
8560
MULTI-USER SOFTWARE

DEVELOPMENT UNIT

NATIVE
PROGRAMMING

PACKAGE
S MANUAL

This manual supports the
following TEKTRONIX products:

8560
Option Product

4B 8560U02

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-4271-00
Product Group 61

Tektron~
COMMITTED TO EXCELLENCE

These modules are
compatible with:

TNIX Version 1 (8560)

PLEASE CHECK 'FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8560
MULTI-USER SOFTWARE

DEVELOPMENT UNIT

NATIVE
PROGRAMMING

PACKAGE
USERS MANUAL

Serial Number - ______ _

First Printing FEB 1982

ABOUT WARRANTY AND SUPPORT FOR THIS
PRODUCT

This product is provided by Tektronix as Category C software.

NOTE

Licensed Software for which the software support is specified as Category C is fur
nished without warranty of any kind, and without any representation regarding quality,
performance, or suitability.

TEKTRONIX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MER
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Tektronix' liability for damages, if any, whether based upon contract, negligence, strict
liability in tort, warranty, or any other basis, shall not exceed the fee paid by the
Customer for the Licensed Software.

Category C software is provided on an "as is" basis. Any software services, if available, will be
provided at the then current charges.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

The TNIXOperating System is derived in part from the UNIXTM Operating
System. Portions of this document are reproduced from UNIX documentation,
copyright © Bell Laboratories, 1979.

Holders of a UNIXTM software license are permitted to copy UNIX documentation,
or any portion of it, as necessary for licensed used of the software, provided this
copyright notice and statement of permission are included.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8560 MUSDU Native Programming Package Users

@

. LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or f<?r
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The softwa re may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

8560 MUSDU Native Programming Package Users

CONTENTS
Page

SECTION 1 INTRODUCTION

About This Product .. 1-1
About This Manual .. 1-1
Source of Documents .. 1-2
List of Command 1-2

SECTION 2 INSTALLATION

Introduction .. 2-1
Installation Procedures ... 2-1
Dependency Files ... 2-2

SECTION 3 TECHNICAL NOTES

SECTION 4 THE UNIX T.M. ASSEMBLER

SECTION 5 THE C PROGRAMMING LANGUAGE

SECTION 6 SED-A NON-INTERACTIVE TEXT EDITOR

SECTION 7 A TUTORIAL INTRODUCTION TO ADB

SECTION 8 LINT -A C PROGRAM CHECKER

SECTION 9 YACC-A COMPILER·COMPILER

SECTION 10 LEX-A LEXICAL ANALYZER GENERATOR

@ iii

8560 MUSDU Native Programming Package Users

Section 1
INTRODUCTION

Page

About This Product ... 1-1
About This Manual .. 1-1
Source of Documents ... 1-2
List of Command ... 1-2

Table
No.

TABLES

1-1 8560 Native Programming Package Commands 1-2
1-2 8560 Native Programming Package Libraries .. 1-3

@ 1-i

8560 MUSDU Native Programming Package Users

@

Section 1

INTRODUCTION

ABOUT THIS PRODUCT

The 8560 MUSDU Native Programming Package is a set of tools to develop software on the
8560. You can use these tools to create customized software tools and incorporate them into
TNIX, the 8560's operating system. The following programming languages are provided: C, a
system programming language; BASIC dialect, a simple applications language; and a relocatable .
assembler (no macros). The Native Programming also includes utilities for debugging, archiving,
syntax checking, source formatting, stream editing, generating translators, and other software
development tasks.

ABOUT THIS MANUAL

This users manual provides tutorial and reference material for use with the 8560 Native Program
ming Package. The following sections are included:

Installation. Tells you how to install the Native Programming Package software.

Technical Notes. Describes any limitations or special instructions for the programs, and any
changes made to the programs by Tektronix.

The UNIX @ -Assembler. Describes the usage and input syntax of as, the 8560 Assembler.

The C Programming Language. Describes the usage of the C programming language.

SED-A Non-Interactive Text Editor. Describes the usage of SED, a stream-oriented editor.

A Tutorial Introduction to ADB. Describes the usage of the UNIX TM. debugger ADB.

LINT -A C Program Checker. Discusses the usage and implementation of LINT.

YACC: A Compiler-Compiler. Describes YACC, a tool for describing the input to a computer
program.

LEX-A Lexical Analyzer Generator. Describes the usage of LEX, a program generator de
signed for lexical processing of character input streams.

1-1

Introduction 8560 MUSDU Native Programming Package Users

1-2

SOURCE OF DOCUMENTS

The tutorial and reference documents contained in Sections 4 through 9 of this manual are
reprinted by permission of Bell Laboratories.

LIST OF COMMANDS

Table 1-1 contains a list of the commands included in this package, a brief description of the
command's function, and a reference to more detailed information about the command.

Table 1-2 contains a list of libraries that contain useful functions and routines.

Table 1-1
8560 Native Programming Package Commands

Command Description Reference

adb General purpose debugger for 8560 See section 7 of this manual;
programs. also see 8560 MUSDU Refer-

ence Manual Section 6.

ar Archive and library maintenance 8560 MUSDU Reference
program. Manual Section 6.

arcv Converts UNIX Version 6 archives to 8560 MUSDU Reference
TNIX archives. Manual Section 6.

as 8560 assembler. See section 4 of this manual;
also see 8560 MUSDU Refer-
ence Section 6.

bas 8560 BASIC (a dialect). 8560 MUSDU Reference
Manual Section 6.

cb C program formatter. 8560 MUSDU Reference
Manual Section 6.

ec 8560 Native C Compiler See section 5 of this manual;
also see 8560 MUSDU Refer-
ence Manual Section 6.

join Relational data-base operator. 8560 MUSDU Reference
Manual Section 6.

Id Loader. 8560 MUSDU Reference
Manual Section 6.

lex Generate lexical analysis programs. See section 1 0 of this manual;
also see 8560 MUSDU Refer-
ence Manual Section 6.

lint A C prog ram verifier. See section 8 of this manual;
also see 8560 MUSDU Refer-
ence Manual Section 6.

@

8560 MUSDU Native Programming Package Users Introduction

Command

lorder

nm

prof

ranlib

sed

size

strip

tsort

yacc

Library

Ii be

libm

@

Table 1-1 (cont)

Description

Find ordering relation for an object
library.

Print name list (symbol table).

Reference

8560 MUSDU Reference
Manual Section 6.

8560 MUSDU Reference
Manual Section 6.

Display program execution profile data. 8560 MUSDU Reference

Convert archives to random libraries.

Stream-oriented editor.

Print size of an object file.

Remove symbol and relocation bits.

Topological sort.

A compiler-compiler.

Table 1-2

Manual Section 6.

8560 MUSDU Reference
Manual Section 6.

See section 6 of this manual;
also see 8560 MUSDU Refer
ence Manual Section 6.

8560 MUSDU Reference
Manual Section 6.

8560 MUSDU Reference
Manual Section 6.

8560 MUSDU Reference
Manual Section 6.

See section 9 of this manual;
also see 8560 MUSDU Refer
ence Manual Section 6.

8560 Native Programming Package Libraries

Contents

Standard routines for I/O, system calls,
data manipulation, and debugging.

Mathematical functions.

Reference

8560 MUSDU Reference
Manual Section 3.

8560 MUSDU Reference
Manual Section 3.

1-3

8560 MUSDU Native Programming Package Users

Section 2
INSTALLATION

Page

Introduction ... 2-1
Installation Procedures .. 2-1
Installing the Native Programming Package 2-1
Installing an Individual Program .. 2-2
Dependency Files .. 2-2

Table
No.

TABLES

2-1 Files Required for Native Programming Package Commands " 2-2

@ 2-i

8560 MUSDU Native Programming Package Users

@

Section 2

INSTALLATION

INTRODUCTION

This section explains the procedure for installing the 8560 Native Programming Package on your
8560 system. The following information is included here: an explanation of the format of the
installation disk, installation procedures, and a list of the files needed by each of the Native
Programming Package commands.

INSTALLATION PROCEDURES

The Native Programming Package software resides on a flexible disk. The information on the disk
consists of executable binary files in fbr format. You can load these programs onto your 8560
system disk as a group or you can install individual programs. To load the whole package, use the
8560 command install. The install command takes all of the information from a fbr format disk
and loads it to the system disk. If you want to install a Single program from the disk, the command
install -f -x file loads the specified program from the fbr disk to the system disk.

For each of the Native Programming Package programs to execute properly, certain files must be
on the system disk. Refer to the "Dependency Files" discussion later in this section for a complete
list of these files. In order for these programs to be installed as system commands, they must be
loaded while you are logged in as root.

Installing the Native Programming Package

The general procedure for installing the Native Programming Package is:

1. Log in to the 8560 as root. You must have superuser status to perform the installation.

2. Load the software installation disk into the disk drive.

3. Enter the following command to install the software:

install

2-1

Installation 8560 MUSDU Native Programming Package Users

2-2

Installing an Individual Program

The general procedure for installing a particular program from the installation disk is:

1. Log in to the 8560 as root. You must have superuser status to perform the installation.

2. Load the software installation d.isk into the disk drive.

3. Enter the following command to install the particular program:

install -f -x program

For example, to install adb you would enter:

install -f -x adb

DEPENDENCY FILES

Table 2-1 lists each program and the files that it needs for execution. These files may be installed
separately to rebuild a command.

Table 2-1
Files Required for Native Programming Package Commands

Command I Files Required

adb /bin/adb /bin/sh

ar /bin/ar /tmp

arcv /bin/arcv /tmp

as /bin/as /lib/as2
/tmp

bas /bin/bas /bin/ed
/tmp

cb /bin/cb

cc /bin/cc /bin/as
/bin/ld /Iib/cpp
/lib/cO /usr/include
/tmp /lib/c1
/lib/c2 /lib/crtO.o
/lib/mcrtO.o /lib/fcrtO.o
/lib/fmcrtO .0 /lib/libc.a

join /bin/join

@

8560 MUSDU Native Programming Package Users Installation

Table 2-1 (cont)

Command Files Required

Id /bin/ld /lib/libm.a
/usr/lib/libmp.a /usr/lib/libdbm.a
/lib/libt4014.a /tmp
/Iib/libplot.a /lib/libt3OO.a
/lib/libt3OOs.a /lib/libt450.a

lex /bin/lex /usr/lib/lex
/bin/lint /usr/lib/lint1
/usr/lib/lint2

lint /lib/cpp /usr/tmp
/usr /Iib/llib-Ic /usr/lib/llib-Im
/usr /lib/llib-port /usr/include

lorder /bin/lorder /bin/rm
/bin/echo /bin/nm
/bin/sed /bin/sort
/bin/join

nm /bin/nm

prof /bin/prof

ranlib /bin/ranlib /bin/ar
/bin/sh

sed /bin/sed

size /bin/size

strip /bin/strip /tmp

tsort /bin/tsort

yacc /bin/yacc /usr/lib/yaccpar
/Iib/liby.a

@ 2-3

8560 MUSDU Native Programming Package Users

@

Section 3

TECHNICAL NOTES
This section is reserved for technical information about the 8560 MUSDU Native Programming
Package. At the time of this writing, no technical notes are included. Technical notes will be
incorporated into later versions of this manual, as needed.

3-1

8560 MUSDU Native Programming Package Users

Section 4

THE UNIXTM ASSEMBLER

INTRODUCTION
as, a PDP-11 assembler,was developed at Bell Laboratories and is licensed by Western Electric
for use on the 8560. The remainder of this section is a reprint of an article describing as. The
Technical Notes section of this manual describes the limitations of this program and any
changes made to this program by Tektronix. .

TMUNIX is a Trademark of Bell Laboratories.

4-1

4-2

AS-8560 MUSDU Native Programming Package Users

UNIxt Assembler Reference Manual

O. Introduction

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This document describes the usage and input syntax of the UNIX POP-II assembler as.
The details of the pOP-II are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler
PAL-II R, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-ll-ASDB-D, which describes PAL-II R, although naturally one must use
care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table~ thus the output is acceptable
to the UNIX link-editor Id, which may be used to combine the outputs of several assembler runs
and to obtain object programs from libraries. The output format has been designed so that if a
program contains no unresolved references to external symbols, it is executable without further
processing.

1. Usage

as is used as follows:

as [-u] [-0 output] .file, ...

If the optional ~~ -u" argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current directory~
the" -0" flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise, if
it is produced at all, it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, "symbols" or "names"), temporary
symbols, constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ".",
underscore "_", and tilde "-,, as alphanumeric) of which the first may not be numeric. Only
the first eight characters are significant. When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can
match no other occurrence of the identifier. This feature is used by the C compiler to place

t UNIX is a Trademark of Bell Laboratories.

AS-8560 MUSDU Native Programming Package Users

names of local variables in the output symbol table without having to worry about making them
unique.

2.2 Temporary symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are
discussed fully in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits~ "8" and 449" are taken to have octal
value 10 and 11. The constant is truncated to 16 bits and interpreted in two's complement
notation.

A decimal constant consists of a sequence of digits terminated by a decimal point".".
The magnitude of the constant should be representable in 15 bits~ i.e., be less than 32,768.

A single-character constant consists of a single quote 4,'" followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII

character to represent new-line and other non-graphics (see String statements, §5.5). The
constant's value has the code for the given character in the least significant byte of the word
and is null-padded on the left.

A double-character constant consists of a double quote """ followed by a pair of ASCII

characters not including new-line. Certain dual-character escape sequences are acceptable in
.place of either of the ASCII characters to represent new-line and other non-graphics (see String
statements, §5.5). The constant's value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators

There are several single- and double-character operators~ see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments

The character" /" introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor Id (using its 44 -n" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur
ing execution. Anything which may go in the text segment may be put into the data segment.
In programs with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment~ if the text segment is pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The length of the

4-3

4-4

AS-8560 MUSDU Native Programming Package Users

bss segment (like that of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to O. Typi
cally the bss segment is set up by statements exemplified by

lab: . = .+ 10

The advantage in using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. The location counter

One special symbol, ".", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change~
furthermore, the value of " ." may not decrease. If the effect of the assignment is to increase
the value of H • n, the required number of null bytes are generated (but see Segments above).

S. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a colon (:). The effect of a name label is to assign the current value and
type of the location counter" ." to the name. An error is indicated in pass 1 if the name is
already defined~ an error is indicated in pass 2 if the" . " value assigned changes the definition
of the label.

A numeric label consists of a digit () to <) followed by a colon (:). Such a label serves to
define temporary symbols of the form" n b" and H n f", where n is the digit of the label. As in
the case of name labels,· a numeric label assigns the current value and type of H • " to the tem
porary symbol. However, several numeric labels with the same digit may be used within the
same assembly. References of the form "f1 f" refer to the first numeric label "f1:" forward
from the reference~ "' n b" symbols refer to the first .. f1 :" label backward from the reference.
This sort of temporary label was introduced by Knuth [The Art a/' Compllfer Programming, Vol I:
Fundamel1lal Algorithms 1. Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

S.2 Null statements

A null statement is an empty statement {which may, however, have labels}. A null state
ment is ignored by the assembler. Common examples of null statements are empty lines or
lines containing only a label.

5.3 Expression statements

An expression statement consists of an arithmetic expression not beginning with a key
word. The assembler computes its 06-bit) value and. places it in the output stream, together
with the appropriate relocation bits.

AS-8S60 MUSDU Native Programming Package Users

5.4 Assignment statements

An assignment statemen t consists of an identifier, an equals sign (=), and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass 1, nor is it an error to redefine any symbol by
assignment.

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter H • ". It is required, how
ever, that the type of the expression assigned be of the same type as " . ", and it is forbidden
to decrease the value of " . ". In practice, the most common assignment to " . " has the form
~4. = . + n" for some number 11; this has the effect of generating 11 null bytes.

5.5 Strin~ statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote .. <" followed by a sequence of ASCII characters not
including newline, followed by a right string quote" >". Any of the ASCII characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol
lows:

\n NL (012)
\s SP (040)
\t HT (011)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)

\\ \
\> >

The last two are induded so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instruc
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler~ the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature~ if an operand is missing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of
precision. All operators have equal precedence, and expressions are evaluated strictly left to
right except for the effect of brackets.

4-5

4-6

AS-8560 MUSDU Native Programming Package Users

6.1 Expression operators

The operators are:

(blank) when there is no operand between operands, the effect is exactly the same as if a "+"
had appeared.

+ addition

•
\I
8

I
\>
\<
%

su btraction

multiplication

. division (note that plain" / " starts a comment)

bitwise and

bitwise or

logical right shift

logical left shift

modulo

a! b is a or (not b)~ i.e., the or of the first operand and the one's complement of the
second~ most common use is as a unary.

result has the value of first operand and the type of the second~ most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets " [] ". (Round parentheses are
reserved for address modes.)

