
The
Connection Machine
System

*Graphics Reference Manual

Version 6.0
November 1990

Thinking Machines Corporation
Cambridge, Massachusetts

F~tprinting,November1989

Revised, November 1990

The infonnation in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine@ is a registered trademark of Thinking Machines Corporation.
C*@is a registered trademark of Thinking Machines Corporation.
CM, CM-I. CM-2. CM-2a. and DataVaultare trademarks of Thinking Machines Corporation.
Paris. *Lisp. and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris. Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
In Paralle{i) is a registered trademark of Thinking Machines Corporation.
VAX. ULTRIX, and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics. Symbolics 3600. and Genera are trademarks of Symbolics. Inc.
Sun. Sun-4. and Sun Workstation are registered trademarks of Sun Microsystems. Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Wmdow System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1990 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 F~t Street
Cambridge; Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

About This Manual •.•.•.•.••.••••.•.•....•..•....••... • • v
Customer Support............ viii

Chapter 1 *Graphics: *Lisp Graphics Interface . 1

1.1 Overview of Display Functions 1
1.1.1 Levels of Display Function Interface . 2

1.2 Overview of Rendering Functions . 4

1.3 Using *Graphics ... 5

Chapter 2 Display Windows .. 7

2.1 Creating a Display Window............ 7
2.1.1 Display Window Type. Location. and Size Arguments. 8
2.1.2 Other Display Window Property Arguments 10

2.2 Getting Information about a Display Window 11

2.3 Selecting a Display Window 12

2.4 Reading and Writing to Display Windows 12

2.5 Deleting Display Windows. 14

2.6 Hardware Panning and Zooming ._...................... 14

Chapter 3 Color Maps .. 17

3.1 Overview of Device-Level and Symbolic Color Map Interfaces....... .. 17

3.2 Symbolic Color Map Interface. • . • . . 18
3.2.1 Creating Colors 18
3.2.2 Creating Color Ranges 19
3.2.3 Creating Color Maps • . 20
3.2.4 Example... 22
3.2.5 Selecting a Color Map ••••..•.••••....•••••..•...••.••. 23
3.2.6 Getting Infonnation about a Color Map 23

3.3 Device-Level Color Map Interface 25
3.3.1 Getting Infonnation about Device Color Maps 26

Version 6.0, November 1990 iii

iv *Graphics Reference Manual

3.3.2 Setting the Device-Level Color Map 26
3.3.3 Reading Contents of Device-Level Color Maps 27

3.4 Using 24-bit Color Maps .. 27

3.5 Color Maps on X Windows . 27

Chapter 4 Displays.. 29

4.1 Ways to Use Displays.............. 29

4.2 Creating Displays .. 30

4.3 Getting Infonnation about a Display......................... 31

4.4 Displaying an Image.. 31

4.4.1 Specifying How Much of the Image to Display 32
4.4.2 Specifying Where to Display the Image 32

4.4.3 Specifying the Colors for Displaying the Image 33

Numeric Pvars 33
Boolean Pvars 34

4.4.4 Specifying Multiple Images to Overlay 35

4.4.5 Specifying Other Features. 35

4.4.6 Example... 36

4.5 Clearing Displays .. 37

4.6 Reading a Pvar from a Display............. 37

4.7 Hardware Panning and Zooming of Displays .. 38

Chapter 5 Rendering Primitives 39

5.1 Two-Dimensional Rendering Functions.................... 39

5.2 Three-Dimensional Rendering Functions. 42

Chapter 6 Z-Buffer Functions .. 43

Chapter 7 Math Utilities 47

Index.....•...... 53

Version 6.0, November 1990

About This Manual

Objectives of This Manual

This manual describes *Graphics, the *Lisp interface to the Connection Machine graphics and
visualization software.

Revision Information

This manual replaces the *Graphics Reference Manual, Beta Version 5.2. You may discard that
manual.

Version 6.0 Changes

Version 6.0 of the *Graphics software includes three routines not included in Version 5.2:

•

•

polygon-fill draws draws filled polygons defmed by pvars of vertices:

polygon-fill image-buffer-pvar x-vector-pvar y-vector-pvar color-pvar
&key :number-of-vertlces :comblner :overwrlte

:cllp-p :edgEH:Olor-pvar

This function is described in Section 5.1 of this manual.

"'new-draw-lines-2d is a replacement for the "'draw-llnes-2d function with improved

memory management

"'new-draw-llnes-2d image-buffer-pvar x-start-pvar y-start-pvar
x-end-pvar y-end-pvar color-pvar
&key (combiner :overwrite) (:clip-p t)

This function is described in Section 5.1 in this manual.

• display-wlndow-cmsr-dlsplay provides a hook to the Paris-level Generic Display Inter

face by returning the Generic Display display (an instance of cmsr:display) that

implements a *Graphics display window:

dlsplay-window-cmsr-dlsplay &optional display-window

Version 6.0, November 1990 v

vi * Graphics Reference Manual

This function is described in Section 2.2 of this manual.

In addition, three changes have been made to existing *Graphics routines:

•

•

•

display-Image and display-image!! now clip images that are larger than the display win
dow, rather than signalling an error. See Section 4.4.1.

display-lmage and display-lmage!! now support software zooming. The argument zoom,
which defaults to 1, is the factor by which to zoom each pixel. See Section 4.4.5. An exam
ple of zooming has also been added to Section 4.4.6.

The use of the create-clisplay-window argument :color-map has been clarified. See Sec
tion 2.1.2.

Organization of This Manual

This manual contains seven chapters:

Chapter 1 *Graphics: *Lisp Graphics Interface
An overview of the *Graphics display and rendering functions and information on
using *Graphics.

Chapter 2 Display Windows
Detailed information on using *Graphics display windows, including creating, se
lecting, reading and writing, and deleting display windows.

Chapter 3 Color Maps
Detailed information on *Graphics symbolic and device-level color map inter
faces.

Chapter 4 Displays
Detailed information on setting up and using *Graphics displays.

Chapter 5 Rendering Primitives
Reference information on *Graphics 2D and 3D rendering functions.

Chapter 6 Z-ButTer Functions
Reference information on the *Graphics functions that create and control a z-buf
fer on the Connection Machine. A z-buffer is used in 3D graphics to perform
hidden surface removal.

Version 6.0, November 1990

About This Manual vii

Chapter 7 Math Utilities
Describes the graphics math utilities supplied by *Graphics. These utilities pro
vide tools for creating and applying coordinate transformations.

Notation Conventions

The table below displays the notation conventions:

Convention

bo~d typewriter

bo~d typewriter

Meaning

UNIX and CM System Software commands, command options, and
fllenames.

C/Paris and C language elements, such as keywords, operators, and
function names, when they appear embedded in text.

italic typewri ter Parameter names and placeholders in function and command formats.

typewriter Code examples and code fragments.

% bo~d typewriter In interactive examples, user input is shown in bo~d typewriter
typewriter and system output is shown in regular typewriter font.

Version 6.0, November 1990

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

u.s. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telepbone:

For Symbolics Users Only

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

customer-support@think.com

ames! think! customer-support

(617) 234-1000
(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To : customer-support@think.com

Please supplement the automatic report with any further pertinent information.

viii

Chapter 1

*Graphics: *Lisp Graphics Interface

The *Lisp graphics interface, *Graphics (pronounced "star-graphics"), provides a set of
functions and data structures that make it easy to display and manipulate 2-dimensional and
simple 3-dimensional pvar data.

*Graphics includes two main types of functionality: display and rendering. The display
functions write 2-dimensional pvars to a display device. The rendering functions generate
2-dimensional pvars inside the Connection Machine system; the pvars can then be dis
played.

1.1 Overview of Display Functions

*Graphics provides a uniform interface for displaying pvars on CM Framebuffers, X win
dows, and Symbolics color and black-and-white windows from *Lisp.

The display tools provided are as follows:

1. Display windows are structures that represent a device onto which data is dis
played. Functions dealing with display windows. allow a user to create multiple
windows, obtain information about each window, write pvar data to the display
window, read data from the display window back into a pvar, delete display win
dows, and pan and zoom the display window's device.

2. Color maps define how values in pvars being displayed are mapped onto the col
ors shown on a display window.

Version 6.0, November 1990 1

2 *Graphics Reference Manual

Two levels of color maps are supported: device-level and symbolic color maps. At
the device level, color maps are simply arrays that specify the mapping from pixel
values to RGB intensities. At the symbolic level, color maps are mappings from
named colors (like "red") and color ranges (like "rainbow") to pixel values.

Only display window devices that s~ppon color maps in hardware have de
vice-level color maps. On the other hand, symbolic color maps can be defined for
any type of display window. As a result, user code that uses colors can be run in
a generic fashion on monochrome as well as color devices.

At the device level, users can change the color map of a display window and
change individual entries in the color map. At the symbolic level, users can define
and reference colors, color ranges, and color maps, and can change the color map
of a display window.

3. Displays are rectangular regions of a display window onto which images are dis
played. Displays can be positioned either by the user or automatically by a
program that keeps track of empty space on the display window.

User-managed displays are useful for implementing demos, where images are to
be displayed in a predetermined format Automatically positioned displays are par
ticularly handy for debugging, with images positioned side by side.

1.1.1 Levels of Display Function Interface

The display functions of *Graphics can viewed as providing two levels of interface.

The display-level interface is useful for interactively displaying both images and building
blocks for programs. It automatically rescales, dithers, positions, and sizes images for dis
play. It lets the user overlay images, and provides functionality for defining color maps and
for referencing color slots symbolically. The high-level display interface is based on that
of the CM Vision Utilities written by Thinking Machines Corporation.

