
/

The
Connection Machine
System

*Lisp Release Notes

Version 5.2
October 1989

These release notes
do not replace those for

Version 5.1

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1989

The information in this document is subject to change without notice and should not be construed as a
commitmentby Thinking Machines Corporation. Thinking Machines Corporation reserves the right to
make changes to any products described herein to improve functioning or design. Although the
information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation does not assume responsibility or liability for any errors that may appear in this document.
Thinking Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-l. CM-2. CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris. "'Lisp. and CM Fortran are trademarks of Thinking Machines Corporation.
VAX. UL1RIX. and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNlX is a trademark of AT&T Bell Laboratories
CommonLoops is a trademark of Xerox Corporation.

Copyright E 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

List of Tables .. v
About These Release Notes ... vii

Customer Support .. xi

1 About Version 5.2 ... 1

1.1 Summary of Enhancements ... 1

2 Porting Code to Version 5.2 ... 2

2.1 Lucid Common Lisp Versions ... 2

2.1.1 Lucid Common Lisp Version 2.5 on VAX Front Ends 3

3 *Lisp Language Version 5.2 4

3.1 Reimplemented pref!! .. 4

3.2 Structure pvar Pretty Printing ... 4

3.3 *Lisp Language Restrictions Update ,.......................... 7

3.3.1 Known Errors Corrected............ 7

3.4 Known Errors and Restrictions .. 8
Inltlal~oldboot-geometry-def-falls 8

star-pset-or-pref-struct-bug 9

4 *Lisp Compiler Version 5.2 ... 12

4.1 *Lisp Code Walker•..•.............. 12

4.1.1 Increased Compilation Scope.. 12

4.1.1.1 Enhancement of Code Compilation. 13
4.1.1.2 Enabling the Code Walker 13
4.1.1.3 Simpler Code Now Compiles: An Example •........... 13

4.1.1.4 Minor Feature - Automatic Declaration of Loop Indices. 14

4.2 Changes to Compilation of*all and pref!! .•.....•..............•...•..... 15

iii

iv *Usp Release Notes

4.3 Declaration Ilint .. 15
declaration-hint .•••.••.•..••.••.•..........•.•••...•... 15

4.4 *Lisp Compiler Restrictions Update•........•........... 17
4.4.1 Known Errors Corrected•............... 17
4.4.2 Known Errors and Restrictions•.......................... 17

ash-bang-bang-oompller-restrlctlon ••.•••.•..••••••..•... 17
compller-restrlctlons-mlssed-ln-5.1-doc .•....•.••.•.•..•. 18

5 *Lisp Simulator Version 5.2 .. 20

5.1 *Lisp Simulator Restrictions Update 20
5.1.1 Known Errors Corrected 20
5.1.2 Known Errors and Restrictions. .. 20

coerce-bang-bang-array-slm-bug • . . • • . . • . . . • • • • • • . . . • . .. 21
star-pset-vold-wlth-array-or-struct-slm-bug .•..••..•.•.•. 22

6 *Lisp Library Version 5.2 23

6.1 Accessing the *Lisp Library. • 23

6.2 *Lisp Library Contents. • 23

7' *Graphics Version 5.2 . 24

Tables

1 Correspondence of *Lisp and Lucid Common Lisp Versions 3

v

About These Release Notes

Objectives

The *Usp Release Notes Version 5.2 are published to inform *Lisp programmers about all new and
changed *Lisp features introduced with the Connection Machine System Software Version 5.2

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common Lisp:
The Language, and of *Lisp, as described in the *Lisp documentation for Versions 5.0 and 5.1. The
reader is also assumed to have a general understanding of the Connection Machine system.

Revision Information

These release notes are new with *Lisp Version 5.2. They do not replace *Lisp Release Notes Version
5.1, nor do they replace any other manual in the *Lisp documentation for Versions 5.0 or 5.1.

Organization of These Release Notes

1 About Version 5.2
Identifies *Lisp and Version 5.2.

2 Porting Code to Version 5.2,
Explains what to do to ensure that 5.1 *Lisp code runs under 5.2.

3 *Lisp Language Version 5.2
Describes language features that are new and enhanced in Version 5.2.

4 *Lisp Compiler Version 5.2
Describes compiler features that are new and enhanced in Version 5.2.