6.2 Types

The assembler deals with a number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2~ in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used to
load the assembler's output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor's output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of " . " is text O.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of " . " is data O.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, since previously loaded programs may have bss segments.
After the first .bss statement, the value of " • " is bss O.

AS-8560 MUSDU Native Programming Package Users

external absolute, text, data, or bss

register

symbols declared .globl but defined within an assembly as absolute. text, data, or bss
symbols may be used exadly as if they were not declared .~Iobl~ however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

The symbols

rO ... r5
frO ... fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names~ the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators,. the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensi ble and predictable. For purposes of expression evaluation
the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as "rO+ 3". If two operands of "other
type" are combined, the result has the numerically larger type An "other type" combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external. the
result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand)~ or
the second operand may have the same type as the first (in which case the result is abso
lute). If the first operand is external undefined, the second must be absolute. All other
combinations are illegal.

This operator follows no other rule than that the result has the value of the first operand
and the type of the second.

4-7

4-8

AS-8560 MUSDU Native Programming Package Users

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff] ...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [,expression 1
The expressiolls in the comma-separated list are truncated to 8 bits and assembled in suc

cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .even

If the location counter .•. " is odd, it is advanced by one so the next statement will be
assembled at a word boundary.

7.3 .if exprl:'ssion

The eX/Jressiofl must be absolute and defined in pass 1. If its value is nonzero, the .if is
ignored~ if zero, the statements between the .if and the matching .endif (below) are ignored .
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed,)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See.if above.

7.5 .globl Ilaml:' [, Ilame] ...

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a label) they act within the assembly exactly as if the .glob) statement were not
given~ however, the link editor III may be used to comb.ine this routine with other routines that
refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in §l, it is possible to force the assembler to make all otherwise undefined sym
bols external.

7.6 .text

7.7 .data

7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and" ." moved
about by assignment.

AS-8560 MUSDU Native Programming Package Users

7.9 .comm IWII/(' • expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression name

That is, the type of IIUt17C is 4 'undefined external", and its value is expression. In fact the name
behaves in the current. assemhly just like an undefined external. However, the link-editor Id
has b~en speci,t1-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the hss segment, and enough space is left after the
sym hal to hold np,.es\iol1 bYles. All symbols which become defined in this way are located
before all the explicitly defined hss-segment locations.

R. l\lal'hil1l' instructions

Because of the rather complicated instruction and addressing structure of the pOP-II, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the machine handbooks should be consulted on the semantics.

M.I S()urce~ and Destinations

The syntax or general source and destination addresses is the same. Each must have one
of the following forms, where reg is a register symbol, and e.xpr is any sort of expression:

syntax words mode
reg 0 00+ reg
(reg) + 0 20+reg
- (reg) 0 40+ reg
C.\p,. (r('g) I 60+n'g
(reg) 0 10+ reg
* rex 0 10+ reg
* (reg) + 0 30+rex
* - (reg) 0 50+rex
* (reg) I 70+reg
." expr (reg) 1 70+reg
exp,. 1 67
$expr 1 27
*expr I 77
* $expr 1 37

The ~lo-,(),.d\ column gives the number of address words generated~ the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem
blers, except that u*" has been substituted for "@" and '1$" for ~~ #"~ the UNIX typing con
ventions make "'@" and 4~#" rather inconvenient.

Notice that mode "*reg" is identical to ~~(reg)"~ that H*(reg)" generates an index word
(namel~', 0) ~ and that addresses consisting of an unadorned expression are assembled as pc
relative references independent of the type of the expression. To force a non-relative refer
ence, the form "*$expr" can be used, but notice that further indirection is impossible.

8.3 Simple machine instructions

The following instructions are defined as absolute symbols:

4-9

4-10

clc
clv
clz
cln
sec
sev
sez
sen

LEX-8560 MUSDU Native Programming Package Users

They therefore require no special syntax. The pOP-II hardware allows more than one of the
Hclear" class, or alternatively more than one of the Hset" class to be or-ed together~ this may
be expressed as follows:

clc I clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the reference, cannot be undefined-external, and its value cannot differ from
the current location of " . " by more than 254 bytes:

br bIos
boe bvc
beq bvs
bge bhis
bit bec (= bce)
bgt bcc
ble blo
bpI bcs
bmi bes (= bcs)
bhi

bes (Hbranch on error set") and bec ("'branch on error clear"} are intended to test the error bit
returned by system calls (which is the c-bit).

8.S Extended branch instructions

The following symbols are followed by an expression representing an address in the same
segment as H • ". If the target address is close enough, a branch-type instruction is generated~ if
the address is too far away, a jmp will be used.

jbr jlos
jne jvc
jeq jvs
jge jhis
jlt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote~ the others (whose names are contructed by
replacing the Hb" in the branch instruction's name by "j") turn into the converse branch over
a jmp to the target address.

AS-8560 MUSDU Native Programming Package Users

8.6 Single operand instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8.1 above.

elr sbcb
clrb ror
com rorb
comb rol
inc ron~
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

8.7 Double operand instructions

The following instructions take a general source and destination (§8.1), separated by a
comma, as operands.

mov
movb
cmp
cmpb
bit
bitb
bie
bicb
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src
and dSf a general source or destination (§8.1), and expr is an expression:

jsr reg.dsf
rts reg
sys expr
ash sre. reg (or, als)
ashc src. reg (or, alsc)
mul src. reg (or, mpy)
div src. reg (or, dvd)
xor reg. dSf
sxt ds!
mark ex",.
sob reg. expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in six bits,
and the expression in sob must be in the same segment as ".", must not be external
undefined, must be less than" . ", and must be within 510 bytes of ... ". 4-11

AS-8560 MUSDU Native Programming Package Users

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:

cfee
setf
setd
seti
setl
elrf Ids/
negf kls/
absf Ids/
tstf .h'rc
movf /5rc./i'eg (= Idf)
movf /i'eg . ./ds/ (= stf)
movif src./reg (= Idcif)
movfi trego dsr (= stcfi)
movof /5rc./reg (= Idcdf)
movfo /reg . ./ds/ (= stcfd)
movie src . ./i·('g (= Idexp)
movei /r('g. dsr (= stexp)
addf /s·rc./reg
subf /src .. /i"eg
mulf /src./reg
divf /src,freg
empf /src,freg
modf .h'rc,/reg
Idfps src
stfps dsr
stst ds/

fsrc, Jds!, and freg mean floating-point source, destination, and register respectively. Their syn
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be a/reg.

4-12

The names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
Idf depending respectively on whether its first operand is or is not a register. Warning: Idf sets
the floating condition codes, stf does not.

9. Other symbols

9.1 ..

The symbol" .. " is the re/oea/ion COIIl1(N. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of " is subtracted.

Thus the value of " can be taken to mean the starting memory location of the pro
gram. The initial value of " .. " is O.

The value of , may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change " midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of H •• ".

AS-8560 MUSDU Native Programming Package Users

9.2 S)"stem calls

System call names are not predefined. They may be found in the file lusrlillcludelsvs.s

10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass 1

. cause cancellation of pass 2. The possible errors are:

>
*

A

B

E
F

G

M

o
p

R

u
X

parentheses error
parentheses error
string not terminated properly
indirection (*) used illegally
illegal assignment to " . .
error in address
branch address is odd or too remote
error in expression
error in local (Hf" or "b") type symbol
garbage (unknown) character
end of file inside an .if
multiply defined symbol as label
word quantity assembled at odd address
phase error- " . " different in pass 1 and 2
relocation error
undefined symbol
syntax error

4-13

8560 MUSDU Native Programming Package Users

Section 5

THE C PROGRAMMING LANGUAGE

INTRODUCTION
The C programming language was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder of this section is a reprint of an article describing the
C language. The Technical Notes section ofthis manual describes the limitations ofthis program
and any changes made to this program by Tektronix.

5-1

5-2

C Programming Language-8560 MUSDU Native Programming Package Users

The C Programming Language - Reference Manual

Dennis M. Ritchie

Bell Laboratories, Murray Hill, New Jersey

This manual is reprinted, with minor changes, from The C Programming Language, by Brian W. Ker
nighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978.

1. Introduction
This manual describes the C language on the DEC PDP-II, the DEC VAX-II, the Honeywell 6000,

the IBM System/370, and the Interdata 8/32. Where differences exist, it concentrates on the PDP-II, but
tries to point out implementation-dependent details. With few exceptions, these dependencies follow
directly from the underlying properties of the hardware~ the various compilers are generally quite compa
tible.

2. Lexical conventions
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa

tors. Blanks, tabs, newlines, and comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters 1* introduce a comment, which terminates with the characters *1. Comments do not

nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits~ the first character must be a letter. The underscore _

counts as a letter. Upper and lower case letters are different. No more than the first eight characters are
signi'ficant, although more may be used. External identifiers, which are used by various assemblers and
loaders, are more restricted:

DEC POP-II
DEC VAx-II
Honeywell 6000
IBM 360/370
Interdata 8/32

7 characters, 2 cases
8 characters, 2 cases
6 characters, I case
7 characters, I case
8 characters, 2 cases

2.3 Keywords .
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry
unsigned continue
auto if

The entry keyword is not currently implemented by any compiler but is reserved for future use. Some

t UNIX is a Trademark of Bell Laboratories.

C Programming Language-8560 MUSDU Native Programming Package Users

implementations also reserve the words fortran and asm.

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit

zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by Ox or ox (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. A decimal constant whose value exceeds the
largest signed machine integer is taken to be long~ an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long

constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in ' x '. The value of a character

constant is the numerical value of the character in the machine's character set.
Certain non-graphic characters, the single quote ' and the backs lash \, may be represented according

to the following table of ~scape sequences:

newline NL (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not one of those specified, the
backs lash is ignored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing~ either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.S Strings
A string is a sequence of characters surrounded by double quotes, as in " ... ". A string has type

"array of char.acters" and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically, are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string, the double quote charac
ter " must be preceded by a \~ in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware· characteristics
The following table summarizes certain hardware properties which vary from machine to machine.

Although these affect program portability, in practice they are less of a problem than might be thought a
priori.

5-3

5-4

C Programming Language-8560 MUSDU Native Programming Package Users

DEC PDP-II Honeywell 6000 IBM 370 Interdata 8/32

ASCII ASCII EBCDIC ASCII
char 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
long 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range ±10±38 ±IO±38 ±10±76 ±1O±76

The vAX-II is identical to the PDP-II except that integers have 32 bits.

3. Syntax notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter
minal or non-terminal symbol is indicated by the subscript "opt," so that

(expression
opl

)

indicates an optional expression enclosed in braces. The syntax is summarized in § 18.

4. What's in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its

type. The storage class determines the location and lifetime of the storage associated with an identifier~
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari
ables are local to each invocation of a block (§9.2), and are discarded upon exit from the block~ static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine~ like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the implementation's

character set, and if a genuine character from that character set is sto'red in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari
ables, but the implementation is machine-dependent

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture~ the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is the
number of bits in the representation. (On the PDP-II, unsigned long quantities are not supported.)

Single-precision floating point (float) and double-precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

arrays of objects of most types~
/unctions which return objects of a given type~
pointers to objects of a given type~
structures containing a sequence of objects of various types~
unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

C Programming Language-8560 MUSDU Native Programming Package Users

S. Objects and lvalues
An object is a manipulatable region of storage~ an Ivalue is an expression referring to an object. An

obvious example of an lvalue expression is an identifier. There are operators which yield lvalues: for
example, if E is an expression of pointer type, then *E is an Ivalue expression referring to the object to
which E points. The name Hlvalue" comes from the assignment expression E1 = E2 in which the left
operand E1 must be an Ivalue expression. The discussion of each operator below indicates whether it
expects lvalue operands and whether it yields an Ivalue.

6. Conversions
A number of operators may, depending on their operands, cause conversion of the value of an

operand from one type to another. This section explains the result to be expected from such conver
sions. §6.6 summarizes the conversions demanded by most ordinary operators~ it will be supplemented as
required by the discussion of each operator.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used. In all cases the value

is converted to an integer. Conversion of a shorter integer to a longer always involves sign e~tension~
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent,
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual, only the PDP-II sign-extends. On the PDP-ll, character variables range in value from
-128 to 127~ the characters of the ASCII alphabet are all positive. A character constant specified with an
octal escape suffers sign extension and may appear negative~ for example, , \377' has the value -1.

When a longer integer is converted to a shorter or to a char, it is truncated on the left~ excess bits
are simply discarded.

6.2 Float and double
All floating arithmetic in C is carried out in double-precision~ whenever a float appears in an

expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length.

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather machine-dependent~ in particular the

direction of truncation of negative numbers varies from machine to machine. The result is undefined if
the value will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the
destination lacks sufficient bits.

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer~ in such a case the first is

converted as specified in the discussion of the addition operator.
Two pointers to objects of the same type may be subtracted~ in this case the result is converted to an

integer as specified in the discussion of the subtraction operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to

unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
integer (modulo 2wordsize). In a 2's complement representation, this conversion is conceptual and there is
no actual change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern will

be called the "usual arithmetic conversions."

First, any operands of type char or short are converted to int, and any of type float are con
verted to double.

5-5

5-6

C Programming Language-8560 MUSDU Native Programming Package Users

Then, if either operand is double, the other is converted to double and that is the type of the
result.
Otherwise, if either operand is, long, the other is converted to long and that is the type of the
result.
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type
of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec

tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7.1-7.3. Within each subsection, the operators have the same pre
cedence: Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of § 18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*, +, &, I, ,,) may be rearranged arbitrarily, even in the presence
of parentheses~ to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist
ing implementations of C ignore integer overflows~ treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving., ->, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)

primary-expression [expression]
primary-expression (expression-listopt)

primary-Ivalue • identifier
primary-expression -> identifier

expression-list:
expression .
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is "array of ... ", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which
is declared "function returning ... ", when used except in the function-name position of a call, is con
verted to .. pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int~ floating constants are double.

A string is a primary expression. Its type is originally "array of char"~ but following the same rule
given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6J

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the
subscript expression is int, and the type of the result i's ". The expression E1 [E2] is identical (by
definition) to * ((E1) + (E2)). All the clues needed to understand this notation are contained in this sec
tion together with the discussions in §§ 7.1, 7.2, and 7.4 on identifiers, *, and + respectively~ §14.3 below
summarizes the implications.

C Programming Language-8S60 MUSDU Native Programming Package Users

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type "function returning ... ", and the result of the function call is of type" ... ".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char or
short are converted to int; and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The first expres

sion must be an lvalue naming a structure or a union, and the identifier must name a member of the
structure or union. The result is an Ivalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a » followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an lvalue referring to the named member of the struc
ture or union to which the pointer expression points.

Thus the expression E1->MOS is the same as (*E1). MOS. Structures and unions are discussed in
§8.5. The rules given here for the use of structures and unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See § 14.1.

7.2 Unary operators
Expressions with unary operators group right-to-Ieft.

unary-expression:
* expression
& Ivalue
- expression
! expression
- expression
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is "pointer to ... ",
the type of the result is ••... ".

The result of the unary & operator is a pointer to the object referred to by the Ivalue. If the type of
the Ivalue is ••... ", the type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2 n,

where n is the number of bits in an into There is no unary + operator.
The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the value of its

operand is non-zero. The type of the result is into It is applicable to any arithmetic type or to pointers.
The - operator yields the one's complement of its operand. The usual arithmetic conversions are

performed. The type of the operand must be integral.
The object referred to by the Ivalue operand of prefix ++ is incremented. The value is the new value

of the operand, but is not an Ivalue. The expression ++x is equivalent to x+-1. See the discussions of
addition (§7.4) and assignment operators (§7.14) for information on conversions.

5-7

5-8

C Programming Language-8560 MUSDU Native Programming Package Users

The lvalue operand of prefix -- is decremented analogously to the prefix ++ operator.
When postfix ++ is applied to an lvalue the result is the value of the object referred to by the Ivalue.

After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue the result is the value of the object referred to by the lvalue.
After the result is noted, the object is decremented in the manner as for the prefix -- operator. The type
of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8. 7.

The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti
cally an integer constant and may be used anywhere a constant is required. Its major use is in communi
cation with routines like storage allocators and 110 systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (type) is taken to be a unit, so the expression sizeof (type) -2 is the
same as (sizeof (type)) -2.

7.3 Multiplicative operators
The multiplicative operators *, I, and" group left-to-right. The usual arithmetic conversions are

performed.

multiplicative-expression:
expression * expression
expression I expression
expression" expression

The binary * operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary I operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (alb) *b + a"b
is equal to a (if b is not 0).

The binary " operator yields the remainder from the division of the first expression by the second.
The·usual arithmetic conversions are performed. The operands must not be float.

7.4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed.