The display window interface, on which the higher-level display interface is built, is de
signed for users who want more detailed control or who don't require the model that the
high-level interface provides. It allows the user to send pvar data to the display device, with
rescaling, dithering, positioning, sizing, and color maps managed by the user. The low-lev
el interface is in tum built on *Render and the Generic Display Interface.

Figure I shows the relationship between displays and display windows and lists the typical
functions for each level.

Version 6.0, November 1990

Chapter 1. *Graphics: *Lisp Graphics Interface

Display Window Interface

Display Windov!

Functions:

create-display-wlndow

wrlte-to-dlsplay

clear-display-window

set-screen-pan-and-zoom

Display Interface

Displays
I

I
Display Window

Device Screen

Functions:

create-dlsplay-wlndow

{
make-display

display-Image

clear-dlsplay

{ zoom-display
unzoom-display

Figure 1 The relationship between displays and display windows, and the functions that users
typically use for each level of interface

Version 6.0, November 1990

3

4 *Graphics Reference Manual

Figure 2 shows the two levels of color map interface and lists the typical functions.

Device-level Color Map Interface

R G B

Functions:

display~evice-has-color-map-p

display~evice-color-map-arrays-size

set~isplay~evice-color-map-arrays

set~isplay~evice-color-map-slot

color
map

Symbolic Color Map Interface

color
ranges

gray: [------]

rainbow: [------]

colors blue: [-] {
yellow: [-]

white: [-]

Functions:

{ :~:=.~-<.nge
set~olor-map

Figure 2. The two levels of color map interface. and the functions typically used at each level

1.2 Overview of Rendering Functions

The rendering utilities are built on the Paris-level package *Render (pronounced "star
render''). These utilities are as follows:

1. Z-butTers are data structures used in rendering 3-dimensional objects. They are
primarily useful for doing hidden line and surface removal. Users can create and
delete Z-buffers and use the rendering functions described below to create images
within a Z-buffer. The data can then be displayed using the display routines.

2. Rendering primitives, both 2- and 3-dimensional, are provided, including func
tions for drawing points and lines. The 3-dimensional versions create an image to

Version 6.0, November 1990

Chapter 1. *Graphics: *Lisp Graphics Interface 5

be displayed within a Z-buffer; the 2-dimensional versions create a pvar image that
can be directly displayed.

3. Math functions are provided to deal with vector and matrix operations, especially
those dealing with transfonnation matrices that allow the rotation, translation, and
scaling of image coordinates.

1.3 Using *Graphics

The *Lisp graphics interface resides in the *graphlcs package. Users may wish to make the
package in which they program (for example, *lIsp) use the "'graphics package, so that all
*Graphics functions and variables are easily accessible. For example:

(in-package '*lisp :use ' (*graphics»

If you do not do this, then all calls to functions and references to variables described herein
must be prefixed by *graphics: or by *g: (*g is a nickname for the *graphics package).

Example programs using the *Graphics package may be found in the me examples. lisp.
In the 5.2 release of the eM System Software, this me is in the directory /cmlstarlispl

graphicslf5203/.

Version 6.0, November 1990

Chapter 2

Display Windows

To use *Graphics, you must first create a display window using the function create-dis
play-window. You can create more than one display window.

Display output is directed to the current display window. There are two ways to change the
current display window. The function create-display-wlndow sets by default the current
display window to the window it creates. The function set-display-window sets the current
display window to a display window that you specify.

Display window coordinates are specified as two-element lists of the fonn (x y), indicating
offsets to the right and down, respectively, from the upper left comer of the screen or win
dow. The x and y coordinates of the display correspond to dimensions 0 and I, respectively,
of a 2-dimensional pvar.

2.1 Creating a Display Window

The create-display-window function creates and returns a display window structure. Its
syntax is as follows:

create-display-wlndow &key :dlsplay-window-type
:physical-devlce-pointer
:deslred-blts-per-plxel
:deslred-wldth :deslred-helght
:name :dlsplay-paddlng
:make-current :color-map

[Function]

You can simply call create-display-window with no arguments to create a window of de
fault size on a device selected from a menu of display devices, including (when
appropriate) X Wmdows, CM Framebuffers, and Symbolics screens. The keyword argu-

Version 6.0, November 1990 7

8 *Graphics Reference Manual

ments let you specify other options and avoid prompting. To avoid the menu, you can
specify the type, location, size, and other properties of the returned display window by
specifying values for the appropriate keyword arguments.

2.1.1 Display Window Type, Location, and Size Arguments

The following create-dlsplay-window arguments are used to specify the type, location, and
size of the returned display window:

:display-wlndow-type
:physlcal-devlce-polnter
:deslred-bits-per-plxel
:desired-wldth
:desired-height

Specifies type of returned window.
Specifies output device for window.
Specifies desired bit depth for window.
Specifies desired window pixel width.
Specifies desired window pizel height.

The permitted values for these arguments are interrelated, and depend on the value
provided for the :dlsplay-wlndow-type argument.

The :display-wlndow-type argument must be one of the following keywords:

:cmfb
:xwlndow
:symbollcs
:symbollcs-frame

Connection Machine Framebuffer display.
X Window on either local or remote hOSL
Symbolics window (color or black-and-white screen).
A frame consisting of a Lisp Listener and display
panel on the Symbolics black-and-white screen.

The :cmfb and :xwindow keywords may be used on any front end.The :symbolics and
:symbollcs-frame keywords may be used only on a Symbolics front end.

The :physlcal-devlce-polnter argument directs output to a specific device, avoiding
prompting or automatic defaulting. This argument may be used only if a value has been
specified for :display-window-type.

The legal values for :physlcal-device-pointer depend on the value of :display-wlndow-type
as follows:

:display-window-tvpe value:

:cmfb

Legal :physlcal-device-pointer value(s):

Non-empty string, which must be a member
of the list cmfb:available-displays. Defaults
to first element of cmfb:avallable-<lisplays.

Version 6.0, November 1990

Chapter 2. Display Windows

:xwindow

:symbollcs

:symbolics-frame

9

String of the fonn "hosUlame:screen" (for
example "Wlix:O"). Under Lucid this defaults to
th~ value of the display environment variable.
On Symbolics front ends, this defaults to
Symbolics host display.

The :physlcal-devlce-polnter argument is
currently ignored on Symbolics front ends.
If the :deslred-blts-per-plxel is 1,
then tv:maln-screen is used; otherwise the
value of (color: find-color-screen) is used.

The :physlcal-device-pointer argument is
currently ignored on Symbolics front ends.
The value of tv:rnaln-screen is used.

The :desired-blts-per-plxel argument specifies the number of bits desired. It is used when
a device, such as a eM Framebuffer, supports more than 1-bit depth for its display (for
example, a display might support both 8- and 24-bit color).

The legal values for :deslred-blts-per-plxeJ depend on the value of :dlspJay-wlndow-type
as follows:

:dispJay-window-type value:

:cmfb

:xwlndow

:symbollcs

:symbolics-frame

Legal :deslred-blts-per-plxeJ value(s):

Can be either 8 or 24; defaults to 8.

Can be 1, 8, or 24. The default value
is determined by the selected output device.

If color screen is available, can be I, 8, or 24.
If only console screen is available, must be 1.
Defaults to 1 in either case.

Must be 1, and defaults to 1.

The arguments :desired-wldth and :deslred-helght specify the dimensions of the window
in pixels.

The legal values for :desired-width and :desired-height depend on :dispJay-wlndow-type

as follows:

:display-window-type value:

:cmfb

Version 6.0, November 1990

Legal :desired-blts-per-pixel value(s):

Any supplied arguments are ignored;
the entire screen is used.

10

:xwindow

:symbolics

:symbolics-frame

*Graphics Reference Manual

Positive integers. Defaults to 256 by 256 display.

Positive integers. Defaults to size of screen.

Any supplied arguments are ignored;
the entire screen is used.

Owing to constraints imposed by the specified output device, the returned display window
may not have exactly the specified values for :deslred-blts-per-plxel, :deslred-wldth, and
:deslred-helght. For this reason, the function create-dlsplay-wlndow returns four values:

• the display window

• the actual bit depth (number of bits per pixel) of the display window

• the actual width of the display window

• the actual height of the display window

2.1.2 Other Display Window Property Arguments

The argument :name optionally specifies the name of the newly created display window.
If specified, it must be a string. If not specified, a name is generated that indicates the type

of window.

The argument :make-current, which defaults to t, specifies whether the display window
being created is to be the current display window.

The following arguments are relevant if displays are to be used with the display window:

• :color-map, if specified, must be a symbolic color map or the name of a symbolic
color map. It should be specified only for 8-bit windows (although it can be speci
fied for I-bit and 24-bit windows as well). If not specified, it defaults as follows:

• for 8-bit pseudo-color windows and I-bit dithered windows, :color-map
defaults to :gray-and-ralnbow

• for 24-bit ROB display windows, :color-map defaults to :rgb (see Section
3.4).

Otherwise, the color map is not set

To prevent create-dlsplay-wlndow from touching the color map, specify :color

map as nil.

• :dlsplay-padding specifies the spacing,-in pixels, surrounding each automatically
generated display within a display window. It defaults to 16. If the window is to

Version 6.0, November 1990

Chapter 2. Display Wuulows 11

be created just big enough to display a single image, :dlsplay-paddlng should be
set to O.

