
,. ".

SYSTEMS CONCEPTS

DIGITAL SYNTHESIZER

SPECIFICATIONS

111111
I : I I. SYSTEMS CONCEPTS SAN FRANCISCO; CALIFO.~NIA

IIIIII

I: I II SYSTEMS CONCEPTS 520 THIRD STREET SAN FRANCISCO, CALIFORNIA 94107

SYSTEMS CONCEPTS

DIGITAL SYNTHESIZER

SPECIFICATIONS

TELEPHONE: 415-442·1500 TWX: 910:372·6062

SYSTEMS CONCEPTS DIGITAL SYNTHESIZER PROGRAMMING SPECIFICATION

INTRODUCTION 780714

Generators and Modifiers

The synthesizer has two kinds of processing elements:
generators and modifiers. An additional type of element, termed
a delay unit, is optional.

Generators produce sine, square, and sawtooth waves,
pulse trains, and equal-amplitude sum-of-cosines (band-limited
pulse trains); apply linear and exponential envelopes; perform
frequency modulation; can automatically sweep frequency
linearly; read data from computer memory; and write data into
computer memory or to digital-to-analog converters. Up to 256
generators can be active at one time.

Modifiers simulate a resonance or antiresonance; perform
amplitude modulation, four-quadrant multiplication, mixing,
clipping, and memory (sample and hold) functions; can generate
uniform noise; and pass data to and from the optional delay
units. Up to 128 modifiers can be active at the same time.

Delay units have two uses: as delay lines for signals;
and to hold precomputed tables, such as time-domain waveforms.
Up to 32 delay units can be active at the same time.

Passes and Ticks; Sum Memory

The processing performed on a per-sample basis comprises
one pass. A pass is a series of ticks, of three types: processing
ticks, overhead ticks, and update ticks. Processing ticks perform
the calculations corresponding to generators and modifiers, and
update ticks permit performance of commands to load new parameters.
Within a pass, all processing ticks are performed first, then all
overhead ticks, then all update ticks. A tick of any type takes
195 nsec. The number of processing ticks per pass is the maximum
of: the number of generators used; twice the number of modifiers
used. For delay units, divide the number of processing ticks minus
six by four to get the number of delay memory cycles possible per
pass. The number of delay units that can be used is this number
less however many delay memory cycles the computer may make during
the processing ticks. There are eight overhead ticks per pass.
The number of update ticks per pass should be chosen according to
the number of processing and overhead ticks to give the desir~d
overall sample rate.

-1-

Information is passed among generators and modifiers
through a scratchpad area called sum memory, which is divided into
four 64-word quadrants. In one quadrant, sums are accumulated
of generator outputs during a given pass; another quadrant holds
the accumulated generator sums from the previous pass. The other
two quadrants act likewise for modifier outputs. Any generator
or modifier can read data from either previous-pass quadrant, and
any modifier can read from the current-pass modifier quadrant also.

computer Interface

Information is passed to and from the computer in two ways:
I/O instructions, and direct memory access. With the delay
memory option, a low-bandwidth bidirectional 20-bit path permits
read- and write-accesses by the computer.

Computer I/O instructions perform general control, status
sensing, and diagnostic functions. The direct memory access path
is provided for data transfer in real time. There are three types
of such data transfer: commands (to the device), read data (per
sample) (to the device), and write data (per sample) (from the
device). Each of these three has its own word count (WC) and
core address (CA) registers in the device; they are set up by
I/O instructions. Commands are always 32 bits; read data may be
either 16 or 32 bits, giving a choice between packed data and full
precision (the left 20 bits are significant in 32-bit mode; in
l6-bit mode, the left 16-bit data item precedes the right one);
write data is the left 20 of ·32 bits. The device has buffering
for 28 commands, 4 read-data items, and 1 write-data item.

The synthesizer can be conditioned to interrupt the computer
in various circumstances. One class of them can be termed data
errors: arithmetic overflow during processing, and command overrun.
Command overrun occurs when a Linger command is performed which
specifies a pass at least 1, but no more than 4096, before the
current pass. The other ciass of interrupt conditions relates to
direct memory access. Separate indications are provided for read
data, write data, and command WCs being exhausted, and also for
underrun conditions. Command underrun occurs when on an update
tick there is no command to be performed (normally when there is
no update activity due, a Linger command is being performed). The
read data and write data underrun states occur when the device must
stop its clock momentarily to wait for memory access; this means the
device is not operating in real time.

-2-

PDP-IO INTERFACE

The computer interface specifications are discussed here in
terms of the implementation for the PDP-IO computer. Direct memory
access refers to 32-bit data and commands right-justified in 36-bit
words. The synthesizer uses a group of four contiguous device codes
(beginning with one which is divisible by four), referred to below
as A, B, C, and D. Codes A, B, and C are used by the basic
synthesizer; code D is used for the Delay Memory option. Two
priority interrupt channels are employed; channel B for command
word count exhausted, and channel A for all other interrupt causes.

Summa~

CONO-A 18
CONO-B 18
DATAO-A 32
DATAO-B 36

DATAO-C 20

DATAO-D 36

bits:
bits:
bits:
bits:

bits:

bits:

sets overall status, diagnostic readback address
sets miscellaneous status
sends command to be performed
sets CA (core address) or WC (word count) for

commands, read data, write data
(only when running) for diagnostic purposes,

sets write-buffer data from bits 4-23
writes bits 0-19 into Delay Memory location

designated by the ones' complement of bits
20-35. Data overwritten is saved to be read
by DATAl-D.

CONI-A 20 bits: reads overall conditions
CONI-B 16 bits: reads cause of interrupt
DATAI-A 20 bits: (only when not running) diagnostic readback
DATAI-D 20 bits: reads Delay Memory data saved when overwritten by

most recent DATAO-D.
CONI-D reads state of TZA flag into bit 25. TZA is

cleared by DATAO-D and set shortly thereafter
when the overwritten data is available to be
read by DATAl-D. Between the DATAO-D and the
setting of TZA no DATAO should be given to
the synthesizer.

-3-

eONO-A

18 19 20 21 22 23 24 25 31 32 33 35

ee : T: A: B: NN: DDDDDDD : R: PIA

cc:

T: 0
1

00
01
10
11

no effect
stop clock
start clock
cause one tick

no effect
reset tick counter to beginning of pass (if stopped,
and processing ticks permitted)

A: 0 set interrupt channel A from PIA
1 no effect

B: 0 set interrupt channel B from PIA
1 no effect

NN: 00 no effect
01 permit processing ticks
10 inhibit processing ticks (all ticks update)

Note: To ensure that all ticks update,
after this eONO is given the clock must
be run at least eight ticks.

11 (reserved)
DDDDDDD: diagnostic readback address, specifies internal

data to be read by DATAl-A.
R: 0 no effect

1 reset (also caused by the PDP-IO I/O Bus Reset)
Principal effects: stops clock; inhibits
processing ticks (all ticks update); resets ME,
PE, NX errors; disables stop and interrupt on
AAA causes, eE, WE, and RE; indicates 16-bit
read data; sets we exhausted for commands, read
data, and write data; marks empty the buffers
for commands, read data and write data; sets PIA
channels A and B to O. Does not reset the tick
counter, pass counter, or eONI-B information.

-4-

eONO-B

18 28 29 30 31 32 33 35

xxx xxx xxx xx ZZ: BB. AAA

ZZ: 00
01
10
11

no effect
reset ME error
reset PE, NX errors
reset ME, PE, NX errors

BB:
(for error descriptions see eONI-A below)

(decoded with AAA)
OOAAA disable stop on cause AAA
10AAA enable stop on cause AAA
OlAAA disable interrupt on cause AAA
llAAA enable interrupt on cause AAA

AAA: 001 command overrun: Linger command being
performed specifies pass number less
than current pass count (but difference
less than 4,096 passes) •

00110
10110
01110
11110
01000
11000
00111
10111
01111
11111

010 modifier mixer overflow
011 modifier multiplier overflow
100 modifier add to sum overflow
101 generator add to sum overflow

disable interrupt on write data we exhausted
enable interrupt on write data we exhausted
disable interrupt on read data we exhausted
enable interrupt on read data we exhausted
disable interrupt on command we exhausted
enable interrupt on command we exhausted
indicate l6-bit read data
indicate 32-bit read data
(reserved)
(reserved)

-5-

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33

CONI-A :AR:BR:IR:CE:WE:RE:ME:PE:NX: R:NH:CU:WU:RU: PIA-A : PIA-B

AR: interrupt desired on channel A (regardless of PIA)
BR: interrupt desired on channel B (regardless of PIA)

35

IR: interrupt desired (by 11AAA cause, ME, PE, NX, WE, RE,
CE, regardless of PIA). The actual interrupt request
will not occur before the interrupt-desired indication.
The clock must be running for an interrupt request to
be presented.

ME: parity error detected in delay memory
PE: parity error during direct memory access
NX: non-existent memory addressed by direct memory

access (PE and NX errors suppress further memory
access and DATAO-A functions until reset by reset

'or CONO-B)
R: clock running (not stopped)
NH: not held (like R but also off while clock stopped

for memory access)
WU: set by write data underrun; cleared by this CONI
RU: set by read data underrun; cleared by this CONI
CU: set by command underrun; cleared by this CONI
WE: write data we exhausted
RE: read data WC exhausted
CE: command WC exhausted
PIA-A: Priority Interrupt Assignment, channel A
PIA-B: Priority Interrupt Assignment, channel B

-6-

20 21 22 23 24 25 26 27 35

CONI-B :I1:12:13:14:15: x:LC: TTTTTTTTT

DATAO-B

II: command overrun
12: modifier mixer overflow: T ••. T = (2 * modifier #) + 7
13: modifier multiplier overflow: T ••• T = (2 * modifier #)

+ 5 or 6
14: modifier add to sum overflow: T ••• T = (2 * modifier #)

+ 9
IS: generator add to sum overflow: T ••• T = generator # +9

Note: Il ••• 15 only come on if the associated
condition occurs and interrupt is enabled on
it (llAAA). If Il ••• I5 are all off TTTTTTTTT
is indeterminate. I1 ••• 15 and LC are cleared
by this CONI.

LC: (lost cause) After the interrupt cause encoded in
this word occurred, but before this word was read by
the computer, another of these interrupt causes
occurred.

TTTTTTTTT: tick number when cause occurred (nine bits
needed to allow for pipe lining)

a 3 4 11 12

UUUU xx xxx xxx

UUUU: 0000 no effect
0001 set write data CA
0010 set read data CA
0011 set command CA
0101 set write data WC
0110 set read data WC
0111 set command WC
others: (reserved)

A ••• A (24 bits): core address (if CA)

35

A ••• A

two's complement of word count (if WC)
Note: A WC becomes not exhausted as soon as it is written

into, thereby permitting memory cycles, so a CA should
be written before the corresponding WC.

-7-

GENERATORS

Parameters

Associated with each generator are the following

(20 bits) alpha oscillator frequency sweep rate

(28 bits) omega oscillator frequency

(20 bits) theta oscillator angle

GO

GJ

GK

GN (11 bits) number of cosines to be summed

quantities:

GM (4 bits) binary scale of cosine or sum of cosines

GP (20 bits) delta -- decay rate

GQ (24 bits) phi -- decay exponent

GL (12 bits) asymptote

GSUM (6 bits) sum memory address into which output is added

GFM (7 bits) sum memory address from which frequency modulation
data is taken
GFM = QAAAAAA
Q: 0 generator-last-pass quadrant

1 modifier-last-pass quadrant
AAAAAA: sum address within quadrant

GMODE (10 bits) generator mode
GMODE = RRRREESSSS

Run Mode

RRRR:OOOO inactive
0001 pause
1111 running A
1110 running B

1001 wait
1101 running C

0111 read data from computer
0011 write data to computer
0010 write data to DAC

(address in GO)

osc. run?
no
no
yes
yes

yes
yes

no
no
no

-8-

env. run? add to sum?
no no
no no

yes, sticky yes
yes, free; yes

triggers subseq.
on overflow

no
yes, free;
stops and

triggers subseq.
on overflow

yes
no
no

no
yes

yes
no
no

The envelope side of the generator can be sticky, which means
that rather than overflow it will stay at the last value it attained
before it would have overflowed; or it can be free, in which case it
wraps around.

ways.
Transitions between run modes can be accomplished in various

1) A command can output a new GMODE.
2) A MISC command can specify "clear all pause bits", which

will cause any generator in run mode 0001 to change to
mode 1111.

3) A MISC command can specify "clear all wait bits", which
will cause any generator in run mode 1001 to change to
mode 1111.

4) If the envelope side of a generator in run mode 1101
overflows, that generator goes to run mode 1001.

S) A generator in run mode 1001 will go to run mode 1101 if
on the same pass the preceding generator (the one
whose generator number is one less) caused a
trigger (was in run mode 1110 or 1101 and envelope
overflowed) •

Envelope Mode

EE: 00
01
10
11

L - Q
L + Q
L - 2**(-Q)
L + 2**(-Q)

Oscillator Mode

SSSS: 0100
0001
0010
0011
0000
1000

Processing

sum of cosines
sawtooth
square
pulse train
sin (K)
sin (J + fm)

Calculations performed for a generator, governed by its
mode, proceed as detailed below.

1) The word in sum memory addressed by GFM is read (20 bits);
the sum is formed of it and the high-order 20 bits of
GJ (call the result TempO) •

2) If the oscillator side is running, GO, right-adjusted with
sign extended, is added into GJ.

-9-

3) If the oscillator mode is 1000, TempO is taken; otherwise GK.
Call the 20-bit result TemplE, and its high-order 13 bits
TempI.

4) If the oscillator side is running, TempO is added into GK.

S) If the run mode is 0011, the word in sum memory addressed by GFM
is sent to the CPU as the next write-data item; if the run
mode is 0010, it is sent to the DAC addressed by the low-order
4 bits of GO.

6) In oscillator modes other than 0000 and 1000, TempI is multiplied
by GN. Call the low-order 12 bits of the product, with two bits
equal to 01 appended to the right, the 14-bit result Temp2.
In oscillator modes 0000 and 1000, Temp2 is the high-order 13
bits of TemplE, with a bit equal to 1 appended to the right.

7) If the oscillator mode is 0000 or 1000, pi/2 is taken (the binary
number 010 ••• 0); otherwise TempI. Call the result Temp3.

8) In floating point, the product csc (Temp3) * sin (Temp2) is
formed; then converted to fixed point with a scale factor
of 2**(-GM). Call the result (13 bits) Temp4.

9) The result of the oscillator side (13 bits, call it TempS) is
then determined according to the oscillator mode.
ssss: 0100 Temp4

0001 TempI (but a when TempI is 1000000000000)
0010 -1/2 (on a scale from -1 to +1) if TempI is negative,

else +1/2
0011 +1/2 if overflow occurred in step 1) or 4) above;

else o.
0000 Temp4
1000 Temp4

10) The high-order 12 bits of GQ are taken (call this Temp6).

11) If the envelope side is running, GP right-adjusted, sign
extended, is added into GQ (overflow dealt with according
to the run mode). (The overflow condition is GQ changing
sign such that the high-order bit of the resultant GQ equals
the sign bit of GP.)

12) If the envelope mode is 10 or 11, 2**(-Temp6) is looked up;
otherwise Temp6 is taken. Call the resulting 12 bits Temp7.
Scaling is such that if Temp6 is 0, then 2**(-Temp6) is
III III III 101 binary; if Temp6 is 000 100 000 000 binary,
then 2**(-Temp6) is 011 III III 110.

13) If the envelope mode is 01 or 11, Temp7 is added to GL; else
it is subtracted from GL. This creates Temp8, the result
of the envelope side.

14) TempS is multiplied by TempS. If the run mode specifies adding
into sum memory, the high-order 19 bits of the rounded product,
right-adjusted with sign extended, are added into the sum
memory location designated by GSUM; except that in run mode
0111, the product is added to the next read-data item from the
CPU and the sum replaces the contents of the sum memory
location addressed.

-10-

MODIFIERS

Parameters

MO (30

Ml (30

LO (20

Ll (20

MIN (8
MRM (8

QQ:

Each modifier has the following numeric parameters.

bits) coefficient

bits) other coefficient

bits) running term

bits) other running term

bits) address in sum memory where modifier reads "A" data
bits) address in sum memory where modifier reads "B" data
MIN, MRM = QQAAAAAA

00 generator-last-pass quadrant
01 modifier-last-pass quadrant
10 modifier-this-pass quadrant
11 (reserved)

AAAAAA: sum address within quadrant

MSUM (7 bits) result address in sum memory
MSUM = RAAAAAA

R: 0 add to sum
1 replace sum

AAAAAA: sum address in modifier-this-pass quadrant

-11-

MMODE (9 bits) modifier mode
MMODE = MMMMMAABB

AA: scale of second multiplication
BB: scale of first multiplication
For fraction multiplications:

00: x 1
01: x 2
10: x 4
11: x 8

For integer multiplications:
00: x 1/4
01: x 1/2
10: x 1
11: x 2

A multiplication involving parameter Ml will be the first
multiplication; one involving MO will be the second.

MMMMM: function
00000: inactive
00010: uniform noise
00011: triggered uniform noise
00100: latch
00110: threshold
00111: invoke delay unit

01000: two poles
01001: two poles, MO variable
01011: two poles, Ml variable
01100: two zeros
01101: two zeros, MO variable
01111: two zeros, Ml variable

10000: integer mixing
10001: one pole
10100: mixing
10110: one zero

11000: four-quadrant multiplication
11001: amplitude modulation
11010: maximum
11011: minimum
11100: signum
11101: zero-crossing pulser

others: (reserved)

-12-

Processing

computations performed by a modifier depend entirely on
its mode. In the descriptions below, A is the 20-bit sum memory
word addressed by MIN; B is the word addressed by MRMi when MO
or Ml is used, its high-order 20 bits are taken, but when a
quantity is added to MO or Ml it is added right-justified, with
sign extended; S is the 20-bit result that is added into the sum
memory location addressed by MSUM. DM is the 20-bit word read
from or sent to a delay unit. Multiplications are 20 bits x 20
bits, signed, and the product (unless otherwise noted) is the
high-order 20 bits, rounded.

MMMMM

00000: inactive. S:= 0

10000:

10100:

00100:

11100:

11101:

11011:

11010:

11001:

11000:

integer mixing. S:= A*MO + B*Ml (integer multiply, low-order
20 bits of product used; overflow ignored)

mixing. S:= A*MO + B*Ml

latch (sample and hold). S:= Ll; If B*Ml is not 0, Ll := A

signum. If A*MO is less than B*Ml, then S := -1 (integer);
if A*MO equals B*Ml, then S := 0;
if A*MO is greater than B*Ml, then S := 1 (integer)

zero-crossing pulser. TempO:= B*MO; TempI := Ll*Ml;
if TempI is not 0 and either TempO is 0 or TempO*Templ is
negative then S := -epsilon, else S := 0; Ll := TempO
(The term -epsilon is a binary number with all bits set.)

minimum. S:= min (A*MO, B*Ml)

maximum. S:= max (A*MO, B*Ml)

amplitude modulation. S:= Ll*Ml; Ll:= A * ((B+l)/2)
(The term ((B+l)/2) interprets B as a signed two's-complement
fraction ranging in value from -1 to +l-epsilon.)

four-quadrant multiplication. S:= Ll*Ml; Ll := A*B

-13-

10001: one pole. S := Ll*Ml + B*LO; Ll .-.- S

10110: one zero. S .:= Ll*Ml + LO*MO; LO := Ll; Ll := A

01000: two poles. S := Ll*Ml + LO*MO + A; LO := Ll; Ll

01001: two poles, MO variable. S .- Ll*Ml + LO*MO + A;
LO .- Ll; Ll := S; MO .- MO + B .- .-

01011: two poles, Ml variable. S .-.- Ll*Ml + LO*MO + A;
LO .-.- Ll; Ll := S; Ml := Ml + B

01100: two zeros. S .- Ll*Ml + LO*MO + A; LO .- Ll; Ll .- .-
01101: two zeros, MO variable. S .-.- Ll*Ml + LO*MO + A;

LO .-.- Ll; Ll := Ai MO .-.- MO + B

01111: two zeros, Ml variable. S:= Ll*Ml + LO*MO + A;
LO := Ll; Ll := A; Ml := Ml + B

:= S

.-.- A

00010: uniform noise. S:= LO + Ll*MO (integer multiply, low-order
20 bits of product used; overflow ignored); Ll := S

00011: triggered uniform noise. S:= LO + Ll*MO (integer multiply,
low-order 20 bits of product used; overflow ignored) ;
if B*Ml (integer multiply, low-order 20 bits of product
used; overflow ignored) is not 0, Ll := S

00110: threshold. If A*MO + LO is less than 0, then S := 0;
if A*MO + LO is equal to or greater than 0, then S := B*Ml

00111: invoke delay unit.
unit # := MRM (low-order 5 bits);
S := LO + Ll*MO; LO:= OM; TempO.- A + OM*Ml";
Ll := TempO; OM:= TempO

Timing Considerations

The following relationships apply to references to the
modifier-this-pass quadrant of sum memory.

