New Products	$17-27$

Oscilloscope Reference $28-36$ Oscilloscopes $37-114$ Digitizers $115-132$Microwave \& RF Instruments $156-183$ Digital Signal Processing System $184-187$

5000/TM 500 Modular Instruments nal Sources, Power Supplies, Measurement struments, Interface Tools, Audio Analyzers, nal Conditioners, Oscilloscope Calibrators, inframes Accessories	
DM250/TM250 Family Basic Bench Instruments	245
emiconductor Testers	

VXI/CDS Card Modular Instruments	$188-193$
Signal Switching/DUT Interfacing	$194-195$
Products	
Custom Manufacturing Test Systems	196

Physical Measurement Products	$277-281$
Signal Sources	$282-285$
Opto-Electronic Instruments	$286-293$

Test \& Measurement Software	$257-270$
Communication Interfaces(GPIB,	$271-272$
VXIbus/CDSbus)	
Education Market Program	$273-276$

Telecommunications Test Equipment	$345-347$,
	$355-357$
Television Test Equipment	$348-354$,
	358

Test \& Measurement Accessories
294-344
Printers/Plotters, Cameras, Carts, Probes,
Cables, Test Leads, Adapters/Connectors,
Mounting, Rackmount Kits, Travel Packages,
Viewing Hoods and Light Filters, Logic Analyzer
Accessories

Component Products/Services
369-371

Workstation Furniture	$359-360$
X Terminals \& Netstations	$361-363$
Color Printers	364
Display Devices/Coprocessors	$365-368$

Surface Acoustic Wave Products, Integrated
Circuits, Applied Chemical Components

General Customer Information

372-383
General Terms of Sale, Reconditioned Instruments, OEM, Power Sources,
Warranties, Service, Training
International Sales \& Sales Offices
384-387
Distributors, Educational Reps., Rental Co.
388
U.S. Sales \& Services Offices

Inside Back Cover

February, 1991

We live in a world of change. In the last few years we've seen enemies become allies, once impenetrable boundaries crumble and the cold war come to an end.

As a member of the high technology community, we're accustomed to change. Technologies change. Markets change. Products change. Even so, at Tektronix, a key part of our foundation remains the same. Our Values, including our Commitment to our customers, have never changed. We continue providing you solutions to help you do your job better, easier and more cost effectively.

On the cover of this 1991 Tektronix Product Catalog is the Tek logo. It's based on the cathode ray tube, a technology we modified, enhanced and continue using in our products even today. It is the graphic symbol, developed 45 years ago, which continues to represent Tektronix' Commitment to Excellence.

Over the years, our markets have broadened and our products have become far more complex. But our commitment to you, our customers, remains the same. We continue providing you unexcelled products and services limited only by the state of the art.

Even in this world of change, some things remain the same. At Tektronix, our foundation - our values - have not changed. We maintain our Commitment To Excellence.

Sincerely,

Stephen D. Kerman, V.P.
World Wide Marketing, Sales \& Service

AA 501A	Distortion Analyzer ...230, 231
AA 5001	Programmable Distortion Analyzer230, 231
ACC	Applied Chemical Components (Interconnects and Electroplating) \qquad
ACX	Advanced Computer Instrument System 192
AFG 5101	Arbitrary/Function Generator 199, 200, 201
AFG 5501	Arbitrary/Function Generator199, 200, 201
AM 501	Operational Amplifier ... 235
AM 502	Differential Amplifier .. 234
AM 503	Current Probe Amplifier .. 235,325
AM 503S	Current Probe Amplifier System .. 235,325
AnthroArm	Shelf Arms ... 360
AnthroBench	Bench ... 360
AnthroCart	PC, GT, Carts .. 359
ASG 100	Audio Signal Generator .. 348
ASYST ${ }^{\text {™ }}$	Scientific Software ... 266
ASYSTANT ${ }^{\text {m }}$	GPIB Acquisition \& Analysis Software 266
AVC-20	Audio Vector Converter ... 354
A6302	Current Probe .. 325
A6303	Current Probe .. 325
A6501	Buffer Amplifier .. 319
A6901	Ground Isolation Monitor ... 328
A6902B	Isolator ... 328
CAL93	Calibration Substrates .. 53
CAL96	Calibration Substrates ... 53
CCX	Chained Card Cage System... 192
CDC250	Universal Counter .. 248
CDM250	Digital Multimeter ... 247
CFC250	Frequency Counter ... 247
CFG250	Function Generator .. 246
CG 5010	Programmable Calibration Generator 236,237
CG 5011	Programmable Calibration Generator236, 237
CMC250	Multifunction Counter ... 248
ColorQuick	Ink-Jet Printer .. 364
CPS250	Power Supply ... 246
CSA 404	Communications Signal Analyzer ... 44
CSA 803	Communications Signal Analyzer ... 44
CSA 907	Bit Error Rate Tester ... 356
CT-1	Current Transtormer ... 325
CT-2	Current Transtormer .. 325
CT-3	Signal Pickoff ... 337
CT-4	Current Probe.. 326
C1002	High Resolution CCD Video Camera .. 130
C1002R	Ruggedized High Resolution CCD Video Camera 130
C2240	Floppy Disk System .. 192
C2241	Floppy Disk ... 192
C2253	Bus Analyzer .. 192
C2555	RT Tester ... 192
C-30B	Camera for Portable Instruments ... 303
C-53	General Purpose Camera .. 304
C-9	Low Cost Camera ... 302
DAS92E9	Expansion Digital Analysis Mainframe 136
DAS9200	Digital Analysis System .. 136
DAS9219	Digital Analysis Mainframe ... 136
DAS9220	Digital Analysis Mainframe ... 136
DAS9229	Digital Analysis Mainframe and Color Display 136
DAS9230	G/P Logic Analysis System .. 136
DAS9232	G/P Logic Analysis System .. 136
DAS9240	Timing Analysis System ... 136
DAS9241	Timing Analysis System ... 136
DAS9242	Timing Analysis System ... 136
DAS9250	Single μ P Support System ... 136
DAS9252	Single μ P Support System .. 136
DAS9254	Dual μ P Support System ... 136
DAS9256	Three μ P Support System .. 136

Four μ P Support System136
High Performance Processor Support 136
Digitizing Camera System 130
125 MHz Universal Counter 218, 220, 221
100 MHz Counter/Timer 218, 219
135 MHz Universal Counter/Timer 218, 222, 223
350 MHz Universal Counter/Timer 218, 224, 225
Programmable 135 MHz Universal Counter/Timer 218, 222, 223
Programmable 350 MHz Universal Counter/Timer 218, 224, 22551
Digital Multimeter 245
Component Checker 245
Digital Multimeter 212, 213
Digital Multimeter 212, 214, 215
Programmable Digital Multimeter 212, 214, 215
Programmable Digital Multimeter 212, 216, 217
Digital Multimeter 212, 216, 217
Digital Prescaler 223
DSA 601A/602A Digitizing Signal Analyzer
40
40
DCS Frame Store Board 130
C1001/2/2R Power Supply Nideo Interface 130
Video Monitor 130
EMI Prequalification Software 174
See LTS 2000
Test Development Software 263
2 MHz Function Generator 199, 205
Programmable 20 MHz Function Generator 199, 203
11 MHz Function Generator 199, 205
3 MHz Function Generator 199, 204
40 MHz Function Generators 199, 204
Imaging Display Monito 366
Imaging Display Monitor 366
Monochrome Raster Monitor 366
Color Raster Monitor 366
Monochrome Stereo 3-D Displays 366
Monochrome Stereo 3-D Displays 366
General RF Applications Software 174
Video Copier/Printer 297
Color Plotter 295
Dot Matrix Printer 296
Precision Pulse Generator 282
Precision Pulse Generator 282
Precision Pulse Generator 282
IEEE-488 Bus Instrument System 192
ICs, Microlithography CCDs 370
Digital Photometer/Radiometer 291
Illuminance Probe 291
Irradiance Probe 291
8° Luminance Probe 291
LED Probe 291
Illuminance Probe 291
Irradiance Probe 291
1° Luminance Probe 291
Portable Instrument Cart 307
Lab Instrument Cart 307
Rack Instrument Cart 307
Rack Instrument Cart 307
Utility Cart 308
Workstation 309
Workstation 309
Workstation 309

K501	Tek-Tilt Cart .. 309
K636	Mobile Workstation .. 308
LABASIC	Concepts of Logic Analysis Workbook...................................... 155
LabWindows ${ }^{\text {TM }}$	Programming Environment ... 265
LAGUIDE	Microprocessor Workbook ... $15 . . .$.
LV500	ASIC Verification System .. 25.
LV511	ASIC Verification System ... 254
LV512	ASIC Verification System .. 254
LV513	ASIC Verification System .. 254
LV514	ASIC Verification System .. 254
MCX	MATE Compatible Instrument System 192
MUX16	DCS Expansion Mainframe .. 132
OCP 5002	Optical Converter/Power Meter ... 290
OCP 5502	Optical Converter/Power Meter ... 290
OF150	Fiber Optic TDR.. 345
OIG 501	Optical Impulse Generator ... 290
OIG 502	Optical Impulse Generator ... 290
PCX	Personal Computer Compatible Instrument................................. 192
PC 751	Remote Display Sottware .. 353
PFG 5105	Pulse/Function Generator 199, 201, 202, 206
PFG 5505	Pulse/Function Generator199, 201, 202, 206
PG 2010	Pulse Generator.. 284
PG 2011	Pulse Generator ... 284
PG 2012	Pulse Generator .. 284
PG 501	50 MHz Pulse Generator ..20, 208
PG 502	250 MHz Pulse Generator ... 206,209
PG 503	250 MHz Pulse Generator ...206, 209
PG 506A	Calibration Generator .. 240
PG 508	50 MHz Pulse Generators ..206, 208
PG 5110	50 MHz Programmable Pulse Generator 206,207
Phaser II	(DX, PX, SX) Color Printer .. 364
Phaser CQS	Color Print Station ... 364
PIX	Parallel Interface Instrument System 192
PRISM	Logic Analysis Series .. 145
PS 5004	Power Supply .. 210,211
PS 5010	Programmable Triple Power Supply 210
PS 503A	Triple Power Supply .. 210,211
P6006	35 MHz , 10X Probe .. 322
P6007	1.5 kV , 100X Probe ... 323
P6008	100 MHz , 10X Probe .. 315
P6009	1.5 kV , 100X Probe ... 323
P6015	40 kV , 1000X Probe ... 323
P6021	Current Probe ... 326
P6022	
P6046	FET Differential Probe .. 327
P6053C	$200 \mathrm{MHz}, 10 \times$ Probe .. 322
P6062B	100 MHz , 10X or $1 \times$ Probe ... 323
P6063B	$200 \mathrm{MHz}, 10 \mathrm{X}$ or 1X Probe .. 323
P6101A	$34 \mathrm{MHz}, 1$ P Probe .. 322
P6102A	60 MHz , 10X Probe ... 322
P6103	$50 \mathrm{MHz}, 10 \mathrm{X}$ Probe ... 322
P6105A	100 MHz , 10X Probe ... 322
P6106A	250 MHz , 10X Probe .. 322
P6107A	100 MHz , 10X Probe ... 322
P6108A	100 MHz , 10X Probe .. 322
P6109	150 MHz , 10X Probe ... 322
P6119	1X/10X Switchable Probe ... 323
P6121	$100 \mathrm{MHz}, 10 \times$ Probe ... 322
P6122	$100 \mathrm{MHz}, 10 \mathrm{X}$ Probe ... 322
P6125	200 MHz , 5 C Counter Probe ... 315
P6130	$250 \mathrm{MHz}, 10 \times$ Probe .. 322
P6131	$300 \mathrm{MHz}, 10 \mathrm{X}$ Probe .. 322
P6133	$150 \mathrm{MHz}, 10 \mathrm{X}$ Probe .. 322
P6134C	10X Probe ... 322
P6135A	10X Differential Probe Pair .. 327

P6136	350 MHz , 10X Probe .. 322
P6137	$400 \mathrm{MHz}, 10 \mathrm{X}$ Probe .. 322
P6148A	10X Probe ...
P6149A	50 MHz , 10X Probe ... 322
P6150	9 GHz , High BW, Low Z..321, 323
P6156	3.5 GHz Low Z..321, 323
P6201	FET Probe ... 320,323
P6202A	FET Probe .. 320,323
P6203	1 GHz , Active Probe .. 320,323
P6204	1 GHz , FET Probe ..30, 323
P6230	1.5 GHz , 10X Probe .. 320,323
P6231	1.5 GHz, 10X Probe ...32, 323
P6302	Current Probe (see A6302)
P6303	Current Probe (see A6303)
P6407	Word Recognizer Probe .. 329
P6408	Word Recognizer Probe .. 32.
P6420	1XRF Probe .. 315
P6443	Data Acquisition Probe... 342
P6444	Data Acquisition Probe ... 342
P6460	Data Acquisition Probe .. 342
P6461	Data Acquisition Probe... 342
P6463A	Data Acquisition Probe ... 342
P6464	Data Acquisition Probe ... 342
P6465	Data Acquisition Probe ... 342
P6480	Data Acquisition Probe ...151, 343
P6486	Data Acquisition Probe ...151, 343
P6487	Data Acquisition Probe ..151, 343
P6501	750 MHz , Microprobe .. 319
P6507	1 GHz , Microprobe ... 319
P6511	300 MHz , Spring Contact Fixtured Probe 318
P6513	300 MHz , Spring Contact Fixtured Probe 318
P6515	250 MHz , Spring Contact Fixtured Probe 318
P6517	250 MHz , Spring Contact Fixtured Probe 318
P6562	10X Probe ... 316,322
P6601	Temperature Probe ... 315
P6602	Temperature Probe .. 315
P6701A	Optical-Electrical Converter .. 287
P6703A	Optical-Electrical Converter... 287
P6711	Optical-Electrical Converter ... 287
P6713	Optical-Electrical Converter ... 287
P6721	Optical-Electrical Converter... 287
P6751	Spatial Input Head ... 287
Quickstart	Operator's Training Package ... 89,274
RF160	Down Converter .. 186
RF162	Down Converter ... 186
RGBII	Color Screen Printer .. 364
RP 88 Series	Macintosh II Coprocessor .. 368
RSM	Remote Site Monitoring Software 174
RSX	EIA-RS-232 Interfaced Instrument System 192
RTD 710A	Programmable Waveform Digitizer .. 115
RTD 720	Fast Transient Digitizer ... 115
RTM 506	Six Wide Mainframe ...242, 243
R5110A	2 MHz Oscilloscope ... 74
R5111A	2 MHz Storage Oscilloscope ... 74
R5113	2 MHz Storage Oscilloscope .. 74
R5440	50 MHz Oscilloscope ... 72
R5441	50 MHz Storage Oscilloscope ... 72
R7603	100 MHz General Purpose Oscilloscope 68
R7623B	100 MHz CRT-Storage Oscilloscope ... 68
R7844	400 MHz Dual-Beam Oscilloscope.. 65
SAW Products	Resonators, Oscillators, Filters ... 369
SA-42	Optical Converter .. 288
SC 501	5 MHz Oscilloscope .. 226,228
SC 502	15 MHz Dual Trace Oscilloscope ...226, 228
SC 503	10 MHz Dual Trace Storage Oscilloscope 226, 227

SC 504 SCD1000
SCD5000
SD-14
SD-20
SD-22
SD-24
SD-26
SD-30
SD-32
SD-42
SD-46
SD-51
SF4208
SGS100
SGS310
SGS410
SGS421
SGS425
SGS431
SGS610
SGS620
SGS630
SGS635
SGS625
SGS9000
SG 5010
SG 502
SG 503
SG 5030
SG 504
SG 505
SIU 800
SI 5010
SMCK1
SMC8
SMC14
SMC16
SMC20
SMC24
SMGK51
SMGK52
SMG50
SMQK1
SMQ20
SMQ28
SMO44
SM052
SM068
SM084
SM-11
SOFTWARE
S2MG100
S3FG130
S3FG910
S3FG912
S3FT100
S3FT110
S3FT200
S3FT300
S26EM00
S26RF00
S26RM00
S26RM01
S26UT00

SC 504 SCD1000 SD-14 SD-20 SD-22 SD-24 SD-26 SD-32 SD-42 SD-46 SD-51 SGS100
SGS310 SGS410
SGS421 SGS431 SGS610 SGS620 SGS630

SGS625 SGS9000 SG 5010 SG 503 SG 5030 SG 504 SIU 8010 SI 5010 SMCK1 SMC8
SMC14
MMC20
SMC24
SMGK51
SMG50
SMQK1
SMQ20
SM044
SM052
TM468
SM-11
SOFTWARE
2mGioo
S3FG910
S3FG912
S3FT110
S3FT200
S3FT300
S26RF00
26RM01
S26UT00

80 MHz Dual Trace Oscilloscope
226
Ulitra High Speed Transient Digitizer .. 123
Ultra High Speed Transient Digitizer .. 123
High Impedance Probe Sampler .. 48
Loopthrough Sampling Head .. 48
Low Noise Sampling Head ... 48
TDR Sampling Head .. 48
Sampling Head ... 48
Sampling Head .. 48
Sampling Head .. 48
Optical-Electrical Converter ... 48, 288
Optical-Electrical Converter ... 48, 288
20 GHz Trigger Head .. 49
Shop Floor Graphics Terminal .. 363
SGA Card ... 365
Stereoscopic Modulator Kit .. 365
Stereoscopic Modulator Kit .. 365
Color Stereoscopic 3D Displays .. 365
Color Stereo 3D Display System .. 365
Color Stereo 3D Display ... 365
Stereoscopic Modulator Kit ... 365
Color Stereoscopic 3D Displays ... 365
Color Stereo 3D Display .. 365
Color Stereo 3D Display .. 365
Color Stereoscopic 3D Displays ... 365
Graphic Subroutine Library ... 365
Programmable Low Distortion Oscillator232, 233
Oscillator .. 239
250 MHz Leveled Sine-Wave Generator .. 239
Programmable Leveled Sine-Wave Generator ... 238
1 GHz Leveled Sine-Wave Generator .. 239
Low Distortion Oscillator .. 232
Static Isolation Unit ... 50

SOIC Clips .. 317
SOIC Clips .. 317
SOIC Clips .. 317

SOIC Clips .. 317
SOIC Clips .. 317
SMT KlipChip™ Pkg ... 317
SMT KlipChip™ Pkg ... 317
SMT KlipChip™ Pkg .. 317
PLCC Quad Kits ... 317
PLCC Quad Kits .. 317
PLCC Quad Kits ... 317
PLCC Quad Kits ...
PLCC Quad Kits ... 317
PLCC Quad Kits ... 317
PLCC Quad Kits .. 317

Enhanced Frequency Measurements .. 185
SPD Signal Processing \& Display .. 264
LabWindows Standard Package .. 265
LabWindows Advanced Analysis Library .. 265
TekTMS Interactive Procedure Generator ..
Run Time Code Generator .. 261
TekTMS VXI Instrument Library ... 261
TekTMS GPIB Instrument Library ... 261
EMI Prequalification Software ... 174
GRASP ... 174
RSM Host-Site Module ... 174
RSM Remote-Site Module .. 174
2782 Utility Software .. 174

S26UT10
S37J101
S37J102
S37J103
S37UD01
S37UT01
S41SAVE
S41TSS1
S42P301
S42P302
S42P311
S43R101
S45F030
S47H211
S47P107
S47P108
S47P110
S47P305
S48P104
S48P105
S48P401
S58DC01
S75WVWR
SPD
SPG-1000
TAS
TDC1
TDC2
TekMAP
TekSPANS
TekTMS
TekWAVES
Teleservicing
TFP2
TFS 2020
TG 501A
TMA802
TMP9210
TMP9215
TMP9220
TMP9225
TMP9230
TMP9310
TMP9315
TMP9320
TMP9325
TMP9330
TMP9610
TMP9612
TMP9615
TMP9617
TMP9620
TMP9625
TM 5003
TM 5006A
TM 501A
TM 502A
TM 503B
TM 504
TM 506A
TM 515
TPG 625
TR 503
TSA 8140
TSD42
271X Utility Sottware 181
2410 DITS (CCITI) 355
2410 DITS (ANSI) 355
2410 DITS (CCITT \& ANSI) 355
DSO Program Develop. Sys. 269
2402A TekMATE DSO Utilities App. Pkg. 269
WaveSaver 2200 Series DSO Support 270
TeleServicing Support 2200 Series DSO 270
ASYST Scientific (Opt. 01) 266
ASYST, 7000-Series Driver (Opt. 01) 266
ASYSTANT GPIB Acq. \& Analysis 266
1230/PC RS232 Applic. Software 155
EZ-TEST Test Development Software 263
11400 Series/HP Series 200/300 Time \& Amplitude 268
i-Pattern Software. 267
11000 Series DSO IBM PC Utility (Opt. 01) 268
Template/Waveform Processing Program 267
ASYST, 11400-Series Driver (Opt. 01) 266
370A Utility Software 250
371A Utility 250
370A Device Test Software 250
DCS01/DX01 Sottware 131
Waveform Creation \& Editing Software 262
Signal Processing Display Software 264
HDTV Sync Generator 350
Technical Assistance Services 260
Tunable Down Converter 353
Tunable Down Converter 353
Time and Amplitude Sottware 268
Software 174
Test Management System Software 261
ASIC Test Development Software 256
Integrated Teleservicing Support Software 270
FiberMaster 345
FiberScout Fault Finder 345
Time Mark Generator 240
Media Analyzer 347
Microwave Probe 53
Three-Wide Mainframe 242
Six-Wide Mainframe 242
One-Wide Mainframe 242, 243
Two-Wide Mainframe 242, 243
Three-Wide Maintrame 242243
Four-Wide Maintrame 242, 243
six-Wide Mainframe 242, 243
Five-Wide Maintrame 242, 243
Pattern Generator 352
Tracking Generator 177
Test System Adapter 194
Digital Interace 194

TSG100	NTSC Waveform Monitor .. 350
TSG1001	Programmable Generator .. 350
TSG1050	HDTV Generator .. 350
TSG120	YC/NTSC Generator .. 350
TSG121	SVHS/PAL Generator .. 350
TSG1125	HDTV Generator ... 350
TSG1250	HDTV Generator .. 350
TSG130	NTSC Generator ... 350
TSG131	PAL Generator ... 350
TSG170A	TV Test Signal Generator ... 351
TSG170D	
TSG271	PAL TV Generator .. 351
TSG273	PAL Signal Generator .. 351
TSG300	Component TV Generator ... 351
TSG370	Component/Composite TV Generator....................................... 352
TSG371	Component/Composite TV Generator 352
TSG422	Component Generator ... 352
TSI 8150	Test System Interface ... 194
TSS40	Scanner Control Assembly ... 195
TSS41	Low Level Scanner Card .. 195
TSS42	General Purpose Scanner Card ... 195
TSS43	Power Switch Card ... 19.
TSS44	Coax Scanner Module .. 194
TSS45	RF Scanner Module ... 194
TSS46	Microwave Scanner Module ... 194
TSS48	Matrix Switch Card ... 195
TSX 8140	Expansion Chassis ... 194
TVC 501	Time Interval to Voltage Converter 235, 338
VITS 201	Insertion Generator... 352
VM700A	Video Measurement Set ... 348
VS211	PAL Video Synchronizer .. 352
VX1400	VXI C-Size Mainframe ... 190
VX1405	VXI C-Size Mainframe ... 190
VX1421	VXI Development Modules ... 190
VX1500	VXI D-Size Mainframe ... 190
VX1505	VXI D-Size Mainframe ... 190
VX1521	VXI Development Modules .. 190
VX4223	VXI C-Size Counter/Timer ... 190
VX4236	VXI C-Size Digital Multimeter .. 190
VX4240	VXI Waveform Digitizer/Analyzer Module 190
VX4440	VXI C-Size Scanner Master ... 190
VX4520	VXI Slot 0 Resource Manager .. 190
VX4521	VXI Advanced Resource Manager .. 190
VX4530	VXI C-Size System Controller ... 190
VX4535	VXI C-Size System Controller .. 190
VX5260	VXI D-Size Waveform Digitizer .. 190
VX5520	VXI Slot 0 Resource Manager ... 190
VX5530	VXI D-Size System Controller ... 190
VX5535	VXI D-Size System Controller ... 190
VX5790	VXI D-Size Arbitrary Waveform Generator 190
WaveWriter ${ }^{\text {TM }}$	Waveform Creation \& Editing Sottware .. 262
WAV20V	ASIC Verification Software ... 256
WAV30V	ASIC Verification Software .. 256
WFM300A	Component TV Waveform Monitor ... 349
WM490	Waveguide Mixers ... 173
WM780	Waveguide Mixers .. 173
WM782	Waveguide Mixers .. 162
XP21	X Terminal .. 362
XP23	X Terminal .. 362
XP25	X Terminal ... 362
XP27	X Terminal .. 362
XP29	X Terminal .. 362
11A16	Two Channel Current Amplifier .. 63
11A32	Two Channel Amplifier .. 61
11A33	Ditferential Comparator ... 62

TSG100
TSG1001 TSG1050 TSG120 SG121 TSG1250 TSG130 TSG131 TSG170D TSG271 St273 TSG370
TSG371 SI 8150
TSS40
TSS41
SS43
TSS44
TSS45
SS48
TSX 8140
TVC 501
VM700A
VS211
VX1400
VX1421
VX1500
V1521
VX4223
VX4240
VX4440
VX4521
X4535
X5260
X5520
VX5535 WayeWrit

WAV20V
WAV3OV
NM490
WM780 WP21

XP23
XP25
XP27
11A16
11A32 11A33

NTSC Waveform Monitor 350
HDTV Geitor
YC/NTSC Generator ... 350
SUSS/PAL Generator 350
HDTV Gerto
NTSC Generator .. 350
-350

TV Test Signal Generator ... 351
PAL TV Generator .. 351
Signal Generator
Component/Composite TV Generator … 352
Component/Composite TV Generator .. 352
onent Generator
Scanner Control Assembly .. 195
Low Level Scanner Card .. 195
General Purpose Scanner Card ... 195
Power Switch Card
Coax Scanner Module 194

Manix
195

Insertion Generator .. 352
Video Measurement Set
PAL Video Synchronizer .. 352
X1O Size Mainan .. 190
VX| Development Modules 190
VXI D-Size Mainframe .. 190
D-Size Mainframe.
190
VXI C-Size Digital Multimeter .. 190

VXI Slot 0 Resource Manager 190
VXI Advanced Resource Manager .. 190

VXI D-Size Waveform Digitizer ... 190
VXI Slot 0 Resource Manager .. 190
VXI D-Size System Controller .. 190
XID-Size System Conirolter
Waverm Creation E Editing Sotwar …
ASIC Verification Sottware .. 256
256
Component TV Waveform Monitor ... 349
Wavegue Mixers..
Waveguide Mixers ... 162
X Terminal.. 362
XTerminal -362
XTerminal 362
X Terminal ..

Differential Comparator ... 62

11A34
11A34V
11 A52
11A72
1115 H
110-S
1101A
1102
1103
11402A
11403A
118-AS
11801A
1230
1230B
1230DSM
1230EI
134
1405
1450-1
1450-2
1450-3A
1480C
1480R
1481C
1481R
1482R
1485C
1485R
1502B/C
1503B/C
1705
1710B
1711B
1720
1721
1725
1730
173002
1730 HD
1731
1731 D2
1735 1740
1741
1742
1750
1751
177
178
1780R
1781R
1910
2000AM
2000AZ1
2000B
2000BBM
2000CBM
2000CX
2000CV1
2000CV2 2000DM1
2000MC
2000P
2000RV1
Four Channel Amplifier 61
Video Amplifier 61
wo Channel Amplifier 60
Two Channel Amplifie 60
Video Trigger 63
Synchronizer 352
Probe Power Supply 323
Probe Power Supply 323
TEKPROBE ${ }^{\text {IM }}$ Power Supply 323
1 GHz Digitizing Oscilloscope 54
1 GHz Digitizing Oscilloscope 54
Audio Synchronizer 352
Digital Sampling Oscilloscope 46
Logic Analyzer 152
Battery-Powered Logic Analyzer 152
Digitizing Scope Card 152
16-Channel Expander Card 152
Current Probe Amplifier 326
TV Sideband Adapter 177
TV Demodulator Mainframe 353
TV Demodulator Mainframe 353
TV Demodulator Mainframe 353
TV Waveform Monitor 349
TDR Cable Testers 346
TDR Cable Testers 346
Spectrum Monitor 353
NTSC Waveform Monitor 349
PAL Waveform Monitor 349
Vector Monitor 349
Vector Monitor 349
PAL/NTSC Vector Monitor 349
Waveform Monitor 349
Waveform Monitor 349
High Definition Waveform Monitor 349
PAL Waveform Monitor 349
AL Waveform Monitor 349
PAL/NTSC Waveform Monitor 349
Option 01 NTSC Waveform/Vector Monitor 349
Option 01 PAL Waveform/Vector Monitor 349
Option 01 PAL-M Waveform/Vector Monitor 349
NTSC Waveform/Vector Monitor 349
PAL Waveform/Nector Monitor 349
Standard Test Fixture 251
Linear IC Test Fixture 251
Waveform/Vector Monitor 349
Waveform/Vector Monitor 349
Digital Generator/Inserter 351
Interface Module 126
System Software 126
Waveform Capture System 126
Battery Backed-Up Module 126
Cache Memory 126
Software 126
Conversion Kit 126
Conversion Kit 126
Monitor 126
Mouse 126
Processor Module 126
Waveform Capture System 126

2000RV2	Wavetorm Capture System .. $12 . . .$.	2505
2000SS1	Signal Splitter ... $12 . . .$.	251081
2000582	Signal Splitter .. $12 . . .$.	251082
2000SS3	Signal Splitter .. 126	2520
2000SS4	Signal Splitter .. 126	2622
2000558	Signal Splitter .. 12.	2630
2000 T	Timing Module .. 126	2641
2002MI	Cache Memory Interface .. $12 . . .$.	2642
2004HS	Sampling Module ... 126	2704
2004A	Amplifier-Attenuator Module ... 126	2705
2004HA	Accelerator Module .. 126	2710
2004HS1	Sampling Module .. 126	2712
2004HS2	Sampling Module .. 126	2721
2004S	Sampling Module ... 126	2722
2004SC	Sampling Moudle.. 126	2753P
2008MM	Cache Memory ... 126	2754P
2008S	Sampling Module .. 126	2755AP
2016MM	Cache Memory ... 126	2756P
20165	Sampling Module .. 126	2782
2032MM	Cache Memory .. $12 . . .$.	300SM
2064MM	Cache Memory ... 126	30HSM
206	SCOPE-MOBILE® Carts ... 308	30MPX
212	500 kHz Dual Channel Oscilloscope 114	3001HSM
214	500 kHz Dual-Channel CRT-Storage Oscilloscope 114	3001MPX
2201	20 MHz Digital + Analog Scope .. 98	3002 C
2205	20 MHz Oscilloscope ... 107	3002 CH
221	5 MHz Single-Channel Scope ... 114	3002 CHD
2211	50 MHz Digital + Analog Oscilloscope .. 98	3002CHH
2214	20 MHz Digital + Analog Oscilloscope 100	3002CX
222	10 MHz Handheld Oscilloscope .. 112	3002CXD
222PS	10 MHz Handheld Oscilloscope ... 112	3002CXH
2221A	100 MHz Digital + Analog Oscilloscope 96	3002CXX
2225	50 MHz Oscilloscope .. 106	3002 E
2232	100 MHz Dual Time Base Digital + Analog Scope 96	3002P
2235A	100 MHz Dual Time Base Oscilloscope 105	305
2235 L	100 MHz Dual Time Base Oscilloscope 109	3052
2236A	100 MHz Dual Time Base Oscilloscope w/ Counter/Timer/Multimeter	314 $336 A$
2245A	100 MHz Oscilloscope ... 102	370 A
2246A Opt 1Y	100 MHz Four Channel Portable Oscilloscope 102	371A
2247A	100 MHz Oscilloscope wNoltmeter/Counter/	4205
	Timer .. 102	4207
2252	100 MHz , Programmable Oscilloscope 126	4209
2402A	TekMate Instrument Extension ... 92	4211
2410	Digital Interface Test System .. 35	4224
2430A	$100 \mathrm{MS} / \mathrm{s}$, 150 MHz Digitizing Oscilloscope 87	4225
2430A Opt. 46	150 MHz Digitizing Oscilloscope 87,109	4235
2430M	2430 Digitizing Oscilloscope w/MATE/CIIL 87	4236
2431L	$250 \mathrm{MS} / \mathrm{s}$, 300 MHz Digitizing Oscilloscope 87	4237
2432A	$250 \mathrm{MS} / \mathrm{s}, 300 \mathrm{MHz}$ Digitizing Oscilloscope 87	469CART
2432M	2432A Digitizing Oscilloscope w/MATE/CIIL 87	4696
2439	$500 \mathrm{MS} / \mathrm{s} 300 \mathrm{MHz}$ Digitizing Oscilloscope ... 87	492BP
2440	$500 \mathrm{MS} / \mathrm{s}, 300 \mathrm{MHz}$ Digitizing Oscilloscope 87	492PGM
2440M	2440A Digitizing Oscilloscope w/MATE/CILL 87	494AP
2445B	150 MHz Four Channel Oscilloscope ... 84	495P
2465B	400 MHz Four Channel Oscilloscope 84	497P
2465BCT	400 MHz Precision Timing Oscilloscope 85	5A14N
2465BDM	400 MHz Multifunction Oscilloscope ... 85	5A15N
2465BDV	400 MHz Full Featured Oscilloscope ... 85	5A18N
2465B Opt. 46	400 MHz Four Channel Oscilloscope 84,109	5A19N
24678	$400 \mathrm{MHz} \mathrm{High} \mathrm{Writing} \mathrm{Speed} \mathrm{Oscilloscope} \mathrm{............................}$.	5A21N
2467BHD	HDTV Oscilloscope .. 358	5A22N
25A41	Four Channel Acquisition Card .. 279	5A26
25A42	Two Channel Acquisition Card ... 279	5 A48
25AD3	Analog/Digital Acquisition Card .. 279	5B10N

TestLab ${ }^{\text {TM }}$ 277
Personal Fourier Analyzer 280
nverter 181
Battery Pack 181
Portable Spectrum Analyzer 179
Portable Spectrum Analyzer 178
Non-interfering Sweep Transmitter 182
Non-interfering Sweep Receiver 182
Programmable Spectrum Analyzer 163
High Performance Microwave Spectrum Analyzer 156, 158
Digitizing Oscilloscope Module 145
High-Speed Acquisition Module 145
8/16/32 Bit Acquisition Module 145
High-Speed Logic Analyzer 145
8/16/32 Bit Logic Analyzer 145
Prism Platiorm with Color Monitor 145
Prism Platiorm 145
Prism Plattorm 145
Prism Platiorm 145
Prism Plattorm 145
Prism Plattorm 145
Prism Platform 145
Prism Platform 145
Prism Expansion 145
Prism Plattorm with Flat Panel 145
5 MHz Analog Oscilloscope/DMM 111
Digital Signal Processing System 184
CRT Storage Oscilloscope 111
50 MHz Digital + Analog Oscilloscope 110
Programmable Curve Tracer 249
Programmable Curve Tracer 249
Graphics Terminal 363
Graphics Termina 363
Graphics Terminal 363
Graphics Netstation 363
Printer Cart 364
Color Ink-Jet Printer 364
Programmable Spectrum Analyzer 168
Four Channel Amplifier 75
Single Channel Amplifier 75
Two Channel Amplifier 75
Differential Amplifier 76
Differential Amplifier 76
Differential Amplifier 76
Dual Differential Amplifier 77
Dual Trace Amplifier 73
Single Time Base 77

ALPHANUMERIC INDEX

5B12N

53A-220
53A-225
53A-226
53A-241
53A-242
53A-243
53A-253
53A-257
53A-258
53A-260
53A-262
53A-270
53A-283
53A-284
53A-285
53A-286
53A-307
53A-310
53A-311
53A-322
53A-323
53A-324
53A-325
53A-326
53A-331
53A-332
53A-333
53A-334
53A-336
53A-339
53A-342
53A-353
53A-354
53A-355
53A-356
53A-365
53A-410
53A-414
53A-415
53A-416
$53 \mathrm{~A}-420$
53A-421
53A-424
53A-425
53A-426
53A-427
53A-431
53A-450
53A-453
53A-454
53A-457
53A-488
53A-509
53A-516
53A-518
53A-518B
53A-522
53A-525
53A-530

Dual Time Base	77	53A-531
Time Base	73	53A-540B
Dual Time Base	73	53A-541
2 MHz Oscilloscope	74	53A-561
2 MHz Storage Oscilloscope	74	53A-570
2 MHz Storage Oscilloscope	74	53A-571
Strain Gage Amplifier	. 192	53A-572
Thermocouple	. 192	53A-573
Thermocouple	. 192	53A-581
2 MHz Arbitrary Waveform Generator	. 192	53A-903
10 MHz Artibrary Waveform Generator	. 192	53A-931
25 MHz Arbitrary Waveform Generator	. 192	53A-932
Gaussian Noise Generator	. 192	5440
Hex D/A Output	. 192	5441
Eight-Channel D/A Output	. 192	571
Pulse Burst Generator	. 192	57701
Programmable Rate Generator	. 192	57702
Arbitrary Serial Word Generator	. 192	606B
Hex Isolation Amplifier	. 192	608
Hex Programmable Gain Amplifier	192	620
Eight Channel Isolation Amplifier	. 192	634
Hex Programmable Isolation Amplifier	. 192	7A13
Relay Driver	. 192	7A18A
FET Scanner Master	. 192	7A19
FET Scanner Slave	. 192	7 A 22
RF Switch (250 MHz)	. 192	7A24
RF Switch (650 MHz)	. 192	7A26
Microwave Scanner (18GHz)	. 192	7A29
Triple 5-Port Transfer Switch (18 GHz)	. 192	$7 \mathrm{B15}$
Microwave Scanner (18 GHz)	. 192	7853A
4-Wire Scanner	. 192	$7 \mathrm{B85}$
2-Wire Scanner with Readback	. 192	7892A
3-Wire Scanner	. 192	7020
1-Wire Scanner	. 192	7104
Hi-Voltage Scanner	. 192	7280
Thermocouple Scanner	. 192	728 E
Resistance Programming	. 192	73A-021
SPST Relay Switch.	. 192	73A-151B
Lo Thermal Relay Switch	. 192	73A-155
SPDT/DPST Relay Switch	. 192	73A-156
DPDT Relay Switch	. 192	73A-160B
Matrix Relay	. 192	73A-161
$B C D / B i n a r y ~ I n p u t ~$. 192	73A-243
BCD/Binary Output	. 192	73A-256
40-Bit Tri-State Output	. 192	73A-270
Hi Voltage Open Collector Output	. 192	73A-308
ARINC-429 Receiver	. 192	73A-332
ARINC-429 Transmitter	. 192	73A-334
FDAU Receiver/Tester	. 192	73A-342
Quad ARINC-429 Transmitter	. 192	73A-353
Quad ARINC-429 Receiver	. 192	73A-355
ARINC-429/561 Converter	. 192	73A-356
Quad UART	. 192	73A-357
Wire Wrap Card	. 192	73A-372
MIL-STD-1553 Simulator/Tester	. 192	73A-374
MIL-STD-1553 Real Time RT Simulator/Tester	. 192	73A-411
MIL-STD-1553 Intelligent Bus Monitor	. 192	73A-412
IEEE-488 Controller/Analyzer	192.	73A-425
Event Sense 192	73A-426
Analog Comparator	. 192	73A-451
Transient Digitizer Subsystem	. 192	73A-452
Data Acquisition Subsystem.	. 192	73A-453
Digital Multimeter	. 192	73A-455
Waveform Analyzer.	. 192	73A-541
Bit Error Rate Transmitter	. 192	73A-575

Bit Error Rate Receiver 192
Quad Totalizing Counter 192
Universal Digitizing Counter 192
2.5 GHz Counter 192
Synchro to Digital Converter 192
Synchro to Digital Converter 192
Digital to Resolver Converter 192
Resolver to Digital Converter 192
Power Meter 192
I/O Card for IBM or Compatible PC 192
Integral LCD Display and Function Keyboard 192
Full Keyboard 192
50 MHz Oscilloscope 72
50 MHz Storage Oscilloscope 72
Curve Tracer 252
Storage Curve Tracer Mainframe 251
Curve Tracer Mainframe 251
High Resolution Waveform Monitor 367
High Brightness Waveform Monitor 367
General Purpose Waveform Monitor 367
High Resolution Video Monitor 367
Differential Comparator Amplifier 69
100 MHz Amplifier 69
60 MHz Amplifier 69
Differential Amplifier 69
400 MHz Amplifier 69
200 MHz Amplifier 69
1 GHz Amplifier 69
Delta Delaying Time Base 69
Dual Time Base 69
Delta Delaying Time Base 69
Dual Time Base 69
Programmable Digitizer 69
1 GHz Real Time Oscilloscope 66
NICAM Decoder 354
NICAM Encoder 354
VXI Card Cage. 190
VXI Slot 0 Module 190
VXI Resource Manager 190
VXI MATE IAC Control Module 190
VXI Computer Subsystem 190
VXI Computer Subsystem 190
VXI Arbitrary Wavetorm Generator 190
VXI 12-Chan. 16-Bit DAC 190
VXI Pulse/Pattern Generator 190
VXI Relay Driver Module 190
VXI Master Module 190
VXI Master Module 190
VXI Dual Programmable Resistor 190
VXI Relay Switch 190
VXI Scanner Module 190
VXI Scanner Module 190
VXI 48-Chan. Isolated Digital I/0 190
VXI 80-Chan. Digital I/0 190
VXI Transmitter Module 190
VXI Receiver Module 190
VXI Prototyping Module 190
VXI Prototyping Module 190
VXI Simulator Tester 190
VXI Simulator Module 190
VXI Universal Digitizer Counter 190
VXI Syncho Transceiver Module 190

73A-576	VXI Resolver Transciever Module.. 190
73A-850	VXI Extender Board ... 190
73A-851	VXENXI Adapter Module .. 190
$73 \mathrm{~A}-852$	CDSbus to VXIbus Interface Module 190
73A-853	CDSbus to VXIbus Interface Module 190
73A-904	I/O Card .. 190
73A-931	Integral Display ... 190
73A-932	Enhanced Keyboard .. 190
73S-456	VXI MATE Tester .. 190
751	Aural Modulation Monitor/Decoder .. 353
760	Stereo Audio Monitor .. 354
7603	100 MHz General Purpose Oscilloscope $6 . .$.
7623B	100 MHz , CRT-Storage Oscilloscope .. 68
7934	500 MHz CRT-Storage Oscilloscope ... 67
830230	IBM Solutions ROM Pack ... 347
830RDA	ROM Pack Development Aid .. 347
830R01	General Purpose ROM Pack ... 347
830R02B	Bisynchronous ROM Pack.. 347
830 R03	Link Test ROM Pack ... 347
830R03B	Link Test ROM Pack ... 347
$830 R 07$	PARS/IPARS ROM Pack .. 347
$830 \mathrm{R10}$	SDLC/SNA ROM Pack... 347
830R10B	SNA ROM Pack .. 347
830R13	SDLC/SNA ROM Pack ... 347
830R31	Multipurpose ROM Pack ... 347
834R02A	Bisynchronous ROM Pack... 347
834R04	HDLC/X-25 ROM pack .. 347
834R05	Extended Instruction Set ROM Pack 347
834R06	Bisynchronous ROM Pack.. 347
834R11	Extended Monitor ROM Pack ... 347
835	Programmable Data Comm Testers .. 347
836	Programmable Data Comm Testers ... 347
836TV	TV Production Protocol Analyzer .. 347
92A16	200 MHz Acquisition Card .. 144
92A16E	200 MHz Expansion Card .. 144
92A60	Data Acquisition Module/20 MHz Acquisition Card 144
92A60D	Data Acquisition Module/20 MHz Acquisition Card 144
92A90	20 MHz Acquisition Card .. 144
92A90D	20 MHz Acquisition Card .. 144
92A96	100 MHz Acquisition Card ... 144
92A96D	100 MHz Acquisition Card ... 144
$92 \mathrm{CO2}$	DAS GPIB Interiace .. 136
92 CO 3	DAS Expansion Interiace .. 136
92HS8	2 GHz Acquisition Card ... 144
92HS8C	2 GHz Expansion Card .. 144
92HS8E	2 GHz Expansion Card .. 144
92LAN	DAS Ethernet Interface .. 136
92SX109	100 MHz Pattern Generator .. 144
92SX118	100 MHz Pattern Generator ... 144
92816	50 MHz Pattern Generator ... 144
92532	50 MHz Pattern Generator ... 144
9503	Fast Data Cache Unit ... 121
9504	Fast Data Cache Unit ... 121
$9504 \mathrm{F01}$	Fast Data Cache Unit ... 121

FUNCTIONAL INDEX

A

Accelerometers .. 78

Accessories

.294-344
Accessory Pouch ..244
Attenuators .. 106, 112, 336-337
Cables ..

Capacitors, Coupling .. 337
Carrying Cases .. $94,108,244,339$
Carts ... $306-309$
Coaxial Cables ... 334
Connectors, Coaxial .. 335
Converter Probes... 287
Delay Lines (GR, SMA) .. 334
Documentation Devices see Cameras, Plotters \& Printers
EMC Screen Filters .. 341
Filters ... 341
GPIB Cables .. 334
Ground Leads, Probes ..30-333, 342-344
Interface Cables (RS-232C, GPIB, Centronics) ... 334
Isolators .. 328
Light Filters .. 341
Meter Leads ...
Optical-to-Electrical Converter ..26-290
PLCC, SOIC Clips ... 316
Power Dividers (GR, SMA) .. 337
Power Supplies ... 246
Probe accessories ...30-333
Probes ...310-333, 342-344
Product Accessories
Curve Tracers .. 310
Digitizer.. 328, 334
Logic Analyzer ..32-344
Modular Instruments ...241-244
Oscilloscope .. 294, 340
Plotters ... 295
Printers ...295-297, 364
Spectrum Analyzer .. 183
Telecommunications ... 310
Television ...310,334-336
Test Leads ..
Transit (Carrying) Cases ... 339

Active Probes (FET, Bipolar, Bias/Offset) ... 320
Adapters ...177, 335
Air LIne GR ..
BNC ..
Camera Mounting ...
F...

GR ...
Kits ... 335
N..

Probe... 332 3-344

Amplifiers, Plug-In
Current Probe235, 325
Differential/Comparator 62, 69, 75-77, 234
Dual Channe//Trace $60,69,73,75$
Four Channe//Trace 60, 75
Operational 235
Single Channel/Trace 69
Waveform Digitizers 69
Analyzers
Acoustic 280
Audio 230-231
Communications Signal 44
Control System 280
Digital Signal 184, 280
Digitizing Signa 40
Distortion 230
Fourier (FFT) 184-185, 280
Frequency 280
Logic 134
Multi-Channel 277
Spectrum 184-185, 156
Structural 280
Waveform 277
Arbitrary/Function Generators 200, 201
Arbitrary Waveform Generator 188, 190
ASIC Verification System 254-256
ASICs 370
Attenuators 336-337Audio
Audio Signal Generator 348
Audio Vector Converter 354
Aural Modulation Monitor/Decoder 353
Measurement Set 348
Stereo Monitor 354
Audio Distortion Analyzers 230
B
Bench Test Instruments 246-248
Bipolar Analog ICs 370
BNC 334-337
Adapters 335
Attenuators 336-337
Cables 334
C
Cable Testers 345-346
Metallic 346
Optical 345
CATV/Broadband Sweep 182
Cables 334-344
BNC, BSM, GR, N, SMA (3 mm and 3.5 mm) 334
Coaxial 334
GPIB 334
Interface (RS-232, GPIB, Centronics) 334
Patch Cords 334
Calibration Equipment 236-240
Calibration Services 376-383
Cameras 298-305
Accessories 305
Carrying Case 305
Digitizing System 130-132
Film 299
Hoods, Scope and Video 299-301, 305
Mounting Adapters 300-301
Selection Chart 300-301
Capacitors, Coupling (SMA, GR) 337
Card Modular Systems (VXI/CDS) 188, 190-193
Carrying Cases 244, 339
Carts 306-309
Anthro ${ }^{\text {TM }}$ 359-360
Controllers, PC 306
Curve Tracers 306
Digitizers 306
Logic Analyzers 306
Modular Instruments 306
Monitors 306
Oscilloscope 306-309
Plotters/Printers 306
Rackmount 307
Scopemobiles 306-309
Selection Guide 306
Spectrum Analyzers 306
Terminals 306
TV Products 306
CCDs 370
CDS 188, 192
Centronics Cables 334
Chart Recorders 277
Circuit Boards, PTFE 371
Flexible/Teflon 371
Manufacturing 371
Coaxial Cables 334
Communication Interfaces
GPIB
Compatibility Information 271-272
Instrument Extension 92-93
Logic Analyzers 134
Oscilloscopes/Digitizers 37-132
Mate/CIL 87, 109
RS-232-C
Instrument Extension 92-93
VME 188, 190
VXI 188, 190, 271-272
Communications Signal Analyzers 44
Communications Test Equipment see Telecommunications Component Products/Services 369-371
CCDS 370
Circuit Boards, PTFE 371
Connector, Elastomer 371
Filters 369
Flexible Circuits 371
Integrated Circuits 370
Bipolar Analog ICs 370
CCDs 370
Custorm 370
Oscillators 369
Photochemical Machined Parts 371
Plated Parts 371
Resonators 369
Component Tester 245
Computer
Furniture 309, 359-360
Graphics Terminals \& Netstations 363
BM PC/AT-Compatible Display 365
Compaq and Epson Computer Options 176
Software see Software
X Terminals 362
Connectors 335
Consortium (VXI) 188, 190
Converters
Electrical-to-Optical 290
Optical-to-Electrical 286-289
Tunable/Fixed Down Converter, Television RF 353
Copiers, Video 297
Coprocessors, Mac II Compatible 368
Counters 247-248
Counter/Timer
Modular 218-225
Oscilloscope 82, 102
Probes 315
VXI 188, 190
Coupling Capacitors (SMA, GR) 337
Current Probes 324-326
Curve Tracers 249-252
Adapters 253
Probes 310
Custom ICs 370
Custom Plug-in Kits 229
Custom Systems
Digitizer Test 126-129, 269
Instrumentation \& Contro 126-129
Manufacturing Tes 196
Spectrum Analysis 174-176
Customer Information
Leasing Program 372
Maintenance Agreements 380-381
Order Information see Individual Product Pages
Power Plug Options 374
Reconditioned Instruments 373
Rental Program 372
Sales \& Service Offices 384-388, Inside Back Cover
Service 376-383
Technical Assistance Service 260
Terms of Sale 372
Training 276,383
Warranty Information 363, 375, 378-382
Customer Service 376-383
Customer Support 376-377
Customer Training 276, 383

FUNCTIONAL INDEX

D
Data Acquisition Systems 277, 280
Delay Lines (GR, SMA) 334, 337
Demodulators, Television 353
Development Modules (VXI/CDS) 188, 190
Differential Probes 327
Digital Counter/Timers 218-225
Digital Interface Test System 355
Digital Multimeters (DMM)
Modular 212-217, 245-247
VXI 188, 190
Digital Photometer/Radiometer 291
Digital Prescaler 223
Digital Signal Analyzer 280
Digital Signal Processing Systems 126-129, 184-187, 280
Analyzers 184-185
Oscilloscopes 40-58
Instrument Extension 92
Software 258-270
Waveform Processing 87-91
Spectrum Analyzers 156-183
Digital Verification Tools 133, 254-256
ASIC Verification 254-256
Logic Analyzers 133
Digitizers (also see Oscilloscopes) 115-132
Camera System, Digitizing 130-132
CCD Video Camera 130
Fast Data Cache 121-122
GPIB 115-132
High Speed Buffer 123
Imagers 130-132
Logic Analyzer Based 145, 152
Multi-Channel 115-132
Programmable 115-132
Scan Converter 123-125
Systems 126-129
Transient Capture 115-120, 123-125, 130-132
VXI188, 190
Waveform 115-120, 126, 188, 190
Digitizing Signal Analyzers 40
Display Devices also see Monitors
Color Stereo System 365
IBM PC/AT-Compatible 365
Netstations 361, 363
Stereo Modulator Kits 365
Stereoscopic 3D Display 365
Video Displays 130
$X-Y$ 367
X Terminals 361,363
Distortion Analyzers 230
Distributors 388
Dot Matrix Printer 296
Down Converters 186
Down Converters, Television RF 353

E

Education Support 273-276
Hands-on Instruction 274, 276
Self Study 274, 276
Video Tapes 276
Educational Reps 388
Electromechanical Measurements 277, 280
EMC Screen Filters 341
EMC Test Software 175
Environmental Probes 315
F
FET Probes 320, 322
FFT 40
Fiber Optics 286-293
Film-Based Cameras see Cameras Filters 341
EMC Screen 341
Light. 341
Fixtured Probes 318-319
Floating Measurements 328
Fourier Analyzers 280
Frequency Analyzer 184-185, 280
Frequency Counter 218-225, 246-247
Function Generators 198-205, 246
Furniture also see Carts
Anthro ${ }^{\circ}$ 359-360
Carts, Technology 306-309
PC Display Support 306
Technology 359-360
Workstation 306, 309, 359
G
Generator, Optical Impulse 290
Generators, Signal
Arbitrary/Function 200
Arbitrary Waveform (VXI) 190
Audio 348
Component 350-352
Composite 350-352
Digital 351-352
Digital Word 136
Function 198-205,246
High Definition 350
Leveled Sinewave 238, 239
NTSC 350-352
Optical Impulse 290
Oscillator 232, 233, 239
PAL 350-352
Pattern (Digital) 136, 352
Programmable Television 350
Pulse 206-209
Pulse/Function 201-202
Sync 350
Television Test 350-352
Time-Mark 236
GPIB
Cables 334
Compatibility Information 271-272
VXI Systems 190
Graphics
Netstations 363
Plotter, 4 pen 384
Printers see Printers
Software see Sottware
Terminals 363
X Terminals 362
Ground Leads, Probe 330-333
HHandheld ProductsOscilloscopes110-114
High Definition
Television Generator 350
Television Oscilloscope 358
Television Sync Generator 350
Waveform Monitor 349
High Voltage Probes 323
Hoods 305
Scope and Video Viewing 341
I
IBM-Compatibles 365
IC Clips 316, 330
PLCC packages 316
SOIC packages 316
IC Manufacture 370
Bipolar Analog ICs 370
CCDs 370
Custom ICs 370
IC Test System 254-256
ICs 316, 330, 370
Indexes
Alphanumeric 1-7
Functional 8-16
Inkjet Printers 364
Instrument Controllers see System Controllers Instrument/Probe Reference Chart 310-311
Instruments, Reconditioned 373
Interface Cables 334
Isolators 328
L
Leasing Program 372
Light Filters 341
Light Measurement 291
Logic Analyzers 133
Accessories 342-344
Battery-Powered 152
Configurations, Standard 142
Digital Analysis 136-144
Disassembly Probe 154
Expandable 152
GPIB 135
High Speed Timing 134
Microprocessor 135
Disassembly 135
Control 145-151
Support 135
Modular Analyzer 135-151
Multi-Channel Analyzer 135-151
Oscilloscope, Digitizing 145-151
Performance Analysis 145-151
Remote Control 134
Selection Guide 134
Serial Analysis 135
State Analysis 134, 136-155
Timing Analysis 134, 136-155
Training 155
Logic Trigger Probes 329
Low Capacitance Probes 321
Low Impedance Voltage Probes 321
Low-Distortion Oscillators 228, 229
M
Mainframes
Logic Analyzers 133-155
Modular Instruments 241-243
Oscilloscopes 40-58, 65-68, 71-72, 74
VXI 190
Maintenance Agreements 378-382
Manufacturing Test Systems 196
Mechanical/Electromechanical 277, 280
Meter Leads 334
Microwave \& RF Instruments
Accessories \& Probes 294
Software 175
Spectrum Analyzers 156-182
Spectrum Monitor 353
Waveguide Mixers 162, 173
Modal Analysis 280
Modular Instruments 197-244
Accessories 241-244
Arbitrary/Function Generators 200
Audio Analyzer 230
Custom Plug-In Kits 229

FUNCTIONAL INDEX

Digital Counter/Timers 218-225
Digital Multimeters (DMM)
Digital Multimeters (DMM) 212-217 212-217
Digital Prescaler 223
Distortion Analyzers 230
Frequency Counter 218-225
Function Generators 198-205
Leveled Sinewave Generators 238-239
Logic Analyzers 133-155
Low-Distortion Oscillators 232-233
Mainframes 241-243
Optical Converter/Power Meter 290
Optical Impulse Generator 290
Oscillator 239
Oscilloscope Calibration 236-240
Oscilloscopes 226-228
Power Supplies 210-211
Pulse Generators 202, 206-209
Selection Guides
Digital Counter 218
Digital Multimeter 212
Function Generators 199
Modular Oscilloscopes 226
Oscilloscope Calibration 236
Power Supplies 210
Pulse Generators 206
Signal Conditioners 234-235
Signal Generators 238, 239
Signal Sources 198-209
Software 258, 262-263
Switching 229
Time Mark Generator 240
Monitors
Color Stereo 365
High Brightness 367
High Resolution Monochrome 366
High Resolution Video 367
Modulation (BTSC) 353
Monochrome Stereo 366
Stereo Audio 354
Ultra High Resolution 366
Vector 349
Very High Resolution 367
Video 130
Waveform 349, 367
$X-Y$ 367
N
Netstations 363
New Products 17-27
Rackmount $40-58,66,68,79-91$
Rackmount Kits 340
Reference, Selection Checklist 28-36
Ruggedized 109, 112
Sampling
Accessories 52
Analog 68
Delay Line 51
Digital 44-51
Heads 48-50
Multi-Channel Unit 51
Software see Software
StorageCRT68, 72, 74, 111, 114
Digital 40-43, 54-58, 87-91, 96-100, 110, 112
Equivalent-Time DSO $54-58,96,110,112$
Real-Time DSO 40, 87-91, 98
Variable Persistence 44, 68
Telecommunications 44-50, 355
Television 79-91
Time Bases, Modular 69, 73, 77
Training 89, 274
Travel Accessories 339
Viewing Accessories 341
P
Passive Voltage Probes 322
Patch Cords 334
Pattern Generator 136, 352
Photometer/Radiometer 291-293
Physical Measurement Instruments 277-281, 291-293
Fourier Analyzers 280
Multi-Channel Analyzers 277-279
PC-Based 218
Temperature Probes 315
Plotter, Four Color 295
Plug-Ins 59-64, 69, 73, 75-77
Portable Products
Logic Analyzers 134, 145, 152
Oscilloscopes 79-114
Power Dividers (GR, SMA) 337
Power Meter, Optical 290
Power Plug Options 374
Power Supplies
Modular 210-211, 246-248
Oscilloscope 108
Spectrum Analyzer 181
Probe. 323
Printers
Color 364
Dot Matrix 296
Ink-Jet 364
Thermal, Black \& White 297
Thermal Wax 364
Probes 310-333, 342-344
1X-10X Switchable 323
Accessories 330-333
Active (FET, Bipolar, Bias/Offset) 320
Adapters/Attenuators 334-337
Bufter Amplifier 319
Counter/Timer 315
Current 324 -326
Current Amplifiers 235, 325
Data Acquisition 342-344
Differential 327
Digital Photometer/Radiometer 291-293
Environmental 315
FET 320, 322
Fixtured 318-319
Ground Leads 330-333
High Current 235, 325
High Frequency 319, 320-322
High Voltage 323
Instrument/Probe Reference Chart 310-313
Isolators 328
Logic Analyzer 133, 342-344
Logic Trigger 329
Low Capacitance 321
Low Impedance 321
Low Loading 315, 319, 320
Micro 318
Microwave 53
Optical-to-Electrical Converter 286-287, 290
Passive Voltage 322
Pattern Generator 133, 342-344
Power Supplies (Fixtured/Active) 323
Probe Card 318
RF 315
Selection Charts 310-313, 324, 330-333
SMT Device Interconnects 316
Spring Contact 318
Temperature 315
Voltage 312, 321-323
Passive 322
Low Impedance 321
Reference Chart 312
Word Recognizer/Trigger 329
Pulse Generators 202, 206-209
R
Rackmount Products
Cart 306
Kits 340
Oscilloscopes $40-58,66,68,79-91$
Terminals 363
Radiometer/Photometer 291-293
Reconditioned Instruments 373
Recorders, Chart 277

FUNCTIONAL INDEX

Reference Information

Attenuator Selection Guide 336
Camera Selection Chart 299-301
Cart Selection Guide 306
Digital Counter Selection Guide 218
Digital Multimeter Selection Guide 212
Function Generator Selection Guide 199
Instrument/Probe Chart 310-311
Logic Analyzer Selection Guide 134
Microprocessor Support Selection Guide 135
Modular Oscilloscope Selection Guide 226
Oscilloscope Calibration Selection Guide 236
Oscilloscope Reference 28-36
Power Supplies Selection Guide 210
Power Plug Options 374
Pulse Generator Selection Guide 206
Self Study Programs 276
Software Chart, T\&M 258-259
Voltage Probe Reference Chart 312-313
Rental Companies 388
Rental Program 372
Resonators 369
RF DMM Probes 315
RS-232-C Cables 334
S
Sales \& Service Offices 384-388, Inside Back Cover
Sampling
Accessories 52
Oscilloscopes
Analog 68
Delay Line 51
Digital 44-51
Heads 48-50
Multi-Channel Unit 51
Optical Sampling Head 48, 288
Scanner
Cards 229
Master (VXI) 188, 190
Modules 194
Scopemobiles 306-309
Selection Guides see Reference Information
Self-Study Programs 276
Semiconductor Testers 249-256
ASIC Verification 254-256
Curve Tracers 249-253
ICs 254-256
Socket Adapters 253
Software 250
Service Information 363, 376-383
Service Training 383
Signal Analyzers 40, 44, 184-185, 280
Signal Conditioners 234-235, 277
Signal Generators see Generators
Signal Pickoff 337
Signal Sources 198-209
Signal Switching/DUT Interfacing Products 194-195
Accessories 318
Digital Interface 194-195
Fixtured Probes 318
Power Switch Card 194-195
Relay Driver Cards 194-195
Scanner Cards 194-195
Scanner Modules 194-195
RF. 194-195
Microwave 194-195
Selection Guides
Scanner Cards 195
Scanner Modules 194
Spring Contact Probes 318
Test System Interface 194-195
SMA
Adapters 335
Attenuators 336
Cables 334
SMT Clips 316-317
Software
ASIC Verification 256
Data Logging 268
Digitizing Camera, MUX16 130-132
DSO Utility 92, 268
EMI Testing 174-175
Modular Instrumentation 262-263, 265
Pass/Fail Testing 92, 261, 263, 265, 267
PC 751 Remote Display Software 353
Program Development System 92, 261, 263, 265
Remote Site 174, 270
Signal Acquisition and Analysis 264-266, 268
Signal Noise and Jitter Analysis 267
Simulator Data Translators 256
Spectrum Analyzer 174-175, 181
T\&M Software Reference Chart 258
Technical Assistance Services 260
Telecommunications Testing (ANSI, T1, CITT) 355
Teleservicing 270
Template Generation 92, 267, 355
Test Program Development 88, 261, 263, 265
Utility 268, 269
VXI 188, 190
Waveform Generation 262
Waveform Storage 92
Spectrum Analyzers 156-183
Accessories 183
Digital 184-187
Down Converters 186-187
Inverter/Battery Pack 181
Low Frequency 184-187, 280
MATE/CIL Compatibility 168
Microwave 53, 158-172
Instruments. 158-172
Components 53
Optical-to-Electrical Converter 158, 288
PC-Based Systems 174-177
Portable 168-172, 178-182
Probes, Microwave 53
Sottware 174-175, 181
Tracking Generator 177
TV Sideband Adapter 177
VHF/UHF 163-172, 178-182
Waveguide Mixers 162, 173
State Analyzer 133
Stereo Modulator Kits 365
Stereoscopic 3D Color Displays 365
Strip Chart Recorders 277
Synchronizers, Audio and Video 352
System Controllers VXI 188, 190
Systems see Custom Systems
T
Technical Assistance Services 260
Telecommunications Test Equipment
Cable Testing, Optical 345
Communications Signal Analyzer 44
Data Communications 347, 355
LAN Media Testing 346
Metallic Cable Testers 346
Optical Cable Testing 345
Optical-to-Electrical Converters 48, 287-289
Probes 310
RS-232 Analyzer 135
Template Testing 355
Waveform Analyzer 277
Television Test Equipment 348-354, 358
Attenuators/Adapters 335
Cables 334
CATV/Broadband Sweep 20, 182
Decoder, NICAM 354
Demodulators 353
Encoder, NICAM 354
Monitors 349, 353-354
Modulation (BTSC) 353
Spectrum 353
Stereo Audio 354
Vector 349
Waveform 349
Waveform Nector 349
Oscilloscopes, Video Triggering 79-86
Pattern Generators 352
Sync 350
Television Test 350-352
Probes 310
Signal Generators 350-351
Composite 350-352
Component 350-352
Digital 351-352
Programmable 350
NTSC 350-352
PAL 350-352
Synchronizer, Audio \& Video 352
Video Measurement Set 348-349
Analog 349
Digital 348
Video Triggering 79-91
VITS Inserter 352
Temperature Probes 315
Terminals, Graphics 363
Terms of Sale 372
Test \& Measurement Instruments see Modular Instruments
Test \& Measurement Software see Software Test System
ASIC Verification 254-256
Manufacturing 196
Semiconductor 249-256
Thermal Wax Printers 364
Time Domain Reflectometry (TDR) Systems
Metallic TDRs 346
Optical TDRs 345
Oscilloscope 44-51
Time Interval to Voltage Converter 338
Time Mark Generator 240
Timing Analyzer 133, 338
Training 276, 383
Transient Digitizers/Recorders 120-132, 277
Travel Accessories 94, 108, 244, 339
v
Vectorscopes 349
Video Copiers 297
Video Measurement Sets 348, 349
Video Monitor 130
VITS/ITS Inserter 352
VME Conversion Module (VXI) 188, 190
Voltage/Probe Reference Chart 312
VXI 188, 190-191
C-Size VXI 190-191
Counter/Timer 190-191
D-Size VXI 190-191
Development Modules 190-191
Digital Multimeter 190-191
Mainframes 190-191
Manufacturing Test System 196
Prototype Module 190-191
Scanner Master 190-191
Switching Interface 190-191
System Controllers 190-191
Systems 190-191
VME Conversion Module 190-191
Waveform Digitizer 190-191

FUNCTIONAL INDEX

W
Warranty Information 363, 375
Warranty-Plus 378-382
Waveform Digitizers 115, 188, 190
Waveform Monitors 162, 173
Waveguide Mixers 33
Word Recognizer/Trigger Probes 329
Workstation
Carts 306, 309, 359
Macintosh II Based 368
Stereoscopic 3D 365, 368
X
X Terminals 362

DSA 601A, DSA 602A Digitizing Signal Analyzers-see page 40.

SD-14 High Impedance Probe Sampler-see page 48.

11801A Digital Sampling Oscilloscope-see page 46.

SD-32, SD-30, Sampling Heads-see page 48.

DSA 601A/ DSA 602A

DIGITIZING SIGNAL

ANALYZERS

- 2 GSample/s Sampling Rate
- 8-bit Vertical Resolution
- 1 GHz System Bandwidth
- Live FFT
- Histograms
- Built-in Disk Drive

11801A

DIGITAL SAMPLING

 OSCILLOSCOPE- 10 femtosecond EquivalentTime Sampling Interval
- Modular Architecture-up to 136 Channels
- "Real-Time" Feel for Waveform Control
- Statistical Measurements
- TDR Capability

SD-14

SAMPLING HEAD

- $100 \mathrm{~K} \Omega, 0.25 \mathrm{pF}$ Typical
- 7 V p-p Dynamic Range
- 2.5 GHz Bandwidth
- ECL, CMOS and GaAs Device Characterization

SD-30

SAMPLING HEAD

- 40 GHz Bandwidth
- Single Channel

SD-32

SAMPLING HEAD

- 50 GHz Bandwidth
- Single Channel
- High Bandwidth Communications and Microwave Applications

7623B/R7623B

CRT STORAGE OSCILLOSCOPE

- Able to Capture and Store Transients and Low
Repetition Rate Signals
- 1000 cm/ $\mu \mathrm{s}$ Stored Writing

Speed

- Multimode Storage

CSA 404
COMMUNICATION SIGNAL ANALYZER

- Optical-to-Electrical (O/E) Capability
- Direct Jitter and Noise Measurements
- Automatic Measurements on Eye-Diagrams

11403A

dIGITIZING OSCILLOSCOPE

- Color Display
- 1 GHz Bandwidth
- Built-in Pass/Fail Testing
- 10-bit Vertical Resolution, 14bits with Averaging
- Built-in FFT Display and Measurements

11A16

CURRENT AMPLIFIER

- Two Channels
- 50 MHz Bandwidth at Probe Tip
- Full Use of all 11000 Series Measurements
- Fully Compatible with all 11000 Series and DSA Mainframes

11T5H

MULTI-STANDARD VIDEO TRIGGER

- Trigger on Individual Lines-Up to 1280 Lines/Frame
- Compatible with All Major TV Standards-Including HDTV
- Fully Programmable via GPIB
- Operates with 11A34V High Bandwidth Video Amp

11A34V

HIGH BANDWIDTH VIDEO

 AMPLIFIER- Four 300 MHz Channels
- $75 \Omega / 1$ M Ω Switchable Input Impedance
- Companion Amplifier for 11T5H Multi-Standard Video Trigger

SIU 800

STATIC ISOLATION UNIT

- Use for TDR Circuit Board Test \& Cable Test
- 40 ps Reflected RiseTime/ < 80mp Reflection Coefficient
- Manual or Program Control

CSA 404 Communications Signal Analyzer-see page 44.

11T5H Video Trigger-see page 63.

11403A Digitizing Oscilloscope-see page 54.

11A16 Current Amplifiersee page 63.

SIU 800 Static Isolation Unit-see page 50.

11A34V Video Amplifier-see page 61.

2439 Digitizing Oscilloscope-see page 87.

2221A Digital Plus Analog Oscilloscope-see page 96.

[^0]

2402A TekMate Instrument Controller-see page 92.

2214 Digital Plus Analog Oscilloscope-see page 100

222PS Handheld Oscilloscope-see page 112.

2439

DIGITIZING OSCILLOSCOPE

- $500 \mathrm{MS} / \mathrm{s}$ Digitizing
- 300 MHz Bandwidth (200 MHz Single-shot)
- 8-Bit Vertical Resolution
- 0.0015\% Crystal-Controlled Time Base

2402A

TEKMATETM INSTRUMENT CONTROLLER

- Full Performance IBM ${ }^{\text {- }}$ Compatible GPIB Controller
- Environmentally Rugged, Compact in Size
- Instrument Extension for 2400 Series DSO's
- Powerful DSO Utility Software

2221A

DIGITAL PLUS ANALOG OSCILLOSCOPE

- 100 MHz Analog and Digital Storage Bandwidth
- 100 MS/s Per Channel Sampling Rate
- 10 ns Glitch Capture, Any Sweep Speed

2214

DIGITAL PLUS ANALOG

 OSCILLOSCOPE- 20 MHz Analog Bandwidth
- 16 MS/s Per Channel Concurrent Sampling
- 16K Per Channel Records
- Hardcopy Out Interface

2252

DUAL TIME BASE OSCILLOSCOPE

- 100 MHz, Four Channels
- Voltmeter with Smart Cursors
- Fully-Automated GPIB (Standard)

222PS

BATTERY OPERATED, HANDHELD OSCILLOSCOPE

- Floatable to ± 850 V/Channel
- Unique Motor Trigger
- Fully Programmable via RS-232 Optional
- 10 MHz Bandwidth
- 10 MS/s Dual Digitizers
- Auto Setup/Save Setup/Recall

ANALYTEK SERIES 2000

2004A

AMPLIFIER-ATTENUATOR MODULE

- Four Channels of Amplification or Attenuation
- Each Channel Independently Programmable between 100X Attenuation and 10X Gain

2000AZ1

INTERACTIVE MEASUREMENT SYSTEMS SOFTWARE

- Enables Analytek Series 2000 to Operate from an IBM PC/AT or Compatible
- Connecting Link is GPIB IEEE488.2
- Maximum Simultaneous Display Capacity of 48 Waveforms

92A96

100 MHZ ACQUISITION MODULE

- 96-384 Channels @ 100 MHz Sync or Async
- 24-96 Channels @ 400 MHz Async
- 16 State Triggering at All Speeds
- Time-Correlated to Other State/ Timing Modules
- Bus-Form Timing Display
- Compact, High Bandwidth Probes

2712

LOW COST SPECTRUM

 ANALYZER- 5×10^{-7} Frequency Accuracy
- Sensitivity to -139 dBm (-92 dBmV) with Built-in Preamp
- Internal Frequency Counter
- Full Programmability
- Real Time Clock
- 124K of NV RAM

2721/2722

NON-INTERFERING CATV/ BROADBAND SWEEP

- Full Alpha Keyboard
- LCD Display Visible Even in Bright Sunlight
- Lightweight, compact receiver
- Frequency-agile Telemetry
- 50-waveform NVRAM Storage
- RS-232-C Downloads Stored Waveform to PC or Serial Printer

Analytek Series 2000 Waveform Capture Systems-see page 126.

$92 A 96100 \mathrm{MHz}$ Acquisition Module-see page 144.

2712 Spectrum Analyzer-see page 178.

2721 Non-interfering Sweep Transmitter, 2722 Non-interfering Sweep Receiver-see page 182.

RF162

DOWN CONVERTER

- Extends 3052 Analysis Capabilities up to 325 GHz
- Accepts 21.4 or 321.4 MHz Wide-Band IF Signals from RF Spectrum Analyzers and Receivers
- Down Converts IF Signals for Rigorous 3D Modulation Analysis on the 3052

73 Series

VXIbus

- State of the Art Standard for Modular Instrumentation
- Flexible
- Defines Device Type Hierarchy
- Automatic Configuration Protocol

53 Series

CDSbus

- Flexible Test Environment that Reduces System Integration Complexity
- Improve Test System Reliability
- Reduce Test Equipment Cost
- Reduce Software Development Costs

PG 5110

PROGRAMMABLE PULSE GENERATOR

- Two Independent 50 MHz Output Channels
- Repetition Rates from 0.1 Hz to 50 MHz (Periods from 20 ns to 10 ns)
- Variable Transitions from 6 ns to 10 ms

SG 5030

PROGRAMMABLE LEVELED SINEWAVE GENERATOR

- 0.1 Hz to 550 MHz
- 4.5 mV to 5.5 V Amplitude Range
- Amplitude Flatness from $\pm 1.5 \%$ to $\pm 4 \%$ of 50 kHz Reference Frequency

TM 503B

POWER MODULE

- Three Compartment

Mainframe

- Interface Connections on Rear Panel Via Option 02

DM250

DIGITAL MULTIMETER

- 3 1/2 Digit LCD with Analog Bar Graph
- Auto Power Off After 30 minutes from Last Function or Mode Change
- Autoranging, Data Hold, Memory Offset

DM253

 COMPONENT CHECKER- 3 1/2 Digit LCD
- Overrange Indication
- Low Battery Indication

CMC250

MULTIFUNCTION COUNTER

- 5 Hz to 100 MHz (CH 1) 80 MHz to 1.3 GHz (CH 2)
- Multifunctions: Frequency, Period Average, Period, Totalize, Self Check
- 8 Digit LED Display
- Overrange Indication

CDC250

universal counter

- 5 Hz to 175 MHz
- 8 Digit LED Display: Autodecimal Measurement Unit
- Frequency Ratio
- Time Interval
- Totalize

370A/371A

CURVE TRACERS

- Automatic Test Sequences
- GPIB Programmable Storage
- 3 1/2" MS-DOS Compatible Disk Storage
- Non-volatile Storage via GPIB Interface
- Waveform Comparison

T\&M Software

 WAVESAVER FOR DIGITAL STORAGE OSCILLOSCOPES- Data Communications, Data Management, and Waveform Graphics in One Package
- Easy-to-Use Windows and Pop-up Menus
- Easy Creation of Reference Libraries

DM250 Digital Multimeter-see page 245.

DM253 Component Checker-see page 245.

Wavesaver Software for Digital Storage Oscilloscope-see page 270.

370A, 371A (shown) Curve Tracers-see page 249.

CMC250 Multifunction Counter-see page 248.

CDC250 Universal Counter-see page 248.

NEW PRODUCTS PHYSICAL MEASUREMENTS/SIGNAL SOURCES

2505 TestLab Multi-Channel Analyzer-see page 277.

2641 (shown), 2642 Personal Fourier Analyzers-see page 280.

HFS 9010, HFS 9020, HFS 9030 Pulse Generators-see page 282.

PG2010, PG2011, PG2012 Pulse Generatorssee page 284.

2505

TestLab ${ }^{\text {TM }}$ MULTI-CHANNEL ANALYZER

- Simultaneous Multi-Channel Acquisition: 2 to 96 Channels and Optional Signal Conditioning
- Long Record Lengths, High Resolution: Up to 256K Samples per Channel, 10 and 12 Bit Capabilities
- Portable-Under 34 pounds

2641/2642

PERSONAL FOURIER ANALYZERS

- Real Time Spectrum, Network (Frequency Response), and Waveform Analysis
- Complete Modal Systems for Structural Analysis
- Easy-to-Learn Pull-down Menus
- Up to Four Input Channels

HFS 9010/
 HFS 9020/HFS 9030

PULSE GENERATORS

- Up to 600 MHz Repetition Rate
- Fully Digital Implementation for Maximum Control and Flexibility
- Multi-channel Architecture-2 to 6 Channels per Mainframe
- Independent Edge Placement and Channel Deskew
- Precision Channel-to-Channel Time Alignment

PG2010/PG2011/ PG2012

PULSE GENERATORS

- New User Interface with Output Waveforms and Parameters on the Display
- Selectable 250 ps, 800 ps or 1.8 ns with 2.5 V Output into 50Ω
- Variable 5.5 ns to 10 ms Transition Time with 10 V Output into 50Ω

P6701A/P6703A

OPTICAL-TO-ELECTRICAL

 CONVERTERS- Improved dc Performance
- 450 to 1050 nm , dc to 700 MHz (P6701A) 1100 to 1700 nm , dc to 1 GHz (P6703A)

P6711/P6713

OPTICAL TO ELECTRICAL CONVERTERS

- High Gain/High Sensitivity
- 450 to 1050 nm, dc to 250 MHz (P6711) 1100 to 1700 nm , dc to 300 MHz (P6713)

P6721

OPTICAL TO ELECTRICAL CONVERTER

- 450 to 1050 nm , dc to 300 MHz
- Large Area Detector

OIG 501

OPTICAL IMPULSE GENERATOR

- 850 nm, 35 ps laser impulse
- Low Energy, 35 ps, 15 mW
- High Energy, 300 ps, 30 mW

C-9

LOW COST CAMERA

- Uses Polaroid 3 1/4" in. x 4 1/4 in. Pack Films
- Graticule Flash
- Autoback Available
- Auto Power-on

K220

 RACK INSTRUMENT CART- Sturdy, Mobile Instrument Platform
- 3 Rack-width Trays
- 4 Outlet Surge Protector
- Locking Wheels
- 4 Securing Straps

TVC 501

TIME INTERVAL TO VOLTAGE CONVERTER

- Real-time Scope Display of Time-interval Variations vs. Time
- > 2 Million Uninterrupted Event-by-Event Measurements/Second
- Time delay, pulse width, and period measurements
- Works with Analog or Digital Oscilloscopes

P6701A, P6703A, P6711, P6713, P6721 Optical to Electrical Converters-see page 287.

OIG 501 Optical Impulse Generator-see page 290.

C-9 Low Cost Camera-see page 302.

K220 Rack Instrument Cart-see page 307.

TVC 501 Time Interval to Voltage Convertersee page 338.

TFP2 FiberMaster OTDR-see page 345.

ASG100 Audio Signal Generator-see page 348.

1725 PAL/NTSC Vector Monitor-see page 349.

TSG 1001 Programmable TV Generator-see page 350.

SPG 1000 HDTV Sync Generator-see page 350.

TSG 130 (shown), TSG 131 Multiformat Generators-see page 350.

TFP2

FIBERMASTER ${ }^{\text {TM }}$ OTDR

- 2 Plug-in Module Capacity
- Available in Color or Monochrome Display
- Also Available: High Resolution Internal Printer, Mass Data Storage Options

ASG100

AUDIO SIGNAL GENERATOR

- Short Duration Audio Test Sequence for Rapid Automatic Checkout of Audio Lines
- Connects In-line for Easy Test Signal Insertion

1725

dUAL STANDARD

 VECTORSCOPE- Performance and Economy
- Simultaneous Channel A \& B Display
- Stereo Audio Phase Measurement
- R-Y Output for Differential Phase Measurement

TSG 1001

PROGRAMMABLE TV GENERATOR

- Programmable Test Signal Generator
- Programmable Zone Plate Generator
- SDP 1000 Signal Development Package
- Internal or External Clock Operation

SPG 1000

HDTV SYNC GENERATOR

- Master Sync Generator for High Definition
- Genlocks to HDTV, NTSC, and PAL
- Supports Proposed HDTV Production Standards
TSG 130/TSG 131
MULTIFORMAT GENERATORS
- NTSC or PAL; Y, B-Y, R-Y; Y, C and Y / C; CTDM Outputs
- Betacam or MII Levels
- Stereo Audio Outputs

TSG 120/TSG 121

SIGNAL GENERATORS

- NTSC or PAL; Y, C and Y/C Outputs
- Stereo Audio Outputs

TSG 273

PAL SIGNAL GENERATOR

- Analog and Parallel Digital Test Signal Outputs
- Serial and Parallel Digital Audio Outputs

VS211

PAL VIDEO SYNCHRONIZER

- 10 Bit Digitizing
- 8 Field Memory
- Processing Amplifier Functions

CSA 907

BIT ERROR RATE TESTER

- 1 to 700 MHz PLL Internal Clock Source
- PRBS Patterns 2^{N-1}, Where $N=7,15,17,20$, or 23
- Up to 32K Bit Programmable WORD
- SONET/FDDI/CUSTOM Pattern Generation
- Auto Search Synchronization

2467BHD

HDTV OSCILLOSCOPE

- Automatic Pushbutton Setup on Video Signals
- Standard Presets for Quick Recall
- Bi-level and Tri-level Sync Separation
- Brightly Display Single Lines and Pixel Detail on Video Signals

TSG 120 (shown), TSG 121 Signal Generators-see page 350.

TSG 273 PAL Signal Generator-see page 351.

VS211 PAL Video Synchronizer-see page 352.

CSA 907 Bit Error Rate Tester-see page 356.

2467BHD HDTV Oscilloscope-see page 358.

TekXpress Terminals (XP27 shown)-see page 362.

Phaser II PX Color Printer-see page 364.

RP88 Coprocessor Package - see page 368.

SGS 630, SGS 635 Stereoscope 3D Systems-see page 365.

608 With Color Display Monitor-see page 367.

GMA 212 (shown), GMA 213 T Ultra High Resolution Displays-see page 366.

TEKXPRESS FAMILY

X TERMINALS

- High-Performance Interactive Terminals for the X Window System ${ }^{\text {TM }}$
- Easy-to-use Interface for Quick Setup and Simple Color Matching

PHASER II

COLOR PRINTERS

- 300 dpi Thermal Wax
- PostScript-Compatible and HP-GL
- For Macintoshs, PCs and Workstations
- Network Shareable

GMA 212/GMA 213T
ULTRA HIGH RESOLUTION DISPLAYS

- 50 fL (GMA 212)
- 165 fL (GMA 213T)
- Up to 256 Gray Scale Levels

SGS 425

MULTIMODE MONITOR

- Easy Adaptability to Many Workstations and Imaging Card Sets Supporting $1280 \times$ 1024 Resolution

SGS 630/635

STEREOSCOPE 3D SYSTEMS

- SGA Card
- Supports All Common $2 D$ Primitives, Such As Move, Line, Circle, etc.

608

WITH COLOR DISPLAY MONITOR

- High Brightness
- High Resolution
- Excellent Gray Scale
- High Ambient Viewing
- Photographic Quality Images
- Bi-Primary Color-Enhanced Images (608 w/ Color Option)

RP88B16/RP88B33

COPROCESSORS PACKAGE

- Increased Processing Power for Mac II (up to 50 times)
- Up to 28 MIPS and 9 MFLOPS (with RP88B33)

OSCILLOSCOPE REFERENCE

Contents

Introduction28

11000 Series
.37
7000 Series65
5000 Series 71
2400 Series 79
2200 Series 95
Handhelds 110
DCS 130
Modular Instruments 197
Accessories 294
Probes 310

INTRODUCTION

From the highest performance to the most cost-effective solution, Tektronix offers a broad range of test and measurement instrumentation. Tektronix instruments provide the best connection to your device-under-test, the most accurate signal acquisitions, the sharpest waveform displays, and the most comprehensive on-board waveform measurements available.
Tektronix has pioneered and patented several industry firsts that separate our instruments from the competition:

Industry Firsts	Benefit			
- Glitch Capture Mode	Ensures that instabilities and transients don't escape your notice with the 2200, 2400, and DSA 600A Series. - Microchannel Plate			
Lets you see transients that are impossible to detect with conventional CRTs using (MCP) CRT	high performance analog scopes, like the 7104 and the 2467B.			
- High-Performance	Guarantees the most accurate capture of your signal in all our scopes.			
Analog Front-End		\quad	- Variable-Persistence \&	Displays low repetition rate or slowly varying signals in our 11000, 7000, and 5000
:---	:---			
Bistable CRT Storage	Series.			
- Scan Conversion	Transforms analog acquisitions into digital data for waveform processing, storage,			
Instruments	and analysis in the DCSO1, SCD1000, SCD3000 and SCD5000 with single-shot			
bandwidths up to 4.5 GHz.				

And with Tektronix you know that you're backed by the most respected service and support organization in the industry.

Product	Technology *1	Configuration	$\begin{gathered} \text { BW } \\ \text { (Max.) } \end{gathered}$	Sample Rate	Sweep (Max.)	Weight ($\mathrm{lb} / \mathrm{kg}$)	Page	Prices* ${ }^{* 4}$ Begin at
DSA 601A	Real-Time DSO	Modular	1 GHz	$1 \mathrm{GS} / \mathrm{s}$	$50 \mathrm{ps} / \mathrm{div}$	67/30.4	40	\$24,745
DSA 602A	Real-Time DSO	Modular	1 GHz	$2 \mathrm{GS} / \mathrm{s}$	$50 \mathrm{ps} / \mathrm{div}$	71/32.2	40	\$32,635
11801A	Digital Sampling	Modular	50 GHz	$200 \mathrm{kS} / \mathrm{s}$	$1 \mathrm{ps} / \mathrm{div}$	49/22.3	45	\$27,500
CSA 803	Digital Sampling	Modular	50 GHz	$200 \mathrm{kS} / \mathrm{s}$	$1 \mathrm{ps} / \mathrm{div}$	49/22.3	44	\$25,150
CSA 404	Random ET DSO	Modular	1 GHz	$20 \mathrm{MS} / \mathrm{s}$	$500 \mathrm{ps} / \mathrm{div}$	41.6/19	44	\$22,000
11403A	Random ET DSO	Modular	1 GHz	$20 \mathrm{MS} / \mathrm{s}$	$500 \mathrm{ps} / \mathrm{div}$	41.6/19	54	\$18,950
11402A	Random ET DSO	Modular	1 GHz	$20 \mathrm{MS} / \mathrm{s}$	$500 \mathrm{ps} / \mathrm{div}$	41.6/19	54	\$15,700
7934	CRT Storage	Modular	500 MHz	N/A	$500 \mathrm{ps} / \mathrm{div}$	37.8/17.2	67	\$16,100
7904A	Analog	Modular	500 MHz	N/A	$500 \mathrm{ps} / \mathrm{div}$	37.8/17.2	${ }^{3}$	\$15,100
7623B	CRT Storage	Modular	100 MHz	N/A	$5 \mathrm{~ns} / \mathrm{div}$	30/13.6	68	\$12,350
7603	Analog Sampling	Modular	100 MHz	N/A	$5 \mathrm{~ns} / \mathrm{div}$	30/13.6	68	\$5,625
7104	BrightEye ${ }^{\text {TM }}$	Modular	1 GHz	$\begin{aligned} & 250 \mathrm{GS} / \mathrm{s} \\ & \mathrm{w} / \mathrm{DC} 501 \end{aligned}$	200 ps/div	45/20.4	66	\$31,550
5441	CRT Storage	Modular	50 MHz	N/A	$10 \mathrm{~ns} / \mathrm{div}$	23/10.4	72	\$7,995
5440	Analog	Modular	50 MHz	N/A	$10 \mathrm{~ns} /$ div	23/10.4	72	\$5,275
5113	CRT Storage	Modular	2MHz	N/A	$100 \mathrm{~ns} /$ div	23/10.4	74	\$5,995
5111A	CRT Storage	Modular	2 MHz	N/A	$100 \mathrm{~ns} / \mathrm{div}$	23/10.4	74	\$4,195
5110	Analog	Modular	2 MHz	N/A	$100 \mathrm{~ns} / \mathrm{div}$	23/10.4	74	\$2,895
2467B	BrightEye ${ }^{\text {TM }}$	Portable	400 MHz	$\begin{aligned} & 100 \mathrm{GS} / \mathrm{s} \\ & \mathrm{w} / \mathrm{DC} 501 \end{aligned}$	$500 \mathrm{ps} / \mathrm{div}$	20.5/9.3	82	\$12,950
2465B ${ }^{\text {2 }}$	Analog	Portable	400 MHz	N/A	$500 \mathrm{ps} / \mathrm{div}$	20.5/9.3	84	\$6,460
2445B	Analog	Portable	150 MHz	N/A	1 ns/div	20.5/9.3	84	\$4,395
2440	Real-Time DS0	Portable	300 MHz	$500 \mathrm{MS} / \mathrm{s}$	$2 \mathrm{~ns} /$ div	23.9/10.9	87	\$12,390
2439	Real-Time DSO	Portable	300 MHz	$500 \mathrm{MS} / \mathrm{s}$	$2 \mathrm{~ns} / \mathrm{div}$	23.9/10.9	87	\$9,995
2432A	Real-Time DSO	Portable	300 MHz	$250 \mathrm{MS} / \mathrm{s}$	$2 \mathrm{~ns} /$ div	23.9/10.9	87	\$10,900
2431L	Real-Time DSO	Portable	300 MHz	$250 \mathrm{MS} / \mathrm{s}$	$2 \mathrm{~ns} /$ div	23.9/10.9	87	\$7,990
$2430 \mathrm{~A}^{\text {² }}$	Real-Time DS0	Portable	150 MHz	$100 \mathrm{MS} / \mathrm{s}$	$5 \mathrm{~ns} / \mathrm{div}$	23.9/10.9	87	\$6,950
2252	Analog	Portable	100 MHz	N/A	$2 \mathrm{~ns} /$ div	17.3/7.9	102	\$3,495
2247A	Analog	Portable	100 MHz	N/A	$2 \mathrm{~ns} /$ div	17.3/7.9	102	\$2,995
2245A	Analog	Portable	100 MHz	N/A	$2 \mathrm{~ns} /$ div	17.3/7.9	102	\$2,295
2236A	Analog	Portable	100 MHz	N/A	$5 \mathrm{~ns} /$ div	16.2/7.3	105	\$3,595
2235 A	Analog	Portable	100 MHz	N/A	$5 \mathrm{~ns} / \mathrm{div}$	13.5/6.1	105	\$1,995
2232	Analog/ET DSO	Portable	100 MHz	$100 \mathrm{MS} / \mathrm{s}$	$5 \mathrm{~ns} / \mathrm{div}$	18/8.2	96	\$4,995
2225	Analog	Portable	50 MHz	N/A	$5 \mathrm{~ns} / \mathrm{div}$	15.2/6.9	106	\$1,195
2221 A	Analog/ET DSO	Portable	100 MHz	$100 \mathrm{MS} / \mathrm{s}$	$5 \mathrm{~ns} / \mathrm{div}$	18/8.2	96	\$3,995
2214	Analog/RT DS0	Portable	20 MHz	$16 \mathrm{MS} / \mathrm{s}$	$10 \mathrm{~ns} / \mathrm{div}$	17.4/7.9	100	\$3,995
2211	Analog/RT DS0	Portable	50 MHz	$20 \mathrm{MS} / \mathrm{s}$	$5 \mathrm{~ns} / \mathrm{div}$	16.8/7.6	98	\$2,795
2205	Analog	Portable	20 MHz	N/A	$10 \mathrm{~ns} / \mathrm{div}$	14.8/6.7	107	\$695
2201	Analog/RT DS0	Portable	20 MHz	$10 \mathrm{MS} / \mathrm{s}$	$10 \mathrm{~ns} / \mathrm{div}$	16.8/7.6	98	\$1,695
336A	Analog/ET DSO	Handheld	50 MHz	$20 \mathrm{MS} / \mathrm{s}$	$10 \mathrm{~ns} / \mathrm{div}$	11.1/5	110	\$6,000
314	CRT Storage	Handheld	10 MHz	N/A	$100 \mathrm{~ns} / \mathrm{div}$	10.5/4.7	111	\$5,700
305	Analog (w/DMM)	Handheld	5 MHz	N/A	$500 \mathrm{~ms} / \mathrm{div}$	13.1/6	111	\$3,610
222/222PS	ET DSO	Handheld	10 MHz	$10 \mathrm{MS} / \mathrm{s}$	$5 \mathrm{~ns} / \mathrm{div}$	4.4/2	112	\$2,595
221	Analog	Handheld	5 MHz	N/A	$500 \mathrm{~ms} /$ div	3.8/1.9	114	\$2,950
214	CRT Storage	Handheld	500 kHz	N/A	$500 \mathrm{~ms} /$ div	3.8/1.9	114	\$3,225
212	Analog	Handheld	500 kHz	N/A	$200 \mathrm{~ms} / \mathrm{div}$	3.8/1.9	114	\$2,450

MAKING AN
 EDUCATED CHOICEA GUIDE TO OSCILLOSCOPE SELECTION

Here you will find a complete listing, in decreasing numerical order, of all Tektronix oscilloscopes - from the DSA 600A and CSA 803 benchtops to the 200 Series handhelds. Instruments numbered 5000 and above are designated as benchtop scopes. Portable scopes are numbered 2400 and below.

Selection Checklist

- Step 1:

Characterize Your
Signal

- Step 2:

Identify Basic
Requirements

- Step 3:

Determine the
Appropriate Scope
Technology

- Step 4:

Select a Scope
Based On
Appropriate Specs and
Features

- Step 5:

Select A Probe
${ }^{* 1}$ Refer to pages 32 and 33 for a more detailed look at these
technologies.
*2 Military and Special Service Versions of these Scopes are on page 109 .
*3 Contact your local sales representative.
*4 The prices listed for modular instruments do not include the cost of plug-ins or sampling heads.

STEP 1:

SIGNAL CHARACTERISTICS

Each type of signal imposes a different set of requirements for optimal signal capture. Therefore, the most critical step of the selection process is to describe and understand certain basic characteristics of the signal you expect to see.

Signal Characteristics Checklist

- Repetition Rate
- Single Shot
- Repetitive
- Frequency
\square
Rise Time
- \qquad
Vertical Requirements
Min. Voltage Resolution:
\qquad
Max. Voltage Signal:
\square
Dynamic Range
-
- DC Offset
- \qquad
- Horizontal Requirements

Max. Time Window:

- \qquad
Min. Time Resolution:
\qquad

Signal Characteristics

Selection Considerations

What is your signal's
repetition rate?

What are your signal's frequency and rise time characteristics?

What is the smallest increment of voltage you need to discern from your signal?

What is the largest voltage swing of your signal?

How far is your signal from ground?

What are your signal's timing requirements?

Repetition Rate - Is your signal a one-time, single-shot event, like lightning, or ESD? Or, does your signal have a low rep rate, like laser pulses?
A fast waveform update rate and high visual writing rate are required to capture single-shot and low repetition rate events. Tektronix instruments offer the fastest update and visual writing rates available.
Or, is your signal a highly repetitive signal, such as a carrier signal, a digital clock signal, or a repeating sequence of events?
When dealing with repetitive signals, be careful not to assume that there is no other information present. Repetitive signals can be a mixture of a periodic component and low-repetition rate aberrations such as glitches, metastability, power supply coupling, or cross talk. Tektronix instruments provide a number of methods of glitch capture peak detection in the 2200 Series, peak detection and envelope mode in the 2400 Series, and time-qualified triggering in the DSA 600A Series.

Frequency and Rise Time - What is the highest frequency component of interest to you? Or, what is the fastest rise time you want to capture? Characterize your signal in either of these terms using the following approximation:

$$
\text { Bandwidth } \approx 0.35 / \text { Rise Time }
$$

Vertical Requirements - What is the smallest change in voltage that you will need to see? You may be interested in signal noise as low as 1 mV , or possibly signal ripple as low as 50 mV - By defining the smallest voltage you need to discern, you will be able to determine the vertical sensitivity and resolution you'll need from your scope.

Dynamic Range - Is your signal zero to 50 volts? Or just zero to five volts? This will determine the dynamic range that your scope will need.

DC Offset - Be sure that the scope you select can handle the offset you expect to see.
Dynamic range and offset capabilities are critical to making accurate measurements. Tektronix scopes offer several times the dynamic and offset range of competitive scopes.

Horizontal Requirements - When considering your horizontal requirements you'll want to know the largest time window you need to view, and the smallest increment of time you need to view it in. This is the timing resolution you'll need. If you want to use a digital scope, the timing resolution divided by the time window will determine the record length of your scope.

Basic Requirements

Selection Considerations

How accurate do your measurements need to be?

How many signals do you need to acquire simultaneously?

What are your storage requirements?

What are your transportability requirements?

What are your packaging and environmental constraints? 1946. option with 256 channels. processing, or hard copy output? pass/fail testing also calls for digital storage. cart, Tektronix fits your transportability needs.

Overall Accuracy - In the most general terms, how accurate do your measurements need to be? Do you just need to see that the signal is there? Or, do you need to make very precise waveform measurements? Tektronix has consistently developed the most accurate instruments since

Number of Signals - Do you need to examine more than one signal on-screen at once? Multiple inputs provide a convenient method of comparing events, whether on our handheld, dual channel 222; portable, four channels 2247A, 2465B; benchtop, twelve channel, the 11801A with expansion option to 136 channels; or the Digitizing Camera MUX16

Signal Storage Requirements - Do you just need to view the data, as is often the case with repetitive signals? Do you need to hold the trace onscreen - often true of single shot and low repetition-rate events? Or do you need to capture the data in digital form for measurement, waveform

Traditional non-storage analog scope capabilities may meet your requirements quite effectively and economically. However, many measurements require, or can benefit from, the unique advantages of digital storage. When signals are especially slow, for example, or when you need to see pretrigger data, a digital storage scope may be the answer. Documenting a waveform, or comparing it to a stored version for

Transportability - Tektronix portable instruments fit into almost any test and measurement environment - large and small businesses; educational and research facilities; design departments; manufacturing assembly lines; field service operations; and, repair depots.
From handheld to rackmount, or mobile cart stations, such as the K212

Packaging and Environmental - In some applications, a scope's packaging can be as important as its performance. Field applications require that an instrument be lightweight, rugged and able to withstand environmental extremes. Some laboratory environments, such as laser labs, require EMI shielding of both portable and benchtop scopes in order to meet electromagnetic compatibility (EMC) standards.

STEP 2:

BASIC REQUIREMENTS
After determining your signal characteristics and basic requirements, you can begin to qualify which instrument best fits your particular application. From overall accuracy to environmental requirements, Tek has an instrument to meet your needs.

Basic Requirements Checklist

- Accuracy
- Basic
- Precise
- Number of signals
$\stackrel{\square}{\mathrm{S}}$
Signal Storage
Requirements
- Basic
- Hold Trace On-Screen
- Digitally Capture
- Transportability
- Handheld
- Benchtop
- Cart
- Racks/Rackmounts
- Packaging and

Environmental

- Lightweight
- Rugged
- Withstand Environmental Extremes
- EMI Shielding

STEP 3:

CHOOSING THE APPROPRIATE SCOPE technology

Many of today's modern scopes are not simply analog or digital, but offer the benefits of both technologies. Because each application imposes a different set of requirements, Tektronix has developed more techniques than any other vendor for solving your measurement needs.

Once you have identified the fundamental characteristics of your signal and know your basic performance requirements, you can use the chart on page 33 as a guide to selecting the scope technology, or combination of technologies, that best fits your application.

Figure 1. Real-time sampling captures a complete waveform with a single trigger event.

Figure 2. Random-equivalent time sampling digitally reconstructs a waveform using several trigger events.

Figure 3. Sequential sampling digitally reconstructs a waveform at a rate of one point per trigger event.

Technology	Description
Real-Time	In real-time digital scopes the digitizer samples the entire
DSO	input waveform in one pass - with a single trigger. It's called
"real time" because acquisition and display always occurs in	
the same time frame (Figure 1). This makes real time digital	
	Scopes - such as the 1 GHz, 2 GS/s DSA 602A Digitizing
Signal Analyzer - ideal for single-shot applications. Some	
	real-time instruments, like the DSA 600A Series, also include
random equivalent time sampling capabilities, at faster sweep	
speeds, for capturing repetitive signals.	

OSCILLOSCOPE REFERENCE

Whether you choose analog or digital technologies, each have benefits and tradeoffs. Analog scopes display the actual signal, letting you see the waveform's shape directly - as it occurs.

Digital scopes offer a digitally-derived representation of the signal, allowing flexible pretrigger and long record lengths; along with all the waveform processing, automeasure, and hard copy capabilities of digital storage.

Technology	Description
Analog	One of the major advantages of all analog scopes is that they provide a direct representation of your signal, and the fastest update rate possible. Even the most basic analog scopes provide extremely fast update rates, because only a beam retrace and trigger rearm are required between sweeps. This happens thousands of times faster than transferring data in and out of memory, as required by digital technology. Consequently, analog scopes provide a much higher probability of capturing the events you want to see than any other technology.
CRT Storage	Crt storage oscilloscopes have the ability to store events on the face of the screen itself. And, because the writing rate is faster than with basic analog, crt storage is ideal for capturing fast transient events. It's an excellent choice for viewing slowly changing signals, too. Tektronix offers both variable persistence and bistable crt storage scopes in the 7000 and 5000 Series.
BrightEye ${ }^{\text {TM }}$	Tektronix's proprietary microchannel plate (MCP), transient-intensitying analog scopes - such as the portable 2467B or the 1 GHz 7104 - are superb for viewing all signal types at all sweep speeds and at all repetition rates. You get the fast update rate of basic analog and the highest writing rate available ($4 \mathrm{~cm} / \mathrm{ns}$ with the 2467 B and the 7104). With such fast writing rates, single-shot events can be captured up to each scope's full bandwidth on an extremely sharp display.
BrightEye ${ }^{\text {TM/DCS }}$	The CCD-based DCSO1 digitizing camera system, mounted on the front of a BrightEye T a analog scope, utilizes scan conversion technology to provide both analog and digital technologies. A signal can be written very fast on an microchannel plate (MCP) crt, and then scanned and digitized by the CCD camera at a much slower rate. The result is very high vertical resolution, high oversampling, plus the automatic measurements, waveform processing, and hard copy features made possible with digital storage.

Combining Technologies

Many Tektronix oscilloscopes use a combination of the technologies described above. One example is Tek's low-cost 2200 Series which combines Analog PLUS Digital technologies. You benefit from simplified setup in analog mode PLUS Tek's powerful digital mode gives you a visible edge in measurement confidence.

[^1]
STEP 4:

SELECT A SCOPE BASED ON SPECS AND FEATURES

Now you're ready to evaluate individual scopes based on how well their specifications and features fit your application. This section will help you relate your signal characteristics from Step 1 to specifications and features used to describe oscilloscopes.

Specs and Features Checklist
 - Bandwidth \& Rise Time
 - Sampling Rate
 - Horizontal Resolution
 \& Record Length
 - Horizontal Magnification
 - Update Rate
 Visual Writing Rate
 - Dual Time Base
 - Vertical Sensitivity
 - Vertical Accuracy and Resolution - Triggering Capabilities - Pretrigger Viewing

Figure 4. Relates the \% Error incurred given the ratio of the signal's rise time to the instrument's rise time.

Key Specifications \& Features	Selection Considerations
Bandwidth \& Rise Time	These are the key characteristics to consider when choosing any oscilloscope, or probe. Appropriate ratings ensure that your scope will accurately reproduce the range and type of signals you measure with the accuracy you need. The chart below describes the relationship between your signal bandwidth and the desired bandwidth of your oscilloscope. For example, if you have a 100 MHz signal and are using a 100 MHz oscilloscope (or any such combination producing a $1: 1$ ratio) the resultant displayed waveform will have 40\% error (see Figure 4). As a rule, select a scope with a bandwidth three to five times greater than the highest frequency you expect to measure. A $5: 1$ ratio gives you a rise time measurement with less than 2\% error.
Sampling Rate	When choosing a digital scope you must consider both the necessary bandwidth, as described above, and the appropriate sample rate. For single-shot acquisition, your signal must be sampled at greater than twice the frequency of its highest frequency component, while for repetitive signals a much lower sample rate can be used. So , for digital scopes there are two critical specifications. Bandwidth is related to the scopes analog front end and is specified in Hertz. And, sample rate, which is related to the digitizing process and is specified in samples per second.
Horizontal Resolution \& Record Length	These two specifications are important when choosing digital instruments. A contribution to horizontal resolution is the number of points that can be displayed on screen - the more points, the better the resolution. Record length can be expressed as time window divided by time resolution. Many Tektronix digital instruments offer selectable record lengths. The DSA 600A Series Digitizing Signal Analyzers, for example, provides user-selectable record lengths from 512 to 32,000 points.
Horizontal Magnification	Many instruments offer some means of horizontally magnifying waveforms on the screen, a useful feature when you want to see details that occur very close together. For example, the 11000 Series digital instruments include pan and zoom features that let you see the details of your signal.
Update Rate	The rate at which a scope will get ready for a triggered event after an acquisition is complete. Analog scopes provide extremely fast update rates, because only a beam retrace and trigger rearm are required. This happens thousands of times faster than transferring data in to and out of memory, as required in digitizing instruments. Advanced Tek digital instruments such as the DSA 600A Series, however, update the display so fast that they have the look and feel of real-time analog systems.
Visual Writing Rate	The amount of time required to sweep a beam across the screen - the visual writing rate - varies widely among manufacturers. Be sure that the analog scope you select has the writing rate necessary to capture the signal you want to see.
Dual Time Base	When a scope is equipped with delayed sweep, you can make more accurate timing measurements. Tektronix offers delayed sweep in dual time base instruments like the 11000,2400 and 2200 Series. These instruments provide all of the measurement capabilities of single time base instruments plus convenient comparisons of a portion of a signal at two different sweep speeds, jitter-free triggering of delayed sweeps, and timing measurement accuracy of 1.0% or better.

Auto level triggering for virtually "hands-off" triggering.
Peak-to-peak auto triggering for quick, convenient triggering with automatic level limits.
Vertical mode triggering for simultaneous, stable

Single-sweep operation for applications such as baby-sitting a transient pulse and for crt photography.
Television (video) triggering for triggering on either TV lines or fields at any sweep speed.
High and low frequency reject coupling for stable triggering on noisy signals.
Boolean triggering, offered on the most advanced instruments, for qualifying a trigger based on user selected levels of two independent trigger circuits.
Time, level, and event qualified triggering for capturing any signal that is too high, too low, too wide, too narrow, too soon, too late, missing, or extra.
Pretrigger Viewing \quad Pretrigger viewing is standard to most Tektronix digital scopes; however the amount of time viewed before the trigger may vary and could be important in your application. In most cases, at least $1 / 8,1 / 2$, or $7 / 8$ of a record can be displayed prior to the trigger point. Tektronix offers instruments that can vary the trigger point throughout the entire record.

STEP 4 CONTINUED:
 SELECT A SCOPE BASED ON SPECS AND FEATURES

Specs and Features
Checklist Continued
Glitch Capture
Automatic Setup
Store/Recall
On-Board Counter-Timer/ DMM
- On-Board Waveform Processing

Key Specifications \& Features	Selection Considerations
Glitch Capture	Glitches by nature are random events which are short and fast relative to the signal you need to see. The sampling nature of digital scopes makes it possible to miss glitches between samples. Glitch capture functions in Tektronix portable and benchtop instruments ensure that instabilities and transients don't escape your notice.
Automatic Setup	With an automatic setup feature, a single button can control the entire front panel and optimize settings to acquire and display a signal. Tektronix instruments with this feature automatically calculate and set the proper sweep speed, vertical deflection, trigger level, position, and intensity required to produce a useable on-screen display.
	Automatic setup is especially useful for troubleshooting - you don't need to readjust front-panel controls for every acquisition.
Store/Recall	For applications requiring repetitive or pre-established measurements, some Tektronix scopes provide a Store/Recall feature that lets you save front-panel setups for later recall. For example, you can avoid resetting front-panel controls every time you measure a test routine that is performed repeatedly throughout the day.
On-Board Counter-Timer/DMM	Some scopes feature a counter-timer integrated into their vertical, horizontal, and triggering systems. A digital voltmeter or multimeter (DVM or DMM) may also be built-in.
	Integrated counter-timers, as in the 2400 Series, and 2247 A let you make measurements such as frequency, period, width, rise/fall time and propagation delay at the touch of a button, while viewing the signal you are measuring.

On-Board Waveform Calculations

Some scopes provide on-board waveform processing capabilities that allow sophisticated waveform calculations. The waveform calculations included with the 11000 Series digital instruments, for example, include differentiation, integration, interpolation, smoothing, averaging, envelope, square root, and logarithm. The 2400 Series Digitizing Oscilloscopes provide envelope mode, signal averaging, wavetorm pass/aiil and standard waveform math. The DSA 600A Series Digitizing Signal Analyzers also includes dejitter, fast Fourier transtorm, and Act on Delta functions.
On-board processing capability reduces the need for external processing, and allows you to see waveform manipulations in real time.

STEP 5:

SELECTING A PROBE

Probe Requirements
 Checklist

- Probe Type
- High Impedance
- Low-Loading FET
- High Voltage
- Current
- Differential
- Others Available

Your probe is the critical path to your scope. It's not just a wire - it's a transmission line. Its purpose is to pass all the frequency components of the signal to the scope.
When a probe touches a circuit it becomes a part of that circuit, and the effects of its loading capacitance and resistance must be taken into account. Using the right probe is just as important as using the right scope for the job. A probe that is not designed to meet the requirements of your application can erode signal fidelity at the probe tip and negate your investment in high-performance signal acquisition instrumentation.

Furthermore, improperly compensated probes can distort the waveforms you see on the screen of your scope. Failing to compensate your probe to its input channel can cause up to 85 percent error in measurements.

Tektronix offers the most complete line of high-performance probes available, including: high-impedance, low-loading FET probes, high-voltage probes, current probes, and differential probes. Optional probe cable lengths allow you to easily reach the DUT from your measurement instrument.

11000 SERIES

The Tektronix 11000 Series is a powerful set of analysis tools that alters your fundamental expectations of an oscilloscope. Most revolutionary is the simplification and automation of the entire measurement and analysis process. Accuracy, sensitivity, bandwidth, offset, and overdrive recovery are provided by a well-planned instrument family having plug-in versatility and performance. Multi-processor architecture allows for simultaneous display of up to eight waveforms and up to six dynamic, "live" measurement readouts. The automation needs of scientific and production environments are easily met by integrating these instruments into a measurement system through RS-232-C or GPIB interfaces.

The Digitizing Signal Analyzer (DSA) Series incorporates a dedicated digital signal processor (DSP) making it the most powerful instrument in the 11000 Series. The power of this new class of instrument is twofold: it provides the fastest and most accurate real-time digitizer and it provides signal processing capability previously found only in large computer systems. The dedicated DSP allows simultaneous real-time FFT and time domain display, fast averaging at 180 waveforms/ second, signal dejitter, and much more.
The Communications Signal Analyzer (CSA) Series offers signal analysis and the powerfil measurement capabilities required to analyze high-speed digital, communication signals. Features of the CSA 803 and CSA 404 include histograms, mask testing, and a colorgraded display: allowing you to perform accurate measurements such as jitter, noise, and phase.

Contents
NEW DSA 601A Digitizing
Signal Analyzer 40
NEW DSA 602A Digitizing Signal Analyzer 40
NEW CSA 404 CommunicationsSignal Analyzers44
CSA 803 Communications Signal Analyzer 44
NEW 11801A Digital Sampling
Oscilloscope 45
NEW SD-14 High Impedance
Probe Sampler 48
SD-20 Loopthrough
Sampling Head 48
SD-22 Low-Noise
Sampling Head. 48
SD-24 TDR/Sampling 48
SD-26 Sampling Head 48
NEW SD-30 Sampling Head 48
NEW SD-32 Sampling Head 48
SD-42 Optical-to-Electrical Converter Head 48
SD-46 Optical-to-Electrical 48
SD-51 Trigger Head 49
SIU800 Static Isolation Unit 49
SM-11 Multi-Channel Unit 51
DL-11 Delay Line 51
Calibration Step Generator 51
CSA 803/11800 Series
Characteristics and
Accessories47, 52
TMP 9000 MicrowaveProbes.53
NEW 11403A 1-GHz ColorDigitizing Oscilloscope54
11402A 1-GHz Digitizing Oscilloscope 54
11000 Series Plug-ins 59
11000 Series Recommended
Accessories 64
Accessories 294
Customer Information 372
Service Support 378
Training. 383

	Signal Characteristics vs Oscilloscope/ CSA/DSA Technology			
Signal Type to Measure	Bandwidth	Storage Capability	Instrument Technology	Instrument(s)
Repetitive	>1GHz	\checkmark	Sequential Sampling	$\begin{aligned} & \text { CSA } 803, \\ & 11800 \end{aligned}$
	$\leq 1 \mathrm{GHz}$	\checkmark	Real Time	DSA 600A
		\checkmark	Random Equivalent Time	$\begin{aligned} & 11400, \\ & \text { CSA } 404 \end{aligned}$
Single-Shot	$\leq 1 \mathrm{GHz}$	\checkmark	Real Time	DSA 600A

ACCURACY

Measurement accuracy sets the 11000 Series apart from all other oscilloscopes. The analog front end is the most advanced in any oscilloscope - digital or analog. The plug-in amplifiers are built to maintain signal integrity over a wide dynamic range. The 11000 Series delivers accuracy across widely varying conditions of signals and settings: you don't have to worry about whether you're viewing your signal or seeing the oscilloscope's amplifier anomalies.

The Enhanced Accuracy feature of the 11000 Series provides worry-free and effortless automatic internal calibration of the instrument. The instruments continually monitor themselves for accuracy.

FLEXIBILITY AND POWER

The 11000 Series continues the plug-in versatility of

Automatic Measurements using the 11403A Digitizing Oscilloscope. the Tektronix 7000 Series. Seven plug-in amplifiers, ten sampling heads, and a variety of probes are currently available to tailor a signal conditioning solution to your measurement needs.

Whether it is multi-channel (up to 136), 50Ω / $1 \mathrm{M} \Omega$ inputs, differential, high bandwidth or optical, the 11000 Series of oscilloscopes offer more versatility than any other oscilloscope. No other oscilloscope can provide the performance, accuracy, sensitivity, bandwidth, filtering, offset, or overdrive recovery of the 11000 Series amplifiers and probes. True dual time bases let you view portions of a waveform at much higher resolution than the main trace. This provides measurement flexibility and improved accuracy. Record lengths (up to 32 K points in the DSA 600A) can be specified separately for main waveforms and window waveforms, as the application dictates. Two windows allow you to view and measure two separate events at fast sweep speed, improving the accuracy of measurements of those events.

The 11000 Series architecture uses three 16 -bit microprocessors and additional processors as needed.

The DSA 600A Series uses the Tektronix TriStar Digital Signal Processor (DSP). These processors provide unsurpassed signal acquisition and analysis. This not only yields very fast waveform update rates, but also provides the power to define and display, at "live" speeds new waveforms based on complex mathematical relationships to other waveforms. Nowhere else will you find this power and flexibility.
The CSA 803 and CSA 404 offer histograms and mask testing to specifically perform the measurements on signals that are typical in communication applications. Histograms are powerful measurement tools for measuring jitter and noise. Mask testing is a very beneficial tool in ATE applications for measuring noise margin and jitter tolerance.

DIGITAL SIGNAL PROCESSING

The 11000 Series provides capability far beyond the basic four math functions of,,$+- x$, and \div. It also provides more complex waveform processing such as differentiation, integration, square root, logarithms, and more. In all, more than 10 different signal processing options are available. The DSA 600A Series with its TriStar Digital Signal Processor provides 14 different options; including averaging at 180 waveforms per second, signal dejitter, "live" FFT, and single-shot smoothing.

The architecture has the power to display these defined waveforms in real time and make measurements directly on the complex waveforms.

AUTOMATION

Each 11000 Series Oscilloscope provides both RS-232-C and IEEE Standard 488 interfaces. The 11000 Series provides ideal solutions both for low-cost benchtop automation and for rackmount production applications.

Tektronix offers several compatible software packages to support the 11000 Series in scientific and production applications. Scientists will find that the series is supported by many of the most popular controllers and software packages. Template software from Tektronix supports both process and production environments.

HARD COPY SUPPORT

You can also print date and time stamped copies of the screen at the push of a button or a bus command, using Tektronix color printers, Tektronix HC100 plotter, Tek HC200 printer, Epson printer, Centronics printer, HP Inkjet/Laserjet printers or HPGL plotters.

11000 SERIES SELECTION GUIDE								
Instrument	Bandwidth	Maximum \# of Channels	Sample Rate	Maximum Record Length	Vertical Resolution	Technology		
DSA 601A	1 GHz	12	$1 \mathrm{GS} / \mathrm{s}$	20 K	8 bits	Real Time Real Time		
DSA 602A	1 GHz	12	$2 \mathrm{GS} / \mathrm{s}$	32 K	8 Bits	8 bits		Sequential Equivalent Time
:---								
CSA 803								
50 GHz								
11801 A								

MEASUREMENT SYSTEM

No measurement system on any other oscilloscope compares with the power and flexibility of the 11000 Series. Key capabilities offered by these oscilloscopes are:

- Up to 31 predefined measurements are available
- Up to six measurements can be displayed simultaneously and updated continuously
- Six different measurements can be defined for each waveform
- The measurement region can be specified
- Measurement annotation shows where the measurement is being made
- Measurement tracking follows topline and baseline as the signal changes
- Measurement statistics provide a powerful analysis tool
Four cursor modes provide the most flexible method of measuring ΔV and Δt. In addition to horizontal and vertical bar cursors, the 11000 Series offers dot and split dot cursors which track one or two waveforms.

Powerful measurement functions of the 11000 Series.

A TOUCH OF POWER

Large displays, touch screen control, pop-up menus, and built-in intelligence combine to make operating the 11000 Series simple. Menu options are limited to three levels, so that you can perform any operation with a minimum of touches. And, similar operations are grouped together.

Operators of the 11000 Series need not be conversant with traditional oscilloscopes, and their myriad of knobs and buttons, to quickly learn and become productive with the 11000 Series instruments. Often, achieving a stable display of a signal simply means connecting the probe and touching the Autoset button.

Basic oscilloscope operations which are often used (vertical size and position, horizontal size and position, trigger level and holdoff, and dual time base control) are available as icons on the screen. Touching one of these icons assigns the knobs to those functions. Since vertical size and position controls are normally used together, they are both available at the same time using the two front-panel knobs. So, there is no need to continually select a button to redefine a knob between vertical size and position, as is the case with a single-knob instrument.

LEADING EDGE PERFORMANCE

When your application demands state-of-the-art performance, the 11000 Series gives you the answers you need.

A Technology for Every Application

DSA 600A Series

- Providing real-time digitizing at 2 GS/s, the Digitizing Signal Analyzers are the most powerful members of the 11000 Series. These instruments contain a dedicated digital signal processor that processes waveforms at unprecedented speeds.
- The DSA offers live FFT, signal dejitter, fast averaging at more than 180 waveforms per second, and more. For the highest level of performance in single-shot acquisition and signal processing, the DSA Series provides the measurement solution.

CSA 404 and CSA 803

- The CSA 404 and CSA 803 Communications Signal Analyzers are designed for viewing communication signals up to 50 GHz .
- Histogram, mask testing, and a color graded display are included to form an ideal tool for analyzing eye diagrams.

11800 Series

- The 11800 Series uses sequential equivalent-time sampling technology to achieve bandwidths of up to 50 GHz . Sampling head modularity provides a variety of acquisition methods including TDR, optical coupling, loopthrough sampling, low-noise sampling, and triggering.
- Up to 136 channels of acquisition and TDR measurements can be achieved with an 11801A. The 11800 Series provides the highest timing resolution and measurement repeatability of any of the 11000 Series.

11400 Series

- The 11400 Series Digitizing Oscilloscopes use Random equivalent-time sampling technology to digitize and display repetitive signals with up to 14bit resolution and 1% vertical accuracy.
- The high update rate of the 11400 Series provides the throughput needed for challenging ATE applications. Continuously updated measurements and statistics provide the confidence required in automated test environments.

igitizing Signal Analyzers contain powerful internal digital signal processors that can process digitized signals up to 180 times per second.

- 2 GSamples/s Sampling Rate
- 8-Bit Vertical Resolution
- 1\% Vertical Accuracy at the Probe Tip
- 1 GHz System Bandwidth
- 12 Channels of Acquisition, Display of 8 Waveforms
- Up to 4 Channels of Concurrent Single-Shot Capability
- Time, Event, Level, and Boolean Qualified Triggering
- 2 ns Glitch Capture
- Histograms
- Built-in Disk Drive

DSA 601A/DSA 602A DIGITIZING SIGNAL ANALYZERS

With standard waveform acquisition features such as a sampling rate of up to $2 \mathrm{GS} / \mathrm{s}$, a bandwidth of 1 GHz , and record lengths selectable up to 32 K points, the DSA 601A and DSA 602A Digitizing Signal Analyzers surpass any other digitizing acquisition system available. Add to this a multiple-microprocessor control platform and a dedicated TriStar Digital Signal Processor (DSP) and you get waveform processing and analysis capabilities in real time, that previously required processing by an external computer.

Equipped with three plug-in compartments and true dual time bases, the DSA 600A Series can acquire signals from up to 12 input channels - any combination of these 12 channels can display 8 waveforms on-screen simultaneously. In addition, true dual time bases permit simultaneous, single-shot capture and display of a main record and up to two window records for each channel. The eight-color display eases comparison of waveforms and parameters in the main and window areas.
Selectable triggering capabilities of the DSA 600A
Series include basic and extended triggering functions. In the DSA 600A Series, basic triggering simply initiates main and window record acquisition. Extended triggering functions include time, event, level, and Boolean qualified triggering.

GPIB *
IEEE-488

[^2]
BUILT-IN DISK DRIVE

The DSA 600A Series has as standard a floppy disk drive for storing waveforms and settings.

MS-DOS formatted disks provide easy transfer to a host computer. With the removable disk, each user has their own personal disk for storing waveform data and settings.

ADVANCED WAVEFORM PROCESSING

The dedicated TriStar DSP provides waveform capture, processing, and analysis features that place the DSA 600A Series Digitizing Signal Analyzers in a class of their own. Optimized for analysis of high-speed, single-shot, or repetitive signals, this proprietary CMOS processor makes possible comprehensive waveform
analysis features such as real-time integer and floating point math operations, FFT magnitude and phase computations, Act on Delta, and signal dejitter. Advanced waveform calculations such as area and energy; spectral analysis, including total harmonic distortion; twelve timing measurements, including propagation delay; amplitude measurements, including gain and true rms; and live updating of waveform parameters are also included as part of the DSA 600A Series processing package.
Dedicated digital signal processing provides acquisition enhancement functions such as averaging and smoothing to selectively remove noise from the display. For example, averaging rates of up to 180 waveforms/ second for repetitive integer waveforms and up to 90 waveforms/second for repetitive floating point waveforms are possible.

FFT (FAST FOURIER TRANSFORM)

If you need to examine the frequency spectrum of a waveform, the FFT function provides a means to automatically transform time-domain data into frequencydomain data for spectral analysis.

Both time-domain and frequency-domain versions of the same signal can be simultaneously displayed "live" on the screen (see Figure 1). The FFT function is available for binary record lengths from 512 to 16 K points. The information in the frequency domain can be expanded to provide a closer look at magnitude and phase plots.
Information can be modified in the frequency domain and the resultant changes displayed in the time domain using the inverse FFT function.

Cross correlation and auto correlation provide the capability for finding periodic noise on either a single waveform or between two waveforms.

ACT ON DELTA (PASS/FAIL TESTING)

The Act on Delta function detects when a userspecified number of points on a selected waveform fall outside the bounds of a reference waveform template, and executes one or more of five user-defined actions when this event occurs. These actions are save, repeat, chime, SRQ over IEEE-488, and hardcopy. The Act on Delta function is automatic, so an operator need not be present to detect and act on an event.

The template waveform may be a displayed or storedenvelope waveform. The stored-envelope waveform may be generated internally or externally with an appropriate software package, such as the Tektronix Template Waveform Processing Program.

DEJITTER

The Dejitter function reduces the effect of time jiiter caused by a noisy input signal; or it may be used to stabilize trigger holdoff by time. When used in conjunction with signal averaging, the Dejitter function maintains high frequency components that would otherwise be "averaged away," resulting in a better preserved signal.

THE USER INTERFACE

These comprehensive analysis functions, plus virtually all of the manual controls of the instrument - including plug-ins and probes - are accessible through a minimum of front panel buttons, two user-definable control knobs, and an easy-to-operate, eight-color, touch-screen interface. Operator menus are presented on the screen in an intuitive format that guides you through instrument setup and measurement acquisition. Selections are made by simply touching the designated areas of the crt.
Control of variable functions, such as vertical sensitivity or position, time base, trigger level, delay time, and cursor position is accomplished with the two control knobs located below the screen. In addition, all information needed to completely configure the DSA 600A Series and perform detailed analysis of waveforms is never more than two menus deep.

CONCURRENT, REAL-TIME ACQUISITION

Two 8-bit digitizers in the DSA 601A allow simultaneous, $500 \mathrm{MS} / \mathrm{s}$, single-shot acquisition from two channels; or, you can elect to interleave the digitizers in order to obtain a $1 \mathrm{GS} / \mathrm{s}$ sample rate from one channel (see Figure 2 on page 42).
Interleaving can be enabled from the "Horizontal Description" touch-screen menu. When interleaving is active, the input signal path is internally shared between the digitizers. The clock for each digitizer is skewed by one-half the sample rate so that the input signal can be sampled every nanosecond.

The DSA 602A has four, 8-bit digitizers capable of $500 \mathrm{MS} / \mathrm{s}$, simultaneous, single-shot acquisition from four channels; $1 \mathrm{GS} / \mathrm{s}$ from two channels; or, with digitizer interleaving enabled, $2 \mathrm{GS} / \mathrm{s}$ from one channel (see Figure 2 on page 42).
For each channel being acquired, one main and two window records may be acquired (main and window records in the DSA 600A Series are similar to main sweep and delayed sweep acquisitions in analog oscilloscopes). Window records provide enhanced detail in areas of interest on the main waveform.

1 GHz system bandwidth (available with the 11 A 72 plug-in) captures frequency content up to Nyquist. And both mainframes are equipped with an anti-alias filter to prevent the inclusion of high-frequency information into low-frequency data.

data storage

Record length is selectable from 512 to 32,768 points, providing the ability to capture and analyze long, singleshot or repetitive events in detail.
The DSA 600A Series comes standard with more than 210,000 points of volatile RAM memory which is shared between acquired and stored waveforms. Also standard is sufficient non-volatile memory for approximately five settings.

The built-in floppy disk provides an additional 1.44 megabytes of storage for waveform data and settings.

Option 4C, Non-Volatile RAM, provides more than 450,000 points of storage - especially useful when using
the repetitive single-shot acquisition. NVRAM also stores waveform data and settings when the instrument is turned off.

TRIGGERING

Trigger capability within the instrument is divided into two general categories: basic trigger and extended trigger. (Basic triggering is similar to standard level and slope triggering in analog oscilloscopes.) For basic trigger operation, TRIG A is associated with the main record and is referred to as the main trigger, while TRIG B is associated with the window record(s) and is referred to as the window trigger.

In extended trigger operation, each trigger source is compared to its trigger level or threshold, and is determined to be either a high or low logic level. You can then choose to combine the trigger sources with Boolean algebra, qualify one with a level of the other (LEVEL QUALIFIED), qualify one or both by time (TIME QUALIFIED), or qualify the window by an event count (EVENT TRIGGERED), to form the main and window triggers. These extended trigger operations may be used alone or in combination for added flexibility in defining trigger events.

TIME-QUALIFIED TRIGGERING CONFIGURATIONS

Time-Qualified Triggering can be set in one of six possib'e configurations:

- True Duration < Time Interval
- True Duration > Time Interval
- True Duration Within Time Bracket
- True Duration Outside Time Bracket
- Comparison Timing < Time Interval
- Comparison Timing > Time Interval

Time-qualified triggering provides the capability to trigger on and capture glitches as narrow as 2 ns.

REPETITIVE SINGLE-SHOT ACQUISITION

Repetitive Single-Shot Acquisition lets you automatically capture, store, label, and time and date stamp a waveform; re-arm the trigger; and then repeat this process up to 918 times. **

Any number of repetitions, from 1 to 918 can be selected, depending on the record length.

The average repetition rate is up to 155 waveforms/s for a 512 -point record length. The repetition rate is reduced for longer record lengths and slower sample rates.

Coupled with the DSA 600A Series extended trigger capabilities, the Repetitive Single-Shot Acquisition feature is a powerful tool for selectively capturing anomalous events within repetitive signals. This feature also makes it easy to store acquired waveforms for later examination using the Stored Waveform Scan capability.

[^3]- Simultaneous Display of Time and Frequency Domains
- Live FFT Magnitude and Phase Display
- Inverse FFT, Correlation, Convolution
- Act on Delta (Pass/Fail Testing)
- 32 K Point Record Length
- Labeling of Waveforms/ Settings
- Color Display
- Printer/Plotter Support
- Fully Programmable via GPIB and RS-232-C
- True Differential Capability

Figure 1. The TriStar Digital Signal Processor allows simultaneous display of "live" frequencydomain data concurrent with the real-time, time-domain signal.

Figure 2. Digitizer interleaving allows for $1 \mathrm{GS} / \mathrm{s}$ maximum sample rate in the DSA 601A and $2 \mathrm{GS} / \mathrm{s}$ in the DSA 602A.

STORED WAVEFORM SCAN

Stored Waveform Scan is a feature designed to allow rapid viewing of stored waveforms acquired during Repetitive Single-Shot Acquisition or Act on Delta. This feature lets you scan through a sequence of stored waveforms, recalling them one at a time, and displaying them at a user-selectable rate. The scan rate can be set to any value from 0.1 to 10 waveforms/s using the control knobs on the front panel. It lets you rapidly "flip through" a set of waveforms to see at a glance how the acquisitions change with time.

Stored Waveform Scan simplifies the process of viewing a large set of stored waveforms. It displays the waveforms without requiring the recall and deletion of each one separately. It can also be used to search for particular characteristic waveforms.

COLOR DISPLAY

The DSA 600A Series color display lets you easily distinguish superimposed waveforms and, adjust the color set to suit your particular needs. You can select up to eight colors from a palette of 4096. The high resolution screen results in a crisp display for viewing comfort.

Color-keyed waveform names can be attached to the traces to further enhance waveform clarity and documentation.

CHARACTERISTICS

VERTICAL SYSTEM

Accuracy With Enhanced Accuracy - $\leq 1 \%$ for an 8 -division signal.
Vertical Resolution - 8 bits. Resolution can be increased to 14 bits with signal averaging or smoothing.
Equivalent-Time Bandwidth -Determined by the plug-in used. See page 59.
Wide Dynamic Range - $1 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$.

HORIZONTAL SYSTEM

Time Bases
Sweep Speeds $-50 \mathrm{ps} /$ div to $100 \mathrm{~s} /$ div.
Record duration -512 ps to 1024 s in 1-2-5 sequence.
Time Base Accuracy - $+0.005 \%,-0.015 \%$: 0 to $45^{\circ} \mathrm{C}$.
Record Length -DSA 601A: 512 to 20,480 pts (single shot); 512 to 32,768 pts (repetitive); DSA 602A: 512 to 32,768 pts (both single shot and repetitive).
Sampling Rate -DSA 601A: 1 GS/s max;
DSA 602A: 2 GS/s max.
Main Record Positioning - The main record is positioned with respect to the main trigger point. At maximum pretrigger, all points except the last point in the main record precede the trigger point. At maximum post trigger, all points except the first point in the main record follow the trigger point.
Windows - The main record plus two window records may be acquired and displayed. The window records may be different lengths and can have a different time/div than the main record.
Window Record Positioning - The window records may be positioned with respect to their own trigger points on the main record. Window triggers may be delayed from the main trigger by time or events.
Multi-Trace Pan and Zoom - Multiple traces may be panned and zoomed simultaneously.
Display Interpolation - Zoomed waveforms can be displayed using either $\sin (x) / x$ or linear interpolation, or using a dots-only display without any interpolation.

Single-Shot Acquisitions -

	DSA 601A			DSA 602A		
Sample Rate	$\mathbf{5 0 0} \mathbf{~ M S} \mathbf{s}$	$\mathbf{1 G S} / \mathbf{s}$		$\mathbf{5 0 0} \mathbf{~ M S} / \mathbf{s}$	$\mathbf{1 G S} / \mathbf{s}$	$\mathbf{2 G S} / \mathbf{s}$
Number of Channels	2	1		4	2	1
Time Resolution	2 ns	1 ns		2 ns	1 ns	500 ps
Record Length	512 to	512 to		512 to	512 to	512 to
	10 K pts	20 K pts		10 K pts	20 K pts	32 K pts

Waveform Memory - More than 210 K points of volatile memory shared between acquired and stored waveforms.
Settings Memory - Nonvolatile memory for approximately five settings.

TRIGGERING SYSTEM

Range $- \pm$ Full Screen.
Bandwidth - 1 GHz max: 500 MHz for extended triggering.
Coupling and Sensitivity - Dc Coupled: 0.4 div from dc to 10 MHz , increasing to 1 div at maximum trigger bandwidth. Dc Noise Reject Coupled: 1.2 divs from dc to 10 MHz , increasing to 3 divs at maximum trigger bandwidth. Dc HF Reject Coupled: 0.5 divs from dc to 30 kHz . Ac Coupled: 0.4 div from 60 Hz to 10 MHz , increasing to 1 div at maximum trigger bandwidth. Ac Noise Reject Coupled: 1.2 divs from 60 Hz to 10 MHz , increasing to 3 divs at max trigger bandwidth. Ac HF Reject Coupled: 0.5 div from 60 Hz to 30 kHz . Ac LF Reject Coupled: 0.5 div from 80 kHz to 10 MHz , increasing to 1 div at max trigger bandwidth.
Holdoff Range - Main record min: 2μ s or less; max: 500 s . Window Record min: 35 ns ; max: 1000 s .

WAVEFORM PROCESSING

Waveform Functions - Absolute value, average (exponential \& summation), delay, dejitter, differentiate, envelope, exponential, filter, integrate, interpolate,
logarithm, natural log, pulse, signum, smooth, and square root. Live waveforms can be changed by using adjustable parameters.
Arithmetic Operators - Add, subtract, multiply, and divide.
FFT - Magnitude and phase; real and imaginary; inverse FFT, correlation, and convolution; six window functions; typical noise floor: -60 dB; -70 dB with averaging.
Act on Delta - Save, repeat, chime, SRQ, and hardcopy.
Histograms - Vertical or horizontal histograms generated from a user-defined portion of any waveform. Statistical information is provided for histogram data.

MEASUREMENT SYSTEM

Amplitude - Min, max, mid, mean, p-p, gain, rms, overshoot, undershoot, area + , area -, and energy.
Timing - Rise, fall, width, delay, main-to-window trigger time, period, propagation delay, cross, phase, frequency, duty cycle, and skew.
FFT - Fundamental track, harmonic amplitude, frequency, and total harmonic distortion.
Statistics - Available for any measurement listed above for both live acquisitions and groups of stored waveforms.
Cursors - Single or dual dots, split or paired mode,
horizontal and vertical bars, and measurement-zone delimiters. Delta volts, delta time, $1 /$ delta time, and slope.

INPUT/OUTPUT SYSTEM

Ports - Centronics, GPIB, and RS-232-C ports standards. Fully GPIB and RS-232-C programmable.
Data Transfer Rates -Up to 100 waveforms per second. Up to 60 measurements per second.

DISK DRIVE

One 3.5 inch microfloppy disk drive, 1.44 megabytes or 720 kilobytes formatted capacity, depending on disk used. MS-DOS compatible formatting.

CRT AND DISPLAY FEATURES

CRT - 10 in. diagonal, color, magnetic deflection. Vertical raster-scan orientation.
Resolution - 552 horizontal by 704 vertical displayed pixels.

POWER REQUIREMENTS

Line Voltage Ranges -90 to 132 Vrms; 180 to 250 Vrms.
Line Frequency - 48 to 72 Hz .
Maximum Power Consumption - DSA 601A:
465 W max; DSA 602A: 585 W max.

ENVIRONMENTAL AND SAFETY

Temperature : Mainframe-Operating: 0 to $+45^{\circ} \mathrm{C}$. Nonoperating: -40 to $+75^{\circ} \mathrm{C}$.
Disk Drive-Operating: 5 to $+45^{\circ} \mathrm{C}$. Nonoperating: -22 to $+60^{\circ} \mathrm{C}$
Humidity : Mainframe-0perating and Nonoperating: Up to 95% relative humidity; up to $+45^{\circ} \mathrm{C}$.
Disk Drive-Operating : Up to 80\% relative humidity; up to $+30^{\circ} \mathrm{C}$. Nonoperating: Up to 90% relative humidity; up to $+40^{\circ} \mathrm{C}$.

Altitude, Vibration, Shock, Bench Handling -

 Operating and Nonoperating: meets MIL-T-28800C, Type III, Class 5.Electromagnetic Compatibility - Referenced to
MIL-STD-461B. Meets FCC part 15, subpart J, class A. Meets VDE 0871/6.78 for Class "B."
Safety - Listed UL 1244; CSA Bulletin 556B, Sept.
1973; Tektronix self-certification to comply with IEC 348 recommendations.

QUICKSTART TRAINING PACKAGE

QuickStart contains application examples, and is a complete and portable training package. It can serve several users for thorough self-study or as a quick, easy reference.
The package comes complete with the QuickStart board, workbook, board reference, and power plug. This package is available to purchasers at no additional charge.

ORDERING INFORMATION

DSA 602A
Digitizing Signal Analyzer
Includes: Same as DSA 601A.

INSTRUMENT OPTIONS

Opt. 1C - Cable Feedthrough
Connectors. $+\$ 200$

Opt. 1R-Rackmount +\$300
Opt. 4C - Non-Volatile RAM
Adds over 450,000 points of nonvolatile storage
+\$1,500
Opt. 1P - HC100 Four-Color
Plotter
$+\$ 990$
Opt. 2P - 4697 Color Quick
Ink-jet Printer
$+\$ 2,495$
Opt. 3P - 4693DX Color Image
Printer 64 for additional option
See page 64 for
information.
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5-Available
See page 374.
WARRANTY-PLUS SERVICE PLAN OPTIONS
See page 378 .
DSA 601A:
Opt. Q0-On-site Product
Installation and Setup $\quad+\$ 560$
Opt. Q1-1-Year On-Site Service +\$745
Opt. Q2-2-Year On-Site Service $+\$ 2,745$
Opt. Q3-3-Year On-Site Service $+\$ 4,195$
Opt. M7-2 Annual Calibrations $+\$ 1,085$
Opt. M9 - Additional 2-Year
Warranty and Repair
+\$800
DSA 602A:
Opt. Q0-On-site Product
Installation and Setup +\$695
Opt. Q1-1-Year On-Site Service +\$975
Opt. Q2-2-Year On-Site Service $+\$ 3,595$
Opt. Q3-3-Year On-Site Service $+\$ 5,525$
Opt. M7-2 Annual Calibrations $\mathbf{+ \$ 1 , 3 5 0}$
Opt. M9-Additional 2-Year
Warranty and Repair
+\$1,000

ACCESSORIES

Blank Panel - See page 64.
Cables - See page 64.
Hard Copy Units - See page 64.
Recommended Cart - K217S $\$ 725$
Recommended Probes - See page 64.
Recommended Software - See page 64.

PHYSICAL CHARACTERISTICS				
Benchtop Rackmount				
Dimensions	$\mathbf{m m}$	$\mathbf{i n .}$	$\mathbf{m m}$	in.
Width	457	18.0	482	19.0
Height	328	12.9	311	12.3
Depth	678	26.7	678	26.7
Weight \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net				
DSA 601A	30.9	68.0	36.7	81.0
DSA 602A	32.7	72.0	38.6	85.0
Shipping (Domestic)				
DSA 601A	48.5	107.0	55.3	122.0
DSA 602A	49.4	109.0	56.7	125.0

CSA 404/CSA 803 COMMUNICATIONS SIGNAL ANALYZERS

NEW CSA 404/CSA 803

- Designed for

Communications

Applications

- "Real-Time" Feel
- Optical-to-Electrical (O/E) Capability
- Direct Jitter and Noise

Measurements

- Automatic Measurements on Eye-Diagrams
- On-board Histograms
- Infinite, Variable Persistence, \& Color Graded Display Modes
- Comprehensive Waveform Processing
- Fully Programmable
- Mask Testing
- Constellation Diagrams
- Hardcopy
- Color Display $\underset{\mid \text { GPEE-488 }}{ }{ }^{\text {GPI }}$

COMMUNICATIONS SIGNAL ANALYZERS

With state-of-the-art technology, histograms, persistence, mask testing, and constellation diagrams, the CSA 803 and CSA 404 are specifically designed to meet the needs of the communications industry. (For Lightwave and optical communication applications, the CSAs have 0/E converters that allows you to directly analyze at the optical signal.) For triggering on high speed signals, the CSAs offer built-in as well as external trigger units that allow you to trigger up to 20 GHz .

HISTOGRAMS

Time and Voltage histograms are a powerful statistical tool for measuring noise and jitter in communication signals. The CSA 404 and CSA 803 offer both Time and Voltage histograms with a set of useful information such as the mean, rms deviation, and p-p that are displayed and continuously updated at a user-selectable rate.

ORDERING INFORMATION

CSA 404 Communications Signal Analyzer
\$22,000 Includes:
Tutorial manual (070-8185-00), User Reference (070-8186-00), Programmer Reference (070-8187-00), Quick Reference ($070-8188-00$), Service Reference (070-8189-00), Power Cord, U.S., 120 V (161-0066-00). CSA 803 Communications Signal Analyzer
See page 47 for CSA 803 ordering information.

PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount
Dimensions	mm	in.	mm in.
Width	448	17.6	$483 \quad 19.0$
Height	238	9.4	$222 \quad 8.8$
Depth	599	23.6	550
Weights \approx	kg	lb	$\mathrm{kg} \quad \mathrm{lb}$
Net	19.0	41.6	22.048 .0
Shipping	28.0	62.0	31.468 .0

[^4]
PERSISTENCE

In addition to the normal persistence mode, the CSAs have variable persistence, infinite persistence, and colorgraded infinite persistence. While variable persistence is useful to view signals that are "aged" over a finite amount of time (300 ms to 20 s), the infinite and color-graded infinite persistence modes are useful to accumulate the waveforms indefinitely. Color-graded persistence provides visual feedback on the density of the samples.

MASK TESTING

For ATE applications requiring Pass/Fail testing, the CSA provides mask testing. You can define and edit up to 10 polygons (i.e., masks), each with up to 50 vertices, and count the samples that fall in each of the defined masks. The defined masks can be stored as part of the 10 instrument settings and can be recalled at a later time.

STATISTICAL MEASUREMENTS

The CSAs have a built-in statistical database to accumulate waveform data. The database is a 256×512 $\times 16$ bit data array and it accumulates data indefinitely. The data is available over the GPIB and can be viewed in the color-graded display mode. Using the database, the CSAs can make direct and automatic jitter and noise measurements and also make automatic pulse parametric measurements on random data such as eye-diagrams.

CSA 803

The CSA 803 is based on sequential sampling architecture giving it extremely high timing resolution (0.01 ps) and bandwidth (up to 50 GHz) capabilities. Refer to pages 45-52 for more information about the CSA 803.

CSA 404

The CSA 404 is based on random Equivalent Time sampling architecture and is a versatile instrument with 1 GHz bandwidth and extensive triggering capabilities. Refer to pages 57-58 for more information about the CSA 404.

RELATED PRODUCTS

For the communication industry, Tektronix also has the CSA 907 Bit Error Rate Tester, PCM testers, etc. Refer to pages 348-358 for more products for the communication industry.
CSA 404 AND CSA 803 FEATURE COMPARISON

Feature	CSA 404	CSA 803
Acquisition B/W	$1 \mathrm{GHz}{ }^{+1}$	$12.5 / 20 / 40 / 50 \mathrm{GHz}$
Trigger B/W	$1 \mathrm{GHz}^{+1}$	$2.5 / 10 / 20 \mathrm{GHz}$
Optical B/W	$1 \mathrm{GHz}^{2}$	$20 \mathrm{GHz}^{3}$
Optical Wavelength	450-1700 nm*	1200-1600 nm
Timing Resolution	10 ps	0.01 ps
Timing Accuracy	0.002\%+100 ps	0.01\%+10 ps
Maximum Channels(@ B/W)	$6{ }^{17}$	$\begin{aligned} & 4 @ 20,2 @ 50, \\ & 1 @ 50 \end{aligned}$
Input Dynamic Range	10 V	1 V
Offset Range	$\pm 25 \mathrm{~V}$	$\pm 2 \mathrm{~V}$
Vertical Accuracy	1\%	1\%
Vertical Noise (typical)	2.2 mVrms	$450 \mu \mathrm{Vrms}{ }^{\text {4 }}$
Trigger Jitter (typical)	10 ps rms	$\begin{aligned} & 1.8 \mathrm{ps}+20 \mathrm{ppm} \\ & \text { delay } \mathrm{rms} \\ & \hline \end{aligned}$
Pre-Trigger	Yes	No
TDR	No	Yes

${ }^{\prime}$ With three 11A72 plug-ins.
${ }^{*}$ With P6700-series optical probes.
${ }^{\cdot}$ Within SD-46 Sampling Head.
${ }^{4}$ SD-22@100 mV/div.

CSA 803 AND 11801A

The CSA 803 communications signal analyzer and the 11801A digital sampling oscilloscope offer the highest bandwidth and time resolution of the 11000 Series. In addition to the easy-to-use, touch-screen user interface and powerful automatic measurement system common to all 11000 Series instruments, they add single-ended and differential TDR and TDT, timing resolution to 0.01 ps , and up to 50 GHz bandwidth (depending on the sampling head used). This unmatched performance and feature set makes them ideal for semiconductor device testing; TDR characterization of circuit boards, IC packages, and cables; and high-speed digital, data-communication measurements.

- The CSA 803 accepts up to two, dual-channel SD Series sampling heads and has built in trigger capability of up to 10 GHz through the prescaler.
- The 11801A accepts up to four, dual-channel SD Series sampling heads and is expandable to 136 channels of acquisition and TDR using SM-11 Multi-Channel Units.

RESOLUTION AND REPEATABILITY

The state-of-the-art digital time base in the CSA 803/ 11801A provides unmatched timing resolution, with sample intervals to 10 femtoseconds (0.01 ps) and measurement repeatability to 1 ps . In addition, the vertical system provides 8 bits of vertical resolution at all deflection factors ($80 \mu \mathrm{~V}$ LSB at $2 \mathrm{mV} /$ div). Powerful onboard waveform processing allows expansion with averaging to sensitivities in the $100 \mu \mathrm{~V} /$ div range and beyond.

FASTEST ACQUISITION

The CSA 803/11801A, with its multiprocessor-based architecture and high-speed analog, error-sample feedback-loop technology, has the highest sample rate of any sampling oscilloscope. The 200 kHz sampling rate gives the CSA 803/11801A a "real-time" feel for waveform controls and allows high-speed data capture for histograms and automated measurements.

MODULARITY MAKES ROOM FOR GROWTH

In the Tektronix tradition, the CSA 803/11801A can be tailored through modular plug-in sampling heads for a variety of applications. Modularity also offers a path for growth and expansion as new sampling heads become available. For example, for applications requiring superior noise performance, the SD-22 Sampling Head offers two channels of acquisition at 12.5 GHz with $450 \mu \mathrm{~V}$ (typical) of noise. High bandwidth acquisition and TDR are available in the SD-24 sampling head, which offers two channels with 20 GHz bandwidth and two polarity-selectable TDR step generators. The SD Series of sampling heads currently includes nine heads, with more to come.

AUTOMATED MEASUREMENTS MAKE IT EASY

The CSA 803/11801A offer a comprehensive, accurate, and automatic measurement system. Up to six measurements can be displayed on screen at any time, all updated continuously. Any number of measurements may be made over the GPIB or RS-232-C interfaces.

For the first time in the industry, you now can make automatic jitter and noise measurements using the statistical measurement mode. Statistical measurements allow automatic pulse parameter measurements on random signals such as eye-diagrams and allow you to make stable and accurate measurements even in the presence of jitter and noise.
All measurement parameters are user-controllable and measurement levels may be set in relative (i.e., percentage) or absolute terms. Measurements are also fully annotated so there is no question about which part of the waveform is used for making the measurements.
Measurements include: amplitude measurements, such as mean, rms, $p-p$, and overshoot; timing measurements, such as width, propagation delay, and phase; and energy measurements, that provide direct area or energy results! Measurement statistics are also available to evaluate the stability of any measurement result.
For large channel count applications where throughput is a prime consideration, dedicated time measurement hardware can be used to make precise timing measurements on many channels in parallel - over 50 measurements per second. This hardware is duplicated for each sampling head in the mainframe and SM-11, providing maximum throughput even in large channel-count applications.

ON-BOARD WAVEFORM PROCESSING

The extensive on-board waveform processing capability of the CSA 803/11801A not only provides smooth "real-time" update rate and control response, it also allows complex waveform calculations to be performed and displayed in the same continuously updated fashion.
Calculated waveforms can be as simple as addition of two channels, or more complex, from basic operators $(+,-, x,+)$, to specialized math functions such as square root, differentiate, log, envelope, and filter. Calculations can include acquired waveforms, stored waveforms, and constants.
All measurement functions, except hardware measurements, are allowed on calculated traces. In addition, the instrument can be set to stop acquisition after certain conditions, such as when a specified number of averages have been completed.

WINDOWING SHOWS THE DETAILS

The CSA 803/11801A offers another first for sampling oscilloscopes - windows. Similar to the delayed sweep on conventional oscilloscopes, windows allow viewing a long interval on one trace while examining the details of a section of the waveform on a second trace.

Up to seven windows can be created on a single main trace, each with independent positions. The instrument can even be programmed to automatically locate a window on a specified transition within the main waveform. Like the other oscilloscopes in the 11000 Series, windows in the CSA 803/11801A are actually reacquired with a higher resolution than the main waveform - not just digitally expanded from the main trace, as in some lower performance instruments.

High resolution instruments capable of viewing very fast digital signals.

- High Resolution and Repeatability
- 8.8 ps Rise Time
- Highest Sample Rate (200 kHz) among Sampling Oscilloscopes
- Modularity through Sampling Heads
- Powerful, Comprehensive Automatic Measurements with Statistics
- TDR/TDT Capability on Every Channel
- Dual Time Base allows Multiple Windows
- Extensive Waveform Processing
- High Resolution Display
- Ease of Use
- Complete Programmability for ATE Applications (both GPIB and RS-232-C)

NEW 11801A/CSA 803

- 8.8 ps Rise Time
- 10 femtosecond Equivalent-Time Sampling Interval
- Modular Architecture
- 200 kHz Sampling Rate
- "Real-Time" Feel for

Waveform Control

- TDR and Differential TDR
- Optical-to-Electrical (O/E) Capability
- Automatic Measurements with Statistics and Statistical Measurements
- Comprehensive Waveform Processing
- Fully Programmable
- Easy to Use
- Hardicopy
- Eight Channels, Expandable to 136 (with an 11801A and SM-11 Multi-Channel Units)

TIME DOMAIN REFLECTOMETRY (TDR)

With the SD-24 Dual-Channel TDR/Sampling Head, the CSA 803/11801A offers full 20 GHz acquisition and unmatched TDR performance on up to 136 channels. Each channel has an independent polarity-selectable (positive-going or negative-going) TDR step generator. The TDR outputs can also be precisely matched at a reference plane providing the only true integrated differential TDR system available today. Differential TDR offers an accurate picture of the performance of balanced or unbalanced differential systems, such as twisted pair cables, differential microstrips, or differential inputs in active devices.

The step generator of the SD-24 also represents state-of-the-art technology, offering unmatched 35 ps reflected rise time (the rise time of a reflection from a short circuit, including the acquisition rise time of 17.5 ps) with the flattest step in the industry. TDR is also simple to use with one-touch preset functions for both single-ended and differential TDR. There is direct readout of impedance in rho and ohms as well as readout of one-way or twoway distance in meters, feet, or inches.

The CSA 803/11801A allows real-time viewing of the TDR response to a user-selected rise time with the filter function. Simply enter the filter rise time, and the CSA 803/11801A displays a live trace that shows the response at that rise time. Waveform math can also be used to subtract a reference trace acquired with a 50Ω terminator for removal of unwanted aberrations due to cabling and fixturing.

*The CSA 803/11801A Series complies with IEEE Standard 488.1-1987, RS-232-C and Tektronix Standard Codes and Formats.

HARNESSING THE POWER

Virtually all operations of the CSA 803/11801A is through the touch-sensitive front-panel. A simple threelevel menu structure with pop-up menus and two control knobs provide simple interaction with all functions. In addition, common functions, such as volts/division and time/division are always selectable through on-screen icons - so these functions are always available. The two multi-function knobs allow controlling two related parameters, such as volts/division and offset, for less button pushing.

Autoset provides a convenient, fast method for displaying a signal on the CSA 803/11801A. Just select a channel and press autoset. Usually autoset is complete in less than two seconds.

ATE APPLICATIONS

The CSA 803/11801A functions are completely programmable through the IEEE Standard 488 (GPIB) and RS-232-C interfaces. In addition, up to 10 complete instrument settings may be stored in nonvolatile memory on-board for quick recall over the external interfaces or through the front panel. Documentation is simple using the flexible hardcopy features of the CSA 803/11801A. Full screen printouts, including time/date stamp can be printed on a variety of devices including dot matrix, laser printers, pen plotters and ink jet.

SOFTWARE SUPPORT

All the 11000 Series software products are compatible with the CSA 803/11801A, including the Template Waveform Processing Program and Utility software. See page 64 for more information on software for the 11000 Series.

CSA 803 COMMUNICATIONS SIGNAL ANALYZER

The CSA 803 is aimed at high-speed digital communication applications. It has extensive measurement features specifically optimized for digital data communications applications - such as automated eye-diagram analysis, histograms, and masks. The modular architecture of the instrument allows the choice of several sampling heads including a low noise head, $0 / E$ converter, and TDR heads. The high sample rate, the highest in the industry for any sampling oscilloscopes, brings a real-time feel to the control and display of waveforms.

TRIGGER BANDWIDTH

The CSA 803 provides a built-in, full function, dc coupled, 2.5 GHz trigger with slope and level control that provides a versatile, flexible, and stable trigger. It also has a built in, ac coupled, 10 GHz prescaler trigger that divides and randomizes the input signal for stable triggering on high-speed signals. By using an external delay line, the trigger point can also be viewed.

11801A DIGITAL SAMPLING OSCILLOSCOPE

The 11801A supports to eight acquisition channels in the mainframe and provides expansion capability for up to 136 channels using four SM-11 Multi-Channel Units. This large number of channels allows parallel acquisition for very fast pulse parametric testing of high-speed integrated circuits or for supplementing a functional test system while performing ac parametric testing.

Up to half of the channels can be acquired and measured simultaneously - in a single acquisition cycle. This measurement power is made possible by the multiprocessor architecture used in the CSA 803/11801A.

The highly parallel acquisition and measurement architecture not only eliminates the need for relay multiplexers, which degrade signal quality and system reliability, but it also makes acquisition and measurement of many channels practical in a production ATE environment. Signal acquisition and TDR measurements can be done with a simple command, with no disconnecting and reconnecting of cables or probes required before acquiring data.
In today's high-speed circuits, testing controlled impedances of circuit board runs, removing cable delays from the device under test, and other transmission-line integrity measurements are critical. In addition, multichannel TDR allows crosstalk testing on ribbon cables and circuit boards, as well as high throughput singleended TDR for traditional cable and connector applications. The 11801A with the SD-24 TDR/Sampling head, moves TDR from the position of an occasional tool to an integral part of your measurement strategy.

CHARACTERISTICS

Characteristics apply to both the CSA 803 and 11801A unless noted.

VERTICAL SYSTEM

Rise Time/Bandwidth - Determined by the sampling head used. ${ }^{1}$
Vertical Resolution - 8 bits full screen ($80 \mu \mathrm{~V}$ LSB at $2 \mathrm{mV} /$ div deflection factor).
Amplifier Gain Accuracy $- \pm 1 \%$ of all settings.
Deflection Factors -2 to $255 \mathrm{mV} / \mathrm{div}$ in $1 \mathrm{mV} / \mathrm{div}$ increments.
Offset Range $- \pm 2 \mathrm{~V}$.
${ }^{1}$ See Sampling Head Characteristics on page 48. The CSA 803/11801A mainframes have no acquisition bandwidth limits.

HORIZONTAL SYSTEM
Main and Window Time Base $-1 \mathrm{ps} / \mathrm{div}$ to $5 \mathrm{~ms} / \mathrm{div}$, settable in 1-2-5 sequence or in 1 ps increments.
Time Base Accuracy ${ }^{*}{ }^{2}$

Time interval	Accuracy
$\geq 10 \mathrm{~ns}$	$0.01 \% \times$ time interval +10 ps
1 ns	10 ps
100 ps	5 ps
10 ps	2 ps

${ }^{2}$ Interpolate linearly between cardinal points.
Record Length -512, 1024, 2048, 4096, and 5120 points.
Windows - Any number of window records may be placed on any number of main records, up to a maximum of 8 displayed traces. All window records have the same duration, but may be independently positioned on any main record. The window may be set to automatically track a moving edge on the main record.
Maximum Sample Rate - 200 kHz .

TRIGGER SYSTEM
Trigger Bandwidth -CSA 803: 2.5 GHz (direct), 2 to 10 GHz (Prescaled); 11801A: 2 GHz .
Trigger Sensitivity ${ }^{* 3}$ - CSA 803: Direct: Dc Coupled, 30 mV p-p, dc - 200 MHz ; $200 \mathrm{MHz}-2.5 \mathrm{GHz}$ increasing linearly to 250 mV ; Prescaled: Ac Coupled, 600 mV p-p, 11801A: Dc Coupled, 40 mV p-p dc $-200 \mathrm{MHz} ; 200 \mathrm{MHz}-2.0 \mathrm{GHz}$ increasing linearly to 200 mV ; Ac Coupled: Attenuates signals below 30 kHz , 40 mV p-p from 30 kHz to $200 \mathrm{MHz}, 250 \mathrm{mV}$ p-p at 2 GHz .
Delay Jitter $-2.5 \mathrm{ps}+20 \mathrm{ppm}$ of selected delay (rms).
Internal Clock - 100 kHz (drives TDR, Internal Clock Output, and Calibrator).
Trigger Level Range $- \pm 1.0 \mathrm{~V}(\pm 5.0 \mathrm{~V}$ with 10 X trigger attenuator activated).
Trigger Input Range -CSA 803: $\pm 1.5 \mathrm{~V}$ (direct), $\pm 2.5 \mathrm{~V}$ (Prescaled); $11801 \mathrm{~A}: \pm 1.5 \mathrm{~V}$.
${ }^{3}$ CSA 803/11801A has external trigger only; requires >40 ns pretrigger or use of DL-11 Delay Lines to view trigger point.

MEASUREMENT SYSTEM

Waveform Processing Functions - Add, subtract, multiply, divide, absolute, average, differentiate, envelope, exponent, integrate, natural \log , \log, signum, square root, smoothing, and filter.
Measurement Set-Max, min, mid, p-p, mean, rms, amplitude, extinction ratio, overshoot, undershoot, noise ${ }^{-4}$, rise, fall, frequency, period, prop delay, cross, width, phase, duty cycle, jitter ${ }^{-4}$, area + , area -, and energy. Measurements are constantly updated; mean and standard deviation available on all measurements.
Measurement Parameters - Proximal, mesial, distal, and start/stop levels: May be set to relative or absolute values.
Cursors - Paired or split dots, vertical bars, and horizontal bars.
${ }^{-4}$ Available only in statistical measurement mode.

POWER REQUIREMENTS

Line-Voltage Ranges - 90 to 132 V rms, 180 to 250 V rms.
Line Frequency - 48 to 440 Hz .
Maximum Power Consumption - 214 W.
ENVIRONMENTAL AND SAFETY
See page 49.

ORDERING INFORMATION
COMMUNICATIONS SIGNAL ANALYZER
CSA 803 Communications Signal
Analyzer
\$25,150
Includes:
Tutorial manual (070-7718-00),
User Reference (070-7719-00),
Command Reference
(070-7720-01), Programmer
Reference (070-7738-01), Service
Reference (070-7721-00),
12 inch SMA-SMA cable,
2 ea. $81 / 2$ inch SMA-SMA cable,
1 wrist strap, Power Cord, U.S.,
Power Cord, U.S., 120 V
(161-0066-00).

PHYSICAL CHARACTERISTICS				
	Cabinet			
Rackmount				
Dimensions	mm	in.	mm	in.
Width	448	17.6	483	19.0
Height	238	9.4	222	8.8
Depth	599	23.6	550	21.6
Weights $=$	kg	lb	kg	lb
Net	22.3	49	23.2	51
Shipping	25.9	57	26.8	59

DIGITIZING SAMPLING OSCILLOSCOPE 11801A Digital Sampling

Oscilloscope

\$27,500
Includes:
Tutorial manual (070-8025-00),
User Reference (070-8021-00),
Programmer Reference
(070-7038-01), Command
Reference (070-7020-01),
Service Reference (070-8024-00),
12 inch SMA-SMA cable,
2 ea. $81 / 2$ inch SMA-SMA cable,
1 wrist strap, Power Cord, U.S.,
120 V (016-0066-00).

> INSTRUMENT OPTIONS

Opt. 1R - Rackmount.
Opt. 1M - Multi-Channel Conversion (11801A only). +\$1,000 Opt. 10 -
-\$1,000
Deletes the 10 GHz prescalar
capability. This does not affect the 2.5 GHz trigger. For additional option information see page 64.

WARRANTY-PLUS SERVICE PLAN

 OPTIONSSee page 378.
Opt. Q0 - On-Site Product
Installation and Setup $+\$ 460$ Opt. Q1-1 Year On-Site Service $+\$ 670$ Opt. Q2 - 2 Year On-Site Service $+\$ 2,010$ Opt. Q3-3 Year On-Site Service $+\$ 3,310$

ACCESSORIES

See pages 52 and 294.
PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$.	$\mathbf{m m} \quad \mathbf{~ i n . ~}$	
Width	448	17.6	$483 \quad 19.0$	
Height	238	9.4	222	8.8
Depth	599	23.6	550	21.6
Weights \approx	kg	lb	kg	lb
Net	22.3	49	23.2	51
Shipping	25.9	57	26.8	59

High performance sampling heads provide high bandwidth sampling for a multitude of applications.

NEW SD-14

- 100 k $\Omega, 0.25$ pF typical
- 7 V p-p Dynamic Range
- 2.5 GHz Bandwidth
- ECL, CMOS and GaAs Device Characterization

SD-20

- Loopthrough Sampling Head
- Unterminated
- General-Purpose TDR

SD-22

- 12.5 GHz Bandwidth
- Low-Noise
- Digital Data Communications
- Dual-Channel

SD-24

- TDR/Sampling Head
- Dual-Channel, Differential TDR
- 20 GHz Bandwidth
- 35 ps Reflected Risetime
- Line Impedance \& Crosstalk Characterization

SD-26

- 20 GHz Bandwidth
- Dual-Channel

NEW SD-30

- 40 GHz Bandwidth
- Single-Channel
- High Bandwidth Communications and Microwave Applications

NEW SD-32

- 50 GHz Bandwidth
- Single Channel

SD-42

- Optical-to-Electrical Converter
- DC to 6.4 GHz Optical Bandwidth
- 1000-1700 nm Wavelength Range

SD-46

- Optical-to-Electrical Converter
- 20 GHz Optical Bandwidth
- 1200 nm to 1650 nm Spectral Response

SD-14 HIGH IMPEDANCE PROBE SAMPLER

The SD-14 is a dual channel, 2.5 GHz probe sampler designed for high impedance signal acquisition where a 50Ω acquisition system is not the optimal solution. The SD-14 is ideal for high speed device characterization such as ECL, CMOS, ACL, and GaAs testing. The $100 \mathrm{k} \Omega$ input impedance and 0.25 pF capacitance results in very low loading of the device under test. The 7 volt dynamic range and $\pm 3.5 \mathrm{~V}$ offset range, makes the SD-14 suitable for testing all digital logic families as well as most analog circuits.
The SD-14 consists of two samplers, each attached at the end of a 0.6 meter cable for easy circuit probing. The modular architecture of the CSA 803/11801A enables the use of extended samplers, bringing a new level of performance to sampling scopes. In conjunction with the 11801A and SM-11 multichannel unit, it is possible to configure up to 136 channels of high impedance, highbandwidth acquisition with measurement accuracy approaching 140 ps.

SD-20 LOOPTHROUGH SAMPLING HEAD

The SD-20 is a single channel, 20 GHz loopthrough sampling head designed for low-loss testing in applications such as microwave systems research and development, digital device characterization, and highspeed digital communications circuit design. It provides an acquisition rise time of 17.5 ps , with typically $750 \mu \mathrm{~V}$ rms of noise ($350 \mu \mathrm{~V}$ with smoothing) to ensure clean, undistorted signals.
The SD-20 is non-terminated, and keeps losses to a minimum by routing the signal of interest directly through the sampling head - without the need of a power divider. The SD-20 can also be used for customized TDR measurements of transmission lines and controlled impedance devices. An external signal generator may be used, instead of the SD-24 pulse generator, to tailor the TDR pulse to fit a particular situation. For instance, slower slew rates or higher amplitude may be utilized, or you may perform half-sine or impulse testing.

In digital communications, the SD-20 is useful for viewing and triggering on the clock signal without the use of a power divider.

SD-22 LOW-NOISE SAMPLING HEAD

The SD-22 is a dual channel, 12.5 GHz sampling head specifically designed for low-noise measurement in digital communications and device characterization applications. It provides an acquisition rise time of 28 ps, and typically $450 \mu \mathrm{Vms}$ of displayed noise. With smoothing, noise levels are $180 \mu \mathrm{~V}$ rms.

In order to precisely capture and display the switching characteristics of high-speed, communications circuits, to make accurate statistical measurements of signal noise and signal timing jitter, or to obtain stable timing measurements of fast digital ICs, the noise floor of the test equipment must be kept to a minimum. The SD-22 is the ideal instrument for these low-noise applications.

SD-24 TDR/SAMPLING HEAD

The SD-24 is a dual-channel TDR/Sampling Head. This sampling head has a rise time of 17.5 ps or less, with a typical 20 GHz equivalent bandwidth.

Each channel of the SD-24 is also capable of generating a fast rising step for use in Time Domain Reflectometry (TDR). In TDR mode, the acquisition portion of the sampling head monitors the incident step and any reflected energy. The reflected rise time of the TDR step is 35 ps or less. The polarity of each channel's TDR step can be selected independently of the other channel. This allows for differential or common-mode testing of two coupled lines, in addition to the independent testing of isolated lines. The SD-24 can be used to characterize crosstalk by using the TDR step to drive one line while monitoring a second with the other channel.

The "filter" function on the CSA 803/11800 can be used with TDR or crosstalk measurements to characterize a system at a slower risetime.

SD-26 SAMPLING HEAD

The SD-26 is a dual-channel, 20 GHz equivalent bandwidth sampling head. This sampling head has the same acquisition capability as the SD-24 TDR/Sampling Head but does not include the TDR step generators.

NEW SD-30 SAMPLING HEAD

The SD-30 is a single-channel, 40 GHz bandwidth sampling head for use in high bandwidth applications. This sampling head was specifically designed for characterizing high-speed devices used in advanced data communications and microwave systems research. This performance is available for any new or existing CSA 803/11800 mainframe without having to upgrade to a new system, a result of the modular architecture of the CSA 803/11800 family. The SD-30 has a measured bandwidth of greater than 40 GHz and a calculated rise time of less than 8.8 ps.

NEW SD-32 SAMPLING HEAD

The SD-32 is a single-channel, 50 GHz bandwidth sampling head. The SD-32 performance is available for any new or existing CSA 803/11800 mainframe. The SD-32 has measured bandwidth of greater than 50 GHz and calculated rise time less than 7.0 ps .

SD-42 OPTICAL-TO-ELECTRICAL CONVERTER

The SD-42 Optical-to-Electrical Converter head can be used to analyze optical signals in the 1000 nm to 1700 nm wavelength range. The pulse response of the measurement system is less than 55 ps FWHM (FullWidth, Half-Maximum) which is equivalent to a calculated bandwidth of dc to 6.4 GHz . The electrical output on the
front panel is coupled to the adjacent sampling head via the semi-rigid coaxial link provided.

The SD-42 is also equipped with an optical power meter for average power monitoring through a pair of voltage outputs on the front panel. Power from 5 nW to 5 mW can be measured.

For more information on this instrument, see the Opto-Electronics Instruments section, page 286.

SD-46 OPTICAL-TO-ELECTRICAL CONVERTER

The SD-46 is an Optical-to-Electrical converter for use with the CSA 803/11800 Series Oscilloscopes equipped with an SD-22, SD-24, SD-26, SD-30, or SD-32 Sampling Head. The SD-46 is linear up to 25 mW peak input with a calibrated deflection factor from $50 \mu \mathrm{~W} / \mathrm{div}$ to $5 \mathrm{~mW} / \mathrm{div}$ at 1300 nm . This head has a 25 ps optical pulse response (maximum FWHM) with the SD-24 and SD-26.

For more information on this instrument, see the Opto-Electronics Instruments section, page 286.

SD-51 TRIGGER HEAD

The SD-51 Trigger-Countdown Head provides stable displays of signals from 1 to 20 GHz with less than 6 ps rms jitter.

The SD-51 is a free-running tunnel diode oscillator with a front-panel control to synchronize the oscillator to a subharmonic of the input signal and the output oscillator to a subharmonic of the input signal. The output from the SD-51 is coupled to the CSA 803/ 11800 Series trigger input connector. The output signal is a direct countdown of the input (and the input connector) and permits triggering by the sampling time base unit.

Sampling Head Characteristics

	Channels	Bandwidth	Risetime	Impedance	Noise	Applications (Typlcal)
SD-14	2	2.5 GHz	140 ps	$100 \mathrm{k} \Omega / 25 \mathrm{pF}$	2 mV	ECL, CMOS, ACL GaAs Dev. Characterization
$\mathrm{SD}-20$	1	20 GHz	17.5 ps	50Ω unterminated	750 mV	Special TDR, communications
$\mathrm{SD}-22$	2	12.5 GHz	28 ps	50Ω	450 mV	Communications
$\mathrm{SD}-24$	2	20 GHz	17.5 ps	50Ω	750 mV	TDR/TDT Crosstalk
$\mathrm{SD-26}$	2	20 GHz	17.5 ps	50Ω	750 mV	Device Characterization
$\mathrm{SD-30}$	1	40 GHz	8.8 ps	50Ω	1.8 mV	High Bandwidth Communications \& Microwave
$\mathrm{SD-32}$	1	50 GHz	7.0 ps	50Ω	1.8 mV	High Bandwidth Communications \& Microwave
$\mathrm{SD-42}$	1	6.4 GHz				Optical to Electrical
$\mathrm{SD-46}$	1	20 GHz				Optical to Electrical

ENVIRONMENTAL AND SAFETY CHARACTERISTICS

(11801A, CSA 803, SM-11, SD-Series Heads)

Operating Temperature $-0^{\circ} \mathrm{C}$ to 50 C .
Non-Operating Temperature $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude, Vlbration, Shock, Bench HandIIng -
Operating and Non-Operating: meets MIL-T-28800C,
Type III, Class 5.
Safety -Listed UL 1244, CSA Bulletin 556B September 1973, Tektronix self-certification to comply with IEC 348 recommendation.

Electromagnetic Compatability - Meets the following requirements of MIL-STD-461C: CE-03 Pt 4 Curve 1, CS-01 Pt 7, CS-02 Pt 4, CS-06 Pt 5, RE-02, Pt 7, RS-01 Pt 4, RS-02 Pt 5, RS-03, Pt 7 (limited to 1 GHz). Meets FCC Part 15, subpart J, Class A. For Germany: Meets VDE 0871/6.78 Class B.
Humidity - To 95% RH at up to $50^{\circ} \mathrm{C}$.

ORDERING INFORMATION

SD-14 High Impedence Probe
Sampler
Includes: Installation/User
Manual (070-8286-00);
Service Manual (070-8285-00);
4 -post ECB mount ground
socket; Edge tab ground socket;
10 ea. Wire-form ground,
.050 spacing; 10 ea. Wire-form
ground, .040 spacing; plastic
accessories case.
SD-20 Loopthrough Sampling
Head
Includes: Installation/User
Reference (070-7531-00),
Service Reference (070-7528-00),
precision $3.5-\mathrm{mm}$ termination
(011-0155-00), 2 SMA short-circuit
terminations ($015-1020-00$).
SD-24 Dual TDR/SamplingHead $\mathbf{\$ 5 , 2 5 0}$
Includes: Installation/User
Reference (070-7052-00),
Service Reference (070-7053-00),
SMA short-circuit terminations
(015-1021-00).
SD-26 Dual Sampling Head
Includes: Installation/User
Reference (070-7226-01),
Service Reference (070-7227-01),
2 SMA short-circuit terminations
(015-1020-00).
SD-22 Low-Noise Sampling Head
\$3,780
Includes: Same as SD-26.
SD-30 Sampling Head
$\$ 9,450$
Includes: Installation/User
Manual (070-7904-00);
Service Manual (070-7905-00);
1 SMA short circuit termination
(015-1020-00).
SD-32 Sampling Head
Includes: Installation/User
Reference (070-8268-00);
Service Reference (070-8269-00);
1 SMA short-circuit termination
(015-1020-00)
SD-42 Optical-to-Electrical Converter
Includes: See the Opto-
Electronics Instruments
section, page 286.
SD-46
Optical-to-Electrical Converter
\$8,925
Includes: See the Opto-
Electronics Instruments
section, page 286.
SD-51 Trigger Head $\$ 3,500$
Includes: Installation/User
Manual (070-7338-00),
Service Reference (070-7339-00),
$12^{\prime \prime}$ SMA male-to-male (174-1364-00).

WARRANTY-PLUS SERVICE PLAN OPTIONS

See page 378.
Opt. Q1-1-Year On-Site Service.

SD-20	+\$190
SD-24	+\$235
SD-26	+\$165
SD-22	+\$165
Opt. $\mathbf{Q 2} \mathbf{- 2 - Y e a r ~ O n - S i t e ~ S e r v i c e . ~}$	
SD-20	+\$610
SD-24	+\$760
SD-26	+\$535
SD-22	+\$535
Opt. $\mathbf{Q 3}$-3-Year On-Site Service.	
SD-20	+\$1,260
SD-24	+\$1,260
SD-26	+\$880
SD-22	+\$880
${ }^{\prime}$ Contact your local sales representative.	

CHARACTERISTICS

Acquisition System -SD-14, SD-22, SD-24, SD-26: dual channel; SD-20, SD-30: Single channel
Rise Time -SD-14: 115 ps ; SD-20, SD-24, SD-26: 17.5 ps; SD-22: 28 ps, all from 10% to 90%.
Bandwidth - 3 GHz for the SD-14; 20 GHz for the SD-20, SD-24, and SD-26; 12.5 GHz for the SD-22; 40 GHz for the SD-30.
Dynamic Range $-1 \mathrm{~V} p-\mathrm{p}$ within a $\pm 1.6 \mathrm{~V}$ range for the SD-20, SD-22, SD-24, SD-30; 7 V p-p within a $\pm 3.5 \mathrm{~V}$ offset range for the SD-14.
Dot Transient Response - Accuracy after calibration at operating temperature is $\pm 5 \%$ for signals up to 0.5 V p-p. Adjustable to unity for signals up to 1.0 V p-p.

Input impedance -SD-22, SD-24, SD-26: 50Ω $\pm 0.5 \Omega$. SD-14 is $100 \mathrm{k} \Omega$ and 0.25 pF . SD-20 is not terminated and not rated.
Displayed Noise - With unity dot response:

	Maximum	Typical
SD-20, SD-24, SD-26	1.2 mV	$750 \mu \mathrm{~V}$
SD-22	$800 \mu \mathrm{~V}$	$450 \mu \mathrm{~V}$
SD-14	4 mV	2 mV
SD-30	2.3 mV	1.8 mV
With smoothing:		
SD-20, SD-24, SD-26	$550 \mu \mathrm{~V}$	$350 \mu \mathrm{~V}$
SD-22	$400 \mu \mathrm{~V}$	$180 \mu \mathrm{~V}$
SD-30	1 mV	$700 \mu \mathrm{~V}$

Maximum Input Voltage $- \pm 3$ volts.
Isolation Between Channels -1\% p-p voltage transmission from the channel driven by the 067-133800 , to the quiescent channel (see page 51).
Time Coincidence Between Channels -10 ps accuracy; $<0.2 \mathrm{ps} /{ }^{\circ} \mathrm{C}$ stability.

TDR SYSTEM (SD-240NLY)

Displayed Rise Time
Incident -28 ps typical, 10% to 90%, at +250 mV or -250 mV output, elsewhere $\pm 1 \%$.
Reflected -35 ps or less, 10% to 90%, at +250 mV or -250 mV output.
TDR Pulse Amplitude -Adjustable to $\pm 250 \mathrm{mV}$ (polarity of either pulse may be inverted).

Time Coincidence Between TDR pulses -

Adjustable to less than 1 ps.
Source Resistance $-50 \pm 0.5 \Omega$.
Aberrations (at $\pm \mathbf{2 5 0} \mathbf{m V}$ amplitude) -

10 ns to 20 ps before step: < 300 ps after step: 300 ps to 5 ns after step: Elsewhere:

SD-51 CHARACTERISTICS

Input Signal - Frequency range is 1 to 20 GHz . Stable synchronization on signals of at least $100 \mathrm{mV} p-p$, as measured separately into $50 \Omega, 5 \mathrm{~V} p-p$ max.
Input Characteristics - 50Ω SMA (3 mm) connector. Open termination paralleled by 1 pF .
Trigger Output - Approximately 200 mV into 50Ω.
Jitter is 6 ps rms or less with signals from 5 to 20 GHz ; 7 ps rms or less with signals from 1 to 5 GHz . Kickout at signal input is 180 mV peak; kickout occurs between successive samples.

ENVIRONMENTAL AND SAFETY

See page 49.

SIU 800 STATIC ISOLATION UNIT

The SIU 800 protects the sampling bridge from damage due to static discharge from circuit boards and cables. The SIU 800 is intended for use in applications such as TDR circuit board testing and cable testing where large static charges can be stored. When used with the SD-24 TDR/Sampling Head, the SIU 800 provides a reflected risetime of less than 40 ps and a reflection coefficient of less than 80 mp .

The SIU 800 is installed between the DUT and sampling head and is controlled manually by a foot switch or under program control through a TTLcompatible input. When the foot switch is in the normal position (not pressed), the DUT is grounded through a 50Ω termination resistor. This will discharge any static charge stored in the DUT. Pressing the foot switch connects the DUT to the sampling head input allowing a measurement to be made. Both channels are controlled simultaneously by the foot switch or TTL input.

The SM-11 Multi-Channel Unit can accept up to 16 SD-Series Sampling Heads.

SM-11 MULTI-CHANNEL UNIT

The SM-11 Multi-Channel Units expand the 11801A Digital Sampling Oscilloscope to 136 channels. Each SM-11 accepts up to 16 of the SD-Series Sampling Heads; an 11801A mainframe, with Option 1 M added, is capable of driving up to four SM-11 Units. The entire system can then be driven through a single GPIB address.

The 11801 A/SM-11 acquisition system is designed to acquire up to 68 channels in a single acquisition. Thus, in two acquisition cycles, all 136 channels can be acquired.

The hardware measurement capability of the 11800 system allows timing measurements to be taken in single acquisition cycle. This greatly increases the throughput of a large multi-channel system over that of a system where the signals must be multiplexed through a small number of acquisition channels and then processed in software to determine measurement results.

The DL-11 Delay Line contains two delay lines each with 47.5 ns delay. The DL-11 is used for showing the triggering event of a signal displayed on an 11801A or a CSA 803.

DL-11 DELAY LINE

The DL-11 Delay Line provides approximately 47.5 ns of delay from the signal input to the signal output. The DL-11 contains two delay lines that when connected, allow you to view the triggering event through the 11801A or CSA 803. The DL-11 has approximately 5 GHz bandwidth and attenuates the signal by 50%.

A delay line can reduce horizontal jitter and provide more accurate measurements because it lets you take measurements on the first rising edge of the triggering event.

CALIBRATION STEP GENERATOR

The Calibration Step Generator is a very fast rise time, 250 mV step generator that verifies specifications of the SD-20, SD-22, SD-24, and SD-26 sampling heads. It is supplied with a certificate and test report, stating the rise time of the step based on a measurement-controlled,
internal, Tektronix acquisition standard, to a tolerance of 1.5 ps typically. This reported rise time will not exceed 19.5 ps.

The output connector is a precision 3.5 mm male that allows direct interface to the SD-Series head. The step generator is triggered directly from the Internal Clock Output on a CSA 803/11800 Series mainframe.

SM-11

- Multi-Channel TDR and Simultaneous Acquisition
- Up to 136 Acquisition Channels when Connected to the 11801A Digital Sampling Oscilloscope

DL-11

- 47.5 ns Compensated Dual Delay Line
- 5 GHz Bandwidth

Calibration Step Generator

ORDERING INFORMATION

SM-11 Multi-Channel Unit $\quad \$ \mathbf{2 4 , 5 0 0}$ Includes: Installation/User Manual (070-7048-00),
Service Reference (070-7049-00),
Power Cord, U.S., 120 V (161-0066-00).

> INSTRUMENT OPTIONS

Opt. 1R-Rackmount.
See page 64 for additional option See page 64 for
information.

WARRANTY-PLUS SERVICE PLAN OPTIONS
See page 378.
Opt. Q0 - On-Site Product
Installation and Setup. $\quad \mathbf{\$ 9 5}$
Opt. Q1-1-Year On-Site Service $+\$ 300$ Opt. Q2-2-Year On-Site Service +\$750
Opt. Q3-3-Year On-Site
Service
+\$1,200

ACCESSORIES

See pages 52 and 294.
PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	mm	in	mm	in.
Width	448	17.6	483	19.0
Height	238	9.4	222	8.8
Depth	558	22	550	21.6
Weights	$\mathbf{k g}$	lb	kg	lb
Net	20.0	44	20.9	46
Shipping	23.6	52	24.5	54

DL-11 Delay Line
\$4,200
Includes: Installation/User
Manual (070-7050-00),
Instruction sheet (070-7051-00),
$20^{\prime \prime}$ coaxial cable,
RF 50Ω ($174-1427-00$) $60^{\prime \prime}$ coaxial cable, RF 50Ω (174-1428-00).

PHYSICAL CHARACTERISTICS

Dimensions		mm
in.		
Width	159	6.3
Height	119	4.7
Depth	356	14.0
Weight	kg	lb
Net	2.2	10
Shipping	3.08	14

[^5]
ORDERING INFORMATION

CALIBRATION STEP GENERATOR INTERNATIONAL POWER SUPPLY OPTIONS

Universal European - ($240 \mathrm{~V}, 50 \mathrm{~Hz}$)

Order 067-1338-01
UK - ($240 \mathrm{~V}, 50 \mathrm{~Hz}$) Order 067-1338-02
Australia - $(240 \mathrm{~V}, 50 \mathrm{~Hz})$ Order 067-1338-03
Switzerland - ($240 \mathrm{~V}, 50 \mathrm{~Hz}$) Order 067-1338-05 Japan - (100 V, 50-60 Hz) Order 067-1338-06

RECOMMENDED ACCESSORIES

The following are accessories for the CSA 803, 11800,
SD-Series heads, and SM-11, unless specified otherwise.

SMA Accessory Kit -

Order 020-1693-00
\$2,195
Includes: 2 each 2 X and 5 X attenuators;
2 each SMA Terminations, Male Short Circuit,
Female Short Circuit, Male 50Ω, Female 50Ω,
2 each 50Ω Signal Cables (2 ns),
2 each 500 ps Semi-Rigid Cable,
2 each Male-to-Male adapters,
2 each SMA Male-to-BNC Female,
2 each Female-to-Female,
1 each 50Ω Power Divider,
1 each Combination Wrench (.312, 6 point).
3.5 mm Accessory Kit -

Order 020-1692-00
$\$ 6,595$
Includes: 1 each 50Ω Reference Air Line,
1 each Male-to-Male Adapter,
1 each Female-to-Female Adapter,
1 each $26.5 \mathrm{GHz} 50 \Omega$ Terminator (Male),

1 each $26.5 \mathrm{GHz} 50 \Omega$ Terminator (Female),
1 each 26.5 GHz Short Circuit (Male),
1 each 26.5 GHz Short Circuit (Female),
2 each 50Ω Terminators ($6 \mathrm{~dB} 26.5 \mathrm{GHz}, 2.9 \mathrm{~mm}$),
2 each 50Ω Terminators ($20 \mathrm{~dB} 26.5 \mathrm{GHz}, 2.9 \mathrm{~mm}$),
1 each Power Divider ($26.5 \mathrm{GHz}, 2.9 \mathrm{~mm}$),
2 each Signal blews (2 ns , Male-to-Male),
2 each Signal Cables (500 ps , Male-to-Male,
2.9 mm semi-rigid).

1 each Torque Wrench,
1 each Combination Wrench ($0.312,6$ point),
1 each Combination Wrench (0.281, 6 point).
2X Attenuator - SMA Male-to-Female
Order 015-1001-00
5X Attenuator - SMA Male-to-Female
Order 015-1002-00
Power Divider -
Order 015-1014-00
Blank Sampling Head -
Order 200-3395-00
ECL Terminator -
Order 015-0558-00
Provides the bias and termination for ECL device outputs.
At 10 GHz bandwidth and 1% precision attenuation, accurate ac and dc measurements are ensured.
Attenuation: $10 \mathrm{X} \pm 1.0 \%$ @ $\mathrm{dc}, 20 \mathrm{~dB} \pm 3 \mathrm{~dB}$, dc to 10 GHz
Aberrations: $\pm 3 \%$ max with 100 ps rise time
DC Block (Coupling Capacitor) -
Order 015-1013-00
\$255

Slip-On Connector -
Order 015-0553-00

Connector Savers

SMA: Order 015-0549-00
APC: Order 015-0552-00

CABLES AND EXTENDERS

Sampling Head Extender Cables

Sampling Head Extender Cabies
$(1 \mathrm{~m})$ Order 012-1220-00
(2 m) Order 012-1221-00 \$735
Acquisition Extender -
Order 067-1324-00
Acquisition System Extender -
Order 067-1323-00
Card Cage Extender -
Order 067-1267-00
11801A Multi Channel Kit -
RECOMMENDED PROBES
P6150 - 10X, dc to 9 GHz (see page 313)
P6156 - 10X, dc to 3.5 GHz , $\leq 1 \mathrm{pF}, 500 \Omega$
(see page 313) ${ }^{-1}$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - A5 Available
See page 374.
${ }^{-1}$ Requires SMA male-to-BNC female adapter when attached to SMA-type inputs. Order 015-0554-00.
${ }^{2}$ Contact your local sales office

TMP 9000 MICROWAVE PROBES

S-Parameter and Noise Measurement Test System

Spectrum Analyzer Test System

TDR \& Device Characterization Test
System

MICROWAVE PROBES

The Tektronix TMP9000 Family of Microwave Probes are a key element in the microwave probing system. There are no needles for contacting the DUT pads as before with traditional probes and probe cards. Instead, each probe provides a 50Ω transmission line between coaxial connector and photolithographically-defined contacts at the probe tips, for each of the signal lines. The replacement of contact needles by photolithographically-defined transmission line structures greatly improves the reflection, radiation, and crosstalk characteristics of probes at microwave frequencies.

TMP9000 Microwave Probes are precision adapters that convert coaxial input into ground-signal-ground, ground-signal, and signal-ground co-planar waveguide footprints that interface to hybrid microwave circuits, MMICs, or microwave packages. The superior performance of the Tektronix microwave probe is achieved by using photolithography techniques to define the tapered co-planar waveguide and contact bumps.

Tektronix TMP9000 Family of Microwave Probes are distributed into three Performance Series groups:

- The TMP9200 Series is a dc to 26.5 GHz probe with a Signal-Ground footprint
- The TMP9300 Series is a dc to 26.5 GHz probe with a Ground-Signal footprint
- The TMP9600 Series is a dc to 40 GHz probe with a Ground-Signal-Ground footprint
Tektronix microwave probes are compatible with industry-standard microwave probe stations, including those manufactured by Alessi, Cascade Microtech, Design Techniques, Micromanipulator, and Wentworth Laboratories.

Probes are available in discrete increments of 100 , $125,150,175,200,250$, and 300 microns. Probe input is through a female K connector. A female OS-50 connector is available as an option.

TMP9600 SERIES CHARACTERISTICS

Frequency Range - Dc to 40 GHz .
Footprint - Ground-Signal-Ground.

Insertion Loss -

$<0.7 \mathrm{~dB}$ to 18 GHz (typical)
$<1.5 \mathrm{~dB}$ to 26 GHz (typical)
$<2.0 \mathrm{~dB}$ to 40 GHz (typical)
Maximum 2.5 dB at 40 GHz .

Return Loss -

$>20 \mathrm{~dB}$ to 4 GHz
$>10 \mathrm{~dB}$ to 40 GHz .

APPLICATIONS

- S-Parameter Measurements
- Noise Measurements
- TDR Measurements
- Characterization of Packages

BENEFITS

- Superior Performance from DC to 26.5 and 40 GHz
- Low Insertion Loss
- A Low-Cost Microwave Testing Tool
- Compatible with Industry Standard Microwave Probe Stations
- High Confidence in Making Accurate and Repeatable Measurements
- Rugged Design Ideal for Production Environments
- Improved Reliability
- Versatility in Configuring Test System

FEATURES

- Capability to Probe Hybrid Microwave Circuits, MMICs or Microwave Packages
- Ground-Signal-Ground, Signal-Ground, and GroundSignal Footprints

CALIBRATION SUBSTRATES

The ability to calibrate microwave measurements at the probe tip opens a new level of accuracy in microwave device characterization. Tektronix' Calibration Substrates bring precision measurements to your test system. CAL93 for the TMP9200 Series and TMP 9300 Series probes, and CAL96 for the TMP9600 Series probes facilitate precise one-port and two-port measurements with a network analyzer calibrated at the probe tip.

- Available Pitch Increments of 100, 125, 150, 175, 200, 250, and 300 Microns
- Input to Probe through Female K Connector
- Optional OS-50 Female Connector Available

ORDERING INFORMATION

CONTACT INFORMATION
${ }^{-1}$ For technical information, customer support, prices, or to order Microwave Probes and Accessories, contact: ATN Microwave, Inc.

Phone: 508-667-4200
Fax: 508-667-8548.

The 11400 Series are the first oscilloscopes to combine high bandwidth and exceptional accuracy with excellent vertical and horizontal resolution.

- 1 GHz Bandwidth
- Acquire Up to Six Channels at 1 GHz Concurrently
- 10-bit Vertical Resolution -14-bit with Averaging - and 10 ps Horizontal Resolution
- Time Base Accuracy of 100 ps + 0.002\% of the Measured Interval
- Deskew Nulls Out Channel Timing Differences Including Probes
- Enhanced Accuracy Mode
- Internal Calibration Capability for a Vertical Error of 1% or Less

The Tektronix 11400 Digitizing Oscilloscope Series is as much a milestone in oscilloscope simplicity as it is in oscilloscope performance. It lets you concentrate on the measurement, without having to understand the internal operation of an oscilloscope.

The 11400 Series are fully programmable oscilloscopes whose dual time bases, 10 ps horizontal resolution and 10-bit vertical resolution - up to 14-bit with averaging - help redefine the standards of oscilloscope accuracy. Now with the introduction of the 11403A, the standard is higher than ever. It now offers even more convenience and power with built-in FFT, automatic Pass/Fail testing, and measurements on multiple waveforms.

The 11400 Series approach to user interfaces promises more thorough analysis in fewer steps. The touch screen, intuitive menu system, one-button autoset, sequencing capability and large waveform display let you think more about the measurement and less about how the oscilloscope works.
Controls are grouped around the display screen to minimize distractions.
Most controls are built into a menu system on the touch screen. Touch the "Define Waveform" icon, for example, to get selections for averaging, differentiation,
integration, envelope, signum, smoothing, and square root.

Select a trace, a trigger, a measurement or other function just by touching the appropriate area of the screen or by selecting from the menus. As your selection changes, the functions of the two front panel knobs change accordingly - to let you set time per division, set record lengths, or zoom and pan around a digitized record.

Even with eight traces, the update rate is faster than that of other digitizing oscilloscopes.

Press the Autoset button and the oscilloscope will autoset on a signal vertically and horizontally, and obtain a stable trigger. You can get a triggered display of either multiple cycles or a rising edge without knowing anything about the signal. Or, assign the IDENT button on the oscilloscopes probes to initiate an autoset or to sequence through a series of stored test setups - your hands and eyes never leave the job.

If accuracy is the bottom line in your application, the 11400 Series Oscilloscopes are clearly the instruments to consider first.

11400 SERIES APPLICATIONS

11400 SERIES APPLICATIONS	
Oscilloscope	Applications

11403A AND 11402A

From the engineering bench to the production line, the 11403 A and 11402A give you the power to acquire, measure, process and output waveforms with a standard of accuracy exclusive to the 11400 Series.
The 11403A has a full-color display that let you easily distinguish between multiple waveforms. Main waveforms are displayed in up to four different colors, with one additional color designated for window waveforms. The 11402A has a high-resolution monochrome display for large, sharp view of your signals.

Equipped with three plug-in compartments and dual time bases, the 11403A and 11402A can continuously acquire and display 8 signals from up to 12 input channels. Dual time bases permit simultaneous capture and display of up to two window records for each main record acquired. Main and window records in the 11400 oscilloscopes are analogous to main sweep and delayed sweep acquisitions in analog oscilloscopes. Window acquisitions can be positioned anywhere within the main record and allow detailed analysis of critical areas of the main waveform

The 11403A and 11402A incorporate extensive triggering capabilities including selectable ac or dc coupling, ac or dc noise reject, as well as high and low frequency reject. Pretrigger or posttrigger details can be viewed on the main trace. And a 1 GHz trigger bandwidth lets you trigger on fast signals.

Figure 1. FFT display and measurements in the $11403 A$ offer additional analysis power to the engineer or scientist.

THE USER INTERFACE

The 11403A and 11402A's comprehensive analysis functions, and instrument controls - including plug-ins and probes - are accessible to the user through a minimum of front panel buttons, two user-assignable control knobs, and an easy-to-operate, touch-screen interface.

ADVANCED ANALYSIS WITHOUT DELAY

"Live" update of the display and waveform measurement parameters lets you observe phenomena as they occur, and allows complex mathematical transformations and functions to be applied to the acquired data in near real time.

Advanced waveform calculations such as differentiation, integration, square root, logarithm, and absolute value are available at the touch of an on-screen selector. No more waiting for results while an external processor works on the acquired data. All measurements and calculations are continuously updated as the instrument acquires the signal.

Built-in statistical analysis capability lets you get a better picture of how a signal varies over time - providing min, max, mean, and standard deviation for all selected measurements. Dedicated digital signal processing hardware provides acquisition enhancement functions such as averaging and smoothing to selectively remove noise from the display, giving you visibility into the true behavior of circuits and devices never before seen without extensive delayed signal processing.

The 11403A offers additional analysis power beyond the 11402A. It adds FFT display and measurements - a useful tool for the design engineer and scientist. You can create FFT magnitude or phase displays of the acquired waveform and use the automatic Spectral Frequency, Spectral Magnitude, and THD (Total Harmonic Distortion) measurements for a complete analysis of your signals.

MEASUREMENT SYSTEM

The 11403A and 11402A offer one of the most comprehensive sets of automatic measurements available today. All measurements can be programmed over the GPIB or RS-232-C interfaces, eliminating operator error and enhancing test repeatability.

The 11403A and 11402A measurement system is especially useful in automated test applications where the oscilloscope can acquire waveforms, make the measurements, and report the results to the host controller. Measurement results can be processed more rapidly and use much less memory space than the raw waveform data.

NEW 11403A/ 11402A

- Color Display (11403A)
- 1 GHz Bandwidth
- 1 GHz Trigger Bandwidth
- 10-bit Vertical Resolution, 14-bits with Averaging
- Powerful Measurement Set
- Built-in FFT Display and Measurements (11403A only)
- Automatic Pass/Fail Testing based on measurements
- On-Board Measurement Statistics
- Advanced Waveform Processing
- 8 Channels of Acquisition
- Dual Independent Time Bases
- Selectable 512 to 10K Point Record Lengths
- Menu-Based, Touch-Screen Front Panel
- Fully Programmable Over GPIB and RS-232-C Interfaces
- HPGL Plotter Output
*The 11403A/11402A comply with IEEE Standard 488.1-1987, RS-232-C and Tektronix Standard Codes and Formats.

Figure 2. In the Annotation Mode, horizontal cursor bars and highlighting serve to focus your attention on the portion of the waveform being measured.

ANNOTATIONS

All of the 11403A and 11402A measurements are fully annotated to clearly identify the portion of the waveform being measured, and to show the locations of the measurement thresholds (see Figure 2). The measured portion of the waveform is highlighted and horizontal and vertical lines are used to track the upper and lower limits of the measured portion, and the 10% as well as 90% values.
All critical measurement limits are easily adjusted and displayed in the measurement pop-up menus. For example, if you want rise time measurements from 20% to 80% instead of from 10% to 90%, you simply set these levels with the control knobs, or with an on-screen numeric key pad. Values can be set in relative (percent) or absolute terms.

PASS/FAIL TESTING

Both the 11403A and 11402A offer Pass/ Fail testing on measurements. ATE and production test applications can use Pass/ Fail testing to speed throughput and simplify circuit adjustment. Maximum and minimum limits are set for each active measurement, then the instrument gives indication of whether the signals Pass or Fail. A horizontal scale with a vertical bar serves as visual indication of where the measurement fell between the set limits. If the test failed, the scale indicates whether the signal was high or low. The 11403 A adds the visual indication of color - Pass is green, Fail is red.

MULTIPLE WAVEFORM MEASUREMENTS

Adding to the capabilities of the 11403A and 11402A measurement system is the ability to make any measurement on any waveform. You can assign measurements to specific waveforms, use the same measurement for several waveforms, and have the results all on one display. For example, you could measure the skew on all four outputs of a buffer simultaneously. When you combine multiple waveform measurements with Pass/Fail testing, you can greatly simplify production testing and circuit adjustment.

PLUG-IN MODULARITY

The 11403A and 11402A are equipped to handle up to three 11000 Series plug-ins. (For a list of plug-ins and characteristics, see page 59.) Several plug-ins are available, offering a range of bandwidths, channels, and input impedances to choose from. Plug-in installation is a simple matter of sliding each unit into place. Plug-ins are controlled through the mainframe, either from the touch screen interface, or via the IEEE 488 or RS-232-C.

RECORD LENGTH

Record length is selectable from 512 to 10,240 points, providing the ability to capture and analyze repetitive events in high detail.

WAVEFORM MEMORY AND NONVOLATILE STORAGE

The standard 11403A and 11402A are equipped with 512 kilobytes of volatile waveform acquisition and display memory, and 128 kilobytes of non-volatile memory for storage of waveforms and settings. These memories are independent; that is, the number of waveforms being acquired has no impact on the memory available for stored waveforms and settings.

For users who require additional memory, Option 2D adds an additional 768 kilobytes of non-volatile memory for storage of waveforms and settings. This provides a total of 896 kilobytes of non-volatile memory - enough for approximately 450 waveforms of 1 K point record length.

DOCUMENTATION

Documenting your results with the 11403A and 11402 A is as easy as pressing one button. HARDCOPY sends a highresolution copy of the current screen, complete with label and time and date stamp, through your choice of a standard Centronics parallel printer, RS-232-C, or GPIB port to any compatible printer or plotter including the Tektronix 4696 and 4693D color printers, and HC100 color plotter (see Figure 3).

Figure 3. 11400 hardcopy output.

APPLICATIONS

DEVICE CHARACTERIZATION

The 11403A and 11402A are designed for precision, equivalent-time sampling of repetitive signals. Their unsurpassed accuracy and repeatability make them the ideal tools for the component engineer and device designer.

Dual built-in time bases allow windowing for detailed timing analysis of devices. Time A to B measurements can be made with 200 ps resolution single shot, or 10 ps resolution with repetitive acquisitions. Multiple signal acquisition and display eliminates the need to multiplex channels, and allows you to see cause and effect relationships on the same screen. For critical applications, the 10-bit vertical resolution can be increased to 14 -bits with averaging. The 11403A offers a unique level of analysis power when Option 1S, Statistical Database Analysis Package, is added. With this option, the 11403A can make direct jitter and noise measurements on your incoming signals. It builds up a history - a statistical database - of acquisitions and provides histograms, measurements, special color graded displays, and mask
testing options which allow you to more fully characterize and analyze your circuitry than ever before. These techniques are excellent for analyzing random data such as computer bus data streams, making timing analyses on digital signals, and characterizing metastability. And the color display of the 11403A lets you easily distinguish among multiple waveforms.

Figure 4. Pass/Fail testing offers a fast, easy method of adjusting circuit operation or sorting parts in production applications.

POWER SUPPLY TESTING

The 11403A and 11402A with 11000 Series plug-ins provide ac coupling, fast overdrive recovery, high vertical resolution, and one-touch measurements; making this combination an ideal tool for power supply testing. 11000 Series plug-in amplifiers have a wide range of calibrated offset, and are unsurpassed in their ability to recover quickly from up to 8000 divisions* of overdrive.
The 11403A and 11402A can extend the sensitivity and offset of the plug-ins by increasing their normal 10-bit vertical resolution to 14 bits with high-precision averaging. With this kind of resolution, and the 11A33 Differential Comparator plug-in, small signals riding on larger signal swings or high de voltages (such as ripple and noise) can be easily spotted and isolated.

PRODUCTION TESTING

ATE and production test users reap many benefits from the 11403 A and 11402 A . Full programmability and commands optimized for fast operation ensure the highest throughput in ATE applications. Flexibility of configuration and high performance of 11000 Series

[^6]plug-ins mean a production testing system can be tailored to fit your needs today - and expanded tomorrow as your needs change and grow. Special features like Pass/Fail testing, multiple waveform measurements, and a full range of automatic measurements give the 11403A and 11402 A the ability to perform many more functions than ordinary oscilloscopes and can even replace other test equipment. The high accuracy of the 11403 A and 11402A provides an extra margin of safety for your tests, and their fast measurements reduce test times which saves you money.

CHARACTERISTICS

(11403A, 11402A, CSA 404)

VERTICAL SYSTEM WITH ENHANCED

 ACCURACY:$\Delta \boldsymbol{V} \boldsymbol{D C}$ Accuracy - $\leq 1 \%$ for an 8 -division signal.
Absolute DC Accuracy - $\leq 0.6 \%$ when using full
scale of the plug-in offset range.
ENHANCED ACCURACY automatically expires when the instrument temperature changes by approximately $\pm 5^{\circ} \mathrm{C}$ from the temperature of the last calibration. Even if the ENHANCED ACCURACY is not renewed, the accuracy typically remains $\leq 2 \%$. 11000 Series Probes can be included in calibration. The instrument will prompt you to connect the probes to the CALIBRATOR.
Vertical Resolution - 10 bits (1024 levels). Resolution can be increased to 14 bits (16384 levels) with signal averaging.
Equivalent-Time Bandwidth -1 GHz max determined by plug-in. See page 59.

HORIZONTAL SYSTEM

Time Bases - Two identical, independent, built-in time bases.
Record Duration -5.11 ns to 1024 s in 1 -2-5 sequence.
Time Base Accuracy - $100 \mathrm{ps}+0.002 \%$ of measurement interval.
Record Length -512, 1024, 2048, 4096, 5120,8192 , and 10240 points.

Sampling Rate - $20 \mathrm{MS} / \mathrm{s}$ max.

Main Record Positioning - The main record is positioned with respect to the main trigger point. Pretrigger: One record duration Posttrigger: One record duration Resolution: One main record point
Windows - The main record plus two window records can be acquired and displayed. The window records can be of a different length (duration) and can have a

Figure 5. Statistical analysis of measurements provides maximum, minimum, mean, and standard deviation for up to six measurements at once. This feature is useful for statistical quality control, ATE test development, and device characterization. shorter time/div than the main record. If two window records are used, they have the same duration and time/div settings, but can be positioned independently.

ORDERING INFORMATION

11403A 1-GHz Color Digitizing Oscilloscope.
Includes: Tutorial (070-8190-00):
User Reference (070-8191-00);
Programmer Reference (070-8192-00); Quick Reference (070-8193-00); Service Reference (070-8194-00); Power Cord, U.S. 120 V (161-0066-00). 11402A 1-GHz Monochrome Digitizing Oscilloscope. $\$ 15,700$
Includes: Same as 11403A except
Service Reference (070-7848-00). INSTRUMENT OPTIONS
Opt. 1C-Cable Feedthrough
Connectors.
Opt. 1R - Rackmount.
Opt. 1S (11403A only) -
Statistical Data Base Analysis
Package.
Adds statistical data base
Adds statistical data base
measurement functions, color graded display, mask testing, direct Jitter and Noise measurements, and histogram analysis.
Opt. 2D - Memory Expansion Adds 768 kbytes of nonvolatile memory for storage of
waveforms and settings.
Opt. 4D - DMA Controller
Opt. 4D - DMA Controller
Increases transfer speed over
GPIB.
INTERNATIONAL POWER PLUG
OPTIONS
OPTIONS
Opt. A1-A5 -Available
See page 374 . NC

See page 374.
WARRANTY-PLUS SERVICE PLAN OPTIONS
See page 378.
Opt. $\mathbf{0 0} 0$-On-Site Product
Installation and Set-up.
Opt. $\mathbf{Q 1}-1$-Year On-Site Service
11403A
+\$385 +\$365
11402A Opt. Q2-2-Year On-Site Service
11403A $+\$ 1,330$
11402A
Opt. Q3-3-Year On-Site Service
$\begin{array}{ll}11403 A & +\mathbf{2 2 , 1 9 5} \\ 11402 A & +\$ 2,150\end{array}$
ACCESSORIES
Recommended Probes and Hard Copy
Units - See page 64.
Recommended Software - See page 64.
PHYSICAL CHARACTERISTICS

	Benchtop		Rackmount	
Dimensions	mm	in.	mm	in.
Width	448	17.6	482	19.0
Height	238	9.4	222	8.8
Depth	599	23.6	550	21.6
Weight \approx	$\mathbf{k g}$	lb	$\mathbf{k g}$	lb
Net	19.0	41.6	22.0	48.0
Shipping (domestic)	28.0	62.0	31.4	68.0

Window Record Positioning - The window records are positioned relative to a window trigger point which can be delayed by either time or events relative to the main record's trigger point.

Main-to-Window Trigger Time Measurements -

The time between the Main record trigger and the Window trigger can be measured precisely, even if each trigger only occurs once. Repetitive events allow this measurement to be averaged for better resolution and accuracy. Single Trigger Resolution: 200 ps
Repetitive Resolution: 10 ps with averaging
Accuracy: $250 \mathrm{ps}+0.002 \%$ of measured interval

TRIGGERING SYSTEM

Range $- \pm$ Full Scale.
Main Trigger, Coupling and Sensitivity
Jitter (Typical, CSA 404 only)-10 ps rms; 70 ps peak-to-peak.
DC Coupled -0.5 div from dc to $50 \mathrm{MHz} ; 1.5$ div from 50 MHz to 1 GHz .* ${ }^{*}$
Noise Reject Coupled - 1.2 div or less from dc to 50 MHz ; 3 div from 50 MHz to 1 GHz .*1
AC Coupled - 0.5 div from 60 Hz to 50 MHz ; 1.5 div from 50 MHz to $1 \mathrm{GHz}{ }^{* 1}$ Attenuates signals below 60 Hz .
HF Reject Coupled -0.65 div from dc to 30 kHz .
LF Reject Coupled - 0.65 div from 80 kHz to 50 MHz ; 1.5 div from 50 MHz to 1 GHz .*1

Window Trigger, Coupling and Sensitivity

DC Coupled - 0.5 div from dc to 50 MHz ; 1.5 div from 50 MHz to 500 MHz . ${ }^{* 1}$
Noise Reject Coupled $\mathbf{- 1 . 2}$ div or less from dc to 50 MHz ; 3 div from 50 MHz to 500 MHz .* ${ }^{*}$
AC Coupled - 0.5 div from 60 Hz to $50 \mathrm{MHz} ; 1.5$ div from 50 MHz to 500 MHz . ${ }^{\star 1}$ Attenuates signals below 60 Hz .
HF Reject Coupled - 0.65 div from dc to 30 kHz .
LF Reject Coupled -0.65 div from 80 kHz to 50 MHz ; 1.5 div from 50 MHz to 500 MHz . ${ }^{* 1}$

Holdoff Range

Main Record -Min: 490 ns ; max: 10 s .
Window Record -Min: 20 ns; max: 811 s .

MEASUREMENT SYSTEM

 Waveform Processing FunctionsWaveform Functions -Differentiate, integrate, interpolate, smooth, average, envelope, square root, signum, logarithm, natural log, absolute value, and exponential.
Arithmetic Operators - Add, subtract, multiply, divide.

Measurement Set

Amplitude - Min, max, mid, mean, gain, p-p, undershoot, overshoot, amplitude, noise ${ }^{-2}$, extinction ratio, and RMS.
Timing - Rise, fall, width, delay, main-to-window trigger time, phase, period, duty cycle, skew, jitter ${ }^{2}$, propagation delay, cross, and frequency.

Area and Energy - Area + , area - and energy.
FFT (11403A only) - Spectral frequency, spectral magnitude, THD (Total Harmonic Distortion)
Measurement Statistics - Min, max, mean, and standard deviation of all active measurements.
Cursors - Dual dots in split or paired mode, horizontal and vertical bars, measurement zone delimiters.