2.2 Getting Information about a Display Window

The functions listed below provide various kinds of infonnation about display windows.

dlsplay-wlndow-bits-per-plxel &optional display-window [Function]

returns the number of bits to represent a value for display window. display-window de
faults to the current display window.

display-window-width &optlonal display-window [Function]

returns the width, in pixels, of a display window. display-window defaults to the current
display window.

dlsplay-window-height &optional display-window [Function]

returns the height, in pixels, of a display window. display-window defaults to the current
display window.

display-window-eolor-rnap display-window [Function]

returns the symbolic color map associated with a display window. (Symbolic color maps
are described in Sections 3.1 and 3.2.) display-window defaults to the current display
window.

dlsplay-window-ansr-display &optional display-window [Function]

returns the generic display (an instance of cmsr:display) that implements display-window.
display-window defaults to the current display window. This function provides a hook to
the Paris-level Generic Display Interface.

valid-dlsplay-window-p object [Function]

returns t if object is a display window that has not been deleted.

Version 6.0, November 1990

12 *Graphics Reference Manual

2.3 Selecting a Display Window

The functions listed below have to do with selecting a display window.

set-display-window display-window [Function]

makes display-window be the current display window. It is an error if display-window is
not a valid display window ..

wlth-display-window display-window &body body [Macro]

evaluates body in the context of display-window being the current display window. After
the form has been exited, the current display window reverts to what it was before the form
was entered. display-window must be a valid display window.

current-dlsplay-window [Variable]

displays the current display window, or nil if no display window is current.

all-display-windows [Variable]

displays a list of all valid (non-deleted) display windows.

2.4 Reading and Writing to Display Windows

The functions listed below have to do with reading and writing to display windows, clear
ing display windows,' and rescaling the pvar argument.

wrlte-dlsplay-window pvar &key :pvar-start :display-start :size [*Defun]

The data within pvar is displayed on the device represented by the current display window.
The data with pvar must be coercible into a field pvar of length (display-wlndow-blts-per
pixel) bits. That is. floating-point data is not acceptable but a signed pvar that contains only
non-negative values is acceptable as long as the values are small enough.

pvar itself must belong to a 2-dimensional VP set. Its geometry can be in either grid or
framebuffer order. Framebuffer-ordered geometries are explained in the Graphics Pro
gramming Release Notes for Version 5.2.

Version 6.0, November 1990

Chapter 2. Display Windows 13

:pvar-start specifies a grid address of the upper left comer from which the data to be written
is taken. It is a two-element list (x y).

:display-start specifies the display coordinates of the upper left comer to which the data is
written. It is a two-element list (x y).

:size specifies the extent in each dimension. :slze defaults to the maximum extent possible,
given the pvar size, the display size, and the start arguments (if provided). It is a two
element list (width, height).

To rescale the pvar argument of function wrlte-d isp lay-window, use the following function:

rescale-pvar-for-dlsplay-window!! pvar &key : result-type
:result-mln
:result-max
:pvar-mln
:pvar-max
:result-underflow
:result-overflow

[Function]

This function rescales pvar, returning a new PVar of element-type :result-type, which de
faults to a field pvar of size (dlsplay-wlndow-bits-per-plxel).

pvar must belong to the current VP set, and must be of a non-complex numeric or boolean
type.

The function linearly maps each value of pvar so that :pvar-rnln maps to :result-rnln and
:pvar-rnax maps to :result-max. :pvar-rnin and :pvar-rnax default to the actual minimum
and maximum values of pvar, :result-mln, and :result-rnax default to the minimum and
maximum values which can be stored in the result pvar, except that if the :result-type is
floating point, then the minimum value defaults to 0.0 and the maximum value defaults
to 1.0.

Any values in pvar less than :pvar-rnin map to :result-underflow (which defaults to :result
min) and any values greater than :pvar-max map to :result-overflow (which defaults to
:result-rnax). If pvar is boolean, nil maps to :result-rnln and t maps to :result-rnax.

The :result- options are particularly useful when the color map contains more than one
range, as does the default color map. :result-rnln and :result-max can indicate the range,
and :result-overflow and :result-underflow can be mapped to special color indices.

Version 6.0, November 1990

14 *Graphics Reference Manual

read-dlsplay-window &key :result-pvar [Function]
:pvar-start display-start :size

copies contents of display window into :result-pvar, if provided. If not provided, an un
signed-byte pvar of the appropriate length is created and returned.

If :result-pvar is not provided, the current VP set must be 2-dimensional. If :resuH-pvar is
provided, it must be an unsigned-byte pvar of length greater than or equal to display
window-bits-per-pixel bits. The pvar must belong to a 2-dimensional VP set, which need
not be the current VP set and may be in either grid or framebuffer order. Framebuffer-or
dered geometries are explained in the Graphics Programming Release Notes for
Version 5.2.

The arguments :pvar-start, :display-start, and :size are as in write-display-wlndow.

clear-display-wlndow [Function]

clears the current display window by setting all values to 0 (the background color). Oears
pointers to any displays automatically created by the function display-Image.

2.5 Deleting Display Windows -

There are two functions for deleting display windows:

delete-dlsplay-wlndow display-window [Function]

kills the display-window, clearing it from screen. It is an error to use the deleted display
window again. All displays within the display window are deleted.

delete-all-dlsplay-wlndows [Function]

kills all display windows.

2.6 Hardware Panning and Zooming

Generic functions exist for hardware that supports panning and zooming. The CM Frame
buffer and some Symbolics color screens have this capability.

Version 6.0, November 1990

Chapter 2. Display Windows 15

screen-pan-and-zoom-p [Function]

returns t if the screen containing the current display window supports hardware panning
and zooming; otherwise returns nil.

set-screen-pan-and-zoom &optional pan-x pan-y
zoom-x zoom-y

[Function]

pans and zooms the screen containing the current display window, if it supports hardware
panning and zooming;. otherwise, it does nothing. pan-x and pan-yare the coordinates to
appear in the upper left comer of the screen; these arguments both defrault to O. zoom-x
and zoom-yare the additional amount by which each pixel is replicated in each dimension.
zoom-x defaults to 0, zoom-y defaults to the value at zoom-x. Thus, 0 means no zooming,
I means double each pixel, 2 means triple each pixel, etc. Because zoom-y defaults to
zoom-x, the zoom argument need not be repeated if it is the same in both dimensions. Be
cause the arguments default to 0, calling the function with no arguments resets the screen
to its initial state (no panning or zooming).

This function returns the new values of pan-x.pan-y, zoom-x, and zoom-yo If the screen
does not support hardware panning and zooming, each of these values will be O.

get-screen-pan-and-zoom [Function]

returns four values: pan-x, pan-y, zoom-x, and zoom-y, describing the current pan and
zoom of the screen containing the current display window. If the screen does not support
hardware panning and zooming, each of these values will be O.

Version 6.0, November 1990

~ I I

'~ I

Chapter 3

Color Maps

*Graphics provides facilities for defining color maps for pseudo-color (8-bit) and 24-bit
screens.

Two levels of interface are provided: a device-level interface, and a higher-level, symbolic
interface.

3.1 Overview of Device-Level and
Symbolic Color Map Interfaces

With the device-level interface, color maps are simply specified as a set of three arrays that
map screen pixel values to red, green, and blue intensities. Each display window on a de
vice that suppons color maps has its own device color map. The following functions
comprise the device-level interface:

dlsplay-device-has-color-map-p
dlsplay-devlce-color-map-array-slze
set-display-devlce-color-map-arrays
display-devlc~lor-map-arrays

set-display-devlctH:olor-map-slot
dlsplay-device-color-map-slot

The high-level, symbolic color map interface allows you to define a named color map as
a combination of named component colors and color ranges. The symbolic interface serves
several purposes:

• It lets you define a color map, independent of its actual size, without having to
manage the allocation of individual slots.

Version 6.0, November 1990 17

18

•

•

*Graphics Reference Manual

It lets you reference the color and color ranges by name rather than by slot number .
(See function dlsplay-image, Section 4.4, which makes use of symbolic color
maps.)

Since a symbolic color map is associated with every display window, whether or
not the underlying device actually supports color maps, you can write generic code
that uses colors and color ranges. On black-and-white devices the system does its
best to display such images instead of signaling an error.

The symbolic color map functions include:

def-color
create-eolor
def-llnear-color-range
create-llnear-color-range
def-color-map
create-eolor-map
set-color-map
current-color-map

Functions for getting infonnation about color maps are also provided.

3.2 Symbolic Color Map Interface

The symbolic color interface lets you defme and reference pseudo-color (8-bit) color maps.

The following subsections describe functions for defining colors, color ranges, and color
maps. Examples using these functions are provided in Section 3.2A Functions for activat
ing color maps and for getting infonnation about color maps are also described.

3.2.1 Creating Colors

A color is a named RGB triple, which can be referred to symbolically in a color map.

See Section 3.2.4 for examples.

create-eolor name space value [Function]

creates and returns an object of type color.

Version 6.0, November 1990

Chapter 3. Color Maps 19

name must be a keyword. like :red. name can be used to symbolically refer to the color
when it is used in a color map.

space is the color space used for defining the color. Currently. the only legal value for space
is :rgb.

The value provided is dependent on space. Currently. value must be a list or vector of three
floating-point numbers between 0.0 and 1.0 inclusive. representing the red, green. and blue
intensities.

def-color name space value [Macro]

creates a color, by calling the function create-color, and pushes the color onto the list
defined-colors, replacing any previously defmed colors having the same name.

deflned-colors [Variable]

is a list of all colors defined by def-color.

color name [Function]

returns the color named name. if one has been defined by def-color. If none is found, re
turns nil.

3.2.2 Creating Color Ranges

A color range is a set of colors. Currently, a color range is defmed as a piecewise linear
wash between a set of specified RGB triples or colors. A color range is defmed indepen
dently of how many actual slots it will take up in a color map.