There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the same level may be rear

ranged by the compiler.
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general. give unexpected results unless the pointers point to objects in the same

C Programming Language-8560 MUSDU Native Programming Package Users

array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators « and »group left-to-right. Both perform the usual arithmetic conversions on

their operands, each of which must be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression « expression
expression » expression

The value of E1 «E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are O-filled.
The value of E1 »E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
fill) if E1 is uns igned; otherwise it may be (and is, on the PDP-I 1) arithmetic (fill by a copy of the sign
bit) .

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; a<h<c does not mean .

what it seems to.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (tess than), > (greater than), <- (tess than or equal to) and >- (greater than or equal to)
all yield 0 if the specified relation is false and I if it is true. The type of the result is into The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression -- expression
expression I .. expression

The == (equal to) and the I = (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus' a<b -- c<d is 1 whenever a<b and c<d have the same
truth-value) .

A pointer may be compared to an integer, but the result is machine dependent unless the integer is
the constant O. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression A expression

The A operator is associative and expressions involving A may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands.

5-9

7.10 Bitwise inclusive OR operator

inclusive-or-expression:

C Programming Language-8560 MUSDU Native Programming Package Users

expression 1 expression

The 1 operator is associative and expressions involving 1 may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11 Logical AND operator

logica I-a nd-expression:
expression && expression

The && 'operator groups left-to-right. I t returns I if both its operands are non-zero, 0 otherwise. Unlike
&, && guarantees left-to-right evaluation; moreover the second operand is not evaluated if the first
operand is O.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.12 Logical OR operator

logical-or-expression:
expression 1 I expression

The I I operator groups left-to-right. It returns I if either of its operands is non-zero, and 0 otherwise.
Unlike I, I' guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always into

7.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type; other
wise, if both are pointers of the same type, the result has the common type; otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-Ieft. All require an lvalue as

their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
lvalue - expression
lvalue +- expression
lvalue -- expression
Iva lue * - expression
!value /- expression
!value ,,- expression
lvalue »- expression
lvalue «- expression
!va lue & - expression
!value A_ expression
lvalue ,- expression

In the simple assignment with -, the value of the expression replaces that of the object referred to by
5-10 the Ivalue. If both operands have arithmetic type, the right operand is converted to the type of the left

C Programming Language-8560 MUSDU Native Programming Package Users

preparatory to the assignment.
The behavior of an expression of the form E1 op = E2 may be inferred by taking it as equivalent to

E1 = E1 op (E2)~ however, E1 is evaluated only once. In += and -a, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer, an integer to a pointer, and a
pointer to a pointer of another type. The assignment is a pure copy operation, with no conversion. This
usage is non portable, and may produce pointers which cause addressing exceptions when used. However.
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7.1 S Comma operator

comma-expression:
expression I expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7. J) and lists of initializers (§8.6), the comma operator as described in this sec
tion can only appear in parentheses; for example,

f(a , (t-3 , t+2), c)

has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier; they do not

necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specijier:
auto
static
extern
register
typedef

The typedef 'specifier does not reserve storage and is called a "storage class specifier" only for syntactic
convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in §4.

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external definition
(§ 10) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers; on the PDP-II, they are int, char,
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessary.

5-11

5-12

C Programming Language-8560 MUSDU Native Programming Package Users

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
lone;
unsigned
float
double
struct-or-union-specifier
typede/-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
lone; int
unsigned int
lone; float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be into

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis
cussed in §8.8.

8.3 I>eclarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of

which may have an initializer.

declarator-list:
init-dec/arator
init-dec/arator , declarator-list

init-declarator:
dec/Qrator initializer"",

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(dec/orator)
* dec/orator
dec/orator ()
declarator [constant-expression"",]

The grouping is the same as in expressions.

8.4 Meanin. of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declara

tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imaline a declaration

C Programming Language-8560 MUSDU Native Programming Package Users

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type ••... T," where the" ... " is empty if D1 is just a plain identifier (so that the type of
x in .. int x" is just int). Then if D1 has the form

the type of the contained identifier is pointer to T."
If D1 has the form

D()

then the contained identifier has the type U ... function returning T."
If D1 has the form

D [constant-expression]

or

D []

then the contained identifier has type u... array of T." In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is into (Constant expressions
are defined precisely in §15.) When several Uarray of' specifications are adjacent, a multi-dimensional
array is created~ the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things~ there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a
function.

As an example, the declaration

int i, *ip, f(), *fip() , (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe
cially useful to compare the last two. The binding of *fip () is * (fip ()), so that the declaration sug
gests, and the same construction in an expression requires, the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (*pfi) (), the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
to a function yields a function, which is then called~ it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers, with rank 3xSx7. In complete detail, x3d is an
array of three items~ each item is an array of five arrays~ each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j] [k] may reasonably appear in
an expression. The first three have type "array," the last has type into

8.S Structure and union declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union is an object which may, at a given time, contain anyone of several members. Structure
and union specifiers have the same form.

5-13

5-14

C Programming Language-8560 MUSDU Native Programming Package Users

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-decla ra tor
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc
ture member may also consist of a specified number of bits. Such a member is also called a field~ its
length is set off from the field name by a colon.

struct-declara tor:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type~
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-Ieft on the PDP-II, left-to
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The "next field" presumably is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP-II, fields are not signed and have only integer values. In all implementations,
there are no arrays of fields, and the address-of operator & may not be applied to them, so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most,one of the members can be stored in a union at any
time.

A structure or union specifier of the second form, that is, one of

struct identifier (struct-decl-list)
union identifier (struct-decl-list)

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures~ they also permit the long part of the declara
tion to be given once and used several times. It is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itself.

C Programming Language-8560 MUSDU Native Programming Package Users

The names of members and tags may be the same as ordinary variables. However, names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually, the compiler checks only that a name in two different structures has the same type
and offset in both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode {

} i

char tword[20]i
il'lt count;
struct tnode *lefti
struct tnode *righti

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *SPi

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[O]

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by =, and consists of an expression or a list of values nested in braces.

in itializer:
expression
{ initializer-list }
{ initializer-list ,

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in § 15, or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0; automatic and
register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with O's. It is not permitted to initialize unions or automatic
aggregates.

5-15

5-16

C Programming Language-8560 MUSDU Native Programming Package Users

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate~ it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate~ any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac
ters of the string initialize the members of the array.

For example,

int x [] = { 1, 3, 5 } ;

declares and initializes x as a I-dimensional array which has three members, since no size was specified
and there are three initializers.

float y[4] [3] - {
{ 1, 3,5 },
{ 2,4,6 },
{ 3, 5, 7 },

} ;

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y [0], namely
y [0] [0], y [0] [1], and y [0] [2]. Likewise the next two lines initialize y [1] and y [2]. The initial
izer ends early and therefore y [3] is initialized with O. Precisely the same effect could have been
achieved by

float y[4] [3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The initializer for y begins with a left brace, but that for y [0] does not, therefore 3 elements from the
list are used. Likewise the next three are taken successively for y [1] and y [2]. Also,

float y[4] [3]
{ 1 }, { 2 }, { 3 }, { 4 }

} ;

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O.
Finally,

char msg[] = "Syntax error on line "s\n";

shows a character array whose members are initialized with a string.

8.7 Type names
In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name,"
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

C Programming Language-8560 MUSDU Native Programming Package Users

int
int *
int *[3]
int (*) [3]
int * ()
int (*) ()

name respectively the types Hinteger," "pointer to integer," "array of 3 pointers to integers," "pointer
to an array of 3 integers," Hfunction returning pointer to integer," and Hpointer to function returning an
integer. "

8.8 Typedef
Declarations whose "storage class" is typedef do not define storage, but instead define identifiers

which can be used later as if they were type keywords naming fundamental or derived types.

typede/-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im;} complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations~ the type of distance is int, that of metricp is "pointer to int," and that of
z is the specified structure. zp is a pointer to such a structure.

typedef does not introduce brand new types, only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement. or block
So that several statements can be used where one is expected, the compound statement (also, and

equivalently, called "block") is provided:

compound-statement:
(declaration-list

opt
statement-listopt)

declara tion-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed
down for the duration of the block. after which it resumes its force.

5-17

5-18

C Programming Language-8S60 MUSDU Native Programming Package Users

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initialization is nor permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is O. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

whi Ie (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.S Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-l
oPI

; expression-2
oPI

; expression-l
oPI

) statement

This statement is equivalent to

expression-l ;
while (expression-2)

statement
expression-l ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to whi Ie (1); other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The swi tch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

swi tch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be into The state
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be into No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

C Programming Language-8560 MUSDU Native Programming Package Users

default :

When the switch statement is executed, its expression is evaluated and compared with each case con
stant. If one of the case constants is equal to the value of the expression, control is passed to the state
ment following the matched case prefix. If no case constant matches the expression, and if there is a
defaul t prefix, control passes to the prefixed statement. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, which continues unim
peded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break

causes termination of the smallest enclosing whi le, do, for, or switch statement: control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue

causes control to pass to the loop-continuation portion of the smallest enclosing while. do. or for state
ment: that is to the end of the loop. More precisely, in each of the statements

while (...)

contin: ;
}

do (

contin:
} while (...);

for (...)

contin: ;
}

a continue is equivalent to go to contino (Following the contin: is a null statement, §9.I3.)

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;
return expression;

In the first case the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted, as if by assignment. to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

gete identifier ;

The identifier must be a label (§9.I2) located in the current function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a gote. The
scope of a label is the current function, excluding any sub-blocks in which the same identifier has been
redeclared. See § 11.

5-19

5-20

C Programming Language-8560 MUSDU Native Programming Package Users

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to supply a null
body to a looping statement such as whi Ie.

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static, and a specified type. The type
specifier (§8.2) may also be empty, in which case the type is taken to be into The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per
sists to t.he end of a block. The syntax of external definitions is the same as that of all declarations,
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

function-definition:
decl-specifiersopt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static~ see §11.2 for the distinc
tion between them. A function declarator is similar to a declarator for a "function returning ... " except
that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be into The only storage class which may be
specified is register~ if it is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max (a, b, c)
int a, b, Ci

int mi

m = (a > b) ? a : bi
return«m> c) ? m c)i

Here int is the type-specifier~ max (a, b, c) is the function-declarator~ int a, b, C; is the
declaration-list for the formal parameters~ { ... } is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared float have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared "array of ... " are adjusted to read "pointer to ... ". Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

C Programming Language-8560 MUSDU Native Programming Package Users

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static, but not auto or
register.

11. Scope rules
A C program need not all be compiled at the same time: the source text of the program may be kept

in several files, and precompiled routines may be loaded from libraries. Communication among the func
tions of a program may be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
"undefined identifier" diagnostics~ and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from the definition through

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see § 11.2) the com
piler checks all declarations of the same external identifier for compatibility~ in effect their scope is
increased to the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.S) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks, but an explicit type must
be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancet.

11.2 Scope of externals
If a function refers to an identifier declared to be extern. then somewhere among the files or

libraries constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any other files which
wish to give an external definition for the identifier must include the extern in the definition. The
identifier can be initialized only in the declaration where storage is allocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

tit is agreed that the ice is thin here.

5-21

5-22

C Programming Language-8560 MUSDU Native Programming Package Users

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and

inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language;' they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#def ine identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#de fine identifier (identifier, ... ,identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a
) are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table[TABSIZE)i

A control line of the form

#undef identifier

causes the identifier's preprocessor definition to be forgotten.

12.2 File inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna
tively, a control line of the form

#include ~kname>

searches only the standard places, and not the directory of the source file.
#include's may be nested.

12.3 Conditional compilation
A compiler control line of the form

i f constant-expression

checks whether the constant expression (see §15) evaluates to non-zero. A control line of the form

i f de f identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the
subject of a#define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line

C Programming Language-8560 MUSDU Native Programming Package Users

#else

and then by a control line

#endif

If the checked condition is true then any lines between #else and #endif are ignored. If the checked
condition is false then any lines between the test and an #else or, lacking an "else, the .. endif. are
ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs. a line of the form

"line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a declaration.

The storage class is supplied by the context in external definitions and in declarations of formal parame
ters and structure members. In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int~ if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C
being incapable of compiling code into the stack)~ if the type of an identifier is "function returning ... ", it
is implicitly declared to be extern.

In an expression, an identifier followed by < and not already declared is contextually declared to be
"function returning int".

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions
There are only two things that can be done with a structure or union: name one of its members (by

means of the • operator) ~ or take its address (by unary &). Other operations, such as assigning from or
to it or passing it as a parameter, draw an error message. In the future, it is expected that these opera
tions, but not necessarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with. or -» the name on the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape
from the typing rules, this restriction is not firmly enforced by the compiler. In fact, any Ivalue is allowed
before ., and that Ivalue is then assumed to have the form of the structure of which the name on the
right is a member. Also, the expression before a -> is required only to be a pointer or an integer. If a
pointer, it is assumed to point to a structure of which the name on the right is a member. If an integer,
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are' only two things that can be done with a function: call it, or take its address. If the name

of a function appears in an expression not in the function-name position of a call, a pointer to the func
tion is generated. Thus, to pass one function to another, one might say

int f () ;

g <f);

Then the definition of g might read

5-23

5-24

g(funcp)
int (*funcp) () ;
(

C Programming Language-8560 MUSDU Native Programming Package Users

Notice that f must be declared explicitly in the calling routine since its appearance in g (f) was not fol
lowed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the

first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the subscript
operator [] is interpreted in such a way that E1 [E2] is identical to * ((E1) + (E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank ; x j x ... x k, then E appearing in an expression is converted to a pointer to an (n - 1)
dimensional array with rank j x ... x k. If the * operator, either explicitly or implicitly as a result of
subscripting, is- applied -to this pointer, the result is the pointed-to (n - 1) -dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x [3] [5] ;

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) 5-membered arrays of integers. In the expression x [i], which is equivalent to * (x+i) , x
is first converted to a pointer as described~ then i is converted to the type of x, which involves multiply
ing i by the length the object to which the pointer points, namely 5 integer objects. The results are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again~ this time the
result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator, §§7.2 and 8.7.
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or

long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are gi ven below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a .pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size Gn bytes) of an object to allocate, and
return a char pointer~ it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp - 22.0 / 7.0;

alloc must ensure Gn a machine-dependent way) that its return value is suitable for conversion to a
pointer to double~ then the use of the function is portable.

C Programming Language-8560 MUSDU Native Programming Package Users

The pointer representation on the POP-II corresponds to a I6-bit integer and is measured in bytes.
chars have no alignment requirements~ everything else must have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer~ the word part is in the left 18 bits,
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 216 bytes~ everything else is measured in units of 218 machine words. double quantities and
aggregates containing them must lie on an even word address (0 mod 219).

The IBM 370 and the Interdata 8/32 are similar. On both, addresses are measured in bytes~ elemen
tary objects must be aligned on a boundary equal to their length, so pointers to short must be 0 mod 2,
to int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

15. Constant expressions
In several places C requires expressions which evaluate to a constant: after case, as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character con
stants, and sizeof expressions, possibly connected by the binary operators

+ * 1%& « » != < > <= >=

or by the unary operators

or by the ternary operator

? :

Parentheses can be used for grouping, but not for function calls.
More latitude is permitted for initializers~ besides constant expressions as discussed above, one can

also apply the unary & operator to external or static objects, and to external or static arrays subscripted
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

16. Portability considerations
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is

not meant to be all-inclusive, but to point out the main ones.
Purely hardware issues like word size and the properties of floating point arithmetic and integer divi

sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these, particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be
carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine~ excess or invalid register declarations are ignored. .

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right to left on
the PDP-II, and VAX-II, left to right on the others. The order in which side effects take place is also
unspecified.

Since character constants are really objects of type int, multi-character character constants may be
permitted. The specific implementation is very machine dependent, however, because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right-to-Ieft on the POP-II and VAX-II and
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge
in type punning (for example, by converting an int pointer to a char pointer and inspecting the
pointed-to storage), but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP-II compiler will not initialize structures containing bit-fields, and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.

5-25

5-26

C Programming Language-8560 MUSDU Native Programming Package Users

17. Anachronisms
Since C is an evolving language, certain obsolete constructions may be found in older programs.

Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav
ing only a portability problem behind.

Earlier versions of C used the form -op instead of op- for assignment operators. This leads to
ambiguities, typified by

x--1

which actually decrements x since the - and the - are adjacent, but which might easily be intended to
assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x - 1;

one used

int x 1;

The change was made because the initialization

int f (1 +2)

resembles a function declaration closely enough to confuse the compilers.

C Programming Language-8560 MUSDU Native Programming Package Users

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.

