
----~-~----------~-___..

COBOL
Programmer's Guide

Part No. 2270521·9701 *C
March 1985

TEXAS INSTRUMENTS

© 1980, 1982, 1983, 1985, Texas Instruments Incorporated. All Rights Reserved.

Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

DX10 COBOL Programmer's Guide (2270521-9701)

Original Issue December 1980
Revision .. May 1982

Change 1 October 1983
Revision .. March 1985

The total number of pages in this publication is 298.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools-including
Tl computers-cannot replace sound judgment nor make the manager's business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

()

(_)

Preface

This manual contains information about the Texas Instruments version of COBOL (COmmon
Business Oriented Language), which is designed to operate on Texas Instruments computers.
This information supports the experienced programmer in developing COBOL programs intended
for execution under the DX10 Operating System. For additional descriptions of COBOL, refer to
the COBOL Reference Manual.

This manual contains the following sections and appendices:

Section

1 Introduction - Describes DX10 as it relates to COBOL and the operating system
environment. This introduction also includes an overview of the processes necessary to
create and execute a COBOL program (task) and includes notations that are used to
describe commands in this manual.

2 Operating System Concepts - Describes features related to program development.
Includes description of interactive tasks and batch execution, the System Command
Interpreter (SCI), directory and file structure, pathnames, access names, and synonyms.

3 Building a COBOL Source Program Module - Discusses how to build a COBOL
program source module, beginning with directory and file development, and how to use
the Text Editor utility.

4 Compilation - Explains how a COBOL source program module is compiled and
discusses compiler completion codes and error messages.

5 Link Edit - Explains the link editing process, COBOL segmentation, overlays, and
installation of COBOL task and procedure segments. Includes information on memory
mapping and the COBOL run-time interpreter.

6 Execution - Discusses execution of COBOL object modules, linked object modules,
and program images. Provides necessary SCI commands, completion codes, and error
messages.

7 Debugging - Discusses COBOL debugging for COBOL routines and the operating
system debugging for assembly language object modules that are linked to a COBOL
object module.

8 Calling Subroutines - Describes the process for calling COBOL and assembly
language modules.

9 Interfacing to Productivity Tools - Introduces the productivity tools that can interface
with COBOL and explains how these tools can be linked with COBOL object modules.

2270521-9701 v

Preface

10 Using SCI Command Procedures to Execute COBOL Tasks - Describes how to design a
system to interact with application environment processors and SCI.

11 COBOL Device-Dependent Attributes - Describes the ACCEPT/DISPLAY command
option that allows access to function keys, low volume Input/Output (1/0), and graphic
1/0.

12 Error Processing - Describes the COBOL file status data item and error processing
under program control.

13 Optimizing Run-Time Performance - Discusses various ways to optimize COBOL code.

Appendix

A Keycap Cross-Reference - This appendix contains specific keyboard information to
help the user identify individual keys on any supported terminal.

B COBOL Compiler Error Messages - Lists COBOL user and system compiler error
messages.

C COBOL Run-Time Error Messages - Lists COBOL user and system run-time error
messages.

'411,t .. --

D COBOL Subroutine Library Package - Describes COBOL subroutine library modules. \..)

E COBOL Compiler Listing Format - Gives example of the results from using the M, 0,
and X options on the COBOL compiler.

In addition to the software manuals shown on the frontispiece, the following documents contain
information related to this manual:

vi

Title

COBOL System Design Document

SCI: A Self-Study Approach to Writing Command
Procedures and Batch Streams

Part Number

2250953-9901

2267649-0001

2270521-9701

Paragraph

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.3.1
1.3.3.2

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.3.1
2.3.3.2
2.3.4
2.3.4.1
2.3.4.2
2.3.4.3
2.3.4.4
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.2
2.7.2.1

2270521 ·9701

Contents

Title Page

1 - Introduction

COBOL .. 1-1
A COBOL Program Development Overview 1-1
SCI Command Prompt Format and Notation 1-8

Command Nam·e .. ·· 1-8
Command Prompts Returned .. 1-9
Type of Response Expected ... 1-9

Initial Values .. 1-9
Default Values .. 1-9

2 - Operating System Concepts

Introduction ... · 2-1
Task Structure .. 2-1

Interactive Tasks .. 2-1
Batch Streams .. 2-1

Using SCI .. 2-2
SCI Description ... 2-2
Entry of SCI Commands in VDT Mode 2-2
Examples of Using SCI ... 2-2

The Show Background Status (SBS) Command 2-2
The List Directory (LD) Command 2-3

Batch Use of SCI .. 2-3
Batch Stream Format ... 2-4
Batch Command Format .. 2-4
Interactive Execution of Batch Streams 2-5
Entering Programs From Sequential Devices 2-5

Directory and File Structure ... 2-6
Establishing Volume Names .. 2-6
Establishing Directories .. 2-6
Establishing Files ... 2-7

Pathnames and Access Names .. 2-8
Synonyms ... 2-9
File Types .. 2-9

Sequential Files ... 2-9
Sequential File Attributes .. 2-10
Creating Sequential Files .. 2-10

Relative Record Files ... 2-14
Relative Record Attributes ... '. :2-14

vii

Contents

Paragraph

2.7.2.2
2.7.2.3
2.7.3

Title Page

Creating Relative Record Files .. 2-15
Special Types of Relative Record Files 2-20

Key Indexed Files (KIF) .. 2-20

3 - Building a COBOL Source Program Module

3.1 General .. 3-1
3.2 Directory and File Preparation ... 3-1
3.3 Alternate Directory Structures ... 3-2
3.3.1 Organization by Programs .. 3-2
3.3.2 Organization by File Type ... 3-2
3.4 Creating Directories and Files ... 3-2
3.5 Building the Program Module Via the Text Editor 3-3

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.5
4.6

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.2
5.4.3
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

viii

4 - Compilation

General .. 4-1
Compiler Execution ... 4-1

Execute COBOL Compiler in Foreground (XCCF) 4-1
Execute COBOL Compiler in Background (XCC) 4-7

Compiler Output ·' ... 4-8
Compiler Completion Codes .. 4-8
Compiler Error Messages ... 4-8
Compiler Limitations .. 4-8

5 - Link Edit

General .. 5-1
Object Modules ... 5-2

Differences in the Treatment of Shareable Vs. Reentrant Modules 5-2
COBOL Object Modules .. 5-2

Program Mapping ... 5-4
Program Files .. 5-5

Segments -.. 5-5
Task Segments .. 5-6
Procedure Segments ... 5-6

Overlays .. 5-10
COBOL Module Segmentation .. 5-10

Creating Linked Object Modules .. 5-12
Creating Program Images .. 5-13

COBOL Run Time .. 5-14
Linking a Single Procedure Segment With a Single Task Segment 5-14
Linking a Single Procedure Segment With Multiple Task Segments 5-15
Linking Two Procedure Segments With a Single Task Segment 5-15
Linking Two Procedure Segments With Multiple Task Segments 5-19
Overlay Structures .. 5-22

2270521-9701

Paragraph

5.6.7
5.6.8

5.6.9

5.6.10
5.7
5.8

Contents

Title Page

Sharing Main Program Module .. 5-24
Linking a Single Procedure One Segment and Multiple Procedure Two

Segments ... 5-24
Linking a Single Procedure Segment With a Single Task Segment on a User

Program File ... 5-26
Installing Program Images From a Relative File 5-26

Linking Libraries ... 5-28
Linking Limitations ... 5-29

6 - Execution

6.1 General .. 6-1
6.1.1 Use of a Synonym in the COBOL Select Clause 6-1
6.2 Object Modules Execution .. 6-1
6.2.1 Execute COBOL Program in Foreground (XCPF) 6-2
6.2.2 Execute COBOL Program in Background (XCP) 6-4
6.3 Execution Completion Codes and Run-Time Error Messages 6-4
6.4 Program Image Execution .. 6-5
6.4.1 Execute COBOL Task in Foreground (XCTF) 6-5
6.4.2 Execute COBOL Task in Background (XCT) 6-7

· 6.5 Execution Completion Codes and Run-Time Error Messages 6-7
6.6 Program Termination Messages ... 6-8

7.1
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.2.3
7.2.2.4
7.2.2.5
7.2.2.6
7.2.2.7
7.2.2.8
7.2.2.9
7.2.2.10
7.3

7 - Debugging

Debug Mode .. 7-1
Debugging a COBOL Module .. 7-1

Activating the Debugger .. 7-1
COBOL Debug Commands .. 7-3

Assign Address Stop Command (A) 7-7
Dump Data Item Command (D) ... 7-8
Exit Debug Mode Command (E) .. 7-9
Change Program Location Command (L) 7-10
Modify Data Item Command (M) 7-11
Quit Execution Command (Q) ... 7-14
Resume Program Execution Command (R) 7-14
Execute Next Single Statement Command (S) 7-14
Undo Address Stop Command (U) 7-15
Write Screen to Message File Command (W) 7-15

Debugging of Assembly Language Subroutines Linked to COBOL Programs 7-16

8 - Calling Subroutines

8.1 General .. 8-1
'8.2 COBOL Subroutine Library Package .. 8-1
8.3 Assembly Language Subroutines .. 8-3

2270521-9701 ix

Contents

Paragraph Title Page

9 - Interfacing to Productivity Tools

9.1 General .. 9-1
9.2 Tl FORM ... 9-1
9.3 Sort/Merge ... 9-7
9.4 Database Management System ... 9-15
9.4.1 DBMS-990Features ... 9-16
9.4.2 DBMS-990 User Interface .. 9-16
9.4.3 Linking DBMS-990 and COBOL Modules 9-16
9.5 Query-990 ... 9-31
9.6 Communications ... 9-35
9.7 Communication Equipment .. 9-35
9.8 3780 Emulator Communications Software 9-35

10 - Using SCI Command Procedures to Execute COBOL Tasks

10.1 General ... 10-1
10.2 SCI Command Procedure Elements 10-1
10.3 Example Command Procedures .. 10-2
10.3.1 Example 1 ... 10-2
10.3.2 Example 2 ... 10-3
10.3.3 Example 3 ... 10-6

11 - COBOL Device-Dependent Attributes

11.1 Function Keys ... 11-1
11.2 Low Volume In put/Output (1/0) ... 11-2
11.3 Graphiclnput/Output ... 11-8

12 - Error Processing

12.1 General ... 12-1
12.2 File 1/0 Status ... 12-1
12.3 File 1/0 Status Values ... 12-3
12.4 Use of Declaratives ... 12-8

13 - Optimizing Run-Time Performance

13.1 General ... 13-1
13.2 Object Size Considerations .. 13-1
13.3 Arithmetic Operations .. 13-2
13.4 Control Operations ... 13-3
13.5 Move Operations ... 13-6
13.6 1/0 Operations ... 13-8

x 2270521-9701

Contents

Appendixes

Appendix Title Page

A Keycap Cross-Reference ... A-1

B COBOL Compiler Error Messages ... B-1

C COBOL Run-Time Error Messages ... C-1

D COBOL Subroutine Library Package D-1

E COBOL Compiler Listing Format .. E-1

Index

111 ustrations

Figure Title Page

1-1 Program Source Module - MANUAL.PG.SRC.FIG0101 1-3
1-2 Compiler Listing - MANUAL.PG.LST.FIG0102 1-4

2-1 Directory and File Structure ... 2-7
2-2 Sequential File Description and Creation 2-11
2-3 Sequential Files: Physical Record Size< Sector Size< ADU Size 2-12
2-4 Sequential Files: Physical Record Size= Sector Size< ADU Size 2-12
2-5 Sequential Files: Sector Size < Physical Record Size < ADU Size 2-13
2-6 Sequential Files: Sector Size < Physical Record Size= ADU Size 2-13
2-7 Sequential Files: Physical Record Size> ADU Size~ Sector Size 2-14
2-8 Relative Record File Description and Creation 2-16
2-9 Relative Record Files: Physical Record Size < Sector Size < ADU Size 2-17
2-10 Relative Record Files: Physical Record Size= Sector Size < ADU Size 2-18
2-11 Relative Record Files: Sector Size< Physical Record< ADU Size 2-18
2-12 Relative Record Files: Sector Size < Physical Record Size= ADU Size 2-19
2-13 Relative Record Files: Physical Record Size> ADU Size~ Sector Size 2-19
2-14 KIF Description, CFKEY Creation, and MKF Listing 2-22

3-1 Organization of Files in Directory .. 3-2
3-2 Sample COBOL Program Source Module - VOLUME.SOURCE.EXAMPLE2 3-4

4-1 Sample COBOL Compiler Listing .. 4-4

5-1 Determining Link Edit Requirements for COBOL Programs 5-3
5-2 Memory Mapping ... 5-4
5-3 Contents of a Program File ... 5-5
5-4 Multiple Tasks Sharing Same P1 and P2 5-7
5-5 Multiple Tasks Sharing Same P1 but Different P2s 5-8
5-6 Multiple Tasks on Separate Program Files 5-9
5-7 Comparison of Memory Requirements 5-10
5-8 COBOL Segmentation Within Overlay Phase Modules 5-11

2270521-9701 xi

Contents

Figure Title Page

5-9 Linking a Single Procedure Segment With a Single Task Segment 5-16
5-10 Linking a Single Procedure Segment With Multiple Task Segments 5-17
5-11 Linking Two Procedure Segments With a Single Task Segment 5-18
5-12 Linking Two Procedure Segments With Multiple Task Segments 5-20
5-13 Linking Two Procedure Segments With Multiple Task Segments (ALLOCATE) 5-21
5-14 An Overlay Structure With the Accompanying Link Control File 5-23
5-15 Sharing the Main Program Module With P2 5-24
5-16 Linking a P1 With Different P2s ... 5-25
5-17 Linking a Single Procedure Segment With a Single Task 5-27
5-18 Random Library Structure ... 5-28

6-1 SPECIAL-NAMES Paragraph Example 6-3

7-1 Compiler Output Listing .. 7-4
7-2 Interactive Debugging Example ... 7-17
7-3 COBOL Program Calling Assembly Language Modules 7-18
7-4 Assembly Language Module ADORES 7-20
7-5 Assembly Language Module IOCALL 7-21

8-1 Example of COBOL Routine Calling Assembler Subroutine 8-5
8-2 Example of Assembler Subroutine Called by COBOL 8-9

9-1 COBOL Module Interfacing With Tl FORM 9-2
9-2 Tl FORM VDT Screen Description .. 9-6
9-3 COBOL Routine Calling Sort/Merge .. 9-8
9-4 COBOL Interfacing With DBMS-990 9-16
9-5 Data Definition Language (DDL) File 9-30
9-6 COBOL Module Linked to Query .. 9-32

10-1 Simple SCI Procedure ... 10-2
10-2 Tailored SCI Procedure .. 10-4
10-3 COBOL Procedure .. 10-7
10-4 COBOL Program Module Retrieving Additional SCI Parameters 10-8

11-1 Use of ACCEPT and DISPLAY Statements 11-5
11-2 Contents of VDT Screen at Program Completion 11-8
11-3 Graphics .. 11-9
11-4 Graphic Characters .. 11-11

12-1 Checking Error-Handling Capabilities Through DECLARATIVES 12-9

xii 2270521-9701

Contents

Tables

Table Title Page

1-1 Command Prompt Notation .. 1-10

3-1 Files Required for Program Development 3-1

4-1 COBOL Compiler Options .. 4-2

5-1 Valid Link Editor Commands With COBOL Object 5-12

7-1 Debug Commands .. 7-3

8-1 COBOL Subroutines Library .. 8-2
8-2 Format Codes for Calling Module ... 8-10

9-1 COBOL Entry Points to the Applications Interface Routines 9-2

11-1 Function Key Mapping .. 11-2

12-1 File Status Table ... 12-2
12-2 Operating System Errors and COBOL File Status Errors 12-3
12-3 COBOL 1/0 Operation Validity Table 12-7
12-4 Device Correspondence Table .. 12-8

2270521-9701 xiii/xiv

1

Introduction

1.1 COBOL

The COBOL compiler conforms to the American National Standards Institute (ANSI) COBOL sub·
set as defined in ANSI document X3.23-1974. The COBOL compiler incorporates extensions to this
subset to provide added capabilities. The compiler package employs the following ANSI 74 stan
dard COBOL modules at the level indicated:

Level 1 Features

lnterprogram communications
Library
Segmentation

* Selected features from level 2

Level 1 + Features*

Nucleus
Table handling
Sequential 1/0
Relative 1/0
Indexed 1/0

COBOL debug support and ACCEPT and DISPLAY statements are nonstandard and are designed
for interactive use on video display terminals (VDTs).

1.2 A COBOL PROGRAM DEVELOPMENT OVERVIEW

The operating system provides developmental and operational support for program modules
written in COBOL. The information presented in this section is an overview of the following:

• Building program source modules via the text editor

• Compiling program source modules to produce object program modules

• Linking program object modules to produce program images on a program file

• Executing program images on a program file

• Executing a program object module or a linked object module

Refer to the appropriate sections in this manual for specific details about developmental and
operational support for program modules written in COBOL. The details of the language are dis
cussed in the COBOL Reference Manual.

During the preparation of this manual, some assumptions have been made for the sake of a clear
presentation. You are assumed to have a DX10 system with SCI, a terminal operating in VDT mode,
a valid user ID, and a passcode.

2270521-9701 1·1

Introduction

The following definitions are provided to assist you when reading this manual:

Module - A set of computer program instructions treated as a unit by an assembler, compiler, link
editor, or other similar processor.

Object File - A file (usually created by the compiler) containing one or more object program
modules.

Program - A collection of object instructions that directs the activities of a computer; can consist
of task segments, procedure segments, and overlays.

Task - A program that executes under control of the operating system.

Source File - A file (usually created by using the text editor) containing one or more program
source modules (source code or statements).

Linked Object File - A file (created by the link editor) containing one or more program object
modules that have been linked together to produce linked object modules.

Program File - A file (created by you or by the link editor) containing executable program com
ponents in memory image form.

Link Control File - A file (created by you) containing instructions for the link editor.

Subroutine - A sequenced set of statements that may be used in one or more programs and at
one or more points in a program.

Logical Unit Number (LUNO) - A number that represents a file or device and is specified in an 1/0
operation.

Synonym - A text string that functions as an alternative for another string.

Normally, you write COBOL program source modules from a VDT under the control of the text edi
tor. The text editor allows you to create or modify an existing program source module. This file is
used as input to the COBOL compiler. A pathname is assigned to the source file at its creation.
Pathnames are discussed in Section 2. Figure 1-1 shows a sample COBOL program source
module.

When SCI commands are invoked during compilation or execution, a command heading and infor
mation concerning the software release level are displayed. The software release information
appears as follows:

VERSION <L.R.V YYDDD>

where:

Lis the software level.

R is the software release of level L.

Vis the software version of release R (operating system).

1·2 2270521-9701

YY is the year the software was released.

ODD is the day of the year when the software was released.

IDENTIFICATION DIVISION.
PROGRAM-ID. LRV.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LISTFILE ASSIGN TO RANDOM "LST".
DATA DIVISION.
FILE SECTION.
FD LISTFILE LABEL RECORDS STANDARD.
01 LISTING.

02 CC PIC X(3).
02 DNCBL PIC XC15).
02 L-R-V PIC X(7).
02 YY-DDD PIC X(7).
02 COMPILED PIC X(9).
02 MM-DD-YY PIC X(9).
02 HH-MM-SS PIC X(9).
02 FILLER PIC XC10).
02 PAG PIC X(4).
02 FILLER PIC X(7).

WORKING-STORAGE SECTION.
01 ACTION PIC X.
01 EOF PIC X VALUE " "
PROCEDURE DIVISION.
MAIN-PROG.

OPEN I-0 LISTFILE.
PERFORM READ-WRITE UNTIL EOF > " "
CLOSE LISTFILE.
STOP RUN.

READ-WRITE.

2270521-9701

READ LISTFILE AT END MOVE 1 TO EOF.
IF DNCBL = "DNCBL"

IF COMPILED = "COMPILED:"
IF PAG = "PAGE"

MOVE "L.R.V" TO L-R-V
MOVE "VY.ODD" TO YY-DDD
MOVE "MM/DD/YY" TO MM-DD-YY
MOVE "HH:MM:SS" TO HH-MM-SS
REWRITE LISTING.

Figure 1·1. Program Source Module - MANUAL.PG.SRC.FIG0101

Introduction

1·3

Introduction

To compile a COBOL program source module, enter one of the Execute COBOL Compiler (XCC or
XCCF) commands. The command prompts for the XCCF command (with sample responses
included) are as follows:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L. R. V. YYDDD>
SOURCE ACCESS NAME: MANUAL.PG.SRC.FIG0102
OBJECT ACCESS NAME: MANUAL.PG.OBJ.FIG0102

LISTING ACCESS NAME: MANUAL.PG.LST.FIG0102
OPTIONS: M

PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE CLINES): 1000

After responding to the prompts, press the Return key to activate the compiler. When the compila
tion completes, a completion message appears on the video display terminal (VDT) screen. If an
error occurs, check the error message in the appropriate appendix, correct the error, and recompile
the program source module. Section 4 has complete instructions for compiling COBOL source
program modules.

Figure 1-2 shows an example of a compiler listing. Notice that the number of errors and warnings
as a result of the compilation are included near the end of the listing.

1·4

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M

SOURCE ACCESS NAME:
OBJECT ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS:
PRINT WIDTH:
PAGE SIZE:
PROGRAM SIZE (LINES):

MANUAL.PG.SRC.FIG0102
MANUAL.PG.OBJ.FIG0102
MANUAL.PG.LST.FIG0102
M
80
55
1000

PAGE 1

Figure 1·2. Compiler Listing - MANUAL.PG.LST.FIG0102(Sheet1of3)

2270521-9701

Introduction

DXCBL
LINE DEBUG

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

>0000
>0000
>0006
>0010
>0016
>0018
>0018
>0022

L.R.V. VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
PG/LN A B

IDENTIFICATION DIVISION.
PROGRAM-ID. LRV.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LISTFILE ASSIGN TO RANDOM "LST".
DATA DIVISION.
FILE SECTION.
FD LISTFILE LABEL RECORDS STANDARD.
01 LISTING.

02 CC PIC XC3).
02 DNCBL PIC XC15).
02 L-R-V PIC XC7).
02 YY-DDD PIC XC7).
02 COMPILED PIC XC9).
02 MM-DD-VY PIC XC9).
02 HH-MM-SS PIC XC9).
02 FILLER PIC XC10).
02 PAG PIC XC4).
02 FILLER PIC XC7).

WORKING-STORAGE SECTION.
01 ACTION PIC X.
01 EOF PIC x VALUE II II

PROCEDURE DIVISION.
MAIN-PROG.

OPEN I-0 LISTFILE.
PERFORM READ-WRITE UNTIL EOF > II II

CLOSE LISTFILE.
STOP RUN.

READ-WRITE.
READ LISTFILE AT END MOVE 1 TO EOF.
IF DNCBL = "DNCBL"

IF COMPILED = "COMPILED:"

37 IF PAG = "PAGE"
38 MOVE "L.R.V" TO L-R-V
39 MOVE "VY.ODD" TO YY-DDD
40 MOVE "MM/DD/VY" TO MM-DD-VY
41 MOVE "HH:MM:SS" TO HH-MM-SS
42 REWRITE LISTING.
43 ZZZZZZ END PROGRAM. *** END OF FILE

Figure 1 ·2. Compiler Listing - MANUAL.PG.LST.FIG0102 (Sheet 2 of 3)

2270521-9701 1·5

Introduction

DXCBL L. R. V. VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
ADDRESS SIZE DEBUG ORDER TYPE NAME

0 FILE LI STF ILE
>0026 80 GRP 0 GROUP LISTING
>0026 3 ANS 0 ALPHANUMERIC cc
>0029 15 ANS 0 ALPHANUMERIC DNCBL
>0038 7 ANS 0 ALPHANUMERIC L-R-V
>003F 7 ANS 0 ALPHANUMERIC YY-DDD
>0046 9 ANS 0 ALPHANUMERIC COMPILED
>004F 9 ANS 0 ALPHANUMERIC MM-DD-YY
>0058 9 ANS 0 ALPHANUMERIC HH-MM-SS
>006B 4 ANS 0 ALPHANUMERIC PAG

>007A ANS 0 ALPHANUMERIC ACTION

>007C ANS 0 ALPHANUMERIC EOF

READ ONLY BYTE SIZE = >012A

READ/WRITE BYTE SIZE = >OOCE

OVERLAY SEGMENT BYTE SIZE = >0000

TOTAL BYTE SIZE = >01F8

0 ERRORS

0 WARNINGS

Figure 1·2. Compiler Listing - MANUAL.PG.LST.FIG0102 (Sheet 3 of 3)

After compilation, the compiled object module is eith~r executed, linked to create a linked object
module, or linked to create a program image on a program file. Refer to Section 6 for d!i!tails and
restrictions regarding execution of a compiled object module. Section 5 contains det.ails and
restrictions for linking.)

Before MANUAL.PG.OBJ.FIG0101 is executed, external file assignments must be resolve~ if syn·
onyms are specified in the source module. In Figure 1·1, the synonym LST must be assign d to the
pathname of the compiler listing file. To assign the synonym LST, enter the Assign Sync m (AS)
SCI command. The command prompts are as follows (with sample responses included):

1·6

ASSIGN SYNONYM VALUE
SYNONYM: LST

VALUE: MANUAL.PG.LST.FIG0101

2270521-9701

Introduction

To execute COBOL object modules, use the Execute COBOL Program (XCP or XCPF) SCI com
mand. When the XCPF command is activated, enter the COBOL object file access name or linked
object file access name defined when the COBOL program module was compiled or linked. The
SCI commands associated with execution of a COBOL program are described in detail in Section
6. The command prompts are as follows (with sample responses included):

EXECUTE COBOL PROGRAM FOREGROUND <VERSION: L.R.V. YYDDD>
OBJECT ACCESS NAME: MANUAL.PG.OBJ.FIG0101

DEBUG MODE: NO
MESSAGE ACCESS NAME:

SWITCHES: 00000000
FUNCTION KEYS: NO

To create a linked object module, the Link Editor utility and a link control file are required. If a link
control file is not available, you must create one. An example link control file is as follows:

TASK LRV
INCLUDE MANUAL.PG.OBJ.FIG0101
END

You also need a link control file to link an object module for producing a program image using the
Link Editor utility. An example link control file is as follows:

FORMAT IMAGE,REPLACE
PROCEDURE RCOBOL
DUMMY
INCLUDE .S$SYSLIB.RCBPRC
TASK LRV
INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE MANUAL.PG.OBJ.FIG0101
END

In this link control file, named MANUAL.PG.CONTROL.EXAMPLE1, the IMAGE in the FORMAT
statement ensures that the object file output from the link editor is written directly to a program
file in memory image form. The word REPLACE ensures that any task segment in the program file
with the name LRV is deleted before this task segment is written to the program file. The DUMMY
command prevents the shared procedure segment (RCOBOL) from being replaced in the program
file.

To initiate the link editor, enter the Execute Link Editor (XLE) SCI command. Respond to the
prompts to link and install the LRV task on a program file named MANUAL.PG.PROGRAM. The
command prompts are as follows (with sample responses included):

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: MANUAL.PG.CONTROL.EXAMPLE1

LINKED OUTPUT ACCESS NAME: MANUAL.PG.PROGRAM
LISTING ACCESS NAME: MANUAL.PG.LINKLIST.EXAMPLE1
PRINT WIDTH (CHARS): 80

PAGE LENGTH: 59

2270521-9701 1·7

Introduction

To execute linked object modules, use the Execute COBOL Program (XCP or XCPF) commands.
You can execute the object module as a program image on a program file by using the Execute
COBOL Task (XCT or XCTF) commands.

Now, to execute the installed program image, use the XCT or XCTF commands. Once the call has
been issued, the COBOL task executes under control of the run-time interpreter; the interpreter is
included as part of the task at link edit time.

To execute the task LRV on program file MANUAL.PG.PROGRAM, enter the XCTF command and
respond to the command prompts. Section 6 describes the SCI commands associated with exe
cution of a COBOL task. The command prompts are as follows (with sample responses included):

EXECUTE COBOL TASK FOREGROUND <VERSION: L.R.V. YYDDD>
PROGRAM FILE LUNO: >7

TASK ID OR NAME: LRV
DEBUG MODE: NO

MESSAGE ACCESS NAME:
SWITCHES: 00000000

FUNCTION KEYS: NO

After responding to the prompts, the program executes. If an error occurs: 1) check the error mes
sage in the appropriate appendix; 2) correct the error; and 3) compile, link edit, and execute the
task again.

COBOL debug mode is available only with the XCPF and XCTF commands. The debug mode pro
vides for controlled execution of a program or task. When running in debug mode, a program or
task can be halted and resumed. The debug mode allows you to specify address stops, single
COBOL statement execution, or data item dumps. Also, it is possible to exit from debug mode or
quit execution of a task. For further information about debugging, refer to Section 7.

1.3 SCI COMMAND PROMPT FORMAT AND NOTATION

When SCI command prompts are described in this manual, a standard format and notation is used.
The notation is described in the following paragraphs.

1.3.1 Command Name
The characters of a command represent the full command name. For example, the characters of
the Show Date and Time command are SDT. To enter a command, type the characters of the com
mand and signal when finished by pressing the Return key.

When you enter SDT and press the Return key

[J SOT <RETURN>

the system responds as follows:

13:48:30 WEDNESDAY, MAY 14, 1980.

Since the Show Date and Time command includes no command prompts, the command executes
without further user interaction.

1·8 2270521-9701

Introduction

1.3.2 Command Prompts Returned
Upon entry of a command, the system displays the full name of the command and any associated
command prompts. Command prompts provide you with information and request parameters to
complete execution of the command. In the Show File example that follows, the cursor appears
after the "FILE PATHNAME:" prompt. The system waits for you to enter a file pathname. (A path·
name is a character string that indicates a path to a resource such as a file, channel, or device.)

1.3.3 Type of Response Expected
For each command prompt, a response of a given type is expected. In the remainder of this
manual, the expected response type is given after each command prompt. In the Show File
example that follows, the expected response type is a pathname. To enter a response, proceed as
follows:

1. Type the desired response. The response must be of the type expected. To show the
contents of a file named .MYFILE, type .MYFILE in response to the FILE PATHNAME:
prompt of the Show File (SF) SCI command.

2. Press the Return key to signal that the entry is complete.

The following example illustrates the description of the SF command:

[J SF
SHOW FILE

FILE PATHNAME: pathname@

Following the response to the first prompt, the cursor is positioned after the next prompt and
waits for your response. After entry of the response to the last prompting message, the command
executes. You can press the Command key prior to entering the last prompt to prevent execution
of a command.

To help you respond to the prompts, the system sometimes displays an initial value after a prompt
or has a default value available for a response. The following paragraphs describe initial values and
default values.

1.3.3.1 Initial Values. An initial value is a value that the system automatically displays as a
response to some prompting messages. Users can accept an initial value by pressing the Return
key. They can erase the initial value by pressing the Erase Field or Skip key. Finally, they can reject
the initial value by entering a different value.

The initial values for some prompts are fixed; therefore, the same initial value always appears for
that prompt. In other cases, the system saves a value entered with a command and displays it as
an initial value for a later entry of the same command or for the entry of a related command. Some
variable initial values are also saved from one terminal session to another.

1.3.3.2 Default Values. A default value is a value that the system automatically supplies as the
response to a prompt when you do not enter a value. The system often provides default values to
speed up the entry of responses to prompts. This is especially true for optional user responses. To
enter the default value for a prompt (where a default value exists), press the Return key without
entering any other data. Such an entry is called a null entry.

2270521-9701 1·9

Introduction

Notation symbols (Table 1-1) enclose some prompt responses in the command descriptions to
help explain how the responses are entered.

1-10

Notation

Uppercase

Lowercase

No marks

[l

{ }

item ... item

@

()

Table 1-1. Command Prompt Notation

Meaning

Enter the response as listed.

Enter a response of this type.

The response is required.

The response is optional.

The response must be exactly one of the enclosed
items or must be a type of one of the enclosed items.
(Choices separated by a slash.)

More than one item of this type may be entered in
reponse to the prompt. Items should be separated by
commas.

Synonyms or logical names are allowed (as responses).

The item enclosed in parentheses represents the initial
value. If(*) is shown, the value may be supplied from a
synonym set by a previously used command procedure.
If a list is supplied in a form other than interactive
(batch mode or a procedure calling a command proce
dure), the list must be enclosed in parentheses.

2270521-9701

2

Operating System Concepts

2.1 INTRODUCTION

This section provides an overview and describes some important system capabilities. For more
information, refer to the operating system manuals listed on the frontispiece of this manual.

2.2 TASK STRUCTURE

A task is a specific activation of a program. DX10 is a multitasking operating system designed to
share concurrently the memory, machine execution time, and peripheral resources of the system
among several tasks. While one task is active (executing), others are suspended awaiting
reactivation.

At each terminal, it is possible to have one foreground task and one background task concurrently
active.

2.2.1 Interactive Tasks
All interactive tasks operate in either foreground, background, or batch. A foreground task can
accept data from the terminal as it is executing. In background mode, SCI does not expect inter
action with terminals. You can start a task (for example, updating a database) in background mode
and perform other activities (such as data collection) in foreground mode while the background
task is active. When complete, the background task returns a message to the terminal, indicating
completion.

Commands entered from interactive terminals are entered in foreground mode. The operating sys
tem responds by displaying the appropriate command prompts. Enter the required information;
the task now begins execution. While the task executes in foreground, SCI is suspended to avoid
interference. User interaction now occurs directly with the foreground task. The DX10 Operations
Guide describes the commands that initiate tasks in all modes.

2.2.2 Batch Streams
Batch streams use SCI in background mode to process batch commands. In batch mode, SCI
accepts commands from any sequentially oriented device but not from a terminal. When you enter
commands in a batch command stream, include all parameters required for the operation. Also, be
sure that the commands included are suitable for execution in background mode. Commands that
initiate operations requiring user interaction (for example, text editing and debugging commands)
are not permitted.

2270521-9701 2-1

Operating System Concepts

2.3 USING SCI
The following paragraphs discuss the use of SCI. Section 10 gives information for designing your
own command procedures. The DX10 Applications Programming Guide contains complete
descriptions of SCI commands, plus procedures for creating new commands and menus.

2.3.1 SCI Description
SCI is the interface between you and the operating system, system utilities, the software develop·
ment programs, and application programs. Application programs can interface with you through
user-defined SCI commands and menus.

You can use SCI to activate programs and to pass parameters to the programs during execution.
SCI also allows you to build and maintain tables of variables, called synonyms, and their values.
SCI allows application programs to access these variables for use in the programs.

To execute an application program via SCI, you can use predefined execution commands such as
Execute Task (XT), Execute FORTRAN Task (XFT), Execute Pascal Task (XPT), and Execute COBOL
Task (XCT), or you can write your own SCI command to initiate a program. You can add user
defined commands to the system library, or you can group them in a separate command library.
The .USE primitive allows you to specify which command library SCI should use.

You can enter SCI commands from interactive terminals or in batch command streams. In
response to commands entered interactively, SCI displays command prompts associated with the
command.

When all required prompts have been properly answered, SCI interprets the responses and
initiates the requested operation.

2.3.2 Entry of SCI Commands in VDT Mode
To enter an SCI command in VDT mode, type the characters (in uppercase letters) of the command
and press the Return key. If you set the lowercase option with the .OPTION primitive, you can use
either upper or lowercase characters. Upon entry of a command, SCI displays the full name of the
command entered and all the field prompts associated with the command. Field prompts provide
information and request parameters to complete command execution. For example, the following
field prompt requests that you identify an output pathname:

OUTPUT PATHNAME:

2.3.3 Examples of Using SCI
The following paragraphs contain examples of specific uses of SCI commands.

2.3.3.1 The Show Background Status (SBS) Command. Use the SBS command to view the
status of a program that is currently executing in background mode and that was initiated from
your terminal. Since this command has no associated prompts, the command executes immedi
ately afte.r you enter SBS and press the Return key. A message indicating the state of the back
ground activity appears, as follows:

[J SBS

SHOW BACKGROUND STATUS

TASK IS ACTIVE

2·2 2270521-9701

Operating System Concepts

2.3.3.2 The List Directory (LO) Command. Use the List Directory command to list the names of
all files and subdirectories in a directory. The display for this command is as follows:

[J LO

LIST DIRECTORY
PATHNAME: pathname@

LISTING ACCESS NAME: [pathname]@

In response to the prompt PATHNAME, enter the pathname of the directory whose filenames and
subdirectory names will be listed. The @ indicates that you can specify the pathname as a
synonym.

In response to LISTING ACCESS NAME, enter the pathname of the device or file to which the
listing should be written. The brackets ([])indicate that the response is optional. The default value
is the terminal at which the command is entered. A null response (pressing the Return key while
the cursor is in a blank field) causes the default value to be accepted. In the following case, the
directory SYS2.DP0080 is listed to the terminal from which the command was executed. Synonym
D represents the directory pathname.

[J LO 0

LI ST DI RECTORY
PATHNAME: SYS2.DP0080

LISTING ACCESS NAME:

DIRECTORY LISTING OF: SYS2.DP0080
MAX # OF ENTRIES: 101 # OF ENTRIES AVAILABLE: 78

DIRECTORY
ML

ALIAS OF ENTRIES
5

LAST UPDATE
05/30/80 13:44:48
05/07/80 12:02:20 TIP

FILE
BATCH
COBOL
DATA

ALIAS

*
*
*

*
*

OF

16:21:50 TUESDAY,

2.3.4 Batch Use of SCI

11

RECORDS LAST UPDATE FMT
24 06/03/80 08:16:56 BS

3550 05/30/80 14:06:46 NBS
17 05/07/80 15:31:57 BS

JUN 03 I 1980.

CREATION
03/17/80 12:51:06
02/11/80 16:44:21

TYPE BLK PROTECT
N SEQ YES
N SEQ YES
N SEQ YES

To use SCI in a batch mode with a batch stream, use the Execute Batch (XB) command. The XB
command starts a background task that is associated with your terminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format
between batch commands and commands entered interactively.

2270521-9701 2·3

Operating System Concepts

2.3.4.1 Batch Stream Format. The first and last commands of a batch stream should be the
BATCH and EBATCH commands, respectively. The BATCH command initiates the batch SCI envi
ronment. EBATCH indicates that the batch stream contains no more commands to be processed
by SCI.

Upon normal completion of the batch stream executing in background mode, the following mes
sage appears:

BACKGROUND EXECUTION HAS COMPLETED:

2.3.4.2 Batch Command Format. When supplying SCI commands in batch stream format,
include the following information for each command:

• The characters of the command

• All required prompts associated with the command

• The parameter values (responses) for the command prompts

The following examples demonstrate the Execute Link Editor (XLE) command in both interactive
and batch form. (Refer to the Link Editor Reference Manual for a complete description of the XLE
command.)

When you enter XLE interactively, the command prompts appear:

[l X LE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathname@

LINKED OUTPUT ACCESS NAME: [pathname]@
LISTING ACCESS NAME: [pathname]@

PRINT WIDTH: integer
PAGE LENGTH: integer

(80)
(59)

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the
pathname of the file or device from which the control stream is to be read. Then, either specify
values or accept the default values for the remaining prompts. If the control stream is contained in
the file .M.CONTROL, the linked output is to be written to the file .M.OBJECT, the Link Editor
listing is to be written to the file .M.LIST, and an BO-character line with 59 lines per page is
acceptable, respond as follows:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .M.CONTROL

LINKED OUTPUT ACCESS NAME: .M.OBJECT
LISTING ACCESS NAME: .M.LIST
PRINT WIDTH (CHARS): 80

PAGE LENGTH: 59

2·4 2270521-9701

Operating System Concepts

To execute this command in a batch stream, include the characters of the command, all required
and any optional prompts that are specified, and the responses to those prompts. The following
batch command is equivalent to the interactive version shown previously:

XLE CONTROL=.M.CONTROL, LINKED OUTPUT=.M.OBJECT, LISTING=.M.LIST

Notice that you can accept the default values for the PRINT WIDTH and PAGE LENGTH prompts
by omitting them from the batch command. Also, you can use abbreviated versions of the speci
fied command prompts. The abbreviation must be sufficient to uniquely identify the prompt.
Often, only the first character of a command prompt need be entered. For example, the following is
equivalent to the previous example:

XLE C=.M.CONTROL, LO=.M.OBJECT, LIST=.M.LIST

A batch stream consists of one command or a series of commands in this format, preceded by the
BATCH command and followed by the EBATCH command. The file containing the batch command
stream is the input file for the XB command.

2.3.4.3 Interactive Execution of Batch Streams. Use the XB command to execute batch streams
as background activities. After you enter the XB command and the batch stream begins execution,
you can continue to execute SCI commands in foreground mode. After the batch stream com
pletes, the completion message appears the next time you press the CMD key. To monitor batch
stream execution, enter the Show Background Status (SSS) command from time to time. Also, you
can view the listing file for the batch stream during the run.

An example of the XB command is as follows:

[J XB

EXECUTE BATCH
INPUT ACCESS NAME: pathname@

LISTING ACCESS NAME: pathname@

The INPUT ACCESS NAME is the pathname of the device or file that contains the batch stream.
The LISTING ACCESS NAME is the pathname of the device or file that is to receive the results of
the batch stream execution. This device or file must not be used by any command in the batch
stream.

2.3.4.4 Entering Programs From Sequential Devices. You can use any sequential file of program
source code for input to the compilers or the assembler. If necessary, copy source code that has
been key-punched on a card deck to a sequential disk file. Program source code, entered by the
Text Editor or Copy Concatenate (CC) command, can be read from devices. An example of using
the CC command to copy the source code from cards to a disk file is as follows:

[] cc

COPY/CONCATENATE
INPUT ACCESS NAME(S): CR01

OUTPUT ACCESS NAME: .USER.SOURCE
REPLACE?: NO

MAXIMUM RECORD LENGTH:

2270521-9701 2·5

Operating System Concepts

2.4 DIRECTORY AND FILE STRUCTURE

File management allows you to build, organize, and access directories and files. A file consists of
a named collection of data. The data in the file can be generated by you (for example, source code
or documentation) or by the system (for example, object code or listing files). A directory is a rela
tive record file that contains the information necessary to locate other files and describes the char
acteristics of those files. It does not contain user data.

2.4.1 Establishing Volume Names
Volume names are alphanumeric character strings of as many as eight characters that identify the
disk on which a file is found. The first character of a volume name must be an alphabetic character.
For example, VOL 1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the
Initialize New Volume (INV) command. The IDS command must be performed prior to the first INV
command. It is not necessary to perform another IDS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV com
mand, all access to files on that volume must include the volume name in the pathname or access
name, unless the volume is the system disk or unless a device is specified.

One disk drive on each system is designated to hold the system disk. The system disk contains all
required operating system components, including the loader program, system program files, and
temporary system files. The system disk is the default volume when no volume name is specified.
For example, .PROOF designates a file named .PROOF on the system disk.

2.4.2 Establishing Directories
Each disk volume has a file directory named VCATALOG, to contain the volume table of contents.
The files described in VCATALOG are data files or directory files (Figure 2-1).

Directory files contain the names of, and pointers to, other files; they do not contain user data.
Typically, related files are contained in a directory. Directories can also contain subdirectories.
Both directories and subdirectories are created by the Create Directory File (CFDIR) command. A
subdirectory can be created under a directory only after the directory has been created.
For example, subdirectory VOL 1.SOURCE.PROGRAMA cannot be created unless directory
VOL 1.SOURCE already exists.

It is convenient to group related files into a single directory. For example, all source files for a pro
gram might be in a directory named VOL 1.SOURCE.PROGRAMA; all listings generated from
assembly or compilation of source modules for this program might be in a directory named
VOL 1.LISTING.PROGRAMA.

Do not assign file names that might be confused with system file names. Most system file or direc
tory names begin with S$.

2-6 2270521-9701

Operating System Concepts

LEVEL I {
VCATALOG

FILE
DIRECTORY

--- -- --- -- --- - --- --- -

l I 1
LEVEL 2 USER FILES USER SYSTEM SYSTEM

DIRECTORIES FILES DIRECTORIES

- - - - -- --3- - --- - ----- -t- --r ___ ... ___ ,

l l I I

LEVEL 3 USER USER
FILES DIRECTORIES

- - ---- --- -E---- -----
l l

LEVEL 4 USER USER
FILES DIRECTORIES

LEVEL N {--------------~~~==~------
-- - -- ---- -- -- - __ ' _____ ---- -----

2278899

Figure 2·1. Directory and File Structure

2.4.3 Establishing Files
After initializing a disk volume and creating directories and subdirectories, you can create files
that are accessible either under the volume or under a directory or subdirectory. The following
commands are available to create files:

• Create Key Indexed File (CFKEY)

• Create Relative Record File (CFREL)

• Create Sequential File (CFSEQ)

2270521-9701 2-7

Operating System Concepts

• Create Program File (CFPRO)

• Create Image File (CFIMG)

• Create File (CF)

The CF command requires the subsequent selection of a file type.

~5 PATHNAMESANDACCESSNAMES

A file on a disk volume is referenced by its pathname. A pathname is a concatenation of the
volume name, names of the directory levels leading to the file (excluding VCATALOG), and the file
name itself. Each component of a pathname cannot exceed eight characters in length. A complete
pathname must not exceed 48 characters, including the periods used to separate directories, sub
directories, and file names. The components of the pathname are separated by periods, as in the
following examples:

VOL1.AGENCY.RECORDS

MYDIRECT.MYDIRCTA.MYFILE

VOL TWO.DEB

EMPLOY01.USRA.PAYROLL

EMPLOY01.USRB.CATALOGX.PAYROLL

An access name can be a device name, volume name, or file pathname. For device names, you
must use certain default names (except for special devices). Example device names include ST02
for terminal number 2, LP01 for line printer number 1, and DS03 for disk number 3.