See Section 3.2.4 for examples.

create-llnear-color-range name space &key :knots :Interval-welghts [Function]

creates and returns an object of type color-range, a range of color values linearly interpo
lated between specified knot points.

name must be a keyword. like :shades-of-grey. name can be used to symbolically refer to
the color range whenit is used by other functions.

Version 6.0, November 1990

20 *Graphics Reference Manual

space specifies the color space for defining the range. Currently, the only legal space value
is :rgb.

The :knots argument must be provided, and must be a list of at least two elements. Each
element must be a list or vector of three floating-point numbers between 0.0 and 1.0 inclu
sive. The :knots specify the color values to be interpolated in order to fill the color range.

:interval-welghts specify relatively how many color slots of the color map are to be devoted
to each interval between two knot points. The :Interval-welghts argument must be a list of
positive numbers, of length one less than the length of the :knots list It defaults to a list
of 1.0's.

def-linear-color-range name &key : knots :Interval-welghts [Macro]

creates a linear color range by calling function create-linear-color-range, and pushes it
onto the list *defined-color-ranges*, replacing any previously defined color ranges having
the same name.

Two linear color ranges are pre-defined:

:gray a linear wash from black to white
:rainbow a linear wash through the colors of the spectrum, violet to red

defined-color-ranges [Variable]

is a list of all color ranges defined by def-linear-color-range.

color-range name [Function]

returns a color-range named name defined by def-linear-color-range. If none is found, re
turns nil.

describe-color-range color-range &key :stream [Function]

prints out in a pretty format information about the color-range object.

3.2.3 Creating Color Maps

The following functions allow you to define a color map in terms of color ranges and indi
vidual colors, both of which can be referred to symbolically.

Version 6.0, November 1990

Chapter 3. Color Maps

See Section 3.2.4 for examples.

create-color-rnap name ranges &key :relative-range-Iengths
:colors

creates and returns an object of type color-map.

:background
:foreground
:t-color
:nil-color
:size

21

[Function)

name must be a keyword like :my-color-map. name can be used to symbolically refer to
the the color map when it is used by other functions.

ranges is a list, each element of which is either a color-range object or the name of a color
range object. The function display-image will treat the fIrst color range as the default color
range.

:relative-range-Iengths is a list of positive numbers of length equal to the length of the
ranges argument. It specifies the relative number of slots to be allocated to each range. It
defaults to a list of all 1.0's.

:colors.is a list, possibly null, of color objects. It defaults to nil.

The arguments :background, :foreground, :t-color, and :nll-color, if provided, must be the
names of color objects defmed in the :colors argument. The names of color objects are
keyword symbols. :background, which defaults to black, is mapped to slot 0, and :fore
ground, which defaults to white, is mapped to the highest slot in the color map (typically
255). The arguments :nil-color and :t-color define default colors for displaying boolean
values with function display-image. :nll-color and :t-color default to the same color as
:background and: foreground, respectively.

The argument :size is the number of color slots-in the color map. Slot 0 is assigned to the
:background color. The highest slot is assigned to the :foreground color. Successive slots,
starting with slot 1, are filled with colors provided by the :colors argument All remaining
slots are divided among the color ranges specified, according to the weights specified by
:relative-range-lengths. Colors are then assigned to the slots belonging to each color range
according to the definition of the color-range object.

Version 6.0, November 1990

22 *Graphics Reference Manual

def-coJor-map name ranges &key :reJative-range-Jengths

:coJors
:background
:foreground
:slze

[Macro]

creates a color map by calling create-coJor-map, and pushes it onto the list *defined-coJor

maps*, replacing any previously defined color map having the same name.

deflned-color-maps [Variable]

is a list of all color maps defined by def-color-map.

color-map name [Function]

returns a color map named name defined by def-color-map. If none is found, returns nil.

3.2.4 Example

This is how the color map :gray is defined:

(def-linear-color-range :gray
:rgb
: knots
, «0.0 0.0 0.0)

(1.0 1.0 1.0»)

(defparameter *standard-colors*
(list

(create-color :dim-blue :rgb ' (0.00 0.00 0.30»
(create-color :black :rgb ' (0.00 0.00 0.00»
(create-color :gray :rgb ' (0.50 0.50 0.50»
(create-color :white :rgb ' (1.00 1.00 1.00»
(create-color :red :rgb ' (0.97 0.0 0.15)}
(create-color :orange :rgb f (0.98 0.79 0.05»
(create-color :yellow :rgb f (0.96 0.95 0.04»
(create-color :green :rgb ' (0.25 0.72 0.13»
(create-color :blue :rgb' (0.20 0.33 0.74»
(create-color :violet :rgb- f (0.55 0.00 0.59»

»

Version 6.0, November 1990

Chapter 3. Color Maps

(def-color-map :gray (list :gray)
:colors *standard-colors*
:background :dim-blue
:foreground :white
:nil-color :black
:t-color :red

3.2.5 Selecting a Color Map

set-color-map color-map &key :display-window

23

[Function]

changes the color map for a display window. The :display-window argument defaults to the
current display window.

When the color map for a display window is changed, the colors on the display change
immediately. Under X Windows, however, the mouse must be positioned over the window
for the window's color map to be activated (see Section 3.5).

The following pseudo-color color maps are defmed:

:gray
:rainbow

. :gray-and-ralnbow

includes color range :gray
includes color range :rainbow
includes color ranges :gray and :ralnbow

All three color maps include the following overlay colors: :red, :orange, :yellow, :green,
:blue, :vlolet, :black, :whlte, :gray, and :dlm-blue.

current-color-rnap [Function]

returns the color map associated with the current display window, or nil, if no display win
dow is current See also function dlsplay-window-color-map, in Section 2.2.

3.2.6 Getting Information about a Color Map

descrlbe-color-rnap &optional color-map stream [Function]

prints out in a pretty format information about color-map, which defaults to the current
color map. Returns nil.

Version 6.0, November 1990

24 *Graphics Reference Manual

descrlbe-color-map-color-arrays color-map &key :start
:end
:stream

[Function]

prints out in tabular fonnat the RGB values of each color slot in the color-map.

color-rnap-size color-map [Function]

returns the size of the color-map (the number of slots in its color table).

color-map-color-ranges &optlonal color-map [Function]

returns the names of the color ranges used to defme color-map, which defaults to the cur
rent color map. Function color-rnaP-color-ranges returns nil if there is no color map.

(color-rnap-color-ranges (color-map :gray-and-rainbow»
- > (: GRAY : RAINBOW)

color-rnap-color-names &optlonal color-map [Function]

returns the names of the colors used to define color-map, which defaults to the current
color map. Since more than one name can be associated with a color, only the first name
is returned. Function color-map-color-names returns nil if there is no color map.

(color-rnap-color-narnes (color-map :gray-and-rainbow»
-> (:VIOLET :BLUE :GREEN :YELLOW :ORANGE :RED :GRAY :BLACK

:WHITE : DIM-BLUE)

color-map-color-allases &optlonal color-map [Function]

returns a nested list of all the names of each color used to define color-map, which defaults
to the current color map. Each element of the list is either a single name or a list of two or
more names of each color in the color map. Function color-map-color-aliases returns nil
if there is no color map.

(color-map-color-aliases (color-map :gray-and-rainbow»
-> « : VIOLET) (:BLUE) (:GREEN) (:YELLOW) (:ORANGE) (:T-COLOR :RED)

(:GRAY) (:NIL-COLOR : BLACK) (:FOREGROUND :WHITE)
(:BACKGROUND :DIM-BLUE»

Version 6.0, November 1990

Chapter 3. Color Maps 25

color-nam~lor color-name &optlonal color-map [Function]

returns the color named color-name of color-map, which defaults to the current color map.
Function color-nam~lor returns nil if color-name is not present color-map, or if there
is no color map.

color-slot color-name &optlonal color-map [Function]

returns the index into the color table, color-map. which contains the color referenced
by color-name. The argument color-map defaults to the current color map. Function
color-slot returns nil if color-name is not present in color-map or if there is no color map.

color-range-slots color-range-name &optional color-map [Function]

returns, as a list, the minimum index and maximum index of the interval of color slots that
are spanned by the color range referenced by color-range-name. The argument coior-map
defaults to current color map. Function color-range-slots returns nil if color-range-name
is not present in color-map or if there is no color map.

color-map-index-value index &optional color-map [Function]

returns a three-element list of floats between 0.0 and 1.0, representing the red, green, and
blue intensities stored in the coior-map at slot index. Function color-map-lndex-value

returns nil if there is no color map.

3.3 Device-Level Color Map Interface

The device-level color map interface lets you specify each slot (entry) of the color map in
tenns of its red, green, and blue values. These functions are useful if the calling program
manages its own color maps.

If color maps are managed at this level, the. symbolic color maps should be disabled by
evaluating the expression (set-color-map nil). Also, the color and color-range arguments
to function display-image cannot be specified. Instead, you can use function wrlte-dlsplay
or call display-image with argument rescale-p set to nil.

Version 6.0, November 1990

26 *Graphics Reference Manual

3.3.1 Getting Information about Device Color Maps

dlsplay-clevlce-has-color-map-p [Function]

returns t if the current display device supports color maps, nil otherwise.

The following functions can be called only when the current display device supports color
maps (Le., function display-clevice-has-color-map-p returns t).

dlsplay-clevice-color-map-arrays-slze [Function]

returns the length of the color map arrays of the current display device.

