
The
Connection Machine
System

CM/AVS User's Guide

Version 1.0
February 1993

Thinking Machines Corporation
Cambridge, Massachusetts



First printing, February 1993

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errrs in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.

CMosr, CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Coporation.

AVS is a trademark of Advanced Visual Systems, Inc.

SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright C 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000

. . . . . . . . . . . . . .. 11 . . . . . . . . .. . .......... . . . . . . . . . . . . . . .



Contents

About This Manual .......................................................... vii

Customer Support ........................................................... xi

Chapter 1 Introduction .................................... .... 1

1.3 Overview of CVMAVS ......................................... 1

1.4 The CM/AVS Package ........................................... 2

Chapter 2 Using CM/AVS Modules .................................. 5

2.1 The CM/AVS Modules ........................................... 5

2.2 Using CM/AVS Modules in a Network ......... ................ 6

2.3 Preparing to Run Remote CM/AVS Modules ......................... 7

2.4 Running a Remote CM/AVS Module - Tutorial ...................... 8

2.5 An Important Note about Performance .............................. 12

2.6 Running CM/AVS Modules Locally ................................ 13

2.7 Cleaning Up ........................................ ..... 14

Chapter 3 Writing CM/AVS Modules .................................. 15

3.1 The Field Type ................................................ 15

3.2 The Parallel Field Type ......................................... 16

3.2.1 Declaring a Parallel Field ................................ 17

3.2.2 Passing a Parallel Field .................................. 17

3.3 Using AVS Field Routines on Parallel Fields ......................... 17

3.4 Allocating Parallel Fields ......................................... 18

3.4.1 Parallel Input Ports ..................................... 18

3.4.2 Explicit Allocation ..................................... 19

3.5 Accessing Field Data and Coordinates .............................. 20
3.5.1 Access Routines ....................................... 20

3.5.2 Primitive Data Types ................................... 22

3.5.3 Data Array Layout ..................................... 23

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation iii



CM/AVSUer'sGuid

3.5.4 Coordinate Array Layout ................................ 23

3.5.5 Declaring the Am

3.6 Luminance Module Example
3.6.1 Luminance Modu

3.7 The CM/AVS Header Files

3.8 The CM/AVS Libraries ...

3.9 Compiling a Module .....

3.10 Debugging a Module .....

3.11 Getting Help............

3.12 Multiple-Module Binaries.

Appendix A

A.1

A.2

ays .... ................................ 23

..........................
leCode ....................
...........................

....... ,.................

..........................

............... e.........

...........................

...........................

CMIAVS Routines.

CMAVScorout-init ...

CMAVSdataalloc ....

A.3 CMAVSfieldalloc..

A.4

A.5

A.6

A.7

A.8

A.9

A.10

CMAVSfieldallocdatU

CMAVSfieId_aloc_poii

CMAVSfield_copy..poi

CMAVSfield_dataget

CMAVSfieldpoints_ge

CMAVSfield_reset min

CMAVSis_field_onCM

.......................

.......................

.......................

.......................

a_shape ................

itsshape ...............
ts ....... ....... ......its

max ...................
I .... ... .... . .....

Appendix B CM/AVS Modules (man pages) ...

antialias cm ........................

clamp cm ..........................

color range cm ......................

colorizer cm ........................

combine scalars cm ..................

compare field cm ....................

compute gradient cm ................

contrast cm ........................

downsize cm ........................

24

24

27

27

28

29

29

30

31

32

32

33

34

35

35

36

37

38

39

41

43

45

48

51

54

57

60

64

67
4

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

CICA VS User 's Gui-deiv

........................

............

............

............

............

............

............

......

......

......

......

......

......

......

......

......

......

......

............

............

............

............

............

............

............

............

............

............

............

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................



Cotents _Vor,@$C- k | , ; R ,,,>Ss> '

extract scalar cm ...

fft cm ............

field math cm ....................

field to byte cm ..................

field to double cm ................

field to float cm ..................

field to int cm ...................

luminance cm ....................

orthogonal slicer cm ..............

threshold cm ....................

Appendix C

............................. 74

............................. 78

............................. 80

............................. 82

............................. 84

............................. 86

............................. 89

............................. 93

Unsupported Programs and Modules ..

avstoppm .........................
ppmtoavs .........................
field to polygons ...................

95

97

98

99

101field to spheres .......................

Index ...... .............................................................. 105

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

70

72

Contents v

..........................................

.........................

.........................

.........................

.........................

.........................

. .



4



About This Manual

Objectives of This Manual

This manual describes CM/AVS. Working in conjunction with the Application
Visualization System (AVS), CM/AVS provides a graphic programming
environment for building distributed visualization applications. This manual tells
how to build applications that include computation on a CM-5 system, and how
to create your own CM/AVS modules.

Intended Audience

This manual is intended for

* Users who are familiar with the AVS product and who want to visualize
data on a CM-5 system. You must also be familiar with using a CM-5.

* Application developers who want to write modules that are compatible
with CM/AVS. You should be an experienced C or Fortran programmer,
knowledgeable about AVS, and familiar with C* or CM Fortran and using
a CM-5.

Revision Information

This is a new manual.

Organization of This Manual

This manual contains the following chapters:

Chapter 1 Introduction
An overview of CM/AVS concepts and a list of installed compo-
nents.

Version 1.0, February 1993
Copyright 1993 Thinking Machines Corporation vii



VUi1 nIVAra1 VuSr a rJULu I

Chapter 2 Using CM/AVS Modules
How to set up the environment to run CM/AVS modules locally
on a CM-5 partition manager or remotely from a workstation.
How to to build a simple application "network" to use a CM/AVS
module remotely.

Chapter 3 Writing CM/AVS Modules
A brief discussion of the properties that differentiate serial and
parallel fields. How to allocate and access parallel fields. Exam-
ple module. How to compile, debug, and link modules.

Appendix A CM/AVS Routines
Descriptions of the CM/AVS routines.

Appendix B CM/AVS Modules
Descriptions of the CM/AVS modules.

Appendix C Unsupported Programs and Modules
Descriptions of programs and modules that are included in the
CM/AVS package without guarantee or support.

Related Documents

The following document contains information concerning the hardware and
software requirements and installation of CM/AVS:

* CM/AVS Release Notes for Version 1.0.

You should have the complete AVS document set. The following manuals are
required:

* AVS User Guide
An introduction to AVS. To use CM/AVS effectively, you must be familiar
with the concepts introduced in this manual.

* AVS Developer S Guide
How to write AVS modules.

* AVS Module Reference
Detailed descriptions of all the AVS modules. 4

Version 1.0, February 1993
Copyright Q 1993 Thinking Machines Corporation

fl ISIA TIC 7 7 --- J-'..:



About This M

* AVS Tutorial Guide
A tutorial introduction to using AVS.

AVS Applications Guide
Information on using the Module Generator.

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

% bold typewriter
regular typewriter

typewriter

italics

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, programming language
elements, such as keywords, operators, and func-
tion names, when they appear embedded in text.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

Code examples and code fragments.

Argument names and placeholders in function and
command formats. -

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

About This Manual ix





Customer Support

Thinking Machines Customer Support encourages customers to report errors in

Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help

Ius identify and correct the problem. A code example that failed to execute, a

session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact

that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

customer-support@think.com

ames!think!customer-support

Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusetts 02142-1264

(617) 234-4000

xi





Chapter 1

Introduction

CM/AVS adapts and extends the Application Visualization System (AVS) to the
realm of the CM-5. AVS provides a graphic programming environment in which
a user builds a distributed visualization application. An application may involve
diverse operations such as filtering, graphing, volume rendering, polygon
rendering, image processing, and animation. CM/AVS enables an application to
operate on data that is distributed on CM-5 processing nodes and to interoperate
with data from other sources. CM/AVS also facilitates the incorporation of CM-5
code into a CM/AVS application.

CM/AVS is not run separately from AVS. A user runs AVS normally, using
CM/AVS modules and functions to handle data on the CM-5.

1.1 Overview of CM/AVS

The building blocks of an AVS application program are small, packaged units of
code, called modules. Most modules process typed data input(s) into typed data
output(s). Each module performs a given function. The function may be as
simple as adding two arrays, or as complicated as extracting isosurfaces of a
volume. When a CM/AVS module is used, the function is performed on a CM-5.

Modules are connected to form larger applications, called networks. In a
network, information is passed between the modules as various data types. Only
the field data type, which represents an array of data, is relevant to CM/AVS.
CM/AVS supports a parallel field that accommodates the distribution of data
across the CM-5 processing nodes. CM/AVS includes routines to allocate the
parallel arrays, and to access the data and coordinates as CM Fortran arrays or
C* parallel variables.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation 1



2 C/ -S U- Gud

When CM/AVS modules that operate on parallel data are connected with AVS
modules that operate on serial data, CMIAVS routines convert the data between
parallel and serial fields as required. The conversion is transparent to the user and
to the module writer.

The AVS Network Editor visual interface makes it easy to build application
networks graphically. Alternatively, the Network Editor may be driven by the
AVS Command Language Interpreter.

1.2 The CM/AVS Package

The CM/AVS software package includes:

* A set of modules that handle data on a CM-5. The modules are described
in Appendix B.

* A set of routines that provide general operations for parallel fields. The
routines are used by the CM/AVS modules and users may incorporate them
in their own C* or CM Fortran modules. The concepts that differentiate
serial and parallel fields are discussed in Chapter 3. The routines are
described in Appendix A.

· On-line code examples, help files, and release notes.

CM/AVS is installed on the CM-5 compile server as follows:

CM/AVS libraries /usr/lib

CM/AVS include files

Combined module binary,
list-dir file, and
library description file

Examples

Module help files

/usr/include

/usr/lib/cmavs_library

/usr/examples/cmavs

/usr/doc/cmavs/modules

Version 1.0, February 1993
Copyright 1993 Thinking Machines Corporation

2 CICA VS User $ Guide



.v* a 4. - 8) _

Release notes /usr/doc/cmavs-l.0.releasenotes

Source (by license only) /usr/src/cmavs

The directory /usr/examples/cmavs/unsupported contains items that are
supplied without guarantee or support. The README file in this directory
contains information about its contents. Appendix C contains additional
information about unsupported programs and modules.

Version 1.0, February 1993
Convriht © 1993 ThinkinR Machines Corporation

Chapter . Introtuction 3





Chapter 2

Using CM/AVS Modules

This chapter tells how to execute the CM/AVS modules from a workstation and
from a CM-5 partition manager. The following topics are discussed:

* The CM/AVS Modules

· Using CM/AVS Modules in a Network

· Preparing to Run Remote CM/AVS Modules

· Running a Remote CM/AVS Module - Tutorial

· An Important Note about Performance

· Running CM/AVS Modules Locally

· Cleaning Up

For a more thorough discussion of remote module execution, please refer to the
AVS Users Guide.

2.1 The CM/AVS Modules

CM/AVS provides the following modules. Most are CM-5 versions of AVS
modules. A detailed description of each module appears in Appendix B.

antialias cm
clamp cm

color range cm
colozizer cm
combine scalars cm

Version 1.0, February 1993
aL r____ wnf1^ ' nn .,, 3L,.'_A; nrr pnnrnfinn 5



~6~e~BB~s~ -

compare field cm

compute gradient cm

contrast cm

downsize cm

extract scalar cm

fft cm

field math cm

field to byte cm

field to double cm

field to float cm

field to int cm

luminance cm

orthogonal slicer cm

threshold cm

The following modules are unsupported. Detailed descriptions of these modules
appear in Appendix C.

field to polygons

field to spheres

2.2 Using CM/AVS Modules in a Network

AVS supports distributed computation over a heterogeneous network of
computers. While you run the AVS kernel on a local graphics workstation, you
can execute modules locally or on other workstations or systems. Using CM/AVS,
you can also execute CM/AVS modules on a CM-5.

You use CMIAVS modules in exactly the same manner as AVS modules. When
you build a network, you may interconnect AVS modules and CM/AVS modules.

If you run AVS on a CM-5 partition manager, you can run CM/AVS modules
locally. (We do not recommend this as a good use of partition manager
resources.)

Version 1.0, February 1993
Copyright ) 1993 Thinking Machines Corporation

6 CWA AVS User 5 Guide



~8i~$B~es~g p~sseasp~ ----

2.3 Preparing to Run Remote CM/AVS Modules

It is likely that you will run AVS on a local workstation and run the CM/AVS
modules on the CM-5. The remote use of any modules, including CM/AVS,
requires some preparation.

AVS uses a "hosts file" to find remote modules. The file identifies remote hosts
and the directories on those hosts that contain modules. The hosts file format is
described under Remote Module Execution in the Advanced Network Editor
chapter in the AVS User s Guide.

You may choose to rely on the system administrator to maintain the file
/usr/avs/runtime/hosts. Alternatively, you may choose to create and
maintain a private hosts file. In either case, your . avsrc initialization file must
point to a legitimate hosts file.

To create and use a . avsrc file, follow these steps:

1. Create a. avser file. AVS looks for this file first in the current directory,
and then in your home directory. We recommend putting it in your home
directory.

A minimal .averc file might look like this:

# Point to a file containing remote hosts

Hosts /home/yourname/.avs-hosts

where the specified hosts file is /home/yourname/. avs -hosts.

2. Check the hosts file:

· It must reside at the pathname specified in the .avsrc file. The
pathname must be valid on the system where AVS is invoked.

* It must contain one line of information for every remote
host/directory combination where you want AVS to look for
modules.

Each information line in a hosts file contains four fields, in this order:

(1) A logical name that identifies a particular combination of a remote
host and a module directory. This logical name will appear in the
Remote Host Browser. (Just the host name may be used for this
purpose, unless more than one module directory on the host is of
interest. In that case, each of the directories requires its own line in
the hosts file.)

Version 1.0, February 1993
CnnvriPht 1993 Thinking Machines CorDoration

Chapter Z. Using CWA AVS Modules 7



8 CM/ VUer'Gid

(2) Both the name of the remote shell program (the path to rsh) and
the actual host name of the remote machine. (For CW/AVS modules,
the host name should be a CM-5 partition manager.) You may add
options to rsh. The entire field is enclosed in double quotes.

(3) The directory on the remote host that should be searched for
modules.

(4) The default data directory on the remote host.

To make the remote CM/AVS modules available, the hosts file must
contain a line that specifies a CM/AVS modules directory on a partition
manager. The line might look like this:

pep.think.com "/usr/ucb/rsh pep.think.com -n"

/usr/lib/cmavs library

/usr/avs/data

pep. think. con is the logical name of the CM-5 partition manager
(pep. think. cor) and the module directory /usr/lib/cmavs_
library. (Field 1)

/usr/ucb/rsh is the command to run a command shell on the remote
machine, whose real name is pep. think. com; -n is an rsh option that
prevents input conflicts with the caller. (Field 2)

/usr/lib/cmavs_library is the directory that contains CM/AVS
modules. (Field 3)

/usr/avs/data is the data directory. (Field 4)

2.4 Running a Remote CM/AVS Module - Tutorial

In this section, we build a simple network to turn an RGB image into a greyscale
image. We use a CM/AVS module, luminance cm, in the network. The module
is the CM-5 version of the AVS luminance module.