1) Modifier number M writes into sum memory (read-add-write or
replace) on tick number 2*M + 7.

2) Modifier number M reads word B on tick number 2*M.

3) Modifier number M reads word A on tick number 2*M in the
following modes: integer m1x1ng; m1x1ng; signum; minimum;
maximum; amplitude modulation; four-quadrant multiplication;
threshold.

4) Modifier number M reads word A on tick number 2*M + 6 in the
following modes: latch; one zero; two poles, two zeros
(all six modes); invoke delay unit.

-14-

DELAY UNITS

A common pool of addressable memory, which may comprise up
to 65,536 20-bit words, is available for use by the delay units.
By programming, each active delay unit is assigned its own contiguous
area of the memory.

Quantities

Each delay unit has the following numeric parameters.

P mode (4 bits). The mode is interpreted as follows:
mode: 0000 inactive

1000 delay line
1010 table look-up
1011 table look-up, argument rounded
others: (reserved)

Z unit length (16 bits) or binary scale factor (4 bits) •
In delay line mode, Z gives 1 less than the total number of
locations in delay memory used by this delay unit, i.e. the
index of the last delay memory address for this unit. In
table look-up modes, the low-order four bits of Z specify
the number of binary places that the argument is shifted to
the right before it is used to address the memory; if
rounding is specified, the address after shifting is
incremented by 1 if the most-significant bit shifted out
was a 1.

Y index (16 bits). In delay line mode, this is the running
index on the memory area for the unit.

X base address (16 bits). The base address is the lowest-numbered
delay memory location used by this unit.

Processing

In inactive mode, delay memory is not modified and the unit
returns indeterminate results. Delay units not accommodated due
to the number of ticks ina pass act as if in the inactive mode.
If the number of processing ticks is 4*n + m where m is 1, 2, or 3,
delay unit number n should be put in the inactive mode.

In delay line mode, a 20-bit data word is received from
the modifier that calls for the delay unit, and another 20-bit
word is sent to it. The word received is put into the next slot
in the delay line. It will be retrieved and sent back to the
modifier Z+3 passes later.

In table look-up mode, the 20-bit data word received
from the modifier is shifted to the right Z bits, bringing in zeros,
and the right 16 bits of the result are used to address the memory
area assigned to the unit. The 20-bit word in the addressed memory
location is returned to the modifier three passes later.

-15-

COMMANDS
All commands have 32 bits. Generally the left 20 bits are data,

the next 4 or 5 bits identify the kind of parameter, and the last 8 or 7
bits address the generator or modifier affected. If more than one data
field is packed in the 20 bits, disable bits will be provided to
facilitate loading a subset of the fields. In a few cases, a bit is
also provided in the data area to clear (put to zero) a related parameter
in the same generator or modifier.

4 23 24 28 29 30 31 32 33 34 35

(20) data : 0 0 0 0 0: RR: x x: W: P: S:
MISC---

4

DLY X,

4

TIMER

RR: 00 no effect

W:
P:
s:

01 load DX from data
10 load TTL buffer A from left 16 bits of data
11 load TTL buffer B from left 16 bits of data;

if
if
if

set analog output filters from right 4 bits of data:
Olxx Mode 0
OOnn Mode 1, frequency fO, fl, f2, or f3 according

to nn
lxxx no change

1, clear all wait bits
1, clear all pause bits
1, stop clock

19 20 23 24 28 29 30 31 35

(16) data : (4)data: 0 0 0 0 1: U U: (5) unit #

Y, Z
UU: 00 X 16 bits base address; clear Y

01 Y 16 bits one's complement of index
10 Z,P 16 bits delay unit size minus 1, or scale (low

4 bits of 16); 4 bits mode
11 (unused)

23 24 28 29 30 31 32 33 35

(20) data : 0 0 0 1 0: x x: T T: x x x:

TT: 00 no effect
10 Linger: process no further commands until pass counter

equals data
11 clear pass counter, then Linger as for 10
01 set pass counter from data

-16-

4 23 24 28 29 30 31 32 33 35

: xxx xxx xxx x : (10) data : 0 0 0 1 1: x x: 0: Q: x x x:

TICKS

GQ

GJ

GP

Q: 0 designate highest-numbered processing tick per pass
(should not exceed 255)

1 designate next-to-highest-numbered tick (processing
plus overhead plus update) per pass

4 23 24 26 27 28 35

(20) data : 0 0 1: E: (8) gen #

E: 0 Q right-adjusted, sign extended
1 Q left-adjusted, low bits from left of DXi clear DX

4 23 24 26 27 28 35

(20) data : 0 1 0: E: (8) gen #

E: 0 J right-adjusted, sign extended
1 J left-adjusted, low bits from left of DXi clear DX

4 23 24 27 28 35

(20) data : 0 1 1 0: (8) gen #

456 8 9 19 20 23 24 27 28 35

GN, :N:M:x x x: (11) GN : (4) GM : 0 1 1 1: (8) gen #
GM ---

N: if 1, disable loading GN
M: if 1, disable loading GM

4 5 6 17 18 23 24 27 28

GL, : L: S : (12) GL : (6) GSUM : 1 0 0 0: (8) gen #

35

GSUM---

GK

L: if 1, disable loading GL
S: if 1, disable loading GSUM

4 23 24 27 28

(20) data : 1 0 0 1:

-17-

35

(8) gen #

456 7 16 17 23 24 27 28

:M:F:C: (10) GMOOE : (7) GFM: 1 0 1 0: (8)

GMOOE,
GFM M: if 1, disable loading GMOOE

F: if 1, disable loading GFM
C: if 1, clear GK

4 23 24 27 28

GO (20) data : 1 O. 1 1: (8)

MM

ML

4

4

23 24 26 27 28 29

(20) data : 1 1 0: V V:

'W: 00 MO righ t- adj us ted, sign extended
01 Ml right-adjusted, sign extended
10 MO left-adjusted, low bits from left
11 Ml left-adjusted, low bits from left

23 24 27 28 29

(20) data : 1 1 1 0: N:

N: 0 LO
1 Ll

45678 16 17 23 24 28 29

: M: S : C : H : (9) MMOOE : (7) MSUM: 1 1 1 1 0 :

MMOOE,
MSUM M: if 1, disable loading MMMMM bits of MMOOE

S: if 1, disable loading MSUM
C: if 1, clear LO
H: if 1, disable loading AABB bits of MMOOE

4 5 6 7 8 15 16 23 24 28

: R: I : C : x : (8) MRM : (8) MIN : 1 1 1 1 1 :

MRM,
MIN R: if 1, disable loading MRM

I: if 1, disable loading MIN
C: if 1, clear Ll

-18-

29

(7)

of
of

(7)

(7)

(7)

35

gen #

35

gen #

35

mod #

OX; clear OX
OX; clear OX

35

mod #

35

mod #

35

mod #

SYSTEMS CONCEPTS DIGITAL SYNTHESIZER ANALOG OUTPUT SPECIFICATION

The signal path for one analog output involves the following sections:
Channel selection logic (addressing)
Digital hold register
Digital to analog converter
Sample-and-hold
Program-controlled filter
Buffer amplifier.

Each section is specified at 25 degrees C as follows.

Channel selection logic: 4 bits (1 of 16)

Digital hold register: 14 bits

Digital to analog converter: 14 bits
Linearity: 0.005%

Sample-and-hold: full power bandwidth 0 to 40 kHz

Filter: two modes
Mode 0: I-pole RC at 200 kHz
Mode 1: 8-pole Butterworth, 4 programmable

frequencies subject to the relationships fO=A,
f1=A+B, f2=A+C, f3=A+B+Ci full power bandwidth
o to 18.5 kHz max.

Buffer amplifier: output +/- 5 V max., unbalanced
Output current: 4 rnA max.
Short circuit protection: to ground only
Full power bandwidth: 0 to 18.5 kHz for 10 V swing
Output source impedance: 100 ohms
Output connector: BNC jack

The following are overall figures with Mode 0 filtering:

Gain error: 2.5%

Offset error: 20 mV

Noise at sampling rate and its harmonics: 10 mV max. (RMS)

Other noise 10 Hz to 50 kHz: 1 mV max. (RMS)

-1-

rill'
. I : I II SYSTEMS CONCEPTS 524 SECOND STREET SAN FRANCISCO, CALIFORNIA 94107

SYSTEMS CONCEPTS

DIGITAL SIGNAL SYNTHESIZER

The Systems Concepts Digital Synthesizer is a computer-driven

real-time device which creates signals such as represent the

s'ounds of music and speech. It eliminates the former problems

o~ analog synthesizers, such as drift, poor tracking between

units, inaccuracy, and inflexibility. It adds the benefits of

control from a general-purpose computer, with which sound can

be composed, edited, and remembered or recalled in real time

or at any slower rate, and it matches the computer in rapid

flexibility.

Basic elements of the Digital Synthesizer are, generators and

modifiers. Generators are 90ntrolled sources of signals, artd

modifiers are controlled signal processors.

Each generator can provide any of the followi~g waveforms:,

sine, sum of cosines (equal amplitude harmonics), square, saw

tooth, or impulse train; performs frequency modulation if de

sired; and'automatically can apply any of the following enve

lopes: linear rising or falling, exponential growth or decay,

or asymptotic rise or fall.

Each modifier can do anyone of the following: simulate a pole

or pole pair (resonator), simulate a zero or pair of zeros,

scale an input, mix two inputs, perform amplitude modulation

or ring modulation (four-quadra~t multiplication), or generate

uniform noise. Basic nonlinear operations are also provided.

Arbitrarily complex filt'erinq (low pass, hiqh pass, band pass,

band stop) can be accomplished bycascadinq pole pairs and

zeros.

TELEPHONE: 415·433·5400 TWX: 910-372-6062

-2-

System architecture permits sums to be formed of the outputs

of any number of generators or modifiers. The output of any

generator or modifier, or the sum of several such outputs,

can then be used as the data input or, modulation input to any

modifier, or as the;frequency modulation input to any generator.

An optional Delay Memory attachment permits any modifier to

act as a delay unit or as an a11-pass'reverberator.'

The number of generators and modifiers available at any instant

depends on the sample rate at which the synthesizer is operated.

Sample Rate

50 KHz

30 KHz

20 KHz

18.75 KHz or less

Generators

96

160

240

256

Available' Modifiers
I

48

80

120

128

output can be sent either to four high-resolution d~gita1-to

analog converters, or back to the controlling computer for

further processing or storage. Complete test ~nd diagnostic

featur~s are built in. Interfacing c~n be provided for any

positive-logic TTL or DTL computer.

-\

Available

771025

The Systems Concepts Digital Synthesizer

Introduction

This is a discussion of the Systems Concepts Digital Synthesizer

from three viewpoints. First, the functional characteristics of

the original design are reviewed. Then follows a survey of the

facilities and techniques used in the engineering, manufacture, and

checkout of the Synthesizer. Last, the performance of the finished

unit is compared to the design goals and some comments are offered

on the important issue of long-term reliability.

Functional Characteristics

From the start, the Synthesizer was designed with sufficient word

lengths, computing power, and flexibility of interconnection to

serve the needs of serious research and composition efforts. The

following techniques of synthesis and processing are possible, and

may in fact be in progress simultaneously: additive; subtractive;

modulation; delay/reverberation"; table look-up; DMA (direct memory

access). Each of these techniques has proved its worth in software

synthesis and should be supported by a comprehensive hardware

synthesizer.

Additive Synthesis: The Synthesizer has 256 processing elements

named generators. Each generator has an oscillator side and an

envelope side; their instantaneous product is the output of the

generator. The envelope side has the conventional angle, frequency,

and sine look-up hardware, as well as the facility to bypass the

sine function to produce sawtooth, square, and pulse-train wave

forms. In addition, there is an fm input from other elements of the

Synthesizer, and each generator also has a frequency sweep parameter

built in to provide a linear rate of change in frequency. Each

oscillator also can perform the Winham-Steiglitz sum-of-cosines

algorithm to produce a band-limited pulse train. On the envelope

-1-

side, each generator can create a linearly rising or falling envelope

or one showing exponential growth or decay, upward or downward,

around an arbitrary asymptote. A trigger feature permits a series of

generators to have their envelope sides chained together, producing

more complex envelope forms without the need for computer interven

tion. The product of oscillator and envelope is added into one of 64

locations in sum memory. Each generator can specify which location

its output goes to; when several generators designate the same

location, it performs the addition which is the basis of the additive

synthesis technique. Word sizes in the generators differ according

to function. The looked-up sine value, for instance, in accordance

with perceptual tests, has twelve fraction bits, four exponent bits,

and a sign bit. The frequency, by contrast, has 28 bits, so that it

can be augmented slowly by the frequency-sweep term.

Subtractive Synthesis: There are 128 processing elements called

modifiers. Among other possibilities, each modifier can be condi

tioned to act as a resonator (pole pair) or antiresonator (zero

pair). More complex filtering operations can be implemented by

cascading or paralleling modifiers. Each modifier has separate

parameters indicating where in sum memory to find its input data,

and where in sum memory to add its output data. A second input from

sum memory can be used to sweep either of the filter coefficients.

Possible excitation sources for filtering include one or more

generators, perhaps in sum-of-cosines mode; or a modifier in uniform

noise (similar to white noise) mode.

Modulation: Frequency modulation, as mentioned above, is available

with every generator. Amplitude modulation and four-quadrant

multiplication (corresponding to the analog process of ring modula

tion) are modes to which any modifier can. be configured. Other modes

include basic nonlinear operations such as minimum, maximum, sample

and hold, threshold detect, and zero-crossing pulser. Since each

of the 128 modifiers can be set to its own mode, depending on the

needs of a particular piece the Synthesizer may be arranged to have

as many as 128 resonators, for instance, or in another case as many

-2-

as 128 ring modulators. Data paths in the modifiers are 20 bits

wide, including the multiplier.

Delay and Reverberation: The Synthesizer has provision for 64K

words (K=1,024), 20 bits wide, of delay memory. This is accessed

by 32 delay units, which in turn communicate with the other elements

of the Synthesizer through modifiers in delay mode. Each modifier

in delay mode specifies which delay unit it deals with, and each

delay unit ~pecifies the area it uses in delay memory. Each combin

ation of a modifier and a delay unit can perform not only the delay

line function, but also various reverberation processes including

the all-pass configuration of Schroeder. As with all parameters in

the Synthesizer, those governing the reverberation characteristics

can be altered by computer control during the progress of a piece.

Table Look-Up: Each of the 32 delay units can use delay memory for

table look-up purposes instead of as a delay line. This feature can

be used for stored waveforms or envelopes; and also to look up

mathematical functions, such as square root, which may be needed for

certain synthesis and signal-processing algorithms.

DMA: As it runs, the Synthesizer can take data stre~ms, each com

prising a 20-bit word per sample, direct from computer memory, and

likewise can put data streams into memory. This can be used to

advantage in several ways. A piece which exceeds the capacity of

the Synthesizer can be run in several passes; the Synthesizer can

merge signals it creates with sounds generated elsewhere; it can be

used to process signals from another source, such as natural sounds,

possibly returning the results to the computer for further use.

Speed: Based on an analysis of increasing performance versus

increasing cost, the following was established as a design goal:

In 780 nanoseconds, the Synthesizer should do the processing for

four generators, two modifiers, and one delay unit.

-3-

Development

Engineering of the Synthesizer made heavy use of computer-aided

design techniques developed on the Systems Concepts in-house

computing facility. All schematic drawings for the system were

done by machine, and machine-checked for consistency. For the

printed-circuit logic boards, computer programs did the parts

placement, resulting in assembly drawings; and then laid out the

complete wiring of each card. Results were full-size artwork and

a paper tape to run the numeric-controlled drill making the printed

circuit boards. For those portions of the Synthesizer on Wire-

Wrap panels, the computer system produced data files for fully

automatic machine wrapping: this avoids a significant source of

error and ensures the best possible workmanship. As another part of

the design automation process, various items of metalwork--brackets,

chassis, etc.--were designed with the aid of computer programs which

created paper tapes to run the actual metalworking machines.

Checkout too made heavy use of the computer. A PDP-IO system was

used to operate the Synthesizer, with the help of various assembly,

editing, and debugging programs. Interactive routines were developed

to send various strings of commands to the Synthesizer and to observe

the results in real time in both analog and digital domains. Instru

mentation used in checkout included a 16-channel logic analyzer and

an audio-frequency spectrum analyzer, both of which proved to be of'

great value. One more tool of great importance in checkout was

provided by the diagnostic hardware in the Synthesizer and the

diagnostic software which employs it. More than 10% of the hardware

in the Synthesizer is strictly for diagnostic purposes: it permits

a computer program to check the calculations performed by the

Synthesizer at each step of the processing, thereby pinpointing

any failure. In support of this hardware, some 50,000 words of

diagnostic software have been written.

Following checkout the unit, comprising approximately 2,500 inte

grated circuits, met all design goals.

-4-

Reliability and Maintainability

Long-term reliability and maintainability must be considered at all

stages in the development of a system. In this Synthesizer, these

issues have been addressed by techniques including conservative

design, careful workmanship, extensive diagnostic features, and

comprehensive hardware documentation. Based on our experience with

these techniques in similar products, we expect the Synthesizer to

compare favorably in terms of reliability with other devices of

similar complexity. One measure of reliability is voltage margin:

before shipment, margins on the 5-volt supplies exceeded 10.4 volts,

with all elements of the Synthesizer being exercised at full speed.

This gives substantial protection against failure due to environmen

tal change and aging over the life of the unit.

-5-

A General-Purpose Digital Synthesizer

Peter R. Samson

Systems Concepts, Inc., San Francisco, California

The development of digital music synthesis has been
handicapped by its severe computational requirements.
A large digital synthesizer has been developed to meet
these requirements and to perform synthesis of complex
musical sounds in real time. Its architecture provides
a large number of building blocks for digital synthesis
and processing, and means for rapid and complete control
of their interconnections.

o. INTRODUCTION

Over the past twenty years, digital music synthesis -- usually performed
on large general-purpose computer systems with the aid of complex
programs -- has given us not only a variety of musically significant
compositions, but also several fundamental and elegant techniques for
sound synthesis and a tool of unparalleled flexibility for psycho
acoustic research.

Digital synthesis offers numerous advantages over analog techniques.
Every processing element can be controlled precisely, instantaneously,
and repeatably. Digital processing, with its inherent accuracy and
stability, can perform the tasks of current analog modules with
substantially less noise and distortion, and introduces many new sonic
resources, such as time-varying timbre and reverberation.

This work has been held back, however, by the sheer volume of compu
tation required to digitally synthesize sounds of musical interest,
and especially for complexes of such soundsG A time scale of 100 -
meaning 100 seconds of computational effort for each 1 second of sound
-- is not uncommon. This is despite the use of powerful computers, and
numerous simplifying assumptions and restrictions in the software. This

-1-

time scale effectively precludes interactive experimentation and
composition, and imposes a severe economic handicap on the otherwise
attractive methods of digital synthesis.

It has recently become feasible to develop digital synthesis hardware,
operated as a peripheral device in a computer system, which can regain
the time factor of 100 or more. This article describes one such digital
synthesizer, designed to meet the computational needs of composers,
psychoacousticians, and musical researchers.

This synthesizer is viewed as general-purpose, not only because its
design encompasses the currently favored synthesis techniques, but also
because it offers basic computational building blocks which can be
interconnected, under program control, to perform at high speed new
synthesis techniques as they are developed.

Its architecture and performance specifications, in essentially their
present form, were first presented informally at the Computer Music
Conference at Michigan State University in 1974. The prototype unit was
installed at the Stanford University Center for Computer Research in
Music and Acoustics in October of 1977, and has since been in service
there around the clock.

