
ChannelACT 1
M

TEC'lf'N2:JLDGV

Operator's
Manual

a UINC. __ re_c_hn_oi_og_v_ao_. 1n_c_. -----------------
658 Mendelssohn Ave. North• Minneapolis, MN 55427 • (612) 542-9545

ChannelACT

OPBRATOR 1 8 llARUAL

Docuaent llWDl>er: 2370-5

Released: June 1989

Revised: Ju1y, Auqust, October, December 1989

lllOTICB

This document provides reference information only. The application
or use of the information and/or the products described in this
document does not infer that Technology 80 Inc. assumes any
liability, nor does it assume any liability, for such use.

Information contained or referenced in this document may be
protected by copyriqhts or patents. No licence under any riqhts
of patents or copyriqhts of Technoloqy 80 Inc., or others, is
conveyed by this document.

Copyriqht 1989 Technology 80 Inc. All riqhts reserved. However,
any part of this document may be reproduced with Technology 80 Inc.
cited as the source.

PRBPACB

This manual provides instructions and reference information for use
with the ChannelACT from Technology 80 Inc. The purpose of this
manual is to answer questions pertaining to the basic applications
of this module.

It is assumed that the user of the module possesses some
fundamental knowledge of computer mainframe systems and operation.
such knowledge is required to successfully interface the ChannelACT
with the mainframe computer. Technology 80 Inc. will be eager to
assist the user with application problems pertaining to the use of
this module not addressed in this manual. We recommend consulting
documents provided by the manufacturers for questions relating to
the computer portion of your system.

Technology 80 Inc. manufacturers and markets mainframe testing
devices. These devices offer inexpensive solutions to mainframe
maintenance problems. Application assistance in implementing our
products and systems is available directly from Technology 80 Inc.

PREFACE

This manual provides instructions and reference information for use
with the ChannelACT from Technology 80 Inc. The purpose of this
manual is to answer questions pertaining to the basic applications
of this module.

It is assumed that the user of the module possesses some
fundamental knowledge of computer mainframe systems and operation.
Such knowledge is required to successfully interface the ChannelACT
with the mainframe computer. Technology 80 Inc. will be eager to
assist the user with application problems pertaining to the use of
this module not addressed in this manual. We recommend consulting
documents provided by the manufacturers for questions relating to
the computer portion of your system.

Technology 80 Inc. manufacturers and markets mainframe testing
devices. These devices offer inexpensive solutions to mainframe
maintenance problems. Application assistance in implementing our
products and systems is available directly from Technology so Inc.

.,

HOW TO USE THIS MANUAL

Purpose and Organization of this Manual

This manual is meant as an instruction and reference guide for use
with the ChannelACT, a mainframe I/O channel simulator developed
by Technology so, Inc.

For ease of reference, the manual is organized by task: the major
sections correspond, sequentially, with the steps typically
involved in using the ChannelACT. For the most part, the
subsection topics are organized in the same order as they appear
as options or queries on the ChannelACT's screens.

The introductory material, including the "Getting Started" section,
is designed primarily for the first-time user. These sections
contain information which is necessary for proper installation of
the ChannelACT, and for understanding the basic principles involved
in its operation.

Detailed, supplementary information concerning operation of the
ChannelACT may be found in appendix form. References to this
supplementary material may be found at appropriate points
throughout the text.

Stylistic Conventions Followed in the Manual

> All text strings which appear on the ChannelACT's screens
are enclosed in quotes (example= "Main Menu").

> All screen prompts which require a direct response are
enclosed in quotes and printed in boldface type.

> Keyboard keys are signified by characters enclosed in
brackets (example= [a] or [SHIFT]).

> Step-by-step instructions which must be performed in
sequence are numbered.

> Elements in lists that present non-sequential information
are highlighted with a ">" symbol.

Questions concerning the use of this manual or the use of the
ChannelACT should be directed to Technology so, Inc., 65S
Mendelssohn Ave. N., Minneapolis, MN 55427, (612) 542-9545.

Quick start

QUICK START

The 15 Minute Get Acquainted start

I. Introduction

The ChannelACT can be useful to the channel technician after taking
a few minutes to read this Quick Start Section. There are several
operator controls and many useful features that can be used to
perform precise tests and analysis. And while it takes a large
manual to explain these features in detail, the operation of the
ChannelACT is not complex. The unit is user friendly. By
thoroughly r~ding this section, the user will gain the information
necessary to effectively use the ChannelACT.

The operation of the ChannelACT is menu driven. All required
operator actions are asked for on the computer screen. Just a few
controls, covered below, are needed as a start to get from menu to
menu. The user does need a basic knowledge of the mainframe
channel in order to effectively use the ChannelACT.

II. Starting the ChannelACT

The ChannelACT is connected to a control unit in the same way the
mainframe was connected. The starting sequence of steps are:

1. Turn the corresponding channel off in the mainframe
computer.

2. Turn the control unit off.
3. Disconnect the channel cable at the mainframe computer,

that runs between the mainframe and the control unit.
4. connect the channel cable into the ChannelACT Bus and Tag

Cable Connectors.
s. Turn on the control unit.
6. Turn on the ChannelACT.
7. Install the ChannelACT software in diskette drive A. or

if the unit comes with a hard drive then the message 11 1.4
M Driver card Installed" will appear on the screen.

s. Type in the word "ACT" when given "C:\>_" and the main menu
appears. This menu is accessed when main operations
need to be done such as executing the program, running the
diagnostics, or exiting the program.

9. From the main menu the program development menu can be
entered by pressing "2". This menu should be accessed when
the user wants to write programs for the ChannelACT.

Quick start

III. Operating the ChannelACT

Programs may be written for the ChannelACT to test and maintain
peripherals. To write programs enter the program development menu.
Access to this menu is described in steps 8 and 9 in the previous
section on starting the ChannelACT. To get a print-out of any
screen type [SHIFT][Prtsc *l·

IV. A Sample Program

To write a sample program enter the program development menu. Type
11 2 11 to enter the program editor. Then type in the following sample
program:

This is a sample program for a tape drive whose address is 80 in
hex. The program does a system reset, writes a block of data to
the tape, rewinds the tape, and then reads back the block and
stores it on the PC drive. The program demonstrates how one way
error recovery might be implemented.

channel BLOCKMUX
system_reset
ccwO \80 \07 /C
loadfile 11test.ram11 /T
data 11append this sentence
a: ccwO \80 \01 /C
error recovery
if (failed)

ccwo \80 \27 /C
restore
goto a

endif
ccwo \80 \07 /C
ccwo \80 \02 /C
storefile 11test2.ram11 /T
ccwo \80 \03

channel type chosen

rewind, chaining option

on11 ,CR,LF
write

backspace block
restore data

rewind
read

last command, chaining off

Quick start

A sample program in "C" Language has been listed below. (Note:
This program would have to be compiled with a Microsoft c or a
Turbo c compiler before it could be executed on the ChannelACT).

/********
* This is a sample program for a tape drive whose address is oxso.
* The program does a system reset, writes a block of data to the
* tape, rewinds the tape, and then reads back the block and stores
* it on the PC drive. The program demonstrates one way error *
recovery might be implemented.
********/

#include <act.h> /* always included */

main()
{

/* always first function called */
/* channel type chosen */

initialize() :
channel(BLOCKMUX):
system reset():
ccwO(Oxso,ox07, C): /*rewind, chaining option*/
ldfile(11test.ram11 ,TRANSLATED):
ldstr(11append this sentence on\r\n"):
a: ccwo(oxso,oxo1, C): /*write*/

/* error recovery */-

}

if (_failed_){
CCWO(OX80 1 0X27, C):
restore(): -
goto a:

}

/* backspace block */
/* restore data */

CCWO(Ox80,0X07, C): /*rewind*/
ccwo(oxso,oxo2,-c): /*read*/
stfile(11 test2.ram11 ,TRANSLATED):
ccwo(oxso,oxo3,0) /* last command, no chaining */

v. Executing the Sample Program

Before executing the program, it should be saved. It is saved by
pressing [F2] while remaining in the program editor. To execute
the program type [F3].

QUick start

VX. Disconnectinq the ChannelACT

The followinq list is the procedure for disconnectinq the
ChannelACT:

1. Turn the correspondinq channel off in the mainframe
computer Cit should already be off).

2. Turn the control unit off.
3. Disconnect the channel cable at the ChannelACT,

that runs between the ChannelACT and the control unit.
4. connect the channel cable into the mainframe computer•s Bus

and Taq Cable Connectors.
s. Turn on the control unit.
6. Turn on the channel in the mainframe computer.

TABLE OF CONTENTS

SECTION 1: INTRODUCTION
1.1 General Description .•••...••.•.•••........•... 1 - 1
1. 2 Features 1 - 1
1.3 Phy~i~a~ Description .•....•..•................ 1 - 2
1.4 Def1n1t1ons ...••.•...•.•.•••••...•..•......... 1 - 3
1. 5 Applications 1 - 4

SECTION 2: FUNCTIONAL DESCRIPTION
2.1 How the ChannelACT Works .•••••••.•..••.....•.. 2 - 1
2.2 Description of the ChannelACT Card Stages ..•.. 2 - 3

SECTION 3: GETTING STARTED
3.1 Connecting the ChannelACT ••.••.•..•.••..••.... 3 - 1
3.2 Starting the ChannelACT .••••••••.•••••..••...• 3 - 3
3.3 Printing with the ChannelACT .•.•..••.......... 3 - 5
3.4 Installation Considerations •.................. 3 - 5
3.5 Turning Off the ChannelACT 3 - 6

SECTION 4: SOFTWARE
4. 1 Software Overview••.......... 4 - 1
4. 2 ChannelACT Software ••••.••••...•.............. 4 - 2

4. 2. 1 The Main Menu •.•••..•••.••..•••..•..... 4 - 2
4.2.2 The Program Development Menu .•...•..... 4 - 3
4. 2 . 3 Edi ting Keys 4 - 4
4.2.4 File Listing Screen ••••.....•...•...... 4 - 5
4.2.5 Program Editor ..••.•••....•.•...•••.... 4 - 6
4.2.6 Data Ram Editor ..••••...•.•••..••.....• 4 - 7
4.2.7 Manual Execution .••••..•••..•.•...•.... 4 - 9

4 . 3 Errors .. 4 - 12
4.4 Programming in the Program Edit Mode •........• 4 - 15

4.4.1 Program Interpreter ••••.•••••••.••...•. 4 - 15
4.4.la Introduction ••.••••.•.•••..•..... 4 - 15
4.4.lb Operators, Levels of Precedence

and Associativity .•••.•.••.••...• 4 - 15
4.4.lc Variables and Assignments ..•..... 4 - 16
4.4.ld System Variables ..•••••.•..•••.•• 4 - 17

4 • 4 • 2 Commands • • . • • • • . • . • • . • . . • . . • • • • . . •• 4 - 18

•

4.4.2a Variable Declarations ••••..••.... 4 - 18
4.4.2b Data RAM Storage Control ••.••...• 4 - 19
4.4.2c Configuration and Simulator

Control 4 - 21
4.4.2d Channel Sequences Group I ...•...• 4 - 22
4.4.2e Channel Sequences Group II• 4 - 24
4.4.2f Input/Output •••...•••..••..•..••. 4 - 25
4.4.2g File Manipulation .•••.•.•..•..... 4 - 26
4.4.2h Program Flow •••••.••.•••••.•...•• 4 - 27

4.5 The 'C' Language Libraries •••••••••••••••.•.•. 4 - 29
4.5.1 Introduction ••.•..••••••...•....•...... 4 - 29
4.5.2 System Variables •..••••••••••.•.•••..•. 4 - 30
4.5.3 Simulator Control Functions ..•..•.•••.. 4 - 31
4.5.4 RAM Control Functions .•.•.....•.•...... 4 - 32
4.5.5 Input Functions •.•••.•••••.•.....•••••. 4 - 35

4.5.Sa Channel Sequences Group I .•••••.• 4 - 36
4.5.5b Channel Sequences Group II .••••.. 4 - 38

SECTION 5: MAINTENANCE AND WARRANTY
5.1 Limited Warranty ••••••••••••••••.• ~ .•....••.. 5 - 1
5. 2 Service Policy 5 - 2

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

EBCDIC CONTROL CHARACTER MNEMONICS ••••••• A - 1
ASCII/EBCDIC CONVERSIONS ••••••••••••••••• B - 1
STOPCODES LIST ••••••••••••••••••••••••••• C - 1
SERPENTINE CONNECTOR PIN ASSIGNMENT •••••• D - 1
UNDERSTANDING THE MANUAL EXECUTION

SCREEN • •• E - l
APPENDIX F: MORE SAMPLE PROGRAMS ••••••••••••••••••••• F - l

INDEX • •• I .. 1

LIST OF ILLUSTRATIONS

Figure l - 1: ChannelACT Front Panel 1 - 3
Figure 1 - 2: ChannelACT Rear Panel 1 - 3
Figure 2 - 1: ChannelACT Block Diagram 2 - 2
Figure 2 - 2: ChannelACT Card Block Diagram•.•.•.. 2 - 3
Figure 3 - 1: ChannelACT Placement 3 - 2
Figure 3 - 2: The-Main Menu • ••.•.••.•••...•••.••••.... 3 - 4
Figure 3 - 3: The Program Development Menu • •••.....•.. 3 - 5
Figure F - 1: The Manual Execution Screen F - 1

Section 1: Introduction

SECTION 1: INTRODUCTION

1.1 GENERAL DESCRIPTION

ChannelACT is a completely self-contained FIPS channel emulator,
which allows users to test, design and service compatible
peripherals without tying up expensive mainframe time. Rugged
construction and a compact design makes the ChannelACT portable
enough to take to the field where tests can be conducted on sight.
It connects to peripherals using standard Bus and Tag cables. All
channel protocols including Selector, Byte Multiplexer, Block
Multiplexer and 4.5 M byte data streaming rates are supported.

Channel testing can be performed by using the predefined channel
sequences within the menu-driven Supervisor. The ChannelACT also
allows users to program channel sequences with either the easy-to
use Extended Basic Interpreter or by using the supplied Microsoft
C or Turbo C language library.

1.2 FEATURES

* Emulates Channel Transmissions in Real-Time
* Portable and Self-Contained: requires no external supporting

device
* Connects to Standard Bus and Tag Cables
* 4.5 MB/sec Data Streaming Rates
* Programmable CCWs in Real-Time
* Supports all three channel modes: Selector, Byte Multiplexer

and Block Multiplexer
* 64K Storage Buff er
* Programmable Channel Sequences using supplied Microsoft or

Turbo C Language Library
* Channel Sequences programmable using the simple Extended Basic

Interpreter
* Interactively steps through channel sequences
* Fully supports the following channel protocols:

> Initial Selection
> Data Transfer
> Ending Procedures
> Stack Status
> Interface Disconnect
> Selective Reset
> System Reset
> Command Retry
> Request Sequence

1 - 1

ChannelAC'l' Operator•s Manual

1.3 PHYSICAL DESCRJP'l'ION

Dimensions:

Weight:

Composition:

External Features:

Width
Height
Length

18.25"
7.5"

21.0"

Approximately 40 pounds.

Aluminum skin, stainless steel handle, Urethane
front bezel and panel.

Front Panel Features: (See Figure 1 - 1 on Page 1 - 3)
1. Brightness Adjustment Knob - Controls the light intensity

of the Cathode Ray Tube.

2. Reset Button - Re-starts the ChannelACT and clears the
memory.

· 3. Cathode Ray Tube - Used for viewing menus and displaying
sample data.

4. Power Indicator - An LED that is illuminated when
the power switch is in the "ON" position and
the unit is connected to a working power
supply.

5. Diskette Drive A Used for loading and storing
information from the ChannelACT.

6. Diskette Drive B or 20 Mega Byte Hard Drive - A hard drive
is optional. Both are used for loading and
storing information from the ChannelACT.

7. Keyboard Jack - The jack used to plug the keyboard into
the ChannelACT.

1 - 2

(2)

(1)

(2)

(3)

{ 1)

section 1: Introduction

.... ,
0

Power

Br 1 QhtnH• Channel ACT

Figure 1 - 1: ChannelACT Front Panel

BUS

TAG
Parol lal Sarlal

(4) (5} (6)

Figure 1 - 2: ChannelACT Rear Panel

1 - 3

(5)

(~ 1 . "'.