First, make the preparations described in Section 2.3. Then, follow these steps:

1. Start AVS and bring up the AVS network editor. From the menu in the
upper left of the network editor menu, select Module Tools, as shown
in Figure 1.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

8 CWA AVS User k Guide



5 5.. .5 5B'9is2N 5:55 5:5::':i-" .5.:.$:: :.,,.,,. j,.f;- ,.,.5:.:.:.5 ..55.5::.... 5 .. 5:...:..... :. 5 ..5.........:55::55::5:5:::: : 55 5:5 ::::::s:::::55 : :5:: 5: : ::55::5 : S:::: :: : ::~~:: 
5
5~s: 5 ~ 555~::55:::::5::55.5 5 :555:5: 5:5.:5~ : 5:55::555555s,.:

5
55 5 55:~555 55 5 55 555 55: S .. * . ... * .::..::55:::5, .: .. 5:: :.:::.:5:.55. :...55555...... ~ 555

2. Optional: If you want the CM/AVS module icons to appear under a
CM Modules Library header instead of being incorporated in the AVS
module lists, do the following:

Select Edit Module Library, then select Create Empty Library on the

resulting pop-up window. Enter cM Modules in the pop-up prompt for
a name, then select OK. Close the Edit Module Library pop-up
window. CM Modules appears as the selected AVS Module Library
header in the AVS Module Palette.

Figure 1. Module Tools menu.

3. Select Read Remote Module(s) from the Module Tools menu. This

brings up a Remote Host Browser containing a list of available hosts.
Select a CM-5 partition manager (one that is named in .avs-hosts)
from this list. In this example, we use pep, as shown in Figure 2.

The selection causes the display of the contents of the current directory
on the host. If the binary file cmarvs-modules is not in the contents list,
change to the directory that contains it (/usr/lib/cmavs_
library). Select cmavs-modules from. the list and close the module
selection window.

Version 1.0, February 1993

Copyright (O 1993 Thinking Machines Corporation

Chapter 2. Using CWAVAFS Modules 9



!: AS :. -, !if!i * > ': .,·'> .!S *' / ' ..,' " : .>.1 :'0: .CM../A V :': ' ue::

Figure 2. Remote Host Browser.

When the read of the binary file is complete, an icon representing each

of its modules appears under the appropriate Library header. Each icon
has a button on the right side. On a remote module, this button is colored
pink.

4. Drag one instance each of the following modules into the network editor
workspace. Place them as shown in Figure 3. The appearance of colored

badges designating input and output ports indicates that the AVS
modules are active and ready to accept connections. Wait for the ports

to appear on one module before you drag in the next one. (Section 2.5
explains the benefit of waiting.)

read image (Data Input list)

luminance cm (Filter list)

colorizer cm (Filter list)

display image (Data Output list)

When display image becomes active, the image display window
comes up. Reposition it, if you like. (It will expand to about four times

its initial size to accomodate the result.)

5. When all four modules are active, connect the output of read image to

the input of luminance cm: position the cursor over the read image

output port, press the middle mouse button, move the cursor to the
luminance cm input port, and release. Similarly, connect the output of

luminance cm to the input to colorizer cm, and the output of

colorizer cm to the input to display image. See Figure 3.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

CMIA VS User Ss Guide10



Chapter 2. UsingSC WA VS Module 11e

6. Select read image on the Network Control Panel and read the image
/usr/avs/data/image/mandrill.x. TOhis image file is included
with AVS.) The modules in the network change color when they are
active, so you can watch as the image data progresses through the
network. During processing, it is actually transferred to the CM-5 for
luminance and colorizer calculations, then back to the local workstation
to be displayed. See Figure 3 and Figure 4.

Figure 3. The complete network and display.

Version 1.0, February 1993
Copyright ) 1993 Thinking iachines Corporation

Chapter 2. Using CWA VS Modules 11



12 CM/A VS User ~ Guide
i;ii:,:iiiii i : ::iii:: · ;i::ii !!!!!:i iii i!:i;:;: iii; : :i:i!!:!i l :::::.i !!iii:!!: !::E:ii .!i:5!!;:!~ i::!:!i:! Z.:i::i!ii:iiiiii i:1ii:iii!i!;~iiii1~:!ii iiii 'ii:!1i!!~i: i:!: ii!i ::::;..::.:....:..:.....i:.i:iii!1i

W

Figure 4. Example network: processing locations.

2.5 An Important Note about Performance

To realize the best performance for your application, you must take a bit of care
when you add modules to a network. After you drag a module into the
workspace, wait for its ports to appear before you drag in another module.

This can have an effect on performance because multiple CM/AVS or AVS
modules may be linked into a single binary, enabling multiple modules in a
network to run in a single process. Field transfers between modules in a single
process consist of a simple pointer copy. By contrast, field transfers between
processes must use sockets. If you add new modules to your network too quickly,
AVS may not have time to ascertain whether or not it can fulfill the module
requests with a single process.

Version 1.0, February 1993
Copyright Cc) 1993 Thinking Machines Corporation



Chapter 2. Using CM/A VS Modules 13

2.6 Running CM/AVS Modules Locally

Running AVS on a CM-5 partition manager does not make the best use of the
partition manager resources. However, it can be done, provided you follow these
steps to make the CM/AVS modules accessible to the AVS Network Editor:

1. Start AVS and bring up the AVS Network Editor. From the menu in the
upper left of the Network Editor menu, select Module Tools, as shown
in Figure 5.

2. Optional: If you want the CM/AVS module icons to appear under a
CM Modules Library header instead of being incorporated in the AVS
module lists, do the following:

Select Edit Module Library, then select Create Empty Library on the

resulting pop-up window. Enter CM Modules in the pop-up prompt for
a name, then select OK. Close the Edit Module Library pop-up
window. CM Modules appears as the selected AVS Module Library
header in the AVS Module Palette.

Figure 5. Module Tools menu

3. Select Read Module(s) from the Network Editor list. A display shows
the contents of the current directory. If the binary file cmavs-modules

Version 1.0, February 1993
Colyright C) 1993 Thinking Machines Corporation



14 CM/A VS User's-Guide

is not in the contents list,. change to the directory that contains it
(/usr/lib/cmavslibrary). Select cmavs-modules from the list,
then close the module selection window. (From this point, you may pick
up with Step 4 in the tutorial, Section 2.4, if you like.)

2.7 Cleaning Up

If AVS terminates abnormally (if the kernel crashes or if there are network
problems, for example), CM/AVS modules may be left running on the CM-5.
Therefore, it is a good idea to use camps and check the partition manager process
status after AVS terminates. Be sure that no stray modules continue to run and
waste system resources.

Version 1.0, February 1993
Copyright 0 1993 Thinking Machines Corporation

14 CWA VS User ~ Guide



Chapter 3

Writing CM/AVS Modules

You can develop new code or adapt existing code to be compatible with the
CM/AVS environment. You may combine your modules in a network with
modules from other sources.

This chapter talks about the aspects of code that are unique to handling parallel

arrays, including the topics listed below:

· The Parallel Field Type

· Using AVS Field Routines on Parallel Fields

· Allocating Parallel Fields

· Accessing Field Data and Coordinates

The chapter includes a sample module, and concludes with instructions for
compiling and debugging your modules.

3.1 The Field Type

The data that is passed between AVS modules is categorized by type. Only the
field data type is pertinent to CM/AVS.

An AVS field is an n-dimensional array of byte, short integer, integer, floating-
point, or double-precision floating-point numbers. AVS fields contain some
descriptive information, such as the number of dimensions and the type of
coordinate mapping, but the bulk of a field is in its data and coordinate arrays.

A field is defined in a computation space where the axes are orthogonal and each

data point is unit distance away from its neighbors along any axis.

Version 1.0, February 1993
CoDvrieht © 1993 ThinknR Machines Corporation 15



16.`CM/A`VS User's..G:uie::

This computation space is mapped into a coordinate space in one of three ways;

uniform The coordinate space is determined by minimum and
maximum values along each axis and is mapped directly
onto the Cartesian grid defined by these extents.

rectilinear The neighbors along any axis may be different distances
apart; for each axis there is a separate array that gives
the mapping from computation to coordinate space.

irregular Each data point also has an explicit coordinate stored
with it; this can be used to represent curvilinear
volumes. The connectivity is still topologically recti-
linear.

Fields are described in further detail in the AVS Developer 's Guide.

3.2 The Parallel Field Type

The defining feature of a parallel field is the distribution of its data across the
CM-5 processing nodes. The field's coordinate array may also be stored on the
processing nodes. If the mapping from computation space to coordinate space is
rectilinear or irregular, then the coordinate array is automatically placed on the
processing nodes. If the mapping is uniform, then the few floating point-numbers
that describe the mapping are left on the partition manager; the coordinate array
for a uniform field is never put on the processing nodes.

In this discussion, we use the term parallel field for a field whose data is
distributed over the CM-5 processing nodes. The term serialfield refers to a field
whose data lives in the memory of some scalar machine: either your local
workstation or a CM-5 partition manager. When this distinction does not matter,
we simply use the term field. CM/AVS provides routines for allocating and
accessing parallel fields.

Version 1.0, February 1993
Copyright Q 1993 Thinking Machines Corporation

CW VS User S Guide16



Chap-te 3. W CM/A VS'. Modul: 1

3.2.1 Declaring a Parallel Field

Parallel fields are declared in the same way as standard AVS fields. In C*, a
parallel field is declared as a structure or as a pointer to a structure, as
appropriate:

AVSfield *field;

In CM Fortran, a parallel field is declared as an opaque integer, which should be
operated on only with AVS or CM/AVS routines:

integer field

3.2.2 Passing a Parallel Field

Parallel fields must be passed as single arguments to CM Fortran functions. This
means that any CM Fortran module must include in its module description
function a call to AVSset_moduleflags with the SINGLE_ARG_DATA flag
set:

call AVSsetmodule flags (SINGLE ARG DATA)

For coroutine modules that output parallel fields, the COROUT_UNPACKARGs
flag must also be set. In CM Fortran, module flags may be combined by using
the IOR intrinsic:

call AVSset_module_flags(IOR(SINGLE_ARG_DATA,

$ COROUT UNPACKARGS ))

3.3 Using AVS Field Routines on Parallel Fields

Most of the standard AVS field access routines work correctly on parallel fields;
the exceptions are the ones that that touch the field data or coordinates. CM/AVS
provides equivalents for these, as listed in Table 2.

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 3. Wti'ting CA AVS Modules 17



18 C/A S Usrj uid

Table 2. Standard AVS field routine equivalents for parallel fields. 

3.4 Allocating Parallel Fields

There are two ways that a parallel field can come into being: it may be explicitly
allocated, or an input port may be declared as parallel, causing the received field
to reside on the processing nodes.

3.4.1 Parallel Input Ports

To direct a module to distribute data on the CM-5 processing nodes, use the
PARALLEL flag with AVScreate inputport. (This flag may be OR'ed with
others, such as RoQURED.) If the PARALLEL flag is not set, the data is placed
on the partition manager.

For example, a CM Fortran module that reads an image and processes it on the
processing nodes might contain this input port definition:

Version 1.0, February 1993
Copyright 1993 Thinking Machines Corporation

Standard AVS Field Routine CMAVS Replacement

AVSfield alloc Use CMAVSfield alloc or
CAVSdata alloc.

AVSfieldfree Use AVSdata free.

AVSfield dataoffset Convert the field into a CMF array or C*
AVSfield_data_ptr pvar with Avsfield data_get.

AVSfieldpoints offset Use these routines only for UNIFORM
AVSfield points tr CM/AVS fields. For others, use

CMAVSfieldpoints get.

AVSfieldreset minmax Use CMAVSfield reset minmax.

AVSfield.copypoints Use only for UNIFORM CM/AVS fields.
For others, use

CMAVSfield_copy points.

AVSbuild field Obsolete after AVS 2.0.
AVSbuild2dfield
AVSbuild 3d field

CWA AVS User $ Guide18



Chapte 3. rItg C A e 

$

inport = AVScreate_input_port('input

'field 2D 4-vector byte',

IOR(REQUIRED, PARALLEL))

field',

The AVS Network Editor displays ports for parallel fields and serial fields the
same way, and allows connections between the two.

NOTE

A connection between an AVS module and a CM/AVS module
can work only if the modules are not linked in the same binary.
If this condition is not met, the results may appear to be correct
at first; however, errors may appear later.

3.4.2 Explicit Allocation

To allocate a CM/AVS field, one may call CMAVSdata_alloc or
CMAVSfield_alloc.

Given a dimension array and a string describing the desired field, CAVsdata_
alloc returns a parallel field.

output = CMAVSdataalloc
("field 2D scalar byte",dims)

The string describing the field is the same as that used by AVSdata_alloc.

Version 1.0, February 1993
Copyright 0 1993 Thinking Machines Corporation

-- - -- - - -- -- - -- - - -- - -- -- -- - - - - - - -- - -- - - - - -

ran�ew�#a4p�Rs�a�aM��

Chapter 3. Wutng CMIA VS Modules 19



20 M S Users Gud e:

NOTE

CAVSdata_alloc may be used only to allocate fields. If the
string describes any other type, an error is raised.

CMAVSfield_alloc takes an AVS field as a template and allocates a
corresponding parallel field. The new field may take its dimensions from the
template or from an explicit dimensions array. This CM Fortran code fragment
allocates an output field with the same properties as the input field:

iresult = AVSfieldmake_template(input, template)
output = CMAVSfield_alloc(template,O)

The resulting output field is a duplicate of the input field, and it is guaranteed to
be on the processing nodes, even if the input field was not.

3.5 Accessing Field Data and Coordinates

CM/AVS provides some special routines to gain access to a parallel field's data
and coordinates.

3.5.1 Access Routines

There are two CM/AVS routines that give access to the data and coordinates in
a CNAVS field: CMAVSfield data_get and CMAVSfield point_get:

void:void *
CMAVSfield_data_get(AVSfield *field, shape S);

float:void *
CMAVSfield_points_get(AVSfield *field shape S);

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

20 CWA VS User Guide



.:. .'.:. ,,:'S:.f ..Cs' :::::.'. :r:tn .:S'.. Mod s 2

The C* interface to these routines takes both a field and a shape, and returns a
pointer to a parallel variable. The parallel pointer refers to the coordinates in the
first argument (Avs field). You must pre-allocate the shape using
CMAVSf ieldalloc_points_shape. You may use the same shape to
construct pointers to any fields that have the same rank and dimensions.

In CM Fortran, the situation is slightly more complicated because both these
routines construct and return arrays of arbitrary rank There is no way to express
such a generic array constructor in CM Fortran itself, so the routines instead
return an opaque object that can be passed to a routine expecting a CM Fortran
array.

This approach is similar to that used by the CM Fortran utility function
CMF_ALLOCATE_ARRAY. CVMAVS uses a small array on the partition manager to
hold an array descriptor. This one-dimensional array of integers must have length
CMF_SIZEOF_DESCRIPTOR, which is defined in /usr/include/cm/
CMF defs.h.

include '/usr/include/cm/CMF_defs.h'

include '/usr/include/cm/cmavs.inc'

integer field

integer desc(CMFSIZEOFDESCRIPTOR)

CMF$LAYOUT desc(:serial)

call CMAVSfield_data_get(field, desc)

call CMAVSfield_points_get(field, desc)

The CMF$LAYOUT directive is not actually needed, but its use in the
documentation and example code emphasizes that desc must not be a parallel
array. The descriptor array returned by CMAVSfield data_get or CMAVS-
fieldpoints_get may be passed to any routine expecting a CM Fortran
array. Section 3.5.5 shows how to declare the layout of these arrays.

