The
Connection Machine
System

Paris Reference Manual

Version 6.0
February 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1989
Revised, February 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
c*®isa registered trademark of Thinking Machines Corporation.

CM, CM-2, and DataVault are trademarks of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation,
In Parallel® is a registered trademark of Thinking Machines Corporation.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000/876-1111

Contents

1 Introduction

2 Virtual Machine Architecture

2.1 Virtual Processors and Virtual Processor Sets
2.2 Mapping VP Sets to the Physical Machine
23 VP Ratios . . ¢ . v v v it e e e i e e e e e e e e e e e e
24 Fields o i i i i it i i it e e e e e e
2.5 Processor Addresses ¢ttt ittt e
26 Send Addresses v v v it ittt e e e e e e e s
27 NEWS Addresses v v v it i it it et e bt et et et oea e
2.8 Communicationacross VP Sets
29 Geometries . . . v v . i i h i e e e e e e e e e e e e e e
210 Flags .« o v v v i it e e e e e e e e e e
3 Data Formats
31 BitFields v vt i ittt e e e e e e e e e
32 SignedIntegers v vt it ittt i e e e
33 UnsignedIntegers. i i ittt eennn
3.4 Floating-Point Numbers,
3.5 Complex Floating-Point Numbers0
36 Send Addresses e e e e e e e
3.7 Configuration Variablest v it ittt ennnenn
4 Operation Formats
41 FieldIds it i it it it e e e e e e e e e
4.2 Constant Operands v v v v v v v v vt e e e e e e e e e
4.3 Unconditional Operations,
44 NamingConventions it ittt nnnna.
45 Argument Order ittt ittt
5 Instruction Set Overview
0 O A T
5.2 Geometries i i i ittt e e e e e e e e e
5.3 Interned Geometriesand VP Sets
54 Fleldso it ittt it e e e e e e e e e e e e e e e

[y

00 G0 00 ~3 =1 O OV OUv Ov W

10

Contents

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

6 The
6.1
6.2

6.3
6.4

7 The
7.1
7.2

Copying Fields i ittt it it ittt ittt enas s 27
Field Aliasing00 ittt it ittt it ittt et 28
Bitwise Boolean Operations 28
Operationson Flags ittt ittt it 29
Operationson Single Bits 30
Unary Arithmetic Operations, 30
Binary Arithmetic Operations 32
Optimized Floating-Point Computations 36
Arithmetic Comparisonsttt it it i v oo 37
Pseudo-Random Number Generation 37
N 2 7 38
General Communication i, 38
NEWS Communication0ttt eneenas 39
Power of Two NEWS ittt i it 41
NEWS with Floating-Point Combiners. 41
Scan, Reduce, Spread, and Multispread 42
Global Reduction Operations 46
Memory Data Transfers0t ieennn 46
Sorting i e e e e e e 47
Timing Paris Code i i it i ittt et ittt e e 47
The LEDS o i i et s e e e e e et et e e e 48
Front End Operationsttt eeenn. 48
Environmental Interface 00000, 48
C/Paris Interface 51
C/Paris Header Files it 51
C/Paris Instruction Names and Argument Types 51
6.21 Td Types . . . v v vt i i i it ittt e i e e e e e e e 52
6.2.2 Operand Field Addresses 52
6.2.3 Immediate Operands, 53"
6.2.4 Operand Field Lengths 53
6.2.5 Miscellaneous Signed and Unsigned Values 54
626 BitSetsandMasks. 54
6.2.7 VectorsofIntegers 54
6.2.8 Multi-dimensional Front-end Arrays 54
6.2.9 SymbolicValues eeo.. 54
C/Paris Configuration Variables . .-. 55
CallingParisfrom C e, 55
Fortran/Paris Interface 57
Fortran/Paris Header Files 57
Fortran /Paris Instruction Names and Argument Types 57
721 Id Types . o v v v i v it i it e e e e e e e e e e e b8
7.2.2 Operand Field Addresses 58
7.2.3 Immediate Operands0ttt it i .. 59

ii

Contents

7.2.4 Operand Field Lengths 59
7.2.5 Miscellaneous Signed and Unsigned Values 60
726 BitSetsandMasks., 60
7.2.7 VectorsofIntegers v, 60
7.2.8 Multi-dimensional Front-end Arrays 60
7.2.9 SymbolicValues 60

7.3 Fortran/Paris Configuration Variables 61
74 Calling ParisfromFortran, 61
The Lisp/Paris Interface 63
8.1 Lisp/Paris Instruction Names and Argument Types. 63
8.1.1 IdTypes . . . v i i i i i i it i e e e e e e e e e 63
8.1.2 Operand Field Addresses 64
8.1.3 Immediate Operands 64
8.1.4 Operand Field Lengths 65
8.1.5 Miscellaneous Signed and Unsigned Values 65
816 BitSetsandMasks. o oL 65
8.1.7 VectorsofIntegers 66
8.1.8 Multi-dimensional Front-end Arrays 66
8.1.9 Symbolic Values, 66

8.2 Lisp/Paris Configuration Variables 66
83 CallingParisfromLisp 67
Dictionary of Paris Instructions 69
9.1 Conventions for Alphabetizing, . 69
9.2 Programming Language Syntax, 70
9.2.1 Syntaxof Names 70
9.2.2 Pseudocode Instruction Descriptions 70
F-ABS . e e e 73
F-C-ABS . . . e e e 74
S-ABS L 75
C-ACOS . . e e 76
F-ACOS . . . o e e e e 77
C-ACOSH e e 78
F-ACOSH e 79
C-ADD . . . o e e e e e 80
F-ADD . . . o e e e e e 81
S-ADD . . e e e e 83
U-ADD . . . o e e e 85
S-ADD-CARRY o e e 87
U-ADD-CARRY 89
S-ADD-FLAGS e e 91
U-ADD-FLAGS e e e 92
F-ADD-MULT e e e e e e e e e e e e e e e e 93
ADD-OFFSET-TO-FIELD-ID, 95

it

Contents

ALLOCATE-HEAP-FIELD . . vt vttt et etie e i e e e 96
ALLOCATE-HEAP-FIELD-VP-SET . . .o oot ie e eeee.. 97
ALLOCATE-STACK-FIELD . . v v ettt et ee et ee e e e 98
ALLOCATE-STACK-FIELD-VP-SET . oo v o e oot e e ee e 99
ALLOCATE-VP-SET « o v vt vttt ettt et i e e 100
FE-ARRAY-FORMAT . . & ot vttt ettt et ettt i e e e e 101
AREF o o vt e e e et e e 103
AREF32 . o oo et 105
AREF32-SHARED . . v v vttt et eeee et e 107
ASET o o et e e e 110
ASET32 oot ettt e e 112
ASET32-SHARED .« . oot e et ettt e et e e e e 114
CASIN o e e e e e e e e e e 116
FASIN & v e et e e e 117
CAASINH e e e e e e e e e e 118
FAASINH o« oo et e e e e e e e e e e 119
CATAN o o e e e e e e e e e 120
FAATAN o o e e e e e e e e e e e e e e e 121
3 7Y N 122
CATANH o oottt e e e e e e e e e e e e e 124
3 7 125
ATTACH e et et e e et e e e e e e 126
ATTACHED .« o v v e e e e e e e e e e e e e i 128
AVAILABLE-MEMORY . .« « o v e e e e et et e e e e e 129
F-F-CEILING « v v e e et e e e e e e e e e e e e 131
S-CEILING .+ v vttt ettt ettt e e e e 132
S-F-CEILING .+ v v vttt ettt ettt e e e e e 134
U-CEILING o v e e e e e e e e e e e e e e e e e 135
U-F-CEILING .+ v v et e e e e e e e e e e e e e e e e e e 137
CHANGE-FIELD-ALIAS . .« v v oo e e e et e e e e 138

Lo 3o - J 139
CLEAR-ALL-FLAGS .« v v v e e e e e e e e e e e e 140
CLEAR-BIT .« ottt ettt e et e e e e e 141
CLEAR-CONTEXT .« v vt v te e e et e et e e e e 142
CLEARIZE .« « v v v e e e e e e e e e e e e 143
COLD-BOOT .+ vt vttt et e e e e e e e 144
FECOMPARE . o o vt e e e e e e et e e e e e e e e 146
S-COMPARE . . o v v vttt e e e e e e 147
U-COMPARE . . v oot e et et e e e e e e e e e e e e 148
COMPRESS-HEAP &« o o vttt e e e e e e e 149
C-CONJUGATE .« v et et e e e e e e e e e e e e e 150
G008 o et et e 151
F-COS v v vttt e e e e e e 152
C-COSH & vttt e et e e e e e 153
0 1Y - 154

iv

Contents

CREATE-DETAILED-GEOMETRY 155
CREATE-GEOMETRY i ittt ittt i i e 159
CROSS-VP-MOVEttt 160
DEALLOCATE-GEOMETRY it i ittt ittt in e n e 163
DEALLOCATE-HEAP-FIELD 164
DEALLOCATE-STACK-THROUGH 165
DEALLOCATE-VP-SETttt ittt iienn 166
DEPOSIT-NEWS-COORDINATE 167
FE-DEPOSIT-NEWS-COORDINATE, 168
DETACH . . . e e e e e e 169
CDIVIDE e e e e 171
F-DIVIDE i e e i e e e 173
ENUMERATE it it it i i i e et n s 175

O 0 177
F-EQ . o i e e e e 178
S-EQ . i e 179
U-EQ . ot e e e e 180
CEXP o e e e e e e e 182
F-EXP e e e 183
FE-EXTRACT-MULTI-COORDINATE 184
EXTRACT-NEWS-COORDINATE, 185
FE-EXTRACT-NEWS-COORDINATE 186
DEALLOCATE-FFT-SETUP 187
CCFFT . .. it B 188
C-FFT-SETUP i e et e i e e 191
FIELD-VP-SET o ittt e e e e e e e as 193
F-S-FLOAT . . . o it i i e e e e e 194
F-U-FLOAT . . e e e e e 195
F-F-FLOOR . . . i e e e 196
S-FLOOR . . oo e e 197
S-F-FLOOR . . . i e e e e e 199
U-FLOOR . . .o e e e e e e 200
U-F-FLOOR . . . o e 202
FE-FROM-GRAY-CODE i i it ittt 203
U-FROM-GRAY-CODE i i i e e e e 204
F-GE e e 205
S-GE . . e e e e 206
U-GE . . . o e e e e 208
GEOMETRY-AXIS-LENGTH 210
GEOMETRY-AXIS-OFF-CHIP-BITS 211
GEOMETRY-AXIS-OFF-CHIP-POS 212
GEOMETRY-AXIS-ON-CHIP-BITS 213
GEOMETRY-AXIS-ON-CHIP-POS 214
GEOMETRY-AXIS-ORDERING 215
GEOMETRY-AXIS-VP-RATIO0 nn. 216

Contents

GEOMETRY-COORDINATE-LENGTH 217
GEOMETRY-RANK i it it i ettt e 218
GEOMETRY-SEND-ADDRESS-LENGTH 219
GEOMETRY-SERIAL-NUMBER 220
GEOMETRY-TOTAL-PROCESSORS 221
GEOMETRY-TOTAL-VP-RATIO 222
] 223
GET-AREF32 i it i ittt e ittt inaees e 224
GET-FROM-NEWS ittt i e e 226
GET-FROM-POWER-TWOt iiiiinen. 227
GLOBAL-C-ADDttt e it e e e e e 229
GLOBAL-F-ADD i i ittt ittt ittt i e ten e 230
GLOBAL-S-ADD it e e e 231
GLOBAL-U-ADD ittt it s e e et e e 232
GLOBAL-COUNT-BIT ittt it i it i e e 233
GLOBAL-COUNT-CONTEXTt ittt ittt it e 234
GLOBAL-COUNT-flag . . . ¢ . v v v vt it i et e i et et e e e 235
GLOBAL-LOGAND it it it e e e i e e e e e 236
GLOBAL-LOGAND-BIT ittt i it i ee e 237
GLOBAL-LOGAND-CONTEXT ¢ innenn.. 238
GLOBAL-LOGAND-flag 239
GLOBAL-LOGIOR i i e e e e 240
GLOBAL-LOGIOR-BIT i it i it i e i i i 241
GLOBAL-LOGIOR-CONTEXT iin e 242
GLOBAL-LOGIORflago i ittt it e i e e 243
GLOBAL-LOGXOR i i i e s e e et et e 244
GLOBAL-F-MAX i e e e e e e e 245
GLOBAL-S-MAX i e e e 247
GLOBAL-U-MAX ittt it e et e e i 248
GLOBAL-U-MAX-S-INTLEN, 249
GLOBAL-U-MAX-U-INTLEN 251
GLOBAL-F-MIN i i i it e e 253
GLOBAL-S-MIN i i i i e e e e 255
GLOBAL-U-MIN e e e e e e 256
S 257
T 258
L N 260
F-lIEEE-TO-VAX i i i e e e e e e i e s e e 263
L 264
INITIALIZE-RANDOM-GENERATOR, 265
S-INTEGER-LENGTH ittt it iien 266
U-INTEGER-LENGTH e e e e e e e e 267
INTERN-DETAILED-GEOMETRY i it it it it 268
INTERN-GEOMETRY ittt it et it it ee 270
INTERN-IDENTICAL-VP-SET ittt it 272

vi

Contents

INVERT-CONTEXT . .. i i it ittt ettt it eenann 273
INVERTflag i ittt ittt it i i it i iiae e 274
IS-FIELD-AN-ALIAS o it it e i e e 275
IS-FIELD-IN-HEAP e e 276
IS-FIELD-IN-STACK i i i i e e e e e st e e e e e s 277
IS-FIELD-VALID i i it e i i i e e 278
IS-STACK-FIELD-NEWER it ittt i i 279
IS-VP-SET-VALID ittt ittt e 280
1] 281
U-ISQRT .t e e e e e e e 283
LATCH-LEDS i it it ittt ittt e e 285
I 286
T I 287
L 289
O T 291
I 292
LOAD-CONTEXT . .t i ittt ittt it ettt e it e e eeee e 293
LOAD-flag i ittt i i e e e e e 294
B 0 295
[T 0 5 1 e 296
LOGAND . . . i it ittt it i et et e i i i 297
LOGAND-CONTEXT i it i it ittt e ittt e i e e 298
LOGAND-CONTEXT-WITH-TEST 299
LOGAND-flag« i i i ittt it i i 300
LOGANDCL ittt i i it et et e e e 301
LOGANDCZ i i e e et e e e e e e 302
S-LOGCOUNT it e e et i i e 303
U-LOGCOUNT . . . e e e e e et e e et e e 304
LOGEQV . . i i i it e e e e e e 305
LOGIOR i it i it ittt i ei i i e i e .. 306
LOGIOR-CONTEXT i i i it it ettt et e i oo e 307
LOGIOR-flag v v it et e e e 308
LOGNAND e e e e e e 309
LOGNOR e e e e e e 310
LOGNOT i e e et e it et e 311
LOGORCLttt it e e e e e e e e e 312
LOGORC2 . .. i it i e e e e e e 313
LOGXOR . . .t i ittt e e e e e e e 314
I 315
I 316
0 318
MAKE-FIELD-ALIAS i i i e e 321
MAKE-NEWS-COORDINATE, 322
FE-MAKE-NEWS-COORDINATE, 323
C-MATRIX-MULTIPLY ittt e e it e e e e e e 324

vii

Contents

S-MATRIX-MULTIPLY ittt i ittt e et e e 326
F-MAX o e e e e 328
S-MAX L e e e e e e e e 330
U-MAX e e e e e e e 332
| | 334
S-MIN . e e e e e e 336
U-MIN . e e 338
F-MOD e e e e 340
S-MOD . .. e e e e e 342
U-MOD .. e e e e e e 344
C-MOVE e e e e e e 346
F-MOVE ... e e 348
S-MOVE . .. i i e e e e e e 350
U-MOVE . . e e e e e e e e e 352
F-MOVE-DECODED-CONSTANT 0., 354
MOVE-REVERSED it 355
F-MULT-ADD . . o e e 356
I Y - 358
F-MULT-SUBF i e i it e e 360
C-MULTIPLY . . . e e e e e e e e 362
F-MULTIPLY . . . e e e et e s e e e e e e 364
S-MULTIPLY . . . it i i i e e e e e 366
U-MULTIPLY . . e e e e e e e 368
MULTISPREAD-C-ADD ittt i e et e e e e e 370
MULTISPREAD-F-ADD i ittt e e 31
MULTISPREAD-S-ADD ittt 373
MULTISPREAD-U-ADD it 374
MULTISPREAD-COPY i i i 375
MULTISPREAD-LOGAND i ittt i 376
MULTISPREAD-LOGIOR 377
MULTISPREAD-LOGXOR i i i 378
MULTISPREAD-F-MAX i i i 379
MULTISPREAD-S-MAX i 380
MULTISPREAD-U-MAX i it i it e e 381
MULTISPREAD-F-MIN 382
MULTISPREAD-S-MIN i ittt i 383
MULTISPREAD-U-MIN it 384
MY-NEWS-COORDINATE i 385
MY-SEND-ADDRESS ittt i i 386
CNE . . o e e e e e e e e 387
e 388
| 389
U-NE e e 390
C-NEGATE . .. ittt i it it ettt e it et e 392
F-NEGATE it et e et e et et e e 393

viil

Contents

S-NEGATE & vttt ittt ittt e e e e e e e 394
U-NEGATE & o it e et e et e ettt e e e e e e e e 395
F-NEWS-ADD &t i vttt e it ettt et et e 396
F-NEWS-ADD-MULT & o ittt et e et e ettt e et e et et e e 398
F-NEWS-MULT .t it et e et e e e e et e e e et e e e e e e 400
F-NEWS-MULT-ADD . &« o v ot e e e et e et e e e e e e e e e n 402
F-NEWS-MULT-SUB . . o ittt e et et e ettt et e eieeeen 404
F-NEWS-SUB . i it ittt ettt e et ettt e e e 406
F-NEWS-SUB-MULT e e e e e e e e 408
NEXT-STACK-FIELD-ID . . ot ittt ettt e e e et e e e e ee e 410
FE-PACKED-ARRAY-FORMAT it ittt ittt e e e e e 411
F-CPHASE & @ittt it et e e e e e e e e 413
PHYSICAL-VP-SET . . ottt ettt e e et e e e e e e ua 414
C-CPOWER . o ottt et e e e e e e e e 415
C-F-POWER .« . .ottt e 417
C-S-POWER . . ittt e e e e e e 419
C-U-POWER .t it ittt it et e e e e e e e e e 421
F-F-POWER . ottt e e e e e e e e e e e e e e e e e 422
F-S-POWER S 424
F-U-POWER . o ittt e et et e e et e et e e e e e e e e e 426
S-S-POWER . .. ittt e e e e e e e e e 428
S-U-POWER . . ittt ettt e e e e e e 430
U-S-POWER . . ittt e i e e e e e et e e e e e e e 432
U-U-POWER . oottt e e e e e e e e e e e e e e e 434
POWER-UP . . .ttt it et e e e e e e e e 436
F-RANDOM . .ttt et e e e e e e e e e e e e e 437
U-RANDOM . . e e e e e e e e e e e 438
F RANK o ottt i e e e e e e e e e e e 439
S RANK . it e e e 441
U-RANK Lt et e e e e e e e e 443
C-READ-FROM-NEWS-ARRAY . . . ¢t ittt et et e e e e e e 445
"F-READ-FROM-NEWS-ARRAY ittt it e e e 448
S-READ-FROM-NEWS-ARRAY ittt ittt e e e e e 451
U-READ-FROM-NEWS-ARRAY ottt i i e i e e ss e e 454
C-READ-FROM-PROCESSOR sttt it ettt e e e e ns 457
F-READ-FROM-PROCESSOR o v ittt et e et e e e e e e en e 458
S-READ-FROM-PROCESSOR 459
U-READ-FROM-PROCESSOR oo v ittt e oot e e e 460
CRECIPROCAL . . ittt e e et e e e e e e e e e e e e e e, 461
REDUCE-WITH-C-ADD ittt e e e e e e e e e e e 462
REDUCE-WITH-F-ADD ottt e it e e e e e e e e e 463
REDUCE-WITH-S-ADD o it ittt e et et e e e e e 464
REDUCE-WITH-U-ADD it ittt et e e e e e 465
REDUCE-WITH-COPY . . . i ittt it et et e e e e e e e e e 466
REDUCE-WITH-LOGANDttt it e e e e e e e e e 467

Contents

REDUCE-WITH-LOGIOR s v it ittt ettt e it e ee e 468
REDUCE-WITH-LOGXOR .+ & ¢ v it vt v et et ittt it e eee e 469
REDUCE-WITH-F-MAX . . . it ittt et e et e e et e e e 470
REDUCE-WITH-S-MAX . . o v ittt e et e et e e et ee e een 471
REDUCE-WITH-U-MAX ittt it ittt e et e e et e eeeus 472
REDUCE-WITH-F-MIN ottt e e e e e e e 473
REDUCE-WITH-S-MIN . . . o ittt it e et e e e e et e n 474
REDUCE-WITH-U-MINttt it et e et e e e e 475
F-REM o ittt e e e e e e e e e e e e 476
S-REM @ e e e e e e e 478
U-REM .ttt et et et e e e e e e e e e 480
REMOVE-FIELD-ALIAS . . o v ittt i e et e e e e e et e e 482
F-F-ROUND e e e 483
S-ROUND o ottt e e e e e e e e e e e e e e 484
S-F-ROUND .ttt e et e e e e e e e 486
U-ROUND & ot ittt e e e e e e e e e e e e e e e e i 487
U-F-ROUND . e e e e e e e e e e e e e e e e e e i e 489
F-S-SCALE . . ittt e e e e e e e 491
3 1 o Y 1 493
SCAN-WITH-C-ADD . . v it i et e et e e e e e e et e et e e i 495
SCAN-WITH-F-ADD . . . o ittt e e e e e e et e e e e e e e e 497
SCAN-WITH-S-ADD . .« o o vt ettt et e e e e e e e e e e 499
SCAN-WITH-U-ADD . . vttt ettt e et e e e e e e et e 501
SCAN-WITH-COPY . . vt ittt e e e e e e e e e 503
SCAN-WITH-LOGAND . . . ittt et et e et e e e n 505
SCAN-WITH-LOGIOR vttt et e et e et et e e e e 507
SCAN-WITH-LOGXOR . . . ittt i e et e e et e e e ee e 509
SCAN-WITH-F-MAX & oot ittt e e e e e e e e e e e e e 511
SCAN-WITH-S-MAX . . ittt e et e e e e et e e e e e 513
SCAN-WITH-U-MAX . . ittt et e e e e e e e e e 515
SCAN-WITH-F-MINttt et e et e e e e e et e e e 517
SCAN-WITH-S-MIN . . . ittt e e et e e e e et e 519
SCAN-WITH-U-MIN . . . ottt et e e e et e e e et e e e e e 521
SCAN-WITH-F-MULTIPLY . . . i i it et e e e e e e e e e i 523
SEND & vttt e e e e e 525
SEND-ASET32-U-ADD & v vttt e e e e e e e e e e e e e 527
SEND-ASET32-LOGIOR . . v i v vt e et e e e e e e e e e e e e e e 529
SEND-ASET32-OVERWRITE . . & o vt ittt e e et e e e e e e 531
SEND-TO-NEWS . . i ittt et et e et e e et e e e e e 533
SEND-TO-QUEUE32 . . . v i v it it e e e e e e e e e e e e 534
SEND-WITH-C-ADD o ot e e e e e e e e e e e e e 537
SEND-WITH-F-ADD . . .t ittt e e et e e e e e e i 539
SEND-WITH-S-ADD . .« o o ot et e e e e e e e e e e e e e 541
SEND-WITH-U-ADD . . .ttt ittt e e e e e e e e e 543
SEND-WITH-LOGAND . . . o it ittt et et e e e e e e e e 545

Contents

SEND-WITH-LOGIOR . .. o vttt e ittt ie e ie e 547
SEND-WITH-LOGXOR . . o vt vttt ittt et e e eee e e 549
SEND-WITH-F-MAX .o ittt e it e it e it e ie e e 551
SEND-WITH-S-MAX . .ttt ie e ittt ie it ei e 553
SEND-WITH-U-MAX . .t ittt e it ettt e it e e e 555
SEND-WITH-FE-MIN . ..ottt et it ettt e e ee e 557
SEND-WITH-S-MIN\ttt ittt 559
SEND-WITH-U-MINttt it it et e e e 561
SEND-WITH-OVERWRITE\ v it iin e iie i ine e 563

] 25 1 o 565
SET-CONTEXT .+t vttt ettt e ettt et iie e 566
SET-FIELD-ALIAS-VP-SETo ittt ine i 567
SET-SAFETY-MODE . ..ottt ettt it it i e e e e 568
SET-SYSTEM-LEDS-MODEo vet e iee e 569
SET-VP-SET & ittt it ittt e e 570
SET-VP-SET-GEOMETRYot i it ie et 571
SET-Hlag © o vt e e e 572

S-S SHIFT ittt e 573
U-S-SHIFT Lttt e e et e e e et e 575
CCSIGNUM . ottt e e e e e e e e e 577
F-F-SIGNUM . oottt e 578
SF-SIGNUM . .ottt e 579
S-S-SIGNUM . L. e e e e e e e e e e e e e 580
Y | 581
FoSIN o et e 582
CSINH ot e 583
F-SINH e e e e e e 584
SPREAD-FROM-PROCESSOR i i i i 585
SPREAD-WITH-C-ADDot i it ittt et i i e 586
SPREAD-WITH-F-ADD v it iiie e 587
SPREAD-WITH-S-ADD ittt it ie it e 588
SPREAD-WITH-U-ADDottt it it i 589
SPREAD-WITH-COPY ittt it 590
SPREAD-WITH-LOGAND 591
SPREAD-WITH-LOGIORot i ittt e e 592
SPREAD-WITH-LOGXOR\ vttt et i ee e 593
SPREAD-WITH-F-MAX ittt et i i 594
SPREAD-WITH-S-MAX . . .ottt e e it 595
SPREAD-WITH-U-MAXttt ettt 596
SPREAD-WITH-F-MINttt 597
SPREAD-WITH-S-MIN ottt 598
SPREAD-WITH-U-MIN it in et 599
Y 4 600
Y] 1 601
STORE-CONTEXT & o vttt it et te e e e e e e 602

Contents

STORE-flag . .. ¢ v i i ittt ittt ittt ettt et e it e e 603
FE-STRUCTURE-ARRAY-FORMAT it ittt i e e e e ee e 604
F-SUBF-CONST-MULTttt it e et e enn. e 606
F-SUB-MULT & . ittt et et e e e e e e e e e e e e e e e e e e 608
C-SUBTRACT . o ittt et et et e e e e e e e e e e e e e e 610
F-SUBTRACT & it e it e et e e e e e e e e e e e e e e e e e 612
S SUBTRACT vttt it et e e et e e e e e e e 614
U-SUBTRACT ot it e et e e e et e e e et e e e et e e eean 616
S-SUBTRACT-BORROW . . . i it ittt e e et et e e e 618
U-SUBTRACT-BORROW . . .o ittt ettt et e e e e e e e e e e 620
SWAP e e 622
CTAN L e e e e e 623
FoTAN o e e e e e e e e e, 624
C-TANH L e e e 625
F-TANH . e e e e e e e e e 626
TIME . o e e e 627
TIMER . o ot e e e 629
FE-TO-GRAY-CODE . . . vttt ettt e e e e e e e e e e e 632
U-TO-GRAY-CODE & v o it e e et e e e e e e e e e e s e 633
TRANSPOSE32 . & o i vttt e e e e e e e e e e e 634
F-F-TRUNCATE . & o it e 637
S-F-TRUNCATE e e e e e e 638
S-TRUNCATE . .ttt e e e e e e e e e e e e e e e e e e i 639
U-TRUNCATE .t it e e e e e e e e e e e e e e e e e e e 641
U-F-TRUNCATE oo ittt e e e e e e e e e e e e e e e e 643
F-VAX-TO-IEEEt o et e e e e e e e e e e e e e e e e 645
VP-SET-GEOMETRY R 646
WARM-BOOT ..ttt ittt e e e e e e e e e e e e 647
C-WRITE-TO-NEWS-ARRAY oottt et e e e e e e e 648
F-WRITE-TO-NEWS-ARRAYttt e et e e 651
S-WRITE-TO-NEWS-ARRAY . . s vt vttt et et e e e e e e e 655
U-WRITE-TO-NEWS-ARRAY ittt et e e e e et e e 659
C-WRITE-TO-PROCESSOR . . . vttt ot e et e e e e e e e e e e 662
F-WRITE-TO-PROCESSOR . . & o ottt e et e e e e e e e e 663
S-WRITE-TO-PROCESSOR . . . o v ittt e e e e e e e e i, 664
U-WRITE-TO-PROCESSOR . . . v vt ittt et e et et e e e e e e e 665

List of Figures

2.1 65,536 processors ket e et e e e e e e e e

Qusomer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Imternet

Electronic Mail: customer—support@think.com
Usenet

Electronic Mail: ames!think!customer-support
Telephone: (617) 234-4000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer—support@think.com

Please supplement the automatic report with any further pertinent information.

Part1
Paris Concepts

Version 6.0, February 1991

Chapter 1

Introduction

Paris is a low-level instruction set for programming the Connection Machine computer sys-
tem. It is the lowest-level protocol by which the actions of Connection Machine processors
are directed by the front-end computer. Paris is sometimes referred to as a “macroinstruc-
tion set” for the Connection Machine system because it is comparable in power to the
(macro)instruction sets of typical sequential processors such as the vaX, and to distinguish
it from the “microinstruction set” (microcode) that is executed by the Connection Machine
system sequencer and the “nanoinstruction set” that is directly executed by the individual
hardware Connection Machine processors.