INPUTS/OUTPUTS

Centronics, GPIB, and RS-232-C ports standard. Fully GPIB and RS-232-C programmable.
Hardcopy Drivers - Support for Tek HC200 and 9 pin and 24 -pin Epson-graphics compatible printers; Tek HC100 and HPGL-compatible plotters; Tek 4693, 4696, 4697 color printers; alternate inkjet printers; bit map transfer to computers. Draft, high resolution, and reduced modes.

CRT AND DISPLAY FEATURES

CRT - Magnetic deflection, vertical raster-scan orientation. 7.5 -inch diagonal color crt in 11403A and CSA 404. 9-inch diagonal monochrome crt in 11402A.
Colors (11403A and CSA 404) - Eight-color set; selectable from a palette of 262,144 colors.
Video Resolution -552 horizontal by 704 vertical displayed pixels.

ENVIRONMENTAL AND SAFETY

Temperature - Operating: 0 to $+50^{\circ} \mathrm{C}$.
Nonoperating: -40 to $+75^{\circ} \mathrm{C}$.
Humidity - Operating and Nonoperating: Up to 95% relative humidity, up to $+50^{\circ} \mathrm{C}$.
Altitude - Operating and Nonoperating: meets
MIL-T-28800C, Type Class 5.
Vibration - Operating: meets MIL-T-28800C, Section 4.5.5.3.1, Type Class 5.

Shock - Nonoperating: meets MIL-T-28800C, Section 4.5.5.4.1, Type Class 5 .

Bench Handling - Operating: meets MIL-T-28800C, Section 4.5.5.4.3, Type Class 5. Electromagnetic Compatibility - Meets the following requirements of MIL-STD-461B - CE-03, Part 4, Curve 1; CS-01, Part 7; CS02, Part 4; CS-06, Part 5; RE-02, Part 7; RS-01, Part 4; RS-02, Part 5; RS-03, Part 7 (limited to 1 GHz). Meets FCC part 15, subpart J, class A. Meets VDE 0871/6.78 for Class B.
Safety - Listed UL 1244; CSA Bulletin 556B, September 1973; Tektronix self-certification to comply with IEC 348 recommendations.
${ }^{1}$ At minimum holdoff setting.
${ }^{2}$ CSA 404 and 11403A option 1S only.

Wide bandwidth, unsurpassed accuracy, clean response, low noise, and calibrated dc offset with fast overdrive recovery characterize the amplifier plug-in units available for use with the Tektronix 11000 Series and DSA 600 mainframes. A variety of bandwidths, number of channels, coupling and input choices are available. From the 11 A 72 with 2 channels at 1 GHz bandwidth to the 11A33 differential comparator with 150 MHz bandwidth and 10,000:1 CMRR, the 11000 Series plug-ins offer capabilities for virtually any need. The chart below shows the bandwidth of each of the plug-in units in each of the 11000 Series and DSA 600A Series mainframes.

Control of the 11000 Series plug-ins is accomplished through the mainframe controls, either manually or over the IEEE Standard 488 or RS-232-C bus. A single pushbutton for each channel is the only control on the amplifier plug-in. This button turns the display of the associated channel on and off.
Each of the input channels on all amplifier plug-ins use the TekProbe ${ }^{\text {TM }}$ interface. This interface allows the mainframe to supply power to active probes (such as the P6204 or P6703A), to sense the type (and, with some
probes, the serial number) of the probe, to supply offset voltage to probes so equipped, to detect activation of the probe's ID pushbutton, and to provide other communication between the probe and the oscilloscope as appropriate to the type of probe.
Three new plug-ins extend the capabilities of the 11000 Series and DSA 600 Series even further. The 11A16 Current Amplifier provides direct measurement of current waveforms. Analysis of power circuits can be more complete than ever before. The 11T5H MultiStandard Video Trigger and 11A34V High Bandwidth Video Amplifier are companion plug-ins for the high performance video designer. They allow triggering and measurements on video signals for HDTV, medical imaging systems, graphics monitors, and other video systems.

CSA 803/11800 SERIES SAMPLING HEADS

The CSA 803/11800 Series accepts SD Series Sampling Heads. See pages $48-52$ for more information on CSA 803/11800 Series sampling heads.

Contents

11A72 Two-ChannelAmplifier60
11A52 Two-Channel Amplifier 60
11A34 Four-ChanneAmplifier61
11A32 Two-Channel Amplifier 61
NEW 11A34V High Bandwidth Video Amplifier 61
11A33 Differential
Comparator 62
NEW 11T5H Multi-standard Video Trigger 63
NEW 11A16 Current Amplifier 63
11000 Series RecommendedAccessories64

11000 SERIES PROBE/PLUG-IN/MAINFRAME BANDWIDTH MATRIX

	No probe	P6134C	P6231	P6203	P6204	P6156	P6701A ${ }^{-1}$	P6703A ${ }^{-1}$	P6711 ${ }^{1}$	P6713 ${ }^{\text {. }}$	$\begin{gathered} \text { P6501 } \\ \text { Opt. } 02^{* 2} \end{gathered}$
		$\begin{gathered} \text { passive } \\ 10 \mathrm{M} \Omega \\ 11.3 \mathrm{pF} \\ 10 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { bias/offset } \\ 450 \Omega \\ 1.6 \mathrm{pF} \\ 10 \mathrm{X} \\ \hline \end{gathered}$	$\begin{aligned} & \text { active } \\ & 10 \mathrm{k} \Omega \\ & 2.0 \mathrm{pF} \\ & 10 \mathrm{X} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { active } \\ 10 \mathrm{M} \Omega \\ 1.9 \mathrm{pF} \\ 10 \mathrm{X} \\ \hline \end{gathered}$	passive $500,5 \mathrm{k} \Omega$ $<1 \mathrm{pF},<1.1 \mathrm{pF}$ $10 \mathrm{X}, 100 \mathrm{X}$	optical	optical	optical	optical	$\begin{gathered} \text { active } \\ 1 \mathrm{M} \Omega \\ 1.8 \mathrm{pF} \\ 10 \mathrm{X} \\ \hline \end{gathered}$
11A32	400	400	375	375	375	400	300	350	175	175	350
11 A34	300	300	300	275	275	300	250	275	150	175	275
11 A 34 V	300	300									
11 A52	600	-	550	500	500	600	375	475	175	200	475
11 A72	1000	-	825	700	700	1000	450	575	175	200	600

[^7]The 11A33 Differential-Comparator Amplifier bandwidth is 150 MHz with any combination of probe andmainframe. The recommended probe for this amplifier is the P6135A matched probe pair.

11 A72

- Two Channels
- 50Ω Input Impedance
- DC to 1 GHz Bandwidth
- 10 mV to $1 \mathrm{~V} / D i v$ Calibrated Deflection Factors
- ± 25 Division Offset

11A52

- Two Channels
- 50Ω Input Impedance
- DC to 600 MHz Bandwidth
- 1 mV to 10 V/Div Calibrated Deflection Faciors in 1\% Increments
- High-Resolution Calibrated DC Offset
- Fast Overdrive Recovery

ORDERING INFORMATION

11A72 Two-Channel Vertical Amplifier
$\$ 4,595$
Includes:
User Reference (070-7255-00),
Service Reference (070-7257-00).
11A52 Two-Channel Vertical
Amplifier
\$3,295
Includes:
User Reference (070-6114-00),
Service Reference (070-6786-00).
INSTRUMENT OPTIONS
Opt. 25 - Includes two P6231
probes. Includes two P6203 $+\mathbf{\$ 1 , 0 5 0}$
Opt. 26 - Includes two P6203
probes.
Opt. 27 - Includes two P6204
probes.
ACCESSORIES
See page 64.

11 A72 Two-Channel Amplifier

11A52 Two-Channel Amplifier

11A72 TWO-CHANNEL AMPLIFIER

The 11A72 is the highest bandwidth amplifier for the 11000 Series mainframes. It offers two channels of 1 GHz bandwidth each. DC offset can be set to 40 steps/division resolution over a range of ± 25 div at all sensitivities.

CHARACTERISTICS

Bandwidth - 1 GHz.
Deflection Factor - 10 mV to $1 \mathrm{~V} /$ div in 1-2-5 sequence.
Accuracy - Δ Volts dc accuracy:
With $11400: \pm(0.9 \%+0.01 \mathrm{div})$.
With DSA $600: \pm(1.0 \%+0.02 \mathrm{div})$.
Dc Balance, ± 0.1 div.
Offset Accuracy, $\pm(0.4 \%+0.01 \mathrm{div})$.
Offset Range $- \pm 25$ divisions, 0.025 div resolution.
Typical Noise (RMS) - 0.022 div.
Input Impedance $-50 \Omega \pm 0.5 \% ;$ VSWR $\leq 1.45: 1$
@10 mV/div, dc to 1 GHz ; VSWR $\leq 1.25: 1$ for deflection factors $\geq 20 \mathrm{mV} /$ div, dc to 1 GHz .
Disconnect Threshold - 5 Vrms typical (dc to 100 MHz).
Input Coupling Modes - Ac, dc, OFF.
AC Coupled Low Frequency - -3 dB point; 1 kHz or less from 50Ω source.
Max Input Voltage - Dc Coupled: 25 V pk or 5 Vrms Ac Coupled: $\pm 100 \mathrm{~V}$ dc additional. Input coupling is set to off when coupled signal exceeds safe limits. Manual reset by selecting either ac or dc coupling.

11A52 TWO-CHANNEL AMPLIFIER

The 11A52 is a high-bandwidth, two-channel amplifier plug-in for the 11000 Series mainframes. Two built-in four-pole bandwidth-limiting filters (100 MHz and 20 MHz) may be activated to reduce unwanted highfrequency noise at 24 dB /octave.

Both coarse and fine deflection-factor steps are fully calibrated. At $1 \mathrm{mV} /$ div, the calibrated dc offset has $25 \mu \mathrm{~V}$ resolution and a range of $\pm 1 \mathrm{~V}$ (equivalent to 16 bits), giving an effective screen height of 2000 divisions and permitting absolute dc measurement accuracies to $\pm 0.3 \%$.

CHARACTERISTICS

Bandwidth -

Volts/div	Bandwidth (MHz)
$>10 \mathrm{mV}$	600
5 to 9.95 mV	400
2 to 4.98 mV	250
1 to 1.99 mV	200

Calibrated Deflection Factors -

Coarse: 1 mV to $10 \mathrm{~V} / \mathrm{div}$ in 1-2-5 steps.
Fine: between coarse steps in 1% increments of next more sensitive coarse step.
Accuracy - Δ Volts dc accuracy:
With $11400: \pm(0.8 \%+0.01 \mathrm{div})$.
With DSA $600: \pm(0.9 \%+0.02$ div).
Dc Balance, 1 to $99.5 \mathrm{mV} / \mathrm{div}: \pm(0.2 \mathrm{mV}+0.10 \mathrm{div})$.
Offset Accuracy, 1 to $99.5 \mathrm{mV} / \mathrm{div}(\pm 1 \mathrm{~V}$ range):
($0.15 \%+0.4 \mathrm{mV}$).

Offset Range -

1 to $99.5 \mathrm{mV} /$ div: $\pm 1 \mathrm{~V}$; Resolution: $25 \mu \mathrm{~V}$.
100 mV to $0.995 \mathrm{~V} /$ div: $\pm 10 \mathrm{~V}$; Resolution: $250 \mu \mathrm{~V}$. 1 to $10 \mathrm{~V} / \mathrm{div}$: $\pm 100 \mathrm{~V}$; Resolution: 2.5 mV .
Overdrive Recovery - 1 to $99.5 \mathrm{mV} / \mathrm{div}$: To within $\pm(0.2 \%+0.1$ div) within 20 ns from $\pm 2 \mathrm{~V}$ step.

Typical Noise (RMS) -

1 to $1.99 \mathrm{mV} / \mathrm{div}: 0.087$ div.
2 to $4.98 \mathrm{mV} / \mathrm{div}: 0.04$ div.
5 to $9.95 \mathrm{mV} / \mathrm{div}: 0.02$ div.
10 mV to $10 \mathrm{~V} / \mathrm{div}: 0.012$ div.
Input Impedance $-50 \Omega \pm 0.5 \%$; VSWR: $<1.3: 1 \mathrm{dc}$ to 500 MHz .
Input Coupling Modes - Ac, dc, and OFF.
AC Coupled Low Frequency - -3 dB point; 1 kHz or less from 50Ω source.
Max Input Voltage - Dc Coupled: 25 V pk or 5 Vrms Ac Coupled: $\pm 100 \mathrm{~V}$ dc additional. Input coupling is set to off when coupled signal exceeds safe limits. Manual reset by selecting either ac or dc coupling.

11A34 Four-Channel Amplifier

11A32 Two-Channel Amplifier

11A32 AND 11A34 AMPLIFIERS

The 11A32 and 11A34 are excellent, medium bandwidth amplifiers. They offer switchable $1 \mathrm{M} \Omega / 50 \Omega$ input impedance, fast overdrive recovery, and wide offset range. The 11A32 is a two-channel unit, and the 11A34 is a four-channel unit.

Two built-in four-pole bandwidth-limit filters (100 MHz and 20 MHz) may be activated to reduce unwanted high-frequency noise at $24 \mathrm{~dB} / 0 \mathrm{ctave}$ for each channel.
Both coarse and fine deflection-factor steps are fully calibrated. At $1 \mathrm{mV} / \mathrm{div}$, the calibrated dc offset can be set with a resolution of $25 \mu \mathrm{~V}$ and a range of $\pm 1 \mathrm{~V}$ (equivalent to 16 bits), giving an effective screen height of 2000 divisions and permitting absolute dc measurement accuracies to $\pm 0.4 \%$.

CHARACTERISTICS

Number of Channels -11A32: Two; 11A34: Four. Bandwidth -

Volts/div	11A32 Bandwidth (MHz)	11A34 Bandwidth (MHz)
$>10 \mathrm{mV}$	400	300
5 to 9.95 mV	350	250
2 to 4.98 mV	250	200
to 1.99 mV	200	150

Callbrated Deflection Factors -

Coarse steps: 1 mV to $10 \mathrm{~V} / \mathrm{div}$ in 1-2-5 sequence. Fine steps: Between coarse steps in 1% increments of next more-sensitive coarse step.
Accuracy - Δ Volts dc accuracy:
With 11400: $\pm(0.9 \%+0.012$ div).
With DSA $600: \pm(1.0 \%+0.02$ div).
Dc Balance, 1 to $99.5 \mathrm{mV} / \mathrm{div}: \pm(1.0 \mathrm{mV}+0.10 \mathrm{div})$. Offset Accuracy, 1 to $99.5 \mathrm{mV} / \mathrm{div}(\pm 1 \mathrm{~V}$ range): $(\pm 0.2 \%$ +0.5 mV). For absolute dc accuracy of single-point measurements using offset, add the Offset Accuracy and DC Balance terms.

Offset Range -

1 to $99.5 \mathrm{mV} /$ div: $\pm 1 \mathrm{~V}$; Resolution: $25 \mu \mathrm{~V}$. 100 mV to $0.995 \mathrm{~V} /$ div: $\pm 10 \mathrm{~V}$; Resolution: $250 \mu \mathrm{~V}$. 1 to $10 \mathrm{~V} /$ div: $\pm 100 \mathrm{~V}$; Resolution: 2.5 mV .

Overdrive Recovery -

1 to $99.5 \mathrm{mV} /$ div: To within $\pm(0.3 \%+0.2$ div) within 50 ns from $\pm 2 \mathrm{~V}$ step.
100 to $995 \mathrm{mV} /$ div: To within $\pm 1 \%$ within 50 ns from $\pm 20 \mathrm{~V}$ step.
1 to $10 \mathrm{~V} / \mathrm{div}$: To within $\pm 1 \%$ within 50 ns from $\pm 200 \mathrm{~V}$ step.

Typical Noise (RMS) -

1 to $1.99 \mathrm{mV} /$ div: 0.12 div.
2 to $4.98 \mathrm{mV} / \mathrm{div}: 0.06$ div.
5 to $9.95 \mathrm{mV} / \mathrm{div}: 0.025$ div.
10 mV to $10 \mathrm{~V} / \mathrm{div}: 0.014$ div.
Input Impedance -Switchable: $1 \mathrm{M} \Omega$ in parallel with 15 pF , or $50 \Omega \pm 0.5 \%$
Input Coupling Modes - Ac, dc, and OFF.
AC Coupled Low Frequency --3 dB point, driven from 50Ω source: less than 10 Hz .

Maximum Input Voltage -

$1 \mathrm{M} \Omega$ mode: 500 V (dc + peak ac).
50Ω mode: The input impedance is switched to $1 \mathrm{M} \Omega$ when the input signal exceeds safe limits. Manual reset by re-selecting 50Ω input impedance.

NEW11A34V HIGH BANDWIDTH VIDEO AMPLIFIER

The 11 A 34 V is specifically designed as a companion amplifier for the 11 T 5 H Multi-Standard Video Trigger to

11A34V Video
Amplifier meet the needs of TV/video applications. Engineers designing medical imaging equipment, HDTV components, high resolution graphics monitors, and other video systems will find the special features of the 11A34V bring new power to their design tasks. Features include convenient 75Ω / $1 \mathrm{M} \Omega$ switchable input impedance, display clamping and trigger source signals with the 11T5H Video Trigger. The 11 A 34 V also offers the same high performance of the 11A 34 : four 300 MHz bandwidth channels, fast overdrive recovery, wide offset and dynamic range, and $1 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div sensitivity settings.
TV and video designers will find the 75Ω input setting convenient for connection to their circuitry. The 11A34V's four input channels make it easy to view component video signals - R, G, and B can each have a separate input. The 11A34V provides the performance needed for state-of-the-art TV/video design.

11A34/11A32

- DC to 400 MHz Bandwidth (11A32)
- Two Channels (11A32) or Four Channels (11A34)
- 1 mV to 10 V/Div Calibrated Deflection Factors in 1\% Increments
- Switchable 50Ω or $1 M \Omega$ Input Impedance
- High-Resolution Calibrated DC Offset
- Fast Overdrive Recovery

NEW 11A34V High Bandwidth Video Amplifier

- Four 300 MHz Channels
- $75 \Omega / 1$ M Ω Switchable Input Impedance
- Companion Amplifier for 11T5H Multi-Standard Video Trigger

ORDERING INFORMATION

11A34 Four-Channel Vertical

Amplifier
 Includes:

\$4,595
User Reference (070-5921-01),
Service Reference (070-6785-02),
11A32 Two-Channel Vertical
Amplifier
\$2,695
Includes:
User Reference (070-5922-01),
Service Reference
(070-6782-03).
11A34V High Bandwidth
Video Amp. Includes:
User Reference (070-8178-00),
Service Reference (070-8179-00). INSTRUMENT OPTIONS
Opt. 3P - (11A32, 11A34)
Includes: P6408 Word
Recognizer/Trigger Probe.
Opt. 22-(11A32)
Includes: two P6134C probes.
Opt. 23 - (11A34)
Includes: four P6134C probes.

ACCESSORIES

See page 64.
*1 Contact your local sales office.

- DC to 150 MHz Bandwidth
- 1 mV to 10 V/Div Calibrated Deflection Factors in 1\% Increments
- Very-High-Resolution Calibrated DC Offset 16,000Division Effective Screen Height
- Differential DC Offset range of $\pm 1 \mathrm{~V}$ at $1 \mathrm{mV} /$ Div
- High Common-Mode Rejection
- Fast Overdrive Recovery from Large Input Signals
- Selectable 50Ω, 1 M 2 , or 1 G Ω Input Impedance

ORDERING INFORMATION

11A33 Differential Comparator \$3,995 Includes:
User Reference (070-6119-00),
Service Reference (070-6784-01)
INSTRUMENT OPTIONS
Opt. 24 - Includes a P6135A
probe pair.
See page 64.

ACCESSORIES

教

11A33 DIFFERENTIAL COMPARATOR

The 11A33 is a differential comparator amplifier plugin with good common-mode rejection ratio (CMRR) and fast overdrive recovery.

As a differential amplifier, the 11A33 provides a balanced (+ and -) input for applications requiring rejection of a common-mode signal. The unit can reject up to 8 V pk-pk of common-mode signal with a CMRR of $10,000: 1$ from dc to 1 MHz , (derating to $500: 1$ at 20 MHz $1 \mathrm{~V} p-p$) at a deflection factor setting of $1 \mathrm{mV} / \mathrm{div}$. Differential dc offset is available to null out dc offsets between the two inputs. This offset capability can be used with dc coupling at $1 \mathrm{mV} /$ div to measure a bipolar transistor's Vbe change from self-heating caused by signal changes.
As a comparator amplifier the 11A33 loses its differential capability, but provides an accurate (0.15%) positive or negative internal offsetting voltage covering the amplifier's common-mode signal range. This mode is also known as slideback comparison. A signal of up to $\pm 8 \mathrm{~V}$ may be applied to an input at a deflection factor setting of $1 \mathrm{mV} / \mathrm{div}$, and with an opposing Vc (offset voltage), small segments of the signal may be observed.

Deflection Factor	$\begin{aligned} & 1 \mathrm{mV} \text { to } \\ & 99.5 \mathrm{mV} / \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \text { to } \\ & 0.99 \mathrm{~V} / \mathrm{div} \end{aligned}$	1 V to $10 \mathrm{~V} / \mathrm{div}$
Common-mode Signal range	$\pm 8 \mathrm{~V}$	$\pm 80 \mathrm{~V}$	$\pm 500 \mathrm{~V}$
Differential dc Offset range	$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 100 \mathrm{~V}$
Vc range	$\pm 8 \mathrm{~V}$	$\pm 80 \mathrm{~V}$	$\pm 500 \mathrm{~V}$

CHARACTERISTICS

Number of Channels - One.
Bandwidth - Dc to 150 MHz (dc to 120 MHz at $1 \mathrm{mV} /$ div.)

Calibrated Deflection Factors -

Coarse steps: 1 mV to $10 \mathrm{~V} / \mathrm{div}$ in 1-2-5 sequence.
Fine steps: Between coarse steps in 1% increments of next more-sensitive coarse step.
Accuracy - Δ Volts dc accuracy:
With 11400: $\pm(0.9 \%+0.01 \mathrm{div})$.
With DSA 600 : $\pm(1.0 \%+0.02$ div).
Dc Balance, 1 to $99.5 \mathrm{mV} /$ div: $\pm(0.5 \mathrm{mV}+0.10 \mathrm{div})$.
Differential Dc Offset Accuracy, 1 to $99.5 \mathrm{mV} / \mathrm{div}$: $\pm(0.25 \%+0.7 \mathrm{mV})$.
Vc Accuracy, 1 to $99.5 \mathrm{mV} / \mathrm{div}$ (8 V range): $\pm(0.15 \%$ +0.6 mV).
For absolute dc accuracy of single point measurements using Vc , add the Vc Accuracy and dc balance terms.

Vc Range -

1 to $99.5 \mathrm{mV} /$ div: $\pm 8 \mathrm{~V}$; Resolution: $25 \mu \mathrm{~V}$.
100 mV to $0.995 \mathrm{~V} / \mathrm{div}: \pm 80 \mathrm{~V}$; Resolution: $250 \mu \mathrm{~V}$.
1 to $10 \mathrm{~V} /$ div: $\pm 500 \mathrm{~V}$; Resolution: 2.5 mV .

Differential DC Offset Range -

1 to $99.5 \mathrm{mV} / \mathrm{div}: \pm 1 \mathrm{~V}$:
100 mV to $0.995 \mathrm{~V} / \mathrm{div}: \pm 10 \mathrm{~V}$;
1 to $10 \mathrm{~V} / \mathrm{div}: \pm 100 \mathrm{~V}$.
Overdrive Recovery - Recovers to within 0.25% of overdriving signal within 40 ns ; to within 2 mV in $100 \mu \mathrm{~s}$; to within 1 mV in $300 \mu \mathrm{~s}$. Conditions: 1 to $99.5 \mathrm{mV} / \mathrm{div}$; Overdriving signal steps to 0.0 V from $\pm 8.0 \mathrm{Volts}$; Slew rate $\leq 0.5 \mathrm{~V} / \mathrm{ns}$.

Typical Noise (RMS) -

1 to $1.99 \mathrm{mV}: 0.24$ div.
2 to $4.98 \mathrm{mV}: 0.12$ div.
5 to $9.95 \mathrm{mV} / \mathrm{div}: 0.05 \mathrm{div}$.
10 mV to $10 \mathrm{~V} / \mathrm{div}: 0.03 \mathrm{div}$.

Common-Mode Rejection Ratio -

1 to $99.5 \mathrm{mV} /$ div: $10,000: 1$, dc to 1 MHz ; 2000:1 at 5 MHz ($8 \mathrm{~V} p-\mathrm{p}$ signal).
100 mV to $0.995 \mathrm{~V} / \mathrm{div}: 1000: 1$, dc to 1 MHz ; 100:1 at 10 to 20 MHz (30 V p-p signal).
1 to $10 \mathrm{~V} /$ div: $500: 1$, dc to 250 kHz ($100 \mathrm{~V} \mathrm{p-p}$ signal).
Input Impedance $-50 \Omega, 1 \mathrm{M} \Omega$ in parallel with 15 pF , or $1 \mathrm{G} \Omega$ in parallel with 15 pF from 1 to $99.5 \mathrm{mV} / \mathrm{div}$.
Input Coupling Modes - Dc, ac, Vc, and OFF for each input. Vc Coupling internally connects an amplifier input to the comparison voltage.

Max Input Voltage -

$1 \mathrm{M} \Omega$ mode: 1 to $99.5 \mathrm{mV} /$ div: $50 \mathrm{~V}($ dc + peak ac); 0.1 to $10 \mathrm{~V} /$ div: 500 V (dc + peak ac).
(At 1 to $99.5 \mathrm{mV} /$ div, derate maximum input voltage at $20 \mathrm{~dB} /$ decade above 3 MHz ; at 100 mV to $10 \mathrm{~V} /$ div, derate maximum input voltage at $20 \mathrm{~dB} /$ decade above 1 MHz .)
50Ω mode: The input impedance is switched to $1 \mathrm{M} \Omega$ when the input signal exceeds safe limits. Manual reset by re-selecting 50Ω input impedance.
LF Step Response aberrations: $0.1 \mathrm{~V} / \mathrm{div}-110 \mathrm{~V} /$ div: less than $\pm 1 \%$ after the first 20 ns of input step.

TWO-CHANNEL HIGH BANDWIDTH VIDEO AMPLIFIER

NEW 11A16 AMPLIFIER

The 11A16 is a two-channel current amplifier plug-in designed to operate with the A6302 and A6303 current probes. With the 11A16 you get a versatile and powerful current analysis and measurement system. It provides direct readout of current levels, and calibration including timing deskew - of the probe path. Deskewing the current channel means you can now make instantaneous power measurements with higher accuracy than ever before. And those measurements can be programmed over the GPIB for a totally automated system.
With a sensitivity range of $1 \mathrm{~mA} /$ div to $2 \mathrm{~A} / \mathrm{div}$ (with the A6302 probe) the 11 A16 supports a wide variety of applications from medical monitors to machine control to power systems. The 11A16 is an excellent tool for power supply designers. With it, the engineer can make
simultaneous measurements on current and voltage waveforms, and use the waveform math capability of the 11000 Series and DSA 600 Series mainframes to calculate instantaneous power. You can verify power circuit design or monitor variations in power use by your target system.

CHARACTERISTICS

(With A6302 Current probe.)
Number of Channels - Two.
Bandwidth -50 MHz (limited by probe).
Rise Time -7 ns or less.
Deflection Factor - $1 \mathrm{~mA} / \mathrm{div}$ to 2 A/div in 1-2-5 sequence.

Offset Range -

$1 \mathrm{~mA} /$ div to $99.5 \mathrm{~mA} /$ div: $\pm 1 \mathrm{~A}$; Resolution: $25 \mu \mathrm{~A}$. $0.1 \mathrm{~A} / \mathrm{div}$ to $2 \mathrm{~A} / \mathrm{div}: \pm 10 \mathrm{~A}$; Resolution: 0.025 div .
Input Coupling Modes - Ac, dc, and OFF.
ENVIRONMENTAL CHARACTERISTICS
Temperature - Operating: 0° to $50^{\circ} \mathrm{C}$; Nonoperating: -40° to $+75^{\circ} \mathrm{C}$.
Altitude -Operating: to $4.5 \mathrm{~km}(15,000 \mathrm{ft})$;
Nonoperating: to $15 \mathrm{~km}(50,000 \mathrm{ft})$.
Mil Specs -MIL-T-28800C, Type III, Class 5.

INCLUDED ACCESSORIES

Current Loop Adapter - Part number 015-0601-00;
used to calibrate current probes. The adapter connects to the mainframe Calibrator BNC. Current probes clip onto the adapter and probe calibration is performed.
Voltage Converter - Part number 015-0598-00. Used in service calibration procedures.

NEW 11T5H MULTI-STANDARD VIDEO TRIGGER

The new 11T5H Multi-Standard Video Trigger plug-in offers triggering capability for high performance video applications. It brings the
 measurement power of the 11000 Series to TV/video applications for the first time.
With the 11 T 5 H , all major TV standards can be triggered on, including new HDTV standards with their high line count and tri-level sync. The 11 T5H can handle line rates up to 1280 lines/ frame. Engineers designing the latest HDTV components, medical imaging systems, high resolution graphics monitors, or other state-of-the-art video equipment need the power of the 11000 Series with the 11 T5H Multi-Standard Video Trigger.

CHARACTERISTICS

Modes - Field 1, Field 2, All Lines, Active Lines
Line Select Range -1 to 1280 lines or maximum of format
Trigger Jitter (Typical) - 3 ns
Input/Output - EXT 1 input, loopthrough output
Trigger Source - Selectable from EXT 1 (11T5H front panel), L1, L2, C1, C2 from compatible companion amplifier plug-in.

ENVIRONMENTAL CHARACTERISTICS

Temperature - Operating: 0 to $+50^{\circ} \mathrm{C}$, Non-operating: -40 to $+75^{\circ} \mathrm{C}$.
Humidity - Operating and Non-operating: meets MIL-T28800C. Type III, Class 5 as described in 3.9.2.2 and 4.5.5.1.2.2.

Altitude -Operating: to $4,570 \mathrm{~m}$ ($15,000 \mathrm{ft}$.); Nonoperating: to $15,200 \mathrm{~m}(50,000 \mathrm{ft}$.).

NEW 11A16

- Two Separate Channels
- 50 MHz Bandwidth at Probe Tip
- Automatic Deskew, Including Probe, for High Accuracy Power Measurements
- Programmability via IEEE 488.1 (GPIB) and RS-232
- Increased Accuracy from OnBoard Amplitude Calibration
- Fully Compatible with 11000

Series and DSA Mainframes

- Full Use of All 11000 Series Measurements
- Compatible with Tektronix A6302 and A6303 Current Probes
- One Button Probe Degaussing and Offset Adjustment
- Bandwidth Limiting
- AC or DC Coupling
- Easy Documentation with 11000 Series and DSA Hardcopy Features

ORDERING INFORMATION

$$
\begin{aligned}
& \text { 11A16 - Two-Channel Current } \\
& \text { Amplifier } \\
& \text { Includes: } \\
& \text { User Reerence (070-7763-00), } \\
& \text { Service Reference (070-7764-00), } \\
& \text { Current Loop Adapter (} 015-0601-00 \text {), } \\
& \text { Voltage Converter (015-0598-00). } \\
& \quad \text { INSTRUMENT OPTIONS } \\
& \text { Opt. } 20 \text { - Includes two A6302 probes. }{ }^{\circ}
\end{aligned}
$$

NEW 11T5H

- Trigger on Individual Lines Up to 1280 Lines/Frame
- Compatible with All Major TV Standards - Including HDTV
- Fully Programmable via GPIB
- Easy-to-Use Controls
- Operates with Companion 11A34V High Bandwidth Video Amp for a Total System

ORDERING INFORMATION

11T5H Multi-Standard Video Trigger • Includes:
User Reference (070-7961-00),
Service Reference (070-7962-00).
*1 Contact your local sales office

ORDERING INFORMATION

Accessory	Key Characteristics (the following accessories are compatible with all 11000 Series amplifiers/mainframes, unless specified otherwise. For complete specifications refer to the corresponding page(s) listed in this table.)	Page	Order	Price
Probes				
Passive Probes ($1 \mathrm{M} \Omega$ linput)	$10 \mathrm{X}, \mathrm{dc}-400 \mathrm{MHz}$, with readout and identify (11A32, 11A33, 11A34 only) 1X/10X, dc -200 MHz with readout (11A32, 11A33, 11A34 only)	$\begin{aligned} & 322 \\ & 322 \end{aligned}$	$\begin{aligned} & \text { P6134C } \\ & \text { P6063B } \end{aligned}$	$\begin{aligned} & \$ 180 \\ & \$ 290 \end{aligned}$
Low-Z Probes (50Ω linput)	$10 \mathrm{X}, \mathrm{dc}-9.0 \mathrm{GHz}$ (11800 Series and CSA 803 only) $10 \mathrm{X}, \mathrm{dc}-3.5 \mathrm{GHz}, \leq 1 \mathrm{pF}, 500 \Omega$ $100 \mathrm{X}, \mathrm{dc}-3.0 \mathrm{GHz}, \leq 1.1 \mathrm{pF}, 5000 \Omega$ (includes 10 X tip)	$\begin{aligned} & 321 \\ & 321 \\ & 321 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P6150 } \\ & \text { P6156 } \\ & \text { P6156 Opt. } 25 \end{aligned}$	$\begin{array}{r} \$ 1,295 \\ \$ 255 \\ \$ 315 \end{array}$
Bias-Offset Probe	$10 \mathrm{X}, \mathrm{dc}-1.5 \mathrm{GHz}, 1.6 \mathrm{pF}, 450 \Omega$	320	P6231	\$525
Active Probes	$10 \mathrm{X}, \mathrm{dc}-1 \mathrm{GHz}, \geq 10 \mathrm{M} \Omega$ input impedance, 1.9 pF $10 \mathrm{X}, \mathrm{dc}-1 \mathrm{GHz}, \geq 10 \mathrm{k} \Omega$ input impedance, 2.0 pF	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & \hline \text { P6204 } \\ & \text { P6203 } \end{aligned}$	$\begin{array}{r} \$ 1,470 \\ \$ 950 \end{array}$
Differential Probe	10X, dc - 150 MHz (11A33 only), $1 \mathrm{M} \Omega$, 10.5 pF	327	P6135A	\$695
Optical-to-Electrical Converters	$\begin{aligned} & \text { dc }-6.4 \mathrm{GHz}, 1000-1700 \mathrm{~nm} \text { (sampling head for } 11800 \text { Series and CSA } 803 \text { only) } \\ & \mathrm{dc}-1 \mathrm{GHz}, 1100-1700 \mathrm{~nm} \\ & \mathrm{dc}-700 \mathrm{MHz}, 450-1050 \mathrm{~nm} \\ & \mathrm{dc}-300 \mathrm{MHz}, 1000-1700 \mathrm{~nm} \text {, High Gain } \\ & \text { dc }-250 \mathrm{MHz}, 450-1050 \mathrm{~nm} \text {, High Gain } \end{aligned}$	$\begin{aligned} & 288 \\ & 287 \\ & 287 \\ & 287 \\ & 287 \end{aligned}$	SD42 P6703A P6701A P6713 P6711	
Current Probes	$\begin{aligned} & \mathrm{dc}-50 \mathrm{MHz}, 0-20 \mathrm{~A}(\mathrm{dc}+\text { peak ac) } \\ & \mathrm{dc}-15 \mathrm{MHz}, 0-100 \mathrm{~A}(\mathrm{dc}+\text { peak ac) } \end{aligned}$ $25 \mathrm{kHz}-1 \mathrm{GHz} \text {, max current of } 0.5 \mathrm{~A} \text { rms }$	$\begin{aligned} & 325 \\ & 325 \\ & 325 \end{aligned}$	AM503S AM503S Opt. 03 CT-1	$\begin{array}{r} \$ 2,400 \\ \$ 3,030 \\ \$ 270 \end{array}$
Cart	Instrument cart with tilt tray, drawer, power strip	307	K217S	\$725
Blank Panels	Plug-in (11400, DSA 600, CSA 404) Sampling Head (11800, CSA 803 only)	$\begin{aligned} & 340 \\ & 340 \end{aligned}$	$\begin{aligned} & \hline 016-0829-00 \\ & 200-3395-00 \end{aligned}$	$\begin{aligned} & \$ 145 \\ & \$.85 \end{aligned}$
Hard Copy Output and Printers	4-color pen plotter Dot matrix printer Color ink-jet printer	$\begin{aligned} & 295 \\ & 296 \\ & 364 \end{aligned}$	$\begin{aligned} & \hline \text { HC100 } \\ & \text { HC200 } \\ & 4696 \end{aligned}$	$\begin{array}{r} \$ 950 \\ \$ 275 \\ \$ 1,795 \end{array}$
Cables	GPIB, 2 m (DSA 600 only) GPIB, 2 m (11400,11800, CSA 803, DSA 600 only) RS-232-C, 10 ft . Centronics, 10 ft .	$\begin{aligned} & 334 \\ & 334 \\ & 334 \\ & 334 \end{aligned}$	$\begin{aligned} & 012-0630-03 \\ & 012-0991-00 \\ & 012-0911-00 \\ & 012-0555-00 \end{aligned}$	$\begin{aligned} & \$ 110 \\ & \$ 160 \\ & \$ 100 \\ & \$ 125 \end{aligned}$

Note: Other available accessories can be found on pages 294-341.
${ }^{* 1}$ Contact your local sales representative.

Software Packages

11000 Series/IBM PC Utility Software - Waveform/measurement data logging, graphics and statistical analysis, and GPIB and RS-232-C support. Order S47P108 for 11400 Series, 11800 Series, CSA 803, and DSA 600 Series.
1-Pattern ${ }^{\text {TM }}$ Software - Uses two-and three-dimensional graphic displays. Jitter and noise measurement pulse parametric measurements, mask testing, and Pass/Fail limit testing. Order S47P107.
11000 Series Template/Waveform Processing Program -Menu-driven waveform template generator provides template waveforms for storage and controller based save-on-delta function. Order S47P110. EZ-TEST - Provides a simple means to specify high-level test functions using instruments in an online learning mode. Test procedures include instrument control, measurements, pass/tail, waveform acquisition and pulse parameter analysis, and more. Order S45F030.
SPD Signal Processing \& Display Software - A library of 196 signal processing, analysis and display routines callable from Microsoft C or BASIC. SPDMENU lets you interactively control instruments and analyze data using a convenient system of menus and graphical displays of data. Order S3FG130.
ASYST - Sophisticated scientific sotware for the personal computer. Interactive or fully programmable operation for integrated data acquisition,
analysis, and display. Supports RS-232-C, GPIB, or A/D acquisition boards. Order S42P301 for ASYST Modules 1, 2, and 4.
11000 Series ASYST Driver-Menu-driven package written in the ASYST language for mainframe control, waveform acquisition, data logging, graphing, and FFT analysis. Order S47P305. ASYSTANT ${ }^{\text {M }}$ GPIB - Fully integrated, completely menu-driven environment, designed for data acquisition and instrument control via GPIB interface coupled with a broad range of statistical and numerical analysis and waveform processing operations. Order \$47P311. LabWindows ${ }^{\text {TM }}$ - An integrated software system that supports rapid prototyping, development, and operation of test and measurement applications in either C or BASIC. Order S3FG910.
11400/HP-200/300 Time and Amplitude Measurement
(TekMAP) Software - RM BASIC code providing softkey access to waveform acquisition, analysis, pulse parametrics, FFT, propagation delay, and measurement data logging and statistics. Order S47H211.

For Macintosh users, virtual instrument panels and icons are available for the LabView ${ }^{\text {TM }}$ instrumentation software from National Instruments.
See page 257-270 for a complete description of the software packages available.

[^8]
TECHNOLOGY HIGHLIGHTS

The highest performance, real-time oscilloscope is the 7104. The microchannel plate (MCP) crt provides a trace 1,000 times brighter than conventional crts. This permits easy viewing or photographing of 1 GHz transient events. The MCP technology is a unique Tektronix technical advantage in real-time oscilloscopes. There are five oscilloscopes in the real-time family. A sampling rate equivalent to $250 \mathrm{GS} / \mathrm{s}$ is achieved when used with the DCS01.

The crt storage technique is another Tektronix technical superiority that is incorporated into real-time
oscilloscopes. The 7934 is an outstanding example of a 500 MHz , real-time oscilloscope that can capture singleshot or low-repetition rate events for long-term viewing or photography. There are two oscilloscopes in the realtime, crt-storage family.
Add digital storage to your 7000 Series mainframe (except the 7104) with the 7D20 Programmable Digitizer. The 7D20 has a 70 MHz bandwidth. It provides two channels of simultaneous acquisition, waveform storage, signal averaging, and cursor measurements. Typical applications include Ultrasonics, digital design, RF modulation, and automated production testing.

7000 SERIES SELECTION GUIDE

7000 SERIES SELECTION GUIDE									
Instrument	Real-Time Bandwidth	Rise Time	Minimum Deflection Factor		Maximum Sweep Speed		Four Traces	Delayed Sweep	Technology
7104	1 GHz	350 ps	$\begin{aligned} & 10 \mathrm{mV} / \mathrm{div} @ \mathrm{BW} \\ & 10 \mu \mathrm{~V} / \mathrm{div} \\ & 1 \mathrm{~mA} / \mathrm{div} \\ & \hline \end{aligned}$		$200 \mathrm{ps} / \mathrm{div}$		yes	yes	$\begin{aligned} & \hline(\mathrm{MCP})_{\text {Real }} \\ & \text { time } \end{aligned}$
7904A	500 MHz	700 ps	$10 \mathrm{mV} / \mathrm{div}$ @ BW $10 \mu \mathrm{~V} /$ div 1 mA div		$500 \mathrm{ps} / \mathrm{div}$		yes	yes	Real Time
R7844	400 MHz	900 ps	$\begin{aligned} & \hline 10 \mathrm{mV} / \text { div @ BW } \\ & 10 \mu \mathrm{~V} / \mathrm{div} \\ & 1 \mathrm{~mA} / \mathrm{div} \\ & \hline \end{aligned}$		$1 \mathrm{~ns} / \mathrm{div}$		yes (dual beam)	yes	Real Time
7603/R7603	100 MHz	3.5 ns	$5 \mathrm{mV} /$ div © BW $10 \mu \mathrm{~V} / \mathrm{div}$ 1 mA/div		$5 \mathrm{~ns} / \mathrm{div}$		yes	yes	Real Time
Instrument	Real-Time Bandwidth	Rise Time	Maximum Sweep Speed	Stored Writing Speed			Storage Mode		Technology
							Variable Persistance	Fast Variabl Persista	
7934	500 MHz	700 ps	$500 \mathrm{ps} / \mathrm{div}$	$4000 \mathrm{~cm} / \mu \mathrm{s}$		yes	yes	yes	Real Time/ CRT Storage
7623B/R7623B	100 MHz	3.5 ns	$5 \mathrm{~ns} / \mathrm{div}$	$1000 \mathrm{~cm} / \mu \mathrm{s}$		yes	yes	yes	Real Time/ CRT Storage

| | | | 7000 SERIES SELECTION GUIDE | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Contents
71041 GHz Oscilloscope........... 66
7934 CRT-Storage
Oscilloscope
7603/R7603 100 MHz
Oscilloscope \qquad
7623/R7623B 100 MHz
Storage Oscilloscope
PLUG-INS
7 D20 Digitizer Plug-in
Vertical Amplifiers 69
Time Bases 69

ORDERING INFORMATION

7904A OSCILLOSCOPE

7904A - Oscilloscope $\$ 15,100$
Includes: Power cord
(161-0066-00), Instruction
Manual (070-4593-00).

7904A OPTIONS

Opt. 02 -X-Y Horizontal
Compensation
Opt. 03 -EMC Modification $+\$ 500$
R7844 RACKMOUNT OSCILLOSCOPE
R7844 Rackmount Oscilloscope $\$ 24,430$
Includes: Power cord
(161-0066-00), Instruction
Manual (070-1676-02),
Operator Manual (070-1675-00),
hardware rackmount kit
(016-0099-00), slide guide
(351-0314-01).
R7844 OPTIONS
Opt. 03 -EMC Modification
Opt. 22 -Writing-Speed
Enhancer
$+\$ 500$

Opt. 78 - BE (P11) Phosphor

INTERNATIONAL POWER PLUG

 OPTIONSOpt. A1-A5 Available
NC
See page 374.
ACCESSORIES
Recommended Cameras - See page 70.
Recommended Carts - See page 306.
Recommended Probes - See page 70.

For more information on the 7904A and R7844, contact your local sales representative.

71041 GHz OSCILLOSCOPE

- Displays Fast Transients and Low Repetition Rate Signals Under Normal Lighting
- 1 GHz Bandwidth (350 ps Rise Time) at $10 \mathrm{mV} / \mathrm{Div}$
- 200 ps/Div Fasiest Calibrated Sweep Rate
- 350 MHz Horizontal Bandwidth
- Ultra-High Photographic Writing Rate

ORDERING INFORMATION

(PLUG-INS NOT INCLUDED)
7104 1-GHz Oscilloscope $\$ 31,550$
Includes:
Power cord (161-0066-00),
Instruction Manual
(070-2314-00),
Operator Manual
(070-2315-00).

INSTRUMENT OPTIONS

Opt. $\mathbf{0 2 - X}$-Y Horizontal
Compensation
Opt. 03-EMC Capability $+\$ 500$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - Available
See page 374.

CONVERSION KIT

EMC Modification -
Order 040-0965-00

ACCESSORIES

Recommended Cameras - DCSO1. Also,

see page 70 .

Recommended Carts - See page 306.
Recommended Probes - See page 70
PHYSICAL CHARACTERISTICS

Dimensions	mm	in.
Width	305	12.0
Height	345	13.6
Depth	592	23.3
Weight \approx	kg	lb
Net	20.4	45.0
Shipping	25.4	56.0

7104 1-GHz OSCILLOSCOPE

The 7104 has both the highest writing speed and highest bandwidth available in a general-purpose oscilloscope today.

The 7104's outstanding writing speed means unsurpassed single-shot capability, with trace brightness about one thousand times that of conventional oscilloscopes. Any single-shot signal within the 1 GHz bandwidth can be seen directly on the crt in average room light. Singleshot photography is now simple and straightforward, using standard oscillographic cameras and film.

You can capture the fastest transients without expensive high-speed film. In fact, you can see those signals on the crt and eliminate costly time-consuming photographs.

Anomalies, such as ringing and overshoot, can only be dealt with by evaluating the signal's analog characteristics.

With a horizontal bandwidth of 350 MHz , Option 2, $X-Y$ Phase-Compensation will give accurate $X-Y$ displays to 250 MHz .

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two let-most plug-in compartments. Compatible with all 7000 Series plug-ins.

Bandwidth, Rise Time and Deflection Factor -

Determined by the plug-in used. See page 69 .
Display Modes - Left, Alt, Add, Chop, and Right.
Chopped-mode repetition rate is $\approx 1 \mathrm{MHz}$.
Trace Separation - In dual-sweep modes, positions
B trace at least four divisions above and below A trace.

HORIZONTAL SYSTEM
Channels - Two right-most plug-in compartments. Compatible with the 7B15, 7B85, and 7B92A, 7000 Series vertical amplifiers, and specialized plug-ins.
Bandwidth - Dc to 350 MHz .
Display Modes - A, Alt, Chop, B.
Chopped-mode repetition rate is $\approx 200 \mathrm{kHz}$.
Fastest Calibrated Sweep Rate -200 ps/div with the 7B15.
X-Y Mode - With Option 02, X-Y Phase Compensation: Phase shift is 2° from dc to 50 MHz . Phase balance can be obtained at any frequency up to 250 MHz . Without Option 02, X-Y Phase Compensation: Phase shift is 2° from dc to 50 kHz .

CRT AND DISPLAY FEATURES

$\boldsymbol{C R T}$ - Internal 8×10-division ($0.85 \mathrm{~cm} /$ div) graticule with variable illumination.
Photographic Writing Speed $-20 \mathrm{~cm} / \mathrm{ns}$.
Autofocus - Compensates for changes in intensity after focus control has been set.
Beam Finder - Aids in locating offscreen signal.

A pulse train with a low level pulse on the 7104, with one thousand times the brightness of conventional oscilloscopes. The researcher can view the pulse directly and take pictures with ease.

View of a single clocking pulse of 0.8 ns rise and 2 ns pulse width.

7934 CRT-STORAGE OSCILLOSCOPE

The 7934 CRT-Storage Oscilloscope is used for single-shot and low-repetition rate pulse analysis. Capabilities include storing unexpected transient pulses, highfrequency bursts occurring at low-repetition rates, and fast pulses in applications using high-speed ECL.

A $4000 \mathrm{~cm} / \mu \mathrm{s}$ storage writing rate, 700 ps rise time, and 500 MHz bandwidth ensure undistorted capture and clear display of the fastest waveform details. The 7934 can be used as a non-storage oscilloscope as well.

The mainframe bandwidth is 500 MHz . System bandwidth may vary from 80 MHz to 500 MHz , depending on the plug-in used.*1

The instrument has four storage modes. Bistable mode provides stored displays with long (30 minute) view time. When viewing changing wave-shapes, Variable Persistence mode provides continuous bright displays of new information as old information fades from the crt. Fast Bistable mode increases writing speed to $350 \mathrm{~cm} / \mu \mathrm{s}$ (reduced scan). Fast Variable Persistence mode provides the maximum stored writing speed of $4000 \mathrm{~cm} / \mu \mathrm{s}$ (reduced scan). View time is at least 30 seconds.
${ }^{* 1}$ High-gain differential amplifiers offer very high gain at lower bandwidth.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-most plug-in compartments. Compatible with 7000 Series amplifier plug-ins.
Bandwidth, Rise Time, and Deflection Factor Determined by the plug-in unit used. See page 69.
Display Modes - Left, Alt, Add, Chop, Right.
Chopped-mode repetition rate is 1 MHz .
HORIZONTAL SYSTEM
Channels - Two right-most plug-in compartments.
Compatible with most 7000 Series plug-ins.

*1 Reduced Scan divisions are 0.45 cm .
Graph showing the stored writing speed needed to display a given sine wave or step rise time at a given amplitude.

- Real-Time Storage of Fast Transients for Later Analysis
- Displays Low Repetition Rate Signals
- Wide Selection of Versatile Plug-Ins
- 700 ps Single-Shot Rise

Time Storage Capability

- DC to 500 MHz Bandwidth
- $4000 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed
- 500 ps/Div Fastest Calibrated Sweep Rate

Bandwidth - Dc to at least 1 MHz .
Display Modes - A, Alt, Chop, B. Chopped-mode repetition rate is $\approx 200 \mathrm{kHz}$.

CRT AND DISPLAY FEATURES

CRT - Internal variable illuminated graticule.

8×10 divisions ($0.9 \mathrm{~cm} /$ div) graticule in full scan and 8×10 divisions ($0.45 \mathrm{~cm} / \mathrm{div}$) in reduced scan.
Beam Finder - Aids in locating an off-screen signal.
Autoerase - Variable from < 1 s to $>10 \mathrm{~s}$.
Multitrace Delay -Adjusts the transfer cycle time in the fast transfer modes. Variable from $<1 \mathrm{~s}$ to $>4 \mathrm{~s}$.
Persistence - (Variable-Persistence Mode only) Controls rate of continuous erasure of the variablepersistence and fast variable-persistence stored displays.
Save - Prevents display from being accidentally erased, and provides up to 30 times longer viewing times in variable-persistence modes.

In laser research - the 7934 captures a laser primary and reflected pulse using Fast VariablePersistence storage (reduced scan) and two 7A29 plug-ins in ADD mode.

ORDERING INFORMATION

(PLUG-INS NOT INCLUDED)
7934 - CRT-Storage
Oscilloscope
Includes:
Installed gray CRT filter (378-0625-02),
green CRT filter (378-0625-08),
power cord (161-0066-00),
Operator Manual (070-5879-00).

INSTRUMENT OPTIONS

Opt. 02 - X-Y Mode Phase
Correction
Adds $X-Y$ delay compensation
network to equalize the signal
delay between the B horizontal
compartment and either vertical
compartment.
Opt. 03-EMC capability $+\$ 500$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 Available
NC
See page 374.

> CONVERSION KITS

X-Y Mode Phase Correction -
Order 040-0942-01
EMC Modification -
Order 040-1195-00

ACCESSORIES

Service Manual -
Order 070-5880-00
$\$ 180$
Rack Adaptor - See page 340.
Recommended Cameras - See page 70.
Recommended Cart - See page 306.
Recommended Probes - See page 70.
PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in.
Width	305	12.0
Height	345	13.6
Depth	622.5	24.5
Weight \approx	$\mathbf{k g}$	l
Net	17.2	37.8
Shipping	21.6	47.6

7600 Series

- DC to 100 MHz Bandwidth
- 3.5 ns Rise Time
- 5 ns/Div Fastest Calibrator Sweep Rate
- Requires only 5.25 inches of Rackmount Space

7603 General Purpose

- Greater than 260 cm/s Writing Speed With Optional CRT
- CRT Readout

NEW 7623B CRT Storage

- Able to Capture and Store Transients and Low
Repetition Rate Signals
- 1000 cm/us Stored Writing Speed
- Multimode Storage

ORDERING INFORMATION

7603/R7603 OSCILLOSCOPE
7603 Oscilloscope $\$ 5,625$
Includes:
Clear CRT filter (337-1700-04),
blue CRT filter (337-1700-01), 20-in.
two-pin-to-BNC cable (175-1178-00),
Operator Manual (070-1310-00),
Service Manual (070-1429-00).
R7603 - Rackmount
Oscilloscope
Includes: Same as 7603 , plus a
rackmounting hardware kit
(016-0099-00).
Opt. 03 -EMC Modification. $\quad+\mathbf{5 0 0}$
Opt. 04 - High-Brightness
$8 \times 10-\mathrm{cm}$ CRT Display.
GH (P31) Phosphor.
7603
R7603
R7603 $\$ 600$
Opt. 08 (7603) - Protective
Panel Cover.
Opt. 20 (R7603) - IEEE Standard 488 Interface for the 7D20 only. $+\$ 150$ 7623B/R7623B CRT-STORAGE

7623B CRT-Storage

Oscilloscope
includes: 20-in., two-pin-
to-BNC cable (175-1178-00),
green CRT filter (378-0625-08),
power cord (161-0066-00),
Instruction Manual (070-1767-00),
Operator Manual (070-1766-00).
R7623B - Rackmount
Oscilloscope
$\$ 12,200$
Includes: Same as 7623B.
Opt. 03 -EMC Modification. $+\$ 500$
Opt. 08 - Protective Panel Cover. $+\$ 150$ CONVERSION KITS
CRT Readout -

Order 040-0748-06	$\$ 880$
EMC Modification -	
Order 040-0663-01	$\$ 585$
Rackmount Order 040-0678-01	$\$ 475$
Power Supply - To light plug-in	
pushbuttons. Order 040-0686-01	$\$ 110$
INTERNATIONAL POWER PLUG	
OPTIONS	

Opt. A1-A5 Available
See page 374.

ACCESSORIES

Recommended Cameras - See page 70.
Recommended Carts - See page 306.
Recommended Probes - See page 70.

7603/R7603 OSCILLOSCOPES

The 7603 and R7603 Oscilloscopes are general purpose 100 MHz , real-time oscilloscopes.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-most plug-in compartments, Bandwidth, Rise Time, and Deflection Factor Determined by the mainframe/plug-in used. See page 69.
Display Modes -Left, Alt, Add, Chop, Right.
Chopped-mode repetition rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Channels - One right-most plug-in compartment.
Bandwidth - Dc to 2 MHz .
Fastest Calibrated Sweep Rate $-5 \mathrm{~ns} / \mathrm{div}$.
$\boldsymbol{X}-\boldsymbol{Y}$ Mode $\boldsymbol{-}$ Phase shift is within 2° from dc to 35 kHz .

CRT AND DISPLAY FEATURES

CRT - Internal 8×10 division ($1.22 \mathrm{~cm} / \mathrm{div}$) graticule with variable illumination.
Option 04, High-Brightness CRT With Reduced
Area - Internal $8 \times 10 \mathrm{~cm}$ graticule with variable illumination.

7623B STÕRAGE OSCILLOSCOPE

The 7623B Storage Oscilloscope provides $2200 \mathrm{div} / \mu \mathrm{s}$ $(1000 \mathrm{~cm} / \mathrm{ss}$) stored writing speed and 100 MHz bandwidth. The instrument has three display modes and four storage modes. The maximum writing speed of $1000 \mathrm{~cm} / \mu \mathrm{s}$ is achieved in reduced-scan mode. Available for rackmounting as R7623B.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-most plug-in compartments for 7000 Series plug-ins.

Bandwidth, Rise Time, and Deflection Factor -

Determined by the mainframe and plug-in used. See page 69.
Display Modes -Left, Alt, Add, Chop, Right.
Chopped-mode repetition rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Channel -One plug-in compartment (right-most).
Compatible with all 7000 Series plug-ins.
Bandwidth - Dc to at least 2 MHz .
Fastest Callbrated Sweep Rate $-5 \mathrm{~ns} /$ div.

CRT AND DISPLAY FEATURES

$\boldsymbol{C R T}$ - Internal 8×10 division graticule with variable illumination. RN has additional graticule for the reducedscan mode.
CRT Display Modes - Nonstore, Bistable, Variable
Persistence, Fast Bistable, Fast Variable Persistence. Reduced scan may be selected in all display modes.

7000 SERIES VERTICAL AMPLIFIER SPECIFICATIONS

| Mainframes | Features | 7A29 | 7A19 | 7A24 | 7A26 | 7A18A | 7A13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 7A22

${ }^{-1}$ Accuracy percentages apply to all deflection factors. Accuracy is without probes.
${ }^{2}$ R7903 with 7A29; rise time is 0.8 ns .
${ }^{\cdot}$ Rise time is calculated from the bandwidth.

	7000	SERIES TIME BASE SELECTION GUIDE		
	7B15	7B92A	7B85	7B53A
Performance Feature	yes	no	yes	no
Single-trace time base	no	yes	no	yes
Dual-trace time base	no	no	no	yes
With mixed sweep	no	no	no	yes (Opt. 05)
IV Sync Triggering	yes	yes	yes	no
Can also use as delayed time base	yes	no	yes	no
Delaying/ADelay sweep				

7000 SERIES TIME BASE/MAINFRAME RECOMMENDATION				
	7B15	7B92A	7B85	7B53A
Mainframe	yes	yes	no	no
7104	yes	yes	yes	no
7094 A	yes	yes	yes	no
R7844	yes	yes	yes	no
7934	no	no	no	yes
$7603 / R 7603$	no	no	no	yes
$7623 \mathrm{~B} / R 7623 \mathrm{~B}$				

$7 D 20$ INFORMATION

The 7D20 is a GPIB programmable plug-in compatible with all 7000 Series mainframes except the 7104 . With a 7000 Series mainframe, it creates a fully programmable, digitizing oscilloscope.
The 7D20 offers signal averaging to reduce uncorrelated noise, envelope displays to compare dynamic characteristics of changing signals, pretrigger for viewing prior to the trigger event, storage of six independent waveforms plus a reference waveform, cursors for more accurate two-dot measurements, and user prompting menu displays to improve user-interface effectiveness.

A 40 MHz maximum sampling rate provides approximately 10 MHz single-shot bandwidth and up to 70 MHz repetitive signal bandwidth.
Since the 7D20 is completely programmable, fully automated measurement and testing is possible. Interactive test procedures, text messages, waveforms, and front-panel set-ups may be transmitted and received from the 7D20 to a controller or computer.

ORDERING INFORMATION

7A29 AMPLIFIER

7A29-1 GHz Amplifier
Includes:
Instruction Manual (070-2320-00).
Opt. 04 - Variable Delay Line
7A19 AMPLIFIER
7A19-600 MHz Amplifier Includes:
Instruction Manual (070-2129-00).
Opt. 04 - Variable Delay Line
7A24 AMPLIFIER
7A24 - 400 MHz Amplifier
Includes:
Instruction Manual (070-1485-00).

7A26 AMPLIFIER

7A26-200 MHz Amplifier
Includes:
Instruction Manual (070-1484-01).
7A18A AMPLIFIER
7A18A - 100 MHz Amplifier $\$ 2,225$ Includes:
Instruction Manual (070-4329-00).
Opt. 06 -DC Offset
Isolator A6902B - See page 328.

7A13 AMPLIFIER

7A13 Differential Comparator Amplifier Includes:
Instruction Manual (070-1948-00).
Isolator A6902B - See page 328. \$2,200
P6135A - See page 70.
$\$ 695$

7A22 AMPLIFIER

7A22 Differential Amplifier
Includes:
Instruction Manual (070-0931-00).
P6135A - See pages 70.

7B15 TIME BASE

7815Δ Delaying Time Base $\quad \$ 3,775$
Includes:
Instruction Manual (070-2318-00).
7B92A TIME BASE
7B92A Dual Time Base
$\$ 5,100$
Includes:
Instruction Manual (070-1751-02).

$7 B 85$ TIME BASE

$7 B 85 \Delta$ Delaying Time Base
Includes:
Instruction Manual (070-1961-01).
7B53A TIME BASE
7B53A Dual Time Base
Includes:
Instruction Manual (070-1342-01).
Opt. 05 -TV Triggering
+\$210
Includes:
Instruction Manual (070-1471-00)
7 D20 PROGRAMMABLE DIGITIZER
7020 Programmable Digitizer $\$ \mathbf{1 0 , 7 5 0}$ Includes:
Operator Manual (070-3857-01),
Pocket Reference Guide (070-3205-01),
Service Manual (070-3858-01),
Instrument Interface Guide
(070-1728-00).

ACCESSORIES

See page 70.

7000 SERIES SELECTION GUIDES

	7000 SERIES PROBE SELECTION GUIDE													
	All bandwidths given in $\mathrm{MHz}^{* 1}$													
		Passiv	$1 \mathrm{M} \Omega$	Input Pr	obes	Low 50Ω Pro	$\begin{aligned} & \hline \begin{array}{l} \text { W-Z, } \\ \text { Input } \\ \text { bes } \\ \hline \end{array} \\ & \hline \end{aligned}$		Active ／ 1 MS Probe	Input	$\begin{array}{\|c} \hline \text { Differe } \\ \text { Prol } \end{array}$	$\begin{aligned} & \text { ntial } \\ & \text { es } \\ & \hline \end{aligned}$	$\underset{\text { Pr }}{\substack{\text { High }}}$	$\begin{aligned} & \text { oltage } \\ & \text { bes } \\ & \hline \end{aligned}$
	Plug－in	䯸	$\begin{aligned} & \bar{E} \\ & \text { İ } \\ & \text { 㐫 } \\ & \text { 흔 } \end{aligned}$					商荡		気	$\begin{aligned} & \text { 울 } \\ & \text { E } \end{aligned}$	退	咢运	을흐를
7100 Family	7A13 7A19 7A24 7A26 7A29	$\begin{aligned} & \overline{\mathrm{NC}} \\ & \mathrm{NC} \\ & \overline{\mathrm{NC}} \end{aligned}$	$\begin{aligned} & 34 \\ & \text { NC } \\ & \text { NC } \\ & 34 \\ & \text { NC } \end{aligned}$	$\begin{aligned} & 75 \\ & \text { NC } \\ & \text { NC } \\ & 100 \\ & \text { NC } \end{aligned}$	$\begin{aligned} & 105 \\ & \text { NC } \\ & \text { NC } \\ & 175 \\ & \text { NC } \end{aligned}$	NC 550 375 NC 950	$\begin{aligned} & \text { NC } \\ & 550 \\ & 375 \\ & \text { NC } \\ & 925 \end{aligned}$	$\begin{aligned} & 105 \\ & 430 \\ & 310 \\ & 195 \\ & 660 \end{aligned}$	$\begin{aligned} & 105 \\ & 300 \\ & 300 \\ & 185 \\ & 450 \end{aligned}$	$\begin{aligned} & 105 \\ & 480 \\ & 350 \\ & 200 \\ & 800 \end{aligned}$	$\begin{gathered} 70 \\ 100 \\ 100 \\ 90 \\ 100 \end{gathered}$	90 NC NC NC	$\begin{aligned} & 85 \\ & \text { NC } \\ & \text { NC } \\ & 125 \\ & \text { NC } \end{aligned}$	- NC NC 75 NC
7900 Family	$\begin{aligned} & \text { 7A13 } \\ & \text { 7A18A } \\ & \text { 7A19 } \\ & \text { 7A22 } \\ & \text { 7A24 } \\ & \text { 7A26 } \\ & \text { 7A29 } \end{aligned}$	$\begin{gathered} -\overline{75} \\ \mathrm{NC} \\ 1 \\ \mathrm{NC} \\ \hline \overline{\mathrm{NC}} \end{gathered}$	$\begin{gathered} 34 \\ 34 \\ \text { NC } \\ 1 \\ \text { NC } \\ 34 \\ \text { NC } \end{gathered}$	$\begin{aligned} & 75 \\ & 75 \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & 100 \\ & \text { NC } \end{aligned}$	$\begin{aligned} & 105 \\ & 75 \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & 175 \\ & \text { NC } \end{aligned}$	NC NC 500 NC 350 NC 500	NC NC 500 NC 350 NC 500	105 75 430 310 185 450	$\begin{aligned} & 105 \\ & 75 \\ & 300 \\ & \hline 290 \\ & 185 \\ & 350 \end{aligned}$	$\begin{aligned} & 105 \\ & 75 \\ & 480 \\ & - \\ & 350 \\ & 190 \\ & 500 \end{aligned}$	70 60 95 90 85 700	90 - NC 1 NC - -	$\begin{aligned} & 85 \\ & 70 \\ & \mathrm{NC} \\ & \hline- \\ & \hline \text { NC } \\ & 125 \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & - \\ & 60 \\ & \text { NC } \\ & -\overline{N C} \\ & 75 \\ & \text { NC } \end{aligned}$
7800 Family	$\begin{aligned} & \text { 7A13 } \\ & \text { 7A18A } \\ & \text { 7A19 } \\ & \text { 7A22 } \\ & \text { 7A24 } \\ & \text { 7A26 } \\ & \text { 7A29 } \end{aligned}$	$\begin{aligned} & -\overline{85} \\ & \mathrm{NC} \\ & 1 \\ & \mathrm{NC} \\ & \hline \overline{\mathrm{NC}} \end{aligned}$	$\begin{gathered} 34 \\ 34 \\ \text { NC } \\ 1 \\ \text { NC } \\ 34 \\ \text { NC } \end{gathered}$	$\begin{gathered} 100 \\ 85 \\ \text { NC } \\ 1 \\ \text { NC } \\ 100 \\ \text { NC } \end{gathered}$	$\begin{aligned} & 100 \\ & 85 \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & 145 \\ & \text { NC } \end{aligned}$	NC NC 400 NC 300 NC 400	NC NC 400 NC 300 NC 400	$\begin{aligned} & 100 \\ & 90 \\ & 360 \\ & -280 \\ & \hline 155 \\ & 400 \end{aligned}$	$\begin{aligned} & 100 \\ & 75 \\ & 320 \\ & \overline{270} \\ & 150 \\ & 350 \end{aligned}$	100 90 400 300 180 400	70 65 95 90 85 100	90 - NC 1 NC - -	$\begin{gathered} 85 \\ 80 \\ \text { NC } \\ 1 \\ \text { NC } \\ 105 \\ \text { NC } \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ \text { NC } \\ 1 \\ \text { NC } \\ 75 \\ \text { NC } \end{gathered}$
7600 Family	$\begin{aligned} & \text { 7A13 } \\ & \text { 7A18A } \\ & \text { 7A22 } \\ & \text { 7A26 } \end{aligned}$	$\begin{gathered} 70 \\ 70 \\ 1 \\ 95 \end{gathered}$	$\begin{gathered} 34 \\ 34 \\ 1 \\ 34 \end{gathered}$	$\begin{gathered} 70 \\ 70 \\ 1 \\ 95 \end{gathered}$	$\begin{aligned} & 75 \\ & 70 \\ & \text { NC } \\ & 95 \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \text { NC } \\ & \text { NC } \\ & \text { NC } \\ & \text { NC } \end{aligned}$	75 75 100	$\begin{aligned} & 75 \\ & \frac{75}{} \\ & \hline 100 \end{aligned}$	$\begin{aligned} & 75 \\ & \frac{75}{-100} \end{aligned}$	55 55 70	$\begin{gathered} \frac{65}{1} \\ - \end{gathered}$	65 65 85	$\begin{aligned} & 55 \\ & 55 \\ & \hline-65 \end{aligned}$

${ }^{-1}$ The values in the top table represent the approximate useful frequency response for the measurement systems at the probe tip．$N C=$ Not Compatible．
If there is no bandwidth specified，the probe／plug－in combination is compatible but not recommended．
\cdot^{2} Bandwidths given for $10 X$ switch position．
${ }^{3}$ Requires 1101／1101A Power Supply or other external source of power when used with 7603.

7000 SERIES CAMERA SELECTION GUIDE

	Camera／Features			
Mainframe	DCSO1	C－53	C－9	
	Digitizing	General Purpose	Low Cost	
7104	yes	yes	yes	
7934	N．R．	yes	yes	
7904 A	yes	yes	yes	
R7844	N．R．	yes	yes	
$7623 B / R 7623 B$	N．R．	yes	yes	
$7603 /$ R7603	N．R．	no	yes	

${ }^{\cdot}$ N．R．$=$ Not Recommended

IMPRESSIVE VERSATILITY

The Tektronix 5000 Series offers the broadest selection of low-cost measurement capability available today. The modular design concept enables you to choose the exact waveform measurement equipment you currently need: one-channel to eight, real-time or crt storage, dual or single beam, standard or differential, and then easily reconfigure it later to meet changing requirements. Below are some key evaluation criteria to consider when deciding which 5000 Series configuration will best meet your needs.

DIVERSE APPLICATIONS

For product evaluation and test, you can configure 5000 Series modules for benchtop or rackmount. 5000 Series oscilloscopes are also used extensively in biophysical applications and biomedical research. Engineering applications include electromechanical design, amplifier design and evaluation, vibration analysis, and ultrasonics research.

BANDWIDTH AND RISE TIME

The scope you choose should be about three to five times faster than the signal being measured in order to provide an error of less than three percent.

REAL-TIME OR CRT STORAGE

Choose a real-time scope for applications not requiring waveform storage, or when viewing repetitive signals greater than 50 Hz . Crt storage, on the other hand, is essential for displaying low repetition rate or slowly varying signals. Capturing transient or one-time events also requires a storage scope.

VARIABLE PERSISTENCE OR BISTABLE STORAGE

The 5000 Series offers two types of crt storage variable persistence or bistable. Variable persistence, provides a continuous gradation between the waveform and background. This is helpful when you want to suppress random noise or flicker, when you need to compare repetitive signals or produce bright, high contrast displays of fast signals occuring at slow periodic rates. If, on the other hand, you need to store and view events over longer periods of time, bistable storage is probably the right choice for your application.

The Broadest Selection of Low-Cost Measurement Capability in Your Choice of Real-Time or CRT Storage.

- Up to Eight Fully Independent Channels. With two 5A14N vertical amplifier plug-ins the 5000 Series can provide an ideal multi-channel analysis or storage system.
- High Sensitivity vs. Bandwidth. $1 \mathrm{mV} / \mathrm{div}$ at 25 MHz standard, $10 \mu \mathrm{~V} / \mathrm{div}$ at 1 MHz differential; mandatory for faithful reproduction of low-level signals.
- High CMRR. A high Common Mode Rejection Ratio of 100,000:1 enables you to easily see signals buried in noise. Even low-level signals with a large dc offset can be easily recovered and displayed.
- CRT Readout of Amplifier Scale Factors. Provides quick and easy verification of control settings.
- Modular Amplifiers and Time Bases. Choose between one-, two-, and four-channel high and low bandwidth vertical amplifiers, differential amplifiers, single and dual time bases.
- X-Y Display. A third amplifier plug-in, used in place of a time base, enables operation to the full sensitivity of the chosen amplifier.
- Fully Independent Dual X-Y Displays. Available when using 5A18N dual-channel amplifier in place of a time base.
- High Resolution CRT. 6 1/2" (diagonal) screen offers $1.27 \mathrm{~cm} /$ div for easy viewing and more accurate measurements.
- Dual Beam Storage. Only Tek offers a Two-Gun CRT to eliminate 'dead time' between channels.

Contents

5441/5440 72
5A48/5B42/5B40 73
5113/5111A/5110 74
5A18N/5A15N/5A14N 75
5A22N/5A21N/5A19N 76
5A26/5B12N/5B10N 77
Accessories 78

High Bandwidth Real Time and Storage Mainframes.

- DC to 50 MHz Bandwidth
- CRT Readout
- $5 \mathrm{div} / \mu \mathrm{s}$ Stored Writing Speed
- Variable-Persistence Storage
- Dual X-Y Operation
- Wide Choice of Plug-Ins

ORDERING INFORMATION

5441/R5441 50 MHz Storage Oscilloscope Mainframe*1 Includes: Instruction/Service manual (070-2140-01), 1 year warranty, Power cord (see
page 78 for type).
5441
5440/R5440 50 MHz
Oscilloscope Mainframe* ${ }^{* 1}$
Includes: Instruction/Service manual (070-2139-01), 1 year warranty, Power cord (see
page 78 for type).
5440
$\$ 5,275$
R5440
Note: 'R' prefix indicates rackmount version.

INSTRUMENT OPTIONS

Opt. 01 - Without Crt Readout	NC
Opt. 03 - User-Addressable	
Readout	$\$ 160$
Opt. 04 - Pane	

Opt. 04 - Panel Cover (5440)
CONVERSION KITS
CRT Readout -
Order 040-0691-02 -2
Cabinet to Rack -
Order 040-0583-03
Rack to Cabinet \$330
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-Opt. A5-Power Plugs NC
See page 78 for description.

> ACCESSORIES

See page 78 for recommended
accessories.
PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$.	$\mathbf{m m}$	$\mathbf{i n}$
Width	213	8.4	483	19.0
Height	302	11.9	135	5.3
Depth	518	20.4	483	19.0
Weight	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	10.4	23.0	10.9	24.0
Shipping	14.5	32.0	19.5	43.0

[^9]

The 5441 adds variable-persistence storage, providing the ideal means of viewing hard-to-observe signals such as fast single-shot transients, or low-frequency phenomena. Variable-persistence storage may be used to completely eliminate the flicker inherent in low repetition rate traces. The viewing time at normal intensity for any trace can be varied from a fraction of a second to more than five minutes. At lowered intensity (SAVE mode), signals may be viewed for up to an hour.

5440

The 5440 combines versatility and low cost in a 50 MHz general-purpose, plug-in scope. Plug-in scale factors are displayed on the $\mathrm{crt}^{* 1}$, so measurement time and operator errors are reduced. It can also be accessed externally with Option 03 User Addressable Crt Readout.

PLUG-INS

All plug-ins in the 5000 Series are compatible with the 5440 and 5441 . The wide variety of plug-ins available lets you configure your oscilloscope to meet your needs.

CHARACTERISTICS

VERTICAL SYSTEM (Left and Center Compartments)
Bandwidth and Rise Time $(-3 \mathrm{~dB})-50 \mathrm{MHz}$ and
7 ns, determined by plug-in unit.
Chop Mode - The oscilloscope will chop between channels at 25 kHz to 100 kHz , depending on plug-ins and operating modes.
Alt. Mode - Each plug-in is swept twice before switching to the next. A single-channel amplifier is swept once before switching to the second amplifier.

5440
HORIZONTAL SYSTEM (Right Compartment)
Fastest Sweep Rate - $10 \mathrm{~ns} / \mathrm{div}$ ($\times 10$).
\boldsymbol{X} - \boldsymbol{Y} Phase Shift $-\leq 2^{\circ}$ from dc to 20 kHz .

CRT AND DISPLAY FEATURES

CRT - $8 \times 10 \mathrm{div}(0.9 \mathrm{~cm} / \mathrm{div})$, ($1.27 \mathrm{~cm} / \mathrm{div} 5440$), illuminated graticule.
Persistence - Continuously variable, may be turned off.
Maximum Stored Writing Speed - Writing speed $5 \mathrm{div} / \mu \mathrm{s}$ for a view time of 15 seconds.
Storage View Time - The view time is the amount of time the stored signal can be viewed before it fades away. Adjusting the stored intensity CCW will reduce the stored writing speed, but view time can be increased up to five minutes.

POWER REQUIREMENTS

Line Input - 90 V to 250 VAC , internally selected, 48 Hz to 440 Hz max.
Power Consumption - 100 W .

ENVIRONMENTAL

Ambient Termperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; Nonoperating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m (15,000 feet);
Nonoperating: 15,000 m (50,000 feet).

Option 03 Characteristics

User Addressable Readout - Up to 20 characters, programmed by external resistors and switches.
Warranty - One year. See page 78 for Warranty-Plus options.
${ }^{1}$ Plug-ins with a suffix N (5A18N, etc.) do not provide crt readout. The 5B10N and the 5B12N Time Bases do not permit viewing the leading edge of a triggered waveform when used in the 5400 Series.

5A48 50 MHz DUAL-TRACE AMPLIFIER

The 5 A 48 is a dual-trace, 50 MHz plug-in amplifier with five operating modes used in 5400 Series mainframes. The 5 A 48 features selectable trigger source and crt readout.

CHARACTERISTICS

Bandwidth and Rise Time $(-3 \mathrm{~dB})-50 \mathrm{MHz}$ and
7 ns at 5 mV to $10 \mathrm{~V} / \mathrm{div}$; 25 MHz and 14 ns at 1 mV and $2 \mathrm{mV} / \mathrm{div}$.
Deflection Factor and Accuracy - $\leq 3 \%$ at 5 mV to $10 \mathrm{~V} /$ div, $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C} ; \leq 4 \%$ at 5 mV to $10 \mathrm{~V} /$ div, $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \leq 5 \%$ at 1 mV and $2 \mathrm{mV} / \mathrm{div}$.
Input R and C-1M $\Omega, \approx 24 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac). Ac Coupled: 500 V (dc + peak ac). 500 Vp -p. Display Modes - CH 1, CH 2, CH 2 Invert, Add, Alt, Chop.

5B42/5B40 HORIZONTAL TIME BASES

The 5B42/5B40 Time Bases are designed for use in 5400 Series mainframes. They feature sweep rates from 10 ns to $5 \mathrm{~s} /$ div and crt readout of the sweep rate selected. Trigger coupling modes included are: ac, dc, $H F$ reject, and $L F$ reject. There is even an external amplifier input for X - Y measurements. The 5 B42 also features delayed-sweep rates up to 10 ns/div. The delayed sweep feature allows very accurate $(\approx 1 \%)$ timing measurements to be made.

CHARACTERISTICS

Horizontal Sweep Rate $-0.1 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} / \mathrm{div}$,
10 ns/div (X10).
Sweep Accuracy -

	Unmagnified		Magnified	
Time/Div	$\begin{aligned} & 15^{\circ} \mathrm{C} \text { to } \\ & 35^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 15^{\circ} \mathrm{C} \text { to } \\ & 35^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 50^{\circ} \mathrm{C} \end{aligned}$
$0.5 \mu \mathrm{~s}$ to $1 \mathrm{~s} / \mathrm{div}$	3\%	4\%	4\%	5.5\%
$\begin{aligned} & 0.1 \mu \mathrm{~s}, 0.2 \mu \mathrm{~s} \\ & 2 \mathrm{~s} \text {, and } 5 \mathrm{~s} / \mathrm{div} \end{aligned}$	4\%	5\%	5\%	6.5\%

Ext Horizontal Input - Deflection Factor: $50 \mathrm{mV} / \mathrm{div}$ $\pm 3 \%$. Input R and $\mathrm{C}: 1 \mathrm{M} \Omega, \approx 24 \mathrm{pF}$. Bandwidth: 2 MHz .

DELAYED SWEEP (5B42)

Differential Time Measurement Accuracy - $\leq 1 \%$
$+0.2 \%$ of full scale from $1 \mu \mathrm{~s}$ to 0.5 s delay time.
Jitter $-\leq 0.05 \%$ of one division of delayed sweep
selected.
Multiplier Range - 0.2 to 10 times the time/div setting.

5B42

5B40
Trigger Sensitivity -

Mainframe	Frequency	Internal	External
5400	$\begin{gathered} \text { dc to } \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 0.4 \mathrm{div}^{* 1} \\ & 0.4 \mathrm{div}^{* 2} \end{aligned}$	$\begin{gathered} 60 \mathrm{mV}^{\star 1} \\ 100 \mathrm{mV}^{\star 2} \end{gathered}$
5400	$\begin{gathered} 10 \mathrm{MHz} \\ \text { to } 60 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 1.0 \operatorname{div}^{* 1} \\ & 1.0 \mathrm{div}^{* 2} \end{aligned}$	$\begin{aligned} & 150 \mathrm{mV}{ }^{* 1} \\ & 400 \mathrm{mV}^{* 2} \end{aligned}$
5100	$\begin{gathered} \text { dc to } \\ 2 \mathrm{MHz} \end{gathered}$	$0.4 \mathrm{div}^{* 2}$	100 mV *2

Trigger Operating Modes - Auto, Norm, Single Sweep.
Trigger Coupling - Ac, dc, LF REJ (Atten below 2.5 kHz), HF REJ (Atten above 50 kHz).

Ext. Trigger Level Range $- \pm 1.5 \mathrm{~V}(5 \mathrm{~B} 40)$ and $\pm 2.5 \mathrm{~V}$ (5B42).
ligh Performance
Amplifier and Time Bases.

5A48

- DC to 50 MHz Bandwidth - 1 mV to 10 V/div Sensitivity
- Add and Invert Modes

ORDERING INFORMATION

5A48

Dual-Trace Amplifier
Includes: Instruction/Service manual ($070-1450-00$), 1 year warranty

5B42/5B40

- Single Sweep
- 10 ns to 5 s/div Sweep Rates
- Triggering to 50 MHz
- HF/LF Reject Coupling
- External Horizontal Amplifier
- Delayed Sweep (5B42)

ORDERING INFORMATION

5842

Dual Time Base
Includes: Instruction/Service
manual (070-1447-00), 1 year warranty
$5 B 40$
Single Time Base
\$1,195
Includes: Instruction/Service manual (070-1742-00), 1 year warranty

5113/5111A 5110

ow Cost Real Time and Storage Mainframes.
- DC to 2 MHz Bandwidth
- Dual X-Y Operation
- Single- and Dual-Beam
Bistable-Storage Mainframes
- Split-Screen Display
- High Speed Storage (Option 03)
- Two Independent Verticals (5113)

ORDERING INFORMATION

5113/R5113 2 MHz Storage Oscilloscope Mainframe* ${ }^{* 1}$	
Includes: Instruction/Service manual (070-2137-01).	
5113	\$5,995
R5113	\$5,995
5111A/R5111A 2 MHz Storage	
Oscilloscope Mainframe*1	
Includes: Instruction/service manual (070-3934-00).	
5111A	\$4,195
R5111A	\$4,295
5110A/R5110A 2 MHz	
Oscilloscope Mainframe*1	
Includes: Instruction/Service	
manual (070-2137-01).	
5110	\$2,895
R5110	\$2,995
INSTRUMENT OPTIONS	
Opt. 02 - Protective Cover	
(5113/5111A/5110)	+\$45
Opt. 03 - Fast-Write crt (5113)	+\$160
Opt. 03 - Fast-Write crt (5111A)	+\$215
Opt. 07 - Rear Panel Outputs	+\$135
INTERNATIONAL POWER PL OPTIONS	

Opt. A1 - A5 -Available NC
See page 78 for description.

ACCESSORIES

See page 78 for recommended
accessories.
PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{~ m m}$	in.	$\mathbf{m m}$	$\mathbf{i n .}$
Width	213	8.4	483	19.0
Height	302	11.9	135	5.3
Depth	518	20.4	483	19.0
Weight	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{\text { Ib }}$
Net	10.4	23.0	10.9	24.0
Shipping	14.5	32.0	19.5	43.0

*1 " R " prefix indicates rackmount version.

5113
5113
The 5113 is a dual-beam, bistable-storage oscilloscope featuring split-screen storage. Stored writing speed is at least $20 \mathrm{div} / \mathrm{ms}$ ($200 \mathrm{div} / \mathrm{ms}$ with Option 03). View times of one to ten hours are possible.

The 5113 can display two simultaneous events, either single-shot or repetitive, against a common time base.

5111A

The 5111A is a single-beam, split-screen, bistablestorage oscilloscope. The 5111A extends measurement capability into areas requiring retention of single and multitrace displays for long-term examination and/or photography.

The standard 5111A provides writing speeds to $50 \mathrm{div} / \mathrm{ms}$; Option 03 extends the writing speed to $800 \mathrm{div} / \mathrm{ms}$, suitable for capturing a single-shot display of a four-division 60 kHz sine wave.

5110

The 5110 is a single-beam real-time oscilloscope featuring a large $61 / 2$-inch diagonal ($1.27 \mathrm{~cm} / \mathrm{div}$) crt.

PLUG-INS

Tailor your measurement needs with the appropriate plug-in units to obtain a high-gain differential display ($10 \mu \mathrm{~V} / \mathrm{div}$), four-channel differential display, or eightchannel display. You can also choose from single-trace or dual-trace basic amplifiers and time bases to suit the special needs of industry and education.

When using two amplifiers and the 5B12N in the dualsweep mode, the two sweeps are slaved individually to the left and right amplifiers.

5111A

5110

CHARACTERISTICS

VERTICAL SYSTEM (Left and Center

 Compartments)Bandwidth \& Rise Time ($-\mathbf{3} d B$) -2 MHz and 175 ns.
Chop Mode - 5110/5111A: The vertical amplifier will chop between left and center plug-ins, and/or between two or more channels. 5113: The left and right vertical to the left and center compartments, respectively. Each vertical amplifier will chop between two or more channels in their associated plug-in compartments.
Alt Mode - 5110/5111A: Each amplifier plug-in is swept twice before switching to the next. Each channel of a multi-trace amplifier is swept once
5113: Single-trace amplifiers are swept full time. Each channel of a multi-trace amplifier is swept once before switching to the next channel.

HORIZONTAL SYSTEM (Right Compartment) Fastest Sweep - $0.1 \mu \mathrm{~s} / \mathrm{div}(\times 10)$.
$\boldsymbol{X}-\boldsymbol{Y}$ Phase Shift $-\leq 1^{\circ}$ from dc to 100 kHz .
CRT AND DISPLAY FEATURES
CRT - 8×10 div, nonilluminated.
Stored Writing Speed - 5111A: $\geq 20 \mathrm{div} / \mathrm{ms}$ (Normal) and $50 \mathrm{div} / \mathrm{ms}$ (Enhanced). 5113: $\geq 20 \mathrm{div} / \mathrm{ms}$.
Opt. 03, Fast-Writing-Speed CRT - $\geq 200 \mathrm{div} / \mathrm{ms}$ (Normal) and $800 \mathrm{div} / \mathrm{ms}$ (Enhanced - 5111A only).
Opt. 07, Rear-Panel Signal Outputs - Vertical Sensitivity: $0.5 \mathrm{~V} /$ div., Sweep Sensitivity: $0.5 \mathrm{~V} /$ div., Gate: TTL level.

POWER REQUIREMENTS

Line Input - 90 VAC to 250 VAC internally selected. 48 Hz to 440 Hz .
Max Power Consumption - 110 W

ENVIRONMENTAL CHARACTERISTICS

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; Nonoperating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Warranty - One Year. See page 78 for Warranty-Plus options.

5000 Series mainframes also come in low-profile (5 1/4") rackmounts.

5A18N

5A18N

The 5 A 18 N is a two-channel amplifier that delivers bandwidth of dc to 2 MHz at sensitivities to $1 \mathrm{mV} / \mathrm{div}$. To provide difference measurements of two signals in the ADD mode, simply invert the Channel 2 signal. You can select the internal trigger signal from either Channel 1 or Channel 2. For dual-trace $X-Y$ operation, just plug the amplifier into the right plug-in compartment.

CHARACTERISTICS

Bandwidth and Rise Time (-3dB) - Dc to 2 MHz and 175 ns.
Deflection Factor and Accuracy $-\leq 2 \%$ at 1 mV to $5 \mathrm{~V} / \mathrm{div}$.
Input \boldsymbol{R} and $C-1 \mathrm{M} \Omega, \approx 47 \mathrm{pF}$
Maximum Input Voltage - 350 V ($\mathrm{dc}+$ peak ac).
Chop Rate - 25 kHz to 100 kHz depending upon plug-in combinations and number of channels displayed.

5A15N

A single-channel amplifier, the 5 A 15 N provides bandwidth of dc to 2 MHz at sensitivities to $1 \mathrm{mV} / \mathrm{div}$. Two 5A15Ns may be used in a mainframe to provide dual-channel operation, or to provide $1 \mathrm{mV} /$ div $X-Y$ operation if one of the amplifiers is inserted in the right plug-in compartment.

CHARACTERISTICS

Bandwidth and Rise Time ($-\mathbf{3 d B}$) - Dc to 2 MHz and 175 ns .
Deflection Factor and Accuracy $-\leq 2 \%$ at 1 mV to $5 \mathrm{~V} / \mathrm{div}$.
Input R and $C-1 \mathrm{M} \Omega \approx 47 \mathrm{pF}$.
Maximum Input Voltage -350 V ($\mathrm{dc}+$ peak ac).

5A14N

5A14N

The 5A14N is a four-channel amplifier that provides 1 MHz bandwidth and sensitivity to $1 \mathrm{mV} / \mathrm{div}$. Each channel may be displayed separately, or the channels may be alternated or chopped in any combination. Channel 1 provides the triggered signal for the unit. In addition, you can combine two 5A14Ns to provide eightchannel operation in any mainframe.

CHARACTERISTICS

Bandwidth and Rise Time (-3dB) - Dc to 1 MHz and 350 ns .
Deflection Factor and Accuracy $-\leq 2 \%$ at 1 mV to $5 \mathrm{~V} / \mathrm{div}$.
Input R and $C-1 \mathrm{M} \Omega, \approx 47 \mathrm{pF}$.
Maximum Input Voltage - 350 V ($\mathrm{dc}+$ peak ac).

Chop Rate -25 kHz to 100 kHz depending upon plugin combinations and number of channels displayed.

Versatile 5000 Series Amplifiers with One to Four Channels.
5A18N

- DC to 2 MHz Bandwidth
- Invert and Add Modes
- 1 mV to $5 \mathrm{~V} / \mathrm{div}$

ORDERING INFORMATION

$$
\begin{aligned}
& \text { 5A18N } \\
& \text { Two-Channel Amplifier } \\
& \text { Includes: Instruction/Service } \\
& \text { manual (} 070-1137-00 \text {). }
\end{aligned}
$$

5A15N

- DC to 2 MHz Bandwidth
- 1 mV to $5 \mathrm{~V} / \mathrm{div}$

ORDERING INFORMATION
5A15N
Single-Channel Amplifier
$\$ 595$
Includes: Instruction/Service
manual (070-1136-00).

5A14N

- DC to 1 MHz Bandwidth
- Four Independent Channels
-1 mV to $5 \mathrm{~V} / \mathrm{div}$

ORDERING INFORMATION

Four-Channel Amplifier
Includes: Instruction/Service
manual $(070-1229-00)$.

W
ide Range of
Differential Amplifiers Add Capability for Ultra Low-Level or Noisy Signal Applications.

5A22N

- DC to 1 MHz Bandwidth
-10 10 V to $5 \mathrm{~V} / \mathrm{Div}$
- 100,000:1 CMRR
- Selectable Bandwidth Limits
- Variable DC Offset

ORDERING INFORMATION

5A22N

Differential Amplifier $\$ 1,595$ Includes: Instruction/Service manual (070-1230-00).

5A22N

5A22N

The 5A22N is a versatile differential amplifier featuring selectable bandwidth filtering and dc offset.

5A21N

- DC to 1 MHz Bandwidth
- 10 kHz Bandwidth Limiter
- $50 \mu \mathrm{~V}$ to $5 \mathrm{~V} / \mathrm{Div}$
- 100,000:1 CMRR
- Current-Probe Input

ORDERING INFORMATION

5A21N

Differential Amplifier Includes: Instruction/Service manual (070-1139-01), Opt. 01 - P6021 current probe. +\$480

5A19N

- DC to 2 MHz Bandwidth
- 1 mV to $20 \mathrm{~V} / \mathrm{Div}$
- 1,000:1 CMRR
- Variable DC Offset

ORDERING INFORMATION

5A19N

Differential Amplifier \$675 Includes: Instruction/Service manual (070-1328-00).

5A19N

The 5A19N is a lowcost differential amplifier featuring variable dc offset. It operates in the left or center compartment for Y -T displays, or in the right compartment for X-Y displays.

CHARACTERISTICS

Bandwidth and Rise Time (-3dB) - Dc to 2 MHz and 175 ns .
Deflection Factor and Accuracy - $\leq 2 \%$ at 1 mV to $20 \mathrm{~V} / \mathrm{div}$.
Input R and C - $1 \mathrm{M} \Omega$, $\approx 47 \mathrm{pF}$
Maximum Input Voltage - 350 V ($\mathrm{dc}+$ peak ac). Signal and Offset Range -

Deflection Factor	1 mV to $200 \mathrm{mV} / \mathrm{div}$	500 mV to $20 \mathrm{~V} / \mathrm{div}$
Common-Mode Range	$\pm 16 \mathrm{~V}$	$\pm 350 \mathrm{~V}$
Dc Offset Range	+15 to -15	+350 to -350 V

Common-Mode Rejection Ratio $-1,000: 1$ at 1 mV
to $200 \mathrm{mV} / \mathrm{div}(\leq 10 \mathrm{kHz}), 100: 1$ at 0.5 V to $20 \mathrm{~V} / \mathrm{div}$.

5A26

5A26

The 5A26 combines two independent differential amplifiers in one unit. It provides $50 \mu \mathrm{~V} / \mathrm{div}$ sensitivity at 1 MHz , high common-mode-rejection ratio, trigger-source selection and independent bandwidth limits.

With two 5A26s, up to four differential channels can be observed.

5B12N

5B10N

5B10N/5B12N

The 5B10N is an easy-to-use single time base. The 5 B 12 N is a dual time base that provides both delayed and dual sweeps. The dual sweep mode enables two sweeps to be slaved individually to the left and center compartments. Both units also offer left and right source selection, auto and normal trigger modes, plus single sweep. The external input amplifier provides either 50 mV or $0.5 \mathrm{~V} /$ div for $X-Y$ type measurements.

CHARACTERISTICS

Bandwidth and Rise Time ($-\mathbf{3} \mathrm{dB}$) - Dc to 1 MHz and 350 ns . Bandwidth limit: 10 kHz .
Deflection Factor and Accuracy - $\leq 2 \%$ at $50 \mu \mathrm{~V}$ to $5 \mathrm{~V} / \mathrm{div}$.
Input R and C-1 $\mathrm{M} \Omega_{,} \approx 47 \mathrm{pF}$.
Maximum Input Voltage - 10 V (dc + peak ac) from
$50 \mu \mathrm{~V}$ to $50 \mathrm{mV} /$ div. 350 V (dc + peak ac) from 0.1 V to $5 \mathrm{~V} / \mathrm{div}$.
Common-Mode Rejection Ratio - Dc Coupled:
$100,000: 1$ at $50 \mu \mathrm{~V}$ to $50 \mathrm{mV} / \mathrm{div} ; 300: 1$ at 0.1 V to $5 \mathrm{~V} / \mathrm{div}(\leq 30 \mathrm{kHz}$). Ac Coupled: 20,000:1 at $50 \mu \mathrm{~V}$ to $50 \mathrm{mV} / \mathrm{div}(\geq 5 \mathrm{kHz})$.

D
ual Differential
Amplifier and 5100 Series Time Bases.

5A26

- DC to 1 MHz Bandwidth
- $50 \mu \mathrm{~V}$ to $5 \mathrm{~V} / \mathrm{div}$ Sensitivity
- 100,000:1 CMRR
- CRT Readout (5400 Series)

ORDERING INFORMATION

5 A26

Dual Differential Amplifier
$\$ 1,895$
Includes: Instruction/Service manual (070-1947-00).

5B10N/5B12N

- 100 ns to 5 s/div Sweep Rates
- Alternate and Chopped Displays
- Dual and delayed sweep (5B12N)
- External horizontal amplifier

ORDERING INFORMATION

5B10N

Single Time Base
Includes: Instruction/Service
manual ($070-1140-00$).
5B12N
Dual Time Base $\$ 1,795$
Includes: Instruction/Service
manual (070-1141-00).

ccessories and Options to Enhance Your 5000 Series Instruments.

- Application Notes for a Variety of Measurements
- Cameras for Waveform Documentation
- Recommended Probes for All Types of Applications
- Recommended Accessories
- Warranty-Plus Options Reduce Your Cost of Ownership

ORDERING INFORMATION

RECOMMENDED CAMERAS

C-53P - High Performance $\$ 2,560$
(5441)

C-9 - General Purpose RECOMMENDED CART
K213 - Lab Instrument Cart
For bench models. Plug-in
storage available as Option 12. $\$ 700$
OPTIONAL ACCESSORIES
Blank Plug-In Kit - Order
040-0818-04
Blank Panel - Order
016-0452-01 \$75
Viewing Hoods -
(Standard) Order 016-0154-00
(Folding) Order 016-0260-00
Protective Cover for Bench
Version - Order 016-0544-00 \$18
Ground Isolation Monitor A6901

For mo pages 294 to 341

C4 should be used with illuminated graticule only.

Contact your local sales office.

APPLICATION NOTES		
Title	Description	Order No.
Interpreting mechanical measurements with the plug-in oscilloscopes	5111/5A22N/5A18N Transducer measurements and storage	52-A-3533-1
Simultaneous display of two independent $X-Y$ signal pairs	5111/5A14N/5A15N/5A18N. Dual X-Y techniques, engine analysis.	52-AX-4114
Simultaneous X-Y, Y-T displays	5111/5A14N/5A15N/5B12N. X-Y, Y-T techniques. Biomedical application.	52-AX-4113
A high resolution 60 Hz notch filter	Construction project using a commercial module in our plug-in kit. Pre-conditions signals by removing 60 Hz hum.	52-AX-4031

PROBES		
Probe	Attenuation	Features
P6101A	1 X	To 15 MHz bandwidth
P6006	10 X	Rugged; monolithic
P6062B	1X/10X	Switchable; ground-reference button
P6015	1000X	High voltage
P6021		Current
P6007	100X	High voltage
P6202A	10X	FET (requires 1101A power supply)
P6135A	10X	Var Atten for high CMRR
P6102A	$10 X$	To 60 MHz bandwidth
P6105A	10X	Full bandwidth

See pages 310-333 for additional information.

WARRANTY-PLUS PACKAGES

In addition to the one year product warranty, the following optional warranty packages are available:
M7 - Additional 2 calibrations
M9 - Additional 2 years service

Mainframes	M7	M9
5441	$\$ 110$	$\$ 245$
5440	$\$ 100$	$\$ 235$
5113	$\$ 90$	$\$ 180$
5111 A	$\$ 90$	$\$ 170$
5110 A	$\$ 70$	$\$ 135$

Vertical Plug-ins		
5A18N	$\$ 55$	$\$ 65$
5A15N	$\$ 35$	$\$ 80$
5A14N	$\$ 70$	$\$ 110$
5A26	$\$ 70$	$\$ 100$
5A22N	$\$ 70$	$\$ 110$
5A21N	$\$ 65$	$\$ 90$
5A19N	$\$ 45$	$\$ 80$

Time Base Plug-ins		
5B42	$\$ 70$	$\$ 115$
5B40	$\$ 65$	$\$ 90$
5B12N	$\$ 70$	$\$ 110$
5B10N	$\$ 65$	$\$ 65$

INTERNATIONAL POWER PLUG OPTIONS

Option Type	Description	Part Number
Opt. A1 Universal Europe	$220 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0859-00)$
Opt. A2 United Kingdom	$240 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0860-00)$
Opt. A3 Australian	$240 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0861-00)$
Opt. A4	North American	$240 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt. A5	$(020-0862-00)$	

CUSTOM MODIFICATIONS

In addition to the many standard and optional features available on the 5 K scopes, there are numerous custom modifications you can order to fit the instrument to your application.
This is a partial list of custom mods. They can be ordered with the help of your local field sales representative. Price and delivery are quoted for each custom order.

Mod \# Description

135 J	Auto erase with variable view time and save
434 A	135J + 710R
710 R	XY/T switching of center compartment signal
711 C	Add control on 5B10N for switch in MOD 710R
768 V	CH 1 and CH 2 signal to rear with MOD 768X
768 X	6 signal output buffers to rear BNC's on mainframe
817 B	6 rear BNC's on mainframe for signal input
817 G	Input to rear of plug-in for use with mainframe mod
WT	IEC power con; delete chassis tracks
ZA	96 hr burn-in

2400 SERIES OSCILLOSCOPES

The Tektronix 2400 Series Portable Oscilloscopes represent the most widely used and accepted line in the industry:

- The 2440 features the highest sample rate available in a portable scope.
- The 2467B "BrightEye" offers unsurpassed writing rate for the ultimate in fast event capture.
- The 2465B sets the standard against which other general-purpose portable scopes are measured. All 2400 Series Oscilloscopes offer convenient and easy automatic setup and measurements, a broad range of functionality, and the depth of performance that set the standards for high-performance portable scopes.

Full programmability through the IEEE 488.1 interface bus (GPIB) is available, and measurement results can be communicated over the bus from both digital and analog scope models. In addition, waveforms can be transmitted from the digital oscilloscopes to a computer or directly to a printer or plotter.

For specialized needs in applications including digital design and troubleshooting, video waveform measurements, benchtop automated testing, remote-site monitoring, and telecommunications testing, a selection of options and software is available to extend instrument capabilities.

The 2402A TekMate ${ }^{\text {TM }}$ Instrument Extension expands 2400 Series digitizing oscilloscopes' capabilities for waveform storage, analysis, and pass/fail testing.

Contents

4-CHANNEL ANALOG OSCILLOSCOPES

2467B 400 MHz, "BrightEye" High Writing Speed 2445B 200 MHz ,
Auto-Measuring 84, 86
2465B 400 MHz ,
Auto-Measuring84, 86
2465BDV 400 MHz ,
Full-Featured 85
$2465 B D M 400 \mathrm{MHz}$,
Multi-Function 85
$2465 B C T 400 \mathrm{MHz}$,
Precision Timing 85

AUTOMATED DIGITIZING OSCILLOSCOPES

$2440500 \mathrm{MS} / \mathrm{s}, 300 \mathrm{MHz} \ldots \ldots$.
2440M Mate/CIIL 87
2432A $250 \mathrm{MS} / \mathrm{s}$,
300 MHz 87
2432M Mate/CIIL 87
$2439500 \mathrm{MS} / \mathrm{s}, 300 \mathrm{MHz}$........... 87
$2431 \mathrm{~L} 250 \mathrm{MS} / \mathrm{s}$,
300 MHz
$2430 \mathrm{~A} 100 \mathrm{MS} / \mathrm{s}$,
150 MHz
2430M Mate/CIIL 87
OSCILLOSCOPE
PERFORMANCE EXTENSIONS
2402A TekMate ${ }^{\text {TM }}$ Instrument
Controller 92
Optional Oscilloscope
Accessories 94

2400 SERIES 200 TO 400 MHz AUTO-MEASURING ANALOG OSCILLOSCOPES

he Highest Performance and Automation Available in Portable Analog Scopes.
- 400 MHz Bandwidth (2467B/2465B)
- 500 ps/Div Time Base (2467B/2465B)
- Automatic Push-Button Setup and Measurements
- 4 Channels
- SAVE, RECALL, and SEQUENCE of Setups
- Lightweight and Rugged
- Cursor Measurements
- 1\% Timing Accuracy

Channel-to-Channel Time is the most versatile of the push-button measurements. Start and stop events can be set in \% or in volts - on rising or falling edges of CH 1 and CH 2 .

2400 SERIES ANALOG OSCILLOSCOPES

CONVENIENCE, FAMILIARITY, AND STANDARD-SETTING PERFORMANCE

The 2400 Series general-purpose oscilloscope models, a series of options designed to extend their measurement capabilities, and three specially-configured packages combine convenience and familiarity with leading-edge performance. These instruments bring proven reliability and efficiency to your design lab, production/test line, or field service site.
$200-400 \mathrm{MHz}$ and 1% timing accuracy offer the performance needed to display with high fidelity the wide range of signals encountered in both general-purpose and specialized applications. The fast update rate inherent in analog oscilloscopes allows you to see realtime changes in your waveforms, even as you make circuit adjustments and gives you confidence that critical events are consistently captured and displayed.

AUTOMATIC SETUPS AND PUSHBUTTON MEASUREMENTS

You can measure risetime, falltime, frequency, pulse width, voltage, and time interval A to B at the push of a button. Auto Setup is another time-saving feature of the 2400 Series. Attach up to four probes to your signal points, press AUTOSETUP, and within seconds the scope presents a stable, automatically-triggered, scaled, and positioned display of your waveforms. The quickest way to get your job done.

ADVANCED, EASY-TO-USE TRIGGERING

2400 Series scopes can trigger from any one of the four input channels, or on up to four asynchronous signals. Tek's AutoLevel Trigger keeps your scope triggered even as the input signals change. Trigger signal conditioning choices include dc, ac, LF Reject, HF Reject, and Noise Reject, ensuring the ability to trigger stably on virtually any signal. On-screen readout of the trigger level voltage saves time and eliminates trial-and-error frustration. Pressing the INIT@50\% button automatically sets the trigger level to the 50% voltage on your signal, further increasing ease and reliability of triggering.

INSTANT ACCESS TO COMPLEX SETUPS

Non-volatile memory for 30 setups stores all frontpanel information, including intensity, cursor locations, and control settings for the measurement options. And each setup can be labeled with a descriptive name. Prototype verification can be accomplished quickly without manual control adjustments. Field service procedures are executed more effectively, in less time, through the use of stored setups for common tests and measurements.

AUTOMATIC SEQUENCES WITHOUT AN EXTERNAL CONTROLLER

2400 Series oscilloscopes offer built-in sequencing capabilities for building and running semi-automated tests. Systematic verification procedures for design engineering, production test, or field service can be developed without writing a single line of code. To sequence through up to 30 setups, press the STEP button once for each step, or plug a foot switch into the rear-panel jack for hands-free operation. Seven-character labels for each setup can act as test titles or operator prompts.

CUSTOMIZING THE 2400 SERIES

Besides standard-setting performance features such as high signal fidelity, automatic setups and push-button measurements, advanced easy to use triggering and permanent memory for front-panel setups, the 2400 Series analog oscilloscopes can be configured to give you even more power. For demanding applications, a set of special options has been developed to customize these oscilloscopes. Whether you're doing de troubleshooting, digital debugging, graphic display analysis or automating a manufacturing test system, the 2400 Series offers all the flexibility necessary to do the job. Choose the oscilloscope and option package that best fits your application. For your convenience Tektronix has bundled its most popular options into cost saving packages. For more information see page 85.

AUTOMATING THE TEST PROCESS

Option 10 is a GPIB interface which provides remote programmability for your scope. Contents of setup memory can be transferred between $2467 \mathrm{~B} / 2465 \mathrm{~B} / 2445 \mathrm{~B}$ units without an external controller, or a host controller can be used to assist in performing a series of checks and measurements. Front-panel settings can be remotely set or changed, and the results of measurements communicated back over the bus to a computer.

The GPIB message structure of the 2400B Series conforms to Tektronix Standard Codes and Formats, ensuring that all GPIB messages are "human-readable" and consistent in format. The ability to select message termination characters allows scope use with most types of controllers.
This option is recommended for use with DCSO1.
2400 Series software development packages provide an environment to quickly and easily generate automated and semiautomated tests for your GPIBequipped instruments. EZ-Tek™ 2400 PC is a basic test procedure generator specific to 2400 Series analog scopes. Other compatible software packages are described in the "Test and Measurement Software" section of this catalog, pages 257-270.

EZ-Tek 2400 PC is a test procedure generator for the non-programmer who wants to concentrate on measurements, rather than learning a programming language. It provides a foundation for developing procedures for Tektronix 2400 Series analog oscilloscopes and IBM PCcompatible controllers. EZ-Tek 2400 PC software also sends commands to IEEE Standard 488 (GPIB) stimulus instruments, such as the Tektronix FG 5010 Function Generator and the CG 5010 Calibration Generator.

The DCS01 Digitizing Camera System can capture waveforms and digitize them for analysis and documentation on an IBM PC. See page 130.

ADVANCED TROUBLESHOOTING

Option 01 provides an integral, fully programmable autoranging DMM. Features include averaging and smoothing of dc and ac (rms) volts and current, dBm, dBv , resistance, and temperature measurements for ct display or GPIB transmission. You can set a reference function to compare deviations from a norm and display minimum and maximum values.

The audible continuity check is especially useful in troubleshooting. Circuit board hot spots can be quickly located with the temperature probe, which registers temperature variations with a resolution of $0.1^{\circ} \mathrm{C}$. GPIB programmability extends measurements, prompting, and calibration into system applications

Option 09 was designed to optimize the 2400 Series for a range of digital applications. The Counter/Timer/ Trigger (CTT) applies time interval averaging to precise time and frequency measurements with up to 10 parts-per-million accuracy.

The unique, Boolean trigger lets you combine any two channels using either AND or OR, providing isolation of complex events. The 17-bit parallel Word Recognizer (WR) can be applied to a variety of TTL-compatible logic families. Operable to 20 MHz with an external clock, and 10 MHz without, the WR allows triggering either sweep on word occurrences to measure frequency and period of words, or to delay the A or B sweep by a selectable number of words.

The CTT is available without Word Recognizer as Option 06. Word Recognizer capability cannot be added to Option 06 later; it must be included at purchase.

External Clock (Option 1E, available only with Option 09 or Option 06.)

The External Frequency Reference option offers frequency measurements with eight-digit resolution. Accuracy is equal to the external reference or one count in the least-significant digit of the eight-digit readout, whichever is greater.

Option 1E automatically accepts any of the following frequencies as the external reference; $1.000000 \mathrm{MHz}, 3.579545 \mathrm{MHz}$ (color burst), 4.433185 MHz , $5.000000 \mathrm{MHz}, 10.000000 \mathrm{MHz}$.

VIDEO MEASUREMENTS

Option 05 extends the 2467B/2465B/ 2445 B 's versatility to meet the challenges in broadcast and cable television, graphics displays, and raster-scan systems. With crt readout of the line number and field selected for triggering, an operator knows exactly what the display represents. Any line can be selected from Field 1, Field 2, or Field 1 alternating with Field 2. Or all lines in both fields can be superimposed.

The back-porch clamp locks the video black level to a fixed point, so the display is stable and clean, even when the composite video contains low-frequency hum or the average picture level changes with ac coupling. Option 05 delivers excellent step response and overdrive recovery, and controls are provided for a wide variety of system protocols.

2467B HIGH WRITING-SPEED BRIGHTEYE ${ }^{\text {TM }}$ OSCILLOSCOPE

The 2467B Shows Fast, Random Events in Normal Room Light.

- Highlights Intermittent Glitches Instantly
- Brightly Displays Single

Lines of Video Waveforms

- $4 \mathrm{~cm} / \mathrm{ns}$ Visible Writing Speed
- 400 MHz Bandwidth, SingleShot and Repetitive
- Automatic Push-Button Setup and Measurements
- 4 Channels
- Lightweight and Rugged

APPLICATIONS

- Digital Circuit Troubleshooting
- Laser and Radar Pulses
- Video Equipment Design
- Disk Drive Testing

The 2467B Option 10 and Tek Digitizing Camera System combine to give you 400 MHz single-shot capability with up to 10 ps/point digitizing. See page 130.

Low repetition-rate signals, such as a line of rasterscan video, are easy to see without a viewing hood on the 2467B. The fast update rate inherent in analog oscilloscopes allows you to see real-time changes in your waveforms. Thus, you can make circuit adjustments and see the change immediately. This gives you confidence that critical events are consistently captured and displayed, even if they occur intermittently.

TEK'S EXCLUSIVE MICRO-CHANNEL PLATE (MCP) CRT

This unique crt amplifies the intensity of infrequent signals while limiting the intensity of high-repetition rate signals. You can see everything that happens in your circuitry, whether it occurs once or repetitively. The 2467B displays glitches that remain invisible on analog scopes with conventional crt's. Digital oscilloscopes may fail to discover these infrequent transients if they are buried within a repetitive signal. Being able to see unexpected faults makes the critical difference in troubleshooting.

The 2467B also works with the DCS01 Digitizing Camera System. The result is a 400 MHz single-shot waveform digitizing system with up to $5 \mathrm{ps} / \mathrm{point}$ digitizing with $100 \mathrm{GS} / \mathrm{s}$ effective sampling rate.

WHAT IS VISIBLE WRITING SPEED?

Writing speed has traditionally been a measure of crt performance. The usual specification was photographic writing speed, representing the point at which phosphor luminance is adequate to record a waveform using a camera and high-speed film - but still invisible to the eye. The 2467B specifies a visible writing speed 100 times faster than any other portable oscilloscopes. Its crt emits enough light at $4 \mathrm{~cm} / \mathrm{ns}$ for the eye to discern in normal room light without a viewing hood.

FAULT FINDING WITH THE 2467B

The 2467B is an effective tool for digital design and test engineers and a perfect companion for logic analyzers in troubleshooting a digital system. The 2467B's high writing rate MCP display immediately shows faults caused by asynchronous noise, crosstalk, bus contention, marginal timing, and metastability.

MEASURE TO THE LIMITS

Because the 2467B shows every signal, you can see and measure maximum and minimum voltage excursions and timing jitter. In telecommunications applications, the $2467 B$ provides distinct eye patterns for verification and qualification of transmission systems and equipment. Time jitter is displayed clearly for disk drive testing, and using the optional Counter/Timer's Delay by Events allows you to count down to a specific track accurately and efficiently.

SCAN THE LINES IN A VIDEO SIGNAL

The Video Waveform Measurement System can be added to the $2467 B$ to create an ideal match for qualitysensitive environments, including video design, manufacturing, service, broadcast, and high-resolution rasterscan applications. The combination of fast visible writing speed and 2400 Series high performance optimizes this instrument for showing the signal details from video systems of any protocol. Any line number can be selected from Field 1, Field 2, or Field 1 alternating with Field 2, and its trace easily viewed in room light.

HDTV TROUBLE SHOOTING

The 2467BHD is a special 2467 B which is ideal for trouble shooting HDTV signals. For complete details about this product, please refer to our Television Test Equipment products section in this catalog, page 348.

Metastability in this flip-flop occurs only once in a million normal cycles, yet it is clearly visible due to the 2467B's high visible writing speed.

ORDERING INFORMATION
2467B 400 MHz , High Writing Speed Oscilloscope
Includes: four P6137 10X probes
(1.5 m) with accessories, fuse
(159-0021-00), snap accessory pouch (016-0692-00), front cover, power cord (161-0104-00),
operators' manual (070-6861-00),
and pocket guide (070-7148-01).
See page 86 for detailed product specifications.

INSTRUMENT OPTIONS

Opt. 05 -Video Measurements +\$1,295
Includes: same as standard instr.,
plus CCIR graticule filter, NTSC
graticule filter, and polarized,
collapsible viewing hood
(016-0180-00).
Opt. 06 -Counter/Timer/Trigger $\boldsymbol{+} \mathbf{\$ 1 , 2 9 5}$
Includes: same as standard instr.
Opt. 09 -CTT/Word Recognizer $\boldsymbol{+} \mathbf{\$ 1 , 8 3 5}$
Includes: Opt. 06, plus Word
Recognizer Probe P6407, SMT
KlipChip ${ }^{\text {TM }}$ Adapters
(206-0364-00), and two
ten-wide combs with 10 -inch
leads (012-0747-00).
Opt. 1E-External Clock for CTT
only available with Opt. 06 or
Opt. 09.
Opt. 10-GPIB Interface
$+\mathbf{\$ 1 , 0 1 0}$
(IEEE-488)
Includes: same as standard
instr., plus Instrument
Interfacing Guide (070-6859-00).
Opt. 11 - Rear Panel Probe Power $+\$ 225$
Not available if instr. is equipped
with Opt. 09 Word Recognizer.
Opt. B1 - Standard Service
Manual (070-6863-00)
Opt. B2 - Options Service
Manual Includes: Information
from Standard Service Manual +
service information for all options
listed above (070-6864-00).
Opt. 1R - Rackmount kit
Includes: rackmount hardware
and slide-out assemblies,
deletes snap pouch.
Opt. 1 T - Transit Case tele-
scoping handle \& retractable
wheels.
Opt. 5H -HDTV measurements $\mathbf{+ \$ 1 , 5 4 5}$
Includes: same as standard instr.
plus CCIR graticule filter, NTSC
graticule filter, and polarized,
collapsible viewing hood
(016-0180-00).
Note: Instrument options are not
retrofittable after purchase.

INTERNATIONAL POWER PLUG

 OPTIONSOpt. A1-A5 - See page 374

Three years covering parts and labor, includes crt, excludes probes. Coverage can be extended to five years through the optional Warranty-Plus service plans.

WARRANTY-PLUS SERVICE PLANS

Opt. M2-5 yrs warranty	+
Opt. M8 - 5 yrs calibration $+\$ 575$	
DIGITIZING CAMERA SYSTEM	
DCS01 Opt. 2A	\$7,340
For addl. information, see pg 130.	
OPTIONAL ACCESSORIES - See page 94	
SOFTWARE FOR 2400 SERIES	
EZ-Tek 2400	\$500
more inform	

DCSO1 Opt 2A CAMERA
For addl. information, see pg 130
OPTIONAL ACCESSORIES - See page 94 SOFTWARE FOR 2400 SERIES

EZ-Tek 2400

For more information see pg 258.

At slower sweep speeds, viewing individual lines of a video signal is difficult with conventional crt's. This MCP crt displays the line brightly, even with its intensity control set to a low level.

This data transition (upper trace) occasionally coincides with the rising edge of the clock (lower trace), violating the timing margin. Also note the infrequent change in clock pulse width.
even win to miensty contro set to a tow reve.

2465B/2445B 200 TO 400 MHz AUTO-MEASURING OSCILLOSCOPES

ORDERING INFORMATION

2465B 400 MHz , Auto-Measuring Oscilloscope
Includes: two P6137 10X probes
(1.5 m) with accessories, fuse (159-0021-00), snap accessory pouch (016-0692-00), front cover, power cord (161-0104-00), Operators' Manual (070-686000), and Pocket Guide (070-7148-01). 2445B 200 MHz Auto-Measuring Oscilloscope
Includes: same as $2465 B$, except
two P6136 Opt. $2510 X$ probes (1.3 m).

INSTRUMENT OPTIONS

Opt. 05 - Video Waveform Measurement System +\$1,295
Includes: same as standard instr., plus CCIR graticule filter, NTSC graticule
filter, and polarized, collapsible
viewing hood (016-0180-00).
Opt. 06 -Counter/Timer/Trigger +\$1,295
Includes: same as standard instr.
Opt. 09 -Counter/Timer/Trigger
with Word Recognizer +\$1,825
Includes: Opt 06, plus Word Recognizer
Probe (010-6407-00) 20 SMT
KlipChip ${ }^{\text {TM }}$ Adapter (206-0364-00), and two ten-wide combs with 10 -inch leads (012-0747-00).
Opt. 1E-External Clock for
Counter/Timer/Trigger
+\$225
Only available with Opt 06 or 09.
Opt. 10-GPIB Interface
(IEEE 488)
+\$1,010
Includes: same as standard
instruments, plus Instr. Interfacing
Guide (070-6859-00).
Opt. 11 - Rear Panel Probe Power
Not available with Opt. 09.

$(2445 \mathrm{~B}$	$\mathbf{+} \mathbf{\$ 2 2 0}$
$(2465 \mathrm{~B})$	$\mathbf{+} 225$
$0 \mathrm{pt}$.22 -Two additional matching probes	
$(2445 \mathrm{~B})$	$+\$ 250$

2468 $+\$ 250$
Opt. B1 - Standard Service Manual
2465B: (070-6863-00)
$+\$ 55$
2445B: (070-6862-00)
Opt. B2-Options Service Manual $\quad+\mathbf{\$ 3 0}$
Includes: All information from Standard
Service Manual plus service information
for options listed above (070-6864-00).
Opt. 1R - Rackmount kit $+\$ 350$
Includes rackmount hardware and
slide-out assemblies, deletes snap pouch.
Opt. 1T - Transit Case +\$475
Telescoping handle \& retractable wheels.
Note: Instrument options are not
retrofittable after purchase.
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - See pg 374.

WARRANTY

Three years covering parts and labor, includes crt, excludes probes. Coverage can be extended to five years through the optional Warranty-Plus service plans.

THE WORLD'S MOST POPULAR PORTABLES

Tek state-of-the-art technology makes possible the 2465B's 400 MHz bandwidth and pushes the limits again by increasing the 2445 's bandwidth to 200 MHz . These scopes also provide pushbutton measurements never before seen in analog instruments. In addition, new pushbutton probes take the full bandwidth to the probe tip - where you really need it.

No other portable oscilloscopes answer so many diverse, demanding requirements in research and design, manufacturing and service. You can count on the 2465B and the 2445 B for needs ranging from waveform observation and quality measurement to fully automated testing.

Adjustable delay increases accuracy. A frontpanel knob adjusts the Channel 2 delay to exactly match the Channel 1 delay from the probe tip.

HIGH PERFORMANCE - THE FIRST PRIORITY

Both the 400 MHz 2465 B and the 200 MHz 2445 B achieve timing accuracies to 1%. You can make highresolution timing measurements with sweep speeds to $500 \mathrm{ps} /$ div in the 2465B, to $1 \mathrm{~ns} /$ div in the 2445B. And trigger on signals to 500 MHz and 250 MHz on the two instruments respectively - thus extending the usefulness of each scope well beyond its vertical bandwidth.
True four-channel capability includes two channels optimized for logic signals. You can also make threechannel $X-Y$ comparisons such as multiple transducer measurements.

Measure phase shift in degrees or percent. The continuously-calibrated variable sec/div control sets one cycle (360° or 100%) to five horizontal divisions. The time cursors make phase and percentage measurements directly.

2400 SERIES ANALOG BEST VALUE PACKAGES

2465BDV/2465BDM/ 2465BCT

SPECIAL PACKAGES PROVIDE A BROAD RANGE OF FUNCTIONS

These models include multi-instrument capabilities while reducing rack or bench space, equipment cost, and programming complexity. As preconfigured packages, they offer significant savings over the cost of combining individual options. Any of these three packages make a good choice for your system, as all include the GPIB interface and the extended Counter/Timer/Trigger (CTT) measurements.

2465BCT PRECISION TIMING SCOPE

The 2465BCT Precision Timing Scope, which includes the CTT/Word Recognizer and GPIB, is ideal for making the precise timing measurements needed for communications, office, and computer-related equipment, or in microprocessor-controlled systems.

2465BDM MULTIFUNCTION SCOPE

The 2465BDM Multifunction Scope includes a GPIBcontrollable digital multimeter in addition to the CTT/WR and GPIB. Its applications as a self-contained, multipurpose instrument extend into government/military electronics, avionics, depot service, and ATE.

2465BDV FULL-FEATURED SCOPE

For more varied applicability, the 2465BDV FullFeatured Oscilloscope adds Video Waveform Measurement capability as well as providing GPIB, CTT/WR, and DMM. It is especially suited to the design, manufacture, and service of raster-scan devices and high-resolution video equipment.

PRODUCT CONFIGURATION GUIDE					
	Standard Models		Special Packages		
Features	2465B	2445B	2465BDV	2465BDM	2465BCT
Bandwidth	400 MHz	200 MHz	400 MHz	400 MHz	400 MHz
General Purpose Interface Bus	Opt. 10	Opt. 10	Included	Included	Included
Counter/Timer/Trigger Word Recognizer	Opt. 09	Opt. 09	Included	Included	Included
Digital Multimeter	Opt. 01	Opt. 01	Included	Included	-
Video Measurement System	Opt. 05	Opt. 05	Included	-	-
Two additional probes	Opt. 22	Opt. 22	Included	Included	Included
Rackmount	Opt. 1R*1	Opt. 1R*1	Opt. 2R	Opt. 2R	Opt. 1R
Probe Power	Opt. 11	Opt. 11	-	-	-
Warranty	3 years, parts and labor		3 years, parts and labor		

[^10]
ORDERING INFORMATION

2465BCT 400 MHz Precision

Timing Oscilloscope
Includes: same as 2465B, plus CTT/WR (Opt. 09), GPIB (0pt. 10) and two additional probes (Opt. 22)
Most cost-effective combination of
these options.
2465BDM 400 MHz Multifunction
Oscilloscope
Includes: same as 2465B, plus
DMM (Opt. 01), CTT/WR
(Opt. 09), GPIB (Opt. 10), and
two additional probes (Opt. 22).
Most cost-effective combination
of these options.
2465BDV 400 MHz Full-Featured
Oscilloscope
Includes: same as 2465B, plus
Video Waveform Measurement
System (Opt. 05), DMM
(Opt. 01), CTT/WR (Opt. 09)
GPIB (Opt. 10), and two additional
probes (0pt. 22). Most cost-effective
combination of these options.

INSTRUMENT OPTIONS

Opt. 1R - Rackmount kit
Includes rackmount hardware and slide-out assemblies,
deletes snap pouch.
Opt. 1 T - Transit Case
+\$475
Telescoping handle \&
retractable wheels.
Note: Instrument options are
not retrofittable after purchase.

INTERNATIONAL POWER PLUG OPTIONS

Opt. A1 - A5 see page 374

WARRANTY

Three years covering parts and labor, includes crt, excludes probes. Coverage can be extended to five years through the optional Warranty-Plus service plans.

WARRANTY-PLUS SERVICE PLANS

Opt. M2-5 yrs warranty
2465BCT +\$395
2465BDM +\$405
2465BDV
+\$405
Opt. M8 - 5 yrs calibration
2465BCT
2465BDM $+\$ 395$
2465BDV
+\$395

DIGITIZING CAMERA SYSTEM

DCS01 Opt. 2A
For additional information,
see page 130 .

OPTIONAL ACCESSORIES

See page 94.
SOFTWARE FOR 2400 SERIES
EZ-Tek 2400. Order S38A101.
For more information see page 258.

CHARACTERISTICS

Characteristics are common to all 2400 Series analog scopes except where indicated. For complete specifications, call your local Tektronix sales office or the Tek National Marketing Center: 1-800-426-2200, Ext. 99.

VERTICAL SYSTEM

Deflection Factor - $2 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$, continuously variable between $\mathrm{V} /$ div settings (CH 1 and CH 2); $100 \mathrm{mV} / \mathrm{div}$ and $500 \mathrm{mV} / \mathrm{div}$ (CH 3 and CH 4).
Deflection Factor Basic Accuracy $- \pm 2 \%$ (measured at any $\mathrm{V} / \mathrm{div}$ setting with a 4 - to 5 -div signal, centered on screen; $\mathrm{CH} 1 / \mathrm{CH} 2$); $\pm 10 \%(\mathrm{CH} 3 / \mathrm{CH} 4)$.
Bandwidth Limit-20 MHz
AC-Coupled Lower ($\mathbf{- 3}$ dB Point)- 10 Hz or less. Input Coupling and Max Voltage - (1 M Ω) ac, dc, GND; Max input voltage: $400 \mathrm{~V}(\mathrm{dc}+$ peak ac) (50Ω); Max input voltage: 5 Vrms .
Input \boldsymbol{R} and $\boldsymbol{C}-1 \mathrm{M} \Omega$ and 15 pF or 50Ω (nominal). Channel Isolation $-\geq 100: 1$ at $100 \mathrm{MHz}, \geq 50: 1$ at nominal BW (CH $1 / \mathrm{CH} 2$), $\geq 50: 1$ at 100 MHz (CH 3/ CH 4).

Instrument	$+15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$	$\begin{array}{r} -15^{\circ} \mathrm{C} \text { to }+15^{\circ} \mathrm{C}, \\ +35^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\ \hline \end{array}$
$\begin{aligned} & 2467 B \\ & 2465 B \end{aligned}$	$\begin{gathered} 400 \mathrm{MHz}(\geq 5 \mathrm{mV} / \mathrm{div}) \\ 350 \mathrm{MHz}(2 \mathrm{mV} / \mathrm{div}) \end{gathered}$	$300 \mathrm{MHz}$
2445B	200 MHz	150 MHz
Standard accessory probe or internal 50Ω termination used.		

HORIZONTAL SYSTEM

Display Modes - A (main sweep), A Intensified, ALTernate A INTEN with B (delayed sweep), and B. In X-Y mode, CH 1 provides X -axis (horizontal) deflection.
A Sweep Time Base Range-2465/67B: $500 \mathrm{~ms} /$ div to $5 \mathrm{~ns} / \mathrm{div}$ (to $500 \mathrm{ps} / \mathrm{div}$ with X 10 mag); 2445B: $500 \mathrm{~ms} /$ div to $10 \mathrm{~ns} /$ div (to $1 \mathrm{~ns} /$ div with X 10 mag).
B Sweep Time Base Range-2465/67B: $50 \mathrm{~ms} / \mathrm{div}$ to $5 \mathrm{~ns} / \mathrm{div}$ (to $500 \mathrm{ps} /$ div with X 10 mag); 2445B: $50 \mathrm{~ms} /$ div to $10 \mathrm{~ns} /$ div (to $1 \mathrm{~ns} / \mathrm{div}$ with X 10 mag).
Continuously Variable Timing Control-calibrated between sec/div settings. Extends A Sweep to $1.5 \mathrm{~s} / \mathrm{div}$.

AUTOMATIC MEASUREMENTS ACCURACY

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Specifications based on noise $<0.1 \%$ of peak-to-peak input signal.
Period - $0.9 \%+500 \mathrm{ps}$.
Volts $-(5 \%+5 \mathrm{mV}+1 \mathrm{LSD}+0.5 \mathrm{mV} \times$ probe
attenuation) to 1 MHz .
Rise Time, Fall Time- $5 \%+3$ ns (for transition times $>10 \mathrm{~ns})$. These rise \& fall times based on measurements of 20% and 80% extrapolated to 10% and 90%. Pulse overshoot, undershoot < 5% of pk-pk signal.
Time $\boldsymbol{A}-\boldsymbol{B}$ (between two voltages) $-0.9 \%+3 \mathrm{~ns}$ (+0.5 ns if from CH 1 to CH 2) $+5 \%$ of start and stop event transition times. Voltages < 10% of either peak.

Time $\boldsymbol{A}-\boldsymbol{B}$ (from \% to \%)-0.9\% (+ 3 ns if from CH 1 to CH 2) $+5 \%$ of start and stop event transition times.
Pulse Width $-0.9 \%+1$ ns (transition times < 10\% of measured interval).

TIMING ACCURACY

Cursors - Volts, Time, 1/Time.

POWER REQUIREMENTS

Line Voltage Ranges-115 V: 90 to 132 VAC; 230 V : 180 to 250 VAC.
Line Frequency - 48 to 440 Hz .
Maximum Power Consumption-120 W (180 VA)
for fully-optioned instrument.

ENVIRONMENTAL AND SAFETY

See page 90.
EFFECTIVE SAMPLING RATE
24678 Opt. 10 with DCS01 $=100 \mathrm{GS} / \mathrm{s}$.

COMPACT DIGITIZING OSCILLOSCOPES

The 2400 Series Digitizing Oscilloscopes combine high bandwidth and sampling rates with powerful automation features and waveform processing capabilities. Measurement accuracy is enhanced by 8 -bit vertical resolution (11 bits with averaging), user-selectable Auto Setup and Measurement methods, selectable interpolation, and high-fidelity signal acquisition.

2 ns glitch capture allows you to see narrow events, for troublesome design problems.

Advanced triggering is provided so you are sure to display a stable waveform, even in the presence of noise. The 2440, 2432A, and 2430A all capture glitches as narrow as 2 ns - a tremendous aid in troubleshooting. Fast update rate (due to Tek's proprietary Waveform Processor) insures near-real-time display response to changes in your signal and increases the probability that infrequent events will be captured and displayed.

FEATURES TO SPEED MEASUREMENTS, SIMPLIFY SETUPS, \& AUTOMATE TESTING

Auto Setup - At the push of a button, the scope displays automatically scaled and triggered signals. The P6137 autoprobe supplied with the 2440 and 2432A extends this capability to its probe-tip button.

Auto Measure - 21 waveform measurements are available for crt readout and over the GPIB. Up to 4 may be selected for live $(3 \mathrm{~Hz})$ update, along with measurement aids and user-definable algorithms.

Auto Pass/Fail Testing - Use this special feature to compare incoming signals against reference waveforms. If the signal is out of limits, the scope time stamps it, alerts the operator or controller, or sends the offending waveform to a printer/plotter. References can be previ-ously-acquired waveforms or templates transferred from a computer.

Auto Sequence - Routines built from the front panel (without writing code!) can include steps to make measurements, compare live waveforms against references, and send data to a printer or plotter automatically. Eliminates or decreases the need for a computer/controller for many repetitive tests. Stores typically 50 to 200 setups and actions in up to 40 named sequences.

SAVE TIME AND REDUCE COST IN SYSTEMS OF ALL SIZES

In large systems, 2400 Series Digitizing Oscilloscopes cut controller time and bus traffic to increase throughput. Averaging, smoothing, measuring, and pass/fail testing can all be done by the scope upon a simple command by the controller.

Compatible sotware is described in "Test and Measurement Software," pages 257-270. he 2400 Series Digitizing Scopes Offer a Well-Balanced Combination of Performance, Automation, and Convenience Features.

- 500 MS/s Digitizing 2440 and 2439. (250 MS/s: 2432A and 2431L, $100 \mathrm{MS} / \mathrm{s}: 2430 \mathrm{~A})$
- 300 MHz Bandwidth (150 MHz: 2430A)
- 2 ns Glitch Capture (except 2439 and 2431L)
- 8-Bit Vertical Resolution (Single-shot and Repetitive)
- 0.0015\% Crystal-Controlled Time Base
- Simultaneous Two-Channel Sampling
- Auto Pass/Fail Testing
- Fast, Reliable Automatic Measurements
- Fast Update Rate
- Extensive Triggering Capabilities
- Direct Printer/Plotter Output
- Disk Storage Available with 2402A TekMate
- On-Screen "HELP" for All Functions
- MATE/CIIL Versions Avallable - 2440M, 2432M, 2430M

SNAPSHOT capability freezes all 20 automatic singlechannel measurements, or up to four measurements can be selected for continuous update with waveform displays.

The Option 05 Video Measurement System allows selection of individual lines and fields. Here, Line 49 from Field 1 is selected.

The 2402A TekMate enhances 2400 Series digitizing scopes with extended capabilities:

- Waveform Storage to PC compatible 3.5" floppy.
- Automatic Data Logging
- FFT - Waveform Processing
- Advanced Hardcopy features

STAND-ALONE OPERATION IN LOWVOLUME OR SHORT-RUN TESTS

The 2402A TekMate ${ }^{T M}$ Instrument Extension extends the capabilities of the 2440, 2439, 2432A, 2430A and 2431L. During execution, TekMate displays instructions on the scope's screen, sets scope controls, makes measurements and pass/tail decisions, and stores over 300 waveforms. 2402A TekMate functions, specifications, and ordering information are located on pages 92-93.

TEK SECURE MEMORY ERASE

2400 Series Digitizing Oscilloscopes can be instantly declassified for removal from secure areas. Invoking the TekSecure ${ }^{\text {TM }}$ feature completely erases waveform, frontpanel, and sequence memories, restarts the instrument with factory settings, then gives positive indication that erasure has been accomplished.

SOFTWARE FOR 2400-SERIES DIGITIZING OSCILLOSCOPES

Powerful, off-the-shelf software packages that run on the IBM PC, XT, AT or compatibles.
The 2410 Digital Interface Test System is a fully integrated hardware and software package. It quickly and accurately tests digital carriers to ANSI or CCITT specifications. Its features, specifications, and ordering information are located with Telecom/Datacom Testers on page 355. WaveWriter, specific to 2400 Series Digitizing Scopes, is described on page 262. Other Test and Measurement Software is located on pages 257-270.

NEW 2439 AND 2431L

LOW-COST SOLUTION TO HIGHPERFORMANCE REQUIREMENTS

The 2439 and 2431L, with $300 \mathrm{MHz}, 500 \mathrm{MS} / \mathrm{s}$ and $250 \mathrm{MS} / \mathrm{s}$ respectively, built in automation features answer the need for lower costs and faster measurements. These products offer entry-level performance to the 2400 Series Digitizing Oscilloscope family.
Software written for the 2439 and 2431L is fully compatible with other, higher performance 2400 Series Digitizing Oscilloscopes: 2440, 2432A, and 2430A.

MATE/CIIL CAPABILITY

The 2440M, 2432M, and 2430M include Control Intermediate Interface Language (CIIL) capability. This is essential for operation in Modular Automatic Test Equipment (MATE) used in testing military avionics and weapons systems.

| | 2400 Series Digitizing Oscilloscopes Performance | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| | Sampling
 Rate | Bandwidth
 (Repetitive) | Bandwidth
 (Single-Shot) | Vertical*1
 Resolution | Clitch
 Capture | Time
 Bases |
| $2440 / 2440 \mathrm{M}$ | $500 \mathrm{MS} / \mathrm{s}$ | 300 MHz | 200 MHz | 8 bits | 2 ns | Main, Dly |
| 2439 | $500 \mathrm{MS} / \mathrm{s}$ | 300 MHz | 100 MHz | 8 bits | No | Main |
| $2432 \mathrm{~A} / 2432 \mathrm{M}$ | $250 \mathrm{MS} / \mathrm{s}$ | 300 MHz | 100 MHz | 8 bits | 2 ns | Main, Dly |
| 2431 L | $250 \mathrm{MS} / \mathrm{s}$ | 300 MHz | 100 MHz | 8 bits | No | Main |
| $2430 \mathrm{~A} / 2430 \mathrm{M}$ | $100 \mathrm{MS} / \mathrm{s}$ | 150 MHz | 40 MHz | 8 bits | 2 ns | Main, Dly |

[^11]| | 2400 Series Digitizing Oscilloscopes Features | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | Auto Setup | Auto Measure | Auto
 Pass/Fail | Auto
 Sequencing | Auto Probe |
| 2439 | View Only | Live and Snapshot | Yes | 200 steps (typical) | No |
| 2440/2440M | View, Period, Pulse, Edge | Live and Snapshot | Yes | 200 steps (typical) | Yes |
| 2432A/2432M | View, Period, Pulse, Edge | Live and Snapshot | Yes | 200 steps (typical) | Yes |
| 2431L | View only | Live only | Yes | 50 steps (typical) | No |
| 2430A/2430M | View, Period, Pulse, Edge | Live and Snapshot | Yes | 200 steps (typical) | No** |

[^12]
QUICKSTART OPERATOR'S TRAINING PACKAGE

COMPLETE WITH VIDEOTAPE, WORKBOOK, AND CIRCUIT BOARD

Proceed at your own pace through sections designed for users of various experience levels. The workbook offers an introduction to digitizing scope measurements, intermediate and advanced excercises, and procedures for calibration and diagnostics.

The QuickStart videotape previews measurement excercises and explains key points of the Workbook. All necessary signals are available on the QuickStart Circuit Board.

QuickStart is a complete and portable training package. It can serve several users for thorough selfstudy or as a quick, easy reference. QuickStart can be ordered as an option to your new scope or separately. See Ordering Information, page 91.

CHARACTERISTICS

2400-SERIES DIGITIZING OSCILLOSCOPES

Characteristics are common to the 2440, (2440M), 2439, $2432 \mathrm{~A}(2432 \mathrm{M}), 2431 \mathrm{~L}$ and 2430A (2430M) except where indicated. For complete specifications, refer to product data sheets available from your local Tektronix sales office or the Tek National Marketing Center - toll-free:1-800-426-2200, Ext. 99.

VERTICAL SYSTEM
Channels - two, simultaneous acquisition.
Bandwidth Limit - selectable 20 MHz or 100 MHz
(2440 and 2439), 20 MHz or 50 MHz (2432A, 2431L, 2430A).
Vertical Sensitivity -2 mV/div ($200 \mu \mathrm{~V} /$ div with expansion or averaging) to $5 \mathrm{~V} / \mathrm{div}$, continuously variable between ranges.
Vertical Accuracy - $\pm 2 \%+1$ digitizing level (25 digitizing levels per crt division), includes amplifier accuracies and A / D converter resolution.
AC-Coupled Lower -3dB Point -10 Hz or less. Frequency Response (-3 dB Repetitive Bandwidth)

Instrument	$-15^{\circ} \mathrm{C}$ to $+\mathbf{3 0} 0^{\circ} \mathrm{C}$	$+\mathbf{3 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 5 5 } { } ^ { \circ } \mathrm { C }}$
2440,2439,	300 MHz	reduce bandwidth by 2.5 MHz for each ${ }^{\circ} \mathrm{C}$ above $+30^{\circ} \mathrm{C}$

2430A dc to 150 MHz
Measured with standard accessory probe or internal 50Ω termination.
Imput Coupling and Max Voltage - $(1 \mathrm{M} \Omega) \mathrm{ac}, \mathrm{dc}$, GND; Max input voltage: 400 V (dc + peak ac)
(50Ω); Max input voltage: 5 V rms.
Input R and C-1 M Ω and 15 pF or 50Ω (nominal).
Vertical Position Range $- \pm 10 \operatorname{div}$ (nominal).

[^13]
HORIZONTAL SYSTEM

Display Modes - A, A INTENsified, B (A only for 2439 and 2431L).
Time Base Accuracy - 0.0015\%.
Maximum Time Base Resolution - 40 ps (2440, 2439, 2432A, 2431L), 100 ps (2430A).
A and B (Delayed) Sweep Time Base Range*2 ns/div to $5 \mathrm{~s} /$ div ($2440,2432 \mathrm{~A}, 2431 \mathrm{~L}), 5$ ns/div to $5 \mathrm{~s} / \mathrm{div}$ (2430A).
External Clock Frequency - 1 MHz to 100 MHz .
Delay by Events* - Delays A or B sweep by userselected number of B trigger events after the normal A trigger occurs, max number of events: 65,536 .

Acquisition System
Single-Shot Bandwidth - $200 \mathrm{MHz}(2440,2439)$, 100 MHz (2432A, 2431L), 40 MHz (2430A) using internal Modified (sine x)/x interpolator with REPET mode OFF
Maximum Sample Rate - 500 MS/s (2440, 2439), $250 \mathrm{MS} / \mathrm{s}(2432 \mathrm{~A}, 2431 \mathrm{~L}), 100 \mathrm{MS} / \mathrm{s}(2430 \mathrm{~A})$ on both channels simultaneously.
Update Rate - 30 Hz typical (100 Hz max with 50 kHz trigger, one channel selected, $100 \mu \mathrm{~s} / \mathrm{div}$).
Vertical Resolution - 8 bits or 0.39% (256 levels over 10.24 vertical divisions), 11 bits or 0.049% (2048 levels) with 64 or more averages.
Record Length - 1024 points per channel (all modes). Acquisition Modes - Normal (real-time sampling), Envelope (displays min and max waveform values over one or more sweeps), Average (effectively increases vertical resolution and sensitivity).
Glitch Capture* - pulses 2 ns and wider are captured at > 50% amplitude with > 85% confidence ($5 \mathrm{~s} /$ div to $5 \mathrm{~ns} / \mathrm{div}$, REPET mode OFF for 2430A; $5 \mathrm{~s} /$ div to $500 \mathrm{~ns} /$ div for $2440,2432 A$).

MEMORY

Retention Time $->3$ years for calibration, setups, and sequences.

TRIGGERING
A Mode - Auto Level, Auto/Roll, Normal, and Single Sequence.
B Mode* - Triggerable After Delay, Runs After Delay.
A and B Source - Vertical, CH 1, CH 2, Line (A only), Ext 1, Ext 2, A*B (A sweep only), Word (17-bit word recognizer probe optional accessory).
A and B Coupling - Ac, dc, Noise Reject, HF Reject, LF Reject, (Video, A mode only with option 05).
A and B Trigger Position $-1 / 8$ to $7 / 8$ of acquisition record, user selectable in $1 / 8-1 / 4-1 / 2-3 / 4-7 / 8$ sequence. User selectable in 32 -sample intervals (from $1 / 32$ to 3032) using GPIB.

Ext 1 and Ext 2 Inputs - Resistance: $1 \mathrm{M} \Omega \pm 1 \%$. Capacitance: $15 \mathrm{pF} \pm 3 \mathrm{pF}$.
Maximum Input Voltage: 400 V (dc + peak ac), 800 Vp -p ac at 10 kHz or less.
Trigger Level Control Range -
CH 1 and CH 2 Source: $\pm 18 \mathrm{div} \times$ V/div. Ext 1 and Ext 2 Source Gain $+1: \pm 0.9 \mathrm{~V}$.

QuickStart Operator's Training Package

- Basic Training for First-Time Users
- Advanced Techniques for Experienced Operators
- Refresher for Occasional Users

Humidity - Operating and nonoperating: stored at 95% relative humidity for five cycles (120 hours) at $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ with operational performance checks at $+30^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$.
Altitude - Operating: to 4500 m (max operating temperature decreases above 1500 m), Nonoperating: to 15,000 m
Shock - 50 g's.
Transit Drop -Meets MIL-T-28800D, paragraph 4.5.5.4.2.

Bench Handling - Meets MIL-STR-810E, Method 516.4, Procedure VI (MIL-T-28800D, paragraph 4.5.5.4.3) with and without cabinet installed.

Safety - Certified by CSA (CSA 556B) and UL listed (UL 1244).

ENVIRONMENTAL SPECIFICATIONS FOR RACKMOUNTED OSCILLOSCOPES

Rackmounting changes temperature, vibration, and shock capabilities. The rackmounted scope meets or exceeds the requirements of MIL-T-28800D with respect to Type III, Class 5, Style C equipment, when installed as directed. It also meets or exceeds Tektronix Standard 062-2853-00, Class 5 requirements.
Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, measured at the instrument's air inlet. Fan exhaust should not exceed $+65^{\circ} \mathrm{C}$.
Vibration - Operating: same as standard instrument, except total displacement is 0.015 inch p-p (2.3 g's at 55 Hz).
Shock - Operating and nonoperating: same as standard instrument, except shocks are 30 g 's.

PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in.	$\mathbf{m m}$	$\mathbf{i n}$.
Width (with handle)	338	13.3	483	19.0
Height (with feet and pouch) (without feet and pouch)	190	7.5		
Depth (with front cover) (with handle extended)	479	6.3	178	7.0
Weights	22.9	419	16.5	
Net (with accessories and Pouch)	12.8	28.1		
(without accessories and Pouch)	10.9	23.9	4.0	8.8
Shipping	16.4	36.0		

ORDERING INFORMATION

$2440500 \mathrm{MS} / \mathrm{s}$ Digitizing Oscilloscope
Includes: two P6137 10X auto-probes (1.5 m) with accessories, fuse (159-0014-00), snap accessory pouch (016-0692-00), front cover (200-3199-01), power cord, Operators' Manual, Users' Reference Guide, Programmers Reference Guide, GPIB Pocket Guide.
$2439500 \mathrm{MS} /$ s Digitizing Oscilloscope
Includes: two P6136 $10 \times$ probe (1.3 m) with accessories, fuse, power cord, Operators'Manual
(070-8232-00), Users' Reference Guide (070-8230-00) Programmers Reference Guide (070-8231-00), GPIB Pocket Guide ($070-8229-00$).
2432A $250 \mathrm{MS} / \mathrm{s}$ Digitizing Oscilloscope
Includes: same as 2440 .
2431L 250 MS/s Digitizing Oscilloscope
Includes: same as 2439.
2430A $100 \mathrm{MS} / \mathrm{s}$ Digitizing Oscilloscope
Includes: same as 2440, except 2 P6133 Opt. 25 10X (1.3 m) probes.

MATE/CIIL VERSIONS
2440M $500 \mathrm{MS} / \mathrm{s}$ MATE/CIIL Digitizing
Oscilloscope
Includes: same as 2440 , plus MATE/CIIL Operators
Manual ($070-6828-00$) and 2440 Service Manual (070-6603-00).
2432M 250 MS/s MATE/CIIL Digitizing
Oscilloscope
Includes: same as 2440, plus MATE/CIIL Operators'
Manual (070-6287-01) and 2432 Service Manual
070-7273-00)
2430M 100 MS/s MATE/CIIL Digitizing
Oscilloscope
Includes: same as 2430A, plus MATE/CIIL Operators'
Manual (070-6042-01) and 2430A Service Manual (070-6330-01).

INSTRUMENT OPTIONS

Opt. 03 - Word Recognizer Probe Pod (P6407)
(Not available for 2431L or 2439)
Opt. 05-Video Waveform Trigger System
Opt. 11- Probe Power (not available for 2431L, 2439)
Opt. 22- Two Additional Matching Probes
Opt. 29-2402A TekMate

\$12,390

(Not available for 'M' Versions)
Opt. 46 - Commercial Version of ARMY OS-291/G
(National Stock Number 6625-01-258-0022)
Opt. 2C - FeedThrough Cable Kit
(Included with Opt. 1R for 'M' Versions)
Opt. 2F - QuickStart Training Package (U.S. power)
(2440/2430A/2432A only)
Opt. 3F - QuickStart Training Package (Euro power) (2440/2430A/2432A only)
Opt. 1P - HC100 Color Plotter (U.S. power 110V) (Includes GPIB cable) (Not available for 'M' Versions) Opt. 2P - HC100 Color Plotter (Euro power 220V) (Includes GPIB cable) (Not available for ' M ' Versions) Opt. 1R - Rackmount
Opt. 1T - Transit Case (telescoping handle, retractable wheels) ($2440 / 2430 \mathrm{~A} / 2432 \mathrm{~A}$ only)
Opt. 4F - French HELP Text (2440/2430A/2432A only)
Opt. 4G - German HELP Text (2440/2430A/2432A only)
Opt. 4H - Italian HELP Text (2440/2430A/2432A only)
Opt. 4S - Spanish HELP Text (2440/2430A/2432A only)
Opt. B1 - Service Manual (Not required for 'M' Versions) (2440/2432A/2431L/2430A 2439)

SOFTWARE FOR 2400 SERIES DIGITIZING OSCILLOSCOPES
For additional software packages, see the "Test and Measurement Software" section, pages 257-270.

Nave Writer -

$\begin{array}{ll}\text { S37T100 or } & \text { \$285 } \\ \text { S37T100 Opt. } 28 \text { (U.S. only) }\end{array}$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro $220 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A2 - UK $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Dpt. A3 - Australian $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A4 - North American $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A5 - Switzerland $220 \mathrm{~V}, 50 \mathrm{~Hz}$
WARRANTY
Three years covering parts and labor, includes crt, excludes probes. Coverage can be extended to five years through the optional Warranty-Plus service plans.

WARRANTY-PLUS SERVICE PLANS
Opt. M2 - Remedial Coverage in years 4 and 5 .

2440	+\$380
2440M	+\$415
2432A/2439	+\$380
2431L	+\$340
2432M	+\$415
2430A	+\$325
2430M	+\$385
Opt. M3-4 calibrations (in years 2 through 5),	
Remedial Coverage for years 4 and 5.	
2440	+\$826
2440M	+\$864
2432A/2431L	+\$768
2439	*1
2432M	+\$779
$2430 \mathrm{~A} / 2430 \mathrm{M}$	+\$903
Opt. M4 - 5 calibrations (in years 1 through 3).	
2440	+\$523
2440M	+\$523
2432A/2431L	+\$501
2439	*1
2432M	+\$501
2430A/2430M	+\$608
Opt. M5-9 calibrations (in years 1 through 5),	
Remedial Coverage for years 4 and 5.	
2440	+\$1,316
2440M	+\$1,354
2432A/2431L	+\$1,235
2439	*1
2432M	+\$1,246
2430A/2430M	+\$1,472
Opt. M7-2 calibrations (in years 2 and 3).	
2440	+\$223
2440M	+\$223
2432A	+\$214
2431L/2439	*
2432M	+\$214
2430A/2430M	+\$259
Opt. M8-4 calibrations (in years 2 through 5).	
2440	+\$435
2440M	+\$495
2432A/2431L	+\$435
2439	*1
2432M/2430M	+\$495
2430A	+\$435

${ }^{1}$ Contact your local sales representative.

MANUALS

	$\mathbf{2 4 4 0 / 2 4 4 0 M}$	Price	$\mathbf{2 4 3 9}$	Price	2432A/2432M	Price	2431L	Price
Operators' Manual	$070-6599-00$	$\mathbf{\$ 5 5}$	$070-8232-00$	$\mathbf{\$ 5 5}$	$070-7272-00$	$\mathbf{\$ 4 8}$	$070-7701-00$	$\mathbf{\$ 4 8}$
Programmers' Reference	$070-6601-00$	$\$ 21$	$070-8231-00$	$\mathbf{\$ 2 1}$	$070-7271-00$	$\mathbf{\$ 2 1}$	$070-6286-02$	$\mathbf{\$ 5 5}$
GPIB Pocket Guide	$070-6602-00$	$\mathbf{\$ 6 . 7 5}$	$070-8229-00$	$\mathbf{\$ 6 . 7 5}$	$070-7270-00$	$\mathbf{\$ 6 . 7 5}$	$070-7699-00$	$\mathbf{\$ 6 . 7 5}$
Users' Reference Guide	$070-6600-00$	$\mathbf{\$ 6 . 7 5}$	$070-8230-00$	$\mathbf{\$ 6 . 7 5}$	$070-7269-00$	$\mathbf{\$ 6 . 7 5}$	$070-7698-00$	$\mathbf{\$ 6 . 7 5}$
Service Manual	$070-6603-00$	$\mathbf{\$ 1 2 5}$	$070-8233-00$	$\mathbf{\$ 1 2 5}$	$070-7273-00$	$\mathbf{\$ 1 1 0}$	070	$070-6604-01$

P PIB controller or DSO functional extension.

- Full performance IBM ${ }^{\text {- }}$ compatible GPIB controller
- Environmentally rugged, compact in size
- Instrument extension for 2400 Series DSO's
- Powerful DSO utility software for data logging, pass/fail testing, complex waveform analysis
- Flexible DSO development system for custom solutions

RUGGED FULL PERFORMANCE GPIB CONTROLLER

The TekMate ${ }^{\top M}$ instrument controller satisfies many GPIB bus control needs. It is a compact, low power, environmentally rugged IBM- compatible GPIB controller equally suited for rack or benchtop applications.
Because of it's compact size and ruggedness, TekMate attaches to any 2400 Series Digital Storage Oscilloscope (DSO). Coupled with powerful DSO extension software, the TekMate/DSO combination is a flexible and portable waveform storage, processing and measurement functional extension.

Options are available to satisfy a variety of application needs including 44 Mbyte hard disk, VGA graphics card, additional RAM memory and math coprocessor.

SOFTWARE SOLUTIONS

There are many IBM compatible software packages available from Tektronix that support broad requirements and individual instrument capabilities. Here are some examples:
DSO Utility Software adds capability
to a 2400 Series DSO including:

- Waveform and instrument settings storage/ recall on IBM ${ }^{\otimes}$ PC compatible 3.5" floppies or optional hard disk.
- Keyboard and monitor are not required because software uses the DSO front panel and display for the operator interface.
- Complex waveform analysis including FFT, Correlation, Differentiation, and Integration.
- Creation and storage of templates for waveshape tests.
- Automatic Pass/Fail decisions.
- Data logging with time/date stamp for unattended data collection and remote site monitoring.

2402A with Option 35 makes a rugged instrument controller.

DSO Program Development System saves time and cuts program development costs. It runs on IBMcompatible computers and includes:

- Menu development system, waveform math and GPIB control function libraries
- Disk, directory and file-management functions
- Template generation tools

The program development system (Opt. 41) includes Microsoff ${ }^{\text {® }}$ Quick C and QuickBASIC programming languages and over 250 example programs.

EZ-TEST Test Procedure Generator Software

Adding EZ-TEST TPG allows creating GPIB test procedures quickly and easily without programming. These procedures can be executed using just the TekMate/DSO combination-without the need for keyboard or monitor. EZ-TEST provides a quick, lowcost entry into automated testing.

CHARACTERISTICS

Processor - 80286 at 16 MHz .
Disk Drives - Two 3.5" IBM-compatible 720 kilobyte floppy drives standard. Optional 44 Mbyte hard disk replaces one floppy drive.
Monitor support - With optional VGA graphics card. Card can be software configured for analog video VGA, EGA, CGA and monochrome monitors. Does not support TTL video monitors.
Power requirements -90 to 250 VAC line voltage range, 48 to 440 Hz line frequency range, consumes 70 watts.
Environmental -MIL-T-28800D, class 5 (limited by floppy and hard disk).
For complete specifications - Refer to product data sheets available from your local Tektronix sales office or the Tek National Marketing Center - call toll free: 1-800-426-2200, ext. 99.

ORDERING INFORMATION

2402A TEKMATE OPTIONS 2402A TekMate instrument Extension
$\$ 2,795$ 2402A hardware manual and MS-DOS manual See recommended configurations below.

RECOMMENDED CONFIGURATIONS
Opt. 01 - 2400 DSO Utility Kit -
Includes: 2402A TekMate base unit, DSO utility software, DSO utility manual, GPIB cable and 2400 DSO mounting kit and instructions.
Opt. 35 - Instrument Controlier - $\quad \$ 2,200$
Adds VGA graphics card, VGA monitor (U.S power only), keyboard and 44 Mbyte hard disk.

2402A TEKMATE OPTIONS

Hardware options

Opt. 21-44 Mbyte Hard Disk $\quad+\$ 995$
Opt. 34 - Add VGA Graphics Card
Opt. 39 - Add math co-processor (80287)
Opt. 45-2 Mbyte total RAM expansion
+\$495
+\$645
$+\$ 500$
(for 4 Mbytes, order two option 45)
Opt. 1R-Rackmount
Opt. 1C - Transit Cart
+\$350
$+\$ 115$
Software options
Opt. 41-2400 DSO Program Development System Opt. 4X - Delete Microsoft DOS
+\$995 (where international licensing limitations require) Opt. S9-Software subscription for Opt. 01 DSO Utility

NC one full year for U.S. customers.
Opt. 42 -S9 Software subscription for Opt. 41 DSO Program *
Development System. Extends software upgrades and product support to one full year for U.S. customers.
Opt. 1S - Software subscription for Opt. 01 DSO Utility NC Software. Extends software upgrades and product support to one full year for international customers.
Opt. 42 -1S Software subscription for Opt. 41 DSO Program $\quad 7$ Development System. Extends software upgrades and product support to one full year for international customers.

Training options

Opt. 2F-QuickStart Operators Training Package +\$205 U.S. power, 020-1747-01)

Opt. 3F - QuickStart Operators Training Package (Euro power, 020-1748-01)

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro $220 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A2 - UK $240 \mathrm{~V}, 50 \mathrm{~Hz}$
NC
Opt. A3-Australian $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A4 - North American $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A5 - Switzerland $220 \mathrm{~V}, 50 \mathrm{~Hz}$

OTHER ACCESSORIES FOR 2402A TEKMATE

Hardware accessories

GPIB cable - $1 / 2$ meter, Order 012-1282-00 \$135
GPIB cable -1 meter, Order 012-0991-01 \$140
Keyboard - Order 119-3772-00 \$190
VGA Color Monitor (U.S. power only) - \$700
Order 119-3798-00
VGA Graphics Board field upgrade - $\quad \$ 550$
Order 040-1332-00
44 MByte Hard Disk field upgrade - $\$ 1,050$
Order 040-1331-00
2 Mbyte RAM (Total) Expansion field upgrade - $\$ 550$
Order 040-1333-00
Math Coprocessor field upgrade - $\$ 690$
Order 040-1334-00
2400 DSO Mechanical Compatibility Kit - $\$ 55$
Order 016-0978-00
2712 Spectrum Analyzer Mechanical Compatibility Kit - \$70
Order 016-1109-00
Software accessories
2400 DSO Program Development Software - $\quad \$ 1,295$
Order S37UD01
2400 DSO Utility Software and Manual - \$775
Order S37UT01
EZ-Test Test Program Generation Software - $\quad \$ 1,995$
Order S45F030
Wavewriter Arbitrary Waveform Generator Software - \$1,795
Order S75WVWR
Microsoft Quick C - (5.25" media with manual), '1
Order 062-8832-00
Microsoft Quick BASIC - (5.25" media with manual, \$99
Order 062-9352-02
Lap Link Software - ($3.5^{\prime \prime}$ and 5.25" media, manual, \$150
RS-232 cable), Order 062-9976-00
Training accessories
Quickstart Operators Guide - (manual only),
Order 070-7447-01
${ }^{-1}$ Contact your local sales office.

ORDERING INFORMATION

Option 1 T Transit Case

2400 SERIES ANALOG AND DIGItizing scopes				
Accessory	Key Characteristics (for complete specifications reter to page(s) listed in table)	Page	Order	Price
Passive Probes (1 M Ω)	10X 400 MHz , compact tip, (incl. with 2467B, 2465B, 2440, 2432A)	322	P6137	\$180
	10X, 350 MHz , subminiature tip	322	P6136	\$175
	10X, 350 MHz , compact tip (incl. with 2455B, 2431L)	322	P6136 Opt. 25	\$175
	10X, 150 MHz , subminiature tip	322	P6133	\$140
	10X, 150 MHz , compact tip (incl. with 2430A, 2445B)	322	P6133 Opt. 25	\$140
	Rugged 10X, 150 MHz	312	P6109	\$70
Active Probe	10X FET Probe, 500 MHz	320	P6202A	\$825
Bias/Offset Probe	10X Bias/Offset Probe, 1.5 GHz	320	P6230	\$525
Low Impedance Probe (50Ω)	10X Low Impedance, 3.5 GHz	321	P6156*1	\$255
Current Probes	$50 \mathrm{MHz}, 20 \mathrm{Amps}(\mathrm{dc}+\mathrm{pk} \mathrm{ac})$ $15 \mathrm{MHz}, 100 \mathrm{Amps}$ (dc +pk ac)	$\begin{aligned} & 325 \\ & 325 \end{aligned}$	AM 503S AM 503S Opt. 03	$\begin{aligned} & \$ 2,400 \\ & \$ 3,030 \end{aligned}$
High Voltage Probes	$\begin{aligned} & 120 \mathrm{MHz}, 1500 \mathrm{~V} \text { pk } \\ & 75 \mathrm{MHz}, 40 \mathrm{kV} \mathrm{pk} \end{aligned}$	$\begin{aligned} & 323 \\ & 323 \end{aligned}$	$\begin{aligned} & \text { P6009 } \\ & \text { P6015 } \end{aligned}$	$\begin{aligned} & \$ 250 \\ & \$ 840 \end{aligned}$
Optical to Electrical Converters	450-1050 nanometers, 700 MHz (requires 1103 Probe Power Supply)	287	P6701A	$\cdot 2$
	450-1050 nanometers, 250 MHz , High Gain, (requires 1103 Probe Power Supply).	287	P6711	-2
	1000-1700 nanometers, 500 MHz (requires 1103 Probe Power Supply)	287	P6703A	$\cdot 2$
	1100 to 1700 nanometers, 300 MHz , High Gain, (requires 1103 Probe Power Supply).	287	P6713	$\cdot 2$
Power Supply	Power Supply for up to two probes	323	1103	\$415
Isolator	Two independently-isolated channels, $20 \mathrm{MHz}, 3000 \mathrm{VAC}$	328	A6902B Opt. 02	\$2,830
SMT Interconnects	SMT KlipChip™ for surface-mount devices (requires 013-0202-02)	317	SMG50	\$89
	SOIC Twin Pack for Small Outline Integrated Circuits ($8,14,16,20,24$ pins)	317		
	PLCC Twin Pack for Plastic Leader Chip Carriers (20, 28, 44, 52, 68 pins)	317	C-9	$\cdot 2$
Cameras	Low-cost, mountable film back camera	302	C-5C Opt. 01	\$580
	High Performance	303	C-30 BP Opt. 01	\$2,135
	Digitizing	172	DCS01 Opt. 2A	\$7,340
Carts	Portable Instrument Cart Cart with Plotter Shelf	$\begin{aligned} & 307 \\ & 307 \end{aligned}$	$\begin{aligned} & \text { K212 } \\ & \text { K212 Opt. } 22 \end{aligned}$	$\begin{aligned} & \$ 385 \\ & \$ 530 \end{aligned}$
Carrying Cases	Telescoping handle, retractable wheels Low-cost suitcase style	$\begin{aligned} & 339 \\ & 339 \end{aligned}$	$\begin{aligned} & 202-0302-00 \\ & 016-0792-01 \end{aligned}$	$\begin{aligned} & \$ 495 \\ & \$ 345 \end{aligned}$
Carrying Strap	Over-the-shoulder	339	346-0119-00	$\cdot 2$
Swivel Base	Adjustable scope stand	309	K501	\$60
Color Plotter	HC100 4-Pen Plotter	295	HC100 Opt. 01	\$1,050
Printer	Dot Matrix, 9 pin	296	HC200	\$275

[^14]
HOW TO CHOOSE THE RIGHT PORTABLE SCOPE FOR YOUR MEASUREMENT NEEDS

The Tek 2200 Series digital and analog scopes span a performance range from 20 MHz to 100 MHz .

To choose the right scope, first characterize your signal and decide if you need full-featured advanced performance or economical standard performance. An advanced 100 MHz oscilloscope is the most popular choice for most service and repair needs. The second step is to decide on either digital plus analog display or
just analog display. With the addition of digital display technology, you can capture and analyze more types of signals. Finally, select a product class that meets your productivity needs and offers features to improve your measurement confidence. These enhancements make it easy to get fast and accurate results. The best in class products represent the latest offerings in each performance level.
The oscilloscope reference section beginning on page 28 provides additional information to assist you in your selection process.

A
Family of Economical Portable Oscilloscopes Engineered With the Capability to Satisfy Diverse Measurement Situations.

- Wide Range of Models for Diverse Signal Measurement Needs
- Familiar Operation
- Advanced Design Features for Productivity, Performance and Reliability
- Rugged, Safe, Lightweight and Portable

To order, call your local Tektronix Sales Office, or call Tek's National Marketing Center.

aveform

Confidence and Versatility Unmatched at the Price.

- 100 MHz Analog and Digital Storage Bandwidth
- 100 MS/s Per ChanneI

Sampling Rate

- 10 ns Glitch Capture, Any Sweep Speed
- Selectable 1 K or 4 K Record Length
- 8-bit Vertical Resolution
- Time and Voltage Waveform Cursors
- Trigger-Level Readout
- GPIB or RS-232-C

Communications Options

2232

- Dual Time Base
- 26 K Added Battery-Backed Waveform Storage
*The 2232 and 2221A oscilloscopes comply with IEEE Standard 488.11987 with Option 10, RS-232-C with Option 12, and Tektronix Standard Codes and Formats.

2232/NEW 2221A OSCILLOSCOPES

UNMATCHED VERSATILITY

The 2232 and 2221A deliver high-end performance at the lowest price in their class. These 100 MHz oscilloscopes have advanced capabilities not found in comparable scopes. For single-shot and low repetition-rate signals, they offer simultaneous $100 \mathrm{MS} / \mathrm{s}$ sampling on each channel, 10 ns glitch capture, 1 K and 4 K record length, and battery-backed memory. When your signal is best viewed in real-time, a single push of a button makes each operate as familiar analog oscilloscope. This dual performance capability assures you the right solution is always at your fingertips.

The 2221A is an improved version of our popular 2221, offering the same digitizing performance as the 2232 in a single time base oscilloscope. The fast sample rate and long 4 K record length provide plenty of signal capturing capability; its horizontal and vertical expansion of stopped waveforms facilitate the signal analysis.

HIGH-SPEED GLITCH CAPTURE

With innovative sampling technologies, these oscilloscopes are capable of catching random signal variations that are often missed with other digitizing oscilloscopes. In Peak Detect sampling mode, these scopes always sample at $100 \mathrm{MS} / \mathrm{s}$, continuously observing your signal every 10 ns , regardless of sweep speed. This "glitchfinding" capability helps you quickly isolate problems such as power line spikes or false clock pulses that would otherwise be hidden between samples.

The 2232's peak detect mode captures glitches as narrow as 10 ns. Using the second time base and expansion feature, it's then easy to characterize the glitch.

The 2221A offers the same powerful digitizing capabilities in a single time base scope, making it an attractive lower cost alternative for many troubleshooting needs.

EXCELLENT WAVEFORM RESOLUTION

Both oscilloscopes acquire 1 K or 4 K records with 8 -bit vertical resolution. They can display between 100 and 4096 points on-screen for precise analysis. Events as slow as 20 seconds (and slower with external clocking) or as fast as several nanoseconds can be captured and analyzed with confidence.
The 2232 adds a powerful dual time base system, allowing you to zoom in on any portion of your waveform and acquire a full record of information. A period of delay from the initial (A) trigger is set scrolling a "B-delay" intensified window to the point of interest. The 2232 can then immediately start acquiring samples at the new sweep speed, or await a trigger event to lock onto the point of interest.

WAVEFORM STORAGE AND ANALYSIS

Digital storage provides the opportunity to freeze events on-screen for analysis. But unlike many digital oscilloscopes, the 2232 and 2221 A allow you to expand, compress, reposition, and measure a waveform after it has been captured. These capabilities apply to any stored waveform with the 2232 , including non-volatile reference memories. The 2232 also adds an additional 26 K of extended memory for waveform storage on-board. Thus, a reference library of up to 26 known-good waveform sets can be recalled at any time for performance verification. Or unknown signals can be captured and recalled later for analysis.

TIME-SAVING FEATURES

Bezel buttons, measurement cursors and on-screen readouts reduce analysis time and measurement error. Conveniently located bezel buttons let you easily select advanced menu functions. These functions include adjusting average weighting and sweep limits, pointselectable trigger position, and display modes.
Measurement cursors further simplify scope operation by calculating and displaying delta time and voltage. The cursors are tied to a selected waveform and can be positioned anywhere in a record (including off-screen over greater than 10 divisions) for detailed timing analysis. Scale factors automatically track the selected waveform.

INTERFACING ALTERNATIVES

The 2232 and 2221A offer a choice of interfaces: GPIB and RS-232-C. Both allow you to transmit and receive waveform data, query front-panel settings, control menu functions, and reset single-sweep trigger. In addition, you can connect the oscilloscope directly to a compatible printer or plotter for hardcopy output at the push of a button.

Tektronix makes interfacing with your personal computer easy. For example, Tek's "WaveSaver" package makes easy work of waveform transfer, documentation, and data archiving on your pc. For remote data transfer over commercial telephone lines, "TeleServicing" software adds modem control capabilities for a turn-key field service and remote-monitoring solution. See the T\&M Software section of this catalog for more information on these and other software solutions.

CHARACTERISTICS

Characteristics are common to the 2232 and 2221 A except where noted.

DIGITAL STORAGE SYSTEM

Sample Rate - 100 MS/s per channel. Effective sample rates up to $2 \mathrm{GS} / \mathrm{s}$ in repetitive storage mode ($0.5 \mu \mathrm{~s} / \mathrm{div}$ and faster in single-channel mode, $0.2 \mu \mathrm{~s} / \mathrm{div}$ and faster dual-channel).
Resolution - Vertical: 8 bits (25 levels per div.), up to 12 bits in average mode. Horizontal: 10 bits (100 points per div.), 9 bits per channel in dual channel mode.
Record Length -4 K or 1 K selectable. 2 K or 512 per channel in dual channel mode.
Pre/Post Trigger - 1/8, 1/2, or 7/8 trigger position selectable, selectable to any point in record via menu.
Acquisition Modes - Peak Detect (10 ns glitch capture at all available sweep speeds); Accumulated Peak Detect; Average (weight-selectable from $1 / 1$ to $1 / 256$); and Sample.
Save Reference Memory - One 4 K or three 1 K acquisitions battery-backed. 2232 : adds 26 K of extended memory (store up to 26 waveform sets). Battery-backed memory stores waveforms for up to 3 years.

VERTICAL SYSTEM (2 Identical Channels) Bandwidth (-3 dB) and Rise Time -100 MHz and $3.5 \mathrm{~ns}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; 80 \mathrm{MHz}$ and $4.4 \mathrm{~ns}(2 \mathrm{mV} /$ div or $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$).
Deflection Factor and Accuracy - $2 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div} \pm 2 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; \pm 3 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Vertical Operating Modes - CH 1, CH 2, CH 2 INVERT, ADD, ALT, CHOP (500 kHz), and XY.
CMRR - At least $10: 1$ at 50 MHz .
Input R and C-1 M $\Omega, 20 \mathrm{pF}$.
Max Input Voltage - 400 V ($\mathrm{dc}+$ peak ac), 800 Vp -p.
Channel Isolation - 100:1 at 50 MHz .
HORIZONTAL SYSTEM
Sweep Speeds - A sweep: $0.5 \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}$, extended to $5 \mathrm{~ns} /$ div with X10 magnification. Store mode: $5 \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}(5 \mathrm{~ns} / \mathrm{div}$ with X10 MAG). 2232: B sweep: $50 \mathrm{~ms} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}$.
Accuracy - Nonstore Mode: X1: $\pm 2 \% ;$ X10: $\pm 3 \%$ $\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) . \mathrm{X} 1: \pm 3 \% ; \mathrm{X} 10: \pm 4 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$. Store Mode: $\pm 0.1 \%$ over full 10.24 divisions.
Horizontal Operating Modes-2232: Nonstore Mode: A, ALT (A intensified by B and B), B. Store Mode: A, A intensified by B, B, 4 K COMPRESS. 2221A: A; 4 K COMPRESS in store mode.
Delay Jitter - 5000:1 (2232).
Delay Time Accuracy $- \pm 1 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$.

TRIGGER SYSTEM

Trigger Sensitivity (A and B) - Internal: 0.35 div at $10 \mathrm{MHz}, 1.5$ div at 100 MHz . External: 40 mV at 10 MHz , 150 mV at 100 MHz (A trigger only).
Trigger Operating Modes - A-Mode: Peak-Peak AUTO (also for TV LINE), NORM, TV FIELD, SGL SWP. 2232 B-Mode: Runs-After-Delay, Triggered-After-Delay.

Trigger Source - A Trigger: VERT MODE, CH 1, CH 2 , LINE, EXT. 2232 B Trigger: VERT MODE, CH 1, CH 2.
Trigger Coupling - With Internal Source: ac with P-P AUTO, TV LINE, or TV FIELD mode; dc with NORM or SGL SWP mode. With External Source: ac, dc, or DC/ 10. With Either Source: HF REJECT (attenuates above 40 kHz), LF REJECT (attenuates below 40 kHz).
Variable Holdoff - At least 10:1.

X-Y OPERATION

Deflection Factors - Same as vertical system.
Bandwidth - X-Axis: Nonstore mode 2.5 MHz ; Store mode same as vertical system. Y-Axis: same as vertical system.
Phase Difference $- \pm 3^{\circ}$ from dc to 150 kHz .

ADVANCED FUNCTIONS

Cursor Function and Accuracy - Δ Volts: $\pm 3 \%$ of reading. Δ Time: ± 1 display interval ($5 \mathrm{~s} /$ div to $1 \mu \mathrm{~s} / \mathrm{div}$); ± 2 display intervals $+500 \mathrm{ps}(0.5 \mu \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div})$.
$\boldsymbol{X}-\boldsymbol{Y}$ Plotter Output - Plots all displayed waveforms, crt readout, and graticule (selectable).
External Clock Input - Dc to 1 kHz (roll mode), dc to 100 kHz (record mode).

CRT SYSTEM

Display $-8 \mathrm{~cm} \times 10 \mathrm{~cm}, 14 \mathrm{kV}$ nominal voltage.
Controls - A INTENSITY, B INTENSITY, TRACE ROTATION, BEAM FIND, FOCUS, STORAGE/READOUT INTENSITY', GRATICULE ILLUMINATION.
Z-Axis - 5 V causes modulation. Usable to 20 MHz .

POWER REQUIREMENTS

Line Voltage Range - 90 VAC to 250 VAC.
Line Frequency- 48 Hz to 440 Hz .
Max. Power Consumption -85 W (150 VA).
ENVIRONMENTAL CHARACTERISTICS
See page 108.

OTHER CHARACTERISTICS

Safety - UL 1244 listed, CSA certification.
Warranty - 3 years.

INSTRUMENT OPTIONS

ANSI/IEEE-488.1 GPIB Interface (Option 10)-
Function Subsets Implemented: SH1, AH1, T5, L3, SR1, RL2, PPO, DC1, DTO, C0, E2. Plotter Devices: HPGL (single-color), Epson FX-Series, HP ThinkJet. Data Transfer Rate: approximately 1 kilobyte/s.
EIA Std RS-232-C Interface (Option 12)- Baud
Rate: 50 to 2400 for interactive use, up to 4800 for driving plotters. Plotter Devices: HPGL (single-color), Epson FX-Series, HP ThinkJet. Connectors: DCE (female), DTE (male).

QuickStart Training Package (Option 2F) -

Includes QuickStart training manual and multiple signal source board with battery.
Rackmount Kit (Option 3R) - Provides rackmount kit for 5.25 " rack height.

ORDERING INFORMATION

See page 108 for descriptions.
WARRANTY-PLUS SERVICE PLANS
Opt. M2-+2 yrs service $+\mathbf{\$ 3 3 5}$
Opt. M8 -+4 calibrations $\quad+\$ 530$
2221A:
Opt. M2-+2 yrs service $\quad \mathbf{\$ 3 1 8}$
Opt. M8-+4 calibrations $+\$ 495$
RECOMMENDED ACCESSORIES/
FIELD KITS
Service Manual -
2232: ($070-7067-00$) $\$ 85$
2221A: $(070-8157-00) \quad \$ 35$
2232F10 - GPIB Field Upgrade Kit $\$ 300$
2232F12 - RS-232-C Upgrade Kit $\$ 300$ Rackmount Kit - (016-0833-01) \$250 QuickStart Training Package -(020-1812-04)
(See page 108 for more accessories.)
PHYSICAL CHARACTERISTICS

Dimensions	mm	in.
Width	360	14.
Height	137	5.4
Depth	440	17.3
Weight	kg	lbs.
Net	8.2	18.0

${ }^{1}$ See page 274 in Education section for information on Quick Start Packages.
E Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

2211

- 50 MHz Analog Bandwidth
- 20 MS/s Per Channel

Sampling

- $500 \mu \mathrm{~V} / \mathrm{div}$ Vertical Sensitivity
- 4 K Per Channel Record Length
- CRT Readout, Including Trigger Level Voltage
- Cursors Operate in Storage and Non-Storage Modes
- Hardcopy Interface (RS-232-C)
- External Clock Inputs from DC to 10 MHz

2201

- 20 MHz Analog Bandwidth
- 10 MS/s Per Channel Sampling
- 2 K per Channel Record Length
- Hardcopy Interface Optional (RS-232-C)

2211/2201 OSCILLOSCOPES

FAMILIAR ANALOG CONVENIENCE

Tek brings you familiar analog operation, plus crt readout, on-screen cursors, and an RS-232-C hardcopy interface in a portable package. Now, with a 2211 or 2201, you can have an inexpensive yet versatile oscilloscope with modern digital storage, without giving up the familiarity of analog operation.
With a friendly and familiar control panel, these scopes make it easy to switch between conventional analog and digital storage operation. Just select storage or non-storage with the push of a button and the crt switches between digital dot display and real-time mode.

POWERFUL FEATURES FOR THE NOVICE OR EXPERT

In the digital storage mode, you can capture and display single-shot events and view low repetition rate signals without the usual flicker of an analog display. With digital pre-trigger you can view events that occurred before the trigger point, making it easy to identify trigger conditions.

The 2211's crt readout provides scale factors, cursor measurements, and trigger level voltage directly on screen. This is especially useful for precisionmeasurements, documentation or single-shot waveform capture. For example, you can trigger on a predetermined voltage spike, store the waveform and see pretrigger events while babysitting a process control application.

The 2211 is ideally suited for applications such as physical measurements, production testing process control, service, or repair.

The 2201 provides the power of digital storage, the familiarity of analog operation, and the affordability of Tek's lowest priced DSO.

By automatically calculating time and voltage differentials, waveform cursors increase accuracy and repeatabiltiy. You'll view calculated values on-screen, along with front-panel scale factors. Time measurements made in store mode are particularly accurate, because they're waveform-based, not screen-based. Plus, you can use horizontal magnification to position a cursor offscreen for ultra-precise analysis.

With the RS-232-C hardcopy interface (optional on the 2201), you can send your results to a printer or plotter for convenient hardcopy documentation. Using this same interface you can transfer waveforms to a PC for further study.

These features make the 2211 and 2201 the right instruments for a wide variety of applications. They are ideal for first-time users and seasoned operators.

PREMIUM SPECIFICATIONS

The 2211 provides 50 MHz analog bandwidth, twochannel sampling at $20 \mathrm{MS} / \mathrm{s}$ per channel, a 4 K record length per channel, and excellent vertical sensitivity. The 2201 provides 20 MHz analog bandwidth, two-channel sampling at $10 \mathrm{MS} / \mathrm{s}$ per channel, and a 2 K record length per channel. Since both instruments have dual digitizers, you don't sacrifice sampling speed or record length in two channel measurements.

With the $500 \mu \mathrm{~V}$ vertical sensitivity of the 2211 you can evaluate low-level signals which cannot be seen with less sensitive oscilloscopes. For difficult measurements, the enhanced trigger and 8:1 holdoff features make it easy to display almost any signal.

A time base multiplier on both instruments allows you to extend storage mode sweep speeds up to $50 \mathrm{~s} / \mathrm{div}$. Using the horizontal magnification, you can view delayed portions of the waveform similar to a dual time base oscilloscope. This allows analysis and documentation of slow or transient events found in physical measurement or electro-mechanical environments.

PUSH BUTTON DOCUMENTATION

An RS-232-C hardcopy output serial interface is standard on the 2211, optional on the 2201. Hardcopy documentation with HPGL and EPSON compatible plotters and printers, simply by pressing a button. Recommended Hardcopy devices are: Tek HC100 (4-color plots), HC200 (black and white prints)

Plus, Tek's GRABBER 2 software lets you transfer waveform data from the scope to an IBM PC/XT/AT (or compatible) for display, mass storage, or evaluation. This software creates an HPGL plot file which can be archived, converted to other formats or printed out for documentation. By using a word processor which accepts HPGL files you can even import stored waveforms to your documents. No complex communication protocols or cabling are required

USEFUL BATTERY POWER OPERATION

With the optional internal 12 VDC inverter and a power source like the 1104A battery pack (mounts on rear of scope) the 2211 can be used in remote locations or when a floating measurement is required as in automotive testing. Order option 07 to get the internal inverter and option 30 to get the inverter plus an 1104A battery pack.

CHARACTERISTICS

DIGITAL STORAGE SYSTEM

Sample Rate - 2211: 20 MS/s max. per channel 2201: $10 \mathrm{MS} / \mathrm{s}$ max. per channel.
Resolution - Vertical: 8 bits (25 levels per division).
Horizontal: 2211: 12 bits (400 points per division). 2201: 11 bits (200 points per division).
Record Length - $2211: 4 \mathrm{~K}$ per channel.
2201: 2 K per channel.
Pre/Post Trigger - 2211: 25\% or 75\% trigger position selectable. 2201: 0\% or 50\% trigger position selectable.
Acquisition Mode - Sample.
Save Reference Memory- One acquisition.
VERTICAL SYSTEM (2 Identical Channels)
Bandwidth ($\mathbf{- 3} \mathrm{dB}$) and Rise Time - $2211: 50 \mathrm{MHz}$ and $7.0 \mathrm{~ns}\left(+5^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; 40 \mathrm{MHz}$ and $8.8 \mathrm{~ns}\left(0^{\circ} \mathrm{C}\right.$ to $+40^{\circ} \mathrm{C}$). $2201: 20 \mathrm{MHz}$ and 17.5 ns
Deflection Factor and Accuracy - $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}, \pm 3 \%$. 2211: $500 \mu \mathrm{~V} / \mathrm{div}, \pm 5 \%$ with X 10 vertical mag.
Vertical Operating Modes - CH 1, CH 2, CH 2 IN -
VERT, ADD, ALT, CHOP (500 kHz), X10 vertical mag (2211 only).
CMRR-2211: At least 10:1 at 20 MHz .
2201: At least 10:1 at 10 MHz .
Input \boldsymbol{R} and $\boldsymbol{C}-1 \mathrm{M} \Omega, 25 \mathrm{pF}$.
Max Input Voltage - 400 V ($\mathrm{dc}+$ peak ac), 800 V p-p.
Channel Isolation - 100:1 at 10 MHz .
HORIZONTAL SYSTEM
Sweep Speeds- $0.5 \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}$, extended to $5 \mathrm{~ns} / \mathrm{div}$ with X10 MAG. $0.5 \mathrm{~s} / \mathrm{div}$ to $20 \mu \mathrm{~s} / \mathrm{div}$ in store mode, extended to 50 s /div with X100 (store uncal).
Accuracy-X1: $\pm 3 \% ;$ X10: $\pm 4 \% ; \times 50: \pm 5 \%$
(all $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$). X1: $\pm 4 \% ; \mathrm{X} 10: \pm 5 \% ; \mathrm{X} 50: \pm 8 \%$ (all $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$).
Horizontal Operating Modes - X1, X10, X50 (2211 only), X-Y (non-store).

TRIGGER SYSTEM

Trigger Sensitivity - Internal: 0.35 div at 5 MHz , 1.0 div at 50 MHz . External: 40 mV at $5 \mathrm{MHz}, 150 \mathrm{mV}$ at 50 MHz .
Trigger Operating Modes - Peak-Peak AUTO (also TV LINE), NORM, TV FIELD, SGL SWP
Trigger Source - VERT MODE, CH 1, CH 2, LINE, EXT, EXT/10.
Trigger Coupling - 2211: ac, dc, HF REJ, (attenuates above 30 kHz), LF REJ (attenuates below 30 kHz). 2201: dc
Variable Holdoff - At least 8:1 (2211 only)

X-Y OPERATION

Deflection Factors - Same as vertical system.
Bandwidth - X-Axis: 2 MHz . Y-Axis: same as vertical
Phase Difference-2211: $\pm 3^{\circ}$ from dc to 150 kHz . 2201: $\pm 3^{\circ}$ from dc to 50 kHz .

ADVANCED FUNCTIONS

Cursor Function and Accuracy-2211: Δ Volts: $\pm 3 \%$ of reading. Δ Time: $\pm 4 \%$ (unmagnified, $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$): $\pm 5 \%$ (unmagnified, $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$).
External Clock Input - Dc to 10 MHz (2211 only).
Hardcopy Interface (RS-232-C) - Plots all displayed records (X1 MAG), crt readout and graticule (selectable). Baud rate: 300 to 9600 . Plotter Devices: HPGL, Epson FX-Series. Connector: 9-pin DTE (male).
Communication Software (Grabber 2)- Comes with the instrument and transfers waveform data from the 2211 or 2201 to an IBM PC/XT/AT (or compatible). Uses the RS-232-C interface.

CRT SYSTEM

Display - $8 \mathrm{~cm} \times 10 \mathrm{~cm}, 12.6 \mathrm{kV}$ nominal voltage.
Controls - INTENSITY, TRACE ROTATION, BEAM FIND, FOCUS.
Z-Axis - 5 V causes modulation, usable to 5 MHz .

POWER REQUIREMENTS

Line Voltage Range - Low: 95 VAC to 128 VAC .
High: 185 VAC to 250 VAC.
Line Frequency- 48 Hz to 440 Hz .
Maximum Power Consumption-2211: 85 W
(95 VA). 2201: 70 W (80 VA).
Opt. 07-2211 Inverter Input Volts: 11.8 VDC to 30 VDC (not retrofitable).
1104A Battery Pack - 2211 only. Couples to rear of scope. For use with opt. 07; Output: $12 \mathrm{~V}, 8 \mathrm{amps} ;$ Input: 95 VAC to 128 VAC or 185 VAC to 250 VAC (48 Hz to 440 Hz); Operating time: 2 hrs ; Charge time: Approx. 16 hrs (longer when scope is operating); Weight: $14 \mathrm{lbs} / 6.5 \mathrm{~kg}$.
Warranty - 3 years (Opt. 07); 1 year (1104A).
ENVIRONMENTAL CHARACTERISTICS
See page 108.

PHYSICAL CHARACTERISTICS

Dimensions - Width (with handles): 15.0 in; Height:
5.4 in; Depth (without cover): 17.2 in ; Weight: $16.8 \mathrm{lbs} /$ 7.6 kg .

OTHER CHARACTERISTICS
Safety - UL 1244 listed, CSA certification.
Warranty - 3 years.

ORDERING INFORMATION
221150 MHz Digital Plus Analog Oscilloscope

ت $\$ 2,795$
Includes:
Two 10X Voltage Probes (P6109),
Operators Manual (070-7233-00),
Users Ref. Manual (070-7235-00),
9 -pin to 25 -pin RS-232-C Serial
Interface Printer/Plotter Cable,
GRABBER 2 software,
3 Year Warranty, Power Cord.
220120 MHz Digital Plus
Analog Oscilloscope
\$1,695
Includes:
Two 10X Voltage Probes (P6103),
Operators Manual (070-7190-00),
Users Ref. Guide (070-7232-00),
3 Year Warranty, Power Cord.
INSTRUMENT OPTIONS
Opt. 07 - Internal 12 VDC
Inverter (2211) $+\$$
Opt. $30-1104 \mathrm{~A}$ Battery + Opt. 07
(option 07,30 for 2211 only) $\mathbf{\$ 8 4 5}$
Opt. 12-RS-232-C (2201) +\$300
Opt. 3R - Rackmount Kit $\quad+\$ 250$
Opt. 2V - 2201 Training Package $+\$ 60$
Opt. 2F - 2211 QuickStart (US) +\$199 ACCESSORY OPTIONS
Opt. 1C-C-9 Opt. 01 Camera
Opt. 1K - K212 Instrument Cart $+\$ 385$
Opt. 1P - HC 100 Plotter (120V)
Opt. 1T - Transit Carrying Case +\$345
Opt. 02 - Pouch and Front Cover $+\$ 60$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1- A5 - Available NC
See page 108 for description.

WARRANTY-PLUS SERVICE PLANS

 2211:Opt. M2 -+2 yrs service $\quad+\$ 285$
Opt. M8 -+4 annual calibrations +\$195 2201:
Opt. M2-+2 yrs service $+\$ 170$
Opt. M8 -+4 annual calibrations $+\$ 190$

RECOMMENDED ACCESSORIES

Service Manuals -

2211: Order 070-7234-00
2201: Order 070-7189-00
RS-232-C Interface Cable -
Order 012-1298-00
Rackmount Kit -016-0819-03 \$250
Battery Pack for Opt. $07-1104 \mathrm{~A} \$ 450$
(See page 108 for more accessories.)

- Product available within 24 hours
through Tek Direct. Call 1-800-426-2200.
${ }^{4}$ Contact your local sales office.

For convenient documentation you can link the 2211 or 2201 to a 4 -color plotter such as the HC100, to print the waveform record.

Four Channel DSO
with 16 K R with 16 K Record Length for Physical Signal Investigation. - 20 MHz Analog Bandwidth - 16 MS/s Per Channel Concurrent Sampling - 8-Bit Vertical Resolution - 16 K Per Channel Records - $500 \mu \mathrm{~V} / \mathrm{div}$ Sensitivity - Hardcopy Out Interface with Chart Record (RS-232-C)

The 2214 has unique capabilities for Electromechanical, Biophysical and Process Control applications where data acquisition and multi-channel monitoring is needed.

ORDERING INFORMATION

221420 MHz Oscilloscope $\quad \$ 3,995$
Includes: Includes:
Two 10X Probes (P6103),
Operators Manual (070-7781-00),
9 -pin to $25-\mathrm{pin}$ RS-232
Interface Cable (012-1197-00),
GRABBER 2 software,
3 Year Warranty, Power Cord.

INSTRUMENT OPTIONS

Opt. 3R - Rackmount Kit $\quad+\$ 250$
Opt. 07-12 VDC internal inverter $\mathbf{\$ 4 4 5}$
0 pt. $30-0$ pt. $07+1104$ A battery $+\$ 895$ ACCESSORY OPTIONS
Opt. 1C-C-9 Camera
+\$610
Opt. 1K-K212 Instrument Cart $+\$ 385$
Opt. 3P - HC100 Plotter (120V) +\$950
Opt. 3H - HC200 Printer (110V) +\$420
(RS-232-C) w/ Chart Roll Adapter
Opt. 1T-Transit Carrying Case +\$345 Opt. 02 - Pouch and Front Cover $+\$ 60$
Opt. 22-2 P6103 10X Probes $\quad \mathbf{\$ 8 0}$
Opt. 23-2 P6119 1/10X Probes $+\$ 130$
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1- A5-See page 108. NC WARRANTY-PLUS SERVICE PLANS
Opt. M2 $2+2$ yrs service $+\$ 245$
Opt. M8 -+4 calibrations $\quad+\$ 280$ RECOMMENDED ACCESSORIES
Service Manual - 070-7783-00 \$95
RS-232 Cable -012-1298-00 $\$ 35$ Rackmount Kit -016-0819-03 \$250 Battery Pack for Opt. 07-1104A \$450
(See page 108 for more accessories.)

CHARACTERISTICS

DIGITAL STORAGE SYSTEM
Sample Rate - 16 MS/s per channel. (Quad Digitizers)
Resolution - Vertical: 8 bits (25 levels per division).
Horizontal: 14 bits (1600 points per division, on screen).
Record Length - 16 K per channel.
Pre/Post Trigger - 0\% or 50\% position selectable.
Acquisition Mode-Sample, Roll.
Save/Continue Memory - Freeze waveform record on any or all channels ($16 \mathrm{~K} / \mathrm{CH}$). Non-Volatile. Front-panel settings non-volatile at power down.
VERTICAL SYSTEM (4 Identical Channels)
Bandwidth (-3 dB) and Rise Time-20 MHz and $17.5 \mathrm{~ns}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$.
Deflection Factor and Accuracy - $5 \mathrm{mV} /$ div to
$5 \mathrm{~V} /$ div, $\pm 3 \% .500 \mu \mathrm{~V} / \mathrm{div}$ to $.5 \mathrm{~V} /$ div, $\pm 3 \%$, limited to 1 MHz with X10 vertical mag.
Vertical Operating Modes - $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$,
$\mathrm{CH} 4, \mathrm{CH} 1$ INVERT, CH 3 INVERT, ADD CH $1+\mathrm{CH} 2$, ADD CH $3+\mathrm{CH} 4$ (dual differential), X10 vertical mag.
CMRR - At least $50: 1$ at 100 kHz .
Input \boldsymbol{R} and $\mathrm{C}-1 \mathrm{M} \Omega, 25 \mathrm{pF}$.
Max Input Voltage -400 V (dc + peak ac), 800 V p-p.
Channel Isolation- $100: 1$ at 5 MHz .

HORIZONTAL SYSTEM

Sweep Speeds - In NON-STORE: $0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} /$ div, extended to $10 \mathrm{~ns} / \mathrm{div}$ with X10 ALT MAG. In STORE, $0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mathrm{~ms} /$ div, extended to $2 \mu \mathrm{~s} / \mathrm{div}$ with X 50 ALT MAG and $50 \mathrm{~s} / \mathrm{div}$ with X100 ROLL MODE.

Accuracy- $\mathrm{X1}: \pm 3 \% ; \mathrm{X10}: \pm 4 \% ; \mathrm{X} 50: \pm 5 \%\left(+15^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}$). $\mathrm{X} 1: \pm 4 \% ; \mathrm{X10}: \pm 5 \% ; \mathrm{X} 50: \pm 8 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
Horizontal Operating Modes - X1, X10, X50, ROLL,
$X-Y$ (NON-STORE, CH 1 \& 2 only), Continuously Variable Mode in STORE \& NON-STORE (to $1 \mathrm{~ms} /$ div in STORE).

TRIGGER SYSTEM

Trigger Sensitivity - Internal: 0.4 div at $5 \mathrm{MHz}, 1.5$ div at 20 MHz . External: 50 mV at $5 \mathrm{MHz}, 250 \mathrm{mV}$ at 20 MHz .
Trigger Operating Modes - Peak-Peak AUTO,

NORM, SGL SWP

Trigger Source - CH 1, CH 2, CH 3, CH 4, LINE, EXT.
Trigger Coupling - Dc, HF REJ (attenuates above
30 kHz), LF REJ (attenuates below 30 kHz).

X-Y OPERATION

Mode - X1 mag. and NONSTORE, CH $1 \& 2$ only.
Deflection Factors - Same as vertical system.
Bandwidth - X-Axis: 2 MHz . Y-Axis: same as vertical.
Phase Difference $- \pm 3^{\circ}$ from dc to 50 kHz .

ADVANCED FUNCTIONS

Trigger Level Output - Selects the amplitude point on the trigger signal that produces triggering. A side panel BNC provides the interface for the trigger level so it can be input to an external meter or a scope channel.
External Clock Input - Dc to 8 MHz. ROLL Mode: dc to 16 kHz .
Hardcopy Interface (RS-232-C) - Prints or Plots all 16K records (X1 MAG only), ROLL mode output for continuous printout of data like a CHART RECORDER (from 10 s/div to $2500 \mathrm{~s} / \mathrm{div}$). Baud rate: 300,1200 , 4800, 9600. Plotter/Printer Devices: HPGL, Epson FXSeries, Laserjet (100 dpi), Thinkjet. (9 -pin DTE (male)).
Communication Software (Grabber 2)- Comes with the instrument and transfers waveform data from the 2214 to an IBM PC/XT/AT (or compatible) via RS-232. Can be used to convert files for use by other software.

CRT SYSTEM

Display - $8 \mathrm{~cm} \times 10 \mathrm{~cm}, 12.6 \mathrm{kV}$ nominal voltage.
Controls-INTENSITY, TRACE ROTATION, BEAM FIND, FOCUS.

POWER REQUIREMENTS

Line Voltage Range - Low: 95 VAC to 128 VAC.
High: 185 VAC to 250 VAC.
Line Frequency- 48 Hz to 440 Hz .
Maximum Power Consumption - 85 W (95 VA).
Opt. 07 -Inverter Input Voltage: 11.8 VDC to 30 VDC.
1104A Battery Pack - Couples to rear of scope. For use with opt. 07; Output: $12 \mathrm{~V}, 8 \mathrm{amps}$; Input: 95 VAC to 128 VAC or 185 VAC to 250 VAC (48 Hz to 440 Hz); Operating time: 2 Hrs ; Charge time: Approx. 16 Hrs (longer when scope is operating); Weight: $14 \mathrm{lbs} / 6.5 \mathrm{~kg}$.

PHYSICAL CHARACTERISTICS

Dimensions - Width (with handles): 15.0 in; Height: 5.4 in ; Depth (without cover): 17.2 in ; Weight: 17.4 lbs .

Safety-UL 1244 listed, CSA certification.
Warranty - 3 years (1 year 1104A).

For convenient documentation and analysis, off-the-shelf software packages are available to link many 2200 Series oscilloscopes to printers, plotters, and computers (such as Tek's TeleServicing solution).

Many of the 2200 Series instruments can be configured with a variety of interfaces to provide added functionality. These interfaces can provide a means to collect data into a computer, to control the oscilloscope with the computer, or to provide hardcopy output of the waveform data. In addition, through the use of specialized software, advanced functions (such as modem communications) are available.

GPIB INTERFACE

Several oscilloscopes can be configured with a GPIB interface. The new 2252 is Tek's lowest-cost, fully programmable portable oscilloscope. With its standard GPIB interface (IEEE-488.2-1988 Standard), you can control all scope controls remotely. Waveform and measurement data can be transmitted to a personal computer for storage and analysis. Test routines can be developed with the help of development software from Tektronix that can quickly automate many repetitive test applications.

The 2232 and 2221A Digital Storage Oscilloscopes can also be ordered with a GPIB interface (Option 10). With the interface installed, you can transmit and receive waveform data from the scope to personal computers and other peripherals. Most front-panel settings and menu states can be queried and many functions controlled via the interface, for example, single-sweep trigger reset. In
addition, the instruments can provide hardcopy output when connected directly to a compatible printer or plotter. Devices supported include HPGL digital plotters, such as the Tektronix HC100, or the HP Thinkjet printer.

RS-232-C INTERFACE

All of the 2200-series DSO's can be ordered with an RS-232-C serial interface. The 2232 and 2221A can be ordered with an RS-232-C interface (Option 12) that provides all the functions described above for GPIB. The RS-232-C interface has both DCE and DTE connectors, selectable with baud rate, parity, and line termination using switches located on the oscilloscope side panel. Hardcopy output is also available, and includes support for Epson FX-Series printers with a serial interface, such as the Tektronix HC200.
The 2214 and 2211 offer RS-232-C standard, while the 2201 can be ordered with Option 12 to include the interface. On these oscilloscopes, the interface is designed as a talker-only interface. Hardcopy output is available using a number of devices, including HPGL serial plotters and Epson-compatible (FX Series) serial printers. The 2214 also supports HP Laserjet and Thinkjet printers. A special software program included with each of these oscilloscopes, called Grabber 2, permits waveform transfer to a personal computer for long term storage or analysis.

CENTRONICS INTERFACE

The 2252 also comes equipped with a Centronics interface which provides hardcopy output for the HC200 and Epson FX-series printers. A push of the hardcopy button on the front panel causes all displayed waveforms and measurements to be sent to the printer for documentation.

INTEGRATED SOFTWARE PACKAGES

To keep you focused on solving your problems, rather than software coding chores, Tektronix offers a variety of off-the-shelf software programs. Numerous packages are available for waveform acquisition, signal analysis, and instrument control. A partial listing is provided on this page as an example of solutions available.

For more information on utility and application software, see the Test and Measurement Software Section of this catalog.

> Tektronix offers the complete solution to your test and measurement needs, from hardware to software and accessories.

- Printers and Plotters for Hardcopy Documentation
- Software for Instrument Control
- Software for Waveform Data Acquisition and Analysis

Some examples of software packages from Tektronix:

WaveSaver (S41SAVE):

Waveform transfer, display, and storage with 2232-series oscilloscopes, utilizing easy-to-use popup menus and color EGA graphics.

TeleServicing (S41TSS1): Adds
to WaveSaver the ability for remote instrument communication over modems. Includes integrated dialing directory and modem control software.

GURU II+ (S3FG100): GPIB
User's Resouce Utility software for instrument control, waveform acquisition, and display.

SPD (S3FG130): Signa|
Processing and Display software to simplify the acquisition, processing, and measurement of digitized waveforms.

E2-Test PC (S45F030): A software productivity tool used to create and run automated test programs without the need for programming.

| INTERFACES AND PRINTER/PLOTTER DEVICES SUPPORTED | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Scope | GPIB | RS-232 | Centronics | HPGL | Epson FX | Thinkjet | Laserjiet | Programmability |
| 2222 | Std | - | Std | - | Yes | - | - | Full |
| 2232 | Opt | 0pt | - | Yes | Yes | Yes | - | Partial |
| $2221 A$ | Opt | Opt | - | Yes | Yes | Yes | - | Partial |
| 2214 | - | Std | - | Yes | Yes | Yes | Yes | - |
| 2211 | - | Std | - | Yes | Yes | - | - | - |
| 2201 | - | Opt | - | Yes | Yes | - | - | - |
| 222 | - | Std | - | - | - | - | - | Full |

mart Scopes with
100 MHz , Four Channels, and Advanced Features like Auto Setup, Tracking Cursors, Voltmeter, Integrated Counter/Timer, and Store/Recall of Front Panel Setups.

- Four Independent Channels
- Auto Setup of Instrument Front Panel
- Dual Time Base with Delayed Sweep
- Cursor Time/Voltage Measurements
- On-Screen Scale Factor Readouts

2247A

- Hands-Off Voltmeter Measurements
- SmartCursor ${ }^{\text {TM }}$ Track Voltmeter Measurements
- Integrated Counter/Timer
- Phase Measurements
- Automatic Rise/Fall Time and Propagation Delay Time Measurements
- Store/Recall of 20 Front Panel Setups

DUAL TIME BASE OSCILLOSCOPES

HIGHER PERFORMANCE, LOWER PRICE

When productivity, performance, and low cost really count, nothing beats the 2245A, 2247A, and new 2252 line of portable oscilloscopes. These four-channel, dual time base oscilloscopes are top-of-their-class in automation and versatility, becoming the industry standard in 100 MHz real-time performance. Such capabilities as $2 \mathrm{~ns} /$ division time base, 2 mV / division vertical sensitivity, and advanced trigger modes assure you solutions for your design, testing, and service tasks.

AUTOMATIC FRONT PANEL SETUP

All these oscilloscopes offer single button setup. Just press the AutoSet key and vertical, horizontal, triggering and display controls are automatically adjusted to display a waveform. In seconds, a stable, triggered display of your waveform appears onscreen, ready to measure.

STORE/RECALL MEMORY

For even greater versatility in setup, the 2247A and 2252 offer store/recall of 20 front panel setups. Current front panel settings can be stored in nonvolatile memory, then recalled when and where they are needed. Switching between setups is easy - just two buttons recall a complete setup, including selected measurements and operator prompts. For repetitive testing or service diagnostics, store/recall settings can even be used in sequence to step through a predetermined series of tasks.

2247A: Packed with time saving automation like front panel auto setup and store/ recall. Automatic measurements are push-button simple using the integrated digital voltmeter and precision counter/timer.

ADVANCED REAL-TIME MEASUREMENTS

Each have cursors for making time, frequency and voltage measurements pushbutton simple. Crt readout gives you a numerical display of the waveform parameter you are measuring. There is no need for arithmetic or counting of graticule divisions.

Make difficult measurements faster and more accurately. Rise time measurements are made automatically with the integrated 200 MHz counter/ timer on the 2247A and 2252.

The 2247A and 2252 further integrate advanced measurement capability with a built-in digital voltmeter and a precision counter/timer. These integrated tools provide a complement of automatic measurements at your fingertips.

DIGITAL VOLTMETER BUILT-IN

The voltmeter measurement system simplifies measurements of + peak, - peak, peak-to-peak, dc and gated volts, all with convenient on-screen readout of values. Tek's unique SmartCursors ${ }^{\top \mathrm{M}}$ make interpretation even easier. They automatically track changes in voltmeter measurements and visually indicate where ground and trigger levels are located. The built-in voltmeter along with Smart Cursors ${ }^{\top} \mathrm{M}$ delivers instant answers.

INTEGRATED PRECISION TIMER/COUNTER

The 200 MHz counter/timer delivers crystal-controlled accuracy for your timing measurements. You can measure frequency, width, period, and totalized events directly from your input channels. Rise and fall time can be made automatically at predefined thresholds ($10-90 \%$, $20-80 \%$) or user-set reference levels. Propagation delay measurements between channels are push-button simple. And all measurements can be made using gated time intervals simply by adjusting an intensified zone to any size and position on your waveform.

NEW 2252: The only oscilloscope that combines the versatility of analog display with the power of precision measurement tools, full programmability and push-button waveform hardcopy. Ideal for manufacturing test, depot repair, service documentation, and bench-top ATE.

HARDCOPY DOCUMENTATION

With the introduction of the 2252, Tektronix combines the precision and versatility of analog real-time with the power of waveform digitizing. At the push of a button, repetitive waveforms are quickly digitized using a proprietary sequential sampling technique. With this innovation, an Epson-compatible printer (such as our HC200 printer) replaces the traditional crt camera for waveform documentation. Each channel is acquired using 500-point record length and up to 12 -bit vertical resolution, then transferred via the Centronics interface to your printer. Active measurements and scale factors are also documented. An exclusive peak detection process further ensures anti-aliasing, and is capable of detecting repetitive events as narrow as 10 ns at any sweep speed

FULL GPIB PROGRAMMABILITY

The 2252 extends its power of automation to include full programmability of all front panel and menu controls. The standard GPIB (IEEE 488.2) interface allows access to all scope functions, including instrument setup, signal acquisition, and measurement control. Digitized waveforms can be acquired and transferred to a personal computer for analysis, documentation, and archiving. Measurements can be queried, and test routines easily created for go/no-go testing.

The 2252 is as easy to program as it is to use. In addition to specific command variables, the operator can learn an entire front-panel setting simply be querying the current instrument setup. The response can be stored in a file, then downloaded to the scope when needed at a later time. To support automated test development, a 2252 instrument driver is also available for Tek's popular EZ-Test PC software program. See the Test and

Measurement Software section of this catalog for more information on this complete development and test routine software system.

UNMATCHED PERFORMANCE AND INNOVATION

The 2245A, 2247A, and 2252 are packed with performance capabilities and innovation to meet your automation needs. Whether you're looking for automation in the field, on the design bench, or an entire production line, these scopes can meet the challenge.
utomation made
easy with full programmability, digitized waveform hardcopy, and push-button measurements.

NEW 2252

All the features of 2247A, plus:

- Push-Button Hardcopy Output
- Centronics Interface
- Fully GPIB Programmable

GPIB
|lEE-48.2.
*The 2252 oscilloscope complies with IEEE Standard 488.2-1988, and Tektronix Standard Codes and Formats.

2245A: Ideal for troubleshooting, general repair, and design where basic measurements are often needed. Time and voltage cursors make short work of signal time and amplitude analysis.

ORDERING INFORMATION

2252100 MHz Programmable
Oscilloscope with Hardcopy Output

Includes:

Two 10X Voltage Probes (P6109)
Opt. 01, Operators Manual
(070-7837-00), Users Reference
Guide (070-7839-00),
3 Year Warranty, Power Cord.
2247A 100 MHz Oscilloscope
with Voltmeter/Counter/Timer $\mathbf{~ \$ 2 , 9 9 5}$ Includes:
Two 10X Voltage Probes (P6109)
Operators Manual (070-6373-00),
Users Reference Guide (070-6688-00),
3 Year Warranty, Power Cord.
2245A 100 MHz Oscilloscope with
Cursors

Includes:
Two 10X Voltage Probes (P6109),
Operators Manual (070-6558-00)
Users Reference Guide (070-6718-00),
3 Year Warranty, Power Cord.