Note that both the C* and CM Fortran access routines are really returning
pointers to a memory location on the processing nodes. Be careful not to refer
to one of these pointers after freeing a field; it will no longer refer to valid data.

Version 1.0, February 1993
Covyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CWA VS Modules 21



22~.~~~~~~~~~~~~~~~~~~~~~-: .~ :C:::M:/: .::- : : : ::: : ::: .*:.M..:/A::srs:ud

3.5.2 Primitive Data Types

When you declare a C* parallel variable or a CM Fortran array, the primitive data
type must correspond with the AVS type, as shown in Table 3.

Table 3. Primitive data types.

AVS Type C* Type CM Fortran Type

AVS_TYPE_BYTE unsigned char integer

AVS_TYPESHORT short integer

AVSTYPEINTEGER integer integer

AVSTYPEREAL float real

AVSTYPEDOUBLE double double-precision

CM/AVS byte and short fields are promoted to integers for CM Fortran, since CM
Fortran does not support parallel arrays of bytes or shorts, and it is simpler to
manipulate integer fields. During this promotion, shorts are sign-extended to
form integers, and bytes are not sign extended: shorts are in the range -32768 <=
x <= 32767 and bytes are in the range 0 <= x <= 255.

NOTE

Even though the field data is promoted to integers, the
min_data and max_data values are still kept as bytes and shorts.
With Version 5.0, AVS provides AVSfield_get_minmax
as_int and AVSfield_set_minmax_as_int, which
automatically coerce shorts and bytes to ints.

.:$�:::�.�

When you convert the coordinates in a CM/AVS field to a C* parallel variable or
CM Fortran array, the result is always stored as single-precision floating-point
numbers.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

... 1111.*'I"I" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ::

22 CWA VS User 5 Guide



Cp3W nCA M.ue

3.5.3 Data Array Layout

An AVS field is essentially an n-dimensional Cartesian grid, where each point in

the grid may contain a single value or a vector of values. The length of this vector
is given by the veclen member of the field structure.

In C*, the field data is stored in an n-dimensional shape. In this shape, we

allocate a 1-dimensional per-processor array of length veclen using the
appropriate primitive data type.

In CM Fortran, the field data is stored in an array with n+ 1 dimensions. The first

axis has: SERIAL ordering (elements along this axis reside in the same physical

processor) and length veclen. We call this serial axis the "vector axis." To make
it easier to write modules that are independent of vector-length, this vector axis

is present even for scalar fields; in this case it is of length one. The remaining
axes have :NEWS ordering.

3.5.4 Coordinate Array Layout

There is only one valid type for coordinate arrays: single-precision floating
point. This applies to coordinates on the processing nodes or on the partition
manager.

Uniform fields always have their coordinates stored on the partition manager.

Irregular fields are placed in a floating-point array with ndim+ 1 axes, where ndim

is the dimensionality of the data array. The first ndim are :NEWS axes whose
length is given by the corresponding entry in the dimensions array. The
remaining axis is SERIAL and of length nspace, where nspace is the
dimensionality of the space in which the data points exist.

Rectilinear fields are placed in a 1-dimensional floating-point array with a single

: NEWS axis. The length of the array is the sum of the lengths of all axes in the
field.

3.5.5 Declaring the Arrays

Assume that you have a 2-dimensional uniform field, with a 4-vector of bytes at

every point. In CM Fortran, the field data would be loaded into an array declared

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CIA VS Modules 23



24 '~.,... ~ -*":-. CM /A.~ VS User's Guide.'~' ~.' '.'~'~:~'.. *' :'.~ '"'~ !~.-"~.%'.~ ~. ~ ii~i ~ ~ ~ ~-~.:'.~'i~.".':..::~ i:~: :~;.*.::-;.".[.~;~;~'~ ~'..~->~ :~,~'.'i~?'"' "'-~' ~. "~'~ i~?'.~.*~~.:'J~ :~ f~..";f.';i~f<.. ;/.'.'~.~i"~f/"~' ~' ~' ~ ' :~ '~"". ~.' '~.~i~i~

integer array(4, x, y)

CMF$LAYOUT(:serial, :news, :news)

where x and y are the lengths of the field's axes.

If you have a 3-dimensional scalar field, the field data would be loaded into an
array declared

integer array(l, x, y, z)

CMF$LAYOUT(:serial, :news, :news, :news)

3.6 Luminance Module Example

As a simple example, consider a module that takes the luminance of an image.
In AVS, an image is represented by a 2-dimensional field with a 4-vector of bytes
at every point. The coordinate mapping is usually uniform.

The luminance of an image is a weighted sum of the color components at each
pixel. The first byte in each 4-vector is the alpha component; this component is
typically used to store opacity, and it is not used to compute the luminance. The
remaining bytes are the red, green, and blue components; we combine these,
using weights appropriate for the NTSC luminance. This choice of weights makes
our simple routine compatible with the AVS luminance module.

3.6.1 Luminance Module Code

A copy of the module luminance.fcm is included with other examples in the
directory

/usr/examples/cmavs

Below is the CM Fortran code for the module. Note that the bytes of the image
are automatically promoted to integers by CM/AVS; this makes it easier to deal
with byte fields in CM Fortran. Note also that we have a separate routine,
luminance_compute, which extracts parallel arrays from the CM/AVS fields
and passes them to the function that actually computes the luminance.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

24 CMI VS User I Guide



Chapter 3. Writing CM/A AVS Modules 25

C A luminance module

C*******************************************************************

C- - ---------
C Describe the module to AVS

subroutine AVSinit modules

implicit none

include 'avs/avs.inc'

include 'cm/cmavs.inc'

integer iport, oport

external luminancecompute

C Set the module name and type

call AVSset module name('luminance CM', 'filter')

C Make sure we pass in the args as integers

call AVSset_module_flags(IOR(SINGLE_ARGDATA,
$ IOR(COOPERATIVE,REENTRANT)))

C Create an input port for the required field input

iport - AVScreate input_port(' input field',

$ 'field 2D 4-vector byte',

$ IOR(REQUIRED, PARALLEL))

C Create an output port for the result

oport - AVScreate output_port('output field',

$ 'field 2D scalar byte-')

call AVSset_computeyroc(luminance_compute)

return

end

C--------------------------------------

C Unpack the structure members we need, create CMF arrays that point

C to the field data, and call the routine that does the real work

C---------------------------------------

integer function luminance_compute(in, out)

implicit none

include 'avs/avs.inc'

include '/usr/include/cm/CMFdefs.h'

include 'cm/cmavs.inc'

integer in, out

integer indesc(CMF_SIZEOF_DESCRIPTOR),

$ outdesc(CMF_SIZEOF_DESCRIPTOR)
integer iresult, dims(2)

Version 1.0, February 1993
r.,nnviht 1993 lhinkinR Machines Corporation



26 CM/A VS User's Guide

C Now get pointers to the arrays containing the AVS field data

call CMAVSfield_data_get(in,indesc)

iresult- AVSfield_get_dimensions(in, dims)

C If there is already output data, deallocate it.

if (out .ne. 0) then

call AVSdatafree("field",out)
endif

out - CMAVSdataalloc("field 2D scalar byte",dims)

C Get a pointer to the output data

call CMAVSfield_data_get(out,outdesc)

C Copy the points from input to output

iresult- CMAVSfield_copy_points(in,out)

C Call the real function that does the work

call luminanceinternal(indesc, outdesc, dims(l), dims(2))

C Return 1 to indicate success

luminancecompute - 1
return

end

C---------------------------------------

C The real workhorse

C---------------------------------------

subroutine luminance_internal(in, out, x, y)

integer x, y

integer in(4,x,y), out(l,x,y)

CMF$LAYOUT in(:serial,:news, :news), out(:serial,:news, :news)

C

C Set up the weights for NTSC luminance

C

double precision red_weight, greenweight, blue_weight

parameter (red_weight = .299,
$ green_weight - .587,
$ blue_weight = .114)

out(l,:,:) in(2,:,:) * red_weight +

$ in(3,:,:) * green_weight +
$ in(4,:,:) * blue_weight

return

end

Version 1.0, February 1993
Copyright O 1993 Thinking Machines Corporation

26 CWA AVS User $ Guide



Chapter ~ ~ ~ ~ iji~~~j~ 3.s Wrtn i. ,Sf.,.f:CMAV odls2:7::.:j:' : � 3:Wi.: g: ::C A VS M 2,

3.7 The CM/AVS Header Files

The routines that you write must include the standard AVS header files. In
addition, they must include the CM/AVS files that define all the appropriate
symbols and return types for the CM/AVS routines.

The header file for CM Fortran routines is

/usr/include/cm/cmavs. inc

The include file for C* routines is

<cm/cmavs.h>

3.8 The CM/AVS Libraries

The CM/AVS subroutine and coroutine libraries are listed below.

For a sparc processor:

CMF subroutine

CMF coroutine

C* subroutine
C* coroutine

libcmavsflow_fcm5 sparc_sp.a

libcmavssim_f_cm5 sparc_sp.a

libcmavsflow_c_cm5_sparcsp.a

libcmavssim_c_cm5_sparc_sp.a

For a vector unit processor:

CMF subroutine

CMF coroutine

C* subroutine
C* coroutine

libcmavsflow_fcm5 vu sp.a
libcmavssim_f_cm5 vusp.a
libcmavsflow_c_cm5 vu sp.a

libcmavssim_c_cm5 vu sp.a

These libraries act in conjunction with the standard AVS libraries:

FORTRAN subroutine

FORTRAN coroutine

C subroutine

C coroutine

libflow f.a

libsim f.a

libflow c.a

libsim c .a

When you link a CM/AVS module, specify the CM/AVS library first, then the
corresponding AVS library. To build a CM Fortran subroutine module, for

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Wting CW VS Modules 27



2z: C:.C/ S rGieS

example, link against libcmavsflow_f_cm5 sparc_sp. a first, then against
libflow f.a.

3.9 Compiling a Module

To compile a CM Fortran subroutine module, start a shell on a CM-5 compile
server and invoke the CM Fortran compiler:

For a sparc processor:

cmf -cm5 -sparc -o module_name module_name. fcm \
-lcmavsflow_f_cm5_sparcsp -L/usr/avs/lib -lflow_f \

-1geom -lutil -lm

For a vector unit processor:

cmf -cm5 -vu -o module_name module_name. fcm\
-lcmavsflow_f_cm5_vu_sp -L/usr/avs/lib -lflow_f \
-lgeom -lutil -lm

To compile a C* subroutine module, start a shell on a CM-5 compile server and
invoke the C* compiler:

For a sparc processor:

cs -cm5 -sparc -o module_name module_name. cs \
-lcmavsflow_c_cm5_sparcsp -L/usr/avs/lib -lflow_c \
-1geom -lutil -lm

For a vector unit processor:

cs -cm5 -vu -o module name module_name.cs \
-lcmavsflow_c_cm5 vusp -L/usr/avs/lib -lflow_c \

-1geom -lutil -lm

To compile coroutine modules, replace flow with sim in the lcmavsf low...
and lflowc library names above.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

28 CWA VFS User Guide



Chapter 3.# Writing CM/A V. Mo.dules2

3.10 Debugging a Module

AVS reports run-time errors in a dialog box. However, the run-time error
messages are not as detailed as those issued by a debugger, and some problems
may appear to be downstream from the actual error.

To obtain detailed debugging messages, follow these steps:

1. Compile all the files for your module with the -g switch.

2. Select Read Remote Modules (or Read Modules, if you are on the

partition manager) to add your module to the palette.

3. Start a shell on the machine that will run this module (for CM/AVS
modules, this is the partition manager).

4. In this shell, change to the directory containing your module and invoke
avs dbx:

avs_dbx -debug prism yourmodule

The -debug switch lets you specify your preferred debugger. You may
substitute "prism -C" (including the quotes) for prism.

5. Drag your module into a network. It will not fire immediately. Instead,
you will see the following message in the window where you invoked
avs dbx:

your_module instance waiting, fire when ready...

6. Set the desired breakpoints.

7. Launch the module by telling the debugger to run it.

3.11 Getting Help

Man pages for all the CM/AVS modules are viewable through AVS after you have
"read" them following the instructions in Sections 2.3 and 2.4. To view them:

1. In the shell where you will invoke the AVS kernel, set the environment
variable AVS HELPPATH as follows:

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Wting CWA VS Modules 29



3CM/A S User'sGuide

C shell:

setenv AVS _HELP_PATH /usr/doc/cmavs/modules

Bourne or Korn shell:
AV_HELP_PATH/usr/doc/cmavs/modules
export AVS_HELP_PATH

2. Open the AVS network editor.

3. In the module library list, find the CM/AVS module whose man page you
want to view. Using the right mouse button, select the button on the right
of the module icon.

4. On the resulting pop-up menu, select Show Module Documentation.
The man page will appear in the AVS viewer.

3.12 Multiple-Module Binaries

CM/AVS modules may be linked together into a single binary in exactly the same
way as AVS modules. With the exception noted below, this is desirable, because
it enables multiple modules in a network to run in a single process.

NOTE

A connection between an AVS module and a CM/AVS module

can work only if the modules are not linked in the same binary.

Field transfer between modules in a single process can be considerably faster
than field transfer between modules in separate processes. The former involves
a simple pointer copy, while the latter uses sockets to transfer all the data.

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

g�B�PeSg51�8g�s�g�

�B�Bj�i�3�889a�s�B88�

CWA AVS User 's Guide30



Appendix A

CM/AVS Routines

This appendix contains descriptions of the supported user-visible routines in the
CM/AVS libraries, in alphabetical order.

A module may use the CM/AVS routines to

* allocate parallel arrays

* gain access to the data and coordinates as CM Fortran arrays or C* parallel
variables

* query whether or not a field is parallel

CMAVS provides the following routines:

cKAVScorout init

CuAVSdata_alloc

CMAVSfield_alloc

CaAVSfieldalloc_datashape

CMAVS8field alloc.pointsshape

CMAV f ieldcopypoints

CAVSfielddataget

CNAVSfield points_get

CMAVSfield reset_minm=a

CMAVSis field on CM

These routines should be used in conjunction with the standard AVS routines.
Most of the standard AVS routines also work on parallel fields. The exceptions
are listed in Table 1 in Chapter 3.

Version 1.0. February 1993
Ciopy.-t;i-. ' 1993 ThiDing.Machines Corporation 31



Grmmon2 -tB n 

A.1 CMAVScorout_init

Initializes a CMIAVS coroutine module.

C* Binding

#include <cm/cmavs.h>

void

CMAVScorout_init (int argc, char *argv[],

int (*desc) ());

CMF Binding

include '/usr/include/cm/cmavs.inc'

SUBROUTINE CMAVScorout init(desc)
external desc

This subroutine should be used instead of Avscorout_init to initialize a
CM/AVS coroutine module. It must precede any other AVS or CM/AVS routines.

The subroutine sets up some internal data structures, then calls the user-supplied

module description function dese.

For the C* interface, argc and argv are the same arguments that are passed to
main.

A.2 CMAVSdata_alloc

Allocates a parallel field based on a descriptive string.