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to the
machine-level instruction set of an ordinary computer. Paris supports primitive operations
on signed and unsigned integers and floating-point numbers, as well as message-passing
operations and facilities for transferring data between the Connection Machine processors
and the front-end computer.

The Paris user interface consists of a set of macros, functions, and variables to be called
from user code. The macros and functions direct the actions of the Connection Machine
system by sending macroinstructions to the Connection Machine sequencer, and the vari-
ables allow the user program to find out information about the Connection Machine system
such as the number of processors available.

Several different versions of the user interface are provided: one for the Lisp programming
language, one for C, and one for Fortran. These interfaces are functionally identical; they
differ only in conforming to the syntax and data types of one language or the other.

Chapter 2

Virtual Machine Architecture

An important property of the Connection Machine architecture is scalability. At present, a
single Connection Machine system can have 16,384 or 32,768 or 65,536 physical (hardware)
processors, of which any single user can use a portion containing 8,192 or 16,384 or 32,768
or 65,536 processors. (See figure 2.1 for an illustration of 65,536 processors.) In most cases
the same software can be executed unchanged on Connection Machine systems (or portions)
with different numbers of physical processors; the number of processors affects only the size
of the problem that can be handled.

Paris enhances this scalability by presenting to the user an abstract version of the Con-
nection Machine hardware. The most important feature is the virtual processor facility,
whereby each physical processor is used to simulate some number of virtual processors. A
program can be written assuming any appropriate number of processors (but not fewer than
the number of physical processors); these virtual processors are then mapped onto physical
processors. In this way a program can be executed unchanged on Connection Machine sys-
tems with different numbers of physical processors, even if it requires a certain minimum
number of processors, with an essentially linear trade-off between number of physical pro-
cessors and execution time. (There is a memory trade-off as well: the memory of a physical
processor is divided among the virtual processors it supports.)

" For the remainder of this chapter, when we refer to “the Connection Machine” or “the
machine” we mean that portion of a Connection Machine system to which the user is
attached. For example, if a user is attached to a 16,384 processor portion of a 65,536
processor Connection Machine, the expression “the machine” refers only to the user’s 16,384
processors.

The Connection Machine hardware supports two mechanisms for interprocessor commu-
nication. The more general mechanism is the router, which allows data to be sent from any
processor directly to any other processor; indeed, many processors can send data to many
other processors simultaneously. The less general mechanism is redundant, but optimizes
an important case for speed. It organizes the processors as an n-dimensional grid and al-
lows every processor to send data to its immediate neighbors in the grid. This mechanism
is called the NEWS grid, from the initials of the four directions in a two-dimensional grid:
North, East, West, and South. Using these hardware mechanisms, Paris provides identical
virtual mechanisms within the virtual processor framework.

Chapter 2. Virtual Machine Architecture

Figure 2.1: 65,536 processors

Chapter 2. Virtual Machine Architecture

2.1 Virtual Processors and Virtual Processor Sets

The data parallel programming method associates one processor with each element of a
data set. In the virtual processor abstraction provided by Paris, we associate one virtual
processor, or VP, with each element of a data set. The set of all virtual processors associated
with a data set is called a virtual processor set, or VP set. For example, consider an image-
processing problem that deals with an image of 65,536 pixels, shaped in a 512x 128 rectangle.
Each pixel is an element of the data set that makes up the image. Thus we would write a
program using one VP set of size 65,536: one VP for each pixel.

Because a single problem may be composed of more than one data set, Paris allows for
the simultaneous existence of more than one VP set. For example, a text retrieval program
might wish to deal with articles at some times, and with words in the articles at other times.
This problem is most conveniently modeled with two VP sets, the first corresponding to
the data set of all articles (one VP per article) and the second corresponding to the data
set of all words (one VP per word).

VP sets are created and deleted through function calls to Paris. The size of a VP set (the
number of virtual processors in the VP set) is fixed at the time of the VP set’s creation.

Although multiple VP sets may co-exist, only one VP set may be active at any time.
This VP set is known as the current VP set. All VP sets other than the current VP set are
latent; that is, they can not execute any instructions. We say that Paris operates within
the current VP set. Paris provides a function CM:set-vp-set for setting the current VP set.

2.2 Mapping VP Sets to the Physical Machine

When a Paris program is run, the virtual processors in the user’s program are mapped onto
the machine’s physical processors. The size of the VP set(s) and the size of the physical
machine determine how many virtual processors are assigned to each physical processor. In
effect, each Connection Machine processor and its memory are shared among the virtual
processors they support.

These concepts are further elaborated in the following sections. The time-slicing of the
Connection Machine processors is covered in the section “VP Ratios”; the sharing of physical
memory among virtual processors is covered in the section “Fields.” Communication and
related concepts follow.

2.3 VP Ratios

Let p denote the number of Connection Machine physical processors, and let |X| denote
the number of virtual processors in a VP set X.

For each VP set X, each physical processor is assigned the task of simulating |X|/p
virtual processors. This number |X| /p is called the virtual processor ratio, or VP ratio, of
VP set X. We denote the VP ratio of VP set X as vpr(X). The virtual processor ratio
must always be a power of two.

What exactly does this mean? When the machine is operating within VP set X, each
instruction in the user’s program is executed vpr(X) times by each physical processor, that
is, once for every virtual processor. This is completely transparent to the user. A change of

VP set changes the VP ratio to be that of the newly current VP set; if the program changes
from VP set X to VP set Y, each instruction after that will be executed vpr(Y) times.

This method of assigning virtual processors to physical processors “spreads out” a VP
set as much as possible; the VP ratio for each VP set is as low as possible. The burden of
handling a VP set is shared by the entire physical machine.

As an example, suppose we have two VP sets A and B, where |A| = 64K and |B| =
256K. Suppose we run our program on a Connection Machine system with 64K physical
processors (p = 64K). Then vpr(a) = 64K/64K = 1, and vpr(d) = 256K/64K = 4. When
executing within VP set A, each instruction is executed once by each physical processor.
When executing within VP set B, each instruction is executed four times by each physical
processor.

If the same program were to be run on a Connection Machine system with only 16K
physical processors (p = 16K), then we would have vpr(a) = 64K/16K = 4, and vpr(b) =
256K /16K = 16. When executing within VP set A, each instruction would be executed
four times by each physical processor. When executing within VP set B, each instruction
would be executed 16 times by each physical processor.

This description of “execute once for each virtual processor” applies most accurately to op--
erations such as arithmetic that can take place within each virtual processor independently
of other virtual processors. Operations that perform communication are more complicated,
but the idea is the same: each physical processor performs all necessary execution steps on
behalf of each virtual processor that is to participate in the operation.

As far as the user is concerned, physical processors are hardly visible. Paris is designed
to allow the programmer to think entirely in terms of the virtual processor as the basic unit
of computational power.

2.4 Fields

At the time of its creation, a VP set has no associated memory (except for its flags). This
is the same as saying that no VP in the VP set has any memory, because the memories of
all virtual processors in a VP set are always of the same size and layout. Paris provides
functions to allocate and deallocate memory to a VP set.

Memory is handled in units called fields. Conceptually, a field is simply some number of
consecutive bits. A field can be of any size greater than zero bits. When a field is allocated,
it has an initial size specified by the user. When we speak of allocating a field to a VP set,
we mean allocating a field to each VP in the VP set.

A field is referenced through a field ID. Paris returns a unique field ID for each new field
that is allocated, and all Paris calls that require a reference to a field take a field ID as a
parameter.

How does this abstraction of fields get mapped into physical Connection Machine mem- -
ory? Again, the concept of VP ratios is important. Just as a Connection Machine physical
processor takes responsibility for vpr(X) virtual processors for each VP set X in the user’s
program, those same physical processors (more precisely, their memories) take responsibility
for the fields of those same virtual processors. A single physical memory contains vpr(X)
copies of every field in VP set X, vpr(Y) copies of every field in VP set Y, and so on for
every VP set in the user’s program.

Chapter 2. Virtual Machine Architecture

There are two types of fields: heap fields and stack fields. The distinction between
them has to do with the storage management strategy employed in the physical memory
supporting the virtual processors. Heap fields are the more flexible of the two, but they
also have the higher overhead. Heap fields may be allocated and deallocated in any order.
Allocation of heap fields to VP set X may be freely intermixed with allocations to VP set
Y, and so on. Deallocations need pay no attention to the VP set to which a field belongs,
nor to the order in which other allocations and deallocations were done.

Stack fields may be allocated in any order, without regard to VP set. However, stack
fields must be deallocated in the reverse order in which they were allocated. This rule
applies globally to all fields in all VP sets. Thus, if a program allocates a field f, in VP set
A, and then allocates a field f, in VP set B, and then allocates a field f5 in VP set A, they
must be deallocated in the order f3, f2, fi.

2.5 Processor Addresses

Paris supports two different sorts of addresses for virtual processors: the send address, which
is used for general purpose communication among virtual processors, and the NEWS address,
which describes a VP’s position in the n-dimensional grid used to optimize nearest-neighbor
communication.

A virtual processor has one send address and one NEWs address at all times. Send
addresses and NEWS addresses are specific to a VP set; that is, every VP in a VP set has a
unique send address and a unique NEWs address, but it is possible for a VP in another VP set
to have the same send address or NEws address. Since Paris always operates within a single
VP set, there is normally no ambiguity as to which VP is meant by a given address. For
communication across VP sets, Paris has other means of uniquely identifying the intended
destination VP.

2.6 Send Addresses

Send addresses are used as arguments to Paris communication operations to identify virtual
processors that are to supply or receieve data. The Paris operation CM:my-send-address
allows every VP in a VP set to find out its own send address.

The send address for a VP is composed of two parts, the physical part and the virtual part.
The physical part indicates the location in the CM of the physical processor supporting that
VP. The virtual part indicates which VP in that VP set on that physical processor is being
addressed. The virtual part is in the less significant bits of the send address.

The size (in bits) of a send address for a VP set depends on two things. The physical size
of the machine determines the size of the physical part of the send address. The VP ratio
for the VP set determines the size of the virtual part.

For example, in a 64K = 2'® Connection Machine, the send addresses for VP set Q with
vpr(Q) = 64 = 28 require 22 bits: 16 bits for the physical part, and 6 bits for the virtual
part. In this example, send addresses range from 0 to 222 — 1.

Chapter 2. Virtual Machine Architecture

2120191817161514131211109 8 7 6 56 4 3 2 1 0

SEND ADDRESS PHYSICAL PROCESSOR VP

In this release of Paris, VP ratios must be a power of two. This results in a contiguous
address space for send addresses (that is, there are no “holes”). However, this feature is
likely to change in the future (thereby allowing a VP ratio to be any integer, not just a
power of two). We recommend that no Paris program be written so as to require send
addresses to occupy a contiguous range. In particular, we discourage arithmetic on send
addresses. Paris provides functions for manipulating send addresses in a “safe” manner.
Arithmetic is better done on NEWs addresses; if a total order on all processors is required,
Please note that a NEWS grid may be one-dimensional.

2.7 NEWS Addresses

A NEWS address is an n-tuple of coordinates zg, 21,...,2N_1, which specifies a VP’s position
in an n-dimensional Cartesian-grid geometry. The number of bits required to specify each
coordinate depends on the size of that dimension in the geometry. NEWs addresses are
treated in more detail below when we discuss geometries.

The Paris operation CM: my-news-coordinate-1L allows every VP in a VP set to find out
its own NEWs coordinate along a given axis. Paris also provides functions for producing a
send address from a NEWs address, and vice versa. There are a number of variations on
these functions to handle only specific dimensions. All addresses are interpreted within the
current VP set.

2.8 Communication across VP Sets

Communication across VP sets takes place via the Paris send and get operations and their
variants. These operations each accept only a send address as the indicator of the remote
VP; NEwWs addresses are not allowed. The send address must be of the proper size for the
remote VP set; that is, it must have as many bits as are necessary to specify a send address
in that VP set, which may be different from the number of bits needed to specify a send
address in the current VP set.

We have noted that send addresses are not unique across all VP sets in a program, but
that communication across VP sets is unambiguous anyway. This is because every call to
a Paris send or get operation also takes a field in a remote VP set as an argument. A field
is always associated with exactly one VP set, and this fact allows Paris to determine the
remote VP intended as a send destination or a get source.

2.9 Geometries

A geometry is an abstract description of an n-dimensional grid of elements. It specifies n,
the number of dimensions (also known as the rank of the geometry), and it specifies the
length of each dimension. There are other aspects of a geometry that may be specified by
the Paris user, but we first elaborate on the more basic issues.

Chapter 2. Virtual Machine Architecture

The rank of a geometry is an integer between 1 and 31, inclusive. This is the same as
saying that a geometry can describe anything from a 1-dimensional grid to a 31-dimensional
grid. We number the dimensions of a grid from 0 to the rank minus 1, so we say that a
1-dimensional grid has only dimension 0, a two-dimensional grid has dimensions 0 and 1,
etc.

The size of a dimension must be a power of two. The product of the sizes of all dimensions
of a geometry specifies the total number of elements in the geometry. For example, a three-
dimensional geometry of size 16 x 512 X 2 contains 16,384 elements in all.

Paris provides functions for defining geometries. See section 5.2. A geometry is defined
in the abstract, but it has no use until it is associated with a VP set, via another Paris
function. Associating a geometry with a VP set defines a “shape,” or organization, for the
virtual processors of the VP set.

At the time of a VP set’s creation, it is associated with some geometry. The geometry
specifies the size of the VP set and its conceptual organization in n-space. A VP set is always
associated with exactly one geometry, but it may be associated with different geometries
over time. Paris provides a function for associating a geometry with a VP set (and implicitly
dis-associating the previous one). See section 5.1. In this way, the user can “reshape” a
VP set. The only restriction is that all geometries associated with a VP set be of the same
total size, since a VP set is not allowed to change size. For example, a VP set originally
associated with a 16 x 512 X 2 geometry can later be associated with a 64 x 256 geometry,
since the total number of virtual processors described by both of these geometries is the
same (16,384 in this example).

The NEWSs address of a virtual processor depends completely on the geometry currently
associated with its VP set. Thus, while the send addresses of virtual processors remain
constant for the life of a VP set, the NEws addresses of those same virtual processors can
vary as the geometry is changed. When a VP set has a three-dimensional geometry, NEWS
addresses for that VP set have three coordinates: zq,z;,22. When that VP set changes to
a two-dimensional geometry, NEWs addresses for that VP set have two coordinates: zg, z;.

Given a VP set and given a geometry as we have described it so far (a rank and the size
of each dimension), there are many ways for Paris to assign virtual processors to physical
processors. However, not all mappings will provide equally efficient communication among
the virtual processors of a VP set. Paris allows the user to specify more information than
just rank and size of dimensions when creating a geometry. These additional pieces of
geometry information we call ordering and weight, and we discuss them in more detail
below.

It should be said, however, that the specification of these properties of a geometry af-
fects only the efficiency of inter-VP communication, and therefore the performance of the
program. Choosing suboptimal values will never cause an otherwise correct program to
execute in an erroneous manner. Also, for some problems (those involving little or no com-
munication among virtual processors of a VP set) it does not matter how the user specifies
these properties. Paris provides a function for creating geometries that does not require
specification of ordering or weight information.

Each dimension of a geometry is given an ordering. The ordering of a dimension specifies
how NEWSs coordinates for that dimension are mapped onto physical processors. There are
currently two possible orderings: NEWs ordering and send-address ordering. (There may be

9

Chapter 2. Virtual Machine Architecture

more in the future.) Different dimensions of a geometry may be given different orderings.

The NEWS ordering specifies the embedding of the grid into the physical (hardware) n-
dimensional grid such that processors with adjacent NEWs coordinates are in fact neighbors
within the physical grid. The send-address ordering specifies that if processor A has a
smaller NEWS coordinate than processor B (in the specified dimension), then A also has a
smaller send address than B. Paris functions that provide nearest-neighbor communication
(the CM:get-from-news family of functions, for example) perform best with NEWs ordering.
Send ordering is useful for applications such as Fast Fourier Transform; under the send
ordering, processors that are nearest neighbors within the physical grid have grid coordinates
that differ by various powers of two.

What is the weight of a dimension for? Whenever the VP ratio of a VP set is greater
than 1, some number of virtual processors are co-resident on a physical processor. If these
virtual processors happen to all be in the same dimension of their geometry, communi-
cation among them will be even faster than if they were neighbors in the physical NEWS
grid. Communication among virtual processors assigned to the 16 physical processors on

" a Connection Machine chip is also faster than communication between chips, even if the
processors concerned are neighbors in the physical NEWs grid.

Paris can lay out virtual processors on physical processors in such a way as to take advan-
tage of intra-processor and intra-chip communication, provided the Paris user knows which
dimension(s) of the geometry will sustain the heaviest communication. (By communica-
tion, we mean also operations such as scan and spread). Thus, Paris provides an operation
for creating geometries with an indication (the weight) of which dimension will have the
heaviest communication, which will be second heaviest, etc. Paris then maps the virtual
processors onto the physical processors in such a way as to favor the dimensions with the
heaviest communication.

2.10 Flags

Each Paris virtual processor has an assortment of one-bit flags. These flags are represented
as fields that are specially associated with VP sets. These fields are automatically created
when the VP set is created by CM:allocate-vp-set.

Many Paris operations store into these flags rather than, or in addition to, storing results
into explicitly supplied argument fields. For example, the CM:s-add-2-1L operation adds one
signed integer to another, but also stores information into the carry flag and the overflow
flag.

The entire set of flags for each virtual processor is as follows.

o The contezt-flag indicates which virtual processors are active within the current VP
set. Nearly all Paris operations are conditional; the operation is effectively carried out

only in those processors whose contezt-flag is 1, and processors whose contezt-flag is
0 are unaffected. Some operations are always unconditional.

e The test-flag holds the result of numeric comparisons and other tests, or indicates
which operations failed because of bad operands.

o The carry-flagholds the carry in and carry out for some integer arithmetic operations.
A few operations use the carry-flag as an implicit input.

10

Chapter 2. Virtual Machine Architecture

o The overflow-flag indicates which operations produced results that the destination
field was too small to contain. Many Paris operations can affect the overflow-flag.

11

Chapter 3

Data Formats

A data item always consists of a string of bits having consecutive addresses. Such a bit
string is called a field. The term field is also used to refer to a collection of fields, one for
each virtual processor.

Many Paris operations may be regarded as interpreting bit fields as being of particular
data types or formats. Currently Paris provides operations that regard the contents of bit
fields as structured according to the following data types:

¢ signed integers, represented in two’s-complement format
o unsigned integers, represented in straight binary format

o floating-point numbers, represented in a format close to that specified by IEEE stan-
dard 754 for floating-point arithmetic

o complex floating-point numbers, represented as two floating-point numbers, the real
part and the imaginary part

o send-addresses, which are unsigned integers that label virtual processors for commu-
nication purposes

e NEWS coordinates, which are unsigned integers, tuples of which label virtual processors
within a Cartesian grid for communication purposes

The Connection Machine system allows unusual flexibility in that the hardware does not en-
force any particular length or alignment requirements. Paris supports integers and floating-
point numbers of almost any size. (However, certain sizes of floating-point number allow
particularly efficient execution by the hardware floating-point accelerator, and certain sizes
of integer allow certain other operations to be particularly efficient.)

Most Paris operations operate on fields within a virtual processor, delivering results to
other fields within that virtual processor. Frequently we speak of one data item, but really
mean to speak of many instances of that data item, one for each selected processor, to be
considered or operated on in parallel. For example, when we say that an operation sets
a flag when a field has such-and-so value, we mean that within each processor a separate
decision is made: whether to set that processor’s flag based on the value of the field within
that processor.

13

Chapter 8. Data Formats

3.1 Bit Fields

A bit field is specified by a bit address a and a positive length n; the field consists of the
bits with addresses a through a + n — 1, inclusive. Therefore the address of a field is the
same as that of the lowest-addressed bit.

3.2 Signed Integers

A signed integer is specified in the same way as a simple bit field, by a bit address a and
a positive length n. The signed integer is represented in two’s-complement form, and so
a signed integer of length n can take on values in the range —(2("~1) through 2("*-1) _ 1,
inclusive. The least significant bit has address a, and the most significant (sign) bit has
address a +n — 1.

All arithmetic on signed integers is performed in a strict wraparound mode. As a rule,
if the result of an operation overflows the destination field, the overflow-flag is set, and the
destination receives as many low-order bits of the true result as will fit. For example, using
4-bit signed arithmetic, multiplying 4 by —7 will produce the 4-bit result 4 (and also set the
overflow-flag), because the two’s-complement representation of —28 is ...111111100100, of
which the four low-order bits are 0100, or 4. Signed-integer operations that do not overflow
leave the overflow-flag unchanged.

In order to simplify the Connection Machine microcode, this arbitrary restriction is im-
posed: the length n may not be zero or one. In addition, certain operations on signed
integers cannot handle operands whose length is greater than the value of the variable
CM: *maximum-integer-length*; see section 3.7.

3.3 Unsigned Integers

An unsigned integer is specified in the same way as a simple bit field: by a bit address a
and a positive length n. The unsigned integer is represented in stright binary form, and so
an unsigned integer of length n can take on values in the range 0 through 2" — 1, inclusive.
The least significant bit has address a, and the most significant bit has address a + n — 1.

All arithmetic on unsigned integers is performed in a strict wraparound mode, modulo
2™, As a rule, if the result of an operation overflows the destination field, the overflow-flag
is set, and the destination receives as many low-order bits of the true result as will fit.
For example, using 4-bit unsigned arithmetic, multiplying 4 by 7 will produce the 4-bit
result 12 (and also set the overflow-flag), because the two’s-complement representation of
28 is ...00000011100, of which the four low-order bits are 1100, or 12. Unsigned-integer
operations that do not overflow clear the overflow-flag.

Unsigned integers, unlike signed integers, may be of length zero or one as well as of larger
sizes. (Note that an unsigned integer of length zero is considered to have the value 0.)
However, certain operations on unsigned integers cannot handle operands whose length is
greater than the value of the variable CM:*maximum-integer-length*; see section 3.7.

14

Chapter 3. Data Formats

3.4 Floating-Point Numbers

A floating-point data item is specified by three parameters: a bit address a, a significand
length s, and an exponent length e. The total number of bits in the representation is
s+ e+ 1, and the data item occupies the bits with addresses a through a + s + e, inclusive.

The significand occupies bits a through a + s — 1, with the least significant bit at address
a. A hidden-bit representation is used, and so the significand is normally interpreted as
having a 1-bit as its most significant bit implicitly just above the bit at address a + s — 1.
If the exponent field is all zero-bits, however, then the hidden bit is taken to be 0.

The exponent occupies bits a + s through a 4+ s + e — 1, with the least significant bit at
address a + s. An excess-(2¢~! — 1) representation is used.

The sign bit occupies bit a + s + e, and is 1 for a negative number and 0 for a positive
number. Overall, a sign-magnitude representation is used, so inverting the sign of a floating-
point number merely involves flipping the sign bit. Note that there is both a plus zero and
a minus zero.

When s = 23 and e = 8, this is equivalent to the IEEE standard 754 single-precision
format, which looks like this:

313029282726252423222120191817161514131211109 8 7 6 5§ 4 3 2 1 0

S exponent significand

When s = 52 and e = 11, the Paris floating-point format is equivalent to IEEE standard 754
double-precision format. The IEEE standard single-extended and double-extended formats
can also be accommodated by suitable choices of s and e.

While the Paris floating-point format is equivalent to the IEEE standard format, it must
be emphasized that the Paris implementation does not support equivalent operations at
this time.! “Soft” underflow (using denormalized numbers for the result) is not supported.
Rounding is performed correctly in all cases, using the round-to-nearest mode; the several
rounding modes are not supported. The not-a-number (NAN) values are not supported. The
standard exceptions and flags are not all supported. It is strongly recommended that a user
of Paris always use the IEEE standard formats unless careful analysis of the application
(such as a need for speed or additional exponent range) indicates that another format is
required and adequate.

The format of a floating-point operand must obey certain restrictions. The length s must
be greater than 0 and not greater than CM:*maximum-significand-length*. The length e
must be greater than 1 and not greater than CM:*maximum-exponent-length*. See section
3.7. These restrictions are additionally imposed: e > 2, s > 1, and 2°~! > s + 1. Values for
s and e not satisfying these restrictions will cause unpredictable results.

!Thinking Machines Corporation does intend to support all standard IEEE arithmetic operations in a
future software release.

15

Chapter 3. Data Formaté

3.5 Complex Floating-Point Numbers

A complex floating-point data item is specified by three parameters exactly like those for a
floating-point data item: a bit address a, a significand length s, and an exponent length e.
The data item consists of two consecutive floating-point data items, with the real part at
address a and the imaginary part at address a + s + e + 1. The total number of bits in the
representation is 2(s + e+ 1), and the data item occupies the bits with addresses a through
a+ 2(s+ e) + 1, inclusive.

3.6 Send Addresses

Every virtual processor in a VP set has an identifiying send address, a kind of serial number
that distinguishes it from all other virtual processors in that VP set. These addresses are
used to perform general interprocessor communication. For example, in the CM:send-1L
operation, each virtual processor provides a message and the send address of some other
processor, and that message is sent to the specified processor (all such messages effectively
being sent in parallel).

The number of bits in a send address depends on the VP set, or rather upon the geometry
of that VP set. The function CM:geometry-send-address-length may be used to determine
the length in bits of a send address for a given geometry. Suppose that for geometry G this
function returns m; then a send address a for a virtual processor in a VP set with geometry
G is an unsigned integer such that 0 < a < 2™. (Programs should not, however, rely on
-the fact that every integer k such that 0 < k < 2™ is a valid send address. In a future
release of Paris the space of send addresses may contain “holes”; this could occur when the
total number of virtual processors in the geometry is not a power of two, an extension that
Thinking Machines is contemplating for the future.)

3.7 Configuration Variables

The current configuration of the machine is reflected in a few global variables. Programs may
refer to these so they can adapt to various sizes of machine. These variables are set by the
cold boot procedure. They should never be set by the user, as there are dependencies among
them, which, if violated, will result in errors. Some variables are fixed by the hardware,
while others depend on the arrangement of virtual processors set up by the attach or cold
boot process. Some variables represent implementation restrictions.

CM: *current-vp-set*

The VP set 1D for the current VP set is always available in this variable. For example,
to determine the total number of processors in the current VP set, one might say (in
Lisp syntax)

(CM:geometry-total-processors
(CM:vp-set-geometry CM:*current-vp-setx))

or (in C syntax)

16

Chapter 3. Data Formats

CM_geometry_total_processors(CM_vp_set_geometry(CM_current_vp_set))
or (in Fortran syntax)

CM_GEOMETRY_TOTAL_PROCESSORS (CM_VP_SET_GEOMETRY(CM_CURRENT_VP_SET))

CM: *physical-processors-limit*

The total number of physical processors available for use.

CM: *physical-processors-length*

The base-2 logarithm of the total number of physical processors, that is, the minimum
length in bits for an unsigned integer field that can contain the number of any physical
processor.

CM: *physical-memory-limit*

The amount of physical memory per physical processor, including memory that is set
aside for system use. Note: Also see the dictionary entry for CM:available-memory,
which indicates how much Connection Machine memory is available for user programs.

CM: *physical-memory-length*

The base-2 logarithm of the amount of physical memory per physical processor.

CM: *maximum-integer-length*

Because of implementation restrictions, a few operations on signed and unsigned inte-
gers cannot handle operands longer than the value of CM:*maximum-integer-length#*.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than this variable, but that fact is not
guaranteed in succeeding software releases.

The value of CM:*maximum-integer-length* is never smaller than 128.

CM: *maximum-significand-length*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with significands longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-significand-length#* is never smaller than 96.

CM: *maximum-exponent-length*

Because of implementation restrictions, a few operations on floating-point numbers
cannot handle operands with exponents longer than a certain size.

Experimentation might reveal that in certain cases some of these operations succeed
when applied to operands that are longer than specified by these variables, but that
fact is not guaranteed in succeeding software releases.

The value of CM:*maximum-exponent-length* is never smaller than 32.

17

Chapter 3. Data Formats

CM: *heap-compression-enabled*

When this variable is true (T, 1), automatic heap compression is enabled. See the
dictionary entry for CM:compress-heap for information on explicit heap compression.

CM: *heap-compression-messages-enabled*

This variable determines whether a message is issued when heap compression occurs.

CM: *max-number-of-timers*

This represents the maximum number of timers that can be allocated by any one
program using the CM:timer- functions.

CM: *no-field*

The value of this variable is a dummy field 1D suitable for use as an argument to
CM:send-1L and related instructions to indicate that no notify field is to be used, or
to CM:scan-with-... operations to indicate an unused sbit argument when the smode
argument is :none.

18

Chapter 4

Operation Formats

Paris operations are executed at the direction of a program running in the front-end machine.
For each operation there is a function or macro that, when called, causes the Connection
Machine hardware to perform the operation.

4.1 Field Id’s

Most Paris operations operate on bit fields in the memories of the data processors. A bit
field is specified by a field id, a data object that serves to identify the field. A Paris operation
that allocates memory for a new field will generate and return a new field id; this field id
may then be used as an argument to other Paris operations.

For example, in Lisp one might create a new heap field and then unconditionally initialize
its contents to 5.0 in the following manner:

(let ((£f1d (CM:allocate-heap-field 32))) ;Allocate
(CM:f-move-const-always-1L f1d 5.0 23 8) ;Initialize
ced)

In C the same operation would look like this:

{

CM_field_id_t fld = CM_allocate_heap_field(32); /* Allocate */
CM_f_move_const_always_1L(fld, 5.0, 23, 8); /* Initialize */

}

And in Fortran:

C Declare the variable
INTEGER FLD

C Allocate and initialize
FLD = CM_ALLOCATE_HEAP_FIELD(32)
CM_F_MOVE_CONST_ALWAYS_1L(FLD, 5.0, 23, 8)

19

Chapter 4. Operation Formats

4.2 Constant Operands

Certain operations accept as an operand a single datum computed within the front end
that is broadcast to all of the Connection Machine processors as part of the operation.
Such operations have -constant in their names (or -const, in the case of certain compound
operations). As a rule, every operation with -constant in its name has a counterpart without
-constant in its name.