1. GENERAL DESCRIPTION

A block diagram of the synthesizer is shown in Fig. 1. There are six
major functional blocks: the computer interface, the generators, the
modifiers, the delay units, sum memory, and the digital-to-analog
converters (DACs). The computer interface provides bidirectional
communication with both the Input/Output Bus and the Memory Bus of the
host computer; it also contains a first-in-first-out buffer (FIFO) to
minimize delays in processing which might otherwise arise due to the
comparatively slow speed of the computer memory. The generators and
modifiers perform the actual computations for signal synthesis and
processing, described in detail below. The delay units provide bulk
storage for use as delay lines or stored function tables. Up to 16
DACs can be provided: these include appropriate deglitching and
computer-selectable low-pass filters.

Associated with each processing element is a set of parameters. Each
parameter can be categorized as either dynamic or static. The dynamic
parameters are those whose values change every sample: the phase angle
of an oscillator, for instance. The static parameters are not changed
on a per-sample basis, though the term "static" is a relative one: they
may be changed by computer command hundreds or thousand of times per
second. Static parameters may be further subdivided into coefficients
(numeric quantities comparable to knob settings), sum memory addresses
(describing the interconnection of processing elements), and modes
(which select the specific function performed by a processing element) .

To produce the final output data comprising one sample of audio (for
however many DACs are in use), certain calculations must be performed
for each active generator, modifier, and delay unit. These calculations

-2-

comprise one pass, which in the hardware is a series of 195-nanosecond
ticks. The number of ticks in a pass can be programmed for a given
composition, depending on the desired sample rate and the maximum number
of processing elements to be active at one time.

2. SUM MEMORY

The interconnections between generators and modifiers are accomplished
through the sum memory. Sum memory is divided into four quadrants,
designated SA, SB, SC, and SO in Fig. 2. SA accumulates sums of
generator outputs during a given pass (sample period); SB holds the
totals of generator outputs from the previous pass; quadrant SC
accumulates sums of modifier outputs during a pass; and SO holds the
totals of modifier outputs from the previous pass. Each of the 256
generators has a parameter denoting which of 64 locations in quadrant SA
the generator output is added into; and another parameter denoting
which of 128 locations in sum memory (quadrants SB and SO) it takes its
frequency modulation input from. Similarly, each of the 128 modifiers
has a parameter indicating which of the 64 locations in quadrant SC its
output is added into; and two other parameters indicating where in sum
memory (quadrants SB and SO) its two inputs are to be found. This
four-quadrant organization not only meets the severe bandwidth
requirements of the sum memory (an average of five read or write
accesses every 195 nanoseconds), but also provides a significant
programming benefit: the signal flow from one processing element (or
from a group of ~hem added up) to another element does not put any
restriction on the sequencing of the elements involved. For example,
the output of generator number 2 can be used as the frequency modulation
input to generator number 1, even though number 2 is performed by the
hardware after number 1. Additional features are provided whereby the
user can direct a modifier to take its input from quadrant SC, and to
put its output into SC by replacement rather than addition. These
features can be used to reduce the number of sum memory locations used
in a configuration with cascaded modifiers, at the cost of requiring
proper ordering of the modifiers involved.

3. GENERATORS

Most of the signal synthesis operations are performed by the generators.
Fig. 3 shows the structure of each generator; to the user it appears
as if the entire block is replicated 256 times, though this is in fact
accomplished with one set of computational hardware time-multiplexed
among 256 sets of data. Each generator has an oscillator portion, an
envelope portion, and a multiplier which multiplies the oscillator
result with the envelope result to produce the final output of the
generator.

3.1. Oscillators

Each oscillator can produce anyone of four standard waveforms -- sine,
sawtooth, square, or pulse train -- or anyone of a family of band
limited "buzz" waveforms. These last are sums of the first harmonics
at equal amplitude, according to the sum-of-cosines relation noted

-3-

by Winham and Steiglitz (1):

cos kt + cos 2kt
_ 1
-"2

+ ... + cos Nkt + 1/2
sin t(2N+l) (kt/2)]

·sin (kt/2)

These waveforms are useful as harmonic-rich sources for subtractive
synthesis. As N increases, the waveshape approaches that of the pulse
train, but with no energy at frequencies beyond the Nth harmonic. By
proper control of N, components above half the sampling rate can be
avoided, thereby preventing the (usually) undesired nonharmonic aliases
of those components. The sawtooth, square, and pulse train waves are
intended primarily for use as control signals fed into further
processing elements. Additionally, a binary scale factor M has effect
on the sine and sum-of-cosines waves. Not only the choice of waveshape,
but also the number of harmonics N and scale factor M can be specified
independently for each of the 256 oscillators.

Basic to the oscillator are the frequency register J and the angle
register K. In each sample period, for each active oscillator, the
contents of J are added into K. The angle K is then taken as an
unsigned fraction of a cycle (MSB = 180 degrees), and applied to the
sine and "buzz" calculation sections. While only the high-order 13 bits
of the angle are used to calculate the sine, a full 20 bits of angle is
maintained and accumulated, giving frequency resolution to approximately
0.02 Hz (at 20 kHz sampling rate). This is necessary for proper control
of beats and similar musical phenomena.

A special generator mode is provided in which angle accumulation is
bypassed, and the sine is taken of the sum of J (normally the frequency)
and the input from sum memory (normally· used for FM). This permits a
generator to be used for computation of the sine or cosine of a term in
sum memory.

In addition to the frequency and angle, each oscillator has a sweep rate
register W. Its contents are added to the frequency in J once each
sample period, thereby linearly sweeping the frequency of the
oscillator. Over an extended time period, such an effect is heard as a
glissando. Over a shorter time period, so that it is not perceived
explicitly, this effect contributes significantly to the interest and
character of sounds made by additive synthesis. The frequency register
is 28 bits long, with the sweep rate added into the low-order 10 bits.
This provides increasing and decreasing sweep rates from about 1.5
Hz/sec to about 780,000 Hz/sec in magnitude (at 20 kHz sampling rate).

Also added into the angle register for each sample is the FM (frequency
modulation) term from sum memory. The FM synthesis method of Chowning
(2) can be implemented with any two generators, the output of one
passing through any of 64 sum memory locations to the FM input of the
other. Alternatively, though, that sum memory location can accumulate
the sum of several generator outputs, or of one or more modifier
outputs, for more complex FM synthesis techniques. Also several
generators can take their FM input from the same sum memory location.

-4-

3.2. Envelopes

The envelope portion of each generator has a running term Q and an
increment P. These are analogous to the angle and frequency parameters
of the oscillator side, but more bits are provided in P to accommodate
the case of an envelope changing steadily over a period of time
substantially longer than the period of a typical waveform. No
modulation or rate sweep provisions are included for envelopes, since
these operations can be performed by modifiers.

Normally, the envelope increment is added into the running term at each
sample period. Certain generator modes are provided, however, in which
the addition is suppressed if it would result in overflow (going from a
very large value to one near zero, or vice versa). In these modes the
envelope "pins" or "sticks" when it reaches a maximum or minimum value.

The mode of the generator determines whether the running term is taken
directly as a linear envelope, or its exponential is taken. The data
chosen by this decision is then, according to the generator mode, either
added to or subtracted from an asymptote, L -- a static parameter of the
generator -- to produce the final instantaneous value of the envelope.

The oscillator value and the envelope value are multiplied to yield the
value actually output by the generator. This result is added into sum
memory at the location denoted by the sum address parameter for the
generator.

3.3. Special Generator Modes

Any generator can be put into Pause mode or Wait mode. In either of
these modes, the addition of the final result to sum memory is not
performed and the oscillator angle is not updated. In Pause mode,
updating of the envelope running term is also suppressed. Simple means
are provided in the interface to enable all generators in Pause mode, or
all those in Wait mode, to be put into normal running mode at the same
instant. Also a trigger facility enables one generator to go from
running to Pause mode when its envelope overflows or sticks, and
simultaneously to signal another generator to go from Pause to running
mode. By this means, with proper choice of asymptotes, a segmented
envelope can be applied to a waveform without computer intervention;
the cost is one generator per segment.

Finally, three generator modes are included which do not actually
generate signals but are used to pass data between sum memory and
computer memory, or from sum memory to the DACs. These are: Read Data
mode -- computer memory to sum memory; Write Data mode -- sum memory to
computer memory; and DAC mode -- sum memory to DAC. The source sum
memory address is given by the generator FM address parameter; the
destination sum memory address by the sum address parameter; and the
DAC number by W, which in normal modes is the oscillator sweep rate~
Computer memory addresses are provided by the computer interface.

-5-

4. MODIFIERS

The modifiers are the second major class of processing elements in the
synthesizer. They are most often used to take signals generated by
other elements and modify them, such as by filtering, or to combine
them, such as by mixing or modulation. Modifiers can also be used as
sources of signals, including pseudo-random data (white noise).

Like the generators, the modifiers are in fact implemented by
time-multiplexing one set of computational data paths among many sets of
data comprising the static and dynamic parameters of each modifier. In
the case of the modifiers, this multiplexing can be up to 128-fold. The
modifier data paths, shown in simplified form in Fig. 4, are suffic
iently general to enable each modifier to perform any of a variety of
algorithms, depending on its mode parameter.

Certain characteristics are shared by all modifier modes. A modifier
can perform at most two multiplications; these take two signed 20-bit
factors and produce a signed 20-bit product (either integer or
fraction). Associated with each multiplication operation for a given
modifier is a two-bit binary scale factor: for fractional products this
imposes a further scaling by 1, 2, 4, or 8; for integer products by
1/4, 1/2, 1, or 2.

Each modifier can take at most two inputs from sum memory, and yields
one output; the output either can be added into a sum memory location
or can replace its contents. Each modifier can have up to two
coefficients (static 20-bit numeric parameters, A and B) and up to two
running terms (dynamic 20-bit numeric parameters, Y and Z). The word
size of 20 bits was chosen after analysis of roundoff noise in cascaded
filter applications.

4.1. Modifier Modes

Mixing: The two inputs are multiplied (fraction or integer) by the two
coefficients, respectively; the scaled products are added to form
the result.

Modulation: The two inputs are multiplied together, either as signed
fractions (four-quadrant multiplication) or with one signed and the
other unsigned (amplitude modulation). The product is then
multiplied by a coefficient and scaled to give the result.

Two Poles: One input, two coefficients, and two running terms are used
to implement the recurrence formula:

out (nt) = in(nt) + A out«n-l)t) + B out«n-2)t)

where in(nt) is the input for sample nand out(nt) the corresponding
output, and A and B are the coefficients. Additionally, either
coefficient may be ramped by the other modifier input to sweep the
filter frequency. To accommodate sweep rates that are useful in

-6-

practice, each coefficient has a 10-bit low-order extension. (In
such uses, the coefficients are in fact 30-bit dynamic parameters.)
The ramp term from sum memory is aligned so its low-order 10 bits
are added into the extension and its high-order 10 bits are added
into the low 10 bits of the 20-bit coefficient. The sign bit of the
ramp term is extended into the high-order bits of the coefficient.

Two Zeros: The recurrence formula performed is:

out (nt) = in(nt) + A- in«n-l)t) + B in«n-2)t}.

Like Two Poles, this mode has the option of sweeping either
coefficient.

One Pole, One Zero: These implement respectively the formulas:

out (nt) = A in(nt) + B out«n-l)t); and

out(nt) = A in«n-l)t) + B in«n-2)t).

Maximum, Minimum: The two inputs are multiplied by the two coef
ficients, respectively; the algebraically greater product in
the case of Maximum, or the lesser one in the case of Minimum, is
taken as the output. Rectification and clipping are particular
cases of these operations.

Zero-Crossing Pulser: A running term is used to retain the previous
value of the input, i.e. its value during the previous sample
period. This is compared to the present input. If the previous
sample value was not zero, and the sample has either become zero or
changed sign, a non-zero output is produced; otherwise the output
is zero.

Signum: Each input is multiplied by the corresponding coefficient and
the products are compared. The output of the modifier is -1, 0, or
+1 according to whether the first product is less than, equal to, or
greater than the second product. Hard clipping is one case of this
mode.

Latch: The data at the signal input is passed unchanged to the output
so long as the control input signal is nonzero. When the control
input signal is zero, the previous output is repeated. This is
equivalent to the analog track-and-hold operation.

Threshold: If the control input is below the value specified by one
coefficient, the output is zero. Otherwise the output is the
product of the other input and the other coefficient.

Uniform Noise: A digital equivalent to white noise is generated by the
linear congruential method discussed by Knuth (3). The spectral
characteristics of the output are actually dependent on the
coefficients and initial value of the running term; while these are

usually chosen for white noise, they can be altered to introduce
coloration. A related mode is Triggered Uniform Noise, which holds
a given pseudo-random value for successive samples as long as the
control input signal is zero.

Invoke Delay Unit: This mode permits use of the delay memory for table
look-up, delay line, comb filter, or reverberator purposes. These
operations are discussed further below.

While each of these modes provides a useful function in itself, they can
also be taken as building blocks to be assembled into more complex
functions. A number of modifiers in Two Poles and Two Zeros modes, for
instance, can be cascaded or paralleled to perform filtering or
equalization as needed. The particular modes that have been implemented
were chosen to accomplish the most common operations using the smallest
number of modifiers, and to provide a variety of basic linear and
non-linear operations -- including stored functions and waveform lookup
-- which can be combined to form complex or non-standard configurations.
(Should a particular configuration become widely used, it may be made
more convenient and more economical of resources by adding new modifier
modes. This need be done only once, due to the time-multiplexed nature
of the modifiers, to provide up to 128 of the new processing elements.)

5. DELAY UNITS

The third computational element in the synthesizer is that for the delay
units. This can be time-multiplexed up to 32 ways. Each of the 32
resulting delay units has its own range of addresses in delay memory,
which comprises up to 64K (65,536) 20-bit words of storage. The size
and location of each delay unit's portion of delay memory are parameters
of each delay unit and may be varied at will. It is permissible, and
often useful, to have more than one delay unit using the same area of
delay memory. Each active delay unit is connected to the other elements
of the synthesizer by means of a modifier in Invoke Delay Unit mode.
Which delay unit is coupled to a given modifier is indicated by a
parameter of the modifier.

Each delay unit has a mode, which may be one of the following:

Inactive: Does not affect delay memory; returns indeterminate
results.

Table Look-up: The input from the modifier is shifted and the
result is used to address a location in the delay unit's area of
delay memory. The amount of shift is a parameter of the delay
unit. The word in the addressed location of delay memory is
returned unchanged to the modifier. A related mode performs
rounding of the shifted number as it is used to address delay
memory.

Delay Line: The area of delay memory used by the given delay unit
is treated as a delay line with one word per sample period. The
input from the modifier is put into the beginning of the delay

-8-

line, and the output from the end of the delay is returned to
the modifier.

The modifier in Invoke Delay Line mode performs the following
calculations:

q(mt) = A q«n-l)t) + q«n-p-l)t),

out (nt) = in(nt) + B q«n-p)t)

where p is the length of the delay line in samples. Depending on the
values of a and b, these computations accomplish the following:

- straight delay (A = B = 0);
- echo (A ~ 0, B = 0);
- comb filter (A = 0, B ~ 0);
- all-pass reverberation (-A = B ~ 0).

This is similar to the algorithm of Schroeder (4) but produces the same
result with two multiplications rather than three.

6. COMPUTER INTERFACE

Specific hardware in the synthesizer connects with the host computer to
perform the following functions:

- Control and sensing of synthesizer status by computer;

- Transfer of sampled data between synthesizer and computer memory;

- Transfer of commands from computer memory to synthesizer and
execution of the commands;

- Diagnostic operations.

To minimize the burden on the computer, most data transfers to or from
the synthesizer are performed by direct memory access. The computer has
only to indicate to the synthesizer, by control functions, the size and
location in memory of a data area, for instance, and the synthesizer
will read successive data words from this area as it needs them. The
synthesizer can be conditioned to interrupt the computer when it has
exhausted one data area and needs another. Such memory areas are of
three types: per-sample data from the synthesizer, per-sample data to
the synthesizer, and commands to the synthesizer.

6.1. Read Data and Write Data

Write data from the synthesizer comes from sum memory through a
generator in Write Data mode; if more than one generator is in this
mode, then data will be interleaved when written into memory. Per
sample data to the synthesizer is put into sum memory by means of a
generator in Read Data mode. More than one generator can be in this
mode if the data in memory is properly interleaved. With the Write Data

-9-

and Read Data modes, the synthesizer can be used to advantage even for a
piece that exceeds its capacity. For instance, 500 generators in
parallel or 250 second-order filter sections in series can be performed
in just two passes. The first pass would perform half the processing,
writing its intermediate results into computer memory as it goes. The
second pass would read the intermediate data from memory and perform the
remaining processing. (Depending on the length of the piece and the
amount of available memory, the computer may need to use a disk or other
mass storage device as an extension of the memory.) Similarly, the
synthesizer can process digitized sound from other sources, natural or
synthetic; and material created by the synthesizer can be passed on
without degradation to other digital processing or recording equipment.

6.2. Commands

While a great many uses of the synthesizer do not require the Read Data
and Write Data features, essentially all make use of the~command stream.
Each command is 32 bits. Nearly all commands have the meaning "Set
parameter X of generator (or modifier or delay unit) N to value V." The
parameters to be changed can be modes, running terms, static
computational values, or configuration parameters such as sum memory
addresses. Also provided is the Linger command, which means "Wait until
the end of sample period N, before executing more commands." The
commands to be performed at a given instant will appear grouped together
in the command stream, preceded by a Linger to denote when they should
be performed. The synthesizer contains a 28-command buffer so that the
commands of a group can be performed without delays due to computer
memory contention or bandwidth limitations.

There are also commands to set parameters applying to the synthesizer as
a whole, including the number of processing elements in use, the sample
period, the breakpoint frequency of the analog low-pass filters
following the DACs, and two 16-bit digital output buffers which can be
used to control external apparatus in synchronism with the musical
synthesis.

6.3. Diagnostic Functions

More than 10% of the 2,500 integrated circuits in the synthesizer are
provided strictly for diagnostic purposes. They allow the host computer
to set parameters in the synthesizer, step the synthesizer slowly
through its computations, and read back the status of intermediate or
final results at any point in the generators, modifiers, delay uits, or
computer interface. To work in conjunction with this, a static
diagnostic program was written, comprising approximately 70,000 36-bit
words of assembly-language code for the PDP-IO computer. Additional
dynamic diagnostic programs were also written, employing the Write Data
feature, to check for various interactions when the synthesizer is run
at full speed.

-10-

7. CONCLUSIONS

In the first fifteen months since its use began, this synthesizer
has been employed productively by approximately 100 musicians and
researchers, with a wide variety of musical styles and research
objectives.

This experience having verified the architecture of the synthesizer, a
second unit is under construction. It will be fully compatible with the
first, with one significant enhancement: analog-to-digital conversion
capability will be built in.

In the past, work in digital synthesis has centered on the development
and understanding of each basic synthesis technique: additive,
subtractive, modulation, waveshaping, reverberation, and so oni and the
time factor worked against the creation of large or complex pieces. Now
the means are at hand for musicians who can use all of these techniques,
singly and in combination, to develop compositions of increased scope
and richness.

8 • REFERENCES

(1) G. Winham and K. Steiglitz, "Input Generators for Digital Sound
Synthesis,1I J. Acoust. Soc. Am., vol. 47, p. 665 (1970).

(2) J. M. Chowning, "The Synthesis of Complex Audio Spectra by Means
of Frequency Modulation," J. Audio Eng. Soc., vol. 21, p. 526 (1973).

(3) D. E. Knuth, The Art of Computer Programming, Vol. 2
(Addison-Wesley, Reading, Massachusetts, 1971), pp. 155-156.

(4) M. R. Schroeder, IINatural Sounding Artificial Reverberation,"
J. Audio Eng. Soc., vol. 10, p. 219 (1962).

-11-

I ,......
rv
I

DELAY ,
MEMORY

'I'
I
I
I
J ,

MODIFIERS

l' \

I
I
I

DATA

CONTROL

Fig. 1.

I"
I'

i1
INPUTI
OUTPUT

BUS

SUM '-"
MEMORY "

COMPUTER INTERFACE

,
.-

; J
~£MORY

BUS

GENERATORS

T I'

I
I
I ,It

Synthesizer Block Diagram

OACS

l'
J

I
I
f
1

FROI'I
CENERATORS

~ +

0

!

SA

!I

SC

lit

'~ i

TO
CENERATORS

Fig. 2.

0

1

56

- I

SO

It

. ~ i ~ ,~

I, ,
TO

MODIFIERS

FRO'"
,.001 F IERS

+~

Sum Memory

+
t(

I
I-'
W
I

SIN

+

READ
DATA
HOM

INTERFACE

BUZZ

Fig. 3 ..

