mathrm{A} 1=0\) to disable interrupt from PA7 to \(\overline{\mathrm{IRQ}}\)
\(\mathrm{A} 1=1\) to enable interrupt from PA7 to \(\overline{\mathrm{RQ}}\)

PACKAGE OUTLINE


NOTE: Pin No. 1 is in lower left corner when
symbolization is in normal orientation

PIN DESIGNATION


\section*{APPENDIX L}

\section*{SY2114 RAM DATA SHEET}

\title{
1024x4 Static Random Access Memory
}
- 300 ns Maximum Access
- Low Operating Power Dissipation
0.1 mW/Bit
- No Clocks or Strobes Required
- Identical Cycle and Access Times
- Single +5V Supply
- Totally TTL Compatible:

All Inputs, Outputs, and Power Supply
- Common Data I/O
- 400 mv Noise Immunity
- High Density 18 Pin Package

The SY2114 is a 4096-Bit static Random Access Memory organized 1024 words by 4 -bits and is fabricated using Synertek's N-channel Silicon-Gate MOS technology. It is designed using fully DC stable (static) circuitry in both the memory array and the decoding and therefore requires no clock or refreshing to operate. Address setup times are not required and the data is read out nondestructively with the same polarity as the input data. Common Input/Output pins are provided to simplify design of the bus oriented systems, and can drive 2 TTL loads.

PIN CONFIGURATION


ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline Order Number & Package Type & Access Time & Supply Current (Max) & Temperature Range \\
\hline SYC2114 & Ceramic & 450nsec & 100 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYP2114 & Molded & 450nsec & 100 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYC2114-3 & Ceramic & 300nsec & 100 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYP2114-3 & Molded & 300 nsec & 100 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYC2114L & Ceramic & 450nsec & 70 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYP2114L & Molded & 450nsec & 70 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYC2114L-3 & Ceramic & 300nsec & 70 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline SYP2114L-3 & Molded & 300nsec & 70 mamp & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

The SY2114 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. It is totally TTL compațible in all respects: inputs, outputs, and the single +5 V supply. A separate Chip Select ( \(\overline{\mathrm{CS}}\) ) input allows easy selection of an individual device when outputs are or-tied.
The SY2114 is packaged in an 18-pin DIP for the highest possible density and is fabricated with N channel, Ion Implanted, Silicon-Gate technology - a technology providing excellent performance characteristics as well as protection against contamination allowing the use of low cost packaging techniques.

\section*{BLOCK DIAGRAM}


\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{lr} 
Temperature Under Bias & \(-10^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) \\
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
Voltage on Any Pin with & \\
Respect to Ground & -0.5 V to +7 V \\
Power Dissipation & 1.0 W
\end{tabular}

\section*{COMMENT}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
D.C. CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\) (Unless Otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multicolumn{4}{|l|}{2114-3, 2114 2114L, 2114L-3} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Min & Max & Min & Max & & \\
\hline 'LI & Input Load Current (All input pins) & & 10 & & 10 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=0\) to 5.25 V \\
\hline Loo & I/O Leakage Current & & 10 & & 10 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \overline{C S}=2.0 \mathrm{~V} \\
& V_{1 / O}=0.4 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC}
\end{aligned}
\] \\
\hline ICC1 & Power Supply Current & & 95 & & 65 & mA & \[
\begin{aligned}
& V_{C C}=5.25 \mathrm{~V}, 11 / O=0 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \({ }^{1} \mathrm{CC} 2\) & Power Supply Current & & 100 & & 70 & mA & \[
\begin{aligned}
& V_{C C}=5.25 \mathrm{~V}, I_{1 / O}=0 \mathrm{~mA}, \\
& T_{A}=0^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline VIL & Input Low Voltage & -0.5 & 0.8 & -0.5 & 0.8 & v & \\
\hline \(V_{\text {IH }}\) & Input High Voltage & 2.0 & Vcc & 2.0 & Vcc & v & \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output Low Voltage & & 0.4 & & 0.4 & V & \({ }^{1} \mathrm{OL}=3.2 \mathrm{~mA}\) \\
\hline VOH & Output High Voltage & 2.4 & Vcc & 2.4 & \(\mathrm{V}_{\text {cc }}\) & V & \(1 \mathrm{OH}=-1.0 \mathrm{~mA}\) \\
\hline
\end{tabular}

CAPACITANCE \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\)
\begin{tabular}{l|l|c|c|c}
\hline \multicolumn{1}{c|}{ Symbol } & Test & Typ & Max & Units \\
\hline \(\mathrm{C}_{\text {I/O }}\) & Input/Output Capacitance & & 5 & pF \\
\(\mathrm{CIN}^{\text {Input Capacitance }}\) & & 5 & pF \\
\hline
\end{tabular}

NOTE: This parameter is periodically sampled and not \(100 \%\) tested.
A.C. CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%\) (Unless Otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{2114-3,2114L-3} & \multicolumn{2}{|l|}{2114,2114L} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline \multicolumn{7}{|l|}{READ CYCLE} \\
\hline \({ }^{\text {t }} \mathrm{C}\) C & Read Cycle Time & 300 & & 450 & & nsec \\
\hline \(t_{\text {A }}\) & Access Time & & 300 & & 450 & nsec \\
\hline tco & Chip Select to Output Valid & & 100 & & 120 & nsec \\
\hline \({ }^{\text {t }} \mathrm{CX}\) & Chip Select to Output Enabled & 20 & & 20 & & nsec \\
\hline tOTD & Chip Deselect to Output Off & 0 & 80 & 0 & 100 & nsec \\
\hline toha & Output Hold From Address Change & 50 & & 50 & & nsec \\
\hline \multicolumn{7}{|l|}{WRITECYCLE} \\
\hline twC & Write Cycle Time & 300 & & 450 & & nsec \\
\hline \({ }^{\text {t }}\) AW & Address to Write Setup Time & 0 & & 0 & & nsec \\
\hline tw & Write Pulse Width & 150 & & 200 & & nsec \\
\hline tWR & Write Release Time & 0 & & 0 & & nsec \\
\hline totw & Write to Output Off & 0 & 80 & 0 & 100 & nsec \\
\hline tDW & Data to Write Overlap & 150 & & 200 & & nsec \\
\hline \({ }^{\text {t }} \mathrm{H}\) & Data Hold & 0 & & 0 & & nsec \\
\hline
\end{tabular}

\section*{A.C. Test Conditions}

Input Pulse Levels . . . .
Input Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 n sec
Timing Measurement Levels: Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 and 2.0 V
Output Load
1 TTL Gate and 100pF

TIMING DIAGRAMS

Read Cycle \({ }^{(1)}\)


\section*{Write Cycle}


NOTES:
(1) WE is high for a Read Cycle
(2) \({ }^{t} W\) is measured from the latter of \(\overline{C S}\) or \(\overline{W E}\) going low to the earlier of \(\overline{C S}\) or \(\overline{W E}\) going high.

\section*{DATA STORAGE}

When \(\overline{W E}\) is high, the data input buffers are inhibited to prevent erroneous data from being written into the array. As iong as \(\overrightarrow{W E}\) remains high, the data stored cannot be affected by the Address, Chip Select, or Data I/O logic levels or timing transitions.
Data storage also cannot be affected by \(\bar{W}\), Addresses, or the I/O ports as long as \(\overline{\mathrm{CS}}\) is high. Either \(\overline{\mathrm{CS}}\) or \(\overline{W E}\) or both can prevent extraneous writing due to signal transitions.
Data within the array can only be changed during Write time - defined as the overlap of \(\overline{\mathrm{CS}}\) low and
\(\overline{W E}\) low. The addresses must be properly established during the entire Write time plus \(\mathrm{t}_{\mathrm{W}}\).
Internal delays are such that address decoding propagates ahead of data inputs and therefore no address setup time is required. If the Write time precedes the addresses, the data in previously addressed locations, or some other location, may be changed. Addresses must remain stable for the entire Write cycle but the Data Inputs may change. The data which is stable for tDW at the end of the Write time will be written into the addressed location.

\section*{TYPICAL CHARACTERISTICS}







\section*{PACKAGE DIAGRAM}

CERAMIC PACKAGE



MOLDED PACKAGE


FAGE: 000I

\begin{tabular}{|c|c|c|c|c|c|}
\hline LTNE & \＃ \(1 . .00\) & COTE & \multicolumn{2}{|l|}{1．．TNE} & \\
\hline 0057 & A658 & & SF & 米 \(=\) w＋1 & 9 STACK \\
\hline 0068 & A65C & & FF & ＊\(=\)＊＊ & 勺FLAC \\
\hline 005\％ & A65\％ & & AR & ＊：\(=\) w +1 & \％AREG \\
\hline 0060 & A65E： & & \(\times \mathrm{F}\) & ＊\(=\cdots+1\) & A XEEC \\
\hline 0061 & A65F－ & & Y事 & ＊\(\quad *+1\) & OYEEG \\
\hline 0062 & A660 & & \(\hat{y}\) & & \\
\hline 0063 & A660 & & \multicolumn{2}{|l|}{\％I． 0 UECTORS FOLIOW} & \\
\hline 0064 & A660 & & \multicolumn{2}{|l|}{\(\stackrel{3}{4}\)} & \\
\hline 0065 & A660 & & TNUEC & ＊\(=\)＊\(*+3\) & Y IN CHAF \\
\hline 0066 & A66\％ & & OUTVEC & W \(=\) \％\(x^{*}+3\) & y dut char \\
\hline 0067 & A666 & & TMSUEC & ＊\(=*+\frac{3}{}\) & \％N STATUS \\
\hline 0068 & A66\％ & & \multicolumn{2}{|r|}{＊\(=\)＊\(*+3\)} & NOT USEO \\
\hline 0069 & A660 & & URCUEC & ＊\(=\)＊ ＋\(\%\) & \multirow[t]{2}{*}{－UNRECOGNZEO CMDFEREOR VECTOR GGCAN ON BOARO MTEFAY} \\
\hline 0070 & A66F & &  & ＊\(=3+3\) & \\
\hline 0071 & A 672 & & y & & \\
\hline 0072 & A 672 & & \multicolumn{3}{|l|}{\％TFACE，TNTEFEUFT UECTOFS} \\
\hline 0073 & A6\％2 & & \multicolumn{3}{|l|}{} \\
\hline 0074 & A672 & & EXEVEC & ＊\(=\)＊＋\({ }^{\text {a }}\) & F WEC CMI Al．TEFNATE TNUEC \\
\hline 0075 & M674 & & TRCUEE & ＊\(=\)＊+2 & अ TRACE \\
\hline 0076 & A676 & & UBFKUC & ＊\(*+2\) & 勺USEF BRK AFTEK MONTTOR \\
\hline \(007 \%\) & A678 & & USFK゙ソ & ＝UERKVC & \\
\hline 0078 & A678 & & UTFQUO & ＊\(=\)＊＋2 & \multirow[t]{2}{*}{－USEF NON BRK IRQ AFTER MONTTOK} \\
\hline 0079 & A67A & & UTFQV & ＝UTFQU & \\
\hline 0080 & A6\％A & & NMIUEC & ＊\(=*+2\) & \\
\hline 0081. & \(A B 7 C\) & & FSTUEC & ＊＝w＋2 & 4 REGET \\
\hline 0082 & AOFE & & TRQUED & ＊\(=\)＊+2 & \multirow[t]{2}{*}{4 Y FO} \\
\hline 0083 & A680 & & \％ & & \\
\hline 0084 & A680 & & \multicolumn{2}{|l|}{\％} & \multirow[b]{3}{*}{\％\(/ \mathrm{O}\) KG MEFINTTONS وKEYBOARD M GFLIAY} \\
\hline 0086 & A680 & & & & \\
\hline 0066 & 9680 & & FACA & \(=54400\) & \\
\hline 0087 & A680 & & \(\cdots \mathrm{FOA}\) & \(\cdots\) \＃AAO2 & ¢ MATA MTFECTION FOF SAME \\
\hline 00 e & A680 & & \multicolumn{2}{|l|}{OR3A \(=\) क ACOL} & 9 WF＇MBONy GBOFF－ \\
\hline 0089 & A680 & & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{y Kata＠TFECTION FOF SAME：} \\
\hline 0090 & A680 & & \multicolumn{2}{|l|}{ORIE＝\＄AOOO} & \\
\hline 0091 & A680 & & \multicolumn{2}{|l|}{MRFLE \(=4\) AOO2} & \multirow{4}{*}{＊FOF／TAFE REMOTE} \\
\hline 0092 & A680 & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\hat{y}\)（}} & \\
\hline 0093 & A680 & & & & \\
\hline 0094 & A 680 & & \multicolumn{2}{|l|}{＊MONITOF MAINLINE} & \\
\hline 0095 & A680 & & \multicolumn{2}{|l|}{} & \\
\hline 0096 & A680 & & & ＊\(=\) ¢ 68000 & \multirow[b]{2}{*}{\begin{tabular}{l}
y Mit Sy Cluy OET ACCESS \\
GGET COMMANH＋FAFMS（O－3）
\end{tabular}} \\
\hline 0087 & 8000 & 4 C 7 7 C 8B & MONITF & JMF＇MONETT & \\
\hline 0098 & 8003 & 20 FF\％ 80 & \multirow[t]{4}{*}{WAEM} & JSR GETCOM & \multirow[t]{2}{*}{G ISFATCH CMM，FAFMS TO EXEC BLKS} \\
\hline 0099 & 8006 & \(20488!\) & & JSK HTEFAT & \\
\hline 0100 & 8009 & 2071.81 & & JSK ERMSO & g OnS EF MSO IF CAFFY SET \\
\hline 0101 & 8000 & 4 C 0380 & & ，JMF WFFMM & YANL CONTTNUE \\
\hline 0102 & 800F & & \multicolumn{2}{|l|}{\％} & \multirow[b]{2}{*}{ROUTTNE\％} \\
\hline 0103 & 800F & & \multicolumn{2}{|l|}{＊TFACE AND INTEFKUFT} & \\
\hline 01.04 & 8007 & & \multicolumn{2}{|l|}{\％} & \\
\hline 0105 & 800F－ & 08 & \multirow[t]{5}{*}{TFOEFEK} & \[
F H^{\circ}
\] & YTFO OK ERK ？ \\
\hline 0106 & 8010 & 48 & & FHA & \\
\hline 0107 & 8011 & 8合 & & TXA & \\
\hline 0108 & 8012 & 48 & & FHA & \\
\hline 0109 & 801.3 & EA & & TSX & \\
\hline 01.10 & 8014 & E150401 & &  & FYCK WFMAGS \\
\hline O1． L & 801.7 & \(29 \quad 10\) & & ANLI \＃\＄ 1.0 & \\
\hline
\end{tabular}

