
The
Connection Machine
System

*Lisp ~elease Notes
•••• IIIBf •.. till· ~._L! till) ;;;!H~\Ba!

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear
in this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-l, CM-2, CM-200, and DataVault are trademarks of Thinking Machines Corporation.
*Lisp, and LisplParis are trademarks of Thinking Machines Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Lucid Common Lisp is a trademark of Lucid, Inc.
Sun, SunOS, Sun Common Lisp, and Sun-4 are registered trademarks of Sun Microsystems, Inc.
CMSSL is a trademark of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
VAX, ULTRIX, and V AXBI are trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X-Window System is a trademark of the Massachusetts Institute of Technology.
CommonLoops is a trademark of Xerox Corporation.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-1000/876-1111

(
\

I
(

\

Contents

About These Release Notes .. vii

Customer Support .. xi

1 About *Lisp Version 6.1 .. 1

2 Porting to Version 6.1 ... 2

2.1 Obsolete Language Features . 3

3 *Lisp Documentation ... 4

3.1 New Documentation .. 4

3.2 Current Documentation ... 4

3.3 Obsolete Documentation .. 5

3.4 *Lisp On-Line Code Examples..... 5

4 *Lisp Language Version 6.1 .. 6

4.1 New Features of*Lisp .. 6

4.1.1 New Stack Memory Tracing Utility .. , . 6

4.1.2 New Function and New Function Arguments. 6

4.1.3 Faster Execution of Communication Functions 6

4.2 Automatic Promotion of Scalar Arguments. 7

4.2.1 Enabling and Disabling Scalar Promotion 8

4.2.2 Operations That Do Not Promote Scalar Arguments 8

4.2.3 Other Cases Where Scalar Promotion Does Not Apply 9

4.3 *Lisp Language Restrictions Update lO

4.3.1 Known Restrictions Still Open. lO

10 star-defstruct-redefinition-bug 10

5 *Lisp Interpreter Version 6.1 12

5.1 Interpreter Restrictions .. 12

Version 6.1, October 1991 iii

iv
mLJ:: " i : : .: !!1m::: I Xliii lIIii!:mimM.W!I!iiiEifiiLiilEii i :

*Lisp Release Notes
Ii iI 111 w.I.!Eillifli iii:: :miMn ii M i !I miliiiiiiil[jjllll!lli

6 *Lisp Compiler Version 6.1 .. . 13

6.1 *Lisp Compiler Enhancements•.........................•.. 13

6.1.1 NewTypeAlias .. . 13
6.1.2 Compiled Code Printing Macro Now External 13

6.2 *Lisp Compiler Limitations 14

6.2.1 *Lisp Operations That Don't Compile 14

6.2.2 *Lisp Compiler Restrictions 15

6.3 Special Forms That Compile 16

6.4 Type Declarations and the *Lisp Code Walker 17

6.4.1 The Code Walker 17

6.4.2 Effect of Code Walker on Code Compilation. 17

6.4.3 Enabling and Disabling the Code Walker 18

6.4.4 Using the Code Walker: An Example 18

6.5 *Lisp Compiler Implementation Errors Update 20

6.5.1 Known Errors Still Open 20

10 long-progn-compiler-stack-problem 20

6.6 Miscellaneous Compilation Notes 21

6.6.1 Warnings on Non-compiled Code 21

6.6.2 *Lisp Compiler Warning Level and Safety Level Options 21

7 *Lisp Simulator Version 6.1 .. . 22

7.1 *Lisp Simulator Is Freely Available 22

7.2 *Lisp Simulator Restrictions Update 23

7.2.1 Known Simulator Restrictions 23

7.2.1.1 Restriction on Pvar Types 23

7.2.1.2 Abort and Cold Boot Problem 23

7.2.2 Known Implementation Errors 24

10 lucid-exit-from-sim-bug 24

7.2.3 Notes on Simulator Use 25

7.2.3.1 Porting Code 25

7.2.3.2 Conditional Simulator Compilation and Execution 25

Version 6.1, October 1991

(

(

\.

(

Contents v

8 Sun and Lucid Common Lisp .. 27

8.1 Differences between Sun and Lucid Common Lisp .. 27

8.2 The *Lisp Compiler and the Common Lisp Compiler . 29

8.3 Common Lisp Implementation Errors and Restrictions 29

8.3.1 Known Errors Still Open 30

10 lucid-byte-specifier-size-limit............................ 30

10 lucid-describe-bus-error-on-pvar 31

10 non-standard-file-Ioad-problem 31

9 *Lisp Library 6.1 ... 33

9.1 *Lisp Library Contents. 33

9.2 *Lisp Library Restrictions Update.. 33

9.3 Accessing the *Lisp Library 34

10 *Graphics Version 6.1 . 35

10.1 Improvements in Version 6.1 35

11 Fast Graph .. 35

Version 6.1, October 1991

(

c

About These Release Notes

Objectives of This Manual

The *Lisp Release Notes Version 6.1 describe new and changed features of *Lisp introduced with
Connection Machine System Software Version 6.1. The *Lisp Release Notes also provide useful
programming information not contained in other *Lisp documentation.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common Lisp:
The Language, and of *Lisp, as described in the current *Lisp documentation. The reader is also
assumed to have a general understanding of the Connection Machine (CM) system.

Revision Information

These release notes are new with *Lisp Version 6.1, and replace all previous release notes.

Organization of These Release Notes

1. About Version 6.1
Describes the *Lisp system, the current *Lisp documentation set, and summarizes the

changes and enhancements made to *Lisp in Version 6.1.

2. Porting to Version 6.1
Explains how to port *Lisp code developed in versions prior to Version 6.1, and provides

a list of obsolete *Lisp language features.

3. *Lisp Documentation
Describes new, current, and obsolete *Lisp documentation as of Version 6.1.

4. *Lisp Language Version 6.1
Describes language features that are new and enhanced in Version 6.1, and lists known

*Lisp language implementation errors.

5. *Lisp Interpreter Version 6.1
Lists known *Lisp interpreter restrictions.

Version 6.1, October 1991 vii

viii *Lisp Release Notes
mw: II j Ii::::::!,::;'::: :m:::: 1.%' i ': ':: :w,'M;, iEL::::::::::8l£, ~m:u::::::::::r:::~::m!ii::::m:::::::::II!::,::::I!Ji:::liiii:iIii:;::i:

6. *Lisp Compiler Version 6.1
Describes compiler features that are new and enhanced in Version 6.1, and lists known
*Lisp compiler implementation errors and restrictions.

7. *Lisp Simulator Version 6.1
Describes simulator features that are new and enhanced in Version 6.1, and lists known
*Lisp simulator implementation errors and restrictions.

8. Sun and Lucid Common Lisp
Describes the Lucid Common Lisp environments needed to run *Lisp on Sun-4 and VAX
front ends, and lists known Lucid-related implementation errors.

9. *Lisp Library Version 6.1
Describes updates to library of *Lisp source code in Version 6.1.

10. *Graphics Version 6.1
Describes *Lisp interface to the eM graphic programming environment.

