1. Check carefully that no physical damage has occurred.
2. Check that 11 plugs into the wire-wrap panel are properly seated. Insert the clock crystal plug in 1833 - see attached sketch.
3. Cneck for shorts across outputs of both power supplies: on any DEC connector, pin A2 is +5 V , pin B2 is -6.5 V , pin C2 is ground. Normally, the +5 V will measure about 5 onms to ground, the -6.5 V about 40 onms.
4. Apply power to unit. If power plug is of the wrong type, power cord coding is: Green, frame ground; White, neutral; Black, hot.
5. Turn on circuit breaker on rear door and check for +5 V and -6.5 V at DEC rack.
6. Turn off and unplug unit before cabling to CPU. CPU power should also be off.
7. I/O and memory bus connections are as follows:

AB5-6 Mem. Cable 2 (data bits) IN
AB7-8 Mem. Cable 2 OUT
AB13-14 Mem. Cable 1 (address and control) OUT
Ab15-16 Mem. Cable 1 IN
AB21-22 I/O Cable 2 (control) IN
AB23-24 I/O Cable 2 OUT
AB29-30 I/O Cable 1 (data bits) OUT
AB31-32 I/O Cable 1 IN
Note that the relative positions of the caples 1 and 2 are opposite to tnat on most DEC devices. IN and OUT designations are arbitrary and may be swapped if desired for better cable routing. If the $S A-10$ is at either end of the $K I-10$ I/0 bus, -15 volt power is not available for the terminators in the $S A-10$ and snould de taken from a nearby device. Most configurations will work if the terminator tabs are connected together but not to a power source.

If an $M X-10$ multiplexor is used on the $S A-10$ memory port, remove the w990 from A19 and replace with the multiplexor control cable. The w990 is not interchangable with the one in DF-10s. If the $S A-10$ is not at the end of the multiplexor bus, remove the G703s from slots $A B 5$, $A B 6, A B 15$ and $A B 16$ and replace with cables to the next device.
9. Tne frame of the $S A-10$ should be grounded in the same manner as any Pop-10 I/O device.
9. The memory port should be set to receive the request on "immediate" if the $S A-10$ is set up for KAlO bus; otherwise on "fast".
10. Set the base address to the desired value with the DIP switch on the wire-wrap panel. Switches 1 through 7 correspond to bits 25 througn 31 respectively. Pressing the top of the switch, labelled "off", corresponds to a 1.
11. Power up the system including the $S A-10$ and read in the properly conflgured diagnostic. Start the program at BEG. It should loop until manual stopped. If it stops at ERROR 3, the SA-10 is probably inaccessible. check $1 / 0$ cabling and power. CONI 2 it 4 should give a one in bit 17 if the unit is properly connected. An ERROR 8 stop probably indicates inaccessibility to memory. An ERROR 10 stop is probably a memory cable or port problem. other errors are likely to be SA-10 faults.
12. If less than 256 K of memory is available, open location ADRHI with DDT and type in the highest available address. Start the program at CMT. Tnis should also loop until manually stopped, counting througn all avallable memory addresses. If it returns to DDT or prints an error message, check memory cabling and port.
13. Connect the controllers to the $S A-10$. Each BUS or TAG cable has a black end and a gray (or brown) end. The black end plugs into the SA-10 and the gray end into the "IN" connector. The terminators supplied with the sA-10 plug into the "OUT" connectors. Note that a black connector always mates with a gray connector.
14. The SA-10 does not support the EPO cable, so jumper must be installed at the controller to permit it to power up. A ground connection to the controller frame should also be made.
.5. Ine controller address snould be set to the desired value, whien must agree with the assignment in the diagnostic.
16. If a tape controller is to de tested, skip to step 20.
17. Mount formatted scratch packs on drives to be tested, leaving others stopped. If no formatted packs are available, use virgin packs and proceed witn step 18 until a "No Record Found" error is obtained, then format the packs (step 19) and return to step 18.
18. Start the program at DSKT. It will print the size of memory, list the drives off-line, and then start read/write testing. If all drives are listed as off-line, note whether there is a noticeable delay before the off-line message prints out. If so, the selection path is not continuous. Perhaps the BUS and tag cables are swapped or the wrong channel is being used. If the otf-line message comes quickly, there is a select error; check the controller address and make sure that it is enabled to the proper channel. If one or more drives are found online, they will be run and errors printed as encountered. Summaries are printed every 15 minutes. If no errors other than correctable data check are found for one nour, the subsystem should be usable on-iline.
set location FMTM as desired: $0=$ write data records only, 1 a write record zero and data records, -1 = write home address, record zero and data records. Start the program at FMT. Either "Formatter Done" or "Error" will be printed. On error the sense bytes should give a clue to the trouble. The progress can be monitored by setting the address switches to 5 and turning on exec paging, which will set the current $C C H H$ in the memory indicators.

