Tektronix, Inc.
P.0. Box 500
Beaverton, Oregon 97077

MANUAL PART NO. 070-4383-00
PRODUCT GROUP 14

Tektronix

COMMITTED TO EXCELLENCE

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

4052A/4054A

BASIC and GPIB
ENHANCEMENTS

PROGRAMMER’S REFERENGCE

First Printing JUL 1982
Revised JUN 1983



Copyright © 1982 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this publication may not be reproduced in any
form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more UZS. or foreign patents or patent applications.
Information provided on request by Tektronix, Inc, P.O. Box
500, Beaverton, Oregon 97077,

TEKTRONIX is a registered trademark of Tektronix, Inc.



MANUAL REVISION STATUS

PRODUCT: 4052A and 4054A

This manual supports the following versions of this product: Serial Numbers B020100 and up.

REV DATE DESCRIPTION
JuL 1982 Original lssue
DEC 1982 Revised: pages 3-4, 3-7, 3-8, 3-24, and 3-35.
JUN 1983 Revised: page 4-14.

4052A/4054A ENHANCEMENTS REV, JUN 1983






Section 1

Section 2

Section 3

4052A/4054A ENHANCEMENTS

CONTENTS

INTRODUCTION

PUIDOSE .o e
New BASIC Feallires vy ivie vwni saissvanss v i vie s
New GPIB FEatUreS . omvwm smwmmamman sumw i s v

BASIC Features

AREABUNCHON 555 svvsnsvisns oo audmans 107 sveaaanid oad ohvin
ASC FUNCHON . .o
Binary Operations . ...t
CALL, SUB, LOCAL, END SUB, and “SYMREUSE” . ...........
CCINPUT .t

RO LOOP, ANl EXITIF oo sesmws vmamsmmosswss axammasin i
EXCLUDIE . 00000508 nammmnmrome mromm s oimms s s s v

IF,ELSE, and END IF .. ... i e
INSIDE Function . ..... ...t e
LET Stiing Operations «cowwe ces svmwnsn e dudhnis s i5eamves
MOD Operator ...
RENUMBER. .. .. e



Section 4

Appendix A

Appendix B

GPIB COMMANDS
Address List Arrays
CONFIGURE........

BASIC KEYWORDS

ERROR MESSAGES

4052A/4054A ENHANCEMENTS



Section 1

INTRODUCTION

PURPOSE

This manual provides information on the BASIC and GPIB features of the 4052A and the
4054A which are not included in the 4052 and 4054. The information in this manual is
intended to supplement information in the 4050 Series Graphic System Reference
Manual.

NEW BASIC FEATURES

The most important BASIC enhancements are in the areas of:

® Program presentation — multi-character identifiers, comment tails, OLD/APPEND
without remarks.

® Program structuring — subprograms, IF THEN/ELSE/END IF, DO/EXIT IF/LOOP.

@ Strings — ALTER, character input, concatenation, string searching, CHR extended.

® Graphics — dashed lines, cross-hatched areas.

® Miscellaneous — MOD operator, logical units (1/0) as expressions.

NEW GPIB FEATURES
The 4052A/4054A GPIB interface conforms to IEEE Standard 488-1978. It has been
modified to provide the following improvements over the 4052/4054:
® Increased GPIB binary data transfer speed.
® Elimination of undesirable state transitions in the GPIB bus management signals.
® Increased GPIB ASCII transfer speed.
® Ability to do data block transfers between the GPIB port and system memory.

@ Additional capabilities as standard user accessible features.

4052A/4054A ENHANCEMENTS






Section 2

BASIC FEATURES

VARIABLE NAMES
Numeric Variables and Subprogram Names

Up to 31 characters can be used in the name of a numeric variable (scalar or array) or a
subprogram. The rules for forming legal names are;:

1. Thefirst 3 characters cannot be the same as the first 3 characters in a BASIC
keyword (PRInt, for example). See the list of BASIC keywords in Appendix A.

2. Thefirst character must be a letter or an underscore.
3. Each following character must be a letter, an underscore, or a digit (0-9).
Lowercase letters are treated the same as uppercase letters.

When a program is LISTed or SAVEd, variable names and subprogram names are
displayed with the first character capitalized and the following letters in lowercase.

Defined functions (DEF FN_) — cannot use long multi-character identifiers. Only FNA
through FNZ are permitted. The formal parameter to a DEF can have up to 31 letters, just
like other numeric variables.
String Variables
The same rules apply as for numeric variables, with one additional rule:
The last character must be a dollar sign (“$"). It can be the 31st character, but not
the 32nd.
Memory Usage
Each variable name used in the program takes 13 bytes of symbol table space, plus N
more bytes if the length of the name (N) is greater than 2. The same amount of symbol

table space is taken if a variable is used once or a thousand times in the program. (The
original 4050 series BASIC also took 13 bytes for each name.)

4052A/4054A ENHANCEMENTS

21



BASIC FEATURES

COMMENT TAIL

Syntax Form:
[Line number] [any BASIC statement] | [any characters except CRI
Descriptive Form:

[Line number] [any BASIC statement] | [program documentation comment]

Purpose

The exclamation character can be used to add a comment to the end of any statement, or
as a separate statement. For example:

100 X=0 linitialize X
110 IThis can be done instead of REM

LIST and SAVE produce lines with the exclamation character 2 spaces after the end of
the statement. If it appears as a separate statement, then it is put at the 4th position after
the line number. Therefore, instead of “ REM” you get “ !” (with the | character in the
same space as the M in REM).

4052A/4054A ENHANCEMENTS



FORMATTED LIST

BASIC FEATURES

Syntax Form:

Descriptive Form:

[Line number] PRI @ 37,19: numeric expression

[Line number] PRINT @ 37,19: indent value

Explanation

The list command generates a listing of a BASIC program and optionally formats the

program in the following manner:

Indent after the following statements:

SUB

IF (block IF only)
DO

FOR

EXIT IF

ELSE

Cancel indent before the following statements:

ENDSUB
END IF
LOOP
NEXT
EXIT IF
ELSE

The spacing for indenting is user selectable and can be any value from 0 to 10. Spacing
of 0 aligns the first character of each line on the left margin. If a line does not fit on the

display, short forms of all key words will be used. If it still does not fit, an error is

indicated. If the indent value is from one to ten, then that many blanks will be printed for
each level of indenting based on the program being listed. Statements which do not fit on
a line will be multi-lined (take multiple lines on the display), each line being indented the

same amount.

4052A/4054A ENHANCEMENTS

2-3



BASIC FEATURES

To select the indent amount, the device address for processor status with secondary
address of LIST is used:

PRINT @ 37,19:X

X is an expression and is evaluated into the range 0 to 10. Values less than 0 get O,
values greater than 10 get 10. This value is used to set the indent count for subsequent
LIST commands. When the system is turned on the default value of indent is set to 3.

LOGICAL UNIT NUMBERS

LUN's are numbers from 0 to 9. The values from 1 to 9 allow you to refer to an OPENed
disk file. LUN O is special, and refers to an open (via FIND) tape file on the internal tape
drive. It is only valid in the commands ON and OFF and the function TYP.

LUNs appear in a number of CALL “...” system commands and in the BASIC statements:

PRINT # LUN ...
INPUT # LUN . ..
READ # LUN ...
WRITE # LUN . ..

ON EOF (LUN) ...
OFF EOF (LUN)

TYP (LUN)

CLOSE LUN

OPEN A$: LUN, B$, C$

In the original 4050 Series BASIC these statements only allowed LUN to be a numeric

constant such as 7 and not a variable such as N. In the 4052A and 4054A they can be
any scalar numeric expression.

24 4052A/4054A ENHANCEMENTS



Section 3

BASIC COMMANDS

The new BASIC commands are listed alphabetically using the same syntax form as the
4050 Series Reference Manual.

Syntax Form
(et Enter each exactly as shown.

Enter one of items shown; do not enter braces.

[] Optional entry; do not enter brackets. Default values are shown if they
exist.

Variable number of items may be entered in the same form as the
preceding item (single parameter or group of parameters).

4052A/4054A ENHANCEMENTS

31



BASIC COMMANDS

ALTER

Syntax Form:

[Line number] ALT )String constant|, String variable
String variable

Descriptive Form:

[Line number] ALTER item to be printed, target variable for result

Purpose/Explanation

Prints a string of characters on the screen, allows you to edit them with the line-editor
keys, and then puts the edited characters back into the target variable when you press
RETURN. For example;

ALTER “edit this” A%
ALTER Name$ New_name$
ALTER A$,A%

Control characters in the printed string appear as underlined letters except CR (| M)

which causes a new line operation. Non ASCII (those above 127) characters have an
implementation defined appearance.

3-2 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

ANGLE Function

Syntax Form:
ANG (numeric expr, numeric expr)
Descriptive Form:

ANGLE (X-coordinate, Y-coordinate)

Purpose

The ANGLE function produces the angle between the positive X-axis and the vector from
(0,0) to (X,Y).

Explanation

ANGLE produces what is sometimes called a “2-parameter arc tangent”. The result of
ANGLE depends upon the current trigonometric mode. In RADIANS mode,

—Pl < ANGLE(X)Y) <= PI

ANGLE(0,0) is defined to be O
Pl radians is 180 degrees and 200 grads

4052A/4054A ENHANCEMENTS 3.3



BASIC COMMANDS

AREA Function

Syntax Form:
ARE (numeric identifier, numeric identifier)
Descriptive Form:

AREA (X-array, Y-array)

Purpose/Explanation

The AREA function calculates the area of a polygonal area defined by an X-array and a Y-
array (see HATCH). The value produced is independent of the current WINDOW and
VIEWPORT settings. The area is positive if the polygon is defined clockwise, and negative
if it is defined counter-clockwise.

AREA works correctly for polygons with holes if two conventions are followed:

1. Connect holes to the surrounding contour with two lines that connect a point on
the hole with a point on the surrounding contour.