FRO"
SUM

MEMORY

IJRITE
DATA

TO
INTERFACE

TO
SUM

MEMORY

Generator

TO DACS

+
Q

txP

FROM
DELAY

MEMORY

FROM
SUM

MEMORY

o ±1

TO
DELAY

ME!'IORY

TO
SUM

MEMORY

Fig. 4. Modifier

1
11

,'1
I : I II SYSTEMS CONCEPTS 524 SECOND STREET SAN FRANCISCO, CALIFORNIA 94107

SYSTEMS CONCEPTS

DIGITAL SYNTHESIZER

PROGRAMMING SPECIFICATION

, 'PRELI'M'INARY

The information'herein is preliminary in nature,\

and subject to change without notice~ It is not

to be taken as a commitment by Systems Concepts.

TELEPHONE: 415-433-5400 TWX: 91,0-372-6062

SYSTEHS CONCEPTS

Digital Synthesi7.er
Programming Specification

Generators and Hodifiers

Nov. 24, 1974

The. device has tHO kinds of processing elements:
generators and modifiers. An additional type of elp~ent, termed
a delay unit, is optional. Generators produce sine, square,
and sawtooth waves, pulse trains, equal-amplitude sum-of-cosines
(hand-liluited pulse trains); apply linear and exponential
envelopes; perform frequency modulation; can automatically
s\,leep frequency linearly; read data from computer memory; and
\'lrite data into computer memory or digital-to-analog converters.
Up to 256 generators can be active at one time.

r',Todifiers simulate a resonance or antiresonance; perform
amplitude modulation, four-quadrant multiplication, mixing,
clipping, and memory (sample and hold) functions; can generate
uniform ,noise; and pass data to and from the optional delay
lmi ts • Up to 12 8 modifiers can be active a tthe same time.

Information is passed among generators ann modifiers
through a scratchpad area called sum memory. There are 64 sum
memory locations which can be used to accumulate sums of generator
outputs, and another 64 for sums of modifier outputs. 'Any generator
or modifier can read any of the 128 sum memory locations.

Delay units have two uses: as delay lines for signals,
and to hold precomputed tables, such as time-domain waveforms. Up
to 32 delay units can be active at the same time.

Passes and Ticks

The processing performed on a per-sample basis comprises
one pass. 1\ pass is a series of ticks, oft'\1o types: processing
ticks and update ticks. Processing ticks perform the calculations
corresponding to generators and modifiers, and update ticks permit
loading of new parameters. Within a pass, all processing ticks
are performed first, then all update ticks. A tick of either'.type
takes 195 nsec. The number of processing ticks is nine more than
the maximum of: the number of generators, used: twice the number
of modifiers used. The number of update ticiks should be chosen
according to the number of processing ticks to give the -desired
overall sample rate.

GENERIC INTERFACE

The computer interface is discussed here in terms of general
16- and 32-bit input and output operations. Implementation of these
functions on a specific computer is covered else~lhere.

Summarx;

CONO
DATAO-A
DATAO-B
CONl-A
CONI-B
DATAl

CONO

l~ bits:
32 bits:
32 bits:
16 bits:
16 bits:
16 bits:

sets overall status, diagnostic readback address
(only ,·,hen not running) performs command
sets CA or WC for commands, read data,' 't'lrite data,
reads overail conditions
reads cause of interrupt
(only when not running) diagnostic readback

: CC R: EE: BB. AAA . . . DDDDDD

cc: 00 no effect
01 stop
10 start
11 cause one tick

R: 0 no effect
1 reset tick counter to beginning of pass (if stopped)

EE: 00 no effect
01 disable interrupts
10 enable interrupts
11 master reset
(This controls an overall interrupt-enable bit, independent
of the bits which enable or disable interrupt due to specific
causes.' It is ANDed with them, providing a global way to
prevent interrupts.)

BB: (decoded ~lith AAA)
OOMA disable stop on cause AM
10AAA enable stop on cause AAA
OlAAA disable interrupt on cause AAA
llAAA ' enable interrupt on cause AAA

AAA: 001 command overrun ,
010 modifier mixer overflovT
011 modifier multiplier overflo~\1
100 modifier add to sum overflow
101 generator add to sum overflow

00110 disable ,interrupt on write data we exhausted
10110 enable interrupt on write data we exhausted
01110 disable interrupt on read. data He exhausted
10110 enable interrupt on read data we exhausted
Oloon disable interrupt on conmiand ~'1e exhausted
11000 enable interrupt on command we exhausted
00111 indicate 16-bit read data
10111 indicate 32-bit read data
01111 indicate l6-bit write data
11111 indicate 32-bit write data

DDDDDD: diagnostic readback address, specifies internal
data to be read by DATAl.

Computer Interface

Information is passed to ann froM the computer. in two ~~ays:
I/O instructions, and direct memory access. Both methods deal
\tlith data words ~A1hich may be either 16 or 32 bits·. t.1ith the delay
memory option, a lO\'l-handwid.th bidirectional 2()-bi t path penni ts
read- and write-accesses by the computer.

computer I/O instructions perform general control, status
sensing, and diagnostic functions. The direct memory access path
is provided for data transfer in realtime. There are three types
of such data transfer: commands (to the device), read data (one
datum per sample) (to ·the device), and write data (one datum per
sample) (from the device). Each of these three has its o\V'n \-,ord
count (HC) and core address (CA) registers in the device: they
are set up by I/O instructions. Commands are al\'lays 32 bits:
read data and write.data may each be either 16 or 32 bits, giving
a choice between packed data and full precision (20 bits are
significant in 32-bit mode). The device has buffering for 28
commands, 4 read data items, and 1 write data iteM,

The device can be conditioned to interrupt the computer
in various circumstances. One class of them can be termen data
errors: arithnetic overflow during processing, and command overrun
(more updates specified to be performed on a pass than.upr1ate
ticks provided). The other class of interrupt conditions relates
to the three WCs. Separate indications are provided for each one
being exhausted, and also for underrun conditions: a we being
exhausted AND more data needed (commands or read data) or
available (wr i te ·da tal •

CON I-A

CONI-B

nATAO-~

:IR:IE: xxx xxx R: x : r-1fJ : RU : rtT : '{rn~ : PE : CE :

IR: interrupt desired (by llAAA cause, lVlT, RU,
CU, t'1E, RE, eE, regardless of eONO EE)

IE: interrupt enabled (by CONO EE)
(IR ru~D IE is interrupt request)

R: running (not stopped)
WU: write data underrun
RU: read data undcrrun
CU: command underrun
'NE: \ITrite data NC exhausted
RE: read data lVC exhausted
CE: cOrnr.l.and HC exhausted

:11:12:13:14:15: x:LC:

II: command overrun
I2: modif ier mixer overf lo\-,

TTTTTTTTT

I3: modifier multiplier overflow
I4: modifier add to SlDn ovcrflo~v
IS: generator add to sum ov~rflo''.7

:

LC: (lost cause) After the interrupt cause encoded in
this word occurred, but before" this word was ~ead by
the computer, another of these interrupt causes
occurred.

TTTTTTTTT: tick number when cause occurred (nine hits
needed to allow for pipelining)

xxxxxxxxx . UUTJ . "A.'.'.A
UUU: 000 no effect

001 set llrite data CA
010 set read data CA
011 set command CA
100 (reserved)
101 set write data WC
110 set read data WC
III set command HC

A ••• A (20 bits): core address (if CAl
2'8 complement of word count (if We)

\
\

GEnERATORS

Parameters -

Associated with each generator are the following quantities:

GO (20 bits) alpha -- oscillator frequency sweep rate

GJ (28 bits) omega oscillator frequency

rn~ (20 bits) theta oscillator angle

GN (11 bits) number of cosines to be summed

Grt (4 bits) binary scale of cosine or sum of cosines

GP (20 bits) 'delta -- decay.rate

GQ (24 bits) phi -- decay exponent

GL (12 bits) asymptote

GSUH (6 bits) sum memory address into which output is added

GFU (7 bits) Stml memory address from which frequency modulation
data is taken

GrlODE (8 bits) generator mode

Run

RRR:

GHODE =. RRREESS

Mode

000 inactive
001 pause
010 running
011 running

100 wait
101 running

osc. run?'
no
no
yes
yes

yes
yes

env. run? add to sum?
no no
no no

yes, sticky yes
yes, free; yes

triggers subseq.
no

yes, free;
stops and

triggers subseq.

no
yes

110
111

read data from computer yes
vlrite data to computer or DAC no

The envelope side of the generator can be sticky, which means
that rather than overflow it will stay at the last value it attained
before it. would have overflowed, or it can be free, in which case it
wraps around.

ways.
Transitions bet'V'een run modes can he accomplished in various

1) A command can output a nc,V' Gr"OnE.
2) A l1ISC command can specify "clear all pause hits", \'1hich

will cause any generator in run mode 00l·to chang~ to
mode 010.

3) A HISC command can specify "clear all wait bits", Hhich
will cause any generator in rlm mode Ion to change to
mode 010.

4) If the envelope side of a generator in run Mode 1"'1
ove'rf 10\'1s, that genera tor goes to run mode IOn.

,5) A generator in run mode laO \-Till go to run mode IOl if
on the same pass the second preceding generator
(the one whose generator number is two less) caused
a trigger (was in run mode 011 or 101 and envelope
overflowed).

Envelope Hode

EE: 00
01
10
11

L + Q
L - Q
L + 2**(-Q)
L 2**(-0)

Oscillator Hode

S8: 000 sum of cosines
001 square
010 sa\,ltooth
011 pulse train
100 cos (R)
101 cos (J + fro)

Processing

Calculations performed for a generator, as governed by the
run mode, proceed as detailed below.

1) The word in sum memory addressed by GF~,i is read (20 bits) J
the sum is formed of it and the high-order 20 bits of
GJ (call the result TempO) •

2) ,If the oscillator side is running, GO, right-adjusted with
sign extended, is added into GJ.

3) If the oscillator mode is 101, TempO is taken: otherwise GR.
Call the 20-bit result TemplE, and its high-order!? bits
TempI.

4) If the oscillator side is running, TempO is added into GR.

5) If the run mode is 111, TemplE is sent to the CPU as write
data if GN is negative, else to the DAC' addressed by GN.

6) TempI is multiplied by mI. Call the low-order 12 bits of
the product Temp2.

7) If the oscillator mode is 100 or 101, pi/~ is taken; othe~4ise
TempI. Call the result Temp3.

3) In floating point, the product esc (Temp3) * sin (Temp2) is
formed; then converted to fixed point with a scale factor
of 2** (-GM) ; then 2**(-GM) is subtracted. Call the result
(12 bits) Temp4.

9) The result of the oscillator side (12 hits, call it TempS) is
then determined according to the oscillator mode.
ss: ()()O Temp4

001 -1/2 (on a scale from -1 to +1) if TempI is negative,
else +1/2

010 TempI
011 +1/2 if overflow occurred in step 1) or,4) above;

else O.
100 Temp4
101 Temp4

10)' The high-order 12 bits of GQ are taken (call this Temp6).

11)

12)

13)

14)

If the envelope side is running, GP right-adjusted, sign
extended, is added into GQ (overflo,., dealt with according
to the run mode).

If the envelope mode is 10 or II, 2** (-Temp6) is looked up;
otherwise Temp6 is taken. Call the resulting 12 bits Temp7.

If the envelope mode is 00 or 10, Temp7 is anden to GTJ; els~
it is subtracted from GL. This creates Temp8, the result
of the envelope side.

TempS is multiplied by TempS. If the run mode specifies adding
into sum memory, the high-order 18 bits of the rounded product
are added into the smn memory location designated by GST~1;
except in run mode 110, the product is added to read data
from the CPU and the sum replaces the contents of the sum
memory location addressed.

HODIFIERS

Parameters

Each modifier has the following numeric parameters.

110 (30 bits) coefficient

HI (30 bits) other coefficient

LO (20 bits) running tenn

Ll (20 bits) other running tenn

BIN (8 bits) address in smn memory where modifier reads

I1RM (8 bits) address in sum memory where modifier reads

11SUH (7 bits) address in sum memory into \.,h1ch modifier
added

~IHODE (9 bits) modifier mode
1-11'10DE = HMMHMMBB

AA: scale of first multiplication
BB: scale of second multiplication

00: x 1
01: x 2
10: x 4
11: x 8

HHHHH: function
00000: inactive
00001: mixing
00010: latch
00011: zero-crossing pulser
00100: amplitude modulation .
00101: four-quadrant multiplication
00110: minimum
00111: maximum

01000: .two poles
01001: t'tvO poles, MO variable
01010: two poles, HI variable
01011: (reserved)
01100: two zeros
01101: two zeros, 1-10 variable
01110: two zeros, HI variable
01111 (reserved)

10000 uniform noise (free run)
10001 uniform noise h.,hen input nonzero)
10010, 10011 (reserved)
10100 use delay unit .
10101-11111 (reserved)

"A" data

"B" data

result.is

\

Processing

Computa tions performed by a mo(1if ier depend entirely on
its mode. In the descriptions belo~'l, A is the 2 ()-hi t sum memory
\'lord addressed by r-1IN; B' is the tvord addres sed by MRr1; \-Then 1-10
or HI is used, its high-order 20 bits are taken, ·but when a
quantity is added to HO or HI it is added right-justified, with
sign extended; S is the result that is added into the sum memory
location addressed by Msm1. Multiplications are 20 bits x 20
bits, signed, and the product (unless otherwise noted) is the
high-order 20 bits, rounded.

l1rtr-lMH

00000: inactive. S:= 0

00001: mixing. S:= A*HO + B*Ml

00010: latch (sample and hold). S:= Ll; If B*Ml is not 0, TJl := A

00011: zero-crossing pulser. TempO:= B*MO; TempI := Ll*~l;
S := - epsilon if TempO*Templ is negative, else S := n;
Ll := TempO

I

00100: amplitude modulation. S:= Ll*Hl; Ll:= A * «n+l) /2)

00101: four-quadrant multiplication. S:= Ll*Ml; Ll := A*B

00110: minimum~ s:= min (A*1-10, B*Hl)

00111: maximum. S:= max (A*MO, B*1'1l)

01000: two poles. S:= LO*Ml + Ll*~-10 + A; LO := Ll; Ll := S

01001: two poles, HO variable. S:= IAO*Ml + Ll*r.·10 + 1\;
LO := Lli Ll := Si MO := MO + B

.01010: two poles, HI variable. S:= LO*Ml + I.l*MO + A;
LO := Lli Ll := S; Ml := M1 + B

01011: . (reserved)

01100 t\vO zeros. S:= LO*Ml + L1*MO + Ai LO := Ll; Ll := A

t,vo zeros, ii0 variable. S .- LO*Ml + TJl*HO + A; .-01101
LO .-.- Ll; L1 := Ai 1'10 := MO + B

01110 two zeros, HI variable. S .-.- LO*M1 + I.l*HO -+ A;
LO .-.- Ll; T.Jl .-.- A; M1 .-.- HI + B

01111 (reserved)

\

10000 uniform noise. S: = TJO + rJl *MO (integer multiply I lOH-order
20 bits of product used; overflow ignored) 1 Ll := S

10001 triggered uniform noise. S:= LO + L1*~10 (integer multiply,
lO\rl-order 20 bits of product used; overflo\-1 ignored);
ifB*rlTl is not 0, Ll : = S

10010, 10011 (reserved)

10100 Invoke delay unit.
unit # := RH (low-order 5 bits);
s : = LO + Ll*MO; TJO:= Dr,1; TempO: = A + DH*H1;
L1 := TempO; DM:= TempO

10111 ••• 11111 (reserved)

\

DEJ.JAY UNITS

A common pool of addressable memory, which may comprise up
to 65,536 2()-bit words, is available for use by the Delay TTnits.
By programming, each active delay unit is assigned its own contiguous
ar.ea of the memory.

Quantities

Each delay unit has the follo,..,in9' numeric par.ameters.

X base address (-16 bits) and mode (4 bits) •. The base address is
the lowest-numbered location used by this unit. The mode
is interpreted as follows: ..

mode: 0000 delay line
0001 (unused)
0010. table look-up
0011 table look-up, argument rounded
0100 ••.• 1111 (reserved)

Z unit length (16 bits) or binary scale factor (4 hits). In
delay line mode, Z gives the total number of locations
in the delay line; ·i.e. the number of samples delay the
unit comprises. In table look-up modes, the low-order
four bits of Z specify the number of binary places that
the argument is shifted to the right he fore it is usect·
to address the memory •.

Y index (16 bits). In delay line mode, this is the running
index on the memory area for the unit.

Processing

In delay line roode, a 20-bit data Hord is received from
the modifier that calls for the delay unit, and another 20-bit
\mrd is sent to it. The word received is put into the next slot
in the delay line. It \'1ill be retrieved and sent back to the
modifier Z+3 passes later.

In table look-up mode, the 20-bit data vlord received
from the modifier is shifted to the right Z bits and then'used to
address the memory area assigned to the unit •. The 20-bit word in
the addressed memory location is returned to the modifier three
passes later.

COHHANDS

All cOl"!Ullands are 32 bits. Generally the left 20 bi.ts are rata,
the next 4 or 5 bits identify the kind of parameter, and the last 8 or 7
hits address the generator or modifier affected. If more than one data
field is packed in the 20 bits, disable bits will be provided to
facilitate loading a subset of the fields. In a few cases, a bit is
also provided in the data area to clear (set to zero) a related parameter
in the same generator or modifier.

l1L

GQ

GP

GJ

GU,
G1.1

GL,
GSm1

(20) data :1 1 O:'J V: (7) mod #

HO right-adjusted, sign extended
Ml right-adjusted, sign exten~ed

· ·
W: 00

01
10
11

HO left-adjusted, low bits from DX: clear DY
r·1l left-adj u~ted, 10\.., bits from DX: clear DX

(20) CIata :I 1 1 () :N: (7~ moo #

N: 0 LO
1 Ll

(8) # (20) data :0 0 l:E: 9:en · ·
E-~- O Q right-adjusted, sign extended

1 Q ·left-adju.sted, lo~v bits from DX; clear DX

(~O) (lata :0 I I 0: (a) gGn ~1

(20) CIata : 0 I O:E: (8) 9:en ~ 'i
E-~ . f) J right-adjusted, sign extended

1 J left-adjusted, low bits from DX; clear DX

:N:H:x x x: . (11) GN : (t1) Gr~ :() I 1 1: r8; 9:en ~ :

N: if 1, disable loading GN
H: if 1, disable loading GH

(6) :!n ~ 8) # :L:S: (12) r.T.J . GSU~1 0 f): 9: en .
L: if I, disable loading GL
s: if 1, disable loading GSUH

. (;1{ . . (20) data :1 0 n 1: (8) gen ff :

:M:S:C:x: (9) 1:i!10DE : (7) Hsur1: 1 1 I 1 o : (7) mod #
l1HODE,
HSur'1 11: if 1, disable loading 1ITIliODE

s: if 1, disable loading HSUr1
c: if 1, clear T.JO

: R:I: c:x: (3) rnU1 . (8) rTITJ :1 i r 1 1: (7) mod # .
Brut,
BIN R: if 1, disable loading r·~R!1

I: if I, disable loaning HIN
C: if 1, clear III

: H: F : C : x x: (8) GHO DE : (1) GFH : 1 0 f 0: (8) gen #
GHODE,
GFH

HISC

. .

TIBER

4~ TICKS

DLY X,

~1 :
F:
c:

if 1, disable loading Gr10DE
if I, disable loading GFH
if 1, clear I{

(20) (lata :f 0 1 1: (8) gen ¥

(20) data :0 0 0 6 o:x x:R R:W:P:S:

RR: 00 no effect
01 load DX from data
10 load TTL buffer 0 from data
11 load TTL buffer 1 from data

W: if 1, clear all wait bits
P: if 1, clear all pause bits
S: if 1, stop

(20) data :0 0 0 1 O:x x:T T:x x x:

no effect TT: 00
10
11
01

process no further commands until pass .counter equals data
clear pass couriter, then wait as for 01
set pass counter fram data

(20) data :6 0 0 1 l:x x:O:Q:x x x:

Q: 0 set number of processing ticks per pass
1 set total number of ticks (processing plus update) per pass

(16) data : (4) (ia ta : 0 f) h () f : tJ n: (5) un i t #:
Y, 7,

UU: 00 X 16 bits base address, 4 hits mode: clear y

01 Y 16 hits index
10 7, 16 bits delay unit size, or scale (low 4 bits of 16)
11 (unused)

r.11 11

• I : I II SYSTEMS CONCEPTS 520 THIRD STREET SAN FRANCISCO. CALIFORNIA 94107

SYSTEMS CONCEPTS

DIGITAL SYNTHESIZER

THEORY' OF OPERATION

Proprietary Information

The drawings and specifications herein are property of
Systems Concepts, Inc., and shall not be reproduced or
copied or used in whole or in part for the manufacture
or sale of products, without prior written permission.