18.1 Expressions
The basic expressions are:

expression:
primary
* expression
& expression
- expression
! expression
- expression
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
(type-name) expression
expression binop expression
expression? expression: expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)

primary (expression-list
oPI

)

primary [expression]
Ivalue . identifier

Ivalue:

primary -> identifier

identifier
primary [expression]
Ivalue . identifier
primary -> identifier
* expression
(Ivalue)

The primary-expression operators

() [] ->

have highest priority and group left-to-right. The unary operators

* & ++ sizeof (type-name)

have priority below the primary operators but higher than any binary operator, and group right-to-Ieft.
Binary operators group left-to-right~ they have priority decreasing as indicated below. The conditional
operator groups right to left.

5-27

5-28

C Programming Language-8560 MUSDU Native Programming Package Users

binop:

* I " +
» «
< > <- >-

-- I-
&

&&
II
?:

Assignment operators all have the same priority, and all group right-to-Ieft.

asgnop:
+= *_ 1_ ,,- »- «- &- A_ 1_

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration:
decl-specifiers init-declarator-listopt ;

decl-specifiers:
type-specifier decl-specifiersopl
sc-specifier decl-specifiersopl

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

init-declarator-list:
init-declarator
init-declarator , in it-declarator-list

init-declarator:
declarator initializer opt

declarator:
identifier
(declarator)
* declara tor
declara tor ()
declarator [constant-expressionopl]

C Programming Language-8560 MUSDU Native Programming Package Users

struct-or-union-specifier:
struct {struct-decl-list}
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

strucl-declarator-list:
struct-declarator
struct-dec/arator , struct-dec/arator-list

sfruct-declarator:
dec/arator
dec/arator : constant-expression
: constant-expression

initializer:
= expression

(initializer-list)
= (initializer-list ,

initia lizer-list:
expression
initializer-list , initializer-list
(initia/izer-list)

type-name:
type-specifier abstract-dec/arator

abstract-dec/ara tor:
empty
(abstract-dec/arator)
* abstract-dec/arator
abstract-dec/arator ()
abstract-declarator [constant-expressionopl]

typede!-name:
identifier

18.3 Statements

compound-statement:
{ dec/aration-list

oP1
statement-list

opl
}

declaration-list:
declaration
declaration declaration-list

5-29

5-30

C Programming Language-8S60 MUSDU Native Programming Package Users

statement-list:
statement
statement statement-list

statement:
compound-statement
expression;
if (expression) statement
if (expression) statement else statement
whi le (expression) statement
do statement while (expression) ;
for (expression-loPI ; expression-20pt ; expression-lopt) statement
swi tch (expression) statement
case constant-expression statement
defaul t : statement
break ;
continue ;
return ;
return expression;
goto identifier ;
identifier : statement

18.4 External definitions

program:
external-definition
external-definition program

exter na I-defi ni tion:
Junction-definition
data-definition

function-definition:
type-specifieropt Junction-declarator Junction-body

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier 1 parameter-list

function-body:
type-decl-list Junction-statement

Junction-statement:
(declaration-listopt statement-list)

data-definition:
extern "JftO-s:pecifier t init-declarator-list t ; opt 'J yo. op op
staticopt type-specifieropt init-declarator-listopt ;

18.S Preprocessor

C ProgrammingLanguage-8560 MUSDU Native Programming Package Users

Idefine identifier token-string
Idef ine identifier (identifier, ..• , identifier) token-string
lunde f identifier
I inc 1 ude "filename"
linclude ~kna~>
lif constont-expression
lifdef identifier
lifndef identifier
lelse
lendif
Iline constont identifier

5-31

5-32

C Programming Language-8560 MUSDU Native Programming Package Users

Recent Changes to C

November 15. 1978

A few extensions have been made to the C language beyond what is described in the reference docu
ment ("The C Programming Language," Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDP-II implementation of functions that return structures: if an inter
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

with syntax

enum-specifier

enum-specifier:
enum { enum-list I
enum identifier { enum-list I
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark Ii

enum color *cp, coli

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and lint flags type mismatches. In the PDP-II implementation all enumeration variables are treated
as if they were into

8560 MUSDU Native Programming Package Users

Section 6

SED-A NON-INTERACTIVE TEXT EDITOR

INTRODUCTION
sed, a non-interactive text editor, was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder of this section is a reprint of an article describing
sed. The Technical Notes section of this manual describes the limitations of this program and
any changes made to this program by Tektronix.

6-1

6-2

SEO-8560 MUSOU Native Programming Package Users

SED - A Non-interactive Text Edit~r

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNlxt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUNIX is a Trademark of Bell laboratories.

SED-8560 MUSDU Native Programming Package Users

Introduction

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing~
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode~
3) To perform multiple "global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time. and no temporary files are used.
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author. even· if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac
tive and non-interactive operation, considerable changes have been made between ed and sed;
evencontlrmed users of cd will frequently be surprised (and probably chagrined). if they rashly
use sed without reading Sections 2 and 3 of t his document. The most striking family resem
blance between the two editors is in the· class of patterns ('regular expressions') they recognize:
the code for matching patterns is copied almost verbatim from the code for ed. and the descrip
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's ManuallI 1. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line~ see Section 1.1 below.

The general format of an editing command is:

[address I ,address2] [function] [arguments]

One or both addresses may be omitted~ the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present~ the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given: again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

6-3

6-4

SED-8560 MUSDU Native Programming Package Users

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines~ but only those specified by p functions or p flags after

s functions (see Section 3.3)~
-e: tells sed to take the next argument as an editing command~
-f: tells sed to take the next argument as a file name~ the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com
piled in I he order in which they are encountered~ this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time~ the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of
control commands, I and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input lext:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to. a sunless sea.

On no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (' { } ')(Sec. 3.6.).

SEO-8560 MUSOU Native Programming Package Users

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special 'case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes (' /'). The regular
expressions recognized by SRd are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex l'" at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign "$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters l\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period'.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ,.' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets l [J' matches any character in the string,

and no others. If, however, the first character of the string i~ circumflex lA"
the regular expression matches any character except the characters in the string
and the terminal newline of the paltern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\C and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the 5 command below and specification 10) immediately below.

10) The expression '\d'means the same string of characters matched by an expression
enclosed in '\ (' and '\) ~ earlier in the same pattern. Here d is a single digit~ the
string specified is that beginning with the dth occurrence of '\ (' counting from
the left. For example. the expression ,A\ (. *\)\ l' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters C $. * [] \ /) as a literal <to match an occurrence of itself
in the input), precede the special character by a backslash "'.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. N umber of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

6-6

6-6

SEO-8560 MUSOU Native Programming Package Users

and the process is repeated.

Two addresses are separated by a' comma.

Examples:

lanl
lan.*anl
Fanl

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines

1.1 matches all lines
1\.1 matches line 5
Ir*anl
l\(an\),*\11

matches lines 1,3, 4 (number == zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func
tion name, possible arguments enclosed in angles « », an expanded English translation of
the single-character name, and finally a description of what each' function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line~ as soon as the d function is executed, a new line is
read from the input, and the list of. editing commands is re-started from the
beginning on the new line.

(2)n -- next line

O)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

(1)i\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line~ a
must appear at the end of a line, and < text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (~\') immediately preceding the new
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely~ < text> will still be written to the out
put.

The < text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

SED-8560 MUSDU Native Programming Package Users

(2)c\

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the Q

function 'apply to the i function as well.

< text> -- change lines

The c function deletes the lines selected by its address (es) , and replaces them
with the lines in <text>. Like Qand i, c:must be followed by a newline hid
den by a backslash~ and interior new lines in < text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output. not one copy per line deleted. As with Q and i, <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by Q or ,functions, and the line is subsequently
changed, the text inserted by the c function will be placed be/ore the text of the
Q or , functions. (The, function is described in Section 3.4.>

Note: Within the text put in the output by these functions. leading blanks and tabs will disap
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash~ the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph. the sacred river. ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by < pattern» with < replace
ment>. It can best be read:

Substitute for <pattern>, <replacement>
6-7

6-8

SEO-8560 MUSOU Native Programming Package Users

The < pattern> argument contains a paltern, exactly like the patterns in
addresses (see 2.2' above). The only difference between < pattern> and a (;on

text address is that the context address must be delimited by slash ('I') charac
ters~ <paltern> may be delimited by any character other than space or new
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character'>

The < replacement> is not a paltern, and the characters which are special in
patterns do not have special meaning in < replacement>. I nstead, other char
acters are special:

& is replaced by the string matched by < pattern>

\d (where d is a single digit) is replaced by the ath substring matched
by parts of < pattern> enclosed in '\ (' and '\)'. If nested sub
strings occur in < pattern>, the ath is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\').

The <flags> argument may contain the following flags:

g -- substitute < replacement> for all (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters~ characters put into the line from
< replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution,

w < filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename>. If
< filename> exists before sed is run, it is overwritten~ if not, it
is created.

A single space must separate wand < filename>.

The possibilities of mUltiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of) 0 different file names may be mentioned after
w flags and w functions (see below), combined.

SEO-8560 MUSOU Native Programming Package Users

Examples:

The following command, applied to our standard input,

sllolby Iw changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river. ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ~changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect. the command:

sl L, ~ ?:] r P & *1 gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P: the sacred river*P: ran
Down to a sunless sea*P. *

Finally, to illustrate the effect of the g flag, the command:

IXlslanl AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IXlslanl AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. I nput-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by < filename>.
If the file. previously existed, it is overwritten~ if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand < filename>.

A maximum of ten different files may be mentioned in write functions and K'

flags after s functions, combined.

(I) r < filename> -- read the contents of a file

The read function reads the contents of < filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If , and a functions are executed on the same line, the text from the a

6-9

6-10

SED-8560 MUSDU Native Programming Package Users

functions and the r functions is written to the output in the order that the func
tions are executed.

Exactly one space must separate the , and < filename>. If a file mentioned by
a , function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that 'number
is reduced by one if any r functions are present. (Only one 'read file is open at one time'>

Examples

Assume: that the file 'note)' has the following contents:

Note: Kubla Khan (more properly Kublai Khan~ 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasiy in China.

Then the following command:

IKubla/r note 1
produces: '

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan~ 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan. and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple I nput-line Functions

Three functi'ons. all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space~ the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline (s).

(2) D -- Delete first part of t he pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty <the only newline was the terminal
newline). read another line from the input. In any case. begin the list of edit
ing commands again from its beginning.

(2)P -- Print first part of the pallern space

Print up to and induding the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pallern space.

SED-8560 MUSDU Native Programming Package Users

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area~ the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area. into the pattern space (des
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pallern space~ the former and new contents are separated by a newline.

(2) x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

Ih
lsI did.·11
Ix
G
s/\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In X~lnadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by t he address part.

(2)! -- Don't

The Don', command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2) { --Grouping

The grouping command '(' causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group
ing command. The first of the commands under control of the grouping may
appear on the same line as the' (, or on the next line.

•
6-11

6-12

SED-8560 MUSDU Native Programming Package Users

The group of commands is terminated by a matching 4}' standing on a line by
itself.

Groups can be nested.

(O):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and I functions. The < label> may be any sequence of eight
or fewer characters~ if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same < label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the list of
editing commands~ whatever should be done with the current input line is
done, and another input line is read~ the list of editing commands is restarted
from the beginning on the new line.

(2)(< label> -- test substitutions

The 1 function tests whether any successful substitutions have been made on
the current input line: if so, it branches to < label > ~ if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a I function.

3.7. Miscellaneous Functions

(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(I)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[I] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora
tories, 1978.

8560 MUSDU Native Programming Package Users

Section 7

A TUTORIAL INTRODUCTION TO ADB

INTRODUCTION
adb, a debugger, was developed at Bell Laboratories and is licensed by Western Electric for use
on the 8560. The remainder of this section is a reprint of an article describing abd. The Technical
Notes section of this manual describes the limitations of this program and any changes madeto
this program by Tektronix.

7-1

7-2

ADB-8560 MUSDU Native Programming Package Users

A Tutorial Introduction to ADD

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been .available on UNlxt to allow users
to examine Bcore" files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core" and other pro
gram files in a variety of formats, run programs with embedded breakpoints and
patch files.

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam
ples of its use. It explains the various formatting options, techniques for
debugging C programs, examples of printing file system information and patch
ing.

May 5, 1977

tUNIX is a Trademark of Bell Laboratories.

ADS-8560 MUSDU Native Programming Package Users

A Tutorial Introduction to ADB

1. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to
look at "core" files resulting from abo .. ted programs, print output in a variety of formats, patch

~ files, and run programs with embedded breakpoints. This document provides examples of the
more useful features of ADB. The reader is expected to be familiar with the basic commands
on UNIXt with the C language, and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation

ADB is invoked as:

adb objfile corefile

where obj/ile is an executable UNIX file and core./ile is a core image file. Many times this will
look like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The filename minus (-) means ignore this
argument as in:

adb - core

ADB has requests for examining locations in either file. The ? request examines the
contents of obj.!ile, the / request examines the core./ile. The general form of these requests is:

address ? format

or

address / format

2.2. Current Address

ADB maintains a current address, called dot, similar in function to the current pointer in
the UNIX editor. When an address is entered, the current address is set to that location, so
that:

0126?i

tUNIX is a Trademark of Bell Laboratories.

7-3

7-4

ADB-8560 MUSDU Native Programming Package Users

sets dot to octal 126 and prints the instruction at that address. The request:

.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. When used with the ? or I requests, the current address can be advanced by typing
newline~ it can be decremented by typing ".

Addresses are represented by expressions. Expressions are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test. These may be combined
with the operators +, -, *, % (integer division), & (bitwise and), I (bitwise inclusive or), #
(round up to the next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recog
nize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that describe the format
of the printout. Formats are "remembered" in the sense that typing a request without one will
cause the new printout to appear in the previous format. The following are the most commonly
used format letters.

b one byte in octal
c one byte as a character
o One word in octal
d one word in decimal
f two words in floating point
i PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space

backup dot

(Format letters are also available for "long" values, for example, 'D' for long decimal, and' F'
for 'double floating point.) For other formats see the ADB manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.

The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.out file
I Print contents from core file
:= Print value of "dot"

Breakpoint control
S Miscellaneous requests

Request separator
Escape to shell

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q
or $Q (or cntl-D) must be used to exit from ADB.

ADB-8560 MUSDU Native Programming Package Users

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to change the lower case "t" to upper
case in the string pointed to by charp and then write the character string to the file indicated by
argument 1. The bug shown is that the character "T" is stored in the pointer charp instead of
the string pointed to by charp. Executing the program produces a core file because of an out of
bounds memory reference.

ADB is invoked by:

adb a.out eore

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one
function (main) was called and the arguments argc and argv have octal values 02 and 0177762
respectively. Both of these values look reasonable~ 02 = two arguments, 0177762 = address
on stack of parameter vector.
The next request:

SC

is used to give a C back trace plus an interpretation of all the local variables in each function
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a
character.

The next request:

Sr

prints out the registers including the program counter and an interpretation of the instruction at
that location.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.oUf file is referenced by ?
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use?
for instructions and I for data when looking at programs. To print out information about the
maps type:

Sm

This produces a report of the contents of the maps. More about these maps later.

In our example, it is useful to see the contents of the string pointed to by charp. This is
done by:

*eharp/s

which says use charp as a pointer in the core file and print the information as a character string.
This printout clearly shows that the character buffer was incorrectly overwritten and helps iden
tify the error. Printing the locations around charp shows that the buffer is unchanged but that
the pointer is destroyed. Using ADB similarly, we 'could print information about the arguments
to a function. The request:

main.arge/d

prints the decimal core image value of the argument argc in the function main.
7-5

7-6

ADS-8560 MUSDU Native Programming Package Users

The request:

*main.argv,3/0

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

Ol77770/s

prints the ASCII value of the first argument. Another way to print this value would have been

*"/s

The " means ditto which remembers the last address typed, in this case main.argc the *
instructs ADB to use the address field of the eore file as a pointer.

The request:

.==0

prints the current address (not its contents) in octal which has been set to the address of the
first argument. The current address, dot, is used by ADB to "remember" its current location.
It allows the user to reference locations relative to the current address, for example:

. -IO/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions f, g, and h
until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

$c

will fill a page of backtrace references to f, g, and h. Figure"4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request leveD.

The request:

,SSC

prints the five most recent activations.

Notice that each function (f.g,h) has a counter of the number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function.f Similarly gent and hent could be
printed. To print the value of an automatic variable, for example the decimal value of x in the
last call of the function h, type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most
recent activation of a function. Therefore, a user can print everything with SC or the
occurrence of a variable in the most recent call of a function. It is possible with the SC request,
however, to print the stack frame starting at some address as addressSC.

ADS-8560 MUSDU Native Programming Package Users

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is
adapted from Software Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:

adb a.out -

Breakpoints are set in the program as:

The requests:

address:b (request)

settab+4:b
fopen +4:b
getc+4:b
tabpos + 4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore
it is currently not possible to plant breakpoints at locations other than function entry points
without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol + 4 so that they will appear in any C backtrace since the first instruction of
each function is a call to the C save routine (csv). Note that some of the functions are from
the C library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count -/ times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is
encountered. I n our example no command fields are present.