LTNE \# LOC
\begin{tabular}{|c|c|c|c|c|}
\hline 0112 & 8019 & 170 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{07}} \\
\hline 0113 & 80.16 & 68 & & \\
\hline 0114 & 8010 & mam & & \\
\hline 0.115 & 801 & 68 & & \\
\hline 0116 & 801E & 28 & \multirow[b]{2}{*}{176} & \\
\hline 0117 & 801F & 6C & & FF \\
\hline 0118 & 902\% & 68 & & \\
\hline 0119 & 8023 & AA & & \\
\hline 0120 & 80\%4 & 68 & & \\
\hline 0.21 & 8025 & 28 & & \\
\hline 0122 & 9026 & 60 & 1 F & FF' \\
\hline 01.23 & 8029 & 20 & 86 & 86 \\
\hline 0124 & 802C & 38 & & \\
\hline 0125 & 8020 & 20 & 64 & 80 \\
\hline 0126 & 8030 & A9 & 31. & \\
\hline 0.127 & 803\% & 4 C & 5 & 80 \\
\hline 0128 & 8035 & 08 & & \\
\hline 0129 & 8036 & 20 & 86 & 8 B \\
\hline 01330 & 8039 & 38 & & \\
\hline 0131 & 803A & 20 & 64 & 80 \\
\hline 01.32 & 8030 & EE & 59 & A6 \\
\hline 01.33 & 8040 & 10 & 03 & \\
\hline 01.34 & 804\% & FEE & 6A & A 6 \\
\hline 01135 & 8045. & A9 & 33 & \\
\hline 01.36 & 8047 & 4 C & 93 & 80 \\
\hline 01.37 & 804A & 20 & 86 & 88 \\
\hline 01.38 & 8040 & 18 & & \\
\hline 0139 & 804E & 20 & 64 & 80 \\
\hline 0140 & 80\%1 & A9 & 30 & \\
\hline
\end{tabular}

01418053
01428063
\(0143 \quad 8053\)
\(01.44 \quad 8053\)
\(\begin{array}{lllll}0.45 & 8053 & 48 & & \\ 0.46 & 8054 & 20 & 03 & 80\end{array}\)
0147 8057 204083
0148 905A 20 3783
\(0149 \quad 805068\)
\(0150 \quad 80 \leftrightarrows E \quad 20478 \mathrm{~A}\)
\(0151 \quad 8061 \quad 40 \quad 0380\)
\(0152 \quad 3064\) BII 5N AG
01538067 8E EE AG
OJ54 806A 8C シF A
01558060 BA
0156 806E 08
0157 806F 120 04 01.
0158 807? 69 FF
\(01598074 \quad 80 \quad 59\) A6
\(0160 \quad 8077 \quad \mathrm{Bn}\) OF 0.
01.61 807A 69 FF

0162807 C 8ロ 5A A6
0163 807\% 80 03 0I
\(0164 \quad 80828085\) A 6
01658085 BM 02 0.
\(01.668088 \quad 9 \mathrm{OE} 01\)

LINE




\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 TNE & ＊LDL． & & \multicolumn{2}{|l|}{वопए} & \multicolumn{2}{|l|}{I．．TNE} & & \\
\hline 027\％ & 8174 & 20 & 40 & 83 & & ST CRLF： & & \\
\hline ण玉\％ & ¢1\％ & A？ & 45 & & &  & & \\
\hline 927\％ & 3179 & \(\bigcirc\) & 47 & बA & & Wक\＆OUTCAm & & \\
\hline 0280 & 917 & A9 & \％ & & &  & & \\
\hline O． & 8176 & 20 & 47 & QA & & SFE OUTCHR & & \\
\hline 9282 & sリ． & 20 & 42 & 63 & &  & & \\
\hline \(0 \times 83\) & 81.64 & 68 & & & & FIn A & & \\
\hline 9284 & 9185 & & 1 F & \％ & & ImP OUTEYT & & \\
\hline о285 & 8180 & & & & \％ & & & \\
\hline 0286 & 81.68 & & & & y SAVE & －－Save Alat & \(E 6-6+\) FAGS & ON 51 \\
\hline 0287 & 9108 & & & & \％RETU &  & Y UNCHANOED & \\
\hline oeae & 6140 & & & & －STAC & －Has & HLAGGSA，XyY & FUSHET \\
\hline 0289 & 9168 & 0 O & & & ¢mणFR & FHF＇ & \％ & \\
\hline 0290 & 8199 & 48 & & & & PHA & \(\hat{0}\) & \\
\hline 0291 & S1．4 & A8 & & & & FHA & j & \\
\hline \(02 \%\) 2 & 91\％8 & 4 B & & & & \(\cdots \mathrm{HA}\) & & \\
\hline 0293 & 8180 & 08 & & & & PHF & & \\
\hline 0294 & 8180 & 48 & & & & \(\cdots \mathrm{HA}\) & & \\
\hline 029\％ & B1\％E & 9A & & & & TXA & & \\
\hline 0296 & 815F & 49 & & & & Fサra & & \\
\hline 9297 & 8190 & BA & & & & T6x & & \\
\hline 0298 & 8191． & 80 & Q9 & 01 & & 1．19 非109y & & \\
\hline 9299 & 8194 & 9 F & O\％ & 0.1 & & STA क0105y & & \\
\hline 0300 & 819\％ & B\％ & 07 & 01 & & Lma sologn & & \\
\hline 0301 & 8194 & 97 & 09 & O1． & & STA wology & & \\
\hline 0302 & 0190 & 8 m & \(0:\) & 01 & & Imat soloty \({ }^{\text {a }}\) & & \\
\hline 0303 & Q1A0 & 9 H & 07 & 01 & & STA 61078 & & \\
\hline 0304 & \(81 \mathrm{~A}^{3}\) & BII & 0 0 & 01 & &  & & \\
\hline 0605 & \(81+6\) & 90 & 04 & 01. & & STA \＄01．04． X & & \\
\hline 0306 & 61A\％ & E\＃ & 06 & 01 & & LWA \＄0106． X & & \\
\hline 0307 & －1AO & 9 M & 0 O & 0.1 & & STA motoey & & \\
\hline 0308 & 61AF－ & 98 & & & & TYA & & \\
\hline 0309 & Q180 & 91. & 06 & 01 & &  & & \\
\hline 0310 & 9183 & 68 & & & & PLA & & \\
\hline 0311 & 0184 & A \({ }^{\text {A }}\) & & & & TAX & & \\
\hline 0312 & E18\％ & 60 & & & & Fla & & \\
\hline 0313 & 9166 & 20 & & & & \(\cdots \mathrm{F} \cdot \underline{\mathrm{F}}\) & & \\
\hline 0314 & 日成\％ & 60 & & & M1\％ & हT¢ & & \\
\hline \(031 \%\) & 6158 & & & & \％WES & ORE EXCEFT A\％ & & \\
\hline 0316 & 8188 & 08 & & & FESXAF & FHF & & \\
\hline 0317 & O\｜В9 & BA & & & & T6X & & \\
\hline 0316 & 818 A & \(9 \%\) & O4 & 01. & &  & & \\
\hline 0319 & 6150 & 28 & & & & \(\cdots\) & & \\
\hline 0320 & SIBE & & & & 9 mEST & OFE EXCEFT F & & \\
\hline 0321 & OLBE & 08 & & & FESXF & FHF＇ & & \\
\hline 0322 & SリEF & \(6 \%\) & & & & FHA & & \\
\hline 0323 & 8100 & BA & & & & TSX & & \\
\hline 0324 & 8101 & 90 & 04 & 0.1 & & GTA \(0104 y \mathrm{X}\) & & \\
\hline 0325 & 8104 & & & & ） FES & OFEE ALIL \(100 \%\) & & \\
\hline 0326 & 8104 & 68 & & & FESALI & Fla & & \\
\hline 0327 & 61\％\％ & A8 & & & & TAY & & \\
\hline 0328 & 8106 & 68 & & & & Fl．a & & \\
\hline 0327 & \(810 \%\) & AA & & & & TAX & & \\
\hline 0330 & 8108 & 68 & & & & Fla & & \\
\hline 0331 & 8109 & 28 & & & & Fl．．．F＇ & & \\
\hline
\end{tabular}
```

+.... FAGE OOO7