C* Binding

#include <cm/cmavs.h>

void *
CMAVSdataalloc(char *string, int *dims);

CMF Binding

include '/usr/include/cm/cmavs.inc'
character*n string
integer dims()
integer function CMAVSdata alloc(string,dims)

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

CWA VS Ulser 's Guide32



Appendx1 A.-CM/--S Routines-33

This routine allocates a parallel field based on a descriptive string. The behavior
is similar to AVSdata_alloc, except that it allocates the data and points on the
CM-5 processing nodes. The string argument is a descriptive string in the same
form that is used for AVSdata alloc.

NOTE

The string argument must describe a field; trying to allocate
any other AVS object such as ucd or geom on the processing
nodes will result in a fatal run-time error.

The dims argument is an array of integers that tells us how much space to
allocate for this field on the CM-5. In C*, this routine returns a pointer to an
AVSfield structure. In CM Fortran, it returns an opaque integer that can be used
anywhere a parallel field is needed.

A.3 CMAVSfield_alloc

Allocates a field structure for a parallel field using the given template field.

C* Binding

#include <cm/cmavs.h>
AVSfield *

CMAVSfieldalloc(CMAVSfield *template, int *dims)

CM Fortran Binding

include /usr/include/cm/cmavs.inc'
integer template
integer dims()

integer function CMAVSfield alloc(template, dims)

Version 1.0, February 1993

Copyright 0 1993 Thinking Machines Corporation

Applendix A. CWYAVS Routines 33



3 C V e

This routine allocates a field structure for a parallel field using the given template
field. The template may be either a parallel or serial AVS field. The newly
allocated field will always be a parallel field.

The dims argument is an array of integers that tells how much space to allocate
for this field on the processing nodes. If you use zero in CM Fortran, or NULL

in C*, instead of a dimensions array, the dimensions are taken from the template
field.

In C*, this routine returns a pointer to an AVSfield structure. In CM Fortran, it
returns an opaque integer that can be used anywhere a CM/AVS field is needed.

A.4 CMAVSfieldalloc_data_shape

Allocates a C* shape that can contain the data from a field.

C* Binding

#include <cm/cmavs.h>

shape

CMAVSfieldallocdatashape(AVSfield *field)

CM Fortran Binding

Not applicable.

This routine allocates a C* shape that can be used to refer to the data in any
parallel field having the same rank and dimensions as the intput field. Note that
the field's veclen does not matter; vectors become C* per-processor arrays that
do not affect the choice of shape.

Each time you call CMAVf ield_allocdata_shape, a new shape is
allocated, even if you use the same field as input.

To deallocate the shape that this routine allocates, you must use the C* routine
deallocate_shape. The field data is not affected when you free the shape that
points to it.

Version 1.0, February 1993
Copyright C 1993 Thinking Machines Corporation

CWA AVS User b Guide34



¢.:..:-1. .. 1. :: :::.::...

A. 5 CMAVSfield_alloc_points_shape

Allocate a C* shape that can contain the points from a field.

C* Binding

#include <cm/cmavs.h>
shape

CMAVSfield_alloc_points_shape(AVSfield *field)

CM Fortran Binding

Not applicable.

This routine allocates a C* shape that can be used to refer to the coordinates in
any parallel field having the same rank and dimensions as the input field.

Do not call this routine on a uniform field; the coordinates for a uniform field can
never reside on the processing nodes.

For a rectilinear field, this routine returns a one-dimensional shape with a
number of positions equal to the sum of the field dimensions. For an irregular
field', it returns a shape of rank ndim, where the number of positions in each axis
is given by the dimensions array.

Each time you call CMAVSfield_alloc_points_shape, a new shape is
allocated, even if you use the same field as input.

To deallocate the shape that this routine allocates, you must use the C* routine
deallocate_shape. The field coordinates are not affected when you free the
shape that points to them.

A.16 CMAVSfield_copy_points

Copies points array from infield to outfield.

C* Binding

#include <cm/cmavs.h>

int CMAVSfield_copy_points(AVSfield *infield,
AVSfield *outfield)

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

Appenldix A. CWA AVS Routines 35



36 CM/A VS User's.Guide
I - - ---- ~S.~

CMF Binding

include '/usr/include/cm/cmavs.inc'

integer infield, outfield

integer function

CMAVSfield copy_points(infield, outfield)

This routine copies a points array from an infield to an outfield. It works only
if the points arrays are both on the partition manager or both on the processing
nodes. The routine returns 1 on success, 0 on failure.

A.7 CMAVSfield_data_get

Gets access to the data portion of a parallel field by returning a pointer to a C*
parallel variable or filling in a CM Fortran array descriptor.

C* Binding

#include <cm/cmavs.h>
void:void *

CMAVSfield_data_get(AVSfield *field, shape S)

CM Fortran Binding

include '/usr/include/cm/CMF_defs.h'

include '/usr/include/cm/cmavs.inc'

integer field

integer basevec(CMF SIZEOFDESCRIPTOR)

CMF$LAYOUT basevec(:serial)

subroutine CMAVSfield_data_get(field, basevec)

This routine returns a pointer to a C* parallel variable or fills in a CM Fortran
array descriptor, thereby giving access to the data portion of a parallel field. (The
C* parallel variable is allocated in the specified shape.) Once the descriptor is
loaded with a CM Fortran array descriptor, it may be passed to any CM Fortran
routine that is expecting a parallel array of the appropriate rank.

Note the following:

The C* interface takes both a field and a shape; it returns a pointer to a
parallel variable. The parallel pointer refers to the data in the first
argument (AVS f i l d). You must pre-allocate the shape using

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

36 CIIA VS User ~ Guide



ARoomi AC S

CNAVSfieldallocatepoints_shape. You may use the same shape
to construct pointers to any fields that have the same rank and dimensions.

* If you dispose of the field (as with AVSdata_free) you should no longer
refer to any arrays created from that field.

* A pointer returned by CMAVSfield_data_get can be invalidated if
you make another call to CMAVSfield_data_get on the same field.

* If you use CMAVSfield_data_get on a field whose data resides on the
partition manager, a fatal error occurs.

A.8 CMAVSfield_points_get

Returns a pointer to the parallel coordinate data from a CM/AVS field.

C* Binding

#include <cm/cmavs.h>
float:void *

CMAVSfield_points_get(AVSfield *field, shape S)

CMF Binding

include '/usr/include/cm/CMF_defs.h'

include '/usr/include/cm/cmavs.inc'
integer field

integer basevec(CMF_SIZEOFDESCRIPTOR)

CMF$LAYOUT basevec(:serial)

subroutine CMAVSfield_points_get
(field, basevec)

This routine returns a pointer to the parallel coordinate data from a CM/AVS field.
It works only when the coordinate array resides on the processing nodes, and it
does not work on uniform fields.

Note the following:

The C* interface takes both a field and a shape; it returns a pointer to a
parallel variable. The parallel pointer refers to the data in the first
argument (AV f ield). You must pre-allocate the shape using
CMV8field_allocatepoints_shape. You may use the same shape
to construct pointers to any fields that have the same rank and dimensions.

Version 1.0, February 1993
Covrivht 0 1993 Thinking Machines Corvoration

Appendix A. CC VS Routines 37



3'.8..:i..'.,.:.:..;.g...,... .. ', .- K · i .S..' Gu:isd.i.......-........e.....,..-....: s.v..N..,
* A pointer returned by CiAvsfield oints_get can be invalidated if

you make another call to CMAVSfieldp oints_get on the same field.

* If you use CMAVSfieldpoints_get on a field whose data resides on
the partition manager, a fatal error occurs.

A.9 CMAVSfieldreset_minmax

Recomputes the minimim and maximum values for the field's computational
data and stores those values with the field.

C* Binding

#include <cm/cmavs.h>
void

CMAVSfieldreset minmax(AVSfield *field)

CM Fortran Binding

include '/usr/include/cm/cmavs.inc'

integer field

SUBROUTINE CMAVSfieldresetminmax(field)

This routine recomputes the min and max values for the field's computational
data and stores those values with the field. The routine works for both parallel
and serial fields.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

38 CMIA S User Guide



Appendix A. CM/A VS Routines 39

A.110 CMAVSisfieldonCM

Accepts a pointer to an AVS field, and returns true if the field is a parallel field.

C* Binding

#include <cm/cmavs.h>
bool

CMAVSis_fieldon CM(AVSfield *field);

CM Fortran Binding

include '/usz/include/cm/cmavs.inc'
integer field

logical function CMAVSis field on CM(field)

Version 1.0, February 1993
CoPYmriht 0 1993 Thinkinn Machines Corporation





Appendix B

CM/AVS Modules

This appendix contains man pages for
alphabetical order:

antialias cm

clamp cm

color range cm

colorizer cm

combine scalars cm

compare field cm

compute gradient cm

contrast cm

downsize cm

extract scalar cm

the following CM/AVS modules, in

fft cm

field math cm

field to byte cm

field to double cm

field to float cm

field to int cm

luminance cm

orthogonal slicer cm

threshold cm

With the exception of fft cm, all the CM/AVS modules are AVS modules that
have been adapted for the CM-5, and they may be interchanged with their AVS
counterparts. For example, downsize cm and downsize are interchangeable.

See Appendix C and /usr/examples/cmavs/unsupported/README for

information about unsupported modules.

Version 1.0, February 1993

Copynght © 1993 Thinking Machines Corporation 41





antialias cm (CM/AVS)

NAME

antialias cm - antialias an image

SUMMARY

Name

Type

Inputs

Outputs

Parameters

antialias cm

filter

field 2D uniform 4-vector byte (image)

field 2D uniform 4-vector byte (image)

none

DESCRIPTION

The antialias cm module downsamples an image using a Gaussian 3x3 convolution filter.
This produces an antialiasing effect, reducing jagged edges. The output image is half the
size of the input image in each dimension-a 512x512 image becomes a 256x256 image
after antialiasing.

It: should be noted that the CM implementation uses a different algorithm than the serial
version. This will probably be corrected in a later release.

INPUTS

Image

Image

(required; field 2D uniform 4-vector byte)
The image to be antialiased.

(field 2D uniform 4-vector byte)
The output antialiased image. This image is half the size
of the input image in each dimension.

Last change: October 1992

OUTPUTS

antialias cm (CMAVS)

43rl ave I n



antialias cm (CM/AVS)

EXAMPLE 1

'The following network reads an image, antialiases it on the CM-5, and displays it through
ithe image viewer.

READ IMAGE

I

ANTIALIAS CM

I

IMAGE VIEWER

RELATED MODULES

Modules that could provide the Image input:

colorizer cm
composite
convolve
field math cm
localops
read image
replace alpha

Modules that can process antialias cm output:

extract scalar cm
image viewer
display image

Last change: October 1992

antialias cm (CMAVS)

CM/AVS 1.0 44



clamp c (CMIAVS)

NAME

clamp cm - restrict values in data field to user-specified range

SUMMARY

Name clamp cm

Type filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
clamp_min float 0.0 none none
clamp_max float 255.0 none none

DESCRIPTION

The clamp cm module transforms the values of a field as follows:

o Any value less than the value of the clamp_min parameter is set to
clamp_min.

o Any value greater than the value of the clampmax parameter is set to
clamp_max.

o Values within the clamp_min-to-clamp_ max range are not changed.

,After being clamp'ed, a data set's values are all in this range:

clamp_min <= value <= clampmax

If appropriate, clamp cm also changes the values of the minval and max_val attributes
of the output field in accordance with the clamp_min and clamp_max values. clamp cm
'works with uniform, rectilinear and irregular fields, whether they are vector or scalar.

The statistics module can be used to determine the min.val and maxval of the input
field, so you can know what range is reasonable to clamp to.

:Note the difference between the clamp cm and threshold cm modules:

o threshold cm sets values outside the specified range to be zero.

o clamp cm sets values outside the specified range to be the range's minimum
and maximum values.

...a.... .. L T L---. . ..n. Talrl 100 45

clamp cm (CMAVS)

HalM C;UUIYV,. Jab asunM 177-'IAIAMuV _: 1 l



clamp cm(CM/AVS)

INPUTS

Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field. It may be uniform, rectilinear
or irregular; and either vector or scalar.

clampmin

clampmax

A floating-point number that specifies the minimum output value.

A floating-point number that specifies the maximum output value.

Data Field (field same-dimension same-vector same-data same-coordinates)
The output field has the same dimensionality and type as the input
field.

The following network reads in an AVS field. The statistics module is used to display the
field contents with and without clamping:

READ FIELD

I I

CLAMP CM STATISTICS

STATISTICS

RELATED MODULES

Modules that could provide the Data Field input:

read volume
any other filter module

Last change: January 1993

PARAMETERS

OUTPUTS

EXAMPLE

clamp cm (CMAVS)

46CM/AVS 1.0



clamp cm (CM/AVS)

MIodules that could be used in place of clamp cm:

threshold cm

Modules that can process clamp cm output:

colorizer cm
any otherfilter module

Ilodules that tell you the range of data in the field:

statistics
print field
generate histogram

SEE ALSO

The AVS example script CLAMP demonstrates the AVS clamp module.

T act I harmn-p lanr- 1 G

clamp c (CNVAAVS)

A'7t"hNAlA I n



color range cm (CM/AVS)

NAME

color range cm - scale AVS colormap to the range of data in a parallel field

SUMMARY

Name color range cm

T3pe data

Inputs field (any-dimension scalar any-data any-coordinates)
colormap

Outputs colormap

Parameters none

DESCRIP'nON

color range cm adjusts the minimum and maximum values of a colormap to those of a
parallel field, thus nonnalizing the colormap to the range of the data in the field. To do
this, color range cm examines a parallel field to see if the minimum and maximum data
values are specified in the field's data structure. If they are not, it calculates the minimum
and maximum values and stores them in the field's data structure. In both cases, color
range cm also stores the minimum and maximum data values into its output AVS col-
onnap data structure.

Use color range cm whenever you have data that you want represented as colors, but that
data's range of values is either not evenly distributed between 0 and 255, or much of the
data values lie outside the 0 to 255 range.

For example, your input field contains floating point values between the range 0 and 1. If
you were to give this range of data values to one of the modules that produces colors
from numbers (e.g., arbitrary slicer or field to mesh) all of the numbers would map to
the same color. Because data coloring is done by using a byte value 0-255 to index into
the: AVS colormap, all of these floating point values would map to the number 1, and
hence to the same color. In the default colormap this is the same blue.

Similarly, if you have data that lies in the range -55 to +500, all values outside the range
0-255 will be "clamped" to the two boundary values and visual information about the
data's true character will be lost.

Applying color range cm between the output of the generate colormap module and a
scalar version of your data field stores the range of your data values into the colormap
data structure. Modules downstream can use these minimum and maximum values to
scale their index into the colormap intelligently. A narrow range of data values will be
made to "fan out" across the whole colormap. A wide range of data values will be scaled
to fit within the 0-255 range without clipping outlying values. Note, however, that this
desirable effect does not occur just because color range cm is in the network; it occurs
because the downstream modules that receive the modified colormap data structure have

Last chane Januarv 1 (CA

color range cm(CW/AVS)

CM/AVS 1.0 AR



color range cm ( CM/AVS)

been written to make intelligent use of the new minimum/maximum values color range
generates.

