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About This Manual
* ~~b ~ ~~---------------

Objectives of This Manual

This manual provides information to help users increase the performance of their
CM-5 C* programs.

Intended Audience

This manual is intended for programmers who are familiar with C* and the archi-
tecture of the CM-5. Some understanding of DPEAC and SPARC assembly
language is helpful but not required.

Revision Information

Tdis is a new manual.

Organization of This Manual

The manual is organized as follows:

Chapter 1. The Compilation and Execution Models
This chapter describes how C* programs are compiled for the
CM-5 and discusses how the compiler constructs PN code
blocks to carry out parallel computation on the processing
nodes.

Chapter 2 Timing and Profiling Code
This chapter discusses the use of the CM_timer facility and
Prism's performance analysis facility for timing and profiling
C* programs.

Version 7.1, August 1993
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Chapter 3 General Performance Tips
This chapter gives some general advice about how to improve
performance.

Chapter 4 Performance Tips for Parallel Computation
This chapter focuses on how to increase the performance of code
that performs parallel computation (that is, operations that take
place independently in each processor).

Chapter S Performance Tips for Parallel Communication
This chapter focuses on how to increase the performance of code
that performs parallel communication (that is, operations that
require transferring data between processors).

Chapter 6 Reducing Memory Usage
This chapter explains how C* uses memory on the CM-5, and
gives some tips on reducing memory usage.

Appendix Examining Generated Assembly Code
The appendix looks in detail at the scalar and par an d parallel assembly
code generated for a simple C* program.

Related Documents

For further information on CM-5 C*, see the C* Programming Guide and the
CM-5 C* User Guide.

See the CM-5 Technical Summary for information on the CM-5's architecture.

For information on DPEAC, see the DPEAC Reference Manual.
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Abou Manual- .. .......

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

UNIX and CMosT commands, command options,
and filenames, when they appear embedded in text.
Also programming language elements, such as
keywords, operators, and function names, when
they appear embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Vesion 7.1, August 1993
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Customer Support
.;_"_''.

ThinIing Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinldng Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportthink.com

ames! think! customer- support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version Z7.1I, August 1993
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Chapter 1

The Compilation and
Execution Models

This guide explains how C* programs are compiled and executed, and describes
how to increase the performance of programs written in C* for execution on a
CM-5 using the vector units (VUs). Chapter 6 describes how to reduce memory
usage in a CM-5 C* program.

This chapter describes the basic model that the CM-5 C* compiler uses in gener-
ating code, and how to generate and analyze the assembly-language files you can
use in trying to improve your code. It also discusses the PN (processing node)
code blocks that perform parallel computation, and how you can control
construction of these code blocks.

Il the manual there are occasional examples that show generated DPEAC assem-
bly code. We illustrate the assembler code so that no more than a rudimentary
knowledge of these assembly languages is necessary to understand the examples.
The appendix goes into more detail about the DPEAC assembly code.

Where specific examples of generated code or specific performance numbers are
given, keep in mind that these may change with releases of the compiler, and that
they are provided only as general guides to understanding performance issues.
In addition, the advice given in this guide may not be applicable to programs
compiled with future versions of the compiler.

Version 7.1, August 1993
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1.1 The Compilation Model

The C* compiler, like an ordinary C compiler, transforms the program from the
high-level language in which it is written into machine code. For the CM-5, the
compiler-generated machine code consists of two parts:

* SPARC assembler code, which is executed on the partition manager; we
also refer to this as scalar code.

* DPEAC assembler code, which is executed on the PNs; we also refer to
this as parallel code.

Section 1.2.1 describes how to examine these assembly-language files.

For C* code that consists only of ordinary scalar C operations, the compiler gen-
erates scalar code that is similar to the code an ordinary C compiler would
generate.

For C* code that performs parallel communication operations (that is, operations
that require transferring data between processors), the scalar code includes calls
to an internal run-time system that implements the operations.

For C* code that performs parallel computation operations (that is, operations
that take place independently in each processor), the compiler generates two
kinds of code:

· routines that execute simultaneously on all the PNs; these are called PN
code blocks

· the scalar calls that initiate these PN code blocks

All parallel computation is performed in the PN code blocks. The vector units are
used for both integer and floating-point operations.

Figure 1 diagrams the CM-5 C* compilation model.

Version 7.1, August 1993
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Figure 1. The CM-5 C* compilation model.

1.2 The Compilation Process

The C* compiler generates two separate assembly-language output files for its
scalar and parallel code.

The scalar code is compiled into a SPARC assembly-language file with a name
of the form program-name. 8.

The production of the parallel code actually involves two steps:

1. First, the compiler produces a file containing DPEAC code. DPEAC code
is a mixture of SPARC assembler instructions and instructions that per-
form operations using the vector units. This file has a name of the form
program-name. pe .dp.

Version 7.1, August 1993
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2. The compiler (via the dpas assembler) then transates the DPEAC code
into SPARC instructions; when executed, these SPARC instructions initi-
ate the vector-unit operations on the VUs. This file has a name of the form
program-name .pe. s.

The two .s files are then assembled via as into object files, which are then linked
via the mid linker into the executable program.

Figure 2 outlines the compilation process.

Figure 2. The CM-5 C* compilation process.
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11.2.1 Examining Assembly-Language Files

Normally the compiler creates intermediate files in a temporary location, and
deletes them after they are no longer needed. Use the -keep s compiler option
to tell the compiler to retain the . and the .pe. s assembly-language files in the
current directory. For example:

% cs -cm5 -vu -keep fishcake.cs

Use the -keep dp option to tell the compiler to retain the . pe. dp DPEAC file.
For example:

% cs -cm5 -vu -keep dp fishcake.cs

Generally you will be most interested in the DPEAC file, since this gives the
clearest view of how the program is going to execute parallel computation on the
PNs. For information on DPEAC, consult the DPEAC Reference Manual. See
also the example in the Appendix.

1.3 PN Code Blocks

As we discussed earlier, the compiler generates PN code blocks to perform paral-
lel computation operations.

The compiler-generated PN code blocks are simple routines that are executed
simultaneously on all the processing nodes. They include DPEAC instructions
that each PN broadcasts simultaneously to all four of its vector units.

When a program creates a shape (either through the declaration of a fully speci-
fied shape variable or through dynamic allocation), the C* run-time system
dynamically determines a regular mapping of the positions of the shape onto the
WiVUs in the partition. See Appendix B of the C* Programming Guide (May 1993

edition) for more information. The details of how that mapping works are irrele-
vant to PN code blocks except for one point: A shape always maps a certain
number of elements onto every vector unit. This number is called the subgrid size
and is always a multiple of eight. The subgrid size is roughly the number of posi-
tions in the shape divided by the number of vector units in the partition; it is
rounded up in some cases to meet the constraints of the layout mechanism.

A PN code block consists of a single loop called the subgrid loop. The subgrid
loop iterates over the number of elements on each VU, eight at a time. In each

Version 7.1, August 1993
Copyright CI 1993 Thinking Machines Corporation
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iteration, the subgrid loop uses vector operations to perform the appropriate com-
putation on eight subgrid elements per VU, or 32 elements per PN (since there
are four VUs per PN). See Section 1.4 for an example of a simple code block.

1.3.1 How PN Code Blocks Are Invoked

The scalar portion of the program, running on the partition manager, causes a PN
code block to be executed simultaneously on all PNs by calling an internal run-
time system function. Through this call, the following information needed to
invoke the PN code block is broadcast to the PNs: the address of the code block
itself, the subgrid size, the memory addresses of the parallel variables used in the
code block, and the values of scalar variables used in the code block.

1.3.2 Understanding Costs in PN Code Blocks

The amount of time spent executing a PN code block is equal to the startup time
plus the time spent in the subgrid loop.

The startup time includes:

· the time spent packing up the information to be passed from the partition
manager to the PNs

* the time spent broadcasting this information to the PNs (this typically
dominates the startup time)

· the time spent in the prologue of the PN code block itself

The startup time is incurred once whenever the code block is invoked. It depends
on the amount of information passed to the PN code block, but not upon the sub-
grid size.

The loop time depends upon two things:

· the number of iterations spent in the loop (that is, the subgrid size divided
by eight); this depends in turn upon the size of the current shape

* the amount of code in the loop body

Note that parallel computation performance does not depend upon the rank or
other layout characteristics of the current shape, only upon the shape's size.

Version 7.1, August 1993
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The PN code block startup time is pure overhead, since useful computation is not
performed during startup. When the startup time dominates your program's
execution time, the program is running inefficiently. Two situations can cause
this:

* Your subgrid sizes are too small.

* Your code is executed with many smaller code blocks rather than few
larger ones.

You can address the first problem by choosing a shape size that is large relative
to the machine size. Doing this may require reconsidering how your problem is
mapped onto the machine. The subgrid size you need to amortize code block
startup costs will vary, depending upon how much code is in your code blocks
and how much information is passed to the code block. As a rough rule of thumb,
aim for a subgrid size of at least 64 - that is, a shape size that has at least 64
times as many positions as positionsof (physical), the number of vector
units in the partition.

1.4 A Simple C* Routine

The C* routine below performs both ordinary scalar C operations and parallel
operations:

#include <stdio.h>
void fishcake(int x, int:current a, float:current b)

float sum;

x = x + 2;
printf("The value of x is: %d\n", x);

b = b * 17.2f + a * x;

sum = += b;

printf("The sum of b is: %f\n", sum);

The statement

x = x + 2;

and both calls to the printf function are generated just as an ordinary C com-
piler would generate them; all are executed on the partition manager.

Version 7.1, August 1993
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9

The statement

b b * 17.2f + a * x;

performs parallel computation. The compiler generates a PN code block, and a
call in the generated scalar code initiates that code block on all of the PNs after
the first call to printf.

The statement

sum - += b;

performs a form of parallel communication - in this case, all of the values of
b are summed to a single value. The compiler generates a call in the scalar code
to a run-time routine that performs this reduction.

Thus, the generated scalar code for the routine is structured as shown in Figure 3.

Figure 3. Structure of a C* routine.

Version 7.1, August 1993
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1.4.1 The Structure of the PN Code Block

Our simple routine contains one PN code block that performs the computation

b b * 17.2f + a * x;

where b and a are parallel variables and x is a scalar variable. Figure 4 shows
the structure of the PN code block.

Figure 4. Structure of a PN code block.
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In this example, the startup time for the PN code block is about 25 ps., and the
loop time is about 6 ps. per loop iteration, or 0.8 ps. per subgrid element, since
each loop iteration operates on eight subgrid elements. (Your timings may vary.)
See Chapter 2 for an example of how to measure these times.

Since the startup cost is significantly larger than the cost of one loop iteration in
this code block, we will not be computing results efficiently unless our shape size
is large enough that the loop makes several iterations.

Suppose our subgrid size is 32 elements per VU. (On a 32-PN CM-5 partition,
this requires a shape with 4096 elements.) In this case, our loop executes four
iterations. The total time spent executing the PN code block is about 50 ps., of
which 25 are the overhead of starting the code block and 25 are spent doing
actual computation in the loop body.

1.5 Controlling the Construction of PN Code Blocks

In general, a PN code block may perform computation for several statements or
even a fraction of a statement. The compiler merges parallel computation into a
single PN code block only when the computation is not interrupted by an opera-
tion that "breaks code blocks." Since extra code blocks means extra overhead,
it is generally beneficial to write code that produces fewer code blocks. To
increase performance, you therefore need to undersand what sorts of operations
cause the compiler to break code blocks. Section 1.5.1 goes into detail about
these operations. Here we consider a simple example:

#include <stdio.h>
void fishhead(float:current a, float:current b)

a - a * 17.2 + 3;

b b /4 + a;
printf("The sum of a is %f\n", +- a);

printf("The sum of b is %f\n", += b);

In this case, two consecutive statements perform parallel computation, and the
compiler produces a single PN code block to perform the computation for both

Version 7.1, August 1993
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statements. However, suppose we had written the code in a slightly different
order:

#include <stdio.h>

void fishhead(float:current a, float:current b)

{

a a * 17.2 + 3;

printf("The sum of a is %f\n", += a);
b b / 4 + a;
printf ("The sum of b is %f\n", += b);

In this case, the compiler emits two PN code blocks, one for the statement

a = a * 17.2 + 3;

and the other for the statement

b b / 4 + a;

1.5.1 Operations that Cause Code Blocks to Be Broken

This section discusses operations that cause a code block to be broken when they
appear in the middle of parallel computation. Note that future versions of the
compiler may remove this limitation for many of these operations.