```


```

......PAGE 0009

```


```

., ...,FAGF

L．TNE	： LOC		COnE		L．JiNE：			
0552	8390	38				SEC		
0553	8391.	60			INST2	MTS		
0554	8392	60	67	A 6	INJTSU	JMF（TNSUEC＋1）		
О555	8398				¢			
0556	8395				$\hat{\text { ¢ }}$			
0557	839\％				\％＊＊＊	EXECUTE BLOCK゙S	BEOTN HEFE	
0568	839\％				$\hat{\nu}$			
0559	8395				B\％F＇AFM：			
0560	839\％				9 ZEFCO	FAFM COMMANHS		
0562	839\％				$\hat{\mathrm{y}}$			
0562	839\％	0.9	\％		WECK\％	CMF＇非 $\mathrm{R}^{\text {c }}$	\＃MSF FEGTSTERS	
0563	8397	10	5 A			BNE CO\％		
0564	8399	20	4 L	83	RGBACK	ISR CRLF		
0565	839 C	A9	50			LIA 非 $\mathrm{F}^{\text {c }}$		
0566	839E：	30	47	8A		J®F OUTCHR		
0567	83A1	20	42	83		Jら下 SF\％ACE		
0568	83A4	30	FE：	82		JSF OUTFC		
0566	83＾7	20	116	8．		JSF COMTNE		
0570	¢3＾A	EO	J． 3			ECS NH\％		
057.	83AC	8 I	34	A6		STA ECFA		
0572	83AF＇	20	119	81		JSF INEYTE		
0573	83E2	130	OR 8			BCS NHS		
05：74	8354	8 I	59	A 6		STA PCLF		
0575	83E7	ALI	34	A 6		1．1\％A SCRA		
0576	83BA	8 m	5 F	A 6		STA PCHK		
0577	838\％	90	09			BCC M34		
05\％	835F	00	O2．		NH3	ENE：NOTCF		
0579	83 Cl	1.8			EXITRG	Cl．．．		
0580	830%	60			ExMGFol	FTS		
058．1．	8303	20	CB	81.	Norce	J¢F AMUCK		
0582	8366	100	F－A			ENE EXFEFFI		
0583	8368	A0	00		M 34	L．．．IYY \＃O		
0584	83CA	C8			M ${ }^{3}$	ITNY		
0585	日3C8	CO	06			CFY C ：$:$ ： 6		
0596	83 CL	100	CA			BEC KGEACK		
0 FE 87	83CF	20	4 l	83		JSF CFil．．F＇		
0588	83×12	A9	52		NXTRG			
0 05989	83114	20	47	8A		WSF OUTCHR		
0590	83117	98				rYA		
0591	83118	20	44	8A		JSF NBASOC		
0592	83LE	20	3F－	83		JSF SFCO		
0593	83LE	189	FA	A 6		LIIA FCHHEYY		
0594	83E15	20	133	81.		JSF OBCMIN		
0595	83E4	80	0%			सC＠M36		
0596	83E6	99	5 F	A 6		STA PCHFy		
0597	83E9	90	IIIF：			BCC M 35		
0598	83EF	1 F 0	I14		M36	EFOE EXTKG		
0599	83E11	20	CE	81		J§F゙ ALOUCK		
0600	83F0	FO	118			EEQ M $\mathrm{S}^{\text {S }}$		
0601	83F2	60				FTS		
0602	83F3	C9	47		60\％	CMF＇\＃\＄${ }^{\text {P }} 7$		
0603	83F5	110	20			BNE LFFZE		
0604	83F7	20	4 O	83	602	JSFE CRLLF		
0605	83FA	20	90	88	G01ENT	JSFi NACCES	FWRITE FROT MONJTE	F FAM
0606	83FI	AE	58	A 6		LILIX SFi	\％FESTOFEE FEGS	

LTNE	\＃ $1 . .0 \mathrm{C}$		Gor		LTME：					
0607	8400	9 A				T×8				
0608	8401	AM：	\％A	Ab		1．．MA	FCHF			
0609	8404	48				FHA				
0620	9405	AM	59	A6		LHA	FCl．			
0611	8408	48			NFIO	F川A				
06 J 2	8409	Ali	50	A 6		L．WA	FE			
061．3	0400	48				FHA				
0614	840 m	AC：	5F	Ab		LuY	YR			
0615	8410	AE：	EE	A 6		L．．IXX	XFi			
0616	8413	AO	WI	A 6		1．．19	AF			
061.7	8416	40				RTI．				
0618	8417	C9	11.		LF2B	CMF		\％	FAF゙ER	TAFE：
0619	84.19	FO	03			BEC	＊+6			
06\％0	8418	AC，	¢7	84		Jmip	凹F\％			
0621	941E	20	38	81		． 5 K\％	SAVḞ゙			
0622	8421	20	4.1	83		JSK				
0623	9424	A9	00			LuA	非0			
0624	9426	80	5	A6		STA	EFCNT			
0625	8429	20	2E：	83	LFZ	JSK	ZERCK			
0626	8420	20	1． E	8A	1．．F1	JSF	TNCHR			
0627	Q4\％F	C9	3R			CMF＇	\＃ \＄$^{\text {3 }}$ B			
0628	8431．	810	F\％ 9			ENEE	LFI			
0629	8433	20	AI	84		JSF	I．．．abyTE			
0630	8436	B0	56			SCO	TAFEFR			
0631	8438	110	09			BNE：	NUPEC			
0632	843A	Al．	52	Ab		I．MA	EFCNT	，ERFORS	37	
0633	943\％	FO	0%			BE C	＊+3			
0634	¢43\％	38			ExITMe	SEC				
0635	8440	4 C	BE：	81		．JMF＇	RESXF			
0636	8443	80	3 L	A6	NUFEEC	GTA	FC			
0637	6446	20	AI	84		JS\％	L．MEYTE			
0638	8.4 .49	EO	43			BCS	TAPEFK゙			
0639	844\％	85	FF＇			gra	所FF\％			
0640	8440	20	AI．	84		JSF	LIMEYYE			
0641	8450	BO	07			BCS	1 F			
0642	8450	85	FE：			STA	相FE			
0643	8454	20	A il	84	MOFEO	JSFi	LIMBYTE			
0644	8457	B0）	35			इCS	TAFEFF＇			
0645	84\％9	AO	00			LuY	肘0			
0.646	8453	91.	FE			GTA	（ FFE）$^{\text {P }} \mathrm{Y}$			
0647	84 G	1.1	FE			CMF＇	（ $\Phi F+\mathbb{F}$ ） Y			
0648	845F	FO	OC			BE C	LFGO			
0649	8461	Ali	5	$A 6$		LILA	EFGNT			
0650	8464	29	OF：			ANO	\＃\＄${ }^{\text {O }}$			
0651	8466	C 9	OF：			CMF＇	\＃ O $^{\text {OF }}$			
0652	8468	Fo	03			BECO	＊＋5			
0653	846A	$E E$	52	A6		T．NC，	EFCNT			
0654	8460	20	E2	82	LFOM	JSR	INCCMF＇			
06：35	8470	CE	3 I	A 6		yien	FC			
0656	8473	1.10	UF：			ENE	MOREII			
0657	8475	20	119	$8\rfloor$		JSF	TNBYTE			
0658	8478	B0）	14			ECS	TAFEFFS			
0659	647A		37	A 6		CMP	SCK7			
0660	847 H	110	OC			BNE：	EAluay			
0661	847F－	20	019	81		JSF	INEYTE			

L．TNE	\＃LOC		come	LTNE：			
0662	8482	B0	OA		ECS TAFEFR		
0663	8484	CH	36 A 6		CMF SCFO		
0664	8487	FO	AO		EEQ 1．F\％		
066.5	9489	10	0.3		BNE TAFERR	9（AL WAYB）	
0666	848E	20	1981	BADMY	WSR INSYTE：		
0667	848E：	Ali	G2 Ab	TAPEFK	I．TA ERCNT		
0668	8491	29	1 FO		ANW 非FFO		
0669	8493	C9	1 F 0				
0670	8485	F＇0）	92		BEW LFC．		
0671	8497	AII	\％Ab		L．IA EFCNT		
0672	849A	69	10		ALCO \＃\＃非10		
0673	849C	8 H	52 Ab		STA EFCNT		
0674	849\％	10	88		BNE L．．F\％		
0675	84A1．	20	19801	L．．．MEYTE：	JSE INEYTE：		
0676	84A4	40			JMF CHKSAL		
0677	84A77	C9	44	M\％\％\％	CMF \＃	¢ ¢FFOSTT，O FACM－－．USE（OLIM）	
0678	$84{ }^{89} 9$	0	03		BNE：MEMZ		
0679	84 AB	4 C	E1 34		，JMF NEWL．		
0680	84AE	C9	411	MEMZ	CMF＇	M MEM，O FAFM－USE（OLIA）	
06831	84 HO	I．1）	03		BNE UEFE\％		
0682	84E2	$4 C$	1789		MMF NELL OC：		
0683	84E5	C9	W6	UEFZ	CMF 非 V	夕 VEFETHY，O PAFM－－USE（OLII）	
0684	8487	0	OC		BNE：LIZE	＊．．MO 8 BYTES（ITKE UEF 1	PABM
0685	$84 \mathrm{B9}$	A5	FE：				
0686	84EE	8H	AA AG		STm P3I．．		
0687	84EF：	A6	FFF		LIA 訨FF		
0688	8400	8D	4E Ab		STA FOBH		
0689	84 C 3	4 C	9A 85		JMF UFFIta		
0690	84 C 6	09	12	1．． 12 B	CMF \＃\＃	औ	
0691	8488	1.10	05		ENE：L2ZB		
0692	84CA	AO	00		LIMY \＃O	9 MODE＝－：KTM	
0693	84 CC	4 C	7880	L．． 1.	JMF－Li．wntey	\％60 TO CASSETTE ROUYTNE	
0694	84 CF	C9	13	L－2B	CMF＊非L3	و LOAT HSy ZEFO FAFM	
0695	84.11	In）	04		ENE EZFAEM		
0696	84113	AO	80			$9 \mathrm{MODE}=\mathrm{HS}$	
0697	84 IF	110	F5		BNE LI． 1	＊（allways）	
0698	84017	60	6 LI A 6	EZFARM	MEF（URCUEC＋1）	＊＊ELSE：UNFECCMA	
0699	8404			EIFFARM：			
0700	84IIA			\％			
0701	84 II A			y 1．F＇Al	AMETEF COMMAND	EXECH BLOCK゙S	
0702	84 IIA			\％			
0703	845A	C9	44	MEP1	CMF \＃	9 LEFOSTT， 1 FAKM	
0704	84 ILC	10	32		BNE：MEMI．		
0705	84以E：	20	A7 82		JSF F3SCR		
0706	84E1．	20	1683	NEWL．N	JSF CFELFSZ		
0707	84 E 4	A 0	00		LIMY \＃O		
0708	84E6	A2	08		LIIX \＃\＄8		
0709	84E8	20	4283	WEFEYT	JSF SFACE		
0710	84 EB	20	11981		WSF INBYTE		
071.1	84EE	HO	11		ECS NHA1．		
0712	84FO	91	FE		STA（\＄FE）y $\mathrm{Y}^{\text {S }}$		
0713	$84 F 2$	In	FE		CMF゙（\＄FFE）Y	\％UERTFY	
0714	84F4	Fo	03		ESEQ DEFFN		
0715	84F6	20	2083		JSE OUTQM	9TYFE ？TF NG	
0716	8479	20	12 82	LFFN	JSF TNCCMF＇		

LINE：	\＃1．00		COnE	1．TNE		
0717	84FC	CA			WEx	
0718	84FI	00	1 F 9		BNE MEPGYT	
0718	84FF	Fo	EO		BEE NEWLN	
0720	8501	F0	ов	NH 4.1	BEC MEPEC	
0721	8503	co	20		C⿵冂	9PFACE＝FWO
072	8505	110	40		BNE MEFEG	
0723	8507	70	Fo		BUS MEFN	
0724	8509	2）	4283		JSR SFACE	
0725	8500	1.0	EB		BFL MEFN	
0726	850E	1.8		MEPEC	Cle	
0727	850F	60			FT	
0728	8510	c9	4	MEM ${ }^{\text {a }}$	CMF 非＇M	9MEMORY ，1．FARM
0729	9512	1.0	65		BNE 604	
0730	g51．4	20	A7 82		JSR F3SCR	
0781	8517	20	1683	NEWLOC	JSE CRLFSZ	
0732	851A	20	3 A 83		JSh comma	
0733	8511	no	00		Lity 㗉O	
0734	851F	B1	FE		LDA（ FFE F ）， Y	
0735	8521	20	10381		JSE OBCMIN	
0736	8524	E\％	11		BCS NH42	
0737	8526	AO	00		$1 . \mathrm{IIY} \# 0$	
0738	8529	91.	FE			
0739	852A	01.	FEE			GUERIFY MEM
0740	6520	Fo	03		EEG NXTLOC	
0741.	9525：	20	2083		JSR OUTaM	gTYFE P ANO CONTINUE