11. Fast Graph
Describes Fast Graph grid communication optimization package.

Related Manuals

•

•

Getting Started in *Lisp

This manual provides a tutorial introduction to the *Lisp language, and includes the infor
mation you need to get started in writing, compiling, and debugging *Lisp programs.
Appendixes provide basic introductions to the CM and to important Paris functions.

*Lisp Dictionary

This manual provides a complete dictionary-format listing of the functions, macros, and
global variables available in the *Lisp language. It also includes helpful reference material
in the form of a glossary of *Lisp terms, a guide to using type declarations in *Lisp, and
an extensive list of *Lisp compiler options. Except as noted in these release notes, the Dic
tionary is the most accurate and current description of the *Lisp language.

• eM User:SO Guide

This document provides helpful information for users of the Connection Machine system,
and includes a chapter on the use of *Lisp on the CM, including information about how to

call Paris functions from *Lisp programs.

Version 6.1, October 1991

(

\

J

About This Manual! Preface ix

•

•

Connection Machine Parallel Instruction Set (paris)

The Paris manual describes the low-level parallel instruction set of the Connection Machine
system. *Lisp programmers who want to make use of Paris calls in their programs should
also refer to this manual.

Common Lisp: The Language, Second Edition, by Guy L. Steele Jr. Burlington, Mass.:

Digital Press, 1990.

The first edition of this book (1984) was the original definition of the Common Lisp lan
guage, which became the de facto industry standard for Lisp. ANSI technical committee
X3J13 has been working for several years to produce an ANSI standard for Common Lisp.
The second edition of Common Lisp: The Language contains the entire text of the first edi
tion, augmented by extensive commentary on the changes and extensions recommended by
X3J13 as of October 1989.

Notation Conventions

The notation conventions used in this manual are described below.

Convention

boldface

italics

typewriter

> (user-input)
lisp-output

Version 6.1, October 1991

Meaning

*Lisp language elements, such as :keywords, functions, macros, path
names, etc., where they appear embedded in text.

Argument names and placeholders in descriptions of function syntax.

Code examples and code fragments not embedded in text.

In interactive examples, what you type is in bold typewriter,
and what *Lisp displays in return is shown in typewri ter font.

/

\

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that person direct
ly for support. Otherwise, please contact Thinking Machines' home office customer support staff:

u.s. Mall:

Internet
Electronic Mall:

uucp
Electronic Mall:

Telephone:

For Symbolics Users Only

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

customer-support@think.com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.

xi

(

/---

1 About *Lisp Version 6.1

The *Lisp language is a parallel extension of Common Lisp for the Connection Machine ®

massively parallel computing system. *Lisp programs are written in Common Lisp, and
include calls to *Lisp operations that control the CM.

Thinking Machines Corporation's implementation of *Lisp includes:

•

•

•

The *Lisp interpreter, which executes *Lisp code interpretively on the Connection
Machine system.

The *Lisp compiler, which translates *Lisp code into compiled Lisp/Paris code for
faster execution.

The *Lisp simulator, which executes *Lisp code on a serial front-end computer
alone, simulating the operations of the Connection Machine system.

The *Lisp interpreter and compiler can be used from within a Common Lisp environment
on any Connection Machine (CM) front end. CM front ends currently supported include
Sun-4 Workstations running the UNIX operating system, Digital Equipment Corporation
VAX machines running the ULTRIX operating system, and Symbolics 3600-series Lisp ma
chines.

The *Lisp simulator can be run on any machine with a Common Lisp language environ
ment. CM hardware is not required to run the simulator.

*Lisp Version 6.1 requires Connection Machine System Software Version 6.1, and runs on
the following front-end Lisp software:

•
•
•

Sun Common Lisp Version 4.0 on Sun-4 front ends

Lucid Common Lisp Version 2.5 on VAX front ends

Genera 8.1 on Symbolics 3600-series front ends.

See Section 8 for more information about Sun Common Lisp 4.0 and Lucid Lisp 2.5.

Version 6.1, October 1991 1

2 *Lisp Release Notes

2 Porting to Version 6.1

Version 6.1 is a minor *Lisp release. It includes a number of small language enhancements,
and introduces one important new operation, trace-stack.

*Lisp source code written in previous versions of*Lisp (S.n, 6.0) will run unchanged under
Version 6.1. However, *Lisp programs compiled under previous versions must be
recompiled to run under Version 6.1.

The following changes distinguish Version 6.1 from previous versions:

New Stack Memory Tracing Function. The utility function trace-stack has been add
ed to "'Lisp. It can be used to trace CM stack memory usage in a *Lisp program.

New Scalar Function. The function vi, a scalar equivalent to vI!!. has been added

New Arguments to Array Copying Functions. The *Lisp functions array-to-pvar

and pvar-to-array now include :start and :end keywords that are identical to (and re
place) the existing :cube-address-start and :cube-address-end keywords. (These are
now obsolete and should not be used.)

New Type Alias. The type alias fixnum-pvar can now be used in place of (pvar fixnum).

*Lisp Compiler Code-viewing Macro. The macro ppme, previously an internal func
tion of the compiler, has been made external in the *Lisp package. This macro can be
used to view compiled code produced by the *Lisp compiler.

Version 6.1 includes the following changes in software versions and availability:

New Versions of Sun Common Lisp and Genera Software. *Lisp has been updated
to use Version 4.0 of Sun Common Lisp and Release 8.1 of Genera.

*Lisp Timesharing Bands Now Available. *Lisp runs on timeshared eMs, and *Lisp
timesharing software bands are available.

New Version of *Lisp Simulator. Version F19 of the simulator is now available.

Version 6.1 *Lisp also includes the following incidental improvements:

Faster Execution of Communication Functions. The *Lisp operations pref!! and
*pset now execute faster, due to improvements at the Paris level.

Faster Image Transfer. *Graphics users will notice faster transfer of images to dis
plays because of improvements of the low-level graphics code.

Version 6.1, October 1991

/
i",

(

"

(

*Lisp Release Notes 3

2.1 Obsolete Language Features

An obsolete language feature is one that is no longer supported and should not be used in
new *Lisp code. Features documented as obsolete are not guaranteed to work in future
versions of the *Lisp language.

As of Version 6.1, the following language features are obsolete:

The archaically named :cube-address-start and :cube-address-end keyword argu
ments to array-to-pvar and pvar-to-array are now obsolete. They have been replaced
by the functionally identical keywords :start and :end.

All obsolete *Lisp operations reported prior to Version 6.1 are listed below, along with the
currently existing operations that should be used in their place.

Obsolete Operator(s):
dsf-v+l!, dsf-v-!!, dsf-v*!I

sf-v+lI, sf-v-I!, sf-v*!!

dsf-cross-product!I

dsf-vector-normalll

dsf-vscale-to-unit-vectorl'

sf-cross-product!1

sf-v+-constantll

sf-v--constantll

sf-v*-constantl!

sf-v/-constant! I

sf-dot-product!1

pref-grid

pref-grid!l

pref-grid-relative! I

*pset-grid

*pset-grid-relative

scan-grid!!

(setf (pref ... »
(setf (prefl! ... »
with-*Iisp-from-paris

with-paris-from-*Iisp

Version 6.1, October 1991

Replaced by:
v+lI, v-I!, v*1I

v+!!, v-I!, v*!I

cross-productll

vector-normalll

vscale-to-unit-vectorll

cross-productll

v+scalarll

v-scalarll

v*scalarll

v/scalar!l

dot-productll

pref with grid

pref!l with grid!!

newsll, prefll

*pset with grid!!