2. Traverse outside contours in a clockwise direction; traverse holes in a counter-
clockwise direction.

Self-intersecting polygons not following this convention will produce unexpected results.
Figure 3-1 shows the right and wrong ways to specify a polygon and use the AREA

function. Notice that in Figure 3-1Athe polygon is incorrectly specified and CENTROID as
well as AREA produces unexpected results.

A
Y

A

area= —1600 area = 2000
area=1100

> 1

-~ area = —300

o,
- - _—

Y

A. RIGHT (negative AREA). B. RIGHT (positive AREA). C. WRONG. D. RIGHT (AREA with hole).
43B3-1A

Figure 3-1. AREA Function Examples.

34 REV, DEC 1982 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

The following program was used to generate the examples in Figure 3-1:

100 SET DEGREES

110 PAGE

120 DIM X(4),Y(4)

130 READ XY

140 DATA 10,50,50,10

150 DATA 10,10,50,50

160 CALL Show(X,Y)

170 READ X,Y

180 DATA 70,70,120,120

190 DATA 10,50,50,10

200 CALL Show(X,Y)

210 READ X,Y

220 DATA 10,50,20,40

230 DATA 60,60,90,90

240 CALL Show(X,Y)

250 DIM X(10),Y(10)

260 READ X,Y

270 DATA 60,60,120,120,60,70,110,110,70,70
280 DATA 60,95,95,60,60,65,65,90,90,65
290 CALL Show(X,Y)

300 END

310 SUB Show(X,Y)

320 FOR I=1 TO UBOUND(X,1)

330 Ip1= (I MOD UBOUND(X,1))+ 1
340 CALL Arrow(X(1),Y(1),X(ip1),Y(ip1))
350 NEXT |

360 CENTROID X,Y Xc,Yc

370 MOVE Xc,Yc

380 PRINT “ area=";AREA(X.Y)

390 END SUB

400 SUB Arrow(X1,Y1,X2,Y2)

410 MOVE X1,Y1

420 DRAW X2,Y2

430 ROTATE ANGLE(X2—X1,Y2—Y1)+ 170
440 RDRAW 3,0

450 ROTATE ANGLE(X2—X1,Y2—Y1)+ 190
460 MOVE X2,Y2

470 RDRAW 3,0

480 END SUB

4052A/4054A ENHANCEMENTS 35



BASIC COMMANDS

ASC Function

Syntax Form:
ASC (simple string [,numeric expr])
Descriptive Form:

ASC (source string [location of character])

Purpose/Explanation

The ASC function returns a decimal number corresponding to the specified character in
the string. If the second argument (location) is not specified, then it defaults to 1. The
location is the index in the string of the character whose decimal value (0 to 255) will be
produced. A location <= 0 or > LEN(source string) will be an error.

3-6 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

BINARY OPERATIONS

Syntax Form:

[line number] CAL “BITAND", simple string, simple string, string variable

[line number] CAL “BITOR", simple string, simple string, string variable

[line number] CAL “BITXOR”, simple string, simple string, string variable

[line number] CAL “BITCMP", simple string, string variable

[line number] CAL “BITROT", simple string, numeric expression, string variable
[line number] CAL “BITSHI", simple string, numeric expression, string variable
[line number] CAL “BITTES", simple string, numeric expression, numeric variable
[line number] CAL “BITSET", string variable, numeric expr, numeric expr

Descriptive Form:

[Line number] CALL “'BITAND", In1$, In28, Out$

[Line number] CALL “"BITOR", In1$, In2%, Out$ lInclusive OR
[Line number] CALL ""BITXOR", In1$, In23%, Out$ IExclusive OR
[Line number] CALL “"BITCMP”, In0$, Out$ 1Bit complement
[Line number] CALL “"BITROTATE", In0$, distance, Out$

[Line number] CALL “"BITSHIFT", In0$, distance, Out$

[Line number] CALL ""BITTEST", In0$, bit number, bit value returned
[Line number] CALL “"BITSET", Inout$, bit number, bit value to set

Purpose

Each of these statements allow a string of N characters to be treated as a sequence of
8*N bits. "BITAND”, “BITOR", and “BITXOR” will treat as zero filled (on the left) In1$ or
In28, if they are not the same length. Null strings are allowed as input to all the
statements except “BITSET"” and “BITTEST".

Explanation

“BITAND" performs a bit by bit logical AND of In1$ and In2$, and puts the result into Out$ (which
can be either In1$ or In2$).

“BITOR" performs a logical inclusive OR (same concept as the OR operator of BASIC).
“BITXOR" performs a logical exclusive or (XOR):

0 XOR1is 1

1 XORO0is 1

0XORO0OisO
1 XOR1is0

4052A/4054A ENHANCEMENTS REV, DEC 1982 3-7



BASIC COMMANDS

“BITCMP" complements every bit in the string:

0 becomes 1
1 becomes 0

Out$ can be the same string as In0$.

“BITROTATE" rotates the entire sequence of bits by the specified number of bits in the
distance argument. A distance less than zero causes a right rotate; a distance greater
than zero causes a left rotate. For example:

Rotation distance = 2 — 11110000 becomes 11000011

Rotation distance = -2 — 11110000 becomes 00111100

When distance > 8+LEN(In0$), the result is the same as if the string were rotated by the value
(distance) MOD > (8*LEN*'ABC’’) and 32 MOD 24 gives 8. The expression is equivalent to CALL
“BITROT", "ABC", 8,L §.

“BITSHIFT” shifts (with zero fill) an entire sequence of bits by the specified number of
bits. This works the same as “BITROTATE", except you get zero fill. For example:

Shift distance= 2 — 11111111 becomes 11111100
Out$ can be the same string as In0$.

“BITTEST” allows you to examine the value of any bit in the string. A numeric value of O or
1 is returned.

“BITSET" allows you to set any bit in the string to be 0 or 1. The numeric value passed in
is treated as logically true or false, just as in the IF statement and NOT function. For
example ABS(...) >_ 0.5 produces 1, anything else produces 0.

NOTE

For BITROTATE and BITSHIFT, the absolute value of the specified number
of bits must be less than 2E16 — 1. The same is true for the bit number in
BITSET and BITTEST. For BITROTATE, the target string(string variable)
may not be the same as the source string (simple string). For BITSET and
BITTEST, the bits in the string are numbered from right to left starting with
bit number 1. For example, if the string is 3 characters long the bits are
numbered 24, 23, 22,... 2, 1.

Encoding and Decoding Binary strings may be easily accomplished by using the
CHR and ASC functions. See the explanation of CHR and ASC elsewhere in this
manual.

3-8 REV, DEC 1982 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

CALL, SUB, LOCAL, END SUB, and “SYMREUSE”

Syntax Forms:

[Line number] CAL name [(expression list)]

Line number SUB name [(variable list)]

[Line number] LOC variable list

[Line number] END SUB

[Line number] CAL “SYMREU" [,numeric variable]

Descriptive Form:

[Line number] CALL subname [(expr. and REF variables)]

Line number SUB subname [(formal parameters)]

[Line number] LOCAL names of local variables

[Line number] END SUB

[Line number] CALL “SYMREUSE"” [return variable giving bytes of symbol space freed]

NOTE

Items in the CALL expression list and the SUB variable list may be
separated by commas or semicolons.

Purpose

These statements provide access to named subprograms, with local variables and
parameter passing.

CALL transfers control to its matching SUB.
The LOCAL statement(s) after the SUB allocate local variables for the subprogram.

The END SUB transfers program control back to the statement which follows the most
recent CALL.

Call “SYMREUSE” can be used after DELETE line,line so that symbol table space can be
reused when an APPEND is done.

No other information is considered to be local to a subprogram. Logical unit numbers for
disk files, DATA/READ, subroutines, FUZZ, SET TRACE, WINDOW, etc., are all global.

4052A/4054A ENHANCEMENTS 39



BASIC COMMANDS

Explanation

The CALL statement evaluates the expressions in the expression list (a comma or a
semicolon between the items is permitted, and they act the same). It then finds the
matching SUB name and starts matching the expressions with the formal parameters (one
for one match with the variables named in the SUB variable list).

There must be the same number of expressions as formal parameters and their types
must match — string to string and numeric to numeric (array or scalar). For example:

100 DIM A(4)

110 CALL Check(*“tom”,A) | OK
120 CALL Check(B$,4%X+ 3) 'OK
130 CALL Check(“hy") | error

1000 SUB Check(A$,BC)

If the expression is simply the name of a variable, such as A and B$, then the data is
“passed by reference”. This means that any access to or assignment to the formal
parameter actually uses the referenced variable (A or BS).

If the expression is not simply the name of a variable, such as “tom” and 4*X+ 3, then the
value of the expression is “passed by value”. This means that the expression is evaluated
and then the value is simply “assigned” to the formal parameter.

A formal parameter name may be the same name as a global variable (a variable not local
to a subprogram). Therefore, before a formal parameter is actually matched with the
argument the current value of the formal parameter is saved on the stack (CALL,
GOSUB/RETURN, and FOR/NEXT all use the same stack).

The LOCAL statement(s) follow the SUB statement. When a LOCAL statement is executed
the current values of those variables are pushed onto the stack and the variables are set
to be undefined. This allows local variables to have the same name as global variables (or
local variables in other subprograms).

The LOCAL statement can also be used inside a GO SUB subroutine, a FOR. . NEXT loop,

or a DO. . .LOOP construct. When any of the enclosing constructs terminate, the previous
values of the LOCALized variables are restored.

3-10 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

Recursion is an implicit benefit of formal/local/global variable stacking/management.
Each invocation of a subprogram gets its own copy of formal and local variables.

B T eV W L W

} CAUTION
Array elements such as A(2) are considered to be expressions, and
therefore are passed by value, not reference.

