
Tbe
CODDectiOD MachiDe
System

Paris Reference Manual

Version 6.0
February 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1989
Revised, February 1991

The information in this document is subjcct to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the

right to make cbanges to any products described herein to improve functioning or design. Although

the information in this document has been rev)cwed and is believed to be reliable, Thinking
Machines Corporation docs not assume responsibility or liability for any errors that may appear in

this document. Thinking Machines Corpof1ltion docs not assume any liability arising from the

application or usc of any information or product described herein.

Conncction Machine~ is a registered trademark of Thinking Machines Corpof1ltion.

C·~is a registered trademark ofThinlcing Machines Corporation.

eM, CM·2. and DataVault arc trademarks of Thinking Machines Corporation.
Paris, ·Lisp, and CM Fortran arc trademarks of Thinking Machines Corporation.
CJParis, LisplParis, and Fortran/Paris arc trademarks of Thinking Machines Corpof1ltion.

If! Parallel» is a registered trademark of Thinking Machines Corpof1ltion.
VAX, ULTRIX, and V AXBI arc trademarks of Digital Equipment Corporation.

Symbolics, Symbolics 3600, and Genera arc trademarks ofSymbolics. Inc.

Sun, Sun-4, and Sun Workstation arc registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademarlc of AT&T Bell Labof1ltories.

Copyright <0 1991 by Thinking Machine:; Corporation. All rights reserved

Thinking Machines COlpof1ltion

245 First Street
Cambridge, Massachusetts 02142- 1264
(617) 234-1000 /876-111 1

Contents

1 Introduction

2 Virtual Machine Architecture
2.1 Virtual Processors and Virtual Processor Sets
2.2 Mapping VP Sets to the Physical Machine.
2.3 VP Ratios
2.4 Fields
2.5 Processor Addresses
2.6 Send Addresses . . .
2.1 NEWS Addresses ..
2.8 Conununication across VP Sets
2.9 Geometries
2.10 Flags

3 Data Formats
3.1 Bit Fields
3.2 Signed Integers ..
3.3 Unsigned Integers .
3.4 Floating.Point Numbers
3.5 Complex Flo~ting·Point Numbers .

3.6 Send Addresses
3.7 Configuration Variables

4 Operation Formats
4.1 Field rd's ...
4.2 Constant Operands
4.3 Uncondit ional Operations
4.4 Naming Conventions
4.5 Argument Order

5 Instruction Set Overview
5.1 VP Sets
5.2 Geometries
5.3 Interned Geometries and VP Sets
5.4 Fields

1

3
5

5
5
6
7

7
8
8
8

10

13
14
14
14
15
16
16
16

I.
19
20
20
21
23

2.
25
26
26
27

Contenl$

Copying Fields
Field Aliasing
Bitwise Boolean Operations
Operations on Flags
Operations on Single Bits .
Unary Arithmetic Operations

...
5.5
5.6
5.7
5.8
5.'
5.10
5.ll
5.12
5.13
5.14
5.15
5.16
5.17

Binary Arithmetic Operations.
Optimized Floating-Point Computations
Arithmetic Comparisons
Pseudo-Random Number Generation .
Arrays
General Communication
NEWS Communication

5.18 Power of Two NEWS .
5.19 NEWS with Floating-Point Combiners.
5.20 SCAn, Rplitu:e, Spread, and Multispread
5.21 Global Reduction Operations
5.22 Memory Data Transfers
5.23 Sorting
5.24 Timing Paris Code ..
5.25 The LEDS
5.26 Front End Operations
5.27 Environmental Interface

6 The C/Paris Interface
6.1 C/ Paris Header Files
6.2 C/ Paris Instruction Names and Argument Types

6.2.1 Id Types
6.2.2 Operand Field Addresses
6.2.3 Immediate Operands ...
6.2.4 Operand field Lengths .
6.2.5 Miscellaneous Signed and Unsigned Values
6.2.6 Bit Sets and Masks
6.2.7 Vectors of Integers
6.2.8 Multi-dimensional Front-end Arrays
6.2.9 Symbolic Values

6.3 C/ Paris Configuration Variables
6.4 Calling Paris from C

7 The Fortran/ Paris Interface
7.1 Fortran/ Paris Header Files
7.2 Fortran/Paris Instruction Names and Argument Types.

7.2.1 Id Types
7.2.2 Operand Field Addresses
7.2.3 Immediate OperAnoll ...

ii

27
28
28
2.
30
30 . . 32
36
31
31
38
38
3.
41
41
42
46
46

. 41
41
48
48
48

51

51
51
52
52
53
53
54
54
54
54
54
55
55

57
57
57
58
58

"

7.2.4
7.2.5
7.2.6

Operand Field Lengths
Miscellaneous Signed and Unsigned Values
Bit Sets and Masks

7.2.7 Vectors of Integers
7.2.8 Multi·dimensional Front-end Arrays
7.2.9 Symbolic Values

7.3 Fortran/Paris Configuration Variables
7.4 Calling Paris from Fortran

8 The Lisp / Paris Interface
8.1 Lisp/Paris Instruction Names and Argument Types.

8.1.1 Id Types
Operand Field Addresse!
Immediate Operands ...
Operand Field Lengths .

8.1.2
8.1.3
8.1.4
8.L5
8.1.6

Miscellaneous Signed and Unsigned VO-lues

Bit Sets and Masks
8.1. 7 Vectors of Integers
8.1.8 Multi·dimensional Front-end Arrays
8.1.9 Symbolic Values ___ ...

8.2 Lisp/Paris Configuration Variables
8.3 Calling Paris from Lisp

9 Dictionary of Paris Instructions
9.1 Conventions for Alphabetizing
9.2 Programming Language Syntax

9.2.1 Syntax of Names
9.2.2 Pseudocode Instruction Descriptions
F-A BS

F-C-ABS .
S-ABS
C-ACOS
F-ACOS
C-ACOSH
F-ACOS H
C-ADD .
F-ADD
S-ADD
U-ADD
S-ADD-CARRY
U-AD D-CARRY
S-ADD-Fl AGS
U-A DD-FlAGS
F-ADD-MUlT

ADD-OFFSET -T O- FIElO-ID

iii

Contents

59
60
60
60
60
60
61
61

63

63
63
64
64
65
65
65
66
66
66
66
67

69
69
70
70
70
73
74
75
76
77

78
79
80
81
83
85
87
89
91
92
93

Contents

ALLOCATE.HEAP.FIELD • . • • . • • • • • • 96
ALLOCATE.HEAP·FIELD·VP·SET 97
ALLOCATE.STACK·FIELD 98
ALLOCATE.STACK·FIELD·VP·SET 99
ALLOCATE·VP·SET .. 100

FE-ARRAY-FORMAT , , , . , . , 101
AREF • • • .. 103
AREF32• . •.•. 105
AREF32·SHARED ...•••.•....................... 107
ASET 1'0
ASET32•• •• •• , ,.. 112
ASET32·SHARED ...••••••..................... 114

C.AS IN••••••.................. ,' 116
F·AS IN .,', , .. •• • 117
C·AS INH ..••••••••.• .. • 118
F.AS INH ..••........ •• ••.......... , ..
C-ATAN .. , . • ••••••••
F·ATAN •• •

119
.20
121

F-ATAN2 ., . .• ' ••• ' •••••• ,..... 122
C·ATANH • • . • . • • . • • • .. 124
F-ATANH•. ,••.•........... , • . • • . 125

ATTACH , . . •.•. ,' 126
ATTACHED•............ " 128
AVAILAB LE·MEMORY•.... , . . . • • . • • .. 129

F·F·CEILING• ••. ••.... . ..••• .. •.. 131
S·CEILING • • • • .. 132

S·F·CEILING••.•. • . . • • • • • .. 134
U·CEILING••••• •• •.•.•..••••••••.. .35

U·F·CElliNG ... , , ...•••.•.•..• ' •.••••. , 137
CHANGE·FIELD·AlIAS•..••. . •.. 138

C· F·CIS•••••••••• • • •• • • •••••• ... 139
CLEAR·ALL·FlAGS , ••••...• ,........... 140
CLEAR·BIT•.•••••• ... ••. . .•. 141
CLEAR· CONTEXT , 142
CLEAR· flag•• •• ••••.•••••.. , 143
COLD·BOOT ,........... 144

F·COMPARE•. ••••••••• •••....... 146
S·COMPARE • . • • • • • • • . • • • 147
U·COMPARE•. ••.••••••••.•••••....... 148

COMPRESS·HEAP•...••••••.••.......
C·CONJUGATE••. •.• • ••••••••••.......
C·COS•.•••••••.••..... ..
F·COS
C·COSH
F·COSH

iv

.49
150
lSI
.52
153
154

Con~ent.J

I I :.

CREATE-DETAILED-G EOMETRY . 155
CREATE-GEOMETRY _ • • • • • • • • • • 159
CROSS-VP-MOVE _ 160
DEALLOCATE-GEOMETRY••• •• •••••• ••••• .. 163
DEALLOCATE-HEAP- FIELD 164
DEALLOCATE-STACK-THROUGH . . . • • • . • . • • • • • • • . • . . . 165
DEALLOCATE-VP-SET .. 166
DEPOS IT-NEWS-COORDINATE•..... 167

FE-DEPOSIT-NEWS-COORDINATE _.. • 168
DETACH 169

C-DIVIDE • • • • • • • . . . • . • • 171
F·DIVIDE .. 173

ENUMERATE • •.•••.....•.••..••..... 175
C-EQ .. 177
F· EQ • • . . . • . •. 178
S· EQ. 179
U-EQ .. 180
C-EXP••••••••••• 182
F-EXP 183

FE-EXTRACT-MULTI-COORDINATE 184
EXTRACT-NEWS-COORDINATE 185

FE·EXTRACT· NEWS·COORDINATE 186
OEALLOCATE-FFT-S ETUP • . • 187

C-C-FFT 188
C-FFT-SETUP••• ••••••••• •• ••• •••.. 191

FIELO·VP·SET . 193
F-S-FlOAT , • 194
F-U-FLOAT 195
F· F-FlOOR • • • • • • • • • • • • . • • 196

S-FLOOR . 197
S·F-FlOOR .. 199

U-FlOOR .. 200
U-F-FlOOR .. 202
FE-FROM-GRAY-CODE•.•••• . ••••. •• .. _ • _ .. _ . . 203
U-FROM-G RAY-CODE . _ .. 204
F-GE • • • • • • • • • . • • • • . • • • • • . • . . 205
S-GE .. 206
U-GE _ _ _ ••••••• _ • ____ • .. 208

GEOMETRY-AXIS-LENGTH 210
GEOMETRY-AXIS-OFF-CHIP-BITS • • . • • . . • . • • • • • . .. 211
GEOMETRY-AXIS-OFF-CHIP-POS 212
GEOMETRY-AXIS-ON-CHIP-BITS ... _ . • • • . • . • . . • • • . • .. 213
GEOMETRY-AXIS-ON-CHIP-POS. .. 214
GEOMETRY-AXIS-ORDERING ••••• _ •• ____ _ _ __ . . 215
GEO METRY-AXIS-VP-RATIO 216

v

Content"

GEOMETRY- COORDINATE-lENGTH 217
GEOMETRY·RANK 218
GEOMETRY-SEND-ADDR ESS-l ENGTH 219
GEOMETRY-SERIAl-NUMB ER _ 220
GEOMETRY-TOTAL-PROC ES SORS .. 221
GEOM ET RY-TOTAl -VP-RATI O 222
GET 223
GET ·AREF32 224
GET-FROM-NEWS •• • • • . •• •. • •... 226
GET · FROM· POWER· TWO ... • 227
Gl OBAl ·C-AD D• _ ...• • • _ . ___ • 229
GlOBAl-F-A DD • .. 230
Gl OBAl-S-ADD •••• .. . _ .. • _ _ .. • . _ . . • • • . .. 231
GLO BAL-U-AOO . 232
Gl OBAl-COUNT-BIT .. 233
GLOBAL-COU NT-CONTEXT .. . _ . _ . _ __ __ __ __ _ _ . . . 234
GlOBAl-COUNT-ftag . 235
Gl OBAl·lOGAN O 236
GlOBA l -lOGANO-BIT _____ _ _ __ _ .. __ . 237
GlOBAl -lOGAND-CONTEXT 238
GlOBAl-lOGAND-fl.g _ __ __ . . . • 239
Gl OBAl-lOG IOR 24 0
GLOBAL-lOG lOR-BIT _ 241
GlOBAl-lOG IOR-CONTEXT 242
GLOBAL-lOG lOR-flag • •••• _ _ _ .. _ . _ __ . 243
Gl OBAl-l OGXOR 244
GlOBAl-F-MAX _ _ __ . _ 245
GlOBAl -S-MAX . 247
GlOBAl· U·MAX _ _ . 248
Gl OBAl-U·MAX-S-INTl EN 249
GlOBAl-U- MAX-U-INT LEN 251
GlOBAl-F-MIN _ _ ___ . __ 253
Gl OBAl-S-MIN 255
Gl OBAl-U-MIN . .. • • • . . • • .. _ 256

F-GT • • 25 7
S-GT ••• • ••• 258
U-GT • . . • .. 260
F-IEEE-TO -VAX _ . . 263

INIT 264
INITIALIZE-RAN DOM-GENERATOR . . . _ • . • • . • • . • • . . • • . . . 265

S-INTEGER-lENGTH 266
U-INTEGER-lENGTH • . . •• . •...• 26 7

INTERN-DETAll ED·GEOM ET RY . 268
INTERN-GEOMETRY • • • • • • • • • . . • 270
INTERN-IOE NTI CAl-V P-SET 272

vi

-- Content"

INVERT-CONTEXT , .. 273
INVERT -flag•..••.... 274
IS-FIELD-AN-ALIAS 275
IS-FIELD- IN-HEAP 276
IS-FIELD-IN-STACK . 277
IS· FIELD-VALID •........ 278
IS-STACK-FIELD-NEWER••. _ •• _ • __ . _ • •. • .. _ • . 279
IS-VP-SET-VALID 280

S- ISQ RT • . .• • . •. • ••.••..• 281
U-ISQRT 283

LATCH-LEOS ...• 285
F-LE _ 286
S-LE _ • . 287
U-LE • • • • • • . 289
C-LN • . 291
F-lN

LOAD-CONTEXT•.......................
LOAD-flag

F-LOG2 _ .. _ _ . .
F· LOGIO

LOGAND
LOGAND-CONTEXT
LOGAND-CONTEXT-WITH-TEST .
l OGAND-flag
LOGANDC1 •.. ••.•..•• .
LOGANDC2••.•..........................

S-LOGCOUNT ... •••••• •• • .. • .
U·LOGCOUNT ...•••. •

LOGEQV•
LOGIOR .. _
LOGIOR-CONTEXT ...•.........................
LOGIOR-flag
LOGNAND••........................
LOGNOR ••..•. . .. •• __
LOGNOT••••.•........
LOGORCl ...•• • _ .••. _ .. _ .. __ . . _ . _ ..
LOGORC2 ...••• •.•••...
LOGXOR••.•••..... . _ . . . _ __ •• ..

F-LT _ • • • •.• •....
S-LT _• ••. _ _ . __ . _ • _ ..
u-cr _

MAKE·FIELD·ALlAS _ ... _ . . __ . _ . _ .. •. ...
MAKE-NEWS-COORDINATE•..