5 *Lisp Interpreter Version 5.2
Describes interpreter features that are new and enhanced in Version 5.2.

6 *Lisp Simulator Version 5.2
Describes simulator features that are new and enhanced in Version 5.2. ,

vii

viii *Lisp Release Notes

7 "'Lisp Library 5.2
Describes library of *Lisp source code, new as of Version 5.2.

Related Manuals

• *LispReleaseNotes, Version 5.0

The Version 5.0 release notes provide a succinct overview of the many new features intra
ducedin Version 5.0 and of the changes made to *Lisp between the release of Version 4.3 and
the release of Version 5.0. These are essential reading.

• *LispReleaseNotes, Version 5.1

The Version 5.1 release notes provide a succinct overview of the many new features intro
duced in Version 5.1 and of the changes made to *Lisp between the release of Version 5.0 and
the release of Version 5.1. These are essential reading.

• Supplement to the *Lisp Reference Manual. Version 5.0

This manual updates the *Lisp Reference Manual, adding descriptions of all features new
with the release of *Lisp Version 5.0.

• *Lisp Compiler Guide, Version5.0

This manual describes the current implementation of the *Lisp compiler.

• Connection Machine Front-End Subsystems

The manuals in this volume should beread before the *LispReference Manual. It explains the
configuration of the Connection Machine system and how to access the Connection Machine
from a front-end computer.

• Connection Machine Parallel Instruction Set

The *Lisp Reference Manual explains how to call Paris from *Lisp. Users who wish to do so
should also refer to the Paris manual.

• Common Lisp: The Language. by Guy L. Steele Jr. Burlington, Mass.: Digital Press, 1984.

This book defines the de facto industry standard for the Common Lisp language.

About These Release Notes ix

Notation Conventions

The notation conventions used in these release notes are the same as those used in all current *Lisp
documentation.

Convention

boldface

italics

typewriter

Meaning

*Lisp language elements, such as keywords, operators, and function
names, when they appear embedded in text.

Parameter names and placeholders in function formats.

Code examples and code fragments.

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and correct
the problem. A code example that failed to execute, a session transcript, the record of a backtrace, or
other such information can greatly reduce the time it takes Thinking Machines to respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telepbone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

ameslthinklcustomer-support

(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facility
for automatic reporting of Connection Machine system errors. When such an error occurs, simply press
Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed as fol
lows:

To: buq-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

xi

1 About Version 5.2

The *Lisp language is a parallel extension of Common Lisp for programming the Connection
Machine system. Programs using *Lisp typically include both Common Lisp and *Lisp con
structs.

Version 5.2 is an incremental *Lisp release. All Version 5.2 CM System Software compo
nents, including *Lisp, now support two new CM hardware options: double-precision floa
ting-point accelerators and larger processor memories. In addition, *Lisp Version 5.2 pro
vides enhanced compilation and corrects a number of implementation errors.

1.1 Summary of Enhancements

The following categories of *Lisp enhancements distinguish *Lisp Version 5.2 from pre
vious versions.

• Double-Precision Floating-Point Accelerators Supported. Previously, the Con
nection Machine model CM-2 included one 32-bit floating-point accelerator (fpu)
for every 32 physical processors. Now, these may be replaced by 64-bit fpu's. *Lisp
Version 5.2 supports this optional hardware upgrade. See the Paris Release Notes,
Version 5.2, for a discussion of the perfonnance impact of 64-bit fpu's.

• Larger Processor Memories Supported. Whereas CM-2 configurations previous
ly included 64K bits of memory per physical processor, an optional hardware up
grade to 256K bits of memory per physical processor is now available. *Lisp Version
5.2 supports this hardware option. See the Paris Release Notes, Version 5.2, for a
discussion of the perfonnance impact of larger memories.

• *Lisp Compiler Code Walker. The *Lisp compiler has been significantly en
hanced by the addition of a code walker.

• *Graphics. A *Lisp interface to the CM Graphic Programming tools is now avail
able.

• *Lisp Library. A library of new, experimental *Lisp features is now available.

1

2 *Lisp Release Notes

• Reimplemented pref!!. The pram macro has been reimplemented to provide more
robust execution.