If you have a global variable V and subprogram S1 is called with a formal parameter or
local variable also called V, then the global value of V is inaccessible to anyone until S1 is
done. For example, if S1 calls S2 and S2 refers to variable V, then it is getting the value of
V in S1, not the global V. Therefore, global data which will be implicitly used by a number
of subprograms should be given a unique name (for example, names ending in
underscore could be used for this purpose and never be used for formals or locals).

It is possible to mask the value of a subprogram parameter with a LOCAL statement. For
example:

1000 X=7
1010 CALL Q(X)

2000 SUB Q(2)
2010 LOCAL X
2020 Z=Z+ 1

2030 END SUB

This program causes an error, “UNDEFINED VARIABLE IN LINE 2020", because the
LOCAL statement in line 2010 set X undefined while Z was referencing X. Two possible
solutions for this are:

Use a call-by-value — 1010 CALL Q(X+ 0.0)

Use a local variable whose name does not conflict with the reference parameter.
This naming convention can be extended to local variables.

4052A/4054A ENHANCEMENTS 3-11



BASIC COMMANDS

The END SUB statement DELETESs all local variables and pass by value formal
parameters in this subprogram. It then pops the stack to restore their former values. The
stack is also popped to restore the value of reference formal parameters. When the stack
is popped like this, any FORs or GOSUBs which have been done since the CALL are also
popped. Finally, END SUB transfers program control back to the statement which follows
the CALL.

If execution reaches a line containing a SUB in some fashion other than via CALL, an
error results, and program execution stops. If END SUB is executed and there is no “call”
on the stack, then an error occurs.

The CALL “SYMREUSE" statement looks through the stack and every line of BASIC code
in the memory to see which symbol table entries are still being used. Being used means
they are pointed to by code or they are a defined variable or DIMed array or string. Entries
which are not being used are freed for reuse (as other symbol table entries) when the
next APPEND is done. The number of bytes freed is returned in the numeric variable, if it
is present. If APPENDs are done of many different SUBs, each with its own set of local
variables (with different names), then “SYMREUSE" will minimize the amount of memory
required for the SUBs.

NOTE
CALL and SUB allow a comma or a semicolon between items in the list.
You might use a single semicolon to separate input arguments from the
output arguments. For example:
CALL Rect_to_Polar (X,Y;R,Theta)
SUB Rect_to_Polar (X,Y;R,Theta)
X,Y are passed into this subprogram and R,Theta are returned. Following

this convention makes it easier to read CALL and SUB statements and
figure out what they do.

312 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

CCINPUT

Syntax Form:
[Line number] CCl string variable
Descriptive Form:

[Line number] CCINPUT target variable

Purpose/Explanation

The CCINPUT (Conditional Character input) statement examines the type-ahead buffer
which holds up to 28 characters from the keyboard. If the type-ahead buffer is empty,
then CCINPUT returns a null string. Otherwise, the character code at the front of the
buffer is returned (without echoing the character on the screen) and the character
returned is eliminated from the buffer. A character code is returned for all keys on the
keyboard except PAGE, HOME, BREAK, COPY, and the UDKs (User Definable Keys). All of
these keys execute immediately rather than going into the buffer.

The Line Editor keys and some other special function keys return codes with values
above 127. The codes above 127 are:

LINE EDITOR keys Other keys

240 — EXPAND 245 — AUTONUMBER

241 — BACK SPACE 246 — STEP PROGRAM

242 — SPACE 247 — AUTOLOAD

243 — CLEAR 236 — REWIND

244 — RECALL LINE

176 — COMPRESS 137 — TAB

177 — RUB OUT — 127 — RUBOUT

178 — RUB OUT — 141 — RETURN

179 — REPRINT 138 — LF

180 — RECALL NEXT LINE 136 — BACKSPACE
NOTE

The 20 UDKs execute, and do not return a code for CCINPUT.

The 19 keys on the numeric key pad return the same code as the
corresponding keys in the center of the keyboard.

The type-ahead buffer holds up to 28 key codes.
All other keys generate their normal ASCII character.

4052A/4054A ENHANCEMENTS 3-13



BASIC COMMANDS

CENTROID

Syntax Form:
[line number] CEN numeric identifier, numeric identifier, numeric variable, numeric variable
Descriptive Form:

[line number] CENTROID X-array, Y-array, X-result, Y-result

Purpose/Explanation

The CENTROID statement calculates the centroid of a polygonal area and returns that
(X,Y) coordinate in X-result, Y-result (which can be elements of an array, for example:
CENTROID X1,Y1,X2(4),Y2). The polygonal area is defined by the X-array and Y-array
(see HATCH). The value produced is independent of the current WINDOW and VIEWPORT
settings.

The CENTROID of an area is its center of mass. For example:

100 INIT

110 DIM X1(3),Y1(3)

120 DATA 10, 20,15

130 DATA 40, 40, 80

140 READ X1,Y1

150 CENTROID X1,Y1,X2,Y2
160 ! X2isnow 15

170 !Y2is now 51.xxx

NOTE
See AREA for comments about self-intersecting polygons.

s‘r/‘/x.l'J R g o

'; CAUTION é
§

LV S ST B A oV o o o e

CENTROID will generate a divide-by-zero error if the AREA of the polygon
is zero.

3-14 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

CHR Function

Syntax Form:
CHR(numeric expr)
Descriptive Form:

CHR (integer)
CHRS (integer)

NOTE
CHR is permitted only in a LET statement (see LET).

Purpose/Explanation

Same as the original CHR except that the integer range has been expanded to O to 255,
inclusive. The function name can optionally have a $ appended as its last character.

T ara¥ oW v L

?; CAUTION g
Avoid PRinting the characters between 128 and 255. PRInting one of
these characters to the screen or plotter causes problems because their
appearance is implementation defined. PRInting one of them to the tape or
disk also causes problems because ADE 255 is used for EOF and INPUT
strips the high bit off characters. WRITE/READ should be used to
store/retrieve strings which contain these characters, or if the string
contains CHR(13) (CR) characters.

4052A/4054A ENHANCEMENTS 3-15



BASIC COMMANDS

3-16

DASH

Syntax Form:
[Line number] DAS numeric expr
Descriptive Form:

[Line number] DASH dash mask

Purpose

On the 4054/4054A screen, this sets a hardware dash pattern for displayed vectors. For
other display surfaces such as the 4052/4052A screen and plotters, the BASIC
interpreter emulates the dash pattern of the 4054 screen. (See the Option 30 Reference

Manual.)

Explanation

The dash mask is an integer between 0 and 255. This is considered to be an 8-bit binary
pattern. If a bit is O the vector is drawn. The default dash mask is 0, so all 8-bits are O.
This causes solid vectors to be drawn. Execution of an INIT statement returns the mask to

its default value.

4052A/4054A ENHANCEMENTS



BASIC COMMANDS

DIM

Syntax Form:
See the 4050 Series Reference Manual.

Explanation

DIM can now be used to dimension an array or string larger than its initial dimension. For
example:

DIM A$(10)
A$="ABC”
DIM A$(20)

has the same effect as:

DIM A$(10)
A$="“ABC"

DIM Dummy$(10)
Dummy$= A$
DELETE A$

DIM A$(20)
A%=Dummy$
DELETE Dummy$

sff Wav o P U av aF o o

> CAUTION

Doing the following:

100 DIM A$(1)

110 FOR J=1 TO MEMORY — 1000
120 DIM A$(J)

130 NEXT J

will stop in line 120 with a MEMORY FULL error when memory is half full.
This is because DIM A$(J) does this:

a. Gets a new block of J bytes of memory (error if there is no such block).
b. Copies A$ data into the new block.

c. Deletes the old data block.

4052A/4054A ENHANCEMENTS 3-17



BASIC COMMANDS

Numeric arrays can also be dimensioned larger:

DIM A(10), B(2,8), C(7,4)

DIM A(éo), B(é,ﬁ), C(7,6)

Arrays are stored in row-major order. Increasing the dimensioned size adds new floats to
the end of the linear form of the array.

R e At e L

> CAUTION N
This works as expected for one dimensional array and two dimensional
arrays in which the number of columns is unchanged. But changing the
number of columns (as in array C above) will cause floats from one row to

move to another row.

3-18 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

DISTANCE Function

Syntax Form:
DIS (numeric expression, numeric expression)
Descriptive Form:

DISTANCE (X-coordinate(s), Y-coordinate(s))

Purpose/Explanation

The DISTANCE function calculates the distance around a polygonal area, defined by an
X-array and Y-array (see HATCH). DISTANCE (X,Y) has the same effect as:

100 !assume XY have N elements

110 Distance = 0

120 For J=1 TO N—1

130 Distance = Distance + SQR ((X(J)=XUJ+1))12 + (YJ) =Y+ 1))12)
140 NEXT J

150 Distance = Distance + SQR ((X(1)=X(N))12 + (Y(1)=Y(N))12)

The value produced is independent of the current WINDOW and VIEWPORT settings. If X

and Y are scalar, then the DISTANCE(X,Y) is defined as the distance between the origin
and (X,Y).

4052A/4054A ENHANCEMENTS 3-19



BASIC COMMANDS

DO, LOOP, and EXIT IF

Syntax Form:

Line number DO
Line number EXI IF numeric expression
Line number LOO

Descriptive Form:
Line number DO

Line number EXIT IF numeric expression
Line number LOOP

Purpose

The DO statement marks the beginning of a loop. The LOOP statement transfers control
back to the statement following its DO statement. The EXIT IF statement conditionally
transfers control to the statement after the LOOP statement.

Explanation

When DO is executed its line number is pushed onto the stack, much like when a FOR is
executed. When LOOP is executed, it pops the stack to find the most recent entry for a
DO. It leaves that entry on the stack and transfers control to the first statement after that
DO. For example:

100 DO

110 PRINT “infinite loop”

120 LOOP

or

100 DO

110 PRINT “jump out of a loop”
112 A= 1

115 IF ATHEN 130

120 LOOP

Note that jumping out of the loop leaves information on the stack, much like jumping out
of a FOR/NEXT loop.