*news, *pset

scan!! with :dimension keyword
(*setf (pref ... »
(*setf (pref!l ... » or *pset

No longer needed
No longer needed

4 *Lisp Release Notes
;m~!I!I!i!i!I!!! : ; I Iillilill: j I : II iii:;:;:: i ::::::::::::: I II : I III! : ! I :!!li!lllili!!:::: Ii i :: !l IUi::::!iiill:il::: ;;; J! [Emili: : I ill:: WI

3 *Lisp Documentation

3.1 New Documentation

As of Version 6.1, the following new *Lisp document is available:

• Getting Started in *Lisp, Version 6.1, June 1991

Getting Started in *Lisp provides a tutorial introduction to the *Lisp language, as well as
an overview of the programming, compiling, and debugging tools of the language. The
appendixes of this document provide helpful information for new users of the CM.

3.2 Current Documentation

The following documents provide important conceptual and reference information on the
*Lisp language:

• Getting Started in *Lisp, Version 6.1, June 1991

This document is new as of Version 6.1, and is described above.

• The *Lisp Dictionary, Version 6.1, October 1991

The *Lisp Dictionary is a complete reference source for *Lisp. It includes a list of
all *Lisp operators, descriptions of important global variables, and a complete dic
tionary entry for each function and macro in the *Lisp package. The *Lisp
Dictionary also includes a glossary of important terms used in *Lisp, a chapter on
*Lisp pvar types and type declaration, and a chapter listing the numerous options
of the *Lisp compiler.

• The CM User's Guide, Version 6.1, October 1991

The Connection Machine System User's Guide provides helpful information for
users of the Connection Machine system, and includes a chapter devoted to the use
of *Lisp and LisplParis on the Connection Machine, including information on run
ning *Lisp in batch and timesharing modes.

• The *Lisp Release Notes, Version 6.1, October 1991

Finally, the *Lisp Release Notes document all changes to *Lisp as of Version 6.1.

Version 6.1, October 1991

(

(

\

*Lisp Release Notes 5
_ilf~MMW.t~1tiM(@,"".&@'illlrnW~.4El@lMtiWMw.oo1@'~mml~mr~~~:Mml':MI

3.3 Obsolete Documentation

The following documents are also available, but have been largely replaced by those listed
above.

•
•
•

The *Lisp Reference Manual, Version 5.0, revised October 1988

The Supplement to the *Lisp Reference Manual, Version 5.0, October 1988

The *Lisp Compiler Guide, Version 5.0, October 1988

The *Lisp Reference Manual and Supplement provide some useful conceptual information
on the *Lisp language. However, all reference material in these documents has been super
seded by the information contained in the *Lisp Dictionary and Getting Started in *Lisp.
Other than as noted in these release notes, the material in the *Lisp Dictionary is the most
current and correct. The *Lisp Compiler Guide likewise provides useful information about
*Lisp compiler, but users of the *Lisp compiler will also want to consult the chapters on
type declaration and compiler options in the *Lisp Dictionary, the chapter describing the
compiler in Getting Started in *Lisp, and the update information about the compiler in
cluded in these Release Notes.

3.4 *Lisp On-Line Code Examples

Examples of*Lisp code are available on-line in the following directories. Ask your system
administrator or applications engineer to help you locate these files at your site.

/cm/starlisp/interpreter/f6100/*example*.lisp
/cm/starlisp/graphics/f6100/examples.lisp

Code examples are also available to Connection Machine Network Server users in the
CMNS I arahi ves directory.

Version 6.1, October 1991

6 *Lisp Release Notes

4 *Lisp Language Version 6.1

4.1 New Features of *Lisp

This section describes changes and additions made to the *Lisp language in Version 6.1.

4.1.1 New Stack Memory Tracing Utility

, *Lisp now includes a function, trace-stack, that you can use to trace the stack memory
usage of your program, and thereby determine what parts of your code are using the most
stack memory (that is, creating the most local or temporary pvars). Version 6.1 of the *Lisp
Dictionary includes an entry for trace-stack that provides a complete description of this
function, along with numerous examples.

4.1.2 New Function and New Function Arguments

The scalar function vI has been added, by analogy with v+ and v*, to serve as the scalar
equivalent of vIII.

The *Lisp functions array-to-pvar and pvar-to-array now include :start and :end keywords.
These are identical to (and replace) the existing :cube-address-start and :cube-address

end keywords. The :cube-address arguments are obsolete as of Version 6.1, and should not
be used in new code.

4.1.3 Faster Execution of Communication Functions

Thanks to improvements in the underlying Paris code, the *Lisp communication operators
prefll and *pset now execute up to 50% faster, depending on the communication pattern and
the current VP ratio. Code run at high VP ratios will most likely obtain the most significant
speed improvement.

Version 6.1, October 1991

(
'\

(

*Lisp Release Notes 7

4.2 Automatic Promotion of Scalar Arguments

This feature of *Lisp was added in Version 6.0. Previously, in order to supply a constant
pvar argument to a *Lisp operator, it was necessary to use the II operator, as in the follow-
ing function call: .

(+!! pvar-x (!! 3) (!! constant))

Currently, all functions and macros in *Lisp that accept constant pvars as arguments will
now accept scalar constants as well, and will automatically convert those scalars into con
stant pvars, as ifvia a call to II. SO, for example, the above function call could be rewritten
as:

(+!! pvar-x 3 constant)

This feature is available within function definitions, as well. For example,

(defun foo (x)
(declare (type single-float-pvar x))
(+!! x (!! 2.0)))

may be rewritten as

(defun foo (x)
(declare (type single-float-pvar x))
(+!! x 2.0))

This feature is implemented in both the *Lisp interpreter and the *Lisp compiler, as well
as in the *Lisp simulator.

Version 6.1, October 1991

8 *Lisp Release Notes
::I: 111 I I:: : Iii II::::: :: :: !l{: I :::::::1%:: I: ::u:::} r: :II:IIIJlil!li! : i m~ ii ::: m::::::m::::m:mlli:::Iiiiill11::iE::;iilm::::r::r::::Iii:: II ::

4.2.1 Enabling and Disabling Scalar Promotion

Scalar promotion is enabled by default. It may be disabled independently in the interpreter,
the compiler, and the simulator by modification of one of three global variables. To disable
conversion of scalar arguments:

•
•

in the *Lisp interpreter, set the variable *lIsp-l::*convert-scalar-args-p* to nil

in the *Lisp compiler, set the variable slc::*promote-scalars* to nil

• in the *Lisp simulator, set the variable *lIsp-i::*convert-scalar-args-p* to nil

A pair of utility functions is provided that enable/disable the scalar promotion feature:

• to enable scalar promotion, call the function (*lisp-i::enable-scalar-promotion)

• to disable scalar promotion, call the function (*lisp-i::disable-scalar-promotion)

4.2.2 Operations That Do Not Promote Scalar Arguments

A small number of *Lisp operators that accept pvars as arguments do not automatically
promote scalars to pvars. Most of these operators do not accept temporary constant pvars
as arguments, and therefore cannot accept scalar constants as arguments. A few operators,
in particular *apply, and *tuncall, accept scalar constants as arguments and therefore cannot
unambiguously promote scalars to pvars.