Make sure the tape control is set for 24 sense bytes.
21. Ready a scratch tape (ring in) on the drive to be tested. If not drive o, open location TDEV with DDT and type in the con-troller and drive address.
22. Start the program at QTT. If all is well the program will write, backspace and read all the way down the tape, printing a summary at the end. Any errors found will also be printed. Five passes witn nothing but a few errors should indicate readiness for on-line operation. If the program hangs in a loop, check that the proper subchannel is being used and that the bus and tag cables are not interchanged. If a "Select Error" occurs, check that the proper channel is enabled and that the contents of TDEV agree with the controller address. If "Intervention Required" occurs, check that the drive address is correct, and that the drive is on-line and ready. On other errors, the sense bytes should provide a clue.

SAID NOTES
PEOPLE 10 CONTACT
Systems Concepts - Stuart Nelson
fees Weight
$A D P$

- Ton Kurkonsei
16×512 microcode
Need to know device code al base address
$+5 r$ FOR LOGO
-6.5 r FOR LEVEL INVERTERS
$\left.\begin{array}{l}\text { Bus in } \\ \text { Bus out }\end{array}\right\} 8$ Bits $+\rho$
High rate feature uses data in $\left.\begin{array}{l}\text { data out }\end{array}\right\}$ instead of $\left\{\begin{array}{l}\text { SERVICE in } \\ \text { SERVICE aT }\end{array}\right.$
base address is where a channel goes in physical MEMORY TO FETCH THE INITIAL COMMAND.

SAID IS STARTED BY SETTING "GO". BIT FOR A chanNel with a CONO.

WHEN FINISHED PROCESSING A COMMAND LIST THE SAID WU STORE STATUS \& WWW SET A FLAG (1 PER CHANNEL)

DATA CHAIN POINTS TO AIN ARGUMENT

$\tau_{\text {More data chain words }}$
TO FOLOW.

BASE ADDRESS BET WIT DIP BUTCHES

* FOUR wORDS PER CHANNEL

IE. BASE ADS 760

$$
C_{H} \neq \begin{cases}760 & - \text { InItial command } \\ 761 & - \text { Status wo } 1 \\ 762 & \text { - Status wd } 2 \\ 763 & \text { in }\end{cases}
$$

STATUS WORDS STORED AT BASE ADDRESS + $4 \times C H A N \#+1$ OR +2

Fico Data Paths

PROM \#2め 1C29

PROM \#21 2413
$p 4$

PROM \# 22 1A24 PO

CHANNEL BUSES
*
θ

MEMORY DATA BULSES

The numbers refer to the drawing sheets.

ACKN
ADDR13-35
ADR.CR4
ADR.CR5
ADR-CRY-CMPL
ADR-CRY-ENB
ADR-HLT-SW
ADR-IGN-SW
ADRIN13-35
ADR-SEL
ADRSELO-1
AS 6-15
$A S=I A R$
BADR25-31
BRANCH
BUF-BRANCH 10
BUF-DUMMY
EUF-HANG
BUF-OP
BUS-OUT<CBUS
BUSY
BUSY-SY
BYTE-MODE
CBUSO-7
CBUSくBO-j
CBLS<B4-5
CBUSくDEV
CLEN
CLK(E1)
CLK(E1)-
CLK(B2)
CLK(B2)-
CLK(B3)
CLK(B4)
CLKO
CLKTI
CLR-MB-LT
CLR-MB-RT
CLR-STA-SO
CLR-STOP
CLR-TAG-SO
CON27-32
CONDB
CONT(NO), (NC)
12

15
15

3

9
9
4
4

4
9
4
g and main b-bit data path
source field is 00xx
9 source field is 001x
9 source field is $10 x x$
14 clock enable

14 Clock sated with CLEN
clear MB (left)
clear MB (right)
clear operation status bits, subchannel 0
clears STOP-RQ
clear subchannel tags, subchannel 0
10 BUS bits saved from last CONO
console condition flip-flod
continue switch