3-20

4052A/4054A ENHANCEMENTS



BASIC COMMANDS

The EXIT IF statement provides a clean way to get out of a DO/LOOP. The numeric
expression is evaluated. If it is logically false (see IF) then execution continues with the
next statement. If it is true then the BASIC interpreter looks at succeeding lines for the
matching LOOP statement, and transfers control to the statement after it. An error occurs
if EXIT IF fails to find the corresponding LOOP, or if DO wasn’t previously executed before
EXIT IF or LOOP. For example:

100 DO

110 PRINT “Enter a starting value (0 to quit) = ”;
120 INPUT N

130 EXITIF N=0 !“matches” line 230
140 DO

150 IF 2+INT(0.5*N) THEN
160 N= 0.5*N

170 ELSE

180 N= 3*N+ 1

190 END IF

200 PRINT “” N

210 EXITIFN=1 1|“matches” line 220
220 LOOP | “matches” line 140
230 LOOP | “matches” line 100

Zero or more EXIT IF statements are allowed within a DO/LOOP. The EXIT IF cannot be
used to exit a FOR/NEXT. But, of course, a FOR/NEXT can be surrounded by a DO/LOOP.
If EXIT IF is used in this manner, then the effect is to exit a FOR/NEXT cleanly:
DO
FOR J=....

EXITIF....

NEXT J
EXITIF1.0! 1.0 means “always exit”
LOOP

4052A/4054A ENHANCEMENTS 321



BASIC COMMANDS

EXCLUDE

Syntax Form:
[Line number] EXC numeric expression
Descriptive Form:

[Line number] EXCLUDE exclusion level

Purpose

The EXCLUDE statement sets an internal flag which affects comments in subsequent
OLDs and APPENDs (and BOLD, BAPPEND).

Explanation

You may want to have many comments in a large program, but not have enough memory
to run the program with the comments in. The EXCLUDE statement can be used to delete
comments in subsequent OLDs and APPENDs. Nothing resets the EXCLUDE level except
the EXCLUDE statement. That is, neither INIT nor OLD have any affect on the EXCLUDE
level.

The EXCLUDE levels are:

EXCLUDE O Leave all comments alone. This is the default value of the flag when
the system is powered on.

EXCLUDE 1 Delete all “comment tails” and change REMs to consist of just the
REM keyword itself (each such line will take 11 bytes).

EXCLUDE 2 Delete all “comment tails” and the entire REM statements.

3-22 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

s‘ T T N N N N e )

S CAUTION 2
§

L e

EXCLUDE 2 should only be used if you've written your program to never do
GOTO, GOSUB, etc., to a comment line. Also, be careful about SAVEing the
code once the comments have been excluded like this.

NOTE

If a comment tail is used as a separate statement, that is instead of a REM,
then EXCLUDE 1 and 2 treat that line as if it were a REM in terms of the
rules for EXCLUDE 1 and 2.

Overlayed programs frequently have each overlay start with a REM, due to the way their
overlay manager works. This REM, or any other that you don’t want to be affected by
EXCLUDE 1 or 2, can simply be changed to an IMAGE statement. For example:

1000 REM a comment

can be
1000 IMAGE a comment or 1000 IMAGE REM a comment

4052A/4054A ENHANCEMENTS 3-23



BASIC COMMANDS

HATCH

Syntax Form:

[Line number] HAT [I/O address] numeric identifier, numeric identifier
[Line number] HAT ROT numeric expr

[Line number] HAT SPA numeric expr

[Line number] HAT ALI numeric expr, numeric expr

Descriptive Form:

[Line number] HATCH [I/0 address] X-array, Y-array
[Line number] HATCH ROTATE angle

[Line number] HATCH SPACE distance

[Line number] HATCH ALIGN X intercept, Y intercept

Purpose

The HATCH statement crosshatches the polygonal area defined by X-array and Y-array.
The type of hatching is controlled by the statements HATCH ROTATE, HATCH SPACE,
and HATCH ALIGN. If a DASH pattern has been specified it is also used in hatching.

Explanation

The X-array, Y-array arguments define a polygonal area, with the last point in X,Y
implicitly connected to the first. Corresponding elements of X-array and Y-array are the
X and Y coordinates of the vertices of the polygon. For example, to hatch an X shaped

pattern across the screen you could enter the following program:

100 INIT

110 PAGE

120 DIM X(4),Y(4)

130 DATA 0,130,0,130
140 DATA 0,0,100,100

150 READ XY Iread line 130 for X, 140 for Y
160 HATCH XY luse default hatch pattern
170 DRAW XY Idraw perimeter

The 1/0 address allows ** " mode addressing to hatch to a GPIB device such as a plotter.
HATCH is like AXIS, in that it uses MOVE and DRAW secondary addresses.

3-24 REV, DEC 1982

4052A/4054A ENHANCEMENTS



BASIC COMMANDS

HATCH does not draw a line around the perimeter of the polygonal area. If a perimeter is
desired, it can easily be done in 2 statements:

HATCH XY
DRAW X,Y

The HATCH statement leaves the cursor at X(N),Y(N) (the last point) to make this
convenient.

HATCH does allow a polygon to be self-intersecting. But AREA and CENTROID functions
may produce unexpected answers for self intersecting polygons. HATCH does not
interrupt vectors at connection lines, overlapping vectors connecting detached areas of
the polygon, or holes internal to the polygon.

HATCH ROTATE sets the angle of rotation for crosshatched lines drawn by HATCH. The
angle is positive counterclockwise with respect to the X axis, in current trigonometric
units when HATCH ROTATE is executed (see SET RADIANS, DEGREES, GRADS). The
default angle is 0.

HATCH SPACE sets the perpendicular distance between lines drawn by HATCH. The
distance is always in GDUs, regardless of the current WINDOW. The default is 1 GDU.

HATCH ALIGN selects an (X,Y) location which affects the lines drawn by HATCH. The
hatch lines are considered to be infinitely long, and the lines are aligned so that one of
them exactly passes through the (X,Y) location. The (X,Y) location is always in GDUSs,
regardless of the current WINDOW. The default is (0,0).
NOTE
The HATCH operator takes temporary storage equivalent to three floating
point numbers for each coordinate pair in the polygon. Thus, hatching a 10

point polygon takes 240 bytes of memory during the HATCH operation.

Execution of an INIT statement returns all HATCH parameters to their default values.

4052A/4054A ENHANCEMENTS 3-25



BASIC COMMANDS

IF, ELSE, and END IF

Syntax Form:

[Line number] IF numeric expr THE line number
Line number IF numeric expr THE

Line number ELS

Line number END IF

Descriptive Form:

[Line number] IF numeric expr THEN line number
Line number IF numeric expr THEN

Line number ELSE

Line number END IF

Purpose

The “IF. . THEN line” statement conditionally transfers control to the specified line
number,

The “IF. . THEN"” statement conditionally transfers control to the next statement, or the
statement following the ELSE, or if no ELSE then to the statement following the END IF.

The “ELSE" statement transfers control to the statement following the END IF.

The “END IF” statement is ignored when executed by the BASIC interpreter.

3-26 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

Explanation

For the IF statement, the numeric expression is evaluated, and considered to be logical
true if its absolute value is greater or equal to one half (0.5).

The “IF.. THEN” transfers control to the next statement if the expression is true. If the
expression is false then the BASIC interpreter looks at succeeding lines for the matching
ELSE or END IF.

For example:
100 IF A THEN
110 PRINT “Ais TRUE";
120 IF B THEN
130 PRINT “B is also TRUE"
140 END IF  !“matches” IF in line 120
150 ELSE “matches” IF in line 100
160 PRINT “Ais FALSE"
170 END IF "matches” IF in line 100
180 REM

If Ais true and B is false, then the lines executed are: 100, 110, 120, 150, 180.

If Ais true and B is true, then the lines executed are: 100, 110, 120, 130, 140, 150, 180.
If A is false, then the lines executed are: 100, 160, 170, 180.

When an ELSE statement is executed the BASIC interpreter looks at succeeding lines for

the matching END IF. An error occurs if no match is found. An error also can occur when
an IF. . . THEN is false and a matching ELSE or END IF cannot be found.

4052A/4054A ENHANCEMENTS 3-27



BASIC COMMANDS

INSIDE Function

Syntax Form:
INS (numeric identifier, numeric identifier, numeric expression, numeric expression)
Descriptive Form:

INSIDE (X-array, Y-array, X-coordinate, Y-coordinate)

Purpose

The INSIDE function determines if an (X,Y) point is outside, on, or within a polygonal area.
Self-intersecting polygons are permitted here. In general, INSIDE will return “2” wherever
HATCH draws lines. Inside will return “1"” on connection lines (see HATCH for a
description of connection lines).

Explanation

The polygonal area is defined by an X-array and a Y-array (see HATCH). The INSIDE
function produces the following results:

0 if outside the polygonal area
1 if on the polygon (within FUZZ)
2 if inside the polygonal area

NOTE

Both 1 and 2 are logically-true for IF INSIDE(. . .) THEN. ..

3-28 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

LET String Operations

Syntax Form:
[Line number] [LET] string variable = string expr

A string expr can be:
string item [& string item [&. .. ]]

A string item can be any of:

string literal

string variable

string function — CHR, STR, SEG (TABLE and TRIM)
[Line number] [LET] string variable = REP (simple string, numeric expr, numeric expr)
where simple string is either:

string literal, or

string variable
Descriptive Form:
[Line number] [LET] target variable = string expr
Restrictions:

The target variable can appear in the string expression if:

There is more than one “&" operator, and the target variable appears only as the first item in
the list of items being concatenated (for example: AS = AS & B$ & CHR(4)... ).

The expression is one of the special forms: A$ = B$ & ASor AS="..." & AS.