INPUTS

(required; field any-dimension scalar any-data any-coordinates)
This is the parallel field whose field data structure will be scanned to
see if it already contains minimum and maximum data values. If it
does, these data values will be stored into the output colormap data
structure. If it does not, color range cm calculates the minimum
and maximum values and stores them into both the original AVS
field's data structure and the output colormap. Because color range
can modify the original parallel field, data passing through this mod-
ule is not shared.

(required; colormap)
This is the original AVS colormap. Any minimum or maximum val-
ues that may have been set in the input colormap are ignored.

(colormap)
The output from color range cm is a new colormap containing the
calculated (or transferred from the input field data structure) mini-
mum/maximum data values.

EXAMPLE

The following network reads in a 3-vector field, i.e. every field location has 3 values
associated with it. The extract scalar cm module selects one of the field's values. color
range cm stores the field's min and max values so that the colormap can be scaled to the
range of data in the field:

T .ct rhnrnnp Tnuamrv 1993

Data Field

Color Map

OUTPUTS

Color Map

color range cm (CWAVS)

r'lXIAIC! A A



color range cm (CM/AVS)

READ FIELD

I

GENERATE COLORMAP I

I I

I EXTRACT SCALAR CM

I I
I I - - - - - - -..
I - -------- I I I

I I I

COLOR RANGE CM ORTHOGONAL SLICER CM

I I

I--------I
I I

FIELD TO MESH

I
GEOMETRY VIEWER

RELATED MODULES

Modules that could provide the Data Field input:

read field
extract scalar cm (for fields with vectors)

Modules that could provide the Color Map input:

generate colormap

Modules that can process color range cm output:

arbitrary slicer
bubbleviz
colorizer cm
field legend
field to mesh
isosurface
probe

SEE ALSO

Tile AVS example script COLOR RANGE demonstrates the AVS color range module.

Last change: January 1993

color range cm(CNVAVS)

---- I

CM/AVS 1.0 Is(



colorizer cm ( CM/AVS)

NAME

colorizer cm - convert field of data values to color values

SUMMARY

Name colorizer cm

loype filter

Inlputs field any-dimension scalar any-data any-coordinates colormap

Outputs field any-dimension 4-vector byte any-coordinates

Parameters none

DESCRIPTION

The colorizer cm module converts the data at each point of a scalar field from the input
value (which can be any data type) to a color (4-vector of bytes). The conversion is
accomplished by using the input value as an index into a colormap:

COLORMAP

Aux Red Green Blue
Value Value Value

Input 1 I I I 

Value 21 I I I

___ 31 1_ 3 I I I l
e.g. 14.7

I 146 1 I I I I

+--> 147 I I I Output

148 1 I I I I Value

colorizer cm accepts field of any type (byte, integer, real, double). However, the field of
colors output by colorizer cm contains only byte data.

INPUTS

Data Field (required; field any-dimension scalar any-coordinates) The principal
input data for the colorizer cm module is a field, which can be of
any dimensionality. The data at each point of the field may be of any
data type.

Color Map (optional; colormap) The optional colormap may be of any size, but
any entries beyond the 256th are unused. Default: If this input is

colorizer cm(CM/IVS)



colorizer cm (CM/AVS)

omitted, a gray-scale colormap is used (lo-value = black; hi-value =
white).

OUTPUTS

Field of Colors (field any-dimension 4-vector byte any-coordinates) Each input
value is transformed into a color value, which is structured as four
bytes, as illustrated above. The red, green, and blue bytes specify a
true-color pixel value. The auxiliary byte is typically used to specify
an opacity value (1o-value = completely transparent; hi-value =
completely opaque).

The dimensionality of the output field is the same as that of the
input field. For byte input, the output field is four times as large as
the input field, since each byte (8 bits) is converted to a color value
(32 bits).

The min_val and max_val attributes of the output field are invali-
dated. The dimensions of the 4-vector output data are assigned the
labels "Alpha", "Red", "Green", and "Blue".

EXAMPLE'

The following network reads in an AVS image, which is a 2D field of 4-vector bytes.
extract scalar cm takes one of the bytes, generating a 2D field with a single byte at each
location. These bytes are then translated back into colors by colorizer cm:

READ IMAGE

GENERATE COLORMAP EXTRACT SCALAR CM

I

.----- I I

I I

COLORIZER CM

DISPLAY IMAGE

Last change: January 1993

colorizer cm (CNAVS)

I----------------

CM/AVS 1.0 52



colorizer cm (CM/AVS)

RELATED MODULES

Modules that could provide the Data Field input: read volume field to byte Modules
that could provide the Color Map input: generate colormap Modules that could be used
in place of colorizer cm: arbitrary slicer Modules that can process colorizer cm output:
alpha blend gradient shade display image tracer

SEE ALSO

Many of the AVS example scripts demonstrate the AVS colorizer module.

T m.t P'ehno.-- Tanniarv 1 Q.o

colorizer cm (CW/AVS)

IC2"MIAV.R 1 n



combine scalars cm (CM/AVS)

NAME

combine scalars cm - combine scalar fields into a vector field

SUMMARY

combine scalars cm

filter

field any-dimension
optional)

field any-dimension
optional)

field any-dimension
optional)

field any-dimension
optional)

scalar any-data any-coordinates (channel 0 -

scalar any-data any-coordinates (channel 1 -

scalar any-data any-coordinates (channel 2 -

scalar any-data any-coordinates (channel 3 -

field same-dimension 1D-4D same-data

Parameters Name
Vector

Type

Len
Default
Dial

Min Max
4 14

DESCRIPTION

The combine scalars cm module combines up to four fields with scalar data values into a
field whose data values are vectors. The input field must be of like dimension and the
scalar values must be of the same type.

This module is generally most useful for constructing images or gradient fields from sep-
arately computed components.

The input ports on this module's Network Editor icon are processed right-to-left: the
rightmost port contributes a value to the first element (lowest memory location) of each
output vector; the leftmost port contributes a value to the last element (highest memory
location) of each output vector.

If the selected scalars have labels and/or units associated with them, those labels will be
carried over to the newly constructed vector.

INPUTS

None of the input fields is absolutely required, but at least one of them must be provided.
If an input field is omitted, zero values may be output in the corresponding element of
each output vector, depending on the vector dimension set by Vector Length.

Last chanre: O)ctnher 19Q2

Name

Type

Inputs

Outputs

combine scalars cm (CNVAVS)

CM/AVS 1.D 54



combine scalars cm (CM/AVS)

(optional; field any-dimension scalar any-data any-coordinates) The
rightmost input port. A set of values to be output in thefirst dimen-
sion of the output vectors.

(optional; field any-dimension scalar any-data any-coordinates) A
set of values to be output in the second dimension of the output vec-
tors.

(optional; field any-dimension scalar any-data any-coordinates) A
set of values to be output in the third dimension of the output vec-
tors.

(optional; field any-dimension scalar any-data any-coordinates) The
leftmost input port. A set of values to be output in the fourth dimen-
sion of the output vectors.

Vector Length

Field

Specifies the dimension of the output vectors- 1 - 4.

(field same-dimension 1D-4D same-data) The scalar input streams
are assembled into a single output stream consisting of vectors,
whose dimension is specified by Vector Length. The coordinate
type (e.g. uniform, rectilinear, or irregular) of the output field is the
same as the leftmost, non-empty input field. The field's min_val,
max_val, veclen, label, and unit are updated.

EXAMPLE 1

The following network performs contrast stretching on only the red band of an image.

READ IMAGE

EXTRACT SCALAR CM
[red]

I

CONTRAST CM

I

EXTRACT SCALAR CM
[green]

EXTRACT SCALAR CM
[blue]

I

I

I I I

COMBINE SCALARS CM (channel 0 not used)

DISPLAY IMAGE

T I,+ 4airo-.k. . m u.l.,- 1 00

Channel 0

Channel 1

Channel 2

Channel 3

PARAMETERS

OUTPUTS

combine scalars cm (CWAVS)

t1-! AX 1 n



combine scalnrs cm(CM/AVS)

EXAMPLE 2

The following network swaps the green and blue bands of an image:

READ IMAGE

I

I

EXTRACT SCALAR [CM]
[red]

I

EXTRACT SCALAR
[green]

I I

I / ---- I

I I I
COMBINE SCALARS

[CM] EXTRACT SCALAR
[blue]

I

I

CM

DISPLAY IMAGE

RELATED MODULES

extract scalar cm

SEE ALSO

Tile AVS example script CONTRAST demonstrates the AVS combine scalars module.

Last change: October 1992

[CM]

combine scalmr cm (CM/AVS)

I

CM/AVS 1.0 56



compare field cm (CM/AVS)

NAME

compare field cm - compare two fields, display and write data difference

SUMMARY

Name compare field cm

Type data output

Inputs field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector same-data same-coordinates

Outputs none

Parameters Name
Do Compare
Max Elements
Output File

Type

oneshot
integer
typein

Default
off
100

/tmp/cfield_...

Min Max

1 1000

DESCRIPTION

The compare field cm module compares any two identically-structured AVS fields. It
rill print out differences between the headers if they are different. If the headers are the

same, it will proceed to do a comparison of the data contents of the two fields. If the
fields are not identical in their data components, compare field cm will print the mes-
sage, "fields are DIFFERENT", to standard output.

The output of the compare is a list of up to Max Elements data differences. The results
of the compare are both displayed in an Output Browser widget in the control panel and
vnritten to a file.

The Output Browser in which compare field cm displays its output can be resized, like
any other widget, using the AVS Layout Editor. For a detailed description of how to do
this, see the section titled "Layout Editor," in the chapter "Advanced Network Editor" of
the AVS User s Guide.

compare field cm was originally written to make sure that two identical modules, one
written in C and one written in Fortran, produced the same results. It could also be useful
to compare the contents of a field before and after an operation has been performed on it.

INPUT

Input Field 1 (required; field any-dimension n-vector any-data any-coordinates)
The input field can be 1, 2, 3, or 4 dimensional; it can be vector or
scalar, can contain byte, int, float or double data, and can have uni-
form, rectilinear, or irregular coordinates.

C7

compare field cm (CNVAVS)

._. _ _ . Xr



compare field cm (CM/AVS)

Input Field 2 (required; field any-dimension n-vector any-data any-coordinates)
The second input field must match the first in the number of dimen-
sions (Ndim), the size of each dimension (Dims), the number of
coordinate dimensions (Nspace), the vector length (Veclen), the data
type (byte, float, double, etc.), and the type of coordinate system
(uniform, rectilinear, curvilinear), if a comparison of the two fields'
data is to be done.

Do Compare

Max Elements

Output File

A oneshot "do it now" switch that triggers the actual comparison
after both input fields exist.

An integer dial that controls how many of the data differences to
display in the Output Browser and write to the output file. The
allowable range is -1 (none) to 1000. The default is 100. compare
field cm compares the entire fields, until this limit is reached.

An ASCII typein for specifying the output file. By default, com-
pare field cm writes to a file in the/tmp directory called cfieldnnnn
(where nnn is the process id of the compare field cm module. The
Output File is rewritten whenever any of the other parameters or
input files change. Since the Output Browser is limited in size, this
output file can be useful to examine directly, using a conventional
text editor.

EXAMPLE 1

The following network reads an image into an AVS field. One version of the image goes
directly to compare field cm, the other is passed through a threshold cm filter. The
"before" and "after" images are compared and the different alpha, red, green, blue values
at each pixel are listed.

READ IMAGE…I-- - - - - - -

THRESHOLD CM

I

I
COMPARE FIELD CM

Last change: January 1993

PARAMETERS

compare field cm (CM/AVS)

I

I

58CM/AVS 1.0



compare field cm (CM/AVS)

RELATED MODULES

print field

LIMITATIIONS

compare field cm writes to/tmp by default. This can cause problems if: (1) there is no
/imp mounted on your system, or (2) the/tmp directory does not have very much room in
it or has inaccessible protections.

SEE ALSO

The AVS example script COMPARE FIELD demonstrates the AVS compare field mod-
ule.

Last chante: January 1993

compare field cm (CM/AVS)

59'fAXJ I n



compute gradient cm ( CM/AVS)

NAME

compute gradient cm - compute gradient vectors for 2D or 3D data set

SUMMARY

compute gradient cm

filter

field 2D/3D scalar byte any-coordinates

field same-dimension 3-vector real same-coordinates

Parameters Name
2D Height
Flip

Type

float
toggle

Default
0.5
on

Min Max
0.0 1.0
off on

DESCRIPTION

The compute gradient cm module computes the gradient vector at each point in a 2D or
3D field of data. The gradient is can be used (e.g. by gradient shade) as a "pseudo sur-
face normal" at each point.

A "nearest neighbor" approach is used to compute the gradient: in each direction, the
component of the gradient vector is the difference of the next data and the previous data.
In two dimensions, this can be pictured as follows:

Y-1 I

I

X,Y-1 I

Y I X-1,Y I

I I

I I

Y+1 I I

X, Y I X+1,Y I

X,Y+1 I

X-1 X X+1

Delta x[X] [Y]
Delta_y [X] [Y]

= data[X-l] [Y]
= data[X] [Y-l]

- data[X+1] [Y]

- data[X] [Y+1]

Delta z[X] [Y]
Delta_z [X] [Y]

= 2D Height Dial
[ZI = data[X] [Y] [Z-1] - data[X] [Y] [Z+1]

for 2D data
for 3D data

Last change: January 1993

Name

Type

Inputs

Outputs

compute grasdient cm (CMAVS)

CM/AVS 1.0 60



compute gradient cm ( CM/AVS)

lhis is backwards from the standard definition of a gradient which usually subtracts the
previous value from the next. This was done because the standard definition yields gradi-
ents in which the Z componant will typically point in the negative direction. While the
standard definition is better known, the definition of "gradient" as used by this module
produces more useful images since the Z componant of the gradient now points towards
dithe eye instead of away from it. However, for the purists, there is a button called Flip (on
by default) which lets you disable this "feature" and produce a typical gradient.

This module is slightly different from the vector grad module in a second respect. Since
the intent of this module is to produce gradients useful to lighting calculations, the vec-
tors are automatically normalized.

INPUTS

Data Field (required; field 2D/3D scalar byte any-coordinates) The input field
may be either 2D or 3D. The data at each point of the field must be
a single byte. The byte values will be interpreted as integers in the
range 0..255.

PARAMETERS

2D Height (appears for 2D data only) Supplies the Z-coordinate of the gradient.
It can be used to change the apparent height of the surface. A value
of 1.0 is generally a very "rough" or "noisy" surface, whereas values
approaching 0.0 will show little effect for shading.

Flip This toggle (on by default) causes the "correct" gradients to be
flipped so that the Z axis generally points towards the eye, making
gradients which are more useful for computing lighting calculations.
If the "real" gradient is desired, then this button can be turned off
and the gradients will not be flipped.

OUTPUTS

Data Field (field same-dimension 3-vector real same-coordinates) The output
field has the same dimensionality as the input field. For each ele-
ment, the output data is a 3D vector of reals, representing the 3D
gradient.

The min_val and max_val attributes of the output field are invali-
dated.