FE-MAKE-NEWS -COORDINATE •• .. _ . __ . . •
(·MATRIX·MULTIPlY ...

vii

292
293
29'
295
296
297
298
299
300
301
302
303
30'
305
306
307
308
309
310
311
312
313
314
315
316
318
321
322
323
324

Content$

S-MATRIX-MULTIPLY•••................ . _ • . .. 326
F-MAX••••...................•... 328
S-MAX . _ .. ___ . __ .•••••• __ _ _ .• ___ .• _ _ .• • • • . _ 330

U-MAX ,................................. 332
F-M IN
S-MIN•••••....•••••..
U-MIN•..•...... .•• •
F-MOD ...•.•••.••..•••................. . ..
S-MOD . .. _ •.•.•..•..••...............•. .' . .
U-MOD ... _ •••.••••••••. _ _ _
C-MOVE . ___ . _______ • __ •. ___________ .. __ •• _

F-MOVE . __ ••• ••• • •••••. •••• . ••.••• ••• • ••• _
S-MOVE _ _ ...• _ ... _ ... _ ...•••• _
U-MOVE•• . __ _ .•• • • ...• _
F-MOVE-DECODEO-CONSTANT _ .. _______ . __ ...•.• •.

MOVE-REVERSED . _•.... __•.•.•• _
F-MULT-ADD _. _ . _____ . __ . . _ _ • . ____ •. .••..• _ _

F-MULT-SUB••••..
F-MU LT-SUBF . __ ••••••• . ••• _ • .• • _ ••• • _ •• • •• • ..
C-MULTIPLY _ . _____ . ____ .•.. _ ... _ ... _ ...••.• _ .
F-MULTIPLY ____ . __ . ____ •• _ • _ . ____ .. _ . _ . ..•• _ . _

334
336
338
340
342
344
346
348
350
352
354
3!l5

356
358
360
362
364

S-MULTIPLY • • 366
U-MULTIPLY _• 368

MULTISPREAD· C-ADD . __ .. _ •.... ___ ... _ 370
MULTISPREAD. F.ADD . __ .••.•. _ . __•.••• _ 371
MULTISPREAD-S-ADD•.• .•.... •.•.. 373
MULTISPREAD-U-ADD _ ..•.... _ . _ . . . • • • • . • • . 374
MULTISPREAD-COPY . __ ••• _ _____ _ ___ • __ ••••• _ .. 375
MULTISPREAD-LOGAND .. __ .••.•. _ . __ ...•••••••... 376
MULTISPREAD-LOGIOR . __ ••. _ 377
MULTISPREAD-LOG XOR . _____ •.•. _ . __ ..•..•••••. _. 378
MULTISPREAD-F-M AX ___ . __ ••• _ . __ . _ ... ••••••• ... 379
MULTISPR EAD-S -MAX . . _ . _ _ ... _••••.... 380
MULTISPREAO-U-MAX
MULTISPREAD-F-MIN
MUL TlSPREAD-S-MIN

. • • • • • . • . .. 381

. - 382
383

MUlTiSPREAO-U-MIN _...... 384
MY-N EWS-COORDINATE _ • . _ .• ..•. •••••• _ _ _ 385
MY-SEND-ADDRESS __ . __ .. _ • _ •.. __ . __ .•• ••••• . _ _ 386

C-N E .. _ . _ ... _ .. __ . _ _ . _ . . _••••• _ . _ 387
F-NE . _ __•... _ . . . • . • • . .. 38B
S-N E _ . __ _ . . ___ ..• _ • _ . __ . _ ..•••••••. _ _ 389

U-N E _ _ . _ . • . • • . . • • • • • 390
(-NEGATE
F-NEGATE

viii

392
393

Contents

S-N EGATE _ . 394
U-NEGATE•....................... 395
F·NEWS·ADD 396
F-NEWS-AOO-MULT 398
F· NEWS·MULT 400
F·NEWS· MULT·ADD. • • • • • . • . • .. 402
F-NEWS-MULT-SUB 404
F·NEWS·SUB• ••.. 406
F· NEWS·SUB· MULT .. 408

NEXT-STACK-FIELD-IO 410
FE-PACKEO·ARRAY·FORMAT , .. 411

F-C-PHASE .. 413
PHYSICAL-VP-SET 414

C-(-POWER .. 415
C-F-POWER .
CoS-POWER
C·U· POWER
F·F· POWER
F·S·POWER
F·U· POWER
S·S· POWER
S·U·POWER
U·S · POWER

417
419

421
422
424
426
428
430
432

U-U-POWER 434
POWER· UP . 436

F-RANDOM 431
U-RANDOM 438
F-RANK 439
S-RANK 441
U-RANK 443
C·REAO·FROM·NEWS·ARRAY . • . . . • . . . • . . • 445
F· REAO· FROM·NEWS·ARRAY . 448
S· REAO· FROM· NEWS·ARRAY . • • . • • . • • . . . • 451
U-REAO-FROM-NEWS-ARRAY 454
C· REAO·FROM·PROCESSOR • . . • • . • • • . • • • .. 457
F-REAO-FROM·PROCESSOR . 458
S· REAO·FROM·PROCESSOR • • . .. 459
U·REAO·FROM·PROCESSOR .. 460
C-RECIPROCAL 461

REDUCE·WITH· C·AOD 462
REOUCE·WITH· F·AOO ... 463
REDUCE-WITH-S-ADD . 464
REDUCE·WITH· U·ADO • • • • . • . • . . • . . 465
REDUCE.WITH· COPY 466
REDUCE-WiTH-LOGAN 0 467

Conlent"

REDUCE-WIT H-LOGIOR _ _ ... __ _ 468
REOUCE-WITH-lOGXOR • 469
REDUCE-W ITH·F·MAX .. 470
RE DUCE-WITH· S-MAX . 471
RE DUCE-WITH-U-MAX
REDUCE·WITH-F-MIN
REDUCE-WITH-S- MIN
REDU CE-WITH-U-MIN

F-REM _ . •.• . ••• •• .
S-REM•.•......................
U-REM•••. __ . __ . _ . _ _

REMOVE-FIELD-ALIAS ... ••• _ ___ .. __
F-F-RO UND• •• _ ... __ .. __ . . ____ .

S-ROUND•• ... •
S-F-ROUND ..•• ••••••••••

U-ROUND . _ • •• _ ..• _ • _ • • ___ .
U-F-ROUND .. _ _ •
F-S-SCALE•••••......
F-U-SCALE• •••• _ ... _ ... _ .. _ _

SCAN-WITH-C-ADD ..•••••......................
SCAN-WITH-F-ADD ...•••••• _ ... _ ... _ . _ . ______ ...

SCAN-WITH -S-ADD ...••••.•.....................

472
473
474
475
476
478
480
482
483
484
486
487

489
491
493
495
497
499

SCAN-WITH-U- ADD _ .. 501
SCAN-WITH·COPY •• •...............•..... 503
SCAN-WITH-LOGAND ...••• •• ... 505
SCAN-WITH -LOGIOR • • • • • . . • • . .. 507
SCAN-WITH-LOGXOR . • • •••... _ .. __ •• __ . 509
SCAN-WITH -F-MAX•••..............••.. ... 511
SCAN-W ITH-S-MAX • •• ••• ... 513
SCAN-WITH -U-MAX ...•••••.....•..••... 515
SCAN·WITH· F·MIN••............•. •... ... 517
SCAN-WITH -S-M IN••••..• ... 519
SCAN-WITH-U-MIN . • • . . • . .. 521
SCAN·WITH-F-MULTIPlY 523
SEND _ . _ . _ . . ___ .•. _ . . . • . • • . • .. 525
SEND·ASET32-U-ADD • 527
SEND· ASET32-LOGIOR • • . . • • • • . 529
SEND-ASET32-0VERWRITE ...• . . •• . . •••.•• _ _ 531
SENO-TO-N EWS •.•. • ••• • •• . 533
SEND-TO·QU EUE32• . • •• . • . • . • • • •••••• . _ 534
SEND-WITH· C·ADD . • • . • . • . 537
SENO-WITH-F-ADD•. _ • 539
SEND-WITH· S-ADD • . • . • • • . .. 541
SEND-WITH-U-ADD ...•.•••. • . •.•••• . • •••••••.. . 543
SEND-WITH. lO GAN D 54>

x

COfltents

SENO·WITH·LOGIOR• .• • ... 547
SENO-WITH-LOGXOR •••... . 549
SENO·WITH·F·MAX ••••. .. 551
SENO·WITH·S· MAX•• ••.. . 553
SENO·WITH· U· MAX ...• ..•• • ..•..... •• •••.. . 555
SEND-WITH-F-MIN•...... • . • • • . .. 557
SENO·WITH·S·MIN • . • • • • . . • . • • . • • • • • • • . .. 559
SEND-WITH-U-MIN • . . ••.•••. 561
SEND·WITH·OVERWRITE ... • ••• •• • • ••••• •••••••.. . 563
SET-BIT • .•.•... 565
SET·CONTEXT •. . .• .•..• ••••.. . 566
SET-FIELO-ALIAS-VP-SET • 567
SET·SAFETY·MOOE•.•••... 568
SET·SYSTEM· LEDS·MOOE•.• •.•... 569
SET·VP·SET • • . . • • • • 570
SET-VP-SET-GEOM ETRY 571
SET-flag 572

S-S-S HIFT•. . 573
U-S-SHIFT
C· C·SIGNUM
F· F·SIGNUM
S· F·SIGNUM
S· S·SIGNUM

575
577
578
579
580

C-S IN•••..•••.... 58 1
F·SIN•••••. • •.••••••.. 582
C·SINH• ••••.. 583
F·SINH••••.. 584

SPREAD.FROM. PROCESSOR. • • . • • . • 585
SPREAO·WITH· C·ADO • • • • • • • • . • • • • • • • • • . . 586
SPREAO-WITH-F·AOO•....•..•••••••... 587
SPREAO-WITH-S-ADO
SPREAO·WITH· U·AOO

588
589

SPREAD-W ITH-COPY•..•...•..•.•.... 590
SPREAO·WITH· LOGAND • . . • . . • . • . . • . . . • • • • . .. 591
SPREAD-WITH-LOGIOR• .. •.• . •••• 592
SPREAO·WITH· LOGXOR . . . • • • • • • • . • • • • • • . • • • • • • .. 593
SPREAO-WITH-F-MAX
SPREAO·WITH· S· MAX
SPREAD-WITH-U-MAX
SPREAO·WITH· F·M IN

594
595
596
597

SPREAD-WITH-S-MIN • • . • • . . • • • . • • • 598
SPREAO·WITH· U· MIN ..•. • • • • • • • • • • • • • • • . • • • 599

C. SQRT • . • . . • . • • . • . . • • • • • . • . .. 600
F·SQ RT • . • • • • • . • . . . 601

STORE_CONTEXT •••• .••.• •• . 602

Con/en!"

STORE.flag•.• • • .. .•. 603
FE·ST RUCTURE·AR RAY·FORMAT • • . • • • • • 604

F-SUBF-CONST-MULT••• • • •• •• . •.. 606
F·SUB·MUlT • • • • . . • . • • . . . • • 608
C-SUBTRACT • . • • • • • • • 610
F-SUBTRACT __ . _ • • • • • • • • • • . • • . • . 612
S-SUBTRACT•••• •• •.•........ 61.
U-SUBTRACT ••• • ••• .•........ 616
S-SUBTRACT-BORROW• •• •• •• ••••.••••••. 618
U-SUBTRACT-BORROW••.••.•••........ 620

SWAP • . • • • • • • • • • • • • • • • • • . .. 622
C-TAN•.•• •• • • •......... .. 623
F-TAN
C-TANH
F-TANH

. 62.
625
626

TIME • • . . • • . • • • • • 627
TIMER••••• . .•••.... 629

FE·TO· GRAY·CODE••••• .. •.•........ 632
U-TO-GRAY-COOE••. ••• •••.... 633

TRANSPOSE32. • • • • • • • • • • • • • • . • • • • . 634
F·F-TRUNCATE • . • . . • 637
S· F-TRUNCATE . • • • . • • • • • • • • • • • • • • • • • • . • • • . 638

S·TRUNCATE • . • . • . . • • • 639
U· TRUNCATE • • • • • • • • 641

U· F·TRUNCATE • . • • • . . • • • • • • . • . • . 643
F·VAX·TO· IEEE • • • • • • • • • 6.;5

VP·S ET· GEOM ETRY••.•••••••••••••••.. 646
WARM-BOOT• • •. •• .. • 647

C-WRITE·TO-N EWS·ARRAY • .• ••• . • •..... 648
F·W RITE·TO· NEWS·ARRAY••.••••••••••.• 651
S·W RlT E· TO·NEWS·ARRAY
U·WRITE· TO·N EWS·ARRAY
C-WRITE· TO-PROCESSOR
F·WRITE· TO-PR OCESSOR
S·WRITE· TO-PR OC ESSOR
U·WRITE· TO-PROCESSOR

xii

655
659
662
663
'664
665

List of Figures

2.1 65,536 processors. .. 4

xiii

(

(

(

Customer Support

Thioking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example thai failed 10 execute, a session transcript, the record ora back·
trace, or other such information can greatly reduce the lime it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mall:

Internet
Electronic Mall:

Usene!
Electronic Mail:

Telephone:

For Symbolics Users Only

Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusens 02142-1264

customer-support@rhink.com

ames!think !customer-support

(6 17) 234- 4000

(617) 876- 11 11

The Symbolics Lisp machine, when connected 10 the Internet network. provides a special mail facil
ity for automatic reporting ofConnectiOD Machine system errors. When such an error occws, simply
press Ctrl-M to create a report. In the mail window tbat appears, the To: field should be addressed
as follows:

To: customer-suppoc1@think.com

Please supplement the automatic report with any further pertinent information.

(

~niQn 6.0, February 1991

Part I

Paris Concepts

(

Chapter 1

Introduction

Paris is a low-level instruction set for progranuning the Connection Machine computer sys
tem. It is the lowest-level protocol by which the actions of Connection Machine processors
are directed by the front-end computer. Paris is sometimes referred to as a "macroinstruc
tion set" for the Connection Machine system because it is comparable in power to the
(macro)instruction sets of typical sequen.ial processors such as the VAX, and to distinguish
it from the "microinstruction set" (microcode) that is executed by the Connection Machine
system sequencer and the "nanoinstruction set" that is directly executed by the individual
hardware Connection Machine processors.

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to the
machine-level instruction set of an ordinary computer. Paris supports primitive operat ions
on signed and unsigned integers and float ing-point numbers, as well as message-passing
operations and facilities for transferring data between the Connection Machine processors
and the front -end computer.

The Paris user interface consists of a set of macros, functions, and variables to he called
from user code. The macros and functions direct the actions of the Connection Machine
!lystem hy sf'nrHng mAcroinstructions to the Connection Machine sequencer, and the vari
ables allow the user program to find out information about the Connection Machine system
such as the number of processors available .

Several different versions of the user interface are provided: one for the Li sp progTanulling
language, one for C, and one for Fortran_ These interfaces are functionally identical; they
differ only in confonning to the syntax and data types of one language or the other.