The following operators do not automatically promote scalars to pvars:

II alias II *apply
array-to-pvar array-to-pvar-grid create-segment-setll

*deallocate describe-pvar *funcall

*nreverse *processorwise pvar-exponent-length

pvar-length pvar-Iocation pvar-mantissa-iength

pvar-name pvar-pllst pvar-type

pvar-vp-set pvarp *sideways-array

sideways-array-p *slicewise typepll

Version 6.1, October 1991

(

(

*Lisp Release Notes 9
@IW~~'W_}''m!iili1[@jl$lm!@Wli~~{iWMiW.iW;SWiWWiWW&w.miW@'fiw.$MtW?,%~t."",,:: ,,,,,.~_

4.2.3 Other Cases Where Scalar Promotion Does Not Apply

User-defined functions may require the use of II to supply constant pvar arguments, in par
ticular functions that pass their arguments to a *Lisp operator that does not perform scalar
promotion. Also, if an argument to a compiled user-defmed function is declared to be a
pvar, scalar values cannot be provided for that argument. In these cases the ! I operator must
be used.

For example, if the following function definition is compiled:

(defun foo (x y)
(declare (type (field-pvar 32) x y»
(+!!xy»

(compile 'fool

Then a function call such as

(foo 3 4)

will fail because the *Lisp compiler generates Paris code that assumes x and y are pvars.
In particular, if the *Lisp compiler safety level (*safety*) is not zero, the *Lisp compiler will
add error-checking code to determine whether x and y are really field pvars.

One other case is that the *Jet form

(*let ((x nil» ...)

will not perform scalar promotion on the nil initialization form, because supplying nil as an
initialization form indicates that the pvar x should not be initialized. The proper way to
create a local pvar with nil in every processor is:

(*let ((x nil!!» ..•)

Version 6.1, October 1991

10 *Lisp Release Notes

4.3 *Lisp Language Restrictions Update

Most previously reported *Lisp language implementation errors and restrictions have been
corrected for the release of *Lisp Version 6.1.

The known outstanding bugs and restrictions are reported again in these release notes. All
past issues of Programming in *Lisp In Parallel and all previous *Lisp Release Notes may
therefore be discarded.

4.3.1 Known Restrictions Still Open

The following restriction is still open:

10 star-defstruct-redefinition-bug

Environment

*Lisp, Version 6.0; any front end; any eM configuration.

Synopsis

Redefining a parallel structure results in a *Lisp compiler error in one particular
case.

Description

Suppose a parallel structure named plugh is defmed (using *defstruct) with two
slots, a and b. Further suppose that plugh is then redefined without the b slot. Now,
if an independent function that happens to be called plugh-bll is also defmed, then
an attempt to compile a call to plugh-bll causes the *Lisp compiler to generate
internal consistency errors.

Versio1l 6.1, October 1991

(

\

(
\

(

*Lisp Release Notes

Reproduce By

(*defstruct plugh (a nil :type boolean)
(b nil :type boolean»

(*defstruct plugh (a nil :type boolean»
(defun plugh-b!! (x) (1+!! x»
(de fun bug (dest source)

(*set (the boolean-pvar dest)
(plugh-b!! (the (pvar plugh) source»»

(compile 'bug)
Warning (not associated with any definition) :

11

Internal inconsistency, assumption failed, while compiling
(the (pvar plugh) source). Trying to compile a structure
accessor, but I don't know what type it is [...]

Workaround

Set the property list of the function name to nil:

(setf (symbol-plist 'plugh-b!!) nil)

Status

Open.

Version 6.1, October 1991

12 *Lisp Release Notes
Ii :: :ii ill : I ::! I JilIIiI:ll:ill::::lllill::::i : II I ; II illl! I I :i_ill I Iil-; i g: -; ::::::liliJii 11:::::::::::::11:: I I:m II !Ii

5 *Lisp Interpreter Version 6.1

The *Lisp interpreter runs on top of either Lucid Common Lisp or Symbolics Common
Lisp and executes *Lisp code on the eM in an interpretive manner.

5.1 Interpreter Restrictions

The following restrictions, which existed in previous versions, still apply in Version 6.1:

The Common Lisp functions proclaim and setf are still redefmed by *Lisp. This has caused
problems in a *Lisp environment on a Symbolics Lisp machine with compilation of Lisp
files that are independent of *Lisp and that have been subsequently loaded into an environ
ment without *Lisp. In a future release, proclaim and setf may no longer be redefmed by
*Lisp and this problem will no longer exist.

Several functions that take integer arguments are restricted in that the arguments may not
exceed the length of cm:*maximum-integer-Iength*. These functions are isqrtl!, f1oatl!, *I!,
f1oorll, truncatell, ceiling II, roundll, modI!, and reml!. This problem occurs in both the inter
preter and the compiler; it reflects Paris restrictions.

For segmented scans, as for non-segmented scans, the floating-point numbers scanned are
normalized with respect to the maximum value in the entire pvar, across all segments. They
are not normalized with respect to the maximum value within a segment only. As a result,
the values for scans computed for certain segments - those with values of a much smaller
order of magnitude than the maximum - may be lost entirely. Only segments containing
values of the same order of magnitude as the maximum value across all segments will have
meaningful results.

Version 6.1, October 1991

(

*Lisp Release Notes 13

6 *Lisp Compiler Version 6.1

The *Lisp compiler is compatible with and executes as part of the Common Lisp compiler.
Virtually all *Lisp operations can be compiled when properly declared; those that cannot
be compiled run interpreted. For *Lisp operations that are compiled, the *Lisp compiler
generates compiled Lisp/Paris code that runs more efficiently than interpreted *Lisp. If the
compiler warning level (*warning-Ievel*) is set to :high, the *Lisp compiler will signal an
error whenever it encounters *Lisp code that cannot be fully compiled.

6.1 *Lisp Compiler Enhancements

This section lists enhancements, corrections, and restrictions to the compiler in Version 6.1.

6.1.1 New Type Alias

The following type declaration has been added:

fixnum-pvar <=> (pvar fixnum)

This declaration can be used with all *Lisp declaration operators, including declare and
*proclaim.

6.1.2 Compiled Code Printing Macro Now External

The macro ppme, previously an internal function of the compiler, has been made external
in the *Lisp package. This macro can be used to view compiled code produced by the *Lisp
compiler. The *Lisp Dictionary entry for ppme provides a description and examples of this
operator.

Version 6.1, October 1991

14 *Lisp Release Notes

6.2 *Lisp Compiler Limitations

This section describes the current limitations of the *Lisp compiler.