TI Iat chnnae.- Tnsmlrv 1993

compute gradient cm (CM/AVS)

61fMIAV. I n



compute gradient cm ( CM/AVS)

EXAMPLE 1

lThe following network shades a 2D image:

READ IMAGE

EXTRACT SCALAR CM I

I I

COMPUTE GRADIENT CM I

I I

I I

GRADIENT SHADE

I

DISPLAY IMAGE

(choose 1 (= red))

EXAMPLE 2

The following network fragment shows how to get the same results as compute gradient
using other modules:

READ FIELD

FIELD TO FLOAT

VECTOR GRAD

FIELD MATH (multiply by -1.0)

VECTOR NORM

EXAMPLE 3

The following network shades a 3D image:

Last change: January 1993

compute gradient cm (CM/AVS)

62CM/AVS 1.0



compute gradient cm(CM/AVS)

READ VOLUME

I I

COMPUTE GRADIENT CM

I

....I I I

GRADIENT SHADE

I…"

GENERATE COLORMAP …l ~~~~~I ~~I
-- COLORIZER CM

COLORIZER CM

I

…...... I I

TRACER

DISPLAY TRACKER
I l- I

RELATED MODULES

gradient shade
display image
alpha blend
extract scalar cm
vector grad
vector norm

(for two-dimensional data)
(for three-dimensional data)
(to get a single scalar height field from an image)
(to compute non-normalized true gradients)
(to normalize vector fields)

LIMITATIONS

There may be algorithms better than "nearest-neighbor" for computing the gradient.

This module produces 12 bytes per pixel (voxel). For example, a 128 x 128 x 128 byte
volume is about 2.1 MB before the gradient is computed. The compute gradient cm
module produces a 25.2 MB internal data set from this data. This will have an adverse
performance effect on systems whose physical memory is limited and may even exceed
the available swap space.

SEE AL.SO

The AVS example scripts ANIMATED FLOAT and HEDGEHOG demonstrate the AVS
compute gradient module.

63Last change: January 1993

compute gradient cm(Mh~AVS)

I

I

CM/NAV'3 1.0



contrast cm ( CM/AVS)

NAME

contrast cm - perform linear transformation on range of field values

SUMMARY

Name contrast

Tlype filter

Inputs field any-dimension n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
continmin float 0.0 none none
cont in max float 255.0 none none
contLoutmin float 0.0 none none
contout_max float 255.0 none none

DESCRIPTION

The contrast cm module transforms all the values in a field. Two different types of
transformation take place:

o Linear transform: All values that fall within the "input range" specified by the
contjin_min and continmax parameters are transformed linearly to the "out-
put range" contout_min.. cont_out_max.

(contoutmax - contout min) * (value -continmin)
new-value --------------------------------

(cont_in_max- contin_min)

(More precisely, this is an affine transformation.) In essence, this transforma-
tion "stretches" or "compresses" one specified range of data to fit another speci-
fied range.

o All values that fall outside the specified input range are "clamped" to the limit
values of the output range.

The contrast cm module typically is used to remove low-level noise from images and
volumes, or to increase the contrast in faded images and volumes.

INPUTS

Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be an AVS field of any dimensionality.

Last change: January 1993

contrast cm(CMAVS)

CM/AVS 1.0 64



contrast cm ( CM/AVS)

PARAMETERS

cont_inmin

cont_in_max

cont out min

contoutmax

Specifies the bottom of the range of input values that will be
transformed linearly.

Specifies the top of the range of input values that will be trans-
formed linearly.

Specifies the bottom of the range of output values. All values 
contjinmin will be transformed to this value.

Specifies the top of the range of output values. All values 
cont_in_max will be transformed to this value.

Data Field The output field has the same dimensionality and type as the input
field.

If the input field has byte values, appropriate new min_val and max_val values are writ-
ten to the output field.

EXAMPLE 1

The following diagram shows how field values are transformed given these parameters:

cont in min 100
cont in_max - 500
contout min - 3000
conLouLmax - 6000

Outputs

6000 - - - -

I I

I I

I I

I I
3000 xxxxxxxx - -

I I

I I

I I

I I

------ 0I--
100

-...............---..--- xxxxx xxxxxxxxxxx
x I

x
x

x
I -

I

500
Inputs

65Last change: January 1993

OUTPUTS

contrast cm(CW/AVS)

I I

I

CM/AVS 1.0



contrast cm (CM/AVS)

You can use contrast cm to make a negative out of an image by "flipping" the output val-
ues (e.g. cont_outmin - 255; contoutmax = 0).

EXAMPLE 2

The following network reads in an image, extracts the red, green and blue channels, con-
trast stretches only the red channel, and then uses combine scalars to pack the seperate
channels back into an image.

READ IMAGE

I

I ............ ............
EXTRACT

SCALAR CM

I

EXTRACT
SCALAR CM

I II - - - - - - - - - - - - - - - - - - - - - -I - - - - - -

EXTRACT
SCALAR CM (red)

I

CONTRAST CM

I
................ I

COMBINE SCALARS CM

I

DISPLAY IMAGE

RELATED MODULES

Modules that could provide the Data Field input:

read volume

SEE ALSO

The AVS example script CONTRAST demonstrates the AVS contrast module.

Last change: January 1993

contrast cm (CM/AVS)

I

CM/AVS 1.0 66



downsize cm (CM/AVS)

NAME

downsize cm - reduce size of data set by sampling

SUMMARY

Name downsize cm

Type filter

Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
downsize integer 8 1 16

DESCRIPTION

The downsize cm module changes the size of the input data set by subsampling the data.
It extracts every nth element of the field along each dimension, where n is the value of the
downsize factor parameter. This technique preserves the aspect ratio of the input data.

This module is useful for operating on a reduced amount of data, in order to adjust other
processing parameters interactively, or save memory. After the parameter values have
been set, you can remove the downsize cm module, so that the full data set is used for
final processing.

Alternatively, retain the downsize cm module in the network, so that you can interac-
tively choose between image quality (downsize factor 1 for highest-resolution data)
and execution speed (downsize factor > 1 for lower-resolution data).

INPUTS

Data Field (required; field 2D/3D n-vector any-data any-coordinates)
The input data may be any AVS field.

PARAMETERS

downsize Determines how data elements from the field are sampled. Increas-
ing this parameter causes more elements to be skipped over, thus
decreasing the size of the output.

67Last change: October 1992

downsize cm (CM/Avs)

CM/AVS 1.0



downsize cm (CM/AVS)

OUTPUTS

Data Field The output field has the same dimensionality as the input field, but
the number of elements in each dimension is reduced by the down-
size factor.

The min val and max_val attributes of the output field are invali-
dated. Note that the extent is unmodified; this module changes the
resolution of the data within the physcial space delimited by the
extents. It does not alter the physical extents of the data.

EXAMPLE

The following diagram shows how a downsize factor of 4 reduces a 2D field. Each ele-
ment of the field is represented by a hyphen or an o. Only the o's are included in the out-
put field.

- - -

0

0

0

o - - - - - --- 0

o - - -0 - - -0 

o - - - 0 - - - O

o - - --- -0
LIMITATIONS

downsize cm works for 2D, and 3D data sets only.

RELATED MODULES

Modules that could provide the Data Field input:

read volume
read field
filter modules

Last change: October 1992

downsize cm(CWyAVS)

68CM/AVS 1.0



downsize cm (CM/AVS)

SEE ALSO

The AVS example scripts FIELD MATH, and GRAPH VIEWER demonstrate the AVS
downsize module.

....... T_~ _l ... T- - Ali t 1I lnl 69

downsize cm (CWyAVS)

Iasi cmange: u rkwum 1772CM/AVS 1.0



extract scalar cm (CMAVS)

NAME

extract scalar cm - extract a scalar field from a vector field

SUMMARY

Name extract scalar cm

Type filter

Inputs field any-dimension n-vector any-data any-coordinates
(n- 1..25)

Outputs field same-dimension scalar same-data same-coordinates

Parameters Name
Channel n

Type Default
radio buttons Channel 0

DESCRIPTION

The extract scalar cm module inputs a field whose data values are vectors (1D to 25D),
and outputs one of the dimensions ("channels") as a scalar-valued field. The output field
has the same structure as the input field, except that its data values are scalars (vector
length of 1).

This module is useful for performing operations on individual channels of vector fields. It
is frequently used with the combine scalars cm module, which composes vector fields
from individual scalar fields.

INPUTS

Data Field

Channel n

(required; field any-dimension n-vector any data any-coordinates)
The input data may be any field whose data values are vectors with
25 or fewer dimensions. Even scalar fields may be used, since their
data values are considered to be 1D vectors.

Selects the dimension of the input data values to be output. A set of
radio buttons appears, showing the labels that are attached to the
dimensions of the n-vector data.

Last change: October 1992

PARAMETERS

extract scalar cm ( CAVS )

CM/AVS 1.0 70



extract scalar cm (CM/AVS)

OUTPUTS

field (same-dimension scalar same-data same-coordinates)
The output field has the same dimensionality as the input field. The
data for each element is reduced from a vector to a scalar. The
veclen, min_val, max_val, label, and unit values in the field are
updated.

EXAMPLE 1

This examples displays a slice of the Y-component of the gradient field of a volume:

READ VOLUME

I
COMPUTE GRADIENT

EXTRACT SCALAR CM [1] (O=X, =Y, 2=Z)

ORTHOGONAL SLICER CM

I

GENERATE COLORMAP FIELD TO BYTE CM

COLORIZER CM

I

DISPLAY IMAGE

For additional examples, see the combine scalars cm manual page.

RELATED MODULES

combine scalars cm

SEE ALSO

The AVS example scripts CONTOUR GEOMETRY, CONTRAST, as well as others
demonstrate the AVS extract scalar module. The extract scalar cm module may be sub-
stituted in many of these examples.

extract scalar cm(CNVAVS)



fft cm(CM/AVS)

NAME

St cm - do a Fast Fourier Transform on a field

SUMMARY

Name

lpe
Inputs

Outputs

P;m-rameters

fft cm

filter

field float (each axis must be length power of two)

field

op

DESCRIPTION

The fit cm module takes a floating point 11213 D 2-vector and, depending on the op"
parameter, does either a forward or inverse Fast Fourier Transform on it. The module
uses the simple FFT routine in the Thinking Machines CMSSL library.

INPUTS

field

field

(required; field ID, 2D, or 3D 2-vector float)
The field to be transformed.

(required; field ID, 2D, or 3D 2-vector float)
The transformed field.

EXAMPLE

The following network reads an image, crops it to dimensions which are a power of two,
pulls out a 2-vector, converts it to floating point, does a forward FFT, then an inverse
F]er, coverts the data back to bytes, extracts the first channel, and recombines it into a
greyscale image, and displays it. The result should be the greyscale equivalent of the first
extracted channel of the image.

Last change: October 1992

OUTPUTS

Mf cm (CM/VS)

CM/AVS 1.0 72



fft cm(CM/AVS)

READ IMAGE

CROP

EXTRACT VECTOR

FIELD TO FLOAT CM

FFT CM (forward)

FFT CM (inverse)

FIELD TO BYTE CM

EXTRACT SCALAR CM

COLORIZER CM

IMAGE VIEWER

RELATED) MODLILES

Modules that could provide the field input:

read field

Modules that can process fft cm output:

write field
image viewer
display image

Mf cm(CNAVS)



field math cm ( CM/AVS )

NAME

field math cm - perform math operations between fields

SUMMARY

Name field math cm

Type filter

Inputs field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector any-data same-coordinates
(OPTIONAL)

Outputs field same-dimension same-vector any-data same-coordinates

Parameters
Name Type Default Min Max
choice choice +
Normalize boolean off
Constant float typein 0.0 unbounded unbounded

DESCRIPTION

The field math cm module performs unary and binary operations upon parallel fields.

Thle unary operations are Not, Square, and Sqrt. The binary operations are +, -, *, /, And,
OI, Xor, Left-Shift, Right-Shift, and RMS (Root Mean Square). Unary operations are per-
formed against the right port field only. The field that is connected to the left port is
ignored. If only one field is provided as an operand for a binary operations, the field must
be attached to the right port and the binary operations are performed on the right port
field and the Constant input parameter.

When two fields are connected to the module, the Constant parameter is not displayed
and the fields are evaluated against each other.

ThTe input fields must be of the same dimensionality, size, and vector length. When the
fields contain different data types, the output field will have the more elaborate data type.

When the fields have different coordinate types, the output field will have the same coor-
dinate type as the right input port field.

During computation, byte data is converted to integer, while short, integer, and float data
are converted to double. The result is then converted back to the appropriate output data
type. If Normalize is off, the data is "clamped" to the range:

0.. .255] byte
[-32767.. .32767] short
[-2147483647.. .2147483647] integer

Last chanae: Jamntrv 19934

field math cm (CMIAVS)

CM/AVS 1.0 74



field math cm (CM/AVS)

If Normalize is on, the result is normalized to between:

255]

32767]

2147483647]
1]

byte
shor t
integer
float, double

(required; field any-dimension n-vector any-data
any-coordinates)
The rightmost input field is used as the input to unary operations, or
the first operand for binary operations.

(optional; field same-dimension same-vector any-data
same-coordinates)
The left field is the second operand in binary operations. It must
have the same dimension, size, and vector length as the first input
field.

Or (bitwise)

Xor (bitwise)

Not (bitwise)

Left-Shift (bitwise)

Right-Shift (bitwise)

Square

Sqrt

RMS (Root Mean Square)
A choice of operations. For binary operations, if the left port field (field2) is not pro-
vided, the Constant parameter is used as the second operand (i.e. field2 is replaced by

75

o 0...
[0...
[0...

[0...

INPUTS

Data Field

Data Field

PARAMETERS

.I

*

And (bitwise)

field math cm (CW/AVS)

. ... _ T .. , 1 on



field math cm (CM/AVS)

Constant).

And
Or

Xor
Not
Left-Shift
Right-Shift
Square
Sqrt
RMS

fieldi + field2
fieldi - field2
fieldi * field2
fieldi / field2
fieldi AND field2
fieldl OR field2
fieldi XOR field2
NOT fieldi
fieldi << field2
fieldl >> field2
field * fieldi
sqrt (fieldl)
sqrt (fieldl**2 +

(result is 0 if field2 is 0)

Inot applicable for
Ifloats and doubles

field2**2)

Normalize

Constant

OUTPUTS

I)ata Field

EXAMPLE I

Selecting Normalize causes the results of the operation to be nor-
malized to between 0 and 1 for floats and doubles, 0 and 255 for
bytes, 0 and 32767 for shorts, and 0 and 2147483647 for integers.
Normalize is off by default.

A floating point typein to specify the constant value to use as the
second operand in binary operations. If two fields are connected to
the module, Constant is ignored and disappears from the control
panel. The default is 0.0. There is no upper or lower limit.

(field same-dimension same-vector any-data same-coordinates)
The output field has the same form as the input fields.
If the input fields were of different data types, the output field
will have the more elaborate data type. If the input fields had
different coordinate types, the output field will have the same
coordinate type as the right input port field.

The following network inverts (flips the look-up table) an image using the Not function,
with Normalize on. The same effect can be achieved by multiplying the image by -1.

READ IMAGE

FIELD MATH CM

I
DISPLAY IMAGE

Last change: January 1993

field math cm (CM/yAVS)

76CM/AVS 1.0



field math cm (CM/AVS)

EXAMPLE 2

'Ihis network does a logical AND on a volume against the constant 128 (0x80), which
produces a volume with only Os and 255s based on whether the source voxel was greater
or less than 128.