• Structure pvar Pretty Printing. A new debugging aid, ppp-struct, has been added
to "'Lisp. This feature pretty-prints structure pvars.

2 Porting Code to Version 5.2

"'Lisp code written under Version 5.1 runs under Version 5.2 unchanged with the follOwing
exceptions:

• Lucid Common Lisp Version 2.5 is required for VAX front ends.

• The porting instructions described in the *Lisp Release Notes Version 5.1 apply to
Version 5.2 also.

• Obsolete functions (those documented as such) are not guaranteed to work under
Version 5.2.

2.1 Lucid Common Lisp Versions

"'Lisp currently requires different versions of Lucid Common Lisp on VAX and on Sun-4
front ends.

"'Lisp Version 5.2 on a VAX front end requires Lucid Common Lisp 2.5. ("'Lisp Version 5. 1 on
a VAX front end required Lucid Common Lisp Version 2.1.) On Sun-4 front ends, both Ver
sion 5.1 and Version 5.2 of "'Lisp require Lucid Common Lisp Version 3.0.

Version 5.2 3

The following chart shows which Lucid versions are required by *Lisp versions 5.x.:

Table 1. Correspondence of *Lisp and Lucid Common Lisp Versions

CMSS Release 5.0 5.1A 5.1 5.2A 5.2
Front End

Sun-4 2.1 2.1 3.0 3.0 3.0
VAX 2.1 2.1 2.1 2.1 2.5

In each case, the version correspondence applies equally to the *Lisp interpreter, compiler,
and simulator.

*Lisp programmers are strongly advised to obtain Lucid Common Lisp documentation ap
propriate to their front-end environment.

2.1.1 Lucid Common Lisp Version 2.5 on VAX Front Ends

The release notes for Lucid Common Lisp Version 2.5 completely detail how Version 2.5 dif
fers from Version 2.1. The Lucid changes that most affect *Lisp programs are noted below.

(1) Use of the change-rnemory-management function discouraged

The change-rnemory-management function is not recommended by Lucid for Ver
sion 2.5. If it is nonetheless used, the :growth-Jimlt keyword value should be much
less than previously recommended by Thinking Machines Corporation. Failing to
reduce the :growth-lImlt value before using change-rnemory-management causes
problems with the garbage collection mechanism.

Here is an acceptable change-rnemory-management call used by some Thinking
Machines Corporation developers in their IIsp-lnlt.llsp files:

(change-memory-management
:expand 64
f+sun :growth-limit f+sun 768
)

(2) Foreign function interface changed

The Lucid foreign function interface has changed. Please consult the Lucid Com
mon Lisp Version 2.5 documentation far details.

4 *Lisp Release Notes

(3) Lucid ephemeral garbage collector

In previous Lucid releases, garbage collection occurred frequently and took signifi
cant amounts of time. Lucid Common Lisp Version 2.5 includes an ephemeral gar
bage collector. Consequently, full garbage collection is neither as frequent nor as no
ticeable.

3 *Lisp Language Version 5.2

Version 5.2 of the *Lisp language is substantially the same as Version 5.1. Changes that dis
tinguish 5.2 from its predecessor are described below.

3.1 Reimplemented pref!!

The praf!! macro has been reimplemented to ensure that it does not cause an out-of-memory
condition if the optional collision-mode argument is set to :many-colllsions.

3.2 Structure pvar Pretty Printing

The following dictionary pages document the new ppp-struct function:

Version 5.2 5

ppp-struct [Function]

Prints the contents of the supplied structure pvar in a readable fonnat.

Arguments--

ppp-struct pvar per-line &key :start :end :prlnt-array

:stream :wldth :tltle

pvar

per-line

:start

:end

:prlnt-array

:stream

:width

:tltle

Structure pvar. Pvar to print in readable fonnat.

Positive integer. Number of values to display per line.

Send address of processor at which to start printing. Defaults to O.

Send address of processor at which to stop printing. Defaults to
number-of-processors-Jlmlt .

Boolean. Detennines whether arrays are printed out in full. De
faults to t.

Stream object or t. If supplied, output is written to the specified
stream. Defaults to t, sending output to *standard-output*.

Integer. Width, in characters, of each value displayed. Defaults to 8
characters.

String ornll. Text to display as title line, ornll forno title. Defaults to
name ofpvar's structure type.