Opt. 1R-Rackmounted Instr. +\$350
Opt. 15-CH2 \& A Gate Output $+\$ 100$
Opt. 2F - QuickStart Training ${ }^{11}$ ACCESSORY OPTIONS
Opt. 02 - Acc. Pouch and Cover
(2252)

2247A/2245A
Opt. 1C - C-9 Camera (2252)
(2247A/2245A)
Opt 1H - HC200 Printer (2252) $+\$ 55$ +\$580

Opt. 1K - K212 Instrument Cart +\$295
Opt. 1 T - Transit Carrying Case
(2252)
+\$280
(2247A/2245A)
+\$345
Opt. 17 - P6408 Logic Probe $+\$ 375$
Opt. 22 -Add two P6109 probes +\$140
Opt. 23 -Add 2 P6062B
1X/10X Probes +\$440
INTERNATIONAL POWER PLUG OPTIONS Opt. A1 - A5 - Available (see pg. 108) NC
WARRANTY-PLUS SERVICE OPTIONS 2252:
Opt.M2 -+2 yrs service $\quad+\$ 235$
Opt.M8 - +4 annual calibrations
2247A:
Opt.M2 - +2 yrs service +\$205
Opt.M8 - +4 annual calibrations +\$205

2245A:
Opt.M2 - +2 yrs service +\$176 Opt.M8 - +4 annual calibrations +\$320 RECOMMENDED ACCESS./FIELD KITS Service Manuals -

2252 (070-7838-00)		\$9
2247A (070-6367-00)		\$95
2245A (070-6557-00)		
Rackmount Kit - Order 2240F1R		
QuickStart Training Package -(020-1864-04) ${ }^{7}$		
PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Height	164	6.4
Width (with handle)	362	14.2
Depth (with front cover)	445	17.5
Weight	kg	1 b
Net	8.7	17.9

[^15]
CHARACTERISTICS

Characteristics are common to the $2252,2247 \mathrm{~A}$, and 2245A except where noted. " ${ }^{1}$

VERTICAL SYSTEM (4 Channels)
Bandwidth (-3 dB) and Rise Time - 100 MHz and
$3.5 \mathrm{~ns}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; 90 \mathrm{MHz}$ and $3.9 \mathrm{~ns}(2 \mathrm{mV} / \mathrm{div}$ or $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$). Bandwidth limit: 20 MHz .
Deflection Factor and Accuracy - CH $1 \& 2: 2 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div; $\mathrm{CH} 3 \& 4: 0.1 \mathrm{~V} / \mathrm{div}$ and $0.5 \mathrm{~V} / \mathrm{div}$; all at $\pm 2 \%$ ($\pm 3 \%$ outside $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$). CH 1 \& 2 variable at least 2.5:1.
Vertical Operating Modes - CH 1, 2, 3, 4, CH 2 INVERT, ADD, ALT, CHOP (625 kHz).
CMRR - At least $10: 1$ at 50 MHz .
Input R and C-1M $\boldsymbol{C}, 20 \mathrm{pF}$.
Max Input Voltage-400 V (dc + peak ac) or 800 V p-p.
Channel Isolation-50:1 at 100 MHz .
HORIZONTAL SYSTEM
Sweep Speeds - A Time Base: 0.5 s/div to $20 \mathrm{~ns} / \mathrm{div}$; B Time Base: $5 \mathrm{~ms} /$ div to $20 \mathrm{~ns} / \mathrm{div}$ (X10 MAG to $2 \mathrm{~ns} /$ div).

Accuracy $- \pm 2 \%$; Magnified $\pm 3 \%$ (degrade by 1% outside $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$).
Horizontal Operating Modes - A, ALT, B, X-Y
Delay Jitter-20,000:1.
Delay Accuracy $- \pm 0.5 \%+5 \%$ of one div +25 ns .

TRIGGER SYSTEM

Trigger Sensitivity (\boldsymbol{A} and \boldsymbol{B}) - Dc: 0.35 div to $25 \mathrm{MHz}, 1.0$ div at 150 MHz . Noise Reject: 1.4 div to $25 \mathrm{MHz}, 2.2$ div at 100 MHz . HF Reject: attenuates above 70 kHz . LF Reject: attenuates below 50 kHz . Ac: Same as dc, attenuates below 25 Hz . TV Line, TV Field: 0.5 div of composite sync for stable display.
Trigger Operating Modes - A mode: AUTO LEVEL, AUTO, NORM, TV LINE, TV FIELD, SINGLE SEQ. B mode: RUNS AFTER DELAY, AUTO LEVEL, NORM, TV LINE (from A source).
Trigger Source (A and B)-VERT, CH 1, 2, 3, 4, LINE. Variable Holdoff - At least 10:1.

X-Y OPERATION

Deflection Factors - Same as vertical system.
\boldsymbol{X} - \boldsymbol{Y} Operating Modes $-\mathrm{X}: \mathrm{CH} 1 ; Y: \mathrm{CH} 1,2,3,4$, and ADD.
Bandwidth - X-Axis: 3 MHz ; Y-Axis: 100 MHz .
Phase Difference $- \pm 3^{\circ}$ from dc to 50 kHz .
CRT SYSTEM
Display - $8 \mathrm{~cm} \times 10 \mathrm{~cm}, 16.5 \mathrm{kV}$ nominal voltage
Z-Axis - 3.8 V causes noticeable modulation. Usable to 10 MHz .

POWER REQUIREMENTS

Line Voltage Range - 90 VAC to 250 VAC .
Line Frequency- 48 Hz to 445 Hz .
Maximum Power Consumption-100 W (155 VA).

ENVIRONMENTAL CHARACTERISTICS

See page 108

ADVANCED FUNCTIONS

Cursors - Time, 1 /Time: $\pm 0.5 \%+2 \%$ of one div; Delta Time, 1/Delta Time, Delta Phase (2247A/2252): $\pm 0.5 \%+1 \%$ of one div; Volts: $\pm 0.5 \%+2 \%$ of one vertical div.

Voltmeter (2252 and 2247A)- Dc Volts: \pm (0.5\% of reading $+2 \%$ of one vertical div $+250 \mu \mathrm{~V}$); Plus or Minus Peak Volts: $\pm(2 \%$ of reading $+10 \%$ of one div $+1.0 \mathrm{mV})$ and Pk-Pk Volts (25 Hz to 25 MHz): $\pm(2 \%$ of reading $+15 \%$ of one div +1.5 mV). Channels 1 and 2 .
Counter/Timer (2252 and 2247A)- Time Base and Accuracy: 200 MHz and 10 ppm (0.001%). Frequency: 0.01 Hz to 100 MHz . Max resolution: 0.00000001 Hz . Max accuracy same as time base. Period: 100 s to 5 ns . Max resolution: 0.1 fs . Max accuracy same as time base. Width: 100 s to 5 ns . Max resolution: 1 ps . Max accuracy same as time base $\pm 2 \mathrm{~ns}$. Totalize: $100,000,000$ counts. Delta Time: 0 to 5 s . Max resolution: 1 ps. Max accuracy same as time base $\pm 100 \mathrm{ps}$. 1/Delta Time: 0.2 Hz to 10 GHz . Rise/Fall: 0 to 5 s . Max resolution: 1 ps . Max accuracy same as time base $\pm 2 \mathrm{~ns}$. Propagation Delay: 0 to 5 s . Max resolution: 1 ps . Max accuracy same as time base $\pm 100 \mathrm{ps}$. External C / T Timebase Input: $10.1 \mathrm{k} \Omega$ ac coupled. Sensitivity: 1 Vp -p. Max input V: $35 \mathrm{VDC}+$ peak ac. Frequencies: 1,5 , and 10 MHz .
Centronics Interface (2252)- Printers: Epson FXSeries (9 or 24 pin).
ANSI/IEEE-488.2 GPIB Interface (2252) -Function Subsets: SH1, AH1, T6, L4, SR1, RL1, DC1, DT, PPO, E1, and CO .

DIGITIZER SYSTEM (2252)

Type - Sequential (10 ns peak detection).
Resolution - Vertical: 12 Bits (250 levels/div) ($25 \mathrm{pts} / \mathrm{div}$ for hardcopies). Horizontal: 9 Bits (50 pts/div).
Record length - 500 points per channel (four channels).
Useable Sweep Speeds - (A Horizontal Mode only) 0.5 s
to $20 \mathrm{~ns} / \mathrm{div}$.

INSTRUMENT OPTIONS

Channel 2 And A-Gate Output (Opt. 15) - Channel 2
Output - Bandwidth: Dc to 25 MHz ; Deflection factor:
$10 \mathrm{mV} /$ div into $50 \Omega, 20 \mathrm{mV} /$ div into $1 \mathrm{M} \Omega$; Dynamic Range: ± 7 divisions; DC Offset: < 0.5 divisions. A-Gate
Output Level - TTL compatible; Drive: 4 mA (high state),
20 mA (low state)

OTHER CHARACTERISTICS

Safety - UL 1244 listed, CSA certification.
Warranty - 3 years.
${ }^{\cdot}$ Military Versions $22461 Y / 2 R / M o d A$ also available. See page 109.

2235A AND 2236A OSCILLOSCOPES

The 2235A and 2236A offer reliability and easy operation with 100 MHz , dual time base performance. The 2236A's Counter/Timer and DMM provide additional measurement versatility.

PROVEN STANDARD IN 100 MHz TWO-CHANNEL OSCILLOSCOPES

The 2235 A and 2236 A offer advanced 100 MHz , dual time base performance with simple operation. Innovative architecture, advanced circuit design and a large bright crt make these scopes accurate, reliable and serviceable.

The 2235A and 2236A scopes ideal for digital and high-speed analog circuit troubleshooting. Both offer the needed sensitivity for reliable low-level signal measurements with $5 \mathrm{~ns} /$ div sweep speed and 2% vertical and horizontal accuracy. The 2236A integrated counter/timer and multimeter permits quick measurements of critical circuit parameters at the touch of a button.

CHARACTERISTICS

VERTICAL SYSTEM

Bandwidth (-3 dB) and Rise Time -100 MHz and 3.5 ns $\left(0^{\circ} \mathrm{C}\right.$ to $\left.15^{\circ} \mathrm{C}\right)$.

Deflection Factor and Accuracy - $2 \mathrm{mV} / \mathrm{div}$ to
$5 \mathrm{~V} / \mathrm{div} \pm 2 \%\left(15^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right) ; \pm 3 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$.
Vertical Operating Modes - CH 1, CH 2, CH 2 IN VERT, ADD, ALT, CHOP
CMRR - At least 10:1 at 50 MHz .
Input R and C-1 M Ω; 2235A: 20 pF , 2236A: 22 pF .
Max Input Voltage - 400 V (dc + peak ac), 800 V p-p.
Channel Isolation - 100:1 at 50 MHz .
HORIZONTAL SYSTEM
Sweep Speeds - A sweep: $0.5 \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}$. B sweep: $50 \mathrm{~ms} /$ div to $0.05 \mu \mathrm{~s} / \mathrm{div}$. Both extended to $5 \mathrm{~ns} /$ div with X 10 magnifier.
Accuracy $- \pm 2 \%$, Magnified $\pm 3 \%$.
Horizontal Operating Modes - A, ALT and B .
Delay Jitter-2235A: 20,000:1. 2236A: 10,000:1.
Delay Accuracy -2235A: $\pm 1 \%$. 2236A: Same as
counter/timer time base ± 20 ps.

TRIGGER SYSTEM

Trigger Sensitivity (A and B) - Internal: 0.35 div at $10 \mathrm{MHz}, 1.5$ div at 100 MHz . External: $35 \mathrm{mV}(2235 \mathrm{~A})$ or $40 \mathrm{mV}(2236 \mathrm{~A})$ at $10 \mathrm{MHz}, 200 \mathrm{mV}(2235 \mathrm{~A})$ or 250 mV (2236A) at 100 MHz (A trigger only).
Trigger Operating Modes - Peak-Peak AUTO (also for TV LINE), NORM, TV FIELD, SGL SWP.
Trigger Source - A Trigger: VERT MODE, CH 1, CH 2 , LINE, EXT. B Trigger: VERT MODE, CH 1, CH 2.
Trigger Coupling - With internal source: ac with P-P AUTO, TV LINE, or TV FIELD mode; dc with NORM or SGL SWP mode; HF and LF Rej. With external source: ac, dc, or $\mathrm{dc} / 10$.
Variable Holdoff - At least 10:1.
X-Y OPERATION
Deflection Factors - Same as vertical system.

Bandwidth - X-Axis: 3 MHz . Y-Axis: same as vertical.
Phase Difference $- \pm 3^{\circ}$ from dc to 150 kHz .
CRT SYSTEM
Display $-8 \mathrm{~cm} \times 10 \mathrm{~cm}, 14 \mathrm{kV}$ nominal voltage.

2236A

- Built-in Counter/Timer/DMM
- Voltage, resistance, and temperature measurements
- Crystal-controlled precision C/T accuracy

The 2236A offers all the features, reliability, and performance of the popular 2235A plus the added versatility of a counter/timer and digital multimeter.

Controls - A , B INTENSITY, TRACE ROTATION, BEAM FIND, SCALE ILLUM, FOCUS.
Z-Axis - 5 V causes noticeable modulation, to 20 MHz .

POWER REQUIREMENTS

Line Voltage Range - 90 VAC to 250 VAC.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption -2235A: 40 W (70 VA). 2236A: 60 W (110 VA).

2236A ADVANCED FUNCTIONS

Counter/Timer - Time Base and Accuracy: 200 MHz, $10 \mathrm{ppm}(0.001 \%)$; with optional temp. compensated crystal oscillator (TCXO): 0.5 ppm (0.00005%). Frequency: 0.2 Hz to 100 MHz . Max resolution: 0.00000001 Hz . Max accuracy same as time base. Period/Width: 5 s to 5 ns . Max resolution: 10 ps . Max accuracy same as time base $\pm 10 \mathrm{~ns}$. Totalize: $8,000,000$ counts. Delay Time: 2.5 s to 500 ns . Max resolution: 10 ps . Max accuracy same as time base ± 20 ps Delta Time: 1 ns to 2.5 s . Max resolution: 10 ps . Max accuracy same as time base $\pm 50 \mathrm{ps}$.
Digital Multimeter - Dc Volts: 0 to 500 V. Max resolution: $100 \mu \mathrm{~V}$. Accuracy $\pm 1 \%$. Input: side DMM leads. RMS AC Volts: 0 to $350 \mathrm{~V}(20 \mathrm{~Hz}$ to 20 kHz). Max resolution: $100 \mu \mathrm{~V}$. Accuracy $\pm 1 \%$. Input: side DMM leads. CH $1 \mathrm{VDC}: 0$ to 500 V . Resolution: 1 mV . Accuracy $\pm 5 \%$. CH 1 Vrms ac: 0 to 350 V (50 Hz to 20 kHz). Max resolution: 1 mV . Accuracy $\pm 2 \%$. Resistance: 0 to $20 \mathrm{G} \Omega$. Max resolution: 0.01Ω. Max accuracy $0.15 \% \pm 2$ LSD's. Diode Detect: 0.15 V to 2.0 V . Max resolution: 1 mV . Max accuracy 0.15% ± 2 LSD's. Continuity: 0 to 5Ω. Accuracy $\pm 1 \Omega$. Temperature: $-62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}$. Accuracy $\pm 2 \% \pm 1.5^{\circ} \mathrm{C}$.

environmental characteristics

See page 108.
OTHER CHARACTERISTICS
Safety-UL 1244 listed, CSA certification.
Warranty-3 years.

ORDERING INFORMATION

2236A 100 MHz Oscilloscop
with Counter/Timer/ Multi-
meter with Counter/Timer/ Multi-
meter
Includes: Two 10X Probes Includes: Two 10X Probes (012-0941-01), Operators/ Service Manual (070-7685-00), 3 Year Warranty, Power Cord. 2235A 100 MHz Oscilloscope $\boldsymbol{\text { T }} \mathbf{\$ 1 , 9 9 5}$ Includes: Two 10X Probes (P6109) Opt. 01, Operators/ Service Manual (070-7683-00), 3 Year Warranty, Power Cord.

> INSTRUMENT OPTIONS

Opt. 14-(2236A only) - TCXO
Temperature Compensated
Crystal Oscillator (0.5 ppm). +\$315
INTERNATIONAL POWER PLUG OPTIONS Opt. A1-A5 (see page 108) NC
WARRANTY-PLUS SERVICE OPTIONS 2236A:

Opt. M2 -+2 yrs service	$+\$ 200$
Opt. M8 -+4 calibrations	$+\$ 320$
2235A:	
Opt. M2 2 +2 yrs service	$+\$ 169$
Opt. M8 -+4 calibrations	$+\$ 259$

RECOMMENDED ACCESSORIES

 Rackmount Kits -2236A Order 016-0015-03 \$300 2235A Order 016-0833-01 \$250 Temperature Compensated Crystal Oscillator (TCXO) Retrofit Kit - (2236A only) Order 040-1136-00
\$370

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Height	137	5.4
Width (with handle)	360	14.2
Depth (w/o front cover)	445	17.3
Weight	kg	lb
2236A Net	7.3	16.2
2235A Net	6.1	13.5

T Product available within 24 hours
through Tek Direct. Call 1-800-426-2200.

- $500 \mu \mathrm{~V} /$ div Vertical Sensitivity
- HF/LF Reject Trigger Filters
- X5, X10, X50 Magnification
- Peak-to-Peak Auto Triggering
- Opt. Battery Power Operation

2225 OSCILLOSCOPE

Real economy coupled with unique real-time performance.

The 2225 offers simplified but precise operation for such applications as field service, design, education, and production test.

ORDERING INFORMATION

222550 MHz Oscilloscope $\boldsymbol{\mathbf { E }} \mathbf{\$ 1 , 1 9 5}$ Includes:
2 10X Voltage probes (P6103),
Operators Manual (070-6298-00),
3 Year Warranty, Power Cord.

> INSTRUMENT OPTIONS

Opt. 3R - Rackmount Kit $\quad \mathbf{\$ 2 5 0}$
Opt. 1V-Operators Tape $+\$ 60$
Opt. 07 -Internal 12VDC Inverter $+\$ 445$ Opt. 30 -External Battery Pack $+\$ 845$ (1104A battery plus Option 07) ACCESSORY OPTIONS
Opt. 1C -C-9 Camera Opt. $01 \quad+\$ 610$
Opt. 1K - K212 Instrument Cart +\$385
Opt. 1T -Transit Carrying Case +\$345
Opt. 02 - Pouch and Panel Cover + $\$ 60$
Opt. 17 -P6408 Logic Probe +\$375
Opt. 23 -Add 2 P6119 1X/10X Probes
+\$130
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1- A5 - Available
NC
See page 108 for description.
WARRANTY-PLUS SERVICE PLANS
Opt. M2 -+2 yrs service $+\$ 126$
Opt. M8 -+4 annual calibrations $+\$ 212$
RECOMMENDED ACCESSORIES
Service Manual - (070-6299-00) \$95
Self-Study Package ${ }^{1}$ -
(068-0279-XX)
Battery Pack for Opt. $07-1104 \mathrm{~A} \$ 450$ Rackmount Kit - (016-0819-03) \$250 See page 108 for more accessories.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width (with handle)	380	15
Height	138	5.4
Depth (without front cover)	440	17.3
Weight	$\mathbf{k g}$	lb
Net	6.9	15.2

[^16]
ECONOMICAL WITH HIGH-END FEATURES

The two-channel 2225 contains features usually found in more expensive instruments. For example, the new low-noise vertical system operates at $500 \mu \mathrm{~V} / \mathrm{div}$. You also get horizontal alternate sweep magnifications of X5, X 10 and X50. These allow you to perform most measurements typically associated with dual time base scopes.

HANDS-FREE TRIGGERING

The 2225 provides the convenience of Tek's "handsfree" triggering, including HF and LF reject trigger filtering, TV line and field triggering. The single-sweep function is very useful for babysitting waveforms and waveform photography.

DC OPERATION

Two 2225 options offer you the choice of battery power or external dc operation. Option 07, is an internally mounted inverter which permits the 2225 to be powered by external dc sources ranging from 11.8 VDC to 30 VDC. The second, Option 30, includes the inverter and the external, rear-mounted 1104A battery pack. This provides at least three hours of operation under battery power. The integrated charger allows operation during the charging cycle. These options are also available on the 2211 and 2214.

CHARACTERISTICS

VERTICAL SYSTEM (2 Identical Channels)
Bandwidth (-3dB) and Rise Time - 50 MHz and
7.0 ns ($5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$); 40 MHz and $8.8 \mathrm{~ns}\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$).

Deflection Factor and Accuracy - $5 \mathrm{mV} / \mathrm{div}$ to
$5 \mathrm{~V} / \mathrm{div}, \pm 3 \% .500 \mu \mathrm{~V} / \mathrm{div}, \pm 5 \%$ with $\times 10$ vertical mag.
Vertical Operating Modes - CH 1, CH $2, \mathrm{CH} 2 \mathrm{~N}$ VERT, ADD, ALT, CHOP, X10 vertical mag.

CMRR - At least $10: 1$ at 20 MHz .
Input R and C-1 M $\Omega, 25 \mathrm{pF}$.
Max Input Voltage - 400 V (dc + peak ac). 800 V p-p.
Channel Isolation - 100:1 at 10 MHz .

HORIZONTAL SYSTEM

Sweep Speeds - $0.5 \mathrm{~s} / \mathrm{div}$ to $0.05 \mu \mathrm{~s} / \mathrm{div}$. X5, X10, X50 MAG to a maximum of $5 \mathrm{~ns} / \mathrm{div}$.
Accuracy - X1: 3\%; X5 \& X10: 4\%; X50: 5% (all $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$).
Horizontal Operating Modes - X1 (main only), ALT (main sweep and mag sweep), MAG, $X-Y$.

TRIGGER SYSTEM

Trigger Sensitivity - Internal: 0.3 div at 5 MHz ,
1.0 div at 50 MHz . External: 40 mV at $5 \mathrm{MHz}, 150 \mathrm{mV}$ at 50 MHz .
Trigger Operating Modes - Peak-Peak Auto
(for TV LINE), NORM, TV FIELD, SGL SWP.
Trigger Source - VERT MODE, CH 1, CH 2, LINE, EXT, EXT/10.
Trigger Coupling - Ac, dc, HF REJ (attenuates above 30 kHz), LF REJ (attenuates below 30 kHz).
Variable Holdoff - At least 8:1.

X-Y OPERATION

Deflection Factors - Same as vertical system.
Bandwidth - X-Axis: 2 MHz . Y-Axis: same as vertical
Phase Difference - 3° from dc to 150 kHz .

CRT SYSTEM

Display $-8 \mathrm{~cm} \times 10 \mathrm{~cm}, 12.6 \mathrm{kV}$ nominal voltage. Controls - INTENSITY, TRACE ROTATION, BEAM FIND, FOCUS.
Z-Axis - 5 V causes noticeable modulation. Usable to 5 MHz .

POWER REQUIREMENTS

Line Voltage Range - Low: 95 VAC to 128 VAC. High: 185 VAC to 250 VAC.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 70 W (80 VA).
Opt. 07 - Inverter Input Voltage: 11.8 VDC to 30 VDC (not retrofitable).
1104A Battery Pack - Couples to rear of scope. For use with opt. 07; Output: $12 \mathrm{~V}, 8 \mathrm{amps}$; Input: 95 VAC to 128 VAC or 185 VAC to 250 VAC (48 Hz to 440 Hz); Operating time: 3 Hrs ; Charge time: Approx. 16 Hrs (longer when scope is operating); Weight: $14 \mathrm{lbs} / 6.5 \mathrm{~kg}$.
Warranty - 3 years (Opt. 07); 1 year (1104A).

ENVIRONMENTAL CHARACTERISTICS

See page 108.
OTHER CHARACTERISTICS
Safety - UL 1244 listed, CSA certification.
Warranty - 3 years.

2205 OSCILLOSCOPE

Everything you need for basic scope measurements to 20 MHz .

SOLID PERFORMANCE AND TEK QUALITY

The 20 MHz , two channel 2205 is the most basic of the 2200 Series analog scopes, yet it offers Tek quality and unexpected performance features. Engineered for ease of operation, versatility, and ruggedness, the 2205 provides solid performance and a price that's right for a variety of applications.

Unlike other scopes in this range you don't have to give up signal quality, trigger stability, or accuracy when using the full bandwidth of the instrument. This is a true 20 MHz oscilloscope.
With its industrial quality construction and ability to operate under environmental extremes, the 2205 is an excellent choice for field applications, production testing, or classroom instruction.

VALUE-ADDED FEATURES

In the 2205, performance features add value, not expense. For example, standard features include $5 \mathrm{mV} /$ div vertical sensitivity, a fast $10 \mathrm{~ns} /$ div horizontal display and a flexible trigger system. Peak-to-peak auto capabilities deliver virtually hands-free triggering. Also featured are TV line and field triggering and front-panel access to the Z-axis input.

IDEAL FOR TEST SYSTEMS

The 2205 can be configured with low-cost bench equipment available from Tektronix (See pages 245-248 for TM 250 products). These configurations are ideal for use in applications such as field service, production testing and classroom lab stations.

CHARACTERISTICS

VERTICAL SYSTEM (2 Identical Channels)
Bandwidth (-3 dB) and Rise Time -20 MHz and
$17.5 \mathrm{~ns}\left(5^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right) .15 \mathrm{MHz}$ and $23.3 \mathrm{~ns}\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$).
Deflection Factor and Accuracy - $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div} \pm 3 \%$, $\left(15^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right) ; \pm 5 \%$, $\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
Vertical Operating Modes - CH 1, CH 2, CH 2 IN-
VERT, ADD, ALT, CHOP
CMRR - At least $10: 1$ at 10 MHz .
Input \boldsymbol{R} and $\boldsymbol{C}-1 \mathrm{M} \Omega, 25 \mathrm{pF}$.
Max Input Voltage - 400 V (dc + peak ac), 800 V p-p.
Channel Isolation - 100:1 at 20 MHz .
HORIZONTAL SYSTEM
Sweep Speeds - 0.5 s/div to $0.1 \mu \mathrm{~m} / \mathrm{div}$. (X10 MAG to $10 \mathrm{~ns} / \mathrm{div}$).
Accuracy $- \pm 3 \%$; Magnified $\pm 4 \%$ (degrade by 1% outside $15^{\circ} \mathrm{C} \cdot$ to $35^{\circ} \mathrm{C}$).
Horizontal Operating Modes - X1, X10, X-Y.

TRIGGER SYSTEM

Trigger Sensitivity - Internal: 0.30 div at 5 MHz ,
1.0 div at 30 MHz . External: 40 mV at $5 \mathrm{MHz}, 150 \mathrm{mV}$ at 30 MHz .

- Peak-to-Peak Auto Triggering
- 0.3 div Trigger Sensitivity
- Front Panel Z-Axis Input
- 10 ns/div Max. Sweep Rate

The 2205 delivers basic analog scope functions in a rugged affordable package.
Configure it with other low-cost Tek bench equipment, and you have the perfect
The 2205 delivers basic analog scope functions in a rugged affordable package.
Configure it with other low-cost Tek bench equipment, and you have the perfect combination for field applications, classroom labs, or production test.

Trigger Operating Modes - Peak-Peak AUTO,
NORM, TV FIELD, TV LINE, SGL SWP.
Trigger Source - VERT MODE, CH 1, CH 2, LINE, EXT, EXT/10.
Trigger Coupling - Ac, dc

X-Y OPERATION

Deflection Factors - Same as vertical system.
Bandwidth - X-Axis: 2 MHz . Y-Axis: same as vertical system.
Phase Difference $- \pm 3^{\circ}$ from dc to 50 kHz .

CRT SYSTEM

Display - $8 \mathrm{~cm} \times 10 \mathrm{~cm}, 1.8 \mathrm{kV}$ nominal voltage.
Controls - INTENSITY, TRACE ROTATION, BEAM
FIND, FOCUS.
Z-Axis - 5 V causes noticeable modulation. Useable to 5 MHz .

POWER REQUIREMENTS

Line Voltage Range - Low: 95 VAC to 128 VAC.
High: 185 VAC to 250 VAC.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 40 W (60 VA)
ENVIRONMENTAL CHARACTERISTICS
See page 108.
OTHER CHARACTERISTICS
Safety - UL 1244 listed, CSA certification.
Warranty - 1 year; 3 years optional.

ORDERING INFORMATION

220520 MHz Oscilloscope $\boldsymbol{\boldsymbol { z }}$ \$695 Includes:
Two $1 X$ test leads (103-0275-00),
Operators Manual (070-6717-00),
1 Year Warranty, Power Cord.
INSTRUMENT OPTIONS
Opt. 3R - Rackmount Kit $+\$ 250$
ACCESSORY OPTIONS
Opt. 1C-C-9 Camera Opt. 01
+\$610
Opt. 1K K K212 Instrument Cart +\$385
Opt. 1 T - Transit Carrying Case $+\$ 345$
Opt. 02 - Pouch and Front Cover $+\$ 60$
Opt. 17 - P6408 Logic Probe $\quad+\$ 375$
Opt. 22 -Add 24 test leads
Opt. 23 -Add 2 P6119 1X/10X
Opt. 24 - Add 2 P6103 10X
Probes
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - A5 Available
NC
See page 108 for descriptions.
WARRANTY-PLUS SERVICE OPTIONS
Opt. M7 -+2 yrs service $\quad+83$
Opt. M9 - + 2 calibrations +\$166 RECOMMENDED ACCESSORIES/ FIELD KITS
Service Manual - (070-6716-00) \$95
Rackmount Kit - (016-0819-03) \$250
Self Study Package Video ${ }^{\text {¹ }}$ -
(068-0289-xx) $\$ 115$
See page 108 for more accessories.
PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width (with handle)	380	15.0
Height	137	5.4
Depth (without front cover)	440	17.3
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net	6.7	14.8

[^17]
2200 SERIES ENVIRONMENTAL SPECIFICATIONS AND ACCESSORIES

INTERNATIONAL POWER PLUG OPTIONS

Option*	Type	Description	Part Number	Option	Type	Description	
Opt. A1	Universal Europe	$220 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0859-00)$		Part Number		
Opt. A2	United Kingdom	$240 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0860-00)$		Opt. A5	North American	$240 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt. A3	Australian	$240 \mathrm{~V}, 50 \mathrm{~Hz}$	$(020-0861-00)$		Standard	North American	$120-0862-00)$

(*No charge when ordering as an option to an instrument)

2200 SERIES ENVIRONMENTAL SPECIFICATIONS

Instruments meet in part, the environmental requirements of MIL-T-28800D or C for Type III, Class 3, Style D or C equipment as described below.

Oscilloscope Model	$\begin{gathered} 2232 \\ 2221 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 2214 \\ & 2211 \\ & 2201 \end{aligned}$	$\begin{aligned} & 2252 \\ & 2247 \mathrm{~A} \\ & 2245 \mathrm{~A} \end{aligned}$	2235A	2236A	2225	2205
Ambient Temp Operating Nonoperating	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+71^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -51^{\circ} \mathrm{C} \text { to }+71^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ -50^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Humidity Percent Reference	95\% 5 cycles, (120 MIL-T-28800D, par	4.5.5.1.2.2			MIL-T-28800C		$90 \%+40 \mathrm{C} 4$ hours TEK 062-2847-00, II

Altitude	
Operating	to $4,500 \mathrm{~m}(15,000 \mathrm{ft})$, maximum operating temp decreases $1^{\circ} \mathrm{C}$ per 300 m above 1500 m .

Nonoperating \quad to $15,000 \mathrm{~m}(50,000 \mathrm{ft})$.

EMC	Meets Class B requirements per VDE 0871-B for radiated and conducted emissions and FCC requirements.		
Vibration			
Operating	15 minutes along each of the 3 major axis, 10 Hz to 55 Hz to 10 Hz in one minute cycles. Hold for 10 minutes at 55 Hz .		
Displ. (in p-p)	0.015	0.015	0.025

[^18]

2465B Option 46

2430A Option 46
$22461 Y / 2 R / 2 Y(\operatorname{Mod} A)$

2465B OPTION 46

MIL-T-28800D, Type III,
Class 3, Style D

- 400 MHz Analog Oscilloscope
- Four Channels, $500 \mathrm{ps} /$ div Time Base
- Auto Setup
- Automatic Parametric Measurements
- Fully Programmable
- Volts and Time Cursors
- Save/Recall Setups

For additional information see page 86 .

2430A OPTION 46

MIL-T-28800D, Type III,
Class 3, Style D

- 150 MHz Digital Storage Oscillo-
scope
- 100 MS/s, 2 Channel Simultaneous
- 8 Bit Resolution
- Help Text Mode
- Auto Setup, Auto Measurement
- Fully Programmable
- Hard Copy Out
- Cursors

For additional information
see page 89.

2246 1Y/2R/2Y (MOD A)

MIL-T-28800D Type III
Class 3 Style D

- Meets MIL-STD-461C for EMI
- 100 MHz Bandwidth
- 4 Channels
- Cursors and crt readout
- Time/volts measurements
- Voltmeter measurements
- Includes pouch/cover

These instruments are based on the popular 2246 and are ideal for bench or field service use. Typical applications include use near high EMl fields or military contract applications.

For additional information
see page 104.

Tek Offers a Broad Range of Scopes

 to Meet Military Requirements- Meet or Exceed MIL Specs. for Shake, Shock and EMI
- Three Year Warranty
- UL Listed, CSA Certified

ORDERING INFORMATION

 OVER 100 MHz ANALOG 2465B Opt. 46US Air Force preferred
$400 \mathrm{MHz}, 4 \mathrm{CH}$ analog scope
NSN 6625-01-272-8054 2465B Opt. 11, Mod WB \$6,685
US Navy preferred
$400 \mathrm{MHz}, 4 \mathrm{CH}$ analog scope
NSN 6625-01-273-8156
F3801A2 Mod YE
\$10,275
US Navy preferred
400 MHz battery powered scope
NSN 6625-01-271-9845

2445B

$\$ 4,395$
DOD preferred
$150 \mathrm{MHz}, 4 \mathrm{CH}$ analog scope NSN 6625-01-178-9491

OVER 100 MHz DIGITAL

2430A Opt. 46

\$7,035

preferred

$150 \mathrm{MHz}, 2 \mathrm{CH}$ DSO
NSN 6625-01-258-0022

2430A

\$6,950
US Marine Corp preferred
$150 \mathrm{MHz}, 2 \mathrm{CH}$ DSO
NSN 6625-01-257-2868
2430A Opt. 1R
US Marine Corp preferred
150 MHz , rackmounted DSO
NSN 6625-01-252-0344
2430M
\$18,080
Air Force MATE/CIIL
compatible
150 MHz , rackmounted DSO NSN 6625-01-266-8763

100 MHz ANALOG

2246 Mod A

$\$ 3,490$
US Air Force preferred
$100 \mathrm{MHz}, 4 \mathrm{CH}$ analog scope
NSN 6625-01-275-4766
Order \# 2246 Opt $2 Y$
$22461 Y$
$\mathbf{\$ 3 , 4 9 0}$
US Navy preferred
$100 \mathrm{MHz}, 4 \mathrm{CH}$ analog scope
NSN 72 6625-01-260-6908
Order \# 2246 Opt. 1 Y
2246 2R
Rackmount version of $22461 Y$
NSN 7Z 6625-01-263-5932
Order \# 2246 opt 2R
2235 L
US Army preferred
$100 \mathrm{MHz}, 2 \mathrm{CH}$ analog scope NSN 6625-01-187-7847
Order \# 2235L

336A $50 \mathrm{MHz}, 20 \mathrm{MS} / \mathrm{s}$, DIGITAL PLUS ANALOG ULTRA-PORTABLE OSCILLOSCOPE

- AutoSetup of Time \& Voltage
- Save Setup/Recall
- 50 MHz DigItal/Analog BW
- 20 MS/s, 2 MHz Single-Shot BW
- 100 ns Glitch Capture
- Parametric Measurements
- Time and Voltage Cursors
- Signal Averaging
- Envelope Mode
- GPIB and Eight-Screen Memory
- CRT Readout

336A 50 MHz OSCILLOSCOPE

The SONY/TEKTRONIX 336A is a combination analog/ digital-storage portable oscilloscope, capable of displaying analog and digitized waveforms simultaneously, and can store up to 16 digitized waveforms for recall and display. Features like AutoSetup, Save Setup/ Recall, and Parametric measurements make the 336A a real productivity enhancing tool.

ORDERING INFORMATION
336A Digital Oscilloscope $\boldsymbol{\pi} \mathbf{\$ 6 , 0 0 0}$ Includes: 2 10X Probes (P6148A), Pouch (016-0718-00),
Front Panel Cover ($016-0719-00$), Crt filter (378-0225-00),
Operators Manual ($070-7360-00$),
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1- A5 - Available NC See page 108 for descriptions. OPTIONAL ACCESSORIES HC100 - Plotter
GPIB Cable - (012-0630-03)
Mesh Filter - (378-0223-00)
Viewing Hood - (016-0297-00)

RECOMMENDED PROBES

P6148A - 10X Probe	$\$ 175$
A6303 - Current Probe	$\$ 1,340$
AM 503 - Current Probe	$\$ 1,450$
Amplifier	

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in.
Width	237	9.3
Height	112	4.4
Depth		
Handle Not Extended	370	14.5
Handle Extended	482	19.0
Weight	kg	Ib
Net	5	11.1
Shipping	10.5	23.1

- Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

CHARACTERISTICS

DIGITAL STORAGE SYSTEM
Sample Rate - up to 20 MS/s.
Useful Storage Bandwidth - Real-Time: dc to $2.8 \mathrm{MHz}(-3 \mathrm{~dB})$. Equivalent-Time: dc to 50 MHz $(-3 \mathrm{~dB})$.
Resolution - Vertical: 8 bits. Horizontal: 10 bits.
Record Length - 1 K .
Pre/Post Trigger - 1/8, 1/2, 7/8 of waveform.
Acquisition Modes - Normal, Avg. (16, 64, or 256
sweep averages), Envelope ($1,16,64,256$ sweeps), Continuous Envelope (2 ms to $0.2 \mathrm{~s} / \mathrm{div}$).
Save Reference Memory - 8 screens of 2 waveforms,
for a total of 16 waveforms (16 K).
VERTICAL SYSTEM (2 Identical Channels)
Bandwidth $-50 \mathrm{MHz}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right) ; 40 \mathrm{MHz}$
$\left(+40^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$).
Deflection Factor and Accuracy -5 mV to $10 \mathrm{~V} /$ div. $\pm 3 \%$.

Vertical Modes-CH 1, CH 2, Dual.
CMRR - At least $10: 1$ at 10 MHz (5-MHz storage).
Input \boldsymbol{R} and $\mathbf{C}-1 \mathrm{M} \Omega, 33 \mathrm{pF}$
Maximum Input Voltage -200 V (dc + peak ac) or 200 V p-p ac to 1 kHz or less.

HORIZONTAL SYSTEM (Nonstore Mode Only)
Sweep Speeds - A Sweep: 0.2 s to $0.1 \mathrm{~ms} / \mathrm{div}$.
Extended to $10 \mathrm{~ns} / \mathrm{div}$ with X10 Mag. B Sweep: 50 ms to $0.1 \mathrm{~ms} / \mathrm{div}$.
Accuracy - $\mathrm{X} 1: \pm 2 \% ; \mathrm{X} 10: \pm 3 \%\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+30^{\circ} \mathrm{C}\right)$.
$\mathrm{X1}: \pm 3 \%$; $\mathrm{X10}: \pm 4 \%\left(0^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$.
Delay Time Jitter - 10,000:1.
Delay Time Accuracy (Nonstore mode) $\pm 1 \%\left(+25^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; \pm 2.5\left(0^{\circ} \mathrm{C}\right.$ to $\left.25^{\circ} \mathrm{C}\right)$.

TRIGGER SYSTEM
Trigger Operating Modes - Normal, Automatic, Single Sweep.
Trigger Source - CH 1, CH 2, or external.
Trigger Sensitivity - Internal: 0.3 div at 10 MHz ,
1.5 div at 50 MHz . External: 250 mV at $10 \mathrm{MHz}, 350 \mathrm{mV}$ at 50 MHz .
Trigger Coupling - Dc, ac, HF REJ (attenuates above
50 kHz), LF REJ (attenuates below 50 kHz).

X-Y OPERATION

Deflection Factors - Same as vertical system.
Bandwidth - 1 MHz in nonstore mode, up to 50 MHz in store mode.
Phase Difference $- \pm 3^{\circ}$ from dc to 50 kHz .

ADVANCED FUNCTIONS

Cursor Function and Accuracy - Δ Volts: $\pm 3 \%$ of
reading $+4 \%$ of Volts/div switch setting. Δ Time: $\pm 0.1 \%$ of full scale (real time); $\pm 4 \%$ (equivalent time).

CRT SYSTEM

Display - 10 div ($0.6 \mathrm{~cm} /$ div). 12 kV nominal voltage
Z-Axis - 5 V causes noticeable modulation. Usable to 1 MHz.

POWER REQUIREMENTS

Line Voltage Ranges-90-132 VAC, 180-250 VAC
Line Frequency - 48 Hz to 440 Hz .
Power Consumption - 50 W maximum.

ENVIRONMENTAL

Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ Nonoperating: $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: To $9000 \mathrm{~m}(30,000 \mathrm{ft})$ maximum, decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from 5,000 to 30,000 ft. Nonoperating: To 15,000 m ($50,000 \mathrm{ft}$) maximum.
Vibration - 15 minutes along each of the 3 major axes 0.025 in . $(0.06 \mathrm{~cm}$) p-p displacement (4 g 's at 55 Hz), 10 to 55 to 10 Hz in 1 min. cycles.
Humidity - Nonoperating: 5 cycles (120 hours) of MIL-E-16400G. Omit freezing and vibration and allow a post-test drying period at $+25^{\circ} \mathrm{C},+5^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ to 80% relative humidity.
Shock - Operating and Nonoperating: 30 g's, $1 / 2$ sine, 11 ms duration. Total of 12 shocks.

314

- Industrial Control Systems
- Biophysical Instrumentation
- Communication Equipment Service
305
- Electromechanical

Measurements

- Medical Electronics Maintenance
- Automotive/Motor Vehicle
- Plant Maintenance
- Field Service

ORDERING INFORMATION

314 CRT Storage Oscilloscope $\$ 5,700$ Includes:
2 ea P6149A X10 Probes, Carrying
Case and Pouch (016-0612-00),
Carrying Strap (346-0131-02), External
DC Current Assembly (012-0406-00),
21.6 A fuses (159-0098-00),
20.8 A fuses ($159-0132-00$),
20.15 A fuses (159-0130-01),
30.16 A fuses, ($159-0131-00$),

Service Manual ($070-1824-00$),
Operators Manual (070-1823-00).
305 Oscilloscope/DMM
$\$ 3,610$ Includes:
Two P6149A 10X Probes,
Carrying Case (016-0401-00),
Carrying Case Cover (200-2260-00),
Carrying Strap (346-0131-02),
DMM Probe Package,
Clear crt Filter (331-0394 01),
Blue crt Filter (378-2016-01), External
dc Cable Assembly (012-0406-00),
Service Manual (070-2423-01),
Operators Manual (070-2424-00) OPTIONAL ACCESSORIES
Viewing Hood -
Order 016-0297-00 \$7.50
Adapter Connector BNC to
Binding Post -
Order 103-0033-00 $\$ 7.00$
RECOMMENDED CAMERAS
C30BP Opt. 01
Camera Adapter -
Order 016-0327-01
PHYSICAL CHARACTERISTICS

Dimensions	mm	in.
Width, w/handle	237	9.3
Height, w/o pouch	112	4.4
Depth,		
handle not extended	347	13.6
Net Weight	kg	lb
w/o accessories	4.7	10.5
Shipping	7.6	17.0

apture your
 measurements in out of the way places with family of compact digital scopes.

222/NEW 222PS

- Floatable to ± 850 V/channel (222PS), ± 400 V/channel (222)
- 10 MHz Bandwidth
- Digital Storage
- 100 ns Glitch Capture
- 6 kV Peak Surge Rating (222PS)
- Auto Setup/Save Setup/ Recall
- Exclusive Motor Trigger (222PS)
- Auto Trigger
- Save Reference Memory
- 10 MS/s Dual Digitizers
- Fully Programmable via RS-232
- Replaceable X10 Probes

Standard (222PS)

- Ultra-Portable
- Rugged Construction
- Battery Operation
- DC Operation
- 4.4 Ibs Total Weight
- UL Listed
- 3 Year Warranty

The 222 and 222 PowerScout are the optimum scopes for industrial maintenance and field service. The new 222 PowerScout offers an unprecedented safety margin to users making measurments on industrial power systems.

BATTERY-OPERATED HANDHELD OSCILLOSCOPES

The 222 and new 222 PowerScout (222PS) provide unsurpassed power in the world of HandHeld oscilloscopes. Both instruments come standard with a 10 MHz bandwidth, $10 \mathrm{MS} / \mathrm{s}$ digitizing rate, RS-232 interface and full programmability in a size that goes anywhere. Battery operation eliminated the need for available power. The ability to charge and operate the scope from 12-28 VDC or 16-20 VAC makes the 222 or 222PS turly portable scopes on the go.

UNMATCHED SAFETY

Becaause it is floatable to $\pm 850 \mathrm{~V}$ per channel, the 222 PowerScout is designed to safely make measurments on industrial power systems. It is the first scope to be U.L. listed for measurements on line voltages to 600 VAC, and is specified to withstand peak surge voltages as high as 6 KV

The channels are fully isolated and double-insulated to ensure operator safety. The 222 is capable of safely measuring to $\pm 400 \mathrm{~V}$ per channel or 800 Vp -p.

AUTOSETUP/SAVE/RECALL

The 222 Series AutoSetup/Save/Recall features eliminate the need for unneccessary manipulation of the front panel. Just push the AutoSet button and the scope selects all the parameters for you. Save and recall those setups for repetitive situations at multiple sites and see the savings in time.

WAVEFORM STORAGE

After you've acquired your waveform using AutoSetup, save it in one of four 512 pt . reference memories. Recall' it to compare with known good signals and make any adjustments to the source necessary to bring the equipment on line.

RS-232 AND THE 222

After saving your waveforms and setups, make a permanent record. Simply connect the 222 or 222 PowerScout to your PC and transfer them, using the optional CAT 200 Software. Send them back to the scope when that same job is due again. In fact with CAT 200 software, you can control the entire front panel from a remote location utilizing the RS-232 port, modems and a phone line.

SOPHISTICATED PROCESSING IN A SMALL PACKAGE

The 222 Series offers features normally found only on full size portable scopes: Acquisition modes such as Envelope (Peak Detect) and Averaging; Pre/Mid/Post triggering capabilities; AutoSetup, Save/Setup/Recall; Save reference memories; XY operation; and RS-232 programmability. These features make the 222 or 222PS the ultimate service tool. Both scopes come complete with a ballistic nylon carrying case that doubles as a neck strap for hands free operation.

RUGGED DESIGN

The 222 Series is packaged in impact-resistant plastic, capable of withstanding 50 g 's of force. The Scopes can operate in temperatures as low as $-10^{\circ} \mathrm{C}$ and still be accurate. The batteries allow for a minimum of three hours of remote operation.

INDUSTRY STANDARD WARRANTY

The 222 Series comes standard with a full three year warranty. Optional service warranties are also available to make the 222 or 222 PowerScout the worry-free instrument for the technician on the move, anywhere in the world.

CHARACTERISTICS

DIGITAL STORAGE SYSTEM
Maximum Sample Rate - $10 \mathrm{MS} / \mathrm{s}$.
Resolution - Vertical: 8 bits, 25 levels/div.
Record Length -512 bytes.
Pre/Mid/Post-Trigger - 1/8, 1/2, 7/8 of waveform.
Acquisition Modes - Normal, Peak Detect,
Accumulated Peak, Averaging.
Save Reference Memory - Four 512 byte acquistions.
Front Panel Save/Recall - Save and recall up to four setups.
Motor Trigger (222PS only) - Trigger on first pulse in bursts separated by at least 2.25 ms modulated output of a motor controller.

VERTICAL SYSTEM
Bandwidth - Repetitive: 10 MHz . Single shot: 1 MHz .
Rise Time -35 ns .
Deflection Factor - 222: $5 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$; 222PS: $50 \mathrm{mV} /$ div to $500 \mathrm{~V} /$ div.
Accuracy - $222: \pm 3 \%\left(+10^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$); 222PS: 4\%.
Operating Modes - Channel 1, Channel 2, Dual.
Input \boldsymbol{R} \& $\boldsymbol{C}-222: 1 \mathrm{M} \Omega, 30 \mathrm{pF}$; 222PS: X10 probe, $10 \mathrm{M} \Omega, 4.5 \mathrm{pF}$.
Maximum Safe Input Voltage -222: 400 V ($\mathrm{dc}+$ peak ac), 800 V p-p @ 1 kHz or less; 222PS with P850 probes: 600 Vac or $850 \mathrm{~V}(\mathrm{dc}+$ peak ac) 6 kV peak surge.
Channel Isolation - Greater than 1000:1 at 10 MHz .
HORIZONTAL SYSTEM
Sweep Speeds -50 ns/div to $20 \mathrm{~s} / \mathrm{div}$ (X10 mode increases max sweep speed to $5 \mathrm{~ns} / \mathrm{div}$).
Accuracy - X1: $\pm 2 \% ; \mathrm{X10}: \pm 5 \%$.
TRIGGER SYSTEM
Sensitivity - Internal: 0.5 div at 10 MHz .
External: 250 mV at 10 MHz .
Trigger Sources - $\mathrm{CH} 1, \mathrm{CH} 2$ and External.

X-Y OPERATION

Accuracy -Same as Vertical System.
Useful Bandwidth -Same as Vertical System.
Skew between CH1 \& CH2-5 ns.
CRT SYSTEM
Display -6×10 divisions (0.5 cm).
RS-232 INTERFACE
Maximum Applied Voltage - 25 V ($\mathrm{dc}+$ peak ac).
Baud Rates - 300, 1200, 2400, 9600.
Levels - Compatible with RS-232C.

POWER REQUIREMENTS

Line Voltage Range - 12 to 28 VDC, 16 to 20 VAC .
Line Frequency - 47 Hz to 400 Hz .
Maximum Power Consumption - 16 VA.
Minimum Operating Time (batteries) - Three hours at maximum sample rate, no trigger, and auto-shutdown defeated.
Typical Operating Time (batteries) - Four to six hours.
Charging Time - Three hours.
Type - Sealed lead acid.
Discharge Protection - Scope automatically shuts down when charge drops to 7.42 V .

ENVIRONMENTAL

Ambient Temperature - 0 perating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; Nonoperating: $-51^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: $4500 \mathrm{~m}(15,000 \mathrm{ft})$.
Nonoperating: $15,000 \mathrm{~m}(50,000 \mathrm{ft})$.
Humidity - 95\%, five cycles (120 hours). Referenced to MIL-T-28800D, for Type 3, Class III instruments.
Vibration - Operating and Nonoperating: 15 minutes along each of the 3 major axes, 0.06 cm (0.025 in) p-p displacement (4 g's at 55 Hz), 10 to 55 to 10 Hz in 1-minute cycles. Held for 10 minutes at 55 Hz in each 3 major axes.
Shock - Operating and Nonoperating: 50 g's $1 / 2$ sine,1 ms duration each direction along each major axis. Total of 18 shocks.

ORDERING INFORMATION

222 HandHeld DSO

 Includes:Operator Manual, Quick Ref.
Guide, RS-232 Guide,
AC adapter, Pouch, Feet,
Probe Acc. Kit.
222PS Powerscout
Includes: 2 Replaceable P850 X10 probes.

INSTRUMENTS OPTIONS
Opt. 02 -Delete adapter NC
WARRANTY PLUS SERVICE OPTIONS Opt. M2-2 yrs service

222 $222 P S$ Opt. M3 - 2 yrs service +4 cals 222		
222PS		
INTERNATIONAL POWER PLUG		
OPTIONS		
Opt. A1 \& A2 - Available		

See page 108 for descriptions.
OPTIONAL ACCESSORIES
External Battery Charger -
Order BAT200
Battery/AC Adapter Pouch -
Battery/AC Adapter Pouch -
Order 016-0993-00 $\mathbf{\$ 1 3 . 2 5}$
Viewing Hood -
CAT 200 Virtual Instrument
Software -
Order CAT 200
EXT Trig to BNC Adapter -
Order 103-0090-00
European Power Adapter -
Order 120-1826-00
Order 120-1826-00
UK Power Adapter -
Order 120-1827-00 \$25
Spare Battery -
Order 146-0075-00
RS-232 Cable -

$$
\$ 36
$$

External Trigger Probe -
P850 - Replaceable Probe for 222PS
P400 - Replaceable Probe for 222PS

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in.
Width	159	6.3
Height	86	3.4
Depth	252	9.9
Weight	$\mathbf{k g}$	lb
Net, w/o accessories	2.0	4.4
Shipping	3.2	7.0

- Product available within 24 hours
through Tek Direct. Call 1-800-426-2200.
${ }^{* 1}$ Contact your local sales representative.

221/214 HANDHELD, 500 kHz TO 5 MHz MINISCOPES 212

- DC to 5 MHz (221)
- $5 \mathrm{mV} / \mathrm{Div}$ to 100 V div (221)
- DC to $500 \mathrm{kHz}(214 / 212)$
- 1 mV/Div to 50 V/Div (214/ 212)
- CRT Storage (214)
- Floatable to 600 V
- Internal Battery Pack
- Integral Probe

ORDERING INFORMATION

212500 kHz , Dual-Channel $\boldsymbol{\tau} \mathbf{\$ 2 , 4 5 0}$ Includes: Integral probes, Viewing Hood (016-0099-01), Carry Case (016-0512-00), Carry Strap (346-0104-00), Oprs. Manual (070-5052-00), Service Manual (070-5053-00).
214500 kHz , Dual Channel $\mathbf{~} \mathbf{\$ 3 , 2 2 5}$ CRT Storage Oscilloscope Includes: Same as 212, except Operators Manual ($070-5054-00$), Service Manual(070-5055-00).
2215 MHz , Single Channel $\boldsymbol{-} \mathbf{\$ 2 , 9 5 0}$ Includes: Integral probe,
Viewing Hood (016-0199-01),
Carrying Case (016-0512-00),
Neck Strap (346-0104-00),
Service Manual (070-1573-01),
Operator Manual (070-1572-00), Battery.

> OPTIONS (212/214 only)
Opt. 01-220 to 250 V
(48 to 52 Hz)
Opt. $02-90$ to 110 V (48 to 52 Hz)

OPTIONAL ACCESSORIES
10X Attenuator Package -
(212/214 ONLY) A slip-on tip to provide lower circuit loading ($4.4 \mathrm{M} \Omega, 20 \mathrm{pF}$) and higher maximum input voltage 1000 V (dc + peak ac). Includes: Flex Tip, 10X attenuator, Pincher Tip, Banana Tip, IC Adapter. Order 010-0378-01 $\$ 100$
Alligator Clip Kit - Pair of alligator clips that connect probe and ground lead to large (up to $3 / 8$ inch) conductors. Includes: Red Clip, Yellow Clip, 6-32 to Probe Adapter.
Order 015-0231-00
Probe Tips - To BNC Adapters (Panel Connector) 013-0084-01 \$11.50 (Cable Adapter) 103-0096-00. \$15.75 PHYSICAL CHARACTERISTICS

Dimension	$\mathbf{m m}$	in.
Width	133	5.2
Height	76	3.0
Depth	241	9.5
Weight	kg	lb
Net, w/o accessories	1.6	3.5
Shipping	3.2	7.0

© Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

With bandwidths from $500 \mathrm{kHz}(212 / 214)$ to 5 MHz (221), neckstraps for convenient viewing, and side mounted control knobs, the 200 Series miniscopes are ideal for industrial maintenance applications where portability is a must.

The 221/214/212 are lightweight, compact, and built of impact-resistant, double insulated plastic. Since they are double insulated they allow you to make "floating" measurements and can be elevated to 600 V (dc + peak ac) above ground when operated from batteries.

The 214 CRT Storage scope allows you to save waveforms for comparison to other signals. The 221, at 5 MHz , offers the ability to view the higher voltages and higher speeds found in motor controllers. Internal rechargeable batteries allow at least two hours operation away from external power sources.

CHARACTERISTICS

VERTICAL SYSTEM

Bandwidth - 221: dc to 5 MHz . 212/214: dc to 500 kHz ($10 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$); 100 kHz ($1 \mathrm{mV} / \mathrm{div}$).
Deflection Factor and Accuracy -221:5 mV/div to $100 \mathrm{~V} / \mathrm{div} \pm 3 \%$. 212/214: $1 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div} \pm 5 \%$.
Display Modes - 221: Channel 1 only, XY. 212/214:
CH 1, CH 2, CHOP ($500 \mathrm{~ms} / \mathrm{div}$ to $2 \mathrm{~ms} / \mathrm{div}$), ALT ($1 \mathrm{~ms} /$ div to $5 \mathrm{~ms} / \mathrm{div}$).
Input R and C-221: $1 \mathrm{M} \Omega$, $29 \mathrm{pF} .212 / 214: 1 \mathrm{M} \Omega$, 160 pF ($1 \mathrm{mV} /$ div to $50 \mathrm{mV} / \mathrm{div}$); 140 pF ($100 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$).
Maximum Input Voltage -1 mV/div to $50 \mathrm{mV} / \mathrm{div}$: 600 V (dc + peak ac), 2 kHz or less. $0.1 \mathrm{~V} /$ div to $50 \mathrm{~V} / \mathrm{div}$: 600 V (dc + peak ac), $600 \mathrm{Vp-p}, \mathrm{ac}$,5 MHz or less.

HORIZONTAL SYSTEM

Sweep Speeds -221:1 ms/div to $200 \mathrm{~ms} / \mathrm{div} \pm 3 \%$. 212/214: $5 \mathrm{~ms} / \mathrm{div}$ to $500 \mathrm{~ms} / \mathrm{div} \pm 5 \%$.

TRIGGER SYSTEM

Trigger Sensitivity -221: Internal: 0.5 div at 1 MHz , 1 div at 5 MHz . External: 0.5 V at $1 \mathrm{MHz}, 1 \mathrm{~V}$ at 5 MHz . 212/214: Internal: 0.2 div at 500 Hz . External: 1 V .
Maximum Ext Trigger Input Voltage -212/214:
8 V (dc + peak ac), 16 V (p-p ac) at 500 kHz or less.

X-Y OPERATION (221 ONLY)
\boldsymbol{X}-Axis Deflection Factor $-1 \mathrm{~V} / \mathrm{div} \pm 10 \%$, dc to 500 kHz . $0.1 \mathrm{~V} /$ div using X10 mag.
Maximum X-Axis Input Voltage -200 V (dc + peak
ac), 200 V ($\mathrm{p}-\mathrm{p}$ ac) to 500 kHz , decreasing to $20 \mathrm{~V} p-\mathrm{p}$ ac at 5 MHz .

CRT SYSTEM

Display -6x 10 div ($0.52 \mathrm{~cm} / \mathrm{div}$).
STORAGE FEATURES (214 Only)
Stored Writing Speed - Normal: 80 div/ms.
Enhanced: $500 \mathrm{div} / \mathrm{ms}(0.1 \mathrm{~ms}$ to $5 \mathrm{~s} / \mathrm{div}$).
Stored Luminance - At least 8 fL at $25^{\circ} \mathrm{C}$.
Storage Viewing Time - One hour.
OTHER CHARACTERISTICS
Insulation Voltage -500 Vrms or 700 V ($\mathrm{dc}+$ peak ac) using internal batteries.
Power Sources - Internal NiCad batteries provide three to five hours operation. Full recharge requires 16 hours.

POWER REQUIREMENTS

Line-Voltage Range -212/214: 110 to 126 VAC; Option 01: 220 to 250 V ; Option $02: 90$ to 110 V . 221: 90 to 250 VAC or 80 to 250 VDC.
Line Frequency -212/214: 58 to 62 Hz ; Options 01 and 02: 48 to $52 \mathrm{~Hz} .221: 48$ to 62 Hz
Maximum Power Consumption - 212/214: 3 W. 221: 5 W .

ENVIRONMENTAL

Ambient Temperature - Operating (Batt. only): $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Charging or ac operation: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Altitude - Operating: $7600 \mathrm{~m}(25,000 \mathrm{ft})$,
Nonoperating: 15,000 m (50,000 ft).
Humidity -95\%, five cycles (120 hours).
Referenced to MIL-T-28800C, per par 4.5.5.1.2.2.
Vibration -Operating and Nonoperating: 15 minutes along each of the 3 major axes, 0.06 cm (0.025 in) p-p displacement (4 g's at 55 Hz), 10 to 55 to 10 Hz in 1-minute cycles. Held for 3 minutes at 55 Hz .
Shock - Operating and nonoperating: 100 g's $1 / 2$ sine, 2 ms duration each direction along each major axis. Total of 12 shocks.

RTD 720 WAVEFORM DIGITIZER

- Multiple Channel Acquisition
- Long Record Length
- High Bandwidth and Sample Rate
- Transient Event Acquisition

SIGNAL FIDELITY AND SAMPLE RATE

The Tektronix RTD 720 Transient Waveform Digitizer provides 8 -bit vertical resolution at sample rates up to 2 Gigasamples per second (GS/s).

The high-performance input amplifiers provide excellent transient response with over 500 MHz of bandwidth. A selection of ranges and offset capability allows matching signal levels to the full range of the ADC system. The RTD 720 provides two channels of acquisition with the option to add two additional channels for a total of four (4) acquisition channels. The user controls the number of active channels (1,2, or 4). For multiple channel acquisitions, all active channels acquire data simultaneously.

LONG ACQUISITION MEMORY WITH FLEXIBLE ALLOCATION AND TRIGGERING

The RTD 720 standard acquisition memory is 128 K (131,072 or $>65 \mu \mathrm{~s}$ time window at $2 \mathrm{GS} / \mathrm{s}$) waveform data points. Options are available for even larger acquisition memories and to support internally powered battery backed-up memory. Memory can be assigned entirely to one channel or shared equally among all active channels (1,2, or 4) for simultaneous acquisition on all channels.

The trigger and time base system provides a high level of timing accuracy and resolution of the trigger event. Basic timing is provided by an internal precision SAW oscillator exhibiting a high degree of short term stability and low phase noise. Trigger time resolution is a function of the sample rate and number of active channels. The triggering and arming capabilities (external or internal) of the RTD 720 provides flexibility to allow capture of the signals of interest.
Pretrigger and post trigger acquisition of waveform data is supported by the RTD 720 . For examining conditions prior to the trigger event, the RTD 720 supports pretrigger capture up to approximately the full record length. In order to examine in detail an event that occurs after the trigger event, the RTD 720 provides post trigger capabilities of up to 99,999,999 sample intervals after the trigger event before data capture begins. This equates to acquisition beginning 100 ms after the trigger event at a sample rate of $1 \mathrm{~ns} /$ point.
Record lengths can be selected from 512 data points to the full length of memory available, based on number of active channels. When using shorter record lengths, a corresponding larger number of records are available for each active channel. Depending on the number of active channels, the record length selected and the amount of memory installed in the digitizer, up to 1024 records per channel can be acquired.
In support of these multiple records, the RTD 720 features an Auto-Advance mode with time-stamping of each trigger event on each active channel. This allows the capture of multiple events with each record requiring a separate trigger. The re-arm time between acquisitions is
$\leq 5 \mu \mathrm{~s}$, plus pretrigger fill time. This allows the capture of every event with event repetition rates in excess of 180,000 per second. Time stamp recording keeps track of the time of trigger for each successive event with timing resolution based on the sample rate of the acquisition.

HIGH SPEED DATA TRANSFER

Complementing the high capture rate of the RTD 720 is a fast and efficient data transfer capability. The RTD 720 supports this requirement with both hardware and instrument firmware to speed data transfer to a computer.

The primary computer interface for the RTD 720 is the IEEE-488.1 (GPIB) providing instrument control and data transfer. In burst mode (such as when transferring waveform data) the maximum rate is ≥ 400 kilobytes per second. This rate is dependent on the instrument controller used. For even faster waveform data output capability, a 16-bit parallel port, capable of transferring 4 megabytes per second (2 megawords per second) is provided. This parallel port operates with TTL levels and is designed to work with a number of typical computer parallel data input ports.

To further increase data transfer rates for the RTD 720, the instruments firmware supports predefinition of the information to be transferred so that time is not lost sending instructions and turning the interface around. These commands allow specifying from which channels to transfer data, which records to transfer (if in AutoAdvance mode), what part of the records to transfer, and the number of times these are to be repeated. This applies to both the IEEE-488.1 and parallel interface. The end result is that the RTD 720 is designed to transfer data to a computer rapidly.

Contents

RTD 720 High Speed
Transient Digitizier 116
RTD 710A Waveform Digitizer ... 118
9503/9504 Fast Data Cache 121
SCD5000/SCD1000 High-
Speed Transient Digitizers....... 123
Analytek Series 2000 Digitizer ... 126
DCS Digitizing Camera
Systems 132
MUX16 Mainframes 132

RTD 720 High Speed
RTD 710A Waveform Digitizer ... 118
9503/9504 Fast Data Cache 121 SCD5000/SCD1000 HighSpeed Transient Digitizers. 123 DCS Digitizing Cam Digizer... 126

MUX16 Mainframes130

DX05 Video Monitor 132
RTD 720

- 2 GS/s Single Channel Mode
-1 GS/s Dual Channel Mode
- 500 MS/s Four Channel Mode
- 500 MHz Analog Bandwidth
- 8 bit Vertical Resolution
- Long Waveform Memory
- 128 K Standard with

Expansion Available to 4 M

- Fast Multiple Record Capability
- Optional Removable Display with Remote Capability

RTD 720 Transient Digitizer with Optional Front Panel

[^19]APPLICATIONS

- Impulse Phenomena EMP and Radiation Simulators Analysis of Fast Pulsed Events
Laser Induced Phenomena
High Energy Physics
Nuclear Effects
- Pulse Echo Events RADAR \& LIDAR High Frequency Ultrasonics
- Long Record Length Computer Mass Storage Devices
Media Characterization Digital System Debug Intelligence

SYSTEM DIGITIZER OR STANDALONE

The RTD 720 is fully programmable via the IEEE-488.1 and conforms to Tektronix Standard Codes \& Formats, with long waveform data support. This allows for easy integration in to existing systems and a strong basis for building new systems. The standard product is designed for system applications; with no display, limited human interface (only the power switch and functional indicator lights), signal connections in the rear, and ships ready to mount in a standard $19^{\prime \prime}$ instrument rack.

The optional instrument front panel provides control of the instrument, waveform display and cursor measurements. The detachable display unit provides better support for bench-top and ATE applications and is a powerful tool when developing system software. This unit can be snapped on to the front of the RTD 720 or used remotely from the instrument. For multiple unit applications, the front panel can be moved from instrument to instrument by simply moving the plug-in connector.

For faster response, the RTD 720 also provides 10 non-volatile instrument settings and powers up with the same settings as when it was powered down.

The RTD 720 provides signal fidelity and digitizing performance necessary to capture waveforms with confidence.

Front Panel close-up with Cursor Measurements

CHARACTERISTICS

VERTICAL

Imput Channels - Two, (Four Optional), single ended. Simultaneous digitizing on all channels, in dual and quad modes of operation.
Input Range and Offset - Input range 200 mV to 12.5 V full scale, input covered by 19 settings. Each range provides a signal offset capability and fast overdive recovery.
Bandwidth (-3 dB) - Dc Coupling: dc to 500 MHz . Ac Coupling: 2 kHz to 500 MHz .
Input Protection - Thermal cut-off on attenuator at 5 V rms for $\geq 30 \mathrm{~ms}$ (can be overridden in firmware). Diode bridge protection to amplifier for pulses $\geq 25 \mathrm{~V}$ at the amplifier, response time $\leq 30 \mathrm{~ns}$.
Standardize - (Accuracy after Standardization - Mean value)

- $\Delta V D C$ Accuracy : $\pm(1.0 \%$ of signal $+1.0 \%$ of full scale).
- Offset Accuracy : $\pm(1.0 \%$ of input range $+0.5 \%$ offset range $+1.0 \%$ of offset).
TIME BASE
Internal Clock Frequency - $500 \mathrm{MHz} \pm 25 \mathrm{ppm}$
$\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$). $500 \mathrm{MHz}+25 \mathrm{ppm}-100 \mathrm{ppm}\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$. Short-term stability: $0.1 \mathrm{ppm} / \mathrm{s}(50 \mathrm{~Hz} / \mathrm{s})$. Longterm stability: $50 \mathrm{ppm} / 10$ years.
External Clock Input $-500 \mathrm{MHz} \pm 200$ ppm, 2 V peak to peak sine wave minimum amplitude with 00 V average. Input impedance: $50 \Omega \pm 3 \%$.

DIGITIZING

Vertical Resolution - 8 bits providing 256 discrete levels ($\geq 48 \mathrm{~dB}$ dynamic range). This provides a resolution of $<800 \mu \mathrm{~V}$ on the 200 mV full scale input range.

Maximum Sample Rates -

Single Channel	$2 \mathrm{GS} / \mathrm{s}(500 \mathrm{ps} / \mathrm{pt})$
Dual Channel	$1 \mathrm{GS} / \mathrm{s}(1 \mathrm{~ns} / \mathrm{pt})$
Four Channel	$500 \mathrm{MS} / \mathrm{s}(2 \mathrm{~ns} / \mathrm{pt})$

Standardize - Sets interleave timing between ADCs for single channel and dual channel operating modes for highest signal fidelity.

Acquisition Memory -

128 K waveform points standard.
512 K waveform points battery backed-up (optional).
1 M waveform points (optional)
4 M waveform points (optional).
Acquisition memory is shared equally among all active channels $(1,2$, or 4$)$.
Multiple Records - Memory can be further segmented up to 1024 records per channel.
Re-arm time between records - $\leq 5 \mu \mathrm{~s}+$ pretrigger fill time. This allows capture of multiple triggered waveform events at an event rate of over 180,000 events per second and on all active channels. All records are time-stamped, for comparing time between events.

TRIGGERING

Sources - Internal from any channel (either active or inactive channels may be used) or External.
Trigger Coupling \& Impedance - DC, AC, or DC High Frequency Reject.
Impedance - Internal same as input channel coupling (50Ω); External 50Ω.
Trigger Slope - Positive or Negative Slope.
Trigger Level Range \& Accuracy - Internal: $\pm 62.5 \%$ of full scale input range in 0.5% steps with an accuracy of \pm (1.0% of setting $+1.0 \%$ of input range). External: $\pm 6.2 \mathrm{~V}$, programmable in 50 mV steps with an accuracy of $\pm(3 \%$ of setting $+120 \mathrm{mV})$.
Trigger Sensitivity -

Coupling	Internal	External
DC dc to 500 MHz	10% full scale	$1 \mathrm{Vpk}-\mathrm{pk}$
AC 1 KHz to 500 MHz	10% full scale	$1 \mathrm{~V} \mathrm{pk-pk}$
DC HF Rej dc to 30 KHz	10% full scale	$1 \mathrm{Vpk}-\mathrm{pk}$

Trigger Modes -	A trigger will be generated after approximately 60 ms if a valid trigger does not occur.
Auto	The unit will wait indefinitely until a valid trigger occurs.

Trigger Position -	Waveform data captured prior to the Pre-Trigger trigger event. To approximately 100% of the record length settable in steps of 64 points.
Post Trigger	Time from trigger event until accuisition begins To over 99, T999,999 sample intervals after the trigger event settable in steps of 64 points Waveform acuusisition begins after the Post Trigger Position and captures the full defined record length.

Arming - Internal or External Arming. Triggers are not recognized until the unit is armed.
Standardize - Sets level accuracy of trigger input and aligns trigger to record timing.

COMPUTER INTERFACES

GPIB IEEE-488.1 - Interface is standard for instrument control and waveform data transfer. Maximum transfer rate ≥ 400 kilobytes $/ \mathrm{s}$. All instrument functions, settings and operating modes are programmable, with the exception of the power switch.

Parallel Port - A waveform data output only 16 bit parallel port is provided capable of 4 megabyte/s (2.0 megawords $/ \mathrm{s}$). This provides TTL level outputs and has operating modes to allow use with a wide range of computers.
Data Throughput - The interface hardware and instrument command set are structured to provide a high output capability for logging information to a computer or other outboard memory device.

DISPLAY \& INSTRUMENT CONTROL

Attachable Display Unit -There is an optional display available that provides for waveform viewing and instrument control. This display can be remotely mounted and moved from instrument to instrument by simply moving the connecting cable. This offers the instrument operator full control of the instrument plus the ability to view captured waveform data. The waveform data display provides viewing of up to 4 waveforms at a time with cursor measurement capabilities and waveform display expansion in both time and amplitude. The waveform expansion capability allows viewing, as an example, a full 1 M long waveform or zooming in for closer examination of details of interest. The display also supports a video hardcopy capability of all information and waveform data on the display.
ENVIRONMENTAL (STANDARD INSTRUMENT)
Temperature Range - Operating: -10 to $55^{\circ} \mathrm{C}$; Nonoperating: - 51 to $71^{\circ} \mathrm{C}$.
Humidity - 0% to 95% relative humidity (Noncondensing) to $55^{\circ} \mathrm{C}$.
Altitude - Operating: 4,750 m ($15,000 \mathrm{ft}$);
Nonoperating: $15,240 \mathrm{~m}$ ($50,000 \mathrm{ft}$).

POWER REQUIREMENTS

Line Frequency - 48 to 440 Hz .
Voltage Range - Selected by rear panel switch, 90 to 132 Vrms or 180 to 250 Vrms.
Power Consumption - ≤ 350 W fully optioned.
Electromagnetic Compatibility - The RTD 720 qualifies under test limits specified in FCC Part 15, subpart J, Class A and VDE 0871 Class B.
Warranty - The RTD 720 carries a standard Tektronix one-year warranty covering labor and replacement parts. Options are available for extended warranty coverage.

ORDERING INFORMATION

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - A5 - Available
See page 374 for description.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	482.6	19
Height	225.25	8.75
Depth	635	25
Weight $=$	$\mathbf{k g}$	$\mathbf{l b}$
Net	19	49

- 200 MS/s Single Channel
- 100 MS/s Dual Channel
- 100 MHz Analog Bandwidth
- 10 Bit Vertical Resolution
- 256 K Word Waveform Memory
- Hardware Signal Averaging
- Internal/External A/D Clocking
- Cursor Measurements of Time, Voltage and Frequency
APPLICATIONS
- Video and HDTV
- Ultrasonics, RADAR, LIDAR
- High Voltage Impulse Testing
- Power Supply \& Power Conversion
- Communications and EW
- CCD Development
- Semiconductor \& Hybrid Test
- ATE Systems

RTD 710A WAVEFORM DIGITIZER

- High Resolution and Accuracy
- Synchronized Clocking
- Long Record Length
- Expandable Waveform Memory

HIGH RESOLUTION, ACCURACY AND SPEED

The RTD 710A Waveform Digitizer provides 10 bit vertical resolution at sample rates up to 200 Megasamples per second (MS/s). With four times the resolution of an 8 -bit digitizer and 60 dB of dynamic range, the RTD 710A provides excellent resolution of fine signal details.
The RTD 710A provides real-time digitizing up to $200 \mathrm{MS} / \mathrm{s}$ in the single-channel mode and to $100 \mathrm{MS} / \mathrm{s}$ in dual-channel mode. The high performance amplifier and attenuator system, along with Autocal circuitry, provides excellent signal fidelity prior to conversion from analog to digital form. The input system also provides fine control of full scale input range and offset, maximizing use of the 1024 available digitizing levels.

Other key features of the input system are accurate step response and rapid overdrive recovery. Clean step response is important for accurate capture of transient events. The fast overdrive recovery allows accurate recording of small events occurring near large impulses, such as in pulse-echo applications and decaying exponential signals.

LONG MEMORY AND FLEXIBLE RECORDING

The RTD 710A contains 256 K $(262,144)$ words of high-speed memory for storing waveform data. Memory can be allocated entirely to one channel or split between channels for simultaneous dual-channel digitizing.

Record length can be selected from 1024 points to the full 262,144 , in powers of two. When using shorter lengths, a correspondingly larger number of records are available. With a record length of 1024 points, up to 128 records per channel are available in the dual-channel mode, or up to 256 records if one channel is used.

DIRECT OUTPUT OF A/D DATA

For applications where the large internal memory of the RTD 710A is not enough, an external output port is provided. The output of both A / D converters is available up to the full $200 \mathrm{MS} / \mathrm{s}$ rate. External memory caches, such as the Tektronix 9503/9504 FDC may be added for capture of extremely long time windows with high resolution. Contact your Tektronix Sales Engineer for further information on memory cache products.

OTHER RECORDING MODES

The Auto-Advance recording mode takes advantage of multiple records by capturing new waveform data on successive trigger events. In this manner a series of transient events can be captured in rapid succession and held for later analysis. Auto-Advance recording is very powerful for capturing a series of lightning strikes, monitoring the time-varying output of a laser system, or recording other sequential transient phenomena.

In addition to the transient recording modes, the RTD 710A has built-in hardware signal averaging capability. This provides selectable powers-of-two averaging up to 16 K times to reduce random signal noise.

Envelope capture mode records minimum and maximum values for each data point over successive acquisitions. This offers a powerful technique for capturing spurious events and for monitoring signal drift.

INTERNAL AND EXTERNAL SAMPLE CONTROL

In addition to 66 internal time base settings, external strobing of the A/D converter system is supported. This provides the ability to synchronize sampling with external phenomena. The RTD 710A can be strobed from dc to 200 MHz . One typical application is CCD development where sampling can be synchronized with the CCD shift clock. Other applications are storage media testing and multiplexed data systems.

Sample rate switching is a unique feature provided to optimize usage of waveform memory. With sample rate switching it is possible to perform fast sampling during periods of interest and switch to a slower rate during quiescent periods. Up to 5 breakpoints (sample rate changes) are available within a record. One application is ultrasonics, where dead time between impulse and echo events can be sampled at a low rate while maintaining fast sampling over the events of interest. This can significantly reduce the amount of data transferred for processing in a computer.

VERSATILE TRIGGERING MODES

The RTD 710A offers many trigger modes to simplify the capture of complex signals. Standard oscilloscopelike triggering is provided along with enhancements such as LF or HF Reject, Bislope triggering and a Hysteresis trigger mode. Hysteresis mode allows the user to set an analog qualifying level as well as a trigger level, providing noise immunity and additional trigger selectivity.

A Video Trigger Option is available to allow the user to trigger on horizontal or vertical video sync pulses. This option makes it possible to trigger on a specific line number within a video field. Back porch clamp is provided.

In Comparison triggering mode, the RTD 710A continuously acquires events and compares them to reference-waveform values. If an event deviates from the range of values (Compare Out mode) or lies entirely within them (Compare In mode), the waveform is held for further analysis.

[^20]
WAVEFORM ZOOM AND CURSOR MEASUREMENTS

When used in conjunction with an optional $X-Y-Z$ monitor, captured waveforms can be viewed and measured in several ways. Cursors offer the capability to measure time, voltage and frequency. The RTD 710A offers horizontal and vertical display zoom, vertical positioning, and horizontal scrolling for easy viewing of the entire waveform or expansion of smaller portions. Both YT and XY types of displays are available.

STANDALONE OR SYSTEM DIGITIZER

The RTD 710A is fully programmable via the GPIB IEEE-488 and conforms to Tektronix Standard Codes and Formats. It also contains several useful waveform analysis commands, such as Min, Max, and Cross to increase throughput in test systems.

Hardcopies of the display can be made with the HC100 Color Plotter via the GPIB. Option 19 provides a blank instrument front panel. This eliminates the RTD 710 A front-panel controls, reducing power consumption, instrument cost and susceptibility to undesired operator adjustment. This is particularly important in test-system environments.

Quicker system set-up time and the convenience of choosing from several previous instrument states is standard on the RTD 710A via non-volatile settings storage. Up to 20 different instrument states can be stored and recalled by either a front-panel push button or under computer control.

Measurement accuracy and proper functioning of the RTD 710A are confirmed by auto-calibration and self-test procedures. Self-test is automatically performed at power-on, and can be user-activated during operation.

CHARACTERISTICS

VERTICAL

Input Channels - Two, single-ended. Supports X10 and X100 encoded probes for high input-voltage applications. Simultaneous digitizing in dual-channel mode.
Input Ranges $- \pm 100 \mathrm{mV}$ to $\pm 50 \mathrm{~V}(200 \mathrm{mV}$ to 100 V -p) in 28 steps.
Autocal Internal Reference - Provides calibration of range accuracy and zero-offset. Range accuracy is $\pm 0.4 \%$ at 1 kHz and 97% full-scale, zero volt offset is $\pm 0.2 \%$.
Input Offset $- \pm 199 \%$ of input range, selectable in either percent or volts. Accuracy $\pm 1.5 \%$ at $\pm 100 \%$ dc offset.
Analog Bandwidth - Dc to $100 \mathrm{MHz}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$; dc to $90 \mathrm{MHz}, 40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Selectable bandwidth limiting at 20 MHz .

RTD 710A Cursor Display on Tektronix 620 Monitor
AC-Coupled Lower -3dB Point - 10 Hz or less. Input \boldsymbol{R} and $\boldsymbol{C}-1 \mathrm{M} \Omega \pm 2 \%, \approx 24 \mathrm{pF}$.
Maximum Input Voltage -250 V (dc + peak ac); ac component, $500 \mathrm{~V} p-\mathrm{p}$ maximum at 1 KHz or less.
TIME BASE
Internal Clock Frequency - $200 \mathrm{MHz} \pm 0.001 \%$.
Sample Rate: Internal Clock -Channel 1 Only Mode: $200 \mathrm{MS} / \mathrm{s}$ to $5 \mathrm{~S} / \mathrm{s}$, 66 sampling steps. DualChannel Mode: $100 \mathrm{MS} / \mathrm{s}$ to $5 \mathrm{~S} / \mathrm{s}$, 65 sampling steps.
External Clock - Channel 1 Only Mode: dc to 200 MHz , Dual-Channel Mode: dc to 100 MHz . ECL levels, periodic or non-periodic clock rate.
Sample Rate Switching - Up to 5 breakpoints within a record.

ORDERING INFORMATION

RTD 710A Waveform Digitizer $\$ 22,995$ (161-0123-00), Fuses (8A \& 4A). Instruction Manual (070-7204-00), RTD 710A Instrument Interfacing Guide (070-7207-00).

INSTRUMENT OPTIONS
Opt. 05 - Video Trigger $+\$ 1,495$
Opt. 09 -Adds 9503 Fast Data
Cache for 4 megawords total
memory
Opt. 11 -Adds 9504 Fast Data $+\$ 18,000$
Opt. 11 - Adds 9504 Fast Dat
Cache for 8 megawords total memory
$+\$ 37,000$
Opt. 19-Blank Front Panel
(Includes Rack Mount Assembly) - $\$ 500$ Opt. 1R - Rack Mount Package $+\$ 395$

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5-Available
NC
See page 374 for complete description.
WARRANTY-PLUS SERVICE OPTIONS
0 pt . M1 -2 yrs +2 cals. $\quad+\$ 1,800$
Opt. M9-2 yrs
$+\$ 800$
Note: Options M1 and M9
available only at time of purchase.
OPTIONAL ACCESSORIES
Rack Mount Kit -
Order 016-0886-02
Service Manual -
(Vol. 1.) Order 070-6398-00 $\quad \mathbf{\$ 6 0}$
(Vol. 2.) Order 070-6399-00 $\$ 60$
GPIB Cable -2 meters
Order 012-0991-00
A/D Out Cable - 2 meters
Order $012-1117-01$$\quad \$ 165$
Order 012-1117-01
HC100 - Color Plotter
Opt. 01 - GPIB Cable \$1,050
PHYSICAL CHARACTERISTICS

Dimensions	mm	in
Width	429	16.9
Height	177	7.0
Depth	643	25.3
Weight \approx	kg	1 b
Net	23.5	51.8

DIGITIZING

Vertical Resolution - 10 Bits provide 1024 discrete levels (60 dB dynamic range).
Maximum Sample Rate - Single-Channel Mode: $200 \mathrm{MS} / \mathrm{s}$. Dual-Channel Mode: $100 \mathrm{MS} / \mathrm{s}$.
Record Length per Channel -

Ch 1 Only Mode		Dual-Ch Mode	
Records	Length	Records/Ch	Length/Ch
1	262144	1	131072
2	131072	2	65536
4	65536	4	32768
8	32768	8	16384
16	16384	16	8192
32	8192	32	4096
64	4096	64	2048
128	2048	128	1024
256	1024	-	-

Averaging -Selectable from 2 to 16384 in a 2-4-8 binary sequence, 8 K per channel maximum record length averaged.
Enveloping - Selectable from 1 to 16384 in a 2-4-8 binary sequence or infinite.

TRIGGERING

Sources - Internal from CH 1 or CH 2 , or External.
Trigger Coupling - Ac, Ac LF Reject, Dc HF Reject, dc.
Slope - Positive, Negative, Bislope
Modes - Auto, Normal, Single, Compare In, Compare Out, Hysteresis.
Post-Trigger Delay -From 0 to 262136 samples in Normal Mode, from 0 to 262128 samples in high-speed ($200 \mathrm{MS} / \mathrm{s}$) mode.
Pre-Trigger Capture - To full record length less 8 samples for normal mode and full record length less 16 samples for high-speed ($200 \mathrm{MS} / \mathrm{s}$) mode.
Arming Delay - Internal: $0,10 \mathrm{~ms}$ to 10 s in a 1-2-5 sequence; External arm input on rear panel.
TV Trigger - Selectable system-M and nonsystem-M protocols. Selectable triggering on any line (1 to 1280) within a field (1 or 2). TV blanking-level clamp (back porch).

DISPLAYS

Cursor Readout -7-digit LED display for time, voltage and frequency.
Trigger Readout -6-digit LED display for trigger level.
Record Length Readout - 6-digit LED display for record length and breakpoint location.
Range/Offset Readout -4-digit LED display for range and offset settings; two displays, one for each channel.

COMPUTER INTERFACE

GPIB - IEEE-488.1 interface is standard for instrument control and waveform data transfer. Maximum transfer rate ≥ 250 kilobytes/s. All instrument functions, settings, and operating modes are programmable, with the exception of the power switch.
Plotter Interface -HPGL Protocol, IEEE-488 interface.
Waveform Analysis Commands - Window, Minimum, Maximum, Base, Top, Positive Cross, Negative Cross, Mid, Mean, Peak to Peak.

EXTERNAL SIGNALS

CRT Display - $\mathrm{X}, \mathrm{Y}, \mathrm{Z}: \pm 1$ and $\pm 5 \mathrm{~V} p$-p, internally selectable (set to $\pm 1 \mathrm{~V}$ at factory).
Trigger Output - Positive True, TTL.
External Arm Input - TTL Compatible.
External Clock Input -ECL Signal Level, 50Ω Dc to 200 MHz .
Clock Output -ECL signal level (open emitter out into 50Ω).
Probe Calibration Output -0 to $+4 \mathrm{~V} \pm 1 \%$ square wave at $1 \mathrm{kHz} \pm 0.005 \%$ into $1 \mathrm{M} \Omega$.
Feed-Through Connectors - Three 50Ω coaxial cables for front-to-rear signal connections.
Direct A/D Output -50 pin AMPMODU MT connector.
Channel 1 and Channel 2 digitized signals available.
ECL-compatible signal levels. Maximum data rate is 100 megawords/s (20 bit word). Contact Tek Sales Engineer for information on memory cache products and interfacing information.

ENVIRONMENTAL

Temperature Range - Operating: 0° to $50^{\circ} \mathrm{C}$;
Nonoperating: -30° to $+70^{\circ} \mathrm{C}$.
Humidity -0 to 95\% relative humidity (noncondensing).
Altitude - Operating: 4,570 m (15,000 ft) max. Nonoperating: 15,240 m (50,000 ft) max.

POWER

Line Frequency -48 Hz to 440 Hz .
Power Consumption -350 W fully optioned.
Line Voltage Range -90 VAC to 132 VAC (115 V); 180 VAC to 250 VAC (230 V).
Electromagnetic Compatibility - The RTD 710A qualifies under test limits specified in FCC Part 15, subpart J, Class A and VDE 0871 Class B.

9503/9504 FAST DATA CACHE

- Extremely Long Record Length
- Data rates to 100 megawords/s
- Partitionable Memory
- Very Fast Data Logging

The 9503/9504 Fast Data Cache buffer memories provide significant record length augmentation for highspeed, real-time digitizers. The 9503 is a memory buffer configured for 2 megawords per channel or 4 megawords single channel. The 9504 is an expandable memory buffer that starts with 4 megawords total memory and can be increased to a total of 32 megawords.

LONG RECORD CAPTURE

They provide the economical solution to your digitized data storage needs for the logging of high speed, realtime data records. The 9503 and 9504, in conjunction with the RTD 710/A waveform digitizer, provide the fastest real-time data logging capability for multiple, complex waveforms in their class. The 9503 and 9504 support the high-speed single channel mode of the RTD 710A to capture data up to 200 megawords/s.

The 9503 or 9504 provides storage of long data records obtained from high speed analog-to-digital converters. Each product accepts up to 16 -bit-wide words plus clock, at up to 100 megawords (samples) per second. Record lengths may be from 256 words to 16 megawords per channel. In either product, the two channels may be concatenated into one long memory.

FULL DIGITIZER COMPATIBILITY

Full dual-channel operation makes the 9503 and 9504 fully compatible with the A/D outputs of the RTD 710 and RTD 710A waveform digitizers. They also accept data from the RTD 710/A operating in the high-speed mode to provide data storage at an effective sampling rate of 200 megawords/s. The standard configuration for either product provides 2 megawords of memory per channel. The 9503 memory length is fixed at 2 megawords per channel.
The 9504 can be configured with additional 2 megaword memory cards, to provide a maximum of 16 megawords of memory per channel.

ECL DIFFERENTIAL OR TTL LEVEL INPUTS

The 16 -bit inputs are selectable in groups of 4 , and can be programmed for either ECL or TTL. Rear-panel BNC connectors allow control of start and trigger of data collection. The trigger input can also be connected to use the highest of the 16 bits as an information flag.

MULTIPLE RECORDS CAPABILITY

Memory can be divided into a user-specified number of records with record length specified in segments of 256 words. Each record may be any number of 256 -word segments up to the maximum size of the memory in that channel. Up to 64 K separate records (256 words each) may be stored per channel in the 9504. Multiple records capability is supported in all operation modes except pretrigger.

9504 Fast Data Cache Memory Buffer

THE 9503 AND 9504 FAST DATA CACHE

The 9503 and 9504 Fast Data Cache units allow the storage of very long data streams which have been acquired and digitized by high-speed, realtime waveform digitizers, such as the RTD 710 and RTD 710A. These system units are GPIBcontrolled, and stored data is output via GPIB or over the high-speed parallel port.

OPERATIONAL MODES

NORMAL (Independent) Mode
Both channels accept independent data streams and triggers.

INTERLEAVE Mode

Allows storage of data from Channel 1 memory to be interleaved with data from Channel 2 memory. Supports the RTD 710A high speed mode at 200 megawords/s single channel. Assumes RTD 710A Channel 1 data point zero to be first in combined record.

SEQUENTIAL Mode

Data is stored in Channel 1 memory until it is full; data storage then continues in the Channel 2 memory. This mode provides for all available memory to be continuous without any break in timing. The data inputs to Channels 1 and 2 must be identical.

PRETRIGGER Mode

This mode connects the available channel memory into a circular buffer. The number of data words to be stored after the "trigger" is user selectable in 256 word increments.

- Long Record Length

- 4 Mwords Total in 9503
- Up to 32 Mwords in 9504
- Data Rates to 100 Mwords/s, Dual Channel or Interleaved for 200 Mwords/s, Single Channel
- 16 bit or 8 bit Word Width Selectable
- GPIB Controlled
- ECL or TTL Data Inputs (25 Mwords/s TTL)

APPLICATIONS

- High Resolution Video and CCD Test Systems
- "Deep Record" Ultrasonic, RADAR, and LIDAR Signal Acquisitions
- EW and EMC Signal Capture
- Storage Media Test Systems
- TEMPEST Applications
- Fast Data Logging of Complex Waveforms
*The 9500 Series of Fast Data Caches complies with the IEEE Standard 488.2 and Tektronix Standard Codes and Formats.

ORDERING INFORMATION

9503 Fast Data Cache Unit	\$18,000
9504 Fast Data Cache Unit	\$23,000
9504F01 Fast Data Cache	
2 megaword memory Module	\$7,500
INSTRUMENT OP	
Opt. 11 - (8 MW total)	
Adds 2 ea 9504F01	+\$14,000
Opt. 12-(12 MW total)	
Adds 4 ea 9504F01	+\$28,000
Opt. 13 - (16 MW total)	
Adds 6 ea 9504F01	+\$42,000
Opt. 14-(20 MW total)	
Adds 8 ea 9504F01	+\$56,000
Opt. 15-(24 MW total)	
Adds 10 ea 9504F01	+\$70,000
Opt. 16 - (28 MW total)	
Adds 12 ea 9504F01	+\$84,000
Opt. 17-(32 MW total)	
Adds 14 ea 9504F01	+\$98,

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - A5 -Available NC
See page 374 for complete description.

PHYSICAL CHARACTERISTICS				
	9503		9504	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Height	133	5.25	267	10.5
Rack Depth	574	22.6	574	22.6
Overall Depth	622	24.5	622	24.5
Width	483	19.0	483	19.0
Weight \approx	lb	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$
Net	12.3	27	17.3	38

FAST THROUGHPUT CAPABILITY

The 9503 and 9504, when used in conjunction with the RTD 710/A or other digitizers having continuous digitized signal output capability, allow the capture and storage of large quantities of signal waveforms at very rapid rates. The chart below shows typical waveform capture rates (data logging throughput) for representative record sizes and sampling rates. A TTL level trigger signal is required for each record.
TYPICAL WAVEFORM ACQUISITION RATES/SEC

Record size	Max ${ }^{1}$ no. of records stored (9504)	Input Sample Rate		
		100 MHz (10 ns)	50 MHz (20 ns)	10 MHz (100 ns)
256	65,536	>380 K	>190 K	>38 K
512	32,768	>190 K	>95 K	>19 K
1,024	16,384	$>95 \mathrm{~K}$	$>48 \mathrm{~K}$	$>9.5 \mathrm{~K}$
2,048	8,192	$>48 \mathrm{~K}$	>24 K	$>4.5 \mathrm{~K}$
8,192	2,048	>12 K	>6 K	$>1.2 \mathrm{~K}$
16,384	1,024	$>6 \mathrm{~K}$	>3 K	$>0.6 \mathrm{~K}$

${ }^{\prime}$ Each channel ($2 X$ for single channel mode).

CHARACTERISTICS

DIGITAL INPUT/OUTPUT SIGNALS
Number of Channels - Two independent channels.
Data Inputs - 16 bits, clock, ground; Selectable
between ECL and TTL, in groups of 4 bits.

Data Input Rates -

Up to 100 MHz : ECL.
Up to 25 MHz : TTL.
Start Input - Starts data capture in Pretrigger Mode:
TTL signal into BNC.
Trigger Input - Starts data capture in all modes except Pretrigger and marks trigger location on data. TTL signal into BNC.
Arm Out - TTL signal from BNC. TTL Iow while filling data record. Inhibits RTD 710/A rearm while 9503/9504 record is filling.

MEMORY SIZE

9503: 2 megawords/channel: or 4 megawords total. 9504: 2 megawords/channel; Expandable to 16 megawords/channel or 32 megawords total.

RTD 710A with 9503 Fast Data Cache
COMPUTER INTERFACES
GPIB - IEEE-488.2 and Tektronix Standard Codes and Formats.
Parallel Port - A waveform data (output only) 16 bit parallel port is provided capable of 5 megabytes/s (2.5 megawords/s). This provides TTL level outputs and has operating modes to allow use with a wide range of computers.

ENVIRONMENTAL

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Nonoperating: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Relative Humidity -0 to 95%; noncondensing.
Altitude - Operating: $4,750 \mathrm{~m}$ (15000 ft) max.
Nonoperating: 15,240 m (50000 ft) max.

POWER

Line Frequency - 48 to 63 Hz .
Maximum Power Consumption -
9503: max 360 W (285 W typical)
9504: max 735 W (580 W typical) for maximum memory.
Battery Backup - Connector for battery on rear of instrument.
9503: 4.75 to $15 \mathrm{VDC}, 100 \mathrm{~mA}$ maximum (fused).
9504: 4.75 to 15 VDC, 450 mA maximum (fused).

9504F01 FAST DATA CACHE MEMORY MODULE

Two megawords (4 megabytes). Adds 2 megawords of additional storage to one channel of the 9504 Fast Data Cache unit. Order in pairs to extend both channels by the same amount.

- High single-shot sample rate to 200 GS/s
- High analog bandwidth
- 4.5 GHz with SCD5000
- 1 GHz with SCD1000
- Input sensitivity flexibility with SCD1000
- Time resolution to 5 ps per point
- Variable record length from 256 to 1024 points
- Display unit for easy control, viewing, and measurements

SCD Series Transient Waveform Recorders

SCD SERIES TRANSIENT WAVEFORM RECORDERS

- Ultra-high sample rate and bandwidth capture of single-shot events
- Display unit with cursors

high Performance capture

The SCD5000 and SCD1000 are designed to capture low nanosecond and picosecond single-shot events. Whether the application involves Laser, ESD, EMP, Accelerators or other high-speed single-shot phenomena, the SCD series waveform recorders can capture the event with excellent fidelity.

The maximum acquisition rate of $200 \mathrm{GS} / \mathrm{s}$ provides time resolution to 5 ps . With time windows from 5 ns to $100 \mu \mathrm{~s}$, the SCD series recorders provide flexible acquisition windows. When the delay line is used, approximately 2.5 ns of pretrigger information can be captured.

The SCD5000 uses direct access with input sensitivity of 5 V and offset of $\pm 4.0 \mathrm{~V}$. The SCD1000 provides quality conditioning of the input signal with 100 mV to 10 V full scale ranges, dc offset and ac or dc coupling. There are two input channels which can be configured to multiplex two signals or algebraically add or subtract two input signals to the single channel waveform recorder.

The waveform record length is selectable between 256, 512 or 1024 data points. With 16 built-in waveform locations, multiple trigger events can be stored into separate storage locations. Each record is time and date stamped for later comparison. There are 10 nonvolatile settings storage locations for quick instrument setup.

STAND-ALONE OR SYSTEM SUPPORT

The SCD Series recorders are designed for use in either a stand-alone or a system environment. With the standard display unit, SCD waveform recorders allow full control of operation, viewing of up to 4 waveforms and cursor measurements.

In a system environment, there is a high-speed GPIB interface and commands to make data acquisition flexible and fast.

OPTIONS EXPAND CAPABILITY

A fast waveform capture option (Opt. 1P) increases the capture rate by ten times, from one waveform per second to ten waveforms per second.
There is a choice of input connectors in addition to the the standard Type-N connector. On the SCD1000, a choice of SMA or Tek Type II intelligent probe interface are available. On the SCD5000, SMA connectors can be chosen.

CHARACTERISTICS

The characteristics are divided into 3 parts:

- Vertical characteristics for all SCD series recorders
- Trigger characteristics for all SCD series recorders
- SCD series common characteristics

*The SCD5000/SCD1000 Series of Digitizers complies with the IEEE Standard 488.1 and Tektronix Standard Codes and Formats.

APPLICATIONS

- Laser measurements
- Accelerator diagnostics
- EMP and radiation testing
- Nuclear effects
- Telecommunications
- EMC/EMI measurements
- Radar
- Florescence decay
- High energy pulsed power sources

Parameter	SCD1000	SCD5000	SCD5000 Opt 01
Analog Bandwidth	dc coupled; dc to 1.0 GHz ac coupled; 100 kHz to 1.0 GHz .	4.5 GHz	3.0 GHz
Rise time	$\leq 350 \mathrm{ps}$	≤ 80 ps	≤ 120 ps
Input Range	100 mV to 10 V full scale input in a $1,2,5$ sequence (7 steps)	$\pm 2.5 \mathrm{~V}$ direct access	$\pm 5 \mathrm{~V}$ direct access
Offset	± 2.5 times input range (peak to peak)	± 4 volts	± 4 volts
Invert	Invert on A \& B channels	No	No
Input Impedance	DC coupled; 50Ω, AC coupled; 50Ω in series with $2.2 \mu \mathrm{~F}$	50Ω, DC coupled	$\begin{aligned} & 50 \Omega, \\ & D C \text { coupled } \end{aligned}$
Coupling	$A C$ and $D C$	DC	DC
Maximum Input Voltage	$5 \mathrm{Vrms}(0.5 \mathrm{~W})$ or 0.25 W -sec. Pulses not exceeding 25 V peak	5 V rms (0.5 W) or 0.25 W -sec. Pulses not exceeding 25 V peak	5 V rms (0.5 W) or 0.25 W -sec. Pulses not exceeding 25 V peak
VSWR		Less than 1.5 , dc to 3.5 GHz	
Vertical resolution	11 bits	11 bits	11 bits

Triggering-

Parameter	SCD1000	SCD5000	SCD5000 Opt 01
Source	CHA, CHB, External analog	External analog	External and internal analog
Coupling	$A C$ or DC	AC only	AC only
Slope	Positive or Negative	Positive or Negative	Positive or Negative
Level range	Internal; $\pm 125 \%$ of input range in 1% steps. External analog; $\pm 1.25 \mathrm{~V}$ in 10 mV steps.	External analog; $\pm 1.25 \mathrm{~V}$ in 10 mV steps.	External analog; $\pm 1.25 \mathrm{~V}$ in 10 mV steps.
Sensitivity (sinewave) External input	$50 \mathrm{mV}, 20 \mathrm{kHz}$ to 50 MHz $150 \mathrm{mV}, 50 \mathrm{MHz}$ to 500 MHz $350 \mathrm{mV}, 500 \mathrm{MHz}$ to 1 GHz	$50 \mathrm{mV}, 20 \mathrm{kHz}$ to 50 MHz $150 \mathrm{mV}, 50 \mathrm{MHz}$ to 500 MHz $350 \mathrm{mV}, 500 \mathrm{MHz}$ to 1 GHz	$50 \mathrm{mV}, 20 \mathrm{kHz}$ to 50 MHz $150 \mathrm{mV}, 50 \mathrm{MHz}$ to 500 MHz $350 \mathrm{mV}, 500 \mathrm{MHz}$ to 1 GHz
Sensitivity (sinewave) Internal input	$0.05 \times$ range, DC to 250 MHz $0.15 \times$ range, 250 MHz to 1 GHz	N/A	$500 \mathrm{mV}, 20 \mathrm{kHz}$ to 50 MHz $1.5 \mathrm{~V}, 50 \mathrm{MHz}$ to 500 MHz 3.5 V, 500 MHz to 1 GHz
Sensitivity (pulse)	150 mV with minimum of 500 ps HAD (half amplitude duration) pulse.	150 mV with minimum of 500 ps HAD (half amplitude duration) pulse.	150 mV with minimum of 500 ps HAD (half amplitude duration) pulse.
Pretrigger view time	2.5 ns	N/A	2.5 ns

SCD SERIES COMMON CHARACTERISTICS

Time per Point - $5 \mathrm{ps} / \mathrm{point}$ (5 nsec time window with 1024 point record length) to $400 \mathrm{~ns} /$ point ($100 \mu \mathrm{~s}$ time window with 256 point record length).
Time Windows -5 ns to 100μ s in a 1, 2, 5 sequence of 14 steps.
Trigger delay -0\% to 500\% of time window with 0.06\% resolution.

DIGITIZING

Record Length -256, 512 or 1024 waveform data points.
Internal-Calibration - Internal signal standards for increased accuracy of vertical range, dc offset, trigger level, and window size.
Multiple Records - 16 waveform locations (first 4 locations are battery backed up).
Auto Advance Mode - Automatic capture of sequential events into separate waveform locations.
Time Stamping - Time and date stored with every acquisition.

SYSTEM CAPABILITIES

GPIB - IEEE-488.1 interface is standard for instrument control and waveform data transfer. Maximum transfer rate ≥ 500 kilobytes $/ \mathrm{s}$. Instrument functions, settings, and operating modes are programmable, with the exception of the power switch.
Waveform Data Formats - Either processed (using centroid algorithm) or raw waveform data available.
Settings Storage -10 nonvolatile instrument settings.
System commands - Examples of commands include:

- Advance data into multiple waveform locations (16)
- NRepeat makes user specified single-shot acquisitions and automatically transfer to controller
- Calibrate command for increased time and amplitude accuracy
- Data Count allows partial waveform transfers

DISPLAY UNIT

Compatibility - Attaches to any SCD Series waveform recorder.
Menu Functions - Instrument settings and operating modes are programmable from the display unit.
Waveform Display -Up to 4 waveforms displayed.
Local Cursor Measurements - Volts, Δ Volts, Time, Δ Time, and $1 / \Delta$ Time on one waveform or between any two waveforms.

SIGNAL CONNECTIONS

Gate out - Single BNC connector on back panel, output TTL level pulse is coincident with start of sweep.
Video out - TTL, VGA (600×400 resolution) compatible video signal output on back panel. Compatible with standard PC multiple-frequency monitors and video hardcopy units.
ENVIRONMENTAL (WITHOUT DISPLAY UNIT)
Temperature Range - Meets Mil-T-28800D type III, Class 5. Operating -0 to $+50^{\circ} \mathrm{C}$. Non-Operating -55 to $+75^{\circ} \mathrm{C}$.
Humidity - Meets Mil-T-28800D type III, Class 5. Up to 95% relative humidity (noncondensing).
Altitude - Exceeds Mil-T-28800D type III, Class 5.
Operating: 15,000 ft. (4.5 km) maximum.
Nonoperating: $50,000 \mathrm{ft}$. (15 km) maximum.
Electromagnetic Compatibility - FCC Part 15,
Subpart J, class A and VDE 0871/6.78 class B.
POWER
Line Frequency - Operational from 48 to 440 Hz .

Power Consumption -

SCD5000: ≤ 250 Watts maximum fully optioned. SCD1000: ≤ 300 Watts maximum fully optioned.
Line Voltage Range -90 to 132 Vrms (115 V); 180 to 250 Vrms (230 V).

ORDERING INFORMATION

SCD5000

4.5 GHz Waveform Recorder $\quad \$ 46,900$ Includes: Standard contiguration
with detachable display unit and
Type N connectors, power cord,
Instruction Manual (070-6960-00),
Instrument Interfacing Guide
(070-7315-00) Quick Reference
Card (070-7316-00), rackmount hardware.
SCD1000
1 GHz Waveform Recorder $\quad \$ 29,900$
Includes: Standard configuration
with detachable display unit and
Type N connectors, power cord,
Instruction Manual ($070-6960-00$),
Instrument Interfacing Guide
(070-7315-00), Quick Reference Card
(070-7316-00), rackmount hardware.

OPTIONS

Opt. 1P-Increase waveform capture
rate from one to ten 512-point waveforms per second.
Opt. 1 E - Tek Type II Intelligent
Probe interiace (SCD1000 only). $+\$ 900$
Opt. $2 \mathrm{E}-\mathrm{SMA}$ input connectors.
SCD5000
+\$200
SCD1000
Opt 01- Add delay line with
internal trigger pickoff (SCD5000)
$\begin{array}{ll}\text { only. } \\ \text { Opt. } & \mathbf{2 0} \text { - Delete detachable }\end{array} \mathbf{\$ 3 , 0 0 0}$
display unit. $\quad \mathbf{\$ 2 , 9 0 0}$
SCD FAMILY FIELD UPGRADE
SCDF019 - Add detachable display unit for SCD Series waveform
recorder.
SCDF01P - Add fast waveform
capture option.
SCDF001 - Add delay line to SCD5000.
$\$ 4,000$
OPTIONAL ACCESSORIES
See page 294.
SCD1000/SCD5000 Service
manual Order 070-6963-00
GPIB Cable, Double Shielded,
Low EMI-1 meter-
012-0991-01
Type N male to SMA female
adaptor -
Type N male to BNC female
adaptor - Order 103-0045-00
Type N male to GR adaptor -
Order 017-0021-00
PHYSICAL CHARACTERISTICS

Dimensions	mm	in
Width	482.6	19
Height	177.8	7
Depth	762	30
Weight \approx	kg	lb
Net	24.5	54

${ }^{-1}$ Contact your local sales office

BENEFITS

- High Channel Density
- High Speed Transient Capture
- Low Cost per Channel
- Easy to Use Mouse-Driven Interface
- Expandable VME Based System (with GPIB and RS-232C Support)
- Portable Standalone and Modular Systems

ANALYTEK 2000 SERIES DIGITIZING SYSTEM

HIGH CHANNEL DENSITY

The Analytek Series 2000 provides many acquisition channels in a compact package. The new Series 2000 family of products offer an unmatched combination of high acquisition rates and input channel density with low power requirements.

GPIB
IEEE-488

APPLICATIONS

Impulse Phenomena

- High Energy Physics
- Laser Induced Phenomena
- EMP and Radiation Simulators
- Nuclear Effects
- High Voltage Breakdown

Pulse Echo Events

- RADAR
- LIDAR

Laboratory Testing

- Solid State Devices
- Detectors
- Lasers
- High Speed and ri Circuits
- Automated Test Equipment
*The Analytek 2000 Series of Digitizers complies with the IEEE Standard 488.2 and Tektronix Codes and Formats

MULTIPLE ACQUISITION CHANNELS

Each 2004S Sampling Module has four simultaneous acquisition channels with sampling rates of 500 Megasamples/second (MS/s). With external precision signal splitters, this same Sampling Module can provide either two channels at 1 Gigasamples/second (GS/s) or one channel at $2 \mathrm{GS} / \mathrm{s}$. (These signal splitters also provide an acquisition range for each module from 1 microsecond/ point at $1 \mathrm{MS} / \mathrm{s}$ to 500 picoseconds/point at $2 \mathrm{GS} / \mathrm{s}$.)
The 2008S Sampling Module provides 8 simultaneous acquisition channels with sampling rates of $250 \mathrm{MS} / \mathrm{s}$.
The 2016S Sampling Module provides 16 simultaneous acquisition channels with sampling rates of 125 MS/s.

HIGH THROUGHPUT SAMPLING

The 2004HS, a high throughput version of the 2004S Sampling Module, incorporates fast electronics in a companion Accelerator Module. The Sampling and Accelerator Modules are packaged separately so that the Accelerator Module can be configured to serve either one or two Sampling Modules. High Throughput Sampling Modules cannot be combined with other Analytek sampling modules under the control of a single processor. However, processor-sampler subsystems of both regular and high-speed samplers can coexist in a connected system.

Throughput of the 2004HS occurs at a rate of aproximately 266 ns per sample point. The 2004HS has a short cycling capability; however, the throughput rate, expressed as a function of records per unit time, depends directly on the record length. For example, the 2004HS can process 440 waveforms per second (at 8192 points per waveform). Alternately at 1024 points per waveform, the throughput is increased to approximately 2300 waveforms per second.

SUPERIOR VERTICAL RESOLUTION

Data from the analog signal memory is clocked out at a slower rate to a 12 -bit Analog to Digital Converter (ADC). The 12 -bit ADC supports a 10.5 bit dynamic range to maximize useful information from the captured signals.

LOW COST PER CHANNEL

As the number of signal acquisiton channels increase, additional Sampling Modules may be added without the need to add Timing or Processing Modules. As the number of channels increase, the total cost per channel becomes significantly lower.

NEW SIGNAL AMPLIFIER AND ATTENUATOR

The 2004A Amplifier-Attenuator Module provides four channels of amplification or attenuation, with each channel independently programmable between 100x attenuation (-40 dB) and $10 x$ gain (20 dB). It is designed especially for use with the Analytek waveform sampling modules due to the ability to calibrate the entire sampling channel under the control of the Series 2000 processor.

The 2004A may also be used as a general purpose amplifier-attenuator, independent of other 2000 Series modules. In such general purpose applications, the 2004A Amplifier-Attenuator can be directly registerprogrammed by a standard VME CPU.

TIMING \& TRIGGERING

The 2000T Timing Module provides the data clocking signals and triggering signals for the capture of data from the sampling modules. It also supports both pre-trigger and post-trigger acquisition modes. One 2000T is required for each unique grouping of one to six Sampling Modules.

AUTO-CALIBRATION

$A C, D C$ and baseline calibration is provided by the Sampling Module to achieve the highest signal fidelity among the large number of possible channels. The Timing Module generates the source signal for $A C$ calibration.

PROCESSING AND PROGRAMMABILITY

The 2000P Processor Module provides instrument control for up to six Sampling Modules and corresponding Timing Module. The Processor Module also provides GPIB (IEEE-488.2), RS-232C, and VME interfacing capability to external computers. Since these interfaces are supported by a wide range of computers, the acquisition unit can be matched to the unique system requirement, rather than being the limiting or driving factor in system selection.

A high resolution monochrome monitor and mouse make the 2000 B mainframe with its powerful ROM-resident software a fully standalone system.

LOCAL INSTRUMENT CONTROL,

 WAVEFORM DISPLAY, \& ANALYSISThe Analytek 2000DM1 Monitor and 2000MC Mouse operate directly with the 2000 Series mainframes to provide an easy-to-use human interface. This interface provides high resolution display of captured waveforms and access to on-screen menus. In addition with this interface, all aspects of the acquisition units are accessible. (Similarly, all setup, control and display functions are controllable via GPIB.)

NEW INTERACTIVE MEASUREMENT SYSTEM SOFTWARE

The 2000AZ1 software product enables an Analytek Series 2000 system of up to eight 2000RV2 crates (15 GPIB addresses) or equivalent to operate from an IBM PC/AT or compatible computer. The connecting link is GPIB IEEE-488.2, supported by the National Instruments AT-GPIB or PCIIA interface board. Each GPIB address can represent up to 6 sampling boards. The maximum simultaneous display capacity is 48 waveforms. Within a GPIB address, boards can be enabled or disabled for group setup. Collected data can be tagged for storage on hard disk, or for preparation as a DADiSP file, for off-line manipulation.

CHARACTERISTICS

CHASSIS (MAINFRAMES)

2000B Benchtop - Standard size VME 5-card horizontal mounting chassis. Accepts one or two sampling modules, one spare slot.
2000RV1 Rackmount - Standard size VME 10-slot rackmount. Accepts up to six sampling modules, two spare slots.
2000RV2 Rackmount - Standard size VME 20-slot rackmount. Accepts up to twelve sampling modules, four spare slots.

Computer Interfaces -

IEEE-488.2 (GPIB); 2 each RS-232C; VME (Optional)
PHYSICAL CHARACTERISTICS

	B	RV1	RV2
Dimensions	in	in	in
Width	20	19	19
Height	7.4	17.5	17.5
Depth	19	26	26
Weight	lb	lb	lb
	31	35	48

POWER REQUIREMENTS

Voltage Range - 90 to 132 V ac or 180 to 250 V ac.
Line Frequency - 50 Hz to 60 Hz

2000 SERIES MODULES AND SYSTEM COMPONENTS

2004S, 2008S, 2016S, AND 2004HS SAMPLING MODULES
Sampling modules are available in either 4 channel (2004S), 8 channel (2008S), 16 channel (2016S), or 4 channel high throughput (2004HS) configurations.
Input Channels - SMA (LEMO on 2016S) connectors
Input Range - Full Scale $1.0 \mathrm{Volt}(0 \pm 0.5 \mathrm{~V})$ with a $\pm 950 \mathrm{mV}$ offset capability. DC offset can be set on each channel.
$\Delta \boldsymbol{V}$ DC Accuracy $- \pm 0.5 \%$ Full Scale $\pm 0.2 \%$ of Signal after auto-calibration.
Offset Accuracy $- \pm 0.5 \%$ Full Scale $\pm 0.5 \%$ of Offset after auto-calibration.
Input Bandwidth (-3 dB) -300 MHz
Input Impedance and Coupling -50 Ω dc Coupled.
ADC - 12 bits providing resolution of 1 part in 4096 .
Dynamic Range $-\geq 60 \mathrm{~dB}$.

FEATURES
2000 Series Mainframe:

- 2000B: Standard VME 5-card Benchtop with Horizontal Mounting Chassis
- 2000RV1: Standard VME 10-slot Rackmount
- 2000RV2: Standard VME 20-slot Rackmount
2004S, 2008S, 2016S and 2004HS Sampling Modules:
- 500 MS/s Max Sample Rate (2004S \& 2004HS) 250 MS/s Max Sample Rate (2008S)
125 MS/s Max Sample Rate (2016S)
- Up to 2 GS/s with Signal Spiltter
(2004S \& 2004HS only)
- Up to 4 Channels per Module (2004S \& 2004HS)
Up to 8 Channels per Module (2008S)
Up to 16 Channels per Module (2016S)
- 300 MHz Analog Bandwidth (150 MHz with 2008S)
- 12 bit Vertical Resolution
- Patented VLSI Analog Memory
- 10.5 Bits Dynamic Range
- 8 K Acquisition Memory per Module
(2K/Channel with 2004S \& 2004HS)
(1K/Channel with 2008S) (0.5K/Channel with 2016S)

2004HS High Throughput
Sampling Module:

- Throughput of 440 Waveforms/sec. (at 8K Points/Waveform)
- Short Cycle Capability for Shorter Record Lengths (e.g., 2,300 Waveforms/sec. at 1 K points/waveform)
2000T Timing Module:
- Supports Up To 6 Sampling Modules
- Source of Clocking \& Triggering for Sampling Modules
- Multiple Acquisition Rates (1 MS/s to $2 \mathrm{GS} / \mathrm{s}$)
2000P Processor Module
- Supports Up To 6 Sampling Modules and Corresponding Timing Module
- Provides Local Instrument Control, Waveform Display and Analysis
2000 Series Fast Cache Memory
- Available in 8, 16, 32 and 64 Megabyte Capacity
- Single-Width Standard VME Package

Simultaneous display of 24 waveforms using the AZIM1 Interactive Measurement Software.

SYSTEMS
2000B Portable Benchtop System
1-2000B Chassis
2-4, 8, and 16 Channel Sampling Modules or
2 - High Throughout Sampling Modules
1-2000t Timing Module
1-2000P Processor Module
1-2000SS2 2 GS/s Splitter
1-2000 DMI Monitor
1-2000MC Mouse 2000RV1 Rackmount System
1-2000RV1 Chassis
6-4, 8, and 16 Channel Sampling Modules or
4 - High Throughout Sampling Modules
1-2000T Timing Module
1-2000p Processor Module
2 - Spare Slots Remaining
2000RV2 Rackmount System
1-2000RV2 Chassis
6-4, 8, and 16 Channel Sampling Modules and
4 - High Throughout Sampling Modules or
12-4, 8, and 16 Channel Sampling Modules or
8 - High Throughout Sampling Modules
2-2000T Timing Modules
2-2000P Processor Modules
4 - Spare Slots Remaining

Record Length -		
Module	Operating Mode (Post Trigger)	Waveform Data Samples Each Channel
2004 S	4 Channels 2 Channels	2048
2004 HS	2 Channel	8192
2008 S	8 Channels	1024
2016 S	16 Channels	512

Signal Output - Signal output from channel 1 of each module is available for trigger signal to 2000T Timing Module or as signal conditioning for other instrumentation.
Auto Calibration - Provides AC (signal from Timing Module), DC, and Baseline Calibration.
Packaging - Single width standard size VME module.
Nominal Power -45 Watts per Sampling Module.

2000t TIMING MODULE

A single Timing Module is required for each unique group of 1 to 6 sampling modules. The Timing Module provides the acquisition rate clocking signal, the waveform triggering, and the AC calibration source signal.
Internal Clock - 1 GHz maximum, programmable rates, stability $\pm 0.01 \%$. Clock signal output is available as ECL level from 50Ω.
Internal Clock Range - 1 MHz to 1 GHz in 200 steps.
External Clock - 1 GHz maximum. 1 V peak to peak nominal, AC coupled, 50% duty cycle into 50Ω.
External Clock Accuracy - (Required for specified operation) $\pm 0.01 \%$

Clock Dividers - (For internal or external clock) Allows setting of a wide range of sample intervals and delays.
Gated Clock Input - TTL high input enables External Clock.
External Arm - TTL high enables Trigger Circuit.
External Trigger Input $- \pm 2.5 \mathrm{~V}$ programmable for
level and slope: Resolution: 19.5 mV
Accuracy: $\pm 35 \mathrm{mV}$
Slope: Positive or Negative
Trigger Modes - Free-run, External, and Single-Shot Trigger Delay - Time (in sample intervals) - 32 clock cycles from trigger event until it becomes effective.
Trigger Out Signal - Buffered ECL level output (high=true) synchronized to sample clock. High True level remains until ready to accept next trigger.
Packaging - Single width standard size VME module. Nominal Power - 23.5 W.

2000P PROCESSOR MODULE

The Processor Module provides the control and processing for one 2000T Timing Module and up to six Sampling Modules. The Processor Module is based on a fast, 32-bit CPU with accompanying floating-point processor and fast memory. On-board processing also supports local viewing and analysis of waveform data. It provides instrument control, via a Hercules compatible monitor and a mouse interface. The Processor Module has built-in routines for setting data conditions. Optional routines include:

- Finite impulse response (FIR) programmable low pass filter
- $\operatorname{Sin}(\mathrm{x}) / \mathrm{x}$ interpolation algorithm
- Signal integration
- Signal averaging

The Processor Module uses data correction algorithms, which are applied to data generated from the acquisition units (except for High Throughput Module where correction is done in the 2004 HA Accelerator Module and not in the Processor). One 2000P Processor Module is required for each 2000T Timing Module and the accompanying (1-6) Sampling Modules.
Packaging - Single width standard size VME module.
Nominal Power -40 W.

2004A AMPLIFIER-ATTENUATOR MODULE

The Amplifier-Attenuator Module can be installed in any unused slot in a Series 2000 Chassis. The module can also be used independently of the Series 2000 architecture, in any standard size VME chassis.
Inputs - 4 Channels @ 50Ω or $1 \mathrm{~K} \Omega$, BNC
connectors.
Gain - 1, 2, 5, or 10x.
Attenuation -1, 2, 5, 10, 20, 50, or 100x.
Gain/Attenuation Accuracy $- \pm 1 \%$ at DC.
Band Flatness $- \pm 1 \mathrm{~dB}$ from 0 to 400 MHz for 50Ω inputs.
Outputs - 4 Channels into 50Ω, SMA connectors.
Output Level -2 Vp-p < 1% distortion; 4 Vp-p < 2% distortion.
Noise $-5 \mathrm{nV} / \mathrm{sqrt} \mathrm{Hz}(110 \mu \mathrm{~V} \mathrm{~ms}$ R.T.I. $)$.
Offset Capability $- \pm 2 x$ full scale.
Bandwidth -0 to $400 \mathrm{MHz}, 50 \Omega$;
0 to $200 \mathrm{MHz}, 1 \mathrm{M} \Omega$.
Maximum Input Levels - 50Ω inputs - 0.5 Watts continuous; 100 V peak, $100 \mu \mathrm{~S} ; 1 \mathrm{M} \Omega$ inputs, 10 Vp -p.
Calibration -Built-in AC calibration source;
DAC controlled DC calibration source.
VME Interface - Standard data interface.
Nominal Power - 35 Watts per module.
SERIES 2000 SIGNAL SPLITTERS
These signal splitters and appropriate time delays adapt a 2004 S sampling module to a variety of system sampling rates, record lengths and numbers of channels. One splitter is required for each sampling module.

Signal Splitter	Number of Channels	Sampling Rate	Word Length
2000 SS 1	2	$1 \mathrm{GS} / \mathrm{s}$	4 K
2000SS2	1	$2 \mathrm{GS} / \mathrm{s}$	8 K
2000SS3	1	$1 \mathrm{GS} / \mathrm{s}$	8 K
$2000 \mathrm{SS}^{\star 1}$	2	$500 \mathrm{MS} / \mathrm{s}$	4 K
$2000 \mathrm{SS}^{\star 1}$	1	$500 \mathrm{MS} / \mathrm{s}$	8 K

${ }^{* 1}$ Sampling rate is programmable from $1 \mathrm{MS} / \mathrm{s}$ through $500 \mathrm{MS} / \mathrm{s}$

SERIES 2000 CACHE MEMORY

Series 2000 dual-ported cache memory modules contain their own address register and each port is separately buffered for total compatibility with the VMEbus specification (Rev.C.1) and VSBus specification (Rev. c). These modules may therefore reside in any standard Series 2000 slot (i.e., any slot not designated for a Series 2000 sampling module) or in any chassis employing the VMEBus or VSBus backplanes. VMEBus options D32, D16, and D8 (32,16 , and 8 -bit data path width) and A32, A24 (32 and 24 bit address path width) are incorporated as standard features.

Cache Memory Module	Description
2000MI	Cache Memory Interface Module
2008MM	8 Megabyte VME Cache Memory
2016MM	16 Megabyte VME Cache Memory
2032MM	32 Megabyte VME Cache Memory
2064MM	64 Megabyte VME Cache Memory
2000CBM	Cable Memory Interface Cable

2002MI VME CACHE MEMORY INTERFACE

The 2-channel Cache Memory Interface accepts data from either one or two 2000HA Accelerator Modules and transfers the data to one or more Cache Memory Modules via the VME Subsystem Bus (VSBus). Per-channel data transfer rates up to 5 megawords per second (10 megabytes per second) are achievable.

2000BBM BATTERY BACKED-UP MEMORY

 MODULEThe Memory Module provides 1 megabyte of battery back-up static RAM via an on-board lithium battery. Write and read access times are 70 ns and 200 ns respectively. Write protection switches and a RUN/ LOCAL switch for the VME bus interface are provided.
Nominal Power -17 W.

2000AM AIR MANAGEMENT MODULE

Adequate cooling of the Series 2000 modules is necessary for proper operation. The maintenance of proper cooling air flow and signal continuity requires the use of a 2000AM air management module in any otherwise unoccupied slot in a Series 2000 chassis.

2000DM1 MONITOR

14-inch monochrome Hercules-compatible display monitor for waveform viewing and instrument control.

2000MC MOUSE

Serial Mouse interface device for use with the 2000DM1 display monitor.

TYPICAL SYSTEM REQUIREMENTS

ENVIRONMENTAL
Temperature - Operating: $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ with 400 Ifpm airflow. Nonoperating: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity - 10 to 90% noncondensing.
Altitude - Operating: 15,000 ft. maximum.
Nonoperating: $30,000 \mathrm{ft}$ maximum.
POWER REQUIREMENTS
Line Frequency - 50 Hz to 60 Hz .
Voltage Range -90 to 132 V ac or 180 to 250 V ac.
Electromagnetic Compatibility - FCC Part 15,
subpart J Class A; VDE 0871 Class B.
Safety - U.L. 1244; CSA Bulletin 556B.

ORDERING INFORMATION

Tektronix, Inc. has an exclusive distribution agreement with Analytek Ltd.	
horizontal chassis $\mathbf{\$ 4 , 5 0 0}$ 2000RV1 Vertical 10 slot $\mathbf{\$ 7 , 2 0 0}$ rackmount chassis	
2000RV2 Vertical 20 slot	
rackmount chassis	\$9,000
20048 Sampling Module	\$9,950
2016 S Sampling Module 2004SC High Throu	
Sampling Module	\$9,950
2004 HA Accelerator Module	
2004HS1 Sampling Module'	
2004HS2 Sampling Module ${ }^{2}$	
Module $\mathbf{\$ 3 , 9 5 0}$	
2000 T Timing Module	\$3,395
2000 P Processor Module $\quad \mathbf{\$ 5 , 9 9 5}$	
20005811 GS/s Signal Split	\$700
2000ss2 $2 \mathrm{GS} / \mathrm{s}$ SignalSplitter $\quad \$ 700$$2000 \mathrm{Ss} 31 \mathrm{GS} / \mathrm{s}, 8 \mathrm{~K}$	
Signal Splitter \$700	
2000SS4 4K Signal Splitter	\$70
2000ss8 8K Signal Splitter	
2000BBM Battery Backed-up	
mory Module	
2002MI 2-Channel VME	
Cache Memory Interiace	
2008MM 8 Megabyte	
Cache Memory	\$3,295
2016MM 16 Mega	
Cache Memory $\quad \mathbf{\$ 5 , 3 9 5}$	\$5,395
2032MM 32 Megabyte	
Cache Memory $\quad \$ 10,395$	
2064MM 64 Megabyte	
Cache Memory $\quad \mathbf{\$ 1 9 , 9 9 5}$	
2000CBM Cache Memory	
Interface Cable $\$ 89$	
2000DM1 14* Mono. Mo	
2000MC Mouse	
2000AZ1 Interactive Measure-	
2000 Cs Control \& Calibration	
Software	
2000CV1 5-Slot Backplan	
Conversion Kit	
2000CV2 10-Slot Backplane	
Conversion Kit $\mathbf{\$ 1 , 5 0 0}$	
2000AM Air Management	
Interface Module	
${ }^{1}$ Consists of one each 2004SC and 2000HA modules. (4 channels)	
${ }^{2}$ Consists of one each 2000HA and two 2004SC modules. (8 channels)	
${ }^{3} 3$ Contact AnalyTek	
INTERNATIONAL POWER PLUG OPTIONS	
Opt. A1 - A5 - Available See page 374 for description	
WARRANTY The Analytek 2000 Series carries a standard Tektronix one-year warranty covering labor and replacement parts.	
ADDITIONAL INFORMATION	
For additional information, contact the Tektronix Sales	
Office nearest you.$(800)$$835-9433$ ext. 170 or	
Analytek, Ltd.	
Sunnyvale, California 94086	
(800)(408)$745-56-1114$	

DCS IMAGERS, HIGH SPEED TRANSIENT DIGITIZERS, DIGITIZING CAMERA SYSTEMS

Scan-Conversion Digitization

TYPICAL APPLICATIONS

- High-Energy Physics
- High-Speed Transients
- Laser Research
- Electrostatic Discharge Tests
- High-Speed Logic Testing
- ECM Research
- Imaging

DIGITIZING CAMERA SYSTEM

The DCSO1 high-speed transient digitizing system combines the best of analog and digital capabilities in a powerful waveform digitization and analysis system. The DCS01 system includes a C1002 CCD (Charge Couple Device) Video Camera, a DX01 Video-Processor/FrameStore Board, DCSGraph Software, cables, oscilloscope bezel adapter, and manuals for installation into your MSDOS computer. Integrating an analog oscilloscope and an 80286/80386-based personal computer with the DCS01 completes the acquisition system.

The Digitizing Camera System consists of a C1002 Video Camera, Frame Store Board inside the PC, DCS software, and cables. The system shown includes the DCS, TEK 2467B scope under GPIB control from the DCS software, and a DX05 video monitor.

FEATURES

- 1-GHz Single-Shot with 7104 Scope
- Trigger on Light, External Trigger, or Save on Delta
- PCs can Support 4 DCS Boards
- MUX16's allow for up to 256 Cameras and GPIB Instruments
- DCSGraph, DCSGen and DCSLib Software - Includes Free Upgrades for One Year
- Capture of 2 Non-Crossing Waveforms
- Mouse Compatible Software
- Waveform Parametrics
- GPIB Support for 2467B and 11302A Oscilloscopes

The DCS's capabilities are best utilized when it is coupled with a microchannel plate (MCP) oscilloscope such as the Tektronix 7104 or 2467B. With an MCP scope, the digitizing system is capable of capturing both repetitive and transient signals at the scope's full bandwidth. For example, with a 7104 oscilloscope, the DCS01 delivers 1 GHz single-shot bandwidth with 250 GS/s acquisition rate. In addition, the MCP brightness enhances the single shot capture performance. When the DCS is used in conjunction with other types of analog scopes, the system capabilities depend on the individual oscilloscope's photographic writing rate.

Manipulate waveforms mathematically by using such procedures as integration, differentiation, addition, and subtraction with DCSGraph.

To operate the system, users acquire waveforms via an analog oscilloscope. The DCSO1's camera produces a video signal, which is stored and processed in the framestore board. The signal is then further analyzed using a variety of personal computer waveform-analysis software. The digitizing system is extremely accurate, delivering 99 percent accuracy with the standard DCS software.

DCS SOFTWARE

DCSGraph allows you to acquire, graph, analyze and compute waveform parametrics with ease. Seventeen pulse parameters are automatically calculated as you reposition the two on-screen cursors. The software features MDA, CGA, EGA, and VGA support, pull down menus and optional mouse control so you can easily change system configurations and perform file translations. With DCSGraph, you can log a specified number of triggered waveforms, or store a 256 K video image. In addition, the waveforms and pulse parameters can be printed on the Tek HC02 Video Copiers, the HC100 Color Plotter, the HC200 Printer, or the HP LaserJet printer. DCSGraph is standard with a DCS01, as DX01 Option 01, or as MUX Option 11.

DCSLib, written in Microsoft C, gives the accomplished programmer a library of functions to control the operation and function of the Frame Store Board. All hardware controls are included, plus two center-of-trace algorithms. Order S58DC01.

DCSGen is a text-only, menu-driven procedure generator to control local (in the PC) cameras or up to 256 cameras and GPIB instruments via the MUX 16. All the functions of DCSLib are available, plus routines for system focus, waveform calibration and GPIB communications. Available as MUX Option 10.
Both DCSGen and DCSGraph software can control GPIB programmable oscilloscopes to ensure that horizontal and vertical settings are correct and to facilitate some procedures. These programs can also store digitized video data in binary format. Waveform data arrays can be stored in ASCII, binary, or ADIF format for compatibility with many other Tek software products.

C1002 CCD VIDEO CAMERA

The video signal is digitized to $490(\mathrm{~V})$ by $728(\mathrm{H})$ pixels, in the CCD. In front of the CCD is a TEK designed, seven-element lens. The . 3% distortion lens eliminates keystoning and other optical geometric-distortion problems. The focal range of the lens allows the DCS to not only capture images from instrument CRTs, but also other objects near or distant.

The C1002R (ruggedized version) has a heavy duty front mount. Set screws replace "mag" and "lock" thumb wheels.

The cameras can be attached to most analog scopes by swing-away adaptors. The C1002 uses Tek C-30 Series camera bezel adaptors.

The C1002R accepts only C-50 Series adaptors, and comes standard with the (016-0249-00) adaptor for 5000, 7000 , and 11300 Series scopes. (See the camera section for $\mathrm{C}-30$ and $\mathrm{C}-50$ Series adaptors.)

A DX02 Camera Power Supply/Video Interface will allow two cameras to be used without a DCS frame store board. Camera or video outputs can be fed to an HCO2 Video Copier, a VCR, or a TV monitor.

THE DX01 FRAME STORE BOARD

The standard frame store board, which comes as part of the DCS01 system, captures video data in a 512×512 matrix of grey scale values which range from 0 to 255 . This 8-bit, full-size board can be installed in any IBM PC, even XT's. The board also produces calibration signals for the system calibration routine, provides power for the C1002 Camera, has trigger in and reset out, as well as RS170 video output, real time comparison for the delta trigger, and summation of incoming video.

CHARACTERISTICS

The following DCS specifications are valid when the camera system is operated at a temperature between 0 and $40^{\circ} \mathrm{C}$.

DCS01 DIGITIZING CAMERA SYSTEM Digitizing Technique - Scan Conversion

 System Writing Speed - MCP Scopes: To bandwidth of the scope (single shot and repetitive). Non-MCP scopes: Single shot, dependent on scope's photographic writing speed; repetitive, to bandwidth of scope.Nominal Digitizing Resolution - 12 bits of vertical resolution, nominal data accuracies to 99%.
Record Length - 512 data points.
Number of Traces/Acquisition - 1 or 2 for each frame store board present.
Number of Channels - Up to 16 with PC expansion chassis, up to 256 with 16 MUX16's.
Throughput Rate -3 Hz .
Maximum Displayed Waveforms - 6 .
Calibration Output Signal - Into 50Ω : 20 kHz $\pm 0.1 \%$. Square wave with software controlled amplitude range from 100 to 800 mV in eight $100 \mathrm{mV} \pm 0.2 \%$ steps.
Scope Reset Signal Output - 12 V Pulse.
Power Requirements - DX01 and C1002:
$+12 \mathrm{~V}:<300 \mathrm{~mA} ;-5 \mathrm{~V}:<35 \mathrm{~mA} ;+5 \mathrm{~V}:<4.0 \mathrm{~A}$. Total is less than 18.0 W .
Computer Compatibility - IBM PC, XT, AT. Most configurations require 640 K RAM plus Expanded Memory.

PHYSICAL CHARACTERISTICS

	C1002		C1002R	
Dimensions	$\mathbf{m m}$	in	mm	in
Width	120	4.8	120	4.8
Height	104	4.1	152	6.0
Depth	241	9.5	234	9.25
Weight	$\mathbf{k g}$	lb	$\mathbf{k g}$	lb
With scope mounting adaptor	1.4	3.0	1.7	3.8

DX02 CAMERA POWER SUPPLY AND VIDEO INTERFACE

Number of Cameras Supported -1 or 2.
Output per Camera - $+12 \mathrm{~V} \pm 5 \%$ at 0 to 600 mA with 1 mV ripple or less at 500 mA load.
Video Out - 75Ω feedthrough from each camera.
Input Power Requirements - At 88 to 270 V AC, 40 to $440 \mathrm{~Hz}, 24 \mathrm{~W}$ maximum.
Safety Certifications - UL, CSA, VDE
EMI Compliance - Qualifies under test limits specified for VDE 0871, Class B, emissions limitations.

COMPUTER AND CONTROLLER REQUIREMENTS

The DCS requires the following base configuration for the PCs listed above: 1 MB of memory, MS-D0S V2.1 to 3.4, and a $51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$ disk drive. A hard disk is most desirable, as well as a mouse, a co-processor, color graphics card (VGA is preferred), a VGA monitor, and a National Instruments GPIB board if used with GPIB instruments. A video monitor (DXO5) is recommended.

C1002/C1002R CAMERA

Focal length - 10 mm at $5200 \AA$.
F Number at Infinity - F/1.3.
Object-to-Image Distance -1633.54 mm at 0.075 X , 144.72 mm at 0.833 X .

Field of View (Variable Mag.) $-7.2 \mathrm{~cm} \times 9.0 \mathrm{~cm}$ and $8.0 \mathrm{~cm} \times 10.0 \mathrm{~cm}$.
Spectral range - 350 nm to $1100 \mathrm{~nm}, 400 \mathrm{~nm}$ to
600 nm within 3 dB .
Angular Range - 23.45°
Distortion - Within 0.3\% at image plane.
Lens Resolution - Center: 100 lines/mm.
Edge: 20 lines $/ \mathrm{mm}$.
Imaging Device - Solid State, inter-line CCD.
Pixels - 490 vertical by 728 horizontal.
Resolution - 480 vertical lines by 540 horizontal lines.
S/N Ratio - Typical: 52 dB ; minimum 50 dB . Gamma $=1$.
Sensitivity - 2.5 LUX
Video Output - 1 V p-p composite video, 75Ω.

ORDERING INFORMATION

DCSO1 CAMERA SYSTEM

DCS01 Digitizing Camera $\$ 7,225$ System Includes: C1002 Camera; DX01 Frame Store Board; DCS01 software on $51 / 4^{*}$ and $31 / 2^{2}$ disks; DCS cable (174-0449-00); three BNC to SS cables ($174-0430-00$); and operator's manual ($070-6175-01$). Requires optional camera adaptors, see options.
Opt. 1A - Adaptor for 11302,
5 K and 7 K scopes (016 -0248-01). $\$ 105$
Opt. 2A - Adaptor for Tek 2400
Series and scopes with
$8 \times 10 \mathrm{~cm}$ CRTs ($016-0269-03) . \quad+\$ 115$
Opt. 3A - Adaptor for Tek 485
Series and scopes with
$7 \times 9 \mathrm{~cm}$ CRTs ($016-0306-01$).
$+\$ 120$
Opt. 05 - Deletes C1002 and replaces it with the C1002R.
Includes adaptor for 7104 and
11302A (016-0249-00) scopes.
SOFTWARE FOR DCS01/DX01
062-9859-00 - DCSGraph \$890
S58DC01 - DCSLib \$500
OPTIONAL INSTRUMENTATION
2467B Opt. $10-400 \mathrm{MHz}$
Portable MCP Scope.
See page 82.
\$13,960
$7104-1$ GHz Scope.
Mainframe. See page $66 . \quad \$ 31,550$
HC100 - Four Color Plotter.
See page 295.
HC200 - Epson FX compatible
printer. See page 296.
HCO2 - 8×10 Thermal Video
Copier. See page 297.
DX01 FRAME STORE B0ARD
DX01 DCS Frame Store Board $\$ 3,110$
Includes: DCS Frame Store
Board, three BNC to SS cables
(174-0430-00), operator's manual.
Opt. 01 -DCS01 Software (A
C1002/R and DX01 with Option 01 is equivalent to a DCS01). $+\$ 885$

> VIDEO CAMERA

C1002 High Resolution CCD
Video Camera Includes: Camera
Cable (174-0449-00), Instruction manual. Requires optional camera adaptor(s) and external power
(Option 04).
C1002R Ruggedized Camera for $\$ 3,900$
7000 Series and 11300 Series Includes: Same as C 1002 except adaptor ($016-0249-00$) is added.
Opt. 1A - Adaptor for $5 \mathrm{~K}, 7 \mathrm{~K}$, and 11300 Series (016-0248-01).
Opt. 2A - Adaptor for Tek 2400
series scopes and scopes with $8 \times 10 \mathrm{~cm}$. CRT's (016-0269-03).
Opt. 04 -DX02 Camera Power
Supply and Video Interface.
(Note: Please select one of the A0
through A5 power plug options.)
CAMERA POWER SUPPLY AND VIDEO
INTERFACE
DX02 - Power Supply/Video
Interface, 110 V .
$\$ 385$

220 V Version - A1 through A5
power plug options available.
See page 374.
${ }^{1}$ Contact your local sales office

DCS/MUX 16

Mainframe for DCS Frame Store Boards

- One host can control up to 256 DCS frame store boards (16 MUX16s)
- Supports up to 16 DCS
boards
- Is fully programmable over GPIB

DX05

Video Monitor

- 9 in. CRT
- Compact Size
($8.3 \mathrm{in} . w \times 9.5$ in. h)
$\bullet \geq 600$ Lines Resolution
- NTSC RS170A Video Input

ORDERING INFORMATION

MUX16 SOFTWARE OPTIONS
Opt. 10-DCSGen software*1
(MS-DOS)
$+\$ 1,260$
Opt. 11-DCSGraph software* ${ }^{*}$ (MS-DOS)
$+\$ 1,510$
MUX16 Rackmount Multi-
Channel DCS Mainframe, 110V \$7,620
Includes: 18 open slots; 80286
CPU; Chassis slide; PC-III;
Instruction manual; power cord; 2 m GPIB cable.

MUX16 OPTIONS
Opt. 04-GPIB low-speed interface card (PCIIA) for use in the host controller PC

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - See page 374 for description.

OPTIONAL ACCESSORIES
Extra length C1002/2R to DX01
cables
(4 meter) Order 174-1368-00 $\$ 190$ (6 meter) Order 174-1369-00 GPIB Board Kits - GPIB driver software has been modified to operate with the MUX mainframe. (PC-IIA GPIB board and driver) Order 021-0452-00
(PC-III GPIB board and driver) Order 021-0453-00

DX05 MONITOR
DX05 - Video Monitor $\$ 420$
INTERNATIONAL POWER PLUG OPTION Opt. A1 - Universal Euro 220 V, 50 Hz
${ }^{* 1}$ On $51 / 4^{\prime \prime}$ and $31 / 2^{\prime \prime}$ disks.

* The MUX16 complies with IEEE 488.2-1987 and with Tektronix Standard Codes and Formats

DCS MUX16

The DCS MUX16, in conjunction with a host controller, is part of a programmable multiple-channel digitizer system. Users can control up to 256 DCS frame store boards and/or GPIB instruments with one host controller.

OPERATION

The MUX16 is designed to be used with a host controller. The host controller must have a compatible GPIB interface card capable of system controller/ controller in charge operation. DCS software supports IBM PC's or compatibles as the host controller.
The MUX mainframe is a talker/listener to the controller via GPIB. The Frame Store Boards acquire video images. The waveform data is uploaded to the host controller for additional processing and/or storage.

GPIB instruments can be controlled by the host via the MUX by the use of a PC-IIA board to interface to the scopes. MUX software options have GPIB support for the $11302 A$ and $2467 B$ scopes.

MUX16 - Rackmount

DCS/MUX 16 CHARACTERISTICS

POWER REQUIREMENTS
User configurable. Fan cooled.
Line Voltage Ranges -90 to 130 V ac or 180 to 264 V ac.
Line Frequency - 47 to 83 Hz , single phase.
Power Consumption - 350 W
MUX 16 PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	483	19.0
Height	178	7.0
Depth	540	21.2
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net	21.8	48
Shipping	21.3	47

DX05 B/W VIDEO MONITOR

The DX05 black and white video monitor is recommended for use with the DCS01/DX01. It can also be used as a video display system together with the C1002 CCD camera and the DX02 power supply.

DXO5 CHARACTERISTICS

Input Switchable Impedance - $10 \mathrm{k} \Omega / 75 \Omega$. Output Impedance -75 Ω.
Video Input (NTSC) - Composite 0.5 V to 2.0 V p-p.
Sync Input - Negative.
Power Requirements -27 W typical. Input voltage 120 Vac , standard; 220 Vac , Option A1@ 50 to 60 Hz .

THE TEK FAMILY OF LOGIC ANALYZERS

Tektronix offers a range of logic analyzers to solve the problems of today's complex digital designs. This support is provided by three industry leading instruments: the DAS 9200, which is the highest performance digital instrumentation system on the market today, the PRISM 3000 Series - a complete set of analog and digital debug tools in a portable instrument, and the 1230, the most cost-effective modular logic analyzer available.

NEW -THE HOTTEST COMBINED STATE/TIMING ANALYZER AND RISC/CISC MICROPROCESSOR SUPPORT MODULE

The 92A96 acquisition module for the DAS9200 is the newest addition to Tek's logic analyzer offering. It gives you the raw speed, width, and depth necessary for adapting to virtually any state or timing application. Turn-key support is available for the popular 32-bit RISC and CISC microprocessors. Coupled with the modularity and versatility of the DAS9200, the 92A96 is an ideal debug tool for almost any situation.

Contents

GENERAL INFORMATION

Logic Analyzer Selection
Chart .134
Microprocessor Support
Chart.
Logic Analyzer Probes and
Accessories342

PRODUCTS
DAS 9200
136
PRISM 3000 145
1230 ... 152

LOGIC ANALYZER SELECTION CHART

> T
> ek's Logic Analyzers Have Led the Industry with Innovative Features to Solve Complex Problems.

-2 GHz Acquisition

- 100 MHz Pattern Generation
- User Configurable Systems
- Time Correlated Acquisitions/Displays
- Low Capacitance Probing
- Performance Analysis
- Ethernet Interfaces
- Color Displays
- 1, 2, and 3 Year On-Site or Return-to-Service Center Warranties
- Telephone Hot-Line Assistance Standard

LOGIC ANALYZER SELECTION GUIDE			
	DAS 9200 page 136	$\begin{gathered} \text { PRISM } 3000 \\ \text { page } 145 \end{gathered}$	$\begin{gathered} 1230 \\ \text { page } 152 \\ \hline \end{gathered}$
Timing Analysis (Maximum Channels/Depth)			
2 GHz sampling rate 400 MHz sampling rate	$\begin{aligned} & \hline 160 / 8 \mathrm{~K} \\ & 96 / 32 \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 / 12 \mathrm{~K} \\ & 20 / 12 \mathrm{~K} \end{aligned}$	
200 MHz sampling rate 100 MHz sampling rate	384/4K	20/12K	16/2K
50 MHz sampling rate Glitch Detection(ns)	1.5	2	$\begin{gathered} 32 / 2 \mathrm{~K} \\ 5 \end{gathered}$
Triggering: - Levels/States - Timers/Counters	$\begin{gathered} 4 \\ \text { Yes } \\ \hline \end{gathered}$	$\stackrel{2}{\mathrm{Yes}^{2}}$	14
State Analysis (Maximum Channels/Depth)			
200 MHz sampling rate 100 MHz sampling rate	$\begin{aligned} & \hline 384 / 4 \mathrm{~K} \\ & 384 / 32 \mathrm{~K} \\ & \hline \end{aligned}$		
25 MHz sampling rate 20 MHz sampling rate 16 MHz sampling rate	540/128K	96/8K	64/2K
Triggering: - Levels/States - Range Recognizers	$\begin{aligned} & 16 \\ & \text { Yes } \end{aligned}$	$\begin{gathered} 7 \\ \text { Yes } \\ \hline \end{gathered}$	14
- Timer/Counters - Timestamp	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \end{aligned}$	
Performance Analysis			
Statistical Real-Time	Yes	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \end{aligned}$	
Microprocessor Support			
Disassembly Formats Multiple uP Support Register Deduction Microprocessor Contro	$\begin{aligned} & 5 \\ & \text { Yes } \\ & \text { Y } \end{aligned}$	$\begin{aligned} & 4 \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	2
$\begin{aligned} & \text { Pattern Generation } \\ & \text { (Maximum Channels/Depth) } \end{aligned}$			
$\begin{aligned} & 100 \mathrm{MHz} \\ & 50 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline 504 / 16 \mathrm{~K} \\ & 1008 / 8 \mathrm{~K} \\ & \hline \end{aligned}$		
System Features			
Modular Portable	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$
$\begin{gathered} \text { I/O: RS-232 } \\ \text { GPIB } \\ \text { Ethernet } \end{gathered}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
Printer Support	Yes	Yes	Yes
Multiple Time bases Time Correlated Data	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes
Auto Compare Save Setups	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
Digitizing Oscilloscope (Maximum Channels/Depth)			
$400 \mathrm{MS} / \mathrm{s}$ $200 \mathrm{MS} / \mathrm{s}$ $100 \mathrm{MS} / \mathrm{s}$		$\begin{aligned} & \hline 1 / 32 \mathrm{~K} \\ & 2 / 16 \mathrm{~K} \end{aligned}$	2/2K

MICROPROCESSOR SUPPORT CHART

MICROPROCESSOR SUPPORT SELECTION GUIDE				
Microprocessor Туpe \& Mfg.	$\begin{aligned} & \hline \text { DAS } 9200 \\ & \text { page } 136 \end{aligned}$	$\begin{gathered} \text { PRISM } 3000 \\ \text { page } 145 \end{gathered}$	$\begin{gathered} 1230 \\ \text { page } 152 \end{gathered}$	1241^{-2}
INTEL				
$\begin{aligned} & \hline 8080 \mathrm{~A} \\ & 8031 / 8051 \\ & \hline \end{aligned}$	12 MHz		12 MHz	$\begin{array}{r} 2 \mathrm{MHz} \\ 12 \mathrm{MHz} \\ \hline \end{array}$
8085	${ }^{3}$		6 MHz	
8086/8088	max ${ }^{-1}$	12.5 MHz	10 MHz	
8096/7			12 MHz	12 MHz
80 C 196			12 MHz	
80186/80188	max ${ }^{-1}$	16 MHz	10 MHz	8 MHz
80286	20 MHz	25 MHz	12.5 MHz	10 MHz
80386	33 MHz	33 MHz		
80386SX	max ${ }^{-1}$	16 MHz	16 MHz	
80376	max ${ }^{+1}$	16 MHz		
80486	33 MHz			
80860	40 MHz			
80960CA	33 MHz			
ZILOG				
280	8 MHz	20 MHz	8 MHz	
28001/3	$\cdot 3$			
Z8002/4	$\cdot 3$			
MIPS				
R3000	$33-66 \mathrm{MHz}$			
MOTOROLA				
6800			max ${ }^{-1}$	max ${ }^{+1}$
6802			max ${ }^{11}$	max ${ }^{-1}$
6809 \& 6809E	max ${ }^{-1}$		2 MHz	2 MHz
$68 \mathrm{HC11}$	${ }^{3}$	12 MHz	12 MHz	12 MHz
68000/68010	16 MHz	16 MHz	16 MHz	16 MHz
68020	33 MHz	33 MHz		25 MHz
68030	33 MHz	33 MHz		25 MHz
68040	25 MHz			
88100	33 MHz			
68302	$\cdot 3$	16 MHz		
68332	${ }^{3}$			
DSP56000/1	'3	27 MHz		50 MHz
AMD				
29000	33 MHz			
TEXAS INSTRUMENT				
TMS32020	${ }^{3}$			20 MHz
TMS320C25	$\cdot 3$			25 MHz
OTHER				
ADSP2100				max ${ }^{-1}$
6502/C02			max ${ }^{-1}$	max ${ }^{-1}$
PACE 1750	40 MHz			
F9450	40 MHz			40 MHz
MII-Std 1750A	40 MHz			40 MHz
BUS Support				
IEEE-488 (GPIB)			10 MHz	
STD Bus			12.5 MHz	
VAXBI				max ${ }^{1}$
VME	${ }^{3}$			
RS-232	19.2 k baud	19.2 k baud	19.2 k baud	

[^21]T ek Offers a Wide Range of Microprocessor Support:
- Multiple Disassembly Formats
- Simultaneous State and Timing Analysis
- Time Correlated Displays
- Real-time \& Statistical Performance Analysis
- Superior Microprocessor Probing
- Multiple Microprocessor Analysis

Please Note:
New and higher speed microprocessors are constantly being introduced and our support is continually expanding and being updated. Please consult your local sales engineer if the device or operating speed that you are using is not listed.

- Up to 160 Channels with 500ps Resolution
- Up to 384 Channels with 2.5ns Resolution
- Up to 1536 Channels with 10ns Resolution
- More Than 500 Channels of 100 MHz Pattern Generation
- Memory Depth to 128K
- Broad Based Support for Popular RISC \& CISC
Microprocessors
- Multi-processor Support for up to 8 CPUs at Once

The DAS9200 integrates a high resolution, color display to make it easy for you to view acquired data and a full ASCII keyboard so that it's operation is as familiar as operating a PC.

DAS9200

The 9200 Series Digital Analysis System (DAS9200) is a powerful, user configurable system designed to meet the needs of a broad range of digital design, debug, and test requirements. The advanced architecture of the DAS9200 allows you to install data acquisition and pattern generation modules you need today and easily expand or reconfigure as your requirements grow and change.

MAINFRAMES THAT OFFER CHOICES NOT COMPROMISE

There are three mainframes available for you to choose from. The high performance DAS9220 is composed of a 68010 CPU, 8 M bytes of system RAM, 40 M byte Hard Disk, and 1.2 M byte Floppy Drive.

The lower cost DAS9219 is composed of a 68010 CPU, 2 M bytes of system RAM, 20 M byte Hard Disk, and 400 K byte Floppy Drive. Each of these mainframes
provides three RS-232 I/O ports and seven instrument card slots. Industry standard GPIB and Ethernet LAN interfaces are optionally available.

A 14-inch color display, the 9201T, can be added for stand-alone operation of either the DAS9220 or DAS9219.The DAS92E9 is used for expanding the number of instrument card slots available in either the DAS9220 or DAS9219, it can not be used alone. The expansion mainframe includes an expansion receiver card and cabling. It offers eight additional instrument card slots. A system maximum of 28 card slots are available in a fully expanded DAS9200 system. This would include either a DAS9220 or DAS9219 and three DAS92E9s.

INSTRUMENT TYPES THAT SPAN A BROAD RANGE OF APPLICATIONS

Multiple data acquisition and pattern generation modules can be added to a DAS9200 system. The modules are chosen by the number of channels, operating speed, and analysis features that you require. Each sub-system allows you to increase the channel width by adding expansion boards. Refer to the DAS9200 Instrument Card Selection Guide for an overview.
Most any combination of data acquisition and pattern generation cards may be installed in a DAS9200 system. The user may have these cards interact in real time. For instance, two acquisition modules can be set up to run at different clock speeds yet display the acquired data in a "time correlated" format. This feature enhances the debugging of multi-processor designs. Or you could set an acquisition module to monitor the Unit Under Test (UUT) for a specific "event" to occur. When that event is recognized, the acquisition module could then instruct a pattern generator to begin or enable another acquisition card to begin sampling.

Timing Analysis and High Speed State Analysis

You can select between the 92A96, the 92A16 and 92 HS 8 acquisition modules for timing analysis. The 92A96 provides 96 channels on a single card, expandable to a system total of 1536 channels, with 100 MHz sampling on all channels and 8 K or 32 K memory depths. These cards can also sample at up to 400 MHz on a reduced number of channels with even greater depth of memory.
The 92A16 is a 16-channel acquisition card that samples at 200 MHz (5 ns). It has 4 k bits of memory per channel. The 92A16 can be expanded to a system total of 384 channels with no memory depth or speed trade-offs. The input probes have a programmable setup and hold time for high speed (up to 200 MHz) synchronous acquisition and provide an incredibly low 2.5 pf capacitive load. Four-state triggering, glitch capture (2ns typically), auto-run, and other features combine to help you find even the most elusive problems.

Sub-Nanosecond Timing Resolution

The 92 HS 8 family can sample up to 2 GHz (500ps) across as many as 160 channels. The extremely high bandwidth probes are guaranteed to capture pulses as small as 1 ns and has been proven to reliably capture pulses as small as 700ps! These probes exhibit extremely low input capacitance; less than 1pf. Unchallenged in it's class, the 92HS8 offers the only solution when you require the greatest accuracy from your instrumentation.

State Analysis and Advanced Microprocessor Support

For state analysis or microprocessor support there are three families of acquisition cards. The 92A60/90 handles 40 MHz clock rates, 20 MHz bus rates and are available in either 32 K or 128 K memory depth versions The 92A60 is 60 channels wide. The 92A90 is 90 channels wide.

The 92A96 handles clock and bus rates up to 100 MHz without compromising any performance features (like competitive products) and is available with memory depths of either 8 K or 32 K . The 92 A 96 is 96 channels wide and can be extended to 384 channels.
For extremely high speed applications, the 92A16 offers 200 MHz clock and bus rate acquisition with 4 K memory depth. The 92A16 is 16 channels and can be expanded to 96 .
The extremely sophisticated triggering of these instrument modules offer power beyond measure. And pre-programmed libraries of useful triggering scenarios (including the ability for you to add library entries) adds both convenience and assurance that you can get the job done quickly.

Pattern Generation Up To 100 MHz

For stimulus requirements you can choose between the 92S16/S32 and the new 92SX109/SX118. These sub-systems offer data rates of up to 50 MHz and 100 MHz respectively. Patterns can be output either sequentially or algorithmically using a command structure that includes callable subroutines. These pattern generators can be combined with any of the acquisition cards to provide powerful stimulus/response systems.

MULTI-TASKING BRINGS THE POWER OF MULTIPLE INSTRUMENTS TO A SINGLE DISPLAY

The DAS9200 allows you to define "clusters" of cards, either acquisition, stimulus, or both. By defining two "Clusters" you effectively create two logic analyzers that can be operated independently or simultaneously. This allows you to "baby-sit" your design for an intermittent failure with one cluster and at the same time use the second cluster for other work.

INTUITIVE OPERATION SO YOU CAN FOCUS ON THE PROBLEM, NOT THE TOOL

All of this power doesn't come at the expense of your frustration. You control all of the DAS9200 operations through a set of intelligent, well organized menus. Each menu selection field is actually a pop-up menu that lists every item available for that field. Additionally, every menu entry or pop-up menu item is backed with a context-sensitive, on-line help system called NOTES. You can ask for NOTES on any item, at any time by pressing the "NOTES" key on the keyboard.

Up to three expansion mainframes can be connected to the DAS9219 or DAS9220 expanding the system to 28 instrument card slots. For automated test (ATE) applications, the DAS9200 can be setup and controlled via $R S$-232 or GPIB interfaces.

GETTING THE MOST OUT OF YOUR INVESTMENT

The data you acquire can be easily documented for future reference. The DAS9200 supports color as well as Epson graphics compatible line printers.

You can substitute 9201PC, IBM compatable PC software, for the standard display, the 9201T.

There is a removable hard disk when data security is required.

A complete, high-level remote control language (PCL) allows you to easily integrate the DAS into your testing environment.

And every DAS9200 mainframe and instrument card is delivered to you with a full one year on-site service warranty. (This support may not be available in all geographic areas. Check with your local Tektronix sales engineer.) The warranty period can be extended to two or three years at the time you purchase your system. In addition, a toll-free, telephone "Hot Line" (U.S. only) is accessable as part of the Software Subscription Service offered for the DAS9200.

All of this and more makes the DAS9200 "The Standard By Which All Others Are Compared."

The removable hard disk option provides an added measure of convenience and security.

he Hottest State/ Timing Logic Analyzer

- 96-384 Channels @ 100 MHz Sync or Async
- 24-96 Channels @ 400 MHz Async
- 16 State Triggering at All Speeds
- Time-Correlated to Other State/Timing Modules
- Bus-Form Timing Display
- Compact, High Bandwidth Probes

TODAY'S DESIGN PROBLEMS REQUIRE VISIBILITY OF MANY SIGNALS

Trying to debug complex hardware with a logic analyzer that doesn't have enough channels is like trying to measure timing differences with a single-channel oscilloscope. Having "almost" enough channels means having to take time to select and disconnect some channels you HOPE you can do without, instead of being able to look at the whole system in context.

Viewing the whole problem in context is what debug with a logic analyzer is all about. Your success, however, requires that you have enough channels at your disposal, measurement performance commensurate with the design you are testing, and the ability to display all that data in a meaningful format.

The 92A96, with greater than 150 MHz analog bandwidth, is able to provide 100 MHz synchronous acquisition with a setup and hold time window of 5 ns or less. That same bandwidth insures that your timing measurements have BOTH the resolution and accuracy you need.

ONLY CONNECT PROBES ONCE!

Probes for logic analyzers are usually optimized for either performance (at the expense of size and flexibility) or for large channel counts (at the expense of performance). These compromises make it difficult to perform timing analysis on large numbers of channels or to use the same probes for both state and timing analysis of the same signals or bus.

The $92 A 96$ provides the accessiblity needed to observe the many signals of your most complex designs with 8-channel probes the size of the smallest US postage stamp.

For probing individual signals without the influence of long leadsets, the 8-channel probes of the 92A96 can easily be separated into single channel probes that bring the high bandwidth of the 92A96 right to the signals you need to see.

The 92A96 provides 96 channels of 100 MHz acquisition (synchronous or asynchronous) on a single card. You can use these 96 channels for state or timing analysis or combine them with other 92A96 cards to extend the width to as many as 384 channels. Since all 92A96 cards can be used either independently or together, you can put several cards to work in separate mainframes to attack complex problems on different benches, and quickly configure them into one system when you're up against that elusive system problem in the final integration stage.

WHY HIGH BANDWIDTH PROBES?

Most logic analyzers that advertise 100 MHz or faster timing resolution accomplish it by acquiring data through a low bandwidth probe and sampling it at a fast rate. This provides many sample points, which implies highresolution, but is subject to the inaccuracies of the probes, which just round everything off.

The compact, separable, 8-channel probes of the 92A96 allow convenient connection to wide buses without compromising timing performance.

You can connect to a microprocessor bus for state analysis with disassembly, and switch to a fast asynchronous clock rate to see detailed bus timing WITHOUT SWITCHING PROBES!

SEE ALL YOUR TIMING CHANNELS WITH BUS-FORM DISPLAYS

Since most analyzers can't handle hundreds of timing channels, they don't worry about how to display more than a few channels at a time. With the DAS9200 bus waveform display, multiple 32-bit buses can easily fit on the same timing diagram as control signals, even if it is all correlated and locked to a microprocessor disassembly display in another window.

Shown are just some of the High-Performance 32-bit RISC and CISC microprocessors already supported by the $92 A 96$ family (i860, i960, 80486, 80386, 29000, 88100, 68020, 68040, 68030).

REAL-TIME CLOCKING AT 100 MHZ

The variety of bus behavior exhibited by today's microprocessors reflects the advanced levels of complexity that are being integrated on-chip. Pipelined bus cycles, bursted operation, dynamic bus sizing, diverse I/O operations, DMA cycles, coprocessor communication, on-board wait-state generation, cache coherency operations, coprocessor communications and diversity of bus cycle termination are just a few reasons why tracking these buses requires more than the simple synchronous clocking capabilities provided by most logic analyzers.

The 92A96 attacks these challenges by providing a 16state, 100 MHz state machine that is completely programmable to internally emulate the machine-state operation of these complex buses and determine the correct sample point for each signal needed to monitor the processor's operation.
Tek's turnkey microprocessor support packages come with complete pre-programmed setups for clocking as well as channel names, channel groups, symbol tables and a sample reference memory that allows you to quickly familiarize yourself with processor-specific capabilities.

REAL-TIME TRIGGERING AT 100 MHZ

The 92A96 extends the DAS9200's proven real-time state machine triggering to true 100 MHz operation across 384 channels. Other analyzers may recognize a single event at full speed, but can't make trigger decisions fast enough to consider the next sample.

As with other DAS9200 acquisition cards, the 92A96 offers both user-defined and pre-programmed trigger libraries and full symbolic triggering to simplify the task of specifying complex trigger events.

TIME-STAMPING AT 100 MHZ

Precise time correlation of data from multiple modules and timing measurements of processor activity are provided by the 44-bit timestamp that the 92A96 adds to each cycle as it is stored. This time value offers 10 ns resolution over a two-day range and can also be
displayed in several forms with the acquired data. The 92 A96 is offered both in an 8 K bit/channel version and one with 32 K bits/channel.

WHY DEEP MEMORY?

Other vendors offer many excuses why they think you don't need deep acquisition memory, but they don't have your manager breathing down their neck when development grinds to a halt due to a complex system bug.

The simple fact is that whatever initially caused the problem you're chasing has happened and gone before visible symptoms appear, and the only way to nail it quickly and confidently is to trigger on the symptom and look backwards through the acquired data until you find

The high-bandwidth probes and advanced 100 MHz clocking state machine of the 92A96 allow the 92A96 to interfaced to virtually any processor or bus without a complex, bulky hardware interface.
the cause. Only a deep trace buffer with full trigger positioning can prepare you for this kind of problem. The 92A96 is offered both in an 8 K bit/channel version and one with 32 K bits/channel.

THE DESIGNER'S EDGE

Only the 92A96 provides the speed, width, depth and versatility you need to conquer the problems that arise in today's products and those that follow.

T he Hottest RISC/CISC Real-Time Microprocessor Analyzer

- 96-384 Channels @ 100 MHz Sync or Async
- 100 MHz Clocking State Machine Tracks Fast, Complex Buses
- 100 MHz Triggering State Machine
- 100 MHz Timestamp
- Support for Popular 32-bit RISC and CISC CPUs
- Available in 8 K or 32 K Memory Depths
- Provides Timing Analysis Through Same Probes
- Monitor Multiple Microprocessors

CONFIGURED SUPPORT PACKAGES MAKE MICROPROCESSOR ACTIVITY EASY TO UNDERSTAND

If you join the unprecedented 32 K memory depth of the 92A96D or the 128 K memory depth of the 92A90D with the vast assortment of symbolic data format options including register and data deduction, stack simulation, and easy-to-follow performance analysis, what you get is a system that handles your toughest analysis problems with ease, and makes those problems seem easy to solve - no matter what your application.

the name of the game in designing TODAY'S ADVANCED PRODUCTS IS INTEGRATION

Hardware is linked to microprocessors, software to hardware, and multiple processors to one another. Up to dozens of engineers may be working together on a project. Multiple components, multiple designs, and multiple levels of complexity all too often mean problems built-in from the very beginning.

What's more, these problems usually are not discovered until the integration stage, when the interactions of many components and many engineers' designs are tested and debugged. At this point, they're more difficult and more expensive to correct, and they have a more critical impact on your project schedule.

The subroutine trace display format can condense several thousand cycles of processor bus activity into a single screen of meaningful

Using the time correlated, split-screen display, you can observe detailed system interractions in any format you choose. information.

BECAUSE IT'S A DAS, DATA CAN BE FORMATTED SO YOU DON'T HAVE TO DO ALL THE ANALYSIS

The DAS9200 provides you with a variety of display format options. You can start with a macroscopic view of symbolic subroutine entry and exit points. Then, without reacquiring, gradually zoom in on specific activities and values. You can view control flow, assembly instructions, and cycle-by-cycle bus activity.

Hardware display format helps you track problems specific to hardware or to hardware/software interaction by showing you every bus transaction in order of occurrence. Software display format shows you just what would be found in an assembly listing, with data transfers optionally included.

In control flow mode, you follow your program's direction smoothly with a display of only the instructions that cause program branching. And in subroutine trace mode, you see exclusively subroutine calls and returns, obtaining a high-level overview of program execution without losing sight of specifics.

The DAS9200 addresses the challenge of project complexity and the built-in problems it can bring by providing tools that let you look at the interaction of multiple components and designs all at one time.

A time-correlated, split-screen display lets you scroll through disassembly of timestamped data acquired from any two processors, and quickly understand what each is doing at a single point in time. You can lock the cursors in separate display windows so both screens scroll together in accurate time alignment.
Real-time event handshaking between the different instrument cards lets you identify specific data across multiple acquisition modules and trigger them simultaneously to acquire the overlapping data necessary for time alignment. And pattern generation lets you simulate interactions of hardware that's not yet available or not currently working.

Perhaps best of all, you can debug hardware and software components and their system interactions using the same card modules, and reconfiguring them from the keyboard without having to physically move them.

MICROPROCESSOR SUPPORT SELECTION GUIDE

Microprocessor Type \& Mig.	$\begin{aligned} & \text { Speed } \\ & \text { (} \mathrm{MHz} \text {) } \end{aligned}$	$\begin{aligned} & \text { Package } \\ & \text { Style } \end{aligned}$	Order This Support Package Based on Module Used			Price
			92A60/A60D	92A90/A90D	92A96/A96D	
Intel						
8085	${ }^{3}$	DIP	92DM902	92DM902		4
8031/51	$\cdot 3$	DIP	92DM901	92DM901		4
8086	$\stackrel{ }{ } \cdot$	DIP	92DM03	92DM03		\$1,250
8088	$\cdot 1$	DIP	92DM04	92DM04		\$1,250
80186	\cdot	LCC/PGA	92DM05	$92 \mathrm{DM05}$		\$1,250
80188	$\stackrel{ }{ } 9$	LCC/PGA	92DM06	92DM06		\$1,250
80286	20	LCC/PGA	92DM08	92DM08		\$1,600
80386	33	PGA		92DM09A	92DM09A	$\cdot 4$
80386SX	16	PQFP		$92 \mathrm{DM10}$		$\cdot 4$
80376	16	PQFP		92DM10		$\cdot 4$
80486	33	PGA			92 DM12	\$4,950
8060°	40	PGA		92DM15	92DM15	\$4,950
80960CA	33	PGA			$92 \mathrm{DM17}$	\$4,950
Zilog						
Z80	8	DIP	92DM41	92DM41		\$ 900
Z8001/3	${ }^{3}$	DIP	92DM903	92DM903		$\cdot 4$
Z8002/4	$\cdot 3$	DIP	92DM904	92DM904		$\cdot 4$
Motorola						
6809	${ }^{1}$	DIP	92DM24	92DM24		\$ 900
6809 E	$\cdot 1$	DIP	92DM24	92DM24		\$ 900
$68 \mathrm{HC11}$	'3	PLCC	92DM907	92DM907		$\cdot 4$
68302	16	PGA	92 DM 27	92 DM 27		\$1,250
68332	$\cdot 3$	QFP	$92 \mathrm{DM910}$	92DM910		$\cdot 4$
68000/010	16	DIP	92DM27	92 DM 27		\$1,250
68000/010	16	PGA	92DM27 w/Opt. 2S	92DM27 w/Opt. 2S		\$1,250
68020	33	PGA	92DM31	92DM31	92DM31A	\$2,500
68030	33	PGA	92DM33	92DM33	92DM33A	\$2,500
68040	25	PGA			92DM34	\$4,950
$88100^{\circ} 2$	33	PGA		92DM35	92DM35A	\$4,950
56000	$\cdot 3$	PGA	92DM906	92DM906		$\cdot 4$
Texas Instruments						
TMS32020	${ }^{3}$	PGA	92DM905	92DM905		$\cdot 4$
TMS320C25	'3	PGA	92DM905	92DM905		$\cdot 4$
Other						
AMD 29000 ${ }^{-2}$	33	PGA			92 DM 72	\$4,950
MIPS R3000	33/66	PGA			92 DM 74	\$4,950
RTX2000	${ }^{3}$	PGA	92DM908	92DM908		$\cdot 4$
PACE 1750	40	PGA/DIP	92DM64	92DM64		\$1,000
F9450	40	DIP	92DM64 w/Opt. 13	92DM64 w/Opt. 13		\$2,600
MII-Std 1750A	40		$92 \mathrm{DM64}$	$92 \mathrm{DM64}$		\$1,000
RS-232	19.2 k baud	N/A	A6740G	A6740G	A6740G	\$1,500
VME	$\cdot 3$	N/A		92DM909		\$ 750

${ }^{\cdot}$ Maximum CPU clock speed currently available from the manufacturer is supported.
$\cdot 2$ Requires two acquisition modules.
${ }^{\cdot 3}$ Speed not warranted - test in your application.
${ }^{-4}$ Contact your local sales office.
Note: New and higher speed microprocessors are constantly being introduced and our support is constantly expanding. Contact your local sales office if the device or operation speed that you are using is not listed.

DAs9200 DIGITAL ANALYSIS SYSTEM

STANDARD CONFIGURATIONS				
Model Number	Recommended Appliication	Composed of:	Performance Overview	Price
DAS9230	General purpose HW analysis with 8 - or 16 -bit processor support.	$\begin{aligned} & 192 A 16 \text { with P6460 probes } \\ & 192 A 60 \text { without leadset } \\ & 192516 \end{aligned}$	16-Ch 200 MHz async/100MHz sync Supports one 8- or 16-bit processor $18-\mathrm{Ch}, 50 \mathrm{MHz}$ stimulus	\$37,300
DAS9232	General purpose HW analysis with 8-, 16-, or 32-bit processor support.	$\begin{aligned} & 192 A 16 \text { with P6460 probes } \\ & 192 A 16 \text { w with P6460 probes } \\ & 192 A 90 \text { without leadset } \\ & 192216 \\ & 192 S 32 \text { with P6465 probes } \end{aligned}$	32-Ch 200 MHz async/ 100 MHz sync Supports one 8-, 16-, or 32-bit processor $50-\mathrm{Ch}, 50 \mathrm{MHz}$ stimulus	\$59,300
DAS9240	Timing Analysis	$192 A 16$ with P6461 probes 1 92A16E with P6461E probes	32-Ch 200 MHz async/sync	\$36,300
DAS9241	Wide Timing Analysis	$292 A 16$ with P6461 probes 292A16E with P6461E probes	64-Ch 200 MHz async/sync	\$51,250
DAS9242	High Speed Timing Analysis	$\begin{aligned} & 192 \mathrm{HSB} \\ & 192 \mathrm{A16} \text { with P6461 probes } \\ & 192 A 16 E \text { with P6461E probes } \end{aligned}$	8-Ch 2 GHz async 32-Ch 200 MHz async/sync	\$62,050
DAS9250	Single 8- or 16-bit Processor Support	192 A 0 without leadset	$60-\mathrm{Ch}, 20 \mathrm{MHz}$ asnyc/sync Supports one 8 - or 16 -bit processor	\$19,500
DAS9252	Single 8-, 16-, or 32-bit Processor Support	192 A 90 without leadset	$90-\mathrm{Ch}, 20 \mathrm{MHz}$ asnyc/sync Supports one 8-, 16-, or 32-bit processor	\$23,000
DAS9254	Dual 8-, 16-, or 32-bit Processor Support	292 A90 without leadsets	$180-\mathrm{Ch}, 20 \mathrm{MHz}$ asnyc/sync Supports two 8-, 16-, or 32-bit processors	\$36,300
DAS9256	270 Channel Soltware Analysis for 8-, 16-, or 32-bit Processors	392 A90 without leadsets	$270-\mathrm{Ch}, 20 \mathrm{MHz}$ asnyc/sync Supports three 8 -, 16-, or 32 -bit processors	\$51,800
DAS9258	360 Channel Software Analysis for 8 -, 16-, or 32 -bit Processors	492 A90 without leadsets 1 DAS92E9 Expansion Mainframe 1 GPIB/Expansion Interface	$360-\mathrm{Ch}, 20 \mathrm{MHz}$ asnyc/sync Supporits four 8 -, 16 -, or 32 -bit processors	\$73,800
DAS9281	96 Channel High-Performance Processor Support	1 92A96 with leadsets	96-Ch, 100 MHz sync / $24-\mathrm{Ch}, 400 \mathrm{MHz}$ async Supports one high-performance processor	\$30,950
DAS9282	192 Channel High-Performance Processor Support	2 92A96 with 1 set of leadsets (100 ch)	192-Ch, 100 MHz sync $/ 48-\mathrm{Ch}, 400 \mathrm{MHz}$ async Supports two high-performance processors	\$47,860
DAS9283	288 Channel High-Performance Processor Support	3 92A96 with 1 set of leadsets (100 ch)	$288-\mathrm{Ch}, 100 \mathrm{MHz}$ sync / 72-Ch, 400 MHz async Supports three high-performance processors	\$64,770
DAS9284	384 Channel High-Performance Processor Support	4 92A96 with 1 set of leadsets (100 ch)	384-Ch, 100 MHz sync / 96-Ch, 400 MHz async Supports four high-periormance processors	\$81,680

Each standard configuration includes a 9201T color display and DAS9220 mainframe except the DAS928X series which include a DAS9220 mainframe. Additional options are available. Please consult your local sales engineer.

Options A1-A5, International Power Plugs, are available as no charge options for each preconfigured system. Please refer to page 374.

WARRANTY, INSTALLATION, AND EXTENDED SUPPORT

All DAS9200 products and pre-configured systems are covered by a 1 year comprehensive, on-site warranty. This warranty provides you with a priority response if ever your system needs service. There are no materials, time, travel, or expense costs to deal with. Plus, you have tollfree access to the National Support Center (NSC). The NSC is staffed from 6:00 am to 6:00 pm PST. Questions regarding the systems capabilities or operation can now be easily answered in just one free phone call.

You have the option to extend this support at the time you purchase your system for a total coverage period of two or three years.

On-site installation is also available as an option to your system. When you purchase on-site installation, the service technician will:

- Set-up and configure your system.
- Configure and integrate all optional accessories.
- Run diagnostics to completely verify functionality.

To gain the benifit of these services, specify the following options with your order:

Option QO: On-Site Installation
Option W2 2 Yr HW/SW Support \& NSC Hotline Access
Option W3 3 Yr HW/SW Support \& NSC Hotline Access

ORDERING INFORMATION

INSTRUMENT MODULE SELECTION GUIDE

The following instrument cards include probes. A maximum of seven instrument cards may be installed in a DAS9220 or DAS9219 depending on type. A maximum of eight instrument cards may be installed in a DAS92E9 depending on type. Each mainframe includes sufficient power for all card slots. Additional options are available, please consult your local Sales Engineer.

| MODULE TYPE
 Acquisition | Description | Resolution
 Internal
 Clock | Maximum Channels
 Clock | Memory
 (er
 Card | Mer
 Depth
 System | Price |
| :--- | :--- | ---: | :---: | :---: | ---: | ---: | ---: |
| (per Chan.) | | | | | | |

ORDERING INFORMATION

DAS9200 ACQUISITION CARDS

92A16 16-Channel, 200 MHz Sync/Async, Master Acquisition Card, 4 K deep
Includes: (2) P6461 probes and leadsets
Opt. 2S - Sub. 2-P6460 probes for 2-P6461
92A16E 16-Channel, 200 MHz Sync/Async, Expansion Acquisition Card, 4 K deep
Includes: (2) P6461E probes and leadsets
Opt. 2S - Sub. 2-P6460 probes for 2-P6461
$\$ 9,750$
$-\$ 1,700$

$\$ 9,550$
$-\$ 1,300$

92HS8 8-Channel, 2 GHz Async/350 MHz Ext. Async, Master Acquisition Unit, 8 K deep
Includes: Probes, leadsets, and MF Interface.
Opt. 05 - Rackmount Kit
92HS8C 8-Channel, 2 GHz Async Expansion,
Acquisition Unit, 8 K deep without MF Interface.
Includes: Probes, leadsets.
Opt. 05- Rackmount Kit
92HS8E 8-Channel, 2 GHz Async Expansion,
Acquisition Unit, 8 K deep with MF Interface.
Includes: Probes, leadsets.
\$25,980
Opt. 05 -Rackmount Kit

92A60 60-Channel, 20 MHz Sync/Async, Master/Slave Acquisition Card, 32 K deep Includes: Probe and general purpose leadset $\$ \mathbf{9 9 9 0}$
92A60D 60-Channel, 20 MHz Sync/Async, Master/Slave Acquisition Card, 128K deep Includes: Probe and general purpose leadset

92A90 90-Channel, 20 MHz Sync/Async,
Master/Slave Acq. Card, 32K deep
Includes: Probe and general purpose leadset
$\$ 12,700$
92A90D 90-Channel, 20 MHz Sync/Async, Master/Slave Acq. Card, 128 K deep Includes: Probe and general purpose leadset
\$16,900
92A96 60-Channel, 100 MHz Sync/ 400 MHz Async,
Master/Slave Acq. Card, 8 K deep
Includes: Probes and leadsets
\$17,950
Opt. 01-90-Channel Microprocessor Interface
Opt. 3S - Subs. 90-Channel Micro. I/F for probes
$-\$ 2,550$
92A96D 60-Channel, 100 MHz Sync/400 MHz Async, Master/Slave Acq. Card, 32K deep
Includes: Probes and leadsets
Opt. 01 - Add 90 -Channel Microprocessor Interface
Opt. 3S - Subs. 90-Channel Micro. I/F for probes

DAS9200 PATTERN GENERATOR CARDS

92S16 18-Channel, 50 MHz Algorithmic Pat. Gen., 1 K deep. Includes 2-P6464 probe and leads. Opt. 2S -Sub. 2-P6465 probes for 2-P6464 probes
$92 S 3236$-Channel, 50 MHz Sequential Pat. Gen., 8 K deep. Includes 4-P6464 probes and leads.
Opt. 1S -Sub. 1-P6465 probe for 1-P6464 probe Opt. 2S -Sub. 2-P6465 probes for P6464 probes Opt. 3S -Sub 4-P6463 probes for 4-P6464 probes
Opt. 4S -Sub. 2-P6463 probes for 2-P6464 probes

92SX109 9-Channel, 100 MHz Algorithmic Pat. Gen.,
\$7,290 $+\$ 600$

2 K deep. Includes: 1-Pat.Gen. Multiplexer, and 1-P6464 probe and leads.
Opt. 09 - Add (1) P6464 Output Data Probe
Opt. 11 - Add 1-P6460 External Control Probe
92SX118 18-Channel, 100 MHz Sequential Pat. Gen., 16K deep. Includes: 2-Pat. Gen Multiplerers, and 2-P6464 probe and leads. Opt. 09 -Add (2) P6464 Output Data Probe

Note: Option 88, Factory Installation and Test, is a no charge option available for all DAS9200 Instrument cards ordered with a new mainframe. This option assures that the instrument card is installed in the mainframe and tested at the factory. The two components are then shipped together.

APPLICATION-BASED SOLUTIONS

Today's digital designs require more from engineers than ever before. From integrating multiple microprocessors in a system to optimizing the final code, the need is the same: find the right tool that solves problems quicker and easier.

The PRISM ${ }^{\star} 3000$ Series deals with the wide diversity of engineering problems, not by appealing to the least common denominator, but by offering high performance solution sets tailored to the specific application.

MULTIPLE PURPOSE INSTRUMENTS

The PRISM 3000 Series meets the needs of many engineering disciplines through its collection of application-specific modules. Using these modules, system designers and integration engineers can focus on:

- Software/firmware debug and optimization
- Hardware/software integration
- Multiple microprocessor integration
- High speed hardware timing analysis
- Digital waveform analysis

Each module can generally solve the problem at hand, but for complex problems, multiple modules are tightly integrated in the PRISM system to offer capability previously not available in a single instrument.

ALL DATA IS TIME-CORRELATED

In the PRISM 3000 Series, all data is synchronized right at the probe tip. Performed by custom ICs in the probes, this synchronization is the key to the Prism's tight time-correlation of events.

TEKLink, an intermodule triggering and high speed communication bus, provides data and event communication between all application modules in the system. As a result, all data from all modules is automatically timestamped when it is acquired and time-correlated as it is displayed. This lets you view the timing relationships of data acquired from different modules in a clear, meaningful display.

QUICK TO SET UP, LEARN, AND USE

Probes are small, low-profile, and easy to connect. At power-up, PRISM recognizes what hardware is connected, autoloads the correct software and acquires data with a single keystroke. Fast response, simplified menus, and on-line context-sensitive help, appeal to both new and experienced users.

To expand your expertise, Prism's FasTrak training package is standard with each instrument. FasTrak includes a microprocessor board full of hardware and software faults. As you use your PRISM to find and correct the faults, you will learn its capabilities and enhance your own digital debug skills at the same time.

MULTIPLE PLATFORMS - 3001 \& 3002

The PRISM 3000 Series is available in two platforms. The PRISM 3001 is a portable mainframe that is factory configured with one application module. The PRISM 3002 is a benchtop system that can be configured with up to four application modules (see page 150 for more details).

The PRISM 3000 Series offers high performance solutions tailored to specific applications at competitive prices. See page 150 for different configurations.

PRISM 3000 APPLICATION MODULE SELECTION GUIDE						
Product	Application	Channels/Card	Rate	Clock Type	Memory	Triggering
30MPX (page 146)	8/16/32-bit Microprocessor Hardware / Software Integration	$\begin{array}{r} 96 \\ 9 \end{array}$	$16 \mathrm{MHz}^{* 1}$ 200 MHz or 90 MHz	Synchronous Transitional Synchronous	$\begin{aligned} & 8 \mathrm{~K} \\ & 2 \mathrm{~K} \\ & 2 \mathrm{~K} \end{aligned}$	7 States 8 Word/Range recognizers 8 Counter/Timers 4 TekLink Signals
$\begin{aligned} & \hline 30 \mathrm{HSM} \\ & \text { (page 148) } \end{aligned}$	High Speed Hardware Analysis	$\begin{array}{r} 20 \\ \text { or } 4 \\ \text { or } 20 \end{array}$	$\begin{aligned} & 400 \mathrm{MHz} \\ & 2 \mathrm{GHz} \\ & 200 \mathrm{MHz} \end{aligned}$	Transitional Transitional Dual Threshold Transitional	$\begin{array}{r} \hline 24 \mathrm{~K} \\ 120 \mathrm{~K} \\ 12 \mathrm{~K} \end{array}$	15 Trigger Tests 4 Levels 2 Counter/Timers 4 Word Recognizers 4 TekLink Signals
30DSM (page 149)	Analog Waveform Analysis	$\begin{array}{r} 1 \\ \text { or } 2 \end{array}$	$\begin{aligned} & 400 \mathrm{MS} / \mathrm{s} \\ & 200 \mathrm{MS} / \mathrm{s} \end{aligned}$	$\begin{aligned} & N A \\ & N A \end{aligned}$	$\begin{aligned} & 32 K \\ & 16 \mathrm{~K} \end{aligned}$	Edge: rising/falling External Trigger

[^22]
PRISM 3000 MICROPROCESSOR ANALYSIS - 30MPX

The 30MPX module provides all the support you need for developing a microprocessor based design.

- Combined State and Timing Analysis
- 96 State Channels, $8 K$ Deep
- Support 8/16/32 Bit Devices up to 33 MHz
- g Transitional Timing

Channels, 2K Deep

- 200 MHz Transitional Timing or 90 MHz Synchronous
- Real-time Performance Analysis

MICROPROCESSOR ANALYSIS MODULE

The 30MPX module offers all of the functionality needed for designers of microprocessor based systems on a single module. Microprocessor analysis, timing analysis, real-time performance analysis and microprocessor control are combined on a single card.
The 3OMPX provides 96 channels of state analysis. Each channel has an 8 K memory depth making it ideal for tracing complex program flow and capturing both the cause and the visible effect of software problems.

PRISM's split screen display can display both state and timing at the same time. The "link curser" option links the two displays together so as one display scrolls, the second display stays in sync.

Microprocessor Type \& Mfg.	Package Style	Speed	Order This Support Package	Price*1
Intel				
8086/8088	DIP	10 MHz	30DM04	\$1,150
80186/80188	PGA/PLCC/LCC	16 MHz	30DM06	\$1,150
80286	PGA/PLCC/LCC	25 MHz	30DM08	\$1,150
80386	PGA	30 MHz	30DM09A	*2
80386SX	PQFP	16 MHz	30DM10	\$1,800
80376	PQFP	16 MHz	30DM10	\$1,800
Motorola				
68000/68010	DIP/PGA/PLCC	16 MHz	30 DM 27	\$1,150
68020	PGA	33 MHz	30DM31	\$1,800
68030	PGA	33 MHz	30DM33	\$1,800
56000/1	PGA	27 MHz	30DM101	\$1,150
$68 \mathrm{HC11}$	PLCC/DIP	12 MHz	30DM91	\$800
Zilog				
280	DIP	8 MHz	30DM41	\$800
280	DIP	20 MHz	30DM41F	\$1,150

[^23]*2 Contact your local sales office.

MULTIPLE DISASSEMBLY FORMATS FOR RAPID ANALYSIS

Four disassembly display formats support rapid analysis of microprocessor activity. You can switch between hardware, software, control flow, or subroutine display without reacquiring data. These different display modes allow you to concentrate on the appropriate data display required to solve your problem.

SIMULTANEOUS SUPPORT FOR UP TO FOUR MICROPROCESSORS

For analysis of multiple microprocessor based designs, up to four 30MPX modules can be used simultaneously. As data is acquired from each microprocessor, it is time-stamped and stored. You can then split the screen to display data from each processor. As you scroll the data from one processor, the data display for the second processor stays in sync. This powerful feature enables you to solve complex problems related to the interaction of multiple microprocessors.

200 MHZ TIMING ANALYSIS ON THE SAME MODULE

The 30MPX module provides 9 additional channels of 200 MHz transitional or 90 MHz synchronous acquisition with each channel storing $2 K$ transitions.
Transitional storage only stores data when the state of the signal changes, rather than at every sample interval. The advantage of transitional storage is that you can capture long periods of time while maintaining maximum sampling resolution.
High speed timing analysis compliments the state analyzer by giving you detailed visibility of other parts of your circuitry such as control lines, $1 / 0$ and clocks.

TIME CORRELATION TIES EVERYTHING TOGETHER

All data acquired by the 30MPX's state and timing sections (or from any other PRISM module) is automatically time-stamped by the PRISM's high speed master clock. This time stamp is used to time-correlate ALL of your data as it is displayed in PRISM's split screen display.
The advantage of time-correlation is that you can easily and accurately correlate the activity of the microprocessor to high speed activity of your other circuits.

REAL-TIME PERFORMANCE ANALYSIS

PRISM's unique real-time performance analysis capability gives you the ability to profile the performance of your software. A key aspect of REAL-TIME PA over the traditional statistical approach is that ALL activity is captured. No data is lost while the analyzer is processing the acquired data. This is especially vital in optimizing real-time embedded control systems.

With real-time performance analysis you can identify where in your program you should focus your efforts to fine tune your system for its optimum performance.

THE PDT ADVANTAGE

When logic analyzer users were asked what features they would most like to add to their logic analyzer, the majority answered that they would like a way to control the microprocessor. Tektronix responded to this challenge with the Prototype Debug Tool (PDT).

PDT adds emulator functionality to the 30MPX module for software/hardware integration through an innovative EPROM probe adapter (30RP1 probe). With PDT, your PRISM system has the ability to:

- Download code
- Start/Stop the Processor
- Set Software Breakpoints
- Set Hardware Breakpoints
- Single Step Code
- Memory Disassembly
- Examine/Change Memory
- Examine/Change Registers
- Emulate EPROM Memory
- Simultaneously start LA and uP

To add microprocessor control to your 30MPX module, you simply add the appropriate number of 30RP1 EPROM probe adapters and PDT software (30DDxx). A KEY advantage of the PDT approach is that to change microprocessors you only need new PDT software. Your investment in PRISM hardware tools is preserved as you change processors.

SOFTWARE/HARDWARE INTEGRATION WITH PDT

Many people integrate their hardware and software by simply using a logic analyzer along with an EPROM burner. They burn an EPROM, plug it into their circuit, connect a state analyzer to the microprocessor, start their program with the reset button, and trace their program flow with the logic analyzer. For many applications this is a tedious but adequate process. With PDT, the above process can be improved by an order of magnitude without expensive new tools.

By adding the PDT option to your PRISM you can bring up new hardware and perform all of your initial hardware and software integration with a single instrument.

INTEGRATION WITH OTHER PRISM MODULES

PDT links with all other parts of the PRISM system through TekLink. This means you can use PDT with the 30HSM High Speed Timing Analyzer or the 30DSM Digitizing Oscilloscope to bring up new boards and verify signal integrity. In addition you can use up to four 30MPX cards with PDTs to control up to four microprocessors at the same time.

GENERAL PURPOSE PDT

For the processors that are not supported with a microprocessor specific PDT (30DDxx), the General Purpose PDT (standard with the 30RP1 EPROM probe adapter) enables you to control any microprocessor and emulate your EPROM with a subset of the above features.

General Purpose PDT supports any microprocessor by plugging the 30RP1 probes into your system's EPROM sockets. With General Purpose PDT you can:

- Emulate your system EPROM
- Download code
- Set hardware breakpoints
- Patch EPROM memory
- Stop your application program

The KEY advantages of PRISM with PDT over other types of microprocessor debug tools is its real-time operation, high speed timing analysis, real-time performance analysis, and tight integration with other engineering tools, all in one system.

ow cost option to the 30MPX for control of your microprocessor.

- Adds Emulator Functionality
- Real-Time Operation
- Assembly Level Debug
- Ideal for ROM Based Systems Development
- Device Drivers
- Diagnostic Code
- Boot Code
- Ideal for Bringing Up

Prototypes

- Debug New Kernels

In Single Step mode, the instruction is displayed along with the register contents. This is just one of the emulator commands available on the PRISM Logic Analyzer.

Connection to your prototype is a simple matter of plugging EPROM probe adapters into your ROM sockets.

- 2 GHz, 4 channels
- $400 \mathrm{MHz}, 20$ channels
- Dual thresholds
- 24 K transitionally stored memory
- 15 preset trigger tests
- 2.5 ns glitch detection

HIGH-SPEED HARDWARE ANALYSIS

The 30HSM module is a complete high speed acquisition system for capturing and analyzing hardware faults in digital circuitry. A range of data acquisition modes, including 2 GHz transitional timing and Dual Threshold Mode, provide the ability to analyze a wide range of potential hardware problems.
The 30HSM's fault triggering lets you quickly locate hardware faults. Trigger selections include tests for setup and hold time violations, pulse duration violations, and metastability. To save you time, these and other tests are pre-programmed in the 30 HSM .

Application specific triggering and context-sensitive HELP make using the 30HSM a breeze.

PROBLEMS DETECTED BY THE HSM

The many features of the 3OHSM enables the design engineer to detect complex problems such as:

- Bus Contention
- Handshaking Errors
- DMA Problems
- Glitches
- Propagation Delays
- Cross Talk
- Races \& Hazards
- Setup \& Hold Violations
- Metastability
- Ringing

ACQUISITION MODES

The 30HSM incorporates three acquisition modes which provide you with the resources you need to efficiently solve the most demanding problems or make detailed measurements of your design's operation.

400 MHz High Resolution Mode

The high resolution mode provides 400 MHz timing (2.5 ns) across 20 channels. Each channel can record 24 K transitions. This mode makes it easy to debug problems caused by race conditions, setup/hold time violations, and propagation delays.

Dual Threshold Mode

The unique dual threshold mode provides 200 MHz timing (5 ns) across 20 channels. Each channel can record 12 K transitions. This mode is uniquely suited to exposing difficult intermittent problems such as those caused by slow rise/fall times, bus contention, low drive or runt pulses, reflections, crosstalk, tri-state conditions, and excessive system noise.

2 GHz Mode

The 2 GHz mode provides 4 channels of 500 ps resolution for resolving very fine timing relationships. Each channel can record 120K transitions.

TRANSITIONAL STORAGE

The 30HSM stores data only when the state of the input signals change. This transitional storage can be contrasted with conventional storage where data is stored at every sample interval. By using transitional storage, the 30HSM enables you to capture long periods of time (up to 60 minutes) while maintaining maximum sampling resolution.

TRIGGERING

The 30HSM makes setting up triggers easy by providing 15 predefined trigger tests for measuring timing related problems. Trigger resources include four 20-bit word recognizers, two counter/timers, and four intermodule TekLink signals.

Sampling all 20 channels simultaneously at 2.5 ns , the 30HSM assures that you can make detailed timing measurements even if your design is based on the very newest logic families.

ANALOG PROBLEM SOLVING IN A DIGITAL INSTRUMENT

A powerful, multi-channel digital storage oscilloscope (DSO), the 30DSM has been tightly integrated into the PRISM 3000 Series logic analyzer. It provides uncompromising analog measurement performance to address the needs of engineers involved in the design and test of sophisticated digital electronic products.

DESIGNED FOR THE DEMANDS OF TODAY'S HIGH-SPEED LOGIC FAMILIES

Each 30DSM contains two high-speed A/D converters and 32 K of acquisition RAM. Measurement accuracy is insured by 8 -bit vertical resolution, 350 MHz bandwidth triggering, user selectable interpolation and bandwidth limit filters, and a high-fidelity probe/attenuator combination. You can easily measure the worst-case propagation delay across a printed circuit board or make repeated measurements to determine the setup and hold margin of a memory system.

FLEXIBLE ACQUISITION MODES PUT YOU IN CONTROL OF YOUR MEASUREMENTS

You can select between the single channel, $400 \mathrm{MS} / \mathrm{s}$ acquisition mode with a 32 K record length or the dual channel, $200 \mathrm{MS} / \mathrm{s}$ mode with a 16 K record length. In the single channel acquisition mode, the 30DSM can acquire single shot events up to 100 MHz (50 MHz in the dual channel mode).

Multiple 30DSM can be integrated into your PRISM system to provide up to eight fully attenuated DSO channels. All channels are digitized simultaneously so you can determine exactly both the time and voltage relationships between them. Add a 30DSM to any PRISM system to increase the general-purpose utility for troubleshooting both the digital and analog sections of your design.

CURSOR MEASUREMENTS MAKE IT EASY FOR YOU TO SEE WHAT HAPPENED

Every waveform captured by the 30DSM can be displayed to nearly the full $14^{\prime \prime}$ height of the display. You can easily overlap signals by moving them up or down in the display field. Four waveforms can be displayed at one time, selectable from any input probe or saved reference waveforms. You can even display multiple copies of the same signal.

There are two on-screen measurement cursors that can have either a vertical or a horizontal orientation. The voltage and time at the position of each cursor is always displayed on screen. The cursors can be assigned to any of the displayed waveforms. As an example, you can assign Cursor 1 to Channel 1 and Cursor 2 to Channel 2 and then measure the difference in voltage between the waveforms at any instant in time.

Data acquired by any PRISM module is

 automatically time-correlated with all other data. Here the PRISM split screen display shows data acquired by the 30HSM correlated to signals acquired by the 30DSM.
TIME CORRELATED DATA TAKES THE PAIN OUT OF MIXED-MODE PROBLEM FINDING.

It's nearly impossible to troubleshoot today's complex digital designs using only an oscilloscope. The PRISM 3000 Series helps you overcome this limitation by combining the power of the 30MPX or 30HSM with the high-speed digitizing offered by the 30DSM. You will be able to trigger on, acquire, and display microprocessor execution, setup and hold time violations, or control line signal integrity. The PRISM system automatically correlates all acquired data, regardless of the acquisition module.

Multiple waveforms can be freely moved and sized on screen. Not only can you see the time relationship between these waveforms, but the quality of the signals as well.

> ultiple mainframes and options allow you to select the most appropriate configuration for your application.

- 20MB Hard Disk
- MS-DOS Compatible, 3 1/2" Diskette
- Postscript/EPSON Printer Support
- Full Size QWERTY Keyboard
- RS-232 and GPIB Support

MULTIPLE MAINFRAMES TO MEET YOUR NEEDS

The PRISM 3000 Series was designed with a flexible architecture which enables Tektronix to offer all of the capability of the PRISM application modules in a package that best fits your needs. The different packages are:

- 3002C - Benchtop, 2-slot color mainframe
- 3002P - Portable, 2-slot mainframe
- 3002E - Two slot expansion mainframe
- 3001 - Low cost portable system

The low cost 3001 logic analyzers offer the power of the entire PRISM 3000 Series in convenient, portable instruments. Adding the optional QWERTY keyboard further simplifies its operation.

PRISM 3002C MAINFRAME

The PRISM 3002C is a two slot benchtop mainframe that can be extended to add two additional slots with the 3002E expansion mainframe. This unit features a full QWERTY keyboard, a high resolution 14" color display, 720KB MS-DOS compatible floppy, and a 20MB hard disk.

Designed for the lab environment, the 3002C can be configured to meet your most demanding applications.

PRISM 3002P MAINFRAME

The PRISM 3002P is a combination of the portability features of the 3001 with the expansion capability of the 3002C. The 3002P is identical to the 3002C except that the high resolution color CRT is replaced with a 9" high resolution flat panel display. The display folds down and is secured to the top of the mainframe and the keyboard is stored safely under the mainframe, making it easy to move from one location to another.

PRISM 3002E EXPANSION MAINFRAME

The 3002E is a two slot expansion mainframe that contains a power supply and interconnect cables. This low cost expansion enables you to add two additional application modules to any PRISM platform.

PRISM 3001 SYSTEMS

The PRISM 3001 is a low cost stand-alone mainframe that is factory configured with one PRISM application module. There are two versions available:

- 3001MPX - 8/16/32 bit $\mu \mathrm{P}$ analysis
- 3001HSM - High speed timing analysis

These traditional looking logic analyzers contain a 9 " CRT, function key pads and control knob (a QWERTY keyboard is optional), and a MS-DOS compatible floppy.

For use in the lab, the 3001 can be expanded with a 3002 E mainframe for an additional two slots.

PRISM 3002 SYSTEMS

Seven pre-configured 3002 systems are available. Each system can be expanded by adding the 3002E expansion mainframe for an additional two slots.

DIFFERENT MAINFRAMES, SAME USER INTERFACE

To make your design team more productive, the 3001 and 3002 configurations share the same user interface and operation. Thus, you can use a 3002 in the lab for design, and a 3001 in the field for repair without having to learn a new instrument.

FASTRAK TRAINING PACKAGE

FasTrak is a microprocessor based board and workbook designed to quickly teach you how to use your PRISM system. When you finish this tutorial you will be ready to use your PRISM to solve your most complex problems.

PRISM 3000 SYSTEM SELECTION GUIDE					
Product	Description	Module	Display	Mass Storage	Price
3001MPX	1 slot portable	130 MPX	9" Mono	720KB	\$9,900
3001HSM	1 slot portable	130 HSM	9" Mono	720 KB	\$11,000
3002 CX	2 slot system	130 MPX	$14^{\prime \prime}$ Color	20MB/720KB	\$14,100
3002 CXX	2 slot system	230 MPX	14^{*} Color	$20 \mathrm{MB} / 720 \mathrm{~KB}$	\$21,700
3002 CH	2 slot system	130 HSM	14 " Color	20MB/720KB	\$13,000
3002 CHH	2 slot system	230 HSM	14" Color	$20 \mathrm{MB} / 720 \mathrm{~KB}$	\$19,500
3002 CXH	2 slot system	$130 \mathrm{MPX}, 130 \mathrm{HSM}$	$14^{\text {" }}$ Color	20MB/720KB	\$20,600
3002 CXD	2 slot system	$130 \mathrm{MPX}, 130 \mathrm{DSM}$	14^{*} Color	$20 \mathrm{MB} / 720 \mathrm{~KB}$	\$20,100
3002CHD	2 slot system	$130 \mathrm{HSM}, 1$ 30DSM	$14^{\text {" Color }}$	20MB/720KB	\$19,000
3002ED	2 slot expansion	130 DSM	none	none	\$8,000

ORDERING INFORMATION

3001 SERIES LOGIC ANALYZERS
3001MPX 8/16/32 Bit Microprocessor Analysis Instrument
Includes: $96-\mathrm{CH}$ state and $9-\mathrm{CH}$ @ 200 MHz timing, P6480 state probe without leadset, P6486 high-speed probe with standard leadset, 720 KB floppy, and FasTrak training package. Opt. 1A-30DA01 Performance Analysis Software Opt. 1F - P6480 General Purpose Probe Adapter Opt. 1K-Add QWERTY Keyboard
+\$650
+\$450 $+\$ 500$
Opt. 1L-1 P6486 High Performance Leadset
3001HSM High Speed Acquisition Instrument Includes: $20-\mathrm{CH} @ 400 \mathrm{MHz}$, or $4-\mathrm{CH}$ @ 2 GHz , or $20-\mathrm{CH} @ 200 \mathrm{MHz}$ dual threshold timing,
2 P6487 high-speed probes with standard leadsets, 720 KB floppy, and FasTrak training package.
Opt. 1K - Add QWERTY Keyboard
Opt. 1L-Add two 400 MHz leadsets
Opt. 4L - Add one 2 GHz leadset
Opt. 5L - Add two 2 GHz leadsets

PRECONFIGURED 3002 LOGIC ANALYZERS

3002CX PRISM 3002C M/F With 1 30MPX
$\$ 14,100$
Includes: 3002C, 14-inch color monitor, 20 MB HDD, 720 KB FDD, keyboard, (1) 30MPX,
(1) P6480, (1)P6486, \& Performance Analysis SW.

3002CXX PRISM 3002C M/F With 2 30MPXs
\$21,700
Includes: 3002C, 14 -inch color monitor, 20 MB
HDD, 720 KB FDD, keyboard, (2) 30MPX,
(2) P6480, (2)P6486, \& Performance Analysis SW.

3002CH PRISM 3002C M/F With 1 30HSM
Includes: 3002C, 14 -inch color monitor, 20 MB
HDD, 720 KB FDD, keyboard, (1) 30HSM,
(2) P6487

3002CHH PRISM 3002C M/F With 2 30HSMs
Includes: 3002C, 14 -inch color monitor, 20 MB
HDD, 720 KB FDD, keyboard, (2) 30HSM,
(4) P6487

3002CXH PRISM 3002C With 30MPX \& 30HSM Includes: 3002C, 14 -inch color monitor, 20 MB HDD, 720 KB FDD, keyboard, (1) 30MPX, (1) P6480, (1)P6486, (1) 30HSM, (2) P6487 \& Performance Analysis SW.
3002CXD PRISM 3002C With 30MPX \& 300SM Includes: 3002C, 14 -inch color monitor, 20 MB HDD, 720 KB FDD, keyboard, (1) 30MPX,
(1) P6480, (1)P6486, (1) 30DSM, (2) P6109,
\& Performance Analysis SW.
3002CHD PRISM 3002C With 30HSM \& 30DSM Includes: 3002C, 14 -inch color monitor, 20 MB HDD, 720 KB FDD, keyboard, (1) 30HSM, (2) P6487, (1) 30DSM, (2) P6109

The above 3002 systems have options to substitute. the color monitor with a flat panel display, add additional leadsets, and other options to customize the systems to your needs. ${ }^{-1}$
$\$ 13,000$
\$19,500
$\$ 20,600$
\$20,100
$\$ 19,000$
\$9,900
$\$ 11,000$
$+\$ 500$
$+\$ 1,000$
$+\$ 1,200$
$+\$ 2,400$
:

[^24]
3002 SERIES MAINFRAMES

Opt. 1F - Add General Purpose Probe Adapter
P6486 High-Speed Data Acquisition Probe with Standard Leadset for 30MPX
Opt. 1L - Add one high performance leadset
P6487 High Speed Data Acquisition Probe with with Standard Leadset for 30 HSM
Opt. 1L-Add one high performance leadset
FasTrak Micro Training Package
1200C01 RS-232 COMM Pack
$30 C 02$ GPIB COMM Pack

INTERNATIONAL POWER PLUGS OPTIONS

\$6,500
3002C PRISM Mainframe With Color Monitor
2-slot system mainframe. Includes: 14-inch color monitor, 20 Mbyte hard disk, 720 KB floppy, QWERTY keyboard.
3002P PRISM Mainframe With EL Flat-Panel Display
2-slot system mainframe. Includes: 9 -inch electro-luminescent flat panel display, 20 Mbyte hard disk, 720 KB floppy, QWERTY keyboard.

OPTIONS FOR BOTH 3002C AND 3002P
Opt. 1B-Accessory Bag
Opt. 1C - 1200C01 RS232 COMM Pack
Opt. 2B-3002P Carrying Case (3002P only)
$3002 E$ PRISM Expansion Mainframe
2-slot expansion mainframe. Includes: 9 -inch \&
4 -foot TEKLink cable, mainframe mounting plate.

3002 SERIES INSTRUMENT MODULES

30MPX 8/16/32 Bit Microprocessor Analysis Application Module
Includes: P6480 state probe w/o leadset, P6486 w/std leadset, FasTrak training package.
Opt. 1A-30DA01 Performance Analysis Software Opt. 1F- P6480 General Purpose Probe Adapter Opt. 1L-1 P6486 high performance leadset 30HSM High Speed Application Module Includes: 2 P6487 with standard leadset. Opt. 1L-Add two high performance leadsets Opt. 4L-Add one 2 GHz leadset Opt. 5L - Add two 2 GHz leadsets 30DSM Digitizing Oscilloscope Module Includes: Two P6109-10:1 probes.

ADDITIONAL PRODUCTS

P6480 State Data Acquisition Probe w/o Lead

Options A1, A2, A3, A5 -available for the 3002 and 3001 platforms. Please refer to page 374 for description.

3001
\$7,200
\$750
+\$450
\$1,000

MICROPROCESSOR SUPPORT PACKAGES

30DM04 8086/88 SW and Probe Adapter,
DIP Socketed
30DM06 80186/188 SW and Probe Adapter
PGA Socketed
Ppt. 18 - Substitute PLCC Socketed
Opt. 2 S - Substitute LCC Socketed
Opt. 3 - Substitute PLCC Soldered
30DM08 80286 SW and Probe Adapter,
PGA Socketed
Opt. 1S - Substitute PLCC Socketed
Opt. $2 S$-Substitute LCC Socketed
Opt. 3 S - Substitute PLCC Soldered
30DM09A 80386 SW and Probe Adapter,
PGA Socketed
30DM10 80386SX, 80376 SW and Probe
Adapter, 3M PQFP Socketed
Opt. 3S - Substitute AMP PQFP Socketed +\$225
30DM27 68000/10 SW and Probe Adapter, DIP Socketed
Opt. 1S - Substitute DIP Soldered
Opt. 2S - Substitute PGA Socketed
Opt. 3S - Substitute PLCC Socketed +\$800
Opt. 4S - Substitute PLCC Soldered +\$500
30DM31 68020 SW \& Probe Adapter,
PGA Socketed
30DM33 68030 SW and Probe Adapter,
PGA Socketed
30DM41 Z80 (8 MHz) SW and Probe Adapter,
DIP Socketed
Opt. 1S - Substitute DIP Soldered
30DM41F Z80 $(20 \mathrm{MHz})$ SW and Probe Adapter,
DIP Socketed
30DM91 68HC11 SW and Probe Adapter,
52-PIN PLCC Socketed \& Soldered $\$ 800$
30DM101 56000/1 SW and Probe Adapter,
PGA Socketed
30DA01 Performance Analysis Software $\$ 650$

PROTOTYPE DEBUG TOOL SUPPORT PACKAGES

30RP1 General Purpose PDT w/ROM Probe $\$ 2,000$
Opt. 01 - Add 24/28/32-Pin Gen. Purpose ROM Probe Adapter
+\$350
Opt. 02 - Add 40-Pin DIP ROM Probe Adapter $\quad \mathbf{\$ 3 5 0}$
30DD27 68000/10 PDT Software
\$1,500
$30 D 03168020$ PDT Software
$\$ 3,000$
30DD33 68030 PDT Software
$\$ 3,000$

* Contact your local sales engineer.
\$1,150

1,800
\$1,800
$\$ 1,800$
\$1,150

\qquad

\qquad

Expandable, Affordable Logic Analyzers that Grow with You

- 16 to 64 Channels
- 100 MHz Asynchronous Sampling
- 100 MS/s Digitizing Oscilloscope Card
- 25 MHz Synchronous Sampling
- 2K Memory Depth Per Channel
- Disassembly for 8 and 16 bit Microprocessors
- 14-Level Triggering with Conditional Branching
- GPIB, RS-232C, Parallel Printer Options

FLEXIBILITY YOU WILL PUT TO USE EVERY DAY

The 1230 is a series of modular, general-purpose logic analyzers that support hardware timing analysis, microprocessor disassembly, and system integration applications.
The 1230 provides $16,25 \mathrm{MHz}$ state channels or 8 , 50 MHz , or $4,100 \mathrm{MHz}$ timing channels. Up to three 1230E1, 16 channel expander cards may be added to increase the number of channels. Refer to the configuration chart on the following page.