You can reference a volume on which a file resides through either the device name or the volume
name. Omitting the volume name and beginning the pathname with a period indicates that the file
is on the system disk. Samples of valid names for devices and files are as follows:

2·8

File Identifier

CR01
DS02.MYCAT.MYFI LE
.MYCAT.MYFILE
VOLi D.MYCAT.MYFI LE

Meaning

Device name
Device name, directory name, file name
System disk, directory name, file name
Volume name, directory name, file name

2270521-9701

Operating System Concepts

2.6 SYNONYMS

Synonyms are abbreviations of one of more characters in length that are commonly used in place
of long pathnames or portions of pathnames. These synonyms are always available to foreground
tasks. Background tasks receive a copy of the foreground synonyms when the background task is
initiated. At terminals requiring log-on, user-defined synonyms are associated with the user's ID
and are available whenever that user logs on at any terminal. Use the Assign Synonym (AS) and
Modify Synonym (MS) commands to define synonyms and to modify defined synonyms. When you
enter a synonym in response to an SCI command prompt, the synonym is replaced by the actual
text string.

When an SCI command is executed in foreground mode, you can use a synonym only as the first or
only component of a pathname (device name or file name). For example, if A is a synonym for direc
tory VOL 1.SOURCE and B is a synonym for PROGRAMA in that directory, A.PROGRAMA is an
acceptable file name. However, VOL 1.SOURCE.B or A.Bis not acceptable.

2.7 FILE TYPES

A file consists of a collection of data groupings called logical records. This division into logical
records does not necessarily correspond to the physical division of data on disk or other media.
Thus, in addition to logical records, files also have physical records.

A logical record is the amount of information transferred in one (not multiple) Read or Write 110
request. A physical record is the amount of data actually transferred by the operating system
during an 110 operation to the file. The ratio of the physical record size to the logical record size is
called the blocking factor. The logical record length (LRECL) in a file can be constant or can vary,
depending on the file type.

Disk space is assigned in allocatable disk units (ADUs). An ADU is an integral number of disk sec
tors. The size of an ADU depends on disk capacity; larger disks have larger ADUs. An ADU is
always smaller than a track. On some disks, ADUs are as small as one sector.

The following file types are supported: sequential, relative record, and key indexed.

2.7.1 Sequential Files
Sequential files are variable-record-length files whose records are always read, written, and
accessed serially (that is, record 0 must be accessed first, record 1 must be accessed next, and so
on). Some examples of using sequential files are as follows:

• As an input file for card images. If a logical record length of 80 is specified, the sequen
tial file can be treated as a card reader by the program reading the file.

• As an output file. In this function, the file can resemble the line printer.

• As a location for listing files.

2270521-9701 2·9

Operating System Concepts

2.7.1.1 Sequential File Attributes. Sequential files have the following attributes:

• Sequential file logical records must be an even number of bytes in length.

• Sequential files can be created expandable. To extend the file, it must be opened in the
open extend mode.

• Record-level locking is supported.

• Blank suppression and blank adjustment are allowed on sequential files that are used
for input purposes. However, neither is performed on sequential files that are automati
cally created by COBOL. COBOL does not perform blank suppression or blank adjust
ment on sequential files so that they can be used in the 1/0 operation Rewrite. Rewrite
verifies that the length of the record read has not changed before the rewrite is
attempted.

If the logical record length defined in the program is larger than the actual record read from the
file, the characters in the buffer beyond those of the actual record are undefined. For example, if
the defined record length is 80 and the file contains variable-length records with the specific
record read having a length of 50, the buffer area described in the file record-description-entry con
tains the 50-character record plus 30 characters undefined. COBOL does not automatically initial
ize its buffer area prior to a read operation. When reading variable-length records, the program
should initialize the buffer area prior to each read operation.

Files assigned to the device name PRINT are created as sequential files with carriage control char
acters appended. With the appended characters, the logical record length is six characters larger
than that specified in the program. The six characters are split, with from one to four characters
preceding the record, and from one to four characters following the record, with a maximum of six
characters per record.

2.7.1.2 Creating Sequential Files. Consider the following rules when creating sequential files:

•

•

•

•

•

•

2·10

Logical record length must be less than or equal to the physical record length .

Logical records can span sector boundaries .

Logical records can span physical records; thus, partial records are created in both
physical records.

Logical records can span ADU boundaries .

Physical records must begin on sector boundaries .

Physical records beginning in the middle of an ADU cannot span the ADU boundary .

2270521-9701

Operating System Concepts

Figure 2-2 shows both a file description for a sequential file in a COBOL program and the creation
of a sequential file using the Create Sequential File (CFSEQ) SCI command.

SELECT SEQ-EMPLOYEE
ASSIGN TO RANDOM, "EMPL"
ORGANIZATION SEQUENTIAL
ACCESS SEQUENTIAL
FILE STATUS SEQ-STATUS.

FD SEQ-EMPLOYEE LABEL RECORDS STANDARD.
01 SEQ-RECORD.

02 SOCIAL-SECURITY
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL
03 EMPLOYEE-SECOND-INITIAL
03 EMPLOYEE-LAST-NAME

02 REST-OF-DATA

CREATE SEQUENTIAL FILE
PATHNAME: EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:

INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPANDABLE ?: YES
BLANK SUPPRESS ?: NO

FORCED WRITE ?: NO

PICX(9).

PIC X.
PIC X.
PIC XC20).
PIC X(113).

Figure 2·2. Sequential file Description and Creation

To minimize wasted disk space, the physical record size should be an integral multiple or factor
both of the ADU size and of the sector size.

2270521-9701 2·11

Operating System Concepts

The following figures illustrate the relationships between the logical record, physical record, sec
tor, and ADU sizes. In some instances, disk space is wasted; in others, no space is wasted,
depending on the physical record size chosen. Each figure defines the relationship between logi
cal record, physical record, sector, and ADU sizes. The boxed information represents a linear
description of the logical records on a file. Below the logical record are the physical record, sector,
and ADU divisions of the data.

Figure 2-3 indicates the relationship between the physical record, sector, and ADU sizes when the
physical record size is less than the sector size and the sector size is less than the ADU size. In
this case, logical records are spanning physical records. Space is wasted within each sector
because the physical record must begin on the next sector boundary.

Figure 2-4 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, logical records are spanning physical, sector, and ADU boundaries.

ROI ROS WI/IA ROG

1 ,2 1 ,2 3

PHYSICAL ~

SECTOR

r-- PHYSICAL __, r--- SECTOR

r-- PHYSICAL ___,

f-- SECroR j

22772S3

ROI

2277254

2-12

ADU

NOTES:

1, LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY

2, PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

3, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

Figure 2·3. Sequential Files: Physical Record Size < Sector Size < ADU Size

R02 R03 ROG I I ROB R09

PHYSICAL

SECTOR

PHYSICAL PHYSICAL

SECTOR SECTOR

ADU

NOTES:

1, LOGICAL RECORD SPANS PHYSICAL RECORD AND SECTOR BOUNDARY

2, LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

Figure 2·4. Sequential Files: Physical Record Size= Sector Size < ADU Size

2

2270521-9701

Operating System Concepts

Figure 2-5 indicates the relationship between physical record, sector, and ADU sizes when the sec
tor size is less than the physical record size and the physical record size is less than the ADU size.
In this case, the physical record is two times the sector size. One sector for every ADU is wasted
because there is not enough space in the ADU to hold another physical record.

Figure 2-6 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is equal to the ADU size. When the physical record size is not specified at file
creation, the default value used is the defined default of the directory on which the file is created.
Logical records span physical records, sectors, and ADU boundaries.

R01 R02 R03 ROI 14 I ROS R06 R07 I ti! JI! II!!.!!#/!/!/! JI~
2 3

PHYSICAL.

~ SECTOR ___, r SECTOR r-- SECTOR

~ ADU

NOTES:

1. L.OGICAL. RECORD SPANS PHYSICAL. RECORD AND SECTOR BOUNDARY

2. L.OGICAL. RECORD SPANS PHYSICAL. RECORD AND ADU BOUNDARY

22772SS
3. PHYSICAL. RECORD BEGINNING IN MIDDL.E OF ADU CANNOT SPAN ADU BOUNDARY

Figure 2-5. Sequential Files: Sector Size < Physical Record Size < ADU Size

R01 R02 R03 ROI 14 I ROS R06 R07 I I I ROB R09 RIO I RI

2

F
PHYSICAL.

3 SECTOR ---1 r- SECTOR __, r- SECTOR

ADU

NOTESl

1 • L.OGICAL. RECORD SPANS PHYSICAL. RECORD AND SECTOR BOUNDARY

2. L.OGICAL. RECORD SPANS PHYSICAL. RECORD AND ADU BOUNDARY

22772S6

Figure 2-6. Sequential Files: Sector Size < Physical Record Size =ADU Size

2270521-9701 2-13

Operating System Concepts

Figure 2-7 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too small to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record spans to the next physical record, which
begins on the next ADU.

2-7.2 Relative Record Files
Relative record files are also called random-access files. Unlike sequential files, relative record
files can be accessed in any order. Each record has a unique record number, which you specify to
access that individual record. The operating system increments the caller's record number after
each read or write so that sequential access is permitted. One end-of-file (EOF) record is main
tained wherever it was last specified by a program. The range of record numbers is from zero to
one less than the number of records in the file. The maximum number of records in a relative
record file is 2 to the 24th power. The records are fixed in length, and the length must be specified
during file creation.

Relative record files are useful when each record in the file is already associated with a unique
value ranging from 0 ton; for example, in an inventory file, the item number can be specified as the
record number. Consequently, information about item number 1 can be obtained by accessing
record number 1.

2.7.2.1 Relative Record Attributes. Relative record files have the following attributes:

• Relative record files can be accessed sequentially in ascending order.

• Relative record files can be accessed randomly in any order.

• Records of odd or zero length are not allowed.

• All records are fixed in length, and the length must be specified during file creation.

RO! R02 R03 R04 ROS ROS R06 Vl//)//lll///l///J///J
2

PHYSICAL

SECTOR + SECTOR _+ ___ SE_C_T_O_R __ t.._ __ S_E_C_T_O_R __ +__ S::· + SECTOR ~
ADU

NOTES:

1 o LOGICAL RECORD SPANS PHYSICAL RECORD AND ADU BOUNDARY

2. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

22772S7

Figure 2·7. Sequential Files: Physical Record Size > ADU Size ~ Sector Size

2·14 2270521-9701

Operating System Concepts

• Variable length records are not allowed.

• Blank suppression and blank adjustment are not allowed.

• Deleted records in a relative record file are flagged by COBOL with a hexadecimal FF
(>FF) in the first character of the record. These flagged records are ignored by COBOL
during sequential read operations. Therefore, data records should not contain binary
data in the first character position. The conc.ept of deleted records is not recognized by
the file management of the operating system.

• Record-level locking is supported.

• Relative record files can be expanded by adding a record or records whose record
number is greater than the highest record number currently in the file. During this opera
tion, any record between the current last record and the new last record is added to the
file. Each of the deleted records has >FF in the first character position, flagging the
records as being deleted. All records between the lowest and highest record numbers on
the file must be present as either data records or deleted records (place holders) in order
to locate any given record on a random 1/0 request.

Each record is uniquely identified by its position. The operating system increments the caller's
record number after each read or write to allow sequential access. One EOF record is maintained
wherever it was last specified by a program. To access record number n, record number n is
requested. The range of record numbers is from 0 to one less than the number of records in the
file. The maximum number of records in a relative record file is 2 to the 24th power.

2.7.2.2 Creating Relative Record Files. Consider the following rules when creating relative
record files:

• Logical record length must be less than or equal to the physical record length.

• Logical records can span sector boundaries.

• Logical records cannot span physical records.

• Physical records must begin on sector boundaries.

• Physical records beginning in the middle of an ADU cannot span ADU boundaries.

• Physical records should be an integral multiple of sectors.

2270521~701 2-15

Operating System Concepts

Figure 2-8 shows both a file description for a relative record file in a COBOL program and the crea
tion of a relative record file using the Create Relative Record File (CFREL) SCI command.

2-16

SELECT REL-EMPLOYEE
ASSIGN TO RANDOM, "EMPL"
ORGANIZATION RELATIVE
ACCESS RELATIVE
RELATIVE KcY REL-KEY
FILE STATUS REL-STATUS.

FD REL-EMPLOYEE LABEL RECORDS STANDARD.
01 REL-RECORD.

02 SOCIAL-SECURITY
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL
03 EMPLOYEE-SECOND-INITIAL
03 EMPLOYEE-LAST-NAME

02 REST-OF-DATA

WORKING-STORAGE SECTION.
01 REL-KEY

CREATE RELATIVE RECORD FILE
PATHNAME:' EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:

INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPANDABLE ?: YES
FORCED WRITE ?: NO

PIC XC9).

PIC X.
PIC X.
PIC XC20).
PIC XC113).

PIC 9(6).

Figure 2·8. Relative Record File Description and Creation

2270521-9701

Operating System Concepts

To minimize wasted disk space, choose the physical record length (PRECL) such that it is one of
the following: either it is the largest integral multiple of the logical record size that is less than or
equal to the ADU size, or it is an integral multiple of the ADU size.

The following figures illustrate the relationships between the logical record, physical record, sec
tor, and ADU sizes. In all cases, some disk space is wasted; the amount depends on the physical
record size chosen. Each figure defines the relationship between logical record, physical record,
sector, and ADU sizes. The boxed information represents a linear description of the logical records
on a file. Below the logical records are physical record, sector, and ADU divisions of the data.

Figure 2-9 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is less than the sector size, and the sector size is less than the ADU size.
Space is wasted within each sector because the physical record must begin on the next sector
boundary.

R01 I R02 V!ll! !IZI

PHYSICAL _,

SECTOR

NOTES:

I 1 2

R03 R04 V!!I///~

r- PHYSICAL -1
1---- SECTOR

ADU

I 1 2

I. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2. PHYSICAL RECORD MUST BEGIN ON SECTOR BOUNDARY

2277258

I ROS I R06 W/11!/J/J

:I

Figure 2-9. Relative Record Files: Physical Record Size < Sector Size < ADU Size

2270521-9701

I 1 2

2·17

Operating System Concepts

Figure 2-10 indicates the relationship betvyeen physical record, sector, and ADU sizes when the
physical record size is equal to the sector size and the sector size is less than the ADU size. In this
case, if a logical record does not fit into the remaining space of a physical record, the space is
unused and the logical record begins in the next physical record.

Figure 2-11 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is less than the ADU
size. In this case, the physical record is two times the sector size. More than one sector for every
ADU is wasted because there is not enough space in the ADU to hold another physical record.

R01 R02 I R03 ~ R04 ROS ROG VJ R07 ROB R09 rJ
PHYSICAL PHYSICAL PHYSICAL

SECTOR SECTOR SECTOR

ADU

NOTE:

1 - LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

22772S9

Figure 2-10. Relative Record Files: Physical Record Size = Sector Size < ADU Size

ROI R02 R03 ROI 14 I ROS ROG WA w !@j/jl_!/J/1$/ZZ!j
2 3

PHYSICAL

:1 SECTOR ------1 ~ SECTOR ~ SECTOR

:I ADU
NOTES:

I• LOGICAL RECORD SPANS SECTOR BOUNDARY

2. LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

3. PHYSICAL RECORD BEGINNING (N, MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

22772GO

Figure 2-11. Relative Record Files: Sector Size < Physical Record Size < ADU Size

2-18 2270521-9701

Operating System Concepts

Figure 2-12 indicates the relationship between physical record, sector, and ADU sizes when the
sector size is less than the physical record size and the physical record size is equal to the ADU
size. When the physical record size is not specified at file creation, the default value used is the
defined default of the directory on which the file is created. Logical records can span only sector
and ADU boundaries. If a logical record does not fit into the space of a physical record, the space
is unused and the logical record begins on the next physical record.

Figure 2-13 indicates the relationship between physical record, sector, and ADU sizes when the
physical record size is greater than the ADU size and the ADU size is greater than or equal to the
sector size. In this case, space is wasted on the disk because the remaining space of the ADU is
too small to contain another physical record. Therefore, the next physical record must begin on
the next ADU boundary. Note that the logical record must span to the next physical record, which
begins on the next ADU.

ROI R02 R03 ROI 14 I R05 R06 R07 I I I ROB R09 RIO ~
2

t
PHYSICAL

l SECTOR -----1 ~ SECTOR ~ ~ SECTOR

ADU

NOTES:

1 • LOGICAL RECORD SPANS SECTOR BOUNDARY

2, LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

2277261

Figure 2·12. Relative Record Files: Sector Size < Physical Record Size = ADU Size

ROI R02 R03 I R04 I R05 I R06 I R07 VM VIJ///11/J//llll!J///]
I 2

PHYSICAL

SECTOR + s:::OR _+ ___ S_E_C-TO_R_t --S-E_C_T_O_R __ +__ s:o• + SECTOR ~
NOTES:

1 • LOGICAL RECORD CANNOT SPAN PHYSICAL RECORD

Z. PHYSICAL RECORD BEGINNING IN MIDDLE OF ADU CANNOT SPAN ADU BOUNDARY

2277262

Figure 2-13. Relative Record Files: Physical Record Size > ADU Size ~ Sector Size

2270521-9701 2-19

Operating System Concepts

2.7.2.3 Special Types of Relative Record Files. There are three special types of relative record
files available: directory, program, and image files. These files provide special interface mecha·
nisms that are used primarily for memory images, memory swapping, and diagnostic dumps.

• Directory files - Contain names of and pointers to other files

• Program files - Contain program images and an internal directory of the images

• Image files - Special-purpose files used primarily by the operating system for memory
images, memory swapping, and diagnostic dumps

None of these special types of relative record files can be accessed through COBOL programs.

2.7.3 Key Indexed Files (KIF)
A KIF allows random access to its records via a key. The key is a character string of up to 100 char
acters, located in a fixed position within each file record. From 1 to 14 individual keys can be speci·
fied. For example, the records in an employee file can be accessed by keys that indicate the
employee's ID, name, and social security number.

Keys can overlap one another, with certain restrictions, within the record. Although the keys can
be structured anywhere within a record, they must appear in the same relative position in all
records in the file. One key must be specified as the primary key; the other keys are secondary
keys. The primary key must be present in all records, but secondary keys are optional.

In addition to supporting random access, KIFs include the following characteristics:

•

•

•

•

•

•

•

2·20

Records can be accessed sequentially in the sort order of any key .

At file creation, any key can be designated as allowing duplicates, which means that two
or more records in the file can have the same value for this key.

At file creation, any key except the primary key can be designed as being modifiable .
This means that when a record is being rewritten, the key value may change. Also, a sec·
ondary key value that is missing in the record can be added later on a rewrite.

Alternate keys cannot overlap the primary key .

Alternate keys cannot overlap the first character position of any other alternate key .

Records can be of variable length .

A start is allowed on the first portion of a key .

2270521-9701

Operating System Concepts

• Records are automatically blank-suppressed.

• Record-level locking is supported.

• The file is expanded dynamically allocating space when needed.

• File integrity is maintained through pre-image logging of modified blocks. Before a
record is modified on disk, it is copied to a backup area in the file overhead area. Conse
quently, system failures cause the loss of only the last 110 operation.

• Records of odd or zero length are not allowed.

The physical record length must be greater than or equal to 22 plus the logical record length. For
maximum efficiency, the physical record length should equal the ADU size of the disk on which
the file is to reside or a multiple of the ADU size.

To ensure that a sufficient buffer is allocated at execution time, the COBOL program source
module must define the maximum record size in the file description. If the file was created using
the average blank-suppressed logical record length, an invalid record length error is returned on an
Open request. Under these conditions, the USE procedures of the DECLARATIVES can be speci
fied to intercept and ignore the invalid record length error returned on the OPEN request. (Refer to
Section 12 for more details on intercepting and ignoring 1/0 errors.) The Tl COBOL Reference
Manual contains a detailed explanation of the USE and OPEN statements and the keyword
DECLARATIVES.

If a KIF is created with the Create Key Indexed File (CFKEY) command and the KIF is to be used in
COBOL programs, the keys must be defined in the following order:

• Primary key

• Alternate key with the lowest displacement

• Alternate key with the next lowest displacement

• Alternate key with the highest displacement

The number of keys must exactly match the number of keys declared in the source program. The
key lengths, flags (modifiable and duplicate attributes), and offsets must also match those
declared in the program. The primary key cannot have duplicates or be modifiable. Alternate keys
must all be modifiable and can have duplicates only when the duplicates are declared as such in
the program. Alternate keys can overlap in any character position except the first, thereby
preventing any two keys from having the same displacement. Alternate keys must never overlap
the primary key in any character position. If any of the preceding conditions fails to match at open
time, an invalid open error occurs (status code 94).

2270521-9701 2-21

Operating System Concepts

Figure 2-14 shows both the file description for a KIF in a COBOL program and the creation of the
KIF using the Create Key Indexed File (CFKEY) SCI command. After the KIF is created, use a Map
Key Indexed File (MKF) SCI command to view the key attributes.

2-22

SELECT EMPLOYEE-MASTER

FD
01

ASSIGN TO RANDOM, "EMPL"
ORGANIZATION INDEXED
ACCESS RANDOM
RECORD KEY SOCIAL-SECURITY
ALTERNATE RECORD KEY EMPLOYEE-NAME
ALTERNATE RECORD KEY EMPLOYEE-LAST-NAME

WITH DUPLICATES
FILE STATUS EMPLOYEE-STATUS.

EMPLOYEE-MASTER LABEL RECORDS STANDARD.
EMPLOYEE-RECORD.
02 SOCIAL-SECURITY
02 EMPLOYEE-NAME.

03 EMPLOYEE-FIRST-INITIAL
03 EMPLOYEE-SECOND-INITIAL
03 EMPLOYEE-LAST-NAME

02 REST-OF-DATA

CREATE KEY INDEXED FILE
PATHNAME: EMPL

LOGICAL RECORD LENGTH: 144
PHYSICAL RECORD LENGTH:

INITIAL ALLOCATION:
SECONDARY ALLOCATION:

MAXIMUM SIZE: 1000

KEY DESCRIPTION FOR KEY NUMBER 1
START POSITION: 1

KEY LENGTH: 9
DUPLICATES?: NO
MODIFIABLE?: NO

ANY MORE KEYS?: YES

PIC X(9).

PIC X.
PIC X.
PIC XC20).
PIC XC113).

Figure 2-14. KIF Description, CFKEY Creation, and MKF Listing (Sheet 1of2)

2270521-9701

2270521-9701

Operating System Concepts

KEY DESCRIPTION FOR KEY NUMBER 2
START POSITION: 10

KEY LENGTH: 22
DUPLICATES?: NO
MODIFIABLE?: YES

ANY MORE KEYS?: YES

KEY DESCRIPTION FOR KEY NUMBER 3
START POSITION: 12

KEY LENGTH: 20
DUPLICATES?: YES
MODIFIABLE?: YES

ANY MORE KEYS?: NO

FILE MAP OF .MASTER
TODAY IS 09:00:41 FRIDAY, SEPTEMBER 26, 1980

KEYS:

KEY
1
2
3

START
COLUMN

1
10
12

LENGTH
9

22
20

MODIFIABLE
N
y
y

DUPLICATES
ALLOWED

N
N
y

Figure 2·14. KIF Description, CFKEY Creation, and MKF Listing (Sheet 2 of 2)

2·23/2·24

3.1 GENERAL

3

Building a COBOL
Source Program Module

The initial phase of COBOL program development involves building the program source module.
This process requires preparing the necessary directories and files and entering the program
source code (presumably via the text editor).

3.2 DIRECTORY AND FILE PREPARATION

Table 3-1 lists and describes the files that are typically used when developing and executing
COBOL programs. (Optional procedures may require additional files.)

Table 3·1. Files Required for Program Development

File

Source tile

Object tile

Compiler listing file

Link control tile

Link editor listing

Program file

2270521-9701

Description

Contains program source module code, which is created by
using the text editor and input to the COBOL compiler.

Contains program object module code, which is output from the
COBOL compiler and input to the link editor or the Execute
COOOL Program (XCP) command. (Refer to Section 6 tor details
about the XCP command.)

Contains the program source module listing with any errors
detected by the COBOL compiler. The COBOL compiler pro
duces this listing.

Contains instructions for the link editor, such as which object
modules, run-time libraries, user libraries, and external routines
are to be linked.

Contains the link map, which is produced by the link editor.

The user's program file; contains programs in image format.

3·1

Building a COBOL Source Program Module

3.3 ALTERNATE DIRECTORY STRUCTURES

File organization varies according to the requirements of a specific installation. Several methods
of organization are possible, including the following:

• Organization according to related programs

• Organization according to file type

3.3.1 Organization by Programs
When files are organized by programs, all necessary files for a given program are located in a
single directory; the directory name is associated with the program name. In the following
example, all files for PROGRAMA are in directory PROGA, and all files for PROGRAMS are in di rec·
tory PROGB:

VOLUME.PROGA.SRCFILE
VOLUME.PROGA.OBJFILE
VOLUME.PROGA.LSTFILE
VOLUME.PROGA.CTRFILE
VOLUME.PROGA.LINKMAP
VOLUME.PROGA.PRGFILE

3.3.2 Organization by File Type

VOLUME.PROGB.SRCFILE
VOLUME.PROGB.OBJFILE
VOLUME.PROGB.LSTFILE
VOLUME.PROGB.CTRFILE
VOLUME.PROGB.LINKMAP
VOLUME.PROGB.PRGFILE

In the diagram in Figure 3·1, files are arranged under a single directory (PROJECT). Subdirectories
are created for source, object, listing, link control, and link map files. This type of file organization
allows for a network of programs where the same module may be linked into different programs.

PROJECT

SOURCE OBJECT LIST LINK LINKMAP PROG

I I I I I
MOD1 MOD1 MOD1 LINKA LINKA

I I I Ll~KB I
MOD2 MOD2 MOD2 LINKS

I I I
MOD3 MOD3 MOD3

Figure 3·1. Organization of Files in Directory

3.4 CREATING DIRECTORIES AND FILES

To create a directory or subdirectory, enter the Create Directory File (CFDIR) SCI command. The
following display appears:

CREATE DIRECTORY FILE
PATHNAME: pathname@ (*)

MAX ENTRIES: integer
DEFAULT PHYSICAL RECORD SIZE: [integer]

3·2 2270521-9701

Building a COBOL Source Program Module

Assume that the pathname has a volume name of VOLUME and a directory name of SOURCE.
SOURCE will contain all source files for programs. Respond to the prompt PATHNAME by entering
VOLUME.SOURCE. Respond to the prompt MAX ENTRIES by entering the maximum number of
entries (files and subdirectories) that the directory may contain.

Files that are output from utilities (such as the text editor or the compiler) need not be created
prior to executing the utility; the utility automatically creates the files if they do not already exist.
However, pathnames must be specified before termination of the utility. Pathnames must be
unique unless the information in a file is being replaced. Directories are not automatically created.
The compiler automatically creates the compiler listing file and the object file if they do not
already exist. Since the link control file is a utility input file, it must be created (usually via the text
editor) prior to executing the link editor.

3.5 BUILDING THE PROGRAM MODULE VIA THE TEXT EDITOR

COBOL source program modules are generated on a VDT using SCI. Editing on the VDT occurs on
a page basis; each page can have any consecutive 24 lines displayed on the screen. You can edit
any record displayed on the screen by positioning the cursor anywhere within the line that con
tains the record. You can insert records between any lines, and you can insert or delete them in
any order. Also, you can insert, delete, or modify characters within a line. Use the Show Line (SL)
SCI command and the F2 (Roll Up Function), F1 (Roll Down Function), Previous Line and Next Line
control keys to access specific lines, records, or characters.

To enter a source program module via the text editor (assuming a directory has been created pre
viously), enter the Initiate Text Editor (XE) SCI command, and press the Return key. The following
display appears:

EXECUTE TEXT EDITOR
FILE ACCESS NAME:

EXCLUSIVE EDIT?: YES
LINE LENGTH: 80

Press the Return key to indicate that no file exists. The Text Editor clears the VDT screen and dis
plays the following in the first four columns of row 1 with the cursor in column 1, row 1:

*EOF

This display indicates that the end-of-file (EOF) record is the only record in the file. To begin
entering data, press the Return key. Notice that a blank line appears before the *EOF notation.
Press the Command key and enter the Modify Tabs (MT) SCI command to adjust the tabs for cod
ing. Set the tabs at 1, 8, 12, 24, and 73 (standard tabs for a COBOL coding sheet), and press the
Return key. Now, begin entering the source code shown in Figure 3-2. Each time you enter a new
line and press the Return key, a new blank line appears beneath the previously entered line of
information.

2270521-9701 3-3

Building a COBOL Source Program Module

3.4

IDENTIFICATION DIVISION.
PROGRAM-ID. FUNCTION.

* THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL
* DEMONSTRATION TEST FOR CHECKING FUNCTION KEY
* ACCESSIBILITY.
* FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE
* SCI EXECUTION COMMAND.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ACTION PIC XX.
01 FUNC PIC 99.
01 X PIC S99 COMP-1.
01 XX PIC S99 COMP-1.
01 HEADS.

02 FILLER PIC X(21) VALUE
"01 - F1".

02 FILLER PIC X(21) VALUE
"02 - F2".

02 FILLER PIC XC21) VALUE
"03 - F3".

02 FILLER PIC X(21) VALUE
"04 - F4".

02 FILLER PIC X(21) VALUE
11 05 - F5".

02 FILLER PIC X(21) VALUE
"06 - F6".

02 FILLER PIC X(21) VALUE
"07 - F7".

02 FILLER PIC X(21) VALUE
"08 - F8".

02 FILLER PIC XC21) VALUE
"09 - F9".

02 FILLER PIC XC21) VALUE
"10 - F10".

02 FILLER PIC XC21) VALUE
"11 - F11".

02 FILLER PIC XC21) VALUE
"12 - F12".

02 FILLER PIC X(21) VALUE
"13 - F13".

02 FILLER PIC X(21) VALUE
"14 - F14".

02 FILLER PIC X(21) VALUE
11 40 - Command".

Figure 3-2. Sample COBOL Program Source Module -
VOLUME.SOURCE.EXAMPLE2(Sheet1of2)

2270521-9701

2270521-9701

Building a COBOL Source Program Module

02 FILLER PIC X(21) VALUE
"49 - Print".

02 FILLER PIC X(21) VALUE
"52 - Previous Line".

02 FILLER PIC X(21) VALUE
"53 - Next Line".

02 FILLER PIC XC21> VALUE
"54 - Home".

02 FILLER PIC XC21) VALUE
11 55 - Next Field".

02 FILLER PIC X(21) VALUE
"56 - Previous Field".

02 FILLER PIC XC21) VALUE
11 57 - Skip".

02 FILLER PIC XC21) VALUE
11 58 - Forward Tab".

02 FILLER PIC X(21) VALUE
"59 - Initialize Input".

02 FILLER PIC XC21> VALUE
"61 - Erase Input".

02 FILLER PIC X(21) VALUE
"64 - Enter".

01 HEADINGS REDEFINES HEADS.
02 HEAD PIC XC21) OCCURS 26.

PROCEDURE DIVISION.
MAIN-PROG.
RD-INPUT.

DISPLAY "COBOL FUNCTION KEYS TEST"
LINE 1 POSITION 20 ERASE.

PERFORM DSP-13 THRU E-13 VARYING X FROM 1
BY 1 UNTIL X > 13.

PERFORM DSP-26 THRU E-26 VARYING X FROM 14
BY 1 UNTIL X > 26.

DISPLAY "DEPRESS DESIRED KEY" LINE 20 POSITION 20.
PERFORM GET-FUNC UNTIL ACTION = "X".
STOP RUN.

GET-FUNC.
ACCEPT ACTION LINE 20 POSITION 40

ON EXCEPTION FUNC
DISPLAY FUNC LINE 20 POSITION 40.

DISPLAY "HIT 'CR' TO CONTINUE, 'X' TO STOP"
LINE 22 POSITION 20.

ACCEPT ACTION LINE 22 POSITION 54.
DISPLAY II II LINE 20 POSITION 40.

DSP-13.
COMPUTE xx = x + 1 .
DISPLAY HEAD (X) LINE XX POSITION 20.

E-13. EXIT.
DSP-26.

COMPUTE xx = x - 12.
DISPLAY HEAD (X) LINE XX POSITION 45.

E-26. EXIT.
END PROGRAM.

Figure 3·2. Sample COBOL Program Source Module -
VOLUME.SOURCE.EXAMPLE2 (Sheet 2 of 2)

3.5

Building a COBOL Source Program Module

After entering the program source module, check for errors. To return to the first page of the
source code, press the Command key and enter the SL command. The following display appears:

SHOW LINE
LINE:

Press the Return key to accept the initial value of 1. To review the source code, use the F1 and F2
keys. Each time the F1 key is pressed, the display scrolls forward; each time the F2 key is pressed,
the display scrolls backward. To change the number of lines that are scrolled, enter the Modify
Roll (MR) SCI command, and press the Return key. The following display appears:

MODIFY ROLL
NUMBER OF LINES TO ROLL: 23

A different value may appear as the initial value of this command prompt. In any case, the
response to this prompt should be 23. This allows the last line of the display to appear as the first
line on the next display when the F1 key is pressed or the first line of the display to appear as the
last line on the next display when the F2 key is pressed. Now, press the Return key.

Certain keys can be helpful when verifying the source code. Each of these keys may be used in
conjunction with the Repeat key. The keys and their functions are as follows:

• Previous Line - Moves the cursor up one line from the current line. If the cursor is on
the top line, the screen scrolls backward one line.

• Next Line - Moves the cursor down one line from the current line. If the cursor is on the
bottom line, the screen scrolls forward one line.

• Previous Character - Moves the cursor to the left one character from the current posi
tion of the cursor.

• Next Character - Moves the cursor to the right one character from the current position
of the cursor.

If no errors are found, press the Command key again and enter the Quit Edit (QE) SCI command.
The following display appears:

QUIT EDIT
ABORT?: NO

A YES response to the prompt ABORT? terminates the text editor without any modification to the
input file; if no input file was specified in the XE command, no new file is created. Any modifi
cations made or data entered are lost when the response to the ABORT? prompt is YES. Accept
the initial value (NO) and press the Return key. The following display appears:

3-6

QUIT EDIT
OUTPUT FILE ACCESS NAME: VOLUME.SOURCE.EXAMPLE2

REPLACE?: YES
MOD LIST ACCESS NAME:

2270521 ·9701

Building a COBOL Source Program Module

Enter a valid pathname such as VOLUME.SOURCE.EXAMPLE2 for the output file access name,
and press the Return key. The response to the prompt REPLACE? determines whether the desig
nated output file is to be replaced by the edited file. If the response is NO and the output file
exists, the edited file does not replace the existing file. If the response is NO and no file exists by
that name, a new file is created. If the response is YES, the edited file replaces the specified file; if
no file exists by that name, a new file is created. Press the Return key in response to the prompt
MOD LIST ACCESS NAME. The program is now entered and has a file name of
VOLUME.SOURCE. EXAM PLE2.

When you are editing a source file, the functions of various keys can be helpful. For instance, the
F4 key duplicates information on a previous line to a preset tab when the cursor is placed beneath
the line to be copied. The FS key acts as a tab key and clears the line to the preset tab positions,
and the F6 key displays or suppresses line numbers. When line numbers are displayed, only 74
characters of each record are displayed. When line numbers are suppressed, a full 80 characters
are displayed. Other keys of importance include the following:

• Initialize Input key - Inserts a blank line above the line containing the cursor

• Insert Character key - Inserts characters at the current cursor position and moves all
characters that are to the right of the cursor one position to the right (truncates charac
ters if line is full)

• Delete Character key - Deletes characters at the current cursor position and moves all
characters that are to the right of the cursor one position to the left

• Home key - Positions the cursor in row 1, column 1 of the display

• Erase Field key - Replaces all characters in a line with blanks

• Erase Input key - Deletes the line on which the cursor is positioned and rolls up all
lines beneath it

Certain SCI commands can also be helpful when editing a file. These commands include the
following:

• FS (Find String) - Locates a predefined string in the source file for a specified number
of occurrences

• DL (Delete Lines) - Deletes certain lines specified by the user

• ML (Move Lines) - Moves specified lines in a file and inserts them after a specified line
number

• CL (Copy Lines) - Duplicates the specified lines and inserts them after a specified line
number

• IF (Insert File} - Inserts an existing file into the file that is being edited, after a specified
line number

2270521-9701 3-7/3-8

4

Compilation

4.1 GENERAL

Compilation is the process of translating a COBOL program source module into a series of instruc
tions (interpretive object code) comprehensible to the computer. The interpretive object code is
interpreted by the COBOL run-time interpreter at execution time. (Refer to Section 5 for a descrip
tion of the COBOL run-time interpreter.)

4.2 COMPILER EXECUTION

To execute the COBOL compiler, enter the Execute COBOL Compiler in Background (XCC) com
mand for background compiles or the Execute COBOL Compiler in Foreground (XCCF) command
for foreground compiles. The XCC command allows the terminal to be used for foreground pur
poses during the background compilation.

4.2.1 Execute COBOL Compiler in Foreground (XCCF)
For the XCCF command, the following prompts appear with the indicated initial values:

EXECUTE COBOL COMPILER FOREGROUND <VERSION: L.R.V YYDDD>
SOURCE ACCESS NAME: pathname@
OBJECT ACCESS NAME: pathname@

LISTING ACCESS NAME: pathname@
OPTIONS: [{D/I/M/O/X}J

PRINT WIDTH: integer
PAGE SIZE: integer

PROGRAM SIZE (LINES): integer

Press the Return key after each entry.

(80)
(55)

(1000)

SOURCE ACCESS NAME - Enter the input device name, pathname, or synonym for the file that
contains the source module to be compiled.

OBJECT ACCESS NAME - Enter the pathname or synonym of the output object file. The compiler
places the generated object code in the object file. The pathname must refer to a mass storage file
with relative record organization. If the file does not exist, the compiler automatically creates a rel
ative record file for the object file. If the file exists but is not a relative record file, the compiler ter
minates and an error is generated. (Refer to Appendix C for a listing of the compiler error
messages.) If DUMY is specified for the object access name, the output object file is not
generated.

LISTING ACCESS NAME - Enter the listing device name, pathname or synonym. The name
entered is the name of the device or sequential file to which the compiler outputs the requested
listings. If a file is specified and does not exist, the compiler automatically creates a sequential file
for the listing file. Enter ME to have the listing displayed on the screen as it is generated.

2270521-9701 4-1

Compilation

OPTIONS - To request options, enter (without intervening commas) one or more of the characters
listed in Table 4-1.

Character

D
I

M
0
x

Table 4·1. COBOL Compiler Options

Option

Debug
Information Message
Data Maps
List Object
Cross-Reference Listing

Entering the M option causes a listing similar to Figure 4-1.

The order in which the options are listed is not important. However, invalid options generate warn
ings and then are ignored. Descriptions of the options are as follows:

•

•

•

•

4·2

Debug Option (D) - Causes the compiler to compile source statements that have a Din
character position seven, along with rest of the statements in the program source
module. Otherwise, the source statements with D in position seven are treated as
comments.

Information Message Option (I) - Causes the compiler to list any informative mes
sages. These messages are not errors or warnings. See Table B-3 in Appendix B for the
list of informative messages.

Data Maps Option (M) - Causes the data map to be listed as part of the compiler listing
(listing access name). Otherwise, no data map is listed. Refer to Appendix E for a
COBOL object listing example including data maps.

List Object Option (0) - Causes the compiler to include the object code in the listing
file, following the listing of the corresponding source statement. Refer to Appendix E for
a COBOL object listing example including object code.

2270521-9701

Compilation

• Cross-Reference Listing Option (X) - Causes the compiler to produce a cross-reference
listing following the source listing or data maps if requested. Data names, index names,
condition names, file names, section names, and paragraph names (contained in the
Procedure Division of the program) are listed in the cross-reference. The line numbers of
all appearances of a name are printed to the right of the name. When a line number is
enclosed in slashes (lnnnnl), the statement on that line defines the item. When a line
number is enclosed in asterisks (*nnnn*), the statement on that line may alter the con
tents of the item. When a line number is enclosed in blanks (nnnn), the statement on
that line references the item.

PRINT WIDTH - Enter the appropriate print width to specify the number of characters to be for
matted on a line of the listing. The compiler truncates the compiler listing lines if the print width is
less than the compiler-generated line length. The initial value print width is 80 positions.

PAGE SIZE - Enter the maximum number of print lines per page for the compiler listing file. The
initial value page size is 55 lines per page.

PROGRAM SIZE (LINES) - Enter an estimate of the number of program source module lines con
tained in the program source module. This estimate determines the amount of initial memory used
in the compilation. If more memory is requested, compilation is faster provided memory is avail
able. The initial value program size is 1000 lines.

After the program module is compiled, if an error occurs, correct the error and recompile the
source module before attempting to link edit or execute the code. When the compilation com
pletes successfully, the following message appears:

COBOL COMPILER COMPLETED, 0 ERRORS, 0 WARNINGS

2270521-9701 4.3

Compilation

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M

SOURCE ACCESS NAME:
OBJECT ACCESS NAME:
LISTING ACCESS NAME:
OPTIONS:
PRINT WIDTH:
PAGE SIZE:
PROGRAM SIZE CLINES):

MANUAL.PG.SRC.FIG0401
DUMY
MANUAL.PG.LST.FIG0401
M
80
55
1000

PAGE

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2
LINE

1
2
3
4
5
6
7
8
9

10
11
12

DXCBL
LINE

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

4.4

DEBUG PG/ LN A ... B .. .
IDENTIFICATION DIVISION.
PROGRAM-ID. FUNCTION.

* THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL
* DEMONSTRATION TEST FOR CHECKING FUNCTION KEY
* ACCESIBILITY.
* FUNCTION KEYS MUST HAVE BEEN ACTIVATED VIA THE
* SCI EXECUTION COMMAND.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
DATA DIVISION.

L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3
DEBUG PG/LN A ... B .. .

I
WORKING-STORAGE SECTION.
01 ACTION PIC xx.
01 FUNC PIC 99.
01 x PIC S99 COMP-1.
01 xx PIC S99 COMP-1.
01 HEADS.

02 FILLER PIC x (21) VALUE
11 01 - F1".

02 FILLER PIC x (21) VALUE
11 02 - F2".

02 FILLER PIC XC21) VALUE
"03 - F3".

02 FILLER PIC x (21) VALUE
11 04 - F4".

02 FILLER PIC x (21) VALUE
11 05 - F5".

02 FILLER PIC x (21) VALUE
"06 - F6".

02 FILLER PIC X(21) VALUE
11 07 - F7".

Figure 4·1. Sample COBOL Compiler Listing (Sheet 1of4)

2270521-9701

Compilation

34 02 FILLER PIC x (21) VALUE
3S "08 - F8".
36 02 FILLER PIC XC21> VALUE
37 11 09 - F9".
38 02 FILLER PIC x (21) VALUE
39 "10 - F10".
40 02 FILLER PIC XC21> VALUE
41 "11 - F11".
42 02 FILLER PIC XC21> VALUE
43 "12 - F12".
44 02 FILLER PIC XC21> VALUE
4S "13 - F13".
46 02 FILLER PIC X(21) VALUE
47 "14 - F 14".
48 02 FILLER PIC XC21> VALUE
49 11 40 - Command".
so 02 FILLER PIC XC21> VALUE
S1 11 49 - Print".
S2 02 FILLER PIC XC21> VALUE
S3 "S2 - Previous Line".
S4 02 FILLER PIC XC21) VALUE
SS "S3 - Next Line".
S6 02 FILLER PIC XC21) VALUE
S7 "S4 - Home".
S8 02 FILLER PIC XC21> VALUE
S9 "SS - Next Field".
60 02 FILLER PIC XC21) VALUE
61 "S6 - Previous Field".
62 02 FILLER PIC XC21) VALUE
63 "S7 - Skip".
64 02 FILLER PIC XC21> VALUE
6S "S8 - Forward Tab".
66 02 FILLER PIC XC21> VALUE
67 "S9 - Initialize Input".
68 02 FILLER PIC XC21> VALUE

DXCBL L~R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4
LINE

69
70
71
72
73

DEBUG PG/LN A ... B .. .

2270521-9701

"61 - Erase Input".
02 FILLER PIC XC21) VALUE

"64 - Enter".
01 HEADINGS REDEFINES HEADS.

02 HEAD PIC XC21) OCCURS 26.

Figure 4·1. Sample COBOL Compiler Listing (Sheet 2 of 4)

4.5

Compilation

DXCBL
LINE DEBUG

74
75
76
77
78
79

>0000
>0002
>0002

80 >OOOC
81
82 >0020
83
84
85
86
87
88
89
90

>0034
>003C
>0046
>0048
>0048

91 >005E
92
93
94
95
96
97
98
99

100
101
102
103

>0066
>006E
>0078
>0078
>007E
>008E
>0090
>0090
>0096
>OOA6

4-6

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5
PG/LN A ... B .. .

I
PROCEDURE DIVISION.
MAIN-PROG.
RD-INPUT.

DISPLAY "COBOL FUNCTION KEYS TEST"
LINE 1 POSITION 20 ERASE.