6.2.1 *Lisp Operations That Don't Compile

The following *Lisp operations do not compile as of Version 6.1. (This list supersedes all
such lists included in the *Lisp Release Notes for previous versions.)

address-nth II

address-plus-nth II

address-rank! I

create-segment-set!1

segment-set-scanll

Parallel sequence operations do not compile. These operations are listed below.

copy-seqll

*fill
lengthll

*nreverse

subseqll

every!!

count!!

findll

nsubstitutell

positionll

substitutell

notanyll

count-ifll

find-ifll

nsubstitute-ifll

position-if!!

substitute-ifll

notevery!l somell

count-if-not! I

find-if-notll

nsubstitute-if-notll

positlon-If-notll

substitute-if-notll

The one exception is the reduce!! operation, which compiles in limited cases (see Section
6.2.2, below).

Version 6.1, October1991

(

\

*Lisp Release Notes 15

6.2.2 *Lisp Compiler Restrictions

The following *Lisp operations compile with specific restrictions.

ashll [Function]

This operation will not compile if the bit-length of the count-pvar argument is not explicit
ly declared, because the amount of space allocated by the compiler for an ashll operation
depends on the bit-length of this argument.

If the count-pvar argument is declared to be of a data type whose length is unspecified,
such as fixnum in (ash!! (the (unsigned-byte 4) pvar) (II (the fixnum x))), the compiler will
signal an error because there is not enough space to represent the result produced by the
largest possible value for this argument. (Specifically, if x had the value 232 then ash!!

would try to create a pvar roughly 232 bits in length!)

Declarations that explicitly specify the length of the count-pvar argument will compile.
For example, (ashll (the (unsigned-byte 4) pvar) (the (field-pvar 4) x-pvar)) will compile be
cause the result can at most be 19 bits in length (4 bits from the source pvar, shifted by up
to 15 bits as specified by x-pvar).

code-charll int-charll make-char!l [Function]

These operations will only compile when used as an argument to a *Lisp operation that
expects a character pvar, such as *set or character/!.

digit-char-pll [Function]

This operation only compiles when used as an argument to a *Lisp operation that expects
an integer pvar as its argument, such as *set.

gridll grid-relative II

These operations will compile only in restricted circumstances, specifically when they are
used as arguments to the *pset or prefll operators.

prefll [Macro]

If the pvar-expression argument is not a simple expression, such as a variable, this opera
tion will only compile when the :vp-set argument is either unspecified or *current-vp-set*.

Version 6.1, October 1991

16 *Lisp Release Notes
j : m ::1 : I llllii II II Ii! I !i Ei II I I lUI!!: i I I I II; i!IUI!: III i III mm [!!Ii!1U: III : I ill : I III! lEI 1:::::: :1: 11Iii11::::::::[[llliiiill!i:::::I!IIi!ll!i!!l111

*pset [Macro]

The *pset operation will not compile with the :default combine-method argument; use the
:no-collisions option instead. Also, *pset does not yet compile with the :queue combine
method argument.

reducell [Function]

The reducell operation will not compile if given a user-defined function as its function
argument, and also will not compile if any of its keyword arguments are specified.

scanll [Function]

This operation will compile only ifthefunction argument is one of the specialized scanning
operators such as +11, maxll, min!!, etc. Ifthefunction argument is *11, then scanll will com
pile, but only if pvar is a floating-point pvar.

6.3 Special Forms That Compile

The following Common Lisp special fonns are recognized and handled by the *Lisp com
piler:

compiler-let

multiple-value-blnd

let let*

multiple-value-let

progn

All other Common Lisp special fonns, in particular If and similar conditionals, require ex
plicit declaration of their returned value in order to be compiled by the *Lisp compiler.

Version 6.1, October 1991

(

(

*Lisp Release Notes 17
K'&lWMTh~~Wiw.~mm.>~:j:!;::·:!:;~::::::::i:ili~:::;:i""':~m~d~

6.4 Type Declarations and the *Lisp Code Walker

The *Lisp compiler is enabled by default. The *Lisp compiler can compile virtually all
*Lisp statements into compiled LisplParis. Any *Lisp statement that cannot be translated
is interpreted by the *Lisp interpreter.

The key to effective use of the *Lisp compiler is complete and correct declaration of *Lisp
code. Users of the *Lisp compiler will want to consult Chapter 4, "*Lisp Type Declara
tion," in the *Lisp Dictionary, for guidelines and examples of proper declaration of *Lisp
code.

6.4.1 The Code Walker

The *Lisp compiler includes a code walker that allows it to compile *Lisp code more
thoroughly. The code walker is an extension of the *Lisp compiler that "walks" through all
the individual forms of a piece of *Lisp code. It records all declarations it encounters and
compiles each *Lisp form it fmds. The code walker can be enabled and disabled by the
user. It is enabled by default.

The code walker allows the *Lisp compiler to:

• Find declarations it would otherwise ignore .

• Compile code for *Lisp expressions that would not otherwise be compiled .

The *Lisp code walker is an extension of the CommonLoops code walker developed at
Xerox Palo Alto Research Center. CommonLoops, including its code walker, is generously
made available by Xerox Corporation to the Common Lisp community for the preparation
of derivative works.

6.4.2 Effect of Code Walker on Code Compilation.

The *Lisp compiler has these capabilities when the code walker is enabled:

• *Lisp declarations are recognized in all locations where Common Lisp allows
declaration forms. In particular, the *Lisp compiler can now recognize declara
tions within defun, let, and let* forms without the need to use the *Iocally construct.

• All properly declared *Lisp forms are compiled, not only those within the scope
of a *Lisp macro operator such as *set.

Version 6.1, October 1991

18 *Lisp Release Notes
iir::::::::::::m:::::iim::.i::Eii!lliEiC:::::illm:::::::n::::::i::::::::.i .: i ::mIn:::: Hi.: :: *::1.1::: !: :::!iI.i:Iii!U; ;. : .! n.::::::::: : : : Jiiiil:[

A minor feature of the code walker is that it automatically declares dotimes iteration vari
ables as integers, eliminating the need for separate declaration of these variables. For
example, with the code walker disabled, the following expression will not compile unless
(/I (the fixnum J)) is used instead of (II 1). With the code walker enabled, special declarations
are unnecessary and this code will compile as is:

(dotimes (j 100)
(*set x (*!! x (!! j»»

6.4.3 Enabling and Disabling the Code Walker

The code walker can be enabled and disabled by the user. It is enabled by default. To enable
the code walker, do either of the following:

•

•

TYPe (compiler-options)

This will display a menu of compiler options. At the bottom of the menu is an item
that enables/disables the code walker.

Set the variable *lIsp:*use-code-walker* to t. For example,

(setq *lisp:*use-code-walker* t)

enables the code walker for all *Lisp code that is compiled. Setting
*lisp:*use-code-walker* to nil disables the code walker.

6.4.4 Using the Code Walker: An Example

With the code walker disabled, if one wanted to write a function that compiled, one would
need to write it like this:

(defun sum-of-squares!! (x y)
(*locally ;;; *locally to declare arguments x and y

(declare (type single-float-pvar x y»

(*let (result) ;;; declaration of result within *let form
(declare (type single-float-pvar result»

(*set result (+!! (*!! x x) (*!! y y»)

result»)

Version 6.1. October 1991

(

(

*Lisp Release Notes 19

With the code walker enabled, the *Lisp compiler recognizes declarations in all the places
Common Lisp permits declarations, without the need for *Iocally. In particular, the *Lisp
compiler recognizes declarations within defun, let, and let* forms. A list of all special forms
within which Common Lisp permits declarations may be found in Common Lisp: The
Language, Second Edition, pp. 215-16.