READ VOLUME

I

FIELD MATH CM

I

ORTHOGONAL SLICER CM

COLORIZER CM

DISPLAY IMAGE

RELATED MODULES

Modules that could provide the Data Field inputs:

Any module that outputs a field

Modules that can process field math cm output:

Any module that inputs a field

SEE ALSO

Two AVS FIELD MATH example scripts demonstrate the AVS field math module.

xAilAV 1 n Last change: January 1993 77

field math cm (CM/AVS)



field to bte cm (CM/AVS)

NAME

field to byte cm - transform any field to a byte-valued field

SUMMARY

Name

Type

hInputs

Outputs

field to byte cm

filter

field any-dimension n-vector any-data any-coordinates

field same-dimension same-vector byte any-coordinates

Name
byte normalize

Type

toggle
Default
on

Choices
on, off

DESCRIPTION

The field to byte cm module takes a field of data (integer, real, double, or byte) and con-
verts it to a byte field. It can be used in conjunction with volume visualization modules
that have a bias towards byte fields (i.e., compute gradient cm).

By default, the input data is normalized to the range 0..255 If the toggle parameter
byte_normalize is turned off, the data is "clamped" to that range instead. (See below for
details.)

INPUTS

(required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

byte_normalize This is a toggle parameter:

If on: The data is transformed linearly into the range
0..255:

(value - min) * 255
newvalue =

max - min

The data is "clamped" so that no value falls outside the
range 0..255:

Last change: October 1992

Parameters

Data Field

PARAMETERS

If off:

field to byte cm (CM/AVS)

78CM/AVS 1.0



field to byte cm (CMIAVS)

I f value < 0

If 0 <= value <= 255

If value > 255

new_value O0

new_value - value

new.._value - 255

I)ata Field (field same-dimension same-vector byte same-coordinates)
The output field has the same dimensionality as the input field, but
each scalar value is forced to be a byte.

Appropriate new values of the min val and max_val attributes are
written to the output field.

RELATED MODULES

vIModules that could provide the Data Field input:

read volume

]Modules that could be used in place of field to byte cm:

field to int cm
field to float cm
field to double cm

Modules that can process field to byte cm output:

read volume

SEE ALSO

'The AVS example scripts FIELD TO BYTE and FIELD TO INTEGER demonstrate the
AVS field to byte module.

CM/AVS 1.0 Last change: October 1992 79

OUTPUTS

field to byte cm (CM/AVS)



field to double cm(CM/AVS)

NAME

Name

Type

Inputs

Outputs

double cm - transform any field to a field of double-precision floating point val-

field to double cm

filter

field any-dimension n-vector any-data any-coordinates

field same-dimension same-vector double same-coordinates

Parameters
Name
double normalize

Type
toggle

Default
on

Choices
on, off

DESCRIPTION

The field to double cm module takes a field of data (byte, real, double, or integer) and
converts it to an double field. This may be useful for computing fields at greater data res-
olutions.

By default, the input data is simply cast (re-typed) to be double-precision floating point.
If the toggle parameter double_normalize is turned on, the data is also normalized to the
range 0..1. (See below for details.)

INPUTS

I)ata Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

double_normalize This is a toggle parameter:

If on: The data is transformed linearly into the range O..1:

new value =
(value - min)

max - min

The data is converted to double-precision floating
point format.

Last change: October 1992

field to
ues

SUMMARY

PARAMETERS

If off:

field to double cm (CNVAVS)

CM/AVS 1.0 80



field to double cm(CM/AVS)

OUTPUTS

Data Field (field field same-dimension same-vector double same-coordinates
The output field has the same dimensionality as the input field, but
each scalar value is forced to be a double-precision number.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

read volume
field to byte cm
field to int cm
field to float cm

SEE ALSO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to double
module.

Last change: October 1992

field to double cm (CM/AVS)

CM/AVS 1.0 81



field to float cm(CM/AVS)

NAME

field to float cm - transform any field to a field of single-precision floating point values

SUMMARY

field to float cm

filter

field field any-dimension n-vector any-data any-coordinates

field same-dimension same-vector float same-coordinates

Parameters
Name
float normalize

Type
toggle

Default
off

Choices
on, off

DESCRIPTION

The field to float cm module takes a field of data (byte, short, real, double, or integer)
anid converts it to a float field. It can be used in conjunction with modules that have a
bias towardsfloat fields (particle advector, samplers).

By default, the input data is simply cast (re-typed) to be single-precision floating point. If
the toggle parameter float normalize is turned on, the data is also normalized to the range
O..1. (See below for details.)

INPUTS

(required; any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

This is a toggle parameter:

If on: the data is transformed linearly into the range 0.. 1:

new value =
(value - min)

max - min

the data is converted to single-precision floating point
format.

Last change: January 1993

Name

Type

Inputs

Outputs

Data Field

PARAMETERS

float normalize

If off:

field to float cm(ChyAVS)

CM/AVS :1.O 82



field to float cm (CM/AVS)

OUTPUTS

Data Field (field same-dimension same-vector float same-coordinates
The output field has the same dimensionality as the input field, but
each scalar value is forced to be a single-precision number.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

read volume
particle advector
samplers
field to byte cm
field to short
field to int cm
field to double cm

SEE AL'SO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to float mod-
ule.

LIMITATIONS

Overflow or underflow may occur when converting a double field to a float field with
float normalize turned off.

83

field to float cm(CNVyAVS)

Last change: January x::,M/AV. 1 n



field to int cm(CM/AVS)

NAME

field to int cm - transform any field to an integer-valued field

SUMMARY

field to int cm

filter

field any-dimension n-vector any-data any-coordinates

field same-dimension same-vector integer same-coordinates

Parameters Name
int normalize

DESCRIPTION

The field to int cm module takes a field of data (byte, short, real, double, or int) and con-
verts it to an int field. This may be useful for performing integer math with greater preci-
sion (-231-1 to 231-1, -2147483647...2147483647) than that offered by byte fields
(0..255).

By default, the input data is "clamped" to the range -231-1...231-1. If the toggle parame-
ter intnormalize is turned on, the data is normalized to 0...231-1 instead. (See below for
details.)

INPUTS

Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

int normalize This is a toggle parameter:

If on: the data is transformed linearly into the range
0..231-1:

new value =
(value - min) * 2147483647

max - min

Last change: January 1993

Name

1ype

Inputs

Outputs

togglpe

toggle
Default
on

Choices
on, off

PARAMETERS

field to int cm (CM/rAVS)

CM/AVS 1.0 84



field to int cm(CM/AVS)

the data is "clamped" so that no value falls outside
the range -2147483647...2147483647. Values
greater than 2147483647 are set to 2147483647.
Values less than -2147483647 are set to
-2147483647.

(field same-dimension same-vector integer same-coordinates)
The output field has the same dimensionality as the input field, but
each scalar value is forced to be an integer.

Appropriate new values of the min.val and max val attributes are
written to the output field.

RELATED MODULES

field to byte cm
field to short
field to float cm
field to double cm

SEE AILSO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to int mod-
ule.

Last chance: January 1993

If off:

OUTPUTS

Data Field

field to int cm (CNAVS)

tMAV.R n 85



luminance cm ( CM/AVS)

NAME

luminance cm - compute the luminance of an image

SUMMARY

Name

Type

Inputs

Outputs

Parameters

luminance cm

filter

field 2D uniform 4-vector byte (image)

field 2D uniform scalar byte

none

DESCRIPTION

The luminance cm module computes the luminance (brightness) of an image, then out-
puts a 2-dimensional field of the same dimensions, but with a scalar byte value for each
pixel in the original image instead of the full four-byte alpha, red, green, blue vector.

The luminance (I) is calculated as follows:
I = (0.299 * red) + (0.587 * green) + (0.114 * blue)

This luminance byte value can be used to produce a black and white
nal image (with colorizer cm), or substituted back into the alpha
image (with replace alpha) to produce transparency effects.

version of the origi-
byte of the original

(required; field 2D uniform 4-vector byte)
The image whose luminance to calculate.

(field 2D uniform scalar byte)
The output field has the same dimension as the input image, but
with a scalar byte value representing the image luminance at each
original pixel instead of color value.

EXAMPLE 1

Tihe following network reads an image, computes its luminance, colorizes the resulting
field with the default black and white colormap, producing a black and white version of
the original image. The result is displayed through the image viewer.

Last change: October 1992

INPUTS

Image

OUTPUTS

Data Field

luminance a (CWAVS)

86CM/AVS 1.0



luminance cm (CMIAVS) luminance cm (CM/AVS)

READ IMAGE

I
LUMINANCE CM

I
COLORIZER CM

I
IMAGE VIEWER

EXAMPLE 2

This network takes a geometry, displays it on the screen, then converts the screen pixmap
to an image, computes its luminance, uses that to create an alpha mask, renders a shaded
background and composites the rendered image over the shaded background. The con-
I:trast modules controls should be set to : minimum and maximum input contrast, both 1;
minimum output contrast 0, and maximum output contrast, 255. If the original geometry
were /usr/avs/data/geometry/jet. geom and the background module were set to produce a
sky-like pattern, this would produce a jet over a sky field.

READ GEOM

I
GEOMETRY VIEWER

.i

DISPLAY IMAGE
I

BACKGROUND

I

LUMINANCE

I
CONTRAST C

I----

CM I

]M

-- I I
REPLACE ALPHA

--- I I

COMPOSITE

IMAGE VIEWER

RELATED MODULES

Modules that could provide the Image input:

Any module that produces an image as output

Last change: October 1992r'UAIAVq I n
87

-

I-------------------



luminance cm( CM/AVS)

Modules that can process luminance cm output:

colorizer cm
contrast cm
Any modules that can process a 2D scalar field

Other related modules:
background
composite
replace alpha
extract scalar cm

SEE ALSO

The AVS example script LUMINANCE demonstrates the AVS luminance module.

Last change: October 1992CM/AVS .0 88

luminance cm (CM/AVS)



orthogonal slicer cm(CMIAVS)

NAME

orthogonal slicer cm - slice through 3D or 2D field with plane perpendicular to coordi-
nrate axis

SUMMARY

Name

Inputs

Outputs

orthogonal slicer cm

mapper

field 3D or 2D n-vector any-data any-coordinates

field 2D or ID n-vector same-data same-coordinates

Parameters Name
slice plane
axis

Type

int
choice

Default
0
K

Min Max Choices
0 255 on, off

I,J,K

DESCRIPTION

'The orthogonal slicer cm module takes a 2D slice from a 3D array, or a D slice from a
2D array. It does so by holding the array index in one dimension constant, and letting the
other index(es) vary. For instance, a data set might include a volume of 5000 points,
arranged as follows (using FORTRAN notation):

DATA(I,J,K)- I = 1,10
J = 1,20
K = 1,25

'You can take a 2D "I-slice" from this data set by setting 1=4 and letting the other indices
Vary:

DATA (4, J, K) J = 1,20
K = 1,25

The notation used in the example above assumes that the field's data values are scalars (in
FORTRAN, DATA(4,5,6) must be a scalar). In fact, however, the orthogonal slicer cm
module can take slices of vector-valued fields, also. It passes through whatever data type
is presented to it; e.g. if the input is a "field 3D 3-vector float", the output is a "field 2D
3-vector float".

Last chance October 1992

ordiogorud slicer cm (M/AVS)

89rMIV.q n



orthogonal slicer cm ( CM/AVS)

INPUTS

Data Field (field 2D/3D n-vector any-data any-coordinates)
The input may be any 3D or 2Dfield.

slice plane

axzis

OUTPUTS

Data Field

Determines the value of the array index to be held constant.
value is reset to zero each time a new data field is input.

This

Selects the dimension (1, J, or K) in which the array index is to be
held constant.

(field 1D/2D n-vector any-data any-coordinates)
The output field is 2D instead of 3D (or 1D instead of 2D), and has
the same type of data as the input field.

Appropriate new values for min_ext and max_ext are written to the
output field.

EXAMPLE 1

The following network takes a slice from a scalar volume and displays it:

READ VOLUME

I
ORTHOGONAL SLICER CM

GENERATE COLORMAP (optional)

ll----l--------

I I
COLORIZER CM

I
DISPLAY IMAGE

The colorizer cm module is necessary because the output of orthogonal slicer cm is a
"field 2D scalar byte", which must be cast into an AVS image field for display.

Last change: October 1992

PARAMETERS

orthogonal slicer cm(CNVAVS)

90CM/AVS 11.0



orthogonal slicer cm (CM/AVS)

EXAMPLE 2

For reasonably small volumes, a better way to construct this network is:

READ VOLUME

I GENERATE COLORMAP (optional)
I I ….--------------I

I I

COLORIZER CM

ORTHOGONAL SLICER CM

I
DISPLAY IMAGE

This network has the effect of colorizing the entire volume once, which make the slicing
cperation more efficient. It does this at the expense of allocating more memory up front.

EXAMPLE 3

Irregular Data: orthogonal slicer cm supports the passing of "points" data for rectilin-
ear and irregular data. This is an important module for visualizing curved data sets. For
example:

READ FIELD (irregular data)

I 

GENERATE
ORTHOGONAL SLICER CM

COLORMAP I

VOLUME BOUNDS

I

FIELD TO MESH

GEOMETRY VIEWER

(This is the reason for labeling the axis control with "I, J, and K": frequently, the data is
tot aligned to the X, Y, and Z axes. orthogonal slicer cm takes slices through the logical
data set, not the physical one.)

Last change: October 1992

I

orthogonal slicer cm(CM/AVS)

I I

91CM/AVS 1.0



orthogonal slicer cm ( CM/AVS)

EXAMPLE 4

The following network shows how to use orthogonal slicer cm to plot the values of one
scan-line of an image:

READ IMAGE

EXTRACT SCALAR CM

ORTHOGONAL SLICER CM (set to middle of image)

GRAPH VIEWER

RELATED MODULES

field to mesh
colorizer cm

SEE ALSO

The AVS example scripts ANIMATED INTEGER, COLOR RANGE, and VECTOR
CURL demonstrate the AVS orthogonal slicer module.

Last change: October 1992

orthogonal. slicer c (CMAVS)

CM/AVS L.0 92



threshold cm (CM/AVS)

NAME

threshold cm - restrict values in data field

SUMMARY

Name

Type

Inputs

Outputs

]Parameters

threshold cm

filter

field any-dimension n-vector any-data any_coordinates

field of same type as input

Name Type Default Min
thresh min float 0.0 none
threshmax float 255.0 none

DESCRIPTION

The threshold cm module transforms the values of a field as follows:

o Any value less than the value of the threshold_min parameter is set to 0.

o Any value greater than the value of the threshold_max parameter is set to 0.

o Values within the threshold_min-to-threshold_max range are not changed.

After being threshold'ed, a data set's values are all either zero, or in this range:

threshmin <= value <= thresh max

Note the difference between the clamp cm and the threshold cm modules:

o threshold cm sets values outside the specified range to be zero.

o clamp cm sets values outside the specified range to be the range's minimum
and maximum values.

INPUTS;

Data Field (required; field any-dimension n-vector any-data any_coordinates)
The input data may be any AVS field.

Last change: October 1992

Max
none
none

threshold cm(CM/AVS)

93CM/AVS 1.0



threshold cm ( CM/AVS)

PARAMETERS

threshmin

threshmax

OUTPUTS

Field Data

The minimum threshold value.

The maximum threshold value.

The output field has the same dimensionality as the input field.

Appropriate new values of the minval and max_val attributes are
written to the output field.