1

(

Chapter 2

Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. At present , a
single Connection Machine system can have 16,384 or 32,768 or 65 ,536 physical (hardware)
processors, of which any single user can use a portion containing 8,192 or 16,384 or 32,768
or 65,536 processors. (See figure 2.1 for an illustration of 65,536 processors.) In most cases
the same software can be executed unchanged on Connection Machine systems (or portions)
with different nwnbers of physical processors; the number of processors affects only the size
of the problem that can be handled.

Paris enhances this scalabili ty by presenting to the user an abstract version of the Con
nection Machine hardware. The most important feature is the virtual processor facility,
whereby each physical processor is used to simulate some number of virtual processors. A
program can be written asswning any appropriate number of processors (but not fewer than
the number of physical processors); these virtual processors are then mapped onto physical
processors. In this way a program can be executed unchanged on Connection Machine sys
teIlUl with different numbers of physical processors, even if it requires a certain minimum
number of processors, with an essentially linear trade-off between number of physical pro
cessors and execution time. (There is a memory trade-off as well: the memory of a physical
processor i~ wviutu among the vir tual processors it supports.)

. For the remainder of this chapter, when we refer to "the Connection Machine" or "the
machine" we mean that portion of a Connection Machine system to which the user is
attached. For example, if a user is attached to a 16,384 processor portion of a 65,536
processor Connection Machine, the expression "the machine" refers only to the user's 16,384
processors.

The Connection Machine hardware supports two mechanisms for interprocessor conunu
nication. The more general mechanism is the router, which allows data to be sent from any
processor directly to any other processor; indeed, many processors can send data to many
other processors simultaneously. The leiS general mechanism is redundant, but optimizes
an important case for speed. It organizes the processors as an n-dimensional grid and al
lows every processor to send data to its immediate neighbors in the grid. This mechanism
is called the NEWS grid, from the initials of the four directions in a two·dimensional grid:
North, East, West, and South. Using these hardware mechanisms, Paris provides identical
virtual mechanisms within the: virtual proceuor framework.

3

Chapter~. Virtual Machine Architedure

Figure 2.1: 65,536 processors

4

Chapter 2. Virtual Machine Architecture

2.1 Virtual Processors and Virtual Processor Sets

The data parallel programming method associates one processor with each element of a
data set. In the virtual processor abstraction provided by Paris, we associate one virtual
processor, or VP, with each element of a data set. The set of all virtual processors associated
with a data set is called a virtual processor set, or VP set. For example, consider an image
processing problem that deals with an image of65,536 pixels, shaped in a 512x128 rectangle.
Each pixel is an element of the data set that makes up the image. Thus we would write a

program using one VP set of size 65,536: one VP for each pixel.
Because a single problem may be composed of more than one data set, Paris allows for

the simultaneous existence of more than one VP set. For example, a text retrieval program
might wish to deal with art ides at some times, and with words in the artides at other times.
This problem is most conveniently modeled with two VP sets, the first corresponding to
the data set of all artides (one VP per artide) and the second corresponding to the data
set of all words (one VP per word).

VP sets are created and deleted through function calls to Paris. The size of a VP set (the
number of virtual processors in the VP set) is fixed at the time of the VP set's creation.

Although multiple VP sets may co·uist, only One VP set may be active at any time.
This VP set is known as the current VP set. All VP sets other than the current VP set are
latent; that is, they can not execute any instructions. We say that Paris operates within
the current VP set. Paris provides a function eM: set-vp·set for setting the current VP set.

2.2 Mapping VP Sets to the Physical Machine

When a Paris program is run, the virtual processors in the user's program are mapped onto
the machine's physical processors. The size of the VP set(s) and the size of the physical
machine determine how many virtual processors are assigned to each physical processor. In
effect, each Connection Machine processor and its memory are shared among the virtual
processors they support.

These concepts are further elaborated in the following sections. The time·slicing of the
Connection Machine processors is covered in the section "VP Ratios"; the sharing of physical
memory among virtual processors is covered in the section "Fields." Conununication and
related concepts follow.

2.3 VP Ratios

Let p denote the numher of Connection Machine physical processors, and let IXI denote
the number of virtual processors in a VP set X.

For each VP set X, each physical processor is assigned the task of si mulating IXI/p
virtual processors. This number IX I/p is called the virtual processor ralio, or VP ratio, of
VP set X. We denote the VP ratio of VP set X as vpr(X). The virtual proceuor ratio
must always be a power of two.

What exactly does this mean? When the machine is operating within VP set X, each
instruction in the user's program is executed vpr(X) t imes by each physical processor, that
is, once for every virtual processor. This is compldely transparent to the user. A change of

5

Chapler 2. Virtual Machine Architecture

VP set changes the VP ratio to be that of the newly current VP set; if the program changes
from VP set X to VP set Y, each instruction after that will be executed vpr(Y) times.

This method of assigning virtual processors to physical processors "spreads out" a VP
set as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared by the entire physical machine.

As an example, suppose we have two VP sets A and B, where IAI = 64K and IBI =
256K. Suppose we run our program on a Connection Machine system with 64K physical
processors (p = 64K). Then vpr(a) = 64K/64K = 1, and vpr(b) = 256K/64K = 4. When
executing within YP set A, each instruction is executed once by each physical processor .
When executing within VP set B, each instruct ion is executed four times by each physical
processor.

If the same program were to be run on a Connection Machine system with only 16K
physical processors (p = 16K), then we would have vpr(a) = 64K/16K = 4, and vpr(b) =
256K/16K = 16. When executing within YP set A, each instruction would be executed
four times by each physical processor. When executing within VP set B, each instruction
would be executed 16 times by each physical pTOce~_~or.

This description of "execute once for each virtual processor" applies most accurately to op·
erations such as arithmetic that can take place within each virtual processor independently
of other vir tual processors. Operations that perform conun.unication are more complicated,
but the idea is the same: each physical processor performs all necessary execut ion steps on
behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed
to allow the programmer to think en tirely in terms of the virtual processor as the basic unit
of computational power.

2.4 Fields

At the time of its creation, a VP set has no associated memory (except for its flags). This
is the same as saying that no VP in the VP set has any memory, because the memories of
all virtual processors in a VP set are always of the same size and layout. Paris provides
functions to allocate and deallocate memory to a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits. A field can be of any size greater than zero bits. When a field is allocated,
it has an initial size specified by the user. When we speak of allocating a field to a VP sel,
we mean allocating a field to each VP in the VP set.

A field is referenced through a field ID. Paris returns a unique field ID for each new field
that is allocated, and all Paris calls that require a reference to a field take a field ID as a
parameter.

How does this abstraction of fields get mapped into physical Connect ion Machine memo
ory? Again, the concept of VP ratios is important. Just as a Connection Machine physical
processor takes responsibility for vpr(X) virtuaJ processors for each VP set X in the user 's
program, those same physical processors (more precisely, their memories) take responsibili ty
for the fields of those same virtual processors. A single physical memory contains vpr(X)
copies of every field in VP set X, vpr(Y) copies of every field in VP set Y, and so on for
every yp ~et in the user's program.

6

Chapter 2. Virtual Machine Architecture

There are two types of fields: heap fields and stack fields. The djstinction between
them has to do with the storage management strategy employed in the physical memory
supporting the virtual processors. Heap fields are the more flexible of the two, but they
also have the higher overhead. Heap fields may be allocated and deallocated in any order.
Allocation of heap fields to VP set X may be freely intermixed with allocations to VP set
Y, and so on. Deallocations need pay no attention to the VP set to which a field belongs,
nor to the order in which other allocations and deallocations were done.

Stack fields may be allocated in any order, without regard to VP set. However, stack
fields must be deallocated in the reverse order in which they were allocated. This rule
applies globally to all fields in all VP sets. Thus, if a program allocates a field It in VP set
A, and then allocates a field 12 in VP set B, and then allocates a field h in VP set A, they
must be deallocated in the order 13, 12, ft.

2.5 Processor Addresses

Paris supports two different sorts of addresses for virtual processors: the send addreu, which
is used for general purpose communication among virtual processors, and the NEWS address,
which describes a VP's position in the n-dimensional grid used to optimiZe nearest-neighbor
communication.

A virtual processor has one send address and one NEWS address at all times. Send
addresses and NEWS addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWS address, but it is possible for a VP in another VP set
to have the same send address or NEWS address_ Since Paris always operates within a single
VP set, there is normally no ambiguity as to which VP is meant by a given address. For
communication across VP sets, Paris has other means of uniquely identifying the intended
destination VP.

2.6 Send Addresses

Send addresses are used as arguments to Paris communication operations to identify virtual
processors that are to supply or receieve data. The Paris operation eM: my-send-addres$
allows every VP in a VP set to find out its own send address.

The send address for a VP is composed of two parts, the physical part and the virtual part.
The physical part indicates the location in the CM of the physical processor supporting that
VP. The virtual part indicates which VP in that VP set on that physical processor is being
addressed. The virtual part is in the less significant bits of the send address.

The size (in bits) of a send address for a VP set depends on two things. The physical size
of the machine determines the size of the physica1 part of the send address. The VP ratio
for the VP set determines the size of the virtual part.

For example, in a 64K = 216 Connection Machine, the send addresses for VP set Q with
vpr(Q) = 64 = 26 require 22 bits: 16 bits for the physica1 part, and 6 bits for the virtual
pcu-t. In this exnmple, scnd addresscs range from 0 to 222 - 1.

7

Chapler 2. Virtual Machine A rchilecture

2120U1817161 5 1<l13121110 9 8 or e 5 4 , 2 1 0

SEND ADDRESS PHYSICAL PROCESSOR VP L-__________ ~ __ ~

In this release of Paris, VP ratios must be a power of two. This results in a contiguous
address space for send addresses (that is, there are no "holes"). However, this feature is
likely to change in the future (thereby allowing a VP ratio to be any integer, not just a
power of two). We recommend that no Paris program be written so as to require send
addresses to occupy a contiguous range. In particular, we discourage arithmetic on send
addreoses. Paris provides functions for manipulating send addresses in a "safe" manner.
Arithmetic is better done on NEWS addresses; if a total order on all processors is required,
please note that a NEWS grid may be one-dimensional.

2.7 NEWS Addresses

A NEWS address is an n-tuple of coordinates Zo, Zh ... ,ZN _ 1, wh ich specifies a VP's position
in an n-dimensional Cartesian.grid geometry. The number of bits required to specify each
coord!llate depends on the size of that dimension in the geometry. NEWS addresses are
treated in more detail below when we discuss geometries.

The Paris operation CM:my-news-coordinilte-ll allows every VP in a VP set to find out
its own NEWS coordinate along a given axis. Paris also provides functions for producing a
send address from a NEWS address, and vice versa. There are a nwnber of variations on
these functions to handle only specific dimensions. All addresses are interpreted within the
current VP set.

2.8 Cotnmunicatioll across VP Sets

Communication across VP sets takes place via the Paris send and get operations and their
variants. These operations each accept only a ~end address as the indicator of the remote
VP; NEWS addresses are not allowed_ The send address must be of the proper size for the
remote VP set; that is, it must have as many bits as are necessary to specify a send address
in that VP set, which may he different from the number of hits needed to specify a send
address in the curren t VP set.

We have noted that send addresses are not unique across all VP sets in a progrnm, but
that communication across VP sets is unambiguous anyway. This is because every call to
a Paris send or get operation also takes a field in a remote VP set as an argument. A field
is always associated with exactly one VP set, and this fact allows Paris to determine the
remote VP intended as a send destination or a get source.

2.9 Geometries

A geometry is an abstract description of an n-dimensional gri d of elements. It specifies n,
the number of dimensions (also known as the rank of the geometry), and it specifies the
length of each dimension. There arc other aspects of a geometry that may be specified by
the Paris user, but we first elaborate on the more b ru ic issues.

8

Chapter 2. Virtual Machine Architecture

The rank of a geometry is an integer between 1 and 31, inclusive. This is the same as
saying that a geometry can describe anything from a I -dimensional grid to a 31-dimensional
grid. We number the dimensions of a grid from 0 to the rank minus I, so we say that a
l·dimensional grid has only dimension 0, a two-dimensional grid has dimensions 0 and I ,
etc.

The size of a dimension must be a power of two. The product of the sizes of all dimensions
of a geometry specifies the total number of elements in the geometry. For example, a three
dimensional geometry of size 16 x 512 x 2 contains 16,384 elements in all.

Paris provides functions for defining geometries. See section 5.2. A geometry is defined
in the abstract, but it has no use until it is associated with a VP set, via another Paris
function. Associating a geometry with a VP set defines a "shape," or organization, for the
virtual processors of the VP set.

At the time of a VP set's creation, it is associated with some geometry. The geometry
specifies the size of the VP set and its conceptual organization in n-space. A VP seth always
associated with exactly one geometry, but it may be associated with different geometries
over time. Pari.~ provirlp8 a function for associating a geometry with a VP set (and implicitly
dis-associating the previous one). See section 5.L In this way, the user can " reshape" a
VP set_ The only restriction is that all geometries associated with a VP set be of the same
total size, since a VP set is not allo ed to change size. For example, a VP set originally
associated with a 16 x 512 x 2 geometry can later be associated with a 64 x 256 geometry,
since the total number of virtual processors described by both of these geometries is the
same (16,384 in this example).

The NEWS address of a virtual processor depends completely on the geometry currently
associated with it s VP set. Thus, while the selld addresses of vir tual processors remain
constant for the life of a VP set, the NEWS add resses of those same virtual processors can
vary as the geometry is changed. When a VP set has a three-dimensional geometry, NEWS

addresses for that VP set have three coordinates: 2:0,2:1,2:2, When that VP se t changes to
a two-dimensional geometry, NEWS addresses for that VP set have two coordinates: 2:0,2:1'

Given a VP set and given a geometry as we have described it so far (a rank and the size
of each dimension). there are many ways for Paris to assign virtual processors to physical
processors. However, not all mappings will provide equally efficient cOllununication among
the virtual processors of a VP set. Paris allows the user to specify more information than
just rank and size of dimensions when creating a geometry. These additional pieces of
geometry informat ion we call ordering and weight, and we discuss them ill more detail
below.

It should be said, however, that the specification of these properties of a geometry af
fects only the efficiency of inter- VP communication, and therefore the performance of the
program. Choosing suboptimal values will never cause an otherwise correct program to
execute in an erroneous manner. Also, for some problems (those involving little or no com
munication among virtual processors of a VP set) it does not matter how the user specifies
these properties. Paris provides a function for creating geometries that does not require
specification of ordering or weight information.

Each dimension of a geometry is given an ordering. The ordering of a dimension specifies
how NEWS coordinates for that dimension are mapped on to physical processors. There are
currp.ntly t.wo possible orderings : NEWS ordering and send-address ordering. (There may be

9

Chapter 2. Virtual Machine Architecture

more in the future.) Different dimensions of a geometry may be given different orderings.
The NEWS ordering specifies the embedding of the grid Into the physical (hardware) n

dimensional grid such that processors with adjacent NEWS coordinates are in fact neighbors
within the physical grid. The send-address ordering specifi es that if processor A has a
smaller NEWS coordinate than processor B (in the specified dimension), then A also has a
smaller send address than B. Paris functions that provide nearest-neighbor communication
(the CM:get-from-news family of functions, for examp le) perform best with NEWS ordering.
Send ordering is useful for applications such as Fast Fourier Transform; under the send
ordering, processors that are nearest neighbors within the physical grid have grid coordinates
that differ by various powers of two.