Thus, with the code walker enabled one can write the sum-of-squares definition as

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»

(*let (result)
(declare (type single-float-pvar result»

(*set result (+!! (*!! x x) (*!! y y»)
result))

In addition, the code walker enables the *Lisp compiler to compile all properly declared
*Lisp forms, not just those within the scope of a *Lisp macro operator such as *set. Be
cause of this change, the sum-of-squares definition may be condensed even further,
producing

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»
(+!! (*!! x x) (*!! y y») ", *let and local variable

;;; are no longer needed

which will also compile into Paris code.

Version 6.1, October 1991

20 *Lisp Release Notes
~im:iiil!:::m:!·m;m!i;:!ii!!i!ll!il!l;:ii1i1!:;:i1:::::!ii~I:ii!iil:·I!iii ! II ·imi::::I:I:::::::::::11rli1:::':: I W.~WI"'!Ki.!I::I"iiIWlI.W~lJl!lm::lii:r:;I:·::::!::::Ii!:i:!ii:::,~

6.5 *Lisp Compiler Implementation Errors Update

All previously reported *Lisp compiler implementation errors have been corrected for the
release of *Lisp Version 6.1.

The known outstanding bugs and restrictions are reported again in these release notes. All
past issues of Programming in *Lisp In Parallel and all previous *Lisp Release Notes may
therefore be discarded.

6.5.1 Known Errors Still Open

10 long-progn-compiler-stack-problem

Environment

*Lisp Version 6.1; Symbolics Genera 8.1; any CM configuration.

Synopsis

Compiling long forms with the code walker causes a stack error.

Description

Forms that allow any number of body forms are compiled by the *Lisp code walk
er using stack recursion. A large enough number of body forms can exhaust the
stack, triggering an error on the Symbolics machine.

Reproduce By

(defun foo ()
(+!! 2 3) ... <repeated 200-300 times>)

(compile 'fool

Error: the control stack overflowed.

Version 6.1, October 1991

(

(
\..

/

\

*Lisp Release Notes 21

Workaround

Enclose the body forms into a number of smaller progn forms. Each is handled as a
separate statement, reducing the total stack space required to compile the entire
form.

Status

Open.

6.6 Miscellaneous Compilation Notes

6.6.1 Warnings on Non-Compiled Code

Unless the *Lisp compiler Warning Level is explicitly set to High, the *Lisp compiler will
not emit warning messages to the effect that it could not translate certain *Lisp statements
into Lisp/Paris. Thus, using the default Warning Level, it is not possible to know which
portions of code have been translated into Lisp/Paris and which have not.

6.6.2 *lisp Compiler Warning Level and Safety Level Options

Do not confuse the compiler Warning Level with the Safety Level. The Warning Level deter
mines how completely the compiler reports compile-time problems. The Safety Level

determines the degree to which compiled code reports run-time errors.

ni iisri::::: :iU::i:::W:iiiii:n: ::::: ::::::EI!! n:::::::ii:i!!l!i!!i::i:::ii:I 1 i iiiii i!/!iIi1iiIi::::;jj~

IMPORTANT

The efficient execution of compiled code depends highly on the
compiler Safety Level. The user is strongly advised to become
familiar with the proper setting of different safety levels. Refer to
the *Lisp Compiler Guide for descriptions of these options.

1m :::: :. : II m: :::11111 :il!: J

Version 6.1, October 1991

22 *Lisp Release Notes

7 *Lisp Simulator Version 6.1

NOTE: Version 6.1 of *Lisp introduces a new version, F19, of the *Lisp simulator.

The *Lisp simulator runs on top of Common Lisp and allows users to execute *Lisp code
without using a Connection Machine system. The *Lisp simulator is known to run on the
following implementations of Common Lisp:

•
•
•

Symbolics Lisp on a Symbolics Lisp machine

Sun Common Lisp on a Sun-4 Workstation

Lucid Common Lisp on a VAX running ULTRIX

The *Lisp simulator has also been known to run on the following systems:

•
•
•
•
•

Sun Common Lisp on a Sun-3 Workstation

Lucid Common Lisp on a VAX running VMS

Lucid Common Lisp on an Apollo workstation

Coral Common Lisp on a Macintosh

Kyoto Common Lisp on various machines

The *Lisp simulator can be made to run on any full implementation of Common Lisp with
minimal porting effort.

7.1 *Lisp Simulator Is Freely Available

The *Lisp simulator is freely available for use, copying, and modification. You are free to
distribute and modify the *Lisp simulator without restriction.

The *Lisp simulator is available via anonymous FTP in the Jpubllc directory of thlnk.com.

The file containing the simulator is a UNIX "shar" file called starslm-f19-sharfile. This
sharfile provides the necessary sources and systems for the *Lisp simulator to run under
Symbolics, Lucid, Allegro, and Franz Common Lisp. Porting the *Lisp simulator to other
Common Lisp implementation is generally a simple matter.

NOTE: If you do port the *Lisp simulator to a version of Common Lisp other than those
listed above, we ask that you send a description of any required modifications to Thinking
Machines Corporation Customer Support, so that these changes can be incorporated into
future versions of the simulator.

Version 6.1, October 1991

(

\

*Lisp Release Notes 23

People wishing to distribute the *Lisp simulator should distribute it from the sharfile de
scribed above, and not from the sources provided on-site at Connection Machine customer
installations. The sharfile includes documentation, instructions, and auxiliary files that are
useful in installing the *Lisp simulator at sites that do not have a Connection Machine.

Thinking Machines Corporation will for the most part provide *Lisp simulator support
only to Connection Machine system customers. Thinking Machines is under no obligation
to provide support to other users of the *Lisp simulator, either in porting or use.

7.2 *Lisp Simulator Restrictions Update

All previously reported *Lisp simulator implementation errors and restrictions have been
corrected for the release of *Lisp Version 6.0. The known outstanding bugs and restrictions
are reported again in these release notes. All past issues of Programming in *Lisp In Paral
lel and all previous *Lisp Release Notes may therefore be discarded.

7.2.1 Known Simulator Restrictions

7.2.1.1 Restriction on Pvar Types

The *Lisp simulator supports only general pvars; it does not support any of the other pvar
data types (such as floating-point pvars or complex pvars). The *Lisp simulator does, how
ever, support aggregate data structures, such as array pvars, vector pvars, and structure
pvars.

7.2.1.2 Abort and Cold Boot Problem

If the *Lisp simulator is aborted in the wrong place, an attempted *cold-boot operation will
not succeed; the simulator will go into the debugger and not complete. To reset, execute
the following forms. This will generally clear up the problem, albeit at the expense of de
stroying all *defvar and VP set defmitions.

(*sim-i::reset-everything)
(*cold-boot)

Version 6.1, October 1991

24 *Lisp Release Notes
! I iiiI:iElIii!!!iililliil!llIii! liiiiilllllllillilliilliliil:tIlilllil 1111 IIIII!! :111: [mill j] I I mllllllill j I j i: llil 1 j IIl!IllIlllillllllllilllllllilillli!il11111 : 1 II iii II Ii lillllEi!l1 :1 Ii::: III!