(7)

(8)

(7)

ChannelACT operator•s Manual

Rear Panel Features: (See Figure l - 2 on Page 1 - 3)

1. Internal Fan - Regulates the internal temperature.

2. Power Cord - Extending from the lower left side of the
rear panel, this cord should be plugged into a nominal
120 Volt, 60 Hertz power source (220 Volt, 50 Hertz
models are optional).

3. Power Switch - Located on the left side when looking at
the back panel, this switch is used to turn
the unit on and off.

4. Fuse Connector - For proper operation, a 7 Amp
fuse should be used.

5. Parallel Port - A parallel port used to connect a printer
to the ChannelACT.

6. Serial Port - A RS232 port used to make external
connections to the ChannelACT.

7. Tag Connectors - Two serpentine type connectors
(labeled "Tag") that allow attachment of the channel
Tag cables to the ChannelACT.

8. Bus Connectors - Two serpentine type connectors
(labeled "Bus") that allow attachment of the
channel Bus cables to the ChannelACT.

1 - 4

Section l: Introduction

1.4 DEFINITIONS

Default: The pre-existing value before the user changes that
value.

File Listing Screen: This screen shows the programs that are
accessible to the user.

Help Message: A message that explains what a program does without
having to execute the program. The message is written
by the programmer. And it appears when the cursor is
placed on a program when the user is in a File Listing
Screen.

l - 5

ChannelACT Operator's Manual

1.5 APPLICATIONS

The ChannelACT will prove useful in any of a variety of
applications involving the mainframe I/O interface channel. These
might include:

> End-user (on-site) maintenance of a mainframe system.
> Third-party or off-sight maintenance of a mainframe system.
> The development or expansion of a mainframe system (by

inclusion of additional peripherals or hosts) .
> Beta-site testing of peripherals or networking equipment.
> Laboratory testing in the development of hardware and

software.

1 - 6

section 2: Functional Description

SECTION 2: FUNCTIONAL DESCRIPTION

2.1 HOW THE ChannelACT WORKS

The ChannelACT acts like a mainframe computer. It simulates a
mainframe computer through the software that is written and
executed in it. Channel sequences can be written using the
Extended Basic Interpreter within the Supervisor or by using the
supplied Microsoft or Turbo c language library. These software
programs test and service compatible peripherals.

The ChannelACT can be separated into two major systems. The first
is the personal computer system and the second system is the
ChannelACT card. These systems can been seen in
Figure 2 - 1. The personal computer system operates like any other
IBM compatible personal computer. The ChannelACT card takes
information from the personal computer and translates it to channel
information. The channel information can be loaded onto the
channel by the Tag and Bus Cables.

2 - 1

ChannelACT Operator•s Manual

(Internal Section)

Monitor: Video
Cathode Adapter
Ray card
Tube

Keyboard PC ChannelACT TAG

D Motherboard Card

RS-232 l
I/O 640 K DRAM BUS

Printer Card

Low Density
Disk Drive I]
High Density Disk
Disk Drive 1--! Controller

Card

Hard Disk
(Optional)

Figure 2 - 1: ChannelACT Block Diagram

2 - 2

Section 2: Functional Description

I/O Micro Decision
Sequencer Making

(Branching)

PC Bus Channel
Interface Interface

Writable
Control
Storage
RAM

Memory Data Data
Decode RAM RAM

OMA

Figure 2 - 2: ChannelACT Card Block Diagram

2.2 DESCRIPTION OF THE ChannelACT CARD STAGES

The ChannelACT Card has nine stages.
Figure 2 - 2 and are described below.

Personal Computer (PC) Bus Interface

They are illustrated in

The PC Bus Interface contains all the buffers and the drivers
needed to interface the card to the PC Bus.

Input/Output (I/O)

The Input/Output section decodes the addresses of all the PC Bus
driven I/O commands. It also generates the strobes and enables
needed to set up operation of the system and it reads back the
status and data values.

Memory Decode

The Memory Decode decodes the addresses that allow the PC to access
the Writable Control Storage and Data RAM.

2 - 3

ChannelACT Operator's Manual

Micro Sequencer

The Micro Sequencer contains the Am2910 chip and support chips that
run the channel sequencer.

Writable Control Storage

RAM that contains the micro code used by the Micro Sequencer.

Data Ram

64 KiloBytes of memory to hold data that is transferred on the
channel.

Decision Making

The Decision Making section contains registers and masks that allow
the Am2910 to execute conditional branch instructions.

Data RAM OMA

Circuitry that transfers data between the Data RAM and the channel.

Channel Interface

The Channel Interface contains buffer, drivers and terminators that
convert between TTL logic levels and channel logic levels.

2 - 4

Section 3: Getting started

SECTION 3: GETTING STARTED

3.1 CONNECTING THE ChannelACT

The ChannelACT should be connected to the channel with regular Bus
and Tag cables having "serpentine" connectors. Figure 3 - 1 on the
following page illustrates the relationship of the ChannelACT to
typical components of a mainframe system, and shows where it should
be placed.

The following procedure should be followed when connecting the
ChannelACT to the control unit:

1. Turn the corresponding channel off in the mainframe
computer.

2. Turn the control unit off.
3. Disconnect the channel cable at the mainframe computer,

that runs between the mainframe and the control unit.
4. Connect the channel cable into the ChannelACT Bus and Tag

cable connectors.
5. Turn on the control unit.
6. Turn on the ChannelACT.

The ChannelACT is connected to the control unit in a similar manner
as the mainframe computer is. The dark connectors are connected
to the back of the ChannelACT and the light connectors are
connected to the control unit. Connections should always be made
between pin housings of opposite colors; lighter housings should
be connected into darker housings, and darker into lighter.

Care should be taken that individual pins in the connectors are
not bent. This is best accomplished by making the connection at an
angle instead of straight in:

1. Rest the base of the cable pin housing to be
connected on the base of the unit's pin housing.

2. Gradually bring the cable housing up and toward
the connection points.

3. Gently push the two sets of connectors together.
The connection will hold even though the housings
do not "snap" together.

4. The connection may be secured by tightening the
screws on the back of the cable pin housings.

3 - 1

ChannelACT operator's Manual

IBM
380
370
30XX
43XX

CEH,...AL PROCESSING UNIT

OTHER MANUFACTURERS
THAT CONFORM TO
IBM OR FIPS SPECIFICATION

AMDAHL
Ill. SYSTEMS
BURROUGHS I Fl PSI
CONTROL DATA CORP.
SPERRY

:HONEYWELL

I
I

lllJLTl
DEVICE

t--------------------------- UN IT

TERMINATOR

PERIPHERAL CON rROUER
IBM
LEE DATA
STC
COMTEH
AMDAHL

Peft1Pf1ERAL 1/0 DEVICES
DISK DRIVES CONTROL DATA
TAPE DRIVES LEE OATA
CARO READERS SlORAGE
TERMIN.\L TECHNOLOGY
PRINTERS IBM
Pl.OTTERS Sfl£RRY
ETC. AMDAHL

Figure 3 - 1: ChannelACT Placement

3 - 2

Section 3: Getting started

3.2 STARTING THE ChannelACT

Power source:

The ChannelACT operates from a nominal 120 Volt, 60 Hertz power
source and uses a seven amp fuse. Optionally, units which operate
from 220 Volt, 50 Hertz power sources are available.

Before 11powering-up11 the ChannelACT:

1. Make sure that the power switch (located on the
left side of the rear panel) is in the off ("O")
position. In this position, the 11 011 half of the
switch will be parallel with the plane of the
back panel.

2. Make sure that no diskette is in the
diskette drive.

To power up the ChannelACT:

1. Plug the power cord into an appropriate power
source outlet.

2. Park the power switch in the "on" position (Press
the 11 1 11 half of the switch so that it will be
parallel with the plane of the back panel).

After 11power-up11 :

1. A screen will appear showing the version
of software being used by the unit. This screen
should appear ten to fifteen seconds after
power-up.

2. A series of diagnostic checks will be performed to
verify that the unit's processor, internal
components, and software are operational.

3. Install the ChannelACT software in diskette drive A. Or
if the unit comes with a hard drive then the message "1.4
M Driver Card Installed" will appear on the screen.

3 - 3

ChannelACT Operator's Manual

4. Type the word "ACT" when given "C:\>_" and the main menu
appears. This menu is illustrated in Figure 3 - 2. This
menu is accessed when main operations need to be done
such as executing the program, running the diagnostics,
or exiting the program.

5. From the main menu the program development menu can be
entered by pressing "F2". This menu is illustrated in
Figure 3 - 3. This menu should be accessed when the user
wants to write programs for the ChannelACT.

If any abnormalities exist, an appropriate message
identifying the source of the problem will appear
on the screen. In such cases, Technology 80
should be contacted for assistance in correcting
the problem.

r
1 MAIN MENU

Fl Execute Program

F2 Program Development Menu

F3 Run Diagnostics

FlO Exit Program

Copyright 1989

l
I

TECHNOLOGY 80
658 Mendelssohn Av N
Minneapolis, MN 55427
(612) 542-9545

Figure 3 - 2: The Main Menu

3 - 4

Section 3: Getting started

J
l PROGRAM DEVELOPMENT MENU 1

J
Fl Execute Program/ Edit Help
F2 Program Editor
F3 Data Ram Editor
F4 Manual Execution
FlO Main Menu

Copyright 1989 Technology 80
658 Mendelssohn Av N
Minneapolis, MN 55427
(612) 542-9545

Figure 3 - 3: The Program Development Menu

3.3 PRINTING WITH THE ChannelACT

To get a printout of any screen press (SHIFT](Prtsc *].

3.4 INSTALLATION CONSIDERATIONS

* Always back up disks, keep originals in a safe place
* ACT.EXE or a stand alone 'C' program will look for the microcode

file SIM3.BIN in the current directory therefore keep
SIM3.BIN in the same subdirectory as ACT.EXE and run all
programs from that subdirectory

* Alternatively, under DOS 3.2 or later versions, locate SIM3.BIN
in an "APPEND" statement in your AUTOEXEC.BAT file

Example: APPEND C:\SIM
This tells DOS to search for all auxiliary files in the
C:\SIM subdirectory

* If the ACT.EXE program is to be used in demonstration mode on a
different computer than the ChannelACT, include the
following in that computer's CONFIG.SYS file:

STACKS=O,O

3 - 5

ChannelACT Operator's Manual

3.5 TURNING QFF THE ChannelACT

The ChannelACT may be turned off at any time while it is being
operated. However, no diskette should be in the unit at the time
it is turned off.

To turn off the ChannelACT:

> Press the "O" half of the power switch so that it
will be parallel with the plane of the back panel.

When the ChannelACT is turned off, all data currently stored in
its internal memory will be lost. Turning off the ChannelACT has
no effect whatsoever on current channel operations.

3 - 6

Section 4: Software

SECTION 4: SOFTWARE

4.1- SOFTWARE OVERVIEW

The simulator software is designed to be extremely flexible. Most
channel operations can be accomplished in one of three different
ways:

(1) By writing a 'C' program utilizing either the Microsoft or
Turbo c library.

(2) By writing a program utilizing the integrated Basic-like
interpreter.

(3) By manually stepping through a channel sequence utilizing
the supervisor and directly driving the channel lines.

Both types of programs, 'C' and interpreted, can be executed from
within the the ChannelACT's software. A one line "help message"
can be created for each program to describe its purpose. A
technician will then be able to quickly pick out and run a sequence
of test programs.

Also, the ChannelACT software can be run on any computer in a
demonstration mode. Type "ACT/D" to start the demonstration. See
page 3 - 5 for the "Installation Considerations'' to help in this
process.

The software that comes with the ChannelACT is listed below in the
Software Packing List.

Packing List: Software
Disk 1
ACT.EXE
SIM3.BIN
(SAMPLE. C)
(TEST.RAM)

Disk 2
ACT MS S
ACT MS M
ACT MS C
ACT MS L
ACT MS H
ACT TC S
ACT TC M
ACT TC C
ACT TC L
ACT TC H
ACT.H

4 - 1

ChannelACT operator•s Manual

4.2- ChannelACT SOFTWARE (ACT.exe>

4.2.1 Main Menu

The main menu offers the following selections:
Fl Execute Proqram
F2 Proqram Development Menu
F3 Diaqnostics
FlO Exit Proqram

Selection Fl accesses the file listing screen which displays all
files with extensions of "sim" (an interpretive file) or "exe"
(presumably written in 'C'). A help message, if it exists, is
displayed with each file. A further description of this selection
is found under the description of the file listing screen, which
is accessed from many different places in the supervisor.

Selection F2 displays a submenu which is described in section
4.2.2.

Selection F3 runs the internal diagnostics. If a "microcode
checksum error" occurs try reinstalling the original software that
came with the ChannelAct. If this doesn't work or if other errors
occur, contact Technology 80.

Selection FlO exits the ChannelACT software. It exits the program
and places you in DOS.

A DOS command can be-executed from anywhere within the ChannelACT
software. Hitting Alt-D will execute a DOS shell. Execute the DOS
command and then type "exit" to return to the ChannelACT software.

A list of optional responses to errors can be found in Appedix D.

4 - 2

Section 4: Software

4.2.2 Program Development Menu

The program development menu offers the following selections:
F1 Run Program/ Edit Help
F2 Program Editor
F3 Data Ram Editor
F4 Manual Execution
F10 Main Menu

Selection Fl is similar to the selection Fl on the main menu, the
only difference being that the help messages can be edited from
here. A further description of this selection is found under the
file listing screen (section 4.2.4).

A channel sequence can be executed in two different ways from the
program development menu. Using selection F2, a program can be
written and executed without using any of the other menu
selections. Alternatively, selections F3 and F4 can be used to
interactively step through the sequence. Selection F3 is used to
set up the data that will be sent over the channel or to examine
the data that is input over the channel. Selection F4 is used to
manually execute the various simulator commands.

Selection FlO returns to the main menu. It is necessary to return
to the main menu to exit the program.

When storing and retrieving files, the following default extensions
are used:

"sim" for program files
"ram" for data files

It is strongly recommended that these default extensions are always
used.

4 - 3

ChannelACT Operator's Manual

4.2.3 Editing Keys

The simulator e~ors use the same cursor control keys which are
used by Wordstar and other popular editors:

Left Arrow- moves the cursor one space to the left.
Right Arrow- moves the cursor one space to the right.
Up Arrow- moves the cursor one line up.
Down Arrow- moves the cursor one line down.
Home- moves the cursor to the beginning of the current line.
End- moves the cursor to the end of the current line.
Pg Up- moves the cursor one page up.
Pg On- moves the cursor one page down.
(Ctrl)Pg Up- moves the cursor to the beginning of the file.
(Ctrl)Pg On- moves the cursor to the end of the file.
Backspace- destructively moves the cursor one space to the left.
Del- deletes the character the cursor is on.
Ins- toggles the insert mode. When the insert mode is on, the

cursor appears as a block. When the insert mode is off, the
cursor appears normally and characters are overwritten.

In addition, the program editor (not the data ram editor) contains
the following cut-and-paste functions:

ALT M- Mark/Unmark
ALT C- Copy
ALT X- Cut
ALT P- Paste

ALT M marks the current line in reverse video. The cursor control
keys will then mark additional lines. Hitting ALT M again will
unmark any marked lines. Marked lines can be cut (ALT X) or copied
(ALT C) to a scratch file. ALT P will paste the scratch file into
the current file, inserting the lines before the line the cursor
is on. Text can be copied or moved from one file to another.

4 - 4

Section 4: Software

4.2.4 File Listing Screen

.j.

A:*.ram <DIR> 88-07-14 16:05:46
4 files <DIR> 88-07-14 16:05:46
283124 bytes free data <DIR> 88-07-14 16:10:50

test.ram 1028 88-08-12 15:29:15

Enter-Change Dir F6-Change Search F7-Change Sort Flo-cancel

The file listing screen is accessed by all both of the editor
screens and the execute program option on the menus. The only
differences are that a different default extension is used for the
search pattern in each case and that different function keys are
active in each case.