RELATE[) MODULES

lModules that could provide the Data Field input:

read volume
any otherfilter module

Modules that could be used in place of threshold cm:

clamp cm

Modules that can process threshold cm output:

colorizer cm
any other filter module

SEE ALSO

The AVS example scripts CONTOUR GEOMETRY, and THRESHOLDED SLICER
demonstrate the AVS threshold module.

Last change: October 1992

threshold c (MPAVS)

94CM/AVS 1.0



Appendix C

Unsupported Programs and Modules

This appendix contains information about programs and modules that are
included with CWMAVS but are not guaranteed or supported.

These items reside in the directory /usr/ezamples/cmavs/unsuppozted.

C.1 Programs

The following programs are documented in this appendix:

avstoppm

ppmtoavs

C'.2 Modules

The following modules are documented in this appendix:

field to polygons

field to spheres

Version 1.0, February 1993
Copyright 0 1993 Thinking Machines Corporation 95



I



avstoppm ( CM/AVS Unsupported)

NAME

avstoppm - convert AVS images (.x format) to PPM format

SYNOPSIS

avstoppm [ infie ] [ ouile ]

DESCRIPTION

avstoppm converts images from AVS format (filenames end in .x) to PPM format. If no
filenames are given, avstoppm reads from stdin and writes to stdout. If one filename is
given, it is the input filename, and output goes to stdout. If two filenames are given, the
first is the input file and the second is the output file (which is first trunmcated if it exists).

NOTE: The PPM format is part of the pbmplus package. For more information on the
pbmplus package, send mail to jef@well.sf.ca.us (Jeff Poskanzer); the pbmplus package
can be retrieved via FTP from archive.cis.ohio-state.edu:publpbmplus/pbmplus.tar.Z,
among many other places.

avstoppm resides in Iusrlexampleslcmavs/unsupported.

OPTIONS

There are no options to avstoppm.

SEE ALSO

libppm(3), ppmto...(l) (converters for ppm to many image formats)

DIAGNOSTICS

The diagnostics are intended to be self-explanatory.

BUGS

None known.

Last change: January 1993

avstoppzn(CWrlAVS Unsupported)

CM/AVS 1.0 97



ppmtoavs (CM/AVS Unsupported)

NAME

ppmtoavs - convert PPM format images to AVS images (.x format)

SYNOPSIS

ppmtoavs [ infile] [ ouile ]

DESCRIPTION

ppmtoavs converts images from PPM format to AVS image format. The alpha bytes of
the AVS image are all zeros (but they can be set to any value within AVS by using the
replace alpha module).

NOTE: The PPM format is part of the pbmplus package. For more information on the
pbmplus package, send mail to jef@well.sf.ca.us (Jeff Poskanzer); the pbmplus package
can be retrieved via FTP from archive.cis.ohio-state.edu:Ipub/pbmplus/pbmplus.tar.Z,
among many other places.

If no filenames are given, ppmtoavs reads from stdin and writes to stdout. If one file-
name is given, it is the input filename, and output goes to stdout. If two filenames are
given, the first is the input file and the second is the output file (which is first truncated if
it exists).

ppmtoavs resides in /usr/examples/cmavs/unsupported.

OPTIONS

There are no options to ppmtoavs.

SEE ALSO

libppm(3), ppmto...(l) (converters for ppm to many image formats)

DIAGNOSTICS

Tihe diagnostics are intended to be self-explanatory.

BUGS

None known.

Last change: January 1993

ppmtoavs (CAVS Unsupported)

CM/AVS 1,.0 98



field to polygons (CM/AVS Unsupported)

NAME

field to polygons (unsupported) - translates a coordinate field into a set of polygons

SUMMARY

Name

Type

Inputs

]Parameters

field to polygons

mapper

polygon list 2D 3-space irregular float
colormap Outputs polygon geom (geom)

Name
Use Color

Type

toggle
Default
off

ieldto..polygons resides in usr/examples/cmavs/unsupported.

DESCRIPTION

field to polygons cm translates a field containing vertex coordinates into a geometry
describing polygons. The polygon list's points array contains the vertex coordinates and
the data array (optionally) contains the color information.

'he Use Color parameter determines how the polygon will be colored. (See below for
details.)

INPUTS

polygon list

colormap

(required; field 2D 3-space [1 or 3]-vector irregular float)
The first dimension of the input field must be equal to the num-
ber of sides of the polygons. All polygons must have the same
number of sides. The second dimension is the number of poly-
gons. The points array describes the coordinates of the poly-
gons. The data array optionally describes the polygons color.
The vector length restriction has effect only if the Use Color
parameter is on.

(colormap)
This colormap is used to color the polygons when the Use Color
toggle is on and a 1D data field is suppied. The default colormap
is a linear ramp from black to white with a low value of O.Oand a
high value of 255.0.

Last change: January 1993

Choices
on, off

field to polygons (CM/lAVS Unsupported)

99CMWAVS Unsupported



field to polygons (CM/AVS Unsupported)

OUTPuIrs

polygon geom (geom)
The output geometry containing the polygon objects.

PARAMETERS

Use Color This is a toggle parameter:

If on: The polygon vertices will be colored using the
field's data and, optionally, the given colormap.
There are two techniques used to color the data
depending on the vector length of the polygon
list. If the vector length is one, the value of each
element is used as an index into the colormap. If
the vector length is three, they are interpreted as
the red, green and blue color values.

If off: (default) The polygons will be drawn without
explicit color information. Generally, this
results in the polygons being drawn in white. In
this case, the polygon list's data array is ignored.

EXAMPILE

READ FIELD

I

FIELD TO POLYGONS

I

GEOMETRY VIEWER

RELATED MODULES

field to spheres (unsupported)

Last change: January 1993

field to polygons (CNV"S Unsupported)

CW/AVS Unsupported 100



field to spheres (CM/AVS Unsupported)

NAME

field to spheres (unsupported) - translates a coordinate field into a set of spheres

SUMMARY

Name field to spheres

Type mapper

Inputs sphere list - field 3-space irregular float
colormap - colormap

Outputs sphere geom - geom

Parameters Name Type Default Choices
size dial 0.0
Use Color toggle off on, off

field_to_spheres resides in /usrlexamples/cmavslunsupported.

DESCRIPTION

field to spheres translates an irregular field describing a set of three space coordinates
into a geometry containing sphere objects. The sphere list's points array describes the
spheres' positions. Optionally, the field's data array describes the spheres' colors.

IF the size parameter is equal to 0.0, the spheres will be drawn as single pixels. If the size
is greater than 0.0, the spheres will be drawn as uniformly sized spheres with radii equal
to the size.

The Use Color parameter determines how the spheres will be colored. (See below for
details.)

INPUTS

sphere list (required; field 3-space [1 or 3]-vector irregular float)
This field must be a list of irregular points in 3-space. The points
array describes the coordinates of the spheres. The data array
optionally describes the spheres color. The vector length restric-
tion has effect only if the Use Color parameter is on.

colormap (colormap)
This colormap is used to color the spheres when the Use Color
toggle is on and a 1D data field is suppied. The default colormap
is a linear ramp from black to white with a low value of 0.0 and a
high value of 255.0.

Last change: January 1993

field to spheres MyAVS Unsupported)

101M~AVS Unsupported



field to spheres (CM/AVS Unsupported)

PARAMETERS

size (dial)
The size of the spheres. If equal to zero, the spheres are ren-
dered as single pixels. Otherwise, the value is used as the radius
in world coordinates.

Use Color This is a toggle parameter.

If on: The spheres will be colored using the field's data
and, optionally, the given colormap. There are
two techniques used to color the data depending
on the vector length of the sphere list. If the
vector length is one, the value of each element is
used as an interpolated index into the colormap.
If the vector length is three, the three values are
interpreted as the red, green and blue color val-
ues. They should lie in the range from 0.0 to 1.0.

If off: The spheres will be drawn without explicit color
information (no color information is encoded
with the sphere data). Generally, this results in
the spheres being drawn in white. In this case,
the sphere list's data array is ignored.

OUTPUTS

sphere geom (geom)
The output geometry containing the sphere objects.

EXAMPLE

SAMPLERS

I
FIELD TO SPHERES

I

GEOMETRY VIEWER

Last change: January 1993

field to sheres (CNVyAVS Unsupported)

102CR[AVS UInsuppoted



field to spheres (CM/AVS Unsupported)

RELATED MODULES

scatter dots

scatter dots is very similar to field to spheres, differing in the following ways:

o The radius of each sphere may be specified independently in scatter dots.

o scatter dots requires more information to be specified per sphere.

o scatter dots is slower.

o scatter dots requires a ID coordinate field, whereas field to spheres is
independent of the field's dimension.

Last change: January 1993

field to spheres( CM/AVS Unsupported)

CM/AVS Unsupported 103





Index
::~`:%:~`~::`::::::::::~ ......................... : ':X. ...................................................,.' .'.S...........................................................

Symbols
.avsrc file, 7

A
access routines

parallel field coordinates, 20
parallel field data, 20

arrays, declaring, 23
AVS routines

AVSdata_free, 18
AVSbuild_2d field, 18

AVSbuild 3d field, 18

AVSbuild_free, 18

AVSdata_alloc, 19

AVSfieldalloc, 18
AVSfield copypoints, 18

AVSfield_data_offset, 18
AVSfielddataptr, 18

AVSf eld free, 18
AVf ield pointsoffset, 18
AVSfield points ptr, 18

AVSfield_reset_minma 18
AVSset module_flags, 17

avs_dbx, 29

AVSTYPEBYTE, 22

AVsTYPE DoUBLE, 22

AVS TYPE INTEGE, 22
AVS TYPE REA 22

AVS_TYPESHORT, 22

AVSbuild2d field, AVS routine, 18

AVSbuild 3d field, AVS routine, 18

AVSbuild field, AVS routine, 18
AVscreateinputport, AVS routine, 18
AVSdata_alloc, AVS routine, 19
AVSdata free, AVS routine, 18
AVSfield alloc, AVS routine, 18
AVSfieldcopy points, AVS routine, 18
AVSfield dataoffset, AVS routine, 18

Version 1.0, February 1993
Copyright 1993 Thinking Machines Corporation

AVSfield dataptr, AVS routine, 18
AVSfield_free, AVS routine, 18
AVSfield ointsoff set, AVS routine,

18

AVSfield points-ptr, AVS routine, 18
AVSfieldreset_minmax, AVS routine, 18
AVSset_module_flags, AVS routine, 17

B

binary file
multi-module, 19
multi-module, 12, 30

C
cleaning up, 14
CM/AVS

overview, 1

routines, 1

CM/AVS modules, running locally, 13
CM/AVS header file, 27
CM/AVS include file, 27
CM/AVS libraries, 27
CM/AVS modules

list, 5
man pages, 41

running remotely, 7
CM/AVS routines, 31

CNAVScoroutinit, 32
COAVSdata alloc, 18, 19,32
CAVSfieldalloc, 18, 19,33
CMAVSfield_alloc_data_shape, 34
CMAVSfield_allocpoint_sh ape, 35

CMAVSBfieldcopyPoints, 18, 35
CNAVSf ield_data_get, 18,20, 36
CMAVSfield points_get, 18, 20, 37
CMAVSfieldresetminma 18,38

CMAVSisfield _on_C, 39

105



106 ;'\S'.SoS,, XffSSgffSf .x fffSff C/A V;SU ersG id;.e:. x :, f'ff xse26 f'4Xsf::::::: 'fs'Sf M........... ..... .. .. .. . ...... ...........
· :;,~~~u~:~~i~:·ii~~,-~~ ·~~:ui:::::~~~:!S#:~~:~~~: ~ ~ :~; · " j:~~~j:1:::i:::::i:~~~~~i~i:~~::::8i~~~·~·::I... . ..

cmavs-modules, binary file, 9
CMAVScorout_init, CM/AVS routine, 32
CMAVSdata_alloc, CM/AVS routine, 18, 19,

:32

CMAVSf ield_alloc, CM/AVS routine, 18,

:19,33

CKAVSfield_alloc_data_shape, CM/AVS

routine, 34
CMAVSfield_alloc_points_shape,

CM/AVS routine, 35

CMAVSfield_copypoints, CM/AVS

routine, 18, 35

CMAVSf ield data_get, CM/AVS routine,
18, 20, 36

CMAVSf ield points_get, CM/AVS routine,
18, 20, 37

CMAVSfield reset_minmax, CM/AVS

routine, 18, 38

CMAVSis_field on.CM, CM/AVS routine,
39

cmdbx, 29
cMF$LAYoUT, 21

CMF _ALLOCATE ARRAY 21

CmF_defs.h,21
CMF_SIZEOFDESCRIPTOR, 21

cmps, CM-5 process status, 14

colorizer cm, module, 10

compiling a module, 28
coordinate array, layout, 23
COROUT UNPACK_ARGS, flag, 17

D

data array, layout, 23
data types, primitive, 22
debugging a module, 29
declaring arrays, 23
display image, module, 10

E

examples, directory, 24
examples directory, 24

F

field, 1

irregular, 23

rectilinear, 23
uniform, 23

field coordinates, accessing parallel, 20
field data, accessing parallel, 20
field type

parallel, 16

allocating, 18

declaring, 17

passing, 17

using AVS routines on, 17
serial, 15

flags
COROUTUNPACK_ARGS, 17

PARALLEL, 18

REQUIRED, 18

SINGLE_ARG _DATA, 17

H

header file
CM Fortran, 21
CM/AVS, 27

hosts file, 7
example, 8

field definitions, 7

I

include file, CM/AVS, 27
input ports, parallel, 18
installed libraries, 2
irregular fields, 23

L

libavsflow c.a, 27

libavsflowf.a, 27

libavssim_ c.a,27

libavssim_ff.a,27

libcmavsflow_c_cm5_sparc.a,27

Version 1.0, February 1993
Copyright 1993 Thinking Machines Corporation

CWA VSS User Guide106



Indx _0' ,7.~fili ':,..
libcmavsf low_c_cm5_vu. a,27

libcmavsflowf cmS_sparc. a, 27

libcmavsflowf_cm_vu. a, 27
libcmavssimccm sparc. a,27
libcmavasim_c_ ms5vu. a,27

libcmavssimf_icms_sparc. a,27
libcmavssim f cmsvu. a, 27
libraries, CM/AVS, 27

luminance, module, 8

luminance cm, module, 8, 10

luminance module example, 24

luminance. fcm, example module, 24,
25-26

M

man pages, for CM/AVS modules, 41

module, 1

compiling a, 28
debugging a, 29

modules
CM/AVS man pages, 41

CM/AVS, list, 5

distributed, 6
running remotely, tutorial, 8

multi-module binary, 19

multi-module binary, 30

N

network, 1

P
PARALLEL, flag, 18

parallel field, 1
parallel field coordinates, accessing, 20

parallel field data, accessing, 20

parallel fields, 16
allocating, 18

declaring, 17

explicit allocation, 19
passing, 17

using AVS routines on, 17

parallel input ports, 18

performance, 12

primitive data types, 22
prism, 29

R

read image, module, 10

rectilinear fields, 23
RnQoIRED, flag, 18

routines, CM/AVS, 1

S
sample module, 24
SINGLE RGDATA, flag, 17

software, CM/AVS package, 2

U

uniform fields, 23

0
overview, product, 1

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

107Index