7.2.2 Known Implementation Errors

All known simulator implementation errors are reported here~ in alphabetical order by bug
report ID.

10 Iucid-exil-from-sim-bug

Environment

*Lisp simulator Version F18~ F19; Lucid Common Lisp.

Description

When running the *Lisp simulator under either Lucid Lisp or Sun Lisp~ attempting
to access a deallocated pvar causes the lisp process to quit.

Reproduce By

(*cold-boot)
(setq a (allocate!! (!! 0»)
#<Structure PVAR COBICE>

(*cold-boot)
(ppp a)

End of File read by debugger -- quitting Lisp

Workaround

Attempting to access a deallocated pvar is an error.

Status

Open.

fersion 6.1, October 1991

(

(

\

*Lisp Release Notes
%::n;::::':GMi~~! iiiiiiX:i!.iI1E{

25
m:::::.1 i ::!:::::wa!.i:!:::::::::::'f!::::::: !M!Wl%;%@ll~~:::::I:::::::W$

7.2.3 Notes on Simulator Use

7.2.3.1 Porting Code

*Lisp code can be ported from the simulator to the interpreter/compiler (and vice versa)
with few modifications. However, all code must be recompiled when porting in either di
rection.

7.2.3.2 Conditional Simulator Compilation and Execution

It is sometimes desirable to write *Lisp code in one fashion to execute on a Connection
Machine system and in another fashion to execute in the *Lisp simulator. This is especially
helpful where code intended to execute on the Connection Machine hardware uses differ
ent constructs and definitions than code intended for the simulator.

To signal the Lisp reader to conditionally read a form depending on whether or not the
*Lisp simulator is loaded, use the Common Lisp #+ reader macro with the feature symbols
*LISP-SIMULATOR and *LlSP-HARDWARE.

Thus,

#+*LISP-SIMULATOR form

reads form only if the *Lisp simulator is loaded.

#+*LISP-HARDWARE form

reads form only if *Lisp is loaded and a Connection Machine system is attached to the
executing front-end computer. For example, the expression

(progn
#+*LISP-HARDWARE

(*cold-boot :initial-dimensions '(256 256 4»
#+*LISP-SIMULATOR

(*cold-boot :initial-dimensions '(8 8 2»)

will execute properly both on the Connection Machine hardware and in the *Lisp simula
tor. The *LISP-HARDWARE symbol is used to select a large VP set when the Connection
Machine hardware is available. The *LlSP-SIMULATOR symbol is used to select a smaller
VP set when the *Lisp simulator is in use.

Version 6.1. October 1991

26 *Lisp Release Notes
~..-~~,ti"t'lW&~~m.ww.'Mf: ' c:U][:mW~iillI! 'I Ii iil!llIiilillliliilllliii I II: I liliilililllliiii:::illlli::::::I:m

Note that it is possible to conditionalize individual components of a function call using
these feature symbols. This is useful in those cases where the expression to be conditional
ized is very long or complex, and it is therefore desirable for purposes of code support not
to have two separate, independently conditionalized copies of the expression.

For example, the *cold-boot example given above can be rewritten in the following form:

(*cold-boot :initial-dimensions #+*LISP-HARDWARE '(256 256 4)
#+*LISP-SIMULATOR '(8 8 2»

There is also a version symbol available, *LlSP-SIMULATOR-F19, that may be used to con
ditionalize code that should be executed only in the F19 version of the *Lisp simulator.
This symbol may be used in a manner similar to those shown above.

Version 6.1, October 1991

(

(

*Lisp Release Notes 27

8 Sun and Lucid Common Lisp

*Lisp requires different versions of Common Lisp on Sun-4 and VAX front ends. These
version requirements apply equally to the *Lisp interpreter and compiler. *Lisp program
mers are advised to obtain documentation appropriate to their front-end environment.

*Lisp on a Sun-4 front end requires Sun Common Lisp 4.0. This is new as of Version 6.l.
*Lisp on a VAX front end requires Lucid Common Lisp 2.5. This is unchanged from Ver
sion 6.0.

8.1 Differences between Sun and Lucid Common Lisp

There are significant differences between Sun Common Lisp and Lucid Common Lisp.
The differences that most affect *Lisp programs are noted below.

Name changes:

The package name for system functions differs between Lucid and Sun Common Lisp.
Functions in the SYS package in Lucid Lisp belong to the LCL package in Sun Lisp.
For example, (SYS::quit) in Lucid Lisp corresponds with (LCL::quit) in Sun Lisp. (To
write code that is portable between the two versions, you can use the package name
LUCID. For example, (LUCID::quit) will execute in both Lucid 2.5 and Sun 4.0.)

The change-rnemory-management function:

Use of the change-memory-management function is not recommended. Only programs
that contain large amounts of code, or require heavy garbage collection, should require
you to use this function.

Lucid Common Lisp users should ask their site manager or applications engineer for
assistance in determining the proper arguments to supply to this function.

For Sun Common Lisp users, if this function is used, it should be called with the fol
lowing arguments immediately after starting up a *Lisp environment:

(lcl:change-rnernory-rnanagernent
:expand-reserved 50 :expand-p t)

For extremely large programs, the expansion value of 50 can be replaced by 75 or 100.

Version 6.1, October 1991

28 *Lisp Release Notes
i1i!ii: ii l!!:::m::um::::::::niii!i!:::::::::::::m L:::::::::::m:;m::::::n:::;: IiIili:::::::IliB?: niiJi::::::::fJli:::i1iiii::::::ii : :: Iii.:::e::::;;:;;!!!.::: i I IlEilJiliI!i!

Thereafter, if running *Lisp code causes excessive garbage collection, typing the fol
lowing fonn may help:

(lcl:change-memory-management :expand 50 :expand-p t)

The output produced by typing (room t) includes infonnation about the current memory
management settings.

Two Lucid compiler modes: Production and development

Compilation of large amounts of code can also cause heavy garbage collection. Com
piling with the Lucid development compiler rather than the Lucid production compiler
reduces the amount of garbage collection and the compilation time, at the expense of
losing some front-end perfonnance.

To switch easily between the Lucid compiler production and development modes,
place the following function defmitions in your IIsp-lnit.llsp file:

;; Put the Lucid 4.0 compiler in production mode.
(defun prod ()

(if (find-package '*lisp)
(starlisp-prod)
(proclaim' (optimize (compilation-speed 0)

(safety 1) (speed 3»»)
(defun starlisp-prod ()

(eval (read-from-string
"(funcall *LISP-I::*OLD-PROCLAIM-FUNCTION*

'(optimize (compilation-speed 0)
(safety 1) (speed 3»)"»)

;; Put the Lucid 4.0 compiler in development mode.
(defun dev ()

(if (find-package '*lisp)
(starlisp-dev)
(proclaim ., (optimize (compilation-speed 3)

(safety 3) (speed 2»»)
(defun starlisp-dev ()

(eval (read-from-string
"(funcall *LISP-I::*OLD-PROCLAIM-FUNCTION*

, (optimize (compilation-speed 3)
(safety 3) (speed 2»)"»)

The settings used in these functions are taken from the Lucid 4.0 documentation.