0742	8531	20	B2 82	NXTLOC	JSE INCOMF	
0743	9534	1.8			CLCC	
0744	8535	90	EO		BCC NEWLOC	
0745	8537	Fo	$3 E$	NH 42	BECGEXITM	
0746	8639	50	04		BuC $*+6$	
0747	8539	C9	30			
0748	8531	Fo	08		BEG NEWLOC	
0748	¢玉3F	69	20		CMF\＃\＃\＃\％	© PFACE ？
0750	8541	Fo	EE		REQ NXTLOC	
0751	85，43	C9	3E		CMFP非＇	
0752	5545	Fo	EA		BEO NXTLOC	
0753	8547	C9	2 B		CMF \＃\＃+	
0754	8549	FO	10		BEE LI．OCFs	
0755	8548	c9	3 C		CMF \＃＇く	
0756	95410	F0	06		BEO PRULOC	
0757	854F	C9	20		CMF \＃\＃＇－－	
0758	8551	Fo	1.6		bEQ L．	
0759	9553	38		CEFES	5 EC	
0760	8554	60			ETS	
0761	8555	20	BE 82	FRULOC	JSF DECCMF＇	PBACK ONE EYY
0762	8558	1.8			ClC	
0763	8559	90	BC		ECC NEWLOC	
0764	855\％	AS	FE	LocFs	LIA DFE	9GO FWH 8 EYYES
0765	8550	18			Cl．ec	
0766	855E	69	O8		ALC \＃\＃$\$ 08$	
0767	8560	85	FE		STA WFE	
0768	8562	90	02		BCC M42	
0769	8564	ㅌ．6	FF＇		TNC \＄FF	
0770	8566	18		M42	Cl．${ }^{\text {c }}$	
0771	8567	90	AE		BCC NEWLOC	

L．INE	\＃1．0C		COME	LITNE：			
0772	8669	ल	FE：	1．00M8	1.10 A	炜FE	\％GO BACKWT \＆BYTES
0773	856\％	38			SEC		
0774	8560	F：9	08		S8C\％	非\＄08	
077\％	896E：	89	FF：		STA	束FE	
0776	8570	80	O2		BCS	M43	
0777	8572	C． 6	FFF＇F		HECO	｜1\％	
0778	8574	1.8		M43	Clic		
0779	8375	90	AO		BCO	NEWL．．．	
0780	8577	1.8		EXTTMJ	Clat		
0781	8 E 98	60			FTS		
0782	8579	C9	47	001	CMi＊	\＃${ }^{\text {c }}$	
0783	85\％${ }^{\text {c }}$	110	119		BNE：	UEFI	\cdots ．FARM IS AMOR TO WO To
0784	8570	20	4 H		， 19 F	CFLF：	
0785	8580	20	90 8\％		． 15%	NACCES	9WRETE FROT MONTTE Fem
0786	8583	ค2	FF\％		LIIX	\＃！	9FUSH RETURN ADOE
0787	858\％	9 A			4×9		
0788	8\％86	A9	7F＇		I．．．119		
0789	8598	48			FHA		
0790	8589	A9	FFF		L．．nan	非中F\％	
0791	8588	48			FけA		
0792	8580	Ali	$4 \mathrm{~A} A 6$		Imm	F゙呺	
0793	8\％8\％	48			FHA		
0794	8590	Ali	4A mó		1．．19	F31．	
0795	8493	4 C	O8 84		JMF＇	NFilo	
0796	8596	C9	56	VEFI	CM1：	\＃＇V	
079\％	9596	110	Il A		BNE：		
0798	859A	AII	4A AGO		LIMA	F31	
0799	8\％9\％	8 I	4 C A6		STA	F2t．	
0800	8 EAO	1.8			Cl．C		
0801	¢玉ml	＇9	07		9 mc	\＃\＃1507	
0802	ชッA3	8 O	4A Ab		STA	F3L．	
0803	85円b	Ali	4 E Ab		LIMA	F＂3	
0804	95A9	8.1	$4 \ldots \mathrm{~A}$（ 6		STA	F2\％	
0805	8 FAC	69	00		MLCC	\＃0	
0806	¢GAF：	8 B	$4 \mathrm{~B} A \delta$		STM	F3H	
0807	95E」	4 C	4086		．JMt＇	VEF゙「＋4	
0808	85EA	C9	4A	JumiF．	CMF＇	\＃＇」	y JUMF（JUMF TABHE TN SYS RAM）
0809	85E6	IIO	1．		BNE：	L． 118	
081.0	8958	Alil	4 A A 6		1．．MA	F31．	
081．1	85B8	C9	08		CMF	\＃\＄$\square^{\text {S }}$	＊ $0 \cdots 7$ OML．Y VALIE
0812	85EM	EO	26		ECS	JUM2	
0813	85BF	20	9C 8B		JSK	NACCES	\％WFITE FROT SYS RAM
081.4	8502	OA			A Bl ．	A	
081.5	85 C	A8			TAY		
081.6	$8 \mathrm{EC4}$	A2	FFF＇		L．MIX	排排FF\％	\＃TNTTSTK゙FK゙R
0817	$85 \mathrm{C6}$	9 A			TXS		
081.8	85 C 7	A9	7F		$1 . .110$		OFUSH COLIL RETURN
081.9	8509	48			FHA		
0820	85CA	A9	FFF		L．．．IIA		
0821	85CC	48			FHA		
0822	85CR	189	$21 A B$		I．ITA	JTABLE +1 \％Y	GGE：AMOR FROM TABIE
0823	8510	48			PHA		FUSH ON STACK
0824	$8 \mathrm{EW} \mathrm{\%}$	189	20 A6		1．．．以A	JTABLEE y Y	
0825	8514	4 C	0884		JMF＇	NFilo	
0826	85117	09	12	LIAE：	CMP＇		91．．OAX KIM FMT． 1 FAEM

LTNE $\#$ LOC COME LTNE

0937	86 Cb	A5	FF			1．10A	和F：\％	
0938	860¢m	20	FA	86		JSR	SUBYTE	
0939	86c口	ค5	FE：			I．IMA	SFE	
0940	86 CF	20	F． 4	86		JSk	gubyte	
0941	8602	AO	00		MOREDO	L．Liy	\＃100	
0942	86114	B1	FE：			LIIA		
0943	8606	20	F4	86		JSE	gUBYTE	
0944	8619	20	86	83		JSR	Instat	¢STOF TF KEY MEFRESSEn
0945	86 nc	B0	CA			ECS	GFEXIT	
0946	86 nE	20	B	82		$\pm \mathrm{sF}$	INCCMF	
0947	86E1	70	CE			BUS	GFEXIT	
0948	86E3	CE	31	Ab		DEC	FC	
0949	86E6	Ho	EA			ENE	MORED2	
0950	86 E 8	AE	37	AB		Linx	SCR7	
0951	86E8	AO	36	Ab		Lrom	Sckg	
0952	86EE	20	F゙ 4	82		JER	OUTXAM	
0953	86F 1	1.8				Cl．C		
0954	8612	90	AF			BCC	SPec	
0955	86F4	20	ma，	82	gubrte	JER	CHKSAD	
0956	8617	4 C	FA	82		JMP	olteyt	
0957	86FA	20	2 E	83	OLTFEZ	JSR	ZERECK	
0958	8610	Ati	4A	A 6	OTFF\％	$1 . \mathrm{DA}$	F31．	；
0959	8700	38				SEC		
0960	870.1	E5	FE：			SBC	WFE	
0961	8703	48				FriA		
0962	8704	Ab	48	Ab		1 ma	P 3 H	
0963	8707	E5	FF：			SBC	\＄FFF	
0964	8709	F\％	04			BET	MTFF\％	
0965	8708	68				Fl．．．A		
0966	870 C	A9	FF			L．．nA	\＃\＄FFF	
0967	870E	60				RTS		
0968	870F	68			MIFFI	FILA		
0969	8710	60			UTFFL 2	ETS		
0970	8711	4 C	27	88	E2FAFM	JMF＇	CAL．．c3	YMAY BEE CALC OR EXEC
0971．	871.4				B3F＇ARM $=$			
0972	871.4				9			
0973	8714				； 3 FAR	AME	TER COMMANA	EXECUTE BLOCKS
0974	8714				；			
0975	871.4	C9	46		FILIL． 3	CMF＇	\＃＇F＇	OFILL MEM
0976	871.6	no	21.			BNE	Elk	
0977	87.18	20	$9{ }^{5}$	82		JSF	F2SCE	
0976	871：	A9	00			1.04	\＃ 0	
0979	871．10	8 H	52	AG		STA	ERCNT	－ZERO ERFOR COUNT
0980	6720	AD	4E	Ab		1.110	Fill	
098．1	8723	AO	00		F1．	LIMY	\＃0	
0982	8725	91	FE			STA	（\＄FE），Y	
0983	8727	11.	FE			CMF＇	（\＃FE），Y	\％UERIFY
0984	8729	FO	03			BEO	173	
0985	9728	20	C．	87		JSF	BRTT	ATNC ERCNT（UP TO FF）
0986	872E	20	E2	82	F 3	Jff	TNCCMF	
0987	8731	70	70			BuS	BL	
0988	8733	Fo	EE			BEO	F1	
0989	8735	90	EC			ECC	$F 1$	
0990	8737	EO	76		F 2	HCS	B1	\％（AL．WAYS）
0991	8739	C9	42		BL．K．3	CMF＇	＊${ }^{\text {B }}$	\％BLOCK MOUE（OUEFLAF OK）

LINE	\＃ 100		COME	LTNE				
1047	87 F 6	60			WTS			
1048	9787	AO	00	RMOUF	LIMY	\＃0	¢ MOUF 1 EYT＋UEF	
1049	8789	EI	FE：		1．．．T1A			
1.050	9\％18				STA	（制曲C）y Y		
1051.	87 Bm				CMF＇			
103\％	87\％F＇	FO	OR		BEQ	BFT		
1053	8761	AC		BETT	LIMY	ERCNT	－INC EFCNT，HONT FASS	FF＇
1034	87 CA	CO	FF＇F		CFY	非的F		
1035	8766	1 F	）4		BEO	＊+6		
1056	$87 \mathrm{C8}$	C8			TNY			
1.057	8769		59 Ab		STY	ErCNY		
1.058	87 C	60		BF	ETS			
1059	8700	09	10	513 E	CMF	\＃\＃ 41.1.	9 GAUE K̇M FMT TAFE， 3	FAFMS
1060	87 CF	0	15		BNE：	6235		
1061	874	A）	00		1．．TY	\＃\＄0	\％MOOF：＂：KIM	
1062	87 m	Ali	4E Ab	9130	1．．1． 1.	P11．		
1063	87106	M0	O2．		BNE：	＊+4	9TH MUST NOT $=0$	
1064	87118	8			SEC			
1065	8719	60			FTG			
1068	87Ma	C9	FF		CMF	非的F\％＂	y A M MUSY NOT $=\mathrm{FF}$	
1067	87 nc	1.0	02		ENE：	＊＋4		
1.068	870\％：	38		SNA	SEC			
1.069	87 ILF	60			RTS			
1070	8\％E0	20	9382		，15R	I．NCF3	\％USE ENO AMMR＋ 1	
1071	87E3	4 C	878 E		JMF＇	SENTEY		
1.072	87E6	C9	J．E	9238	CMF	\＃s 1 E	\％GAVE HS FMT TAFEy 3	FAFMS
1.073	97E8	1 H	04		BNE	L． 2 3F		
1.074	87EA	AO	80		L．ETY	：$\$ 1.80$	P MOXE＝HS	
1076	87EC		E\％		BNE：	S．3 30	\％（ALLWYS ）	
1.076	8\％EE：	09	13	1．93F	CMF：	非施13	\＃LOAL HS， 3 FAFMS	
1077	87F0	M0）	）1F		BNE：	MEM3		
1078	87F2\％	AH	4E Ab		I．IIA	FlL		
1079	87FG	C9	FF		CMF	\＃SFFF＂	gT0 MUST BE FF	
1080	87F7		E：		BNE：	SING	\％EFR FETUFEN	
1.08 L	8779	20	9382		．5FF	INCF3	OUSE END AMOM +1	
1082	87FC\％	AO	80		L．IMY	\＃\＄80	OMOXE ：$=\mathrm{HS}$	
1083	8フFE	4 C	7880		JMF：	LENTEY		
1084	8801	C9	4 ll	ME：MS	CMF＇	\＃＇M	GMEM 3 SEARCH－－BYTE	
1.085	8803	110	22		BNE：	CALC3		
1096	8805	20	9082		JSF	FoSCF		
1087	8808	AI．	AE Ab	MEM3C	1．DIA	F－IL		
1.088	8808	AO	O0		L．．ITY	：		
1089	880 m	1.	FE		CMF	（ $4 F E$ ），Y		
1090	8801	FO	OB		BEEC	MEMЗE：	FFOUNW SEAFCH BYTE？	
1091	88.1.	20	B2 82	MEM3I	JSF	TNCCMF	－NO，INC BUFFEFE ALHE	
1092	8814	70	04		EUS	MEM3EX	F WRAF AROUND？	
1093	8816	FO	FO		EEC	MEMZC，		
1094	8818	90	EE		BCC	MEM3C		
1095	881A	18		MEMZEX	Cl．．C			
1.096	881．	60			ETS		\％SEAFCHED TO BOUNA	
1097	881 C	20	1785	MEM3E	JSFE	NEWLOC	9FOUNL SEAFECH EYTE	
1098	881F	90	05		BCC	MEM3F－		
1099	8821		47		CMF＇	\＃＇G	\％ENTEFEN G？	
11.00	8823	1 F	EC		BECO	MEM3		
1101	8825	38			SEC			