By displaying the original instructions at the function selfab we see that the breakpoint is
set after the jsr to the C save routine. We can display the instructions using the ADB request:

settab,5? ia

This request displays five instructions starting at sellab with the addresses of each location
displayed. Another variation is:

settab,5 ?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command. In general
when asking for a printout of multiple items, ADB will advance the current address the number
of bytes necessary to satisfy the request; in the above example five instructions were displayed
and the current address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function sel1ab. one types:

settab+4:d

To continue execution of the program from the breakpoint type:

:c
Once the program has stopped (in this case at the breakpoint for lopen). ADB requests can

be used to display the contents of memory. For example:

$C

7-7

7-8

ADB-8560 MUSDU Native Programming Package Users

to display a stack trace, or:

tabs,3/So

to print three lines of 8 locations each from' the array called tabs. By this time (at location
fopen) in the C program, seftab has been called and should have set a one in every eighth loca
tion of fabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. Gefc is called three times and the contents of the variable c in the function
main are displayed each time. The single character on the left hand edge is the output from the
C program. On the third occurrence of gefc the program stops. We can look at the full buffer
of characters b'y typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at fabpos since there is a tab following the "This" word of the data.

Several breakpoints of fabpos will occur until the program has changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that
location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:running

The UNIX quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:

:c 0

is typed.

Now let us reset the breakpoint at seltab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab,S?ia •

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

• Owing to a bug in early versions of ADD (including the version distributed in Generic 3 UNIX) these state
ments must be written as:

seuab + 4:b seUab.5?la;0
lete + 4.3:b maln.e?C;O
seUab+4:b settab.5?la; ptab/o;O

Note that ;0 will set dot to zero and stop at the breakpoint.

ADB-8560 MUSDU Native Programming Package Users

stop after the third occurrence by typing:

getc+4,3:b main.c?C *

This request will print the local variable e in the function main at each occurrence of the break
point. The semicolon is used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed~ executing the pro
gram under ADB does not change dot. Therefore:

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen +4) not the current location (set
tab + 4) at which the program is executing.

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *

could be entered after typing the above requests.

Now the display of breakpoints:

Sb

shows the above request for the settab breakpoint. When the breakpoint at sellab is encoun
tered the ADB requests are executed. Note that the location at sellab+4 has been changed to
plant the breakpoint~ all the other locations match their original value.

Using the functions, .I; g and h shown in Figure 3, we can follow the execution of each
function by planting non-stopping breakpoints. We call ADB with the executable program of
Figure 3 as follows:

adb ex3 -

Suppose we enter the following breakpoints:

h+4:b
g+4:b
f+4:b
:r

hcnt/d; h.hi/; h.hrl
gcnt/d; g.gi/; g.grl
fcnt/d; f.ft/; f.frl

Each request line indicates that the variables are printed in decimal (by the specification d).
Since the format is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint
line are not examined until the program under test is run. That means any errors in those
ADB requests is not detected until run time. At the location of the error ADB stops running
the program.

The second point is the way ADB handles register variables. ADB uses the symbol table
to address variables. Register variables, like .If I' above, have pointers to uninitialiled places on
the stack. Therefore the message "symbol not found".

as:
Another way of getting at the data in this example is to print the variables used in the call

f+4:b
g+4:b
:c

fcnt/d; f.a/; f.b/; f.ftl
gcnt/d; g.p!; g.q!; g.gil

The operator / was used instead of? to read values from the core file. The output for each
function, as shown in Figure 7, has the same format. For the function f, for example, it shows
the name and value of the external variable fent. It also shows the address on the stack and
value of the variables a, band .ft.

7-9

ADS-8560 MUSDU Native Programming Package Users

Notice that the addresses on the stack will continue to decrease until no address space is
left for program execution at which time (after many pages of output) the program under test
aborts. A display with names would be produced by requests like the following:

f+4:b fcnt/d; f.a/" a ="d; f.b/"b ="d; f.fi/"fi ="d

In this format the quoted string is printed literally and the d produces a decimal display of the
variables. The results are shown in Figure 7.

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r argI arg2 ... < infile > outfile

This request kills any existing program under test and starts the a.out afresh.

• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and stop after executing
the first instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k~J

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to
load the program file. File type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc
-n pgm.c, whereas a 411 file is produced by cc -i pgm.c. ADB interprets these different file for
mats and provides access to the different segments through a set of maps (see Figure 8). To
print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible
for ADB to differentiate data from instructions and some of the printed symbolic addresses look
incorrect~ for example, printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?* accesses the
data part of the a.out file. The ?* request tells ADB to use the second part of the map in the
a.out file. Accessing data in ~he core file shows the data after it was modified by the execution

7-10

ADB--8560 MUSDU Native Programming Package Users

of the program. Notice also that the data segment may have grown during program execution.

In 411 fi les (separated I & D space), the i nst rue't ion..; and data are also separated. H ow
ever, in this case, since data is mapred through a separate "et of segmentation registers. the
base of the data segment is also relative to address zero. In this case since the addresses over
lap it is necessary to use the ?* operator to access the data space of the a.oUl file. In hoth 410
and 4 II files the corresponding core Hie does not contain the program text.

Figure 9 shows the display of three maps for the same program Ii nked as a 407, 410, 411
resf>f'ctively. The b, e, and f fields are used by ADB to map addresses into file addresses. The
"fl" field is the length of the header at the heginning of the file (020 hytes for an a.oll/ file and
02000 hytec.; for a corc file). The "f2" field is the displacement from the beginning of the file to
the data. For a 407 file with mixed text and data this is the same as the length of the header~
for 4]0 and 411 fIles this is the length of {he header plus the size of the text portion.

The "h" and "e" fields are the starting and ending locations for a segment. Given an
address. A. the location in the file (either a.our or core) is calculated as:

bl~A~el ~ file address = (A-bO+f1
b2 ~ A ~ e2 ~ file address = (A - b2) + f2

A u"er celn ,leeess locl.tions hy using the ADB defined variCibles. The $\-' request prints the vari
ahles inlt!a!ilcd by ADB:

b hase address of data se~ment
d len~th of the data se~ment
s len~th of the stack

length of the text
m execution type (407,410.41 J)

In Figure q those variahles not present dre zero. Use can he made of these varia hies hy
expre'-,<.;ions ">llch as:

<h

in the address fleld. Similarly the value of the vdrlahle can he changed hy an assignment
request such as:

02000> b

that sets b to octal 2000. These variahles arc u"icful to know if the file under examination I"> an
executable or core image file.

ADB reads the header of the cor(' image flle to find the values for these variahles. If the
second flle specified does not seem to be a core file, or if it is missing then the header of the
executahle file is used instead.

5. Advanced lJsage

It is possible with ADB to combine formatting requests to provide elahorate displays.
Below are several examples.

5.1. Formatted dump

The line:

< b, -11404~8Cn

prints 4 oClal words followed by their ASCII interpretation from the data space of the core
image file. Broken down, the various request pieces mean:

< b The base address ()f the da ta segment.

7-11

7-12

ADB-8560 MUSDU Native Programming Package Users

<b,-1 Print from the base address to the end of file. A negative count is
used here and elsewhere to loop indefinitely or until some error con~
dition· (Ijke end of file) is detected.

The format 404
A

SCn is broken down as follows:

40 Print 4 octal locations.

4 A Backup the current address 4 locations (to the original start of the
field) .

8e Print 8 consecutive characters using an escape convention~ each
character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0140 to 0177. An @ is printed
as @@.

n Print a newline.

The request:

< b,< d/404
A

SCn

could have been used instead to allow the printing to stop at the end of the data segment «d
provides the data segment size in bytes).

The formatting requests can be combined with ADB's ability to read in a script to produce
a core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
= 3n"C Stack Backtrace"
$C
= 3n"C External Variables"
$e
= 3n" Registers"
$r
O$s
= 3n" Data Segment"
<b,-l/Sona

The request 120$w sets the width of the output to 120 characters (normally, the width is
80 characters). ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request = can be used to print literal strings. Thus, headings
are provided in this dump program with requests of the form:

== 3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero ADD
variables (see Figure 8). The request O$s sets the maximum offset for symbol matches to zero

ADB-8560 MUSDU Native Programming Package Users

thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only
done for the printing of the data segment. The request:

< b, -I/Sona

prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents of a
directory (which is made up of an integer inumber followed by a 14 character name):

adb dir -
= nSt" Inurn" St" Name"
0, -I? uSt14cn

In this example, the u prints the inumber as an unsigned decimal integer, the St means that
ADB will space to the next mUltiple of 8 on the output line, and the 14c prints the 14 character
file name.

5.3. llist Dump

Similarly the contents of the ilis! of a file system, (e.g. /dev/src, on UNIX systems distri
buted by the UNIX Support Group~ see UNIX Programmer's Manual Section V) could be
dumped with the following set of requests:

adb Idev Isrc -
02000> b
?m <b
< b, -1 ?"flags"Ston"Iinks,uid,gid"St3bn" ,size"Stbrdn"addr"StSun"times"St2Y2na

In this example the value of the base for the map was changed to 02000 (by saying ?m< b)
since that is the start of an ilis! within a file system. An artifice (brd above) was used to print
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as
applied to a directory and file system.

5.4. Converting values

ADB may be used to convert values from one representation to another. For example:

072 = odx

will print

072 5S #3a

which is ti)e octal, decimal and hexadecimal representations of 072 (octal). The format is
remembered so that typing subsequent numbers will print them in the given formats. Charac
ter values may be converted similarly, for example:

'a' = co

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the
same precedence which is lower than that for unary operators.

7-13

7-14

ADB-8560 MUSDU Native Programming Package Users

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which is not like
the ed editor write command). This is often used in' conjunction with the locate, I or L request.
In general, the request syntax for I and w are similar as follows:

?I value

The request I is used to match on two bytes, L is used for four bytes. The request w is used to
write two bytes, whereas W writes four bytes. The value field in either locate or write requests
is an expression. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:

adb - w filel ftle2

When called with this option, file I and . file 2 are created if necessary and opened for both read
ing and writing.

For example, consider the C program shown in Figure 10. We can change the word
"This" to "The" in the executable file for this program, ex 7, by using the following requests:

adb -w ex7 -
?1'Th'
?W 'The'

The request ?1 starts at dot and stops at the first match of "Th" having set dot to the address of
the location found. Note the use of ? to-write to the a.out file. The form ?* would have been
used for a 411 file.

More frequently the request will be typed as:

?I 'Th'; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has
an internal logic flag. The flag could be set by the user through ADB and the program run.
For example:

adb a.out - .
:s argl arg2
flag/w I
:c

The :s request is normally used to single step through a process or start a process in single step
mode. In this case it starts a.oUf as a subprocess with arguments argl and arg2. If there is a
subprocess running ADB writes to it rather than to the file so the w request causes flag to be
changed in the memory of .the subprocess.

7. Anomalies

Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting break
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2. When printing addresses, ADD uses either text or data symbols from the a.out file. This
sometimes causes unexpected symbol names to be printed with data (e.g. savr5 +022).
This does not happen if ? is used for text (instructions) Clnd / for data.

ADS-8S60 MUSDU Native Programming Package Users

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document
from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes
necessary to accommodate tracing within ADB. He also participated in discussions during the
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, July,
1974.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual - 7th Edition, 1978.
4. B. W. Kernighan and P. 1. Plauger, Software Tools, Addison-Wesley, 1976.

7-15

7-16

Figure 1: C program with pointer bug

struct buf {
int tildes;
int nleft;
char *nextp;
char butf[512] ~
}bb;

struct buf *obuf;

char *charp "this is a sentence.";

main (argc,argv)
int argc;
char **argv;
(

char cc;

if(argc < 2) (
printf("1 nput tile missing\n");
exit(S) ;

if«fcreat(argv[l),ohuf» < O){
printf("%s: not found\n", argv[l));
exit(S) ;

charp = 'T':
printf(tldebug 1 %s\n",charp);

while(cc= *charp+ +)
putc(cc,obuf) ;

ffiush(obuf);

ADB-8560 MUSDU Native Programming Package Users

ADB-8560 MUSDU Native Programming Package Users

Figure 2: ADB output for C program of Figure 1

adb a.out core
$c
-main(02,0177762)
SC
-main(02,0177762)

argc: 02
argv: 0177762
cc: 02124

Sr
ps 0170010
pc 0204 -main+0152
sp 0177740
r5 0177752
r4 01
r3 0
r2 0
r1 0
rO 0124
-main +0152: mov _obuf,(sp)
$e
savr5: 0
obuf: 0 -

_charp: 0124
errno: 0

-
fout: 0 -

Sm
text map ex I'
bl = 0 cl = 02360
b2 = 0 e2 = 02360
data map corel'
bl =0 cl = 03500
b2 = 0175400 c2 = 0200000

fl = 020
f2 = 020

fl = 02000
f2 = 05500

*charp/s
0124: TTTLx

charp/s
_charp: T

_charp+ 02: this is a sentence.

_charp+026: Input Hie missing
main.arge/d
0177756: 2
*main.argv 130
017.7762: 017777001777760177777
0177770/s
0177770: a.out
*main.argv 130
0177762: 017777001777760177777
*" Is
0177770: a.out
.... 0

0177770
.-IO/d

0177756: 2
$q

Nh@x&

7-17

7-18

ADB-8560 MUSDU Native Programming Package Usel

Figure 3: Multiple function C program for stack trace illustration

int fcnt,gcnt,hcnt;
h(x,y)
{

g(p,q)
{

f(a,b)
{

mainO
{

int hi; register int hr;
hi = x+ L
hr == x-y+ 1;
hcnt+ + ;
hj:
f(hr ,hi);

int gi; register int gr;
gi = q-p;
gr = q-p+ 1;
gcnt++ ;
gj:
h (gr ,gj);

int fi; register int fr;
fi = a+2·b;
fr=a+b;
fcnt+ + ;
fj:
g(fr,fi) ;

fO, 1);

ADB-8560 MUSDU Native Programming Package Users

Figure 4: ADD output for C program of Figure 3

adb
$c
-h(04452,04451)
-g(04453,011124)
-f(02,04451)
-h (04450,04447)
-g(04451,011120)
-f(02,04447)
-h (04446,04445)
-g (04447,011114)
-f(02,04445)
-h (04444,04443)
HIT DEL KEY
adb
,sse
-h(04452,0445I)

x: 04452
y: 04451
hi: ?

-g(04453 ,0 11124)
p: 04453
q: 011124
gi: 04451
gr: ?