Version 6.1, October 1991

(

(

(

*Lisp Release Notes 29
~mm~mmr~%l;W~&~*f&M&~m.~.J.j%W~W"~

When developing code interactively, make the development compiler the default by plac
ing the expression (dev) in your lisp-init.lisp file, immediately after these function
defInitions. Using the development compiler can significantly speed up the compilation
process.

To compile developed code for production runs, enable the production compiler mode by
typing (prod) at top level.

8.2 The *Lisp Compiler and the Common Lisp Compiler

The *Lisp compiler is completely independent of the SunlLucid Common Lisp compiler
with regard to options such as safety. The *Lisp compiler has its own, independent, safety
setting.

The *Lisp compiler translates *Lisp code into Common Lisp code with calls to Paris. Then
the Lucid Common Lisp compiler translates the Lisp code generated by the *Lisp compiler
into native machine instructions.

For more information on the *Lisp compiler, refer to the overview chapter in Getting
Started in *Lisp and the chapter on compiler options in the *Lisp Dictionary. The *Lisp
Compiler Guide also contains useful information.

For more information on the SunlLucid Lisp compiler, refer to the system documentation
for each Lisp environment.

8.3 Common Lisp Implementation Errors and Restrictions

All known outstanding SunlLucid-related implementation errors and restrictions are re
ported in these release notes. All past issues of Programming in *Lisp In Parallel and all
previous *Lisp Release Notes may therefore be discarded.

The following previously reported problems have been fixed in Version 6.1:

load-n-defstruct-wrong-warning

lucid-floating-point-compiler-bug

Version 6.1, October 1991

30 *Lisp Release Notes

8.3.1 Known Errors Still Open

ID lucid-byte-specifler-size-limit

Environment

Lucid Common Lisp; Sun Common Lisp.

Synopsis

Both Lucid and Sun Common Lisp impose a limit on the size of byte-specifier data
objects. If either argument to the byte operation is greater than 4095, an error is
signalled.

Reproduce By

> (byte 4095 0)
#. (BYTE 4095. 0.)

> (byte 4096 0)
»Error: The byte specified for BYTE, [size=4096, posi
tion=O), is not within the range of byte-specifiers.
BYTE:

Required arg 0 (SIZE): 4096
Required arg 1 (POSITION): 0

:C 0: Supply new size and position arguments.
:A l: Abort to Lisp Top Level

Workaround

Use the operations load-byte and deposit-byte, which pennit independent specifi
cation of byte size and position arguments.

Status

Open.

Version 6.1, October 1991

(

(
\

(

\

*Lisp Release Notes
sm:"Wt1t~WJtmw.m:·"lm:~$.wN~i$%'l::~%K(q{~r::~~~:~~:i:;::~::r::~mm:::::;:~:m~~~;: :::::::1:~;:~1~:~n:~::)~ ::::::n:m::::;1~:1:::

10 lucid-describe-bus-error-on-pvar

Environment

Lucid Common Lisp, Sun Common Lisp.

Description

31

Calling describe on a pvar signals a bus error because Lucid can't handle the pvar
data structure.

Reproduce By

(describe (!! 3.0»

Workaround

Use describe-pvar instead.

Status

Open.

10 non-standard-file-Ioad-problem

Environment

*Lisp, Version 6.0; any CM configuration;
Lucid Common Lisp and Sun Common Lisp.

Synopsis

Non-standard extension Lisp code files don't load properly.

Version 6.1, October 1991

32 *Lisp Release Notes
I! : : : :: !:::. iii : !l::iIiiil!:nWli I!Eiilll::::::i!:liii!::lliii! ii: Eli'

Description

The load function recognizes a special set of "standard" extensions for Lisp code
files (".lisp",".bin", etc.), and, ifca1led on a fIle with a non-standard extension, load

attempts to load the file as if it is a ".bln" file.

Reproduce By

> (load "test.data")
;;; Loading binary file "test.data"
»Error: Invalid or garbled fasload (binary) file.

FASLOAD:
Required arg 0 (FILENAME): #P"/test.data"

Workaround

Add the non-standard extension to the list tmc:*loacf-source-pathname-types*,

as in:

(push "data" tmc:*load-source-pathname-types*)

Status

Open.

Version 6.1, October 1991

(

(

*Lisp Release Notes 33
~)WW :l@W~~<l!_~~MJ"'~~::::!Y:::::!!::: .. ::W~W.l1i:f,ll1i'~

9 *Lisp Library 6.1

The *Lisp library is a set of *Lisp functions and macros made available in the form of an
on-line software library. Please note that all code included in the library is experimental.
Users are welcome to make use of the library code at their own risk, with the understanding
that some or all of these functions and macros may not be supported in future releases.

9.1 *Lisp Library Contents

The following interface files are included in the *Lisp library in Version 6.1:

AREF32-SHARED Lookup table interface.

COLLECTE~MACROS Useful macros.

FAST-RNG Fast random number generator.

FFT CMSSL Fast Fourier Transform interface.

LET-ALIAS Temporary storage reduction tool.

MATRIX-MULTIPLY CMSSL matrix multiplication interface.

PVAR-IO Read and write pvars to front-end disks.

ROW-~OLUMN-N.UUOR Row/column major address interface.

9.2 *Lisp Library Restrictions Update

All previously reported *Lisp library implementation errors and restrictions have been cor
rected in the release of *Lisp Version 6.1.

Version 6.1, October 1991

34 *Lisp Release Notes
:::::mm.m' ,,,~W$.'J@'J.i1_!'$l~li~UWPA~W~l.~w('~MJ,W'{~~,j@~i!mM

9.3 Accessing the *Lisp Library

The *Lisp library code is available in the directory

/cm/starlisp/library/f6100/*

On-line documentation for the library functions and macros is available in the me

/cm/starlisp/library/f6100/documentation.text

Ask your system administrator or applications engineer to help you locate these files at
your site.

All functions in the library are defined to autoload on demand. When anyone function in
a given interface file is autoloaded, all of the functions in that interface file are autoloaded.

Version 6.1, October 1991

(

f
I
\.

(

*Lisp Release Notes 35

10 *Graphics Version 6.1

*Graphics is a *Lisp interface to the CM graphics programming environment. Documenta
tion for *Graphics can be found in the *Graphics Reference Manual, which is distributed
as part of the volume entitled Programming in *Lisp in the Connection Machine documen
tation set. Information about modifications and corrections made to *Graphics may be
found in the latest *Graphics Release Notes (September 1990, as of this writing).

10.1 Improvements in Version 6.1

Faster Image Transfer. *Graphics users will notice faster transfer of images to displays
thanks to improvements of the low-level graphics code.

11 Fast Graph

Fast Graph is a software package designed to allow optimized router communications for
fixed router patterns, and is accessible from *Lisp.

For a communications pattern that is fixed with respect to machine size, VP ratio, and data
paths, the Fast Graph package offers the possibility of significantly faster execution than
can be obtained through the *Lisp operators *pset and pref!!.

The Fast Graph package is available from Thinking Machines Customer Support or from
your applications engineer as unsupported software. Sample *Lisp code that creates data
patterns and executes compiled data patterns is provided with the Fast Graph package.

Version 6.1, October 1991