PERFORM DSP-13 THRU E-13 VARYING X FROM
BY 1 UNTIL X > 13.

PERFORM DSP-26 THRU E-26 VARYING X FROM 14
BY 1 UNTIL X > 26.

DISPLAY "DEPRESS DESIRED KEY" LINE 20 POSITION 20.
PERFORM GET-FUNC UNTIL ACTION = "X".
STOP RUN.

GET-FUNC.
ACCEPT ACTION LINE 20 POSITION 40

ON EXCEPTION FUNC
DISPLAY FUNC LINE 20 POSITION 40.

DISPLAY "HIT 'CR' TO CONTINUE, 'X' TO STOP"
LINE 22 POSITION 20.

ACCEPT ACTION LINE 22 POSITION 54.
DISPLAY II II LINE 20 POSITION 40.

DSP-13.
COMPUTE XX= X + 1.
DISPLAY HEAD (X) LINE XX POSITION 20.

E-13. EXIT.
DSP-26.

COMPUTE XX = X - 12.
DISPLAY HEAD (X) LINE XX POSITION 45.

E-26. EXIT.
ZZZZZZ END PROGRAM. *** END OF FILE

Figure 4·1. Sample COBOL Compiler Listing (Sheet 3 of 4)

2270521-9701

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE
ADDRESS SIZE DEBUG ORDER TYPE NAME

>002A 2 ANS 0 ALPHANUMERIC ACTION

>002C 2 NSU 0 NUMERIC UNSIGNED FUNC

>002E 2 NBS 0 BINARY SIGNED x

>0030 2 NBS 0 BINARY SIGNED xx

>0032 520 GRP 0 GROUP HEADS

>0032 520 GRP 0 GROUP HEADINGS
>0032 20 ANS 1 ALPHANUMERIC HEAD

READ ONLY BYTE SIZE = >01C8

READ/WRITE BYTE SIZE = >0248

OVERLAY SEGMENT BYTE SIZE = >0000

TOTAL BYTE SIZE = >0410

0 ERRORS

0 WARNINGS

Figure 4·1. Sample COBOL Compiler Listing (Sheet 4 of 4)

4.2.2 Execute COBOL Compiler in Background (XCC)
For the XCC command, the following prompts appear with the indicated initial values:

EXECUTE COBOL COMPILER <VERSION: L.R.V YYDDD>
SOURCE ACCESS NAME: pathname@
OBJECT ACCESS NAME: pathname@

LISTING ACCESS NAME: pathname@
OPTIONS: [{D/I/M/O/X}J

PRINT WIDTH: integer (80)
PAGE SIZE: integer (55)

PROGRAM SIZE (LINES): integer (1000)

Compilation

6

The parameters are the same as those for the XCCF command except that ME should not be used
as the listing access name.

2270521-9701 4.7

Compilation

4.3 COMPILER OUTPUT

The compiler output consists of the object file and the listing file. The object file contains the
object modules (interpretive code) generated by the computer. The reentrant code (instructions) is
generated as a group named PSEG. The nonreentrant code (data) is generated as a group named
DSEG. DSEGs are often referred to as $DATA. The object file may be executed by the run-time
interpreter or linked to another object module. The listing file contains the listing of the program
source code and lists any error messages detected by the compiler.

4.4 COMPILER COMPLETION CODES

The COBOL compiler returns a system completion code for the most severe diagnostic
encountered in the compilation. The completion code is returned in the synonym $$CC. The values
and meanings of these codes are as follows:

Value Meaning

0000 No warnings or errors occurred

4000 Warnings occurred

8000 Errors occurred

The synonym $$CC should be checked in batch streams immediately after compiler execution.
$$CC is used by other processors, and its integrity is not guaranteed after completion of the batch
stream or execution of another command.

4.5 COMPILER ERROR MESSAGES

The compiler generates user and system error messages. User error messages are included in the
compiler listing. Compilation of a program source module proceeds to the end of a program
module regardless of the number of errors found.

Errors that prevent proper execution of the COBOL compiler are system errors. When one of these
errors occurs, the system displays an error message and terminates the execution of the compiler.
Refer to Appendix B for a listing of user ahd system error messages and their meanings.

4.6 COMPILER LIMITATIONS

Each of the following items is limited to 2047 entries:

• Level-88 condition names

• Nesting of IF statements

• Nesting of PERFORM statements

4·8 2270521-9701

Compilation

• Using parameters in CALL statements

• Unique index names

• Unique spellings (identifiers, paragraph/section/internally generated labels)

• Unique literal values

• Unique identifiers (data names)

• Unique paragraph/section/internally generated labels

• Unique references to data items

In practice, because of interactions between different statements and related temporary infor
mation during the compilation process, the actual limits may be somewhat less than 2047. How
ever, the limits for all practical purposes should be higher than typical program modules require.

2270521 ·9701 4-9/4-10

5

Link Edit

5.1 GENERAL

Link editing is the process of preparing object modules for execution. It can also combine two or
more separately compiled object modules to form a single linked object module. This process is
performed by one of the operating system utilities, the link editor. The process of link editing
resolves external definitions and references between object modules.

Object modules do not always require linking before execution. They must be linked as a linked
object module if subroutines are present. (Refer to the section entitled Creating Linked Object
Modules.) Also, object modules must be linked to a program file when task and procedure seg
ments or overlays are needed. (Refer to the section entitled Creating Program Images.)

The following features are supported with linked object modules:

• Callable subroutines

• COBOL program module segmentation

• Object file compression

The following features are supported on program files:

• Callable subroutines

• Reentrant user modules

• Shared procedure segments

• Overlay phases

• COBOL program module segmentation

2270521-9701 5·1

Link Edit

The diagram in Figure 5-1 shows the link edit and execution options available with COBOL pro
grams. In the logical flow labeled A, no linking is necessary to execute an object module. (Refer to
Object Modules Execution in Section 6 for a description of how to execute object modules.) The
logical flow labeled B indicates that object modules must be linked when they contain CALL state
ments. The linked object modules are then executed using the same SCI commands as used for
object modules. The logical flow labeled C shows how to execute a program (task) installed in a
program file. (Refer to Program Image Execution in Section 6 for a description of how to execute
program images on program files.) The Execute COBOL Program (XCP) and Execute COBOL Pro
gram in Foreground (XCPF) commands shown in Figure 5-1 reflect the method of executing com
piled object files and linked object files. The Execute COBOL Task (XCT) and Execute COBOL Task
in Foreground (XCTF) commands show the method of executing linked program images on pro
gram files.

User programs that operate under control of the operating system can include a combination of
data, procedures, and overlays as required. Programs are installed and stored on program files in
memory image form. When a program is activated, the images of its program segments are loaded
into available memory areas. The hardware mapping facility precludes the necessity of relocating
program images. Thus, the operating system can swap an active program to various locations in
memory several times during execution. This process assists in sharing memory and making CPU
execution time available (time-slicing). The hardware mapping capability also allows three sepa
rately loaded program segments to be mapped into a single, logically contiguous program address
space.

5.2 OBJECT MODULES

The following paragraphs discuss object modules constructed using PSEGS and DSEGS. An
object module can contain a PSEG only, a DSEG only, or both a PSEG and a DSEG.

An object module using the PSEG/DSEG structure should contain only the following in the PSEG
portion:

• Unmodifiable instructions.

• Constant data.

If the object module contains a DSEG, the DSEG can contain modifiable data.

The Link Editor always positions the PSEG portion of an object module in the segment in which it
is included. It always positions the DSEG portion in the task segment.

5.2.1 Differences in the Treatment of Sharable Vs. Reentrant Modules
In a sharable object module, data outside the PSEG can be directly addressed if the ALLOCATE
command of the Link Editor is properly used during link edit. In a reentrant object module, all refer
encing of data outside the PSEG must be by means of indirect addressing.

5.2.2 COBOL Object Modules
An object module generated by the COBOL compiler is constructed using the PSEG/ DSEG struc
ture. PSEGs directly address data in DSEGs; therefore, the ALLOCATE c9mmand of the Link Editor
must be used in order to share COBOL object modules. COBOL object modules that use segmen
tation cannot be shared.

5·2 2270521-9701

BACKGROUND

XCP

2277264

NO

NO

XCPF

BACKGROUND

XCP

YES

COMPILATION

B

LINK EDIT
STEP

Link Edit

EXECUTE TASK

(PROGRAM FILE)

XCT

XCPF

XCP

c

LINK EDIT
STEP

XCTF

- EXECUTE COBOL PROGRAM BACKGROUND

XCPF - EXECUTE COBOL PROGRAM FOREGROUND

XCT - EXECUTE COBOL TASK BACKGROUND

XCTF - EXECUTE COBOL TASK FOREGROUND

Figure 5·1. Determining Link Edit Requirements for COBOL Programs

2270521-9701 5.3

Link Edit

5.3 PROGRAM MAPPING

The hardware has a 20-bit memory address bus and can address 2048 bytes of memory. The logical
address space available to a task (program) is limited to 64K bytes. This difference is resolved by
mapping the task's logical address space into the computer's physical address space. The seg·
ments in physical address space need not be contiguous. Since the operating system maintains
separate mapping parameters for each task, each task may consist of one, two, or three segments
with a total extent of 64K bytes. Furthermore, several tasks may share one or two procedure seg·
ments. However, one segment is unique to each instance of a program. This unique segment is
called the task segment (T). The sharable segments of a task are called procedure segments (P1)
and (P2). Refer to Figure 5·2.

5.4

64K
BYTES

MAXIMUM

2277265

LOGICAL ADDRESS
SPACE

PHYSICAL ADDRESS
SPACE

Figure 5·2. Memory Mapping

2048K
BYTES
MAXIMUM

2270521-9701

Link Edit

5.4 PROGRAM FILES

All task and procedure segments and overlays are installed in structures referred to as program
files. These files are similar to the expandable relative record files and contain program images in
blocks corresponding to file records. An internal directory is maintained within the file itself. This
internal directory contains pointers to each image on the file as well as relevant information about
the images. Figure 5-3 shows a listing of a program file produced by the Map Program File (MPF)
command.

FILE MAP OF VOLUME.PROG
TODAY IS 15:58:24 WEDNESDAY, JUN 04, 1980.

TASK SEGMENTS: MAXIMUM POSSIBLE = 255
ID NAME LENGTH LOAD PRI s p M R D E 0 C OVLY
01 TSKSEG1 136A 0000 3 R 04
02 TSKSEG2 7082 0000 3 R
03 TSKSEG3 12E2 4440 4 R
04 TSKSEG4 AFA4 4060 4 R 06

PROCEDURE: MAXIMUM POSSIBLE = 255
ID NAME LENGTH LOAD M D E W C
01 PRCSEG1 4438 0000
02 PRCSEG2 4050 0000

OVERLAYS: MAXIMUM POSSIBLE = 255
ID NAME LENGTH LOAD MAP D OVLY
01 OVLY1 OSB6 0006
02 OVLY2 13F4 0006 01
03 OVLY3 1394 0006 02
04 OVLY4 1148 0006 03
05 OVLYS 119E AE9A
06 OVLY6 2E7C AE9A 05

P1/SAME P2/SAME INSTALLED
3/26/80
5/ 7/80

01/Y 5/17/80
02/Y 6/10/80

INSTALLED
5/17/80
6/10/80

INSTALLED
5/ 7/80
5/ 7/80
5/ 7/80
5/ 7/80
6/10/80
6/10/80

Figure 5·3. Contents of a Program File

In Figure 5-3, task 1 consists of task segment 1. Task 2 consists of task segment 2 and overlays 1
through 4. Task 3 consists of task segment 3 and procedure segment 1. Task 4 consists of task
segment 4, procedure segment 2, and overlays 5 and 6. Various examples of how to create linked
program images with one, two, or three segments are provided in the Section 5 paragraph entitled
Creating Linked Object Modules.

5.4.1 Segments
Because the operating system maintains separate mapping parameters for each task, each task
can consist of one, two, or three segments with a total extent of 64K bytes. Furthermore, several
tasks may share one or two segments. One segment, however, is unique to each instance of a pro
gram. This unique segment is called the task segment. The sharable segments of a task are called
procedure segments.

2270521 ·9701 5.5

Link Edit

5.4.1.1 Task Segments. Task segments contain the initial portion of the program such as entry
vectors, optional data, and optional program code. The task segment is unique to each separate
execution and cannot be shared. A task segment may be uniquely replicated from a single image
installed in a program file on disk for each activation. Replication of tasks, therefore, conserves
disk space and time by eliminating the need to install a copy of the same task with different IDs for
each possible concurrent activation of a program.

5.4.1.2 Procedure Segments. A COBOL task can be linked with two or fewer procedure seg
ments. Code linked in the procedure segments can be shared by more than one task. A procedure
is considered sharable if more than one task can share one copy of the module during execution
without loss of data. Reentrant (or pure) procedures must contain only unmodifiable code and
constant data. Data modified by the reentrant module is usually stored in the task segment and
can be located at different addresses in the tasks without loss of data. The COBOL run-time inter
preter module is reentrant. All reentrant procedures are sharable.

The procedure portion (PSEG) of the object generated by the COBOL compiler is not reentrant. It
can be made sharable through the use of the ALLOCATE command in the link control file. (Refer to
paragraph 5.6.5 entitled Linking Two Procedure Segments With Multiple Task Segments for an
explanation of how to use the ALLOCATE command.) Procedure segments are linked by use of the
PROCEDURE command as referenced in the Link Editor Reference Manual. Sharing procedure
segments conserves memory by precluding the replication of a task's procedure segment.

Procedure segments installed on the system program file can be shared by tasks in any user pro
gram file. Procedure segments installed on a user program file can be shared only by tasks on that
program file.

The COBOL run-time interpreter (RCOBOL) is stored in the system program file. To conserve both
memory and disk space, it is recommended that COBOL tasks share this procedure.

If task 1 and task 2 reside on the same program file and each share the same procedure(s) (either
on the same program file as the task or on the system program file), only one copy of any shared
procedure segment is in memory during execution of the tasks.

Conversely, if task 1 and task 2 are on separate program files and each has a copy of the same pro
cedure(s), then two copies of the procedure(s) occur in memory during simultaneous execution of
the tasks.

Figure 5-4 shows a construct with multiple task and procedure segments on the same program
file. Each task segment is attached to the procedure segment. Therefore, sharing P1 and P2
reduces the amount of memory required to run the application. The task segments may be identi
cal (that is, duplicated and/or executed from two different terminals) or they may be unique task
segments. Tasks on separate program files that share the same procedure(s) on the system pro
gram file require only one copy of the procedure(s) in memory during concurrent execution of the
tasks.

5-6 2270521-9701

TASK 1
LOGICAL ADDRESS

SPACE

2277266

PHYSICAL ADDRESS
SPACE

Figure 5·4. Multiple Tasks Sharing Same P1 and P2

Link Edit

TASK 2
LOGICAL ADDRESS

SPACE

Figure 5-5 shows another construct with multiple task and procedure segments on the same pro
gram file. Task segments 1 and 2 share the first P2 with P1 while task segments 3 and 4 share the
second P2 with P1.

Figure 5-6 shows a construct with task and procedure segments on separate nonsystem program
files.

Figure 5-7 illustrates the importance of sharing procedure segments. The total memory required to
execute the group of tasks shown in Figure 5-7 is 215K bytes (1K=1024 bytes) if procedure seg
ments are not shared. If procedure segments are shared, only 130K bytes are required. Nearly half
of the memory required to execute this group of tasks has been eliminated. In many cases, such a
reduction can mean reduced swapping and, consequently, faster execution time.