For example, to CM:f-add-constant-2-1L there corresponds CM:f-add-2-1L. These opera-
tions do exactly the same thing except that the first two operands to CM:f-add-2-1L are
field id’s for fields containing floating-point numbers, whereas CM:f-add-constant-2-1L takes
a field id and a front-end floating-point number. This latter value is broadcast to all (active)
processors and then used in the same way that a second field would be used by CM:f-add-
2-1L. Here are examples of their use in Lisp:

(CM:f-add-2-1L x y 23 8) ;Add field y into field x
(CM:f-add-constant-2-1L x 2.7 23 8) ;Add 2.7 into field x

The same examples in C:

CM_f_add_2_1L(x, y, 23, 8); /* Add field y into field x */
CM_f_add_constant_2_1L(x, 2.7, 23, 8); /% Add 2.7 into field x */

The same examples in Fortran:

C Add field y into field x
CM_F_ADD_2_iL(X, Y, 23, 8)

C Add 2.7 into field x
CM_F_ADD_CONSTANT_2_1iL(X, 2.7, 23, 8)

4.3 Unconditional Operations

Most Paris operations are conditional: they take place only in processors that have a 1 in
the contezt-flag. But sometimes it is necessary to perform operations unconditionally (that
is, without respect to the contezt-flag). A number of Paris operations have unconditional
versions, generally named by inserting -always in the name of the conditional function. For
example, CM:s-move-always-1L is the unconditional equivalent of CM:s-move-1L.

Paris operations that deal directly with the contezt-flag are inherently unconditional. For
the sake of brevity, the names of these operations do not contain -always. Any Paris opera-
tion that has -context in its name deals with the contezt-flag and is implicitly unconditional
despite the fact that -always does not also appear in its name. One example is CM:set-
context.

A few other Paris operations also have only unconditional forms but do not have names
containing -always. These are typically specialized communications operations whose names
are already so long that inserting -always would exceed the limit on the length of a name.
One example is CM: u-read-from-news-array-1L.

20

Chapter 4. Operation Formats

4.4 Naming Conventions

Lisp, C, and Fortran impose different sets of rules and conventions on how functions and
variables are to be named. The description of Paris in this document strikes a compromise
among these languages. All names in this document are presented in Lisp syntax, but
carefully observing capitalization, to which C is sensitive even though Fortran and Lisp are
not. The Paris Dictionary contains a simple set of rules for converting a Lisp name into the
corresponding C or Fortran name.

The rest of this section describes the general rules that were used to achieve a regular
naming system for Paris operations. It is not necessary to know these rules to use Paris, but
a passing familiarity may help you to remember an exact operation name without having
to look it up, or to recognize the argument format from the operation name.

The name of every Paris operation is limited to 32 characters and begins with CM: (in
Lisp) or CM_ (in C and Fortran). It also contains one or more words that are the “main
description” of the operation, such as add or send or read-from-news-array.

Between the leading CM: or CM._ and the main operation may be one or more prefixes. The
prefix fe- indicates an operation performed entirely on the front end (often such an operation
has a parallel counterpart without the fe- prefix). Examples of this correspondence are
CM:extract-news-coordinate and CM:fe-extract-news-coordinate. If an fe- prefix is present, it
appears before all other prefixes.

Other prefixes indicate the type of data to be operated upon:

c- complex number

f- floating-point number
s- signed integer

u- unsigned integer

For example, CM:f-add-2-1L adds floating-point numbers, whereas CM:s-add-2-1L add signed
integers.

If there is more than one type prefix, then the first type applies to the result of the
operation, and the other(s) apply to certain source operands, usually the last one(s). For
example, CM:s-f-truncate-2-2L produces a signed integer result from a floating-point source.

Some operations include in their names the name of another operation. In this case the
embedded operation may have a type prefix. An example is CM:spread-with-f-add-1L. (The
name of such an embedded operation is usually preceded by with-, but exceptions occur
when this would make names too long, as in CM: multispread-f-multiply-1L, an operation that
is not yet implemented but may be in the future.)

There are four groups of suffizes for operation names: -constant, -always, number of fields,
and number of lengths. They always appear (if at all) in this order.

A number-of-fields suffix is simply a digit (preceded by a hyphen or underscore), such as -3.
It tells how many source and destination arguments an instruction requires. The destination
arguments are fields; the source arguements are fields, or in some cases constants. In many
cases there are sets of similar operations differing primarily in their argument format. For
example, CM:f-multiply-3-1L takes three fields and stores the floating-point product of the
second and third fields into the first field, whereas CM:f-multiply-2-1L takes only two fields,
and stores their product back into the first field (thereby overwriting one source value).

21

Chapter 4. Operation Formats

These two formats are distinguished by a suffix indicating the number of arguments that
are fields (in this case -3 or -2). As a rule, this suffix is supplied only if it is necessary to
distinguish two or more possible formats. (Note that “field-like” arguments, such as the
constant used in place of a field in CM:f-multiply-constant-2-1L, are included in the number-
of-fields count.)

A number-of-lengths suffix is simply a digit (preceded by a hyphen or underscore) followed
by a capital L, such as -3L. This suffix indicates how many length arguments are required.
Such arguments indicate the lengths of field arguments. For example, CM:s-add-3-3L takes
three field arguments followed by three corresponding length arguments; but CM:s-add-3-
1L takes three field arguments and a single length argument that describes the length of all
three fields. Note that the format of a floating-point field is described by two arguments
(significand length and exponent length), but these two arguments are lumped together and
counted as a single length. As a rule this suffix always appears in the name of any operation
that takes one or more field length arguments.

To summarize, the name of a Paris operation is more or less of this form:

CM:[fe-]{f- | s- | u-}*(main name)[(embedded name)][-constant][-always][-m][-nL]
An effort has been made to use full English words in the names of Paris operations. The

32-character limitation on the total length of names has made it necessary to use certain
abbreviations universally:

c- complex floating-point
divinto divide into

fe- front end

f- floating-point
max maximum

min minimum

mod modulo

rem remainder

s- signed integer
subfrom subtract from

u- unsigned integer

Some of these are standard abbreviations, of course, used in many programming languages.
Paris also uses standard abbreviated names for mathematical operations (tan for the tangent
function, for example).

Paris uses certain additional abbreviations in the names of compound operations:

mult multiply
const constant
sub subtract
a always

An example is CM:f-mult-const-sub-const-a-1L.

22

Chapter 4.

Operation Formats

4.5 Argument Order

An attempt has been made to keep argument order consistent. The following rules of thumb
apply.
Arguments that are fields come first. If there is a destination field it always comes first.
Length fields usually come last. They appear in the same order as the fields to which they
apply, but if both integer and floating-point fields appear then the floating-point length ar-
guments appear last. For some complex communication operations, such as scan operations,
certain control arguments follow the lengths.

23

Chapter 5

Instruction Set Overview

This chapter provides a quick guided tour of the entire Paris instruction set, organized by
categories of functionally related operations. The names of the operations are presented
in the form of charts that bring out the combinatorial structure of the instruction set.
Alternatives are stacked vertically between braces, and the symbol ~ indicates a choice
that adds no characters to the operation name.

The next chapter, the Paris Dictionary, is organized alphabetically by operation name,
and provides detailed descriptions of all the operations.

5.1 VP Sets

[allocate-vp-set
deallocate-vp-set
physical-vp-set
CM: { is-vp-set-valid >
set-vp-set
set-vp-set-geometry
| vp-set-geometry

These operations create, destroy, and otherwise manipulate VP sets.

The operation CM:allocate-vp-set creates a new VP set having a specified geometry (which
must be created first). The operation CM:deallocate-vp-set may be used to inform the Paris
interface that the user program will not use a VP set any longer.

Of particular importance is CM:set-vp-set, which selects a given VP set as the current VP
set.

Given a VP set, the operation CM:vp-set-geometry returns the geometry associated with
that VP set.

25

Chapter 5. Instruction Set Overview

5.2 Geometries

 create-detailed-geometry
create-geometry
deallocate-geometry
geometry-axis-length
geometry-axis-off-chip-bits
geometry-axis-off-chip-pos
geometry-axis-on-chip-bits
CM: { geometry-axis-on-chip-pos }
geometry-axis-ordering
geometry-axis-vp-ratio
geometry-coordinate-length
geometry-rank
geometry-send-address-length
geometry-total-processors

| geometry-total-vp-ratio

These operations create, destroy, and otherwise manipulate geometries. Note the many
operations that inquire about the shape of the geometry and various axis attributes.

5.3 Interned Geometries and vp Sets

Paris supports a special class of geometry and VP set objects: interned objects. The intern-
ing facility is especially useful to compiler writers because interned objects may be accessed
by description rather than by ID and are automatically reused as needed.

intern-geometry
CM: { intern-detailed-geometry
intern-identical-vp-set

These operations create interned geometries and VP sets.

Note that interned geometries and vP sets are substantively different kinds of objects from
their uninterned couterparts. For instance, a geometry created with CM:create-geometry is
never interchangeable with a geometry created with CM:intern-geometry.

26

Chapter 5. Instruction Set Overview

5.4 Fields

(add-offset-to-field-id)
allocate-heap-field
allocate-heap-field-vp-set
allocate-stack-field
allocate-stack-field-vp-set
deallocate-heap-field

CM: (deallocate-stack-through
field-vp-set
is-field-in-heap
is-field-in-stack
is-field-valid
is-stack-field-newer
| next-stack-field-id

v~

These operations create, destroy, and otherwise manipulate fields. Fields are used to contain
data to be operated upon in parallel. Most Paris operations require one or more fields as
arguments.

CM:available-memory

This instruction indicates the number of bits of memory, per virtual processor, currently
available for allocation on either the heap or stack.

CM: compress-heap

Automatic heap compression is enabled by default. Programmers can control heap com-
pression explicitly by setting the configuration variable CM: ¥*heap-compression-enabled* to
NIL (false, 0) and then calling the above instruction to control fragmentation.

5.5 Copying Fields

A number of operations are provided simply to copy data from one place to another.

s- -2L
CM: o move ~ ~
f- -constant -1L
-always
c- -zero

The two-length versions of the move operations allow for sign-extension (or truncation) of
signed integers, zero-extension (or truncation) of unsigned integers, and changes of range
or precision for floating-point numbers.

27

Chapter 5. Instruction Set Overview

(

\

~y
move-reversed
-always

CM: ¢ > -1L
swap {-always} -2

The move-reversed operation reverses the order of the bits in a field as it copies them. The
swap operation exchanges the contents of two fields.

CM:cross-vp-move{ ~ }-IL
-always

The cross-vp-move instruction copies all or a portion of one multidimensional block of data
from the current VP set into a similarly shaped region in another VP set.

5.6 Field Aliasing

change-field-alias
is-field-an-alias

CM: { make-field-alias
remove-field-alias
set-field-alias-vp-set

These operations create, destroy, and manipulate field aliases. A field aliasis a field 1D that
references a field already referenced by at least one other field ip. By using field aliases, it

is possible to reference the same Connection Machine memory field from within different
VP sets.

5.7 Bitwise Boolean Operations

(logand)
logior
logxor
logeqv ~
lognand -constant -2-1L
lognor (-always { -3-1L }
logandcl | | -const-always
logandc2
logorel

Llogorc2)

28

-1-1L
CM:lognot {-2-1L}

Paris provides all ten non-trivial bitwise boolean operations on two operands, as well as the
logical NOT operation that inverts all bits.

5.8 Operations on Flags
Special operations are provided for operating on the flags.

(load-)
store-
clear-
set-
invert- test

CM: 4 logand- ${overflow}
logior-
global-logand-
global-logior-

(global-count-

Flags can be loaded from or stored into another field; cleared to zero or set to one; inverted;
or combined with another field via logical AND or OR. One may also determine whether any
processor, or all processors, have a flag set, or count the number of processors that have a
flag set.

CM:cIear—aIl—flags{ ~ }
-always

For convenience, a special compound operation is provided for clearing all the flags except
the context.

[(load-) W
store-

clear-

set-

invert-

CM: < < logand-

logior-
global-logand-
global-logior-

| global-count-)

> context >

| logand-context-with-test |

The context flag is distinguished from the others, in that operations on the context flag
are always unconditional, while most operations on the other flags are conditional (that is,

29

Chapter 5. Instruction Set Overview

depend on the state of the context flag).

5.9 Operations on Single Bits
Each of the following operations takes exactly one one-bit field as its operand.

clear-

set-
CM: (global-logand- bit{ }
. -always
global-logior-
global-count-

These operations on single-bit fields are provided purely for the sake of efficiency. For
example,

CM:clear-bit =z
has the same effect as
CM:u-move-constant-1L 2,0, 1

but requires only one operand to be processed instead of three. Paris also provides uncon-
ditional forms of all these operations.

5.10 Unary Arithmetic Operations

Paris supports most of the unary arithmetic operations one might expect to find in a
- computer instruction set, as well as a number that are unusual. Most of them are provided in
both one-operand and two-operand formats. The one-operand format treats the destination
field as also the source operand; the result replaces the input. The two-operand format has
a separate source operand, and ignores the previous contents of the destination field. (As a
rule, the two-operand format operates correctly if the two operands are the same field, but
may be slower than using the one-operand format.)
For signed and unsigned integers there are negation and integer square root. Absolute value
and signum are provided for signed operands only, as these operations are degenerate in the
unsigned case.

s- negate
u- | |isqrt -1l
CM: -2-1L

. abs 291

s-signum

The integer-length operation is a modified base-2 logarithm, useful for determining the
minimum number of bits required to represent an integer in signed or unsigned form. The
logcount operation counts the number of 1-bits in a binary representation (or, in the signed
case, it counts the bits that differ from the sign bit).

30

Chapter 5. Instruction Set Overview

CM: {s- } {mteger—length} 2ol
u- [| logcount
A shift instruction performs an arithmetic shift by a specified number of bit positions. Paris
supports shifts on either signed or unsigned source fields.

s] -2
CM: {u} -s-shift {-constant-3} -2L

Operations are provided for converting to and from a Gray code representation of binary

integers.
from -1-1L
CM:u- {to } -gray-code {-Z-IL}

These Paris instructions support converting floating-point numbers between the IEEE
format used in the Connection Machine system and vaXx floating-point format.

CM:f- {leee-to-.vax} AL
vax-to-leee

Some unary operations take a floating-point operand and produce an integer result, or vice
versa. The float operations convert an integer to a floating-point representation. There are
several different ways to convert a floating-point number to an integer, reflecting different
possible choices for rounding or truncation; floor and truncate provide two such cases.

(f {s' } float ‘
u-

CM: {ﬂoor } {221}
s- f-

truncate

\ J

Floating-point and complex absolute value, negation, and square root are provided.
abs
c- -1-1L
CM: {f.} negate {-Z-IL}
sqrt

Floating-point floor, ceiling, truncation, rounding, and signum operations are available.

31

Chapter 5. Instruction Set Overview

f-floor
f-ceiling 1L
CM:f- { f-truncate {-- }
-2-1L
f-round
f-signum

Complex signum, conjugate, and reciprocal operations are provided.

c-sighum
CM:c- { c-conjugate {1 1L}

. -2-1L
c-reciprocal

These two unary operations on complex operands yield floating-point destination values.
One calculates the absolute value and the other calculates the phase of each complex source

value.
CM:f-c-{abs } -2-1L
phase

For both floating-point and complex numbers, Paris provides a complete set of transcen-
dental and trigonometric functions, including hyperbolic functions and their inverses.

-exp
-In

(-sin)

-cos
CM: {i}ﬁ {N}< -tan L{:;Zi::}
-a|] -sinh
-cosh
| -tanh |

~~

In addition, the cis instruction is available. It yields a complex field in which the real part
is the cosine of the floating-point source and the imaginary part is the sine of the source.

CM:c-f-cis-2-1L

5.11 Binary Arithmetic Operations

Paris includes most of the binary arithmetic operations one might expect to find in a com-
puter instruction set, as well as a number that are unusual. Most of them are provided

32

Chapter 5. Instruction Set Overview

in both two-operand and three-operand formats. The two-operand format treats the desti-
nation field as also one of source operands; the result replaces the first input. The three-
operand format has two separate source operands, and ignores the previous contents of the
destination field. (As a rule, the three-operand format operates correctly if the destination
field is the same as one or both source fields, but may be slower than using a two-operand
format.)

For signed and unsigned integers, the usual addition, subtraction, and multiplication
operations are provided, as well as max and min operations that store the larger or smaller
of the two inputs.

There is no single integer division operation; four are provided by the signed and un-
signed round and truncate instructions, whose names reflect the rounding or truncation that
must occur when integer division is not exact. Conceptually there are four corresponding
remainder operations, but only the two most commonly used are provided in Paris: rem,
which corresponds to truncate division; and mod, which corresponds to floor division.

(-add)
-subtract
-multiply | (3.3

-max
cM: 5 4 cmin \ ~ -2-1L
u -constant -3-1L
-floor

-ceiling
-truncate
| -round

/

s {2 I H om0

Subtraction is not commutative, and so for efficiency the special case of reverse subtraction
is provided. (Division is not commutative, either, but is a sufficiently expensive operation
that the relative cost of a separate instruction to copy a constant into a temporary field
first is small. Paris therefore does not provide integer reverse division operations.)

-2-1L

s -2-1L
CM: {u} -subfrom { -constant {-3-1L}

Paris allows addition and subtraction on integers hundreds of bits long; but in case that is
not enough, the usual add-carry and subtract-borrow operations, which use the carry flag as
an implicit input, are provided to allow efficient programming of very high precision integer
arithmetic. Since the add-carry and subtract-borrow instructions take the carry-flag as
input as well as setting it upon completion, these instructions can be chained. (The one
exception to this rule are the -add-carry-3-3L instructions, which do not set the carry-flag

33

Chapter 5. Instruction Set Overview

because it is unclear what carry means in the 3L case.)

dd -3-3L
cm: { & L jaad-carny 211
u- [| subtract-borrow 3L

The add-flags operation performs an addition and sets the flags but stores no sum. This is
useful in a few specialized situations, such as CORDIC-type calculations.

CM: {:-_} add-flags-2-1L

For floating-point and complex numbers, the usual addition, subtraction, multiplication,
and division operations are provided. Note that there are unconditional versions of these
operations in Paris; these can be much faster than the conditional versions when floating-
point hardware is used.

add ~
¢- |] subtract | | -constant -2-1L
CM: .
f- multiply [| -always -3-1L
divide -const-always

For floating-point numbers, max and min operations are provided, along with floating-point
remainder and modulo division operations, and a floating-point exponentiation instruction.

-max
-min
~ -2-1L
CM:f { -mod {-constant} {-3-1L}
-rem
-f-power

Subtraction and division are not commutative, and so for efficiency special cases of reverse
subtraction and reverse division are provided for floating-point and complex floating-point
operands. (Unlike the integer case, floating-point division is sufficiently fast and sufficiently
common that these special cases are worthwhile.)

34

Chapter 5. Instruction Set Overview

{CM:C-} {subfmm} }-a@ays} 21

CM:f- divinto -constant -2-1L
' -const-always { | -3-1L

Other useful floating-point operations include scaling, as well as exponentiating to an integer
power.

-2-2L

¢)-s |)-power| |-3-2L
CM'f{-u}{-scale } -constant-2-1L

-constant-3-1L

Paris supports integer exponentiation instructions for both signed and unsigned operands.

-power-3-3L
-power-constant-2-1L
cm: {54 L
u -u -power-constant-3 Il

Exponentiation of complex number is supported for powers of any data type.

c- -2-1L
f- -3-1L
CM:c- power
s- -constant-2-1L
u- -constant-3-1L

The exp operations calculate e® for complex operands and 2* for floating-point operands,
where s is the value of the source field and e is the base of the natural logarithms.

c -1-1L
CM: {f} -exp {-2-1L}

Instructions are provided that calculate the base 2 or base 10 logarithm of a floating-point
source field or the natural logarithm of a complex source field.

35

Chapter 5. Instruction Set Overview

f-log2
f-logl0
c-In

CM:

-1-1L
-2-1L

A two-input arctangent operation is provided.

CM:f-atan2-3-1L

5.12 Optimized Floating-Point Computations

Paris supports compound floating-point operations that are functionally identical to se-
quences of simpler floating-point operations. The compound operations are provided purely
for the sake of efficiency; they can be implemented so to exploit floating-point hardware
more cleverly.

These compound operations perform calculations of the following forms: za + b, za — b,
(z + a)b, and (z — a)b, where z is always a field in memory, and a and b may each be either
a field or a constant.

¢ \

-add
-cons _subf -cons
CM:f ¢ -add > < -always 3 1L
~ ~ -a
-sub {- nst} -mult {-const}
-subf co

Note: Where using the term -always in an unconditional instruction name would cause the
name to exceed the 32 character limit for Paris instruction names, the implementation uses
the term -a instead. In the above chart, this is the case only for instructions that contain
const twice. An example is CM:f-sub-const-mult-const-a-1L.

These compound instructions combine floating-point multiplication with reverse subtraction
in a variety of ways. The unconditional versions may be faster than the conditional versions.
(Note that the name CM:subf-const-mult-const-a-1L uses -a instead of -always in order to stay
within the 32-character Paris operation name length limit.)
-mult-subf
-mult-const-subf { }{ } -1L
-const | | -always
-subf-const-mult

CM:f

36

Chapter 5. Instruction Set Qverview

5.13 Arithmetic Comparisons

Paris supports the usual six comparison operations =, #, <, <, >, and > for integers and
floating-point numbers. Each is available in three forms: compare two fields, compare a
field to a constant, and compare a field to zero. The integer operations also allow integer
fields of differing length to be compared.

-¢q 2L

CM: {Z}ﬂ_‘t > -constant) -1L
-zero

eq

ne
~

CM:m“'—<Ie % { -constant } -1L

gt
\8€)

-Z€ero

CM:c-{eq} -constant } -1L
ne
-Zero

5.14 Pseudo-Random Number Generation

Paris provides a built-in generator of uniformly distributed pseudo-random numbers. Use
these instructions to generate unsigned integers over a specified range, or floating-point
numbers in the range from 0.0 (inclusive) to 1.0 (exclusive).

CM: {:} random -1L

CM:initialize-random-generator

37

Chapter 5. Instruction Set Overview

5.15 Arrays

Often it is convenient to treat a large field as an array of smaller fields. These operations
allow each virtual processor to index independently into its own array.

\

(aref

aref32 {-shared} {-always}
CM: < y -2L

aset

\aset32 {-shared}

Three kinds of arrays are supported. An ordinary array is laid out in memory exactly as
one would expect: each processor contains its own array elements, concatenated end-to-end
to form one large field.

A slicewise array is laid out in such a way that an array element logically belonging to
one processor is actually stored in memory belonging to 32 processors. The total amount of
memory involved is the same, of course, but because the data is laid out in this peculiar man-
ner ordinary Paris operations (such as CM:f-add-2-1L, for example) cannot properly operate
on slicewise array elements directly. Only special operations designed to operate on slicewise
arrays can properly fetch or store slicewise array elements. Examples are CM:aref32-2L and
CM:aset32-2L. These special operations are much faster than the corresponding operations
on ordinary arrays.

A shared array is shared among all the virtual processors occupying a group of 32 physical
processors. This can save a great deal of memory, and is useful for lookup tables that are
the same for all processors. Of course, care is required when storing into such arrays. In
principle this sharing concept could be supported in both ordinary and fast versions, but
in fact Paris provides special operations only for fast shared arrays.

Paris also provides, for efficiency, certain compound operations that combine communi-
cation with access to a fast array.

5.16 General Communication

The router functions (send and get) transmit data in a general fashion that allows any
processor to communicate directly with any other processor.

38

Chapter 5. Instruction Set Overview

(-overwrite
-logand
-logior
-logxor
CM:send { -with { -c-add > 2 -1L
-s- | [add
-u- }¢ min
-f- max

-overwrite
-logior

CM:send-aset32 o add

-2L

CM:send-to-queue32-1L

-1L
CM:get {-aref32—2L }

CM:my-send-address

Every processor within a VP set is identified by an unsigned binary integer called its send-
address. If processor A is to send a message M to processor B, then procesor A must contain
the send-address of processor B as well as the data M to be sent.

For efficiency, Paris includes compound operations that combine general communication
with a fast array reference (aref32 or aset32) within the addressed processor.

5.17 NEWS Communication

The NEWs functions (send-to-news and get-from-news) organize the processors into a
multidimensional rectangular grid, and transmit data from every processor to its neighbor
along a specified grid axis. The NEWs operations are considerably more efficient, when
applicable, than using the general router mechanism.

The following operations copy data from each processor to the adjacent processor along
any NEWS axis.

39

Chapter 5. Instruction Set Overview

M: get-from- news ~ -1L
send-to- -always

The instructions in the chart below all work with NEws coordinates.

my-news-coordinate
extract-news-coordinate
CM: { deposit-news-coordinate -1L
deposit-news-constant
make-news-coordinate

The operation my-news-coordinate stores the NEWs coordinate of each selected processor
along a specified NEWS axis into a destination field within that processor.

The operation eztract-news-coordinate defines the mapping between send-addresses and
NEWSs coordinates. If g is a geometry, a is an axis number, and s is a send-address, then
eztract-news-coordinate(g, a, s) is the coordinate within geometry g of processor s along the
NEWS axis described by a.

A related operation, deposit-news-coordinate, may be used to construct a send-address
given a set of coordinates by incrementally modifying a send-address one coordinate at a
time. If g is a geometry, s is a send-address (for a processor in that geometry), a is an axis
number, and c is a coordinate along that axis, then deposit-news-coordinate(g, s, a,c) is a
new send address s’ such that

c, ifa=a

ztract-news-coordinat !,8') = . .
€ news-coordinate(g, a’, s') eztract-news-coordinate(g, a’,s), ifa' #a

In other words, deposit-news-coordinate(g, s,a,c) computes a new send-address that has
exactly the same NEWS coordinates as s ezcept for the coordinate on axis a, which is altered
to be c.

Another related operation, make-news-coordinate, constructs, within each selected pro-
cessor, the send-address of a processor that has a specified coordinate along a specified
NEWS axis, with all other coordinates zero. If g is a geometry, a is an axis number, and
c is a coordinate along a, then make-news-coordinate(g, a,c) is s, the send-address of the
processor with coordinate ¢ along the NEWs axis a within geometry g and with all other

coordinates held at zero. Thus, given a set of zero coordinates of rank(g), s/,

make-news-coordinate(g, a, c) = deposit-news-coordinate(g,s’,a,c) = s

In other words, make-news-coordinate is the same as deposit-new-coordinate except that it
does not need a send-address operand.

The following routines define the relationship between a processor whose send-address is
k and its neighbors in a NEWS grid.

function news-neighbor(g, k, azis, direction) is
return news-relative(g, k, azis, direction, 1)

40

Chapter 5. Instruction Set Overview

function news-relative(g, k, azis, direction, distance) is
case direction of
:upward : let z = (eztract-news-coordinate(g, azis, k) + distance)
:downward : let 2 = (eztract-news-coordinate(g, azis, k) — distance)
let 2’ = z mod geometry-azis-length(g, azis)
return deposit-news-coordinate(g, k, azis,z')

5.18 Power of Two NEWS

One special-purpose instruction performs near-neighbor communication between processors
that are separated by a particular distance. That distance must be a power of two, measured
in intervening processors and inclusive of the source processor.

CM:get-from-power—two{ ~ }-IL
-always

5.19 NEWS with Floating-Point Combiners

A series of special-case combining operations that use NEWs communication are supported.
These instructions calculate a form of binary addition, subtraction, and multiplication in
which one operand is retrieved from a NEWs neighbor of the destination field.

-add N 21l
-sub -always [] -3-1L
-mult alway
-add-const ~

{-sub-const } {-a} 3L

CM:f—news<{ ~ } -mult-4-1L

\

v~

-const

-mult-const {:} -4-1L
~ -add
-mult {-const} {-sub} -4-1L

\ J

41

Chapter 5. Instruction Set Quverview

R

5.20 Scan, Reduce, Spread, and Multispread

The spread-from-processor operation provides a simple way to take the value found in one
processor and replicate it throughout the machine.

"~

CM:spread-from-processor- {a } 1L

Extending this idea, the following operations provide extremely powerful combinations
of communication and computation in regular patterns on multidimensional grids.

-copy]
-logand
scan-with -logior
reduce-with | | -logxor
CM: spread-with <-c-add T“‘
multispread -s- | [add
-u- }< min
L -f-) | max]}

CM:scan-with-f-multiply -1L

CM:enumerate -1L

In a scan operation, every selected processor receives the result of combining source fields
from many processors. The reduce and spread operations are special cases of scans that
are particularly useful and can be made especially fast. The multispread and enumerate
operations generalize the spread operations.

A scan operation requires that-a NEWs axis be specified. The processors are thereby
divided into disjoint ordered sets of processors called scan classes. Two processors belong
to the same scan class if their NEWS coordinates differ only along one axis, and they are
ordered by their coordinates along that axis. Only active processors participate in a scan
operation; all scan and scan-like operations are conditional. The set of active processors
along a NEWs axis is called the scan subclass.

The scan result computed for a given processor may be produced by combining values from
all processors within a scan subclass. That is, all active processors along a specified axis may
contribute to the result for each processor along that axis. However — and more usefully - a
scan subclass may be divided into pieces called scan sets, such that each processor belongs
to just one scan set.

The scan set chosen for each processor is controlled by the smode operand and by the
purpose it assigns to the sbit operand.

o If smode is :segment-bit, then the sbit field is interpreted as a “segment bit.”