-f(02,0445t>
a: 02
b: 04451
fi: 011124
fr: 04453

-h (04450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

-g(04451.011120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fcnt/d
fent: 1173

gcnt/d
gent: 1173

hcnt/d
hcnt: 1172

h.x/d
022004: 2346
$q

ADB-8560 MUSDU Native Programming Package Users

Figure 5: C program to decode tabs

7-20

#define MAXLINE 80
#define YES 1
#define NO 0
#define T ABSP 8

char input[] "data"~
char ibuf(518):
int tabs[MAXLINE):

mainO
(

int col, ·ptab~
char c~

ptab == tabs:
seUab(ptab): I*Set initial tab stops • /
col == 1:
if(fopen(jnput.ibuf) < 0) (

J

printf("%s : not found\n" ,input) ~
exit(8) :

while«c == getc(ibuf» !- -I) (
switch(c) (

case '\t': 1* TAB • /
while{tabpos(coJ) ! - YES) (

putchar(' ')~ 1* put BLANK ./
col+ + ~

break:
case '\n':I*NEWLINE ./

putchar('\n') ;
col - L

default:
break:

putchar(c) :
col++ ;

/. Tabpos return YES if col is a tab stop • /
tabpos(coJ)
int col;
(

if(col > MAXLINE)
return(YES);

else
return (tabs(coJ]);

/. Settab - Set initial tab stops • /
settab{tabp)
int ·tabp;
(

int i;

for(j - 0; i < - MAXLINE; i+ +)
(i% T ABSP) ? CtabsliJ - NO) : Ctabs(i) - YES);

ADB-8560 MUSDU Native Programming Package Users

Figure 6a: ADB output for C program of Figure 5

adb a.out
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
Sb
breakpoints
count bkpt
1 -tabpos+04
1 _getc+04
1 Jopen+04
1 -settab+04
settab,S?ia
-settab: jsr
-settab+04: tst
-se tta b + 06: elr
-settab + 012: cmp
-settab+020: bit
-settab+022:
settab,S?i
-settab: jsr

tst
elr
cmp
bit

:r
a.out: running

command

rS,csv
-(sp)
0177770(rS)
SOI20,0177770(rS)
-settab+076

rS,csv
-(sp)
0177770(rS)
SOI20,0177770(rS)
-settab+076

breakpoint -settab+04: tst -(sp)
settab+4:d
:c
a.out: running
breakpoint Jopen+04: mov 04(rS) ,nulstr+ 012
SC
Jopen(02302,02472)
-main (0 1,0177770)

col: 01
c: 0
ptab: . 03500

tabs,3/80
03500: 01 0 0 0 0 0

01 0 0 0 0 0
01 0 0 0 0 0

0 0
0 0
0 0

7-21

7-22

ADB-8560 MUSDU Native Programming Package Users

Figure 6b: ADD output for C program of Figure 5

:c
a.out: running
breakpoint _getc+04: mov 04(r5),rl
ibuf+6/20c
_c1eanu +0202: This is a test of
:c
a.out: running
breakpoint -tabpos+04: cmp SOI20,04(rS)
tabpos+4:d
settab+4:b settab,S?ia
settab+4:b settab,S?ia; 0
getc+4,3:b main.c?C; 0
settab + 4:b settab,S?ia; ptab/o; 0
Sb
breakpoints
count bkpt
1 -tabpos+04
3 getc+04

Jopen+04
-settab+04

-settab:
-settab+04:
-settab+06:
-settab+012:
-settab+020:
-settab+022:
0177766:
0177744:
T0177744:
h0177744:
i0177744:
s0177744:

jsr
bpt
elr
cmp
bit

0177770
@'

T
h

s

command

main.c?C;O

settab,S? ia;ptab? 0;0
rS,csv

0177770(rS)
SOI20,0177770(rS)
-settab+076

ADB-8560 MUSDU Native Programming Package Users

Figure 7: ADD output for C program with breakpoints
adb ex3 -
h + 4:b hcnt/d; h.hi/; h.hrl
g + 4:b gcnt/d; g.gl/; g.grl
f+4:b Icnt/d; I.fi/; Uri
:r
ex3: running
fent: 0

0177732: 214
symbol not found
f+4:b Icnt/d; f.a/; f.b/; I.fil
g+4:b gcnt/d; g.p/; g.q/; g.gll
h + 4:b hcnt/d; h.x/; h.y/; h.hil
:c
ex3: running

fent: 0
0177746: 1
0177750: 1
0177732: 214
gent: 0

0177726: 2
0177730: 3
0177712: 214

hent: 0
0177706: 2
0177710: 1
0177672: 214

fent: 1
0177666: 2
0177670: 3
0177652: 214
gent: 1

0177646: 5
0177650: 8
0177632: 214
HIT DEL
1+4:b fcnt/d; f.a/"a = "d; f.bl'b = "d; f.fil'fi = "d
g + 4:b gcnt/d; g.pl'p = "d; g.ql'q = "d; g.gil'gi = "d
h + 4:b hcnt/d; h.xl"x = "d; h.yl'h = "d; h.hi!,'hi = "d
:r
ex3: running

fent: 0
0177746: a = 1
0177750: b = 1
0177732: fi = 214
gent: 0

0177726: p = 2
0177730: q := 3
0177712: gi = 214

hent: 0
0177706: x = 2 "-
0177710: y = 1
0177672: hi = 214

fent: 1
0177666: a = 2
0177670: b = 3
0177652: fi = 214
HIT DEL
$q

7-23

ADB-8560 MUSDU Native Programming Package Users

Figure 8: ADB address maps

40 7 files

a.out hdr text+data

I I
0 D

core hdr text+data stack

I 1 I
0 D S E

410 files {shared text}

a.out hdr text data

I I I
0 T B D

core hdr data stack
...... I I

B D S E

411./iles (separated I and D space)

a.out hdr text data

I I I
0 T 0 D

core hdr data stack
...... I I

0 D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

7-24

ADB-8560 MUSDU Native Progratnming Package Users

Figure 9: ADD output for maps

adb map407 core407
$m
text map

,
map407'

bl == 0 el
b2 == 0 e2
data map

,
core407'

bl == 0 el
b2 == 0175400 e2
Sv
variables
d == 0300
m == 0407
s == 02400
$q

adb map410 core410
Sm
text map 'map410'
bl == 0 el
b2 == 020000 e2
data map 'core410'
bl - 020000 el
b2 - 0175400 e2
Sv
variables
b - 020000
d - 0200
m - 0410
s - 02400
t - 0200
$q

adb map411 core411
Sm
text map
bl - 0
b2 - 0
data map
bl - 0

'map4II'
el
e2

'core41l'

b2 - 0175400
Sv .

el
e2

variables
d - 0200
m - 0411
s - 02400
t - 0200
$q

== 0256 f1 == 020
== 0256 f2 == 020

== 0300 f1 -,02000
== 0200000 f2 == 02300

== 0200 f1 == 020
== 020116 f2 == 0220

== 020200 fl - 02000
== 0200000 f2 - 02200

- 0200
- 0116

- 0200
- 0200000

fl - 020
f2 - 0220

fl - 02000
f2 - 02200

7-25

7-26

ADB-,-8560 MUSDU Native Programming Package User

Figure 10: Simple C program for illustrating formatting and patchinl

char
int
int
long
float
char
mainO
{

}

strI[J "This is a character string"~
one I ~
number 456~
Inurn 1234~
fpt 1.25~
str2 [) "This is the second character string"~

one - 2~

ADS-8560 MUSDU Native Programming Package Users

Figure 11: ADD output illustrating fancy formats

adb map410 core410
< b,-l/Sona
020000: 0 064124 071551 064440 020163 020141

strl+016: 061541 062564 020162 - 072163 064562 063556

number:
number: 0710 0 02322040240 0 064124 071551 064440

- str2 +06: 020163 064164 020145 062563 067543 062156

str2 + 026: 060562 072143 071145 - 071440 071164 067151

savr5 +02: 0 0 0 0 0 0 0 0

< b,201404~SCn
020000: 0 064124 071551 064440 @'@'This i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@'@'@b@'

_number: 0710 0 02322040240 H@a@'@'R@d @@
o 064124 071551 064440 @'@'This i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@'@'@'
o 0 0 0 @'@'@'@'@'@'@'@'
o 0 0 0 @'@'@'@'@'@'@'@'

data address not found
< b.201404~8tScna
020000: 0 This i

strl +06: 020163
_strl +016: 061541
_strl +026: 064562

064124
020141
062564
063556

071551
064143
020162

064440
071141
072163

s a char
acter st

o 02 ring
number:

_number: 0710 0 02322040240 HR
Jpt+02: 0 064124 071551 064440 This i

str2 + 06: 020163 064164 020145 062563 s the se
_str2+016: 067543 062156 061440 060550 cond cha
_str2+026: 060562 072143 071145 071440 racters
_str2+036: 071164 067151 0147 0 tring
savr5 +02: 0 0 0 0
savr5+012:0 0 0 0
data address not found
< b,lO/2bSt~2cn
020000: 0 0

strl : 0124 0150 Th -
-01510163 is

040 0151
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

SQ

064143

o 02

061440

0147 0

071141

060550

7-27

7-28

ADB-8560 MUSDU Native Programming Package Users

Figure 12: Directory and inode dumps

adb dir-
= nt" Inode"t" Name"
0,-1 ?ut14cn

Inode
0: 652

82
5971 cap.c
5323 cap
0 pp

adb Idev/src -
02000> b
?m<b

Name

new map
bl = 02000
b2 = 0

'/dev/src'
el
e2

$v
variables
b = 02000

= 0 I 00000000 fl = 0
=0 f2=0

< b,-1 ?"ftags"8ton"links,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"8t2Y2na
02000: flags 073145

links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
timesl976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid OIl 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

ADB-8S60 MUSDU Native Programming Package Users

ADD Summary

Command Summary

a) formatted printing

? format print from a. out file according to
format

I format print from core file according to
format

== format print the value of dot

?w expr write expression into a. out file

Iw expr write expression into core file

?I expr locate expression in a. out file

b) breakpoint and program control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under ADB control
:s single step

c) miscellaneous printing

Sb print current breakpoints
Sc C stack trace
Se external variables
Sf floating registers
Sm print ADB segment maps
Sea exit from ADB
Sr general registers
Ss set offset for symbol match
Sv pri nt ADB variables
S" set output line width

d) calling the shell

call shell to read rest of line

e) assignment to variables

Format Summary

a the valut of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
o one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to next n space tab
u one word as unsigned integer
x hexadecimal
Y date

" "
backup dot
print string

Expression Summary

a) expression components

decimal integer e.g. 256
octal integer e.g. 0277
hexadecimal e.g. '#ff
symbols e.g. flag _main main.argc
variables e.g. < b
registers e.g. < pc < rO
(expression) expression grouping

b) dyadic operators

+ add

•
Ofo

" I

subtract
multiply
integer division
bitwise and
bitwise or
round up to the next multiple

> name assign dot to variable or register name c) monadic operators

not
• contents of location

integer negate

7-29

LINT -8560 MUSDU Native Programming Package Users

Section 8

LINT-A C PROGRAM CHECKER

INTRODUCTION
lint, a C program checker, was developed at Bell Laboratories and is licensed by Western Electric
for use on the 8560. The remainder of this section is a reprint of an article describing lint. The
Technical Notes section of this manual describes the limitations of this program and any
changes made to this program by Tektronix.

8-1

8-2

LINT -8560 MUSDU Native Progral)1ming Package Users

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a
number. of bugs and. obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his
torical and practical rationale. The compilers turn C programs into executable
files rapidly and efficiently. This is possible in part because the compilers do
not do sophisticated type checking, especially between separately compiled pro
grams. Lint takes a more global, leisurely view of the program, looking much
more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of the imple
mentation, and gives some hints on the writing of machine independent C
code.

July 26, 1978

LINT -8560 MUSDU Native Programming Package Users

Introduction and Usage

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Suppose there are two C 1 source files, filel.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint file I.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The command '

lint -p filel.c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying - hp gets the whoie works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether
a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous "halting problem," knC'wi~ to be recur
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is 'mentioned, lint assumes it can be called; this is not neces
sarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form "xxx
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint-produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to func
tions may become unused; it is, not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bugs; if a function does a necessary job,
and is never called, something is wrong!

8-3

8-4

Li NT -8560 MUSDU Native Programming Package User5

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin ();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the - x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about unused arguments. When - v is in
effect, no messages are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The -u flag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult
to do well; many algorithms take a good deal of time and space, and still produce messages
about perfectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two 10to'S).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will
complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint; a break state
ment that cannot be reached causes no message. Programs generated by yacc,2 and especially
lex,3 may have literally hundreds of unreachable break statements. The -0 flag in the C

LINT -8560 MUSDU Native Programming Package Users

compiler will often eliminate the r~sulting object code inefficiency. Thus, these un reached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the -b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function "values" which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both

ret urn (expr) ;

and

return ;

statements is cause for alarm; lint will give the message

function name contains return (e) and return·

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3);
g 0;
}

Notice that, if a tests false, fwill call g and then return with no defined return value; this will
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (?:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the
- > be a pointer to structure, the left operand of the. be a structure, and the right operand of

8-5

LINT -8560 MUSDU Native Programming Package Users

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are =, ini
tialization, = =, ! =, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p = 1 ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-ll, characters are signed quantities, with a range from -128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment

char c;

if((c = getchar() < 0)

works on the PDP-II, but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments of constant values are made to
bitfields, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type int cannot hold the value 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may
happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the -a flag.

LINT -8560 MUSDU Native Programming Package Users

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the mes
sages hopefully encourage better code quality, clearer style, and may even point out bugs. The
- h flag is used to enable these checks. For example, in the statement

.p++ ;

the • does nothing; this provokes the message "null effect" from lint. The program fragment

unsigned x ;
if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x ! - 0)

which may not be the intended action. Lint will say "degenerate unsigned comparison" in
these cases. If one says

if(1 ! - 0)

lint will report "constant in conditional context", since the comparison of 1 with 0 gives a con
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statements

if(x&077 =- == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the - h flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is con
sidered by many (including the author) to be bad style, usually unnecessary, and frequently a
bug.

Ancient History

There are several forms of older syntax which are being officially discouraged. These fall
into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., = +, = -, ...) could cause ambiguous
expressions, such as

a ==-1;

which could be taken as either

a -- 1 ~

or

a - -1 ~

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ ==, - -, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned

8-7

8-8

LINT -8560 MUSDU Native ~rogramming Package Users

operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-1);

looks somewhat like the beginning of a function declaration:

int x (y) { ...

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x == -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-II, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possi ble
pointer alignment problem" results from this situation whenever either the - p or - h flags are
in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines (like the PDP-II) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-Ieft~ on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions mayor may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign-

, ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

ali] - b[;+ +] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable
C Compiler4,s which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

LINT -8560 MUSDU Native Programming Package Users

which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host
operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
effort. This section describes some of the differences between the implementations, and
discusses the lint features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C.
Suppose two files both contain a declaration without initialization, such as

int a ;

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
not feasible (for various stupid reasons!) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the -p flag, it will
detect such mUltiple definitions.

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads to situations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Lint - p causes all external sym
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, character strings go from high to low bit positions ("left to right") on
GCOS and, IBM, and low to high ("right to left") on the PDP-II. This means that code
attempting to construct strings out of character constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lint is of little help here, except to
flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected,
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The main problems are likely to arise in shifting or masking. C now supports a bit-field
facility, which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

t UNIX is a Trademark of Bell Laboratories.

8-9

8-10

LINT -8560 MUSDU Native Programming Package Users

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-II, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &= - 077;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-II, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-II, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-II hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in·
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than lint. There may be valid rea
sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob
lems.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive· is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

,. NOTREACHED·'

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking
for the next expression, the directive

,. NOSTRICT .,

can be used; the situation reverts to the previous default after the next expression. The -v
flag can be turned on for one function by the directive

,. ARGSUSED .,

Complaints about variable number of arguments in calls to a function can be turned off by the
directive

LINT -8560 MUSDU Native Programming Package Users

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several argu
ments, and leave the later arguments unchecked. This can be done by following the
V ARARGS keyword immediately with a digit giving the number of arguments which should be
checked; thus,

/* V ARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by
itself.

Library Declaration Files

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The V ARARGS and
ARGSUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters
of programming style, and partially because users usually don't notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if lint incorrectly complains about some
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are

8-11

8-12

LINT -8560 MUSDU Native Programming Package User

pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one.
The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties
of universality and portability.

LINT -8560 MUSDU Native Programming Package Users

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978).

2. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No.
32, Bell Laboratories, Murray Hill, New Jersey (July 1975) ..

3. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C Programs
and the UNIX System," Bell Sys. Tech. J. 57(6) pp. 2021-2048 (1978).

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th A CM Symp. on
Principles of Programming Languages, (January 1978).

8-13

LINT -8560 MUSDU Native Programming Package Users

Appendix: Current Lint Options

The command currently has, the form

lint [-options] files ... library-descriptors ...

The options are

h Perform heuristic checks
p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.

c Complain about questionable casts
n No library checking is done

s Same as h (for historical reasons)

8-14

8560 MUSDU Native Programming Package Users

Section 9

VACC-A COMPILER-COMPILER

INTRODUCTION
yacc, a compiler-compiler, was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder of this section is a reprint of an article describing
yacc. The Technical Notes section of this manual describes the limitations of this program and
any changes made to this program by Tektronix.

9-1

9-2

YACC-8560 MUSDU Native Programming Package Use

Yace: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure~ in fact, every com
puter program that does input can be thought of as defining an "input
language" which it accepts. An input language may be as complex as a pro
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro
gram. The Yacc user specifies the structures of his input, together with code to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATfOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978

YACC-8560 MUSD~ Native Programming Package Users

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 0797 ~

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process~ this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked~ actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C 1 and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ',' year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes~ this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month name 'J' 'a' 'n' ,
month name : 'F" e' 'b' ~

month name : 'D" e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a

9-3

9-4

YACC-8560 MUSDU Native Programming Package Users

month_name was seen; in this case" month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month' r day , r year ;

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2, 3,4 Yacc has been extensively
used in numerous practical applications, including lint,5 the Portable C Compiler, 6 and a system
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)

:C-8560 MUSDU Native Programming Package Users

rules, and programs. lhe sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc speci fical ions as an escape character')

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also~ thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal~ they are
enclosed in /* ... */, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY ~

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'''. As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n'
'\r'
'\"
'\\'
'\t'
'\b'
'\f
,\xxx'

newline
return
single quote "'''
backslash "\"
tab
backspace
form feed
"xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in gram
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as

A

BCD
E F
G

8 C D
E F
G

9-5

9-6

YACC-8560 MUSDU Native Programming Package Users

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ~

Names representing tokens must be declared; this is most simply done by writing

%token name I name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol~ thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first· grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it accepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri
ate~ see section 3, below. Usually the endmarker represents some reasonably obvious I/O
status, such as '"end-or-file" or "end-of-record".

2= Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro
grams, and alter external vectors and variables. An action is specified by one or more state
ments, enclosed in curly braces "{" and "}". For example,

A

and

xxx

, (' B ')'
(

yyy ZZZ
(

are grammar rules with actions.

hello{ 1, "abc"); }

printf("a message\n");
flag = 25; }

To facilitate easy communication between the actions and the parser, the action state
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

YACC-8560 MUSDU Native Programming Package Users

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the "action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr , (' expr')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr , (' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte
rior action is the action triggered off by recognizing this added rule. Yacc actually tr~ats the
above example as if it had been written:

$ACT /* empty */
{ $$ = 1; }

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants n 1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

9-7

9-8

YACC-8560 MUSDUNative Programming Package Users

expr expr ' +' expr
{ '$$ = node(' +', $1, $3);

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%{" and "%}".
These declarations and definitions have global scope, so they are known to the action state
ments and the lexical analyzer. For example,

%{ int variable = O~ %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
'found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl
val.

The parser and the lexical analyzer must agree on these token numbers in order for com
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the" # define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylexO{
extern int yylval;
int c;

c = getchar 0 ;

switch (c) {

case '0':
case'l':

case '9':
yylval = c - '0';
return(DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error

~CC-8560 MUSDU Native Programming Package Users

handling, and should not be used nai vely (see Section 7).

As mentioned abo'.'c, the tokeli numbers may be Lhost:n .J))- ;'cc \ir t-1Y the. u~er, In the
default situation, the numbers are chusen by Yacc. The d\:faul! tok.e:; numbcI for a literal char
acter is the numerical valut: of the character in the local ,:il:irJclt!r set. Other names are
assigned token numbers staning at 257.

To assign a token IlUl'nber to a token (including literals L the !ir"it appearance of the token
name or literal in the declarations section can be immediately followed hy a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user~ thus, all lexical analyzers should be prepared to return ° or negative as a token number upon reaching the end of t.heir input.

A very useful tool for constnlCting lexical analyz,;'r;;; i-; the l<!x program developed by
Mike Lesk. 8 These lexical analyzers are designed to work in do~:? h,:JUWIi)' with Yacc parsers.
The specifications for these lexical analyzers use regular t:xpr;:ssi(m~ instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such a~ FORTR AN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: Ho,.". the Parser Worlis

Yacl: turns the specitlc<:!I.ion file into a C prvgram~ wlii~11 fJaf~;:::'S the iniJut according to the
specification given. The algorithm used to go from the specifkatioli to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it work" while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a fmite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack The states of the finite state
machine are given small integer labels~ initially, the machine is in state 0, the stack contains
only state 0, arid no lookahead token has been read.

The machine has only four actions available to it, called shUi, reduce, uccept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done~ if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there rnay be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current stalt (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the paiser has seen the right hand side of a ~rammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to dccid\! whether to reduce, but usu
ally it is not~ in fact, the default action (represented by a ".") is often a reduce action.

9-9

9-10

YACC-8S60 MUSDU Native Programming Package Users

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a golo action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

YACC-8560 MUSDU Native Programming Package Users

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG·

place DELL

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram
mar (with some statistics stripped off the end) is:

9-11

9-12

YACC-8560 MUSDU Native Programming Package Users

state 0
$accept : _rhyme $end

DING shift 3
· error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
· error

state 2
rhyme sound _place

DELL shift 5
· error

place goto 4

state 3
sound DING DONG

DONG shift 6
· error

state 4
rhyme: sound place_ (1)

reduce 1

state 5
place : DELL - (3)

reduce 3

state 6
sound DING DONG (2) -

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is

•

YACC-8560 MUSDU Native Programming Package Users

"shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state O. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule l. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read~ the endmarker is obtained, indicated by "$end" in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: 'Ambiguity and Con8icts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr ' -' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input· to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

9-13

9-14

YACC-8560 MUSDU Native Programming Package Users

- expr

and again reduce. The effect of this is to take'the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It couid then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions~ this is called a reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce con flict, the default is to do the I3hift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program
ming language involving an "if-then-else" construction:

stat IF ' (' cond .')' stat
IF ' (' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-i/rule, and the second the i/-else rule.

YACC-8560 MUSDU Native Programming Package Users

These two rules form an ambiguous construction, since inpul of the fortH

IF (Cl) IF (C2) S 1 ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) SI
}

ELSE S2

IF (Cl) {
IF (C2) S 1
ELSE S2
}

The second interpretation is the one given in most programming hlllguages having this con
struct. Each ELSE is associated with the last preceding "un-EI}j'E'd' IF [n this example, con
sider the situation where the parser has seen

IF (Cl) IF (C2) SI

and is looking at the ELSE. It can immediately reduce by the simpie-if ruk to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (C 1) IF (C2) S 1 ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shiftlreduce can tlict. The
application of disambiguating rule 1 teJIs the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) SI

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (- v) option
output file. For example, the output corresponding to the above conflict state might be:

9-15

YACC-8560 MUSDU Native Programming Package Users

23: shift/reduce conflict (shift 45"reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly in the above
actions~ thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF ' (' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following Hreduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references 2, 3,4 might be consulted; the ser
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient~ this is in the parsing of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence lev
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form .

expr : expr OP expr

and

expr : UN AR Y expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is

9-16 sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and

ACC-8560 MUSDU Native Programming Package Users

construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind
ing strength. Thus,

%left ' +' '-'
%left '. 'I'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right ' ='
%left ' +' '-'
%left '*' 'I'

%%

expr expr expr
expr '+' expr
expr expr
expr ' *' expr
expr 'I' expr
NAME

. ,
might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b = («c*d) -e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator h3ve the same symbolic representation, but
different precedences. An example is unary and binary' -'; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre
cedence of the grammar rule to become that of the following token name or literal. For exam
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

9-17

%left ' +' '-'
%left '",' '/' .

%%

expr expr ' + ' expr
expr - expr
expr '* expr
expr ' /' expr
- expr %prec' ..

NAME

YACC-8560 MUSDU Native Programming Package Users

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery

9-18 might take place. The parser pops its stack until it enters a state where the token "error" is

'ACC-8560 MUSDU Native Programming Package Users

legal. It then behaves as if the token "error" were the current lookahead tokell, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is

. quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ,

Here, when there is an error, the parser attempts to skip over the statement, but will do so bj
skipping to the next '~'. All tokens after the error and before the next ';' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associ
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' { printf("Reenter last line: ") ~ } input
{ $$ = $4~ }

There is one potential difficulty with this approach~ the parser must correctly process thrtt
input tokens before it admits that it has correctly resynchronized after the error. If the reen
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state
ment

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printH "Reenter last line: ");
input

$$ = $4~ }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some 9-19

YACC-8560 MUSDU Native Programming Package Users

sophisticated. resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynchO;
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal
lation to installation). The function produced by Yacc is called yyparse~ it is an integer valued
function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the value O.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a -Iy
argument to the loader. To show the triviality of these default programs, the source is given
below: .

mainOt
ret urn (yyparse 0);
} .

and

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error" . The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-

9-20 ment, it may be possible to set this variable by using a debugging system.

YACC-8560 MUSDU Native Programming Package Users

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name

These rules frequently arise when writing specifications of sequences and lists:

list item
list ' , item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequenc~ specification with an empty rule:

9-21

seq /* empty */
seq item

YACC-8560 MUSDU Native Programming Package Users

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara
tions, followed by 0 or more statements. Consider:

%{
int dflag~

%}
other declarations ...

%%

prog decls stats

decls /* empty */
{ dflag = 1~

decls declaration

stats /* empty */
{ dflag = O~

stats statement

other rules .. ,

The flag djlag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like "if", which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is
a keyword, and that instance is a variable". The user can make a stab at it, using the mechan
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is hetter
9-22 that the keywords be reserved; that is, be forbidden for use as variable names. There are

YACC-8560 MUSDU Native Programming Package Users

powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . ..

THE
YOUNG

DOG
{

CRONE
{

$$ = THE; }
$$ = YOUNG~

$$ = DOG; }

if($0 = = YOUNG){
printf("what ?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as LintS will
be far more silent.

9-23

YACC-8560 MUSDU Native Programming Package Users

There are three mechanisms u.sed to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
Oforight, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> ' +' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $< intval > $ = 3; } bbb
(fun($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will tum on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

9-24

YACC-8560 MUSDU Native Programming Package Users

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way~ most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

9-25

YACC-8560 MUSDU Native Programming Package Usen

References

1. B. W. Kernighan and D. M. Ritchie, The'C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (I 978).

2. A. V. Abo and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Abo, S. C. Johnson, and 1. D. Ullman, "Deterministic Parsing of Ambiguous
Grammars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and 1. D. Ullman, Principles 0/ Compiler Design, Addison-Wesley, Reading,
Mass. (I 977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles 0/ Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

9-26

YACC-8560 MUSDU Native Programming Package Users

, Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator~ the desk
calculator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made
up of the operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise or), and assign
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include < ctype.h >

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left '1'
%left '&'
%left ' +'
%left ' *' , /' '%'
%left UMINUS / * supplies precedence for unary minus ./

%% /*

list

stat

expr

beginning of rules

/* empty */
list stat '\n'
list error

{

expr
{

LETTER
(

'\n'

' (' expr ')'
{

expr '+' expr
{

expr - expr
{

section */

yyerrok~ }

printf("%d\n", $1);
expr
regs [$1] = $3; }

$$ $2; }

$$ $1 + $3;

$$ $1 $3;
9-27

expr ' *' expr
{

expr '/' expr
{

expr '%' expr
{

expr '&' expr
{

expr 'I' expr
{

, -' expr
{

LETTER
{

number

YACC-8560 MUSDU Native Programming Package Users

$$ '= $1 * $3;

$$ $1 1 $3;

$$ $1 % $3;

$$ $1 & $3;

$$ $1 I $3;
%prec UMINUS
$$ - $2; }

$$ regs [$1];

number: DIGIT
$$ = $1; base ($1 == =0) ? 8 10;}

number DIGIT
{ $$ = base * $1 + $2; }

%% 1 * start of programs *1

yylex 0 { 1 * lexical analysis routine *1

9-28

1 * returns LETTER for a lower case letter, yylval == 0 through 25 *1
1* return DIGIT for a digit, yylval == 0 through 9 *1
1* all other characters are returned immediately *1

int c;

while ((c==getcharO) = == ") {/* skip blanks *1 }

1* c is now nonblank *1

if(islower(c)) {
yylval = c - a;
return (LETTER);
}

if(isdigit (c)) {
yylval == c - '0';
return(DIGIT);
}

return(c);
}

YACC-8560 MUSDU Native Programming Package Users

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C IDENTIFIERs.

/* grammar for the input to Yacc */

/ * basic entities */
%token IDENTIFIER /*
%token C IDENTIFIER / *
%token NUMBER

includes identifiers and literals */
identifier (but not literal) followed by colon

/* [0-9] + */

/* reserved words: %type => TYPE, %left => LEFT, etc.*,

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark */

/ * ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

def

rword

defs MARK rules tail

MARK { In this action, eat up the rest 0/ the file
/. empty: the second MARK is optional ./

/. empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

9-29

tag

nlist

nmno

rules

rule

rbody

act

prec

9-30

NONASSOC
TYPE

/* empty: union tag is optional ./
, <' IDENTIFIER '>'

nmno
nlist nmno
nlist ',' nmno

YACC-8560 MUSDU Native Programming Package Usen

IDENTIFIER
IDENTIFIER NUMBER

/. NOTE: literal illegal with %type ./
/. NOTE: illegal with %type ./

/ * rules section */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
'I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, {' { Copy action, translate $$, etc. } 'J'

/* empty *1
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

YACC-8560 MUSDU Native Programming Package Users

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, -, *, /, unary '-, and = (assignment), and has 26
floating point variables, "an through "z". Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables" A" through "Z"
that may also be used. The usage is similar to that in Appendix A~ assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typede! The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the"," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atol is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.

9-31

9-32

%{

include < stdio.h >
include < ctype.h >

typedef struct interval
double 10, hi~
} INTERVAL~

YACC-8560 MUSDU Native Programming Package Users

INTERVAL vmulO, vdivO~

double atofO;

double dreg[26 1;
INTERVAL vreg[26 1;

%}

%start lines

%union
int ivaI;
double dval;
INTERVAL vval;
}

%token < ivaI> DREG VREG / * indices into dreg, vreg arrays */

%token <dval> CONST / * floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp / * interval expression */

%Ieft
%Ieft
%left

%%

lioes

lioe

/ * precedence information about the operators */

'+' '-'
, *' , /'
UMINUS /* precedence for unary mious */

/* empty */
lines lioe

dexp '\0'
{

vexp '\0'
{

DREG ==
,

priotf("%15.8I\n", $1)~ }

priotf("(%15.8f , %15.8f.)\0", . $1.10, $1.hi)~ }
dexp '\0'

dreg[$l] == $3; }
VREG == vexp '\0'

YACC-8560 MUSDU Native Programming Package Users

dexp

vexp

{ vreg[$l] $3; }
error '\n'

{ yyerrok;

CONST
DREG

{ $$ dreg[$I]; }
dexp '+' dexp

$$ $1 + $3;
dexp - dexp

$$ $1 $3;
dexp '. dexp

{ $$ $1 * $3;
dexp , /' dexp

{ $$ = $1 / $3;
-' dexp %prec UMINUS

{ $$ - $2; }
'(' dexp ')'

{ $$ = $2; }

dexp
$$.hi = $$.10 -- $1; }

, (' dexp ',' dexp ')'
{
$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi)(

printf("interval out of order\n");
YYERROR;
}

VREG
{ $$ = vreg[$l];

vexp , +' vexp
{ $$.hi $1.hi + $3.hi;

$S.lo $1.10 + $3.10;
dexp '+' vexp

{ $$.hi $1 + $3.hi;
$$.10 = $1 + $3.10;

vexp vexp
$$.hi $1.hi - $3.10;
$$.10 SI.1o - S3.hi;

dexp
, - vexp

SS.hi = SI -:- $3.10;
$S.lo SI - S3.hi;

vexp '. vexp
(SS vrnul(S1.10, S1.hi, $3);

dexp '. vexp
{ SS vrnul($1, SI, S3); }

vexp , /' vexp
{ if(dcheck($3)) YYERROR;

SS - vdiv(SI.1o, S1.hi, S3); }
9-33

9-34

%%

YACC-8560 MUSDU Native Programming Package Users

dexp , /' vexp
{ if(dcheck(53)) YYERROR~

vexp
{

, (' vexp ')'
{

$$ = vdiv(51, 51, $3)~ }
%prec UMINUS
55.hi = -$2.10; $$.10 == -$2.hi~

5$ = 52~ }

define BSZ 50 /* buffer size for floating point numbers */

yylexO{

/ * lexical analysis */

register c;

while ((c = getchar 0) ")(/* skip over blanks */ }

if(isupper(c)) {
yylval.ival = c - ' A' ~
return (VREG); .
}

if(islower(c))(
yylval.ival == c - 'a'~
return(DREG);
}

if(isdigit(c) II c == =='.')(
/ * gobble up digits, points, exponents */

char buf[BSZ + 1], *cp == buf;
int dot == 0, exp == 0;

for(; (cp-buf)<BSZ ++cp,c-=getcharO){

*cp =:II: c;
if(isdigit (c)) continue;
if(c == == '.')(

if(dot + + II exp) return (
continue~
}

if(c == == 'e')(

); / * will cause syntax error */

if(exp+ +) return('e'); /* will cause syntax error */
continue~
}

/ * end of number */
break~
}

*cp -= '\0';
if((cp-buf) > -= BSZ) printf("constant too long: truncated\n");

YACC-8560 MUSDU Native Programming Package Users

else ungetc(c, stdin); I. push back last char read *1
yylval.dval - atof(buf);
return(CONST);
}

return(c);
}

INTERV AL hilo (a, b, c, d) double a, b, c, d; (
I. returns the smallest interval containing a, b, c, and d ·1
I. used by·, 1 routines .1
INTERVAL v;

if(a>b) { v.hi
else { v.hi -= b;

== a; v.lo =- b; }
v.lo -. a;

if(c>d) (

else (

if(c>v.hi)
if(d<v.lo)
}

if(d>v.hi)
if(c<v.lo)
}

return(v);
}

v.hi
v.lo

v.hi
v.lo

c;
d;

= d;
= c· ,

INTERV AL vmul (a, b, v) double a, b; INTER V AL v; {
return (hilo(a*v.hi, a*v.lo, b.v.hi, b·v.lo));
}

dcheck (v) INTER VAL v; (
if(v.hi > lIZ: o. && v.lo < =- O.)(

printf("divisor interval contains O.\n");
return (1);
}

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; (
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

9-35

9-36

YACC-":'8560 MUSDU Native Programming Package Users

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes """.