2270521-9701 5.7

Link Edit

TASK 3
LOGICAL ADDRESS

SPACE

PROCEDURE }
SEGMENT

ONE

PHYSICAL ADDRESS
SPACE

~

~~~{~ 
t----- T 4 ====:::I 

5 K ===========1 
2277267 

Figure 5·5. Multiple Tasks Sharing Same P1 but Different P2s 

TASK 4 
LOGICAL ADDRESS 

SPACE 

PROCEDURE 
SEGMENT 

ONE 

PROCEDURE 
SEGMENT 

TWO 

TASK 
SEGMENT 

5·8 2270521-9701 



TASK 1 
LOGICAL ADDRESS 

SPACE 

2277268 

PHYSICAL ADDRESS 
SPACE 

Figure 5·6. Multiple Tasks on Separate Program Files 

Link Edit 

TASK 2 
LOGICAL ADDRESS 

SPACE 

2270521-9701 5.9 



Link Edit 

REENTRANT PROCEDURES REENTRANT PROCEDURES 
NOT SHARED SHARED 

Pl P2 1 P2 2 TASK TOTAL Pl P2 1 P22 TASK TOTAL 

T1 20K 10K - IOK 40K 20K 10K - IOK 40K 

T2 20K 10K - IOK 40K - - - IOK IOK 

T3 20K - 1SK SK 40K - - 1SK SK 20K 

T4 20K - 1 SK SK 40K - - - SK SK 

TOTAL MEMORY 160K TOTAL MEMORY 7SK 

2277269 

Figure 5-7. Comparison of Memory Requirements 

5.4.2 Overlays 
Overlays are parts of a task that reside on disk until explicitly requested by the task. When 
requested, an overlay is loaded into an area of the task reserved for overlays and replaces any 
other overlay which may have been present at the time of the request. The use of overlays can 
reduce the amount of memory required by a task segment. 

An overlay phase is the smallest functional unit that can be loaded as a logical entity during exe· 
cution. A phase consists of one or more object modules. The structure of an overlaid program 
depends on the relationships between the phases in the program. Phases that need not be in 
memory at the same time can overlay each other. These phases are independent in that they do not 
reference each other, either directly or indirectly. Independent phases can be assigned the same 
load address and are loaded into memory only when referenced. The Link Editor Reference Manual 
contains a detailed description of overlays and overlay phases. 

5.4.3 COBOL Module Segmentation 
COBOL module segmentation is a type of overlay. COBOL segmentation provides a means of 
communicating with the compiler when specifying requirements of the object program module 
overlay. A task (program) may be structured to include COBOL segment overlays and also may 
include overlay phases. 

Any COBOL module in the task segment, including modules within overlay phases, can contain 
segments. COBOL module segments are automatically generated in the object module when 
specified in the source module. All segments are assigned the name COBOVY. Figure 5·8 shows a 
map program file listing containing overlay phases with embedded COBOL segments. When creat· 
ing program images on program files, segments are contained in the program file as overlay 
entries. Refer to Figure 5-8. The module T.SEGMENT is a segmented COBOL module in an overlay 
phase. T.NONSEG is a nonsegmented COBOL module in an overlay phase. Both overlay phases 
and the COBOL segments are listed as overlay entries in the map program file listing. 

5·10 2270521-9701 



Link Edit 

COBOL segmentation deals only with the segmentation of the Procedure Division (PSEGs) of a 
COBOL program module. Two types of PSEGs are fixed and independent. The fixed portion is the 
part of the object program that is logically treated as if it were always in memory. An independent 
segment is the part of the object program that can overlay or be overlaid by another independent 
segment. The Tl COBOL Reference Manual contains a detailed description of COBOL 
segmentation. 

FILE MAP OF .DON020.PROG 
TODAY IS 12:57:26 WEDNESDAY, SEP 10, 1980. 

TASKS: MAXIMUM POSSIBLE = 
ID NAME LENGTH LOAD PRI 
01 OVLY 1A5E 3D20 4 

PROCEDURES: MAXIMUM POSSIBLE 
ID NAME LENGTH LOAD 
01 RTCOBOL 3D18 0000 

OVERLAYS: MAXIMUM POSSIBLE = 

1 
S P M R D E 0 C 

R 

= 1 
M D E W C 

5 
ID NAME LENGTH LOAD MAP D OVLY 
01 SEGMNT 02DO 533C 
02 NONSEG 0442 533C 01 
03 COBOVY OODA 5530 02 
04 COBOVY OODA 5530 03 
05 COBOVY OODA 5530 04 

OVLY P1/SAME P2/SAME 
05 01/Y 

INSTALLED 
9/10/80 

INSTALLED 
9/10/80 

INSTALLED 
9/10/80 
9/10/80 
9/10/80 
9/10/80 
9/10/80 

Figure 5·8. COBOL Segmentation Within Overlay Phase Modules 

2270521-9701 5·11 



Link Edit 

5.5 CREATING LINKED OBJECT MODULES 

Table 5-1 contains a list of valid link editor commands for COBOL linking object modules. 

Table 5-1. Valid Link Editor Commands With COBOL Object 

Command Execute Execute 
(Default Underscored) Partial Link (From Object File) (From Program File) 

ADJUST y y 

ALLOCATE NO NO 
AUTO y 

COMMON NO NO 
DATA NO NO 
DUMMY y NO 
END y y 

ERROR/NO ERROR y y 
FORMAT ASCII y y 

FORMAT COMPRESSED y y 

FORMAT IMAGE NO NO 
FORMAT IMAGE, REPLACE NO NO 
GLOBAL/ALL GLOBAL/ 

NOT GLOBAL y NO 
INCLUDE y 
LIBRARY y y 

LOAD/NO LOAD NO NO 
MAP/NO MAP y y 

NO AUTO y y 

NOSY MT y y 

PAGE/NO PAGE y y 

PARTIAL y NO 
PHASEO y y 

PHASE 1,2, ... n NO NO 
PROCEDURE NO NO 
PROGRAM NO NO 
SEARCH y y 

SHARE NO NO 
SYMT y y 

TASK y y 

Notes: 

1 For a PARTIAL link, the default is NO AUTO and these commands should be omitted. 

2 Main program must be included first. 

y 
y 
y 

NO 
NO 
y 
y 
y 

NO 
NO 
y 
y 

NO 

y 
y 
y 
y 
y 
y 

NO 
y 
y 
y 

NO 
y 

NO 
NO 
y 

3 COBOL run-time procedure, task, and main program designator modules must be included as part of the 
link. 

5·12 2270521-9701 



Link Edit 

Overlay phases are not allowed with linked object modules. 

A linked object module must be produced in one of the following distinct formats: 

• Tagged 

• Compressed 

Tagged object modules consist of ASCII characters with ASCII tags. Compressed object modules 
also have tags, but the numeric characters are changed to binary representations. 

Compared to the normal tagged object, the compressed object saves approximately 47 percent of 
disk space. 

The following example of a link control file shows how to generate a tagged object module: 

TASK CBLTSK1 
INCLUDE EX.MAINPRG1 
INCLUDE EX.SUBPRGM 
END 

The following example of a link control file shows how to generate a compressed object module: 

FORMAT COMPRESSED 
TASK CBL TSK1 
INCLUDE EX.MAINPRG1 
INCLUDE EX.SUBPRGM 
END 

Note that the only difference between the two sets of link control commands is the FORMAT 
command. The default format of the linked output is tagged (ASCII). The FORMAT command is not 
required for tagged format. In both cases, the link editor resolves external addresses or refer
ences. Object modules or linked object modules are executed by using the XCP or XCPF com
mands. Section 6 contains information for executing an object module or a linked object module. 

5.6 CREATING PROGRAM IMAGES 

For object modules produced by the link editor and installed on program files, the link editor must 
link the program modules to the run-time interpreter module. Object modules are installed and 
stored on program files in memory image form., The link editor may install the memory image 
object directly on a program file. When the necessary program file does not exist, it is automati
cally created. The link editor creates a program file with only enough room for the task and proce
dure segments and overlays defined for the program. If a program file is created by the Create 
Program File (CFPRO) command, the operating system allows a maximum of 255 task segments, 
255 procedure segments, and 255 overlays. 

Program images are executed by using the XCT or XCTF commands. Section 6 contains infor
mation for executing object modules produced by the link editor and installed on program files. 

2270521-9701 5·13 



Link Edit 

5.6.1 COBOL Run Time 
COBOL run time consists of the following prelinked object modules: 

• .S$SYSLIB.RCBTSK - This module contains the task entry vector plus the data area 
portion of COBOL run time needed by the reentrant module RCBPRC. It must be 
included as the first module in the task segment of the task. It is not reentrant. 

• .S$SYSLIB.RCBTSKD - This module includes everything contained in 
.S$SYSLIB.RCBTSK and the COBOL debugger module needed when performing inter
active debugging of COBOL modules. 

• .S$SYSLIB.RCBPRC - This is the reentrant module that contains the COBOL run-time 
interpreter and can be included in a procedure segment of a task when desired. 

• .S$SYSLIB.RCBNOIO - This module is similar to .S$SYSLIB.RCBPRC with the excep
tion that any modules comprising the run-time interpreter relating to 1/0 operations are 
omitted. 

• .S$SYSLIB.RCBMPD - This module must be stored during Link Edit immediately pre
ceding the COBOL object module intended to receive control at execution time. It then 
designates to the run time where the object module begins. Since it is reentrant, it can 
be used in either task or procedure segments. 

The run-time entry module (.S$SYSLIB.RCBTSK), one of the two reentrant modules 
(.S$SYSLIB.RCBPRC or .S$SYSLIB.RCBNOIO), and the main program designator module 
(.S$SYSLIB.RCBMPD) can be specifically included in the appropriate places in the link control file. 
The reentrant module .S$SYSLIB.RCBNOIO cannot be linked with the run-time entry module 
.S$SYSLIB.RCBTSKD. The reentrant module .S$SYSLIB.RCBPRC (or .S$SYSLIB.RCBNOIO) can be 
included anywhere in the link control file except as the first module in the task segment (phase 
zero). If .S$SYSLIB.RCBPRC is used, it is suggested that it be made P1, so that the shared proce
dure segment on the system program file can be used. If .S$SYSLIB.RCBPRC is anywhere other 
than P1, a separate copy is generated in the user program file and in memory when the program is 
executed. When the first program module to receive control is a COBOL program module, the run
time entry module (.S$SYSLIB.RCBTSK or .S$SYSLIB.RCBTSKD) must be the first module 
included in the task (phase zero) since it contains the task entry vector. The main program designa
tor (.S$SYSLIB.RCBMPD) module must be included just prior to the COBOL program module that 
receives control. The following paragraphs demonstrate various techniques for linking these 
modules with user modules to build tasks. 

5.6.2 Linking a Single Procedure Segment With a Single Task Segment 
The COBOL reentrant run-time interpreter module is installed by the COBOL installation on the 
system program file as the reentrant procedure segment RCOBOL. This procedure segment is 
identical to .S$SYSLIB.RCBPRC and can be shared by all user tasks that have been linked and 
installed on user-defined program files. Using this procedure segment eliminates the need for a 
copy of .S$SYSLIB.RCBPRC on each user-defined program file, thus saving disk storage. If you 
have two user-defined program files and .S$SYSLIB.RCBPRC is installed on each, executing one 
task from each program file loads two copies of .S$SYSLIB.RCBPRC into memory. If the procedure 
segment on the system program file is used, only one copy of the reentrant procedure segment is 
in memory during the execution of the tasks, thus saving memory space and minimizing swapping. 

5·14 2270521-9701 



Link Edit 

Figure 5-9 shows a simple link edit using the system program file procedure segment RCOBOL. 

The presence of the DUMMY command in the link control file prevents the procedure segment 
from being replaced in the program file. 

This procedure segment (RCOBOL) on the system program file must be used only in the link proce
dure segment one (P1). 

The procedure segment two (P2) and the task segments (T) may be structured using any of the 
techniques mentioned in paragraphs 5.6.3 through 5.6.5. All examples use the shared procedure 
segment RCOBOL. The origin addresses and lengths in the following figures do not necessarily 
reflect the actual origin and lengths of the Tl COBOL run time. 

To use RCOBOL on the system program file, the DUMMY command must always be specified, 
even on the first link edit to a new program file. The procedure segment RCOBOL must not already 
exist on the user program file. The reentrant procedure segment on the system program file is 
identical to .S$SYSLIB.RCBPRC. 

5.6.3 Linking a Single Procedure Segment With Multiple Task Segments 
A single procedure segment may be shared by multiple tasks. The task segments must be linked 
and installed on the same program file. They will then be attached to this shared procedure seg
ment. Figure 5-10 presents the structure shown in Figure 5-9 with an additional task segment 
attached to the procedure segment. A link control file is shown on the right side of Figure 5-9. 
When sharing a single procedure segment, all link control files must be identical within the proce
dure segment. If any change is required in the procedure segment, all tasks on the program file 
must be linked again. 

5.6.4 Linking Two Procedure Segments With a Single Task Segment 
A task segment may be attached to multiple procedure segments. Figure 5-11 shows the structure 
of Figure 5-9 with an additional procedure segment added. Note that the DSEG or $DATA (non reen
trant object module code in the form of data) from the procedure segment is relocated to the task 
segment immediately following the task PSEG allocations. All data referenced in procedure seg
ments P1 and P2 must be referenced using indirect or indexed addressing. No direct references 
can be made to the DSEG. Although the COBOL compiler segregates executable code from data 
items and the link editor relocates DSEGs by moving them to the task segment, the PSEGs (reen
trant object module code in the form of instructions) still reference data items with direct relocata
ble addresses. Reentrant execution is permitted by locating the DSEG at the same absolute 
location in each task segment. Assembly language object modules can also be made reentrant 
through the use of PSEG and DSEG assembler directives. 

2270521-9701 5·15 



Link Edit 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . S$SYSLIB. RCBPRC 

TASK CBL TSKI 
LINK CONTROL FILE 

INCLUDE . S$SYSLIB. RCBTSK 

INCLUDE . S$SYSLIB. RCBMPD 

INCLUDE EX. MAINPRGI 

INCLUDE EX. SUBPRGM 

END 

PROCEDURE I , RCOBOL ORIGIN = 0000 

MODULE NO ORIGIN! LENGTH2 

CRTIM 0000 3DF4 

PHASE 0, CBL TSKI ORIGIN= 3EOO ;:1 / 

MODULE NO ORIGIN 1 LENGT~ / 

CXCBL 2 3EOO OCD4 

$DATA 2 4C32 04EC 
C$MAIN 3 4AD4 0010 
MAINPRGI 4 4AE4 OOAC 
$DATA 4 511 E 01 OE 
SUBPRG 5 4890 OOA2 
$DATA 5 522C OOEA 

NOTES: 

·1. ORIGIN ADDRESSES MAY DIFFER 

2. LENGTHS MAY DIFFER 

2277270 

RCBPRC (PSEG) 

RCBTSK (PSEG) 

RCBMPD (PSEG) 

MAINPRGI (PSEG) 

SUBPRGM (PSEG) 

RCBTSK (DSEG) 

MAINPRGI (DSEG) 

SU BPRGM (DSEG) 

Pl 

T 
I 

Figure 5·9. Linking a Single Procedure Segment With a Single Task Segment 

5·16 2270521-9701 



I\.) 
I\.) 
...... 
0 
(J1 

~ 
cb ...... 
~ 

<!" ... 
....... 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE • S SSYSLIB. RCBPRC 

TASK CBL TSKI 
LINK CONTROL FILES 

INCLUDE . S$SYSLIB. RCBTSK 

INCLUDE . SSSYSLIB. RCBMPD 

INCLUDE EX. MAINPRGI 

INCLUDE EX. SUBPRGM 

END 

RCBPRC (PSEG) I Pl 

PROCEDURE 1. RCOBOL A 
MODULE NO ORIGIN RCBTSK (PSEG) 

CRTIM I 0000 I ------ RCBTSK (PSEG) 

RCBMPD (PSEG) I RC BM PD (PSEG) 

---
PHASE 0, CBL TSKI I I _I MAINPRGI (PSEG) I 

MAINPRG2 (PSEG) 

MODULE NO 
SUBPRGM (PSEG) 

CXCBL 2 
(PSEG) ------ SUBPRGM 

SDATA 2 4C32 

CS MAIN 3 4AD4 RCBTSK (DSEG) ------
MAINPRGI 4 4AE4 RCBTSK (DSEG) ------
SDATA 4 511E 

SUBPRG 5 4890 MAINPRGI (DSEG) ------
SDATA 5 5220 ------. ------ MAINPRG2 (DSEG) 

SUBPRGM (DSEG) ------
NOTE: 

SUBPRGM (DSEG) 
I. ORIGIN ADDRESSES MAY DIFFER 

T1 

2277271 T2 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE .S$SYSLIB.RCBPRC 

TASK CBL TSK2 

INCLUDE . S$SYSLIB. RCBTSK 

INCLUDE . SSSYSLIB. RCBMPD 

INCLUDE EX. MAINPRG2 

INCLUDE EX. SUBPRGM 
END 

PROCEDURE 1,RCOBOL 

MODULE NO ORIGIN 

CRTIM I 0000 

CBLTSK2 

NO. ORIGIN! 

2 3EOO 
$DATA 2 4C50 
C$MAIN 3 4ADA 
MAINPRG2 4 4AE4 
$DATA 4 513C 
SUBPRG 5 4BAE 

/ODATA 
5 5292 

Figure 5·10. Linking a Single Procedure Segment With Multiple Task Segments 

r-
s· 
""' 
~ 



Link Edit 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCWDE . S$SYSLIB. RCBPRC 

PROC SHRSUB LINK CONTROL FILE 
INCLUDE EX. SU BPRGM 

TASK CBLTSK1 

INCWDE . S$SYSLIB. RCBTSK 

INCWDE . S$SYSLIB. RCBMPD 

INCWDE EX. MAINPRG1 

END 

PROCEDURE 1, RCOBOL ORIGIN = 0000 

MODULE NO ORIGIN LENGTH 

CRTIM 0000 3DE4~ 

PROCEDURE 2, SHRSU B ORIGIN = 3EOO 

MODULE NO 

SUBPRG 

$DATA 

2 

2. 

ORIGIN f 

3EOO 

4CSO 

PHASE O, CBL TSKI ORIGIN 

LENGTH 2 

OOA2 

OOEA 

RCBPRC (PSEG) 

SUBPRGM (PSEG) 

RCBTSK (PSEG) 

RCBMPD (PSEG) 

Pl 

P2 

MODULE NO ORIGIN1 
MAINPRG1 (PSEG) T1 

CXCBL 3 3ECO OCD4 

$DATA 3 4D3A 04EC 

C$MAIN 4 4894 0010 
SU BPRGM (DSEG) 

MAINPRG1 5 4BA4 OOAC 

$DATA 5 5226 010E 
RCBTSK (DSEG) 

NOTES: 

1. ORIGIN ADDRESSES MAY DIFFER 
MAINPRG1 (DSEG) 

2. LENGTHS MAY DIFFER 

2277272 

Figure 5·11. Linking Two Procedure Segments With a Single Task Segment 

5·18 2270521-9701 



Link Edit 

5.6.5 Linking Two Procedure Segments With Multiple Task Segments 
Multiple task segments may be attached to multiple procedure segments. Figure 5-12 shows the 
structure of Figure 5·11 with an additional task segment attached to the procedure segments. 
Note the allocation addresses shown in Figure 5·12. The origin address for the $DATA (DSEG) 
associated with SUBPRGM is 4C50 for task T1 and 4C6E for task T2. Since the program SUBPRGM 
always expects its data to be in the same location, execution of CBLTSK2 will not execute 
correctly. 

This situation is handled by using the ALLOCATE command. The ALLOCATE command allows you 
to share COBOL program object modules as procedure segments. The ALLOCATE command is 
always used in the task segment of the link control file. Place the ALLOCATE command after a 
TASK or PHASE 0 command and before a PHASE 1 or LOAD command, if any are used. The 
ALLOCATE command should be issued immediately following the INCLUDE.S$SYSLIB.RCBTSK 
statement and must be placed in the same location in the link control file for all task segments that 
are sharing COBOL program object modules in P2. The ALLOCATE command causes all DSEGs 
associated with previously allocated executable PSEGs to be allocated immediately. Space is 
immediately allocated to all DSEGs associated with PSEGs in either P1 or P2 when the ALLOCATE 
command occurs in the link control file. Figure 5·13 shows the effects of using the ALLOCATE 
command when linking two procedure segments with multiple task segments. Note that the origin 
address for the DSEG for SUBPRGM is 4B94 for both tasks. 

If either the link control file statements or a procedure segment in this structure change before the 
ALLOCATE command is issued, all task segments on the affected program file must be relinked. 

2270521-9701 5·19 



en 
!\) 
0 

~ 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . SSSYSLIB. RCBPRC 

PROC SHRSUB 

INCLJJDE EX. SUBPRGM 

TASK CBLTSKI 

INCLUDE . SSSYSLIB. RCBTSK 

INCLUDE . SSSYSLIB. RCBMPD 

INCLUDE EX. MAINPRGI 

END 

PROCEDURE 1, RCOBO~ 

MODULE NO 

CRTIM 0000 

PROCEDURE 2, SHRSUB 

MODULE 

SUBPRG 

SDATA 

NO 

2 3EOO 

2 4C50 

PHASE O, CBLTSKI 

MODULE NO 

CXCBL 3 

SDATA 3 

CS MAIN 4 

MAINPRGI s 
SDATA 5 

NOTE: 

~ 1 _, ORIGIN ADDRESSES MAY DIFFER 

~ 2277273 
~ ..... 

'° -oJ 

LINK CONTROL FILES 

RCBPRC (PSEG) Pt 

SUBPRGM (PSEG) 

RCBTSK (PSEG) 

RCBMPD (PSEG) 

MAINPRG2 (PSEG) 

RCBTSK (DSEG) 

MAINPRGI (DSEG) 

MAINPRG2 (DSEG) 

Tt 

Tz 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE .SSSYSLIB.RCBPRC 

PROC SHRSUB 

DUMMY 

INCLUDE EX. SUBPRGM 

TASK CBL TSK2 

INCLUDE . S$SYSLIB. RCBTSK 

INCLUDE . S$SYSLIB. RCBMPD 

INCLUDE EX. MAINPRG2 

END 

PROCEDURE 1,RCOBOL 

MODULE NO ORIGIN 

CRTIM 0000 

PROCEDURE2, SHRSUB 

~MODULE 

SUBPRG 

$DATA 

PHASE 0, 

MODULE 

CXCBL 

$DATA 

NO 

2 

2 

ORIGIN 1 

3EOO 

4C6E 

CBLTSK2 

NO ORIGIN I 

3 3ECO 

3 4D58 

4 4894 

5 4BA4 

5 5244 

0 ..... Figure 5·12. Linking Two Procedure Segments With Multiple Task Segments 

r--:;-
""" 
~ 



N 
N 
--.J 
0 
(J1 
N 
~ 

'° --.J 

~ 

(11 

"3 ..... 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCWDE . S $SYSLl8. RC8PRC 

PROC SHRSU8 

INCLUDE EX. SU8PRGM 

TASK C8L TSKI 

INCLUDE .SSSYSLl8.RC8TSK 

ALLOCATE -INCLUDE . SSSYSLl8. RC8MPD 

INCLUDE EX. MAINPRGI 

END 

LINK CONTROL FILES 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . S$SYSLIB. RCBPRC 

PROC SHRSUB 

DUMMY 

INCLUDE EX. SUBPRGM 

TASK CBLTSK2 

INCLUDE .S$SYSLIB.RCBTSK 

ALLOCATE -
INCWDE . S$SYSLIB. RCBMPD 

INCLUDE EX. MAINPRG2 

END I RCBPRC (PSEG) I ., 
PROCEDURE 1, RC080L ~ ~PROCEDURE 1, RCOEOL 
MODULE NO ORIGIN~ _ MODULE NO ORIGIN 

CRTIM 1 0000 CRTIM 1 0000 

PROCEDURE 2, SHRSU8 
1 
~ SU 9 PRGM (PSEG) ~ PROCEDURE 2, SHRSU8 I 

MODULE NO ORIGIN---------r--- --..,~ MODULE NO ORIGIN 

SU8PRG 2 3EOO SU8PRG 2 3EOO 

SDATA 2 4994 RC8TSK (PSEG) RC8TSK {PSEG) ~ SDATA 2 4994 

PHASE 0, C8LTSK1 ~ SU 9 PRGM (DSEG) SU 9 PRGM {DSEG) PHASE O, C8LTSK2 I 

MODULE NO ORIGIN 1 MODULE NO ORIGIN 

/ ~ RC8TSK (DSEG) RC8TSK (DSEG) ' , 
CXC8L 3 3ECO ___..- "CXC8L 3 3ECO 
SDATA 3 4C7E - - - - - - - - - - - - SDATA 3 4C7E 

RC8MPD · {PSEG) 
PHASE 0, C8LTSK1 ~ 

(POST ALLOCATE) 

MODULE NO ORIGIN~1 

CS MAIN 4 516A 

MAINPRG1 5 517A- __.-. 

SDATA 5 5226 _-- '-------------1 

MAINPRG1 {PSEG) 

MAINPRG1 {DSEG) 

NOTE; 
Tl 

I. ORIGIN ADDRESSES MAY DIFFER 

2277274 

RC8MPD {PSEG) 

MAINPRG2 (PSEG) 

MAINPRG2 {DSEG) 

T2 

\

PHASE O, C8LTSK2 

{POST ALLOCATE) 

MODULE NO ORIGIN 1 

~ CSMAIN 4 516A 
MAINPRG2 5 517A 

,..- SDATA 5 5244 

Figure 5·13. Linking Two Procedure Segments With Multiple Task Segments (ALLOCATE) 

r-
s· 
:.:-

~ 



Link Edit 

Object modules that have been separated into PSEGs and DSEGs can be shared successfully if 
the following conditions are met: 

• All modifiable data is contained in the DSEGs. Object modules generated by the COBOL 
compiler are produced with all modifiable data in the DSEGs. 

• If the first procedure segment uses this PSEG/DSEG structure, the second procedure (if 
used) must be the same length for all tasks that share the first procedure. 

• Tasks that share a second procedure must also share the same first procedure. 

When using the ALLOCATE command, you can construct a task whose first procedure segment is 
the reentrant module of the COBOL run-time interpreter (.S$SYSLIB.RCBPRC), and whose second 
procedure segment is a set of COBOL and/or assembly language program modules. The DSEGs 
for the routines can be loaded immediately after the run-time interpreter entry module 
(.S$SYSLIB.RCBTSK) by using the ALLOCATE command. Even though the task segments asso
ciated with the two different programs are different, the DSEGs are located in identical locations, 
allowing direct references in the second procedure segment to be completed successfully. 

5.6.6 Overlay Structures 
When two or more subroutines are not required to reside in memory simultaneously, an overlay 
structure can be used to reduce the task's memory requirements. Programs that do not use over
lays are loaded into memory and remain in memory until execution completes. Programs that use 
overlays conserve memory space since each overlay resides in memory only when it is called. The 
total memory space required by the program is that which is required to hold the root portion of the 
task segment and the longest overlay path. Overlays are defined by the use of the link control file. 
Figure 5-14 shows a link control file and tree structure depicting two phase one and two phase two 
overlays. The location of phase one is after phase zero. The CBLOV10 phase one overlay contains 
two phase two overlays. The LOAD command allocates the overlay loader module in the appro
priate location. (The command LIBRARY .S$SYSLIB must be included in the link control file when 
using the LOAD command.) 

5·22 2270521-9701 



COMMAND LIST 

FORMAT IMAGE, REPLACE 

LIBRARY, S$SYSLIB 

LIBRARY EX 

PROCEDURE CBLPROC1 

INCLUDE (RCBPRC) 

INCLUDE (RCBMPD) 

INCLUDE (CBLMPG) 

INCLUDE (CBLSUB1) 

INCLUDE EX. ASMPG1 

PROCEDURE CBLPROC2 

INCLUDE (CBLSUB2) 

INCLUDE EX.ASMPG2 

PHASE O,CBLTASK 

INCLUDE (RCBTSK) 

ALLOCATE 

INCLUDE EX. ASMPG3 

INCLUDE (CBSUB3) 

LOAD 

END 

2279009 

PHASE 1,CBLOV10 

INCLUDE (CBSUB4) 

INCLUDE EX. ASMPG4 

PHASE 2, CBLOV11 

INCLUDE (CBSUBS) 

PHASE 2, CBLOV12 

INCLUDE EX. ASMPGS 

INCLUDE (CBSUB6) 

PHASE 1,CBLOV20 

INCLUDE (CBSUB7) 

INCLUDE (CBSUBB) 

INCLUDE (CBSUB9) 

} 
PHASE 2 
CBL.OV1 1 

PHASE 1 
CBL.OV10 

LINK CONTROL FILE 

} 
} 
} 

PROCEDURE 1 
CBLPROC1 

PROCEDURE 2 
CBLPROC2 

PHASE 0 
CBLTASK 

} 
PHASE 2 
CBLOVl 2 

Link Edit 

} 
PHASE 1 
CBLOV20 

Figure 5·14. An Overlay Structure With the Accompanying Link Control File 

2270521-9701 5·23 



Link Edit 

The DSEGs for both the CBLPROC1 (P1) and CBLPROC2 (P2) procedure segments float to the end 
of phase zero (CBLTASK) following the PSEGs of the routines in phase zero. The PSEGs remain in 
their respective procedure segments. The DSEGs of all phases float to the end of their respective 
phase immediately following all the PSEGs of the modules in the phases. 

It must be noted that if file 1/0 is performed in an overlay module, the files must be opened on each 
entry and closed before exiting to release any assigned LUNO. The overlay phase is loaded in its 
initial state on each entry. However, if consecutive calls are made to the same overlay phase 
module, the module already resides in memory and is not reinitialized. 

5.6.7 Sharing Main Program Module 
The main program designator module (.S$SYSLIB.RCBMPD) may be shared with multiple users or 
terminals. Figure 5-15 shows inclusion of the main program designator module and the user's 
main COBOL program object module in the P2. The task may be executed from multiple terminals 
simultaneously, with each task's memory requirements significantly reduced because the main 
program module is shared among all tasks. 

5.6.8 Linking a Single Procedure One Segment and Multiple Procedure Two Segments 
Figure 5-16 shows an example of a P1 with different P2s. Applicable to the discussions for this 
example, which has multiple procedure segments, are the Section 5 paragraphs Linking Two Pro
cedure Segments With a Single Task Segment and Linking Two Procedure Segments With Multi
ple Task Segments. 

2277276 

5-24 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE .S$SYSLIB.RCBPRC 

PROC PTWO 

INCLUDE . S$SYSLIB. RCBMPD 

INCLUDE EX. MAINPRGI 

INCLUDE EX. SUBPRGM 

TASK CBLTSKI 

INCLUDE . S$SYSLIB. RCBTSK 

END 

RCBPRC 

RCBMPD 

LINK MAINPRGI 

CONTROL SUBPRGM 

FILE 
RCBTSK 

Figure 5·15. Sharing the Main Program Module With P2 

Pl 

P2 

TASK 

2270521-9701 



LINK 1 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . S $SYSLIB. RCBPRC 

PROC PTWOI 

INCLUDE EX. SUBPRGMI 

TASK CBLTSKI 

INCLUDE .S$SYSLIB.RCBTSK 

ALLOCATE 

INCLUDE . S $SYSLIB. RCBMPD 

INCLUDE EX. MAINPRGI 

END 

LINK 3 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . S $SYSLIB. RCBPRC 

PROC PTW02 

INCLUDE EX. SU BPRGM2 

TASK CBL TSK3 

INCLUDE .S$SYSLIB.RCBTSK 

f\LLOCATE 

INCLUDE . S $SYSLIB. RCBMPD 

INCLUDE EX. MAINPRG3 

END 

2277277 

LINK 

CONTROL 

FILES 

Pl 

Link Edit 

LINK 2 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE • S $SYSLIB. RCBPRC 

PROC PTWOI 

DUMMY 

INCLUDE EX. SU BPRGM1 

TASK CBL TSK2 

INCLUDE . S $SYSLIB. RCBTSK 

ALLOCATE 

INCLUDE . S $SYSLIB. RCBMPP 

INCLUDE EX. MAINPRG2 

END 

LINK 4 

COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

DUMMY 

INCLUDE . S$SYSLIB. RCBPRC 

PROC PTW02 

DUMMY 

INCLUDE EX. SUBPRGM2 

TASK CBL TSK4 

INCLUDE . S $SYSLIB. RCBTSK 

ALLOCATE 

INCLUDE . S $SYSLIB. RCBMPD 

INCLUDE EX. MAINPRG4 

END 

Figure 5·16. Linking a P1 With Different P2s 

2270521-9701 5·25 



Link Edit 

5.6.9 Linking a Single Procedure Segment With a Single Task 
Figure 5-17 shows an example of a single procedure segment linked to a single task segment. 
Both the procedure segment and the task segment are contained in the user's program file. To 
include both segments in the user's program file, you can either: 

• Specify procedure RCOBOL and omit the DUMMY command in the link control file, or 

• Specify a procedure name other than RCOBOL in the link control file. 

5.6.10 Installing Program Images From a Relative File 
To install the task and procedure segments in a program file, the Install Procedure (IP), Install Task 
(IT), and Install Overlay (10) commands are used. A LUNO must be assigned to the relative file and 
used in the IT, 10, and IP commands. The IP command must be executed before the IT command, 
which must be executed before the 10 command (if applicable), because the link editor outputs the 
procedure and task segments to a relative file in the order in which they are processed. Relative 
files are read sequentially by the IP and IT commands; therefore, assigning a LUNO to a relative file 
prevents the file from being repositioned to the beginning between commands. The following is an 
example of a link control file linking a procedure segment and task segment, sending output to a 
relative file. 

5·26 

PROCEDURE RCOBOL 
INCLUDE .S$SYSLIB.RCBPRC 
TASK CBLTSKI 
INCLUDE .S$SYSLIB.RCBTSK 
INCLUDE .S$SYSLIB.RCBMPD 
INCLUDE EX.MAINPRG1 
INCLUDE EX.SUBPRGM 
END 

NOTE 

A procedure segment and task segment cannot be linked to create a 
linked object file if any COBOL object modules contain segmenta
tion. COBOL programs with segmentation must be installed auto
matically by the Link Editor(through the use of the FORMAT IMAGE 
statement). 

2270521-9701 



COMMAND LIST 

FORMAT IMAGE, REPLACE 

PROC RCOBOL 

INCLUDE .SSSYSLIB.RCBPRC 

TASK CBL TSKI 

INCLUDE .SSSYSLIB.RCBTSK 

INCLUDE . SSSYSLIB. RCBMPD 

INCLUDE EX. MAINPRG1 

INCLUDE EX. SUBPRGM 

END 

PROCEDURE 1, RCOBOL ORIGIN = 0000 

MODULE NO ORIGIN LENGTH 2 

CRTIM 0000 3DF4 

ORIGIN = 3EOO 

LINK CONTROL FILE 

RCBPRC (PSEG) 

RC BT SK (PSEG) 
PHASE O, CBL TSK1 

LENGT~ ----------
MODULE NO ORIGIN f RCBMPD (PSEG) 

CXCBL 2 3EOO OCD4 --------
SDATA 2 4C32 04EC 
CS MAIN 3 4AD4 

MAINPRG1 (PSEG) 
0010 

MAINPRG1 4 4AE4 OOAC ------
SDATA 4 511 E 010E SUBPRGM (PSEG) 
SUBPRG 5 4890 OOA2 ------
SDATA 5 522C OOEA 

RC BT SK (DSEG) 

NOTES: ------
1 • ORIGIN ADDRESSES MAY DIFFER MAINPRG1 (DSEG) 

2. LENGTHS MAY DIFFER ------
SUBPRGM (DSEG) 

2279008 

Figure 5·17. Linking a Single Procedure Segment With a Single Task 

2270521-9701 

Link Edit 

Pl 

Tl 

5·27 



Link Edit 

5.7 LINKING LIBRARIES 

The link editor supports two types of library file structures: random libraries and sequential 
libraries. A random library is a directory whose files are the object modules included to resolve 
external references. Figure 5-18 shows the structure of a random library. 

In Figure 5-18, S$SYSLIB, S$PROC, and C$SUBS are directories, with RCBPRC, RCBTSK, 
RCBMPD, C$TMPF, C$FCFD, C$SCRN, XCCF, and XCPF being data files. Each directory is a node, 
with the highest level (VCATALOG) being the root node. VCATALOG is assigned a symbolic name 
when a disk volume is installed or initialized. VCATALOG contains pointers for each directory 
(node) or file in the level immediately below the VCATALOG. In Figure 5-18, pointers are contained 
in the VCATALOG for directories S$SYSLIB, S$PROC, and C$SUB. 

VCATALOG 

S $ SYSLIB S $PROC 

C $SUBS 

2277279 

Figure 5-18. Random Library Structure 

5-28 2270521-9701 



Link Edit 

Modules in a random library can have more than one entry point. However, the secondary entry 
points are not contained in the directory; consequently, they must be defined to the system as 
aliases if automatic symbol resolution is being used. An alias is an alternate name for a file path
name component. If the module is specifically included (by use of the INCLUDE command), an 
alias definition is not required. 

FORMAT IMAGE, REPLACE 
LIBRARY .S$SYSLIB.C$SUBS 
LIBRARY .SCI990.S$0BJECT 
PROCEDURE RCOBOL 
DUMMY 
INCLUDE .S$SYSLIB.RCBPRC 
TASK CBLTSK 
INCLUDE .S$SYSLIB.RCBTSK 
INCLUDE .S$SYSLIB.RCBMPD 
INCLUDE <COBOL object module> 
END 

In the link control file, the INCLUDE command defines modules or files of modules that are to be 
included in a phase. The LIBRARY command specifies the random or sequential libraries that will 
be searched to satisfy unresolved external references in the modules to be linked. The link editor 
automatically processes all control stream commands and then resolves external references in 
the modules from the libraries specified in the LIBRARY commands. It is possible to use the 
SEARCH command in link control files instead of the LIBRARY commands. The SEARCH com
mand directs the link editor to perform a search of a library at a particular point in the control 
stream. However, it is recommended that the LIBRARY command be used when external refer
ences need to be resolved. Refer to the Link Editor Reference Manual for a detailed explanation of 
the INCLUDE, LIBRARY, and SEARCH commands and an example of entry points. 

A sequential library is a sequential file containing one or more object modules generated by a par
tial link edit. The outputs of the partial link edits are concatenated into a sequential file by use of 
the Copy Concatenate (CC) or the Append File (AF) commands. The Link Editor Reference Manual 
includes detailed information about sequential libraries and partial link edits. 

5.8 LINKING LIMITATIONS 

Total memory requirements of a program (task) must be less than the 65,536-byte task address 
space. Any physical buffers used for blocked 110 do not require space in the user's program 
because they are allocated as a part of and are maintained by the operating system. 

The maximum number of overlays, procedure segments, and task segments permitted in a single 
program file is 255. If the link editor creates the program file, only enough room is allocated for the 
task and procedure segments or overlays as needed in the program. The user may create a pro· 
gram file with the desired limitations using the Create Program File (CFPRO) command. 

Each phase overlay in the link control file requires one entry in the program file. 

2270521-9701 5-29/5·30 





6 

Execution 

6.1 GENERAL 

COBOL provides for execution of object modules as well as program images. Object module exe
cution involves the execution of compiler-produced object modules or linked object modules. 
Program image execution involves the execution of a task that has been installed in a program file. 

6.1.1 Use of a Synonym in the COBOL Select Clause 
If a synonym is used in a COBOL SELECT statement to define the storage medium (a pathname or 
device name), the synonym must be assigned prior to execution of the program. Only single level 
synonym evaluation is performed; that is, the value of a synonym cannot contain another syn
onym. For example, a synonym named KEYFI LE with a value of VOL 1.PAYROLL.P00044 is accept
able. A synonym named KEYFILE with a value of A.P00044 (where A is a synonym for 
VOL 1.PAYROLL) is not acceptable. To assign a synonym, use the Assign Synonym (AS) SCI com
mand. The AS command defines a string of one or more characters to substitute for another string 
of characters. 

6.2 OBJECT MODULES EXECUTION 

The task loader module, which is included in the reentrant run-time interpreter module, loads the 
object file into memory. The loader module determines the amount of memory required to contain 
the interpretive object code, expands the task memory space by the computed amount, and then 
reads the object file and stores the object code into memory. 

Generally, execution of an object module is not used for production programs for the following 
reasons: 

• COBOL program modules that do not require linking are fairly simple since overlay 
phases and subroutines are not allowed. 

• An increased amount of disk and memory space is required to execute an object 
module. 

• The time required to load the object module into memory is increased. 

Execution of an object module is permissible under the following conditions: 

• The object module must have been produced by the COBOL compiler. 

• The object module must be self-contained. Subroutines are not permitted. 

• The object module may contain program segmentation. 

2270521-9701 6·1 



Execution 

Execution of a linked object module is permissible under the following conditions: 

• The object module must have been produced by the COBOL compiler. 

• The object module may contain program segmentation. 

Debugging is permitted in the foreground mode only. To execute a COBOL object module or linked 
object module, enter the XCPF command for foreground execution or the XCP command for back
ground execution. The XCPF command allows the program to use the terminal for 1/0 operations 
during execution. The XCP command allows the terminal to be used for other foreground com
mands during the background execution of the COBOL program. 

6.2.1 Execute COBOL Program in Foreground (XCPF) 
To execute an object module or a linked object module in the foreground, use the XCPF command. 
The following prompts appear with the indicated initial values: 

EXECUTE COBOL PROGRAM FOREGROUND <VERSION: L.R.V YYDDD> 
OBJECT ACCESS NAME: pathname@ 

DEBUG MODE: {YES/NO} (NO) 
MESSAGE ACCESS NAME: [pathname@] 

SWITCHES: [(integer)] <00000000) 
FUNCTION KEYS: {YES/NO} (NO) 

OBJECT ACCESS NAME - Enter the pathname, synonym, or logical name of the file containing 
the object module. 

DEBUG MODE - Enter YES if the program is to execute in the COBOL debug mode. Debugging is 
permitted in the foreground mode only. The initial value is NO. Section 7 defines debug 
operations. 

MESSAGE ACCESS NAME - No response to this prompt indicates that COBOL system error 
messages are to be listed to the terminal local file (TLF) of the initiating terminal. The TLF is the 
default output file to which SCI sends the results of an operation if no other file or device is speci
fied as the destination. Entering a pathname or synonym in response to the prompt indicates 
COBOL system error messages are printed in a user file or on a device in lieu of the TLF. 

If a file name is specified in response to the MESSAGE ACCESS NAME, control returns to the 
main SCI menu upon completion of the execution of the COBOL program. 

However, if two tasks use the same file name for MESSAGE ACCESS NAME, the first task exe
cuted opens the file exclusively. The second task abnormally terminates with a TLF error. Refer to 
Appendix C for a listing of run-time error messages. 

SWITCHES - Enter the setting of the software switches to be used by the program. The values 
should be 0 or 1 for each of the eight switches. Setting a value of 1 gives the switch a status of ON; 
0 sets the status to OFF. Example switches are 10010011. The first, fourth, seventh, and eighth 
switches are ON, while the remaining are OFF. The initial value is 00000000. Refer to Figure 6-1 for 
an example of the use of software switches in the SPECIAL-NAMES paragraph of a COBOL source 
program module. 

6-2 2270521-9701 



LINE DEBUG PG/LN A ... B .................................. . 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

SPECIAL-NAMES. 
SWITCH-1. 

ON STATUS IS SW-1-0N, 
OFF STATUS IS SW-1-0FF; 

SWITCH-5. 
OFF STATUS IS SW-5-0FF, 
ON STATUS IS SW-5-0N; 

SWITCH-7. 
ON IS SW-7-0N; 

SWITCH-8. 
OFF IS SW-8-0FF; 

figure 6·1. SPECIAL-NAMES Paragraph Example 

Execution 

FUNCTION KEYS - Enter YES to enable a function key to terminate input and allow function key 
codes to be returned through the ON EXCEPTION clause (if specified). This prompt pertains to all 
VDTs to which ACCEPT operations are performed. The initial value is NO (function keys are 
ignored). 

The input text for an ACCEPT operation will be right-justified if all the following conditions are 
true: 

• The ACCEPT operation is performed on a right-justified field. 

• The initial value of the function keys is NO. 

The input text for an ACCEPT operation will also be right-justified if all of the following conditions 
are true: 

• The ACCEPT operation is performed on a right-justified field. 

• The initial value of the function keys is YES. 

• An non-blank prompt value is given. 

The input text for an ACCEPT operation will be right-justified with zero-fill if all of the following 
conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is NO. 

2270521-9701 6·3 



Execution 

The input text for an ACCEPT operation will also be right-justified with zero-fill if all of the 
following conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is YES. 

• A prompt is given with no operand. 

The input text for an ACCEPT operation will be left-justified with blank-fill if all of the following 
conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is YES. 

• No prompt is given. 

6.2.2 Execute COBOL Program in Background (XCP) 
Execution of an object module or a linked object module is performed in background with the XCP 
command. The following prompts appear with the indicated initial values: 

EXECUTE COBOL PROGRAM <VERSION: L.R.V YYDDD> 
OBJECT ACCESS NAME: pathname@ 

MESSAGE ACCESS NAME: [pathname@] 
SWITCHES: [(integer)] <00000000) 

FUNCTION KEYS: {YES/NO} (NO) 

The parameters are the same as those described for the XCPF command except for the absence of 
the DEBUG MODE prompt. Debugging is not allowed in background mode. 

6.3 EXECUTION COMPLETION CODES AND RUN-TIME ERROR MESSAGES 

Execution of a COBOL program through a command procedure causes a condition code to be 
returned under the synonym $$CC. The possible values of $$CC are as follows: 

Value Meaning 

0000 Normal termination 

8000 Abnormal termination 

6·4 2270521-9701 



Execution 

Any code set by the user through a STOP literal statement is set in the two rightmost positions of 
the condition code, as in the following examples: 

Value 

0020 

8030 

Meaning 

Implies a normal completion with a user 
code of >20. (An angle bracket preced
ing a number indicates a hexadecimal 
value.) 

Implies abnormal completion after the 
user code is set at >30. 

The synonym $$CC should be checked in batch streams immediately after program execution. 
$$CC is used by other processors, and its integrity is not guaranteed after completion of the batch 
stream or the execution of another command. 

Run-time error messages are provided for errors related to object code resulting from incorrect 
source statements or for system errors. Appendix C contains a listing of these error messages. 

6.4 PROGRAM IMAGE EXECUTION 

All COBOL programs installed as program images (tasks) on program files must have been linked 
to the COBOL run-time interpreter module by the link editor. The COBOL run-time interpreter is 