To load a file into the editor, use the up and down arrows to
choose a file and then press enter.

To go to a different directory, use the up and down arrows to
choose that directory and press enter. To search for a different
extension, or to go to another drive, use F6 and enter a different
search pattern specification.

By default, the files are sorted by file name. To sort by filename
extension, size, etc., press F7, use the left and right arrow to
move the sort key indicator(the down arrow appearing at the top of
the screen), and then press return. The date and time are put in
military format, with the most significant information on the left,
to make sorting by column meaningful.

To edit a help message, use the up and down arrows to choose the
file whose help you want to edit and press [shift][Fl]. You will
then be able to type in a new help message. A help message can
only be written by pressing "Fl Execute Program/Edit Help" from
the Program Development Menu.

To execute a program, use the up and down arrows to choose the
program you wish to execute and press F3. The program will be
executed and the message <press any key to return to menu>
displayed. Pressing any key will then return you to this screen.

4 - 5

ChannelACT Operator's Manual

4.2.S Program Editor

Noname
VAR X,Y,z[lO]
CHANNEL BYTEMUX
CHAINING ON
LOADFILE "DATAFILE.RAM" /T
DATA "APPEND THIS SENTENCE ON",CR,LF
A: CCWO /22 /01
X := STATUS
Y := STOPCODE

1 5
#declare variables
#set channel configuration to ByteM

#load data file to buf. & translate

#chan. command write on address 22
#check status
#and/or stopcode

PROGRAM EDITOR F2-Save F3-Run F5-Load FlO-Menu <ALT>-more

The program editor uses a language interpreter vary much like
BASIC. What can be done on any of the other screens can be done
in the program editor. After the program has been written or
loaded, pressing F3 will run the program. Execution will occur on
a separate screen. As displayed on that screen, pressing F7 will
break execution of the program.

The standard editing keys are used- Left, Right, Up, Down, Home,
End, Pg Up, Ctrl-Pg Up, Pg on, Ctrl-Pg On, Delete, Insert, and
Backspace. The current cursor position is shown in the upper right
hand portion of the screen. When in insert mode, the cursor will
appear as a block. Holding down the alternate key will display the
available cut-and-paste functions.

F2 will save the program onto a disk file. You will be prompted
for the file name. If no extension is given, a default extension
of "sim" is given.

F5 will load a disk file. See the information about the file
listing screen in section 4.2.5.

A description of this interpretive language is given in section
4.3.

4 - 6

Section 4: Software

4.2.6 Data Ram Editor

New File
0000 TEST DATA ..

A CR LF
E3 CS E2 E3 40 C4 Cl E3 Cl QD 25

(s)F2-Save (s)FS-Load F6-Switch F7-Mne F9-Clear sF9-Restore FlO-Menu

The data ram editor screen is split into two parts. The left part
of the screen shows the EBCDIC character that corresponds to the
hexadecimal number in the same relative position on the right part
of the screen. A control character will appear as a dot on the
left. Data can be entered on either side of the screen.

After entering the character or hexadecimal number, the cursor will
automatically advance to the next position. Press F6 to change
from one side of the screen to the other. The standard editing
keys are used- Left, Right, Up, Down, Home, End, Pg Up, Ctrl-Pg Up,
Pg On, Ctrl-Pg Dn, Delete, Insert, and Backspace. When in the
insert mode, the cursor will appear as a block.

If the data RAM editor is entered after data is received over the
channel, it will be in a "read only" mode. To be able to edit
data, either the FS(load) or F9(clear) options must first be used.

After data has been written out to the channel, the data in the
buffer can restored to be written out again with the (shift) F9
option. This option will only work if there has been no
intervening channel read command.

The upper right hand portion of the screen shows the current
character that the curser is positioned on, and the one before and
after. Mnemonics will be appear here for control characters.
For a list of control character mnemonics, see appendix c. To
enter a mnemonic for a control character, press F7 from either side
of the screen. After being prompted, enter the two or three letter
mnemonic and press enter.

F2 and (shift)F2 will save the data onto a disk file. You will be
prompted for the file name. If no extension is given, a default
extension of "ram" is given. (shift)F2 will do an EBCDIC-to-ASCII
conversion before storing the file.

FS and (shift)FS will load data from a disk file.
page for information on the file listing screen.

4 - 7

See the previous
(shift)FS will

,,

ChannelACT Operator's Manual

do an ASCII-to-EBCDIC conversion before loading the data.

A unique EBCDIC character has been assigned for every non-extended
ASCII character. For a non-extended ASCII character, a ASCII-to -
EBCDIC-to-ASCII conversion sequence will yield the original
character. See Appendix B for the conversion matrices.

4 - 8

Section 4: Software

4.2.7 Manual Execution

(l)Channel:[BLOCKMUX] {2)Buffer Size: FFFF (3)Current Datacount: 0010

(4)SLI: 1 RQI: 1 OPI: 1 OSI: 1 SVI: 1 STI: 1 DTI: 1 ADI: 1 MKO: 1
(5)SPO: 1 SLO: 1 OPO: 1 HLO: 1 SVO: 1 OTO: 1 COO: 1 ADO: 1

(6)Busout: 03

(8)Chaining: Off

(7) Bus in: FF

(9)Stacking: Off

(10) Address: E3 (ODD] (11) Command: 00 (ODD] (12) Data: 03 (ODD]

(13)Sequence: CCWO

(14)Last Address In: E3

(lS)Last Status: OC Channel End + Device End

(16)Last Sense: 00 00 00 00 00 00 00 00

F3-Execute F9-Clear Data sF9-Restore Data FlO-Menu ALT D-Dos

All of the fields on the manual execution screen are displayed
and/or entered as hexadecimal numbers. Use the left and right
arrow keys to move around the screen. Square brackets will appear
around the current input field. A value may be typed in when a
cursor is given or arrow keys may be struck to change options. To
select an option simply press [Enter]. If the cursor does not
appear, the only input accepted will be one of the function keys
or the spacebar, which will toggle the field to another value.
Upon execution of a command the option to continue or abort will
be given. If an error has occurred the option to retry will be
given.

The following information is displayed:
(1) The type of channel- "Selector","Bytemux",or "Blockmux".
(2) The current data buffer size. The default is 64K-1, the
largest size possible.
(3) The current data count. This will either be equal to the
number of bytes that were received over the channel, or it will be
the number of bytes yet waiting to be sent over the channel.

4 - 9

ChannelACT Operator•s Manual

(4) The current value of the tagin lines.
(S) The current value of the tagout lines. These lines can be
manually toggled up and down.
(6) The current value of busout. To manually change the value of
busout, press spacebar. A pop-up menu will appear and you will be
able to put one of the values specified in #9, #10 ,or #11 on the
bus, or be able to disable the bus.
(7) The last value of busin received.
(8) Whether the chaining option is "On" or "Off". While on,
chaining will be signalled to the peripheral until this option is
again explicitly turned off.
(9) Whether the stacking option is "On" or "Off". While on,
stacking will be signalled to the peripheral until this option is
again explicitly turned off.
(10) The peripheral address.
(10.5) The address parity, which can be set "Odd" (normal) or
"Even".
(11) The channel command.
(11.5) The command parity.
(12) A data byte. None of the sequences use this value. This is
only used if you want to manually put a value on busout with option
#6 and classify it as data.
(12.S) Data Parity. This includes not only the parity of the byte
specified in (12) but all data sent on busout.
(13) The sequence type. To change the sequence type, press return
and a pop-up menu of choices will appear.
(14) The last address received on the channel.
(15) The last status received on the channel.
(16) The last sense bytes received when a sense sequence was
executed.

To manually execute a sequence:
(1) If data is to be output over the channel, first set up the
data using the data ram editor.
(2) Input the appropriate information on the screen.
(3) Press F3 to execute the microcode sequence. The bottom of
the screen will now read "F7-Break". If a error message or
successful execution message is not returned within an appropriate
amount of time, return can be forced with the F7 key.
(4) If data was input over the channel, it can be read by going
to the data RAM editor.
(5) Data can be "restored" for successive writes with the
shift(F9) key.

Alternatively, the tagout and busout lines can be driven directly
from this screen.

4 - 10

Section 4: Software

The tagin and tagout abbreviations are given below:

Tagin lines Tagout lines
SLI Select In SPO Suppress Out
RQI Request In SLO Select Out
OPI Operational In OPO Operational Out
OSI Disconnect In HLO Hold Out
SVI Service In SVO Service Out
STI Status In OTO Data out
DTI Data In CDO Command Out
ADI Address In ADO Address Out
MKO Markzero

4 - 11

,}

ChannelACT operator•s Manual

4.3 ERRORS

Programming - both modes of programming (interpretive and 'c') have
certain features in common which are described in this section.
Particular features of each language are then described in later
sections.

Program execution:
The channel sequences will displayed on the screen as they are
executed. Errors messages are also posted on the screen. Possible
error messages, along with their corresponding "error code number"
are listed in Appendix c. If an error occurs in the sequence, you
will be prompted for a response. Type in the first letter of the
desired option. Options that might appear are:
(1) Abort- program execution will be aborted.
(2) Continue- program execution passes to the next line of the

program. This option should be chosen if error recovery is
handled by the program.

(3) Fail- like continue, only the system variable failed (_failed_
in 'C') is set.

(4) override- This option appears if a negative error code (usually
signifying a parity error) was returned by the last channel
sequence and works as the function of the same name. The error
will be ignored and the sequence will continue where it left
off. If the sequence was complete, the return code will be
translated to what it would have been if no error had occurred.
The result of a override might be another error.

(5) Retry- This option appears if an exceptional status is returned
for a CCW and works as the function of the same name.~ The data
buffer is restored (as the function "restore") and the last
ccw sent is re-executed.

(6) Sense- This option appears if Unit Check occurred in the
status. A sense will be performed and the result displayed. You
will then be re-prompted for another choice.

Example:
SYSTEM_RESET
ccwo \80 \07
ccwo \80 \01

Exceptional Non-initial status presented
Retry, Sense, Continue, Fail, Abort? S
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
(for command before sense) Retry, continue, Fail, Abort? A
Program complete
<press any key>

4 - 12

Section 4: Software

Alternatively, automatic error handling can be programmed. See
"Channel sequence options", below.

Channel sequence options:
Options can be added onto certain channel sequences that will
effect the way they operate. In the interpreter, options are
preceded with forward slash. In 'C', options are preceeded with
an underscore and they are 'OR-ed' together.

An example in the interpretive language might be
ccwO \80 \03 /C /ER

where the options c and ER have been chosen.
The same example in 'C' would be

ccwO(OX80,0x03,_C l_ER):
If no options are desired in 'C', the last argument is zero.

Permissible options are:
1. C Chaining- Chaining is indicated for any status

containing Channel End or Device End
2. S Stacking- Non-zero status will be stacked. The

stacking indication is then reset, so the next
status presented will be accepted.

3. PA Parity Address- Incorrect (even) parity will be
generated for the address. The parity error
indication is then reset, so the next address
generated, say on error recovery, will have the
correct parity.

4. PC Parity Command- Incorrect parity will be generated
for the command and then the indicator is reset.

5. PD Parity Data- Incorrect parity will be generated for
all data in that sequence and then the indicator
is reset.

6. EO Error Override- The override option, if permissible
(a negative error code returned), is automatically
chosen.

7. ER Error Retry- If Channel Command Retry (CCR) was
requested, the retry will automatically be
performed.

8. ES Error Sense- A sense will automatically be
performed and displayed if Unit Check was contained
in the last status.

9. EX Error Repeat- The retry option, if permissible and
independent of whether Channel Command Retry was
requested, is automatically chosen. This option
generally is not recommended, as the probable
result is an infinite loop.

10. EF Error Fail- The fail option is automatically
chosen.

4 - 13

ChannelACT Operator•s Manual

The error recovery options have the same priority as they appear
in the list on page 4 -13. For example, if the options /EO /ER /ES
are given, the program will first check if an override is possible.
If an override is not possible, or the the override results in
another error, the program then checks if a command retry was
requested. If command retry was not requested, the program then
checks to see if Unit Check was contained in the status. If Unit
Check was contained in the status, a sense is performed. If the
error has not been corrected by an override or retry, the user will
be prompted for the correct action. Always specifying the option
/EF will guarantee that that no operator intervention is required,
but then the program must be set up to handle all possible errors.

4 - 14

Section 4: Software

4.4: PROGRAMMING IN THE PROGRAM EDIT MODE

4.4.1 Program Interpreter

Every operation that can be performed in the supervisor can be
performed in the program interpreter. And every operation that can
be performed in the program interpreter can be performed in the
supervisor. It is useful to read the preceding section on the
supervisor to understand the use of certain program interpreter
commands.

4.4.la Special characters

Colon(:)- Indicates that the preceding text on that line is a line
tag. The tag can be used as the address in a goto or gosub
statement.
Pound Sign(#)- Indicates that the text between it and the next
carriage return is a comment.
Backslash(\)- Indicates the following constant is hexadecimal, or
in certain commands (print and input) signals a format
specification.
Single quote(')- Single quotes around a character indicates that
the EBCDIC value for that character is to substituted for that
character, e.g. 'A' is the same as 193.
Double quotes(")- Double quotes indicates a literal string, e.g.
array := "Hello, World!" assigns a literal string to the variable
called array, including a terminating null character.

4.4.lb Operators, level of precedence, and associativity

Level of precedence Type of Operation Associativity
1. () Association Left to right
2. - ! + - Complement, Logical Right to left

not, Unary plus/minus
3. * I Multiplication, Division Left to right
4. + - Addition, Subtraction Left to right
s. << >> Shift left/right Left to right
6. < > <= > Relational Left to right
7. = <> Equality, Inequality Left to right
8. & Bitwise and Left to right
9. Bitwise exclusive or Left to right

10. I Bitwise inclusive or Left to right
11. && Logical(Boolean) and Left to right
12. 11 Logical(Boolean) or Left to right
13. := Assignment Right to left

4 - 15

.,

ChannelACT Operator•s Manual

4.4.lc Variables and assignment

Variables may be declared anywhere in the program but must be
declared before they are used. Variables must start with a letter
and may include letters, numbers, and be underlined. One
dimensional arrays can be declared by putting the array size in
brackets after the variable name. Subscripts are checked during
the program execution to see if they are in the bounds of the
array. The name of an array is equivalent to the zeroth member of
the array. The effects of assigning a literal string to a member
of an array is demonstrated by example below.

Example:

Command # Result

Arr ·- "Eh" # Arr(O] = IE I , Arr(l] = 'h I I Arr[2] = 0 .-
Arr[O] ·- "Eh II # Arr[O] = IE I , Arr[l] = I h I I Arr(2] = 0 .-
Arr[l] ·- "Eh II # Arr[l] = IE I , Arr[2] = I h I 1 Arr[J] = 0 .-

4 - 16

Section 4: Software

4.4.ld System variables

DATA- If data has been read over the channel into the data buffer,
the data can then be read out by repeated use of this variable,
thereby simulating a FIFO buffer. The variable contains the next
value in the FIFO buffer. Any use of this variable advances the
FIFO pointer to the next position. DATA equals -1 if the FIFO
buffer is empty.
COMPARE- specifies the result of the last COMPAREFILE or
COMPARERANDOM command. If compare = 1, then the comparison was
successful. If compare= -1, then the comparison couldn't be done.
This is because there wasn't any data read or a file error
occurred. If compare = o, then the comparison was unsuccessful.
EOF- If the pointer to the currently open input file is at end-of
f ile, EOF is true(non-zero). See the file manipulation commands
found in section 4.3.5.
ADDRESSIN- Contains the last address received over the channel.
BUSIN- Contains the value of the busin lines.
BUSOUT- Contains the value of the busout lines.
DATACOUNT- Contains the current data count. This will either be
equal to the number of bytes that were received over the channel,
or it will be the number of bytes yet waiting to be sent over the
channel.
MKO- Contains the value of Marko In.
STATUSIN- Contains the last status received over the channel.
STOPCODE- Contains the error code for the last sequence. A list
of possible stop codes is given in Appendix c.
TAGIN- Contains the value of the tagin lines.
TAGOUT--- Contains the value of the tagout lines.
FAILED- Failed is equal to one if the "FAIL" option is chosen in
response to an error.
SENSEBYTES- Equal to the number of sense bytes received during the
last sense sequence.
SENSEBUF[32]- An array containing the sense bytes received during
the last sense sequence.
COMPARE- Specifies the result of the last compare operation. See
the comparefile and comparerandom functions.