Returned Value --------------------

nil Evaluated for side-effect

Side Effects --------------------

The contents of pvar from processor start up to processor end is written to stream in a
readable fonnat.

6 *Lisp Release Notes

Description ---------------------

This function is new with *Lisp Version 5.2.

The function pp~truct attempts to print out the structure pvar pvar in readable fonnat,
with processor values for each slot being shown left to right, one line per slot. The num
ber of values displayed per line is detennined by per-line.

The keyword arguments :start, :end, :prlnt-array, and :stream control the amoUnt, for
mat, and destination of the output exactly as with ppp.

The argument :wldth detennines the printed width of each slot value, and defaults to 8
characters.

The argument :title defaults to t, which specifies that the title printed out is the name of the
*defstruct of which pvar is an instance. If :tItle is nil, no title is printed out If it is a string,
then that string is used as the title.

Examples--------------------------

(*defstruct person
(ssn 0 :type (unsigned-byte 32»
(age 0 :type (unsigned-byte 16»
(height 0.0 :type single-float)
(weight 0.0 :type single-float)
)

(ppp-struct a-person 8 :end 16 :width 10)

*DEFSTRUCT PERSON

SSN: 219101296 545417079 833166928 508389095
945762998 685245194 687147484 442455228
AGE: 43 76 9 96 63
31 59 82
HEIGHT: 0.7566829 6.0384245 6.8458276 2.9526687 6.920122
2.5360777 0.65423644 0.16378379
WEIGHT: 52.873016 11.53174 29.510529 223.5896 244.6509
130.44492 24.180532 214.51915

Version 5.2 7

SSN: 604959766 822929695 445946453 856011938 68420622
724449217 967664808 640359065
AGE: 27 28 88 68 98
66 61 31
HEIGHT: 2.01059 5.2301087 6.1360407 1.8808416 6.919573
5.686286 5.1784062 4.504147
WEIGHT: 82.76129 200.76877 165.2837 48.37853 154.9278
84.00104 16.700924 232.88974

NIL

Notes--

Not implemented in F16 simulator

The ppp-struct operation is not implemented in the simulator version F16, which
corresponds to *Lisp Version 5.2.

3.3 *Lisp Language Restrictions Update

Most previously reported *Lisp language implementation errors and restrictions have been
corrected for the release of *Lisp Version 5.2. The known outstanding bugs and restrictions
are reported again in these release notes. All past issues of Programming in *Lisp In Parallel
may therefore be discarded.

3.3.1 Known Errors Corrected

The following implementation errors reported in In Parallel Vol. n, No.1, August 1989, are
fixed in *Lisp Version 5.2:

grld-from-vp-cube-adr-bug
IIst-of-active-processors-bug
ppp-css-truncates-proc-addresses
pvar-prlnt-functlons-Ignored
ranklng-zero-breaks
star-defstruct-symbollcs-bug

8 *Lisp Release Notes

3.4 Known Errors and Restrictions

All known unintentional language restrictions for Version 5.2 *Lisp operation are reported
here in alphabetical order by bug report ID. Ifnew bugs are discovered, they will be reported
during the coming months in the In Parallel software bulletin, Vol. m.

10 Inltlal-coldboot-geometry-def-falls

Environment

*Lisp (interpreter and compiler) Version 5.1, Sun OS 4.0

Description

The first *coJd-boot operation fails if it specifies an initial-geometry-definition
form. Subsequent calls to *coJd-boot do not fail.

Reproduce By

> (cm:attach)
;;; Loading source file "/cm/configuration/configura
tion.lisp"
16384
> (in-package '*lisp)
*<Package "*LISP" 1A2542E>
> (*cold-boot :initial-geometry-definition

(create-geometry :dimensions ' (1024 1024)
:on-chip-bits ' (0 4)
:off-chip-bits ' (10 0»)

»Error: The symbol CMI::*ALL-GEOMETRIES* has no global val
ue.

SYMBOL-VALUE:
Required arg 0 (S): CMI::*ALL-GEOMETRIES*

:C 0: Try evaluating CMI::*ALL-GEOMETRIES* again
:A 1: Abort to Lisp Top Level
-> :a
Abort to Lisp Top Level
Back to Lisp Top Level

Version 5.2

> (*cold-boot)
16384
(128 128)
> (*cold-boot :initial-geometry-definition

(create-geometry :dimensions ' (1024 1024)
:on-chip-bits ' (0 4)
:off-chip-bits ' (10 0»)

16384
(1024 1024)
>

Notice that the second call to *cold-boot succeeded.