3.3.2 Setting the Device-Level Color Map

These functions can only be called when the current display device supports color maps
(i.e., function display-clevlce-has-color-map-p returns t).

set-clisplay-clevice-color-map-arrays red-array
green-array
blue-array

[Function]

sets the color map arrays of the current display device. The arguments red-array, green
array, and blue-array must each be arrays of type single float and be of length
displ~y-window-color-map-sIZ8. The arrays must contain values between 0.0 and 1.0,
inclusive.

set-clisplay-clevlce-color-map-slot index red green blue [Function]

sets one slot of the color map arrays of the current display device. red, green, and blue must
be floating-point numbers between 0.0 and 1.0, inclusive. index must be an integer greater
than or equal to 0 and less than display-window-color-map-size.

Version 6.0, November 1990

Chapter 3. Color Maps 27

3.3.3 Reading Contents of Device-Level Color Maps

display-device-color-map-arrays [Function]

returns the color map arrays of current display device as three values: red-array, green
array, and blue-array. Each array is of length display-device-color-map-size and of
element type single-float.

display-device-color-map-slot index [Function]

Returns the red, green, and blue intensity values, as three values, of color slot index. index
must be greater than or equal to 0 and less than display-window-color-map-size.

3.4 Using 24-bit Color Maps

On 24-bit devices, color maps are intetpreted differently than they are on 8-bit devices. On
a 24-bit device, the three bytes of a 24-bit image value index the red, green, and blue color
map arrays independently.

For convenience, the symbolic color map :rgb is defined for displaying RGB images on
24-bit devices. Each red, green, and blue map is a linear ramp. No overlay, background, or
foreground colors are defined.

Since the symbolic color map interface is designed for pseudo-color (8-bit) color maps,
other 24-bit color maps are best specified using using the device-level interface.

3.5 Color Maps on X Windows

Under X Windows, the screen's color map is detennined by the window under the mouse
cursor. X display windows use their own color map, which is not generally compatible with
the color maps used by other applications. Therefore, if displaying to an X window yields
peculiar results, first check that the mouse is indeed over the display window. To minimize
the difference between an X display window's color map and those of other applications,
you may wish to try changing the color map's background color and order of overlay
colors.

Version 6.0, November 1990

Chapter 4

Displays

Displays are rectangular regions of a display window onto which images are displayed.
Displays can be positioned either by the user or automatically by a program that keeps track
of empty space on the display window.

4.1 Ways to Use Displays

The function display-Image (and its variant, display-image!!) provide a high-level interface
for displaying images. There are three different ways to display images using the high-level
interface:

1. To display images in predetennined positions, a program can create its own dis
plays and use them over and over. This mode is especially useful for implementing
demos that display output in a predetennined fonnat In this case, your program
keeps a pointer to the display and passes it to the function display-Image, as in the
following example:

(setq top-display
(make-display :size (list 256 256) :position (list 32 20»)

(display-image my-image!! :display top-display)

2. If you wish to display an image in a predetennined position only once, you can
simply specify a position argument to dlsplay-lmage as follows:

(display-image my-image!! :position (list 32 30»

In this case, no display object gets created.

3. To let the system automatically position an image, you simply call function dis

play-image without specifying a display or position argument:

Version 6.0, November 1990 29

30 *Graphics Reference Manual

(display-image my-image!!)

In this case, the image appears on the next free space on the window-either beside
the last display or on a new row. Function dlsplay-lmage actually creates a display
for this purpose, which is accessible using function last-display, and which can be
''undone'' by function clear-dlsplay. The auto-positioning feature is especially use
ful for debugging, since it automatically places images side by side.

Function display-image is documented in Section 4.4.

4.2 Creating Displays

Displays are created in one of two ways: by the function create-display and by the function
display-Image (when neither of the arguments display or position is specified).

Function create-display is used when you wish to explicitly allocate and position your own
displays. It is useful for demonstration programs that have a fixed-format display window
for output, where each display is used over and over.

Function display-Image is documented in Section 4.4.

create-cflsplay size position &key :dlsplay-wlndow :Iabel [Function]

returns a display object. The display object is associated with the :dlsplay-wlndow speci
fied, which defaults to the current display window. The display object defines a certain
region of the display window, delineated by size and position. position specifies the upper
left comer of the display (x y), and size specifies the extent (x-extent y-extent).

An error is signalled if the size and position arguments specify an area that is not totally
within the boundaries of the display window. The arguments size and position must both
be two-element lists of non-negative integers.

The :Iabel argument, if provided, must be a string. Currently, this argument is ignored.

Version 6.0, November 1990

Chapter 4. Displays 31

4.3 Getting Information about a Display

descrlba-dlsplay display &optional stream [Function]

prints out in a pretty format infonnation about display.

display-position display [Function]

returns the position of display with respect to its display window. The position is returned
as a two-element (x y) list of integers.

dlsplay-slze display [Function]

returns the size of display, in pixels. The size is returned as a two-element list of integers
of the fonn (width height).

dlsplay-clisplay-wlndow display [Function]

returns the display window object to which display belongs.

display-label display [Function]

returns the label associated with display.

valid-display-p object [Function]

returns t if object is a display associated with an allocated display window.

4.4 Displaying an Image

display-image
display-image!!

image &key :rescale-p :color-range
:image-min :image-max
:position :image-start
:Iabel :zoom

:t-color
:display
:size

[*Defun]
[*Defun]

:nil-color
:display-wlndow
:overlay

displays an image on a portion of a display window. The image is rescaled by default and
is dithered for display on monochrome windows.

Version 6.0, November 1990

32 *Graphics Reference Manual

image is a 2-dimensional pvar of numeric or boolean type. Its geometry can be in either
grid or framebuffer order. Framebuffer-ordered geometries are explained in the Graphics
Programming Release Notes for Version 5.2.

display-Image returns nil. You can call display-Image at top level to display an image with
out consuming stack space. dlsplay-image!! returns image. It is especially useful for
displaying a pvar in the middle of debugging a program.

When the operations display-Image and display-Image!! are called with only the image ar
gument specified, they automatically rescale, position, and, possibly. dither the entire
image. The keyword arguments allow you to manually specify scaling. colors, position.
and sizing of the image, and also allow you to overlay additional images.

4.4.1 Specifying How Much of the Image to Display

The entire image is displayed by default, but :Image-start and :size can be used to display
only a portion of the image.

Arguments :Image-start plus :slze. if specified. must not exceed the dimensions of image.

If :display is specified. the portion of tinage displayed is the maximum amount possible.
given the constraints imposed by the size of :dlsplay and by :Image-start and :size. Portions
of the image that extend beyond the boundaries of the display are clipped.

4.4.2 Specifying Where to Display the Image

If :dlsplay is specified. :position must not be specified, because :positlon defaults from
:display. Otherwise. display-image creates a display for displaying the image.

If :posltion is specified. it must be a list (x y) of two non-negative integers specifying the
x and y coordinates. where the upper left comer of the image is displayed.

If neither :position nor :dlsplay is speCified. :position defaults to the next "free area of
screen space" large enough to display the desired portion of the image. This will be either
beside the most recent automatically positioned image. or on a new row below it. If the next
empty space is not large enough to display image. the display window is cleared and the
image is displayed at the top left. If the specified portion of image is still too large to be
displayed on the display window, an error is signalled. :dlsplay-wlndow specifies the win
dow for displaying the image, which defaults to the current display window, or to that of

Version 6.0, November 1990

Chapter 4. Displays 33

:display, if :display is specified. If :display-wlndow and :dlsplay are specified, the :display
must belong to :display-window.

4.4.3 Specifying the Colors for Displaying the Image

Numeric Pvars

If image is a numeric pvar, then the keywords :rescale-p, :color-range, :Image-min, and
:Image-max are meaningful.

If: rescale-p is t, the default, then image is assumed to be a monochrome or pseudo-color
image, and it is rescaled as follows.

:color-range specifies a color range for displaying the image. It is meaningful only if image
is numeric. If specified, :color-range must be of the values returned by the function color
map-color-ranges; othelWise, it defaults to the first color range of the current color map.
If the default color map :gray-and-ralnbow is used, then :color-range can be either :gray

(the default color range), which displays the image using gray levels, or :rainbow, which
displays the image using spectral colors.

The values in the image within the viewing area (specified by :Image-start and :slze) are
mapped to indices in the :color-range such that :Image-mln (which defaults to the minimum
image value in the area specified) is mapped to the minimum index and :image-max (which
defaults to the maximum image value in the area specified) is mapped to the maximum
index. Any values outside this range are clipped to either :Image-mln or :Image-max.

If :rescale-p is nil, then the image is not rescaled, and keywords :color-range, :color,

:Image-min, and :image-max are ignored. In this case image must be coercible to a un
signed pvar of element length display-wlndow-bits-per-pixel for color-mapped screens,
and to element length 8 for I-bit screens. Figure 3 illustrates the stages for displaying
monochrome and pseudo-color images on color-mapped and black-and-white windows.

Version 6.0, November 1990

34 *Graphics Reference Manual

n-tnt~ ~~~ =~:::D ~§J~ -B-..

numeric image color map n-bit color
mapped device • rescale /

\ (rescale-p = nil)

----.. dither
I-bitimage 0

•
8-bitimage

I-bit device

Figme 3. Display stages for monochrome and pseudo-color images on
color-mapped and black-and-white windows

To display a 24-bit RGB image on a 24-bit screen, set the color map to :rgb and call
display-image with :rescale-p set to nil. Figme 4 illustrates the stages for displaying a 24-bit

image on a 24-bit window.

8-bitimages

24-bitRGB image ~ - R image --.

------.~ ~ - 0 image -..

(rescale-p = nil) - B image -..

color map
:rgb

-R--.