```
* * . . FAGE 002%
```


L．TNE	\＃ 1.00		cone	L．ITN：		
1377	8462	20	54 ¢6		ANG TOUTFL	
1378	8А6：	38			SEC	
1379	8 866	$1: 9$	40		SEC \＃\＄40	
1380	8 A 68	90	F5		BCC Look	
1361	8月6A	20	198 A	TIN	JSR TLIH	－TEFMINAL．BTt
1382	8A60	A B	02 AA		InIA FEDA	
1383	8A70	20	54 A 6		ANE TOUTFL	
1384	8A73	38			SEC	
1385	8ata	E9	40		SBC \＃\＃ 40	\％OR ETTS 6y\％（TTY，CFE）
1386	8476	20	¢3 Ab		BIT TECHO	\＃ECHO BTT？
1387	8A79	10	06		blil mmys	
1388	8a78	20	1.1480		ISE OUT	
1389	BA7E：	40	87 gA		JMF SAUE	
1390	SABI	AO	07	Limyil	LuY 非7	
1391	gabz	Be		TLe．${ }^{\text {d }}$	以＂Y	
1392	3ABA	00	FO		BNE TLIFI	
1393	gAb6	EA			NOF＇	
1394	gaby	66	19	GAVE	FOR 浱9	
1395	8489	20	E9 8A		JER WL．．YH	
1396	SABC	48			PHA	－TMTNG
1397	8ABL	BE	（0）		Limen $0 \times$	
1398	8ABF	68			PIm	
1399	6a90	90	08		mec TIN	
1400	8A92	20	E9 9A		JEF MIMY	
1.40 .1	8A95	18			Cla	
1402	8996	20	［1／8A		JEE OUT	
1403	8999	AS	FF 9		LOA \＄1F\％	
1404	3A9E	48	FF：		EOR \＃\＃\＃FF	
1405	gaga	4 C	Es 8.1		JMF RESXAF	
1406	BAAO	85	$F \mathrm{~F} 9$	Tout	STA \＄F\％	OTEFMTNAL CHE OUT
1407	bam？	20	8881		JSR SAUEF	
1408	BAAE	20	E9 8A		JEF MLYH	
1409	BAng	A9	30		LOA \＃\＄30	
1410	8A成A	80	03 A 4		sta pronti	
1411	bando	AE	F9		LIMA 5 FF\％	
1412	8AAF－	$A 2$	Of		1．WOX \＃\＄OE	
1.413	gabl	49	FF		EOR 非がF	
141.4	8AB3	38			5 EC	
1415	8AB4	20	1148 A	ourc	ssf our	
141.6	$8 \mathrm{AB7}$	20	E6 8A		ISF MII．YF：	
1417	gAEA	AO	06		LaY \＃1006	
1418	8ABC	88		PHAKE	DEY	
1419	8ABLI	$\underline{10}$	FH		BNE PHAKE	
1420	GABFF－	EA			NOF＇	
1421	8ACO	4A			LSFi A	
1422	8AC1	CA			DEX	
1423	8AC2	no	Fo		BNE OUTC	
1424	BACA	AS	$F 9$			
1425	BACO	C9	0 O		CMF－\＃SOI	
1426	8ACB	FO	04		BEE GOFAT	
1427	8ACA	c9	OA		CMF ：$\$ 0 \mathrm{~A}$	
1.428	8ACC	no	03		BNE LEEAVE	
1429	8ACE	20	3288	GOFAL	JSE FACI	
1.430	8ADt	4 C	C4 81	1．EAUE	JMF REEALL	
1431	8 ACH	48		our	FHA	\％TEFMINAL EIt OUT

LTNE \＃I．OC COME ITNE

1432	ЗА以＂	A0	02	A4		I．．MA FBCA						
1.433	8AMB	29	OF：			AND	\＃S					
1.434	8ADA	90	02			BCO	OLTONE					
1.435	8Аロ̆	09	30			OKA	\＃\＄30					
1.436	8A¢FE：	20	\％ 4	$A 6$	OUTONE	AND	TOUTFFI．．	\％MASK	OUTFUT			
1.437	BAEL	80	02	A4		STA	FBHA					
1． 4338	BAE： 4	69				FI．．．A						
1439	8AES	60				ATS						
1440	๑คEG				$\stackrel{\square}{0}$							
1.441	8AEL 6	20	E9	8 A	MH．．．YF：	JSK	LIL．．YH	\％DELAMY	Fbl．．．．			
1442	8AE？	08			MEYH	FHF		－ME：I．．．AY	Hatmer			
1．443	8AEA	48				FHA						
1444	OAEB	8A				TXA						
1.445	SAEC	48				FHA						
1446	SAET	98				TYA						
1.447	QAEE：	AE：	\％ 1	A6		I．IIX	SחBYT					
1448	BAFI	AO	03		M1．$Y X$	LIMY	13					
1449	BAF 3	88			MII．．YY	חFEY						
1450	8⿵冂⿱一口䒑土 4	110	F			BNE：	XII．YY					
1.45 Ej	BAFb	CA				LIEX						
14929	9Al゙7	110	178			BNE：	MI．YX					
1453	8AF\％ 9	A8				TAY						
1.454	8AFA	68				Fla						
1．455	BAFE	AA				TAX						
1．456	8AFCO	60				Fla						
1.457	8AFP：	28				FIF＇F						
1.458	8AFE	60				FT6						
1.459	3¢FF\％	A9	00		BAUO	1．0．0．	\＃ 0	\％LETEFFM	MTNE：BAD	010	TE ON	$F \mathrm{~B}$
1460	8BOL	AB				TAY						
1461	9x02	AD	02	A4	SEEK	IMA	FBMA					
1.462	880\％	OA				ASL．．．	A					
1.463	8806	80	FA			BCs	SEF゙：k					
1． 464	8808	20	27	8 E	C．EFAR	JSF	TNK゙					
1465	8\％OE	90	FE：			BCC	Cl．EmF					
1.466	8 BOO	20	27	8 B	SET	JSF＇	TNK゙					
1467	BS10	80	FB			ECS	SET					
1468	8E12	8 C	W	A 6		SrY	ghayt					
1． 469	8EI	BHI	63	8 c	OEAFP	$1 . .10$	mectusy					
1.470	8818	ca	51	А¢		CMiF＇	GMEYT					
$14 \% 1$	QE1\％	180	07			BCS	AGATN					
1.472	8EIL	3 B	69	80		LIMA	GTxUAL．x	\％	CLOSEST	STI	VALUE	
1473	8820	8 C	\％	A 6		gra	STHEY＇					
1.474	882\％	60				FTS						
1475	8524	1 E			AGAIN	INX						
1.476	8825	10	EE			8 Fl	MEAF					
1477	8 E 27	C8			I．NK	INY						
1.478	5E28	A2	10			$1 . .11 \times$	\＃s． 1 C					
1479	8E2A	CA			INK」	LEX						
1480	882B	110	FH			BNE：	INが1．					
148 l	8E2\％	AM	02	A4		I．IIA	FEDA					
1482	8530	0 A				ASt．	A					
1483	8831	60				FTS						
1484	8832	AE：	50	A6	FAC	L．mx	Fabsat	¢PAII C	ARETASE：	RET	ReN	
1.485	8E35	20	E6	8A	FAMI	JSK	dil YF					
1486	8838	CA				MEX						

1．Th：	\＃ 1.0 \％		COmF：	I．．TNE：			
1． 467	8 ES 9	00	FA		BNE：	FAOM	
1488	erse	60			ETS		
1489	8R3C	20	1389	Tstat	JSR	KSCONF	
1490	6B\％F	2%	りき A辛		ATY	F®口合	
1491	854\％	18			Cl．．．		
1492	$8 \mathrm{B43}$	10	01		$\mathrm{BF} \cdot \underline{. . .}$	＊ 43	
1493	884\％	38			5%		
1494	8B46	60			W＇G		
1.495	8847	20	OF－67		」F\％	ITFFI．	
1496	884A			¢ $* * *$			
1.49%	8B4A			\％＊＊＊	FEET	－．－．TUKN OFF	FOF，INTY SYS RAMy ENTEF MONLTOF
1.498	884A						
1499	8¢4A			$\hat{\text { ¢ }}$			
1.500	9E4A	A2	$F F$	FESET	LIXX	非あFF\％	
1501	8 E 4 C	9 A			TXS		y INIT STACK゙ F＇TK
150%	884\％	A9	CC	POF	1．．7⿵冂	非CC	
1503	8®4F＇	9．！	0 CAO		STA	FCRI	MTSABLE FORy TAFE OFF
1.504	885\％	A9	04		1.11 A	： 14	
150	8E\％4	48			FHA		
1506	9स\％\％	28			F＇IF＇		© INT F，HTSABIEE TRG IUFTNG MHTXF
1507	8E56	20	8686		J9k＇	ACCES	OUN WFITE FROT SYS FAM
1508	854\％	A2	WF		L．．IXX	\＃和5\％	\％INTT SYB FAM（EXCFY SCFBUF）
1509	885\％	BRI	A0 8\％		L．．1．1．		
1510	885\％	9 M	20 A 6		STA	FAM\％ X	
1511	SE61	CA			［ifex		
1512	8 BC	10	F7		【F゙！		
15.3	$8 \mathrm{B64}$	A9	07	NEWW゙：	LITA	\＃7	9CHANGE MEUC／EAUM FATE
151.4	8866	20	478 A		JSR	OUTCHR	－BEEF＇
1515	8569	20	A3 89\％	SWTYCH	JSK	K゙SCONF	AKEYBOAFIL OF TERGINAL？
1．516	8 E 60	20	3689	SWI．．F＇	JSK	バEYロtz	
1517	856F	0	OB		MNF：	MONENT	
1518	8®7\％	20	02 A 4		BTr	FExA	
151.9	8E74	10	F6		EFI．	sw．．．	
1520	8576	20	8788		． 5 SK	VEC．5W	¢ SWITCH VECTORS
1521	$8 \mathrm{B7} 9$	20	FFF8A		． 15 SF	EAUR	
1522	QВワC	A2	FF\％	MONENT	1 LHX	唯あFF	9 MONTTOF ENTEY
1523	8B7E	9 A			TXS		
1524	GB7F	10			Clat		
1525	8880	20	8688		． 15 M	ACCFSS	ЯUNWKITE FROT MONTTOR BAM
1526	$8 \mathrm{B83}$	40	0380		JMF゙＇	WAKM	
1927	8886	20	888%	ACCESS	JSK	SAUEF	夕UN WRITE FFOT SYS RAM
1528	8889	AS	01 AC		1．． O	OR3A	
1．529	8ввС	09	01		ORA	\＃1	
1530	6स8E	8 A	01 AC	ACCL	STA	OR3A	
1531	8 mg 1	AS	03 AC		L．0．9	1un3A	
1532	8894	09	01		OFA	\＃1．	
1533	8896	8 Cl	03 AC		STA	Mariza	
1534	8899	40	C4 81		JMF	FEESALL．	
1535	8890	20	88 ga	NACCES	JSF	SAUER	，WFITE FROT SYS RAM
1536	BRgF	ALI	O．AC		LIMA	OF：3A	
1．537	6BA2	29	F゙F：		ANOI	\＃कFE	
1538	88A4	18			Cl C		
1539	8EAS	90	E：7		ECO	ACCd	
1540	8BA7	20	868 E	Try	JSR	ACCESS	YUN WFTTE FFOT FAM
164．	88．${ }^{\text {A }}$	A9	05		I．LIA	\＃\＄	\％ 110 balua

LINE \＃L．．．OC
COME
1542 BBAC 1543 BBAF AO 54 A 6 1.544 3BER 0940 $\begin{array}{lllll}1545 & 8 B E A & 90 & 54 & A 6\end{array}$ 1546 8RB7 208686 1547 BEEA A2 OB
1.548 EBBC BO 6F BC

1549 8हBF 9060 m 6
1.550 BEC2 CA

1551 ascs 10 F 7
1552 BECE 60
1553 8RC6
1554 ERCG
1555 घВC6
1556 日BC6
$1557 \quad \mathrm{BEC} \quad 00$
$155788 \mathrm{BC7} 80$
1.55788 ECO 08
$1.55788 \mathrm{BC9} 37$
1558 8RCA OO
1558 8BCB $7 F$
1558 8BCC 00
1559 gaca 30
1559 घहCE OO
1559 BRCF FF
155988 BO 00
1559 8BaI $3 F$
$1.560 \quad 880200$
$\begin{array}{lll}1560 & 8803 & 00\end{array}$
1.560 ह曰⿺4 07

1560 8सn 3F
1561 8806
$1562 \quad$ 8006
1563 8EN6
1564 8月06 01
1565 86п7 41
$1566 \quad 8408 \quad 81$
1567 8819 C．l
1568 3BNA 02
1569 BसNB 42
1570 88NC 82
1571 8Bmi ce
1572 日BDE 04
1573 gEDF 44
1574 日हEO 84
1575 8EE1 CA
1576 8BE2 08
1577 8EEZ 48
$1578 \quad 8 B E 4 \quad 88$
1579 8BE5 C8
1580 gRE6 10
1581 BEE7 50
1582 BRE8 90
1583 geE9 DO
1584 GBEA 20

1．TNE