Flow Control

Any operation that performs flow control causes code blocks to be broken. For
example, parallel code in the body of an if, while, for, do, or switch state-
ment is always compiled into a code block that is separate from those of the
surrounding code. See Section 4.5 for a discussion of a way of expanding code
blocks by unrolling loops.

(Keep in mind that the I I, &&, and ?: operators result in flow control when their
operands are scalar types.)

Version 7.1, Augut 1993
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Function Calls

Any call to a function causes code blocks to be broken. This includes calls to
scalar functions, functions in the C* communication library, and even simple
math functions.

Note that calls to the CM timer functions themselves can break code blocks.
Introduction of these calls inside what would otherwise be a single code block
can therefore hurt the performance of the code you are timing. See Chapter 2 and
the CM-5 C* User Guide for information on the CM timer functions.

Contextualization

The body of a where or everywhere statement is always compiled into code
blocks that are separate from those of surrounding code.

Furthermore, the &&, I I, and ?: operators cause code blocks to be broken when
their operands are parallel because these operators perform implicit contextuali-
zation. See the C* Programming Guide for an explanation of implicit
contextualization through these operators.

A future version of the compiler may remove this limitation in many cases.

See Section 4.2 for more information on contextualization.

Parallel Communication Operations

Statements that perform parallel communication operations, in the form of left-
indexing to perform send, get, or grid communication operations, break code
blocks.

Scalar Left Indexing

Scalar left indexing to access particular positions of a parallel variable breaks
code blocks.

Version 7.1, Augut 1993
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Parallel Reductions

Reducing a parallel value to a scalar value - through the use of the +, -, *-,
/, &-, I <?-, or >?- unary operators with parallel operands, or through an
explicit cast of a parallel value to a scalar value - breaks code blocks.

with Statements

The body of a with statement is always compiled into one or more code blocks
that are separate from those of surrounding code.

Extra Levels of { } Braces Forming Compound Statements

Introducing extra levels of { } braces in C* code (these are called compound
statements) causes the body of the braces to be in a separate code block. A future
version of the compiler may remove this limitation.

Comma Operator

The use of the comma operator in parallel expressions causes code blocks to be
broken.

For example, the statement in:

int:current a, b, c, d;
a b, c = d;

can be rewritten as:

a b; c - d;

to avoid this problem.

A future version of the compiler may remove this limitation.

Multiple Assignments

Multiple assignments in a single statement cause code blocks to be broken in
some cases.

Version 7.1, August 1993
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For example, the assignment in:

int:current a, b, c, d;
a b - c d;

can be rewritten as:

c - d;
b c;
a = b;

to avoid this problem.

A future version of the compiler may remove this limitation.

Compiling C* with the -g Option

Using the -g option to compile C* code always forces separate statements to
emit separate code blocks. This can dramatically affect your program's perfor-
mance. You should be aware of this when examining the compiler output or
timing code.
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Chapter 2

Timing and Profiling Code

There are two mechanisms available for analyzing the performance of a C*
program:

You can use the cm_timer facility to insert calls in your program; these
calls start and stop timers as the programs run, and report information
about how much time was spent in specific portions of the program. This
facility is described in the CM-5 C* User Guide.

* * You can compile your program with the -cmprofile option, and then
display information about the program's performance within the Prism
programming environment. Prism performance analysis is described in
the Prism User's Guide.

In general, using Prism is more convenient, since it doesn't require changing
your source code; it also provides an easy-to-read graphical interface to the
results. However, the current implementation of Prism performance analysis has
several restrictions that can lead to inaccurate or misleading results. The
cmi_timer facility gives you more control over exactly what gets timed and lets
you perform computations on the results. You may find the Prism performance
analysis facility more useful for assessing the overall performance of an applica-
tion and the cm_timer facility more useful for timing specific pieces of code.

Note these other general points:

* For both Prism performance analysis and the cm_timer facility, compil-
ing with the -g option will distort the results, since it forces each
statement to be in a separate code block.

• It is possible to use both Prism and the cm_timer facility to analyze a
program's performance at the same time. However, there are complica-

hk tions if you use timers that have numbers greater than 4 in the program.
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See the Prism User 's Guide for more details. In addition, note that Prism
will time the programmer's cLtimer routines, and the programmer's
CMatimer routines will time Prism's timing activity. This will usually
have a greater effect on the programmer's Cm.timer results, since Prism
usually inserts more timing calls than the programmer.

2.1 Using the CM_timer Facility

This section gives an example of using the camtimer facility, and discusses how
to analyze the results. It assumes you are familiar with the cM_timer calls, as
described in the CM-5 C* User s Guide.

2.1.1 Timing Computation

Here are some tips to keep in mind when timing computation:

* Read the elapsed time to report how long the program spent performing
the operation. The elapsed time reports the time that the process spent
executing, and is not actual wall-clock time. The CM busy time reports
only how long the PNs were performing computation; when it differs
significantly from the elapsed time, it is because the program is busy
executing operations that do not involve the PNs.

* Keep in mind that interrupting code blocks with the cm timer calls can
change performance. Because calls such as CM timer_start and
Camtimerstop are ordinary function calls, they can cause the compiler
to break code blocks; see Section 1.5.1. If you are concerned about this,
avoid putting these calls in the middle of code that would ordinarily be
a single code block.

* When timing code that performs parallel YO operations via the CMFS
interface, the Cmutimer facility will not report accurate results, because
its timings do not include the time spent by the operating system perform-
ing the I/O operations. You should use the UNIX timers (such as
gettimeofday) to obtain actual wall-clock times.

· When timing small portions of code, time the code executing several times
in a loop to get more accurate timing results.
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Suppose we wish to time the computation performed in the following piece of
code:

double:current a[5], sum;

/* ... */

everywhere

{

sum - a[O] + 2 * a[1] + 3 * a[2] + 4 * a[3] + 5 * a[4];

}

The simplest approach is to introduce calls CMtimer_start and
cm timer_stop around the computation. However, this is a small fragment of
code, and the time measurement from a single execution might not accurately
reflect the code's performance, particularly with small subgrid sizes in which the
execution time is less than 100 ls. To measure the performance more accurately,
we will introduce a loop that performs the computation 100 times.

The computation in this example is performed in a single PN code block. We can
measure both the PN code block's startup cost and the time spent executing its

x subgrid loop by measuring the time required to execute the code using shapes
that have widely varying subgrid sizes. For the smallest subgrid sizes, we expect
the startup cost to dominate the elapsed time; the time to exercise a single cycle
of the subgrid loop should be negligible. For very large subgrid sizes, most of the
time is spent in the subgrid loop, and relatively little time is spent in the code
block startup.

Timing actual applications need not be this complicated, of course. It is sufficient
to just insert cmtimer calls around code that is being timed, particuarly when
the code in question is larger than a single statement The technique shown here
is useful for measuring the specific overheads in a code block, but for a larger
application you may be interested more in aggregate performance.

The complete program we'll use is below:

#include <stdio.h>

#include <cm/timers.h>

#define TRIALS 100

void fishcake(void)

{

int trial;

double:current a[5], sum;

Version 7.1, August 1993
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everywhere

/*
* Time our expression, looping to execute it 100 times:

*/
CM timer start(0);

for(trial = O; trial < TRIALS; ++trial)

{

sum a[] + 2 * a[1] + 3 * a[2] + 4 * a[3] +

5 * a[4];

}

CM timerstop(0);

I

void time_subgrid_size(int size)

{

/*
* Call the above routine using a current shape that has the

* specified subgrid size.

*/
shape [size * positionsof(physical)]S;
double t;

CM timer clear(0);

with(S)

{

fishcake();

t = CM timer_read_elapsed(0);

printf("subgrid size: %d\n", size);

printf ("total time: %f sec\n", t);

printf("time per trial: %f us.\n", t * 1000000.0 / TRIALS);

printf ("time per subgrid element: %f us.\n\n",

t * 1000000.0 / (TRIALS * size));

main ()
{

/*
* Time our example using specific subgrid sizes.
*/

Version 7.1, Aug st1993
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timesubgrid size(8);

time_subgridsize(16);
timesubgridsize(32);
time_subgrid_size(64);
timesubgridsize(128);
timesubgridsize(1000);
timesubgridsize(10000);

Because the program scales the size of its test shapes with the size of the partition
(by using positionsof (physical) ), it produces timings that are independent
of the machine size being used.

Here is a sample output of this program:

subgrid size: 8

total time: 0.002656 sec

time per trial: 26.559697 us.

time per subgrid element: 3.319962 us.

subgrid size: 16

total time: 0.002661 sec
time per trial: 26.609091 us.

time per subgrid element: 1.663068 us.

subgrid size: 32

total time: 0.003355 sec
time per trial: 33.546364

time per subgrid element:

subgrid size: 64

total time: 0.004807 sec
time per trial: 48.074242

time per subgrid element:

subgrid size: 128

total time: 0.008152 sec
time per trial: 81.522727

time per subgrid element:

us.

1.048324 us.

US.
0.751160 us.

us.

0.636896 us.

subgrid size: 1000

total time: 0.050639 sec

time per trial: 506.393030 us.
time per subgrid element: 0.506393 us.

subgrid size: 10000

Version Z.1, Augst 1993
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total time: 0.501246 sec
time per trial: 5012.457879 us.

time per subgrid element: 0.501246 us.

Remember that the actual subgrid size selected by the run-time system (when the

program is compiled for VU execution) is always a multiple of eight. If we had
called time_subgrid_size with 1, a layout with a subgrid size of 8 would
have been used; see Section 1.3. The function CMC shapesubgrid_size,
described in the C* Programming Guide, returns a shape's actual subgrid size.

Determining Subgrid Loop Costs

With a subgrid size of eight, the time to execute each trial (which invokes our
code block exactly once) is about 27 ps. This is approximately the startup time
of this code block The startup time is constant for each trial, independent of the
subgrid size. As we increase the subgrid size, and the startup time becomes a
negligible fraction of the time to execute each trial, the time per subgrid element
decreases to reach about 0.50 As. Thus, each iteration of the subgrid loop, which
performs computation for eight subgrid elements, executes in about 4.0 [ps. in
this example.

Counting Flops

The expression we are timing performs eight floating point operations (four adds
and four multiplies) for each position of the current shape. With a subgrid size
of 1000, each PN performed the computation for 4000 positions (because each
PN has four VUs) in 506 is. We can compute the number of floating operations
per second for each PN as follows:

8 ops/element 41000 elements/PN
= 63 Mflops/PN

506 10-6 s.

Thus, on a 32-node partition, the computation with this subgrid size is performed
at about 2.0 Gflops.
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Assessing Computation Performance

The CM-5 vector units can perform computation at a rate of up to 128 Mflops
(million floating point operations per second) per PN. They can also perform
integer computation at this rate. This performance figure assumes that the VUs
are continuously executing vector operations that are performing chained
operations (these are typically operations that do both a multiply and an add as
a single operation). The example above is computing an expression that allows
the compiler to use these operations, and thus achieves a high Flops rate. In
practice, it is not possible for the compiler to emit chained operations for some
expressions, and an application that is performing at 30 or 40 Mflops per PN may
be doing as well as it can do, even though this figure is far below the theoretical
peak Flops rate of the machine.

2.1.2 Timing Communication

You can measure the performance of code that performs parallel communication
similar to the way you measure the performance of code that performs
computation, by using the CM_timer calls. Because communication operations
are not performed within code blocks, inserting calls to the ca_timer functions
among communication operations does not affect performance by breaking code
blocks.

Assessing the Performance of General Communication

The performance of send and get operations is usually characterized in terms of
the bandwidth achieved for each PN. With the assumption that each position is
sending data to or getting data from a position on another PN, the bandwidth per
PN is the total amount of data sent (or gotten), divided by the number of PNs,
divided by the amount of time required for the operation.

Table 1 roughly describes the send and get performance you can expect when
using a random communication pattern and reasonably large subgrid sizes.

Verson 7.1, August 1993
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Table 1. Send and Get bandwidth estimates (Mbytes/s/PN).