TELEPHONE: 415·442·1500 TWX: 910·372-6062

Exh. SCI

TABLE OF CONTENTS

. . . \. . . (. TAKE CARE ••

Introduction • · . .
1

2

Drawings • • • • • • • • • • • • • • • • • 2

Packaging. • • • • • • • • • • • • • • 3

Controls and Indicators.

Signal Names •

Clocking • • •
Generator Data Paths

Generator Control. • • •

Modifier Data Paths •••

Modifier Control •

Multipliers. • • •

Sum Memory" ••

Delay Memory • • •

Delay Memory Data.

Generic Interface ••

PDP-IO Interface •
Analog Outputs • •

6

6

• •• 8

. . • . . 11

. . . .
• 16

• • 17
• 24

• • • • 25

• • • • 26

29

• • 31

• • • 33

• • 36

• • • • 41

Diagnostic
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Readback. • • • • • • • 43
Clock Phases. • • • • • • • •• 48

Clock Counting. • • • • •• 49

Generator Data Paths •••••• 50

Modifier Data Paths • • • • • • 51

Figure 5.

Figure 6.

Figure 7.
Figure 8.

Sum Memo=y References •

Delay Unit Data Paths •
• • • • 52

• • 53

Generic Interface Data Paths. 54
PDP-I0 Interface Data Paths • • 55

TAKE CARE

1. HAZARDOUS VOLTAGES EXIST WITHIN THE POWER CONTROL ENCLOSURE
AND AT THE TERMINALS OF THE POWER SUPPLIES. TAKE APPROPRIATE
PRECAUTIONS WHEN WORKING NEARBY.

2. NEVER INSERT OR REMOVE PRINTED-CIRCUIT CARDS OR PDP-lO CABLES
WHEN POWER IS ON. FIRST MAKE SURE THAT THE FANS ARE FULLY
STOPPED.

3. To TURN POWER ON OR OFF J USE ONLY THE LOCAL-OFF-REMOTE SWITCH;
DO NOT USE THE CIRCUIT BREAKER OR OTHER POWER LINE CONTROL.

4. Do NOT INSERT J REMOVE J OR CHANGE CARDS OR CABLES UNNECESSARILY.

5. WHEN INSERTING OR REMOVING A CARDJ APPLY PRESSURE EQUALLY TO .
r

BOTH OF ITS EJECTORS. Do NOT USE EXCESSIVE FORCE.

6. FOR PREVENTIVE MAINTENANCE J ·PERIODICALLY.MAKE SURE THAT COOLING
AIR IS ENTERING THE CABINET AT THE BOTTOM AND THAT ALL SEVEN
FANS ARE RUNNING WHEN POWER IS ON.

-1--

· Introduction

The Systems Concepts Digital Synthesizer is a large special-purpose

digital processor that generates and modifies' data streams that

represent sounds and features of sounds like those found in music and

speech. To accomplish its high computation rate, it operates several

computational elements simultaneously'and its data paths are

extensively pipelined.

The synthesizer is a PDP-IO computer peripheral, with both I/O bus and

direct memory access connections for a PDP-IO system. Its behavior

and interface characteristics, as seen by the user, are described in

the Systems Concepts Digital Synthesizer Programming Specification; an

understanding of that document is assumed in the remainder of this

manual. Familiarity is also assumed with the Systems Concepts Engin

eering Drawing Conventions.

r
An abbreviated notation is used in this manual for devices that are

functionally equivalent to those in the 7400 series: for instance,

'H04 means 74H04 or equivalent. The terms .LT., .LE., .NE., .GE.,

.GT. mean respectively less than, less than or equal to, not equal to,

greater than or equal to, qreater than.

Drawings

The engineering drawinqs for the Synthesizer include schematic

drawings and a parts-placement drawinq for each type of printed

circuit card, and loqic drawings for the wire-wrap panels and cable

connection rack. For each type of card, the card drawing gives a set

of generic names for the siqnals on any card of the type; and an

accompanyinq table relates each generic name to the specific name

of each signal on each card of the type. In the generic names, the

term (M) is used for the base bit number in a four-bit slice; for

example, the generic name FG(M) would correspond to FGO on the most

significant card of the ty~e~ to FG4 on the next card, and so on.

-2-

The following drawing numbers are used for the Synthesizer:

1110, 1110M, rlll.O, ll11M, 1112.0, 1112M, 1113.0, 11l3M, 1114.0,

ll14M, 1115.0, l11sM, 1116.0, 1116M, 1117.0, 1117M, 111S.0, 1l1SM,

1119.0, 1119M, 1120.0, 1120M, 1121.0, 1121M, 1122.0, ll22M, 1123.0, ..
1123M; 1160, 1161, 1162, 1163, 1164; 1171, 1172, 1173, 1175, 1176,
1177, 1179, 11S0, 11S1, 11S2, 11S4, 11SS, 1187, 11SS, 1190, 1191,

1193, 1194, 1195, 1197.

In this manual, a reference to drawing number 1191 (for example) is

abbreviated to #1191.

Packaging

The Synthesizer is housed in a single free-standing cabinet. It

contains the following, from top to bottom: five power supplies;

three wire-wrap panels; two printed-circuit-card chassis, with

backpanels designated YBACK (upper) and ZBACK (lower); seven cool;ng

fans; a cable connection rack; and the power control enclosure.

-3-·····

The five power supplies and their uses are as follows:

Model No. Vol tage (s) Rated Current Use

LGS-EE-S +S V 110.0 A YBACK, ZBACK
LXS-D-5 +5 V 27.S A Wire-wrap Panels
LXS-A-S -5 V 4.0 A Delay Memory ,

DEC Bus Interfaces
LXS-A-12 +12 V 2.7 A D~lay Memory
LXD-C-l52 +,-15 V 2.5 A each Analog Outputs

Each supply has an overvoltage protector.

The three wire-wrap panels hold ICs (integrated circuits), and a few

discrete components, that comprise the once-only logic of the

Synthesizer. The panels are numbered 1, 2, and 3, from the top.

The card chassis hold the printed-circuit cards of several types
r

that are replicated in the system. A typical card has the hardware

dealing with successive stages of a .four-bit-wide slice of a data

path. A data path wider than four bits is processed by a group of

cards of the same type; for instance, five cards will be grouped

together to process a 20-bit-wide section of the Synthesizer.

Viewing the backpanels from their wiring side, card slots are numbered

from left to right: Yl-Y39 on YBACK, Zl-Z39 on ZBACK (but some slots

are not used). In a group of cards of the same type, the leftmost one

processes the most significant bits of the data. The cards in the

system are tabulated below.

-4-

Card Name

-
Dual Analog Output

Miscellaneous-A

Sum Memory

t-liscellaneous-B

Modifier-A

Modifier-B

Delay Memory Data

Delay Memory

Generator-C

Multiplier

Generator-B

Generator-A

36-bit Interface

Generic Interface

Dwg I

1110

1118

1117

1119

1114

1115

1120

1121

1113

1116

1112

1111

1123

1122

Short Name

ALOG

MISCA

SUM

MISCB

FILTA

FILTB

DMD

DMEM

GENe

MULT

GENB

GENA

TEN!

INTF

Slots

Yl-4, Zl-4

Y8-l1

Y12-16

Y17-19

Y20-24

Y2S-29

Y30-34

Y3S-38

Z6-8

Z9-13, Z22-26

Z14-16

Z17-2l

Z27-35

Z36-39

On a card, each IC is designated with a U number. Viewing a cardrin

the orientation in which it is plugged in, Ul is at the top next to

the edge connector and U2 is beneath it. Counting continues first

downward by row, then outward by column. Positions without signal

wiring are not counted.

The cable connection rack ('1160 through 11164) provides sockets for

the I/O bus, memory bus, memory port multiplexer cable, and the

outputs of the TTL output registers. The upper connector row is

designated A and the lower Bi slots are numbered 13 through 32, from

left to right.

In the power control enclosure are the power control board,

Local-Off-Remote switch, circuit breaker, and relays that control

·sequencing of the power supplies.

-5-····

Controls and Indicators

Since the Synthesizer is designed for checkout by computer, there are

very few manual con~rols and indicators. The only indicator is a red
LED, on the power control board, which is lit when AC power is applied

to that board. It is not visible unless the louvered cover of the

powe~ control enclosure has been removed. However, the sound of the

fans is a clear indication that the power supplies are also on. On

the power control panel are the main circuit breaker and, to turn the

Synthesizer on and off, the Local-Off-Remote switch.

In location 3A33 is a package containing seven on-off switches •

. Switches 3-7 give the base device address of the Synthesizer on the

I/O bus., and correspond respectively to I053-7 in the PDP-lO I/O

structure. Switch 1 can be used to prevent the Synthesizer from

writing into PDP-IO memory.

Signal Names

Data signals generally have names composed as follows:

a) One letter indicating the general area involved:

A analog

C clocking

o diagnostics

F modifiers ("filters")

G generators

I generic interface

P phases of clock
R delay units ("reverb")

s sum memory

T PDP-IO interface ("ten")

/'

U unused, provided for possible future additions

b) One or two letters arbitrarily chosen to distinguish

.busses in a spneral area;
c) A decimal number for bit position (O=most significant)

in a bus, or for a decode~ value of a field (O=all

bits off).

-6-

A control signal is usually named by appending, to the name of the bus

it controls, ~ letter to designate the -signal's function. For

instance, the clock to the FE register (bits FEO-19) is called FEC.

Some of the more common functions are: C -- clock; E -- enable;

G -- gate (of a latch); R -- reset; S -- select (ALU mode select or
multiplexer input select). A control signal with several functions
may be named instead for its derivation.

Names ending in -A, -B, etc., but otherwise alike, denote signals

that are logically equivalent but physically distinct, as for loading

purposes. Names on the drawings ending in -1, -2, etc. represent

signals which are logically equivalent but generated on different
printed circuit boards. In this manual, however, a notation such as

BUSO-19 means the 20 bits BUSO through BUSl9. A number within a

signal name, surrounded by letters, either denotes the time state of a

quantity used at different stages of a pipeline or denotes a quadrant

of sum memory.

XHI and XGND are forms of HI and GND brought onto printed-circuit cards

from the backpanels through signal pins. The versions of HI for. the

wire-wrap panels and for XHI (named YHI for YBACK and ZHI for ZBACK)

are generated by a resistor package shown on 11171.

-7-·

Clocking

Clock generation for the Synthesizer, shown on 11171, has a

30,769,230-hertz crystal, whose output is divided by 6. A lO-pF

capacitor in series'with the crystal trims the oscillator to the

specified frequency. Outputs of the frequency divider (three Schottky

J-K flip-flops) go through delay lines and AND gates to form the basic

clock pulses shown in Fig. I. Each 195-nsec tick (also called a time

state) has three equally-spaced clock pulses termed phases A, B, and

C; there is also a pulse roughly halfway through the time state

(between phases A and B) called phase H. The corresponding signals

are CA, CB, CC , and CH. Each pulse is nominally 45 nsec wide. The

trailing edge of phase C marks the end of each time state. il17l also

shows the formation of several special-purpose clocks which occur more

than once per time state: SAC and CU, which occur on phases A, B, and

C; and CHC, occurring on phases Hand C.

/'

The basic clock pulses are buffered for distribution throughout the

Synthesizer by gating shown on #1172.. The signals for the various

phases take on the names PHA, PHB, PHC, and PHH. These are

conditioned by the clock enable flip-flops, CEAB (for phases A, H, and

B) and CEC (for phase C). Ungated cloc~s designated PHAU, PHBU, and

PHCU are also created for the PDP-lO interface and delay memory

control, which must run even when other activity in the Synthesizer is

stopped.

"

-8-

The clock-enable state depends on the CRUN flip-flop, which is direct

set by the clock-start CONO-A; it is direct-cleared by master reset,

the clock-stop CONO-A, or performance of the clock-stop command; and

it is clocked off by' occurrence of a lOAAA cause enabled by CONO-B.

CRUN is ORed with the clock-one-tick CONO-A and the result is ANDed

with terms indicating that the clock is not held for read or write

data direct memory access (underrun conditions), to produce CRUNAi

this is clocked into CEAB, which in turn is clocked into CEC.

Various clock counting functions are shown on 11173. The time state

pipeline, on the MISCA cards, appears on sheet 2 of 11118. Fig. 2

shows the relationship of the principal signals involved. CTKO-9

counts the ticks of a pass. Its count is compared against two

registers loaded by commands: CTPO-9, denoting total processing ticks,

and CTTO-9, denoting total ticks per pass. The EPAS flip-flop is on

for the last tick of a pass: it is direct-set by the reset-tick

counter CONO-A; held direct-cleared in the "all ticks update" sta~ei

clocked on'when CTKO-gequals CTTO-9; and clocked off at the end of

the tick when it is on. Among its e'ffects, EPAS conditions the CTKO-9

counter to parallel-enter zero at the end of the tick.

-9-

Generator and modifier calculations each require 9 steps of

pipelining; the first is tick A for a given generator or modifier;

then follow its ticks 0 through 7. Tick A is preparatory; during

it various sum memory addresses are determined. Numeric processing

does not start until'~ick O. At any point in the generator data
paths, data for successive generators is processed on successive

ticks. In the modifier data paths, there are two ticks in a row for

each modifier. For instance, if CPOBO-7 equals 2, it is tick 2 for

for generator 0, tick 1 for generator 1, tick 0 for gen~rator 2, tick

A for generator 3; tick 2 for modifier 0, and tick 0 for modifier 1.

The time-state pipeline consists of the CPABO-7 counter and the

CPnBO-7 shift registers. The CPnBm 'busses are used to address RAMs

holding data for each generator or modifier, where n denotes the tick

during which the RAM is referenced. CPABO-7 during the processing

ticks of a pass counts the same as CTK2-9; CPOBO-7 during processing

tick n has the value CPABO-7 had in tick n-l; CPlBO-7 has that value

in tick n+l; and so on. During the interface ticks (also called

update ticks) all the CPnBm.terms are parallel-loaded with the
r

generator number or modifier number of the next command to be

performed (the interface address, IAO-7). CTRA is turned on at the

beginning of a pass, when CTKO-9 is reset; it is turned off when

CTKO-9 equalsCTPO-9, to flag the end of the processing ticks. CTRA

is on during a valid tick A for some generator and modifier.

Similarly, CTRO through CTR7 are on during valid processing ticks 0

through 7. CTRA and CTRO-7 are held off in "all ticks update" mode.

Flip-flop ITR is on when "real" (i.e. processing) ticks are in

progress anywhere in the pipeline; it is off during update ticks.

The signal OT, meaning odd tick, is on for tick A of a pass (CPABn = 0),

off for tick 0 (CPOBn = 0), and so on •. Similarly, OP means odd pass;

it changes s~ate at the same time that CTRA comes on.

-10-···

Generator Data Paths

Fig. 3is a block diagram of the generator data paths. Data

processing for a gen~~ator, tick by tick, proceeds as follows.

Tick 0 -- Oscillator side: On phase A, the 'LS195A registers holding

GOAO-7 on PC cards clock in CPOBO-7. This addresses the

256-bit RAMs holding GOO-19 (GENA) and GJIO-27 (MISCB, GENA)

(called GJ in the Programming Specification).· On phase B,

the fm term from sum memory is clocked into 93H72s forming

GRAO-19 (SUM). On phase C, GJIO-27 is latched in the 'LSl57

multiplexers forming GJO-27 (MISCB, GENA).

Tick I -- Oscillator side: During phase A, GOO-19 with sign extended

is added to GJO-27 by a fast adder, using 'S181 ALUs and

'S182 carry generators, to form GAZO-27 (MISCB, GENA). The

phase A clock writes this sum into GJI. At the same time,·
r

the ripple adder GAO-l9 (GENA), using '283s, forms the sum

of GJO-l9 and GRAO-l9, which is clocked by phase A into the

'LS175s GWAO-19 (GENA). The 256-bit RAl1s comprising GKO-19

(GENA) and GNO-IO (GENC) are addressed by CP1BO-7, buffered

by 'LS04 inverters. On phase B, GKO-15 is latched into the

'LS157 multiplexers GXAO-19 (GENA). On phase C, the high

speed adder GBO-19 (GENA) (similar in structure to GAZ)

develops the sum of GWAO-19 and GXAO-19. (Due to the

polarities of the signals involved,the adder is actually

configured to subtract the ones' complement of GXA, with a

borrow, from GWA.) The phase C clock pulse writes GBO-l9

into GKO-19, and clocks the 'LS298 register GXBO-12 (GENB,

'1179) from either GXAO-l2 or GWAO-12, according to the

generator mode (the GXB12 selection is done by an 'H51 gate) .•

Also on phase C, GNO-10 is clocked into the '175s GXCO-IO

(GENe).

-11-

Tick 2 -- Oscillator side: GXBO-12 is combined with GXCO-10 in a

modi~ied Wallace tree (MULT, #1179) to form the low-order 13

bits of the expression GXB * (2 * GXC + 1) + GXC. (This has

the effect of multiplying GXB by 2 * GXC + 1 if GXB and the
product are both assumed to have an implied bit 13 equal to
1.) The 'LS298 register GXO-12 (GENB, 11179) is clocked on
phase C from either the product or GXBO-12, depending on the

generator mode. GWBO-12 ('LS175s on GENB) is clocked from

GXBO-12 on phase C also.

Tick 3 -- Oscillator side: The sine' of GX and the cosecant of GWB are

looked up in ROM. The assumed low-order I-bit in each case
results in two simplifications: (1) GXO and GWBO need not

be looked up, but are saved to govern whether the looked-up

value will be negated; (2) GXl and GWBl need not be looked

up, but merely cause ones'-complementing of GX2-l2 or

GWB2-12 respectively, if set. The ones'-complementing of

GX2-12 is done by 'LS86s (GENB). For GWB2-l2, '887s (GENB)

are used in order to substitute all-ones (whose cosecant is

approximatelyl), except in sum-of-cosines mode. The sines

and cosecants are stored in floating-point form in Sl2x4

PROMs on the MISCA cards. The low two bits of each address

are decoded to select one of four banks of PROMs; the

remaining nine bits address the PROMs through 'H04 buffers.

The PROM outputs are clocked into registers on phase C as

follows:

Sine Exponent, Fraction

PROM Output GGEO-3, GGFO-ll

Register GYCO-3, GYDO-1l

Cosecant Exponent, Fraction

GFEO-3, GFFO-11

GYAO-3, GYBO-ll

Exponent registers are on GENC, and fraction registers on

GENB. Also on phase C, GWBO-ll is clocked into GWCO-Il; and

the. RAM GMO-3 (l.!IL~B, addressed by CP3BO-7 through 'LS04

inverters) is clocked into GYEO-3 (GENC).

-12-

Tick 3 -- Envelope side: Phase A clocks CP3BO-7 into the 'LS195As
-

serving as address registers for the RAMs GPO-19 (GENA) and

GQO-23 (MISCB, GENA). During phase C, GQO-23 is latched

into the.~LS157s comprising GVAO-23 (MISCB, GENA); the end

of phase C clocks GVAO-13 into GVBO-13 (#1179, MISCB).

Tick 4 -- Oscillator side: GYBO-ll is multiplied by GYDO-ll and the

high-order 12 bits of the product are clocked on phase C

into the 93H72s comprising GYPO-3 and GY4-1l (GENB) (GYQ3,

clocked at the same time, is a late output from the Wallace

tree which is added to GYPO-3 during tick 5 to correct the
product). The exponents GYAO-3 and GYCO-3 are added

together with scale factor GYEO-3 and the results clocked on

phase C into the 'LS175 termed GYGO-3 (11179). GWCO-ll is

. clocked on phase C into GWDO-ll (GENB).