What is the weight of a dimension for? Whenever the VP ratio of a VP set is greater
than 1, some number of virtual processors are co-resident on a physical processor. If these
virtual processors happ en to all be in the same dimension of their geometry, collununi·
cation among them will be even faster than if they were neighbors in the physical NEWS

grid. Communication among virtual processors assigned to the 16 physical processors on
a Connection Machine chip is also faster than communication between chips, even if the
processors concerned are neighbors in the physical NEWS grid.

Paris can lay out virtual processors on physical processors in such a way as to take advan
tage of intra-processor and intra· chip communication, provided the Paris user knows which
dimension(s) of the geometry will sustain the heaviest communication. (By conununica
tion, we mean also operations such as scan and spread). Thus, Paris provides an operat ion
for creating geometries with an indication (the weight) of which dimension will have the
heaviest communication, which will be second heaviest, etc. Paris then maps the virtual
processors onto the physical processors in such a way as to favor the dimensions with the
heaviest communication.

2.10 Flags

Each Paris virtual processor has an assortment of one-bit flags. These flags are represented
as fields that are specially associated with VP sets. These fields are automatically created
when the VP set is I"rf'<l.ted by CM:al1oca le_vp_~et.

Many Paris operations store into these flags rather than, or in addition to, storing results
into explicitly supplied argument fields. For example, the CM:s-add-2-IL operation adds one
signed integer to another, hut also stores information into the carry flag and the overflow
flag.

The entire set of flags for each virtual processor is as follows.

• The context-flag indicates which vir tual processors are active within the current VP
set. Nearly all Paris operations are conditional; the operation is effectively carried out
only in those processors whose context-flag is I, and processors whose context-flag is
o are unaffected. Some operations are always unconditional.

• The test-flag holds the result of numeric: comparisons and other tests, or ind icates
which operations failed because of bad operands.

• The carry-flag holds the carry in and carry out for some integer arithmetic operations.
A few operations use the carry-flag as an iml>licit input.

10

Chapter 2. Virtual Machine Architecture

• The overflow·flag indicates which operations produced results that the destination
field was too small to contain. Many Paris operations can affect the overftcw-jtag.

11

(

Chapte r 3

Data Formats

A data item always consists of a string of bits having consecutive addresses. Such a bit
string is called a field. The term field is also used to refer to a collection of fields, one for
each vir tual processor.

Many Pari s operations may he regarded as interpreting bit fields as being of particular
data types or formats. Currently Paris provides operat ions that regard the contents of bit
fields as structured according to the following data types:

• signed integers, represented in two's-complement format

• unsigned integers, represented in straight binary format

• floating-point numbers, represented in a format dose to that specified by IEEE stan
dard 754 for floating-point arithmetic

• complex floating-point numbers, represented as two floating-point numbers, the real
part and the imaginary part

• send-addresses, which are unsigned integers that label virtual processors for commu
nication purposes

• NEWS coordinates, which are unsigned integers, tuples of which label virtual processors
within a Cartesian grid for conununication purposes

T he Connection Machine system allows unusual flexibility in that t he hardware does not en
force any particular length or alignment requirements. Paris supports intege rs and floating
point numbers of almost any si ze. (However, certain sizes of floating-point number allow
particularly efficient execution by the hardware floating-point accelerator, and certain sizes
of integer allow certain other operations to be particularly efficient.)

Most Paris operations operate on fields within a virtual processor, delivering results to
other fields within that virtual processor. Frequently we speak of one data item, but really
mean to speak of many instances of that data item, one for each selected processor, to be
considered or operated on in parallel. For example, when we say that an operation sets
a flag when a field has such-and-so value, we mean that within tach processor a separate
decision is made: whether to set that processor's flag based on the value of the field within
thnt processor .

13

Chapter 3. Data Formats

3.1 Bit Fields

A bit field is specified by a bit address a and a positive length nj the field consists of the
bits with addresses a through a + n - 1, inclusive. Therefore the address of a field is the
same as that of the lowest-addressed bit.

3.2 Signed Integers

A signed integer is specified in the same way as a simple bit field, by a bit address a and
a positive length n. The signed integer is represented in two's·complement form, and so
a signed integer of length n can take on values in the range _(2(n-I») through 2(n-l) - 1,
inclusive. The least significant hit has address a, and the most significant (sign) bit has
address a + n - 1.

All arithmetic on signed integers is performed in a strict wraparound mode. As a rule,
if the result of all opera~ion overflows the destination field, the overflow-flag is set, and the
destination receives as many low·order bits of the true result as will fit. For example, using
4-bit signed arithmetic, multiplying 4 by - 7 win produce the 4-bit result 4 (and also set the
overjlow-!fug), because the two's-complement representation of -28 is ... 111111100100, of
which the four low-order bits are 0100, or 4. Signed-integer operations that do not overflow
leave the overflow-flag unchanged.

In order to simplify the Connection Machine microcode, this arbitrary restrict ion is im
posed: the length n may not be zero or one. In addition, certain operations on signed
integers cannot handle operands whose length is greater than the value of the variable
CM: *maximum-inleger-Iength*; see section 3.7.

3.3 Unsigned Integers

An unsigned integer is specified in the same way as a simple bit field: by a bit address a
and a positive length n. The unsigned integer is represented in stright binary form, and so
an ur.signed integer oflength n can take on values in the range 0 through 2" - 1, inclusive.
The least signillcant bit has address a, and the most significant bit has address a + n - l.

All arithmetic on unsigned integers is performed in a strict wraparound mode, modulo
2". As a rule, if the result of an operation overflows the destination Ileld , the overflow-flag
is set, and the destination receives as many low-order bits of the true result as will fit.
For example, using 4-bit unsigned arithmetic, multiplying 4 by 7 will produce the 4·bit
result 12 (and also set the overflow-flag), because the two's-complement representation of
28 is ... 00000011100, of which the four low-order bits are 1100, or 12. Unsigned-integer
operations that do not overflow clear the overflow-flag.

Unsigned integers, unlike signed integers, may be of length zero or one as well as ofl arger
sizes. (Note that an unsigned integer of length zero is considered to have the value 0.)
However , certain operations on unsigned integers cannot handle operands whose length is
greater than the value of the variable CM: *maximum_inlegl!!r_ll!!nglh*; see section 3.7.

14

Chapter 3. Data Formats

3.4 Floating.Point Numbers

A floating.point data item is specified by three parameters: a bit address a, a 5ignificand
length 3, and an exponent length e. The total number of bits in the representation is
3 + e + 1, and the data item occupies the bits with addresses a through a + 3 + e, inclusive.

The significand occupies bits a through a + 3 - 1, with the least significant bit at address
a. A hidden· bit representation is used, and so the significand is normally interpreted as
having a I-bit as its most significant bit implicitly just above the bit at address a + 3 - 1.
IT the exponent field is all zero-bits , however, then the hidden bit is taken to be O.

The exponent occupies bits a + 3 through a + .J + e - I, with the least significant bit at
address a + 3. An excess-(2"-l - 1) representation is used.

The sign bit occupies bit a + 3 + e, and is 1 for a negative number and 0 for a positive
number. Overall, a sign-magnitude representation is used, so inverting the sign of a floating
point number merely involves flipping the sign bit. Note that there is hoth a plus zero and
a minus zero.

When .J = 23 and e = 8, this is equivalent to the IEEE standard 754 single-precision
format, which looks like this:

3130292IU72625242322212019181716151413121110 98 7 65 4 3 2 1 0

exponent significand

When s = 52 and e = 11, the Paris floati ng-point format is equivalent to IEEE standard 754
double-precision format. The IEEE standard si ngle-extended and double-extended formats
can also be accommodated by suitable choices of 3 and e.

While the Paris floating-point format is equivalent to the [EEE standard format, it must
be emphasized that the Pari6 implementat ion does not support equi valent operations at
this time. l "Soft" underflow (using denormali zed numbers for the result) is not supported.
Rounding is performed correctly in all cases, using the round-to-nearest mode; the several
rounding modes are not supported. The !lot-a-number (NAN) values are not su pp orted. The
standard exceptions and flags are not all supported. Jt is strongly recommended that a user
of Paris always use the IEEE standard formats unless careful analysis of the application
(such as a need for speed or additional exponent range) indicates that another format is
required and adequate.

The format of a floating-point operand must obey certain restrictions. The length 3 must
be greater than 0 and not greater than CM: .maximum-significand-Iength.. The length e
must be greater than 1 and not greater than CM: .maximum-exponent-length • . See section
3.7. These restrictions are additionally imposed: e ?: 2, s ?: 1, and 2c- 1 ?: 3 + 1. Values for
s and e not satisfying these restrictions will cause unpredictable results.

'Thinking Machine. Corporat ion do~s intend to support all standard IEEE arithmetic operat ions in a
future softw<>re rele".e.

15

Chapter 3. Data Formats

3.5 Complex Floating.Point Numbers

A complex floating-point data item is specified by three parameters exactly like those for a
floating-point data item: a bit address a, a significand length J, and an exponent length e.
The data item consists of two consecutive f1oa~ing-point data items, with the real part at
address a and the imaginary part at address a + " + e + 1. The total number of bits in the
representation is 2(J + e + I), and the data item occupies the bits with addresses a through
a + 2{" + e) + I, inclusive.

3.6 Send Addresses

Every virtual processor in a VP set has an identifiying "end addreJS, a kind of serial number
that distinguishes it from all other virtual processors in that VP set. These addresses are
used to perform general interprocessor communication. For example, in the CM:sen d-IL
operation, each virtual processor provides a message and the send address of some other
proceisor, and that message is sent to the specified processor (all such messages effectively
being sent in parallel).

The number of bits in a send address depends on the VP set, or rather upon the geometry
of that VP set. The funct ion CM:geometry-send-address-length may be used to determine
the length in bits of a send address for a given geometry. Suppose that for geometry G th is
function returns m; then a send address a for a virtual processor in a VP set with geometry
G is an unsigned integer such that 0 :S a < 2"'. (Programs should not, however, rely on
the fact that every integer k such that 0 :S k < 2m is a valid send address. In a future
release of Paris the space of send addresses may contain "holes"; this could occur when the
total number of virtual processors in the geometry is not a power of two, an extension that
Thinking Machines is contemplating for the future.)

3.7 Configuration Variables

The cu rrent configuration of the machine is reflected ill a few global variables. Programs may
refer to these so they can adapt to various sizes of InachjlL~. Tlu!se variables are set by the
cold boot procedure. They should never be set by the user, as there are dependencies among
them, which, if violated, will result in errors. Some variables are fixed by the hardware,
while others depend on the arrangement of virtual processors set up by the attach or cold
boot]Irocess. Some variables represent implementation restrict ions.

CM: .current-vp-sel.

The VP set ID for the current VP set is always available in this variable. For example,
to determine the total number of processors in the current VP set, one might say (in
Lisp syntax)

(CH:geometry-total-processors
(CH:vp-set-geometry CM:.current-vp-set.))

or (in C syntax)

16

Chapter 3. Dala Formats

or (in Fortran syntax)

CM: .physical-processors-limit.

The total number of physical processors available for use_

CM: .physical-procenors-Iength.

The base-2 logarithm of the total number of physical processors, that is, the minimum
length in bits for an unsigned integer field that can contain the number of any physical
processor .

CM: .physical-memory-limit.

The amount of physical memory per physical processor, including memory that is set
aside for system use. Note: Also see the didionary entry for CM:available.memory,
which indicates how much Connection Machine memory is available for user programs.

CM: .physical-memory-Iength.

The base-2 logarithm of the amount of physical memory per physical processor.

CM: .maximum-in teger-length.

Because of implementation restrictions, a few operations on signed and unsigned inte
gers cannot handle operands longer than the value of eM: *maximum-integer.length*.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than this variable, but that fact is not
guaranteed in succeeding software releases.

The value of CM: *maximum-intege r- length. is never smaller than 128.

CM: .maximum-significand-Iength.

Hecause of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with significands longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fad is not guaranteed in succeeding software releases .

The value of e M: .maximum-significand-Iength* is never smaller than 96.

CM: .maximum- exponent -Iength*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with exponents longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer t han specified by these vAriahles, but that
fact is not guaranteed in succeeding software releases.

The value of CM: .maximum-exponent-Ienith* is never sm'l.ller t han 32.

17

Chapter 3. Data Formats
,,,',

C M: - he ap· comp ression-e n a bled-

When this variable is true (T, 1), automatic heap compression is enabled. See the
dictionary entry for CM:compress-heap for informat ion on explicit heap compression.

C M: _ he ap-comp ression-messages-en a bled-

This variable determines whether a message is issued when heap compression occurs.

e M: -max-number-of-timers-

This represents the maximwn number of timers that can be allocated by anyone
program using the CM :timer- functions.

CM: -no-field-

The value of this variable is a dununy field ID suitable for use as an argument to
CM:send· l L and related instructions to indicate that no notify field is to be used , or
to CM:scan ·with-... operations to indicate an unused sbit argument when the smOOe
argument is : none.

18

Chapter 4

Operation Formats

Paris operations are executed at the direction of a program running in the fron t-end machine.
For each operation there is a function or macro that, when called, causes the Connection
Ma.c;hlne hardware to perform the operation.

4.1 F ield Id's

Most Paris operations operate on bit fields in the memories of the data processors. A bit
field is specified by a field id, a data object that serves to identify the field. A Paris operation
that allocates memory for a new field will generate and return a new field id; this field id
may then be used as an argument to other Paris operations.

For example, in Lisp one might create a new heap field and then unconditionally initialize
its contents to 5.0 in the following manner:

(let «tId (CM:allocate-heap- field 32)))
(CM:f-move-const - alvays-1L tId 5.0 23 8)
.. .)

In C the same operation would look like this:

{

; Allocate
; Initialize

CM_field_id_t tId = CM_allocate_heap_tield(32); ,_ Allocate _,
CM3_move_const_alvays_1LCfld, 5.0 , 23 , 8); ,- Initialize _,

}

And in Fortran:

C Decl are the variable
I NTEGER FLO

C Allocate and initialize
FLD = CM_ALLOCiTE_HEiP_FIELD(32)
CM_F_MOVE_CONST_ALWiYS_1L(FLD, 5.0, 23, 8)

19

Chapter -I. Operation Formats

4.2 Constant Operands

Certain operations accept as an operand a single datum computed within the front end
that is broadcast to all of the Connection Machine processors as part of the operation_
Such operations have -constant in their names (or -const , in the case of certain compound
operations). As a rule, every operation with ·constant in its name has a counterpart without
-constant in its name.