described in Section 5. At execution time, the operating system task loader loads the user task 
segments and any associated procedure segments into the task memory space. The operating 
system expands the task memory space as necessary. Multiple tasks sharing the same procedure 
segment need only one copy of the procedure segment in memory. This applies whether the proce· 
dure segment is on a system program file or in a user program file. When tasks from different pro· 
gram files are executed concurrently, each individual task segment and its associated procedure 
segment are loaded into memory at execution time. 

6.4.1 Execute COBOL Task in Foreground (XCTF) 
The XCTF command executes a COBOL task in foreground. The task must have been previously 
installed on a program file. The following prompts appear with the indicated initial values: 

EXECUTE COBOL TASK FOREGROUND <VERSION: L.R.V YYDDD> 
PROGRAM FILE LUND: integer 

TASK ID OR NAME: integer 
DEBUG MODE: {YES/NO} (NO) 

MESSAGE ACCESS NAME: [(pathname)] 
SWITCHES: [(integer)] COOOOOOOO> 

FUNCTION KEYS: {YES/NO} (NO) 

PROGRAM FILE LUNO - Enter the LUNO (global or station) assigned to the program file on which 
the task is installed. The LUNO must have been assigned previously with the Assign LUNO (AL) 
command or the Assign Global LUNO (AGL) command. 

2270521-9701 6-5 



Execution 

The AL command assigns a task-local LUNO to a device or file accessible to the task for 110 oper
ations. The AGL command assigns a LUNO to a device or file that is available to more than one job. 
For the AL and AGL commands, if you do not specify a LUNO, the system will assign one that is 
available. If you specify a LUNO to which the device or file is currently assigned, an error is 
returned. 

TASK ID OR NAME - Enter the installed task ID or task name specified in the link control file. 

DEBUG MODE - Enter YES if the task is to be executed in the COBOL debug mode. If a YES is 
entered, the task must have been linked using the run-time task entry module with the COBOL 
debugger (.S$SYSLIB.RCBTSKD); otherwise, an execution error is generated. The initial value is 
NO. Debug operations are defined in Section 7. 

MESSAGE ACCESS NAME - No response to this prompt indicates that COBOL system error 
messages are to be printed to the terminal local file (TLF) of the initiating terminal. Entering a path
name or synonym causes COBOL system error messages to be written to this user file instead of 
the TLF, and control will return to the main SCI menu at completion of the COBOL program. 

Users must note that if two tasks use the same file name for MESSAGE ACCESS NAME, the first 
task executed opens the file exclusively. A subsequent task abnormally terminates with a mes
sage access error. 

SWITCHES - Enter the setting of software switches to be used by the program. The value should 
be 0 or 1 for each of the eight switches. Setting a value of one gives the switch a status of ON; 0 
sets the status to OFF. Example switches are 10010011. The first, fourth, seventh, and eighth 
switches are ON, while the remaining are OFF. The initial value is 00000000. Refer to Figure 6-1 for 
an example of the use of software switches in the SPECIAL-NAMES paragraph of a COBOL source 
module. 

FUNCTION KEYS - Enter YES to enable a function key to terminate input. The function key code 
will be returned through the ON EXCEPTION clause (if specified). This prompt pertains to all VDTs 
to which ACCEPT operations are performed. The initial value is NO (function keys are ignored). 

The input text for an ACCEPT operation will be right-justified if all the following conditions are 
true: 

• The ACCEPT operation is performed on a right-justified field. 

• The initial value of the function keys is NO. 

The input text for an ACCEPT operation will also be right-justified if all of the following conditions 
are true: 

• The ACCEPT operation is performed on a right-justified field . 

• The initial value of the function keys is YES . 

• An non-blank prompt value is given . 

6-6 2270521-9701 



Execution 

The input text for an ACCEPT operation will be right-justified with zero fill if all of the following 
conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is NO. 

The input text for an ACCEPT operation will also be right-justified with zero fill if all of the fol
lowing conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is YES. 

• A prompt is given with no operand. 

The input text for an ACCEPT operation will be left-justified with blank fill if all of the following 
conditions are true: 

• The ACCEPT operation is performed on a numeric field. 

• The initial value of the function keys is YES. 

• No prompt is given. 

6.4.2 Execute COBOL Task in Background (XCT) 
The XCT command executes a COBOL task in background mode. The task must have been pre
viously installed on a program file. The following prompts appear with the indicated initial values: 

EXECUTE COBOL TASK <VERSION: L.R.V YYDDD> 
PROGRAM FILE LUNO: integer 

TASK ID OR NAME: integer 
MESSAGE ACCESS NAME: [pathname@] 

SWITCHES: [(integer)] 
FUNCTION KEYS: {YES/NO} 

<00000000) 
(NO) 

The responses to the XCT prompts are the same as those described for the XCTF command except 
for the absence of the DEBUG MODE prompt. Debugging is not allowed in background mode; 
therefore, the task must have been linked using the run-time interpreter module without the 
COBOL debugger (.S$SYSLI B.RCBTSK). 

6.5 EXECUTION COMPLETION CODES AND RUN-TIME ERROR MESSAGES 

The execution completion codes described previously for the XCPF and XCP commands are the 
same as for the XCTF and XCT commands. Run-time error messages are described in Appendix C. 

2270521-9701 6-7 



Execution 

6.6 PROGRAM TERMINATION MESSAGES 

The COBOL run-time termination messages, STOP RUN AT ... and END COBOL RUN are not dis
played to the message file when a program terminates normally. This enhances performance 
because Assign LUNO, Open File, Write, and Close operations to the COBOL message file are 
avoided. If the messages are desired, they can be produced by changing parameter 6 in the .BID or 
.QBID of the XCTF, XCT, XCP, and XCPF SCI commands. The parameter value should be changed 
from N to Y to achieve this. That is, the statement 

EXAMPLE: 

PARMS = ( 11 @@$XCP$0 11 ,&DEBUG MODE,@&MESSAGE ACCESS NAME, 
11 &SWITCHES 11 ,&FUNCTION KEYS,"N",,) 

should be changed to 

6-8 

PARMS = ("@@$XCP$0",&DEBUG MODE,@&MESSAGE ACCESS NAME, 
"&SWITCHES",&FUNCTION KEYS,"Y", ,) 

2270521-9701 



7 

Debugging 

7.1 DEBUG MODE 

Debug mode allows you to perform the following functions: 

• Specify address stops, single statement execution, or data item dumps 

• Eliminate or change address stops 

• Modify selected data items 

• Designate the next address in the program to be executed 

• Write the contents of the screen to the message file 

• Exit from the debug mode 

• Quit execution of a task 

7.2 DEBUGGING A COBOL MODULE 

The debugger is designed specifically for the COBOL run-time interpreter. At any of the following 
times, the debugger assumes control of the video display terminal (VDT) from which the COBOL 
program is executed: 

• Before program execution 

• When an address stop is encountered 

• When a STOP RUN statement or an untrapped error condition causes the program to 
terminate 

When the debugger is in control of the VDT, it responds to the debug commands described later in 
this section. 

7.2.1 Activating the Debugger 
Note that the COBOL debugger runs only in foreground mode. For this reason, use the Execute 
COBOL Program Foreground (XCPF) or the Execute COBOL Task Foreground (XCTF) SCI com
mand to activate the debugger. Before using XCTF to activate the debugger, you must first link the 
task using the run-time interpreter task entry module with the COBOL debugger 
(.S$SYSLIB.RCBTSKD). However, when you use XCPF to activate the debugger, this step is not 
necessary. The XCPF automatically bids one of two prelinked tasks (either with or without the 
COBOL debugger), depending on your response to the DEBUG MODE prompt. 

2270521-9701 7-1 



Debugging 

To activate the debugger, enter YES after the DEBUG MODE prompt. The debugger responds by 
displaying the following information on your screen: 

ADDRESS STOP: <currently active address stops> 
mmmmmmxxyyyy D? 

where: 

ADDRESS STOP lists the currently active address stops; a maximum of four address stops 
can be assigned. 

mmmmmm names the module currently being executed. 

xxyyyy are hexadecimal digits that specify the address of the next COBOL source statement 
to be executed. If the source statement address is in a segmented COBOL module, specify 
the segment number in the first two digits (xx) and the statement address in the next four 
digits (yyyy). Omit the segment number when the source statement is not in a segmented 
COBOL module. 

D? indicates that you can now enter debug commands. 

EXAMPLE 1 

ADDRESS STOP: SEG 
SGMEN 010000 D? 

0100, SEG 050300, SUBONE 0050, SUBTWO 1C 

This example lists the four currently active address stops (SEG 0100, SEG 050300, SU BONE 0050, 
and SUBTWO 1C). The name of the module that is currently executing is SGMEN. The source state
ment to be executed next is located at address 010000. Note that this six-digit number indicates 
that module SGMEN is a segmented COBOL module. The segment number is 01 and the source 
statement is at address 0000. 

EXAMPLE2 

ADDRESS STOP: SEG 0100 
MAIN 0000 D? 

This example lists only one currently active address stop (SEG 0100). The name of the module cur
rently executing is MAIN. The source statement to be executed next is located at address 0000. 
Note that this address is only four digits long, indicating that module MAIN is not located in a 
segmented COBOL module. The source statement is located at address 0000 in the main program. 

EXAMPLE3 

ADDRESS STOP: SEG 0100, SEG 050300, SUBONE 0050 
GRAPHI 0040 D? 

This example lists three active address stops (SEG 0100, SEG 050300, and SUBONE 0050). The 
name of the module currently executing is GRAPHI. The source statement to be executed next is 
at the address 0040. Note that this address is only four digits long, indicating that module GRAPH I 
is not located in a segmented COBOL module. The source statement is at the address 0040 in the 
main program. 

7-2 2270521 -9701 



Debugging 

7.2.2 COBOL Debug Commands 
COBOL debug commands consist of a single letter followed by a string of hexadecimal fields sep
arated by commas. The total length of a debug command cannot exceed 20 characters. In the 
command formats that follow, brackets indicate optional arguments. Blanks terminate the scan. 
After executing a valid command, the debugger requests another command by displaying the 
following prompt: 

D? 

If the debugger encounters an error in decoding a command, one of the following messages 
appears: 

Error Code Explanation 

C? The command is unrecognizable. 

S? A syntax error occurred in the operands. 

V? The value of the operand(s) is out of range. 

Debug supports ten commands. Table 7-1 lists these commands, and the following paragraphs 
explain the commands. 

2270521-9701 

Command 

A 
D 
E 
L 
M 
Q 
R 
s 
u 
w 

Table 7-1. Debug Commands 

Name 

Assign Address Stop 
Dump Data Item 
Exit Debug Mode 
Change Program Location 
Modify Data Item 
Quit Execution 
Resume Program Execution 
Execute Next Single Statement 
Undo Address Stop 
Write Screen to Message File 

NOTE 

Any COBOL run-time errors return control to the debugger after 
writing the error message to the message file. This allows inspec
tion of data items. 

7-3 



Debugging 

Figure 7-1 contains a compiler output listing for a COBOL program. The paragraphs that follow 
refer to sections of this figure. 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.PG.SRC.FIG0701 
DUMY 
MANUAL.PG.LST.FIG0701 
M 
80 
55 
1000 

PAGE 1 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

7.4 

PG/LN A ... B ...................................................... . 
IDENTIFICATION DIVISION. 
PROGRAM-ID. DATA-TYPES. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

**** ALPHANUMERIC 
01 ANS PI C X (20) VALUE "CORRECT RESULT: 330". 

**** ALPHABETIC 
01 ABS PIC AC20) VALUE "COMPUTED RESULT:". 

**** DISPLAY SIGNED LEADING 
01 NL PIC S9(6) SIGN LEADING VALUE +45. 

**** DISPLAY SIGNED LEADING SEPARATE 
01 NLS PIC S9(6) SIGN LEADING SEPARATE VALUE 

**** DISPLAY SIGNED TRAILING 
01 NT PIC S9(6) SIGN TRAILING VALUE 50. 

**** NUMERIC DISPLAY SIGNED (TRAILING SEPARATE) 
01 NSS PIC S9(6) VALUE 30. 

**** NUMERIC DISPLAY UNSIGNED 
01 NSU PIC 9(6) VALUE 25. 

**** COMPUTATIONAL UNSIGNED 
01 NCU PIC 9(5) COMP VALUE 15. 

**** COMPUTATIONAL SIGNED 
01 NCS PIC S9(5) COMP VALUE 20. 

Figure 7·1. Compiler Output Listing (Sheet 1 of 3) 

55. 

2270521-9701 



37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

DXCBL 
LINE DEBUG 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

DXCBL 

>0000 
>0000 
>0004 
>0008 
>0010 

>0028 
>002E 
>0034 
>003C 
>0040 

Debugging 

**** BINARY SIGNED OR UNSIGNED CCOMPUTATIONAL-1) 
01 NBS PIC S9(5) COMP-1 VALUE 5. 

**** NUMERIC PACKED DECIMAL CCOMPUTATIONAL-3) 1 

01 NPS PIC S9(5) COMP-3 VALUE +10. 

**** MULTI-WORD BINARY UNSIGNED CCOMPUTATIONAL-4) 
01 NMB PIC 99 COMP-4 VALUE 35. 

**** MULTI-WORD BINARY SIGNED CCOMPUTATIONAL-4) 
01 NMS PIC S9(4) COMP-4 VALUE 40. 

**** NUMERIC EDITED 
01 NSE PIC ZZ9. 

**** ALPHANUMERIC EDITED 
01 ANSE PIC XX/XX/XX. 

L.R.V VY.ODD COMPILED:MM/00/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ....................•.......................•.......... 

**** GROUP 
01 GRP. 

02 YR PIC XX. 
02 MO PIC XX. 
02 DA PIC XX. 

PROCEDURE DIVISION. 
BEGIN. 

ACCEPT GRP FROM DATE. 
MOVE GRP TO ANSE. 
DISPLAY ANSE LINE 1 ERASE. 
COMPUTE NSE = NBS + NPS + NCU + NCS + NSU + 

NSS + NMB + NMS + NL + NT + NLS. 
DISPLAY ANS LINE 2. 
DISPLAY ABS LINE 3. 
DISPLAY NSE LINE 3 POSITION 18. 

.ACCEPT YR. 
STOP RUN. 

ZZZZZZ END PROGRAM. *** END OF FILE 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 20 ANS 0 ALPHANUMERIC ANS 

>003E 20 ABS 0 ALPHABETIC ABS 

>0052 6 NL 0 NUM LEAD SIGNED NL 

>0058 7 NLS 0 NUM SEP LEAD SIGNED NLS 

Figure 7·1. Compiler Output Listing (Sheet 2 of 3) 

2270521-9701 7.5 



Debugging 

>0060 6 NT 0 NUM TRAIL SIGNED NT 

>0066 7 NSS 0 NUM SEP LEAD SIGNED NSS 

>006E 6 NSU 0 NUMERIC UNSIGNED NSU 

>0074 5 NCU 0 COMP UNSIGNED NCU 

>OO?A 6 NCS 0 COMP SIGNED NCS 

>0080 2 NBS 0 BINARY SIGNED NBS 

>0082 3 NPS 0 PACKED SIGNED NPS 

>0086 NMB 0 MULTI BINARY NMB 

>0088 2 NMS 0 MULTI BINARY SIGNED NMS 

>008A 3 NSE 0 NUMERIC EDITED NSE 

>008E 8 ANSE 0 ALPHANUMERIC EDITED ANSE 

>0096 6 GRP 0 GROUP GRP 
>0096 2 ANS 0 ALPHANUMERIC YR 
>0098 2 ANS 0 ALPHANUMERIC MO 
>009A 2 ANS 0 ALPHANUMERIC DA 

READ ONLY BYTE SIZE = >OOF8 

READ/WRITE BYTE SIZE = >009E 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0196 

0 ERRORS 

0 WARNINGS 

Figure 7-1. Compiler Output Listing (Sheet 3 of 3) 

7-6 2270521-9701 



Debugging 

7.2.2.1 Assign Address Stop Command (A). The A command indicates the address at which 
normal execution of the program stops and the debugger assumes control. This address stop is 
cleared whenever a breakpoint is set, but you can assign up to four address stops. After you 
assign address stops, use the Resume command (R) to resume execution of the program. You can 
use the Undo Address Stop (U) command to eliminate any address stops you assigned with the A 
command. The A command is as follows: 

A[hh]hhhh[,PROGID] 

where: 

hh is an optional hexadecimal number signifying the segment number in PROGID at which 
execution stops. When the segment number is omitted, it is assumed to be zero. 

hhhh represents up to four hexadecimal digits specifying the address in program PROGID at 
which execution stops. Leading zeros of the address may be omitted unless the segment 
number is specified. The address is the address printed in the DEBUG column of the compiler 
listing. (Refer to the data maps in Figure 7-1.) 

PROGID is an optional operand that names the program unit in which the stop is located. If 
omitted, the stop is assumed to be located in the program unit that is currently executing. 

The following are examples of the A command: 

Example Meaning 

A0202 Assign an address stop in the current COBOL module at 
address 0202. 

A012345,SUB1 Assign an address stop at location 2345 of segment 01 in pro
gram SUB1. 

2270521-9701 

NOTE 

If a stop address is reached during execution, that address is elimi
nated from the list of stop addresses. If you wish to stop at a given 
address in a loop each time it is executed, you must assign that 
address each time to program stops before restarting execution. 

7.7 



\ 

Debugging 

7.2.2.2 Dump Data Item Command (D). This command displays memory at a specified address 
in the format of a specified data type. The D command has two possible formats. 

D Command: First Format. The first format of the D command displays data items from the DATA 
DIVISION: 

Dhhhh,dd[,TYPEJ 

where: 

hhhh gives the hexadecimal address printed in the ADDRESS column of the compiler listing 
that contains the data maps. (Refer to the ADDRESS column of the data maps in Figure 7·1.) 

dd is a decimal number indicating the number of characters to be displayed. This information 
also appears in the listing. (Refer to the SIZE column of the data maps in Figure 7·1.) 

TYPE consists of two, three, or four letters that abbreviate the data type. (Refer to the DEBUG 
column of the data maps in Figure 7-1.) 

Both the data type and its valid abbreviation are shown for each data item in the listing. The valid 
abbreviations are as follows: 

1·8 

Abbreviation 

ABS 
ANS 

ANSE 
GRP 
HEX 
NBS 
NCS 
NCU 
NL 

NLS 
NMB 
NMS 
NPS 
NSE 
NSS 
NSU 
NT 

Description 

Alphabetic 
Alphanumeric 
Alphanumeric edited 
Group 
Default 
Binary signed (COMP·1) 
Computational signed (COMP) 
Computational unsigned (COMP) 
Numeric leading signed 
Numeric leading separate signed 
Multiword binary (COMP-4) 
Multiword binary signed (COMP-4) 
Numeric packed signed (COMP-3) 
Numeric edited 
Numeric display signed 
Numeric display unsigned (DISP) 
Numeric trailing signed 

2270521-9701 



Debugging 

The following is an example of the first format of the D command: 

Example 

D096,6,GRP 

D06E,6,NSU 

Meaning 

Display the contents of a six-character data item 
from the data division at address 096. 

Display the six-character numeric field from the data 
division at address 06E. 

D Command: Second Format. The second format of the D command displays data items from the 
LINKAGE SECTION of a separately compiled program: 

DLdd[+hhhhl,dd[,TYPEl 

where: 

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is 
to be displayed. 

dd is an ordinal number specifying which data item of the linkage data items is to be 
displayed. 

+ hhhh is a hexadecimal offset from the starting address of the data item. You can omit this. 

dd is a decimal number indicating the number of characters to be displayed. This information 
also appears in the listing. (Refer to the SIZE column of the data maps in Figure 7-1.) 

TYPE is a two-, three-, or four-letter abbreviation specifying the data type. When you do not 
enter a type, the display of the data items is in hexadecimal. 

The following is an example of the second format of the D command: 

Example 

DL1,5,HEX 

DL3 + F0;16,ANS 

Meaning 

Display five characters of the first linkage item in 
hexadecimal. 

Display sixteen alphanumeric characters of the third 
linkage item starting at offset FO. 

7.2.2.3 Exit Debug Mode Command {E). This command discontinues execution of the current 
user module under control of the debugger. The program continues to execute, but in normal 
mode. The format of the command is as follows: 

E 

No operand is required. 

2270521-9701 7.9 



Debugging 

7.2.2.4 Change Program Location Command (L). The L command designates the next address in 
the program to be executed. The format of the command is as follows: 

UxxJyyyy 

where: 

xx is an optional hexadecimal digit signifying the segment number. The default is zero. 

NOTE 

If you are currently executing in the fixed segment, you can only 
change location within the fixed segment. If you are currently exe
cuting in an independent segment, you can change location within 
either that segment or the fixed segment. 

yyyy is a hexadecimal digit showing the address in the current program module where exe
cution begins. This address is printed in the DEBUG column of the compiler listing. 

NOTE 

You must enter four hexadecimal digits for the address when you 
specify the segment number. You can omit the leading zeros of the 
address whel'\you do not specify the segment number. Unpredic
table results occur if the value you give is not the beginning of a 
statement from the DEBUG column. (Refer to the data maps in 
Figure 7-1.) 

The following are examples of the L command: 

7·10 

Example 

L0404 

L 

Meaning 

Execute the current COBOL module starting at 
address 0404. 

Execute the current COBOL module at the beginning 
of the current program module. 

NOTE 

The L command has no effect when you enter the debugger after 
normal program termination. 

2270521-9701 



Debugging 

7.2.2.5 Modify Data Item Command (M). The M command is used to overwrite the existing con
tents of items in the DATA DIVISION of a program or in the LINKAGE SECTION of a separately 
compiled program. Modifications can consist of either ASCII strings or hexadecimal digits. The 
command has six possible formats. 

M Command: First Format. The first format for the M command is as follows: 

Mhhhh,>h[,h, ... ,hJ 

where: 

hhhh is the hexadecimal address printed in the ADDRESS column of the compiler listing that 
contains the data maps. 

> h[,h,. .. ,h] indicates a hexadecimal modification. One or more one- or two-digit hexadecimal 
numbers can follow the right angle bracket ( > ). Each number is placed into one byte of stor
age. Any numbers to the right of the first one are placed at memory locations whose 
addresses are successively greaterthan the initial hhhh hexadecimal address. 

The following is an example of format one: 

Example 

M1237, > FF,20,D,1 

Meaning 

Place >FF at location 1237, > 20 at location 1238, 
>OD at location 1239, > 01 at location 123A. 

M Command: Second Format. The second format for the M command is as fol lows: 

Mhhhh,"string" 

where: 

hhhh is the hexadecimal address printed in the ADDRESS column of the compiler listing that 
contains the data maps. 

"string" is the ASCII string to be placed at that hexadecimal address. 

NOTE 

To print the " character within a string, you must enter that 
character twice. For example, STR""ING will yield STR"ING. 

The following is an example of format two: 

Example 

M1 FFO, "TEXAS" 

2270521-9701 

Meaning 

Place the string TEXAS starting at memory location 
>1 FFO. 

7-11 



Debugging 

M Command: Third Format. The third format for the M command is as follows: 

Mhhhh,"string",dd 

where: 

hhhh is the hexadecimal address, printed in the ADDRESS column of the compiler listing that 
contains the data maps. 

"string" is the ASCII string to be placed at that hexadecimal address. 

dd is an optional decimal number indicating the total length of the field to be modified. 
Operand dd must be equal to or greater than the number of characters in the ASCII string. If 
operand dd is greater than the number of characters in the string, the difference between 
them indicates the number of blanks which are appended to the right of the string and written 
to memory. 

The following is an example of format three: 

Example 

M100F,"RIGHT PAD",40 

Meaning 

Place the string RIGHT PAD, followed by 31 blanks, 
starting at memory location 100F. 

M Command: Fourth Format. The fourth format for the M command is as follows: 

MLdd[+hhhhJ,>h[,h ... hJ 

where: 

7-12 

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is 
to be modified. 

WARNING 

Users can accidentally modify data outside the LINKAGE SECTION. 
Addresses for linkage items are not verified. It is the user's respon· 
sibility to enter correct addresses. 

dd is a decimal ordinal number specifying which data item of the linkage data items is to be 
modified. 

+ hhhh is an optional hexadecimal offset from the starting address of the data item. 

> h[,h ... h] indicates a hexadecimal modificatibn. One or more one· or two-digit hexadecimal 
numbers can follow the right angle bracket ( > ). Each number is placed into one byte of stor· 
age. Any numbers to the right of the first one are placed at memory locations whose 
addresses are successively greater than those of the initial data item. 

2270521-9701 



Debugging 

The following is an example of format four: 

Example 

M L4+FO,>1,D,20,FF 

Meaning 

Place >01, >OD, >20, and >FF starting at the 
address of linkage item four plus >OOFO. 

M Command: Fifth Format. The fifth format for the M command is as follows: 

MLdd[+hhhhJ,"string" 

where: 

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is 
to be modified. 

WARNING 

Users can accidentally modify data outside the LINKAGE SECTION. 
Addresses for linkage items are not verified. It is the user's respon· 
sibility to enter correct addresses. 

dd is a decimal ordinal number specifying which data item of the linkage data items is to be 
modified. 

+ hhhh is an optional hexadecimal offset from the starting address of the data item. 

"string" is the ASCII string to be placed at that hexadecimal address. 

The following is an example of format five: 

Example 

M L3,"INSTRUM ENTS" 

Meaning 

Place the string INSTRUMENTS starting at the 
address of the third linkage item. 

M Command: Sixth Format. The sixth format for the M command is: 

MLdd[+hhhhJ, 11 string 11 ,dd 

where: 

L indicates that a data item from the LINKAGE SECTION of a separately compiled program is 
to be modified. 

2270521-9701 7-13 



Debugging 

WARNING 

Users can accidentally modify data outside the LINKAGE SECTION. 
Addresses for linkage items are not verified. It is the user's respon· 
sibility to enter correct addresses. 

dd is a decimal ordinal number specifying which data item of the linkage data items is to be 
modified. 

+ hhhh is an optional hexadecimal offset from the starting address of the data item. 

"string" is the ASCII string to be placed at that hexadecimal address. 

dd is an optional decimal number indicating the total length of the field to be modified. It 
must be equal to or greater than the number of characters in the ASCII string. If it is greater, 
the difference indicates the number of blanks that are appended to the right of the string and 
written to memory. 

The following is an example of format six: 

Example 

ML5,"LONG STRING",45 

Meaning 

Place the string LONG STRING, followed by 34 
blanks, at the address of the fifth linkage item. 

7.2.2.6 Quit Execution Command (Q). The Q command terminates the current user program 
under control of the debugger and returns control to SCI. The format of the command is as 
follows: 

Q 

No operand is required. 

7.2.2.7 Resume Program Execution Command (R). The R command resumes program execution 
after you assign all address stops. The format of the command is as follows: 

R 

No operand is required. 

7.2.2.8 Execute Next Single Statement Command (S). The S command executes one COBOL 
statement and returns control to the debugger. The format of the command is as follows: 

s 

No operand is required. 

7·14 2270521-9701 



NOTE 

The S command has no effect when the debugger is entered after 
normal program termination. 

Debugging 

7.2.2.9 Undo Address Stop Command (U). The U command eliminates address stops you 
assigned with the A command. The format for the U command is as follows: 

U[hhlhhhh[,progidl 

where: 

hh is an optional hexadecimal number signifying the segment number in progid at which the 
address stop was assigned. When the segment number is omitted, it is assumed to be zero. 

hhhh is four or less hexadecimal digits signifying the address in program progid at which an 
address stop was assigned. This address is the address printed in the DEBUG column of the 
compiler listing. (Refer to the data maps in Figure 7-f.) When you omit the segment number, 
you can omit leading zeros of the address. When you specify a segment number, you must 
enter four hexadecimal digits for the address. 

Progid is an optional operand that names the program unit in which the address stop was 
assigned. If you omit this operand, the address stop is assumed to be located in the program 
that is currently executing. 

The following are examples of the U command: 

Example 

U0202 

U012345,SUB1 

Meaning 

Remove an address stop in the current module at 
address 0202. 

Remove an address stop at location 2345 of segment 01 
in program SUB1. 

7.2.2.10 Write Screen to Message File Command (W). This command writes the contents of the 
screen to the device or file you specified in response to the prompt MESSAGE ACCESS NAME 
that appeared when you executed the COBOL program or task. The format for the W command is 
as follows: 

w 

No operand is required. 

2270521-9701 7·15 



Debugging 

7.3 DEBUGGING OF ASSEMBLY LANGUAGE SUBROUTINES LINKED TO COBOL PROGRAMS 

You can use an interactive symbolic debugging program to debug assembly language program 
object modules linked to COBOL program object modules as subroutines. The interactive debug
ger is provided as an operating system utility; it is not the COBOL debugger. The interactive 
debugger operates from either an interactive VDT or an interactive hard-copy terminal. 

The debugger allows you to display and modify central processing unit (CPU) registers, workspace 
registers, and memory. It also allows controlled execution of a task. 

In the run mode, you can halt and resume. You can also set new breakpoints to halt the task. In the 
simulation mode, the system analyzes the execution between each instruction. You can specify 
trap conditions that interrogate the program counter (PC) or you can specify memory content. 
Breakpoints designed to halt task execution can be conditional on a given number of accesses 
within a specified range of PC values, memory locations, or communications register unit (CRU) 
addresses. You can set breakpoints at given status register (SR) values or supervisor calls (SVCs). 

NOTE 

You can use this method of debugging an assembly language 
module only with a linked program image using the Execute COBOL 
Task Debug (XCTD) command. 

Figure 7-2 through Figure 7-5 are examples of debugging interactively. Figure 7-2 shows how the 
interactive debugger operates under user control. 

7-16 

WARNING 

Because of the way the system debugger is executed, there is a 
possible conflict between it and a COBOL program. If the COBOL 
program has been executed with the function keys enabled and the 
System Debugger is then executed, the function keys will be dis
abled. This problem is most common when the COBOL program 
executes an ACCEPT/DISPLAY command while still in the System 
Debugger. However, this problem may also occur at any time. 

2270521-9701 



[ l AGL 
ASSIGN GLOBAL LUNO 

LUNO: 
ACCESS NAME: .PROFILE 

PROGRAM FILE ?: YES 
ASSIGNED LUNO = >4 
[]XCTD 
EXECUTE COBOL TASK DEBUG <VERSION: L.R.V. YYDDD> 

PROGRAM FILE: >4 

[]AB 

TASK ID OR NAME: 1 
MESSAGE ACCESS NAME: 

SWITCHES: 00000000 
FUNCTION KEYS: NO 

ASSIGN BREAKPOINTS 

[]RT 

RUN ID: >DC 
ADDRESSCES): 04E6C+04E 

RESUME TASK 
RUN ID: >DC 

[]SP 
SHOW PANEL 

RUN ID: >DC 
MEMORY ADDRESS: 

[] LM 
LIST MEMORY 

RUN ID: >DC 
STARTING ADDRESS: #RS 

NUMBER OF BYTES: #R6 
LISTING ACCESS NAME: 

[]DPB 
DELETE AND PROCEED FROM BREAKPOINT 

RUN ID: >DC 
DESTINATION ADDRESSCES): 

[ l WAIT 

Figure 7·2. Interactive Debugging Example 

A debugging session includes these steps: 

Debugging 

1. Assign a global LUNO to the program file containing the task to be executed. In 
Figure 7·2, LUNO >4 is assigned to the program file .PROGFILE. 

2. Execute the XCTD command to bid the task in suspended state as shown in Figure 7·2. 
SCI assigns a task ID that is used as the initial value for the commands issued after this 
step. Figure 7·2 uses >DC. The workspace registers and memory locations at the begin· 
ning of the task appear on the VDT screen. 

3. Examine the link edit listing to obtain the origin address of the assembly module to be 
debugged. Figure 7-2 uses address 04E6C. 

2270521-9701 7.17 



Debugging 

4. Assign a breakpoint to a particular instruction address of the assembly language 
module. This address will be the assembly module origin address (from the link edit 
listing) plus a displacement of the instruction within the module. (Refer to Figure 7-3.) 
The task executes until it encounters the breakpoint address. Figure 7-2 uses 04E6C 
plus a displacement of 04E. 

NOTE 

Overlay phases must be in memory before you can assign break
point addresses within them. Therefore, you should link the 
modules to be overlayed into the root phase (phase 0) of the task for 
debugging purposes. 

5. Begin execution of the task with the Resume Task (RT) command. 

6. Issue a Show Panel (SP) command periodically to determine if execution has reached 
the breakpoint address. If so, the task status appears on the VDT screen as 
STATE= 06(BP). 

7. Perform other operations such as List Memory (LM), Modify Workspace Register (MWR), 
Modify Internal Registers (MIR), and Modify Memory (MM) while at this breakpoint. 

8. Remove the breakpoint and resume the task with the Delete and Proceed from Break
point (DPB) command. If you set another breakpoint, the task executes to the next break
point; otherwise, the task executes to completion. 

9. Wait for execution to complete with a Wait (WAIT) command. 

Figure 7-3 is the COBOL module that calls the assembly language modules. Figure 7-4 and Figure 
7-5 are examples of assembly language modules. 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT= 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.DN.SRC.COBOL 
MANUAL.ON.OBJ.COBOL 
MANUAL.DN.LST.COBOL 

80 
55 
1000 

PAGE 

Figure 7-3. COBOL Program Calling Assembly Language Modules (Sheet 1 of 2) 

7-18 2270521-9701 



Debugging 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT= PAGE 2 
LINE DEBUG 

1 
PG/ LN A ... B ...................................................... . 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

>0000 
>0000 
>0002 
>0006 
>0008 
>0010 
>0014 
>001C 
>0020 
>0028 
>002C 
>0034 
>0038 
>0040 
>0044 
>004C 

IDENTIFICATION DIVISION. 
PROGRAM-ID. GETDATE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI990. 
OBJECT-COMPUTER. TI990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 SVC-BLOCK. 

* SVC >03 RETRIEVES DATE AND TIME. 
02 CALL-CODE PIC 9 COMP-4 VALUE >03. 
02 ERROR-CODE PIC 9 COMP-4. 
02 TIME-BUFFER-ADDRESS PIC 999 COMP-4. 
01 TIME-BUFFER. 
02 YEAR PIC 999 COMP-4. 
02 JUL PIC 999 COMP-4. 
02 HOUR PIC 999 COMP-4. 
02 MIN PIC 999 COMP-4. 
02 SEC PIC 999 COMP-4. 
01 FIELD PIC ZZZ9. 
PROCEDURE DIVISION. 
MAIN-SECTION. 

CALL "ADORES" USING TIME-BUFFER, TIME-BUFFER-ADDRESS. 
MOVE >00 TO ERROR-CODE. 
CALL "IOCALL" USING SVC-BLOCK. 
IF ERROR-CODE NOT = >00 STOP RUN. 
MOVE YEAR TO FIELD. 
DISPLAY FIELD ERASE LINE 1. 
MOVE JUL TO FIELD. 
DISPLAY FIELD LINE 1 POS 6. 
MOVE HOUR TO FIELD. 
DISPLAY FIELD LINE 1 POS 11. 
MOVE MIN TO FIELD. 
DISPLAY FIELD LINE 1 POS 16. 
MOVE SEC TO FIELD. 
DISPLAY FIELD LINE 1 POS 21. 
ACCEPT FIELD LINE 24. 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 ZZZZZZ END PROGRAM. *** END OF FILE 

READ ONLY BYTE SIZE = >0102 

READ/WRITE BYTE SIZE = >0044 

OVERLAY SEGMENT SIZE = >0000 

TOTAL BYTE SIZE = >0146 

0 ERRORS 

0 WARNINGS 

Figure 7·3. COBOL Program Calling Assembly Language Modules (Sheet 2 of 2) 

2270521-9701 7·19 



Debugging 

SDSMAC L.R.V VY.DOD HH:MM:SS 
NAMES TABLE 

SOURCE ACCESS NAME= 
OBJECT ACCESS NAME= 
LISTING ACCESS NAME= 
ERROR ACCESS NAME= 

MANUAL.DN.SRC.ADDRES 
MANUAL.ON.OBJ.ADORES 
MANUAL.DN.LST.ADDRES 

OPTIONS= MACRO LIBRARY PATHNAME= 

DAY, MMM DD, YYYY. 
PAGE 0001 

ADORES SDSMAC L.R.V VY.DOD HH:MM:SS DAY, MMM DD, YYYY. 
RETRIEVE DATA ITEM ADDRESS PAGE 0002 
0002 IDT 'ADORES' 
0003 * 
0004 *************************************************************** 
0005 * TITLE: ADORES 
0006 * REVISION: MM/DD/YY ORIGINAL 
0007 * ABSTRACT: ADORES IS CALLED TO RETURN THE RUNTIME ADDRESS 
0008 * OF A DATA ITEM FOR USE BY THE IOCALL SUBROUTINE. 
0009 * 
0010 * CALLING SEQUENCE: 
0011 * CALL "ADORES" USING VARIABLE-NAME, VARIABLE-ADDRESS 
0012 * 
0013 *************************************************************** 
0014 * 
0015 
0016 
0017 

0000 
0000 
0002 

0018 0004 
0019 0024 
0020 0000 
0021 0000 
0022 0002 
0023 0004 

0006 
0024 0008 
0025 OOOA 
0026 oooc 
0027 OOOE 
0028 0010 
0029 0012 
0030 

NO ERRORS, 

DEF 
DSEQ 

0004" ADORES 
0000' 

DATA 

C01D 
C070 
0281 
0004 
1603 
COBO 
CODO 
C4C2 
0380 

WSP1 

START 

BSS 
DENO 
PSEG 
MOV 
MOV 
CI 

JNE 
MOV 
MOV 
MOV 

RETURN RTWP 
PEND 
END 

NO WARNINGS 

ADORES 

WSP1,START 

32 

*R13,RO 
*RO+,R1 
R1 , 4 

RETURN 
*RO+,R2 
*R0,R3 
R2,*R3 

TRANSFER VECTOR 

WORKSPACE 

PICK ARG LIST POINTER 
GET ARGLIST BYTE COUNT 
MUST BE 2 PARAMETERS 

ELSE DO NOTHING 
R2<- VARIABLE-NAME ADDR. 
R3<- VARIABLE-ADDR PTR. 
MOVE IN THE ADDRESS 
RETURN TO CALLER 

Figure 7-4. Assembly Language Module ADORES 

7-20 2270521-9701 



Debugging 

SDSMAC L.R.V VY.DOD HH:MM:SS DAY, MMM DD, YYYY. 
NAMES TABLE PAGE 0001 

SOURCE ACCESS NAME= 
OBJECT ACCESS NAME= 
LISTING ACCESS NAME= 
ERROR ACCESS NAME= 
OPTIONS= 
MACRO LIBRARY PATHNAME= 

MANUAL.DN.SRC.IOCALL 
MANUAL.DN.OBJ.IOCALL 
MANUAL.DN.LST.IOCALL 

HH:MM:SS DAY, MMM DD, YYYY. IOCALL 
ISSUE 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 

SDSMAC L.R.V VY.DOD 
SUPERVISOR CALL PAGE 0002 

0018 
0019 
0020 
0021 
0022 
0023 

0024 
0025 
0026 
0027 
0028 
0029 

0000 
0000 0004" 
0002 0000' 
0004 
0024 
0000 
0000 C01D 
0002 C070 
0004 0281 
0006 0002 
0008 1602 
OOOA COBO 
OOOC 2FD2 
OOOE 0380 
0010 

IDT 'IOCALL' 

* 
*************************************************************** 
* TITLE: IOCALL 
* REVISION: MM/DD/YY 
* ABSTRACT: IOCALL IS CALLED 
* SUPERVISOR CALL. 
* 
* CALLING SEQUENCE: 

TO ISSUE AN OPERATING SYSTEM 

* CALL "IOCALL" USING SVC-CONTROL-BLOCK. 

* 
*************************************************************** 
* 

IOCALL 

IOCALL 

START 

DEF 
DSEQ 
DATA 

BSS 
DENO 
PSEG 
MOV 
MOV 
CI 

JNE 
MOV 
XOP 

RETURN RTWP 

IO CALL 

WSP1,START 

32 

*R13,RO 
*RO+,R1 
R1 I 2 

RETURN 
*RO+,R2 
*R2,15 

TRANSFER VECTOR 

WORKSPACE 

PICK ARG LIST POINTER 
GET ARGLIST BYTE COUNT 
MUST BE 1 PARAMETER 

ELSE DO NOTHING 
R2<- SVC-CALL-BLOCK PTR. 
XOP15-> SVC-CALL-BLOCK 
RETURN TO CALLER 

NO ERRORS, 

PEND 
END 

NO WARNINGS 

Figure 7·5. Assembly Language Module IOCALL 

2270521·9701 7·21/7-22 





8 

Calling Subroutines 

8.1 GENERAL 

The CALL statement is used to call subroutines written in COBOL and other languages provided 
the linkage conventions are compatible. Refer to the COBOL Reference Manual for a detailed 
description of the CALL verb syntax. 

8.2 COBOL SUBROUTINE LIBRARY PACKAGE 

The COBOL Subroutine Library Package provides you with frequently used functions. Table 8·1 
lists the subroutines; Appendix D lists the functions of the routines, calling sequences, descrip· 
tions of each required argument, and error codes generated within the subroutines. 

All data fields used as parameters to the COBOL subroutines MUST be aligned on word bound· 
aries. This can be accomplished by making the parameter an 01-Level data item in the WORKING 
STORAGE section of the program. There are no provisions in either the compiler or the run-time 
package to test for this condition. The increase in program size in the compiler or run-time pack· 
age could cause a space problem in user programs. 

2270521-9701 8·1 



Calling Subroutines 

8-2 

Name 

C$ADDP 

C$BKSP 

C$BSRT 

C$CARG 

C$CBID 

C$CLOS 

C$CMPR 

C$CVDT 

C$DLTE 

C$EXCP 

C$GROF 

C$GRPH 

C$LOC 

C$MAPS 

C$MFAP 

C$MKEY 

C$0PEN 

C$PARM 

C$RERR 

C$RPRV 

C$SEPP 

C$SETS 

C$SRCH 

C$SVC 

C$TMPF 

C$WRIT 

Table 8-1. COBOL Subroutines Library 

Description 

Embed the sign character with the last data character. 

Backspace 1/0 on sequential file .. 

Sort an array on a given character string. 

Return USING argument information. 

Bid a COBOL task. 

Close VDT and output file. 

Compare character strings logically. 

Close all VDTs currently open. 

Delete a file. 

Turn off function key accessibility. 

Turn off graphics display option. 

Turn on graphics display option. 

Return address of data argument. 

Map and return synonym value. 

Modify file access privilege. 

Modify a Kl F alternate key attribute so that it is nonmodifiable in program 
declaration. 

Open VDT and output file. 

Get parameter from terminal communications area. 

Return last file 1/0 completion status. 

Read previous 1/0 on KIF. 

Separate embedded data character and sign character into data character and 
separate trailing sign. 

Define or redefine synonym in terminal communications area. 

Binary search array for specified key value. 

Issue an SVC to operating system. 

Set a temporary file flag that causes the next OPEN ... OUTPUT statement to 
create a temporary file. 

Write the VDT screen contents to the output file or device. 

2270521-9701 



Calling Subroutines 

All of these subroutines reside on the library .S$SYSLIB.C$SUBS. Use the LIBRARY or SEARCH 
command to link them with the COBOL program object modules. These routines must be included 
in the task segment of the link control file. A typical link control file, which can link any of the sub
routines with COBOL program object modules, is as follows: 

FORMAT IMAGE,REPLACE 
LIBRARY .S$SYSLIB.C$SUBS 
LIBRARY .SCI990.S$0BJECT 
PROCEDURE RCOBOL 
DUMMY 
INCLUDE .S$SYSLIB.RCBPRC 
TASK CBLTSK 
INCLUDE .S$SYSLIB.RCBTSK 
INCLUDE .S$SYSLIB.RCBMPD 
INCLUDE <COBOL object module> 
END 

8.3 ASSEMBLY LANGUAGE SUBROUTINES 

Assembly language subroutines provide capabilities to the COBOL program not available through 
COBOL syntax. These capabilities include (but are not limited to) gaining access to system SVCs, 
and interfacing a routine to application environment processors and specialized data handling 