4 - 17

ChannelACT Operator•s Manual

The order of bits in the tagin, tagout, and status variables is as
follows:

Tagin lines Tagout lines Status
SLI Select In SPO Suppress Out ATN Attention (MSB)
RQI Request In SLO Select Out MOD Status Modifier
OPI Operational In OPO Operational Out CUE Control Unit End
OSI Disconnect In HLO Hold out BSY Busy
SVI service In svo Service out CHE Channel End
STI Status In OTO Data out DVE Device End
DTI Data In COO Command Out CHK Unit Check
ADI Address In ADO Address Out EXC Unit Exception (LSB)

The mnemonics in the table above can also be used in expressions,
e.g. SLI equals one if the Select In line is high and zero if the
Select In line is low.

4.4.2 Commands

4.4.2a Variable declaration
Command: VAR {variable name) [, ••.]
Description: Declares variables used in the program. These
variables will be four-byte signed quantities. These statements
may appear anywhere in the program. Variables must start with a
letter and may include letters, numbers, and the underline
character. One-dimensional arrays can be declared by putting the
array size in brackets after the variable name.
Example: VAR a,A3,B_39r,Array(l0]

Command: STRING {variable name) (, .•.]
Description: Like VAR, only the variables will be unsigned, single
byte quantities. · To avoid problems with arithmetic conversions,
generally only literal strings should be declared this way. If a
variable declared as STRING is set equal to variable declared as
VAR, the value is truncated and sign information will be lost.

4 - 18

Section 4: Software

4.4.2b Data RAM storage control
Command: LOADFILE (file name) (/t]
Description: Loads a data file into the RAM buffer. If no
extension is given, a default extension of "ram" is assumed. An
error will be generated if the file cannot be opened. If the 11/t"
option is used, an ASCII-to-EBCDIC conversion will be performed.
Any data already in the buffer is overwritten.
Example: LOADFILE "a:\data\testdata.ram" /t

Command: STOREFILE (file name) [/t]
Description: Stores the data in the RAM buffer onto a disk file.
If no extension is given, a default extension of "ram" is assumed.
An error will be generated if the file cannot be opened. If the
"/t" option is used, an EBCDIC-to-ASCII conversion will be
performed.
Example: STOREFILE 11 a:\data\testdata.ram11 /t

Command: DATA (string) I (mnemonic) I (value) [, ...]
Description: Loads data into the data ram buffer. This data will
be appended to any data loaded with a loadfile command or with a
prior data command. If the data in the buffer is due to input over
the channel, it will be overwritten. An ASCII string will be
converted to EBCDIC. As in the example, mnemonics can be used for
control characters. For a list of control character mnemonics, see
Appendix A.
Example: DATA "Hello",CR,\OA

Command: CLEARBUFFER
Description: Clears the data ram buffer.

Command: RESTORE
Description: After data has been written out to the channel, the
data in the buffer can be restored with this command, to be written
out again. This command will only work if there has been no
intervening channel read command executed.

Command: LOADRANDOM (#bytes) (seed)
Description: Loads the specified number of psuedo-random bytes
into the data RAM buffer. The seed can be any number to 64K and
will always replicate the same series.

4 - 19

ChannelACT Operator•s Manual

Command: COMPAREFILE (filename) [/t]
Description: After a read operation, compares the current data in
the buffer to the contents of the specified file. The result of
the comparison can be determined by testing the system variable
compare.

compare = 1 if successful comparison
o not successful

-1 if no data had previously been read into the buffer
or if the file couldn't be found

Command: COMPARERANDOM (#bytes) (seed)
Description: After a read operation, compares the current data in
the buffer to the specified psuedo-random sequence. The result of
the comparison can be determined by testing the system variable
compare.

compare = 1 if successful comparison
O not successful

-1 if no data had previously been read into the buffer

4 - 20

section 4: Software

4.4.2c Configuration and simulator control
Command: CHANNEL BYTEMUX I BLOCKMUX I SELECTOR
Description: Sets the channel configuration to either bytemux,
blockmux, or selector.

Command: TIMEOUT (timeout value in seconds)
Description: Defines the timeout value for any sequence. The
default value is 30 seconds.

Command: BUFSIZE (size of buffer up to 64K-1)
Description: Defines the size of the data buffer. The default
size is 64K, which is the maximum size possible.

4 - 21

ChannelACT operator•s Manual

4.4.2d Channel sequences- group I
These sequences will not return until the peripheral disconnects,
unless there is an error. The corresponding stopcodes are given
for each sequence. An explanation of each stopcode number is given
in Appendix c.

Command: ccwo (address) (command) (options)
Description: Executes a Channel Command Word (CCW). The function
will return when error status or device end from the selected
address is presented. The possible stopcodes are
0,2,4,5,6,7,8,9,l2,13,14,15,16,-2,-3,-4,-S,-6,-9,-10,-ll.

Command: CCWl (address) (command) (options)
Description: Executes a ccw. The difference between this function
and ccwo is that this function will return when channel end only
is presented if not command chaining. If chaining commands, CCWl
will wait for device end. The possible stopcodes are
0,2,4,5,6,7,8,9,l2,13,14,15,16,-2,-3,-4,-5,-6,-9,-10,-ll.

Command: Initial (address) (command) {options)
Description: Executes a initial selection sequence. The possible
stopcodes are 0,2,4,5,6,7,8,9,12,13,14,15,-1,-2,-3,-5,-6,-9,-lO,
ll.

Command: Request (options)
Description: Executes a request
high, the function will wait.
0,2,12,13,14,15,-4,-9~-10,-11.

sequence. If Request In is not
The possible stopcodes are

Command: System_Reset
Description: Executes a system reset. A stopcode isn't
applicable.

Command: Selective Reset
Description: Executes a selective reset. Generally, it is only
useful if Operational In is high. A stopcode isn't applicable.

Command: Interface Disconnect (address) {options)
Description: Attempts to connect to the specified
order to do a interface disconnect sequence.
stopcodes are 0,1,2,4,-6.

Command: Sense (address)

peripheral in
The possible

Description: Executes a sense command, storing the result in the
system array sensebuf. The number of sense bytes received is
stored in the system variable sensebytes. The possible stopcodes
are 0,2,4,5,6,7,8,9,12,13,14,15,-2,-3,-4,-5,-6,-9,-10,-11.

4 - 22

Section 4: Software

Command: override
Description: If a negative return code has been received for a
channel sequence, doing an override will ignore the error and
continue from where the sequence left off. If the sequence was
complete, the return code will be translated to what it would have
been if no error had happened.

Command: Retry
Description: If the last sequence was a ccw, a retry will cause
it to be executed over. It is especially useful if a channel
command retry was signalled from the peripheral. Before doing the
retry, the data will be restored. The possible stopcodes are
0,2,3,4,5,6,7,8,9,12,13,14,15,-2,-3,-4,-5,-6,-9,-10,-11.

4 - 23

ChannelACT Operator•s Manual

4.4.2e Channel sequences- group II
These sequences directly drive the bus and tag lines.

Command: TAGRESET
Description: Lowers all the out tags.

Command: LOWER (busout line mnemonic)
Description: Lowers the specified busout line in the PC busout
latch. The permissible mnemonics(defined above) are SPO, SLO, OPO,
HLO, svo, OTO, coo, and ADO.

Command: RAISE (busout line mnemonic)
Description: Raises the specified busout line in the PC busout
latch. The permissible mnemonics(defined above) are SPO, SLO, OPO,
HLO, svo, OTO, coo, and ADO.

Command: ADDRESSOUT (address value) (options)
Description: Puts the specified value on busout

Command: COMMANDOUT (address value) (options)
Description: Puts the specified value on busout

Command: DATAOUT (address value) (options)
Description: Puts the specifies value on busout

Command: DISABLE BUSOUT
Description: Enables or disables busout. If disabled, all busout
lines will be o.

4 - 24

section 4: software

4.4.2f Input/Output
Command: PRINT (expression) I (string) [\ (format)] [, ...] I [; ...]
Description: Displays on the output screen literal strings and
variables. A comma between values causes a tab to be printed. A
semicolon between values will not cause any space to be printed.
If a comma or semicolon end the command statement, the next print
statement will print on the same line. Otherwise, a return is
generated. The permissible format specifications are:

\d decimal- output is printed as a decimal number.
\h hexadecimal- output is printed as a hexadecimal number.
\c character- output is an EBCDIC character.
\s string- array is printed as a string.

The default format is decimal. A field width may be inserted
between the backslash and the format character. If the result is
longer than the field width, the output is truncated. If the
result is shorter, the output is left justified for the \s format,
and right justified for the other types.

Example: PRINT x\2h,"squared is ",x * x\4h
PRINT #print extra linefeed

Command: INPUT (prompt,] (variable name) [\(format)]
Description: Receives input from the keyboard. First the optional
prompt message is displayed. A '?' will be displayed if no prompt
was specified. The permissible format specifications are:

\d decimal- input is interpreted as a decimal number.
\h hexadecimal- input is interpreted as a hexadecimal number.
\c character- the EBCDIC value of the first character input is

stored in the specified variable.
\s string- the input string is stored in the specified array

and is truncated if necessary.
The default format is decimal. A field width may be inserted
between the backslash and the format character. For the \c and \s
formats, this is the maximum number of characters that will be
stored in the specified array. With the \s format, a NULL (zero)
will also be stored. Field width has no meaning for the other
formats. For the \d . and \h formats, if the input can not
completely be converted correctly, the user is asked to reinput
the value.

Example: INPUT "Input hexadecimal value for a: ",a\h

4 - 25

ChannelACT Operator•s Manual

4.4.2g File manipulation
Command: OPEN (filename) [/t]
Description: Opens a data file for reading. Only one data file
can be open at a time. Opening a new file will automatically close
any prior file opened. Data is accessed from the file with the
read command, and end-of-file is detected via the EOF system
variable. There is a default extension of "ram". If the /t option
is specified, an ASCII-to-EBCDIC conversion will be done whenever
the file is read.
Example: OPEN "data.ram" /t

Command: READ (variable) [\(format)]
Description: Reads the currently open input file. If the file
was opened with the /t option, an ASCII-to-EBCDIC conversion is
done. The format specification works similarly to how it works in
the input command. The only permissible format specifications in
this case are \c or \s, again with an optional field width
specification. An attempt to read a string at end~of-f ile will
truncate the string. If end-of-file occurred before the read, a
NULL string(first array member zero) will therefore be assigned.
An attempt to read a character at end-of-file will result in -1
being assigned to the variable. End-of-file can be verified with
the EOF system variable.

Command: REWIND
Description: Rewinds the currently open data file to the
beginning.

4 - 26

section 4: Software

4.4.2h Program flow
(linetag) Command: GOTO

Description: Branches unconditionally to the line defined by
linetag.
Example: a3: print "Here we go again"

I
GOTO a3

Command: GOSUB (linetag)
Command: RETURN
Description: Branches unconditionally to and from a subroutine.
Gosub's can be nested ten deep.
Example: GOSUB message

I
message: print "Hi"
RETURN

Command: IF (expressionl)
Command: ELSEIF(expression2)
Command: ELSE
Command: ENDIF
Description: If expressionl is true (nonzero), the statements
between if and elseif are executed. Otherwise, if expression2 is
true, the statements between elseif and else and executed.
Otherwise, the statements between else and endif are executed. If
statements may be nested.

Example: IF (status)
print "nonzero hexadecimal status of ",status\h

I
END IF

Command: WHILE (expression)
Command: ENDWHILE
Description: The statements between while and endwhile are
repeatedly executed while expression is true (nonzero) . While
statements may be nested.
Example: A := 5 #Loop five times

WHILE (A)

I
A := A - 1

ENDWHILE

4 - 27

ChannelACT Operator•s Manual

Command: FOR (variable) := (startvalue) TO (endvalue)
Command: ENDFOR
Description: if startvalue <= endvalue, program lines following
the for statement are executed until the endfor statement is
encountered. Then the count variable is incremented by one and
the process is repeated. FOR statements may be nested.
Example: FOR A := 1 TO 5 #Loop five times

print "pass # ",A

I
END FOR

Command: END
Description: Ends program execution. This command does not have
to be the last one in the program. It can appear anywhere in the
program or not at all.

4 - 28

Section 4: Software

4.5: THE 1 C 1 LANGUAGE LIBRARIES

4.5.1 Introduction

There are ten
for both Turbo

libraries provided. There are five memory models

Memorv Model
COMPACT
SMALL
MEDIUM
LARGE
HUGE

and Microsoft C:
Library

Microsoft
CS MS C.LIB
CS MS S.LIB
CS MS M.LIB
CS MS L.LIB
CS MS H.LIB

Name
Turbo

CS TC C.LIB
CS TC S.LIB
CS TC M.LIB
CS TC L.LIB
CS TC H.LIB

Declarations for all the functions in the library plus
definitions referenced below are contained in the header
<act.h>.

all
file

The functions in the library are described in the following
sections. The most important thing to note is that the function
"initialize" must be called before any other in order for the other
functions to properly work.

In the function descriptions below, constants that are in all
capital letters are definitions found in the header file <act.h>.

4 - 29

ChannelACT Operator•s Manual

4.5.2 System Variables

The following variables are declared external in the header file
<act.h> and reference variables in the simulator library:

extern char _stopcode_;
/* the last error code returned from a sequence */
(A list of possible stopcodes is given in Appendix C.)

extern unsigned char _statusin_;
/* the last status received over the channel */

extern unsigned char _addressin_;
/* the last address received over the channel */

extern unsigned char sensebuf(];
/* contains sense bytes returned from the last sense function */

extern int sensebytes;
/* number of sense bytes returned from the last sense function */

extern unsigned char atoe(];
/* conversion array to convert from ASCII-to-EBCDIC */
/*example: ebcdic_a = atoe('a']; */

extern unsigned char etoa(];
/* conversion array to convert from EBCDIC-to-ASCII */

extern char *posmsg(];
/* array of error messages corresponding to an error code >= o */
/*example: printf(11 %s 11 ,posmsg(_stopcode_]); */

extern char •negmsg(];
/* array of error messages corresponding to an error code <= o */
/*example: printf("%s", neqmsg(-_stopcode_]); */

extern int failed ;
/* It is equal to-one if the "FAIL" option is chosen in */
/* response to an error */

4 - 30

Section 4: Software

Each status bit has an associated "mask" defined to aid in
analyzing its status:

Mask Status bit
ATN Attention (MSB)
MOD Status Modifier
CUE Control Unit End
BSY Busy
CHE Channel End
DVE Device End
CHK Unit Check
EXC Unit Exception (LSB)

For example, _CHE in binary would be 0000 1000 and can be used to
isolate the channel end bit from the status. Here are two possible
ways to use the mask:

if (_statusin_&_CHE) /*test for channel end*/
if (_statusin_= =_CHE) /*test for channel end only*/

4.5.3 Simulator control Functions

initialize
Usage: void initialize()
Description: Initializes the simulator operation. This function

should be invoked at the beginning of every program.

timeout
Usage: void timeout(unsigned int seconds)
Description: Defines the timeout value for any sequence. The

default value is 30 seconds.

buf size
Usage: void bufsize(unsigned int)
Description: Defines the size of the data buffer. The default

size is 64K-1, which is the maximum size possible.

channel
Usage: void channel(state)
Description: Defines what type channel the simulator is on.

Permissible values of state are SELECTOR, BYTEMUX, and
BLOCKMUX.