1230B - BATTERY POWER

The 1230B is a battery-powered version of the 1230. In addition to its self-contained, rechargable battery, the 1230B also operates from 12 volts. The 1230B functions the same as the 1230 and uses the same probes and expansion modules, including the 1230DSM Digitizing Oscilloscope Module.

1230D ANALYZER AND OSCILLOSCOPE

The 1230D combines a 16-channel 1230 with a 2channel, 100MS/s Digitizing Oscilloscope. It provides two versatile tools in one portable package. The 1230D can be expanded to 48 logic analysis channels.

The modular 1230 Series provides a strong growth path. You can expand the number of channels, add a Digitizing Oscilloscope module and microprocessor support probes as your testing needs change.

BROAD MICROPROCESSOR SUPPORT

Optional disassembly probes let you conveniently attach to and monitor your microprocessor. Support is available for the $68000,68 \mathrm{HC11}, \mathrm{Z80}, 80286,80386 \mathrm{SX}$, and many others. Refer to the microprocessor selection guide on page 154 for a complete list.

EASY TO LEARN AND USE

The 1230 Series features a large display and fast, interactive, pop-up menus. To save you time, most menu selections are made with a single keystroke. Menus are never more than one level deep, so you can select parameters quickly, without bottlenecks. Prompts at the bottom of each menu describe what to do, and a NOTES key provides context-sensitive, on-screen explanation.

DIGITIZING OSCILLOSCOPE

The 1230 Series combines a $100 \mathrm{MS} /$ s digitizing oscilloscope and a logic analyzer in the same affordable instrument. Use the scope and logic analyzer separately, or interactively as an efficient system debug/characterization tool. The 1230DSM Digitizing Oscilloscope Module provides:

- 2 simultaneous channels
- $100 \mathrm{MS} / \mathrm{s}$ sampling rate
- 100 MHz analog bandwidth
- 8-bit vertical resolution
- 2048 samples per channel
- Repetitive sampling and signal averaging

POWERFUL TRIGGERING - A TEK STANDARD

Like all Tek logic analyzers, the 1230 Series provides flexible, accurate triggering. Resources include 24 userdefinable conditions, 14 triggering levels, two word recognizers per level, 5 ns glitch triggering, and more. All triggering resources are available for both timing and state analysis.
There are two trigger modes: Basic and Advanced. Having two modes to choose from lets you use the mode most suited to your application, without unnecessary complexity. Basic mode supports the most commonly used trigger setups. Advanced mode expands triggering capabilities with IF..THEN..ELSE instructions useful for creating two-way conditional branches and for qualifying data storage.

FOUR NONVOLATILE 2K-DEEP MEMORIES

Four different memories, each with 2 K bits/channel, are available for acquisition or reference data. All four memories are nonvolatile. Nonvolatile storage means that valuable test data is not accidentally lost. The last-used setup and acquisition data are restored on power-up, letting you begin where you left off.

MEMORY COMPARISON FUNCTIONS

The 1230 Series supports two comparison modes: manual and automatic. Manual-compare provides a single comparison of acquisition memory to reference memory. This is useful for basic pass/tail tests.
Auto-compare makes data acquisitions and comparisons repetitively without an operator present. Autocompare is valuable in "babysitting" applications such as isolating intermittent malfunctions, freeing you from monitoring the test until the fault is detected.

In both compare modes, you can compare any two of the four memories. Differences are highlighted in the State Table.

	1230 SERIES CONFIGURATION CHART			
	$\mathbf{1 2 3 0 / B}$ or /D	With one 1230E1	With two 1230E1s	With three 1230E1s
Channels at 25 MHz sync, async	16	32	48	64
Channels at 50 MHz async	8	16	24	32
Channels at 100 MHz async	4	8	12	16
Glitch channels	8	16	24	32
Time bases	1	2	3	4
Nonvolatile memories	4	4	4	4
Nonnolatile setups	8	8	8	8
Memory depth/channel	2048	2048	2048	2048
Compatible with 1230DSM	Yes	Yes	Yes	No

REMOTE CONTROL FOR LOW-COST AUTOMATED TESTING

By adding an optional RS232 or GPIB communications interface to the 1230 Series, the analyzer can be controlled remotely from a computer keyboard or via a program written for the computer. This capability lets you turn the instrument into a low-cost automated test station.

The RS232 and GPIB interfaces also let you store unlimited memories and setups on your PC, and download them into the analyzer at any time.

Included with the RS232 Interface is software package S43R101. This software runs on IBM PC, XT, ATs (or compatibles) and provides an easy, fast method for transferring instrument setups and data over RS232. S43R101 also lets you create and run automatic, remotecontrolled tests.

THE COMPLETE SOLUTION

EVERYTHING YOU NEED TO LEARN AND USE ANY 1230 SERIES INSTRUMENT IS STANDARD.

This includes the normal accessories you would expect: programmable-threshold acquisition probe, leadsets, grabber tips, and Operator's Manual. And there is a handy, pocket-sized quick reference guide included. Extensive instructional materials: training videotape, practice test circuit, and a workbook of application examples are also included at no additional cost

TEACHING MATERIALS

Tektronix developed the Basic Concepts of Logic Analysis self-study workbook (LABASIC) for those who need to learn or teach logic analysis theory and techniques. This optional workbook contains theory, instructors guide, exercises using the 1230 , and student examinations.

Self-paced training materials quickly build your skills.

Timing diagram displays up to 16 traces at once. Intensified areas indicate glitches.

Digitizing oscilloscope displays are available for single or dual trace, full-screen trace, and mixed scope and timing diagram traces.

The 1230 Series supports an extensive list of popular. microprocessors and microcontrollers.

Disassembly probes are compact and easy to connect.

MICROPROCESSOR SUPPORT

QUICK AND CONVENIENT CONNECTIONS

These compact microprocessor probes attach to the 1230 Series instruments in place of the standard acquisition probes. Each probe is preconfigured for fast, efficient connections to the specific microprocessor package (e.g., DIP, PGA, PLCC, or PQFP).

Disassembly probes that begin with the letters DP require the 1230 DPA , a universal preprocessor.

AUTOMATIC MENU SETUP

You can completely set up all pertinent menus for the target microprocessor by uploading setups from the disassembly probe. All it takes is one keystroke at powerup. If desired, setups can then be customized for your specific application.

FLEXIBLE VIEWING OF DATA

Acquired data can be viewed in either a state table, timing diagram, or disassembly format. When using disassembly format, two additional modes of display, Hardware and Software, are available.
Hardware mode shows all bus operations by displaying all machine cycles. Software mode shows only instruction cycles, much like an assembly listing.

EXTRA CAPABILITIES

Data searching functions, microprocessor-specific onscreen notes, fast scrolling, and the ability to jump to any memory location are available on all disassembly probes. For processors with pre-fetch queues, instructions that are fetched, but not executed, are clearly marked.

1230 SERIES MICROPROCESSOR AND BUS ANALYSIS SELECTION GUIDE

Microprocessor Type \& Mfg.	Package Style	Minimum System Required	Order This Support Package	Price
Intel				
8085	DIP	$1230 \mathrm{C32}$	PM404	\$800
8031/8051	DIP	1230 C 32	DP8031D ${ }^{\text {¹ }}$	\$800
8032/8052	DIP	1230C32		\$800
8086/8088	DIP	$1230 C 48$	DP8086D* ${ }^{1}$	\$1,500
80186/80188	PGA	1230 C 48	DP186P ${ }^{-1}$	\$1,600
8096/80C196	PLCC	1230 C 48	DP96PL*	\$1,600
80286/80287	PGA	1230 C 48	DP286P ${ }^{\text {-1 }}$	\$1,600
80286/80287	PLCC	1230 C 48	DP286PL* ${ }^{1}$	\$1,600
80386SX/80387SX	PQFP	1230 C 48	DP386SX ${ }^{1}$	\$2,200
Motorola				
6800/6802	DIP	1230 C32	PM407	\$800
6809/6809E	DIP	$1230 \mathrm{C32}$	PM406	\$800
$68 \mathrm{HC11}$	all	1230 C 32	DPHC11 ${ }^{1}$	\$800
68000/68010	DIP	1230 C 48	DP68KD ${ }^{1}$	\$1,200
68000/68010	PGA	1230 C 48	DP68KP ${ }^{1}$	\$1,200
Other				
280	DIP	$1230 \mathrm{C32}$	PM402	\$800
6502/C02/C802	DIP	1230 C 32	PM403	\$800
Buses				
GPIB	n/a	Any 1230	$\begin{aligned} & \hline \text { DPGPIB**,2 } \\ & 12300 \text { Opt. } 07^{* 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 800 \\ & \$ 195 \\ & \hline \end{aligned}$
RS232	n/a	Any 1230	A6740G	\$1,500
STD	n/a	1230 C 32	PM405	\$800

[^25]

Both the 1230DSM and 1230E1 cards install easily allowing you to reconfigure your instrument in less than five minutes.

Option boards provide a range of additional capabilities and install in minutes. Options include parallel printer port, RS232 and GPIB communication interfaces, and on-line notes in foreign languages.

STANDARD 1230 SERIES CONFIGURATIONS

STANDARD 1230 SERIES CONFIGURATIONS				
Model Number	Recommended Application	Composed of:	Performance Overview	Price
Base Configurations				
1230	HW state/timing analysis	11230 Mainframe \& (1) P6444 Probe	16 -Ch 25 MHz synchronous 4-Ch 100 MHz asynchronous	\% \$2,995
1230 C 32	HW state/timing analysis or 8 -bit processor support	11230 Mainframe \& (1) P6444 Probe 1 1230E1 \& (1) P6444 Probe 1 Parallel Printer Port	32-Ch 25 MHz synchronous 8-Ch 100 MHz asynchronous	[\$4,325
$1230 C 48$	HW state/timing analysis 8- or 16 -bit processor support	11230 Mainframe \& (1) P6444 Probe $21230 E 1$ \& (2) P6444 Probes 1 Parallel Printer Port	48-Ch 25 MHz synchronous 12-Ch 100 MHz asynchronous	\% \$5,525
1230 C 64	HW state/timing analysis or 8 - or 16 -bit processor support	$\begin{aligned} & 11230 \text { Mainframe \& (1) P6444 Probe } \\ & 31230 E 1 \text { \& (3) P6444 Probes } \\ & 1 \text { Parallel Printer Port } \end{aligned}$	64-Ch 25 MHz synchronous $16-\mathrm{Ch} 100 \mathrm{MHz}$ asynchronous	\$6,725
Battery Operated Configurations				
1230B	HW state/timing analysis	1 1230B Mainframe \& (1) P6444 Probe	16-Ch 25 MHz synchronous 4-Ch 100 MHz asynchronous	\$4,995
1230B32	HW state/timing analysis or 8 -bit processor support	$\begin{aligned} & 1 \text { 1230B Mainframe \& (1) P6444 Probe } \\ & 11230 \mathrm{E} \text { \& (1) P6444 Probe } \\ & 1 \text { Parallel Printer Port } \\ & \hline \end{aligned}$	32-Ch 25 MHz synchronous 8-Ch 100 MHz asynchronous	\$6,325
1230848	HW state/timing analysis or 8 - or 16 -bit processor support	1 1230B Mainframe \& (1) P6444 Probe 2 1230E1 \& (2) P6444 Probes 1 Parallel Printer Port	48-Ch 25 MHz synchronous 12-Ch 100 MHz asynchronous	\$7,525
1230B64	HW state/timing analysis or 8 - or 16 -bit processor support	1 1230B Mainframe \& (1) P6444 Probe $31230 E 1$ \& (3) P6444 Probes 1 Parallel Printer Port	64-Ch 25 MHz synchronous 16-Ch 100 MHz asynchronous	\$8,725
Configurations Including a Digitizing Oscilloscope Module				
12300	HW state/timing analysis or system integration	11230 Mainframe \& (1) P6444 Probe 112300 SM \& (2) P6109 Probes	16-Ch 25 MHz synchronous 4-Ch 100 MHz asynchronous 2-Ch 100MS/s Digitizing Scope	
1230032	HW state/timing analysis, system integration, or 8 -bit processor support	11230 Mainframe \& (1) P6444 Probe 11230 E1 \& (1) P6444 Probe 1 1230DSM \& (2) P6109 Probes 1 Parallel Printer Port	32-Ch 25 MHz synchronous 8-Ch 100 MHz asynchronous 2-Ch 100MS/s Digitizing Scope	$\mathbf{\$ 6 , 9 9 0}$ dule
1230048	HW state/timing analysis, system integration, or 8 -bit or 16 -bit processor support	11230 Mainframe \& (1) P6444 Probe 2 1230E1 \& (2) P6444 Probes 112300 SM \& (2) P6109 Probes 1 Parallel Printer Port	48-Ch 25 MHz synchronous 12-Ch 100 MHz asynchronous 2-Ch 100MS/s Digitizing Scope	

Options A1-A5, International Power Plugs, are available as no charge options for each preconfigured system.
Please refer to page 374.
To order, call your local Tektronix Sales Office, or call Tek's National Marketing Center.

MICROWAVE \& RF PRODUCTS

Contents

MICROWAVE INSTRUMENTS

2782 Spectrum Analyzer
(100 Hz to 33 GHz coaxial; to
325 GHz with external mixers) ... 158
2756P Lab Spectrum Analyzer
(10 kHz to 325 GHz with external
mixers)
2755AP Lab Spectrum Analyzer
(10 kHz to 325 GHz with external
mixers)
2754 Lab Spectrum Analyzer (10 kHz to 21 GHz)163

494AP Portable Spectrum Analyzer
(10 kHz to 325 GHz with external
mixers)
492BP Portable Spectrum Analyzer
(10 kHz to 325 GHz with external mixers)168

492PGM Portable Spectrum
Analyzer (10 kHz to 21 GHz)...... 168
497P Portable Spectrum Analyzer
(100 Hz to 7.1 GHz)168

VHF/UHF INSTRUMENTS

2753P Lab Spectrum Analyzer
(100 Hz to 1800 MHz) 163
495P Portable Spectrum Analyzer
(100 Hz to 1800 MHz) 168
NEW 2712 Portable Spectrum
Analyzer (9 kHz to 1800 MHz) ... 178
2710 Portable Spectrum Analyzer
(10 kHz to 1800 MHz)
.179

WAVEGUIDE MIXERS AND ANCILLARY EQUIPMENT

WM782 Waveguide Mixers 162
WM490 and WM780 Waveguide
Mixers173
TR503 Tracking Generator
(100 kHz to 1800 MHz) 177
1405 TV Sideband Adapter 177
2402A TEKMATEM 92
2704 Inverter 181
2705 Battery Pack 181
NEW 2721/2722 Non-Interfacing
CATV/Broadband Sweep 182
Accessories 182

SPECTRUM ANALYZER SYSTEMS AND SOFTWARE

TekSPANS, GRASP, EMI, RSM and
PC-based Systems 174
271X Family Utility Software 181
Spectrum Analyzer Systems 176

LOW-FREQUENCY

3052 Digital Signal Processing
System (dc to 10 MHz)............. 184
RF160 Down Converter 186
RF162 RF Down
Converter .186
2630 Fourier Analyzer
(5 Hz to 10 kHz real time;
to 20 kHz batch)280

TEKTRONIX SPECTRUM ANALYZERS								
	2710	2712	$\begin{aligned} & \text { 492PGM/ } \\ & 2754 \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { 495P/ } \\ & 2753 P \end{aligned}$	497P	$\begin{aligned} & 492 \mathrm{BP} / \\ & 2755 \mathrm{AP} \end{aligned}$	$\begin{aligned} & \text { 494AP/ } \\ & \text { 2756P } \end{aligned}$	2782
Coaxial Frequency Range	$\begin{aligned} & 10 \mathrm{kHz}- \\ & 1.8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 9 \mathrm{kHz}- \\ & 1.8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{kHz}- \\ & 21 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz}- \\ & 1.8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz}- \\ & 7.1 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{kHz}- \\ & 21 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{kHz}- \\ & 21 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz}- \\ & 33 \mathrm{GHz} \end{aligned}$
Resolution Bandwidth Range	$\begin{aligned} & 3 \mathrm{kHz-} \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~Hz}- \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kHz}- \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{Hz-} \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz}- \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 3 \mathrm{~Hz} \\ 10 \mathrm{MHz} \end{gathered}$
Basic Signal Sensitivity	-117 dBm	-129 dBm	-110 dBm	-131 dBm	-130 dBm	-120 dBm	-134 dBm	-135 dBm
Sideband Noise for 1 GHz	$\begin{gathered} -100 \mathrm{dBc} / \mathrm{Hz} \\ @ 90 \mathrm{kHz} \\ 0 \mathrm{ffset} \end{gathered}$	$\begin{gathered} -100 \mathrm{dBC} / \mathrm{Hz} \\ @ 9 \mathrm{kHz} \\ \text { Offset } \\ \hline \end{gathered}$	$\begin{gathered} -103 \mathrm{dBc} / \mathrm{Hz} \\ @ 30 \mathrm{kHz} \\ 0 \mathrm{ftset} \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ @ 30 \mathrm{kHz} \\ \text { Offset } \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ @ 30 \mathrm{kHz} \\ \text { Offset } \end{gathered}$	$\begin{gathered} -105 \mathrm{dBC} / \mathrm{Hz} \\ @ 30 \mathrm{kHz} \\ \text { Offset } \end{gathered}$	$\begin{gathered} -105 \mathrm{dBC} / \mathrm{Hz} \\ @ 30 \mathrm{kHz} \\ \text { Offset } \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ @ 10 \mathrm{kHz} \\ 0 \mathrm{ffset} \end{gathered}$
Viewable Dynamic Range	80 dB	80 dB	80 dB	90 dB	90 dB	90 dB	90 dB	100 dB
Frequency Reference Aging Rate	$\begin{aligned} & 1 \times 10^{-5} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 2 \times 10^{-6} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-5} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-7} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-1} \\ & \text { Per Year } \\ & \text { Option } 02 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \times 10^{-6} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-1} \\ & \text { Per Year } \end{aligned}$	$\begin{aligned} & 1 \times 10^{-6} \\ & \text { Per Year } \end{aligned}$
Residual Spurious Responses	-100 dBm	-100 dBm	-95 dBm	-100 dBm	$-100 \mathrm{dBm}$	-100 dBm	-100 dBm	$-100 \mathrm{dBm}$
Intermodulation Distortion @ -27 dBm into mixer	$-70 \mathrm{dBC}$	$-90 \mathrm{dBC}$						
Price (US Domestic)	\$8,750	\$11,950	\$20,900	\$22,900	\$26,250	\$32,450	\$43,255	\$69,550

Utility software for Tektronix Spectrum Analyzers provides for a variety of display formats including color copies, four-color plots and dot matrix printouts.

MICROWAVE \& RF PRODUCTS

TEKTRONIX SPECTRUM ANALYZERS AND ANCILLARY PRODUCTSUNSURPASSED PERFORMANCE VALUES

Tektronix spectrum analyzers give you more for your money-for unexcelled performance at every frequency and price range. From 100 Hz to 325 GHz , Tektronix spectrum analyzers are available in portable, benchtop and rackmount configurations and satisfy the diverse needs of research, design, equipment maintenance and production.

Each analyzer is fully programmable so you can automate complex measurements-on RF and microwave
component or system production testing. And Tektronix offers a full line of support software.

Measurements of CATV and other broadband distribution systems are now improved with the introduction of Tektronix' new 2721/22 Non-Interfering CATV/Broadband System Sweep. The 2722 Receiver is capable of storing and downloading up to 50 waveforms to an external serial printer, or PC. This waveform storage capability allows a new level of maintenance documentation for CATV and broadband systems.

Tektronix 2721/22 Non-Interfering System Sweep provides swept frequency response measurements of broadband cable distribution systems.

Calibrated Waveguide Mixers extend the frequency range of Tektronix Microwave Spectrum Analyzers to 325 GHz .

2782 HIGH-PERFORMANCE MICROWAVE SPECTRUM ANALYZER

FEATURES/BENEFITS

- 100 Hz to 33 GHz Coaxial Frequency Range and Wide Bandwidth Preselection for More Measurement Productivity
- External Waveguide Mixer Support to 325 GHz with Frequency Calibration to 1.2 THz
- Full-range Sweep from 0 Hz to 33 GHz
- Resolution Bandwidths from 3 Hz to 10 MHz in a 1, 3, 10 Sequence
- 100 dB Display Dynamic Range
- Unparalleled Phase Noise

Performance as Low as -105 $\mathrm{dBc} / \mathrm{Hz}$ at 10 kHz Offset up to 21 GHz

- Mixer Input Level Decoupling from RF Attenuator by up to 30 dB Provides Higher SNR and Dynamic Range

STANDARD IN SPECTRUM ANALYZER PERFORMANCE

The Tektronix 2782 offers you leadership measurement performance, not just through minor enhancements, but by truly extending the state of the art. For example, the 33 GHz coaxial input gives you more frequency range without resorting to external mixers. And you can see it all with the full-range 0 Hz to 33 GHz sweep.

Whatever you need to measure, from close-in phase noise to demodulated pulsed RF, the 2782 provides the capabilities - capabilities such as substantially better phase noise, and resolution bandwidth selections from 3 Hz to 10 MHz . This is further backed with standardsetting dynamic range and improved sensitivity from direct fundamental mixing to 28 GHz , plus a host of other performance firsts. For example, a +15 dBm TOI, a 0 dBm $1-\mathrm{dB}$ compression point, and the ability to uncouple the mixer input level from the RF attenuator by up to 30 dB means higher signal-to-noise ratio measurements.

When you need to go above 33 GHz and external mixers are used, the 2782 provides as much as 25 dB better measurement sensitivity than ever before possible. Set-up is simple as well. All you need is one cable and the WM782 Waveguide Mixers and you are set; you do not even have to peak these mixers.

SOFT KEY, MENU, AND MACRO CONVENIENCE

The 2782 is rich in measurement features that are quickly and easily accessible through softkeys and menus that rarely go three deep. Often, your most frequently used feature can be assigned to one of two soft knobs for immediate access and control. Additionally, you can store front-panel keystroke sequences to simplify complex measurements, or even create single-key executable macros for the most complex applications.

HIGHLY EFFICIENT SYSTEMS COMPONENT

With full programmability and two GPIB ports, the 2782 offers a new level in systems convenience and

efficiency. For example, the 2782 can communicate with the system host on one GPIB port and control a synthesizer on its other port. The host never has to deal with the synthesizer. The measurement host can be unburdened even further by downloading measurementspecific macros and key sequences to the 2782 . And with its small size, the 2782 provides more performance in less rack space than any other spectrum analyzer on the market.

CHARACTERISTICS

Except as noted, the following tables of electrical characteristics and features apply to the 2782 after a 30-minute warm-up.

FREQUENCY-RELATED

Frequency Range - 100 Hz to 33 GHz in coax, 8 GHz
to 1.2 THz externally.

Frequency Readout Accuracy -

$\pm\left[F\left(R E+10^{-10}\right)\right]+D+M$
where: $F=$ center frequency; $R E=$ reference eirror; $D=2 \%$ of span or 20% of resolution bandwidth, whichever is greater; $M>2 \mathrm{MHz}$ span $=(100 \mathrm{~N}) \mathrm{kHz} ; \mathrm{M}<2 \mathrm{MHz}$ span $=(10 \mathrm{~N}) \mathrm{Hz} . \quad \mathrm{N}=\mathrm{L} .0$. harmonic.
Counter ($\mathrm{S} / \mathrm{N} \geq 20 \mathrm{~dB}$) -
Range: 100 Hz to 1.2 THz
Resolution: Selectable from 1 Hz to 1 GHz
Accuracy: $\pm\left[F\left(R E+10^{-10}\right)\right]+8 \mathrm{~N} \mathrm{~Hz}+1$ LSD
Δ Count: $\pm\left[\Delta F\left(R E+10^{-10}\right)\right]+16 \mathrm{~N} \mathrm{~Hz}+2$ LSD
where: $F=$ counter frequency; $R E=$ reference error;
$\mathrm{N}=\mathrm{L} .0$. harmonic; $\mathrm{LSD}=$ least significant digit.

Frequency Reference Accuracy -

Aging: $1 \times 10^{-6} /$ year, $<7 \times 10^{-9} /$ day
Temp. Drift: $< \pm 5 \times 10^{-7}$ from $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ with respect to $25^{\circ} \mathrm{C}$

Frequency Span -

Range: $0,10 \mathrm{~Hz}$ to 33 GHz in coax, to 600 GHz in external mixer bands.
Resolution: $>100 \mathrm{~Hz}$, selectable in 1% increments
Accuracy:

$>2 \mathrm{MHz}$	$\pm 2 \%$
1 kHz to 2 MHz	$\pm 1 \%$
$<1 \mathrm{kHz}$	$\pm 7 \%$

FEATURES/BENEFITS (cont.)

- Intelligent Markers and Signal Processing: Search, Sort, and Mark CW, Pulse, or All Signals. Exclusive Occupied Bandwidth Mode.
Signal Tracking.
- Built-in 100 Hz to 1.2 THz Frequency Counter
- Up to $7 \times 10^{-9} /$ day Center Frequency Accuracy
- Fully Programmable with Two GPIB Interfaces
- Built-in Automation Macro Downloading to 40K of NVRAM.
Store up to 20 Front-Panel Key Sequences.
Store up to 20 Waveforms with Readout Information. Store up to 20 Instrument States.
- View Analog and DigitallyStored Waveforms Simultaneously
- High-Resolution Color Display
- Space Saving Portable Package

SPURIOUS RESPONSES

Spurious Responses $-<-80 \mathrm{dBC}+20$ Log N except as noted below:
Residual Signals $<-77 \mathrm{dBm}, 100 \mathrm{~Hz}$ to 10 MHz $<-100 \mathrm{dBm}, 10 \mathrm{MHz}$ to 6.5 GHz
$<-92 \mathrm{dBm}, 6.5 \mathrm{GHz}$ to 21 GHz
<-82 dBm, 21 GHz to 28 GHz
$<-80 \mathrm{dBm}, 28 \mathrm{GHz}$ to 33 GHz
1-dB Gain Compression -
100 Hz to $21 \mathrm{GHz}: 0 \mathrm{dBm}$.
21 GHz to $28 \mathrm{GHz}:-3 \mathrm{dBm}$.
28 GHz to $33 \mathrm{GHz}:-6 \mathrm{dBm}$.

Intermodulation Rejection -

Second Order Intercept: >+28 dBm, 1 MHz to 6.5 GHz .
Third Order Intercept (with signal separation < 150 MHz): $>+15 \mathrm{dBm}, 1 \mathrm{MHz}$ to 6.5 GHz . $>+10 \mathrm{dBm}, 6.5 \mathrm{GHz}$ to 28 GHz . $>+15 \mathrm{dBm}, 28 \mathrm{GHz}$ to 33 GHz .
Second Harmonic Distortion - (at -30 dBm signal)
$<-60 \mathrm{dBc}, 50 \mathrm{MHz}$ to 6.5 GHz . <-100 dBc, 6.5 GHz to 33 GHz .

Out of Band Responses -

Center Frequency Ranges
100 Hz to 28 GHz 28 GHz to 33 GHz

	100 Hz to 28 GHz	28 GHz to 33 GHz
Image Response	$<-65 \mathrm{dBc}:$	$<-65 \mathrm{dBc}$
Harmonic		
Conversions	$<-65 \mathrm{dBc}:$	$<-55 \mathrm{dBc}$
Signals at external Input with coax selected:	$<-90 \mathrm{dBc}:$	$<-90 \mathrm{dBc}$

DISPLAY-RELATED
Display Type - Liquid crystal color shutter, 10×10 div. graticule.
Digital Storage -Maximum Sweep Rate: 10 ms with 10-bit resolution, 2 ms with reduced horizontal resolution. Vertical Digitizer Uncertainty: $\pm 0.4 \%$.
Nonvolatile Memory - CMOS battery backed-up
RAM, memory retention guaranteed to $-10^{\circ} \mathrm{C}$. Battery Type: Lithium cells.
Battery Life: 1.8 years @ $20^{\circ} \mathrm{C}, 1$ year @ $50^{\circ} \mathrm{C}$ (batteries are not used while the instrument is connected to a power source).
Waveforms: 20 waveforms with screen readouts and labels or date/time stamp.
Front-Panel Setups: 20 complete front-panel setups.
Front-Panel Sequences: 20 sequences.
Macros: 40k of RAM.
Instrument Calibration Data: Separate EEPROM.
Sweep Generator and Triggering -

Sweep Generator:				
Sweep Speed	200 s to $2 \mu \mathrm{~s}$ in 1, Range			
Accuracy	5,5 sequence	\quad	$5 \%, 50 \mu \mathrm{~s}$ and slower;	
:---	:---			
	$10 \%, 20 \mu \mathrm{~s}$ and faster			

INPUTS AND OUTPUTS

RF Input - Frequency Range: 100 Hz to 33 GHz . Coupling: dc.
Connector: Planar crown system connector with K compatible and N -type adapters as standard accessories. Impedance: 50Ω.

VSWR -

	Center Frequency Ranges		
RF	100 Hz to	$\mathbf{6 . 5} \mathrm{GHz}$ to	$\mathbf{2 8 ~ G H z}$ to
Atten	6.5 GHz	28 GHz	33 GHz
$10 \mathrm{~dB}-70 \mathrm{~dB}$	$<2: 1$	$<2.5: 1$	$<3.0: 1$

Maximum Safe Input Power -

AC Average Power: +30 dBm with $\geq 10 \mathrm{~dB}$ attenuation.
Pulse Power: 50 W peak, 1μ s and 0.005 duty factor with $\geq 50 \mathrm{~dB}$ attenuation.
DC: 0 volts.
Local Oscillator Emission - (at 0-dB RF attenuation) $\leq-75 \mathrm{dBm}: 100 \mathrm{~Hz}$ to 6.5 GHz . $\leq-65 \mathrm{dBm}$: 6.5 GHz to 33 GHz .

External Mixer Input - (diplexer built-in)
Impedance: 50Ω; VSWR < 1.9:1 at 525 MHz and < 2.2:1 at 3.525 GHz .
LO Output Power:

$$
\geq 15 \mathrm{dBm} \text { at } 8.1 \text { to } 17.9 \mathrm{GHz}
$$

LO Output - Provides access to output of 1 st LO at +4 dBm minimum.
Probe Power - Provides operating voltage for active probes; output voltages are:

pin $1:+5 \mathrm{~V} \pm 5 \%$ @ 100 mA max
$\operatorname{pin} 2:$ ground
$\operatorname{pin~} 3:-15 \mathrm{~V} \pm 5 \%$ @ 100 mA max
$\operatorname{pin~} 4:+15 \mathrm{~V} \pm 5 \%$ @ 100 mA max

Reference Signal Out -

Amplitude: -20 dBm .
Amplitude Accuracy: $\pm 0.3 \mathrm{~dB}$.
Frequency: 100 MHz (derived from reference oscillator).

Ref In/Out -

Impedance: 50Ω nominal.
Input Frequency: $10 \mathrm{MHz} \pm 5 \mathrm{~Hz}$.
Input Signal Amplitude Range: 0 dBm minimum to +15 dBm maximum.
Output Signal (when selected): Nominally 0 dBm at 10 MHz .
Allowable Phase Noise: $\leq 100 \mathrm{dBC} / \mathrm{Hz}$ at 1 Hz offset.
(without degrading instrument phase noise performance).
Ext Trig/Horiz - External trigger input, or external sweep input.
Accessory Connector - 15-pin connector for external inputs and outputs.
Ext. In Display Blanking: Provides external access to crt beam blanking.
Ext. In Display Horiz and Vert: Provides external access to real-time channel of the instrument; dc coupled; 10 MHz bandwidth.
Sweep Output: Provides copy of analog sweep.
Ext. In Video: Provides external access to instrument's video processing system; 7.5 MHz bandwidth. Penlift: TTL-level output to lift plotter pen. YIG Coil Tune Voltage and Return: Provides external output of the YTO coil-tuning voltage and a return path.

Ext V Out - External display signal output; jumperselectable between full deflection amplifier signal or the real-time signal.
Ext H Out - External display horizontal signal output; jumper-selectable between full deflection amplifier signal or the real-time signal.
Ext Z Out - External display blanking signal output.

IF Output -

Frequency: 25 MHz (3 MHz and 10 MHz Resolution Bandwidth)
Frequency: 4 MHz (1 MHz or less resolution bandwidth)
Amplitude: +9 dBm nominal (-30 dBm reference level,
0 dB attenuation, -20 dBm RF input), 100 MHz CF 11 CH Res. BW
Impedance: Nominal 50 Ohms
VSWR: $\leq 1.5: 1$

EXTERNAL INTERFACE PORTS

GPIB - Two GPIB ports (IEEE Std. 488-1978) are standard. Interface Functions: Port 1: SH1, AH1, T5, L3, SR1, RLO, PP0, DC1, DT1, C0.
Port 2: SH1, AH1, T5, L3, SR0, RLO, PPO, DC0, DTO, C1, C2, C3, C27, (CO selectable).

POWER REQUIREMENTS

Input Voltage -90 to $132 \mathrm{~V} \mathrm{ac}, 47$ to $440 \mathrm{~Hz} ; 180$ to $250 \mathrm{~V} \mathrm{ac}$,47 to 63 Hz .
Power - 250 W maximum, 2.8 amperes @ 115 V ac, 60 Hz
Leakage Current - 3.5 mA maximum current.

CONFIGURATION

Weight -44 lbs. (20 kg).
Dimensions $-8.05 \times 12.90 \times 18.59$ inches. $204.47 \times$ $327.66 \times 472.19 \mathrm{~mm}$ with front cover, feet, and handle folded back.

ENVIRONMENTAL CHARACTERISTICS MIL-T-28800C, TYPE III, CLASS 3, STYLE C

Temperature - Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Non-operating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Humidity - 5 cycles per MIL STD 810D Procedure III (modified).
Altitude -Operating: 15,000 ft. Non-Operating:
40,000 ft.
Vibration - Operating: Tested to MIL STD 810D
Procedure I (modified); resonant search in all axes from $5-15 \mathrm{~Hz}$ with displacements up to 0.060 inches, $15-25 \mathrm{~Hz}$ with displacements up to 0.040 inches, and $25-55 \mathrm{~Hz}$ with displacements up to 0.020 inches.
Shock - Operating and Non-operating: Tested to withstand three shocks of 30 g , one-half sine, 11 ms duration each direction along each major axis.
Transit Drop - Tested to withstand eight-inch drops, one per each of six faces and eight corners.

ELECTROMAGNETIC INTERFERENCE MIL STD $461 C$ Part 4 -
 Conducted Emissions -

CE01-60 Hz to $15 \mathrm{kHz}, 15 \mathrm{~dB}$ relaxation below 2 kHz . CEO3-15 kHz to 50 MHz power leads; narrowband and broadband full limits (Navy).

Conducted Susceptibility -

CSO1- 30 Hz to 50 kHz power leads, full limits. CSO2-50 kHz to 400 MHz power leads, full limits. CS06-spike power leads, full limits.

Radiated Emissions -

RE01-30 Hz to 50 kHz magnetic field, 5 dB relaxation below 1 kHz and 10 dB relaxation from 1 kHz to 50 kHz . RE02-14 kHz to 1 GHz ; meets MIL STD 461C Part 7 to full limits.

Radiated Susceptibility -

RS01-30 Hz to 50 kHz magnetic field, full limits. RSO2-magnetic induction, 30 dB relaxation.
RS03-14 kHz to 1 GHz ; front-end responses, full limits at $1 \mathrm{~V} / \mathrm{m}$, relaxed 15 dB at $10 \mathrm{~V} / \mathrm{m}$; IF frequencies, full limits at $1 \mathrm{~V} / \mathrm{m}$, relaxed 20 dB at $10 \mathrm{~V} / \mathrm{m}$. 1 GHz to 10 GHz ; front-end responses, full limits at $1 \mathrm{~V} / \mathrm{m}$, relaxed 20 dB at $10 \mathrm{~V} / \mathrm{m}$; IF frequencies, relaxed 15 dB at $1 \mathrm{~V} / \mathrm{m}$, relaxed 35 dB at $10 \mathrm{~V} / \mathrm{m}$.
VDE - Meets VDE 0871 Class B-Regulations for RFI Suppression of High Frequency Apparatus and Installations.
FCC - Meets FCC Part 15 Subpart J Class A-EMI Compatibility.
German RöV - Meets German RöV, X-Ray Decree, Section 5, March 1973.
Safety - Meets the following industry safety standards: CSA Standard C22.2 No. 231; ISO/ANSI S82, Safety Requirements for Electronic Measuring and Controlling Instrumentation; IEC 348, 2nd Edition, Safety Requirements for Electronic Measuring Apparatus; FM-Electrical Utilization Standard Class 3810. UL 1244, 2nd Edition.

ORDERING INFORMATION

wM782 WAVEGUIDE MIXERS

WM782 FEATURES

- Lowest Conversion Loss

WGM Available

- Zero DC Bias
- Improved Reliability
- Increased Sensitivity
- Uniform Size
- Quick Reference Conversion Loss Calibration Chart
- Individually Calibrated
- Rugged LEXAN Plastic Outer Shell
- Anti-Parallel Diodes Reduce Vulnerability to ESD
- Precision Gold-Plated Brass Mixer Body
- Odd Harmonic Conversion Products Eliminated

WM782 APPLICATIONS

- Spectrum Analysis for Millimeter Wave Frequencies
- Swept Frequency Response Measurements
- Power Level Measurements for Millimeter Wave Frequencies
- For Independent Users, Ideally Suited for Frequency Down Conversion
- Harmonic Generator/ Frequency Up Conversion

ORDERING INFORMATION

WM 782 WAVEGUIDE MIXERS AND SETS

$26-40 \mathrm{GHz}$ - Order WM782A
$33-50 \mathrm{GHz}$ - Order WM7820
$40-60 \mathrm{GHz}$ - Order WM782U
$50-75 \mathrm{GHz}$ - Order WM782V
$60-90$ GHz - Order WM782E
$75-110$ GHz - Order WM782W
$90-140 \mathrm{GHz}$ - Order WM782F
$110-170 \mathrm{GHz}$ - Order WM782D
$140-220 \mathrm{GHz}$ - Order WM782G
$220-325 \mathrm{GHz}$ - Order WM 782 J
26 to 60 GHz Set - Includes WM782A and WM780U.
Order WM7826
26 to 90 GHz Set - Includes
WM7826 plus WM782E.
Order WM7827
\$1,870
\$2,175
$\$ 2,580$
$\$ 2,930$
\$3,180
$\$ 3,260$
$\$ 3,495$
$\$ 4,870$
$\$ 4,870$
$\mathbf{\$ 4 , 9 9 0}$

26 to 140 GHz Set - Includes
WM7827 plus WM782F.
Order WM7828
26 to 220 GHz Set - Includes
WM7828 plus WM782G.
Order WM7829
33 to 75 GHz Set - Includes
WM782Q and WM782V.
Order WM78210
33 to 110 GHz Set - Includes
WM78210 plus WM782W.
Order WM78211
33 to 170 GHz Set - Includes
WM78211 plus WM782D.
Order WM78212
\$13,230
${ }^{-1}$ Contact your local sales office.

WM782 SERIES

WAVEGUIDE MIXERS

The Tektronix WM782 Series of Waveguide Mixers are a high-performance, broadband, zero dc bias, antiparallel dual-diode type mixers for use with the Tektronix 2782 Spectrum Analyzer. The mixer series covers the standard waveguide bands from 26 GHz to 325 GHz . Each mixer has its own conversion loss chart on the back for easy reference.

The WM782 mixers are of uniform size and shape, and consist of a gold-plated solid brass core with a tough protective outer shell of LEXAN plastic.

Typical Electrical Characteristics

Tektronix Model No.	$\begin{aligned} & \text { Band } \\ & \text { Desig. } \end{aligned}$	Freq. Range (GHz)	Sensitivity ${ }^{+1}$ (dBm)	Freq. Response ${ }^{-2}$ $(\mathrm{~dB})$	Conv. Loss (dB)	$\begin{gathered} 1 \mathrm{~dB} \\ \text { Compression } \end{gathered}$	$\begin{gathered} \text { Low-Pass } \\ \text { Cut-0ff } \\ \text { Freq. }{ }^{4} \end{gathered}$
WM782A	A	26 to 40	-115	-	20	0 dBm	16 GHz
WM782Q	Q	33 to 50	-115	± 3	20	0 dBm	20 GHz
WM782U	U	40 to 60	-115	± 3	20	0 dBm	20 GHz
WM782V	V	50 to 75	-110	± 3	25	0 dBm	28 GHz
WM782E	E	60 to 90	-105	$\pm 3^{*}$	35	0 dBm	28 GHz
WM782W	W	75 to 110	-105	$\pm 3^{.3}$	35	0 dBm	28 GHz
WM782F	F	90 to 140	-95	$\pm 3^{.3}$	40	0 dBm	32 GHz
WM782D	D	110 to 170	-90	$\pm 3^{\cdot 3}$	45	0 dBm	40 GHz
WM782G	G	140 to 220	-85	$\pm 3^{\text {. }}$	60	0 dBm	40 GHz
WM782J	J	220 to 325	-75	$\pm 3^{\text {. }}$	70	0 dBm	40 GHz

[^26]| Tektronix Product | Waveguide (EIA) | (JAN) | Dimensions Flange LxWxH (in) | Weight LxWxH (cm) (02) |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { WM } 782 \mathrm{~A} \\ & 26 \text { to } 40 \mathrm{GHz} \end{aligned}$ | WR-28 | UG-599/U | $\begin{gathered} 9.525 \times 2.54 \times 4.32 \\ 3.75 \times 1.00 \times 1.70 \\ \hline \end{gathered}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| WM782Q 33 to 50 GHz | WR-22 | UG-383/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM } 782 \mathrm{U} \\ & 40 \text { to } 60 \mathrm{GHz} \end{aligned}$ | WR-19 | UG-383/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| WM782V 50 to 75 GHz | WR-15 | UG-385/U | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| WM782E
 60 to 90 GHz | WR-12 | UG-387/U | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM } 782 \text { W } \\ & 75 \text { to } 110 \mathrm{GHz} \end{aligned}$ | WR-10 | UG-387/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM } 782 \mathrm{~F}^{-1} \\ & 90 \text { to } 140 \mathrm{GHz} \end{aligned}$ | WR-08 | UG-387/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM782D }{ }^{\circ 1} \\ & 110 \text { to } 170 \mathrm{GHz} \end{aligned}$ | WR-06 | UG-387/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM782G }{ }^{\circ 1} \\ & 140 \text { to } 220 \mathrm{GHz} \end{aligned}$ | WR-05 | UG-387/U-M | $\begin{aligned} & 8.89 \times 2.54 \times 4.32 \\ & 3.50 \times 1.00 \times 1.70 \\ & \hline \end{aligned}$ | $\begin{gathered} 113.4 \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { WM } 782 \mathrm{~J} \\ & 220 \text { to } 325 \mathrm{GHz} \end{aligned}$ | WR-03 | | | |

[^27]
2750 SERIES SPECTRUM ANALYZERS

Tektronix 2750 Series Spectrum Analyzers offer a broad selection of features and benefits to meet wideranging needs for laboratory-level frequency domain spectrum analysis. All units provide full IEEE-488 (GPIB) programmability, which means you can change frontpanel settings, read data from the CRT display, and send waveforms from internal digital source memory to other GPIB devices. Frequency range of the instruments is as follows:
10 kHz to 325 GHz : 2756P and 2755AP
10 kHz to 21 GHz : 2754P
100 Hz to 1.8 GHz : 2753 P
2750 Series Spectrum Analyzers combine affordability with laboratory performance, wide frequency coverage range, and a comprehensive set of powerful features. They are designed for benchtop use or rackmounting, in the lab, on an engineering workbench, or on the manufacturing floor.

A wide array of price/performance alternatives are available. If you need 10 Hz resolution for an exacting close-in spectral purity measurement, the 2756P will fill your need. For more routine uses, such as a microwave transmitter occupied-bandwidth measurement, the 2754P may be the most cost-effective solution.

A WIDE ARRAY OF INTELLIGENT FEATURES

Downloadable programming (macro) capability lets you execute your frequently-used measurement routines from the Spectrum Analyzer's nonvolatile memory. In addition, these Spectrum Analyzers can store up to ten complete front-panel measurement parameter setups in nonvolatile memory to save you measurement time. You can also save up to nine waveform displays, a real benefit when data analysis must be delayed.
Tedious, time-consuming, and often incorrect carrier-tonoise ratio calculations are eliminated; the instrument handles it all with a single keystroke, with automatic noise normalization to 1 Hz and automatic conversion for reference units such as $\mathrm{dBm}, \mathrm{dBmV}, \mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}$, and $\mathrm{dB} / \mathrm{Hz}$.

An internal high-stability reference provides marker or center frequency accuracy approaching 10^{-9} day in the 2756P. For added confidence in measurements, a built-in microwave signal counter in the 2756P with 144 dB dynamic range means you can determine the exact frequency of marked signals only 10 Hz apart - or count the exact delta-frequency between two marked signals even with greatly differing amplitudes. You also have the flexibility of tying in with a system clock, using the external reference lock capacity.

A permanent record of CRT displays can be obtained at the push of a button, without a controller, using the direct plot capability and a GPIB plotter such as the Tektronix HC100.

Menu-selected dynamic markers automatically update frequency and amplitude data with every sweep. Unprecedented signal processing power results when you use these markers in conjunction with the built-in intelligence. With PULSE Mode, you can mark the peak of a main lobe and peaks of side lobes at the push of a
button. The CW Mode locates signals that exhibit CW characteristics and ignores all other signals. The SPUR Mode marks all signals that meet user-defined or automatic threshold criteria. User-definable threshold criteria are available for all signal processing modes.

These instruments also offer operator convenience for measuring the bandwidth of filters, amplifiers, and other networks. Just enter the desired bandwidth point and select BANDWIDTH Mode, and the markers automatically update to display the new value.

Dedicated direct keypad data entry of major measurement parameters enables fast, accurate instrument setup. Screen messages prompt you for proper keypad inputs-all "valid" keys to push are illuminated to steer you to the proper selections. The unique marker keypad allows Peak Find, Right \& Left Next, Next Higher \& Lower, Left \& Right $X d B$, and Peak Find \& Center operations to be executed directly from the front panel. This makes signal searches much easier.
Optional switch-selectable 50 -ohm and 75 -ohm impedances add versatility. For applications such as baseband and CATV, $75-0 \mathrm{hm} / \mathrm{dBmV}$ greatly simplifies spectrum analysis.

The performance leader is the 2756P, which offers frequency coverage from 10 kHz to 21 GHz with its internal mixer, and to 325 GHz with external mixers such
as Tek's WM490 Series, or the new WM780 Series (each WM780 Series mixer is individually calibrated). Signal sensitivity is an impressive -134 dBm . The 2756P is sensitivity is an impressive - 134 dBm . . me use in baseband through millimeter-wave measurements, where the ability to identify and process measurements, where the ability to identify and proces
signal frequencies and amplitudes over wide dynamic ranges with high accuracy is critical.

The 2755AP covers the same frequency range as the
2756 P , and provides nearly the same set of outstanding features and state-of-the-art specifications. It is designed as a cost-effective and productive solution to engineering needs.
The 2754P's frequency range of 10 kHz to 21 GHz is ideal for cost-sensitive applications that still require most of the powerful features of the product family, but can get by with slightly-reduced performance specifications.

The 2753 P features the same functionality and high level of performance as the 2756P, but over a frequency range of 100 Hz to 1.8 GHz . It is optimized for standalone or automated operation in baseband through UHF measurements, where the ability to identify and process weak signals is critical.

Laboratory Performance with Affordable Prices

FEATURES/BENEFITS

- 100 Hz to 325 GHz Frequency Coverage
- Continuous-Resolution Frequency Tuning Combines "Synthesized" Setability and Accuracy with Analog Feel
- Wide Viewable Dynamic Range; as much as 90 dB with 10 Hz to 3 MHz Resolution Bandwidth
- Built-in Frequency Counters Provide Frequency Determination to within 0.0000001% (1x10\%/day ref.)
- Sensitivities to -134 dBm
- Built-in Intelligence for Signal Processing/Marker Functions
- Push Button OccupiedBandwidth and NoiseNormalization Functions

> - Macro Capability with Nonvolatile Memory to Simplify and Speed Up Commonly-Used Routines
> - 75-ohm Option Allows Switch-Selectable Impedances
> - Nonvolatile Memory for up to 9 Waveforms and 10 Front Panel Settings
> - GPIB Programmability with Tek Codes and Formats for Standardized Bus Operation
> - Optional MATE/CIIL Compatibility for Military Applications
> - Ergonomically-Designed Front Panel Controls
> - Direct Screen Data Plots without a Controller
> - Many Application-Specific Options

2756P/2755AP/ SPECTRUM ANALYZERS 2754P/2753P

TYPICAL MEASUREMENTS

- Baseband Measurements
- Carrier Level Monitoring
- Carrier ON/OFF Ratios
- Carrier/Noise Measurements
- EMI/RFI Compliance
- EW Gathering and Analysis
- Frequency Counting
- Harmonic Distortion
- IF Amplifier Adjustments
- Modulation Adjustments
- Pulse Analysis
- Spectral Monitoring
- Spur Searches

TYPICAL APPLICATIONS

- Manufacturing ATE
- Avionics
- Broadcasting
- CATV
- Cellular Radio
- Design and Engineering
- Nuclear Physics
- Radio Astronomy
- Satellite Communications
- Terrestrial Microwave
- Two-Way Radio

REMOTE OPERATION AND COMPLETE SPECTRUM ANALYSIS PACKAGES

Full GPIB-programmability lets you automate your spectrum analysis system needs. Programming is simplified and measurement repeatability ensured. Under program control you can operate the instrument, change front panel settings, read data from the crt display, and send waveforms from internal memory to other GPIB devices. Tek's Standard Codes and Formats keeps commands clear, consistent, and universally understood
You can increase programming flexibility and power with the optional MATE/CIIL language extension. It provides direct memory access (DMA) for high-speed data transmission, a requirement for MATE/CIIL compliance.

TekSPANS software lets you use the 2750 Series Spectrum Analyzers as system components, controlling
them with popular instrument controllers such as the Tektronix PEP-Series, Compaq models, and other PCcompatibles. Coupling the computer to the Spectrum Analyzer via the IEEE 488 bus lets you take advantage of the PC's capability, as well as the power and versatility of the Spectrum Analyzer.

Available Tektronix automated spectrum analyzer packages provide ordering convenience. They are configured around a DOS-based PC, one of the 2750 Series of programmable Spectrum Analyzers, and Tek's General RF Applications Software Package (GRASP). The GRASP software offers many different applications and utility routines, which are selected through easy menudriven operation. Also, EMI sottware is available for FCC, VDE, CISPR, and MIL-STD testing.

2750 Series Spectrum Analyzer characteristics are provided in the following tables.

2750 SERIES CHARACTERISTICS

2756P 2755AP

2754P
2753P
FREQUENCY-RELATED

Frequency Range with Internal Mixers	10 kHz to 21 GHz	10 kHz to 21 Ghz	10 kHz to 21 GHz	100 Hz to 1.8 GHz
Frequency Range with External Mixers	10 kHz to 325 GHz	10 kHz to 325 GHz	N/A	N/A
Frequency Readout Accuracy (center or marker), $\pm[2 \% \text { span }+(\text { CF x Ref })+(2 N+25) \mathrm{Hz}]$	$\begin{gathered} \pm 20 \mathrm{kHz} @ 1 \mathrm{GHz} \\ \text { with } 100 \mathrm{kHz} / \text { div span } \\ \hline \end{gathered}$	$\begin{gathered} \pm 21 \mathrm{kHz} @ 1 \mathrm{GHz} \\ \text { with } 100 \mathrm{kHz} / \text { div span } \\ \hline \end{gathered}$	$\begin{gathered} \pm 30 \mathrm{kHz} @ 1 \mathrm{GHz} \\ \text { with } 100 \mathrm{kHz} / \text { div span } \end{gathered}$	$\begin{gathered} \pm 20 \mathrm{kHz} @ 1 \mathrm{GHz} \\ \text { with } 100 \mathrm{kHz} / \text { div span } \end{gathered}$
Frequency Counter Accuracy, \pm $[($ CF \times Ref $)+(5+N) H z+1$ LSD $]$	$\pm 100 \mathrm{~Hz}$ @ 1 GHz	$\pm 1 \mathrm{kHz}$ @ 1 GHz	N/A	$\pm 100 \mathrm{~Hz}$ @ 1 GHz
Delta Count Accuracy, \pm $[(D-F \times \operatorname{Ref})+(10+2 N)+1 \text { LSD }]$	$\begin{aligned} & \pm 13 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHz} \mathrm{D-F} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 14 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHzD}-\mathrm{F} \end{aligned}$	N/A	$\begin{aligned} & \pm 13 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHz} \mathrm{D}-\mathrm{F} \\ & \hline \end{aligned}$
Frequency Reference Accuracy	$\begin{aligned} & \leq 1 \times 10^{-7} \text { per } \\ & \text { year (aging) } \end{aligned}$	$\begin{aligned} & \leq 1 \times 10^{-6} \mathrm{per} \\ & \text { year (aging) } \end{aligned}$	$\begin{aligned} & \leq 1 \times 10^{-5} \mathrm{per} \\ & \text { year (aging) } \end{aligned}$	$\begin{aligned} & \leq 1 \times 10^{-7} \text { per } \\ & \text { year (aging) } \end{aligned}$
Frequency Stability (residual FM)	$\leq 5 \mathrm{~Hz}$ @ 1 GHz	$\leq 12 \mathrm{~Hz}$ @ 1 GHz	$\leq 12 \mathrm{~Hz}$ @ 1 GHz	$\leq 5 \mathrm{~Hz}$ @ 1 GHz
Frequency Stability (drift)	$<50 \mathrm{~Hz}$ /minute	$<50 \mathrm{~Hz} /$ minute	$<50 \mathrm{~Hz}$ /minute	$<50 \mathrm{~Hz}$ /minute
Single Sideband Phase Noise (30 kHz offset and $\mathrm{N}=1$)	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ \text { (a) } 1 \mathrm{GHz} \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ \text { (a) } 1 \mathrm{GHz} \end{gathered}$	$\begin{gathered} -103 \mathrm{dBc} / \mathrm{Hz} \\ \text { © } 1 \mathrm{GHz} \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ \text { (a) } 1 \mathrm{GHz} \end{gathered}$
Frequency Span Range (per div)	$\begin{aligned} & 0 \mathrm{~Hz}, 10 \mathrm{~Hz} \\ & \text { to } 10 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~Hz}, 100 \mathrm{~Hz} \\ & \text { to } 10 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 0 \mathrm{~Hz}, 200 \mathrm{~Hz} \\ \text { to } 1 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 0 \mathrm{~Hz}, 10 \mathrm{~Hz} \\ & \text { to } 100 \mathrm{MHz} \end{aligned}$
Frequency Span Accuracy	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$
Delta Frequency Accuracy Marker Mode	1\% of span	1\% of span	1\% of span	1\% of span
Resolution Bandwidth Range (6 dB)	10 Hz to 3 MHz	100 Hz to 3 MHz	1 kHz to 3 MHz	10 Hz to 3 MHz
Resolution Bandwidth Selectivity $(-60 \mathrm{~dB} /-6 \mathrm{~dB})$	$\begin{aligned} & \leq 7.5: 1 \text { except } \\ & 15: 1 @ 10 \mathrm{~Hz} \end{aligned}$	$\leq 7.5: 1$	$\leq 7.5: 1$	$\leq 7.5: 1$ except $15: 1 @ 10 \mathrm{~Hz}$
Video Bandwidth Range	0.3 Hz to 30 kHz	0.3 Hz to 30 kHz	3 Hz to 30 kHz	0.3 Hz to 30 kHz
AMPLITUDE-RELATED				
Reference Level Range	-117 to +30 dBm			
Maximum Safe Input Power, CW	1 Watt (+30 dBm)	1 Watt (+30 dBm)	1 Watt (+30 dBm)	1 Watt (+30 dBm)
Maximum Safe Input Power, Pulse	75 W Pk ($1 \mu \mathrm{~S}$ pulse 0.1% duty factor)	75 W Pk ($1 \mu \mathrm{~S}$ pulse 0.1% duty factor)	75 W Pk ($1 \mu \mathrm{~S}$ pulse 0.1% duty factor)	75 W Pk ($1 \mu \mathrm{~S}$ pulse 0.1% duty factor)
CRT Display Range, Log	1 to $15 \mathrm{~dB} / \mathrm{div}$			
CRT Display Range, Linear	$39.6 \mathrm{nV} / \mathrm{div}$ to $2.8 \mathrm{~V} / \mathrm{div}$	$\begin{gathered} 39.6 \mathrm{nV} / \mathrm{div} \text { to } \\ 2.8 \mathrm{~V} / \mathrm{div} \end{gathered}$	$39.6 \mathrm{nV} /$ div to $2.8 \mathrm{~V} / \mathrm{div}$	$39.6 \mathrm{nV} /$ div to $2.8 \mathrm{~V} /$ div

2750 SERIES CHARACTERISTICS (cont.)

	2756P	2755AP	2754P	2753P
AMPLITUDE-RELATED (cont.)				
Input Attenuator Range	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \\ & \hline \end{aligned}$
Viewable Dynamic Range	90 dB ($12 \mathrm{~dB} / \mathrm{div}$)	90 dB ($12 \mathrm{~dB} / \mathrm{div}$)	80 dB ($10 \mathrm{~dB} / \mathrm{div}$)	90 dB (12 dB/div)
Residual Response (no signal and zero RF attenuation)	$\begin{gathered} -100 \mathrm{dBm} \text { (input } \\ \text { terminated) } \end{gathered}$	$\begin{gathered} -100 \mathrm{dBm} \text { (input } \\ \text { terminated) } \end{gathered}$	$\begin{aligned} & -95 \mathrm{dBm} \text { (input } \\ & \text { terminated) } \end{aligned}$	$\begin{aligned} & -100 \mathrm{dBm} \text { (input } \\ & \text { terminated) } \end{aligned}$
Second Harmonic Distortion, RF Frequency Range	$\begin{aligned} & -60 \mathrm{dBc}(\text { mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-60 \mathrm{dBc}(\text { mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-60 \mathrm{dBC}(\text { mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-60 \mathrm{dBc}(\text { (mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$
Second Harmonic Distortion, Microwave Frequency Range	$\begin{aligned} & \hline-100 \mathrm{dBc} \text { (mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \mathrm{dBC}(\text { mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-100 \mathrm{dBc}(\text { mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	N/A
Third Order Intermodulation Distortion	$\begin{aligned} & \hline-70 \mathrm{dBc} \text { (mixer } \\ & \text { level }-27 \mathrm{dBm} \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc} \text { (mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc} \text { (mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc} \text { (mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$
Calibrator Accuracy	$\pm 0.3 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$
Gain Compression (1 dB)	$-13 \mathrm{dBm}$	$-13 \mathrm{dBm}$	$-13 \mathrm{dBm}$	$-13 \mathrm{dBm}$
Frequency Response (10 dB RF attenuation referred to cal signal) Band 1 (10 kHz to 1.8 MHz) Band $2(1.7 \mathrm{GHz}$ to 5.5 GHz$)$ Band 3 (3.0 GHz to 7.1 GHz) Band 4 (5.4 GHz to 18 GHz) Band 5 (15 GHz to 21 GHz)	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 4 . \mathrm{dB} \\ & \pm 6.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 4.5 \mathrm{~dB} \\ & \pm 6.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 3.0 \mathrm{~dB} \\ & \pm 4.0 \mathrm{~dB} \\ & \pm 4.0 \mathrm{~dB} \\ & \pm 5 \mathrm{~dB} \\ & \pm 7.0 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \pm 1.5 \mathrm{~dB}(100 \mathrm{~Hz} \\ \text { to } 1.8 \mathrm{GHz}) \\ \mathrm{N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \hline \end{gathered}$
In-band Flatness (with 10 dB RF attenuation) Band 1 (10 kHz to 1.8 MHz) Band 2 (1.7 GHz to 5.5 GHz) Band 3 (3.0 GHz to 7.1 GHz) Band 4 (5.4 GHz to 18 GHz) Band 5 (15 GHz to 21 GHz)	$\begin{aligned} & \pm 1.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 5.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 1.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3 . \mathrm{dB} \\ & \pm 5.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 2.0 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 4.0 \mathrm{~dB} \\ & \pm 6.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 1.0 \mathrm{~dB}(100 \mathrm{~Hz} \\ & \text { to } 1.8 \mathrm{GHz}) \\ & \text { N/A } \\ & \text { N/ } \\ & \text { N/A } \\ & \text { N/A } \end{aligned}$
Displayed Average Noise Level (input terminated, narrowest resolution bandwidth \& video filter) Band $1(100 \mathrm{~Hz})$ Band 1 (1 kHz to 10 kHz) Band 1 (10 kHz to 100 kHz) Band 1 (100 kHz to 1 MHz) Band 1 (1 MHz to 1.8 GHz) Band 2 (1.7 GHz to 5.5 GHz) Band 3 (3.0 GHz to 7.1 GHz) Band 4 (5.4 Ghz to $12 / 12$ to 18 GHz) Band 5 (15 GHz to 21 GHz)	-80 dBm (typical) -90 dBm (typical) -95 dBm -115 dBm -134 dBm -125 dBm -125 dBm $-111 /-107 \mathrm{dBm}$ -105 dBm	-30 dBm (typical) -85 dBm (typical) -85 dBm -105 dBm -120 dBm -120 dBm -119 dBm $-105 /-100 \mathrm{dBm}$ -99 dBm	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ -35 \mathrm{dBm}(\text { typical }) \\ -80 \mathrm{dBm} \\ -100 \mathrm{dBm} \\ -110 \mathrm{dBm} \\ -108 \mathrm{dBm} \\ -108 \mathrm{dBm} \\ -94 /-89 \mathrm{dBm} \\ -88 \mathrm{dBm} \end{gathered}$	-100 dBm (typical) -105 dBm -110 dBm -120 dBm -131 dBm N/A N/A N/A N/A
IF Gain Uncertainty	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max over } \\ & 107 \mathrm{~dB} \text { range } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max over } \\ & 107 \mathrm{~dB} \text { range } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max over } \\ & 97 \mathrm{~dB} \text { range } \end{aligned}$	$\pm 2 \mathrm{~dB}$ max over
Scale Fidelity, Log 80 dB Range 90 dB Range	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max } \\ & \pm 4 \mathrm{~dB} \text { max } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max } \\ & \pm 4 \mathrm{~dB} \text { max } \\ & \hline \end{aligned}$	$\pm 2 \mathrm{~dB}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max } \\ & \pm 4 \mathrm{~dB} \text { max } \\ & \hline \end{aligned}$
Scale Fidelity, Linear	$\pm 5 \%$ of full scale			
Input Attenuator Switching Accuracy (20 dB to 60 dB settings) 0 to 1.8 GHz 1.8 to 18 GHz 18 to 21 GHz	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \max \\ \pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 3.0 \mathrm{~dB} \max \\ \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \max \\ \pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 3.0 \mathrm{~dB} \max \\ \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \end{gathered}$	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \max \\ \pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 3.0 \mathrm{~dB} \max \\ \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \end{gathered}$	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \max \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$
Resolution Bandwidth Switching Uncertainty (ref BW=3 MHz)	$\pm 0.4 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$

2750 SERIES CHARACTERISTICS (cont.)

	2756P	2755AP	2754P	2753P
TIME-RELATED				
Sweep Time Range, Digitized Display	$\begin{aligned} & 10 \mathrm{msec} / \mathrm{div} \text { to } \\ & 10 \mathrm{sec} / \mathrm{div} \end{aligned}$	$\begin{gathered} 10 \mathrm{msec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{msec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$	$\begin{gathered} 10 \mathrm{msec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$
Sweep Time Range, Real-Time Display	$\begin{gathered} 20 \mu \mathrm{sec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{sec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \\ \hline \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{sec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{sec} / \mathrm{div} \text { to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$
Sweep Time Accuracy	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$
Marker Time Measurement Accuracy	$\pm 10 \%$	$\pm 10 \%$	$\pm 10 \%$	$\pm 10 \%$
Delta Marker Time Measurement Accuracy	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$	$\pm 5 \%$
Sweep Trigger	Free Run, Line, Video, Single, and External			

EXTERNAL INPUT

RF Input Impedance	50Ω nominal	50Ω nominal	50Ω nominal	50Ω nominal
$\begin{aligned} & \text { VSWR (} 10 \mathrm{~dB} \text { input attenuation) } \\ & <2.5 \mathrm{GHz} \\ & 2.5 \mathrm{GHz} \text { to } 6.0 \mathrm{GHz} \\ & 6.0 \mathrm{GHz} \text { to } 18 \mathrm{GHz} \\ & 18 \mathrm{GHz} \text { to } 21 \mathrm{GHz} \\ & \hline \end{aligned}$				1.3:1 max N/A N/A N/A
Local Oscillator Emission Level (10 dB input attenuation)	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$
External Mixer Input	Approx 2 GHz IF	Approx 2 GHz IF	N/A	N/A
External Reference Input	$1,2,5$, or 10 MHz	1,2,5, or 10 MHz	N/A	1,2,5, or 10 MHz
Horizontal Input/Trigger Input	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V
Video Input/Marker Input	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V

EXTERNAL OUTPUT

Calibrator	$\begin{aligned} & 100 \mathrm{MHz} \pm 10 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 100 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 1 \mathrm{kHz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 10 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$
1st Local Oscillator	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz}, \\ +7.5 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz}, \\ +7.5 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz}, \\ +6 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 4 \mathrm{GHz}, \\ +6 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$
2nd Local Oscillator	-7 to -17 dBm			
Video Output (crt center reference)	0.5 V of signal per div of video	0.5 V of signal per div of video	0.5 V of signal per div of video	0.5 V of signal per div of video
Sweep Output (crt center reference)	$\begin{gathered} 0.5 \mathrm{~V} / \text { div; } \\ \pm 2.5 \mathrm{~V} \text { max } \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~V} / \text { div; } \\ \pm 2.5 \mathrm{~V} \text { max } \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~V} / \mathrm{div} ; \\ \pm 2.5 \mathrm{~V} \text { max } \end{gathered}$	$\begin{gathered} 0.5 \mathrm{~V} / \mathrm{div} ; \\ \pm 2.5 \mathrm{~V} \text { max } \end{gathered}$
Pen Lift	+5 V nominal; TL-compatible	+5 V nominal; TTL-compatible	+5 V nominal; TTL-compatible	+5 V nominal; TTL-compatible
2nd IF Output (Opt. 42)	$110 \mathrm{MHz}, 0 \mathrm{dBm}$; 3 dB BW is 4.5 MHz	$\begin{aligned} & 110 \mathrm{MHz}, 0 \mathrm{dBm} ; \\ & 3 \mathrm{~dB} \mathrm{BW} \text { is } 4.5 \mathrm{MHz} \end{aligned}$	$110 \mathrm{MHz}, 0 \mathrm{dBm} ;$ 3 dB BW is 4.5 MHz	$110 \mathrm{MHz}, 0 \mathrm{dBm} ;$ 3 dB BW is 4.5 MHz
3rd IF Output	$10 \mathrm{MHz},-5 \mathrm{dBm}$	$10 \mathrm{MHz},-5 \mathrm{dBm}$	$10 \mathrm{MHz},-5 \mathrm{dBm}$	$10 \mathrm{MHz},-5 \mathrm{dBm}$
Probe Power	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} \text {; } \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} ; \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} ; \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$

GENERAL SPECIFICATIONS

Power Requirements Voltage Frequency Power	90-132/180-250 Vac $48-440 \mathrm{~Hz}$ 210 W max (a) $115 \mathrm{Vac}, 60 \mathrm{~Hz}$	90-132/180-250 Vac $48-440 \mathrm{~Hz}$ 210 W max (c) $115 \mathrm{Vac}, 60 \mathrm{~Hz}$	$\begin{gathered} \text { 90-132/180-250 Vac } \\ 48-440 \mathrm{~Hz} \\ 210 \mathrm{~W} \text { max } \\ \text { @ } 115 \mathrm{Vac}, 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 90-132 / 180-250 \mathrm{Vac} \\ 48-440 \mathrm{~Hz} \\ 210 \mathrm{~W} \text { max } \\ \text { @115 Vac, } 60 \mathrm{~Hz} \\ \hline \end{gathered}$
Weight (carrying), Nominal	27 kg (60 lbs)			
Dimensions (mm/inches)	$\begin{gathered} 177.8 \times 431.8 \times 609.6 \mathrm{~mm} \\ 7 \times 17 \times 24 \mathrm{in} . \\ \hline \end{gathered}$	$\begin{array}{\|c} 177.8 \times 431.8 \times 609.6 \mathrm{~mm} \\ 7 \times 17 \times 24 \mathrm{in} . \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 177.8 \times 431.8 \times 609.6 \mathrm{~mm} \\ 7 \times 17 \times 24 \mathrm{in} . \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 177.8 \times 431.8 \times 609.6 \mathrm{~mm} \\ 7 \times 17 \times 24 \mathrm{in} . \\ \hline \end{array}$
Digital Storage	1000 pts horiz, 250 pts vertical			
Digitizing Rate	$9 \mu \mathrm{~S}$	$9 \mu \mathrm{~S}$	$9 \mu \mathrm{~S}$	$9 \mu \mathrm{~S}$
Macro Programming	8K	8K	N/A	8K
Nonvolatile Memory	9 waveforms, 10 control settings			

2750 SERIES CHARACTERISTICS (cont.)				
2756P		2755AP	2754P	2753P
ENVIRONMENTAL (PER MIL-T-28800C, TYPE III, CLASS 5, STYLE E)				
Electromagnetic Compatibility (consult data sheet for compliance details)	MIL-STD-461B	MIL-STD-461B	MIL-STD-461B	MIL-STD-461B
Calibration Interval	1 Year	1 Year	1 Year	1 Year
IEEE STD. 488 (GPIB)				
Interface Functions	$\begin{aligned} & \text { SH1, AH1, T5, L3, } \\ & \text { SR1, RL1, PP1, } \\ & \text { DC1, DT1, and C0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SH1, AH1, T5, L3, } \\ & \text { SR1, RL1, PP1, } \\ & \text { DC1, DT1, and C0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SH1, AH1, T5, L3, } \\ & \text { SR1, RL1, PP1, } \\ & \text { DC1, DT1, and C0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SH1, AH1, T5, L3, } \\ & \text { SR1, RL1, PP1, } \\ & \text { DC1, DT1, and C0 } \\ & \hline \end{aligned}$
Direct Plotter Output	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP 7470A } \\ \hline \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \\ \hline \end{gathered}$
Waveform Transfer Speed	$165 \mathrm{msec} / 1000 \mathrm{pts}$			

ORDERING INFORMATION

2750 Series Spectrum Analyzers are warranted to be free from defects in material and workmanship for 1 year from date of shipment.
2756P Programmable Spectrum Analyzer
Includes: Operator's Manual; Programmer's Manual; 6 -ft, 50 -ohm coaxial cable, $\mathrm{N}-\mathrm{N}(012-0114-00$); 18 -inch, 50 -ohm coaxial cable, BNC-BNC (012 0076-00); N male to BNC female adapter (103-0045-00); power cord and spare fuses; CRT filter set consisting of amber and gray light filters plus mesh filter, gray CRT light filter.
2755AP Programmable Spectrum Analyzer Includes: same as 2756P.
2754P Programmable Spectrum Analyzer Includes: same as2756P
2753P Programmable Spectrum Analyzer Includes: same as 2756P

OPTIONS

Opt. $07-75 \Omega \mathrm{dBmV}$ input and calibration in addition to the normal $50 \Omega \mathrm{dBm}$ input and calibration. (Not combinable with Options 21 and 22; no external mixer capability)
Includes: 42 -inch, 75Ω BNC-BNC coax cable
(012-0074-00) and BNC male to " F " female adapter (013-0126-00)
Opt. 21 (2756P, 2755AP) -High-performance 18 to 40 GHz WM490 Series Waveguide Mixer Set Includes: WM490 (18-26.5 GHz and WM490A ($26.5-40 \mathrm{GHZ}$) Waveguide Mixers, Diplexer Assembly (015-0385-00), and interconnecting cable (012-0649-00).
Opt. 22 (2756P, 2755AP) -High-performance 18 to 60 GHz Waveguide Mixer Set
Includes: same as Option 21 plus WM490U
$(40-60 \mathrm{GHz}$) Waveguide Mixer
Opt. 23 - GRASP software (S26RF00), PC2A interface GPIB cable.
The PC2A is a National Instruments GPIB interface card.
Opt. 27 -Epson LT-386SX (with 80386SX processor, VGA LCD display, 2 Mb RAM, 40 Mb removable hard drive, $1.44 \mathrm{Mb} 3.5^{\text {" }}$ diskette drive, serial/parallel interface, battery pack and charger, DOS), GRASP software, PC2A interface and GPIB cable.
NOTE: For more information on any of these bundled software and computer packages, please contact your local Tek sales representative.

Opt. 28 -COMPAQ Deskpro 386S, Model 40 (with 80386SX processor, VGA color monitor, 2 MB RAM 40 MB hard drive, 1.2 MB floppy drive, serial/parallel interface, DOS), GRASP software, PC2A interface, and GPIB cable.
Opt. 30 - Rackmount 19' rack width $\mathbf{+ \$ 2 5 0}$
Opt. 31 - Rackmount $19^{\prime \prime}$ rack width with rear panel input/output capability
(2754P)
Opt. 39 - Non-lithium (Silver) batteries for batterybacked memory.
(2754P)
Opt. 41 (all except 2753P) - Digital Microwave Radio Measurement Enhancement package. (2754P)
Opt. 42 - Replaces MARKER/VIDEO input port on the rear panel with a 110 MHz IF output port that provides a 3 dB signal bandwidth $\geq 4.5 \mathrm{MHz}$. (2755AP)
Opt. 45 (except 2754P) - MATE/CIIL language interface.
Opt. B2 - Operator's Manual, Programmer's
Manual, and Service Manual(s) set.

INTERNATIONAL POWER PLUG OPTIONS

Opt. A1-A5 - Available. See page 374.

OPTIONAL ACCESSORIES

1405 - TV Sideband Analyzer Adapter
(525/60 markers)
TR503 - Tracking Generator, 100 Hz to 1800 MHz
Microwave Comb Generator - TM500-Series
compatible. Order 067-0885-00
2750 Series - Rack Adapter Parts Kit.
Contact Tektronix Sales Representative
Tek HC100 - Color Plotter
CRT Visor - Order 016-0653-00
75Ω to 50Ω minimum loss adapter - Order 011-0112-00
DC blocking capacitor -N connector
Order 015-0509-00
2-meter GPIB cable - Order 012-0630-01
GPIB cable - Order 012-0991-00
Programmer's Reference Guide -
Order 070-5567-00
Service Kit - Order 006-3286-01

SERVICE MANUALS

+\$250
$+\$ 450$
+\$50
+\$450
$\begin{array}{r} +\$ 1,500 \\ +\$ 750 \end{array}$
+\$300

```
\(\$ 5,980\)
\$7,080
```

\$2,265
$\$ 950$

\$345

$\$ 105$
$\$ 160$
$\$ 11.50$ local Tek sales ropresentative.

FEATURES/BENEFITS

- 100 Hz to 325 GHz Frequency Coverage
- Continuous-Resolution Frequency Tuning Combines "Synthesized" Settability and Accuracy with Analog Feel
- Up to 90 dB Viewable Dynamic Range
- Built-in Frequency Counters Provide Frequency Determination to within 0.0000001% ($1 \times 10^{-9} /$ day ref.)
- Sensitivities to -134 dBm
- Built-in Intelligence for

Signal Processing/Marker
Functions

- Push Button OccupiedBandwidth and NoiseNormalization Functions
- Macro Capability with Nonvolatile Memory to Simplify and Speed Up Commonly-Used Routines
- Optional Switch-Selectable 50/75-ohm Impedances
- Nonvolatile Memory for up to Nine Waveforms and Ten Front Panel Settings
- GPIB Programmability with Tek Codes and Formats for Standardized Bus Operation

PORTABLE LABORATORY PERFORMANCE WITH AFFORDABLE PRICES

Tektronix 490 Series Spectrum Analyzers offer a broad selection of features and benefits to meet wide-ranging needs for laboratory-level frequency domain spectrum analysis. All units provide full IEEE-488 (GPIB) programmability, which means you can change front panel settings, read data from the crt display, and send waveforms from internal digital source memory to other GPIB devices. Frequency range of the instruments is as follows:

10 kHz to 325 GHz : 494AP and 492BP
10 kHz to 21 GHz : 492 PGM
100 Hz to 7.1 GHz: 497P
100 Hz to $1.8 \mathrm{GHz}: 495 \mathrm{P}$
Built to rugged MIL-T-28800C environmental specifications, these units can withstand transportation shock and vibration to a remote site. Or they can simply be moved from the engineering lab to the production floor with complete confidence in measurement accuracy.

A wide array of price/performance alternatives are available. If you need 10 Hz resolution for an exacting close-in spectral purity measurement, consider the 494AP. For more routine uses, such as a microwave transmitter occupied-bandwidth measurement, the 492PGM may be the most cost-effective solution.

A WIDE ARRAY OF INTELLIGENT FEATURES

- Optional MATE/CIIL Compatibility for Military Applications
- Ergonomically-Designed Front Panel Controls
- Direct Screen Data Plots without a Controller
- Many Application-Specific Options
- Ruggedized for Harsh Field Environments

Downloadable programming (macro) capability lets you execute your frequently-used measurement routines from the Spectrum Analyzer's nonvolatile memory. In addition, these Spectrum Analyzers can store up to 10 complete front-panel measurement parameter setups in nonvolatile memory to save you measurement time. You can also save up to 9 waveform displays, a real benefit when data analysis must be delayed.

Tedious, time-consuming, and often incorrect carrier-to-noise ratio calculations are eliminated; the instrument
handles it all with a single keystroke, with automatic noise normalization to 1 Hz and automatic conversion for reference units such as $\mathrm{dBm}, \mathrm{dBmV}, \mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}$, and $\mathrm{dB} / \mathrm{Hz}$.

An internal high-stability reference provides marker or center frequency accuracy approaching 10^{-9} day in the 494AP. For added confidence in measurements, a built-in microwave signal counter in the 494AP with 144 dB dynamic range means you can determine the exact frequency of marked signals only 10 Hz apart - or count the exact delta-frequency between two marked signals even with greatly differing amplitudes. You also have the flexibility of tying in with a system clock, using the external reference lock capacity.

A permanent record of crt displays can be obtained at the push of a button, without a controller, using the direct plot capability and a GPIB plotter such as the Tektronix HC100.

Menu-selected dynamic markers automatically update frequency and amplitude data with every sweep. Unprecedented signal processing power results when you use these markers in conjunction with the built-in intelligence. With PULSE Mode, you can mark the peak of a main lobe and peaks of side lobes at the push of a button. The CW Mode locates signals that exhibit CW characteristics and ignores all other signals. The SPUR Mode marks all signals that meet user-defined or automatic threshold criteria. User-definable threshold criteria are available for all signal processing modes.

These instruments also offer operator convenience for measuring the bandwidth of filters, amplifiers, and other networks. Just enter the desired bandwidth point and select BANDWIDTH Mode, and the markers automatically update to display the new value.

Dedicated direct keypad data entry of major measurement parameters enables fast, accurate instrument setup. Screen messages prompt you for proper keypad inputs all "valid" keys to push are illuminated to steer you to the proper selections. The unique marker keypad allows Peak Find, Right and Left Next, Next Higher and Lower, Left and Right XdB , and Peak Find and Center operations to be executed directly from the front panel. This makes signal searches much easier.

Optional switch-selectable 50 -ohm and 75 -ohm impedances add versatility. For applications such as baseband and CATV, $75-\mathrm{ohm} / \mathrm{dBmV}$ greatly simplifies spectrum analysis.

The performance leader is the 494AP, which offers frequency coverage from 10 kHz to 21 GHz with its internal mixer, and to 325 GHz with external mixers such as Tek's WM490 Series, or the new WM780 Series (each WM780 Series mixer is individually calibrated). Signal sensitivity is an impressive -134 dBm . The 494AP is optimized for use in baseband through millimeter-wave measurements, where the ability to identify and process signal frequencies and amplitudes over wide dynamic ranges with high accuracy is critical.

The 492BP covers the same frequency range as the 494AP, and provides nearly the same set of outstanding features and state-of-the-art specifications. It is designed as a cost-effective and productive solution to engineering needs.

The 497P provides the same cost-effective performance as the 492BP, but over a frequency range of 100 Hz to 7.1 GHz .

The 492PGM's frequency range of 10 kHz to 21 GHz is ideal for cost-sensitive applications that still require most of the powerful features of the product family, but can get by with slightly-reduced performance specifications.

The 495P features the same functionality and high level of performance as the 494AP, but over a frequency range of 100 Hz to 1.8 GHz . It is optimized for standalone or automated operation in baseband through UHF measurements, where the ability to identify and process weak signals is critical.

Remote Operation and Complete Spectrum Analysis Packages

Full GPIB-programmability lets you automate your spectrum analysis system needs. Programming is simplified and measurement repeatability ensured. Under program control you can operate the instrument, change front panel settings, read data from the crt display, and send waveforms from internal memory to other GPIB devices. Tek's Standard Codes and Formats keeps commands clear, consistent, and universally understood.

You can increase programming flexibility and power with the optional MATE/CIIL language extension. It provides direct memory access (DMA) for high-speed data transmission, a requirement for MATE/CIIL compliance.
TekSPANS software lets you use the 490 Series Spectrum Analyzers as system components, controlling them with popular instrument controllers such as the Tektronix PEP-Series, Compaq models, and other PC compatibles. Coupling the computer to the Spectrum Analyzer via the IEEE 488 bus lets you take advantage of the PC's capability, as well as the power and versatility of the Spectrum Analyzer.
Available Tektronix automated spectrum analyzer packages provide ordering convenience. They are configured around a DOS-based PC, one of the 490 Series of programmable Spectrum Analyzers, and Tek's General RF Applications Software Package (GRASP). The GRASP software offers many different applications and utility routines, which are selected through easy menudriven operation. Also, EMI software is available for FCC, VDE, CISPR, and MIL-STD testing.

490 Series Spectrum Analyzer characteristics are given in the following tables.

TYPICAL MEASUREMENTS

- Baseband Measurements
- Carrier Level Moniforing
- Carrier ON/OFF Ratios
- Carrier/Noise Measurements
- EMI/RFI Compliance
- EW Gathering and Analysis
- Frequency Counting
- Harmonic Distortion
- IF Amplifier Adjustments
- Modulation Adjustments
- Pulse Analysis
- Spectral Monitoring
- Typical Spur Searches

TYPICAL APPLICATIONS

- Manufacturing ATE
- Avionics
- Broadcasting
- CATV
- Cellular Radio
- Design and Engineering
- Nuclear Physics
- Radio Astronomy
- Satellite Communications
- Terrestrial Microwave
- Two-Way Radio

490 SERIES CHARACTERISTICS

FREQUENCY-RELATED

Frequency Range with Internal Mixers	10 kHz to 21 GHz	10 kHz to 21 Ghz	10 kHz to 21 GHz	100 Hz to 7.1 GHz	100 Hz to 1.8 GHz
Frequency Range with External Mixers	10 kHz to 325 GHz	10 kHz to 325 GHz	N/A	N/A	N/A
Frequency Readout Accuracy (center or marker), $\pm[2 \%$ span + (CF x Ref) $+(2 \mathrm{~N}+25) \mathrm{Hz}]$	$\pm 20 \mathrm{kHz} @ 1 \mathrm{GHz}$ with $100 \mathrm{kHz} /$ div span	± 21 kHz@1GHz with $100 \mathrm{kHz} /$ div span	$\pm 30 \mathrm{kHz}$ @ 1 GHz with $100 \mathrm{kHz} / \mathrm{div}$ span	$\pm 21 \mathrm{kHz} @ 1 \mathrm{GHz}$ with $100 \mathrm{kHz} /$ div span	$\pm 20 \mathrm{kHz} @ 1$ GHz with $100 \mathrm{kHz} / \mathrm{div}$ span
$\begin{aligned} & \text { Frequency Counter Accuracy, } \pm \\ & {[(C F \times \text { Ref })+(5+\mathrm{N}) \mathrm{Hz}+1 \text { LSD }]} \end{aligned}$	$\pm 100 \mathrm{~Hz}$ @ 1 GHz	$\pm 1 \mathrm{kHz}$ @ 1 GHz	N/A	$\pm 1 \mathrm{kHz} @ 1 \mathrm{GHz}$	$\pm 100 \mathrm{~Hz} @ 1 \mathrm{GHz}$
$\begin{aligned} & \text { Delta Count Accuracy, } \pm \\ & {[(D-F \times \text { Ref })+(10+2 N)+1 \text { LSD }]} \end{aligned}$	$\begin{aligned} & \pm 13 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHz} \Delta \mathrm{~F} \end{aligned}$	$\begin{aligned} & \pm 14 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHz} \Delta \mathrm{~F} \end{aligned}$	N/A	$\pm 14 \mathrm{~Hz}$ for $1 \mathrm{MHz} \mathrm{\Delta F}$	$\begin{aligned} & \pm 13 \mathrm{~Hz} \text { for } \\ & 1 \mathrm{MHz} \Delta \mathrm{~F} \end{aligned}$
Frequency Reference Accuracy	$\leq 1 \times 10^{-7} / \mathrm{yr}$ (aging)	$\leq 1 \times 10^{-6} / \mathrm{yr}$ (aging)	$\leq 1 \times 10^{-5 / y r}$ (aging)	$\leq 1 \times 10^{-6} / \mathrm{yr}$ (aging)	$\leq 1 \times 10^{-7} / \mathrm{yr}$ (aging)
Frequency Stability (residual FM)	$\leq 5 \mathrm{~Hz}$ @ 1 GHz	$\leq 12 \mathrm{~Hz}$ @ 1 GHz	$\leq 12 \mathrm{~Hz}$ @ 1GHz	$\leq 5 \mathrm{~Hz}$ @1GHz	$\leq 5 \mathrm{~Hz}$ @1GHz
Frequency Stability (drift)	<50 Hz/minute	$<50 \mathrm{~Hz} /$ minute	<50 Hz/minute	$<50 \mathrm{~Hz} /$ minute	<50 Hz/minute
Single Sideband Phase Noise (30 kHz offset and $\mathrm{N}=1$)	$\begin{gathered} -105 \mathrm{dBC} / \mathrm{Hz} \\ \text { (a) } 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\begin{gathered} -105 \mathrm{dBC} / \mathrm{Hz} \\ @ 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\begin{gathered} -103 \mathrm{dBC} / \mathrm{Hz} \\ @ 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\begin{gathered} -105 \mathrm{dBc} / \mathrm{Hz} \\ @ 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\begin{gathered} -105 \mathrm{dBC} / \mathrm{Hz} \\ \text { (a) } 1 \mathrm{GHz} \\ \hline \end{gathered}$
Frequency Span Range (per div)	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}-10 \mathrm{GHz}$	$0 \mathrm{~Hz}, 100 \mathrm{~Hz}-10 \mathrm{GHz}$	$0 \mathrm{~Hz}, 200 \mathrm{~Hz}-1 \mathrm{GHz}$	$0 \mathrm{~Hz}, 100 \mathrm{~Hz}-500 \mathrm{MHz}$	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}-100 \mathrm{MHz}$
Frequency Span Accuracy	$\pm 5 \%$				
Delta Frequency Accuracy Marker Mode	1\% of span				
Resolution Bandwidth (6 dB) Range	10 Hz to 3 MHz	100 Hz to 3 MHz	1 kHz to 3 MHz	10 Hz to 3 MHz	10 Hz to 3 MHz
Resolution Bandwidth Selectivity ($-60 \mathrm{~dB} /-6 \mathrm{~dB}$)	$\begin{aligned} & \leq 7.5: 1 \text { except } \\ & 15: 1 @ 10 \mathrm{~Hz} \end{aligned}$	$\leq 7.5: 1$	$\leq 7.5: 1$	$\begin{aligned} & \leq 7.5: 1 \text { except } \\ & \text { 15:1@ } 10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \leq 7.5: 1 \text { except } \\ & 15: 1 @ 10 \mathrm{~Hz} \end{aligned}$
Video Bandwidth Range	0.3 Hz to 30 kHz	0.3 Hz to 30 kHz	3 Hz to 30 kHz	0.3 Hz to 30 kHz	0.3 Hz to 30 kHz

AMPLITUDE-RELATED

Reference Level Range	-117 to +30 dBm				
Maximum Safe Input Power, CW	1 Watt (+30 dBm)	1 Watt (+30 dBm)	1 Watt (+30 dBm)	1 Watt (+30 dBm)	1 Watt (+30 dBm)
Maximum Safe Input Power, Pulse 0.1% duty factor	75 W Pk (1 $\mu \mathrm{S}$ pulse, 0.1% duty factor)	75 W Pk (1 $\mu \mathrm{S}$ pulse, 0.1% duty factor)	75 W Pk (1 $\mu \mathrm{S}$ pulse, 0.1% duty factor)	75 W Pk ($1 \mu \mathrm{~S}$ pulse, 0.1% duty factor)	75 W Pk (1 $\mu \mathrm{S}$ pulse)
CRT Display Range, Log	1 to $15 \mathrm{~dB} / \mathrm{div}$	1 to 15 dB /div			

490 SERIES SPECTRUM ANALYZERS

490 SERIES CHARACTERISTICS (cont.)					
	494AP	492BP	492PGM	497P	495P
AMPLITUDE-RELATED (cont.)					
CRT Display Range, Linear	$\begin{gathered} 39.6 \mathrm{n} / \mathrm{V} / \mathrm{div} \text { to } \\ 2.8 \mathrm{~V} / \mathrm{div} \end{gathered}$	$\begin{gathered} 39.6 \mathrm{n} / \text { /div to } \\ 2.8 \mathrm{~V} / \mathrm{div} \end{gathered}$	$\begin{gathered} 39.6 \mathrm{n} / \text { /div to } \\ 2.8 \mathrm{~V} / \mathrm{div} \\ \hline \end{gathered}$	$\begin{aligned} & 39.6 \mathrm{nV} / \text { div to } \\ & 2.8 \mathrm{~V} / \mathrm{div} \end{aligned}$	$\begin{gathered} 39.6 \mathrm{nV} / \text { div to } \\ 2.8 \mathrm{~V} / \mathrm{div} \end{gathered}$
Input Attenuator Range	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$	$\begin{aligned} & \hline 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~dB} \text { in } \\ & 10 \mathrm{~dB} \text { steps } \end{aligned}$
Viewable Dynamic Range	90 dB (12 dB/div)	90 dB (12 dB/div)	80 dB (10 dB/div)	$90 \mathrm{~dB}(12 \mathrm{~dB} / \mathrm{div})$	$90 \mathrm{~dB}(12 \mathrm{~dB} / \mathrm{div})$
Residual Response (no signal and zero RF attenuation)	$\begin{array}{\|c\|} \hline-100 \mathrm{dBm} \text { (input } \\ \text { terminated) } \\ \hline \end{array}$	$\begin{gathered} -100 \mathrm{dBm} \text { (input } \\ \text { terminated) } \\ \hline \end{gathered}$	-95 dBm (innut terminated)	$\begin{gathered} -100 \mathrm{dBm} \text { (input } \\ \text { terminated } \end{gathered}$	$\begin{gathered} -100 \mathrm{dBm} \text { (input } \\ \text { terminated) } \\ \hline \end{gathered}$
Second Harmonic Distortion, RF Frequency Range	$\begin{aligned} & -60 \mathrm{dBc}(\text { mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -60 \mathrm{dBc} \text { (mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -60 \mathrm{dBc} \text { (mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -60 \mathrm{dBC} \text { (mixer } \\ & \text { level }-40 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -60 \mathrm{dBc} \text { (mixer } \\ & \text { level }-40 \mathrm{dBm} \text {) } \\ & \hline \end{aligned}$
Second Harmonic Distortion, Microwave Frequency Range	$\begin{aligned} & -100 \mathrm{dBC} \text { (mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \mathrm{dBC}(\text { mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \mathrm{dBC} \text { (mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & -100 \mathrm{dBC} \text { (mixer } \\ & \text { level }-20 \mathrm{dBm}) \\ & \hline \end{aligned}$	N/A
Third Order Intermodulation Distortion	$\begin{aligned} & \hline-70 \mathrm{dBc}(\text { mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc}(\text { mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBC}(\text { mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc}(\text { mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-70 \mathrm{dBc} \text { (mixer } \\ & \text { level }-27 \mathrm{dBm}) \\ & \hline \end{aligned}$
Calibrator Accuracy	$\pm 0.3 \mathrm{~dB}$				
Gain Compression (1 dB)	$-13 \mathrm{dBm}$				
Frequency Response (10 dB RF attenuation referred to cal signal) Band 1 (10 kHz to 1.8 MHz) Band $2(1.7 \mathrm{GHz}$ to 5.5 GHz) Band 3 (3.0 GHz to 7.1 GHz) Band 4 (5.4 GHz to 18 GHz) Band 5 (15 GHz to 21 GHz)	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 4 . \mathrm{dB} \\ & \pm 6.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 4 . \mathrm{dB} \\ & \pm 6.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 3.0 \mathrm{~dB} \\ & \pm 4.0 \mathrm{~dB} \\ & \pm 4.0 \mathrm{~dB} \\ & \pm .0 \mathrm{~dB} \\ & \pm 7.0 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \pm 2.5 \mathrm{~dB} \\ \pm 3.5 \mathrm{~dB} \\ \pm 3.5 \mathrm{~dB} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \pm 1.5 \mathrm{~dB}(100 \mathrm{~Hz} \\ \text { to } 1.8 \mathrm{GHz}) \\ \mathrm{N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$
In-band Flatness (with 10 dB RF attenuation) Band 1 (10 kHz to 1.8 MHz)	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\begin{gathered} \pm 1.5 \mathrm{~dB}(100 \mathrm{~Hz} \\ \text { to } 1.8 \mathrm{GHz}) \\ \hline \end{gathered}$	$\begin{gathered} \pm 1.0 \mathrm{~dB}(100 \mathrm{~Hz} \\ \text { to } 1.8 \mathrm{GHz}) \\ \hline \end{gathered}$
Band $2(1.7 \mathrm{GHz}$ to 5.5 GHz$)$ Band $3(3.0 \mathrm{GHz}$ to 7.1 GHz$)$	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 3.0 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \pm 2.5 \mathrm{~dB} \\ \pm 2.5 \mathrm{~dB}(5.4 \mathrm{GHz} \\ \text { to } 7.1 \mathrm{GHz}) \end{gathered}$	$\begin{aligned} & \text { N/A } \\ & N / A \end{aligned}$
Band $4(5.4 \mathrm{GHz}$ to 18 GHz$)$ Band $5(5 \mathrm{GHz}$ to 21 GHz$)$	$\begin{aligned} & \pm 3.5 \mathrm{~dB} \\ & \pm 5.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 3.5 \mathrm{~dB} \\ & \pm 5.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 4.0 \mathrm{~dB} \\ & \pm 6.0 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N / A \\ & N / A \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { N/A } \\ & N / A \end{aligned}$
Displayed Average Noise Level (input terminated, narrowest resolution bandwidth and video filter) Band 1 (100 Hz) Band 1 (1 kHz to 10 kHz) Band 1 (10 kHz to 100 kHz) Band 1 (100 kHz to 1 MHz) Band 1 (1 MHz to 1.8 GHz) Band 2 (1.7 GHz to 5.5 GHz) Band 3 (3.0 GHz to 7.1 GHz) Band 4 (5.4 to $12 \mathrm{GHz} / 12$ to 18 GHz) Band 5 (15 GHz to 21 GHz)	$\begin{gathered} -80 \mathrm{dBm} \text { (typical) } \\ -90 \mathrm{dBm} \text { (typical) } \\ -95 \mathrm{dBm} \\ -115 \mathrm{dBm} \\ -134 \mathrm{dBm} \\ -125 \mathrm{dBm} \\ -125 \mathrm{dBm} \\ -111-107 \mathrm{dBm} \\ -105 \mathrm{dBm} \end{gathered}$	$\begin{gathered} -30 \mathrm{dBm} \text { (typical) } \\ -85 \mathrm{dBm} \text { (typical) } \\ -85 \mathrm{dBm} \\ -105 \mathrm{dBm} \\ -120 \mathrm{dBm} \\ -120 \mathrm{dBm} \\ -119 \mathrm{dBm} \\ -105 /-100 \mathrm{dBm} \\ -99 \mathrm{dBm} \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ -35 \mathrm{dBm}(\mathrm{typ} i \mathrm{cal}) \\ -80 \mathrm{dBm} \\ -100 \mathrm{dBm} \\ -110 \mathrm{dBm} \\ -108 \mathrm{dBm} \\ -108 \mathrm{dBm} \\ -94 /-89 \mathrm{dBm} \\ -88 \mathrm{dBm} \end{gathered}$	$-80 \mathrm{dBm}($ typical) -90 dBm -100 dBm -120 dBm -130 dBm -127 dBm -26 dBm N/A N/A	-100 dBm (tyyical) -105 dBm -110 dBm -120 dBm -131 dBm N/A N/A N/A N/A
IF Gain Uncertainty	$\begin{aligned} & \hline \pm 2 \mathrm{~dB} \text { max over } \\ & 107 \mathrm{~dB} \text { range } \end{aligned}$	$\begin{aligned} & \hline \pm 2 \mathrm{~dB} \text { max over } \\ & 107 \mathrm{~dB} \text { range } \end{aligned}$	$\begin{gathered} \hline 2 \mathrm{~dB} \text { max over } \\ 107 \mathrm{~dB} \text { range } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \pm 2 \mathrm{~dB} \text { max over } \\ & 107 \mathrm{~dB} \text { range } \end{aligned}$	$\pm 2 \mathrm{~dB}$ max over
Scale Fidelity, Log (80 dB range/90 dB range)	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max/ } \\ & \pm 4 \mathrm{~dB} \text { max } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max/ } \\ & \pm 4 \mathrm{~dB} \text { max } \end{aligned}$	$\pm 2 \mathrm{~dB}$ max	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max/ } \\ & \pm 4 \mathrm{~dB} \text { max } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~dB} \text { max/ } \\ & \pm 4 \mathrm{~dB} \text { max } \\ & \hline \end{aligned}$
Scale Fidelity, Linear	$\pm 5 \%$ of full scale				
Input Attenuator Switching Accuracy (20 dB to 60 dB settings) 0 to 1.8 GHz 1.8 to 18 GHz	$\pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB}$; $\pm 1.0 \mathrm{~dB}$ max $\pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB}$; $\pm 3.0 \mathrm{~dB}$ max	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \text { max } \\ \pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 3.0 \mathrm{~dB} \mathrm{max} \end{gathered}$	$\pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB}$; $\pm 1.0 \mathrm{~dB}$ max $\pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB}$; $\pm 3.0 \mathrm{~dB}$ max	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \max \\ \pm 1.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 3.0 \mathrm{~dB} \max (1.8 \\ \text { to } 7.1 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} \pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 1.0 \mathrm{~dB} \text { max } \\ \mathrm{N} / \mathrm{A} \end{gathered}$
18 to 21 GHz	$\begin{gathered} \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \\ \hline \end{gathered}$	$\begin{gathered} \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \\ \hline \end{gathered}$	$\begin{gathered} \pm 3.0 \mathrm{~dB} / 10 \mathrm{~dB} ; \\ \pm 6.0 \mathrm{~dB} \text { max } \\ \hline \end{gathered}$	N/A	N/A
Resolution Bandwidth Switching Uncertainty (reterence BW $=3 \mathrm{MHz}$)	$\pm 0.4 \mathrm{~dB}$				

		490			
	SERIES CHARACTERISTICS (cont.)				
	494AP	492BP	492PGM	497P	495P

TIME-RELATED

Sweep Time Range, Digitized Display	$10 \mathrm{msec} /$ div to $10 \mathrm{sec} / \mathrm{div}$	$10 \mathrm{msce} /$ div to $10 \mathrm{sec} / \mathrm{div}$	$10 \mathrm{msec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$	$10 \mathrm{msec} /$ div to $10 \mathrm{sec} / \mathrm{div}$	$10 \mathrm{msec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$
Sweep Time Range, Real-Time Display	$\begin{gathered} 20 \mu \mathrm{sec} / \text { div to } \\ 10 \mathrm{sec} / \mathrm{div} \end{gathered}$	$20 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$	$20 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$	$20 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$	$20 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$
Sweep Time Accuracy	$\pm 5 \%$				
Marker Time Measurement Accuracy	$\pm 10 \%$				
Delta Marker Time Measurement Accuracy	$\pm 5 \%$				
Sweep Trigger	Free Run, Line, Video, Single, Ext				

EXTERNAL INPUT

RF Input Impedance	50 ohms nominal				
$\begin{aligned} & \text { VSWR }(10 \mathrm{~dB} \text { input attenuation) } \\ & <2.5 \mathrm{GHz} \\ & 2.5 \mathrm{GHz} \text { to } 6.0 \mathrm{GHz} \\ & 6.0 \mathrm{GHz} \text { to } 18 \mathrm{GHz} \\ & 18 \mathrm{GHz} \text { to } 21 \mathrm{GHz} \\ & \hline \end{aligned}$	1.3:1 max 2.73.1 max 3.5:1 max	1.3:1 max 2.1.1 max 3.5:1 max	1.3:1 max 23.1 max 3.5:1 max	$\begin{aligned} & 1.3: 1 \text { max } \\ & 1.71 \text { max } \\ & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{gathered} \text { 1.3:1 max } \\ \text { N/A } \\ \text { N/A } \\ \text { N/A } \end{gathered}$
Local Oscillator Emission Level (10 dB input attenuation)	s-80 dBm	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$	$\leq-80 \mathrm{dBm}$
External Mixer Input	Approx 2 GHz IF	Approx 2 GHz IF	N/A	N/A	N/A
External Reference Input	$1,2,5$, or 10 MHz	$1,2,5$, of 10 MHz	N/A	1, 2, 5, or 10 MHz	1, 2, 5, or 10 MHz
Horizontal Input/Trigger Input	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $010 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V	0 to $+10 \mathrm{~V} / 1$ to 50 V
Video Input/Marker Input	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V	0 to $04 \mathrm{~V} / 0$ to -10 V	0 to $+4 \mathrm{~V} / 0$ to -10 V

EXTERNAL OUTPUT

Calibrator	$\begin{aligned} & 100 \mathrm{MHz} \pm 10 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 100 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 1 \mathrm{kHz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 100 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \pm 10 \mathrm{~Hz}, \\ & -20 \mathrm{dBm} \pm 0.3 \mathrm{~dB} \\ & \hline \end{aligned}$
1st Local Oscillator	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz}, \\ +7.5 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz} \\ +7.5 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz} \\ +6 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 6 \mathrm{GHz} \\ +6 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$	$\begin{array}{r} 2 \text { to } 4 \mathrm{GHz}, \\ +6 \text { to }+20 \mathrm{dBm} \\ \hline \end{array}$
2nd Local Oscillator	-7 to - 17 dBm	-7 to -17 dBm	-7 to -17 dBm	-7 to- 17 dBm	-7 to -17 dBm
Video Output (CRT center reference)	0.5 V of signal per div of video	0.5 V of signal per div of video	0.5 V of signal per div of video	0.5 V of signal per div of video	0.5 V of signal per div of video
Sweep Output (CRT center reference)	$0.5 \mathrm{~V} / \mathrm{div}$: $\pm 2.5 \mathrm{~V}$ max	$0.5 \mathrm{~V} /$ div: $\pm 2.5 \mathrm{~V}$ max	$0.5 \mathrm{~V} / \mathrm{div}$, $\pm 2.5 \mathrm{~V} \mathrm{max}$	$0.5 \mathrm{~V} / \mathrm{div}, \pm 2.5 \mathrm{~V}$ max	$0.5 \mathrm{~V} / \mathrm{div}, \pm 2.5 \mathrm{~V}$ max
Pen Lift	$+\begin{aligned} & +5 \mathrm{~V} \text { nominal; } \\ & \text { TT-compatible }\end{aligned}$	+5 V nominal: TL-compatible	+5 V nominal: TIL-compatible	$\stackrel{+5 \mathrm{~V} \text { nominal; }}{+1 \mathrm{~L} \text {-compatible }}$	$+{ }^{+5 \mathrm{~V} \text { nominal; }}$
2nd IF Output (Opt. 42)	$\begin{gathered} 110 \mathrm{MHz}, 0 \mathrm{dBm} \\ 3 \mathrm{~dB} \mathrm{BW} \text { is } 4.5 \mathrm{MHz} \end{gathered}$	$110 \mathrm{MHz}, 0 \mathrm{dBm}$; 3 dB BW is 4.5 MHz	$110 \mathrm{MHz}, 0 \mathrm{dBm}$; 3 dB BW is 4.5 MHz	$110 \mathrm{MHz}, 0 \mathrm{dBm}$; 3 dB BW is 4.5 MHz	$\begin{gathered} 110 \mathrm{MHz}, 0 \mathrm{dBm} ; \\ 3 \mathrm{~dB} \mathrm{BW} \text { is } 4.5 \mathrm{MHz} \end{gathered}$
3rd IF Output	$10 \mathrm{MHz},-5 \mathrm{dBm}$				
Probe Power	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} \text {; } \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} ; \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & \hline+5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} ; \\ & 100 \text { mA max each } \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} \text {; } \\ & 100 \mathrm{~mA} \text { max each } \end{aligned}$	$\begin{aligned} & \hline+5 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V} ; \\ & 100 \text { mA max each } \end{aligned}$

GENERAL SPECIFICATIONS

Power Requirements Voltage Frequency Power	$\begin{gathered} 90-132 / 180-250 \mathrm{Vac} \\ 48-440 \mathrm{~Hz} \\ 210 \mathrm{Wmax} \\ \mathrm{C} 115 \mathrm{Vac}, 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{aligned} & 90-132 / 180-250 \mathrm{Vac} \\ & 48-44 \mathrm{~Hz} \\ & 210 \mathrm{Wmax} \\ & \text { @115 } \mathrm{Vac}, 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{gathered} 90-132 / 180-250 \mathrm{Vac} \\ 48-440 \mathrm{~Hz} \\ 210 \mathrm{Wmax} \\ @ 115 \mathrm{Vac}, 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 90-132 / 180-250 \mathrm{Vac} \\ 48-440 \mathrm{~Hz} \\ 210 \mathrm{Wmax} \\ \text { @ } 115 \mathrm{Vac}, 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 90-132 / 180-250 \mathrm{Vac} \\ 48-44 \mathrm{~Hz} \\ 210 \mathrm{Wmax} \\ \text { (1) } 115 \mathrm{Vac}, 60 \mathrm{~Hz} \\ \hline \end{gathered}$
Weight (carrying), Nominal	22.2 kg (48 lbs)	21.76 kg (47 lbs)	21.3 kg (46 lbs)	20.83 kg (45 lbs)	19.44 kg (42 lbs)
Dimensions (without handle, feet, or cover), mm/inches	$\begin{array}{r} 175 \times 327 \times 499 / \\ 6.9 \times 12.87 \times 19.65 \\ \hline \end{array}$	$\begin{array}{r} 175 \times 327 \times 499 / \\ 6.9 \times 12.87 \times 19.65 \\ \hline \end{array}$	$\begin{array}{r} 175 \times 327 \times 499 / \\ 6.9 \times 12.87 \times 19.65 \\ \hline \end{array}$	$\begin{array}{r} 175 \times 327 \times 499 / \\ 6.9 \times 12.87 \times 19.65 \\ \hline \end{array}$	$\begin{array}{r} 175 \times 327 \times 499 / \\ 6.9 \times 12.87 \times 19.65 \\ \hline \end{array}$
Digital Storage	1000 pts horizontal, 250 pts vertical				
Digitizing Rate	$9 \mu \mathrm{~S}$				
Macro Programming	8K	8K	N/A	8K	8K
Nonvolatile Memory	9 waveforms, 10 control settings				
HELP Mode	Yes	Yes	Yes	Yes	Yes

490 SERIES CHARACTERISTICS (cont.)					
	494AP	492BP	492PGM	497P	495P
ENVIRONMENTAL (PER MIL-T-28800C, TYPE III, CLASS 3, STYLE C)					
Electromagnetic Compatibility (consult data sheet for compliance details)	MIL-STD-461B	MIL-STD-461B	MIL-STD-461B	MIL-STD-461B	MIL-STD-461B
Calibration Interval	1 Year				

IEEE 488 (GPIB)

Interface Functions	SH1, AH1, T5, L3, SR1, RL1, PP1, DC1, DT1, and C0	SH1, AH1, T5, L3, SR1, RL1, PP1, DC1, DT1, and C0	SH1, AH1, T5, L3, SR1, RL1, PP1, DC1, DT1, and C0	SH1, AH1, T5, L3, SR1, RL1, PP1, DC1, DT1, and C0	SH1, AH1, T5, L3, SR1, RL1, PP1, DC1, DT1, and C0
Direct Plotter Output	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Supports Tek HC100, } \\ \text { HP } 7470 \mathrm{~A} \end{gathered}$
Waveform Transfer Speed	$165 \mathrm{msec} / 1000 \mathrm{pts}$	$165 \mathrm{msec} / 1000$ pts			

ORDERING INFORMATION

WARRANTY

Tektronix 490 Series Spectrum Analyzers are warranted to be free from defects in material and workmanship for a period of one year from the date of shipment.
494AP Programmable Spectrum Analyzer
Includes: Operator's Manual; Programmer's Manual; $6-\mathrm{ft}, 50-\Omega$ coaxial cable, $\mathrm{N}-\mathrm{N}(012-0114-00)$; 18 -inch, $50-\Omega$ coaxial cable, BNC-BNC (012-0076-00); N male to BNC female adapter (103-0045-00); rear connector shield (337-3274-00); power cord and spare fuses; CRT filter set consisting of amber and gray light filters plus mesh filter.
492BP Programmable Spectrum Analyzer Includes: same as 494AP
492PGM Programmable Spectrum Analyzer Includes: same as 494AP, except gray CRT filter (no filter set)
497P Programmable Spectrum Analyzer
Includes: same as 494AP
495P Programmable Spectrum Analyzer
Includes: same as 494AP
OPTIONS
Opt. 02 (497P) - Precision
Frequency Reference. $1 \times 10^{-9} / \mathrm{yr}$ aging
Opt. $07-75-\Omega \mathrm{dBmV}$ input and calibration in addition to the normal $50-\Omega \mathrm{dBm}$ input and calibration. (Not combinable with Options 21 and 22; no external mixer capability.) Includes 42 -inch, $75-\Omega$ BNC-BNC coax cable (012-0074-00) and BNC male to "F" female adapter (013-0126-00)
Opt. 21 (494AP, 492BP) -High-performance 18 to 40 GHz WM490 Series Waveguide Mixer Set Includes WM490K ($18-26.5 \mathrm{GHz}$) and WM490A
($26.5-40 \mathrm{GHz}$) Waveguide Mixers, Diplexer assembly
(015-0385-00), and interconnecting cable
(012-0649-00)
Opt. 22 (494AP, 492BP) -High-performance 18 to
60 GHz WM490 Series Waveguide Mixer Set
Includes: same as option 21 plus WM490U
$(40-60 \mathrm{GHz})$ Waveguide Mixer
Opt. 23 -GRASP software (S26RF00),
PC2A interface, GPIB cable.

NOTE: The PC2A is a National Instruments

GPIB Interface Card.

NOTE: For more information on any of these bundled software and computer packages, please contact your local Tek sales representative.
Opt. 27 -Epson LT-386SX (with 80386SX processor, VGA LCD display, 2 Mb RAM, 40 Mb removable hard drive, $1.44 \mathrm{Mb} 3.5^{\circ}$ diskette drive, serial/parallel interface, battery pack and charger, DOS), GRASP software, PC2A interface, and GPIB cable.
Opt. 28 -Compaq Deskpro 386S, Model 40 (with 80386SX processor, VGA color monitor, 2 Mb RAM,
$+\$ 2,200$ 40 Mb hard drive, 1.2 Mb floppy drive, serial/parallel interface, DOS), GRASP software,
PC2A interface, and GPIB cable.
Opt. 39 - Non-lithium (Silver) batteries for batterybacked memory
Opt. 41 (all except 495P) - Digital Microwave Radio Measurement Enhancement package
(492PGM)
Opt. 42 - Replaces MARKER/VIDEO input port on
the rear panel with a 110 MHz IF output port that provides a 3 dB signal bandwidth $\geq 4.5 \mathrm{MHz}$ (492BP)
(497P)
Opt. 45 (all except 492PGM and 497P) - MATE ${ }^{\prime}$
CIIL language interface
Opt. B1-Service manual(s)
Opt. B2 - Operator's manual, Programmer's manual, and Service manual(s) set

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Opt. A5 -Available. See page 374.
(for all units unless otherwise noted)
+\$2,785
$+\$ 4,685$
\$1,530
\$32,450 Comb Generator, TM500-Series compatible (067-0885-00, all except 495P); Tek HC100 Color Plotter; CRT Visor (016-0653-00); $75-\Omega$ to $50-\Omega$ minimum loss adapter (011-0112-00); DC blocking capacitor, N conn. (015-0509-00); 2-meter GPIB cable (012-0630-00); GPIB cable (012-0991-00); Programmer's Reference Guide (070-5567-00); Service Kit (006-3286-01).

SERVICE MANUALS

SERVICE MANUALS			
492BP -	Volume 1	070-5565-01	\$80
	Volume 2	070-5566-01	\$150
492PGM -	Volume 1	070-7556-00	\$100
	Volume 2	070-7557-00	\$175
494AP -	Volume 1	070-5560-00	\$80
	Volume 2	070-5561-00	\$150
495P -	Volume 1	070-5084-00	\$70
	Volume 2	070-5085-00	\$150
497P -	Volume 1	070-7679-00	\$70
	Volume 2	070-7680-00	\$135

For more information see page 378.
Opt. M1 - 2 years service and 2 calibrations $\quad \mathbf{+ \$ 2 , 5 4 0}$

494AP	$+\$ 2,54$
492 BP	$\mathbf{+ \$ 2 , 3 4}$

$+\$ 2,346$
$+\$ 2,366$
+\$1,995
+\$1,984
+\$3,769
+\$3,510
+\$3,654
+\$2,985
+\$3,016
$+\$ 5,081$
$+\$ 4,693$
+\$4,733
$+\$ 3,990$
+\$3,969
$+5656$
+\$592
+\$585
+\$595
+\$476
+\$1,312
+\$1,183

+ $\$ 1,170$
+\$1,005
+\$952
+\$1,884
+\$1,755
+\$1,782
+\$1,490
+\$1,508
${ }^{*}$ Contact your local sales office.

WM780 AND WM490 SERIES

WAVEGUIDE MIXERS

The Tektronix WM780 Series and WM490 Series Waveguide Mixers cover a frequency range of 18 to 325 GHz with optimum flatness. Although designed specifically for use with the Tektronix 2750 and 490 Series Spectrum Analyzers, they are also compatible with most other spectrum analyzers. They can serve a wide variety of general-purpose uses, such as downconversion for noise figure and network analysis measurements.

WM780 Series Waveguide Mixers feature individual frequency characterization curves attached to the housing, for improved measurement accuracy. Custom characterization for system use is also available upon request.

For the WM490 Series WGMs two microwave mixers with field-replaceable diodes cover the 18-26.5 GHz and $26.5-40 \mathrm{GHz}$ ranges. When used with 2750 and 490 Series, the frequency response of both the WM490 and WM780 Series WGMs is $\pm 2 \mathrm{~dB}$. Eight millimeter-wave mixers cover the $33-220 \mathrm{GHz}$ range in the standard MilSpec band ranges. A special tapered flange transition converts the G-band mixers to cover the $220-325 \mathrm{GHz} \mathrm{J}$ band.

All mixers are gold-plated brass, conforming to MIL-G-45204 Class I, Type 1 specifications, and will withstand harsh environments. Mixer sets come complete with a 28 -inch cable, an instruction manual, and a wood storage box with foam cutout storage locations for five mixers.

NOTE:

A diplexer assembly and diplexer interconnecting cable, such as Tektronix part numbers 015-0385-00 and 012-0649-00, respectively, are required for waveguide mixers used with the 2750 and 490 Series Spectrum Analyzers. The 015-0385-00 Diplexer Assembly includes a TNC-to-SMA adaptor and an SMA semi-rigid coax.

CHARACTERISTICS

Maximum CW RF Input Level - +20 dBm (100 mW) Maximum PULSED RF Input Level-1 W peak with 0.001 maximum duty factor and $1 \mu \mathrm{~S}$ maximum pulse width.
LO Requirement -+7 dBm minimum, +15 dBm maximum, +10 dBm typical.
Bias Requirement --2.0 V to +0.5 V with respect to the mixer body through a current-limiting resistor, to provide 0 mA to 20 mA of bias current.
1 dB Compression Point - 0 dBM typical.

ELECTRICAL CHARACTERISTICS

(Shown for WM780 Series; characteristics and model number suffixes (K, A, Q, U, V, E, W, F, D, G and G Opt. 1) are the same for WM490 Series.)

Frequency Range (GHz)	Tektronix Model No.	Band Desig.	$\begin{gathered} \text { Sensitivity }{ }^{-1} \\ (\mathrm{dBm}) \end{gathered}$	Frequency ${ }^{\text {² }}$ Response (dB)	$\begin{aligned} & \text { Conversion }{ }^{-3} \\ & \text { Loss, Typical (dB) } \end{aligned}$	Low-Pass ${ }^{\text {" }}$ Cutoff Frequency
18-26.5	WM780K	K	-100	± 2	30	12 GHz
26.5-40	WM780A	A	-95	± 2	30	16 GHz
33-50	WM7800	Q	-90	± 2	35	21 GHz
40-60	WM780U	U	-90	± 2.5	35	16 GHz
50-75	WM780V	V	$\begin{aligned} & \hline-90 @ 50 \mathrm{GHz} \\ & -85 @ 75 \mathrm{GHz} \text { typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3^{\circ 4} \\ & \text { typical } \end{aligned}$	$\begin{aligned} & 35 @ 50 \mathrm{GHz} \\ & 40 @ 75 \mathrm{GHz} \\ & \hline \end{aligned}$	28 GHz
60-90	WM780E	E	$\begin{aligned} & -80 @ 60 \mathrm{GHz} \\ & -80 @ 90 \mathrm{GHz} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 3^{44} \\ & \text { typical } \end{aligned}$	$\begin{aligned} & 35 @ 60 \mathrm{GHz} \\ & 45 @ 90 \mathrm{GHz} \end{aligned}$	28 GHz
75-110	WM780W	W	$\begin{aligned} & \hline-80 @ 75 \mathrm{GHz} \\ & -70 @ 110 \mathrm{GHz} \mathrm{typ} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3^{\cdot 4} \\ & \text { typical } \end{aligned}$	$\begin{aligned} & \hline 45 @ 75 \mathrm{GHz} \\ & 55 @ 110 \mathrm{GHz} \end{aligned}$	30 GHz
90-140	WM780F	F	$\begin{aligned} & \hline-75 @ 90 \mathrm{GHz} \\ & -65 @ 140 \mathrm{GHz} \mathrm{typ} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3^{\circ 4} \\ & \text { typical } \end{aligned}$	$\begin{aligned} & 50 @ 90 \mathrm{GHz} \\ & 60 @ 140 \mathrm{GHz} \end{aligned}$	32 GHz
110-170	WM780D	D	$\begin{aligned} & \hline-70 @ 110 \mathrm{GHz} \\ & -60 @ 170 \mathrm{GHz} \mathrm{typ} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3^{\circ 4} \\ & \text { typical } \end{aligned}$	$\begin{aligned} & 50 @ 110 \mathrm{GHz} \\ & 60 @ 170 \mathrm{GHz} \end{aligned}$	40 GHz
140-220	WM780G	G	$\begin{aligned} & -65 @ 140 \mathrm{GHz} \\ & -55 @ 220 \mathrm{GHz} \mathrm{typ} \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 3^{\circ 4} \\ \text { typical } \end{array}$	$\begin{aligned} & 55 @ 140 \mathrm{GHz} \\ & 65 @ 220 \mathrm{GHz} \end{aligned}$	40 GHz
220-325	WM780J	J	$\begin{aligned} & -55 @ 220 \mathrm{GHz} \mathrm{~T}^{\text {'5 }} \\ & -45 @ 325 \mathrm{GHz} \text { typ } \\ & \hline \end{aligned}$	$\begin{gathered} \pm 3^{\circ 4} \\ \text { typical } \end{gathered}$	$\begin{aligned} & 65 @ 220 \mathrm{GHz} \\ & 75 @ 325 \mathrm{GHz} \end{aligned}$	40 GHz

[^28]
ORDERING INFORMATION

WM780 WAVEGUIDE MIXERS \& SETS
$18-26.5 \mathrm{GHz}$-Order WM780K $\$ 1,655$
$26.5-40 \mathrm{GHz}$ - Order WM780A
$33-50 \mathrm{GHz}$ - Order WM7800
$40-60 \mathrm{GHz}$ - Order WM780U
$50-75 \mathrm{GHz}$ - Order WM780V
$60-90 \mathrm{GHz}$ - Order WM780E
$75-110 \mathrm{GHz}$ - Order WM780W
$\mathbf{9 0 - 1 4 0 ~ G H z}$ - Order WM780F
$110-170 \mathrm{GHz}$ - Order WM780D
$140-220$ GHz - Order WM780G
$220-325 \mathrm{GHz}$ - Order WM780J
18 to 40 GHz Set - Includes
WM780K, WM780A.
Order WM7802
18 to 60 GHz Set - Includes
WM780K, WM780A, WM780U.
Order WM7803
26.5 to $\mathbf{6 0} \mathbf{~ G H z ~ S e t ~ - ~ I n c l u d e s ~}$

WM780A, WM780U.
Order WM7806.
26.5 to 90 GHz Set - Includes

WM780A, WM780U, WM780E
Order WM7807.
\$1,655
\$1,915
$\$ 2,280$
$\$ 2,580$
$\$ 2,805$
$\$ 2$,
$\$ 2,880$
$\$ 3,080$
$\$ 4,300$
$\$ 4,400$
\$3,150
$\$ 5,320$
\$3,860
\$6,610
26.5 to 140 GHz Set - Includes

WM780A, WM780U, WM780E,
WM780F. Order WM7808.
26.5 to 220 GHz Set - Includes

WM780A, WM780U, WM780E,
WM780F, WM780G.
Order WM7809.
33 TO 50 GHz Set - Includes
WM780Q, WM780V.
Order WM78010.
33 to 110 GHz Set - Includes
WM780Q, WM780V, WM780W Order WM78011.
33 to 170 GHz Set - Includes
WM780Q, WM780V, WM780W
WM780D. Order WM78012.
WM490 WAVEGUIDE MIXERS
$18-26.5 \mathrm{GHz}$ - Order WM490K
$26.5-40 \mathrm{GHz}$ - Order WM490A
$33-50 \mathrm{GHz}$ - Order WM4900
$40-60 \mathrm{GHz}$ - Order WM490U
$50-75 \mathrm{GHz}$ - Order WM490V
$60-90 \mathrm{GHz}$ - Order WM490E
$75-110 \mathrm{GHz}$ - Order WM490W
$\mathbf{9 0 - 1 4 0 ~ G H z ~ - ~ O r d e r ~ W M 4 9 0 F ~}$
$110-170 \mathrm{GHz}$ - Order WM490D
$140-220 \mathrm{GHz}$ - Order WM490G
$220-325 \mathrm{GHz}$ - Order WM490G,
Option 1
18 to $\mathbf{4 0} \mathbf{~ G H z}$ Set - Includes
WM490K, WM490A.
Order WM4902
18 to 60 GHz Set - Includes
WM4902 plus WM490U.
Order WM4903
18 to 90 GHz Set - Includes
WM4903 plus WM490E.
Order WM4904
18 to 140 GHz Set - Includes
WM4904 plus WM490.
Order WM4905
WM780 \& WM490 ACC
ORIES
Diplexer Assembly - (required for
2750/490 Series).
Order015-0385-00
Diplexer to Waveguide Mixer
Interconnecting Cable Assembly -
(required for 2750/490 Series)
50-ohm, SMA-to-SMA.
Order 012-0649-00
Tapered Transition - Extends
WM780G/WM490G frequency
coverage to $220-325 \mathrm{GHz}$.
Order 119-1728-00
Case - Order 016-0465-01
Case - Order 016-0465-01
${ }^{*}$ Contact your local sales office.

General RF Applications (GRASP)

- Performs Automated Spectrum Analysis on PCCompatible Computers
- Applications Routines Are Selected Through Easy, Menu-Driven Operation
- Supports EGA and CGA Graphics

2782/PC Utility Software

- Performs Automated Spectrum Analysis on PCCompatible Controllers
- Applications Routines are Selected Through Pop-up Menus
- Provides Data Logging to Color Copier, Printer, or Magnetic Media.
- Supports EGA and CGA Graphics

Remote Site Monitoring (RSM)

- Control Tektronix Instrumentation from Anywhere in the World
- Monitor RF Signals at One or More Remote Installations
- Immediate Call-back Warning of Failure Conditions
- Applications Routines Are Selected Through Pop-up Menu Structure

EMI
 Software

- Cost-Effective Approach to Automated EMI Testing
- Runs on IBM or Compatible PC
- Easy, Menu-Driven Operation
- Prequalification Testing for FCC/VDE, MIL-STD-461B/462 CE03 and RE02. Test Categories Include: FCC/VDE Electric Field Radiated, VDE Magnetic Field Radiated, FCC/VDE Conducted, VDE Absorbing Clamp, RE02 Radiated (MIL-STD-461B/ 462), CE03 Conducted (MIL-STD-461B/462)

MEASUREMENTS

Harmonic Distortion Amplitude Modulation Signal-to-Noise Frequency Response Cursors

WAVEFORM OPERATIONS

Acquire A View Waveform
Acquire BView Waveform
Send to instrument
Store on Disk
Load from Disk
Graph Waveform Overlay Waveform Redraw Waveform Normalize Waveform

FILTER TESTS

Band-pass Filter
Low-pass Filter
High-pass Filter

UTILITIES

Talk/listen (Command)
Sensitivity Test
Resolution Filters Test
Calibration Assistance
Select Instrument
Select Disk

SIGNAL SEARCH

Fast Search
Precise Search
Spur Search
Automatic Identify

The GRASP main menu lists all submenus and their routines.

GENERAL RF APPLICATIONS SOFTWARE PACKAGE GRASP

Tek's GRASP (General RF Applications Software Package) is the first in a family of spectrum analyzer software packages called TekSPANS. GRASP is designed to capitalize on the power of Tek's 490P and 2750P Series Spectrum Analyzers and PC-compatible controllers.

This highly versatile software package offers many applications/utility routines that are selected through easy, menu-driven operation. Even a non-technical operator has immediate access to operations such as swept-frequency measurements, waveform storage and recall, and performing signal analysis, including measurements of harmonic distortion and signal-tonoise ratio.

From GRASP's main menu, a user selects among any of the submenus for Measurements, Filter Tests, Signal Search routines, Waveform Operations, and Utilities. Selections are made by pressing the appropriate function key shown on-screen.

Prompts guide the user through each measurement task. For example, users can utilize a Cursors routine which displays the instrument crt on their terminal screen. It calculates and displays both the absolute amplitude and frequency of one or two marked signals, plus the relative (delta) amplitude and frequency difference between the two markers.

Complete source code is provided, thereby simplifying the task of integrating user-written routines into GRASP.

2782/PC UTILITY SOFTWARE

Tek's 2782/PC Utility Software is designed to capitalize on the power of the Tektronix 2782 Spectrum Analyzer and PC-compatible controllers.

This software package offers applications/utility routines that are selected through pop-up menu operation. Even a non-technical operator has immediate access to operations such as waveform graphing, waveform storage and recall, and performing a fast or precise signal search over a selected frequency band. A Talk/Listen routine is also included for explicitly setting or querying any front panel function.

All 2782 tests are based on user-defined defaults. The results of the tests can then be displayed on screen, or stored to disk for later recall. Graphics drivers are included for both CGA (Color Graphics Adaptor) and EGA (Enhanced Graphics Adaptor) displays. Graph colors are user-selectable.

REMOTE SITE MONITORING PC SOFTWARE RSM

RSM (Remote Site Monitoring) software, part of the TekSPANS family of spectrum analysis software, simplifies the control and data analysis of instruments at remote sites or in hostile environments. RSM merges the power and precision of Tek's 490P and 2750P Series Spectrum Analyzers with the economy of PC-based controllers to provide cost effective, remote-site monitoring and control.

RSM provides the ability to connect, via telephone, a pair of PCs. The remote-site PC is connected to the remote Tek 490P or 2750P Series Spectrum Analyzer, and perhaps to other Tek programmable instruments, via the IEEE 488 interface. This remote PC includes either the Tek GURU interface or the National Instruments PC2 or PC2A card. The 2402A TekMate, when ordered with a graphics card, makes an ideal remote-site PC.

MONITOR

Enter Parameters
Take a Measurement
Report Errors
Hang-Up/Monitor
Immediate Call Back
Show Parameters

MEASUREMENTS

Harmonic Distortion
Amplitude Modulation
Signal-to-Noise

WAVEFORM OPERATIONS

Acquire A View Waveform
Acquire BView Waveform
Send to instrument
Store on Disk
Load from Disk
Graph Waveform
Acquire Mode: Norm

SIGNAL SEARCH

Fast Search
Precise Search
Spur Search

UTILITIES

Talk/listen (Command)
Sensitivity Test
Resolution Filters Test
Calibration Assistance
Select Instrument
Select Disk
User Program

ORDERING INFORMATION

When ordering the GRASP package, specify the choice of media from the Options list below:

S26RF00 GRASP Software

Package

Includes: Software (see choice of media under Options), license agreement, and users manual.

S26UT00 2782 Utility Software Includes: Software on DS/DD diskettes, license agreement, and user's manual.

S26RM00 RSM Host-Site module

S26RM01 RSM Remote-Site module
Includes: Software on DS/DD
diskettes, license agreement, and user's manual.

S26EM00 EMI Prequalification

Software

Includes: Software on DS/DD
diskettes, license agreement,
and user's manual.

OPTIONS

S26RF00 Software
Opt. 01 -IBM AT high-density
disk ($1.2 \mathrm{Mb}, 5.25^{\circ}$)
Opt. 1A - IBM PC double-density disk ($360 \mathrm{~kb}, 5.25^{\text {" }}$)
Opt. 1B - IBM PC microdisk
($720 \mathrm{~kb}, 3.5^{\prime \prime}$)
Opt. 10-GPIB interface for PC
S26UT00 Software
Opt. 10 - GPIB interface for PC
S26RM01 Software
Opt. 10-GPIB interface for PC
S26EM00 Software
Opt. 09-Source Code
Opt. 10-GPIB Interface for PC
+\$495

490P/2750P SPECTRUM ANALYZER

- 10 kHz to 21 GHz Frequency Range in Coax; up to 325 GHz with External Mixers
- Built-in Frequency Counter (most models)
- "Smart" Markers for Faster, More Accurate Measurements
- Nonvolatile Memory to Save Front Panel Settings and CRT Displays
- Fully Programmable Over the IEEE-488 Bus

2782 SPECTRUM ANALYZER

- 100 Hz to 33 GHz Coaxial Frequency Range; up to 325 GHz with External Mixers
- Full-range Sweep from 0 Hz to 33 GHz
- 100 dB Display Dynamic Range
- Intelligent Markers and Signal Processing
- High-resolution Color Display
- Built-in Automation (Macros)
- 2 IEEE-488 Ports

ORDERING INFORMATION

490P/2750P SYSTEMS

When ordering, use the model

 number and desired options of the 490P or 2750P Series spectrum analyzer plus one of these package options:Opt. 23 -GRASP (S26RF00), S3FG120 GPIB Interface Package (includes PC2A card*), GPIB cable
Opt. 27 -GRASP, PC2A* GPIB cable, Epson LT-386SX PC
Opt. 28 -GRASP, PC2A*, GPIB cable, Compaq Deskpro 386S PC

2782 SYSTEMS

When ordering, specify the 2782
Spectrum Analyzer plus one of
these package options:
Opt. 20-2782 Utility software (S26UT00), S3FG120 GPIB Interface Package (includes PC2A card*), GPIB cable Opt. 27 -S26UT00, PC2A*, GPIB cable, Epson LT-386SX PC
Opt. 28 -S26UT00, PC2A*,
GPIB cable, Compaq Deskpro
386S PC

* National Instruments PC2A
(GPIB) Interface Card
${ }^{\circ}$ Contact your local sales office

The Tektronix 492BP Option 27 system is ideal for portable data logging applications.

AUTOMATE YOUR MEASUREMENTS WITH TEK SPECTRUM ANALYZER SYSTEMS

Tektronix Spectrum Analyzer Packages are configured around Epson or Compaq personal computers and Tektronix' laboratory-quality programmable spectrum analyzers. Coupling the PC to the analyzer via the IEEE488 bus lets you take advantage of the PC's capability, as well as the power and versatility of Tektronix Spectrum Analyzers. Tektronix Spectrum Analysis Software provides applications and utility routines that are selected through easy, menu-driven operation.
Tektronix Spectrum Analyzer Packages are turnkey systems that get your application running with a minimum of effort. To order one of these systems, use the model number and desired options of the programmable spectrum analyzer, plus one of the following package options.
Option 23 (to the 490P/2750P-series) and Option 20 (to the 2782) are intended for users who already have a PC-compatible computer. Options 27 and 28 are turnkey systems designed for R\&D, manufacturing test, and general RF automated testing. Option 27 includes a state-of-the-art laptop PC and is ideal for portable data logging applications. Option 28 includes a high-performance desktop PC and is designed for benchtop ATE applications.
Each of the PC systems includes DOS, GRASP or 2782 Utility Software, and a GPIB interface installed in the PC. A GPIB cable is also included. These computer systems are configured and checked out prior to shipment. Thus, you receive a turnkey system and will encounter minimal effort in configuring and running the system.

490P/2750P/PC SPECTRUM ANALYZER SYSTEMS

A choice of a laptop or desktop PC is available:

EPSON LT-386SX (OPT. 27)

This Epson laptop computer features an 80386SX processor running at 16 MHz . It has a built-in VGA backlit LCD display, a removable 40 Mb hard drive, a $3.5 " 1.44 \mathrm{Mb}$ diskette drive, and 2 Mb of RAM. The LT386SX has serial and parallel interfaces, plus jacks for an external keyboard and color VGA monitor. Tek's GRASP software (S26RF00) and a GPIB cable are included.

DESKPRO 386S (OPT. 28)

The Compaq Deskpro 386S features an 80386SX processor running at 16 MHz . It includes a 40 Mb hard disk drive, a 1.2 Mb floppy disk drive, 2 Mb RAM, a VGA color monitor, and serial and parallel interfaces. Tek's GRASP software and a GPIB cable are included

2782/PC SPECTRUM ANALYZER SYSTEMS

A choice of a laptop or desktop PC is available:

EPSON LT-386SX (OPT. 27)

The contents of this computer package are the same as Option 27 described under 490P/2750P systems, except that Tek's 2782 Utility Software (S26UT00) is substituted for the GRASP software .

DESKPRO 386S (OPT. 28)

The contents of this computer package are the same as Option 28 described under 490P/2750P systems, except that Tek's 2782 Utility Software (S26UT00) is substituted for the GRASP software.

TR 503 Tracking Generator

TR 503

TRACKING GENERATOR

The TR 503 works with all 2750 and 490 Series spectrum analyzers to provide constant level, calibrated RF sources for swept frequency tests to 1.8 GHz . The tracking generator is a two-wide unit compatible with the TM 500 and TM 5000 Modular Instrument Series.

The low residual FM of these systems enhances narrow bandwidth frequency response measurements. When used as a CW signal source with the analyzer in a zero span, these systems have excellent frequency stability.

The tracking generator sweep rates are controlled with the spectrum analyzer, and the output level is controlled from the tracking generator. The output frequency of the tracking generator is the same as the frequency of the analyzer at any instant of the sweep.

CHARACTERISTICS

TR 503/ALL 490 AND 2750 SERIES
Frequency Range - 100 kHz to 1.8 GHz
Output Level - (Max) $0 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$
Range - 0 to 59 dB in 10 dB and 1 dB steps
Flatness - Within $\pm 2.25 \mathrm{~dB}$ Max from 100 kHz
to 1.8 GHz (Typically $\pm 1.5 \mathrm{~dB}$)
Dynamic Range $-\geq 110 \mathrm{~dB}$
Residual $\mathrm{FM}-50 \mathrm{~Hz} \mathrm{p}-\mathrm{p}$
Output Impedance - 50Ω Nominal, VSWR 2:1 or less to 1.8 GHz
Auxiliary Output-0.1 V RMS into 50Ω load 7 dBm minimum

2712 Spectrum Analyzer and the 1405 TV Sideband Adapter

1405

TV SIDEBAND ADAPTER

To analyze the sideband response of a television transmitter, the 1405 Sideband Adapter is recommended for use in tandem with the Tektronix 271X Family, 2750 Series and 490 Series spectrum analyzers. It generates a composite video signal, which is applied as modulation to a television transmitter. The output is displayed on the spectrum analyzer and appears as a response curve, to within $\pm 0.2 \mathrm{~dB}$, of the transmitter being tested.

The 1405/Spectrum Analyzer combination will display frequency response characteristics of RF and IF circuits for transmitters with frequencies to 1 GHz . Video circuits can also be analyzed.

Correct frequencies at the TV Channel marks on the dial readout for 2750 and 490 Series spectrum analyzers are provided with Option 02, and for the 271X Spectrum Analyzer Family with Option 03.

Call your local sales engineer for additional information.

TR 503

Tracking Generator

- Swept Measurements to 1.8 GHz
- Enhances Dynamic Range to Better Than 110 dB
- Very Stable-Useful as a CW Signal Source
- Auxiliary, Constant Level Output Provides for Frequency Counter Measurement Even of Signals at the Noise Floor
ORDERING INFORMATION
TR 503 Tracking Generator
\$7,080 Includes: Two 50Ω coax cables (012-0649-00); N male to BNC female adapter (103-0045-00); retainer plug-in (343-0604-00); instruction manual (070-3526-00).

OPTIONAL ACCESSORIES

TM 503A Power Module \$395
TM 504 Power Module
Blank Panel - Order 016-0195-05 \$42

1405
 TV Sideband Adapter

- Facilitates In-Service Testing of Transmitter
- Measure Transmitter Frequency Response to $\pm 0.2 \mathrm{~dB}$
- Video Circuits Can be Swept
- For In-Service Testing, Use of External Blanking Allows Either Full Field or Single Line Operation
- Check Aural FM Deviation with Built-In Bessel Null Technique
- Flexible Marker System Will Accept Standard Crystals

ORDERING INFORMATION

1405 TV Sideband Adapter
Includes: Instruction manual (070-2078-00)

OPTIONS
Opt. 01 - TV Sideband Adapter (625/50 Markers)
Opt. 02 - Dial Readout for 490/
2750 Series Spectrum Analyzers NC
Opt. 03 - Dial Readout for use
with 271X Spectrum Analyzer
FamilyNC

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - Available
See page 374 for description.

RACKMOUNT CONVERSION KIT

Standard 19-inch Rack -
Order 016-0489-00
$\$ 735$

FEATURES

- High Value, Low Cost
- Standard Features
-5×10^{-7} Frequency Accuracy
-Sensitivity to - 139 dBm (-92 dBmV) with Built-in Preamp
- Internal Frequency Counter
- Full Programmability
- Real Time Clock
- 124k of NV RAM
- Ease of Use
- Dedicated Numeric Keypad Plus Logically Grouped Menu Keys
- Powerful Built-in Measurement Routines
- EMC Measurements with

Optional Quasi-Peak Detector

- Swept Measurements to 1.8 GHz with Optional Internal Tracking Generator

NEW 2712 SPECTRUM ANALYZER

The NEW Tektronix 2712 Spectrum Analyzer provides an unprecedented range of features at an extremely affordable price. You get excellent RF performance, a built-in frequency counter, full programmability, digital and true analog displays, high portability, enough nonvolatile memory for 108 saved displays, and much more.

Its straightforward human interface, with convenientlygrouped, dedicated front-panel keys and simple, menudriven functions makes the 2712 easy to learn and use. You can set frequency, span, and reference level directly from the front panel. A real-time clock provides an onscreen date and time display, plus date/time stamp capability for waveform printouts.

Frequency-corrected tuning and phaselock stabilization enhance the ability to resolve close-in signals and reliably demodulate narrowband signals. Sensitivity up to $-127 \mathrm{dBm}(-80 \mathrm{dBmV})$ at 300 Hz resolution bandwidth (RBW) lets you see weak signals. The built-in preamp can improve sensitivity another 12 dB , up to -139 dBm $(-92 \mathrm{dBmV}) .80 \mathrm{~dB}$ on-screen dynamic range ensures

ORDERING INFORMATION

2712 Spectrum Analyzer. Includes: Power cord (U.S. $115 \mathrm{~V} / 60 \mathrm{~Hz}$), operator's manual, front cover, $75 / 50 \Omega$ min-loss pad, and N -to-BNC adapter.

OPTIONS

Opt. 04 - (cannot combine with Opt. 12 or 14) $+\$ 3,150$
Add internal tracking generator, 100 kHz -
$1800 \mathrm{MHz}, 0 \mathrm{dBm}-48 \mathrm{dBm}$ in 0.1 dB steps.
Opt. 07 - Add 2704 Inverter and 2705 Battery
Pack. Includes: Power cord (U.S. $115 \mathrm{~V} / 60 \mathrm{~Hz}$), operator's manual, mounting plate.
Opt. 08 - Replace GPIB with RS-232-C interface. ${ }^{+\$ 1,350}$
Opt. 10 - Video monitor mode.
Opt. 12 - (cannot combine with Opt. 04 or 14) $+\$ 1,480$ Add Quasi-peak Detector (built-in). Includes:
$200 \mathrm{~Hz}, 9 \mathrm{kHz}$, and 120 kHz EMC filters; 1 kHz and 1 MHz RBW filters
NOTE: 200 Hz EMC filter replaces standard 300 Hz RBW filter.
$\$ 11,950$

Opt. 14 - (cannot combine with Opt. 04 or 12) Add $1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$, and 1 MHz RBW filters.
Opt. 15
Opt. 15 - Tek 1405 TV Sideband Adapter interface. $\mathbf{\$ 2 8 0}$ Opt. 20 - EMC antenna set plus tripod and coax suitable for tests to 1 GHz (contact Tek Sales Engineer for more information).
Opt. 30 - Rackmount for 19 -inch rack width, 5 -inch height.
Opt. 33 - Travel Line Package.
Includes: accessory pouch, carrying strap, vinyl rain cover.
Opt. 34 - Portable-to-Rackmount Adapter for 19 -inch rack width, 7 -inch-height.

OPTIONAL ACCESSORIES
Service Manual - Order 070-8130-00
$+\$ 590$

Tekmate Mounting Hardware -
$\$ 135$
Order 016-1109-00
NOTE: See 2710 ORDERING INFORMATION for optional accessories common to both instruments.
visibility of weak signals in the presence of strong ones.
A 300 Hz RBW filter with a shape factor $\leq 7: 1$ means you'll see many close-in sidebands and spurious, or unexpected signals you might otherwise miss. At the other end of the spectrum, the 5 MHz RBW filter is useful for demodulating wideband signals such as activelymodulated video carriers.

The built-in signal counter, with $0.5 \mathrm{ppm} \pm 10 \mathrm{~Hz}$ accuracy, offers added power for rapidly identifying signals. The capability to choose between digital and true analog displays lets you examine signals for characteristics that might not show on digital-only displays.
Sweep speeds as tast as $1 \mu \mathrm{sec} / \mathrm{div}$, TV Line and TV Field triggering, an internal audio amplifier and AM/FM detectors, and the optional Video Monitor Mode all make video communications measurements easier.

The optional internal tracking generator lets you make high dynamic range swept measurements to 1.8 GHz . Characterize filters, check duplexers or cables, make frequency response and SWR measurements, and much more, with at least 100 dB measurement dynamic range.

To help simplify your EMC measurements, the 2712 offers an optional quasi-peak detector, EMI resolution bandwidth filters, antennas, and fully-corrected E-field intensity measurements to assist in pre-qualification and troubleshooting.

Bandwidth, Carrier-to-Noise, Noise Power, Signal Search, and FM Deviation modes provide additional measurement power and convenience. Occupied Bandwidth Mode, with percent settable from 1 to 99%, aids in broadcast radio measurements.
The 2712's 124k Bytes of nonvolatile memory lets you store up to 108 displays, plus 36 front panel setups, large user-defined key programs, and antenna factor tables.

2712 AND 2710 FEATURE COMPARISON		
CAPABILITY	2712	2710
Frequency Range	$\begin{aligned} & 9 \mathrm{kHz}- \\ & 1.8 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{kHz}- \\ & 1.8 \mathrm{GHz} \end{aligned}$
$\pm 0.5 \mathrm{ppm}$ Frea. Accuracy	Std	Opt 01
Signal Counter	Std	Opt 02
GPIB Interface	Std	Opt 03
Internal Tracking Gen.	Opt 04	Opt 04
Inverter/Battery Pack	Opt 07	Opt 07
No Charge RS-232-C Interface (replaces GPIB)	Opt 08	N/A
Centronics interface	N/A	Opt 09
Video Monitor Mode	Opt 10	Opt 10
EMC Pre-Qualification Measurements	Opt 12	N/A
TV Sideband Adapter Interface	Opt 15	Opt 15
Nonvolatile Memory	124k	28k
High Portability	Yes	Yes
Both Digital and True Analog Displays	Yes	Yes
Dedicated Numeric Keypad	Yes	N/A
Real-Time Clock	Yes	N/A

2710 SPECTRUM ANALYZER

The 2710 is a recognized value leader in spectrum analysis. This economical yet powerful instrument is well-suited to a wide variety of applications, such as checking CATV headend and distribution systems, maintaining industrial security, and teaching frequency domain concepts in the classroom.

The 2710 is highly configurable. Buy as much measurement power as you need or can afford initially, then upgrade as your situation warrants.

The standard 2710 shares many of the 2712 's valuable features. Compact size, light weight (9.5 kg , about 21 lbs .), and available battery operation (refer to 2704 Inverter/2705 Battery Pack descriptions) means you can operate in almost any environment. Both instruments can also be quickly converted to rack operation with optional rackmount adapters.
Basic accuracy of 1×10^{-5} is provided, more than adequate for many applications. If you find you need more, Option 01 raises center frequency accuracy to 5×10^{-7} and adds a 300 Hz resolution bandwidth (RBW) filter.
Sensitivity is up to $-117 \mathrm{dBm}(-70 \mathrm{dBmV})$ at 3 kHz RBW. The built-in preamp can add another 12 dB , up to $-129 \mathrm{dBm}(-82 \mathrm{dBmV}) .80 \mathrm{~dB}$ on-screen dynamic range helps see weak signals, even when strong ones are present.

True analog display capability, along with fast sweep speeds and TV Line and TV Field triggering provide convenient demodulation of video carriers for making depth-of-modulation checks or looking at special baseband data, VITS, and many other signals.

An internal audio amplifier and AM/FM detectors let you hear demodulated signals, using either the built-in speaker or headphone jack, for fast signal identification and troubleshooting in communications applications.
With the optional Video Monitor Mode installed, you can check signals on a remote basis or identify downlinked video transponders.

2712/2710 CHARACTERISTICS

The following characteristics apply to both the 2712 and 2710 after a 15-minute warmup period, unless otherwise noted. Items marked with an asterisk (*) are supplemental characteristics giving typical but nonwarranted performance parameters.

FREQUENCY RELATED

Frequency Range -2712: 9 kHz to 1800 MHz 2710 : 10 kHz to 1800 MHz .
Center Frequency Accuracy -2712: 5×10^{-7} of CF $\pm 700 \mathrm{~Hz} ; 2710: 1 \times 10^{-5}$ of $\mathrm{CF} \pm 5 \mathrm{kHz} ; 2710 \mathrm{w} / 0$ pt 01 Same as 2712.
Frequency Counter Accuracy (Std 2712, Opt 02 2710) - $2712: 5 \times 10^{-7}$ of $\mathrm{CF} \pm 10 \mathrm{~Hz}, \pm 1 \mathrm{LSB}$;

2710: 1×10^{-5} of $\mathrm{CF} \pm 10 \mathrm{~Hz}, \pm 1 \mathrm{LSB} ; 2710 \mathrm{w} / \mathrm{Opt} 01$ Same as 2712.
*Dot Marker Frequency Accuracy -CF Accuracy $+3 \%$ of span, typical.
*Typical Long-Term Drift -2712: 2 ppm/yr.; 2710: $10 \mathrm{ppm} / \mathrm{yr}$; $2710 \mathrm{w} / \mathrm{Opt} 01$: Same as 2712.

Short-Term Drift -2712: $\leq 400 \mathrm{~Hz}$ maximum drift between correction cycles; 2710: $\leq 20 \mathrm{kHz}$ maximum drift between correction cycles; 2710 w/Opt 01: Same as 2712.

Residual FM -2712: $\leq 100 \mathrm{~Hz} \mathrm{p-p/20} \mathrm{msec}$ at $\leq 20 \mathrm{kHz}$ span/div; $\leq 2 \mathrm{kHz} \mathrm{p}-\mathrm{p} / 20 \mathrm{msec}$ at $>20 \mathrm{kHz}$ span/div; 2710: $\leq 2 \mathrm{kHz} \mathrm{p}-\mathrm{p} / 20 \mathrm{msec} ; 2710 \mathrm{w} / 0 \mathrm{pt} 01$: Same as 2712.
Resolution Bandwidth (-6 dBm) - $2712: 5 \mathrm{MHz}$, $300 \mathrm{kHz}, 30 \mathrm{kHz}, 3 \mathrm{kHz}, 300 \mathrm{~Hz}$; $2710: 5 \mathrm{MHz}, 300 \mathrm{kHz}$, $30 \mathrm{kHz}, 3 \mathrm{kHz} ; 2710 \mathrm{w} / \mathrm{Opt} 01$: Same as 2712; 2712/ $2710 \mathrm{w} / \mathrm{Opt} 14$: Add $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$, and 1 kHz .
Resolution Bandwidth Shape Factor (60 dB) $6 d B)-\leq 7: 1$
Noise Sidebands $-\leq 70 \mathrm{dBc}$ at $30 x$ RBW.
Video Filter - Approx. 1/100 (Auto) of RBW. Manual Selection: 3 Hz to 300 kHz in 1-3 sequence.

FEATURES

- Economical, Can Be

Configured to Meet Most Budgets

- High Portability
- Can Be Upgraded Now or Later
- Maximize Performance as Needed
- Internal Tracking Generator Option
- Video Monitor Mode Option
- TV Sideband Adapter Option
- GPIB or Centronics Interface Option
- Excellent Frequency Accuracy and Sensitivity
- 3-Control Operation for Most Measurements

Freq. Span/Div Range - 2712 (2710 w/opt. 01): 180 MHz to 1 kHz . 2710: 180 MHz to 10 kHz selected in 1-2-5 sequence or 2 significant digits via menu.
Span Accuracy $- \pm 3 \%$ over the center eight divisions.

AMPLITUDE RELATED

Flatness $- \pm 1.5 \mathrm{~dB}$ measured with 10 dB internal RF attenuation (preamp off).
Vertical Display Modes -10, 5, $1 \mathrm{~dB} / \mathrm{div}$, Linear.
Measurement Range -2712: -139 (preamp on) to $+20 \mathrm{dBm}(-92$ to $+67 \mathrm{dBmV})$;
2710: -129 (preamp on) to $+20 \mathrm{dBm}(-82$ to +67 dBmV); 2710 w/Opt 01: Same as 2712.
Display Dynamic Range - 80 dB max (limited to 40 dB in optional 2712 Quasi-peak Detector mode).
Reference Level Range - LOG Mode: -70 to
$+20 \mathrm{dBm}(-23$ to $+67 \mathrm{dBmV})$, or down to -90 dBm with preamp on. LINEAR Mode: $8.8 \mu \mathrm{~V}$ to 280 mV .
Reference Level Steps -LOG Mode: 1 dB or 10 dB . LINEAR Mode: 1-2-5 sequence.
Mixer Level Input - Automatically controlled by instrument for on-screen signals. Level selectable between -20 to $-50 \mathrm{dBm}(+27$ to $-3 \mathrm{dBmV})$.
Specifications continued on page 180.

ORDERING INFORMATION

2710 Spectrum Analyzer.
Includes: Power cord (U.S.
$115 \mathrm{~V} / 60 \mathrm{~Hz}$), operator's manual front cover, $75 / 50 \Omega$ min-loss pad, and N -to-BNC adapter.
OPTIONS

Opt. 01 - Add 300 Hz RBW
filter, phaselock stabilization,
and $5 \times 10^{-7} \pm 700 \mathrm{~Hz}$ frequency accuracy.
+\$1,260
Opt. $\mathbf{0 2}$ - Add internal fre-
quency counter with selectable
$1 \mathrm{kHz} / 1 \mathrm{~Hz}$ readout resolution. $\quad \$ 630$
Opt. 03 - (cannot combine with Opt. 09) GPIB interface Opt. 04 - (cannot combine with Opt. 14) Add internal tracking generator, 100 kHz $1800 \mathrm{MHz}, 0 \mathrm{dBm}-48 \mathrm{dBm}$ in 0.1 dB steps.
+\$3,150
Opt. 07 - Add 2704 Inverter and 2705 Battery Pack. Includes: Power cord (U.S. $115 \mathrm{~V} / 60 \mathrm{~Hz}$),
operator's manual, mounting plate.
$+\$ 1,350$
Continued on page 180.

ORDERING INFORMATION

2710 Ordering Information continued from page 179.

Opt. 09 - (cannot combine with Opt. 03) - Centronics interface.
Opt. 10 - Video monitor mode. Opt. 14-(cannot combine with Opt. 04) Add $1 \mathrm{kHz}, 10 \mathrm{kHz}$, 100 kHz , and 1 MHz RBW filters. Opt. 15-Tek 1405 TV Sideband Adapter interface.
Opt. 30 - Rackmount for
19-inch rack width, 5 -inch height. Opt. 33 - Travel Line Package. Includes: accessory pouch, carrying strap, vinyl rain cover.
Opt. 34 - Portable-to-Rackmount Adapter for 19 -inch rackwidth,
7-inch height.
OPTIONAL ACCESSORIES
Service Manual - (2710) Order 070-6024-01
Front Panel Cover - Order
200-2520-00. \$10
Accessory Pouch - Mounts
on top. Order 016-0677-02
Viewing Hoods -
(Collapsible) Order 016-0592-00 (Binocular) Order 016-0566-00 (Polarized) Order 016-0180-00
Carrying Strap - Order
346-0199-00.

Order 337-2775-02.

INTERNATIONAL

POWER PLUG OPTIONS
Opt. A1-A5 - Available. See page 374 for description.

WARRANTY-PLUS SERVICE PLANS
Opt. M1 - Available.
Opt. M2 - Available. $+\$ 1,190$ $\begin{array}{ll}\text { Opt. M3-Available. } & +\$ 1,430\end{array}$

Display Amplitude Accuracy - $10 \mathrm{~dB} /$ Div: $\pm 1.0 \mathrm{~dB} /$ 10 dB to max. cum. error of $\pm 2 \mathrm{~dB}$ over 70 dB range; $\pm 2.0 \mathrm{~dB} / 10 \mathrm{~dB}$ over $70-80 \mathrm{~dB}$ range. $5 \mathrm{~dB} /$ Div: $\pm 1.0 \mathrm{~dB} /$ 10 dB to max. cum. error of $\pm 2 \mathrm{~dB}$ over 40 dB range $1 \mathrm{~dB} /$ Div: 1 dB max. error over 8 dB range. Linear Mode: $\pm 5 \%$ of full scale.
RF Attenuation Range -0 to $50 \mathrm{~dB}, 2 \mathrm{~dB}$ steps. Sensitivity -2712: $-127 \mathrm{dBm}(-80 \mathrm{dBmV})$ at 300 Hz RBW, $-139 \mathrm{dBm}(-92 \mathrm{dBmV})$ at 300 Hz RBW with preamp on (to 600 MHz); 2710: $-117 \mathrm{dBm}(-70 \mathrm{dBmV})$ at 3 kHz RBW, $-129 \mathrm{dBm}(-82 \mathrm{dBmV})$ at 3 kHz RBW with preamp on (to 600 MHz); $2710 \mathrm{w} / \mathrm{Opt} 01$: Same as 2712.

SPURIOUS RESPONSE (PREAMP OFF)

Residual Spurious Response $-\leq-100 \mathrm{dBm}$ referenced to input of 1st mixer.
3rd Order IM Distortion $-\leq-70 \mathrm{dBC}$, from any two on-screen signals within any frequency span measured with 1st mixer input level of $\leq-30 \mathrm{dBm}(+17 \mathrm{dBmV})$.
2nd Harmonic Distortion $-\leq-66 \mathrm{dBc}$ measured with 1st mixer input level of $\leq-40 \mathrm{dBm}(+7 \mathrm{dBmV})$.

INPUT RELATED

LO Emission $-\leq-70 \mathrm{dBm}$ with 0 dB RF attenuation.
RF Input - Type N connector, 50Ω
VSWR with 10 dB or More RF Attenuation -1.5:1 max.
Maximum Safe Input $-+20 \mathrm{dBm}(0.1 \mathrm{~W})$ continuous peak with 0 dB RF attenuation; 100 V dc (initially applied with full attenuation).
1 dB Compression Point $-\geq-15 \mathrm{dBm}(+32 \mathrm{dBmV})$ with 0 dB RF attenuation.

SWEEP RELATED

Sweep Times - 1 usec to 2 sec/div in $1,2,5$ seq (7-decade range); AUTO SWEEP mode; MANUAL SWEEP select.
Sweep Time Accuracy - $\pm 10 \%$ over the center eight divisions.
Trigger - Free run, internal, external, line, TV field, TV line, single sweep, manual scan.
Trigger Amplitude - Internal: One division or more of signal. External: 1.0 V peak, min. (15 Hz to 1 MHz).

INPUT/OUTPUT CHARACTERISTICS

*External Trigger - BNC connector, $10 \mathrm{k} \Omega$ impedance, DC coupled $0.1 \mu \mathrm{~s}$ min. pulse width. 35 V max.
*External Video Input - DC coupled. $0-50 \mathrm{kHz}$, $0-1.4 \mathrm{~V}$ ($175 \mathrm{mV} /$ div typical) signal input for vertical deflection of CRT beam.
Sweep Gate Out - TTL level that is HI while CRT beam sweeps.
Sweep Gate Out - TTL level that is HI while CRT beam sweeps.
Sweep Output -+1.3 to -1.3 V , negative-going ramp, proportional to the horizontal sweep. Source impedance $\leq 50 \Omega$, load impedance $\geq 10 \Omega$.
Video Output -0 to +1.6 V of video signal, proportional to vertical display amplitude. 0 V is top of screen. $1 \mathrm{k} \Omega$ impedance.

ENVIRONMENTAL SPECIFICATIONS

Temperature - Operating: 0° to $50^{\circ} \mathrm{C}$ (MIL-T28800D). Nonoperating: -55° to $+75^{\circ} \mathrm{C}$.
Humidity - Nonoperating: Five cycles (120 hours) per MIL-T-28800D, Class 5.
Vibration - Meets MIL-T-28800D Method 514
Procedure X (modified).
Shock - Operating and Nonoperating: Three guillotinetype shocks of 30 g , one-half sine, 11 ms duration each direction along each major axis; total of eighteen shocks.
Radiated and Conducted Emissions - Meets FCC Part 15, Sub-part J, Class A and VDE 0871, Class B.

GENERAL CHARACTERISTICS

Power Requirements - 90 W max. (1.2 A) at 115 V , 60 Hz . Operates 48 Hz to $440 \mathrm{~Hz}, 90$ to 132 V ac , or 48 Hz to 63 Hz to 250 V ac. Battery power (Opt. 07) available.
Weight $-9.5 \mathrm{~kg}(<21 \mathrm{lb}$.) nominal for basic configuration.
Dimensions (H, W, D) with Feet, Handle, and Front Panel Cover $-137 \times 361 \times 445 \mathrm{~mm}(5.4 \times 14.2$ x 17.5 in.).

OTHER CAPABILITIES

Markers - Single marker/delta marker; next right, next left peaks; next lower, next higher peaks; (highest) peak find; marker to CF.
Nonvolatile Memory - Lithium battery backup. 2712:
124 kBytes available; up to 108^{*} displays saved; 36^{*} front panel setups, large* user- definable key routines, and antenna tables (* exact number and size depends on NV RAM utilization). 2710: 28 kBytes available; Up to 18 displays saved and 9 front-panel setups, user-definable key routines, and antenna tables.
Digital Storage Display - Selectable acquisition modes of positive peak only, positive/negative peak. SAVE A, B, C and active D trace; up to 4 traces on screen; MAX HOLD A, B; MIN HOLD C; B, C minus A; WATERFALL display mode; digital storage off provides analog sweep.
Ensemble Averaging - Provides weighted averaging of display resulting in reduction of random noise.
Internal Preamp - Preamp can be switched in/out of circuit (degrades flatness above 600 MHz , provides approximately 12 dB sensitivity improvement).
Alternative Reference Level Units $-\mathrm{dBm}, \mathrm{dBmV}$, $\mathrm{dBV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dB} \mu \mathrm{W}, \mathrm{dB} \mu \mathrm{V} / \mathrm{m}$.
User-Definable Power-on Status - Instrument powers up to user-definable state or supplied default settings.
Center Measure - Signal is centered with frequency and peak amplitude automatically read out (not a marker mode). The signal is counted in the 2712 or $2710 \mathrm{w} /$ Opt. 02.
Signal Track - Drifting signal is kept at display center with correct frequency and peak amplitude displayed.
Graticule IIlumination - For CRT photography.
Direct Plot/Print - Supports Epson FX-Series Printers and Tek HC100 Printer/Plotter via built-in GPIB interface (std 2712, 2710 Opt. 03), RS-232-C interface (Opt. 08, 2712 only), or Centronics interface (Opt. 09, 2710 only).

2704 INVERTER/2705 BATTERY PACK

The 2704 Inverter and 2705 Battery Pack can provide a minimum of one hour continuous operation for the 271X Family in locations where ac power is not available. These units mount directly on the Spectrum Analyzer to form a portable package.
They can also be used for other remote applications requiring $115 \mathrm{~V}, 60 \mathrm{~Hz}$ power. Maximum continuous output power is 125 watts.
Several 2705 s can be used to provide an uninterruptible power source for the Spectrum Analyzer or other equipment. The 2704 includes a battery charger, and provides an auxiliary 18 volt output. The 2704 also accepts 12 volt input from other sources, such as car batteries. These units are described in more detail in Tektronix Specification/Ordering Information Sheet 26W-7061.

CHARACTERISTICS

2704 INVERTER

DC input - (main \& auxiliary) 10 VDC to 15 VDC.
Battery Protection Shutdown - 10 VDC $\pm 5 \%$.
Output Voltage - 115 VAC RMS $\pm 10 \%$.
Output Frequency $-60 \mathrm{~Hz} \pm 5 \%$.
Output Waveform - Quasi-sinusoid, 1.3 crest factor.
Output Power - 125 W continuous
Battery Charger - AC input voltage (90 VAC to 250
VAC, $50 / 60 \mathrm{~Hz}$), (90 VAC to $125 \mathrm{VAC}, 400 \mathrm{~Hz}$). AC power consumption 70 Watts max.
Auxiliary output for LNB Voltage - 18 VDC $\pm 10 \%$.
Ripple, noise 100 mV pk-pk max. Maximum output current 1 A, (current limited).

2704 Inverter and 2705 Battery Pack.

2705 BATTERY PACK

Type -Sealed lead-acid, 12 V, 15 Amp-hr.
Voltage Range - 10 VDC to 14.4 VDC.
Minimum Operating Time -1 hr at $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, 45 minutes at $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$.
Charging Time (using 2704) - 6 to 8 hours for 1 battery pack, 10 to 12 hours for 2 battery packs, fully discharged state, $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Cycle Life $-\geq 150$ charge/discharge cycles to 100%.
more common functions of the 2710/2712 Spectrum Analyzer. These include waveform acquisition, graphing, documentation, storing to disk, comparing, subtracting, recalling from disk, and sending to the analyzer. Both single traces and groups of related traces can be operated upon.

The software provides utility routines for operations such as TALK/LISTEN (sending commands and receiving responses), selecting the color of waveform graphs and annotation, and specifying the drive or path under which waveforms and other files will be stored.

The software includes an application category which can be supplemented with user specific applications. This category contains a waterfall application, an occupied bandwidth measurement application, and an application to save, recall and transfer User Defined Programs to other 2710s or 2712s equipped with a communications port.

The measurement category contains a program to measure harmonic distortion and a program to check swept frequency response. The latter utilizes the optional, fully programmable 2710/2712 tracking generator to measure peak-to-valley response within a specified frequency range.

2704 Inverter 2705 Battery Pack

- Easy Connection to Tektronix 271X Family Spectrum Analyzers
- 125 Watts of AC Power
- Up to 1 Hour's Operation Per Battery Pack
- Continuous Power Using

Sequential Battery Packs

- Lightweight Single Package for Easy One-handed Carrying
- Automatic Charging of Two Battery Packs
Simultaneously
- Auxiliary 18 VDC LNB Power
- Low Battery Warning

ORDERING INFORMATION

Opt. A1-A5 - See page 374 for description.

2710/PC Utility Software (S26UT10)

- Extends the Storage

Capabilities of the 2710/2712
Spectrum Analyzer

- Graphic Overlays of up to Four Waveforms
- Document Utility for any Waveform
- Built-in Graphics Driver Supporting DOT-MATRIX Printers
- User Defined Color Graphics for EGA/VGA Displays
- User Friendly Interface
- Performs Automated Spectrum Analysis Using PCcompatible Controllers

ORDERING INFORMATION

S26UT10 2710/PC Utility

Software (5.25" and 3.5 ${ }^{\prime \prime}$ disks)	\$575
Opt. 09 - (Source code on 5.25"	
and 3.5" disks)	+\$1,000
Opt. 10 - (PC2A GPIB interface)	+\$495

2721/2722

- Non-interfering
- Full 5-600 MHz Range
- Full Alpha Keyboard for data entry
- LCD Display visible even in bright sunlight
- Lightweight, compact receiver
- Frequency-agile Telemetry
- 50-waveform NVRAM storage
- RS-232C downloads stored waveforms to Serial Printer or PC

ORDERING INFORMATION

2721 Non-interfering Sweep
Transmitter Includes: 115 Vac
Power Pack (119-3740-00) and two
Precision Female-Female Type-F
Adapters (103-0301-00).
2722 Non-interfering Sweep
Receiver
Includes: 115 Vac Power Pack
(119-3740-00) Precision
Female-Female Type-F Adapter
(103-0301-00), Option Port
Cover (200-3737-00), Voltmeter
Lead Set (ALM03), RS-232C DB-9
Male-Female Interface Cable
Assembly (174-1809-00) and
User's Guide (070-7789-00).

OPTION

Opt. 01-YT-1 Chart Recorder
+\$950 (2722)

OPTIONAL ACCESSORIES
Chart Paper -

(Single Roll) 006-7647-00	$\mathbf{\$ 6 . 5 0}$
(25 Roll) 006-7677-00	$\mathbf{\$ 1 5 5}$
Replacement Battery -	
146-0080-00	$\mathbf{\$ 8 0}$
Precision Female-Female Type-F Adapter -103-0301-00 Replaceable Type BNC	$\mathbf{\$ 2 0}$
Adapter - 103-0310-00	$\$ 15.25$
Padded Carrying Case -	
016-1087-00	$\mathbf{\$ 1 5 0}$
Strand Hook -214-4367-00	$\$ 75$

The new lightweight 2722 receiver and rackmounted 2721 transmitter.

The Tektronix 2721/2722 Non-Interfering System Sweep provides the capability of high-resolution $5-600 \mathrm{MHz}$ frequency response testing on CATV and other broadband operating systems, without the limitations of traditional system sweeps.

Using unique sync-detection, the 2721/2722 System Sweep actually monitors the CATV channels at the headend insertion point, and synchronizes the inserted sweep points to the specific channels, firing these pulses only during the Vertical Blanking Period. This allows the system to operate continuously, providing highresolution frequency response measurements in the field, with no interference to the active video.

For complete 2721/2722 information, contact your local Tek Field Sales Office or request brochure \#26W-7072-1.

CHARACTERISTICS

The following specifications and features apply after a 15-minute warmup period unless otherwise noted.

FREQUENCY RELATED

Range - 5 to 600 MHz
Accuracy $-10^{-5} \pm 15 \mathrm{kHz}$
Step Size -1, 2 or 3 samples per channel, selectable at time of configuration.

AMPLITUDE RELATED: 2721
Input -+5 to +15 dBmV per channel
Sweep Output -+45 dBmV
Telemetry Output -+40 dBmV
Pulse Duration - 8 بsec
Spurious $->65 \mathrm{dBC}$

AMPLITUDE RELATED: 2722

Sensitivity - Sweep mode - 10 to +50 dBmV , SLM mode -40 to +60 dBmV (without pre-amp).
Sweep Accuracy $- \pm 0.5 \mathrm{~dB}$ at normalized point.

CONNECTORS

RF - Replaceable Type-F, Impedance 75Ω nominal, Return Loss > 16 dB .

POWER SUPPLY

Line - 90 to $130 \mathrm{Vac}, 45$ to 440 Hz with 120 Vac table top transformer.
Battery - Sealed, lead-acid battery, 12 Vdc. Nominal 4.5 hour continuous operation on a full charge. Recharge time 15 hours with supplied transformer.

ENVIRONMENTAL

Temperature - Operating $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}(2721$
Transmitter) $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (2722 Receiver)
Temperature - Non-operating $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Humidity - $<95 \%$ RH below $30^{\circ} \mathrm{C},<75 \%$ RH between $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C},<45 \%$ RH above $40^{\circ} \mathrm{C}$.
Vibration - Resonant searches of $0.013^{\prime \prime}$ on all three axes for 15 min . Dwell for 10 min . at major resonance or 33 Hz if none. Total vibration time is 75 min .
Shock - Three guillotine-type shocks of 30 g . One-half sine, 11 ms duration each direction along each major axis.

The smallest lightest sweep receiver on the market at 17 lbs., the Tektronix 2722 Receiver is usable for over $41 / 2$ hours on battery power.

2755AP and K217

494AP and K212

ORDERING INFORMATION

POWER SPLITTER

$75 \Omega / 50 \Omega$ BNC Output， 50Ω BNC Input－ Order 067－1232－00

CABLES，PADS AND ADAPTORS

50Ω Coaxial Cable－BNC to BNC 5.5 in．
Order 012－0214－00
50Ω Coaxial Cable－BNC to BNC Conn， 18 in．Order 012－0076－00
50Ω Coaxial Cable－BNC to BNC Conn，
42 in．Order 012－0057－01
75Ω Coaxial Cable－BNC to BNC Conn，
42 in ．Order 012－0074－00
75Ω to 50Ω Minimum Loss Adapter－With
dc block， 5.7 dB loss．Order 011－0112－00
75Ω to 50Ω Matching Attenuator－With
11.25 dB conversion factor from dBm to dBV with dc block．Order 011－0118－00
＂F＂Female to BNC Male Adapter－
Order 013－0126－00
BNC Female to＂F＂Male Adapter－ Order 103－0158－00
N＂Female to BNC Male Adapter－ Order 103－0058－00
BNC Female 75 to N Male 50 Adapter－
Order 103－0273－00
${ }^{-1}$
75Ω to 50Ω Matching Transformer
（ 0.5 dB loss． 50 kHz to 300 MHz ）
Order 120－1883－00
（ 5 MHz to 1 GHz ）
Order 120－1884－00

DC BLOCKS

$N(F)$ to $N(M)-10 \mathrm{kHz}$ to $21 \mathrm{GHz}, 50 \mathrm{~V} \mathrm{dc}$ maximum．Order 015－0509－00\＄345

DC Block 015－0509－00 is rated over the coaxial frequency range of 10 kHz to 21 GHz ．Its electrical characteristics，rugged construction，and type＂N＂ connectors make it the preferred solution for EMI／RFI and other applications requiring the blocking of 275X and 49X front ends．Characteristics－Operating Frequency： 10 kHz to 21 GHz ．Insertion Loss： 1.0 dB maximum．VSWR：1．4：1 maximum， 10 kHz to 18 GHz ； 1．6：1 maximum 18 to 21 GHz ．Voltage Rating： 50 V dc maximum．Impedance： 50Ω Construction：Passivated Stainless Steel．Connectors：Type＂ N ＂male and female per MIL－C－39012．Dimensions： 2.150 .84 （dia．）inches maximum．
BNC to BNC－Maximum dc potential 50 V ．
Order 015－0221－00
\＄115
PROTECTIVE VINYL COVERS
2750／490 Series Rear Panel Connector Cover－
Order 337－3274－00
Rain Cover－For 271X Family
Order 016－0848－00
$\$ 18.00$
GRATICULES，FILTERS
CRT Light Filter－For 271X Family （Clear）Order 337－2775－01
（Gray）Order 337－2775－02
CRT Filters－For 2750／490 Series
Light（Amber）Order 378－0115－01
Light（Gray）Order 378－0115－02
Mesh－Order 378－0227－01
CARTS
K217－Lab Cart（2750 Series）
K212－Portable Instrument Cart（490 Series）
PROBES AND SENSORS
A variety of probes are available in varying frequency and impedance ranges that can be used with the 271X Family and all 2750／
490 Series spectrum analyzers．See page 294.
${ }^{-1}$ Contact your local sales office．

FET Probe P6201－DC to 900 MHz
\＄1，395
1101A Probe Power Supply－For
271X Family
Conventional Probe P6156－DC to
$3.5 \mathrm{GHz}, 6 \mathrm{ft}$ $\$ 255$
Current Probe P6022－DC to $150 \mathrm{MHz} \quad \$ 570$
In addition to probes，a comprehensive line of sensor
products is also available for EMC diagnostics and
prequalification testing．Contact your Tektronix Sales
Representative for more information．

CAMERAS

A camera can greatly enhance the versatility of a spectrum analyzer．Many different units are available．
However，the most popular unit for the 271X Family and
2750／490 Series spectrum analyzers is：
C－9 Camera－For 490／2750 Series and 271X Family．

CARRYING CASES
Hard Case－Transit for the 2750 Series
Order 016－0962－00
Hard Case－Transit for the 490 Series
Order 016－0658－00
Soft Case－For the 490 Series
Order 016－0659－00
Order 016－0792－02

RACK ADAPTER

19 inch Rack Adapter for the 490 Series－Order 016－0844－01
19 inch Rack Adapter for the 2782 －Order 016－1019－00

INTERNATIONAL POWER PLUG OPTIONS

Opt．A1－Universal Euro 220 V／6A， 50 Hz
Opt．A2－UK 240 V／5A， 50 Hz
Opt．A3－Australian $240 \mathrm{~V} / 6 \mathrm{~A}, 50 \mathrm{~Hz}$
Opt．A4－North American $240 \mathrm{~V} / 12 \mathrm{~A}, 60 \mathrm{~Hz}$
Opt．A5－Switzerland 220 V／6A， 50 Hz

WARRANTY－PLUS SERVICE PLAN

Tektronix Warranty－Plus Offerings for the 2750 Series， 490 Series，and 271X Family Spectrum Analyzers provide for both routine and remedial service，depending on the plan selected．See pages 378 and 379.
Plan M1－Provides two routine calibrations，one each in years two（2）and three（3）of product ownership，and two years of remedial maintenance in years two（2）and three（3）of ownership．
Plan M2－Provides four years coverage of remedial service in years two（2），three（3），four（4），and five（5） of product ownership．
Plan M3－Provides for four years of routine calibra－ tions，one each in years two（2），three（3），four（4）and five（5）of product ownership，and four years of remedial maintenance in years two（2），three（3），four（4），and five（5）of ownership．

MISCELLANEOUS

Accessory Pouch－For 271X Family
Order 016－0677－02
Viewing Hood－For 271X Family
Order 016－0566－00
Carrying Strap－For 271X Family
Order 346－0199－00
ipiexer Assembly－For use with 2750／490
Series Spectrum Analyzers and WM490 Series Waveguide Mixers．Includes TNC to SMA adapter and SMA semi－rigid coax．
Order 015－0385－00
Diplexer Assembly Cable－Required for use with Diplexer Assembly．
Order 012－0649－00
Cable－Required for use with WM782 Series
Waveguide Mixers．Order 012－1346－00

REAL TIME INPUT BANDWIDTH OF 10 MHz

TYPICAL APPLICATIONS

- Communications, COMINT
- Signal Analysis, SIGINT
- Radar Signal Processing, ELINT
- SATCOM

The Tektronix 3052 Digital Signal Processing System introduces a nearly hundred-fold improvement in real time spectrum analysis-at much wider frequency spans. With a real time input bandwidth of 2 MHz , the 3052 updates its spectral output every 200μ s. The 3052 offers solutions to difficult analysis and measurement problems.

Spectral frames are the output of a digitally implemented bank of 1024 parallel band-pass filters. The output of each filter consists of both real and imaginary data components.

FILTER BANK

The shape of each filter and data output rates are key to several of the 3052's performance characteristics: frequency flatness, amplitude accuracy, spectral resolution, dynamic range sensitivity, and the suitability of its digital output (Option 10) for post processing.

The center frequency of the filter bank is tunable, enabling any frequency within the instrument's 10 MHz operating range to be viewed at narrow spans.

The filters are reconfigurable, which allows the user to tailor the analysis characteristics to particular needs.

DISPLAY

The 3052 features a high resolution, 16-inch color monitor that displays 801 frequency bins. ${ }^{\star 1}$ Display formats include power versus frequency, phase versus frequency, Spectrogram, and Waterfall. One display can occupy the full screen or two displays can be presented on a split screen.

KEY BOARD

Knobs provide quick operation and basic

BENEFITS

- Wide Real Time Bandwidth Captures Elusive Transients
- Digital Interface Transfers Data Quickly (Option 10) - System Flexibility Using Industry Standards

FEATURES

- Sophisticated Triggering Capabilities, Including Optional Spectral Event Triggering
- Spans from 1 kHz to 10 MHz with Center Frequency Tunable Across the DC to 10 MHz Range
- Trigger and Capture 500 Sequential Spectrums at Real Time Rates and Scroll the Captured Block
- Can be Used with Receivers on Carrier Signals up to 325 GHz
spectrum analyzer control. In addition, a liquid crystal display presents menus of more extensive functions and prompts the entry of parameters. The keyboard is detachable for flexibility in positioning and handling.

BLOCK CAPTURE MODE

Blocks of 500 sequential spectral frames are captured in memory and transferred to the monitor for Spectrogram display. With this mode and the optional spectral event triggering, a user may trigger on a spectral event, capture a block of 500 sequential frames, then scroll back to examine the contents of the block frame-by-frame.

SYSTEM ARCHITECTURE AND SOFTWARE

The system architecture is based on the VMEbus. Cards comprising the main part of the instrument are "pipelined" to a stage that interfaces with the standard VMEbus. The instrument software operates under the SYSTEM V/68 ${ }^{\text {TM }}$ version of UNIX ${ }^{T M}$. Instrument controls and functions are implemented in C language and cardmodular firmware. Programmers have access to selected UNIX and C libraries for the development of application programs via RS-232 port. Individual spectrums, blocks of spectrums, instrument setups, and keystroke macros can be stored on disk for later call up for display or off-
line processing by stored programs. Stored programs can be executed from the keyboard.

REAL TIME INTERFACE (OPTION 10)

An optional interface provides access to real time spectral data output; 32 bit spectral data is divided into two parts, available at two separate RS-422 connectors. Option 10 also provides a Spectral Event Detection Output; two spectral limit masks may be implemented; a maximum and a minimum. When the spectral output falls outside one of these limits, a TTL Low accompanies the data to identify the spectral frame and bin. Analog outputs to drive an oscillographic recorder, an x - y monitor, or an oscilloscope are provided as part of Option 10.

CHARACTERISTICS

FREQUENCY RELATED

Range - DC to 10 MHz .
Span - 1 kHz to 10 MHz in a $1,2,5$ sequence
Shape Factor - Ratio of FIR Filter 3 dB to 60 dB bandwidth: 1.7 :1
Displayed Bins - 801 for all spans
Center Frequency Accuracy - \pm CF $\times 10^{-7}$
Signal Resolution With Standard Filter - 3 bin widths (also, one signal at Reference Level and the other at 70 dBC)
10 MHz Standard Drift - $1 \times 10^{-9} /$ day and $1 \times 10^{-7} /$ year

AMPLITUDE RELATED

Reference Level Range $- \pm 33$ to -140 dBm
Accuracy $- \pm 0.2 \mathrm{~dB}$ at $12.5 \mathrm{kHz}, 0.5 \mathrm{~dB}$ at all other frequencies with error correction
Flatness Across Span $- \pm 0.85 \mathrm{~dB}$ normalized to $12.5 \mathrm{kHz}, \pm 0.33 \mathrm{~dB}$ with error correction
Display Dynamic Range - 84 dB
A/D Converter - 25.6 megasamples/per seconds, 10 bits
Maximum Input Range - + 33 to -57 dBm (signals above the Maximum Input Level are clipped by the A/D Converter).
Harmonic Distortion (with signal 6 dB below maximum input) - DC to 1 MHz : -65 dBc 1 to $10 \mathrm{MHz}:-58 \mathrm{dBc}$
IM Distortion (2nd and 3rd Order with two signals 6 dB Below maximum input) - DC to $1 \mathrm{MHz}: 65 \mathrm{dBc} .1$ to $10 \mathrm{MHz}: 60 \mathrm{dBc}$
Residual Responses -70 dB below maximum input.
${ }^{\cdot}$ A bin is a hardware storage location for the complex data output of each filter in the bank. Each spectral frame is comprised of the parallel outputs from the 1,024 bins. The central 801 bins are displayed, covering the selected span of the 3052. A bin width is considered to be 1800th of the displayed span.
SYSTEM V/68 ${ }^{T M}$ is a trademark of Motorola, Inc. UNIX ${ }^{\text {M }}$ is a trademark of AT\&T.

DISPLAY RELATED
Display Operation -Full and split screen depiction.
Display Modes - Amplitude vs Frequency, Phase vs Frequency, Spectrogram, and Waterfall.
Display Formats - Average, Min/Max, Peak, R ${ }^{\text {m }}$, Block Capture.
Vertical Display $-1,2,5$, or $10 \mathrm{~dB} / \mathrm{div}, 1-15 \mathrm{~dB} / \mathrm{div}$ keyboard definable, and Linear

Display Range - 10 divisions.

DISPLAY MONITOR
Pixel Resolution - 1024 by 768.
Refresh Rate -60 Hz noninterlaced.
Displayable Colors - 256 concurrent.
Size - 16 inch diagonal.

POWER REQUIREMENTS

Line Frequency - 47 Hz to 63 Hz .
Line Voltage - 100 Vac to $132 \mathrm{Vac} ; 200 \mathrm{Vac}$ to
250 Vac .
Input Power - Instrument chassis with keyboard and Monitor: 1150 watts maximum, 950 watts typical.

ENVIRONMENTAL

Altitude - Operating: 10,000 ft.
Nonoperating: $15,000 \mathrm{ft}$.
Temperature - Operating: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Nonoperating: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Relative Humidity - Noncondensing, Operating and Nonoperating: 5 to 95% over a temperature range of $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Shock - Operating: 10 G (except disks: 5 G). Nonoperating: 10 G .

ORDERING INFORMATION

3052 Digital Signal Processing
System
\$99,500
Includes: Operator's, Service, and Programmers Manual and Operator's Guide.

OPTIONS

Opt. 02-GPIB (IEEE-488.2)
Interface. Functions as a
"listener/talker" or full
+\$2,995
controller
Includes: VME board and driver software.
Opt. 10 -Real Time Interface Includes: Two RS422 compatible digital data outputs; spectral event detection output; analog outputs for Tek 608 monitor, oscilloscope and oscillographic recorder.
Opt. 11 -Compatibility with
Tektronix RGB II Color
Screen Printer
+\$1,495
Includes: Control cable and software.
Opt. 12 - Removable Hard Disk Option
$+\$ 9,950$
$+\$ 4,900$
Opt. 14 -Streaming Tape Drive $+\$ 2,495$
Some of the options are available
in field-installable kits. Contact
your Tektronix representative
for more information.

INTERNATIONAL POWER PLUG OPTIONS	
Opt. A1-Universal Euro	
220V/16A, 50 Hz	NC
Opt. A2 - United Kingdom	
$240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$	NC
Opt. A3-Australian	
$240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$	NC
OPTIONAL ACCESSORIES	
Rack - Order 437-0398-00	\$1,870
Reusable Transportation	
Containers - One for Monitor,	
one for processor	
016-1056-00 Monitor Case	1,530
016-1057-00 instrument Case	1,545
WARRANTY	

WARRANTY

On-site, 90 days parts and labor.

MAINTENANCE

Calibration Period - 1 year.
Service Support - On-site assembly level board exchange, and at Tektronix designated service centers.

3052 SOFTWARE PRODUCTS

S2MG100 - Enhanced Frequency
Measurements Software $\$ 5,000$
S2MG160-2756P Controller Software

RF160/NEW RF162

TYPICAL APPLICATIONS

- Wide-Band Spur Searches on Radar Systems
- RF Signal Monitoring and Analysis
- Manufacturing ATE

FEATURES

- Works with Tektronix 49X, 275X, and 2782 Series Spectrum Analyzers
- Accepts 160, 110, or 25 MHz Wide-Band IF Signals from Tektronix RF Spectrum Analyzers and Popular Receivers
- Down Converts IF Signals for Rigorous 3D Modulation Analysis on the Tektronix 3052 Digital Signal Processing System

- Effective Component in

 Complex Processing Systems

The RF160 Down Converter is an effective means of combining the three dimensional signal analysis capability of the 3052 Digital Signal Processing System with common receivers and Tektronix spectrum analyzers. Housed in a rugged rackmountable module, the Down Converter is designed to be mounted in a rack below the 3052.

The RF160 works by taking the Intermediate Frequency (IF) output from a receiver or Tektronix spectrum analyzer, and mixing the signal to the analysis range of the 3052. The full capabilities of the 3052, at spans of 5 MHz and narrower, may then be used to analyze the signal. A microwave signal ranging up to 21 GHz in coax, or 325 GHz using waveguide mixers (Tektronix analyzers), may be fully examined.

The RF160 Down Converter depicted in a measurement system. In this case a microwave carrier signal is applied to a Tektronix 2782 Spectrum Analyzer. The IF output of the analyzer is then down converted by the RF160, effectively extending the analysis range of the 3052.

A typical application area is a 2782 Spectrum Analyzer, RF160 Down Converter, and a 3052 Digital Spectrum Analyzer configured to analyze a microwave signal with an 18 GHz carrier. By tuning the 2782 to the carrier frequency, and applying its wideband IF output, the RF160 down converts the carrier to the analysis range of the 3052. The 3052 (with Option 10) may then be employed to compare the incoming signals against spectral event detection masks-alerting the user to the presence, absence, or changing amplitude of the signal.
The companion software product S2MG160 offers special control functions to simplify applications. The S2MG160 supports applications with the Tektronix 494AP or 2756P Microwave Analyzers. This product allows users to tune these analyzers remotely from the 3052 front panel, and facilitate fully integrated operation.

The RF162 operates on the same principal as the RF160, except that it operates on the military IF frequency of 21.4 MHz , and optionally at 321.4 MHz . It permits users to redeploy existing spectrum analyzers and receivers with new 3052 Digital Signal Processing Systems to develop high-powered analysis systems.

CHARACTERISTICS
 INPUT SIGNALS

Acceptable IF Frequencies - RF160: Standard is $160 \mathrm{MHz}, 110 \mathrm{MHz}$; Opt. 25 is 25 MHz . RF162: Standard is 21.4 MHz ; Opt. 03 is 321.4 MHz .

SIGNAL INPUT (50Ω REAR PANEL CONNECTOR)
Optimum Input Power - RF160: -30 dBm. RF162: Standard is -36 dBm ; Opt. 03 is -30 dBm .

Maximum Input Level Without Damage -

 +20 dBm .
FREQUENCY RELATED

Flatness - $1 \mathrm{~dB} p-p$ across the 5 MHz to 10 MHz output range. Excludes host analyzer flatness.

AMPLITUDE RELATED

Third Order Intermodulation Distortion - Standard: -70 dBc for two input signals at -36 dBm . Specifications exclude host analyzer distortion.
Harmonic Distortion - -70 dBc for a single tone at nominal input power.
Other Single Tone Spurious Responses --80 dBC below any single input signal within the nominal input frequency range.
Residual Responses (5 MHz to 10 MHz No Input Signal) --110 dBm at the output.
Noise Figure -Standard: 15 dB . Option $25: 9 \mathrm{~dB}$.

REFERENCE INPUT

Rear Panel Connectors - Two BNC 50Ω inputs direct coupled to each other and AC coupled to the RF160 circuitry. Reference applied to one connector at a time only. Required input power is -10 to +20 dBm , or TTL. Required frequency accuracy is $10 \mathrm{MHz} \pm 2 \mathrm{PPM}$.

OUTPUT SIGNALS

7.5 MHz IF Output - 50Ω BNC connector located on the front panel. Nominal output power is -20 dBm .

Maximum Reverse Power Without Damage -

 +22 dBm .
REFERENCE OUTPUT

Front and Rear Panel Connector - 50Ω TTL level with independent 50Ω reverse terminations.

POWER REQUIREMENTS

Line Frequency - 47 Hz to 63 Hz . Line Voltage -90 to 132 V ac; 180 to 264 V ac. Input Power - Operating power is typically 15.5 W (25 W maximum). Operating current is typically 0.25 A , 0.42 A maximum.

ENVIRONMENTAL

Altitude - Operating: $10,000 \mathrm{ft}$.
Nonoperating: 15,000 ft.
Temperature - Operating: $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Nonoperating: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Relative Humidity - Noncondensing: 5 to 95% over a temperature range of $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Shock - Operating and Nonoperating: 10 G .
Vibration - Operating: $2 \mathrm{G}, 5$ to 55 Hz .
EMI - Complies with FCC and VDE requirements.

PHYSICAL CHARACTERISTICS

Dimensions	mm	in.
Width	483	18.75
Height	44.5	1.75
Depth	527	20.75
Weight	$\mathbf{k g}$	lb
Net	4.2	9.25

ORDERING INFORMATION

RF160 Down Converter
(Standard 160, 110 MHz IF Input)
Includes Instruction and Service
Manual
Opt. 25-25 MHz IF input
exclusively
RF162 Down Converter
(Standard 21.4 MHz IF input)
Includes Instruction and
Service Manual
Opt. $03-321.4 \mathrm{MHz}$
IF input
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro 220 V/
$16 \mathrm{~A}, 50 \mathrm{~Hz}$
Opt. A2 -UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$
Opt. A3 - Australian $240 \mathrm{~V} /$
$10 \mathrm{~A}, 50 \mathrm{~Hz}$
WARRANTY
On-site, 90 days parts and labor.

MAINTENANCE

Calibration Period - 1 year.
Service Support - On-site
assembly level board exchange, and at Tektronix designated service centers.

MEASUREMENT SYSTEMS/INSTRUMENTS

Contents

THE SOLUTION SOURCE

If you are involved in testing, you are being bombarded on one side with requirements from your customers for better, more reliable products that have more features, and from the other side with demands from your company for lower costs and higher throughput in order to be able to compete in today's marketplace. The good news is you have more tools to help you handle these problems than at any time in the past. However, the sheer variety of these tools brings with it its own set of confusion factors and questions.
Tektronix's Measurement System Division (MSD) was founded to come to grips with each of these areas and help provide the optimal solution. MSD's unique blend of expertise in five areas of systems oriented technology provides you with access to a variety of solutionsoriented tools that will ensure your success whether you are an experienced system user or are just moving into the world of automation. These five areas are:

VXIbus-	State of the art standard for modular instrumentation.
CDSbus-	Low cost alternative to VXI.

VXIbus- \quad State of the art standard for modular instrumentation.
CDSbus- Low cost alternative to VXI.
TM 5000- Manual or automated GPIB (IEEE 488) modular test and measurement system.
$\begin{array}{ll}\text { Systems- } & \text { Complete or partial turnkey system }\end{array}$ solutions.

VXIbus

The VXIbus Specification (VMEbus extentions for Instrumentation) allows the user to more easily utilize modular instrumentation in automatic test systems, and to use instruments from multiple manufacturers in a single instrument card cage.

Tektronix/Colorado Data Systems (wholly owned subsidiary) provides the widest range of VXI instrumentation and components, including mainframes, controllers, interface devices, stimulus and measurement instruments, scanners and switches, etc. Tek/CDS is dedicated to being the market leader who can supply VXI resources according to the system performance and functionality required by the application. Tektronix offers "C" and "D" size VXIbus products, support for generic VME cards, plus software and hardware tools for support of all levels of VXIbus implementation.

CDSbus

CDSbus was originally developed in answer to the growing demand for reasonable cost solutions in automatic and production test applications. It has become the first family of modular plug-in instruments, literally encompassing the spectrum from DC to light.

The goals of CDSbus are many: create a flexible test environment that reduces system integration complexity, reduce the physical size of the test system, improve test

MEASUREMENT SYSTEMS/INSTRUMENTS

system reliability while reducing test system hardware costs, provide an avenue of growth for new technology insertion, and reduce the cost of user developed software through imbedded drivers within the instruments. The result is a test equipment environment elegant in its simplicity. Thousands of users are taking advantage of CDSbus in applications ranging from a grain elevators to nuclear reactors. With over 60 modules from single vendor, CDSbus offers a broad base of functionality from a single source. CDSbus offers cost effective instru-ments-on-a-card technology, with decreased cost per function while preserving a well-defined early growth path to VXIbus in the future.

TM 5000 TEST AND MEASUREMENT MODULAR INSTRUMENTS

The TM 5000 family of instruments provide proven programmable instrumentation you can configure for the best balance of portability and performance with plug-in, pull-out convenience. You can choose from a variety of compact plug-ins to create multifunction packages for a wide range of applications. These modular instruments can function individually or as a part of a computercontrolled network. Unlike most systems, there is no uncabling, restacking or rebuilding required. Reconfiguring your systems takes seconds, not hours.

TEKTRONIX MODULAR AND CARD MODULAR INSTRUMENTATION

Tektronix gives you fully deliverable, real-world solutions for automated test. Within our broad product offering you'll find everything from mainframes and controllers to stimulus and acquisition instruments built from the ground up to fit your testing needs. Tektronix also offers you complete test management software to control VXIbus, CDSbus and GPIB instrumentation with little or no programming.
With our help you can tailor a package based upon your present and future requirements, your budget, and the desired degree of continuity with your current equipment - including Tek's own GPIB instruments, CDSbus and VXIbus products, as well as complete test software.

TSI SWITCHING AND SCANNING

The key component of most system applications is the switching to route the signals to the proper points of the Device Under Test. Tektronix' TSI family of off-the-shelf switching components can easily be configured to fit the vast majority of signal switching from DC to 18 GHz .
These switching components have been designed with flexibility in mind. When a switching requirement changes, the switch arrangement can be easily reconfigured to fit the new need.

SYSTEMS

MSD offers help to manufacturers by becoming a resource extension and providing Total Test Systems Solutions for specific test and measurement problems. The Systems Solutions Unit uses GPIB-, VXIbus- or CDSbus-compatible system components as required to build an unique automated test system that can easily be adapted to other applications. These services include more than just hardware:

- Design Services
- Project Management
- Complete Documentation
- Software and Fixturing Development
- On-site Installation
- Maintenance and Repair Services
- Technical Support

The result is a totally integrated test system, built to fit your test application, that is manufactured with the same care and quality standards that have made Tektronix a leader in test equipment for over 40 years.

CONCLUSION - MSD THE SOLUTION STORE

As you can see, whether you are looking for components and expertise necessary to build a test system, or a complete turnkey solution, Tektronix' Measurement Systems Division is the right place to come.

The VXIbus Specification (VMEbus eXtensions for Instrumentations) was announced in July 1987. Its purpose is to enhance the development of automatic test systems by allowing the user to more easily utilize modular instrumentation, and to provide a greater variety of available "Instruments on Cards."

VXlbus, although technologically a very innovative concept, is an evolutionary rather than a revolutionary step. It allows users to select from a wide range of instruments, interface cards, and computers from different manufacturers, with full confidence these modules will operate together when used in a single test system. Test system designers who use the VXIbus can tailor tests to actual needs, since they can design the equipment for the test rather than test for the equipment.

WHAT IS VXIBUS?

The VXIbus Standard builds on the existing standard for VME (IEEE-1014). It specifies four different card sizes, designated by the standard as A, B, C, or D, drawn from the Eurocard standard. Depending upon the card size selected, these cards may utilize one, 'wo, or three 96 -pin DIN connectors. Tek/CDS design and manufacture both "C" and "D" size modules and mainframes.
Each additional connector and module size offers increased power and performance; all connectors are fully defined. The VXIbus P1 connector definition conforms exactly to VME and uses this connector for command and control. VXIbus uses rows A and C of P 2 , and all of P 3 , to define additional power and ground, local buses, additional clocks, trigger and sync signals, and a SUMBUS.
The VXIbus architecture is extremely flexible and can accommodate almost any system hierarchy or topology. It defines a hierarchy of device types, with an automatic configuration protocol for all types. Through registers, the system can identify each device and its type, together with

model and manufacturer, plus any additional memory requirements.

The simplest of these devices, "register based devices", are "dumb" devices. They typically do not contain local intelligence. Another class, "message based devices", is intended for use where higher levels of communication are desired, as in communication to other modules within the system. Message based devices are typically "smart" devices which can parse and interpret commands.

Fundamental communications within a VXIbus system is based upon a Word Serial protocol. A standardized communications protocol means VXIbus instrument

modules from multi-manufacturers can be configured in a wide variety of ways as required by the application.

One of the most exciting possibilities of having a number of instruments in a common, closely coupled environment is tighter time coordination. This leads to a higher level of system nerformance than ever before possible. Traditional rack and stack instruments connected via cables cannot match the control over signal characteristics and propagation delay that is possible in a well defined VXIbus backplane environment.
bus

PRODUCTS SUMMARY

AN INTRODUCTION

CDSbus, one of the core elements in Colorado Data System's innovative 53 series of Instruments-on-a-Card (IAC) Systems, was originally developed when CDS found that rack and stack test systems were not satisfying the growing demand for smaller, less expensive solutions to automatic and production test problems. Therefore, while most of the test equipment industry was focusing on benchtop instruments (with the add-on interfaces), CDS was defining a new concept in automatic testing. CDSbus is the foundation of a family of modular plug-in instruments.

This modular architecture is designed to:

- Generate a flexible test environment that could reduce system integration complexity.
- Reduce the size of the test stand.
- Improve test system reliability.
- Provide an avenue of growth for new technology insertion.
- Reduce test equipment cost.
- Reduce software development costs.

The result-an ATE environment elegant in its simplicity. Thousands have used the CDSbus concept in applications ranging from aircraft to televisions, from
grain elevators to nuclear reactors. Users can select from a wide range of instruments, interface cards, and computers, with full confidence the modules will operate together in a single test system. Test systems can be tailored to actual needs, since instruments need only have the capability level required by the test at hand.

A CDSbus System provides up to 10 slots for instrument cards to be plugged into. Each instrument slot is identical to all other instrument slots. A high-speed protocol allows each instrument to determine the minimum time required to handshake the data for that instrument's needs.

Instrument control protocol is kept simple because:

1) a non-arbitrated bus improves system throughput, and 2) low cost instruments are not penalized by the cost and real-estate intensive interfaces associate with more complex I/O implementations. Each instrument is optimized for its own application.

The most important element in the instrument environment is the operator. For that reason, all CDSbus instruments include extensive self test and status reporting.

Each CDSbus chassis includes a cable tray and an optional connector mounting plate, allowing the entire CDSbus System to either operate stand-alone or in a rackmount configuration.

PRODUCTS SUMMARY

CONFIGURED SYSTEM (53B/63B/64B)
ACX Advanced Computer Instrument System CCX Chained Card Cage System
IBX IEEE-488 Bus Instrument System
MCX MATE Compatible Instrument System
PCX Personal Computer Compatible
Instrument System
PIX Parallel Interface Instrument System RSX EIA-RS-232 Interfaced Instrument System

SWITCHING AND SCANNING

53A-307 Relay Driver
53A-310 FET Scanner Master
$\$ 650$
53A-311 FET Scanner Slave
$\$ 1,070$
$\$ 700$
$53 \mathrm{~A}-322$ RF Switch $(250 \mathrm{MHz}) \quad \$ 1,100$
$53 \mathrm{~A}-323$ RF Switch (650 MHz)
53A-324 Microwave Scanner (18 GHz)
53A-325 Triple 5-Port Transfer Switch (18 GHz)
$\$ 2,400$

53A-326 Microwave Scanner (18 GHz)
53A-331 4-Wire Scanner
$\$ 3,600$
53A-332 2-Wire Scanner with Readback
53A-333 3-Wire Scanner
53A-334 1-Wire Scanner
53A-336 Hi-Voltage Scanner
53A-339 Thermocouple Scanner
53A-342 Resistance Programming
53A-353 SPST Relay Switch
53A-354 Lo Thermal Relay Switch
53A-355 SPDT/DPST Relay Switch
53A-356 DPDT Relay Switch

53A-365 Matrix Relay

ANALOG STIMULUS AND MEASUREMENT

53A-220 Strain Gage Amplifier $\quad \$ 1,700$
53A-225 Thermocouple $\$ 1,800$
53A-226 Thermocouple $\$ 1,350$
53A-241 2 MHz Arbitrary Waveform
Generator
53A-242 10 MHz Arbitrary Waveform
\$1,700
\$2,200

Generator

${ }^{*}$ Contact your local sales office for pricing.

SIGNAL SWITCHING/FIXTURING AND DUT INTERFACING PRODUCTS

TSI 8150 (center rear) and Family

COMPLETE SIGNAL SWITCHING/DUT INTERFACING SOLUTIONS IN A SINGLE PACKAGE

The Test System Interface (TSI) family comprises a group of components that provide complete switching and physical interfacing solutions for IEEE Standard 488 (GPIB) system builders. Although designed primarily for the manufacturing ATE environment, the TSI family has proven its worth in a variety of uses.

Test engineers will benefit from the flexibility and versatility of the TSI family. It is especially well-suited for complex test requirements and for applications requiring periodic test set-up changes. Examples of these applications include testing of components, hybrids, circuit boards, sub-assemblies, and complete products.

In applications where DUTs span a wide range of bandwidth, power, signal-routing, and physicalinterfacing requirements, most test interfaces have had to be custom designed and built. In addition to being time-consuming and expensive, these custom fabrications were difficult and costly to maintain, and documentation was a problem. The TSI family of off-theshelf components offers an ideal solution.

These products can be easily and affordably configured to fit a majority of signal switching and DUT interfacing needs: digital or analog; front and rear signal access; remote switching; signal levels from microvolts to 400 volts; currents from microamps to 10 amps ; and frequency ranges to 18 GHz . Two custom driver cards are available for routing specialty signals or for controlling devices such as actuators, solenoids, stepper motors, and robotics.

Systems can range in complexity from a mainframe and a single switching assembly, to DUT-interfacing adapters and multiple card/module switching configurations for up to 768 channels. Rackmounting and IEEE-488 bus

TSI 8150 FAMILY SCANNER MODULE SELECTION GUIDE

Features	TSS44	TSS45 (Std.)	TSS45 (Opt 1)	TSS46
Insertion Loss (any port to common)	$\begin{aligned} & <0.1 \mathrm{~dB} @ 100 \mathrm{kHz} \\ & <0.25 \mathrm{~dB} \text { @ } 50 \mathrm{MHz} \\ & <1.0 \mathrm{~dB} @ 200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <0.75 \mathrm{~dB} @ 800 \mathrm{MHz} \\ & <1.0 \mathrm{~dB} @ 1.2 \mathrm{GHz} \\ & <3.0 \mathrm{~dB} @ 2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.75 \mathrm{~dB} @ 400 \mathrm{MHz} \\ & <1.5 \mathrm{~dB} @ 1.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.1 \mathrm{~dB} @ 3.0 \mathrm{GHz} \\ & <0.3 \mathrm{~dB} @ 12 \mathrm{GHz} \end{aligned}$
Channel Isolation any port to common)	$\begin{aligned} & >80 \mathrm{~dB} @ 100 \mathrm{kHz} \\ & >45 \mathrm{~dB} @ 50 \mathrm{MHz} \\ & >40 \mathrm{~dB} @ 200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >60 \mathrm{~dB} @ 800 \mathrm{MHz} \\ & >50 \mathrm{~dB} \text { @ } 1.2 \mathrm{GHz} \\ & >40 \mathrm{~dB} \text { @ } 2.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & >60 \mathrm{~dB} @ 700 \mathrm{MHz} \\ & >50 \mathrm{~dB} @ 1.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & >90 \mathrm{~dB} @ 3.0 \mathrm{GHz} \\ & >70 \mathrm{~dB} @ 12 \mathrm{GHz} \end{aligned}$ $>60 \mathrm{~dB} @ 18 \mathrm{GHz}$
Crosstalk Isolation (between any two ports with common and all unused ports terminated)	$\begin{aligned} & >80 \mathrm{~dB} @ 100 \mathrm{kHz} \\ & >45 \mathrm{~dB} @ 50 \mathrm{MHz} \\ & >40 \mathrm{~dB} \text { @ } 200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >60 \mathrm{~dB} \text { @ } 800 \mathrm{MHz} \\ & >40 \mathrm{~dB} \text { @ } 1.2 \mathrm{GHz} \\ & >30 \mathrm{~dB} @ 2.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & >60 \mathrm{~dB} @ 700 \mathrm{MHz} \\ & >50 \mathrm{~dB} @ 1.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & >90 \mathrm{~dB} @ 3.0 \mathrm{GHz} \\ & >70 \mathrm{~dB} @ 12 \mathrm{GHz} \\ & >60 \mathrm{~dB} @ 18 \mathrm{GHz} \end{aligned}$
VSWR (any port to common)	$\begin{aligned} & <1.05: 1 @ 100 \mathrm{kHz} \\ & <1.2: 1 @ 50 \mathrm{MHz} \\ & \text { <2.1:1@ } 200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <1.3: 1 @ 800 \mathrm{MHz} \\ & <1.5: 1 @ 1.2 \mathrm{GHz} \\ & <3.5: 1 @ 2.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \quad \text { < 1.5:1@ } 400 \mathrm{MHz} \\ & <2.3: 1 @ 1.0 \mathrm{GHz} \end{aligned}$	$<1.1: 1 @ 3.0 \mathrm{GHz}$ $<1.3: 1 @ 12 \mathrm{GHz}$ $<1.5: 1 @ 18 \mathrm{GHz}$
Maximum Switched Current	$\begin{gathered} 500 \mathrm{~mA} \mathrm{dc} \mathrm{or} \\ \text { peak ac } \end{gathered}$	$\begin{aligned} & 1.0 \mathrm{~A} \mathrm{dc} \mathrm{or} \\ & \text { peak ac } \\ & \hline \end{aligned}$	1.0 A dc or peak ac	50 mA dc or peak ac
Maximum Switched Voltage	150 V dc or peak ac	24 V dc or peak ac	24 V dc or peak ac	15 V dc or peak ac
$\begin{aligned} & \text { Maximum Carry } \\ & \text { Current } \end{aligned}$	1.0 A			3.0 A
Maximum Switchable Power	10 W (resistive); 200 mW (RF into mismatched load)	10 W (RF into 50Ω); 5 W (RF into mismatched load)	10W (RF into 75Ω); 5 W (RF into mismatched load)	$\begin{gathered} 125 \mathrm{~mW} \text { (RF into } \\ 50 \Omega \text {) } \\ \hline \end{gathered}$
Maximum Carry Power	500 mW (RF into 50Ω)	10 W (RF into 50Ω) ; 5 W (RF into mismatched load)	10 W (RF into 50Ω) ; 5W (RF into mismatched load)	$\begin{gathered} 450 \mathrm{~W} \text { to } 100 \mathrm{MHz} ; 200 \mathrm{~W} \\ \text { to } 700 \mathrm{MHz} ; 100 \mathrm{~W} \text { to } 3.5 \mathrm{GHz} \\ 50 \mathrm{~W} \text { to } 18 \mathrm{GHz} \end{gathered}$
Dielectric Standoff	250 V dc or peak ac	50 V dc or peak ac	50 V dc or peak ac	50 V dc or peak ac
Switch Life	5×10^{7} operations	10^{5} operations	10^{5} operations	10^{6} operations
Settling Time	4 ms	31 ms	31 ms	41 ms
Power Requirements	24 V , from dc coil supply in TSI 8150, TSX 8140, or from external source			
Environmental	Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; Nonoperating: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			

SIGNAL SWITCHING/FIXTURING AND DUT INTERFACING PRODUCTS

operation are standard features of the TSI 8150 . Conformity with Tektronix Codes and Formats assures standardized bus operation.

The TSI 8150 Mainframe is the basic building block of the Test System Interface product family. It is an intelligent and flexible interface mainframe that provides power, control, timing, and housing for TSI family scanner cards and modules. The TSI 8150's mechanical architecture provides flexible front and rear access to installed cards and modules

The TSX 8140 Expansion Chassis doubles the mainframe capacity without doubling the expense, and allows twice as many channels to be controlled from a single bus address.

Physical interface to the DUT is provided by the TSA 8140 Test System Adapter. The TSA can be mounted horizontally, vertically, or in a system rack with optional rack slides. An extensive offering of interchangeable test adapters lets you test a wide variety of device types, such as hybrids, circuit boards, and components. Test adapters can be easily modified to accept various Zero Insertion Force (ZIF) sockets and adapters. An optional Test Head Receiver is Virginia Panel Corporation Series-3200 compatible, which opens the door to a large selection of vacuum bed-of-nails test adapters for circuit board testing.