```
        sta smby!
        LOA TOUTFL.
        0RA 非40
        STA TOUTFL
VECSW JSR mCCESS yUN WFTTE FROT RAM
        1.0x ##$8
GWLFO LIOA TRMTBI.*X
            STA INUEC.X
            0゙X
            BFL. SWLF2
            ETS
%
y***
**** TABLES (T/O CONFIGURATTONS, KEY CODES, AGCIT CODES)
9***
```


VALSF $=$ VALSH2
GYM =* \#KEY CODES RETURNEI BY LFNKEY
TABLE: $=*$

- BYT जel ge/ue

. BYT 102 4/U4
. BYT \$42 $95 / \mathrm{ES}$
. BYT $\$ 82$ \%6/U6

- BYT $\$ 04$ g $9 /$ JMF
- BYT \$44 99/VER
- BYT 58A \Rightarrow A/ASCII
- BYY \&CA $\quad \mathrm{BB} / \mathrm{BLKK}$ MOU
- BYT $\mathrm{FOB} \quad \hat{\mathrm{O}} \mathrm{C} / \mathrm{CALC}$
- BYT \$48 क $\mathrm{B} / \mathrm{DEP}$
, BYT \#88 \#E/EXEC
. BYY BCE yF/FTLIL
. BYT \&10 OCR/SI
. BYT $\$ 50 \quad$ g $\quad \cdots /+$
. $\mathrm{BYT} \$ 90 \quad$ و \gg
- BYT $\$ \mathrm{HO}$
- BYT 520 g日 0 /LP

LTNE	\％ 160		Come	1．．TNE：							
1585	8EEB	60			－ $\mathrm{BY} \mathrm{Y}^{-1}$	\＄60	9 yE 6／8p				
1．586	QEEC	AO			－BYT	\＄ 40	g MEM／WP				
1.587	¢xEO	00			－BYT	400	\hat{y} ¢， 2 ，				
156	QEE：	40			－BYT	非40	¢ 52／5l．				
1589	QEEF			ASCIMJ	\％\quad＊$-\cdots$						
1590	QEFF－			ASCTI	\cdots		\％ACTI	Comb	ANO	HASH	cones
1591	QEEF：	30			＋BYT	\＄30	9 CERO				
1592	BEFO	31			－BYT	\＄31	9 ONE：				
1593	QEF 1	32			－BYT	13%	\％TWO				
1594	QEF2	33			－BYT	非33	3 THFEE				
1595	8EF3	34			－BYT	邦34	9FOUF				
1.696	8¢54	35			＋BYT	非360	\％FIVE				
1.5%	®区F\％	36			－BYT	\＄36	¢ STX				
1696	98F6	3			－BYT	\＄37	\％SEVEN				
1599	8BF\％	38			－BY＇T	小36	$\hat{9}$ ETCHT				
1600	e日Fe	39			－BYT	1339	¢ NTNE				
1.601	8BF9	41			－EYT	\＄41	\％ A				
1602	EEFA	42			－BYT	\＄42	98				
1603	EEFE	43			－ BYT	1843	$\stackrel{\square}{4}$				
1604	8FFC	44			－BYT	\＄4．4	90				
1.605	¢日F\％	46			－BYT	\＄4459	\％ E				
1.606	QEFE	46			－BYT	非46	¢ $\mathrm{y}^{\text {F }}$				
1．60\％	CEFF\％	OX			－BYT	非00	9 CW				
1.608	8000	2 x			－BYY	520	y OASM				
1.609	¢COI	3 F			． BYT	W3E	\hat{y}				
1． 61.0	8002	FF			－BYY	涫F\％	\％SHIFT				
1.61%	8003	47			－Br＇r	\＄47	y 6				
1612	8\％04	W2			－BYT	\＄5\％	\％18				
1613	8 COS	41			－BYY	非金0	\hat{g} i¢				
1.61 .4	8 CO	13			－BYT	\＄13	92				
16.6	8 COF	1 E			－BYT	\＄1E	$9 \mathrm{\%}$				
1616	8 COS			\％ NB U	小世FR	CASE					
161.7	8 Cog	1.4			－BYT	非1． 4	9110				
161.8	8 COg	15			－BYT	\＄15	$\hat{y} \cup 1$				
1.619	8COA	16			－BYT	\＄1． 6	¢ い＂				
1620	8008	17			－BYT	\＄17	y 1.3				
1.62 l	8 COC	18			－BYT	\＄18	$\hat{9}$ U14				
1622	8 COO	19			－BYT	非19	y ¢\％$^{\text {a }}$				
1623	8COE：	1 A			－BYT	\＄1．	y 1.16				
1624	8 COF	IE			－BYT	非1．85	9.17				
1625	8 CO	4 A			．BYT	12A	\hat{p}				
1626	8011	56			． BY Y	和56	$\hat{\nu} V$				
1.627	8012	FE			－BYY	限E	\％$A C C J$.				
1623	8013	42			－EYT	\＄42	${ }_{*} \mathrm{~B}$				
1． 629	8 CL 4	43			． BYY	－ 143	9 C				
1.630	Qcts	44			－BYT	144	¢ 1				
16.31	8C16	45			－BYT	非45305	$\hat{\mathrm{p}} \mathrm{E}$				
1632	8 CL 7	46			＋BYT	非46	$\hat{\mathrm{g} F}$				
1633	8 CL 18	10			－BYT		95 m				
1634	8 CL 19	2 E			－BYT	\＄28	$\hat{q}+$				
1635	8CIA	30			．BYT	\＄30	$\hat{4}$				
1636	8C18	00			－BYT	\＄00	y SHTHT				
1.637	8 CLC	11			－BY＇	\＄ t ．	il．．． F^{\prime}				
1.638	80．	$1 . \mathrm{C}$			＋BYT	\＄10	9\％				
1639	801F	5%			－BYT	\＄57	j W				

$\ldots+\cdots \mathrm{FAGE}=0033$

ITNE \because LOE COME LTNE
$1733 \quad 8564 \quad 66$
1733 вनС з

1734 8FC7 00
$1734 \quad 8 \mathrm{FCB} 00$
17% कFC9 00
1736 BFCA 0000
$1736 \quad 8 \mathrm{FCC} \quad 0000$
1736 \＆FCE OO 00
17% बF世0 01
1738 8FOI 40
1739 QFIO 00
$1.740 \quad 8 \mathrm{Fax} \quad 80$
1741 B1世4 E0
$1742 \quad 8 \mathrm{FW} \quad 00$
$1743 \quad 8100600$
1744010070
$1746 \quad 8 F 0810$
1746 8F゙ロ9 4A 8 B
$17 \Delta 7$ 日Fロロ FF
1748 GFTC 00
1749 8F以 00
17% 8FOE 00
175 L 8FOFOO
17 F 2 BEO
1753 BFEO $4 C$ BE 89
$1754 \quad 8 F E=3\left[\begin{array}{lll}17 & 00 & 99\end{array}\right.$

$1766 \quad 8 F E 9 \quad 00$
1756 8FEA 00
1756 8FEB OO
1．75 GFFE 4 C OI $\quad 81$
1758 GFEF AC O6 89

1760 बFFA CO 80
1761 8FF6 4 A 80
$1762 \quad 8 F F 8 \quad 2980$
1763 日FFA 78 80
1764 BFFC 4 A 8 B
1765 8FFF OF 80
17669000

JMF＇rit	\％UNRECOONTZEX CHAK（ERF RTN）
JMF SCAND	\％¢CNuEC
－WOET FEN	
－WORC racorro	夕USER TFACE VECTOF
－WORC SUBEK	\％В¢K
－Woriar suxbu	9 USER TRQ
－WOREI SUNMT	勺 NMI．
＋WORE FESET	9FESEI：T
	¢ IF FQ
－ENO	

EFRORS＝0000 00000 ：

SYMBOL	UAIUE	I．TNE OEF	NEO		0 COSS	W－WEF	FENC					
ACCles	9596	1597	123	129	137	19%	191	1． 50%	1.59	1540	1.446	
ACCI	¢E8E	1530	1539									
ATUCK	8168	336	We\％	99%								
AGATN	8324	1.475	1．471．									
AFi	A6\％\％	59	1\％\％	186	616							
ASCTI	QEFF	1.590	1269									
ASCIMI	QEEE	1589	1313									
ASCNTE	9275	412	344	3%	394							
EAMIMY	648日	666	660									
BAUT	8AFF＇゙	1.489	1921									
EEEFF＇	8972	1266	1.193									
FEEFW	8976	1267	1304									
BEEFFG	8977	1269	1286									
BEI	897C	1270	1.277									
EE2	8995	1290	1272	129								
EES	8997	1281	128%									
BLK゙3	8739	901	976									
B1．．${ }^{\text {P }}$	875E	100%	1013	1.1014								
Bimj	8790	1.03%	1042									
BMOUF：	6787	1.048	1.007	1.036								
BET	8700	1088	1.052									
BFTT	870	1.053	98%									
BZFARM	8395	559	261									
B1	87ar	1043	987	990	100%	1012	1015	1041				
BIFARM	84 mA	699	264									
BL	8772	1016	1.006									
B2FAEM	861.9	8 8	267									
B3FARM	8714	971	270									
CALCS	8897	1．1．03	857	970	1085							
CHKSAO	80 m	463	676	887	965							
CLEAK	8 808	1． 464	1． 46%									
COMINE	9156	342	569									
COMMA	833 A	\％11	342	503	73%							
COMFAFB	日づ合	45	444	446								
CONFTG	89A5	1.288	1211	1.330	1268							
CONI	8905	1291	1.297									
CFCHK	8204	364	362	363								
CFCFI＇	8340	521	147	219	277	497	564	597	604	622	764	90%
			926	1105								
CFILFSZ	8316	49%	706	731	88\％							
CJ	88\％ F	1106	＊＊＊＊									
OBNF：	80F6	212	204									
GBOFF	8053	198	1.46	180	194							
DEON	8051	209	196									
OLREIE	A00\％	91	＊＊＊＊									
MHESA	ACOS	89	202	209	211	21%	214	854	1531	1533		
MEAF：	88：	1.469	1.476									
MECCMF	8つEE	449	761	899	1.040							
DECFTS	$8 \mathrm{C63}$	1710	1.469									
DEIEAY	835A	528	188									
DEFEYT	84E8	709	718									
LEFECC	850E	726	720									
DEFES	8553	75%	722									
DEFN	84F9	71.6	714	723	793							

ITE\％	$84{ }^{897}$	677	620									
TIEF	840A	703	水氷水									
WETEFK	901\％	113										
TETTRO	802\％	118	11%									
UFTBLK	8FAO	1722	1509									
TFTXFE	8859	1508	1312									
WIFF゙\％	B6FO	958	＊$*^{*} *$									
OTFF゙っ	8710	969	＊水米 ${ }^{\text {c }}$									
ammz	86FFA	$9 \% 7$	923									
ORFE	870F＇	969	964	1495								
nTseum	A640	27	1214	1323	1324							
ITSPAT	81．4A	$2 \% 6$	99									
TII．YF	8AFb	1.44 l	1.416	1485								
MI．．YH	QAE： 9	1． 442	1381	1395	1.400	1.408	1.441					
DII．YO	8383	W44	539									
III．．．$Y X$	BAF！	1448	145									
IIT．YY	8AF\％	1.449	1.450									
WI．．．Y Y ．	8368	53	536									
M．．Y\％	8371	53\％	543									
1．11．．	635\％	\％29	＊＊＊＊									
miy	8ค8I	1.390	1387									
EFCNT	A652	43	624	632	649	6×3	667	671	673	979	$99:$	1043
			1053	1057								
E以MSO	6171	275	1.00									
EXEVEC	A67\％	74	11130	1136	11.37							
EXE3	8851	1120	1104									
EXITCF	8219	46%	458									
ExTTO	Q8FF＇	1.207	1．203									
ExJTok	88\％	1．1．83	1． 1.71									
ExITEF	843F	634	＊＊＊＊									
Extime	8977	780	74%									
ExITNE	8315	496	494									
EXTTOM	8人03	1330	1．311	1317	d． 320							
EXITRG	8301	\％79	596									
EXFOFI	8302	\％80	582									
EXUFAFP	820\％	448	447									
	8417	698	695									
EIFARM	8616	6\％\％	842									
E2FAFM	8711	970	91.9									
ESFAFM	88AC	1．1． 64	1196									
FTLLS	8714	975	＊＊＊＊									
FOUNE	8960	1．255	1．260									
FR	A6EC	58	164	612								
F .1	8\％23	981	988	989								
$F \%$	8737	990	＊＊＊＊									
1.3	879F：	986	984									
GETCOM	80FF－	219	98	223	246							
GETCI	81.07	202	295	227								
GETK゙EY	88AF＇	1． 168	1.299									
GETS0S	89EA	1318	1314									
GK	88CF：	1184	1．1．69	1172	1179							
GK゙I	88 MA	1186	11.87	1189	1206							
GK2．	88E4	11．94	1．19	11.98								
GOOM	81173	355	360									
GOFAM	QAC）：	1．429	1.426									
602	83F7	604	＊＊＊＊									
G0\％	83F3	602	663									

60\％	8579	782	729									
GOLENT	G3FA	605	1.97									
HASHIL	812F	240	234									
HASHUS	81.33	242	230	232	24.1							
Hoour	8900	1208	17\％4									
HTEN	81．61：	271	29	269								
HKEY	996E	1.299	1．753									
THTS＊	8053	1.45	127	1． 36	184							
I．JSCNV	8903	1.209	W\％	1186								
INEYTE	81.19	343	\％\％	697	661	666	67%	710				
INCCMF＇	9282	443	654	71.6	742	889	946	986	1.011	1.09 m		
T NCHF	8A18	1348	202	245	2＂\％	343	351	369	382	626	11． 162	136%
INCF3	8293	429	1070	1．081								
TNJTNV	8 A 41	1365	1349									
INJTSU	8392	\％44	948	56								
TNJOUV	8A5 5	139	1370									
INK	8827	1.47%	1.464	1466								
Jさぐ」	日及2合	1.479	1480									
TNET	8A2\％	1356	1352	1．354								
TNBT2	8A3C	1363	13.37									
TNSTAT	8386	W48	538	896	944							
INSTI	8388	580	W\％									
TNGT2	8391	53	54\％					＊				
TNSUEC	A 666	67	55／									
TNTCHE	8 AEB	1373	1713									
TNUEC	A660	6%	11.28	1．1．33	1136	1138	158	1． 160	1365	1． 549		
T下QEFK゙	800F	1.05	1.76%									
TFQUEC	A 67 E	89	＊＊＊＊									
JTABIEE	A620	9	892	89.4								
JUMFP．	8：364	808	797									
JUM？	8\％E：	833	812									
KEYQ	8923	1293	11.94	11． 1.97	126\％	1516 6						
KSCONF＇	89円 ${ }^{\text {¢ }}$	1287	1203	1278	1489	1515						
K゙SHFI．	ACW\％	48	1．185	1205	1257							
kiygtar	896A	126 l	1.75									
LDBYTE	84AI	675	629	637	640	643						
L．EAVE：	8ค以 1	1． 4330	1.429									
I．．ENTKY	8 C 78	1716	693	836	1.083							
しぐ！	8944	1237	1.234									
しだ2	8944	1.340	1． 238									
L．ド3	8956	1249	1252									
L．OCM8	8569	772	758									
LOCF＇8	8558	764	754									
1.006	8А	1.376	1．380									
LFGH	84600	$6: 4$	648									
1．．F\％	8429	625	641	664	670	674						
LFC\％B	8417	618	603									
1.1 F 1	842C	626	628									
LFFNKEEY	8920	1．27	1188									
LSTCOM	A6：7	50	235	244	248	258						
L1， 1	84C0	693	697									
12 B	84C6	690	684									
L．．． L \％	85517	8\％6	909									
L． 11.	8500	829	840					－				
1.10	85 E 9	835	91.7									
128	8688	911	879	93.5								
L． 120	8680	913	＊＊＊＊									

SYMBOL VALUE \angle TNE: OEFTNEO

1.2\%e	BACF	694	691					
L218	8SEF	837	82\%					
L23F	97EE	1076	1073					
MAXPEC	A6SE	51	927	929				
MEMC.	64AE:	680	678					