For example, to CM: f-add-constant-2-1l there corresponds CM:f-add-2-11. These opera
tions do exactly the same thing except that the first two operands to CM:f-add-2-1l are
fi eld id's for fields containing float ing-point numbers, whereas CM:f-add-constant -2-1l takes
a field id and a front-end floating.point nwnber. This latter value is broadcast to all (active)
processors and then used in the same way that a second field would be used by CM:f-add-
2-11. Here are examples of their use in Lisp:

(CM:1 - add-2-1L x y 23 8)
(CM :f-add-constant - 2- 1L x 2.7 23 8)

The same examples in C:

CH_f_8dd_2_1L (x. y . 23. 8);
CM_f_add_constant_2_1L(x . 2.7, 23, 8) ;

The same examples in Fortran:

C Acd field y into field x
CM_F_ADD_2_1L(X, Y, 23, 8)

;Add field y into field x
;Add 2.7 into fi.ld x

/ . Add field y into field x . /
/. Add 2 .7 into field x . /

C Add 2.7 into field x
CH.F.ADD.CONSTA NT_2.1L (X. 2.7, 23 , 8)

4.3 Unconditional Operations

Most Paris operations are conditional: they take place only in processors that have a 1 in
the conte:tt-flag. But some times it is necessary to perform operations ullcondit ionally (that
is, without respect to the context-flag). A number of Paris operations have unconditional
versions, generally named by inserting -always in the name of the conditional fu nction. For
example, CM: s-move-always-ll is the unconditional equivalent of CM: s-move-l l.

Paris operations that deal directly with the context-flag are inherently unconditional. For
the sake of brevity, the names of these operations do not contain -always. Any Paris opera
tion that has -tontext in its name deals with the conte~t-flagand is implicitly unconditional
despite the fact that .always does not also appear in its name. One example is CM: set
context.

A few other Paris operations also have only unconditional forms hut do not have names
containing .always. These are typically specialized communications operations whose names
are already so long that inserting -always would exceed the limit on the length of a name.
OUt: <::Ai.1.IIlpl~ is e M: u-read-from-news-array- IL.

20

Chap ler" Gpemtion Formats

4 .4 Naming Conventio ns

Lisp, C, and Fortran impose different sets of rules and conventions on how functions and
variables are to be named. The description of Pari s in this document strikes a compromise
among these languages. All names in this document are presented in Lisp syntax, but
carefully observing capitalization, to which C is sensitive even though Fortrrul and Lisp are
nolo The Paris Dictionary contains a si mple set of rules for converting a Lisp name into the
corresponding C or Fortran name.

The rest of this section describes the gene ral rules that were used to achieve a regular
nanling system for Paris operations. It is not necessary to know these rules to use Paris, but
a passing fam.iliarity may help you to remember an exact operation name without having
to look it up, or to recognize the argument format from the operation name .

The name of every Paris operation is limited to 32 characters and begins wi th CM: (in
Lisp) or CM_ (in C and Fortran). It also contaius one or more words that are the " main
description" of the operation, such as add or sen d or read.from-news.a rray.

Between the leading CM: or CM_ and the main operation may be one or more prefixes. The
prefix fe- indicates an operation performed entirely on the front end (often such an operat ion
has a parallel coun terpart without the fe· prefix). Examples of this correspondence are
CM:ext ract·news·coordi nate and CM:fe·ext ract·news· toordinate. If an fe- prefix is presen t , it
appears before aU other prefixes.

Other prefixes indicate the type of data to be operated upon:

c- complex: numher
f- floating-point number
5- signed integer
u- unsigned integer

For example, CM: f-add-2-ll adds floating-point numbers, whereas CM; s-add ·2- 1l add signed
integers_

If there is more than one ty pe prefix, then the fi rst type applies to the result of the
operation, and the other(s) apply to certain source operands, usually the last one(s) . For
examp le, CM:s-f-t runcate-2-2L produces a signed in teger result from a fioating-po int source.

Some operations include in their names the name of another operation. In this case the
embedded operation may have a type prefix_ An example is CM: spread.with-f-ad d- l L (The
name of such an embedded operation is usually preceded by with-, hut exceptions Occur
when this would make nrunes too long, as in CM: mult ispread-f- multiply-IL, all operation that
is not yet implemented but may be in the future.)

There are four groups of suffi:r:es for operation names: -constant, -always, number of fields,
and number of lengths. T hey always ap pear (if at all) in this order.

A number-of-fields suffix is simply a digit (preceded by a hyphen or underscore), such as -3.
It tells how many sou rce and destination arguments an inst ruclion requires. The destinat ion
arguments are fields; the source arguements are fields, or in some cases constants. In many
cases there are sets of similar op erations differing primarily in their argumen t for mat. For
example, CM:f-multiply-3-l l takes three fields and stores the lIoating-point prod uct of the
second and third fields into the first field, whereas CM: f-multiply-2- IL takes only two fields,
alld stores their product bnck into the first fi"l(1 (t.hf!rehy overwriting aile source value).

21

Chapter". Operation Formats

These two formats are distinguished by a suffix indicating the number of arguments that
arc fields (in this case ·3 or .2). As a rule, this suffix is sup plied only if it is necessary to
distinguish two or more possible formats. (Note that "field· like" arguments, slich as the
constant used in place of a field in CM:f· multiply.constant.2.1L. are included in the number
of·fields count.)

A number.of.lengths suffuc is simply a digit (preceded by a hyphen or underscore) followed
by a capital l. such as -3L. This suffix indicates how many length arguments are required.
Such argwnents indicate the lengths of field arguments. For example, CM:s-add-3·3L takes
three field arguments followed by three corresponding length argwnents; but CM: s·add-3-
II takes three field arguments and a single length argument that describes the length of all
three fields. Note that the format of a floating-point field is described by two arguments
(significand length and exponent length), but these two arguments are lumped together and
counted as a single length. As a rule trus suffix always appears in the name of any operation
that takes one or more field length arguments.

To surrunarize, the name of a Paris operation is more or less of thi s form:

CM: [fe -){f. t 5- 1 u.}'(main name)[(embedded name)J[-constanl][-always][-m]{-fl LJ

An effort has been made to use full English words in the names of Paris operations. The
32-character lim.itation on the total length of names has made it necessary to use certain
ahbre. iations universally:

,~

divinlo
f,~

f~

m"
mm
mod
.om
,~

subfrom

complex floating-point
divide into
front end
Roating-point
maximum
minimum
modulo
remainder
signed integer
subtract from
unsigned integer

Some of these are standard abbreviations, of course, used in many programming languages.
Paris also uses standard abbreviated names for mathematical operations (Ian for the tangent
function, for example).

Paris uses certain additional abbreviations in the names of compound operations:

mult multiply
const constant
sub subtraci
a always

An example is CM:f-mult-const-sub-consl-a-l L.

22

Chapter ~. Operation Formats

4.5 Argument Order

An attempt has been made to keep argument order consistent. The following rules of thumb
apply.

Argwnents that are fields come first . [f there is a destination field it always comes first.
Length fields usually come last. They appear in the same order as the fi elds to which they

apply, but if both integer and floating. point fields appear then the floating. point length ar·
gwnents appear last. For some complex communication operations, such as scan operations,
certain control arguments follow the lengths.

23

Chapter 5

Instruction Set Overview

This chapter provides a quick guided tour of the entire Paris instruction set, organized by
categories of functionally related opprfltions. The names of the operations are presented
in the form of charts that bring out the combinatorial structure of the instruction set.
Alternatives are stacked vertically between braces, and the sy mbol", indicates a choice
that adds no characters to the operation nrune.

The nut cbapter, the Paris Dictionary, is organized alphabetically by operation name,
and provides detailed descriptions of all the operations .

5.1 VP Sets

atlocate-vp .set
deallocate -vp-set
physic.al-vp.set

eM: is-vp-set-valid
set-vp-sel
set -vp-set -geo met ry
vp-set-geometry

These operations create, destroy, and otherwise manipulate VP sets.

The operation CM: allocate-vp-set creates a new VP set hav ing a specified geometry (which
must be created first). The operation CM:dealiocate-vp.set may be used to inform the Paris
interface that the user program will not use a VP set any longer.

Of particular importance is CM:sel ·v p·set , which selects a given VP set as the current VP
set.

Given a VP set, the operation CM:vp.se!-geomelry returns the geometry associated with
that VP set.

25

Chapler 5. Instrudion Set Overview

5.2 Geom.etries

create-dtt ailed -geomet ry
create-geometry
de allocate· geomttry
geomtt ry-axis-Iengt h
geomet ry- axis-off- ch i p-bi ts
geomtt ry- axis-off- chip-pos
geomet ry- axis- on- chip-bit s

CM: geometry-axis-on-chip-pos
geome! ry- axis-ordering
geomet ry-axis-vp-rat io
geomet ry-coord i nate-length
geometry-rank
geomet ry-se nd -a dd ress-Ien gt h
geomtt ry- tot a I-processors
geometry-total-vp-rat io

These operations create, destroy, and otherwise manipulate geometries. Note the many
operations that inquire about the shape of the geometry and various axis attribu tes.

5.3 Interned Geom.etries and vp Sets

Paris supports a special class of geometry and VP set objects: intemed objects. The intern·
ing facility is especially useful to compiler writers because interned objects may be accessed
by description rather than by ID and are automatically reused as needed.

{

;"",-g.om,,'l' }
CM: intern-detailed-geometry

intern -ide nt ical-vp- set

These operations create interned geometries and VP sets.

Note that interned geometries and V P sets are substantively different kinds of objects from
their uninterned couterparts. For instance, a geometry created with CM:create-geometry is
never interchangeable with a geometry created with CM: inlern -geometry.

26

5.4 Fields

add -offset-t 0-field -id
a lIocat e-hea p-fi e ld
a Ilocat e-hea p-fi eld-vp-set
a Ilocat e-stack-field
a Ilocat e-stack -field -v p-sd
dea !locate-hea p-fie Id

CM: dea!locate-stack-through
field-vp-set
is-field- in-heap
is-field-in-stack
is-field-valid
is-st a ck -fiel d-n ewe r
next-st a ck-fiel d-id

Chapter 5. Instruction Set Overview

These operat ions create, destroy, and otherwise manipulate fi elds. Fields are used to contain
data to be operated upon in parallel. Most Paris operations require one or more fields as
arguments.

CM: available-memory

This instruction indicates the number of bit~ of memory, per virtual processor, currently
available for allocation on either the heap or stack.

CM:com press-heap

Automatic heap compression is enabled by default. Programmers can control heap com
pression explicitly by setting the configurat ion variable CM: -heap-com pression-enabled- to
NIL (fal se, 0) and then calling the above instruction to control fragmentation.

5.5 Copying Fields

A number of operations are provided simply to copy data from one place to another.

The two-length versions of the move operations allow for sign-extension (or truncation) of
signed integers, zero-extension (or truncation) of unsigned integers, and changes of range
or precision for flonting-point numbers.

27

Chapler 5. Instruction Set Overview

CM:

move-reversed { , - } -a ways

swap

· IL

The move-reversed operation reverses the order of the bits in a field as it copies them. The
swap operation exchanges the contents of two fields.

CM:c ross-vp-move { ,- } .IL
-a ways

T he cross-vp-move instruction copies all or a portion of one multidimensional block of data
from the current VI' set into a similarly shaped region in another VP set.

5.6 Field Aliasing

change-field- ali as
is-fi eld-an-alias

CM : make-field -al ias
remove-field- a Ii as
se I-field -a Ii as· vp- set

These operations create, des troy, and manipulate field aliases. A field alias is a field ID that
references a field already referenced by at least one other field 10. By using field aliases, it
is possible to reference the same Connection Machine memory field from within different
VI' sets.

5.7 Bitwise Boolean Operations

eM:

Iogand
Iogior
Iogxor
Iogeqv
Iognand
lognor
Iogandc1
logandc2
logorc1
logorc2

{.<O",,:"' }{""l}
-always · J· Il
-con st-always

28

ChapteT 5. Instruction Set Overview

CM:lognot {_loll}
_:loll

Paris provides all ten non-trivial bitwise boolean operations on two operands, as well as the
logical NOT operation that inverts all bi ts .

5.8 Operations on Flags

Special operations are provided for operating on the flags.

eM:

load -
ston':-

clear-
sel -
invert -

logand-
logior
global-Iogand
global-Iogier
global-count-

{ 'H' } overflow

Flags can be loaded from or stored into another field; dCi\Ted to zero or set to one; inverted;
or combined with another field via logical AND or OR. One may also determine whether any
processor, or all processors , have a flag set, or count the number of processors that have a
flag set.

CM:dea r-al' -flags { ,- }
- ill ways

For convenience, a special compound operation is provided for clearing all the flags except
the context.

eM:

load ·

store·
clear

set-
invert

logand

logior-
global-Iogand

global-Iogior
global-count-

context

loga n d-con tex 1- wit h -test

The context Hag is distinguished from the others, in that operations on the context Rag
are always unconditional, while most operations on the other flags are conditional {that is,

29

Chapter S. Instruction Set Overview

depend on the state of the con text flag).

5.9 Operations o n Sing le Bits

Each of the following operations takes exactly one one-bit field as its operand.

CM:

clear-
set
glob al-Iogand
globa l- Iogior
globa l-count-

b;t{ - }
-always

These operations on single-bit fields are provided purely for the sake of efficiency. For
example,

CM:clear-bit :l

has the same effect as

CM: u-move-constant -IL Z, 0,1

but requires only one operand to be processed instead of three. Paris also provides uncon
ditional forms of all these operations.

5. 10 Unary Arithmetic Oper at ions

Paris supports most of the unary arithmetic operations one might expect to find in a
computer instruction set , as well as a number that are unusual. Most of them are provided in
both one-operand and two-operand formats. The one-operand format treats the destination
field as also the source operand; the result replaces the input. The two-operand format has
a separate source operand, and ignores the previous contents of the destination field. (As a
rule, the two-operand format operates curnldly if the two operands are the same field, but
may be slower than using the one-operand format.)
For signed and unsigned integers there are negation and integer square root. Absolute value
and signum are provided for signed operands only, as these operations are degenerate in the
unsigned case.

. {{ ~'.} {:,~~:t'} } {.,.,L)
eM. { } -2-1L

s- abs -2-2l
s-signum

The integer-length operation is a modified base-2 logarithm, useful for determin ing the
minimum number of bits required to represent an integer ill signed or unsigned form. The
logeount operation counts the number of I-bits in a binary representation (or, in the signed
case, it counts the bits that differ from the sign bit).

30

Chapter 5. Instruction Set Overview

M. .2_2l C . {,.} {;,,,.,,.'OO,'h}
u- togeoun!

A shift instruction performs an arithmetic shift by a specified number of bit positions. Paris
supports shifts on either signed or unsigned source fields.

CM: {'} os-shift {., }-2l
u -eons1lnt-3

Operations are provided for converting to and from a Gray code representation of binary
integers.

{f,om} {.l.ll} CM: u- -gray-cod~ l
to -2-1

These Paris instructions support conve rting floating-point numbers between the IEEE

format used in the Connection Machine system and VAX floating-point format.

M.- . - I l C .f {i~~e- to-vax}
vax-to-Ieee

Some unary operations take a floating-point operand and produce an integer result, or vice
versa. The float operations convert an integer to a floating-point representation. There are
several different ways to convert a floating-point number to an integer, reflecting different
possible choices for rounding or truncation; ftoor and truncate provide two such cases.

f· { :-_ } flo.1

CM: { .'.2l }
{flOO' } ,. f· truncate

Floating-point and complex absolute value, negation , and square root are prov ided.

c- -loll
{ }{ 'b' }{ }

CM: f- ~:~ate -2-1l

Floating point floor, ceiling, truncation, rounding, and signum operAtions are avai lahle.

31

Chapter 5. Instruction Set Overview

f-floor
f-ceiling {-'ll} eM: f- f-truncate

-2- 1 l
f-round
f-signum

Complex signum, conjugate, and reciprocal operations are provided.