\left.| TSI 8150 FAMILY SCANNER CARD SELECTION GUIDE | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |$\right]$

ORDERING INFORMATION

TSI 8150 Test System Interface
Includes: Rackmounting hardware; User's
Manual; Configuration manual; Programmer's
reference guide: Power cord.
TSX 8140 Expansion Chassis
Includes: Rackmounting hardware; Instruction sheet; TSI 8150 interconnection cable and buffer board; Ground strap; Power cord.
TSA 8140 Test System Adapter
016-0861-00 Auxiliary Card Mounting
Rack
016-0862-00 Auxiliary High-Frequency
Mounting Unit
TSD42 32 bit General-Purpose Digital
Interface Card
TSS40 Scanner Control Assembly
TSS41 Low-Level Scanner Card
TSS42 General-Purpose Scanner Card
TSS43 Power Switch Card
TSS44 Coax Scanner Module
TSS45 RF Scanner Module
TSS46 Microwave Scanner Module
TSS48 Matrix Switch Card
021-0417-00 High-Current Driver Card 021-0418-00 60 mA Driver Card

OPTIONS

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro 220 V, 50 Hz
Opt. A2 -UK $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A3 - Australian $240 \mathrm{~V}, 50 \mathrm{~Hz}$

Opt. 02 -Substitute 2×16 matrix configuration Opt. 03-Substitute dry-reed relays in 2×16 matrix

OPTIONAL ACCESSORIES

System Service Manual - Order 070-5767-01 Card Extender (Service) - Order 067-0162-00 Auxiliary Card Mounting Rack - For TSD42
Opt. A4 - North American $240 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt. A5 - Switzerland $220 \mathrm{~V}, 50 \mathrm{~Hz}$
TSS41/TSS42/TSS43/TSS48
Opt. 10 - Delete Front Panel (for installation in Auxiliary Card Rack)
TSS41

Opt. 01 -Substitute $1 \mu \mathrm{~V}$ thermal differential
relays

TSS42/TSS48

Opt. 01 -Substitute dry-reed relays
TSS44/TSS45
Opt. 09 -Move output commons to rear panel

TSS45

Opt. 01 - Substitute 75Ω relays
Opt. 02 - Add back-termination
TSS46
Opt. 02 -Add back-termination
TSS48

TSS41, TSS42, TSS43, TSS48, 021-0417-xx, and 021-0418-xx. Order 016-0861-00

NC Auxiliary HF Mounting Unit - For TSS44, TSS45,

NC
+\$150
+\$150
$+\$ 550$
+\$50
\$70
$\$ 185$

and TSS46. Order 016-0862-00

Extension Cable Kit: - Incl. $30.5 \mathrm{~m}\left(100^{\prime}\right)$ of cable
and 24 connectors. Order 198-5579-01
Extension Cable Assembly - Six 2-meter (6.5^{\prime})
extension cables. Order 198-5581-01
Test Head Receiver - Compatible with test
fixtures from Virginia Panel. Order 021-0435-00
Interchangeable Test Adapters -
Full-size: Order 021-0434-00
Half-size: Order 021-0436-00
Extended-frame: Order 021-0441-00
TSA F01: Rackmounting Hardware Kit for
TSA F09: Universal LF Quick Connect
TSA F11A: HF Quick Connect

Virginial Panel Fixturing Kits - Contact Tek Sales
Representative for detailed descriptions.
128-Ch. Bed-of-Nails Kit - Order 021-0448-00 \$240
interface Tool Kit - Order 021-0450-00
24-Ch. RF Kit - Order 021-0454-00
$\$ 410$

- Fully Integrated Functional Test Systems
- Cost Reduction Through Automation
- No Hidden Costs
- Fixed Price Quotes
- Manufacturing Deadlines Met
- Fixed Project Schedutes
- Project Management to Provide Total Test Solutions

MANUFACTURING TEST SYSTEMS

Tektronix provides flexible automated test solutions for manufacturing test. Tek offers relief to manufacturers facing this testing dilemma by becoming an extension to their resources and providing Total Test Systems Solutions for specific test and measurement problems. Tek's line of GPIBNXI-compatible system components make it possible to build a unique automated test system (at a reasonable price) that can easily be adapted to other applications. But Tektronix provides more than just hardware.

After working with your Tek system specialist, a complete proposal outlining all elements of your final system solution is presented.
Then, with each system, Tek offers the following:

- Design Services
- Project Management
- Complete Documentation
- Software and Fixturing Development
- On-site Installation
- Maintenance and Repair Services
- Technical Support

The result is a totally integrated system, built to fit your test application - a test system manufactured with the same care and quality standards that have made Tektronix a leader in test equipment manufacturing for over 40 years.

The Tektronix System Solutions Unit specializes in automated functional test for commercial and military sectors. Some of the manufacturing test systems Tek has manufactured and installed include:

- Audio Test Systems
- Automotive Test Systems
- Bare Board TDR Test Systems
- Computer Board Test Systems
- Industrial Control Board Test Systems
- Mil Radar Hybrid Test Systems
- Power Hybrid Test Systems
- Video Test Systems

Tektronix provides the total solutions approach freeing your staff from the burdensome task of system development with a full line of support services. From the first visit to final installation, you can select whatever level of Tektronix services that you require.

Initially, Tek specialists can help define a solution for your testing needs. Then, Tek can provide a development program that integrates the efforts of everyone involved to produce your system on time, with the capabilities you need, and with the required maintenance and system support firmly in place. Our goals are the same as yours-cost effective solutions that meet your deadlines, budgets and specifications.

Combined Analog and Digital Video Test System

Tektronix Test System Manufacturing

TEST AND MEASUREMENT MODULAR INSTRUMENTS

TM 500 and TM 5000 instruments provide the answers to a broad range of test and measurement needs. You can choose from over 50 compact plug-ins to create mutifunction packages for a wide range of applications, or to solve unique application problems. These modular instruments can function individually or as part of a computer-controlled network.

The Tektronix TM 500 line of manual instruments lets you create just the system you need and all TM 500 instruments are electrically and mechanically compatible with the TM 5000 GPIB programmable instruments. They can be used in TM 5000 mainframes side-by-side with the TM 5000 programmables. This compatibility yields cost effective solutions to system applications where not all functions or measurements need to be programmable.

The TM 5000 programmable instruments are designed for ease of use and flexibility in automated testing and measurement applications. You get the benefits of advanced programming capability, complex interfacing, and compactness as standard features.

Programming is simple because TM 5000 instruments are GPIB compatible and support Tek's Standard Codes and Formats, assuring the language and syntax between instruments are consistent and easy to use. Standardized instruments-data formats open up the lines of bus communication and make your test and measurement system easy to set up and operate.

For the TM 500 line of manual instruments, there's a travel mainframe for service work and field testing; a rack mount model for production test; or standard mainframes, compact and convenient for bench or desk, that accept one to six instruments. Rollabout carts are available for lab configurations with Tek oscilloscopes.

The TM 5000 instruments operate in either TM 5003 or TM 5006A mainframes to form compact, configurable, automated test systems that occupy less than half the rack space of ordinary rack mounted equipment and decrease the number of GPIB cables and power outlets. One cable and one power cord per main frame are all that is required. The TM 5003 has three compartments, the TM 5006A has six. All TM 5000 and many of the TM 500 instruments are UL listed.
Adherence to standard form and fit means that any TM 500/TM 5000 instruments can be replaced in a system without the uncabling, unstacking, restacking, and recabling that is necessary with most instruments. Rebuilding the system for different tasks takes seconds, not hours.
The TM 500/TM 5000 line of modular instruments is designed so connections between modules and/or external equipment can be made by the mainframe rear interface board and optional rear-panel connectors.

While the connections can be made in each of the mainframes, ordering the rear interface (Opt. 02) provides the BNC connectors for the rear panel.

Contents
Signal Sources 198
Arbitrary/Function
Generators200
Pulse/Function Generators 202
Function Generators 203
Pulse Generators 206
Power Supplies 210
Measurement Instruments
Digital Multimeters 212
Digital Counters 218
Oscilloscopes 226
Interface Tools
Scanners 229
Plug-in Kits 229
Audio Analysis
Distortion Analyzers 230
Low-Distortion Oscillators 232
Signal Conditioners 234
Oscilloscope Calibrators 236
Mainframes 241
Accessories 244

FUNCTION GENERATORS

Function generators stimulate devices and circuits under test by simulating typical waveforms．Stimulation can be applied to circuits ranging from a single logic device to a satellite communications system or a heart pacemaker．Waveforms simulated can range from a simple train of pulses to representations of spread－ spectrum modulated RF signals or cardiac systole．All of them offer sine，triangle，and square－wave outputs．Many provide ramp and pulse outputs，obtained by varying the symmetry of triangle and square waves．That is，variable symmetry lets you take a triangle wave and increase the slew rate of its leading edge while decreasing the slew rate of its trailing edge，simulating the sweep functions used in raster－scan display devices．Varying the symmetry of square waves lets you emulate a pulse generator by giving you precise control over pulse width and duty cycle．The need for sines，ramps and pulses is easy to understand，but when do you need triangle and square waves？Triangle waves are used to characterize or verify tracking，detection，switching or trip points．They help determine the switching thresholds of comparators， Schmitt triggers，peak detectors，A－to－D converters，and hysteresis circuits．Square waves help characterize the switching response of amplifiers，gates，and level

TM 5000／TM 500 Arbitrary，Pulse and Function Generators
translators．They make it possible to measure risetime， slew rate，overshoot，overdrive recovery and settling time．
Frequency accuracy is three to five percent on instruments with mechanical－dial frequency input，and typically better than 0.1 percent on instruments with digital controls．This can be enhanced to better than 0.005 percent accuracy with a synthesizer mode，in which the function generator is locked to a reference crystal oscillator．On instruments such as the FG 5010，it is possible to lock the phase of the output to a reference signal while varying relative phase plus and minus 90 degrees．Except in more expensive instruments，square－ wave／pulse risetimes are slower than those output by pulse generators．Typical values are 20 to 25 ns ， although the Tektronix FG 504 offers 6 ns risetimes．

All function generator outputs can be triggered and gated．In triggered mode，you get one cycle of output each time a trigger signal is applied．Some function generators also provide burst mode，in which a preset number of cycles is output for each trigger．In gated mode，you get output as long as the trigger signal is asserted．The frequency of sinewave outputs can be swept，with the sweep signal available for driving the horizontal section of an oscilloscope．Generally，swept measurements are used in aligning receivers and in evaluating amplifier and filter response．In addition， frequency sweeps also simulate the＂chirp＂waveforms found in radar and other speed and distance measuring systems．
There are extensive applications for modulated signals．In addition to simulating buffer－and output－ stage RF amplifiers，amplitude modulated signals can stimulate detectors and automatic gain and level control stages in receivers．With frequency modulation，driving the input with a binary digital signal simulates frequency shift keying，as used in modems．Driving the input with a multi－level digital signal can simulate the frequency hopping waveforms of spread－spectrum communications systems．

ARBITRARY／FUNCTION GENERATORS

Arbitrary Function Generators generally provide all of the features of programmable function generators，plus the ability to create any arbitrary waveform．In a sense， they perform the opposite function of a digitizing oscilloscope．That is，where the scope captures a waveform and converts it to an array of digitally stored points；the AFG takes an array of points and transforms them to a time－varying signal．Waveforms can be downloaded from a digital oscilloscope or created by a software package such as the Tektronix WaveWriter，to clearly and simply describe the mathematical functions representing a waveform．WaveWriter automatically generates a set of points that accurately describes the mathematical function you＇ve entered，and then downloads them to the AFG．

It isn＇t even necessary to program over the GPIB． Because the AFG 5101 has an extremely fast waveform execution buffer，you can see your waveforms as you create them．This means that with a scope connected to the AFG output，you can define a repetitive signal point－ by－point，using the keypad on the front panel，watching as you construct it．An autoline feature constructs straight lines from user－defined endpoints．To speed construction of common waveforms that are composites of basic functions，the AFG 5101 provides five predefined 1000－ point waveforms that can be combined and edited．These are the sinewave，square－wave，triangle，and up and down ramps．

The output frequency that can be achieved by arbitrary function generator depends on how fast the instrument＇s digital－to－analog converter reads through addresses（which depends on the inherent speed of the D－to－A and the clock speed）and the number of points needed to define a waveform or signal．For example，the AFG 5101 will execute a 10 point signal at frequencies from $1 \mu \mathrm{~Hz}$ to 1 MHz ．

PULSE/FUNCTION GENERATORS

Pulse/Function generators add pulse capabilities to all the features found in a function generator. Combining the performance of two products into one instrument makes a very economic solution.

ARBITRARY WAVEFORM GENERATION SOFTWARE

WaveWriter ${ }^{\text {TM }}$ is the new software support package for creating and modifying arbitrary waveforms for the Tektronix AFG 5101/AFG 5501 Arbitrary Waveform Generators. WaveWriter represents a major step forward in allowing easy creation of the real-world signals which are increasingly being used to test circuit tolerances, drive vibration/shake tables, and simulate other non-ideal or corrupted signals.

WaveWriter also supports the 2400 series line of digital storage oscilloscopes with template generation for the Save-On-Delta feature. Therefore, with WaveWriter, the user can create the exact tolerances or templates with which to capture a differential signal or identify a failure.

For more information on WaveWriter, please turn to page 262 in the Test and Measurement Software section of this catalog.

AFG 5101 Arbitrary/Function Generator

GPIB
 lEEE-488

* The AFG 5101/AFG 5501 comply with IEEE Standard 488.11987 and with Tektronix Standard Codes and Formats.

AFG 5101/AFG 5501
 Arbitrary/Function Generators

- Fully Programmable from Front Panel or GPIB
- Standard and Arbitrary Waveform Generation from $1 \mu \mathrm{~Hz}$ to 12 MHz
- Two Non-Volatile, Selectable 8 K Memories for Waveform Storage
- Non-Volatile Storage for up to 99 Front Panel Settings
- 10 mV to 9.99 V p-p into 50 Ohms
- 0.2\% Accuracy (0.005\% with Synthesizer Option)
- Sine, Square, Triangle, Ramp Up, Ramp Down, Arbitrary Waveforms, and DC
- Linear, Logarithmic, and Arbitrary Sweep Capabilities
- Convenient Creation and Modification of Waveforms with WaveWriter ${ }^{\text {TM }}$ Software

ORDERING INFORMATION

AFG 5101 Programmable Arbitrary/ Function Generator (plug-in)
Includes: Instrument manual (070-6759-00); Reference guide; Instrument interfacing guide (070-6930-00).
AFG 5501 Programmable Arbitrary/ Function Generator (monolithic)
Includes: Instrument manual
(070-6759-00); Reference guide;
Instrument interfacing guide (070-6930-00).

OPTIONS
Opt. 02 -Adds a frequency lock synthesizer
Service Manual - $070-6760-00$

AFG 5101/AFG 5501

The AFG 5101/AFG 5501 combine the capabilities of standard analog and arbitrary waveform generation with the ability to generate virtually any sweep shape to allow accurate simulation of real-world functions.

Standard analog functions include sine, square and triangle waveforms, and DC with frequencies from 0.012 Hz to 12 MHz and amplitudes from 10 mV to 9.99 V p-p into 50 ohms. Waveforms can be continuous, triggered, gated, or burst. Trigger can be internally, manually, or GPIB supplied.

Arbitrary waveforms can be defined point by point, generated mathematically, transferred from computer graphics, or captured from an analog source and stored into one of two independently selectable 12 bit by 8 K waveform memories for later use.

A sweep generator, from which linear, logarithmic, or user defined sweep shapes can be selected, allows complete customization of waveforms. (A mode exists on the AFG 5101/AFG 5501 which allows viewing and editing of the waveform as it is designed.)

BUILD A WAVEFORM LIBRARY

Once a waveform is generated, it can be stored in nonvolatile internal memory. Or, through the GPIB, a complete library of calibration and stimulus waveforms and panel settings can be stored on disk. Up to 99 panel settings can also be stored in internal non-volatile memory.

CONFIGURATIONS

The AFG 5101 is a three-wide plug-in module that fits into the TM 5003 or TM 5006A Power Module Mainframe. The AFG 5501 is the AFG 5101 mounted in a three-wide GPIB power module.

OPTIONS

Option 02 adds a frequency lock synthesizer that provides a stable output waveform by locking the output to an internal quartz crystal. This option operates in continuous mode only, from 12.1 Hz to 12 MHz .

CHARACTERISTICS

Waveforms - Sine, Square, Triangle, Arbitrary, and DC. For Sine, Square, Triangle and DC specs, see common specifications on following page.

OPERATING MODES

For Continuous, Triggered, Gated, Burst and Increment, see common specifications.
Sweep - Internal, programmable start frequency, stop frequency, rate (time per step) and marker frequency. Linear, logarithmic, and arbitrary sweep shapes can be continuous, triggered, gated, or burst selected.
Modulation - The analog generator can be frequency and amplitude modulated. Arbitrary waveforms can be amplitude modulated only.

FREQUENCY

Range - 0.012 Hz to 12.0 MHz .
Resolution - $31 / 2$ digits (1200 counts). Optional synthesizer mode: $41 / 2$ digits (12,000 counts).
For Accuracy, Jitter, Stability specifications, see common specifications.

OUTPUT

For specs on Amplitude Range, Amplitude Resolution, Amplitude Accuracy, Repeatability, Amplitude Flatness, Offset Range, Offset Resolution, Output Impedance and Output Protection, see common specifications.

WAVEFORM

For specs on Sine Distortion, Square Wave Symmetry, Triangle Linearity, DC Range and DC Accuracy, see common specifications.

ARBITRARY WAVEFORM

Functions - User defined, or predefined sine, square, triangle, ramp up, and ramp down with 0.01% frequency accuracy. From 0.001 Hz to 10 kHz (1000 point predefined waveforms only).
Horizontal Resolution - 8192 points for each of two independently selectable non-volatile waveform storage memories.
Vertical Resolution-12 bits.
Output Accuracy $- \pm 2.5 \% \pm 20 \mathrm{mV}$ of programmed p-p amplitude when arbitrary data point peak values are ± 2047 to - 2047 at waveform frequencies of 1 kHz with, predefined waveform functions.
Point Duration - 100 ns to 999.9 sec with 4 digits resolution. Accuracy typically better than 0.01%.
Risetime - < $150 \mathrm{~ns}, 10$ to 90% (with no filtering).
Setting Time $-<300$ ns to within 1% of final value with a full scale step (with no filtering).
Waveform Execution - Buffer: 8192 points, volatile.
Filters: 4 selectable, single pole filters (3 dB cutoff frequency).
0 - Filter off.
1 - Typically $1 \mathrm{MHz} \pm 20 \%$.
2 - Typically $100 \mathrm{kHz} \pm 20 \%$.
3 - Typically $11 \mathrm{kHz} \pm 20 \%$.
4 - Typically $1.3 \mathrm{kHz} \pm 20 \%$.
Internal Trigger - see common specifications.

FREQUENCY SWEEP

Sweep Types - Linear, logarithmic, arbitrary.
For specs on Sweep Time, Sweep Width, Sweep Ranges, see common specifications.
For specs on Inputs, Outputs and Synthesizer Option, see common specifications.

GENERAL

Environmental - Operating: 0 to $50^{\circ} \mathrm{C}$.
Non-operating: -55 to $+75^{\circ} \mathrm{C}$.
Power Consumption - 50 VA maximum, limited by internal fuse.
Power Dissipation - AFG 5101: 30 W, AFG 5501:
90 W.

CHARACTERISTICS

AFG 5101/AFG 5501 AND PFG 5505/ PFG 5105 COMMON SPECIFICATIONS
Waveforms - Sine, square, triangle, and dc.
OPERATING MODES
Continuous - Output continuous at programmed frequency, amplitude, and offset.
Triggered - Output quiescent until triggered by an internal, external, GPIB, or manual trigger.
Gated - Same as triggered mode except waveform is executed for the duration of the gated signal.
Burst- Same as triggered mode for programmed number of cycles from 1 to 9999.
Sweep - Linear, programmable start frequency, stop frequency, and rate. Sweeps can be continuous, triggered, gated, or burst.
Modulation - Frequency and amplitude.
Increment - Frequency, amplitude, offset, rate, width, delay, and NBurst can be manually incremented/ decremented by a settable INCREMENT delta.

FREQUENCY
Range - 0.012 Hz to 12.0 MHz .
Resolution - $31 / 2$ digits (1200 counts). Optional synthesizer mode: $41 / 2$ digits (12,000 counts).
Accuracy $- \pm 0.2 \%$ of reading from 121 Hz to 5 MHz in continuous mode. $\pm 0.5 \%$ of reading from 5 to 12 MHz in continuous mode; $\pm 5 \%$ of reading from 0.1 to 120 Hz in continuous mode.
Jitter - < 0.1% to 5 MHz .
Stability $- \pm 0.2 \%$ in continuous mode for all time intervals. $\pm 0.5 \%$ for 24 hours in other modes.

OUTPUT CHARACTERISTICS

Amplitude Range - 10 mV to 9.99 V p-p into 50Ω
(20 mV to 19.98 V p-p into open circuit).
Amplitude Resolution-10 mV from 1 to $9.99 \mathrm{~V} p-\mathrm{p}$ into $50 \Omega ; 1 \mathrm{mV}$ from 0.1 to 0.999 V p-p into $50 \Omega ; 1 \mathrm{mV}$ from 10 to 99 mV p-p into 50Ω.
Amplitude Accuracy - $\pm 2.0 \% \pm 20 \% \mathrm{mV}$ of programmed value for 1.0 to 9.99 V output at 20 to $30^{\circ} \mathrm{C}$; $\pm 5 \% \pm 5 \mathrm{mV}$ for 10 to 999 mV output, specified for a sine, square, or triangle wave output at 1 kHz .
Amplitude Flatness- 0.5 dB from 0.012 Hz to 120 kHz , $\pm 2 \mathrm{~dB}$ to $1.2 \mathrm{MHz} \pm 3 \mathrm{~dB}$ to 12 MHz referenced to 1 kHz sine, square or triangle wave.
Offset Range - 4.99 V from 1 to 9.99 V into 50Ω; 0.499 V from 0.1 to 0.999 V into $50 \Omega ; 0.049 \mathrm{~V}$ from 0.01 to 0.099 V into 50Ω.
Offset Resolution - 3 digits; 1 mV when $p-p$ amplitude is $<999 \mathrm{mV} ; 10 \mathrm{mV}$ when $p-p$ amplitude is $>1 \mathrm{~V}$, (into 50Ω).
Offset Accuracy $- \pm 0.6 \% \pm 20 \mathrm{mV}$ (into 50Ω).
Output Impedance - 50Ω

WAVEFORM

Sine Distortion - <0.6\% THD (RMS), 121 Hz to 120 kHz at $5 \mathrm{~V} p-\mathrm{p}$ amplitude at 20 to $30^{\circ} \mathrm{C} .<1 \%$ THD (RMS),
12 Hz to 120 kHz at full temperature and amplitude range.
(All harmonics less than -20 dB below fundamental from 121 kHz and above.)
Square Wave Time Symmetry - < 0.5\% 121 Hz to
$120 \mathrm{kHz} ; \pm 1 \% 0.012 \mathrm{kHz}$ to $1.200 \mathrm{MHz}: \pm 5 \% 1.21 \mathrm{MHz}$ to 12.0 MHz .
Square Wave Transition Time - < 15 ns 10 to 90% at full output amplitude; elsewhere, < 20 ns , 10 to 90%.
Square Wave Aberrations - < 8% of $p-p$ amplitude $\pm 20 \mathrm{mV}$ from 3.4 to 9.99 V p-p output amplitude. < 10% of $p-p$ amplitude below $3.34 \mathrm{~V} p$-p output amplitude.
Triangle Linearity - 98\% to 100 kHz measured from 10 to 90% on waveform.
DC Range $- \pm 10 \mathrm{mV}$ to $\pm 4.99 \mathrm{Vdc}$ from 50Ω (into 50Ω).
DC Accuracy $- \pm 0.6 \% \pm 20 \mathrm{mV}$ in DC function only, (into 50Ω).

INTERNAL TRIGGER ANALOG FUNCTIONS ONLY
Range - Repetition rate 100 ns to 999.9 sec .
Resolution - 4 digits, 1 ns maximum.
Accuracy -0.01\%.
FREQUENCY SWEEP
Sweep Type - Linear only.
Sweep Time - 100 ns to 999.9 s per point. 1 ns max resolution.
Sweep Width - 1200:1 maximum; start and stop frequencies must be in the same range.
Sweep Ranges - 10 kHz to $12 \mathrm{MHz} ; 1 \mathrm{kHz}$ to 1.2 MHz ; 100 Hz to 120 kHz ; and so on until 0.012 to 12 Hz .

INPUTS AND OUTPUTS
VCF Input - 5 V p-p for a $500: 1$ minimum frequency change.
Trigger IN-TTL compatible. Nominal impedance: $10 \mathrm{k} \Omega$. Maximum rate: 6 MHz . Minimum width: 20 ns .
AM Input - Input resistance: $10 \mathrm{k} \Omega$ nominal. 5 V p-p (0 to $\pm 5 \mathrm{~V} \mathrm{dc}$) for 100% modulation. Bandwidth: dc to 20 kHz minimum.
Sync Output - TTL level squarewave at programmed frequency.
Sweep Output - Source resistance 600Ω; same waveshape as selected sweep. Amplitude depends on start and stop frequency and a 5 V limit.
SYNTHESIZER OPTION
Range -12.1 Hz to 12 MHz .
Resolution- Frequency resolution (LSD of display) is 10 Hz on lowest range and 1 kHz on highest frequency range (4.5 digits, or 12,000 counts).
Accuracy- $\pm 50 \mathrm{ppm}$ averaged measurement.
Stability $- \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better.
Setting time - Typically less than 2 s plus 100 cycles.
Jitter $- \pm 0.1 \%$ from 12.1 Hz to 12 MHz .

AFG 5101/AFG 5501
Arbitrary/Function
Generator
PFG 5105/PFG 5505
Pulse/Function Generator
Common
Function Generator Specifications

[1] 1710

PFG 5105/PFG 5505

Pulse/Function Generators

- 0.012 Hz to 12 MHz ;

Accuracies to 0.005% with
Synthesizer Option

- Programmable Width and Delay
- 10 mV to 9.99 V p-p Into 50 Ohms
- Continuous, Triggered, Gated and Burst, AM, VCF and Linear Sweep Modes
- Non-Volatile Storage for 99 Front Panel Settings

PFG 5105/PFG 5505

The PFG 5105/PFG 5505 Programmable Pulse/ Function Generators combine the advantages of pulse generation with the versatility of full-featured function generation and complete programmability. Its waveform generation capabilities include pulse, double pulse, sine, triangle, square, and dc outputs from 0.012 Hz to 12 MHz in continuous, triggered, gated, burst, swept, and AM/ VCF modes. A synthesizer option is available that locks the output to an internal quartz crystal for frequency accuracies of 0.005% (continuous mode only).

An additional internal-rate trigger clock is provided for allowing the creation of unique sequences of waveforms. This can be especially useful for creation of custom burst sequences.

In addition to complete programmability, the PFG 5105 has the ability to store up to 99 front panel settings which can be called up either from the front panel or through the GPIB. This feature reduces programming time and enhances standalone bench applications.

PFG 5505/5105 Pulse Function Generators.
*The PFG 5105/PFG 5505 comply with IEEE Standard 488.1-1987 and with Tektronix Standard Codes and Formats

ORDERING INFORMATION

PFG 5105 Function Generator
Includes: Instrument manual
(070-7331-00); Reference guide;
Instrument interface guide (070-7329-00).
PFG 5505 Function Generator $\$ 4,195$ Includes: Instrument manual (070-7331-00); Reference guide; Instrument interface guide (070-7329-00).

OPTION
Opt. 02 - Adds a frequency lock synthesizer

Service Manual - 070-7332-00 $\$ 50$

PAIRED PULSE GENERATION

Double pulse generation is very convenient when evaluating a circuit's ability to differentiate between two closely spaced pulses. Paired pulses can be generated at selected repetition rates with the delay control determining the time between the two pulses.

TM 5000 SERIES COMPATIBILITY

The PFG 5105/PFG 5505 is fully GPIB compatible and adheres to Tek Standard Codes and Formats, insuring ease of configurability and communication for integrated systems use configurations.

PFG 5105 occupies three slots in any TM 5000 Mainframe.

PFG 5505 is a standalone version of the PFG 5105.

OPTIONS

Opt. 02 adds a frequency lock synthesizer that provides a stable output waveform by locking the output to an internal quartz crystal. This option operates in continuous mode only, from 12.1 Hz to 12 MHz .

CHARACTERISTICS

Waveforms - Sine, square, triangle, pulse, double pulse, and dc.
For Sine, Square, Triangle and DC specifications, see common specification on facing page.

OPERATING MODES

Continuous - Continuous, Triggered, Gated, Burst, Sweep, Modulation, and Increment, see common specifications.

FREQUENCY

Range - 0.012 Hz to 12.0 MHz
Resolution - $31 / 2$ digits (1200 counts); Optional synthesizer mode: $41 / 2$ digits (1200 counts)
Accuracy $- \pm 0.01 \%$ for pulse modes with internal triggering. For other Accuracy, Jitter and Stability specifications, see common specifications.
Output - For specifications on Amplitude Range, Amplitude Resolution, Amplitude Accuracy, Repeatability, Amplitude Flatness, Offset Range, Offset Resolution, and Output Impedance, see common specifications.
Waveforms - For specifications on Sine Distortion,
Square Wave Symmetry, Triangle Linearity, DC Range and DC Accuracy, see common specifications.
Pulse and Square Wave Transition Time $-<15$ ns 10 to 90% at full output amplitude; elsewhere < 20 ns , 10 to 90%.
Pulse and Square Wave Aberrations - < 8% of $p-p$ amplitude $\pm 20 \mathrm{mV}$ from 3.4 to 9.99 V p-p output amplitude. < 10% of $p-p$ amplitude below $3.34 \mathrm{~V} p-\mathrm{p}$ output amplitude.
Pulse Width and Delay-40 ns to 99.9 ms .
Resolution - 3 digits, 10 ns maximum.
Accuracy $- \pm 5 \%$ of programmed value, $\pm 10 \mathrm{~ns}$.
Repeatability $- \pm 1 \%, \pm 5 \mathrm{~ns}$.
Pulse Duty Cycle - Delay plus width may be up to 85\% of period.
Double (Paired) Pulse-2 pulses of selected width up to 6 MHz separated by selected delay period.
Internal Trigger - See common specifications.
Frequency Sweep - See common specifications.
Inputs and Outputs - See common specifications.
Synthesizer Option - See common specifications.
GENERAL
Environmental - Operating: 0 to $50^{\circ} \mathrm{C}$.
Non-Operating: -55 to $+75^{\circ} \mathrm{C}$.
Power Consumption - 50 VA maximum limited by internal fuse.
Power Dissipation - PFG 5105: 30W, PFG 5505: 90 W .

FG 5010
Programmable Function Generator

- 0.002 Hz to 20 MHz
- Up to 20 V p-p From 50Ω
- Sine, Square, Triangle, Pulse, and Ramp Waveforms
- 10 ns Rise/Fall
- 10 \% to 90% Variable

Symmetry in 1\% Steps

- Trigger, Gate, Counted Burst
- Phase Lock, With Autoscan
- AM, FM, VCF
- Waveform Complement

ORDERING INFORMATION

Trigger Output - $0 \pm 100 \mathrm{mV}$ to $\geq 2 \mathrm{~V}$ from 50Ω into an open circuit.

TRIG, GATE, BURST, AND PH LOCK INPUT
Trigger Input - $1 \mathrm{M} \Omega / 50 \Omega$ selectable; $0.0 \mathrm{~V} / 0.5 \mathrm{~V}$ selectable.
Amplitude Sensitivity - $\leq 250 \mathrm{mV}$ p-p.
Maximum Input Amplitude $- \pm 5 \mathrm{~V}$ peak into 50Ω, $\pm 20 \mathrm{~V}$ peak into $1 \mathrm{M} \Omega$.
Burst Range -1 to 9999 cycles.
Amplitude Modulation - 100% with $5 \mathrm{~V} p-\mathrm{p}, \mathrm{DC}$ to $\geq 100 \mathrm{kHz},<2 \%$ distortion to 2 MHz at $70 \%,<4 \%$ to 20 MHz at 70%. Max. Amp. $\pm 20 \mathrm{~V}$.
Frequency Modulation - DC to $\geq 100 \mathrm{kHz}, \leq 2 \%$
distortion, Max. Amp. $\pm 20 \mathrm{~V}$
VCF Modulation - 0 to 10 V produces $>1000: 1$
Frequency change, DC to $\geq 100 \mathrm{kHz}, \geq 0.063 \mathrm{~V} / \mu \mathrm{s}$ slew rate, Max. Amp. $\pm 20 \mathrm{~V}$
Output Holdmode -0.002 to 200 Hz
Phase Range $- \pm 90^{\circ}$ to $1 \mathrm{MHz} \pm 47^{\circ}$ to 20 MHz . Resolution 1°
Phase Lock Range $- \pm 90^{\circ}$ to $10 \mathrm{MHz}, \pm 50^{\circ}$ to
20 MHz . Resolution 1°
GENERAL
Environmental - Operating: 0 to $50^{\circ} \mathrm{C}$
Non-operating: -55 to $+75^{\circ} \mathrm{C}$.
Power Consumption-60 W.

FG 501020 MHz Function
Includes: Instruction manual
(070-3467-01); Instrument
Interfacing Guide
(070-4613-00): Reference
Guide (070-3561-00).

[^29]
FG 504

Function Generator

- 0.001 Hz to 40 MHz
- Three Basic Waveforms, Plus a Wide Range of Shaping With Varlable Rise/ Fall Times and Symmetry Controls
- Logarithmic or Linear Sweep
- Up to 30 V P-P Output
- Built-In Attenuator
- AM and FM
- Phase-Lock Mode
- External and Manual Trigger or Gate

FG 504

The FG 504 provides the three basic waveforms of sine, square and triangle plus a wide range of shaping with variable rise/fall times and symmetry controls. Pulses and ramps are easily generated.

The output of the FG 504 can be phase locked, gated, or triggered by a reference signal. This lets you convert from one waveform to another, such as pulses to sine waves, as well as adjusting phase relationships. Postattenuator offset enables use of the full $\pm 7.5 \mathrm{~V}$ offset range with small signals. The FG 504 output can be swept, or amplitude or frequency modulated by external signals. In addition, the FG 504 can supply internally generated linear- or logarithmic-swept frequencies of up to a 1000:1 range with convenient control of start and stop frequencies.

The FG 504 also provides trigger output, external voltage-control input, and sweep output.

CHARACTERISTICS

Frequency Range -0.001 Hz to 40 MHz , to 4 MHz with variable symmetry.
Symmetry Range - 7\% to 93\% variable. Dial Accuracy $-\leq 3 \%$ to $4 \mathrm{MHz}, \leq 6 \%$ to 40 MHz .
Custom Frequency Change - Includes cap. for 20 Hz to 20 kHz .
Frequency Stabillty - $\leq 0.05 \%$ for $10 \mathrm{~min} ., \leq 0.1 \%$ for 1 hour, $\leq 0.5 \%$ for 24 hours, constant temperature.

Amplitude -30 V p-p into open circuit, $15 \mathrm{~V} p$-p into 50Ω.
Attenuator In 10 dB Steps -0 to -50 dB.
VAR Control - Variable control provides up to -20 dB additional attenuation.
Offset $- \pm 7.5 \mathrm{~V}$ into open circuit, $\pm 3.75 \mathrm{~V}$ into 50Ω.
Amplltude Flatness - Sinewave and Triangle -
$\pm 0.5 \mathrm{~dB}$ to 40 kHz , $\pm 2 \mathrm{~dB}$ to 40 MHz . Square $- \pm 0.5 \mathrm{~dB}$ to $20 \mathrm{MHz}, \pm 2 \mathrm{~dB}$ to 40 MHz .
Sinewave Distortion $-\leq 0.5 \%, 20 \mathrm{~Hz}$ to 40 kHz .
Square-Wave Response - $\leq 6 \mathrm{~ns}$ rise/fall fixed, 10 ns to 100 ms variable; $\leq 5 \% ~ p-p+30 \mathrm{mV}$ aberrations.
Triangle Linearity $-\geq 99 \%, 10 \mathrm{~Hz}$ to 400 kHz ; $\geq 98 \%, 400 \mathrm{kHz}$ to 4 MHz . $\geq 90 \%, 4 \mathrm{MHz}$ to 40 MHz .
Trigger Output - + 2 from 50Ω.
External Trigger Input-Impedance $\geq 10 \mathrm{k} \Omega$;
Sensitivity $\leq 1 \mathrm{Vp}-\mathrm{p}$; Trigger level; -1 to +10 V .
Phase Lock - 100 Hz to $40 \mathrm{MHz} \pm 80^{\circ}$ phase range.
Internal Sweep - Logarithmic or Linear. Separate Start/Stop Dials.
Duration - 0.1 ms to 100 s , in six decades.
Ramp Output-0 V to 10 V from $1 \mathrm{k} \Omega$.
Amplitude Modulation - 100\% with $\approx 5 \mathrm{~V} p-p, D C$ to $100 \mathrm{kHz} ;<5 \%$ distortion to 4 MHz at 70% modulation < 10% to 40 MHz at 65% modulation.
Output Hold Mode - 0.001 to 400 Hz .
VCF - Up to 1000:1 Frequency change with 10 V external signal. Slew rate $\geq 0.3 \mathrm{~V} / \mathrm{ms}$.
Environmental - Operating: 0 to $40^{\circ} \mathrm{C}$ (Forced air
required for 40 to $50^{\circ} \mathrm{C}$). Non-operating: -40 to $+75^{\circ} \mathrm{C}$.

ORDERING INFORMATION

FG 50440 MHz Function Generator
\$3,695
Includes: Instruction manual
(070-2655-00).

FG 503

Function Generator

- 1.0 Hz to 3 MHz
- Three Waveforms
- Up to 20 V p-p Output
- Up to $\pm 7.5 \mathrm{~V}$ Offset
- VCF

ORDERING INFORMATION

FG 503 3-MHz Function Generator Includes: Instruction manual (070-1727-01).

FG 503

The FG 503 Function Generator provides high-quality low-distortion sine, square, and triangle waveforms. Six decade frequency multiplier steps, a custom position for user-determined frequency multiplication, a dial calibrated from 1.0 to 30 (uncalibrated from 0.1 to 1.0), and a frequency vernier control working together to select
 frequencies in overlapping ranges from 1 Hz to 3 MHz . The output frequency can be swept over a 1000:1 ratio by an external voltage. Output amplitude and offset controls are provided. A trigger output is available for controlling external devices or equipment. Amplitude up to 10 V peak-to-peak can be developed across a 50Ω load (20 V peak-to-peak open circuit). Selectable offset up to 3.75 V dc across $50 \Omega(7.5 \mathrm{~V} \mathrm{dc}$ open circuit) is also featured.

CHARACTERISTICS

Frequency Range - 1 Hz to $3 \mathrm{MHz}(0.01 \mathrm{~Hz}$ to 5 MHz usable).
Symmetry - 50% fixed.
Dial Accuracy - $\pm 5 \%$ of F.S 1 Hz to 3 MHz .
Custom Frequency Range - With user installed cap.
Frequency Stability - $\leq 0.05 \%$ to 10 mins. $\leq 0.1 \%$
for 1 hour, $\leq 0.5 \%$ for 24 hours, constant temperature.
Amplitude -20 V p-p into open circuit, 10 V p-p into 50Ω.
Offset $- \pm 7.5 \mathrm{~V}$ into open circuit, $\pm 3.75 \mathrm{~V}$ into 50Ω.
Amplitude Flatness - Within $\pm 2 \mathrm{~dB}$ referenced at 10 kHz .
Sinewave Distortion $-\leq 0.5 \%$ to $30 \mathrm{kHz}, \leq 1 \%$ to 300 kHz , $\leq 2.5 \%$ to 3 MHz .
Square Wave Response $-\leq 60$ ns rise/fall; $\leq 3 \%$ p-p aberrations. (50Ω load).
Triangle Linearity - Typically $\geq 99 \%, 1$ to $100 \mathrm{kHz} ; \geq$ $95 \%, 100 \mathrm{kHz}$ to 3 MHz .
Trigger Output -+2.5 to 600Ω load.
VCF - Up to 1000:1 frequency change with 10 V external signal. Slew rate $\geq 0.3 \mathrm{~V} / \mathrm{ms}$.

FG 502

The FG 502 Function Generator provides lowdistortion sine, square, and triangle waveforms, and positive or negative ramps and pulses. Output frequency is continuously variable from 0.1 Hz to 11 MHz . The high-frequency range from 1 to 11 MHz permits the versatility of the function generator to be extended into the medium radio frequency range. VCF input permits the FG 502 to be used as a sweep generator or as an FM generator.

External-gate input permits the FG 502 output in any of its modes to be controlled by an externally supplied pulse to generate bursts of various output waveforms. The FG 502 is used in wireless or radio remote-control equipment and in certain phases of the telephone industry.

CHARACTERISTICS

Frequency Range -0.1 Hz to 11 MHz . Symmetry Range - 5\%, 50\%, 95\% fixed. Dial Accuracy - $\leq 3 \%$ to $1 \mathrm{MHz}, \leq 5 \%$ to 10 MHz . Frequency Stability - $\leq 0.05 \%$ for $10 \mathrm{~min} ., \leq 0.1 \%$ for 1 hour, $\leq 0.5 \%$ for 24 hours, constant temperature.
Amplitude - 10 V p-p into open circuit, 5 V p-p into 50Ω.

Offset - $\pm 5 \mathrm{~V}$ into open circuit, $\pm 2.5 \mathrm{~V}$ into 50Ω
Amplltude Flatness - Sinewave, $\leq \pm 1.5 \mathrm{~dB}$ referenced at 10 kHz ; Triangle and squarewave, $\pm 3 \mathrm{~dB}$ referenced to sinewave.
Sinewave Disortion - $\leq 0.5 \%$ to 50 kHz ; Harmonics $\leq-30 \mathrm{~dB}$ at all other frequencies.
Square Wave Response - $\leq 20 \mathrm{~ns}$ rise/fall; $\leq 3 \%$ p-p aberrations.
Triangle Linearity - Typically $\geq 99 \%, 0.1$ to
$110 \mathrm{kHz}>97 \%, 100 \mathrm{kHz}$ to $1.1 \mathrm{MHz} ; \geq 95 \%$, 1 to 11 MHz .
Trigger Output - + 2.5 to 50Ω load.
External Input - Impedance $\approx 1 \mathrm{k} \Omega ; \geq+2 \mathrm{~V}$ gate signal required.
VCF - Up to 1000:1 frequency change with 10 V external signal. Slew rate $\geq 0.3 \mathrm{~V} / \mathrm{ms}$.

FG 501A

The FG 501A provides low-distortion outputs from 0.002 Hz to 2 MHz . It is capable of generating five basic waveforms-sine, square, triangle, ramp, and pulse-at output levels up to 30 V peak-to-peak with up to $\pm 13 \mathrm{~V}$ of offset from a 50Ω source. Waveform triggering and gating are provided with a
 variable phase control to permit up to $\pm 90^{\circ}$ of phase shift for generating haver-sines, sine pulses, and haver triangles. A step attenuator provides 60 dB of output signal attenuation in 20 dB steps with an additional 20 dB of variable attenuation. Variable symmetry from 5\% to 95\% provides ramps and pulses. Pulse rise time is $\leq 25 \mathrm{~ns}$. Audio sine-wave distortion is ≤ 0.25 and audio amplitude flatness is within 0.1 dB .

CHARACTERISTICS

Frequency Range $\mathbf{- 0 . 0 0 2 ~} \mathrm{Hz}$ to 2 MHz .
Symmetry Range $-\leq 5 \%$ to $\geq 95 \%$ variable.
Dial Accuracy - $\leq 3 \%, 20$ to 2 on dial.
Frequency Stability $-\leq 0.05 \%$ for $10 \mathrm{~min} ., \leq 0.1 \%$ for 1 hour, $\leq 0.5 \%$ for 24 hours, constant temperature. Amplitude - 30 V p-p into open circuit, 15 V p-p into 50Ω.
Offset $- \pm 13 \mathrm{~V}$ into open circuit, $\pm 6.5 \mathrm{~V}$ into 50Ω.
Attenuator (dB) in $\mathbf{2 0}$ dB Steps - 0 to - 60 .
Attenuator with AMPL Control - > 20 dB additional.
Amplitude Flatness - Sinewave, $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; \pm 0.5 \mathrm{~dB}$ to $1 \mathrm{MHz} ; \pm 1 \mathrm{~dB}$ to 2 MHz . Triangle, $\pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to $200 \mathrm{kHz}, \pm 2 \mathrm{~dB}$ to 2 MHz . Square wave, $\pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to 2 MHz .
Sinewave Disortion - $\leq 0.25 \% 20 \mathrm{~Hz}$ to 20 kHz ; $\leq 0.5 \%$ to 100 kHz ; Harmonics, $\leq-30 \mathrm{~dB}$ to 2 MHz .
Square Wave Response $-\leq 25$ ns rise/fall; < 3% p-p aberrations.
Triangle Linearity $-\geq 99 \%, 20 \mathrm{~Hz}$ to $200 \mathrm{kHz}, \geq 97 \%$ to 2 MHz .
Trigger Output $-\geq+4 \mathrm{~V}$ from 50Ω.
External Input - Impedance $\approx 2 \mathrm{k} \Omega ;+1 \mathrm{~V} \pm 20 \%$ gate signal required.
VCF - Up to 1000:1 frequency change with 10 V external signal. Slew rate $\geq 0.3 \mathrm{~V} / \mathrm{ms}$.

FG 502

Function Generator

- 0.1 Hz to 11 MHz
- Five Waveforms
- VCF and Gated Burst

ORDERING INFORMATION
FG 502 11-MHz Function Generator
Includes: Instruction manual
$(070-1706-01)$.
\$1,250

FG 501A
 Function Generator

- 0.002 Hz to 2 MHz
- 30 V Peak-to-Peak, 13 V Offset
- 5\% to 95\% Variable Symmetry
- Trigger or Gate, Slope
- 60-dB Step Attenuator
- $\leq 0.25 \%$ Sine-Wave Distortion
- ≤ 25 ns Rise/Fall

ORDERING INFORMATION

FG 501A 2 MHz Function
Generator
Includes: Instruction manual
($070-2957-00$).

Includes: Instruction manual (070-2957-00).

SIGNAL SOURCES

50
 [171)

PG 501, PG 502, PG 503, PG 508 and PG 5110 Pulse Generators.

PULSE GENERATORS

Whether testing wide-band systems, simulating data transmission signals, or driving a laser, the TM 500/ TM 5000 series Pulse Generators have the required capabilities to meet your needs.

The selection guide below shows the broad line of products offered, from the very versatile PG 5110 Programmable 50 MHz Pulse Generator to the fast PG 503250 MHz 200 ps Manual Pulse Generator. The product line also has a low cost PG 50150 MHz Manual Pulse Generator and a combination Pulsed/Function Generator, the PFG 5101.

Paired pulses can be generated at selected repetition rates with delay control capability available for
determining the time between the two pulses - a useful means by which to evaluate a circuit's ability to differentiate between two closely spaced pulses.

Pulse shaping capabilities is another requirement found in many applications. For example, typical rise and fall times vary widely between logic families and in order to accurately simulate logic transactions, variable rise and fall times are necessary.

Faster-than-specified drive signals can cause problems through capacitive coupling to adjacent circuitry. Conversely, slower-than-specified drive signals to a CMOS gate will cause its dissipation to increase greatly during each transition. Adjustable rise and fall times make it possible to avoid these undesirable conditions.

Controllable rise and fall times are also useful in determining the characteristics of edge-triggered devices.

Tek PG 5110 meets an impressive range of pulse generation requirements from 0.1 Hz to 50 MHz - single or dual channel, on the bench or in a system, and under either local or programmable control. With its easily mastered, menu-driven interface, the PG 5110 delivers maximum functionality - in the hands of a line technician or design engineer.

The general purpose, yet versatile PG 508 features independently variable rise and fall times for close approximations of real world events. The PG 503 offers fast 200 ps transition times for testing the new highspeed ECL and GaAs logic families. The PFG 5105/5505 offers pulse and function capability in a GPIB programmable instrument. These multipurpose generators can also be used for stimulus of high-impedance MOS, HTL, and CMOS logic circuits.

In 50Ω systems, the repetition rates, amplitudes, and transition times of the PG 501 and PG 502 are designed to be compatible with common TTL, DTL, and ECL circuits.

PULSE GENERATOR SELECTION GUIDE						
	PG 5110	PFG 5105/5505	PG 508	PG 501	PG 502	PG 503
Pulse Period	$\begin{gathered} 20 \text { ns to } 10 \mathrm{~s} \\ 50 \mathrm{MHz} \text { to } 0.1 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 83 \mathrm{~ns} \text { to } 83.3 \mathrm{~s} \\ 12 \mathrm{MHz} \text { to } 0.01 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \leq 20 \mathrm{~ns} \text { to } \geq 200 \mathrm{~ms} \\ 50 \mathrm{MHz} \text { to } 5 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \leq 20 \mathrm{~ns} \text { to } \geq 200 \mathrm{~ms} \\ 50 \mathrm{MHz} \text { to } 5 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & \leq 4 \mathrm{~ns} \text { to } \geq 100 \mathrm{~ms} \\ & 250 \mathrm{MHz} \text { to } 10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \leq 4 \mathrm{~ns} \text { to } \geq 100 \mathrm{~ms} \\ & 250 \mathrm{MHz} \text { to } 10 \mathrm{~Hz} \end{aligned}$
Pulse Duration	10 ns to 10 s	40 ns to 99.9 ms	$\leq 10 \mathrm{~ns} \mathrm{to} \geq 100 \mathrm{~ms}$	$\leq 10 \mathrm{~ns}$ to $\geq 100 \mathrm{~ms}$	$\leq 2 \mathrm{~ns} \mathrm{to} \geq 50 \mathrm{~ms}$	$\leq 2 \mathrm{~ns} \mathrm{to} \geq 50 \mathrm{~ms}$
Square-Wave Mode	-	-	-		-	-
Duty Factor	1 to 99\%	Up to 85\%	$\begin{aligned} & \geq 70 \% \text { to } 0.2 \mu \mathrm{~s} \\ & \text { period } \\ & \geq 50 \% \text { at } 20 \mathrm{~ns} \\ & \text { period } \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 70 \% \text { to } 0.2 \mu \mathrm{~s} \\ & \text { period } \\ & \geq 50 \% \text { at } 20 \mathrm{~ns} \\ & \text { period } \\ & \hline \end{aligned}$	$\geq 50 \%$	$\geq 50 \%$
Pulse Delay	0 ns to 10 s	40 ns to 99.9 ms	≤ 5.5 ns to $\geq 100 \mathrm{~ms}$	Fixed, 8 ns	Fixed, 17 ns	
Double Pulse	-	-	-			
Transition Times	$\begin{gathered} \leq 6 \mathrm{~ns} \text { to } 10 \mathrm{~ms} \\ \text { variable } \end{gathered}$	Fixed < 15 ns At Full Output	$\begin{gathered} <5.5 \mathrm{~ns} \geq 50 \mathrm{~ms}, \\ \text { variable } \end{gathered}$	Fixed, $\leq 3.5 \mathrm{~ns}$	Fixed, ≤ 1 ns	$\begin{gathered} \text { Fixed, } \leq 200 \mathrm{ps} \\ (20 \text { to } 80 \% \text { @ } 1 \mathrm{~V} \text { range }) \end{gathered}$
Aberrations	$\begin{aligned} & \leq 5 \%+50 \mathrm{mV} \\ & \text { into } 50 \Omega \end{aligned}$	$\begin{aligned} & <8 \% \pm 20 \mathrm{mV} \\ & \text { from } 3.4 \mathrm{~V} \text { to } \\ & 9.99 \mathrm{~V} \text { output } \end{aligned}$	$\begin{aligned} & \hline \leq 5 \% \\ & +50 \mathrm{mV} \text { into } 50 \Omega \end{aligned}$	$\begin{gathered} \pm 3.5 \% \\ \text { into } 50 \Omega \end{gathered}$	$\begin{gathered} \pm 5 \% \\ \text { (duration } \geq 5 \mathrm{~ns} \text {) } \end{gathered}$	$\pm 8 \%$ at 1 V steps
Amplitude (Vp-p into 50Ω source impedance)	$\begin{gathered} 10 \mathrm{~V}, \pm 10 \mathrm{~V} \\ \text { window } \\ \hline \end{gathered}$	9.99 V	$\begin{gathered} \geq 10 \mathrm{~V} \\ \pm 10-\mathrm{V} \text { window } \\ \hline \end{gathered}$	$\geq 5 \mathrm{~V}$	$5 \mathrm{~V}, \pm 5-\mathrm{V}$ window	$2.5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$ window
IEEE STD 488.11987	YES	YES				
Module Size	3 wide	3 wide	2 wide	1 wide	1 wide	1 wide
Price	\$5,200	\$3,295/\$4,195*1	\$2,895	\$995	\$3,495	\$5,250

[^30]
NEW PG 5110

The PG 5110 is a fully programmable pulse generator with pulse outputs from 0.1 Hz to 50 MHz in single or dual channel versions. The easily mastered menu-driven front panel, with storage for 99 settings, provides real benefits to either a test technician or design engineer.

The majority of the parameters can be varied independently for each output channel. Pulse widths can vary from 10 ns to 10 s and delays from 0 ns to 10 s , both with up to 6 digits of resolution. For worst case testing and characterization, transitions can be varied from 6 ns to 10 ms .

Predefined levels for TTL. CMOS or ECL are provided as well as adjustable levels from -10 V to +10 V with a 10 V amplitude pulse. Extremely good timing accuracies are achieved through internal calibration which is performed every time the parameter setting is changed. Operating modes include continuous, triggered, gated, and burst from 2 to 999,999 cycles.

The blank panel version (option 01) makes it ideal for systems applications. A TM 5000 mainframe is required.

CHARACTERISTICS

PERIOD (Common to both channels)
Single Pulse Range -20 ns $-10 \mathrm{~s}(50 \mathrm{MHz}-0.1 \mathrm{~Hz}$ repetition rate).
Double Pulse Range - $40 \mathrm{~ns}-10 \mathrm{~s}$ in Paired Pulse per period mode ($25 \mathrm{MHz}-0.1 \mathrm{~Hz}$ repetition rate).
Resolution -6 digits limited to 0.1 ns .
Accuracy $- \pm 1 \%$ of setting ± 1 ns.
Jitter $-\leq(0.1 \%$ of setting $+50 \mathrm{ps})$ on fastest range.
WIDTH (Independent for each channel)
Range - $10 \mathrm{~ns}-9.99999 \mathrm{~s}$
Resolution - 6 digits limited to 0.1 ns .
Accuracy $- \pm 2 \%$ of setting $\pm 2 \mathrm{~ns}$.
Jitter $-\leq(0.1 \%$ of setting $+50 \mathrm{pS})$ decreasing to 0.005% on slowest range.

DELAY (Independent for each channel)
Range -0 ns-9.99999 s.
Resolution - 6 digits limited to 0.1 ns .
Accuracy $- \pm 2 \%$ of setting $\pm 2 \mathrm{~ns}$.
Jitter $-\leq(0.1 \%$ of setting $+50 \mathrm{pS})$, decreasing to 0.005% on slowest range.

DUTY CYCLE PERFORMANCE (Independent

for each channel)
Range -1-99\%.
Resolution - 0.1% (3 digits). Square Wave is not selectable directly as a mode; use DUTY $=50 \%$.
Accuracy - Limited by width and pulse accuracy.
TRANSITION TIMES (Independent for each channel)
Transition Time $-6 \mathrm{~ns}-10 \mathrm{~ms}$ (variable), measured at +5 V to +2 V and -5 V to -2 V . Leading edge and trailing edge settable separately.

Resolution - 3 digits, limited to 0.1 ns .
Accuracy $- \pm 5 \%$ of setting ± 2 ns.
Linearity - Less than 5% deviation from a straight line.
AMPLITUDE (Independent for each channel)
High Level Range --9.49 V -+10 V , into 50Ω load (typically $-18.98 \mathrm{~V}-+20 \mathrm{~V}$ into open circuit).
Low Level Range --10 V -+9.49 V , into 50Ω load (typically $-20 \mathrm{~V}-+18.98 \mathrm{~V}$, into open circuit).
Puise Amplitude Range - 0.5 V minimum to $10 \mathrm{~V} p-\mathrm{p}$ maximum into 50Ω load (1 V minimum to 20 V p-p maximum into open circuit).
Resolution - 3 digits limited to 10 mV . Accuracy $- \pm 1 \%$ of level setting $\pm 2 \%$ of $p-p$ amplitude $\pm 50 \mathrm{mV}$ into 50Ω load.
Aberrations $-\leq 5 \%$
+50 mV into 50Ω load for pulse levels between $\pm 5 \mathrm{~V}$.
Setting Time -50ns + transition time. Output Source Resistance -50Ω $\pm 2.5 \Omega$.

TRIGGERING/
GATING INPUT

Sensitivity - 150 mV p-p minimum, dc - 50 MHz .
Minimum Input Pulse Width - $10 \mathrm{~ns} ; 250 \mathrm{mV}$ amplitude required for triggering.
Maximum Repetition Rate -50 MHz .
Input Impedance $-1 \mathrm{M} \Omega \pm 5 \% ; \approx 30 \mathrm{pf}$.
Maximum Input Voltage $- \pm 10 \mathrm{~V}$ dc plus peak ac.

THRESHOLD

Range $- \pm 9.99 \mathrm{~V}$.
Resolution -3 digits (10 mV).
Accuracy $- \pm 5 \%$ of setting $\pm 25 \mathrm{mV}$.
Slope Selection - Positive (+) slope for triggering and positive-true for gating; Negative (-) slope for triggering, negative-true for gating.
Counted Burst -2-999,999 cycles per burst.

INTERNAL TRIGGER

Repetition Rate Range -100 ns-999.99 s.
Resolution - Up to 4 digits, limited to 100 ns.
Repetition Rate Accuracy $- \pm 0.01 \% \pm 1 \mathrm{~ns}$.
Jitter $-\leq(0.1 \%$ of setting $+50 \mathrm{ps})$.

GENERAL

Environmental - Operating: $0-50^{\circ} \mathrm{C}$. Non-operating: -20 to $+60^{\circ} \mathrm{C}$.
Power Consumption - 130 W total.

NEW PG 5110

Programmable Pulse Generator

- Two Independent 50 MHz Output Channels
- Repetition Rates from 0.1 Hz to 50 MHz (periods from 20 ns to 10 s)
- Variable Transitions from 6 ns to 10 ms
- Clear Large Graphic Display for Convenient Operation - 99 Stored Front-panal Settings Capability with Nonvolatile Memory

PG 508
 Pulse Generator

- 5 Hz to 50 MHz
- Independently Variable Rise
and Fall Times to 5 ns
- 20 Voutput in a $\pm 20 \mathrm{~V}$ Window, 10 V into 50Ω
- Normal or Complement Output
- Wide Choice of Trigger Capabilities

ORDERING INFORMATION

PG 50850 MHz Pulse Generator \$2,895 Includes: Instruction manual (070-2044-01).

PG 501
 Pulse Generator

- 5 Hz to 50 MHz
- Simultaneous Plus and Minus Outputs
- 5 V and 3.5 ns into 50Ω
- Independent Period and Duration Controls
- Trigger Out
- Optional Manual Trigger Generator

ORDERING INFORMATION

PG 50150 MHz Pulse Generator \$995 Includes: Instruction Manual (070-1361-01).

PG 508

The PG 508 is a versatile, general-purpose, 50 MHz pulse generator. The circuitry of the PG 508 is designed so that rise and fall waveforms closely simulate realworld waveforms. This capability is particularly useful in research-and-development applications demanding versatility in rise and fall times, such as testing of amplifiers, slew-rate testing, comparator simulation, and logic-circuitry performance tests.

For example, controllable rise and fall times are extremely desirable when working with CMOS where logic power consumption increases with slower rise times. Also, variable rise and fall times are used to reduce ringing (transient distortion) problems associated with too fast a pulse.
The PG 508 features a vernier control on the rise and fall times controllable from 100 to 1. This completely overlaps the next decade range and increases the PG 508 's versatility in applications simulating different rise and fall times, especially the output of nonlinear devices. This overlap feature can also be used to generate a ramp signal or simulate unequal slew rates in an amplifier.

Also adding to the simplicity of using the PG 508 is the capability of changing output amplitude while variable rise and fall times remain constant.

CHARACTERISTICS

Pulse Period $-\leq 20 \mathrm{~ns} \mathrm{to} \geq 200 \mathrm{~ms}$ (50 MHz to 5 Hz).
Pulse Duration $-\leq 10$ ns $t 0 \geq 100 \mathrm{~ms}$
Duty Cycle $-\geq 70 \%$ to 0.2 нs period, $\geq 50 \%$ at 20 ns period.
Pulse Delay - ≤ 10 ns to 100 ms .
Transition Times $-<5.5 \mathrm{~ns}$ to $\geq 50 \mathrm{~ms}$, independently variable up to 100:1.

PG 508 Pulse Generator

Aberrations $-\leq 5 \%+50 \mathrm{mV}$ into 50Ω for pulse levels between $\pm 5 \mathrm{~V} .10 \%+50 \mathrm{mV}$ above this.
Amplitude $-\geq 10 \mathrm{~V}$ p-p into $50 \Omega, \pm 10 \mathrm{~V}$ window.
Trigger Level -+3V to $-3 \mathrm{~V}, 80 \mathrm{mV} \mathrm{p}$-p sensitivity to $10 \mathrm{MHz}, 250 \mathrm{mV}$ p-p to 50 MHz .
Slope - + or -
Trigger Output $-\geq+2 \mathrm{~V}$ from 50Ω.
Square Wave Mode - Yes.
Double Pulse - Yes.
Normal/Complement - Yes.
Manual Trigger - Yes.
Duration Mode - Yes.
Gate Mote - Yes.

PG 501

The PG 501 is a 50 MHz Pulse Generator featuring simultaneous plus and minus outputs, a wide range of pulseperiod durations and duty factors, trigger output, and external trigger/duration input. Its performance and ease of operation make it well-suited to basic digital and analog applications.

An optional remote manual trigger generator is available, part number 016-0597-00.

CHARACTERISTICS

Pulse Period $-\leq 20$ ns to $\geq 200 \mathrm{~ms}$ (50 MHz to 5 Hz).
Pulse Duration - $\leq 10 \mathrm{~ns}$ to $\geq 100 \mathrm{~ms}$
Duty Cycle $-\geq 70 \%$ to 0.2μ s period, $\geq 50 \%$ at 20 ns period.

Aberrations - Within 3.5% p-p at 5 V p-p.
Amplitude $-\leq 0.5 \mathrm{~V}$ to $\geq 5 \mathrm{~V} p$-p into 50Ω.
Pulse Coincidence $-\leq 1$ ns at 50% amplitude.
Trigger Level -+ 1 V .
Slope -+ only.
Trigger Output $-\geq+2 \mathrm{~V}$ from 50Ω.
Square Wave Mode - Yes.
Complementary Outputs - Yes.
Duration Mode - Yes.

PG 503

The PG 503 is a 250 MHz general purpose, fast rise pulse generator useable in either the TM 500 or TM 5000 series mainframes. It is identical to the PG 502 except for output which is now differential; the risetime is faster, and the amplitude range is 2.5 V within a $\pm 2.5 \mathrm{~V}$ window. The fast risetime makes the PG 503 ideal for testing the new high-speed ECL and GaAs logic families.

PG 503 Pulse Generator

CHARACTERISTICS

Pulse Period $-\leq 4 \mathrm{~ns}$ to $\geq 100 \mathrm{~ms}$ (250 MHz to 10 Hz).
Pulse Duration $-\leq 2$ ns to $\geq 50 \mathrm{~ms}$.
Duty Cycle $-\geq 50 \%$.
Transition Times -< 200 ps fixed (20% to 80%).
Aberrations $-\leq 150 \mathrm{mV}$ p-p for voltages $\leq 1.25 \mathrm{~V} p-\mathrm{p}$, $\leq 10 \%$ p-p for voltages $\geq 1.25 \mathrm{~V} p-p$.
Amplitude $-\geq \pm 2.5 \mathrm{~V}$ p-p into $50 \Omega, \pm 2.5 \mathrm{~V}$ window.
Trigger Level -+ 1 V .
Slope - + only.
Trigger Output $-\geq \pm 1 \mathrm{~V}$ from 50Ω.
Square Wave Mode - Yes.
Complementary Outputs - Yes.
Normal/Complement - Yes.
Manual Trigger - Yes.
Duration Mode - Yes.

PG 503
 Pulse Generator

- 10 Hz to 250 MHz
- ≤ 200 ps Rise Time
-2.5 V Output, ± 2.5 V Window
- Independent Pulse Top and

Bottom Level Controls

- Complementary Outputs
- Manual Trigger Button

ORDERING INFORMATION

PG 503250 MHz Pulse Generator $\mathbf{\$ 5 , 2 5 0}$ Includes: Instruction Manual
(070-7935-00), Two SMA to
BNC Adapters (015-1018-00),
One SMA 50Ω Termination
(015-1022-00)

PG 502

The PG 502 is a 250 MHz Pulse Generator with rise
 and fall times of less than 1 ns . It has a single output with independent controls of the top and bottom pulse levels to control pulse amplitude and offset. A wide range of pulse period and pulse duration settings are provided through independent controls. Front panel switches are provided for normal output or complement and back termination of 50Ω. The fast repetition rate makes the PG 502 ideal for design and testing of fast logic and switching
PG 502 Pulse Generator circuits.

CHARACTERISTICS

Pulse Period $-\leq 4$ ns to $\geq 100 \mathrm{~ms}$ (250 MHz to 10 Hz).
Pulse Duration $-\leq 2 \mathrm{~ns}$ to $\geq 50 \mathrm{~ms}$
Duty Cycle $-\geq 50 \%$.
Transition Times -<1 ns fixed.
Aberrations - Within $5 \% \mathrm{p}-\mathrm{p}$ at 5 V p-p.
Amplitude $-\geq 5 \mathrm{~V}$ p-p into $50 \Omega, \pm 5 \mathrm{~V}$ window.
Trigger Level-+1V.
Slope -+ only.
Trigger Output $-\geq+2 \mathrm{~V}$ from 50Ω.
Square Wave Mode - Yes.
Normal/Complement - Yes.
Manual Trigger - Yes.
Duration Mode - Yes.

MANUAL (ONE-SHOT) TRIGGER ASSEMBLY

For instruments that do not have a manual trigger (such as the PG 501), or where remote triggering is required, the Manual Trigger Assembly initiates a pulse or a full chain of events at the push of a button.
The Trigger Assembly produces a debounced output pulse nominally 2 ms in width and 3 V in amplitude (from 50 ohms) with rapid rise and fall times. It will send pulses as fast as the operator can cycle the pushbutton.

50 OHM PRECISION COAXIAL CABLE

The PG 502, PG 506A, and SG 503 are internally calibrated for use with this 3 - ft, 50Ω, coaxial cable into a 50Ω load.

RISE TIME LIMITER

For use with the PG 502 Pulse Generator which has a pulse rise and fall time of less than one nanosecond. In some applications, such as TTL logic where slower rise time is needed, this fast pulse can be limited to six nanoseconds by using the rise time limiter.

PG 502
Pulse Generator
- 10 Hz to 250 MHz
- 1 ns Rise Time
- 5 V Output, ± 5 V Window
- Independent Pulse Top and Bottom Level Controls
- Selectable Internal Reverse Termination
- Manual Trigger Button

ORDERING INFORMATION

PG 502 250-MHz Pulse
Generator
Includes: Instruction manual
($070-1598-01$).

ORDERING INFORMATION

50Ω Cable - Order 012-0482-00	$\mathbf{\$ 3 5}$
Trigger Geenerator - Order	$\$ 360$
016-0597-00	
Risis Time Limiter - Order $015-0249-00$	$\$ 200$

RECOMMENDED PROBES
See Probes section
P6062B-1X/10X, dc to $100 \mathrm{MHz} \$ 220$
P6108A - 10X, dc to 100 MHz
P6122-10X, dc to 100 Mhz

POWER SUPPLIES

Design engineers require power supplies that are flexible enough to meet their needs and compact enough to allow a complete, custom-designed test system to fit neatly on a crowded workbench. To ensure versatility and convenience in your test system, the TM 5000/TM 500 power supplies can be rear-interfaced with other
$\left.\begin{array}{lccc}\hline & \text { POWER SUPPLIES SELECTION GUIDE }\end{array}\right]$
instruments to reduce front-panel clutter while providing capabilities not otherwise available.

Dual output supplies, such as the PS 5010, let you select independent series or parallel connections automatically, and, if you choose, will cause the output voltages of supplies connected in series to track together.

Critical specifications are voltage and current range, accuracy and resolution. Accuracy depends on source effect, load effect and temperature. Source effect deals with variations in line voltage. It may be specified as a percent of output or as a percent plus or minus a certain value. Load effect is the same as load regulation - the ability of the supply to maintain a constant voltage or current in the face of changes in loading. It is specified in terms of the maximum voltage change for given change in load current. Temperature effects are specified in terms of percents or parts per million $/{ }^{\circ} \mathrm{C}$. Some manufacturers sum all of these into an overall accuracy figure. Noise and ripple provide another figure of merit, sometimes specified as PARD, for Periodic And Random Deviations. It is expressed in peak-to-peak millivolts, or milliamps.

PS 5010

Power Supply

- Dual Floating Supplies

0 to 32 V , to 0.75 A
(1.6 A to 15 V)

- Logic Supply 4.5 to 5.5 V , to 3 A
- 0.5\% Accuracy
- Programmable Current Limits
- Three Independent Digital Displays
- Automatic Crossover

ORDERING INFORMATION

PS 5010 Power Supply

$\$ 3,450$ Includes: Instruction manual (070-3391-00); Instrument interfacing guide ($070-4610-00$);
Reference guide (070-3402-00).

PS 5010

The PS 5010 Programmable Power Supply provides a complete and rapid high-performance solution for many system power-supply applications. Its three supplies provide the most commonly used voltages, and the three digital displays automatically indicate all six voltage- and current-limit parameters. Automatic crossover from voltage to current limit and a powerful set of GPIB status reporting messages allow the user to be constantly aware of the PS 5010's status.

The PS 5010's dual floating supply provides 0 to +32 V and 0 to -32 V , both with respect to a common front-panel terminal. Or 0 to 64 V across the terminals of both supplies together - with current up to 0.75 A throughout the total voltage range and 1.6 A below 15 V The logic supply provides 4.5 to 5.5 V with respect to ground, with current to 3 A . The user can program the outputs on and off, and can lock out the front-panel controls with GPIB commands.

CHARACTERISTICS

POSITIVE AND NEGATIVE FLOATING SUPPLIES CONSTANT VOLTAGE MODE
 Voltage Range -0 to $+32 \mathrm{~V}, 0$ to -32 V .
 Voltage Accuracy - Overall (total effect) \pm (0.5%

+20 mV), Source Effect (line regulation) $\pm(0.01 \%$ +2 mV)
PARD (Ripple and Noise) - 10 mV p-p, 20 Hz to 20 MHz .
Load Effect (load regulation) - 10 mV for a 1 A change in load current.
Temperature Coefficient (typical) - < (0.01\% $+0.1 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$
Step Size Accuracy - $10 \mathrm{mV} \pm 10 \mathrm{mV}$ to 10.0 V $100 \mathrm{mV} \pm 40 \mathrm{mV}$ above 10.1 V

CONSTANT CURRENT MODE

Range - 50 mA to $0.75 \mathrm{~A}(1.60 \mathrm{~A}$ at 15 V and below) in high-power compartment; 50 mA to $400 \mathrm{~mA}(0.75 \mathrm{~A}$ at 15 V and below) in two standard-power compartments.
Overall Accuracy - $\pm(5 \%+20 \mathrm{~mA})$; Source Effect (line regulation) $\pm 1 \mathrm{~mA}$; Load Effect: $\pm 10 \mathrm{~mA}$; Output impedance is typically $5 \mathrm{k} \Omega$ shunted by $10 \mu \mathrm{~F}$.
PARD (Ripple and Noise) $-10 \mathrm{~mA} p-\mathrm{p}, 5 \mathrm{~mA}$ (RMS), 20 Hz to 20 MHz .
Resolution - $50 \mathrm{~mA} \pm 15 \mathrm{~mA}$.
Change Response Time - 20 ms up or down.
Isolation (V dc + peak ac)-150 V peak, front panel; 42 V peak, rear interface.

LOGIC SUPPLY

CONSTANT VOLTAGE MODE
Voltage Range -+4.5 to +5.5 V , ground referenced.
Overall Accuracy - $\pm 50 \mathrm{mV}$
Source Effect (line regulation) - 1 mV
Load Effect (load regulation) - 10 mV for a 1 A change in load current.
Temperature Coefficient (typical) $-<500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Step Size Accuracy - $10 \mathrm{mV} \pm 10 \mathrm{mV}$
PARD (Ripple and Noise) - 10 mV p-p, 2 mV RMS, 20 Hz to 20 MHz .

CURRENT LIMIT

Range - 100 mA to 3.0 A (Foldback characteristic below 4.5 V, maximum short circuit current is < 1.5 A).

Overall Accuracy $- \pm(5 \%+20 \mathrm{~mA})$
Resolution - $100 \mathrm{~mA} \pm 30 \mathrm{~mA}$
Scaled Output - $10 \mathrm{~mA}=1 \mathrm{mV} \pm(2 \%+2 \mathrm{mV})$
available at rear interface (not ground referenced).
Overvoltage Protection - SCR crowbar typically trips at 6 to 7 V .

GENERAL
Power Consumption - 250 VA maximum.

* The PS 5010 complies with IEEE

Standard 488.1-1987, and Tektronix
Standard Codes and Formats

PS 5004

Power Supply

- $500 \mu \mathrm{~V} / 0.1 \mathrm{~mA}$ Resolution
- Constant Voltage or Constant Current With Autocrossover
- O to +20 V and 0 to -20 V at

Stability - Typically $0.1 \%+5 \mathrm{mV}$ or less drift in 8 hrs of constant line, load and temperature
Isolation - 350 V (DC + peak AC)
Current Limit High-Power Compartment $<100 \mathrm{~mA}$ to 1 A
Standard - <100 mA to 400 mA
Line regulation $-\leq 5 \mathrm{mV}$ for $a \pm 10 \%$ line voltage change.
Load regulation $-\leq 3 \mathrm{mV}$ for a 1 A load change
Temperature Coefficient (typical) $-<0.025 \% /{ }^{\circ} \mathrm{C}$
Step Size Accuracy - 50 mV
PARD (Ripple and Noise) -3 mV p-p
+5 V SUPPLY
Range -+4.75 to +5.25 Vdc .
Current Limit - 1A
Load regulation - $\leq 50 \mathrm{mV}$ for $\mathrm{a} \pm 10 \%$ line change.
Line regulation $-\leq 100 \mathrm{mV}$ for a 1 A load change.
PARD (Ripple and Noise) - 5 mV p-p

ORDERING INFORMATION

PS 5004 Precision Power Supply
Includes: Instruction manual (070-4442-00); Instrument interfacing guide (070-4789-00);
Reference guide (070-4596-00).
PS 503A Power Supply
Includes: Instruction manual (070-1834-01).

- 0 to 20 v Floating Output
- 0.01\% Accuracy
- Voltage- and/or CurrentMonitoring Display
- Remote Sensing

PS 503A
Power Supply

- Independent Controls
- Duai Tracking Voliage Control 1 A
- Flxed Output 5 V al 1 A
- Remote Resistance Programming
Range -0 to $+20 \mathrm{~V}, 0$ to -20 V .0 to 40 VDC across + and - terminals.

PS 503A

The PS 503A provides dual floating variable $20-\mathrm{V}$ supplies, plus a fixed 5-V, 1-A supply. The PS 503A features superior tracking, over-voltage protection, and remote resistance programming of voltage. When operated in the high-power compartment of a TM 504, TM 506A, RTM 506, or TM 5006A mainframe, the PS 503A can provide up to 1 A from both of the 20 V supplies. A 0 to 40 V variable supply with up to 1 A of current can be configured by grounding one of the two outside terminals of the variable supplies. The two variable supplies can be set individually, then varied in a tracked mode with a single control. In addition, the plus and minus floating outputs can be programmed remotely, by either voltage programming or resistance programming via the rear interface.

CHARACTERISTICS

$\pm 20 \mathrm{~V}$ FLOATING SUPPLIES

TM 5000/TM 500 Power Supplies
source Effect (line regulation) $-\leq 0.5 \mathrm{mV}$.
Load Effect (load regulation) $-\leq 1 \mathrm{mV}$.
Temperature Coefficient (typica) - $\leq(30 \mathrm{ppm}$ $+100 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$.
Step Size Accuracy-500 $\mu \mathrm{V}, \pm 0.2 \mathrm{mV}$.
PARD (Ripple and Noise) $-\leq 1 \mathrm{mV}$ p-p 10 Hz to 1 MHz ; $\leq 3 \mathrm{mV}$ p-p, 10 Hz to 5 MHz .
CONSTANT CURRENT MODE
Range - 10 mA to 305 mA in 2.5 mA steps.
Overall Accuracy $- \pm(2 \%+5 \mathrm{~mA})$.
Isolation -42 V ($\mathrm{DC}+$ peak AC).
GENERAL
Power Consumption - 35 VA maximum.

[^31]
DIGITAL MULTIMETERS

The Tektronix TM 5000/TM 500 Modular Digital Multimeter selection includes the single-wide, programmable DM 5110 as well as the manual DM 511 , the highperformance DM 5120/DM 5520 and the economical DM 504A. Now there exists a broad selection of performance, size and price to match most applications.

The DM 5110 represents the optimum choice for programmability, small size, performance, features, and competitive price. The DM 511 extends the capabilities over the DM 504A by offering dBV, dBm, and rear interfacing with a new easy-to-use front panel.

The DM 5120 is the highest performance Digital Multimeter in the line with advanced features such as $61 / 2$ digit resolution, 1000 readings per second (in the $31 / 2$ digit mode), and four-wire resistance measurements. The DM 5520 is a monolithic or standalone version of the same multimeter with its own power housing and power cord.

The TM 5000/TM 500 Digital Multimeters offer a compact solution to your measurement needs, without compromising performance. These instruments provide accuracy and flexibility on the laboratory bench, in field service, in maintenance applications, or in automatic system applications.

TRUE RMS MEASUREMENTS AND CREST FACTOR

Some meters read the average value of a time varying signal and use a constant scale factor of 1.11 to convert that to RMS. The calculation is based on the assumption that the input signal is a pure sine wave, in which case the average value is 0.637 times the peak and the RMS value is 0.707 times the peak ($707 / 637=1.11$.

This type of meter gives erroneous readings when the input is not a pure sine wave. For example, a half-wave rectified sine wave has an RMS value of 0.386 times the

DIGITAL MULTIMETER SELECTION GUIDE			
	DM 504A	DM 5110/511	DM 5120/DM 5520
Number of Digits	$41 / 2$	$41 / 2$	$61 / 2$
DC Volts Ranges	200 mV to 1000 V	200 mV to 1000 V	300 mV to 300 V
DC Volts Best Accuracy	$\pm 0.05 \%$	$\pm 0.05 \%$	$\pm 0.008 \%$
DC Volts Best Resolution	$10 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$0.1 \mu \mathrm{~V}$
AC Volts Ranges	200 mV to 500 V	200 mV to 500 V	300 mV to 300 V
AC Volts Best Accuracy	$\pm 0.6 \%$	$\pm 0.3 \%$	$\pm 0.15 \%$
AC Volts Best Resolution	$10 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$
AC or DC Current Ranges	$200 \mu \mathrm{~A}$ to 2 A	$200 \mu \mathrm{~A}$ to 2 A	$300 \mu \mathrm{~A}$ to 3 A
dB Ranges	N/A	+54 dB to - 50 dB	+ 49 dB to -54 dB
Resistance (HI-LO) Ranges	200Ω to $20 \mathrm{M} \Omega$	200Ω to $20 \mathrm{M} \Omega$	300Ω to $300 \mathrm{M} \Omega$
Temperature Measurement Range	-62 to $+230^{\circ} \mathrm{C}$	-62 to $+230^{\circ} \mathrm{C}$	N/A
True RMS	-	-	-
Autorange	-	-	-
IEEE Standard 488 Interface	No	(DM 5110 Only)	-
Module Size	1 wide	1 wide	3 wide
Mainframe Compatibility	$\begin{aligned} & \text { TM } 500 \text { or } \\ & \text { TM } 5000 \end{aligned}$	TM 500/5000 for DM 511 TM 5000 for DM 5110	$\begin{aligned} & \text { TM } 5000 \\ & \text { (DM } 5120 \text { Only) } \end{aligned}$
Price	\$645	$\begin{aligned} & \hline \text { DM 511-\$795 } \\ & \text { DM 5110-\$895 } \end{aligned}$	$\begin{aligned} & \hline \text { DM } 5120-\$ 995 \\ & \text { DM } 5520-\$ 1,295 \end{aligned}$

peak. However, an average-reading meter that uses the 1.11 scale factor will show a reading of 0.353 times the peak - more than 10% in error. All Tek DMMs provide true RMS readings.

The crest factor of a waveform is the ratio of its peak value to its RMS value. In a true RMS-reading DMM, the crest factor specifies the dynamic range of the instrument, or in more pragmatic terms, the square-wave duty cycle for which it will return accurate measurements. For example, the Tektronix TM 500 and TM 5000 DMMs have a crest factor of 3 , which means that they can accurately measure rectangular waveforms with duty cycles as low as 10 percent.

NMRR AND CMRR

DMM specs often list both normal mode rejection ratio (NMRR) and common mode rejection ratio (CMRR). Generally, NMRR applies to dc measurements. It is a measure of the instrument's ability to reject line noise on a dc signal. DMMs achieve NMRR by taking measurements over time periods that cover an integral number of power line cycles. For example, some TM 500 and TM 5000 products use a measurement period of 200 ms , which covers both 50 and 60 Hz (5 cycles of 50 Hz or 6 cycles of 60 Hz .) High end instruments often allow you to select measurement speed, but you have to be aware that when you select certain speeds, you may be sacrificing some NMRR.

CMRR also describes the ability of the instrument to reject interfering signals, but only under differential input conditions. That is, it applies when a common interfering signal is present on both lines of a balanced, push-pull signal applied to the DMM's dual inputs.

However, in evaluating CMRR, it is important to remember that DMMs do not have true differential amplifiers. The capacitive loading in the low input is significantly greater than in the high. As a result, CMRR is frequency-sensitive. One further point to note is that some manufacturer's CMRR specifications include NMRR. The resulting specification is only valid at the power line frequency.

dB MEASUREMENTS AND NULL

Some instruments allow you to make relative measurements by storing an offset NULL value. On Tek instruments that offer this feature, you press the NULL button (or invoke the function via GPIB) to store the currently displayed value. One example of the use of this feature is in resistance measurements, compensating for the resistance of the test leads. By invoking NULL with the probe tips shorted together and the instrument at its lowest range, the test lead resistance will be recorded and automatically subtracted from subsequent measurements.

In ac amplifiers, it is often desirable to measure gain, attenuation, and filter stages in terms of decibels, rather than in terms of voltage or current gain. This is because decibels are additive. That is, when an input signal level of -30 dBV comes out of a 10 dB gain stage, it has a level of -20 dBV . Many DMMs provide dBV (decibels referred to 1 Volt) and dBm (decibels referred to 1 mW across a 600 Ohm load, which happens to be 0.775 Vrms). If the instrument has a NULL feature, decibel measurements can be made relative to any signal level by selecting either dBm or dBV invoking the NULL function manually or over the GPIB.

DM 504A

The DM 504A Autoranging Digital Multimeter extends the functionality of the Tektronix TM 500 line of modular, digital multimeters with true RMS measurements, a "beeper" mode for indication of short circuits, and diode testing capability. The DM 504A also provides standard ac/dc voltage and current, and resistance measurements, and will operate in any compartment of a TM 500 or TM 5000 power module.

All measurement ranges, except temperature, diode measurements, and audible continuity (beeper), can be automatically or manually selected.

An audible "beeper" mode is provided for testing continuity. A beeper symbol is displayed when the 200Ω mode is selected, indicating that a beeper will sound a continuous tone for measurements less than 10Ω. In the $2 \mathrm{M} \Omega, 200 \mathrm{k} \Omega$ and $2 \mathrm{k} \Omega$ ranges a diode measurement in dicator will illuminate on the display, indicating that \checkmark max is adequate for diode testing.

CHARACTERISTICS

DC Volts
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$.
Accuracy ${ }^{\text {¹ }}$ - For automatic or manual ranging 18 to $28^{\circ} \mathrm{C}$: All ranges $\pm(0.05 \%$ of reading $\pm 0.02 \%$ of full scale).
CMMR - (Within $1 \mathrm{k} \Omega$ unbalanced) 100 dB at $\mathrm{dc}, 80 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$.
NMMR - 60 dB at $50 / 60 \mathrm{~Hz}(\pm 0.2 \mathrm{~Hz})$.
Max. Resolution- $10 \mu \mathrm{~V}$.
Step Response Time -<1 s.
Input Resistance - $10 \mathrm{M} \Omega \pm 0.5 \%$.
Max. Input Voltage-1000 V peak.
TRUE RMS AC VOLTS
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 500 \mathrm{~V}$.
Accuracy ${ }^{* 1}$ - For automatic or manual ranging -18° to $28^{\circ} \mathrm{C}$: 200 mV to 200 V range, 30 Hz to 20 kHz . For input signals $>10 \%$ to 100% of full range, accuracy is $\pm(0.6 \%$ of reading $+0.06 \%$ of full scale). For signals $>25 \%$, and 10 kHz to 20 kHz add 4.1% additional error.
500 V range, 60 Hz to 20 kHz . For input signals $>100 \mathrm{~V}$ to 500 V RMS, accuracy is $\pm(0.6 \%$ of reading $+0.1 \%$ of full scale).
40 Hz to $60 \mathrm{~Hz} \pm$ (1% of reading $+0.1 \%$ of full scale)
CMMR - (With $1 \mathrm{k} \Omega$ unbalance) -60 dB at 50 or 60 Hz .
Max. Resolution- $10 \mu \mathrm{~V}$.
Response Time-<2 s.
Input Impedance - $10 \mathrm{M} \Omega \pm 0.5 \%$ paralleled by <100 pF.
Max. Input Voltage - Volts/Ohms/TEMP to LOW: 500 V RMS or 600 V DC, VOLTS/ohms/TEMP to GND: 1000 V peak. LOW to GND: 1000 V peak.
Crest Factor - 5 at full scale on all ranges except
$500 \mathrm{~V}(500 \mathrm{~V}=2)$.

RESISTANCE
Accuracy ${ }^{*}$ - for automatic or manual ranging 18° to $28^{\circ} \mathrm{C}$.

Range	$\%$ of Reading $+\%$ Full Scale	Source	Vmax full- scale
200Ω (beeper)	$\pm(0.05 \%+0.05 \%)$	1.0 mA	0.2 V
200Ω	$\pm(0.05 \%+0.02 \%)$	1.0 mA	0.2 V
$2 \mathrm{k} \Omega$	$\pm(0.05 \%+0.01 \%)$	1.0 mA	2.0 V
$20 \mathrm{k} \Omega$	$\pm(0.05 \%+0.02 \%)$	$10 \mu \mathrm{~A}$	0.2 V
$200 \mathrm{k} \Omega$	$\pm(0.05 \%+0.01 \%)$	$10 \mu \mathrm{~A}$	2.0 V
$2 \mathrm{M} \Omega$	$\pm(0.1 \%+0.02 \%)$	$0.1 \mu \mathrm{~A}$	0.2 V
$20 \mathrm{M} \Omega$	$\pm(0.1 \%+0.01 \%)$	$0.1 \mu \mathrm{~A}$	2.0 V

DC CURRENT/AC CURRENT
Ranges - $200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}$.
Accuracy ${ }^{+1}$ - DC current: for automatic or manual ranging 18° to $28^{\circ} \mathrm{C} . \pm(0.1 \%$ of reading $+0.01 \%$ of full scale). AC Current: for automatic or manual ranging 18° to $28^{\circ} \mathrm{C} . \pm(0.6 \%$ of reading $+0.6 \%$ of full scale.)
Response Time - DC Current: <1s. AC Current: $<2 \mathrm{~s}$.
Input Resistance

Range	Resistances	
	DC current	AC current
$200 \mu \mathrm{~A}$	$1.0 \mathrm{k} \Omega$	$1.0 \mathrm{k} \Omega$
2 mA	100.0Ω	100Ω
20 mA	10.2Ω	10.2Ω
200 mA	1.2Ω	1.2Ω
2000 mA	0.28Ω	0.4Ω

Max. Open-Circuit Input Voltage (mA to LOW) 250 V peak.
Max. Input Current-2 A any range.
Max. Floating Voltage-mA to GND, 1000 V peak; LOW to GND, 1000 V peak.
Max. Resolution- 10 nA .
Max. Floating Voltage-mA to GND, 1000 V peak, LOW to GND, 1000 V peak.

TEMPERATURE

Range - -62° to $+230^{\circ} \mathrm{C}$.
Accuracy - Using Tektronix P6602 Temperature Probe: 18° to $28^{\circ} \mathrm{C}$ ambient. Probe calibrated to instrument (probe/DMM calibration performed at $0^{\circ} \mathrm{C}$). $\pm 0.6^{\circ} \mathrm{C}$ from -62° to $150^{\circ} \mathrm{C} . \pm 1.6^{\circ} \mathrm{C}$ from 150° to $230^{\circ} \mathrm{C}$. Any probe: $\pm 3.5^{\circ} \mathrm{C}$ from -62° to $150^{\circ} \mathrm{C}$. $\pm 1.6^{\circ} \mathrm{C}$ from 150° to $230^{\circ} \mathrm{C}$.

OTHER CHARACTERISTICS

Reading Rate -> 2.0 times/s.
Over-range Indication - Flashing display.
Warm-up Time - 30 minutes (50 minutes after storage in high humidity environment).
Dimensions - Single TM 500/TM 5000 compartment
Weight - $0.93 \mathrm{~kg}(2.04 \mathrm{lb})$.
*1 Valid for six months or 1000 hours, whichever occurs first.

DM 504A
Digital Multimeter

- 4 1/2 Digit Autoranging
- True RMS AC Functions
- Five Manually Selectable Vottage, Current and Resistance Ranges
- DC Volts, $A C$ Volts, DC mAmps, AC mAmps, Ohms and Temperaiure Functions
- Diode Test and Audible Continuity (Beeper) Modes

ORDERING INFORMATION

DM 504A Digital Multimeter \$645
Includes: Instruction manua(070-6945-00); one set oftest leads.
Opt. 02 - Adds P6602
Temperature Probe calibrated for use with DM 504A.
OPTIONAL ACCESSORIES
Service Manual - 070-7135-00

DM 5110/DM 511

Digital Multimeters

- 4 1/2 Digit Autoranging
- Fast (3 1/2 Digit) Mode
- AC/DC Voltage, AC/DC

Current, Resistance and (optional) Temperature Measurement

- AC dBm and dBV Calculations
- True RMS AC Functions
- Null and Hold Modes
- Hi/Lo/Pass Limit Testing and Compare Mode with Beeper
- Standard IEEE-488 Interface (DM 5110 only)
- Front and Rear Interfacing

[^32]
DM 5110/511

The DM 5110/DM 511 offers exceptional functionality and the highest performance available in a low-cost, single-width plug-in module.

The DM 5110 is fully programmable over the IEEE-488 interface, while the DM 511 is designed for manual operation only; the units are otherwise identical. The DM 5110 occupies one slot in any TM 5000 Mainframe, and the DM 511 can be operated in either a TM 500 or TM 5000 Mainframe.

A FULL RANGE OF FUNCTIONS

Both units give you a choice of either autoranging or manual operation for all standard functions - voltage, current or resistance measurements. Also included are true RMS ac measurements and dB calculations plus features not normally found in a low-cost DMM.

The normal resolution mode of $41 / 2$ digits, together with a minimum range of 200 mV , allows voltages as small as $50 \mu \mathrm{~V}$ to be resolved; a $31 / 2$ digit mode provides for faster test throughput. Basic accuracy is $\pm 0.05 \%$. And 50 Hz or 60 Hz mode selection provides normal-mode-rejection ratio improvement.

FRONTT-PANEL CONVENIENCE

Operation of the DM 5110/DM 511 is via twelve frontpanel "soft keys" which are used to select function and range.

When programming the DM 5110, they are also used to set the GPIB address and termination.

In addition to 7 -segment readout and function/range annunciators, front-panel LEDs are included with both units as NULL, HOLD and AUTO mode indicators. The DM 5110 offers LEDs for two additional modes: REM (indicating remote operation) and ADDR (indicating the instrument is being addressed to talk or listen). The DM 5110 also includes a front-panel ID button to request a display of a GPIB address and termination, and to generate an SRQ under certain circumstances.

A manually-operated front-panel switch is used to select front or rear connection to Volts and Ohms measurement modes. The switch is not operable over the GPIB, but its status can be queried and monitored remotely. (Caution - maximum input voltage on the rear connector pins is $60 \mathrm{Vdc} \pm \mathrm{pkac}$.)
NULL mode operates with all functions and allows you to apply a display offset to make a relative measurement.

HOLD mode stops the instrument from measuring and displays the last measurement made. The HOLD key toggles the instrument between HOLD and RUN modes.
The TRIG key lets you make a single measurement and then automatically return to HOLD.

COMPARE mode makes it possible to compare measurements against user-defined H and LO limits. A beeper indicates when a measurement is out of limits.

Temperature measurements are made using an optional Tektronix P6602 Temperature Probe, or an equivalent platinum resistance probe. DM 5110/DM 511 will measure temperatures from -62° to $240^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

DC VOLTS

Accuracy - (4 1/2 digits, auto or manual ranging, front or rear input):

	$\%$ of Reading + \% of Full Scale	
Range	$\mathbf{1 8}^{\circ}-\mathbf{2 8}{ }^{\circ} \mathrm{C}$	$\mathbf{0}^{\circ}-18^{\circ} \mathrm{C}$ $\mathbf{2 8}^{\circ}-\mathbf{5 0}{ }^{\circ} \mathrm{C}$
200 mV	$\pm(0.05 \%+0.015 \%)$	$\pm(0.15 \%+0.04 \%)$
2 V	$\pm(0.015 \%+0.01 \%)$	$\pm(0.1 \%+0.02 \%)$
20 V	$\pm(0.05 \%+0.015 \%)$	$\pm(0.15 \%+0.025 \%)$
200 V	$\pm(0.05 \%+0.01 \%)$	$\pm(0.1 \%+0.02 \%)$
1000 V	$\pm(0.05 \%+0.02 \%)$	$\pm(0.1 \%+0.02 \%)$

CMRR (with 1 ks unbalance) $-\geq 100 \mathrm{~dB}$ @ dc, $\geq 80 \mathrm{~dB}$ @ $50 / 60 \mathrm{~Hz}$.
NMRR $-\geq 50 \mathrm{~dB}$ @ $50 / 60 \mathrm{~Hz}(\pm 0.2 \mathrm{~Hz})$.
Max. Resolution- $10 \mu \mathrm{~V}$.
Step Response Time $-<50 \mathrm{msec}$ to 0.05% of step.
Input Resistance - $10 \mathrm{M} \Omega \pm 0.5 \%$.
Max. Imput Voltage - Front panel, LOW to GND and V / Ω /Temp to LOW or GND: 1000 V pk; Rear connector, HI to LO and HI or LO to Chassis: $60 \mathrm{Vdc}+\mathrm{pk}$ ac.

TRUE RMS AC VOLTS
Accuracy - ($41 / 2$ digits, auto or manual ranging, front or rear input, 200 mV to 500 V range):
\% of Reading + \% of Full Scale

Input Frequency	$18^{\circ}-28^{\circ} \mathrm{C}$	$\begin{aligned} & 0^{\circ}-18^{\circ} \mathrm{C} \\ & 28^{\circ}-50^{\circ} \end{aligned}$
$\begin{aligned} & 20 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{~Hz}^{-1} \end{aligned}$	$\begin{aligned} & \pm(0.8 \% \\ & +0.05 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(1.1 \% \\ & +0.075 \%) \\ & \hline \end{aligned}$
$\begin{aligned} & 100 \mathrm{~Hz} \text { to } \\ & 10 \mathrm{kHz}:^{* 1} \end{aligned}$	$\begin{aligned} & \pm(0.3 \% \\ & +0.05 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(0.6 \% \\ & +0.075 \%) \\ & \hline \end{aligned}$
$\begin{aligned} & 10 \mathrm{kHz} \text { to } \\ & 20 \mathrm{kHz} \cdot{ }^{\circ} \end{aligned}$	$\begin{aligned} & \pm(0.6 \% \\ & +0.05 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(0.9 \% \\ & +0.05 \%) \\ & \hline \end{aligned}$
$\begin{aligned} & 20 \mathrm{kHz}_{\mathrm{to}} \\ & 50 \mathrm{kHz}^{* 3} \end{aligned}$	$\begin{aligned} & \pm(1.0 \% \\ & +0.05 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(1.3 \% \\ & +0.075 \%) \\ & \hline \end{aligned}$

${ }^{* 1}$ For inputs >200 counts, 200 mV to 200 V ranges; > 50 counts, 500 V range.
*2 For inputs >500 counts, 200 mV to 200 V ranges; >250 counts, 500 V range.
*3 For inputs > 2000 counts, 200 mV to 200 V ranges; > 500 counts, 500 V range.

CMRR (with $1 \mathrm{k} \Omega$ unbalance) $-\geq 60 \mathrm{~dB} @ 50 / 60 \mathrm{~Hz}$. Max. Resolution- $10 \mu \mathrm{~V}$.
Step Response Time $-<0.3$ sec to 1% of step.
Input Impedance $-2 \mathrm{M} \Omega \pm 0.1 \%$, paralleled by $<50 \mathrm{pF}$.
Max. Input Voltage - Front panel, V/ $\Omega /$ Temp to LOW:
500 V rms or 600 Vdc . Front panel, $\mathrm{V} / \Omega /$ Temp or LOW to GND: 1000 V pk; Rear connector, HI to LO and HI or LO to Chassis: $60 \mathrm{Vdc}+\mathrm{pk}$ ac.
Crest Factor $-3: 1$ for 0.1% additional error.

dB (TRUE RMS AC VOLTAGE)

Accuracy - (4 1/2 digits, auto or manual ranging, front or rear input):

$\begin{gathered} \text { Range, } \\ \mathrm{dBV} \end{gathered}$	Range, dBm	$18^{\circ}-28^{\circ} \mathrm{C}$	$\begin{array}{r} 0^{\circ}-18^{\circ} \mathrm{C} \\ 28^{\circ}-50^{\circ} \mathrm{C} \end{array}$	Frequency
$\begin{gathered} -34 \text { to } \\ +54 \\ \hline \end{gathered}$	$\begin{gathered} -32 \text { to } \\ +56 \\ \hline \end{gathered}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$	$\begin{aligned} & 20 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$
$\begin{gathered} -54 \text { to } \\ -34 \\ \hline \end{gathered}$	$\begin{gathered} -52 \text { to } \\ -32 \end{gathered}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\begin{aligned} & 20 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$
$\begin{gathered} -60 \text { to } \\ -54 \end{gathered}$	$\begin{gathered} -58 \text { to } \\ -52 \end{gathered}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\begin{aligned} & 20 \mathrm{~Hz}- \\ & 10 \mathrm{kHz} \end{aligned}$

Max. Resolution -0.01 dB .
Response Time $-<0.3 \mathrm{sec}$ to 1% of step.
Input Impedance $-2 \mathrm{M} \Omega \pm 0.1 \%$, paralleled by < 50 pF .

Max. Input Voltage -

Front panel, $\mathrm{V} / \Omega /$ Temp to $\mathrm{L} 0 \mathrm{~W}: 500 \mathrm{~V}$ rms or 600 V dc . $\mathrm{V} / \Omega /$ Temp or LOW to GND: 1000 V pk; Rear connector, HI to LO and HI or LO to Chassis: $60 \mathrm{~V} \mathrm{dc}+\mathrm{pkac}$.

DC AMPS

Accuracy - (4 1/2 digits, auto or manual ranging, front panel only):

	$\%$ of Reading + \% of Full Scale	
Range	$18^{\circ}-\mathbf{2 8 ^ { \circ }} \mathrm{C}$	$\mathbf{0}^{\circ}-\mathbf{1 8} 8^{\circ} \mathrm{C}$,
$208^{\circ}-50^{\circ} \mathrm{C}$		
$200 \mu \mathrm{~mA}, 2 \mathrm{~mA}, 20 \mathrm{~mA}$	$\pm\left(0.1^{\circ} \%\right.$	$\pm(0.3 \%$
200 mA	$+0.01 \%)$	$+0.025 \%)$

Response Time -<50 ms to 0.05\% of step.
Input Resistance-

Range	\approx Resistance
$200 \mu \mathrm{~A}$	$1.0 \mathrm{k} \Omega$
2 mA	100Ω
20 mA	10.2Ω
200 mA	1.2Ω
2000 mA	$.26 \Omega$

Max. Open-Circuit Input Voltage - 250 V pk , mA to LOW.
Max. Input Current- 2 A any range.
Max. Floating Voltage-1000 V pk, mA or LOW inputs to GND
Max. Resolution-10nA
AC AMPS
Accuracy - (4 $1 / 2$ digits, auto or manual ranging, front panel only, all ranges):

\% of Reading + \% of Full Scale		
Frequency	$18^{\circ}-28^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 0^{\circ}-18^{\circ} \mathrm{C} \\ & 28^{\circ}-50^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & 20 \mathrm{~Hz} \text { to } 100 \mathrm{~Hz} \\ & \text { (input >200 counts) } \end{aligned}$	$\begin{aligned} & \pm(0.8 \% \\ & +0.05 \%) \end{aligned}$	$\begin{aligned} & \pm(1.1 \% \\ & +0.075 \%) \end{aligned}$
100 Hz to 10 kHz (input > 200 counts)	$\begin{aligned} & \pm(0.3 \% \\ & +0.05 \%) \end{aligned}$	$\begin{aligned} & \pm(0.6 \% \\ & +0.075 \%) \end{aligned}$

Crest Factor - 3:1 for 0.1\% additional error
Response Time - < 0.3 sec to 1% of step.

Input Resistance-

Range	\approx Resistance
$200 \mu \mathrm{~A}$	$1.0 \mathrm{k} \Omega$
2 mA	100Ω
20 mA	10.2Ω
200 mA	1.2Ω
2000 mA	$.4 \Omega$

$\overline{\text { Max. Open-Circuit Input Voltage }-250 \mathrm{~V} p \mathrm{k}, \mathrm{mA} \text { to }}$ LOW.
Max. Input Current-2 A any range
Max. Floating Voltage-1000 V pk, mA or LOW inputs to GND.

OHMS
Accuracy - (4 1/2 digits, auto or manual ranging, front or rear input):
$\%$ of Reading + \% of Full Scale

Range	$\mathbf{1 8}{ }^{\circ} \mathbf{- 2 8}{ }^{\circ} \mathrm{C}$	$\mathbf{0}^{\circ}-\mathbf{1 8}{ }^{\circ} \mathrm{C}$ $\mathbf{2 8}$ 	Source Current	Vmax
200Ω	$\pm(0.05 \%+0.02 \%)$	$\pm(0.25 \%+0.04 \%)$	1.0 mA	0.2 V
$2 \mathrm{k} \Omega$	$\pm(0.05 \%+0.01 \%)$	$\pm(0.25 \%+0.03 \%)$	1.0 mA	2.0 V
$20 \mathrm{k} \Omega$	$\pm(0.05 \%+0.02 \%)$	$\pm(0.25 \%+0.04 \%)$	$10 \mu \mathrm{~A}$	0.2 V
$200 \mathrm{k} \Omega$	$\pm(0.05 \%+0.01 \%)$	$\pm(0.25 \%+0.03 \%)$	$10 \mu \mathrm{~A}$	2.0 V
$2 \mathrm{M} \Omega$	$\pm(0.1 \%+0.02 \%)$	$\pm(1.0 \%+0.04 \%)$	$0.1 \mu \mathrm{~A}$	0.2 V
$20 \mathrm{M} \Omega$	$\pm(0.1 \%+0.01 \%)$	$\pm(1.0 \%+0.03 \%)$	$0.1 \mu \mathrm{~A}$	2.0 V

Response Time - $<0.2 \mathrm{sec}, 200 \Omega$ to $200 \mathrm{M} \Omega$
ranges; < $2 \mathrm{sec}, 20 \mathrm{M} \Omega$ range.
Max. Input Voltage, All Ranges - Front Panel:
300 V pk. Rear Connector: 60 V pk.
Max. Resolution- $10 \mathrm{~m} \Omega$.
Max. Open-Circuit Voltage-<11 V.

TEMPERATURE

Accuracy - (4 1/2 digits, front panel, input only):

Measurement Range	$\mathbf{0}^{\circ}-\mathbf{1 8}{ }^{\circ} \mathrm{C}$		
-62° to $+150^{\circ} \mathrm{C}$	$\pm 0.8^{\circ} \mathrm{C}$	$28^{\circ}-50^{\circ} \mathrm{C}$	Probe Status
$+150^{\circ}$ to $+240^{\circ} \mathrm{C}$	$\pm 1.6^{\circ} \mathrm{C}$	$\pm 1.5^{\circ} \mathrm{C}$	Instrument calibrated to probe
-62° to $+150^{\circ} \mathrm{C}$	$\pm 3.5^{\circ} \mathrm{C}$	$\pm 4.5^{\circ} \mathrm{C}$	Any
$+50^{\circ}$ to $+240^{\circ} \mathrm{C}$	$\pm 6.0^{\circ} \mathrm{C}$	$\pm 7.0^{\circ} \mathrm{C}$	probe

MISCELLANEOUS

Reading Rate -

4.5 Digits (NORMAL): > 3/s;
3.5 Digits (FAST): > 25/s.

Power Consumption-< 10 W
Over-range Indication - Flashing display.
Warm-up Time - 30 minutes (60 minutes after storage in high humidity environment),
PHYSICAL CHARACTERISTICS
Temperature - Operating: -0° to $+50^{\circ} \mathrm{C}$;
Non-Operating: $-55^{\circ} \mathrm{t} 0+75^{\circ} \mathrm{C}$.

ORDERING INFORMATION

DM 5110 Programmable
Autoranging Digital Multimeter
Includes: Operators Instruction
Manual (070-7478-00); Instrument
Interfacing Guide ($070-7560-00$):
Reference Guide (070-7559-00);
Meter Leads, Set (196-3212-00).
DM 511 Autoranging Digital
Multimeter.
Includes: Operators Instruction
Manual ($070-7478-00$): Instrument
Interfacing Guide ($070-7560-00$);
Reference Guide (070-7559-00);
Meter Leads, Set (196-3212-00).
Opt. 02 - Adds a Tektronix P6602
Temperature Probe that has been calibrated with the
DM 5110/DM 511.

OPTIONAL ACCESSORIES

Service Manual -
Order 070-7479-00
Temperature Probe -
P6602
High Voltage Probe -
Order 010-0277-00
RF Probe - P6420

DM 5120/DM 5520
 Programmable Digital Multimeters

- 6 1/2 Digit, Fully Autoranging (100 nV, $100 \mu \Omega, 1$ nA Resolution)
- 1000 Readings per Second
- DC Volts, True RMS AC Volts, Ohms, DC Amps, True RMS AC Amps
- dB Calculations
- 4-Wire Resistance Measurements
- Hi/Lo/Pass Limit Testing
- Offsel Compensaied Ohms
- Math Functions

DM 5120 Programmable Digitial Multimeter

DM 5120/DM 5520

The DM 5120 Programmable Digital Multimeter provides autoranging voltage, current and resistance measurements at up to $61 / 2$-digit resolution. The dynamic range of the DM 5120 lets you detect low- or high-level signals with a minimum of signal conditioning. A user-programmable filter function is provided to eliminate the effects of external noise. And a userprogrammable "null" eliminates offsets.
The DM 5120 incorporates an easy-to-read, 3,000,000 count, LED display. Each count represents $1 / 3 \mathrm{ppm}$ at full scale. Measurement units are displayed as part of the reading, providing unambiguous test results.
A fast autoranging feature permits the shortest possible test setup time, as well as dramatically increased throughput on your production line.

Built-in math functions such as PASS/FAIL limit testing, dB measurements, $\mathrm{NULL}, \mathrm{MX}+\mathrm{B}$ and others add measurement power, while hands-off calibration makes on-line instrument maintenance easy. And, if speed is critical, the DM 5120 will provide 1000 count voltage and current reading rates at $31 / 2$ digit resolution.

GPIB PROGRAMMING

Programming the DM 5120 over the GPIB is straightforward. Utilization of Tek's Standard Codes and Formats makes programming easy.
A selection of eighteen programming modes are available at the instruments's front panel, including: Initialize, Self-Test, Display Resolution, Enable Ohms Compensation, dB Reference Value, Hi/Lo Limits, and MX $+B$ Values, among others. Program modes are printed right on the front panel, eliminating the need to keep an operating manual at hand.

Eliminates Errors In Resistance Measurements

Low resistance measurements are prone to errors caused by cable resistance and slight differences in temperature between contacts - the thermal contact potential. The DM 5120 incorporates standard four-wire ohm measurements to eliminate cable resistance errors.
The offset compensated ohms feature eliminates errors caused by thermal contact potentials. In a two step process the contact potential is determined by measuring the voltage with no current applied. The resistance value obtained is then automatically subtracted from the
resistance value determined when current is applied. This feature is especially useful in measurement systems with multiple switches, which have the effect of adding unwanted resistance to the DUT.

CHARACTERISTICS

DC VOLTS

Analog Settling Time - < 1 ms (<2 ms on 300 mV range), to 0.01% of step change.
CMRR $->120 \mathrm{~dB}$ at dc, 50 or $60 \mathrm{~Hz} \pm$ (0.05%) with a $1 \mathrm{k} \Omega$ unbalance in either lead.
NMRR $->60 \mathrm{~dB}$ at 50 or $60 \mathrm{~Hz} \pm$ (0.05%).
Maximum Input Voltage - Hi to Lo: 300 V dc, 425 V peak, whichever is less. Lo to GND 350 V (dc + peak ac).
Maximum Resolution -0.1 $\mu \mathrm{V}$.

TRUE RMS AC VOLTS

Ranges - $300 \mathrm{mV}, 3 \mathrm{~V}, 30 \mathrm{~V}, 300 \mathrm{~V}$.
Accuracy $-51 / 2$ digits. 1 year $18^{\circ}-28^{\circ} \mathrm{C}$.
For sinewave inputs greater than 2000 counts 20 to $50 \mathrm{~Hz} \pm$ (2% of reading +100 counts). 50 to $200 \mathrm{~Hz} \pm$ (0.3% of reading +100 counts). 200 Hz to $10 \mathrm{kHz} \pm$ (0.15% of reading +100 counts). 10 to $20 \mathrm{kHz} \pm$ (0.4% of reading +200 counts).
For sinewave inputs greater than 20,000 counts -
20 Hz to $100 \mathrm{kHz} \pm$ (1.5% of reading +300 counts). 300 mV range $\pm(2 \%$ rdg +300 counts.)
Crest Factor $-\leq 3: 1$.

Nonsinusoidal Measurement Accuracy -

For fundamental frequencies $<1 \mathrm{kHz}$, crest factor <3.
$300 \mathrm{mV}, 3 \mathrm{~V}, \pm$ (0.25% of rdg) $30 \mathrm{~V}, 300 \mathrm{~V}, \pm(0.6 \%$ of rdg).
Maximum Resolution - $1 \mu \mathrm{~V}$.
Input Impedance -
Hi to Lo: $1 \mathrm{M} \Omega$ shunted by $<120 \mathrm{pF}$. Lo to GND: > $1000 \mathrm{M} \Omega$ paralleled by $<400 \mathrm{pF}$.
CMRR $->60 \mathrm{~dB}$ at 50 or $60 \mathrm{~Hz}(\pm 0.05 \%)$ with $1 \mathrm{k} \Omega$ unbalance.
Settling Time -1 s to within 1% of change in reading.
Maximum Input Voltage - Hi to Lo 300 V RMS
(425 V peak) or $10^{7} \mathrm{~V}$-Hz product, whichever is less. Lo to GND: 350 V (dc + peak ac) or $5 \times 10^{5} \mathrm{~V}-\mathrm{Hz}$ product, whichever is less.

DC VOLTS

	Accuracy (6-1/2 digits)$\pm \text { (\% of reading + counts) }$			Temperature Coefficient
Range	Resistance	$\begin{aligned} & 90 \text { Days } \\ & 18^{\circ} \text { to } 28^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 1 \text { Year } \\ & 18^{\circ} \text { to } 28^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm(\% \text { rdg }+ \text { cnt }) / \mathrm{C} \\ & 0^{\circ}-18^{\circ} \mathrm{C} \text { to } 28^{\circ}-50^{\circ} \mathrm{C} \end{aligned}$
300 mV	$>1 \mathrm{G} \Omega$	$0.005+20$	$0.008+20$	$0.0006+10$
3 V	$>1 \mathrm{G} \Omega$	$0.003+20$	$0.0038+20$	$0.0004+1$
30 V	$11 \mathrm{M} \Omega$	$0.006+20$	$0.008+30$	$0.0013+3$
300 V	$10.1 \mathrm{M} \Omega$	$0.009+20$	$0.009+30$	$0.0013+1$

[^33]
dB (AC VOLTAGE)

Accuracy -

1 year, $18-28^{\circ} \mathrm{C}-34$ to $49 \mathrm{~dB}(20 \mathrm{mV}$ to 300 V$)$: 20 Hz to $20 \mathrm{kHz}, \pm 0.2 \mathrm{~dB} ; 20 \mathrm{kHz}$ to $100 \mathrm{kHz}, \pm 0.4 \mathrm{~dB}$; -54 to $-34 \mathrm{~dB}(2 \mathrm{mV}$ to 20 mV$) ; 20 \mathrm{~Hz}$ to 20 kHz $\pm 1.1 \mathrm{~dB} ; 20 \mathrm{kHz}$ to $100 \mathrm{kHz} \pm 3 \mathrm{~dB}$ typical.
Maximum Resolution - 0.01 dB .
Reference Level (default) $-1 \mathrm{~V} \mathrm{~ms}=0 \mathrm{~dB}$.
DC AMPS
Accuracy - $51 / 2$ digits

Range	1 Year, 18 to $28{ }^{\circ} \mathrm{C}$
$300 \mu \mathrm{~A}$	$\pm(0.09 \%$ of reading +20 counts $)$
3 mA	$\pm(0.05 \%$ of reading +10 counts $)$
30 mA	$\pm(0.05 \%$ of reading +10 counts $)$
300 mA	$\pm(0.05 \%$ of reading +10 counts $)$
3 A	$\pm(0.09 \%$ of reading +10 counts $)$

AC CURRENT (TRUE RMS)
Accuracy- $51 / 2$ digits

$\begin{gathered} 1 \mathrm{Yr} \\ 18 \text { to } 28^{\circ} \mathrm{C} \end{gathered}$				
3 mA	20 to 45 Hz	\pm (2\% of reading +100 counts)		
30 mA	45 Hz to 10 kHz	\pm (0.6% of reading +100 counts)		
300 mA				
3 A				
$300 \mu \mathrm{~A}$	20 to $45 \mathrm{~Hz} \pm$ (2% of reading +100 counts) 45 Hz to $1 \mathrm{kHz} \pm$ (0.9% of reading +100 counts) 1 to $10 \mathrm{kHz} \pm$ (4.0% of reading +100 counts)			
$\begin{aligned} & \hline \text { Crest Factor - (Up to } 2 / 3 \text { full scale }) \leq 3: 1 . \\ & \text { Maximum Resolution }-1 \mathrm{nA} \mathrm{DC} \text { and } \mathrm{AC} \text {. } \\ & \text { Maximum Voltage Burden DC and AC } \end{aligned}$				
$\begin{aligned} & 300 \mathrm{~mA} \\ & 3 \mathrm{~mA} \\ & 30 \mathrm{~mA} \\ & 300 \mathrm{~mA} \\ & 3 \mathrm{~A} \end{aligned}$		0.4 V		
		0.4 V		
		0.4 V		
		0.5 V		
		2.0 V		

Settling Time -1 second within 0.1% of change in reading $D C$ and $A C$.
Maximum Input -3 $\mathrm{A}(250 \mathrm{~V})$ [fuse protected].

dB (AC CURRENT)

Accuracy -

1 year, 18 to $28^{\circ} \mathrm{C} ; 20 \mathrm{~Hz}$ to 10 kHz ;
$320 \mu \mathrm{~A}$ to $3 \mathrm{~A}, 9.9$ to $69 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$;
$2 \mu \mathrm{~A}$ to $320 \mu \mathrm{~A},-54$ to $-9.9 \mathrm{~dB} \pm 0.9 \mathrm{~dB}$.
Maximum Resolution - 0.01 dB .
Reference Level (Default) $-1 \mathrm{~mA}=0 \mathrm{~dB}$.
$\therefore \quad$ When properly zeroed.
${ }^{2}$ Resolution 5 1/2 digits
${ }^{3}$ For on scale readings with internal filter off; for $3 \mathrm{~V}, 3 \mathrm{k} \Omega$ and 3 mA ranges. $51 / 2$ and $61 / 2$ digit rates are for 60 Hz operation.
Parenthesies show 50 Hz operation.

	$\begin{gathered} \text { Accuracy (} 61 / 2 \text { digits) } \\ \pm \text { (reading + counts) } \end{gathered}$		Temperature Coefficient
Range	$\begin{gathered} 90 \text { Days } \\ 18 \text { to } 28^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 18 \text { to } 28^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm(\% \text { rdg }+ \text { cnts) } / \mathrm{C} \\ & 0-18^{\circ} \mathrm{C} \& 28-50^{\circ} \mathrm{C} \end{aligned}$
$300 \Omega^{*}$	$0.008+20$	$0.01+20$	$0.001+7$
$3 \mathrm{k} \Omega$	$0.005+20$	$0.007+20$	$0.001+1$
$30 \mathrm{k} \Omega$	$0.005+20$	$0.007+20$	$0.001+1$
$300 \mathrm{k} \Omega$	$0.02+20$	$0.021+20$	$0.004+1$
$3 \mathrm{M} \Omega$	$0.02+20$	$0.021+20$	$0.004+1$
$30 \mathrm{M} \Omega$	$0.1+50$	$0.1+50$	$0.03+1$
$300 \mathrm{M} \Omega^{2}$	$2.0+5$	$2.0+5$	$0.3+1$

Offset Compensation (Requires Proper Zeroing) -
300Ω to $30 \mathrm{k} \Omega$ range $\pm 10 \mathrm{mV}$ on 300Ω range
$\pm 100 \mathrm{mV}$ on $3 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$ range.
Open Circuit Voltage $-\leq 5.5$ volts.
Maximum Resolution - $100 \mu \Omega$.
Maximum Input Voltage - 300 V RMS or 425 V peak, whichever is less.
MAXIMUM READING RATES ${ }^{3}$
DCV, DCA, ACV, ACA Readings/Second

	Continuous into Internal Buffer	
AUTOCAL		
Resolution	Off	On
$31 / 2$ digit	1000	1000
$41 / 2$ digit	333	333
$51 / 2$ digit	35 (29)	8.2 (7.5)
$61 / 2$ digit		8.2 (7.5)
Ω Readings/Second		
Continuous into Internal Buffer		

Resolution
$311 / 2$ digit
$41 / 2$ digit
$51 / 2$ digit
$61 / 2$ digit

AUTOCAL

Off	0 n
40	24
38	18
$16(13)$	$9.5(7.5)$
	$9.5(7.5)$

ELECTRICAL

Warm-Up Time - 2 hours to rated accuracy.
Power Consumption - 11 W, DM 5120; 120 W, DM 5520.

PHYSICAL CHARACTERISTICS

Temperature - Operating: 0 to $+50^{\circ} \mathrm{C}$. Nonoperating: -20 to $+65^{\circ} \mathrm{C}$.
Humidity - 75% RH, to $35^{\circ} \mathrm{C} .35 \%$ RH, to $50^{\circ} \mathrm{C}$.

Dimensions -

DM 5120: Triple-wide TM 5000 Plug-in
DM 5520: 23.4 cm (9.2 in .) $\times 14.0 \mathrm{~cm}(5.5 \mathrm{in}) \times 43.2 \mathrm{~cm}$ (17.03 in.)

Weight: $5.7 \mathrm{~kg}(15.4 \mathrm{lbs})$

ORDERING INFORMATION

DM 5120 Programmable	
Digital Multimeter	\$995
Includes: Instruction manual	
($070-7240-00$); one set test leads. DM 5520 Programmable	
Digital Multimeter	
Includes: DM 5120 with power module, Instruction manual	

 measurements and an especially wide range of other measurement functions, plus features such as autotrigger, auto-averaging, arming, probe compensation, and more. The DC 5010 and DC 5009 are GPIB programmable; this capability can be added to the DC 510 and DC 509 as field modifications. In performance other than programmability, the DC 510 and DC 5010 are equal, as are the DC 5009 and DC 509.
For versatility in counting, the DC 503A 125 MHz Universal Counter/Timer features eight measurement functions, including period, width, and time-interval averaging. Both input channels have the full 0 to 125 MHz frequency range, 20 mV RMS sensitivity, and separate controls for

DIGITAL COUNTER SELECTION GUIDE

	DC 510/DC 5010	DC 509/DC 5009	DC 503A	DC 504A
Frequency Range With DP 501	$\begin{aligned} & 350 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 135 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 125 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 100 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$
Number of Digits	9	8	8	6
Ratio Architecture	-	-		
Period Averaging	-	-	-	-
Width Averaging (Single Input)	-	-	-	-
Time Interval Averaging	ging	-	-	-
Autotrigger	-	-		
Gated Events Averaging	B during A	B during A	A during B	
Ratio Averaging	-	-	-	
	High stability time base, trigger level and shaped outputs self-test, phase mod ulated clock, probe compensation, time manual, totalize.	High stability time base, trigger level and shaped outputs, self-test, phase modulated clock, probe compensation, time manual, totalize.	High stability time base, trigger level and shaped outputs, time manual, totalize.	Autorange, 100X resolution multiplier
$\begin{aligned} & \text { IEEE Standard } \\ & 488.1-1987 \end{aligned}$	DC 5010 only	DC 5009 only		
Mainframe Compatibility	DC 510 TM $500 / \mathrm{TM} 5000$ DC 5010 TM 5000 only	DC 509 TM $500 /$ TM 5000 DC 5009 TM 5000 only	$\begin{aligned} & \text { TM 500/ } \\ & \text { TM } 5000 \end{aligned}$	$\begin{aligned} & \text { TM 500/ } \\ & \text { TM } 5000 \end{aligned}$
Module Size	2 wide	1 wide	1 wide	1 wide
Price \$	\$3,995/\$4,150	\$2,450/\$2,250	\$1,825	\$845

input coupling, attenuation, trigger level, and trigger slope. The 10 MHz clock provides 100 ns resolution of single-shot time interval measurements, and 10 ps resolution with averaging.

The 100 MHz DC 504A features autorange, period and width averaging, an internal 100X multiplier to provide high resolution of low frequency signals.

APPLICATIONS

Tek TM 5000 and TM 500 counter/timers are primarily used in environmental and production testing and on the engineering benchtop. Sometimes, they are used in field service, packaged with other Tek modular instruments in configurations aimed at specific testing applications.

Frequency and period measurements are straight forward, and applications abound, from RF design to manufacturing test of digital systems. On the other hand, there is a wide variety of timing measurements . . . not every counter/timer can make them all. The most basic timing measurements are pulse width, with which you can measure not only whole pulses, but (by adjusting trigger level) the width of aberrations, such as ringing. Some instruments will automatically measure risetimes and falltimes.

Using both input channels, you can make the time $A \geq B$ measurement, which is used for propagation delays. You can also measure the number of events occurring on channel B during an interval on channel A .

Tek modular counter/timers can totalize events on both channels and present the results as a sum, a difference, or a ratio. This can be invaluable in troubleshooting intermittent bugs in digital circuits in which a certain number of input events are supposed to produce a certain number of output events. For example, you could measure the ratio of input pulses to output pulses in a decade counter while stressing the circuit in various ways. If the ratio varied from 10 at any point, you would have localized the fault. Shaped output is a relatively uncommon feature that is provided on Tek counter/ timers. Essentially, it is a representation of the instrument's trigger signal. Applied to one channel of an oscilloscope, with the input signal applied to another channel, it can be used to verify that the counter/timer is triggering on the correct portion of the input waveform.

Accuracy and Resolution

Accuracy describes how closely a measurement agrees with a standard. It depends on time base and trigger slew and jitter errors. To minimize time base errors, all Tek TM 500 and TM 5000 modular counter/timers use an oven-controlled-crystal time base.

In the case of the DC 5010/DC 510, temperature stability is a flat $\pm 2 \times 10^{-7}$, regardless of temperature, up to an ambient of $50^{\circ} \mathrm{C}$. Ideally, resolution would be plus or minus one times the least significant digit (LSD). However, resolution is also tied to the uncertainty of the length of the last event counted. That's why single-shot resolution is less than resolution with averaging. For example, on the DC 5010/DC 510, single event resolution is 3.125 ns , but resolution with averaging is 1 ps .

DC 504A
Counter/Timer

- DC to 100 MHz
- Period and Period Averaging
- Width and Width Averaging
- Autoranging
- 100X Resolution Multiplier

ORDERING INFORMATION

DC 504A Counter/Timer.
Includes: Instruction manual (070-4291-00).

OPTIONAL ACCESSORIES
See page 221.

DC 503A
Universal

Counter/Timer

- 125 MHz Both A and B Channels
- 10 ps Resolution in TimeInterval Average with 10^{8} Averages
- Measurement Functions include:
Frequency; Period and Period Average; Width and Width Average; Time A-B; Time A-B Average; Events A During B Average; Totalize; Time Manual; Ratio A/B Average
- 40 MHz Rep Rate in TimeInterval Average
- Trigger-Level Outputs for Accurate Trigger Setting
- Shaped Outputs for Ease of Triggering
- Designed for True Probe Compatibility
- High Stability Oven Time Base

DC 503A

The DC 503A offers a broad range of measurement features at an affordable price. The instrument has two input channels, A and B, each with 125 MHz capability. Each channel has separate triggering level, triggering slope, attenuator, and coupling mode controls. Eight measurement functions are available with the DC 503A, and an averaging feature allows averaging of 1 to 10^{8} occurrences of the signal of interest. Signals to be counted or timed can be applied to channels A and B via front-panel BNC connectors or through rear-interface connections. The DC 503A features an easy-access front panel and an LSI-based design for increased instrument reliability.
The DC 503A is equipped with a temperaturecontrolled 10 MHz crystal oscillator to obtain a highly stable and precise internal time base.

CHARACTERISTICS

Display - Eight digit LED; indicators for units, gate open, and overflow.
Display Time $-\approx 0.2 \mathrm{~s}$ to 5 s and hold.
CHANNEL A AND B INPUT
Frequency Range -0 to $\geq \mathrm{MHz}$, dc coupled. 10 Hz to $\geq 125 \mathrm{MHz}$, ac coupled.
Sensitivity - 20 mV RMS sinewave to 100 MHz .60 mV $\mathrm{p}-\mathrm{p}$ at minimum pulse width (of 5 ns to 100 MHz). 35 mV RMS sinewave to 125 MHz .100 mV p-p (minimum pulse width of 4 ns to 125 MHz).
Attenuation - Selectable 1X, 5X.
Impedance $-1 \mathrm{M} \Omega$ paralleled by $\approx 27 \mathrm{pF}$.
Dynamic Range $-\mathrm{V} p-p \leq 3 \mathrm{~V} \times$ attenuation.
Trigger Level Range - Adjustable $\pm 3.5 \mathrm{~V}$ x attenuation
Trigger Level Output Accuracy $- \pm 0.5 \%$ of reading for a dc input $\mathrm{V}, \pm 20 \mathrm{mV}$.
Independent Controls - Slope \pm Attenuation $1 \mathrm{X} / 5 \mathrm{X}$, Coupled ac/dc, Source Internal/ External.
Maximum Input Voltage - |X: $\leq 200 \mathrm{~V}$ peak; $\leq 400 \mathrm{~V}$ p-p from dc to 50 kHz , $\leq 15 \mathrm{~V}$ p-p from 1.33 to 125 MHz.
$5 \mathrm{X}: \leq 200 \mathrm{~V}$ peak; $\leq 400 \mathrm{~V}$ p-p from dc to 5 MHz , derate to $\leq 20 \mathrm{~V}$ p-p from 100 to 125 MHz .
Shaped Out - Shaped replica of signal being measured, aids proper triggering on complex waveforms. $\leq 200 \mathrm{mV}$ p-p from 50Ω.

FREQUENCY A
Range - 0 to 125 MHz .
Resolution -0.1 Hz to 10 MHz in decade steps.
Accuracy $- \pm 1$ count \pm Time Base Error.
PERIOD B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~s}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy - \pm count \pm Time Base Error x Period B
$\pm 1.4 \times$ Channel B Trigger Jitter Error.
Frequency Range - 125 MHz

PERIOD B (AVERAGE)
Range - 8 ns to 10 s .
Resolution -1 fs (10^{-15}) to 100 ns in decade steps.
Events Averaged (N) - 1 to 10^{8}.
Accuracy -
$\pm \frac{100 \mathrm{~ns}}{\mathrm{~N}} \pm$ Time Base Error x Period B
$\pm \frac{1.4 \times \text { Channel B Trigger Jitter Error }}{N}$
Frequency Range -0 to $\leq 125 \mathrm{MHz}$.
RATIO A/B
Averaged over 1 to 10^{8} cycles of Channel B signal.
Frequency Range - 0 to $\leq 125 \mathrm{MHz}$ (both Channel A and Channel B).
Accuracy -
$\pm \frac{\text { Frequency } \mathrm{B}}{\text { Frequency } \mathrm{A} \times \mathrm{N}}$
$\pm \frac{1.4 \times \text { Channel B Trig Jitter Error x Freq A }}{\mathrm{N}}$
$\pm \frac{\text { Frequency } \mathrm{A}}{0.3 \times 10^{8}}$
TIME A \rightarrow B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~S}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy $- \pm 1$ count \pm Time Base Error x Time AB
\pm Channel A Trigger Jitter Error
\pm Channel B Trigger Jitter Error
\pm (Channel B stop Trigger Slew Error

- Channel A start Trigger Slew Error) ± 4 ns.

TIME A \rightarrow B (AVERAGE)
Range -12.5 ns to 10 s .
Minimum Dead Time $\mathbf{- 1 2 . 5} \mathrm{ns}$ (stop-to-start). Resolution -
$100 \mathrm{~ns} / \sqrt{\mathrm{N}}$
Events Averaged (\boldsymbol{N}) -1 to 10^{8} in decade steps. Accuracy -
$\pm \frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}} \pm$ Time Base Error x Time $\mathrm{A} \rightarrow \mathrm{B}$
$\pm \frac{\text { Channel A Trigger Jitter Error }}{\sqrt{\mathrm{N}}}$
$\pm \frac{\text { Channel B Trigger Jitter Error }}{\sqrt{\mathrm{N}}}$

+ (Channel B stop Trigger Slew Error - Channel A start
Trigger Slew Error) ± 4 ns

EVENTS A DURING B (AVERAGE)
Maximum A Frequency $-\leq 125 \mathrm{MHz}$.
Minimum B Pulse Width - 5 ns
Events Averaged (\mathbf{N}) -1 to 10^{8} in decade steps.
Accuracy -
$\pm \frac{\text { Period } A}{\text { Width } B \times \sqrt{N}}$
$\pm \frac{\text { Channel B start Trigger Jitter Error }}{\sqrt{N}}$
$\pm \frac{\text { Channel B stop Trigger Jitter Error }}{\sqrt{\mathrm{N}}}$
WIDTH B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~S}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy $- \pm 1$ count \pm Time Base Error x Width B
\pm Channel B start Trigger Jitter Error \pm Channel B stop
Trigger Jitter Error \pm (Channel B stop Slew Rate ErrorChannel B start Slew Rate Error).
WIDTH B (AVERAGE)
Range -5 ns to 10 s .
Resolution - $100 \mathrm{~ns} / \sqrt{\mathrm{N}}$
Events Averaged (\boldsymbol{N}) -1 to 10^{8} in decade steps.
Accuracy -
± 1 Count $\pm B$ Trig. Jit. Error (rising edge)
\pm B Trig. Error (falling edge) \pm Time Base Error
Frequency Range - 0 to 100 MHz .

TIME MANUAL

Electronic stopwatch, accumulates and displays time between activation of front panel start/stop button or rear interface signal line. Clock rates selectable from 100 ns to 10 s in decade steps. Range 100 ns to $10^{9} \mathrm{~s}$.

TOTALIZE A

1 count to $99,999,999$ counts at maximum rate of 125 MHz . Start, stop and reset controlled by front panel pushbuttons or rear interface signal lines.

RESOLUTION AND ACCURACY DEFINITIONS

Time Base Error is the sum of all errors specified for the time base used.

N is the number of periods averaged in Period B (AVGS) mode, the number of intervals averaged in the Time $A-B$ (AVGS) mode, the number of widths of B averaged in Width B (AVGS) and Events A During B modes, and the number of periods of B in the Ratio A / B mode.

Trigger Jitter Error (in $\mu \mathrm{s}$) -

$$
\left.\sqrt{\left(e n_{1}\right)^{2}+\left(e n_{2}\right)^{2}} M\right)
$$

Input Slew Rate at Trigger Point $(\mathrm{V} / \mathrm{Ls})$
Where: $e_{n 1}=100 \mu \mathrm{VMS}$ typical internal noise
$e_{n 2}=$ RMS noise of signal input at trigger point for a 125 MHz bandwidth
Trigger Slew Rate Error (in $\mu \mathrm{s}$) -
Input Hysteresis (M)/2
Input Slew Rate at set Trigger Point $(\mathrm{V} / \mathrm{ws})$
Where: Input hysterisis = 20 mV p-p typical.
OTHER CHARACTERISTICS
HIGH STABILITY STANDARD TIME BASE
Crystal Frequency - 10 MHz .
Temperature Stability $-< \pm 2 \times 10^{-7}$ after warm-up, 0 to $+50^{\circ} \mathrm{C}$.
Warmup Time - Within 2×10^{-7} of final frequency in <10 minutes when cold started at $25^{\circ} \mathrm{C}$.
Aging Rate $-1 \times 10^{-8} /$ day at time of shipment $4 \times 10^{-9} /$ week after 30 days of continuous operation, $1 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability - Adjustable to within 2×10^{-8}
REAR INTERFACE
Inputs - Direct count input to $50 \mathrm{MHz},(50 \Omega$) impedance, resistor may be removed for $1 \mathrm{M} \Omega$ impedance, remote start/stop, reset; external time base.
Outputs - BCD serial-by-digit, decimal point overflow, scan clock; trigger level; time base reference.

ORDERING INFORMATION

DC 503A Universal
Counter/Timer
Includes: Instruction manual
(070-2971-00).
OPTIONAL COUNTER ACCESSORIES
Power Divider GR, 50Ω -
Order 017-0082-00
Adapters -
(GR to BNC female)
Order 017-0067-00
(GR to BNC male)
Order 017-0064-00
Cable Adapters -
(BNC to tip jack)
DC 503A, DC 509, DC 5009
Order 175-3765-01
(BNC to RF) DC 510, DC 5010.
Order 012-0532-00
RECOMMENDED PROBES
P6101A - 1X, dc to 34 MHz
P6106A - 10X, dc to 300 MHz $\$ 180$
P6201 - FET, dc to $900 \mathrm{MHz} \quad \$ 1,395$
P6230 - Bias/Offset, dc to 1.5 GHz

- Contact your local sales represenatative.

DC 5009/DC 509

Universal
Counter/Timers

- 135 MHz Both A and B Channels
- 10 ns Single-Shot Resolution
- 8-Digit Display
- 5 ps Resolution, with Averaging
- Reciprocal-Frequency Measurement; Period; Width; Time A - B; Events B During A; Totalize; Ratio; Time Manual; Arming
- Auto or Selected Averaging to 10^{8} in All Modes
- Duty - Cycle Independent Autotrigger
- Shaped A and B Channel Outputs
- Probe Compensation
- High Stability Oven Time Base

*The DC 5009 complies with IEEE Standard 488.1-1987 and with Tektronix Standard Codes and Formats.

DC 5009/DC 509

The DC 5009/DC 509 single-width Universal Counter/ Timers provide all of the measurement functions of the higher performance DC 5010/DC 510 except rise time/ fall time, null, and totalize $\mathrm{A} \pm \mathrm{B}$.

The powerful reciprocal-frequency measurement technique allows up to eight digits of resolution of lowfrequency signals in one second or less of measurement time. The DC 5009/DC 509 has the same automatic averaging feature as the DC 5010/DC 510; selected averaging of up to 10^{8} events provides usable timeinterval resolution of 5 ps .

The TM 5000 rear-interfacing capability allows the DP 501 to be controlled over the GPIB through the DC 5009. The DP 501 extends frequency measurements to 1.3 GHz .

CHARACTERISTICS

CHANNEL A AND B INPUT
Frequency Range $->0$ to $\geq 135 \mathrm{MHz}$ dc coupled; $\leq 10 \mathrm{~Hz}$ to $\geq 135 \mathrm{MHz}$ ac coupled.
Sensitivity - $\leq 20 \mathrm{mV}$ RMS ($56.6 \mathrm{mV} \mathrm{p}-\mathrm{p}$) to $\geq 100 \mathrm{MHz}$, 40 mV RMS (113 mV p-p) from 100 MHz to $\geq 135 \mathrm{MHz}, 115 \mathrm{mV}$ p-p at minimum, pulse width of 3 ns .
Attenuation -Selectable 1X, 5X.
Impedance $-1 \mathrm{M} \Omega \pm 2 \%$ paralleled by $\leq 30 \mathrm{pF}$.
Trigger Level Range -+3.200 to -3.175 V with
25 mV resolution (X1), +16 to - 15.875 V with 125 mV resolution ($\times 5$)
Trigger Level Accuracy $- \pm 15 \mathrm{mV} \pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to $25^{\circ} \mathrm{C}$.
Dynamic Range - $3.2 \leq$ input voltage $\leq+3.2$. X1: Vin $p-p \leq 3 \mathrm{~V}$; $\mathrm{X} 5: \mathrm{V} p-\mathrm{p} 15$ Vin (for input signal risetime $p-p \leq 3 \mathrm{~V}$: X : $\mathrm{V} p-\mathrm{p} 15$ Vin (for input signal risetimes ≤ 5 ns).
Autotrigger Frequency Range - Sensitivity \leq 125 mV p-p xattenuation; $\leq 20 \mathrm{~Hz}$ to $\geq 100 \mathrm{MHz}$. Range: $\pm 3.2 \mathrm{~V}$ x attenuation. Resolution: $25 \mathrm{mV} \times$ attenuation.
Independent Controls-Slope \pm attenuation $1 \mathrm{X} / 5 \mathrm{X}$, Couple ac/dc, Source Interna//External.
Maximum Input Voltage - $1 \mathrm{X}: \leq 200 \mathrm{~V}$ peak; $\leq 400 \mathrm{~V}$ p-p from dc to $50 \mathrm{kHz}, \leq 15 \mathrm{~V}$ p-p at 135 MHz . $5 \mathrm{X}: \leq 200 \mathrm{~V}$ peak; $\leq 400 \mathrm{~V}$ p-p from dc to $5 \mathrm{MHz}, \leq 25 \mathrm{~V}$ p-p at 135 MHz .
Shaped Out - Shaped replica of signal being measured, aids proper triggering on complex waveforms. Amplitude 0 V to $\geq+0.3 \mathrm{~V}$ from 50Ω.
Trigger Level Out - A dc level corresponding to the actual trigger level. Accuracy within $\pm 10 \mathrm{mV}$ of internal trigger level.
Arming Input - Permits measurements of complex waveforms. A TTL high allows averaging of selected events within a measurement.

FREQUENCY A
Range $-\leq 100 \mu \mathrm{~Hz}$ to $\geq 135 \mathrm{MHz}$.

Resolution -

$\pm L S D \pm 1.4 \times \frac{A \text { Trigger Jitter Error }}{N} \times(\text { Frequency } A)^{2}$

Accuracy -

Resolution \pm (Time Base Error x Frequency A).
PERIOD A
Range $-\leq 7.40$ ns to $\geq 3.05 \mathrm{hrs}$.

Resolution -

$\pm \mathrm{LSD} \pm 1.4 \times \frac{\text { A Trigger Jitter Error }}{\mathrm{N}}$
Accuracy - Resolution \pm (Time Base Error x Period A).
RATIO B/A
Range -10^{-7} to 10^{8} (Frequency Range: CH A to
$\geq 135 \mathrm{MHz}$; CH B to $\geq 125 \mathrm{MHz}$)

Resolution -

$\pm _$_SD $\pm 1.4 \times B$ Trigger Jitter Error $\left(\frac{\text { Frequency } B}{N}\right)$
Accuracy - Same as Resolution.
TIME A - B
Range $-\leq 15 \mathrm{~ns}$ to $\geq 3.05 \mathrm{hrs}$.
Minimum Dead Time - 15 ns (stop to start).
Resolution -
$\pm L S D+\frac{1}{\sqrt{N}}\binom{ \pm A$ Trigger Jitter Error }{$\pm B$ Trigger Jitter Error }
Accuracy - Resolution \pm (Time Base Error xTime A-B) + (B Trigger Slew Error-A Trigger Slew Error) \pm (Channel Delay Mismatch).
Channel Delay Mismatch $-<2$ ns between front panel inputs and < 2 ns between rear interface inputs.
Repetition Rate $-<35 \mathrm{MHz}$.
EVENTS B DURING A
Range -10^{-7} to 10^{8}.
Maximum B Frequency - 125 MHz
Minimum A Pulse Width - 15 ns.
Minimum Time Between A Pulses - 15 ns .
Minimum Time Between "A" Start Edge and First
"B"Event - 15 ns.

Resolution -

$\pm \mathrm{LSD}+\frac{\text { Freq. } \mathrm{B}}{\sqrt{\mathrm{N}}}\binom{ \pm$ Trig. Jit. Error CH A start edge }{\pm Trig. Jit. Error CH A stop edge }
Accuracy - Resolution + Frequency B (Stop Slew Rate Error - Start Slew Rate Error).
WIDTH A
Range $-\leq 15$ ns to $\geq 3.05 \mathrm{hrs}$.
Minimum Dead Time Between Pulses - 15 ns . Resolution -
$\pm L S D+\frac{1}{\sqrt{N}}\binom{ \pm$ Start Trigger Jitter Error }{\pm Stop Trigger Jitter Error }
Accuracy - Resolution \pm (Time Base Error x Width A) + (Stop Slew Rate Error-Start Slew Rate Error) $\pm 5 \mathrm{~ns}$.

TIME MANUAL

Range -0 to 3.05 hrs. May be extended with GPIB.
Resolution $- \pm$ LSD (100 ms).
Accuracy $- \pm$ Resolution \pm (Time Base Error x Time).
TOTALIZE A
Range - 0 to 1.09×1012 counts. Extended with GPIB.
Repetition Rate -> 0 to $\geq 135 \mathrm{MHz}$.
RESOLUTION AND ACCURACY: DEFINITIONS
For Trigger Jitter Error and Slew Rate Error definitions, see DC 503A.
$N=$ Number of Events Averaged.
The minimum number of averages is selected by the averages control in decade steps from 1 to 10^{8}. At channel A repetition rates above $\approx 250 \mathrm{~Hz}$, the number of events averaged will be:
$N=[F$ requency $A(\mathrm{~Hz}) \times 4 \mathrm{~ms}]+$ Averages .
$N=A v e r a g e s ~ s e t t i n g ~(b e l o w ~ 250 ~ H z) . ~$
In the Auto mode, the counter measures with a fixed measurement time of about 300 ms .
$\mathrm{N}=$ Frequency $\mathrm{A}(\mathrm{Hz}) \times 0.3 \mathrm{~s}$. (N is always ≥ 1).
Time Base Error - The sum of all errors specified for the time base used.

STANDARD HIGH STABILITY TIME BASE

Crystal Frequency - 10 MHz .
Temperature Stability $- \pm 2 \times 10^{-7} 0$ to $0+50^{\circ} \mathrm{C}$ after warm-up.
Warm-up Time $-+2 \times 10^{-7}$ of final frequency in 10 minutes when cold started at $25^{\circ} \mathrm{C}$.
Aging Rate $-\leq 1 \times 10^{-8} / \mathrm{day}$ at time of shipment, $4 \times 10^{8} /$ week after 30 days of continuous operation, $1 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability - Adjustable to within $\pm 2 \times 10^{-6}$.

REAR INTERFACE

Inputs - Channel A and Channel B input to 50 MHz (50Ω impedance, maximum input 3.6 V peak); arming; reset; external time base (1,5, or 10 MHz), prescale.
Outputs - Channel A and Channel B shaped outputs; Channel A and Channel B trigger level outputs; 10 MHz clock; gate out.

OTHER CHARACTERISTICS

Power Consumption - 15 W.
GPIB Data Output Rate $-\approx 10$ readings/s maximum (DC 5009 only).

CHARACTERISTICS

PRESCALE MODE INPUT
Frequency Range $-\leq 100 \mathrm{MHz}$ to $\geq 1.3 \mathrm{GHz}$.
Sensitivity - 100 MHz to 1 GHz is $\leq 20 \mathrm{mV}$ RMS $(-21 \mathrm{dBm})$. 1 to 1.3 GHz is $\leq 30 \mathrm{mV}$ RMS (-17 dBm).
Impedance -50Ω, ac coupled; vswr $\leq 2.2: 1$.
Output - Amplitude into 50Ω is $\leq 200 \mathrm{mV}, \mathrm{p}-\mathrm{p}$. Unterminated is $2 X$ terminated value.

DIRECT MODE INPUT

(Connected directly to output.)
Frequency Range -0 to $>350 \mathrm{MHz}$.
Impedance - Loop through characteristic impedance is 50Ω; nonterminated capacitance $\approx 20 \mathrm{pF}$ (no connection to output).
Output - Connected directly to input. < 1 dB insertion loss up to 350 MHz . Powers up in direct mode.

GENERAL

Overload Protection - Prescale: Input disconnects when input signal exceeds $+20 \mathrm{dBm} \pm 5 \mathrm{dBm}$.
Damage Level - Prescale: Input may be damaged if signal level exceeds +25 dBm . Direct: 42 V peak maximum. Maximum current is 250 mA .
Input Attenuation - Automatic: Up to 40 dB range. Low Level Indicator - Lights when input signal is below that required for error-free counting.

ORDERING INFORMATION

DC 5009 Programmable Universal Includes: Tip jack to BNC adapter cable (175-3765-01); instrument interfacing guide (070-4612-00); reference guide (070-3560-01); instruction manual ($070-3888-00$).
DC 509 Universal
Counter/Timer
$\$ 2,450$
Includes: Instruction Manual (070-3464-00).

CONVERSION KIT (DC 509)
IEEE Standard 488 Capability Order 040-0957-05

OPTIONAL ACCESSORIES
See page 221.

DP 501

The DP 501 Digital Prescaler adds 1.3 GHz frequency-counting capability to most counters, though it was designed specifically for use with the DC 503A, DC 509/DC 5009, and the DC 5010/DC 510 Universal Counter/ Timers.

The DP 501 is placed in the signal line between the source and the counter's signal input and can be operated in either the Direct or the Prescale mode. The $\div 16$ prescaling function can be activated manually, with a front panel pushbutton, or via the GPIB when used with the DC 5009 or DC 5010 .

Input sensitivity in the Prescale mode is $20-\mathrm{mV}$ RMS to 1 GHz and $30-\mathrm{mV}$ RMS to 1.3 GHz . A Low-Level indicator alerts the user if the input signal amplitude is too low for error-free counting. An automatic gain-control circuit provides optimum immunity to signal noise in the Prescale mode.

DC 5010/DC 510
 Universal Counter/Timers

- 350 MHz both A and B Channels
- 3.125 ns Single-Shot Resolution
- 9-Digit Display
- 1 ps Resolution, with Averaging
- Reciprocal Frequency Measurement; Period; Width; Time AB; Events B During A; Totalize A, AB; Ratlo; Rise/Fall; Tlme Manual; Arming; Null
- Auto or Selected Averaging to 10^{8} in All Modes
- Duty-Cycle Independent Autotrigger
- DVM Mode for Displaying Trigger-Level Setting
- Shaped A and B Channel Outputs
- Hysteresis Compensation
- Probe Compensation
- High Stability Oven Time Base

DC 5010/DC 510

The DC 5010/DC 510 Universal Counter/Timers feature reciprocal frequency to 350 MHz , period, ratio, events B during A measurements, and time A to B . The powerful reciprocal technique provides high resolution of low frequency signals much faster than conventional counting techniques. The pseudo-random, phasemodulated time base provides increased accuracy by eliminating synchronous errors in the time interval and width averaging modes.

Auto trigger senses the applied signal and sets trigger levels to the optimum points. In the DC 5010, trigger levels, the minimum and maximum signal voltage levels, and the trigger voltage are available over the GPIB, and can be viewed on the 9-digit display.

Other features include an arming input that allows measurement of selected inputs from complex waveforms, hysteresis compensation and probe compensation for attenuator type probes.

CHARACTERISTICS

CHANNEL A AND CHANNEL B INPUT
Frequency Range -50 Ω termination:
>0 to $\geq 350 \mathrm{MHz}$ dc coupled.
100 kHz to $\geq 350 \mathrm{MHz}$ ac coupled.
$1 \mathrm{M} \Omega$ termination >0 to $\geq 300 \mathrm{MHz}$ dc coupled. 16 Hz to $\geq 300 \mathrm{MHz}$ ac coupled.
Sensitivity -50Ω termination dc: $\leq 25 \mathrm{mV}$ RMS sinewave to $350 \mathrm{MHz} \leq 70 \mathrm{mV} p-\mathrm{p}$ pulse $1 \mathrm{M} \Omega$ termination. DC/AC $\leq 25 \mathrm{mV}$ RMS to 200 MHz .42 mV RMS to 300 MHz .
Attenuation Selectable - $1 \mathrm{X}, 5 \mathrm{X}$.
Impedance -1 M Ω paralleled by 23 pf $\pm 2.2 \mathrm{pF}$ (10%) or $50 \Omega \pm 3 \% \mathrm{dc}$.
Dynamic Range - 70 mV p-p to 4 Vp -p (xattenuation) Trigger Level Range -
$\geq+2 \mathrm{~V}$ to $\leq-2 \mathrm{~V}$ with 4 mV resolution (X 1). $\leq \pm 10 \mathrm{~V}$ to $\leq-10 \mathrm{~V}$ with 20 mV resolution (X5).
Trigger Level Accuracy $- \pm 1 \%$ of F.S. trigger level range, plus $\pm 2 \%$ of reading for a dc input $\mathrm{V}, \pm 40 \mathrm{mV} \mathrm{X}$ Attenuator.
Autotrigger Frequency Range - 10 Hz to $\leq 350 \mathrm{MHz}$.
Independent Controls - Slope, Attenuation $1 \mathrm{X} / 5 \mathrm{X}$, Couple ac/dc, Impedance $1 \mathrm{M} \Omega / 50 \Omega$.
Maximum Input Voltage (1 MS input impedance)
1X: $\pm 42 \mathrm{~V}$ (dc + peak ac) to 200 kHz ; $\pm 2 \mathrm{~V}$ (dc + peak ac) 2 to 250 MHz .
5X: $\pm 42 \mathrm{~V}$ (dc + peak ac) to 1 MHz ;
$\pm 10 \mathrm{~V}$ (dc + peak ac) 1 to 250 MHz .
In 50Ω Input Impedance: Signals $> \pm 2 \mathrm{~V} \times$ attenuator will cause input protection circuitry to switch input to $1 \mathrm{M} \Omega$.
Shaped Out - Shaped replica of signal being measured aids proper triggering on complex waveforms ($\leq 100 \mathrm{mV}$ typically to 350 MHz into 50Ω load).

Arming Input - Permits measurements of complex waveforms. A TTL high allows averaging of selected events within a measurement.

FREQUENCY A
Range $-\leq 36 \mu \mathrm{~Hz}$ to $\geq 350 \mathrm{MHz}$.
Resolution -
$\pm \mathrm{LSD} \pm 1.4\left(\frac{\text { A Trigger Jitter Error }}{\mathrm{N}}\right)(\text { Frequency } \mathrm{A})^{2}$

Accuracy -

Resolution \pm (Time Base Error x Frequency A)
PERIOD A
Range -3.125 ns to 7.6 hrs .
Resolution -
$\pm \mathrm{LSD} \pm \frac{1.4 \times \mathrm{A} \text { Trigger Jitter Error }}{\mathrm{N}}$
Accuracy - (\pm Time Base Error x Period A)
RATIO B/A
Range -10^{-8} to 10^{9} (Frequency Range: $\leq 36 \mu \mathrm{~Hz}$ to $\geq 350 \mathrm{MHz}$). (10^{-11} to 10^{12} w/o decimal point)

Resolution -

$\pm \mathrm{LSD} \pm \frac{1.4 \times \mathrm{B} \text { Trigger Jitter Error x Frequency B }}{\mathrm{N}}$
Accuracy - Same as Resolution.
TIME $A \rightarrow B$
Range -2.0 ns to 7.6 hrs
Minimum Dead Time - 12.5 ns (stop to start).

Resolution -

$\pm L S D+\frac{1}{\sqrt{N}} \times\binom{ \pm$ Trig. Jit. Error CH A start edge }{\pm Trig. Jit. Error CH A stop edge }
Accuracy - Resolution \pm (Time Base Error xTI)
\pm Channel Delay Mismatch $+B$ Trigger slew error
-A Trigger slew error.
Channel Delay Mismatch $-<2$ ns between front panel inputs, without null.

EVENTS B DURING A

Range -10^{-8} to 10^{9}.
Maximum B Frequency $-\geq 350 \mathrm{MHz}$.
Maximum A Frequency $\mathbf{- \geq 8 0} \mathrm{MHz}$.
Maximum A Pulse Width $-\leq 4.0 \mathrm{~ns}$.
Minimum Time Between A Pulses $-\leq 8.5 \mathrm{~ns}$.
Minimum Dead Time Between Pulses $-\leq 8.5 \mathrm{~ns}$. Resolution -
$\pm L S D+\frac{\text { Frea. B }}{\sqrt{\mathrm{N}}} \times\binom{ \pm$ Trig. Jit. Error CH A start edge }{\pm Trig. Jit. Error CH A stop edge }

WIDTH A
Range $-\leq 4$ ns to 7.6 hrs .
Minimum Dead Time Between Pulses -1.6 ns .
Resolution -
$\pm L S D+\frac{1}{\sqrt{N}} \quad\binom{ \pm$ Start Trigger Jitter Error }{\pm Stop Trigger Jitter Error }
Accuracy - Resolution \pm (Time Base Error x Width A)

+ (Stop Slew Rate Error - Start Slew Rate Error) $\pm 2 \mathrm{~ns}$.
Repetition Rate $-\geq 80 \mathrm{MHz}$.
TIME MANUAL
Range -3.125 ns to $3.125 \times 10^{4} \mathrm{~s}(\approx 8 \mathrm{hrs})$.
Resolution - \pm LSD 100 ms .
TOTALIZE A, A + B
Range -0 to 10^{9} counts.
Repetition Rate -0 to $\geq 350 \mathrm{MHz}$.
TOTALIZE A - B
Range $--1 \times 10^{8}$ to 10^{12} (either $\mathrm{A}>10^{12}$ or $\mathrm{B}>10^{12}$ will cause overflow).
Repetition Rate -0 to $\geq 350 \mathrm{MHz}$.
RISE/FALL A
Range -5.0 ns to 7.6 hrs .
Repetition Rate - Minimum time between rising (falling) edges is $12.5 \mathrm{~ns}(80 \mathrm{MHz})$.
Imput Amplitude - (1.4 to 8 V$) 1.4 \mathrm{Vp}-\mathrm{p}$ min, +4 to
$-4 \mathrm{Vdc}+$ peak ac max (50Ω), $(0.7$ to 4 V$) 700 \mathrm{mV}$ p-p min, +2 to $-2 \mathrm{Vdc}+$ peak ac $\max (1 \mathrm{M} \Omega)$.

Resolution -

\pm LSD $+\frac{1}{\sqrt{\mathrm{~N}}} \quad\binom{ \pm$ Start Trigger Jitter Error }{\pm Stop Trigger Jitter Error }
Accuracy -Resolution \pm (Time Base Error x Risetime/ Falltime) $\pm 2 \mathrm{~ns} \pm 4 \mathrm{mV} \times$ Slew Rate A Error (near 10\%) $\pm 4 \mathrm{mV}$ Slew Rate A Error (near 90%).

RESOLUTION AND ACCURACY DEFINITIONS Trigger Jitter Error (Seconds RMS) -

$$
\sqrt{\left(e_{n 1}\right)^{2}+\left(e_{n 2}\right)^{2} \text { (Nolts RMS) }}
$$

$\overline{\text { Input Slew Rate at Trigger Point }(\mathrm{V} / \mathrm{s})}$
Where: $e_{\mathrm{n}=}=140 \mu \mathrm{~V}$ RMS typical counter input noise for $1 \mathrm{M} \Omega$ filter on; $240 \mu \mathrm{~V}$ RMS typical for $1 \mathrm{M} \Omega$, filter off and $340 \mu V$ RMS typical for 50Ω and $e_{n 2}=$ RMS Noise Voltage of input signal at trigger point measured with 350 MHz bandwidth.

Slew Rate Error (Seconds) =

Trigger Level Error (V) ${ }^{-1}$
Input Slew Rate at Trigger Point (V/s)

- ${ }^{1}$ Trigger level error $=$

All functions except Width and Events B During A	Positive Slope	Trigger accuracy X attenuation factor
	Negative Slope	(Trigger accuracy $\pm 10 \mathrm{mV}$) X attenuation factor
Width A	Start Edge	Trigger accuracy X attenuation factor
	Stop Edge	(Trigger accuracy + hyst) X attenuation factor
	Start Edge	(Trigger accuracy + hyst) X attenuation factor
	Stop Edge	Trigger accuracy X attenuation factor

Events B Same as Width, except each number is
During A multiplied by (Frequency B)
Note: Input hysteresis is typically $50 \mathrm{mV} p$-p attenuation.
$N=$ Number of events averaged.
The minimum number of averages is selected by the
Averages button and the up and down
buttons in decade steps from 1 to 10^{9}. At Channel A repetition rates above $\approx 250 \mathrm{~Hz}$, the actual number of averages will be:
$\mathrm{N}=[$ Frequency $\mathrm{A}(\mathrm{Hz}) \times 4 \mathrm{~ms}]+$ Averages.
$\mathrm{N}=$ Averages setting (below 250 Hz).
This calculation typically leads to better than expected resolution in the displayed answer for small N with only minimal impact on measurement time. It does mean, however, that Arming must be used where only $N=1$ is for signals $\geq 250 \mathrm{~Hz}$.
In the Auto mode, the counter measures with a fixed measurement time of about 300 ms (or the time for one event, whichever is greater).
$\mathrm{N}=$ Frequency $\mathrm{A}(\mathrm{Hz}) \times 0.3 \mathrm{~s}(\mathrm{~N}$ always $\geq 1)$.
Time Base Error - The sum of all errors specified for the time based used.

STANDARD HIGH STABILITY TIME BASE

 Crystal Frequency - 10 MHz .Temperature Stability $- \pm 2 \times 10^{-7} 0$ to $+50^{\circ} \mathrm{C}$ after warm-up.
Warm-Up Time $-+2 \times 10^{-7}$ of final frequency in 10 minutes when cold started at $25^{\circ} \mathrm{C}$.
Aging Rate $-\leq 1 \times 10^{-8} /$ day at time of shipment, $4 \times 10^{-8} /$ week after 30 days of continuous operation, $1 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability -Adjustable to within $\pm 2 \times 10^{-8}$.
REAR INTERFACE
Inputs - Arming; reset; external time base (1, 5, or 10 MHz), prescale.
Outputs - 10 MHz clock.

OTHER CHARACTERISTICS

Power Consumption-19.3 W.
GPIB Data Output Rate $-\approx 10$ readings/s maximum (DC 5010 only).

ORDERING INFORMATION

DC 5010 Programmable Universal Counter/Timer manual (070-3897-02); instrument interfacing guide ($070-4611-00$); reference guide (070-3553-00). DC 510 Universal Counter/Timer.

CONVERSION KIT (DC 510)
IEEE Standard 488 Capability Order 040-1023-06 $\quad \$ 215$

OPTIONAL ACCESSORIES

 See page 221.*The DC5010 complies with IEEE
Standard 488.1-1987 and Tektronix
Standard Codes and Formats.

MEASUREMENT INSTRUMENTS

SC 504

Dual-Trace
Oscilloscope

- 80-MHz Bandwidth
- 5-mV/div Maximum Sensitivity
- 5-ns/div Maximum Calibrated Sweep Rate
- Enhanced Automatic Triggering
- True X-Y Capability
- Switchable Rear-Interface Capability

MODULAR OSCILLOSCOPES

The family of Modular Oscilloscopes for the TM 500/TM 5000 family provides waveform capture and viewing capability in a compact size. The SC 503 is an analog storage oscilloscope for viewing non-repetitive or low-repetitive signals. The SC family provides an ideal, size-conscious solution to your signal viewing needs whether mounted in a rack or on an engineering bench.

OSCILLOSCOPE SELECTION GUIDE				
	SC 504	SC 503	SC 502	SC 501
Bandwidth (MHz)	80	10	15	5
Number of Channels	2	2	2	1
Sensitivity (mV/div)	5	1	1	10
Vertical Accuracy	$\pm 2 \%$	$\pm 3 \%$	$\pm 2 \%$	$\pm 3 \%$
Max Input Voltage: V (dc + peak ac)	ac) 250	350	350	350
V ($\mathrm{p}-\mathrm{p}$ at 1 kHz)	500	700	700	
Sweep Rate (/div)	50 ns to 2.2 s	500 ns to 2 s	200 ns to 5.5 s	$1 \mu \mathrm{~s}$ to 100 ms
With $\times 10 \mathrm{Mag}$	5 ns	50 ns	20 ns	NA
	21 Steps	21 Steps	20 Steps	
	1-2-5 Sequence	1-2-5 Sequence	1-2-5 Sequence	Decade Steps
Module Size	2 Wide	2 Wide	2 Wide	1 Wide
Recommended Probes 1X, P6106A; 10X, P6102A; 1X/10X, P6062B				
Price	\$5,295	\$4,995	\$3,295	\$2,995

ORDERING INFORMATION

SC 50480 MHz Oscilloscope (070-2296-00).
For Floating Measurements, order A6902B Isolator. See page 328 for complete description.

SC 504

The SC 504 is a general-purpose, dual-trace, nondelayed-sweep oscilloscope. It has a high writing speed with a maximum sensitivity of $5 \mathrm{mV} / \mathrm{div}$ and a maximum sweep rate of $5 \mathrm{~ns} / \mathrm{div}$ (with magnifier). This oscilloscope features Add (CH 1 plus CH 2), differential (CH 1 minus CH 2), and "true" $\mathrm{X}-\mathrm{Y}$ modes, and also includes rear-interfacing capability (switchable CH 1 , CH 2 , and ext trig inputs). Enhanced autotriggering, trigger view, and variable trigger holdoff make this oscilloscope very versatile and easy to use.

CHARACTERISTICS

VERTICAL DEFLECTION
Bandwidth At -3dB Points - dc to $>50 \mathrm{MHz}$ to $35^{\circ} \mathrm{C},>70 \mathrm{MHz}$ to $50^{\circ} \mathrm{C}$.
Rise Time -4.4 ns .
Accuracy $- \pm 2 \%,+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} ; \pm 3 \% 0$ to $50^{\circ} \mathrm{C}$.
Step Response Aberrations $- \pm 4 \%$ to $35^{\circ} \mathrm{C}$.
AC Coupled Low-Frequency Response $\leq-10 \mathrm{~Hz}$, 1 Hz with X10 probe
Deflection Factors -5 mV/div to 10V/div in a 1-2-5 sequence of 11 steps plus variable.
Input R\&C-1 $\mathrm{M} \Omega \pm 1 \%, 20 \mathrm{pF}$.
Maximum Input Voltage -250 V (dc + peak ac),
500 V p-p at 1 kHz .
CMRR (CH 1 minus CH 2) -> $00: 1$ at 1 MHz .
Calibrator $-0.6 \mathrm{~V} \pm 1 \%, \approx 1 \mathrm{kHz}$.
HORIZONTAL DEFLECTION
Time Base -0.2 s to $50 \mathrm{~ns} / \mathrm{div}$, 21 steps in a 1-2-5 sequence, plus X 10 magnifier to $5 \mathrm{~ns} /$ div.
Sweep Accuracy - 15 to $35^{\circ} \mathrm{C}$
$\mathrm{X} 1, \pm 3 \% ; \mathrm{X10}, \pm 4 \% ; 0.2 \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div;
$\mathrm{X} 1, \pm 2 \% ; \mathrm{X} 10, \pm 3 \% ; 20 \mathrm{~ms} /$ div to $0.2 \mu \mathrm{~s} / \mathrm{div}$;
$\mathrm{X} 1, \pm 3 \% ; \mathrm{X10}, \pm 4 \% ; 0.1 \mu \mathrm{~s} /$ div to $50 \mathrm{~ns} /$ div
\boldsymbol{X} - Y Mode Bandwidth - DC to 2 MHz
TRIGGERING
Coupling - DC, AC, AC LF REJ, HF REJ
Trigger Sensitivity (min p-p signal) DC Coupling

Source	$\leq 30 \mathrm{MHz}$	30 M to 80 MHz
Ch 1 and Ch 2	0.4 div.	1.5 div., 150 mV
Ext. Rear Int.	60 mV	100 mV to 50 MHz

Triggering Level Range - Ext $\geq 1.4 \mathrm{~V}$

AVAILABLE REAR CONNECTIONS

Z Axis In, Ch 1 Trig Out, Ch 1 \& Ch 2 In, Triged Gate Out, Trig In, Ramp Out, Ext Gate In, Sweep Gate Out, Gate Select In, Light Out, Intensity In, Hold Off Out, Reset In.

CRT

Phosphor-GH (P31)
Accelerating Potential - 12 kV
Graticule - 8X10 div (0.25 in./div) internal graticule lines.

MEASUREMENT INSTRUMENTS

SC 503

The SC 503 is a nondelayed－sweep，general－purpose analog storage oscilloscope that can be used to store and display waveforms after the input signal is removed．

Important storage applications of the SC 503 include measurement of signals in computer peripherals， communication terminals，and industrial control systems．

The SC 503 also features an autoerase mode that erases the stored signal and automatically retriggers the oscilloscope，and $X-Y$ capability．The $X-Y$ capability allows creation of Lissajous patterns in many cause－and－ effect testing relationships including：acoustic－speech testing，nerve－potential testing，and optical－stimulus－ response testing．

CHARACTERISTICS

VERTICAL DEFLECTION
Bandwidth at $\mathbf{- 3} \mathbf{d B}-5 \mathrm{mV}$ to $20 \mathrm{~V} / \mathrm{div},>10 \mathrm{MHz}$ ； $2 \mathrm{mV} / \mathrm{div},>7 \mathrm{MHz}$ ； $1 \mathrm{mV} / \mathrm{div},>5 \mathrm{MHz}$ ．
Rise Time $-35 \mathrm{~ns}, 5 \mathrm{mV}$ to $20 \mathrm{~V} /$ div．
Step Response Aberrations $- \pm 2 \%, \leq 3 \% ~ p-p$ ． AC Coupled Low－Frequency Response $-\leq 10 \mathrm{~Hz}$ 1 Hz with X10 probe．
Deflection Factors－1 mV／div to $20 \mathrm{~V} /$ div in a 1－2－5 sequence of 14 steps plus variable．

Accuracy－ 5 mV to $20 \mathrm{~V} / \mathrm{div}, \pm 3 \% ; 1 \mathrm{mV} / \mathrm{div}$ and

 $2 \mathrm{mV} / \mathrm{div}, \pm 5 \%$ ．Input R\＆C $-1 \mathrm{M} \Omega \pm 1 \%, 47 \mathrm{pF}$ ．
Maximum Input Voltage－ 350 V （dc＋peak ac）， 700 V p－p at 1 kHz ．
CMRR（CH 1 minus CH 2）－＞ $30: 1$ at 1 MHz
Channel Isolation $-\leq 2 \%$ to 10 MHz ．
Displayed Noise $-\leq 0.2 \mathrm{mV}$ p－p at $1 \mathrm{mV} / \mathrm{div}$ ．
Calibrator $-0.6 \mathrm{~V} \pm 1 \%$ ，$\approx 1 \mathrm{kHz}$ ．
Delay Line－Permits viewing leading edge of displayed waveform．

HORIZONTAL DEFLECTION
Time Base－Calibrated range from $500 \mathrm{~ns} / \mathrm{div}$ to $2 \mathrm{~s} /$ div， 21 steps in 1－2－5 sequence，X10 magnifier to $50 \mathrm{~ns} /$ div．
Sweep Accuracy＊1 ${ }^{* 1} \pm 4 \%, 2 \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~s} / \mathrm{div}$ ； $\pm 3 \%$ ， $0.2 \mathrm{~s} / \mathrm{div}$ to $5 \mu \mathrm{~s} / \mathrm{div}$ ； $\pm 4 \%, 2 \mu \mathrm{~s} / \mathrm{div}$ to $500 \mathrm{~ns} / \mathrm{div}$
$\boldsymbol{X}-\boldsymbol{Y}$ Mode Bandwidth－DC to 500 kHz
TRIGGERING
Coupling－DC，AC，AC LF REJ

Trigger				Sensitivity（min p－p signal）	DC Coupling
Source	$\leq 5 \mathrm{MHz}$	5 MHz to 10 MHz			
Ch 1 and Ch 2	0.4 div.	1 div			
Ext．Rear Int．	35 mV to 60 mV	80 mV to 150 mV			

Triggering Level Range－V Ext $\geq 1.2 \mathrm{~V}$ ，
Int ≥ 6 div．

AVAILABLE REAR CONNECTIONS

Z Axis In
Ch 1 \＆Ch 2 In
Trig In
Ext Gate In
Gate Select In
Intensity In
Reset In
Ch 1 Trig Out Triged Gate Out Ramp Out Sweep Gate Out Light Out Hold Off Out Erase Function

CRT

Phosphor－GX（P44）
Accelerating Potential－ 2 kV
Graticule－8X10 div（ 0.25 in ／div）internal graticule lines
STORAGE SYSTEM
Stored Writing Speed（Center 68

Divisions）－At least 80 div／ms（ $50 \mathrm{~cm} / \mathrm{ms}$ ）．
Erase Time－ 400 to 600 ms ．
Autoerase Viewing Time－Continuously variable from 0.5 to 5 s ．

Maximum Recommended Storage
 Time－ 4 hrs．

＇I Accuracy at 15° to $35^{\circ} \mathrm{C}, \mathrm{X} 1$ magnifier．Derate additional 1\％for X10 magnifier on，and an additional 1% for operation at 0° to $15^{\circ} \mathrm{C}$ and 35° to $50^{\circ} \mathrm{C}$ ．

ORDERING INFORMATION

SC $50310-\mathrm{MHz}$ Storage
Oscilloscope
Includes：Instruction manual （070－3438－00）．

SC 502
Dual-Trace Oscilloscope

- 15 MHz Bandwidth, Dual Trace
- 20 ns/Div Maximum Calibrated Sweep Rate
- 1 mV/Div Maximum Sensitivity
- Delay Line
- Trigger View, Variable Trigger Holdoff
- Enhanced Automatic Triggering

SC 502

The SC 502 is a compact general-purpose, 15 MHz dual-trace oscilloscope with high writing speed, a wide range of sweep rates, a wide range of deflection factors, and versatile triggering, including trigger view and enhanced automatic triggering.

The SC 502 is intended to be a powerful tool in the field servicing of digital equipment. The CRT of the SC 502 offers a high writing speed as an advantage in the display of digital information, while stable, clean triggering is assured by incorporating well-proven circuits. Thus, the SC 502 offers a unique combination of performance, compactness, and systems capability.

The rear-interfacing capability of the SC 502 and all TM 500/TM 5000 instrumentation suggests exceptional applicability to systems of built-in test equipment or rackmounted installations.

CHARACTERISTICS

VERTICAL DEFLECTION

Bandwidth at $\mathbf{- 3} \mathbf{d B}-5 \mathrm{mV}$ to $20 \mathrm{v} / \mathrm{div}$, $>15 \mathrm{MHz} ; 2 \mathrm{mV} / \mathrm{div},>10 \mathrm{MHz} ; 1 \mathrm{mV} / \mathrm{div}$. $>5 \mathrm{MHz}$.
Rise Time - 23 ns.
Step Response Aberrations $- \pm 2 \%$, $\leq 3 \mathrm{p}$-p.
AC Coupled Low-Frequency Response $\leq 10 \mathrm{~Hz}, 1 \mathrm{~Hz}$ with X10 probe.
Deflection Factors $-1 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$

SC 501
 Oscilloscope

- $5-\mathrm{MHz}$ Bandwidth
- Single Compartment Siz
-6.4-cm (2.5 in.) CRT

ORDERING INFORMATION

SC 502 15-MHz Oscilloscope	$\$ 3,295$
Includes: Instruction manual	
(070-1878-01).	
SC 501 5-MHz Oscilloscope	$\$ 2,995$
Includes: Instruction manual	
(070-1700-01).	

in a 1-2-5 sequence of 14 steps plus variable.
Input R\&C-1 M $\pm \pm 1 \%, 47 \mathrm{pF}$.
Accuracy -5 mV to $20 \mathrm{~V} / \mathrm{div}$, $<2 \%$; 1 mV to $2 \mathrm{mV} / \mathrm{div}$, <5\%.
Maximum Input Voltage - 350 V (dc + peak ac), $700 \mathrm{~V} p-\mathrm{p}$ at 1 kHz .

SC 501

The SC 501 is a single-channel, $5-\mathrm{MHz}$ plug-in-unit oscilloscope with a 2.5 -inch CRT display that occupies a single TM 500/TM 5000 series plug-in compartment.

Since the SC 501 fits any TM 500 or TM 5000 mainframe, it can be used on the bench, in a rack, or on the road.

Calibrated sweep rates are selected by pushbutton logic in decade steps from $1 \mathrm{~s} / \mathrm{div}$ to $100 \mathrm{~ms} / \mathrm{div}$. A variable control extends the slowest sweep rate to at least $1 \mathrm{~s} / \mathrm{div}$ and a fixed magnifier extends the fastest sweep rate to $200 \mathrm{~ns} / \mathrm{div}$.

A 0 to $10-\mathrm{V}$ ramp for all sweep rates (excluding the X5 magnification) is provided at a rear-interface connector.

CHARACTERISTICS

VERTICAL DEFLECTION:
Bandwidth - DC to $>5 \mathrm{MHz}$.
AC Coupled Low-Frequency Response $-\leq 2 \mathrm{~Hz}$.

CMRR (CH 1 minus CH 2) -> 30:1 at 1 MHz .
Channel Isolation $-\leq 2 \%$ to 15 MHz .
Displayed Noise $-\leq 0.2 \mathrm{mV}$ p-p at $1 \mathrm{mV} / \mathrm{div}$.
Calibrator $-0.6 \mathrm{~V} \pm 1 \%$, \approx twice power-line frequency.

HORIZONTAL DEFLECTION

Time Base - Calibrated range from $0.2 \mu \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~s} /$ div, 20 steps in 1-2-5 sequence, X10 magnifier to $20 \mathrm{~ns} / \mathrm{div}$.
Sweep Accuracy ${ }^{* 1}$ - $\pm 3 \%, 0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mathrm{~s} / \mathrm{div}$; $\pm 2 \%, 50 \mathrm{~ms} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$; $\pm 3 \%, 0.5 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mu \mathrm{~s} / \mathrm{div}$
X-Y Mode Bandwidth - DC to 2 MHz .
TRIGGERING
Coupling - DC, AC, AC LF REJ.
Trigger Sensitivity (min p-p signal) DC Coupling -

Source	$\leq 5 \mathrm{MHz}$	5 MHz to 15 MHz
Ch 1 and Ch 2	0.4 div.	1 div
Ext. Rear Int.	60 mV	150 mV

Triggering Level Range -Ext $\geq 1.2 \mathrm{~V}$, $\mathrm{Int} \geq 8$ div.
AVAILABLE REAR CONNECTIONS
Ext (Delayed) Gate In, Trig Gate Out, Gate Select In, Hold Off Out, Intensity In, Ramp Out, Ch 1 Trig Out.

CRT
Phosphor-GH (P31)
Accelerating Potential - 12 kV
Graticule - 8X10 div ($0.25 \mathrm{in} /$ div) internal graticule lines.
${ }^{-1}$ Accuracy at 15° to $35^{\circ} \mathrm{C}, \mathrm{X} 1$ magnifier. Derate additional 1\% for X10 magnifier on, and an additional 1% for operation at O° to $15^{\circ} \mathrm{C}$ and 35° to $50^{\circ} \mathrm{C}$.

Deflection Factors - $10 \mathrm{mV} / \mathrm{div}, 100 \mathrm{mV} /$ div, and $1 \mathrm{~V} /$ div continuously variable.
Accuracy - < 3\%.
Input R\&C-1 M $\Omega \pm 1 \%, 47 \mathrm{pF}$.
Maximum Input Voltage -350 V (dc + peak ac).
HORIZONTAL DEFLECTION:
Time Base - $1 \mu \mathrm{~s} / \mathrm{div}$ to $100 \mathrm{~ms} /$ div, X5 multiplier provides $200 \mathrm{~ns} / \mathrm{div}$.
Accuracy - $\leq 5 \%$ for all sweep rates.
AVAILABLE REAR CONNECTIONS
Ramp out , Vert in, Ext Trig, Ext Horiz.
CRT
Phosphor - GH (P31).
Accelerating Potential -1 kV .
Graticule - 6×10 div ($0.2 \mathrm{in} /$ div).

SI 5010

The SI 5010 Programmable Scanner switches and routes up to 16 high-frequency input and/or output signals. It maintains a clean 50Ω environment through the use of 50Ω coaxial reed relays. The softwareconfigurable basic four-channel arrangement allows the SI 5010 to be used for point-to-point switching (any connector to any other connector), or to be used in a wide variety of fan-in and/or fan-out configurations.
The SI 5010 has a built-in command buffer capable of storing up to 300 GPIB system commands and executing them in sequence. It is paced by the on-board time-ofday and pacing clock or by signals from the system under test. This requires no interference from the system controller, thus freeing the controller to direct activity elsewhere in the system. TTL compatible handshake lines are provided for externally controlling the SI 5010 .

CHARACTERISTICS

RF Connectors - 20 BNC connectors, 16 channels and four commons.
Control Input (Ext Trig) - TTL compatible.
Control Output Data Accepted (Ready)-TTL
compatible. Output goes high when relays have settled.
Channel Configuration (Software Selectable)-
$1,2,3$ or 4 groups of 4 channels. 2 groups of 8 channels. 1 group of 16 channels.
Frequency Response - Any 1 Group of $4: 3 \mathrm{~dB}$ at 350 MHz , decreasing to 6 dB at 500 MHz or greater. Any 1 Group of $8: 3 \mathrm{~dB}$ at 175 MHz or greater. Any 1 Group of $16: 3 \mathrm{~dB}$ at 80 MHz or greater.
Port (Channel) Isolation - 40 dB at 100 MHz .
Characteristic Impedance (Each Channel)50Ω. See VSWR specification.
Rise Time (Each Channel)-1 ns.

Voltage Standing Wave Ratio (VSWR)- Any 4
Channel Group: $1.25: 1$ at 100 MHz , increasing to $1.8: 1$ at 350 MHz . Any Other Combination: $1.5: 1$ at 100 MHz . $2: 1$ at 225 MHz .
Insertion Loss -1 dB at 100 MHz .
Channel Delay Matching - Any Group of 4:50 ps. Any Group of $8: 110 \mathrm{ps}$. Any Group of 16:310 ps.
Type of Relays -16 Form A, 4 Form "C". Pull-In Time: 3 ms . Release Time: 3 ms . Breakdown Voltage: 350 V (dc + peak ac). Series Path Resistance (End of Life): 0.5Ω
Peak Carry Voltage - Unterminated: 40 V maximum. 50Ω Terminated: 12.5 V maximum.
Peak Contact Current - 0.25 A maximum.
Peak Switching Voltages - Unterminated: 15 V maximum. 50Ω Terminated: 3.73 V maximum.
Peak Switching Current - 0.01 A maximum.

SINGLE COMPARTMENT WITH DEVELOPMENT BOARD (040-0652-05)

This kit comes without the power supply components or the pre-etched power supply circuit. The board includes the edge-connector interface and has about 35 square inches of board development area.

SINGLE COMPARTMENT WITHOUT BOARD (040-0821-03)

This kit comes without a board for applications where custom circuit boards are fabricated.

DUAL COMPARTMENT WITH DEVELOPMENT BOARDS (040-0754-07)

This kit has two development boards (30 and 35 square inches of development area) for applications requiring additional power, circuit area, or front panel space.

SI 5010
Programmable
Scanner/Multiplexer

- Command Bufter for

Controller-Free Operation

- Software configurable as: 1 Group of 16 Channels
2 Groups of 8 Channels
4 Groups of 4 Channels
- 350 MHz Bandwidth in 4-Channel Configuration
- External Handshake Lines
- Built-In Time-of-Day and Pacing Clock

CUSTOM PLUG-IN KITS

SINGLE COMPARTMENT WITH POWER SUPPLY BOARD (040-0803-02)

The kit includes parts and a pre-etched circuit board layout for (1) a ground-referenced positive and negative supply, capable of 7 to 20 V at up to 400 mA , and (2) a ground-reference supply, nominally 5 V , not adjustable, with up to 1 amp current capability. The circuit board includes the edge-connector interface and has about 30 square inches of 0.1 " grid perforated board with plated holes for circuit development (see below).

ORDERING INFORMATION

| SI 5010 Programmable |
| :--- | :--- |
| Scanner |$\$ 2,750$

Includes: Instruction manual

(070-3721-00); Instrument
interface guide; Reference guide.

RECOMMENDED PROBES

P6156 - 10X Passive
P6156 Opt. 28 -100X Passive
P6202A - FET
P6230 - Bias/Offset

ORDERING INFORMATION

Single Compartment with Power Supply Board -	
Order 040-0803-03	\$160
Single Compartment with	
Uncommitted Board -	
Order 040-0652-06	\$135
Single Compartment Without Board -	
Order 040-0821-04	\$70
Double Compartment with Two Boards -	
Order 040-0754-07	\$260
Rear-Interface Data Book -	
Order 070-2088-04	\$27
Flexible Extender Cable -	
Order 067-0645-02	\$470

[^34]四四

AA 5001／AA 501A Distortion Analyzers

－Fully Automatic：No Level Setting，Tuning，or Nulling．
－Level，Total Harmonic Distortion，and dB Ratio Measurements．
－Total System Harmonic Distortion plus Noise （THD＋N）0．0025\％（with Companion SG 5010／SG 505 Oscillators）．
－Residual Noise $\leq 3.0 \mu \mathrm{~V}$ ．
－Digital Readout plus Analog－ Like Bar Graph for Peaking and Nulling．
－IMD to SMPTE，DIN，and CCIF（Standard with AA 5001； Option 01 Required for AA 501A）．

AUDIO AND COMMUNICATION MEASUREMENT FUNDAMENTALS

Most measurements made below 100 kHz in the audio／communications world fall into two broad categories；level（amplitude）and non－linearity （distortion）．
Level measurements include：frequency response， gain／loss，noise level，or signal－to－noise（ S / N ）ratio， power，and crosstalk／separation／isolation．
Non－linearity measurements include：total harmonic distortion（THD，THD +N ），individual distortion， intermodulation distortion（IMD；standards include SMPTE，DIN，CCIF）．
Most of these measurements are stimulus／response measurements；that is，a suitable stimulus is applied to the input of the device under test and the measurement is then made at the output．Some of these are single measurements（power，noise level，distortion），some are the ratio of two single－point measurements（gain／loss， signal－to－noise ratio，crosstalk／separation／isolation），and many are sets of single point measurements（frequency response，THD vs frequency，IMD vs level，power vs frequency，crosstalk vs frequency，etc．）．It is very common to graph the results of the sets of measurements for further intepretation and analysis．With GPIB instruments this can be done relatively automatically．

The stimulus source required for all except IMD measurements is a＂simple＂，low－distortion sinewave oscillator．The signal is simple to describe mathemati－ cally；but it is not simple to design and build sinewave sources whose undesired output products are more than 100 dB below the desired sinewave output．Tektronix makes the best low frequency sinewave oscillators in the world in the SG 505 and the programmable SG 5010.

IMD testing requires two sinewaves combined together； we have also done that best for SMPTE and DIN IMD testing in the SG 505 Options 01 and 02．The SG 5010 goes a big step further by making it possible，for the first time，to do CCIF IMD testing as easily as other audio measurements．SMPTE，DIN，and CCIF intermodulation distortion measurements are described in the Tekronix Application Note 75 AX－4485．

Level（amplitude）measurements are typically made with an ac voltmeter．A digital multimeter is built into the AA 5001／AA 501A，removing the need for a separate voltmeter．
Important considerations include bandwidth（must be at least 20 Hz to 20 kHz and preferably extends to several hundred kHz ），detector response type（RMS preferred，but many older and less expensive instruments use average－ responding－RMS calibrated），sensitivity（must extend down toward the microvolt region for noise measure－ ments on state－of－the－art devices），input circuitry（must be true differential－balanced for rejection of common－ mode noise，so that you can use that sensitivity），and the human factors considerations of display type－analog meter vs digital numeric readout，manual vs autoranging， etc．The availability of filters to control the instrument＇s bandwidth，or sensitivity through the bandwidth，is important for rejection of extraneous noise and to provide noise measurements which correlate well with human perceptions of noise．

Whether the application is in the calibrating／verifying of low frequency oscillator products，base－band testing of satellite，microwave，and wire－line communications equipment，manufacturing of consumer audio products， or maintaining broadcast stations and recording studios， signal quality is of the utmost importance．

AA 5001／AA 501A

The AA 5001／AA 501A Distortion Analyzers provide fully automated measurement of level，total harmonic distortion plus noise（THD＋N），and intermodulation distortion（Option 01 for the AA 501A）．The AA 5001 adds GPIB compatibility plus programmability．

FULLY AUTOMATIC

Automatic measurement means that once the mode is selected and the test signal is applied，the operator simply reads the accurate result on the 3－digit display． Functions such as level setting，tuning，and nulling are fully automatic．

The AA 501A Option 01 adds intermodulation distortion measurement capability conforming to SMPTE，DIN，and CCIF standards．Internal circuitry automatically identifies the signal being used and performs the measurement，making IMD measurements as automatic as harmonic distortion measurements． These capabilities are standard in the AA 5001.

ADVANCED PERFORMANCE

The AA 5001／AA 501A provides dB－ratio measure－ ment referencing either to 774.6 mV （ 1 mW in 600 ohms ） or to a user applied signal．The 0 dB reference memory stores the selected level，and all subsequent measure－ ments are referenced to it．The user can choose true RMS or average response．While true RMS is generally more accurate，the averaging feature is convenient for comparison of new data with data taken on older instruments where averaging was the only mode available．

The fundamental frequency range is 10 Hz to 100 kHz ，with harmonic measurements to 300 kHz ．Any one of four built－in frequency－weighting filters can be switched into the signal paths for input signal precondi－ tioning．External filters can be simply connected for special applications such as stereo pilot tone rejection， rejection of continuous tone squelch signals in mobile radio systems，or for selection of individual harmonics instead of total harmonic distortion measurements．

An Input－Monitor connector and a Function－Output connector permit oscilloscope display of the input signal or the filtered signal input used in THD +N measurement．

CHARACTERISTICS

HARMONIC DISTORTION FUNCTION

Fundamental Frequency Range - 10 Hz to 100 kHz , automatically tuned to input frequency.
Distortion Ranges - Auto (100%), 20\%, 2\%, 0.2\%, and AB (autoranging).
Accuracy- 20 Hz to 20 kHz is within $\pm 10 \%$ ($\pm 1 \mathrm{~dB}$) for harmonics $\leq 100 \mathrm{kHz}$. 10 Hz to 100 kHz is within $+10 \%$ $(+1 \mathrm{~dB}),-20 \%(-2 \mathrm{~dB}$ for harmonics $\leq 300 \mathrm{kHz}$. (Accuracy is limited by residual THD +N and filter selection.)
Typical Fundamental Rejection - At least 10 dB below specified residual THD +N or actual signal THD, whichever is greater.
Minimum Input Level - 60 mV (-22 dBm).

LEVEL FUNCTION

Autoranging digital voltmeter displays input-signal level in volts, dBm, or dB ratios.
Modes - Volts, dBm (600Ω), or dB ratio with push-toset 0 dB reference.
Level Ranges - $200 \mu \mathrm{~V}$ full scale to 200 V full scale in ten steps, manual or autoranging.

Accuracy

Frequency	Volts	dBm or dB Ratio
20 Hz to 20 kHz	$\pm 2 \%$	$\pm 0.3 \mathrm{~dB}$
	$(+2$ counts $)$	$+0.5 \%$ of reading
10 Hz to 100 kHz	$\pm 4 \%$	$\pm 0.5 \mathrm{~dB}$
	$(+2$ counts $)$	$+0.5 \%$ of reading

*1 $\quad V i_{n} \geq 100 \mu V$, level ranging indicators extinquished. $\pm 0.2 \mathrm{~dB}$ at 1 kHz only. Flatness is $0.1 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz , and $\pm 0.3 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 100 kHz .

Bandwidth $-\geq 300 \mathrm{kHz}$.

Residual Noise $-\leq 3 \mu \mathrm{~V}(-108 \mathrm{dBm})$ with 80 kHz and 400 Hz filters, RMS response; (AA 5001, AA 501A and AA 501A Option 01) $\leq 1.5 \mu \mathrm{~V}(-114 \mathrm{dBm})$ with " A " weighting filter, RMS response (standard instruments only): $\leq 5 \mu \mathrm{~V}(-104 \mathrm{dBm})$ with CCIR weighting filter, quasi-peak response (Option 02 instruments only).

INTERMODULATION DISTORTION FUNCTION

 (AA 5001 and AA501A Option 01)Fully automatic SMPTE, DIN, and CCIF difference tone measurements. Minimum input level $60 \mathrm{mV}(-22 \mathrm{dBm})$. Accuracy $\pm 1 \mathrm{~dB}$. For IM Components $\leq 1 \mathrm{kHz}$.
SMPTE and DIN Tests - Lower Frequency Range: 50 to 250 Hz . Upper Frequency Range: Usable from 3 to 160 kHz . Level Ratio Range: 1:1 to $4: 1$ (Iower:upper). Residual IMD: AA $5001 \leq 0.0032 \%$ (-90 dB) with 60 Hz and 7 kHz or 250 Hz and 8 kHz test tones; $\leq 0.0025 \%$ for AA 501A.
CCIF Difference Frequency Test- Frequency Range: Usable from 4 to 160 kHz . Difference Frequency Range: 80 Hz to 1 kHz . Residual IIDD: $\leq 0.0018 \%$ (-95 dB) with 14 kHz and 15 kHz test tones (System specification with any SG 5010 Oscillator or passively summed SG 5050 scillator pair).

ALL FUNCTIONS

Displays $-31 / 2$-digits resolution at ≈ 3 readings/s.
Detection - Average or true RMS for waveforms with crest factors ≤ 3. Option 02 replaces average detector with quasi-peak detector complying with CCIR Recommendation 468-2 and DIN 45405 .
Filters - 400 Hz High Pass: -3 dB at $400 \mathrm{~Hz} \pm 5 \%$; $18 \mathrm{~dB} /$ octave slope, at least 40 dB rejection at 60 Hz . 80 kHz Low Pass: -3 dB at $80 \mathrm{kHz} \pm 5 \%$; $18 \mathrm{~dB} / \mathrm{cctave}$ slope.
30 kHz Low Pass: (AA 501A only) -3 dB at 30 kHz $\pm 5 \%$.
Audio Bandpass: (AA 5001 only) -3 dB at 22.4 Hz and 22.4 kHz , both $\pm 5 \%$. Complies with CCIR Recommendation 468-2 and DIN 45405.
"A" Weighting - Meets specifications for Type One sound-level meters (ANSI S1.4, IEC Recommendation 179). Option 02 replaces " A " weighting filter with CCIR weighting filter complying with CCIR Recommendation 468-2 and DIN 45405.
Ext - Allows connection of external filters.
Input Type - Balanced (full differential) Input Impedance - $100 \mathrm{k} \Omega \pm 2 \%$, each side to ground.
Maximum Input - 300 V peak, 200 V RMS either side to ground or differentially. Fully protected on all ranges.
Common-Mode Rejection - $\geq 50 \mathrm{~dB}$ at 50 or 60 Hz . Typically $\geq 40 \mathrm{~dB}$ to 300 kHz .
PROGRAMMABILITY (AA 5001 ONLY)
Function - (Level or THD or IMD). Level Mode (Volts or dBm). Input Level and Distortion Ranges (Auto-range or default to range selected by front-panel switches).
Detector Type - (RMS or AVG; or RMS or Q-PK on Option 02).
Filter Selection - (400 Hz Hi Pass, 80 kHz Low Pass, 22.4 Hz to 22.4 kHz Band-Pass, " A " Weight (or CCIR WTG on Option 02, Ext Filter).

FRONT-PANEL SIGNALS

Input Monitor - Provides constant-amplitude version of signal applied to input. Output Voltage: 1 V RMS $\pm 10 \%$ for input signals $>50 \mathrm{mV}$. Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Function Output - Provides a scaled sample of selected function signal. Output Voltage: $1 \vee \mathrm{RMS} \pm 3 \%$ for 1000 count display. Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Auxiliary Input - Provides input to detector circuit when Ext Filter button is depressed. Sensitivity: 1 V RMS $\pm 3 \%=1000$ count display. Impedance: $100 \mathrm{k} \Omega \pm 5 \%$, ac coupled.

ORDERING INFORMATION
AA 5001 Programmable Distortion Analyzer
Includes: Instruction manual
(070-4598-01); Instrument Interface Guide (070-4788-00);
Reference Guide (070-4597-00).
Opt. 02 -CCIR/DIN (includes Intermodulation Distortion) AA 501A Distortion Analyzer Includes: Instruction Manual (070-2958-00).
Opt. 01 - Intermodulation Distortion.
Opt. 02 -CCIR/DIN (includes Intermodulation Distortion)

[^35]
SG 5010/SG 505
 Low-Distortion
 Oscillators

- 10 Hz to 100 kHz Sine Wave Output
- Ultra-Low Distortion: 0.0008% THD (Typically 0.0003\%)
- Floating or Grounded Output
- 600Ω Source Impedance
- Vernier Frequency Control
- Fully Balanced Output to 28 dBm (SG 505 Option 02)
- Selectable Source Impedance (SG 505 Option 02)
- Intermodulation Test Signal (Options 01 and 02)

SG 5010/SG 505

The SG 5010 and SG 505 Oscillators generate an ultra-low distortion sine wave from 10 Hz to 163.8 kHz (SG 505 to 100 kHz) with less than 0.0008% and 0.0032% THD respectively. The THD is typically less than 0.0003% in the 20 Hz to 20 kHz range.

The SG 5010 offers the full benefits of TM 5000 configurability, GPIB compatibility, and compliance with Tektronix Standard Codes and Formats. It generates five waveforms: sine wave, square wave, SMPTE/DIN intermodulation test signal, CCIF intermodulation test signal, and sine wave burst. All of these signals may be swept in frequency or amplitude. The five-digit LED display indicates parameter values and units plus indicators for the remote and addressed states. Three source impedances are selectable and the output signal can be grounded or floating, balanced or unbalanced. Output amplitude is programmable from 0.2 mV to 21.2 V peak equivalent V RMS, supplying up to 28 dBm into a 600 ohm load.

On the SG 505, a FREQUENCY Hz dial provides frequency adjustment within each band. A FREQ VERNIER control permits extremely fine frequency adjustment ($\mathrm{to} \leq \pm 1 \%$) range. Distortion is less than or equal to 0.0008% from 20 Hz to 20 kHz . An OUTPUT LEVEL switch, calibrated in 10 dBm into a 600 ohm load, selects eight level steps at the OUTPUT. The SYNC OUT connector provides approximately 200 mV RMS fixed amplitude and ground-referenced sine wave signal at the same frequency as the OUTPUT.

The SG 505 Option 01 adds an intermodulation test function. The Intermodulation Test Signal pushbutton mixes an internally selectable 60 or 250 Hz sine wave with the normally selected frequency in a $4: 1$ amplitude ratio. The composite peak-to-peak amplitude is calibrated to be identical with the peak-to-peak amplitude of the OUTPUT signal in the normal oscillator mode.
The SG 505 Option 02 adds the Option 01 (intermod) and changes the SG 505 to have a balanced output with an amplitude range of +22 dBm to -68 dBm ; the variable attenuator provides a continuous adjustment from CAL. A front panel control selects a source resistance of 600,150 , or 50 ohms.

CHARACTERISTICS (SG 505)

MAIN OUTPUT

The following characteristics are common to the standard SG 505 and SG 505 with Option 01.
Frequency Range - 10 Hz to 100 kHz in four overlapping bands. Accurate within 3\% of dual setting (with Vernier at center). Vernier Range is at least $\pm 1 \%$ of frequency setting.
Calibrated Output - Selectable from +10 to -60 dBm into 600Ω in eight 10 dB steps. Accurate to within 0.2 dB at 0 dBm and 1 kHz . Step accuracy is 0.1 dB / 10 dB step. An uncalibrated control provides continuous variation from at least +2.2 dB to $<-10 \mathrm{~dB}$ from calibrated positon.

Amplitude Response - Level flatness $\pm 0.1 \mathrm{~dB}$ from 10 Hz to 20 kHz (1 kHz ref); within 0.2 dB from 20 to 100 kHz (excluding >-60 dB output-level range).
Harmonic Distortion - < 0.0008\% (-102 dB) THD from 20 Hz to 20 kHz (typically 0.0003%); 0.0018% (-95 dB) THD from 10 to 20 Hz , and from 20 to 50 kHz $0.0032 \%(-90 \mathrm{~dB})$ THD from 50 to $100 \mathrm{kHz}(\mathrm{R} \geq 600 \Omega)$.
Output Impedance - $600 \Omega \pm 2 \%$; floating or grounded through $\approx 30 \Omega$. Output impedance does not change with Output On/Off selection. Maximum floating voltage $\pm 30 \mathrm{~V}$ peak.
Maximum Output Voltage - At least 6 V RMS open circuit; 3.16 VRMS (+10 dBV or +12.2 dBm) into 600Ω. SYNC OUTPUT Signal - 200 mV RMS $\pm 20 \%$ sine wave to 20 kHz , at least 120 mV RMS at 100 kHz .
Frequency - Same as main output.
Impedance - Nominally $1 \mathrm{k} \Omega$, ground referenced and isolated from main output.

REAR INTERFACE SIGNALS

Buffered Main Output - Buffered version of actual output signals from front-panel connector. $\approx 600 \Omega$ output impedance.
Sync Output - Same as front-panel Sync Output except output impedance is $\approx 50 \Omega$.

SG 505 WITH OPTION 01 IM TEST SIGNAL

LF Frequency - Internally selectable $60 \mathrm{~Hz}(\pm 1 \mathrm{~Hz}$) or $250 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$.
Main Output - Composite p-p output within 0.2 dB of normal oscillator mode output.
Residual IMD - <0.0005\% from 2.5 to 10 kHz . Sync Output - LF signal component only, 200 mV RMS $\pm 20 \%$.

SG 505 WITH OPTION 02 BALANCED OUTPUT PLUS IM

Calibrated Balanced Output -Selectable from +22 to -68 dBm into 600Ω in ten 10 dB steps. Accurate to within 0.2 dB at +22 dBm and 1 kHz . Step accuracy is $\pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step or 20 dB step change. An uncalibrated control provides continuous variation from <-10 to +0.3 dB from calibrated position.
Harmonic Distortion - <0.0008\% (-102dB) THD from 20 Hz to 20 kHz (typically 0.0003%); 0.0018% (-95dB) THD from 10 to 20 Hz , and from 20 to 50 kHz ; $0.0056 \%(-85 \mathrm{~dB})$ THD from 50 to $100 \mathrm{kHz}(\mathrm{RL} \leq 600 \Omega$)
Output Impedance Selectable - $600 \Omega \pm 2 \%, 150 \Omega$ $\pm 2 \%$, or $50 \Omega \pm 3 \%$ floating or grounded through $\approx 30 \Omega$. Output impedance does not change with Output On/Off selection. Impedance to CT is $1 / 2$ the selected impedance. Maximum floating voltage $\pm 25 \mathrm{~V}$ peak.
Maximum Output Voltage - At least 21 V RMS open circuit; $19.45 \mathrm{VRMS}(+28 \mathrm{dBm}$) into 600Ω from 50Ω.
Balance $-\leq 0.5 \%$ mismatch of output open-circuit voltages referenced to CT for $f \leq 20 \mathrm{kHz}$ with output grounded.

CHARACTERISTICS（SG 5010）

AVAILABLE FUNCTIONS

Sine wave，square wave，SMPTE／DIN 4：1，SMPTE DIN 1：1，CCIF，Sine－Wave Burst，IHF Burst（ $\pm 20 \mathrm{~dB}$ or OFF between bursts），External Input（Amplifier Mode）．

FREQUENCY RANGE AND ACCURACY

Sine Wave，Sine－Wave Burst－SMPTE／DIN： 10 Hz to $163.80 \mathrm{kHz} \pm 0.01 \%$ ．CCIF Center Frequency： 2.500 to $163.80 \mathrm{kHz} \pm 0.01 \%$ ．Square Wave： 10 Hz to 16.380 kHz $\pm 0.01 \%$ ．
Resolution in Above Functions－ 10.00 to $163.80 \mathrm{~Hz}: 0.01 \mathrm{~Hz} ; 163.9 \mathrm{~Hz}$ to $1.6380 \mathrm{kHz}: 0.1 \mathrm{~Hz}$ ； 1.639 to $16.380 \mathrm{kHz}: 1.0 \mathrm{~Hz} ; 16.39$ to 163.80 kHz ： 10.0 Hz ．

SMPTE Lower Tone，CCIF Offset From Center Frequency－Selectable From：40，50，60，80，100，125， $250,500 \mathrm{~Hz}$ ，all $\pm 2 \%$ ．

Sine Distortion（Load 600Ω THD Including 2nd Through 5th Harmonics）－

20 Hz to $20 \mathrm{kHz}: 0.001 \% ~(-100 \mathrm{~dB})$ ．
20 to $50 \mathrm{kHz}: 0.0032 \%(-90 \mathrm{~dB})$ ．
10 to 20 Hz and 50 to $100 \mathrm{kHz}: 0.01 \%(-80 \mathrm{~dB})$ ． 100 to $163.8 \mathrm{kHz}: 0.032 \%(-70 \mathrm{~dB})$ any individual harmonic．
Sine Flatness－ 20 Hz to $20 \mathrm{kHz}: 0.05 \mathrm{~dB} ; 10 \mathrm{~Hz}$ to $163.8 \mathrm{kHz}: 0.2 \mathrm{~dB}$ ．
Square－Wave Rise Time－1．5 $\mu \mathrm{S} \pm 10 \%$ ．
Burst Range－ 1 to 65535 cycles 0n． 1 to 65535 cycles Off．Off Level either 20 dB or zero．All switching at sine－ wave zero crossing．Triggered，gated，or free－running burst modes available．

OUTPUT LEVEL RANGE AND ACCURACY

Balanced－Into Open Circuit： $200 \mu \mathrm{~V}$ to 21．2 V RMS
Into 600Ω ：-72.45 to $+28.05 \mathrm{dBm} .{ }^{.1}$
Unbalanced－Into Open Circuit： $200 \mu \mathrm{~V}$ to 21.2 V
RMS．Into 600Ω ：-72.45 to $+22.05 \mathrm{dBm} .{ }^{.1}$
Resolution－ 0.05 dB in dBm mode， 0.25% or better in volts mode．
Level Accuracy（Sine Wave）－ 20 Hz to 20 kHz $\pm 2 \%(0.2 \mathrm{~dB}) .10 \mathrm{~Hz}$ to $163.8 \mathrm{kHz} \pm 3 \%(0.3 \mathrm{~dB})$ ．
${ }^{{ }^{\prime}} R_{s}=50 \Omega$ ．For $R_{s}=150 \Omega$ ，subtract 1.25 dBm ；for $R_{s}=600 \Omega$ ，subtract 5.35 dBm ．

OUTPUT IMPEDANCE AND CONFIGURATION

$50 \Omega \pm 3 \%, 150 \Omega \pm 2 \%$ ，or $600 \Omega \pm 1 \%$ ，balanced or unbalanced，floating or grounded．
External Input－A floating single－ended input is provided for accessing the variable－gain stage and high－ level output amplifier，enabling the use of custom test signals．Input impedance is $20 \mathrm{k} \Omega$ ；a 2 V RMS input （ 2.83 V peak maximum）provides a calibrated output．

SYNC OUTPUT

A ground referenced TTL－compatible signal is provided that allows stable oscilloscope display of all functions．In sine and square wave modes，the output is at the signal frequency．In the IM modes，the sync output is at the lower or offset frequency．In both burst modes，the sync signal follows the burst envelope．

SWEEP MODE

Linear or logarithmic sweep of amplitude or frequency in any function．Sweep is composed of discrete steps．The following sweep functions are programmable via GPIB or from the front panel：swept parameter（frequency or amplitude），linear or log sweep，number of steps up to 99 ，time per step from 0.1 to 25 s ，start frequency or voltage，and stop frequency or voltage．Start and stop frequencies or voltages can be anywhere within the range of the generator，and sweep direction can be upward or downward．Pen lift and ramp outputs are available for interface to an analog plotter

STORED SETUPS

Ten different complete front－panel setups can be stored in the nonvolatile internal memory and recalled from front－panel pushbuttons or via the GPIB．Additionally，the front－panel settings at power down are retained and used at power up．

PROGRAMMABILITY

All functions，parameters，and modes can be controlled over the GPIB using simple English－like commands．All settings can be interrogated，with the resulting response usable as a command to return the instrument to that setting（Learn mode）．The GPIB address can be displayed and changed from the front panel．

ORDERING INFORMATION

SG 5010 Programmable	
Includes：Instruction manual	
（070－4331－00），Instrument	
Interface Guide（070－4790－00），	
Reference Guide（070－4330－00）．	
SG 505 Oscillator	\＄1，250
Includes：	
Instruction manual(070-2823-00).	
SG 505 OPTIONS	
Opt． 01 －IM Test Signal	＋\＄225
plus IM．Includes：Cable	
assembly for sync output	
SOFTWARE RECOMMENDATIONS	
EZ－TEST PC－Order S45F030	\＄1，995
IBM BASICA Program	
Available with GURU II	
ckage：AUDIODEM BAS．	

[^36]
AM 502
 Differential Amplifier

- Differential Gain
- 2\% Gain Accuracy
- 100 dB CMRR to 50 kHz
- Selectable Upper and Lower -3 dB Points
- Adjustable DC Offset
- DC to 1 MHz Maximum Bandwidth

AM 502 provides differential comparator capability to scopes with single-ended inputs.

ORDERING INFORMATION

AM 502 Differential Amplifier
\$1,795 Includes: Instruction manual (070-1582-01).

SIGNAL CONDITIONERS

TM 500 Signal Conditioners offer unique capabilities for solving electrical measurement and analysis problems. The compact portability and plug-in flexibility of these modules are applicable to a broad range of measurement needs including: preamplification of lowlevel signals, addition or removal of dc offset, integration, differentiation, filtering, summing of multiple signals, impedance transformation, level conversion (to 80 V peak-to-peak), current probe amplification and a unique time-interval to voltage converter

AM 502 DIFFERENTIAL AMPLIFIER/ COMPARATOR

The versatile AM 502 lets you control gain, dc offset, and low and high frequency response for maximum
 rejection of unwanted signals. The AM 502 is particularly suited to sensor signal amplification or applications where one side of the measured voltage is not ground. For example, the AM 502 can amplify small voltage drops across resistors to monitor current flow to the bandwidth of the amplifier. Adjustable dc offset before attenuation/ amplification allows high amplification even when low-level signals have a dc component. Adjustable filtering (with differential amplification) permits the AM 502 to emulate different loop filters on the differential phase comparator outputs in a phase locked loop design.

True vs. Pseudo Differential

The AM 502 is ideal for driving oscilloscopes, chart recorders, or other instruments that do not have differential inputs. One commonly used oscilloscope technique for differential measurements is the Add/Invert function (CH 1-CH 2). In addition to tying up both main inputs, this technique has limited dynamic range since sensitivity decreases with increasing common mode voltage. True differential amplifiers such as the AM 502 isolate small differential voltages riding on common mode voltages which are orders of magnitude larger.

Common mode voltages may also have a large ac component at the line or switching frequency. Differential amplifiers have matched " + " and " - " input pairs which are critical for ac common mode rejection. The AM 502 has a common mode rejection ratio of at least 100 dB up to 50 kHz . High CMRR translates to greater confidence that a measured differential voltage is not corrupted by a fluctuating common mode voltage. Matched differential probe pairs such as the P6055 are recommended as the signal path from the desired test points.

True Differential vs. Digital Processing

The AM 502 enhances the capabilities of both analog and digital storage oscilloscopes. Digital postprocessing capabilities such as wavetorm subtraction can simulate differential measurements between two simultaneously sampled signals. However, the dynamic range of digital waveform subtraction is typically limited by sampled data resolution (such as 8 -bit a/d converter results) rather than the precision of the subtraction algorithm. The AM 502 as a front-end to a digital oscilloscope insures that the digital conversion capability is applied to measuring the desired difference voltage rather than as a guard to a/d converter overflow for large common mode signals.

DC Offset vs. Oscilloscope Positioning

Alternatively, a scope's vertical position control can visually "offset" a waveform by bringing an off-screen signal into viewing range. While this apparently performs the dc offset function, its dynamic range is limited. The vertical positioning capability of most oscilloscopes is typically less than ± 20 vertical divisions. The AM 502's true dc offset effectively provides thousands of vertical divisions of offset.

CHARACTERISTICS

Gain - 100 to 100,000 , 1 to 1000 in $\div 100$ Mode; 1-2-5 sequence; accurate within 2%. Continuously variable gain between steps in uncalibrated mode.
$\boldsymbol{H F} \mathbf{- 3} \boldsymbol{d B}$ Point - Selectable in 9 steps (1-3 sequence) from 100 Hz to 1 MHz , Upper -3 dB point reduces to 500 kHz at $50 \mathrm{kgain} ; 250 \mathrm{kHz}$ at 100 kg gain.
$\boldsymbol{L F}-\mathbf{3} \boldsymbol{d B}$ Point - Selectable in 6 steps (1-10 sequence) from 0.1 Hz to 10 kHz ; ac coupling limits -3 dB point to 2 Hz or less.
Variable DC Offset - At least $\pm 1 \mathrm{~V}$. Equivalent to $\pm 100 \mathrm{~V}$ in $\div 100$ Mode.
Common-Mode Rejection Ratio - At least 100 dB , dc to $50 \mathrm{kHz} \div 100$ Mode: At least 50 dB , dc to 50 kHz . Maximum Input Bias Current $- \pm 100 \mathrm{pA}$ each input for $\mathrm{T} \leq 30^{\circ} \mathrm{C}$.
Maximum Voltage Drift - $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to input.
Maximum Noise - $\leq 25 \mu \mathrm{~V}$ (tangentially measured) referred to input.
Common Mode Voltage Range $- \pm 5 \mathrm{~V}, \div 100 \mathrm{Mode}$: $\pm 50 \mathrm{~V}$.
Maximum Safe Input Voltage - dc coupled: 15 V (dc + peak ac). $\div 100$ Mode dc coupled: 350 V (dc + peak ac). AC coupled: 350 V (dc +peak ac) with coupling capacitor precharged.
Input R and C-1 M Ω paralleled by $\approx 47 \mathrm{pF}$. Input impedance can be increased to a FET input via a simple internal jumper change.
Maximum Output $- \pm 5 \mathrm{~V}, \pm 20 \mathrm{~mA}$, output resistance is 5Ω or less.
Minimum Load Impedance - 250Ω.
Over-Range - Front-panel lamp indicates most overrange conditions.