-0-"
-B-.. o

24-bit device

Figure 4. Display stages for 24-bit images on a 24-bit device

Boolean Pvars

If image is a boolean pvar, then the keywords :t-eolor and :nlkolor are meaningful.

:t-color and :niJ-color specify the colors for displaying t and nil values of image. :t-color
and :nlJ-color, if specified, must be the names of colors in the current color map. They
default to the color map's :t-color and :nlJ-color, respectively (which are :white and :black

in the default color map.) :t-eolor and :nil-color are meaningful only if image is a boolean

Version 6.0, November 1990

Chapter 4. Displays 35

pvar and if the current color window supports color maps. On monochrome devices, nil
always maps to 0 (black) and t maps to I (white).

4.4.4 Specifying Multiple Images to Overlay

The keyword argument overlay optionally specifies a list of images to overlay or superim
pose onto the original image, image. overlay is either an overlay specification or a list of
overlay specifications, with each specification of the fonn

(overlay-mask &key :overlay-Image :rescale-p :color-range
:t-color :nil-color :image-min :Image-max)

overlay-mask is an a boolean pvar that specifies where the image to overlay, :overlay
image, is to be drawn. :overlay-image is either a boolean or numeric pvar. It defaults to t!!.
When :overlay-mask is t within the specified image area, :image-min and :image-max de
fault to the minimum and maximum value of :overlay-image.

The remaining arguments mean the same thing and follow the same restrictions as the cor
responding top-level arguments to display-Image, but in this case apply to the overlay
image. Every :overlay-mask and :overlay-Image must be in the same VP set as image.

Wherever overlay-mask is t, the overlay image is displayed instead of the original image.
Where two or more overlays satisfy this condition, the first overlay satisfying this condi
tion is displayed. Where no overlays satisfy this condition, the original image is displayed.

4.4.5 Specifying Other Features

label is a string to be drawn under the image. It defaults to an empty string or to the label
of display, if display is specified.

NOTE: Currently, the drawing of labels is not implemented.

The argument zoom, which defaults to 1, is the factor by which to zoom each pixel If speci
fied, zoom-must be a positive integer or a list of two positive integers (zoom-x zoom-y).
If zoom is a single integer, it specifies the zoom factor to be applied to both the X and Y
dimensions of the image. If zoom is a list of two integers, the first is applied to the X dimen
sion and the second to the Y dimension.

Version 6.0, November 1990

36

4.4.6 Example

(in-package '*lisp :use ' (*graphics»

(*cold-boot :initial-dimensions (list 256 64»
; let this be the image size

(create-display-window)
; choose a color device, if available.

(set-color-map :gray-and-rainbow)
; this is the default color map anyway

(*defvar ramp!! (self-address-grid!! (!! 0»)
; define a numeric pvar

(display-image ramp!!)
; displays ramp using gray levels

(display-image ramp!! :size (list 128 64»
; display only the left half of the image

(display-image ramp!! :color-range : rainbow)
; displays ramp using rainbow colors

(*defvar random!! (zerop!! (random!! (!! 20»»
; define a random boolean pvar

(display-image random!! :t-color :red :nil-color :black)
; display random in red and black

(display-image random! :size (list 40 10) :zoom 6)
;; display zoomed in section of random

*Graphics Reference Manual

(display-image ramp!! :overlay (list random!! :t-color :green»
; display ramp in gray, overlaying t values of random in green

(display-image ramp!! :image-max (* 2 (*max ramp!!»
:overlay (list random!! :t-color :green»

display same thing, but use only lower half of gray levels for ramp

(*defvar overlay-mask!! (>!! (self-address-grid!! (!! 0»
(!! (round (dimension-size 0) 2»»

; overlay mask is t for the right half of the image

Version 6.0, November 1990

Chapter 4. Displays 37

(display-image overlay-mask!!)

(display-image ramp!! :overlay '«,overlay-mask!! :overlay-image ,random!!)))
superimpose random over ramp where overlay-mask is t.

; note that random is drawn using default t-color and nil-color.

4.5 Clearing Displays

last~isplay [Function]

returns the last display object automatically created by function display-image. This func
tion is useful for redisplaying an image over the last display used:

(display-image wrong-image!!)
(display-image right-image!! :display (last-display»

clear~lsplay &optlonal display [Function]

clears the contents of display.

If display is not specified, it ''undoes'' the last display by clearing the display returned by
last~isplay, and by freeing its space for the next image automatically positioned by
display-Image. Thus, the example above is equivalent to the following:

(display-image wrong~image!!)
(clear-display)
(display-image right-image!!)

4.6 Reading a Pvar from a Display

read~isplay &key :dlsplay :result-pvar
:dlsplay-start :size

:pvar-start [Function]

reads data from a device represented by the display window to which :display belongs into
:result-pvar, if specified, or a newly created pvar otherwise.

Version 6.0, November 1990

38 *Graphics Reference Manual

Returns :result-pvar or the newly created pvar.

Note that this function, in general, is not the inverse of function dlsplay-lmage, since dis
play-lmage may rescale the image, but read-display does not.

The :display from which data is read defaults to the value of the function last-display.

:result-pvar, if specified, must be an unsigned pvar of length greater than or equal to dis
play-window-bits--per-plxel. It must be a 2-dimensional pvar, not necessarily in the current
VP set, in either grid or framebuffer order.

:pvar-start is a list (x y) that specifies the location where the data is placed within the result
ing pvar, and defaults to (00). :display-start and :slze are lists (x y) that specify the area
of the :display from which data is read. :dlsplay-start defaults to the position (0 0). :slze
defaults to "as much as possible," given the constraints specified by the dimensions of :dls
play and :result-pvar, and the arguments :dlsplay-start and :result-start.

4.7 Hardware Panning and Zooming of Displays

These functions allow you to closely inspect a display on a device that supports hardware
panning and zooming. The CM Framebuffer and some Symbolics color screens have this
capability.

zoom-display &optional display [Function]

pans and zooms the device so that display takes up as much of the screen as possible, if the
hardware supports pamrlng and zooming; otherwise does nothing. Returns t or nil to indi
cate whether the operation was performed. The display argument defaults to last-dispJay.

unzoom-display [Function]

pans and zooms the current screen to its initial state. Returns t or nil to indicate whether the
current device actually supports hardware pamrlng and zooming.

Version 6.0, November 1990

Chapter 5

Rendering Primitives

None of these routines actually display data on a display device. They all render data into
a separate pvar (an image-buffer-pvar for 2d, or a pvar within a Z buffer, for 3d). Data is
then displayed to display devices using display functions such as write-display-window and
display-image.

5.1 Two-Dimensional Rendering Functions

*draw-Image image-bujJer-pvar source-color-pvar
image-start source-start size &key :combiner

[*Defun]

copies a specified region source-color-pvar to a specified region of image-bujJer-pvar.
The regions are specified using image-start, source-start, and size, which must all be two
element lists of integers.

The :comblner argument dictates how the source-color-pvar data is combined with data
already existing in image-buffer-pvar. The :comblner, which defaults to :overwrlte, can be
specified as one of the following: :default, :overwrlte, :Ioglor, :Iogand, :Iogxor, :u-add,
:s-add, :u-rnin, :s-mln, :u-max, :s-max.

*draw-lines-2d image-bujJer-:pvar x-start-pvar y-start-pvar
x-end-pvar y-end-pvar source-color-pvar
&key :combiner :cllp-p : draw-end-polnt-p

[*Defun]

defines lines using start and end X and Y coordinates in x-start-pvar, y-start-pvar,
x-end-pvar, and y-end-pvar. Each active processor defines a line. Each line has a color
value, defined by source-color-pvar.

Version 6.0, November 1990 39

40 *Graphics Reference Manual

The color value for each line is written into image-buffer-pvar at the processors (pixels)
that constitute the line.

The argument image-bufJer-pvar must be a 2-dimensional pvar.

The combiner argument is as defined with *draw-lmage and defaults to :overwrite .

The argument :cllp-p specifies what action to ~e if lines extend beyond the limits of the
image-bufJer-pvar. If :cllp-p is t (the default), such lines are clipped; if :clip&;l is nil, an
error is signalled.

*new-draw-lines-2d image-buffer-pvar x-start-pvar y-start-pvar [*Defun]
x-end-pvar y-end-pvar color-pvar
&key (combiner :overwrlte) (:clip-p t)

*new-draw-llnes-2d is a replacement for the *draw-llnes-2d function, which tended to run
out of memory. *new-draw-lines-2d is less likely to run out of CM memory.

*new-draw-lines-2d modifies image-bujJer-pvar such that image-bufjer-pvar contains
the values of color-pvar in processors representing the points of the lines defined by
x-start-pvar, y-start-pvar, x-end-pvar, and y-end-pvar.

If :clip-p is non-nil, then points defined by the lines outside the region defined by
image-bufJer-pvar are discarded. If :cllp-p is nil, and any point in any line is outside the
region defined by image-bujJer-pvar, an error is signalled.

The :comblner argument is used to combine color values destined for the same pro
cessor/pixel in image-buffer-pvar. Its legal values are the same as those for
*dra~oints-2d.

x-start-pvar, y-start-pvar, x-end-pvar, and y-end-pvar must be vector pvars of type
single-float. However, all floating-point values are rounded towards minus infinity
(floor'ed) before any computation on them is done. Thus, a point stored inx-start-pvar and
y-start-pvar as #(0.3 0.9) actually represents the point #(0 0) in image-bujJer-pvar space.
Therefore it is not possible to specify that a line starts or ends "between pixels."

draw-line-2d image-bujJer-pvar x-start y-start
x-end y-end color
&key :combiner :clip-p :draw-end-point-p

[Function]

draws a single line into image-bujJer-pvar. This is the scalar equivalent of the function
*draw-lines-2d.