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash U\" may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

8560 MUSDU Native Programming Package Users

Section 10

LEX-A LEXICAL ANALYZER GENERATOR

INTRODUCTION
lex, a lexical analyzer generator, was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder ofthis section is a reprint of an article describing lex.
The Technical Notes section of this manual describes the limitations of this program and any
changes made to this program by Tektronix.

10-1

1 Introduction.

LEX-8560 MUSDU Native Programming Package Users

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
fmite automaton generated by Lex. The program fragments written by the user are executed in the ord
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
nlatch possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au
tomatically to portable Fortran. It is available on the PDP-II UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler
compiler system.

Table of Contents

I. In trod uction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
II. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

Lex is a program generator designed for lexical process
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres
sion matching needed to complete his tasks, possibly in
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

10-2

LEX-8560 MUSDU Native Programming Package Users

Source - Lex - yylex

Input - yylex - Output

An overview of Lex

Figure 1

write processing programs in the same and often inap
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called "host
languages." Just as general purpose languages can pro
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back
ground, and the properties of local implementations. At
present there are only two host languages, C[I] and For
tran (in the form of the Ratfor language[2]). Lex itself
exists on UNIX, GCOS, and OS/370~ but the code gen
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) into the host general-purpose
language~ the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\t] +$

is all that is required. The program contains a %% delim
iter to mark the beginning of the rules, and one rule.

lexical
rules

1
Lex

Input - yylex

This rule contains d regular expression which matches
one or more instances of the characters hlank or tah
{written \t for visihility, in accordance with the ('
language convention) just prior to the end or a line. The
brackets indicate the character class made of blank and
tab~ the + indicates "one or more ... "~ and the $ indi
cates "end of line," as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t]+$
[\t]+ printf(" ")~

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase~ it is particularly easy to interface
Lex and Yacc [3], Lex programs recognize only regular
expressions: Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as
signs structure to the resulting pieces. The now of con
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4], The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer .. In particular, the time

grammar
rules

1
Yacc

yyparse - Parsed input

Lex with Yacc

Figure 2

10-3

taken by a Lex program to recognize and partition an in
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in
clude forward context require a significant amount of re
scanning. What does increase with the number and com
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdejh, Lex will recog
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog
nized. Thus an individual rule might appear

integer printf{"found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print! is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com
pound, or takes more than a line, it should be enclosed in

10-4

LEX-8560 MUSDU Native Programming Package Users

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf("color") ;
prin tf ("mechanize");
printf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of deal
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex
pression

a570

looks for the string a57D.
Operators. The operator characters are

"\[]~-?*+I{)$/{}%< >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz" + +,.

matches the string xyz + + when it appears. Note that a
part of a string may be quoted. It is harmless but un
necessary to quote an ordinary text character; the expres
sion

"xyz+ +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above

EX-8560 MUSDU Native Programming Package Users

expressions. Another use of the quoting mechanism is to
get a blank into an expression~ normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
lab} matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig
nored. Only three characters are special: these are \
and ". The - character indicates ranges. For example,

[a-zO-9< > J

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple
mentation dependent and will get a warning message.
(E.g., [O-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

[-+0-9]

matches all the digits and the two signs.
In character classes, the A operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

rabc]

matches all characters except a,b, or c, including all spe
cial or control characters~ or

ra-zA-Z]

is any character which is not a letter. The \ character pro
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

[\40-\ 176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op
tional element of an expression. Thus

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat

ed by the operators • and +.

is any number of consecutive a characters,. including zero;
while

a+

is one or more instances of a. For example, .

[a-z} +

is all strings of lower case letters. And

[A-la-z] [A-Za-zO 9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator I indicates
alternation:

(ab led)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(ablcd +)?(ef)*

matches such strings as abefe/, efefe/, cde/, or cddd; but
not abc, abed, or abcdt'j

Context sensitivity.· Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are " and $. If the first character of an expression is
", the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never contlict with the other
meaning of A, complementation of character classes, since
that only applies within the [] operators. If the very last'
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the / operator char
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

10-5

ab$

is the same a~

ab/\n

Left context is handled in Lex by start conditions as ex
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con
sidered "being at the beginning of a line" to be start con
dition ONE~ then the ~ operator would be equivalent to

<ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators () specify ei

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

(digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con
trast,

a(l,SI

looks for I to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output~ thus, in general, a rule which
merely copies can be omitted. Also, a character combina
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus caIling at
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, .. as an action
causes this result. A frequent rule is

[\t\n]

10-6

LEX-8560 MUSDU Native Programming Package Users

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character l which indicates that the action for this rule is
the action for the next rule. The previous example could
also ha ve been written

"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a-zJ+. Lex leaves this text in an external character ar
ray named yytext. Thus, to print the name found, a rule
like

[a-z] + printf("%s", yytext)~

will print the string in yytext. The C function print! ac
cepts a format argument and data to be printed~ in this
case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z] + ECHO~

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac
tion'? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or reatQust, to
avoid this, a rule or" the form [a-zl + is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found~ hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z] + {words+ +~ chars + = yyleng;}

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng-l]

in Cor

yytext (yyleng)

in Ratfor.

X-8560 MUSDU Native Programming Package Users

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in· a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some
what confusing, so that it might be preferable to write

\"r"]· {
if (yytext[yyleng-l] = = \\')

yymoreO~
else

... normal user processing

which will, when faced with a string such as "abC-\" der
first match the five characters "abC-\ ~ then the call to
yymore() will cause the next part of the string, "del, tobe
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor
mal processing".

The function yylessO might be used to reprocess text in
various circumstances. Consider the C problem of distin
guishing the ambiguity of "=-a". Suppose it is desired
to treat this as "=- a" but print a message. A rule
might be

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n")~
yyless (yyleng-l) ~
... action for =- ...
}

which prints a message, returns the letter after the opera
tor to the input stream, and treats the operator as .. =-".
Alternatively it might be desired to treat this as "= -a".
To do this, just return the minus sign as well as the letter
to the input:

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n")~
yyless (yyleng-2) ~
... action for = ...
}

will perform the other interpretation. Note that the ex
pressions for the two cases might more easily be written

=--/ [A-Za-z]

in the first case and

=/-[A-Za-zl

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

=_/ [A \t\n]

a still better rule.
In addition to these routines, Lex also permits access to

the I/O routines it uses. They are:

1) inputO which returns the next input character~

2) output(c) which writes the character c on the out
put; and

3) unput(c) pushes the character c back onto the in-
put stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf, which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consi~tent in
all routines; a value of zero returned, by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing / implies
lookahead. Lookahead is also necessary to match an ex
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup .

Another Lex library routine that the user will some
times want to redefine is yywrap() which is called when
ever Lex reaches an end-of-file. If yywrap returns aI,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is conveni'ent to arrange for more
input to arrive from a new source. In this case, the user
'should provide a yywrap which arranges for new input
and returns O. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end
of-file~ the only access to this condition is through
yywrap. In fact, unless a private version of inputO is sup
plied a file containing nulls cannot be handled, since a
value of o returned by input is taken to be end-of-file.

In Ratfor all of the standard I/O library routines, input,

10-7

output, unput, yywrap, and lexslif, are defined as integer
functions. This requires inpUt and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-z] +

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integers, it is tak
en as an identifier, because /a-z} + matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .* dangerous. For exam
ple,

' .. '
might seem a good w\iy of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here,'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

which, on the above input, will stop after 'first~ The
consequences of errors like this. are mitigated by the fact
that the. operator will not match newline. Thus expres
sions like .* stop on the current line. Don't try to defeat
this with expressions like l\,,/ + or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both 'he and he in an input text. Some

10-8

LEX-8560 MUSDU Native Programming Package Users

Lex rules to do this might be

she. s++;
he h++'
\n I '

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s+ +; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char
acters were in both classes.

Consider the two rules

a [bc] +
a [cd] +

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di
gram to be incremented, the appropriate source is

%%
(a-zJ[a-z] (digram [yytext(O]] [yytext [t)) + +; REJECTJ
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

,EX-8560 MUSDU Native Programming Package Users

"6 Lex Source Definitions.

Remember the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program,
Any source not intercepted by Lex is copied into the gen
erated program. There are three classes of such things.

I) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com
ment, are passed through to the generated pro
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con
vention,

2) Anything included between lines containing only
%{ and %} is copied out as above. The delimiters
are discarded. This format permits entering' text
like preprocessor statements that must begin in
column I, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %{ and %}, and begining in column 1, is as
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
be"gin with a letter. The translation can then be called out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might abbre
viate rules to recognize numbers:

D
E
(l!o%
{O}+
(O) +"."{O}*«(E}),?
{01*"."(0} + ({E})?
{O}+{E}

[0-9]
[TEde][- +]?(DJ +

printf(tlintegertl)~

I
I

Note the first two rules for real numbers~ both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35. EQ. I, which does not
contain a real number, a context-sensitive rule such as

[0-9] +/","EQ printf("integertl);

could be used in addition to the normal rule for integers.

The definitions section may also contain other com
mands, including the selection of a host language, a char
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under "Summary of Source Format," section 12.

7 Usage.

There are two steps in compiling a Lex source program,
First, the Lex source must be turned into a generated
program in the host general purpose language, Then this
program must be compiled and loaded, usually with a li
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
110 libraries, one for C defined in terms of the C stan
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on" OS/370,because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time, C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor 110 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 110 li
brary, dependent on Fortran character 110, is quite slow.
In particular it reads all input lines as 80AI format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

10-9

file using a Ratfor host should begin with the "%R" com
mand.

UNIX. The libraries are accessed by the 'loader flags
-/Ie for C and -lIr for Ratfor; the C name may be abbrevi
ated to -I/. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -11 -IS rc -2 lex.yy.r -l1r

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/O routines use the C standard
library, the Lex automata themselves do not do so~ if
private versions of input, output and unput are given, the
library can be avoided. Note the "-2" option in the Rat
for compile command~ this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCaS are stored in the
"." library. The appropriate command sequences are:

C Host Ratfor Host

.flex source .I1ex source

.Icc lex.yy.c .Ilexclib h= .Irc a = lex.yy.r .flexrlib h =

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h =" option); it
may be copied to a permanent file if desired. Note the
"a=" option in the Ratfor compile command; this indi
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSa. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver
sion, type

exec 'dot.lex.clist (lex)' 'sourcename'
exec 'dot.lex.clist(cload)' 1ibraryname membername'

The first command analyzes the source file and writes a C
program on file lex.yy. text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file Iibraryname.LOAD(membername) as
a completely linked load module. The compiling com
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C
compiled Lex programs on the OS system. Even so, al
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist(lex)' 'sourcename'

10-10

LEX-8560 MUSDU Native Programming Package Users

exec 'dot.lex.clist (rload)' 1ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces
sor to get Fortran code.

c. Compile the Fortran.

d. Load with the libraries 'hr289.lrl.load' and
'sys I.f ortlib'.

The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yaee .

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end with

return (token)~

where the appropriate token value is returned. An easy
way to get access to Yace's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can ju~t be:

yacc good
lex better
cc y.tab.c -ly -11 -IS

The Yacc library (-ly) should be loaded before the Lex li
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

-8560 MUSDU Native Programming Package Users

%%
int k;

[0-9) + (
scanf(-l, yytext, "%d", &k);
if (k%7 = = 0)

printf("%d", k+3);
else

printf("%d" ,k);

) do just that. The rule [0-9) + recognizes strings of di
its; scanf converts the digits to binary and stores the
esult in k. The operator % (remainder) is used to check
(hether k is divisible by 7; if it is, it is incremented by 3
s it is written out. It may be objected that this program
.,m alter such input items as 49.63 or X7. Furthermore,
t increments the absolute value of all negative numbers
livisible by 7. To avoid this, just add a few more rules
fter the active one, as here:

'0%

?[O-9) +

'1[0-9.) +

int k;
(
scan[(-l, yytext, "%d", &k);
printf("%d", k%7 = = 0 ? k + 3 : k);
}
ECHO;

:A-Za-zl [A-Za-zO-9) + ECHO;

'lumerical strings containing a "." or preceded by a letter
~ill be picked up by one of the last two rules, and not
;hanged. The if-else has been replaced by a C conditional
!xpression to save space; the form a ?b:c means "if a
:hen b else c".

For an example of statistics gathering, here is a pro
~ram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-z] +

\n
%%
yywrapO
(
int i;

int lengs[lOO);

lengs [yyleng] + +;
I

printf("Length No. words\n");
for (i = 0; i < 100; i + +)

if (Iengs n] > 0)
printf("%5d%10d\n" ,i,lengs (j]);

return 0);
}

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return (1); indicates that Lex is to per
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con
tinue reading and processing. To provide a)')'Wrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

The first rule changes "double precision" to "real", or
"POUBLE PRECISION" to "REAL".

{d} to} {ul {b} ttl tel {Wi {pI {rl tel {cl 01 {sl {il {ol {nl (
printf(yytext[O] = ='d'? "real" : "REAL");
}

Care is taken throughout this· program to preserve the
case (upper or lower) of the original program. The condi
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica
tions to avoid confusing them with constants:

'T 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of A. There follow some rules to change double
precision constants to ordinary floating constants.

. [0-9] + {WlIdIlWj[+-] ?{W}[0-9] + I
[O~9] +{W}"."{W}{d}{WI [+-]'1{wl [0-9] + I
".,,{W} [0-9] + {W}{d}{W}[+-]?{W}[O-9] + {

/ * convert constants */
fodp =yytext; *P ! = 0; p + +)

{
if (*p == 'd'l*p == 'D')

*p= + 'e'- 'd';
ECHO;
}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

10-11

{d} {s} {i} {n}
{d}{c}{o}{s}
{dHsHq}{r}{t}
{d} {a} {t} {a} {n}

{d} {f} {I} to} {a} {t} printf("%s" ,yytext + I)~

Another list of names must have initial d changed to ini
tial a:

{d}{l}{o}{g}
{d}{l}{o}{g}IO
{d} {m} {il {n} I
{d} {m} {a} {x} I

yytext[O] = + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r.

{d}I {m}{a}{c}{h} {yytext[O] = + 'r' - 'd';

To avoid such names as dsinx being detected as instances
of dSin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z1 [A-Za-zO-9]*
[0-9] +
\n

I
I
I
ECHO~

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex
ample, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordi
nary statements. This requires sensitivity to prior con
text, and there are several ways of handling such prob
lems. The ,.. operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

10-12

LEX-8560 MUSDU Native Programming Package Users

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start 'condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
~a {flag = 'a'; ECHO;}
~b {flag = 'b'; ECHO;}
AC ' {flag = 'c'; ECHO;}
\n {flag = 0; ECHOJ
magic {

switch (flag)
(
case 'a': printf("first"); break;
case 'h': printf("second tl

); break;
case 'c': printf("third tl

); break;
default: ECHO; break;
}
}

should be adequate.
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

< name I > expression

is a rule which is only recognized when Lex is in the start
condition name}. To enter a ~tart condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,

:X-8560 MUSDU Native Programming Package Users

BEGIN 0;

resets the initial condition of the Lex automaton inter
preter. A rule may be active in several start conditions:

< name} ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
Aa
Ab
AC

\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
(ECHO; BEGIN OJ
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as iT. the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character 110
only through the routines input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the 1/0 rou
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will ·prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexsh! is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the 110 library, the routine lexsh! should
also be changed to a compatible version. The Ratfor li
brary 1/0 system is arranged to represent the letter a as
in the Fortran value LBa while in C the letter a, is
represented as the character constant 'a'. If this interpre
tation is changed, by providing 1/0 routines which
translate the characters, Lex must be told about it, by giv
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con
taining only H%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower and upper case
letters together into the integers } through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 Aa.
2 Bb

26 Zz
27 \0
28 +
29
30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur-.
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexsh! but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A} format, but replace lexsh! by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form "name space transla
tion" .

2) Included code, in the form "space code".

3) Included code, in the form

%{
code
%}

10-13

4) Start conditions, given in the form

%S name1 name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, which must also precede any
rules or included code, in the form "%C" for C
or "%R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression ac
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
"x"
\x
[xy]
[x-z]
("x]

AX

<y>x
x$
x?
x*
x+
xlY
(x)
x/y
{xx}
x{m,n}

10-14

the character "x"
an .iX", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

LEX-8560 MUSDU Native Programming Package Users

13 Caveats and Bugs.

There are pathological expressions which produce ex
ponential growth of the tables when converted to deter
ministic machines~ fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non
supported features are REJECT, start conditions, or vari
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho1s string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

l. B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, N. J. (I978).

2. B. W. Kernighan, Rat/or: A Preprocessor for a
Rational Fortran, Software - Practice and Experi
ence", 5, pp. 395-496 (I975).

3. S. C. Johnson, Yacc: Yet Another Compiler Com
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (I975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No.5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora
tories, Murray Hill, NJ 07974.