4 - 31

ChannelACT Operator•s Manual

4.5.4 Ram control FUnctions

In the following functions, the permissible values of modeflg are
BINARY or TRANSLATED.
modeflg = BINARY indicates an untranslated mode.
modeflg = TRANSLATED indicates a translated mode.
ASCII is converted to EBCDIC, or vice-versa, as appropriate. There
is an unique EBCDIC character assigned to every non-extended ASCII
character, so an ASCII-to-EBCDIC-to-ASCII conversion sequence will
generate the original character for all non-extended ASCII
characters.

clrbuf
Usage: void clrbuf ()
Description: Clears data from the RAM buffer. This function

should be invoked before the ldbyte or ldstr functions if the
old data in the RAM buffer is to be overwritten.

data count
Usage: unsigned int datacount()
Return Value: returns the number of bytes in the data buffer,

which will be either the number of bytes just read in or the
number of bytes waiting to be read out.

lddata
Usage: unsigned int lddata(char *str,int modeflg)
Description: Loads a character string into the data RAM buff er,

not including the terminating null character. The data is
appended to the data already residing in the buffer.

ldbyte
Usage: unsigned int ldbyte(char c,int modeflg)
Description: Loads a byte of data into the data RAM buffer.

The byte is appended to the data already residing in the
buffer.

Return Value:
o if the RAM buffer is full.
1 if the byte was successfully loaded.

Examples: ldbyte('a',TRANSLATED);
ldbyte(3,BINARY);

ldstr
Usage: unsigned int ldstr(char *str)
Description: Translates a string to EBCDIC and loads it into

the data RAM buffer, not including the terminating null
character. The string is appended to the data already residing
in the buffer.

Return Value: Returns the number of bytes loaded.
Example: ldstr("This is a test");

4 - 32

Section 4: Software

lddatax
Usage: unsigned int lddatax(char •str,int modeflg,unsigned int

repeat)
Description: Like lddata, only the character pattern is repeated

the specified number of times.
ldbytex

Usage: unsigned int ldbytex (char c, int modeflg, unsigned int
bytes)

Description: Like ldbyte, only the character is repeated the
specified number of times.

ldstrx
Usage: unsigned int ldstrx(char •str,unsigned int repeat)
Description: Like ldstr, only the character pattern is repeated

the specified number of times.
ldf ile

Usage: long ldfile(char *filename, int modeflg)
Description: Loads a disk file into the data RAM buffer.
Return Value: Returns the number of bytes loaded.

-1 indicates the file couldn't be opened.
Example: ldfile("testdata.dat",BINARY);

ldrand
Usage: unsigned int ldrand(unsigned int bytes,int seed)
Description: Loads the specified number of pseudo-random bytes

into the data ram buffer. The same seed will always replicate
the same series.

Return Value: Returns the number of bytes loaded.
cmpf ile

Usage: int cmpfile(char *filename, int modeflg)
Description: After a read operation, compares the current data

in the buffer to the contents of the specified file.
Returns: 1 if successful comparison

O not successful

cmprand

-1 if no data had previouly been read into the buffer
or if the file couldn't be opened.

Usage: int cmprand(unsigned int bytes,int seed)
Description: After a read operation, compares the current data

in the buffer to the specified pseudo-random sequence.
Returns: 1 if successful comparison

O not successful
-1 if no data had previouly been read into the buffer

rdbyte
Usage: int rdbyte(int modeflg)
Description: This function simulates reading from a FIFO buffer.

After data has been input over the channel, the data can be
read by repeated use of this function.

Return Value: EOF if the FIFO buffer is empty,
· else returns the byte read.

4 - 33

CbannelACT operator•s Manual

stfile
Usage: long stfile(char *fstr,int modeflg)
Description: Stores the RAM buffer data into a disk
Return Value: o if the file couldn't be opened.

Example:
restore

1 if the data successfully stored.
stfile("chandata.dat",TEXT);

Usage: void restore(void)

file.

Description: After data has been written out to the channel,
this function will reset the data RAM pointer such that the
data can be written out again.

4 - 34

Section 4: Software

4.5.5 Input Functions

rdbusin
Usage: unsigned char rdbusin()
Return

rdbusout
Usage:

Value: Returns the current value of busin.

unsigned char rdbusout()
Return

rd tag in
Usage:

Value: Returns the current value of busout.

unsigned char rdtagin()
Return

rd tag out
Usage:

Value: Returns the current tagin byte.

unsigned char rdtagout()
Return

rdmko
Usage:

Value: Returns the current tagout byte.

unsigned char rdmkO()
Return Value: Returns the value of the Mark Zero In Line.

To aid in testing the results of rdtagin and rdtagout each bit has
an associated "mask" defined:

Mask Tagin line Mask Tagout line
SLI Select In SPO suppress out (MSB)

_RQI Request In SLO Select out
OPI Operational In OPO Operational Out
DSI Disconnect In HLO Hold Out
SVI Service In svo Service Out - STI Status In DTO Data Out - -DTI Data~In CDO Command Out
ADI Address In ADO Address Out (LSB)

For example, SVO in binary would be 00001000 and can be used to
isolate the service out bit from the tagout byte.
Here are two possible ways to use the mask:

if (rdtagout() & SVO) /* test for service out */
I -

if (rdtagout() == SVO) /* test for service out only */
I

4 - 35

ChannelACT Operator•s Manual

4.5.5a Channel sequences- group I
These sequences will not return until the peripheral disconnects,
unless there is an error. If the function returns a value, that
value is a stopcode. Alternatively the system variable
(_stopcode_) also contains the stopcode for the last sequence
executed. An explanation of the stopcode numbers is given in
Appendix c.

ccwo
Usage: int ccwO(unsigned char address, unsigned char command,

unsigned int options)
Description: Executes a ccw. The function will return when

error status or device end from the selected address is
presented. The possible stopcodes are
0,2,4,5,6,7,8,9,12,13,l4,l5,16,-2,-3,-4,-5,-6,-9,-10,-ll.

ccwl
Usage: int ccwl(unsigned char address, unsigned char command,

unsigned int options)
Description: Executes a CCW. The difference between this

function and ccwo is that this function will return when
channel end only is presented if not command chaining. The
possible stopcodes are 0,2,4,5,6,7,8,9,12,13,14,15,16,-2,-3,
-4,-5,-6,-9,-10,-11.

initial
Usage: int initial (unsigned char address, unsigned char command,

unsigned int options)
Description: ~Executes a initial selection sequence. The

possible stopcodes are 0,2,4,5,6,7,8,9,12,13,14,15,-1,-2,-3,
-5,-6,-9,-10,-11.

request
Usage: int request(unsigned int options)
Description: Executes a request sequence. If Request In is not

high, the function will wait. The possible stopcodes are
0,2,12,13,14,15,16,-4,-9,-lO,-ll.

system reset
Usage: void system_reset()
Description: Execute a system reset.

applicable.

selective reset

A stopcode is n't

Usage: void selective reset()
Description: Executes-a selective reset. Generally, it is only

useful if Operational In is high. A stopcode isn't applicable.

4 - 36

Section 4: Software

interface disconnect
Usage: int interface_disconnect(unsigned char address)
Description: Attempts to connect to the specified peripheral in

order to do a interface disconnect sequence. The possible
stopcodes are 0,1,2,4,-6.

sense
Usage: int sense(unsigned char address)

Description: Executes a sense command, storing the result in the
system array sensebuf. The number of sense bytes received is
stored in the system variable sensebytes. The possible stopcodes
are 0,2,4,5,6,7,8,9,l2,13,14,15,-2,-3,-4,-5,-6,-9,-lO,-ll.

override
Usage: int override()
Description: If a negative return code has been received for a

channel sequence, doing an override will ignore the error and
continue from where the sequence left off. If the sequence was
complete, the return code will be translated to what it would
have been if no error had happened.

retry
Usage: int retry()
Description: If the last sequence was a CCW, a retry will cause

it to be executed over. Especially useful if a channel command
retry was signalled from the peripheral. Before doing the
retry, the data will be restored. The possible stopcodes are
0,2,4,5,6,7,8,9,12,13,14,15,-2,-3,-4,-5,-6,-9,
-10,-11.

4 - 37

ChannelACT Operator's Manual

4.5.Sb Channel sequences- group II
These sequences directly drive the bus and tag lines.
If the function returns a value, it is the errorcode for that
sequence, which could also be accessed through the _stopcode_
system variable.

tagreset
Usage: void tagreset()
Description: Lowers all the out tags.

lower
Usage: void lower(int tagno)
Description: Lowers the specified busout line in the PC busout

latch. The permissible values of tagno are SPO, SLO, OPO, HLO,
SVO, OTO, COO, and ADO.

raise
Usage: void raise(int tagno)
Description: Raises the specified busout line in the PC busout

latch. The permissible values of tagno are SPO, SLO, OPO, HLO,
svo, OTO, coo, and ADO.

address out
Usage: void addressout(unsigned char value, unsigned int

options)
Description: Puts the specified value on bus out

commandout
Usage: void commandout(unsigned char value, unsigned int

options)
Description: Puts the specified value on bus out

data out
Usage: void dataout(unsigned char value, unsigned int options)
Description: Puts the specified value on busout

disable busout
Usage: void disable busout()
Description: Disables busout.

4 - 38

Section 5: Maintenance and Warranty

SECTION S: MAINTENANCE AND WARRANTY

5.1: LIMITED WARRANTY

Technology 80 Inc. warrants the ChannelACT to be free from
defects in workmanship and materials under normal, intended use and
service in its original, unmodified condition (unless such
modifications are made by Technology 80 Inc.) for the appropriate
period, set forth below from the date of delivery to the purchaser.
If any section of the ChannelACT is found defective within the
terms of this warranty, the sole responsibility of Technology 80
Inc. shall be to repair, or at its option to replace, such
defective section, provided further that the ChannelACT is returned
to a repair depot designated by Technology 80 Inc. with
transportation charges prepaid by the purchaser. Return shipping
charges will be billed to the purchaser or shipment made collect
at the purchaser's option. Technology 80 Inc. assumes no
responsibility for damage in shipment and any insurance charges
covering such possible damage must be paid by the purchaser. Any
charges for customs clearance, or other related charges, are
excluded from warranty coverage and are to be paid by the
purchaser. All replaced parts, components or materials shall
become the property of Technology 80 Inc.

If Technology 80 Inc. determines in its sole judgement that
the ChannelACT is not defective within the terms of the warranty,
the purchaser shall pay Technology 80 Inc. all costs of handling,
transportation and testing at the prevailing Technology 80 Inc.
rates. If the unit is determined to be defective from causes not
covered by this warranty, the purchaser shall be so notified and
instructions obtained as to its desired disposition. If the
purchaser requests that repairs of such defects be made by
Technology 80 Inc., such repairs shall be performed pursuant to the
Technology 80 Inc. Service Policy. Damage resulting from moving
portable units is not covered by warranty.

The components of the ChannelACT and their respective warranty
periods are as follows:

Section Covered
Circuit boards, cabinet,

card cage
Tape drive, display, keyboard,

external connectors
Software, firmware

5 - 1

Warranty Period

one (1) year

ninety (90) days
one (1) year

ChannelACT Operator•s Manual

Software or firmware warranty runs only to the magnetic media
or semiconductor chip on which such software or firmware is
recorded. The program itself is warranted only for the version
included at delivery, and Technology 80 Inc. has no obligation
under this warranty to replace such program with later versions.

All the above warranties are contingent upon proper use of the
ChannelACT. These warranties will not apply: (i) if adjustment,
repair or parts replacement is required because of accident;
unusual physical, electrical or electro-magnetic stress; neglect;
misuse; failure of electric power, air conditioning, or humidity
control; transportation; failure of rotating media not furnished
by Technology 80 Inc.; operation with media not meeting or not
maintained in accordance with Technology 80 Inc. specification; or
use or operation other than in the manner for which it was designed
or intended; or (ii) if the ChannelACT has been modified by the
purchaser or user; or (iii) where Technology 80 Inc. serial numbers
or warranty date decals have been removed or altered. ChannelACT
may contain used parts that are equivalent to new in performance,
when used in the ChannelACT.

EXCEPT FOR THE EXPRESS WARRANTIES STATED HEREIN, TECHNOLOGY
80 INC. DISCLAIMS ALL WARRANTIES ON PRODUCTS SUBJECT HERETO,
INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. THE LIABILITY OF TECHNOLOGY 80 FOR
DEFECTS ON THE ChannelACT IS LIMITED TO THE EXPRESS WARRANTIES SET
FORTH HEREIN, AND SUCH EXPRESS WARRANTIES ARE IN LIEU OF ANY AND
ALL OTHER WARRANTIES, OBLIGATIONS OR LIABILITIES ON THE PART OF
TECHNOLOGY 80 INC. FOR A DEFECTIVE PRODUCT OR ARISING OUT OF, OR
IN CONNECTION WITH, THE PERFORMANCE OF THE PRODUCT SUBJECT HERETO.
IN NO EVENT WILL TECHNOLOGY 80 BE LIABLE FOR: {A) SPECIAL,
INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR (B) ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, ARISING OUT
OF OR IN CONNECTION WITH THIS CONTRACT OR THE USE OR PERFORMANCE
OF TECHNOLOGY 80 INC. PRODUCTS, WHETHER IN AN ACTION OF CONTRACT
OR TORT, INCLUDING NEGLIGENCE. THE LIABILITY OF TECHNOLOGY INC.
FOR DAMAGE TO PROPERTY SHALL BE LIMITED TO PHYSICAL DAMAGE DIRECTLY
CAUSED BY THE SOLE NEGLIGENCE OF TECHNOLOGY 80 INC. AND SHALL IN
NO EVENT EXCEED TEN THOUSAND DOLLARS ($10,000.00). IN ADDITION TO
THE FOREGOING, TECHNOLOGY 80 INC. WILL NOT BE LIABLE FOR THE
UNAUTHORIZED USE OF INFORMATION OBTAINED FROM THE ChannelACT,
INCLUDING WITHOUT LIMITATION THE UNAUTHORIZED USE OF THE
PURCHASER'S OR USER'S ACCESS CODE. No Technology 80 Inc.
employees, agents, or representatives, nor any other persons, are
authorized to assume or agree to any other warranties or
liabilities binding on Technology 80 Inc.

5 - 2

Section 5: Maintenance and Warranty

5.2: SERVICE POLICY

Before returning a unit for repair, call the factory for assistance
in verifying that the unit is defective. If it is determined that
the unit should be returned, a Return Material Authorization (RMA)
number will be assigned. Carefully package the unit and ship
prepaid (insured suggested) to the point designated by the factory.
Include with the unit a short statement of the malfunction along
with a reference to the RMA number. Include the name, address and
phone number of a technical person who may be contacted in the
event additional information is needed. If the unit is out of
warranty or the unit is damaged outside of warranty, also include
a properly executed purchase order. If an estimate or repair
charge is desired before work is done, so state on the purchase
order form. Under no circumstances return any item with freight
collect as it will not be accepted. Be sure the unit is packaged
properly. Technology 80 Inc. will not be responsible for damage
due to improper packaging of items returned for service or repair.

5 - 3

Appendix A: EBCDIC control Character Mnemonics

APPENDIX A: EBCDIC CONTROL CHARACTER MNEMONICS

Hex Decimal Mnemonic Hex Decimal Mnemonic
00 0 NUL 22 34 FS
01 1 SOH 23 35 wus
02 2 STX 24 36 BYP
03 3 ETX 25 37 LF
04 4 SEL 26 38 ETB
05 5 HT 27 39 ESC
06 6 RNL 28 40 SA
07 7 DEL 29 41 SFE
08 8 GE 2A 42 SM
09 9 SPS 2B 43 CSP
OA 10 RPT 2C 44 MFA
OB 11 VT 20 45 ENQ
OC 12 FF 2E 46 ACK
OD 13 CR 2F 47 BEL
OE 14 so 30 48
OF 15 SI 31 49
10 16 OLE 32 50 SYN
11 17 DCl 33 51 IR
12 18 DC2 34 52 PP
13 19 DC3 35 53 TRN
14 20 RES 36 54 NBS
15 21 NL 37 55 EOT
16 22 BS 38 56 SBS
17 23 POC 39 57 IT
18 24 CAN 3A 58 RFF
19 25 EM 3B 59 'CU3
lA 26 UBS 3C 60 DC4
lB 27 CUl 30 61 NAK
lC 28 IFS 3E 62
lD 29 IGS 3F 63 SUB
lE 30 IRS 40 64 SP
lF 31 ITB 41 65 RSP
20 32 DS 42 66
21 33 sos

A - l

Appendix B: ASCII/EBCDIC Conversions

APPENDIX B: ASCII/EBCDIC CONVERSIONS

The following rules are applied to conversions:
(1) A unique EBCDIC character is assigned to every non-extended
ASCII character.
(2) An ASCII-to-EBCDIC-to-ASCII conversion done on non-extended
ASCII characters will yield the original character.
(3) Every extended ASCII character converts to NUL(value O).
(4) Every printable EBCDIC character converts to its closest ASCII
equivalent, within the limits of rule #2.
(S) Control characters are converted to their equivalent if there
is one, otherwise they are converted to NUL(value O) .