Tick 4 -- Envelope side: GVBO-13 is treated as a negative exponent of

2, with a binary point between GVB3 and GBV4. The field

GVB4-l3 addresses the PROM GHO-ll (MISCA), the bits GVB4-l2

addressing the PROMs directly and bit GVB13 in true and

ones'-complement forms enabling one or the other bank of

PROMs. Then GHO-ll is run through 'LS153 multiplexers

(GENC), configured to shift right 0, 1, 2, or 3 places

according to the value of GVB2-3. (If GVBO-1 = 11, the
'LS153s are disabled, producing zeros.) The result (GIMO-ll)

goes into 9309 multiplexers (GENC)that can shift right 0, 4,

or 8 places (according to GVBO-l) or substitute GVBO-1l if
in linear mode.' This result, GINO-1I, is available in both

polarities; on phase C, one or the other polarity is clocked

into the GT register ('LS298s on GENC) according to the

envelope mode.

-13-

Tick 5 -- Oscillator side: GYO-ll, the fraction part of the floating

point product, is shifted right 0 to 15 places by two banks

of 'LS153s (GENB) according to the value of GYGO-3, the expo

nent part; the result is GIBO-ll (not named in the schematic ..
drawing). A term GWEO-11 is derived by 'LS86s and '283s

(GENB) as follows: GWEO-IO is GWDl-ll, two's-complemented

if GWDO is 1; GWEll is O. Then GUO-II, the result of the

envelope side (except for the sign, which is handled by con

trol logic), is selected by 'LSl53 multiplexers (GENB). It

is either~GIBO-l1 (sine or sum-of-cosines mode), GWEO-ll

(sawtooth mode), an overflow bit from the GA and GB adders

(pulse-train mode), or 4000 octal (square-wave mode). On

phase C this result is clocked into GZAO-II (93H72s on GENB).

Tick 5 -- Envelope side: The RAM GLO-Il (GENC), addressed by CPSBO-7

through 'LS04 inverters, is added to GTO-ll. A carry is,

injected in the low-order position if the ones'-complemented

version of GIN was taken in tick 4, thereby accomplishing a

two's-complement negate. 'The sum GEO-ll (GENC) is formed by

a ripple-carry adder of '283s; it is clocked on phase C into

GZBO-ll (93H72s on GENC).

Tick 6 -- The unsigned quantities GZAO-ll and GZBO-ll are multiplied

(MULT, '1179) and the high-order 18 bits of the product are

clocked on phase C into GZO-17 (93H72s on '1179): again, one

late bit, GZC3, is clocked at the same time to be added in

later.

Tick 7 -- GZC3 is added to GZO-3 by a '283 to form the correct

high-order product bits GZSO-3. During clock phase CCB

(see Fig. 1) the contents of the sum memory location to be

augmented are latched into the 'LS157s GRBO-19 (SUM). On

the FILTA cards, GZSO-3 and GZ4-ll are ones'-complemented by

'LS86s if the result should be negative, then added (sign

extended) by '283s to GRBO-19, with a carry in if necessary

to complete a two's complement. The sum, GFO-19, is

returned to sum memory where it is written on phase C.

-14-

Modifications in certain generator run-modes: If the oscillator side

is not running, write pulses are not given to the GJI and GK

memories. If the envelope side is not running, write pulses

are not given to the GO memory. If a generator is not to ..
add to sum memory, the sum memory write pulse is not given.
If a generator is reading data from PDP-IO memory, the data

read appear in GRB instead of the contents of the sum memory

word being augmented. If a generator is feeding a DAC,

GRAO-19 is clocked into APO-19 ('175s on SUM) at the end of

phase B, tick 1; and APO-13 is clocked into the proper DAC

hold register at the end of phase A, tick 2. If a generator

is writing data into PDP-lO memory, GRAO-19 is clocked into

IWBO-19 (SUM) on phase B of tick 1.

Command execution: During interface ticks, all CPnBO-7 hold the

generator number from the command, clocked in on the

previous phase C. Address registers (such as for GO and GQ)

are clocked fro~ CPnBO-7 on phase A. Data to be written

comes direct from the generic interface into memories GO,

GN, GM, GP, and GL. To write GJI or GO, data from the

interface is introduced by 'LS257 3-state multiplexers
instead·of the GO or GP RAMs (which are disabled), and the

GAZ or GC adder is put in the mode where it passes the "A"

input through to the output. To write GK: GWA is held
reset during interface ticks; during phase B, the GK memory

is disabled. 'LS257s are enabled to place interface data on

the GK lines; GX is latched into GXA at the end of phase B.

All commands cause memories to be written on phase C.

-15-

Generator Control

The generator run mode, GRMDO-3, is stored in RAMs on a MISCB card,

addressed by GRMDAO~7 on #1175. GRMDAn (93H72s) is clocked from

CPABn on phase H and from CP4Bn on phase C. The mode for a generator

is read on the second half of the generator's tick A, and clocked

on phase C into GRMDOBO-3 ('S175 on #1175). The mode bits go through

a pipeline of 'LS174s through GRMD5Bn; on phase H of tick 5 these

bits are written back into Gru1Dn. Along the way the mode may have

been altered by IRP (clear all pause bits), IRW (clear all wait

bits), GCOD (envelop overflow), or GT (trigger from previous

generator). The GRMDn write pulse, GRMDW, also occurs by command

(IIM50) •

The other mode bits, corresponding to bits 17-l2 of the command data,

are shown on #1177. GUSO-l select the waveform; GXS selects the

output of GXJ GXBS selects the signal input to GX; GTS selects r

whether the envelope is added or subtracted from the asymptote; and

GINVBE chooses between linear and exponential envelope modes. Each

RAM is addressed by the time state in which it is used.

Straightforward gating (11176, tl177), based on the mode bits and the

time state, creates the enables, write pulses, clocks, and selects

required for the processing described in "Generator Data Paths" above.

-16-

Modifier Data Paths

Fig. 4 is a block diagram of data paths for the modifiers. The

constituents, and ~~e boards they appear on, are as follows:

FLO-l9:

FEO-19:

FEEO-19:

FNO-19:

FGO-19:

FVO-19:

FWO-19:

FUIO-29:

FUO-29:

FAO-29:

FQIO-19:

FPO-19:

FQO-19

FXAO-19:

FXBO-19:

256-word RAM holding the LO and Llterms, written

from the FLI bus (FILTA)

93H72s, clocked from FLO-19 (FILTA)

93H72s, clocked from FLO-19 (FILTA)

'LS670s, written from FEO-19: addressing

accomplishes a 3-stage delay advanced every other

tick (FILTB)

'5l75s, clocked from sum memory (FILTA)

93H72s, clocked from sum memory (FILTA)

'LS157s, latched from sum memory (FILTA)

256-word RAM holding the MO and Ml terms, written

from FA adder; 3-stated with 'L5258 multiplexers

from generic interface (MISCB, FILTA)

'LS157s, latched from FUIO-29 (MISCB, FILTA)

fast adder ('S181s and 'S182s); adds FUO-29 and

FGO-19, sign extended (MISCB, FILTA)

'LS175s clocked from FUIO-19 (FILTA)

'S257s 3-stated with 'S258s (not named on

schematic); inputs are: FEEO-19; RO-l9 (from

delay memory); FGO-19; sum memory (FILTA)

9309 multiplexers (not named on schematic); inputs

are: FQIO-19; FVO-19: 0, -FVO, FVl-18: 0 (FILTA)

93H72s clocked from FPO-19 (FILTA)

93H72s clocked from FQO-19 (FILTA)

-17-

FXP, FXH, FXJ:

FXO-l9:

FKO-19:

FTO-19:

FBO-19:

FJO-l9:

intermediate stages of FX-multiplier (see below) (FILTB)

93H72s, final product of FXA and FXB (FILTB)

'LS175s clocked from FXO-19 (FILTB)

'LS151s, can provide: 0, FKO-19, or FNO-19 (FILTB)

ripple-carry adder of '2835; adds FTO-19 and FXO-19

(FILTB)

'LS175s clocked from FBO-19 (FILTB)

comparators indicating FJ .GT. FK, FJ = FK, FJ .LT. FK (FILTB, 11182)

FRO-19: 'LS258s 3-stated together; inputs are: FKO-19;

FCO-19:

FYO-19:

FDO-19:

FZO-19:

FFO-19:

FLIO-19:

FJO-19; FFO-19; FDO-19 (FILTB)

fast adder ('51815, '5182) adding FRO-19 and FWO-19

(FILTB)

'LS157s; inputs are: FJO-19; FCO-19 (FILTB)

'LS175s clocked from FYO-19 (FILTB)

9309s; inputs are: FJO-19; FCO-19; FKO-l9; FWO-l9

(F1LTB)

'LSl75s clocked from FZO-19 (F1LTB)
/'

'L5257s 3-stated together; inputs are: FDO-19, FFO-19,

10-19 (F1LTB); FEO-19, RO-l9 (from delay memory)

(FILTA)

-18-

The processing steps are listed in order pelow for each of the

modifier modes. -The notation "lA", for instance, means phase A of a

modifier's tick 1. The FX multiplier is discussed in a separate

section below. . .

Two Poles, Two Zeros (possibly MO or MI variable)

OH: Ll to FE, FEE

OB: Ml to FU if Ml variable

OC: FEE to FXA; LO to FEE; MI to FXBi surn(MRM) to FG

IH: FE to LO

lB: MO to FU if MO variable

lC: FEE to FXA; MO to FXB; FA to MO if MO variable, or

FA to MI if Ml variable

4C: FX (LI * MI) to FK

SC: FX (LO * MO) + FK to FJ

6A: sum (MIN) to FW

6C: FJ + FW to FOi FW to FF

7B: sum (MSUM) to FW

7C: FD to Ll if two poles,.or FF to LI if two zeros;

FW + FD to sum (MSUM)

Mixing, Integer Mixing

OB: if MIN is in modifier-this-pass quadrant, sum(MIN)

to FG

OC: sum(MRM) to FXAi Ml to FXB

LA: if MIN is not in modifier-this-pass quadrant, sum (MIN)

to FG

IC: FG to FXAi MO to FXB

4C: FX (B * MI) to FK

SC: FX (A * MO) + FK to FJ

6C: FJ to FD

7B: sum (MSUM) to FW

7C: FW + FD to sum(MSUM)

-19-

Amplitude Modulation, Four-Quadrant Multiplication

OH: Ll to FEE

OB: if MIN is in modifier-this-pass quadrant, sum(MIN)

to FG

OC: FEE 'to FXAi MI to FXBi sum(MRM) to FV

LA: if MIN is not in modifier-this-pass quadrant, sum (MIN)

to FG

IC: FG to FXAi if four-quadrant multiplication, FV to

FXBi if amplitude modulation, 0 to FXBO, -FVO to

FXBI, FVI-IS to FXB2-19

4C: FX (Ll * MI) to FK

SC: FX (B * A) to FJ

6C: FK to FFi FJ to FO

7B: sum (MSUM) to FW

7C: FO to Lli FW + FF to sum(MSUM)

Minimum, Maximum
/'

OB: if MIN is in modifier-this-pass quadrant, sum(MIN) to

FG

OC : sum (l-mM) to FXA; Ml to FXB

LA: if MIN is not in modifier-this-pass quadrant, sum (MIN)

to FG
/

IC: FG to FXAi MO to FXB

4C: FX (B * MI) to FK

SC: FX (A * MO) to FJ

6C: FK to FF; FJ to FO

7B : s urn (MSUM) to FW

7C: FO or·FF (depending on mode and comparison FJ:FK) +
FW to sum (l-4SUM)

-20:"

Zero-Crossing Pulser

Invoke

Latch

OH: LI to FEE

OC: FEE to FXAi MI to FXB i sum (MRM) to FG

IC: FG to FXAiMO to FXB

4C: FXr~l * Ml) to FK

SC: FX (B * MO) to FJ

6C: all-ones to FD; FJ to FF

7B: sum (MSUM) to FW

7C: FF to Ll; FW + FD + (0 if FK is not 0 and if either

FJ is 0 or FK * FJ is negative; else 1) to sum(MSUM)

Delay

OH:

OC:

IH:

lC:

4C:

SC:

6A:

6C:

7B:

7C:

OH:

Oc:

IC:

4C:

SC:

6A:

6C:

7B:

7C:

unit

LO to FE

R (delay memory) to LO, FXA; FE to FN: Ml to FXB

Ll to FEE

FEE to FXA: MO to FXB

FX (R * Ml) to FK

FX (Ll * MO) + FN (LO) to FJ

sum (MIN) to FW

FW + FK to FF, delay memory; FJ to FD

sum (MSUM) to FW

FF to Ll; FW + FD to sum(MSUM)

Ll to FE

FE to FN; sum(MRM) to FXA; Ml to FXB

o to FXB

FX (B * Ml) to FK

FX (0) + FN (Ll) to FJ

sum (MIN) to FW

FW to FF; FJ to FD

sum (MSUM) to FW

FF to Ll if FK is not 0; FW + FD to sum(MSUM)

-21-

Uniform Noise, Triggered Uniform Noise

OH: LO to FE

One Pole

One Zero

OC: FE to FN; swn (Mru.t) to FXAi M1 to FXB

1H: LI to FEE

IC: FEE "to FXAi MO to FXB

4C: FX (B * MI) to FK

sC: FX (LI* MO) + FN (LO) to FJ

6C: FJ to FO

7B: surn(MSUM) to FW

7C: FD to LI if FK is not 0, or not in triggered modei

FW + FO to sum (MSUM)

OH: Ll to FEE

OC: FEE to FXA; LO to FEEi

IC:

4C:

FEE to FXAi FV to FXB

FX (Ll * Ml) to FK

SC: FX (LO * B) + FK to FJ

6C: FJ to FO

7B: surn(MSUM) to FW

7C: FW + FO to sum (MSUM)

OH: Ll to FE, FEE

MI to FXBi sum(MRM) to FV

OC: FEE to FXA; LO to FEE; Ml to FXB

lH: FE to LO

IC: FEE to FXA; MO to FXB

4C: FX (Ll * Ml) to FK

SC: FX (LO * MO) + FK to FJ

6A: sum (MIN) to FW

6C: FJ to FD; FW to FF

7B: sum (MSUM) to FW

7C: FF to Ll; FW + FD to surn(MSUM)

-22-

Signum

Threshold

Inactive

OB: if MIN is in modifier-this-pass quadrant, sum (t-1IN)

to FG

OC : s um.(J.1RM) to FXA; MI to FXB

lA: if MIN is not in modifier-this-pass quadrant, sum(MIN)

to FG

IC: FG to FXAi MO to FXB

4C: FX (B * Ml) to FK

SC: FX (A * MO) to FJ

6C: 0 to FFi all-ones to FO if FJ .LT. FK

7B: sum (MSUM) to FW

7C: if FJ .GE. FK, FF to FR; if FJ .LT. FK, FO to FR;

FW + FR + (1 if FJ .GT. FK, else 0) to sum (MSUM)

OH: LO to FE

OB: if MIN is in modifier-this-pass quadrant, sum(MINt to

FG

OC: FE to FN; sum(MRM) to FXAi Ml to FXB

1A: if MIN is not in modifier-this-pass quadrant, sum(MIN)

to FG

IC: FG to FXAi MO to FXB

4C: FX (B * Ml) to FK

SC: FX (A * MO) + FN (LO) to FJ

6C: if FJ .GE. 0, FK to FFi if FJ .LT. 0, 0 to FF

7B: sum (MSUM) to FW

7C: FW + FF to sum (MSUM)

6C: 0 to FF

7B: sum (MSUM) to FW

7C: FW + FF to sum (MSUM)

-23-

Modifier Control

The modifier mode FMDO-4 is stored in 256xl RAMs (MISCB, #1180), all

addressed by CPABn. These mode bits are clocked through a pipeline

FMDnBm (a '175 and··a '174 on #1180). These are decoded by PROMs (on

#1180 and #1181), addressed by FMDOBn for ticks 0 and 1 and by FMD6Bn

for ticks 6 and 7. PROM outputs and their meanings are as follows:

FXMOP:

FIMIV:

FIMOV:

FGCA:

FGCB:

FLA7P:

FLWCA:

FLWHA:

FEECC:

FEECH:

FPRSA:

FPGSA:

FPSGEO:

FPSGEl:

FQSOA:

FQSlA:

FRKS:

FYJS:

FYEA:

FRFSA:

FRFSB:

FRFSC:

FZSO:

FZSl:

FMDCP:

FFRA:

FZCP:

FLWCB:

FLWCC:

multiply in fraction mode

2 poles or 2 zeros, MI variable

2 poles or 2 zeros, MO variable

clock FG on phase B of even tick or phase A of odd tick

clock FG on phase C of even tick'

off if addressing LO in first half of tick 1

write FL in second half of tick 0

write FL in first half of tick 1

clock FEE on phase C of tick 0

clock FEE on phase H of tick 1

select delay memory to FXA on tick 0

select FG to FXA on tick I

select FG or sum memory to FXA on tick 0

select FG or sum memory to FXA on tick I

select FV or FV shifted (A.r·1.) to FXB on tick 1

select o or FV shifted to FXB on tick I

select FK to FR on tick 6

select FJ to FD on tick 6

clear FF on tick 6

select FF to FR on tick 7 if FK .GT. FJ

select FF to FR on tick 7 if FK .LE. FJ

select FF to FR on tick 7

select FC or FW to FF on tick 6

select FW or FK to FF on tick 6

signum mode

clearFF on tick 6 if FJ is negative

zero-crossing pulser mode

write FL on phase C of "tick 7

write FL on phase C of tick 7 if FK .NE. 0
"""

-24-

The FX multiplier scaling bits FXMlP and FXM2P corne from R&~s on

#1181. Two pairs of RAMs are 3-stated together, being enabled on

alternate passes for the two successive multiplies of one modifier.

Both enables are asserted when writing data into the R&~s. The bits ..
are pipelined on #1182 to correspond to the data pipeline on the·

FILTB cards as previously described.

The PROM outputs, and in some cases mode bits taken directly, are

combined with clock pulses as needed (see #1180, #118·1) to implement

the processing described in "Modifier Data Paths".

tw1ul tipliers

There are four multipliers in the Synthesizer: GX, GY, GZ, and FX.

Each is implemented in the form of a Wallace tree of four-bit

slices. Because of the time required by a large tree, in the larger

multipliers a pipeline is employed: partial products are formed,

on one tick and added together on the next tick.

Partial products are formed with 8875A and 8875B lCs and added by

'283 adders. In a few cases carries are added together by 'H183s.

Various portions of the four trees are allocated among the ten MULT

cards, with a few· remaining portions on the wire-wrap panels.

GX: this multiplier yields the low-order 13 bits of the product.

The low-order 12 bits are generated by the Wallace tree, and the

high-order bit by XORing the proper bits of the operands and carries

out of the tree. As noted above, GX is modified to perform a function

slightly different from simple multiplication.

GY, GZ: these are straightforward unsigned multipliers. The high

order part of the product is taken, but the low-order part of the

tree is present to compute the proper carries into the high bits.

-25-

FX: this is the largest multiplier. It multiplies two 20-bit

two's-complement numbers for a 39-bit two's-complement product.

The signed result is generated in the Wallace-tree structure with

the aid of three special types of PROM. One type takes in two four-..
bit numbers and produces the high-order four bits of their product,

assuming that one of the operands is signed, in two's-complement for.m;

the second type is similar but assumes both operands are signed.

These are used in place of 8875As when the high-order four bits of

either multiplier operand are involved. Corresponding PROMs for the

low product bits are normal 8875Bs since the low bits are the same

whether the multiply is signed or unsigned. The third special PROM

type is used for sign extension, being added into a four-bit slice of

the product, with its inputs coming from the high-order output bits

of all signed-multiply PROMs in less significant slices. The 20-bit

result FXO-19 can be selected from eight different positions in the

39-bit product. This is determined by mode bits FXMO-2, which control

three successive stages of 'LS298s: FXG and FXH; FXJ; FX. The FXG

and FXH partial products are added by '283s named FXI. Successive

ticks in FX perform the following: 0 -- operands are clocked into FXA

and FXBi I -- partial products are clocked into FXG and FXH, selecting

between integer and fraction multiplication; 2 -- FXI is clocked into

FXJ, selecting zero or two units of shift; 3 -- FXJ is clocked into FX,

selecting zero or one unit of shift.

Sum Memory

Sum memory is composed of 80 16x4 ~ls, organized in four quadrants

named SO, Sl, S2, and S3. Each quadrant is 64 words by 20 bits.

Generator outputs are added in SO and Sl; modifier outputs in S2 and

S3. On one pass, SO will be "this pass" and Sl "last pass"; on the

next pass, the functions will be exchanged. S2 and S3 alternate

similarly. During a single tick, a quadrant may have as many as three

separate read accesses or one read-pause-write access. These are

interleaved as shown in F'ig. 5. Two classes of modifier modes are

distinguished: "mod-mix" modes which use the "A" operand early in

their processing, and "pole-O" modes which use it later.