Purpose/Explanation

Allows multiple concatenations and multiple uses of string functions to occur in one LET
statement. For example:

Legal Statements lllegal Statements
A% = AS & BS% A$S = B3 & CS$ & AS
A$ = A$& BS &C$ A$ = CHR(7) & A$
A$ = B$ & AS AS$ = BS$ & SEG(A$,JK)

A$ = A$ & CHR(13) & CHR(10)
A$ = B$ & STR(X) & C$ & SEG(B$,J K)

4052A/4054A ENHANCEMENTS 3-29



BASIC COMMANDS

MOD Operator

Syntax Form:

numeric expr MOD numeric expr

Purpose/Explanation

MOD is a numeric operator which produces the remainder of a division operation. It has
the same precedence as MIN and MAX.

A MOD B is defined to be A—B*INT(A/B)
A SIZE error is produced if B is zero.
For example;

7MOD3is 1

8 MOD 3is 2
9MOD3is 0
—7MOD3is 2

7 MOD —83is —2
—7MOD —3is —1

3-30 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

RENUMBER

Syntax Form:

[Line number] REN [numeric expression [,numeric expression [line number [line number in
current program]]]]

Descriptive Form:

[Line number] RENUMBER [new starting line number [increment between new line numbers
[,starting line number in current program [final line number]]]]

Purpose

The RENUMBER statement causes the BASIC interpreter to renumber the lines in the
current program. The specified parameters provide directions for the renumber operation.
If parameters are not specified, then the BASIC interpreter renumbers all program
statements with line numbers greater than 100. These statements are renumbered with
an increment of 10 starting with line number 100.

Explanation

The parameters of the RENUMBER statement specify which statements are to be
renumbered and how they are to be renumbered. The parameters are optional and if not
specified the BASIC interpreter renumbers the program according to the default
parameters (100,10,100). The final line number provides the programmer with the facility
to renumber a range of statements in the program without having to renumber from a
particular point to the end.

4052A/4054A ENHANCEMENTS 3-31



BASIC COMMANDS

3-32

RND Function

Syntax Form:

RND (numeric expression)

Purpose/Explanation

RND (X) returns a random number between 0 and 1. RND (0) returns a predefined value
for each 4050 series instrument, therefore it can be used in a program to determine which

4050 series instrument is being used.

RND (0) returns the following value:

4051

4052

4054

4054 Opt. 30
4052A
4054A

4054A Opt. 30

0.1...

L0 )7 0 I

Q88

0.50...

0.79...

0.89...

0.59. .:

4052A/4054A ENHANCEMENTS



BASIC COMMANDS

RSUM and CSUM Functions

Syntax Form:

RSUM (numeric identifier)
CSUM (numeric identifier)

Descriptive Form:

RSUM (array)
CSUM (array)

Purpose/Explanation

The sum of all the rows (or columns) of a 2-dimensional array is formed by using RSUM
(or CSUM). For example:

DIM A(3,4), B(3), C(4)

A= (..)!Assign valuestoA

B = RSUM(A)

C = CSUM(A)

B = CSUM(A) lerror, since size of B doesn't match number of columns of A
B = RSUM(C) lerror, since C is a vector (this would work if B were DIMed (4)
because RSUM and CSUM work on vectors)

Also see the SUM function.

4052A/4054A ENHANCEMENTS 3-33



BASIC COMMANDS

SEARCH Function

Syntax Form:

SEA (simple string, simple string, numeric expr) where simple string is either a string literal or a
string variable

Descriptive Form:

SEARCH (string to be searched, rules for the search, starting location for the search)

Purpose

The SEARCH function searches for and returns the position of the first character (not a
substring of characters) which satisfies the rules for the search. The search begins at the
specified starting location and proceeds from left to right.

Explanation

The second parameter specifies the rules for the search. It must be a string of pairs of
characters, with non-decreasing ASCIl numeric values. For example:

“09AZaz” is correct,
“AZ09az" will be an error, since “0” has ASCII value of 48 and “Z" is 90,

“09A" is also an error, since its length is odd.

A character satisfies the rules of this string if its ASCIl numeric value is >= 1st
character of a pair and = < 2nd character of a pair (for any of the pairs). For example:

SEARCH(AS$,“09",J) — starts at J in A$ and finds the first numeric digit extent in A$
(any of “0123456789").

B$ = CHR(0) & CHR(31) & CHR(33) & CHR(255).
SEARCH (A$,B$,J) — searches for the first non-blank (blank is 32) in A$, starting at J.

SEARCH(AS,". .09AZaz" J) — searches for a period, digit, upper case letter, or lower
case letter.

If no character is found which satisfies the rules, then 0 is returned. SET CASE and SET
NOCASE have no effect on SEARCH.

3-34 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

TABLE Function

Syntax Form:

TAB (simple string, simple string)

Descriptive Form:

Table (source string, translate table)
Table (source string, translate table)

NOTE

TABLE can only be used in a LET statement (see LET).
Purpose
The TABLE string function produces a new string from the source string and translate
table.
Explanation
Each character from the source string is treated as an ASCII decimal number. That
number plus 1 is used as an index into the translate table. The character found at that

position is put into the result string. For example:

The length of the translate table could be 256, and could translate ASCII to EBCDIC
(IBM), or visa versa.

A$ = CHR(3) & CHR(10) & CHR(11)

B$ = TABLE(AS, “0123456789ABCDEF”)
would assign the result “3AB" into B$

A$ = TABLE(AS,. ) is also legal

TABLE (A%$,B$) will produce an error if a character from A$ has a decimal value greater
than LEN(B$)—1.

The function name can optionally have a $ appended as its last character.
NOTE

Each of the four string functions, STR, CHR, SEG, and REP can also have a
$ appended as its last character.

4052A/4054A ENHANCEMENTS REV, DEG 1982 3-35



BASIC COMMANDS

TRIM Function

Syntax Form:

TRI (simple string)

Descriptive Form:

TRIM (source string)
TRIMS$ (source string)

NOTE

TRIM can only be used in a LET statement (see LET).

Purpose/Explanation
The TRIM string function takes a source string and produces a new string, which is the
same as the source string, except that leading and trailing blanks have been removed. For

example:

B$ = TRIM(* ABC ")
assigns “ABC" to B$

A% = TRIM(AS)
trims blanks from AS$, in-place

The function name can optionally have a $ appended as its last character.

3-36 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

UBOUND Function

Syntax Form:
UBO ( numeric or string expression, numeric expression )

Descriptive Form:

numeric expression )

UBOUND ( | numeric variable | string variable | array element | numeric expression | string literal | ,

Purpose

The UBOUND (Upper Bound) function returns size and type information about a variable
or array element.

Examples

100 Dim A(15,4)

110 Rem print number of rows of an array

120 Print Ubound(A,1)

130 Rem print number of columns of an array

140 Print Ubound(A,2)

150 Rem print number of elements in a numeric variable of unknown type
160 Print ABS(Ubound(X,1)*Ubound(X,2))

190 Rem If A$ is not currently DIM’ed then DIM it
200 If Ubound(A$,1)< >0 Then 220

210 Dim A$(100)

220 Rem Continue

300 Rem Find the sum of all defined elements in one dimensional array X
310 Total=0

320 FOR J=1 TO Ubound(X,1)

330 IF Ubound(X(J),1)= 0 THEN 350

340 Total= Total+ X(J)

350 NEXT J

4052A/4054A ENHANCEMENTS

3-37



BASIC COMMANDS

Explanation
The first parameter is a variable (or array element) whose attributes are being queried.

The second parameter indicates what kind of information is desired. For arrays, the
second parameter allows you to find the upper bound of dimensions 1 and 2 of the array.
If the parameter is not a numeric expression which rounds to 1 or 2 (or —1 or —2), then
an error is generated.

UBOUND(A,NX) returns the following values:

If Ais a one-dimensional array:
NX= 1 returns DIM’ed length of A
NX= 2 returns —1

If Ais atwo-dimensional array:
NX= 1 returns length of 1st dimension
NX= 2 returns length of 2nd dimension

If A is one or two-dimensional:
NX= —1 returns the current number of elements in the array.
Doing LET T= UBOUND(A,—1) is the same as:
LET A=1 | sets every element o1
LET T=SUM(T)
NX= —2 returns the largest number of elements created in the array since it
was last created. For example:

DIM A(10)

DIM A(1000)

DIM A(4,5)

LET T= UBOUND(A,—2) !sets T to 1000

LET T= UBOUND(A,—1) !sets T to 20 (20= 4*5)

If Ais notan array:
NX=1 or 2 returns O if A is undefined
NX=1 or 2 returns —1 if A is defined
NX= —1 or —2 always returns 1

3-38 4052A/4054A ENHANCEMENTS



BASIC COMMANDS

UBOUND(A$,NX) returns the following values:
If A$ is undefined and un-DIM’'ed:
all NX return O

If A% is undefined but DIMensioned:

NX=1 or 2 returns —0.2

NX= —1 returns the current DIM of A$

NX= —2 returns the largest DIM of A$

For example:

DIM A$(100)
DIM A$(10000)
DIM A$(4)
T=UBOUND(AS, 1) !sets Tto —0.2
T=UBOUND(AS$,—1) | sets T to 4
T=UBOUND(A$,—2) ! sets T to 10000

If A$ is defined:
NX=1 or 2 returns —1
NX= —1 returns the current DIM of A$
NX= —2 returns the largest DIM of A$

UBOUND(A[E1],NX) or UBOUND(A[E1,E2],NX) (where E1 and E2 are any expression)
returns the following values:

NX=1 or 2 returns 0 if the array element is undefined
NX=1 or 2 returns —1 if the array element is defined
NX= —1 or —2 always returns 1

UBOUND applied to any other kind of numeric expression, or to a string literal, may not be
useful; however, it returns the following:

For other kinds of numeric expressions:
NX=1 or 2 returns —1
NX= —1 or —2 always returns 1

For string literals:

NX=1 or 2 returns —1
NX= —1 or —2 returns the length of the literal

4052A/4054A ENHANCEMENTS

3-39



BASIC COMMANDS

Table 3-1 summarizes the results of the UBOUND function for various inputs.