Data Size 4-byte 8-byte 16-byte

Send 1.2 2.2 3.2
Get 0.6 1.0 1.7

Assessing the Performance of Grid Communication

The performance of grid communication is more difficult to characterize than
that of general communication (send and get operations). Grid communication
performance depends very much on the rank of the current shape, the shape's
size and layout, and the axis along which the communication is performed.

There are two components to the implementation of grid communication
operations. One moves data within the VUs (called on-VU movement), and one
moves data between the VUs (called off-VU movement). Movement within the
VUs is limited both by how fast the VUs can access memory and by how
efficiently the data motion can be vectorized. Movement between the VUs is
limited by the memory bandwidth between VUs on the same PN and the data
router network bandwidth between PNs. (See the discussion of
allocate_detailed_shape in Appendix B of the C* Programming Guide
for further discussion of how shape layout affects grid communication
performance.)

When working with 1-dimensional shapes, the performance characteristics of
grid communication operations are easier to quantify. A nearest-neighbor grid
operation (such as from_grid_dim called with a distance of 1) performs on-VU
movement to move the entire subgrid, and off-VU movement to move exactly
one element per VU, of which one element per PN moves between PNs. The
on-VU movement can theoretically be performed at a rate up to the peak memory
bandwidth of the node (about 256 Mbytes/s/PN), but in practice will run slower
than this except with very large subgrid sizes, because of high startup costs in
grid communication. The off-PN movement occurs at the rate at which data
movement between PNs can be sustained. In practice, this is about 1 to 3 Mbytes/
s/PN, depending upon the subgrid size and the shape's layout.
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2.2 Using Prism to Analyze Performance

This section briefly describes aspects of using Prism to analyze the performance
of a C* program. For more information, see the Prism User Guide.

As mentioned above, you must compile your program with the -cmprofile
option to collect performance data. Within Prism, you run your program with
collection turned on. When the program has finished execution, you can display
the data.

Prism provides three levels of performance data:

* Resources - Prism provides data on the program's overall use of individ-
ual CM-5 resources: for example, general communication, grid
communication, and PN computation (referred to as node CPU) time.

* Functions - Prism provides data on the use of a given resource by each
function in the program. The data is available in both flat and call-graph
mode. Flat mode displays each function's total use of the resource, regard-
less of where the function was called. Call-graph mode displays the
dynamic call graph of the functions, and the use of the resource for each
individual call.

* Source lines - Finally, Prism provides data on the use of a given resource
for each source line within a function.

The data is available both as seconds (or microseconds) of elapsed time, or as a
percentage of the total elapsed time.

Prism performance analysis data is most useful for determining bottlenecks in a
program. Where is a program spending its time? What resource is it depending
onil most?

When using Prism to analyze the performance of a CM-5 C* program, you
should be aware of the restrictions listed below. The restrictions will be removed
in future compiler and Prism releases.

* Prism does not account for the time spent executing functions that were
not compiled using -cmprof ile. This includes all C* library functions,
in particular the functions in the communication library.

* Prism reports only some of the time spent performing parallel I/O opera-
tions (via the CMFS interface). The time reported does not include the
time spent re-ordering the parallel data for the I/O operation.
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The time attributed to scalar computation includes time spent waiting for
PNs to complete operations. Because of this, the time reported as PM cpu
time can be misleadingly large.

Figure 5 shows one view of the performance data for the sample program we
used in the previous section. Note these points:

* At the top left is the resource information. The reported PM cpu times are
the times spent performing scalar operations. As noted above, the user
time is misleading, since this is mostly time spent waiting for PN opera-
tions to complete.

* At the top right is the flat-mode per-function information for the Node cpu
(user) resource; this is the amount of CPU time on the nodes each function
spent. Essentially all of the time was spent in the function fishcake.

* At the bottom of the window is the source-line data for fishcake's use
of the Node cpu (user) resource. This shows that all of the time for this
resource is spent in the sum statement.

rfnInMca Data

File ,ptons Help Total me 07 s Mode t i

Resources Resource: Node cpu (user)

PM cpu (user) 10. 775 as fishcake 1 10.734 

PM cpu (stem) 00 029 main I 0.000 

PM I/O 0 0.062 time._subgridsize
PM Total L 10.866

Node cpu (user) L 10.734 

Node cpu (stm)

Came (Send/cet)

Cam (NEWS)

Cam (Reductions)
Can (PM <--> Node)

/_... IIProcedure: fishcake

void eshoake(void)

mnt tlZl;
doubletcurrent aC5]. sum:

everywhere

Time our expresson, looping to execute it 100 times:

CLtnmer-start(O):
for(trial O trial < TRIALS: *+trial)

nsum -= aC0 2 aE1] 3 aC2] 4 aC3] * 5 aeC4]: . 0.734

Figure 5. Performance data for a C* program.
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-

It may be more useful to look at this program in call-graph mode. This will show

the time spent in each call to fishcake. Figure 6 shows the data in call-graph

mode; we use microseconds instead of seconds for measurement units.

The top-right pane displays the beginning of the call graph: main calls
time_subgrid_size repeatedly. If we were to click on one of the time_sub-

grid_size entries, we would see its call to fishcake; all the node CPU (user)

time attributed to time_subgrid_size is accounted for by the code in fish-
cake.

The source-line data at the bottom of the window in Figure 6 also shows the time

allocated to each time_subgrid size call from within main. In this case, it
shows the argument to time_subgrid size that resulted in the different
times.

Mode: call graph

Resource: Node cpu (user)Resources

PM cpu (user) 775191 

PM cpu (system) D 28675 us

PM I/O D 61951 us

PM Total 8I 65816
Node cpu (user)

Node cpu (system)

Comm (Send/Get)

Comm (NEWS)

Comm (Reductions)

Comm (PM <--> Node)

| 1 734155

main

time_subgri dsize

timesubgridsize
timesubgridsize
time_subgri dsize

timesubgri dsize
timesubgridsize
timesubgridsize

1F 1 734155 us

646303 us

0 64579 us

1 9186 us

14954 us

3117 us

12224 us

11792 us

Figure 6. Call-graph display of performance data.
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Fle ptons Help I Total time: 087 s

Procedure: main

main()
{

/

* Time our example using specific subgrid sizes.
#/

timesubgridsize(8); 11792 us
tlmesubgrid_size(16): 12224 us
timesubgridsize(32): 13117 us
timesubgridcsze(64), 1 4954 us
timesubgridsize(129): 1 9186 us
timesubgridsize(1000): 164579 us
timesubgrid_size(10000)r 1 1646303 us
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One note about the source-line data: Prism actually calculates usage per PN code
block, not per source line. If there are multiple source lines in the code block,
Prism divides the usage equally among these source lines for display purposes.
These equal values for source lines can be an indication that the source lines
belong to the same code block.

I
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Chapter 3

General Performance Tips

This chapter contains some general advice about increasing the performance of
your program.

3.1 Think about How to Map Your Problem
onto the Machine

Before you even begin coding, it is important to consider the best way to map
your problem onto the CM-5. Keep in mind these major points:

* Communication is expensive. Lay out your data to avoid communication
if you can. If you have to do communication, use grid communication or
scan operations rather than general communication if possible. See Chap-
ter 5 for more information.

* Keep subgrid sizes sufficiently large. This amortizes the startup cost for
executing a PN code block See Section 1.3 for more information.

* Avoid parallel computation or communication when few positions are
active. It is inefficient to perform parallel computation or communication
when only a few positions are active. See Section 4.3. In particular, avoid
situations where a program slowly iterates until no positions are active;
see Section 5.1.7.
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3.2 Prototype Your Algorithm and Measure Performance
from the Start

It is useful at the start of coding to write a small prototype of the most perfor-
mance-critical part of your program and measure its performance. Even better,
try several different prototypes and time each. This may uncover performance
problems before you become too committed to a particular approach. You may
then be able to revise your algorithm without having to revise an enormous
amount of code.

3.3 Write Scalar Code in C, not C*

If you have large chunks of code that are entirely scalar, put them in a . c file and
use your C compiler. The C* compiler is targeted for the efficient compilation
of parallel code; although the C* compiler handles scalar code, a C compiler will
probably do a more efficient job.
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Chapter 4

Performance Tips for
Parallel Computation

The performance tips in this chapter apply specifically to optimizing parallel
computation. They are discussed roughly in the order of their importance.

4.1 Avoid Parallel Computation that Uses Small Integers

The CM-5 vector units do not directly support vector load and store operations
of 1-byte and 2-byte quantities. The C* compiler supports parallel bool, char,
and short data types, but loading and storing these parallel values to and from
memory is (very roughly) 10 times as expensive as loading and storing other data
types. (Note that parallel bool values in the CM-5 compiler are stored in
memory as 1-byte quantities.)

It is acceptable to use parallel bool, char, and short types to conserve
memory, or in areas of the program where performance is not critical. Often it
is simple to rewrite code using int temporaries so that small integer values are
not directly loaded or stored in performance-critical sections.

Another useful strategy is to write parallel code that stores several small integer
values into a 4-byte int type by using shift and bitwise logical mask operations.
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4.2 Avoid Contextualization

Context manipulation through use of the where statement is often an expensive
operation in the current version of the CM-5 C* compiler. The operation that the
compiler emits to compute and update its notion of context can be surprisingly
inefficient. You should avoid the use of where statements in sections of code
where performance is critical. (We expect that future versions of the C* compiler
will address many of the performance problems with where operations.)

A where statement not only breaks code blocks for its body; it also always emits
a separate code block that computes the context condition and updates the current
context. And the process used to store the new context is itself slow.

Consider this code fragment:

int:current a, b, c;

/* ... */

a = b * 11 + c;

where(a > 3)

b *= C;

Compiling this code emits three PN code blocks. The first performs the statement

a b * 11 + c;

The second computes the new context for

where(a > 3)

And the third computes

b *- c;

The code block that computes the context is nontrivial. Because the context is
stored in a special packed format, the code block has to load and unpack the orig-
inal context from memory, compute the new context, and store it back into the
packed format in memory.

However, there is a simple way we can rewrite this code to avoid all of this over-
head. Taking advantage of the fact that the expression a > 3 evaluates to 1 in
the positions where the condition is true and 0 elsewhere, we can replace:

where(a > 3)

b *= c;
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with the equivalent statement:

b *= * (a > 3);

This not only allows us to avoid the where statement, it also allows this expres-
sion to be merged into the same code block as the previous expression. The
compiler generates a single code block to compute:

a = b * 11 + c;
b *= c * (a > 3);

The resulting code is much faster. In this case, the subgrid loop body executes
about 60% faster than the ones generated using the where statement, and the
startup overhead of the single subgrid loop is about one quarter of what the
where statement generates.

4.2.1 Use everywhere to Avoid Context Overhead

The C* compiler generally assumes that it must perform all computation using
the current context. This assumption causes extra code to be introduced into
every code block; this code is used to load the context values from memory. The
overhead adds to the code block's startup and loop costs, but does not increase
with the amount of code in the code block Even in cases where you might expect
the compiler to be able to detect that contextualization is not necessary, this over-
head is usually present.

The use of an everywhere statement around parallel operations where the con-
text does not matter usually prevents the compiler from emitting code that
performs contextualization in PN code blocks. However, since the contextualiza-
tion overhead does not increase with the size of the code block, the additional
overhead of contextualization is usually less important in code blocks where a
substantial amount of computation is performed.

4.2.2 Avoid Contextualization through &&, II, and ?: Operators

The &&, I 1, and ?: operators perform contextualzation when used with parallel
operands, and add the same sorts of overhead that the where expression pro-
duces. See the C* Programming Guide for a fuller discussion of these operators.
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It is often easy to rewrite expressions that use these operators so that they don't
perform contextualizafion. For example, you can rewrite expressions that use the
&& and I operators by substituting the bitwise logical I and & operators when
the operands are known to be values that are 1 or 0.

Consider the code fragment:

int:current a, b, c, d;

a - (b > c) && (d < c);

The statement produces three code blocks, and has the same overhead problems
that we discussed in the where example in Section 4.2. In this case, we can
rewrite the expression equivalently as:

a - (b > c) & (d < c);

This creates only one code block, which is much more efficient.