42

Chapter 5. Instruction Set Overview

The segment bit divides a scan class unconditionally (that is, without respect to
context) into segments, and a separate scan operation is done within each segment.
Operationally speaking, a processor (active or not) is the lowest-addressed processor
in a segment if either it is the lowest-addressed processor in its scan class or if its sbit
field value is 1.

There are two remarkable points here. First, the way in which a segment bit divides
a scan class does not depend on either the contezt-flag or the direction of the scan.
Second, values from one segment never contribute to the result for any processor in
another segment.

o If smode is :start-bit, then the sbit field is is interpreted as a “start bit.”

Operationally speaking, in each selected processor in which this bit is 1, the scan
operation will start over again. The start bit therefore divides a scan subclass into
pieces, and a scan operation is done within each piece, or scan set. These pieces differ
from the segments determined by a segment bit.

There are three remarkable points here. First, the start bit is examined only in selected
processors. Second, the way in which a start bit divides a scan subclass depends on the
direction of the scan. In an upward scan, a processor with a start bit of 1 is the first
participant in a scan set that includes its neighbor with the next higher coordinate
along the specified NEWS axis; in a downward scan, the same processor begins a scan
set that includes its neighbors with lower NEWS axis coordinates.

Third, for an exclusive scan, a selected processor whose start bit is 1 will receive
the identity for the combining operation only if no other selected processor in the
same scan subclass precedes it in the ordering; otherwise, it will receive the combined
values from all processors in the piece preceding it in the ordering. (Exclusive scans
are described below.)

o If smode is :none, then there is no need for a one-bit field, and the sbit operand is
ignored. The scan set for a processor k is the entire scan subclass for k.

A scan operation furthermore behaves as if all the processors in the specified scan set
were passed over (“scanned”) in linear order; therefore the result computed for a given
processor, k, depends only on processors below it in the ordering, or only on processors
above it, depending on the direction of the scan. The direction and inclusion operands
determine which processors within the scan set can potentially contribute to the result for
k. This final, most narrowed set of potential contributors is called the scan subset for k.

If direction is :upward, then the scan subset for processor k will contain only processors
below k in the ordering. If direction is :downward, then the scan subset for & will contain
only processors above k in the ordering.

If inclusion is :exclusive, then the scan subset for processor k£ will not contain k itself. If
inclusion is :inclusive, then the scan subset for k£ will contain & itself.

The set of processors whose source fields actually do contribute to the dest field of pro-
cessor k is called the scan subset for k. This will be a subset of the scan set for k (possibly
the entire scan set).

43

Chapter 5. Instruction Set Overview

These concepts are embodied in the following pseudo-code routines, which are used in the
Paris Dictionary to describe the behavior of the scan, spread, reduce, rank, and multispread
operations. _

Consider representing several NEWS coordinate values in a single integer called
a maulti-coordinate. We can define two operations, eztract-multi-coordinate and
deposit-multi-coordinate, for accessing and altering multi-coordinates. They are analogous
to eztract-news-coordinate and deposit-news-coordinate, the difference being simply that a
multi-coordinate contains values for several news coordinates.

Suppose that g is a geometry, 4 is an axis-set, and s and ¢ are send-addresses, and let
s' = deposit-multi-coordinate(g, s, A, extract-multi-coordinate(g, A, t))

Then s is the same as s except that coordinates for axes in A have been replaced by
corresponding coordinates extracted from t. More formally,

eztract-news-coordinate(g, a,s), ifa ¢ A

t-news-coordinat)= : :
extract-news-coordinate(g, a, ') { eztract-news-coordinate(g, a,t), ifa€ A

The Paris instruction CM:multispread-copy-1L actually requires a multi-coordinate as an
argument and the instruction CM:fe-extract-multi-coordinate constructs a multi-coordinate.
Beyond this, the notion of a multi-coordinate providess a useful conceptual building block
in the following pseudo-code definitions.

Now we can define scan classes in terms of the more general concept of a hyperplane,

which is any subset of the processors obtained by holding some NEWs coordinates fixed
while letting the others range freely over their respective axes.

function hyperplane(g, k, azis-set) is
let other-azes = {a |0 < a < rank(g)} \ azis-set
let ¢ = extract-multi-coordinate(g, other-azes, k)
return {m | m € current-vp-set A extract-multi-coordinate(g, other-azes,m) = ¢}

function scan-class(g, k, azis) is
return hyperplane(g, k, { azis })

function scan-subclass(g, k, azis) is
return {m | m € scan-class(g, k, azis) A context-flaglm] = 1}

44

Chapter 5. Instruction Set Overview

function scan-set(g, k, azis, direction, smode, sbit) is
let C = scan-subclass(g, k, azis)
function coord(s) = eztract-news-coordinate(g, azis, s)
case (smode) of
(:none) :
return C
(:segment-bit) :
let Q@ = {m | m € hyperplane(g,k,{ azis }) A (sbit[m] =1}
return {m |m € C A =35 : (j € @ A coord(m) < coord(j) < coord(k)) }
(:start-bit) :
let @ = {m | m € hyperplane(g,k,{ azis}) A (sbit[m] =1}
case (direction) of
(:upward) :
return {m |m € C A-3j:(j € (CNQ) A coord(m) < coord(j) < coord(k))}
(:downward) :
return {m |m € C A-3j: (7 € (CNQ) A coord(k) < coord(j) < coord(m))}

function scan-subset(g, k, azis, direction, inclusion, smode, sbit) is

let S = scan-set(g, k, azis, direction, smode, sbit)

function coord(s) = eztract-news-coordinate(g, azis, s)

case (direction, inclusion) of
(:upward, :exclusive) : return {m | m € S A coord(m) < coord(k) }
(:upward, :inclusive) : return {m | m € S A coord(m) < coord(k) }
(:downward, :exclusive) : return {m | m € § A coord(m) > coord(k)}
(:downward, :inclusive) : return {m | m € S A coord(m) > coord(k) }

A spread operation is like a scan, except that rather than producing “intermediate” or
“running” results by using scan sets, every processor gets the result of combining the values
from every active processor in the scan class.

A reduce operation is like a spread, except that instead of storing the result in every active
processor in the scan class, it stores the result into oniy one specified processor of the scan

class.

A multispread operation is like a spread, but allows hyperplanes of any rank, not just of
rank 1, to serve as the scan classes. In this manner, for example, a single value within each
hyperplane can be replicated throughout its hyperplane.

The following table shows the results computed for various operand combinations for a
scan with unsigned addition over a set of values all of which are 1.

45

Chapter 5. Instruction Set Qverview

scan-with-u-add contezt-flag| 1 111000011001110
shit|001 0001000000100
source 11111111111111
direction inclusion smode
:upward :exclusive :none 0123 45 678
:downward :exclusive :none 8765 4 3 210
:upward tinclusive :none 1234 56 789
:downward :inclusive :none 9876 5 4 321
:upward texclusive :segment-bit |0 1 0 1 . 01 201
:downward :exclusive :segment-bit {1 0 1 0 21 010
:upward tinclusive :segment-bit | 1 2 1 2 12 312
:downward :inclusive :segment-bit |2 1 2 1 32 121
:upward :exclusive :start-bit 0121 23 451
:downward :exclusive :start-bit 2154 32 110
:upward :inclusive :start-bit 1212 3 4 512
:downward :inclusive :start-bit 32158 4 3 211

5.21 Global Reduction Operations

A global operation combines a number of values in much the same manner as a scan or reduce
operation, but delivers the result to the front end rather than storing it in a processor field.

(-logand)
-logior
-logxor
-c-add
CM:global ¢ [-s- | [add 5 -1L
-u- } ¢ min
-f- max
{-s- :
u-max -intlen
3 -u- J

All the usual combining operations are provided. In addition, the compound operation
max-intlen is provided for efficiency; it is much faster than than a separate integer-length
operation followed by a global-max operation.

5.22 Memory Data Transfers

These operations simply transfer data between a field in the processor array and the front
end.

46

S-
cM: du. {rea!d-from} {-processor } m
write-to -news-array

d-f
CM:c- {rea. rom} -processor -1L
write-to

The operations read-from-processor and write-to-processor each transfer a single datum (in-
teger or floating-point).

The operations read-from-news-array and write-to-news-array can transfer entire arrays or
subarrays. Their implementation is optimized for relatively high throughput.

5.23 Sorting
Paris provides operations for sorting data based on integer or floating-point keys.

f.
CM: {s- » rank-2-L
u-

The rank operation does not actually put records into sorted order. Instead, it produces
ranking information from which appropriate send addresses can be calculated; a send op-
eration can then be used to put the records in order. This allows the ranking operation to
deal only with sort keys and not with entire records.

5.24 Timing Paris Code

A set of instructions beginning with CM:timer- provide a timing facility with microsecond
Pprecision.

clear

start

stop

print
CM:timer- read-starts
read-elapsed
read-cm-busy
read-cm-idle
read-run-state

| set-starts)

47

Chapter 5. Instruction Set Qverview

From the Lisp/Paris interface, this timing facility is incorporated in the macro CM:time,
which may be wrapped around code in order to time it. .

5.25 The LEDS

One of the most attractive features of a Connection Machine system is the array of blinking
lights on the faces of its cabinet. The following operation specifies whether the lights are
to be blinked automatically, or turned on and off under user program control.

CM:set-system-leds-mode

These operations turn lights on and off according to the contents of a one-bit data field.

CM: Iatch-leds{ ~ }
-always

5.26 Front End Operations

Programs that use Paris operations frequently need to perform certain calculations on the
front end that are not easily expressed in the host programming language. These operations

are provided as part of the Paris library interface; they deal primarily with Gray codes and
NEWS coordinates.

from-gray-code
to-gray-code
extract-news-coordinate
extract-multi-coordinate
deposit-news-coordinate
 make-news-coordinate |

CM:fe-<

5.27 Environmental Interface

These operations pertain to allocating, deallocating, initializing, and debugging the Con-
nection Machine.

48

Chapter 5. Instruction Set Overview

attach
attached
cold-boot
detach

init
power-up
reset-timer
set-safety-mode
start-timer
stop-timer
time

| warm-boot

CM: <

7

The attach operation is used to attach the front end process to a specified portion of all
Connection Machine processors.

The attached operation returns true if the front end process actually has Connection
Machine processors attached for use.

The cold-boot operation is used to initialize the Connection Machine hardware allocated
to the executing front end.

The detach operation frees attached Connection Machine processors from the currect
front end process.

The init operation is used by the C/Paris and Fortran/Paris interfaces to initialize the
Connection Machine hardware.

The power-up operation resets the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system.

The set-safety-mode operation allows the user to specify the level of run-time error check-
ing to be performed by the Paris interface.

The time family of operations are used to measure both the execution and the elapsed
time taken by other operations.

The warm-boot operation is used by the Lisp/Paris interface to reinitialize the Connection
Machine system without disturbing user memory.

49

Chapter 6

The C/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from C programs.

6.1 C/Paris Header Files

Type specification statements required for programs that access the C/Paris interface are
given in the header file named

/usr/include/cm/paris.h

This header file contains four kinds of declarations that provide an environment for calling
Paris instructions from C.

e Type declarations define new data types (struct types, for example) needed for com-
munication with certain Paris operations.

¢ Function declarations define the result types of all C/Paris function subprograms.

e Variable declarations define configuration variables that provide access to the state of
the Connection Machine system.

o jtdefine statements define symbolic numeric constants to be used as arguments to
certain C/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

6.2 C/Paris Instruction Names and Argument Types

This section describes how to call these instructions from C and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding C name using the
following two-part rule:

51

Chapter 6. The C/Paris Interface

o If the Lisp name begins with a colon, add ”CM?” to the front.

¢ Drop all asterisks, and convert all colons and hyphens to underscores.

This usually results in a name written in mixed case (some letters uppercase and some
lowercase). The name must be written in exactly that way, for C identifiers are case-
sensitive. (Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this
document are written in mixed case so as to produce the correct C name after applying the
conversion rules.)

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect
on operand fields residing in Connection Machine memory, and the result (if any) that
it returns to the front end. The same argument name is often used in several different
instruction definitions, but arguments with the same name always have the same type (as
viewed by the front-end C program). For example, dest is used throughout to represent the
field ID of a destination field; the field itself may be a floating-point or an integer field, the
width of which is specified by other arguments to the instruction, but to the C program the
argument is always simply a field 1D.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the C/Paris interface.

6.2.1 Id Types

These are values that should be treated as abstract entities, or “black boxes.” They are
created using special Paris instructions, and their actual values have no significance to the
calling C program; they are simply tokens that may be passed to other Paris routines.

VP set ID

A value representing a virtual processor set. Its C type is CM_vp_set_id_t.

geometry ID

A value representing a geometry with a particular shape. 1Its C type is
CM_geometry._id_t.

field 1p
A value representing a field allocated on the CM. Its C type is CM field_id_t.

6.2.2 Operand Field Addresses

Most Paris operations require one or more field 1Ds to indicate one or more regions of
Connection Machine memory to be processed. Such field iDs are obtained from memory
allocation calls. Their C type is CM_field_id_t.

dest, source, sourcel, source2

These field IDs specify fields to be used as source or destination operands of an in-
struction.

52

Chapter 6. The C/Paris Interface

send-address
This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field 1D for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit
A field 1D for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

6.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field 1D had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed. The C type
of such an immediate operand is long for a signed integer value, unsigned long for a
signed integer value, or double for a floating-point value.

send-address-value
An integer, the send address of a single particular processor. The C type of such an

immediate operand is CM_sendaddr_t.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.
The C type of such an immediate operand is unsigned long.

6.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their C type is unsigned.

len, slen, slen1, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of C long variables on the front end,
but other lengths may be used as well—longer ones for additional precision, shorter
ones for improved speed.

53

Chapter 6. The C/Paris Interface

8, ds, ss

An integer value designating the significand length of a floating-point field. For single-
precision (C type float) fields, this value should be 23; for double-precision (C type
double) fields, the value should be 52. '

e, de, se

An integer value designating the exponent length of a floating-point field. For single-
precision (C type float) fields, this value should be 8; for double-precision (C type
double) fields, the value should be 11.

6.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in C by variables and values
whose C type is unsigned long. These are variously referred to, depending on their roles
within particular operations, under the following names:

offset, axis, azis-length, coordinate, rank, multi-coordinate

6.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element j is in the set.
Their C type is unsigned long.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.

6.2.7 Vectors of Integers

These arguments should be represented as C one-dimensional arrays whose elements are of
C type unsigned. The maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

6.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of any C integer or floating-point type can be transferred
to and from CM memory using a single instruction (see section 5.22).

front-end-array A pointer to a front-end array is passed simply by mentioning the name of
the array.

6.2.9 Symbolic Values

The symbolic constants defined in #define statements in the C/Paris header file should be
used when supplying values for these arguments:

direction

One of the values CM_upward or CM_downward, indicating the direction of a scan,
NEWS, or other instruction.

54

Chapter 6. The C/Paris Interface

inclusion
One of the values CM_exclusive or CM_inclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CM_none, CM_start_bit, or CM_segment_bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add “CM” to
the front and then convert colons and hyphens to underscores, yielding CM_start_bit.

6.3 C/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The C/Paris interface makes these
variables accessible through variables declared in the C/Paris header file. They are ini-
tialized in an application program by a call to the subroutine CM_init and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM_physical_processors_limit is a value that depends
upon the size of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in #tdefine statements.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure of a C main program that calls Paris
instructions.

#include <cm/paris.h>

;ain() {
CM_init();

CM_paris_instruction(...);

if (CM_configuration_variable > limit) ...

55

Chapter 6. The C/Paris Interface

Note that the call to CM_init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that
calls Paris instructions.

#include <cm/paris.h>
float test() {
CM_paris_instruction(...);

if (CM_configuration_variable > limit) ...

}
It looks exactly like a main program in its use of Paris, ezcept that a subprogram should

not call CM_init.
Use the following command to compile and link these program units:

% cc main.c test.c -lparis -1m

Note that there should be no space between the -l option and its argument.

56

Chapter 7

The Fortran/Paris Interface

Paris is used as a set of variables and subroutines within a program that may be written
in any one of a number of languages. This chapter explains how to call Paris instructions
from Fortran programs, especially those compiled by VAX Fortran and Sun Fortran.

The Fortran/Paris interface is itself an interface to C/Paris (see chapter 6).

7.1 Fortran/Paris Header Files

Type specification statements required for programs that access the Fortran/Paris interface
are given in the header file named

/usr/include/cm/paris-configuration-fort.h

This header file contains three kinds of declarations that provide an environment for calling
Paris instructions from Fortran.

e Type specification statements define the result types of all Fortran/Paris function
subprograms.

o A declaration of a common block named cmval defines configuration variables that
provide access to the state of the Connection Machine system.

o PARAMETER statements define symbolic numeric constants to be used as arguments
to certain Fortran/Paris subprogram calls.

These declarations are discussed in more detail in the following sections.

7.2 Fortran/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Fortran and what types of argu-
ments to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary). Each name is easily converted to the corresponding Fortran name using
the following two-part rule:

57

Chapter 7. The Fortran/Paris Interface

¢ If the Lisp name begins with a colon, add »CM? to the front.

e Drop all asterisks, and convert all colons and hyphens to underscores.

It is also permissible to convert names to entirely uppercase letters if desired, as Fortran
identifiers are not case-sensitive.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by the
front-end Fortran program). For example, dest is used throughout to Represent the field 1D
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Fortran program the
argument is always simply a field I1p.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Fortran/Paris interface.

7.2.1 1Id Types

These are integer values that should be treated as abstract entities, or “black boxes.” They
are created using special Paris instructions, and their actual values have no significance
to the calling Fortran program; they are simply tokens that may be passed to other Paris
routines. Their Fortran type is INTEGER.

VP set ID

An integer value representing a virtual processor set.
geometry ID
An integer value representing a geometry with a particular shape.

field 0
An integer value representing a field allocated on the CM.

7.2.2 Operand Field Addresses

Most Paris operations require one or more field 1Ds to indicate one or more regions of
Connection Machine memory to be processed. Such field IDs are obtained from memory
allocation calls. Their Fortran type is INTEGER.

dest, source, sourcel, source2

These field IDs specify fields to be used as source or destination operands of an in-
struction.

send-address

This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

58

Chapter 7. The Fortran/Paris Interface

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field 1D for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit
A field 1p for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups. '

7.2.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field 1D had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

The Fortran type of such an immediate operand must be INTEGER for an integer value,
and DOUBLE PRECISION for a floating-point value.

source-value, source2-value
A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.
send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWS coordinate of a single particular processor.

7.2.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Fortran type is INTEGER.

len, slen, slen1, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for this value to be 32 to match the size of Fortran INTEGER variables on the
front end, but other lengths may be used as well—longer ones for additional precision,
shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 23; for double-precision
(Fortran type DOUBLE PRECISION) fields, the value should be 52.

59

Chapter 7. The Fortran/Paris Interface

e, de, se

An integer value designating the exponent length of a floating-point field. For single-
precision (Fortran type REAL) fields, this value should be 8; for double-precision (For-
tran type DOUBLE PRECISION) fields, the value should be 11.

7.2.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Fortran by variables and values
whose Fortran type is INTEGER. These are variously referred to, depending on their roles
within particular operations, under the following names:

offset, azis, axis-length, coordinate, rank, multi-coordinate

7.2.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element j is in the set.
Their Fortran type is INTEGER.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.

7.2.7 Vectors of Integers

These arguments should be represented as Fortran one-dimensional INTEGER arrays. The
maximum size of these vectors is 31.
azis-vector, start-vector, offset-vector, end-vector, dimension-vector

7.2.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays of Fortran type LOGICAL, INTEGER, REAL, or DOUBLE
PRECISION can be transferred to and from CM memory using a single instruction (see section
5.22).

front-end-array

Such an array is passed simply by mentioning the name of the array.

7.2.9 Symbolic Values

The symbolic constants defined in PARAMETER statements in the Fortran/Paris header file
should be used when supplying values for these arguments:

direction

One of the values CM_upward or CM_downward, indicating the direction of a scan,
NEWS, or other instruction.

inclusion

One of the values CM_exclusive or CM_inclusive, indicating the boundaries of a scan
instruction.

60

Chapter 7. The Fortran/Paris Interface

smode

One of the values CM_none, CM_start_bit, or CM_segment_bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add “CM” to
the front and then convert colons and hyphens to underscores, yielding CM_start_bit.

7.3 Fortran/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Fortran/Paris interface makes
these variables accessible through variables declared in the common block named cmval,
" defined by the Fortran/Paris header file. They are initialized in an application program by
a call to the subroutine CM_init and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM_physical_processors_limit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER.

Numeric values that are constant for a given release of the CM System Software are also
given in PARAMETER statements.

7.4 Calling Paris from Fortran

This section describes how to build Fortran programs that access the Paris instruction set
using the Fortran/Paris interface. Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the form of
Fortran main programs and subprograms that call the Fortran/Paris interface, as well as
the steps involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAX Fortran or Sun Fortran

INCLUDE ’/usr/include/cm/paris-configuration-fort.h’
CALL CM_init()

CALL CM_paris_instruction(...)
IF (CM_configuration_variable .GT. limit) ...
END

61

Chapter 7. The Fortran/Paris Interface

Note that the call to CM_init is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a Fortran subroutine subprogram
that calls Paris instructions.

SUBROUTINE test
c VAX Fortran or Sun Fortran
Z.INCLUDE ? /usr/include/cm/paris-configuration-fort.h’
(.!ALL CM_paris_instruction(...)
iF (CM_configuration_variable .GT. limit) ...
END

It looks exactly like a main program in its use of Paris, ezcept that a subprogram should
not call CM_init.

Using VAX Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

% fort main.for test.for -lparisfort -lparis

Note that there should be no space between the -| option and its argument.
Using Sun Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

% £77 main.f test.f -lparisfort -lparis

Note that there should be no space between the -l option and its argument.

62

Chapter 8

The Lisp/Paris Interface

Paris is used as a set of variables, subroutines, and macros within a program that may
be written in any one of a number of languages. This chapter explains how to call Paris
instructions from Lisp programs.

8.1 Lisp/Paris Instruction Names and Argument Types

This section describes how to call these instructions from Lisp and what types of arguments
to pass them.

The instruction names and other names that appear in this document are spelled in a
form acceptable to Lisp (an arbitrary choice in order to have some common denominator
for the dictionary).

Although Lisp is not case-sensitive, all identifiers appearing in Lisp form in this document
are written in mixed case so as to produce the correct C name after applying certain
conversion rules. The Lisp programmer may write names entirely in uppercase letters or
entirely lowercase letters, if desired.

Chapter 9 describes each of the Paris instructions in terms of its arguments, its effect on
operand fields residing in Connection Machine memory, and the result (if any) that it returns
to the front end. The same argument name is often used in several different instruction
definitions, but arguments with the same name always have the same type (as viewed by
the front-end Lisp program). For example, dest is used throughout to represent the field 1p
of a destination field; the field itself may be a floating-point or an integer field, the width
of which is specified by other arguments to the instruction, but to the Lisp program the
argument is always simply a field 1D.

Following is a brief description of the major classes of arguments that can be passed to
subprograms of the Lisp/Paris interface.

8.1.1 Id Types

These are values that should be treated as abstract entities, or “black boxes.” They are
created using special Paris instructions, and their actual values have no significance to the
calling Lisp program; they are simply tokens that may be passed to other Paris routines.

VP set ID

63

Chapter 8. The Lisp/Paris Interface

An integer value representing a virtual processor set.

geometry ID

A structure of type CM:geometry ID representing a geometry with a particular shape.

field 1»
An integer value representing a field allocated on the CM.

8.1.2 Operand Field Addresses

Most Paris operations require one or more field ID’s to indicate one or more regions of
Connection Machine memory to be processed. Such field ID’s are obtained from memory
allocation calls. Their Lisp type is integer.
dest, source, sourcel, source2
These field IDs specify fields to be used as source or destination operands of an in-
struction.
send-address
This argument specifies a field that itself contains, within each processor, the send
address of a processor (possibly the same one, possibly another).

news-coordinate

This argument specifies a field that itself contains, within each processor, the NEWS
coordinate of a processor (possibly the same one, possibly another).

notify

A field 1D for a 1-bit field to hold a result indicating receipt of a message by a send
instruction.

sbit

A field 1D for a 1-bit field that indicates how Paris scan operations should divide
processors into logical groups.

8.1.3 Immediate Operands

These arguments are scalar values that participate in Paris operations as if they were first
copied to every Connection Machine processor and then operated upon as if a field 1D had
been supplied. Paris operations that take “immediate” operand values of this sort usually
have “constant” or “const” in their names.

The Lisp type of such an immediate operand is integer for an integer value, or float for a

floating-point value (any of the several kinds of Common Lisp floating-point numbers may
be supplied).

source-value, source2-value

A (front-end) value or variable to be supplied as input to an instruction on the CM.
The type of value passed depends on the instruction to which it is passed.

64

send-address-value

An integer, the send address of a single particular processor.

news-coordinate-value An integer, the NEWs coordinate of a single particular processor.

8.1.4 Operand Field Lengths

These are integer values that specify the widths of source and destination operand fields on
the CM. Their Lisp type is integer.

len, slen, slen1, slen2, dlen

An integer value designating the length (in bits) of a source field that will be treated
by the operation as a bit field, a signed integer, or an unsigned integer. It is not
unusual for the programmer to choose this value to match the size of Lisp fixnum
variables on the front end, but other lengths may be used as well—longer ones for
additional precision, shorter ones for improved speed.

s, ds, ss

An integer value designating the significand length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 23; for double-precision (Lisp type double-
float) fields, the value should be 52.

e, de, se

An integer value designating the exponent length of a floating-point field. Floating-
point numbers of any size are supported, but certain values must be used for good
performance on the hardware floating-point accelerator. For single-precision (Lisp
type single-float) fields, this value should be 8; for double-precision (Lisp type double-
float) fields, the value should be 11.

8.1.5 Miscellaneous Signed and Unsigned Values

Both signed and unsigned Paris quantities are represented in Lisp by variables and values
whose Lisp type is integer. These are variously referred to, depending on their roles within
particular operations, under the following names:

offset, azis, azis-length, coordinate, rank, multi-coordinate

8.1.6 Bit Sets and Masks

Arguments representing sets taken from universes of up to 31 elements are represented as
integer values, where the bit whose value is 27 is 1 to indicate that element j is in the set.
Their Lisp type is integer.

At present, the only universe of interest in Paris is azis-mask, the set of axes for a given
geometry.

65

Chapter 8. The Lisp/Paris Interface

8.1.7 Vectors of Integers

These arguments should be represented as Lisp vectors (one-dimensional arrays); they may
be specialized vectors, capable of holding integers only, or general vectors, capable of holding
any Lisp objects but into which only integers happen to have been stored. The maximum
size of these vectors is 31.

azis-vector, start-vector, offset-vector, end-vector, dimension-vector

8.1.8 Multi-dimensional Front-end Arrays

Multi-dimensional front-end arrays, whether specialized or general, can be transferred to
and from CM memory using a single instruction (see section 5.22).
front-end-array

Such an array is passed simply by mentioning the name of the array.

8.1.9 Symbolic Values

These symbolic constants should be used when supplying values for these arguments:

direction

One of the values : upward or :downward, indicating the direction of a scan, NEWS, or
other instruction.

tnclusion

One of the values :exclusive or :inclusive, indicating the boundaries of a scan instruc-
tion.

smode

One of the values :none, :start-bit, or :segment-bit, indicating how a scan operation is
to be partitioned.

There are other symbolic values as well, but these are the most important.

8.2 Lisp/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.7 for a list. The Lisp/Paris interface makes these
variables available. They are initialized in an application program by a call to subroutine
CM:cold-boot and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM: #pysical-processors-limit# is a value that depends
upon the size of the Connection Machine to which the application is attached.

66

Chapter 8. The Lisp/Paris Interface

8.3 Calling Paris from Lisp

This section describes how to build Lisp programs that access the Paris instruction set
using the Lisp/Paris interface. Such programs must manage the dynamic allocation and
deallocation of Connection Machine fields directly. This section describes the form of Lisp
main programs and subprograms that call the Lisp/Paris interface, as well as the steps
involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Lisp function program that
calls Paris instructions.

(defun test (...)
&CM :paris-instruction ...)
&if (> CM:configuration-variable limit) ...)
)

Remember that CM:cold-boot should be called once before beginning a computation that
uses Paris; it is not appropriate to call CM:cold-boot on entrance to every function.

67

Part 11
Paris Dictionary

Version 6.0, February 1991

Chapter 9

Dictionary of Paris Instructions

9.1 Conventions for Alphabetizing

The operations and variables in this dictionary are ordered alphabetically, but with certain
conventions that cause parts of the names to be ignored. The purpose is to ignore “prefixes”
and “suffixes” in the name so as to group instructions that have the same main operation
name.

e If the name contains a colon (and most do), the colon and any characters preceding
it (usually “CM”) are ignored.

o If the name begins with “fe-” then those three characters are dropped.

o Similarly, if the name begin with a single letter followed by a hyphen, those two
characters are dropped.

o Similarly, if the name contains a single letter (or digit) surrounded by hyphens, each
such letter (or digit) and the hyphen following it are dropped.

¢ Any occurrence of the modifier subsequence “-constant-” or “-const-” or “-always-” is
replaced by a single hyphen.

o If the name ends in a hyphen, a digit, and the letter “L” then those three characters
are dropped.

o Any asterisks in the name are dropped.

These rules are to be applied repeatedly and in any order until a name is reduced to a
form where none of the rules apply.

The running heads on the top outside corners of the dictionary pages show the names
with characters dropped according to these rules. Any ties in the ordering are broken by
reconsidering letters dropped by the preceding rules.

As an example, CM:s-logcount-2-2L and CM:u-logcount-2-2L appear together (and in
that order). As another example, CM:extract-news-coordinate-1L and CM:fe-extract-news-
coordinate appear together (and in that order).