routines. To call assembly language routines, use the CALL statement. This statement transfers 
control from one object module to another within the program. 

The CALL statement can be used to call subroutines written in COBOL and other languages 
provided the linkage conventions are compatible. For example, for the statement 

CALL "PROGA" USING A1, A2, A3. 

the COBOL compiler generates an argument list with the following format: 

ARGLST 

2270521-9701 

DATA6 

DATAA1 
DATAA2 
DATAA3 

byte count of the argument list (twice the number 
of arguments) 

NOTE 

The argument list contains byte addresses. If the subroutine is 
designed to address words, the COBOL programmer must ensure 
that all parameters begin on a word boundary. 

8-3 



Calling Subroutines 

When the CALL statement is executed, register 0 (RO) is loaded with the address of the argument 
list, register 1 (R1) is loaded with the address of the argument decode routine, and subprogram 
PROGA is entered via a Branch and Load Workspace Pointer (BLWP) instruction. For example: 

LI RO,ARGLST 
LI R1 I DEADDR 
BLWP @PROGA 

The argument decode routine is the assembly language programmer's way of accessing infor
mation about a data item. The BLWP instruction is used to transfer control to the subroutine 
module. Subprogram PROGA must have an entry vector PROGA, defined as follows: 

PROGA 

WP 
START 

DEF 
DATA 
DATA 
BSS 
EQU 

END 

PRO GA 
WP 
START 
32 
$ 

WORKSPACE FOR PROGA 
FIRST INSTRUCTION 

Note that the subroutine in Figure 8-2 indirectly references register 0 of the calling routine by 
using register 13. This occurs in Line 15. 

To return to the COBOL module, PROGA must execute a Return With Workspace Pointer (RTWP) 
instruction (assuming registers 13, 14, and 15 have not been modified by PROGA). 

' 

Information about each argument in the USING list of a CALL statement is accessible to the 
assembly language program through a COBOL run-time subroutine. This subroutine requires two 
arguments (in RO, R1), as follows: 

• The assembly language subroutine workspace register 0 must be loaded with the 
relative argument number from the USING list for which information is needed. 

• The assembly language subroutine workspace register 1 must be loaded with the 
address of a 10-byte buffer in which to store the descriptive information. 

Figure 8-2 shows an assembly subroutine example called from the COBOL example in Figure 8-1. 

8-4 2270521-9701 



Calling Subroutines 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG0801 
DUMY 
MANUAL.PG.LST.FIG0801 
M 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

PG/LN A ... B ...................................................... . 
IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOLARG. 

* THIS EXAMPLE SHOWS SUBROUTINE LINKAGE USING 
* THE CALL VERB. IT ALSO DEMONSTRATES A 
* TECHNIQUE OF OBTAINING INFORMATION ABOUT 
* THE "USING" ARGUMENTS BEING PASSED. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 

**** ALPHANUMERIC 
01 ANS PIC X(20) VALUE "CORRECT RESULT: 330". 

**** ALPHABETIC 
01 ABS PIC A(20) VALUE "COMPUTED RESULT:". 

**** DISPLAY SIGNED LEADING 
01 NL PIC S9(6) SIGN LEADING VALUE +45. 

**** DISPLAY SIGNED LEADING SEPARATE 
01 NLS PIC S9(6) SIGN LEADING SEPARATE VALUE 

**** DISPLAY SIGNED TRAILING 
01 NT PIC S9(6) SIGN TRAILING VALUE 50. 

**** NUMERIC DISPLAY SIGNED (TRAILING SEPARATE) 
01 NSS PIC S9(6) VALUE 30. 

**** NUMERIC DISPLAY UNSIGNED 
01 NSU PIC 9(6) VALUE 25. 

**** COMPUTATIONAL UNSIGNED 
01 NCU PIC 9(5) COMP VALUE 15. 

55. 

Figure 8·1. Example of COBOL Routine Calling Assembler Subroutine (Sheet 1 of 4) 

2270521-9701 8·5 



Calling Subroutines 

38 
39 **** COMPUTATIONAL SIGNED 
40 01 NCS PIC S9(5) COMP VALUE 20. 
41 
42 **** BINARY SI,NED OR UNSIGNED (COMPUTATIONAL-1) 
43 01 NBS PIC S9(5) COMP-1 VALUE 5. 
44 
45 **** NUMERIC PACKED DECIMAL (COMPUTATIONAL-3) 
46 01 NPS PIC S9(5) COMP-3 VALUE +10. 
47 
48 **** MULTI-WORD BINARY UNSIGNED (COMPUTATIONAL-4) 
49 01 NMB PIC 99 COMP-4 VALUE 35. 
50 
51 **** MULTI-WORD BINARY SIGNED CCOMPUTATIONAL-4) 
52 01 NMS PIC S9(4) COMP-4 VALUE 40. 
53 
54 **** NUMERIC EDITED 
55 01 NSE PIC ZZ9. 
56 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
LINE DEBUG 

57 
PG/LN A ... B ...................................................... . 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

8·6 

**** ALPHANUMERIC EDITED 
01 ANSE PIC XX/XX/XX. 

**** GROUP 
01 GRP. 

02 YR PIC xx. 
02 MO PIC xx. 
02 DA PIC xx. 

01 DATA-LENGTH PIC 9 ( 5) . 
01 DIGIT-LENGTH PIC 9(5). 
01 ACTION PIC x. 
01 SUB PIC 99 COMP-1. 
01 ROW PIC 99. 

* BUFFER AREA IN WHICH ARGUMENT INFORMATION IS PLACED 
* BY THE ASSEMBLER SUBROUTINE. 

01 ARG-TABLE. 
02 ARG-ENTRY OCCURS 18. 

03 ARG-CODE PIC 9 COMP. 
03 ARG-SCALE PIC 9 COMP. 
03 ARG-DATA-LENGTH PIC S9(5) COMP-1. 
03 ARG-DIGIT-LENGTH PIC S9(5) COMP-1. 
03 ARG-DATA-ADDRESS PIC S9(5) COMP-1. 
03 ARG-PIC-ADDRESS PIC S9(5) COMP-1. 

PROCEDURE DIVISION. 

Figure 8·1. Example of COBOL Routine Calling Assembler Subroutine (Sheet 2 of 4) 

2270521-9701 



85 >0000 
86 >0000 
87 >0004 
88 
89 
90 >0006 
91 >OOOE 
92 >0012 
93 
94 >0026 
95 >002E 
96 >0030 
97 >0030 
98 >0036 
99 >0040 

MAIN-PROG. 
MOVE SPACES TO ARG-TABLE. 
CALL "DECODE" USING ARG-TABLE ANS ABS NL NLS 

NT NSS NSU NCU NCS NBS NPS NMB NMS 
NSE GRP "123456" +55 SPACE. 

DISPLAY "DATA DIGIT" LINE 1 ERASE. 
DISPLAY "LENGTH LENGTH". 
PERFORM DISP-ARG VARYING SUB FROM 1 BY 1 

UNTIL SUB > 18. 
ACCEPT ACTION LINE 24 PROMPT. 
STOP RUN. 

DISP-ARG. 
COMPUTE ROW = SUB + 3. 
MOVE ARG-DATA-LENGTH (SUB) TO DATA-LENGTH. 
DISPLAY DATA-LENGTH LINE ROW. 
MOVE ARG-DIGIT-LENGTH (SUB) TO DIGIT-LENGTH. 
DISPLAY DIGIT-LENGTH LINE ROW POSITION 10. 

END-DI SP. EXIT. 

Calling Subroutines 

100 >0046 
101 >0050 
102 >005A 
103 ZZZZZZ END PROGRAM. *** END OF FILE 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 20 ANS 0 ALPHANUMERIC ANS 

>003E 20 ABS 0 ALPHABETIC ABS 

>0052 6 NL 0 NUM LEAD SIGNED NL 

>0058 7 NLS 0 NUM SEP LEAD SIGNED NLS 

>0060 6 NT 0 NUM TRAIL SIGNED NT 

>0066 7 NSS 0 NUMERIC SIGNED NSS 

>006E 6 NSU 0 NUMERIC UNSIGNED NSU 

>0074 5 NCU 0 COMP UNSIGNED NCU 

>007A 6 NCS 0 COMP SIGNED NCS 

>0080 2 NBS 0 BINARY SIGNED NBS 

>0082 3 NPS 0 PACKED SIGNED NPS 

>0086 1 NMB 0 MULTI BINARY NMB 

>0088 2 NMS 0 MULTI BINARY SIGNED NMS 

Figure 8·1. Example of COBOL Routine Calling Assembler Subroutine (Sheet 3 of 4) 

2270521-9701 8·7 



Calling Subroutines 

>008A 3 NSE 0 NUMERIC EDITED NSE 

>008E 8 ANSE 0 ALPHANUMERIC EDITED ANSE 

>0096 6 GRP 0 GROUP GRP 
>0096 2 ANS 0 ALPHANUMERIC YR 
>0098 2 ANS 0 ALPHANUMERIC MO 
>009A 2 ANS 0 ALPHANUMERIC DA 

>009C 5 NSU 0 NUMERIC UNSIGNED DATA-LENGTH 

>OOA2 5 NSU 0 NUMERIC UNSIGNED DIG IT-LENGTH 

>OOA8 ANS 0 ALPHANUMERIC ACTION 

>OOAA 2 NBS 0 BINARY SIGNED SUB 

>OOAC 2 NSU 0 NUMERIC UNSIGNED ROW 

>OOAE 180 GRP 0 GROUP ARG-TABLE 
>OOAE 10 GRP 1 GROUP ARG-ENTRY 
>OOAE 1 NCU 1 COMP UNSIGNED ARG-CODE 
>OOAF 1 NCU 1 COMP UNSIGNED ARG-SCALE 
>OOBO 2 NBS 1 BINARY SIGNED ARG-DATA-LENGTH 
>OOB2 2 NBS 1 BINARY SIGNED ARG-DIGIT-LENGTH 
>OOB4 2 NBS 1 BINARY SIGNED ARG-DATA-ADDRESS 
>OOB6 2 NBS 1 BINARY SIGNED ARG-PIC-ADDRESS 

DXCBL L. R. V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

READ ONLY BYTE SIZE = >019C 

READ/WRITE BYTE SIZE = >018E 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >032A 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 6 
PROGRAM USING COUNT 

DECODE 19 

Figure 8·1. Example of COBOL Routine Calling Assembler Subroutine (Sheet 4 of 4) 

8·8 2270521-9701 



Calling Subroutines 

SDSMAC L.R.V VY.DOD 
ACCESS NAMES TABLE 

HH:MM:SS FRIDAY, NOV 07, 1980. 

SOURCE ACCESS NAME= 
OBJECT ACCESS NAME= 
LISTING ACCESS NAME= 
ERROR ACCESS NAME= 
OPTIONS= 
MACRO LIBRARY PATHNAME= 

MANUAL.PG.SRC.FIG0802 
DUMY 
MANUAL.PG.LST.FIG0802 

DECODE SDSMAC L.R.V VY.DOD HH:MM:SS FRIDAY, NOV 07 1980. 

IDT 
* TITLE: 

'DECODE' 
DECODE 

PAGE 0001 

PAGE 0002 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 

* ABSTRACT: OBTAIN COBOL "USING" ARGUMENT 
RETURN INFO TO CALLER 

INFORMATION AND 

* 
* CALLING SEQUENCE: 
* <RO>::ADDRESS OF ARGUMENT LIST 

* 
* 
* 

WORD 0: LENGTH OF ARG LIST IN BYTES 
WORD 1-N: ARGUMENT ADDRESS 

<R1L::ADDRESS OF ARG DECODE ROUTINE 

* 
0011 DEF 

CALL TO 'DECODE' IS MADE VIA 'BLWP' INSTRUCTION 
DECODE 

0012 0000 0004' DECODE DATA WS,ARGOOO 
0002 0024' 

0013 0004 WS BSS 32 
0014 0024' ARGOOO EQU $ 
0015 0024 C09D MOV *R13,R2 
0016 0026 COF2 MOV *R2+,R3 
0017 0028 0913 SRL R3,1 
0018 002A 0206 LI R6,1 

002C 0001 
0019 002E C072 
0020 0030 0204 

0032 OOOA 
0021 0034 C16D 

0036 0002 

MOV 
LI 

MOV 

*R2+,R1 
R4,10 

2CR13),R5 

0022 0038' ARG010 EQU $ 
0023 0038 C006 
0024 003A 0415 
0025 003C 1605 
0026 003E 0693 
0027 0040 1203 
0028 0042 A044 
0029 0044 0586 
0030 0046 10F8 

MOV R6,RO 
BLWP *RS 
JNE ARG020 
DEC R3 
JLE ARG020 
A R4,R1 
INS R6 
JMP ARG010 

0031 0048 0380 ARG020 RTWP 
0032 

NO ERRORS, 
END 

NO WARNINGS 

GET ADDR ARG LIST 
GET NUMBER OF ARGUMENTS 
CONVERT TO WORDS 
INITIALIZE TO FIRST ARG 

GET ARG TABLE ADDRESS 
LENGTH OF DOPE ENTRY 

ARG DECODE ROUTINE 

SET ARG NUMBER 
MAKE CALL 
IF ERROR 
SET UP FOR NEXT ARG 
NO MORE ARG 
INCR BY ARG ENTRY LENGTH 
INCR ARG COUNT 

Figure 8·2. Example of Assembler Subroutine Called by COBOL 

2270521-9701 8·9 



Calling Subroutines 

Refer to Appendix D for details on the routine, C$CARG. This routine is supplied with the COBOL 
Subroutine Library Package, which returns descriptive information for any given argument. 

The COBOL calling module must provide the following 10-byte buffer. 

01 DAT A-BLOCK. 
02 DATA-CODE 
02 DATA-SCALE 
02 DAT A-LENGTH 
02 DATA-DIGIT-LENGTH 
02 DAT A-AD DR 
--026AT A-PIC-ADDR 

PIC99COMP. 
PIC99COMP. 
PIC S9(5) COMP-1. 
PIC S9(5) COMP-1. 
PIC S9(5) COMP-1. 
PIC S9(5) COMP-1. 

DATA-CODE is the section type containing the argument declaration. 

Bits 0-2 contain one of the following: 

Bits 

110 
100 
010 
001 

Description 

Overlay segment literal 
Literal 
Linkage 
File or working storage 

Bits 3-7 contain the format code, as shown in Table 8-2: 

8·10 

Bits 3-7 

oooox 
00010 
0010X 
01000 
0101X 
01100 
01101 
10000 
10010 
10011 
10100 
10110 
10111 
11010 
11011 
11000 
11100 
11101 
11110 
11111 

Table 8·2. Format Codes tor Calling Module 

Debug 
Type 

NSE 
FIG 
ABS 
ANSE 
ANS 
GRP 
GRP 
NSU 
NSS 
NLS 
NCU 
NCS 
NT 
NPS 
NL 
NX 
NUMERIC 
NMB 
NBS 
NMS 

Name Description 

Numeric String Edited (X = 1 if BLANK WHEN ZERO) 
Figurative Constant 
Alphabetic String (X = 1 if JUSTIFIED RIGHT) 
Alphanumeric String Edited 
Alphanumeric String (X = 1 if JUSTIFIED) 
Group (fixed size) 
Group (variable size) 
Numeric String Unsigned 
Numeric String Separate Trailing Signed Character 
Numeric String Separate Leading Signed Character 
Numeric Computational Unsigned 
Numeric Computational Separate Trailing Sign Character 
Numeric String Trailing Signed Character 
Numeric Packed Signed 
Numeric String Leading Signed Character 
Index Data Item 
Compiler Generated TEMP 
Multiword Binary (COMP-4) 
Numeric Binary Signed (COMP-1) 
Multiword Binary Signed (COMP-4) 

2270521-9701 



Calling Subroutines 

DATA-SCALE contains the data scaling factor needed to express the data item as an integer times 
a power of 1 O; to express 1.2340 as an integer requires a scale of - 3 (that is, 1234 x 10-3). 

DATA-LENGTH contains the actual data item storage size. COMP data length is the number of 
specified digits in the picture clause plus the sign, if present. For example, 

S9(3) COMP has a length of 4. 
9(2) COMP has a length of 2. 

COMP-1 data length is always 2. For example, 

S9(3) COM P-1 has a length of 2. 
9(5) COMP-1 has a length of 2. 

DISPLAY with SIGN LEADING or SIGN TRAILING or no "S" in the picture clause; data length is the 
number of specified digits in the picture clause. For example, 

S9(3) SIGN TRAILING has a length of 3. 
S9(3) SIGN LEADING has a length of 3. 

9(3) has a length of 3. 

DISPLAY with SIGN SEPARATE clause or with no SIGN clause; data length is the number of speci
fied digits in the picture clause plus the sign. For example, 

S9(3) SIGN SEPARATE has a length of 4. 
S9(5) SIGN TRAILING SEPARATE has a length of 6. 
S9(3) has a length of 4. 

COMP-3 data length is the number of specified digits in the picture clause, forced upward to be 
odd, plus 1, divided by 2. For example, 

S9(3) COMP-3 has a length of 2. 
S9(4) COMP-3 has a length of 3. 

COMP-4 data length is the number of specified digits in the picture clause, as follows: 

1-2 digits yield data length of 1 byte. 
3-4 digits yield data length of 2 bytes. 
5-9 digits yield data length of 4 bytes. 

10-18 digits yield data length of 8 bytes. 

For example, 

S9(2) COM P-4 has a length of 1. 
S9(4) COMP-4 has a length of 2. 
S9(5) COM P-4 has a length of 4. 
S9(15) COMP-4 has a length of 8. 

2270521-9701 8-11 



Calling Subroutines 

DATA-DIGIT-LENGTH contains the number of digit positions specified in the picture clause. 
COMP-3 is forced odd. For example, 

S9(3) COMP has a value of 3. 
9(3) COMP has a value of 3. 

S9(3) COMP-1 has a value of 3. 
9(5) COMP-1 has a value of 5. 

S9(3) has a value of 3. 
S9(3) SIGN LEADING has a value of 3. 

9(3) has a value of 3. 
S9(3) SIGN SEPARATE has a value of 3. 
S9(5) SIGN TRAILING SEPARATE has a value of 5. 
S9(3) COMP-3 has a value of 3. 
S9(4) COMP-3 has a value of 5. 

DATA-ADDA contains the address of the data item. DATA-PIC-ADDR contains the address of the 
data picture for the editing data types NSE and ANSE. 

8·12 2270521-9701 



9 

Interfacing to Productivity Tools 

9.1 GENERAL 

The following productivity tools can interface with COBOL modules: 

• TIFORM 

• Sort/Merge 

• Database Management System (DBMS) 

• Query 

• Communications 

9.2 TIFORM 

TIFORM is a software utility package for controlling the interactive interface to an application. 
Tl FORM provides convenient control of complex screen formats for COBOL applications. Tl FORM 
includes an interactive screen drawing capability and a screen description language compiler. 
Through the use of these tools, TIFORM isolates the description of the screen format from the 
procedural code of the application. This allows applications to become independent of the ter
minal. Tl FORM also includes: 

• All available VDT features (blink, dim, high-intensity, no display) 

• Character and field level editing 

• Significant improvement in the time required to develop interactive applications 

The entry points provided for COBOL access to the TIFORM applications interface routines 
(Table 9-1) are all of the form CF$xxx or CX$xxx, where xxx denotes a unique TIFORM function. 
Refer to the Tl FORM Reference Manual for a detailed explanation of these calls. 

2270521-9701 9-1 



Interfacing to Productivity Tools 

Table 9·1. COBOL Entry Points to the Applications Interface Routines 

Calls 

CX$AEK 
CX$CF 
CX$CN 
CX$DAK 
CX$0F 
CX$PS 
CX$REA 
CX$REX 
CX$RF 
CX$RFX 
CX$RXC 
CX$STS 
CX$WM 
CX$WRC 
CX$WRI 
CX$WWR 
CX$WX 
CX$WXR 

Arm Event Keys 
Close Form 
Control Functions 
Disarm Event Keys 
Open Form 
Prepare Segment 
Read a Group 
Read, Indexed 
Reset Form 

Meaning 

Reset Form Indexed 
Read, Indexed, with Cursor Return 
Declare Status Block 
Write Message 
Write, Indexed, with Reply, and Cursor Return 
Write a Group 
Write with Reply 
Write, Indexed 
Write, Indexed, with Reply 

Figure 9-1 illustrates how a COBOL module interfaces with TIFORM. Figure 9-2 illustrates the 
TIFORM screen description. The following serves as the link control file for linking the COBOL 
module with the Tl FORM module. 

9·2 

FORMAT IMAGE,REPLACE 
LIBRARY .S$TIFORM.O 
PROC RCOBOL 
DUMMY 
INCLUDE .S$SYSLIB.RCBPRC 
TASK TIFRMTSK 
INCLUDE .S$SYSLIB.RCBTSK 
INCLUDE .S$SYSLIB.RCBMPD 
INCLUDE EX.TIFORM 
INCLUDE (CX$MTASK) 
END 

TIFORM INTERFACE MODULES 

COBOL MODULE 

Figure 9·1. COBOL Module Interfacing WithTIFORM (Sheet 1of4) 

2270521-9701 



Interfacing to Productivity Tools 

DXCBL L.R.V VY.ODD COMPILED:MM/00/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.PG.SRC.FIG0901 
MANUAL.PG.OBJ.FIG0901 
MANUAL.PG.LST.FIG0901 
M 
80 
55 
1000 

PAGE 1 

DXCBL L.R.V VY.DOD COMPILED:MM/00/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

2270521-9701 

PG/LN A ... B ...................................................... . 
IDENTIFICATION DIVISION. 
PROGRAM-ID. TIFORM. 

* THIS PROGRAM DEMONSTRATES CALLING TECHNIQUE FOR 
* INTERFACING TIFORM WITH COBOL. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

01 INPUT-DATA. 
03 EMPLOYEE-NO 
03 CLEAR-NAME 

01 READ-WRITE-DATA. 

PICX(6). 
PIC XC30) VALUE LOW-VALUES. 

03 EMPLOYEE-NAME PIC XC30). 
03 DONE PIC X VALUE "'N". 

01 NUMBER-DATA PIC XC30) VALUE 
"000000111111222222333333444444". 

01 NUMBER-TABLE REDEFINES NUMBER-DATA. 
03 NUMBER-ENT PIC XC6) OCCURS 5. 

01 NAMES-DATA PIC XC50) VALUE 
"A. ANTOIN B. BARTOK C. CARTER D. DARWIN E. ERDLE". 

01 NAMES-TABLE REDEFINES NAMES-DATA. 
03 NAME-ENT PIC XC10) OCCURS 5. 

01 TIFORM-STATUS-BLOCK. 
03 FORM-STATUS PIC 99. 
03 OPSYS-STATUS PIC XX. 
03 FILLER PIC XC36). 

01 FORM-NAME PIC XC6) VALUE "DEMOFM 11 • 

*SYNONYM 'DIRECTRY' IS IMPLIED BY BLANKS. 
01 DIRECTORY PIC xx VALUE II II 

*SYNONYM 'ME' IS IMPLIED BY BLANKS. 
01 TUBE PIC xx VALUE II II 

01 SEG-NAME PIC XC6) VALUE 11 SEG1 11 

01 GRP1 Pl C X (6) VALUE 11 GROUP1 11 • 

01 GRP PIC XC6) VALUE 11 GROUPA 11 • 

Figure 9·1. COBOL Module Interfacing With TIFORM (Sheet 2 of 4) 

9.3 



Interfacing to Productivity Tools 

38 
39 
40 >0000 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

DXCBL 

>0000 

>0002 

>0004 
>0008 
>0008 

>OOOC 
>OOOE 
>0012 

>0026 

LINE DEBUG 
57 
58 >0028 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

DXCBL 

>0030 
>0034 
>0034 
>0036 
>0036 

01 x PIC 9. 
PROCEDURE DIVISION. 
MAIN-PROGRAM. 

***** DECLARE STATUS BLOCK ***** 
CALL "CX$STS" USING TIFORM-STATUS-BLOCK. 

***** OPEN FORM ***** 
CALL "CX$0F" USING FORM-NAME, 

DIRECTORY I TUBE. 
***** PREPARE SEGMENT ***** 

CALL "CX$PS" USING SEG-NAME. 
READ NO. 

MOVE LOW-VALUES TO EMPLOYEE-NO. 
***** WRITE WITH REPLY ***** 

CALL "CX$WWR" USING GRP1, INPUT-DATA, INPUT-DATA. 
MOVE SPACES TO EMPLOYEE-NAME. 
PERFORM FIND-NO VARYING X FROM 1 BY 1 

UNTIL X > 5. 
***** WRITE WITH REPLY ***** 

CALL "CX$WWR" USING GRP, READ-WRITE-DATA, 

~.R.V VY.DD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ...................................................... . 

READ-WRITE-DATA. 
IF DONE = "N" GO READ-NO. 

***** CLOSE FORM ***** 
CALL "CX$CF". 

THATS-ALL. 
STOP RUN. 

FIND-NO. 
IF EMPLOYEE-NO = NUMBER-ENT(X) 

MOVE NAME-ENT(X) TO EMPLOYEE-NAME, 
MOVE 6 TO X; 

ELSE IF X = 5 MOVE "INVALID NUMBER" TO 
EMPLOYEE-NAME. 

ZZZZZZ END PROGRAM. 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

*** END OF FILE 

PAGE 4 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 36 GRP 0 GROUP INPUT-DATA 
>002A 6 ANS 0 ALPHANUMERIC EMPLOYEE-NO 
>0030 30 ANS 0 ALPHANUMERIC CLEAR-NAME 

>004E 31 GRP 0 GROUP READ-WRITE-DATA 
>004E 30 ANS 0 ALPHANUMERIC EMPLOYEE-NAME 
>006C 1 ANS 0 ALPHANUMERIC DONE 

Figure 9-1. COBOL Module Interfacing With Tl FORM (Sheet 3 of 4) 

9.4 2270521-9701 



Interfacing to Productivity Tools 

>006E 30 ANS 0 ALPHANUMERIC NUMBER-DATA 

>006E 30 GRP 0 GROUP NUMBER-TABLE 
>006E 6 ANS 1 ALPHANUMERIC NUMBER-ENT 

>008C 50 ANS 0 ALPHANUMERIC NAMES-DATA 

>008C 50 GRP 0 GROUP NAMES-TABLE 
>008C 10 ANS 1 ALPHANUMERIC NAME-ENT 

>OOBE 40 GRP 0 GROUP TI FORM-STATUS-BLOCK 
>OOBE 2 NSU 0 NUMERIC UNSIGNED FORM-STATUS 
>OOCO 2 ANS 0 ALPHANUMERIC OPSYS-STATUS 

>OOE6 6 ANS 0 ALPHANUMERIC FORM-NAME 

>OOEC 2 ANS 0 ALPHANUMERIC DIRECTORY 

>OOEE 2 ANS 0 ALPHANUMERIC TUBE 

>OOFO 6 ANS 0 ALPHANUMERIC SEG-NAME 

>OOF6 6 ANS 0 ALPHANUMERIC GRP1 

>OOFC 6 ANS 0 ALPHANUMERIC GRP 

>0102 NSU 0 NUMERIC UNSIGNED x 

READ ONLY BYTE SIZE = >0154 

READ/WRITE BYTE SIZE = >0112 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0266 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5 
PROGRAM USING COUNT 

CX$CF 0 
CX$0F 3 
CS$PS 1 
CX$STS 1 
CX$WWR 3 

Figure 9·1. COBOL Module Interfacing With TIFORM (Sheet 4 of 4) 

2270521-9701 9.5 



Interfacing to Productivity Tools 

SEGMENT MASK MSK1,CLEAR=Y. 

DISPLAY GR=Y. 
MC01 ,01) 

'BLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 

M (01, 73) I LLLLLLLC I. 
MC02,01) 'I'. 
DISPLAY GR=N. 
M (02 I 23) ID E M 0 N s T R A T I 0 NI . 
M(02,52) 'F 0 RM'. 
DISPLAY GR=Y. 
MC02,80) 'I'. 
M(03,01) 'I'. 
MC03,80) I I I. 
MC04,01) 'I'. 
MC04,80) 'I'. 
DISPLAY GR=N. 
MC04,03) 'Employee No.:'. 
MC04,25) 'Employee Name:'. 
MC04, 72) 'Done?'' 
DISPLAY GR=Y 
MCOS,01) 

'DLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 

M (05, 73) I LLLLLLLE I. 

END SEGMENT MASK MSK1. 

SEGMENT SEG1,(DEMOFM),MSK1. 

FIELD NUMBER. 

9·6 

POSITION C4,17)L6. 
MIN LEN=6. 
CHAR LIST=DIGITS. 

Figure 9·2. Tl FORM VDT Screen Description (Sheet 1of2) 

2270521-9701 



END FIELD NUMBER. 

FIELD NAME. 
POSITION (4,40)L30. 
OUTPUT. 

END FIELD NAME. 

FIELD YESNOF. 
POSITION (4,78)L1. 
REQ. 
CHAR LI ST=YESNO. 

END FIELD YESNOF. 

LIST CHAR DIGITS=0 .. 9. 

LIST CHAR YESNO='Y','N'. 

GROUP GROUPA=NAME,YESNOF. 

GROUP GROUP1=NUMBER,NAME. 

END SEGMENT SEG1. 

Interfacing to Productivity Tools 

Figure 9·2. Tl FORM VDT Screen Description (Sheet 2 of 2) 

9.3 SORT/MERGE 

A comprehensive Sort/Merge package is supported. SCI commands provide access to the 
Sort/Merge package in batch or interactive mode. Both Sort and Merge support the following 
features: 

• Record selection 

• Reformatting on input 

• Summarizing on output 

Ascending key order, descending key order, or an alternate collating sequence may be specified. 
Any number of keys can be specified as long as .the total is less than 256 characters. The merge 
process supports up to five input files. The sort process allows the following: 

• Key sort (tag-along) 

• Summary sort (summary tag-along) 

• Address only sort 

Figure 9-3 is a COBOL routine that calls Sort/Merge and passes records read by COBOL to Sort/ 
Merge. The sorted records are output to a disk file. 

2270521-9701 9.7 



Interfacing to Productivity Tools 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.PG.SRC.FIG0903 
DUMY 
MANUAL.PG.LST.FIG0903 
M 
80 
55 
1000 

PAGE 1 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

9·8 

PG/LN A ... B .•.•.•.......•..........•..•.•....•.•.•..•...•...•...•. 
IDENTIFICATION DIVISION. 
PROGRAM-ID. CPNP. 

*THIS IS A SORT/MERGE INFORMATION QUEUE TEST. IT 
*TESTS THE CASE WHERE INPUT IS DIRECTED BY THE 
*COBOL PROGRAM C@PROC@) AND OUTPUT IS DIRECTLY 
*FROM THE SORT/MERGE TO A FILE CNO @PROC@). 

AUTHOR. TEXAS INSTRUMENTS FDT. 
DATE-WRITTEN. 11-6-76. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INFILNAME ASSIGN TO INPUT "INFILE"; 
ACCESS MODE IS SEQUENTIAL. 

DATA DIVISION. 
FILE SECTION. 
FD INFILNAME 

DATA RECORD IS INFILRCRD 
LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 10 RECORDS. 

01 INFILRCRD PIC XC80). 
WORKING-STORAGE SECTION. 
77 MAX-NO-RECS PIC 9(5) 

77 STATIS PIC 9(5) 
9(5). 
9(5) 

VALUE IS 10 
USAGE IS COMP-1. 
USAGE IS COMP-1. 

77 OUTSTAT 
77 RECORD-LENGTH 

77 RECORD-AREA-LENGTH 
77 RETES-RECEIVED 
77 OFILRCRD 

PIC 
PIC 

PIC 
PIC 
PIC 

VALUE 
USAGE 

9(5) USAGE 
9(5) USAGE 
XC80). 

IS 80 
IS COMP-1. 
IS COMP-1. 
IS COMP-1. 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 1 of 7) 

2270521-9701 



35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

DXCBL 
LINE 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

DEBUG 

2270521-9701 

Interfacing to Productivity Tools 

77 ALLDONE PIC 9(5) VALUE IS ZERO 
USAGE IS COMP-1. 

•SORT-CONTROL-BLOCK CONTAINS THE SORT/MERGE 
*CONTROL SPECIFICATIONS. 

01 SORT-CONTROL-BLOCK. 
03 HEADER. 

05 SEQ PIC X(5) VALUE IS 11 00000 11 • 

05 FILLER PIC A VALUE IS "H". 
05 SORT-TYPE PIC A(6) VALUE IS "SORTR". 
05 MAX-TOT-CONTL-LEN PIC 9(5) VALUE IS 6. 
05 ASCND-DSCND PIC A VALUE IS "A". 
05 FILLER PIC X(7) VALUE IS SPACES. 
05 COLLATNG-SEQ PIC X VALUE IS SPACE. 
05 PRINT-OPTION PIC X VALUE IS "4". 
05 OUTPUT-OPTION PIC X VALUE IS SPACE. 
05 OUTPUT-REC-LEN PIC X(4) VALUE IS 110080 11 • 

05 VERIFY-OPTN PIC XX VALUE IS SPACE. 
05 WRK-SPACE PIC X(5) VALUE IS 11 08000 11 • 

05 FILLER PIC X(5) VALUE IS SPACES. 
•OUTPUT IS DIRECTLY FROM THE SORT TO A FILE. 

03 OUT-FILE-SPEC. 
05 SEQ PIC X(5) VALUE IS "00001". 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ..................................•..................•. 

05 FILLER PIC A VALUE IS "D". 
05 FILE-USE PIC A VALUE IS "0". 
05 FILE-TYPE PIC A VALUE IS "S". 

05 PATHNAME PIC x (36) VALUE IS 11 .0CPNP". 
03 CNT-OUT-FILE-SPEC. 

05 SEQ PIC X(5) VALUE IS "00002". 
05 FILLER PIC A VALUE IS II D". 
05 FILE-USE PIC A VALUE IS "A". 
05 LOG-REC-SIZ PIC 9(4) VALUE IS 80. 
05 PHY-REC-SIZ PIC 9(4) VALUE IS 800. 
05 NUM-PHY-REC PIC X<8> VALUE IS SPACES. 
05 FILLER PIC x (21) VALUE IS SPACES. 

03 WRK-FILE-SPEC. 
05 SEQ PIC X(5) VALUE IS 11 00003 11 • 

05 FILLER PIC A VALUE IS "D". 
05 FILE-USE PIC A VALUE "W". 
05 EXPAND-ALLOC-FLG PIC X VALUE IS "E". 
05 VOLUME PIC X(8) VALUE IS "DS01 ". 
05 FILLER PIC X(28) VALUE IS SPACES. 

*INPUT IS DIRECTED BY THE COBOL PROGRAM. 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 2 of 7) 

9.9 



Interfacing to Productivity Tools 

77 
78 
79 
80 
81 
82 
83 
84 
8S 
86 
87 
88 
89 
90 
91 
92 
93 
94 
9S 
96 
97 
98 
99 

100 
101 
102 
103 
104 
10S 
106 
107 
108 
109 
110 
111 
112 

DXCBL 
LINE DEBUG 
113 
114 
11S 
116 
117 
118 
119 
120 
121 
122 

9·10 

03 INPT-FILE-DESCRPT. 
OS SEQ PIC XCS) VALUE IS "00004". 
OS FILLER PIC A VALUE IS "D". 
OS FILE-USE PIC A VALUE IS "I". 
OS FILE-TYPE PIC A VALUE IS "S". 
OS PATHNAME PIC x (36) VALUE IS "@PROC@". 

03 INPT-FILE-CONTIN, 
OS SEQ PIC X(S) VALUE IS "00008". 
OS FILLER PIC A VALUE IS "D". 
OS FILE-USE PIC A VALUE IS "A". 
OS LOG-SIZE PIC X(4) VALUE IS "0080". 
OS FILLER PIC X(4) VALUE IS SPACES. 
OS NUM-SRT-RECS PIC X(8) VALUE IS "00000401". 
OS FILLER PIC X(21) VALUE IS SPACES. 

03 REFORMAT-DESCRIPTION-0. 
OS SEQ PIC X(S) VALUE IS "00010". 
OS FILLER PIC A VALUE IS "F". 
OS FIELD-TYPE-CMMT PIC x VALUE IS "N". 
OS CHARACTR-USE PIC A VALUE IS "C". 
OS FIELD-LOC. 

07 BEG-RECRD-POS PIC X(4) VALUE IS "0032". 
07 END-RECRD-POS PIC X(4) VALUE IS "0037". 

OS CONDTN-FORCD-CHAR PIC x VALUE IS SPACE. 
OS FORCD-CHAR PIC X VALUE IS SPACE. 
OS CONT IN-LIN PIC X VALUE IS SPACE. 
OS OUFLW-FLD-LEN PIC X(3) VALUE IS SPACES. 
OS FILLER PIC XC22) VALUE IS SPACES. 

03 REFORMAT-DESCRIPTION. 
OS SEQ PIC XCS) VALUE IS "00014". 
OS FILLER PIC A VALUE IS "F". 
OS FIELD-TYPE-CMMT PIC x VALUE IS "D". 
OS CHARACTR-USE PIC A VALUE IS "C". 
OS FIELD-LOC. 

07 BEG-RECRD-POS PIC XC4) VALUE IS 11 0001 11 • 

07 END-RECRD-POS PIC X(4) VALUE IS 11 0031 11 • 

OS CONDTN-FORCD-CHAR PIC X VALUE IS "C". 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PG/LN A ... B ...................................................... . 

OS FORCD-CHAR PIC X VALUE IS SPACE. 
OS CONTIN-LIN PIC X VALUE IS SPACE. 
OS OUFLW-FLD-LEN PIC X(3) VALUE IS SPACES. 
OS FILLER PIC XC22) VALUE IS SPACES. 

03 REFORMAT-DESCRIPTION-3. 
OS SEQ PIC X(S) 
OS FILLER PIC A 
OS FIELD-TYPE-CMMT PIC X 
OS CHARACTR-USE PIC A 
OS FIELD-LOC. 

VALUE IS 11 0001611 • 

VALUE IS "F". 
VALUE IS "D". 
VALUE IS "C". 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 3 of 7) 

2270521-9701 



/ 

( 

123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 >0000 
134 
135 >0000 
136 
137 >0002 
138 
139 
140 >OOOA 
141 >0012 
142 >0012 
143 >001A 
144 
145 >001C 
146 >0024 
147 
148 
149 >0026 
150 
151 
152 
153 >0026 
154 >0028 
155 
156 >0030 
157 >0038 
158 >0038 
159 >003A 
160 
161 >0042 
162 
163 >0044 
164 >0044 
165 >0048 
166 >004C 
167 >0050 
168 >0052 

2270521-9701 

Interfacing to Productivity Tools 

07 BEG-RECRD-POS PIC XC4) VALUE IS 11 003811 • 

07 END-RECRD-POS PIC XC4) VALUE IS 11 0080 11 • 

05 CONDTN-FORCD-CHAR PIC X VALUE IS SPACE. 
05 FORCD-CHAR PIC X VALUE IS SPACE. 
05 CONT IN-LIN PIC X VALUE IS SPACE. 
05 OUFLW-FLD-LEN PIC X(3) VALUE IS SPACES. 
05 FILLER PIC XC22) VALUE IS SPACES. 

03 ENDKRD PIC XC44) VALUE IS "/*"· 
PROCEDURE DIVISION. 

*-------------------------------------------COBOL EXAMPLE 3 
MAIN-PROGRAM. 

*INITIALIZE SORT/MERGE. 
CALL "SRTINT" USING SORT-CONTROL-BLOCK, 

MAX-NO-RECS, STATIS. 
IF STATIS NOT EQUAL ZERO GO TO ERRSTRT. 

*-------------------------------------------COBOL EXAMPLE 3 
* START THE INPUT SECTION. 

OPEN INPUT INFILNAME. 
NEXREC. 

READ INFILNAME AT END GO TO BEGWRT. 
CALL "SENREC" USING INFILRCRD, 

RECORD-LENGTH, STATIS. 
IF STATIS NOT EQUAL ZERO GO TO ERRSEN. 
GO TO NEXREC. 

*-------------------------------------------COBOL EXAMPLE 3 
* START THE OUTPUT SECTION. 

BEGWRT. 
*-------------------------------------------COBOL EXAMPLE 3 
* BEGIN SORT PHASE. SENDING A RECORD LENGTH OF 0 CALLDONE) 
* INDICATES THAT THE LAST RECORD HAS BEEN SENT. 

CALL "SENREC" USING INFILRCRD, ALLDONE, STATIS. 
IF STATIS NOT EQUAL ZERO GO TO ERRSEN. 

*-------------------------------------------COBOL EXAMPLE 3 
CLOSE INFILNAME. 

CHKSORT. 
CALL "SMSTAT" USING STATIS. 
IF STATIS NOT EQUAL ZERO GO TO ERRWRT. 

* SORT IS DONE. 
GO TO END-IT. 

*-------------------------------------------COBOL EXAMPLE 3 
ERRSTRT. 

DISPLAY " ERROR IN STRINT CALL.". 
MOVE STATIS TO OUTSTAT. 
DISPLAY OUTSTAT. 
GO TO END-IT. 

ERRSEN. 

Figure 9·3. COBOL Routine Calling Sort/Merge {Sheet 4 of 7) 

9·11 



Interfacing to Productivity Tools 

DXCBL 
LINE DEBUG 
169 >0052 
170 >0056 
171 >005A 
172 >005E 
173 >0060 
174 >0060 
175 >0064 
176 >0068 
177 
178 >006E 
179 >006E 
180 

DXCBL 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5 
PG/LN A ... B ....•.....•.•....•..•..........•...•......•............ 

DISPLAY " ERROR IN SENREC CALL.". 
MOVE STATIS TO OUTSTAT. 
DISPLAY OUTSTAT. 
GO TO END-IT. 

ERRWRT. 
DISPLAY" ERROR IN SMSTAT.". 
MOVE STATIS TO OUTSTAT. 
DISPLAY OUTSTAT. 

*-------------------------------------------COBOL EXAMPLE 3 
END-IT. 

STOP RUN. 
ZZZZZZ END PROGRAM. *** END OF FILE 

L. R. V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 6 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

800 FILE INFILNAME 
>0026 80 ANS 0 ALPHANUMERIC INFILRCRD 

>007A 2 NBS 0 BINARY SIGNED MAX-NO-RECS 

>007C 2 NBS 0 BINARY SIGNED STAT IS 

>007E 5 NSU 0 NUMERIC UNSIGNED OUTS TAT 

>0084 2 NBS 0 BINARY SIGNED RECORD-LENGTH 

>0086 2 NBS 0 BINARY SIGNED RECORD-AREA-LENGTH 

>0088 2 NBS 0 BINARY SIGNED RETES-RECEIVED 

>008A 80 ANS 0 A LPHANUME.R IC OFILRCRD 

>OODA 2 NBS 0 BINARY SIGNED ALLDONE 

>OODC 440 GRP 0 GROUP SORT-CONTROL-BLOCK 
>OODC 44 GRP 0 GROUP HEADER 
>OODC 5 ANS 0 ALPHANUMERIC SEQ 
>OOE2 6 ABS 0 ALPHABETIC SORT-TYPE 
>OOE8 5 NSU 0 NUMERIC UNSIGNED MAX-TOT-CONTL-LEN 
>OOED 1 ABS 0 ALPHABETIC ASCND-DSCND 
>OOF5 1 ANS 0 ALPHANUMERIC COLLATNG-SEQ 
>OOF6 1 ANS 0 ALPHANUMERIC PRINT-OPTION 
>OOF7 1 ANS 0 ALPHANUMERIC OUTPUT-OPTION 
>OOF8 4 ANS 0 ALPHANUMERIC OUTPUT-REC-LEN 
>OOFC 2 ANS 0 ALPHANUMERIC VERIFY-OPTN 
>OOFE 5 ANS 0 ALPHANUMERIC WRK-SPACE 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 5 of 7) 

9·12 2270521-9701 



Interfacing to Productivity Tools 

>0108 44 GRP 0 GROUP OUT-FILE-SPEC 
>0108 5 ANS 0 ALPHANUMERIC SEQ 
>010E 1 ABS 0 ALPHABETIC FILE-USE 
>010F 1 ABS 0 ALPHABETIC FILE-TYPE 
>0110 36 ANS 0 ALPHANUMERIC PATHNAME 
>0134 44 GRP 0 GROUP CNT-OUT-FILE-SPEC 
>0134 5 ANS 0 ALPHANUMERIC SEQ 
>013A 1 ABS 0 ALPHABETIC FILE-USE 
>013B 4 NSU 0 NUMERIC UNSIGNED LOG-REC-SIZ 
>013F 4 NSU 0 NUMERIC UNSIGNED PHY-REC-SIZ 
>0143 8 ANS 0 ALPHANUMERIC NUM-PHY-REC 
>0160 44 GRP 0 GROUP WRK-FILE-SPEC 
>0160 5 ANS 0 ALPHANUMERIC SEQ 
>0166 1 ABS 0 ALPHABET! C FILE-USE 
>0167 1 ANS 0 ALPHANUMERIC EXPAND-ALLOC-FLG 
>0168 8 ANS 0 ALPHANUMERIC VOLUME 
>018C 44 GRP 0 GROUP INPT-FILE-CONTIN 
>018C 5 ANS 0 ALPHANUMERIC SEQ 
>0192 1 ABS 0 ALPHABET! C FILE-USE 
>0193 1 ABS 0 ALPHABETIC FILE-TYPE 
>0194 36 ANS 0 ALPHANUMERIC PATHNAME 
>01B8 44 GRP 0 GROUP INPT-FILE-CONTIN 
>01B8 5 ANS 0 ALPHANUMERIC SEQ 
>01BE 1 ABS 0 ALPHABETIC FILE-USE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 7 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>01BF 4 ANS 0 ALPHANUMERIC LOG-SIZE 
>01C7 8 ANS 0 ALPHANUMERIC NUM-SRT-RECS 
>01E4 44 GRP 0 GROUP REFORMAT-DESCRIPTION-0 
>01E4 5 ANS 0 ALPHANUMERIC SEQ 
>01EA 1 ANS 0 ALPHANUMERIC FIELD-TYPE-CMMT 
>01EB 1 ABS 0 ALPHABETIC CHARACTR-USE 
>01EC 8 GRP 0 GROUP FIELD-LOC 
>01EC 4 ANS 0 ALPHANUMERIC BEG-RECRD-POS 
>01FO 4 ANS 0 ALPHANUMERIC END-RECRD-POS 
>01F4 1 ANS 0 ALPHANUMERIC CONDTN-FORCD-CHAR 
>01F5 1 ANS 0 ALPHANUMERIC FORCD-CHAR 
>01F6 1 ANS 0 ALPHANUMERIC CONT IN-LIN 
>01F7 3 ANS 0 ALPHANUMERIC OUFLW-FLD-LEN 
>0210 44 GRP 0 GROUP REFORMAT-DESCRIPTION 
>0210 5 ANS 0 ALPHANUMERIC SEQ 
>0216 1 ANS 0 ALPHANUMERIC FIELD-TYPE-CMMT 
>0217 1 ABS 0 ALPHABETIC CHARACTR-USE 
>0218 8 GRP 0 GROUP FIELD-LOC 
>0218 4 ANS 0 ALPHANUMERIC BEG-RECRD-POS 
>021C 4 ANS 0 ALPHANUMERIC END-RECRD-POS 
>0220 1 ANS 0 ALPHANUMERIC CONDTN-FORCD-CHAR 
>0221 1 ANS 0 ALPHANUMERIC FORCD-CHAR 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 6 of 7) 

2270521-9701 9·13 



Interfacing to Productivity Tools 

>0222 1 ANS 0 ALPHANUMERIC CONT IN-LIN 
>0223 3 ANS 0 ALPHANUMERIC OUFLW-FLD-LEN 
>023C 44 GRP 0 GROUP REFORMAT-DESCRIPTION-3 
>023C 5 ANS 0 ALPHANUMERIC SEQ 
>0242 1 ANS 0 ALPHANUMERIC FIELD-TYPE-CMMT 
>0243 1 ABS 0 ALPHABETIC CHARACTR-USE 
>0244 8 GRP 0 GROUP FIELD-LDC 
>0244 4 ANS 0 ALPHANUMERIC BEG-RECRD-POS 
>0248 4 ANS 0 ALPHANUMERIC END-RECRD-POS 
>024C 1 ANS 0 ALPHANUMERIC CONDTN-FORCD-CHAR 
>0240 1 ANS 0 ALPHANUMERIC FOR CD-CHAR 
>024E 1 ANS 0 ALPHANUMERIC CONTIN-LIN 
>024F 3 ANS 0 ALPHANUMERIC OUFLW-FLD-LEN 
>0268 44 ANS 0 ALPHANUMERIC ENDKRD 

READ ONLY BYTE SIZE = >015A 

READ/WRITE BYTE SIZE = >02EE 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0048 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 
PROGRAM USING COUNT 

SENREC 
SM STAT 
SRTINT 

9·14 

3 
1 
3 

Figure 9·3. COBOL Routine Calling Sort/Merge (Sheet 7 of 7) 

8 

2270521-9701 



Interfacing to Productivity Tools 

The library S$SMRG.SMLIB contains the required Sort/Merge interface modules. The modules and 
their functions are as follows: 

Module 

SRTINT 

SEN REC 

RCVREC 

Function 

Performs the initialization of Sort/Merge before records can be 
sent to or received from the Sort/Merge module 

Transmits records from calling module to Sort/Merge 

Transmits records from Sort/Merge to calling module 

SMSTAT Suspends calling tasks until Sort/Merge completes writing records to 
output file 

COB INT Contains other modules called by one of the above 

IPCBUF Contains buffer for IPC communication 

Refer to the DX Sort/Merge User's Guide for a detailed description of these functions, their CALL 
statement syntax, and conditions under which each is required. The following link control file 
shows how to link the COBOL module shown in Figure 9-3. 

FORMAT IMAGE,REPLACE 
PROC RCOBOL 
DUMMY 
INCLUDE .S$$SYSLIB.RCBPRC 
TASK CPNP 
INCLUDE .S$$SYSLIB.RCBTSK 
INCLUDE .S$$SYSLIB.RCBMPD 
INCLUDE EX.CPNP 
INCLUDE .S$$SMRG.SMLIB.SRTINT 
INCLUDE .S$$SMRG.SMLIB.SENREC 
INCLUDE .S$$SMRG.SMLIB.SMSTAT 
INCLUDE .S$$SMRG.SMLIB.COBINT 
INCLUDE .S$$SMRG.SMLIB.IPCBUF 
END 

9.4 DATABASE MANAGEMENT SYSTEM 

The Database Management System (DBMS-990) is designed for minicomputer database applica
tions. DBMS-990 handles data access in a logical format similar to physical documents and 
records in daily business transactions. DBMS-990 allows the user to define and access a central
ized, integrated data base without the physical data access requirements imposed by conven
tional file management software. Considerations such as access method, record size, blocking, 
and relative field positions are resolved when the database is initially defined. Thus the user can 
concentrate fully on the logical data structure needed for interface. 

2270521-9701 9-15 



Interfacing to Productivity Tools 

9.4.1 DBMS-990 Features 
Because the data definitions are independent from the application software, the data base can be 
changed without affecting existing programs. DBMS-990 also provides a single, centralized copy 
of the data to be used for all application subsystems. (Conventional file management results in 
fragmented and/or multiple copies of data, one for each application.) A centralized copy results in 
more efficient data storage on disk, uniform processing of data requests, and simplified data base 
maintenance. DBMS-990 optionally includes logging and access control. 

Security is an optional feature of DBMS-990. Its purpose is to eliminate unauthorized use of the 
data base. Password security is provided to control file access. Access authorization is provided 
to define the type of access allowed to the data elements of a file for a particular password and/or 
user. Each file that requires a password also requires access authorization. For detailed infor
mation about DBMS-990, refer to the DX10 Data Base Management System Programmer's Guide. 

9.4.2 DBMS-990 User Interface 
The primary user interface to DBMS-990 consists of the data manipulation language (DML) and the 
data definition language (DDL). DML provides a means to manipulate data base information by 
supporting the reading and/or writing of the information. DBMS-990 data can be accessed by 
embedding the appropriate DML syntax in a COBOL application program module. (Refer to Figure 
9-4). The application program module is used to construct a call to DBMS-990 that specifies the 
function to be performed on the data. The Data Base Manager processes the request and returns 
the results to the COBOL module. DDL allows the user to describe the DBMS-990 data base and 
the associated data elements. The definition source for the DDL logical data base is compiled by 
the DDL compiler; the output is stored on disk with the associated data. (Refer to Figure 9-5). 

9.4.3 Linking DBMS-990 and COBOL Modules 
The library S$DBMS contains the required DBMS-990 interface modules. The following link control 
file may be used to link the COBOL module: 

FORMAT IMAGE,REPLACE 
PROC RCOBOL 
DUMMY 
INCLUDE .S$$SYLIB.RCBPRC 
TASK GENEO 
INCLUDE .S$$SYSLIB.RCBTSK 
INCLUDE .S$$SYSLIB.RCBMPD 
INCLUDE EX.GENEO 
INCLUDE S$$DBMS.SNDMSG 
INCLUDE S$$DBMS.COBINT 
END 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.PG.SRC.FIG0904 
DUMY 
MANUAL.PG.LST.FIG0904 
M 
80 
55 
1000 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 1 of 14) 

9-16 

PAGE 1 

2270521 ·9701 



Interfacing to Productivity Tools 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG PG/LN A ... B ....................................................... 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. GENEALOGY. 
3 * THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL 
4 * DEMONSTRATION TEST FOR TESTING THE DATA BASE 
5 * MANAGEMENT SYSTEM. 
6 ENVIRONMENT DIVISION. 
7 CONFIGURATION SECTION. 
8 SOURCE-COMPUTER. TI-990. 
9 OBJECT-COMPUTER. TI-990. 

10 DATA DIVISION. 
11 WORKING-STORAGE SECTION. 
12 01 ERR-FLG PIC 99 VALUE 0. 
13 88 ERR VALUES 1 THRU 99. 
14 88 NO-ERR VALUE 0. 
15 01 PERSONS PIC X. 
16 88 PERSON VALUE "Y". 
17 88 NO-PERSON VALUE "N". 
18 01 SPOUSES PIC X. 
19 88 SPOUSE VALUE "Y". 
20 88 NO-SPOUSE VALUE "N". 
21 01 CHILDREN PIC X. 
22 88 CHILD VALUE "Y". 
23 88 NO-CHILD VALUE "N". 
24 01 ACTIVITY PIC X. 
25 88 ACT-ADD VALUE "A". 
26 88 ACT-UPDTE VALUE "U". 
27 88 ACT-DELTE VALUE "D". 
28 88 QUIT VALUE "Q". 
29 01 ACTION PIC x. 
30 01 ANSWER PIC x. 
31 01 PSC-TYPE PIC x. 
32 88 PSC-PERSON VALUE II P". 
33 88 PSC-SPOUSE VALUE "S". 
34 88 PSC-CHILD VALUE "C". 
35 88 NO-PSC VALUE II II 

36 01 TEMP-NAME PIC XC20) VALUE II If 

37 01 FUNC-LIST. 
38 02 PASSWORD PIC x (4) VALUE II If 

39 02 FUNCTION PIC xx VALUE "OF". 
40 02 FILE-STAT PIC xx VALUE "**". 
41 02 FILE-NAME PIC XC4) VALUE "GENE". 
42 02 LOC1 PIC XC4) VALUE "****" 
43 88 EOL VALUE "****"· 
44 02 LOC2 PIC XC4) VALUE "****" 
45 02 KEY-NAME PIC XC4) VALUE "NAME". 
46 02 KEY-VALUE PIC XC30). 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 2of14) 

2270521-9701 9.17 



Interfacing to Productivity Tools 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

DXCBL 
LINE DEBUG 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

9·18 

01 LINE1-LIST. 
02 FILLER PIC x (7) VALUE "LINE=01 ". 
02 TST-1 PIC x VALUE "*If 
02 FILLER PIC x (16) VALUE "PERSPSEXPDOBPPOB". 
02 FILLER PIC x (16) VALUE "MARDFATHMOTH****"· 
02 HR-1 PIC x (4) VALUE "RLSE". 

01 LINE2-LIST. 
02 FILLER PIC'X(7) VALUE "LINE=02". 
02 TST-2 PIC X VALUE fl II 

I . 
02 FILLER PIC XC16) VALUE "SPOUSSEXSDOBSPOB". 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ...................................................... . 

01 

02 FILLER PIC XC4) VALUE "****" 
02 HR-2 PIC X(4) VALUE "RLSE". 
LINE3-LIST. 

PIC X(7) 
PIC X 

VALUE "LINE=03". 
II II 

I • 

02 FILLER 
02 TST-3 
02 FILLER 
02 FILLER 
02 HR-3 

PIC XC16) 
PIC X(4) 
PIC XC4) 

VALUE 
VALUE 
VALUE 
VALUE 

"CHLDCSEXCDOBCPOB". 

01 

01 

"****" 
"RLSE". 

LINE1-DATA. 
02 PERSON-NAME PIC XC30) VALUE SPACES. 
02 PERSON-SEX PIC X VALUE SPACES. 
02 DATE-OF-BIRTH. 

03 PERSON-DOB-MO 
03 PERSON-DOB-DA 
03 PERSON-DOB-YR 

02 PLACE-OF-BIRTH. 

PIC XX 
PIC XX 
PIC XX 

VALUE 
VALUE 
VALUE 

SPACES. 
SPACES. 
SPACES. 

03 PERSON-POB-STATE 
02 MARITAL-STAT PIC X 

PIC XXX 
VALUE 
VALUE 
VALUE 

02 FATHER PIC XC30) 
02 MOTHER PIC XC30) 

VALUE SPACES. 
SPACES. 
SPACES. 
SPACES. 

LINE2-DATA. 
02 SPOUSE-NAME PIC XC30). 
02 SPOUSE-SEX PIC X. 
02 DATE-OF-BIRTH. 

03 SPOUSE-DOB-MO 
03 SPOUSE-DOB-DA 
03 SPOUSE-DOB-YR 

02 PLACE-OF-BIRTH. 

PIC XX VALUE 
PIC XX VALUE 
PIC X(4) VALUE 

SPACES. 
SPACES. 
SPACES. 

03 SPOUSE-POB-STATE PIC XXX VALUE SPACES. 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 3 of 14) 

2270521-9701 



86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

DXCBL 
LINE DEBUG 

96 
97 
98 
99 

100 
101 
102 
103 
104 

>0000 
>0000 
>0000 
>0008 
>OOOE 
>0016 

105 >0018 
106 
107 
108 
109 >0032 
110 
111 >0042 
112 >0046 
113 
114 >0048 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 

>004A 
>004A 
>004A 

>0052 
>005C 
>0062 
>0072 
>0082 
>0092 

2270521-9701 

Interfacing to Productivity Tools 

01 LINE3-DATA. 
02 CHILD-NAME PIC XC30). 
02 CHILD-SEX PIC x. 
02 DATE-OF-BIRTH. 

03 CHILD-DOB-MO PIC xx VALUE SPACES. 
03 CHILD-DOB-DA PIC xx VALUE SPACES. 
03 CHILD-DOB-YR PIC XC4) VALUE SPACES. 

02 PLACE-OF-BIRTH. 
03 CHILD-POB-STATE PIC xxx VALUE SPACES. 

01 DE LIM PIC XX VALUE "/*"· 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PG/LN A ... B ......................................•................ 

I 
PROCEDURE DIVISION. 
MAIN SECTION. 
MAIN-PROG. 