In cases where an operand of && or I I is not known to be 1 or 0, we can introduce
a test for nonzero; for example, we can replace:

a = b && (d < c);

with:

a = (b != O) & (d < c);

4.2.3 Don't Use Context to Create Masks

Don't use context to create masks. For example, don't write:

where(pcoord(O) -= 0)

border = 1;

elseelse

border 0;

}

or:

border = (pcoord(O) == O) ? 1 : 0;

'I
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Both of these perform contextualization. Instead, write:

border = (pcoord(O) -= 0);

4.3 Inactive Positions Do Not Increase
Computation Performance

The time required to execute parallel computation is the same regardless of how
many positions are active.

In the vector-unit computation model used by the C* compiler, context is imple-
mented by masking vector store operations so that they store only in active
positions. The same code is always executed on the PNs regardless of how many
positions are active.

Note that this also means that performing computations in a shape where rela-
tively few positions are active can be inefficient, since it takes the same amount
of time as performing the computation on all positions in the shape. See Section
5.1.7 for a possible way of improving performance under these conditions.

4.4 Rearrange Code to Form Fewer Code Blocks

Sometimes a simple rearrangement of code around statements that perform flow
control increases performance by allowing PN code blocks to be merged.

For example, suppose we have parallel statements both inside and outside the
body of an if statement:

int:current a, b, c, d;
int x;

/* ... */

a b * 17 + c;
if(x > 2)

{
d *- a;

}
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else

d - a;

}

In this case, the compiler generates three code blocks, the first for the statement

a = b * 17 + c;

and one for each branch of the if statement. Two code blocks are executed, since
only one branch of the if is taken. We can rewrite this code to merge the first
statement into each of the branches:

if(x > 2)

a = b * 17 + c;
d *= a;

I

else

{

a = b * 17 + c;
d -- a;

}

The code is equivalent, but only one code block is executed instead of two.

Since communication breaks code blocks, it is advantageous to rearrange code
so that communication operations do not unnecessarily interrupt computation.
Consider this example:

double:current a, b, c, d, e;

/* ... */

a += b * 17.2;
c = [(. + 1) %% dimof(current, O) a;
d = a / b;
e - [(. - 1) %% dimof(current, O)]d;

This generates two code blocks. The first performs

a +- b * 17.2;

and the second performs

d a / b;

eraion 7.1, Augst 1993
Copyright O 1993 Thingng Machines Corporation

()

i

CM-5 C *Perforance Guide34



I

Chapter 4. Performance 7lpsfor Parallel Computation 35

Because the second expression does not depend upon the previous
communication operation, we can easily rearrange this code to be:

a += b * 17.2;
d = a / b;
c = [(. + 1) %% dimof(current, O)]a;

e = [(. - 1) %% dimof(current, O)]d;

'Ihis allows the compiler to perform both computation statements in a single
code block.

4.5 Lengthen Code Blocks by Unrolling Loops

Loop constructs break code blocks by performing flow control, as discussed in
Section 1.5.1. This often hinders performance of code that performs a parallel
operation in a loop.

- ) Consider this example, which sums the elements of a parallel array:

int i;

int:current a[5], sum;

/* ... */
everywhere

sum = 0;

for(i = 0; i < 5; ++i)

{

sum += a[i] * (i + 1);

Although this is a clean way to express the algorithm, the body of the for loop
will be in a separate code block; this means that executing this code will execute
one small PN code block to initialize sum, and then another small PN code block
five times, once for each loop iteration. We incur the overhead of six invocations
of a code block. Furthermore, each loop iteration stores a result to sum, and we
would like to be able to avoid those stores, particularly since they are 4-byte
stores that are particularly expensive. See Section 4.7.
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The solution is to unroll our for loop and write a single expression that com-
putes sum:

everywhere

{

sum a[o + 2 * a[1] + 3 * a[2] + 4 * a[3] +
5 * a[4];

The revised expression runs almost four times as fast as our original code.

Unrolling loops like the one above is a very useful strategy for improving code
performance. Usually unrolling a loop like this just a few times will suffice to
gain most of the performance benefit. Even when the process of loop unrolling
is more difficult than it is in our example, it will often be worth the effort.

4.6 Avoid Breaking Computation into Small Statements

It is common style among C programmers to break up large expressions into
smaller parts, sometimes using temporary variables to store intermediate results.
Unfortunately, this strategy can hurt performance with the current version of the
CM-5 C* compiler. For every assignment that is performed, the C* compiler
emits code that stores values to memory. In some cases you would expect the
compiler to simply reuse a value we assigned previously (without actually stor-
ing the value to memory), but the compiler currently does not do this.

For example, consider the code:

double:current a, b, c, d, e, f, f3;

everywhere

{

f3 - f * f * f;
a = b * 17;
a += c * d * 3 / f3;
a *= e + f3;

This generates a single PN code block that is reasonably efficient but not optimal,
using 14 vector operations in the body of the subgrid loop. Each statement results
in a dustorev instruction that stores the result to memory; these values are
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reloaded the next time they are used. These stores and loads are often unneces-
sary, but the compiler does not detect this.

When using float or int data types, the incentive to eliminate extra stores is
much greater, since stores of 4-byte parallel data types are more expensive than
8-byte stores; see Section 4.7.

Our first attempt at rewriting this code computes a with two expressions instead
of four:

everywhere

{

f3 = f * f * f;

a = (b * 17 + c * d * 3 / f3) * (e + f3);

}

The resulting code has 11 vector operations in the subgrid loop body instead of
14. But we can do even better than this. We've written the f3 temporary so that
we don't have to write that computation twice, but it turns out that the compiler
is smart enough to reuse its value if we do simply write it twice in one expres-
sion. And by doing that, we eliminate an extra load and store. So we write:

everywhere
{

a = (b * 17 + c * d * 3 / (f * f * f)) *

(e + (f * f * f));

and the compiler generates a code block that performs the calculation in 9 vector
operations:

L2$_CMPE_meatcake2_0:
a = (b * 17 + c * d * 3 / (f * f * f)) * (e + (f * f

* f));

dfmulv V6, V6, V8; duloadv [%i5 + %o2]:8, V6;

dfmulv V8, V6, V8; duloadv [%i3 + %o2]:8, V2;

dfmulv V2, V4, V2; duloadv [%i4 + %o2]:8, V4;

dfmulv S2:0, V2, V2; duloadv [%g7 + %o2]:8, V12;
dfdivv V2, V8, V2; memnop;

dfmadtv S4:0, V10, V2, V10; duloadv [%i2 + %o2]:8,

V10;

dfaddv V12, V8, V12; memnop;
dfmulv V10, V12, V10; memnop;
fnopv; dustorev V10, [%ol + %o2]:8;

add %o2, 64, %o2

-4 ) subcc %iO, 8, %iO
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bnz L2$ CMPE meatcake2_ O

nop

4.7 Avoid Assigning to Parallel ints and floats

The CM-5 vector units perform vector stores of 4-byte data much more slowly
than they perform stores of 8-byte data, or loads of either 4-byte or 8-byte data.
(Fon-byte stores take 3.5 times as long as the other operations.) This means that
assigning to parallel int and float data types is disproportionately expensive.
The actual performance impact will depend on how many stores the code is per-
forming relative to other operations.

Aside from the cost of store operations, float and double parallel data types
perform computation more or less equally fast. Thus, it may be useful to use par-
allel double types instead of float types.

4.8 Use Explicit float Constants to Avoid
Unnecessary Conversions

ANSI C specifies that floating-point constants by default have double type.
When such a constant is used in an expression, it can cause unwanted type con-
versions to a double type, which can add extra overhead to the code. Writing
the constant with a trailing f is C syntax that forces it to have a f loat type. This
can eliminate the extra conversions.

For example, suppose we are compiling the code:

int: x;

int:current a;

float:current b;

/* ... */

everywhere
b = b * 17.2 + a * x;

Version 71, August 1993
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Although b has a float type, multiplying it by 17.2 (which has double type)
causes it to be converted to a double type; furthermore, the result must then be
converted back to a float type when it is stored. We see this in the subgrid loop

body produced by this code:

L2$ CMPE fishcake_0:
imulv S2:0, V2, V2; uloadv [%i3 + %g7]:4, V2;

itodfv V2, V4; uloadv [%i2 + %g7]:4, V6;

ftodfv V6, V8; memnop;

dfmadtv V8, S4:0, V4, V8; memnop;
dftofv V8, V8; memnop;

fnopv; ustorev V8, [%i2 + %g7]:4;

add %g7, 32, %g7

subcc %iO, 8, %iO

bnz L2$ CMPE fishcake 0

nop

Tho f ,A- F ieti.ir.n pVrta si ti a A.. i hnriK m. ha.fn r miltilvina it hv the.

constant. The dftofv instruction converts the result of the expression to a
float type before storing it in b.

3i }In this case we can correct the problem by writing 17.2f instead of 17.2:

everywhere
b = b * 17.2f + a * x;

The code produced for this statement is simpler:

L2$ CMPEcheesecake 0:

imulv S2:0, V2, V2; uloadv [%i3 + %g6]:4, V2;

itofv V2, V2; memnop;

fmadtv S4:0, V4, V2, V4; uloadv [%i2 + %g6]:4, V4;

fnopv; ustorev V4, [%i2 + %g6]:4;

add %g6, 32, %g6

subcc %iO, 8, %iO

bnz L2$_ CMPEcheesecake 0

nop

The number of vector instructions in the second case is reduced from six to four.
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4.9 Prototype Functions

As with most compilers for Standard C, using ANSI function prototyping speeds
up a program by reducing the number of conversions. For example, a call to an
unprototyped function with a char argument will promote that argument to an
int. The called function must then convert the int back to a char.

This applies to functions passing parallel arguments as well. Prototyping func-
tions can avoid extra code blocks and extra computation within code blocks.

In general, using prototyping is good programming practice. By declaring
prototyped functions before they are called, you can avoid many common argu-
ment-type mismatch errors.

4.10 Avoid Passing Parallel Arguments by Value

In function calls, passing a parallel argument by value requires the compiler to
use a temporary in which to store the value, and incurs the overhead of copying
the parallel value into this temporary. Where this is a problem, you can avoid the
overhead by writing functions that pass by reference instead; you do this by pass-
ing a pointer to a parallel variable rather than the parallel value itself.

Under certain circumstances, you can avoid the overhead of passing a parallel
variable by value without passing it by reference; you do this by declaring the
parallel variable as a const in the function definition. For example:

void foo (const int:current x)

{

int sum;

/**...**/
sum += X;
printf (%d\n", sum)

I

The caller doesn't have to create a temporary for the parallel argument in this
case, if all of these points are true:

· The function is prototyped.

· The parallel argument is passed by value.
1k
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The argument is declared as const in the prototype.

* The caller of the function passes a simple variable of the same type (that
· *., .. . . .* .*

Is, it doesn't pass a structure member, an array element, or a dereferenced
pointer).

* The variable passed to the function is local (that is, not global or file
static).

* The variable's address is never taken.

If the constraints in the callee are not met, the program will still work properly,
but will incur the ordinary pass-by-value overhead.

4.11 Avoid Unnecessary Calls to
Parallel Library Functions

If possible, avoid calls to simple parallel library functions. For example abs and
f abs incur the standard function call overheads: they break code blocks, use par-
allel temps for arguments and return values, and generate code to assign to those
temps.

Thus, instead of writing:

float: current a, b;

a fabs(b);

we can write:

a b >? -b;

This takes advantage of the C* binary maximum operator to compute the abso-
lute value.

In other cases, it may be possible to rewrite a program to reduce the number of
calls to such functions, even if they cannot be altogether eliminated.

A future version of the compiler may remove the performance penalty for calling
some of these parallel library functions.

)
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4.12 Parallel Array Indexing and Table Lookup Functions

Indexing a paralel array with a parallel variable is much more efficient with
CM-5 C* than it is with CM-200 C*, since these operations are supported by the
CM-5 vector unit hardware. This provides a very powerful and useful
programming construct for C* programmers. However, parallel array references
are about two to four times slower than ordinary array references (indexing a
parallel array with a scalar variable).