{
,."",,m } { L} e M:c- c-conjugate -1-1

. -2- ll
c.reclprocal

These two unary operations on complex operands yield floati ng-point destination values.
One calculates the absolute value and the othe r calculates the phase of each complex source
vAlue.

eM:f-c- -2- 1l {'b' }
phase

For both floating-point and complex numbers, Paris provides a complete se t of transcen
dental and trigonometric functi,ons, including hyperbolic functions and their im'crses.

-exp

·1 ,
- Sin

eM {:}
-cos {.,.1L}

{:} -tan
-2- l l

-sinh
-cos h
-tanh

In addition , the cis instruction is available. It yields a complex field in which the real part
is the cosine of the floating-point sou rce and the imaginary part is the sine of the source.

eM: c-f-cis-2- 1 l

5.11 Binary Arithmetic Opcl'ntions

Paris includes most of the binary arithmetic operations one might expect to find in a com
puter instruction set , as well as a number that are tlnll ~ ,.al. Mosl of them arc provided

32

Chapter 5. Instruction Set Overview

in both two-operand and three· operand formats. The two-operand format treats the desti
nation field as also one of source operands; the result replaces the first input. The three·
operand format has two separate source operands, and ignores the previous contents of the
destination field. (As a rule, the three-operand format operates correctly if the destination
field is the same as one or both source fields, but may be slower than using a two·operand
format .)

For signed and unsigned integers, the usual addition, subtraction, and multiplication
operations are provided, as well as max and min operations that store the larger or smaller
of the two inputs.

There is no single integer division operation; four are provided by the signed and un·
signed roond and truncate instructions, whose names re1lect the rOUIlding or truncation that
must occur when integer division is not exact. Conceptually there are four corresponding
remainder operations, but only the two most commonly used are provided in Paris: rem,
which corresponds to truncate division; and mod, which corresponds to floor division.

· ,dd
-subtract
-multiply

eM {:}
-max
-mi n

-fl oor
-ceiling
-truncate
-round

CM: {,-} {.om} { _ } {-'-IL}
u· mod -constant -3·ll

Subtraction is not commutative, and so for efficiency the special case of reverse suhtraction
is provided. (Division is not commutative, either, but is a sufficiently expensive operation
that the relative cost of a separate instruction to copy a constant into a temporary field
first is small. Paris therefore does not provide integer reverse division operations.)

CM: {:} -subfrom ·constant { ~~: ~~} {
-'- IL }

Paris allows addition and subtraction on integers hundreds of bits long; but in case that is
not enough, the usual add· carry and suhtract·horrow operations, which use the carry flag as
an implicit input, are provided to allow efficient progranuning of very high precision integer
arithmetic. Since the add.carry and subtract· borrow instructions take the carry·flag as
input as well as setting it upon completion , these instructions can be chained. (The one
exception to this rule are the ·add-carry·3-3l instructions, whi ch do not set the carry-flag

33

Chapter 5. InstMJction Set Overview

because it is tmdear what carry means in the 3l case.)

CM' s- add-carry -2. ll { }{ } {
-3.3l}

. u- subtract ·borrow -3. ll

The add-flilgs operation performs an addition and sets the flags but stores no sum. This is
useful in a few specialized situations, such as CORDie-type calculations.

CM: {~~ } add-flags-2-ll

For floating-p oint and complex numbers, the usual addition, subtraction, multiplication,
and division operations are provided. Note that there are unconditional versions of these
operations in Paris; these can be much faster than the conditional versions when floating·
point hardware is used.

eM, {co} {:~~t~"t} { -'O""~" } {-'-IL} f- multiply -always -3-IL
divide -const-always

For floating-point numbers, max and min operatiolU an: vrovided, along with floating-poine
remainder and modulo division operations, and a fl oating-point exponent iation instruction.

CM:f

-max
-min
-mod
-rem
of-power

{ - } {-'-IL} -constant -3- lL

Subtraction and division are not commutative, and so for efficiency special cases of reverse
subtraction and reverse division are provided for floating-point and complex floating-point
operands. (Unlike the integer case, floating-point division is sufficiently fast and sufficiently
common that these special cases arc worthwhile.)

3'

Chapter 5. Instruction Set Overview

{CM"-} {'~bf'Om}
CM:f- dlVlnto

Other useful floating-point operations include scaling, as well as exponentiating to an integer
power.

· 5 -power ·3·2l

{

-2-2l }

CM: f {.u} { .scale} -constant.2-1L

-constant-3- I L

Paris supports integer exponentiation instruct ions for both signed and unsigned operands.

-power-3·3L

CM {:}{::}
-power-constant-2-1 L

-power-con stant-3 {:!~ }

Exponentiation of complex number is supported for powers of any data type.

{
'-} {_2_ll } f- ·3·11

eM:c· power
s- ·con.tant·2·1L
u· ·constant·3· } L

The exp operations calculate e' for complex operands and 2' for floating· point operands,
where of is the value of the source field and e is the base of the naturallogarithtru.

{,} {-l-ll} CM: f ·exp .2.11

Instructions are provided that calculate the base 2 or base 10 logarithm of a floating-point
lI01lft:e fif'lrl or thp natur:l.llogarithm of a complex SOll rce neJrl.

35

Chapter.5. Instruction Set Overview

A two-input arctangent operation is provided.

CM: f-ilhn2-3 ·1l

5.12 Optimized Floating-Point Computations

Paris supports compound floating. point operations that are functionally identical to se·
quences of simpler floating. point operations. The compound operations are provided purely
for the sake of efficiency; they can be implemented so to exploit floating-point hardware
more cleverly.

Thue compound operations perform calculations of the following forms: za + b, za - b,
(z + a)b, and (z - a)b, where z is always a field in memory, and a and b may each be either
a field or a constant.

·mult

eM' f { : :~:} { _ } -m,"
bf

-const
- ,"

Note: Where using the term -always in an unconditional instruction name would cause the
name to exceed the 32 character limit for Paris instruction names, the implementation uses
the term -a instead. In the above chart, this is the case only for instructions that contain
const twice. An example is CM:f·sub·const·mult·const·a·Il.
These compound instructions combine floa ting.point multiplication with reverse subtraction
in a variety of ways . The unconditional versions may be faster than the conditional versions.
(Note that the name CM: subf·consl·mult-const-a· tL uses -a instead or .always in order to stay
within the 32-character Paris operation name length limit.)

{
-m'It-,"bf } { } { }

CM: f ·mult-const-subf "" ,"" · IL
-const ·a ways

-subf-const-mult

36

Chapter S. Instru ction Set Overview

5.13 Arithmetic Comparisons

Paris supports the usual six comparison operations =, ,#, <, $, >, and ;:: for integers and
Roating-point numbers. Each is available in three forms: compare two fields , compare a
field to a constant , and compare a field to zero. The integer operations also allow integer
fields of differing length to be compared.

-.q -2l
-0<

CM {:} -II {-<OO:I,"I} -IL -I. -zero
-gl
-g •

• q
0<

CM:f-
I I {-<OO:"OI }IL I.

-zero
gl
g.

CMo<-{~:} {-<OO:",,} -ll
-zero

5.14 Pseudo-Random Number Generation

Paris provides a built-in generator of uniformly distributed pseudo-random numbers. Use
these instructions to generate unsigned integers over 1\ specified range, or floating-point
numbers in the range from 0.0 (inclusive) to 1.0 (exclusive).

e M: {~_- } random -Il

CM: initialize-random-genera tor

37

Chapter S. Instruction Set Overview

5.15 Arrays

Often it is convenient to treat a large field as an array of smaller fields. These operations
allow each virtual processor to index independently into its own array.

aref

CM:
"'f32{ - }{ - } -shared -always

.2l
aset

ilset32 { h- d} -s are

Three kinds of arrays are supported. An ordinary array is laid out in memory exactly as
one would expect: each processor contains its own array elements, concatenated end-tcrend
to fonn one large field.

A $licewise array is laid out in such a way that an array element logically belonging to
one processor is actually stored in memory belonging to 32 processors. The total amount of
memory involved is the same, of course, but because the data is laid out in this peculiar man
ner ordinary Paris operations (such as CM: f-ildd .2-1l, for example) cannot properly operate
on slicewise array elements directly. Only special operations designed to operate on slicewise
arrays can properly fetch or store slicewise array elements. Examples are CM: ilref32-2l and
CM:ilset32-2L. These special operations are much faster than the corresponding operations
on ordinary arrays.

A shared array is shared among all the virtual processors occupying a group of 32 physical
processors. This can save a great deal of memory, and is useful for lookup tables that are
th@ sam@ for all processors. Of course, care is required when storing into such arrays. In
principle this sharing concept could be supported in both ordinary and fast versions, but
in fac t Paris provides special operations only for fast shared arrays.

Paris also provides, for efficiency, certain comp ound operations that combine cOllul1un i
cation with access to a fast array.

5.16 General Communication

The router functions (s end and get) transmit data in a general fashion that allows any
processor to communiCAte directly with any other processor.

38

Chapler S. lnslroction Set Overview

-
-overwrite
-Iogand
-Iogior
-Iogxor

CM:send -with -c.-add -1l

f'}r} -u- min
-f- max

.Iogior

{

_o""w,;"

CM: send-aset32 -u- add } -21

CM: send-to-queue32-1 L

{
-Il } CM: et

g -aref32·2L

eM: my-send-address

Every processor within a VP set is identified by an unsigned binary integer called its send
addres6. If protessor A is to sl'nrl a ml'ssagl'! M t,n prnr.I'! ssnr H, thf'n prnrf'snT A must contain
the send-address of processor B as well as the data M to be sent.

For effidency, Paris includes compound operations that combine general communication
with a fast array reference (aref32 or ilset32) within the addressed processor.

5.17 NEWS Communication

The NEWS functions (send-to-news and get-from-news) organize the processors into a
multidimensional rectangular grid, and transmit data from every processor to its neighbor
along a spedfied grid a.xis. The NEWS operations are considerably more effident, when
applicable, than using the general router mechanism.

The following operations copy data from each processor to the adjacent processor along
any NEWS axis.

39

Chapler S. In$trudion Set Overview

CM: news ·ll {g't-r.om-} { _}
send-to· -always

The instructions in the chart below all work with NEWS coordinates.

my· news· coord i nate
ext ract -news-coordi nate

CM: deposit . news-coordinate -ll
de posit . news-const ant

make-news-coordinate

The operation my· news· coordinate stores the NEWS coordinate of each selected processor
along a specificd NEWS axi s into a destination field within that processor.

The operat ion e:ltract-news-coordinate defines the mapping between scnd-addresses and
N EW S coordInates. If 9 is a geometry, a is an axis number, and s is a send-address, then
extract-news-coordinate(g, a, s) is the coordinate within geometry 9 of processor s along the
NEWS axis described by a.

A related operation, deposit-news-coordinate, may be used to constru ct a scnd-addren
given a set of coordinates by incrementally modifying a send-address Olle coordinate at a
time. If 9 is a geometry,s is a send-address (for a processor in that geometry), a is an axis
number, and c is a coordinate along that axis, then deposit-news-coordinate(g, 05, a, c) is a
new send address 05 1 such that

extract-news-coordinate(g, ai, i) = { '. extract-news-coordinate(g, at,s),

In other words, deposit-news- coordinate(g,s,a,c) computes a new scnd-address that has
exactly the same NEWS coordinates as s except for the coordinate on axis a , which is altered
to be c.

Another related operation , IIlQJ .. e- ll.eWs-coonlmule, cOlls~ructs, within each selected pro
cessor, the send-address of a processor that has a specified coordinate along a specified
NEWS axis, with all other coordinates zero. If 9 is a geometry, a is an axis number, and
c is a coordinate along a, thcm make-news-cooTdinate(g,a,c) is s, thc send-address of the
prOCC5sor with coordinate c along the NEWS axis a within geomet ry 9 and with all other
coordinates held at zero . Thus, given a set of zero coordinates of rank(g), 05',

make.news-coordinate(g,a, c) = depo!i!-news-coordinate(g, i, a, c) = 05

In other words, make-news-coordinate is the smne as deposit-new-coordinate except that it
does not need a send-address operand.

The following routines defi ne the relat ionshi p between a processor whose send-addrcss is
k and its neighbors in a NEWS grid.

function news-neighbor(g, k, axis, direction) is
return news-relative(g, k, axi.~, diTf'rLinn, 1)

40

Chapter 5. Instruction Set Overview

function news-relative(g, k, axis, direction, distance) is
case direction of

:upward : let x = (extract-news-coordinate(g, axis, k) + distance)
:downward: let x = (extract-news-coordinate(g,axis,k) - distance)

let x' = x mod geometry-axis-length(g, axis)
return deposit-news-coordinate(g, k, axis, z')

5.18 Power of Two NEWS

One special-purpose instruction performs near· neighbor communication between processors
that are separated by a particular distance. That distance must be a power of two, measured
in intervening processors and inclusive of the source processor.

CM: get-{rom.power-two { I~ }-lL
-a ways

5. 19 NEWS w ith Float ing-Point Combiner s

A series of special-case combining operations that use NEWS communication are supported.
These instructions calculate a form of binary addition, subtraction, and multiplication in
which one operand is retrieved from a NEWS neighbor of the destination field.

{

-'dd }
·sub
·mult

{ ~ }{-2-lL}
.always -3·1l

CM:f-news {.c:st} -mult-4·Il

·mult·const {:} -4·Il

·mult { ~ } {-'dd}
·const -sub

· 4-11

41

Chapter 5. In.ftrudion Set Overview

5.20 Scan, Reduce, Spread, and Multispread

The spread-from-processor operation provides a simple way to take the value found in one
processor and replicate it throughout the machine.

CM:spread-from-processor- {: } lL

Extending this idea, the following operations provide extremely powerful combinations
of conununication and computation in regular patterns on multidimensional grids.

{

"'"_W;th }
CM: reduce.w~th

spread-wIth
mu ltisprea d

-copy
. Iogand
-Iogior
-Iogxor
-c-add

{+} {'dd} -u- mIn
-f· max

CM:scan.with. f.multiply -IL

CM:enumerate -Il

-ll

In a scan operation, every selected processor receives the result of combining source fields
from many processors. The reduce and spread operations are special cases of scans that
are particularly useful and can be made especially fast. The multispread and enumerate
operat ions generalize the spread operations.

A s C; lIn operation requires that. {II NEW S axis be specified. The processou are thereby
divided into disjoint ordered sets of processors called scan classes. Two processors belong
to the same scan class if their NEWS coordinates differ only along one axis, and they are
ordered by their coordinates along that axis. Only active processors parti cipate in a scan
operation; all scan and scan-like operations are conditional. The set of active processors
along a NEWS axis is called the scan subclass.

The scan result computed for a given processor may be produced by combining values from
all processors within a scan subclass. That is, all active processors along a specified axis may
contribute to the result for each processor along that axis. However - and more usefully - a
scan subclass may be divided into pieces called scan sets, such that each pro cessor belongs
to just one scan set.

The scan se t chosen for each processor is cont rolled by the smode operand and by the
purpose it assigns to the "bit operand .