Version 6.0, November 1990

Chapter 5. Rendering Primitives

*draw-points-2d image-buffer-pvar x-pvar
y-pvar source-color-pvar
&key :comblner :cllp-p :draw-end-polnt-p

41

[*Defun]

draws points using the X and Y coordinates in x-pvar and y-pvar. Each active processor
defmes a point. Each point has the color value specified by source-color-pvar.

The color value for each point is written into image-buffer-pvar at the processor (pixel)
defmed by X and Y. image-buffer-pvar must be a 2-dimensional pvar.

The :combiner and :clip-p arguments are as defined and default as in the function
*draw-lines-2d.

draw-polnt-2d image-buffer-pvar x y color
&key :comblner

[Function]

This is the scalar analog of *draw-points-2d. Draws a single point with value color into the
image-buffer-pvar at grid address (x y).

polygon-fill image-buffer-pvar x-vector-pvar
y-vector-pvar color-pvar
&key :number-of-vertlces :combiner :overwrlte

:clip-p :edge-color-pvar

[Function]

modifies image-buffer-pvar such that image-buffer-pvar contains the values of
color-pvar in processors representing the interiors of the polygons defined by x-vector
pvar and y-vector-pvar.

If :edgEH:Olor-pvar is nil (the default). then the processors representing the edges of the
polygons also contain the values of color-pvar; otherwise they contain the colors specified
by :edgEH:Olor-pvar.

The polygons are defined in tenns of their vertices. The coordinates can define a polygon
in either clockwise or counterclockwise order.

Polygons of different numbers of sides can be drawn in different processors. If
:number-of-vertices is nU (the default). or is not provided. it is assumed that each polygon
is as big as the length of x-vector and y-vector (which must be the same size). If :number
of-vertices is provided and is a pvar. then it dictates the number of sides in the polygon in
that processor. It is an error if :number-of-vertices exceeds the length of x-vector in any
processor. :number-of-vertices may be a scalar integer. in which case all polygons are as
sumed to have that many sides.

Version 6.0, November 1990

42 *Graphics Reference Manual

If :cllp-p is non-nil (it defaults to t), then polygon points outside the region defIDed by
image-buf/er-pvar are discarded. If :c/lp-p is nil, and any point in any polygon is outside
the region defined by image-buf/er-pvar, an error is signalled.

The :comblner argument is used to combine color values destined for the same processor!
pixel in image-buf/er-pvar. Its legal values are the same as those for *draw-points-2d and
it defaults to :overwrite.

image-buJfer-pvar must be a fixed-size pvar large enough to contain values from
:edge-color-pvar and color-pvar. An error is signalled if image-bujfer-pvar is a mutable
pvar.

x-vector-pvar and y-vector-pvar must be vector pvars of element type single-float. How
ever, all floating-point values are rounded towards minus infinity (floor'ed) before any
computation on them is done. Thus, a point stored in x-vector-pvar and y-vector-pvar as
#(0.3 0.9) actually represents the point #(0 0) in image-bujfer-pvar space. Therefore it is
not possible to specify that a vertex is located "between pixels."

5.2 Three-Dimensional Rendering Functions

*draw-points-3d z-buJfer
&optional

vector3-pvar
:clip-p

color-pvar [*Defun]

defines points using X, Y, and Z coordinates stored in the zeroth, first, and second elements
of the vector pvar vector3-pvar.

The X and Y coordinates specify a processor (pixel) in z-bujfer. The value of color-pvar
is written into the Z-buffer at that location. If more than one color value is to be written at
a single location, the color value with the smallest associated Z coordinate is used.

z-bujfer must be a Z-buffer structure created previously with create-z-buffer.

:clip-p detennines whether coordinates defining points outside the Z-buffer space are ig
nored (the default, t) or signal an error.

draw-polnt-3d z-bufJer vector3 color
&optional clip-p

[Function]

This is the scalar analog of *draw-polnts-3d. A single color value, color, is written into
z-bujfer at the coordinates specified by the three values in the vector vector3.

Version 6.0, November 1990

Chapter 6

Z-Buffer Functions

Z-buffers are a type of data structure used to perfonn hidden surface removal. For each
pixel in an image, a Z-buffer records the most recent color assigned to that pixel, along with
a measure of the Z distance of the surface that made that color assignment. As surfaces are
added to the image, their distances are compared with the value stored in the Z-buffer for
each point. If a surface is closer than the most recently stored Z value, its color overrides
any previous color assignment, and the Z distance is updated; otherwise, the surface's color
at that point is ignored.

This chapter describes the Z-buffer functions provided by *Graphics.

The create-z-buffer function is used to create a Z-buffer data structure.

creat~-buffer color-length [Function]
&key :float-type :inltlal-color-value

creates and returns a Z-buffer object. The Z-buffer object internally consists of two pvars:
an unsigned color value pvar of length color-length, and a floating-point Z pvar o~ either
single- or double-float type. The cOlor value pvar records the most recent color value as
signment for a point, and the Z pvar records the "distance" of the surface that made that
color assignment.

When creat~-buffer is called, the current VP set must be a 2-dimensional VP set. The
image size of the Z-buffer is detennined by the size of the current VP set.

The color value pvar is initialized to the specified :initiaJ-color-value in all processors. The
:initiaJ-color-value argument defaults to O.

The Z pvar is initialized to the most positive floating-point value that can be stored, given
the representation. (This effectively says that the last surface seen by each pixel was at
infinity; the first surface to be stored in the Z-buffer will have its color value recorded in
every affected processor.)

Version 6.0, November 1990 43

44 *Graphics Reference Manual

The float type argument determines the floating-point type of the Z pvar, and must be either
:single-float or :double-float.

describe-z-buffer z-bufJer &optlonal stream [Function]

prints out in pretty format information about z-bufJer to stream stream. The stream argu
ment defaults to *standard-output*.

z-buffer~lor-length z-bufJer [Function]

returns the color-length of the z-bufJer, as specified by the create-z-buffer call that
created it.

z-buffer-float-type z-bujfer [Function]

returns the Z pvar type of the z-bufJer, either :slngle-float or :double-float, as specified by
the create-z-buffer call that created it.

z-buffer-Image!! z-buJfer [Function]

returns an unsigned byte pvar oflength (z-buffer~lor-length z-buffer), which is a copy of
the color value pvar in the z-bujfer.

z-buffer-z!! z-bufJer [Function]

returns a floating-point pvar (either single- or double-float, depending on the float type of
the z-bufJer), which is a copy of the Z pvar in the z-bufJer.

z-buffer-p object [Function]

returns t if object is a Z-buffer, nil otherwise.

z-buffer-valid-p z-bufJer [Function]

returns nil if z-bujfer has been deallocated, t otherwise.

clear-z-buffer z-buf/er [Function]

sets the color pvar of z-bujfer to (!! 0), and sets each value of the Zpvar to the most positive
value possible, given the float type of z-bujfer.

Versicn6.0,November 1990

Chapter 6. Z-Bujfer Functions 45

write-z-buffer-to-dlsplay-window z-bujJer [*Defun]
&key :field-start :display-start :size

writes the color pvar of z-bufJerto the current display window. :field-start and :slze, speci
fy the region of the Z-buffer displayed. :field-start defaults to the (x y) location (0 0), and
:size defaults to as much as possible, given :fleld-start. :display-start, which defaults to the
(x y) position (0 0), specifies the location on the display window where the upper left cor
ner of the image is displayed.

delete-z-buffer z-buffer [Function]

deletes z-bujJer. This deallocates the pvars associated with the Z-buffer. It is an error to use
a Z-buffer object after it has been deallocated.

Version 6.0, November 1990

Chapter 7

Math Utilities

The math utilities are mainly concerned with coordinate transfOImations. Functions for
creating and multiplying together transfOImation matrices are provided, and for multiply
ing vectors by transfoxmation matrices.

A transfoxmation matrix is a 4 x 4 array with floating-point values, either on the front end
or per processor. Lisp typedef definitions are provided to ease the declaration of such ob
jects.

degrees-to-radians!! degrees-pvar [Macro]

converts degrees to radians in parallel.

degrees-to-radians degree [Macro]

converts a scalar value in degrees to radians. This is the scalar analog of
degrees-to-radlans!!.

radians-to-degrees!! radians-pvar [Macro]

converts radians to degrees in parallel.

radlans-to-degrees radian [Macro]

is the scalar analog of radlans-to-degrees!!. It converts a scalar value in radians to degrees.

Identity-rnatrlx!! n &key :element-type [Function]

returns an n x n identity matrix pvar in each processor. The pvar type is detexmined by the
:element-type argument, which defaults to a single-float pvar.

Version 6.0, November 1990 47

48 *Graphics Reference Manual

*identity-matrix matrix-pvar [Function]

matrix-pvar must be an n x n array pvar. In each active processors its values are set to those
of the n x n identity matrix.

Identity-matrlx &optlonal n [Function]

returns a front-end floating-point identity matrix, of dimensions n x n.

sf-3d-tmatrix [Deftype]

This is a Lisp deftype, equivalent to

,(array single-float (4 4».

It can be used to specify a single-float 3D transformation matrix.

sf-3d-tmatrlx-pvar [Deftype]

This is a *Lisp deftype, equivalent to

(array-pvar single-float (4 4».

It can be used to specify a single-float 3D transformation matrix. pvar.

df-3d-tmatrix [Deftype]

This is a Lisp deftype, equivalent to

(array double-float (4 4».