Workaround

There are two workarounds:

1. Don't use this method of specifying the VP set.

9

2. Invoke *cold-boot twice at the beginning of a session: first, without the in
itial-geometry-dejinition specified; and then again, with the initial-geome
try-dejinition specified.

Status

Outstanding.

10 star-pset-or-pref-struct-bug

Environment

*Lisp (interpreter compiler) Version 5.1; any hardware configuration.

Description

In some cases, *pset and pref!! do not work when used across VP sets.

10 *Lisp Release Notes

Specifically. if any pvar argument to either function is a structure pvar with a varia
ble-length slot whose size depends on the size of the current VP set, then execution
will enter the debugger.

Reproduce By

In the following example, slot a of the bugbug parallel structure varies in size based
on the value of *current-send-address-Iength* and therefore causes an error.

;; -*- Mode: LISP; Syntax: Common-Lisp; Base: 10; Pack
age: *LISP -*-
(in-package '*lisp)

(*defstruct bugbug
(a 0 :type fixnum

:cm-type (field-pvar *current-send-address-length*»
(b 0 :type (unsigned-byte 32»

)

(def-vp-set fred (list *minimum-size-for-vp-set*»
(def-vp-set wilma (list (* 2 *minimum-size-for-vp-set*»)

(defun bug ()
(*with-vp-set fred

(*let (dest)
(declare (type (pvar bugbug) dest»

(*with-vp-set wilma
(*let (source)

(declare (type (pvar bugbug) source»
(*when «!! (self-address!!)

(!! (the fixnum *minimum-size-for-vp-set*»)
(*pset :no-collisions source dest (self-address!!)

»»»)

(*warm-boot)
NIL

(bug)

Error: Trying to acess off of the end of field 65536. The
passed field has a length of 41, and the length passed to this
instruction is 42.

CM:MOVE-ALWAYS
Arg 0 (CMI::DESTINATION): 589824

Version 5.2

Arg 1 (CMI::SQURCE): 65536
Arg 2 (LENGTH): 42

s-A, Return to Breakpoint ZMACS in Editor Typeout Window 13
s-B: Editor Top Level
s-C: Restart process Zmacs Windows 6

Workaround

11

Do not use varying length slots in *defstruct fonns when defining parallel structures
that will be passed across VP sets.

Status

This is a pennanent restriction.

12 *Lisp Release Notes

4 *Lisp Compiler Version 5.2

Version 5.2 of the "'Lisp compiler offers substantial improvements over Version 5.1. The fol
lowing changes distinguish 5.2 from 5.1:

• There is now a code walker for the "'Lisp compiler.

• The "'all construct now generates Paris -always instructions.

• The praf!! macro, when called with a non-simple source expression, compiles if the
~set argument is either unspecified or given as "'current-vp-set"'.

These enhancements are further described below, along with a hint about providing correct
declarations.

4.1 *Lisp Code Walker

In Version 5.2, the "'Lisp compiler has been significantly enhanced by the addition of a code
walker. The "'Lisp code walker is an extension of the CommonLoops code walker developed
at Xerox Palo Alto Research Center. CommonLoops, including its codewalker, is generously
made available by Xerox Corporation to the Common Lisp community for the preparation of
derivative works.

The code walker can be enabled and disabled by the user and is disabled by default.

4.1.1 Increased Compilation Scope

The code walker is an extension of the "'Lisp compiler that "walks" through all the individual
forms of a piece of "'Lisp code. It records all declarations it encounters and compiles each
"'Lisp form it finds.

The code walker allows the "'Lisp compiler to:

• Find declarations it would otherwise ignore.

• Generate "'compiled code for "'Lisp expressions that would not otherwise be "'com
piled.

Version 52 13

4.1.1.1 Enhancement of Code Compilation.

As of Version 5.2, the "'Lisp compiler has these new capabilities when the code walker is en
abled:

• "'Lisp declarations are recognized in all locations where Common Lisp allows decla
ration forms. In particular, the "'Lisp compiler can now recognize declarations with
in defun, let, and let* forms without the need to use the *Iocally construct.