ASCII-to-EBCDIC conversion matrix

The ASCII value of the character is read as a hexadecimal number.
The first hex digit is read from the left column. The second hex
digit is read across the top. The table then gives the converted
EBCDIC value in hex. If the entry is blank, the character is
converted to a NUL(value O).

0 1 2 3 4 S 6 7 S 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 OS 2S OB OC OD OE OF
1 10 11 12 13 3C 30 32 26 lS 19 3F 27 22 lD lE lF
2 40 SA 7F 7B SB 6C SO 7D 40 SD SC 4E 6B 60 4B 61
3 FO Fl F2 F3 F4 FS F6 F7 FS F9 7A SE 4C 7E 6E 6F
4 7C Cl C2 C3 C4 CS C6 C7 CS C9 Dl D2 D3 04 DS D6
S D7 DS D9-E2 E3 E4 ES E6 E7 ES E9 AD EO BD 4F 6D
6 SF Sl S2 S3 S4 SS S6 S7 SS S9 91 92 93 94 9S 96
7 97 9S 99 A2 A3 A4 AS A6 A7 AS A9 CO 6A DO Al 07
8
9
A
B
c
D
E
F

B - 1

ChannelACT Operator•s Manual

EBCDIC-to-ASCII conversion matrix

The EBCDIC value of the character is read as a hexadecimal number.
The first hex digit is read from the left column. The second hex
digit is read across the top. The table then gives the converted
ASCII result. If possible, the ASCII character is printed,
otherwise its value is shown in hexadecimal • If the entry is
blank, the character is converted to a NUL(value O).

0 1 2 3 4 5 6 7 8 9 A B c D E F

0 00 01 02 03 09 7F OB oc OD OE OF
1 10 11 12 13 08 18 19 lD lE lF
2 lC QA 17 lB 05 06 07
3 16 04 14 15 lA

'4 20 20 ¢ . < (+
5 & ! $ *) . ,
6 I I % > ?
7 . # . @ ' = "
8 a b c d e f g h i { s (+ +
9 j k 1 m n 0 p q r l

JL) ± I ir
A s t u v w x y z r [~

B 0 l 2 3 4 5 6 7 8 9 J 1] +
c { A B c D E F G H I
D } J K L M N 0 p Q R
E \ 20 s T u v w x y z
F 0 1 2 3 4 5 6 7 8 9

B - 2

Appendix c: stopcodes List

APPENDIX C: STOPCODES LIST

o Timeout or user break
1 Successful execution
2 Selection unsuccessful
3 Data transfer complete
4 Short Busy indication
5 Initial status presented; command not accepted
6 Initial status presented; command retry (immediate) requested
7 Initial status presented; command retry (non-immediate)

requested
8 Initial status presented
9 Initial status stacked

10 Data transfer request
11 Data transfer stopped
12 Exceptional non-initial status presented
13 Non-initial status presented; command retry (immediate)

requested
14 Non-initial status presented; command retry (non-immediate)

requested
15 Non-initial status presented
16 Non-initial status stacked

o Timeout or user break
-1 Pending request when went to issue command
-2 Incorrect address returned
-3 Parity error in initial selection address
-4 Parity error in polling address
-5 Parity error in initial status
-6 Parity error in short busy status
-7 Parity error in data byte
-8 Parity error in data block; ending status has not been

presented
-9 Parity error in data block; ending status has been presented

-10 Parity error in ending status
-11 Parity error in both data block and ending status

c - 1

Appendix D: serpentine Connector Pin Assignments

APPENDIX D: SERPENTINE CONNECTOR PIN ASSIGNMENTS

Bus o (Light Gray or White)

02
03
04
05
06
07
08
09
10
11
12
13

02
03
04
05
06
07
08
09
10
11
12
13

B
++++++++++++

02 13
++++++++++++

D

~
Shield 02
Bus o Out p 03
Shield 04
Bus 0 Out 1 05
* 06
Shield 07
Bus o Out 3 08
Shield 09
Bus o Out 5 10
Shield for B06* 11
Bus O Out 7 12
Shield 13

R !l.

* 02
Shield* 03
Bus o Out 0 04
Shield 05
Bus O Out 2 06
Shield 07
Shield 08
Bus o Out 4 09
Shield 10
Bus O Out 6 11
Shield 12
Mark o Out 13

* Reserved for future use

D - 1

G
++++++++++++

02 13
++++++++++++

J

§
Shield
Bus o In p
Shield
Bus 0 In 1
*
Shield
Bus o In 3
Shield
Bus o In 5
Shield for G06
Bus o In 7
Shield

*
Shield*
Bus O In 0
Shield
Bus o In 2
Shield
Shield
Bus O In 4
Shield
Bus O In 6
Shield
Mark o In

ChannelACT operator's Manual

Bus o <Dark Gray or Black>

02
03
04
05
06
01
08
09
10
11
12
13

02
03
04
05
06
07
08
09
10
11
12
13

* Reserved

D
++++++++++++

02 13
++++++++++++

B

D

* 02
Shield* 03
Bus o out 0 04
Shield 05
Bus o Out 2 06
Shield 07
Shield 08
Bus O Out 4 09
Shield 10
Bus O Out 6 11
Shield 12
Mark o Out 13

B

Shield 02
Bus o out p 03
Shield 04
Bus o Out 1 05
* 06
Shield 07
Bus o Out 3 08
Shield 09
Bus O Out 5 10
Shield for B06* 11
Bus o Out 7 12
Shield 13

for future use

J
++++++++++++

02 13
++++++++++++

G

~

* Shield*
Bus O In 0
Shield
Bus O In 2
Shield
Shield
Bus o In 4
Shield
Bus o In 6
Shield
Mark o In

Si

Shield
Bus O In p
Shield
Bus O In 1
*
Shield
Bus o In 3
Shield
Bus o In 5
Shield for G06*
Bus o In 7
Shield

D - 2

Appendix D: Serpentine connector Pin Assignments

(Light Gray or White)

02
03
04
05
06
07
08
09
10
11
12
13

I!

B
++++++++++++

02 13
++++++++++++

D

Shield 02
Operational In 03
Shield 04
Address In 05
* 06
Shield 07
Select In 08
Shield 09
Address Out 10
Shield for B06* 11
Suppress Out 12
Shield 13

02 * 02
03
04
05
06
07
08
09
10
11
12
13

or Shield*
04 Status In
05 Shield
06 Service In
07 Shield
08 Shield
09 Select Out
10 Shield
11 Command Out
12 Shield
13 Service Out

* Reserved for future use

G
++++++++++++

02 13
++++++++++++

J

.§

Shield
Clock Out
Shield
Metering In
*
Shield
Data In
Shield
Data Out
Shield for G06
Hold Out
Shield

* Shield
Metering Out
Shield
Request In
Shield
Shield
(Special Use)
Shield
Disconnect In
Shield
Operational Out

D - 3

ChannelACT Operator's Manual

Tag (Dark Gray or Black)

02
03
04
05
06
07
08
09
10
11
12
13

02
03
04
05
06
07
08
09
10
11
12
13

* Reserved

D
++++++++++++

02 13
++++++++++++

B

D

* 02
Shield* 03
Status In 04
Shield 05
service In 06
Shield 07
Shield 08
Select Out 09
Shield 10
Command Out 11
Shield 12
Service Out 13

».
Shield 02
Operational In 03
Shield 04
Address In 05
* 06
Shield 07
Select In 08
Shield 09
Address Out 10
Shield for B06* 11
Suppress Out 12
Shield 13

for future use

J
++++++++++++

02 13
++++++++++++

G

~

*
Shield*
Metering Out
Shield
Request In
Shield
Shield
(Special Use)
Shield
Disconnect In
Shield
Operational Out

§

Shield
Clock Out
Shield
Metering In
*
Shield
Data In
Shield
Data out
Shield for G06*
Hold out
Shield

D - 4

Appendix D: serpentine Connector Pin Assignments

Bus 1 (Light Gray or White)

02
03
04
05
06
07
08
09
10
11
12
13

02
03
04
05
06
07
08
09
10
11
12
13

* Reserved

B
++++++++++++

02 13
++++++++++++

D

.ll

Shield 02
Bus 1 Out p 03
Shield 04
Bus 1 out 1 05
* 06
Shield 07
Bus 1 Out 3 08
Shield 09
Bus 1 Out 5 10
Shield for B06* 11
Bus 1 out 7 12
Shield 13

.ll

Mark Out P 02
Shield 03
Bus 1 Out 0 04
Shield 05
Bus 1 Out 2 06
Shield 07
Shield 08
Bus 1 Out 4 09
Shield 10
Bus 1 out 6 11
Shield 12
Mark 1 out 13

for future use

G
++++++++++++

02 13
++++++++++++

J

§

Shield
Bus 1 In p
Shield
Bus 1 In 1
*
Shield
Bus 1 In 3
Shield
Bus 1 In 5
Shield for
Bus 1 In 7
Shield

!l.

Mark In P
Shield
Bus 1 In 0
Shield
Bus 1 In 2
Shield
Shield
Bus 1 In 4
Shield
Bus 1 In 6
Shield
Mark 1 In

G06

D - 5

ChannelACT operator's Manual

Bus 1 <Dark Gray O[plackl

02
03
04
05
06
07
08
09
10
11
12
13

02
03
04
05
06
07
08
09
10
11
12
13

* Reserved

D
++++++++++++

02 13
++++++++++++

B

12

Mark out P 02
Shield 03
Bus l Out 0 04
Shield 05
Bus 1 Out 2 06
Shield 07
Shield 08
Bus l Out 4 09
Shield 10
Bus 1 out 6 11
Shield 12
Mark 1 Out 13

B

Shield 02
Bus 1 Out p 03
Shield 04
Bus l out 1 05
* 06
Shield 07
Bus 1 Out 3 08
Shield 09
Bus 1 Out 5 10
Shield for B06* 11
Bus 1 Out 7 12
Shield 13

for future use

J
I I t If I t+++++

02 13
++ • t I I++++++

G

J..

Mark In P
Shield
Bus 1 In 0
Shield
Bus 1 In 2
Shield
Shield
Bus l In 4
Shield
Bus 1 In 6
Shield
Mark 1 In

G

Shield
Bus 1 In p
Shield
Bus l In l
*
Shield
Bus 1 In 3
Shield
Bus l In 5
Shield for
Bus 1 In 7
Shield

G06*

D - 6

Appendix E: Understandinq the Manual Execution screen

APPENDIX E: UNDERSTANDING THE MANUAL EXECUTION SCREEN

I. Introduction

The Manual Execution Screen can be confusing to someone
who has little experience working with mainframe
computers. This appendix should help explain what each
option on this screen does. Each option has been
numbered and a description of that option is given below
the figure.

(l)Channel:[BLOCKMUX] (2)Buffer Size: FFFF (l)Current Datacount: 0010

(4)SLI: 1 RQI: 1
(S)SPO: 1 SLO: 1

(6)Busout: 03

OPI:
OPO:

1
1

OSI: 1
HLO: 1

(&)Chaining: Off (9)Stacking:

(lO)Address: E3 (11)Command:

(ll)Sequence: ccwo

(14)Last Address In: EJ

SVI: 1 STI:
SVO: 1 OTO:

(7) Busin: FF

Off

00 (12)Data:

(lS)Last Status: OC Channel End+ Device End

(16)Last Sense: 00 00 00 00 00 oo 00 oo

1 DTI: 1 ADI:
1 COO: 1 ADO:

03

F3-Execute F9-Clear Data sF9-Restore Data FlO-Menu ALT D-Dos

Figure E - 1: The Manual Execution screen

E - 1

1 MKO:
1

1

ChannelACT Operator•s Manual

(1) Channel: Three types of channels may be selected
"Selector","Bytemux",or "Blockmux".

ByteMux: A number of devices can be operated
simultaneously on the ByteMux Channel (Byte Multiplexor
Channel) • The I/O devices time-share the ByteMux
Channel on a byte basis (bytes of data to or from the
various devices are interleaved with one another).
Burst mode can be forced on the ByteMux Channel by an
I/O device holding up CPI.

BlockMux: A number of devices can be operated
simultaneously on the BlockMux Channel (Block
Multiplexor Channel). The I/O devices time-share the
BlockMux Channel on a block basis (blocks of data to
or from the various devices are interleaved with one
another) • Burst mode is forced on the BlockMux Channel
by the channel holding up SLO.

Selector: Only one I/O device can be selected on this
channel at any one time. Once selected, a complete
record is transferred over the standard I/O interface
one byte at a time. Once the record has been
transferred, the channel is free to select another I/O
device. A Selector Channel can only operate in "burst
mode". It is suited to use with higher speed I/O
devices, such as Magnetic Tape Units, Disk Units, and
Drums.

(2) Buffer Size: This displays the current data buffer size. The
default is 63,999, the largest size possible. The size of the
buffer may be adjusted from o to 63,999.

(3) current Datacount: This displays the current data count. This
will either be equal to the number of bytes that were received
over the channel, or it will be the number of bytes yet waiting
to be sent over the channel. It can not be greater than the
buffer size.

(4) Tagin Lines: These are lines that go into the mainframe
computer from the control unit. They may be either high (1)
or low (0). Tag lines, in most cases, have the function of
identifying data (information) on the "Bus In" lines or the
"Bus Out" lines. A Tag line that goes high indicates to the
channel or the control unit that data (information) has been
placed on the Bus, and identifies the function of this data.
In some cases, Tag lines are also used as "sequence control"
responses by the channel to statuses or data sent by a control
unit. In these cases, the high Tag line is not directly
related to the data on the Bus at the time it is raised.

Select In (SLI): Control unit I/O device selection is
controlled by these signals. "Select Out" and "Select

E - 2

Appendix E: Understanding the Manual Execution Screen

In" form a loop from the channel through each control
unit to the cable terminator block ("Select Out") and
back through each control unit to the channel ("Select
In"). Control unit priority is established because the
rise of "Select Out" is a effective only to the first
control unit. If the first control unit is not
selected it will propagate the "Select Out" signal to
the next control unit . A selected control unit will
respond to "Select Out" with OPI. Once OPI rises the
control unit must keep it up until the current signal
sequence is completed. If the selected control unit
is busy when "Select Out" is detected, the response is
"Status In".

Request In (RQI) : "Request In" is a line from the control
unit to the channel and indicates that the control unit
is ready to transmit information or data and is
therefore requesting to be selected. "Request In" can
be signaled by more than one control unit at a time.

Operational In (OPI) : "Operational In" is a line from the
control unit to the channel and is used to notify the
channel that an I/O device has been selected. When 'Op
In' is raised for a particular signal sequence, it must
stay high until all required information is transmitted
between the channel and the control unit.

Disconnect In (OSI): "Disconnect In" is a line from the
control unit to the channel. It responds high when
the "Service Out" line goes high. It is disabled when
the operational line is disabled.

Service In (SVI) : "Service In" is a Tag line from the
control unit to the channel. It is used to signal the
channel when the selected control unit wants to
transmit or receive a byte of information. During a
read operation, SVI rises when data is placed on "Bus
In". During a write operation, SVI rises when data is
required on "Bus out". "Service In" must stay up until
the rise of either "Service out", "Command out", or
"Address Out".

E - 3

ChannelACT operator•s Manual

Status In (STI) : "Status In" is a Tag line from the
control unit to the channel. It is used to signal the
channel when the selected control unit has placed
status information on "Bus In". The channel responds
with either "Service Out" or "Command Out" depending
on whether or not it accepted the Status byte. It is
operated when the control unit detects a malfunction.

Data In (DTI): "Data In" is a tag line from the control
unit to the channel. It is used to signal the channel
that the data from "Busin" has been received.