69

Chapter 9. Dictionary of Paris Instructions

9.2 Programming Language Syntax

Paris is not a single language, but rather a library to be used within any of several program-
ming languages, including C, Fortran, and Lisp. These languages have different syntactic
conventions for names, operations, and procedure calls. This dictionary strikes a compro-
mise among these conventions that allows straightforward transformations into the specific
syntax of any of these languages. See chapters 6, 7, and 8 for information about language-
specific aspects of the Paris interface. '

9.2.1 Syntax of Names

All names in this dictionary are presented in Lisp syntax (specifically, that of Common
Lisp). A simple rule is given below for converting such names to C or Fortran syntax.

Lisp allows names to contain hyphens, asterisks, and colons, among other characters. For
the Lisp interface, Paris follows Common Lisp conventions for names:

¢ Words in a multiword name are separated with hyphens.
o The name of a global variable is surrounded with asterisks.

¢ Related names are grouped into a single package, indicated by a common prefix ending
with a colon. Paris uses the prefix CM: for this purpose. Certain names used as
constants, called keywords, have a null prefix, and therefore begin with a colon.

These rules are applied in the order given. Examples of names are CM: set-system-leds-mode,
CM:s-add-2-1L, :news-order (a keyword), and CM: *maximum-exponent-length* (a global vari-
able).

Fortran and Lisp are not case-sensitive, but C is. Therefore, this dictionary presents Paris
instructions names using the upper-case and lower-case letters appropriate for C syntax.
Similarly, to satisfy C and Fortran conventions, Paris names are limited to 32 characters
(including any suffix and the trailing “L”).

The rule for translating a Lisp name to a C or Fortran name has two parts.

¢ If the Lisp name begins with a colon, first add “CM” to the front.
e Then drop all asterisks, and convert all colons and hyphens to underscores.

Thus the example Lisp names shown above become CM_set_system_leds_mode,
CM_s_add_2_1L, CM_news_order, and CM_maximum_exponent_length in C syntax.

For Fortran, this assumes a compiler that accepts 31-character names and permits un-
derscores in names.

9.2.2 Pseudocode Instruction Descriptions

For most of the instructions two descriptions of the operation are given. One is in English,
and the other is in pseudocode. The pseudocode is written in an ad hoc combination
of programming constructs, mathematical notation, and occasional dabs of English. For
the most part the notation should be self-explanatory, but several features deserve special
remarks.

70

Chapter 9. Dictionary of Paris Instructions

The constructs “let z = y” and “z « y” are superficially similar; each causes = to have
the value y. There are two differences, however. First, a “let” statement merely defines a
temporary variable for later use in the pseudocode description of that instruction, whereas
an arrow assignment represents an actual effect on the CM machine state (usually in the
processor memories) that may be detected by subsequent Paris operations. Second, a “let”
statement is assumed to give z the precise mathematical value computed for y, whereas
an arrow assignment may have to truncate, round, or otherwise approximate the infinitely
precise mathematical result before storing it.

When referring to actual machine state, square brackets are used to indicate a particular
processor. For example, if dest names a field, then dest[k] refers to the contents of that field
within processor k. Actual subscripts are used rather than square brackets for temporary
quantities; thus one has “dest[k] — 1” but “let Sy = 1” because the latter does not involve
machine state.

Angle brackets are used to select bits within a field (or sometimes within an integer value,
to be regarded as a field of bits in binary representation). For example, dest[k](0) is the
least significant bit of the field dest within processor k, and dest[k](0 : 3) is the four least
significant bits.

Multiplication is always indicated explicitly by the symbol x, never by juxtaposition. The
notation |z] means the floor of z, the largest integer that is not greater than z; |3.5] = 3
and |-3.5/ = —4. The notation [2] means the ceiling of z, the smallest integer that is not
less than z; [3.5] = 4 and [-3.5] = -3.

The symbols -, A, V, and @ respectively represent logical (or bitwise, if appropriate)
NOT, AND, inclusive OR, and exclusive OR.

The symbols N represents set intersection; U is set union; \ is set difference (thus A\ B
is the set of elements of A that are not in B); and € is the set inclusion predicate (and so
z € A is true if z is an element of A).

Other mathematical notations are used freely, including square roots, summation signs,
and set notation. The purpose of the pseudocode is to provide a clear explanation of the
results of an operation, not to provide clues to performance; the particular algorithm shown
is not necessarily the one used in the implementation.

71

ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-1-1L dest/source, s, e
CM:f-abs-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcelk] > 0 then dest[k] — source[k]
else dest[k] — —source[k]

The absolute value of the source operand is placed in the dest operand.

For floating-point numbers, absolute value is calculated by changing the sign bit to 0 (pos-
itive). All other bits in the number are unchanged.

73

ABS

F-C-ABS

The absolute value of the source field is returned in the destination field.

Formats CM:f-c-abs-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is s + e + 1. The
total length of the source field in this format is 2(s + e + 1).

Overlap The dest field must be either identical to source, identical to (source+s+e+1),
or disjoint from source.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only -
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — +/(sourcelk|.real)? + (source|k|.imag)?
if (overflow occurred in processor k) then overflow-flaglk] — 1

The absolute value of the source operand is placed in the dest operand.

74

S-ABS

Computes the absolute value of a signed integer source field and stores it in the destination
field.

Formats CM:s-abs-1-1L dest/source, len
CM:s-abs-2-1L dest, source, len
CM:s-abs-2-2L dest, source, dlen, slen

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximume-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximume-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] > 0 then dest[k] — source[k]
else dest[k] — —source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] < 0

The absolute value of the source operand is placed in the dest operand. (If the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains —2". If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)

75

C-ACOS

Computes, in each selected processor, the arc cosine of the complex source field and stores
it in the complex destination field.

Formats CM:c-acos-1-1L dest/source, s, e
CM:c-acos-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format. '

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1. '

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « cos~! source[k]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The arc cosine of the value of the source field is stored into the dest field.

The following definition of arc cosine determines the range and branch cuts for a complex

number 2z
—ilog (z+iv/1— zz)

76

F-ACOS

Computes, in each selected processor, the arc cosine of the floating-point source field and
stores it in the floating-point destination field.

Formats CM:f-acos-1-1L dest/source, s, €
CM:f-acos-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « cos™! source[k]
if source(k] < —1 or source(k] > 1 then
test-flaglk] — 1
else
test-flaglk] «— 0

The arc cosine of the value of the source field is stored into the dest field.

7

ACOSH

C-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the complex source field
and stores it in the complex destination field.

Formats CM:c-acosh-1-1L dest/source, s, e
CM:c-acosh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — cosh™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

The following definition of inverse hyperbolic cosine determines the range and branch cuts

of a complex number z.
(z-1)
log (z+(z+1) G0

78

ACOSH

F-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the floating-point source
field and stores it in the floating-point destination field.

Formats CM:f-acosh-1-1L dest/source, s, e
CM:f-acosh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than 1; otherwise it is cleared.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
dest[k] «— cosh™! source[k]
if source < 1 then test-flaglk] — 1
else test-flaglk] < 0
if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc hyperboiic cosine of the value of the source field is stored into the dest field.

79

ADD

C-ADD

The sum of two complex source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:c-add-2-1L dest/sourcel, source2, s, e
CM:c-add-always-2-1L dest/sourcel, source2, s, e
CM:c-add-3-1L dest, sourcel, source?, s, e
CM:c-add-always-3-1L dest, sourcel, source, s, e
CM:c-add-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-add-const-always-2-1L dest/sourcel, source2-value, s, e
CM: c-add-constant-3-1L dest, sourcel, source2-value, s, e
CM:c-add-const-always-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source?2 fields. The total length of an operand in this format is
2(s+e+1)

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

if (always or context-flaglk] = 1) then
dest[k] — sourcel[k] + source2[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

Two operands, sourcel and source2, are added as complex numbers. The result is stored
into memory. The various operand formats allow operands to be either memory fields or
constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

80

ADD

F-ADD

The sum of two floating-point source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-add-2-1L dest/sourcel, source, s, e
CM:f-add-always-2-1L dest/sourcel, source2, s, e
CM:f-add-3-1L dest, sourcel, source?, s, e
CM:f-add-always-3-1L dest, sourcel, source2, s, e
CM:f-add-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-add-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-add-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-add-const-always-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k] + source2[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

81

ADD

Two operands, sourcel and source2, are added as floating-point numbers. The result is
stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

82

ADD

S-ADD

The sum of two signed integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-2-1L dest/sourcel, source2, len
CM:s-add-3-1L dest, sourcel, source2, len

CM:s-add-constant-2-1L dest/sourcel, source2-value, len
CM:s-add-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

dlen For CM:s-add-3-3L, the length of the dest field. This must be no

smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-add-3-3L, the length of the source? field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM:s-add-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

83

ADD

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest(k] «— sourcel[k] + source2(k]
carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] «— 1

else overflow-flaglk] — 0

Two operands, source! and source2, are added as signed integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

84

ADD

U-ADD

The sum of two unsigned integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-add-2-1L dest/sourcel, source2, len
CM:u-add-3-1L dest, sourcel, source2, len

CM:u-add-constant-2-1L dest/sourcel, source2-value, len
CM:u-add-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

dlen For CM:u-add-3-3L, the length of the dest field. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slenl For CM:u-add-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slen2 For CM:u-add-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared. '

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

85

ADD

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— sourcel[k] + source2[k]
carry-flaglk] «— (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] «— 1

else overflow-flaglk] — 0

Two operands, source! and source2, are added as unsigned integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag are altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

86

ADD-CARRY

S-ADD-CARRY

The sum of the carry-flag and two signed integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-carry-2-1L dest/sourcel, source2, len
CM:s-add-carry-3-1L dest, sourcel, source2, len

dest
sourcel
source2

len

dlen

slenl1

slen2

The field ID of the signed integer destination field.
The field ID of the signed integer first source field.
The field ID of the signed integer second source field.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

For CM:s-add-carry-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*,

For CM:s-add-carry-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length=.

For CM:s-add-carry-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-

length*.

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

87

ADD-CARRY

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— sourcel[k] + source2[k] + carry-flag[k]
carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] «— 1

else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as signed integers. The carry-flag is used as
the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as

will fit.

88

ADD-CARRY

U-ADD-CARRY

The sum of the carry-flagand two unsigned integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM:u-add-carry-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-add-carry-2-1L dest/sourcel, source2, len
CM:u-add-carry-3-1L dest, sourcel, source2, len
Operands dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.
len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-add-carry-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

sleni For CM:u-add-carry-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

slen2 For CM:u-add-carry-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.
overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
dest[k] — sourcel[k) + source2[k] + carry-flag[k]

89

ADD-CARRY

carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as unsigned integers. The carry-flag is used
as the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

90

ADD-FLAGS

S-ADD-FLAGS

The carry-out and overflow are computed for the sum of two signed integer source values.
The sum itself is not stored.

Formats CM:s-add-flags-2-1L sourcel, source2, len

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length#.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
Compute sourcel k] + source2[k]
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] « 0

Two operands, sourcel and source2, are added as signed integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

91

ADD-FLAGS

U-ADD-FLAGS

The carry-out and overflow are computed for the sum of two unsigned integer source values.
The sum itself is not stored.

Formats CM:u-add-flags-2-1L dest, sourcel, source2, len

Operands dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*,

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.
overflow-flag is set if the sum cannot be represented in the destination field;

otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
Compute sourcel[k] + source2[k]
carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] «— 1
else overflow-flaglk] — 0

Two operands, source! and source2, are added as unsigned integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

92

F-ADD-MULT

Calculates a value (a + z)b and places it in the destination.

Formats

Operands

Overlap

Flags

Context

CM:f-add-mult-1L dest, sourcel, source2, sourced, s, e
CM:f-add-mult-always-1L dest, sourcel, source2, sources, s, e
CM:f-add-const-mult-1L dest, sourcel, source2-value, source3, s, e
CM:f-add-const-muit-always-1L dest, sourcel, source2-value, source3, s, e
CM:f-add-mult-const-1L dest, sourcel, source2, source3-value, s, e
CM:f-add-mult-const-always-1L dest, sourcel, source2, source3-value, s, e
CM:f-add-const-mult-const-1L dest, sourcel, source2-value, source3-value, s, e
CM:f-add-const-mult-const-a-1L dest, sourcel, source2-value, source3-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source (addend) field.
source2 The field ID of the floating-point second source (augend) field.

source2-value A floating-point immediate operand to be used as the second
source (augend).

source3 The field ID of the floating-point third source (multiplier) field.
source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
iss+e+1.

The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — (sourcel[k] + source2[k]) X source3[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

93

ADD-MULT

Two operands sourcel and source2 are added as floating-point numbers, and then the sum
is multiplied by a third operand sourced. The result is stored in the destination field.

The various formats allow the second source operand to be either a memory field or a
constant.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-add-mult-1L is equivalent to the sequence

CM:f-add-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, sourced, s, e

but may be faster.

94

ADD-OFFSET-TO-FIELD-ID

ADD-OFFSET-TO-FIELD-ID

Returns a new field 1D that specifies the same field but possibly a different offset within
that field.

Formats result « CM:add-offset-to-field-id field-id, offset

Operands field-id A field ID.
offset A signed integer, the number of bits by which to offset the field-id.

Result A field ID, identifying the newly offset field 1D.

Context This operation is unconditional. It does not depend on the contexzt-flag.

Associates a new field ID with the portion of the specified field that begins at the specified
bit offset. The size of the field referenced by the new field ID is equal to the size of the
original field minus the offset. The offset must be smaller than the size in bits of the original
field. Offset fields may themselves have offset fields formed from them.

95

ALLOCATE-HEAP-FIELD

ALLOCATE-HEAP-FIELD

Allocates a heap field of specified length in the current VP set and returns a unique identifier.

Formats result « CM:allocate-heap-field len
Operands len An unsigned integer, the length in bits of the field to be allocated.
Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated in the heap within the current VP set. A field 1p for
the newly created field is returned.

96

ALLOCATE-HEAP-FIELD-VP-SET

ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of the specified length in the specified VP set and returns a unique
identifier.

Formats result « CM:allocate-heap-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any VP set, including the current
VP set.

Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated on the heap within the specified vp set. A field 1D for
the newly created field is returned.

97

ALLOCATE-STACK-FIELD

ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats result « CM:allocate-stack-field len

Operands len An unsigned integer, the length, in bits, of the field to be allocated.

Result A field ID, identifying the new field Ip.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated on the stack within the current VP set. A field 1D for
the newly created field is returned.

98

ALLOCATE-STACK-FIELD-VP-SET

ALLOCATE-STACK-FIELD-VP-SET

Allocates a new stack field of the specified length in the specified VP set and returns a
unique identifier.

Formats result «— CM:allocate-stack-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any VP set, including the current
VP set.

Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated on the stack within the specified vp set. A field 1D for
the newly created field is returned.

99

ALLOCATE-VP-SET

ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats result « CM:allocate-vp-set geometry-id
Operands geometry-id A geometry ID.
Result A VP set ID, identifying the newly allocated VP set.

Context This operation is unconditional. It does not depend on the contezt-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-id. It is
possible to alter the geometry later (by using CM: set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed.

100

ARRAY-FORMAT

FE-ARRAY-FORMAT

This front-end instruction returns an array format descriptor. An array format descriptor
may be passed to any array transfer instruction to specify a front-end array format, although
this is not required.

See also CM:fe-packed-array-format and CM:fe-structure-array-format.

Formats

Operands

result « CM:fe-array-format [cm-element-size, array-element-size,

stride, ordering]

cm-element-size A signed integer immediate operand to be used as the

number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. If not specified, it
defaults to array-element-size. If array-element-size is also not

specified, cm-element-size defaults to the size of the Connection
Machine field being read or written.

array-element-size A signed integer immediate operand to be used as the

stride

ordering

number of bits in each front-end array element. This must be a
power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. If not specified,
array-element-size defaults to the actual front-end element size
or, if the front-end array elements are general (i.e., of type t),
array-element-size defaults to the value of cm-element-size.

A signed integer immediate operand to be used as the distance,
in units of array-element-size, between adjacent front-end array
elements. This must be either a null value or a positive integer
between 1 and 65,535 that obeys the following restrictions. The
product (stride X array-element-size) must be either a multiple of
cm-element-size or a multiple of 32 bits. If stride is specified as a
null value (null in C, 0 in Fortran, nil in Lisp), it defaults to the
minimum legal value. In Lisp/Paris this is a keyword argument.

The order in which Connection Machine elements are stored
in a front-end array. The value of ordering must be either a
null value or one of: :front-end-order, :Isb-first (least significant
bit first), or :msb-first (most significant bit first). (These are
CM_front_end_order, CM_Isb_first, or CM_msb_first from C or For-
tran.) If specified as a null value (null in C, 0 in Fortran, nil in
Lisp), it defaults to :front-end-order, which is the standard order-
ing for the front end. (Most significant bit first on Suns; least

101

ARRAY-FORMA

significant bit first on VAXes.) In Lisp/Paris this is a keyword
argument.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

The return value is a format descriptor for arrays; it can be passed to any array transfer
instruction as the value of format. CM:fe-array-format provides the most generality in spec-
ifying an array format for tranfers. More specific descriptors may be obtained with CM:fe-
packed-array-format and CM:fe-structure-array-format.

The value of cm-element-size defines the unit of measure for the fe-offset-vector argument
to the CM:read-from-news-array and CM:write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the fe-dimension-vector
argument to the CM:read-from-news-array and CM:write-to-news-array instructions. How-
ever, for extended-element array transfers, the unit of measure for the fe-dimension-vector
argument is (array-element-size X stride).

If cm-element-size is less than array-element-size, a packed transfer is specified. That is,
multiple Connection Machine array elements are packed into each front-end array element.
If cm-element-size is greater than array-element-size, an extended-element array is specified.
That is, more than one front-end array element is used to store each Connection Machine
array element.

For most arrays, the value of stride is 1. For packed array transfers, siride must be 1. For
extended-element array transfers, the stride must be large enough to ensure that consecutive
elements do not overlap on the front end. To read or write every other (non-packed, non-
extended) front-end array element, use a stride value of 2.

For a normal (non-packed, non-extended) array transfer, specify ordering as a null value.

A packed format with :lsb-first ordering stores the Connection Machine element with the
smallest coordinates in the least significant bits of the array element. A packed format
with :msb-first ordering stores the CM element with the largest coordinates in the most
significant bits of the front-end array.

An extended-element format with :lsb-first ordering stores the low-order bits of the Con-
nection Machine element in the front-end array location with the smallest coordinate. An
extended-element format with : msb-first ordering stores the high-order bits of the CM ele-
ment in the front-end array location with the smallest coordinate.

102

AREF

AREF

Takes array elements specified by a per-processor index and copies them into a fixed desti-
nation.

Formats CM:aref-2L dest, array, indez, dlen, indez-len, indez-limit, element-len

Operands dest The field ID of the destination field.
array The field ID of the source array field.
index The field ID of the unsigned integer index into the array field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximume-integer-length*.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length#.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

element-len An unsigned integer immediate operand to be used as the

length of an array element.

Overlap The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.

Flags test-flag is set if the value in the indez field is less than the indez-limit;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if indez[k] < indez-limit then
let p = indez[k] x element-len
dest[k] «— array[k)(p: p+ dlen — 1)
test-flaglk] — 1

else
test-flaglk] — 0

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

103

AREF

index into an array, whose length in bits should be indez-limit X element-len. The element
indexed (or a portion of it) is copied into dest in all selected processors. Thus different
processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i X element-len, where
¢ is the unsigned number stored at indez, is copied to dest in all selected processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear fest-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it is
worthwhile for it to differ. For example, from an array of 128-bit records one may fetch just
one 16-bit component of an indexed record by letting dlen be 32, letting element-len be 128,
and by offsetting the array address by the offset within each record of the 16-bit quantity
to be fetched. As another example, to extract a 4-character substring from a string of 8-bit
characters, one may let dlen be 32 and element-len be 8.

104

AREF32

AREF32

Takes array elements specified by a per-processor index and copies them into a fixed desti-
nation. The array is stored in a special format that allows fast access.

Formats CM:aref32-2L dest, array, indez, dlen, indez-len, indez-limit
CM:aref32-always-2L. dest, array, indez, dlen, indez-len, indez-limit
Operands dest The field ID of the destination field.
array The field ID of the source array field. This must contain data
stored in a special format by either CM:aset32 or CM:transpose32.
indez The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.
dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.
indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-length*.
indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the array
extent.
Overlap The fields array and ¢ndez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.
Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.
Definition For every virtual processor k in the current-vp-set do

if (always or contezt-flaglk] = 1) then
if indez[k] < indez-limit then
let » = geometry-total-vp-ratio(geometry(current-vp-set))
let m = I_%J mod 32
let © = indez[k]
for all j such that 0 < j < dlen do
dest[k](j) « arraylk — m x r + (j mod 32) x r}(32 X (i + | %))
else
(error)

105

AREF32

This is a simple form of array reference for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
indez-limit with elements of length dlen.

The array element indexed by each active processor is copied into the dest field of that
processor. Different processors may reference different elements of their arrays. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into an
area of cCM memory, array, whose allocated length in bits should be at least

, .. dlen
(mdem-hmzt X [72—1) X 32

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

A field of length dlen, and starting at address array + ¢ x 32, where 7 is the the unsigned
number stored at indez, is copied to dest in all selected processors. Even this is not quite
accurate, because the array data is not organized in the same manner as for CM: aref. Instead,
it is organized in a peculiar way for fast per-processor access. Parallel arrays stored in this
format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aref32 should
be accessed only through the operations CM:aset32 and CM:aref32, related operations such
as CM:get-aref32 and CM:send-aset32-overwrite, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

106

AREF32-SHARED

AREF32-SHARED

Takes an array element specified by a per-processor index and copies it into to a fixed
destination. The source array is stored in a special format that allows fast access, and is
accessed in such a way that all the virtual processors within a group of 32 physical processors
share the same array.

Formats CM:aref32-shared-2L dest, array, indez, dlen, indez-len, indez-limit
CM:aref32-shared-always-2L dest, array, indez, dlen, indez-len, indez-limit
Operands dest The field ID of the destination field.
array The field ID of the source array field. This must be a contiguous
region in ¢M memory. It need not be in the current VP set.
index The field ID of the unsigned integer index field. This is used as
the per-processor index into array.
dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This is normally
taken as the length of array elements and must be a multiple of
32. As a special case, dlen may be 8 or 16 and, if so, access tnto
both the source and the destination fields is offset appropriately.
indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximume-integer-length*.
indez-limit An unsigned integer tmmediate operand to be used as the
ezclusive upper bound for the index. This is taken as the eztent of
array if dlen is a multiple of 32. However, if dlen is 8 or 16, then
indez-limit is taken as the number of 32-bit elements that would
fit into the array field.
Overlap The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.
Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.
Definition For every virtual processor k in the current-uvp-set do

if (always or contezt-flaglk] = 1) then
if indez[k] < indez-limit then

107

AREF32-SHARED

for all j such that 0 < j < dlen do
dest{k)(j)
array [32 la_,;v-J + (7 mod 32)] (indem-limit i_'sJEJ + indez[k])
else
(error)

where r is the VP ratio, and where j is the bit position in each field.

This is a simple form of array reference for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent indez-limit with elements of length dlen.

The shared array element (or a portion of it) indexed is copied into dest in all (selected)
processors. Different processors may access different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into array.
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indezr value to equal or exceed this limit.

The data within the source array area is not organized in the same manner as for CM: aref;
instead, it is organized in a peculiar way for fast per-processor access. Shared arrays stored
in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x indez-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM: aref32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1, with
a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a vp ratio of 1.

The area of CM memory occupied by array should be allocated at a VP ratio of 1 as a field
whose length in bits is exactly

dlen
indez-limit X | ——
n Tmi [3]
Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors

(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

108

AREF32-S

As a special case, if the dlen argument is specified as 8 or 16, then each processor accesses
one byte or one half-word of a 32-bit element. The indez-limit argument must be specified
as the extent of the array when considered to contain 32-bit elements. Nonetheless, valid
indez values are integers 0 through 2 or 4 times this indez-limit. The index argument may
be thought of as consisting of two fields, one that indexes a 32-bit array element and one
that indexes an 8- or 16-bit offset into that element. To index bytes, the low 2 bits of indez
specify the offset. To index half-words, the low 1 bit of indez specifies the offset.

109

ASET

Stores into an array element specified by a per-processor index a value copied from a fixed
source field.

Formats CM:aset-2L source, array, indez, slen, indez-len, indez-limit, element-len

Operands source The field ID of the source field.
array The field ID of the destination array field.
index The field ID of the unsigned integer index into the array field.

slen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

element-len An unsigned integer immediate operand to be used as the
length of an array element.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Flags test-flag is set if the value in the index field is less than the indez-limit;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if indez[k] < indez-limit then.
let p = indez[k] x element-len
array[k)(p: p+ slen — 1) «— sourcel[k]
test-flaglk] — 1

else
test-flaglk] — 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

110

ASET

index into an array, whose length in bits should be indez-limit X element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + it X element-len, where ¢ is the unsigned number stored at indez, in all selected
processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting slen be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.

111

ASET32

ASET32

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The destination array is stored in a special format that allows fast access.

Formats CM:aset32-2L source, array, indez, slen, indez-len, indez-limit
Operands source The field ID of the source field.
array The field ID of the destination array field.
index The field ID of the unsigned integer index field. This is used as
the per-processor index into array.
slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.
indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the array
extent.
Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if indez|k] < indez-limit then
let » = geometry-total-vp-ratio(geometry(current-vp-set))
let m = I_%J mod 32
let i = indez|[k]
for all j such that 0 < j < slen do
arraylk — m X r + (j mod 32) x r)(32 x (i + [E%J)) — source(k](j)
else
(error)

This is a simple form of array modification for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
indez-limit with elements of length slen.

112

ASET32

The source field value for each active processor is copied into the indexed array element
belonging to that processor. Thus different processors may modify different elements of
their arrays. For this reason, this form of array access is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into an
area of CM memory, array, whose allocated length in bits should be at least

) .. slen
(mdez-lzmzt X [_3;-2_]) X 32

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

In all selected processors, the source field is copied to a field of length slen and starting at
address array +1 X 32, where 7 is the the unsigned number stored at indez. Even this is not
quite accurate, because the data within the destination array area is not organized in the
same manner as for CM:aset. Instead, it is organized in a peculiar way for fast per-processor
access. Parallel arrays stored in this format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aset32 should
be accessed only through the operations CM:aref32 and CM: aset32, related operations such
as CM:send-aset32-overwrite and CM: get-aref32, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

113

ASET32-SHARED

ASET32-SHARED

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The array is stored in a special format that allows fast access, and is accessed in
such a way that all the virtual processors within a group of 32 physical processors share the
same array.

Formats CM:aset32-shared-2L source, array, indez, slen, indez-len, indez-limit

Operands source The field ID of the source field.

array The field ID of the destination array field. This must be contiguous
region in CM memory. It need not be in the current VP set.

indez The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.

slen The length of the source field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be a
multiple of 32 and is taken as the array element length.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context This operation is conditional, but whether data is copied depends only on the
contezt-flag of the originating processor; the data, once transmitted to the
receiving processor, is stored into the field indicated by array regardless of
the contezt-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if indez[k] < indez-limit then
for all j such that 0 < j < dlen do
array [32 [S%J + (7 mod 32)] (z’ndea:—limit l-gi-l + indez[k])
— source[k](7)
else
(error)

114

ASET32-SHARED

where r is the VP ratio, and where j is the bit position in each field.

For any two active virtual processors, k and k', if indez[k] = indez[k'], then
either source[k] or source[k'] is stored in dest, depending upon the implemen-
tation.

This is a simple form of array modification for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent indez-limit with elements of length slen.

The source field in each selected processor is copied into the array element (or a portion of
it) indexed. Different processors may modify different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing. If several processors
sharing the same array attempt to modify the same element in a single CM:aset32-shared
operation, then one of the values is stored and the rest are discarded.

Each processor has an array index stored in the field :ndez. This is used to index into array.
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The data within the destination array area is not organized in the same manner as for
CM:aset; instead, it is organized in a peculiar way for fast per-processor access. Shared
arrays stored in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x indez-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM:aset32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1, with
a single call to CM:allocate-stack-field or to CM: allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a vP ratio of 1.

An area of CM memory occupied by array should be allocated at a VP ratio of 1 as a field
whose length in bits is exactly

slen

indez-limit X [——-1
32

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

115

C-ASIN

Calculates the arc sine of the complex source field values and stores the result in the complex
destination field.

Formats CM:c-asin-1-1L dest/source, s, e
CM:c-asin-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s 4+ e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sin™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

The following definition of arc sine determines the range and branch cuts of a complex

number z.
—ilog (z Xz+4+V1- z"’)

116

F-ASIN

Calculates the arc sine of the floating-point source field values and stores the result in the
floating-point destination field.

Formats CM:f-asin-1-1L dest/source, s, e
CM:f-asin-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sin™! source[k)]
if source[k] < —1 or source[k] > 1 then
test-flaglk] — 1
otherwise test-flaglk] — 0

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

117

C-ASINH

Calculates the arc hyperbolic sine of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-asinh-1-1L dest/source, s, e
CM:c-asinh-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
dest[k] «— sinh~! source[k]

The arc hyperbolic sine of the value of the source field is stored into the dest field.

The following definition of the inverse hyperbolic sine determines the range and branch cuts
for a complex number =
log (z+ vVi+ z"’)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

118

F-ASINH

Calculates the arc hyperbolic sine of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-asinh-1-1L dest/source, s, e
CM:f-asinh-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

8 e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
dest[k] « sinh™* source[k]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The arc hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e=8or s =52 and e = 11.

119

C-ATAN

Calculates the arc tangent of the complx source field values and stores the result in the
complex destination field.