DISPLAY "ENTER PASSWORD" LINE 1 ERASE. 
ACCEPT PASSWORD PROMPT. 
DISPLAY II II LINE 1 ERASE. 
CALL "DBMSYS" USING FUNC-LIST LINE1-LIST 

DELIM DELIM, DELIM DELIM. 
IF FILE-STAT NOT = "**" 

ADD 1 TO ERR-FLG 
DISPLAY "OPEN ERR " LINE 12 
FILE-STAT LINE 1 POSITION 18. 

IF NO-ERR 
PERFORM ACTIVITY UNTIL QUIT. 

MOVE "CL" TO FUNCTION. 
CALL "DBMSYS" USING FUNC-LIST FUNC-LIST 

DELIM DELIM, DELIM DELIM. 
STOP RUN. 

ACTIVITY SECTION. 
BEGIN. 

DISPLAY "FUNCTION: ADD, UPDTE, DELTE, QUIT - A,U,D,Q" 
LINE 1 ERASE. 

ACCEPT ACTIVITY LINE 1 POSITION 45 PROMPT. 
MOVE SPACE TO SPOUSES CHILDREN. 
IF ACT-ADD PERFORM ADD-SEC UNTIL NO-PSC. 
IF ACT-UPDTE PERFORM UPDTE-SEC UNTIL NO-PSC. 
IF ACT-DELTE PERFORM DELTE-SEC UNTIL NO-PSC. 
MOVE 0 TO ERR-FLG PSC-TYPE. 

Figure 9·4. COBOL Interfacing With DBMS·990 (Sheet 4of14) 

9·19 



Interfacing to Productivity Tools 

127 >009C 
128 >009C 
129 >009C 
130 >OOA2 
131 >OOAA 
132 
133 >OOB2 
134 >OOBC 
135 >OOC4 
136 
137 >0004 
138 
139 >OOE4 
140 
141 >OOEC 
142 >OOEC 
143 >OOEC 
144 >OOF2 
145 >OOFA 
146 
147 >0102 
148 >010C 
149 >0114 
150 >001C 
151 >0124 

DXCBL 
LINE DEBUG 
152 >0128 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

>0130 
>0130 
>0130 
>0136 
>013E 

>0146 
>014E 
>0156 

164 >0166 
165 
166 >0176 
167 >017A 
168 

9·20 

ADD-SEC SECTION. 
BEGIN. 

MOVE "****" TO LOC1 LOC2. 
MOVE "RLSE" TO HR-1 HR-2 HR-3. 
DISPLAY "ADD PERSON, SPOUSE, CHILD - P,S,C" 

LINE 1 ERASE. 
ACCEPT PSC-TYPE LINE 1 POSITION 45 PROMPT. 
IF PSC-PERSON PERFORM ADD-PERSON. 
IF PSC-SPOUSE PERFORM POSITION-SPOUSE 

IF NO-ERR PERFORM ADD-SPOUSE. 
IF PSC-CHILD PERFORM POSITION-CHILD 

IF NO-ERR PERFORM ADD-CHILD. 
MOVE 0 TO ERR-FLG. 

UPDTE-SEC SECTION. 
BEGIN. 

MOVE "****" TO LOC1 LOC2. 
MOVE "HOLD" TO HR-1 HR-2 HR-3. 
DISPLAY "UPDATE PERSON, SPOUSE, CHILD - P,S,C" 

LINE 1 ERASE. 
ACCEPT PSC-TYPE LINE 1 POSITION 45 PROMPT. 
IF PSC-PERSON PERFORM UPDTE-PERSON. 
IF PSC-SPOUSE PERFORM UPDTE-SPOUSE. 
IF PSC-CHILD PERFORM UPDTE-CHILD. 
MOVE 0 TO ERR-FLG. 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5 
PG/LN A ... B ...................................................... . 

MOVE "NAME" TO KEY-NAME. 

DELTE-SEC SECTION. 
BEGIN. 

MOVE "****" TO LOC1 LOC2. 
MOVE "HOLD" TO HR-1 HR-2 HR-3. 
DISPLAY "DELETE PERSON, SPOUSE, CHILD - P,S,C" 

LINE 1 ERASE. 
ACCEPT PSC-TYPE LINE 1 POSITION 45. 
IF PSC-PERSON PERFORM DELTE-PERSON. 
IF PSC-SPOUSE PERFORM POSITION-SPOUSE 

IF NO-ERR PERFORM DELTE-SPOUSE. 
IF PSC-CHILD PERFORM POSITION-CHILD 

IF NO-ERR PERFORM DELTE-CHILD. 
MOVE 0 TO ERR-FLG. 
MOVE "NAME" TO KEY-NAME. 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 5 of 14) 

2270521-9701 



169 >0182 
170 >0182 
171 >0182 
172 >0186 
173 >0188 
174 >018C 
175 >0190 
176 >0192 
177 
178 
179 
180 >0186 
181 
182 
183 
184 >01DA 
185 >01DA 
186 >01DE 
187 >01EO 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 >022A 
198 >022A 
199 >0230 
200 >0232 
201 
202 
203 
204 
205 
206 
207 

DXCBL 
LINE DEBUG 
208 >0264 
209 >0264 
210 >0268 
211 >026E 
212 >0278 
213 

2270521-9701 

Interfacing to Productivity Tools 

MISC SECTION. 
ADD-PERSON. 

MOVE SPACES TO LINE1-DATA. 
PERFORM DISPLAY-LINE1-FORMAT THRU ACCEPT-LINE1-DATA. 
MOVE PERSON-NAME TO KEY-VALUE. 
MOVE "AA" TO FUNCTION. 
PERFORM ACCESS-LINE1. 
IF ERR 

DISPLAY "ERROR ADDING PERSON LINE 01 " LINE 22, 
FILE-STAT LINE 22 POSITION 35, 
ACCEPT ANSWER LINE 22 POSITION 40 PRbMPT. 

IF MARITAL-STAT NOT = "S" 
IF NO-ERR 

PERFORM ADD-SPOUSE UNTIL ERR OR NO-SPOUSE. 

ADD-SPOUSE. 
MOVE SPACES TO LINE2-DATA. 
PERFORM DISPLAY-LINE2-FORMAT THRU ACCEPT-LINE2-DATA. 
IF SPOUSE 

MOVE "AA" TO FUNCTION 
PERFORM ACCESS-LINE2 
IF ERR 

DISPLAY "ERROR ADDING SPOUSE LINE 02 " LINE 22, 
FILE-STAT LINE 22 POSITION 35, 
ACCEPT ANSWER LINE 22 POSITION 40 PROMPT 

ELSE 
PERFORM ADD-CHILD UNTIL ERR OR NO-CHILD. 

ADD-CHILD. 
MOVE SPACES TO LINE3-DATA CHILDREN. 
PERFORM DISPLAY-LINE3-FORMAT THRU ACCEPT-LINE3-DATA. 
IF CHILD 

MOVE "AA" TO FUNCTION 
PERFORM ACCESS-LINE3 
IF ERR 

DISPLAY "ERROR ADDING CHILD LINE 03 " LINE 22, 
FILE-STAT LINE 22 POSITION 35, 
ACCEPT ANSWER LINE 22 POSITION 40 PROMPT. 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 6 
PG/LN A ... B ...................................................... . 

POSIT ION-PERSON. 
MOVE "RF" TO FUNCTION. 
DISPLAY "POSITION ON PERSON: " LINE 4. 
ACCEPT KEY-VALUE LINE 4 POSITION 22 PROMPT. 
PERFORM ACCESS-LINE1. 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 6 of 14) 

9·21 



Interfacing to Productivity Tools 

214 >027C 
215 >027C 
216 >027E 
217 
218 
219 
220 
221 
222 
223 >0268 
224 >0268 
225 >026A 
226 
227 
228 
229 
230 
231 
232 >02F4 
233 >02F4 
234 >02FC 
235 >0306 
236 >030A 
237 >030C 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 >0364 
253 >0364 
254 >036C 
255 >0376 
256 >037A 
257 >037E 
258 >0380 
259 
260 
261 
262 
263 

9-22 

POSITION-SPOUSE. 
PERFORM POSITION-PERSON. 
IF NO-ERR 

DISPLAY "POSITION ON SPOUSE: " LINE 4 
ACCEPT TEMP-NAME LINE 4 POSITION 22 PROMPT. 
IF TEMP-NAME NOT = II II 

PERFORM ACCESS-LINE2 UNTIL ERR OR EOL OR 
TEMP-NAME = SPOUSE-NAME. 

POSITION-CHILD. 
PERFORM POSITION-SPOUSE. 
IF NO-ERR 

DISPLAY "POSITION ON CHILD: " LINE 4 
ACCEPT TEMP-NAME LINE 4 POSITION 22 PROMPT 
IF TEMP-NAME NOT = II II 

PERFORM ACCESS-LINE3 UNTIL ERR OR EOL OR 
TEMP-NAME = CHILD-NAME. 

UPDTE-PERSON. 
DISPLAY "PERSON'S FULL NAME:" LINE 3 ERASE. 
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT. 
MOVE "RF" TO FUNCTION. 
PERFORM ACCESS-LINE1. 
IF ERR 

DISPLAY "ERROR READING PERSON LINE 01 " LINE 24 
FILE-STAT LINE 24 POSITION 35 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

ELSE 
PERFORM DISPLAY-LINE1-FORMAT 
PERFORM DISPLAY-LINE1-DATA 
PERFORM ACCEPT-LINE1-DATA 
MOVE "WT" TO FUNCTION 
PERFORM ACCESS-LINE1 
IF ERR 

DISPLAY "ERROR UPDATING PERSON LINE 01 " LINE 24 
FILE-STAT LINE 24 POSITION 35 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT. 

UPDTE-SPOUSE. 
DISPLAY "SPOUSE'S FULL NAME: " LINE 3 ERASE. 
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT. 
MOVE "RF" TO FUNCTION. 
MOVE "SPOU" TO KEY-NAME. 
PERFORM ACCESS-LINE2. 
IF ERR OR EOL 

DISPLAY "ERROR READING SPOUSE LINE 02 " LINE 24 
FILE-STAT LINE 24 POSITION 35 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

ELSE 
PERFORM DISPLAY-LINE2-FORMAT 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 7 of 14) 

2270521-9701 



DXCBL 
LINE DEBUG 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 >03E9 
274 >03E9 
275 >03F2 
276 >03FC 
277 >0400 
278 >0405 
279 >0407 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 >0470 
295 >0470 
296 >0478 
297 >0482 
298 >0487 
299 >0489 
300 
301 
302 
303 
304 >04B2 
305 >04B2 
306 
307 
308 

2270521-9701 

Interfacing to Productivity Tools 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 7 
PG/LN A ... B ...................................................... . 

PERFORM DISPLAY-LINE2-DATA 
PERFORM ACCEPT-LINE2-DATA 
MOVE "WT" TO FUNCTION 
PERFORM ACCESS-LINE2 
IF ERR 

DISPLAY "ERROR UPDATING SPOUSE LINE 03 " LINE 24 
FILE-STAT LINE 24 POSITION 35 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT. 

UPDTE-CHILD. 
DISPLAY "CHILD'S FULL NAME: " LINE 3 ERASE. 
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT. 
MOVE "RF" TO FUNCTION. 
MOVE "CHLO" TO KEY-NAME. 
PERFORM ACCESS-LINE3. 
IF ERR OR EOL 

DISPLAY "ERROR READING CHILD LINE 03 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

ELSE 
PERFORM DISPLAY-LINE3-FORMAT 
PERFORM DISPLAY-LINE3-DATA 
PERFORM ACCEPT-LINE3-DATA 
MOVE "WT" TO FUNCTION 
PERFORM ACCESS-LINE3 
IF ERR 

DISPLAY "ERROR UPDATING CHILD LINE 03 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT. 

DEL TE-PERSON. 
DISPLAY "PERSON'S FULL NAME: " LINE 3 ERASE. 
ACCEPT KEY-VALUE LINE 3 POSITION 22 PROMPT. 
MOVE "DR" TO FUNCTION. 
PERFORM ACCESS-LINE1. 
IF ERR 

DISPLAY "ERROR READING SPOUSE LINE 02 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT. 

DEL TE-SPOUSE. 
IF ERR 

DISPLAY "ERROR READING SPOUSE LINE 02 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 8 of 14) 

9·23 



Interfacing to Productivity Tools 

309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 

DXCBL 
LINE DEBUG 
320 >0530 
321 >0530 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 

>058A 
>058A 
>058E 
>0590 

>05A2 
>05A2 
>05A2 

344 >05A5 
345 
346 >05B4 
347 >05B4 
348 
349 >05B7 
350 
351 >05C6 
352 >05C6 
353 
354 >05C9 

9-24 

ELSE 
MOVE "DL" TO FUNCTION 
PERFORM ACCESS-LINE2 
IF ERR 

DISPLAY "ERROR DELETING SPOUSE LINE 03 " LINE 24 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

ELSE 
MOVE II II TO LOC1 LOC2 
PERFORM DELTE-CHILDREN UNTIL EOL OR ERR. 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 8 
PG/LN A ... B ...................................................... . 

DELTE-CHILD. 
IF ERR 

DISPLAY "ERROR READING CHILD LINE 03 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT 

ELSE 
MOVE "DL" TO FUNCTION 
PERFORM ACCESS-LINE3 
IF ERR 

DISPLAY "ERROR DELETING CHILD LINE 03 " LINE 24, 
FILE-STAT LINE 24 POSITION 35, 
ACCEPT ANSWER LINE 24 POSITION 40 PROMPT. 

DELTE-CHILDREN. 
MOVE "RF" TO FUNCTION. 
PERFORM ACCESS-LINE3. 
IF NO-ERR 

MOVE "DL" TO FUNCTION 
PERFORM ACCESS-LINE3. 

DBMS-ACCESS SECTION. 
ACCESS-LINE1. 

CALL "DBMSYS" USING FUNC-LIST LINE1-LIST 
LINE1-LIST LINE2-LIST LINE1-DATA LINE2-DATA. 

IF FILE-STAT NOT = "**" ADD 1 TO ERR-FLG. 

ACCESS-LINE2. 
CALL "DBMSYS" USING FUNC-LIST LINE1-LIST 

LINE2-LIST LINE3-LIST LINE2-DATA LINE3-DATA. 
IF FILE-STAT NOT = "**" ADD 1 TO ERR-FLG. 

ACCESS-LINE3. 
CALL "DBMSYS" USING FUNC-LIST LINE1-LIST 

LINE3-LIST LINE1-DATA LINE3-DATA DELIM. 
IF FILE-STAT NOT = "**" ADD 1 TO ERR-FLG. 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 9 of 14) 

2270521-9701 



Interfacing to Productivity Tools 

355 
356 >05DA OISPLAY-LINE1-FORMAT SECTION. 
357 >05DA BEGIN. 
358 >05DA DISPLAY "PERSON'S FULL NAME:" LINE 3 POSITION 1 ERASE 
359 "SEX: II LINE 4 POSITION 1 
360 "DATE OF BIRTH: II LINE 5 POSITION 1 
361 II MONTH: II LINE 6 POSITION 1 
362 II DAY: II LINE 7 POSITION 1 
363 II YEAR: II LINE 8 POSITION 1 
364 "PLACE OF BIRTH: II LINE 9 POSITION 1 
365 II STATE/COUNTRY:" LINE 10 POSITION 1 
366 "MARITAL STATUS: II LINE 11 POSITION 1 
367 "FATHER: II LINE 12 POSITION 1 
368 "MOTHER: II LINE 13 POSITION 1 . 
369 
370 >064B ACCEPT-LINE1-DATA SECTION. 
371 >064B BEGIN. 
372 >064B ACCEPT PERSON-NAME ~INE 3 POSITION 22. 
373 >0653 IF PERSON-NAME = " .. 
374 MOVE "N" TO PERSONS 
375 ELSE 

DXCBL L.R.V VY.ODD COMPILEO:MM/00/YY HH:MM:SS OPT=M PAGE 9 
LINE DEBUG PG/LN A ... B ...................•................................... 
376 MOVE "Y" TO PERSONS 
377 ACCEPT PERSON-SEX LINE 4 POSITION 22 
378 PERSON-DOB-MO LINE 6 POSITION 22 
379 PERSON-DOB-DA LINE 7 POSITION 22 
380 PERSON-DOB-YR LINE 8 POSITION 22 
381 PERSON-POB-STATE LINE 10 POSITION 22 
382 MARITAL-STAT LINE 11 POSITION 22 
383 FATHER LINE 12 POSITION 22 
384 MOTHER LINE 13 POSITION 22. 
385 
386 >06B8 DISPLAY-LINE1-DATA SECTION. 
387 >06B8 BEGIN. 
388 >06B8 DISPLAY PERSON-NAME LINE 3 POSITION 22 
389 PERSON-SEX LINE 4 POSITION 22 
390 PERSON-DOB-MO LINE 6 POSITION 22 
391 PERSON-DOB-DA LINE 7 POSITION 22 
392 PERSON-DOB-YR LINE 8 POSITION 22 
393 PERSON-POB-STATE LINE 10 POSITION 22 
394 MARITAL-STAT LINE 11 POSITION 22 
395 FATHER LINE 12 POSITION 22 
396 MOTHER LINE 13 POSITION 22. 
397 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 10 of 14) 

2270521-9701 9·25 



Interfacing to Productivity Tools 

398 >070F 
399 >070F 
400 
401 
402 
403 
404 
405 
406 
407 
408 >0760 
409 >0760 
410 >0768 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 >07AD 
421 >07AD 
422 
423 
424 
425 
426 
427 
428 >07E8 
429 >07E8 
430 
431 

DXCBL 
LINE DEBUG 
432 
433 
434 
435 
436 
437 
438 >083A 
439 >083A 
440 >0842 
441 

9·26 

DISPLAY-LINE2-FORMAT. 
DISPLAY "SPOUSE'S FULL NAME: II LINE 3 POSITION 1 ERASE 

"SEX: II LINE 4 POSITION 1 
"DATE OF BIRTH: II LINE 5 POSITION 1 
II MONTH: II LINE 6 POSITION 1 
II DAY: II LINE 7 POSITION 1 
II YEAR: II LINE 8 POSITION 1 
"PLACE OF BIRTH: II LINE 9 POSITION 1 
II STATE/COUNTRY: II LINE 10 POSITION 1 . 

ACCEPT-LINE2-DATA. 
ACCEPT SPOUSE-NAME LINE 3 POSITION 22. 
IF SPOUSE-NAME :. II II 

MOVE II N" TO SPOUSES 
ELSE 

MOVE "Y II TO SPOUSES 
ACCEPT SPOUSE-SEX LINE 4 POSITION 22 

SPOUSE-DOB-MO LINE 6 POSITION 22 
SPOUSE-DOB-DA LINE 7 POSITION 22 
SPOUSE-DOB-YR LINE 8 POSITION 22 
SPOUSE-POB-STATE LINE 10 POSIT I ON 22. 

DISPLAY-LINE2-DATA. 
DISPLAY SPOUSE-NAME LINE 3 POSITION 22 

SPOUSE-SEX LINE 4 POSITION 22 
SPOUSE-DOB-MO LINE 6 POSITION 22 
SPOUSE-DOB-DA LINE 7 POSITION 22 
SPOUSE-DOB-YR LINE 8 POSITION 22 
SPOUSE-POB-STATE LINE 10 POSITION 22. 

DISPLAY-LINE3-FORMAT. 
DISPLAY "CHILD'S FULL NAME: II LINE 3 POSITION 1 ERASE 

"SEX: II LINE 4 POSITION 1 
"DATE OF BIRTH: II LINE 5 POSITION 1 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 10 
PG/LN A ... B ...................................................... . 

II MONTH: II LINE 6 POSITION 1 
II DAY: II LINE 7 POSITION 1 
II YEAR: II LINE 8 POSITION 1 
" PLACE OF BIRTH: " LINE 9 POSITION 1 
II STATE/COUNTRY: II LINE 10 POSITION 1. 

ACCEPT-LINE3-DATA. 
ACCEPT CHILD-NAME 
IF CHILD-NAME = II II 

MOVE "N" TO CHILDREN 

LINE 3 POSITION 22. 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 11 of 14) 

2270521-9701 



Interfacing to Productivity Tools 

442 ELSE 
443 MOVE "Y" TO CHILDREN 
444 ACCEPT CHILD-SEX LINE 4 POSITION 22 
445 CHILD-DOB-MO LINE 6 POSITION 22 
446 CHILD-DOB-DA LINE 7 POSITION 22 
447 CHILD-DOB-YR LINE 8 POSITION 22 
448 CHILD-PCB-STATE LINE 10 POSITION 22. 
449 
450 >0887 DISPLAY-LINE3-DATA. 
451 >0887 DISPLAY CHILD-NAME LINE 3 POSITION 22 
452 CHILD-DOB-MO LINE 6 POSITION 22 
Z.53 CHILD-DOB-DA LINE 7 POSIT ION 22 
454 CHILD-DOB-YR LINE 8 POSITION 22 
455 CHILD-PCB-STAT LINE 10 POSITION 22. 
456 ZZZZZZ END PROGRAM. *** END OF FILE 

DXCBL L.R. V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 11 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 2 NSU 0 NUMERIC UNSIGNED ERR-FLG 
0 CONDIT ION-NAME ERR 
0 CONDITION-NAME NO-ERR 

>002C 1 ANS 0 ALPHANUMERIC PERSONS 
0 CONDITION-NAME PERSON 
0 CONDITION-NAME NO-PERSON 

>002E 1 ANS 0 ALPHANUMERIC SPOUSES 
0 CONDITION-NAME SPOUSE 
0 CONDIT ION-NAME NO-SPOUSE 

>0030 1 ANS 0 ALPHANUMERIC CHILDREN 
0 CONDITION-NAME CHILD 
0 CONDITION-NAME NO-CHILD 

>0032 1 ANS 0 ALPHANUMERIC ACTIVITY 
0 CONDITION-NAME ACT-ADD 
0 CONDITION-NAME ACT-UPDTE 
0 CONDITION-NAME ACT-DEL TE 
0 CONDITION-NAME QUIT 

>0034 1 ANS 0 ALPHANUMERIC ACTION 

>0036 1 ANS 0 ALPHANUMERIC ANSWER 

>0038 1 ANS 0 ALPHANUMERIC PSC-TYPE 
0 CONDITION-NAME PSC-PERSON 
0 CONDITION-NAME PSC-SPOUSE 
0 CONDITION-NAME PSC-CHILD 
0 CONDITION-NAME NO-PSC 

Figure 9·4. COBOL Interfacing With DBMS-990(Sheet12of14) 

2270521-9701 9·27 



Interfacing to Productivity Tools 

>003A 20 ANS 0 ALPHANUMERIC TEMP-NAME 

>004E 54 GRP 0 GROUP FUNC-LIST 
>004E 4 ANS 0 ALPHANUMERIC PASSWORD 
>0052 2 ANS 0 ALPHANUMERIC FUNCTION 
>0054 2 ANS 0 ALPHANUMERIC FILE-STAT 
>0056 4 ANS 0 ALPHANUMERIC FILE-NAME 
>005A 4 ANS 0 ALPHANUMERIC LOC1 

0 CONDITION-NAME EOL 
>005E 4 ANS 0 ALPHANUMERIC LOC2 
>0062 4 ANS 0 ALPHANUMERIC KEY-NAME 
>0066 30 ANS 0 ALPHANUMERIC KEY-VALUE 

>0084 44 GRP 0 GROUP LINE1-LIST 
>008B 1 ANS 0 ALPHANUMERIC TST-1 
>OOAC 4 ANS 0 ALPHANUMERIC HR-1 

>OOBO 32 GRP 0 GROUP LINE2-LIST 
>OOB7 1 ANS 0 ALPHANUMERIC TST-2 
>OOCC 4 ANS 0 ALPHANUMERIC HR-2 

>OODO 32 GRP 0 GROUP LINE3-LIST 
>0007 1 ANS 0 ALPHANUMERIC TST-3 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 12 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>OOEC 4 ANS 0 ALPHANUMERIC HR-3 

>OOFO 103 GRP 0 GROUP LINE1-DATA 
>OOFO 30 ANS 0 ALPHANUMERIC PERSON-NAME 
>010E 1 ANS 0 ALPHANUMERIC PERSON-SEX 
>010F 8 GRP 0 GROUP DATE-OF-BIRTH 
>010F 2 ANS 0 ALPHANUMERIC PERSON-DOB-MO 
>0111 2 ANS 0 ALPHANUMERIC PERSON-DOB-DA 
>0113 4 ANS 0 ALPHANUMERIC PERSON-DOB-YR 
>0117 3 GRP 0 GROUP PLACE-OF-BIRTH 
>0117 3 ANS 0 ALPHANUMERIC PERSON-POB-STATE 
>011A 1 ANS 0 ALPHANUMERIC MARITAL-STAT 
>011B 30 ANS 0 ALPHANUMERIC FATHER 
>0139 30 ANS 0 ALPHANUMERIC MOTHER 

Figure 9·4. COBOL Interfacing With DBMS-990(Sheet13of14) 

9·28 2270521-9701 



Interfacing to Productivity Tools 

>0158 42 GRP 0 GROUP LINE2-DATA 
>0158 30 ANS 0 ALPHANUMERIC SPOUSE-NAME 
>0176 1 ANS 0 ALPHANUMERIC SPOUSE-SEX 
>0177 8 GRP 0 GROUP DATE-OF-BIRTH 
>0177 2 ANS 0 ALPHANUMERIC SPOUSE-DOB-MO 
>0179 2 ANS 0 ALPHANUMERIC SPOUSE-DOB-DA 
>017B 4 ANS 0 ALPHANUMERIC SPOUSE-DOB-YR 
>017F 3 GRP 0 GROUP PLACE-OF-BIRTH 
>017F 3 ANS 0 ALPHANUMERIC SPOUSE-POB-STATE 

>0182 42 GRP 0 GROUP LINE3-DATA 
>0182 30 ANS 0 ALPHANUMERIC CHILD-NAME 
>01AO 1 ANS 0 ALPHANUMERIC CHILD-SEX 
>01 A1 8 GRP 0 GROUP DATE-OF-BIRTH 
>01 A1 2 ANS 0 ALPHANUMERIC CHILD-DOB-MO 
>01A3 2 ANS 0 ALPHANUMERIC CHILD-DOB-DA 
>01A5 4 ANS 0 ALPHANUMERIC CHILD-DOB-YR 
>01A9 3 GRP 0 GROUP PLACE-OF-BIRTH 
>01A9 3 ANS 0 ALPHANUMERIC CHILD-POB-STATE 

>01AC 2 ANS 0 ALPHANUMERIC DE LIM 

READ ONLY BYTE SIZE = >1094 

READ/WRITE BYTE SIZE = >0208 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >129C 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 13 
PROGRAM USING COUNT 

DBMSYS 6 

Figure 9·4. COBOL Interfacing With DBMS-990 (Sheet 14 of 14) 

2270521-9701 9-29 



Interfacing to Productivity Tools 

FILE=GENE,LINES=600 
ID=NAME=CH/30,VOL=100 
LINE=01 
FIELD=PERS=CH/30 
FIELD=PSEX=CH/1 
GROUP=PDOB 
FIELD=PMO =CH/2 
FIELD=PDA =CH/2 
FIELD=PYR =CH/4 
ENDG 
FIELD=PPOB=CH/3 
FIELD=MARD=CH/1 
FIELD=FATH=CH/30 
FIELD=MOTH=CH/30 
ENDL 
LINE=02 
FIELD=SPOU=CH/30 
FIELD=SSEX=CH/1 
GROUP=SDOB 
FIELD=SMO =CH/2 
FIELD=SDA =CH/2 
FIELD=SYR =CH/4 
ENDG 
FIELD=SPOB=CH/3 
ENDL 
LINE=03 
FIELD=CHLD=CH/30 
FIELD=CSEX=CH/1 
GROUP=CDOB 
FIELD=CMO =CH/2 
FIELD=CDA =CH/2 
FIELD=CYR =CH/4 
ENDG 
FIELD=CPOB=CH/3 
ENDL 
SECONDARY-REFERENCES 
SPOU=VOL=100 
SPOU=VOL=100 
END.CFORMAT,SECL) 

Figure 9·5. Data Definition Language (DDL) File 

9·30 2270521-9701 



Interfacing to Productivity Tools 

9.5 QUERY-990 

The Query-990 software package provides a convenient and efficient means of retrieving data from 
a DBMS-990 database file. Query-990 enables you to gather, modify, and review data without 
writing a program. 

The Query-990 language is an English-like nonprocedural language with statements composed of 
several clauses. The clauses allow you to specify the content and format of each line, as well as 
complex conditions that a database record or line must meet to be qualified for output. Totals, 
counts, or averages can be performed on output fields; default columnar headings and user
defined headings are supported. 

When the Query-990 language is used, a complex report may be specified in a few lines, whereas 
an application program to obtain the same report can require several hundred lines. Refer to the 
Query-990 User's Guide for a detailed explanation of Query-990. 

You can access Query-990 from COBOL programs through a set of assembly language 
subroutines that interface between the Query-990 processor and the application task. The fol
lowing subroutines can be linked to the calling task. 

• QCOMP - Compiles, loads, and prepares a Query-990 statement for execution. The 
Query-990 statement is passed from the application task as an array of characters. 

• QINIT - Loads and prepares a Query-990 stateme.nt for execution that has already been 
compiled (using QCOMPILE) and stored as an object file. 

• QEXEC - Executes a Query-990 statement started by QCOMP or QINIT and lists the 
results to an output file. 

• QRECV - Processes one cycle of a Query-990 statement. For example, if the Query-990 
is a list function, QRECV returns one logical report line. 

• QSEND - Resets and sends change data values using the contents of the data buffer. 

• QCLR - Reinitializes the Query-990 processor for a particular Query-990 statement 
(a clearing function). 

• QEND - Terminates the Query-990 processor for a particular Query-990 statement. 

2270521-9701 9.31 



Interfacing to Productivity Tools 

These routines are contained on the library S$QUERY. The following link control file shows how to 
link the COBOL module in Figure 9-6. 

FORMAT IMAGE,REPLACE 
LIBRARY .SCI990.S$$0BJECT 
PROC RCOBOL 
DUMMY 
INCLUDE .S$$SYSLIB.RCBPRC 
TASK CTEST 
INCLUDE .S$$SYSLIB.RCBTSK 
INCLUDE .S$$SYSLIB.RCBMPD 
INCLUDE EX.CTEST 
INCLUDE S$$QUERY.COBINT 
INCLUDE S$$QUERY.PLIOBJ 
END 

DNCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG0906 
DUMY 
MANUAL.PG.LST.FIG0906 
M 
80 
55 
1000 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

9.32 

PG/LN A ... B ...................................................... . 
IDENTIFICATION DIVISION. 
PROGRAM-ID. QUERY. 

* THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL 
* DEMONSTRATION TEST TO CHECK INTERFACING 
* COBOL APPLICATIONS WITH QUERY. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

Figure 9-6. COBOL Module Linked to Query (Sheet 1 of 3) 

2270521-9701 



12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 >0000 
31 >0000 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

>0000 

>0002 

>OOOC 
>0010 
>0018 

>001E 

>0046 
>0048 

2270521-9701 

Interfacing to Productivity Tools 

01 QUERY-NUMBER PIC 9(5) COMP-1 VALUE 1 . 
01 RESULT-STATUS PIC 9(5) COMP-1. 
01 STATEMENT-LENGTH PIC 9(5) COMP-1 VALUE 36. 
01 RESULT-CODE PIC xx. 
01 QUERY-STATEMENT PIC XC80) VALUE 

"LIST PERS SPOU CHLO FROM GENE NO HEADER II 

01 EXTEND-FILE PIC 9(5) COMP-1. 
01 FORMAT-TEXT PIC 9(5) COMP-1 VALUE 1 . 
01 LIST-TEXT PIC 9(5) COMP-1 VALUE 1 . 
01 PAGE LENGTH PIC 9(5) COMP-1 VALUE 60. 
01 PAGEWIDTH PIC 9(5) COMP-1 VALUE 80. 
01 LIST-PN PIC X(48) VALUE "D.LIST II 

01 ALT-COLLATING-PN PIC x (48) VALUE II II. 

01 PASSWORD PIC X(4) VALUE "DBMS". 
01 CHAR-NUM PIC x (6) . 
01 x PIC x. 

PROCEDURE DIVISION. 
MAIN SECTION. 
BEGIN. 

CALL "QCOMP" USING QUERY-NUMBER, RESULT-STATUS, 
RESULT-CODE, QUERY-STATEMENT, STATEMENT-LENGTH, 
PASSWORD, FORMAT-TEXT, LIST-TEXT, LIST-PN, 
PAGELENGTH, PAGEWIDTH, ALT-COLLATING-PN. 

DISPLAY "RESULT STATUS FROM QCOMP = " 
LINE 3 POSITION 1 ERASE. 

MOVE RESULT-STATUS TO CHAR-NUM. 
DISPLAY CHAR-NUM LINE 3 POSITION 30. 
ACCEPT X LINE 24. 

IF RESULT-STATUS = 0 
MOVE 1 TO EXTEND-FILE 
CALL "QEXEC" USING QUERY-NUMBER, RESULT-STATUS, 

RESULT-CODE, LIST-PN, EXTEND-FILE 
DISPLAY "RETURN STATUS AFTER QEXEC = " 

LINE 3 POSITION 1 ERASE 
MOVE RESULT-STATUS TO CHAR-NUM 
DISPLAY CHAR-NUM LINE 3 POSITION 30 
ACCEPT X LINE 24. 

CALL "QEND " USING QUERY-NUMBER, RESULT-STATUS. 
STOP RUN. 

ZZZZZZ END PROGRAM. *** END OF FILE 

Figure 9·6. COBOL Module Linked to Query (Sheet 2 of 3) 

9.33 



Interfacing to Productivity Tools 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 2 NBS 0 BINARY SIGNED QUERY-NUMBER 

>002C 2 NBS 0 BINARY SIGNED RESULT-STATUS 

>002E 2 NBS 0 BINARY SIGNED STATEMENT-LENGTH 

>0030 2 ANS 0 ALPHANUMERIC RESULT-CODE 

>0032 80 ANS 0 ALPHANUMERIC QUERY-STATEMENT 

>0082 2 NBS 0 BINARY SIGNED EXTEND-FILE 

>0084 2 NBS 0 BINARY SIGNED FORMAT-TEXT 

>0086 2 NBS 0 BINARY SIGNED LIST-TEXT 

>0088 2 NBS 0 BINARY SIGNED PAGE LENGTH 

>008A 2 NBS 0 BINARY SIGNED PAGEWIDTH 

>008C 48 ANS 0 ALPHANUMERIC LIST-PN 

>OOBC 48 ANS 0 ALPHANUMERIC AL T-COLLATING-PN 

>OOEC 4 ANS 0 ALPHANUMERIC PASSWORD 

>OOFO 6 ANS 0 ALPHANUMERIC CHAR-NUM 

>OOF6 ANS 0 ALPHANUMERIC x 

READ ONLY BYTE SIZE = >0156 

READ/WRITE BYTE SIZE = >0112 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0268 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PROGRAM USING COUNT 

QCOMP 12 
QEND 2 
QEXEC 5 

Figure 9·6. COBOL Module Linked to Query (Sheet 3 of 3) 

9.34 2270521-9701 



Interfacing to Productivity Tools 

9.6 COMMUNICATIONS 

Several alternative communications packages are available to the 990 user. Depending on your 
application, you can generate a custom system to meet your needs. 

9.7 COMMUNICATION EQUIPMENT 

The communications modules available include the communications interface module, a choice 
of an asynchronous or synchronous modem, and an accessory auto-call unit (ACU). The communi
cations interface module can be used with Belldata sets, which include modems and data-access 
arrangements. 

The communications interface module provides an RS·232C interface with full modem control 
signals for asynchronous and synchronous modems. Baud rates of 75, 110, 150, 200, 300, 1200, 
2400, 4800, and 9600 meet almost any communications requirement. Character size is selected 
from 5 to 9 bits with programmable parity (odd, even, or none). Other features include line 
break detection/generation, a 250-millisecond timer, programmable SYN, DLE stripping, 
false-bit-start-bit detection, stop-bit selection, and programmable self-test. 

9.8 3780 EMULATOR COMMUNICATIONS SOFTWARE 

The 3780 emulator communications software package provides a means of remote job entry (RJE) 
communications with an IBM 360/370 host computer or another 3780 emulator. Communication 
consists of exchanging data files between master and slave stations over leased point-to-point or 
switched telephone lines. 

Using the 3780 emulator, systems running DX10 can serve as satellite and/or central stations in 
distributed processing networks, or can be used to handle RJE or batch data entry for processing 
by a host. Remote stations can be dialed manually or automatically with an optional ACU and a 
modem. Remote stations can also be operated in an unattended mode as a called station in a dis
tributed network. 

Tl 3780 emulator communications software emulates the operation of the IBM 3780 Data Commun· 
ications Terminal. However, unlike the IBM 3780, the source and destination of the transferred 
files using the Tl 3780 emulator are not restricted to the card reader/punch and line printer. Any 
file, input device, or output device available to your system can be used for input or output. 

9·35/9-36 

' 





10 

Using SCI Command Procedures 
to Execute COBOL Tasks 

10.1 GENERAL 

This section introduces the application of custom tailored SCI command procedures (procs) to the 
execution of COBOL tasks. It does not attempt to provide materials sufficient for the general mas· 
tery of writing and using SCI procedures: this has been addressed in the DX10 Systems 
Programmer's Guide and the tutorial SCI: A Self-Study Approach to Writing Command Procedures 
and Batch Streams. Here the objective is to give you, the COBOL programmer, an understanding 
of the applicability of procs to your work, and to provide you with specific examples you may be 
able to adapt and use directly. If you have already had some experience with SCI procs, this chap· 
ter may serve as a review. 

10.2 SCI COMMAND PROCEDURE ELEMENTS 

SCI, the System Command Interpreter which runs under the DX10 Operating System, can be tai
lored for specific applications by writing and using new commands. Adding a new command 
involves writing a command procedure. This command procedure is a sequence of SCI statements 
stored in a file under a user-specified name and executed by SCI each time that name is invoked. 
The command procedure constitutes a new SCI command in its own right. 

A command procedure is composed of SCI commands and their associated parameters, SCI 
primitives, and special statements that produce interactive field prompts at the user terminal. In 
some cases, the procedures may also invoke a user-supplied command processor. 

SCI primitives are system routines which constitute the lowest-level components of the SCI lan
guage. They cannot be modified, deleted, or added by users. They are invoked by name, and their 
names are syntactically distinguished from other SCI commands by an initial period(.). 

Interactive prompts allow procs to be generalized for use under varying conditions (for example, 
with different programs and files). Up to 22 such prompts may be incorporated in a single proc. 

A command processor is a task-which you can supply-invoked within a command procedure. 
The processor can be an application program written in any language supported by DX10, or it can 
be a utility program written specifically to perform operations required by a command. Command 
processors are invoked from a command procedure using one of the primitives .BID, .DBID, or 
.QBID. The .BID primitive invokes the processor as a foreground task, .QBID invokes the processor 
as a background task, and .DBID places the processor in a suspended state in background mode. 
Processors executed by .BID must terminate to allow SCI to resume execution. 

All procedures and processors must be installed before use. 

2270521-9701 10·1 



Using SCI Command Procedures to Execute COBOL Tasks 

10.3 EXAMPLE COMMAND PROCEDURES 

Figure 10·1, Figure 10·2, and Figure 10·3 are sample command procedures. Each is explained in 
detail in the following discussions. 

10.3.1 Example 1 
Figure 10·1 shows a simple example of a user-supplied command procedure that functions pri· 
marily to issue a sequence of standard SCI commands. In all the examples in this section, the line 
numbers appearing at the left are included to facilitate a line-by-line explanation which is given 
following the proc. They are not part of the proc. 

1) 
2) 
3) 
4) 
5) 

COBCX (COBOL COMPILE AND EXECUTE) 

XCCF SRC=MANUAL.PG.SRC.FIG1001, 
OBJ=MANUAL.PG.OBJ.FIG1001, 
LST=MANUAL.PG.LST.FIG1001 

6) ! 
7) .IF @$$CC, EQ, 0 !IF COMPILE WORKED, RUN PROGRAM 
8) XCPF OBJ=MANUAL.PG.OBJ.FIG1001 
9) 

10) 
11) 
12) 
13) 
14) 
15) 

.ENDIF 

.IF @$$CC, EQ, 0 
MSG T="SUCCESSFUL COMPLETION: CODE = @$$CC" 
.ELSE 
MSG T="UNSUCCESSFUL COMPLETION: CODE = @$$CC" 
.ENDIF 

Figure 10·1. Simple SCI Procedure 

1) COBCX (COBOL COMPILE AND EXECUTE) 

Line 1 gives the name of the proc (COBCX) and a note concerning its function. This is a non
executing but required statement. 

2) 
3) XCCF SRC=MANUAL.PG.SRC.FIG1001, 
~ OBJ=MANUAL.PG.OBJ.FIG1001, 
~ LST=MANUAL.PG.LST.FIG1001 
6) 
n .IF @$$CC, EQ, 0 !IF COMPILE WORKED, RUN PROGRAM 

The exclamation points(!) in lines 2, 6, and 7 denote the start of non-executing comments. These 
can be used at any column in a line (for example, following a command as in line 7) to signal the 
beginning of a comment. By including on a line only an exclamation point in column 1 (lines 2 and 
6) a blank line can be introduced for spacing. An asterisk(*) can also be used to denote a non
executing comment, but only when placed at the beginning of a line. It has other meanings else
where. 

3) XCCF SRC=MANUAL.PG.SRC.FIG1001, 
~ OBJ=MANUAL.PG.OBJ.FIG1001, 
5) LST=MANUA L. PG. LST. FI G1001 

10-2 2270521·9701 



Using SCI Command Procedures to Execute COBOL Tasks 

In line 3, the example proc issues the SCI command XCCF (Execute COBOL Compiler in Fore
ground). The values given to SRC, OBJ, and LST in lines 3, 4, and 5 satisfy the command pro
cessor's requirements for the specification of file locations. Were you to issue the XCCF 
command interactively, you would be prompted (non-optionally) for these filenames. Thus, they 
must be included as part of the command as entered from the proc. 

n .IF @$$CC, EQ, 0 !IF .COMPILE WORKED, RUN PROGRAM 
8) XCPF OBJ=MANUAL.PG.OBJ.FIG1001 
9) .ENDIF 

10) 
11) .IF @$$CC, EQ, 0 
12) MSG T="SUCCESSFUL COMPLETION: CODE = @$$CC" 
13) • ELSE 
14) MSG T="UNSUCCESSFUL COMPLETION: CODE = @$$CC" 
15) .ENDIF 

In lines 7 through 9 the example proc employs the .IF/.ENDIF construct, and in lines 11 through 15 
the .IF/.ELSE/.ENDIF construct. .IF, .ELSE, and .ENDIF are SCI primitives. Their usage is similar to 
that in most programming languages. 

In order to explain lines 7 through 9, it is necessary to review the topic of SCI synonyms. These are 
short words or acronyms which appear in procs preceded by the"@" sign, and which function as 
macros. That is, before a line containing a synomym is executed, a value is substituted for the 
synonym. In line 7, $$CC is a synonym and will be replaced before execution with a four-digit hex
adecimal completion code returned by a command processor. The value of the code indicates 
whether the compilation initiated by the XCCF command was successful. 

$$CC is a global synonym; that is, a synonym whose value is set by the DX10 operating system and 
made available to a user automatically. You can also define your own personal synonyms by using 
the SCI command AS (Assign Synonym) or the primitive .SYN (discussed in the next example). 
Most typically, synonyms are used to substitute for long pathnames, but they can also substitute 
for SCI commands, complete with argument lists. For a complete discussion of synonyms, refer to 
the DX10 Systems Programmer's Guide. 

Depending on the value of the compilation completion code $$CC, the compiled program is exe
cuted with the XCPF command (Execute COBOL Program File) in proc line 8. Whatever the result 
of the compilation attempt, an appropriate message is displayed at the terminal by means of the 
.IF/.ELSE/.ENDIF control structure in lines 11 through 15. This completes the operations per
formed by the proc. 

10.3.2 Example 2 
Figure 10-2 shows an example of a user-supplied command procedure to execute a COBOL task. 
As shown, both primitives and other command procedures are used to assign needed synonyms, 
create necessary directories, and assign LUNOs. Note the use of asterisks, as an alternative to 
exclamation points, to denote comment lines. Unlike exclamation points, asterisks must be 
placed in column 1 to establish a line as a non-executing comment. As in the previous example, 
the line numbers appearing to the left of the listing are not part of the proc, but are included to 
facilitate the line-by-line explanation that follows. 

2270521-9701 10·3 



Using SCI Command Procedures to Execute COBOL Tasks 

1) SALES (SALES ANALYSIS)=3, 
2) COMPANY NAME = *ACNM(@CNAME) 
3) * 
4) .SYN CNAME = "&COMPANY NAME" 
5) • SYN CMAS = "@CNAME. CMAS" 
6) • SYN OUTF I LE = "@CNAME. PR I NT" 
7) * 
8) CFDIR PATH = "@CNAME", MAX=2 
9) * 

10) AL ACCESS=.ARPROG, PR=YES 
11) * 
12) XCTF P=@$$LU, T=SALEANAL 
13) * 
14) .SHOW @OUTFILE 
15) * 
16) MSG TEXT="PRINT RESULTS (Y/N)?", REPLY=ANS 
17) * 
18) .IF @ANS, LT, "Y" 
19) • EXIT 
20) • ENDI F 
21) * 
22) MSG TEXT="HOW MANY COPIES?", REPLY=NUMCOPIES 
23) * 
24) • LOOP 
25) .WHILE @NUMCOPIES, GT, 0 
26) PF FILE PATHNAME = @OUTFILE, LISTING DEVICE = LP01 
27) .EVAL NUMCOPIES = @NUMCOPIES - 1 
28) • REPEAT 
29) * 
30) • SYN NUMCOPI ES='"' 
31) • SYN CMAS='"' I OUTF I LE="" I ANS="" 
32) * 
33) DD PATHNAME = @CNAME, ARE YOU SURE? = Y 
34) * 
35) RL L=@$$LU 

Figure 10·2. Tailored SCI Procedure 

The proc (SALES) functions as follows: 

1) SALES (SALES ANALYSIS)=3, 

In line 1, the proc's name is defined, an expansion provided for that name, and a privilege level of 3 
set. The latter means that only users at privilege level 3 or higher will be able to execute the proc. 

2) COMPANY NAME = *ACNM(@CNAME) 

Because a variable (COMPANY NAME) is set to an input type (ACNM, for ACcess NaMe), line 2 
results in an interactive prompt. The user is asked to supply a value for COMPANY NAME. This will 
be assigned later (in line 4) to the synonym CNAME. 

10·4 2270521-9701 



Using SCI Command Procedures to Execute COBOL Tasks 

Because a value (@CNAME) is given in parentheses following the ACNM keyword, that value will be 
displayed at the terminal along with the prompt. It constitutes a default response to the prompt. 

The asterisk preceding the input type ACNM indicates to SCI that a reply to this prompt is 
optional. The user may choose not to input any value in response to the prompt. This is done by 
pressing the Return key without entering a value. Such a response, taken in concert with the speci
fication of a default response, constitutes acceptance of the default. 

4) • SYN CNAME = "&COMPANY NAME" 

In line 4, the ampersand(&) preceding COMPANY NAME tells SCI to use the value entered by the 
user when he was prompted for COMPANY NAME by the statement in line 2. If he entered RETURN 
to accept the default (@CNAME), the value for that synonym will be used for &COMPANY NAME. In 
either case, a new value wi 11 be set for the synonym CNAM E, equal to whatever has been passed as 
&COMPANY NAME. 

Note the difference between a synonym (preceded by @) and the user response to a prompt 
(preceded by&). Although both function as placeholders for some other literal, the user response 
is local to the proc which prompted for it. The synonym, by contrast, is available to any proc or 
command referencing it, until it is specifically removed from the user's synonym table. Thus if the 
proc above were to bid another proc, @CNAME would be defined for that second proc, whereas 
&COMPANY NAME would not. 

5) .SYN CMAS = "@CNAME.CMAS" 
6) .SYN OUTFILE = "@CNAME.PRINT" 

In lines 5 and 6, the .SYN primitive is invoked to assign the synonyms CMAS and OUTFILE using 
the synonym CNAME as a directory path. The synonyms assigned are employed within the user's 
COBOL program. The proc may thus be directed, by means of interactive responses, to receive its 
input from, and direct its output to, different files at different times. It will be unnecessary to 
change (and recompile, and relink) the referenced COBOL program. 

8) CFDIR PATH = "@CNAME", MAX=2 

In line 8, the SCI command CFDIR (Create File DIRectory) creates a directory using synonym 
CNAME as the directory access name. This will be used to store output files temporarily. 

10) AL ACCESS=.ARPROG, PR=YES 

In line 10, the SCI command AL assigns a LUNO to the program file containing the task to be exe
cuted. $$LU is a global synonym automatically set by SCI to the LUNO number assigned. 

12) XCTF P=@$$LU, T=SALEANAL 

The SCI command XCTF is invoked in line 12 to execute the COBOL task in foreground mode. The 
values given for the variables P and T satisfy the requirements of the command. 

14) .SHOW @OUTFILE 

In line 14, the .SHOW primitive is used to display the output file on the VDT screen. 

2270521-9701 10·5 



Using SCI Command Procedures to Execute COBOL Tasks 

16) MSG TEXT=" PRINT RESULTS (Y /N) ?", REPLY=ANS 
17) * 
18) • IF @ANS, LT I "Y" 
19) • EXIT 
20) • ENDI F 
21) * 
22) MSG TEXT="HOW MANY COPIES?", REPLY=NUMCOPIES 

In lines 16 through 20 the user is asked whether a printout of the run's results is desired. A nega· 
tive reply causes the proc to be exited (line 19). If the user indicates he does want a printout, he is 
asked how many copies (line 22). 

24) • LOOP 
25) .WHILE @NUMCOPIES, GT, 0 
26) PF FILE PATHNAME = @OUTFILE, LISTING DEVICE = LP01 
27) .EVAL NUMCOPIES = @NUMCOPIES - 1 
28) • REPEAT 

The primitives .LOOP, .WHILE, and .REPEAT in lines 24 through 28 comprise a control structure 
that functions like loop constructs in other programming languages. The loop begins with a check 
on the value of the integer-valued synonym NUMCOPIES. If it is positive, the SCI command PF 
(Print File) is issued, with OUTFILE the destination. The primitive .EVAL performs the specified 
arithmetic on NUMCOPIES, reducing it by 1. (Note that NUMCOPIES, being a synonym, is stored 
as a character string; nevertheless, this character string must represent an integer in order to be 
used with .EVAL .) The .REPEAT primitive signals the boundary of the loop. Hence, control returns 
to line 25, and the loop is continued until the value of NUMCOPIES has been reduced to 0. 

30) .SYN NUMCOPIES="" 
31) .SYN CMAS="", OUTFILE=1111 ,ANS=1111 

32) * 
33) DD PATHNAME = @CNAME, ARE YOU SURE? = y 
34) * 
35) RL L=@$$LU 

The proc has now finished the work it was created to do, and the remaining statements enact 
cleanup operations. The synonyms NUMCOPIES, CMAS, OUTFILE, and ANS are removed from the 
user's synonym list by being assigned null values (lines 30 and 31). The directory CNAME, created 
to retain output until any requested printouts are performed, is now deleted with the SCI command 
DD (Delete Directory). Finally, the LUNO assigned in line 10 is released (line 35). 

10.3.3 Example 3 
When a procedure bids a processor (COBOL task), SCI places all the parameters specified in the 
PARMS option of the bid primitive (.BID, .DBID, or .QBID) into a table in the task communications 
area (TCA). Parameters 1 through 5 are used by COBOL; parameters 6 through 8 must be reserved 
for future use. If it is desired to obtain the parameters from the TCA, the processor must be coded 
appropriately. The procedure shown in Figure 10-3 illustrates how to pass an additional parameter 
to the COBOL run-time interpreter. The COBOL task is executed by the .BID primitive. 

10·6 2270521-9701 



Using SCI Command Procedures to Execute COBOL Tasks 

1) SALES (SALES ANALYSIS)=3, 
2) COMPANY NAME= *ACNMC@CNAME), 
3) PROGRAM FI LE LUNO = I NT< "@$X CT$P") , 
4) TASK ID OR NAME = STRING("@$XCT$T"), 
5) DEBUG MODE= YESNOCNO), 
6) MESSAGE ACCESS NAME = *ACNM("@$XCT$L"), 
7) SWITCHES = *STRING ("00000000") I 

8) FUNCTION KEYS = YESNOCNO) 
9) • SYN CNAME = "&COMPANY NAME" 

10) • SYN $XCT$P = "&PROGRAM FI LE LUNO" 
11) .SYN $XCT$T = "&TASK ID OR NAME" 
12) .SYN $XCT$L = "&MESSAGE ACCESS NAME" 
13) .BID TASK = &TASK ID OR NAME, LUNO = "&PROGRAM FILE LUNO", 
14) PARMS= (,"&DEBUG MODE",@&MES,SAGE ACCESS NAME, 
15) "&SW IT CH ES" I & FUN CT I ON KEYS,, I J I @CNAME) 
16) *** PARMS # 6, 7, & 8 ARE RESERVED FOR FUTURE COBOL USE 

Figure 10·3. COBOL Procedure 

Only a few new elements are introduced in this third example. Notice the three new input types: 
INT (integer), STRING, and YESNO. Note that the dollar signs($) used in the synonym names have 
no special meaning within the context of an SCI prompt. However, dollar signs should be used 
with care in synonym names since most global (system-defined) synonyms use them, and you 
might inadvertently redefine a global synonym needed for other purposes. 

In line 13 the .BID primitive is invoked to bid a command processor. Values passed as parameters 
to the task are those for which the user was interactively prompted. 

NOTE 

Future releases of software products from Texas Instruments may 
modify the standard command procedures such that tailored com
mand procedures utilizing the method shown in Figure 10-3 may 
require modification. 

Figure 10-4 shows a COBOL program module and illustrates the technique for retrieving additional 
SCI parameters in the module at execution time. Refer to Appendix D for details on the COBOL 
subroutine library module C$PARM. 

2270521-9701 10·7 



Using SCI Command Procedures to Execute COBOL Tasks 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG1004 
MANUAL.PG.OBJ.FIG1004 
MANUAL.PG.LST.FIG1004 
M 
80 
55 
1000 

PAGE 1 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