• All properly declared "'Lisp forms are compiled, not only those within the scope of a
"'Lisp macro operator such as *set.

4.1.1.2 Enabling the Code Walker

The code walker can be enabled and disabled by the user. It is disabled by default. To enable
the code walker, do either of the following:

1. Type

(compiler-options :class :all)

to display a menu of compiler options. At the bottom of the menu is an item that en
ables/disables the code walker

2. Set the variable slc::*usa-code-walker* to t. For example,

(setq slc::*use-code-walker* t)

enables the code walker for all "'Lisp code that is compiled. Setting slc::*use-code

walker* to nil disables the code walker.

4.1.1.3 Simpler Code Now Complies: An Example

Previously, if one wanted to write a function that "'compiled, one would need to write it like
this:

(defun sum-of-squares!! (x y)
(*locally ;;; *locally to declare arguments x and y

(declare (type single-float-pvar x y»
(*let (result) ;;; declaration of result within *let form

(declare (type single-float-pvar result»
(*set result (+!! (*!! x x) (*!! y y»)
result»)

14 *Lisp Release Notes

With the code walker enabled, the "'Lisp compiler now recognizes declarations in all the
places Common Lisp pennits declarations-without the need for *Iocally. In particular, the
Lisp compiler now recognizes declarations within defun, let, and let forms. A list of all spe
cial forms within which Common Lisp pennits declarations may be found in Common Lisp
the Language, pp. 153-54.

Thus, one can now write the sum-of-squares definition as

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»
(*let (result)

(declare (type single-float-pvar result»
(*set result (+!! (*!! x x) (*!! y y»)
result))

In addition, the "'Lisp compiler now "'compiles all properly declared "'Lisp fonns, not just
those within the scope of a "'Lisp macro operator such as *set. Because of this change, the
sum-of-squares definition may be condensed even further, producing

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»
(+!! (*!! x x) (*!! y y») I;; *let and local variable result

", are no longer needed

which "'compiles into Paris code just as well as the original function definition.

4.1.1.4 Minor Feature - Automatic Declaration of Loop Indices

A minor additional feature of the code walker is that it automatically declares iteration vari
ables as integers, eliminating the need for separate declaration of these variables. For exam
ple,

(dotimes (j 100)
(* set x (* !! x (!! j»»

would not previously "'compile unless (!! (the flxnum J)) were used instead of (ll J>. With the
code walker enabled, special declarations are no longer necessary and this code will "'com
pile.

Version 5.2 15

4.2 Changes to Compilation of *all and prefl!

As of the release of Version 5.1, the *Lisp compiler generates unconditional (-always) Paris
instructions from *all fOImS if the *Lisp compiler option variable *use-always-Instructlon* is
set to t. Previously, the *use-always-Instructlon* variable controlled only whether the *Lisp
compiler used unconditional instructions for temporary stack operations.

As of the release of Version 5.1, the *Lisp compiler can compile a pref!! fOIm that specifies a
non-simple pvar-expression source argument, if the :vp-set keyword argument is either un
specified or given as *current-vp-set*. (Note: This was originally reported in In Parallel Vol.
II, No.1, August 1989, under the ID star-all-now-compiles-to-always.

4.3 Declaration Hint

The following hint is reprinted from In Parallel Vol. II, No.1, August 1989.

10 declaratlon-hlnt

Environment

*Lisp Version 5.1, 5.2; any hardware configuration.

Description

Never declare the result of a *Lisp function that the *Lisp compiler is documented to
handle. At best such a declaration is superfluous and makes the code less readable.
At worst, such a declaration confuses the *Lisp compiler and results in inefficient
compiler output.

Reproduce By

For example, suppose we declare the result of a load-byte!! expression, thus:

(*set (the (field-pvar 16) u16)
(the (field-pvar 16) (load-byte!! x (!! 0) (!! 16»»

16 *Lisp Release Notes

The *Lisp compiler renders this as:

(let* «slc::stack-field (cm:allocate-stack-field 0»
(*lisp-i::*temp-pvar-list* *lisp-i::*temp-pvar-list*»

;; Move (coerce) source to destination - *set.