Table 3-1

UBOUND Function Results

Identifieir Request Result ~
Numeric Scalar 1or2 0 if undefined
—1 if defined
1 dimension array 1 Dimensioned]ength
2 dimension array 1 First dimension (rows)
2 Second dimension (columns)
1 or 2 dimension array —1 Number of elements in array
-2 Largest number of elements
dimensioned
String —-1,—21,2 0 if undefined
1,2 —0.2 if defined
—1 Current DIM
-2 Largest DIM

3-40

4052A/4054A ENHANCEMENTS



Section 4

GPIB COMMANDS

ADDRESS LIST ARRAYS

The syntax for < address list> is as follows:
< address list> = <address> [; <address>]...

< address> = < primary address>
< extended address>
< address array>
< extended address array>

< primary address> numeric expression

numeric expression , numeric expression

< extended address>

< address array> one dimensional array

< extended address array> = two dimensional array

Arrays of addresses have the characteristics described in the following paragraphs.
One dimensional arrays address devices using only primary addresses.

Two dimensional arrays address devices which implement extended talker or extended
listener functions. These functions require both primary and secondary addresses. In
these arrays, element Ali,1) is the primary address for device i, and element A(i,2) is the

secondary address for device i. Other columns such as A(i,4) are ignored.

Negative values in an address array are ignored. Undefined values generate error number 36.

4052A/4054A ENHANCEMENTS

4-1



GPIB COMMANDS

In a two dimensional array, if the primary address is negative, then neither primary nor
secondary address is sent.

The values in the array should be in the range 1 to 30 for primary addresses, and 0 to 30
for secondary addresses. If a variable is not in this range, then error 66 is generated. The
exception is that 4050 series instruments ignore 32 as a secondary address. Undefined
addresses generate error number 36. The correct bias to form a Talk, Listen or secondary
address is added by each command.

Non integer addresses are first rounded to integers.

In commands where < address list> is optional, if an address list is specified, then the
bus configuration is cleared upon completion of the command by sending untalk and
unlisten (UNT and UNL) messages. If no address list is specified when it is optional, then
it is assumed that the talker or listener have been previously configured, and they are not
unconfigured upon completion. The exception to this rule is for the TALK and LISTEN
commands, whose function would be defeated by clearing the bus configurations.

4-2 4052A/4054A ENHANCEMENTS



GPIB COMMANDS

CONFIGURE

Syntax Form:
[Line Number] CAL “CONFIG” [ , numeric expression ], numeric variable : array variable
Descriptive Form:

[Line Number] CALL “CONFIGURE" [, timeout ] , code ; address(es)

Purpose

Returns in the array variable an address list which represents the addresses of all active
devices on the bus. The address list is in the form described under Address List Arrays.
For example:

100 Dim A(15,2)

110 Call “Config”,E;A
120 If E Then

130 GoSub 2000
140 End If

2000 Print “No devices active on bus”
2010 Return

4052A/4054A ENHANCEMENTS

4-3



GPIB COMMANDS

Explanation

The method used to determine whether a device is present on the bus at a given address
is to send the UNL message followed by a listen address. If a device is present at that
address, it asserts the NDAC line when ATN is unasserted. Because there is no
specification in the IEEE-488 standard, concerning the length of time a device may
continue to assert NDAC after ATN goes false when the device is not a listener, a timeout
value is required.

The timeout value is specified in milliseconds, and must round to a value within the range
0 to 65535. Values outside of this range generate error number 96. This parameter is
optional, and if not present the timeout value will be 1 mS.

If the array variable is one dimensional, then only primary addresses are tested. If the
array is two dimensional, then extended addressing will be used. If the parameter is not
an array variable, then error message number 18 will occur.

For extended addressing, a two step addressing scheme is used. First, each primary
address is tested. For any device which responds, the secondary address in the array is
set to —1.If no device responds to the primary address, then sequential secondary
addresses are sent out, and if a device responds, the address is put into the array.

If the array is not filled, then it is auto-dimensioned to the size corresponding to the
number of devices which responded.

The following values are returned in the code parameter:
0 = No occurred.

1 = Array is not large enough to contain address list.
2 = No devices responded. The array is left unchanged.

4-4 4052A/4054A ENHANCEMENTS



IFC (InterFace Clear)

GPIB COMMANDS

Syntax Form:
[Line number] CAL “IFC"
Descriptive Form:

[Line number] CALL “IFC”

Purpose
To clear the GPIB bus. For example:

200 Call “IFC”

Explanation

Asserts the Interface Clear (IFC) bus management line for a minimum of 5 mS.

4052A/4054A ENHANCEMENTS

4-5



GPIB COMMANDS

OFF SRQ

Syntax Form:
[Line number] OFF SRQ
Descriptive Form:

[Line number] OFF SRQ

Purpose

Disables the service request (SRQ) interrupt from being recognized by the 4050 system.
For example:

200 OFF SRQ

Explanation

This instruction disables trapping of SRQ bus interrupts. An SRQ interrupt which occurs
while trapping is disabled will not cause an error or transfer of control. It differs from the
original 4050 series implementation in that errors will not be reported when SRQ
interrupts occur while disabled. Power up and INIT default to this condition.

4-6 4052A/4054A ENHANCEMENTS



GPIB COMMANDS

OFF TIMEOUT

Syntax Form:
[Line Number] OFF TIM
Descriptive Form:

[Line Number] OFF TIMEOQUT

Purpose

This call disables trapping of GPIB timeouts.

Explanation

At power up and INIT, timeout trapping is disabled.

4052A/4054A ENHANCEMENTS 4-7



GPIB COMMANDS

4-8

ON SRQ

Syntax Form:
[line number] ON SRQ THE numeric variable
Descriptive Form:

[line number] ON SRQ THEN line number

Purpose

Enables trapping of SRQ conditions by BASIC programs, and specifies the line number to
branch to when an SRQ occurs. For example:

100 ON SRQ THEN 2000
2000 Rem GPIB interrupt handling routine
2010 Return

Explanation

This instruction differs from the original 4050 series instruction in that it enables the SRQ
trapping as well as specifying a line number.

When this statement is executed the interrupt capability is re-enabled, the state of the
SRQ line is tested and, if asserted at that time, a transfer of control occurs to the line
number specified. Specifying an invalid line numbers generates error message number
51.

At power up and INIT, SRQ trapping is disabled.

4052A/4054A ENHANCEMENTS




GPIB COMMANDS

ON TIMEOUT

Syntax Form:
[Line number] ON TIM THE line number
Descriptive Form:

[Line number] ON TIMEOUT THEN line number

Purpose

This command enables you to trap GPIB timeouts and specify the line number of the trap
routine. For example:

100 Call“TimSet",1,20E—3
110 On Timeout Then 2000

150 Print @ A:S$

200 Off Timeout

2000 Print “GPIB timeout”

2010 Return
Explanation
This instruction enables the GPIB timeout capability, and specifies the line number of the
trap routine for the case of 1/0 statements. For the POLL statement, a timeout does not

cause transfer of control to the trap routine, but simply advances the poll address.

Once in the trap routine, a RETURN statement transfers control to the statement following
the one being executed when the timeout occurred.

Specifying an invalid line number generates error number 51.

4052A/4054A ENHANCEMENTS 4-9



GPIB COMMANDS

4-10

POLL

Syntax Form:
[Line number] POL numeric variable , numeric variable ; < address list>
Descriptive Form:

[Line number] POLL index , status ; address(es)

Purpose

Issues a serial poll to the devices in the address list. A status byte is returned from the
device requesting service, or the last device which responded to the poll. For example:

100 Dim A(15)
110 On SRQ Then 2000

200 On SRQ Then 3000

300 Rem Get status from device 6
610 Poll i,s;6

2000 Call “Config” ,E;A
2010 Poll 1,S;A
2030 Rem Service SRQ

3000 Rem Poll 3 devices — one uses secondary addressing
3010 Poll 1,5;5;3;9,4
3020 Rem Service SRQ

4052A/4054A ENHANCEMENTS



GPIB COMMANDS

Explanation

This command is an upward compatible extension of the original 4050 series POLL
command. It differs in the following ways:

It adds the capability to use the address lists described in section 4.01 of this
document,

A status byte is returned whether or not a device was requesting service.
A user selected timeout can be applied.

The first parameter returns an index into the address list indicating which device the
status byte is from. If no device responded with RQS bit set in the status byte then the
index is returned set to zero.

The second parameter is the status byte returned from the device. If no device returns
with RQS set, then this parameter will be the one from the last device which did not
timeout. If all devices timeout then zero is returned. This allows the POLL statement to be
used to get device status even if no SRQ has been asserted.

The rest of the arguments are addresses, and follow the conventions outlined usder
Address List Arrays.

The timeout threshold is infinite at power up and after INIT. It may be altered via a
CALL“TIMSET” command. If a device does not respond to the poll within the threshold,
then the poll continues with the next address.

At the end of the serial poll, the Serial Poll Disable (SPD) and Untalk (UNT) messages are
sent.

4052A/4054A ENHANCEMENTS

4-11



GPIB COMMANDS

4-12

RENOFF

Syntax Form:
[Line Number] CAL “RENOFF"
Descriptive Form:

[Line Number] CALL “RENOFF"

Purpose

Unasserts the Remote ENable (REN) line.

Explanation

This is the only way to unassert the REN line under program control. (In the event of a
source handshake error (GPIB error message 69) the REN line is cycled for 100 ms
minimum.) As long as REN is false, devices will stay in the Local State (LOCS). The REN

line is asserted on power up and INIT.