MEETI	8510	728	704					
MEM?	ब62F	873	863					
TEM ${ }^{\text {¢ }}$	9801	1.084	1077					
MEM30	8808	1087	877	1.093	1.094			
MEM30	8811	1091.	1100					
MEMSE	8816	1097	1090					
MEMZEX	88.1.	1095	1092					
MEMSF'	8826	1102	1.098					
MONENT	g87C	1522	97	1517				
montre	8000	97	****					
MOREE	9454	643	656					
Moktor	86012	94.	949					
m	8101	339	337	1.75%				
M2	9159	262	260					
11.3	8160	265	263					
M1.4	8167	268	266					
M15	8167	31.4	275					
M21	8239	367	384					
M22	824 A	394	386					
M23	8251	397	400					
M24	8267	406	393	395				
M25	826F	409	407					
126	8299	422	4.5	41.7				
M2\%	828\%	425	419					
Me	828F	426	421					
H29	8292	428	413					
132	82 ce	45.4	450					
M3\%	82EB	470	468					
M34	83 Ce	583	577					
M 35	83CA	584	597	600				
M36	93E8	598	595					
M42	8566	770	768					
M43	8574	778	776					
NACCES	889C	1.535	605	785	813			
NBASOC	8A44	1366	485	487	591			
NBELIL	89CL	1305	1.303					
N:WWEV	ecest	1513	1725					
NEWI..N	Q4E1.	706	679	719				
NEWL..OC	8517	731	682	744	748	763	771	7791097
NH3	83 BF	578	570	573				
NH41	8501	720	711					
NH 42	8537	745	736					
NTBALF	8313	495	492					
NTAASC	8309	490	1366					
NMIVEC	A67A	80	****					
NOBEEP	899E	1284	11. 196					
NOKIEY	895E	1253	1236					
NOTCE	93C3	581.	578					
NFIO	8408	61.1	795	825				
NUFEC	8443	636	63.1					
NXTLOC	8531	742	740	750	752			
NXTFG	8302	588	****					

SYMBOL VALUE $\angle T N E$ TEFTNEM

OECMIN	8103
ORCFIFF	834A
OCMCK	839\%
OFCCOM	8337
OFIS	A000
ORT3A	ACOL
0un!	89\%E
OUn"	89E:
OU03	89F4
OUY	8人ma
OuTEYT	82FA
OUTC	8AB4
OUTEHE	8A47

0urnse s901
OUTONE BADE
OUTFC $\operatorname{O2EE}$
OUTOM 83\%0
OUTS\% 8319
$\begin{array}{ll}\text { OUTVEC } & A 663 \\ \text { OUTXAH } & \text { e2FA }\end{array}$
OUT1 gנFE
$\begin{array}{ll}\text { OUT2 } & 8201 \\ \text { OUT4 } & 81 F 5\end{array}$
FAC 3世32
FAMA AMOO
FADETT A6SO
FAOL BEB:
FAFFTL $\quad 82 \mathrm{FE}$
FABM 2290
$\begin{array}{ll}\text { FARNF } & \text { A6A9 } \\ \text { FBM } & \text { A402 }\end{array}$
$\begin{array}{ll}\text { FCHF } & \text { AGEA } \\ \text { FCIF } & \text { A6SO } \\ \text { FCFI } & \text { AOOC }\end{array}$
$\begin{array}{ll}\text { FCFI } & A O O C \\ \text { FHAKE } & 8 A B C \\ W M 1 & 090\end{array}$
$\begin{array}{ll}\text { FOF } & \text { ge2B } \\ \text { OEA }\end{array}$
FFMLO $9 \% 0 \mathrm{~A}$
FFULOC 85%
FSHOVE 8OOD
FTRTN 8872
PIH AGAF:
F11.. AGAE:
F2H A64R
F2l. A64C
F2SCR 8290
F3H A64B

F3I...	A64A	35	368	397	401	402	429	4.40	460	686	794	798
			802	810	829	843	959	1.01 .8	1032	1116	11.41	
F3SCR	82A7	438	706	730	864	1.030						
RAM	A620	8	1510									
FC	A 630	24	636	655	932	935	948					
RUIG	A645	28	1308	1310	1329							
FEGZ.	8, 895	562	****									

SMBOL UALUE \quad INE MEFTNE

FESAl．	8104
FESET	884
FESTTU	8899
RESXAF	818\％
WESAF	QtBE
FQmack	8399
RTA	6e？
FSTVEL	A670
SAVE	बल\％
SAUEF	8169

GQUTNT 9064
SCANA 9906
SCNUEC AG6F
Scएetr A 600
$\begin{array}{ll}\text { कCRA } & \mathrm{ACSA} \\ \text { gCRE } & \mathrm{A} \sigma \mathrm{B}\end{array}$
SER $\quad \therefore \% 0$
SORO A630
$\begin{array}{ll}\text { SCFE } & \text { A } 63 E \\ \text { CFF } & A 63 F\end{array}$
S世世0－6\％

SCR1	$\Leftrightarrow 631$
502	$A 632$

QCRO AB3

CCEA	$A 634$
6 CF	ABS

QCR 6	$A 636$
$6 C R 7$	$A 637$

कलए A6

SCF	ब639
901	890%

601	8901
962	9910
640	46%

कEFK	6601
कEGQM1	8020

GENTEY	8E8？
SET	$8 B O M$

GFACF	9342
$5 F W F$	834%

SFC2 83天下

SFEXT	86 AF
5 FF	9698
52%	8693

SF2R 8GAB

6 FFF	66 BQ
FF F	86 BA

SF：	A6G\％
STOUAL	8069

ST02	8619
srocom	8120
SUBFK	8049
SUBYTE	86\％＂4
SUTEQ	8029
SUNME．	8098
SWTTCH	8E69
SWLFP	8 E 6 C

326	92\％	127%	1296	1.330	1.371	1.430	1.334			
1500	1746	1764								
11%	J．I 48									
316	411	11.16	1163	11． 1.83	1364	1． 405				
321	462	\％44	63%							
564	586									
1．1． 46	1759									
\％．	氷戌米									
1394	1389									
289	377	45	529	621	921	1146	1168	1266	1284	1288
	1300	1348	1367	1373	1.407	159	1.356			
15	1 \％	131	139	179	193					
1210	1.76									
70	1209									
7	1335	1．336	1342							
20	1132	1134	11.57	11.6						
21										
2	＊＊＊${ }_{\text {W }}$＊									
23	$\bigcirc 4$									
26	1176	1182								
26	1228	1247								
10	＊＊＊＊									
11.	米米＊									
12	䬊＊＊＊									
1.3	350	364	380	\％e8	404	406				
1.4	$\because 71$	↔\％\％								
1 E	＊＊＊＊									
16	466	467	504	907	663	951				
17	46%	508	659	907	950					
1.8	G32	53.3	540	．						
19	W3．	934	542							
1213	1292									
1219	1220									
42	1.447	1468	1.470	1473	1542					
1461	1． 463									
16 El	1318									
1.717	107．									
1.466	1.467									
515	236	28%	514	567	709	724	884	906	1106	
517	513									
\％14	59%									
925	94%	947								
9.18	912									
923	954									
926	924									
931	928									
932	930									
57	17%	606								
1711	1.472									
862	＊＊＊＊									
235	251									
137	176.									
955	936	938	940	943						
123	176%									
17%	1763									
1615	＊＊＊＊									
1.516	1519									

Swner	8EBC	1．548	1551					
SYM	8кПб	1562	1.249					
SING	87\％E	1.068	1.080					
613F	87 CL	1059	993					
3130	8703	106%	1075					
923B	97E6	1.072	1.060					
TABLIE：	8Вप6	1.563	＊＊＊＊					
TAFEER	848F：	667	630	636	6444	659	662	665
TECHO	A653	4%	1152	1368	1360	1368	1386	
TEXT	9月06	1.331	1305					
TTN	8AbA	1.381	1399					
Tlipl	8ค83	1391	1392					
TouT	8AMO	1.406	1714					
TOUTFL．	A654	47	1.37	1383	1436	15.38	1645	
TRACON	800\％	196	1.89					
TRCOFF	8060	1.91	1760					
TRCUEC	A674	75	19%					
TFATBI	Q6\％	17.13	1548					
7らTAT	$8 \mathrm{~B} \%$	1489	1716					
TYY	80¢\％	1.540	1724					
TV	A6S6	49	J． 81	628				
TVAE	80AF＇	1．85	1.82					
TXTMOU	8AOB	1335	1.338					
URRどV	A 676	77	＊ k *＊					
いВFKV	A676	76	7%					
UTRQU	A678	79	为必必家					
UリहめणС	A678	78	79					
UFOCVEC	A 66 C	69	271	696	11.64			
USFENT	203\％	123	求米＊					
VAMMR	8646	892	897					
UAL．S	8В66	1．5\％	12993	1． 66.				
UAl．．SF\％	8ECS	1561	129\％					
UECSW	gBb\％	1546	1590					
VEPZ	8485	683	681					
UER1	8596	796	689	783				
UEF2\％	86\％	878	907	674				
ソロCk゙	8664	895	＊＊＊＊					
V1．	8660	897	890	9\％\％	903			
U2	6648	884	894					
	8003	98	101	1．：	1.90	1526		
WFRIE	85\％7	841	936					
WFAF：	8258	446	452					
$\times \mathrm{F}$	A6SE	60	1.53	6 ± 5				
YR	A6：5	61.	1． $1: 314$	6 ± 4				
7ERCK	832E	F06	62 F	881	957			

I．INE	\＃toc		cone	L．YNE		
0057	A64F			\％		
0059	A64F：			VIAACR	$=1400 \mathrm{~B}$	
0059	A64F			VTAFCE	$=\$ \mathrm{AOOC}$	OCONTROL CB2 TAFE ONAOFF，POR
0060	A64F			TPOUT	$=5$ ande	
0061	A64F＇			Tapout	＝Trout	
0062	A AF $^{\text {F }}$			nomout	－Watoz	
0063	A64F＇			Tamer	$=\$ 19000$	
0064	A 6 ar			nofetiv	＝\＄A002	
0065	A64F＇			C．LOKHI．	$=3$ A005	
0066	A647			Cloklo	$=\$ \mathrm{~A} 004$	
0067	A64F			LATCHL	$=\$ 10004$	
0068	A64F			mostic		
0069	AbaF			are	$=1 \mathrm{FA} 400$	
0070	A64F			\％Loamt	ENTER W／Amoz	IN FAFM 2% MOLE IN ACC
0071	A64F			\hat{y}		
0072	A64F					
0073	$8 \mathrm{C7}$	20	8680	Lomat	JSR START	¢ MNTMALTzE
0074	8С7E	AO	02 AO		IMA Mofer	
0075	8С7E	29	EF		ANO \＃\＃ PBF	gETT $6=0$ O，INFUT IS FB6
0076	8 ccs	0 O	02 AO		STA Mu®TN	
0077	8cs3	A9	00		LTAA 非）	
0078	8 gcs	00	O\％A0		STA UTAACR	
0079	Bces	A9	AE：		LDA \＃СぐTM	；get up clock for gettr（kxm）
0080	8C8A	24	FI		bit mode	
0081	8080	10	02		Bra bondt	
0082	gcge	A9	1．F		LWA \＃C：500	\％HS－－．Change bettr val．
0083	8090	日⿸丆口	04 AO	boabri	STA LATCHI．	9GTORE GETTR UML IN LO LATCH
0084	8093	20	8281	loante	JSE SYNC	gGET TN SYNC
0085	8096	20	DIE 8f	LOALTA	ISE FWCHTX	
0086	8099	C， 9	2 A		CMF：${ }^{\text {c／＊}}$	gstart of mata？
0087	8098	Fo	06		beid loamil	
0088	8090	C9	16		CMF \＃SYN	FNO－－SYN？
0089	809F：	no	F2		BNE LOMLTS	\％IF NOT．RESTAFCT SYNC SEARCH
0090	8CA1	FO	1 F		BEQ logata	\％TF YES，KEEF LOOKTNG FOR＊
0091.	8CAS			\％		
0092	8CAZ	AS	FO	LOATII	L．IIA MORE：	
0093	8CAE	29	BF		AND	OCLEAR＇NOT IN SYNC＇BIt
0094	$8 \mathrm{Ca7}$	85	F！		GTA MOnf	
0095	ВСА ${ }^{\text {C }}$	20	28 8E：		JSR mabytx	BEEAL Ti byte on tape
0096	8CAC：	ca	4E A6		CMF TH	OCOMFARE WTTH RERUESTEE ITM
0097	8СА ${ }^{\text {c／}}$	Fo	3		BEC LOALTS	
0098	8CEI	AL	AE Aó		L．I． TA It	\％COMF AREE WTTH O
0099	6CE4	C9	00		CMP 非O	
0100	8086	FO	2 E		BEQ LOAMTS	\％tF O，logn minway
0101	8CB8	C9	FF		CMF 非FFF	SCOMPAREE WITH FFF
0102	8CBA	FOO	07		bea lomato	刀TF FF，USE FEEQUEST SA TO LOAK
0103	8CBC			\hat{y}		
0104	8CBC	24	FO		Ext MOLE	OUNWANTEM RECORM，KIM OF HE？
0.105	8CBE	30	22		BMI HWFONG	
0106	8000		9380		JMFF LOALT2	－IFF KIM RESTART SEARCH
0107	8 CCO			\％		
0108	8 CCO			\％SA（\％	EA TF USEI COME	E FFOM REQUEST， HESCAFO TAFE VALUE
0109	8cc．			$\hat{\text { ¢ }}$（BU）	FAM ALREADY SET	TO SA BY＇START＇）
0110	8 CCO			＊		
0111	8 cc 3	20	288 E	Lonmit	JSE Rmbytx	¢GET SALL FROM TAFE：

LTNE：LOC

$0112 \quad 6 \mathrm{CC} 6$ $0113 \quad \operatorname{\sigma cq}$
0114 8СС9 20 20 日世
O115 8CCC $20 \quad 78$ 8F：
$0116 \quad$ उप०
$\begin{array}{llll}0117 & \text { बCलF } & 24 \mathrm{FO} \\ 0118 & \text { कСm } & 1063\end{array}$
$0119 \quad 8 \mathrm{Cn} 3 \quad 2 \mathrm{E} \quad \mathrm{E}$
$0120 \quad 8 \mathrm{CH} \quad 20 \quad 78 \quad$ बए

0122 80пC 20 78 8E

0123 8CTH $40 \quad 0 \mathrm{C}$ 8

0124 9CE2
012 F － 02
$0126 \quad$ कणए2
0127 9CE2 A9 0
$0128 \quad 8 C E 4 \quad 8 \mathrm{FO}$
$\begin{array}{lllll}0129 & \text { 日CE } 6 & & \\ 0130 & \text { OCE } 6 & 20 & 28 & 8 \mathrm{E}\end{array}$
$0131.80 \mathrm{Br} \quad 20 \quad 78 \quad 8 \mathrm{E}$
O132 ब世E
0133 8CEE 2028 ©E
0134 8CFI 2078 GE
0135 SUF4 06 FF
0136 8CF6
$0137 \quad 8 \mathrm{CW} 64 \mathrm{Fa}$
0138 8CFe 1030
0139 日CFA 20 F 2 M
0140 8CFI 2078 कह
014180000 4A A 6
$\begin{array}{lllll}0142 & 9003 & 20 & \mathrm{E} \% & 8 \mathrm{E} \\ 014 \% & 8006 & 20 & 70 & 8 \mathrm{E}\end{array}$
$01.44 \quad 8009 \quad 804 E \quad A 6$
$0145 \quad 6 \mathrm{LOC}$
0146 ब100
$\begin{array}{llll}0147 & \text { ह円OC } \\ 0148 & \text { enoc } & 20 & E 2\end{array}$

$0151 \quad 8 \pi 14 \quad$ MO 07
0152 घ以16 06 FF
0153 बलाB EC 48 A
0154 8016 FO 13
$015 \mathrm{~F} \quad$ ब1世 $0 \quad 70 \quad 8 \mathrm{E}$
$0156 \quad 8 \mathrm{HO} \quad 24$ F1
0157 8ח2\％ 7004
$0158 \quad 8 \times 124$ A0 00
0159 日म26 91 FE
0160 8N2 F6FE
0161 BN2A 10 EO
0162 日स20 E6 FF
0163 日म2E חO NC
$\begin{array}{llll}0164 & 8530 & & \\ 0168 & 80130 & 09 & 2 F\end{array}$
0166 BH3O $110 \quad 31$

1．TNE