-26-

Sum memory activity is based on the clock phases PHA, PHB, and PHC.

While a reference is occurring in each quadrant during a 65-nsec

clock phase, the six-bit address in each quadrant is being generated

for the next phas~; On each phase, the addresses are clocked into

'S175s and 'S174s (center of #1184) producing SOAO-5, SIAI-5, S2Al-S,

and S3Al-5. The inputs, SnAmI, are created on the four MISCA cards

(left of sheet 2, #1184) by 'S153 multiplexers. The multiplexer

selects, SnASO-l, are based only on clock phases, OP,· and OT. They

are generated by gating on #1184 and by 'S51s on two SUM cards.

Data inputs to the sum address multiplexers are as follows: FRM2-7,

RAMs (on a MISCA) addressed by CPOBn, holding modifier "B" addresses;

GFMl-6, 93H72s on #1184, clocked every phase C from GFMIl-6, RAMs (on

another MISCA) addressed by CPABni FIN2-7, '175s on #1185 clocked

every phase C from RAMs addressed on alternate ticks by CPABn and

CP4Bni and SUMAO-5, which is GSUMO-5 for quadrants 0 and 1 and FSUMl-6

for quadrants 2 and 3. G5UMn and FSUMn come from '5161 counters ~n

#1185; during processing ticks these counters are parallel-loaded on

each clock phase from GSUMln and FSUMln, RAMs on MISCA cards

addressed by CP6Bn through 'H04 inverters. Of the six address bits

for a quadrant, the low-order four directly address the sum memory

RAMs in the quadrant and the high-order two bits are decoded by

'55ls on various SUM cards to form the enables SnEm, where n is the

quadrant and m denotes one of four banks of RAns which are 3-stated

together.

The high-order bits FRMO-l, GFMO, and FINO-l come from the RAMs as do

the low-order bits, but instead of addressing sum memory they are used

to control multiplexers which route sum memoryoutput·s to the

generators and modifiers. There are three sets of multiplexers, all

on the SUM cards: 5AO-l9 (not labelled on the drawing), the generatQ~

fm input, formed by pairs of 'S257s; SBO-19 (not labelled), the

generator sum term, formed by an '5257 from quadrants 0 and 1 and an

'5258 from IRBO-29 in the gp.neric interface for DMA read data: and

5CO-l9, the modifier input, two '5258s from sum memory.

-27-

The signals that control these multiplexers are generated on #1184.

5A23E, true when fm is coming from the modifier side of sum memory, is

simply a buffered version ofGF110; SA1S to select quadrant 1 (as

opposed to 0) and ~A3S to select quadrant 3 (as opposed to. 2) are

just copies of OPe SBSE enables SBO-19 from sum memory, and SBIE

enables it from the interface; these are opposite sides of a flip-flop

('5175 in 3E8) clocked from CHRP which indicates that the upcoming

generator is in read-data mode. SBlS, selecting quadrant 1 rather

than 0, is -op buffered. The multiplexer controls for SeO-19 involve

OP and two signals, eSSO-I, coming from *1172, which sequence through

the various phases of even and odd ticks. The eSSn address an 'S153

multiplexer to select SeSPO-l from the high-order bits of FIN, FRM,

or FSUM. The SCSPn are combined in gating and clocked into flip-flops

on every clock phase to form SeOIE (enable from generator side),

se23E (enable from modifier side), and SC3S (quadrant 3 as opposed

to 2). SClS, selecting quadrant 1 as opposed to 0, is OP buffered.
r

Resetting sum memory is governed by flip-flop SR on #1184. Its D

input is SRI (#1173), arranged so that SR will set after the first

interface tick of a pass and will clear by processing tick 6. SR is

ANDed with OPD (OP delayed -- see Fig.2) and its complement to give

SRO (reset even quadrants) and SRl (reset odd quadrants). These are

ANDed with CU (clock on phases A, B, and C) by 'S5ls on SUM cards,

to assert chip enables and write pulses for all RAMs in the

appropriate quadrants. While SR is asserted, the GSUMn and FSUMn

'S16l counters on #1185 are conditioned to count on every clock phase,

disabling the parallel entry. When they have counted through 16

states (less than 6 ticks), sum memory has been reset.

Normal writing into sum memory is controlled by the write grant

signals SnWG (#1184). For the modifier quadrants these are the AND.

of OT, CTR7, and OP or -OPe The generator write grants do not involve

OT but include a generator mode bit which governs adding to sum

memo~.

-28-

Delay Memory

The DMEM cards (#1121) use 4096-bit dynamic MOS RAMs. Each card has

a 21x4 array of ~s comprising 16K 20-bit words plus parity.

Addresses, write enable, column strobe, and chip enable are buffered

by '128s and series-terminated with 33-ohm resistors. There are six

address lines, time-multiplexed to give row address and column address

in sequence. Input data, RTO-19 and RTP (parity), are buffered in

'LS174s clocked on the high-going transition of RMCOL. Output data

goes through 'LS365 buffers, enabled by RMDSn, which gate data from

the proper DMEM card onto the 3-state bus RRO-20. Parity is generated

(RTP) and checked (RR20) with 9348s on INTF cards (#1122). The row

strobes RSO-3 determine which row of chips on the DMEM card actually

perform a given cycle. RSn on board m is the AND of the board select

RMBSm and the row select RMRSn.

Control signals for the D~mM cards are generated on #1188. There are

three types of cycles: normal (i.e. delay unit), refresh, and PDP-lO

access, associated with the control· signals RMNY, RMRY, and RMTY

respectively. Each such signal is true during the four ticks of a

cycle of the proper type. An 'LS195A shift register, clocked on phase

C, counts the four ticks of a cycle: RMCO is true in the first tick;

RMCO and RMCI in the second; RMCO-2 for the third; RMCO-3 all true

for the fourth. Another 'LSl95A, clocked on the leading edge of

phase C, provides the timing signals which after gating are used on

the DMEM cards: RMRAS (row strobe), RMCAS (column strobe), and RMWPP

(write pulse). An 'H74 clocks in RMRAS on phase A to create the RMCOL

signal. Priority arbitration for the next cycle is done by gating

at the input of the 'LS175 which generates ~1TY, RMNY, and RMRY. A

PDP-IO access has the highest priority and its request line goes

right to RMTY. If there is no PDP-IO request, a request for a normal,

cycle (RQP) on a processing tick (CTRA) turns on ID~Y. Failing both

those conditions, a refresh request (RMRQ) sets RMRY.

-29-

The cycle-type flags are only clocked on ticks in which R}lI is true,

indicating a cycle is about to end or none is in progress. This

signal also resets the 'LSI9SAs. The normal cycle request RQP is an

'LSl09 conditione~.by clock enables to permit only one normal cycle

per gated clock tick. (Most of the DMEM control logic runs on ungated

clocks, since refresh and PDP-IO cycles mu~t be permitted and normal

cycles completed once begun, even if the clock is stopped.) RQP is

held off by RQO, which is overflow from the counter RQO-4 ('LSI6Is).

The RQn counter is reset at the beginning of each pass and counts the

32 delay units. Its trickle enable, RQET, is asserted during the

third tick of a normal cycle. The refresh request flip-flop RMRQ

('LSl09) is set by RMRT, trickle carry out of a 7-bit counter

('LSI6Is), which counts out and requests a refresh cycle approximately

every 24 microseconds. The RMRQ flip-flop provides one level of

buffering for RMRT so that a second refresh request can be timed out

while one is pending. A refresh address counter RMRO-S ('LSI6Is) is
r

advanced at the end of each refresh cycle. It runs through all 64

states to ensure that all row and column addresses in the dynamic RAl-1s

are refreshed in turn. The 16-bit delay memory address RVO-IS is

treated as follows: RVO-3 are latched in an 'LSIS7 as RMAO-3. Then

RMAO-I are decoded by an 'LS139 to form the board selects RMDSn and

RMBSn (through an 'LSIS8 to make them row strobe pulses, all on for

refresh cycles). RMA2-3 are decoded by another 'LSl39 section to form

the row selects RMRSn. A set of 'LSl53 multiplexers form the six

address bits RMA4-9 sent to the RAMS directly; these select either

RV4-9 for the row address, RVIO-IS for the column address, or RMRO-S

for both in refresh cycles.

-30-

Delay Memory Data

The DMD cards (#1120) contain the delay unit data paths other than

the delay memory itself. The general organization is shown in Fig. 6.

There are seven 32-word memories (one word per delay unit): RAO-19, ..
RBO-l9, RCO-19, RDO-19, RXO-19, RYO-19, RZO-l9. The RA, RB, RC , and

RD memories are used for interfacing to the modifiers. On even

passes, modifiers write into RB "and read from RD while delay memory is

being read into RC and written from RA. On odd passes RA and RB

exchange functions as do RC and RD. The memories are" addressed

through '157 multiplexers (#1187) selected by OPe The address of the

memory sending data to the modifiers is F~13-7 (discussed above) i for

the memory receiving data from the modifiers, RGO-4, which is FRM3-7

delayed by 'LS670s; for the memory sending data to delay memory,

RQO-4, the delay unit counter; for the memory reading data from delay

memory, RKO-4 (an 'LS174 on #1188), a delayed version ofRQO-4.

RX, RY, and RZ are addressed by RSO-4 (RSO-3 are buffered by 'H04s

on the DMD cards) which is generated by multiplexers (a 9309 and ran

'LS158) on #1187. The multiplexer inputs are: RQO-4, the delay unit

counter; and IC7-l1, command bits from the generic interface, which

is selected during update ticks. RXO-l5 has the base address in

delay memory; RYO-lS (in delay line mode) has the index into delay

memory; RZO-lS has the limit in delay line mode, RZl2-lS has the

scale factor in table look-up mode; RX16-19 has the mode; RX16-l9

and RY16-19 are unused.

For PDP-IO cycles, data to be written is selected at the RT

multiplexers by RTS, and the address is selected at the RV

multiplexers by RVS; both selects are simply copies of RMTY (#1187).

At the end of the cycle, RLC clocks the RR bus into RLO-19, which can

be read by the PDP-lO interface.

-3l-

For normal cycles in delay-line mode, the information to be written

is taken fr.om RA or RB by the RABO-l9 multiplexers ('LS157s on DMD)·

and goes through RT. The address is generated by '283 adders which

add the outputs of .. the RX and RY RAMs. At the same time, RY is

incremented by 1 ('283s) and the result clocked into RWO-lS ('LSl7Ss).

The unincremented RY is also being compared to RZ by '8Ss. On phase

C of the third tick, RY is written (by RYW) from the RUO-lS

multiplexers ('LS158s, outputs not labelled): either the incremented

value (RW) or zero will be written, depending on RUE which will be

asserted (to enable RW) unless RY = RZ. The RUE gating is on #1187.

On phase C of the fourth tick, RC or RD is written (RCW or RDW, gated

from RCDW on #1188) from RRO-19.

For normal cycles in table look-up mode, the base address RX is

taken as before, but the RY RAMs are disabled (RYEA and RYEB held

false) and the 'LS253 RY multiplexers are enabled (RYEC true)

(gating from the mode on #1187). The RO and RY multiplexers are r

selected by the scale factor RZ12-15 to apply 0 to 15 units of·

shift to RAB. A low-order bit, RY16, is generated on #1187; if it

is 1 and the rounding mode is specified, RVIC16 is asserted to

inject a carry into the '283s adding RX and RY. Writing of RC or

RD is as above.

The RIO-19 lines, from 'LS157 multiplexers on the FILTB cards,

carry both data from the modifiers to be written in RA or RB and

data from the interface to be written in RX, RY, or RZ. The selection

is governed by RIS (fl181), which is a copy of ITR. RIO-19 appear

directly on the data inputs to RX and RZ and, through the RU

multiplexers, to RY. RI is the input to the REO-19 register, 'LS175s

on DMD clocked on phase C, which in turn is written into RA or RB

(by RAW or RBW, gated on #1187 with FPRD, to indicate that the curren.t

modifier is in delay mode).

-32-

Generic Interface

The principal feature of the generic interface, shown in block

diagram form in Fig.7, is the 32x32 FIFO, designated IFO-3I, comprised

of 64-bit RAMs on 'the INTF cards. This holds up to 28 commands and

4 read-data items. Commands come out of IF into the 1175 registers

10-19 and lCD-II; read data go to the 'LS175s forming IRBO-19 (on

the SUM cards). Input to the FIFO is from the 16-bit register IHO-15

('LS175s on INTF). The FIFO can be addressed from four different

counters: IFICO-S for command input; IFOCO-S for command output;

IFIQO-2 for data input; IFOQO-2 for data output. Each counter is

advanced at the conclusion of the relevant type of cycle. The

high-order bits do not actually address the FIFO but are used to

distinguish full and empty conditions: if all input and output

counter bits agree, the buffer is empty; if all,but the high-order

bits agree, the buffer is full. The data counters go from 0 to 3; the

command counters from 4 to 31 decimal. All are formed of 'LS16l~

on #1190. On a given tick, the FIFO can do either a 32-bit output

cycle or a l6-bit input cycle, according to the following priority

scheme:

A -- On processing ticks:

Al If possible, FIFO ~IRB

A2 -- Else if possible, 1M to FIFO (left half, then

right half)

B -- On update ticks:

- Bl If possible, FIFO to I and Ie

B2 Else if possible, 1M to FIFO (left half, then

right half)

Here "if possible" means if the source has data and the destination

has room to accept data of that type.

Flip-flop IMBF ('109 on 11190) is set when the PDP-IO interface

puts information into 1M, and cleared on a right-half IM-to-F1FO

cycle. Similarly, IRBF is ~et by ~ FIFO-to-IRB cycle and cleared

when the generator calculator takes the data from IRB.

-33-

The priority scheme is implemented in ~ straightforward though

lengthy manner with a comparator, gates, and one PROM. The comparator

develops IFCNF, "IF commands not full". The PROM generates

IFQNF ("IF data not full") and IFQAV ("IF data space available");

the difference is that in packed data mode (determined by TP7) ,

there must be two data slots free in the FIFO before initiating

a data read. In such a case IFQAV is more cautious than IFQNF. The

combinational logic develops IlL, ~lhich calls fo~ a Bl cycle, and

IRBCA, which calls for AI. Final outputs are IFASO-l, which are the

selects on the FIFO address multiplexers IFAO-4 (a '157 and a 9309

on #1190).

IFASO IFASl Address Type of cycle

a a IFIQl-2 data to FIFO

a 1 IFOQl-2 FIFO to IRB

1 a IFICl-5 command to FIFO

1 1 IFOCl-5 FIFO to I, IC

1M The type of information in

up by the PDP-lO interface •.

is encoded by IMTO-2, which are

IMTO-2

000

001

010

all

100

101

110

111

Data in 1M

packed data right half

packed data left half

unpacked data right half

unpacked data left half

(invalid)

(invalid)

command right half

command left half

/'

set

For writing packed data into the FIFO, an 'LS157 on DMD introduces

a in the low-order bits if IMTl is false.

-34-

Command decoding is shown on #1191. I~LD (a '109 on #1190), true

when a command is present in I and IC, and -ITR are used to enable

'LS138 decoders whose outputs (of the form lIMn) identify the various

commands. Various commands have effect within the generic interface: ..
IIM02 and IIM03 are gated (#1190) to form ITAC and ITBC, which clock

TTL buffers A and B, respectively -- 'LSIS7s on INTF -- whose outputs

are followed by 7437 buffer gates •. The register IXO-IS ('2985 on

INTF) is clocked by lXC (from an 'HSI on #1190) either due to IIMOI

or on the tick after an IIMl, IIM2, or IIM6 with IC3 true; in the

latter case, zeros are loaded into IX, corresponding to the "clear

DX" function of certain commands. 11M21 loads 1PO-19 ('LSI63

counters, lPO-IS on 1NTF cards and 1P16-19 shown in #1190), the

pass counter. The counter is enabled by EPAS.

The commands to clear all wait bits and to clear all pause bits

use flip-flops 1RW and 1RP ('H74s on #1190). Each is set by PHBl1

(phase B of an update tick when performing a "miscellaneous"

command, generated on illE1) if the appropriate command bit is

set in IC. They are clocked off at. the end of the next pass's

real (processing) ticks.

For the case of a linger command, 10-19 is always being compared

to 1PO-19 ('283s performing subtraction followed by gates to

indicate a zero result). ISOK (meaning linger satisfied) is

generated (on #1190) if the pass count is at least equal to the

command data and does not exceed it by 4,096 or more; 1SU

r

(underrun) is true if ISOK is true and the numbers are not exactly

equal. The 1IM23 version of linger clears the pass counter first

(signal IPR on #1190); repeated clearing is inhibited by the 1PRD

flip-flop which remains set until the linger is finished. This

condition contributes to the term I1LF (#1190) which indicates that

a new command can be loaded into I and IC. The intermediate term

1IMW (#1190) is true when a linger command is present and the pass

counter is valid (not being reset).

-35-

The interface address, IAO-7, is the generator or modifier number

of the next command to be :performed. If it is a generator number,

it contains all 8 bits; a modifier number occupies the left 7

bits with the rightmost bit distinguishing LO from Ll or MO from ..
HI. The address must be available the tick before the command is

executed, so that it can be loaded into the clock pipeline.

Therefore the IA multiplexers ('LS257s and 'LS258s on #1190) have

four possible sources: two (generator or modifier number) from

IF, to load the address into the CPnBm at the same time the command

is loaded into I and ICi and two from IC, similarly, for a command

previously loaded into I and IC but not yet performed. The enables

and selects lAEA, IABB, IASA, and IASB perform this function.

Data being written to computer memory is put in IWBO-19 ('LS298s on

SUM cards) by the generator calculator, which at that time sets

IWBF ('109 on #1190). The PDP-lO interface clears IWBF at the end

of a DMA write cycle. r

PDP-IO Interface

Data paths for the PDP-IO interface are on the nine TENI cards. The

low-order six cards, termed "full", have both data and memory address

logic; the high-order three cards, termed "partial", have data but

not address logic. A block diagram is given in Fig. 8.

The DEC-level I/O and memory busses are received and converted to

TTL by 75110 differential line receivers, biased to VREF (about

-1.5 volts). The memory data, being in pulse form, is "caught"

by 9314 latches to form TDO-3S. Parity of each four-bit slice is

generated on the TEN! card by "'LS86si the results are then combined

to form TDEP by a 9348 on #1193.

-36-

The busses are driven by 75110s follow~d by 2N4258 transistors. In

keeping with PDP-IO practice, the I/O bus lines are driven to ground,

and the memory lines toward -5 volts with a 100-ohmparallel

termination to ground. Data to memory bus bits 4-23 comes direct from ..
IWBO-19; zeros are written for the other bits. The parity bit, IWBP,

is formed by 93485 on #1184. The I/O bus bits 16-35 are driven from

the lines TTTl6-35, ~oming from ~LS153 multiplexers that select one

of four sources: 00-19, the diagnostic bus; RLO-l9, the delay memory

output register; various bits for CONI-A; and the TCC" register

(slightly scrambled), for CONI-B. I/O bus bits 0-15 are not driven.

The rece~ved I/O bus appears on the output of 'LS157 multiplexers as

TRO-35 (the other multiplexer input is currently unused): this is

clocked, in the case of DATAO, into the 'LS175s THO-35. Data passes

from the PDP-lO interface to the generic interface (1M register)

through 'LS257s on the INTF card. These select between left half

(bits 4-19) and right half (bits 20-35) of either TH (DATAO data) or

TO (data read from PDP-I0 memory). THO-35 also go to the delayunits

for PDP-lO references to delay memory.

On the full TENI cards is a 16x24 memory called TCIO-23. It is

addressed by TAAO-3 (a 1157 on #1195). Six words of this memory are

actually used, as follows:

Address Contents

1 write data CA

2 read data CA

3 command CA

5 write data we
6 read data we
7 command we

....

-37-

TCIO-23 is clocked into two different registers, both comprised of

'LS175s on the TEN! cards: TA14-35, which is the data actually

put on the address lines of the PDP-lO memory bus; and an unlabelled

register whose output is incremented by 1 in a set of '283s to form

TCO-23. Associated with each WC is a flip-flop ('LSl09) on #1195:

TWE for write data, TRE for read data, TCE for commands. These are

the "exhausted" flags for the three 'types of DMA; they are directly

set by the master reset function.