• If "mode is :segment -bit, then th e "bit field is interpreted as a "segment bit-"

42

Chapter 5. Instruc tion Set Overview

The segment bit divides a scan dass unconditionally (that is, without respect to
context) into segments, and a separate scan operation is done within each segment.
Operationally speaking, a processor (active or not) is the lowest-addressed processor
in a segment if either it is the lowest-addressed processor in its scan class or jf jts sbit
field value is 1-

There are two remarkable points here. First, the way in which a segment bit divides
a scan class does not depend on either the contezt-Jlag or the direction of the scan.
Second, values from one segment never contribute to the result for any processor in
another segment .

• If smode is :sta rt-bit, then the sbit field is is interpreted as a "start bit."

Operationally speaking, in each selected processor in which this bit is 1, the scan
operation will start over again. The start bit therefore divides a scan subclass into
pieces, and a scan operation is done within each piece, or scan set. These pieces differ
from the segments determined by a segment hit.

There are three remarkable points here. First, the start bit is examined only in selected
processors. Second, the way in which a start bit divides a scan subclass depends on the
direction of the scan. In an upward scan, a processor with a start bit of 1 i~ the fir st
participant in a scan set that includes its neighbor with the next higher coordinate
along the specified NEWS axis; in a downward scan, the same processor begins a scan
set that includes its neighbors with lower NEWS axis coordinates.

Third, for an exclusive scan, a selected processor whose start bit is 1 will receive
t he identity for the combining operation only if no other selected processor in the
same scan subclass precedes it in the ordering; otherwise, it will receive the combined
values from all processors in the piece preceding it in the ord ering. (Exclusive scans
are described below.)

• If smode is : none, then there is no need for a one-bit field, and the sbit operand is
ignored. The scan set for a processor k is the entire scan subclass for k.

A scan operation furthermore behaves as if all the processors in the specified scan set
were passed over ("scanned") in linear order; therefore the result computed fOl a given
processor, k, depends only on processors below it ill the ordering, or only on processors
above it, depending on the direction of the scali. The direclio1l and inclusion operands
determine which processors within the scan set can potentially contribute to the result for
k. This final, most narrowed set of potential con trihutors is called the scan subset for k.

IT direction is : upward, then the scan subset for processor k will contain only processors
below k in the orde!ing. If direction is :downward, then the scan subset for k will contain
only processors above k in the ordering.

IT inclusion is :exclusive, then the scan subset for processor k will not contain k itself. If
inclusion is : inclusive, then the scan subset for k will contain k itself.

The set of processors whose source fields actually do contribute to the dest field of pro
cessor k is called the scan subset for k. This will be a subset of the scan set for k (possibly
the Plltire scan set).

43

Chapter 5. Instrudion Set Overview

These concepts are embodied in the following pseudo-code routines, which are used in ~he
Paris Dictionary to describe the behavior of the scan, spreild, redu ce, rank , and multispread
operations.

Consider representing several NEWS coordinate values in a single integc r called
a multi-coordinate. We can define two operations, extrad-multi-coordinate and
depO$it-multi-coordinate, for accessing and altering multi-coordinates. They are analogous
to eztrad-news-coordinate and deposit-news-coordinate, the difference being simply that a
multi· coordinate contains values for several news coordinates.

Suppose that 9 is a geometry, A is an axis-set, and sand t are send-addresses, and let

s' = deposit-multi-coordinate(g, s, A, extrad-multi-coordinate(g, A, t))

Then :i is the same as s except that coordinates for axcs in A have been replaced by
corresponding coordinates extracted fro m t. More formally,

t t rd " t (') { extrad-neWS-COOrdinate(g, 0., s), ex rac -news-coo lna e g,a,s = .
extrad-news-coordmate(g, a, t),

if a ~ A
if a E A

The Paris instruction CM:multisprud-copy-ll actually requires a multi-coordinate as an
argument and the instruction CM:fe-extract-mul ti-coordinat e constructs a multi-coordinate.
Beyond this, the notion of a multi-coordinate providess a useful conceptual building block
in the following pseudo-code definitions.

Now we can define scan classes in terms of the more general concept of a hypery,lane,
which is any subset of the processors obtained by holding some NEWS coordinates fixed
while letting the others range freely over their respective axes_

function hyperplane(g, k, axis-set) is
let other-axes = {a I 0 < a < rank(g) } \ axis-set
let c = eztract-multi-coordinate(g, other-axes, k)
return {m I m E current-vp-set A eztract-multi-coordinate(g, other-axes, m) = c}

function scan-class(g, k, a%is) is
return hyperplane(g, k, { a%is })

function scan-subclass(g, k, axis) is
return {m 1m E scan-class(g, k, axis) A contezt-jlag\m) = 1 }

44

function 8can."et(g, k, axis, direction, smode, sbit) is
let C = "can-$ubcla"$(g, k, axis)

Chapter 5. Instruction Set QveM/iew

function coord(,,) = e:ttract-news-coordinate(g, axis, s)
case (nnode) of

(:none) :
return C

(:segment-bit) :
let Q = {m I mE hyperplane(g,k,(axi"}) A (sbit[mJ = I}
return {m 1m E C A .,3j ; (j E Q A coord(m) < coord(j) :s coord(k»}

(:$tart-bit) :
let Q = {ml mE hyperplane(g,k,{azis}) A (sbi t [mJ = I}
case (direction) of

(:upward) :
return {m 1m E C A .,3j : (j E (C n Q) A coord(m) < coord(j) ~ coord(k))}

(:downward) :
return {m) m E C A .,3j : (j E (C n Q) A coord(k) < coord(j) < coord{m»}

function scan-subset(g, k, oris, direction, inclusion , smode, sbit) is
let S = scan-$et(g, k, axis, direction, smode, sbit)
function coord(s) = eztract-news.coordinate(g, a:tis,,,)
case (direction, inclusion) of

(:upward, :exdusive) : return (m I m E SA coord(m) < coord(k)}
(:upward, :indusive) : return {m I m E SA coord(m) :5 coord(k)}
(: downward, :exdusive) : return {m I m E S A coord(m) > coord(k) }
(:downward, :indusive) : return {m I m E SA coord(m) ~ coord(k)}

A spread operation is like a scan, except that rather than producing "intermediate" or
"running" results by using scan sets, every processor gets the result of combining the values
from every active processor in the scan class.

A reduce operation is like a spread, except that instead of storing the result in every active
processor in the scan class, it stores the result into oniy one specified processor of the scan
class.

A multispread operation is like a spread, but allows hyperplanes of any rank , not just of
rank I, to serve as the scan classes. In this manner, for example, a single value within each
hyperplane can be replicated throughout its hyperplane.

The following table shows the results computed for various operand combinations for a
scan with unsigned addition over a set of values all of which are 1.

45

Chapter 5. Instruction Set Overview

scan-with-u-add contezt-jlag 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0
sbit 0 0 1 o 0 0 1 o 0 0 0 o 0 1 0 0

"ouree 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
direction induion "mode

: upward :exclusive : none 0 1 2 3 4 S 6 7 8 ,
:downward :exclusive :none 8 7 6 5 4 3 2 1 0

: upward : inclusive : none 1 2 3 4 5 6 7 8 9 ,
: downward : inclusive : none , 8 7 6 6 4 3 2 1 ,
: upward :exclusive :segment-bit 010 1 0 1 2 0 1 - , , ~
:downward : exclusive : segment-bit 1 0 1 0 2 1 0 1 0 - , , ~

: upward : inclusive :segment-bit 1 2 1 2 1 2 3 1 2 - , , ~
: downward : inclusive : segme nt- bit 2 1 2 1 3 2 1 2 1 - , , ~

: upward :exclusive :start-bit o 1 2 1 2 3 4 5 1 - ,
~

: downward :exclusive : start-bit 2 1 5 4 3 2 1 1 0 - , ~

: upward : inclusive :start-bit 1 2 1 2 3 4 5 1 2 - ,
~

:downward : inclusive :stcrt-bit 3 2 1 5 4 3 2 1 1 - ,
~

5.21 G lobal Reduction Operat ions

A global operation combines a number of values in much the same manner as a scan or reduce
operation, but delivers the result to the front end rather than storing it in a processor field.

CM:global

-Iogand
-Iogior
-Iogxor
-c- add

{+}{'dd} -u- mIll

-f- max

u·max {+} -in tlen
"'"

-Il

All the usual combining operations are provided. In addition , the compound operation
max·i,tlen is provided for efficiency; it is much faster than than a separate integer-length
operation followed by a global-max operation.

5.22 Memory Data Transfers

These operations simply transfer data between a field in the processor array and the front
end.

46

ChapteT S. Instruction Set Overt/iew

{
read -from} CM:c-. -processor -ll
write-to

The operations read-from-processor and write-to-processor each transfer a single datum (in
teger or floating-point).

The operations read-from-news-array and write-to-news-array can transfer entire arrays or
subarrays. Their implementation is optimized for relatively high throughput.

5.23 Sorting

Paris provides operations for sorting data based on integer or floating-poin t keys.

e M {~: } ,,'k-2-l

The rank operation does not actually put records into sorted order. Instead, it produces
ranking information from which appropriate send addresses can be calculated; a send op
eration can then be used to put the records in order. This allows the ranking operation to
deal only with sort keys and not with entire records.

5.24 TinUng Paris Code

A set of instructions beginning with CM:timer- provide a timing facility with mi crosecond
precision.

CM:timer-

clear
start
stop
print
read -slarls
read-elapsed
read-em-busy
read-em-idle
read-run-state
set-starts

47

Chapter 5. InJtrudion Set Overview

From the Lisp/Paris interface, this timing facility is incorporated in the macro CM: time,
which may be wrapped around code in order to time it.

5.25 The LEDS

One of the most attractive features of a Connection Machine system is the array of blinking
lights on the faces of its cabinet. The following operation specifies whether the lights are
to be blinked automatically, or turned on and off under user program control.

CM: set-system-Ieds-modc

These operations turn lights on and off according to the contents of a one-bit data field.

CM:latch-lcdS{ 1- } -a ways

5_26 Front End Operations

Programs that use Paris operations frequently need to perform cer tain calculations on the
front end that are not easily expressed in the host progranuning language. These operations
are provided as part of the Paris library interface; they deal primarily with Gray codes and
NEWS coordinates.

CM:fe-

from-gray-code
to-gray-code
ext ract -news-coord i nate
ext ract -mult i-coordinate
de posit-news-coord i na te
rna ke-news-coordin a te

5.27 Environmental Interface

These operations pertain to allocating, deallocating, initializing, and debugging the Con
nection Machine.

48

eM:

attach
attached
cold-boot
detach
init
power-up
reset-timer
set-safety-mode
start-timer
stop-timer
time
warm-boot

Chapter 5. Instruction Set Overview

The attach operation is used to attach the front end process to a specified portion of all
Connection Machine processors_

The attached operation returns true if the front end process actually has Connection
Machine processors attached for use .

The cold-boot operation is used to initialize the Connection Machine hardware allocated
to the executing front end.

The detach operation frees attached Connection Machine processors from the cu rrect
front end process.

The init operation is used by the C/Paris and Fortran/Paris interfaces to initialize the
Connection Machine hardware.

The power·up operation resets the Nexus, causing all front-end computers to b ecome
logically detached from the Connection Machine system.

The set-safety-mode operation allows the user to specify the level of run-time error check
ing to he performed by the Paris interface.

The time family of operations are used to measure both the execution and the elapsed
time taken by other operations.

The warm-boot operation is used by the Lisp/Pari s interface to reinitialize the Connection
Machine system without disturbing user memory.

49

(

(

Chapter 6

The C /Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in anyone of a nwnber of languages. This chapter explains how to call Paris
instructions from C programs.

6.1 C / Paris Header Files

Type specification statements required for programs that access the C/Paxis interface are
given in the header file na.med

/usr/include/cm/paris.h

This header file contains four kinds of declarations that provide an environment for calling
Paris instructions from C.

• Type declarations define new data types (stru ct types, for example) needed for com
munication with certain Paris operations.

• Function declarations define the result types of all C/Paris function subprograms.

• Variable declarations define configuration variables that provide access to the state of
the Connection Machine system.

• # define statements define symbolic numeric constants to be used as arguments to
certain C/Paris subprogram calls.

These declarations are distussed in more detail in the following sections.

6.2 C/Paris Instruction Names and Argument Types

This section describes how to call these instructions from C and what types of arguments
to pass them.

The instruction names and other names that appear in this document 8re spelled in a
fonn acceptable to Lisp (an arbitrary choice in order to have .fome common denominator
for the dictionary). Each name is easily eonverted to the corresponding C name using the
fulluwing two-part rule:

51

Chapter 6. The C/Paris Interface

• If the Lisp name begins with a colon, add " CM" to the front.

• Drop all asterisks, and convert all colons and hyphens to underscores.

Thi s usually results in a name written in mixed case (some letters uppercase and some
lowercase). The name must be written in uactly that way, for C identifiers are case·
sensitive. (Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this
document are written in mixed case so as to produce the correct C name after applying the
conversion rules.)

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect
on operand fields residing in Connection Machine memory, and the result (if any) that
it returns to the front end. The same argument name is often used in several different
instruction definitions, but argwnents with the same name always have the same type (as
viewed by the front -end C program). For example, des t is used throughout to represent the
field IO of a destination field; the field itself may be a floating-point or an integer field, the
width of which is specified by other arguments to the instruction, but to the C program the
argument is alwa.ys silllply <l field 11).

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the C/Paris interface.

6.2 .1 Id Types

These are values that should be treated as abstract ent it ies, or "black boxes." They are
created using special Paris instructions, and their actual values have no significance to the
caWng C program; they are simply tokens that may he passed to other Pari s routines.

VP set ID

A value representing a virtual processor set. Its C type is CM _vp..set J d_t.

geometry ID

A yuiue repruenting a. geometry with a particular shape.
CM..geometryJd_t.

fie ld ID

Its C type is

A value representing a field allocated on the CM. Its C type is CMJield j d_t.

6.2.2 Operand Field Addresses

Most Paris operations require one or more field ID S to indicate one or more regions of
Connection Mach ine memory to be processed. Such field ID S are obtained from memory
allocation calls. Their C type is CM_field_id_t.

ded , source, source!, source2

These field ID S specify fields to be used as source or destination operands of an in·
stru ction.

52

Chapter 6. The CjPans Interface

send-address

This argwnent specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argwnent specifies a field that itself contains, within each processor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

sbit

A field ID for a I-bit field to hold a result indicating receipt of a message by a send
instruction.

A field 10 for a I-bit field that indicates how Paris scan operations should divide
processors into logical groups.

6.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field 10 had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "const" in their llIunes.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the eM.
The type of value passed depends on the instruction to which it is passed . The C type
of such an immediate operand is long for a signed integer value, unsigned long for a
signed integer value, or double for a floating-point value.

send- address- value

An integer, the send address of a single particular processor. The C type of such an
immediate operand is CM..sendaddU.

ne1lls-coordinate-value An integer, the NEWS coordinate of a single particular processor.
The C type of such an immediate operand is unsigned long.

6.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their C type is unsigned.

len, slen, slenI, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of C long variables on the front end,
but other lengths may be used as well-longer ones for additional precision, shorter
one, for improved speed.

53

Chapter 6. The C/Paris Interface

s, ds, IS

An integer value designating the significand length of a Roating.point field. For single.
precision (C type float) fields, thls value should be 23; for double-precision (C type
double) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. For single
precision (C type float) fields, thls value should be 8; for double-precision (C type
double) fields, the value should be 11.