It can be used to specify a single-float 3D transformation matrix.

df-3d-tmatrlx-pvar [Deftype]

This is a *Lisp deftype, equivalent to

(array-pvar double-float (4 4».

It can be used to specify a single-float 3D transformation matrix pvar.

Version 6.0, November 1990
'" ,\,,;r

Chapter 7. Math Utilities 49

transform-vector vector transform-matrix [Function]

multiplies vector by transform-matrix and returns a new vector. If vector is two elements
long, transform-matrix must be 3 x 3, otherwise vector must be three elements long and
transform-matrix must be 4 x 4.

"transform-vector dest-vector-pvar source-vector-pvar
transform-matrix

[*Defun]

performs a vector-matrix multiplication operation in each processor. source-vector-pvar
must be a two- or three-element vector. The dest-vector-pvar must be of the same length
as source-vector-pvar.

If source-vector-pvar is two elements, then transform-matrix must be a 3 x 3 array or
array pvar. If source-vector-pvar is three elements, then transform-matrix must be a 4 x
4 array or array pvar.

Because transform-matrix may be either an array or an array pvar, a pvar of coordinates
can be transformed by a single transformation matrix stored on the front end without the
necessity of creating a transformation matrix pvar inside the eM.

The standard 2D or 3D graphics transformation is performed on source-vector-pvar and
the result is stored in dest-vector-pvar.

create-transforrnation-matrlx-3d &rest transform-specs [Function]

creates and returns a 4 x 4 floating-point matrix. If no transform-specs are provided, it
returns an identity matrix.

transform-specs is a sequence of keyword value pairs. The keywords are one of the follow
ing:

Keyword Meaning

:rx rotation-in-x
:ry rotation-in-y
:rz rotation-in-z
:sx scale-in-x
:sy scale-in-y
:sz scale-in-z
:tx translation-in-x
:ty translation-in-y
:tz translation-in-z

Version 6.0, November 1990

50 *Graphics Reference Manual

The matrix returned is a transformation matrix that embodies all the rotations, scaling, and
translations specified, in the order in which they were specified.

Example:

(create-transformation-matrix-3d :rx 0.5 :sy 2.0 :tz 2.0 :rz 0.2)

creates a transformation matrix that, when applied to a vector using *transform-vector, will
rotate the vector 0.5 radians, then scale it by 2.0 along the Y dimension, then translate it
2.0 units along Z, and fmally rotate it 0.2 radians about the Z axis.

*create-transformation-matrix-3d tmatrix-pvar [*Defun]
&rest transformation-specs

destructively modifies tmatrix-pvar (which must be a 4 x 4 floating-point matrix pvar) to
contain, in each processor, a transformation matrix specified according to transformation
specs.

The transformation-specs argument is as documented in create-transformation-matrlx-3d,

except that the values may either be float scalar or float pvars.

This allows you to create a potentially different transformation matrix in each processor.

~tmatrix-multlply dest source1 source2 &rest sources [*Defun]

All the arguments must be transformation matrix pvars. The matrices are multiplied in
order on the right That is,

dest <- (source] matmul source2)
dest <- (dest matmul (/irst sources))
dest <- (dest matmul (second sources))

*x-rotation-matrix-3d tmatrix-pvar rx [*Defun]

destructively modifies tmatrix-pvar to be a transformation matrix that represents a rotation
of rx radians around the X axis. rx must be a pvar. tmatrix-pvar must be a transformation
matrix pvar.

Version 6.0. November 1990

.... \., .. ,

," ~.

Chapter 7. Math Utilities 51

. .

"·y-rotatlon-matrix-3d tmatrix-pvar ry [*Defun]

destructively modifies tmatrix-pvar to be a transformation matrix that represents a rotation
of ry radians around the Y axis. ry must be a pvar. tmatrix-pvar must be a transformation
matrix pvar.

"z-rotation-matrix-3d tmatrix-pvar rz [*Defun]

destructively modifies tmatrix-pvar to be a transformation matrix that represents a rotation
of rz radians around the Z axis. rz must be a pvar. tmatrix-pvar must be a transforma
tion-matrix pvar.

"scale-matrlx-3d tmatrix-pvar sx sy sz [*Defun]

destructively modifies tmatrix-pvar to be a transformation matrix that represents a scaling
of sx, sy and sz units in X, Y, and Z, respectively. sx, sy, and sz must be pvars. tmatrix-pvar
must be a transformation-matrix pvar .

"translation-matrlx-3d tmatrix-pvar tx ty tz [*Defun]

destructively modifies tmatrix-pvar to be a transformation matrix that represents a transla
tion oLtx, ty, and tz units along X, Y, and Z, respectively. tx, ty, and tz must be pvars.
tmatrix-pvar must be a transformation-matrix pvar.

'. ~

'!l,

r~ ,",. "_ t·~' :',;,' ~
~ .. " ... ~" .,

Ver;iOn 6.0, November 1990

j'

\,

, ,

:~S(1;19b'

"'~"l;-Nlil

"i; ~ .. ~\" r3"1 b· ... ,,\.'\~'fr\ \\
:·,:~t-;', ''''''1~ S,::--.l-,~'07

, ,(n.jklrff·l4~

t'~f: ~~i~~~~s~J'~

~i;m-ii.;,;;I:::l

::lO

Index

This index lists all the *Graphics functions and variables in the *Graphics Reference Manual, Version
6.0. References are to page numbers.

Symbols
all-dlsplay-wlndows,12
*create-transformation-matrix~d, 50
'*current-clisplay-window*, 12
deflned-color-maps, 22
defined-color-ranges, 20
defined-colors,19
*draw-image, 39
*draw-llnes-2d, 39
'*draw-polnts-2d,41
*draw-polnt~d, 42

. *ldentlty-matrlx.48
*new-clraw-llnes-2d,40
*~Ie-matrlx~, 51
*tmatrlx-rnuHiply,50
*transform-Yector,49
*translation-rnatrlx~, 51
*x-rotatlon-matrix~, 50
'*Y:-:r0tatJon-matrlx~d. 51
*;z~otatlon-matrlx~d. 51

c
clear-cllsplay,37
clear-cllsplay-window,14
~Iear-z-buffer. 44
. color, 19
color-map, 22
color-map-color-allases, 24
cOlor-map-color-names. 24

. color-map-color-ranges, 24
colpr-map-index-value,2S

"1 -':," •.

Version 6.0, November 1990 53

color-map-size, 24
color-name-color,25
color-range, 20
color-range-slots,25
color-slot, 25
create-color, 18
create-color-map,21
create-cllsplay,30
create-clisplay-wlndow,7
create-linear-color-range, 19
create-tranformation-rnatrlx~d, 49
create-z-buffer,43
current-color-rnap, 23

D
def-color,19
def-color-map, 22
def-linear-color-range, 20
degrees-to-radians, 47
degrees-to-radlans!!,47
delete-all-cllspiay-windows, 14
delete-cllsplay-window, 14
delete-z-buffer, 45
describ&-color-map.23
descrlbe-eolor-rnap-color-arrays, 24
descrlbe-color-range, 20
descrlbe-cllsplaY,31
descrlbe-z-buffer,44
df-3d-tmatrlx,48
df-3d-tmatrix-pva~, 48
display-clevlce-color-map-arrays, 27

dlsplay-devlc»-color-map...arraya-slze,

"", .. 26
,'.' ,., ,1/ '.,\-'l", . ,

dlspl.y~vloa-cofor-maP-8lot, 27

.d''''",Y~.v~~lor...r1'lap-p, 26
,dlSPlaY.-dI$plaY~lndow.31

": ,.~I$pla""'mage~' 3i..,; . .
.' 'd_p~magei!~ :3 i'
.dtsplay~label, 31
. 'display-,pos~lon, 31

.dlsplay..elZejl'

' .. dISplaY~I.nt:ipw-bits-per-Plxel, 11
. display-wind9!1:;P1'sr...c:Jisplay, 11
d:lsPI~indOW;co.or-map. 11

.' display-window~~ight, 11
, dlsplay:..windOw.:.wldth,ll
~::~raw-4!~~~t40' ,
'.' draYl-point-zd. 41 "
·.:4taw-point~~, 42
'" • d" " ,-' '.

'. :'

G
<:J.g8t-screen-pan..".nd-zoom,15

}- :,.., v~,'., .

Identlty-matrlx, 48
identlty-matrlx-U,47

last...c:Jlsplay.37

p
polygon-fill,41

'radians-to...c:Jegrees,47
radlan&-to-degrees!!,47
read-cllsplay,37

read-cli8play...wlndow.14
resc:;alllt-pvar-for-c:llsplay-wlndowU. 13

screen-pan-and-zoom-p, 15
set-color~ap, 23
set...c:Jisplay~~vice-color-rnap-arrays, 26
set...c:Jlsplay-c:levlce-color-rnap-slot, 26
set...c:Jisplay-wind9w.12
set-scre!im-pan-and-zoom.15
s~d~atriX, 48 .
sf-3d-tmatrlx-pvar, 48

T
transform-vector, 49

u
unzoom-c:lisplay, 38

V
valid-dlsplaY-p,31
valld-display-wlndow-p, 11

W
wlth-display-wlndow. 12
wrlte-dl.,.ay~lndow, 12
wrlte-;:-buffar-to...c:Jlsplay-wlndow,45

z
z-buffer-color-length, 44
z-buffer-float-type, 44
z-buffer-lmage!!,44

; ~U1fer-p. 44
z-b&lff,,~eijd-p. 44
z-bUffer-z!!, 44
zoom...c:Jisplay, 38

Version 6.0, November 1990