Address In (ADI): "Address In" is a Tag line from the
control unit to the channel. It is used to notify the
channel to the address of the selected I/O device has
been placed on "Bus In". "Address In" must stay high
until the rise of "Command Out" from the channel.
"Address In" must drop before 'Command out' may drop.

Mark O In (MOI): "Mark O In" is a tag line from the
control unit to the channel. It is used in early data
bus-width indication and it is enabled when OPI goes
high. It is also used during a command retry.

(5) Tagout Lines: These are lines that go out of the mainframe
computer and into the control unit. They may be either high
(1) or low (O).

Suppress Out (SPO) : "Suppress Out" is a line from the
channel to the control unit. It is used both alone
and with the out Tag lines to perform the following
special functions: suppress data, suppress status,
command chaining and selective reset. This line is
used alone or in conjunction with the out-Tag lines to
provide the following special functions: suppress data,
suppress status, command chaining, and selective reset.
The primary function of SPO is to prevent control units
from beginning a re-selection (control unit initiated)
sequence: A control unit cannot activate RQI as long
as SPO is active from the channel.

Select Out (SLO): Control unit I/O device selection is
controlled by these signals. "Select out" and "Select
In" form a loop from the channel through each control
unit to the cable terminator block ("Select Out") and
back through each control unit to the channel ("Select
In"). Control unit priority is established because the
rise of "Select Out" is a effective only to the first
control unit. If the first control unit is not
selected it will propagate the "Select Out" signal to
the next control unit . A selected control unit will
respond to "Select Out" with OPI. Once OPI rises the
control unit must keep it up until the current signal

E - 4

Appendix E: Understanding the Manual Execution Screen

sequence is completed. If the selected control unit
is busy when "Select Out" is detected, the response is
"Status In".

Operational Out (CPO): "Operational Out" is a line from
the channel to the control unit. With the exception
of "Suppress out", all lines from the channel are
significant only when OPO is high. Whenever OPO is
low, all "In" lines from the control unit must drop
and any operation currently in process over the
interface must be reset. Selective reset and a system
reset are both a result of dropping the OPO signal.
OPO is normal as long as the channel is operating.
This line is normally active and indicates that the
channel is operational. As long as power is up in the
channel and the channel is able to operate, this line
should be active. Except for SPO, all "out Tags" are
significant only when OPO is up. When CPO drops, all
"in ·Tags" drop within 1.5 Microseconds, and any
operation currently in progress over the interface is
reset.

Hold Out (HLO): "Hold Out" is a line from the channel to
all attached control units • It is used with "Select
Out" to provide an enable for "Select Out". HLO is
also used to minimize the propagation of the fall of
"Select Out" (once "Hold Out" falls all the control
units should drop "Select Out").

Service out (SVC): "Service out" is raised by the channel
to indicate to the selected control unit that SVI or
STI has been recognized. When raised in response to
SVI, it indicates (on a read operation) that the
channel has accepted the information on "Bus In" or (on
a write operation) that the data requested by SVI has
been placed on "Bus out". When raised in response to
STI, it indicates that the channel has accepted status
information on "Bus In".

Data Out (DTO): "Data out" is a Tag line from the channel
to the control unit. It is used to signal the control
unit that data has been sent out.

Command Out (COO): "Command Out" is a Tag line from the
channel to the control unit and is used to signal the
selected I/O device in response to "Address In",
"Status In", or "Service In". This signal is raised
by the channel to signal a selected control unit in
response to a signal on ADI, STI, DTI, or SVI. During
an initial-selection sequence, coo rising in response
to ADI indicates to the I/O device that the channel has
placed a "command byte" on the bus which indicates the
I/O operation to be performed. coo rising in response

E - 5

ChannelACT Operator•s Manual

to SVI or DTI always means "stop tne aata transfer in
progress". During a control-unit initiated sequence,
COO in response to ADI means "proceed" • COO in
response to STI means "stack (retain) status".

Address Out (ADO): "Address Out" is a Tag line from the
channel to all attached control units. It has two
functions:

1. I/O device selection: "Address Out" is used to
signal all control units to decode the device
address on "Bus out". The control unit that is
addressed will respond with "Operational In" when
"Select out" comes up.
2. Disconnect operation: If "Address out" is

high, and "Hold Out" is low, the presently
connected control unit must drop its
"Operational In", thus disconnecting from the
interface. "Address Out" will remain up until
"Operational In" drops. This signal is raised
by the channel to indicate to the control
units that the address of the device the
channel wants to select for an I/O operation
has been placed on the "Bus Out".

(6) Busout: "Busout" is a set of nine lines consisting of eight
information lines and one parity line. It is used to transmit
addresses, commands, control orders, and data to the control
units. To manually change the value of Busout, press enter.
A pop-up menu will appear and you will be able to put one of
the values specified in (9), (10) ,or (11) on the bus, or be
able to disable the bus. The information contained on "Busout"
is indicated by the Tagout lines:
1. When "Address Out" is high, "Busout" specifies the address

of the I/O device the channel wants to communicate with.
2 • When "Command Out 11 is high in response to "Address In" ,

"Busout" specifies a command.
3. When "Service out" is high in response to "Service In", "Bus

Out" contains data.
Disable: This option is used when neither the address,
nor the data, nor the sequence should be placed on the
bus.
Enable Address: This option places the address on the
bus.
Enable Data: This option places the data on the bus.
Enable Sequence: This option places the sequence on
the bus.

(7) Busin: "Busin" is a set of nine lines consisting of eight
information lines and one parity line. It is used to transmit

E - 6

Appendix E: Understanding the Manual Execution Screen

addresses, commands, control orders, and data to the channel.
The value shown in the "Busout" display is the last value
received into the ChannelACT on the "Busin" line. The type of
information transmitted over "Busin" is indicated by the Tagin
lines:
1. When "Address In" is high, "Bus In" contains the address of
the currently selected I/O device.
2. When "Status In" is high, "Bus In" contains a byte of

information describing the status of the selected I/O
device or control unit.

3. When "Service In" is high, "Bus In" contains a byte of data
or it contains the sense byte which describes the status of the
device in detail.

(8) Chaining: The "Chaining option" can be turned "On" or "Off".
While on, "Chaining" will be signalled to the peripheral until
this option is again explicitly turned off. The "Chaining"
sequence control is indicated, if indicated, at the time an I/O
device presents ending status to the channel (at the conclusion
of a data transfer). "Chaining" is indicated if SPO is up at
the time SVO is raised in response to STI. "Chaining" means
that another initial selection sequence (re-selection) is to
occur for the I/O device in operation immediately following the
presentation of "device end", provided that no unusual
conditions were encountered during execution of the current
operation.

(9) Stacking: The "Stacking" option can be turned "On" or "Off".
While on, stacking will be signalled to the peripheral until
this option is again explicitly turned off. "Stacking" is used
when conditions preclude acceptance of status from the control
unit. It may occur during any sequences except the "short-busy"
sequence. It causes retention of status information at the
control unit or I/O device until that status is accepted during
a subsequent sequence. Stacking is indicated by the rise of
COO in response to STI. When it occurs, the control unit
disconnects from the interface after SLO is down (OPI falls).
coo remains up until OPI falls. Any attempt to perform a
control unit-initiated sequence in order to present status is
under control of SPO (see "Suppress Status") .

(10) Address: This option shows the peripheral address.

(11) Command: This option shows the channel command.

(12) Data: This option is only used if you want to manually put
a data byte value on "Busout" with option (6) and classify it
as data. None of the sequences use this value.

E - 7

ChannelAC'l' operator•s Manual

(13) Sequence: This option displays the sequence type. To change
the sequence type, press return and a pop-up menu of choices
will appear. They are as follows:

CCWO: CCWO stands for "Channel Command Word O". It
executes commands during the time that the peripheral
is connected to the system. It searches for both the
channel end and the device end to indicate complete
execution of the ccw.

CCWl: CCWl is similar to ccwo except it searches for the
channel end and not the device end. When the chaining
is on ccwo and CCWl act the same.

Initial Selection: Used when the channel wishes to
establish communications with a particular I/O device.

Request: This option is used to get the final status if
CCW doesn't give it.

Sense: Data is obtained from sense indicators rather than
from a record source as in a "read" command.

System Reset: A "System Reset" may occur at any time, and
is used to reset all control units and devices that are
on-line. A "System Reset" is indicated whenever OPO
and SPO are down concurrently and the I/O device is in
the "online" mode. This condition causes OPI to fall
and causes all control units and their attached I/O
devices, along with their status, to be reset. The
control units are in a busy state for the duration of
their reset procedure. "System Reset" can prepare an
I/O device for an initial program loading sequence.

Selective Reset: "Selective Reset" is generated by the
channel, and may occur any time OPI is high.
"Selective Reset" is indicated whenever SPO is high
and OPO drops. This condition causes OPI to fall and
causes the particular I/O device in the operation and
its status to be reset. The operation in process
proceeds to a normal stopping point, if applicable,
with no further data transfer.

Interface Disconnect: "Interface Disconnect" is used by
the channel to signal the control unit to end execution
of an on-going I/O operation. If HLO is low and ADO
rises or if ADO is high and HLO falls, the presently
connected control unit drops OPI, thus disconnecting
from the interface.

(14) Last Address In: The last address received on the channel.

(15) Last Status: The last status received on the channel.

(16) Last Sense: The last sense bytes received when a sense

E - 8

Appendix E: Understanding the Manual Execution Screen

sequence was executed.

E - 9

Appendix F: More Sample Programs

APPENDIX F: MORE SAMPLE PROGRAMS

Program 1: Write, Read and store Test

This test writes 100 blocks of the data files "TMSG.RAM" and
"1982.RAM" to the tape. Following the writes, the tape rewinds
and reads all 101 blocks. Next, the lOlst block is stored to the
diskette with the name "Data.Ram". The diskette file or data
buffer can be displayed to see if the data in block 101 is correct.
If so, the test was executed properly.

#************************TEST NAME: 1982.SIM******************
var a #A IS A VARIABLE
channel blockmux #CHANNEL TYPE IS BLOCKMUX
system_reset #RESET CHANNEL
ccwO \80 \07 #PUT 07 ON ADDRESS 80 (REWIND)
ccwO \80 \C3 #PUT C3 ON ADDRESS 80 (MODESET-21600BPI)
loadfile 11 1982 11/T #LOAD FILE 1982 FROM DISK AND TRANSLATE
for a := 1 to 100 #DEFINE VALUE RANGE FOR VARIABLE A
CCWO \80 \01 #WRITE DATA BUFFER TO CHANNEL
restore #RESTORE DATA IN BUFFER FOR NEXT COMMAND
ENDFOR #LOOK FOR NEXT VALUE OF VAR A OR END
loadfile "TMSG"/T #LO. FILE TMSG.RAM FROM DISK & TRANSLATE
CCWO \80 \01 #WRITE DATA BUFFER TO CHANNEL
CCWO \80 \07 #PUT 07 ON ADDRESS 80 (REWIND)
FOR a := 1 TO 101 #READ TO BLOCK SIX (FIND MSG)
CCWO \80 \02 #ADDRESS 80 (READ FIRST BLOCK OF DATA)
ENDFOR #LOOK FOR NEXT VALUE OF A OR END
storefile "data.ram"/T #STORES ONE BLOCK OF DATA TO SOURCE DISK

F - 1

ChannelACT operator's Manual

Proqram 2: Write, Rewind, Read and Store Test

This test writes 500 blocks of the file "32K.RAM". It writes the
file uTMSG.RAMn as the SOlst block then rewinds the tape. All 501
blocks are read and the 50lst block is stored to the diskette with
the filename "Data.RAM". The diskette file or the data buffer can
be displayed to see if the data is correct. If it is, the test was
executed correctly and is complete.

#************************TEST NAME: BIG.SIM******************
var a #A IS A VARIABLE
channel blockmux #CHANNEL TYPE IS BLOCKMUX
system_reset #RESET CHANNEL
ccwO \80 \07 #PUT 07 ON ADDRESS 80 (REWIND)
loadfile 11 32K"/T #LO. FILE 32K.RAM FROM DISK & TRANSLATE
for a := l to 500 #DEFINE VALUE RANGE FOR VARIABLE A
CCWO \80 \01 #WRITE DATA BUFFER TO CHANNEL
restore #RESTORE DATA IN BUFFER FOR NEXT COMMAND
ENDFOR #LOOK FOR NEXT VALUE OF VAR A OR END
loadfile "TMSG"/T #LD. FILE TMSG.RAM FROM DISK & TRANSLATE
CCWO \80 \01 #WRITE DATA BUFFER TO CHANNEL
CCWO \80 \07 #PUT 07 ON ADDRESS 80 (REWIND)
FOR a := l TO 501 #READ TO BLOCK SIX (FIND MSG)
CCWO \80 \02 #ADDRESS 80 (READ FIRST BLOCK OF DATA)
ENDFOR #LOOK FOR NEXT VALUE OF A OR END
storefile "data.ram"/T #STORES ONE BLOCK OF DATA TO SOURCE DISK

Proqram 3: Recalibrate, Seek and Read Test

First the actuator is recalibrated by placing the heads on cylinder
track oo. Then this test does five sequential "seeks". A "seek"
command positions the actuator. These commands are followed by
reads of Count/Key/Data. The "seeks" begin at cylinder 01, track
03 and end at cylinder 05, track 03. The heads are then
recalibrated, meaning they "seek" the cylinder oo track.

#************************TEST NAME: DKRDLP.SIM***************
VAR A #A IS A VARIABLE
SYSTEM RESET #RESETS CHANNEL & DEVICES
CCWO \Gl \13 #RECALIBRATE(PUTS HOS TO CYL.00 SEC.00)
CLEARBUFFER #CLEAR DATA BUFFER
FOR A := 1T05 #DEFINE RANGE OF A
DATA oo,oo,oo,A,00,03 #6 BYTE CYL. & HO. ADD.
CCWO \61 \07 #SEEK CYL. & HD.
CLEARBUFFER #CLEAR DATA BUFFER
CCWl \61 \lE #R\D. CNT,KEY,DAT
CLEARBUFFER #CLEAR DATA BUFFER
ENDFOR #END OF TEST LOOP
CCWO \61 \13 #RECALIBRATE(PUTS HOS TO CYL.00 SEC.00)

F - 2

Appendix F: More Sample Programs

Program 4: Recalibrate, Read, seek, Write and Basic Sense Test

First this test moves the heads to cylinder oo, track 00. Second,
"home address" (record O) is read and "sense" is read. Third, it
does five sequential "seeks" (beginning at cylinder 01, track 03,
record 01). Next, it searches for the record identification
verifying the position then it writes the file "18K.RAM" to the
track for each "seek". Following the fifth cycle, the test does
a "basic sense" which completes operations.

#************************TEST NAME: DKWRLP.SIM*************
VAR A
SYSTEM RESET
ccwo \61 \13
CCWO \61 \lA
ccwo \61 \04
FOR A :=ltos
CLEARBUFFER
DATA oo,oo,cc,A,cc,c3
ccwc \61 \07
CLEAR BUFFER
DATA OO,A,00,03,01
ccwo \61 \31
while (!MOD)

retry
endwhile
CLEARBUFFER
LOADFILE 11 18K"/T
ccwc \61 \CS
END FOR
CLEARBUFFER
ccwc \61 \C4

#RESETS CHANNEL & DEVICES
#RECALIBRATE(PUTS HDS TO CYL.CO SEC.CO)
#READ HOME ADDRESS
#BASIC SENSE
#SET RANGE OF A
#CLEAR DATA BUFFER
#6 BYTE CYL. ADR.
#SEEK CYL. & HD

#CYL, HD, & REC. NUMBER
#SEARCH I.D. EQUAL
#RE-
TRY
LOOP
#CLEAR DATA BUFFER
#LOAD 4K.RAM FROM DISK TO BUFFER
#WRT KEY, & DATA TO DISK
#END OF LOOP SEQUENCE
#CLEAR DATA BUFFER
#BASIC SENSE

Program s: Recalibrate, seek and Read Test

First this test recalibrates the heads placing them on cylinder
CC, track cc. Then it "seeks" to cylinder C3, track C3. Next it
looks for the identification of cylinder C3, track 03, record 01
and reads Count/Key/Data.