(cm:move (pvar-location u16)
(pvar-location (load-byte!! x (!! 0) (!! 16») 16)

(cm:deallocate-upto-stack-field slc::stack-field)
nil)

Notice that although the *Lisp compiler normally compiles load-byte!! forms, this
load-byte!! function is not compiled.

In this example, the *Lisp compiler must know the type ofx in order to compile the
load-byte!!.

Workaround

If, instead, we write:

(*set (the (field-pvar 16) u16)
(load-byte!! (the (field-pvar 32) x) (!! 0) (!! 16»)

The *Lisp compiler generates the following:

(progn ;; Load con-
stant size byte out of middle of a pvar -

load-byte! ! .
(cm:move (pvar-location u16) (pvar-location x) 16)
nil)

This is clearly more efficient.

Forms that the *Lisp compiler does not recognize are exceptions to this rule. Declar
ing the type of an expression that the *Lisp compiler cannot compile is reasonable.

Status

This is a penn anent compiler restriction.

Version 5.2 17

4.4 *Lisp Compiler Restrictions Update

Most previously reponed "'Lisp compiler implementation errors and restrictions have been
corrected for the release of "'Lisp Version 5.2. The known outstanding bugs and restrictions
are reponed again in these release notes. All past issues of Programming in "'Lisp In Parallel
may therefore be discarded.

4.4.1 Known Errors Corrected

The following compiler implementation errors reported in In Parallel Vol. II, No.1, August
1989, are fixed in "'Lisp Version 5.2:

dsf-compller-bug
reduce-and-spread-hlgh-safety-err
star-pset-var-Ien~est

4.4.2 Known Errors and Restrictions

All known unintentional compiler restrictions for Version 5.2 "'Lisp operation are reponed
here in alphabetical order by bug repon ID. Ifnew bugs are discovered, they will be reponed
during the coming months in the In Parallel software bulletin, Vol. m.

10 ash-bang-bang-com pller-restrlctlon

Environment

"'Lisp compiler Version 5.1; any hardware configuration.

Description

The "'Lisp compiler requires specification of the length of the count-pvar argument
to the ash!! function. In declarations, do not use non-specific types, such as flxnum.
Instead, use more specific types.

Reproduce By

For example, the "'Lisp compiler will compile the following call to ash!! without
complaint

18 *Lisp Release Notes

(ash!! y (!! (the (unsigned-byte 4) n»)

However, only after issuing a warning and only after assuming that a more specific
declaration was given, will the "'Lisp compiler compile the call below.

(ash!! y (!! (the fixnum n»)

A call such as the one above signals the following warning:

Warning: While compiling (!! (THE FIXNUM N»: Ash!!
returns a result that depends on the size of the
count argument. Using your declaration, this
expression would take up to 2147483679 bits of
stack space.

This warning is signaled because a fixnum declaration assumes a 32-byte argument;
shifting a pvar by 32 bytes yields a pvar that is at least 32 bytes long, which is too
large to represent. The "'Lisp compiler assumes a reasonable declaration and com
piles the expression. Nonetheless, the programmer should change the code to avoid
such warnings.

Workaround

To avoid the warning, change the declaration of the count-pvar variable to some
thing smaller, such as (slgned-byte 5). Again: Do not use flxnum.

Status

This is a permanent compiler restriction.

10 compller-restrlctlons-mlssed-ln-5.1-c1oc

Documentation Error

*Lisp Release Notes Version 5.1

Version 5.2 19

Description

On page 34 of the *Lisp Release Notes for Version 5.1, the following additional
*Lisp compiler restrictions should have been noted:

dpb!! shares the compiler restrictions placed on deposlt-byte!!. Specifically, the val
ue and into-value arguments must be unsigned-byte pvars of definite length. The po
sition and size arguments must be textually of the fonn (!! x), where x must be an inte
ger or a symbol that evaluates to an integer.

Idb!! shares the compiler restrictions placed on load-byte!!. Specifically, the size
pvar argument must be a constant such as (!! x), where x must be an integer or a sym
bol that evaluates to an integer.

Status

These are penn anent compiler restrictions.

20 *Lisp Release Notes

5 *Lisp Simulator Version 5.2

Version F16 of the *Lisp simulator corresponds to *Lisp Version 5.1.