The shared table lookup utility (described in Appendix D of the C* Program-
ming Guide, May 1993 edition) provides an alternative for a specific case of
array referencing through the use of Cc_lookup_hared_table. It is not
possible to use a parallel index with a scalar array, and when you want to do this
sort of operation, you must either replicate the entire scalar array in a parallel
array in the current shape or use the shared table lookup utility.

The advantage of using the shared table lookup utility for this operation is that
a smaller amount of memory is used to store the table in parallel memory. (Only
one copy of the table is made in each VU, rather than one copy per subgrid
element in each VU.) However, shared table lookups are roughly two to four
times as slow as parallel array references.

Any array references or shared table lookup operations that involve data types
whose sizes are not multiples of four bytes are significantly slower, just as with
ordinary load and store operations; see Section 4.1.

The overloading of CaC_lookup_shared_table that takes an element size is
much slower than the other overloadings in C* Version 7.1. This will be fixed
in a later release of C*. For now, avoid using this function when its performance
is important.

(.
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Chapter 5

Performance Tips for
Parallel Communication

The performance tips in this chapter apply specifically to parallel commu-
nication. In general, the advice applies whether the communication is expressed
in the syntax of the language, or via functions in the communication library.

5.1 Tips for Increasing General Communication
Performance

5.1.1 Use Send Operations instead of Gets

If possible, write your program to use a send operation - for example:

int:current index, dest, source;

[index]dest source;

instead of a get operation - for example:

dest - [index]source;

The CM-5 hardware does not directly implement get operations; instead, the run-
time system performs a send for the request and a send for the reply. Therefore,
a get operation is roughly twice as expensive as a send.

)
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5.1.2 Use Send and Get Patterns that Avoid Excessive Collisions

Although send and get performance can depend upon particular routes taken
through the data router (such things are beyond the control of C* programmers),
the most common problems with send and get performance are caused by pat-
terns of communication that involve excessive collisions. A collision occurs
when more than one position sends to, or gets from, a single position. The basic
rule is therefore: avoid excessive collisions. Thus:

* Avoid sending data to relatively few positions of a destination

* Avoid getting data from relatively few positions of a source.

This rule applies even if you use a combiner in your send or get function. In all
cases, even with a combiner, the nodes receive the data serially; no combining
takes place in the network. This means that performance is bound by the maxi-
mum amount of data going to a single node.

A good pattern is therefore one in which the data is evenly distributed among the
destinations of a send or the sources of a get, with no one position receiving
much more data than any other.

The best way to handle the effect of collisions on performance is to come up with
an algorithm that avoids the collisions in the first place. If that isn't possible, try
reducing the values going to a position to a single value, then send the single
value. The reduction may be less expensive than the cost of the collisions. Here
is a method for doing this (for a send):

1. Sort the source positions by the position to which they are sending.

2. Identify the groups of positions that are sending to the same destination
positions and execute a scan or similar function to combine the values in
each group.

3. Send the resulting value for each group to its destination position.

You can follow a similar procedure for a get.

Below are two routines that use the rank function in this manner to combine data
before sending it. In practice routines like these help only if there are many colli-
sions, since rank is an expensive function. However, if you can arrange your
data so that it is sorted (or mostly sorted) and use scan operations to copy data,
you can do similar things without as much overhead. Note also that when pos-
sible you should use CMSSL's support for fast rank operations, as described in
Section 5.2.4, to achieve the maximum performance for this function. 4
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'The routine sorted_send, below, implements the equivalent of

[index]dest = source;

but sorts the data to avoid collisions.

#include <stdlib.h>

#:Lnclude <cscomm.h>

int:current sorted_send(int:current dest, int:current source,

int: current index)

{
int:current index rank;
int:current sortedsource, sorted index;

/*
* Rank the index values.

*/
indexrank = rank(index, 0, CMC_upward, CMC_none, CMCnofield);

/*
* Use the rank to sort the source and index by the index values.

*/
[index rank] sorted source = source;

[index rank] sortedindex = index;

/*
* Perform the send operation only once for each unique rank value.
*/

where(sortedindex !- fromtorus(&sortedindex, 1))
{

[sorted index]dest sorted source;

}

return dest;

The function sorted_combining_send, shown below, uses a similar method,
but implements a combining send, equivalent to

[index]dest += source;

To do this, we sort the data, identify segments that have identical destinations,
and use a scan operation to combine data in each segment before sending it.

int:current sorted_combining_send(int:current dest, int:current source,

int: current index)

int:current indexrank;
int:current sorted_source, sorted index;

tlrsion 7.1, August 1993
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bool:current segment;

int:current combined_source;

/*
* Rank the index values:

*/
index_rank - rank(index, 0, CMCupward, CMC_none, CMC_no_field);

/*
* Use the rank to sort the source and index by the index values:

*/
[index rank]sorted source - source;

[indexrank]sortedindex - index;

/.
* Identify the segments that have identical indices:

*/
segment - (sorted index != from torus(&sorted index, -1));

/*
* Combine the sorted source data in each segment using a scan
* operation:

*/
combined source scan(sorted source, 0,

CMCcombineradd, CMCdownward,
CMC_segment bit,
&segment, CMCinclusive);

* Send only the combined values to the destination:

*/
where (segment)

{

[sortedindex]dest +- combined source;

}

return dest;

5.1.3 Inactive Elements Can Increase Send
and Get Performance

Although inactive elements do not increase computation performance (see Sec-
tion 4.3), they can increase the performance of send and get operations
somewhat. In the CM-5, when fewer messages need to be sent through the net-

work, the send or get operation can complete more quickly. The relationship is (
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not proportional, however: for example, if half your positions are inactive, send
and get time is not cut in half. By reducing the number of active elements, it is
possible to save up to about three-fourths of a send cost or two-thirds of a get
cost.

5.1.4 Use Get Operations to Get Data from a Much Larger Shape

The time spent performing a send or get operation depends both upon the amount
of data being sent or gotten (which depends upon how many positions are active)
and upon the total number of positions (active or inactive) in the current shape.
When the source shape is much larger than the destination shape, it can be faster
to use a get operation to get selected elements from the larger shape than it is to
send the selected elements.

Consider the following example. We have variables in a 2-dimensional shape and
a 1-dimensional shape, and we want to extract a row from the 2-dimensional
variable and assign the values to the 1-dimensional variable. We could
implement this with a send as follows:

shape [1000] [1000]sl;

shape [1000]s2;

int:sl m;

int:s2 v;

with(sl)

{

/* Send column 3 of m to v: */
where(pcoord(1) =='3)

[pcoord(0)]v = m;

}

In this case, the time required to perform the send is dominated by the number
of positions in the current shape (si), even though most of those positions are
inactive. Suppose we implement the same thing using a get operation instead:

with(s2)

/* Get column 3 from m: */
v = [pcoord(0)] [3]m;

}
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In this case, the current shape is much smaller, and the time required to do the
operation is not daminated by the large current shape. The get operation here is
much more efficient.

The second case is also more memory-efficient, since the compiler-generated
temporaries used for send address calculations (in the current shape) are smaller.

An exception to this rule arises when the data being sent is not a data type that
is a multiple of four bytes. In this case, as discussed in Section 5.1.5, the compiler
generates temporaries for both the source and destination of a send or a get. In
either the send or get case, we incur the overhead of the manipulation in the
larger shape.

5.1.5 Avoid Communication Operations on Data that Is Not
a Multiple of Four Bytes

All communication operations require extra overhead if they involve data that is
not a multiple of four bytes. This overhead occurs because the compiler must
perform all communication operations with word-sized data. When data is not
a multiple of four bytes, the data is copied to word-sized temporaries, operated
upon, and copied back. This adds memory overhead and costs additional time.
You should avoid communication involving parallel short, char, and bool
types to avoid this additional overhead. For example:

· Simply declare the parallel variable as an int in the first place.

* Create your own word-sized temporaries around several communication
operations, to avoid creating temporaries for each operation.

Similarly, communication involving structures that are multiples of four bytes is
less expensive than communication involving structures that are not multiples of
four bytes.

5.1.6 Package Your Data into Structures to Avoid Extra
Communication Operations

When performing identical communication operations on several different paral-
lel variables, it is often more efficient to package up these parallel variables into
a single structure, allowing a single communication operation to be performed
for all of the data.
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For example, in the code below, the parallel variables have the same send pattern:

int:current a, b, c, d;

int:current i;

/* ...initialize data... */

/* send c to a, and d to be using identical

coordinates */

[i]a - c;
[i]b - d;

We can rewrite this code as follows to assign the parallel variables to structre
members, thereby saving a send operation:

typedef struct int x, y} pair;

pair:current e, g;

/* package the source and dest into a structure: */

e.x a;

e.y = b;

g.x = c;

g.y = d;

/* send the entire structure: */

[i]e = g;

/* unpack the result: */

a e.x;

b - e.y;

In this case, the cost of packing and unpacking the parallel variables is less than
the cost of the extra send.

5.1.7 Repack Your Shape When Too Many Positions Are Inactive

As we discussed in Section 4.3, the cost of performing parallel computation in
a shape is the same, regardless of how many positions are active. This means that
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performing the computation when relatively few positions are active can be inef-
ficient. To avoid this, it may be more efficient to repack your data into a new
shape containing only the active positions.

The benefits of this strategy depend upon how many positions are inactive, how
much computation is being performed on the active positions, and how easily the
data can be moved to a smaller shape. The time saved by performing the com-
putation in a smaller shape must be greater than that required to move the data
between shapes.

For example, it is sometimes more efficient to do this:

1. Identify the active positions.

2. Create a smaller shape containing only these positions.

3. Send the data to this shape.

4. Perform the computation there.

5. Send the resulting data back

In some cases, the cost of the two sends is less than the cost of operating on the
inactive elements.

We provide two examples. In both cases, the function f oo does a nontrivial
parallel computation. (It's not important what that computation is.) It is passed
and it returns parallel values in the current shape. In both cases, we are calling
foo to perform computation on a small fraction of the data in a large shape. The
examples demonstrate more efficient ways to do this computation by sending the
active data to a smaller shape.

The first example shows an easy case, where you know when writing the code
which positions are going to be active. In this case, we create a smaller shape,
do a get to fetch the data into the smaller shape, perform the computation, and
send the result back.

#include <stdlib.h>

#include <math.h>

int:current foo(int:current a)

{
double:current x, y;

x . prand();
y .. log(x) + a;
return ceil(y / 17.2);
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main()

shape [1000] [1000]sl;

shape [1000]s2;

int:sl a, b;

with(s1)

{
a - pcoord(1);

/* Compute only on a small section of the shape: */
where(pcoord(0) -- 3)

b - foo(a);

}

with(s2)

{

int:current a2, b2;

/* Instead, move the active data to a variable in a different

shape, perform the computation, and move it back. */

a2 - [3] [pcoord(0) a;

b2 - foo(a2);

[3] [pcoord(0)]b - b2;

A more difficult situation arises when you cannot easily express the active
elements in the shape - that is, they cannot be known until run time. In that
case, you can:

1. Count the active positions.

2. Create a smaller shape with enough positions to hold all of the active ones.

3. Enumerate the active positions to determine where they will be sent to.

4. Get the data to the smaller shape.

5. Perform the computation in the smaller shape.

6. Send the results back.

It's the same idea, only a little more complicated.
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In the example below, the variable e is used to compute the coordinates of the
data in s2. Then we send the source coordinates to a variable in sa2 and use this
to fetch the data we need from a3 to 2. We then perform the computation in the
smaller shape and send the results back

#include <cscomm.h>

#include <stdlib.h>

#include <math.h>

int:current foo(int:current a)

{
double:current x, y;

x - prand();
y - log(x) + a;
return ceil(y / 17.2);

main ()

{

shape [1000000] sl;
int:sl a, b, c;

int:sl e;

int num active;

with (sl)

{
a pcoord(1);
c prand() % 1000;

/* Compute only on a small section of the shape: */

where(c -- 3)

{

b - foo(a);

/* Send the active data to a smaller shape to perform the
computation: */

where(c -- 3)

{

/* Count the active elements, and enumerate them to determine
their position in the smaller shape. */

num active - +- (int:current) 1;
e - enumerate(0, CMC_upward, CMC_exclusive,

CMC none, CMC no field);

{

shape [num_active] s2;
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int:s2 a2, b2, coord;

/* Send the source coordinates to a variable in the
smaller shape. */

[e]coord - pcoord(O);

/* Use those source coordinates to fetch the data, then
perform the computation and send it back. */

with(s2)

a2 - [coord]a;

b2 - foo(a2);

[coord]b b2;

5.1.8 Use the Aggregate Versions of
Functions

General Communication

The overloadings of the general communication functions get, send,
writetopvar, and readfrompvar for aggregate data types (that is, those
that take a pointer to a parallel variable of any length as an argument) are some-
times faster than the overloadings for simple data types, because they don't
require the argument-passing overhead of the latter. (Note, however, that the
aggregate versions may not be faster in all cases.) When performance of these
functions is critical, you may want to time both versions to determine which is
faster for your application.