4052A/4054A ENHANCEMENTS



GPIB COMMANDS

RENON

Syntax Form:
[Line Number] CAL “RENON"
Descriptive Form:

[Line Number CALL “RENON"

Purpose

Asserts the Remote ENable (REN) line.

Explanation

The REN line is also asserted on power up and INIT.

4052A/4054A ENHANCEMENTS 4-13



GPIB COMMANDS

4-14

TIMSET

Syntax Form:
[Line number] CAL “TIMSET" , numeric expression [, numeric expression |
Descriptive Form:

[Line number] CALL “TIMSET", I/O time threshold [, POLL time threshold ]

Purpose

This call allows time thresholds to be set for use with the ON TIMEQUT statement. For
example:

100 Rem Set I/0O timeout to 50 mS. and leave POLL timeout as is
110 Call“TimSet",50E—3

200 Rem Set I/0 timeout to 1.5 S., Poll timeouts to 90 mS.
210 Call“TimSet"”,1.5,90E—3

300 Rem Leave I/0 timeout as is, set Poll timeout to 50 mS.

310 Call“TimSet”,—1,50E—3
Explanation
The times are specified in seconds, and are rounded to the nearest millisecond. A value of zero
indicates an infinite timeout, and is the default on power up and after INIT for I/O. The POLL
default timeout is 100 ms.

NOTE

Maximum time that can be specified is 65.535 seconds. Larger values than this
will result in an error message.

The first threshold applies to I/O transfers. The second threshold applies only to the POLL
statement. If the second parameter is not present, or if either is negative, then that threshold is

not affected.

The actual time threshold is only approximate. The actual time may be much larger than the
number specified, especially if many interrupts occur from the keyboard, display, etc.

REV, JUN 1983 4052A/4054A ENHANCEMENTS



ABS
ACOS
ACS

* ALIGN
ALL

* ALTER
AND

* ANGLE
APPEND

* AREA
ASC
ASIN
ASN
ASSIGN
ATAN
ATN
AXIS

BLINK
BRIGHTNESS

CALL
CASE

* CCINPUT

* CENTROID
CHARSIZE
CHR

* CHR$
CLOSE
COPY
COSs
CREATE

* CSUM
CURSOR

* = New keyword in 4052A and 4054A.

4052A/4054A ENHANCEMENTS

Appendix A

BASIC KEYWORDS

DASH
DATA
DEF
DEGREES
DELETE
DET

DIM
DIRECTORY
DISTANGCE
DO
DRAW

ELSE
END

EOF

EOI
EXCLUDE
EXIT
EXP

FIND
FIX
FNA
FNB
FNC
FND
FNE
FNF
FNG
FNH
FNI
FNJ
FNK
FNL

FNM
FNN
FNO
FNP
FNQ
FNR
FNS
FNT
FNU
FNV
FNW
FNX
FNY
FNZ
FONT
FOR
FULL
FUZZ

GIN
GO
GOSuUB
GRADS

HATCH
HOME

IF
IMAGE
INIT
INPUT
INSIDE
INT
INV

KEY
KILL

LEN
LET
LGT
LIST
LOCAL
LOG
LOOP

MARK
MAX
MEMORY
MIN
MOD
MOVE
MPY

NEXT
NOCASE
NOKEY
NORMAL
NOT

OF
OFF
OLD
ON
OPEN
OR

A-1



BASIC KEYWORDS

A-2

PAGE

Pl
POINTER
POLL
POS
PRINT

RADIANS
RAPPEND
RBYTE
RCLOSE
RDELETE
RDRAW
READ
REM
RENUMBER
REP
REPS
RESTORE
RETURN

RINIT
RMEMORY
RMOVE
RND
ROPEN
ROTATE
RREPLACE
RSPACE
RSUM
RUN

SAVE
SCALE
SEARCH
SECRET
SEG
SEG$
SET
SGN
SIGN

* = New keyword in the 4052A and 4054A.

SIN
SIZE
SPACE
SQR
SRQ
STEP
STOP
STPOINT
STR
STR$
SuB
SUM

TABLE
TABLES
TAN
THEN
TIMEOUT
TLIST
TO

TRACE
TRIM
TRIMS
TRN
TYP

UBOUND
UNIT
USING

VAL
VIEWPORT
VISIBILITY

WAIT
WBYTE
WINDOW
WRITE

4052A/4054A ENHANCEMENTS



Message
Number

0

18

2a

33.

42

5a

62

Appendix B

ERROR MESSAGES

Error Message

A firmware failure has occurred. Turn OFF the power switch and wait five
seconds before turning it ON again.
Example:
Loading into the 4051 a program which contains commands available only
in the 4052/4054 Graphic Systems.

An arithmetic operation has resulted in an out of range number.
Example:
1/1.0E—308

A divide by zero operation has resulted in an out of range number.
Example:

4/0
Or an attempt was made to do MOD 0 (4052A/4054A only).

An exponentiation operation has resulted in an out of range number.
Example:
511.0E+ 300

An exponentiation operation involving the base e has resulted in an out of
range number.
Example:

EXP (1.0E+ 234)

The parameter of a trigonometric function is too large; that is, the variable N
in the statement A= SIN(N*2*P|) is greater than 65536.
Example:

A= SIN(4.2E+ 5) when the trigonometric units are set to RADIANS.

An attempt has been made to take the square root of a negative number. The
positive square root is returned by default.
Example:

SQR (—4)

aThis error is caused by a math operation which produces a predefined out of range number. This error
condition can be handled by the BASIC program without terminating program execution. Refer to the
ON...THEN. .. statement in the 4050 Series Graphic System Reference Manual for details.

4052A/4054A ENHANCEMENTS

B-1



ERROR MESSAGES

Message
Number Error Message
7 The line number in the program line is not an integer within the range 1 to
65535.
Example:
0 REM THIS IS AN INVALID LINE NUMBER
8 The matrix arrays are not conformable in the current math operation; that is,
they are not of the same dimension and/or do not have the same number of
elements.
Example:
INIT
DIM A(2),B(2),C(3)
A=1
B=2
C=A+B
Or an illegal operation was attempted in CSUM or RSUM which resulted in a
shape error (4052A/4054A only).
9 A previously defined numeric variable can not be dimensioned as an array
variable without deleting the numeric variable first.
Example:
INIT
B=3
DIM B(2,2)
10 There is an error in the subscript of a variable due to one of the following:
1. A numeric variable can’t be subscripted.
2. A subscript is out of range.
Example 1: Example 2:
INIT INIT
DIM A(2,2) B=3
A(2,3)=5 PRINT B(4)
11 An attempt has been made to use an undefined DEF FN function.

12 There is a parameter error in the CALL statement to a ROM pack.
Or the target string is the same as the string to be rotated in BITROTATE, or

the absolute value of the bit number to rotate or shift is greater than
(2.0E+ 16)—1 (4052A/4054A only).

B-2 4052A/4054A ENHANCEMENTS



Message
Number

13

14

15

16

1

18

19

20

ERROR MESSAGES

Error Message

A WBYTE parameter is not within the range —255 through + 255.
Example:
WBYTE 300

A parameter for the APPEND statement is invalid.
An attempt has been made to APPEND to a nonexistent line number.

There is an invalid parameter in the FUZZ statement.
Example: FUZZ —10

There is an invalid parameter in a RENUMBER operation due to one of the

following:

1. The first or third parameter is not a line number within the range 1
through 65535.

2. Theincrement (second parameter) is not within the range 1 through
65535 or is so large that out of range line numbers are generated during
the RENUMBER operation.

3. Statement replacement or statement interlacing will occur if the RENUM-
BER operation is attempted.

This error may occur during an APPEND operation.
Not used.
There is an invalid parameter in a GO TO, FOR, or NEXT statement.
Example:
500 FOR I= 1 to 20 where | has been previously defined as an array

variable.

The logical unit number specified in the statement is not within the range 0
through 9.

100 ON EOF (10) THEN 500

4052A/4054A ENHANCEMENTS B-3



ERROR MESSAGES

Message
Number Error Message
21 The assignment statement is invalid because of one of the following:

1. An attempt has been made to assign an array to a numeric variable.

2. Two arrays in the statement are not conformable (not of the same
dimension and/or do not have the same number of elements).

3. An attempt has been made to assign a character string to a string
variable and the character string is larger than the dimensioned size of
the variable.

22 There is an error in an exponentiation operation because the base is less

than 0 and the exponent is not an integer less than 256.

Example:

—1012575

23 An attempt has been made to take the LOG or LGT of a number which is
equal to or less than 0.
Example:
LOG (—1)

24 The parameter of the ASN function or the ACS function is not within the
range —1 to + 1.
Example:
ASN (2)

25 The parameter of the CHR function is not within the range 0 through 127
(4051/4052/4054) or within the range 0 through 255 (4052A/4054A).
Example:

A$= CHR(257)

26 Not used.
27 The parameter is out of the domain of the function.
Example:
A$= STRI(X)

where X has been previously defined as an array variable.

Or an illegal operation was attempted in CSUM or RSUM which resulted in a
size error (4052A/4054A only).

28 A REP function parameter is invalid.

B-4 4052A/4054A ENHANCEMENTS



Message
Number

29

30

318

32

33

34

35

36

37

ERROR MESSAGES

Error Message

The parameter in the VAL function is not a character string containing a valid
number.
Example:

A= VAL(“Hi")

The matrix multiplication operation failed because the arrays are not
conformable.

The matrix inversion failed because the determinant was 0. This error is
treated as a SIZE error.

The routine name specified in the CALL statement can not be found.
Example:
CALL “FIX IT” where the routine “FIX IT” resides in a ROM pack which is
not plugged into the System.

Not used.

The DATA statement is invalid because of one of the following:

1. Thereisn't a DATA statement in the current BASIC program.

2. There is not enough data in the DATA statement from the present position
of the pointer to the end of the statement.

3. An attempt has been made to RESTORE the data statement pointer to a
nonexistent DATA statement.

The statements DEF FN, FOR, and ON ... THEN ...can not be entered
without a line number.