	$\begin{aligned} & \text { CONT } \\ & \text { CRO-15 } \end{aligned}$	$\begin{aligned} & 14 \\ & \text { (7) } 53 \end{aligned}$	```continue after clock ston register whero microinstructions are decoded```
	CRDO-15	53	and 128,3-state bus that is the input to CR
	CROBAR CRY16	12	from nower supply sequencer
	CRY 20	4	"1" 110
	CRY24	4	" " " " 24
	CRY 28	4	" " " "1 28
	CRY 32	4	" " " "132
	DECR	4	controls incrementor to decrement
	DEV-DONE	10	"DEV-DOiSE" signal sated from the appro-
	DEV-DONE-SY	10	
	DEV-MATCH	11	same device address in block multinlexor mode
	DAIG16-35	5	and 6 20-bit diagnostic bus
	DIAG-ON-BUS	13	set one clock after RD-DIAG; sates 10 BUS dirivers
	DIAG-SEL-A, B	B 15	controls gating to DIAG bus
	DIAG-SELI-2	15	controls Eating to DIAG bus
	DST-BUF-OP	9	destination is subchannel Fifo
	DST $=7$	9	Destination field $=7$, referring to sub-
	EXT-FN	9	-CRO.-CR1.-CR2.-CR3
	EXT-SENSE	6	response from external mystery device
	FIX-WC	10	signal used to increment lUC if final word is not comoletely filled
	FLG-WRT-RQ	13	remembers Cono to set or reset flas
	HIO	13	+3 volts to nanel 0
	Hil	12	+j volts to panel 1
	HI 2	12	+j volts to panel 2
	HOLD-ADDR	14	enable to A reg holding latch
	1ARE-15	(7) 53	Instruction Address Register, 4×10 RAM
	\| AR7-14	8	IAR inverters
	IARB6-15	(7) 53	value of lAR for this instruction
	IGN-SPLIT-BY	YE 10	attempt to move split byte in byte mode is
	1NCR13-35	4	treated as a no-on five 4-bit partial sums of $A+1$
	INCR-WC	10	automatic increment of word count
	INTR	13	PDP-10 interrunt--channel or memory error
	IOB $\angle S T A T$	13	gates 10 BUS cirivers
	10BUS 26 -35	41	from 10 BUS receivers
	10-DAT16-55	6	to 10 BUS drivers for CONl or DATAI
	10-FLG-WRT	13	flas set or reset due to CONO--clocked ff
	JAM - CR	11	$C R$ is to be loaded from special source
	LC-SW-COND	15	light control switch
	LC-SW-MEM	15	" " "
	LD-ADR	9	sirnal used to load an A register
	LD-ADRA-E	4	controlled by LD-ADDR and preceeding carries
	LD-ADR-OP	9	destination is an A register
	LD-CR	11	
*	LD-I AR12-15	11	

LD-IARG-7 |

LD-IARS-11 11
LD-LR 15
LD-MA 12
LD-MB-LT 12
LD-MB-RT 12
LD-MRB
12
LD-STA-SO 9
LD-TAG-S $0 \quad 9$
LITIC-35
LOC
NA14-35
3
MADR <MA
12
19
MB20-35
MBD32-35
MB<MBUS-LT
12
MB<MBUS-RT
MBP
MB-PAR-A
MB-PAR-B
MB-PAR-C
MB-PAR-EV
MBUS <MB-LT
MBUS $\angle M E-R T \quad 12$
MC-ADR-ACK 12
MC-ADR-ACK-IN 12
MC-ADRA 12
MC-BUS-DONE 12
MC-BUSY 12
MC-CONTIN 12
MC-DONE-SYNC 12
MC-ENB 12
MC-ERROR 12
MC-FINISH 12
MC-NXN 12
$M C-P A R-E R R \quad 12$
MC-RER-CYC 12
MC-SET-DONE 12
MC-WRRQ
MC-WRT-DONE ??
MC-ZAP 12
MEM-GO
MEM-GO-A 12
load the l ights register
load MA from A reg--memory cycle
load MB (left) from R reg--memory cycle
(right)
MB to MRB at end of memory cycle
load opcration status bits, subchannel 0
load subchannel tags, subchannel 0
20 light drivers
display selection switches
D.C. voltage from power sequencer to be con-
nected to PUR ON to bring power up
memory address register
gate address to memory
memory buffer register
memory buffer register
data to be stored in bottom half-byte of
word
catch fetch data
(right)
parity bit for MB
1 parity on MBO-11
1 parity on MB12-23
1 parity on MB24-35
MB (including MBP) has even parity
strobe pulse to level shifters, memory data left half
strobe pulse to level shifters, memory data right half, and control signals
Address Acknowledge from cable receiver
latch remembers ADR-ACK
ADR-ACK to this unit
done with memory bus
memory interface busy--subsequent references will hang
catches PDP-10 acknowledsement of SA-10A
memory error
follows AC -BUS-DONE, clocked
MXIO says this is our memory cycle
memory error: parity or $N X-M E M$
signal which resets lic-BUSY
non-existent memory error
bad parity on a fetch
memory cycle request
sets MC-BUS-DONE on write or NX-MEM
marks memory cycle as a urite
write done--forms trailing edge of pulses
to memory
abort memory cycle
berin memory cycle
memory cycle very likely