Formats CM:c-atan-1-1L dest/source, s, e
CM:c-atan-2-1L dest, source, s, €
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if source contains i or —i, where 7 C(0,1) ; otherwise it is
cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — tan~! source[k)

The arc tangent of the value of the source field is stored into the dest field.

The following definition for arc tangent determines the range and branch cuts for a complex
number 2z

. . 1
zlog ((1+1XZ)X (—1-—4-2_2))
Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

120

F-ATAN

Calculates the arc tangent of the floating-point source field values and stores the result in
the floating-point destination field.

Formats CM:f-atan-1-1L dest/source, s, €
CM:f-atan-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and sourcefields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] =1 then
dest[k] — tan—! source[k]

The arc tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

121

Calculates the arc tangent of the quotient of two floating-point source fields and stores the

F-ATAN2

result in the floating-point destination field.

Formats CM:f-atan2-3-1L dest, sourcel, source2, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point y source field.
source2 The field ID of the floating-point x source field.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if sourcel and source? are both zero; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if

contezt-flaglk] = 1 then
if source2(k] > 0 then
dest] o tan~1 2l
else if source2{k] < 0 then
dest[k] «— sign(sourcel[k]) x (7r — tan™?! %&H)
else if sourcel[k] = 0 A sign(source2[k]) > 0 then
dest[k] — sign(sourcel[k]) x 0
else if sourcel[k] = 0 A sign(source2[k]) < 0 then
dest(k] — sign(sourcel[k]) X
else
dest[k] — sign(sourcel[k]) x §
if (overflow occurred in processor k) then overflow-flaglk] « 1

122

The arc tangent of the quotient of the sourcel and source? fields is stored into the dest
field. The signs of the source fields are taken into account to produce a result in the correct

quadrant of the Cartesian plane.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =

23 and e = 8 or s = 52 and e = 11.

123

C-ATANH

Calculates the arc hyperbolic tangent of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-atanh-1-1L dest/source, s, e
CM:c-atanh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if source is 1 or —1; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « tanh™! source[k]

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

The following definition of the arc hyperbolic tangent determines the range and branch cuts
for a complex number =

log ((1+z) 1- ;13)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e=8 or s = 52 and e = 11.

124

F-ATANH

Calculates the arc hyperbolic tangent of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-atanh-1-1L dest/source, s, e
CM:f-atanh-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flagis set if the magnitude of source is greater than or equal to 1; otherwise
it is cleared.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — tanh~! source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1
if |source[k]| > 1 then test-flaglk] «— 1
otherwise test-flaglk] < 0

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

125

ATTACH

ATTACH

Attaches the Connection Machine hardware to the front end computer and returns the
number of physical processors attached.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmattach command,
documented in the CM System User’s Guide.

Formats result « CM:attach [physical-size], [interface], [wait-p]

Operands physical-size The number of physical processors to be attached. This ar-
gument is an optional argument.

interface The integer indicating a particular bus interface to be used. This is
an optional keyword argument and defaults to 0. When specified,
the invocation must include the keyword :interface followed by an
integer.

wait-p The answer to the question, “Do you want to wait for processors
to become available?”. This is an optional keyword argument and
defaults to nil. When specified, the invocation must include the
keyword :wait-p followed by T or NIL.

Result An unsigned integer, the exact number of physical processors allocated.

Context This operation is unconditional. It does not depend on the contezt-flag.

From the Lisp/Paris interface, this function allocates Connection Machine processors for
use by the front end. To deallocate the processors, use CM:detach. '

In the Lisp/Paris interface, CM:attach is a function of several arguments.

The physical-size argument is optional; if no physical-size argument is specified, then the
smallest possible amount of hardware will be allocated. This default is the smallest number
of processors associated with one sequencer, and varies between 8,192 and 16,384 physical
processors, depending of site requirements.

If specified, the physical-size argument indicates the number of processors desired. It may
be any one of the following values:

:8kp or 8192 Exactly 8,192 physical processors are to be allocated.

:16kp or 16384 Exactly 16,384 physical processors are to be allocated.

126

ATTACH

:32kp or 32768 Exactly 32,768 physical processors are to be allocated.

:64kp or 656536 Exactly 65,536 physical processors are to be allocated.

Alternatively, the physical-size argument may specify the sequencer or sequencers desired
by using one of the following values: (These options are useful primarily for hardware
diagnostic procedures.)

:uccO, :uccl, :ucc2, or :ucc3 Exactly the specified sequencer (also known as a microcon-
troller port) is to be attached, regardless of whether that port controls 8,192 or 16,384
physical processors.

:ucc0-1, :ucc2-3, or :ucc0-3 Exactly the specified sequencers (0 and 1, 2 and 3, or all
four) are to be attached, regardless of the number of physical processors involved.

The :interface keyword argument is used at sites with more than one Connection Machine.
If used, it indicates which Connection Machine is to be attached by specifying the integer
value of the interface for the desired Connection Machine.

The :wait-p keyword is used if you want to wait for the requested processors to become
available. To quit waiting, type Ctrl-C. (From Gmacs, type Ctrl-C, Ctrl-C; from a Lisp
Machine front end, type Ctrl-ABORT.)

The value returned by CM:attach is the number of physical processors that were attached.

An error is signalled if the required number of physical processors or the required set of
microcontroller ports is not available.

The

variable CM:*before-attach-initializations* and the variable CM: *after-attach-initializations*
contain sets of initialization forms that are respectively evaluated before and after anything
else occurs.

Note: On a Symbolics Lisp Machine, the Lisp/Paris interface will also accept :8k, :16k,
:32k, and :64k as physical-size specifications. However, these are not valid symbols in all
Common Lisp implementations—technically speaking, they have the syntax of “potential
numbers” in Common Lisp—and therefore users are encouraged to use the forms :8kp,
:16kp, :32kp, and :64kp in code to ensure portability. The “k” forms will continue to be
available to preserve back-compatibility with existing code that uses them.)

In the C/Paris and Fortran/Paris interfaces, the attaching operation is performed by a user
command cmattach at shell level. See the CM System User’s Guide manual or the cmattach
man page for more information.

127

ATTACHED

ATTACHED

Returns true if the front end process has Connection Machine processors attached for use.

Formats result « CM:attached

Result True if the front end process has Connection Machine processors attached for
use, and false otherwise.

Context This operation is unconditional. It does not depend on the contezi-flag.

This predicate allows a program to determine whether there are any Connection Machine

processors attached (whether actual hardware or simulated) before it issues other Paris
operations.

128

AVAILABLE-MEMORY

AVAILABLE-MEMORY

Determines the number of bits of memory, per virtual processor, that remain available for
allocation on either the heap or the stack.

Formats result « CM:available-memory
Result An unsigned integer, the number of bits available.

Context This operation is unconditional. It does not depend on the context-flag.

The number of bits available for allocation by either CM:allocate-heap-field or CM:allocate-
stack-field is returned to the front end as an integer. The return value represents the number
of bits available for each virtual processor in the current VP set.

129

CEILING

F-F-CEILING

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats CM:f-f-ceiling-1-1L dest/source, s, €
CM:f-f-ceiling-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
dest[k] «— [source[k]]

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of 400, which is stored into the dest field as a floating-point-number.

Note that overflow cannot occur.

131

S-CEILING

The ceiling of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-ceiling-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-ceiling-2-1L dest/sourcel, source2, len
CM:s-ceiling-3-1L dest, sourcel, source?, len

CM:s-ceiling-constant-2-1L dest/sourcel, source2-value, len
CM:s-ceiling-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer quotient field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*,

dlen For CM:s-ceiling-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length=.

slen1 For CM:s-ceiling-3-3L, the length of the sourcef field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx.

slen2 For CM:s-ceiling-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.
test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

132

ILING

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

sourcel |k
dest(k] — [sourceQ k].’

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0
if source2[k] = 0 then
test[k] — 1
else test[k] — 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
ceiling of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

133

CEILING

S-F-CEILING

The floating-point source field values are converted to signed integer values and stored in
the destination field.

Formats CM:s-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.
len The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length#.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— [source[k]]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +o0o. The result is stored into the dest field as a signed integer.

134

CEILIN

U-CEILING

The ceiling of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:u-ceiling-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-ceiling-2-1L dest/sourcel, source2, len
CM:u-ceiling-3-1L dest, sourcel, source2, len
CM:u-ceiling-constant-2-1L dest/sourcel, source2-value, len
CM:u-ceiling-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the unsigned integer quotient field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.
len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.
dlen For CM:u-ceiling-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximume-integer-length*.
slent For CM:u-ceiling-3-3L, the length of the source! field. This must be
non-negative and no greater than CM:*maximum-integer-length*.
slen2 For CM:u-ceiling-3-3L, the length of the source2field. This must be
non-negative and no greater than CM:*maximum-integer-length*.
Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.
Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.
test-flag is set if the divisor is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then

dest[k] — [M]

source2|k]

135

CEILING

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0
if source2[k] = 0 then
test[k] — 1
else test[k] « 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The ceiling of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

136

CEILING

U-F-CEILING

The floating-point source field values are converted to unsigned integer values and stored
in the destination field.

Formats CM:u-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest — [source]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of 400, which is stored into the dest field as an unsigned integer.

137

CHANGE-FIELD-ALIAS

CHANGE-FIELD-ALIAS
Changes the referent of the specified field alias.

Formats CM:change-field-alias alias-id, field-id

Operands alias-id An alias field ID. This must be an alias field ID returned by
CM:make-field-alias. It need not be in the current VP set.

field-id A field ID. This must be a field id returned by CM: allocate-stack-
field or CM:allocate-heap-field; it may not be an offset into a field.
The field need not be in the current VP set.

Context This operation is unconditional. It does not depend on the contezt-flag.

The alias field ID alias-i¢d is made to reference the field identified by field-id. This function
allows field aliases to be recycled.

After a call to CM:change-field-alias, the field length and the physical length associated with
alias-id are exactly what they would be if CM: make-field-alias had been called with field-id.

An error is signaled if the physical length of the aliased field is not exactly divisible by the
VP ratio of the VP set to which field-id belongs. (For more on the physical length associated
with an alias field see the dictionary entry for CM: make-field-alias.)

The alias field 1D can be used in all the same ways as a regular field ID can, with the
following exceptions:

e It cannot be passed to CM:deallocate-heap-field.

e It cannot be passed to CM:deallocate-stack-through.

138

C-F-CIS

Calculates the cosine and sine for the floating-point source field and stores the result in the
complex destination field.

Formats CM:c-f-cis-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is 2(s + e+ 1). The
total length of the source field in this format is s + e + 1.

Overlap The source field must be either identical to dest, identical to (dest+ s+ e+1),
or disjoint from dest.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k].real — cos sourcek]
dest[k].tmag « sin source[k]

The result is a complex number whose real part is the cosine of the source and whose
imaginary part is the sine of the source. The term cis signifies cos +¢sin.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

139

CLEAR-ALL-FLAGS

CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats CM:clear-all-flags
CM:clear-all-flags-always

Context The non-always operation is conditional.

The always operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contexzt-flaglk] = 1) then
test-flaglk] — 0
overflow-flaglk] — 0

Within each processor, all flags for that processor are cleared (but not the context bit).

140

CLEAR-BIT

CLEAR-BIT

Clears a specified memory bit.

Formats CM:clear-bit dest
CM:clear-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — 0

The destination memory bit is cleared within each selected processor.

141

CLEAR-CONTEX

BTy

CLEAR-CONTEXT

Unconditionally makes all processors inactive.

Formats CM:clear-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] — 0

Within each processor, the context bit for that processor is unconditionally cleared.

142

CLEAR-FLAG

CLEAR-flag
Clears a specified flag bit.

Formats CM:clear-test
CM:clear-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
flaglk] — 0

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is cleared.

143

COLD-BOOT

COLD-BOOT

This operation completely resets the state of the hardware allocated to the executing front
end, loads microcode, initializes system tables, and clears user memory.

Formats result «— CM:cold-boot microcode-version, dimensions

Operands microcode-version Either :paris or :diagnostics. This specifies which ver-
sion of the microcode is to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

dimensions The dimension information for initializing the NEws grid.
This argument is optional (actually a keyword argument in the
Lisp interface).

Result In the Lisp/Paris interface three results are returned (as Common Lisp “mul-
tiple values”):
An unsigned integer, the number of virtual processors.
An unsigned integer, the number of physical processors.

An unsigned integer, the number of bits available per virtual processor.

Context This operation is unconditional. It does not depend on the contezt-flag.

The facility for cold-booting Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:cold-boot is a function that accepts optional keyword argu-
ments.

The :microcode-version argument specifies what set of microcode is to be loaded into the
microcontroller(s). There are two choices for this argument: :paris (the default) specifies
microcode that interprets the macroinstruction set, and :diagnostics specifies special
microcode used for hardware maintenance.

The :dimensions argument is largely obsolete now that multiple VP sets may be allocated,
but it is still supported for the sake of compatibility with previous releases of Paris. The
:dimensions argument must be an integer, a list of 1 or 2 integers, or unsupplied. (Passing
nil as the value is the same as not supplying a value.) An integer or a list of one integer
specifies the total number of virtual processors desired. A list of two integers specifies the
desired size of the virtual NEws grid. Each dimension must be a power of two.

If the :dimensions argument is unsupplied, then the configuration of virtual processors
depends on the most recent CM:cold-boot or CM:attach operation preceding this one. If the

144

COLD-BOOT

most recent such operation was CM: cold-boot, then the same virtual processor configuration
set up then will be used this time. If the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEws grid will have the same shape as the physical NEWS grid.

Bootstrapping a Connection Machine system includes the following actions:
o Evaluating all initialization forms stored in the variable CM:*before-cold-boot-
initializations*. This is done before anything else.

o Loading microcode into the Connection Machine microcontroller and initiating mi-
crocontroller execution.

o Clearing and initializing the memory of allocated Connection Machine processors.
o Initializing all of the global configuration variables described in section 3.7.

o Initializing the pseudo-random number generator by effectively invoking the operation
CM:initialize-random-number-generator with no seed.

o Initializing the system lights-display mode by effectively invoking the operation
CM:set-system-leds-mode with an argument of t.

e Evaluating all initialization forms stored in the variable CM:*after-cold-boot-
initializations*. This is done after everything else.

If the cold-booting operation fails, then an error is signalled. If it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM:*user-cube-address-limit¥, CM: *physical-cube-
address-limit*, and CM: *user-memory-address-limit=*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.

145

COMPARE

F-COMPARE

Compares two floating-point source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:f-compare-3-2L dest, sourcel, source, dlen, s, e

Operands - dest The field ID of the signed integer destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*,

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if sourcellk] < source2[k] then
dest[k] — -1

else if sourcel[k] > source2[k] then
dest[k] « 1

else
dest[k] « 0

Two operands are compared as floating-point numbers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal‘to,
or greater than the second source value.

146

COMPAR

S-COMPARE

Compares two signed integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:s-compare-3-3L dest, sourcel, source2, dlen, slenl, slen2

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length=*.
slent The length of the sourcel field. This must be no smaller than 2

but no greater than CM:*maximum-integer-length*.

slen?2 The length of the source? field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length#*.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields source! and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if sourcel[k] < source2[k] then
dest[k] — -1

else if sourcel[k] > source2[k] then
dest[k] — 1

else
dest[k] — 0

Two operands are compared as signed integers. The destination receives the value -1, 0,
or 1 depending on whether the first source value is less than, equal to, or greater than the
second source value. :

147

COMPARE

U-COMPARE

Compares two unsigned integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:u-compare-3-3L dest, sourcel, source2, dlen, sleni, slen2

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

slen1 The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-lengthx.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields source! and source?
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then '

if sourcel[k] < source2[k] then
dest[k] — —1

else if sourcel(k] > source2[k] then
dest[k] — 1

else
dest[k] — 0

Two operands are compared as unsigned integers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal to,
or greater than the second source value.

148

COMPRESS-HEAP

COMPRESS-HEAP

Invokes the heap compression mechanism on demand.

Formats CM:compress-heap

Context This operation is unconditional. It does not depend on the contezt-flag.

Heap compression removes heap memory fragmentation.

By default, the configuration variable CM:*heap-compression-enabled* is T (true), causing
automatic heap compression whenever the stack and heap try to grow into each other.
Therefore, under normal circumstances it not necessary to use the CM:compress-heap in-
struction. ’

Automatic heap compression can, however, make performance calculations unpredictable.
To ensure deterministic performance, set CM:*heap-compression-enabled* to NIL (false,
0), arrange data structures to avoid fragmentation where possible, and explicitly invoke
CM:compress-heap as necessary.

The variable CM:*heap-compression-messages-enabled* determines whether a message is
issued when heap compression occurs. By default, this value is T (true, 1) and heap
compression messages are issued. If this variable is N1L (false, 0), heap compression occurs
without report.

149

CONJUGATE

C-CONJUGATE

The conjugate of the complex source field is placed in the complex dest field.

Formats CM:c-conjugate-1-1L dest/source, s, e
CM:c-conjugate-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e 4 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1. '

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
dest[k].real — source[k).real
dest[k].imag «— —source[k].imag

Given a complex number C the conjugate C’ consists of a real part equal to the real part of
C and an imaginary part equal to the negation of the imaginary part of C. The conjugate
of the complex source field is placed in the dest field.

150

C-COSs

Calculates the cosine of the complex source field and stores the result in the complex
destination field. '

Formats CM:c-cos-1-1L dest/source, s, e
CM:c-cos-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— cos source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The cosine of the value of the complex source field is stored into the complex dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e= 8 or s = 52 and e = 11.

151

Ccos

F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-1-1L dest/source, s, e
CM:f-cos-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — cos source[k]

The cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e= 8 or s =52 and e = 11.

152

C-COSH

Calculates, in each selected processor, the hyperbolic cosine of the complex source field
value and stores it in the complex destination field.

Formats CM:c-cosh-1-1L dest/source, s, e
CM:c-cosh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flagk] = 1 then
dest[k] «— cosh source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11. '

153

F-COSH

Calculates the hyperbolic cosine of the floating-point source field and stores it in the floating-
point destination field.

Formats CM:f-cosh-1-1L dest/source, s, €
CM:f-cosh-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — cosh source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

154

CREATE-DETAILED-GEOMETRY

CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is laid out.

For most applications, the simpler CM: create-geometry instruction is recommended over this
one. Use CM:create-detailed-geometry only to tune the performance of an application with
stable, known inter-processor communication patterns. (See also CM:intern-geometry and
CM:intern-detailed-geometry).

Formats result «— CM:create-detailed-geometry azis-descriptor-array, [rank]

Operands azis-descriptor-array A front-end vector of descriptors for the grid axes.

In the C interface, the elements of the azis-descriptor-array must
be of type CM_axis_descriptor_t, that is, they must be pointers to
structures of type CM_axis_descriptor.

In the Lisp interface, the azis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the ge-
ometry being created. This must be between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the newly created geometry. This is of type
CM_geometry_id_t in C, of type CM:geometry-id in Lisp, and an integer in

Fortran.

Context This operation is unconditional. It does not depend on the contezt-flag.

CM:create-detailed-geometry takes an array of axis descriptors, one for each axis. The oper-
ation returns a geometry ID, which may then be used to create a VP set or to respecify the
geometry of an existing VP set.

Each axis descriptor specified by CM:axis-descriptor-array is a structure describing one NEWS
axis in some detail. Most of the descriptor components are unsigned integers, but the
value of the ordering component is different. From Lisp, the ordering component must be
either :news-order, :send-order, or :framebuffer-order. From C or Fortran, it must be either
CM_news_order, CM_send_order, or CM_framebuffer_order.

The C definitions of the type of the ordering component and of the axis descriptor are shown
below. Notice that the elements of the azis_descriptor_array must be pointers to type struct
CM_axis_descriptor.

155

CREATE-DETAILED-GEOMETRY

typedef enum {CM_news_order, CM_send_order } CM_axis_order_t;

typedef struct CM_axis_descriptor {
unsigned length;
unsigned weight;
CM_axis_order_t ordering;
unsigned char on_chip_bits;
unsigned char off_chip_bits;

} * CM_axis_descriptor_t;

Actually, this structure has other components as well. C code should use the definition of
CM_axis_descriptor from the cmtypes.h include file.

The Fortran/Paris interface defines CM_axis_descriptor as an array:
INTEGER RANK,DESCRIPTOR_ARRAY(7,RANK)

The elements of each Fortran axis descriptor are defined such that:

DESCRIPTOR_ARRAY (1,I) is the length of axis I
DESCRIPTOR_ARRAY (2,1) is the weight of axis I
DESCRIPTOR_ARRAY (3,I) is the ordering of axis I
DESCRIPTOR_ARRAY (4,1) is the on-chip bits of axis I
DESCRIPTOR_ARRAY (6,1) is the off-chip bits of axis I

Thus CM: axis-descriptor-array is, in Fortran, an array of axis descriptor arrays.

The Lisp definitions of the type of the ordering component and of the axis descriptor are
shown below.

(deftype cm:axis-order () ’(member :news-order :send-order))

(defstruct CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (off-chip-bits 0))

The azis-descriptor-array operand must be created by first making one axis descriptor for
each axis and then using these to assign values to the array elements. An example in C is
given below. Notice that azis! and azis2 are pointers to axis descriptor structures and that
the descriptor structures are zeroed before any values are assigned.

CM_geometry_id_t my_geometry;
CM_axis_descriptor_t my_geometry_axes[2];
CM_axis_descriptor_t axisl, axis2;

156

axisl = (cm_axis_descriptor_t)malloc(sizeof(struct CM_axis_descriptor));
axis2 = (cm_axis_descriptor_t)malloc(sizeof(struct CM_axis_descriptor));
bzero(axisl, sizeof(struct CM_axis_descriptor));
bzero(axis2, sizeof(struct CM_axis_descriptor));

axisi->length = 128;
axis2->length = 256;
axisi->weight = §;

axis2->weight = 10;

axisi->ordering
axis2->ordering

CM_news_order;
CM_news_order;

my_geometry_axes[0] = axisi; -
my_geometry_axes[i] = axis2;
my_geometry = CM_create_detailed_geometry(my_geometry_axes, 2);

The following example specifies the same axes, descriptor array, and geometry in Lisp.
Notice that the constructor CM: make-axis-descriptor is used.

(setq my-geometry-axes make-array(2))

(setq axisi

(CM:make-axis-descriptor :length 128 :weight 5
:ordering :news-order))

(setq axis2

(CM:make-axis-descriptor :length 256 :weight 10

tordering :news-order)))

(setf (aref my-geometry-axes 0) axisi)

(setf (aref my-geometry-axis 1) axis2)

(setq my-geometry (CM:make-detailed-geometry my-geometry-axes 2)

Once the geometry has been created, the user may destroy the descriptors and the array
used to provide axis information. All necessary information is copied out of these structures
as the geometry is created.

The “length” component of an axis descriptor specifies the length of the axis; it must be a
power of two.

The “weight” component of the axis descriptors specifies the relative frequency of inter-
processor communication along different axes. For instance, in the above example it is
assumed that communication occurs about half as often along azis1, which is given a weight
of 5, as along azis2, which is given a weight of 10. Only the relative values of the weight
components matter. The same communication traffic could be specified with weights of
1 and 2, or of 3 and 6. If all weights are 1, it is assumed that all axes are used equally
frequently.

157

CREATE-DETAILED-GEOMETRY

R R S

Given a set of weight components, Paris lays out the hypercube grid for optimal per-
formance. Virtual processors are mapped onto the physical hypercube in a pattern that
exploits the fact that communication is especially rapid among virtual processors within
the same physical processor and among virtual processors within the same physical chip.

The “ordering” component of an axis descriptor specifies how NEWs coordinates are mapped
onto physical processors for that axis. The value :news-order specifies the usual embedding
of the grid into the hypercube such that processors with adjacent NEWs coordinates are in
fact neighbors within the hypercube. The value :send-order specifies that, if processor A has
a smaller NEWS coordinate than processor B, then A also has a smaller send-address than B.
This ordering is rarely used. However, :send-order ordering is useful for specific applications
such as FFT. The value :framebuffer-order is provided solely for creating vp sets that are
used as image buffers (for details, see chapter 1 of the Generic Display Interface Reference
Manual).

If the “weight” components are all 1, then the mapping of virtual to physical processors
can be specified with the “on-chip-bits” and “off-chip-bits” components of the axis descrip-
tors. This is not recommended. To tune performance for communication, use the weight
component.

158

CREATE-GEOMETRY

CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths. See also CM:intern-geometry.

Formats - result « CM:create-geometry dimension-array, [rank]

Operands dimension-array A front-end vector of unsigned integer lengths of the
grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user’s
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array. This must be between 1 and CM: *max-geometry-
rank*, inclusive. This argument is not provided when calling Paris
from Lisp.

Result A geometry ID, identifying the newly created geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of 2. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry ID for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry ID may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWs communication. The operation CM:create-
detailed-geometry may be used instead to get more precise control over layout for perfor-
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

159

CROSS-VP-MOVE

CROSS-VP-MOVE

Copies data from a source field with a particular shape and orientation to a destination
field with the same shape, but possibly with a different orientation within the CM. The
source and destination VP sets are not required to have matching dimensionality along all
axes. However, every source axis selected for inclusion in this copying operation must be
mapped to a destination axis of the same length. The source field must be in the current
VP set; the destination field may be in a different vP set.

Formats CM: cross-vp-move-1L dest, source, azis-mapping, .
source-azis-coords, dest-azxis-coords, len
CM:cross-vp-move-always-1L dest, source, azis-mapping,
source-azis-coords, dest-azis-coords, len

Operands dest The field ID of the dest field. This is in the destination VP set.
source The field ID of the source field. This is in the current VP set.

azis-mapping A front-end vector of unsigned integer values. The set of
valid values also includes the null value CM: *cvpm-indexed*.

This vector defines how the source axes are mapped to the desti-
nation axes during data transfer. The length of this vector is equal
to the number of axes in the source VP set. Thus, axis-mapping
element 0 corresponds to source axis 0, and so forth. The value of
each vector element should indicate to which destination axis the
corresponding source axis is mapped.

For any source axis that is not to be copied, give the corresponding
axis-mapping element the value CM:*cvpm-indexed#*; treatment of
such axes is further specified by the next argument.

source-azis-coords A front-end vector of unsigned integer values.. The set
of valid values also includes the null value CM: *cvpm-mappedx.

This vector defines what source data is copied by the operation.
The length of this vector is equal to the number of axes in the
source VP set. Thus, source-axis-coords element 0 corresponds to
source axis 0, and so forth. Any source axis that is mapped in
the axis-mapping vector should have a source-axis-coords value of
CM: *cvpm-mapped#*; the shape of the data to be copied is described
by these mapped axes.

The remaining, unmapped, source-axis-coords elements should be
integers, each of which indexes a specific point along its corre-
sponding source axis; these coordinates describe the location of
the source data to be copied.

160

CROSS-VP-MOVE

dest-azis-coords A front-end vector of unsigned integer values.. The set of
valid values also includes the null value CM:*cvpm-mapped+.
This vector defines where within the destination vP set the source
data is transferred. The length of this vector is equal to the number
of axes in the destination vp set. Thus, dest-axis-coords element
0 corresponds to dest axis 0, and so forth. Any destination axis
that is mapped in the axis-mapping vector should have a dest-axis-
coords value of CM:*cvpm-mapped#*; the final orientation of the
copied data is described by these mapped axes.
The remaining, unmapped, dest-axis-coords elements should be in-
tegers, each of which indexes a specific point along its correspond-
ing dest axis; these coordinates describe the final location of the
copied data.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap For d, e, s, and t, the fields s, o, u, , ¢, and e must be either nonoverlapping
or identical.

Context This operation is conditional.

Data values of len bits each are copied from the source field into the dest field, where the
source field is in the current vP set and the dest field may be in the same or a different
vP set. During this operation, the copied data is moved from one orientation within the
Connection Machine - dictated by the layout of the participating source axes — into another
orientation dictated by the layout of the participating dest axes.

The three vector arguments determine what source data is copied, where within the des-
tination geometry it is put, and how it is moved or reoriented within the CM during this
process.

The source-azis-coords vector specifies what source data is copied. It contains one element
for each source geometry axis such that element 0 corresponds to axis 0, and so forth. It
is not necessary to copy all the source data: along each axis, either one point or all points
may be included in the shape that is copied. For example, to copy a 2-dimensional shape
from a 3-dimensional geometry, we include two entire axes and one point along the third
axis.

To include all the data along a particular source axis, specify the corresponding
source-azis-coords value as CM:*cvpm-mapped* — meaning this axis is mapped in its en-
tirety to some destination axis. The shape of the source data to copy is defined by the
lengths of the axes specified as mapped. The exact mapping is given by the azis-mapping
vector. To include only one point along a particular source axis, specify the corresponding
source-azis-coords value as an unsigned integer between 0 and one less than the extent of
the axis.

161

CROSS-VP-MOVE

The dest-azis-coords vector specifies where in the destination to put the source data. This
vector is analogous to source-azis-coords in that it specifies which destination axes recieve
data and where along the remaining axes the copying is carried out. There must be one
dest-azis-coords element for each destination geometry axis and each element value must
be either an integer or CM:*cvpm-mapped+.

To transfer data to an entire axis, specify the corresponding dest-azis-coords value as
CM:*cvpm-mapped*. To transfer data only at a specific coordinate along an axis, specify
an integer value. In dest-azis-coords and source-azis-coords, the number and lengths of the
axes specifed as mapped must exactly match. For example, when copying a 2-dimensional
shape from a 3-dimensional VP set into a 2-dimensional VP set, the source-azis-coords will
include two mapped axes and one coordinate while the dest-azis-coords will include two
mapped axes and no coordinates.

The azis-mapping vector specifies how the copied data is reoriented as it is transferred from
the source geometry to the destination geometry. As discribed above, the source-azis-coords
and dest-axis-coords vectors each specify certain source and dest axes as “mapped.” The
azis-mapping vector determines which source axis is mapped to which destination axis. It
contains one element for each source geometry axis such that element 0 corresponds to
source axis 0 and so forth. Each element value is either an integer or CM: *cvpm-indexed*.