#************************TEST NAME: DSKRD.SIM***************
SYSTEM RESET #RESETS CHANNEL & DEVICES
CCWC \61 \13 #RECALIBRATE(PUTS HOS TO CYL.CC SEC.CO)
CLEARBUFFER #CLEAR DATA BUFFER
DATA CC,CC,CC,C3,CO,C3 #6 BYTE CYL. & HD. ADD.
CCWC \61 \C7 #SEEK CYL. & HD.
CLEARBUFFER #CLEAR DATA BUFFER
DATA CC,C3,CC,03,Cl #VALUE FOR SEARCH ID
CCWC \61 \31 #SEARCH FOR SPECIFIED ID
CCWC \61 \lE #RD. CNT,KEY,DAT
Program 6: File Mask setting Test

First this test places the actuator at cylinder CC, track 00. Then
it "seeks" to cylinder C3, track 03 and sets the file mask. Third

F - 3

ChannelACT Operator•s Manual

it searches for identification that equals cylinder 03, track 03,
record 01. When found, it writes file "lSK.RAM" to the disk with
Count/Key/Data.

#************************TEST NAME: OSKWR.SIM****************
SYSTEM RESET #RESETS CHANNEL & DEVICES
CCWO \Gl \13 #RECALIBRATE(PUTS HOS TO CYL.00 SEC.00)
CLEARBUFFER #CLEAR DATA BUFFER
DATA oo,oo,oo,03,00,03 #6 BYTE CYL. ADR.
CCWO \61 \07 #SEEK CYL. & HD
CLEARBUFFER #CLEAR DATA BUFFER
DATA 00,03,00,03,0l #CYL, HD, & REC. NUMBER
CCWO \61 \lF #SET FILE MASK
CLEARBUFFER #CLEAR DATA BUFFER
DATA 00,03,00,03,0l #CYL, HD, & REC. NUMBER
CCWO \61 \31 #SEARCH I.O. EQUAL
while (! MOD)

retry
endwhile
CLEARBUFFER
LOADFILE "lSK"/T
ccwo \61 \05
ccwo \61 \03

#CLEAR DATA BUFFER
#LOAD SK.RAM FROM DISK TO
#WRT KEY, & DATA TO DISK
#NO OP

Proqram 7: Lonq Seek Test

BUFFER

This is a long "seek test". It recalibrates the actuator placing
the heads on cylinder 00, track oo. It then "seeks" to cylinder
0247, track 03. From here it repeats the sequence. It recalibrates
and "seeks" infinitely until the operator hits the function key
[F7] to terminate the test.

#************************TEST NAME: LGSKLP.SIM***************
SYSTEM RESET #RESETS CHANNEL & DEVICES
CCWO \61 \13 #RECALIBRATE(PUTS HOS TO CYL.00 SEC.00)
AA: CLEARBUFFER #CLEAR DATA BUFFER
DATA oo,oo,oo,oo,00,03 #6 BYTE CYL. & HO. ADO.
CCWO \61 \07 #SEEK CYL. & HO.
CLEARBUFFER #CLEAR DATA BUFFER
DATA oo,oo,02,47,00,03 #6 BYTE CYL. & HO. ADD
CCWO \61 \07 #SEEK CYL. & HO.
GOTO AA #LOOP BACK TO AA

F - 4

Abort 4-9; E-1
ACT.EXE 4-2

Index

Address 4-6,9,10,17,21,23,29,33 to 35; 5-3; C-1; D-3,4; E-
1,3,4 to 8

Address In 4-9,11,17,33; D-3,4; E-1,4 to 8
Address Out 4-11,18,33; D-3,4; E-3,6
addressin 4-17,29
ADDRESSOUT 4-23,26
ADI 4-9,11,17,33; E-1,4 to 6
ADO 4-9,11,17,23,33,36; E-1,6,8
Alt C 4-4
Alt M 4-4
Alt P 4-4
Alt X 44-4
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENEIX E:

EBCDIC CONTROL CHARACTER MNEMONICS A-1
ASCII/EBCDIC CONVERSIONS B-1
STOPCODES LIST C-1
SERPENTINE CONNECTOR PIN ASSIGNMENTS D-1
UNDERSTANDING THE MANUAL EXECUTION SCREEN
MORE SAMPLE PROGRAMS F-1 APPENDIX F:

applications
Arrow 4-4,5,9

1-6

ASCII 4-7,8,19,25,29,31; B-1,2
Associativity 4-12
ATN 4-14,33
Backspace 4-4,6,7
Block Multiplexer 1-1
BSY 4-14,33
Buffer Size 4-9; E-1,2
BUFSIZE 4-20,26
Bus cables 1-4; 2-1
BUS ENABLED 4-23
Busin 4-9,10,17,33; E-4,6,7
Busout 4-9,10,17,23,33,36; E-1,6,7
Byte Multiplexer 1-1
CCWl 4-21,34; E-8
COO 4-9,11,17,23,33,36; E-1,5 to 7
Change 4-7; E-8
Change Dir 4-5

E-1

channel 1-1,4,6; 2-1,3,4; 3-1,5; 4-1,3,6,7,9,10,17,19 to 23,
29,30,32 to 36; E-1 to 8

Channel Interface 2-4
Channel Sequences 1-1; 2-1; 4-10,21,23,34,36; E-1
ChannelACT Block Diagram 2-2
ChannelACT card 2-1,3

I - 1

ChannelACT ope:r:ator•s Manual

ChannelACT Card Block Diagram 2-3
ChannelACT Front Panel 1-3
ChannelACT placement 3-2
ChannelACT Rear Panel 1-3
CHE 4-19,33
CHK 4-17,23
Clear 4-7,9; E-1
CLEARBUFFER 4-19
clrbuf 4-31
Command 1-1; 4-2,6,7,9 to 11,16 to 27,33 to 35; C-1; D-3,4;

E-1,3 to 8
Command Out 4-11,17,33; D-3,4; E-3 to 6
Command Retry 1-1; 4-22,35; C-1; E-4
COMMANDOUT 4-23,36
Commands 2-3; 4-3,12,17,18,21; E6 to 8
control unit 3-1; 4-18,33; E2 to 8
Conversion Matrices 4-8
CUE 4-17,33
Current Datacount 4-9; E-1,2
Data 1-1,2; 2-3,4; 3-5; 4-3 to ll,17,19,20,22,25,30 to 33,

35; 5-2; c-1; D-3,4; E-1 to a
Data In 4-7,11,17,19,31,33; D-3,4; E-4
Data Out 4-11,17,33; 0-3,4; E-5
Data Ram 2-3,4; 3-5; 4-3,4,7,10,19,31,32
Data RAM OMA 2-4
Data Ram Editor 3-5; 4-3,4,7,10
Data Transfer 1-1; C-1; E6 to 8
DATAOUT 4-23,36
Decision Making 2-4
Default 1-5; 4-3; 5-7,9,12,13,21,22,27; E-2
Del 4-4; A-1
diagnostic 3-3
dimensions 1-2
DISABLED 4-23; E-3
Disconnect In 4-11,17,33; D-3,4; E-3
Diskette drive 1-2; 3-3
DOS 4-2,9; E-1
OSI 4-9,11,17,33; E-1,3
OTI 4-9,11,17,33; E-1,4 to 6
OTO 4-9,11,17,23,33,36; E-1,5
OVE 4-17,33
EBCDIC 4-7,8,15,19,24,25,29,31; A-1,3,4
ELSEIF 4-26
END 1-6; 4-4,6,7,9,17,21,24,25,27,33,34; E-1,7,8

I - 2

ENDFOR 4-8
ENDIF 4-26
Ending Procedures 1-1
ENDWHILE 4-26
EOF 4-17,25,32
EXC 4-17,33

Index

Extended Basic Interpreter 1-1; 2-1
Fl 3-4,5; 4-2,3,5; B-1
FlO 3-4,5; 4-2,3,5 to 7,9; E-1
F2 3-4,5; 4-2,3,6,7; B-1
F3 3-4,5; 4-2,3,5,6,9,10; B-1; E-1
F4 3-5; 4-3; B-1
F5 4-3,6,7; B-1
F6 4-5,7; B-1
F7 4-5 to 7,10; B-1
F7-Break 4-10
F8 4-5; B-1
F9 4-7,9,10; B-1; E-1
FIFO buffer 4-17,32
File Listing Screen 1-5; 4-2,3,5,6,7
FIPS channel emulator 1-1
GOSUB 4-10,26
GOTO 4-12, 26
Hard drive 1-2; 3-3
Help Message 1-5; 4-1,2,5
HLO 4-9,11,17,23,33,36; E-1,5,8
Hold Out 4-11,17,33; D-3,4; E-5,6
Home G-4,6,7
Initial 1-1; 4-10,21,33,34; c~1; E-5,7,8
Initial Selection 1-1; 4-21,33,34; C-1; E-7,8
initialize 4-28,30
Input Functions 4-33
Ins 4-4
Insert 4-4,6,7
Interface Disconnect 1-1; 4-21,35; E-8
Interface_Disconnect 4-21,35
Last Address In 4-9; E-1,8
Last Sense 4-9,10,18,29; E-1,8
Last Status 4-9,10,17,29; E-1,8
ldbyte 4-31
ldfile 4-31
ldstr 4-31
Level of Precedence 4-15
Load 4-5,7

I - 3

rdtagin 4-33
rdtagout 4-33

Index

Read 4-7,10,15,17,19,25,28,32; B-1,2; E-3,5,8
Request 1-1; 4-11,17,21,33,34; C-1; D-3,4; E-3,8
Request In 4-11,17,21,33,34; D-3,4; E-3
Request Sequence 1-1; 4-21,34
Restore 4-7,9,19,32,36
Retry 1-1; 4-9,10,22,35; C-1; E-4
RETURN 4-2,3,5,10,15,21,22,24,26,31 to 35; 5-1,3; E-8
Rewind 4-25
RQI 4-9,11,17,33; E-1,3,4
Run 2-4; 3-4; 4-1,3,5
Save 4-6,7
Select In 4-11,17,33; D-3,4; E-3,4
Select Out 4-11,17,33; D-3,4; E-3 to 6
Selective Reset 1-1; E-4,5,8
Selector 1-1; 4-9,20,30; E-2
Sense 4-9,10,17,21,25,35; E-1,7,8
sensebuf 4-21,35
Sequence 1-1: 4-1,3,8,9,10,17,20,21,22,29,30,31,33 to 36: E-

l to 8
Service In 4-11,17,33; 5-1; D-3,4; E-3,5,6,7
Service Out 4-11,17,33; D-3,4; E-3 to 6
Service Policy 5-1,3
sim 4-1,2,5
Simulator Control Functions 4-30
SLI 4-9,11,17,33; E-1,3
software 2-1; 3-3, 4-1,2; 5-1,2
SPO 4-9,11,17,23,33,36; E-1,4,5,7,8
Stack Status 1-1
Status In 4-11,17,33; D-4; E-3,4,5,7
statusin 4-29
stfile 4-32
STI 4-9,11,17,33; E-1,4 to 7
Stopcode 4-6,17,21,29,33,34,36
storage buffer 1-1
STOREFILE 4-19
STRING 4-15,16,18,19,24,25,31
supervisor 1-1,5; 2-1; 4-1,2,15
Suppress Out 4-11,17,33; D-3,4; E-4,5
SVI 4-9,11,17,33; E-1,3,5,6,7
SVO 4-9,11,17,23,33,36; E-1,5,7
Switch 1-2,4; 3-3,5; 4-7
System Reset 1-1; 4-21,34; E-5,8

I - 5

ChannelACT Operator's Manual

LOADFILE 1-6; 3-6
LOWER 1-4; 4-23,36
Main Menu 3-4,5; 4-2,3,20
Maintenance 1-6; 5-1
Manual Execution 3-5; 4-3,9; E-1
Mark 0 In D-1,2; E-4
Memory Decode 2-3
Menu 1-1; 3-4,5; 4-2,3,5,6,7,9,10,20; E-1,6,8
Micro Sequencer 2-4
microcode checksum error 4-2
Microsoft 1-1; 2-1; 4-1,28
MKO 4-11
Mnemonic 4-7,19,23; A-1
MOD 4-17,33
modeflg 4-31,32
More 4-6; E-3
Open 4-17,25
Operational In 4-11,17,33; D-3,4; E-3,4
Operational out 4-11,17,33; D-3,4; E-5
Operators 4-15
OPI 4-9,11,17,33; E-1 to 4,7,8
OPO 4-9,11,17,23,33,36; E-1,5,8
Override 4-10,22,35; C-1
Parity error C-1
PC Bus Interface 2-3
peripherals 1-1,6; 2-1
Pg On 4-4,6,7
Pg Up 4-4,6,7
pin 3-1; D-1
power source 1-4; 3-3
Print 4-15,24,26,27
printing 3-5
Program Development Menu 3-4,5; 4-2,3,5
Program Editor 3-5; 4-3,4,6
Program Flow 4-26
Program Interpreter 4-15
RAISE 4-20,33
ram 2-3,4; 3-5; 4-3 to 7,10,19,25,31,32
RAM Control Functions 4-31
rdaddr 4-33
rdbusin 4-33
rdbusout 4-33
rdbyte 4-32
rdstatus 4-33

I - 4

ChannelACT Operator•s Manual

System Variables 4-17,29
System_Reset 4-10,21,34
Tag cables 1-1,4; 3-1
Tagin Lines 4-9,11,17; E-2,7
Tagout Lines 4-9,11,17; E-4,6
TAGRESET 4-23,36
TIMEOUT 4-20,30; C-1
Turbo c 1-1; 2-3; 4-1
turning off 3-5
VAR 4-6,18
Warranty 5-1 to 3
weight 1-2
WHILE 3-5; 4-10,26; E-7
Writable Control Storage 2-3,4

I - 6

Index

Save 4-6,7
Select In 4-11,14,30; E-3,4; F-3,4
Select Out 4-11,14,30; E-3,4; F-3 to 6
Selective Reset 1-1; F-4,5,8
Selector 1-1; 4-9,17,27; F-2
Sense 4-9,10,14,18,22,32; D-1; F-1,7,8
sensebuf 4-18,32
Sequence 1-1: 4-1,3,8,9,10,14,17,18,19,26,27,28,30 to 33: D-

1, F-1 to 8
Service In 4-11,14,30; 5-1; E-3,4; F-3,5,6,7
Service Out 4-11,14,30; E-3,4; F-3 to 6
Service Policy 5-1,3
sim 4-1,2,5
Simulator Control Functions 4-27
SLI 4-9,11,14,30; F-1,3
software 2-1; 3-3, 4-1,2; 5-1,2
SPO 4-9,11,14,20,30,33; F-1,4,5,7,8
Stack Status 1-1
stacking 4-9,10,17,27; F-1,7
STACKING ON 4-17
Status In 4-11,14,30; E-4; F-3,4,5,7
statusin 4-26
stf ile 4-29
STI 4-9,11,14,30; F-1,4 to 7
Stopcode 4-6,14,18,26,30,31,33
storage buffer 1-1
STOREFILE 4-16
STRING 4-12,13,15,16,21,22,28
Supervisor 1-1,5; 2-1; 4-1,2,12
Suppress Out 4-11,14,30; E-3,4; F-4,5
SVI 4-9,11,14,30; F-1,3,5,6,7
SVO 4-9,11,14,20,30,33; F-1,5,7
Switch 1-2,4; 3-3,5; 4-7
System Reset 1-1; 4-18,31; F-5,8
System Variables 4-14,26
System_Reset 4-18,31; D-1
Tag cables 1-1,4; 3-1
Tagin Lines 4-9,11,14; F-2,7
Tagout Lines 4-9,11,14; F-4,6
TAGRESET 4-20,33
TIMEOUT 4-17,27; C-1
Turbo c 1-1; 2-3; 4-1
turning off 3-5
VAR 4-6,15
Warranty 5-1 to 3
weight 1-2
WHILE 3-5; 4-10,23; F-7
Writable Control Storage 2-3,4

I - 5

TECHNDIDGYfl/jJllC.
658 Mendelssohn Ave. No.

Minneapolis, MN 55427
(800) 545-2980

FAX (612) 542-9785