TVC 501 TIME-INTERVAL TO VOLTAGE CONVERTER

The TVC 501 adds three measurement functions to a scope's voltage vs. time capability: time-delay vs. time, pulse-width vs. time, and period vs. time. The TVC
 continuously measures the timing parameter and instantaneously generates a voltage proportional to the measurement. Conversions are performed pulse-topulse without averaging. The TVC 501 provides seven vertical scales from 1μ sec to 1 sec per division. Up to 30,000 divisions of offset permits small timing variations to be viewed on events with large average values.

The continuous TVC output becomes another trace on a scope that can be correlated, measured, and analyzed with waveforms on other channels. Since the TVC generates voltages proportional to time-intervals, a scope can be set to trigger on timing violations such as a time-delay that exceeds a threshold or an incorrectly narrow pulse or glitch. See page 338 for detailed information.

AM 503/AM 503S CURRENT PROBE AMPLIFIER

The AM 503 Current-Probe Amplifier allows display of current on any oscilloscope having $10 \mathrm{mV} /$ div sensitivity, 50Ω or $1 \mathrm{M} \Omega$ input, and (for performance to full band-

AM503 Amplifier

 width) at least 100 MHz bandwidth. The amplifier attenuator has 12 calibrated steps in a 1-2-5 sequence, and the knob-skirt is illuminated to indicate current/division. See page 325 for detailed information. The AM 503/A6302 and AM 503/A6303 Current Probe Systems have a wide variety of applications from SCR and power-supply measurements to medical applications. These probes use inductive coupling to minimize interference with the circuit under test. By combining an oscilloscope, such as the SC 504 , with the AM 503/A6303 Current Probe Amplifier in a TM 500/TM 5000 mainframe, you will have a convenient and compact high-current amplification/measurement system.A current probe package is available (AM 503S) that includes the AM 503, A6302 (and/or A6303), and the 016-0362-02 Tool Box Module for probe storage, all in a TM 502A Power Module.

AM 501 OPERATIONAL AMPLIFIER

The AM 501 Operational Amplifier features high input impedance (FET), high slew rate, a wide range of input and output voltage, and high output current. The output

(40 V and 50 mA across 800Ω loads) can drive many electronic and electromechanical applications. This high-output unit has front-panel connectors that let you change configurations by selecting feedback components. The AM 501 is easily set up for differentiation, integration, summing, offsetting, and impedancetransformation problems.

The AM 501 is ideal for quickly prototyping circuits using the versatility of highgain operational amplifier blocks. The AM 501 's $V+$ and V - power is supplied by any TM 500 or TM 5000 mainframe eliminating the task of securing or dedicating a dual-output power supply. When used with the accessory board described below, the AM 501 permits rapid performance comparisons of different circuit topologies.

CHARACTERISTICS

Open Loop Gain - At least 10,000 at 60 Hz into 800Ω load.
Unity Gain Bandwidth - At least 5 MHz into 800Ω load.
Common-Mode Rejection Ratio - Typically
$>20,000: 1$ at 60 Hz for common-mode signals up to $\pm 40 \mathrm{~V}$.
Slew Rate - At least $50 \mathrm{~V} / \mu \mathrm{s}$ into an 800Ω load.
Input Bias Current - Typically $<500 \mathrm{pA}$ at $25^{\circ} \mathrm{C}$,
$<2 \mathrm{nA}$ at $50^{\circ} \mathrm{C}$.
Drift- $<100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Noise - <10 $\mu \mathrm{V}$ rms.
Maximum Differential Input Voltage-80 V.
Voltage Range - At least $\pm 40 \mathrm{~V}$ into $2 \mathrm{k} \Omega$.
Current Limit - At least $\pm 50 \mathrm{~mA}$.
Open Loop Output R- $\approx 150 \Omega$.

AM 501 AUXILIARY CIRCUIT BOARD KIT

The Auxiliary Circuit Board Kit attaches to the input and output terminals on the front of the AM 501 Amplifier. The pc board has six terminal studs that attach to the amplifier's banana jacks and is approximately 2.5inches square. The designer can configure a network of components for use in conjunction with the AM 501's input, output, or feedback circuits.

NEW TVC 501

Time-Voltage Converter

- Real-Time Scope Display of Time-Interval Variations vs. Time
- Time Delay, Pulse Width, and Period Measurements
- >2 Million Uninterrupted Event-by-Event Measurements/Second

AM 503/AM 503S Current Probe Amplifier

- Displays Current

Signals on an Oscilloscope

- DC to 50 MHz
bandwidth

ORDERING INFORMATION

TVC 501 Time-Voltage	$\mathbf{\$ 2 , 5 0 0}$
Converter. See page 338	
for further information	
AM 503 Current-Probe	$\mathbf{\$ 1 , 4 5 0}$
Amplifier.	
See page 325 for further	
information.	
AM 503S Current Probe	
System	$\mathbf{\$ 2 , 4 0 0}$
Includes: AM 503, A6302	
(calibrated to AM 503),	
Tool Box, TM 502A.	
See page 325 for further	
information.	

AM 501
Operational Amplifier
$\bullet \pm 40$ V, 50 mA Output

- Open-Loop Gain 10,000
- 50 V/fis Slew Rate
- Symmetrical Differential Design
- Optional Circuit Board to Customize Function

ORDERING INFORMATION

AM 501 Operational Amplifier $\$ 995$Includes: Instruction manual(070-1616-01).
AM 501 Auxiliary Circuit Board $\$ 33$

OSCILLOSCOPE CALIBRATION INSTRUMENTS

CG 5010
 CG 5011
 Calibration Generators
 －Vertical Gain
 OSCILLOSCOPE CALIBRATION INSTRUMENTS

－Horizontal Timing and Gain
－Vertical Bandwidth／Pulse
Response Characterlstics
－Probe Accuracy and
Compensation
－Current－Probe Accuracy
－Calibrator－Output Accuracy
－Next－Cal－Date Tracking

PRODUCT SUMMARY

The TM 5000／TM 500 line of modular Scope Calibration Instruments provides the solution to all of your scope calibration needs．

The CG 5010／CG 5011 fully programmable calibration generators can be used in a computerized system for calibration and verification of all major oscilloscope parameters．The CG 5010 is designed primarily for analog oscilloscope calibration，however，it can also be used for digital oscilloscope calibration and verification up to 500 MHz ．The CG 5011 is designed to cover bolh analog and digital requirements up to 2 GHz ．Both are

OSCILLOSCOPE CALIBRATION INSTRUMENT SELECTION GUIDE

Instrument	Primary Functions	Secondary Functions	Module Width					
CG 5010／CG 5011 Programmable Calibration Generator	Amplitude Calibration and Time Base Calibration	Testing risetime and transient response，attenuator compensation， non－linearity	3 Willoscope	\quad	SG 5030 Programmable Leveled Sinewave Generator	Bandwidth Calibration	Broadband sinewave generation	3 Wide
:---	:---	:---	:---					
PG 506A Calibration Generator	Amplitude Calibration	Testing risetime and transient response，attenuator compensation	1 Wide					
TG 501A Time Mark Generator	Time Base Calibration	Testing oscilloscope nonliearity	1 Wide					
SG 502 Oscillator	LF Response \＆Triggering	Low distortion leveled signal source	1 Wide					
SG 503 Leveled Sinewave Generator	Bandwidth Calibration	General leveled RF signal source	1 Wide					
SG 504 Leveled Sinewave Generator	Bandwidth Calibration	General leveled RF signal source with frequency modulation capability	1 Wide					

ideally suited for environments where multiple scopes are maintained，and both are complemented by the new SG 5030 Programmable Leveled Sinewave Generator for oscilloscope bandwidth calibration．

In addition to the programmable instruments，TM 500 offers a complete set of manual calibration instruments that can be configured into a portable test set for in－field oscilloscope service and calibration．These TM 500 Oscilloscope Calibration instruments offer the widest range of standard amplitude square waves，fastest risetimes，lowest aberrations，fastest time marks and widest frequency range of leveled sine waves available in one package．
The TG 501A Time Mark Generator provides time marks from 5 s to 1 ns ，plus a variable timing output which allows you to read the scope＇s percentage timing error directly on a digital display．

The PG 506A Calibration Generator provides clean， fast－rise square waves and calibrated－amplitude square waves for checking oscilloscope transient response and for setting the vertical－amplifier gain of the oscilloscope respectively．Like the TG 501A，the PG 506A has a variable mode of operation which allows you to read the oscilloscope＇s calibration error directly in percent from its digitial display．

The SG 503 and SG 504 generators provide leveled sine waves for bandwidth checks and triggering performance checks．The range of the SG 503 is 250 kHz to 250 MHz ，while the range for the SG 504 is from 245 to 1050 MHz

The SG 502 Oscillator is perfect for calibration applications where verification of low－frequency rolloff in ac modes and performance measurement of low－ frequency－reject triggering modes is required．
＊The CG 5010／5011 Calibration Generators comply with IEEE
Standard 488．1－1987 and Tek
Standard Codes and Formats．

CG 5010／CG 5011

The Tektronix CG 5010／CG 5011 Programmable Oscilloscope Calibration Generators can be used as a part of a computerized system for the calibration and verification of major oscilloscope parameters．

The CG 5010／CG 5011 are three－wide TM 5000 compatible plugins which feature a wide range of functions，all programmable by controller via the GPIB or
from the front panel．A＂Learn＂mode allows any manually set function or range to be acquired by a controller．Subsequent use of the resulting program requires a minimum of operator skill and makes data logging an automatic operation．
A CG 5010／CG 5011 computer－based test and calibration system can provide step by step instructions to the operator and archiveable documentation， significantly reducing the skill level and／or time required for scope maintenance．
The CG 5010／CG 5011 can be used in conjunction with the optional Comparator Head to calibrate built－in oscilloscope calibrators．Both the oscilloscope calibrator and the CG 5010／CG 5011 signals are applied to the Comparator Head and simultaneously displayed on the scope＇s CRT．The CG 5010／CG 5011 signals are then varied to obtain congruent displays．Errors are automatically displayed on the readout．

The Remote Variable option，the Units／Div，Variable－ Fixed button，the Continue push－button，and the VAR allow remote operation of the system．

The CG 5010／CG 5011 is designed to greatly reduce your maintenance costs．Built in self test routines and hardware check the operation of all major circuits each time power is turned on．

CHARACTERISTICS

VOLTAGE (AMPLITUDE MODE)
The standard voltage is used to calibrate vertical display accuracy.
Range $-40 \mu \mathrm{~V}$ to $200 \mathrm{~V}, 1 \mathrm{M} \Omega$ load; $40 \mu \mathrm{~V}$ to 5 V , 50Ω load (1-2-5 steps with multiplier).
Multipliers - 1, 2, 3, 4, 5, 6, 8, or 10 .
Polarity - Positive from ground.
Aberrations - Less than $\pm 15 \%$ of Amplitude ($\pm 10 \mathrm{mV}$).
Accuracy $- \pm(0.25 \%+1 \mu \mathrm{~V})$.
Frequency - $40 \mu \mathrm{~V}$ to $80 \mathrm{mV}: 10 \mathrm{~Hz}$ to 10 kHz .100 mV to 10 V : +dc or $-\mathrm{dc}, 10 \mathrm{~Hz}$ to 100 kHz .12 V to 200 V : + dc or - dc, 10 Hz to 10 kHz .
Variable Range - $\pm 9.9 . \%$
CURRENT (AMPLITUDE MODE)
The standard current is used to calibrate current probes.
Range -1 mA to 100 mA (1-2-5 sequence).
Multipliers - 1, 2, 3, 4, 5, 6, 8, or 10 .
Aberrations - Less 5\% of period and less than $\pm 15 \%$ of Amplitude ($\pm 100 \mu \mathrm{~A}$).
Accuracy $- \pm(0.25 \%+2 \mu \mathrm{~A}$.).
Frequency - Dc or 10 Hz to 1 MHz (decade steps).
Droop- $\leq 1 \%$ p-p.
Variable Range - $\pm 9.9 \%$
LOW EDGE AND HIGH EDGE (AMPLITUDE MODE)
The Low Distortion Pulse obtained in this mode is used to test oscilloscope input amplifier and attenuator compensation.
Range - 20 mV to 1 V p-p 50Ω, Low Edge
1.2 V to 100 V p-p $1 \mathrm{M} \Omega$ load, High Edge (1-2-5 steps with multipliers).
Multipliers - 1, 2, 3, 4, 5, 6, 8, or 10 .
Aberrations - $\pm 2 \%$ of square wave Amplitude
Accuracy - $\pm 3 \%$.
Polarity - Positive or negative transitions to ground (Low Edge). Positive transitions only (High Edge).
Risetime/Falltime $-\leq 1.3 \mathrm{~ns}$ (Low Edge). $\leq 100 \mathrm{~ns}$ (High Edge).
Long Term Flatness - $\pm 0.5 \%$ after first 500 ns (Low Edge). $\pm 0.5 \%$ after first 10 ns (High Edge).
Frequency - 10 Hz to 1 MHz in decade steps. (Low Edge). 10 Hz to 100 kHz in decade steps. (High Edge).
Variable Amplitude Range - $\geq \pm 9.9 \%$ from nominal.
MARKERS (TIMING MODE)
The markers obtained in this mode are used to calibrate oscilloscope time bases.
Range - 10 ns to 5 s (CG 5010 only); 0.5 ns to 5 s (CG 5011 only) (1-2-5 steps).
X10 Magnifier - Increases marker rate by a factor of ten (0.1 us to 5 s range only).
Accuracy -0.01%. With Opt. $01, \pm 0.0003 \%\left(+15^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$).

Amplitude (CG 5010)-1 V minimum into 50Ω. (CG 5011)- 1 V minimum 5 s to $2 \mathrm{~ns}, 350 \mathrm{mV}$ minimum: $1 \mathrm{~ns}, 100 \mathrm{mV}$ minimum: 0.5 ns .
Variable Range - ± 9.9.
SLEWED EDGE (TIMING MODE - CG 5010 ONLY)
Slewed Edges are used to calibrate the very fastest ranges found on analog oscilloscope time bases.
Ranges - 0.4 ns and .5 ns to 100 ns ($1-2-5$ steps).
X10 Magnifier - Increases Slewed Edge rate by a factor of ten (5 ns to 100 ns range only).
Accuracy -0.01%. With Opt. $01 \pm 0.0003 \% ~\left(+15^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$).
Edge Position Uncertainty - $\pm 40 \mathrm{ps}$.
Amplitude - 1 V into 50Ω
Variable Range - ± 9.9 \%
TRIGGER OUTPUT
The oscilloscope under test is normally triggered externally from this source.
Output Amplitude - 1 V minimum into 50Ω.
Trigger Rate (Marker Mode) - Normal: Slaved to marker rate from 100 ns to 5 s ; remains at 100 ns for faster markers. Divided by 10: Reduces normal trigger rate by a factor of ten. Divided by 100: Reduces normal trigger rate by a factor of one hundred.
Slewed Edge Mode - One trigger per slewed edge. All Other Modes - Normal: Slaved to output frequency. Divided by 10: One-tenth output frequency. Divided by 100: One-hundredth output frequency.

REFERENCE FREQUENCY

Output Frequency - 1 MHz with internal time base accuracy.
Output Amplitude - TTL compatible.
Input Frequency - 1, 2, 3, 4 or 5 MHz .
Input Amplitude - 1 V to 10 V RMS
Required Accuracy - $\pm 0.001 \%$.
FAST EDGE (AMPLITUDE MODE)
The Pulse Head is used to generate fast rise, lowdistortion pulses for testing higher bandwidth vertical amplifiers.
Polarity - Positive or negative transitions from ground.
Risetime $-\leq 150 \mathrm{ps}$.
Aberrations - $\pm 3 \%$ of pulse amplitude; not to exceed 4\% p-p for adjacent peaks.
Frequency - 100 Hz to 100 kHz (decade steps)
Amplitude - 1.1 V peak $\pm 5 \%$ into 50Ω.
Variable Range $- \pm 10 . \%$
GENERAL
Environmental - Operating. $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Non-Operating $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power Consumption - 65 VA.

ORDERING INFORMATION

CG 5010 Programmable Calibration Generator	\$17,500
Includes: Output cable assembly	
(012-0884-00); Pulse head	
(015-0611-00); Instrument	
Instruction manual (070-7745-00).	
Programmer's Reference Manual	
(070-7748-00); Service Manual	
(070-7746-00)	
CG5011 Programmable	
Calibration Generator. \$	\$18,995
Includes: Same as above Opt 01 - Adds High Stahility	
Time Base	+\$650
Opt. 02 - Deletes Pulse Head -	-\$1,100
OPTIONAL ACCESSORIES	
Comparator Head - Order	
015-0310-01.	\$885
Remote Variable - Order	
015-0309-01.	\$590
Pulse Head - (When purchased	
separately.) Order 015-0311-01.	\$1,935
Rigid Circuit Board Extender -	
Order 067-0975-00.	\$170
Flexible Circuit Board Extender -	
Trouble Shooting Aid - Order	
067-0974-00.	\$585

SG 5030

Leveled Sinewave Generator

- Oscilloscope Bandwidth Calibration
- 0.1 Hz to 550 MHz
- 4.5 mV to 5.5 V Amplitude Range
- Amplitude Flatness From $\pm 1.5 \%$ to $\pm 4 \%$ of 50 kHz Reference Frequency
- 20 Stored Front Panel Settings

SG 5030

The SG 5030 is the only choice for anyone who needs leveled output amplitude to calibrate analog or digital scopes with bandwidth to 550 MHz - under either local or programmable control. That's because no other programmable leveled sine wave generator is built specifically to fill scope calibration requirements. The SG 5030's leveled output is variable from 0.1 Hz to 550 MHz with a reference frequency of 50 kHz . Crystalcontrolled frequency accuracy eliminates drift so there's no second-guessing results.
Accurately calibrated output voltage is provided from 4.5 mV to 5.5 V peak-to-peak into 50Ω. Absolute amplitude accuracy is $\pm 1.5 \%$ from 0.1 Hz to 50 kHz , with flatness from ± 1.5 to $\pm 4 \%$ over the remainder of the frequency range to 550 MHz .

GPIB *
IEEE-488

ORDERING INFORMATION

SG 5030 - Programmable Leveled	
Sine Wave Generator	
S	
Includes: Operators Manual	
(070-7705-00), Instrument	
Interfacing Guide ($070-7704-00$),	
Reference Guide (070-7706-00),	
Leveling Head (015-2350-00).	
OPTIONAL ACCESSORIES	
Instruction Manual-	
Order 070-7703-00.	

*The SG 5030 complies with IEEE Standard 488.1-1987 and with Tektronix Standard Codes and Formats.

A remote leveling head is standard and plugs directly into the oscilloscope to ensure that the output signal is level at all times. All other signal generators are specified at the front-panel BNC connector, not at the end of the cable going to the instrument under test

Frequency and amplitude along with 20 front-panel store/recall settings are all fully programmable. Automating test procedures makes scope calibration some four times faster than manual test methods allow and virtually eliminates the risk of operator error

Configure the SG 5030 with a CG 5010 or CG 5011 Programmable Calibration Generator. As three-wide TM 5000 Series modules, they conveniently fill a six-slot TM 5006A mainframe to form a complete, cost-effective benchtop or rackmount calibration system.

CHARACTERISTICS

FREQUENCY

 Range/Resolution -$0.1 \mathrm{~Hz}-4.9999 \mathrm{kHz}: 0.1 \mathrm{~Hz}$ steps
$5 \mathrm{kHz}-49.999 \mathrm{kHz}: 1 \mathrm{~Hz}$ steps
50 kHz - $550 \mathrm{MHz}: 10 \mathrm{~Hz}$ steps

Accuracy With Internal Timehase (within 1 year of adjustment) -

Range \quad ppm of Setting +Hz
$0.1 \mathrm{~Hz}-4.9999 \mathrm{kHz}: \pm(3+0.06)$
$5 \mathrm{kHz}-49.999 \mathrm{kHz}: \quad \pm(3+0.3)$
$50 \mathrm{kHz}-550 \mathrm{MHz}: \quad \pm(3+3)$

Accuracy With External Timebase (10 MHz) -

$0.1 \mathrm{~Hz}-4.9999 \mathrm{kHz}: \pm$ (ext. t.b. error +0.06 Hz)
$5 \mathrm{kHz}-49.999 \mathrm{kHz}: \pm$ (ext. t.b. error +0.3 Hz)
$50 \mathrm{kHz}-550 \mathrm{MHz}: \pm$ (ext. t.b. error +3 Hz)

AMPLITUDE
 Range/Resolution -

$4.5 \mathrm{mV}-55 \mathrm{mV}: 0.02 \mathrm{mV} /$ step
$55.2 \mathrm{mV}-550 \mathrm{mV}: 0.2 \mathrm{mV} /$ step
$552 \mathrm{mV}-5.5 \mathrm{~V}: 2 \mathrm{mV} /$ step
$-42.95 \mathrm{dBm}-+18.75 \mathrm{dBm}: 0.05 \mathrm{dBm} /$ step
Accuracy (within 1 year of adjustment) -
$0.1 \mathrm{~Hz}-50 \mathrm{kHz}: \pm 1.5 \%$ of setting
Flatness (within 1 year of adjustment) -
$50 \mathrm{kHz}-100 \mathrm{MHz}: \pm 1.5 \%$ of 50 kHz Ref. Frequency
$100 \mathrm{MHz}-250 \mathrm{MHz}: \pm 3 \%$ of 50 kHz Ref. Frequency
$250 \mathrm{MHz}-550 \mathrm{MHz}: \pm 4 \%$ of 50 kHz Ref. Frequency
OUTPUT
Leveling Settling Time - Less than 20 ms
Source Resistance - $50 \Omega, \pm 1 \%$
DC Offset $- \pm 20 \mathrm{mV}$
VSWR - Less than 1.2:1 up to 550 MHz

HARMONIC DISTORTION

0.1 Hz - $\mathbf{4 9 . 9 9 9} \mathbf{~ k H z}$-All Harmonics and Spurs $<-50 \mathrm{dBC}$
$\mathbf{5 0} \mathbf{~ k H z} \mathbf{- 5 5 0} \mathbf{~ M H z}$ - 2nd Harmonic <-30 dBc. All
others <-35 dBc. Nonharmonics <-40 dBc. Phase Noise $<-85 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset.

INTERNAL TIMEBASE OUTPUT
Frequency - 10 MHz
Accuracy - $\pm 3 \mathrm{ppm}$
Amplitude -400 mV p-p into 50Ω
Impedance - 50Ω
EXTERNAL TIMEBASE INPUT
Frequency $-10 \mathrm{MHz}, \pm 1.5 \mathrm{ppm}$
Amplitude - -10 dBm to +10 dBm , (70 to 700 mV rms)
Impedance -50Ω ac, $500 \Omega \mathrm{dc}$
GENERAL
Environmental - Operating $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Non-operating $-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Power Consumption - 65 VA

OSCILLOSCOPE CALIBRATION INSTRUMENTS

SG 502

The SG 502 Oscillator features a wide frequency range of 5 Hz to 500 kHz with low distortion (0.035\% between 20 Hz and 50 kHz) and is desirable for general test purposes. Other SG 502 features include 70 dB amplitude control plus a simultaneous fixed-amplitude square wave.

CHARACTERISTICS

Frequency Range - 5 Hz to 500 kHz in 5 -decade steps. Frequency accuracy within 5% of dial setting from 5 Hz to 50 kHz ; within 10% of dial setting from 50 to 500 kHz .
Amplitude Response (1 kHz Reference)- Flatness: 0.3 dB over entire range.

Attenuation - Selectable from 0 to 70 dB in $10-\mathrm{dB}$

SG 503
The SG 503 Signal Generator provides a leveled output that is variable in frequency from 250 kHz to 250 MHz . The selected frequency is indicated by a built-in autoranging frequency counter with a three-digit LED readout on the front panel. Accurately calibrated output voltage is variable from 5 mV to 5.5 V peak-to-peak into 50Ω.
CHARACTERISTICS Frequency Range 250 kHz to 250 MHz , plus 50 kHz reference frequency.

SG 504

The SG 504 Signal Generator provides leveled output amplitude and is variable from 245 to 1050 MHz in two bands via its compact output leveling head. Frequency is indicated by a high-resolution tape dial that expands each band over 28 inches. The accurately calibrated output voltage is variable from 0.5 V to at least $4.0 \mathrm{~V} p-\mathrm{p}$ into 50Ω.

CHARACTERISTICS
Frequency Range - Low Band: 245 to 550 MHz . High Band: 495 to 1050 MHz , plus 50 kHz or 6 MHz reference frequency (internally selected).
steps with pushbuttons. Accurate within 0.2 dB for each step selected, additive. An uncalibrated control provides continuous variation from 0 to 40 dB .
Harmonic Distortion - <0.035\% (70 dB) from 20 Hz to $50 \mathrm{kHz} .<0.15 \%$ from 50 to $500 \mathrm{kHz} \mathrm{RL} \geq 600 \Omega$.
Maximum Output Voltage - 5 V RMS open circuit; 2.5 V RMS into 600Ω.

Output Impedance - 600Ω, grounded.

SQUARE WAVE

Frequency Range and Accuracy - Same as sine wave. The square wave switches on the 0° phase of sine out.
Rise Time and Fall Time - 50 ns or less.
Amplitude - +5 V , fixed, open circuit.
Output Impedance - 600Ω, grounded.

SYNC INPUT

Oscillator can be synchronized to external signal. Sync range, the difference between sync frequency and set frequency, is a linear function of sync voltage.
Input Impedance - $10 \mathrm{k} \Omega$.
Frequency Accuracy - Within ± 0.7 of one count of the least significant digit of indicated frequency.
Amplitude Range - 5 mV to 5.5 V p-p into 50Ω termination in three decade ranges.
Amplitude Accuracy (50 kHz Reference) - Within 3% of indicated amplitude on (X1) range, 4\% on (X.1) range, and 5% on (X.01) range.
Flatness (P-P) - From 250 kHz to 100 MHz , output amplitude will not vary more than 1% of the value at 50 kHz except that up to $+1.5 \%,-1 \%$ variation may occur between 50 and 100 MHz on amplitude multiplier X. 1 and X. 01 ranges only. From 100 to 250 MHz , amplitude variation is within 3% of the value at 50 kHz .
Harmonic Content - Second Harmonic: At least 35 dB down. Third Harmonic and All Higher Harmonics: At least 40 dB down.
Rear Interface - Addresses the leveling circuit.
Frequency Accuracy $- \pm 2 \%$ of dial indication. Amplitude Range - 0.5 V to at least $4.0 \mathrm{Vp}-\mathrm{p}$. Amplitude Accuracy (At Reference) - Within 3\% of indicated amplitude.
Flatness - $\pm 4 \%$ of amplitude at reference frequency.
Harmonic Content - Second Harmonic: At least 25 dB down. Third Harmonic and All Higher Harmonics: At least 40 dB down.
FM Input - Frequency Range: DC to 100 kHz . Deviation Sensitivity: $\pm 9 \mathrm{~V}$ produces from 0.05% to 0.5% deviation of carrier, depending on output frequency.
Frequency Monitor Output $-\geq 0.3 \mathrm{~V} p-\mathrm{p}$ into a 50Ω load from 245 to 1050 MHz .
Rear Interface - Address FM input, frequencymonitor output, and amplitude control.

SG 502

Oscillator

- 5 Hz to $500-\mathrm{kHz}$ Sine Waves and Square Waves
- Low-Distortion Sine Wave
-5 V RMS Open Circuit - 600 Ω Source
- O to 40 dB Output Variable Plus 0 to 70 dB in 10 dB Steps

ORDERING INFORMATION

SG 502 Oscillator
$\$ 1,650$
Includes: Instruction manual
(070-1430-01).

SG 503

Leveled
Sinewave Generator

- 250 kHz to 250 MHz
- Leveled, Variable Output
- Digital Readout of Frequency

ORDERING INFORMATION

SG 503 Signal Generator $\$ 3,595$ Includes: Three-foot precision
50 cable (012-0482-00);
Instruction manual
(070-6770-00).

SG 504
Leveled Sinewave Generator

- 245 to 1050 MHz
- Leveled, Variable Output
- Frequency-Modulation Capability
- Internal Peak Detection

ORDERING INFORMATION

```
SG 504 Signal Generator
$4,950
Includes: Instruction manual
(070-1632-01); Leveling head
(012-0282-01).
```


OSCILLOSCOPE CALIBRATION INSTRUMENTS

PG 506A

Calibration Generator

- Three Square-Wave Output Modes
- 10 Hz to 1 MHz
- Direct Readout of Oscilloscope Deflection Error

ORDERING INFORMATION

PG506A Calibration Generator Includes: Instruction manual (070-6687-00). OPTIONAL ACCESSORIES	\$3,795
Precision Voltage Divider -	
Order 015-0265-00.	\$295
Tunnel-Diode Pulser -	
Order 067-0681-01.	\$340

TG 501A

Time Mark Generator

- Marker Outputs, 1 ns to 5 s
- Direct Readout of Oscilloscope Timing Error
- External Trigger Output

ORDERING INFORMATION

TG 501A Time Mark Generator $\$ \mathbf{3 , 2 9 5}$ Includes: Instruction manual (070-1576-02)

PG 506A
The PG 506A Calibration Generator provides three modes of square wave output, selectable dc outputs, and a variableamplitude output with front panel digital indication of oscilloscope deflection error. Simultaneous, plus and minus low-level, fastrise (1.0 ns) square waves or high-amplitude (60 V), extremely clean square waves are available at frequencies from 10 Hz through 1 MHz for checking oscilloscope transient response. A 5 mA calibration current loop is useful for current probe calibration. A 1 kHz square wave can be generated in the amplitudecalibration mode. Its amplitude can be varied around the calibrated level until the square wave aligns with the oscilloscope graticule divisions. Scope deflection error can then be read directly off the PG 506A digital display in percentage high or low, permitting rapid verification of oscilloscope performance.

An optional Tunnel-Diode Pulser provides a clean, fast-rise pulse for adjusting the transient response of high frequency oscilloscopes and other instruments. It can be driven by the PG 506A at repetition rates exceeding 50 Hz . Output amplitude of the pulse is approximately 250 mV into 50 ohms, while rise time is less than or equal 125 ps; aberrations are less than 1% in a 1 GHz system.

The optional Precision Voltage Divider is designed for use with the PG 506A in the Standard Amplitude mode. This 4 divider allows your oscilloscope to display a constant four divisions when checking amplitude calibration from $20 \mu \mathrm{~V} /$ div through $1 \mathrm{~V} / \mathrm{div}$. It also allows more convenient use of the PG 506A with oscilloscopes that cannot display five divisions of amplitude. The input limit on the instrument is 5 V RMS. The output is 0.4 X the PG 506A amplitude with a voltage accuracy of 0.4%. The input capacitance requirement is 50 ohms with an output load greater than or equal to 100 kohms.

CHARACTERISTICS

AMPLITUDE-CALIBRATOR MODE

Period - Fixed at $\approx 1 \mathrm{~ms}$ or dc .
Ampitude - From $200 \mu \mathrm{~V}$ p-p to 100 V p-p in 1-2-5 sequence, accurate within 0.25% into $1 \mathrm{M} \Omega .100 \mu \mathrm{~V}$ p-p to 5 V p-p into 50Ω.
Error Readout - Range: $\pm 7.5 \%$. Resolution: 0.1\%.

PULSE MODES

Period - $1 \mu \mathrm{~s}$ to 10 ms (within 5\%) in decade steps with the variable control in Cal position. Variable extends period to at least 100 ms .
Symmetry - $\approx 50 \%$ duty cycle.

HIGH AMPLITUDE OUTPUT

Rise Time - Unterminated: 100 ns or less. Terminated into 50Ω : 10 ns or less.
Amplitude Range - Unterminated: 6 V or less to at least 60 V . Terminated into 50Ω : 0.5 V or less to at least 5 V .
Leading-Edge Aberrations - Within 2% or 50 mV $p-p$, whichever is greater, when terminated into 50Ω.

TG 501A

The TG 501A Time Mark Generator provides marker outputs from one nanosecond to five seconds. A unique feature of the TG 501A is a variable timing output with a front panel two-digit LED display. The display indicates percentage of timing error between the normal time interval and a variable interval that lines up the marker pulse with graticule or division marks on the display. This feature not only provides direct readout in terms of percent error, but also helps eliminate errors associated with visually estimating error from a display.

Markers - 1 ns through 5 s in a 1-2-5 sequence. Marker Amplitude $-\geq 1 \mathrm{~V}$ peak into 50Ω on 5 s through 10 ns markers. $\geq 750 \mathrm{mV}$ p-p into 50Ω on 5 ns and 2 ns markers. $\geq 200 \mathrm{mV}$ p-p into 50Ω on 1 ns markers.
Trigger Output Signal - Slaved to marker output from 5 s through 100 ns . Remains at 100 ns for all faster markers.
Internal Time Base - Crystal Frequency 5 MHz ; Stability (0 to $50^{\circ} \mathrm{C}$ within 5 parts in 107 after $1 / 2$ hour; Long-Term Drift 1 part or less in 107 per month; Setability adjustable to within 5 parts in 108.
External Reference Input - Available with internal changes. Acceptable frequencies, $1 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz . Input amplitude must be TTL-compatible.
Timing Error Readout Range - To 7.5\%. Timing-Error Measurement Accuracy - Device under test error is indicated to within one least significant digit (to within one displayed count)

MAINFRAMES，ACCESSORIES，AND AUXILIARY INSTRUMENTS

TM 500 Power Module Mainframes

The TM 500 power modules（mainframes）are the heart of the modular instrument architecture．Designed for maximizing benchtop，portable，and rackmount testing，these mainframes along with your choice of over 50 plug－ins from Tektronix，can be used to configure hundreds of multifunction or application specific packages．

Plug－In Compatibility

The TM 500 plug－in instruments operate in any of nine mainframes that accept instruments in combinations of up to six single－wide plug－ins．One single－wide plug－ in instrument can be accommodated by the TM 501A，or up to six instruments can be accommodated in the TM 500 bench－top（TM 506A）and rackmount main－ frames（RTM 506）．Two，three，and four－wide main－ frames are also available as well as a five－wide Traveler mainframe which provides for applications that require instrument portability．

TM 500 Power Module Mainframes

The TM 5000 mainframes extend the convenience of the TM 500 concept into the programmable instrument IEEE Standard 488 arena．The TM 5003 accepts up to three instruments at one time；the TM 5006A accepts up to six instruments at one time．These two TM 5000 mainframes were designed specifically for use with the Tektronix TM 5000 line of programmable，IEEE－488 compatible test and measurement instruments，but all of the TM 500 manual plug－in instruments will also operate in these same mainframes allowing manual and programmable instruments to be mounted together in adjacent slots．
Any of the mainframes may be operated with less than a full complement of plug－in instruments installed；you don＇t have to have all of the compartments occupied in order to operate a TM 500 or TM 5000 system．Use only as much of the system as you need；add to it as your needs change．A blank front panel－like cover（016－0195－ 03）or tool box（016－0362－02）is available to cover／fill empty slots．

Benchtop

The seven benchtop mainframes are the TM 501A， TM 502A，TM 503B，TM 504，TM 506A，TM 5003 and TM 5006A．The TM 502A and TM 5003 are the most compact of the multiple instrument units．The TM 504， TM 506A，and TM 5006A each include a high－power compartment at the right－hand side to supply higher current levels to instruments that provide higher performance or higher output levels，such as the PS $503 A$ ，and PS 5010 Power Supplies．The TM 506A， TM 5003，and TM 5006A incorporate a quiet fan for optimum cooling．All operate from 110 or 220 V ac．

TM 5000／TM 500 Mainframes

Portability

All benchtop models have carry handles and optional protective covers for portable applications．The TM 515 Traveler Mainframe，however，was designed for superior， multi－instrument portability．It is extremely moisture and dust resistant and is designed to withstand the rigors of transport．Once at a destination，its rear cover is popped off to access the power cord and power switch and allow airflow for the built－in fan．Removing the front cover exposes up to five TM 500 plug－in instruments to reveal an operational electronics lab traveling as a suitcase．The TM 515 also comes with a locking bar for plug－in security．

Rackmount

The RTM 506，TM 506A Option 10，and the TM 5006A Option 10 rackmount mainframes each features slide assemblies and handles，plus a higher－power fan to accommodate the higher ambient temperatures often found in enclosed racks and consoles．

Rear Interface Capability

Most TM 500 plug－in modules contain a duplication of the front－panel input and output connections in the back．These interface lines are built into the rear－edge circuit card connector of each plug－in．Some plug－in modules also have additional signal or control lines that are present only at the back of the instrument．In either case，different modules may be interconnected by the user to reduce front－panel clutter or to perform functions not otherwise available．For example，the trigger output of a signal source can be interconnected to the rear input of a counter for instant frequency checks at the touch of a front－panel switch．Or，a digital multimeter and power supply may be interconnected to speed up precise voltage setups without any need to move test leads．Any module can be internally connected through the mainframe and also can be externally interfaced out the rear panel．
＊The TM 5003／TM 5006 comply with IEEE Standard 488．1－1987

TM 5006A

Power Module

- Six Compartment Mainframe
- High Power Compartment
- Switching dc Power Supply
- Forced Air Cooling
- Rear Panel Interface Connections with Option 02
- Rackmounting Capability with Option 10
- IEEE 488.1-1987 Compatibility

GPIB *
 IEEE-488

TM 5003

Power Module

- Three Compartment

Mainframe

- Switching dc Power Supply
- Forced-Air Cooling
- Interface Connections on

Rear Panel Via Option 02

- IEEE Standard 488

Compatibility

The mainframes can be interfaced in a variety of ways. A user can solder together the appropriate connector pins on a standard mainframe, or can order the mainframe with Option 02. Option 02 provides square-pin connectors at the rear interface between the mainframe and the plug-in instruments, plus a multi-pin connector and one or more BNC connectors mounted on the rear panel of the mainframe. To allow as much flexibility as possible, these connectors are not pre-wired. A wire kit consisting of specially prepared jumper wires and coax cables and pins is provided with the option. Then, interfacing between instruments within a mainframe and with external devices is simply a matter of connecting the appropriate terminals together.

The TM 515 Traveler Mainframe is available with the Option 05 interface which includes everything in the Option 02 except the rear panel multi-pin connector, the mating cable connector, and the BNC connector.

Economy

TM 500 and TM 5000 mainframes represent a most economical approach in test and measurement instrumentation. Relatively fixed packaging costs for frames, covers, primary power circuits, unregulated secondary power circuits and other items are a significant portion of the cost of a typical instrument. Since these fixed costs associated with packaging are shared by many functional instruments in the TM 5000/TM 500 lines, the cost-per-function may be lower than comparable, one- or two-function monolitic instruments. Because of its modularity, expandability, and versatility,
*The TM 5006A and TM5003 comply with IEEE Standard 488.1-1987

CHARACTERISTICS

Dimensions	TM 5006A	TM 5003		TM 515		TM 506A		RTM 506		TM 504		TM 503B		TM 502A		TM 501A	
		mm	in														
Width	44517.5	230	9	381	15	445	17.5	483	19	305	12	214	8.4	145	5.7	96.7	3.87
Height	1947.6	194	7.6	173	6.8	194	7.6	152	6	152	6	140	5.5	140	5.5	156	6.25
Depth	48819.2	488	19.2	508	20	488	19.2	508	20	508	20	452	17.8	407	16.6	416	16.6
Weight \sim	kg lb	kg	1 b	kg	lb	kg	Ib										
Net	14.532	8.6	19	10.2	22.5	14.5	32	8.4	18.5	8.4	18.5	4.7	10.3	4.0	8.75	239	5.4
Shipping	20.946	12	26.5	13.6	30	20.9	46	11.8	26	11.2	24.5	7.45	16.3	6.75	14.75	5.22	11.4
Line Frequency Hz	48 to 66	48 to	00	48 to	400	48 to											
Power Consumption VA maximum	$\approx 650 \mathrm{VA}$	=300		≈ 500		≈ 650		≈ 650		≈ 460		≈ 250		~120		≈ 120	

(Actual power consumption depends on plug-in selection and operating modes)

TM 506A

Power Module

- Six Compartments Mainframe
- High Power Compartment
- Forced Air Cooling
- Interface Connection on Rear Panel Via Option 02

RTM 506

Power Module

- Six Compartment Mainframe
- Standard 19 inch

Rackmounting

- High Power Compartment
- Forced Air Cooling
- Interface Connections on Rear Panel Via Option 02

TM 515

Traveler Power Module

- Five Compartment Portable Mainframe
- Forced Air Cooling
- Interface Connections on Rear Panel Via Option 05
- Line Frequency to 400 Hz with Option 06

TM 504

Power Module

- Four Compartment Mainframe
- High Power Compartment
- Interface Connections on Rear Panel with Option 02
NEW TM 503B
Power Module
- Three Compartment Mainframe
- Interface Connections on Rear Panel Via Option 02
TM 502A
Power Module
- Two Compartment Mainframe

TM 501A
Power Module

- Single Compartment Mainframe

AUXILIARY INSTRUMENTS

INT
 11iin

ORDERING INFORMATION

Extender Cable -
 for TM 500 / TM 5000

mainframes. Order 067-0645-02
$\$ 470$
GPIB Extender Cable-
Order 067-0996-00
Front - Panel Cover -
(TM 503A) Order 200-3554-00
(TM 504) Order 200-1727-00
(TM 506) Order 200-1728-00
(TM 5003) Order 200-3252-00
Mainframe Retainer Bar Kit -
(TM 504) Order 020-0548-00
(RTM 506) Order 020-0549-00 (TM 506ATM 5003/TM 5006A) Retainer Clips -
Order 343-1085-01
Accessory Pouch -
Order 016-0351-00
Blank Plug-in Panel
Order 016-0195-05.
Plug-in Toolbox
Order 016-0362-02.
GPIB Interconnecting Cables -
(0.5) Order 012-1015-00
(2m) Order 012-0630-01
(2m) Double Shielded -
Order 012-0630-03
Rear Interface Data Book -
070-2088-04.
*1 Contact your local sales representative.

Plug-In Toolbox

AUXILARY INSTRUMENTS ACCESSORIES AND FLEXIBLE PLUGIN EXTENDER CABLES

Designed to couple a TM 500 or TM 5000 Plug-in with the mainframe rear interface or GPIB board connections outside the mainframe for calibration and/or Customer Plug-in design.
Standard Extender Cable (shown).
Order 067-0645-02.
GPIB Extender Cable. Order 067-0996-00.

TM 500 CARRYING CASE

These luggage-type carrying cases are molded of high-strength glass-epoxy. They are 610 mm long; 216 mm thick; 445 mm high, (24 in . long by 8.5 in. thick by 17.5 in. high) and weighs ≈ 14 pounds empty.

TM 503B and TM 504. Order 016-0565-01
TM 515. Order 016-0643-00.

RAIN COVERS 016-0621-00

These soft, weather-proof vinyl-coated Rain Covers come in sizes for TM 503B TM 504, and the TM 5000 monolitic packages.
Order 016-0621-00

PLUG-IN TOOLBOX 016-0362-02

The plug-in toolbox provides space within your TM mainframe for storing probes, cables, "tees", accessories, and small tools. Inside dimensions: 250 mm long X 51 mm wide $\times 106 \mathrm{~mm}$ high ($9-7 / 8 \times 2 \times 4-1 / 4$ inches). Order 016-0362-02

PROTECTIVE FRONT COVER

A snap-on front cover, molded of high-impact plastic, is available for the TM 503B and TM 504 mainframes.

TM503A. Order 200-3554-00
TM5003. Order 200-3252-00

Protective Front Cover

MAINFRAME PLUG-IN RETAINERS

A mainframe Retainer Bar Kit is available for the TM 504 or RTM 506 to secure plug-ins; each has a separate kit, 020-0548-00 and 020-0549-00 respectively.
 Initial installation requires replacement of an existing bottom member of the mainframe with a new part supplied in the kit. Thus providing a mechanism for securing the plug-ins. The TM 515 comes standard with the retainer bar.

TM 506ATM 5003, and TM 5006A use Retainer Clips.
Order (354-1085-00).
TM502A, TM503B. Order (407-3658-00).

ACCESSORY POUCH 016-0351-00

Made for carrying probes, cables, or other accessories, this soft vinyl pouch snaps on to the carrying handle of any TM 5000/TM 500 mainframe or HagenTektronix oscilloscope, or the straps can be snapped together to form a carrying handle. Dimensions are approximately $91 / 4$ in. long X $53 / 4$ in. wide $\times 2$ in. high.

Order 016-0351-00.

LAB INSTRUMENTS CARTS

The Lab Instrument Carts accept all TM 5000/TM 500 mainframes that are up to four plug-ins wide, or an oscilloscope. See page 306 for additional information.

BLANK PLUG-IN PANEL 016-0193-05

When operating TM 500/TM 5000 instruments with less than the full complement of plug-ins, the blank plugin panel can be used to cover unused compartments.

Order 016-0193-05

REAR INTERFACE DATA BOOK 070-2088-04

The Rear Interface Data Book provides diagrams and related interface information for most of the TM 5000/ TM 500 plug-ins. Order 070-2088-04.

DM250
The DM250 auto-ranging DMM delivers fast, accurate readings on a $31 / 2$ digit LCD and an analog bar graph. The DM250 also offers color-coded input terminals which prevent erroneous settings and terminal selection.

ac voltage AC Voltage Ra	ange	Resolution	Accuracy (4010.500 Hz)
		$\begin{aligned} & 1 \mathrm{mV} \\ & 10 \mathrm{mV} \\ & 100 \mathrm{mV} \\ & 1 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.25 \%, \pm 5 \text { counts } \\ & \pm 1.25 \%, \pm 5 \text { counts } \\ & \pm 1.25 \%, \pm 5 \text { counts } \\ & \pm 1.25 \%, \pm 5 \text { counts } \end{aligned}$
$10 \mathrm{M} \Omega$, paralleled by less than 100 pF ofInput Impedance			
1100 V DC or 1100 V Peak-To-Peak Overload Protection			
dC VOLTAGE			
DC Voltage	ge	Resolution	Accuracy (\% of reading)
$\begin{aligned} & \hline 0 \text { to } 200 \mathrm{mV} \\ & 0 \text { to } 2 \mathrm{~V} \\ & 0 \text { to } 20 \mathrm{~V} \\ & 0 \text { to } 200 \mathrm{~V} \\ & 0 \text { to } 1000 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 1 \mathrm{mV} \\ & 10 \mathrm{mV} \\ & 100 \mathrm{mV} \\ & 1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.5 \%, \pm 1 \text { count } \\ & \pm 0.5 \%, \pm 1 \text { count } \\ & \pm 0.5 \%, \pm 1 \text { count } \\ & \pm 0.5 \%, \pm 1 \text { count } \\ & \pm 0.5 \%, \pm 1 \text { count } \end{aligned}$
$10 \mathrm{M} \Omega$ Input Impedance			
1100 V DC or 1100 V Peak-To-Peak Overload Protection			
AC/DC CURRENT			
AC/DC Curren Range	Res.	$\begin{aligned} & \text { Accuracy (\% of reading) } \\ & \text { AC (4010 500 Hz) } \quad \text { DC } \end{aligned}$	
0 to $200 \mu \mathrm{~A}$ 0 to 20 mA 0 to 200 mA 0 to 2 A 0 to 10 A	$\begin{aligned} & 0.1 \mu \mathrm{~A} \\ & 10 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A} \\ & 1 \mathrm{~mA} \\ & 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \pm 1.5 \%, \\ & \pm 3 \text { cour } \\ & \text { Sarm } \\ & \pm 2.5 \%, \\ & \pm 5 \text { cour } \end{aligned}$	$\pm 0.75 \%$ ± 1 unts ± 1 count me as above $\pm 1.5 \%$, ± 3 counts
RESISTANCE			
Resistance Range	Res.	Maximum Test Curren	$\begin{aligned} & \text { Accuracy } \\ & \text { (\% of reading) } \end{aligned}$
0 to 200Ω 0 to $2 \mathrm{k} \Omega$ 0 to $20 \mathrm{k} \Omega$ 0 to $200 \mathrm{k} \Omega$ 0 to $2 \mathrm{M} \Omega$ 2 to $20 \mathrm{M} \Omega$	$\begin{aligned} & \hline 0.1 \Omega \\ & 1 \Omega \\ & 10 \Omega \\ & 100 \Omega \\ & 1 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mA} \\ & 20 \mu \mathrm{~A} \\ & 50 \mu \mathrm{~A} \\ & 5 \mu \mathrm{~A} \\ & 50 \mathrm{nA} \\ & 50 \mathrm{nA} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.75 \%, \pm 1 \text { count } \\ & \pm 0.75 \%, \pm 1 \text { count } \\ & \pm 0.75 \%, \pm 1 \text { count } \\ & \pm 0.75 \%, \pm 1 \text { count } \\ & \pm 1.0 \%, \pm 3 \text { counts } \\ & \pm 1.5 \%, \pm 5 \text { counts } \end{aligned}$

DM253
The DM253 offers $31 / 2$-digit testing of capacitance, resistance, transistors, diodes, LEDs and batteries. Twenty-six user ranges ensure versatility.

CAPACITANCE

Capacitance Range	ResolutionAccuracy (\% of reading)	Test Frequency	
0 to 200 pF	0.1 pF	$\pm 0.5 \%, \pm 5$ counts* 820 Hz	
0 to 2 nF	1 pF	$\pm 0.5 \%, \pm 5$ counts 820 Hz	
0 to 20 nF	10 pF	$\pm 0.5 \%, \pm 5$ counts 820 Hz	
0 to 200 nF	100 pF	$\pm 0.5 \%, \pm 5$ counts 820 Hz	
0 to $2 \mu \mathrm{~F}$	1 nF	$\pm 0.5 \%, \pm 5$ counts 820 Hz	
0 to $20 \mu \mathrm{~F}$	10 nF	$\pm 0.5 \%, \pm 5$ counts 82 Hz	
0 to $200 \mu \mathrm{FF}$	100 nF	$\pm 0.5 \%, \pm 5$ counts 8.2 Hz	
0 to $2000 \mu \mathrm{FF}$	$1 \mu \mathrm{~F}$	$\pm 1.0 \%, \pm 1$ count	8.2 Hz
0 to 20 mF	$10 \mu \mathrm{~F}$	$\pm 1.5 \%, \pm 1$ count	8.2 Hz

*+0.5 pF for this range only.
RESISTANCE

Resistance Range	Res.	Accuracy (\% of reading)	Maximum Open Circuit Voltage
0 to 200Ω	0.1Ω	$\pm 0.5 \%, \pm 4$ counts	3.2 V
0 to $2 \mathrm{k} \Omega$	1Ω	$\pm 0.5 \%, \pm 1$ count	0.5 V
0 t t $20 \mathrm{k} \Omega$	10Ω	$\pm 0.5 \%, \pm 1$ count	0.5 V
00 t $200 \mathrm{k} \Omega$	100Ω	$\pm 0.5 \%, \pm 1$ count	0.5 V
00 t $2 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$	$\pm 0.5 \%, \pm 1$ count	0.5 V
0 to $20 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	$\pm 2.0 \%, \pm 1$ count	0.5 V

Two Rugged Handheld Instruments

DM250

Digital Multimeter
FEATURES/BENEFITS

- 3 1/2 Digit LCD with Analog Bar Graph
- Auto Power Off After 30 Minutes from Last Function or Mode Change
- Autoranging, Data Hold, Memory Offset
- Rugged, Water-Resistant, Yellow Case with Built-in Stand and Probe Holders
- Designed to UL 1244

Specifications

- One Year Warranty

DM253
 Component Checker

FEATURES/BENEFITS

- 312 Digit LCD
- Over-range Indication
- Low Battery Indication
- Rugged Yellow Case with

Built-in Stand

- Designed to UL 1244

Specifications

- One Year Warranty

APPLICATIONS

- Fiald Service/Plant

Maintenance

- Electronic Troubleshooting
- Classroom Labs/Laboratory Bench
- Component Checking

ORDERING INFORMATION

```
DM250 Digital Multimeter
                                    $135
DM250 Digital Multimeter
(012-1381-00); spare fuse
(159-5001-00); 9 V battery;
operator's manual (070-8216-00)
DM253 Component Checker
$100
Includes: Right angle test leads
    (012-1382-00); spare fuse
    (159-0183-00); 9 V battery;
    operator's manual (070-8217-00)
    OPTIONAL ACCESSORIES
    Soft Carrying Case - Order
118-8338-00
    $6.50
```

-ix tough yet affordable test bench instruments from TEK.

CPS250

Triple Output Power

Supply

- Two Variable 0 to 20 V, 0.5 A Supplies
- Fixed 5 V, 2 A Supply
- Variable Current Limiting
- Overload Indicators
- UL Listed, CSA Certified

CFG250

Function Generator

- Square, Triangle and Sine Waves; TTL Output
- 20 dB Attenuator
- Internal or External Frequency Sweep
- Variable Duty Cycle
- One Year Warranty
- UL Listed, CSA Certified

CFC250

Frequency Counter

- 5 Hz to 100 MHz (1 Hz Res.)
- 8 Digit Display
- Switchable Input Sensitivity
- Overrange Indicator
- 100 kHz Lowpass Filter
- UL Listed, CSA Certified

The TM250 Series is available directly from your local Tektronix Authorized Stocking Distributor or Education Representative. See page 388 for information.

ECONOMICAL INSTRUMENTS FOR THE BENCH

Now you can have TEK instrumentation, even if you're on a budget. But you don't have to give up quality, reliability or safety considerations to get the performance you need. The six instruments in this series are designed especially to handle basic to advanced test bench applications for industry, educational institutions, and hobbyists. New to the TM250 Series this year are two counters; see the CMC250 and the CDC250 on the following pages.

CPS250

The CPS250 Triple Output Power Supply is a versatile instrument with two variable and one fixed output. Its attractive, compact design with tilt-bail handle takes up less bench space than most other power supplies. It's designed to meet most basic test and lab bench requirements. Test leads are included.

CHARACTERISTICS

Outputs - Two 0 V to $20 \mathrm{~V}, 0.5$ A max; One 5 V fixed, 2.0 A max.

Load/Line Regulation -0 to $20 \mathrm{~V}: 0.01 \%+3 \mathrm{mV} ; 5 \mathrm{~V}$ fixed: $0.1 \%+5 \mathrm{mV}$.
Ripple/Noise -2 mV rms (5 Hz to 1 MHz).
Tracking Error $- \pm 0.2 \pm 20 \mathrm{mV}$.
Indicators - Analog-type meters
Voltage Range: $0-25 \mathrm{VDC} \pm 2.5 \%$ of full scale.
Current Range: $0-600 \mathrm{~mA} \pm 2.5 \%$ of full scale.

CFG250

The CFG250 2 MHz Function Generator produces sine, square, and triangle waves, and TTL signals for testing amplifiers, filters, and digital circuits. Its sweep function can be controlled internally or with an external signal level. Duty cycle, dc offset, sweep rate, sweep width and amplitude are all operator controlled.

CHARACTERISTICS

Waveform Outputs - Sine, Square, Triangle, TTL pulse.
Duty Cycle -5 to 1 min. (square and triangle).
Frequency Range - 1.0 Hz to 1.0 MHz , seven ranges.
Frequency Multiplier - Variable from 0.2 to 2.0 times the selected frequency range.
Amplitude - Open: 100 mV p-p to 20 V p-p; 10 mV p-p to 2 V p-p. 50Ω load: 50 mV p-p to 10 V p-p; 5 mV p -p to 1 Vp -p.
Accuracy - $\pm 5 \%$ of full scale.
DC Offset -+10 V to -10 VDC continuously variable.
Output Impedance $-50 \Omega \pm 10 \%$.
Sine Wave Distortion - 10 Hz to $100 \mathrm{kHz}:<1 \%$.
Square Wave Response $-\leq 100 \mathrm{~ns}$ rise/fall time, with maximum output to 50Ω.
Triangle Linearity -20 Hz to $200 \mathrm{kHz}: \geq 99 \%$, 200 kHz to $2 \mathrm{MHz}: \geq 97 \%$.
Pulse Output Amplitude -3V p-p (open);
Rise Time: 25 ns.
Sweep Rate -0.5 Hz to 50 Hz continuously variable.
Sweep Width - Variable from 1:1 to 100:1.

CFC250

The CFC250 Frequency Counter counts the frequency of sine, square and triangle waves from 5 Hz to 100 MHz at input levels from 30 mV to 42 V peak. Applications include the adjustment, testing and repair of items including audio instruments, AM/FM radios, televisions, CB radios, computer clocks, amateur radios and musical instruments.

CHARACTERISTICS

Frequency Range - Ac coupled: 5 Hz to 100 MHz . Sensitivity - 5 Hz to 30 MHz : $30 \mathrm{mVrms} ; 30 \mathrm{MHz}$ to $70 \mathrm{MHz}: 50 \mathrm{mV}$ rms; 70 MHz to $100 \mathrm{MHz}: 80 \mathrm{mVrms}$.
Attenuation - Selectable Range: 3 V to 42 V range or 80 mV to 5 V range.
Impedance $-1.0 \mathrm{M} \Omega$ paralleled by 40 pF .
Maximum Input Voltage -5 Hz to $100 \mathrm{kHz}: 42 \mathrm{~V}$ peak; 100 kHz to $10 \mathrm{MHz}: 13.8 \mathrm{~V}$ peak; 10 MHz to 100 MHz : 5.4 V peak.
Resolution -1 Hz .
Accuracy $- \pm 1$ count \pm time base accuracy.
Gate Time - 1 second.
TIME BASE ACCURACY
Crystal Frequency -3.579545 MHz.
Temperature Stability $- \pm 10 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Aging Rate $- \pm 10 \mathrm{ppm}$ per year.
OTHER CHARACTERISTICS
Display - 8 digit LED
Overflow Indicator - Flashing LED.

CDM250
The CDM250 Digital Multimeter displays measurements in digital form on a 3 1/2-digit LED display. Sine wave alternating voltages and currents are displayed in rms values. Test Leads are included.

CHARACTERISTICS

AC/DC VOLTS		AC/DC CURRENT	
Range	Resolution	Range	Resolution
200 mV	100 mV	$200 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}^{* 1}$
2 V	1 mV	2 mA	$1 \mu \mathrm{~A}^{* 1}$
20 V	10 mV	20 mA	$10 \mu \mathrm{~A}^{* 1}$
200 V	100 mV	200 mA	$100 \mu \mathrm{~A}^{* 1}$
500 V	1 V	2 A	$1 \mathrm{~mA}^{{ }^{* 2}}$
		10 A	$10 \mathrm{~mA}^{* 1}$

${ }^{* 1}$ DC Accuracy: $\pm 1.0 \%$ of reading ± 1 count (18 to $28^{\circ} \mathrm{C}$).
${ }^{* 2}$ DC Accuracy: $\pm 1.0 \%$ of reading ± 3 counts (18 to $28^{\circ} \mathrm{C}$), AC Accuracy: $\pm 1.5 \%$ of reading ± 4 counts (18 to $28^{\circ} \mathrm{C}$).

AC/DC CURRENT

Response Time - Dc: 3 seconds; ac: 5 seconds (200Ω to $2 \mathrm{M} \Omega$), 15 seconds ($20 \mathrm{M} \Omega$).
Input Impedance - Varies with range from $1 \mathrm{k} \Omega$ to $0.01 \mathrm{k} \Omega$.
Maximum Input Current - 2 A fused; 10 A unfused.
AC/DC VOLTS
Accuracy - DC: $\pm 0.5 \%$ of reading \pm count $\left(18^{\circ} \mathrm{C}\right.$ to $28^{\circ} \mathrm{C}$); ac: $\pm 1.0 \%$ of reading ($18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$).
Response Time - Dc: 3 seconds; ac: 8 seconds. Input Impedance - $10 \mathrm{M} \Omega$.
Max Input Voltage - 500 VDC or 350 VAC rms
CMRR - Dc: >100 dB ($50 / 60 \mathrm{~Hz}$); ac: >60 dB ($50 /$ 60 Hz)
NMRR -> $50 \mathrm{~dB}(50 / 60 \mathrm{~Hz})$.
RESISTANCE

Ohm Range	Resolution	Maximum Test Current
200Ω	0.1Ω	$2.5 \mathrm{~mA}^{\star 1}$
$2 \mathrm{k} \Omega$	1Ω	$250 \mu \mathrm{~A}^{\star 2}$
$20 \mathrm{k} \Omega$	10Ω	$50 \mu \mathrm{~A}^{\star 2}$
$200 \mathrm{k} \Omega$	100Ω	$5 \mu \mathrm{~A}^{\star 2}$
$1 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$	$500 \mathrm{nA}^{\star 2}$
$20 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	$50 \mathrm{nA}^{\star 3}$

${ }^{* 1}$ Accuracy: $\pm 0.75 \%$ of reading ± 4 counts (18 to $28^{\circ} \mathrm{C}$).
${ }^{* 2}$ Accuracy: $\pm 0.75 \%$ of reading ± 1 count (18 to $28^{\circ} \mathrm{C}$).
${ }^{* 3}$ Accuracy: $\pm 1.5 \%$ of reading ± 5 counts (18 to $28^{\circ} \mathrm{C}$).
Response Time - 5 seconds (200Ω to $2 \mathrm{M} \Omega$); 15 seconds ($20 \mathrm{M} \Omega$).
Open Circuit Voltage $-3.2 \mathrm{~V} \max (200 \Omega) ; 0.6 \mathrm{~V}$ max. ($2 \mathrm{k} \Omega$ to $20 \mathrm{M} \Omega$).

OTHER CHARACTERISTICS

Sampling Range - 2.5 samples/second.
Overrange Indicator - Leftmost digit is " 1 " and all other digits are blank.

CDM250

Digital Multimeter

- AC/DC Volts (500 V Range)
- Ohms ($20 \mathrm{M} \Omega$ Range)
- Current (10 A Range)
- Overload Protection
- UL Listed, CSA Certified

NEW CMC250

Multifunction Counter

- 5 Hz to 100 MHz (CH 1) 80 MHz to 1.3 GHz (CH 2)
- Measurements:

Frequency, Period Avg.,
Period, Totalize, Self Check

- 8 digit LED display
- Overrange Indication
- Display hold
- Remote start-stop
- UL Listed, CSA Certified

NEW CDC250

Universal Counter

- 5 Hz to 175 MHz
- 8 digit LED display: autodecimal measurement unit
- Frequency Ratio
- Time Interval
- Totalize
- UL Listed, CSA Certified

The TM250 Series is available directly from your local
Tektronix Authorized Stocking Distributor or Education Representative. See page 388 for information.

TM250 TEST AND MEASUREMENT INSTRUMENTATION

ORDERING INFORMATION

OPTIONAL ACCESSORIES

Service Manuals－

CPS250 $(070-6739-00)$	$\$ 40$
CFG250 $(070-6737-00)$	$\$ 40$
CMC250 $(070-7941-00)$	$\$ 35$
CFC250 $(070-6741-00)$	$\$ 40$
CDC250 $(070-7998-00)$.1
CDM250 $(070-6735-00)$	$\$ 40$

INTERNATIONAL POWER PLUG OPTIONS
Standard－U．S．Power Cord NC
$120 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt．A1－Universal Euro
$220 \mathrm{~V}, 50 \mathrm{~Hz}$（020－0859－00）
Opt．A2－United Kingdom
$240 \mathrm{~V}, 50 \mathrm{~Hz}(020-0861-00)$
Opt．A3－Australian
$240 \mathrm{~V}, 50 \mathrm{~Hz}(020-0861-00)$
Opt．A4－North American
$240 \mathrm{~V}, 60 \mathrm{~Hz}$（020－0862－00）
Opt．A5－Switzerland

[^37]

NEW CMC250

The CMC250 1．3 GHz Multifunction Counter measures the frequency of sine，square and triangle waves from 5 Hz to 1.3 GHz ．The CMC250 also provides period and totalize measurements．The counter has two input channels：Channel 2 is a special 50Ω terminated input for use in high frequency systems，and Channel 1 is a standard $1 \mathrm{M} \Omega$ input for frequency measurements up to 100 MHz ．This counter will be of special interest to radio amateurs because of its ability to measure high frequency systems．

CHARACTERISTICS

Range－Frequency，Ac Coupled： $\mathrm{CH} 1-5 \mathrm{~Hz}$ to $100 \mathrm{MHz}, \mathrm{CH} 2-80 \mathrm{MHz}$ to 1.3 GHz ，sine wave；Period， frequency range， $0.4 \mu \mathrm{~s}$ to 0.2 s ．Totalize； 0 to $99,999,999$ counts plus overrange；repetition rate， 5 Hz to 10 MHz ．
Sensitivity－CH 1－5 Hz to $30 \mathrm{MHz}: 20 \mathrm{mV} \mathrm{rms}$ ； 30 MHz to $100 \mathrm{MHz}: 50 \mathrm{mV}$ rms．CH 2－80 MHz to $600 \mathrm{MHz}: 10 \mathrm{mV}$ rms； 600 MHz to 900 MHz ： 25 mV rms； 900 MHz to $1.3 \mathrm{GHz}: 50 \mathrm{mV}$ rms．
Attenuation－Selectable Range： 3 V to 42 V range（Hi） or 50 mV to 5 V range（Lo）．
Impedance－ $\mathrm{CH} 1: 1.0 \mathrm{M} \Omega$ paralleled by 40 pF ， CH 2： 50Ω
Maximum Input Voltage－CH 1： 42 V peak， CH2： 1 Vrms．
Resolution－Frequency， CH 1 （selectable） kHz Mode： 0.1 Hz to 100 kHz ，MHz Mode： 1 Hz to 1000 Hz ； CH 2： 10 Hz to 10 kHz ．Period： 100 ps to 100 ns switchable in 4 decade steps．
Accuracy－Frequency，Time base accuracy ± 1 count； Period，time base accuracy ± 1 count \pm trigger instability．
Gate Time Indicators－CH $1: 0.01 \mathrm{~s}, 0.1 \mathrm{~s}, 1.0 \mathrm{~s}$ \＆
$10 \mathrm{~s} ; \mathrm{CH} 2: 0.027 \mathrm{~s}, 0.27 \mathrm{~s}, 2.7 \mathrm{~s}$ ，\＆ 27 s ．CH 1 Period： $1,10,100$ ，or 1000 cycles．

TIME BASE ACCURACY
Crystal Frequency－CH 1： 10 MHz ；
$\mathrm{CH} 2: 3.90625 \mathrm{MHz}$ ．
Temperature Stability $- \pm 10 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ．
Aging Rate $- \pm 10 \mathrm{ppm}$ per year．
OTHER CHARACTERISTICS
Low Pass Filter --3 dB point at 100 kHz ．
Display－ 8 digit LED．
Overrange Indicator－Lighted LED．

NEW CDC250

The CDC250 175 MHz Universal Counter counts frequency of sine，square and triangle waves from 5 Hz to 175 MHz at input levels from 20 mV to 42 V peak．The CDC250 also provides period measurements，frequency ratio，time interval and totalize measurement functions． The CDC250 has a temperature compensated time base to ensure performance in changing ambient temperature． Service technicians will find the CDC250 useful as a standard to calibrate other equipment．

CHARACTERISTICS

Range－Frequency，Ac Coupled： kHz Mode－5 Hz to 10 MHz ；MHz Mode－5 MHz to 175 MHz ．Period： $0.5 \mu \mathrm{~s}$ to 0.2 s ；frequency range， 5 Hz to 2 MHz ．Ratio， frequency range $\mathrm{CH}: 5 \mathrm{~Hz}$ to 10 MHz ； $\mathrm{CH} \mathrm{B}: 5 \mathrm{~Hz}$ to 2 MHz ．Time Interval，frequency range： 5 Hz to 2 MHz ， square wave．Totalize： 5 Hz to 10 MHz ，Count： 0 to 99，999，999 before overrange．
Sensitivity－CH A，kHz mode， 5 Hz to 10 MHz ： 20 mV rms， MHz mode， 5 MHz to $125 \mathrm{MHz}: 50 \mathrm{mV}$ rms， 125 MHz to $150 \mathrm{MHz}: 100 \mathrm{mV}$ rms， 150 MHz to $175 \mathrm{MHz}: 150 \mathrm{mV}$ rms；CH B， 5 Hz to $2 \mathrm{MHz}: 30 \mathrm{mV}$ rms．
Attenuation－Selectable Range：Times 1 or Times 10.
Impedance－CH A \＆B， $1.0 \mathrm{M} \Omega$ paralleled by $\leq 40 \mathrm{pF}$ ．
Maximum Input Voltage－ 42 V peak．
Resolution－Frequency， 0.1 Hz to 1 kHz ，in decade steps；Period 100 ps to 100 ns ，in decade steps；Ratio， CH B frequency divided by CH A．Time Interval， 100 ps to 100 ns ，in decade steps．
Accuracy－Frequency，time base accuracy ± 1 count； Period，time base accuracy ± 1 count \pm trigger instability；Ratio，resolution \pm ratio x trigger instability； Time Interval，time base accuracy ± 1 count \pm trigger instability \pm number of cycles averaged．

TIME BASE ACCURACY

Crystal Frequency－ 10 MHz ．
Temperature Stability $-< \pm 1 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ．
Aging Rate $-< \pm 1 \mathrm{ppm}$ per year．
OTHER CHARACTERISTICS
Slope－Selectable，positive，or negative－going．
Low Pass Filter --3 dB at 10 kHz ．
Display－ 8 digit LED．
Overrange Indicator－Lighted LED．

	CURVE TRACER SELECTION GUIDE		
371A	370A	$\mathbf{5 7 7}$	$\mathbf{5 7 1}$
High Power	Medium Power	Medium Power	Low Cost
3000 Watts	220 Watts	100 Watts	100 Watts
3000V or 400A	2000V or 10A	1600 V or 20A	100V or 2A
GPIB Programmable	GPIB Programmable		
Front Panel Control	Front Panel Control	Front Panel Control	Front Panel Control
Third Bias Supply	Third Bias Supply		
Store 64 Setups \& 64 Displays on 3 1/2" Disk	Display Storage	Memory Storage of	
Store 16 Setups \& 16 Displays in Memory	Option	12 Setups and 1 Display	

Contents

370A/371A Programmable
Curve Tracers.................. 249
370A Device Test Software,
370A or 371 A Utility
Sotware250

57701 and 57702 Curve
Tracer Systems.251
571 Curve Tracer 252
Device Socket Adapters 253
LV500 The Designers Solution. 254
TekWAVES 256

THE 370A AND 371A CURVE TRACERS

The new industry standard 370A and 371A Curve Tracers provide dc parameter characterization of transistors, thyristors, diodes, SCRs, MOSFETs, optoelectronic components, solar cells, solid state displays and other semiconductor devices. With the 370A and 371A you can perform measurements to compare a device to the manufacturer's specifications, identify components with the same characteristics, and analyze component failures.

Typical measurements include leakage, breakdown voltages up to 3000 V , MOSFET gm//dss/Ngs(th)/Igss, SCR Vdrm/drm/lrm/Ngt/gt, DIODE VI/PIV/Ir, ZENER Vz/ Vf, resistance as well as other dc parameters.

PROGRAMMABLE CONTROL

The 370A/371A's non-volatile memory provides automatic test sequencing. In addition, the GPIB interface and an IBM compatible PC allow external controller test sequencing. With either method, the 370A or 371A front panel settings can be recalled and measurements made, storing the results for later review or comparison.

INTERACTIVE CONTROL

The 370A and 371 A use the same familiar interactive manual controls that are available on Tektronix 576 , $577 D 1$ and $577 D 2$ Curve Tracers. With interactive control, you can refine characterizations for unique devices during research or design. Atter completing the characterization definition, the interactive setting can be automated by storing the settings in the curve tracer's memory, disk or an external controller.

DIGITAL STORAGE DISPLAY

The digital storage display, which has a bright, flickerfree trace, allows precise measurements and comparisons. There are 100 points per division in the vertical and horizontal directions for high resolution measurements. On-screen readout displays specific values to assure accurate measurements and eliminate interpretation errors.

24 characters of displayed information can be annotated on-screen from either the front panel of 370 A and 371 A or remotely from an IBM PC compatible controller.

HARDCOPY

Plotter output data is sent directly from the 370A and 371A without the need for a controller. While plotting, the 370A and 371A can continue performing the next tasks.

INTERFACE

The 370A and 371A have a GPIB interface conforming to IEEE Standard 488.1-1987 with Tektronix codes and formats.

TEST FIXTURING

The test fixture is a standard accessory that provides a safety enclosure to assure operator protection when device measurements are performed. the test fixture accommodates standard A1001 through A1005 adapters with Kelvin sensing, 3-pin adapters without Kelvin sensing (013-0128-00, 013-0073-00, 013-0070-01, 013-0072-00) and the A1023 surface mount adapter. Also, the 371A test fixture accommodates devices as large as $8^{\prime \prime} \times 5^{\prime \prime} \times 4.75^{\prime \prime}$ with special attachment leads.

If you wish to construct a unique test fixture unit, order the optional 371A Field Wiring Cable (cable/plug assembly without test fixture enclosure).

SOFTWARE

For automated custom device characterization, the 370A Utility Software or 371 A Utility Software with an IBM PC provide customized tests, consistent measurements and logging of results. With the 370A Device Test Software, you can automatically characterize most semiconductor components.

ACQUISITION

In storage mode, information is displayed in one of three ways: normal, envelope or average.

AUXILIARY SUPPLY

The auxiliary supply is a third voltage source for biasing devices from -40 V to +40 V with 20 mV resolution.

See next page for characteristics and ordering information.

370A Curve Tracer

370A/371A Programmable Curve Tracers

automated device

CHARACTERIZATION FOR:

- Manufacturing Processes
- Incoming Inspection
- Semiconductor R \& D
- Quality Control
- Component Engineering
- Component Matching
- Failure Analysis

FEATURES

- Automatic Test Sequences
- GPIB Programmable Storage
- 3 1/2" MS-DOS Compatible Disk Storage
- Non-Volatile Storage via GPIB Interface
- Waveform Comparison
- Dot Cursor
- Windowing
- Auxiliary Supply
- On Screen Readout
- Envelope Display
- Digital Storage Display and Non-Storage Mode
- Waveform Averaging

370A
 Device Test Software

- Automatic Measurements from IBM Compatible PC with GPIB
- Select from Common

Device Types

- Select Common

DC Measurements

- Software Automatically Handles GPIB and 370A Controls
- Pass/Fail Result Comparison
- Log Files for Storing Results

370A or 371A
 Utility Software

- Automatic Measurements from IBM Compatible PC
- Develop Custom Device Tests
- Archive Curves and Front Panel Settings
- Example Test Programs
- Source Code Included
- Log Files for Storing Results

370A CHARACTERISTICS

Range	$\mathbf{1 6}$ V	$\mathbf{8 0}$ V	$\mathbf{4 0 0}$ V	$\mathbf{2 0 0 0}$ V
Max Peak Current	10 A	2 A	.4 A	.05 A
Peak Current Pulsed	20 A	4 A	.8 A	.1 A
Min. Series Res. (ohms)	.26	6.4	160	20 k
Max Series Res. (ohms)	800	20 k	500 k	12.5 M

COLLECTOR/EMITTER CURRENT

Measurement range is 100 nAdiv (1 nA resolution) to $2 \mathrm{~A} /$ div for collector current and $100 \mathrm{pA} / \mathrm{div}$ (1 pA resolution) to 2 mA for emitter current.

COLLECTOR/BASE/EMITTER VOLTAGE

Measurement range is $5 \mathrm{mV} / \mathrm{div}(50 \mu \mathrm{~V}$ resolution) to $500 \mathrm{~V} / \mathrm{div}$ for the collector and $5 \mathrm{mV} / \mathrm{div}(50 \mu \mathrm{~V}$ resolution) to $2 \mathrm{~V} / \mathrm{div}$ for base or emitter voltage.

STEP GENERATOR

The step generator has 0 to 10 steps, 50 nA to 200 mA in the current mode and 50 mV to 2 V in the voltage mode. Offset control is variable from -10 to +10 X step amplitude. In pulsed mode, the step generator changes from stair step output to either $80 \mu \mathrm{~s}$ or $300 \mu \mathrm{~s}$ wide pulses.

370A DEVICE TEST SOFTWARE

The pop-up windows prompt selection of devices and tests: NPN and PNP transistors: V(br)ceo, V(br)ebo, V(br)cbo Vce(sat), Vebo(sat), Icev, hFE
N and P MOSFET: BVdss, Idss, Vgs (th), Id(on),
Rds(on), gm, Igss
N and P JFET: Idss, V (br) gss, Igss, gm, Vgs (off)
SCR: Vdrm, Idrm, Irrm, Igt, Vgt, Vtm, Ih
Diode: Vf, PIV, Ir
Zener: Vz, Vf
Resistor: Ohms
These common dc measurements are typically performed at least four times faster than manual methods.

370A OR 371A UTILITY SOFTWARE

With a library of user defined custom measurements stored in the IBM PC or compatible, unique or uncommon device measurement sequences can characterize any device. The Utility software menu provides easy-to-use access to functions that simplify curve tracer operations.

The 370A and 371A Utility Software are separate products to optimize the performance for each curve tracer.

Since the measurements are performed by the same method with a PC, devices are quickly and consistently characterized.

371A Curve Tracer

371A CHARACTERISTICS

Peak Power
$3 \mathrm{~kW}^{\star 1} 300 \mathrm{~W}^{\star 1} 30 \mathrm{~W}^{\star 2} 3 W^{\star 2} 300 \mathrm{~mW}^{\star 2} 30 \mathrm{~mW} W^{\star 2}$
Collector Current Available

400 A	40 A	40 mA	4 mA	4 mA	0.4 mA
Maximum Peak Collector Voltage					
30 V	30 V	3 kV	3 kV	300 V	300 V
${ }^{\circ} \quad 250 \mu \mathrm{sec}$ pulsed collector supply ${ }^{*}$ Sinewave collector supply					
COLLECTOR CURRENT					
Maximum Power Current/Division (in 1-2-5 increments)					
3 kW			$1 \mathrm{~A} / \mathrm{div}$ to $50 \mathrm{~A} / \mathrm{div}$		
300 W		$500 \mathrm{~mA} /$ div to $5 \mathrm{~A} /$ div			
30 W		$100 \mu \mathrm{~A} / \mathrm{div}$ to $5 \mathrm{~mA} / \mathrm{div}$			
$3 \mathrm{~W}, 300 \mathrm{~mW}$		$10 \mu \mathrm{~A} /$ div to $500 \mu \mathrm{~A} /$ div			
30 mW		$1 \mu \mathrm{~A} / \mathrm{div}$ to $50 \mu \mathrm{~A} / \mathrm{div}$			

STEP GENERATOR

The step generator provides 0 to 10 normal steps for 30 W and below or pulse mode steps for 3 kW and 300 W . The pulsed current steps are 500, 50 nA to 200 mA in the current mode and 50 mV to 2 V in the voltage mode. Offset control is variable from -10 to +10 X step amplitude. In pulsed mode, the step generator changes from stair step output to either $80 \mu \mathrm{~s}$ or $300 \mu \mathrm{~s}$ wide pulses.

370A Curve Tracer
Includes: Blank adapter A1001; In-line transistor adapter A1002, Axial diode lead adapter A1005; 4 and 6 lead transistor/FETadapter A1007; non-volatile memory (020-1310-00); protective cover (337-3344-00); spare fuses $125 \mathrm{~V} / 4 \mathrm{~A}$ (159-0259-00); slow blow 250 V/2A fuse (159-0160-00); power cord (161-0066-00); operator's manual ($070-6064-00$);
Opt. 1P-HC100 Plotter
Opt. 1R - Rack Mounting
Opt. 26-370A Utility SW
Opt. 27-370A Device Test SW

ORDERING INFORMATION
\$20,900 370A OPTIONAL ACCESSORIES reference guide ($070-6841-00$).
Opt. 1P-HC100 Plotter
Opt. 1R - Rack Mounting
Opt. 26-371A Utility SW

Service Manual - (070-7780-00)
Calibration Fixture - (067-1286-00
Rackmount Kit - Order 016-0930-00
Socket Adapters - See adapters section
Cart - K217 Rack Instrument Cart
Cameras - See Test \& Measurement accessories
371A High Power Curve Tracer
Includes: In-line transistor adapter A1002;
T03/T066 adapter A1003; non-volatile memory (020-1310-00); power cord (161-0066-00); operator's manual (070-6839-00); and pocket
$\$ 120$
$\$ 440$

371A OPTIONAL ACCESSORIES

Field Wiring Cable - (198-5628-00)	\$295
Service Manual - (070-6840-00)	\$85
Calibration Fixture - (067-1345-00)	\$3,200
Rackmount Kit - (016-0930-00)	\$950
Socket Adapters - See adapters section	
Cart - K217 Rack Instrument Cart	\$625
Cameras - See Test \& Measurement accessories	
370A/371A SOFTWARE	
S48P104 370A Utility Software	\$495
S48P105 371A Utility Software	\$495
S48P401 370A Device Test Software	\$1,960
$31 / 2^{\prime \prime}$ disks, order Opt. 01 with all software products to specify $51 / 4^{*}$ disks	
${ }^{1}$ Contact your local sales office.	

The 577D1 and 577D2 Curve Tracers with the Tektronix 177 plug-in adapter allow dc parameter characterization of transistors, thyristors, linear ICs, diodes, SCRs, MOSFETs, optoelectronic components, solar cells, solid state displays and other semiconductor devices. By selecting one of three application specific adapters with the 178 plug-in, expanded parameter measurements are available for linear op-amps, SCRs, and three terminal regulators.

Typical measurements include leakage, breakdown voltages up to 1600 volts, MOSFET Vgs(th), SCR Vgt/igt, Diode Vf, ZENER VZNI, resistance as well as other dc parameters.

INTERACTIVE CONTROL

The 577D1 and 577D2 provide the same industry standard and familiar interactive manual controls available on Tektronix 370A, 371A and 576 Curve Tracers. With interactive control, the curve tracer can provide refined characterizations on standard and unique devices for component engineering, research, or design.

DISPLAY

The 165 mm (6.5 inch) rectangular display provides a $8 \times 10-\mathrm{cm}$ display with parallax-free, internal graticule. The 577D1 has a split screen storage display useful for comparing two devices. The 577D2 has a non-storage display.

577D1 with 177 plug-in adapter

CHARACTERISTICS

Voltage Range	6.5 V	25 V	100 V	400 V	1600 V
Max Continuous Peak Current	10 A	2.5 A	6 A	.15 A	.04 A
Peak Current Pulsed	20 A	5 A	1.25 A	3 A	.08 A
Min. Series Res. (ohms)	.12	1.9	30	500	8 k
Max Series Res. (ohm)	8 k	120 k	2 M	8 M	8 M

COLLECTOR CURRENT

Measurement range is $2 \mathrm{nA} /$ div to $2 \mathrm{~A} /$ div for collector current.

COLLECTOR/BASE VOLTAGE

Measurement range is $5 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{~V} /$ div for the collector and $5 \mathrm{mV} /$ div to $2 \mathrm{~V} /$ div for base voltage.

STEP GENERATOR

The step generator has 0 to 95 steps, 5 nA to 200 mA in the current mode and 5 mV to 2 V in the voltage mode. Offset control is variable from -10 to +10 X step amplitude. In pulsed mode, the step generator changes from stair step output to 300μ s wide pulses.

TEST FIXTURING

The 577D1 and 577D2 require either the Tektronix 177 or 178 plug-in test fixture.
With the 177 plug-in, the 577D1 and 577D2 are standard curve tracer systems that can make traditional dc parametric measurements. Socket adapters for different device package styles are described in the socket adapter section
With the Tektronix 178 plug-in, the 577D1 and 577D2 provide measurements at low currents for linear IC characterization. In addition to the 178, a test card and a device socket adapter complete the system.
Either standard, hardwire, or multiple op-amp test cards with a 178 and a 577D1/D2 provides common opamp measurements: \pm input current, offset voltage, CMRR, gain, \pm PSRR, - supply current and collector current. Four device socket adapters are available: 8 or 10 lead TO package and 14 or 16 pin dual in line packages
With a positive or negative regulator card, as well as the 178 and 577D1 or 577D2, three terminal regulator parametric measurements can be performed: output voltage, Ioad regulation, line regulation, ripple regulation, quiescent and common-terminal current. Standard socket adapters with Kelvin sensing are described in the next section.

577D1/577D2
 Curve Tracer System

FEATURES

- Measures DC Parameters of 2 and 3 Terminal Devices
- Display Storage
- Up to 100 Watts
- Lowest Price Curve Tracer System

APPLICATIONS

- Semiconductor R \& D
- Production Device Testing
- Incoming Inspection
- Component Engineering Characterization

ORDERING INFORMATION

57701 Storage Curve Tracer
Requires 177 or 178
57702 Nonstorage Curve
Tracer Requires 177 or 178
TEST FIXTURES
177 Standard Test Fixture Includes: A1005 Axial diode lead adapter; A1007 transistor adapter; safety cover
(337-1194-02); instruction
manual (070-1436-00).
178 Linear-IC Test Fixture
Includes: 16 DIP IC socket
(136-0442-00); standard
op-amp card (013-0149-02);
interchangeable nomenclature
panel for function switch
(333-1770-00); instruction
manual (070-1977-00).
577D1/D2 OPTIONAL ACCESSORIES
Test Set Up Cards - Package
of 250 (070-1639-01)
CRT Implosion Shield - Clear
For 577D1 Order 337-1440-00
Camera - See Camera section.
Cart - K213
Socket Adapters -
See Adapters section
178 OPTIONAL ACCESSORIES
2 Inch Patch Cord - Package $\$ 8.50$
of 1 Order 012-0200-00
TEST CARDS
Standard Op Amp - (included
with 178) Order 013-0149-02
Hardwire Op Amp -
Order 013-0150-02
Multiple Op Amp -
Order 013-0155-01
Positive Regulator -
Order 013-0147-00
\$4,775

Negative Regulator -
Order 013-0148-00
576/577 Data Sheet -
48W-3346-3
APPLICATION NOTES
Testing 2N3904-48W-4021-1
Testing 2N4441-48W-4020-1
NC
NC
${ }^{-1}$ Contact your local sales office.

571 SEMICONDUCTOR TESTERS

571
Curve Tracer
- Easy to operate
- Menu Driven
- Digital Waveform
- Non-Volatile EEROM - Store 12 Test Setups
- Accurate Cursor Measurements
- Hard Copy Output to Matrix Printer
- Built-in Safety Features
- Built-in Test Sockets

ORDERING INFORMATION

571 Curve Tracer $\$ 2,950$
 Includes: Operators Manual,
 Power Cord
 INTERNATIONAL POWER PLUG OPTIONS

Opt. A1 - Universal Euro 220 V , 50 Hz
Opt. A2 - UK $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A3-Australian 240 V , 50 Hz .
Opt. A4 - North American
$240 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt. A5 - Switzerland 220 V,
50 Hz
NC
OPTIONAL ACCESSORIES
Printer Cable 9 ft . Male to Male
Centronics (012-1284-00)
Printer Cable - Shielded (012-0555-00)

DEVICE ADAPTERS

DUAL WIDTH ADAPTERS
Adapters A1006 through A1010 fit the side-by-side terminals on test fixtures of the 370,576 and 177 Curve Tracers. These adapters allow either 1 or 2 devices mounted in the adapter which is useful for alternating comparisons of 2 devices.
A. Transistor Adapters for Bipolar Transistors and some MOSFETs - Order A1007
B. FET Adapter for most FETs - Order A1009 C. Long Lead Transistor Adapter For Transistors with Untrimmed Leads - Order A1006
D. Long Lead FET Adapter for FETs with Untrimmed Leads - Order A1008
E. Integrated Circuit Adapter for Multi-Pin Dual-
in-line Devices Packages - The pins are connected to the collector, base or emitter terminals with patch cords. A tie point is also provided for an external power supply or signal source connection to the IC pins. Includes one each lead for connecting auxiliary supply to the tie points
(196-3067-00); six each 4-inch test leads (012-0310-00). Order A1010

KELVIN SENSING ADAPTERS
These adapters fit the test fixtures of the 370, 371, 576, 177 and 178 Curve Tracers.
NOTE: For adapters A1001 through A1004 order with option 01 for use with the 576, 177 and 178.
A. In-line Adapter - Accepts large and small

TO-220 transistors with in-line leads. Spacing
between leads is 0.06 inch to 0.18 inch. The
adapter is wired for both B-C-E and C-B-E lead configura-
tions. Order A1002
B. Axial Lead Diode Adapter - Order A1005
C. Offset Lead Adapter for Power Transistor -

Order A1004
D. T0-3/TO-66 Adapter for Power Transistors -

Order A1003
E. Blank Adapter for Mounting Custom

Sockets - Order A1001
F. Example showing 6th pin for Base/Gate Kelvin Sensing.
SOT-23 Adapter for Surface Mount Devices Order A1023
\$255
NOTE: The three adapters below should only be used with 576,177 and 178 curve tracers.
G. Transistor Adapter Accepts Long or Short

Lead Transistors - Can be rewired to fit non-
standard configurations. Order 013-0127-01
H. Stud Diode Adapter - Order 013-0110-00 $\$ 130$
$\$ 110$
I. T0-36 Adapter - Order 013-0112-00$\$ 130$

MULTILEAD SOCKETS
These sockets are only used with the 178.
A. 8 lead TO package - Order 136-0444-00
B. 10 lead TO package -Order 136-0441-00
$\$ 70$
C. 14 lead dual-in-line package -

Order 136-0443-00
D. 16 lead dual-in-line package -

Order 136-0442-00
These four sockets are the most commonly required in curve tracer applications. Other socket configurations are available from Textool Products, 1410 W. Pioneer Dr., Irving, TX 75061.

3 PIN ADAPTERS
The 3 pin adapters can be used with any Tektronix curve tracers. They do not have Kelvin sensing contacts.
A. TO-5 and TO-18 transistors -

Order 013-0128-00

B. Blank adapter for mounting special
\$32
C. T0-3 and TO-66 transistor adapter -

Order 013-0070-01
D. Axial lead diode adapter -

Order 013-0072-00

- Per-Cycle Definition of Timing
- Compact Benchtop System
- 50 MHz Test Rates
- 64 TO 256 I/O Channels
- 64k Pattern Depth
- Up to 16 Clocks (32 Programmable Edges)
- 1, 2, or 3 year Warranty Available

VERSATILE CLOCKING

The LV500 is the first ASIC Verification System able to match the timing flexibility found in logic simulators and large production testers. Its sophisticated timing allows much more of the simulation information to be transferred to the test program. Until now verification systems have been equipped with fixed vector timing, limiting their ability to reproduce simulation vectors and making it difficult to compare simulation and prototype test results. Using the LV500, you can reproduce your simulation vectors much more accurately.

The key to providing all this flexibility in the LV500 is the use of "templates." A template allows the user to specify test cycle length, edge placement, and channel function (force, sense, mask or inhibit) on a cycle-bycycle and channel-by-channel basis. Using templates you can alter the test rate or change the timing of any data channel at any time during a test sequence.

EFFICIENT HUMAN INTERFACE

The human interface of the LV500 allows designers to work in a familiar environment. In the template screen, for example, timing is defined in the same format as that found in IC data books. Timing diagrams show the time relationships among the signals for each cycle. Users can adjust the timing at will using pop-up menus.
The configuration screen allows quick setting of power supplies, force voltages, and compare voltages. The DUT wiring screen maps data signals to the tester channels. The mapping of channels may be set up automatically, defined inter-actively, or extracted from a previous setup.

POWERFUL TEST VECTOR CREATION

You can easily use simulation design data to create test vectors for the LV500. The system can accept data from virtually any logic simulator. It has turnkey solutions for Mentor's QuickSim, Daisy's DLS, Hilo, Valid, and Lasar. During the translation process, timing
 and functional information is extracted from the simulation data to automatically set up the Template screens (defining test cycle timing), the Pattern screen (defining test vectors), the Channel Grouping screen, and the DUT Wiring screen with little or no manual input. In many cases no further setup is necessary.

Sometimes you may want to create or edit test patterns manually. The pattern editor is simple yet powerful, with the ability to create high level pattern macros. This makes it easy for you to generate and document test patterns for your devices.

The LV500 provides up to 16 clock sources (timing generators). Each of the data channels is assigned to one of the 16 clocks. Events on any data channel are programmed to occur on either of the clock edges. As with large testers, the test cycle length may be changed from one cycle to the next.

CONFIGURABLE RESOURCES

The LV500 system tests digital devices with up to 256 bi-directional channels at data rates up to 50 MHz . With a deep (64 K) pattern memory, tests are performed realistically and efficiently.

Configured in multiples of 64 channels, the LV500 provides $64,128,192$ or $256 \mathrm{I} / 0$ channels. Systems with less than 256 channels can easily be expanded when the need arises. Each LV 500 system is configured with the following standard equipment: Mainframe. color display, expansion mainframe (LV 514 only), testhead (with specified number of channels), continuity test, PGA, and DIP DUT cards, two programmable power supplies, Schmoo Plot software, User's Manual, backup software, and Tutorial Package.

THE TekWAVES CONNECTION

A companion product to the LV500 is the TekWAVES ASIC Verication Software package. TekWAVES allows development of complete LV500 test programs on the designer's workstation. For more specific information, please refer to the TekWAVES information on page 256 .

LV500 template setup screen for timing definition.

ORDERING INFORMATION

LV511 64 Channel ASIC

	555
- On-site Installat	0
Opt. W2-+1 Yr. Warranty	+\$4,433
Opt. W $3-+2$ Yrs. Warranty	667
LV512 128 Channe	
rification Sy	\$94,000
Opt. $\mathbf{0 0}$-On-site Installation	0
Opt. W2-+1 Yr. Warran	+\$6,340
Opt. W3 -+2 Yrs. Warra	+\$12,680
LV513 192 Channel	
Verification Sy	\$133,000
Opt. $\mathbf{0 0} 0$ On-site Installatio	,
Opt. W2 $2+1$ Yr. Warranty	+ \$8,680
Opt. W3-+2 Yrs. Warran	+\$17,360
514256 Ch	
Verification System	\$172,000
Opt. $\mathbf{0 0} \mathbf{O} \mathbf{O n}$-site Installatio	\$900
Opt. W2-+1 Yr. Warran	+\$11,020
Opt. W3-+2 Yrs. Warranty	+\$22,0

The following options are available for
all LV500 systems:
Opt. 2C -GPIB/Expansion Intf. $+\mathbf{\$ 1 , 9 5 0}$ (standard on the LV 514)
Opt. 4C - EtherNet LAN
Interface
Opt. 3M - Simulator
Translator SNW
Opt. 14-20 MB Removable Hard Disk
+\$3,600
+\$1,000

INTERNATIONAL POWER
PLUG OPTIONS
Options A1-A5-Available
See page 374 for description.

LV500 DUT CARDS

Pin Grid Array DUT Card - For 0.1 center-tocenter device sockets. 256 channels routed to a connection area surrounding a 21 by 21 matrix of holes for mounting the device socket. Pkg of five. Order 020-1740-00
Pkg of ten. Order 020-1741-00
Dual Inline package DUT card - For DIP packages with up to 64 signal pins. Pins are prewired to LV 500 channels. For DIP
sockets with $0.3,0.4,0.6$, or 0.9 inch centers.
All signals can be series-terminated.
Pkg of five. Order 020-1738-00
Pkg of ten. Order 020-1739-00
Scratch Pad DUT Card - 0.1 grid (center-to-center) for developments of custom device interfaces. Grid area is 5.5 inches in diameter.
Pkg of five. Order 020-1809-00 $\mathbf{\$ 1 , 0 6 0}$
Pkg of ten. Order 020-1810-00

The LV500 Quick Connect DUT Card Kit.

Quick Connect PGA DUT Card Kit - For quick
interface to up to 19 by 19 PGA devices.
Wire device pins to tester channels via
insulation displacement terminal strips.
Includes ZIF socket, termination resistors,
wiring strips, wire insertion tool, and wire.
Order 020-1777-00
Coaxial Cable DUT Card - For interface to
probers, chip handlers, and custom test
fixtures. Includes DUT card, $75 \mathrm{hm} /$
60 cm coaxial cables, cable clamp, and
power supply ribbon cable. Coax cables
connect to standard 0.1 inch center square
pins.
DUT card and 64 coax cables.
Order 020-1801-00
\$2,900
DUT card and 128 coax cables.
Order 020-1802-00
DUT card and 192 coax cables.
Order 020-1898-00
DUT Card and 256 coax cables.
Order 020-1803-00
DUT Card only. Order 020-1804-00
Static Grounding Wrist Strap -
Order 006-7248-00

- Graphical, Iconic User Interface
- Stimulus Management and Editing
- Automatic Test Program Generation
- LV500 Communication Support
- Direct Printer and Plotter Support
- Automatic Conversion of Test Program Vectors to Stimulus Patterns

THE INTELLIGENT LINK OF DESIGN AND TEST

The Waveform Analysis and Verification Environment (WAVES) provides a software environment that links hardware design with hardware testing. TekWAVES consists of a core Test and Measurement framework, along with an ASIC Verification module that provides tools for the ASIC design engineer. It runs on either Apollo or SUN workstations and allows you to easily create and edit stimulus data, TekWAVES can automatically generate a test program for the LV500 ASIC Verification System.

ORDERING INFORMATION

WAV2OV TekWAVES/LV for Apollo Computers	\$5,000
WAV30V TekWAVES/LV for SUN Computers	\$5,000
OPTIONS COMMON TO WAV2OV and WAV3OV	
Opt. W9-12 months Software Subscription Service (US)	+\$900
Opt. 1S - 12 months Software Subscription Service (Int.) (WAV20V) (WAV30V)	+\$900
WAV2UV Update kit WAV20V, Inc. SW and documentation	\$1,800
WAV2RV 12 months Software Subscription Service (excludes media and documentation)	\$750
${ }^{-1}$ Contact your local sales office.	

ICONIC, GRAPHICAL WORKBENCH

TekWAVES software is easy to use, featuring an intuitive, iconic user interface. At the heart of TekWAVES is a test and measurement framework, a Workbench. To perform a task you simply pick a tool from a Card File using the mouse, put it on the Workbench, and begin working with it.

STIMULUS MANAGEMENT AND EDITING

TekWAVES provides direct read and write capability for Genrad HILO and Mentor Graphics QuickSim simulation data, and TSSI SEF format stimulus files. In addition, translators are provided to bring simulation data from Valid's ValidSim, Teradyne's LASAR, and Daisy VLAIF into TekWAVES. You create, display, and edit stimulus vectors using a STATE EDITOR, TIMING EDITOR, and TIMESET EDITORS.
The STATE EDITOR lets you view waveform data in its character format, edit individual state characters, cut and paste blocks of states, or write waveform subroutines and
algorithmically generate clock patterns. Changes made with the State Editor are immediately reflected in the Timing Editor, and vice-versa.

The TIMING EDITOR lets you edit waveforms graphically. Using the mouse, you can drag edges where you want a transition. You can search for common timing functions and display the capabilities of the target tester.
The TIMESET EDITORS let you create timeset subroutines to use as templates for common functions, for example microprocessor read, write, or fetch operations. You can create subroutines describing different timing versions, to perform margin testing.

In addition to the editors for the creation and modification of stimulus data, a series of filters let you adjust stimulus data to eliminate glitches, change the default mapping of logic states, align waveform edges or cycle boundaries, and scale timing to control the frequency of a transition.

AUTOMATIC TEST PROGRAM GENERATION

TekWAVES eliminates the need for you to learn a specialized programming language specific to your tester. After editing stimulus data, you can bring that data to the tester quickly and easily. TekWAVES checks stimulus data for compliance with the tester resources and capabilities, and graphically displays problems such as dead zone violations, misaligned cycle boundaries, and narrow pulses. Cycle assignment, timeset extraction, allocation of tester resources, and test program generation are all performed automatically. Designers control each iteration of this process by graphically wiring between icons that represent individual tasks, then running all the tasks with a click of the mouse.

LV500 COMMUNICATIONS

TekWAVES can generate a test program that uses all the advanced features of the LV500, and it provides easy transfer of files back and forth to the tester via RS-232, GPIB, or Ethernet LAN communications.

CONVERSION OF TEST VECTORS TO SIMULATION PATTERNS

Once the test program is downloaded, you can make changes on the tester, then upload the modified test program back onto the TekWAVES Workbench. TekWAVES translates the program back into test patterns for a variety of simulators, including HILO and QuickSim. You can also write test program data in TSSI SEF format, preserving all the pattern and timing information to let you re-simulate. This lets you verify any changes in the tester against the original simulation model.

PRINTER AND PLOTTER SUPPORT

TekWAVES can print data to any Postscript printing device, such as an Apple LaserWriter, or to any Hewlett Packard plotter that can interpret HPGL. Hewlett Packard Graphics Language.

TEKWARE PROGRAMS COMPLEMENT TEKTRONIX INSTRUMENTS

With technology more complex and schedules becoming shorter, the need to automate test and measurement environments is greater than ever.

Tek can meet your need for improved test and measurement productivity in the lab, on the factory floor, or at the remote site. Tekware programs are designed to enhance the productivity of Tektronix instruments and controllers.
Tektronix has performed extensive software testing to verify that all standard Tekware measurement, analysis, and utility packages run reliably with Tek instruments and controllers. MS-DOS Tekware programs have been tested for compatibility with 286/386 IBM compatible PCs.

Applications Software

Tekware applications software provides a wide selection of ready-to-use general purpose control, measurement, and display capabilities. Simply load Tekware applications into your controller, and your system is ready to go to work for you. If your software requirements do not call for unique processing or specialized control functions, Tekware applications software could be the shortest path to a complete system solution.

Development Software

Tekware development software tools can be used to create new software or to modify existing software. Some Tekware development software products contain test program generators enabling you to create test procedures without writing a single line of code.

If your testing requirements call for development of a custom program or for customizing an existing program, a Tekware development software tool could be the key to the solution.

Utility Software

Tekware utility software instrument drivers, peripheral drivers, processing modules, and display modules can be linked to other Tek or non-Tek software to produce custom programs. Using Tekware utility software whenever possible, rather than developing your own code, can substantially reduce software development time.

Software Support

To keep your software current and up-to-date, our software support is available at no charge during the warranty period. Post-warranty software support is available on a subscription basis.

Technical Assistance Services (TAS)

When you need technical assistance to supplement your own resources, Tektronix can provide the services of an Applications Engineer skilled in meeting your needs. For more information see page 260.

SOFTWARE SELECTION GUIDE

The software product chart on the following pages provides an easy way to match software to Tek instruments and to your measurement needs.

How to use the Tekware Chart:

By software package

Find the software package in the list on the left side of the chart. Follow across the row for the instruments supported, features provided, and languages supported.

By instrument

Find your instrument in the list at the top of the column. Follow down the column to identify Tekware packages which support this instrument. Other instruments supported by a particular software package, features provided, and languages supported are given in the row for each software package.
Contents
Selection Guide 258
Technical Assistance
Services (TAS) 260
Tektronix Test Management System (TekTMS) 261
WaveWriter
Creation/Editing 262
EZ-TEST Test Development (PC) 263
Signal Processing and
Display (SPD) 264
LabWindows 265
ASYST Scientific 266
ASYSTANT GPIB
Acquisition and Analysis 266
i-Pattern Signal
Characterization and Documentation. 267
Template/Waveform
Processing Program. 267
11000 Series DSO IBM PC Utility 268
TekMAP 11401/402/HP
SERIES 200/300 PC TAMS 268
2402A DSO Utility Program Development 269
Integrated TeleServicing
Support 270
New WaveSaver 270

TEST AND MEASUREMENT SOFTWARE

The 2510 TestLab Analyzer writes waveform data to an integral MS-DOS formated 3 1/2 inch flexible disk. The PC Utility software provided with the analyzer converts the data into various formats that are compatible with PC resident analysis programs including WKS format for spreadsheets and:
${ }^{* 1}$ ASCII format with specific header information for input to DADiSP and SPD Menu.
*2 ASCII format without header information.
${ }^{* 3}$ Contact your local sales engineer for details.

TEST AND MEASUREMENT SOFTWARE

		APPLICATIONS										FEATURES												PROGRAMMING LANG. SUPPORT					HARDCOPY		
PRODUCT PRODUCT NAME NUMBER MS-DOS TEKWARETM		告													든											䓽					
Test Management System (TekTMS) S3FT100	261	-	-	\bullet					-	-		-		-	-	-	-	-	-	-	-	-	-						-		
EZ-TEST S45F030	263	-	-	-					\bullet	-		\bigcirc		-	-		\bullet		-	-	-	-	-		-				-		
Signal Processing \& Display (SPD) S3FG130	264																														\bullet
ASYST \& Drivers S47P305/S42P301/302	266			\bullet						\bullet			-	-	-	\bullet	-	-	\bullet			\bullet							-	-	
ASYSTANT GPIB S42P311	266												\bullet	-	\bullet		-	-	-			-							\bullet	-	
LabWindows S3FG910/912	265		-	-					\bullet	-				-	-	-	-	-	-		-	-			\bullet	-			-	-	
i-Pattern ${ }^{\text {TM }}$ S ${ }^{\text {S }}$ S47P107	267		-	-						-		-		-	-	-	-		\bullet			\bullet			-	-			\bullet		\bullet
Template/Waveform Processing Program S47P110	267		\bullet	\bullet						-		-	-		-				\bullet			\bullet							\bullet		\bullet
11000 Series DS0 Utility S47P108	268													-	\bullet	-			\bullet			\bullet			\bullet				-	-	\bullet
DITS ANSI/CCITT S37J101/102/103	355											-		-	\bullet			-	-			\bullet	\bullet						-		
2402A TekMate DSO Utilities S37UT01	269			-	\bullet									-	-		-	-				\bullet	\bullet		-	-			-	-	
Program Development Pkg. S37UD01	269				\bullet			\bullet		-		-	-	-	\bullet		\bullet	\bullet				\bullet	\bullet		\bullet	\bullet			\bullet	-	
Integrated TeleServicing S41TSS1	270							-	\bullet			\bullet				\bullet						\bullet							-		
Interactive Meas. S/W for RTD 710A Digitizer S45D010	*1													-	-		\bullet	-	-		-	-		-					\bullet		
DCS Acquisition, Graphics and Analysis 062-9859-00	1			-	-		-							-	-		-	-	-	-		-	-						-	-	
DCS01 Functional Library S58DC01	*1			-	\bullet		\bigcirc			-															\bullet	-	-	\bullet			
MUX Option 10/11 DCS MUX16	*1								-	\bullet				\bullet		\bullet															
1230/PC RS-232 Applications S43R101	153			-	-		-							-	\bullet					\bullet		\bullet	-								
2782/PC Utility S26UT00	174													-	-			-	\bullet			-			-				-		\bullet
2710/PC Utility S26UT10	174													-	\bullet	-		\bullet	\bullet			\bullet			\bullet				\bullet	-	\bullet
EMI Prequalification S26EM00	174				-		-								\bullet				\bullet			\bullet		-					-		-
General RF Applications (GRASP) S26RF00	174			-	-					-					-				\bullet			\bullet		-					\bullet		
Remote Site Monitoring (RSM) S26RM00/01	174			-				-		\bullet				-	-			-	\bullet			-		-					-		
WaveWriter Waveform Generation S75WVWR	262	-	-	-						\bullet		-	-	-	-		\bullet	\bullet					-						-		
370 Device Test S48P401	*1							-		-				-	-			\bullet				\bullet		\bullet					\bullet		
370 Utility S48P104	* 1													-	-				-	-		\bullet			-					-	
371 Utility S48P105	1													-	-				-	-		\bullet			\bullet					-	
Unix Based																															
Frequency Enhancement S/W Util. S2M6100	184				\bullet		-					\bullet			\bullet	\bullet	-	\bullet								\bullet			\bullet		

${ }^{* 1}$ Contact your local sales engineer for details.

Technical Assistance Services (TAS)
- Installation Assistance
- Familiarization Training
- Custom Training
- Problem Definition and Debugging Assistance
- Interface Assistance
- Applications Assistance

ORDERING INFORMATION

T\&M Products

Order 068-9080-00. Availability
is limited. Please contact your local Tektronix Sales Engineer for more information and availability in your area. Microwave \& RF Instruments Order 068-9220-00

When your systems development program calls for informed, on-site assistance, Tektronix can keep you in touch with some of the best in the world
With Tek Application Engineers, you enjoy a resource that you can draw on to help you derive maximum benefit from Tektronix system components.
Tektronix Application Engineer consultation is designed specifically to optimize the operation of Tek instruments and software
We suggest that customers may first want to avail themselves of Tek's excellent documentation and regular customer training programs prior to requesting our Technical Assistance Services.

Typical Consulting Services Include:

- Installation assistance

This may include pre-installation counseling, assistance in installing hardware or software, and installation validation.

- Familiarization training

This usually takes the form of a brief introduction (individuals or groups) of hardware basics, system interaction, and software utilization. Other training modules may present specific operational aspects of a product.

- Custom training

You may require that unique training modules be designed and presented to meet an unusual application, environmental or personnel need.

- Problem definition and debugging assistance Application Engineers can help you trace and debug problems within a hardware/software system.
- Interfacing assistance

We can assist you with unusual interfacing challenges requiring intimate knowledge of Tek hardware and software.

- Application assistance

You can obtain expert consultation in signal acquisition, specific test and measurement tasks, integrating Tek hardware and software within an existing process, and in other application-specific areas. Technical Assistance service is available in one

Instrument Front Panels show instrument states in your test procedure and in hardware.

TEKTRONIX TEST MANAGEMENT SYSTEM (TEKTMS)

TekTMS provides a highly productive software package for test development and execution in manufacturing, repair/rework, and prototype development testing applications

Interactive Procedure Generator

The Interactive Procedure Generator (IPG) provides easy-to-use dialog menus to simplify test development and eliminate syntax errors. Instrument control steps are as easy to create as pushing a button on an instrument software front panel. The IPG editor creates an "Outline View" of the test program with steps chosen from the Instruments, Operator, or Actions menus.

Runtime Code Generator

The new runtime code generator in conjunction with the Microsoft C 6.0 compiler provides dramatically improved speed and performance.

UUT Graphics Displays

Display component locations diagrams and schematics for your operator to see on-screen during test execution. TekTMS handles graphics pictures created with bit-map drawing software running in Microsoft Windows, such as PC Paintbrush.

UUT Adjustment Step Displays

An adjustment step display simplifies operator assisted calibration adjustments to the UUT. A real time display of the adjustment moves a measurement cursor as the operator makes the physical adjustment.

Waveform Acquisition, Processing, and Display

TekTMS acquires waveforms as unique waveform variables with scaling and timebase information built in. Waveform arithmetic and math functions automatically handle all elements of waveforms. Pulse parameter analysis provides time and amplitude characterization of complex pulse waveforms.

VXI and GPIB Instrument Front Panels

Instrument Front Panels create instrument procedure steps without hardware and manipulate on-line instruments for interactive development sessions. Use the mouse to set up instrument controls for a test step. Instrument front panels may be placed on screen as icons and enlarged to full size when needed. Choose Instrument Front Panels from two libraries. The libraries provide a software file and context sensitive help for each instrument.

More than 40 VXI instruments and 95 GPIB \& CDSBus instruments are supported in the instrument libraries.

Develop Your Own Front Panels Quickly

Develop instrument front panels in less than an hour with the TekTMS Instrument Script Language and Help Editor. Use these tools together to build interactive instrument front panels with context sensitive help.

Instrument I/O Tracing

TekTMS simplifies program debugging with the I/O trace window. The trace window shows all instrument message traftic during test procedure execution.

Tektronix Test Management System (TekTMS)

- New Runtime Code Generator
- Easy-to-Use Outline View of Test Program
- Instrument Front Panel Libraries for more than 40 VXI and 95 GPIB and CDSbus instruments
- Program Instruments with Interactive Instrument Front Panels
- Provides Powerful Time and Amplitude Waveform Processing for Complex UUT Signals
- Displays UUT Component Layouts and Schematics
- Adjustment Display Provides Realtime Feedback of Manual UUT Adjustments
- Controls Instruments on the VXIbus, GPIB Bus, and RS-232 COM Ports
- Develop Instrument Front Panels with Instrument Script Language and Help Editor
- Familiar Microsoft Windows Interface Makes Getting Started Easy

SYSTEM ENVIRONMENT

Tek VX5530 or VX4530 VXIbus System Controllers, or IBM AT compatible computer with Tek GPIB interface, 640 kBytes RAM, one 1.2 MByte or 1.44 MByte floppy disk drive, 20 MByte Hard Disk, and Hercules or IBM CGA, EGA, or VGA graphics adapter or equivalent.

MS-DOS 3.0 or later version and
Microsoft Windows version 3.0 or later version with Microsoft Mouse or equivalent.

ORDERING INFORMATION

TekTMS is provided on both
5 V 4 in . and $3 \mathrm{~V} / 2$ in diskettes.
S3FT100 TekTMS Interactive
\$2,695
Procedure Generator
S3FT110 Runtime Code
Generator
S3FT200 TekTMS VXI
$\$ 495$
Instrument Front Panel Library
S3FT300 TekTMS GPIB
$\$ 495$
Instrument Front Panel Library
${ }^{*}$ Contact your local sales office.

WaveWriter ${ }^{\text {TM }}$

Arbitrary Waveform Generation Software WaveWriter simplifies the creation and editing of waveforms for arbitrary waveform generators and digital oscilloscope templates.
- Create and Modify Waveforms for AFG 5101/ 5501, VX5790, etc.
- Use WaveWriter Stand-Alone or Integrated into TekTMS.

- See What You Are Doing As You Go.
- Create Waveforms by Drawing Them (Freehand or with Autolining between Selected Points), by Editing Standard Functions, by Writing Equations, or by Capturing Them with a Scope.
- Edit Waveforms by Cut and Paste Methods; or Invert, Add, Subtract, Multiply, or Divide Whole Waveforms or Portions.
- WaveWriter Automatically Deals with Record Size, Resolution, etc., of Target Instruments.
- Microsoft Windows-Based User Interface.

WaveWriter allows easy creation and modification of custom waveforms.

WaveWriter WAVEFORM CREATION AND EDITING SOFTWARE

Waveform Generation

WaveWriter ${ }^{\mathrm{T}}$ is the new software support package for creating and modifying arbitrary waveforms for the Tektronix Arbitrary Waveform Generators and digital oscilloscopes. WaveWriter represents a major step forward in allowing easy creation of the real world signals which are increasingly being used to test circuit tolerances, drive vibration/shake tables, and simulate other non-ideal or corrupted signals.

WaveWriter offers an easy to use alternative to general-purpose programming languages for waveform definition. Its user interface is based on Microsoft Windows ${ }^{\text {™ }}$, with pull-down menus and mouse-selected icons. (Alternatively, you can use a command-driven interface.) It can work on its own, or as an integral part of TekTMS test program generation software.

Acquire Signals Oscilloscopes

Signals may be acquired from the Tektronix 11000 Series, 2200 Series, 2400 Series oscilloscopes as well as the VXI digitizer VX5260. The signals may then be modified and recreated on the arbitrary waveform generators.

Create Custom Waveforms

Define waveforms by:

- Entering equations and limits,
- Drawing them freehand,
- Selecting endpoints of straight line segments,
- Editing standard functions, including sines, pulses, triangles, and haver functions,
- Uploading captured functions from a suitable digital oscilloscope.

Create the reference memory template waveform for pass/fail testing on 2400 series oscilloscopes.

Edit Waveforms Graphically

By defining sections of a waveform with WaveWriter's markers (which work like the cursors on an oscilloscope display), you can perform mathematical functions, including inversion; scale vertically and horizontally; and cut and paste. For example, you can add harmonically related sinusoids to construct a signal from its Fourier components. Or, starting with a signal captured by an oscilloscope, you can add glitches and distortion to test a circuit's response to specific kinds of signal aberrations.

Automatic Output to Target Instruments

Users identify the target test instrument and the software handles details such as record length and precision, D-to-A clock rates or time base settings. WaveWriter supports a number of Tek AFGs, digitizers and scopes, and users can add instruments by responding to on-screen queries.

Oscilloscope Template Generation

WaveWriter also supports the 2400 series line of digital storage oscilloscopes with template generation for the Save-On-Delta feature. Therefore, with WaveWriter, the user can create the exact tolerances or templates with which to capture a differentiated signal or identify a failure.

System Environment

WaveWriter works on any 80286- or 80386-based computer with 640 K of RAM that is capable of running Windows. This includes Tek's VX5530 or VX4530 VXIbus System Controllers, 2402A TekMate, or a suitably configured IBM PC AT or clone.

WaveWriter requires MS DOS or PC DOS 3.0 or later, and Microsoft Windows Version 3.0 or later, with a Microsoft Mouse or equivalent.

Figure 1. The adjustment step acquires measurements and displays them on screen relative to nominal and upper and lower test limits, simplifying UUT adjustment procedures.

EZ-TEST TEST DEVELOPMENT SOFTWARE

A Complete Development and Test Runtime System

EZ-TEST is a software productivity tool used to create and run test software for manufacturing, service repair and rework, metrology, and prototype evaluation.

Let the instruments create your software. EZ-Test learns the settings of GPIB instruments and generates program code automatically.

EZ-TEST is for non-programmers or programmers who prefer to concentrate on testing rather than software coding chores.

The EZ-TEST software system provides all the software necessary to develop and run test system programs. Figure 1 shows the major elements of EZ-TEST:

- Generator program to create, debug, and execute the test procedure.
- Translator program to convert the procedure to Microsoft QuickBASIC code and then compile and link it, resulting in a complete standalone test program.
- Test Execution Scheduler to run sequences of compiled tests and gather test data.
- Microsoft QuickBASIC editor, compiler, linker and manuals.
- GPIB interface software for QuickBASIC.

Run Tests with TekMate 2402A

EZ-TEST comes complete with runtime libraries to produce compiled test programs which run on the TekMATE 2402A with a 2400 Series Digital Sampling Oscilloscope.

Figure 2. TEK EZ-TEST PC Software System

Test Functions

EZ-TEST provides a simple means to specify highlevel test functions using instruments on-line. Create test procedures with these functions:

- Instrument control commands.
- Instrument measurement.
- PASS/FAIL limits for measurements, controls procedure process flow.
- UUT adjustment steps, measurement shown on screen with cursor moving relative to nominal and limits values for easy operator adjustment.
- Waveform acquisition and pulse parameter analysis with PASS/FAIL limits.
- Disk file transfers to and from instruments.
- Procedure WAIT states for instrument or UUT settling.
- Automatic Stimulus/Response testing.
- Graphical screens for operator instructions created with PC Paintbrush software from Microsoft.
- SRQ Interrupt handlers.
- Status BYTE acquisition.

Instrument Support

EZ-TEST supports Tektronix instruments with highlevel functions for instrument setup and special measurement acquisitions.

- TM 5000 family of general purpose test instruments.
- Waveform acquisition and pulse parameter measurements for digitizers and digital oscilloscopes (7000, 11000, 2400, and RTD series).
- TSI 8150 Test System Interface configuration utility for fixture switch matrix programming.
- Instrument settings queries and standard measurements are supported for the full line of Tektronix GPIB instruments which feature the Tek Codes and Formats Standard for Programmable Instruments, including spectrum analyzers and logic analyzers.
EZ-TEST also supports generic setup and measurement capabilities for IEEE-488.1 compatible instrument with any combination of talker and listener capabilities.

Instrument driver software modules may be written in QuickBASIC and installed into EZ-TEST to provide additional instrument support.

EZ-TEST

Test Development Software

- No Programming Required
- Develops and Runs

Automated Tests with GPIB Instruments

- Generates Application Test Code in Microsoft QuickBASIC
- Reduces Test Development Time
- Executes Compiled Test Programs
- Runs on TekMate 2402A Instrument Controller and IBM XT/AT Compatible with Tek GPIB Interface
- Generator Program to Create, Edit, Debug, and Execute the Test Procedure
- Translator Program to Convert the Test Procedure to QuickBASIC Code, then Compile and Link
- Test Executive Program to Schedule and Run Compiled Test Procedures
- Microsoft QuickBASIC Editor, Compiler, and Linker Software Package

SYSTEM ENVIRONMENT

EZ-TEST PC runs on the Tektronix 2402A system controller or on any IBM PC/AT or compatible computer configured with the Tektronix GPIB interface card (S3FG100 or S3FG120), and with 640 kBytes RAM, $51 / 4^{\prime \prime}$ or $31 / 2^{" ~ D S D D ~ f l o p p y ~ d r i v e, ~ h a r d ~ d i s k ~ a n d ~}$ MS-DOS 3.0 or higher. A CGA graphics monitor (or better) and adapter is recommended for graphics displays.

ORDERING INFORMATION

S45F030 - EZ-TEST	$\mathbf{\$ 1 , 9 9 5}$
Opt. 06-Delete Microsoft	$\mathbf{- \$ 1 0 0}$
QuickBASIC (required for international orders)	

Signal-Processing and Display Software

- Convenient Interactive Menu Interface
- Software Libraries for Application Software Development
- Comprehensive Set of Functions for Acquisition, Processing, Measurement, Storage, and Display of Waveforms from Tektronix Digitizers

SYSTEM ENVIRONMENT

(BM PC/AT or compatible computers with a graphics display monitor and adapter, 640 kbytes memory, a $51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$ inch diskette drive and a hard disk drive, and Tektronix GPIB interface (GURU II or equivalent) DOS 2.1 or later version

A wide variety of graphics displays, printers, and plotters are supported by the GSS*CGI (Graphics Software Systems, Inc.) drivers supplied with the SPD package.

SPD supports the Tektronix HC100 plotter and the 4693D or 4696 printers.

Math co-processors are supported, and will improve the execution speed of SPD.

ORDERING INFORMATION

S3FG130 - SPD Signal $\quad \mathbf{~} \mathbf{\$ 1 , 2 9 5}$
Processing and Display Software
Includes: Software on 5 1/4" and $31 / 2^{\prime}$ diskettes, SPDMENU function key overlay, and manuals.
I Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

Signal-Processing and Display Software

SPD simplifies the acquisition, processing, measurement, storage, and display of waveforms from Tektronix digitizers for scientific and engineering applications.
The SPDMENU program provides an easy-to-use interactive menu to perform SPD functions without writing programs. Getting started is easy with extensive on-line help.
The SPD Function Libraries provide software modules for programmers who are writing applications with Microsoft C or QuickBASIC.

Acquisition Library

The Acquisition Library acquires waveforms from Tektronix digitizers and formats them for use by other SPD functions. Waveform acquisitions from digitizers can be achieved with a single menu selection or function call. The library supports these Tektronix digitizer products:

2220	5223
2221	$7 D 20$
2224	7854
2230	7912 AD/HB
2232	$11401 / 11402 / 11403$
2430	$11801 / 11802$
$2430 A$	RTD 710
2432	RTD 710A
2440	DSA 601/DSA 602

Signal Processing Library

The Signal Processing Library provides time and frequency domain signal processing functions for arbitrary length waveforms. These functions include:

- Arithmetic
- Integration and Differentiation
- Pulse Measurements
- Statistics

- Convolution and Correlation
- Forward and Inverse Fast Fourier Transforms (FFT)
- Interpolation and Decimation
- Standard Waveform Generation (SINE/SQUARE)
- Finite Impulse Response (FIR) Filter Generation
- Waveform File Input and Output

Waveform Graphics Library

The Waveform Graphics Library provides deviceindependent waveform graphics using the GSS* CGI device drivers from Graphic Software Systems. These drivers support a wide range of printers and plotters, and support high resolution display up to 800×600 pixels The Waveform Graphics Library allows the user to create waveform displays and control these attributes:

- Log or Linear Axes
- Auto or Manual Scaling
- Titles and Axes Labels
- Multiple Curves per Graph
- Multiple Line Styles
- Full Color Control

SPDMENU Program Process Menu

The SPDMENU program functions can be extended with the Process Menu option. This feature makes it possible to access user written programs from the SPDMENU program. Writing these custom programs is simplified with the example programs provided in SPD.

SPD C and QuickBASIC Language Support

The SPD libraries are intended for software professionals who must develop comprehensive applications written in the Microsoft C 5.1 or QuickBASIC 4.5 languages.

Software debugging is simplified with SPD functional prototype include files to catch errors at compile time rather than at runtime. The SPD software functions maximize use of memory by accessing all available standard memory for waveform data.

PROGRAMMING ENVIRONMENT LABWINDOWS ${ }^{\circledR}$

LABWINDOWS ${ }^{\circledR}$ VERSION 2.0

LabWindows is a software development system for building test and measurement applications. LabWindows gives QuickBASIC and C programmers a complete set of developrnent tools to create PC-based instrumentation systems with GPIB, VXI, and RS-232 programmable instruments. The development system includes an interactive development environment and function libraries for data acquisition, instrument control, data analysis, and data presentation

The LabWindows Standard Package gives users an interactive environment for developing QuickBASIC and C programs. In the environment, users can call any of the functions in the LabWindows Libraries. The libraries include the GPIB Library, RS-232 Library, Data Acquisition Library, Formatting and I/O Library, Analysis Library, Graphics Library, User Interface Library, and the Instrument Library. The development environment has pull-down menus and optional mouse support for simple and direct access to all editing and debugging tools. Debugging tools include break points, single-stepping, and the ability to view and edit program variables and data when running a program.

Users access each of the functions in the LabWindows Libraries with function panels. A functional panel is an intuitive full-screen interface that lets you create and execute library functions without typing or editing code. The function panel is used to interactively test functions and copy the working function directly into your program.

The LabWindows Instrument Library has drivers for controlling over 120 GPIB, VXI, and RS-232 instruments. Instrument drivers eliminate the low-level programming details of instruments with intuitive, high-level QuickBASIC and C function calls. For example, the function read. waveform (CH 1 , wave) will query a GPIB or

VXI Digitizer for a waveform from channel 1, read the raw data, convert the data into actual values, and place them in array, wave. By using instrument driver, developers can concentrate on developing their application rather than programming their instruments.

The LabWindows User Interface Library gives users the ability to create a graphical user interface for their system. The interface is created with a graphical editor and controlled with functions in the User Interface Library. The interface can include graphical panels and pull-down menus. Panels can be created with several types of input and output controls, graphs, and strip charts. PCX images can also be displayed on panels to show diagrams, schematics, and connections to a unit under test. The User Interface Library and the Graphics Library can output data to graphics printers as well as HPGL files and compatible plotters.

OPTIONAL LABWINDOWS LIBRARIES

VXI Library: Complete set functions for controlling VXI instruments from GPIB, MXI, or embedded PCcontrollers. Functions are available for communication with both message based and register based devices.

Advanced Analysis Library: High performance analysis library with over 125 functions that include: signal generation, real and complex FFTs, inverse FFTs, FHT and inverse FHT; power spectrum; integration; differentiation; convolution; correlation; pulse parameters, FIR and IIR digital filters; windowing functions; curve fitting; variance, RMS, linear equations; one- and two-dimensional polynomial evaluation.

LabWindows ${ }^{\circledR}$
 Version 2.0

- Interactive Program Development
- Automatic Code Generation
- Libraries for Programming GPIB, VXI, and RS-232 Instruments
- User Interface Library for Creating Graphical User Interfaces
- Uses Standard Programming Languages - Microsoft QuickBASIC and C

SYSTEM REQUIREMENTS

IBM PC AT or compatible, or PS/2; minimum 80286 processor; 2 M or memory (up to 16 M); 1 hard disk; EGA, VGA, or Hercules graphics adapter; MSDOS 3.0 and above; Tek GPIB interface board.

ORDERING INFORMATION

```
S3FG910 LabWindows Version
2.0 Standard Package
S3FG912 LabWindows Version
2.0 Advanced Analysis Library
LabWindows VXI Library for:
    VXIpc-386
    AT-MXI
    MC-MXI
LabWindows is a registered
trademark of National
Instruments.
* Contact your local sales
    office.
```


ASYST

- Automatic Graphics With Modifiable Defaults
- High Resolution and ColorGraphics Support
- Comprehensive Data Analysis
- Integrated GPIB/IEEE

Standard 488
Hardware Support

- Built-in Functions Plus Full Programmability

ASYSTANT GPIB

- Menu Driven
- Statistical and Numerical Analysis
- Waveform Processing

ORDERING INFORMATION

S42P301 - ASYST Scientific \boldsymbol{z} \$2,095 Software.
Includes: Software Modules 1, 2, and 4 on 5 1/4"DS/DD disk and manuals.
S42P302 - Driver Software for © $\$ 435$
ASYST Requires S42P301 or equivalent software.
Includes: Software source on $51 / 4^{\circ}$ DS/DD disk, hardware driver for Tektronix 7D20, 7854, 7912AD, 7912 HB, RTD-710, 7250,2230 , and 2430A; and manual (070-6189-00). S47P305-11000 Series DSO ت $\mathbf{\$ 4 5 0}$ Driver for ASYST. Requires S42P301 or equivalent. Includes: Software source on $51 / 4^{*}$ DS/DD disk, hardware driver for Tektronix 11201A, 11400 Series, 11800 Series, CSA 803, and DSA 600 Series and manual (070-7759-00).
Opt. 01-5 1/4' disk

S42P311 - ASYSTANT GPIB $\$ 695$

 Includes: Software and manuals.E Product available within 24 hours through Tek Direct. Call 1-800-4262200.

ASYST and ASYSTANT are trademarks of Asyst Technologies, Inc.

ASYST SCIENTIFIC SOFTWARE

ASYST is a fully integrated software tool that provides you with the most commonly used data acquisition, statistical, graphing, and analysis capabilities required in engineering and scientific applications. Operating on the IBM PC/XT/AT, ASYST is designed so novice users can start carrying out complicated operations with a minimum of introduction, while allowing the advanced user to take full advantage of a powerful programming language that supports all the features of the IBM PC.

Most mathematical or graphics operations can be performed by using a single predefined word describing that operation; e.g., MATRIX.INV, FFT, INTEGRATE.DATA, 2WAY.ANOVA, or Y.AUTO.PLOT. New words can be defined to perform any sequence of actions.

:PLOT.IT!

PRESSURE
TEMPERATURE
XY.AUTO.PLOT;
PLOT.IT! now automatically plots two data arrays when invoked: PRESSURE and TEMPERATURE.

The Analysis module contains most of the common operations used to treat experimental data. These include for example, integration, differentiation, base-line correction, peak finding, digital smoothing, FFT, IFT, matrix manipulation, and Eigen system analysis.

Instrument-specific application programs such as the Digitizer Driver Software for ASYST are also available. Written in the ASYST language, this driver provides you with a function-key-driven program that allows for the acquisition and storage of waveforms, storage and retrieval of settings or programs, zoned pulse-parametric analysis (max, min, mid, $p-p$, rise time, fall time, overshoot, undershoot, pulsewidth, period, and crossing levels) and frequency-domain analysis. Data may be acquired from the Tektronix 7D20, 7854, 7912AD, 7912 HB, RTD-710, 7250,2230 , or 2430 A . There is a similar driver for the Tektronix 11000 Series Oscilloscopes, DSA 600 Series Digitizing Signal Analyzers, and CSA 803.

MODULE 1 AND 2 HIGHLIGHTS

Base System - Array-based operations. Different number types, and multi-dimensional arrays.
Access Utilities - File conversions to/from ASCII, BASIC, packed binary, and Lotus 1-2-3 files. DOS shell. Language interface to Microsoft C and Fortran.
System Utilities - Easy-coder, menu-driven utility. Menu-driven setup. Text editor. Array and command line editors. Error tracer. On-line help.
Analysis - Basic math including trigonometry, exponentiation, and logarithms.
Waveform Processing - Waveform arithmetic. Fast Fourier Transform (FFT). Inverse FFT. 2-DFFT, 2-DIFFT. Smoothing. Convolution. Filtering. Peak detection. Integration. Differentiation.

Curve Fitting - Goodness-of-fit reporting. Correlation Matrices. R2 (cross-correlation). Weighted and nonweighted fits. User-defined and non-linear fits. Least square regressions (multilinear, logarithmic, polynomial, and exponential).
Polynomial and Matrix Math - Matrix inversion. Determinants. Diagonalization. Orthogonalization. QR factorization, Eigen systems. Simultaneous Equations. Polynomial math and shifting. Root extractions.
Statistics - Basic statistical functions. Distributions. Sorting. Random number generation. ANOVAs. Histograms.
Graphics - Automatic and customizable plots. User definable graphics windows, plot types, and colors. Superimposition of multiple plots. Axonometric and contour plots. Zoom-in feature.
RS-232-C Interfacing - Multiple logical devices. Foreground/background data reception. Variable mode parameters.

ASYSTANT GPIB ACQUISITION AND ANALYSIS SOFTWARE

ASYSTANT GPIB is a powerful PC software package for data acquisition, analysis, and graphics that's designed specifically for scientific and engineering applications. It gives you the power to control your IEEE Standard 488 instruments, acquire and analyze data, and create graphics. And with ASYSTANT GPIB, you have the best of both worlds: programmability plus an easy-to-use menu-driven interface.

With this menu-driven interface, you just supply the bus and device commands and let your instrument do the rest of the work. Displaying acquired data can be as simple as choosing a single menu option. Complex analysis, such as calculating an FFT, is another simple menu choice.

Now you can use your instrument more effectively. And, you can integrate basic graphics and analysis with instrument control so you can observe events as they occur.
Then, you can create routines that can save and execute at any time. This means repetitious tasks can be executed with the minimum number of keystrokes and with consistent results.

When you combine all of ASYSTANT GPIB's IEEE Standard 488 interface capabilities with its analysis and graphics functions, you have a powerful and flexible tool. A tool available at any time. A tool that provides easy setup, a natural user interface, effortless graphics, and simple-to-use math functions.

SIGNAL CHARACTERIZATION AND MASK TESTING SOFTWARE

i-Pattern Timing and Voltage Histograms

i-Pattern Mask Testing

i-PATTERNTM SIGNAL
 CHARACTERIZATION AND DOCUMENTATION SOFTWARE

The i-Pattern Software provides a way to statistically measure and visually examine signal noise and signal timing jitter. The dynamic memory of a PC-compatible computer is used to store real-time waveform data. A region of the waveform can then be selected with cursors, analyzed, and compared to a normal distribution.

In addition to the cursor readouts, the following information is provided: number of waveforms acquired, number of hits (samples within the user-selected region), mean value, standard deviation and peak-to-peak value in
the selected region, and the percentage of hits within 1,2 , and 3 sigma (standard deviation) of the mean value. Measurements can be made using either voltage or timing histograms.

Thirteen pulse parameters are automatically calculated, with user-definable tolerances selectable for Pass/Fail testing.

The software supports all Tektronix 11000 Series and 2400 Series Oscilloscopes, the Tektronix DSA 600 Series Digitizing Signal Analyzers, the Tektronix 2230A Portable DSO, the SCD 1000 and SCD 5000 Waveform Recorders, the Tektronix 7D20 and Sony/Tektronix RTD 710A programmable waveform digitizers.

Creating a Template Waveform.

i-Pattern

- Voltage Timing Histograms
- Real-Time Display
- User Definable Masks for Telecom Testing/Monitoring
- Multiple Digitizer Support

TEMPLATE/WAVEFORM PROCESSING PROGRAM

The Template/Waveform Processing Program works with all 11000 Series oscilloscopes, and runs on the IBM $®$ PC. CGA and EGA graphics modes are supported. The program and scope communicate over the IEEE Standard 488 (GPIB) bus.

The Tektronix Template/Waveform Processing Program (TWPP) provides two primary functions: waveform template editing and act-on-delta processing. The template editor creates and modifies waveform templates. The act-on-delta function compares a test waveform with the template, then performs one or more user-specified operations, depending on whether the waveform passes or fails the template comparison. Typical uses include signal monitoring, communications testing, and pass/fail waveform-shape testing.

A template is a mask consisting of upper and lower boundaries. A waveform is compared against the template by comparing each point in the digitized waveform with the corresponding point in the upper and lower boundaries. If each and every waveform point is above the lower boundary and below the upper boundary, the waveform "passes." If any point falls outside the template boundaries, the waveform "fails."

Template/ Waveform Processing Program
 - Autogeneration of Starting Template
 - Template Editor
 - Act-on-Delta Processing

ORDERING INFORMATION

S47P107 - i-Pattern Software	\$935
Includes: Software Operator	
Manual (070-7340-00).	
Opt. 01-5 1/4" flexible disk	NC
Opt. 02-31/2' micro disk	NC
Demo Disk - 42W-7389	NC
S47P110 - Template/Waveform	\$435
Processing Program	
Includes: Software Operator	
Manual (070-7423-00).	
Opt. 01-5 1/4* flexible disk	NC
Opt. 02-3 1/2" micro disk	NC

11000 SERIES UTILITY SOFTWARE

- Archival Storage of Waveforms and Settings
- Automated and Manual Logging of Measurement Data
- Measurement Data Graphs and Histograms
- GPIB and RS-232-C Instrument Control
- Waveform Acquisition and Display or Template
Waveform Creation
- Hard Copy (Printer or Plotter)
- BASIC Source Code

TekMAP

- Graphics
- Archival Storage
- Pulse Parametrics
- Delay-Time Measurements
- Hard Copy Captures
- Menu Driven

ORDERING INFORMATION

S47P108-11000 Series DSO Utility Software.
Includes: Software Operator
Manual (070-7394-00).
S47H211-11400 Series/HP
Series 200/300 Time and
Amplitude Measurement Software.

Includes: Software Operator Manual (070-6897-00).

11000 SERIES UTILITY SOFTWARE

The 11000 Series Utility Software packages provide complete GPIB or RS-232-C control of the Tektronix 11000 Series oscilloscopes, CSA 803, CSA 404 or the DSA 600A Series Digitizing Signal Analyzers from your IBM PC.

These utility software packages allow you to use the full GPIB or RS-232-C programmability of the 11000 Series oscilloscopes without ever having to write a single line of code.

You get the simplest possible access to the measurement system power through each menu-driven package.

All of the major commands and functions are directly executed from the PC's function keys. You choose what you want to do from the first-level, main menu-acquire measurement data, copy settings, send GPIB interface commands, etc. Then a second-level menu appears, allowing you to select the specific functions or options for the operation or to enter controlling parameters or file names. Required entries from the keyboard are always prompted and are in a simple "fill-in-the-blanks" format.

No matter what you select or enter, the utility software packages will perform thorough error checking to help ensure the job is done correctly. Also, if there is any ambiguity or error in entries, the packages provide automatic prompting for immediate on-line correction.

If there is ever any question about program operation, simply press F9. This provides complete on-screen help from any menu.

BASIC HARDWARE CONFIGURATION

IBM PC, XT, or AT; and DOS 2.0 or above compatible with 640 K memory; dual floppy drive or one floppy and one hard disk; graphics card; National Instruments IBM PC GPIB card (for GPIB operation); GPIB cable or a 9 -wire RS-232-C cable.

TEKTRONIX MEASUREMENT APPLICATION PROGRAMS

The TekMAP (Tektronix Measurement Application Programs) library of software products supports the Tektronix 11400 Series oscilloscopes in automated engineering or research environments.

TekMAP software extends the versatility of Tektronix digitizers by integrating them with IBM PCS or HP Series 200/300 technical computers.

Measurement features of the 11000 Series DSOs are available through the menus and are supported by measurement logging, statistics, and screen graphics.

Multiple waveforms can be acquired and displayed on the PC screen and output to a plotter or dot-matrix printer.

Extended measurement capabilities, such as 14 automated pulse-parameter measurements, Fast Fourier transformation, and propagation-delay measurements, are provided by the Time and Amplitude Measurement Software (TAMS) products.

Please contact your local Tektronix Sales Engineer or representative regarding hardware configuration requirements and current software offerings.

DSO UTILITY SOFTWARE

A 2402A TEKMATE, A 2400 SERIES DIGITIZING OSCILLOSCOPE AND SOFTWARE: A COMPLETE STAND-ALONE TEST STATION

The DSO-Utility Software operates on all Tektronix 2400 Series Digitizing Oscilloscopes. It provides routines to:

- save scope waveforms to disk
- load disk waveforms to scope
- log data upon a waveform pass/fail test failure, a scope trigger, or at the end of a test sequence
- perform waveform math including add, subtract, multiply, divide, integrate, differentiate, and Fast Fourier Transform
- generate waveshape templates
- make direct hardcopies on HPGL, IBM Graphic, Epson, PostScript, and compatible devices

DSO Utility Software includes routines to create waveshape templates, compare live signals against the templates for automatic pass/fail tests, and archive waveform and measurement data.

PROGRAM DEVELOPMENT SYSTEM

WRITE CUSTOM TEST PROGRAMS EFFICIENTLY WITH LIBRARY FUNCTIONS AND SUBROUTINES

The Program Development System (PDS) software saves time and cuts programming costs. Use an IBMcompatible computer to develop your test routines with PDS. Then transfer these programs to the 2402A TekMate Instrument Extension for execution with a 2400 Series Digitizing Oscilloscopes. Other GPIB-programmable devices can be controlled as well.

Three powerful libraries are included to help write custom test programs in Microsoft QuickC or QuickBASIC:

1. Menu Development System Library

- create main menus and submenus
- display text strings
- create and use help files

2. Waveform Math Library

- create data arrays from waveforms and waveforms from data arrays
- add, subtract, multiply, divide, integrate, differentiate
- perform min, max, and standard deviation
- perform FFTs, correlation
- convert to polar coordinates

3. GPIB Control Functions Library provides control routines for:

- IEEE 488.2 Control Sequences
- IEEE 488.2 Protocol Commands
- High Level Language Extensions

The PDS also provides miscellaneous functions including:

- disk drive management
- disk directory and file management
- reading scope settings and display messages

The Program Development System includes routines to create menus and display text on the oscilloscope screen.

The DSO-Shell program provides the operating system environment, including the basic disk, directory and file management functions. It operates only with 2400 Series Digitizing Oscilloscopes and uses their menu-select buttons and display screen for operator interaction with the TekMate.
The Program Development System also includes over 250 example programs and the Microsoft QuickC and QuickBASIC programming languages.
oftware packages
save test develop-
ment time and money.
DSO Utility
Software

- Unattended Monitoring
- Off-Site Testing
- Waveform Storage
- Pass/Fail Test Execution
- Complex Waveform Analysis (FFT, Correlation, Differentiation, Integration)
- Template Creation and Storage
- Data Logging

Program
 Development System

- Menu Development System Library
- Waveform Math Library
- GPIB Control Functional Library

ORDERING INFORMATION

S37UT01 - DSO Utility Software (Also available as part of 2402A Option 01.)	\$77
Opt 18 - Software Subscription (International only)	+\$155
Extends software upgrades and product support to one full year. Opt 38 - Software Subscription	
Renewal (International only)	+\$155
S37UD01 - Program	
Development System	\$1,295
Opt 18- Software Subscription	
(International only)	+\$260
Extends software upgrades and	
support to one full year.	
Renewal (International only)	+\$260

E asy-to-use software for digital storage oscilloscopes

- Data Communications, Data Management, and Waveform Graphics in One Package
- Easy-to-Use Windows and Pop-up Menus
- Easy Creation of Reference Libraries

TeleServicing Software includes:

- Standard Phone Line and RS-232-C Link-up
- Built-in Phone Directory with 20 User-Definable Automatic Dialing Entries

ORDERING INFORMATION

S41SAVE - WaveSaver Software $\mathbf{Z} \mathbf{\$ 1 9 9}$ Includes:
Software (on 5-1/4" and
3-1/2" diskettes),
User manual (070-7875-00).
S41TSS1 - Integrated
TeleServicing Support Software $\boldsymbol{\text { an}}$ \$295 Includes:
Software (on 5-1/4" and
3-1/2" diskettes),
User manual (070-7466-00),
Training videotape (068-0296-04).
Software subscription updated.
Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

NEW WAVESAVER DOCUMENTATION PACKAGE

WaveSaver is a new applications software package designed for use with Tek's 2221(A), 2224, 2230 and 2232 digital storage oscilloscopes and the IBM PC. In one easy-to-use package, WaveSaver enables you to quickly and easily transfer waveforms to and from your digital storage oscilloscope. With WaveSaver's pop-up menus you can:

- Transfer waveforms to and from the oscilloscope
- Display waveforms on the PC screen in EGA color graphics
- Store and retrieve waveform data to disk
- Add notes to the displayed waveforms
- Document waveform display via printer and HPGLplotter (four-color) output
- Send numeric waveform data to a printer
- Read oscilloscope front-panel settings
- Change menu settings, re-arm single-shot trigger

REQUIRED EQUIPMENT

- Personal computer IBM PC XT or AT (or equivalent) with MS-DOS (V2.0 or later)
- 640 K RAM
- Hard disk (or two 1.2 MB 5-1/4" or $760 \mathrm{~K} \mathrm{3-1/2"}$ floppy disk drive)
- IBM MDA, CGA, or EGA graphics adaptor and compatible monitor
- Tek DSO with option 12 (RS-232-C interface)
- RS-232-C Cables (e.g. part number 012-0911-00 DB25-DB25 straight-through)

INSTRUMENT COMPATIBILITY

Tek WaveSaver Software is compatible with the Tektronix 2221, 2221A, 2224, 2230, and 2232 Digital Storage Oscilloscopes.

LICENSING AND WARRANTY

- License: Break-the-Seal, single installation
- Warranty: 90 days distribution media and encoding (only)

Tek's TeleServicing Software combines data communications, data management, and waveform graphics in one affordable, integrated package.

THE FIELD TELESERVICING SOLUTION

For even more functionality, Tek's integrated TeleServicing Software combines the data management and waveform graphics of WaveSaver with modem communications.

With Tek TeleServicing Software, you can connect a compatible Tek digital storage oscilloscope (DSO) to an IBM PC-compatible system over an RS-232-C interface and standard telephone modems. The data communications function permits configuration of PC communication port, modem initialization, and direction of data to and from a remote scope or PC. Data management functions include file capture, storage, and retrieval.

FIELD SERVICE EFFICIENCY

Tek TeleServicing Software provides field-service technicians with immediate, low-cost access to expert consultation in the service center. With the 2232's 26 K of extended waveform storage, you can create libraries of new or known-good waveforms for reference in troubleshooting applications.

DIRECT MONITORING

Remote monitoring of equipment in distant or hazardous sites is also facilitated with Tek TeleServicing Software. At the site, a technician can set up a scope in babysitting mode, connect it to a PC in the home office, and monitor problems from there.

DATA LOGGING

Tek TeleServicing is ideal for such data logging applications as trend analysis. It allows you to create reference waveform libraries, schedule preventative maintenance visits, and facilitate equipment installations.

REQUIRED EQUIPMENT

- Sanie as WaveSaver Software, plus
- Hayes-compatible 300/1200-baud modems

INSTRUMENT COMPATIBILITY

Same as Tek WaveSaver Software.

PRODUCT UPDATES

Purchase price includes one-year software update subscription service at no additional charge. This subscription entitles the customer to free software upgrades for the first 12 months after purchase.

TEKTRONIX SYSTEMS EXPERIENCE

Long before publication of IEEE Standard 488-1975, Tektronix had entered the measurement systems business with the development premises of system flexibility. automation, and standardization firmly in place.

System flexibility through modular design goes back to the introduction of modular lab oscilloscopes, which utilized plug-in modules to provide a broad range of automated features and enhanced capabilities. With the introduction of the TM 500 family of instruments, modular flexibility was extended to a full line of test and measurement equipment.

During its development, Tektronix recognized the benefits of the proposed IEEE 488 Standard. By the time it became reality, Tek had already integrated GPIB compatibility into product planning and engineering. As a result, Tektronix is now a leading supplier of a full line of GPIB instruments-a supplier that puts more than a decade of systems planning, design, and implementation into each product.

Tektronix implemented Tektronix Standard Codes and Formats for its GPIB instruments soon after IEEE 488 became a standard. This internal standard has evolved into the current IEEE 488.2.

A SYSTEMS COMPONENT SUPPLIER

Today's GPIB systems come in many sizes, from small PC based systems to large systems incorporating computers, instrumentation and DUT switching.

Efficient test and measurement systems also include test software generation, instrument control and results processing software. Tek offers a variety of 286/386 controllers, Test System Interfaces, and software such as Tek TMS to make automated test systems relatively easy and cost effective.
GPIB compatible system components make it possible to realize the benefits of automated testing without paying the price of an unique system design effort for each new test configuration. With Tek's TM 5000 family of GPIB instruments, the CDSbus NXI family of products, complete test and measurement systerns can be built by simply selecting the required off-the-shelf modular products, cabling them together, and adding the necessary software.

Custom Systems

But Tektronix offers more than just systems components, Tektronix has an entire staff of hardware, software, and systems specialists whose sole purpose is to provide total, integrated measurement systems solutions.
Whether the application calls for a manual test system or a totally automated system requiring high-speed, multiple channel stimulus and data acquisition. Tek will design, manufacture, test, install, and support your custom system.
Although single vendor solutions can provide enhanced ease of use and supportability, getting optimum performance for test requirements from a single vendor's system components is difficult. Consequently, many GPIB and VXI systems are quiltworks of components from different vendors.

Tektronix provides the best combination of products for your requirements, even if other vendors' instruments are needed. These solutions are available in a wide range of choices, from individual system instruments to complete test and measurement systems. And with the combined knowledge of our systems experts, Tek will integrate all of the products to provide you with a total system solution.

CDSbus

With the acquisition of Colorado Data Systems (CDS) in 1990, Tektronix also acquired a complete line of over 60 low-cost card-modular instruments. These CDSbus instruments include data acquisition and signal conditioning, switching systems, MIL-STD-1553, ARINC-429, Synchros/Resolvers, and RF/Microwave measurement.

VXIbus Standard

Tektronix continues to innovate in the areas of instrumentation and test systems architecture with its strong leadership involvement in the new VXIbus standard. VXI, which stands for VME Extensions for Instrumentation, provides an open architecture for development of card-based computers and instrumentation.

The standard specifies electrical, mechanical and communication characteristics to provide products which are interoperable in a single chassis.

The VXIbus standard provides a multitude of instrumentation resources such as triggering, clocking and module interconnects to address many of the problems associated with the established rack and stack approach. Systems based on VXIbus can achieve a high degree of test repeatability as well as tight synchronization of the instruments within the system. Also, being based on VMEbus, the instrument control and data transfer speeds can be many times faster than GPIB communications. Due to the absence of external cabling for functional instrument interconnects, such as trigger and clock lines, systems can be contigured rapidly in software using the signals housed within the rigid backplane.

The open architecture of the VXIbus will also allow users to select instruments, interface cards, and computers from various manufacturers to develop the best card modular test systems for their needs. Both military and industrial users can look forward to the benefits of equipment downsizing, tighter time coordination between instruments, and a wider variety of solutions from which to choose.

Tektronix and CDS, two of the five founding members of the consortium which developed the VXIbus standard, are at the leading edge of VXI technology and innovation, offering their first VXI products in 1988 and continuing to broaden their portfolio this year. And, as with our GPIB instrumentation, Tek sells not just VXIbus products, but total systems solutions using combinations of VXIbus, CDSbus, and GPIB products.

SOFTWARE PACKAGES

- Tek TMS

- Provides test program generation and execution for GPIB, VXIbus, and CDSbus only environments.
- Interactive front panels for GPIB, VXIbus and CDSbus instrumentation, and a facility for user developed front panels.
- WaveWriter
- Creates custom waveforms for Tek Arbitrary Waveform
Generators and DSOs.
- SPD
- Provides 196 processing, analysis, and data-to-display functions using Tek digitizers.
- TekMAP
- Supports the Tektronix 7000

Series GPIB programmable digitizers in automated engineering or research environments.

- Extends the versatility of Tektronix digitizers by integrating them with Tektronix controllers, IBM personal computers, or HP Series 200 technical computers.

- EZ-Test PC

- Automates generating GPIB
test and measurement software.
- Automatic code generation often cuts development time by 60 to 80 percent.
- EZ-TEST PC works with Tektronix and other manufacturer's instruments. Code generation is Microsoft QuickBASIC source files that the user can use as is, or optimize into stand-alone programs.
- i-Pattern
- Timing-jitter and noise analysis for Telecom and other time domain signals.
- Runs on 2200, 2400, 7000, 11000, and RTD digitizing scopes.
- DCS01GPH
- Automates setting communications and certain functions via GPIB for 2467B Opt. 10 and 11302A.
- Provides digitization of real time analog scope waveforms.

GOING BEYOND THE BASICS-TEK STANDARD CODES AND FORMATS

Tek recognized the original need for additional standardization in original GPIB interfacing since the late 1970s and has applied rigid internal standards to the design of its GPIB interfaces which go above and beyond the requirements of IEEE 488. Our guiding document is known as Tektronix Standard Codes and Formats. Tek pioneered the concepts of human-readable code, forgiving listening, and standardized data types. Over the years, these features were copied and adapted by several other companies for their own products. Eventually, a new standard was completed-IEEE Std. 488.2-1987. This document combines the best features of Tektronix Standard Codes and Formats plus ideas from other companies. The original IEEE Std. 488-1978 was polished (but kept basically unchanged and backwards compatible) and renamed 488.1-1987. These new standards-488.1-1987 and 488.2-1987-enhance compatibility for GPIB systems throughout the industry.
Tektronix offers 488.2 compatibility with some of its products. IEEE 488.2 was carefully designed to work with a wide variety of existing GPIB products. Instruments designed to the Tektronix Standard Codes and Formats fully function in systems that employ 488.2 instruments.

Because of a natural English-like structure, instrument control commands and messages are easy to use. The result is a GPIB implementation that is specifically designed to overcome the programming rigidity and cumbersome procedures of other GPIB systems.

In addition, because most controllers accept ASCII input directly, Tektronix GPIB instrument commands are coded in ASCII. This procedure eliminates the need for error-prone data conversions or byte-by-byte coding.

To make your job even easier, Tektronix Standard Codes and Formats also specifies messages that are to be common to all Tektronix programmable instruments. For example, you can program your system to learn the current settings of any Tektronix GPIB instrument by sending the instrument the SET? message. Any GPIBcompatible instrument from Tektronix-whether it is a waveform digitizer, a programmable power supply, or a function generator-interprets SET? the same way.

TEKTRONIX PROVIDES SYSTEMS SOLUTIONS

Tektronix has remained at the leading edge of development of automated test and measurement systems, providing a full range of products and services to ensure total system solutions to test and measurement problems.

Furthermore, Tek's systems are not just hardware packages. With each system, Tek provides complete design services, a fully documented system proposal, manufacturing and integration, software development, on-site installation, maintenance and repair services, and technical support. For further information on complete measurement systems see the following catalog sections:

- Test and Measurement Modular Instruments
- VXIbus Card Instrumentation Systems
- CDSbus Card Modular Systems
- Custom Systems

TEKTRONIX SUPPORT FOR YOUR TEST SYSTEM

With products and systems from Tektronix, you're not left on your own after the product is purchased. Tektronix offers complete support and training for the operation and maintenance of its products and systems.

Every product is shipped with a complete and comprehensive operating manual. In addition, a variety of training services are available. Training classes are available both at our home office and at selected sites around the world.

A PARTNERSHIP DEDICATED TO EDUCATIONAL EXCELLENCE

THE LOGICAL CHOICE

As an educator, you play a key role in shaping the future of business and technology: you're committed to helping emerging technicians, scientists, and engineers learn skills they'll apply for years to come.

Tektronix products have long been the products of choice for educational institutions around the world because they are:

- Easy to learn and use
- Meet stringent testing standards
- Are rugged, student-proof and safe
- Same high-quality instruments used in industry
- Provide smooth transition from school to career

THE LONG TERM CHOICE

Tektronix commitment to education does not end with the purchase of equipment. Our long-term committment to education is demonstrated by the availibility of:

- Courseware \& instructional materials
- Rugged and safe equipment
- Operator \& technician training
- Extended warranties

A BROAD RANGE OF PRODUCTS

Tek offers the best selection of test and measurement equipment in the industry. Whether you're buying for a vocational center, community college or major university, you'll find we have everything you need.

The Tektronix test and measurement products include:

- Analog and Digital Oscilloscopes
- Logic Analyzers, Spectrum Analyzers
- Function Generators, Power Supplies, Counters
- Automatic stimulus and measurements tools
- Modular instruments for custom systems
- A full line of accessories

From basic to advanced laboratory and bench instrumentation, our products will meet your needs in:

- Electronics
- Physics
- Mechanical Engineering
- Semi and fully automated test

And in every Tek product you'll find the familiar, easy operation that's become a de facto standard the world over. Which is perhaps the main reason why people in so many different environments prefer Tek equipment.

Because whether your students are preparing to seek their fortune, or applying what they've learned to make it, there's no substitute for the confidence that comes from using the best: Tek.

Tektronix offers the total solution for your classroom with a broad range of test and measurement instrumentation. From spectrum analyzers and oscilloscopes to modular instruments and printers.

Tektronix has a long history of commitment to partnership with education. To further assist you in reaching your educational goals, Tektronix now offers qualifying institutions the finest test and measurement equipment at substantial discounts.

We are giving eligible nonprofit organizations discounts of 15\% on all of Tek test and measurement equipment, and 50\% on Tek developed software.
'A diverse environment demands an extensive selection'

COURSEWARE AND TRAINING

For many instructors, the time spent preparing to teach far outweighs the time spent teaching. That's why we offer comprehensive and self-contained courseware. This courseware is designed to complement and supplement the broad range of Tektronix test and measurement products and your classroom curriculum.

Tek's extensive selection of learning materials can save you countless hours in the preparation and presentation process so that you can concentrate on what you do best educating our next generation of engineers and technicians.

LEARNING MATERIALS

Tektronix learning materials are:

- written by educators and instructional designers
- professionally produced
- comprehensive, covering both operations and concepts
- designed for beginning through advanced students - available in videotapes, workbooks, instructors
guides, quickstart, and self-study packages available in videotapes, workbooks, instructors
guides, quickstart, and self-study packages

SELF-STUDY PACKAGES

Realizing the need for individuals to learn at their own pace, Tek has developed an extensive line of self-study packages. The engineer as well as the student can sharpen their skills in instrument usage and application in less time than learning by trial and error.

In less than an hour, the student can learn the unique time-saving features of the equipment, and put these to use immediately. The result is increased productivity.

To conserve valuable lab time, Tek has created these aids so that students can come prepared to apply their understanding of the equipment to the challenges of the curriculum.

Each self-study course includes a detailed video instruction tape and a workbook. Materials cover instrument operations as well as concepts and applications, from basic through advanced test and measurement techniques. Discussions include:

- Basic Instrument Concepts
- Major Product Features and Operation
- Applications
- Probe Compensation and Usage
- Measurement Techniques
- Controller Integration
- Communication Interfaces
- Display and Output Concepts

QUICKSTART PACKAGES

These specially designed packages provide detailed hands-on instruction and application examples. Each package provides step-by-step workbooks and specially designed signal generation boards to help the user get up and running in no time at all. These packages are designed for self-paced use or integrated into the classroom curriculum.

VIDEO TAPE AND LITERATURE

Tek offers educators one of the most extensive libraries of video taped presentations on theory and application in the industry. And for classroom and lab work, Tek's primers and workbooks take students from the most basic level of skills through the highest levels of sophistication they'll need for a successful career.

For ordering information on self-study and QuickStart packages as well as the videotape and literature offerings, see page 276.

RUGGED AND SAFE

In both design and test, we ensure our products meet stringent standards for EMI, humidity, temperature, electrostatic shock, and vibration. Tektronix products are also third-party certified by UL, CSA and VDE. Not only do these certifications protect you and your students, they help you comply with many state and local regulations.

SERVICE AND SUPPORT ALSO KEY

Tek's highly trained sales engineers, applications engineers, and education representatives stand ready to offer you both curriculum and technical support. Our curriculum support materials and seminars will help you keep up-to-date. And, we offer standard warranties as well as a variety of extended warranty packages to keep your Tektronix equipment calibrated and in the best working condition. To complement the warranty programs, Tektronix has service centers conveniently located around the U.S. and throughout the world. However, the chances are good that you'll never have to take advantage of our service network, because all Tek equipment is built to the highest standards of mechanical and environmental durability.

Tek cameras and printers make lab documentation easy. Tek SCOPE-MOBILE ${ }^{8}$ carts free up valuable bench space and make sharing of equipment between students convenient.

Lab bench stations can be configured to your needs. Our stackable triple-output power supply, digital multimeter, 100 MHz frequency counter and 2 MHz function generator (see pages 246 and 248) join a 50 MHz dual-trace oscilloscope (page 106) as a popular setup for basic lab stations.

BUDGET SOLUTIONS

At Tektronix we understand the dilemma that many educators face - you have a need for industry proven, up-to-date equipment, but your budgets don't always allow for funding. Therefore, we offer a line of low-cost basic electronics equipment that meets the needs of both education and industry. You'll also be pleased to know that Tektronix offers special pricing for educational institutions.
'It's easy to justify owning the best when the best costs less.
We are working to meet your educational objectives providing technologically advanced products, budget alternatives, and superior quality and service.

Peter Jackson, the Head of the Electronics Department at Hatfield Poly., Hertfordshire, England, purchased Tektronix' 2225 scopes for use by their students. John Aitken, the Head of Division, states "The 2225 fulfilled our technical requirements, and ... offers good value for the money."

VIDEO TAPE SELECTION GUIDE

Note: "XX" is to be replaced by one of the following:

NTSC format (used in USA)
$00=3 / 4^{*}$
$01=$ BETA
$02=$ BETA $\|$
$03=$ BETA III
$04=$ VHS/NTSC

PAL format	SECAM format
$06=$ VHS/PAL	$07=$ VHS/SECAM
$08=$ Workbooks	

ORDERING INFORMATION

SELF-STUDY PACKAGES Each self-study course includes a
detailed video instruction tape and a detailed video instruction tape and
workbook. Additional workbooks are $4 / \$ 100$.

Fundamentals of Analog Scopes \$115 068-0270-XX
$\begin{array}{ll}\begin{array}{l}\text { Fundamentals of Probes } \\ 068-0269-X X\end{array} & \$ 115 \\ \text { Fundamentals of Digital Scopes } & \$ 115\end{array}$ 068-0268-XX

Fundamentals of GPIB $068-0260-X X$	$\$ 115$
Fundamentals of RS232 $068-0259-X X$	$\$ 115$
Using the PC as a Controller 068-0301-XX	$\$ 145$
Fundamentals of Logic Analyzers $068-0291-X X$	$\$ 115$

068-0291-XX

Operating the 2201 068-0290-XX	\$60
Operating the 2205 068-0289-XX	\$60
Operating the 2210 068-0274-XX	\$125
Operating the 2211	\$125

068-0311-XX
Operating the 2213A/2215A 068-0278-XX

$\begin{aligned} & \text { Operating the } 2220 \\ & 068-0273-\mathrm{xX} \end{aligned}$	\$125
$\begin{aligned} & \text { Operating the } 2221 \\ & 068-0272-\mathrm{xX} \end{aligned}$	\$115
Operating the 2224 $068-0310-X X$	\$125
$\begin{aligned} & \text { Operating the } 2225 \\ & 068-0279-\mathrm{xX} \end{aligned}$	\$115
Operating the 2230 068-0271-XX	\$125
$\begin{aligned} & \text { Operating the } 2232 \\ & 068-0312-\mathrm{XX} \end{aligned}$	\$125
$\begin{aligned} & \text { Operating the } 2235 \\ & 068-0277-\mathrm{XX} \end{aligned}$	\$115
$\text { Operating the } 2236$ $068-0276-x X$	\$115
Operating the 2245/2246A $068-0275-\mathrm{xx}$	\$115
Operating the 2245A $068-0325-x X$	\$125
Operating the 2246A $068-0326-\mathrm{XX}$	\$125

Operating the 2247A $068-0327-\mathrm{XX}$	\$125
Operating the 2430A 068-0267-XX	\$145
Operating the 2432 068-0266-XX	\$145
Operating the 2432A 068-0305-XX	\$145
Operating the 2440 068-0265-XX	\$145
Operating the 2445A/2465A $068-0262-\mathrm{XX}$	\$145
Operating the 2445B/2465B/ 2467B 068-0261-XX	\$145
Operating the 11301A/11302A 068-0264-XX	\$145
11301/11302 Waveform Measurement 068-0304-XX	\$145
11401/11402 Waveform Measurement 068-0302-XX	\$145
11401/11402 Advanced Waveform Measurement 068-0303-XX	\$145
Operating the 1230 068-0288-XX	\$115
QUICKSTART PACKAGES Each package is designed to give step-by-step instruction using workbooks and specially designed signal generation boards.	
2400 Series Digital Oscilloscopes QuickStart Package*1 020-1679-00 U.S. power (VHS/NTSC) 020-1681-00 European power (VHS/PAL)	\$220
$\begin{aligned} & 2402 \text { TekMate QuickStart Pkg. } \\ & \text { 020-1747-00 (U.S.). } \\ & \text { 020-1748-00 (European) } \end{aligned}$	\$270
11403 QuickStart Package 020-1767-00 (U.S.) 020-1768-00 (European)	-2
DSA 600 QuickStart Package 020-1769-00 (U.S.) 020-1770-00 (European)	\$220
2252/2247A/2245A QuickStart Package*1 020-1864-04 (VHS/NTSC) 020-1864-06 (VHS/PAL)	\$199
2232/2224/2221A QuickStart Package*1 020-1812-04 (VHS/NTSC) 020-1812-06 (VHS/PAL)	\$199
2211 QuickStart Package*1 020-1811-04 (VHS/ NTSC) 020-1811-06 (VHS/PAL)	\$199

TestLab ${ }^{T M}$, a new test strategy for physical measurements. Up to 8 channels with the 2505, 32 channels with the 2510, and 96 channels with the 2520.

TestLabTM MULTI-CHANNEL ANALYZERS

The 2505, 2510 and 2520 TestLab Multi-Channel Analyzers present a new test strategy to engineers and technicians who make measurements on physical phenomena. TestLab integrates acquisition characteristics of transient recorders, such as chart recorders, oscillographs and digital oscilloscopes, with a powerful data management, storage and display capability unknown until now in a portable or rackmount instrument.

Service, research, development, and manufacturing will benefit immediately from TestLab's integrated capabilities. Applications with transient, single-shot phenomena, such as mechanical prototype testing, process verification, automotive component and subsystem testing, materials testing, telephone signals and power quality testing all need the efficient, costeffective performance of TestLab.

MULTI-CHANNEL ACQUISITION

Acquire up to 8 channels with the 2505, 32 channels with the 2510 , and 96 channels with the 2520 . Data can be acquired with varying sample rates, record lengths, and high resolutions for viewing and measuring test parameters. Quick setup of multiple channels is possible with the Autoset feature which automatically sets input controls on all active channels. TestLab mainframes are card modular. The 2505 mainframe accepts 1 acquisition card. The 2510 mainframe accepts up to 2 acquisition cards. The 2520 mainframe accepts up to 6 acquisition cards. The three types of acquisition cards can be used together in any combination in the 2510 or 2520 mainframes. System software is identical and allows sharing of files between all mainframes.

GENEROUS RECORD LENGTH, HIGH RESOLUTION

Records up to 1 M points in length allow measurement of transient or continuous events over periods ranging from milliseconds to hours. High vertical resolution allows you to see otherwise indiscernible detail in your acquisitions.

UNPRECEDENTED DATA MANAGEMENT

A special spreadsheet-style database, the "TestSheet," contains not only acquired data, but also acquisition dates and times, hardware settings, and comments. TestLab easily handles the abundant data typically associated with complex physical measurements. Information stored in these files helps you acquire new data using known instrument settings, or retrieve historical data for further analysis or comparison with new data.

INTEGRATED DATA ANALYSIS

Built-in math functions, on their own or as part of a formula, allow you to analyze, as well as acquire, on a single instrument. Visual analysis of new data, old data, and results of analysis, is possible with powerful display capabilities.

DATA TRANSFER TO PC

Test files are stored in MS-DOS

Optional Signal Conditioning Accessory 25BP4 format on floppy or hard disk. Files easily transfer to any PC- compatible system. There, you can incorporate them into reports or analyze them using application software like Lotus $®$ 1-2-3®, DADiSP®, and Tektronix SPD. TestLab comes complete with PC-resident utility software that converts your test data to standard formats for these and other popular PC software.

Contents
NEW 2505 TestLab
Multi-channel Analyzer 277
2510 TestLab
Multi-channel Analyzer 277
2520 TestLab
Multi-channel Analyzer 277
2622 Fourier Analyzer 280
2630 Fourier Analyzer 280
NEW 2641 Fourier Analyzer 280
NEW 2642 Fourier Analyzer 280

NEW 2505/2510/ 2520 TestLab

- Simultaneous Multi-Channel Acquisition: 2 to 96 Channels and Optional Signal Conditioning
- Long Record Lengths, High Resolution: up to 256 K Samples per Channel, 10 and 12 Bit Capabilities
- Worry Free Data Management with TestLab's TestSheet Files
- Measure in Engineering Units
- Integrated Data Analysis from Powerful Visual Analysis to Custom User Entered Formulas
- Data Transfer to PC's TestLab Files are Stored in MS-DOS ${ }^{\circledR}$ Format
- Portability:

The 2505, with built-in Monitor, makes 8 channel Acquisition truly portable under 34 pounds!

2505/2510 PHYSICAL MEASUREMENT PRODUCTS 2520

Powerful display system allows user configured formats for different applications - without writing software.

CHARACTERISTICS

DISPLAY
2505 - Built-in 9" monochrome.
2510 - Multiple-frequency color monitor or folding electro-luminescent flat panel.
2520 - Multiple-frequency color monitor.
Resolution - 640×400 pixels.
Waveform Display - Two independent display windows, each with up to eight Y-T waveforms, four $X-Y$ waveforms, or seven Y s against a common X axis.
Cursors - A cursor and a mark in each display window provide cursor measurements on each displayed waveform, and may be independent, linked together, or linked between the two display windows.

ACQUISITION MODES

Single Shot, Repeat Mode, Roll Mode, and an Auto-Store mode where data can be automatically saved to disk at the end of each acquisition cycle.

ANALYSIS

Waveform Processing Functions -Formulas can be written using combinations of the following operators: t, -, *, /, Raise to a Power, Absolute Value, Peak to Peak, RMS, Sin, Cos, Tan, Differentiate, Integrate, Log base 10, Natural Log, Minimum, Maximum, Mean, Square Root, Exponential, Cycle Ave., and X-Y Area.

DATA STORAGE

Format - MS-DOS® 3.5-inch floppy disk, 720 kilobytes.
Standard Hard Disk - Internal 20 megabytes.
Optional Hard Disks -40 and 80 megabytes.
INTERFACING
Types - |EEE-488 (GPIB), RS-232-C, and parallel printer are available using COMM Pack plug-in modules.
HPGL plotter output using RS-232 connections.
Files - ASCII, Lotus 1-2-3 (.WKS), and DADiSP Format translations can be performed on a PC with PC utility translation program provided.

TestLab SIGNAL CONDITIONING

25BP4 Measurement Interface Unit provides a simple signal conditioning solution for the 25AA1. The unit accepts up to four standard Analog Devices Series 5B signal conditioning modules to interface directly to Thermocouples, RTDs, Voltage sources and Bridge circuits (such as strain gauges). Power is provided by the 25AA1 Acquisition Card through the single, 15 -pin cable connection.

POWER REQUIREMENTS

2505 Mainframe - 110 to 220 VAC, $50 / 60 \mathrm{~Hz}$. 2510 Mainframe (Include Flat-Panel Display) 110 or 220 VAC, $50 / 60 \mathrm{~Hz}, 500$ VA max.
2520 Mainframe - 110 V or 220 VAC $50 / 60 \mathrm{~Hz}$, 975 VA typical.
Color Monitor - 110-125/200-240 VAC, 50/60 Hz 85 watts.

MECHANICAL AND ENVIRONMENTAL

Temperature Range - Operating: $4^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{F}\right.$ to $122^{\circ} \mathrm{F}$); Nonoperating: $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $140^{\circ} \mathrm{F}$). After storage in extreme cold, allow instrument to warm up to ambient temperature before restoring power.
Relative Humidity - Up to 95\% RH, noncondensing Hard disk limited to $26^{\circ} \mathrm{C}\left(78^{\circ} \mathrm{F}\right)$ maximum wet bulb temperature.
Altitude, Vibration, Shock and Bench Handling Meets MIL-T-2880C, Type III, Class 5. Excludes hard disk.

PHYSICAL CHARACTERISTICS										
$\mathbf{2 5 0 5}$								$\mathbf{2 5 1 0 S 2}$	$\mathbf{2 5 2 0}$	
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$	$\mathbf{m m}$	$\mathbf{i n}$	$\mathbf{m m}$	$\mathbf{i n}$				
Width	470	18.5	455	17.9	425	16.8				
Height	225	8.85	203	8	260	10.25				
Depth	502	19.75	432	17	600	23.5				
Weight	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$				
Net	15.5	34	16.8	37	24.1	53				

ACQUISITION CARDS			
	25AA1	25AA2	25AD3
Resolution	12 bits	10 bits	12 bits
Channels Analog Digital	4 Single-ended or Differential 0	$2 \text { Single-ended }$	8 Single-ended or Differential 8, TTL
Sample Rate			
Max	$100 \mathrm{kS} / \mathrm{s}$	12.5 MS/s	$100 \mathrm{kS} / \mathrm{s}$
Min	$12.5 \mathrm{~S} / \mathrm{s}$	$200 \mathrm{~S} / \mathrm{s}$	$1 \mathrm{~S} / \mathrm{min}$
Analog Bandwidth	$50 \mathrm{kHz}(-3 \mathrm{~dB})$	$5 \mathrm{MHz}(-3 \mathrm{~dB})$	$50 \mathrm{kHz}(-3 \mathrm{~dB})$
L-P Filter	Yes	No	No
Max Record Length Samples © Channels Time	$\begin{aligned} & 256 \mathrm{~K} \text { (1 channel) } \\ & 5.7 \mathrm{hr} \end{aligned}$	64 K per channel 5.5 minutes	64K per channel Opt. $512 \mathrm{~K}, 1 \mathrm{M}$ 45.5 days (64 K), 728 days (1 M)
Triggering			
Level Range	100% of full scale, Independent trigger level for each channel. 0.5% of full scale for all acquisition cards ,+- , Either, and Off on all acquisition cards Not Applicable Not Applicable		
Level Resolution			
Trigger Slope			
Digital Levels Aux. Trigger Level for			Yes
Window Triggering	Logical OR combination of individual trigger criteria from each acquisition channel and between acquisition cards in the instrument.		
Programmability			
Logical "AND" Pre-Trigger Range	No 0% to 100% of record	No 0% to 100% of record	Yes (with card) 0% to 100% of record
Input Ranges	$\begin{gathered} \pm 100 \mathrm{mV} \text { to } \pm 10 \mathrm{~V} \text { full scale } \\ 49 \mu \mathrm{~V} \\ \pm 15 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 100 \mathrm{mV} \text { to } \pm 10 \mathrm{~V} \text { full scale } \\ 195 \mu \mathrm{~V} \text { (} \\ \text { Not Available } \end{gathered}$	$\pm 100 \mathrm{mV}$ to $\pm 100 \mathrm{~V}$ full scale $49 \mu \mathrm{~V}$ $\pm 15 \mathrm{~V}$ at ranges $\leq \pm 10 \mathrm{~V}$ $\pm 150 \mathrm{~V}$ at ranges $\geq 20 \mathrm{~V}$
Volts/LSB			
Input Offset Voltage			
Maximum Voltage Input ($D C+$ peak $A C$) CMRR Channel Isolation External Clock Range Input Impedance			
	$\pm 30 \mathrm{~V}$	$\pm 400 \mathrm{~V}$	$\pm 400 \mathrm{~V}$
	At least 1000:1	Not Applicable	At least 1000:1
	At least 100:1 at 1 kHz	Not Applicable	At least 100:1 at 1 kHz
	Up to max sample rate	Not Applicable	Up to max sample
	$1 \mathrm{M} \Omega, 26 \mathrm{pF}$	$1 \mathrm{M} \Omega, 35 \mathrm{pF}$	$1 \mathrm{M} \Omega$, 26 pF

ORDERING INFORMATION

2505 TestLab Portable Mainframe
Includes: one slot mainframe, software, built-in 9^{*} monochrome monitor, 20 Mb hard disk, parallel printer COMM Pack and the Operators Manual. Requires one acquisition card to acquire data (See Acquisition Cards Below).
2510 S1 TestLab Standard Two Slot Mainframe Includes: software, color monitor, 20 Mb hard disk, parallel printer COMM Pack and the Operators Manual. Requires at least one or two acquisition card(s) to acquire data
(See Acquisition Cards Below).
2510 S2 TestLab Portable Two Slot Mainframe Includes: software, flat panel display, 20 Mb hard disk, parallel printer COMM Pack, soft-sided case, and Operators Manual. Requires one or two acquisition card(s) to acquire data
(See Acquisition Cards Below)
2520 TestLab Six Slot Mainframe
Includes: software, color monitor, 20 Mb hard disk, parallel printer COMM Pack, and Operators Manual.
Requires at least one acquisition card to acquire data.
(See Acquisition Cards Below)

INSTRUMENT OPTIONS

Opt. 03 - Add RS-232C COMM Pack
and manual
Opt. 10 -Add IEEE-488 (GPIB) COMM Pack and manual

Opt. 21 - Substitute 40 Mb Hard Disk.
Opt. 22 - Substitute 80 Mb Hard Disk.
Opt. 1 - HC100 Plotter, Centronics config. and cable, 110 VAC
Opt. 2P - HC100 Plotter, Centronics config. and cable, 220 VAC

Opt. 3P - HC100 Plotter, RS-232-C config. and cable, 110 VAC
Opt. 4P - HC100 Plotter, RS-232-C config. and cable, 220 VAC
Opt. 5P - HC200 Printer, Centronics config. and cable, 110 VAC
Opt. 6P - HC200 Printer, Centronics config. and cable, 220 VAC
Opt. 1T - Transit case with wheels for 2510 S2
Opt. 1R-2520 Mainframe Rack Mount Kit
Opt. 88 - Factory Install Companion Cards

INTERNATIONAL POWER CORD OPTIONS

Opt. A1 - Universal Euro 220 V, 50 Hz .
Opt. A2 - UK $240 \mathrm{~V}, 50 \mathrm{~Hz}$.
Opt. A3 - Australian $240 \mathrm{~V}, 50 \mathrm{~Hz}$.
Opt. A4 - North American, $240 \mathrm{~V}, 60 \mathrm{~Hz}$.
Opt. A5 - Switzerland $220 \mathrm{~V}, 50 \mathrm{~Hz}$.

ACQUISITION CARDS

25AA1 Four Differential Channels
$100 \mathrm{KS} / \mathrm{s}, 256 \mathrm{KS}$ total memory,
12 -bit vertical resolution.
25AA2 Two Single-Ended Channels,
12.5 MS/s, 64 KS memory per channel,

10 -bit vertical resolution.
$25 A D 3$ Eight Analog + Eight Digital
Channels, $100 \mathrm{KS} / \mathrm{s}, 64 \mathrm{KS}$ memory per channel,
12 -bit vertical resolution.
Options for 25AD3:
1 D - Memory Expansion to 512 KS per channel
2 D - Memory Expansion to 1 MS per channel
SIGNAL CONDITIONING ACCESSORIES
25BP4 Four Slot Measurement Interface
Backplane for Analog Devices signal conditioning
5B Series modules. Use only with 25AA1and 25AD3
Acquisition Cards. (Order any selection of the following modules).

+\$420

$+\$ 420$
$+\$ 550$
$+\$ 550$
$+\$ 400$
\$400
NC
NC Full Bridge Amplifier, 300 to $10 \mathrm{~K} \Omega$ input,
(such as strain gages), -5 to +5 VDC output.
119-3536-00 - (5B40-01)
-10 to 10 mV input, to -5 to +5 VDC output.
NC 119-3542-00-(5B47-J-02)
J Type thermocouple input, -100° to $+300^{\circ} \mathrm{C} \quad$ \$205
linearized, 0 to 5 VDC output.
119-3543-00 - (5B47-K-04)
K Type thermocouple input, 0° to $1000^{\circ} \mathrm{C}$,
linearized, 0 to 5 VDC output.
119-3546-00 - (AC1367)
One-to-one non-isolated voltage feedthrough,
-10 to +10 VDC maximum input and output.
OPTIONAL ACCESSORIES
016-0909-01
Soft-sided Carrying Case for mainframe with flat panel or no display (Included in 2510S2 configuration)
016-0994-00
Hard-sided transit case with flat panel or no display
(Also available as Option 1T on 2510S2)
016-0707-01 Accessory Pouch
P6103 $2.0 \mathrm{~m}, 10 \times$ Probe
P6101A 2 m, $1 \times$ Probe
P6119 2.0 m , Switchable 1X/10x Probe
A6902B Voltage Isolator Amplifier
Order Number (Analog Devices Number, ref. only) 119-3524-00 - (5B34-01)
100Ω Platinum RTD input, -100° to $+100^{\circ} \mathrm{C}$, 0 to 5 VDC output.
119-3527-00 - (5B34-04)
100Ω Platinum RTD input, 0° to $600^{\circ} \mathrm{C}, 0$ to 5 VDC output.
119-3533-00 - (5B38-02)

MODULES

dvanced Analysis of Analog Signals in the Time and Frequency Domains, from dc to 200 kHz.
2622/2630 NEW 2641/ NEW 2642
- Real time Spectrum, Network
(Frequency Response), and Waveform Analysis
- Complete Modal System for Structural Analysis
- Accessory Software for Control Systems Analysis, Production Tests, 1/3 Octave Analysis, Spectral Maps, Swept Sine Measurements, Waveform Math, and More
- Easy-to-Learn Pull-Down Menus
- Up To Four Input Channels
- Optlonal Built-in Signal Generator with Periodic, Random, and Arbitrary Analog Signal Generation

PERSONAL FOURIER ANALYZERS

PC INTEGRATED

Personal Fourier Analyzers from Tektronix provide the most advanced architecture in benchtop instrumentation available today. From their inception, Personal Fourier Analyzers have been designed to carefully integrate the advancing technology of personal computers with the precision and speed of dedicated measurement hardware. The result is a continuously evolving, high-quality measurement system dedicated to the analysis of analog signals and the properties they represent.

Within each Tek Personal Fourier Analyzer is a combination of precision signal-acquisition hardware and RAM-based microprocessors specifically designed for high-performance signal processing. Connected to a common PC, the Personal Fourier Analyzer's internal processors have access to the PC's display, I/O ports, mass storage, and keyboard. In short, the PC becomes the terminal for a powerful Fourier analysis system.

FLEXIBLE

The Instrument Program (IP) supplied with the Personal Fourier Analyzer is the critical link between the analyzer and the PC. When executed from the PC, all of the Personal Fourier Analyzer's instructions are down loaded into the analyzer's internal RAM, providing the latest features and capabilities. The IP then uses the PC's display to generate the Personal Fourier Analyzer's user interface - complete with high resolution graphics and easy-to-learn pull-down menus.

From the keyboard, or using a mouse, you can access a wide variety of analysis functions and data presentations. Standard functions include:

- Time record (waveform)
- Orbits (lissajous)
- Auto- and cross-correlation
- Power spectrum for each channel
- Frequency response functions between any two channels
- Impulse response
- Real, imaginary, magnitude, phase, and Nyquist displays
- Advanced data cursors

The Instrument Program provides high-quality color graphics and easy-to-learn pull-down menus for data analysis and acquisition control.

One of many accessory software packages, the RLS System Identification software produces pole/zero system models from measured stimulus/response data.

The 2622, when used with a laptop PC (Option 20), becomes a lightweight system that easily travels with you.

SELECTION GUIDE				
	2622	2630	2641	2642
Frequency Range	20 kHz	20 kHz	100 kHz	200 kHz
Max Input Chan.	2	4	4	4
Max Realtime BW	5 kHz	10 kHz	10 kHz	10 kHz
Dynamic Range	75 dB	75 dB	75 dB	75 dB
Channel Match	$\pm 0.2 \mathrm{~dB}, \pm 0.5 \mathrm{deg}$	$\pm 0.2 \mathrm{~dB}, \pm 0.5 \mathrm{deg}$	$\pm 0.075 \mathrm{~dB}^{*}, \pm 0.5 \mathrm{deg}$	$\pm 0.075 \mathrm{~dB} *, \pm 0.5 \mathrm{deg}$
Spectral Lines	25 to 800	25 to 1600	20 to 1600	25 to 1600
Zoom	Opt. 2H	Opt. 2H, 3H	Opt. 2H, 3H	Opt. 2H, 3H
Signal Generator	-	Opt. 4H	Opt. 4H	Opt. 4H
Digital Rec/Playback	-	Opt. 5H	-	-
Weight	$12 \mathrm{lb} .(5.5 \mathrm{~kg})$	17 lb (7.7 kg)	$26 \mathrm{lb}(11.8 \mathrm{~kg})$	$26 \mathrm{lb}(11.8 \mathrm{~kg})$
Price Begins At:	\$6,950	\$10,750 (2-Ch)	\$14,500 (2-Ch)	\$19,500 (2-Ch)

ADVANCED SOLUTIONS

In addition to the Instrument Program, optional accessory programs extend the capabilities of the Personal Fourier Analyzer - providing everything from advanced tools to complete solutions for a variety of applications.

Production Test Automation

The Production Test Manager is a series of programs designed to dramatically reduce the development time for creating automated production tests using Personal Fourier Analyzers. Using the LIMITS program, test limits can be defined quickly using a table of values, previously measured data, or rubber-band style graphics. Other routines provide failure report generation, results archiving, multiple limit checks for quality sorting, a simple pass/fail operator interface, and many more standard functions. Executed individually or included in larger programs, these routines can replace hundreds of lines of program code saving valuable time and money.

Control System Analysis

The optional RLS System Identification program (shown in photo on previous page) analyzes time domain stimulus/response data to produce system models expressed as poles and zeros in either the S or Z planes. For further analysis, the pole/zero models can be passed on to powerful system development programs such as PC-MATLAB ${ }^{\text {TM }}$.

For measurement conditions requiring optimum measurement signal-to-noise, the optional Swept Sine program can be used with a Personal Fourier Analyzer's signal generator to provide classic swept sine testing.

Acoustics

When monitoring acoustic signals, the optional Third Octave program provides $1 / 3$ octave analysis of up to four signals simultaneously.

Modal Analysis

For advanced structural analysis, the 2600MS Modal Analysis Solution provides a complete, turn-key system including PC, 2630, STARMODAL modal analysis software, and the TekSTAR Modal Acquisition Manager for attaching point and direction to data files. (For information on hammer kits and transducers, see page 78.)

General Analysis

For general purpose waveform manipulation, the optional Waveform Math program allows time and frequency domain data to be modified using 17 standard and advanced math operators.

Digital Record/Playback

If you need to capture an event or series of events for later analysis, the 2630's Option 5H, Digital Record/ Playback streams digitized input signals directly to the host PC's RAM, RAM disc, or hard disk. Once recorded the data can be sent back to the 2630 for analysis. Transfer rates up to $51.2 \mathrm{kS} / \mathrm{s}$ are achievable.

ORDERING INFORMATION

2622 (2-Ch Standard)	$\$ 6,950$
2630 (2-Ch Standard)	$\$ 10,750$
2641 (2-Ch Standard)	$\$ 14,500$
2642 (2-Ch Standard)	$\$ 19,500$
For a complete list of options,	
accessories, and optional software	
programs, contact your Tektronix sales	
representative or call (408) 374-6464	
(in the U.S., call 1-800-234-1256)	

2622:
Opt. 2H-2-Ch Zoom $+\$ 1,000$
2630:
Opt. 1H-4 Input Channels
Opt. 2H-2-Ch Zoom
Opt. 3H -4 -Ch Zoom
Opt. 4H - Signal Generator
Opt. 5H - Dig Rec/Playback
2641:
Opt. 1H-4 Input Channels
Opt. 2H -2 -Ch Zoom
Opt. 3H - 4-Ch Zoom
Opt. 4H - Signal Generator 2642:
Opt. 1H-4 Input Channels Opt. 2H -2 -Ch Zoom Opt. $3 \mathrm{H}-4$-Ch Zoom Opt. 4H - Signal Generator

MINIMUM PC REQUIREMENTS

Personal Fourier Analyzers operate with an IBM PC, XT, AT, PS/2 or 100\% compatible having the following minimum configuration:
DOS 3.0 or higher,
RAM - 640 kilobytes,
One $31 / 2$ or $51 / 4^{\prime \prime}$ floppy drive and 20 megabyte Hard Drive,
One RS-232-C serial port,
Intel 8087, 80287, or 80387
Co-processor, Enhanced Graphics
Adapter (EGA), Monochrome or color
EGA monitor (Second serial port and mouse recommended).

2600MS Modal Analysis Solution

recision Pulse Generators for Digital Device Characterization

- Up to 600 MHz Repetition Rate
- Fully Digital Implementation for Maximum Control and Flexibility
- Multi-channel Architecture-2 to 6 channels per Mainframe
- Independent Edge Placement and Channel Deskew
- Precision Channel-toChannel Time Alignment
- 10 ps Timing Resolution
- 1 GHz Transducer Mode
- Phase Lock to External Clock
- Graphic, Intuitive Human Interface
- GPIB (IEEE-488)

Programmable

- Characterize CMOS, ECL, ACL, BiCMOS, and GaAs Devices
- Modular Construction allows Future Upgrade Capability

HFS 9000 SERIES PRECISION PULSE GENERATORS

The HFS 9000 Series is a family of high-speed pulsesignal sources characterized by performance, ease of use, and flexibility. The family consists of three fully programmable precision pulse generators for use in characterizing high-speed CMOS, BiCMOS, ECL, and GaAs digital and telecommunications devices.

The HFS 9000 Series, together with a high-speed sampling oscilloscope such as an 11801A, provides a complete digital/telecommunications device characterization and test solution with unsurpassed accuracy and repeatability.

Digital Architecture - The HFS 9000 Series products were designed as completely programmable digital instruments rather than being based on a traditional monostable-based analog architecture. This allows more capability and flexibility in pulse placement - without the restrictions that analog instruments commonly impose.

Multi-channel Stimulus - The HFS 9000 Series extends its flexibility with a multi-channel, modular construction. The mainframes can support from 2 to 6 output channels. All channels are slaved to a common clock resulting in highly accurate channel-to-channel edge placement. No other programmable pulse generator offers this degree of edge placement accuracy. The multi-channel capability makes the HFS 9000 ideal for the precise characterization and evaluation of synchronous devices having multiple, and possibly interactive, inputs.

Full Channel Deskew Capability - All HFS 9000 channels have independent, wide deskew ranges to allow precise pulse alignment and timing at the Device Under Test. Deskew compensates for the timing differences caused by cabling and fixturing so your analysis can be concentrated on the relative timing at the DUT. There will be no unpleasant surprises when channel output timing restrictions prevent you from making the signal timing relationships at the DUT you need.

10 ps Timing Resolution - The 10 ps timing resolution, an order of magnitude greater than typical ECL gate delays, results in accurate and repeatable ac measurements. The multi-channel capability allows, in one setup, a complete suite of setup and hold time margin tests by providing the clock, data, set and reset signals to the device under test. Inactive signals can be held at a programmable high or low logic level, eliminating the need for external dc voltage sources and microwave switches.
$\mathbf{6 0 0} \mathrm{MHz}$ Repetition Rate - Obtaining accurate and repeatable ac measurements such as propagation delay, setup and hold time, and toggle frequency, requires fast repetition rates and edge speeds. With repetition rates up to 600 MHz , the HFS 9000 Series provides the fastest pulse generators available and is ideal for characterizing the most advanced logic families. Transition times as fast as 200 ps (20% to 80%) enable repeatable and accurate testing of the highest-speed ECL and GaAs digital devices. Variable transition time control from 1 ns to 5 ns is also available with the appropriate output levels for testing Advanced CMOS, BiCMOS and TTL logic families.
$1 \mathbf{G H z}$ Transducer Mode - When repetition rates of greater than 600 MHz are needed to test faster components, the 1 GHz Transducer Mode can be used. This function allows an external sinewave input to be converted to a square wave with 200 ps transition times and programmable levels. Transducer mode is especially useful to create a fast, programmable clock source for testing GaAs components.

Graphic Display - A crisp display screen can show all the major pulse parameters at a glance on a channel by channel basis. In addition, a graphic representation of the pulse waveforms provides a clear picture of the multichannel timing relationships. The menu-driven human interface makes the HFS 9000 products easy to learn as well as helpful in reducing set-up confusion and errors.

Fully Programmable - The HFS 9000 offers full implementation of the new IEEE-488.2 standard and utilizes Tek Codes \& Formats. Programmability is important in developing automated, repeatable tests in R\&D, incoming inspection, and production of high-speed components. The instrument can be controlled over GPIB or RS-232 ports. Coupled with a high-speed acquisition system, such as the 11801A Digital Sampling Oscilloscope, a fully automated test system can be developed with unequalled accuracy and repeatability.

Configuration Options - The HFS 9000 Series of pulse generators are available in 2-, 4-, or 6-channel systems. Extra channels are also field installable to meet growing speed and channel-count requirements. The HFS 9010 is targeted at ECL and GaAs components, while the HFS 9020 is ideal for Advanced CMOS, BiCMOS, and TTL. The HFS 9030 combines channels of each type in a single mainframe.

HFS 9010

THE HFS 9010 is a four-channel, 600 MHz pulse generator for use in characterizing ECL and GaAs devices. A phase-lock input allows synchronization of the HFS 9010 with other test equipment. Two- and sixchannel configurations are available to tailor a solution to your specific needs.

Applications - The HFS 9010 is ideal for providing the stimulus in ECL and GaAs digitial/telecommunications device characterization. The fast <200 ps transition time, 600 MHz repetition rate, four-channel independent
edge placement (expandable up to six channels), singleended or differential outputs make this the most powerful and flexible pulse generator on the market. With the HFS 9010 you can characterize gate delays, setup and hold times, and other device parameters of basic components, ASICS, and high-speed memory devices.

Using Transducer Mode, high-speed clocks of up to 1 GHz can be generated by using a sine wave generator as an input. The HFS 9010 transforms this sine wave into a digital pulse train ideal for testing the fastest digital components.

Using Phase-Lock Mode, the HFS 9010 can be configured with a slower test system to provide synchronized clock and data signals at any 2^{n} multiple (or sub-multiple) of the tester clock rate. You can test faster devices without having to upgrade the performance of your entire test system.

HFS 9020

The HFS 9020 is a 4 -channel, 300 MHz precision pulse generator for use in characterizing HCMOS, ACL, BiCMOS, and other digital devices. The HFS 9020 features a 5.5 V output swing, 1 ns to 5 ns rise and fall times, and all the other features of the HFS 9010. With its large output swing and variable slew rate, the HFS 9020 can also be used for characterizing some highfrequency analog components

Applications - The HFS 9020 is intended for characterization of logic and telecommunication devices with rise times of 1 ns and slower. Like the HFS 9010, this product is ideal for testing and characterizing gate delays, setup and hold times, and other device parameters.

HFS 9030

The HFS 9030 combines two channels of the HFS 9010 with two channels of the HFS 9020 into a single 4-channel instrument. This results in a single stimulus product capable of testing a broad range of components or systems with mixed logic families. An option allows two additional channels of either type making a versatile, 6 -channel product with all the precision edge placement capability of either the HFS 9010 or HFS 9020. No other product on the market provides this level of performance and configurability

CHANNEL CHARACTERISTICS

HFS 9010 - HIGH SPEED
Channels - 4 channels, differential outputs. Add or delete options for two- and six-channel configurations. Independent levels, edge placement, and deskew on all channels.
Signal Levels $-3 \mathrm{~V} p-\mathrm{p}$ with 10 mV Resolution.
Transition Times $-\leq 200$ ps (20% to $80 \%, \leq 1 \mathrm{Vp}$-p).
Frequency Range - 50 kHz to 600 MHz .
Channel Outputs - Active high, active low, static high, static low, or half pulse rate.
Transducer Mode -Up to 1 GHz square-wave output from a sine-wave input.

HFS 9020 - VARIABLE RATE
Channels - 4 channels, differential outputs. Add or
delete options for two- and six-channel configurations. Independent levels, edge placement, and deskew on all channels.
Signal Levels -5.5 V p-p with10 mV Resolution.
Transition Times - Adjustable from 1 ns to 5 ns.
Frequency Range -50 kHz to 300 MHz .
Channel Outputs - Active high, active low, static high, static low, or half pulse rate.
Transducer Mode - Up to 300 MHz square-wave output from a sine-wave input.

HFS 9030 - COMBINATION

The HFS 9030 consists of two high-speed and two variable-rate channels. Add Option for two additional channels of either type is available.

TIMING CHARACTERISTICS

Timebase - 1% accuracy, 10 ps resolution on all edge placements.
Channel Deskew - By default, channels are time aligned at the front panel. Independent deskew range from -60 ns to $+2 \mu$ s on each channel allows precise deskew at the device under test.
Pulse Delay - Adjustable from 0 to 1 period with accuracy of ± 300 ps $\pm 1 \%$ of delay setting.
Pulse Width - adjustable from 0 to (1 period - 800 ps) with accuracy of $\pm 300 \mathrm{ps} \pm 1 \%$ of width setting.
RMS Jitter -5 ps $\pm 0.05 \%$ of interval, typical.
Phase Lock Input - Allows precise synchronization to an external frequency reference between 6 MHz and 600 MHz . Pulse output frequency can be any 2^{n} harmonic or sub-harmonic of the external frequency.

TRIGGER CHARACTERISTICS

Auto Mode - A free-running continuous sequence of output pulses.
Burst Mode -A triggered string of 1 to 65,536 pulses.
Auto-Burst Mode - A free-running sequence of Bursts.
Trigger Sources - Trigger Input connector, front panel button, or ASCll command over GPIB.
Trigger Input - Positive or Negative Slope, $\pm 5 \mathrm{~V}$ Range, 500 mV Sensitivity, requires a 1 ns minimum input pulse width
Trigger Output - Precisely timed relative to the channel outputs, provides 0 to 70 ns or Pre-trigger. Standard ECL levels into 50Ω to ground.

POWER REQUIREMENTS

Line Voltage - 90 V to 130 V and 180 V to 250 V , rms.; switches automatically. 48 Hz to 63 Hz .
Maximum Power Consumption - 540 watts.
ENVIRONMENTAL AND SAFETY
Temperature - Operating $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, nonoperating $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Humidity - Up to 95% RH at up to $50^{\circ} \mathrm{C}$.
Safety - Listed UL1244; CSA Bulletin 556B, September 1973; Tektronix self-certification to comply with IEC 348 recommendations.

ORDERING INFORMATION
HFS 9010 4-Channel, 600 MHz Precision Pulse Generator

HFS 9020 4-Channel, 300 MHz Precision Pulse Generator
\$33,995
HFS 9030 Precision Pulse
Generator, two 600 MHz
channels and two 300 MHz channels
$\$ 35,995$
Products above include:
User Reference Manual, Service
Reference Manual, Power Cord,
RS-232 Pigtail, SMA-BNC Adapter,
Zip-lock Pouch, two replacement
fuses, and one 50Ω SMA Coaxial Cable

INSTRUMENT OPTIONS

HFS 9010:
Opt. 2A - Delete 2 channels $\mathbf{- \$ 1 3 , 8 0 0}$
Opt. 2B-Add 2 channels $+\$ 12,000$
Opt. 1R-Rackmount $+\$ 275$
HFS 9020:
Opt. 2A-Delete 2 channels $\mathbf{- \$ 1 3 , 5 0 0}$
Opt. 2C-Add 2 channels $+\$ 13,000$
Opt. 1R-Rackmount
$\$ 13,000$
$+\$ 275$
HFS 9030:
Opt. 2B - Add 2600 MHz
channels
+\$12,500
Opt. 2C-Add 2300 MHz channels

+ $\$ 12,500$
Opt. 1R - Rackmount
+\$275
FIELD INSTALLABLE UPGRADES
HFS9F01 Add two 600 MHz
High-speed channels
$\$ 16,995$
HFS9F02 Add two 300 MHz
Variable-Rate channels
\$13,995

PHYSICAL CHARACTERISTICS

	Cabinet	Rackmount
Dimensions	mm. in.	mm. in.
Width	41416.3	48319.0
Height	1787.0	1787.0
Depth	62924.75	62924.75
Weights	kg lb	kg lb
Net	20.545	23.251
Shipping	27.360	30.066

PG2010, PG2011 and PG2012 Pulse Generators

- New User Interface with Output Waveforms and Parameters on the Display
- Selectable 250 ps, 800 ps or 1.8 ns with 2.5 V Output into 50Ω
- Variable 5.5 ns to 10 ms Transition Time with 10 V Output into 50Ω
- 50 MHz Repetition Rate
- 1\% Period Accuracy
- Dual Channel Capability

PG2010, PG011, PG2012

The PG2010 family provides three new, fully programmable pulse generators designed for precision high performance applications in automatic test or on the bench. The products meet the needs of a wide range of applications from analog to high-speed logic or mixed technologies.

Operation, especially for oscilloscope or logic analyzer users, is made easy with a convenient CRT display utilizing a menu-driven user interface. A waveform is displayed on the CRT for each pulse generator output channel.

Members of the family provide a 50 MHz repetition rate, $1-2 \%$ accuracy depending on the parameter, 20 V output from the variable transition time units with transition times as fast as 250 ps from the selected transition products.

Each pulse generator is specified to operate over $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, useful for ATE systems. The same higher accuracy specification typically limited to the $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ by others is covered the full temperature range in the PG2010 family.

One or two channel operation is possible. The PG2010 and PG2011 are single-channel instruments. Dualchannel products are available in the PG2010 Opt 2, PG2011 Opt 2 and PG2012. All are designed as parameter independent, synchronous outputs. Their delay capability will allow phase shifted signals.
The PG2010 and channel 1 of the PG2012 provide selection of $250 \mathrm{ps}, 800 \mathrm{ps}$ and 1.8 ns rise and fall
transition times. Fast 200 ps transitions are guaranteed for output voltages up to 1.25 V in the 250 ps mode. Each selectable fast channel provides simultaneous normal and complement outputs.

Variable transition outputs from 5.5 ns to 10 ms are available in the PG2011 and channel 2 of the PG2012.

SPECIFICATIONS

Specifications describe the pulse generators warranted performance after a 20 minute warmup, into 50Ω load. To maintain warranted specifications, the enhanced accuracy must be on and Internal Cal performed with $\pm 5^{\circ} \mathrm{C}$ of the current ambient operating temperature. The ambient specification covers the range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

COMMON SPECIFICATIONS

(Timing with minimum transitions)
PERIOD
Range - 20 ns to 10 s .
Accuracy $- \pm 1 \%$ of setting $\pm 1 \mathrm{~ns}$.
Maximum Jitter $-<0.05 \%$ of setting +30 ps rms.
DELAY, DOUBLE PULSE, WIDTH
Delay Range - $0.0 \mathrm{~ns}-9.89990 \mathrm{~s}$.
Width Range - $10.0 \mathrm{~ns}-9.90000 \mathrm{~s}$.
Accuracy $- \pm 2 \%$ of setting $\pm 2 \mathrm{~ns}$.
Maximum Jitter $-\leq 0.05 \%$ of setting +30 ps rms.
TRIGGER/GATE INPUT
Sensitivity - 150 mV p-p min., dc to 50 MHz .
Min. Pulse Width - 10 ns.
Threshold - Range: $\pm 9.99 \mathrm{~V}$
Resolution: 3 digit (10 mV)
Accuracy: $\pm 5 \%$ of setting $\pm 25 \mathrm{mV}$
Slope: Positive (+) or Negative (-)
Counted burst: 2 to 999,999 cycles per burst
INTERNAL TRIGGER
Resolution - Up to 4 digits, limited to 100 ns.
Repetition Rate - $100 \mathrm{~ns}-99.995 \mathrm{~ns}$
Accuracy - $\pm 0.01 \% \pm 1 \mathrm{~ns}$.
Jitter $-\leq 0.05$ of setting +30 ps rms.
GENERAL
Power - 150 watts.
Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$;
Storage: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Source Impedance - 50Ω.

PRODUCT SPECIFIC SPECIFICATIONS

Output Characteristics $(\text { into } 50 \Omega)^{1}$	PG2010	PG2011	PG2012
Output Levels			
High Level Range	-1.2 V to +2.5 V	-9.5 V to +10.0 V	CH 1 same as PG2010
Low Level Range Amplitude	-2.5 V to +1.9 V	-10.0 V to +9.5 V	CH 2 same as PG2011
	0.6 V min, 2.5 V max	0.5 V min, 10 V max	$\mathrm{CH} 1: 0.6 \mathrm{~V}$ min, 2.5 V max
Amplitude			CH 2: 0.5 V min, 10 V max
Level Accuracy	$\pm 1 \%$ of level setting	$\pm 1 \%$ of level setting	$\pm 1 \%$ of level setting
	$\pm 2 \%$ p-p amplitude	$\pm 2 \%$ p-p amplitude	$\pm 2 \%$ p-p amplitude
Transition Times ${ }^{1}$			
Leading edge (CH 1)	Selectable 250 ps, 800 ps, 1.8 ns	Variable 5.5 ns to $10 \mathrm{~ms}^{2}$	Selectable 250 ps , $800 \mathrm{ps}, 1.8$ ns
$(\mathrm{CH} 2)$	Selectable 250 ps, 800 ps, 1.8 ns	Variable 5.5 ns to $10 \mathrm{~ms}^{2}$	Variable 5.5 ns , to $10 \mathrm{~ms}^{2}$
Trailing edge (CH 1) (CH2)	Same as leading edge Same as leading edge	Variable 5.5 ns to $10 \mathrm{~ms}^{2}$ Variable 5.5 ns to $10 \mathrm{~ms}^{2}$	Same as leading edge Variable 5.5 ns to $10 \mathrm{~ms}^{2}$
Preshoot, Overshoot, Ringing	$\leq 150 \mathrm{mV}$ for amplitude of $\leq 1.25 \mathrm{~V}$ $\leq 10 \%$ of amplitude for amplitude $>1.25 \mathrm{~V}$	$\leq 5 \%,+50 \mathrm{mV}$ for pulse levels between $\pm 5 \mathrm{~V}$	CH 1 same as PG2010 CH 2 same as PG2011

[^38]

The new PG2010 family has representative waveform display, important pulse parameters, and softkey menus all on the crt.

ORDERING INFORMATION

PG2010 Single Channel
Programmable Pulse Generator $\mathbf{\$ 8 , 4 5 0}$ with selectable $250 \mathrm{ps}, 800 \mathrm{ps}$ and 1.8 ns transition times.
PG2011 Single Channel
Programmable Pulse Generator $\$ 6,950$ with variable 5.5 ns to 10 ms
transition times
PG2012 Dual Channel
Programmable Puise Generator $\$ \mathbf{1 1 , 3 5 0}$
with CH 1 like the PG2010 and CH 2 like the PG2011.

INSTRUMENT OPTIONS

PG2010 -
Opt. 2 - a second PG2010
channel
Opt. B1 - Service Manual
Opt. M7 - +2 yrs calibration
Opt. M9 -+2 yrs service
PG2011 -
PG2011-

channel	+\$2,850
Opt. 1R-Rackmount	+\$350
Opt. B1-Service Manual	+\$55
Opt. M7-+2 yrs calibration	+\$230
Opt. M9 -+2 yrs service	+\$370
PG2012 -	
Opt. 1R-Rackmount	+\$350
Opt. B1-Service Manual	+\$55
Opt. M7-+2 yrs calibration	+\$310
Opt. M9 -+2 yrs service	+\$49

OPTIONAL ACCESSORIES
Front panel protective cover
Order 200-3232-00
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - Available
See page 374 for descriptions.
PHYSICAL CHARACTERISTICS

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	344	13.5
Height	166	6.5
Depth	489	18.9
Weight	$\mathbf{k g}$	lb
Net	$\mathbf{8 . 5}$	19.0

Contents

Optical to Electrical
Converter Probes
Spatial Optical Fiber
Input Head 287
Optical to Electrical
Converter Heads288

Optical Converter with
Power Meter290

Optical Impulse
Generator290

Digital Photometer/ Radiometer 291

SUMMARY OF TEK OPTO-ELECTRONIC PRODUCTS
- Products that Extend Electronic Test and Measurement Tools into the Optical Realm
- Optical Front Ends for Tektronix Instruments
- Stand-Alone Optical Front Ends
- Stand-Alone Optical Test and Measurement Instruments

SOLUTIONS OFFERED

Tektronix opto-electronic product offerings fall into two categories. The first contains instruments extending electronic test and measurement tools into the optical realm. This allows users to minimize their personal and financial investment in special purpose instruments while bringing powerful and familiar electronic solutions to their optical test and measurement problems. Within this category are two kinds of instruments: (1) opto-electronic front end plug-ins for current and future Tektronix oscilloscope products, and (2) stand-alone optoelectronic units and modules used to convert optical to electrical inputs for use by other test and measurement instruments made by both Tektronix and other manufacturers.

The second category of product offering includes stand-alone instruments dedicated to solving specific optical and related test and measurement problems. These instruments span high-speed fiber optic data communications, radiometry, and fiber optic telecommunications applications. Instruments for fiber optic cable testing and related applications appear in the Telecommunications section of this catalog.

DISTINCTIVENESS OF SOLUTIONS

When it comes to making time domain optical waveform measurements, no one exceeds Tektronix' capability. Tektronix products offer a wide range of bandwidths and sensitivities for making those tough measurements on optical components such as highspeed LEDs and laser diodes. As an example, the Tektronix P6711 and P6701A Optical to Electrical Converter Probes are ideal for measuring the rise and fall times of short wavelength LEDs, as well as lasers used in the optical data storage industry. Also, the P6703 Optical to Electrical Converter Probe with its 1 GHz optical bandwidth and dc coupling, is a powerful tool to use when characterizing high speed 1300 nm transmitters conforming to the FDDI specification.

CUSTOMER OPTO-ELECTRONIC TEST AND MEASUREMENT NEEDS

The instruments appearing in the following optoelectronic section of this catalog are primarily intended for use in research, design and development, as well as manufacture of opto-electronic systems, modules, components, and service. These instruments have a wide variety of uses in the engineering test and measurement processes attendant to characterizing both the optical and electrical properties and response of these components, modules and systems.

The rapid growth in reliance on solutions using optical fiber based sensing and communications equipment has extended test and measurement needs into the optical realm. Tektronix is dedicated to both moving its applicable existing test and measurement tools into the optical regime, as well as offering new solutions to meet the needs of customers requiring optical waveform measurements.

For example, the SD-42 Optical to Electrical Converter Head coupled with a Tektronix 11800 Series oscilloscope is an excellent choice for measuring the characteristics of long wavelength laser transmitters such as those found in the SONET based communication systems. If an even faster response is needed, the SD-46 Optical to Electrical Converter Head provides the fastest time domain photodetector performance on the market. This unit's 20 GHz bandwidth allows measurements to be made on even the fastest fiber optic communication links. Only Tektronix offers such a complete solution for test and measurement jobs needing an integrated optical to electrical conversion capability.
A powerful, flexible, and cost effective optical waveform measurement tool is produced by coupling the opto-electronic products shown on the following pages to the unparalleled waveform acquisition and processing capabilities provided on-board the Tektronix 11000 Series oscilloscopes. This instrument combination provides an unmatched capability to easily and accurately measure such optical waveform parameters as

- Pulse rise and fall times
- Waveform aberrations
- Minimum, maximum, mean, and peak power levels
- Extinction ratios

This combination is made even more powerful when used in conjunction with Tektronix CSA 803 and the new CSA 404. These instruments provide a powerful optical waveform analysis capability for such applications as FDDI specification template testing and time domain eye pattern analysis on digital communications links. Only Tektronix offers such a powerful set of time domain waveform measurement solutions.
With the addition of the OIG501/OIG502 Optical Impulse Generators and the 0CP5002/0CP5502 Optical Converter/Power Meters, fiber and fiber component analysis becomes very easy. For example, optical reflections, which can have a pronounced adverse effect on link performance, can be easily analyzed down to -50 dB with high distance resolution.