5.1.9 Using collision_mode Doesn't Increase Performance

Version 7.1 of the CM-5 C* compiler ignores the collision_mode argument
to the get function. Thus, you can't improve performance via this argument.

Version 7.1, Augst 1993
Copyright 0 1993 Laing Machines Corporation

.

{

}

I

}

}

~~~teoolara~~~~~~~~~~~~rra ss~~~~~~~~~8~~~~------ ----- 53

}



5.2 Tips for Increasing Grid Communication
Performance

As we noted at the beginning of the chapter, the advice here applies to grid com-
munication expressed either via syntax or via functions in the communication
library.

5.2.1 Use Torus Rather Than Grid Functions

The torus functions are much faster than the grid functions in the current version
of the compiler. This applies to all variations of these functions:

from torus

from torus dim

to torus

to torus dim

from_grid

fromgriddim
to_grid fi

to_grid dim

5.2.2 Use from_ Rather Than to_ Functions

The from_torus, fromtorus_dim, from_grid, and from_grid_dim
functions are much faster in the current version of the compiler than the corre-
sponding to_torus and to_grid functions, except when the functions appear
in an everywhere block; in that case, their speed is about the same.

Note that this rule is different from the rule for send and get operations (see Sec-
tion 5.1.1). The torus functions that have get-like semantics are faster than those
that have send-like semantics.

5.2.3 Use the Aggregate Versions of Grid
Communication Functions

As with general communication functions, the overloadings of grid communica-
tion functions for aggregate data types (that is, those that take a pointer to a

Vrsion 7.1, August 1993
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parallel variable of any length as an argument) are sometimes faster than the ver-
sions for simple data types, because they don't require the argument-passing
overhead of the latter. (Note, however, that the aggregate versions may not be
faster in all cases.) When perfomance of these functions is critical, you may
want to time both versions to determine which is faster for your application.

5.2.4 Use the CMSSL Version of the rank Function

The CMSSL library provides support for performing rank operations as much as
15 times faster than ordinary C*. CM-5 C* users can take advantage of this
simply by calling the C* rank function and linking their programs specially so
that the CMSSL support is used.

To use the CMSSL rank support, you must:

· Use a system on which the CMSSL library is installed.

* Compile your C* program for execution on the CM-5 using the vector

units (that is, with the -vu switch).

* Add the following options to the command that links your program:

-lcmsldash_opt_p -Zcmld -u - COM_ u_rank"

5.2.5 Performing Diagonal Moves in a Single Function
Doesn't Save Time

Although it may appear to be more efficient to move data along more than one
dimension in a single function call, the current compiler implementation does not
make this any more efficient than moving the data along one dimension at a time
in multiple fuction calls. Thus,

dest - from_grid(&source, fill, -1, 2);

is about as fast as

dest from_grid_dim(&source, fill, 0, -1);

dest - from_grid_dim(&source, fill, 1, 2);

This can be important when considering the costs of various communication

patterns.
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See the next section for an application of this point to convolution operations.

5.2.6 Consider Communication Patterns when
Doing Convolution Operations

The example below demonstrates three ways of computing the average of the
values of each point in a 2-dimensional grid and its eight nearest neighbors. The
most straightforward method is also the most inefficient; this points out the need
to carefully consider the costs involved when performing such operations.

In the first method, we use eight from_torus operations to fetch a value from
each of the eight neighbors, as shown in Figure 7.

The example computes smooth_mage as the unweighted average of each posi-
tion of image and its eight nearest neighbors.

Figure 7. A straightforward convolution operation.

float:current image, smoothimage;

smooth image - (image +

from_torus(&image, -1, -1) +

from_torus(&image, -1, 0) +

from_torus(&image, -1, 1) +

from_torus(&image, 0, -1) +

from_torus(&image, 0, 1) +

from_torus(&image, 1, -1) +

from_torus(&image, 1, 0) +

from_torus(&image, 1, 1)) / 9.0;

Version 7.1, Augut 1993
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Note that four of the from_torus operations are along diagonals. As discussed
in Section 5.2.5, these are each the equivalent of two fromtorus_dim opera-
tions. Including the four horizontal and vertical from_torus, calls, the entire
convolution requires the equivalent of 12 from_torus_dim operations.

A faster method - one that avoids doing the fromtorus calls along the diago-
nals - involves accumulating the results at each neighbor in turn before sending
them to the central point. See Figure 8. This still involves eight from.torus
operations, but it is the equivalent of only eight from torus_dim operations.

Figure 8. A faster convolution operation.

float: current image, smooth_image;

smooth image -
smooth image -
smooth image -
smooth_image -

smooth_image -
smooth_image -
smooth_image -
smooth_image -

from torus(&image, 1, 0) + image;

from_torus(&smooth_image, 1, 0) + image;

from_torus(&smooth_image, 0, 1) + image;

from_torus(&smooth_image, 0, 1) + image;

from_torus(&smooth_image, -1, 0) + image;

from_torus(&smooth_image, -1, 0) + image;

from_torus(&smooth_image, 0, -1) + image;

(from_torus(&smooth_image, 1, 0) + image) / 9.0;

A still faster method is first to combine values along axis 0, then to combine the
results along axis 1. This requires only four from_torus operations. Since there
is no diagonal movement involved, this is the equivalent of four
f rom torus_dim operations. This method relies on the fact that we are com-
bining all the neighbors with equal weight. See Figure 9.
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Figure 9. A still faster convolution operation.

float:current image, smooth_image;

smooth image - image +

from torus(&image, -1, 0) +

from torus(&image, 1, 0);

smooth image - (smoothimage +
from toxus(&smooth_image, 0, -1) +

fromtorus(&smooth_image, 0, 1)) / 9.0;

(
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Copyright c 1993 Thinking Machines Corporation

A

step 4- step 2 

.4lp- - I I

CM- C Performwice Guide58

a.



Chapter 6

Reducing Memory Usage

This chapter explains how memory on the CM-5 partition manager and proces-
sing nodes is used by this implementation of C*, and gives some hints for
reducing memory usage.

6.1 How C* Uses Memory

In the C* programming model, there are two distinct address spaces, scalar
memory and parallel memory. On the CM-5, scalar memory is instantiated on the
partition manager, and parallel memory is instantiated on the PNs.

6.1.1 Scalar Variables

All scalar variables (including shapes and pointers to parallel variables) take up
sizeof (var) bytes of scalar memory on the 'partition manager, just as they
would in an ordinary C program. Shapes may additionally take up parallel heap
space; see Section 6.1.3. In general, the compiler uses scalar memory on the
partition manager just as an ordinary C compiler uses memory in a UNIX envi-
ronment. This chapter does not attempt to explain the use of scalar memory in
detail.

rsion 7.1, Aug 1993 59
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6.1.2 Parallel Variables

6.1.2 Parallel Variables

Parallel variables occupy an amount of parallel memory in each vector unit that
is equal to the variable's size times its shape's subgrid size. For shapes that have
a large number of positions relative to the number of vector units, the subgrid
size can be thought of as approximately the number of positions in the shape
divided by the number of VUs. However, for smaller shapes it is important to
realize that the subgrid size may be larger than this, and in particular that it is
never smaller than eight. See Section 1.3 for more discussion of subgrid size.

Parallel variables also use a few bytes of scalar memory for bookkeeping.

The next sections describe the kinds of memory allocated for different kinds of
parallel variables.

6.1.3 Parallel Memory Spaces

Memory on the CM-5 nodes is divided into several different memory spaces. In
addition to the standard text, data, and BSS segments provided for the SPARC
processors, the compiler uses two special segments of memory to implement par-
allel variables. These segments are the parallel stack and heap; they are allocated
on the PNs such that they can be used with the vector units. This section
describes how C* programs use these PN memory segments.

Parallel Stack Memory

Parallel stack memory is used by C* programs for:

* Automatic parallel variables (that is, those that are declared at function
scope and are not static).

- iQLaLL LII JIGIu-L "ISLU U.J LAd% WJI 1.fWI U.--I '.kJ tU& aIrL

of the situations in which parallel temporaries are introduced.

Parallel stack memory is allocated when a parallel variable is declared (or when
a parallel temp is first needed by the compiler) and deallocated when the
enclosing block is exited.
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Parallel Heap Memory

Parallel heap memory is used by C* programs to store:

· all file-scope parallel variables

· all parallel variables declared as static

· parallel memory allocated via palloc

Parallel heap memory is also used by the current compiler for some temporaries
(see Section 6.2.3). The temporaries are allocated when the compiler first needs
them and freed at the end of the function. These parallel heap temporares are
reused in many circumstances to limit the number needed.

SPARC Memory Segments

Memory segments available to the SPARC processors on the PNs but not to the
VUs are used for these purposes:

· to store the text and data portions of the program that reside on the PNs
(this includes the VU instructions generated by the compiler)

* to store some bookkeeping information, particularly layout information
that is associated with shapes

* to provide local memory for the SPARC processors; this is used by PN
code blocks for scratch memory, and by internal PN functions in the run-
time system when performing communication operations

Memory Used by Shapes

A shape, strictly speaking, is a scalar data object, represented with four bytes of
memory. However, the C* compiler's run-time system allocates and deallocates
additional information to represent the shape's layout when the program is run.
This information is allocated:

* before the first use of the shape, for fully specified file-scope and static
shapes

* when a shape's scope is entered, for fully specified block-scope shapes

* when allocate_shape and allocate_detailed_ shape are called

Version 7.1, August 1993
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The current implementation of the compiler's run-time system uses some parallel
heap memory for shape allocation In CM-5 C*, a shape is allowed to have a
number of positions that is not necessarily an exact multiple of the number of
VUs in the current partition. The run-time system accomplishes this by using an
internal layout with axis dimensions that may be larger than those of the shape.
When this happens, a garbage mask is constructed in heap memory on each node
to represent which positions are masked out. This mask consists of one bit per
subgrid position on each VU, rounded up to an integral number of words on each
VU. Shapes with the same extents and layout share a single garbage mask. See
the discussion of allocatedetailed_shape in the C* Programming Guide
for more information.

In the current implementation of the run-time system, the heap space used by the
garbage mask is never released. You should be aware that this can accumulate
parallel memory when many different shapes are allocated A later version of the
run-time system will ensure that all parallel memory is freed when a shape is
deallocated.

6.1.4 Lifetimes of Parallel Variables

To use parallel variables wisely, it is important to understand their lifetimes:
when they are allocated and when they are deallocated. We discuss this with ref-
erence to the following code fragment (with line numbers added):

1 #include <stdlib.h>

2 #include <stdio.h>
3

4 shape [1024]S;

5

6 int:S a;

7 static float:S b;

8

9 main()

10 {

11 static char:S c[10];
12 double:S d;

13

14 int:S *p;

15

16 with(S)

17 {

18 int:S e;

version 7.1, Augsst 1993
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19 static short:S f;

20

21 /* ... *
22

23 p palloc(current, sizeof(int));

24

25 /* ... */

26

27 pfree(p);

28

29 /* ... */
30 }

31 /* ...*/
32

All file-scope parallel variables (a and b in the code fragment) and all static
parallel variables (b, c, and f) have lifetimes that are the duration of the program.
These variables are allocated in parallel heap memory by the C* run-time
system. Their allocation can occur at any time between program startup and
when the variable is first used. The memory is deallocated when the program
completes.

Automatic parallel variables (d and e) have lifetimes that extend to the end of
their enclosing block. These variables are allocated in parallel stack memory and
deallocated at the end of the block. Thus, d is dealloc at line 32, and is
deallocated at line 30.

Parallel data that is allocated using the palloc function is allocated in parallel
heap memory and deallocated only when a call to pfree is made. Thus, the data