```
*+*, + F'AGL:

```

....FFAGE OOLO

```

......FAGE 0011
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline L. TNE: & 1 LOC & & Cont: & & & & & & \\
\hline 0552 & 8F9A & AC & 39 A6 & & L. BIY & TEMFO & & & \\
\hline 0553 & 8 F 9 M & 98 & & & TYA & & ) NESTOFE & Mata & BYYE \\
\hline 0554 & 8F9E: & 60 & & & हT\% & & & & \\
\hline 0555 & 8F9F\% & & & y & & & & & \\
\hline 0556 & 8F9F: & & & & + ENH & & & & \\
\hline
\end{tabular}
\(E F R O R G=0000<0000 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SYMmOL． & VAl．．UE： & L．．．TNE： & \multicolumn{2}{|l|}{CEFTNET} & \multicolumn{5}{|c|}{CROSG REFERENCES} & & & & \\
\hline A209 & 8F2A & & 476 & 477 & & & & & & & & & \\
\hline BUFAMH & OOFF＇ & & 15 & 136 & \(1 \%\) & 162 & 180 & 439 & 459 & & & & \\
\hline BUFAOL & OOFE： & & 1.4 & 132 & 149 & 159 & 160 & 177 & 178 & 432 & 45 & 457 & \\
\hline 1200 & 91.34 & & 482 & 490 & & & & & & & & & \\
\hline B206\％ & 8136 & & 493 & 484 & & & & & & & & & \\
\hline CHAF & OOFC & & 10 & \(2 \%\) & 23 & 290 & 293 & 33. & 362 & 35. & 369 & 373 & \(46 \%\) \\
\hline & & & & 471 & \(5 \% 3\) & W27 & & & & & & & \\
\hline CHECK & O06C & & 49 & 202 & & & & & & & & & \\
\hline CHKH & A63\％ & & 17 & 1.90 & 387 & 443 & & & & & & & \\
\hline CHKL & A636 & & 16 & 187 & 384 & 386 & 441 & & & & & & \\
\hline CHET & 8E78 & & 382 & \(11 \%\) & \(11 \%\) & 120 & 122 & 13.1 & 134 & 140 & 143 & 15 & 175 \\
\hline & & & & 492 & & & & & & & & & \\
\hline CHKT10 & 9上8． & & 388 & 386 & & & & & & & & & \\
\hline CKEFK & 906\％ & & 20\％ & 1.88 & 1.91 & & & & & & & & \\
\hline CK゙JM & OOfE： & & 33 & 79 & & & & & & & & & \\
\hline CLOKHT & A00\％ & & \(6 \%\) & 267 & 268 & & & & & & & & \\
\hline Clmklo & AOO4 & & 66 & ＊＊＊＊ & & & & & & & & ＊ & \\
\hline CONFTB & 69月5 & & 40 & 247 & & & & & & & & & \\
\hline 01500 & OOLF & & \％＂ & 82 & & & & & & & & & \\
\hline MrFwro & A401 & & 60 & ＊＊＊＊ & & & & & & & & & \\
\hline more \({ }^{\text {d }}\) & A002 & & 64 & 74 & 76 & & & & & & & & \\
\hline morout & A403 & & 6 & ＊＊＊＊ & & & & & & & & & \\
\hline 0 TC & A400 & & 69 & 217 & 232 & & & & & & & & \\
\hline MTSE： & 9FO0 & & \(4 \%\) & ＊＊＊＊ & & & & & & & & & \\
\hline didmer & 8E87 & & 390 & ＊＊＊＊ & & & & & & & & & \\
\hline gumprat & QEAB & & 407 & 395 & 410 & & & & & & & & \\
\hline Dumbre & 8EIT & & \(43 \%\) & 424 & 458 & 460 & & & & & & & \\
\hline LUMFFT & 8F03 & & 454 & 434 & 437 & & & & & & & & \\
\hline EAH & A 648 & & \(4 \%\) & 144 & 153 & 499 & 436 & & & & & & \\
\hline E．EAL． & A6AA & & 46 & 1．4． & 150 & 427 & 433 & & & & & & \\
\hline EOT & 0004 & & 29 & 446 & 448 & & & & & & & & \\
\hline ExTr & 8273 & & 209 & 205 & & & & & & & & & \\
\hline Ex10 & \(8 \pi 76\) & & 213 & 210 & & & & & & & & & \\
\hline FFAME & OOFF & & 48 & 1.94 & 300 & & & & & & & & \\
\hline FFEFFR & 8W6\％ & & 1.94 & ＊＊＊＊ & & & & & & & & & \\
\hline GETATT & 8 F 21 & & 471 & 486 & & & & & & & & & \\
\hline OETTE & 9ac¢ & & 261 & 239 & 242 & 26.5 & 289 & 286 & 288 & 307 & 308 & 31.4 & \\
\hline HEXOUT & 8F\％ & & 909 & 504 & & & & & & & & & \\
\hline HE：\({ }^{\text {HI }}\) & 9F\％E & & 51.4 & \％1\％ & & & & & & & & & \\
\hline HFF & 8573 & & \％31 & 529 & 93 & & & & & & & & \\
\hline HFCNT & QElC & & 313 & \(3!5\) & & & & & & & & & \\
\hline HFFI & 8F7A & & 534 & 535 & & & & & & & & & \\
\hline HWFONG & 8 CE 2 & & 127 & 105 & & & & & & & & & \\
\hline TI & A64E & & 42 & 96 & 96 & 415 & & & & & & & \\
\hline kerrs & ¢E66 & & 367 & 379 & & & & & & & & & \\
\hline א゙TMEIT & 8 F 67 & & 529 & W50 & & & & & & & & & \\
\hline LATCH．． & A004 & & 67 & 8.3 & & & & & & & & & \\
\hline LCERF & 81.65 & & 196 & 1． 66 & & & & & & & & & \\
\hline L．F & 8 F 80 & & 538 & ＊＊＊＊ & & & & & & & & & \\
\hline LFFFI & OF80． & & 544 & 54 & & & & & & & & & \\
\hline 1 F 20 & 8F86 & & 54. & 539 & 1547 & & & & & & & & \\
\hline Lomat & 8078 & & 73 & 21\％ & & & & & & & & & \\
\hline loomste & 8090 & & 83 & 81 & & & & & & & & & \\
\hline Lomate & 8093 & & 84 & 89 & 1.06 & & & & & & & & \\
\hline SYMEOL & UALIUE： & LINE： & OEFIN & ETI & & FOSS & EEEF & NCES & & & & & \\
\hline LOAITA & 80.96 & & 85 & 90 & & & & & & & & & \\
\hline LOATMG & 8CE6 & & 1.30 & 97 & 100 & & & & & & & & \\
\hline l．oaditg & 8 CC 3 & & I．It & 102 & & & & & & & & & \\
\hline LOALIT 7 & 8136 & & 171 & 11.8 & 138 & 179 & 181 & & & & & & \\
\hline Loamrs & 8I4F＇ & & 185 & 1.67 & 1．74 & & & & & & & & \\
\hline LOADI 1 & 8 CA 3 & & 92 & 87 & & & & & & & & & \\
\hline LSTCHF & 002F & & 50 & 196 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1.774 & 6006 & 149 & 123 & 1．61 & 1.63 & & & & & & & \\
\hline 1.77 A & 6\％1\％ & 16 & 1 F & & & & & & & & & \\
\hline 1．T7\％ & 8030 & \(16 \%\) & 154 & & & & & & & & & \\
\hline LTH\％ & 9020 & 160 & \(15 \%\) & & & & & & & & & \\
\hline 1．TBA & 804F & 186 & ＊＊＊＊＊ & & & & & & & & & \\
\hline Matcea & grya & 399 & 404 & & & & & & & & & \\
\hline marese & 8E9C & 400 & 402 & & & & & & & & & \\
\hline mome & OOFH & 11 & 80 & 92 & 94 & 1.04 & 11.7 & 128 & 137 & 156 & 209 & 218 \\
\hline & & & 220 & 23 & 2.46 & 279 & 296 & 320 & 394 & 424 & \(46 \%\) & 493 \\
\hline NGE×TT & 806F－ & 204 & 196 & \(19 \%\) & 200 & 301 & & & & & & \\
\hline NHERE & 9069 & 199 & 172 & & & & & & & & & \\
\hline NOFLT & 8F40 & 499 & 476 & & & & & & & & & \\
\hline NOWHEX & OOFF & \％ & 1.99 & & & & & & & & & \\
\hline OKEXT \({ }^{\text {a }}\) & \(60 \%\) & 207 & 192 & 459 & & & & & & & & \\
\hline O！．．． P & \(00 \% \%\) & 9 & 264 & 266 & & & & & & & & \\
\hline OuTEex & OF43 & 492 & 419 & 421 & 426 & 430 & 406 & & & & & \\
\hline OUTEY & ¢F4A & 497 & 襋必求 & & & & & & & & & \\
\hline O4TETO & 9F4 \({ }^{\text {a }}\) & 490 &  & & & & & & & & & \\
\hline OUTETH & 9F17\％ & \(46 \%\) & 494 & & & & & & & & & \\
\hline outcre & 9F46 & 493 & 416 & 442 & 444 & 447 & 449 & & & & & \\
\hline OuTerr & QW & 621 & 400 & 462 & & & & & & & & \\
\hline OuTCTX & 9F18 & 461 & 408 & 413 & 440 & & & & & & & \\
\hline FのCぐT & QE 3 E & 337 & 327 & & & & & & & & & \\
\hline FACKY & 8EAF＇ & 346 & 348 & & & & & & & & & \\
\hline P¢CKT & GEE & \(3 \%\) & 364 & & & & & & & & & \\
\hline PACKr & 8E以\％ & \％ & 318 & \(x \mathrm{x}\) & 340 & 342 & & & & & & \\
\hline F11． & A6AE & 26 & 42 & & & & & & & & & \\
\hline F2H & A640 & 9\％ & 43 & & & & & & & & & \\
\hline F2\％ & A64C & 24 & 44 & & & & & & & & & \\
\hline F 2 COR & 9290 & 38 & 249 & & & & & & & & & \\
\hline F\％4 & A648 & 23 & 45 & & & & & & & & & \\
\hline F\％ & A 6 A \({ }^{\text {a }}\) & 22 & 46 & & & & & & & & & \\
\hline FTASSY & ब®F\％ & 290 & 287 & & & & & & & & & \\
\hline FOEHIO & ब历ए & 286 & 292 & & & & & & & & & \\
\hline FOBH9O & 8E04 & 296 & 285 & 289 & 297 & & & & & & & \\
\hline RせBTTK゙ & SEOF & 306 & 230 & 368 & & & & & & & & \\
\hline RTmy & 8E20 & 324 & 171 & & & & & & & & & \\
\hline EaEYTH & 日EE2 & 280 & 119 & 121 & 139 & 142 & 148 & 321 & & & & \\
\hline FOBYTX & ¢E28 & 320 & 95 & 111 & 114 & 130 & 133 & 186 & 189 & & & \\
\hline Froch & 9261 & 365 & 273 & 324 & 330 & & & & & & & \\
\hline Fachtx & 8आ\％E & 2\％ & ¢\％ & 297 & & & & & & & & \\
\hline BTRTN & 勺E¢E & 357 & 317 & 326 & 329 & & & & & & & \\
\hline SmH & A 64 Al & 43 & 420 & & & & & & & & & \\
\hline SAL． & A 64 C & 44 & 41.9 & & & & & & & & & \\
\hline Stamt & 80186 & \(24 \%\) & 73 & 390 & & & & & & & & \\
\hline SYBON： & 9083 & 242 & 240 & & & & & & & & & \\
\hline SYBlo & erime & 239 & ＊＊＊＊ & & & & & & & & & \\
\hline SYN & 0016 & 30 & 88 & 294 & 228 & 407 & & & & & & \\
\hline SYNETT & gmas & 237 & 29 & & & & & & & & & \\
\hline SYAC & 8482 & 216 & 84 & & & & & & & & & \\
\hline GYNClO & 9196 & 226 & 231 & & & & & & & & & \\
\hline SYACE & 6meri & 221 & 29 & 299 & & & & & & & & \\
\hline TAFTN & A000 & 63 & 262 & & & & & & & & & \\
\hline TAFOUT & A40？ & 61 & 392 & 397 & 405 & 470 & 473 & 480 & & & & \\
\hline TEMFI & A6＂38 & 18 & 280 & 294 & 365 & 376 & 52. & W51 & & & & \\
\hline TEMP2 & A639 & 19 & 468 & 487 & 92 & 5 F & & & & & & \\
\hline TY1500 & 0047 & 31 & 475 & 482 & & & & & & & & \\
\hline TFEST & 0008 & 34 & 472 & 479 & ：32 & 542 & & & & & & \\
\hline TFOUT & A402 & 60 & 61. & 526 & 533 & 543 & & & & & & \\
\hline UTAACE & AOOE & \％8 & 78 & & & & & & & & & \\
\hline UTAFCF & AOOC & \％9 & 21.4 & 261 & & & & & & & & \\
\hline WATTLO & 日E1A & 308 & 309 & 31.1 & & & & & & & & \\
\hline ZFたぐ & 832E & 39 & 248 & & & & & & & & & \\
\hline
\end{tabular}```