High-Speed Optical Impulse and Calculated Optical Step Response

PRODUCT DESCRIPTION

The Tektronix P6701A/P6703A/P6711/P6713 are optical probes that allow the user to receive optical signals and convert them to electrical signals for convenient analysis on Tektronix oscilloscopes equipped with the TEKPROBE ${ }^{\top M}$ Interface or any other oscilloscope when used in conjunction with the Tektronix 1103 TEKPROBE ${ }^{T M}$ Interface Power Supply.
Use of the 11000 Series oscilloscope's TEKPROBEE ${ }^{\text {TM }}$ Interface allows the oscilloscope to supply power to the P6700 Series probes, automatically determine and display the proper scale factor (in microwatts of optical power) and set the input termination to the required 50Ω. An oscilloscope-controlled calibrated offset of 0 to 1 mW is also available through this interface.

The P6700 Series provides a calibrated means of analog analysis of optical signals in the wavelength range 450 to 1050 nm (P6701A/P6711) and 1100 to 1700 nm (P6703A/P6713). Thus the functions of an optical power meter and the high-speed analog waveform analysis capability of an oscilloscope are combined in one instrument. The user has the capability of acquiring, displaying and analyzing mixed analog and digital, optical and electrical signals simultaneously.

The P6701A and P6703A have an added dc stable circuit from decreased offset drift ($\leq 1 \mu W$). This improves the performance for extinction ratio measurements and absolute optical power levels. The P6711 and P6713 have increased gain and lower noise, thus have improved the sensitivity of the coverters and are excellent choices for LED measurements.

The P6721 is an optical to electrical converter for plastic fiber. For the laser disk service, automotive optical communication and others, the P6721 is a link to the test and measurement tools. The P6721 uses Tektronix probe power or the 1101A Power Supply.

The P6751 Spatial Input Head is a tunable lens system for sampling optical energy from any collimated source and delivering it via a fiber optic cable to the P6700

P6701A, P6703A, P6711, P6713 and P6751
Series Optical to Electrical Converter. The P6751 is easily mounted using standard optical bench fixtures. This spatial input head can be adjusted (500 to 1500 nm) by the user to optimize the amount of optical energy delivered to the P6700 Series. The P6751 has a standard SMA fiber optic cable connector. Also available are a series of fiber optic jumper cables for interfacing the P6700 Series and P6751 with other industry standard optical fiber connectors.

TYPICAL APPLICATIONS

Applications range from measuring the transient optical properties of lasers, LEDs, electro-optic modulators, flashlamps, etc., to the development, manufacturing, and maintenance of fiber optic control networks, local area networks (LANs), fiber based systems based on the FDDI and SONET standard, optical disk devices, and high-speed fiber optic communications systems. As an example, eight probes of the P6700 Series type coupled with two 11A34 Amplifier Plug-ins and an 11000 Series oscilloscope can be configured as an 8-channel optical oscilloscope.

NEW P6701A

- 450 to 1050 nm , DC to 700 MHz, Si PIN

NEW P6703A

- 1000 to 1700 nm, DC to 1 GHz , InGaAs PIN

NEW P6711

- 450 to 1050 nm , DC to 250 MHz , High Gain, Si Pin

NEW P6713

- 1100 to 1700 nm , DC to 300 MHz , High Gain, InGaAs PIN

NEW P6721

- 450 to 1050 nm , DC to 50 MHz , Large Area Detector (3 mm), Si PIN

P6751

Spatial Input Head

- 500 to 1500 nm
- Tuneable

CHARACTERISTICS

	P6701A	P6703A	P6711	P6713	P6721
Wavelength Response	450 to 1050 nm	1100 to 1700 nm	450 to 1050 nm	1100 to 1700 nm	450 to 1050 nm
Bandwidth	dc to 700 MHz	dc to 1 GHz	dc to 250 MHz	dc to 300 MHz	dc to 50 MHz
Rise time	$\leq 700 \mathrm{ps}$	$\leq 500 \mathrm{ps}$	$\leq 2 \mathrm{~ns}$	$\leq 1.6 \mathrm{~ns}$	$\leq 10 \mathrm{~ns}$
Conversion	$1 \mathrm{~V} / \mathrm{mW}$ at 850 nm	$1 \mathrm{~V} / \mathrm{mW}$ at 1300 nm	$5 \mathrm{~V} / \mathrm{mW}$ at 850 nm	$5 \mathrm{~V} / \mathrm{mW}$ at 1300 nm	$10 \mathrm{~V} / \mathrm{mW}$ at 660 nm
Max Input Optical Power	2 mW	2 mW	$400 \mu \mathrm{~W}$	$400 \mu \mathrm{~W}$	0.3 mW
Noise Equivalent Power	$\leq 1 \mu \mathrm{~W}(\mathrm{rms})$	$\leq 1 \mu W(\mathrm{rms})$	$\leq 250 \mathrm{nW}(\mathrm{rms})$	$\leq 200 \mathrm{nW}(\mathrm{rms})$	$\leq 200 \mathrm{nW}(\mathrm{rms})$

ORDERING INFORMATION

P6701A Optical-to-Electrical Converter

Includes: Standard SMA input connector, carrying case (016-0156-03), and Instruction Manual (070-7496-00).
Opt. 01 - FC input connector
Opt. 02-ST input connector
Opt. 03-DIN 47256 input connector
P6703A Optical-to-Electrical Converter Includes: Standard SMA input connector, carrying case (016-0156-03), and Instruction Manual (070-7496-00).
Opt. 01-FC input connector

Opt. 02-ST input connector
Opt. 03- DIN 47256 connector
P6711 Optical-to-Electrical Converter Includes: Standard SMA input connector, carrying case (016-0156-03),
and Instruction Manual (070-7496-00).
Opt. 01 -FC input connector
Opt. 02 - ST input connector
Opt. 03-DIN 47256 connector
P6713 Optical-to-Electrical Converter Includes: Standard SMA input connector, carrying case (016-0156-03), and Instruction Manual (070-7496-00).

Opt. 01 -FC input connector

 Opt. 02 - ST input connectorOpt. 03- DIN 47256 connector
P6721 Optical to Electrical Converter
Includes: Standard TOSLINK® Connector and Instruction Manual (070-7842-00)

$\cdot \quad$ P6751 Spatial Input Head

Includes: Adjustment tool and instruction sheet.

OPTIONAL ACCESSORIES

Multimode Jumpers 100/140 micron
(See Page 289)
${ }^{1}$ Contact your local sales office.

SD-42
 Optical to Electrical Converter

- 55 ps Optical Pulse Response (max. FWHM)
- DC - 6.4 GHz Optical Bandwidth
- 1000 nm - 1700 nm Spectral Response
- Mean Optical Power Monitor Function

SD-46
 Optical to Electrical Converter

- 22 ps Optical Pulse Response (FWHM)
- DC - 20 GHz Optical Bandwidth
- 1200 nm - 1650 nm Spectral Response
- Mean Optical Power Monitor Function

SA-42
 Optical to Electrical Converter

- 50 ps Optical Pulse Response (max. FWHM)
- DC - $7 \mathrm{GHz}(-3 \mathrm{~dB})$, to
$15 \mathrm{GHz}(-25 \mathrm{~dB})$
- 1000 nm - 1700 nm Spectral

Response

- Ultra Low Noise

ORDERING INFORMATION

SD-42 Optical to Electrical
 \section*{Converter}

 $\$ 3,845$Includes: Red, 2 mm to banana lead, 1 m length (012-1286-00), black, 2 mm to banana lead, 1 m
length (012-1287-00), 50Ω semi-
rigid cable link (174-1635-00),
instruction manuals (070-7463-00,
070-7464-00, 070-7465-00).
SD-46 Optical to Electrical

Converter

Includes: Red, 2 mm to banana
lead, 1 m length (012-1286-00),
black, 2 mm to banana lead, 1 m
length (012-1287-00), 50Ω semi-
rigid cable link (174-1635-00),
Instruction Manuals (070-7730-00,
070-7731-00, 070-7732-00).
SA-42 Optical to Electrical

Converter

Includes: Instruction Manual
(070-7733-00), Power Supply and
Charger Unit (119-3716-00),
DC Power Cable (174-1966-00), and Power Cable (161-0104-00).

SD-42 Optical to Electrical Converter

SD-46 Optical to Electrical Converter

SD-42

The SD-42 is an optical to electrical converter for use with the Tektronix 11800 Series sampling oscilloscopes equipped with an SD-22, SD-24, or SD-26 Sampling Head. The optical to electrical conversion is linear up to 25 mW peak input with a calibrated deflection factor from $50 \mu \mathrm{~W} /$ div to $5 \mathrm{~mW} /$ div at 1300 nm . This unit has a 55 ps optical pulse response (max. FWHM) with the SD-24 and SD-26 Sampling Heads and 60 ps optical pulse response (max. FWHM) with the SD-22 Sampling Head.

SD-46

The SD-46 is an optical to electrical converter for use with the Tektronix 11800 Series sampling oscilloscopes equipped with an SD-22, SD-24, or SD-26 Sampling Head. The optical to electrical conversion is linear up to 25 mW peak input with a calibrated deflection factor from $60 \mu \mathrm{~W} /$ div to $6 \mathrm{~mW} / \mathrm{div}$ at 1300 nm . This unit has a 28.5 ps optical pulse response (max. FWHM) with the SD-24 and SD-26 Sampling Heads.

SA-42

The SA-42 is a stand alone optical to electrical converter for general purpose, high frequency use. It is principally for use with the Tektronix spectrum analyzers. The optical to electrical conversion is linear up to 25 mW peak input with a calibrated conversion gain of $25 \mu \mathrm{~W} / \mathrm{mV}$ at 1300 nm .

The SD-42 and the SD-46 Optical to Electrical Converters can be plugged into the sampling unit or attached by a sampling head extender for remote use. The head extenders come in either 1 meter (012-1220-00) or 2 meter (012-1221-00) options. Refer to next page for SD-42 and SD-46 head extenders.

Optical signal input on the SD-42, SD-46 and SA-42 are through a standard FC fiber optic connector. Other connector types can be accommodated by using fiber optic jumper cables. The SD-42 and the SD-46 also have a mean power meter function with selectable $1 \mathrm{~V} / \mathrm{nW}$ and $1 \mathrm{~V} / \mu \mathrm{W}$ ranges.

SA-42 Optical to Electrical Converter

TYPICAL APPLICATIONS

Characterization of opto-electronic devices such as laser diodes, light emitting diodes, optical waveguides, optical detectors and electro-optic modulators is becoming more important as applications for fiber optics in telecommunications and data communications expand. The SD-42 and the SA-42 Optical to Electrical Converters offer dc to 7 GHz bandwidth performance for wavelengths from 1000 nm to 1700 nm . The SD-46 Optical to Electrical Converter gives researchers optical waveform measurement capability from dc to 20 GHz in the 1200 nm to 1650 nm wavelength range. Measurements such as risetime, aberration, optical power vs drive current and voltage, modulation bandwidth, and sensitivity can now be made at high bandwidth, accurately and easily.

SA-42 Optical to Electrical Converter with Tektronix 2754 Spectrum Analyzer

CHARACTERISTICS

PULSE CHARACTERISTICS

	SD-42	SD-46	SA-42
Pulse Response	55 ps Max. (FWHM)	$22 \mathrm{ps}(\mathrm{FWHM})^{* 1}$	50 ps Max (FWHM)
Bandwidth	$\begin{gathered} \mathrm{dc}-6.4 \mathrm{GHz} \\ \text { Optical } \end{gathered}$	$\begin{aligned} & \text { dc-20.0 GHz } \\ & \text { Optical } \end{aligned}$	$\begin{gathered} \hline \mathrm{dc}-7.0 \mathrm{GHz} \\ \text { Optical } \end{gathered}$
Spectral Response	1000 to 1700 nm	1200 to 1650 nm	1000 to 1700 nm
Noise Equivalent Power	$\begin{gathered} \leq 23 \mathrm{pW} / \mathrm{rtHz} z^{* 2} \\ \leq 33 \mu W^{* 3} \\ \leq 10 \mu W^{* 4} \end{gathered}$	$\begin{gathered} \leq 27 \mathrm{pW} / \mathrm{rtHz} z^{* 2} \\ \leq 45 \mu W^{* 3} \\ \leq 16 \mu \mathrm{~W}^{* 4} \end{gathered}$	$23 \mathrm{pW} / \mathrm{rtHz}{ }^{* 2}$
Linear Response Range	$\leq 25 \mathrm{~mW}$ Peak Power $\leq 5 \mathrm{~mW}$ Average Power	$\leq 25 \mathrm{~mW}$ Peak Power $\leq 5 \mathrm{~mW}$ Average Power	≤ 25 mW Peak Power $\leq 5 \mathrm{~mW}$ Average Power
Aberrations	$\leq 15 \%$ p-p* ${ }^{\text {\% }}$	$\leq 10 \% p-p^{* 5}$	$\leq 15 \%$ p-p* ${ }^{\text {5 }}$

${ }^{*}$ Calculated (.44/Optical Bandwidth)
${ }^{* 2}$ Root Hertz Into 50Ω
${ }^{* 3}$ System specification with SD-24/SD-26
${ }^{* 4}$ System specification with SD-22
${ }^{* 5}$ Within the first 400 ps following a pulse input

POWER METER

	SD-42	SD-46	SA-42
Dynamic Range	5 nW to $5 \mathrm{~mW}(60 \mathrm{~dB})$	5 nW to $5 \mathrm{~mW}(60 \mathrm{~dB})$	NA
Sensitivity			NA
Range 1	$1 \mathrm{~V} / \mathrm{mW} \pm 10 \%$	$1 \mathrm{~V} / \mathrm{mW} \pm 10 \%$	
Range 2	$1 \mathrm{~V} / \mu W \pm 10 \%$	$1 \mathrm{~V} / \mu \mathrm{WW} \pm 10 \%$	

ENVIRONMENTAL

Operating Temperature Range $-0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

High Resolution Optical Reflection Measurement using OIG502, OCP5002 and the CSA 803

ORDERING INFORMATION
OPTIONAL ACCESSORIES
Fiber Optic Cables - 2 meter,
$8 / 125 \mu \mathrm{~m}$, single mode.
(FC to Diamond 3.5)
Order 174-1385-00
(FC to Diamond 2.5)
Order 174-1497-00
(FC to ST)
Order 174-1386-00 \$70
(FC to FC)
Order 174-1387-00
(FC to Biconic)
$88-00$
Multimode
Fiber Optic Cables - 2 meter,
$62.5 / 125 \mu \mathrm{~m}$, multimode.
(FC/PC to Biconic)
Order 174-2323-00
(FC/PC to FC/PC)
Order 174-2322-00
(FC/PC to SMA 906)
Order 174-2324-00
Fiber Optic Cables - 2 meter,
100/140 micron (SMA to SMA)
Order 174-0879-00
(SMA to Diamond 3.5)
Order 174-0877-00
(SMA to FC)
(SMA
Order 174-0880-00 \$260
(SMA to ST)
-0876-00
Order 174-1303-00
Sampling Head Extender Cables -
Sampling Head Extender
$(1 \mathrm{~m})$ Order 012-1220-00
(SD-42 and SD-46)
(2 m) Order 012-1221-00
(SD-42 and SD-46)
10 kHz to 21 GHz DC Block,
"N" Type - Order 015-0509-00
INTERNATIONAL POWER PLUG OPTIONS (SA-42 ONLY)
Opt. A1 - Universal Euro
220 V, 50 Hz . (161-0104-06)
Opt. A2 - United Kingdom
$240 \mathrm{~V}, 50 \mathrm{~Hz}$. (161-0104-07)
Opt. A3 - Australian
240 V, 50 Hz . (161-0104-05)
Opt. A4 - North American
$240 \mathrm{~V}, 60 \mathrm{~Hz}$. (161-0104-08)
Opt. A5 - Switzerland
220 V, 50 Hz . (161-0167-00)

OCP 5002
2 GHz Optical Converter/
Power Meter 1100 to 1650 nm , DC to 2 GHz

OCP 5502
2 GHz Optical Converter/
Power Meter 1100 to
1650 nm , DC to 2 GHz

- 2 GHz Bandwidth
- Extinction Ratio

Measurements

- Low DC Drift
- TEKPROBE ${ }^{\text {M }}$ Interface
- LED and Laser

Characterization

NEW OIG 501

Optical Impulse
Generator 850 nm ,
35 ps Laser Impulse

OIG 502

Optical Impulse
Generator 1300 nm , 35 ps Laser Impulse

- Calibration for High Speed Photodiodes
- Impulse Source for High Resolution Optical Time
Domain Reflection
- Fiber Bandwidth/Dispersion

ORDERING INFORMATION

OCP 50022 GHz Optical
Converter/Power Meter
Includes: Instruction manual
(070-7817-00).
OCP 55022 GHz Optical
Converter/Power Meter
Includes: Instruction manual
(070-7817-00).
OIG 501 Optical Impulse

Generator

Includes: Instruction manual
(070-7818-01).
OIG 502 Optical Impulse
Generator
Includes: Instruction manual
(070-7818-01).
OPTIONAL ACCESSORIES
Fiber Optic Cables - (Refer to page 289 for complete list)
TEKPROBE ${ }^{\text {TM }}$ Interface Cable (Order 012-1372-00)
$\$ 300$
${ }^{-1}$ Contact your local sales office.

GPIB ${ }^{*}$

*The OCP 5002 and OCP 5502
comply with IEEE Standard 488.2-1987 and Tektronix Standard Codes and Formats

OCP 5002/OCP 5502

The OCP 5002 is an optical to electrical converter with an integral average reading optical power meter. It is a plug-in compatible GPIB controllable unit for the Tektronix TM 5000 Series power supplies. The OCP 5502 is a functionally equivalent instrument packaged as a stand-alone monolithic unit with integral power supplies. The OCP 5002 and the OCP 5502 operate over the 1100 nm to 1650 nm spectral range. These units meet or exceed their specified performance over the dc to 2 GHz frequency range.
The power meter can display power in watts, dB and dBm . The dB reference setting can be from a signal on the power meter or can be set manually.
$1 \mathrm{~V} / \mathrm{mW}$ conversion gain is very useful for measuring optical inputs from LED and laser sources. The user will be able to measure fiber-based optical signals up to 2 GHz from either type of source.

TYPICAL APPLICATIONS

Optical digital communication tests such as SONET and FDDI will be made easier with the TEKPROBE ${ }^{\top M}$ Interface and the 2 GHz bandwidth. The 2 GHz bandwidth coupled with the Tektronix CSA 803 and CSA 404, will give the user a fast response, high resolution communications measurement capability.
LED characterization, Laser characterization and other component measurements will be made simpler and more repeatable by using OCP 5000 Series instruments.

CHARACTERISTICS

O/E Converter	OCP 5002/0CP 5502
Wavelength Response	$1100-1650 \mathrm{~nm}$
Bandwidth	$\mathrm{dc}-2 \mathrm{GHz}$
Risetime	260 ps
Conversion Gain	$1 \mathrm{~V} / \mathrm{mW} \pm 8 \%$ at 1300 nm
Calibrated Offset	$0-1 \mathrm{~mW} \pm 1 \%$
Max Input	2 mW offset at 1 mW
Optical Power	1 mW no offset
Noise Equivalent Power	$\leq 1 \mu \mathrm{~W}$
Power Meter	
Dynamic Range	$\pm 7 \mathrm{dBm}$ to -80 dBm
Accuracy ${ }^{+1}$	$\leq 5 \%$ at 1300 nm

${ }^{1}$ With FC/PC Connectors

OIG 501/OIG 502

The OIG 501/OIG 502 Optical Impulse Generators are laser impulse sources that operate at 850 and 1300 nm respectively. The user may select either internal or external triggering. The trigger level can be adjusted from $\pm 3 \mathrm{~V}$. These units are compatible with either the Tektronix TM 500 or TM 5000 power supplies.

The internal triggering repetition rates are 10 kHz ,
100 kHz or 1 MHz . These options are selectable with front panel switches. The output is stabilized in order to provide repeatable output signal levels.

The OIG 501/OIG 502 have two user selectable output pulse modes: high impulse energy or low impulse energy. In the high energy mode, the units provide an optical impulse $>30 \mathrm{~mW}$ (OIG 502), $\geq 15 \mathrm{~mW}$ (OIG 502) with impulse widths ≤ 300 ps (FWHM). In the low energy mode, the units produce an optical impulse $\geq 15 \mathrm{~mW}$ (OIG 501), $\geq 5 \mathrm{~mW}$ (OIG 502) with pulse widths $\leq 35 \mathrm{ps}$ (FWHM). The OIG 501/OIG 502 have a 60 ns pre-trigger for easy viewing of the impulses on a variety of oscilloscopes.

TYPICAL APPLICATIONS

The OIG 501/OIG 502 are very useful in many applications. These include photodiode rise time testing, high resolution optical time domain reflectometry, and dispersion and bandwidth testing of optical fiber. The extremely fast pulse and the stabilized output provide performance in these areas never before achieved.

With pulses of $\leq 35 \mathrm{ps}$ width, the user will be able to directly measure the performance of photodiodes whose impulse response characteristics have previously been available only indirectly by a deconvolution computation. The narrow pulse widths achieved will allow millimeter level resolution on OTDR measurements. This permits measurements of reflections in optical systems that were not obtainable before the OIG 501/OIG 502.

The stabilized output insures repeatable measurements for all the applications mentioned above. The tests were complicated and time consuming to insure stable levels on the test signals. Now, with the OIG 501/OIG 502, the stability is specified.

CHARACTERISTICS

	OIG 501	OIG 502
Wavelength	$850 \mathrm{~nm}^{2}$	$1300 \mathrm{~nm}^{2}$
Impulse Width		
Low Energy -	$\leq 35 \mathrm{ps}$	$\leq 35 \mathrm{ps}$
High Energy -	$\leq 300 \mathrm{ps}$	$\leq 300 \mathrm{ps}$
Max Output Optical Power		
Low Energy -	$\geq 10 \mathrm{~mW}$	$\geq 5 \mathrm{~mW}$
High Energy -	$\geq 25 \mathrm{~mW}$	$\geq 15 \mathrm{~mW}$
.		

J16 PHOTOMETER/RADIOMETER

The Tektronix J16 is a portable digital photometer/ radiometer capable of making a wide variety of light measurements-in the laboratory, in the field, or on the production floor. A J16 System consists of a J16 mainframe and one of seven detachable probes which can be either mounted on the J 16 or on the end of an extension cable. All probes have a Hold switch which allows the displayed reading to be held.

Seven quickly interchangeable probes are available for measuring illuminance, irradiance, luminance, lightemitting diode output, and relative intensity. Recalibration is not necessary when probes are interchanged. Connection of a probe to the J16 automatically selects the correct front panel units indicator. The $31 / 2$ digit LED display can be easily read under low ambient conditions.

All probes use silicon photodiodes individually corrected with multi-element glass filters for maximum stability and accuracy.

The optional BCD/analog output feature (Option 07) allows the user either a BCD output of the displayed reading or an analog signal (level) proportional to the light falling upon the sensor. The J 16 Option 07 can be also used with a Tek Ml 5010/50M30 Multifunction Interface System for interface with a GPIB system.

Under normal usage, the internal rechargeable nickel cadmium batteries will operate the J 16 for four hours. An ac power supply is recommended for continuous operation.
Power supplies or battery packs can be changed quickly by removing four screws on the J16's rear panel. The cabinet and probes have an internal threaded socket ($1 / 4$ in $\times 20 \mathrm{in}$) for convenient mounting on a tripod or optical bench.

J16-TV PACKAGE

The J16-TV package is an excellent transfer mechanism which provides a simple, accurate method for adjustment of monitor screen color temperature. The primary colors are measured and adjusted to produce white color temperature balance.

The J16-TV with optional J6503 or J6523 probes measures monitor screen brightness on both color and black and white monitors. Other applications include measurement of studio lighting, camera lighting, and illumination of work areas.

The J16-TV package includes: J16 Battery-Operated Photometer, J6502-A Irradiance Probe, light occluder, probe extension cable, and battery charger. See Application Note 58A-2926-1 for additional information.

J6511 (shown), J6512-A (similar except no diffuser)

J6505 with LED adaptor and LED holders

CHARACTERISTICS

J16 MAINFRAME

Display - 3 1/2 digit LED readout and three LEDS automatically indicate correct units for probe in use. Metric version readout is also available (Option 02).
Stability $-\leq 2 \%$ per year.
Linearity $-\leq 2 \%$ over entire range (enables single point calibration).
Integration Time - $\approx 100 \mathrm{~ms}$.
Calibration - Electrical calibration of the J16 mainframe is performed with a calibrated voltage source or DVM traceable to NIST. Calibrated probes can be used with any J16 without additional calibration.

POWER REQUIREMENTS

Standard and Opt. 01 -Has internal rechargeable NiCad batteries that require 16 hours for a full charge. The J16 will operate nominally four hours continuously on a charge.
Opt. 03 and Opt. 04 -AC only operation, no internal batteries.

PHYSICAL CHARACTERISTICS

(With Probe and Battery Pack Installed)		
Dimensions	mm	in.
Width	123	4.6
Height	60	2.4
Depth	203	8.0
Weight \approx	kg	lb
Net	1.5	3.3
Domestic Shipping	2.3	5.0
Export-packed	4.5	10.0

FEATURES

- Digital LED Readout
- Seven Silicon Sensor Probes Quickly Interchange Without Recalibration
- Accurate Spectral and Cosine Corrections
- Metric and US Versions Available
- AC or Internal Rechargeable Battery Versions
- Application Notes Available

BENEFITS

- Easy to Read in Dark Areas
- Rugged but Accurate
- Adaptable to Many Light Measurement Needs
- Use Anywhere

J6511

Illuminance Probe

- Highway Illumination
- Luminaires and Lamps
- Workstation Illumination
- Studio Lighting
- Office Lighting
- Lighting Equipment

J6502-A/J6512-A Irradiance Probes

- Laser Research
- Display Color Balancing
- Radiant Efficiency
- Infrared LED Testing

J6503
8° Luminance Probe

- TV and Computer Display Screens
- Projection Screens
- Surface Reflectance

J6523
1° Luminance Probe

- Roadway Lighting
- TV and Computer Display Screens
- Photographic Equipment Testing
- Glare and Contrast Measurement

J6505

Red LED Probe

- Output of Red LEDs (600-710 nm)

J6501
Illuminance Probe

- For Yellow and Green LEDs

J6501 ILLUMINANCE PROBE

Where cosine correction is unneccessary, the standard J6501 probe is available with the same photopic correction and units as the J6511. The J6501 can be used to measure green and yellow LEDs using the optional LED Adaptor (014-0047-00).

J6502-A/J6512-A IRRADIANCE PROBE

The J6502-A/J6512-A measure irradiance in microwatts $/ \mathrm{cm}^{2}$ (milliwatts/ $/ \mathrm{m}^{2}$ with Option 02). The spectral response is flat from 450 to 950 nanometers. The response is typically down 50% at 400 and 1030 nm .
An optional filter holder is available for the J6502-A to mount standard 1 inch diameter customer supplied filters of up to $3 / 8$ inch thickness. Where high intensity sources are used (over $2 \mathrm{~mW}^{2}$), neutral density filters can be used to extend the range of the J16. (An ND 1 filter has 10\% transmission; ND 2 has 1%, etc.)
Where the 1 sq cm sensor is not completely filled by the source, for example with a laser beam, the reading obtained represents microwatts instead of μ watts $/ \mathrm{cm}^{2}$ or milliwatts $\times 10^{-4}$ instead of milliwatts $/ \mathrm{m}^{2}$ (Option 02).
The J6512-A has a low-profile detector head and sixfoot cable.

J6503 8° LUMINANCE PROBE

The J6503 measures luminance in foot-lamberts [candelas $/ \mathrm{m}^{2}$ (nit) with Option 02] where light scattered or emitted by a surface must be measured. The probe is pointed at the emitting surface.
The probe's response is closely matched to the CIE photopic curve, ensuring accurate results even when measuring spectrally different light sources.

The acceptance angle is approximately 8 degrees, which is determined by internal field stop aperatures. Providing that the 8 degrees field is uniformly filled, the probe can be held at any distance from the source. The 8 degree acceptance angle represents about a 1.7 inch diameter measurement field at one foot and is proportionately larger at greater distances. The footlambert or candelas $/ \mathrm{m}^{2}$ (nit) (Option 02) indicator automatically lights when the J6503 is connected.

J6505 PROBE FOR RED LEDs

The J6505 measures illuminance in foot candles [lumens $/ \mathrm{m}^{2}$ (lux) with Option 02], which can easily be converted into luminous intensity in candelas. (See Application Notes 58-A-2635 and 58-A-2704-1.)
An adapter supplied with the probe provides a controlled spacing between the sensor and the LED under test. The adapter excludes ambient light and has internal baffles to prevent stray reflections during the measurement. Three inserts are supplied with the adapter to fit common sizes of LEDs ($0.080 \mathrm{in}, 0.125 \mathrm{in}$, and 0.200 in diameter). These inserts are made of soft plastic that can be easily modified by the user for other LED sizes.

With the adapter in place, a reading of 1 footcandle represents 100 millicandelas of luminous intensity. With a metric version of the J16/J6505 (Option 02), 1 lumen/m² represents 10 millicandelas.

In the J6505, the silicon photodiode-filter combination provides an excellent match to the photopic curve in the region 600 nm to 710 nm . This close match requires compromising in the 380 to 600 nm region, making this probe unsuitable for general illuminance measurements.

Note: For yellow or green LEDs use the J6501 probe; for infrared LEDs use the J6502-A probe.

J6511 ILLUMINANCE PROBE

The J6511 is an illuminance probe with readout in footcandles [lumens/m² (lux) for the 65511 Option 02]. A multi-element glass filter and silicon photo-diode ensure a close match to the CIE photopic curve (color corrected). The silicon-sensor recovery time is virtually instantaneous; low-light levels can be measured immediately after exposure to bright sunlight.

The angular response is accurately cosine corrected, sirrulating an ideal 180° field-of-view detector. The lowprofile sensor has a leveling indicator to ensure accurate measurements where a significant proportion of the illumination comes from sources at low angles to the horizon.

A 25 -foot cable between the probe (J6511) and J16 allows the user to be out of the field of view while making measurements.

J6523 1° LUMINANCE PROBE

The J6523 will measure the luminance in footlamberts (candelas $/ \mathrm{m}^{2}$ with Option 02) of a spot as small as 0.32 inch in diameter. By using commercially available $55-\mathrm{mm}$ stackable close-up lenses, areas as small as 0.035 inch (+10 diopters) can be measured. These $55-\mathrm{mm}$ lenses are locally available from photography stores. (See Application Note 58-AX-3252.)

The 1 degree angle represents 0.21 inch per foot of distance from the probe to the source. Thus at 10 feet, the J6523 measures a 2.1 inch diameter spot.

The probe includes an optical sighting system with a 9 degree viewing field. The focusing range is 18 inches to infinity, closer with $55-\mathrm{mm}$ close-up lenses. The spectral response is closely matched to the CIE photopic curve (color-corrected) for accurately measuring all commonly used light sources. The J6523 may be attached to the J16 or used with an optional probe extension cable. A standard $1 / 4$ inch $\times 20$ threaded socket allows it to be mounted on a tripod or an optical bench.

J16 OPTION 07

Option 07 adds a 25 -pin connector on the J16's top. This connector provides parallel TTL logic and BCD outputs, a "hold" input line (TTL), and a linear analog signal output 0 to -2 V minimum (depending upon the probe used), for a full-scale readout. The analog bandwidth is approximately 0.8 Hz . A cable-end connector and cover are included.

PROBE CHARACTERISTICS							
Application		Illuminance	Irradiance	Luminance		Red LED	Green/Yellow LED
Probe		J6511	J6502-A/J6512-A	J6503	J6523	J6505	J6501
R a n	US*	$\begin{aligned} & \hline 0.001 \text { to } 1999 \\ & \text { footcandles } \end{aligned}$	$\begin{aligned} & 0.001 \text { to } 1999 \\ & \text { microwatts/cm } \end{aligned}$	$\begin{aligned} & 0.1 \text { to } 199,900 \\ & \text { footlamberts* } \end{aligned}$	$\begin{aligned} & 0.1 \text { to } 19,990 \\ & \text { footlamberts } \end{aligned}$	$\begin{aligned} & 0.001 \text { to } 1999 \\ & \text { footcandles* }+ \end{aligned}$	$\begin{aligned} & 0.001 \text { to } 1999 \\ & \text { footcandles* } \dagger \end{aligned}$
n g e	$\begin{array}{\|l\|} \hline \text { Metric } \\ \text { (Opt. 02) } \\ \hline \end{array}$	$\begin{gathered} 0.01 \text { to } 19,990 \\ \text { lumnens } / \mathrm{m}^{2}(\text { lux })^{*} \\ \hline \end{gathered}$	0.01 to 19,990 milliwatts $/ \mathrm{m}^{2}$.	1 to $1,999,000$ candelas $/ \mathrm{m}^{2}$ (nits)	\qquad	$\begin{aligned} & 0.01 \text { to } 19,990 \\ & \text { lumnens } / \mathrm{m}^{2} \text { (lux) }{ }^{*} \dagger \\ & \hline \end{aligned}$	0.01 to 19,990 lumnens $/ \mathrm{m}^{2}(\text { lux })^{*} \dagger$
Accuracy (including J16)		Within 5\% of NBS standards and ± 1 digit in last place. Calibrated with a 3100° tungsten light source.	Same as J6511, except calibrated with a 762 nm filter	Within 5% of NIST standards and ± 1 digit in last place. Calibrated with a $3100^{\circ} \mathrm{K}$ tungsten light source		Same as J6501, except calibrated with a 656 nm filter light source	Within 5% of NBS standards and ± 1 digit in last place. Calibrated with a 3100° tungsten light source.
Spectral Response		CIE photopic curve	$\begin{aligned} & \text { Flat within } \pm 7 \% \\ & \text { from } 600 \text { to } 950 \mathrm{~nm} \\ & 450-600 \text { is } \pm 8 \% \\ & \hline \end{aligned}$	CIE pho	c curve	CIE photopic curve from 600 to 710 nm (250 to 1200 nm)	CIE photopic curve
Acceptance Angle		$\begin{gathered} \text { Cosine } \\ \text { corrected }\left(180^{\circ}\right) \end{gathered}$	50% sensitivity at 48° off axis	8°	1°	50% sensitivity at 48° off axis	50% sensitivity at 48° off axis
Stability and Repeatibility		Within 2\% per year					
Linearity		Within 2\% over entire range enabling single point calibration					

* An additional decade of sensitivity is included and is usable if the J16 is carefully zeroed and used at a relatively stable temperature.
$\dagger 0.000001$ to 199.9 candelas when used with 014-0047-00 LED adapter or at 3.8 inches source-to sensor spacing. Luminous intensity readings of higher intensity light sources may be easily made at correspondingly greater distances using the formula: Footcandles $x d^{2}=$ candelas where d is the distance from the source to the sensor in feet. (For metric readings, use lux $x d^{2}=$ candelas where d is distance from the source to the sensor in meters.) Request J16 Application Note 58A-2704-1 for further information.

US/Metric Conversions	US to Metric	Metric to US
Illuminance	$\mathrm{fc} \times 10.764=\mathrm{lux}$	lu $\times 0.0929=\mathrm{fc}$
Luminance	$\mathrm{fl} \times 3.426=$ nits	nits $\times 0.2919=\mathrm{fl}$

NOTES: C.IE stands for the International Commission on Himination.
Dashed lines around a curve indicate the approximate range of the curve.

ORDERING INFORMATION

J16 Photometer/Radiometer Battery Version, with $115 \mathrm{Vac}, 50$ to 400 Hz
Includes: Battery charger (119-0375-02);
shoulder strap (346-0104-00); battery pack
(016-0539-01); instruction manual
(070-1879-00); or Opt. 02 Instruction
manual (070-1880-00).
J16-TV Photometer/Radiometer Package for TV Color Monitor Set-Up
Includes: Same as J16 plus J6502A irradiance probe; light occluder (016-0305-00); 42 inch probe extension cable (012-0414-02).

J16 OPTIONS

Opt. 01 -Battery version with $230 \mathrm{Vac}, 50$ to 400 Hz charger (119-0375-03).
Opt. 02*1 - Metric readout
Opt. 03-115 Vac only operation, 50 to 400 Hz Opt. 04-230 Vac ofly operation, 50 to 400 Hz Opt. 07 -BCD/Analog output
${ }^{* 1}$ Opt. 02 probes must be used.
For application specific information call:
1-800-835-9433 ext. 5429 (in USA only).

PROBES

42-Inch*2 Probe Extender Cable - Connects

 J16 to probe. Order 012-0414-02LED Adapter - With 3 LED holders
(included with J6505). Order 014-0047-00
Tripod - Order 016-0253-00
${ }^{* 2}$ Longer length extender cables are available as a modified product by contacting your local Tektronix Sales Office.
*3 Filters available from vendors such as: ORIEL (203) 377-7877 or CORION CORP. (508) 429-5065 and others.

POWER SUPPLIES

Power supplies can be quickly changed by removing four corner screws on the rear panel and sliding the power supply or battery pack out.
AC Power Supply - Allows J16 to be used without batteries. $115 \mathrm{Vac}, 50$ to 400 Hz (Included with Opt. 03) Order 119-0404-00
$230 \mathrm{Vac}, 50$ to 400 Hz (included with Opt. 04) Order 119-0404-01
Spare Battery Pack - Order 016-0539-01

Contents

Introduction 294
Documentation Devices
HC100 Plotter 295
HC200 Printer 296
Thermal Copiers/Printers 297
Film-Based Cameras 298
Instrument Carts 306
Probe Cross-Reference Guide 310
Voltage Probes
(Specification Chart) 312
Probe Styles and Included
Accessories 314
Specialty Probes 315
SMD Probing and
Interconnects. 316
Fixtured Probes 318
Active Voltage Probes 320
Low Capacitance/TDR Probes 321
Voltage Probes
(Ordering Information) 322
Current Probes 324
Differential Probes 327
Voltage Isolators 328
Digital Probes 329
Probe Accessories 330
Probe Accessory Packs/ Conversion Kits 333
Other Accessories 334
Attenuators/Terminations 336
TVC 501 338

FREE• 40 PAGE BOOK

VITAL LINKS TO TEST SYSTEM PERFORMANCE

Whether you're using a scope from our high-performance 11000 Series, our versatile 7000 family, or our 2400 and 2200 portables, you've invested in the finest line of measurement instruments available. That's why it doesn't pay to compromise performance with accessories you can't be sure of.

A dependable probe is essential to completing your test system - because even the most advanced scope can only be as precise as the signal that goes into it. Off-the-shelf general-purpose probes are frequently unreliable, and are not expressly designed for your scope. They can cost you in ways you never bargained for: greatly impaired measurement results, embarrassing errors, and expensive delays. Only genuine Tektronix probes measure up to your Tektronix scope with designed-in compatibility and identical standards for quality -for performance you can always depend on.

Of course, choosing the right kind of probe is equally important, which is why we offer the world's largest and most respected line. All are built with the kind of ruggedness, reliability, and long life that add up to the best probe value on the market. And they're complemented by an amazingly wide array of probe accessories for virtually every need.

On page 316, check out our growing family of probes and accessories designed especially for today's small geometries.

DIRECT WAVEFORM PLOTTING

The Tektronix HC100 Color Plotter is a low-cost, fourcolor plotter designed to make waveform plots directly from a variety of Tektronix digitizing instruments without requiring an external controller. Under program control from the attached instrument's front-panel or keyboard, the HC100 provides plots of digitally stored waveforms and printouts of instrument setup information.

FUNCTIONS

Drawing Modes: Plotter (HP-GL, Epson HI 80, Graphtec commands sets), printer (Epson RX-80 compatible), self tests (HP-GL and standard plotter). The HC100 is shipped in the HP-GL mode.

Plotter operation is supported by HP-GL (HewlettPackard Graphics Language). Tek codes and formats are also supported on the GPIB interface.
Other modes in the HC100 include Graphtec emulation and Epson RX80 printer mode.

Printer operation is Epson RX-80 compatible and is supported by a full ASCII 96-character set. International character sets for 11 countries can be selected as well. HC100 handles printer functions to format and print text, but it does not support dot graphics.
Both graphics and text can be plotted in color. There are three types of pens used: fiber-tip pens with waterbased ink for paper, fiber-tip pens with oil-based ink for overhead projection film, and ball-point pens with waterbased ink for paper. Ball point pens produce a finer line than a fiber pen. Additional or replacement pens are available through Tektronix.
The HC100 pen cartridge holds four pens. The pens can be different colors, ink types, or point styles. The pen cartridge is easily changed allowing you to quickly change colors or pen types.

The HC100 cannot be used in a multi-controller environment, such as with a GPIB instrument and GPIB controller, unless attached to the controller (IBM PC or equivalent). Multiple GPIB controllers on one bus does not conform to IEEE-488 standards.

CHARACTERISTICS

Effective Drawing Size - 267 mm (X-axis) $\times 192 \mathrm{~mm}$ (Y-axis)
Maximum Drawing Speed $-230 \mathrm{~mm} / \mathrm{s}$ (along pen axis)
Maximum Resolution - 0.1 mm
Pen Response Speed - 15 times/s
Number of Pens -4 (changed automatically)
Pen Types - Fiber pens: aqueous ink or oil-based ink: Ball-point pens: aqueous ink
Pen Colors - Set of black, blue, red, and green
Paper Sizes -ISO A4: $297 \mathrm{~mm} \times 210 \mathrm{~mm}$; B5:
$257 \mathrm{~mm} \times 182 \mathrm{~mm}$; US letter size: $279 \mathrm{~mm} \times 216 \mathrm{~mm}$
Paper Types - Ordinary paper; OHJ film
Pen Movement Precision -Single Pen: 0.3 mm ; Different Pens: 0.5 mm
Pen Change Precision - Within 0.3 mm
RELIABILITY
Pen Lifetime - Aqueous fiber pen: $\approx 200 \mathrm{~m}$; Oil-
based Fiber Pen: $\approx 400 \mathrm{~m}$; Aqueous ball-point pen: 400 m

RS-232C BOARD SPECS**1

Asynchronous -

Bit Rate: 75 BPS to 19,200 BPS
Note: HC100 Opt. 03 is set at 9,600 baud Buffer: Up to 2 kbytes (selectable)
POWER REQUIREMENTS
Line Voltage - Standard: 117 V ac $\pm 10 \%$; Options A1-A5: $220 \mathrm{~V} / 240 \mathrm{~V}$ ac $\pm 10 \%$
Line Frequency -49.5 Hz to 60.5 Hz
Power Consumption - 30 W
PHYSICAL SPECIFICATIONS
Outside Dimensions - 16.5 in (41.5 cm) wide, 3.2 in . $(8.1 \mathrm{~cm})$ high, 10.8 in . (27.2 cm) deep
Weight $13.2 \mathrm{lb}(6 \mathrm{Kg})$

TYPICAL APPLICATION

- Documentation from

Digitally-Based
Instrumentation for Reports or Presentations

FEATURES

- Direct Plots from Many Tek Digitally-Based Instruments Without Using a Controller
- Standard HC100 Interfaces:
- Centronics Parallel

Interface

- GPIB Interface
- Opt. 03 Interface:
-RS-232C Serial Interface**1
- Compact Size
- Handles A4 and US Letter Size
- Makes Direct Plots in About 90 Seconds
\cdot^{1} When the $R S-232 C$ board is in the HC100, the Centronics interface is inactive.

ORDERING INFORMATJON

HC100 Color Plotter	T \$950		
Includes: 1 package of each pen set: Fiber tip/water based (016-0879-00); Fiber tip/oil		Extra Pen Cartridge - Order 016-0876-00 $\boldsymbol{<} \$ 19.50$ Pens - Four colors (black, red, green, blue) in each package:	
based (016-0878-00); Ball point		(Fiber tip, aqueous ink) Order 016-0879-00 (Fiber tip/oil-based ink) Order 016-0878-00	
6-0877-00)			
Operator's Man		(Ball point/aqueous ink) Order 016-0877-00 $\mathbb{\$} \$ 10.00$	
(070-6441-00)			
One pen cartridge		Pens-black, four(Fiber tip, aqueous ink) Order 016-0939-00 $\boldsymbol{<} \mathbf{\$ 1 0 . 0 0}$	
(016-0876		(Fiber tip, aqueous ink) Order 016-0939-00 $\approx \$ 10.00$ (Fiber tip, oil-based ink) Order 016-0940-00 $\boldsymbol{\$} \boldsymbol{\$ 1 0 . 0 0}$ (Ball-point, aqueous ink) Order 016-0941-00 $\boldsymbol{Z} \$ 10.00$	
Opt. 01 -1M GPIB Cable (012-0991-01)	\$100	(Ball-point, aqueous ink) Order 016-0941-00 $\mathbf{\$} \$ 10.00$ Intertace Board Kits - Has all the parts	
Opt. $02-\mathrm{DB}-25 \mathrm{M}$ to Centronics M		necessary to install the board in the HC 100 .	
Cable (012-1250-00) for PCs (Both Opt. 01 and 02 may be ord			
(Both 0pt. 01 and 02 may be 0	\%	(GPIB Interface Board Kit) Order 021-0457-00 (RS-232C Interface Board Kit)	315
RS-232C1/F Board; includes D			
RS-232 Cable (012-1298-00)			\$345
For a $220 \mathrm{~V} / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ version order one of following options:		HC100 Technical Manual - Order 118-6688-00 \$70	
INTERNATIONAL POWER PLUG O Opt. A1-A5-Available, see page 374 for description	NC	Z Product available within 24 hours through Tek Direct. Call 1-800-426-2200.	

HC200 Printer with Optional Roll Paper Adapter

The HC200 TEKPRINTER is a compact, low-cost 9-pin dot matrix printer. It is perfect for the lab, office, or home. Tek has taken the complexity and frustration out of getting a printer to work by providing complete instructions on how to set the HC200 up with Tek instruments and PC's, offering a wide selection of interface cables.
The HC200 handles virtually any print stock, whether continuous form paper, single sheets of letterhead, or roll paper (using the optional roll adapter). Paper can be fed from the

TYPICAL APPLICATIONS

- Documentation
- General Purpose Printer for the Lab, Office, or Home

BENEFITS

- Ready to Use
- Custom Firmware for Enhanced Compatibility with Tek Instruments
- Setup Documentation for Tek Instruments
- Accessory Starter Package Included
- Quality Copies
- Fast Dutput
- Compact Size

FEATURES

- 80 Column
- 232 cps © 12 cpi in High Speed Draft
- 40cps in Near Letter Quality Mode
- Dual Paper Paths
- Centronics or Optional

RS-232C Interface*1

- Adjustable Stand
- Epson FX Emulation
rear or through a bottom feed slot which prevents the paper from interfering with the cables.

INSTRUMENT COMPATIBILITY*1

The HC200 will work with any computer, controller, or instrument that has EPSON FX compatible software or firmware. The following is a partial listing of TEK products that can be used with the HC200.

- Centronics - 1230 w/Opt. 02, 1240 w/Opt. 1200C11, 2252, 2402A, 2510/20, 2630, 2710(A) w/Opt. 09, 2272, 571, 11201/A, 11401, 11402/A, 11403, 11801/02, CSA803, DSA601/02.
- RS-232C (HC200 w/Opt. 03) - 2201 w/Opt. 12 , 2211/14, 2200 DSO's w/Opt. 12, 3001/2, DSA9200 Series, 11201A, 11402A/03, 11801(A)/02, CSA803, DSA601/02

INTERFACES/CABLES

The HC200 comes standard with a Centronics interface. Opt. 03 will add an RS-232C interface board to the printer. The Centronics port is disabled when the RS-232C interface board is installed.

Tek has a complete selection of interface cables that will allow the printer to be used with most instruments and PCs, see ordering information.

READY TO USE WITH THE "STARTER PACKAGE"

In order to start using the HC200 immediately an exclusive "ACCESSORY STARTER PACKAGE" is

ORDERING INFORMATION

HC200 Printer

Includes: 1 ribbon cartridge; starter pack of paper, Operator's manual (070-7686-00): printer stand (118-8504-00). OPTIONS
Opt. 03 - Adds RS-232C interface board. ${ }^{* 1}$ - $+\$ 90$
INTERNATIONAL POWER PLUGS
Opt. A1-A5 - See page 374 for descriptions.
HC200 ACCESSORIES

Self-Inking Black Ribbon Cartridges - (3 million
characters nominal life), six cartridges per box.
Order (118-8502-00).
Roll Paper Adapter Kit - Roll adapter, one 350 ft roll of white bond paper, installation instruction sheet. Order 016-1076-00
Extra Roll Paper - A box of four rolls of white
bond paper (about $350 \mathrm{ft} / \mathrm{roll}$).
Order 016-1075-11 (per box)
Universal Printer Stand - Order (118-8504-00).
RS232C Interface Board Kit - includes the RS-232C Interface Board - mounting hardware, and instruction sheet. Order (119-3806-00).

HC100/HC200 ACCESSORIES

CENTRONICS CABLES -

36 -Pin male to male centronics, 9 foot,
Order 012-1284-00
DB-25 male to 36 -pin male centronics, 9 foot, Order 012-1250-00.
RS-232C Cables -
DB-25 female to DB-25 male
RS-232C, 9 foot, Order (012-1285-00). $\boldsymbol{B} \mathbf{\$ 4 0}$ DB-9 female to DB-25 male RS232C, 9 foot. Order (012-1298-00).
GPIB Cables - 1 meter, double shield, low EMI,

The HCO2 can make prints from video, PC CGA graphics, or printer text.

FEATURES

- Prints in Less Than 21 Seconds
- NTSC Resolution 640×476 Dots
- 64 Levels of Gray
- Supports PAL, SECAM, or NTSC
- Centronics (Text Only) or RGB-TTL (CGA only)

ORDERING INFORMATION

HCO2 8×10 in. Video Copier $\$ 2,220$
(110 Vac .)
Includes a roll of thermal
paper, 75Ω cable, BNC to
RCA adapter, and a manual.
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1- A5 - (220/240 V ac)
are available.
NC
See page 374 for descriptions. OPTIONAL ACCESSORIES
Super Grade Thermal Paper -
Four rolls per box.
Order 016-0868-01
Data Cable - 10 foot, male-to-
male with 9 -PIN DB connectors.
Order 174-0537-01
\$20

INPUT SIGNALS:
NTSC/PAL/SECAM Composite Video - 1 V p-p.
75Ω terminated, negative sync.
RGB TTL From IBM PC (CGA) - TTL Level, F $(H)=$ 15.75 kHz .

Parallel Data Interface/Teletext/Videotex -

TTL Level.
RESOLUTION (DOTS X LINES)
Composite Video Signal

	Frame Mode	Field Mode
NTSC	640×476	640×238
PAL/SECAM	640×512	640×289

Gray Scale -64 levels of gray (4 bits digital or 2 bits dithering).

RGB TTL Signal -

Field Mode: 640×200 (Noninterlaced).
Frame Mode: 640×400 (Interlaced).
Parallel Data - 640 Dot 80 Column; ASCII 96
Character Built-in; Graphic Mode Application; Printing Speed $160 \mathrm{Ch} / \mathrm{s}$.

POWER REQUIREMENTS
Line Voltage - 120 V ac $\pm 10 \%$ @ $50 / 60 \mathrm{~Hz}$.
Power Consumption-110 W.
For A1-A5 Versions
Line Voltage -220/240 V ac $\pm 10 \%$ @ 50 Hz .
Power Consumption-120 W.

C1002 Video camera, HC02 video copier documenting a 2467B oscilloscope's display using a DX02 power supply.

PRINT SPECIFICATIONS
Paper - Super grade thermal type (black and white).

Contents

Selection Guide299
C-9 Series 302
Portables 303
Camera.305

FILM-BASED CAMERAS

A camera can be a key part of your measurement system. It allows you to capture single events and to document and communicate your results with clarity and credibility.

MOUNTING ADAPTERS

The camera and adapter selection guide indicates the recommended camera and appropriate adapters required for most Tektronix instruments. For non-Tek instruments contact your Tek sales representative.

GRATICULE LIGHTING

Most scopes have graticule illumination. For those that do not, an image of the graticule may be obtained by using the flash in the C-9 Camera, or by using the storage scope's background illumination (flood guns)

WSEN (Writing Speed Enhancer) Diffuser with Control Box.

LENSES

Tektronix camera lenses differ mainly in speed (light-gathering ability), field of view, and magnification.

Speed

The f-number of a lens inversely signifies its aperture area and light-gathering ability. For example: the aperture area of an $\mathrm{f} / 1.4$ lens is four times that of an $\mathrm{f} / 2.8$ lens of the same magnification and gathers four times the light. The relative light-gathering ability of all lenses used in Tektronix cameras is referenced to the $\mathrm{f} / 1.9,0.85$-magnification lens which is arbitrarily rated at 1.0 .

Field of View

The field of view signifies how large a CRT display the camera can fully record. It is determined by the combined effects of the magnification and angular field of view of the lens, any field-limiting apertures in the camera adapter, camera body, film holder, and the image area of the film.

Magnification

The rated magnification of a lens signifies its image-to-object ratio. For example, if a lens has a magnification of 0.85 , then for every square centimeter on the CRT face the camera would record 0.85 square centimeters of image on the film.
For maximum resolution, the lens should produce the largest complete image possible within the image area of the film.

FILMS

Polaroid films are the most convenient to use. They offer the advantages of development in seconds to a finished dry print with wide spectral response, good resolution, and high sensitivity. ASA ratings do not necessarily give a true indication of how a film will respond in CRT recording due to the narrow spectral output range of most phosphors and different spectral sensitivities of various film types. Wet process, roll, or cut films can be used if the proper back is selected. (See the respective camera for optional backs.)

Selected Polaroid films are available through Tek. Technical assistance with Polaroid film and back questions or problems is available directly from the Polaroid Corporation. Call 1-800-343-5000 toll free within the U.S.

PHOTOGRAPHIC WRITING SPEED

Photographic writing speed signifies the ability of a particular oscilloscope/camera system to provide a useful photographic record of a fast single-sweep trace. It is stated as an oscilloscope performance characteristic and is expressed in $\mathrm{cm} / \mathrm{\mu s}$ or $\mathrm{cm} / \mathrm{ns}$. It is designed to answer the question, "What is the speed of the fastest singlesweep trace the system can record?" All statements of writing speed must specify the measurement conditions, including the CRT phosphor and film used, and the definition of a readable trace image.

For information on photographing high speed waveforms, request application note 42-W-5335-1.

Increasing Writing Speed

Film fogging is a technique for increasing the maximum sensitivity of photographic film by giving it a short exposure of dim, diffused light. The optional Tektronix Writing Speed Enhancer (WSEN) is designed to fill this need.

The WSEN is powered by two 9-V batteries (not included), which are inside the control box.

Automatic, simultaneous fogging is easily achieved by triggering the enhancer with the oscilloscope-sweep + gate.

Polaroid Film	Relative Film Writing Speed		
Wole ASA Equivalent Speed Type	Unfogged	Fogged	
3,000	667,107,	1^{\wedge}	$3^{\star 1}$
	084		
20,000	612	>2	>3.5

[^39]
RECOMMENDED CAMERAS AND FILMS

CAMERA SELECTION GUIDE

Camera	C-53P	C-30BP	C-9
Features	General purpose for CRT's up to $8 \times 10 \mathrm{~cm}$; Adjustable film and shutter speed; Built-in view port; Remote shutter actuation; Interchangeable film backs; Single-sweep mode.	Continuously variable magnification; Dual swingaway hinge for viewing the CRT; Easy operation; Interchangeable film backs; Compact size; OEM pricing available.	Low price. Easily interchangeable hoods. Easy to use, fixed focus. Optional motorized autofilm back.
Lens Aperture	f/1.9 to f/16	f/1.9 to f/16	fixed at f/16
Magnification	0.85	Variable: 0.7 to 1.5 (0.8 with Opt. 01)	. 55 or . 73
Relative Light Gathering	1.0	1.0 (0.9 with Opt. 01)	. 035
Resolving Power: at center: (lines/mm)	30 or better	at 1:1-25 or better	6 or better
at corners: (lines/mm)	15 or better	10 or̀ better	3 or better
Shutter Type	Electrical, $1 / 60$ to 4 s (bulb, time, single sweep), remote shutter actuation, x-sync, scope, "+ gate" input	Mechanical, $1 / 125$ to 1 s (bulb and time) x-sync	
Film Backs	Polaroid pack standard	Polaroid pack std. with "P" models Graflok back available (016-0487-00)	
Page	304	303	302
Price Base	\$2,200	\$1,690	${ }^{\prime}$ Contact your local sales office.

COMMONLY USED POLAROID FILMS

$\stackrel{\stackrel{\otimes}{2}}{\stackrel{\text { E }}{\text { E }}}$			풍			CRT Recording Uses						
							흔	음응 以 以			$\begin{aligned} & \text { 흥 } \\ & \text { 흥음 } \end{aligned}$	
$31 / 4 \times 41 / 4$-in. Pack Films - Actual image area $7.3 \times 9.5 \mathrm{~cm}$ ($27 / 8 \times 33 / 4$-in.), 8 prints per pack												
611*1	200	45	PP	20	Low Contrast, Wide Gray Scale				\checkmark	\checkmark		-
$612^{* 5}$	20,000	30	PP	20 to 25	High Contrast			\checkmark				
			N	160 to 180	Medium Contrast, Wide Gray Scale	\bullet	**		**4	\checkmark		$\sqrt{* 4}^{*}$
665*4	75	30	PP	14 to 20								
$667^{* 1 * 5}$	3000	30	PP	11 to 14	Medium Contrast, Coaterless		\checkmark	-	-			\checkmark
669*5	80	60	CP	11 to 14	Balanced for Color-Electronic Flash				-		\checkmark	
691	80	4 min	CT		Includes Mounts				-	-	\checkmark	
AutoFilm (For C-7 only) - Actual image area $10 \times 7.5 \mathrm{~cm}(4 \times 3 \mathrm{in}$.), 10 prints per pack												
$331 * 1 * 3 * 5$	400	60	PP	20	Med. Contrast, Extended Gray Scale		-		\checkmark	\checkmark		\checkmark
$337^{* 1 * 5}$	3200	60	PP	20 to 25	Medium Contrast		\checkmark					
$339^{* 1 * 2}$	640	>60	$\mathrm{CP}^{*}{ }^{2}$	7 to 9	Medium Contrast, High Speed Color				**2		$\checkmark^{* 2}$	
\checkmark Preferred film for application - Acceptable performance *) No coating required *2 Requires electronic scan reversal to yield a correct reading image.					*3 Similar to Type 611 *4 Allows prints to be made from negative; good for documentation or publications. *5 Available from Tektronix. See Page 305			$\begin{aligned} & P P=\text { Positive Print } \\ & N=\text { Negative } \\ & C P=\text { Color Positive Print } \\ & C T=\text { Color Transparency } \\ & N T=\text { Negative Transparency } \end{aligned}$				

RECOMMENDED CAMERAS AND ADAPTERS

CAMERA AND MOUNTING-ADAPTER SELECTION GUIDE
Where two or more cameras are recommended, compare features and specifications to optimize for your application. Tek cameras fit many non-Tek CRT-based products. Contact your Tek Sales Representative for more information.

Oscilloscope or Display Device	Recommended Cameras	Mounting Adapter		
		C-9	C-53	C-30BP
11000 Series				
11301(A)	C-9	016-0357-02		
$11302(A)^{* 7}$	C-53 0pt. 11		016-0249-06	
$\begin{aligned} & \text { 11401, 11402(A) } \\ & \text { 11402(A) DSA } 601,602 \end{aligned}$	C-9	016-1099-00		
7000 Series				
$\begin{aligned} & 8 \times 10 \mathrm{~cm} \text { Display, i.e., } 7104^{* 7}, 7503, \text { R7103*7, } \\ & 7504,7514,7613 \mathrm{~N}, 7623 / \mathrm{B}, 7633,7704(\mathrm{~A}) \text {, } \\ & 7834,7844^{* 7}, 785,7934, \text { R7903*7, } \\ & 7904^{* 7}, 7094(\mathrm{~A})^{* 7}, \text { T9222R } \end{aligned}$	$\begin{aligned} & \hline \text { C-53 } \\ & \text { C-9 } \\ & \text { C-30BP, Opt. } 01 \cdot 10 \cdot 13 \end{aligned}$	016-0357-02	016-0249-06	016-0248-01
$\begin{aligned} & \text { Large Screen Display,*' i.e., } \\ & 7403,7603,7603 \mathrm{~N} \end{aligned}$	C-9	016-0357-02		
5000 Series				
$\begin{aligned} & 5100 \text { Series } \\ & \text { Nonstorage, }{ }^{* 1 * 3} \text { i.e., } \\ & 5110,5112, \text { D10, D12, 577/D1, } 5116 \\ & \hline \end{aligned}$	C-9	016-0357-02		
$\begin{aligned} & 5100 \text { Series } \\ & \text { Storage, }{ }^{12} \text { i.e., } 5111,511 \mathrm{~A}, \\ & 5113,5115, \mathrm{D} 11, \mathrm{D} 13, \mathrm{D} 5,577 / \mathrm{D} 2 \\ & \hline \end{aligned}$	C-9	016-0357-02		
$\begin{aligned} & 5400 \text { Series } \\ & \text { Nonstorage, }{ }^{* 1 * 2} \text { i.e., } \\ & 5403 / D 40,5440,5444, \text { D40 } \\ & \hline \end{aligned}$	C-9	016-0357-02		
$\begin{aligned} & 5400 \text { Series } \\ & \text { Storage, }{ }^{2 * 4} \text { i.e., } \\ & \text { 5403/D41, } 5441 \text {, D41 } \end{aligned}$	$\begin{aligned} & \text { C-53 } \\ & \text { C-9 } \\ & \text { C-30BP, Opt. } 01 \cdot 10 \end{aligned}$	016-0357-02	016-0249-06	
Portables				
$\begin{aligned} & \text { Older with } 0.8 \mathrm{~cm} \text {. Graticule, }{ }^{* 5} \text { i.e., } \\ & 422,453,454,485,491 \\ & \hline \end{aligned}$	C-30BP			016-0306-01
Newer with 1 cm Graticule, ${ }^{* 5}$ i.e., 2235/A, 2240A Series, 2400 Series, 455, 464, 465, 465B, $465 \mathrm{M}, 466,468, \mathrm{R} 468,475,475 \mathrm{~A}$, $432,434,442,2467 \mathrm{~B}^{*}$	C-9 C-30BP, Opt. 01	016-0359-02		016-0269-03
1 cm Nonilluminated Graticule*5 2200 Series	C-9	016-0359-02		
$1 / 4$-inch Graticule, ${ }^{* * 5 *+12}$ i.e., 305 , $314,326,355,336 \mathrm{~A}, 1501,1502$.	C-30BP			016-0327-01
$\begin{aligned} & \text { TM 500, }{ }^{* 5} \text { i.e., SC 502, } \\ & \text { SC 503, SC } 504^{* 4} \\ & \hline \end{aligned}$	C-30BP			016-0327-01
Nonilluminated Graticule*5*8 $2335,2336,2336$ YA, 2337	C-9	016-0359-02		
Display Monitors				
$\begin{aligned} & 8 \times 10 \mathrm{~cm},{ }^{* 3} \text { i.e., } \\ & 601,602,605,606,606 \mathrm{~B}, 607 \end{aligned}$	$\begin{aligned} & \mathrm{C}-9 \\ & \mathrm{C}-30 \mathrm{BP}, \text { Opt. } 01^{110} \end{aligned}$	016-0357-01		016-0248--01
Large screen $10 \times 12 \mathrm{~cm},{ }^{* 1}$ i.e., $603,694,608,620,624,634$ 603, 694, 608, 620, 624, 634	C-9	016-0357-01		

RECOMMENDED CAMERAS AND ADAPTERS

CAMERA AND MOUNTING-ADAPTER SELECTION GUIDE

Oscilloscope or Display Device	Recommended Cameras	Mounting Adapter		
		C-9	C-53	C-30BP
Older 5 inch Round				
$\begin{aligned} & \text { 502, 503, 504, 515, 516, } 519 \\ & 530 / 540 / 550 / 580 \text { Series, } 575 \end{aligned}$	$\mathrm{C}-53^{* 2 * 10}$		016-0225-04	
Older 5 inch Rectangular				
560 Series, ${ }^{* 2}$ i.e. 561, 564, 567, 568	C-53*2*10		016-0224-01	
Television Products				
380, 381	C-30BP, Opt. 01^{110}			016-0327-01
528A, 1420, 1421, 1422, 1424*1	C-9	016-0357-02		
1705, 1701B, 1711B, 1720/21, 1730/31, 1740, 1741, 1742, 1750, WFM300	C-30BP, Opt. 01; C-9	016-0359-02		016-0269-03*15
Spectrum Analyzers				
2710	C-30BP, Opt. 01			016-0269-03
491	C-30BP			016-0306-01
490 and 2750 Series	C-30BP. Opt. 01; C-9			016-0248-08
Other Products				
370/A, 371 Curve Tracers	C-9	016-0357-02		
$\begin{aligned} & \text { OF150, OF151, OF152, } \\ & \text { OF235, OF192 Optical TDRs } \end{aligned}$	C-9	016-0357-02		
1240 Optical TDR ${ }^{\text {8\% }} 14$				
T900 Series Oscilloscope ${ }^{* 6}$ excluding T922R (see 7000 Series)				

*) Only cameras with <0.7 magnification can record the entire screen area of a $10 \times 12 \mathrm{~cm}$ display.
*2 The scopes do not have camera power. The C-51 and C-53 are used only if powered with 016-0270-02 battery pack.
*3 The scopes require modification for graticule
illumination.
*4 Though these scopes do not have illuminated graticules, the graticule may be photographed using
*storage flood guns on storage models.
*5 Due to physical configuration, the C-50 Family cannot be mounted.

* 6 The T-900 hood must be ordered separately as 016-0358-01.
*7 The Digitizing Camera System (DCSO1) can be used with these scopes. See Pages 159
*s These scopes have no CRT bezel; therefore, a camera cannot be mounted.
*9 Use with 016-0288-01 adapter.
${ }^{* 10}$ Adapter not included with camera. Order adapter separately.
*! Use on scopes with graticule illumination or bistable storage.
*12 Scopes do not have graticule illumination.
*13 C-30 Series may cut off the first and last small
graticule "tick" marks on some scopes
*14 Must use f/22 or f/32 to get enough depth of field for good focus.
${ }^{* 15}$ C-30 Series will not fit models 1740, 1741, 1742, 1750, and WFM300.

NR Not recommended.

TYPICAL APPLICATIONS

- Oscilloscopes
- Small Video Displays
- Medical Imaging/Ultrasound
- Class 100 Clean Rooms

BENEFITS

- Lightweight, Easy to Use
- Focusing Not Required
- Fits Most Tek and Non-Tek Scopes
- Low Priced, Yet Versatile

FEATURES

- Uses Polaroid 3 1/4 x 4 1/4

Pack Films

- Graticule Flash Available
- Autoback Available
- Auto Power-On

ORDERING INFORMATION

C9 Camera

Includes: adapter hood
(016-0357-02); adapter hood
(016-0359-02); Instruction
Manual (070-8105-00).
OPTIONS
Opt. 01-016-0642-00 Flash Unit.
Opt. 02-122-1014-01 Auto-
Film Motorized Film Back
Opt. 03-016-1099-00 11000
Series Hood
${ }^{-1}$ Contact your local sales office.

C-9 Low Cost Camera

VERSATILE PERFORMANCE AT LOW PRICE

The C-9 is a low priced yet remarkably versatile CRT film camera. It uses Polaroid $31 / 4$ in. $\times 41 / 4$ in. Pack Film; i.e. 667, 669, etc. See page 299 for compatible films that are available from Tektronix.

CAMERA-TO-PRODUCT COMPATIBILITY

The C-9 can be used with most Tek and non-Tek scopes. It covers most widely used CRT displays; $8 \times 10 \mathrm{~cm}$ and $9.8 \times 12.2 \mathrm{~cm}$. The C-9 comes standard with adapter hoods which fit most Tek 7000 series and portable scopes. An optional 11000 series hood is available. Additional hoods can be ordered separately. See the adapter selection guide on page 301.

GRATICULE FLASH

For scopes with non-illuminated graticule, an optional flash is available. The variable intensity xenon flash makes the CRT phosphor glow, which evenly backlights the graticule. A door on the flash unit provides direct viewing of the CRT. Non-flash models have a large viewing door in place of the flash.

OPTIONAL MOTORIZED FILM BACK

A motorized film back is available which incorporates Polaroid's Autofilm ${ }^{\mathrm{TM}}$ system. Atter each exposure the film automatically ejects and self-develops to a clean dry print. No peeling, waiting, or coating is necessary. There is no need to handle the prints while they are developing. This is especially important in medical and clean-room applications where flim handling could cause chemical contamination. Polaroid ${ }^{\text {TM }}$ type 3373,200 ASA Autofilm ${ }^{\text {TM }}$ is now available when a fast film is required.

CHARACTERISTICS

Aperature - Fixed at $\mathrm{f} / 16$
Lens - Fixed focus three element
Magnification - 55 or .73
Relative Light Gathering Ability - . 035
Shutter - Electronic; . 1-5 sec.
Field of View - 29.3° (Std. Hood); 26.1° (11k Hood)
Power - Four AA alkaline batteries (not included)
Adapter Hoods -

	$\mathbf{0 1 6 - 0 3 5 7 - 0 0}$		$\mathbf{0 1 6 - 0 3 5 9 - 0 2}$		$\mathbf{0 1 6 - 1 0 9 9 - 0 0}$	
Dimensions	$\mathbf{c m}$	in	$\mathbf{c m}$	in	$\mathbf{c m}$	in
Height: Inside	13	5.13	10.5	4.13	12.3	4.84
Outside	13.7	5.38	11.2	4.4	12.8	5.04
Width: Inside	14.2	5.6	12.0	4.7	15.8	6.2
Outside	14.9	5.85	12.7	4.99	16.3	6.4

C-30BP Option 01 with corrector lens off.

C-30BP FILM BASED CAMERA

The C-30BP camera is an easy to use, compact, high resolution CRT documentation product. It provides versatility with large image size.

The C-30BP camera features dual swing-away hinges which allow it to be swung out of the way, either to the left or right, for direct viewing of the CRT. By using supplied, or optional adapters, the camera will mount on a variety of scopes, spectrum analyzers, display monitors and other CRT-based products. See pages 300 and 301.

The C-30BP comes standard with $31 / 4 \times 41 / 4$ in. pack film back. An optional Graflok back can be purchased which will allow the use of various film holders such as 4×5, and wet developed roll films.

The C-30BP is primarily for use on the older 400 Series portables that have $0.8 \mathrm{~cm} /$ div CRTs.

It is the only Tektronix oscilloscope camera that features continuously variable magnification (from 0.7 to 1.5) giving you greater photographic flexibility. The standard C -30BP is recommended for the $453,454,485$, and 491.

The C-30BP Option 01 provides an expanded field of view by adding a corrector lens and different mounting adapter. This allows photographic coverage of an $8 \times 10 \mathrm{~cm}$ CRT screen without vignetting. Option 01 is recommended for the 2400 Series, $455,464,465,465 B$, $466,468,475$, and 475A oscilloscopes.

Option 01 is optimized for use at 0.8 mag only.

CHARACTERISTICS

Aperture - Variable from f/1.9 to f/16.
Lens Speed - $\mathrm{f} / 1.9$.
Magnification - Variable from 0.7 to 1.5 (0.8
magnification on Option 01 with $\mathrm{C}-30 \mathrm{BP}$ set to 1.0 magnification).
Resolving Power - (At 1:1 magnification) At Center: At least 25 lines $/ \mathrm{mm}$. At Corners: At least 10 lines $/ \mathrm{mm}$.
Relative Light-Gathering Ability -1.0 (0.9 on Option 01).
Shutter - Mechanical: $1 / 125 \mathrm{~s}$ to 1 s , bulb and time.
Synchronization Output - X-sync contact closure.
Field of View -Standard: $7 \mathrm{~cm} \times 9.0 \mathrm{~cm}$. Option 01: $8.0 \mathrm{~cm} \times 10.0 \mathrm{~cm}$.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	191	7.5
Height	130	5.1
Depth	254	10.4
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	2.2	4.8
Shipping	4.1	9.0

BENEFITS

- Adaptable to Many Instruments
- High Resolution Lens
- OEM Pricing on C-30BP

ORDERING INFORMATION

("P" denotes that the camera has a 3×4 in. pack film back. All models include Polaroid pack film back.)
C-30BP Camera
Includes: Polaroid pack film back with split image focus plate (122-0752-02); Mounting adapter (016-0306-01); Instruction Manual (070-2825-00).
Opt. 01 -Expanded Field of View
Includes: same as $\mathrm{C}-30 \mathrm{BP}$ except with 016-0269-03 mounting adapter and corrector lens (352-0341-01)

See page 305 for C-30BP accessories and for Polaroid films.

C-53

- Medium Speed
- General-Purpose Camera With 0.85 Mag
- Remotely Controllable Shutter
- Foot Switch Available
- Writing Speed Enhancer Available

ORDERING INFORMATION
C-53P Camera $\quad \$ 2,560$
Includes: Same as C-51P.
Opt. 11 - Corrector lens for
11302(A).

C-53P (Shown with Option 11 corrector lens off.)

C-53 HIGH PERFORMANCE CAMERA

The C-53, with 0.85 mag lens, provides the largest practical image of an $8 \times 10 \mathrm{~cm}$ CRT display on Polaroid $31 / 4 \times 41 / 4$ inch pack films. It's f/1.9 lens and 0.87 magnification offer somewhat slower writing speed. The electric shutter offers speeds ranging from $1 / 60$ to 4 seconds and can be operated manually or remotely in bulb time, or single-sweep modes. A screw-on corrector lens is available for 11302(A) compatibility.

CHARACTERISTICS

Aperture - Variable from $f / 1.9$ to $f / 16$.
Magnification-0.85.
Resolving Power - Center: At least 30 lines/mm.
Corners: At least 15 lines/mm.
Field of View $-8 \mathrm{~cm} \times 10 \mathrm{~cm}$ (with pack film).
Relative Light-Gathering Ability - 1.0.
Shutter - Electric: $1 / 60$ to 4 s , bulb, time, and singlesweep modes, manual or remote control. Scope's "+gate" is used for shutter actuation.
Power Requirement -+15 V from 7000 or 11300 Series ocilloscopes, or an optional battery pack for non7000 or 11300 Series instruments (see page 305).
Synchronization Output Jack -X-sync switch closure output.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	191	7.5
Height	292	11.5
Depth	273	10.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	2.4	7.5
Shipping	5.4	12.0

FILM BASED CAMERA ACCESSORIES

INSTRUMENT CARTS/WORKSTATIONS

Contents

K212 Portable Instrument
Cart307

K217 Rack Instrument Cart 307
K217S Rack Instrument Cart 307
NEW K220 Rack
Instrument Cart 307
K213 Lab Instrument Cart 307
K636 Mobile Workstation 308
K318 PC Cart308

206 Utility Cart 308
K501 Tek-Tilt ${ }^{\text {TM }}$ Pedestal 309
K332WH PC/Instrument
Cart
K335BN PC/Instrument
Cart309

K336BN Midsize Instrument Cart

Tek can free up your valuable work space, make sharing and moving equipment easy, and get you closer to the device under test. Our Scopemobiles ${ }^{\oplus}$ and
workstations are designed with instrument integration in mind and are built with the highest standards in materials and pride of ownership in the industry today.

Instrument Compatability

Cart Selection Guide

Features Load Capacity	K212		K213		K217		K217S		K220		K318/206		K332WH		K335BN		K336BN		K501		K636	
	kg	lb	kg	lb	kg	lb	kg	1 b	kg	lb												
Top Tray	36	80	34	75	45	100	45	100	45	100	45	100	68	150					23	50	104	230
Base	45	100	11	25		100	45	100		100		100					9	20		-		
Middle Tray	18	40	18	40				40				-								$\bar{\square}$		
Top Shelf													32						18			
Middle Shelf Total	99	220	77	170	95	200	90	200	135	300	90	200	$\begin{aligned} & 36 \\ & 68 \end{aligned}$	$\begin{aligned} & 80 \\ & 150 \end{aligned}$	$\begin{array}{r} 36 \\ 68 \\ \hline \end{array}$	$\begin{gathered} 80 \\ 150 \end{gathered}$	68	150		$\begin{aligned} & 40 \\ & 50 \end{aligned}$	180	400
Net Weight Shipping Weight	$\begin{gathered} 9 \\ \hline 9 \\ 13 \end{gathered}$	20	$\begin{aligned} & 26 \\ & 34 \end{aligned}$	$\begin{aligned} & 57 \\ & 75 \end{aligned}$		$\begin{aligned} & 43 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 \\ & 27 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$		$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 14 \\ & 17 \end{aligned}$	$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 37 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 55 \\ & 58 \end{aligned}$	$\begin{aligned} & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 77 \\ & 80 \end{aligned}$	$\begin{gathered} .8 \\ 1.0 \end{gathered}$			$\begin{aligned} & 145 \\ & 160 \end{aligned}$
Page		307							30						30							8
Prices		385		00							\$455/	285			\$3							075

K212 Option 22 with HC100 and 2440

K217S shown. K217 is similar in appearance, but does not have the middle tray.

K220

The K212 base is made of thermoset polyester; the column and trays, high-strength aluminum. The base and trays are Tek Blue; column and yoke, silver grey.

These sturdy, portable carts are ideal for manufacturing, research and design environments. The tiltable middle tray on the K217S is rack width to accommodate additional instruments.

This rugged cart is ideal for R\&D and manufacturing environments. All trays accommodate rack-width instruments. Rotating friction of tiltable top shelf is user adjustable.

K318

- Designed for Computers, Peripherals, Test and Measurement Equipment and Industrial Uses
- Plastic Laminate on Both Surfaces
- Four Outlet Power Strip
- Locking Wheels
- 200 Ib Load Capacity
- Keyboard/Accessories Drawer
- Strong/Stable Slide-out Shelf

206

- Low Profile Cart (25 in Height Std.; 30 in Height Optional)
- Plastic Laminate on Both Surfaces
- Locking Wheels
- Stable/Sturdy Platform

K636

- Rugged Mobile Workstation for Rackmount Applications
- Extremely Soft Ride with Balloon Cushion-Back Wheels
- Standard Top Shelf
- Pop-out Side and Back Panels
- Surge Protector
- 3 1/2 Inch Recessed Front Vertical Supports
- Optional Side Shelf Pops On and Off Either Side

ORDERING INFORMATION	
K318 P.C. Cart	\$455
Opt. 05 - Delete power cord	-\$25
206 Utility Cart	\$285
Opt. 05-30 in height	NC
Probe holders included in the K213, K318, and 206.	
K636 Mobile Work Station Probe holder and securing strap included.	\$1,075
Opt. 05 - Flush-Mount Adaptor Kit	+\$70
Opt. 06 - Delete Power Strip	NC
Opt. 10-Side Shelf	+\$130
Opt. 11-23 1/2 in high smoked plastic door*2	+\$180
Opt. 12-26 in high smoked	
plastic door*2	+\$190
Opt. 13-3 1/2 in deep drawer* ${ }^{*}$	+\$215
Opt. 14-7 in Deep Drawer*1	+\$225
Opt. 15-Keyboard Platform*1	+\$135
Opt. 19-Blower Cut-Out	+\$90
Back Panel ($13 / 4$ in high cover plate)	
Order 333-1351-07	\$25
($31 / 2$ in high cover plate)	
Order 333-0997-06	\$35
($51 / 4$ in high cover plate)	
Order 333-0999-06	\$40
*i Includes drawer slides and hardware.	
*2 Door includes popout hinges, attractive handle, and lock.	

This table height platform includes keyboard drawer and pull-out shelf. The K318 is a handsome, sturdy addition to your work environment.

The quality and workmanship is evident in this general purpose utility cart. If you need a cart that lasts, the 206 is the one for you.

K318

Model 206

This handsome rackmount workstation provides up to 26 in of rack space, $241 / 2$ in with keyboard platform. *1 The optional side shelf attaches to the extrusion, is easily removable, and can be mounted on either side. (The side shelf is rated at 40 lbs . and measures 16 in $\times 221 / 2 \mathrm{in}$.) The K636 cart breathes from the sides and back eliminating any vacuum-cleaner-effect.
*1 Includes drawer slides and hardware.

K332WH
Legs and base are 16 gauge, seam-welded, cold rolled steel with baked on powder coated black finish. The sturdy white shelf is made of 1 in . laminated with an attractive molding edge.

K336BN

The K 336 BN is bone in color with putty grey legs and base. A 1 in. laminated top and molding edge compliment the high level of quality and value.

K501

K332WH

- A Low-Cost, No-Frills, Mobile, Compact Workstation
- Large, Sturdy Work Shelf
- Optional Swing-out Shelf (18 in x 14 in) with 4 Inch Deep Paper Holder Able to Attach at Any Height
- Black, Hard-Plastic Castors
- 5-Year Warranty

K335BN/K336BN

- Incredibly Strong and Attractive
- Adjustable Height and Configuration
- Four 2-3/8 Inch Castors (2 Locking)
- Cable Management Clips; Tools for Assembly Included
- Optional Slide-out Shelf, Wire Base, and 5 Inch Extension Tubes Add Versatility and Functionality.
- 5-Year Warranty

K501

- Provides 30° Tilt, and 360° Swivel to Portable Instruments
- Tension Adjustment
- Enhances Visual and Postural Viewing Angles

ORDERING INFORMATION

K332WH P.C./Instrument Cart
Opt. 10-Swing Out Shelf
K335BN Compact P.C./
Instrument Cart
Opt. 10-Slide Out Shelf
Opt. 11 -Wire Base
Opt. 14 - (3) $5^{\prime \prime}$ Extension Tubes
K336BN Midsize P.C./
Instrument Cart
Opt. 12-Keyboard Holder
Opt. 14 - (3) $5^{\prime \prime}$ Extension Tubes
To order these options separately order:
Swing out shelf 118-8494-00
Wire base ${ }^{* 1}$ 118-8493-00
5" Extention tubes ${ }^{* 2}$ 118-8492-00
Keyboard holder*2 118-8496-00
Slide out shelf ${ }^{* 3}$ 118-8495-00
K501-Tek-Tilt ${ }^{T M}$ Pedestal.
*i K335BN only
*2 K335BN or K336BN only
*3 K335BN and K336BN only (Do not use with keyboard holder.)
Tools included for assembly of K332 $w H$, K335BN, K336BN.

TEK SCOPES TO TEK PROBES CROSS REFERENCE

RECOMMENDED PROBES

Highlighted probes are those normally shipped with the scope. For non-highlighted probes, the scope bandwidth may be limited by the probe shown. Use scope's bandwidth and probe specification chart to determine overall probe/scope bandwidth.

	$\begin{gathered} \hline \text { PASSIVE } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PASSIIVE } \\ 10 \mathrm{X} \\ \hline \end{gathered}$	$\begin{aligned} & \text { PASSIVE } \\ & \text { 1X/10XX } \end{aligned}$	Low-2	$\begin{gathered} \hline \text { HIGH VOLT. } \\ 100 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { HIGH VOLT. } \\ \text { 1000X } \end{gathered}$	Active
11000 SERIES							
11201/A	P6101A	P6134C	P6063B		P6009		P6204
11 A32	P6101A	P6134C	P6063B		P6009		P6204
11A33		P6135A					
11A34	P6101A	P6134C	P6063B		P6009		P6204
11A52				P6156*2			P6204
11A71				P6156*2			P6204
11 A72				P6156*2			P6204
SD20/22/24/26				P6150			
7000 SERIES							
7A13		P6135A					
7A15A	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
7A16A	P6101A	P6106A	P6063B		P6009	P6015	P6202A*
7A18/A	P6101A	P6105A	P6062B		P6009		P6202A*
7A19				P6156 ${ }^{2}$			P6201* ${ }^{\text {+ }}$
7A22		P6135A					
7A24				P6156*2			P6201* ${ }^{\text {P }}$
7A26	P6101A	P6106A	P6063B		P6009		P6202A*1
7A29/P				P6156 ${ }^{\text {² }}$			P6201* ${ }^{\text {P }}$
7A42	P6101A	P6131	P6063B	P6156*2	P6009		P6202A*1
7D15	P6101A	P6106A	P6063B				
7D20	P6101A	P6105A	P6053C				
5000 SERIES							
5A14N	P6101A	P6006/P6102A	P6062B		P6007	P6015	
5A15N	P6101A	P6006/P6012A	P6062B		P6007		
5A18IN	P6101A	P6006/P6102A	P6062B		P6007		
5A21N		P6135A					
5A22N		P6135A					
5A26		P6135A					
5A38N	P6101A	P6105A	P6062B		P6009		
5A45	P6101A	P6105A	P6062B		P6009	P6015	
5A48	P6101A	P6105A	P6062B		P6009	P6015	
5D10	P6101A	P6105A	P6062B		P6007	P6015	
2400 SERIES							
2430/A/M	P6101A	P6133 Opt. 25	P6063B	P6156*2	P6009	P6015	P6202A*
2431L	P6101A	P6136 Opt. 25	P6063B	P6156*2	P6009	P6015	P6201A ${ }^{\text {+ }}$
2432/A/M	P6101A	P6137	P6063B	P6156 ${ }^{\text {2 }}$	P6009	P6015	P6201A*
2439	P6101A	P6136 Opt. 25	P6063B	P6156*2	P6009	P6015	P6202A* ${ }^{\text {P }}$
2440/M	P6101A	P6137	P6063B	P6156*2	P6009	P6015	P6201A ${ }^{\text {P }}$
2445	P6101A	P6131	P6063B	P6156.2	P6009	P6015	P6202A* ${ }^{\text {a }}$
2445A	P6101A	P6133 Opt. 25	P6063B	P6156 ${ }^{\text {2 }}$	P6009	P6015	P6202A ${ }^{\text {+ }}$
2445B	P6101A	P6133 Opt. 25/P6137*3	P6063B	P6156*2	P6009	P6015	P6202A* ${ }^{\text {P }}$
2455A/B	P6101A	P6136 Opt. 25	P6063B	P6156*2	P6009	P6015	P6202A* ${ }^{\text {+ }}$
2465	P6101A	P6131	P6063B	P6156*2	P6009	P6015	P6201* ${ }^{\text {P }}$
2465A	P6101A	P6136 Opt. 25	P6063B	P6156*2	P6009	P6015	P6201*
2465B	P6101A	P6137	P6063B	P6156*2	P6009	P6015	P6201* ${ }^{\text {P }}$
2467	P6101A	P6136 Opt. 25	P6063B	P6156*2	P6009	P6015	P6201* ${ }^{\text {P }}$
2467B	P6101A	P6137	P6063B	P6156*2	P6009	P6015	P6201* ${ }^{\text {a }}$
2300 SERIES							
2335	P6101A	P6108A	P6119		P6009 Opt. 14	P6015	
2336	P6101A	P6108A	P6119		P6009 Opt. 14	P6015	
2336YA	P6101A	P6108A	P6119		P6009 Opt. 14	P6015	
2337	P6101A	P6108A	P6119		P6009 Opt. 14	P6015	

[^40]
TEK SCOPES TO TEK PROBES CROSS REFERENCE

RECOMMENDED PROBES

Highlighted probes are those normally shipped with the scope. For non-highlighted probes, the scope bandwidth may be limited by the probe shown. Use scope's bandwidth and probe specification chart to determine overall probe/scope bandwidth.

	$\begin{gathered} \hline \text { PASSIVE } \\ 1 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PASSIVE } \\ 10 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PASSIVE } \\ \text { 1X/10X } \end{gathered}$	Low-Z	$\begin{gathered} \hline \text { HIGH VOLT. } \\ \text { 100X } \end{gathered}$	$\begin{gathered} \hline \text { HIGH VOLT. } \\ \text { 1000X } \\ \hline \end{gathered}$	ACTIVE
2200 SERIES							
2201	P6101A	P6103	P6119		P6007	P6015	
2205	P6101A	P6103	P6119		P6007	P6015	
2210	P6101A	P6103	P6119		P6009 Opt. 14	P6015	
2211	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2213	P6101A	P6122	P6119		P6009 Opt. 14	P6015	
2213A	P6101A	P6122	P6119		P6009 Opt. 14	P6015	
2214	P6101A	P6103	P6119		P6007	P6015	
2215	P6101A	P6122	P6119		P6009 Opt. 14	P6015	
2215A	P6101A	P6122	P6119		P6009 Opt. 14	P6015	
2220	P6101A	P6109 Opt. 01	P6119		P6009 Opt. 14	P6015	
2221/A	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2224	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2225	P6101A	P6103	P6119		P6009 Opt. 14	P6015	
2230	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2232	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2235/A	P6101A	P6109 Opt. 01	P6119		P6009 Opt. 14	P6015	
2235 L	P6101A	P6122	P6119		P6009	P6015	
2236/A	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
$2245 / \mathrm{A}$	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2246/A	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
22471 A	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
2252	P6101A	P6109 Opt. 01	P6062B		P6009	P6015	
400 SERIES							
434	P6101A	P6105A	P6062B		P6007	P6015	P6202A*
455	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
464	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
464/M	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
465	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
465B	P6101A	P6105A	P6062B		P6009	P6015	P6202A* ${ }^{\text {a }}$
465/M	P6101A	P6105A	P6062B		P6009	P6015	P6201* ${ }^{1}$
466	P6101A	P6105A	P6062B		P6009	P6015	P6202A* ${ }^{\text {a }}$
468	P6101A	P6105A	P6062B		P6009	P6015	P6202A*
475/A	P6101A	P6106A	P6063B	P6156*2	P6009	P6015	P6201A ${ }^{\text {+ }}$
485	P6101A	P6106A	P6063B	P6156*2	P6009	P6015	P6201* ${ }^{1}$
300 SERIES							
305/314	P6101A	P6149A					
308		P6107A					
309AD	P6101A	P6105A	P6062B		P6009	P6015	
336/A	P6101A	P6148A					
T20X SERIES							
201/202	P6115						
TM500/5000 SERIES							
AM 502		P6135A					
DC 503A	P6101A	P6125					
DC 504A/5004	P6101A	P6125					
DC 509/5009	P6101A	P6125					
DC 510/5010	P6101A	P6125					
DC 505/A	P6101A	P6108A					
DC 508/A	P6101A	P6125					
SC 501/2/3	P6101A	P6006	P6062B		P6007	P6015	
SC 504	P6101A	P6105A	P6062B		P6009	P6015	
Sl5010				P6156*2			P6202A*1

This selection chart provides specifications for Tektronix' line of voltage probes. Refer to pages 322 and 323 for ordering information. More detail for the P6562 SMT Probe is provided on page 316; active probes on page 320; differential probes on page 327; low capacitance probes on page 321; and specialty probes on page 315 . The photograph on page 314 gives representative examples of the size and shape of various tip styles.

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*1 25Ω source
*2 Bandwidth ratings vary when scope input capacitance moves away from the designed nominal value of the probe's compensation range. In most cases this is ≈ 20 pF for the P610XA and P612X or ≈ 15 pF for the P613X and P6562.
${ }^{* 3}$ Trace identify button.
*4 P6131, P6133, P6136, P6137 probes are designed for 2400 series and provide optimum performance to these scopes.
*5 Probe pair, designed for differential inputs. Includes three different probe tips for compensation ranges from 13-49 $p F$.

* Derating

VOLTAGE PROBES SPECIFICATION CHART

This selection chart provides specifications for Tektronix' line of voltage probes. Refer to pages 322 and 323 for ordering information. More detail for the P6562 SMT Probe is provided on page 316; active probes on page 320; differential probes on page 327; low capacitance probes on page 321; and specialty probes on page 315 . The photograph on page 314 gives representative examples of the size and shape of various tip styles.

PROBE SPECIFICATIONS

Type	Attenuation	Length	$\mathrm{R}_{\mathrm{il}}^{\text {Loading }} \mathrm{C}_{\mathrm{in}}$	$\underset{\text { at }-3 \mathrm{~dB}}{\mathrm{BW} \mathrm{MHz}}$	DC + pk AC Maximum	Scope C in pF or <Offset>	Readout/ Identify/Grd Ref <Linear Range>	Tip/Head Style (Page 308)	Page
1X/10X Switchable Passive Probes									
P6062B	10X or	6 ft	$10 \mathrm{M} \Omega \quad 14.0 \mathrm{pF}$	100	500 V	15 to 47	Yes/ $\mathrm{No} / \mathrm{Mes}$	L	323
	1X	6 ft	$1 \mathrm{M} \Omega \quad 105.0 \mathrm{pF}$	7	500 V	N/A	Yes/ $\mathrm{No} / \mathrm{F} \mathrm{Fes}$		
P60628 Opt 03	10x or	9 ft	$10 \mathrm{M} \Omega \quad 17 \mathrm{pF}$	95	500 V	15 to 47	Yes/No/ves	L	323
	1X	9ft	$1 \mathrm{M} \Omega \quad 135 \mathrm{pF}$	4.5	500 V	N/A	Yes/ $/ \mathrm{No} / \mathrm{Nes}$	L	
P6063B	10X or	6 ft	$10 \mathrm{M} \Omega 14.0 \mathrm{pF}$	200	500 V	15 to 24	Yes/No/res	L	323
	1X	6 ft	$1 \mathrm{M} \Omega \quad 105.0 \mathrm{pF}$	6	500 V	N/A	Yes/No/res		
P6119	10X or	2 m	$10 \mathrm{M} \Omega \quad 15.3 \mathrm{pF}$	100	500 V	15 to 35	$\mathrm{No} / \mathrm{No}$ / Nes	1	323
	1X	2 m	$1 \mathrm{M} \Omega \quad 120.0 \mathrm{pF}$	8	350 V	N/A	No/No Nes		
P6119 Opt 3	10X or	3 m	$10 \mathrm{M} \Omega \quad 17.5 \mathrm{pF}$	100	500 V	15 to 35	$\mathrm{No} / \mathrm{No} / \mathrm{Nes}$	I	323
	1X	3 m	$1 \mathrm{M} \Omega \quad 145 \mathrm{pF}$	6.7	350 V	N/A	No/No/Yes	1	

High Voltage Passive Probes (100X/1000X)

P6007 Opt 01	100X	3.5 ft	$10 \mathrm{M} \Omega$	2.0 pF	25	1.5 kV	15 to 55	No/No/No	K	323
P6007	100x	6 ft	$10 \mathrm{M} \Omega$	2.2 pF	20	1.5 kV	15 to 55	$\mathrm{No} / \mathrm{No} / \mathrm{No}$	K	323
P6007 Opt 03	100x	9 ft	$10 \mathrm{M} \Omega$	2.4 pF	15	1.5 kV	15 to 55	No/No/No	K	323
P6007 Opt 04	100X	12 ft	$10 \mathrm{M} \Omega$	2.6 pF	13	1.5 kV	15 to 55	$\mathrm{No} / \mathrm{No} / \mathrm{No}$	K	323
P6009	100X	9 ft	$10 \mathrm{M} \Omega$	2.5 pF	120	1.5 kV	15 to 47	Yes/No/No	K	323
P6009 Opt 14	100x	9 ft	$10 \mathrm{M} \Omega$	2.5 pF	120	1.5 kV	15 to 47	$\mathrm{No} / \mathrm{No} / \mathrm{No}$	K	323
P6015	1000X	10 ft	$100 \mathrm{M} \Omega$	3.0 pF	75	20 kV	12 to 47	No/No/No	M	323

Active Probes (see page 320 for probe styles)

P6201	1x	6 ft	$100 \mathrm{k} \Omega$	3.0 pF	>900	$\pm 100 \mathrm{~V}$	$\langle \pm 5.6 \mathrm{~V}$ >	$\langle \pm 0.6 \mathrm{~V}$ >	not shown	320
	10x	6 ft	$1 \mathrm{M} \Omega$	1.5 pF	>900	$\pm 200 \mathrm{~V}$	$\langle \pm 56 \mathrm{~V}$ >	$\langle \pm 6.0 \mathrm{~V}$ >	not shown	320
	100X	6 ft	$1 \mathrm{M} \Omega$	1.5 pF	>900	$\pm 200 \mathrm{~V}$	$\leq 200 \mathrm{~V}>$	$< \pm 60 \mathrm{~V}\rangle$	not shown	320
P6202A	10x	2 m	$10 \mathrm{M} \Omega$	2.0 pF	>500	$\pm 200 \mathrm{~V}$	< $\pm 55 \mathrm{~V}>$	< $\pm 6.0 \mathrm{~V}$ >	not shown	320
	100X	2 m	$10 \mathrm{M} \Omega$	2.0 pF	>500	$\pm 200 \mathrm{~V}$	$\leq \pm 200 \mathrm{~V}>$	$\leq \pm 60 \mathrm{~V}\rangle$	not shown	320
P6203	10x	1.5 m	$>10 \mathrm{k} \Omega$	2.0 pF	1000	$\pm 40 \mathrm{~V}$	$\langle \pm 10 \mathrm{~V}\rangle$	< $\pm 10 \mathrm{~V}\rangle$	H	320
P6204	10x	1.5 m	$10 \mathrm{M} \Omega$	1.9 pF	1000	$\pm 40 \mathrm{~V}$	$\leq \pm 15 \mathrm{~V}$ >	< $\pm 10 \mathrm{~V}\rangle$	H	320
P6230	10x	1.6 m	450Ω	1.3 pF	1500	$\pm 30 \mathrm{~V}$	$\langle \pm 5 \mathrm{~V}\rangle$	$\langle \pm 5 \mathrm{~V}\rangle$	B	320
P6231	10X	1.5 m	450Ω	1.6 pF	1500	$\pm 30 \mathrm{~V}$	$\langle \pm 5 \mathrm{~V}\rangle$	$\langle \pm 5 \mathrm{~V}\rangle$	not shown	320

Differential Probes (see page 327 for illustrations)

P6046	(CMRR 10,000:1)	1 x	6 ft	$1 \mathrm{M} \Omega$	10.0 pF	100	+25 V	N/A	N/A	not shown	327
	(CMRR 800:1)	10x	6 tt	$10 \mathrm{M} \Omega$	3.0 pF	100	$\pm 250 \mathrm{~V}$	N/A	N/A	not shown	327
P6135A*	(CMRR 10,000:1)	10X	1.5 m	$1 \mathrm{M} \Omega$	10.5 pF	150	500 V	13 to 17	Yes/Yes/No	E	327
	(CMRR 20,000:1)	10x	1.5 m	$1 \mathrm{M} \Omega$	11.0 pF	105	500 V	18 to 22	Yes/Yes/No	E	327
	(CMRR 20,000:1)	10x	1.5 m	$1 \mathrm{M} \Omega$	13.7 pF	1	500 V	45 to 49	Yes/Yes/No	E	327

Low Capacitance Passive Probes

P6150	$10 \mathrm{X} \pm 2 \%$	1 m	500Ω	<0.15 pF	9 GHz	12.5 V rms	50Ω	No/No/No	C	321
	$1 \mathrm{X} \pm 2 \%$	1 m	50Ω	N/A	$\geq 3 \mathrm{GHz}$	42 V rms	50Ω	$\mathrm{No} / \mathrm{No} / \mathrm{No}$	C	321
P6156	$10 \mathrm{X} \pm 3 \%$	1.5 m	500Ω	<1 pF	$\geq 3.5 \mathrm{GHz}$	15 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	Yes/No/No	E	321
	$100 \mathrm{X} \pm 3 \%$	1.5 m	5000Ω	<1.1 pF	$\geq 3.0 \mathrm{GHz}$	50 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	Yes/No/No	E	321
	$20 \mathrm{X} \pm 3 \%$	1.5 m	1000Ω	$<1 \mathrm{pF}$	$\geq 3.5 \mathrm{GHz}$	22 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	Yes/No/No	E	321
	$1 \mathrm{X} \pm 5 \%$	1.5 m	50Ω	N/A	$\geq 1.5 \mathrm{GHz}$	50 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	Yes/No/No	E	321

Specialty Probes

P6008 (Environmentalized)	10 X	6.0 ft	$10 \mathrm{M} \Omega$	7.5 pF	100	600 V	12 to 47	$\mathrm{No} / \mathrm{No} / \mathrm{No}$	K	315

PROBE STYLES AND INCLUDED ACCESSORIES

P6008 ENVIRONMENTAL PROBE

- $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Temperature Range

The P6008 Environmental Probe operates over - $50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for the probe body and cable; the compensation box operates from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. The P6008 is compatible with the \#6-32 screw-tip accessories.

P6602 (shown).

FOR DMM INPUT

The P6601 and P6602 are temperature-measuring devices designed to operate with the DM5110, DM511 (P6602) and DM501A, DM502A (P6601) Digital Multimeters or with the 2236A oscilloscope and the 2465B, 2445B, 2455B with DMM (opt 01) (P6602). The temperature-sensing element consists of a thin-film platinum resistor on the tip of the probe. Measurements are made by touching the probe tip to the test surface. The thermal signal is transmitted to the associated digital multimeter through a two-conductor cable.

The probes are totally immersible except in liquids that are incompatible with Dow Corning 308 molding compound (P6601), Polyset 410B molding compound (P6602), BeO, silicone rubber, or epoxy adhesives. The sensor and tip are limited to a maximum of $240^{\circ} \mathrm{C}$ ($230^{\circ} \mathrm{C}$ for P6602), and the cable is limited to a maximum of $140^{\circ} \mathrm{C}$.

P6125 COUNTER/TIMER PROBE

- Hybrid Circuitry for Improved Performance
- Miniature Probe Tip Size

The P6125 is a low capacitance, 5 X attenuation passive probe specifically designed for DC to 250 MHz digital counter/timers. Five-times attenuation provides an optimum match between the counter input characteristics and the voltage levels of all common logic families.

P6420

- RF Probe
- 10 kHz to 1 GHz Bandwidth
- Voltage Range 0.5 to 25 V rms (70.7 V p-p) The P6420 RF probe measures high frequency AC voltage from 10 kHz to 1 GHz . It provides a DC output voltage proportional to the RMS value of a sine-wave input.

P6008

- 100 MHz , Environmental

P6601/P6602

- Temperature Probes
- For Tek DMMs
- Measure up to $240^{\circ} \mathrm{C}$

P6125

- 250 MHz, Counter/Timer

P6420

- 1 GHz , RF DMM

ORDERING INFORMATION

P6008 100 MHz Environmental Probe
Includes: Retractable hook tip
(013-0071-01); Banana tip
(134-0013-00); 12 in Ground lead (175-0125-01); Alligator clip (344-0045-00); Probe holder (352-0090-00); Instruction sheet.
P6601 Temperature Probe Includes: Instruction manual (070-2620-00)

P6602 1.5 m Temperature Probe Includes: Instruction manual (070-4377-00)

P6125 250 MHz Counter Probe \$110 Includes: Adjustment tool (003-1433-00); Retractable hook tip (013-0107-06); Probe tip ground cover (166-0404-01); 8 in Alligator ground lead (196-3286-00); 3.5 in. Ground lead (195-6176-00); Alligator clip (344-0046-00); 2 Silver cable marker bands; Instruction sheet

P6420 2 m RF DMM Probe Includes: Retractable probe tip (013-0097-01); 2 Alligator clips (344-0046-00); 2 Replaceable probe tips; Insulating ground cover (166-0404-01); 3 in Ground lead (175-0849-00); 6 in Ground lead (175-1017-00); Probe holder (352-0351-00); BNC female to dual banana adapter (103-0090-00); Data sheet.

P6562 SMT Probe 350 MHz

TYPICAL APPLICATIONS

- Research and Design
- Manufacturing Test of SMT Circuitry
- Servicing of Circuitry with SMT Devices
- Prototype Debug and Design

FEATURES

- Easier Access to Multiple Point Connections
- Access to 0.050 Inch Lead Centers

ORDERING INFORMATION

P6562 10X, $350 \mathrm{MHz}, 1.5 \mathrm{~m}$ SMT Probe
Includes: Adjustment tool (003-1433-00); 2 each KlipChip ${ }^{\text {TM }}$ Adapters (206-0364-00); 2 each 4 in . ground leads; 3 each screwin probe tip; 2 each screw-in 0.025 in. jack tip assembly; 2 each right angle square pin adapters; 2 each low inductance ground leads; 2 each circuit board connectors; instruction sheet (070-7792-00)

SURFACE MOUNT DEVICE PROBING AND INTERCONNECTS

The increasing use of surface mount technology (SMT) brings many benefits to electronic circuit board (ECB) design and manufacture. Among these are increased circuit density, increased product reliabllity, and lower assembly costs.

Troubleshooting and device interconnection, however, have become more difficult due to decreased device size, tighter lead spacing and increased ECB densities. Tek's new offering of the following SMT probing and interconnect devices meets these demanding requirements.

P6562 SMT Probe (specifications on page 312)

P6562 SMT PROBE

The P6562 SMT probe features a low-mass probe head and ultra-lightweight cable for easier, quicker and more stable circuit attachment. Multiple probes can now be attached to PLCC, SOIC, Tektronix KLIPKIT, and DIP IC Test Clips. The probe's light weight prevents it from disconnecting from the DUT (device under test), a common problem with heavier probes.

The P6562 features modular construction, hybrid and SMT circuitry, a readout pin which activates the readout encoding circuitry of so equipped oscilloscopes, and a small geometry probe tip that easily negotiates dense circuitry and tight spaces.

It is designed for use in digital circuitry and telecommunication/computer backplanes.

P6562 used with PLCC Clip (0.025" square pin adapter).

P6562 with typical accessories

P6562 used in card cage application.

SMT KlipChip ${ }^{\text {TM }}$

The SMT KlipChip ${ }^{\text {™ }}$ is an interface device for attachment of logic and analog probes to today's SMD's, DIP's, and discrete components. The SMT KlipChipTM is capable of attaching to components with maximum lead diameters of 0.095 in and stackable on lead centers of 0.050 in. Dual sided 0.025 in lead contacts allow this grabber to be used in multiple signal insertion/acquisition.

SMT KlipChip ${ }^{T M}$

PLCC QUAD CLIPS

The Snap-Ring design allows quick and easy interconnection to Plastic Leaded Chip Carriers (PLCC) with "J" leads on 0.050 in centers. Test contacts are goldplated beryllium copper which provide low contact resistance.

SOIC CLIPS

Provides hands-free testing of onboard Small Outline Integrated Circuits (SOIC). These clips are compatible with gull wing and "J" leads on 0.050 in centers. Features gold-plated beryllium copper contacts with glass-filled nylon insulation. Upper contact pins: 0.64 mm (0.025 in) square pins.

PLCC Quad Clip (left) and SOIC Clip (right).

SMT KlipChip ${ }^{\text {TM }}$ SMG50/SMGK51/SMGK52

SOIC Clips
SMC8/SMC14/SMC16/SMC20/ SMC24

PLCC Quad Clips SMO20/SMO28/SMQ44/ SMQ52/SMO68 SM084

Engineering Kits

PLCC - SMQK1/SOIC - SMCK1
TYPICAL APPLICATIONS

- Research and Design
- Manufacturing Test of SNT Circuitry
- Servicing of Circuitry with SMT Devices
- Prototype Debug and Design

FEATURES

- Easier Access to Multiple Point Connections
- Access to 0.050 in Centers PLCC, SOIC, and other Packages with the SMT KlipChip ${ }^{\text {TM }}$ Adapter
- Signal Insertion and Temporary Lead Jumpers without Soldering

ORDERING INFORMATION

SMG50 SMT KlipChipTM
Includes: 20 SMT KlipChip™
SMGK51 SMT KlipChip ${ }^{\text {M }}$ Adapter Leads
Includes: 4 KlipChip ${ }^{\text {TM }}$ Adapters; 3 Electrical Leads.
SMGK52 SMT KlipChip ${ }^{\text {TM }}$ Adapters
Includes: 5 SMT KlipChip ${ }^{\text {TM }}$ Adapter; 3 Electrical
Leads; 1 Dual Lead Adapter; 1 Flex Tip Adapter.
SMCK1 SOIC Engineering Kit
Includes: 1 each of $8,14,16,20,24$ Pin SOIC
Clips plus 4 SMT KlipChip ${ }^{\text {™ }}$ Adapter, 8 Electrical
Leads w/ (0.025°) Square Pin Connectors.
SMC8 SOIC Twin Pack
Includes: 2 each 8 Pin SOIC Clips; 2 each SMT
KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.
SMC14 SOIC Twin Pack
Includes: 2 each 14 Pin SOIC Clips; 2 each
SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.

- \$89	SMC16 SOIC Twin Pack Includes: 2 each 16 Pin SOIC Clips; 2 each
\$40	SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.
	SMC20 SOIC Twin Pack \$48
- \$70	Includes: 2 each 20 Pin SOIC Clips; 2 each
	SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.
	SMC24 SOIC Twin Pack \$50
- $\$ 99$	Includes: 2 each 24 Pin SOIC Clips; 2 each
	SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.
	SMQK1 PLCC Engineering Kit \quad \$270
	Includes: 1 each of 20, 28, 44, 52, 68, 84 Pin
\$42	PLCC Clips plus 4 SMT KlipChip ${ }^{\text {TM }}$ Adapter, 8 Electrical
	Leads w/(0.025") Square Pin Connectors.
	SMQ20 PLCC Twin Pack \$97
\$43	Includes: 2 each 20 Pin PLCC Clips; 2 each

\$43 Includes: 2 each 20 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads.

SM028 PLCC Twin Pack
Includes: 2 each 28 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{T M}$ Adapter; 4 Electrical Leads. SM044 PLCC Twin Pack
includes: 2 each 44 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads. SM052 PLCC Twin Pack
Includes: 2 each 52 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads. SM068 PLCC Twin Pack
Includes: 2 each 68 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{T M}$ Adapter; 4 Electrical Leads. SM084 PLCC Twin Pack
Includes: 2 each 84 Pin PLCC Clips; 2 each SMT KlipChip ${ }^{\text {TM }}$ Adapter; 4 Electrical Leads. - Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

P6511/P6513/ P6515/P6517

TYPICAL APPLICATIONS

- In Bed-of-Nails Fixtures
- Other Fixtured Applications Which Require High B/W, Low Loading

FEATURES

- DC to 300 MHz Bandwidth (250 MHz for P6515/P6517)
- High Impedance (1 M Ω, < 3.8 pF for P6511/P6513) (4.0 pF for P6515/P6517)
- Drives 50Ω Coax Cable
- Standard 100-MIL or 2.54 mm Spacing (P6511/P6513)
- Standard 50-MIL or 1.27 mm Spacing (P6515/P6517)
- Automated Scanning Available

ORDERING INFORMATION

P6511, P6513 Spring Contact

 Probes.Each includes: 2 signal
receptacles, 4 GND receptacles;
5100 -MIL crown spring contact tips;** 4 GND leads; instruction sheet.

P6515, P6517 Spring Contact

Probes.

Each includes: 5 receptacles;
5 50-MIL crown spring contact
tips; ${ }^{* 2} 2$ sig. leads; 4 GND leads;
instruction sheet.

RECOMMENDED ACCESSORIES

Manuals -

(P6511) Order 070-6776-00. (P6513) Order 070-6845-00. (P6515) Order 070-7263-00. (P6517) Order 070-7265-00.

OPTIONAL ACCESSORIES

Power Connector -To power P6511 or P6515 probes from other supplies. Order 131-4408-00
System Interface Kits -
To interface P6513 or P6517
probes to test systems such as the TSI family (see page 194).

ITA Probe Scanner Kit -

Support for one fixture.
Order 021-0443-00

ITA/Rcvr/Power Probe Scanner Kit -

Support for one TSI System.
Order 021-0444-00
1102 Power Supply - for P6511 and P6515 probes
*1 Available in packages of 10 receptacles and tips or order directly from Q.A. Technology.
*2 Available in packages of 10° receptacles and tips or order directly from Everett/Charles Co.
*3 For 1 GHz bandwidth see the A6501 on the next page.

P6515 and P6517 shown.

P6511/P6513/P6515/P6517

The P6511, P6513 are 10X, DC-to-300 MHz (DC-to250 MHz for P6515, P6517) probes designed for placement into a bed-of-nails fixture or other fixtured applications. The probe is designed for low circuit loading and high-bandwidth signal acquisition. This enables acquisition of ac parametric waveform information from high-impedance test points.

Electrically, the probe consists of a high impedance spring-loaded contact and active circuitry to drive a 50Ω transmission line. The probe's spring contact receptacle

CHARACTERISTICS

Electrical	P6511/P6513	Common To All	P6515/6517
Bandwidth	$300 \mathrm{MHz}^{\text {³}}$		$250 \mathrm{MHz}^{* 3}$
Rise Time	<1.17 ns		<1.4 ns
Attenuation		10X	
Input R		$1 \mathrm{M} \Omega$	
Input C	≤ 3.8 pF		$\leq 4.0 \mathrm{pF}$
Dynamic Range		$\pm 15 \mathrm{~V}$	
Max. Nondestructive Input Voltage		$\pm 30 \mathrm{Vat} \mathrm{dc}$	
Power Supply Requirements		at $30 \mathrm{~mA} / \pm 5 \mathrm{~V}$ at	
Low-Frequency Compensation		Fixed, flat $\pm 3 \%$	
Propagation Delay		3.8 ns ± 100 ps	
Probe Aberrations	< $\pm 6 \%, 8 \%$ p-p in the first 4 ns; < $\pm 2 \%, 3 \%$ p-p after 4 ns		
Output Zero	< $\pm 2 \mathrm{mV}$		
DC Thermal Dritt	$<50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		
Physical			
Net Weight	$2.002(56 \mathrm{~g})$		
Recommended Minimum Center Spacing	$0.100{ }^{\prime \prime}(2.54 \mathrm{~mm})$		0.05 " (1.27 mm)
Recommended Travel (2/3 Full)	$0.167{ }^{\text {" }}(4.24 \mathrm{~mm})$		0.127 " (3.23 mm)
Spring Force Pre-loaded $2 / 3$ travel	$\begin{aligned} & 2.0 \text { oz (57 g) } \pm 20 \% \\ & 5.502(155 \mathrm{~g}) \pm 20 \% \end{aligned}$		$\begin{aligned} & 1.260 z(36 \mathrm{~g}) \pm 20 \% \\ & 3.502(99 \mathrm{~g}) \pm 20 \% \end{aligned}$
Mounting Hole Diameter	$\begin{gathered} .067^{\prime \prime} \text { to } 0669^{\prime \prime} \\ (1.70 \text { to } 1.75 \mathrm{~mm}) \end{gathered}$		$\begin{gathered} .037 \text { to } 0.038^{\prime \prime} \\ (.940 \text { to } .965 \mathrm{~mm}) \\ \hline \end{gathered}$
Recepticle (outside diameter)	.066" (1.68 mm)		. $036{ }^{\prime \prime}$ (.914 mm)

A6501

The A6501 is a high performance 10 X , dc-to- 1.0 GHz FET input buffer amplifier designed for placement onto a circuit board, probe card or bed-of-nails test fixture. The A6501's versatile connection design provides connection to the circuit board or fixture by either twisted wires, spring loaded contacts, or $0.100^{\prime \prime}(2.54 \mathrm{~mm})$ pitch leads. The A6501 features low input capacitance, high input impedance, and drives a 50Ω load.

P6501

The P6501 Microprobe is a $1 \mathrm{M} \Omega$ input active probe optimized for probe card mounting and probing stations. Its very low profile about (0.5 in. high) avoids interference with the objective lens of microscopes and lasers. The narrow body (about 0.100 in. wide) makes it well suited for high-density probing applications.

The power and signal cables can be conveniently removed for set up and storage of probe cards between uses. The 50Ω coaxial signal uses a miniature 50Ω connecter at the probe end and a BNC connecter on the instrument end. Note the probe's power requirements.

P6501 and P6507 Mounted on a Probe Card.

P6507

The P6507 Microprobe is a 50Ω input probe and companion to the P6501. The probe can be used as either a 50Ω input or output probe in card-mounted applications. It consists of a 30 mill thick Alumina hybrid substrate with a 50Ω stripline and a miniature 50Ω connector. The P6507 maintains a low profile thus allowing use of multiple probes in dense microprobing of hybrids, SMDs and other high density circuits.

CHARACTERISTICS

	$\mathbf{P 6 5 0 1}$	$\mathbf{P} 6507$	$\mathbf{A} 6501$
Bandwidth	750 MHz	1 GHz	1 GHz
Rise Time	450 ps	350 ps	350 ps
Attenuation	10 X	1 X	10 X
Input R	$1 \mathrm{M} \Omega$	50Ω	$1 \mathrm{M} \Omega$
Input C	$\leq 1.8 \mathrm{pF}$	N / A	$\leq 2.5 \mathrm{pF}$
Dynamic	$\pm 10 \mathrm{~V}$	$\mathrm{~N} / \mathrm{A}$	$\pm 10 \mathrm{~V}$
Range			
Maximum Nondestructive	$\pm 26.5 \mathrm{~V}$	$\pm 42.5 \mathrm{~V}$	$\pm 26.5 \mathrm{~V}$
Input Voltage			

A6501

$1 \mathrm{GHz}, 1 \mathrm{M} \Omega, 10 \mathrm{X}$ Buffer Amplifier

TYPICAL APPLICATIONS

- Use in Test Fixtures
- Mount on Probe Cards
- Place onto Circuit Boards

FEATURES

- DC to 1 GHz Bandwidth
- High Impedance (1 MS, (2.5 pF)
- Drives 50Ω Coaxial Cable
- 10X Attenuation

P6501

$750 \mathrm{MHz}, 1 \mathrm{M} \Omega, 10 \mathrm{X}$ Microprobe

TYPICAL APPLICATIONS

- For Hybrid and SMD Probing
- Mount on Probe Cards
- Use in Probing Stations

FEATURES

- DC to 750 MHz Bandwidth
- High Impedance (1 M Ω, (1.8 pF)
- Drives 50Ω Coaxial Cable
- 10X Attenuation
- Replaceable Probe Tips

P6507

$1 \mathrm{GHz}, 50 \Omega, 1 \mathrm{X}$ Microprobe

TYPICAL APPLICATIONS

- For Hybrid and SMD Probing
- Mount on Probe Cards
- Use in Probing Stations

FEATURES

- DC to 1 GHz Bandwidth
- 50Ω Input
- 1X Attenuation
- Replaceable Probe Tips

ORDERING INFORMATION

A6501 1GHz, 1M Ω, $10 \times$ Buffer Amplifier Includes: $3-3 / 4^{\circ}$ and $10-1 / 4^{*}$ Peltola (50Ω) signal cables, Peltola-cable-to-circuit-board adapter, three 0.1^{*} spring contacts, $0.1^{\prime \prime}$ pitch lead frame; Instruction sheet/Application notes (070-7308-00).
P6501 $750 \mathrm{MHz}, 1 \mathrm{M} \Omega$, 10X Microprobe Includes: Two tungsten probe tips (206-0371-01); Ground lead (196-3141-00); Instruction sheet (070-6300-00)
Opt. 01 - Add $115 \mathrm{~V} \mathrm{ac}, 60 \mathrm{~Hz}$ power supply and $1.5 \mathrm{~m} 50 \Omega$ cable.
Opt. 02 - Add TEKPROBE ${ }^{\text {™ }}$ cable.
Order 015-0540-00
P6507 1GHz, 50Ω, 1 X Microprobe
Includes: One tungsten probe tip (206-0371-01); instruction sheet (070-6301-00).
Opt. 01 - Add $0.5 \mathrm{~m} 50 \Omega$ cable.

OPTIONAL ACCESSORIES A6501
2×3 Power Connector -
For Male, Order 131-3941-00
For Female, Order 131-3821-01
Peltola-to-BNC adapter - Order 131-1315-01 $\$ 8.25$ 100 MIL Centers Spring Contacts - Pkg of 10. Order 016-0946-00

P6501

Manual - Order 070-6188-00
50Ω Cable - Miniature
50Ω Cable - Miniature to BNC 0.5 m . Order 174-0668-00
Ground Lead Assembly - Order 196-3141-00

REPLACEABLE TIPS

The P6501/6507 tips can be easily replaced as they wear or for different applications Standard Length $-0.20^{\prime \prime}(5.08 \mathrm{~mm})$
Tungsten Probe Tip - Pkg of 5. Order 206-0371-02
Palladium Probe Tip - Pkg of 5.
Order 206-0370-02
Long Length $-0.46^{*}(11.6 \mathrm{~mm})$
Tungsten Probe Tip - Pkg of 5.
Order 206-0371-03
Palladium Probe Tip - Pkg of 5. Order 206-0370-03

POWER SUPPLY
Power Supply - Order 119-2461-00
1102 Power Supply - for A6501 and P6501 probes Power Cable - To connect probe to 1102 power supply. Order 174-0943-00

P6201 fet Probe

- 900 MHz (Typically $1.1 \mathrm{GHz}^{* i}$)

P6202A fet Probe

- 500 MHz , Miniature Tip

P6230 Bias/Offset Probe

- 1.5 GHz , Subminiature Tip

P6203 Bipolar Probe

- 1 GHz, Miniature Tip

P6204 fet Probe

- 1 GHz (Typically $1.1 \mathrm{GHz}{ }^{* 1}$) Miniature Tip

P6231 blas/Oftset Probe

- 1.5 GHz , Subminiature Tip

TYPICAL APPLICATIONS

- Analysis of High-Speed Analog and Digital Circuitry such as ECL, CMOS, TTL, and GaAs
- Amplitude Levels, Aberration, Propagation Delay, Bandwidth and Rise Time Measurements for Research, Design, Manufacturing, and Service

FEATURES/BENEFITS

- Low Input C, High Input R Minimizes Circuit Loading (P6201, P6202A, P6203, P6204)
- Variable DC Offset Allows Correction for dc Levels to Bring the Signal into the Probe's Dynamic Measurement Range
- Internal/External 50Ω Terminations (P6201, P6202A, P6230) Allows Connection to 50Ω or 1 M Ω Inputs
- Wide Range of Accessories Compatibility and Easy Circuit Attachment
- Easily Replaceable Probe Tips
- Readout Coding for Attenuation
Reduces Measurement
Reading Errors
${ }^{1}$ At room temperature.

ORDERING INFORMATION

See page 322.

ACTIVE PROBES

Active probes are used in measurements where high input resistance and low input capacitance are needed without loss of signal, and where frequencies are above 250 MHz . The dynamic range and measurement capability are substantially increased through the dc voltage offset control. The dc offset feature offsets any dc component within the range of the control to bring the signal into the dynamic range of the probe. Since active probes have a selectable 50Ω output impedance, the distance from the probe tip to the instrument is only limited by the bandwidth limit of the 50Ω coaxial cables between the probe and instrument.

P6204/P6203/P6231

For use with TEKPROBETM Interfaces or 1103 TEKPROBE ${ }^{T M}$ Power Supply.

P6204/P6203 DC TO 1 GHZ

- P6204 $10 \mathrm{M} \Omega / 1.9 \mathrm{pF}, 10 \mathrm{X}$ (shown above)
- P6203 $10 \mathrm{k} \mathrm{\Omega} / 2$ pF, 10X
- DC Offset
- Identify Button Allows Remote Sequencing of Oscilloscope Programs
- Automatic 50Ω Termination
- Easily Replaceable Probe Tips/Probe Heads

P6231 DC TO 1.5 GHZ

- $500 \Omega / 1.6 \mathrm{pF}, 10 \mathrm{X}$
- Bias/Offset provides adjustable tip "nulling" voltage ($\pm 5.0 \mathrm{~V} \mathrm{dc}$)
- Identify Button, Allows Remote Sequencing of Oscilloscope Programs
- Automatic 50Ω Termination
- Easily Replaceable Attenuator Tip

P6201/P6202A/P6230

For use with BNC Inputs and Scope Probe Power Jacks or 1101A Power Supply

P6201 DC TO 900 MHZ (TYP $1.1 \mathrm{GHZ}^{-1}$)

- $100 \mathrm{k} \Omega / 3 \mathrm{pF}(1 \mathrm{X}) ; 1 \mathrm{M} \Omega / 1.5 \mathrm{pF}$ (10X and 100X)
- Unity Gain (1X) with Readout
- Two Plug-on Attenuator Heads (10X and 100X) that Maintain Scope Readout Factor
- DC Offset, ac-dc Coupling Switch
- Internal/External 50Ω Termination Switch

P6202A DC TO 500 MHZ

- $10 \mathrm{M} \Omega / 2 \mathrm{pF}$ (10X)
- Optional 10X Plug-on Attenuator Head for 100X Attenuation
- DC Offset, ac-dc Coupling Switch
- Internal/External 50Ω Termination Switch

P6230 DC TO 1.5 GHZ

- $500 \Omega / 1.3 \mathrm{pF}, 10 \mathrm{X}$
- Bias/Offset provides adjustable tip "nulling" voltage ($\pm 5.0 \mathrm{~V}$ DC)
- Interna//External 50Ω Termination Switch
- Easily Replacable Attenuator Tip

For specifications see chart on page 313.

SAMPLING

Two characteristics are essential in a system for sampling repetitive high frequency signals: high bandwidth and low input capacitance. Tek's low impedance Zo passive voltage probes give you both without the added cost of an active probe. However, if you need low resistive loading, you should choose one of the active probes on page 320.

With bandwidths of up to 9 GHz on the P6150 and 3.5 GHz on the P6156, these probes get you as close as possible to your scope's maximum bandwidth. Accurate risetime and propagation delay readings are possible with less than 0.15 pF Input C (less than 1.0 pF with the P6156).

1X ATTENUATOR FOR TDR

With 1X attenuation available, these probes are also a quick and easy solution to circuit board impedance testing of Time Domain Reflectometry (TDR) without the hassles of soldering or fixturing.

P6150 with Typical Accessories

P6150 DC T0 9 GHZ

- 10X Attenuating Probe, Low Impedance Zo with 1X Accessory Tip
- Small Size
- Ideal for 50Ω Environments
- Interchangeable Probe Tips (1X, 10X)
- Recommended Probe for 11800/CSA800/SD2X/7000 Family Sampling Plug-Ins
- SMA Cable Connectors for Optimum Signal Integrity
- High Quality, Flexible Probe Cable

CHARACTERISTICS

Probe Type	Nominal Length	Attenuation	Bandwidth	Rise Time	Loading Input R/C	Max V In	Instrument Input R/C	Propagation Delay	Interface/ Readout/ Identify
P6150	1 m	$10 \mathrm{X} \pm 2 \%$	9 GHz	<38.8 ps	$500 \Omega /<0.15 \mathrm{pF}$	12.5 V rms	50Ω	$\begin{aligned} & 4.40 \mathrm{~ns} \\ & \pm 0.1 \mathrm{~ns} \end{aligned}$	S/N/N
		$1 \mathrm{X} \pm 2 \%$	$\geq 3 \mathrm{GHz}$	≤ 170 ps	$50 \Omega / \mathrm{N} / \mathrm{A}$	* 1	50Ω	$\begin{aligned} & 4.40 \mathrm{~ns} \\ & \pm 0.1 \mathrm{~ns} \\ & \hline \end{aligned}$	S/N/N
P6156	1.5 m	$10 \mathrm{x} \pm 3 \%$	$\geq 3.5 \mathrm{GHz}$	<100 ps	$500 \Omega / \leq 1 \mathrm{pF}$	15 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	$\begin{gathered} 7.75 \mathrm{~ns} \\ \pm 0.07 \mathrm{~ns} \end{gathered}$	$B / Y N$
		$100 x \pm 3 \%$	$\geq 3.0 \mathrm{GHz}$	≤ 120 ps	$5000 \Omega / \leq 1.1 \mathrm{pF}$ (Typically 1 pF)	50 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	$\begin{gathered} 7.75 \mathrm{~ns} \\ \pm 0.07 \mathrm{~ns} \end{gathered}$	$B / N /$
		$20 \mathrm{X} \pm 3 \%$	$\geq 3.5 \mathrm{GHz}$	$<100 \mathrm{ps}$	1000 / $\leq 1 \mathrm{pF}$	22 V rms	$50 \Omega / 1 \mathrm{M} \Omega$	$\begin{gathered} 7.75 \mathrm{~ns} \\ \pm 0.07 \mathrm{~ns} \end{gathered}$	$B / Y / Y$
		$1 \mathrm{X} \pm 5 \%$	$\geq 1.5 \mathrm{GHz}$	<300 ps	$50 \Omega / \mathrm{N} / \mathrm{A}$	*2	$50 \Omega / 1 \mathrm{M} \Omega$	$\begin{gathered} 7.75 \mathrm{~ns} \\ \pm 0.07 \mathrm{~ns} \\ \hline \end{gathered}$	$B / Y / Y$

Interface/Readout/Identify: Interface: $B=B N C ; S=S M A$
${ }^{* 1}$ Limited by scope input or 42 V rms .
Readout/Identify: $Y=Y e s ; ~ N=N o$

P6156 Opt. 25 with Standard Accessories

P6156 DC TO 3.5 GHZ

- 10X Attenuating, Low Impedance Zo Probe, with Identify and Readout.
- Interchangeable Probe Tips 1X, 10X, 20X, 100X.

The P6156 is a 3.5 GHz , low impedance Zo probe which comes standard with a $10 \times(500 \Omega$) attenuator tip. The 100 X attenuation value is available as an option and the 1 X and 20 X attenuators may be purchased as replaceable subassemblies. The P6156 probe may be used with 11000-Series plug-ins, the 11800-Series SD2X Sampling/TDR plug-ins, 7000-Series plug-ins and Sampling/TDR units, 2400 Series, or other $50 \Omega / 1 \mathrm{M} \Omega$ input channel amplifiers and oscilloscopes (with the proper adapters).

The P6156 may be directly connected to a 50Ω input, but requires a 50Ω termination when used with $1 \mathrm{M} \Omega$ amplifiers. Check the instruction sheet for proper usage. This probe gives you a handy identify button for accessing many of the functions of your 11000 or DSA600 Series scopes from the probe. The compact tip size is perfect for accessing small geometry circuits. The attenuator tips are color-coded to a switch on the compensation box of the P6156 to help in properly setting the readout scale factor.
Note: The P6156 attenuator tip must be changed and the compensation box readout switch changed to provide the various $1 X, 10 \mathrm{X}, 20 \mathrm{X}$, and 100 X attenuation values.

P6150

- 9 GHZ

P6156

- 3.5 GHz Compact Tip

TYPICAL APPLICATIONS

- High Speed Device

Characterization In
Microwave Communication, Signal Processing, and Logic Applications

- Propagation Delays for ECL, GaAs and Other Logic Circuitry and Devices
- Circuit Board Impedance Testing (TDR)

FEATURES/BENEFITS

- Low Capacitive Loading to Extremely High Frequencies
- Interchangeable Attenuator Tip Assemblies, 1 X and 10X (20X and 100X P6156 only)

ORDERING INFORMATION

See page 323.

ORDERING INFORMATION 1X AND 10X PASSIVE VOLTAGE PROBES

For probe accessories see pages 330-333.

Instrument compatibility chart is on pages 310-311.
These pages list ordering information for Tek passive and active voltage probes. See the voltage probes specification chart on pages 312-313 for specifications. More detail for the P6562 SMT Probe is provided on page 316; active probes on page 320; difterential probes on page 327; Iow capacitance probes on page 321; and specialty probes on page 315. The photograph on page 314 gives representative examples of the size and shape of the various tip styles.

1X and 10X Passive Voltage Probes

P6006 10X, $35 \mathrm{MHz}, 1.8 \mathrm{~m}$ rugged probe. Includes: Retractable hook tip (013-0071-00); Banana tip (134-0013-00); 5 in Ground lead (175-0124-01); 12 in Ground lead (175-0125-01); 0.055 in Diameter straight tip (206-0015-00); 0.080 in Diameter spring tip (206-0060-00); Hook tip (206-0105-00); 2 Miniature alligator clips (344-0046-00); Probe holder (352-0090-00); Instruction manual (070-0381-00).
Opt. 03-9 ft Cable $\$ 20$
$\$ 25$
Opt. 04-12 ft Cable
P6053C 10X, 250 MHz , Trace Identify Compact Includes: Bayonet ground tip (013-0085-01); Retractable hook tip (013-0107-06); 6 in
Ground lead w/ square pin receptacle (196-3113-02); Ground collar (343-1003-01); 2 in ground lead (195-4240-00); Two each circuit board connectors; 2 each of black, white, silver, gray, blue, orange, red, green and yellow cable markers; SMT KlipChip ${ }^{\text {TM }}$ (206-0364-00); adjustment tool (003-1433-00); 6 in Ground lead w/ alligator clip (196-3305-00); Ground cover (166-0404-01); Hook tip (206-0114-00; Probe holder (352-0351-00); IC TEST TIP; Miniature adapter (013-0202-02);
Instruction sheet (070-7843-00).
Opt. $01-3.5 \mathrm{ft}$ Cable
Opt. 03-9 f. Cable
P6101A 1X, 15 MHz, 2 m Modular Probe
Includes: Retractable hook tip (013-0107-06); Probe tip ground cover (166-0404-01); 5 in Ground lead (175-0124-01); 12 in Ground lead (175-0125-01); Alligator clip (344-0046-00);
Two each of black, white and silver cable markers; Instruction sheet (070-5299-00).
Opt. 01 - 1 m Cable
P6102A 10X, $60 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe $\boldsymbol{\text { E }} \mathbf{\$ 9 5}$
Same as the P6105A; Instruction sheet
(070-5824-00).
P6103 10X, $50 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe
Includes: Adjustment tool (003-1433-00); Retractable hook tip (013-0107-06);
Replaceable probe tip (131-3723-00); 6 in
Ground lead (196-3120-00); IC test probe tip;
Two each of white, yellow, red and green cable
markers; Instruction sheet (070-6156-01).
Opt. 01 -1m Cable
Opt. 03-3 m Cable
P6105A 10X, $100 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe
Includes: Same as the P6101A plus adjustment tool (003-1433-00); Instruction sheet
(070-5516-00).
Opt. 01 -1 m Cable
Opt. 03-3 m Cable
P6106A 10X, $250 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe $\$ 180$ Includes: Same as the P6105A except 3 in Ground lead (175-0263-01) instead of 12 in Ground lead; Instruction sheet (070-5517-00). Opt. 01 - 1 m Cable +\$10 Opt. 03-3 m Cable
\qquad
स
\square
\qquad
\qquad kers;
\qquad
P6107A 10X, $100 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe
Includes: Same as the P6105A; Instruction sheet (070-5518-00).
P6108A 10X, $100 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe Includes: Same as the P6105A; Instruction sheet(070-5519-00).
P6109 10X, $150 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe ت
Sheet (070-6157-02).
Opt. 03-3 m Cable +\$20
P6121 10X, $100 \mathrm{MHz}, 1.5 \mathrm{~m}$ Modular Probe \$155(070-5511-00).
P6122 10X, $100 \mathrm{MHz}, 1.5 \mathrm{~m}$ Modular ProbeIncludes: (020-0717-00) Adjustment tool(003-1433-00); Retractable hook tip (013-0107-06);
Probe tip ground cover (166-0404-01); 8 in
Alligator ground lead (196-3286-00); 3.5 in
Ground lead (195-6176-00); Alligator clip
(344-0046-00); two silver cable marker bands;
Instruction sheet (070-5512-00).
P6130 10X, $250 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Subminiature $\boldsymbol{\text { E }} \mathbf{\$ 1 7 0}$
Probe Includes: Adjustment tool (003-1433-00);
Retractable hook tip (013-0208-02); Circuit
board connector (131-2766-03); 8 in Alligator
ground lead (196-3286-00); 6 in Microhook
ground lead (196-3302-00); 2 in Ground lead
(195-4240-00); Probe holder (352-0351-00);
Two each of white, gray, red and green cable
markers; Instruction sheet (070-5513-00).
(196-3302-00); 2 in Ground lead (195-4240-00);
Probe holder (352-0351-00); 2 each of white, gray,
red and green cable markers; Instruction sheet
(070-5514-00).
Opt. 02-2 m cable
Opt. 03-3 m cable
$+\$ 20$+\$25P6133 10X, $150 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Subminiature z $\mathbf{\$ 1 4 0}$Includes: Same as P6131; except for Instruction

sheet (070-5795-01).
Opt. 01-1.3 m cable
Opt. 03-3 m cable
$+\$ 15$$+\$ 25$
Opt. 25-1.3 m cable compact tip -T(070-5795-00).
-5795-00)
Opt. $01-1.5 \mathrm{~m}$ cable
P6131 10X, $300 \mathrm{MHz}, 1.3 \mathrm{~m}$ Modular Subminiature
Includes: Adjustment tool (003-1433-00); Retract-
able hook tip (013-0208-02); Circuit board connectors
(131-2766-03); 8 in Alligator ground lead
(196-3286-00); 6 in ground lead

\qquad

70

\114\$ 80$P6134C 10X, $400 \mathrm{MHz}, 1.5 \mathrm{~m}$ Passive Probe,ㅎ $\$ 180$Compact. Includes: Adjustment Tool(003-1433-00); Retractable hook tip (013-012 circuit board connectors; 2 in ground lead$(195-4240-00) ; 6$ in ground lead (196-3305-00);Miniature alligator clip (344-0398-00); SMT KlipChip ${ }^{\text {™ }}$(206-0364-00); 2 each of black, white, silver, gray,blue, orange, red, green and yellow cableblue, orange, red, green and yellow cable
markers; Instruction manual (070-7676-00).
P6136 10X, $350 \mathrm{MHz}, 1.3 \mathrm{~m}$ Modular Subminiature $\boldsymbol{\text { 玉 }} \mathbf{\$ 1 7 5}$Includes: Same as P6131; except instruction sheet
(070-6025-01).
Opt. 25-1.3 m cable compact tip - NC
Includes: Same as P6137; exceptInstruction sheet (070-6025-01).P6137 10X, $400 \mathrm{MHz}, 1.5 \mathrm{~m}$ Modular CompactT $\$ \mathbf{1 8 0}$Includes: 2 in ground lead (195-4240-00); lowinductance lead ground collar (343-1003-01);Retractable hook tip (013-0107-06); SMT KlipChip ${ }^{\text {TM }}$Retractable hook
$(206-0364-00)$ in 6 in ground lead w/square pinrecepticle (196-3113-02); 6 in ground lead w/alligatorclip (196-3305-00); Adjustment tool (003-1433-00):
2 circuit board connectors; 2 each of black, white,silver, gray, blue, orange, red, green and yellow cablemarkers; Instruction manual (070-6432-00).
P6148A 10X, $50 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe \$175(070-5516-00).P6149A $10 \mathrm{X}, 50 \mathrm{MHz}, 2 \mathrm{~m}$ Modular Probe$\$ 170$
Includes: Same as the P6105A; Instruction
sheet (070-5510-00).
P6562 10X, $350 \mathrm{MHz}, 1.5 \mathrm{~m}$ SMT Probe $\$ 250$KlipChip ${ }^{\text {TM }}$ (206-0364-00); 2 each 4 in ground leads; 3each screw in probe tip; 2 each screw-in 0.025 in jacktip assembly; 2 each right angle square pin adapters;2 each low inductance ground leads; 2 each circuitboard connectors. Instruction sheet (070-7792-00)
OPTIONAL ACCESSORIES
Conversion Kit - Subminiature Tip to Compact Tip
(P6131 13 Order 040-1252-02Order 040-1251-02(P6133 Opt. 01-1.3 m) Order 040-1250-02
$\begin{array}{ll}\text { (P6136 1.3m) } & \text { Order 040-1253-02 }\end{array}$

$$
\text { (P6136 } 1.3 \mathrm{~m}) \quad \text { Order 040-1253-02 }
$$

$$
\$ 60
$$

- Product available within 24 hoursthrough Tek Direct. Call 1-800-426-2200.

ORDERING INFORMATION 1 X - 10X SWITCHABLE PASSIVE VOLTAGE PROBES

For specifications see pages 312-313.
For probe accessories see pages 330-333.
Instrument compatibility chart is on pages 310-311.

1X - 10X SWITCHABLE PASSIVE VOLTAGE PROBES

P6062B $100 \mathrm{MHz}, 6 \mathrm{ft}(1.8 \mathrm{~m})$ Switchable
1X/10X Probe Includes: Retractable hook tip (013-0107-06); Probe tip ground cover
(166-0404-01); 5 in ground lead (175-0124-01);
12 in ground lead (175-0125-01); Hook tip (206-0114-00); Two replaceable tips (see 206-0191-03); Probe holder (352-0351-00); Two alligator clips(344-0046-00); Instruction sheet (062-2927-00) Opt. 03-9 ft Cable
$+\$ 20$

P6063B 200 MHz, 6 ft (1.8 m) Switchable $\$ 290$ 1X/10X probe Includes: Same as P6062B except 3 in Ground lead (175-0263-01) instead of the 12 in Ground lead; Instruction sheet (062-2928-01);

P6119 100 MHz , 2 m Switchable 1X/10X probe $\boldsymbol{Z} \mathbf{\$ 6 5}$ Includes: Screwdriver adjustment tool (003-1433-00); Retractable hook tip
(013-0107-06); Replaceable probe tip
($131-3723-00$); 6 in Ground lead ($196-3120-00$);
1 IC test probe tip; Two each of white, yellow, red,
and green markers; Instruction sheet
(070-7432-00).
Opt. 03-3 m

P6007 100X, 6 ft (1.8 m) High Voltage Probe Includes: Retractable hook tip (013-0071-00); Banana tip (134-0013-00); 5 in Ground lead (175-0124-01); 12 in Ground lead (175-0125-01); 0.055 in Diameter straight tip (206-0015-00); 0.080 in Diameter spring tip (206-0060-00); Hook tip (206-0105-00); 2 Miniature alligator clips (344-0046-00); Probe holder (352-0090-00); Instruction manual (070 0388-01).
Opt. 01-3.5 ft cable
+\$10
Opt. 03-9 ft cable
+\$25
Opt. 04-12 ft cable

P6150 10X, $9 \mathrm{GHz}, 1.0 \mathrm{~m}$, Low Impedance Probe Includes: One 1X attenuator head (206-0398-00); Two 10X attenuator heads (206-0399-02); 1.0 m Cable assembly (174-1341-00); Instruction sheet (070-7173-00); and 1 Accessory kit consisting of: 20 each ground clip, 3 each adjustable ground lead, 10 each electric contact, and 2 each probe to circuit board ground connectors (020-1708-00).

LOW CAPACITANCE PASSIVE VOLTAGE PROBES

P6156 3.5 GHz (10X), (3.0 GHz w/100X),
1.5 m Low Impedance Probe, Compact Includes: 10X Attenuator head (206-0380-00), 100X Attenuator head (206-0382-00), 6 in ground lead w/alligator clip (196-3305-00), Retractable hook tip (013-0107-06); 2 Circuit board connectors; 2 in Ground lead (195-4240-00); 6 in Ground lead (196-3113-02); Ground collar (343-1003-01); SMT KlipChip ${ }^{\text {TM }}$ (206-0364-00); 2 each cable markers various colors: gray, white, green, red; Probe tip holder (352-0670-00); Instruction sheet (070-6430-00).
Opt. 25 -Adds 100X Attenuator

P6015 1000X, $10 \mathrm{ft}(3.1 \mathrm{~m})$ High Voltage Probe $\mathbf{~} \mathbf{8} 80$
Includes: Carrying case (016-0128-02);
Alligator clip (344-0005-00); Instruction
manual ($070-0373-02$).
Opt. 10 -without CFC 114 freon charge,
Max. 13 kV .
Opt. $25-25 \mathrm{ft}$ cable ($8 \mathrm{MHz} \mathrm{B} / \mathrm{W}$)
Opt. 26 - without CFC 114 freon charge,
Max. 13 kV .

ACTIVE VOLTAGE PROBES

P6201 1X, 900 MHz FET Probe
Includes: Retractable probe tip (013-0135-00);
10X Attenuator head (010-0376-00); 100X
Attenuator head (010-0377-00); 3 Probe tips
(206-0200-00); Miniature probe tip adapter
(103-0164-00); 12 in Ground lead (175-0848-02);
Ground contact (131-1302-00); Alligator clip
(344-0046-00); Electrical insulating sleeve
(166-0557-00); Ground contact insulator
(342-0180-00); Probe holder (352-0351-00);
Carrying case; Instruction manual (070-1306-00).
P6202A 10X, 500 MHz FET Probe
Includes: Retractable probe tip (013-0097-01);
2 alligator clips ($344-0046-00$); Probe holder
(352-0351-00); 3 in Ground (175-0849-00);
Probe adjustment tool (003-0675-01);
Carrying case; 6 in Ground lead (175-1017-00);
2 Replaceable probe tips(206-0230-00); Electrical
Insulating sleeve (166-0404-01); Instruction
manual (070-3642-00).
10X Attenuator - For total 100X attenuation. \$100
Order 010-0384-00
AC Coupling Cap - Order 010-0360-00,
E Product available within 24 hours
through Tek Direct. Call 1-800-426-2200.
$\$ 950$
Includes: retractable hook tip
(013-0107-06); 6 in ground lead (196-3198-00); SMT KlipChip ${ }^{\text {TM }}$ (206-0364-00); Insulating ground cover (166-0404-01); Ground contact, spring (214-4125-00); 2 probe tip to circuit board adapters; Carrying case; Instruction sheet (070-6823-00).
P6204 10X, 1 GHz FET probe
\$1,470
Includes: Same as P6203; except Instruction sheet (070-6949-00)
P6230 10X, 1.5 GHz Bias/Offset Probe Includes: Adjustment tool (003-1433-00); Retractable hook tip (013-0208-02); Circuit board connector(131-2766-03); 8 in Alligator ground lead (196-3286-00); 6 in Ground lead (196-3302-00); 2 in Ground lead (195-4240-00); SMT KlipChip ${ }^{\text {TM }}$ (206-0364-00); 2 in Probe holder (352-0351-00); 2 each of white, gray, red, and green cable markers; Instruction manual (070-4211-00).

P6231 10X, 1.5 GHz Bias/Offset Probe
Includes: Adjustment tool
(003-1433-00); Retractable hook
tip (013-0208-02); 2 Circuit board connectors (131-2766-03); 6 in Ground lead
(196-3113-02); 2 in Ground lead (195-4240-00);
6 in Ground lead w/alligator (196-3305-00);
SMT KlipChip ${ }^{\text {TM }}$ (206-0364-00); 2 each white,
black, silver, gray, blue, orange, red, green,
and yellow cable markers; manual (070-6027-00).
1101A Accessory Power Supply
for P6201, P6202A, P6230. Powers 2 probes.
1103 TEKPROBE ${ }^{\text {TM }}$ Power Supply
for P6203, P6204, P6231, P6701, P6702, P6703.
Powers 2 probes and provides offset control
1102 Power Supply for
P6501/A6501/P6511/P6515
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro $220 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A2 - United Kingdom 240 V, 50 Hz
Opt. A3 - Australian $240 \mathrm{~V}, 50 \mathrm{~Hz}$
Opt. A4 - North American $240 \mathrm{~V}, 60 \mathrm{~Hz}$
Opt. A5 - Switzerland 220 V, 50 Hz

Probe Tips

(1X) Order 206-0379-00 \$65
(10X) Order 206-0380-00 $\$ 65$
(20X) Order 206-0381-00 $\$ 65$
(100X) Order 206-0382-00 \$65

SMA Male to BMC FIONAL ACCESSORIES
SMA Male to BNC Female - Order 015-0554-00
SMA Female to BNC Male - Order 015-0572-00
SMA to Probe Tip - Order 013-0237-00

OPTIONAL ACCESSORIES (for 1103)
36 in Precision 50Ω BNC cable - Order 012-0482-00
50Ω Feedthru Termination - Order 011-0049-01

AM503S Current Probe System, Option 03 (A6303 Probe)

AM503S with CT-4

TEKTRONIX CURRENT PROBES

Most of the probes described in the previous sections are for measuring voltage signals. While current amplitudes can be calculated from a measured voltage drop through a known resistance value by using Ohm's Law, current probes enable you to directly observe and measure the current waveform which may be very different from the voltage signal. Tektronix current probes are unique in that they not only measure but, with an oscilloscope, actually display current waveforms from dc to 1 GHz . Two types of current probes are available: probes that measure ac current only and ac/dc probes which can measure both the dc and ac components of a mixed ac/dc signal. AC only current probes use a transformer to convert ac current flux into a voltage signal to the oscilloscope. These have a frequency response from less than 100 Hz up to 1 GHz . AC/DC current probes also include Hall Effect semiconductor devices and provide frequency response from dc to 50 MHz .

A current probe is used by clipping its jaws around the wire that is carrying the current to be measured, unlike an ammeter which must be connected in series with the circuit. Because current probes are non-invasive, with loading typically in the $\mathrm{m} \Omega$ to low Ω range, they are especially useful where low loading of the circuit is important.
If you need to make highly accurate current measurements, especially at high frequencies, Tektronix current probes are your clear choice.

AM 503S (in use)

CURRENT PROBE SELECTION GUIDE												
Type	Bandwidth Hz to MHz	Peak Pulse Pulse	$\begin{aligned} & \text { Max } \\ & A A_{1} \\ & P-P \end{aligned}$	Below ${ }^{\text {Derate }}$ Above		$\operatorname{Max}_{\mathrm{DC}}$	Amp-S Product	Current/Div Display Range	Rise Time	$\underset{\substack{\text { Max } \\ \text { Insertion } \\ \hline}}{\substack{\text { n }}}$	$\begin{array}{\|c\|} \hline \text { Max } \\ \text { Barewire } \\ \text { Voltage } \end{array}$	$\begin{gathered} \text { Max } \\ \begin{array}{c} \text { Conductor } \\ \text { Diameter } \end{array} \end{gathered}$
A6302/AM 503 with CT-4	$\begin{aligned} & \hline \mathrm{DC} \text { to } 50 \\ & 0.5 \text { to } 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \mathrm{~A} \\ & 1 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 40 \mathrm{~A} \\ & 1 \mathrm{kA} \\ & \hline \end{aligned}$	20 Hz	$\begin{aligned} & 20 \mathrm{kHz} \\ & 1.2 \mathrm{kHz} \\ & \hline \end{aligned}$	20 A	$\begin{gathered} 100 \times 10^{-6} \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \mathrm{~mA} \text { to } 5 \mathrm{~A}^{-1} \\ 20 \mathrm{~mA} \text { to to } 5 \mathrm{kA}^{-1} \end{gathered}$	$\begin{gathered} 7 \mathrm{nS} \\ 17.5 \mathrm{nS} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 0.1 \Omega @ 5 \mathrm{MHZ} \\ 30 \mathrm{~m} \Omega \\ \hline \end{array}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 3 \mathrm{kV} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15^{\circ} \\ & 1.50^{\prime} \end{aligned}$
A6303/AM 503	DC to 15	500 A	200 A		20 kHz	100 A	$10,000 \times 10^{-6}$	$10 \mathrm{~mA} \mathrm{to} 50 \mathrm{~A}^{-1}$	23 nS	0.02Ω @ 1 MHz	700 V	0.83°
P6021 with Passive Termination	120 to 60	250 A	15 A	300 Hz	5 MHz	0.5 A	500×10^{8}	$\begin{aligned} & 20 \mathrm{~mA}^{-1} \text { or } \\ & 100 \mathrm{~mA}^{-1} \\ & \hline \end{aligned}$	5.8 nS	$0.03 \Omega @ 1 \mathrm{MHZ}$	600 V	$0.15{ }^{\text { }}$
$\begin{aligned} & \text { P6021 with CT-4 } \\ & \text { P6021 with } 134 \\ & \text { P6021 with } 134 \end{aligned}$	$\begin{aligned} & 120 \text { to } 20 \\ & 12 \text { to } 38 \end{aligned}$	$\begin{aligned} & 1 \mathrm{kA} \\ & 250 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mathrm{kA} \\ & 15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 300 \mathrm{~Hz} \\ & 230 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{kHz} \\ & 5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.5 \\ 500 \times 10^{-6} \end{gathered}$	$\begin{aligned} & 400 \mathrm{~mA} \text { or } 100 \mathrm{~A}^{-1} \\ & 1 \mathrm{~mA} \text { to } 1 \mathrm{~A}^{-2} \end{aligned}$	$\begin{aligned} & 17.5 \mathrm{nS} \\ & 9.2 \mathrm{nS} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~m} \Omega @ 1 \mathrm{MHZ} \\ & 0.03 \Omega @ 1 \mathrm{MHZ} \end{aligned}$	$\begin{aligned} & 3 \mathrm{kV} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.50^{\circ \prime} \\ & 0.15^{\circ} \end{aligned}$
and CT-4	25 to 20	1 kA	1 kA	230 Hz	1.2 kHz	20 A	0.5	$20 \mathrm{~mA} \mathrm{to} 1 \mathrm{kA}^{2}$	17.5 nS	$30 \mathrm{~m} \Omega$ @ 1 MHZ	3 kV	1.50°
P6022 with Passive Termination	935 to 120	100 A	6 A		10 MHz	0.2 A	9×10^{-6}	$\begin{aligned} & 10 \mathrm{~mA} \text { or } \\ & 100 \mathrm{~mA}^{1} \end{aligned}$	2.2 nS	0.03Ω @ 1 MHZ	600 V	$0.10{ }^{\circ}$
P6022 with 134	100 to 65	100 A	6 A	1.3 kHz	10 MHz	0.2 A	9×10^{-6}	$1 \mathrm{~mA} \mathrm{to} 1 \mathrm{~A}^{\prime 2}$	5.4 nS	0.03Ω @ 1 MHZ	600 V	0.10"
CT-1	25 k to 1000	12 A	1.4 A			0.2 A	1×10^{-6}	$2 \mathrm{~mA}^{4.1}(5 \mathrm{mV} / \mathrm{mA})$	0.35 nS	1Ω @10 MHZ	1000 V	0.070°
CT-2	1.2 k to 200	36 A	7 A			0.2A	50×10^{-6}	$10 \mathrm{~mA}^{-1}(1 \mathrm{mV} / \mathrm{mA})$	0.5 nS	0.1Ω @ 10 MHZ	1000 V	$0.052^{\prime \prime}$

${ }^{* 1}$ Scope set at $10 \mathrm{mV} / \mathrm{div}$.
${ }^{* 2}$ Scope set at $50 \mathrm{mV} / \mathrm{div}$.

AM 503S CURRENT PROBE SYSTEM

With the AM 503S Current Probe System you can measure both $A C$ and $D C$ current with one probe. The AM 503S consists of an A6302 or A6303 Current Probe, an AM 503 Current Probe Amplifier and a TM 502A Power Module. The DC current flux field is sensed by the Hall Effect semiconductor device in the A6302/3, converted to a voltage and transmitted to the oscilloscope by the AM 503. Simultaneously, the AM 503 passes an opposing DC current of equal magnitude through the jaw of the probe. This "bucking" current cancels out the saturation effect of the DC current on the probe core and allows accurate measurement of the AC current in the device under test. The DC and AC currents are summed in the AM 503 providing the total current magnitude to be displayed on your oscilloscope. You attach the probe by sliding back the top jaw, placing the conductor inside the probe core and sliding the jaw back into place enclosing the conductor completely within the probe core. The movable opposing surfaces of the core are polished to micron tolerances to ensure maximum accuracy.

To achieve optimum performance, the current probes and current probe amplifier should be calibrated as a system. The AM 503 S system provides a fully calibrated system.

AM 503 CURRENT PROBE AMPLIFIER

The AM 503 operates in any of the TM 500/TM 5000 power modules and is connected to the A6302 or A6303 probes through a multipin connector.
The illuminated knob skirt indicates current per division for each of the 12 attenuation settings. Bandwidth can be limited to 5 MHz to eliminate unwanted noise transients. Both AC and DC coupling are provided. AC coupling allows the measurement of low amplitude signals on a high level DC current. A front panel light warns of input currents above 100 A DC

AM 503 with the A6303 or 20 A DC with the A6302. A pushbutton allows degaussing of the probe when it is removed from the circuit and locked in operating position.

The output of the A6303/AM 503 can be displayed on any oscilloscope that has at least a $50-\mathrm{MHz}$ bandwidth and a 10 mV sensitivity. The A6302/AM 503 requires a 100 MHz oscilloscope with 10 mV sensitivity to display the probe's full bandpass. The AM 503 output can also be plugged directly into a 50Ω recording instrument.

A6302/A6303 CURRENT PROBES

A6302 and A6303 Current Probes are designed to be used with the AM 503 Current Probe Amplifier, any TM 500/TM 5000 Power Module, and an oscilloscope. Both probes are used to make SCR, power supply, industrial control and motor start-up current measurements. The A6303 is recommended for measuring current in X -ray tubes to ensure compliance with PL 90-602, the Radiation Control for Health and Safety Act of 1968 .

CT-1/CT-2 Current Probes with P6041 BNC Probe Cable

CT-1/CT-2 CURRENT PROBES

The CT-1 and CT-2 Current Probes are designed for permanent or semipermanent in-circuit installation. Each probe consists of a current transformer and an interconnecting cable. The current transformers have a small hole through which a current carrying conductor is passed during circuit assembly. One probe cable can be used to monitor several current transformers that have been wired into a circuit.

The P6041 Probe Cable provides the connection between the CT- 1 and CT-2 current transformers with a BNC oscilloscope input. A 50Ω termination is required to terminate the cable at a high impedance ($1 \mathrm{M} \Omega$) oscilloscope input.

The P6040 Probe Cable is also available to connect the CT-1 to a GR scope input.

AM 503S Current Probe System

TYPICAL APPLICATIONS

- X-ray Tube Currents
- SCR Currents
- Power Supply Currents
- Motor Start-Up Currents
- Industrial Control Currents
- Relay Currents
- Common-Mode Rejection of DC and AC currents

FEATURES/BENEFITS

- 20 A/100 A (with A6303) AC and DC Current Measurements
- DC to 50 MHz Bandwidth
- Peak Pulse Measurements to 50 A, 1,000 A With the CT-4 Current Probe
- AC or DC Coupling
- Minimal Loading
- For 50Ω Inputs (from AM 503)

CT-1

- 25 kHz to 1 GHz
- 12 A Max Pulse Current
- 450 mA Max CW Current
- For 50Ω Input

CT-2

- 1.2 kHz to 200 MHz
- 36 A Max Pulse Current
- 2.5 A Max CW Current
- For 50Ω Input

P6021

- 120 Hz to 60 MHz
- 15 A Peak
- For 1 Ms Inputs
- Clip-on Capability
- Shielded Probe Heads

P6022

- 935 kHz to 120 MHz
-6 A Peak
- For 1 M 2 Inputs
- Clip-on Capability
- Shielded Probe Heads

CT-4

- Pulsed Currents to 1,000 A
- Continuous Currents Up to 370 A RMS
- Accepts 1.5 Inch Diameter Conducfors
- Measurements on Bare Conductors to 3000 V
- Nullifies dc Effects to 300 A with dc Bucking Coll

P6021 and 6022 AC Current Probes with Terminations and 134 Current Probe Amplifier

P6021 CURRENT PROBE

The P6021 and P6022 Current Probes with the 134 Current Probe Amplifier provide a versatile AC current measurement system. Both probes provide accurate current measurements over a wide range of frequencies. The P6021 and P6022 allow current measurements without breaking the circuit by clipping onto the current carrying conductor. Just open the spring-loaded slide, place the conductor into the slot and lock it closed. No electrical connection is required. Shielded probe heads are not grounded when the slides are in their open positions, eliminating accidental grounding of the circuit under test.
For general purpose applications the P 6021 provides wide-band performance with excellent low-frequency characteristics. Bandwidth is 120 Hz to 60 MHz . The passive termination is switchable from $2 \mathrm{mV} / \mathrm{mA}$ to $10 \mathrm{mV} / \mathrm{mA}$.

P6022 CURRENT PROBE

With a head size of $0.47 \mathrm{in} . \times 0.25 \mathrm{in}$. $(10 \mathrm{~mm} \times 6 \mathrm{~mm})$ and a bandwidth of 935 Hz to 120 MHz , the P6022 is ideal for measuring currents in compact high performance circuits. Passive termination output is switchable between $1 \mathrm{mV} / \mathrm{mA}$ or $10 \mathrm{mV} / \mathrm{mA}$.

134 CURRENT PROBE AMPLIFIER

The 134 is used to extend the low frequency measurement capabilities and sensitivity of the P6021 or P6022 Current Probes. Using the 134 Amplifier extends the initial P6021 measurement capability of 120 Hz down to 12 Hz . The P6022/134 combination goes to 100 Hz from 935 Hz . The Current/Div switch provides calibrated current steps from $1 \mathrm{~mA} /$ div to $1 \mathrm{~A} /$ div (with the oscilloscope or plug-in unit adjusted for a deflection factor of $50 \mathrm{mV} /$ div). When using a 134 with a P6021 or P6022, the passive termination is not required

The 134 can also be used as an auxiliary voltage amplifier by placing the Current/ Div switch in the Volts position.

CT-4 CURRENT PROBE

The CT-4 is a robust clip-on high current transformer that extends the measurement capability of the P6021 and A6302 clip-on current probes. Maximum low frequency performance down to 0.5 Hz is obtained using the AM 503S. Current amplitudes to $1,000 \mathrm{amps}$ may be measured using the A6302 or P6021 (with passive termination) provided the amp-second ratings are not exceeded

The P6021 and 134 may be used for measurements at normal line frequency and above. (The P6022 and A6303 are not compatible with the CT-4).

The CT-4 has receptacles for current probes in either 20:1 or 1000:1 step-down ratios.

The 1.5 inch square opening makes it possible to clip onto large conductors without breaking the circuit under test. Insulated core and shield assemblies allow measurements on bare wires to 3000 V , and to 14 kV with the included high voltage bushing. A DC bucking coil assembly allows up to 300 A of DC to be nullified (derates to $1 \mathrm{MHz} B / W$). This is very useful for measuring $A C$ signals on top of a $D C$ voltage level.

ORDERING INFORMATION

P6021 5 ft Current Probe with Termination Includes: 5 in. (130 mm) Ground lead (175-0124-01); 3 in. (75 mm) Ground lead (175-0263-01); Two miniature alligator clip (344-0045-00); Instruction manual (070-0947-00).
P6022 5 ft. Current Probe with Terminatior Includes: Same as the P6021; Instruction manual (070-0948-00).
Opt. $03-9 \mathrm{ft}$. with termination
Opt. 12-5 ft. without termination

(P6021)

(P6022)
Opt. 13-9 ft. without termination
(P6021)
(P6022)

- Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

```
134 Current Probe Amplifier Includes: Hanger assembly (014-0029-00); Cable assembly (012-0104-00); Power supply (015-0058-02); Instruction manual (070-0990-01). Opt. 01-230 V Power Supply CT-4 Current Probe With DC Bucking Coil.
\(\$ 780\)
\(\$ 780\)
``` (015-0194-00); DC bucking coil (015-0190-00); Instruction manual (070-6478-00).

INTERNATIONAL POWER PLUG OPTIONS
134 Opt. 01 A1 - Universal Euro \(220 \mathrm{~V}, 50 \mathrm{~Hz}\).
1340 pt . 01 A 2 - UK \(240 \mathrm{~V}, 50 \mathrm{~Hz}\).
134 Opt . 01 A 3 -Australian \(240 \mathrm{~V}, 50 \mathrm{~Hz}\).
134 Opt. 01 A4 - North American \(240 \mathrm{~V}, 60 \mathrm{~Hz}\).
134 Opt. 01 A5 - Switzerland \(220 \mathrm{~V}, 50 \mathrm{~Hz}\). OPTIONAL ACCESSORIES
Carrying Case - For P6021 or P6022, and a 134
Amplifier. Order 016-0087-02
Passive Termination -
(P6021) - Order 011-0105-00
(P6022) - Order 011-0106-00
Power Supply - (110 V AC) Order 015-0058-02
Power Supply - (230 V AC) Order 015-0059-02

\section*{DIFFERENTIAL MEASUREMENTS}

Differential measurement systems enable you to simultaneously measure two voltage points in a circuit and provide as an output the difference between the two voltages. Tekronix offers two types of differential measurement probes: the active differential probe and the passive matched pair of probes. The P6046 is a 100 MHz differential amplifier in probe form which connects to one channel of a standard scope amplifier. With differential amplifiers the P6135A matched probe pair provides CMRR ratios up to 20,000:1. Since a single 10 X probe with accuracy of \(1 \%\) or less gives a scope-to-probe CMRR of no better than 50:1, the P6135A is essential to obtain accurate results from your differential amplifier.

P6046 with 10X Attenuator

P6046 Amplifier with Power Supply

\section*{P6046}

The P6046 Differential Probe and P6046 Amplifier Unit provide unique measurement capabilities with all Tektronix oscilloscopes. The differential-signal processing takes place in the probe itself, resulting in high common-mode signal rejection at higher frequencies. The differential probe-tip signal processing of the P6046 minimizes the measurement errors caused by differences in standard probes, cable lengths, and input attenuators.

\section*{CHARACTERISTICS}

CMRR - With deflection factors of 1 to \(20 \mathrm{mV} /\) div: at least 10,000:1 at \(50 \mathrm{kHz}, 5,000: 1\) at 1 MHz , and 1,000:1 at 50 MHz (DC coupled).
Common Mode Linear Dynamic Range - \(\pm 5 \mathrm{~V}\), \(\pm 50 \mathrm{~V}\) with 10 X attenuator.
Bandwidth - DC to \(100 \mathrm{MHz}(-3 \mathrm{~dB})\).
Rise Time -3.5 ns or less.
Deflection Factor Range -1 to \(200 \mathrm{mV} /\) div in 8 calibrated steps, 1-2-5 sequence, accurate within \(3 \%\) (with an oscilloscope deflection factor of \(10 \mathrm{mV} / \mathrm{div}\)). Input RC \(1 \mathrm{M} \Omega\) paralleled by 10 pF or less.

Input Coupling - AC or DC , selected by a switch on the probe. Low frequency response AC -coupled is -3 dB at \(20 \mathrm{~Hz}, 2 \mathrm{~Hz}\) with 10 X attenuator.
Displayed Noise - 280 mV or less (tangentially measured).
Maximum Input Voltage - \(\pm 25 \mathrm{~V}\) (\(\mathrm{DC}+\) peak AC), \(\pm 250 \mathrm{~V}\) with 10 X attenuation, derated with frequency. The P6046 circuitry can be damaged by electrostatic discharge. Please refer to the manual for use.
Output Impedance -50 \(\Omega\) through a BNC-connector. \(50 \Omega\) termination supplied with amplifier for use with \(1 \mathrm{M} \Omega\) systems.
Probe Cable - 6 ft . Iong, terminated with special ninepin connector.

P6135A Passive Probe Pair

\section*{P6135A}
- DC to 150 MHz Differential Probe Pair, 10X, 1.5 m

The P6135A is a compact-sized, high-impedance, 10X probe with identify function. It includes three pairs of matched tips which allow it to be used with all Tektronix differential amplifiers. The attenuation ratio is adjustable to compensate for differences in amplifier input resistances as well as individual probe attenuation. This ability to precisely match the attenuation for each channel maximizes CMRR.

The P6135A is compatible with the 11000 Series TEKPROBE \({ }^{M}\) Interface and standard BNC interfaces.

\section*{CHARACTERISTICS}

CMRR - On 11A33: \(10,000: 1\) from DC to 1 kHz , derating to \(100: 1\) at 20 MHz . On 7000-Series: 20,000 to 1 from dc to 1 kHz derating to \(100: 1\) at 20 MHz .
Attenuation - Adjustable to 10X.
Input Resistance - \(1 \mathrm{M} \Omega \pm 0.32 \%\)
Input Capacitance - 10.5 pF on instrument with 15 pF input capacitance; 9.9 pF when used with instrument that has 20 pF input capacitance; 12.5 pF when used with instrument that has 47 pF input capacitance.
Maximum Useful Bandwidth - On 11A33: DC to
150 MHz ; On 7A13: DC to \(>90 \mathrm{MHz}\).
Typical Probe Rise Time - On 11A33: \(<2.33 \mathrm{~ns} ;\) On 7A13: < 3.89 ns.
Maximum Voltage - \(500 \mathrm{~V}(\mathrm{DC}+\mathrm{pk} \mathrm{AC})\) from DC to 1.3 MHz , derated to \(50 \mathrm{~V}(\mathrm{DC}+\mathrm{pk} \mathrm{AC})\) at 100 MHz .

\section*{P6046}
- DC to 100 MHz
- 1X/10X Differential
- 1,000:1 CMRR at 50 MHz
(DC-Input Coupled)
- 500:1 CMRR at 50 MHz (AC-Input Coupled)
\(- \pm 250\) V Maximum Voltage with 10X Attenuator
- Dual Probe Tips for Greater CMRR at High Frequencies

\section*{P6135A}
- DC to >150 MHz
- Attenuation Adjustable to 10X
- 10,000:1 CMRR on 11A33

Differential Comparator; 20,000:1 on 7A13 Differential Comparator
- \(\pm 500\) V Maximum Voltage
- Matched Pair

\section*{ORDERING INFORMATION}

P6046 1X, 6 ft . FET Differential
Probe with Amplifier and
Power Supply
Includes: \(50 \Omega\) Termination
(011-0049-01); Amp and power
supply (015-0106-00); \(50 \Omega\)
Coaxial cable (012-0076-00);
Hanger assembly (014-0029-00);
Carrying case (016-0111 01);
10X attenuator (010-0361-00);
Dual attenuator head
(010-0419-00); Swivel probe tip;
Spring ground contact; Connector
test point jack; Instruction
manual (070-0756-00).
Opt. 09-Without Accessories
Opt. 11-Probe Without
Amplifier and Power Supply
Power Supply with Amplifier
Order (015-0106-00)
P6135A Pair of 10X, 150 MHz Differential Probes
Includes: Adjustment Tool
(003-1433-00); 2 Retractable hook
tips (013-107-06); 2 Circuit board connectors; 6 in. Dual-ring ground lead (196-3295-00); Accessory
Pouch (016-0708-00) 26 in.
Ground leads (196-3113-02);
26 in. Ground leads with Alligator
clips (196-3305-00); 2 SMT KlipChip \({ }^{\text {™ }}\)
(206-0364-00); 2 Low inductance
GND collars (343-1003-01); 2
Probe tip holders (352-0670-00);
2 in ground leads (195-4240-00);
2 each of black, white, silver, gray,
blue, orange, red, green and
yellow cable markers; Instruction manual (070-7675-00).
- Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

A6901

\section*{Ground Isolation Monitor}
- Permits Elevation of Test Instrument Chassis to 40 V Peak (28 V RMS) - Aids in Circuit Analysis or Circumventing Ground Loop Noise Problems
- UL and VDE Safety Certification

\section*{A6902B}

Voltage Isolation
Amplifier
- For \(50 \Omega\) or \(1 \mathrm{M} \Omega\) Inputs
- Two IndependentlyIsolated Channels
- High Voltage Isolation
- UL Certified to 3000 V/ Channel (6000 V Maximum Channel Differential) \({ }^{1}\)
- DC to 20 MHz Bandwidth

\section*{ORDERING INFORMATION}

A6901 Ground Isolation Monitor
Includes: Operator manual (070-3618-00).
A6902B Voltage Isolator (500 V Max)
Includes: Two 500 V isolation probes (010-0411-15); Right angle power cord (161-0104-00): 98 in (249 cm), \(50 \Omega\) output cables (012-0204-00); Operator manual (070-5614-00). Opt. \(\mathbf{0 2 * 2}^{* 2}\) - Add two large probes. (010-0409-01)
Opt. 09*2 - Add two large probes plus two 4 mm banana adapters
+\$725
INTERNATIONAL POWER PLUG OPTIONS
Opt. A1 - Universal Euro
220 V, 50 Hz .
Opt. A2-UK \(240 \mathrm{~V}, 50 \mathrm{~Hz}\)
Opt. A3 - Australian
\(240 \mathrm{~V}, 50 \mathrm{~Hz}\).
Opt. A4 - North American
\(240 \mathrm{~V}, 60 \mathrm{~Hz}\).
Opt. A5 -Switzerland
\(220 \mathrm{~V}, 50 \mathrm{~Hz}\).
\({ }^{1}\) When ordered with Option 02 or 09.
*2 Extends range to 3,000 volts per channel.
For A6901 (North American 240 V not available. Neutral not grounded in 240 V North American Systems.)

\section*{P6407/P6408}

The P6407 and P6408 are 16 bit word recognizer/ trigger probes for use with analog and digital storage oscilloscopes. They allow the oscilloscope to trigger on user-defined logic states (rather than on analog levels), thus extending the utility of the oscilloscope into digital troubleshooting and debug applications.

The P6407 is available as an option to 2400 -Series oscilloscopes and may be field-added to 2400-Series digital storage oscilloscopes. The trigger word is programmed from the oscilloscope's front panel. Probe power is supplied from the host oscilloscope.

The P6408 is available as an option to 2200 -Series oscilloscopes and may be field-added at any time. The P6408 may also be used with oscilloscopes with \(15-35 \mathrm{pF}\) inputs when used with a P6109 probe or other probes which have a miniature size probe tip. The trigger word is manually programmed via miniature DIP switches on the probe pod. The P6408 derives its operating power from the device under test +5 V bus. An optional probe power cable is available that allows the P6408 to be powered from any Tek scope (with a probe power connector), 1101A probe power supply, or from a userfurnished +5 V supply.

The P6408 includes a P6109, 10X, passive probe which couples the output of the probe pod to a \(1 \mathrm{M} \Omega\) trigger input of the oscilloscope. This presents a low capacitance load to the probe pod and delivers a fast rise pulse to the scope's trigger input.

P6408

\section*{P6408 CHARACTERISTICS}

Input Channels - 16 data channels, 1 qualifier channel
Input Logic Levels - HI/ONE, +2.0 V or greater; LO/ ZERO, + 0.7 V or less
Maximum Input Voltage Swing - 0 V to V cc Maximum Non-destructive Input Voltage -\(-1 \mathrm{~V}(\mathrm{LO}),+15 \mathrm{~V}\) (HI)
Minimum Input Pulse Width - 10 ns for any single channel; 40 ns for any channel combination
Input to Output Delay - 20 ns max Output Pulse Width -10 ns min. for any single channel; 27 ns max. for any channel combination
Output Pulse Rise Time - 10 ns max Output Pulse Fall Time - 10 ns max Output Voltage Level -HI/ONE, +200 mV or greater; LO/ZERO, +70 mV or less; (AT output of P6109)
Power Requirements - Volts: \(+5 \mathrm{~V} \pm 0.25 \mathrm{~V}\)
Current: 100 mA max

P6407

\section*{P6407 CHARACTERISTICS}

\section*{INPUTS AND OUTPUTS}

INPUT VOLTAGES
Minimum Input Voltage - - 0.5 V
Maximum Input Voltage - 5.5 V
Maximum Input Low Voltage -0.6 V
Minimum Input High Voltage - 2.0 V
WORD RECOG OUT
High \(->2.5\) V LSTTL output
Low -< 0.5 V LSTTL output
Input High Current -20 \(\mu \mathrm{A}\)
Input Low Current - - 0.6 mA
SYNCHRONOUS MODE
Data Setup Time - 25 ns
Data Hold Time - 0 ns
Minimum Clock Pulse Width - High 20 ns, Low 20 ns
Minimum Clock Period -50 ns
Delay from Selected Clock Edge to Word Out < 55 ns

ASYNCHRONOUS MODE
Maximum Trigger Frequency - 10 MHz
Minimum Coincidence Between Data Inputs Resulting in a Trigger - 85 ns
Maximum Coincidence Between Any Two Data Inputs Without Producing a Trigger - 20 ns Delay from Input Word Coincidence to Word Out \(-<140\) ns

P6407/P6408

\section*{Word Recognizer/Trigger} Probes
- For TTL and TTL-Compatible Logic
- Allows Oscilloscope to

Trigger on User-Defined Logic States
- 17 Bits (16 Data Bits Plus Qualifier)
- Synchronous and Asynchronous Operation
- Easy to Use
- Simplifies Digital

Troubleshooting and Debug
- P6407 - Use with 2400-

Series Oscilloscopes
- P6408 - Use with Any Oscilloscope

ORDERING INFORMATION
P6407 Word Recognizer/
Trigger Probe
Includes: 2 (10 wide) Lead headers (012-0747-01); Pkg of
20 SMT KlipChip™ Adapters (SMG50); Instruction sheet (070-5582-00).
P6408 Word Recognizer/
Trigger Probe
Includes: 2 (10 wide) Lead
Includes: 2 (10 wide) Lead
headers (012-0747-01); Pkg. of
20 SMT KlipChip \({ }^{\text {™ }}\) Adapters (SMG50);
P6109 Probe (complete package);
Instruction sheet (070-6938-00).

\section*{OPTIONAL ACCESSORY}

Probe Power Cable - Order 174-1342-00
\$54
I Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

\section*{PROBE ACCESSORIES}

\section*{PROBE ACCESSORIES SELECTION GUIDE}

MONOLITHIC PROBE ACCESSORIES
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Part Number 013-0052-00 013-0054-00} & Description & Price \\
\hline & Bayonet ground assembly. & \$12.50 \\
\hline & Probe screw tip to BNC & \\
\hline & adapter & \$20.00 \\
\hline \multirow[t]{2}{*}{013-0056-00} & Probe screw tip to BNC & \\
\hline & adapter for P6028. & \$24.00 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 013-0071-00 \\
& 013-0071-01
\end{aligned}
\]} & Retractable hook tip. & \$6.00 \\
\hline & Retractable hook for & \\
\hline & P6008 environmental & \\
\hline & probe. & \$5.50 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 134-0013-00 \\
& 166-0428-00
\end{aligned}
\]} & Banana tip (\#6-32). & \$1.80 \\
\hline & Insulating ground cover & 1 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 175-0124-01 \\
& 175-0125-01 \\
& 175-0263-01 \\
& 175-0192-00
\end{aligned}
\]} & 5 in ground lead. & \$3.00 \\
\hline & 12 in ground lead & \$3.25 \\
\hline & 3 in ground lead. & \$3.00 \\
\hline & 6 in ground lead & \\
\hline & (P6015 only). & \$10.50 \\
\hline 196-3120-00 & 6 in clip on ground lead & \$3.30 \\
\hline \multirow[t]{2}{*}{\(196-3121-00\)
\(206-0015-00\)} & 12 in clip on ground lead & \$3.30 \\
\hline & Straight tip (0.055 in dia) & \$2.15 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 206-0060-00 \\
& 206-0061-00
\end{aligned}
\]} & Spring tip (0.08 in dia). & \$3.50 \\
\hline & Spring tip (accepts & \\
\hline & 0.065 in dia pin). & \$2.45 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 206-0100-00 \\
& 206-0104-00
\end{aligned}
\]} & Calibration tip (0.063 in dia) & \$13.75 \\
\hline & Long straight tip & \\
\hline & (0.032 in dia). & \$1.80 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 206-0105-00 \\
& 206-0116-00
\end{aligned}
\]} & Hook tip. & \$2.00 \\
\hline & Banana tip (P6015 only) & \\
\hline & \#10-32. & \$3.20 \\
\hline \multirow[t]{2}{*}{206-0134-03} & Pin tip (accepts & \\
\hline & 0.025 in IBM SLT pin). & \$7.50 \\
\hline \multirow[t]{3}{*}{206-0137-01} & Ground lead adapter & \\
\hline & (0.025 in square pin & \\
\hline & closing). & \$4.25 \\
\hline \multirow[t]{2}{*}{206-0168-00} & Spring Tip (accepts 0.068 & \\
\hline & in dia pin). & \$4.50 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 206-0185-00 \\
& 206-0203-00
\end{aligned}
\]} & Right angle hook tip. & \$2.00 \\
\hline & IC test tip. & \$2.15 \\
\hline \multirow[t]{2}{*}{344-0005-00} & Alligator clip, \# 10-32 & \\
\hline & screw thread (P6015 only) & \$5.75 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
344-0045-00 \\
344-0046-00
\end{array}
\]} & Alligator clip. & \$1.45 \\
\hline & Miniature alligator clip with & \\
\hline & boot. & \$2.95 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 352-0090-00 \\
& 352-0068-00
\end{aligned}
\]} & P600X probe holder. & \$.50 \\
\hline & P600X probes to Scope & \\
\hline & Chassis probe holder. & \$2.55 \\
\hline & IC CLIPS (Not Shown) & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Part Number \\
003-0709-00 \\
003-0823-00 \\
003-0801-00
\end{tabular}} & Description & Price \\
\hline & 16-Pin DIP, clothes pin style. & \$18.00 \\
\hline & 24 -pin DIP, clothes pin style. & \$37.00 \\
\hline & 40-pin DIP, clothes pin styl & \$53.00 \\
\hline
\end{tabular}

CABLE MARKER SETS (Not Shown)
\begin{tabular}{llr}
Part Number & Description & Price \\
\(016-0127-00\) & For 3/16 in dia. cable. & \(\$ 24.00\) \\
\(016-0633-00\) & For all modular cables & \\
& (P610X/A, P612X/P613X/ & \\
& P6230 Families). & \(\$ 5.00\) \\
\({ }^{{ }^{1}}\) Contact your local sales office. &
\end{tabular}
\({ }^{{ }^{1}}\) Contact your local sales office.

P6006, P6007, P6008, P6009, P6028 and P6060 Monolithic Series

\section*{PROBE ACCESSORIES SELECTION GUIDE}

NOT TO SCALE

\section*{PROBE ACCESSORIES SELECTION GUIDE}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Part Number
013-0107-06} & Description & Price \\
\hline & Retractable hook tip for & \\
\hline & compact tip probes. & \$4.25 \\
\hline \multirow[t]{2}{*}{013-0195-00} & Subminiature probe & \\
\hline & tip to BNC adapter. & \$10.00 \\
\hline \multirow[t]{4}{*}{013-0197-00} & KLIP-KIT (includes two & \\
\hline & 16-pin DIP clips and four & \\
\hline & signal/ground pins). & \\
\hline & (See note 1) & \$55.00 \\
\hline \multirow[t]{2}{*}{013-0258-01} & P6562 probe tip to BNC & \\
\hline & adapter, \(50 \Omega\) terminated. & \$90.00 \\
\hline \multirow[t]{5}{*}{013-0202-02} & Subminiature/Compact & \\
\hline & to-miniature probe tip & \\
\hline & adapter (allows use of & \\
\hline & miniature probe tip & \\
\hline & accessories. See page323) & \$5.50 \\
\hline \multirow[t]{2}{*}{013-0208-02} & Retractable hook tip for & \\
\hline & subminiature tip probes. & \$4.35 \\
\hline \multirow[t]{2}{*}{013-0226-00} & Compact probe tip & \\
\hline & to BNC adapter. & \$10.75 \\
\hline \multirow[t]{2}{*}{013-0227-00} & Compact probe tip to BNC & \\
\hline & \(50 \Omega\) termination adapter. & \$69.00 \\
\hline \multirow[t]{2}{*}{013-0237-00} & Compact probe tip to & \\
\hline & SMD adapter (not shown). & \$345.00 \\
\hline \multirow[t]{2}{*}{013-0240-00} & Subminiature probe tip & \\
\hline & Chassis mount test jack. E & - \(\$ 5.25\) \\
\hline \multirow[t]{3}{*}{016-1077-00} & Ground tip contact for & \\
\hline & compact tip probes. 2 ea. five different probe tip to & \\
\hline & ground contact spacings. & \\
\hline \multirow[t]{2}{*}{017-0520-00} & Subminiature probe tip to & \\
\hline & adapter. & \$75.00 \\
\hline \multirow[t]{3}{*}{131-3288-02} & Signal/ground pins & \\
\hline & KLIP-KIT (013-0197-00), & \\
\hline & (includes eight pins). & \$60.00 \\
\hline \multirow[t]{2}{*}{131-4210-00} & Compact probe tip chassis & \\
\hline & mount test jack. & \$5.25 \\
\hline \multirow[t]{2}{*}{131-5030-00} & Subminiature probe tip & \\
\hline & circuit board test points (pkg . 25). & \$48.00 \\
\hline \multirow[t]{2}{*}{131-5031-00} & Compact probe tip circuit & \\
\hline & board test points (pkg. 25). & . \$48.00 \\
\hline \multirow[t]{2}{*}{195-4240-00} & Low impedance & \\
\hline & ground contact. & \$2.90 \\
\hline 196-3286-00 & 8 in . alligator ground lead. & \$8.00 \\
\hline 196-3287-00 & 12 in . slip on ground lead. & \$8.25 \\
\hline 196-3113-02 & 6 in . slip on ground lead. & \$8.50 \\
\hline 196-3113-03 & 3 in . slip on ground lead. & \$8.50 \\
\hline \multirow[t]{2}{*}{196-3302-00} & 6 in. alligator ground lead (not compatible with P6137 & \\
\hline & or P6156). & \$11.00 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 196-3305-00 \\
& 204-0925-01
\end{aligned}
\]} & 6 in. alligator ground lead. & \$12.00 \\
\hline & Subminiature probe tip & \\
\hline & attenuator tip cover. & \$1.20 \\
\hline \multirow[t]{2}{*}{204-1049-00} & Compact probe tip & \\
\hline & attenuator tip cover. & \$1.00 \\
\hline 206-0364-00 & SMT KlipChip \({ }^{\text {TM }}\) Adapter & \$4.90 \\
\hline 343-1003-01 & Ground collar. & \$3.00 \\
\hline \multirow[t]{2}{*}{344-0046-00} & \#6-32 thread alligator & \\
\hline & ground clip. & \$2.95 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 344-0398-00 \\
& 352-0351-00
\end{aligned}
\]} & Slip on alligator ground clip. & p. \(\$ 3.50\) \\
\hline & Probe holder, self-adhesive & \\
\hline & back, black. & \$2.00 \\
\hline
\end{tabular}
\({ }^{-1}\) Contact your local sales office.

Note 1: Not compatible with Compact Tip Probes
Note 2: Not compatible with P6137, P6156, P6134C, P6135A, and P6053C.

Note 3: Use same part number as subminiature probe, also see page 325 for other compatible tip accessories. page 325 for other compatible tipaccessories.

\section*{PROBE ACCESSORY PACKS/CONVERSION KITS SELECTION GUIDE}

ACCESSORY PACK/MINIATURE PROBE TIPS

Order 020-1724-00
Includes: Screwdriver (003-1433-00); Retractable hook tip (013-0107-06); Ground cover
(166-0404-01); 6 in ground lead (196-3198-00); 5 in ground lead (175-0124-01); 12 in ground lead (175-0125-01); 3 in ground lead (175-0263-01); SMT KlipChip \({ }^{\text {TM }}\) (206-0364-00); Alligator clip for 0.025 in connector (344-0398-00); Alligator clip for \#6-32 Thread (344-0046-00); IC Test Tip (see page 323); 3.5 in ground lead (195-6176-01); Spring ground (214-4125-01).

ACCESSORY PACK/P613X COMPACT AND SUBMINIATURE

Order 020-1835-00
T \(\$ 65.00\)
Includes: Screwdriver (003-1433-00); Retractable hook tip (013-0107-06); Retractable hook tip (013-0208-02);
2 in ground lead (195-4240-00); 3 in. ground lead (196-3113-03); 6 in ground lead (196-3113-02); 12 in \#6-32 stud ground lead (196-3287-00); 8 in ground lead (196-3286-00); SMT KlipChipTM (206-0364-00); Ground collar (343-1003-01); Alligator clip 0.025 in connector (344-0398-00); Alligator clip \#6-32 thread (344-0046-00); 6 in ground lead with 0.025 in. receptacle (196-3302-00); 6 in ground lead w/alligator (196-3305-00).

ACCESSORY PACK FOR P612X PROBE TIPS

Order 020-1836-00
조 \$43.00
Includes: Screwdriver (003-1433-00); IC Test Tip (see page 331); Tip insulator (166-0404-01):
3.5 in ground lead (195-6176-00); 6 in ground lead (196-3302-00); 8 in ground lead
(196-3286-00); 12 in ground lead (196-3287-00); Retractable hook tip (013-0107-06); Alligator clip \#6-32 connector (344-0046-00); SMT KlipChip™ (206-0364-00); Spring ground (214-4125-00); Alligator clip for 0.025 in connector (344-0398-00).

\section*{PROBE TOOLS (NOT SHOWN)}
\begin{tabular}{|c|c|c|}
\hline 00 & Adjustment tool P6055. & \$3.00 \\
\hline 003-0675-01 & Adjustment tool P6202A. & \$2.65 \\
\hline 003-0825-00 & Tip extractor for miniature & \\
\hline & probes (except forP610X "A" & \\
\hline & version and P612X family & \\
\hline & probes). & \$1.85 \\
\hline 003-1433-00 & Adjustment tool forP601X/A, & \\
\hline & P612X, and P613X family. & \$1.05 \\
\hline 003-1433-01 & Package of 5 each of & \\
\hline & 003-1433-00, above. & \$4.25 \\
\hline
\end{tabular}

NOT TO SCALE

\section*{P6201 PROBE}

Product Number Description
013-013 Probe tip to BNC adapter. 017-0094-00 017-0094-00

103-0164-00

131-1302-00
166-0557-00
175-0848-00
175-0848-01
175-0848-02
206-0200-02
342-0180-00
346-0046-00
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{P6562 PROBE} & \multirow[b]{2}{*}{Price} \\
\hline Price & Product Number & Description & \\
\hline \$8.75 & \multirow[t]{2}{*}{SMG 50} & Package of 20 each SMT & \\
\hline \$27.00 & & KlipChip \({ }^{\text {TM }}\) adapters & \$89.00 \\
\hline \$1.00 & 013-0258-01 & Probe tip to BNC adapter \(50 \Omega\) terminated. & \$90.00 \\
\hline \$100.00 & 206-0364-00 & SMT KlipChip \({ }^{\text {™ }}\), 1 each. & \$4.90 \\
\hline & 131-4730-00 & SMT probe tip circuit & \\
\hline & 131-4933-00 & board test points, pkg of 5 . Jack tip assembly: 0.025 in & \$15.00 \\
\hline \$13.50 & & square pin socket, pkg of 5 . & \\
\hline \$1.50 & & Can be purchased as part & \\
\hline \$1.75 & & of 016-1034-00. See below. & \\
\hline \$4.00 & 196-3268-01 & Ground lead with 0.025 in & \\
\hline \$3.55 & & receptacle, pkg of 5. & \$40.00 \\
\hline \$3.25 & 016-1034-00 & Adapter accessory kit: Tips, spring adapter, Jack tip & \\
\hline \$2.00 & & assembly, low inductance & \\
\hline & & ground lead. & \$35.00 \\
\hline
\end{tabular} Call 1-800-426-2200.
\({ }^{1}\) Contact your local sales office.

\section*{Contents}

Test Leads 334
Coaxial Cables 334
Interface Cables 334
Adapters/Connectors 335
Attenuators/Terminations 336
Time Interval to Voltage
Converter338

Travel Accessories 339
Rackmount Kits 340
Viewing Hoods 341
Light Filters 341
Logic Analyzers Accessories 342

\section*{TEST LEADS SELECTION GUIDE}

ALM01 UL approved red and black test lead set with minature size probe tips. Incorporates shrouded banana plugs and includes two retractable hook tips.
\$18
ALM02 Red and black test lead set with minature size probe tips. Non-shrouded banana plugs (photo inset) and includes two retractable hook tips. (Non-UL)

ALM03 Red and black test lead set (not shown) with minature size probe tip for the red lead and alligator clip for the black lead. Non-shrouded banana plugs and includes one retractable hook tip. (Non-UL)\$18

Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

ALM01 and ALM02 (inset)

\section*{COAXIAL CABLES AND INTERFACE CABLES SELECTION GUIDE}

\section*{PATCH CORDS \\ (not shown)}

COAXIAL BNC CABLES
\(50 \Omega\)
10 in., male to male
18 in., male to male 18 in., male to male
24 in., male to male 36 in., male to male 36 in., precision (1\%) male to male
42 in., male to male 18 in., male to female 10 in., BNC male to BSM female
18 in., BNC male to BSM female

\section*{\(75 \Omega\)}

24 in., male to male 36 in., male to male 42 in ., male to male 60 in ., male to male \(93 \Omega\)
42 in., male to male
\begin{tabular}{ll}
\(012-0208-00\) & \(\$ 20\) \\
\(012-0076-00\) & \(\$ 25\) \\
\(012-1342-00\) \\
\(012-1341-00\) & \(\$ 45\) \\
\(012-0482-00\) & \(\$ 35\) \\
\(012-0057-01\) & \(\$ 25\) \\
\(012-0104-00\) & \(\$ 30\) \\
\(012-0128-00\) & \(\$ 30\) \\
\(012-0127-00\) & \(\$ 40\) \\
& \\
\(012-1339-00\) & \(\$ 45\) \\
\(012-1338-00\) & \(\$ 45\) \\
\(012-0074-00\) & \(\$ 25\) \\
\(012-1337-00\) & \(\$ 45\) \\
& \\
\(012-0075-00\) & \(\$ 40\)
\end{tabular}

\section*{Precision, Flexible Delay Cables}
\begin{tabular}{llll}
\(1 \mathrm{~ns} .\), male to female & \(015-1019-00\) & \(\$ 155\) & GP \\
2 ns ., male to female & \(015-1005-00\) & \(\$ 250\) &
\end{tabular}
\begin{tabular}{lll}
5 ns., male to female & \(015-1006-00\) & \(\$ 2\) \\
\(1 \mathrm{~ns} .\), male to male & \(015-0562-00\) & \(\$ 3\)
\end{tabular}
2 ns., male to male \(\quad 015-0560-00 \quad \$ 320\)
5 ns., male to male 015-0561-00 \$425

\section*{Delay Cables}

500 ps., 4.5., male to male 015-1015-00 015-1017-00

\section*{\$35 \(\$ 50\)}

COAXIAL GR \(50 \Omega\) CABLES (not shown)
\begin{tabular}{lll}
\(10 \mathrm{~ns} .\), RG58A/U & \(017-0501-00\) & \(\$ 150\) \\
\(5 \mathrm{~ns} ., \mathrm{RG} 213 / \mathrm{U}\) & \(017-0502-00\) & \(\$ 225\) \\
\(2 \mathrm{~ns} ., \mathrm{RG} 58 \mathrm{U} / \mathrm{U}\) & \(017-0505-00\) & \(\$ 205\) \\
\(5 \mathrm{~ns} .\), RG58/U & \(017-0512-00\) & \(\$ 155\)
\end{tabular}

BNC to BNC, 18 in.
\begin{tabular}{lrr}
BNC & \(012-0087-00\) & \(\$ 16.25\) \\
Red & \(012-0086-00\) & \(\$ 10.00\) \\
Black & & \\
BNC to banana plug-jack, 18 in. & \(012-0091-00\) & \(\$ 9.00\) \\
Red & \(012-0090-00\) & \(\$ 9.00\) \\
Black & & \\
Banana plug-jack to banana plug-jack, 18 in. & \\
Red & \(012-0031-00\) & \(\$ 13.00\) \\
Black & \(012-0039-00\) & \(\$ 13.00\) \\
Pin-jack to pin-jack, \(\mathbf{0 . 0 8}\) in.dia-pin & \\
Red, 8 in. & \(012-0179-00\) & \(\$ 5.00\) \\
Black, 8 in. & \(012-0181-00\) & \(\$ 5.00\) \\
Red, 18 in. & \(012-0180-00\) & \(\$ 4.55\) \\
Black, 18 in. & \(012-0182-00\) & \(\$ 6.00\)
\end{tabular}

INTERFACE CABLES
(not shown)
\begin{tabular}{lrr}
GPIB & & \\
1 m , double-shielded & \(012-0991-01\) & \(\$ 140\) \\
2 m , double-shielded \\
4 m , double-shielded
\end{tabular}\(\quad 012-0991-00 \quad \$ 160\)

COAXIAL N \(50 \Omega\) CABLES
(not shown)
\(\qquad\)
6 ft . male to male 012-0114-00 \$32

\section*{ADAPTERS, CONNECTORS AND ADAPTER KITS}

\section*{ADAPTERS, CONNECTORS AND ADAPTER KITS SELECTION GUIDE}

BNC male to UHF female
BNC ADAPTERS

BNC male to GR
BNC male to N female
BNC male to binding post BNC male to dual binding post
\begin{tabular}{rr}
\(103-0032-00\) & \(\$ 7.00\) \\
\(017-0064-00\) & \(\$ 15.00\) \\
\(103-0058-00\) & \(\$ 14.00\) \\
\(103-0033-00\) & \(\$ 7.00\) \\
& \\
\(103-0035-00\) & \(\$ 20.00\)
\end{tabular}

\begin{tabular}{llr}
BNC female to BSM male & \(103-0036-00\) & \(\$ 19.00\) \\
BNC female to UHF male & \(103-0015-00\) & \(\$ 6.00\) \\
BNC female to GR & \(017-0063-00\) & \(\$ 65.00\) \\
BNC female to N male & \(103-0045-00\) & \(\$ 17.00\) \\
BNC female to Clip Leads & \(013-0076-00\) & \(\$ 44.00\) \\
BNC female to EZ ball & \(013-0076-01\) & \(\$ 26.00\) \\
BNC female to dual banana & \(103-0090-00\) & \(\$ 11.00\)
\end{tabular}

BNC female to GR
BNC male to GR
BNC male to GR, \(50 \Omega\)
Thruline Termination
\begin{tabular}{rr}
\(017-0063-00\) & \(\$ 65.00\) \\
\(017-0064-00\) & \(\$ 115.00\) \\
\(017-0083-00\) & \(\$ 120.00\)
\end{tabular}
\begin{tabular}{lrr}
\multicolumn{3}{c}{\begin{tabular}{r}
SMA ADAPTERS \\
(not shown)
\end{tabular}} \\
& \(015-0572-00\) & \(\$ 19.25\) \\
SMA female to BNC male & \(015-054-00\) & \(\$ 33.00\) \\
SMA male to BNC female & \(015-0554-00\) \\
SMA male to GR & \(015-1007-00\) & \(\$ 160.00\) \\
SMA female to GR & \(015-1008-00\) & \(\$ 175.00\) \\
\begin{tabular}{l}
SMA male to N-female \\
Threaded female to male \\
slip on connector \\
Male to female connector \\
Saver
\end{tabular} & \(015-1009-00\) & \(\$ 47.00\) \\
\hline
\end{tabular}

N STYLE ADAPTERS
\begin{tabular}{llll}
N male to GR & \(017-0021-00\) & \(\$ 90.00\) \\
N female to GR & \(017-0062-00\) & \(\$ 80.00\) \\
N female to BNC male & \(103-058-00\) & \(\$ 14.00\) \\
N male to BNC female & \(103-0045-00\) & \(\$ 17.00\) \\
\hline \(103-0028-00\) & \(103-0030-00\) & \\
\hline
\end{tabular}

BNC CONNECTORS

SMA CONNECTORS
\begin{tabular}{lrl}
SMA male to male & \(015-1011-00\) & \(\$ 28.00\) \\
SMA female to female & \(015-1012-00\) & \(\$ 20.00\) \\
SMA T & \(015-1016-00\) & \(\$ 40.00\) \\
SMA male to BNC female & \(015-1018-00\) & \(\$ 11.00\)
\end{tabular}

\begin{tabular}{lrr}
\multicolumn{3}{c}{ GR CONNECTORS } \\
GR T & \(017-0069-00\) & \(\$ 220.00\) \\
GR elbow & \(017-0070-00\) & \(\$ 165.00\)
\end{tabular}

MISC. CONNECTORS
\begin{tabular}{lrr}
Female to BNC male & \(013-0126-00\) & \(\$ 22.00\) \\
Male to " \(F\) " male & \(103-0157-00\) & \(\$ 8.00\) \\
Male to BNC female & \(103-0158-00\) & \(\$ 6.00\) \\
Female to "F" female & \(103-0159-00\) & \(\$ 8.00\)
\end{tabular}

BNC ADAPTER KIT
AK01 BNC Adapter Kit
Includes: 50 ohm feed-through termination 011-0049-01; 50 ohm 10X attenuator 011-0059-02; 50 ohm, 5X attenuator 011-0060-02; 50 ohm, 6 dB attenuator 011-0069-02; 50 ohm, coax cable, 42 in. (2 each), 012-0057-01; GR to BNC female adapter 017-0063-00; BNC female to BNC female adapter 103-0028-00; BNC "T" 103-0030-00; BNC elbow male to female 103-0031-00; BNC female to dual banana 103-0090-00; BNC male to BNC male 103-0029-00.

\section*{SMA ADAPTER KIT}

AK02 SMA Adapter Kit
Includes: 4.5 in . semirigid cable w/male connectors 015-0015-00; 1 m , flexible, 50 hm cable w/male connectors 174-1341-00; 2 X attenuator 015-1001-00; 5 X attenuator 015-1002-00; 10X attenuator 015-1003-00; GR to SMA female adapter 015-1008-00; SMA male to SMA male adapter 015-1011-00; SMA female to SMA female adapter 015-1012-00; SMA "T" 015-1016-00; SMA male to BNC female 015-1018-00; 50 ohm termination 015-1022-00; SMA female to BNC male adapter 015-0572-00.

\section*{ATTENUATORS/TERMINATIONS}

ATTENUATORS SELECTION GUIDE
BNC 50, 75, and 93 OHM (See photo next page)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{BNC 50, 75, and 93 OHM (See photo next page)} \\
\hline & Type & Impedance (0hms) & Z-Tol. (0hms) & Atten. & \begin{tabular}{l}
Atten. \\
(dh)
\end{tabular} & Tol. (db) & Freq. (dc to) & Avg. Power (Watts) & Peak Power (Watts) & Max. VSWR & Price \\
\hline 011-0049-01 & Feed-through termination & 50 & \(\pm 1\) & NA & NA & NA & 1 GHz & 2 & 300 & 1.2-dc to 1 GHz & \$35 \\
\hline 011-0059-02 & Attenuator & 50 & \(\pm 1\) & 10X & 20 & \[
\begin{aligned}
& \pm 0.4 \text { to1 GHz } \\
& \pm 0.61-2 \mathrm{GHz}
\end{aligned}
\] & 2 GHz & 2 & 500 & \[
\begin{aligned}
& 1.1 \text {-dc to } 1 \mathrm{GHz} \\
& 1.2-1 \text { to } 2 \mathrm{GHz}
\end{aligned}
\] & \$55 \\
\hline 011-0060-02 & Attenuator & 50 & \(\pm 1\) & 5X & 14 & \[
\begin{aligned}
& \pm 0.4 \text { to1 GHz } \\
& \pm 0.61-2 \mathrm{GHz}
\end{aligned}
\] & 2 GHz & 2 & 500 & \[
\begin{aligned}
& 1.1-\mathrm{dc} \text { to } 1 \mathrm{GHz} \\
& 1.2-1 \text { to } 2 \mathrm{GHz}
\end{aligned}
\] & \$50 \\
\hline 011-0069-02 & Attenuator & 50 & \(\pm 1\) & 2 X & 6 & \[
\begin{aligned}
& \pm 0.3 \text { to1 GHz } \\
& \pm 0.51-2 \mathrm{GHz}
\end{aligned}
\] & 2 GHz & 2 & 500 & \(1.1-\mathrm{dc}\) to 1 GHz \(1.2-1\) to 2 GHz & \$55 \\
\hline 011-0076-02 & Attenuator & 50 & \(\pm 1\) & 2.5X & 8 & \[
\begin{aligned}
& \pm 0.3 \text { to1 GHz } \\
& \pm 0.51-2 \mathrm{GHz}
\end{aligned}
\] & 2 GHz & 2 & 500 & \[
\begin{aligned}
& 1.1-\mathrm{dc} \text { to } 1 \mathrm{GHz} \\
& 1.2-1 \text { to } 2 \mathrm{GHz}
\end{aligned}
\] & \$50 \\
\hline 011-0099-00 & Feed through termination & 50 & \(\pm 0.5\) & NA & NA & NA & 200 MHz & 5 & & \[
\begin{aligned}
& \text { 1.1-dc to } 100 \mathrm{MHz} \\
& 1.2-100 \text { to } 200 \mathrm{MHz}
\end{aligned}
\] & \$65 \\
\hline 011-0055-01 & Feed through termination & 75 & \(\pm 1\) & NA & NA & NA & 100 MHz & 1 & 300 & 1.1 -dc to 100 MHz & \$40 \\
\hline 011-0056-01 & Feed through termination & 93 & \(\pm 1\) & NA & NA & NA & 100 MHz & 1 & 300 & 1.1 -dc to 100 MHz & \$35 \\
\hline 011-0057-01 & Min. loss attenuator & 50-75 & & 2.3X & 7.2 & \(\pm 0.5\) & 100 MHz & . 5 & & 1.1-dc to 100 MHz & \$50 \\
\hline 011-0058-01 & Min. loss attenuator & 50-93 & & 2.3X & 7.2 & \(\pm 0.5\) & 100 MHz & 1.2 & & 1.1 -dc to 100 MHz & \$47 \\
\hline 011-0061-00 & Attenuator & 75 & & 10X & 20 & & & . 5 & & & \$40 \\
\hline 011-0062-00 & Attenuator & 93 & & 10X & 20 & & & . 5 & & & \$40 \\
\hline 011-0092-00 & Feed through termination & 600 & \(\pm 1\) & NA & NA & NA & 1 MHz & 1 & & & \$40 \\
\hline 011-0112-00 & Min loss attenuator & 75-50 & & & & & & 2 & & (ac coupled) & \$70 \\
\hline 011-0129-00 & Feed through termination & 50 & \(\pm 0.05\) & NA & NA & NA & 100 kHz & & & & \$150 \\
\hline 011-0102-00 & Coax termination & 75 & \(\pm 0.5\) & NA & NA & NA & & . 5 & & & \$25 \\
\hline 011-0103-00 \({ }^{-1}\) & Return loss bridge & 75 & \(\pm 0.5\) & NA & NA & NA & & & & & \$30 \\
\hline
\end{tabular}
" 011-0103-00 red color body; 011-0103-01 green color body; 011-0103-02 white color body.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Type & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Impedance } \\
\text { (Ohms) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Z-Tol } \\
\text { (Ohms) }
\end{gathered}
\] & Atten. & Atten. (db) & \begin{tabular}{l}
Tol. \\
(db)
\end{tabular} & Freq. (dc to) & Avg. Power (Watts) & Peak Power (Watts) & Max. VSWR & Price \\
\hline 015-1001-00 & Attenuator & 50 & \(\pm 1.0\) & 2 X & 6 & \(\pm 0.3\) & 18 GHz & 1 & 500 & \begin{tabular}{l}
\(1.15-\) dc to 4 GHz
\(1.25-4\) to 12.4 GHz
\(1.35-124\) to 18 GHz \\
\(1.35-12.4\) to 18 GHz
\end{tabular} & \$165 \\
\hline 015-1002-00 & Attenuator & 50 & \(\pm 10\) & 5X & 14 & \(\pm 0.5\) & 18 GHz & 1 & 500 & \begin{tabular}{l}
\(1.15-\mathrm{dc}\) to 4 GHz \\
\(1.20-4\) to 8 GHz \\
\(1.25-8\) to 12.4 GHz \\
1.35-12.4 to 18 GHz
\end{tabular} & \$155 \\
\hline 015-1003-00 & Attenuator & 50 & \(\pm 1.0\) & 10X & 20 & \(\pm 0.5\) & 18 GHz & 2 & 500 & \begin{tabular}{l}
\(1.15-\) dc to 4 GHz \\
\(1.20-4\) to 8 GHz \\
\(1.25-8\) to 12.4 GHz \\
1.35-12.4 to 18 GHz
\end{tabular} & \$175 \\
\hline 015-1004-00 & Termination (female) & 50 & \(\pm 0.5\) & NA & NA & NA & 18 GHz & 0.5 & 200 & \begin{tabular}{l}
\(1.05-\) dc to 4 GHz \\
\(1.10-4\) to 12.4 GHz \\
1.15-12.4 to 18 GHz
\end{tabular} & \$75 \\
\hline 015-1020-00 & Short-circuit termination (male) & 0 & & NA & NA & NA & 18 GHz & NA & NA & & \$27 \\
\hline 015-1021-00 & Short-circuit termination (female) & 0 & & NA & NA & NA & 18 GHz & NA & NA & & \$31 \\
\hline 015-1022-00 & termination (male) & 50 & \(\pm 0.5\) & NA & NA & NA & 18 GHz & 0.5 & 100 & & \$41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Type & \[
\begin{array}{|c|}
\hline \text { Impedance } \\
\text { (Ohms) } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline \text { Z-Tol } \\
\text { (0hms) }
\end{gathered}
\] & Atten. & Atten. (db) & \begin{tabular}{l}
Tol. \\
(db)
\end{tabular} & Freq. (dc to) & Avg. Power (Watts) & Peak Power
(Watts) & Max. VSWR & Price \\
\hline 011-0085-00 & Attenuator & 50 & & 3X & 10 & \(\pm 0.5\) & 12.4 GHz & 2 & 300 & \[
\begin{aligned}
& 1.2-\mathrm{DC} \text { to } \geq 4 \mathrm{GHz} \\
& 1.3-4 \text { to } \geq 8 \mathrm{GHz} \\
& 1.4-8 \text { to } \geq 12.4 \mathrm{GHz}
\end{aligned}
\] & \$130 \\
\hline 011-0086-00 & Attenuator & 50 & & 10X & 20 & \(\pm 1\) & 12.4 GHz & 2 & 300 & \[
\begin{aligned}
& 1.4-\mathrm{dc} \\
& \text { to } 12.4 \mathrm{GHz} \\
& \hline
\end{aligned}
\] & \$130 \\
\hline 011-0087-00 & Attenuator & 50 & & 100X & 40 & \(\pm 1\) & 12.4 GHz & 2 & 300 & \[
\begin{aligned}
& 1.4-\mathrm{dc} \\
& \text { to } 12.4 \mathrm{GHz}
\end{aligned}
\] & \$130 \\
\hline
\end{tabular}

3.5 MM TERMINATIONS (not shown)
\begin{tabular}{lrr}
\hline Female \(50 \Omega\) & \(011-0149-00\) & \(\$ 900\) \\
Male \(50 \Omega\) & \(011-0148-00\) & \(\$ 900\) \\
\hline & & \\
\hline & & \\
& & \\
& & \\
\hline
\end{tabular}
\(50 \Omega\) POWER DIVIDER
SMA female connector 015-0565-00 \$285 SMA male connector 015-1014-00 \(\$ 300\) GR connectors 017-0082-00

Designed for use in broad-band \(50 \Omega\) systems where the mismatch introduced by ordinary "Tee" connectors is undesirable. Load isolation is nominally 6 dB while the voltage attenuation ratio is nominally 2 X (input to either load arm, other load arm terminated in a standard \(50 \Omega\) termination). Maximum VSWR on the 015-1014-00 is 1.50 from dc to 12.00 GHz and 1.90 from 12.01 to 18.00 GHz .

ACCESSORY HOUSING
Accessory Housing 011-0081-00
\(\$ 70\)
Accessory housing without electrical components is useful
for applications requiring special circuitry.