For each source axis that is not mapped to a destination axis, give the corresponding
azis-mapping element the value CM:*cvpm-indexed* — meaning that this axis is indexed.
The source-azis-coords vector gives coordinates from which data along an indexed axis is
copied. For each source axis that is mapped to a destination axis, give the corresponding
azis-mapping element an unsigned integer value indicating which destination axis is to
recieve data from this source axis. Each pair of mapped axes must be of the same length.

Note: Proper execution of this instruction requires that the lengths of the source and
destination axes not be changed between invocations. Be especially careful if a CM:set-vp-
set-geometry call changes the geometry of either the source or destination VP set between
invocation of CM: cross-vp-set-move-1L.

The code fragment below demonstrates copying a 2-dimensional shape from a 3-dimensional
source geometry into a 2-dimensional destination geometry. Source axes 0 and 1 are copied
from coordinate ¢ along source axis 2. Source axis 0 maps to destination axis 1 and source
axis 1 maps to destination axis 0.

162

DEALLOCATE-GEOMETRY

DEALLOCATE-GEOMETRY

Declare that a geometry will no longer be used.

Formats CM:deallocate-geometry geometry-id
Operands geometry-id A geometry ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that a geometry will no longer be used. The
system is permitted to reclaim any and all resources associated with that geometry. It is
an error for the user program to give the specified geometry ID as an argument to any Paris
operation once it has been deallocated.

It is an error to deallocate a geometry that is still in use by some VP set.

163

DEALLOCATE-HEAP-FIELD

DEALLOCATE-HEAP-FIELD

Declare that a heap field will no longer be used.

Formats CM:deallocate-heap-field heap-field-id
Operands heap-field-id A field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that a field will no longer be used. The system
is permitted to reclaim any and all resources associated with that field, in particular the
memory that it occupied. It is an error for the user program to give the specified field 1p
as an argument to any Paris operation once it has been deallocated.

164

DEALLOCATE-STACK-THROUGH

DEA‘LLOCATE-STACK-TH ROUGH

Declare that a stack field and all fields allocated more recently than it will no longer be
used.

Formats CM:deallocate-stack-through stack-field-id
Operands stack-field-id A field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that the specified field on the stack, and all fields
allocated more recently than it, will no longer be used. (Note that any fields allocated more
recently than the specified field are necessarily closer to the top of the stack.) The system
is permitted to reclaim any and all resources associated with those fields, in particular the
memory that they occupied. It is an error for the user program to give the field ID of a
deallocated field as an argument to any Paris operation.

165

DEALLOCATE-VP-SET

DEALLOCATE-VP-SET

Declare that a VP set will no longer be used.

Formats CM:deallocate-vp-set vp-set-id
Operands wvp-set-id A VP set ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that a vp set will no longer be used. The system
is permitted to reclaim any and all resources associated with that vp set. It is an error for
the user program to give the specified VP set ID as an argument to any Paris operation once
it has been deallocated.

It is an error to deallocate a VP set for which there are still fields that have not yet been
deallocated. The user should first deallocate all fields belonging to that vP set, except the
flags, which are deallocated automatically when the vPp set is deallocated.

166

DEPOSIT-NEWS-COORDINATE

DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWs coordinate.

Formats CM:deposit-news-coordinate-1L geometry, dest/send-address,
azxis, coordinate, slen

CM:deposit-news-constant-1L. geometry, dest/send-address,

azis, coordinate-value, slen

Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used.

dest The field ID of the unsigned integer destination field. (In the
instruction formats currently provided, the dest field is always the
same as the send-address source field. The length of this field is
implicitly the same as geometry-send-address-length(geometry).)

send-address The field ID of the unsigned integer send address field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis. :

coordinate The field ID of the unsigned integer NEWS coordinate. field.
This specifies the position along the corrsponding axis of the pro-
cessor whose send address is to be calculated.

coordinate-value An unsigned integer immediate operand to be used as
the NEWs coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than CM:*maximum-integer-length*.

Overlap For CM:deposit-news-coordinate-1L, the coordinate field must not overlap the
dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — deposit-news-coordinate(geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWs axis, with all other coordinates equal
to those for the processor identified by send-address.

167

DEPOSIT-NEWS-COORDINATE

FE-DEPOSIT-NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS

coordinate.

Formats

Operands

result <« CM:fe-deposit-news-coordinate geometry, send-address,
azis, coordinate

geometry A geometry ID. This geometry determines the NEwWs dimensions
to be used.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address.

Context This operation is performed on the front end. It does not depend on the CM
contezt-flag.

Definition Return deposit-news-coordinate(geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWs axis, with all other coordinates equal to those
for the processor identified by send-address.

168

DETACH

DETACH

Detaches the specified front-end computer from the Connection Machine hardware previ-
ously allocated for and attached to it.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmdetach command,
documented in the CM System User’s Guide.

Formats CM:detach front-end-name, suppress-confirmation

Operands front-end-name The name of a front end, or a list of a front end name and a
bus-interface specifier. This argument is optional.

suppress-confirmation The confirmation suppression flag. This argu-
ment is optional. If supplied and not false, then the interactive
query and prompt requesting confirmation of the detach opera-
tion is suppressed.

Context This operation is unconditional. It does not depend on the contezt-flag.

The facility for detaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:detach is a function of two arguments. The arguments are
optional.

In most normal use no argument is specified. In this case the front end executing the call to
CM:detach releases all Connection Machine hardware to which it had been attached, reset-
ting relevant parts of the Nexus so that the front end can no longer issue macroinstructions
to the Connection Machine system. (An error is signalled if in fact no hardware had been
attached in the first place.) This use of CM:detach is the normal way of releasing attached
hardware and will not disrupt users on other front ends.

If a front-end-name argument is specified, it must be the name of a front end that is con-
nected to the same Connection Machine system (that is, Nexus) as the front end executing
the call, or perhaps a list of a front end name and a small integer identifying a bus interface
on that front end. A front end name may be either a string or a symbol. Examples (assum-
ing, for the sake of exposition, that front end computers are named after Shakespearean
characters):

(detach ’hamlet) ;Detach front end named Hamlet

169

DETACH

(detach "lear" t) ;Detach front end named Lear, and don’t confirm
(detach ’(desdemona 1)) ;Detach bus interface i1 of front end Desdemona

Specifying the name of the front end that is executing the call has the same effect as
specifying no argument; the front end is gracefully detached. But specifying the name of
some other front end forcibly detaches that other front end, possibly disrupting any ongoing
interaction with the Connection Machine system. The external communications network is

used to send a message to the detached front end to inform its user that it has been forcibly
detached.

There are two sets of initialization forms, kept in the variables CM:*before-detach-
initializations* and CM: *after-detach-initializations#, that are evaluated before and after any-
- thing else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmdetach at shell level. See the Front End Subsystems manual or the cmdetach
man page.

170

DIVIDE

C-DIVIDE

The quotient of two complex source values is placed in the destination field. Note: Integer
division is performed by the round, truncate, rem, and mod operations.

Formats

Operands

Overlap’

Flags

Context

CM:c-divide-2-1L dest/sourcel, source?, s, e
CM:c-divide-always-2-1L dest/sourcel, source2, s, e
CM:c-divide-3-1L dest, sourcel, source2, s, e
CM:c-divide-always-3-1L dest, sourcel, source2, s, e
CM:c-divide-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-divide-const-always-2-1L dest/sourcel, source2-value, s, e
CM:c-divide-constant-3-1L dest, sourcel, source2-value, s, e
CM:c-divide-const-always-3-1L dest, sourcel, source2-value, s, e
CM:c-divinto-2-1L dest/source2, sourcel, s, e
CM:c-divinto-always-2-1L dest/source2, sourcel, s, e
CM:c-divinto-constant-2-1L dest/source2, sourcel-value, s, e
CM:c-divinto-const-always-2-1L dest/source2, sourcel-value, s, e
CM:c-divinto-constant-3-1L dest, source2, sourcel-value, s, e

CM:c-divinto-const-always-3-1L dest, source2, sourcel-value, s, e

dest The field ID of the complex destination field. This is the quotient.
sourcel The field ID of the complex first source field. This is the dividend.
source2 The field ID of the complex second source field. This is the divisor.
sourcel-value A complex immediate operand to be used as the first source.

source2-value A complex immediate operand to be used as the second

source.
s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
2(s+e+1).

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

171

DIVIDE

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k]/source2[k]
if source2[k] = 0 then test-flaglk] — 1
if (overflow occurred in processor k) then overflow-flaglk] — 1

The sourcel operand is divided by the source2 operand, treating both as complex numbers.
The result is stored into memory. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

172

DIVIDE

F-DIVIDE

The quotient of two floating-point source values is placed in the destination field.

Note: Integer division is performed by the round, truncate, rem, and mod operations.

Formats CM:f-divide-2-1L dest/sourcel, source?, s, e
CM:f-divide-always-2-1L dest/sourcel, source2, s, e
CM:f-divide-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-divide-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-divinto-2-1L dest/source2, sourcel, s, e
CM:f-divinto-always-2-1L dest/source2, sourcel, s, e
CM:f-divinto-constant-2-1L dest/source?, sourcel-value, s, e
CM:f-divinto-const-always-2-1L dest/source2, sourcel-value, s, e
CM:f-divide-3-1L dest, sourcel, source?, s, e
CM:f-divide-always-3-1L dest, sourcel, source2, s, e
CM:f-divide-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-divide-const-always-3-1L dest, sourcel, source2-value, s, e
CM:f-divinto-constant-3-1L dest, source2, sourcel-value, s, e

CM:f-divinto-const-always-3-1L dest, source2, sourcel-value, s, e

Operands dest The field ID of the floating-point destination field. This is the
quotient.
sourcel The field ID of the floating-point first source field. This is the
dividend.
source2 The field ID of the floating-point second source field. This is the
divisor.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second

source.

s e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+1.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

173

DIVIDE

Context The non-always operations are conditional. The destination and flags may be
altered only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination and flags may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flagk] = 1) then
dest[k] — sourcel[k]/source2[k]
if source2[k] = 0 then tesi-flag — 1
if (overflow occurred in processor k) then overflow-flaglk] — 1

The sourcel operand is divided by the source2 operand, treating both as floating-point
numbers. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand. '

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

174

ENUMERATE

ENUMERATE

The destination field in every selected processor receives the number of processors below or
above it in some ordering of the processors.

Formats CM:enumerate-1L dest, azis, len, direction, inclusion, smode, sbit

Operands dest The field ID of the unsigned integer destination field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The sbit field must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let S = scan-subset(k, azis, len, direction, inclusion, smode, sbit)
dest[k] «— | Sk

where scan-subset is as defined on page 45.

See section 5.20 on page 42 for a general description of scan operations and the effect of the
aris, direction, inclusion, smode, and sbit operands.

The CM:enumerate-1L operation stores into the dest field of each selected processor the size
of the scan subset for that processor. This means that every processor within a scan set of
size N will receive a different integer in the range 0 to N — 1 (for an exclusive enumeration)
or in the range 1 to N (for an inclusive enumeration).

A call to CM:enumerate-1L is equivalent to the sequence below, but may be faster.

175

ENUMERATE

CM:u-move-constant-1L temp, 1, len
CM:scan-with-u-add-1L dest, temp, azis, len, direction, inclusion, smode, sbit
CM:u-subtract-constant-1L dest, 1, len

176

C-EQ

Compares two complex source values. The test-flag is set if they are equal, and otherwise
it is cleared.

Formats CM:c-eq-1L sourcel, source2, s, e
CM:c-eq-constant-1L sourcel, source2-value, s, e
CM:c-eqg-zero-1L sourcel, s, e

Operands source!l The field ID of the complex first source field.
source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source. For CM:c-eq-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is 2(s+e+1).

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors:
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel(k] = source2[k]
test-flaglk] « 1
else

test-flaglk] — 0

Two operands are compared as complex numbers. The first operand is a memory field; the
second is a memory field or an immediate value. The test-flag is set if the first operand is
equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

177

F-EQ

Compares two floating-point source values. The test-flag is set if they are equal, and other-
wise is cleared.

Formats CM:f-eq-1L sourcel, source2, s, e
CM:f-eq-constant-1L sourcel, source2-value, s, e
CM:f-eq-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-eq-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the source! and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] = source2|k)
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

178

S-EQ

Compares two signed integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:s-eq-1L sourcel, source?, len
CM:s-eq-2L sourcel, source2, slenl, slen2
CM:s-eq-constant-1L sourcel, source2-value, len
CM:s-eq-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-eq-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source? fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length=.

slen1 The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 - The length of the source? field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] = source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel! is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

179

U-EQ

Compares two unsigned integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:u-eq-1L sourcel, source2, len
CM:u-eq-2L sourcel, source?, slenl, slen2
CM:u-eq-constant-1L sourcel, source2-value, len
CM:u-eq-zero-1L sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-eq-zero-1L, this implicitly has the value
zero.

len The length of the source! and source2 fields. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slen1 The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length#.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel(k] = source2(k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is equal to the second operand, and is cleared otherwise.

180

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

181

EXP

C-EXP

The exponent of the complex source field is stored in the complex destination field.

Formats CM:c-exp-1-1L dest/source, s, €
CM:c-exp-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — exp source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The value e® is stored into the dest field, where s is the value of the source field, and e is
the base of the natural logarithms; e ~ 2.718281828...

182

EXP

F-EXP

Calculates, in each selected processor, the exponential function e® of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-1-1L dest/source, s, e
CM:f-exp-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if source[k] = 400 then
dest[k] «— +o0

else if source[k] = —co then
dest[k] — +0

else
dest[k] « exp source[k]

if (overflow occurred in processor k) then overflow-flagk] « 1

Call the value of the source field s; the value e® is stored into the dest field, where e ~
2.718281828... is the base of the natural logarithms.

183

EXTRACT-MULTI-COORDINATE

FE-EXTRACT-MULTI-COORDINATE

Calculates, on the front end, the NEws multi-coordinate of a processor specified by send-
address. A multi-coordinate is needed in order to use the CM: multispread-copy-1L instruc-

tion.
Formats result « CM:fe-extract-multi-coordinate geometry, azis-mask, send-address
Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used. :
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
send-address An unsigned integer immediate operand to be used as the
send address of some processor.
Result An unsigned integer, the NEWs multi-coordinate of the specified processor
along the specified axes.
Context This operation is performed on the front end. It does not depend on the CM
contezt-flag.
Definition Let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}

Return eztract-multi-coordinate(geometry, azis-set, send-address)

where eztract-multi-coordinate is as defined on page 44.

This function calculates, entirely on the front end, the NEWs multi-coordinate of a processor
along specified NEWS axes. The axes are indicated by the azis-mask argument; the processor
is identified by its send-address.

184

EXTRACT-NEWS-COORDINATE

EXTRACT-NEWS-COORDINATE

Determines the NEWs coordinate of a processor specified by send-address.

Formats

Operands

Context

CM:extract-news-coordinate-1L geometry, dest, azis, send-address, dlen

geometry A geometry ID. This geometry determines the NEws dimensions
to be used.

dest The field ID of the unsigned integer destination field.

aris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address The field ID of the send address field. For each processor,
this identifies the send address of some other processor.

dlen The length of the dest field. This must be non-negative and no

greater than CM:*maximum-integer-length*.

This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — eztract-news-coordinate(geometry, azis, send-address)

where eztract-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the NEWs coordinate of a processor
along a specified NEws axis. The axis is indicated by the azis argument; the processor is
identified by its send-address.

185

EXTRACT-NEWS-COORDINATE

FE-EXTRACT-NEWS-COORDINATE

Calculates, on the front end, the NEWSs coordinate of a processor specified by send-address.

Formats result «— CM:fe-extract-news-coordinate geometry, azis, send-address
Operands geometry A geometry ID. This geometry determines the NEws dimensions
to be used.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
send-address An unsigned integer immediate operand to be used as the
send address of some processor.
Result An unsigned integer, the NEWS coordinate of the specified processor along the
specified axis.
Context This operation is performed on the front end. It does not depend on the CM
context-flag.
Definition Return eztract-news-coordinate(geometry, azis, send-address)

where eztract-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the NEWs coordinate of a processor along
a specified NEwWs axis. The axis is indicated by the azis argument; the processor is identified
by its send-address.

186

FFT

DEALLOCATE-FFT-SETUP

Deallocates a front-end setup descriptor that has been used to prepare information for
execution of an FFT routine.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. A more efficient set of FFT routines are included in the cMm
Scientific Subroutines Library.

Formats CMSSL:deallocate-fft-setup setup-id
Operands setup-id The ID of the FFT setup descriptor to be deallocated.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

This routine may be used to remove an FFT setup descriptor when it is no longer needed.
The setup-id argument must have been obtained by a call to CMSSL: c-fft-setup.

An fft setup descriptor occupies memory both on the front end and on the Connection
Machine. It is therefore wise to free this space by calling CMSSL:deallocate-fft-setup after
completion of all FFT routines that use the specified setup descriptor.

187

FFT

C-C-FFT

The Discrete Fourier Transform of the complex source field is calculated using a Fast Fourier
Transform (FFT) algorithm. The complex result is stored in the destination field.

A Fourier transform routine converts (possibly multidimensional) sequences between the
time or space domain and the frequency domain. This type of transform has a variety
of useful applications. For example, an FFT can be used to filter discrete signals, to
smooth input data or output images, to interpolate or extrapolate from a given data set,
to measure the correlation between two samples, or to multiply polynomials and extremely
large integers.

The Fast Fourier Transform is called a fast transform because it exhibits O(N log N) com-
plexity, where O is the order of complexity and N is the length of the input sequence. By
comparison, the Discrete Fourier Transform exhibits only O(N?) complexity.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c-c- to signify that single-precision
complex operands are involved. A more efficient set of FFT routines are included in the cM
Scientific Subroutines Library.

Formats CMSSL:c-c-fft dest, source, setup, ops, source-bit-order, dest-bit-order,
source-cm-order, dest-cm-order, scale

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

setup The setup-id. This must be a setup ID returned by CMSSL:c-fft-
setup. The geometry information of the setup must be identical to
that of the source and destination fields.

ops A front-end vector of operation identifiers. Each element spec-
ifies whether the corresponding source axis is transformed and,
if so, by what method. Valid vector element values are :f-xform
(FFT fxform in C; 1 in Fortran) for a forward transform, :i-xform
(FFTAxfrom in C; 2 in Fortran) for an inverse transform, and :nop
(FFT.nop in C; 0 in Fortran) for no transform.

source-bit-order A front-end vector of input bit orderings. Each element iden-
tifies the bit ordering of the corresponding source axis and must
be either :normal or :bit-reversed. (The corresponding values are
are FFT_normal and FFT_bit_reversed in C, and 0 and 1 in Fortran,
respectively.)

dest-bit-order A front-end vector of output bit orderings. Each element
identifies the bit ordering of the corresponding destination axis

188

FFT

and must be either :normal or :bit-reversed. (The corresponding
values are are FFT_normal and FFT bit_reversed in C, and 0 and 1
in Fortran, respectively.)

source-cm-order A front-end vector of input orderings. Each element
declares the addressing mode of the corresponding source axis and
must be one of the following: :send-order, :news-order, or :default.
(The corresponding values are FFT_send_order, FFT_news_order,
and FFT_default in C, and 1, 2, and 0 in Fortran, respectively.)

A value of :default causes the current ordering of an axis to be
used.

dest-cm-order A front-end vector of output orderings. Each element
declares the addressing mode of the corresponding destination
axis and must be one of the following: :send-order, :news-
order, or :default. (The corresponding values are FFT_send_order,
FFT_news_order, and FFT_default in C, and 1, 2, and 0 in Fortran,
respectively.)
A value of :default causes the current ordering of an axis to be
used.

scale A front-end vector of output scaling methods. Each element spec-
ifies whether the corresponding destination axis is rescaled and,
if so, by what method. Valid values are :noscale for no rescaling,
:scale-sqrt for scaling by the inverse square root of the FFT, and
:scale-n for scaling by the inverse of the size of the FFT. (The corre-
sponding values are FFT_noscale, FFT scale_sqrt, and FFT _scale_n
in C, and 0, 1, and 2 in Fortran, respectively.)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same

format. FFT performance is slightly better if the two fields are identical.

Context This operation is unconditional. It does not depend on the context-flag.

Definition For every virtual processor k in the current-vp-set do
dest[k] — FFT(source(k))

The Discrete Fourier Transform of the source field is stored in the dest field. A multi-
dimensional transform is computed by performing the transform across each dimension in
sequence.

The source and destination fields must either belong to the same VP set or to VP sets of
identical shape and size.

189

FFT

The ops, source-bit-order, dest-bit-order, source-cm-order, dest-cm-order, and scale argu-
ments are one-dimensional front-end arrays. The length of each is equal to the rank of the
setup geometry.

By convention, a Fast Fourier Transform operation reverses the order of the data bits when
storing the result in the destination. The vectors source-bit-order and dest-bit-order specify
whether the source and destination data are treated as normal or as bit-reversed.

Along any given dimension of the data’s geometry, the Connection Machine FFT instruction
is most efficient for data arranged in send order. Many FFT applications do not depend
on the order of the data elements. The dest-cm-order and source-cm-order arguments are
therefore provided to permit the most efficient execution possible along each dimension.

C/Paris code that calls the Paris FFT routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris FFT.

Fortran /Paris code should include the line

INCLUDE °’/usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris FFT.

190

FFT

C-FFT-SETUP

Allocates a front-end setup descriptor for use with the CMSSL:fft Fast Fourier Transform
routines and returns a setup ID.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c- to signify that single-precision complex
operands are involved. A more efficient set of FFT routines are included in the cM Scientific
Subroutines Library.

Formats result «— CMSSL:c-fft-setup geometry-id
Operands geometry A geometry ID.
Result The ID of the newly created FFT setup descriptor.

Context This is a front-end operation. It does not depend on the value of the context-

flag.

This routine computes information needed to perform a Fast Fourier Transform (FFT),
stores it in an FFT setup descriptor, and return the setup-id.

In Lisp/Paris, a setup ID is a structure of type CMSSL:fft-setup. In C/Paris, it is a pointer
to a structure of type FFT _fft_setup_t. In Fortran/Paris it is an integer.

The geometry argument must be a geometry ID returned by a call to CM:create-geometry,
CM: create-detailed-geometry, intern-geometry, or intern-detailed-geometry.

The returned setup ID is a valid value for the setup argument to any CMSSL FFT routine
if the following requirement is obeyed. The geometries of the FFT source and destination
fields must be identical to that of the setup geometry.

This routine must be reinvoked whenever the geometry of an FFT source field VP set is
changed. CMSSL:c-fft-setup allocates memory both on the front end and on the cMm. To free
this memory, use CMSSL:deallocate-fft-setup.

C/Paris code that calls the Paris FFT routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris FFT.

191

FFT

Fortran/Paris code should include the line

INCLUDE ’/usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris FrT.

192

FIELD-VP-SET

FIELD-VP-SET

Returns the VP set associated with a field.

Formats result « CM:field-vp-set field
Operands field The field ID of the field.
Result A VP set ID, identifying the vP set to which the field belongs.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return vp-set(field)

This operation may be used to determine the vP set with which any given field is associated.
The field need not belong to the current vp set.

193

F-S-FLOAT

Converts a signed integer field into a floating-point number field.

Formats CM:f-s-float-2-2L dest, source, slen, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the signed integer source field.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
dest[k] «— source[k]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The source field, treated as a signed integer, is converted to a floating-point number, which
is stored into the dest field.

194

F-U-FLOAT

Converts an unsigned integer field into a floating-point number field.

Formats CM:f-u-float-2-2L dest, source, slen, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the unsigned integer source field.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The source field, treated as an unsigned integer, is converted to a floating-point number,
which is stored into the dest field.

195

F-F-FLOOR

In each selected processor, calculates the largest integer that is not greater than a specified
floating-point value and stores the result as a floating-point field.

Formats CM:f-f-floor-1-1L dest/source, s, e
CM:f-f-floor-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
dest[k] — | source[k]]

The source field, treated as a floating-point number, is rounded to the nearest integer in

the direction of —oo, which is stored into the dest field as a floating-point number.

_ Note that overflow cannot occur.

196

S-FLOOR

The floor of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-floor-3-3L dest, sourcel, source, dlen, slenl, slen2
CM:s-floor-2-1L dest/sourcel, source, len
CM:s-floor-3-1L dest, sourcel, source2, len

CM:s-floor-constant-2-1L dest/sourcel, source2-value, len
CM:s-floor-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer quotient field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length=,

dlen For CM:s-floor-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length=*.

slen1 For CM:s-floor-3-3L, the length of the source! field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length=.

slen2 For CM:s-floor-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezi-flag is 1.

197

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
sourcel [k
dest[k] — |_source2|k”
if (overflow occurred in processor k) then overflow-flaglk] «— 1
else overflow-flaglk] — 0
if source2[k] = 0 then
test[k] «— 1

else test[k] — 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
floor of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

198

S-F-FLOOR

Calculates, in each selected processsor, the largest integer that is not greater than a specified
floating-point value and stores the result as a signed integer field.

Formats -CM:s-f-ﬂoor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.
len The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — | source[k]]
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of —oco, which is stored into the dest field as a signed integer.

199

U-FLOOR

The floor of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:u-floor-3-3L dest, sourcel, source2, dlen, slen1, slen2
CM:u-floor-2-1L dest/sourcel, source, len
CM:u-floor-3-1L dest, sourcel, source2, len
CM:u-floor-constant-2-1L dest/sourcel, source2-value, len
CM:u-floor-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the unsigned integer quotient field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.
source2-value An unsigned integer immediate operand to be used as the
second source.
dlen For CM:s-floor-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.
slenl For CM:s-floor-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
slen2 For CM:s-floor-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.
Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.
test-flag is set if the divisor is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then

dest[k] — [MJ

source2|k]

200

if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

if source2[k] = 0 then
test[k] « 1

else test[k] — 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

201

U-F-FLOOR

Converts floating-point source field values into unsigned integers by rounding towards —oo.

Formats CM:u-f-floor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len ‘The length of the dest field. This must be non-negative and no
greater than CM: *maximume-integer-length=.

s, e The significand and exponent leﬁgths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared. '

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
dest «— |source]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of —oo. The result is stored into the dest field as an unsigned integer.

202

FROM-GRAY-COD

FE-FROM-GRAY-CODE

Calculates, on the front end, the Gray code representation of a specified integer.

Formats result « CM:fe-from-gray-code code
Operands code An unsigned integer immediate operand to be used as the Gray
encoding, represented as a nonnegative integer.
Result An unsigned integer, the nonnegative integer represented by code.
Context This operation is unconditional. It does not depend on the contezt-flag.
Definition Let n = integer-length(code)

Return n®1 lc—;]‘!ﬁj

This function calculates, entirely on the front end, the integer represented by a bit-string
encoding code in a particular reflected binary Gray code.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

203

FROM-GRAY-CODE

U-FROM-GRAY-CODE

Converts a bit string representing a Gray-coded integer value to the usual unsigned binary
representation.

Formats CM:u-from-gray-code-1-1L dest/source, len
CM:u-from-gray-code-2-1L dest, source, len

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length. '

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
for j from len — 1 to 0 do

dest[k](j) « (k?.; ' source[k](i))

=)

The source operand is considered to be a value in a particular reflected binary Gray code.
The position of that value in the standard Gray code sequence is calculated as an unsigned
binary integer. This is done as follows: bit i of the result is 1 if and only if all the bit
positions of the source to the left of (and including) bit ¢ contain an odd number of 1’s.

Note that a Gray code string that is all 0-bits is always equivalent to the binary value 0.

204

F-GE

Compares two floating-point source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:f-ge-iL sourcel, source2, s, e
CM:f-ge-constant-1L sourcel, source2-value, s, e
CM:f-ge-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ge-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source! and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] > source2[k]
test-flaglk] < 1
else

test-flaglk] — 0

Two operands are compared as floating-point numbers. The first operand is a memory
field; the second is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise. Note that
comparisons ignore the sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

205

S-GE

Compares two signed integer source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:s-ge-1L sourcel, source, len
CM:s-ge-2L sourcel, source2, slenl, slen2
CM:s-ge-constant-1L sourcel, source2-value, len
CM:s-ge-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-ge-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen1 The length of the source! field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-lengthx.

Overlap The fields sourcel and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.

Context - This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel(k] > source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise.

206

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

207

U-GE

Compares two unsigned integer source values. The test-flag is set if the first is greater than
or equal to the second, and otherwise is cleared.

Formats CM:u-ge-1L sourcel, source2, len
CM:u-ge-2L sourcel, source2, slenl, slen2
CM:u-ge-constant-1L sourcel, source2-value, len
CM:u-ge-zero-1L sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-ge-zero-1L, this implicitly has the value
zero.

len The length of the sourcel and source? fields. This must be non-
negative and no greater than CM:*maximum-integer-length#.

slen1 The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length*. '

slen2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is

cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] > source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel! is always a memory
- field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than or equal to the second operand, and is cleared otherwise.

208

GE

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

209

GEOMETRY-AXIS-LENGTH

GEOMETRY-AXIS-LENGTH

Returns the length of one axis of a geometry.

Formats result «— CM:geometry-axis-length geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose length is de-
sired.

Result An unsigned integer, the length of the indicated axis.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return azis-descriptors(geometry-id)|azis).length

This operation returns the length of the specified axis of the geometry specified by the
geometry-id.

210

GEOMETRY-AXIS-OFF-CHIP-BITS

GEOMETRY-AXIS-OFF-CHIP-BITS

Returns the number of off-chip bits that are allocated for the specified NEWS axis within
the off-chip bits portion of a send address associated with the specified geometry.