allocated at line 23 is deallocated at line 27.

6.1.5 C* Memory and cmps Output

You can find out a program's memory usage by issuing the osps command. Here
is sample output from this command:

% aps
32 PN System, 21440K mem. free, 4976K VU mem. free, 1 procs, TS-6/30/93-15:54

(CMOST 7.2 Beta 2) Daemon up: 15:30

USER PID CMPID TIME TEXT ILH ILS IGS IGH VUS VUH COMMAND

wavin *22214 1 0:11 384K 116K 48K OK 4K 1088K 1044K a.out

Version Z1, August 1993
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This shows the user Wavin running the command a .out.

For a C* program compiled with -vu, the vus and vuH numbers report the num-
ber of bytes per VU used by the parallel stack and heap, respectively, by this
program. The TEXT, ILm, and ILS numbers report the number of bytes per PN
used by the SPARC PN memory segments. The IGs and IGH spaces are
generally not used substantially by C* programs compiled for the vector units.

For more information, see the campe man page.

6.2 Minimizing Memory Use

6.2.1 Using Parallel Variables

Every parallel variable declared in your program will actually cause parallel
memory to be allocated. The compiler does not ever eliminate or overlap storage
for parallel variables. Careful use of parallel variables can therefore reduce
memory usage. For example: i

* Declare parallel variables only when necessary.

* Reuse variables already declared but no longer needed.

* Avoid using parallel variables as temporary values in expressions when
you can fold the computation into a single expression. (This helps com-
putation performance, too. See Section 4.6.)

Limit the lifetime of automatic parallel variables; see Section 6.1.4.
Unlike scalar variables, the C* compiler deallocates parallel variables that
are declared in an inner block of a function at the end of that block. Thus,
you can limit the lifetimes of automatic parallel variables by introducing
enclosed blocks. For example,

int sum;
int:current x;

/* lots of code not involving x */

foo(&x, ...);

sum = += x;
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/* more code not involving x */

can be turned into:

int sum;

/* lots of code not involving x */

int:current x;

foo(&x, ...);

sum = += x;

/* more code not involving x */

Recall, however, that introducing braces breaks code blocks; see Section 1.5.1.

X You can limit the lifetimes of global and file static parallel variables by
replacing them with pointers to parallel variables and dynamically allocat-
ing the parallel memory (using palloc) only for the duration that the

I variables are used. Once again, see Section 6.1.4 for more information.

* Always free all heap memory as soon as it is no longer needed. A common
reason for running out of memory in C and C* is dynamic memory
leakage (that is, allocating heap memory without freeing it).

* Recursive functions that declare local automatic parallel variables will
allocate this data once for each level of recursion performed. When this
is undesirable, either avoid this kind of recursion or use static parallel
variables instead, so that fewer automatics are used in the recursion.

6.2.2 Parallel Heap Fragmentation

Parallel variables are never relocated in memory after they are allocated. It is

possible to accumulate free memory in the parallel heap that cannot be used by
the program because the free memory blocks are too small. Consider the

following scenario: there are 50 total words of memory, and the program emits
a sequence of allocate/free requests:

pi = alloc(1O);

p2 = alloc(30);

Version 7.1, August 1993
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p3 - alloc(10);
free (pl);

free (p3);

pi - alloc(20);

This last allocate request should succeed, since there are 20 free words. However,
the heap has been fragmented so that the free words are in blocks of 10 on either
end of the still-allocated 30 words; under these circumstances, the allocation
system can't return a block of 20 contiguous words because it can't relocate the
memory used by pa.

It is possible (although somewhat unusual) to encounter this situation with paral-
lel heap memory allocated with palloc. When the situation occurs, you can
sometimes remedy it by rearranging the order in which variables are allocated
and freed.

6.2.3 Parallel Compiler Temporaries

The rest of this section focuses on parallel temporaries that are created by the
compiler. These are often the culprit when a program that should have enough
memory to runm doesn't in fact runm The discussion is not meant to explain all
cases in which the compiler introduces temporaries, but rather to cover the
common cases and explain how to avoid the temporaries in some cases.

In almost all cases, the compiler should use stack temporaries instead of heap
temporaries, since they're slightly quicker to allocate and deallocate; this has a
minimal effect on the performance of parallel operations. However, the compiler
curently allocates some temporaries on the heap, as noted below. These tempo-
raries are deallocated after they are used, in any case.

Within Code Blocks

The compiler generally does not use parallel temporaries for computing expres-
sions within a code block. When temporaries are needed for this, they usually
take the form of vector registers or scratch memory for registers, and do not
occupy much memory. Preventing code from being broken into multiple code
blocks can therefore help reduce parallel compiler temporaries. See Section 1.5.

4·
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Parallel Arguments and Return Values

Functions that pass parallel variables as arguments require parallel stack tempo-
raries allocated by the calling function; these temporaries hold the values passed
to the function. (You can think of these temporaries as local variables that repre-
sent the function arguments.) These temporaries live for the duration of the
function call.

You can eliminate this memory overhead by passing parallel arguments by refer-
ence instead (that is, by passing pointers to parallel variables). It is also possible
to eliminate this overhead in some cases by declaring parallel arguments as
const. See Section 4.10.

Calling a function that returns a parallel value also causes a parallel stack tempo-
rary to be allocated to hold the return value. You can avoid this by instead writing
the function to pass a pointer to a parallel value into which the result is stored.

Temporaries Introduced by a where Statement

b( The where statement causes these parallel stack temporaries to be allocated:

· an integer-sized temporary to evaluate the condition

* a parallel bitmask (one word per 32 subgrid elements) for storing the
context

These temporaries have the lifetime of the where statement. See Section 4.2 for
ways to eliminate where statements.

The everywhere statement does not allocate parallel temporaries.

Communication Temporaries

Communication operations are the main source of compiler temporaries in many
programs. Each communication operation must be performed by a separate run-
time call in the scalar code (see Section 1.1). This implies that statements
generating multiple communication operations, such as

int:current a, b, i, j;
[i]a - [j]b;
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require temporaries for intermediate results (in this case, a single temporary is
needed for the result of [ i] b). Most of these communication temporaries are
allocated on the stack, but some may be allocated on the heap.

Communication operations used in computation expressions also require tempo-
raries to store the result of the computation outside the code block. For example,

int:current a, b, c, i;

c = [i]a + b;

requires a temp for i] a.

Likewise, computation expressions used in communication operations also
require temporaries. For example,

int:current a, c, i, j;

c = [i+j]a;

requires a temp for i+j.

Note that a scalar promoted to parallel for a communication operation (for exam-
ple, the 7 in [i] a 7;) is a special case of such a computation expression, and
also requires a parallel temporary.

Most of these temporaries for computation expressions used in communication
operations are allocated on the heap. However, it is again possible to explicitly
assign these values to automatic user variables so that stack memory is used
instead of heap memory; this will have a minimal effect on performance.

Temporaries for Types that Aren't a Multiple of Four Bytes

The compiler's internal run-time system implements communication operations
only for data sizes that are multiples of four bytes (one word) and for data that
is word-aligned; see Section 5.1.5. Communication operations involving char,
bool, and short types, and some structures and unions containing these types,
require parallel temporaries. This is true for calls to communication library func-
tions as well. These temporaries are allocated on the parallel stack In general,
using types whose size is a multiple of four bytes is both faster (since the vector
units are built to support this size) and requires less temporary memory space.

(,'tl
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Common Subexpresslons

One source of parallel heap temporaries is a compiler optimization done between
PN code blocks. When a given subexpression is guaranteed to have the same
value in two different expressions, it is called a common subexpression or CSE.
In the following code involving all parallel variables, ( (a + b) / (x *

y) ) is a CSE:

int:current a, b, c, d, i, x, y;

c ((a + b) / (x * y))

[i] c c;

d = ((a + b) / (x * y))

/ c; /* first PN code block */
/* communication */

* d; /* second PN code block *,

Rather than compute the CSE twice (once in each PN code block), the compiler
stores the resulting value in a heap temporary in the first PN code block, then
simply loads the value and reuses it in the second code block. (As mentioned
above, a stack temp would be preferable, but the compiler uses a heap temp
instead.)

You can obviate the need for these temporaries by making the CSEs occur in the
same PN code block. In this case, exchanging the second and third lines of the
example causes the CSE to exist within a single PN code block, since the
communication operation has been moved out of the way (see Section 1.5.1).
CSEs within a single code block take up only a single vector register or a vector-
sized amount of memory, rather than a whole subgrid, on each node.

Where it is not possible to place the CSEs in a single code block, introducing an
automatic variable to hold the CSE will at least cause the value to be held on the
stack instead of the heap.
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Appendix

Examining Generated Assembly Code

This appendix goes through the process of creating and examining the assembly
code files for a simple C* program, and gives some advice about how to under-
stand DPEAC code.

We use the same simple C* routine that we used in Chapter 1:

include <stdio.h>

void fishcake(int x, int:current a, float:current b)

float sum;

x = x + 2;
printf ("The value of x is: %d\n", x);

b - b * 17.2f + a * x;
sum +- b;
printf("The sum of b is: %f\n", sum);

As mentioned in Chapter 1, we can instruct the compiler to leave the intermedi-
ate assembler file around by using the -keep option. The -keep option
produces SPARC assembler files for both the scalar and PN code. However,
when examining the PN code, we would like to look at the DPEAC code before
it is processed by dpar (see Section 1.2). To do this, we use the -kep dp option
as well Thus, the command:

% cs -cms -vu -keep -keep dp fishcake.ce

causes the compiler to produce both of the assembler intermediate files,
fishcake.s and fishcake.pe.g, as well as the DPEAC PN file, fish-

ake.pe.dp. We are interested in the scalar . file and the PN .pe.dp file.
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A.1 Examining the Generated Scalar Code

Looking at a . file, you will notice that the generated code is somewhat more
complicated than the assembler code generated by ordinary C compilers. Some
of this complexity is due to extra work the C* compiler does - for example, to
initialize its own run-time system and allocate parallel memory. Some of it is also
due to inefficiencies in the current version of the C* compiler. (The compiler was
built primarily to produce efficient parallel code, and is not as efficient as ordi-
nary C compilers for producing scalar code.)

The C* compiler inserts comments into the generated assembler code that show
lines of code from the source program. These comments show roughly which
source lines the assembler code is derived from. Although the comments are not
always exact, they are very helpful for understanding the generated code.

The assembler code is long, so we just excerpt some of the more interesting parts
below. The entry point for the function fishcake begins:

!void fishcake(int x, int:current a, float:current b)
fishcake:

sethi %hi(-272), %gl

or %gl, %lo(-272), %gl

save %sp, %gl, %sp

This is the code that the compiler has generated to allocate local data on the
stack Following this is code that initializes some registers and makes calls to two
internal functions in the lines:

call CMC init, 0

[...]

call CMRT allocate_physical_stack_field, 1

The first call is used to guarantee that C*'s run-time system is initialized, and the
second call performs bookkeeping used for allocating parallel memory.

Below this is code that implements the scalar arithmetic:

! = x + 2;
ld [%i6+68], %10 ! Line 8

add %10, 2, %10

st %10, [%i6+68]

followed by a call to printf in the line:

call _printf, 2