\section*{CT-3 SIGNAL PICKOFF}

CT-3 Signal Pickoff 017-0061-00
\(\$ 230\)
The CT-3 Pickoff provides a convenient means of picking off a signal in a \(50 \Omega\) system.
Sensitivity - 10\% of the voltage under test, into a \(50 \Omega\)
load.
Decay Time Constant \(-4.5 \mu \mathrm{~s}\) at 0 dc current.
Rise Time - <0.4 ns.
Frequency Response - 50 kHz to 875 MHz at 0 dc current. Insertion Impedance - With \(50 \Omega\) termination is \(1 \Omega\) shunted by \(4.5 \mu \mathrm{H}, 2 \Omega\) shunted by \(4.5 \mu \mathrm{H}\) without a \(50 \Omega\) termination.
VSWR - <1.2 at 1.5 GHz .
Voltage Rating - AT O V dc is 25 V RMS. 1 kV pulse peak.

\section*{A clear view into digital control systems}
- Real-time Scope Display of Time-Interval Variations vs. Time
- Time Delay, Pulse Width, and Period Measurements
- >2 Million Uninterrupted Event-by-Event Measurements/second

The TVC 501 instantuneously and continuously converts consecutive timing measurements to a timeinterval vs. time waveform. The top trace (TVC output) shows the pulse-to-pulse width vs. time variations of the lower stream of pulses.

\section*{ORDERING INFORMATION}

TVC 501 Instrument Module \(\$ \mathbf{2 , 5 0 0}\) Includes: 2 monitor cables; 1 output cable; 1 P6109 10X readout probe; operator's manual (070-7991-00); service manual (070-7992-00). Requires a TM 500/5000 Power Module. See page 241.

\section*{RECOMMENDED ACCESSORIES}

Monitor cable - 42 in SMB-BNC (012-0532-00)
Output cable - 42 in BNC-BNC
(012-0057-01)
\(50 \Omega\) BNC feed through termination -(011-0049-01)
P6408 16-bit Word Recognizer
Use the P6408 when time-
intervals are defined by a bus address.
P6420 RF Probe, \(10 \mathrm{kHz}-1 \mathrm{GHz}\)
Demodulates RF bursts for pulsed
RF timing measurements
P6009 100X Readout Probe
Extends trigger voltage range to
\(\pm 125 \mathrm{~V}\) for high voltage pulses See probes section for other readout probes and input terminations.

\section*{THE NEED FOR TIME-INTERVAL MEASUREMENTS}

Measuring parameters is no longer as simple as recording voltage vs. time. In digital or switching systems, signals are sampled, pulse-coded, or pulse-width modulated. Relevant information is in the varying time intervals between the signal transitions. It is in these time intervals that failures often occur. For example, control pulse widths in a switching power supply can be too long or short which can overdrive output transistors. Or an embedded controller's interrupt latency can be too long which can cause a system crash.

Timing variations typically appear as left-to-right motion or jitter on a scope. Timebase or trigger holdoff adjustments may improve display stability but do not show timing dynamics. The TVC 501 untangles the often

TVC 501 confusing waveforms in digital systems and delivers a coherent and real-time view.

\section*{SAME SCOPE, MORE POWER} The TVC 501 adds three measurement functions to your scope's voltage vs. time capability: timedelay vs. time, pulse-width vs. time, and period vs. time. The TVC continuously measures the timing parameter and instantaneously generates a voltage proportional to the measurement. Timing measurements are made with crystal controlled accuracy using digital counters. Conversions are performed pulse-to-pulse without averaging. The TVC output goes to any scope. The TVC 501 provides seven vertical scales from \(1 \mu \mathrm{sec}\) to 1 sec per division. Up to 30,000 divisions of offset permit small timing variations to be viewed on events with large average values.

\section*{REAL TIME}

There is no resetting or re-arming. The continuous TVC output becomes another trace on your scope that can be correlated, measured, and analyzed with waveforms on other channels. Since the TVC generates voltages proportional to time-intervals, you can set your scope to trigger on timing violations such as a timedelay that exceeds a threshold or an incorrectly narrow pulse or glitch.

\section*{QUICK RESULTS}

On power-up, the TVC generates a scale calibration waveform to set the scope's gain and offset. One key press can automatically set the trigger level or the measurement range. You can use the monitor output signal to verify that the TVC is measuring what you actually want it to measure The TVC can also generate demonstration signals to quickly familiarize you with its operation.

\section*{FLEXIBLE CONFIGURATION}

The TVC 501 can be used with other TM 500/5000 modular instruments in a suitable power module mainframe. See page 241.

\section*{CHARACTERISTICS}

\section*{A AND B CHANNEL INPUTS (BNC)}

Impedance \(-1 \mathrm{M} \Omega, \leq 50 \mathrm{pF}\).
Coupling -ac or dc selectable.
Trigger Slope - Rising or falling edge selectable.
Trigger Level - Adjustable in 10 mV steps in \(\pm 1.25 \mathrm{~V}\) window, 100 mV steps in \(\pm 12.5 \mathrm{~V}\) window when using 10 X probes. Digital trigger level readout decodes Tektronix readout probes.
Sensitivity -~10 nsec pulses at 250 mV .

\section*{TIMING MEASUREMENTS}

Functions - A-Period, A-Width, A-to-B Delay.
Scope Viewing Range \(- \pm 4\) divisions around
Conversion Offset, out-of-range LED flags conversions outside of viewing range.
Conversion Offset -Adjustable to 30,000 divs in
0.1 div increments.

Conversion Scale -1 \(\mu \mathrm{sec} / \mathrm{div}\) to \(1 \mathrm{sec} / \mathrm{div}\) in 7 decade steps.
Best Timing Resolution - 33 nsec at \(1 \mu\) sec scale (1/30th of a division).
Uninterrupted Rate -Up to 2.5 MHz (400 nsec between events), random sampling LED flags missed measurements.

\section*{MEASUREMENT OUTPUT (BNC)}

Voltage range \(- \pm 400 \mathrm{mV}\) into \(1 \mathrm{M} \Omega\). Corresponds to \(\pm 4\) vertical scope divisions when scope set to \(100 \mathrm{mV} /\) div. Automatically clips outside of \(\pm 4\) division range.

Response time - voltage settles <500 nsec after end of event.

\section*{A AND B MONITOR OUTPUTS (SMB)}

Voltage range \(-\sim 0-500 \mathrm{mV}\) into \(1 \mathrm{M} \Omega\). Goes high when input meets trigger slope and level criteria.
B monitor prescaler -Can generate one pulse every
100 or every 1000 triggers to measure high frequency oscillators (>100 MHz).
B monitor demonstration - Can generate 5 different digital demonstration signals.

INSTRUMENT TRAVEL ACCESSORIES

\section*{TRAVEL LINE PACKAGE}

\section*{Avoid Scope Damage and Improve Portability}

\author{
- Impact-Resistant Packaging \\ - Pouch and Cover \\ - Carrying Strap \\ - Rubber Shock-absorbing Bumpers
}

\section*{Portable Oscilloscope}

Now give your 2200 Series instrument the added protection often necessary when used in rough environments. The Travel Line package provides protection from impacts along the front and rear of the instrument. The rear bumper is designed to provide a wider base to set the instrument on and reduces the potential of tip over when standing vertically. Plus it has a handy cord wrap.

The high-quality rubber moldings offer long life and are resistant to cracking and becoming brittle with age. The rubber composition provides excellent desk bench and inclined plane grab so there is no worry about instrument slippage.

A front panel protective cover and an accessory pouch for carrying probes and documentation is also included plus a convienient carrying strap for hands-free operation and transport.

The Travel Line Package can be ordered at the time of purchase or as a field retrofit kit (available on 2235A, 2236A, 2221, 2224, and 2232).

\section*{TRAVEL LINE PACKAGE}

Order Option 33 for specific instrument.
2235A, 2236A - Includes rubber molding, accessory pouch, front panel cover, carrying strap. 2221, 2224, 2232 - Includes rubber molding, carrying strap.

TRAVEL LINE PACKAGE CONVERSION KIT
Includes: Replacement cabinet and rear cover with the rubber moldings installed.
\begin{tabular}{lll}
\(2235 A\) & Order 040-1188-03 & \(\$ 360\) \\
22264,2221, & Order 040-1187-03 & \(\$ 200\)
\end{tabular}

2236A, 2221
2224, 2232
Order 040-1187-03

\section*{PORTABLE INSTRUMENT TRANSIT/CARRYING CASES}

\section*{Special Protection for Transporting and Shipping Portable Instruments.}
- High Strength
- Foam Padding
- Custom Fit

016-0792-01 (shown)
Rugged transit cases molded of high strength glassepoxy. Protects your instruments from hostile environments, shock, vibration, moisture, and impact. Recommended for shipping or transporting your instruments.

Adjustments can be made to the internal padding of the 016-0792-01 to accommodate a wide variety of portable instruments and accessories.

490 Series
271X Family 275X Family 2400 Series, 2200 Series
490 Series,
OF150, OF235
TM 503A
TM 504
TM 515
C - 50 Series
HARD SIDED CASE
\begin{tabular}{lr}
Order 016-0792-00 &. \\
Order 016-0962-00 & \(\$ 495\) \\
Order 016-0792-01 & \(\$ 345\) \\
Order 016-0658-00 & \(\$ 990\) \\
Order 016-0565-01 & \(\$ \$ 70\) \\
Order 016-0608-00 & \(\$ 805\) \\
Order 016-0643-00 & \(\$ 770\) \\
Order 016-0177-00 & \(\$ 395\)
\end{tabular}

SOFT SIDED CASE

Order 016-0659-00
Order 016-0707-00
CARRYING STRAP
2200/2300 Series
Order 346-0199-00

Front Covers Only
Snap-on front cover, molded of high-impact plastic, is available for most portable oscilloscopes, spectrum analyzers, and TM 500/5000 mainframes.
\begin{tabular}{llr}
2400 Series & \(200-3199-01\) & \(\$ 13.25\) \\
2245A, 2246A, 2247A & \(200-3232-00\) & \(\mathbf{z} \$ 10.00\) \\
2235A, 2236A 2710 & \(200-2520-00\) & \(\mathbf{Z} \$ 10.00\) \\
2201, 2205, 2211, 2225 & \(200-3397-00\) & \(\mathbf{-} \$ 10.00\) \\
TM 506 & \(200-1728-00\) & \(\$ 21\) \\
TM 504 & \(200-1727-00\) & \(\$ 20\) \\
TM 503A & \(200-3554-00\) & \(\$ 26\)
\end{tabular}

T Product available within 24 hours
through Tek Direct. Call 1-800-426-2200.

\section*{RACKMOUNT KITS}

\section*{RACKMOUNT KIT SELECTION GUIDE}

Typical 2400 series rackmount kit.

Typical 2200 series rackmount kit
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Instrument & Part Number & \multicolumn{2}{|r|}{H cm} & \multicolumn{2}{|r|}{L cm} & \multicolumn{2}{|l|}{F} & \multicolumn{2}{|c|}{E} & \multicolumn{2}{|l|}{D Min. in. cm} & \multicolumn{2}{|l|}{\begin{tabular}{l}
D Max. \\
in. cm
\end{tabular}} \\
\hline DSA 601, DSA 602, 1201/A, 11301/A,11302/A, 11401, 11402/A. 11403 & 040-1279-00 & 12.25 & 31.1 & 24.3 & 61.7 & 2.4 & 6.1 & 31.7 & 80.5 & 14.63 & 37.2 & 27.75 & 70.49 \\
\hline 11801, 11802, CSA 803, SM11 & 040-1214-00 & 8.75 & 22.3 & 21.6 & 55.0 & - & - & - & - & 14.63 & 37.2 & 27.75 & 70.49 \\
\hline 7704A, 7104, 7934, 7854, 7904A & 040-0611-01 & 15.75 & 40.0 & 21.63 & 54.9 & 1.25 & 3.18 & 30.48 & 77.4 & - & - & - & - \\
\hline 7704A, 7104, 7934, 7854, 7904A & 040-0560-00*1 & 22.0 & 55.9 & 21.9 & 55.6 & 1.98 & 5.0 & - & - & - & - & - & - \\
\hline 7000 Series Plug-in Storage Cabinet & 437-0126-03 & 5.25 & 13.3 & - & - & - & - & - & - & - & - & - & - \\
\hline 5100, 5400 Series & 040-0583-03 & 5.25 & 13.3 & 19.0 & 48.3 & 1.1 & 2.8 & 24.6 & 62.5 & - & - & - & - \\
\hline 2782 & 016-0844-01 & 8.75 & 22.3 & - & - & - & - & - & - & - & - & - & - \\
\hline 271X Family & 016-0901-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.84 & 4.67 & - & - & - & - & - & - \\
\hline 271X Family & 016-0897-00*1 & 7.0 & 17.8 & 18.4 & 46.7 & 4.67 & 11.9 & - & - & - & - & - & - \\
\hline 2400 Series (with DV or DMM Opt.) & 016-0805-00 & 8.75 & 22.3 & 18.3 & 46.5 & 1.8 & 4.5 & 24.8 & 62.9 & 12.8 & 32.5 & 26.8 & 68.1 \\
\hline 2400 Series (w/0 DV or DMM Opt.) & 016-0825-01 & 7.0 & 17.8 & 18.3 & 46.5 & 1.8 & 4.5 & 24.8 & 62.9 & 12.8 & 32.5 & 26.8 & 68.1 \\
\hline 2402 TekMate \({ }^{\text {mM }}\) & 016-0971-00 & 3.5 & 8.9 & 18.0 & 45.7 & 1.8 & 4.5 & 24.5 & 62.2 & 11.0 & 27.9 & 23.0 & 58.4 \\
\hline 2245A, 2246A, 2247A & 2240FIR & 7.0 & 17.8 & 18.3 & 46.5 & 2.2 & 5.6 & 24.8 & 62.9 & 12.8 & 32.5 & 24.5 & 62.2 \\
\hline 2335 & 016-0468-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2236, 2236A & 016-0015-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline \(22350 \mathrm{pt}\). & 016-0833-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2235A & 016-1062-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2220, 2221, 2224, 2230, 2232 & 016-1003-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2213A, 2215A & 016-0466-00 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2211 & 016-1023-00*2 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 2201, 2205, 2225, 2815 & 016-0819-02*2 & 5.25 & 13.3 & 16.3 & 41.4 & 1.8 & 4.5 & - & - & 7.5 & 19.1 & 24.5 & 62.2 \\
\hline 1240, 1241 & 016-0789-00 & 8.75 & 22.3 & 17.75 & 45.1 & 1.13 & 2.9 & - & - & - & - & - & - \\
\hline 1230 & 1230F05 & 8.75 & 22.3 & 17.75 & 45.1 & 1.13 & 2.9 & - & - & - & - & - & - \\
\hline 490 Series & 016-0844-01*1 & 8.75 & 22.3 & 17.75 & 45.1 & 4.7 & 11.9 & - & - & - & - & - & - \\
\hline DAS9100 & 016-0463-00 & 8.75 & 22.3 & 23.5 & 59.7 & 0.75 & 1.9 & 26.5 & 67.3 & 23.38 & 59.4 & 27.3 & 69.5 \\
\hline DAS9200 & 016-0845-00 & 10.5 & 26.7 & 23.5 & 59.7 & 0.63 & 1.6 & 26.5 & 67.3 & 23,38 & 59.4 & 27.3 & 69.5 \\
\hline 91HS8, 92HS8 & 016-0884-00 & 3.5 & 8.9 & 23.5 & 59.7 & 0.75 & 1.9 & 26.5 & 67.3 & 23.38 & 59.4 & 27.3 & 69.5 \\
\hline TM5006, TM506A & 040-0982-00 & 7.0 & 17.8 & 18.0 & 45.7 & - & - & - & - & - & - & - & - \\
\hline TM5003 & 040-1257-00 & 7.0 & 17.8 & 18.0 & 45.7 & - & - & - & - & - & - & - & - \\
\hline TM5003 to 4041 & 040-0984-01 & 7.0 & 17.8 & 18.0 & 45.7 & - & - & - & - & - & - & - & - \\
\hline Two TM503s side by side & 040-0616-02 & 5.3 & 13.5 & 16.5 & 41.9 & 1.1 & 2.8 & 24.6 & 62.5 & - & - & - & - \\
\hline TM503 with 1/2 Rackwidth Adapter & 040-0617-02 & 5.3 & 13.5 & 16.5 & 41.9 & 1.1 & 2.8 & 24.6 & 62.5 & - & - & - & - \\
\hline
\end{tabular}
*1 Cradle mount to rackmount a cabinetized instrument.
*2 For the 2211, 2201, 2225, 2205 oscilloscopes, and the 2815 Opto-Electronics scope when ordered with a rackmount kit (Option \(1 R\)) from the factory, the front feet of the instrument are removed. This reduces instrument height by one-half inch and cannot be reversed. When a field retrofit rackmount kit is installed, the instrument feet will remain integral to the instrument.

DIMENSIONS
(Exclusive of Plug-in Units and Probes)
\begin{tabular}{ll}
\hline Symbol & Definition \\
\hline H & Height of front panel \\
\hline L & \begin{tabular}{l}
Rack front to rearmost permanent fixture \\
excluding cables
\end{tabular} \\
\hline F & \begin{tabular}{l}
Back of front panel to foremost protrusion \\
Out and horizontal
\end{tabular} \\
\hline D Min & \begin{tabular}{l}
Minimum mounting depth from front \\
mounting rail to rear mounting rail
\end{tabular} \\
\hline D Max & \begin{tabular}{l}
Maximum mounting depth from front mounting \\
rail to rear mounting rail
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{BLANK PLUG-IN CHASSIS}

Available for all Tektronix mainframes. The 11000 Series provides a blank plug-in only. The 7000 Series includes a bare printed circuit board.
\begin{tabular}{lll}
11000 Series & \(016-0829-00\) & \(\$ 145\) \\
7000 Series & \(040-0553-04\) & \(\$ 230\) \\
5000 Series & \(040-0818-04\) & \(\$ 145\) \\
TM 500 Series & \(040-0652-06\) & \(\$ 135\)
\end{tabular}

\section*{BLANK PANEL}

When operating the 5000/7000 Series mainframes or the TM500/TM 5000 Series mainframes with less than a full complement of plug-ins, the blank panel may be used to cover an unused compartment. The panel for the 7000 Series is also good for EMC Shielding.
\begin{tabular}{llr}
7000 Series & \(016-0155-00\) & \(\$ 100\) \\
5000 Series & \(016-0452-01\) & \(\$ 75\) \\
TM 500/TM 5000 Series & \(016-0195-05\) & \(\$ 42\)
\end{tabular}

\section*{PLUG-IN STORAGE COMPARTMENT}

The plug-in storage compartment provides storage space for probes, cables, "tees", accessories, and small tools. Inside dimensions: 250 mm long \(\times 51 \mathrm{~mm}\) wide \(\times 106 \mathrm{~mm}\) high (\(9-7 / 8 \times 2 \times 41 / 4\) inches).

Plug-in Storage Comp. 016-0362-02
\(\$ 90\)

\section*{SELECTION GUIDE}

\section*{VIEWING HOODS}

The viewing accessories normally mount on the instrument graticule cover. Some may fit camera-mounted bezels. If you intend using a camera on your instrument, check with your Tek Sales Engineer for bezel-viewer compatibility.

Folding Binocular -
For 2200 series 2445 A/B, 2465 A/B 2467B, 2710, 434, 455, 464, 466 465B, 475, 475A

016-0566-00
For 422, 453A, 454A,
485, 491
Collapsible - To reduce reflections
and glare under high ambient light.
Blue vinyl, folds flat for storage.
For 2200 series, \(2445 \mathrm{~A} / \mathrm{B}, 2455 \mathrm{~A}\),
2465 A/B, 2467B, \(271 \times\) Family,
\(432,434,455,465 / B, 475,464\),
466 (polarized)
016-0180-00
\$70
For 2200 series, 2445 A/B, 2465A/B 2467B, 2710, 464, 466, 455, 465 465B, 475 (non polarized)
For 422, 453, 454A, 485, 491 (non polarized)

\begin{tabular}{llr}
\hline & Part No. & Price \\
Folding - & & \\
For 576 & \(016-0259-00\) & \(\$ 25\) \\
For 577, 5000, 7000,11000 Series & \(016-0260-00\) & \(\$ 48\)
\end{tabular}
\begin{tabular}{|lll|}
\hline & & \\
\hline
\end{tabular}

\section*{CATHODE-RAY TUBE}

\section*{LIGHT FILTERS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Instrument \({ }^{\text {a }}\) Color} & Part Number & Price \\
\hline 200 Series & Blue & 378-0691-00 & \$4.70 \\
\hline 324/335 & Blue & 378-2016-01 & \$2.25 \\
\hline \multirow[t]{3}{*}{490} & Amber & 378-0115-01 & \$3.30 \\
\hline & Gray & 378-0115-02 & \$6.00 \\
\hline & Blue & 378-0115-00 & \$3.10 \\
\hline 434 & Blue & 378-0678-01 & \$14.75 \\
\hline 455/465M & Blue & 337-2122-00 & \$7.00 \\
\hline 465/465B & Blue & 337-1674-00 & \$8.00 \\
\hline 475 & Clear & 337-1674-01 & \$7.25 \\
\hline 464/466 & Smoke-grey filter & 337-1674-07 & \$9.50 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline 540 / 550 \\
& \text { Series } \\
& 565 / 575
\end{aligned}
\]} & Smoke-gray \({ }^{-2}\) & 378-0567-00 & \\
\hline & Green & 378-0568-00 & \$19.00 \\
\hline & Blue & 378-0569-00 & \\
\hline & Amber & 378-0570-00 & \\
\hline 576 & Blue \({ }^{\text {2 }}\) & 378-0616-00 & \$7.25 \\
\hline \multirow[t]{6}{*}{603/604} & Clear (603 \({ }^{\text {2 }}\)) & 337-1440-00 & \$4.25 \\
\hline & Green & 337-1440-01 & \$4.65 \\
\hline & Amber & 337-1440-02 & \$3.50 \\
\hline & Blue & 337-1440-03 & \$6.75 \\
\hline & Gray & 337-1440-04 & \$7.75 \\
\hline & Graticule (8x 10 div) & 331-0303-00 & 15.00 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \hline 605 / 606 / \\
& 607
\end{aligned}
\]} & Blue & 337-1674-00 & \$10.75 \\
\hline & Graticule & 337-1674-10 & \$10.00 \\
\hline & Clear Shield & 337-1674-13 & \$14.75 \\
\hline & Gray \({ }^{2}\) & 337-1674-06 & \$5.00 \\
\hline & Graticule (8x 10 div) & 331-0391-00 & \$9.00 \\
\hline \multirow[t]{2}{*}{608} & Amber & 378-0704-00 & \$10.00 \\
\hline & Graticule* \({ }^{\text {2 }}\) & 337-2126-02 & \$10.00 \\
\hline 2200 & Blue \({ }^{2}\) & 337-2775-00 & \$4.20 \\
\hline \multirow[t]{2}{*}{Series} & Clear & 337-2775-01 & \$1.95 \\
\hline & Gray w/TV Graticule & 035-0175-00 & * \\
\hline 2300 & Blue Implosion Shield \({ }^{+2}\) & 337-2760-00 & \$2.25 \\
\hline Series & Clear Implosion Shield \({ }^{-2}\) & 337-2781-00 & \$4.40 \\
\hline 2400 & Blue \({ }^{2}\) & 378-0199-03 & \$4.05 \\
\hline Series & Clear Implosion Shield \({ }^{-2}\) & 378-0208-00 & \$2.05 \\
\hline 271X Family & Smoke Gray & 337-2775-02 & \$3.00 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \hline 5100 \& \\
& 5400 \\
& \text { Series } \\
& \text { (except } \\
& 5441 \text {) } \\
& \hline
\end{aligned}
\]} & Clear & 337-1440-00 & \$4.25 \\
\hline & Green & 337-1440-01 & \$4.65 \\
\hline & Amber & 337-1440-02 & \$3.50 \\
\hline & Blue & 337-1440-03 & \$6.75 \\
\hline & Gray & 337-1440-04 & \$7.75 \\
\hline \multirow[t]{3}{*}{5441} & Clear \({ }^{2}\) & 337-1674-01 & \$9.00 \\
\hline & Gray & 337-1674-07 & \$12.75 \\
\hline & Graticule (8x 10 div) & 331-0391-00 & \$9.00 \\
\hline \multirow[t]{8}{*}{7603} & Blue & 378-0684-00 & \$10.50 \\
\hline & Amber & 378-0684-01 & \$7.00 \\
\hline & Gray & 378-0684-02 & \$9.25 \\
\hline & Green & 378-0684-03 & \$14.25 \\
\hline & Spectrum Analyzer & & \\
\hline & Graticule & 337-1439-01 & \$9.75 \\
\hline & Blue Implosion Shield \({ }^{2}\) & 337-1700-01 & \$8.00 \\
\hline & Clear Implosion Shield & 337-1700-04 & \$6.50 \\
\hline
\end{tabular}
\begin{tabular}{lllr}
\hline \(7613 / 7623 /\) & Spectrum Analyzer & & \\
7623 A & Graticule & \(378-0625-07\) & \(\$ 14.50\) \\
7633 & Green (UV) & \(378-0625-08\) & \(\$ 6.00\) \\
\hline \(7844 / 7313\) & Blue 2 & \(378-0625-00\) & \(\$ 8.50\) \\
\hline 7700 & Amber & \(378-0625-01\) & \({ }^{\circ}\) \\
Series/ & Gray & \(378-0625-02\) & \(\$ 8.75\) \\
\(7613 /\) & Green & \(378-0625-03\) & \(\$ 9.50\) \\
\(7623 / 7100\) & Gray TV Graticule & & \\
Series/ & NTSC & \(378-0625-06\) & \(\$ 14.50\) \\
7900 & Clear Shield Spectrum & & \\
& Analyzer Graticule & \(337-1159-02\) & \(\$ 9.75\) \\
\hline
\end{tabular}

\section*{CRT MESH/EMC FILTERS}

The mesh filter improves display contrast for instrument viewing under high ambient light conditions. A fine metal screen with a matte black surface is utilized to reduce light reflections. Although light transmission from the cit is reduced to approximately \(28 \%\), the high attenuation of external reflections allows viewing low intensity displays in room light or other bright surroundings,

The mesh filter also serves as an EMC filter. Installed on the instrument, the metal frame of the filter is grounded, providing effective filtering of the EMC spectrum.
\begin{tabular}{llr}
\hline Instrument*1 & Part Number & Price \\
\hline \(314 / 326 / 335\) & \(378-0063-00\) & \(\$ 65\) \\
\hline \(432 / 434\) & \(378-0682-00\) & \(\$ 65\) \\
\hline \(422 / 491 / 453 \mathrm{~A}\) & & \\
\(454 \mathrm{~A} / 485\) & \(378-0648-00\) & \(\$ 70\) \\
\hline \(465 / 465 \mathrm{~B} / 475 /\) & & \(\$ 100\) \\
\hline \(464 / 466 / 434\) & \(378-0726-01\) & \(\$ 95\) \\
\hline 271 F Family & \(378-0227-01\) & \(\$ 95\) \\
\hline \(7400 / 7603\) & \(378-0696-00\) & \\
\hline \(7100 / 7500 / 7700 /\) & & \(\$ 110\) \\
\(7800 / 7900\) Series/ & \(378-0603-00\) & \\
\(7613 / 7623 /\) A 7633
\end{tabular}

\section*{LOGIC ANALYZER ACCESSORIES}

LOGIC ANALYZER PROBES AND LEADSETS

\footnotetext{
\({ }^{*}\) Standard indicates that this leadset is sold as part of the product. This is the part you need to buy as a direct replacement. Optional indicates that the part can be substituted for the original part and varies in some way. i.e., longer.
}
\({ }^{2}\) Contact your local sales office.

\section*{LOGIC ANALYZER ACCESSORIES}

LOGIC ANALYZER PROBES AND LEADSETS
FIGURE 3: Buffer Probe Type

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Buffer \\
Acquisition \\
Probes \\
\hline Pcis
\end{tabular}} & \multirow[t]{2}{*}{Probe Price} & \multirow[b]{2}{*}{For Use With} & \multicolumn{3}{|c|}{INPUTS} & \multirow[t]{2}{*}{Leadset Part Number} & \multirow[b]{2}{*}{Available"} & \multirow[t]{2}{*}{Leadset} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Leadset } \\
\text { Price } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Additional Information} \\
\hline & & & Data & Clock & Qual & & & & & \\
\hline P6480 & \$750 & \begin{tabular}{l}
PRISM 3000 \\
30MPX \\
3001MPX
\end{tabular} & 96 & 3 & 5 & 012-0747-00 & Standard & \(10^{\circ}\) & \$40.00 & 30MPX or 3001MPX State Probe \\
\hline P6486 & \$1,000 & \begin{tabular}{l}
PRISM 3000 \\
30MPX \\
3001MPX
\end{tabular} & 10 & & & \[
\begin{aligned}
& \hline 012-1230-01 \\
& 012-1231-01 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Standard \\
Optional
\end{tabular} & \[
\begin{aligned}
& 10^{\prime \prime} \\
& 10^{\circ} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \$ 200.00 \\
& \$ 550.00
\end{aligned}
\] & 30MPX or 3001MPX Timing Probe \\
\hline P6487 & \$1,100 & \begin{tabular}{l}
PRISM 3000 \\
30HSM \\
3001HSM
\end{tabular} & \[
\begin{aligned}
& 10 \\
& 10 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
4
\] & \[
4
\] & \[
\begin{aligned}
& \hline 012-1230-01 \\
& 012-1231-01 \\
& 012-1277-01
\end{aligned}
\] & \begin{tabular}{l}
Standard \\
Optional Optional
\end{tabular} & \[
\begin{aligned}
& 10^{\prime \prime} \\
& 10^{\circ} \\
& 12^{\prime \prime} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\$ 200.00 \\
\$ 550.00 \\
\$ 1,200.00
\end{array}
\] & \begin{tabular}{l}
2 leadsets per 3OHSM or 3001HSM. \\
400 MHz Probe Adapter \\
2 GHz Probe Adapter
\end{tabular} \\
\hline Buffer Probe & \[
\begin{aligned}
& \text { NA } \\
& \text { NA }
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { DAS92000 } \\
922 A 60,92 A 60 D \\
92 A 90,92 A 90 D
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 90
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 012-1165-00 \\
& 012-1165-00
\end{aligned}
\] & Standard Standard & \[
\begin{aligned}
& 100^{2} \\
& 10^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \$ 495.00 \\
& \$ 495.00
\end{aligned}
\] & \\
\hline
\end{tabular}

FIGURE 4: Passive Podlet Probe Type
5' Cables

\section*{LOGIC ANALYZER ACCESSORIES}

\section*{ADDITIONAL ACCESSORIES}

The 100-Channel and 25-Channel probe sets for the 92A96/A96D are based on multiple 8 -channel probes, shown above, left. Notice the grouping clip that surrounds the individual podlets. Also shown is a SMT KlipChip \({ }^{\text {TM }}\) (206-0364-00), clock probe \& clock leadset (020-1888-00, pkg. 12).

\section*{SMT KLIPCHIPTM ADAPTERS}

Double Sided - Order 020-1386-01
Package of twelve.
Single Sided, SMT - Order 206-1386-00
Package of twelve. Also see page 317.

The 90-Channel Microprocessor Interface allows existing 92A60/A60D or 92A90/ A90D microprocessor probe adapters to work with the 92A96/A96D. Order 010-0508-00.

\section*{DAS 9200}

Circuit Board Ejector Tools - Order 105-0985-00 For removal of circuit boards from the DAS 9200 Mainframe (2 required).
Deskew Adapter - Order 010-0456-00
For use with the DAS 92A60, 92A60D, 92A90, \& 92A90D to deskew channel groups.
Training Aid Board - For use with DAS 9200, connects acquisition probe leadset to pattern generation leadset
Podiet Gang Connector - Order 020-1442-00 For use with P6461/P6461E, 10 wide, Pkg of 2. NOT FOR USE WITH P6464 or P6465.
Retainer Clamps - Order 020-1484-01 Pkg of 4. For use with P6460, P6461, P6461E, P6463A, P6464, and P6465
90-Channel Microprocessor Interface Order 010-0508-00

PRISM 3000
3002P Transit Case - Order 016-0994-00 Hard case with wheels.
3002P Carrying Case - Order 016-0909-01
Soft case with shoulder strap.
3002 Display Filler Panel - Order 386-5664-00
3002 to Color Display Cable -
Order 174-1299-00 6 foot.
3002 to Color Flat Panel Cable -
Order 174-1299-00 6 foot.
3002 to Color Flat Panel Cable -
Order 174-1299-00 10 inch.
TekLink Cable, 4 ft . -Order 174-1152-00
TekLink Cable, 9 in. -Order 174-1391-00
Trigger In/Out Cable - Order 012-0482-00
36 in., 50 ohm, coax with 50 ohm terminatior (PN: 011-0049-01)

\section*{1230}

Training Aid Circuit - Order 671-0049-00 A convenient tool to aid in gaining experience and confidence with the use of a logic analyzer.
Service Maintence Kit - Order 020-1674-00 Includes 1230 Service Manual, Extender Card for 1230E1 module, and cable assemblies.

\section*{DISKETTES}
5.25" Floppy Disks - Order 119-1583-01 \(360 \mathrm{k}, 5.25\)-inch, Box of 10 .
5.25" Floppy Disks \(-1.2 \mathrm{M}, 5.25\)-inch, Box of 10 . 3.5" Floppy Disk -Order 119-3136-00 \(720 k, 3.5\)-inch, Each.

\section*{RACKMOUNT KITS}
\$2.50 These kits include all appropriate hardware for installing the listed instrument in a standard 19" rack. Please refer to page 340 for physical deminisions.
\$185 Rackmount Kit - For DAS 9200. Order 016-0845-00 \$545
Rackmount Kit - For 92HS8. Order 016-0884-00 \$415
Rackmount Kit - For 1230. Order 1230F05 \$450
CARTS
K217 Cart - For 1230
K335BN Cart - For PRISM 3000
Refer to the cart selection guide on page 306 for complete description.

\section*{CABLES}

RS-232 Cable - Order 012-0911-00
Used with DAS 9200 mainframe to 9201T display or printerand communications interface. Male-to-female. 20 inch, wires: 1-1, 2-2, 4-4, 5-5, \(6-6,7-7,8-8,11-11,12-12,15-15,17-17,19-19\), 20-20-, 22-22.
Null Modem Cable - Order 012-0530-00
Used with PRISM 1200C01 Serial Printer interface. Female-to-female, 60 inch, wires: 1-1, 2-3, 3-2, 4-8, 5-8, 6-20, 7-7, 8-4, 8-5, 20-6.
\$36 Parallel Interface Cable - Order 012-0997-00
Two meter, for Centronix-type printer interface.
GPIB Cable - Order 012-0630-03
\$6 Tw'o meter, shielded.
Probe Extender Cable - Order 012-1012-01
Male to Female, 6 feet, 34 -position double-row connectors. Compatible with P6463 \& P6463A.
Flat Cable Mounts - Order 343-1048-00

Adhesive Back for securing and organizing probes with flat ribbon cables.
\({ }^{-1}\) Contact your local sales office for information

Tektronix Fiber Optic Cable Testers provide solutions to customer needs in the areas of telecommunications, local area networks, CATV, and other communications applications. Our newest line of high performance, userfriendly optical products include the TFS2020 FiberScout Handheld Optical Fault Finder, and the TFP2 FiberMaster Optical Time Domain Reflectometer. Also available is our OF-150 Optical Time Domain Reflectometer.

TFS2020 FiberScout Optical Fault Finder
TFS2020 FiberScout Optical Fault Finder is designed to locate faults or catastrophic events in optical cable systems. Weighing just 5 pounds (2.3 kg), the userfriendly FiberScout allows cable troubleshooting by practically any user, regardless of skill level. Representative users include optical telephony, LAN, and CATV restoration environments.

TFP2 FiberMaster
The TFP2 FiberMaster is a full feature custom configurable OTDR offering a broad range of performance in a user-friendly package. The FiberMaster is ideal for installation and maintenance of optical cable systems, as well as laboratory and manufacturing applications. Representative users include telephony, LAN, CATV,

OF150 OTDR
The OF150 OTDR quickly and easily measures signal loss and breaks on multimode fiber. The OF150 has single-function manual dials that are fast to use and easy to control. The built-in CRT displays sharp, well defined traces and is uncluttered with distance and loss measurements, which are displayed on a large format LCD.

\section*{TFS2020 FiberScout features include:}
- Simple symbolic display
- Fast restoration capability
- Small, lightweight, easy to handle
- 4-button operation
- Low cost - high performance
- Multiple port configurations
- High distance accuracy
- User configured fault thresholds

\section*{NEWTFP2 features include:}
- 2 plug-in module capacity allows dual wavelength operation in single mode and muftimode without switching modules.
- Optics modules available combining high resolution and long range performance.
- High resolution CRT display available in color or monochrome.
- Optional high resolution, high speed internal printer
- Mass data storage options available
- MS-DOS standards compatible
- Dual trace comparison function
- Context sensitive help function
- User selectable power-up defaults
- GPIB and RS232C interfaces for remote control and peripheral access

\section*{ORDERING INFORMATION}

OF150 Multimode OTDR
\$15,600
Combines high resolution and
dynamic range in an easy to
operate package for LAN
installers and end users.
TFS2020 FiberScout
TFP2 FiberMaster Color
Display Mainframe
Opt. 01 - 850 nm Multimode,
\(62.5 \mu \mathrm{~m}\) (FM8500)
\$12,600
\(+\$ 7,000\)
Opt. \(04-1310 \mathrm{~nm}\) Singlemode
(FS1300)
+\$15,000
Opt. 05-1550 nm Singlemode
(FS1500)
\(+\$ 17,500\)
Opt. \(06-1310 \mathrm{~nm} / 1550 \mathrm{~nm}\)
Singlemode (FS1315)
+\$23,000
\({ }^{-1}\) Contact your local sales office.

\section*{1502C/1503C 1502B/1503B}

\author{
- Direct distance readout accurate to better than 1\% \\ - Intermittent fault monitor mode \\ - High resolution LCD display with zoom \\ - Menu-driven setup \\ - Help mode \\ - Rugged portability \\ - Calibrated vertical scale \\ - Optional serial interface \\ - Optional internal printer \\ - Noise filtering
}

ORDERING INFORMATION
\begin{tabular}{lr}
1503C Metallic TDR & \(\$ 4,950\) \\
15038 Metallic TDR & \(\$ 5,850\) \\
1502C Metallic TDR & \(\$ 6,700\) \\
1502B Metalic TDR & \(\$ 7,850\)
\end{tabular} Each instrument includes the following accessories: AC PowerCord; \(50 \Omega\) BNC Terminator; Precision \(50 \Omega\) Cable; Female-to-female BNC Connector; Spare Fuse; Operator's Manual; Accessory Pouch; OptionPort Cover; Calculator Slide Rule.

\section*{OPTIONS}

Opt. 03 - Battery Pack
1500C Series products meet environmental requirements of MIL-STD-28800C for Type III, Class 3, Style C, and utilize a high performance internal gelcell battery. 1500B Series products meet environmental requirements for Style \(A\), and utilize a removable NiCad battery pack.
Opt. 04-YT1 Chart Recorder Records all information displayed on LCD, including waveform and settings for a permanent record. Opt. 06 - (1503 only) Ethernet

\section*{1502C, 1503C, 1502B, AND 1503B}

Tektronix 1500 Series cable testers use time domain reflectometry (TDR), also known as cable radar, to precisely pinpoint faults or changes in impedance in almost any dual-conductor metallic cable.

With a complete range of products and options to choose from, a 1500 Series TDR can be custom configured to meet your test needs.

\section*{THE 1503B AND 1503C GENERAL PURPOSE CABLE TESTERS}

These products generate a \(1 / 2\) sine pulse, with selectable pulse widths of \(2,10,100\), or 1000 nanoseconds. The high-resolution 2 ns pulse permits the identification of multiple faults as close together as one foot. The 1000 ns pulse gives the 1503C a range of 5,000 to 50,000 feet (depending on cable type and condition).

For most TDR applications, where determining distance to an impedance change is the key measurement, the 1503C and 1503B are the best choice.

\section*{THE 1502C AND 1502B ULTRA-HIGH RESOLUTION TDRS}

The 1502C and 1502B generate a 200 picosecond rise time step pulse and have an output impedance of \(50 \Omega\). The fast risetime permits the identification of multiple faults as close together as 0.6 inches. In addition to direct readout of distance to the cursor, the 1502C and 1502B also offer direct readout of impedance at the cursor.

\section*{SAMPLE APPLICATIONS}

\section*{TELEPHONE}

In addition to locating shorts, opens, splits, crosses and bridges, the 1503C and 1503B can be used to identify and locate load coils or pinpoint and map wet

The 1502C/1503C MTDR Cable Testers combine portability and ease of use with the ability to test
most dual conductor metallic cable under virtually any condition.
sections of cable (together with the YT1 printer). Wire gauge and cable temperature won't affect the measurement either. Automated intermittent fault monitoring helps eliminate costly return calls to fix these challenging problems.

\section*{LOCAL AREA NETWORKS}

Cable and connector problems can be the biggest headache for the LAN installer. The 1503C's high resolution 2 ns pulse will precisely identify problems in seconds. The calibrated vertical scale can help identify marginal components before they cause problems, and a return call. Use the optional YT1 chart recorder or SP232 serial interface to document the working installation for certification or future troubleshooting. The Ethernet option permits testing of an active Ethernet bus. Adapters are available for all popular LAN standards.

\section*{ON-BOARD SYSTEMS}

The ultra high resolution of the 1502C and 1502B are perfectly adapted for testing critical wiring on board aircraft and ships, or for analyzing cabling in ultra-high speed data links or weapons systems.

\section*{MANUFACTURING QUALITY CONTROL}

The 1502C and 1502B combine ultra-high resolution, rugged reliability and automated operation (with the optional SP232 serial interface) into one package. Manufacturers of circuit boards or precision cabling can quickly and accurately determine or verify the impedance characteristics of their products, in a matter of seconds.

\section*{OTHER APPLICATIONS}

For details on these and other applications, including cable TV, power transmission line testing, antenna cable testing, and general information, call 1-800-833-9200. agged reliability and automated operation (with the
nea

SP232 Serial Interface Module PC for remote control, waveform storage, and automated fault finding. Includes host software for IBM-compatible PCs. \(\$ 595\)

A wide range of other options and connectors are available. Contact your local sales engineer for details.

\section*{830 SERIES PROGRAMMABLE COMMUNICATIONS ANALYZERS}

\section*{data communications testing}

The 830 Series of Data Communications Protocol Analyzers are designed to help find and solve problems with communications protocols and interfaces. These advanced diagnostic tools plug into serial data communication cables and connectors. Once in place they can monitor data or actively simulate the behavior of one type of device to enable you to verify the performance of another device.

\section*{835 DATA COMMUNICATIONS ANALYZER}
- Triggering Capability
- Data Rates up to 19.2 K Baud
- Applications for a Wide Range of Protocols and Interfaces
- Upload/Download Capabilities
- Lightweight and Rugged Construction
- Library Packs with Multiple ROM Pack Applications
- Memory Packs (Removable RAM Memory)
- Three Year Warranty
- Upgradable to the 836

\section*{836 DATA COMMUNICATIONS ANALYZER}
- All the Capabilities of the 835
- Data Rates up to 72 K Baud in all Modes and 144 K Baud in Half Duplex Monitor
- Multiple Triggers
- Receiver Ready Compression (HDLC)

\section*{MODES OF OPERATION}

\section*{Monitor}

The 830 Series monitors and records activity occurring on the interface without interfering with data transmission. Triggering capability allows selective capture of data.

\section*{DCE Simulation}

In this mode, the 830 Series functions as DCE equipment for testing DTE equipment. Messages can be

sent and received for testing the DTE equipment. The sequence of events can be controlled by a user developed program or from tests stored in the optional ROM packs.

\section*{DTE Simulation}

Operation in this mode is similar to DCE simulation, except the test is initiated from the DTE (830 Series) to test the DCE equipment.

\section*{BERT Mode}

The 830 Series performs bit and block error rate testing using the 511-bit CCITT Standard pseudorandom patter. Additional patterns and testing capabilities are available with 830R03 (including distortion) and 830R03B ROM packs.

\section*{PROGRAMMING FOR SOLUTIONS}

The 830 Series in combination with ROM packs gives access to over 40 programming instructions. The instructions are easy to use and allow full programming flexibility to meet specific and unusual network testing needs. The testing needs may include network troubleshooting, preventative maintenance, engineering R\&D and manufacturing quality assurance (QA).

\section*{SOFTWARE APPLICATION PACKS}

Tektronix has developed a series of software application ROM packs that both extend and automate the capabilities of the 830 Series. Software power allows the user to quickly adapt the 830 Series to the protocol or type of test needed, and with a minimum of steps, run extensive tests that find problems quickly and easily.

\section*{MONITOR MODE}

The TMA802 provides a direct indication of Ethernet and Starlan network utilization. The TMA802 monitors network traffic without disturbing the network (nonintrusive test) so it can be left on the network to monitor indefinitely. Network utilization is reported as a percentage of the network bandwidth being used during the specific period.

\section*{830 SERIES \\ For simulation, monitoring, and BERT Testing.}
- Fully Programmable
- Lightweight, Rugged,

Portable
- Three-year Warranty

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline 836 Protocol Analyzer 835 Protocol Analyzer RS232 Interface Standard & \[
\begin{array}{r}
\$ 4,680 \\
\$ 3,680 \\
\text { NC }
\end{array}
\] \\
\hline INTERFACE OPTIONS & \\
\hline Opt. 02 -Current Loop & +\$495 \\
\hline Opt. \(03-\mathrm{RS}-449\) & \\
\hline (RS-422/RS-423) & +\$495 \\
\hline Opt. 04 -MIL-STD-188C & +\$495 \\
\hline Opt. \(06-\mathrm{V} .35\) & +\$495 \\
\hline \begin{tabular}{l}
TV ANALYZER \\
836TV Television Production
\end{tabular} & \\
\hline
\end{tabular}

836TV Television Production
Protocol Analyzer (EBU/SMPTE Bus Interface)
\(\$ 5,600\)

\section*{ROM PACKS}

830RDA ROM Development Aid \$195
830R01 Asynchronous
834R02A Bisynchronous
(EBCDIC)
\$195

830R02B Bisynchronous
ROM Pack
830R03 Link Test
830R03B Link + Async
834R04 HDLC/X. 25
834R05 Extended Instruction
834R06 Bisynchronous (ASCII)
830 R07 PARS/IPARS
830 R10 SDLC/SNA (FID2)
830R10B SNA (FID2)
834R11 Extended Monitor
830R13 SDLC/SNA (FID3)
830R31 Multipurpose
830L30 IBM Solutions

\section*{\(\$ 195\)}

\section*{\(\$ 195\)
\(\$ 195\) \\ \\ \section*{\(\$ 195\) \\ \\ \section*{\(\$ 195\) \\ \\ \(\$ 195\)
\(\$ 550\)}}

\section*{TMA802}

\section*{Affordable and} easy-to-use
- Finds Cable and Connector Faults
- Monitors Ethernet and Starlan Utilization

\section*{ORDERING INFORMATION}

INTERNATIONAL BATTERY CHARGERS
Opt. 1C - Univer. Euro, \(220 \mathrm{~V}, 50 \mathrm{~Hz}\) NC
Opt. 2C - UK 240 V, 50 Hz NC
Opt. 3C - Canada \(115 \mathrm{~V}, 60 \mathrm{~Hz}\) NETWORK KITS
Scope Connector/Cable Kit -
(Opt. 01) Order 016-0912-00
Ethernet/Cheapernet Network Kit -
(Opt. 02) Order 016-0913-00
Map Broadband Network Kit -
(Opt. 03) Order 016-0911-00

\section*{VM 700A}
- Many Capabilities in One Instrument
- Digital Waveform Monitor
- Digital Vectorscope
- Group Delay and Frequency Response
- Noise Measurement Set
- Automatic Measurement Set
- Auto Mode
- Unattended Monitoring of NTSC or PAL Video Signals from Studios, STLs, Earth Stations, and Transmitters
- User-Specified Limits
- Measure Mode Provides

Graphic Display of
Measurements
- K Factor
- Differential Gain and Phase
- Chrominance to Luminance Delay
- Noise Spectrum
- Group Delay with \((\operatorname{Sin} x) / x\)
- Color Bars
- Relative to Reference on Most Measurements
- Three Input Channels
- Averaging on Most Measurement Modes
- Picture Mode for Source ID
- Hardcopy for Analysis and Documentation
- Remote Control Operation
- Automatic Measurement of Short Duration Audio Test Sequence
- Measure Frequency Response, Distortion, Phase, Crosstalk, and Other Important Audio Parameters

\section*{NEW ASG-100}
- Short Duration Audio Test Sequence for Rapid Automatic Checkout of Audio Lines
- Connects in-line for easy test signal insertion
- Dual channel for stereo applications
- Quick identification of insertion point with voice ID
ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline VM 700A Video Measurement & \\
\hline Set & \$15,000 \\
\hline Opt. 01 - NTSC Measurements & +\$4,500 \\
\hline Opt. 11 - PAL Measurements & +\$4,500 \\
\hline Opt. 40 - Audio Measurements & +\$4,000 \\
\hline Opt. 1C - Cabinet Version & NC \\
\hline Opt. 1P - Printer Version & \\
\hline (110V only) & +\$875 \\
\hline ASG-100 - Audio Signal & \\
\hline Generator & \$1,800 \\
\hline
\end{tabular}

\section*{1780/81R Video Measurement Sets}
- Full bandwidth analog processing
- Precision waveform and vector measurements
- Polar SCH presentation with calibration mode
- Four loop-through video input channels
- Component or composite waveform evaluation
- Measurement-grade time and voltage cursors
- Precision differential phase/differential gain measurements even with noisy signals
- Stereo audio phase and amplitude display
- User definable semi-automatic setups
- Available for either NTSC or PAL standards

1710/11B Waveform Monitors
- Easy operation/cost effective
- Burst phase indicator
- Dual filter display
- Bright CRT display
- Available in NTSC or PAL standards

\section*{1720/21/NEW 1725 Vectorscopes}
- Performance and economy
- Simultaneous channel A \& B display
- Stereo audio phase measurement
- R-Y output for differential phase measurement
- Available in NTSC, PAL or dual standard

1730/31/35 and 1730/31D2
Waveform Monitors
- Performance and economy
- Complete line select
- Simultaneous channel A \& B display
- Differential gain measurement
- One button front panel recall
- Dual filter display
- VTR servo rates
- Available in NTSC, PAL or dual standard
- Digital composite input available

1730HD Waveform Monitor
- HDTV sweep speeds
- Full 30 MHz bandwidth
- Six video input channels
- Parade and overlay displays
- Complete line select
- Accepts most HDTV formats

1740/41/42 Waveform/Vector Monitors
- Two instruments in one
- R-Y (V axis) mode
- Available in NTSC, PAL and PAL-M
- DC option available

\section*{1750/51 Waveform/Nector/SCH Phase}

\section*{Monitors}
- SCH Phase
- Simultaneous displays
- Dual filter display
- R-Y (V axis) mode
- Available in NTSC and PAL
- VITS line select

\section*{1480 Series Precision Waveform}

Monitor
- Bright CRT especially suitable for vertical interval testing
- Amplitude measurement accuracy approaching \(0.2 \%\)
- Digital selection of line and field
- Differential gain measurement
- Available in NTSC, PAL and PAL-M monitoring outputs

WFM300A Component/Composite Monitor
- Component and composite waveform display
- Lightning display for equipment setup and
- Bowtie display for system timing
- Menu selectable component format options
- Menu selected 625/50 or 525/60 configuration
- Separate GBR and composite picture monitor
- Front panel user recalls for fast operation
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ORDERING INFORMATION} \\
\hline 1780/81R Video Measurement & \$9,900 \\
\hline \(1780 \mathrm{FO2}\) Portable Cabinet \(f\) & \\
\hline 1780/81R & \$275 \\
\hline 1710/118 & \\
\hline Phase/Monitor
\(1720 / 21\) Vector Monitor & \$ \(\mathbf{\$ 1 , 2 5 0}\) \\
\hline 1725 PAL NTSC Vector Monit & \$3,200 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{1735 PAL_NTSC Waveform}} \\
\hline & \\
\hline & \$2,450 \\
\hline \multicolumn{2}{|l|}{1730/3102 Waveform Monitor \(\$ 2,950\)} \\
\hline \multicolumn{2}{|l|}{Monitor \$5,900} \\
\hline \multicolumn{2}{|l|}{1740/41 Waveform/Nector} \\
\hline \multicolumn{2}{|l|}{Monitor} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Opt. 05 -Internal Waveform, External Vector Graticules \(\quad+\mathbf{\$ 6 0}\)}} \\
\hline & \\
\hline Monitor & \$4,370 \\
\hline \multicolumn{2}{|l|}{Opt. 07 -Adds DC Power} \\
\hline \multicolumn{2}{|l|}{Operation Capability, must be} \\
\hline installed during manufacture & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
weep \\
1750/51 Waveform/Nector/SCH
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Monitor \(\quad \mathbf{\$ 5 , 9 0 0}\)} \\
\hline \multicolumn{2}{|l|}{1700 FOO Plain Cabinet} \\
\hline \multicolumn{2}{|l|}{1700 F02 Portable Cabinet \(\quad \$ 95\)} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{1700F06 Blank Panel \(\quad \$ 60\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1700F10 12 VDC Kit for} \\
\hline 1710/20/30 and 1705 series & \$200 \\
\hline \multicolumn{2}{|l|}{1480C/R NTSC Waveform} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Monitor \\
1481C/R PAL Waveform
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Monitor \(\mathbf{\$ 8}\),} \\
\hline \multicolumn{2}{|l|}{1482R PAL-M Waveform} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{M1485C/R PALNTSC Waveform \(\mathbf{\$ 8 , 5 0 0}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Monitor \(\quad \$ 8,300 / \$ 7,900\)} \\
\hline \multicolumn{2}{|l|}{1480 Series Options} \\
\hline Opt. 01 -Probe Input & 40 \\
\hline \multicolumn{2}{|l|}{WFM300A Component/} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Composite Waveform Monitor \(\mathbf{\$ 3 , 9 0 0}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Opt. 10 - NTSC/BETA CAM} \\
\hline \multicolumn{2}{|l|}{Transcoder NC} \\
\hline Opt. 14-NTSC/MII Transc & \\
\hline \multicolumn{2}{|l|}{Opt. 74 - P-4 White Phosphor Available \({ }_{\text {- }}\)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\({ }^{1}\) Contact} \\
\hline
\end{tabular}

\section*{NEW TSG-1001}

TSG-1050
TSG-1125
TSG-1250
NEW SPG-1000 NEW TSG-130/
TSG-131
NEW TSG-120/
TSG-121
TSG-100

TSG-1001 Programmable TV Generator
- Programmable test signal generator
- Programmable zone plate generator
- SDP 1000 Signal Development Package
- PC based software program
- 10 bit signal generation
- Waveform editing and creation
- PC to generator test signal downloads
- 30 MHz bandwidth
- HDTV, SMPTE/EBU, Betacam \({ }^{\text {® }}\), MII, and NTSC test signal libraries
- Internal or external clock operation

\section*{TSG-1000 HD Television Generator Family}
- Supports proposed HDTV production standards
- Comprehensive test signal complement
- GBR and \(Y, P_{B}, P_{A}\) formats
- 30 MHz bandwidth
- 10 bit signal generation
- Analog and parallel digital test signal outputs
- Battery backup for signal memory
- Options
- User PROM board
- User RAM board
- Picture monitor test pattern
- Zone plate generator

SPG 1000 HDTV Sync Generator
- Master sync generator for high definition television systems
- Genlocks to HDTV, NTSC, and PAL
- Supports proposed HDTV production standards
- Color bars and monitor setup test signals
- Provides genlock function for TSG 1000 Series Generators

TSG-130/TSG-131
Multiformat Generators
- Low cost test signal generator
- NTSC or PAL; Y, B-Y, R-Y; Y, C and Y/C; CTDM outputs
- Betacam \({ }^{\circledR}\) or Mill levels
- Stereo audio outputs
- Ideal for equipment maintenance

TSG-120 YC/NTSC and
TSG-121 SVHS/PAL Signal Generators
- Low cost test signal generator
- NTSC or PAL; Y,C and Y/C outputs
- Stereo audio outputs
- Ideal for equipment maintenance

TSG-100 NTSC Signal Generator
- Studio and transmission test signal sets
- 8 bit digital generation
- Conforms to RS-170A timing specifications
- 1 kHz audio tone
- H or V rate scope trigger signal
- DC power option
- Compact and lightweight

TSG-273 PAL Composite Digital Signal Generator
- Analog and parallel digital test signal outputs
- PAL sync generator with genlock
- Serial and parallel digital audio outputs
- PAL test signals
- Full field character identification
- Tape leader countdown

1910 NTSC Digital Generator/Inserter
- Studio, transmitter, and transmission test signals
- 10 bit signal generation
- User friendly RS-232C control port for added versatility
- Four external VITS inputs
- Non-volatile memory to maintain selected VITS and full field signal configuration after power
interruption
- Ghost Canceller Reference (GCR) signal available

TSG-170A NTSC Television Generator
- Simple, effective test signal complement
- Correctly SCH phased sync pulse generator with digital genlock
- Separate SMPTE bars with programmable D (Option 1)

\section*{TSG-170D Digital Composite Generator}
- Digital and NTSC analog test signal outputs
- Digital and analog audio tone outputs
- RS-170A black burst output for master SPG application

TSG-271 PAL Television Generator
- Precise 12 bit digitally derived test signals
- SCH phase accuracy, guaranteed by use of a single DAC
- Conforms to EBU Statements D23 and D25
- Stable internal reference, ideal for master sync operation

TSG-300 Component Television Generator
- MII
- Multiple Formats and Standards
- Y, B-Y, R-Y (Y, \(\left.P_{0}, P_{r} ; S M P T E / E B U\right)\)
- 525/60 and 625/50
- GBR
- 10 Bit Digital Signal Generation

NEW TSG-273
1910
TSG-170A/TSG-170D
TSG-271
TSG-300

\section*{ORDERING INFORMATION}
\begin{tabular}{lr}
TSG-273 PAL D2 Signal & \\
Generator & \(\$ 6,700\) \\
1910 NTSC Digital Generator/ & \\
Inserter & \(\$ 7,500\) \\
Opt.01 - GCR signal and & \\
0\% setup test signals & NC \\
Opt.02 - GCR signal and & \\
7.5\% setup test signals & NC \\
Opt.03 - CBC test signals & NC \\
Opt.04 - GCR signal and & NC \\
CBC test signal set (Opt. 03) & \(\mathbf{\$ 4 , 9 9 5}\) \\
TSG-170A Generator & \\
Opt. 01 -Adds separate SMPTE & \\
bars output with 12 character & \\
ID, audio tone output and tape & \\
leader countdown. & \(\mathbf{+ \$ 1 , 0 0 0}\) \\
TSG-170D Generator & \(\$ 5,600\) \\
TSG-271 Generator & \(\$ 4,950\) \\
Opt. 01 - Adds Character ID, & \\
Audio Tone, and Tape Leader & \\
Countdown. & \(\mathbf{+ \$ 6 3 5}\) \\
TS6-300 & \(\$ 6,500\)
\end{tabular}
- Betacam \({ }^{8}\)

TSG-370/TSG371
VITS 201
TPG-625
TSG-422
NEW VS-211
110-S/118-AS
ORDERING INFORMATION
TSG-370 Component/NTSC
Television Generator
(Betacam \({ }^{*} / \mathrm{NTSC}\))
Opt. 01 - MII/NTSC
TSG-371 Component/PAL
Television Generator
VITS 201 Inserter
TPG-625 Pattern Generator TSG-422 Generator
VS 211 PAL Video
Synchronizer
110-S Video Synchronizer
Opt. 10-Four-field Memory
Opt. 20 - Adds Time Base
Correction for Heterodyne
Color VTRs
118-AS Audio Synchronizer

TSG-370/TSG-371 Component/Composite Television Generators
- Analog component and composite test sigrials
- Simultaneous and independent component and composite test signal outputs
- High stability, correctly SCH phased internal sync generator

\section*{VITS 201 PAL Insertion Generator}
- CCIR, EBU, UK National ITS
- Operates in the presence of sound in syncs
- Four external ITS inputs
- Comp Sync output
- Source identification
- All user program settings saved in non-volatile storage
- User programs for:
- Insertion of internal, external, and source identification signals
- Loss of program input modes
- Text insertion

\section*{TPG-625 PAL Pattern Generator}
- PAL television test pattern
- Digital genlock
- Color monitor and receiver testing
- Black burst outputs
- Programmable character identification
- 10 bit digital generation
- Special pattern for VM700A Video Measurement Set (Option 01)

TSG-422 Digital Component Generator
- Conforms to CCIR recommendation 601, SMPTE RP 125, and EBU Tech. 3246-E
- 8 bit signal generation
- Digital test signal outputs
- NTSC or PAL black burst outputs
- 4:2:2: format
- Genlock to \(525 / 60\) or \(625 / 50\)

\section*{VS 211 PAL Video Synchronizer}
- 10 bit digitizing
- 8 field memory
- Sync and burst insertion

110-S Video Synchronizer
- True 10 bit accuracy and resolution
- Tracks signals into the noise
- Optional four-field memory for the highest picture quality
- Digitally precise RS-170A sync and burst insertion
- Heterodyne color processing
- Auto VTR signal recognition
- Infinite window correction range
- Processing amplifier functions
- Composite digital input and output
- Audio delay control signal output
- Remote control

118-AS Audio Synchronizer
- Automatic or manual control of audio to video timing
- Simple one-wire interface to 110-S Video Synchronizer
- Expandable to 3 channels for stereo and auxiliary channel
- Compensates for up to ten fields of video delay

\section*{1450 Series Demodulators}
- Measurement-quality performance resulting in negligible distortion
- Precise Nyquist slope provided by surface acoustic wave filter
- Wide dynamic range with constant bandpass characteristics
- Synchronous detection eliminates quadrature distortion
- Envelope detection for determining differential phase
- Any single VHF or UHF channel operation
- UHF and VHF tunable down converters

\section*{TDC Television Down Converter}
- Any single VHF or UHF channel

\section*{751 BTSC Monitor}
- Precision modulation monitor for entire BTSC sound channel
- Simultaneously displays all components necessary to ensure modulation remains within legal limits
- Bars feature peak indicators with timed peak hold and easily set peak limits
- 4.5 MHz demodulator input available

The 751 BTSC aural modulation monitor/decoder provides accurate modulation monitoring and measurement of the BTSC encoded TV sound channel.

\section*{PC 751 Remote Display Software}
- Remote display of 751 Screens over RS-232 on a PC
- Real-time display of peak modulation and processed audio screens
- Data logging of the held peak data

\section*{1450-1 ONLY}
- Wideband audio output for BTSC multi-channel sound applications
- Wideband audio output compatible with Japanese stereo sound with FAX channel

\section*{1450-3A ONLY}
- NICAM intercarrier output compatible with 728D NICAM Decoder input

\section*{TDC1 VHF and TDC2 UHF Tunable Down Converters}
- Easy selection of any channel in the VHF (TDC1) or UHF (TDC2) bands

\section*{1705 Spectrum Monitor}
- Designed for satellite news gathering
- Easy, reliable operation
- Cost effective
- On-screen Ku-band or C-band frequency readout
- On-screen setup menu
- L-band and 70 MHz IF inputs
- Selectable \(2 \mathrm{~dB} /\) div or \(10 \mathrm{~B} /\) div sensitivity
- Resolution switchable to 10 kHz or 300 kHz
- Span range and video filter selection
- Center frequency control
- Bright clear display
- DC operation available

TDC1/TDC2
1450-1/1450-2
1450-3A
751/PC751 1705

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline 1450-1 Demodulator (System M) & \$14,900 \\
\hline Opt. \(01-37 \% \mathrm{MHz}\) Vision If & NC \\
\hline Opt. \(02-38 \% \mathrm{MHz}\) Vision IF & NC \\
\hline Opt. \(03-45.75 \% \mathrm{MHz}\) Vision IF & NC \\
\hline 1450-2 Demodulator & \\
\hline (System B/G) & \$13,145 \\
\hline 1450-3A Demodulator & \\
\hline (System I) & \$13,145 \\
\hline 751 BTSC Aural Modulation & \\
\hline Monitor/Decoder & \$12,000 \\
\hline Opt. \(01-4.5 \mathrm{MHz}\) demodulator & \\
\hline board & 2,000 \\
\hline 1705 Spectrum Monitor & 3,850 \\
\hline TDC1 VHF Tunable Down & \\
\hline Converters & 7,66 \\
\hline TDC2 UHF Tunable Down & \\
\hline Converters & \$7,660 \\
\hline
\end{tabular}

\section*{2721/2722 NonInterfering CATV/ Broadband Sweep}
- Non-interfering
- Full 5-600 MHz range
- Full Alpha Keyboard for data entry
- LCD Display visible even in bright sunlight
- Lightweight, compact Receiver
- Frequency-agile Telemetry
- 50-waveform NVRAM storage
- RS-232C downloads stored waveforms to Serial Printer or PC
For ordering information, see page 184.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline D & \\
\hline 200 & \\
\hline Opt. 01 -System I (6.552 MHz) & \\
\hline Opt. 02 - System B/G (5.85 MHz) & \\
\hline 28 E NICAM Encoder & \$8,000 \\
\hline Opt. 01 - Delete modu & 2,500 \\
\hline 03 - Mixer/combin & 1,200 \\
\hline VC-20 Audio Vector Conv. & \$49 \\
\hline
\end{tabular}

760 Series Stereo Audio Monitors
- Graphic CRT display of stereo audio signal
- AGC for continuously viewable pattern
- Bar graph for quick setups and accurate peak indication
- Third bar indicates mono compatibility when set to SUM
- Suitable for phase and amplitude measurements
- Optional Nordic or DIN scale

With Tektronix' 760 Series Stereo Audio Monitors, the audio engineer can analyze a pattern display of the stereo audio signal. This display, along with a high resolution bar graph, provides accurate monitoring and measurement capabilities. Used in both operation and setup, the

760N

760 D
instrument provides immediate feedback of the audio signal for creative or technical correction. With the appropriate test signals, the unit can also be used for accurate phase and amplitude measurements.

Three product versions are available with various scales: 760 (standard), 760 N (Nordic), or 760 D (DIN) (see photo).

\section*{728D NICAM Decoder}
- Numeric Eye Height/Parity Display
- Monitoring Outputs
- Digital Bitstream Connection

The Tektronix 728D NICAM Decoder demodulates the NICAM-728 carrier and decodes the left and right analog audio channels and a monaural channel derived from them as well as providing access to the user data bits and \(728 \mathrm{kB} / \mathrm{s}\) data stream. It also monitors the performance of the digital bitstream and provides indications for service type, loss of carrier, and errors.

\section*{728E NICAM Encoder}
- Multi Systems (I and B/G)
- Analog Audio Inputs
- Digital Data Input
- Digital Data Outputs
- I.F. Mixer/Combiner Option
- Built-In Test Signals

\section*{AVC-20 Audio Vector Converter}
- Use with Any NTSC Vectorscope
- Balanced Line Level Inputs
- User Selectable Display Formats; Lissajous Pattern with Calibrated Amplitude; Lissajous Pattern and Sweep Displays of Both Channels
- Time Code or Third Channel Input; Field Locked for Time Code Phase

The Tektronix 728E NICAM Encoder has been designed as a cost-effective solution to a broadcaster's requirements for NICAM-728 encoding and modulation.

The AVC-20 provides stereo audio monitoring capability when installed with an NTSC Vectorscope. Complete audio monitoring can be added to VTR bridges, master control consoles and other locations requiring stereo audio monitoring without modifying the vectorscope and without using front panel space.

\section*{2410 DIGITAL INTERFACE TEST SYSTEM}

\section*{TEST "TELECOM" SIGNALS AT THE DIGITAL SIGNAL CROSS-CONNECT}

All tests are based on ANSI T1.102-1987 and CCITT Red Book Standard, Volume Three, Recommendation G.703. The 2410 performs pulse shape, pulse symmetry, and pulse spectral power tests. The system also allows multi-test looping, user-defined template generation, and can operate at the monitor jack on live traffic.

Pulse shapes can be compared against ANSI or CCITT standards.

\section*{PULSE SHAPE TESTING}

Tests are performed, with Tektronix-supplied templates, to ANSI DS1 (1.5 Mb) including Pub. 43802 old and new equipment specifications, DS1-C (3 Mb), DS2 (6 Mb), or DS3 (44 Mb). The T-Carrier Trigger unit captures an isolated " 1 " for this test. The 2410 can log each failure with a date and timestamp for unattended monitoring of signal lines. CCITT \(2 \mathrm{Mb}, 8 \mathrm{Mb}\) or 34 Mb don't require the T-Carrier Trigger unit.

\section*{PULSE SYMMETRY (BALANCE) TESTING}

Power imbalance is tested to within 0.5 dB , as required by ANSI. For CCITT, the 2410 tests amplitude and width ratios or the positive and negative pulses.

\section*{PULSE SPECTRAL POWER TESTING}

The 2410 selects five sequential pulses, then compares power in the second harmonic against power in the fundamental.

\section*{ZERO LEVEL TEST}

Test the zero level before and after the pulse in accordance with the CCITT Red Book. The value of a "zero" cannot exceed 10\% of the nominal pulse amplitude.

\section*{GENERATING TEMPLATES WITH TGEN}

The 2410 includes TGEN, a Microsoft Windows-based program for template generation. Standard templates may be modified or you can create templates based on your own signals.

\section*{WARRANTY INFORMATION}

Hardware: The 2400 Series Digitizing Oscilloscope carries a 3 -year warranty, and Warranty-Plus service extensions are available. See 2440 Ordering Information, page 91. 2402A TekMate has a 1-year warranty, with Warranty-Plus available. See 2402A Ordering Information, page 93.

Software: 90-day warranty covering software media (floppy disks) for materials and defects. Software operation carries no warranty.

The 2410 Digital Interface Test System is a fully integrated hardware and software package that allows you to quickly and accurately test digital carrier pulses to ANSI or CCITT specifications.
- Monitor Live Traffic
- ANSI Tests:
- Pulse Shape
- Pulse Balance
- Pulse Spectral Power
- CCITT tests:
- Pulse Shape
- Pulse Symmetry
- Zero Level Test
- Portable, Rugged System
\begin{tabular}{lllll}
& ORDERING INFORMATION & & & \\
\hline
\end{tabular}
- Up to 700 MHz PLL Internal Clock Source
- PRBS Patterns 2n-1, where \(n=7,15,17,20\), or 23
- Up to 32 K Bit Programmable WORD
- SONET/FDDI Pattern Generation
- Auto Search Synchronization
- Versatile Bit Error Rate Measurements
- Error Injection; Single or Rate
- External Reference Data Input for User Generated Patterns GPIB
- GPIB/RS-232-C and Printer Interface IEEE 488.2

\section*{CSA 907 BIT ERROR RATE TESTER}

The CSA 907 Bit Error Rate Tester is a stimulusresponse system that features a high-speed serial pattern generator, the CSA 907T, and a companion error detector, the CSA 907R. Each unit is portable, to be used in either benchtop, on-site, or field environment to evaluate the quality of transmission in high-speed digital communications and fiber optic devices, subsystems, and links. The CSA 907 Bit Error Rate Tester can be used for FDDI/SONET testing, SATCOM transmission system analysis, High Speed Digital Device Design, GaAs/ECL Device Characterization, and Manufacturing Systems Test.

\section*{BUILT-IN PHASE-LOCKED-LOOP CLOCK SOURCE}

The CSA 907 has a built-in Phase-Locked-Loop Clock Source that transmits patterns at a speed of 1 MHz to 700 MHz , thereby eliminating the need for an external clock synthesizer. However, for applications where the test is to be performed using a known reference clock, the CSA 907 has the capability to accept an external clock

\footnotetext{
*The CSA 907 Bit Error Rate Tester complies with the IEEE Standard 488.2 and Tektronix Standard Codes and Formats.
}
input. The CSA 907T standard clock source has a resolution of 100 kHz but 1 kHz resolution and 10 ppm stability can be obtained through an option. This extra resolution is useful for applications such as SONET where frequencies are allocated in increments of 10 kHz or testing a clock recovery circuit where the user wants to sweep across the bandpass of the PLL to check lock in and hold ranges. User can store/recall 10 different frequencies for repeatability and testing against standards.

\section*{PSEUDO RANDOM PATTERNS}

Testing communication devices, subsystems and links with Pseudo Random Bit Sequence (PRBS) is important in order to make statistical measurements, such as jitter and noise and simulating real-life data. The CSA 907 has the capability to generate five PRBS patterns having periods of \(2^{n}-1\); where \(n=7,15,17,20\), or 23 .

\section*{LONG (32 K RAM) PROGRAMMABLE WORD}

In addition to the PRBS patterns, the CSA 907 features ten 16 bit programmable words with an optional 32 K RAM word for application specific or user-defined pattern testing. This makes the CSA 907 suitable for testing and evaluation of digital transmission systems and high-speed logic devices under a variety of conditions. Access to the memory is both by remote and front panel control.

\section*{SONET/FDDI PATERN GENERATION}

The 32 K RAM word allows the testing of an FDDI system by simulating 2 kilobit long FDDI packets or SONET testing where the signal needs to look like a SONET frame. FDDI/SONET frame pattern can also be "built-in" by installing a ROM option. If the 32 K ROM option is installed, then each time a memory associated with a ROM coded word is recalled, the associated FDDI/ SONET word is loaded into the working memory from the ROM.

\section*{AUTO SET \& SYNC}

The CSA 907 "auto-set" synchronization feature allows effortless system setup and operation. The "auto-set and sync" feature eliminates the time and frustration associated with adjusting a multiple of input parameters by providing automatic compensation for data/clock timing skew (phase), selection of data pattern and polarity, bit synchronization to data pattern and data input threshold adjust. These four powerful automatic synchronization features allow the user to immediately perform a wide range of tests on systems and components with great ease.

\section*{VERSATILE BIT ERROR RATE MEASUREMENTS}

The CSA 907 allows a wide range of Bit Error Rate Measurements for fully characterizing and testing communication devices, subsystems, and links. The Error Detector measures totalized, overtime, and over bits Error Rates concurrently. Injection of Errors in the transmitted data stream for system evaluation is also possible with the CSA 907.

\section*{EXTERNAL REFERENCE DATA}

The External Reference Data mode in the CSA 907 allows the user to measure and analyze transmission errors for virtually any user generated data pattern. It is useful when evaluating the performance of a component or system against a user supplied reference data. Delay compensation up to 500 ps , data threshold adjust and input termination voltage selection is also possible with the External Reference Data input.

\section*{OPERATIONAL SUPPORT}

The CSA 907 support both the IEEE-488.2 GPIB with Tek Standard Codes \& Formats and the RS-232-C interfaces for remote control, allowing test repeatability and reading instrument status and memory contents. The battery backed-up non-volatile RAM memory provides storage of 10 words patterns, 10 clock frequencies, error measurements and unit setup for future recall. The front panels provide outputs for viewing eye diagrams and waveshape analysis on the CSA 803 and CSA 404 signal analyzers. The rear panel allows specialized I/O that allows custom data generation and BER measurements.

\section*{CHARACTERISTICS}

\section*{CSA 907T PATTERN GENERATOR}

Frequency Range - 1 MHz to 700 MHz (Mbit/s) with Internal or External Clock.
Resolution - 100 kHz (1 kHz optional).
Stability - 30 ppm (10 ppm optional).
Memory - 10 frequencies.
Ext Clock In -0.5-1.5 V p-p, \(50 \Omega\), ac coupled.
Data Out Formats -NRZ-L, Normal and Complement; PRBS patterns or programmable WORD.
PRBS Pattern \(-2^{\mathrm{n}}-1\), where \(\mathrm{n}=7,15,17,20\), or 23. WORD Length max - 16 bits (32 K pattern memory optional).
WORD Memories-10 \(\times 16\) bits (\(10 \times 32\) kilobits optional).
Data and Clock Outputs - \(50 \Omega\) True and Complement (Differential).
Amplitude - 700 mV p-p to 2 V p-p into \(50 \Omega\).
Baseline Offset --2.0 V to 0.0 V .
Rise/Fall Times - 200 ps, typical @ 1 V p-p.
Error Injection - Single, or \(10^{-n}\), where \(\mathrm{n}=3,4,5,6\), or 7 .
External - 1 error injected for each rising edge, ECL. Auxiliary Outputs - Clock/4 and Pattern Sync. (ECL levels).

\section*{CSA 907R ERROR DETECTOR}

Frequency Range - 1 MHz to 700 MHz , Clock Input. 1 Mbit/s to \(700 \mathrm{Mbit} / \mathrm{s}\), Data Inputs. Memory: 10 frequencies.
Auto Set \& Sync - Search and lock to: clock input frequency, data synchronization pattern selection and polarity, bit position in data pattern, data/clock timing skew, and input threshold.
BER Measurements: BER over time of test, BER over \(10^{6}\) to \(10^{16}\) bits, selectable.
Total Errors: Zero to 99,999,999.
Data and Ref. Data Inputs: NRZ-L, RZ, True (or Inverted, Data only)
Input Threshold: Variable -1.5 V to +1 V .
Input Level: 0.5-1.5 Vp-p.
Impedance: \(50 \Omega\), GND or -2.0 V Termination.
Delay Range: \(0-4 \mathrm{~ns}\), variable.
Clock Input: \(0.5-1.5 \mathrm{~V} p-\mathrm{p}\), Sine or Square Wave, \(50 \Omega\), ac coupled.
Monitor Outputs: Pattern Sync, Clock, Data, and Error (ECL levels).

\section*{CSA 907T/CSA 907R GENERAL SPECIFICATIONS}

Front Panel Connectors -SMA female.
Power Requirements -90-132 VAC, or 180-264
VAC, \(47-63 \mathrm{~Hz} .100\) VA max.
Operating Temperature -0 to \(50^{\circ} \mathrm{C}\).

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline CSA 907T Pattern Generator Includes: User Reference & \$21,995 \\
\hline Manual (070-8026-00) & \\
\hline CSA 907R Error Detector & \$20,995 \\
\hline Includes: User Reference & \\
\hline Manual (070-8026-00) & \\
\hline CSA 907 Bit Error Rate Tester & \\
\hline (CSA 907T/CSA 907R) & \$34,995 \\
\hline Includes: User Reference & \\
\hline Manual (070-8026-00) & \\
\hline INSTRUMENT OPTIONS & \\
\hline Opt. 1R-Rackmount & +\$295 \\
\hline Opt. 1T - High Resolution Clock & \\
\hline (CSA 907T) & +\$995 \\
\hline Opt. 2D - Extended Pattern & \\
\hline Memory 32K RAM & +\$4,995 \\
\hline Opt. 3D - Extended Pattern & \\
\hline Memory 32K ROM & +\$995 \\
\hline Opt. 4D - Differential Inputs & \\
\hline (CSA 907R) & . \\
\hline Opt. 5D-75 \(\Omega\) termination & \\
\hline (CSA 907T/R) & +\$995 \\
\hline (CSA 907) & +\$1,990 \\
\hline
\end{tabular}

INTERNATIONAL POWER PLUG OPTIONS
Opt. A1-A5 - Available
See page 374 for description.
\begin{tabular}{lcc}
\multicolumn{3}{c}{ PHYSICAL CHARACTERISTICS } \\
\hline Dimensions & mm & in \\
\hline Width & 366 & 14.4 \\
\hline Height & 152 & 6 \\
\hline Depth & 340 & 13.4 \\
\hline Weight \(\approx\) & kg & lb \\
\hline Net & 10 & 22 \\
\hline
\end{tabular}
\({ }^{-1}\) Contact your local sales office.

\section*{2467BHD HIGH DEFINITION TELEVISION OSCILLOSCOPE}

\author{
The most accurate, display - for HDTV now or in the future. \\ - Automatic Pushbutton Setup on Video Signals \\ - Standard Presets for Quick Recall \\ - Bi-level and Tri-level Sync Separation \\ - Brightly displays single lines and pixel detail on video signals
}

\section*{2467 HDTV OSCILLOSCOPE}

Tek lets you trigger on tri-level synchronization pulses with performance never before possible in high-definition video.

The HDTV Scope answers a pressing need of component video design and troubleshooting for an oscilloscope able to capture, measure and display highdefinition TV signals with excellent fidelity.

Many designers of composite video systems are already familiar with the Tek 2467 Oscilloscope, whose microchannel-plate (MCP) crt amplifies the intensity of low-repetition rate signals by several orders of magni-

tude, while limiting the intensity of high-rep signals, so metastability can be easily seen.

Built on the 2467 foundation, the HDTV Scope applies MCP technology and other key features, specifically to the needs of high-definition component video signals. The HDTV Scope can automatically recognize and separate tri-level sync pulses on any of the proposed HDTV standards, without making you resort to external triggers or other makeshift techniques.

To make vital timing measurements as accurately as possible, the HDTV Scope features a built-in counter/ timer/trigger and enables channel-to-channel timing correction of any two channels to 50 ps .

View any field or line or pixel-sized detail. The \(\geq 4 \mathrm{~cm} / \mathrm{ns}\) visual writing speed of Tek's MCP technology makes possible a bright display of extremely fast and infrequent events, while reducing the intensity of accompanying high-rep rate signals.

The HDTV Scope is compatible with the three major high-definition TV standards - 1250/50, 1125/60 and 1050/60 - as well as NTSC, PAL, SECAM and component systems. The instrument automatically senses the standard used and autosets itself accordingly.

Autosetup saves time and effort by automatically scaling, positioning and triggering waveforms for you, instantly. Autoset to the lines mode and quickly toggle between line and field modes.

Eight common front-panel setups are predefined; after autosetting to the signal, they adopt themselves to the appropriate standard. You can store an additional 22 front-panel setups for easy recall later.

The scope automatically sets the line count for the video format being used - up to 1280 lines.

The 2467 BHD 's 400 MHz bandwidth spec includes a frequency response flatness of \(\pm 2 \%\) to 30 MHz , virtually eliminating the scope as a source of waveform distortion when making the precise evaluations required by HDTV technology. Or, use the 50 MHz filter to reduce noise or clock frequency interference.

The scope's backporch clamp stabilizes the display independent of APL

Active video mode allows the user to select predefined start and stop lines to eliminate undesired parts of the signal.

\section*{CHARACTERISTICS}

Frequency Response (-3 dB Bandwidth) -400 MHz .
\begin{tabular}{ll}
\(500 \mathrm{kHz}-10 \mathrm{MHz}\) & \(\pm 1 \%\) \\
\(10 \mathrm{MHz}-20 \mathrm{MHz}\) & \(+1 \%-2 \%\) \\
\(20 \mathrm{MHz}-30 \mathrm{MHz}\) & \(\pm 2 \%\)
\end{tabular}

Step Response -<875 ps.
Squarewave Flatness - \(\pm 1 \%\) p-p
Deflection Range - CH 1 \& CH 2: \(2 \mathrm{mV} / \mathrm{div}\) to \(5 \mathrm{~V} /\) div in a 1-2-5 sequence. CH 3 \& CH 4: \(100 \mathrm{mV} / \mathrm{div}\) and \(500 \mathrm{mV} / \mathrm{div}\).
Channel 2 to Channel 1 delay -adjust range \(\pm 500 \mathrm{psec}\).
Input Characteristics \(-1 \mathrm{M} \Omega \pm .5 \%, 15 \mathrm{pF}\). \(50 \Omega \pm 1 \%\).
Bandwidth Limit -3 dB at 50 MHz .
Timebase Range - A sweep: \(500 \mathrm{ps} / \mathrm{div}\) to \(500 \mathrm{~ms} /\) div in a 1-2-5 sequence B sweep: \(500 \mathrm{ps} / \mathrm{div}\) to \(50 \mathrm{~ms} / \mathrm{div}\), in a 1-2-5 sequence.
Variable Timing Control - Continuously variable and calibrated between sec/div settings.
Cursor Measurements - Volt, Time, 1/Time, \%, Ratio, Phase.
Sync Separation - Stable sync separation from Trilevel and Bi-level sync-positive or sync-negative composite or component video on systems with 525 to 1280 lines per frame, 50 Hz or 60 Hz field rate, interlaced or non-interlaced.
Trigger Modes -LINES, FLD 1, FLD 2, ALT (FLD 1/ FLD 2), Active Video Mode.
BackPorch Clamp - Within 1.0 div of ground reference.
Line Counter - Automatically sets to formats up to 1280 lines.
Environmental - MIL-T-28800C for Type III, Class 3, Style C.
Temperature - Operating: \(-15^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\), Nonoperating: \(-62^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
Autoset - Autosets to major TV standards such as 1250/50, 1125/60, 1050/60, NTSC, PAL, SECAM and component systems. Will also set on any bi-level or trilevel sync.
Save/Recall -22 user-definable setups.
Visual Writing Rate \(-4 \mathrm{~cm} / \mathrm{ns}\).
Standard TV Presets - Lines, Fields, Frame, Line select, Active video, horizontal blanking, Vertical blanking, Pixel, TSG triggering.
Built-in Counter/Timer/Trigger (CTT) - Frequency, Period, Delay Time, Totalize, Delay-By-Events.

\section*{ANTHROCART \({ }^{\text { }}\)}

Three words constantly come up whenever anyone talks about what they like about the AnthroCart \({ }^{\text {² }}\) : mobile, compact and incredibly strong. No one seems to have enough space. A lot of people need to move their equipment around. That's why the AnthroCart \({ }^{\text { }}\) was originally designed within Tektronix. It was such a great idea that in 1984, Tektronix spun Anthro out to meet your Technology Furniture needs.

You're familiar with building blocks. First you start with one, then you add more. You can rearrange them and shape them until you have a design that pleases you and meets your needs.

You can do the same thing with our carts. You choose a standard cart to start with. You can use it on its own, or combine it with others. And you can build onto it with our wide range of options to get the shape you want.

You can decide on height, depth, width and all kinds of options to add. And like all building blocks, you can always take the AnthroCart \({ }^{8}\) apart and reconfigure it if your needs change.

There are three members of the AnthroCart® family: the AnthroCart \({ }^{*}\) Original, the MidSize and the KingSize.

\section*{THE ORIGINAL}

The AnthroCart \({ }^{\circledR}\) Original is \(25^{\prime \prime}\) wide. You can configure it in a sit-down or stand-up application, add additional shelves for extra hardware or storage and fit it into a very small space.

\section*{THE MIDSIZE}

The MidSize is \(36^{\prime \prime}\) wide, a foot wider than the Original Like all AnthroCarts \({ }^{\circledR}\), it's strong, compact and mobile. The AnthroCart \({ }^{*}\) MidSize is the right size for in-between spaces.

\section*{THE KINGSIZE}

The AnthroCart \({ }^{\text {® }}\) KingSize is \(48^{\prime \prime}\) wide - plenty of room if you need to spread out. Wider than the Original and MidSize, the KingSize is still as mobile and heavy duty. Make the AnthroCart \({ }^{\text { }}\) KingSize work for you. Move your equipment around. Stack it all on the KingSize - it's designed for more room

GT KingSize AnthroCart \({ }^{\text {® }}\) shown with Extension Shelf Kit and Side Rack.

The Original PC Compact Cart (Bone Color) shown with Extension Shelf Kit, Paper Feed and Catch, Document Holder, Slide Out Shelf, Wire Base Shelf and Bookends.

AnthroCart \({ }^{\text {® }}\)
APPLICATIONS
- Technology Furniture for Use with any Type of Hardware, from Scopes to Personal Computers to Graphic Terminals.

\section*{BENEFITS}
- 5 Year Unconditional Warranty
- Rugged Construction, Holds up to 150 lbs .
- Made in U.S.A.
- Over 20 Options to Customize Your Workstation
- Mobile
- Space Saving

\section*{ORDERING INFORMATION}

FOR A FREE CATALOG, CALL OUR
TOLL FREE NUMBER: 800-325-3841
Anthro \({ }^{\text {a }} \mathrm{Co}\)
Technology Furniture \({ }^{8}\)
3221 NW Yeon St.
Portland, OR 97210
Phone: 503-241-7113
Fax \# : 503-241-1619
AnthroCart \({ }^{3}\) and Technology Furniture \({ }^{*}\) are registered trademarks of Anthro.

PC MidSize Cart with Document Holder, Drawer, Cable Alley, Side Rack and Scooter.

Now that you have all the "blocks", you can build a workstation. Connect any two AnthroCarts \({ }^{8}\) together to create a workstation to meet any of your space needs. Plus, you can move it around.

\section*{FREE CATALOG}

Call us on our toll free number to receive your free catalog. The catalog shows you all of our different size carts, how you can configure them, what options you can choose from, and all the product specs you may need. We'll also include a price list and ordering information.

ANTHRD \({ }^{\text {™ }}\)

\section*{AnthroArm \({ }^{\circledR}\) PC}
- Holds up to 30 lbs.
- Easily Adjusts Up and Down
- Safely Tilts and Swivels
- Easy to Attach
- Made in the U.S.A.

\section*{AnthroArm \({ }^{\circledR}\) GT}
- Holds up to 200 lbs.
- Rotates \(360^{\circ}\)
- 5 Year Warranty
- Made in the U.S.A.

\section*{AnthroBench \({ }^{\text {® }}\)}
- Space Saving Arm
- Generous Cord Management
- Spacious 60" x 36" Surface
- Adjusts in Height from 25 to 30 inches

\section*{ORDERING INFORMATION}

FOR A FREE CATALOG, CALL OUR
TOLL FREE NUMBER: 800-325-3841
Anthro \({ }^{\circ} \mathrm{Co}\).
Technology Furniture \({ }^{\text {s }}\)
3221 NW Yeon St.
Portland, OR 97210
Phone: 503-241-7113
Fax \#: 503-241-1619
AnthroArm \({ }^{\text {a }}\) and Technology Furniture \({ }^{\text {a }}\) are registered trademarks of Anthro.

\section*{ANTHROARM \({ }^{*}\) PC}

\section*{HOLDS UP TO 30 LBS.}

AnthroArm \({ }^{\otimes}\) PC...strong, adjustable, well-designed. Put your monitor exactly where you want it. Have room to spread out and be comfortable.
The AnthroArm \({ }^{*}\) PC easily holds your monitor weight up to 30 lbs . \({ }^{* 1}\) Select either the \(13^{\prime \prime} \times 13^{\prime \prime}\) platform or the 17 " \(\times 17\) " platform for bigger monitors. Both plafforms have a non-skid, cushioned skin. They hold your monitor straight and steady.
The Keyboard Holder is the option to hold your keyboard up off your work surface. The holder attaches under the platform in a fixed position.
AnthroArm \({ }^{*}\) PC. Quality armature for monitors. Look for our name.
\({ }^{* 1}\) For more weight capacity, see the AnthroArm \({ }^{*}\) GT

AnthroArm \({ }^{\otimes}\) PC

The perfect CAD/CAM workstation: Anthrobench \({ }^{\oplus}\) with Arm, Task light, HarterAnthro Chair and Printer Stand.

\section*{ANTHROBENCH \({ }^{\circledR}\)}

The AnthroBench \({ }^{\text {® }}\) is the heavy-duty workbench that stands up to your rigorous daily routine. The
AnthroBench \({ }^{\otimes}\) is strong enough to hold 600 lbs ., with a 12- inch arm that easily lifts and moves your graphic terminal over your work surface.

You can mount the Arm at either end of the AnthroBench \({ }^{*}\) depending on your application. You can add additional arms if you have more than one terminal. Swivel the arm 360 degrees. Put your terminal exactly where you want it.

Running the length of the surface is a cord management track with a generous capacity for cables, cords, and power strips. You can run your cords in anywhere along the track, and keep them out of your way in the \(2^{\prime} .5^{\prime \prime}\) w. x 3'.75" d. channel.

The AnthroBench \({ }^{*}\) adjusts in height from 25 to 30 inches. Use the manual telescopic action in the legs to lift or lower the surface to your desired height.
The AnthroBench*: makes your space fit your work style.

\section*{ANTHROARM \({ }^{\circledR}\) GT}

\section*{HOLDS UP TO 200 LBS}

AnthroArm \({ }^{\infty}\) GT... space saving, heavy duty, solid. Designed to hold 200 lbs . Now you can easily move your heavy equipment around.
Float your hardware above your work surface and have plenty of room to spread out underneath. Swivel both the platform and the arm \(360^{\circ}\) to move your equipment to the right spot. Pull it toward you. Push it away
The AnthroArm \({ }^{\text {® }}\) GT is also available for OEM applications. The arms, mounting plates and platform can be ordered separately or in different combinations for specific use.

AnthroArm \({ }^{\otimes}\) GT: the Arm strong enough to hold your heaviest equipment. Look for our name.

AnthroArm \({ }^{\otimes}\) GT

\section*{VISUAL SYSTEMS SOLUTIONS}

The Visual Systems Group brings its expertise in color, graphics, video, and X Window implementation to a wide range of powerful devices - X Terminals, netstations, and graphics terminals. Add quality color output with our family of advanced color printing solutions - from low-cost ink-jet printers to thermal wax - for a superior color-matched solution. Tek printers can be added to any network made up of PCs, Macs, or workstations.

\section*{NETWORK DISPLAYS}

In today's growing multi-vendor environments there's no problem finding compute power - the challenge is finding efficient ways to distribute it. And Tek X Terminals and Netstations are the solution. From the monochrome XP21 to the high-resolution color XP29, our family of X Terminals provides outstanding performance for the price.

They're compatible with a wide range of workstations and computers. They support Ethernet LAN, TCP/IP, DECnet, NFS and more. And they run Tek's powerful implementation of the X Window System in monochrome, grayscale or color.
Tek Netstations are configurable as graphics terminals on minis or mainframe hosts, or as nodes attached to workstations. You'll find outstanding graphics speed, color and features in every model, whether it's the economical 4211 or high-performance 3D 4235.
Tek Netstations also give you access to a tremendous selection of software, ethernet connections, plus RS-232-C and optional coax connections on selected models.

\section*{GRAPHICS TERMINALS}

For over 20 years, the most popular way to get connected has been with Tek graphics terminals. And today, Tek 4200 Series Intelligent Graphics Terminals continue to provide cost-effective solutions in a wide range of graphics environments.
From the low-cost 4205 to the large-screen 4209, Tek terminals bring exceptional color and clarity to applications such as \(\mathrm{CAD} / \mathrm{CAM}\), architectural and engineering design, mapping, manufacturing, and process control.
Tek terminals let you access graphics applications runnning on workstations, minicomputers, or mainframes with outstanding graphics performance and full functionality. Which means you can access compute power throughout your organization at the lowest possible cost.

Tek terminals are supported by thousands of software packages. And they support a wide array of output devices from a variety of manufacturers, including Tek's own color printers.

The TekXpress Family offers the easiest interface to color \(X\), the highest \(X\) performance, the most comfortable ergonomic design, and the lowest cost of ownership.

FEATURES
- Dual Processing Architecture
- Powerful Straightforward Setup Menus
- Complete Color Management System
- Innovative Modular Design

\section*{BENEFITS}
- High-Performance X Window
- Easy-to-use interfaces for quick setup and simplified color selection
- Small footprint for minimal impact on desk space
- Substantial range of application software

\section*{INTRODUCING THE TEKXPRESS FAMILY}

The TekXpress Family includes five high performing, easy-to-use X terminals.

Superior support of the X Window System ensures compatibility with all X graphical user interfaces. Also supported are hundreds of applications compatible with X, including those for CAD, CAE, CAM, CIM, process control, mapping, publishing, CASE, data analysis and presentation graphics, among others. You can access these applications through both TCP/IP and DECnet, and run them simultaneously in multiple on-screen windows.
The XP25, XP27 and XP29 feature easy color selection and screen-to-printer color matching (WYSIWYG) through Tek's Color Management System TekColor \({ }^{\text {rM }}\). This interface improves productivity by letting you quickly select and edit colors from an onscreen menu.
With the X server supported by both the Motorola MC68030 and the Texas Instrument TMS34020 processors, TekXpress uses parallel X server processing for industry leading \(X\) performance. This dual processor architecture also allows general network I/O and graphics tasks to be separated and processed in parallel. And the Tek-developed X server is optimized for the TekXpress architecture.
The silent, compact logic module can go just about anywhere, freeing up valuable desk space. You can place it on a bookshelf above the monitor, on your desk in the unused space behind the monitor, or even on the floor completely out of sight.

The XP27 sets the new price/performance standard for color \(X\) Terminals.

You'll also find that every TekXpress X Terminal is built to the highest standards of quality and reliability Tek's. A fact that lets us offer you a standard three-year warranty, worldwide.

TEKXPRESS SELECTION GUIDE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics & XP21 & XP23 & XP25 & XP27 & XP29 \\
\hline Screen Size & \(17^{\prime \prime}(44 \mathrm{~cm})\) & 19" (48 cm) & \(14^{\prime \prime}(36 \mathrm{~cm})\) & \(19^{\prime \prime}(48 \mathrm{~cm})\) & \(19^{\prime \prime}(48 \mathrm{~cm})\) \\
\hline Resolution & \(1152 \times 900\) & \(1280 \times 1024\) & \(1152 \times 900\) & \(1152 \times 900\) & \(1280 \times 1024\) \\
\hline Refresh Rate & 72 Hz & 72 Hz & 60 Hz & 72 Hz & 72 Hz \\
\hline Colors & Monochrome & 16 shades of gray & \multicolumn{3}{|c|}{256 colors from 16.7 million} \\
\hline Environment & \multicolumn{5}{|c|}{X Window System, Version 11, Release 4} \\
\hline Processors & \multicolumn{5}{|c|}{Motorola 68030 and Texas Instruments 34020} \\
\hline Memory Compute Side Graphics Side & \multicolumn{5}{|c|}{\begin{tabular}{l}
4 MB standard, 2 MB optional \\
1 MB standard, \(2 \mathrm{MB}, 4 \mathrm{MB}\), or 8 MB optional
\end{tabular}} \\
\hline Number of Fonts Standard Optional & \multicolumn{5}{|c|}{\[
13
\]} \\
\hline \[
\begin{gathered}
\hline \text { Keyboards } \\
\text { Standard } \\
\text { Optional } \\
\hline
\end{gathered}
\] & \multicolumn{5}{|c|}{IBM 101 (PS/2 compatible), or IBM 102 International versions
VT200} \\
\hline Network Interface & \multicolumn{5}{|c|}{Ethernet} \\
\hline Network Protocol Standard Optional & \multicolumn{5}{|c|}{TCP/IP with Telnet, TFTP, NFS DECnet with DAP and MOP} \\
\hline
\end{tabular}

\section*{NETSTATIONS FOR 2D AND 3D NEEDS}

Tek netstations also provide high-performance displays in networked environments, linked to mainframes, minicomputers or workstations. Our complete netstation family offers a range of price/performance alternatives, and RS-232-C, and LAN allow connection to a wide variety of host environments running the Tek graphics model.

The 4230 Series of 3D Color Netstations is fully compatible with Tek's terminals and provides a logical upgrade path to increased performance. Four to 52 MB of display list memory provide quick access to large drawings, and a 24 -bit \(Z\) buffer gives you extremely fast locally shaded 3D images with hidden surface removal.

Tek's 4211 and 4220 Series of Color Netstations provides cost-effective displays for demanding 2D graphics applications. With flexible host connections, they can be networked into a mixed computing environment consisting of host computers, terminals, netstations and workstations.

\section*{WORLDWIDE SERVICE AND SUPPORT}

Tek provides you with worldwide service and support to complement your new product purchase. Visual Systems Group products are paired with world- class customer service to provide you with unbeatable product up-time. Your local sales engineer or customer service representative can help you select the Maintenance Agreement that best suits your needs. You can choose from a variety of annual or multi-year maintenance agreements. And remember, purchasing multi-year agreements can save you hundreds of dollars over the cost of annual renewals. To order service plans to suit your needs, call our toll free number: 1-800-547-8949.

\section*{4200 SERIES GRAPHICS TERMINALS}

Tektronix color graphics terminals provide advanced features at affordable prices, with a wide range of compatible products. The 4205 is the entry member. The 4207 adds more advanced features like a two-port peripheral interface and extended memory. For even more memory and RGB-out, choose the 4209 with a 19inch screen.

Special options for the 4200 Series include sealed keyboards for harsh environments, bar code readers and rackmount capability. In fact, the SF4208 is constructed to withstand the rigors of factory floor environments. All 4200 Series Terminals are compatible with thousands of applications on hosts and deliver excellent reliability for maximum productivity.

All of Tek's terminals, X terminals, and netstations \({ }^{\star}\) are designed for export to all destinations without U.S. Government Individual licenses. These products qualify to General License G-DEST.
\({ }^{*}\) Except the 4237 Netstation.

\section*{With COLOR you can}
- Give a Competitive Edge to Your Presentations.
- Highlight Important Points and Enhance Details.
- Color-code Different Types of Data.
- Add Accuracy and Realism to Your Computer-generated Designs.
- Categorize the Elements in a Picture.

\section*{ORDERING INFORMATION}

4696 Color Ink-Jet Printer Order 4696
ColorQuick Order 4697
Phaser \({ }^{\text {™ }}\) II SX Color Printer Order 4694SX

Order 4694PX
Phaser \({ }^{\text {TM }}\) II \(\mathbf{D X}\) Color Printer
Order 4694DX
Phaser \({ }^{\text {TM }}\) COS Color PrintStation
Order 4597PS
(The RGB II must be ordered with a video adapter with prices starting at \(\$ 1,200\).)
469CART Printer Car
OPTIONS
Contact your local Tektronix Sales Representative or authorized dealer.

WARRANTY-PLUS SERVICE OPTIONS
See Service Support on page 376.

\section*{GRAPHIC SUPPLIES}

DIRECT ORDER DESK
Toll Free 1 800-835-6100
6:00 a.m. to 5:00 p.m. Pacific Time. Outside the U.S., call your local Tektronix office.
VISA/Mastercard accepted. For all your printing supplies: paper, transparencies, inks, ribbons, toners, maintenance cartridges, plotter pens, etc.
Complete Computer Graphics Supplies Catalog available on request.
Orders shipped within 24 hours.
Rush Order delivery service available.

Professional-quality thermal-wax and ink-jet color output.

The Tektronix Phaser II PX Color Printer.

\section*{IMAGINE THE WORLD WITHOUT COLOR.}

Everything in shades of gray. Of course, we can give you 256 shades of gray if that's what you want. Now think of COLOR; vibrant shades of blue, red, green, purple, orange, yellow, and 16 million dithered shades.
Most computer graphics are information-oriented images. Adding COLOR to graphics makes them a more effective communication tool.

\section*{TEKTRONIX OFFERS BRILLIANT COLOR OUTPUT FROM THE PLATFORM OF YOUR CHOICE}

With a full range of ink-jet and thermal wax transfer printers, Tektronix has a color printer for most application requirements. Compatible with PCs , Macintosh computers, and most leading graphics terminals and workstations, Tektronix color printers let you connect to one or more computing environments with minimal effort.

\section*{NEW PHASER II PX COLOR PRINTER}

This thermal wax 300 dpi color printer was designed for departmental color printing from one or more type of computers. It can handle simultaneous input from IBM PCs, PS/2s or compatibles as well as Macintosh computers and most technical workstations. Compatible with both PostScript \({ }^{\otimes}\) and HP-GL, the Phaser II PX works with almost any color graphics application. Capable of producing brilliant
 color overhead transparencies, the Phaser II PX is an excellent choice for business presentation graphics. For the graphic arts professional, it provides PANTONE \({ }^{\text {® }}\) color simulations and compatibility with downloadable fonts from Adobe, Bitstream and others.

\section*{NEW PHASER II SX COLOR PRINTER}

The Phaser II SX offers laser quality color printing at an unprecedented price. Designed for use by individuals or small departments, it connects to both IBM PCs, PS/2s and compatibles as well as Apple Macintosh computers. Drivers for Microsoft Windows 3.0, Apple Macintosh, Truevision TARGA systems and PostScript file printing are available separately. The Phaser II SX features a modular design so you can upgrade to the full capabilities of the Phaser II PX, should your color printing requirements grow.

\section*{NEW PHASER II DX COLOR PRINTER}

The Phaser DX is an intelligent, raster-based color printer designed for fast processing and printing of color raster data. It is ideal as a shared color screen copying device for a variety of graphics terminals and workstations including Sun, Silicon Graphics, HP/Apollo and others. The Phaser II DX is fully plug-compatible with both the popular 4693DX color image printer and the new Phaser II SX.

\section*{COLOR QUICK INK-JET PRINTER}

A 216 dpi drop-on-demand ink-jet printer. Handles plain bond paper or the recommended special paper in many sizes up to 12 " \(\times 18\) ". Now available with drivers for MicroSoft Windows 3.0, Apple Macintosh, TARGA, and many others. Connects to PCs and Macintoshes or selected Tektronix terminals. A good entry level printer for presentation graphics or graphic arts applications.

\section*{4696 COLOR INK-JET PRINTER}

A \(120 \times 240\) dpi low cost ink-jet printer. Compatible with most Tektronix color terminals as a screen copying printer. Connects to \(\mathrm{PCs}, \mathrm{PS} / 2 \mathrm{~s}\) and compatibles as well Individually replaceable ink cartridges offer economical operation.

\section*{PHASER COS COLOR PRINTSTATION}

Combines the ColorQuick ink-jet printer with a PostScript compatible network interface for AppleTalk networks. Has built in hardware spooling and font storage. Ideal for graphic arts applications such as comps, package designs, and page design.

\section*{RGB II COLOR SCREEN PRINTER}

A 300 dpi thermal wax printing system designed to capture the contents of your color display and produce a hardcopy in less than 50 seconds with no software drivers or other system overhead. Connects with an intelligent video interface which automatically calibrates itself for use with a broad range of high-end color displays from workstations, terminals, and advanced personal computers. Ideal for working screen copies from CAD, mapping or process control systems.

\section*{NETWORKED CONFIGURATIONS AVAILABLE}

Tektronix offers special network interfaces which allow you to connect selected color printers directly to Ethernet or IBM networks. This network connection reduces network traffic and lets you locate your printer independent of existing servers or workstations. These interfaces support TCP/IP protocol on Ethernet as well as IPDS data streams in most IBM mainframe networks.

\section*{STEREOSCOPIC 3-DIMENSIONAL COLOR DISPLAYS}

Tektronix SGS Series Stereoscopic-3D Color Monitors and Display Systems enable users with 3D databases and stereo software to easily add stereoscopic viewing to their systems. Our stereo-3D products incorporate the latest advancements in liquid crystal shutter research and development to assure the best possible image quality, including higher light transmission and a reduction in front surface reflections by up to \(80 \%\). The SGS Series products are also designed to be used in both 2 D monoscopic and 3D stereoscopic modes, featuring an easy-toremove stereoscopic modulator assembly.

\section*{INTEGRATED MONITORS}

The SGS 421 and SGS 620 single-mode monitors are completely packaged units featuring large area 16 -inch and 19-inch diagonal color CRT displays, removable liquid crystal stereoscopic-3D modulators, and simple polarizing glasses and clip-ons. The display monitor automatically switches from 2D monoscopic @ 60 Hz to 3D stereoscopic @ 120 Hz by sensing the vertical sync.

New SGS 630

\section*{WORKSTATION-COMPATIBLE MONITORS}

The 16" SGS 425 and 19" SGS 625 include all the features of the SGS 431 and SGS 620, and are designed as multi-mode displays for easy adaptability to many common workstations and imaging card sets that support \(1280 \times 1024\) resolution.

All models meet FCC Class A and VDE Class B EMI classifications and are certified by UL, CSA and TUV.

\section*{STEREO-3D SYSTEMS FOR THE IBM PC/AT}

The 16" SGS 431, 19" SGS 630 and new 19" multi-mode (workstation-compatible) SGS 635 Stereoscopic-3D Graphics Systems feature an IBM PC/AT Stereo Graphics Adapter (SGA) card, allowing users to display high quality stereo 3D images from applications software. The SGA card, which off-loads low level graphic functions from the host, supports all common 2D primitives such as Move, Line, Polygon, Circle, etc.

The complete system also includes the Graphics Subroutine Library (GSL), which supports all 3D primitives, as well as 2D primitives, such as Window, View, Viewport, Color Map, to name a few.

\section*{STEREOSCOPIC 3D KITS}

Stereo kits are offered for developers interested in designing their own stereoscopic displays. Using Tektronix-developed liquid crystal display technology, these kits provide the necessary components and documentation to build a high resolution stereoscopic 3D display. Kit Components include a Liquid Crystal Modulator, Stereoscopic Modulator Driver Unit, Stereo Viewing Glasses and Clip-ons, Velcro Mounting Strips, and Connecting Cable.

\section*{STEREOSCOPIC 3D APPPLICATIONS}

Typical stereoscopic-3D applications include: mechanical CAD, molecular modeling, remote sensing, robotics, remote vision, non-destructive testing, cartography and photogrammetry.

\section*{ORDERING INFORMATION}

STEREOSCOPIC KITS AND SOFTWARE
SGS \(31012-\mathrm{in}\). Kit \({ }^{1}\) W
SGS \(41016-\mathrm{in}\). Kit \({ }^{1} \quad \$ 5,250\)
SGS 610 19-in. Kit \({ }^{1} \quad \$ 6,700\) SGS 9000 Graphics
SGs gout Graphics
\(\$ 100\)
\({ }^{1}\) Specify Option 10 on order
STEREOSCOPIC 3D MONITORS
Includes: Stereo-Ready Monitor,
Liquid Crystal Modulator and
Bezel Assembly, Four Pairs of
Glasses/Clip-ons, Users Manual,
and Power Cords.
SGS 421, Opt. 30
(\(16-\mathrm{in}\). Single-mode Monitor) \(\$ 7,500\) SGS 620, Opt. 30
(19-in. Single-mode Monitor \(\$ \mathbf{1 1 , 0 0 0}\)
SGS 425, Opt. 30
(\(16-\mathrm{in}\). Multi-mode Monitor) \(\mathbf{\$ 8 , 0 0 0}\)
SGS 625, Opt. 30
(19-in. Multi-mode Monitor) \(\$ 11,500\)
SGS 100 Stereoscopic
Graphics Adapter (SGA Card)
for IBM PC/AT. Includes
Graphics Subroutine Library \(\quad \$ 2,500\)
Storage Rack for Modulator \(\$ 145\)

\section*{Additional Glasses or \\ Additional Glasses or
Clip-ons \\ Clip-ons}

STEREOSCOPIC 3D SYSTEMS for the IBM PC/AT \({ }^{\text {TM }}\)
Includes: RGB Color Monitor,
Liquid Crystal Modulator, Stereo
Modulator Driver Unit, Connecting
Cable, Four Pairs Glasses/Clip-ons,
Stereoscopic Graphics Adapter
(SGA) Card and Graphics
Subroutine Library (GSL)
SGS 431 (\(16-\mathrm{in}\). System)
SGS 630 (19-in. System)
SGS 635 (\(19-\mathrm{in}\). System with
Multi-mode Monitor)
For further information, contact:
Tektronix Display Products
P.O. Box 500, M.S. 46-943

Beaverton, Oregon 97077
Phone: (800) 835-9433, ext. 2002
(503) 627-5000

FAX: 503-627-1070

\section*{GMA 201}

\author{
APPLICATIONS \\ - Architectural CAD \\ - Picture Archiving \\ - Reconnaissance
}

GMA 202/ NEW GMA 212

\author{
APPLICATIONS \\ - Document Retrieval \\ - Electronic Publishing \\ - Medical Imaging
}

\section*{NEW GMA 213T}

\author{
APPLICATIONS \\ - Air Traffic Control \\ - Remote Sensing \\ - Government Information Systems
}

\section*{GMA 213C/ GMA 213S}

APPLICATIONS
- Remote Sensing
- Non-Destructive Testing
- Photogrammetry

\section*{ORDERING INFORMATION}

\section*{GMA 201 Monochrome Raster \\ Monitor (19" D, \(2048 \times 1536\)}

Pixels, 30 fL with \(62 \%\) Filter, Landscape Mode)
GMA 202 Monochrome Raster
Monitor (19" D, \(1536 \times 2048\)
Pixels, 30 fL with \(62 \%\) Filter, Portrait Mode)
\$5,175
GMA 212 Monochrome Raster Monitor (19" D, \(1536 \times 2048\) Pixels, 50 fL with \(62 \%\) Filter, Portrait Mode)
GMA 213C Bi-Primary Color
Raster Monitor (\(19^{\prime \prime} \mathrm{D}\),
\(1024 \times 1024\) Pixels, 80 FL, Landscape Mode)
GMA 213S Monochrome Stereo3D Display (19" D, \(1024 \times 1024\) Pixels, 40 fL. Each Eye, Landscape Mode)
GMA 213T, OPT. 23Mono-
chrome Raster Monitor (19" D
\(1280 \times 1024\) Pixels, 165 fL ,
\(30 \%\) Filter, Landscape Mode)
\$9,970

\footnotetext{
For further information, contact:
Tektronix Display Products
P.O. Box 500, M.S. 46-943

Beaverton, Oregon 97077
Phone: (800) 835-9433, ext. 2002
(503) 627-5000

FAX: 503-627-1070
\({ }^{\cdot} 1\) Contact your local sales office.
}

\section*{COLOR, MONOCHROME AND STEREOSCOPIC 3-D DISPLAYS}

The GMA Series Displays consist of three major product types - color, monochrome and stereoscopic 3-D. These displays, which are based on Tek's own state-of-the-art cathode-ray-tube technology, offer extremely high image resolution that is also matched to the display's addressability. Our displays are complete with all necessary internal shielding, and meet regulatory requirements.

\section*{EXCELLENT PICTURE QUALITY \& IMAGE UNIFORMITY}

All GMA 200 Series Displays feature digital dynamic focus and astigmatism. These electronic features, which control CRT spot size and shape, assure a uniform image across the entire screen and offer the highest performance in corner to corner resolution. Such quality and consistency is absolutely necessary for high resolution applications that require "picture perfect" images.

\section*{HIGH BRIGHTNESS AND 256 GRAY SCALE LEVELS FOR GREATER INFORMATION CONTENT AND BETTER VIEWABILITY}

Brighter displays enable more bits of information to be presented to the viewer. Our new portrait mode GMA 212, which uses a Tek-designed and built ultra-high resolution (UHR) CRT, provides up to 50 footlamberts of luminance, allowing better viewability even in high ambient light. Each of our GMA Series Displays also provide gray scale capability up to 256 levels, enabling true differentiation of features for many image processing applications.

\section*{COLOR AND STEREOSCOPIC-3D OPTIONS}

The use of color in your application can help you target or enhance key items on your display. In addition, stereoscopic-3D capability adds a new third dimension in the presentation of critical information. Combining our high resolution monochrome displays with the latest in liquid crystal shutter technology (which is also provided by Tektronix) allows you to have either a high resolution bi-primary colordisplay (GMA 213C) or a high-resolution monochrome stereo-3D display (GMA 213S).

\section*{CUSTOM FEATURES TO MEET YOUR SPECIFIC NEEDS}

Choosing a GMA Series Display can minimize costly custom modifications to existing systems, and give you the exact performance features you need for a particular application. All GMA Series models feature bright, flicker-free images that are distortion-free. In addition as mentioned above, the GMA 213S offers our stereo-3D viewing capability (using passive glasses).

New GMA 213C

New GMA 212

GMA 213S/GMA 263S

608 (with Color Option)

\section*{608 (608 COLOR) HIGH BRIGHTNESS X-Y DISPLAY}

TYPICAL APPLICATIONS
- Ultrasound Imaging
- Test and Measurement
- Simulation (608 with Color Option)

The 608 High Brightness \(X-Y\) Display is designed for easy reading in high ambient light. Its sharp image is well-suited for medical and military imaging. The high brightness (70 fL), 10 -mil spot size and large screen \((9.8 \times 12.2 \mathrm{~cm})\) allow high quality photography. The 608 with color option display incorporates a liquid crystal shutter to produce a bi-primary color palette.

606B

\section*{606B VERY HIGH RESOLUTION X-Y DISPLAY}

TYPICAL APPLICATIONS
- Gamma Camera Recording
- Scan-Conversion Imaging
- Scanning Electron Microscopy

The 606B Very High Resolution X-Y Display is ideal for photographic recording applications in medical gamma camera systems, where image stability, gray scale performance and uniform brightness are critical. It is also superior in applications such as electron microscopy or radiation and thermal imaging.

634

\section*{634 HIGH RESOLUTION VIDEO DISPLAY}

TYPICAL APPLICATIONS
- Film Recording
- Reconnaissance and Surveillance
- Automated Testing

The 634 High Resolution Video Display delivers extremely high quality video images for either direct viewing or film recording (photography). Its excellent gray scale and uniform, full-screen brightness make it the ideal display for military infrared imaging and automated testing applications.

\section*{620 MECHANICALLY RUGGED X-Y DISPLAY}

TYPICAL APPLICATIONS
- Electronic Equipment Testing
- Network Analysis
- Non-Destructive Testing

The 620 General-Purpose X-Y Display is economical, yet reliable and mechanically rugged. It is an ideal display for signal analyzers, yet rugged enough for vibration tests and non-destructive testing (NDT). Its 15 -mil spot size and useable brightness (up to 30 fL) are appropriate for A -mode imaging in medical instrumentation.

NEW 608 (608 with Color Option)

FEATURES/BENEFITS
- High Brightness
- High Resolution
- Excellent Gray Scale
- High Ambient Viewing
- Photographic Quality Images
- Bi-Primary Color-Enhanced Images (608 with color option)

\section*{606B}

FEATURES/BENEFITS
- Very High Resolution
- Uniform Brightness
- Multi-Imaging Capability
- Ultra Sharp Images
- Image Stability

\section*{620}

FEATURES/BENEFITS
- Mechanically Rugged
- Versatile Modular Packaging
- Low Power Consumption
- Economical Display
- High Reliability

\section*{634}

FEATURES/BENEFITS
- Superior Resolution
- Gray Scale Fidelity
- Uniform Full-Screen

Brightness
- Picture Perfect Images
- Low Distortion Images

\section*{ORDERING INFORMATION}
\begin{tabular}{lr}
\(606 B\) Monitor & \(\$ 4,995\) \\
608 Monitor & \(\$ 3,190\) \\
608 w/Color Monitor & \(\$ 4,900\) \\
620 Monitor & \(\$ 1,875\) \\
634 Monitor & \(\$ 3,750\)
\end{tabular}

\section*{RECOMMENDED CAMERAS}

See Cameras pages 298-305
For further information, contact:
Tektronix Display Products
P.O. Box 500, M.S. 46-943,

Beaverton, Oregon 97077
Phone: (800) 835-9433, ext. 2002
(503) 627-5000

FAX: 503-627-1070

\section*{RP88 SERIES COPROCESSOR BOARDS FOR THE MAC® II}

NEW RP88B16 RP88B20 RP88B25 NEW RP88B33

\section*{FEATURES}
- Up to 28 MIPS and 9 MFLOPS Performance (with RP88B33)
- 16 -33 MHz Operation (33 MHz Operation with RP88B33)
- Motorola 88100 RISC CPU
- Up to 3 Motorola 88200 CMMUS
- Up to 32 MBytes of DRAM with Burst Mode Cache Line Fill
- Up to 48 kBytes Cache
- Full Master/Slave NuBus Interlace

TYPICAL APPLICATIONS
- Engineering CAD
- Photorealistic Imaging
- Manufacturing Robotics and Machine Vision
- Finite Element Analysis
- Image Processing
- Scientific Visualization
- Molecular Modeling
- Electronic Prepress

\section*{BENEFITS}
- Increased Processing Power for Mac II (up to 50 times)
- C and Fortran Programmer's Tool Kits for Fast Applications Development
- Full Access to Mac II Tool Box (New Applications can run From Mac II Operating System)
- Easy Installation with Complete Use Documentation Provided

CONTACT INFORMATION
Tektronix Advance Technologies
P.O. Box 500, M.S. 50-380

Beaverton, Oregon 97077
(800) 835-9433, ext. 8800

FAX: 503-627-5502

RP88 Coprocessor Package

\section*{INCREASED MAC II PROCESSING POWER}

The Tektronix RP88 Series Coprocessors are single Macintosh* II Series-compatible boards that offer significant performance advantages for applications configured for the boards. Based on Motorola's 88000 RISC chip set, the new 33 MHz RP88B33 Coprocessor increases the processing power of the \(\mathrm{Mac}^{\circledR}\) II by up to 50 times, delivering up to 28 MIPS and 9 MFLOPS performance.

\section*{PROGRAMMER'S TOOL KIT FOR FAST APPLICATIONS DEVELOPMENT}

To assist software developers in developing and running applications, a complete Programmer's Tool Kit is available in either "C" or Fortran versions. Development tools include an 88000 assembler and linker (MPW-compatible), a symbolic debugger (Debug88 \({ }^{\text {TM }}\)), and an 88000 library manager. The Tool Kit also enables porting of applications written for the UNIX operating system.

\section*{FULL ACCESS TO MAC II TOOLBOX}

Software support libraries included with the Programmer's Tool Kit permit applications written for RP88 Series Coprocessors to take full advantage of the Mac II, enabling use of the popular Macintosh graphical user interface, as well as, Macintosh system access and Macintosh memory management.

\section*{EASY INSTALLATION, SERVICE}

RP88 Series Coprocessors are easily installed into any Mac II series expansion slot, and complete user documentation is provided. RP88 Coprocessors are fully serviced and supported by Tektronix.

\section*{TEK'S WORLD CLASS FACILITIES AND KNOW-HOW AT YOUR DISPOSAL}

We know that your systems can only be as reliable as the components that go into them. For that reason we place a premium on dependability. We produce products that will keep you and your customers satisfied and your service costs down.

We take your design (or assist you with design) and take the entire process through manufacturing and shipment. Quality control is assured, along with on-time delivery and customer satisfaction. We want to work with you and value you as our customer.

\section*{Surface Acoustic Wave (SAW) Products}

\section*{SAW RESONATORS (SAWRs)}
- 1 GHz SAWR
- 500 MHz SAWR
- 400 MHz SAWR
- 315.525 MHz SAWR
- Any Custom SAWR from 100 MHz to \(1 \mathrm{GHz}^{\star 1}\)

\section*{SAWR OSCILLATORS (SAWROs)}
- 1 GHz SAWRO
- 500 MHz SAWRO
- 400 MHz SAWRO
- Any Custom SAWRO and Tunable Voltage Controlled SAWR Oscillator from 100 MHz to \(1 \mathrm{GHz}^{\star 1}\)

All the above SAW products use SAW Grooved Resonators on quartz. We can also supply (Custom) SAW Metal Resonators.

\section*{Contents}

SAW Products 369

Integrated Circuits 370
Applied ChemicaComponents.371

\section*{SAW Products}
- Trade-offs Exist Between Parameters
- Tek can Tailor Product Characteristics to Your Needs
- Any Subsystems Including Various Combinations Shown on the Left

ORDERING INFORMATION
Tektronix, Inc.
SAW Technology
P.O. Box 500, M.S. 50-240

Beaverton, OR 97077
Phone: (503) 627-6171
FAX: (503) 627-5502

\section*{CUSTOM SAW SUBSYSTEMS}
- With Hybrids, Switches and Multiple Type Packages
- Phase Lock Loops
- Filter Banks
* \({ }^{1}\) Negotiable to 2 GHz
*2 Negotiable depending on center frequency

\section*{IC Design and Fabrication Capabilities for Those Who Have High Performance IC Requirements.}

BIPOLAR FOUNDRY SERVICES
- Semi Custom ICs
- Full Custom ICs
- State-of-the-Art Design Tools
- 6.5 GHz and 8.5 GHz Analog Processes

\section*{BIPOLAR ANALOG ICs}

\section*{QUICKCUSTOMTM}

A semi-custom design approach, QuickCustom \({ }^{\text {TM }}\) consists of a series of QuickChipTM design formats (see picture) and easy to understand, time saving design tools. QuickChips have a basic "core" array of transistors, capacitors, and resistors, optimally configured for interconnection. The designer adds custom single or dual level metallization for those circuit elements required. In addition to the implanted resistors, laser trimmable nichrome resistors may be added. Once final designs are determined and approved, finished wafers can be delivered (typically) within four weeks or less.

\section*{QUICKTILETM}

The QuickTile design method uses standard blocks of tiles that are placed by the designer to suit the desired circuit function. While this method requires mask generation for all layers (like full custom), the pre-designed tiles are "snapped" together on a grid that eliminates the risk of violating layout rules.

\section*{FULL CUSTOM}

ICO also offers a total custom design approach. An experienced Tektronix applications engineer is assigned to work with the designer throughout the entire project. Tektronix developed CAD/CAE software is used to provide circuit analysis, simulation and layout, greatly improving the
probability of meeting design specifications the first time. Typical delivery of finished wafers is less than ten weeks from approval of design layout.

\section*{DESIGN TOOLS}

The "tools" provided include a design quide and a library of SPICE models for the "core" IC that will predict the performance of your design.

Also included is a grid-based layout system that specifies where the custom interconnects can be routed, and Quickic \({ }^{\text {M }}\), a graphic layout editor, that makes it easy for even the first time designer to digitize the layout.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SELECTION GUIDE} \\
\hline \multicolumn{6}{|c|}{QuickChip \({ }^{\text {TM }} 2\) Family (6.5 GHz, Analog Cells)} \\
\hline & 2 S & 2 & 2 L & 2K-30 & 2K-130 \\
\hline NPNs & 150 & 214 & 524 & 78 & 280 \\
\hline PNPS & 82 & 110 & 240 & 38 & 146 \\
\hline Resistors & 602 & 946 & 2064 & 258 & 1118 \\
\hline Capacitors & 24 & 20 & 72 & 10 & 30 \\
\hline Bond Pads & 24 & 36 & 70 & 22 & 44 \\
\hline Schottky Diode & 0 & 0 & 0 & 64 & 182 \\
\hline \multicolumn{6}{|l|}{QuickChip \({ }^{\text {TM }} 6\) Family
(8.5 GHz , Analog Cells, Density \(3 \times\) aC2)} \\
\hline & & 6-10 & 6-40 & & 120 \\
\hline NPNs & & 74 & 224 & & 00 \\
\hline PNPs & & 25 & 100 & & 00 \\
\hline JFETs & & 12 & 48 & & 44 \\
\hline Schottky Diodes & & 44 & 104 & & 40 \\
\hline Resistors (Implant & & 340 & 1360 & 40 & 80 \\
\hline Capacitors & & 4 & 16 & & 48 \\
\hline Bond Pads & & 18 & 32 & & 54 \\
\hline \multicolumn{6}{|c|}{QuickTile \({ }^{\text {TM }}\) and Custom Arrays} \\
\hline \multicolumn{6}{|c|}{CUSTOMER DESIGNED} \\
\hline
\end{tabular}

CHARGE COUPLED DEVICES
- Custom Design
- Sub Micron Sizes

Tektronix CCD imagers perform efficiently at low light levels from UV to near infrared wavelengths.

The scientific imager family offers low noise, wide dynamic range, high QE (quantum efficiency), and high sensitivity. This family consists of the TK512, TK1024, and TK2048. Applications include astronomy, machine vision, medical and scientific imaging.
The high frame rate imager family (TK064) offers smaller area arrays that

\section*{CONTACT INFORMATION}

Integrated Circuits Operation
P.O. Box 500, M.S. 59-420

Beaverton, OR 97077
Phone: (503) 627-2515
FAX: (503) 627-5560
General Information: 1-800-835-9433, Ext. 2515
run from 100 to 10,000 frames per second image rates, maintaining comparatively low noise and wide dynamic range. High speed signal processing applications include transversal filters, tapped analog delay lines, high speed samplers, and memory buffers.

Back illuminated versions of both imager types are available, with backside enhancement for higher QE through the visible and extending into the near UV wavelength.
A development board (TK1DEV) will operate imagers up to \(3072 \times 3072\) pixel array size. This board provides for immediate imaging using Tektronix scientific imagers, with only the addition of power supplies and a monitor.

ICO also offers Prototype Services using our 2, 3, or 4 phase processes and your custom design.
\begin{tabular}{lc}
\hline \multicolumn{2}{c|}{ SELECTION GUIDE } \\
\hline Type & Array Size \\
\hline High Frame Rate Imager & \\
\hline TK064, Serial Output & \(64 \times 64\) pixels \\
TK064, Parallel output & \(64 \times 128\) pixels \\
\hline Scientific Imagers & \(512 \times 512\) pixels \\
TK512 & \(1024 \times 1024\) pixels \\
TK1024 & \(2048 \times 2048\) pixels \\
\hline
\end{tabular}

\section*{FLEXIBLE CIRCUITS}

Flexible Circuits made on polyimide or fluoropolymer dielectric base material meet critical analog and digital electrical performance in high speed test, emulator and logic analyzer probing situations, or when dense 3D packaging is required for small light weight or portable electronic equipment. A replacement for a complex wire harness when assembly speed and reliability are required. Fluoropolymer materials also satisfy high temperature requirements in harsh environments. UL recognized products available.

Teflon Board

\section*{HYBRID TO CIRCUIT BOARD ELASTOMER CONNECTOR}

Hybrid to Circuit Board Elastomer Connector is used for analog or digital applications where a reliable and/or easily assemblable connector is needed. The patented Hypcon \({ }^{T M}\) connector is unique for second level interconnections. The gold-on-gold pressure contact is virtually transparent at frequencies \(>0.5 \mathrm{GHz}\).

Plating

\section*{PHOTOCHEMICAL MACHINED PARTS}

Photochemical Machined Parts provide a cost effective alternative to die blanking for tight tolerance, low volume applications. Simple, Iow cost phototooling means quick turn time for prototype and easy tooling modification for redesign. Burr free parts can be produced on most white and yellow metals like stainless steel, beryllium copper, brass and copper.

Flex Circuit

\section*{PTFE AND COMPOSITE MATERIAL CIRCUIT BOARDS}

PTFE and Composite Material Circuit Boards for high frequency circuits with glass or ceramic filled fluoropolymer, polysulfone or polyetherimide base materials. The fluoropolymer material can be selected within the permitted range of 2.2 to 10.6 for low-loss applications at gigahertz-plus frequencies in communications and data transmission applications.

Hypcon

\section*{PLATED PARTS}

Plated Parts using electronic-grade electroplating capabilities to provide corrosion resistance, conductivity, solderability, wear resistance, wire bonding, appearance or shielding on metal and plastic substrates. UL recognized process for plating on plastics for EMI shielding. Finishing by electroplating is used where surface requirements differ from substrate material properties. Finishes provided include:
- Soft and hard gold
- Copper-tin-zinc alloy
- Bright and matte silver
- Black chrome
- Bright chrome
- Tin
- Electroless copper and nickel
- Zinc
- Nickel
- Electroless palladium

Applied Chemical Components

\author{
Supplier of Custom State-of-the-Art Electronic Interconnect Components and Electronic-Grade Plating. Engineering design, prototype and production manufacturing for:
}
- Flexible Circuits
- PTFE and Composite Material Circuit Boards
- Hybrid to Circuit Board Elastomer Connectors
- Plated Parts
- Photochemical Machined Parts

\section*{CONTACT INFORMATION}

Applied Chemical Components
Customer Services, M. S. 38-330
Phone: (503) 627-2000
Fax: (503) 627-2310
General Information: 1-800-835-9433,
Ext. 2000

heck the Specifications.

\section*{You will Find}

Long Product Life
Designed-in.
- Reliability Standards Second to None
- Product Specifications to Meet Your Environment

\section*{Contents}

Terms of Sale 372
Leasing 372
Rental Program 372
Reconditioned Products. 373
OEM Components 374
Power Sources 374
Warranty Statements 375
Customer Support/Service .. 376
Customer Training 383
Sales/Service Offices
International 384
Domestic.... Inside Back Cover

\section*{GENERAL TERMS OF SALE CREDIT AND PAYMENT TERMS}

Tektronix, Inc. offers many different terms of sale in order to meet varied purchasing objectives and to assist in financial planning. Credit accommodations must be arranged with Tek's credit department. Orders and requests for credit accommodations should be placed with your local Tek sales office.

If, in the judgment of Tektronix, the financial condition or payment record of the Buyer at any time does not justify shipment of order on the payment terms requested, Tektronix may refuse to ship unless it receives payment in advance, or at its option, payment upon delivery of equipment. Businesses established for six months or less may not meet minimum requirements for extended and/or installment terms of sales.

The following terms may be arranged with a Tektronix Sales Office:

\section*{Net 30 Days Standard Terms}

Standard terms of sales are net 30 days following the date of invoice. There are no discounts for early payment.

\section*{60, 90, and 120 Days Extended Terms of Sale}

Extended terms of 60 to 120 days are available on the same single payment basis as standard terms. Since the cost of extended terms is not included in catalog prices, a service charge is added to the invoice. The amount of the service charge depends upon the number of days the terms are extended. Request for extended terms must be made at the time of order placement.

\section*{MINIMUM ORDER}

The minimum acceptable order is \(\$ 25.00\).

\section*{SHIPMENT}

All prices, quotations, and shipments are FOB Beaverton, Oregon, unless otherwise specified. Shipment will be made via the most economical method, and air shipments will be insured at full value unless your order instructs otherwise.

\section*{LEASING}

\section*{VISUAL SYSTEMS GROUP PRODUCTS}

Flexible Leasing Alternatives are available for VSG products. Our specialized lease programs answer customers needs. Affordable monthly rates, maintenance, product upgrades and purchase credits are all key leasing features.

Call your local Tektronix Field Office for more leasing information.

\section*{TEST AND MEASUREMENT GROUP}

Purchases of Tektronix T\&M (Test and Measurement) equipment may be financed through a lease with Citicorp North America. Both capital and operating leases are available with standard terms of one to five years. Ownership of the product at the end of the lease is an option.

Arrangements for leases may be made through your local Tektronix field office. For additional assistance or for further information regarding the program, please contact the National Marketing Center at 1 (800) 426-2200. Customized leases to satisfy particular customer requirements may be arranged.

\section*{RENTAL PROGRAM}

Tektronix Authorized Rental Companies provide the widest selection of well-maintained Tek instruments, with flexible and attractive terms. For short term rentals, lease purchase options or used test equipment, Tek Authorized Rental Companies provide the right terms, the right instruments, the right options so you can make the right choice.

Our Authorized Rental Companies can provide you a solution when you need to demo new equipment before you purchase equipment for short-term projects, specific instruments for an immediate requirement, or if you are in the market for used test equipment. They will provide you the best answers for managing your test equipment inventory, whether you rent it for a month or lease it for a year.
When you need Tektronix products, you will not need to look further than our list of Authorized Rental Companies. Trust your rental requirements to the very best, Tektronix and.
\begin{tabular}{lr}
Continental Resources, Inc. & \(1-800-343-4688\) \\
Electro Rent Corporation & \(1-818-787-2100\) \\
G. E. Rental/Lease & \(1-800-\mathrm{GE}-\) RENTS \\
Genstar Rental Electronics, Inc. & \(1-800-225-2422\) \\
Leasametric, Inc. & \(1-800-553-2255\) \\
McGrath RentCorp & \(1-800-352-2900\) \\
Telogy, Inc. & \(1-800-\mathrm{TELOGY-I}\) \\
U.S. Instrument Rentals, Inc. & \(1-800-\) USIR-123
\end{tabular}

\section*{RECONDITIONED PRODUCTS}

If budget restrictions are in the way of getting the Tektronix product that you would like to have - Tektronix Reconditioned Products, with the same warranty as a new product, may be an ideal solution for stretching the tight budget dollar.

\section*{THE ORIGINS}

Tektronix Reconditioned Products are usually field demo units, marketing demo units or lease returns. Products meet Tektronix standards for quality and performance, both technically and aesthetically. Both current and out-of-production products may be available for sale.

Reconditioned Products are calibrated and tested to meet the same high standards as new products.

\section*{PERFORMANCE}

Tektronix Reconditioned Products are serviced, calibrated and tested to meet the same high quality standards as new products. All essential upgrades are installed and all products are functionally equivalent to new products and meet full product specifications. All reconditioned products are provided with standard manuals and accessories.

\section*{REDUCED PRICES}

Tektronix Reconditioned Products are sold at reduced prices - below new product prices. All standard and contract discounts normally apply.

Your Tektronix sales engineer or local Tektronix field office will be glad to see if there is a Reconditioned Product available and to provide you with a current price quote.

\section*{WARRANTY}

We are confident in the reconditioning process. The warranty on current Tektronix Reconditioned Products is the same as on new instruments. Extended service options are also available on most products.

Reconditioned Products meet Tek standards for quality and performance.

\section*{APPEARANCE}

We like our products to look as good as they run. Instruments are inspected and cleaned so they visually are near new. If necessary, we refurbish or replace cabinet parts that do not meet our high standards.

Reconditioned Products look as good as they run.

\section*{AVAILABILITY/DELIVERY}

Reconditioned Products are offered on an
"as-available" basis. Many products are in stock and are immediately available.

Visual Systems Group and Logic Analyzer products that have multiple configurations available can be provided to your specific requirements usually within several days.

\section*{n Ideal Solution for Stretching the Tight Budget Dollar}
- New Product Warranty

Products Meet Tektronix High
Standards for Performance,
Quality and Reliability.
- Reduced Prices
- Quick Delivery

Many Products are in Stock and
are Immediately Available
- Current and Out-of-

Production Products May be Available.

\section*{ORDERING INFORMATION}

Check with your local Tektronix Field Office to take advantage of Tek's Reconditioned Product bargains.

Or you may call
the National Marketing Center
Toll free line:
1-800-426-2200
(Test \& Measurement Products)
1-800-TEK-6100
(Visual Systems Products)
Your Tektronix Sales Engineer will be pleased to discuss your instrument needs.

\section*{ORDERING INFORMATION}

\section*{POWER SOURCES}

Many Tektronix instruments can be fitted with one of the power cord/plug options listed below and wired for the voltage as indicated, if specified on the purchase order.
\begin{tabular}{lll}
Standard & North American & 120 V \\
Option A1 & Universal Euro & 220 V \\
Option A2 & United Kingdom & 240 V \\
Option A3 & Australian & 240 V \\
Option A4 & North American & 240 V \\
Option A5 & Switzerland & 220 V
\end{tabular}

Standard
North American 120 V Plug

Option A1 Universal Euro 220 V Plug

Option A4 North American 240 V Plug

Option A3 Australian 240 V Plug

\section*{OEM COMPONENTS}

\section*{SPECIAL INFORMATION FOR OEMs}

At Tektronix, we offer many products with terms, conditions, and pricing for OEMs. Computer graphics components, small screen displays, certain cameras, TV signal test and measurement instrumentation - we offer these and other products on a special basis to the original equipment manufacturer.

\section*{CHOOSE THE PERFORMANCE LEVEL TO MATCH YOUR SYSTEM}

In many product areas, our wide range of OEM components allows you to select just the optimal performance you need for the system you are building When your systems demand highest performance, Tektronix will provide the quality products to meet your standards.
In price-sensitive situations, the wide Tektronix selection usually allows you to select exactly the performance level you need - no more, no less.

\section*{SPECIAL OEM TERMS AND PRICING HELP KEEP YOU COMPETITIVE}

Ask your local Tektronix representative about the special OEM terms and pricing available to you.

Option A5 Switzerland 220 V Plug

\section*{SERVICE AND SUPPORT - WHEN AND WHERE YOU NEED IT.}

Tektronix has service centers throughout the U.S. and in many countries around the world. We offer long term parts support to protect your investment.

If you need applications assistance, we are ready to help. Our OEM specialists are trained to help solve interface problems. That is solid support when you need it.

\section*{YOU AND TEKTRONIX: A QUALITY PARTNERSHIP}

Explore the advantages of working with Tektronix: excellence in products, support, and service.

Your local Tektronix representative can help you obtain full details on how you can profit from a quality partnership with Tektronix.

See how our OEM expertise can add value to your system.

\section*{POWER SOURCE CONSIDERATIONS}

Most Tektronix instruments provide wide-range regulated supplies, or quick change line-voltage selectors for convenient selection on line-voltage operating ranges. Transformer taps in other instruments can be changed to accommodate specific line-voltage operating ranges or can be factory wired for a specific range if specified on the purchase order.

Many Tektronix instruments are designed to operate from a power source that will not apply more than 250 Volts RMS between the supply conductors or between either supply conductor and ground

The power cord/plug options may become available on instruments not specified in this catalog. Refer to the individual product ordering information for those products offering these options as of publication date.

Except for some double-insulated instruments, most Tektronix instruments are equipped with either a three conductor attached power cord or a three-terminal power-cord receptacle. The third wire or terminal is connected directly to the instruments chassis to protect operating personnel.

Power-cord coding follows one of the two following schemes:
\begin{tabular}{lll}
& Scheme 1 & Scheme 2 \\
\hline Line & Black & Brown \\
Neutral & White & Light blue \\
Ground & Green-yellow & Green-yellow \\
(safety & & \\
earth) & &
\end{tabular}

\section*{HARDWARE WARRANTY SUMMARY}

Tektronix warrants to its Customers that the products that it manufactures and sells will be free from defects in materials and workmanship for the periods set forth in the table below. If any such product proves defective during the applicable warranty period. Tektronix, at its option, either will repair the defective product without charge for parts and labor or will provide a replacement in exchange for the defective product.
In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Tektronix will provide such service at Customer's site for certain categories of products, as indicated in the table below, if Customer's site is within the normal onsite service area. Tektronix will provide on-site service outside the normal on-site service area only upon prior agreement and subject to payment of all travel expenses by Customer. In all other cases, Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the service center is located. Customer shall be responsible for paying all shipping charges, duties and taxes, if the product is returned to any other location. The
locations at which the services will be provided for different categories of products or product groups are set forth below.
This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair, or service the product, b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.
THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE LISTED PRODUCTS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE A DEFECTIVE PRODUCT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED DEFECTIVE PRODUCT IS THE SOLE AND EXCLUSIVE REMED PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX
ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF
INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF
WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE
POSSIBLITY OF SUCH DAMAGES.
\begin{tabular}{|c|c|c|}
\hline PRODUCT CATEGORIES & WARRANTY PERIOD & SERVICE LOCATION \\
\hline Oscilloscopes: Including 2205 (except all other 2200, 2300, 2400 Series); TM 500/TM 5000 Series; Communications Network Analyzers (except 834, 835, 836): Logic Analyzers; Spectrum Analyzers (except 3052); Television Products (except 1780R Series); Waveform Digitizers; Curve Tracers; Photometers/Radiometers; Cameras; Carts (except K217S, K318): Probes; CRTs; Isolators; Test System Interface Series; Display Stations XN10, XN11; XPTA Graphics Tablet; 4694 Series Color Printer, TestLabs; Fourier Analyzer; Tekmate; CSA 9XX; Signal Analyzer; Pulse Generator & 1 year from date of shipment & Service Center designated by Tektronix \\
\hline Oscilloscopes: 2200 (except 2205), 2300, 2400 Series; Communications Network Analyzers: 834, 835, 836; Television Products: 1780R Series; Terminals: XP Series X-Stations & 3 years from date of shipment & Service Center designated by Tektronix \\
\hline Monitors: 606B, 608, 608YX, 620, 634, 0A70, GMA 201, GMA 202, GMA 212, GMA 213C, GMA 213 S & 3 months, except 1 year from date of shipment for CRT & Service Center designated by Tektronix \\
\hline \begin{tabular}{l}
4000 Series: Color Graphics Terminals (except those listed below), Color Graphics Output Systems, Graphics Tablets; Microprocessor Development Products (except V-Systems, MV Systems); \\
Digital Analysis Systems: 9200 Series; LV500 Series; 3052 Spectrum Analyzer
\end{tabular} & 3 months, except 1 year from date of shipment for CRT & Customer's site if within normal on-site service area \\
\hline Color Graphics Terminals: 4205, 4207, 4208, 4209; Color Graphics Netstation: 4211 & 1 year from date of shipment & Customer's site if within normal on-site service area \\
\hline Custom Test Systems; Microprocessor Development Products: V-Systems, MV Systems & 3 months, except 1 year for CRT, beginning on the date of installation by Tektronix, or one month from date of shipment, whichever is earlier & Customer's site if within normal on-site service area \\
\hline \begin{tabular}{l}
Parts, Assemblies, Supplies and Test Fixtures: All 9-digit part numbered items (except Probes, CRTs); Carts: K217S, K318 \\
LCS: SGS 4XX, SGS 6XX; CACHE: CAXXX, CAXXXX, CGXXX, RP88XXX.
\end{tabular} & 3 months from date of shipment & Service Center designated by Tektronix \\
\hline Service & 3 months from date of shipment or date of completion if performed on-site & Location where original service was performed \\
\hline
\end{tabular}

\section*{SOFTWARE WARRANTY SUMMARY}

Tektronix warrants that its sottware products will conform to the specifications in the documentation provided with the product, when used properly in the specified operating environment, for a period of three (3) months. The warranty period begins on the date of shipment, except that if the program is installed by Tektronix, the warranty period begins on the date of installation or one month after the date of shipment, whichever is earlier. If the software product does not conform as warranted, Tektronix will provide the remedial services as described in the documentation provided with the product.
For products offered without documentation, Tektronix warrants that the media on which the software product is furnished and the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If any such medium or encoding proves defective during the warranty period, Tektronix will provide a replacement in exchange for the defective medium. Except as to the media on which the software product is furnished, the sottware product is provided "as is" without warranty of any kind, either express or implied.
Tektronix does not warrant that the functions contained in any software product will meet Customer's requirements or that the operation of the programs will be uninterrupted or error-free.
In order to obtain service under this warranty. Customer must notify Tektronix of the defect before the expiration of the warranty period and, for warranted products, make suitable arrangements for such service in accordance with the instructions received from Tektronix. It Tektronix is
unable, within a reasonable time after receipt of such notice, to provide remedial service for warranted products or, for "as-is" products, to provide a replacement that is free from defects in materials and workmanship. Customer may terminate the license for the software product and return the software product and any associated materials for credit or refund.
The above warranties shall not apply to any software product that has been modified or altered by Customer. Tektronix shall not be obligated to furnish service under this warranty with respect to any software product a) that is used in an operating environment other than that specified or in a manner inconsistent with the User's Manual and documentation; or b) when the software product has been integrated with other software if the result of such integration increases the time or difficulty of analyzing or servicing the software product or the problems ascribed to the software product.
THE ABOVE WARRANTIES ARE GIVEN BY TEKTRONIX WITH RESPECT TO THE LISTED PRODUCTS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN SPECIFIED, REPLACE DEFECTIVE MEDIA, OR REFUND CUSTOMER'S PAYMENT, AS APPLICABLE, IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF EITHER WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILTY OF SUCH DAMAGES.

\section*{TEKTRONIX WORLDWIDE SUPPORT TOTAL SOLUTIONS FOR YOUR SUCCESS}

When you purchase your Tektronix product, you will find more in the box than a quality product. You'll find an array of services that provide total-solution coverage coverage that begins with the first call to your customer service representative and continues after the sale

through long-term product support. Our sales and service personnel work closely to help you make the best selections for your applications. Then we help you maximize your investment by ensuring optimum product performance. All this is accomplished through customer support programs ranging from training to product installations and a variety of maintenance plans.

It all begins by contacting a customer service representative (CSR) located in your nearest Tektronix sales and service office. Our U.S. and international office locations are listed at the back of this catalog. The CSR will give you information on products and the names of sales engineers assigned to serve your product interests.

\section*{CUSTOMER SUPPORT PROGRAMS}

Various customer support programs are offered:
- Service Offerings
- Warranty Coverage
- Warranty-Plus Service Plans
- Per-Incident Service
- Maintenance Agreement Programs
- Customer-Site Installations
- Technical Assistance Service
- Training and Assistance

- Operational and Applications Workshops
- Service Training Workshops
- Module Repair Services
- Replacement Parts
- Long-Term Product Support

\section*{WARRANTY COVERAGE}

All Tektronix products are warranted to be free from defects in materials and workmanship during the applicable warranty period. See page 375 .

\section*{SERVICE OFFERINGS}

Service programs include Warranty-Plus service plans, Maintenance Agreements, and Per-Incident service.

\section*{CUSTOMER-SITE INSTALLATIONS}

Tektronix provides on-site installations for most visual systems and Tek-configured systems for computer graphics, microprocessor development, and acquisition/ processing products. Your Tektronix specialist will set up your product to meet operating specifications for all functions and will provide basic operating training so that your new purchase is put to immediate use.

\section*{TECHNICAL ASSISTANCE SERVICE}

When you need technical assistance to supplement your own resources, Tektronix can arrange the services of an application engineer skilled in meeting your needs. Contact your local Tektronix sales and service office for more information.

\section*{TRAINING AND ASSISTANCE}

Your Tektronix product is most useful to you when you are thoroughly familiar with it. Formal training classes and self-study aides can help you get up to speed faster. Ask your Tektronix sales engineer for details about customer training.

\section*{OPERATIONAL AND APPLICATIONS WORKSHOPS}

To help you achieve optimum utilization of your equipment, Tektronix provides fast-paced courses with classroom lectures and supervised hands-on laboratory sessions. Participants receive manuals and workbooks containing detailed course notes and lab exercises. For added convenience, Tektronix also offers private workshops conducted at your company.

\section*{MODULE REPAIR SERVICES}

If you are able to service and isolate faults to the module level, Tektronix Module Services will repair your modules and return them to you fully operational. Prices for this service include module repair, adjustment, and performance verification. For an additional charge, the latest design modifications and enhancements can be incorporated into your repaired module.

\section*{REPLACEMENT PARTS}

Components of equal or improved quality can be supplied for over 5,000 Tektronix products. Our computerized warehouse and adjoining distribution center is one of the most sophisticated delivery systems in the world. No one can match our inventory of spare modules, assemblies, circuit boards, and other essential components for Tektronix products.

\section*{LONG-TERM PRODUCT SUPPORT}

Tektronix has a long-standing policy to provide continuous service coverage after a product has been removed from the catalog. Obsolete products can be serviced pending part availability. Contact your local office for availability.
Remember, when you purchase your Tektronix product, there is more in the box than a new piece of equipment: total-solution support is just a phone call away!
> roviding You With Worldwide Service and Support to Complement Your New Product Purchase

\section*{ORDERING INFORMATION}

> Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free numbers in the U.S.: Test and Measurement: \(1-800-547-5000\) \(\begin{aligned} & \text { Visual Systems: } \\ & \text { General Customer } \\ & \text { Information: }\end{aligned}\) \(1-800-628-5470\) I-800-835-9433

All calibrations and repairs are performed at Tektronix service depots.
All calibrations, if applicable, are traceabie to NIST (National Institute of Standards and Technology).

Test and Measurement products are serviced at Tektronix service depots or on-site at your facility. Types of services cover a broad range of calibrations, performance tests, preventive maintenance, repairs, combination services, and much more. Whatever your need, Tektronix can provide fast, flexible service that keeps your products operating at peak performance. Contact your local Tektronix service representative and ask for a free Calibration and Repair Services Guide. The guide will give you detailed information on service offerings for Tektronix Test and Measurement products.

\section*{WARRANTY-PLUS}

\section*{One Good Purchase Deserves Another}

When you purchase or lease a Tektronix product, you can make another great purchase that provides the most cost-effective, Iong-term service available: WarrantyPlus. It can be secured only as a one-time investment on new purchases or leases, so be careful not to miss your window of opportunity! Ask your Tektronix sales engineer to identify which options are available on the products of your choice. Then include them with your purchase. You can put them on the same purchase order, or on a separate one, but the transaction must be completed before the product ships.

The large array of Warranty-Plus options is divided into three families: M-Options, Q-Options, and W-Options. Each family (\(M, Q\), and W) reflects the type of services best suited for specific product types. To find out what options apply for your product interests, check the product option information in this catalog or contact your local Tektronix sales representative.

ORDERING INFORMATION
Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free number in the U.S.: Test \& Measurement
Service: \(\quad 1-800-547-5000\)

\section*{WARRANTY-PLUS BENEFITS}
- Provides the most comprehensive coverage at the lowest cost.
- Quantity discounts applied to product purchases also apply to Warranty-Plus.
- Purchased with one up-front fee; no extra paperwork or approvals needed when service is required.
- No investment required for training, spares or documentation.
- Provides priority service over customers without service agreements.
- Product uptime is optimized.
- Serviced only by Tektronix factorytrained technicians for quality workmanship and efficiency.

\section*{WARRANTY-PLUS M-OPTIONS}

M-Options provide extended warranty coverage as well as calibration services for up to five years. All services are performed at Tektronix service depots. Your local Tektronix sales office can direct you to the location nearest you. If you are within a service depot region, you may qualify for pick up and delivery services or your product may be shuttled from a nearby Tektronix sales office. If you ship your product directly to a Tektronix service depot, it will be shipped back to you at our expense.
To help you determine the best M-Option for your needs, first analyze your measurement precision requirements. No matter what your requirements, we have a plan. If you can't find the perfect match in a Warranty-Plus package, contact your local Tektronix service representative for a tailormade Maintenance Agreement to meet your specific, individual needs.

\section*{ORDERING INFORMATION}

Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free number in the U.S.:
Test \& Measurement
Service:
1-800-547-5000

\section*{ORDERING INFORMATION}

Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free number in the U.S.:
Test \& Measurement
Service:
\(1-800-547-5000\)

\section*{WARRANTY-PLUS Q-OPTIONS}

Warranty-Plus Q-Options differ from M-Options by providing on-site service at the customer's facility. Instead of servicing your product at a service depot, we come to you. A Tektronix specialist will provide on-site installations and repairs, as well as calibrations, performance tests, or preventive maintenance (whichever services are applicable to your product).

Q-Options extend warranty coverage for up to three years while adding the convenience of on-site servicing. Remember to check the product options to determine if Q-Options are applied to the products of your choice.

If you can't order Q-Options but you like what they provide, contact your local Tektronix service representative and ask for a tailor-made Maintenance Agreement.

\section*{WARRANTY-PLUS CUSTOMER RESPONSIBILITIES}

When service is due under any Warranty-Plus program, the customer is responsible for delivering or shipping depot-serviced products or for requesting an on-site service call (depending on plan coverage). When requesting an on-site service call, the Tektronix specialist must be supplied with the following data: system or product type, serial number, and description of any malfunction.

\section*{INTERNATIONAL WARRANTY-PLUS OPTIONS}

Warranty-Plus is available in most countries, but service is provided only in the country where the product and the plan were purchased. Response and turnaround time may be different than those provided in the United States. Please consult your Tektronix subsidiary or approved distributor for your country.

\section*{WARRANTY-PLUS COVERAGE EXCLUSIONS}

Warranty-Plus service purchased in the United States is valid only in the United States.

Warranty-Plus coverage does not apply if a failure is caused by misuse or inadequate care or maintenance, such as:
- Abuse or cannibalization of products.
- Damage from repair attempts by non-Tektronix personnel.
- Improper use or connection to incompatible equipment.
- Modification or integration that increases the difficulty in servicing the product.

\section*{OTHER TEKTRONIX SERVICES}

\section*{MAINTENANCE AGREEMENTS}

Maintenance Agreements are the next best thing to Warranty-Plus. Once your product warranty expires or your Warranty-Plus coverage comes to an end, you can sign up for a Maintenance Agreement. A Maintenance Agreement provides a planned maintenance program with priority service over Per-Incident customers. It can also add the convenience of multi-year coverage to minimize your paperwork and maintain tighter controls over your ownership costs. But most important, it helps you get maximum performance from your investment with increased uptime.
Maintenance Agreements can be written to cover a wide menu of offerings for a large product mix. Consult with your local Tektronix service manager for more information.

\section*{PER-INCIDENT SERVICE}

Products that are not covered under any kind of service agreement are serviced on a Per-Incident basis. PerIncident services include calibration and repair services requested on an as-needed basis. There are two ways to charge for Per-Incident services: Standard Price and Time and Material.

\section*{Standard Price}

Current Tektronix products have published standard prices for calibration services, repair services, and combined services of calibration and repair. These published Standard Prices can be obtained through your local Tektronix service manager.

\section*{Time and Material}

Products that are obsolete or that have been damaged or abused are serviced under Time and Material charges with hourly labor rates and parts usage prices applied.

\section*{ADDITIONAL SERVICES}

Other services offered are: Before and After Test Data Recording, Instrument Wash, Shuttle Services, Pick up and Delivery, and Next Day Calibrations.

\section*{TEKTRONIX ON-SITE WARRANTY-PLUS Q-OPTIONS}

For products with a 1-YEAR product warranty
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Q-OPTIONS } \\
\text { AND } \\
\text { PRODUCT WARAANTY }
\end{gathered}
\] & OTHER & YEAR 1 & YEAR 2 & YEAR 3 & WARRANTY-PLUS O-OPTION DESCRIPTIONS: \\
\hline & & & & & Provides on-site installation and product verification. \\
\hline & & & & & Provides on-site warranty hardware coverage and one scheduled on-site calibration, performance test, or preventive maintenance call during the first year of product ownership. \\
\hline & & & \begin{tabular}{|c|}
\hline \begin{tabular}{l}
ON-SITE \\
REPAIRS
\end{tabular} \\
\hline CAL \\
\hline
\end{tabular} & & Provides on-site warranty hardware coverage and two scheduled on-site calibrations, performance tests or preventive maintenance calls (one per year) during the first two years of product ownership. \\
\hline & & & & \begin{tabular}{l}
ON-SITE \\
REPAIRS \\
CAL
\end{tabular} & Provides on-site warranty hardware coverage and three scheduled on-site calibrations, performance tests or preventive maintenance calls (one per year) during the first three years of product ownership. \\
\hline & & & & & Provides on-site warranty hardware coverage through the first year of product ownership. \\
\hline & & & & & Provides on-site warranty hardware coverage through the first two years of product ownership. \\
\hline \[
\mathbf{Q 6} \text { plus }
\] & & & & ON-SITE REPAIRS & Provides on-site warranty hardware coverage through the first three years of product ownership. \\
\hline & & & & & Provides one year of Sotware Subscription Service. \\
\hline
\end{tabular}

All installations, calibrations, preventive maintenance, performance tests, and repairs are performed at the customer's site. All product caliibrations, if applicable, are traceable to NIST (National Institute of Standards and Technology).

\section*{ORDERING INFORMATION}

Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free number in the U.S.:
Test \& Measurement
Service:
\(1-800-547-5000\)

\section*{ORDERING INFORMATION}

Contact your local Tektronix sales and service office or Tektronix subsidiary or call our toll-free number in the U.S.:
Test \& Measurement
Service:
1-800-547-5000

\section*{WARRANTY-PLUS W-OPTIONS}

The third family of Warranty-Plus options are Comprehensive W-Options designed for systems products. They provide choices between depot or on-site service. In
addition, software subscription and telephone hotline services are bundled with extended warranty coverage or can be selected alone as Option W9. Consult your Tektronix sales representative for more information.

Hardware repairs are performed either at the customer's site or at Tektronix service depots, depending on the option selected.

\section*{T\&M PRODUCT SERVICE TRAINING CLASSES}

Professional training provides your technicians the opportunity to learn the latest maintenance techniques in the same courses used to train Tektronix technicians. We emphasize the "How to Fix" philosophy.
Our formal classroom training is intensive, with lectures and hands-on labs. Tektronix product service training instructors sharpen your skills in troubleshooting, isolating faults, and repairing Tektronix products. You learn factory-approved maintenance procedures for long product life and maximum uptime.

Customized on-site product service training is available. We have the flexibility within our programs to provide training at your location, enabling you to save costly travel expenses. By tailoring the class presentations and materials to your exact needs, you receive maximum value for your training investment.

\section*{T\&M MEASUREMENT TECHNIQUES WORKSHOPS}

Tektronix instruments and programmable instrument systems represent the upper limits of productivity potential. Tektronix has designed workshops to help enhance your understanding of the capabilities of your equipment and to enable you to achieve maximum performance.

T\&M Measurement Techniques Workshops naturally complement the Tektronix commitment to help you achieve optimum utilization of your equipment - a commitment that begins with engineering excellence and continues through training - helping you to develop new and more productive applications fast!

These fast paced courses combine classroom lectures with supervised hands-on laboratory sessions. Participants receive manuals and workbooks containing detailed course notes and lab exercises.

For your convenience, Tektronix also offers on-site Measurement Techniques Workshops conducted at your facilities.

\section*{T\&M SELF-STUDY MATERIALS}

Study on the job or at home. We offer self-study video/audio tapes and training packages which include exercises to help you quickly develop product familiarity and skills in fault diagnosis and repair.

Tektronix T\&M product user self-study training packages provide interactive, hands-on instruction for comprehension of product operation and applications. T\&M product service packages cover troubleshooting and repair techniques at your own bench. Our tapes are quality products that introduce basic concepts to novice technicians and advanced multimedia packages for experienced service specialists. Build your own library of relevant training tapes and materials. Training packages are the next best thing to being in class.

\section*{T\&M TRAINING DOCUMENTATION}

Tektronix T\&M Training develops the complete program for your training needs. In addition to formal training, we can create for your use a complete instructor package consisting of: class outline; lesson plan; instructor guide; student workbook; lab exercises; and visual projections. Service manuals, created by the T\&M Training group, can be developed to satisfy your specific needs. Our professional technical writers develop materials which emphasize the "How to Fix" techniques used by the Tektronix service specialist.

Our training programs have been used by various branches of the Armed Services with high acclaim. Join the team of professionals using training offered by Tektronix T\&M Training.

\section*{CALL TEKTRONIX T\&M TRAINING TODAY}

Formal classroom training is available at the Tektronix training facilities in Beaverton; Oregon, as well as in Atlanta, GA; Boston, MA; Chicago, IL; Dallas, TX; Denver, CO ; Irvine, CA ; Santa Clara, CA , and Washington, D.C. On-site classes and workshops are also available upon request.

\section*{T est and Measurement (T\&M) Customer}
- T\&M Product Service Training
- T\&M Measurement Technology Workshops
- T\&M Self-Study Material Self-Study Packages Video Tapes Audio Tapes
- T\&M Training Documentation Instructor/Training Guides Service Manuals

\section*{ORDERING INFORMATION}

To register for the formal training classes or information on other training services contact:
Tektronix, Inc.
Walker Road Industrial Park
Attention: T\&M Training Regisirar
P.O. Box 4600, M/S 94-925

Beaverton, OR 97076
Phone:
1 (800) 835-9433 ext. WR1407

For customers in areas not listed, see below for your nearest office.
Customers in Eastern Europe, Near- and Middle East contact: Tektronix Ges.m.b.t.H., Austria
Customers in Benin, Burkina Faso, Cameroon, Central AAtrican Republic, Chad, Congo, Diibouti, Equatorial Guinea, Gabon, Guinea, Malagasy, Mali, Mauritius, Niger, Senegal, Togo, Zaire contact: Tektronix S.A. France
Customers in Andorra, Angola, Azores,
Gibratar, Spanish West Atrica contact:
Tektronix Española, SA. Spain
Customers in unlisted African, South
American, or Asian locations contact:
Tektronix, Inc., U.S.A.
Export Sales
P. 0. Box \(500 \mathrm{M} / \mathrm{S} 50-439\)

Beaverton, OR 97077 USA
Phone: \(1-800-835-9433 \times 1916\)
Telex: 192825 TEKTRONIX
Fax: (503) 627-6905

\section*{ALGERIA}
(Service Except VSG)
Entreprise Nationale Des
Industries Electroniques

\section*{MCE 1}

Unite de Maintenance et Calibration des
Equipements Electroniques
MCE 1, BP 121
Route de Mascara Zone - Industrielle
Sidi Bel-Abbes
Phone: 213 (7) 242269
Telex: (936) 16021 MCE1 DZ
MCE 2
Lotissement El-Idrissi
Alger
Phone: 213 (2) 782074/782076
Telex: (936) 66108 DELNA DZ

\section*{(VSG Service)}

Résidence SERAP
rue Kious Mohamed
16330 Birkhadem - Alger
16330 Birkhadem - Alger
Phone: 213 (2) \(56-77-40\)
Fax: 213 (2) \(56-94-73\)

\section*{(Sales Office)}

Tektronix, S.A.
Algeria Sales
ZA de Courtaboeuf, Av du Canada,
BP 13
\({ }_{91941} 13\) Les Ulis Cédex \({ }^{91941}\) Le
France
Phone:
Phone: 33 (1) 69868181
FAX: 33 (1) 69-07-09-37
Telex: (842) 604332 TEKOR A
(Product Information)
Tektronix, Bureau de Liaison-

\section*{Algerie}

Bureau N9, Niveau C
Hotel El-Aurassi
Bd Frantz-Fanon
Alger 2
Phone: 213 (2) 630747
Telex: (936) 67043 TEK DZ

\section*{ARGENTINA}

\section*{Coasin S.A.}

\section*{Buenos Aires}

Virrey del Pino 4071
1430 Buenos Aires
Phone: 54 (1) \(552-5248 /-3485 /-3185\)
FAX: 54 (1) 11-1427
Telex: (390) 122284 COASIN AR

\section*{Cordoba}

25 de Mayo No. 1930
5000 Cordoba
Phone: 54 (51) 3037

\section*{AUSTRALIA}

Tektronix Australia Pty. Limited

\section*{Sydney Office}

80 Waterloo Road
North Ryde, N.S.W. 2113
Phone: 61 (2) 888-7066
FAX: 61 (2) 888-0125
Telex: (790) 24269 TEKTRNX AA

\section*{Adelaide}

128 Gilles Street
Adelaide, South Australia 5000
Phone: 61 (8) 223-2811
FAX: 61 (8) 223-7890

\section*{Brisbane}

737 Logan Road
Greenslopes Brisbane
Queensland 4120
Phone: 61 (7) 394-1155
Fax: 61 (7) \(397-8679\)

\section*{Canberra}

Unit 14
Trevor Pearcy House
Fern Hill
Bruce, Austr. Capital Terr 2617
Phone: 61 (62) 516-111
FAX: 61 (62) \(514-509\)

\section*{Perth}

The Garden Office Park
345 Harborne Street
Herdsman, West Australia 6017
Phone: 61 (9) 242-4688
Fax: 61 (9) 242-4707
Victoria Branch Office
259-263 Whitehorse Rd.
Balwyn. Victoria 3103
Phone: 61 (3) \(836-3355\)
FAX: 61 (3) \(836-6592\)
Telex: (790) 35880 TEKMEL AA
AUSTRIA
Tektronix Ges.m.b.H.
Doerenkampgasse 7
A-1100 Vienna
Phone: 43 (222) \(68-66-02-0\)
FAX: 43 (222) \(68-66-00\)
Telex: (847) 111481 TEK A
BAHRAIN

\section*{International Agencies Co Ltd.}
(Intercol)
P. 0. Box 5841

Manama
Phone: 973(*)727 177
FAX: \(\left.9711^{\circ}\right) 727509\)
Telex: (490) 8661 INTCOL BN
A. Q. Chowdhury \& Co.

\section*{K.JH Mansion}

Spectachrome Floor
83 Laboratory Road
Dhaka - 1205
Phone: 880 (2) 86191
FAX: 880 (2) 863475
Telex: (950) 671259 AQC BJ

\section*{BELGIUM}

\section*{Tektronix nv/sa}

Brussels Office
Bedrijispark Keiberg
Zoning Keiberg
Excelsioriaan, 3
1930 Zaventem
Phone: 32 (2) 720-80-20
FAX: 32 (2) 720-80-25
Telex: (846) 26713 TEKBEL B

\section*{BOLIVIA}

\section*{Coasin Bolivia S.R.L.}

Calle Gabriel Gozalvez 221
PO Box 7295
La Paz
Phone: 591 (2) 340962, 363365
FAX: 591 (2) 359268
Telex: (336) 3233 COALAP BV
BRAZIL
Tektronix Industria e Comercio
Ltda.
São Paulo Office
Av. Vereador José Diniz. 3530
CEP 04604-Campo Belo
CEF 0 Paulo, SP
Phone: 55 (11) 543-1911
Phone: 55(11) 543-1911
FAX: \(55(11)\) 542-0696
Telex: (391) 1154068 TEKX BR

\section*{Rio de Janeiro Office}

Av. Marechal Cåmara, 160, Gr. 605
CEP 20020
Rio de Janeiro. RJ
Phone: 55 (21) 240-7370
Telee: (391) 2130120 TEKX BR

\section*{(Color Printers Only)}

Cit do Brasil Computacao Grafic
Ltd.
Av. Paulista, 1159-170 Andar
CEP 01311 - Såo Paulo SP
Phone: 55 (11) 251-3431, 287-6011
Phone: 55 (11) 251-34
BULGARIA
Tektronix Representation

\section*{Office Sofia}

VMEI "LENIN" BL. 2
Room 2325 a
BG-1156 Sofia
Phone: (\({ }^{(}\)) 665346
FAX: (*) 687110
Telex: (865) 22958 SVCE BG
CANADA
Tektronix Canada Inc.
Barrie
50 Alliance Blvd.
Mail: P. 0. Box 6500
Barrie, Ontario L4M 4V3
Phone: (705) 737-2700
FAX: (705) 737-5588
Telex: (389) 06875672 TEKTRONIX BAR

Calgary
Suite 106
3016, 19th Street NE
Calgary Alberta T2E 6 Y9
Phone: (403) 250-7583
FAX: (403) 291-9840

\section*{Montreal}

900 Selkirk Street
Pointe Claire, Quebec H9R 3S3
Phone: (514) 697-5340
FAX: (514) 697-5205

\section*{Dttawa}

1642 Woodward Drive
Ontawa, Ontario K2C 3R8
Phone: (613) 225-2850
FAX: (613) 225-9719

\section*{Toronto}

1200 Courtney Park Dr.
Mississauga, Ontario
L5T 1S2
Phone: (416) 670-3423
FAX: (416) 670-4229

\section*{Vancouver}

4175 Dawson Street
Burnaby, B.C. V5C 483
Phone: (604) 291-1222
FAX: (604) 291-1624
CHILE
Equipos Industriales S.A.C.I.
Moneda 812, Of. 905
Santiago
Phone: 56 (2) 6990506
FAX: 56 (2) 334539
Telex: (359) 340987 FLOBRA CK (359) 341177 FLOBRA CK

\section*{Ingenac S.A.}

Av. Pedro de Valdivial 800
Providencia
Santiago
Phone: 56 (2) 231995, 740973, 381422
Fax: 56 (2) 2341107
Telex: (359) 240285
CHINA, PEOPLE'S REPUBLIC
OF
Tektronix China Ltd
Beijing Office
Xiyuan Hotel, Building \(\# 1\), Room 5102
Erligou, Western Suburb
Beijing, P.R.C.
Phone: 86 (1) 8021657,8021502
FAX: 86 (1) 802-1502
Telex: (716) 22831 XYH CN
"ATIN: Tektronix, Rm 5102"

\section*{Shanghal Office}

Room 614/616, Shanghai Convention Centre
500 Zhao Jia Bang Road
Shanghai P.R.C.
Phone: 86 (21) 4710281,4710282
FAX: 86 (21) 4710282

\section*{Hong Kong}

402 Citicorp Centre
18 Whittield Road
Causeway Bay. Hong Kong
Phone: 852 (*) 5706928
FAX: \(852\left(^{*}\right) 8072144\)

Telex: (780) 77708 DCBIA HX
U.S. Office
P. O. Box 500, M/S 50-438

Beaverton, Oregon 97077

\section*{U.SA.}

Phone: (503) 627-6546
FAX : 503) 627-6905
Telex 192825 TEKTRONIX

\section*{COLOMBIA}

\section*{Selectronica, Ltda.}

Carrera 71 \$55-98
Mail: Apartado Aereo 25124
Apartado Aer
Bogota D.E.
Phone: 57 (1) 263-1220, 295-3215
FAX: 57 (1) 263-2874
Cable: SELECTRONICA

\section*{COSTA RICA}

Electrolmpex, S.A.
200 Metros oeste de Pops La Sabana
Carretera a Escazu
Mail: Apartado 620-1000 San Jose
Phone: 506 (*) 31-5701/3426
FAX: 506 (*) 31-6531
Telex: (375) 2645 ELEPEX CR

\section*{CYPRUS}

Chris Radiovision Ltd
P.O. Box 1989

Nicosia
Phone: 357 (2) 466121
FAX: 357 (2) 365177
Telex: (826) 6052395
CZECHOSLOVAKIA
Seminar \& Training Center
Bartolomejska 13
CS-11000 Praha 1
Phone: 42 (22) 223263

\section*{Zenit}

Radlicka 138
CS-15000 Praha 5
Phone: 42 (2) 536921
FAX: 42 (2) 536293
Telex: (849) 121801
DENMARK

\section*{Tektronix A/S}

Literbuen 7
2740 Skoviunde
Phone: 45 (44) 535455
FAX: 45 (44) 530755
ECUADOR
Proteco Coasin Cia Ltda.
Quite
12 de Octubre 2449 y Orellana
Casilla 228 A
Quito
Phone: 593 (2) 52-6759/-9684
FAX: 593 (2) 56-1980
Telex: (393) 22865 PROTEC ED
\[
22085 \text { ESAND ED }
\]

Guayaquil
Miraflores Av. Principal 204
y Calle Segunda
Guayaquil
Phone: 593 (4) 201529

\(\square\)
\(\square\)

\section*{EGYPT}

Giza Systems Engineering Co.
2. El Mesaha Sq

DOKKI, A.RE.
P. O. Box 1913

CAIRO 11511
Phone: 20 (2) 3490140
FAX: 20 (2) 3609932
Telex: 93644 ALKAN
FINLAND
Tektronix Oy
SF-00650 Helsink
SF-00650 Helsinki 65
Phone: 358 (0) 7282400
FAX: 358 (0) 7520033

\section*{FRANCE}

Tektronix S.A.
Orsay
ZAC Courtaboeut, 4 Av. du Canada
B.P. 13

91941 Les Ulis Cédex
Phone: 33 (1) 69868181
FAX: 33 (1) 69070937
Telex: (842) 604332 TEK0R A
After Sales Service-France
ZAC. Courtaboeut, 4 Av du Canada
B.P. 13

91941 Les Ulis Cedex
Phone: 33 (1) 69868181
FAX: 33 (1) 69861144
Telex: (842) 601012 TEKSAV
After Sales Service-Paris West
39, Bd des Bouvets
92000 Nanterre C
Phone: 33 (1) 47761353
FAX: 33 (1) 47763311
Telex: (842) 613737 TEKNANT
Aix-en-Provence Region Center
Immeuble Tertia 1-ZI d'Aix
13763 Les-Milles Cédex
Phone: 33 (16) 42244503
FAX: 33 (16) 42244120
Telex: (842) 440045
Bordeaux Region Center
Avenue J.F. Kennedy
Parc Club Cadera BT T
33700 Merignac
Phone: 33 (16) 56342703
FAX: 33 (16) 56559029
Telex: (842) 570247
Lyon Region Center
Les Jardins d'Entreprise
213 rue de Gerland, bat. F
69007 LYON
Phone: 33 (16) 78581538
FAX: 33 (16) 78695255
Telex: (842) 300150 TEKLYON
Rennes Region Center
ZAC de la Rigourdière
35510 Cesson Sevigné
Phone: 33 (16) 99834040
FAX: 33 (16) 99833623
Telex: (842) 740829 TEKREN

Strasbourg Region Center
Parc d'Activités des Tanneries 2a. Route de la Riviere
67380 Lingolsheim
Phone: 33 (16) 88761545 FAX: 33 (16) 88760989 Telex: (842) 890470
Toulouse Region Center
Peri-Sud 2, Z.I. du Palays
13 Rue Villet Bat. 1
31400 Toulouse
Phone: 33 (16) 61802569
FAX: 33 (16) 61348452
Telex: (842) 530243 TEKTOUL. F
GERMANY, FEDERAL
REPUBLIC OF

\section*{Tektronix GmbH}

\section*{Cologne}

Sedanstrasse 13-17
Mail: P.O. Box 101544 D-5000 Cologne 1
Phone: 49 (221) 77220
FAX: 49 (221) 7722-362
Telex: (841) 8885417 ATEK D

\section*{Berlin}

Ernst-Reuter-Platz 3-5
D-1000 Berlin 10
Phone: 49 (30) 317701
FAX: 49 (30) 3133132 Telex: (841) 185804 TEKB D
Cologne Service Center
Schoenhauser Strasse 64
D-5000 Cologne 51
Phone: 49 (221) 3798-0
FAX: 49 (221) 3798500
Telex: (841) 8885541 TEKC D

\section*{Frankfurt}

Lyoner Strasse 14
6000 Frankturt 71
Phone: 49 (69) 6690-020
FAX: 49 (69) 6664093
Telex: (841) 4170788

\section*{Hamburg}

Kieler Strasse 407
D-2000 Hamburg 54
Phone: 49 (40) 54830
FAX: 49 (40) 5483159
Telex: (841) 213749 TEKH D

\section*{Karisruhe}

Emst-Frey Strasse 5
D-7500 Karistuhe 1
Phone: 49 (721) \(8200-0\)
FAX: 49 (721) 818133
Telex: (841) 7825301 TEKK D

\section*{Munich}

Ehrenbreitsteiner Strasse 36
D-8000 Munich 50
Phone: 49 (89) 14850
FAX: 49 (89) 1485250
Telex: (841) 522953 TEKM D

\section*{Nuremberg}

Pretzielder Strasse 15
\(0-8500\) Nuremberg 90
Phone: 49 (911) \(3489-1\)
Telex: (841) 626255 TEKN D

\section*{GREECE}

HITEC, S.A.
18, Posidionos Str.
GR-176 74 Kallithea Athens
Phone: 30 (1) 9425030
FAX: 30 (1) 9423628
Telex: (867) 221497 HITEC GR
GUAM

\section*{(Color Printers Only)}

\section*{M.E. International Distributors}

130 E. Marine Drive, Suite 103
Agana, Guam 96910
Phone: (671) 477-5423
FAX: (671) 477-5424
HONG KONG
Tektronix Hong Kong, Ltd.
402 Citicorp Centre
18 Whitfield Road
Causeway Bay, Hong Kong
Phone: 852 (*) 8072808
FAX: 852 (*) 8072240
Cable: TEKHKGLTD
HUNGARY

\section*{Techn. Office Budapest}

Horvat U. 2-12. IV.EM. 39
H-1027 Budapest
Phone: 36 (1) 1351115
FAX: 36 (1) 1565198

\section*{ICELAND}

Kristjan 0. Skagfjord MF.
Holmaslod 4
P.O. Box 906

121 Reykjavik
Phone: 354 (1) 24120
FAX: 354 (1) 28130
Telex: (858) 2133 KOS IS

\section*{INDIA}

Hinditron Tektronix Instruments,

\section*{Ltd.}

Bangalore
No. 5. Crescent Rd
High Grounds
Bangalore 560001
Phone: 91 (812) 265-470/-471, 263474
FAX: 91 (812) 345022
Telex: (953) 8452151 HIPL \(\mathbb{I N}\)
Cable: TEKHIND

\section*{Ahmedabad}
5. Kalpana Society

Navrangpura
Ahmedabad 380009
Phone: 91 (272) 462353, 464174
Telex: (953) 01217046

Bombay
23. Mahal Industrial Estate

Mahakali Caves Rd
Andheri (East)
Bombay 400093
Phone: 91 (22) 6364560
FAX: 91 (22) 8220197
Telex: (953) 01179286 HIPL \(\operatorname{IN}\)
Cable: TEKHIND
Castle House, 5th Floor,
\(5 / 1-\mathrm{A}\). Hungerford Street,
Calcutta 700017
Phone: 91 (33) 449094
Telex: (953) 021453 HSPL IN
Cable: TEKHIND

\section*{Madras}

Plot No. 6, 5th Floor
Nungabakkam High Road
Madras 600034
Phone: 91 (44) 864 660, 864785
elex: (953) 0416188 HCPL IN
Cable: FLUKEHIND

\section*{New Delhi}

204-506 Hemkunt Tower
98 , Nehru Place
New Delhi 110019
Phone: 91 (11) 644-4234,
AX: 91 (11) 644-2728
Telex: (953) 03161458 HSPL IN
Cable: TEKCENTRE

\section*{Pune}

5, Sahajanand Complex
2416, East Street
Pune 411001
Phone: 91 (0212) 667536, 663690, 66756
Telex: (953) 0145599 BMCL \(\operatorname{IN}\)
Cable: HINDITRON

\section*{Secunderabad}

5 th Floor, Emerald House
114 Sarojini Devi Road
Secunderabad 500003
Phone: 91 (842) 843753, 844033, 847007
Telex: (953) 04256973 HCPL \(\operatorname{IN}\)
Cable: TEKHIND
(Color Printers Only)
Raba Contel (\(\mathbf{P}\)) Ltd.
Qutab Hotel
New Delhi 110-016
Phone: 91 (11) 6863901
FAX: 91 (11) 3325045
Telex: (31) 61481 RABA IN
INDONESIA
PT Dwi Tunggal Jaya Sakti
Wisma Rajawali Bldg, 14th Floor
JL Jendral Sudirman Kav 34
P. O. Box 4435

Jakarta 10001
Phone: 62 (21) 5704563, 584-685/-686
FAX: 62 (21) 583218
Telex: (796) 47308 DTJSPT IA

IRELAND
Tektronix Ireland Ltd
Deans Grange Estate,
Kill Lane,
Blackrock,
County Dublin.
reland
Phone: 353 (1) 892166, 892185
FAX: 353 (1) 892106
Telex: (852) 90478 TEKX EI

\section*{ISRAEL}

\section*{Eastronics Ltd}

11 Rozanis Street
Mail: P.O Box 39300
Tel Aviv 65392
Phone: 972 (3) 475151
FAX: 972 (3) 475125
Telex: (922) 33638 RONIX IL
ITAL.Y
Tektronix S.p.A.

\section*{Milan}

Via Lampedusa 13
20141 Milan
Phone: 39 (2) 84441
FAX: 39 (2) 8950-0665
Telex: (843) 315217 TEKMIL I

\section*{Rome}

Piazza Antonio Baldini 45
00141 Rome
Phone: 39 (6) 827-8041/-1039
FAX: 39 (6) 889-1546
Telex: (843) 616018 TEKROM
Turin
Via Cardinal M. Fossati 5
10141 Turin
Phone: 39 (11) \(3851143,3852163,3854086\)
FAX: 39 (11) 3352783
Telex: (843) 212543 TEKTOR I
IVORY COAST

\section*{Sitinfor}

11 B.P. 968
Abidjan 11
Phone: 225 (*) 356928
Telex: (969) 43154
JAPAN
Sony/Tektronix Corporation

\section*{Headquarters}
-31, Kitashinagawa 5
Shinagawa-ku
Tokyo 141
Mail: P.O. Box 5209
Tokyo Int'l,
Tokyo 100-31
Phone: 81 (3) 3448-4611
FAX: 81 (3) 444-0318
Telex: (781) 2422850 STTYO J

\section*{Atsugi}

Green Kaikan
1-8-14 Asahi-cho
Atsugi 243
Phone: 81 (462) 28-6768
FAX: 81 (462) 28-8043

\section*{Chiba}
aiso Center Bldg.
2-7-2 Shinchiba
Chiba 260
Phone: 81 (472) 42-1911

\section*{FAX: 81 (472) 42-2291}

\section*{Fukuoka}

Nihon Seimei Hakataekimae Bldg.
2-1 Hakataekimae-3,
Hakata-ku
Fukuoka 812
Phone: 81 (92) 472-2626
FAX: 81 (92) 472-2627

\section*{Hiroshima}

HIROSHIMA INTES
10-10 Hashimoto-cho
Naka-ku. Hiroshima 730
Phone: 81 (82) 222-7221
FAX: 81 (82) 222-7225

\section*{Nagoya}

Sanko Building
21-7 Meieki 3-Chome,
Nakamura-ku
Nagoya 450
Phone: 81 (52) 581-3547
FAX: 81 (52) 563-7637
Omiya
Omiya Sawada Building
1-12-5 Sakuragicho
Omiya 331
Phone: 81 (48) 646-0711
FAX: 81 (48) 646-0859
Osaka
Osaka Onbayashi Building
\(4-33\) Kitahama-Higashi
Chuo-ku, Osaka 540
Phone: 81 (6) 947-0321
FAX: 81 (6) 941-3861

\section*{Sendai}

Sendai NS Building
2-25 Ichibancho-1
Aoba-ku, Sendai 980
Phone: 81 (22) 267-2181
FAX: 81 (22) 262-3290
Tama
2-45-10 Fujimidai
Kunitachi, Tokyo 186
Phone: 81 (425) 73-2111
FAX: 81 (425) 73-2170

\section*{Tsuchiura}

Sumitomo Seimei Tsuchiura Bldg
16-12 Sakuracho-1
Tsuchiura 300
Phone: 81 (298) 24-2602
FAX: 81 (298) 24-2606

\section*{Yokohama}

Dai-ichi Yamashitacho Bldg.
74-1 Yamashitacho
Naka-ku, Yokohama 231
Phone: 81 (45) 661-3511
FAX: 81 (45) 661-3519

JORDAN

\section*{Consult-Tel}
P. 0. Box 35055

Amman
Phone: 962 (6) 636668
FAX: 962 (6) 637668
Telex: (493) 22345 CONSLT JO
KOREA, REPUBLIC OF
Myoung Corporation
Seoul Office
Sinsong Bldg., 25-4
Yeoeuido-Dong, Youngdeungpo-ku
Mail: Yeoeuido P.O. Box 14 Seoul
Phone: 82 (2) 784-9942 (rep.)
FAX: 82 (2) 784-2387
Telex: (787) 24283 MYOUNG K
Taegu Office
139-9, Chincheon-Dong, Dong-ku Taegu City
Phone: 82 (53) 753-8163/4
FAX: 82 (53) 753-8185

\section*{KUWAIT}

Tareq Company Ltd.
P.0. Box 20506

13066, Satat, Kuwait
Phone: 965 (*) 2427673
FAX: 965 (*) 2437700
Telex: (496) 22315 ZUAITER KT

\section*{MALAYSIA}

Mecomb Malaysia Sdn. Bhd.
Lot 20, Jalan 225
46100 Petaling Jaya
Mail: P.O. Box 24
46700 Pelaling Jaya
Selangor
Phone: 60 (3) 7743422
FAX: 60 (3) 7743414
Telex: (784) 37764 MA
Sime Darby Systems
Wisma Sime Darby
174h Floor, East Wing
Jalan Raja Laut
50350 Kuala Lumpur
Phone: 60 (3) 2939322
FAX: 60 (3) 2939376
Telex: (784) 32807 SDCOMP MA
(Color Printers Only)
Uniphone Sdn. Bhd.
Apple Division
2nd Floor Annexe Block, Menara Tun Rak
Jalan Raja Llaut
50350 Kuala Lumpur
Phone: 60 (3) 2918000
FAX: 60 (3) 2918280
Telex: (784) 31152 PRECOM MA

MALTA
Fabian Enterprises Ltd.
20. Msida Road

Gzira
Phone: 356 (*) 31-32-83, 33-80-87 Telex: (838) 1837 FABIAN

\section*{MEXICO}

Tektronix S.A. de C.V.
Viena 71 , 1er Piso
Col. el Carmen, Coyoacan
04100 Mexico. DF
Phone: (905) 658-6211,-7978
FAX: (905) 658-7982
Telex: (383) 1772962 TEKME
MOROCCO
(All products except VSG)
Tradec-Signal
Place Khaibar
Angle Bd de la Gironde et
Rue d'lini
Casablanca 03
Phone: 212 (*) 248543
Telex: 25992
(VSG products only)
Universal Computer
7, rue Franche Comptêe - GAUTHIER
Casablanca
Phone: 212 (") 274367
Telex: 21748
THE NETHERLANDS
Tektronix Holland N.V.
Sales and Service Oftice
Planetenweg 99
2132 HL. Hootddorp
Mail: P.O. Box 226
2130 AE Hoolddorp
Phone: 31 (2503) 13300
FAX: 31 (2503) 37271
FAX: 31 (2503) 37271
Telex: (844) 74898 TEKSO NL
NEW CALEDONIA
Maison Barrau
34 bix, Rue du General Gallieni
BP A4, Noumea Cedex
Phone: 687 (*) 27-37-74
FAX: 687(*) 27-46-47
Telex: (714) 3039 NM
NEW ZEALAND
Datamatic Pty. Ltd.
Wellington Office
8 -10 Herbert St.
Lower Hutt
Wellingto
Mail: P. O. Box 31-252
Lower Hutt, New Zealand
Phone: 64 (4) \(663-412\)
FAX: 64 (4) 664-630

\section*{Auckland Office}

195a Archers Rd.
Glenfield
Mail: P.O. Box 34521 Birkenhead Auckland
Phone: 64 (9) 444-0760
FAX: 64 (9) 444-0755
Christchurch Office
87 Wrights Rd.
P. O. Box 8388
P.O. Box 8388

Christchurch
Phone: 64 (3) 382-773
FAX: 64 (3) 388-212
NIGERIA
Obodex Nigeria Ltd.
21A Airport Road
P.O. Box 55525

Ikeja, Lagos
Phone: (01) 962125,962124
Telex: (961) 26744 DATA NG

\section*{NORWAY}

Tektronix Norge A/S
Trondheimsveien 436 B
Postboks 95 Grorudhagen
0905 OSLO 9
Phone: 47 (2) 165050
FAX: 47 (2) 165052
OMAN, SULTANATE OF
OHI Telecommunications LLC
P.O. Box 889

Muscat
Phone: 968 (*) 603-606/-607/-608
FAX: 968 (*) 603-606 Ext 121
Telex: (498) 5052 TELECOM ON
PAKISTAN
Pakland Corporation (Pvt) Ltd.
Central Commercial Area
Iqbal Road
P.E.C.H. Society

Karachi-75400
Phone: 92 (21) 43-7315/-8084
FAX: 92 (21) 43-7915
Telex: (952) 25230 JALAL PK
PANAMA
Executive Marketing Corp. S.A.
Urbanizacion Los Angeles
Ave El Paical No. 30
Edificio EI Dorado
Mail: Apartado 4929 Panama 5
Phone: 507 (*) 60-6441/-6462
Telex: (328) 3483 ELECTRON PG

PERU
Import. y Represent.
Electr. SA
(IRE Ingenieros)
Avda. Franklin D. Roosevelt 105
Edificio Rimac
Lima 1
Phone: 51 (14) 288650, 272076
Fax: 51 (14) 271324
Telex: (394) 25663 IREING PU
PHILIPPINES
(Color Printers Only)
Distributed Processing Systems,
Inc. (DPSI)
Don Chua Lamko Bidg.
H V dela Costa corner Altaro Sts
Salcedo Village, Makati, Metro Manila
Salcedo Vilage, Makat, Metro Manila
Phone: 63 (2) 818-9640/-9646/-9343
FAX: 63 (2) 817-4804
Telex: (742) 66284 DPSI PN
Philippine Electronic Ind., Inc.
3rd Floor, Rose Industries Bldg
11 Pioneer Street
Pasig, Metro Manila
Pasig, Metro Manila
Mail: P.O. Box 498
Makati, Metro Manila 1299
Phone: 63 (2) \(631-1321 / 2 / 3 / 4\)
FAX: 63 (2) 818-4066
Telex: (742) 43109 PEI PM
POLAND
Unitronex
ul. Postepu 1
PL-02-676 Warszawa
Phone: (*) 4326 36, 430248
FAX: (*) 434521
Telex: (867) 812488
PORTUGAL
Decada Equipamentos de
Electronica e Cientificos, SA
Rua Margarida Palla, 11 B
Miraflores/Alges
1495 Lisbon
Phone: 351 (1) 410-3420
FAX: 351 (1) 410-1844
Telex: (832) 15515 ESPEC \(P\)
ROMANIA
Tektronix Representative
Office Bucuresti
Str. Banitei nr. 1
Sc. A, et. 5, ap. 21
Sector 2
R-72218 Bucuresti
Phone: (*) 350465

SINGAPORE
(Color Printers Only)
Diversitec Distributors PTE Ltd.
39 Sixth Avenue, Level 2
Guthrie Building
Guthrie Building
Singapo
Phone:
FAX: 65 (*) 469-8193
FAX: 65 () 469-8193
Telex: (786) 26193 "Robot" RS
Mecomb Singapore Ltd.
Sime Darby Centre
896 Dunearn Road. 04-02
Singapore 2158
Phone: 65 (\({ }^{*}\)) \(469-8833\)
FAX: \(65\left(^{\circ}\right) 467-1905,468-0978\)
FAX: 65 (\()\)
Telex: 786) 23178 RS
SOUTH AFRICA
Protea Technology Ltd.
Johanneshurg
746 6th Street
Wynberg. Sandton 2090
Mail: P.O. Box 39127
Bramley 2018
Transvaal
Phone: 27 (11) 786-3647
FAX: 27 (11) 887-1479
Telex: (960) 4-24409 SA
Capetown
28 Main Rd
Rondebosch 7700
P. 0. Box 23694

Claremont 7735
Phone: 27 (21) 685-4181/-5000
FAX: 27 (21) 689-4807
Telex: (960) \(5-26555\) SA
Durban
46 Essex Terrace
Westrille 3630
Mail: P.O. Box 1375
Wandsbeck 3631
Natal
Phone: 27 (31) 86-6324
FAX: 27 (31) 86-1932
Telex: (960) 6 -20981 SA
SPAIN
Tektronix Española S.A.
Madrid
Calle Condesa de Venadito, 1-5.planta 28027 Madrid
Phone: 34 (1) 404.1011
FAX: 34 (1) 404.0997
Telex: (831) 46014 TKME E
Barcelona
C/Diputación, 279, 6.planta
08007 Barcelona
Phone: 34 (3) 412.5358
FAX: 34 (3) 301.1965
Telex: (831) 97398 TKBE E

\section*{Bilban Office}

Villa de Plencia, 8 Bajo
48930 Getro (Vizcaya)
48930 Getxo (Vizcaya)
Phone: 34 (4) 464.7822
Phone: 34 (4) 464.7066
SRI LANKA
Computerlink Data Systems,

\section*{Limited}

Selfcontained 3 Storey Bldg.
68 , Havelock Road
Colombo 5
Phone: 94 (1) 502202/3, 502142/3
FAX: 94 (1) 502203
Telex: (954) 22455 COLINK CE
21321 INLINK CE
SWEDEN
Tektronix AB
Stockhotm
Adolisbergsvagen 31
Mail: Box 20085
S-161 02 BROMMA
Phone: 46 (8) 292110
FAX: 46 (8) 986105

\section*{Gothenburg}

Längedragsvägen 48
Mail: Box 4093
S-421 04 Västra Frölunda
Phone: 46 (31) 691080
FAX: 46 (31) 691522
SWITZERLAND
Tektronix International A.G.
Gubelstrasse 11
Mail: P. O. Box 2142
CH-6300Zug 2
Phone: 41 (42) 219192
FAX: 41 (42) 217784
Telex: (845) 868808 TEKZ CH
TAHITI
SPV
BP 3692
Papeete
FAX: 689 (*) 435108
Telex: (711) 537 FP
TAIWAN
Tektronix Taiwan, Ltd

\section*{Taipel}

6th Floor, CDC Tower
125 Nanking East Rd, Sec 5
PO Box 36-659
Taipei 10572. Taiwan, R.O.C.
Phone: 886 (2) 765-6362
FAX: 886 (2) 767-4360

\section*{Kaohsiung Office \\ 2nd Floor}

21 Chung-Hwa 3rd Rd
Kaohsiung 80103
Phone: 886 (7) 215-2212
FAX: 886 (7) 215-2619

THAILAND
Dynamic Supply Engineering R.O.P. Coasin Uruguaya S.A.
12 Soi Pasana 1, Ekamai Libertad 2529
Sukhumvit 63
Bangkok 10110
Phone: 66 (2) 392-5313 (8 lines)
FAX: 66 (2) 381-1467
Telex: (788) 82455 DYNASUP TH

\section*{TUNISIA}

\section*{Societe El Eslek}

3 Rue de la Monnaie
1001 Tunis
Phone: 216 (1) 244372, 342003
Teiex: (934) 13664 ESLEK TN
TURKEY
Inter
Bagdat Cad. №.: 301
Ortaciar Apt. D3
T-81060 Istanbul
Phone: 90 (1) 3604374,3604377
FAX: 90 (1) 3503243
Telex: (821) 29245 inmd tis

\section*{U.S.S.R}

\section*{Argus Trading Ltd.}

Per. Sadovskikh 4 Kv
\(12 \mathrm{H}_{5}\)
SU Moscow
Phone: (") 2097071
Telex: (871) 413376

\section*{Argotek}

Cooperative Consulting
Service Centre
UI. Akademika Skriabina 3-2-17
SU-109377 Moscow
Phone: (\()\)) 3714589
FAX: (*) 20022 16, 2002217
UNITED ARAB EMIRATES
Mideast Data Systems U.A.E.
Ahmed Bin Ghannoum Bldg.
Salam Street
Mail: P. . B. Box 7899 Abu Dhabi
Phone: 971 (2) 213000
FAX: 971 (2) 213741
Telex: (893) 24325 MDSUAE EM
UNITED KINGDOM

\section*{Tektronix U.K. Limited}

Fourth Avenue
Globe Park.
Marlow, Bucks SL7 TYD
Phone: 44 (0628) 486000
FAX: 44 (0628) 474799
Telex: (851) 847277,847378 TEKMAR G

\section*{Scotland}

Pentland House,
Almondvale South,
Livingston,
West Lothian, EH54 6NG
Scotland
Phone: 44 (506) 32766
FAX: 44 (506) 34974
Telex: (851) 727056 TEKLIV G
uruguay

Libertad 2529
Mail: Casilla de Correos 1400
Correo Central
Montevideo
Phone: 598 (2) 78-9015/-9204
FAX: 598 (2) 79-7338
Telex: (398) 23010 COAUR UY

\section*{VENEZUELA}

\section*{Equilab, C.A.}

Caracas
Centro Sequros La Paz
Piso 6, Ofic. E-61
Av. Francisco de Mirada
Boleita
Caracas 1070
Phone: 58 (2) 239-3233
FAX: 58 (2) 239-5205
Telex: (395) 21860 EOUIX
Maracaibo
Centro Comercial Montielco
Oficina 4, Piso 5
Avda 5 de Julio con calle 72
Maracaibo
Mail: Apartado 1949
Maracaibo 4001-A
Phone: 58 (61) 52-4578/-7490
FAX: 58 (61) 51-2777
Telex: (395) 62154 EQUIX

\section*{YEMEN ARAB REPUBLIC}

\section*{AI Qasr Electronics}
P. O. Box 17022

Sanaa
Yemen Arab Republic
Phone: 967 (2) 272999
Telex: (895) 3117 NASRYE
YUGOSLAVIA
Commerce p.o.
Einspielerjeva 6
YU-61109 Ljubliana
Phone: 38 (61) 322-241
FAX: 38 (61) 329-540
Telex: (862) 31283
ZIMBABWE
Protea Medical Services (Pvt) Ltd.
111 Kelvin Road South
Graniteside
Mail: P.O. Box 2766
Harare
Phone: 263 (4) 704094/9
Phone: 263 (4) 7040941
FAX: 263 (4) 704652
Telex: (987) 2-4102 PROTA ZW

TEST AND MEASUREMENT
PRODUCTS
Stocking Distributors
Alaska
E\&T Electronics, Inc.
Anchorage, AK
(907) 278-4488

Arizona
CMI-Metermaster
Tempe, AZ
(602) 431-0880

Jensen Tools Inc.
Phoenix, AZ
(602) 968-6241

Arkansas
Cariton Bates
Little Rock, AR
(501) 562-9100

California
Instrument Engineers
San Diego, CA
(619) 268-8344

ITC Electronics
Los Angeles, CA
(213) 388-0621

Marshall Industries, Inc.
EI Monte, CA
(800) 522-0084

RAG
Canoga Park, CA
(818) 998-6500

Zack Electronics
Milpitas, CA
(408) \(942-5432\)

Florida
EMSCO
Orlando, FL
(407) 849-6060

Georgia
Dow Electronics, Inc.
Norcross, GA
(404) 446-2620

\section*{Idaho}

Idaho Instruments
Twin Falls, ID
(208) 733-5636

Illinois
Joseph Electronics
Niles, IL
(312) \(297-4200\)

Klaus Radio, Inc.
Peoria, IL
(309) 691-4840
W. W. Grainger
Butflal Grove, IL

Buttalo Grove, IL
(708) 913-7422
(800) 772-7868

Indiana
Allied Broadcast Equipment
Richmond. \(\mathbb{I N}\)
(317) 962-8596

Maryland
hanco
Aberdeen, MD
(301) 838 -7990
tessco
Hunt Valley, MD
(301) 785-5300

\section*{DISTRIBUTORS}

Massachusetts
Contact East
North Andover, MA
(508) 682-2000

Michigan
Great Lakes
Battle Creek, MI
(616) 963-6282
R.S. Electronics

Livonia, MI
(313) 525-1155

Minnesota
Stark Electronics Supply
Minneapolis, MN
(612) 332-1325

Missouri
Olive Electronics
Maryiand Heights, MO
(314) 997-7709

Electronic Supply Co.
Kansas City, M0
(816) 931-0250

ISL Corporation
St. Louis, MO
(314) 423-3141

New Mexico
Electronic Parts Co.
Albuquerque, NM
(505) 293-6161

\section*{New York}

Transcat
Rochester, NY
(716) 458-4801
(800) 828-1470 (outside New York)

\section*{Pennsyivania}

Sunshine Scientific Instruments, Inc.
Philadelphia, PA
(215) 673-5600

South Carolina
Dixie Electronics
Columbia, SC
(803) 779-5332

\section*{Texas}

IWOTEK
Dallas, TX
(214) 243-7000

ENTEST
Dallas, TX

\section*{Utah}

Standard Supply Company
Salt Lake City, UT
(801) 486-3371

\section*{Washington}

Radar Electric
Seatle, WA
(206) 282-2511

OPTICAL/METALLIC TDR's
Fibertron
La Habra, CA
(213) 690-0670

Grass Valley Group
Grass Valley, CA
(916) 478-3000

Optical Metworks Int'I
Optical Networ
Englewood, CO
Englewood, CO
(800) \(342-3763\)
Anixter Bros., Inc.
Anixter Bu
Skokie, IL
(800) \(221-5217\)

North Supply Company
Industria Airport, KS
(913) 791-7000

BEC, Inc.
Horsham, PA
(800) 523-3808

TeleNetworks, Inc.
Hato Rey, PR
(809) 766-2829

Radar Electric Company
Radar Electr
(206) 282-2511

LAN/DATACOM REPS
Jordan Electronics
Anaheim, CA
(714) 939-9329

Barnhill Associates
Englewood, C0
(303) 792-9500

ICS Associates
Westiord, MA
(508) 692-3545

Dataport Technologies
Maryland Heights, MO
(314) 739-0665

Peter Polus Company
Herkimer, NY
(315) 866-0310

Mecom, Inc.
Risingsun, OH
(419) 457-3231

\section*{TELECOM REPS}

Barnhill Associates
Englewood, CO
(303) 792-9500

Southeast Datacom
Roswell, GA
(404) 998-5083

EnMark Telecom Sales
Hastings, MN
(612) 438-2981

Colcom, Inc.
Austin, TX
(512) 244-6689

Please have a Sales Representative contact me regarding

Also, please:
Add me to your mail list.
- Send me the 1991 Catalog of all Tektronix products.
- Send me the 1990/1991 Television Products Catalog.
- Send me the latest Tek Direct Catalog.

\section*{Tektronix \\ COMMITTED TO ECCELIENCE}

D063-02-99A

Please have a Sales Representative contact me regarding \(\qquad\)
(Please type, print, or write legibly.)

Also, please:
- Add me to your mail list.
- Send me the 1991 Catalog of all Tektronix products.
- Send me the 1990/1991 Television Products Catalog.
- Send me the latest Tek Direct Catalog

\section*{Tektronix \\ COMMITED TO EXCELIENCE}

D063-02-99A

Please have a Sales Representative contact me regarding
(Please type, print, or write legibly.)

Send me information on: \(\qquad\)
\(\qquad\)
Dept./Mail Station
Company \(\qquad\)
Address \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip \(\qquad\)

Also, please:
- Add me to your mail list.
- Send me the 1991 Catalog of all Tektronix products.
- Send me the 1990/1991 Television Products Catalog.
- Send me the latest Tek Direct Catalog.

\section*{BUSINESS REPLY MAIL}

FIRST CLASS MAIL PERMIT NO. 1 BEAVERTON, OREGON
POSTAGE WILL BE PAID BY ADDRESSEE

TEKTRONIX, INC.
MAIL STATION 50-400
PO BOX 500
BEAVERTON OR 97075-9959

\begin{tabular}{l}
NO POSTAGE \\
NECESSARY \\
IF MAILED \\
IN THE \\
UNITED STATES \\
\hline
\end{tabular}

\section*{BUSINESS REPLY MAIL}

FIRST CLASS MAIL PERMIT NO. 1 BEAVERTON, OREGON
POSTAGE WILL BE PAID BY ADDRESSEE

TEKTRONIX, INC.
MAIL STATION 50-400
PO BOX 500
BEAVERTON OR 97075-9959

> NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

TEKTRONIX, INC.
MAIL STATION 50-400
PO BOX 500
BEAVERTON OR 97075-9959

\section*{T E K TRロN I X}

1
9
9
1

A

A```

[^0]: 2252 Dual Time Base Oscilloscope-see page 126

[^1]: *Transient Intensifying Oscilloscope based on MicroChannel Plate CRT

[^2]: * The DSA 601A/DSA 602A comply with IEEE Standard 488.1-1987, RS-232C and Tektronix Standard Codes and Formats.

[^3]: ${ }^{* 1}$ Option 4C is required to obtain the maximum number of waveforms in the Repetitive Single-Shot Acquisition mode.

[^4]: *The CSA 404/803 comply with IEEE Standard 488.1-1987, RS-232C and Tektronix Standard Codes and Formats.

[^5]: Calibration Step Generator
 $\$ 5,490$
 Order 067-1338-00
 Includes: Instruction sheet; SMA -
 female, short-circuit termination.
 See page 52 for power supply options.

[^6]: * With an 11A33.

[^7]: ${ }^{* 1}$ The bandwidths in this chart correspond to $-3 d B$ electrical net system bandwidth. Optical/Electrical converters are often specified at a $-3 d B$ optical. point ($=-6 d B$ electrical). To convert to $-3 d B$ optical bandwidth, multiply the bandwidths in this chart by 1.4. For more details on Optical-to-Electrical Converters, see page 287.
 ${ }^{* 2}$ P6501 Option 02 microprobe is a probe-card mounted, active probe that draws power from the TekProbe interface found on 11000 Series plug-ins.

[^8]: Complementary Modular Test Instruments available on page 197

[^9]: ${ }^{1}$ Plug-ins not included.
 ${ }^{\circ}$ Contact your local sales office.

[^10]: ${ }^{*}$ Specify $O p t 2 R$ if Opt 01 (DMM) is ordered.

[^11]: ${ }^{* 1}$ Digitizer resolution for single-shot acquisition. Averaging of repetitive signals increases resolution to as much as 11 bits.
 ${ }^{2}$ Delay Time base, available on GPIB bus.

[^12]: ${ }^{* 1}$ AutoProbe facilities available with P6137 probe.

[^13]: *Not available on 2439 and 2431L.

[^14]: ${ }^{* 1}$ Optional 1X, 20X, and 100X tips available, see page 332.
 ${ }^{* 2}$ Contact your local sales representative.

[^15]: See page 274 for additional educational information.

 E Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

[^16]: See the Educational section, page 274 for more information.
 T Product available within 24 hours through Tek Direct. Call 1-800-426-2200.

[^17]: \because See the educational section, page 274 for more information.

 - Product available within 24 hours
 through Tek Direct. Call 1-800-426-2200.

[^18]:

[^19]: *The RTD 720 Digitizer complies with the IEEE Standard 488.1 and Tektronix Standard Codes and Formats.

[^20]: *The RTD 710A Digitizer complies with the IEEE Standard 488.1 and Tektronix Standard Codes and Formats.

[^21]: ${ }^{\circ}$ I max $=$ Maximum CPU clock speed available from the manufacturer.
 ${ }^{-2}$ Support for these processors is available for existing 1240/1241 logic analyzers. Consult your local sales engineer for details.
 ${ }^{-3}$ Speed not warranted. Test in your application.

[^22]: ${ }^{\cdot 1}$ Supports clock rates up to 33 MHz

[^23]: ${ }^{* 1}$ Options are required for different package styles, see page 151.

[^24]: ${ }^{1}$ Warranty-Plus options are available for all systems.

[^25]: ${ }^{\prime}$ Requires 1230 Disassembly Probe Adaptor (1230DPA).
 ${ }^{2}$ Hardware interface and full disassembly.
 ${ }^{3}$ Hardware interface only.

[^26]: ${ }^{\prime}$ Equivalent average noise level using a 2782 Spectrum Analyzer in 1 kHz resolution bandwidth.
 ${ }^{-2}$ Maximum amplitude variation across each waveguide mixer band using a 2782 Spectrum Analyzer.
 ${ }^{* 3}$ Over any 5 GHz bandwidth for millimeter wave mixers above 60 GHz .
 ${ }^{4}$ Low-pass filters in LO/IF path.

[^27]: ${ }^{*!}$ All mixers are equipped with Standard UG-xxx/U-type flanges. MIL-F-3022-type flanges are available in F, D, and G bands.

[^28]: ${ }^{1}$ Equivalent average noise level (using a 2750 Series or 490 Series Spectrum Analyzer in 1 kHz resolution bandwidth).
 ${ }^{2}$ Maximum amplitude variation across each waveguide mixer band (using a 2750 Series or 490 Series Spectrum Analyzer with peaking control optimized at each frequency in response to a -30 dBm CW input signal to the mixer).
 ${ }^{3}$ LO drive $\pm 10 \mathrm{dBm}$ peaking control optimized.
 ${ }^{-4}$ Over any 5 GHz bandwidth for millimeter wave mixers above 60 GHz .
 ${ }^{\cdot 5}$ Value estimated at 325 GHz .
 ${ }^{6}$ These low-pass filters are in LO/IF connector.

[^29]: *The FG 5010 complies with IEEE
 Standard 488.1-1987, and with
 Tektronix Standard Codes and Formats.

[^30]: ${ }^{*} 1$ For more information on PFG 5105/5505, see pages 201 and 202.

[^31]: * The PS 5004 complies with IEEE Standard 488.1-1987, and Tektronix
 Standard Codes and Formats

[^32]: *The DM 5110 complies with IEEE Standard 488.1-1987 and Tektronix Standard Codes and Formats

[^33]: *The DM 5120 and DM 5520 comply with IEEE Standard 488.1-1987 and with Tektronix Standard Codes and Formats.

[^34]: *The SI 5010 complies with IEEE
 Standard 488.1-1987, and with Tektronix Standard Codes and Formats.

[^35]: *The AA 5001 complies with IEEE
 Standard 488.1-1987, and
 Tektronix Standard Codes and
 Formats

[^36]: ＊The SG 5010 complies with IEEE Standard 488．1－1987，and Tektronix
 Standard Codes and Formats

[^37]: ${ }^{\cdot 1}$ Contact your local sales office．

[^38]: 1 The 250 ps transition edge is specified from 20 to 80% of the pulse amplitude. All others are specified from 10 to 90%.

 2 Leading and trailing edge can be set independently.

[^39]: ${ }^{* 1}$ Value depends on film, scope, CRT, camera, and the operator.

[^40]: ${ }^{\cdot 1}$ The P6201 and P6202A active probes require probe power, which is normally supplied by the scope (either standard or optional to the scope). If probe power is unavailable, an 1101A power supply may be used to supply probe power.
 ${ }^{2}$ The P6156 is standard with 10X attenuation. Other attenuations are available. Order Option 25 for 10 X plus 100 X and see ordering information on page 323 for separate $1 X$ and 20X attenuator tips.
 ${ }^{* 3} 2445 B$ shipped with P6133 Option 25 probe until BW changed to 200 MHz , then P6137 shipped.