Formats

Operands

Result

Context

result « CM:geometry-axis-off-chip-bits geometry-id, azis

geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose off-chip bits

' count is desired. This must be between 0 and the rank of the

geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

An unsigned integer, the count of the off-chip bits associated with the specified
azis. If azis has no off-chip bits, the result is 0.

This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The VP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the off-chip bits within the off-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all off-chip bits within
the send address but the number of off-chip bits used for a particular dimension.

211

GEOMETRY-AXIS-OFF-CHIP-POS

GEOMETRY-AXIS-OFF-CHIP-POS

Returns the starting position for the off-chip bits that are allocated for the specified NEWs
axis within the off-chip bits portion of a send address associated with the specified geometry.

Formats result « CM:geometry-axis-off-chip-pos geometry-id, azis

Operands geomeiry-id A geometry ID.

azis An unsigned integer, the number of the axis whose off-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first off-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip.- The on-chip bits identify one physical processor on
that CM chip. The VP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the off-chip bits partition, the off-chip bits for the
specified dimension lie.

Note that the integer returned does not indicate the absolute position of all off-chip bits
within the send address but the position of the off-chip bits for a particular dimension
relative to the start of all off-chip bits in an address.

212

GEOMETRY-AXIS-ON-CHIP-BITS

GEOMETRY-AXIS-ON-CHIP-BITS

Returns the number of on-chip bits that are allocated for the specified NEWS axis within
the on-chip bits portion of a send address associated with the specified geometry.

Formats result «— CM:geometry-axis-on-chip-bits geometry-id, azis

Operands geometry-id A geometry ID.

aris An unsigned integer, the number of the axis whose on-chip bits
count is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the count of the on-chip bits associated with the specified
azis. If azis has no on-chip bits, the result is 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the on-chip bits within the on-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all on-chip bits within
the send address but the number of on-chip bits used for a particular dimension.

213

GEOMETRY-AXIS-ON-CHIP-POS

GEOMETRY-AXIS-ON-CHIP-POS

Returns the starting position for the on-chip bits that are allocated for the specified NEWS
axis within the on-chip bits portion of a send address associated with the specified geometry.

Formats result «— CM:geometry-axis-on-chip-pos geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose on-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first on-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the on-chip bits partition, the on-chip bits for the
specified dimension lie.

Note that the integer returned does not indicate the absolute position of all on-chip bits
within the send address but the position of the on-chip bits for a particular dimension
relative to the start of all on-chip bits in an address.

214

GEOMETRY-AXIS-ORDERING

GEOMETRY-AXIS-ORDERING

Returns the ordering of one axis of a geometry.

Formats result « CM:geometry-axis-ordering geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose ordering is
desired.
Result The ordering of the specified axis (either :news-order or :send-order).

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return azis-descriptors{geometry-id)|azis].ordering

This operation returns the ordering of the specified axis of the geometry specified by the
geometry-id.

215

GEOMETRY-AXIS-VP-RATIO

GEOMETRY-AXIS-VP-RATIO

Returns the vP ratio of one axis of a geometry.

Formats result « CM:geometry-axis-vp-ratio geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose VP ratio is
desired.
Result An unsigned integer, the VP ratio of the indicated axis.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return azis-descriptors(geometry-id)[azis].vp-ratio

This operation returns the VP ratio of the specified axis of the geometry specified by the
geometry-id.

216

GEOMETRY-COORDINATE-LENGTH

GEOMETRY-COORDINATE-LENGTH

Returns the number of bits needed to represent a NEWS coordinate.

Formats result «— CM:geometry-coordinate-length geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose coordinate
length is desired.

Result An unsigned integer, the number of bits required to represent a coordinate
for the indicated axis.

Context This operation is unconditional. It does not depend on the contezt-flag. -

Definition Return inte_éer-length(azia-descriptors(geometry-id)[a.’m’s].length -1)

This operation returns the number of bits required to represent (as an unsigned integer) a
NEWS coordinate for the specified axis of the geometry specified by the geometry-id.

217

GEOMETRY-RANK

GEOMETRY-RANK

Returns the number of axes for a geometry.

Formats result — CM:geometry-rank geometry-id
Operands geometry-id A geometry ID.
Result An unsigned integer, the rank (number of axes) of the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return rank(geometry)

This operation returns the number of grid axes for the geometry specified by the
geometry-id.

218

GEOMETRY-SEND-ADDRESS-LENGTH

GEOMETRY-SEND-ADDRESS-LENGTH

Returns the number of bits needed to represent a send-address.

Formats result «— CM:geometry-send-address-length geometry-id
Operands geometry-id A geometry ID.

Result An unsigned integer, the number of bits required to represent a send-address
for a processor in the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)

n—1
Return Y integer-length(azis-descriptors(geometry-id)[j].length — 1)
7=0

This operation returns the number of bits required to represent a send-address for a virtual
processor in any VP set whose geometry is the one specified by the geometry-id. This will
be equal to the sum of the numbers of bits needed to represent NEWS coordinates for all
the axes.

219

GEOMETRY-SERIAL-NUMBER

GEOMETRY-SERIAL-NUMBER

Assigns a unique number to the specified geometry.

Formats result « CM:geometry-serial-number geometry-id

Operands geometry-id A geometry ID. This geometry ID must be obtained by call-
ing CM:create-geometry or CM:create-detailed-geometry.

Result The serial number that uniquely identifies the geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

A unique number, the serial number, is assigned to the specified geometry. This facilitates
geometry-based caching; geometry serial numbers are useful as hash table keys.

Note that geometry ID’s are not unique identifiers. After a geometry is deallocated, its 1D
may be reused for another geometry. In contrast, geometry serial numbers are guaranteed
to be unique.

220

GEOMETRY-TOTAL-PROCESSORS

GEOMETRY-TOTAL-PROCESSORS

Returns the number of virtual processors for a geometry.

Formats result «— CM:geometry-total-processors geometry-id
Operands geometry-id A geometry ID.
Result An unsigned integer, the total number of processors in the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)
n—1
Return [] azis-descriptors(geometry-id)[j].length
i=0

This operation returns the total number of virtual processors in any VP set whose geometry
is the one specified by the geometry-id. This will be equal to the product of the lengths of
all the axes.

221

GEOMETRY-TOTAL-VP-RATIO

GEOMETRY-TOTAL-VP-RATIO

Returns the total VP ratio for a specified geometry.

Formats result «— CM:geometry-total-vp-ratio geometry-id
Operands geometry-id A geometry ID.

Result An unsigned integer, the number of virtual processors represented within each
physical processor for the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)
n-—-1
Return [] azis-descriptor(geometry-id)[j).vp-ratio
i=0

This operation returns the total VP ratio for a specified geometry. This is equal to the
total number of virtual processors for the geometry, divided by the total number of physical
processors.

222

GET

GET

Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may. supply messages even if it is not selected. Messages are all retrieved
from the same memory address within each source processor, and all the source processors
may be in a VP set different from the VP set of the destination processors.

Formats CM:get-1L dest, send-address, source, len

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

source The field ID of the source field.
len The length of the dest and source fields.
Overlap The send-address and dest may overlap in any manner. Similarly, the send-

address and source may overlap in any manner. However, it is forbidden for
the dest and source to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— source[send-address[k]]

For every selected processor py, a message length bits long is sent to pz from the processor p,
whose send-address is in the field send-address in the memory of processor py. The message
is taken from the source field within processor p, and is stored into the field at location
dest within processor py. Although the send-address operand is a field in the VP set of the
destination processors, its value must specify a valid send address for source, which may
belong to a different VP set.

Note that more than one selected processor may request data from the same source processor
Ps, in which case the same data is sent to each of the requesting processors.

223

GET-AREF32

GET-AREF32

Each selected processor gets a message from a specified array field within any specified
source processor (possibly itself). A source processor may supply messages even if it is
not selected. Messages are all retrieved from the same memory address within each source

processor.
Formats CM:get-aref32-2L dest, send-address, array, indez, dlen, indez-len, indez-limit
Operands dest The field ID of the destination field.
send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

array The field ID of the source array field. This must be stored in the
special format required by CM:aref32.

indez The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of dlen.

dlen The length of the dest field.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

 indez-limit An unsigned integer immediate operand to be used as the

exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap The send-address and array may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
array and dest to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if indez[k] < indez-limit then
let » = geometry-total-vp-ratio(geometry(current-vp-set))
let m = l%J mod 32
let i = indez[k]
for all j such that 0 < j < dlen do
let ¢ = send-address(k] — m X r + (j mod 32) x r

224

letb=i+l§iiJ

1 dest[k](j) « array[q](b)

(error)

For every selected processor pq, a message length bits long is sent to pg from the processor p,
whose send-address is in the field send-address in the memory of processor pg. The message
is taken from the array field within processor p, as if by the operation aref32 and is stored
into the field at location dest within processor p;.

Note that more than one selected processor may request data from the same source processor
Ps, possibly from different locations within the array. Note also that in each case the array
element to be sent from processor p, to processor pg is determined by the value of indez
within pg, not the value within p,.

225

GET-FROM-NEWS

GET-FROM-NEWS

Each processor gets a message from a specified neighbor processor.

Formats

Operands

Overlap

Context

CM:get-from-news-1L dest, source, azis, direction, len
CM:get-from-news-always-1L dest, source, azts, direction, len
dest The field ID of the destination field.

source The field ID of the source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

The non-always operation is conditional. The destination may be altered only
in processors whose contezt-flag is 1.

The always operation is unconditional. The destination may be altered re-
gardless of the value of the contezt-flag.

Note that in the conditional case the storing of data depends only on the
contezt-flag of the processor receiving the data, not on the contezt-flag of the
processor from which the data is obtained.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
let g = geometry(current-vp-set)
dest[k] «— source[news-neighbor(g, k, azis, direction)]

where news-neighbor is as defined on page 40.

The dest field in each processor receives the contents of the source field of that processor’s
neighbor along the NEWs axis specified by azis in the direction specified by direction.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS
coordinate is one greater, with the processor whose coordinate is greatest retrieving data
from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWSs
coordinate is one less, with the processor whose coordinate is zero retrieving data from the
processor whose coordinate is greatest.

226

GET-FROM-POWER-TWO

GET-FROM-POWER-TWO

Each processor gets a message from a processor that is a specified distance away in the
NEWS grid. The distance must be a power of two.

Formats CM: get-from-power-two-1L dest, source, azis, log-2-distance, direction, len
CM: get-from-power-two-always-1L dest, source, azis, log-2-distance, direction, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
azis An unsigned integer immediate operand to be used as the number

of a NEWS axis.

log-2-distance An unsigned integer immediate operand to be used as the
base 2 logarithm of distance, where distance must be a power of
2. ’

direction Either :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Note that in the conditional case data storage depends only on the contezt-flag
of the processor receiving the data, not on the contezt-flag of the processor
from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
let g = geometry(current-vp-set)
dest[k] «— source[news-relative(g, k, azis, direction, log-2-distance))

where news-relative is defined in the NEws Communication section of the
Instruction Set Overview chapter.

The dest field in each processor receives the contents of the source field of that processor’s
relative along the NEWS axis specified by azis, in the direction specified by direction, and
at the distance specified by log-2-distance.

227

GET-FROM-POWER-TWO

The immediate operand log-2-distance, is log, distance, where distance is the distance, along
axis azis, between each destination processor and the source processor from which it re-
trieves data. In terms of this operand, distance is 2/°9-2-distance

If direction is :upward then each processor retrieves data from a relative whose NEWs coor-
dinate is (coordinate + distance mod azis-length). For most processors, this means getting
from a processor whose coordinate is greater. The GET wraps around however; the pro-
cessor whose coordinate is greatest retrieves data from the processor whose coordinate is
(0 + distance).

If direction is :downward then each processor retrieves data from a relative whose NEwWs
coordinate is (coordinate — distance mod azis-length). For most processors, this means
getting from a processor whose coordinate is less. The GET wraps around however; the
processor whose coordinate is zero retrieves data from the processor whose coordinate is
(maz-coordinate(azis) — distance).

228

GLOBAL-ADD

GLOBAL-C-ADD

The sum of the values in the complex source field is returned to the front end as a complex

number.
Formats result « CM:global-c-add-1L source, s, e
Operands source The field ID of the complex source field.
s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).
Result A complex number, the sum of the source field.
Overlap There are no constraints, because overlap is not possible.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let P = {m |0 < m < CM:*user-send-address-limit* }

Let § = {m | m € P A contezt-flaglm] = 1}
If |S| = 0 then

return +0 to front end
else

return |) éource[m] to front end
meS

The CM:global-c-add-1L operation sums the source field values from all selected processors,
treated as complex numbers. The sum is sent to the front-end computer as a complex
number and returned as the result of the operation. If there are no selected processors,
then the value 40 is returned.

229

GLOBAL-ADD

GLOBAL-F-ADD

One floating-point number is examined in every selected processor, and the sum of all these
fields is returned to the front end as a floating-point number.

Formats result — CM:global-f-add-1L source, s, e
Operands source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.
Result A floating-point number, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezi-flag is 1.
Definition Let § = {m | m € current-up-set A contezt-flagim] = 1}

If |S] =0 then
return +0 to front end
else

return | Y source[m]] to front end
meS

The CM:global-f-add operation sums the source fields, treated as floating-point numbers,
in all selected processors. The sum is sent to the front-end computer as a floating-point
number and returned as the result of the operation. If there are no selected processors,
then the value +0 is returned.

230

GLOBAL-ADD

GLOBAL-S-ADD

One signed integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as a signed integer.

Formats result <« CM:global-s-add-1L source, len

Operands source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximume-integer-length*.

Result A signed integer, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flagis 1.

Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return 0 to front end
else

return |) source[m]] to front end
meS

The CM:global-s-add operation sums the source fields, treated as signed integers, in all
selected processors. The sum is sent to the front-end computer as a signed integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

231

GLOBAL-ADD

R

GLOBAL-U-ADD

One unsigned integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as an unsigned integer.

Formats result « CM:global-u-add-1L source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length#.

Result An unsigned integer, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let § = {m | m € current-vp-set A contezt-flagim| =1}

If |S| =0 then
return 0 to front end
else

return | Y source[m]} to front end
meS

The CM:global-u-add operation sums the source fields, treated as unsigned integers, in all
selected processors. The sum is sent to the front-end computer as an unsigned integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

232

GLOBAL-COUNT-BIT

GLOBAL-COUNT-BIT

One bit is examined in every selected processor, and the count of bits that are 1 is delivered
to the front end.

Formats

Operands
Result
Overlap

Context

Definition

result « CM:global-count-bit source
result «— CM:global-count-bit-always source

source The field ID of the source bit (a one-bit field).
An unsigned integer, the number of 1 bits.
There are no constraints, because overlap is not possible. -

The non-always operations are conditional. The result returned depends only
upon processors whose contezt-flag is 1.

The always operations are unconditional. The result returned does not depend
on the contezt-flag.

If always then

let § = {m |m € current-vp-set A source[m] = 1}
else

let § = {m | m € current-vp-set A contezt-flaglm] = 1 A source[m] =1}
return |$| to front end

The CM: global-count-bit operation sums the one-bit bit-source fields in all selected proces-
sors; in other words, it returns a count of how many processors have a 1-bit in that field.
The count is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned.

Using CM:global-count-bit is identical in effect to using CM: global-unsigned-add on a one-bit
field, but may be faster.

233

GLOBAL-COUNT-CONTEXT

Returns the number of active processors.

Formats result « CM:global-count-context

Context This operation is unconditional.

Definition Let § = {m | m € current-vp-set A contezt-flagim] = 1}
Return |§] to front end

The number of processors whose context bit is 1 is returned to the front end.

234

0 -COUNT-flag

GLOBAL-COUNT-flag

Returns the number of processors that have a specified flag set.

Formats CM:global-count-test
CM:global-count-overflow

Context This operation is conditional.

Definition Let S = {m | m € current-vp-set A contezt-flaglm] = 1 A flaglm] = 1}
Return |S| to front end

where flag is test-flag or overflow-flag, as appropriate.

The number of processors for which the specified flag is 1 is returned to the front end.

235

LOBAL-LOGAND

GLOBAL-LOGAND

One field is examined in every selected processor, and the bitwise logical AND of all these
fields is returned to the front end as an unsigned integer.

Formats result « CM:global-logand-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND
of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return 2'" — 1 to front end
else

return (A source[m]) to front end
meS

The CM:global-logand operation combines the source fields in all selected processors by
performing bitwise logical AND operations. A bit is 1 in the result field if the corresponding
bit is a 1 in all of the fields to be combined. The resulting combined field is then sent to
the front-end computer as an unsigned integer and returned as the result of the operation.
If there are no selected processors, then the value —2!°® — 1 is returned, representing a field
of length len containing all ones.

236

GLOBAL-L

GLOBAL-LOGAND-BIT

One memory bit is examined in each processor; 1 is returned if they are all 1, 0 if any is
zero.

Formats result — CM:global-logand-bit source
result «— CM:global-logand-bit-always source

Operands source The field ID of the source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND
of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the contezt-flag.

Definition If always then
let S = current-vp-set
else
let § = {m|m € current-vp-set A context-flaglm] =1}
If |§| = 0 then
return 1 to front end
else

return | A source[m]| to front end
meS

The CM:global-logand-bit operation combines the source bits in all selected processors by
performing a bitwise logical AND operation. The result is 1 if all the examined bits are 1;
otherwise the result is 0. The result is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. If there are no selected processors, then the
value 1 is returned.

Using CM:global-logand-bit is identical in effect to using CM:global-logand on a one-bit field,
but may be faster.

237

GLOBAL-LOGAND-CONTEXT

GLOBAL-LOGAND-CONTEXT

Return 1 if all processors are active, 0 if any processor is inactive.

Formats result « CM:global-logand-context

Context This operation is unconditional.

Definition Return (A contezt—ﬂag[m]) to front end

megcurrent-vp-set

If all processors are active, then 1 is returned to the front end; otherwise 0 is returned.

238

GLOBAL-LOGAND-flag

GLOBAL-LOGAND-flag

Return 1 if a specified flag is set in all processors, 0 if it is clear in any processor.

Formats CM:global-logand-test
CM:global-logand-overflow

Context This operation is conditional.

Definition Let S = {m | m € current-up-set A contezt-flagim] = 1 A flaglm] = 1}
If |S| = 0 then
return 0 to front end
else

return (A ﬂag[m]) to front end
meS

where flag is test-flag or overflow-flag, as appropriate.

If all processors have the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

239

GLOBAL-LOGIOR

GLOBAL-LOGIOR

One field is examined in every selected processor, and the bitwise logical inclusive ORr of all
these fields is returned to the front end as an unsigned integer.

Formats result — CM:global-logior-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length#.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
INCLUSIVE OR of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flagis 1.

Definition Let S = {m | m € current-up-set A contezt-flagim] = 1}

If |S| = 0 then
return 0 to front end
else

return (Vv source[m]) to front end
meS

The CM:global-logior operation combines the source fields in all selected processors by per-
forming bitwise logical INCLUSIVE OR operations. A bit is 1 in the result field if the cor-
responding bit is a 1 in any of the fields to be combined. The resulting combined field is
then sent to the front-end computer as an unsigned integer and returned as the result of
the operation. If there are no selected processors, then the value 0 is returned, representing
a field of length len containing all zeros.

240

GLOBAL-LOGIOR-BIT

GLOBAL-LOGIOR-BIT

One memory bit is examined in each processor; 1 is returned if any is 1, 0 if they are all
zero.

Formats result < CM:global-logior-bit source
result <« CM:global-logior-bit-always source

Operands source The field ID of the source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical orR
of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operation is conditional. The result returned depends only
upon processors whose contezt-flag is 1.

The always operation is unconditional. The result returned does not depend
on the contezt-flag.

Definition If always then
. let § = current-vp-set
else
let § = {m | m € current-vp-set A contezt-flaglm] =1}
If | S| = 0 then
return 0 to front end
else

return | \/ source[m]| to front end
meS

The CM:global-logior-bit operation combines the source bits in all selected processors by
performing a bitwise logical inclusive Or operation. The result is 1 if any examined bit is
1; otherwise the result is 0. The result is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. If there are no selected processors, then
the value 0 is returned.

Using CM:global-logior-bit is identical in effect to using CM:global-logior on a one-bit field,
but may be faster.

241

GLOBAL-LOGIOR-CONTEXT

GLOBAL-LOGIOR-CONTEXT

Return 1 if any processor is active, 0 if no processors are active.

Formats result «— CM:global-logior-context

Context This operation is unconditional.

mE current-vp-set

Definition Return (VvV contezt-ﬂag[m]) to front end

If any processor has its context bit set, then 1 is returned to the front end; otherwise 0 is
returned.

242

GLOBAL-LOGIOR-flag

GLOBAL-LOGIOR-flag

Return 1 if a specified flag is set in any processor, 0 if it is clear in all processors.

Formats CM:global-logior-test
CM:global-logior-overflow

Context This operation is conditional.

Definition Let § = {m | m € current-up-set A contezi-flagim| = 1 A flagm] =1}
If |S| = 0 then
return 0 to front end
else

return (Vv ﬁag[m]) to front end
meS .

where flag is test-flag or overflow-flag, as appropriate.

If any processor has the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

243

GLOBAL-LOGXOR

GLOBAL-LOGXOR

One field is examined in every selected processor, and the bitwise exclusive OR of all these
fields is returned to the front end as an unsigned integer.

Formats result « CM:global-logxor-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
exclusive OoRr of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = {m | m € current-vp-set A context-flaglm] =1}

If |S| = 0 then
return 0 to front end
else

return | @ source[m]| to front end
meS

The CM:global-logxor operation combines the source fields in all selected processors by per-
forming bitwise logical EXCLUSIVE OR operations. A bit is 1 in the result field if the
corresponding bit is a 1 in an odd number of the fields to be combined. The resulting com-
bined field is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned,
representing a field of length len containing all zeros.

244

GLOBAL-MAX

GLOBAL-F-MAX

One floating-point number is examined in every selected processor, and the largest of all
these integers (that is, the one closest to +00) is returned to the front end as a floating-point

number.
Formats result <« CM:global-f-max-1L source, s, e
Operands source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.
Result A floating-point number, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return —oo to front end
else

let R = (ma.x source[m)|
meS

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcek] = R then
test-flaglk] «— 1
else
test-flaglk] « 0
return R to front end

The CM:global-f-max operation returns the largest (that is, closest to +00) of the floating-
point source fields of all selected processors. This largest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value —oo is returned.

245

GLOBAL-MAX

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

246

GLOBAL-MAX

GLOBAL-S-MAX

One signed integer is examined in every selected processor, and the largest of all these
integers (that is, the one closest to +00) is returned to the front end as a signed integer.

Formats result « CM:global-s-max-1L source, len
Operands source The field ID of the signed integer source field.
len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.
Result A signed integer, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezxt-flag is 1.
Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return —2%"1 to front end
else

let R = (max source[m]
meS

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] «— 0
return R to front end

The CM:global-s-max operation returns the largest (that is, closest to +o00) of the signed-
integer source fields of all selected processors. This largest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value —2%"-1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

247

GLOBAL-MAX

GLOBAL-U-MAX

One unsigned integer is examined in every selected processor, and the largest of all these
integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-1L source, len
Operands source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*,
Result An unsigned integer, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then

return 0 to front end
else

let R = (magc source[m])

me
For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] < 0
return R to front end

The CM:global-u-max operation returns the largest of the unsigned-integer source fields of
all selected processors. This largest value is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

248

GLOBAL-U-MAX-S-INTLEN

One signed integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-s-intlen-1L source, len
Operands source The field ID of the signed integer source field.
len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximume-integer-length=.
Result An unsigned integer, the length of the source field value of greatest length.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A contezt-flagim] =1}

If |S| = 0 then
return 0 to front end
else

let R = (ﬁlg [logz (% + l% + source[m]l)])
For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcelk] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM:global-u-max-s-intlen operation computes the integer-length of each signed integer
source value. The largest length is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. In addition, the test-flag is set in every selected
processor whose field is equal to the finally computed value, and is cleared in all other
selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-s-intlen-1L is equivalent to the sequence

249

GLOBAL-MAX-INTLEN

CM:s-integer-length-2-2L temp, source, len, len
CM:global-u-max-1L temp, len

but may be faster.

250

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-U-INTLEN

One unsigned integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-u-intlen-1L source, len
Operands source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.
Result An unsigned integer, the length of the source field value of greatest length.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flagis 1.
Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return 0 to front end
else

tet R = (may flog, 1.+ sourcefm)))

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source[k] = R then
test-flaglk] « 1
else '
test-flaglk] — 0
return R to front end

The CM:global-u-max-u-intlen operation computes the integer-length of each unsigned in-
teger source value. The largest length is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-u-intlen-1L is equivalent to the sequence

251

GLOBAL-MAX-

CM:u-integer-length-2-2L temp, source, len, len
CM:global-u-max-1L temp, len

but may be faster.

252

GLOBAL-MI

GLOBAL-F-MIN

One floating-point number is examined in every selected processor, and the smallest of all
these integers (that is, the one closest to —o0) is returned to the front end as a floating-point
number.

Formats result « CM:global-f-min-1L source, s, e

Operands source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total lerigth of an operand in this format is s + e + 1.

Result A floating-point number, the smallest of the source fields.
Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let § = {m | m € current-vp-set A contezt-flaglm] = 1}

If |S| = 0 then :
return +oo to front end
else

let R = (min source[m)]
meS

For every virtual processor k in the current-uvp-set do
if contezt-flaglk] = 1 then
if sourcek] = R then
test-flaglk] «— 1
else
test-flaglk] «— 0
return R to front end

The CM:global-f-min operation returns the smallest (that is, closest to —o0) of the floating-
point source fields of all selected processors. This smallest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value +oo is returned.

253

GLOBAL-MIN

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

2564

GLOBAL-MIN

GLOBAL-S-MIN

One signed integer is examined in every selected processor, and the smallest of all these
integers (that is, the one closest to —o0) is returned to the front end as a signed integer.

Formats result « CM:global-s-min-1L source, len
Operands source The field ID of the signed integer source field.
len The length of the source field. This must be 1o smaller than 2 but
no greater than CM:*maximum-integer-lengthx.
Result A signed integer, the smallest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A contezt-flagim] =1}

If |S| = 0 then
return 21 _ 1 to front end
else

let R = (min source[m]) to front end
meS

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM:global-s-min operation returns the smallest (that is, closest to —o0) of the signed-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the

value 2/en-1

— 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

255

GLOBAL-MIN

GLOBAL-U-MIN

One unsigned integer is examined in every selected processor, and the smallest of all these
integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-min-1L source, len
Operands source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*,
Result An unsigned integer, the smallest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flagis 1.
Definition Let S = {m | m € current-vp-set A contezt-flagim] =1}

If |S| = 0 then
return 2'en — 1 to front end
else

let R = (min source[m)
megS

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] « 1
else
test-flaglk] — 0
return R to front end

The CM: global-u-min operation returns the smallest (that is, closest to zero) of the unsigned-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as an unsigned integer and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed

value, and is cleared in all other selected processors. If there are no selected processors,
then the value 2'¢® — 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

256

F-GT

Compares two floating-point source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:f-gt-1L sourcel, source2, s, e
CM:f-gt-constant-1L sourcel, source2-value, s, e
CM:f-gt-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-gt-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] > source2[k]
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is greater than the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 is not greater than —0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

257

S-GT

Compares two signed integer source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:s-gt-1L sourcel, source?, len
' CM:s-gt-2L sourcel, source?, slenl, slen2
CM:s-gt-constant-1L sourcel, source2-value, len
CM:s-gt-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-gt-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*,

slen2 The length of the source2 field. This must be no smaller than 2

but no greater than CM:*maximum-integer-length*.
Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is greater than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
* whose context-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source1[k] > source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

258

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

259

U-GT

Compares two unsigned integer source values. The test-flag is set if the first is strictly
greater than the second, and otherwise is cleared.

Formats CM:u-gt-1L sourcel, source2, len
CM:u-gt-2L sourcel, source2, slenl, slen?
CM:u-gt-constant-1L sourcel, source2-value, len
CM:u-gt-zero-1L sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-gt-zero-1L, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slent The length of the source! field. This must be non-negative and no
greater than CM:*maximume-integer-lengthx.

slen?2 The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length«.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is greater than source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel(k] > source2[k] then
test-flaglk] «— 1
else
test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than the second operand and is cleared otherwise.

260

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

261

IEEE-TO-VA

F-IEEE-TO-VAX

Converts the floating-point source field values from IEEE floating-point format to vax
floating-point format and stores the result in the destination field.

Formats CM:f-ieee-to-vax-1L vaz-dest, ieee-source, len

Operands wvaz-dest The field ID of the floating-point destination field.
1eee-source The field ID of the floating-point source field.

len The length of the vaz-dest and teee-source fields. The value of len
must be either 32 or 64.

Overlap The fields vaz-dest and ieee-source may overlap in any manner.

Flags overflow-flag is set if the ieee-source cannot be represented in the destination
field; otherwise it is cleared. If ieee-source represents co or NaN, then vaz-dest
is set to the “undefined variable” value in VAX format and the overflow-flag
is cleared. If iece-source represents —0.0, it is converted to vAX 0.0 and the
overflow-flag is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

The Connection Machine operates internally on floating point data in IEEE format whereas
the vAX uses a VAX floating-point format. In each active processor, this function converts
a floating-point field in standard IEEE format to a field in VAX format.

The value of len specifies the precision of vaz-dest. If len is specified as 32, then vax ‘F’
format is used. If len is specified as 64, then VAX ‘D’ format is used.

vAX and IEEE floating-point formats are incompatible, so there are a number of potential
inaccuracies in the translation. In general, if the conversion is accurate then the overflow
flag is cleared; if inaccurate, then the overflow flag is set. See the flags description above.

This instruction is useful for rapidly converting floating-point data to vAX format, even if a
VAX front end is not being used. For example,