6.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in C by variables and values
whose C type is unsigned long. These are variously referred to, depending on their roles
withln particular operations, under the following names:
offset, axis, azis.iength, coordinate, rank, multi·coordinate

6.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2i is 1 to indicate that element j is in the set.
Their C type is unsigned long.

At present, the only universe of interest in Paris is axis.mask, the set of axes for a given
geometry.

6.2.7 Vectors of Integers

These arguments should be represented as C one-dimensional arrays whose elements are of
C type unsigned. The maximwn size of these vectors is 31.
axis.vector, dart-vector, offset-vector, end-vector, dimension-vector

6.2.8 Multi-dimensional Fl-ont-end Arrays

Multi-dimensional front-end arrays of any C integer or floating-point type can be transferred
to and from CM memory using a single instruction (see section 5.22).

front-end-array A pointer to a front-end array is passed simply by mentioning the name of
the array.

6.2.9 Symbolic Values

The symbolic constants defined in #define statements in the C/Paris header file should be
used when supplying values for these argument!:

direction

One of the values CM..upward or CM _downward, indicating the direction of a scan ,
NEWS, or other in strndion .

54

Chapter 6. The e / poris Inter/ace

inclusion

One of the values CM.cxclusive or CMJnclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CMJlonc, CM..starLbit, or CM..segmenLbit , indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "eM" to
the front and then convert colons and hyphens to underscores, yielding CM..,Startj)it .

6.3 C/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Conncction Machine system. See section 3.7 for a list. The C/Paris interface make5 these
variables accessible through variables declared in the C/Paris header file. They are ini
tialized in an application program by a call to the subroutine eM.init and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM.physicaLprocessorsJimi l is a value thaI depends
upon the size of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in # define statement s.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/ Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure of a C main program that calls Paris
instructions .

• include <cm/paris.h>

mainO {
CH_init() ;

if (CH_configurAtion.variablo > l imit) ...

55

Chapter 6. The C/Paris Interface

}

Note that the call to CM_init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that

calls Paris instructions .

• include (cm/paris.h)

float testO {

CI'Cparis_instruction(. ..) ;

if (CH_configuration_variable) limit) ...

}

It looks exactly like a main program in its use of Paris, except that a subprogram should
not call CMjnit.

Use the following command to compile and link these program units:

Y. cc main.c test.c -lparis -1m

Note that there should be no space between the -I option and its argument.

56

Chapter 7

The Fortran/Paris Interface

Paris is used as a set of variables and sub routines within a program that may he written
in any one of a number of languages. This chapter explains how to call Paris instructions
from Fort ran programs , especially thosp ('ompill'd by VAX Fortran and Sun Fortran.

The Fortran/ Paris interface is itself an interface to C/ Paris (see chapte r 6).

7.1 Fortra n / P a ris Header Files

Type specification statements required [or programs that access the Fortran/ Paris interface
are given in the header file named

/usr/include/cm/paris-configuration-fort.h

This header file contains three kinds of declarations that provide an environment for calling
Paris instru ctions from Fortran.

• Type specification statements define the result types of aU Fortmn / Paris funct ion
subprograms.

• A declaration of ill conunon block named cmval defines configuration variableri that

provide access to the state of the Connection Machine system.

• PARAMETER statements define symbolic numeri c constants to be used as arguments
to certain Fortran / Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

7.2 Fortran/ Paris Ins truction Names and Argument Types

This section describes how to call these instructions from Fortran and what types of argu
ments to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some conunon denominator
for the dictionary). Each name is easily converted to the corresponding Fortran Ilame using
the following two-part rule:

57

Chapter 7. The For!ran/Paris Interface

• If the Lisp name begins with a colon, add "CM" to the front .

• Drop all asterisks, and convert all colons and hyphens to underscores.

It is also permissible to convert names to entirely uppercase letters if desired, as Fortran
identifiers are not case-sensitive.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by the
front-end Fortran program). For example, des! is used throughout to Represent the field ID

of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Fortran program the
argument is always simply a field ID.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Fortran / Paris interface.

7.2_1 IdTypes

These are integer values that should be treated as abstract entities, or "black boxes." They
are created using special Paris instructions, and their actual values have no significance
to the calling Fortran program; they are simply tokens that may be passed to other Paris
routines. Their Fortran type is INTEGER.

VP set 10

An integer value representing a virtual processor set.

geometry ID

An integer value representing a geometry with a particular shape.

field ID

An integt:r value representing a field allocated on the eM.

7_2.2 Operand Field Addresses

Most Paris operations require one or more field IDs to indicate one or more regions of
Connection Machine memory to be processed. Such field IDS are obtained from memory
allocation calls. Their Fortran type is INTEGER.

ded, -"ource, source}, source2

These field IDS specify fields to be used as source or destination operands of an in
st ruction.

-"end-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly anothl'r).

58

Chapter 7. The Fortran/ Paris Interface

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

sbit

A field ID for a i-bit field to hold a result indicating receipt of a message by a send
instruction.

A field ID for a I-bit field that indicates how Paris scan operations should divide
processors into logical groups.

7.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field ID had
been supplied. Paris operations that take "immediate" operand values of this sort u sually
have "constant" or "const" in their names.

The Fortran type of such an immediate operand must be INTEGER for an integer value,
and DOUBLE PRECISION for a floating-point value.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of va1ue passed depends on the instruction to which it is passed.

send-address- value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

7.2.4 Operand Fie ld Lengths

These are integer values that specify the widths of source and destination operand fields on
the eM. Their Fortran type is INTEGER.

len, slen, slenl, slen2, dlen

An integer value designating the length (in bit s) of a source field that will be treated
by the operation as a bit field, a signed integer, or M unsigned integer. It is not
unusual for this value to he 32 to match the size of Fortran INTEGER variables on the
front end, but other lengths may be used as well- longer ones for additional precision,
shorter ones for improved speed.

I, th. "

An integer value designating the significand length of a floating-point field. For single.
precision (Fortran type REAL) fields, this value should be 23; for double.precision
(Fortran type DOUBLE PRECISION) fields, the value should be 62.

59

Chapler 7. The Fortran/ Paris Interface

e, de, se

An integer value designating the exponent length of a floating-point field. For single
precision (Fortran type REAL) fields, tms ,'alue should be 8; for double-precision (For
t ran type DOUBLE PRECISION) fields, the value should be 11.

7.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Fortran by variables and values
whose For tran type is INTEGER. These are variously referred to, depending on their roles
within particular operations, under the following names:
offset, axis, axis-length, coordinate, rank, multi-coordinate

7.2.6 Bit Sets a nd Masks

Arguments representing sets taken from universes of up to 31 elements nrc represented (IS

integer values, where the bit whose value is 2) i; 1 to indicate that element j is in the set .
Their Fortran type is INTEGER.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

7.2.7 Vectors of Integers

These argwnents should be represented as Fortran one-dimensional INTEGER arrays. The
maximum size of these vectors is 31.
axis-vector, start-vector, offset-vector, end-vec tor, dimension-vector

7.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front ·end arrays of Fortran type LOGICAL, INTEGER, REAL, or DOUBLE
PRECISION can be transferred to and from eM memory using a single instruction (see section
5.22).

front-end-array

Such an array is passed simply by mentioning the name of the array.

7.2_9 Symbolic Values

The symbolic constants defined in PARAMETER statements in the Fortran/ Paris header file
should be used when supplying values for these arguments:

direction

One of the values CM _upward or CM _downward, indicating the direction of a scan,
NEWS , or other instruction.

inclusion

One of the values CM..exciusive or e M_inclusive, indicating the boundaries of a scan
instruction.

60

Chapter 7. The Fortran/Paris lnterface

"mode

One of the values CM..non~, CM...JtarLbit, or CM...J~gm~nt..bit , indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most impor tant. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "eM" to
the front and then conver t colons and hyphens to underscores, yielding CM...JtarLbit.

7.3 Fortran/ Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Fortran/ Paris interface makes
these variables accessible through variables declared in the common block named cmval,
defined by the Fortran/ Paris header tile. They are initialized in an application program by
a call to the subroutine CMj nit and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM...physical_proc~ssorsJimit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER.

Numeric values that are constant for a given release of the eM System Software are also
given in PARAMETER statements.

7.4 Calling Paris fl·om Fortran

This section describes how to bu.ild Fortran programs that access the Paris instruction set
using the Fortran / Paris interface . Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the form of
Fortran main programs and subprograms that call the Fortran/ Paris interface, as well as
the steps involved in compiling and linking such programs.

The fulluwing code fragment illustrates the st ructure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAl Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'
CALL CM_initO

CALL CM_paris_instruction'- ..)

IF (CH_configuration_variable . GT. limit) ...

END

61

Chapter 7. The Fortran/Paris Interface

Note that the call to CMjnit is required prior to any other calls to Paris in structions.
The following code fragment illustrates the structure of a Fortran subroutine subp rogram

that calls Paris instructions.

SUBROUTINE test
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris- conf iguration-fort .h'

IF (CM_configuration_variable .CT. limit) ...

END

It looks exactly like a main program in its use of Paris, e:r:cept that a subprogram should
not call CM_init .

Using VAX Fortran, the following conunand compiles and links these program units to
run on the Connection Machine Model 2:

'l. tort main. tor test.for -lparistort -lparis

Note that there should be no space between the -I option and its argument.
Using Sun Fortran, the following conunand compiles and links these program units to

run on the Connection Machine Model 2:

'l. t77 main.f test.f -lparisfort -lparis

Note that there should be no space between the -I option and its argument.

62

Chapter 8

The Lisp/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
he written in anyone of a number of languages. This chapter explains how to ulll Paris
instructions from Lisp programs.

8.1 Lisp/ Paris Instruction Names and Argument Types

This section describes how to call these instructions from Lisp and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have .fome common denominator
for the dictionary).

Although Lisp is not case-sensitive, all identifiers appearing in Li sp form in thi s document
are written in mixed case so as to produce the correct C name after applying certain
conversion rules. The Lisp programmer may write names entirely in uppercase le tters or
entirely lowercase letters, if desired.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruc~ioll
definitions, but arguments with the same name always have the same type (as viewed by
the front· end Lisp program). For example, dest is used throughout to represent the field ID
of a destination field; the field itself may b e a floating· point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Lisp program the
argument is always simply a field 10.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Lisp/ Paris interface.

8.1.1 Id Types

These are values that should be treated as abstract entities, or "black boxes." They are
created using special Pa.ris instructions, and their actual values have no sign ificance to the
calling Lisp progra.m; they are simply tokens that may be passed to other Paris routines.

VP set 10

63

Chapter 8. The Lisp/Paris Interface

An integer value representing a virtual processor set.

geometry ID

A structure of type eM: geometry ID representing a geometry with a particular shape.

field ID

An integer value representing a field allocated on the CM.

8.1.2 Operand Field Addresses

Most Paris operations require one or more field lO's to indicate one or more regions of
Connection Machine memory to be processed. Such field ID 'S are obtained from memory
allocation calls. Their Lisp type is integer.

ded, source , sourceJ, source2

These field lOS specify fields to be used as source or dest ination operands of an in
Jtru rtion.

send·oddress

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

new,,·cooniinate

This argument specifies a field that itself contains, within each pro cessor, the NEWS

coordinate of a processor (possibly the same one, possibly another).

notify

sbit

A field ID for a I -bit field to hold a result indicating receipt of a message by a send
instruction.

A field 10 for a. I_hit fip lrl that indicates how Paris scan operations should divide
processors into logical groups.

8.1.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field ID had
been supplied. Paris operations that take "immediate" operand values of this sort usually
have "constant" or "consl" in their names.

The Lisp type of such an inunediate operand is integer for an integer value, Of float for a
floating.point value (any of the several kinds of Common Lisp floating-point numbers may
be supplied).

source-value, source2·value

A (front.end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed cip.ppnrls on the instruction to which it is passed.

64

Chapter 8. The Lisp/Paris Interface

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

8.1.4 Operand Field Lengths

T hese are integer values that specify the widths of source and destination operand fields on
the eM. Their Li sp type is integer.

len, slen, slen!, slen2 , dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for the progranuner to choose this value to match the size of Lisp fixnum
variables on the front end, but other lengths may be used as well- longer ones for
additional precision, shorter ones for improved speed.

s, ds, 55

An integer value designating the significand length of a floating- point field. Floating
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 23; for double-precision (Lisp type double
float) fields, the value should be 52.

e, de , se

An integer value designating the exponent length of a fl oating-point field. Floating·
point numbers of any size are supported , but cer tain values must be used for good
performance on the hardware floating-point accelerator. For single- precision (Lisp
type single-float) fie lds, this value should be 8; for double-precision (Lisp type double
float) fi tdd:., th~ vtl.lue should be 11.

8 _1.5 Miscellaneo us Signed and U nsig ned Values

Both signed and unsigned Paris quantities are represented in Lisp by variables and values
whose Lisp type is integer. These are variously referred to, depending on their roles within
particular operations, under the following names:
offset , axis, axis-length , coordinate, rank, multi-coordinate

8. 1.6 Bit Sets and M asks

Argwnents representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 2; is 1 to indicate that elemen t j is in the set.
Their Lisp type is integer.

At present, the only universe of interest in Paris is axis-mask, the set of axes for a given
geometry.

65

Chapler 8. The Lisp/Pans Inlerface

8.1. 7 Vectors of I n tegers

These arguments should be represented as Lisp vectors (one-dimensional arrays); they may
be specialized vectors, capable of holding integers only, or general vectors, capable of holding
any Liip objects but into which only integers happen to have been stored. The maximum
size of these vectors is 3l.
axis-vector, start.vector, offset-vector, end· vector, dtmension-vector

8.1.8 M ulti·dim e nsion a l Fro nt -end Arrays

Multi-dimensional front·end arrays, whether specialized or general, can be tran sferred to
and from CM memory using a single instruction (see section 5.22).
front-end-array

Such an array is passed simply by mentioning the name of the array.

8. 1.9 SY lllbolic Values

These symbolic constants should be used when supplying values for these arguments:

direclion

One of the values : upward or : downward, indicating the direction of a scan , NEWS, or
other instruction .

inclusion

One of the values :exclusive or : inclusive, indicating the boundaries of a scan instruc
tion.

smode

One of the values : none, :start-bit, or :see;ment-hit, indicating how a $can operation is
to be partitioned.

There are other symbolic values as well, but these are the most important.

8.2 Lisp / Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Lisp/Paris interface makes these
variables available. They are initialized in an application program by a call to subroutine
CM:cold-boot and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, eM: *pysical-proc.essors-limit * is a value that depends
upon the size of the Connection Machine to whi ch the application is atLilched.

66

Chapter 8. The Lisp/ Paris Interface

8.3 Calling Paris from Lisp

This section describes how to build Lisp programs that access the Paris instruction set
using the Lisp/Paris interface. Such programs must manage the dynamic allocation and
deallocation of Connection Machine fields directly. This section describes the form of Lisp
main programs and subprograms that call the Lisp / Paris interface, as well as the steps
involved in compiling and linking such programs .

The following code fragment illustrates the structure of a Lisp function program that
calls Paris instructions.

(de:tun test (. ..)

(CH:paris-ins truction ...)

(it (> CH:con:tiguration-variable limit) ...)

)

Remember that CM:cold-boot should be calJed once before beginning a computation that
uses Paris; it is not appropriate to call CM:c.old ·boot on entrance to every function.

67