When a DATAO-B is performed, THO-3 (the high-order four bits of the

DATAO data) are selected onto TAAO-3, and TH12-35 are selected for

the data input to the TCI RAMs (selection is by 'LS158s on TENI). The

select signal, TAWW, comes from an 'H30 on #1195 and indicates not

only that a DATAO is occurring but also that no memory cycle is in

progress. It is used to turn off the proper "exhausted" flag, as

selected by TAASl-3, a phase C clock pulse decoded from TAAO-3 by

an 'LS138.

TAW, the write pulse to the TCI RA}1s, occurs on phase C ('HOD on

#1195) •

r

Addressing of a memory cycle proceeds through four successive ticks,

indicated by one of the following in succession being true: TMG,

TMGD, TMGDD, TMG3D. On the first tick, the appropriate CA word is

addressed in TCI; phase C clocks it into TA to drive the PDP-IO

memory address lines, and also into the other register to be

incremented. On phase C of the second tick, the incremented CA is

written back into TCI. On the third tick, the relevant WC is clocked

into the unnamed register; on the fourth tick the incremented we is

written back into TCI and, if a carry comes out of the incrementer,

the proper "exhausted" flag is set.

Control of the actual memory cycle is shown on #1193. Three 'LSlO

gates create cycle requests TRY, TWY, and TCY (read data, write data,

and commands) according to the "exhausted" flags and buffer-register

or FIFO full or available flags. When a memory cycle is not in

progress any request forms TMQ, which is clocked into an 'LS174 (on

#1195) and comes out as TMY. This is turn becomes THG ("memory go")

if no cycle or OATAO is in progress. THG is clocked into T!·'lB ("memory

busy") to indicate a cycle in progress. At the same ~ime, TWQ is

clocked into Tt~ if a write cycle is requested. TMB asserts TMRQ,

the memory port multiplexer request. The acknowledgement TACKN

asserts TAE, enabling the driving of the memory address lines, and

also, after a 50-nsec delay (SNG82), putting up TREQCYC to indicate a

memory cycle request. The memory responds with TMAA (address

acknowledge) which resets the TO latches if in a read cycle, and is

latched as Tt4A which turns off TMRQ. TREQCYC was turned off by TMAA

and is held off by the absence of TMRQ. On a write cycle, the fall
r

of TMAA initiates an 85-nsec delay (SNG82) during which TWE is on

to enable driving the data bits of ~he memory bus. When the delay

expires, TMOS sets TMD which is resynchronized as Tl-1DO. T1-100 causes

TMF which clears TMB to end the cycle.

A read cycle proceeds as above through the address acknowledge

pulse. Then TOR clears the pulse-catcher TDO-35 and Tl-~ then enables

TD for input (TOE). The read restart pulse TRDRS eventually clocks

on TMD, turning off TDE. If there is no parity error, -TOEP and

TMOO then finish the cycle. If a parity error occurs, the memory

control stays in a busy state with Tr.WE on until the problem is

acknowledged by a CONO-B to reset it. Such a CONO sets TMC

("memory continue") which permits the cycle to finish, asserting

TMER to reset the error flip-flop. To detect nonexistent memory, a

counter C'LSI63s) counts about 50 microsec after the start of a

cycle and then asserts TMXO, which, if the memory is still busy, sets

TMXE. This state is also gotten past by a CONO-B which sets TMC.

-39-

The I/O bus interface begins with the device address comparator, a

9324 on #1194, which asserts TS if the high-order five lOS bits

(TRS3-7) agree with five bits set by switches TSS3-7. TS and either

DATAl or CONI create TTE which enables the bus drivers on the TENI

cards. TS is ANDed with DATAO-CLR to give the clock TDOC. The

low-order lOS bits, TRS8-9, are used to decode TSA (device code A

selected) and TSB (for device code B), and are clocked by TDOC into

a '175 to emerge as TMDOR and -TMDOA. CONO-A, CONI-B and DATAOs are

synchronized in an 'LS175. In the case of a DATAO, the TNDO flip

flop is set and remains set until the function of the particular

DATAO has been performed. Its K .term comes from an 'LS20 whose four

inputs correspond to completion of the four DATAOs:

IWBG

RTD
J

TMDOW

TAWW

DATAO-C

DATAO-D

DATAO-A

DATAO-B

CONO-A, indicated by the unsynchronized clock TCOCA, sets TIAO-2 and

TIBO-2 ('LS174s on #1195) according to the CONO data; these are the

PIA numbers. It also clocks the diagnostic address from TR25-31 into

IDAO-5 and IDS (a '174 and a '175 on #1194). The synchronized version

TCOCADA clocks IRH ('LSl09) which is on in "all ticks update" mode.

CONO-B uses bits TR32-35 to address two 9334 addressable latches,

writing bit TR31 into the addressed cell. The latched outputs,

TPO-15, are the BB.AAA conditions of the programming specification.

The master reset signals MR and TR have three causes: lOB RESET,

called TMR; power-on reset, PORi and the reset bit of CONO-A.

-40-

The TCC register is read by CONI-B. This is formed mostly of 'LSl7Ss

on INTF cards; but bit TCCS, the lost cause bit, is an 'LS109 on

#1195. The register is clocked from TJO-4 and CTKl-S. The CTK lines

are the current time state; the TJ lines, generated on #1191,

represent in order the Il-Sbits of CONI-B. TCC is clocked by TCCC

each phase C until a bit appears in it which is masked on by an OlAAA

CONO-B bit (TP9-13). Such a condition asserts TCCF (#1195), which

suppresses TCCC. If on a subsequent tick a TJn masked on by TP9-13

occurs, ITJ (#l19l) will be true and TCCS will be turned on. Tces is

cleared by TCIBR which comes from CONI-B (#1194).

The interrupt request lines TIOBPIl-7 come from a 9334 addressable

latch on #1195. Twice per tick a bit in the latch is strobed in;

on the first half of the tick from TIA (interrupt request, channel

A), and on the second half from TIB; address is TIAO-2 or TIBO-2

respectively. The interrupt requests are formed from the various

interrupt conditions and the mask bits, TP6 and TPS-14. All requests

are reset by the master reset function, and by any OATAO, CONO-A

or CONO-B.

Analog Outputs

Each ALOG card contains two independent analog output channels. All

channels share the same clock (phase A) and data inputs CAPO-13),

differing only in their SEL signals. These are the enables AEO-lS

decoded from G016-l9 by 930ls on #1175, including the GO term

indicating a generator in DAC mode.

A 14-bit register, shown on the ALOG schematic (#1110) as 00-13

('LS174s), holds the current OAC input. The SAMP flip-flop C'LSl09)

is true when the sampling switch is in the sample state and false when

it is in the hold state. A counter C'LSI09 and 'LS163) times the

duration of the hold state.

-41-

The DAC has.a built-in op amp which converts the current switch

outputs toa low-impedance voltage source. R35, combined with

internal feedback and offset resistors, adjusts the DAC output range

to + or - 1.5V. This is applied to a sample-and-hold circuit whose

output, SIG, drives the filter chain or final output amplifier. The

sampled DAC value is stored in C14, which is buffered by UIO to drive

SIG. Q5 acts as a switch which, when closed, allows C14 to charge to

the DAC voltage through R3 and R39.

About 260 nsec before the DAC register is updated, the S~\W signal

goes high (false), cutting off Ql and allowing Q2 to turn on. This

turns on Q3 which applies -15V to the gate of Q5 through CR3 and

CR4, thereby cutting off Q5. Approximately 6 microsec later, after the

DAC output has settled to its new value, SF~ falls, allowing +15V to

be applied to the cathode of CR4, permitting Q5 to turn on. Some of

the switching voltage is transferred to C14 because of the capacitance

of Q5. C13 couples a pulse of opposite polarity and approximately the
r

same amplitude into C14 to minimize this effect.

An 'LSl75 holds FE (filter enable) and FAO-l (which determine filter

frequency). FE drives a DG154 FET switch which selects filtered or

unfiltered output; FAO-l operate other switches which program the

UAF31 active filters. The filt"er configuration is 6-pole Butterworth,

with breakpoints as follows:

FAO-l

o
1

2

3

freq

4.5

9.0

13.5

18.0

kHz

kHz

kHz

kHz

The FE and FA 'LS175 is loaded at the same time, with the same data

for all channels, by AFC (#1175) which derives from IIM03.

Diagnostic Readback

The high-order 6 bits of the diagnostic address, lDAO-5, are decoded

by 'LS138s on #1197, to form diagnostic enables DEOO-63 (numbered

in octal). Each enable goes to a group of up to five 'LS257s (or

'LS258s) whose outputs form the 3-state diagnostic bus 00-19. The

low-order address bit IDS is butfered to perform the selection on

all the diagnostic multiplexers. Contents of the several addresses

are tabulated below.

-43-

I
~
ob

I;

Left Column: Diagnostic Address (in octal)

Right Columns: 20-bit Diagnostic Word (bit numbers in decimal), X=undefined bit

o TTTO-l9

.1 TC4-23

2 X X X X

3 X X X X

4 TDl6-35

5 THl6-3S

6 X X X X

7 X X X X

10 TA4-23

X X TIOBPIO-l X X TIOBPI2-3 X X TIOBP14-5 TTTI2-I3 T10BP16 X

X X X X X X X X X X X X TCO-3

TDO-IS

THO-IS

12 X X X X X X X X X X X X X X X X TAO-3 .

13 X X X X IWBP X X X TMRQ TMPXCLR X X TREQCYC TMW X X X X X X

14 IXO-IS X X X X

15

16

TCCO-4 TCC6-16

1116-19 ICO-ll

X X X X

X X X X

17 IMO-ls X X X X

20 IPO-IS X X X X

21 110-15 X X X X

22 ITBO-IS X X X X

23 ITAO-lS X X X X

24 GTO-Il X X X X X X X X

25 GLO-II X X X X X X X X

26 GZAO-Il X X X X X X X X

27 GZBO-ll X X X X X X X X

30 GXCO-lO X X X X X X X X X

31 GYAO-3 GYCO-3 GYEO-3 X X X X X X X X

32 X X X X GY4-11 FRM4-7 GSUM2-5

33:X GXl-ll FRMO-3 X X GSUMO-l

34 GYBO-ll CP4BO CP5BO CP6BO CP7BO CP4B2 CPSB2 CP6B2 CP7B2

35 GYDO-ll CP4Bl CP5Bl CP6Bl CP7Bl CP4B3 CPSB3 CP6B3 CP7B3

36 GWDO-11 FSUM3-6 GFMI3-6

37 GUO-II X FSUMO-2 X GFMIO-2

40 GXBO-ll CP4B4 CP5B4 CP6B4 CP7B4 CP4B6 CPSB6 CP6B6 CP7B6

41 GWBO-ll CP4BS CPSB5 CP6BS CP7B5 CP4B7 CP5B7 CP6B7 CP7B7

42 GVB2-12 X X X X X X X X X

·43 GJO-7 GVAO-3 X X X X X X X X
I
~ 44 GAZO-7 GCO-3 X X X X X X X X
U1
I .46 GMO-3 GRMDO-3 FMDO-3 X X X X X X X X

47 X X FUO-9 X X X X X X X X

50 FEO-19

51 FEEO-19

52 FXAO-19

53 FXBO-19

54 FWO-19

55 FGO-19

56 FUIO-29

57 FQIO-19

60 FVO-19 ,
61 -GRNDOBO-3 -GRMDIBO-3 -GRMD3BO-3 -GRMDSBO-3 GRMD6BO-l GRMD7BO-l

62 FNO-19 :

63 TPO-15 X X X X

64 FFO-19

65 FDO-19

66 FJO-19

67 FKO-19

70 FXJO-19

71 FXO-19

72 FXHO-19

73 FXH20-23 FXG6-7 FXGI0-11 FXG14-15 FXG18-19 FXG21-23 FXH24 FXG3 X X X

74 APO-19

76 'SOBO-19

77 SlBO-19

100 S2BO-19

101 S3BO-19

102 GRAO-19

103 IWBO-19

104 GRBO-19

105 -IRBO-19

106 .GWAO-19

107 GBO-19

110 GXAO-19

III GKO-19

112 GVA4~23

113 GJ8-27

114 GAZ8-27

115 GC4-23

116 GPO-19

117 GOO-19

120 SOAO-5 SIAO-5 SCSO-l SA23E SR OPO GFMO-2

121 S2AO-S S3AO-S X X X X GFM3-6

122 GXB12 GWB12 -CSUMO-5 IAO-3 X CPP CTRIF CTR4F CTRO CTRA ITR OT

123 FINO-7 IA4-7 CTRO-7

124 CPABO-7 X X CTKO-9

125 CTPO-9 CTTO-9

126 FXMIP FXM2P FM04 FM06BO IRP IRW IMBF IWBF IP16-19 IFIQI-2 IFICO-5

127 FMD6BI-4 IlL IILO -IFAS1 -IFASO X X IFIQO IFOQO-2 IFOCO-S

130 GZO-17 GZC3 GZCN

131 GWBO GWCO GEC GUF GYO-3 GVBO~l GVB13 GXO GJOD GRAOO FLIOFEA X X X X GYQ3

132 RMRY RMNY RMTY RMCO RPO-1 ID1C2 RGO-4 RPE RQO FPRO RQO-4

133 RMRAS RMCAS RMWPP RMCI RP2-3 RMC3 RKO-4 RMRT RMRQ RMRO-S

134 IDAO-3 GXS GXBS GUSO-l X X X X GRMOAO-3 TIAO-2 RY20

135 IDA4-S X IDS GX12 X X X X X GINVBE GTS GRMOA4-7 TIBO-2 X

136 IMTO-2 TMW TMB TMC TMO TMOO TZA X TCCS X TMDO TMDOA TMOOR TOOCO TMGO TMGDD TMG30 TMXO

137 X X X X -TMY TAAIO-1 X TOOCOO TCOCAO TCOCAOO X IRH TCE TRE TWE GTT GTA GCOD GCOG

140 REO-19

141 RTO-19

142 RO-19

143 RVO-IS X X X X

144 RXO-19

14S -RWO-19

146 RYO-IS X X X X

147 RZO-19

•• II. 8. ... Il' 14' 16. 18 • 11.

CA r- . ~'---~---I---"':"---'I-------,.--t-----,---,.-t-------I'----'- -_._-_._-

til ---------- ------~-.• ----------I~~~--~-I--~~~-- .~~ ____ +-~-----~---------
;I fB ----------I--------------~.-------------~-------------~~ ~.f------
.~

CO u; -_ .. ------- ----"---~- ,-------- --------'-----
- .. --,,-

I
efA ~-~- -------- ·-----~-I·-~. -.~t_-----~- f---------t------- ~------ .- -----1-
ttB I-------~·-~
CCr.

r -- ·-----t------t---~-~-,~ \------- -_. --'-"

• 1 • 41 8. I •• III 14. 1S. 10. I'"
'1"(IN NnNOS[CONDS

Figure 1. Clock Phases

PHC

[PRS

I fR

C fA. I

CU,

C'1t2

C'"l

C tit 4

C TIt S

C1116

Cflt7

511

0,1'

OPO

CTII(

Cpn

CPI

CpI

C",

CP3

CP4

CPS

CPS

CP7

CP"

, -,
, --

• 190; 391 585 708 975 I 170 'J6~ '561 17 55 '145 ZHI 1535 11 J 1 J I 11

____ J- \ __ _ r-\ ___ J\ ____ j-\ ____ I\~L~--'__~-L~-__''____._rL_r'__F\~-~---J \ ___ -1 -_ _ J

~-- ---'---~.-----' ----~.----.;---
: _~ ____ -.1---- --

- -_._-_ .•. _._--.,--

-- --- -------_. __ . ----- ----------- ----------
'-' ---------_._--_._ .. _---, :

,-~: -L-~-- ----------~----~~----~-----;------~------~--

, - ~----~----~ , -:-----i>-__ ~ _________ ~ _____ ~ _____ _'_ _________ . _________ _

, -t------ ~ ________ ~--~r
,,
, - -----------------

----~----------j
~ ____ ~ __ ~. ____ J

~--~--~-----------~-
~: -.~~----.;.--~.---------.;...--.. ------- --.--

\

L ,
, -- _. __ ._--------- ---~- ___ -_______ ~-__ F--

------------------.;----~-.------,.\~ ___________ ---_'__ __ ~ ____ :__ _ __J(------- -. --.----..
f - --.... -.-~-- -- .. - .. -~----------~----~----~.------

1 - --- --.------.~------. -- ----~-------~.~--..:.---- ~ ____ :_ ___ =_x. _____________________ -=---- .. --
----~-. -- --.---- ---------~------ ------- . ..:,.....-----
• . I _3 ~ '1 I. I I U I J 14 : IS 16 I 7 I.

• . 1 .3 ~ 4
: s :11 It : II II 13 Ie ., If I' Ir

., . 4 .S .11 : 1 .. : II II It : If If .,
I'

I :2 i' l s ; . ,1 II : II : Ie I' If I' It

• I :2 :3 5
;,

II Ie If If If It .. : I Z :4 .5 , It If If If If

: I I :3 -4 '5
"

It :.1 , If I' It

I :3 ·4 :5 Ie If : If I' j,

:1 I ; 2
: ' 1 C If : If I r .,

• I '3 , C If If 1 f IF

~---------------------:---~-------------~
~---,r

11 1 ~

•

• 195 39. 505 708 915 , I 7 A , J 6 5 '5/1 II 19511 l' 4 'i 11411 , J '5 2',1) I 1 n 1.11 '>

liME IN HnHn~ECOHOS

Figure 2. Clock Counting

: oc) - ~,-..;;:;.;;.:;.;;.3 -...;Z;..~ ____ ...;~;.;;.; ;)';"-"';~;':~...JI

[rJ '1
a~g ~'--------------------------------~

sc-i GlCl3_1\21

r~19 -..

(I!I).~
~

.•. ..r---nl

.~

I

OACS

' .. 11
!

I
!

1Cr--m .~

HZ-IS
t

I
I

,-----I -~O
s---:sl

5C-~

"Ol £1
-- Figure 3.

I ;)~ ~ i""------'
Generator Data Paths

r

\'---~7

:a- :9
o

S;~19 O~--
~

1 :.a- ~~I
-----------~-----

•

!

lC.:::-\ "JlG.II'1" 7
I

:cox-\: "U 7
I

(=)

x

n~----J
I

-sc

6:_!9'"
_, II'23-t9 I

"-1·,,-,;'1 ec-9 I
______ -.,;i I ~ I ,;:n-o" ~

~\ -'(-'--; l;~ -·\""rOj
-- S~

~W'.,

Figure 4. Modifier Data Paths

-51-

I
U1
IV

so

Sl

S2

I S3

phase A

pole-O read IN

generator

pole-O read IN

pole-O read IN

EVEN TICK

phase B phase C phase A

generator read FM modifier read RH mod-mix read IN

read - pausp.- write SUM generator

generator read FM

mod-mix read IN

modifier read RM mod-mix read

modifier read RM

EVEN PASS SHOWN COP false)

EXCHANGE 50 WITH 51 AND 52 WITH 53

FOR ODD PA55 (OP true)

~

Figure 5. Sum Memory References

IN

ODD TICK

phase B [Jh..l~;Q C

generator read FM

read - pause - write SUH

generator read F~

modifier read SUM nodificr write SUM

"lI5-19 ~Z!-:! ~?11-IJ IItt-1!

I
C:T~

\

5>41'· ~T 7
, lI.l.%.l /1-----

\

~ .. l,.T IrT7
t I.U II-------~

-lC

I c!!"'_I!a~-lC
I

"'CP-I'
!!'IT~IWAC!

II
-1 ~K~_4 sl I

I

I -T~~"35

\~-,,7

Figure 6. Delay Unit Data Paths

-53-

:::7-11
I

Figure 7.

JN3-15

IF0-19 IF20-31

+1

IS
0-19

GR~-19

II"B~_I~'1
PDP-t3

INTERFACE

Generi~ Interface Data Paths

.,;;·54-

TJQ-4 CTKI-9

Q 16
TCca-lS

09-19 ~la-19 STRTUS

0C-

TTJ6-3S

IWS0-19

~
Ioea-35 MB00-35

TR0-35

TOOC-1 T"~_3~61 0-

TAA0--3
lC.3C-

MAOR14-35

TH4-19 TH29-35 T04-19 T020-35

I I I I

\'---~IN0-15------Jl
I

GENERIC
INTERFACE

Figure 8. PDP-lO Interface Data Paths

-5"5-