There is an undefined variable in the specified line. A numeric variable has
not been assigned a value or an array element has not been assigned a
value.
Example:

INIT

DIM A(2,2)

A(1,2) = 4

PRINT A

An extended function ROM (Read Only Memory) is required to perform this
operation.

2This error is caused by a math operation which produces a predefined out of range number. This error
condition can be handled by the BASIC program without terminating program execution. Refer to the
ON...THEN.. . statement in the 4050 Series Graphic System Reference Manual for details.

4052A/4054A ENHANCEMENTS B-5



ERROR MESSAGES

Message
Number Error Message

38 This output operation cannot be executed because the current BASIC
program is marked SECRET.

39 This operation can not be executed because the Random Access Memory is
full. Some program lines or variables must be deleted.

40 Not used.

41 A SIZE interrupt condition has occurred and an ON SIZE THEN statement
has not been executed in the current BASIC program.

42 A PAGE FULL interrupt condition has occurred.

43 A peripheral device on the General Purpose Interface Bus is requesting
service and an ON SRQ THEN ... statement has not been executed in the
current BASIC program.

44 The EOI signal line on the General Purpose Interface Bus has been activated
and an ON EOI THEN ... statement has not been activated in the current
BASIC program.

45 A ROM pack is requesting service and the ON UNIT for external interrupt
number 1 has not been activated in the current BASIC program.

46 A ROM pack is requesting service and the ON UNIT for external interrupt
number 2 has not been activated in the current BASIC program.

47 A ROM pack is requesting service and the ON UNIT for external interrupt
number 3 has not been activated in the current BASIC program.

48 The end of the current file has been reached on an I/0 device and an ON
EOF THEN ... statement has not been executed in the current BASIC
program.

49 The statement in the specified line is too long. This error situation occurs if

an attempt is made to LIST or SAVE a BASIC program which contains a line
with more than 72 characters. Sometimes a RENUMBER operation can make
a line longer than 72 characters.

B-6 4052A/4054A ENHANCEMENTS



Message
Number

50

51

52

53

54

55

56

57

58

59

60

ERROR MESSAGES

Error Message

The incoming BASIC program contains a line with more than 72 characters.

The line number specified in this statement cannot be found or is invalid.
Example:
GO TO 500 where the line 500 doesn’t exist or PRINT USING 100: where
line 100 isn't an IMAGE statement.

Either the specified magnetic tape file doesn't exist or an attempt has just
been made to KILL the LAST (dummy) file.

After 10 attempts, the internal magnetic tape unit has been unable to read a
portion of the current magnetic tape. The tape head has been positioned after
the bad portion in the file to allow the rest of the file to be read.

The end of the magnetic tape medium has been detected. Marking a file
longer than the remaining portion of the tape can cause this error.

An attempt has been made to incorrectly access a magnetic tape file.
Example:
Executing an OLD statement when the tape head is positioned in the
middle of a file.

An attempt has been made to send information to a write-protected tape.
Remove the tape cartridge, rotate the write-protect cylinder until the black
arrow points away from SAFE, insert the tape cartridge, and try the operation
again.

An attempt has been made to read to or write to a nonexistent tape cartridge.
Insert a tape cartridge into the tape slot and try the operation again.

An attempt has been made to read data which is stored in an invalid
magnetic tape format. The tape format must be compatible with the Graphic
System.

A program was not found when the OLD statement was executed.

Not used.

4052A/4054A ENHANCEMENTS

B-7



ERROR MESSAGES

Message
Number Error Message
61 An attempt has been made to execute an invalid operation on an open
magnetic tape file.
Example:
Executing a MARK statement with the tape head positioned in the middle
of an open data file.
62 There is a disc file system parameter error.
63 There is an error in a binary data header, most likely caused by a machine
malfunction.
64 The character string is too long to output in binary format. The length is

limited to 8192 characters.

65 A parity error has occurred in the 4052 or 4054 RAM memory. Although the
error is nonfatal (and the message will not be repeated), further operations
are unreliable until power has been turned off and back on. In the 4051 this
error is not used.

66 The primary address in the specified line is not within the range 1 through
255.

67 An attempt has been made to execute an illegal I/0 operation on an internal
peripheral device.
Example:
DRAW 33:50,50

68 The diagnostic loader failed.

69 An input error or an output error has occurred on the General Purpose
Interface Bus. Both the NDAC and NRFD signal lines are inactive high, which
is an illegal GPIB state. This usually means that there are no peripheral
devices connected to the GPIB.

70 There is an incomplete literal string specification in the format string.
Example:

100 IMAGE 6D,5(“MARK

71 A format string is not specified for the PRINT USING operation.

B-8 4052A/4054A ENHANCEMENTS



Message
Number

72

73

74

75

76

57

ERROR MESSAGES

Error Message

A format string is too short or not enough matching data is specified.
Example:

100 IMAGE 6D

110 PRINT USING 100: 23,24,25
Line 100 should be: 100 IMAGE 3(6D)

There is an invalid character in the format string specified in the PRINT
USING statement.

An n modifier in the format string is out of range or is incorrectly used. When
used with the E field operator, n modifiers must be positive integers within
the range 1 through 11; they must be within the range 1 through 255 when
used with the AD,LP,T.X,“, (, and / field operators.

The format string specified in the PRINT USING statement is too long (that is,
there are too many data specifiers for the PRINT statement).
Example:
100 IMAGE 3(6D)
110 PRINT USING 100:AB
Line 100 should be: 100 IMAGE 2(6D)

Parentheses are incorrectly used in the format string which is specified in
the PRINT USING statement.
Example:
100 IMAGE 2(6D
110 PRINT USING 100:A,B
Line 100 should be: 100 IMAGE 2(6D)

There is an invalid modifier to a field operator in the format string which is
specified in the PRINT USING statement.
Example:
100 IMAGE 2(6D),2S
110 PRINT USING 100:AB
Line 100 should be: 100 IMAGE 2(6D),S
An n modifier is not allowed.

4052A/4054A ENHANCEMENTS B9



ERROR MESSAGES

B-10

Message
Number

78

79

80

81

82

83

Error Message

An S modifier is incorrectly positioned in the format string which is specified
in the PRINT USING statement. The S modifier must always be positioned at
the end of the format string.
Example:

100 IMAGE 4D,S,8A
Line 100 should be: 100 IMAGE 4D,8A,S

A comma is incorrectly used in the format string which is specified in the
PRINT USING statement.
Example:
100 IMAGE 6D,S
Line 100 should be: 100 IMAGE 6D,S

A decimal point is incorrectly used in the format string which is specified in
the PRINT USING statement.
Example:
100 IMAGE 3D
110 PRINT USING 100:812.345
Line 100 should be: 100 IMAGE FD.3D

A data type mismatch has occurred in the PRINT USING statement.
Example:

100 IMAGE 6D,6A

110 PRINT USING 100: “MARY”,26
Line 100 should be : 100 IMAGE 6A,6D

A tabbing error has occurred in the format string which is specified in the
PRINT USING statement.
Example:

100 IMAGE 10A,2T,FD

110 PRINT USING 100: “ENTER DATA” D
The absolute tab to position 2 specified by 2T in line 100 cannot occur
because the cursor has already advanced beyond position 2. The tab
specification must be at least 11T in this case.

A number specified in the PRINT USING statement contains an exponent
outside the range = 127.
Example:

100 IMAGE FD.3D

110 PRINT USING 100:8.5E+ 200

4052A/4054A ENHANCEMENTS



Message
Number

84

85

86

87

88
89
90
91
92
93
94

95

96

ERROR MESSAGES

Error Message

The IMAGE format string was deleted during the PAGE FULL interrupt
routine.

A portion of the IMAGE format string was deleted or altered during the PAGE
FULL interrupt routine.

A portion of the data specified in the PRINT statement was deleted during the
PAGE FULL interrupt routine.

A data item specified in the PRINT USING statement is too large to fit into the
print field specified in the format string.
Example:
100 IMAGE 5A
110 PRINT USING 100: “HORSE FEATHERS”
In this example, the string constant “HORSE FEATHERS" is too large to fit
into the 5 character field which is specified in line 100.
Not used.
A ROM pack has issued an error message.
Not used.
Not used.
Not used.
Not used.

Not used.

An internal conversion error has occurred because a parameter in the
specified statement is negative.

An internal conversion error has occurred because a parameter in the
specified statement is greater than 65535.

4052A/4054A ENHANCEMENTS B-11



ERROR MESSAGES

NOTE

Messages numbered 97 through 109 apply to the 4052A and 4054A only.

Message
Number Error Message
97 The Hatch Space has a non positive argument.
a8 The defined polygon cannot be hatched due to insufficient coordinates, or
the polygon is insufficient for AREA, INSIDE, or CENTROID.
99 The parameters to SEARCH are invalid; the rule string is null or not of even

length or its values are not incrementing.
100 The parameter to EXCLUDE is out of range.

101 The parameter to ASC is not in the range 1 = H parameter = H length of
source string.

102 An error was made in attempting to translate; a character in the source string
tried to index outside the translate table.

103 There is an invalid parameter in the TABLE function. You cannot assign to
the translate table while using it.

104 An assignment has been made to an invalid structure (trying to store a scalar
into an array).

105 An attempt was made to access an undefined subprogram in a CALL
statement.

106 An attempt was made to execute a SUB statement when it was not called.

107 There was no CALL on the stack when an END SUB was executed.

108 No END IF can be found to exit an IF due to an ELSE, or no LOOP can be
found to exit a DO due to an EXIT IF, or no DO can be found to iterate to from
a LOOP, or no ELSE or END IF can be found to exit a false IF condition.

109 The formal argument in a CALL statement is not compatible with the actual

argument in the SUB statement. (For example, trying to pass a stringto a
numeric variable.

B-12 4052A/4054A ENHANCEMENTS