* ~~~~~~~~~~~~4''(!
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followed by code that initiates our code block to perform the operation

b = b * 17.2f + a * x;

The code that initiates the code block is complicated because a significant
amount of information must be packaged up and handed to the mechanism that
broadcasts information to the PNs. The important part to recognize is the call to
CaRTfuncall, the run-time mechanism that initiates code blocks. This is pre-
ceded by the setting of the code block's address alCPE_fishcake_O ) in the
SPARC %oo register:

sethi %hi(_CMPE_fishcake 0), %10

add %10, %lo( CMPEfishcake0)-, %o

add %17, Lt7a-4096, %ol

call CMRT funcall, 2

(The names of PN code blocks always begin with _cPz_ and encode the name
of the function, as well as a number that makes this code block name unique,
since there may be several code blocks for one function. Thus, the code block
generated in our example is named _CPE fishcake0..)

The statement

sum = += b;

is compiled into a call to another internal run-time system function that computes
the sum:

call _CMRT global_sum_real4, 2

(he call is preceded by code that computes information that is handed to this

routine.)

The result is stored into the sum variable:

fdtos %f0, %fo

st %fO, [%i6+sum$a42]

A call to printf is made to print the result:

call printf, 3

And finally the function exits after again calling a run-time routine that performs
more parallel-memory bookkeeping.
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A.2 Examining the Generated Parallel Code

A.2.1 Understanding DPEAC Code

DPEAC code is a mixture of SPARC assembler instructios and instructions that
perform operations using the vector units. The dpas assembler translates the
vector-unit instructions into SPARC instructions that, when executed, initiate
these vector-unit operations on the VUs.

ull understanding of the generated DPEAC code requires understanding the
information in the DPFAC Reference Manual. But even without understanding
all of the details of the vector units, it is not difficult to read the compiler-gener-
ated DPEAC code and have a basic understanding of what is going on.

A DPEAC operation typically contains two parts: an arithmetic (or ALU) opera-
tion and a memory operation. Both operations are triggered as one instruction.
The result of a memory load is usually available before the arithmetic is per-
formed, even though they are not written in that order on the line. Either the
memory or the ALU operation may be a no-op (written as memop, fnops, or
f nopv).

Consider this DPEAC instruction:

imulv S2:0, V2, V2; uloadv [%i3 + %g6] :4, V2;

This performs two operations: a vector load operation and a vector integer multi-
ply operation. Each vector consists of eight elements.

The imulv specifies the vector integer-multiply operation (integer-multiply-
vector). It uses the scalar register sa2 as one source operand, the vector register
va2 as the other source operand, and va2 as the result. imuls would specify an
integer-multiply-scalar operation, which operates on a single element instead of
eight.

The uloadv (unsigned-load-vector) loads an unsigned vector 4-byte word from
the base address given by the SPARC %i3 + %g6 values, loading consecutive
values 4 bytes apart in memory into the vector register va2.

Since the result of the load is available for the multiply, the entire instruction
loads eight integer values, multiplies each value by the value in 82, and leaves
the results in v2.

As a rule of thumb, compiler-generated DPEAC vector instructions execute in
16 SPARC cycles each, and DPEAC scalar instructions execute in 2 SPARC
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cycles each. Thus, the instruction above executes both the load and the multiply
for eight subgrid elements (and for all four vector units) in 16 SPARC cycles. On
the CM-5 the PN clock frequency is 33 MHz (0.03 gls. per cycle), so this instruc-
tion executes in 0.48 ps., or 0.06 Ips. per subgrid element.

The most common exception to this rule of thumb is that vector stores of 4-byte
quantities (either int or float data types) execute in 56 SPARC cycles - that
is, 3.5 times as slowly. Similarly, scalar stores execute in 7 SPARC cycles.

Ordinary SPARC instructions execute in one SPARC cycle each. Since DPEAC
code mixes vector, scalar, and SPARC instructions together, it is important to
remember that the vector instructions are much more expensive. In some cases,
SPARC instructions can execute while VU instructions are completing,
amortizing the cost of the SPARC instructions.

NOTE: While the SPARC cycle counts above are a good rule of thumb, they
ignore several potential factors: instruction issuing time when it is not success-
fully pipelined, SPARC cache misses, DRAM page faults, and pipeline bubbles
that are caused by some DPEAC instructions. Refer to the DPEAC Reference
Manual for a more complete analysis.

A.2.2 Examining the PN Code

This code is generated for the PN code block in our example:

CMPE fishcake 0:

sub %gO, 96, %g2

save %sp, %g2, %sp

dpregs %gl=, %g4=, %g2

L1$_CMPE_fishcake_0:
dpwrt *, %i5, S2

b = b * 17.2f + a * x;

load 0f17.2000008 , %g5

dpwrt *, %g5, S4

load 0, %g6

load 0, %g7

L2$ CMPEfishcake_0:
b = b * 17.2f + a * x;

imulv S2:0, V2, V2; uloadv [%i3 + %g6]:4, V2;
load -4, %oO
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and %g7, %oO, %oO

and %g7, 3, %ol

sll %ol, 3, %ol

add %g7, 1, %g7

dpwrt *, %ol, S8

b b * 17.2f + a * x;

itofv V2, V2; uloadv [%i4 + %oO], S6:0;

fmadtv S4:0, V4, V2, V4; uloadv [%i2 + %g6]:4, 4;

ushrs S6, S8, S6; memnop;

ldvm S6

b - b * 17.2f + a * x;
fnopv; ustorev V4, [%i2 + %g6]:4; vmmode:condmem;

add %g6, 32, %g6

subcc %iO, 8, %iO

bnz L2$ CMPE fishcake 0
nop

L3$_CMPEfishcake_0:
ret
restore

The first part of our code block is the entry point, which begins:

CMPE fishcake 0:
sub %gO, 96, %g2

save %sp, %g2, %sp

dpregs %gl=, %g4-, %g2

The first two instructions allocate local stack space, following the SPARC con-
vention. The dpregs line is a directive for dpas that tells it which SPARC
registers are reserved for its use.

The code in the section labeled L1$_aMPE_fishcake_0 initializes values in
SPARC registers and VU scalar registers. The VU scalar register sa2 here is ini-
tialized with the value of x, and the s4 register is initialized with the value 7.2.

The code labeled L2$_CPE_fishcakeo is the body of the subgrid loop. It is
actually performing the operation

b b * 17.2f + a * x;

Consider for the moment only the vector operations in this section, which are:

imulv S2:0, V2, V2; uloadv [%i3 + %96]:4, V2;

itofv V2, V2; uloadv [%i4 + %oO], S6:0;
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fmadtv S4:0, V4, V2, V4; uloadv [%i2 + %g6]:4, V4;
fnopv; ustorev V4, [%i2 + %g6]:4; vmmode:condmem;

The first instruction is just what we discussed above. It is loading eight values
of the parallel integer a into V2, and multiplying that by the scalar value of z that
is stored in the S2 register, storing the result in va2.

The second instruction converts the integer values in v2 (the result of a * x) to
single-precision floating-point values, storing the result in va2. (Ignore for the
moment the memory operation in this instrctionL)

The third instruction, like the first, both loads values from memory into a vector
register and uses these values in computation. First, eight single-precision float-
ing-point values are loaded into v4. Then these values are multiplied by the
scalar value (17.2) in s4 and added to the values of a * x in v2. The entire right-
hand side of the expression has been computed, and the result is left in v4.

The fourth instruction stores the result of our computation into b. This completes
the operation for eight elements.

What do all the other instructions do? Most of them are performing contextuali-
zation. Remember that in C* parallel operations are performed only in positions
where the current shape's context is active. The compiler implements this by
storing the current context as a bitmask in memory, and loading the bitmask val-
ues into the VU "vector mask" register that is used to perform conditionalization.
The instructions below are performing contextualization in our example:

load -4, %oO

and %g7, %oO, %oO

and %g7, 3, %ol

sll %ol, 3, %ol

add %g7, 1, %g7

dpwrt *, %ol, S8

uloadv [%i4 + %oO], S6:0;

ushrs S6, S8, S6; memnop;

ldvm S6

The uloadv instruction (actually half of the itodfv instruction discussed
above) loads the vector mask from memory into a scalar register; the ushrs
instruction selects the appropriate bits in the mask; and the dm instruction
loads the vector mask register itself. The other instnructions are ordinary SPARC
instructions, and although they add five lines to the code, they add relatively little
cost.

.X
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Note that, as discussed in Section 4.2.1, the use of everywhere in the C* code
can eliminate this overhead, when contextualization is not required.

The final code in the body of our subgrid loop is:

add %g6, 32, %g6

subcc %iO, 8, %iO

bnz L2$ CMPEfishcake_ 
nop

This increments the value used for referencing memory, decrements the subgrid
count, and branches back to the start of the loop body, forming the loop.
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? operatr, avoiding contexaliZation when
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A

abs, 41
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assembly code

See also SPARC code, DPEAC code
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examinig parallel, 74
examining scalar, 72
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B

bandwidt 21

C
cm timer facility, 15

using, 16
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-aprofile compiler option, 15, 23
c.s, and C* mnory usage, 63
CMSSL, 55
code blocks. See PN code blocks
collislon ode argument, doesn't improve
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collisions, avoiding excessive, 44
comma operator, and PN code blocks, 13
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communication, timing, 21
communicatioan temporaries, 67
compilation model, 2
campilation process, 3
compound statements, and PN code blocks,
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computation, timing, 16
computation performance, assessing, 21
const

and memory usage with parallel arguments,
67

using to avoid passing parallel arguments
by value, 40

context, 33, 46
context overhead, and everywhere

statement, 31

contextualizatinc, 12

and PN code blocks, 12
techniques for avoiding, 30

convolution operations, consider
communication patterns when doing,
56

D

dpau, 4, 74
DPEAC code, 2, 3, 74

examining, 75

E

everywhere statement, using to avoid
context overhead, 31

F
fabs, 41
float constants, 38
floats, parallel, avoid assigning to, 38
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flow control, and PN code blocks, 11
function calls, and PN code blocks, 12
functions, prototyping, 40

G
-g compiler option, 15

and PN code blocks, 14
garbage masks, 62
general communication

assessing the performance of, 21
avoiding on data that is not a multiple of

four bytes, 48
functions, using aggregate versions of, 53

get, using aggregate version of, 53
gets

bandwidth estimates of, 22
use sends instead of, 43
using to get data from a much larger shape,

47
grid communication

assessing the performance of, 22
functions, use aggregate versions of, 54
performing diagonal moves in a single

function doesn't save time, 55
use from rather than to functions, 54
use torus rather than grid functions, 54

H

heap memory, parallel, 61
fragmentation of, 65

inactive elements, avoiding in send and get
operations, 46

inactive positions
and computation performance, 33
repacking data when too many, 49

integers, avoid parallel computation that uses
small, 29

ints, parallel, avoid assigning to, 38

K

-keep compiler option, 71
-keep dp compiler option, 5
-keep a compiler option, 5

L

loops, unrolling to avoid PN code blocks, 35

M

masks, don't use context to create, 32
memory

how C* uses, 59
minimizing use of, 64
used by shapes, 61

P
palloc, 61, 66

lifetime of parallel data allocated via, 63
parallel arguments

memory use of, 67
passing by reference, 40

parallel array indexing, 42
parallel code, steps in production of, 3
parallel communication operations, and PN

code blocks, 12
parallel compiler emporaries, 66

for types that aren't a multiple of four
bytes, 68

within code blocks, 66
parallel library functions, avoiding

mnnecessary calls to, 41
parallel memory use. See memory
parallel reductions, and PN code blocks, 13
parallel return values. See return values
parallel variables

lifetime of, 62
memory used by, 60
miniminng memory use of, 64

' 'I 
Version 7.1, August 1993

Copyright 0 1993 Thinking Machines Corporation

-

80 CM-5 C *Perfrmance Guide



lin d exiiiiiiili 8 1N .1111111111111111 ------- ------- ---------------

PN code blocks, 2, 5
breaking, 10

controlling construction of, 10
costs in, 6
examining, 75

invoking, 6
operations that break, 11
rearranging code to avoid, 33
structure of, 9

Prism, 15

analyzing performance via, 23
prototyping, 40

R

rank, using CMSSL version of, 55
read_from pvar, using aggregate version

of, 53
rearranging code, 33
return values, memory use of, 67

S
scalar code, writing in C, 28
scalar left indexing, and PN code blocks, 12
scans, using to combine data before general

communication, 44
send, using aggregate version of, 53
sends

bandwidth estimates of, 22
use instead of gets, 43

shape allocation, use of parallel heap memory
in, 62

shapes, memory used by, 61
shared table lookup, 42
small integers, and parallel computation, 29
small statements, avoiding breaking

computation into, 36
SPARC code, 2, 4
SPARC memory segments, 61
stack memory, parallel, 60
structures, packing data into, 48
subgrid loops, 5

determining costs of, 20
subgrid size, 5

T
table lookup functions, 42
temporares. See parallel compiler temporaries
timing communication, 21
timing computation, 16
torus functions, faster than grid functions, 54

V

vector mask register, 77

W

where, 12

avoiding, 30
temporaries introduced by, 67

with statements, and PN code blocks, 13
writetora, using aggregate version of,

53
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