5.1 *Lisp Simulator Restrictions Update

Most previously reported *Lisp simulator implementation errors and restrictions have been
corrected for the release of *Lisp Version 5.2. The known outstanding bugs and restrictions
are reported again in these release notes. All past issues of Programming in *Lisp In Parallel
may therefore be discarded.

5.1.1 Known Errors Corrected

The following simulator implementation errors reported in In Parallel Vol. n, No.1, August
1989, are fixed in *Lisp Version 5.2:

amap-bang-bang-sim-restrictlons
dlvide-bang-bang-sim-bug
lucld-lnterpreted-the-slrn-bug
mlsslng-star-clefuns
rank-bang-bang-slm-bug
star-pset-clest-unlnltlatlzed
slar-setf-of-pref-sim-bug
vector-funs-slrn-bug

5.1.2 Known Errors and Restrictions

All known unintentional simulator restrictions for Version 5.2 *Lisp operation are reported
here in alphabetical order by bug report ID. Ifnew bugs are discovered, they will be reported
during the coming months in the In Parallel software bulletin, Vol. m.

Version 5.2 21

10 coerce-bang-bang-array-slm-bug

Environment

*Lisp simulator Version F16, which corresponds to CM System Software Version
5.1; any hardware configuration.

Description

In the simulator, the coerce!! function does not work when applied to array pvars.

Reproduce By

(coerce!! (!! # (1 1 1) , (vector-pvar single-float 3»

Workaround

Compose amap!! with a single-argument type conversion function such as float!! or
complex!!. For example, the line of code above may be rewritten as:

(amap!! 'float!! (!! #(111»)

Status

Outstanding.

10 star-pset-vold-wlth-array-or-struct-slm-bug

Environment

*Lisp simulator version F16, which corresponds to CM System Software Version
5.1; any hardware configuration.

Description

The ·pset macro does not work properly if called with a void pvar as the destination
and with an array or structure pvar as the source.

22

Reproduce By

> (*defvar foo)
FOO

*Lisp Release Notes

> (*proclaim ' (type (vector-pvar single-float 3) bar»
NIL
> (*defvar bar (!! #(1.0 1.0 1.0»)
BAR
> (*pset :no-collisions bar foo (self-address! !»
»Error: You cannot *PSET a pvar of type

(PVAR (ARRAY (DEFINED-FLOAT 23 8) (3»)
into a pvar of type (PVAR *)

Workaround

Derme the destination pvar as an array or structure pvar instead of as a void pvar.

Status

Outstanding.

Version 5.2 23

6 *Lisp Library Version 5.2

As of Version 5.2, a new set of *Lisp functions and macros is available in the fonn of an on
line software library. Please note that all code included in the library is experimental. Users
are welcome to make use of the library code at their own risk, with the understanding that
some or all of these functions and macros may not be supported in future releases.

6.1 Accessing the *Lisp Library

The *Lisp library code is available in the di~ctory

/cm/starlisp/library/f5201/*

On-line documentation for the library functions and macros is available in the me

/cm/starlisp/library/f5201/documentation.text

Ask your systems administrator to help you locate these files at your site.

All functions in the library are defined to autoload on demand. When anyone function in a
given interface file is autoloaded, the rest of the functions in that interface file are also auto
loaded.

6.2 *Lisp Library Contents

The following interface files are included in the *Lisp library directory for Version 5.2:

• AREF32-SHARED

• FFI'

• MATRIX-MULTIPLY

• FAST-RNG

Lookup table interface

CMSSL Fast Fourier Transfonn interface

CMSSL matrix multiplication interface

Fast random number generator

• ROW-AND-COLUMN-MAJOR Row/column major address interface

• LET-ALIAS

• COLLECTED-MACROS

Temporary storage reduction tool

Useful macros

24 *Lisp Release Notes

New and possibly incompatible interfaces for the CMSSL matrix multiplication and FFr rou
tines will become available with the next version of the CMSSL.

7 *Graphics Version 5.2

With the release of Version 5.2, a facility known as *Graphics becomes available. *Graphics
is a *Lisp interface to the eM Graphic Programming environment Documentation for
*Graphics can be found in the *Graphics Reference Manual, included in the volume entitled
Connection Machine Graphics Programming.