MP	21
SO-BUF-ENB	20
SO-BUF-HLT	21
SO-OUFRO-7	19
SO-BUFWO-7	19
SO-BUS-IN	18
SO-BUS-IN-PERR	RR 2
SO-BUSIN-i.IUX i8	18,19
SO-EUS-OUT	20
SO-BUSY	13
SO-BYTEM	21
SO-CB-DEV + BUF	21
SO-CB-TAG+STA	A 21
SC-CBUS $\angle D E V$	21
SO-CLK	21
SO-C LKA	21
SO-CIID-OUT	20
SO-CTRL-ERR	21
SC-JEV-BUF-AVL	VL21
SO-DEV-BUF-CYC	Y 21
SO-DEV-DONE	21
SO-DEV-LST	21
SO-DSC-IN	18
SO-DSI-ACK	18
SO-DTA-IN	8
SO-DTA-OUT	20
SO-DTA-OUT-A	21
SO-ENS-EUS-II	121
SO-ENB-STA	21
SO-HLD-OUT	20
SO-INT-EN	13
SO-INT-STAO-1	21
SO-OPL-OUT	20
SO-PANIC	21
SO-PAR-EV	19
SO-PROG-INT	21
SO-PTRS-EQ	19
SO-SCB<CBUS	21
SO-SEL	21
SO-SEL-ERR	21
SC-SEL-OLT	20
SO-SRV-1/1	18
SO-SRV-OUT	20
SO-SRV-OUT-A	

subchannel FIFO is empty
buffer enabled, a subchannel tas
buffer halt--device done or no more data subchannel buffer outputs subchannel buffer inputs
eight bits plus parity from control unit bad parity from control unit
eight-bit bus in subchannel onto which
may be gated tags or status
cight bits plus parity to control unit subchannel 0 BUSY (or GO) flag
BYTE MODE--subchannel status bit
gate device or buffer to CBUS
gate tags or status to CBUS
gate device BUS IN TO CBUS

COMMAND OUT
subchannel status bit
FIFO available to device
device buffer cycle
branch condition from subchannel: Status in or not Operational in
the last buffer cycle was taken for the device end
DISCONNECT IN from control unit true for one clock after SO-DEV-BUF-CYC DATA IN from control unit (High-Speed Transfer Feature)
DATA OUT to control unit (response to DATA IN)
enable BUS IN through receivers
enable status bits through multiplexor HOLD OUT
subchannel 0 interrupt enable flag
subchannel status bits
OPERATIONAL OUT
control unit is bewildered--causes jump to microcode 0004
even parity on data byte
subchannel status bit
the FIFO is either full or empty if the
pointers are equal
sate CBUS to buffer
SCA register pointing to channel 0
subchannel status bit
SELECT OUT
SERVICE If from control unit
SERVICE OUT to control unit--response to SERVICE IN

***=morde for FMTM
$0=$ normal mode
1=write F 0
$2=w r i t e$ fio arid $H A$
if fack was previously an RFO6 pack use mode=2
** $\#$ Gsinsle cylinder seek routine on drive $* *$, channel $*$
H Frint this text

* I Eero to set flas to run interference chan pros durins disk \& tare test (zero is normal case)

J select chaninel and units to be made available for testiris. (oftion: **, \#J - **=unit, *=channel (null=0))
seek test for disk drives on subchanimel * control urit \#\# (doesn't write on packs)
*L set left half of "switches" (cause STATIC to loof ori err \ddagger routirie) (octal test number)
\#M memory test usins subchannel

1

* *

loof selectiris device ** on subcharimel *
\#p line printer test for subchannel *

- Q
\& Fint iritermal resisters for subchaririel *
5 static test internal test of SA-10 (old BEG)
- ***
** * * U
set "use whole pack" state to ** for drive * ($0=$ mairit culs only) (** not specified mearis -1)
* $*$ * * も
verify disk surfaces on drives on subchannel (UWF must be -1 for all drives to be tested) (writes on eacks)
- w
report controller confisuration
x exit to EDLIT
fast reliability test for disk drives on subchannel $\#$ control umit $\# \#$ (writes on racks)
** * \quad read and reset error counters for device $\# \#$ on subcharinel $\#$