DEBUG PG/LN A ... B ...................................................... . 

>0000 
>0000 
>OOOA 
>OOOC 
>OOOC 
>0014 
>001E 

IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOLPRM. 

* THIS PROGRAM WAS DESIGNED TO ILLUSTRATE A METHOD 
* OF OBTAINING SCI BID PARAMETERS THRU COBOL. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
01 ACTION PIC 99. 
01 ERR PIC XX. 
01 PARM-NO PIC S99 COMP-1. 
01 PARMS PIC XC40) VALUE II II 

PROCEDURE DIVISION. 
MAIN-PROG. 

PERFORM GET-PARM UNTIL ACTION = 0. 
STOP RUN. 

GET-PARM. 
DISPLAY "PARM NO?:" LINE 1 ERASE. 
ACCEPT ACTION LINE 1 POSITION 10 PROMPT. 
IF ACTION NOT = 0 

MOVE ACTION TO PARM-NO 
CALL "C$PARM" USING ERR PARM-NO PARMS 
DISPLAY "PARMS = " PARMS LINE 4 
ACCEPT ACTION PROMPT. 

ZZZZZZ END PROGRAM. *** END OF FILE 

Figure 10·4. COBOL Program Module Retrieving Additional SCI Parameters (Sheet 1of2) 

10·8 2270521-9701 



Using SCI Command Procedures to Execute COBOL Tasks 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 2 NSU 0 NUMERIC UNSIGNED ACTION 

>002C 2 NSU 0 NUMERIC UNSIGNED PARM-NO 

>OOZE 40 ANS 0 ALPHANUMERIC PARMS 

READ ONLY BYTE SIZE = >0000 

READ/WRITE BYTE SIZE = >OOSE 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >012E 

0 ERRORS 

0 WARNINGS 

DXCBL 
PROGRAM 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
USING COUNT 

C$PARM 2 

PAGE 3 

PAGE 4 

Figure 10·4. COBOL Program Module Retrieving Additional SCI Parameters (Sheet 2 of 2) 

2270521-9701 10·9/10·10 





11 

COBOL Device-Dependent Attributes 

11.1 FUNCTION KEYS 

Function keys are accessible to COBOL programs through the use of the ACCEPT statement with 
the ON EXCEPTION option. This option causes a function key terminator character to be mapped 
to a user code (refer to Table 11·1), which is returned to the program. The ON EXCEPTION option is 
executed only if a function key terminates the input. Refer to the COBOL Reference Manual for 
complete details of the ACCEPT statement with the ON EXCEPTION option. 

Function keys include event keys, system edit keys, and task edit keys. Event keys terminate input 
and cause immediate return to the calling routine. If input is not in progress, the next executed 
terminal input is terminated by the event character. Data is not lost. Event keys on the VDT include 
F1, F2, F3, F4, F5, F6, F7, F8, Command, Print, F9, F10, F11, F12, F13, and F14. System edit keys 
include cursor and display control keys including Erase Field, Previous Character, Forward Tab, 
Skip, Home, Next Field, Return, Erase Input, Delete Character, Insert Character, Next Character, 
and Attention. Some of these keys are also task edit keys. Task edit keys include Forward Tab, 
Next Line, Skip, Home, Next Field, Return, Erase Input, Initialize Input, Enter, Previous Field, and 
Previous Line. 

2270521-9701 

NOTE 

Because the Forward Tab and Return keys have a special termina· 
tion effect on COBOL programs, they are not treated as function 
keys; the code returned is always zero. 

11·1 



COBOL Device-Dependent Attributes 

Table 11·1. Function Key Mapping 

VDT 
Key Character Function Code 

F1 01 
F2 02 
F3 03 
F4 04 
F5 05 
F6 06 
F7 07 
F8 08 
F9 09 
F10 10 
F11 11 
F12 12 
F13 13 
F14 14 . 
Command 40 
Exit 41 
Print 49 
Previous Line 52 
Next Line 53 
Home 54 
Next Field 55 
Previous Field 56 
Skip 57 
Initialize Input 59 
Erase Input 61 
Enter 64 

11.2 LOW VOLUME INPUT/OUTPUT(l/0) 

The program listed in Figure 11·1 illustrates the use of the COBOL statements ACCEPT and 
DISPLAY. The program is discussed in the following paragraphs. The LINE number preceding each 
explanation corresponds to the line number where the statements appear in the listing in 
Figure 11-1. Refer to the COBOL Reference Manual for syntax and other more detailed information 
relating to the ACCEPT and DISPLAY statements and optional phrases. 

LINE 27: 

11·2 

The DISPLAY statement displays a specified literal. The ERASE phrase clears the VDT screen 
prior to displaying the specified literal on line 1. If the LINE phrase is not present, the literal is 
displayed on line 2. 

2270521-9701 



COBOL Device-Dependent Attributes 

LINE 29: 
The ACCEPT statement receives data from the screen. The OFF phrase allows data to be 
input at the VDT keyboard without being displayed on the VDT screen. The data is entered 
into the buffer at line 1, position 20. If the LINE phrase is not present, the data is displayed at 
the next line following the line currently containing the cursor. If no POSITION phrase is 
present, the position defaults to 1. 

LINE31: 
This DISPLAY statement contains multiple operands. The first operand is displayed at line 2, 
position 1. Position 1 is the default for the first of multiple operands when the POSITION 
phrase is not present. The cursor position is the next character position after the operand. 
The second operand is displayed on line 3, position 2. Since the LINE phrase is not present, 
the operand is displayed on the next line following the line currently containing the cursor_ 

If the POSITION phrase is not present when a DISPLAY or ACCEPT statement is used, the 
second operand's position is 0, which is the default for all operands after the first in a mul
tiple operand ACCEPT or DISPLAY statement. Also, the second operand is displayed on the 
same line at the current cursor position. 

LINE 34: 
This ACCEPT statement contains multiple operands. The first operand is accepted at line 2, 
position 24. The second operand is accepted at line 3, position 24. In both cases, the line and 
position values are specified to meet program requirements. 

If the LINE phrase is not present for the two operands (PRINCIPAL and INT-RATE), the first 
operand is displayed on line 4; the second operand is displayed on line 5. If the POSITION 
phrase is not present for the two operands, the operands are accepted at position 1, which 
overwrites the instructional literals previously written at those positions. 

For both operands, the CONVERT phrase is specified to change the accepted data into the 
receiving field format. Operations such as removal of illegal characters, decimal points, and 
commas; setting the correct sign if numeric; justification; and data type conversions take 
place if the CONVERT phrase is present. 

The ECHO phrase is specified to redisplay the accepted data item after any necessary con
versions are performed. It has meaning only if the CONVERT phrase is also present. The line 
and position of the data is the same on the echo as when originally accepted. 

The ON EXCEPTION phrase forces reporting of errors occurring during the CONVERT oper
ation. It is also used to report an ACCEPT operation terminated by a function key. This option 
is only available if the COBOL task was executed with the FUNCTION KEYS enabled. The ON 
EXCEPTION phrase is only required for the last operand if the ACCEPT statement contains 
multiple operands. 

LINE 46: 
This DISPLAY statement also contains multiple operands. The purpose is to display a literal 
and a data item on the same line_ The first operand is displayed at line number 4, as specified. 
The default position is 1 for the first operand of a multiple operand DISPLAY statement. 

2270521-9701 11-3 



COBOL Device-Dependent Attributes 

The second operand must specify the same line number as the first operand, or it will be dis
played on the following line. The position on the first line must also be specified so as not to 
overwrite the first operand displayed. 

The SIZE phrase is present on the second operand to truncate the least significant character 
position. 

LINE 49: 
This DISPLAY statement illustrates a way of generating a display of any specified size up to 
80 by specifying the SIZE phrase with either the figurative constant SPACE or QUOTE as the 
operand. 

LINE51: 
This DISPLAY statement illustrates the results of displaying an operand at a line and position 
value that is greater than the maximum defined for the VDT device. 

On a VDT, the maximum number of lines displayed is 24. The maximum number of characters 
on a line is 80. 

When a line number is specified that is greater than the maximum defined line number, it is 
adjusted modulo the maximum line number. In this case, the data is displayed on Line 8. 

When a position number is specified that is greater than the maximum defined position 
number, it is adjusted modulo the maximum position number. In this case, the data is 
displayed at position 10. 

LINE 53: 

11-4 

The ACCEPT statement accepts 10 characters of data from the VDT screen at line 8, position 
5. This 10-character input field overlaps data previously displayed on the screen. 

If the Return key is pressed before 10 data characters are entered, the TAB phrase causes all 
data characters from the beginning through the end of the field, including the previously dis
played data, to be received. If the TAB phrase is not present, only the entered data characters 
are received. However, if function keys are enabled when the program is executed, all data 
characters are received from the beginning through the ending of the input field regardless of 
the presence of the TAB phrase. 

If 10 data characters are entered, the TAB phrase forces a wait until the Forward Tab key or 
Return key is pressed. All other data characters are ignored when waiting for the Forward Tab 
or Return key. 

The PROMPT phrase initializes the input field prior to accepting any data characters. This 
prevents reception of erroneous data remaining on the VDT screen from prior operations. If 
program requirements dictate acceptance of previously displayed information, the Skip key 
can be pressed by the user at the terminal to clear a field of any remaining data prior to 
acceptance. The Skip key fills the field with blanks from the cursor position through the end 
of the field. 

2270521-9701 



COBOL Device-Dependent Attributes 

LINES 57, 59: 
These ACCEPT statements illustrate how to accept numeric data items whose usage is not 
DISPLAY. The CONVERT phrase must be present to convert the ASCII input to the specified 
format of the receiving operand. 

Use the SIZE phrase when accepting numeric operands described other than DISPLAY. The 
SIZE phrase specifies a length equivalent to the length given in the PICTURE clause for the 
receiving operand. 

LINE61: 
This ACCEPT statement illustrates how to change the prompt character. Use the keyword 
PROMPT followed by the desired one-character, nonnumeric literal enclosed in quotes. The 
default PROMPT character is the underscore. 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE CLINES): 

MANUAL.PG.SRC.FIG1101 
DUMY 
MANUAL.PG.LST.FIG1101 
M 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

DEBUG PG/LN A ... B ...................................................... . 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

2270521-97<. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ACCDIS. 

* THIS PROGRAM WAS DEVELOPED TO ILLUSTRATE 
* THE EFFECTS OF THE OPTIONAL PHRASES ON THE 
* ACCEPT/DISPLAY COMMANDS 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 ASTERISKS PIC XC10) VALUE ALL "*" 
01 PASSCODE PIC X(6). 
01 PRINCIPAL PIC S999V99. 
01 INT-RATE PIC 99V999. 
01 INTEREST PIC 999V999. 
01 STATUS-CODE PIC 9(4). 
01 CVRT-FUNC REDEFINES STATUS-CODE. 

02 CVRT PIC 99. 
02 FUNC PIC 00. 

01 COMP-FOUR PIC S99 COMP-4. 
01 COMP-ONE PIC S999 COMP-1. 

Figure 11 ·1. Use of ACCEPT and DISPLAY Statements (Sheet 1 of 3) 

11·5 



COBOL Device-Dependent Attributes 

23 
24 
25 >0000 
26 
27 >0000 
28 
29 >0008 
30 
31 >0013 
32 
33 
34 >001F 
35 
36 
37 
38 >0035 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 >005B 
50 
51 >0063 
52 
53 >006B 
54 
55 >0075 
56 

DXCBL 
LINE DEBUG 

57 >0079 
58 
59 >0083 
60 
61 >0080 
62 
63 >0094 
64 

11·6 

01 ACTION PIC XC4). 
PROCEDURE DIVISION. 
MAIN-PROG. 

DISPLAY "ENTER PASSCODE:" LINE 1 ERASE. 

ACCEPT PASSCODE LINE 1 POSITION 20 OFF. 

DISPLAY "INPUT PRINCIPAL AMOUNT: " LINE 2 
"INPUT INTEREST RATE:" POSITION 1. 

ACCEPT PRINCIPAL LINE 2 POS 24 PROMPT CONVERT ECHO 
INT-RATE LINE 3 POS 24 PROMPT CONVERT ECHO 

ON EXCEPTION STATUS-CODE CONTINUE. 

IF CVRT = 98 

DISPLAY "DATA CONVERSION ERROR" LINE 4 

ELSE 

COMPUTE INTEREST = PRINCIPAL * CINT-RATE I 100) 

DISPLAY "COMPUTED INTEREST:" LINE 4 
INTEREST LINE 4 POSITION 24 SIZE 5. 

DISPLAY QUOTE LINE 6 SIZE 30. 

DISPLAY ASTERISKS LINE 32 POSITION 90. 

ACCEPT ASTERISKS LINE 8 POSITION 5 TAB. 

DISPLAY ASTERISKS. 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ....•........•......................................... 

ACCEPT COMP-FOUR LINE 12 SIZE 2 PROMPT CONVERT. 

ACCEPT COMP-ONE LINE 13 SIZE 3 PROMPT CONVERT. 

ACCEPT ACTION PROMPT "?". 

STOP RUN. 
ZZZZZZ END PROGRAM. *** END OF FILE 

Figure 11 ·1. Use of ACCEPT and DISPLAY Statements (Sheet 2 of 3) 

2270521-9701 



COBOL Device-Dependent Attributes 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 10 ANS 0 ALPHANUMERIC ASTERISKS 

>0034 6 ANS 0 ALPHANUMERIC PASS CODE 

>003A 6 NSS 0 NUMERIC SIGNED PRINCIPAL 

>0040 5 NSU 0 NUMERIC UNSIGNED INT-RATE 

>0046 6 NSU 0 NUMERIC UNSIGNED INTEREST 

>004C 4 NSU 0 NUMERIC UNSIGNED STATUS-CODE 

>004C 4 GRP 0 GROUP CVRT-FUNC 
>004C 2 NSU 0 NUMERIC UNSIGNED CVRT 
>004E 2 NSU 0 NUMERIC UNSIGNED FUNC 

>0050 1 NMS 0 MULTI BINARY SIGNED COMP-FOUR 

>0052 2 NBS 0 BINARY SIGNED COMP-ONE 

>0054 4 ANS 0 ALPHANUMERIC ACTION 

READ ONLY BYTE SIZE = >01DC 

READ/WRITE BYTE SIZE = >005A 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0236 
2 

0 ERRORS 

0 WARNINGS 

Figure 11 ·1. Use of ACCEPT and DISPLAY Statements (Sheet 3 of 3) 

The diagram in Figure 11-2 shows the contents of the VDT screen at completion of the program. 
Both line numbers and position numbers are indicated in the diagram. Line numbers are enclosed 
in parentheses to the right of the diagram; position numbers appear above the diagram. Both line 
and position numbers correspond to discussions in the explanation mentioned previously. 

2270521-9701 11·7 



COBOL Device-Dependent Attributes 

0 0 1 2 
1 5 0 4 

(Position Numbers) 

ENTER PASSCODE: 
INPUT PR I NC I PAL AMOUNT: 20000N 
INPUT INTEREST RATE: 05500 
COMPUTED INTEREST: 01100 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

AAA ********** 
AAA***** 

15 
128 
???? 

(Line 
Numbers) 

(1) 

(2) 
(3) 

(4) 
(5) 
(6) 

(7) 

(8) 
(9) 

(10) 
(11) 

( 12) 
(13) 
(14) 

Figure 11 ·2. Contents of VDT Screen at Program Completion 

11.3 GRAPHIC INPUT/OUTPUT 

Graphic characters may be represented on VDTs by calling a subprogram to turn on the graphic 
flag in the SVC call block. To enable the graphics option with the CALL statement, use: 

CALL "C$GRPH". 

To disable the graphics option, use: 

CALL "C$GROF". 

The routine "C$GRPH" need only be called one time (prior to the first ACCEPT/DISPLAY transfer 
of graphics characters). Refer to the COBOL Reference Manual for details on the ACCEPT and 
DISPLAY commands. Graphics are enabled for the duration of the program run or until "C$GROF" 
is called to disable the graphics option. 

When graphics have been enabled by a call to C$GRPH, control characters (characters >00 
through > 1 F) are displayed as graphic characters for input and output. All characters are treated 
as data; no action is taken on control characters that are requested. 

Refer to Appendix D for a sample link control file to access routines in the COBOL subroutine 
library. 

In the following figures, the graphics capabilities are enabled by calling the subroutine C$GRPH 
and disabled by calling C$GROF. Graphic characters must be generated as binary fields either by 
use of COMP-1 data items as in Figure 11-3 or COMP-4 data items as in Figure 11·4. 

11·8 2270521-9701 



COBOL Device-Dependent Attributes 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG1102 
DUMY 
MANUAL.PG.LST.FIG1102 
M 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 

1 

LINE DEBUG 
1 

PG/LN A ... B ...................................................... . 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

>0000 
>0000 
>0008 
>OOOC 
>OOOC 
>0010 
>0018 
>001C 
>0024 
>0028 
>0030 
>0034 
>003C 
>0040 

38 >0054 
39 >0058 
40 

2270521-9701 

IDENTIFICATION DIVISION. 
PROGRAM-ID. GRAPHICS. 

* THIS PROGRAM BOXES THE VDT SCREEN WITH A SOLID LINE. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 ACTION PIC X. 
01 DISP-CHAR. 

02 FILLER PIC X. 
02 CHR PIC X. 

01 COMP-CHAR REDEFINES DI SP-CHAR. 
02 WRD PIC 99 COMP-1. 

01 ROW PIC 99. 
01 COL PIC 99. 
01 LIN1 PIC 99 VALUE 1 . 
01 LIN2 PIC 99 VALUE 24. 
01 POS1 PIC 99 VALUE 1 . 
01 POS2 PIC 99 VALUE 80. 
PROCEDURE DIVISION. 
MAIN-PROGRAM. 

DISPLAY " " LINE 1 ERASE. 
CALL "C$GRPH". 

DISPLAY-BOX. 
MOVE >OA TO WRD. 
DISPLAY CHR LINE POSITION 1. 
MOVE >1A TO WRD. 
DISPLAY CHR LINE POSITION 80. 
MOVE >OD TO WRD. 
DISPLAY CH~ LINE 24 POSITION 1. 
MOVE >10 TO WRD. 
DISPLAY CHR LINE 24 POSITION 80. 
MOVE >16 TO WRD. 
PERFORM DISPLAY-ROLL VARYING COL FROM 2 BY 1 UNTIL 

COL > 79. 
MOVE >09 TO WRD. 
PERFORM DISPLAY-COL VARYING ROW FROM 2 BY 1 UNTIL 

ROW > 23. 

Figure 11 ·3. Graphics (Sheet 1 of 2) 

11·9 



COBOL Device-Dependent Attributes 

41 >006C CALL "C$GROF". 
4Z >006E ACCEPT ACTION LINE 1Z POSITION 40 PROMPT. 
43 >0078 STOP RUN. 
44 >007A DISPLAY-ROLL. 
45 >007A DISPLAY CHR LINE LIN1 POSITION COL 
46 CHR LINE LINZ POSITION COL. 
47 >008C DI SPLAY-COL. 
48 >008C DISPLAY CHR LINE ROW POSITION POS1 
49 CHR LINE ROW POSIT ION POSZ. 
50 >009E END-DSP. EXIT. 
51 zzzzzz END PROGRAM. *** END OF FILE 

DXCBL L.R. V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>OOZA 1 ANS 0 ALPHANUMERIC ACTION 

>OOZC z GRP 0 GROUP DI SP-CHAR 
>OOZD 1 ANS 0 ALPHANUMERIC CHR 

>OOZC z GRP 0 GROUP COMP-CHAR 
>OOZC z NBS 0 BINARY SIGNED WRD 

>OOZE z NSU 0 NUMERIC UNSIGNED ROW 

>0030 z NSU 0 NUMERIC UNSIGNED COL 

>003Z z NSU 0 NUMERIC UNSIGNED LIN1 

>0034 z NSU 0 NUMERIC UNSIGNED LINZ 

>0036 z NSU 0 NUMERIC UNSIGNED POS1 

>0038 z NSU 0 NUMERIC UNSIGNED POSZ 

READ ONLY BYTE SIZE = >017E 

READ/WRITE BYTE SIZE = >0044 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >01CZ 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PROGRAM USING COUNT 

C$GROF 0 
C$GRPH 0 

Figure 11 ·3. Graphics (Sheet 2 of 2) 

11·10 2270521-9701 



COBOL Device-Dependent Attributes 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG1103 
DUMY 
MANUAL.PG.LST.FIG1103 
M 
80 
55 
1000 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

PAGE 1 

PAGE 2 
LINE DEBUG PG/LN A ... B ....................................................... 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. GRAPHIC-CHARACTERS. 
3 * THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL 
4 * DEMONSTRATION TO TEST GRAPHICS CAPABILITY VIA 
5 * "DISPLAY" COMMAND. 
6 ENVIRONMENT DIVISION. 
7 CONFIGURATION SECTION. 
8 SOURCE-COMPUTER. TI-990. 
9 OBJECT-COMPUTER. TI-990. 

10 DATA DIVISION. 
11 WORKING-STORAGE SECTION. 
12 01 GRAPHICS-HEX-CHARACTERS. 
13 02 X-00 PIC 99 COMP-4 VALUE >00. 
14 02 X-01 PIC 99 COMP-4 VALUE >01 . 
15 02 X-02 PIC 99 COMP-4 VALUE >02. 
16 02 X-03 PIC 99 COMP-4 VALUE >03. 
17 02 X-04 PIC 99 COMP-4 VALUE >04. 
18 02 X-05 PIC 99 COMP-4 VALUE >OS. 
19 02 X-06 PIC 99 COMP-4 VALUE >06. 
20 02 X-07 PIC 99 COMP-4 VALUE >07. 
21 02 X-08 PIC 99 COMP-4 VALUE >08. 
22 02 X-09 PIC 99 COMP-4 VALUE >09. 
23 02 X-OA PIC 99 COMP-4 VALUE >OA. 
24 02 X-OB PIC 99 COMP-4 VALUE >OB. 
25 02 x-oc PIC 99 COMP-4 VALUE >OC. 
26 02 X-OD PIC 99 COMP-4 VALUE >OD. 

Figure 11 ·4. Graphic Characters (Sheet 1 of 4) 

2270521-9701 11 ·11 



COBOL Device-Dependent Attributes 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
. 45 
46 
47 
48 
49 
so 
51 
52 

DXCBL 
LINE DEBUG 

53 
54 
55 >0000 
56 >0000 
57 >0008 
58 >OOOA 
59 
60 >001E 
61 >0020 
62 >0026 
63 >0028 
64 >0028 
65 >002E 
66 >0038 
67 >0040 
68 >004A 
69 >0052 
70 >OOSC 
71 >0064 
72 >006E 
73 

11·12 

02 X-OE PIC 99 COMP-4 VALUE >OE. 
02 X-OF PIC 99 COMP-4 VALUE >OF. 
02 X-10 PIC 99 COMP-4 VALUE >10. 
02 X-11 PIC 99 COMP-4 VALUE >11. 
02 X-12 PIC 99 COMP-4 VALUE >12. 
02 X-13 PIC 99 COMP-4 VALUE >13. 
02 X-14 PIC 99 COMP-4 VALUE >14. 
02 X-15 PIC 99 COMP-4 VALUE >15. 
02 X-16 PIC 99 COMP-4 VALUE >16. 
02 X-17 PIC 99 COMP-4 VALUE >17. 
02 X-18 PIC 99 COMP-4 VALUE >18. 
02 X-19 PIC 99 COMP-4 VALUE >19. 
02 X-1A PIC 99 COMP-4 VALUE >1A. 
02 X-1B PIC 99 COMP-4 VALUE >1B. 
02 X-1C PIC 99 COMP-4 VALUE >1 c. 
02 X-10 PIC 99 COMP-4 VALUE >1 D. 
02 X-1E PIC 99 COMP-4 VALUE >1 E. 
02 X-1F PIC 99 COMP-4 VALUE >1F. 

01 GRAPHIC-HEX-CHARS REDEFINES GRAPHIC-HEX-CHARACTERS . 
02 HEX-CHAR PIC 99 COMP-4 OCCURS 32 INDEXfD BY X. 

01 ACTION PIC X. 
01 DI SP-HEX-CHAR. 

02 HEX PIC 99 COMP-4. 
02 CHR REDEFINES HEX PIC X. 

01 ROW PIC 99 VALUE 0. 
01 COL PIC 99 VALUE 0. 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ...................................................... . 

I 
PROCEDURE DIVISION. 
MAIN-PROGRAM. 

DISPLAY II II LINE 1 ERASE. 
CALL 11 C$GRPH 11 • 

PERFORM DISPLAY-GRAPHIC VARYING X FROM 1 BY 1 
UNTIL X > 8. 

CALL 11 C$GROF 11 • 

ACCEPT ACTION LINE 24. 
STOP RUN. 

DISPLAY-GRAPHIC. 
ADD 2 TO ROW. 
MOVE HEX-CHAR ex> TO HEX. 
DISPLAY CHR LINE ROW POSITION 5. 
MOVE HEX-CHAR ex + 8) TO HEX. 
DISPLAY CHR LINE ROW POSITION 25. 
MOVE HEX-CHAR ex + 16) TO HEX. 
DISPLAY CHR LINE ROW POSITION 45. 
MOVE HEX-CHAR ex + 24) TO HEX. 
DISPLAY CHR LINE ROW POSITION 65. 

ZZZZZZ END PROGRAM. 

Figure 11 ·4. Graphic Characters (Sheet 2 of 4) 

*** END OF FILE 

2270521-9701 



COBOL Device-Dependent Attributes 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 32 GRP 0 GROUP GRAPHIC-HEX-CHARACTERS 
>002A 1 NMB 0 MULTI BINARY X-00 
>002B 1 NMB 0 MULTI BINARY X-01 
>002C 1 NMB 0 MULTI BINARY X-02 
>0020 1 NMB 0 MULTI BINARY X-03 
>OOZE 1 NMB 0 MULTI BINARY X-04 
>002F 1 NMB 0 MULTI BINARY X-05 
>0030 1 NMB 0 MULTI BINARY X-06 
>0031 1 NMB 0 MULTI BINARY X-07 
>0032 1 NMB 0 MULTI BINARY X-08 
>0033 1 NMB 0 MULTI BINARY X-09 
>0034 1 NMB 0 MULTI BINARY X-OA 
>0035 1 NMB 0 MULTI BINARY X-OB 
>0036 1 NMB 0 MULTI BINARY x-oc 
>0037 1 NMB 0 MULTI BINARY X-00 
>0038 1 NMB 0 MULTI BINARY X-OE 
>0039 1 NMB 0 MULTI BINARY X-OF 
>003A 1 NMB 0 MULTI BINARY X-10 
>003B 1 NMB 0 MULTI BINARY X-11 
>003C 1 NMB 0 MULTI BINARY X-12 
>0030 1 NMB 0 MULTI BINARY X-13 
>003E 1 NMB 0 MULTI BINARY X-14 
>003F 1 NMB 0 MULTI BINARY X-15 
>0040 1 NMB 0 MULTI BINARY X-16 
>0041 1 NMB 0 MULTI BINARY X-17 
>0042 1 NMB 0 MULTI BINARY X-18 
>0043 1 NMB 0 MULTI BINARY X-19 
>0044 1 NMB 0 MULTI BINARY X-1A 
>0045 1 NMB 0 MULTI BINARY X-1B 
>0046 1 NMB 0 MULTI BINARY X-1C 
>0047 1 NMB 0 MULTI BINARY X-10 
>0048 1 NMB 0 MULTI BINARY X-1E 
>0049 1 NMB 0 MULTI BINARY X-1F 

>002A 32 GRP 0 GROUP GRAPHIC-HEX-CHARS 

>0052 2 NBS 0 INDEX-NAME x 
>002A 1 NMB 1 MULTI BINARY HEX-CHAR 

>004A ANS 0 ALPHANUMERIC ACTION 

>004C 1 GRP 0 GROUP DI SP-HEX-CHAR 
>004C 1 NMB 0 MULTI BINARY HEX 
>004C 1 ANS 0 ALPHANUMERIC CHR 

>004E 2 NSU 0 NUMERIC UNSIGNED ROW 

>0050 2 NSU 0 NUMERIC UNSIGNED COL 

Figure 11 ·4. Graphic Characters (Sheet 3 of 4) 

2270521-9701 11·13 



COBOL Device-Dependent Attributes 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

READ ONLY BYTE SIZE = >0124 

READ/WRITE BYTE SIZE = >0058 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >017C 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
PROGRAM USING COUNT 

C$GROF 
C$GRPH 

11·14 

0 
0 

Figure 11 ·4. Graphic Characters (Sheet 4 of 4) 

PAGE 5 

PAGE 6 

2270521-9701 



12 

Error Processing 

12.1 GENERAL 

The COBOL run time retains the status of the most recent 1/0 operation requested by the COBOL 
program. The status can be either successful or unsuccessful completion, caused by either a con
dition detected by COBOL or an error detected by the operating system. 

12.2 FILE 1/0 STATUS 

If you specify the FILE STATUS clause in a file-control-entry, a status value is placed into a two
character data item. This is applicable during execution of an OPEN, CLOSE, READ, WRITE, 
REWRITE, DELETE, or START statement and before any USE procedure is executed. Table 12-1 
lists the file status codes and the 1/0 operations that can generate each code. The ANSI COBOL 
specifications define these status codes for specific 1/0 operations. Table 12-2 indicates the file 
status code that is returned for specific errors detected by the operating system. COBOL file 
status code 30 includes any error not listed under errors detected by the operating system. 

2270521-9701 12·1 



Error Processing 

Table 12·1. File Status Table 

FILE 1/0 OPERATION 

STATUS OPEN CLOSE READ WRITE REWRITE START DELETE UNLOCK 

00 x x x x x x x x 

02 x 

10 x 

21 x x 

22 x x 

23 x x x x 

24 x 

30 x x x x x x x 

34 x 

90 x x x x x 

91 x x x x x x 

92 x 

93 x 

94 x 

95 x 

96 x 

97 x x x x x 

99 x x x x 

2277280 

12·2 2270521-9701 



Table 12·2. Operating System Errors and COBOL File Status Errors 

Operating System 

Errors 

30 
31 
32 
35 
81 
02 
Others 

KIF Informative Errors 

83 
84 
85 r 

87 
88 
BO 
02 
Others 

12.3 FILE 1/0 STATUS VALUES 

COBOL 

File Status 

30 
30 
23 
30 
30 
99 
30 

.10 
22 

.23 
99 
23 
23 
99 
30 

Error Processing 

The leftmost character position of the COBOL file status data item is zero through three for ANSI· 
defined conditions and nine for implementor-defined conditions as follows: 

Value 

0 
1 
2 
3 
9 

Condition 

Successful completion 
Atend 
Invalid key 
Permanent error 
Error detected by the operating system 

The rightmost character position of the COBOL file status data item further describes the results 
of the 1/0 operation. The following list contains the COBOL file status codes and the conditions 
under which each status code can occur. 

2270521-9701 12·3 



Error Processing 

12·4 

Code Condition 

00 SUCCESSFUL COMPLETION 
The 1/0 operation completed successfully. 

02 SUCCESSFUL COMPLETION, DUPLICATE KEY 
A READ statement on a KIF completed successfully. The key value for 
the current key of reference is equal to the value of that same key in 
the next record of the current key of reference. 

10 AT END 
Sequential READ statement on a sequential, relative record, or key
indexed file is unsuccessful because an attempt was made to read a 
record but no next logical record exists in the file. 

21 INVALID KEY SEQUENCE 
Sequential WRITE statement on a KIF is unsuccessful because of a 
violation of the ascending sequence requirement for successive 
record key values. 

Sequential REWRITE statement on a KIF was unsuccessful because 
the key was not the same as the key returned by the preceding suc
cessful read. 

22 INVALID KEY DUPLICATE 
Random WRITE statement on a relative record or key-indexed file was 
unsuccessful because an attempt was made to write a record that 
would create a duplicate key. 

23 INVALID KEY NO RECORD 
Random READ, DELETE, or REWRITE statement on a relative record or 
key indexed file was unsuccessful because an attempt was made to 
reference a record identified by a key that did not exist in the file. 

Sequential START statement on a relative record or key-indexed file 
was unsuccessful because the stated comparison was not satisfied by 
any record in the file. 

24 INVALID KEY BOUNDARY 
Sequential or random WRITE statement on a relative record or key 
indexed file was unsuccessful because an attempt was made to write 
beyond the externally defined boundaries of the file. 

30 PERMANENT ERROR 
110 statement was unsuccessful because a permanent 110 error (such 
as data check, parity error, or transmission error) was detected. 

34 BOUNDARY VIOLATION 
Sequential write access on a sequential organization file was unsuc
cessful because an attempt was made to write beyond the externally 
defined boundaries of the file. 

2270521-9701 



Error Processing 

Code Condition 

90 INVALID OPERATION 
110 statement was unsuccessful because of a violation of the COBOL 
110 operation validity table. Refer to Table 12-3. 

Sequential delete or rewrite operation was unsuccessful because the 
operation was not preceded by a successful read. 

91 FILE NOT OPENED 
110 statement other than OPEN was unsuccessful because of a 
reference to an unopened file. 

92 FILE NOT CLOSED 
OPEN statement was unsuccessful because an attempt was made to 
open a file already opened. 

93 FILE NOT AVAILABLE 
OPEN statement was unsuccessful because an attempt was made to 
open a file either in the "closed with lock" state, or one for which no 
external correspondence exists. 

94 INVALID OPEN 
OPEN statement was unsuccessful because of invalid open parame
ters such as the following: 

• Open mode disagrees with select statement assignment. 

• Open extend attempted on relative record or key-indexed file. 

• Incompatibility in variable length record. 

• Key count in OPEN statement does not agree with count speci
fied in the file definition (KIF only). 

• Key displacement in OPEN statement does not agree with dis
placement specified in the file definition (KIF only). 

• Key attributes "modifiable" and "duplicatable" in OPEN state
ment does not agree with those specified in the file definition 
(KIF only). 

• Bad disk name. 

• Access name syntax problem. 

95 INVALID DEVICE 

2270521 ·9701 

OPEN statement was unsuccessful because a mismatch occurred 
between the device requested and the device assigned by the external 
correspondence. Refer to Table 12-4. 

12-5 



Error Processing 

Code Condition 

96 UNDEFINED RECORD POINTER 
Sequential READ statement for all file types was unsuccessful 
because the current record pointer was in an undefined state. This can 
occur only if a previous READ or START statement was unsuccessful. 

97 INVALID RECORD LENGTH 
WRITE statement was unsuccessful because the record length was 
outside the bounds defined by the minimum and maximum record 
sizes. The record length is in hexadecimal. 

Sequential or random REWRITE statement for all file types was unsuc
cessful because the new record length was different from that of the 
record to be rewritten. 

An OPEN statement was unsuccessful because the maximum record 
length was less than the minimum record length or the minimum 
record length was equal to zero. 

99 RECORD LOCKED/OPEN EXCLUSIVE ACCESS 
A DELETE, READ, REWRITE, or START 1/0 statement on a relative 
record or key-indexed file was unsuccessful because another task 
locked the reference record. This error can occur on execution of a 
READ statement if both a USE procedure and a FILE STATUS data item 
are in effect for the associated ti le. 

An OPEN statement is unsuccessful because another task opened the 
file with exclusive access. 

Table 12-3 shows the open mode necessary to perform various 1/0 operations for sequential, re
lative record, and key-indexed files with sequential, random, and dynamic access. Table 12-4 
shows the program-requested device class versus the corresponding actual device at execution 
time, with the permissible open modes. 

12-6 2270521-9701 



ACCESS 

s 
E 
Q 
u 
E 
N 
T 
I 
A 
L 

R 
A 
N 
D 
0 
M 

(1) 
D 
y 
N 
A 
M 
I 
c 

2277281 

2270521-9701 

Table 12·3. COBOL 1/0 Operation Validity Table 

OPERATION 

READ2 
WRITE 
REWRITE3_ 
DELEv:;~- -
START 

READ2 
WRITE 
REWRITE 
DELETE 
START2 

READ2 
WRITE 
REWRITE 
DELET~ 
START 
READ NEXT2 

NOTES: 

OPEN MODE 

INPUT OUTPUT 

SEQ REL KEY 
,'-- SEQ REL KEY 

REL KEY 

REL KEY 
REL KEY 

REL KEY 
REL KEY 

REL KEY 

SEQ = SEQUENTIAL Fl LES 
REL= RELATIVE RECORD FILES 
KEY = KEY INDEXED FILES 

1-0 

SEQ REL KEY 

SEQ REL KEY 
REL KEY 
REL KEY 

REL KEY 
REL KEY 
REL KEY 
REL KEY 

REL KEY 
REL KEY 
REL KEY 
REL KEY 
REL KEY 
REL KEY 

Error Processing 

EXTEND 

SEQ 

1, ALL ACCESSES ARE RANDOM EXCEPT READ NEXT, AND DELETE OR REWRITE 
PRECEDED BY A READ NEXT. 

2, SETS CURRENT RECORD POINTER (OPEN ALSO SETS CURRENT RECORD POINTER,) 

3. MUST BE PRECEDED BY A SUCCESSFUL READ. 

12·7 



Error Processing 

Table 12·4. Device Correspondence Table 

CORRESPONDING DEVICE 

REQUESTED 

0 

1 

2 

3 

4 

DEVICE 

RANDOM 

INPUT 

OUTPUT 

PRINT 

INPUT-
OUTPUT 

0 1 
DISK CARD READER 

IN, OUT, 
IO, EXT 

IN IN 

OUT, EXT 

OUT, EXT 

INT OUT' 
EX 

IN = OPEN MODE INPUT 
OUT = OPEN MODE OUTPUT 

10 = OPEN MODE 1-0 
EXT "' OPEN MODE EXTEND 

NOTES: 

2 3 
RESERVED PRINTER 

IN 

OUT 

OUT 

41 
TAPE 

IN 

OUT 

OUT 

IN, OUT, 
EXT 

1. TAPE INCLUDES MAGNETIC TAPE, MAGNETIC CASSETTE, VDT, AND ASR 733. 
2277282 

12.4 USE OF DECLARATIVES 

If a COBOL program is to intercept and process errors, the program must contain the USE state· 
ment in the declaratives section for each file. Also, you should specify the file-control-entry to 
receive the file status code returned on each 1/0 request. Refer to the COBOL Reference Manual 
for detailed information on the FILE STATUS clause and the USE statement. 

Program control transfers to the designated declarative procedure when any of the following 
occurs: 

• 

• 

• 

12·8 

When the leftmost character of the file status code is not equal to zero 

Upon recognition of the invalid key condition when the INVALID KEY phrase has not 
been specified in the 1/0 statement 

Upon recognition of the at-end condition when the AT END phrase has not been speci
fied in the 1/0 statement 

2270521 ·9701 



Error Processing 

The file status code can be checked and processed under program control. Depending on the code 
received, corrective action can be taken by the program or errors can be ignored. If errors are 
ignored, results are unpredictable. Execution of an INVALID KEY or AT END phrase takes pre
cedence over DECLARATIVES. If an INVALID KEY phrase, an AT END phrase, or a declarative pro
cedure is not present for a file, the program automatically terminates when an 1/0 error is detected 
during an 1/0 request. 

By knowing which operating system error was originally detected, you can determine the cause 
and correct the error. Some errors, such as COBOL error 30, have multiple meanings. The sub
routine C$RERR is available for obtaining the operating system 1/0 status of the most recent 1/0 
request attempted. Refer to Appendix D for details on the subroutine C$RERR. COBOL programs 
should always include the call to C$RERR in the declarative section for every file. Then, should an 
error occur, you can examine the appropriate COBOL file status and the OS error to determine the 
cause of the error. 

Figure 12-1 shows how to intercept 1/0 errors through the use of a declarative section in a COBOL 
program. Subroutine C$RERR is called in the program to obtain the operating system 1/0 status of 
the 1/0 request. The example program ignores an invalid record length error (error 97). The file is 
successfully opened and subsequent 1/0 requests can be performed against the file. 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIG1201 
DUMY 
MANUAL.PG.LST.FIG1201 
M 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG PG/LN A ... B .......... · ............................................ . 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. SEQIO. 
3 * THIS PROGRAM WAS DESIGNED AS A FUNCTIONAL 
4 * DEMONSTRATION TEST FOR CHECKING ERROR HANDLING 
5 * CAPABILITIES THRU DECLARATIVES. 
6 ENVIRONMENT DIVISION. 
7 CONFIGURATION SECTION. 
8 SOURCE-COMPUTER. TI-990. 
9 OBJECT-COMPUTER. TI-990. 

10 INPUT-OUTPUT SECTION. 
11 FILE-CONTROL. 

Figure 12-1. Checking Error-Handling Capabilities Through DECLARATIVES (Sheet 1of6) 

2270521-9701 12-9 



Error Processing 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 >0002 
49 
50 >0002 
51 
52 
53 
54 
55 
56 >0010 

SELECT MASTER ASSIGN TO RANDOM, "SEQIO." 
ORGANIZATION SEQUENTIAL 
ACCESS SEQUENTIAL 
STATUS SEQ-STATUS. 

DATA DIVISION. 
FILE SECTION. 
FD MASTER LABEL RECORDS STANDARD. 
01 MST. 

02 SSAN PIC X(9). 
02 BADGE PIC X(7). 
02 NAMEX PIC X(20). 

WORKING-STORAGE SECTION. 
01 ACTION PIC X VALUE " " 
01 SEQ-STATUS PIC XX VALUE " " 
01 FUNCT-KEY PIC 99. 

88 F1 VALUE 01. 
88 Command VALUE 40. 

01 OPEN-MODE PIC X(6) VALUE " " 
88 OPEN-INPUT VALUE "INPUT". 
88 OPEN-OUTPUT VALUE "OUTPUT". 
88 OPEN-IO VALUE "I-0". 
88 OPEN-EXTEND VALUE "EXTEND". 

01 OPERATION PIC 99. 
88 OP-OPEN VALUE 01. 
88 OP-CLOSE VALUE 02. 
88 OP-READ VALUE 03. 
88 OP-READ-NOLOCK VALUE 04. 
88 OP-WRITE VALUE 05. 
88 OP-REWRITE VALUE 06. 
88 OP-UNLOCK VALUE 07. 
88 OP-STOP VALUE 08. 

01 BLNK PIC X(80) VALUE " " 
01 LAST-OPERATION PIC 99 VALUE 0. 
01 ERROR-WORD PIC X(4) VALUE " " 
PROCEDURE DIVISION. 
DECLARATIVES. 
DECL SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON MASTER. 
DEC1. DISPLAY "ERROR STATUS: " LINE 23 

SEQ-ST~TUS LINE 23 POSITION 16. 

** IF OPEN RETURNS "INVALID RECORD LENGTH ERROR - 97" 
** IGNORE ERROR CONDITION. FILE WILL BE OPENED. 

IF SEQ-STATUS NOT = 11 97 11 

Figure 12·1. Checking Error· Handling Capabilities Through DECLARATIVES (Sheet 2 of 6) 

12·10 2270521-9701 



DXCBL 
LINE DEBUG 

57 
58 
59 
60 
61 
62 
63 
64 
65 

>0028 
>002E 
>0038 

66 >004C 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

>004E 
>004E 
>004E 
>0056 
>005C 
>0062 
>0068 
>006E 
>0076 
>007E 
>0086 
>0090 
>0090 

>OOAO 
>00A2 
>OOA2 
>OOAA 

87 >OOBC 
88 >OOBC 
89 
90 
91 >OOC6 
92 
93 >OOCE 
94 
95 >0006 
96 
97 >OODE 
98 
99 >OOE6 

100 
101 >OOEE 
102 

Error Processing 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
PG/LN A ... B ...................................................... . 

CALL "C$RERR" USING ERROR-WORD 
DISPLAY "DX10 ERROR: " LINE 23 POSITION 40 

ERROR-WORD LINE 23 POSITION 54. 
DISPLAY "ENTER 'C' TO CONTINUE" LINE 24. 
ACCEPT ACTION PROMPT LINE 24 POSITION 24. 
IF ACTION = "C" 

DISPLAY BLNK LINE 23 
DISPLAY BLNK LINE 24 
GO TO IO-LOOP. 

STOP RUN. 
END DECLARATIVES. 
MAIN SECTION. 
MAIN-PROG. 

DISPLAY "SEQUENTIAL FILE 
DISPLAY "01 - OPEN" 
DISPLAY "02 - CLOSE" 
DISPLAY "03 - READ" 

IIO 

DISPLAY "04 - READ NO LOCK" 
DISPLAY "05 - WRITE" 
DISPLAY "06 - REWRITE" 
DISPLAY "07 - UNLOCK" 
DISPLAY "08 - STOP" 

IO-LOOP. 

OPERATIONS" 
LINE 2. 
LINE 3. 
LINE 4. 
LINE 5. 
LINE 2 
LINE 3 
LINE 4 
LINE 5 

PERFORM IO-OPERATIONS THRU IO-EXIT 

LINE 1 

POSITION 
POSITION 
POSITION 
POSITION 

UNTIL OPERATION = 8 OR FUNCT-KEY = 40. 
STOP RUN. 

IO-OPERATIONS. 

ERASE. 

40. 
40. 
40. 
40. 

DISPLAY "OPERATION CODE: " LINE 10 POSITION 20. 
ACCEPT OPERATION CONVERT PROMPT LINE 10 POSITION 40 

ON EXCEPTION FUNCT-KEY PERFORM CHECK-EXCEPTION. 
PERFORM-OPERATION. 

IF OP-OPEN 
PERFORM GET-OPEN-MODE 
PERFORM OPEN-CODE. 

IF OP-CLOSE 
PERFORM CLOSE-CODE. 

IF OP-READ 
PERFORM READ-CODE. 

IF OP-READ-NOLOCK 
PERFORM READ-NOLOCK-CODE. 

IF OP-WRITE 
PERFORM WRITE-CODE. 

IF OP-REWRITE 
PERFORM REWRITE-CODE. 

IF OP-UNLOCK 
PERFORM UNLOCK-CODE. 

Figure 12·1. Checking Error-Handling Capabilities Through DECLARATIVES (Sheet 3 of 6) 

2270521-9701 12·11 



Error Processing 

103 >OOF6 
104 >OOFC 
105 
106 
107 >0116 
108 >0118 
109 >0118 
110 >011E 
111 >0124 
112 

DXCBL 
LINE DEBUG 
113 >0134 
114 >013A 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

>015C 
>015C 
>0168 
>0174 
>0180 
>018E 
>018E 
>0196 
>0196 
>01AO 
>01A8 
>01A8 
>01B2 
>01BA 
>01BA 

134 >0100 
135 
136 
137 
138 
139 
140 
141 
142 

>01F4 
>01FA 
>0208 
>0208 

143 >021 E 
144 
145 
146 

DISPLAY BLNK LINE 24. 
IF OPERATION > 0 AND OPERATION < 9 

MOVE OPERATION TO LAST-OPERATION 
ELSE DISPLAY "INVALID OPERATION" LINE 24. 

IO-EXIT. EXIT. 
GET-OPEN-MODE. 

DISPLAY BLNK LINE 14. 
DISPLAY "OPEN MODE: INPUT, OUTPUT, I-0, EXTEND" LINE 1. 
ACCEPT OPEN-MODE PROMPT LINE 14 POSITION 50 

ON EXCEPTION FUNCT-KEY PERFORM CHECK-EXCEPTION. 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PG/LN A ... B ...................................................... . 

DISPLAY BLNK LINE 24. 
IF NOT OPEN-INPUT AND NOT OPEN-OUTPUT AND NOT OPEN-IO 

AND NOT OPEN-EXTEND 
DISPLAY "INVALID OPEN 
GO TO GET-OPEN-MODE. 

MODE" LINE 24 

OPEN-CODE. 
IF OPEN-INPUT 
IF OPEN-OUTPUT 
IF OPEN-IO 
IF OPEN-EXTEND 

CLOSE-CODE. 
CLOSE MASTER. 

READ-CODE. 
READ MASTER. 

OPEN 
OPEN 
OPEN 
OPEN 

DISPLAY MST LINE 18. 
READ-NOLOCK-CODE. 

READ MASTER NO LOCK. 
DISPLAY MST LINE 18. 

WR !TE-CODE. 

INPUT 
OUTPUT 
I-0 
EXTEND 

MASTER. 
MASTER. 
MASTER. 
MASTER. 

DISPLAY "SSAN: "LINE 20 "BADGE:" LINE 20 POSITION 2 
"NAMEX: II LINE 20 POSITION 38. 

ACCEPT SSAN PROMPT LINE 20 POSITION 7 
BADGE PROMPT LINE 20 POSITION 27 
BADGE PROMPT LINE 20 POSITION 45 
ON EXCEPTION FUNCT-KEY PERFORM CHECK-EXCEPTION. 

DISPLAY BLNK LINE 20. 
WRITE MST. 

REWRITE-CODE. 
DISPLAY "SSAN:" LINE 20 "BADGE:" LINE 20 POSITION 2 

"NAM EX: II LINE 20 POSITION 38. 
ACCEPT SSAN PROMPT LINE 20 POSITION 7 

BADGE PROMPT LINE 20 POSITION 27 
NAMEX PROMPT LINE 20 POSITION 45 
ON EXCEPTION FUNCT-KEY PERFORM CHECK-EXCEPTION. 

Figure 12·1. Checking Error-Handling Capabilities Through DECLARATIVES (Sheet 4 of 6) 

12·12 2270521-9701 



DISPLAY BLNK LINE 20. 
REWRITE MST. 

UNLOCK-CODE. 
UNLOCK MASTER. 

CHECK-EXCEPTION. 

Error Processing 

147 >0242 
148 >0248 
149 >0256 
150 >0256 
151 >025C 
152 >025C 
153 >026C 

IF F1 OR Command GO TO IO-EXIT. 

154 zzzzzz 
END-OF-PROGRAM. EXIT. 
END PROGRAM. 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY 

ADDRESS SIZE DEBUG ORDER TYPE 

0 FILE 
>0026 36 GRP 0 GROUP 
>0026 9 ANS 0 ALPHANUMERIC 
>002F 7 ANS 0 ALPHANUMERIC 
>0036 20 ANS 0 ALPHANUMERIC 

>004E 1 ANS 0 ALPHANUMERIC 

>0050 2 ANS 0 ALPHANUMERIC 

>0052 2 NSU 0 NUMERIC UNSIGNED 
0 CONDIT ION-NAME 
0 CONDITION-NAME 

>0054 6 ANS 0 ALPHANUMERIC 
0 CONDI TI ON-NAME 
0 CONDITION-NAME 
0 CONDI TI ON-NAME 
0 CONDI TI ON-NAME 

>005A 2 NSU 0 NUMERIC UNSIGNED 
0 CONDITION-NAME 
0 CONDIT I ON-NAME 
0 CONDITION-NAME 
0 CONDIT ION-NAME 
0 CONDITION-NAME 
0 CONDITION-NAME 
0 CONDITION-NAME 
0 CONDITION-NAME 

>005C 80 ANS 0 ALPHANUMERIC 

>OOAC 2 NSU 0 NUMERIC UNSIGNED 

>OOAE 4 ANS 0 ALPHANUMERIC 

*** END OF FIL E 

HH:MM:SS OPT=M PAGE 5 

NAME 

MASTER 
MST 

SSAN 
BADGE 
NAM EX 

ACTION 

SEQ-STATUS 

FUN CT-KEY 
F1 
Command 

OPEN-MODE 
OPEN-INPUT 
OPEN-OUTPUT 
OPEN-IO 
OPEN-EXTEND 

OPERATION 
OP-OPEN 
OP-CLOSE 
OP-READ 
OP-READ-NO LOCK 
OP-WRITE 
OP-REWRITE 
OP-UNLOCK 
OP-STOP 

BLNK 

LAST-OPERATION 

ERROR-WORD 

Figure 12·1. Checking Error-Handling Capabilities Through DECLARATIVES (Sheet 5 of 6) 

2270521-9701 12-13 



READ ON6Y BYTE SIZE • >05D4 

READ/WRITE IYTE SIZE • >0120 

OVER6AY SEGMENT BYTE SIZ! • >0000 

TOTAL BYTE SIZE • >06F4 

0 ERRORS 

0 WARNlltGS 

DXCIL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS O~T•M 6 
PROG•AM UIIMS COUNT 

CSREER 

Fligurt 12·1. Cttlcklng lrf'or·Htndtlng Ctptbllltlft Through DECLARATIVES (Shttt I of 8) 

12·14 



13 

Optimizing Run-Time Performance 

13.1 GENERAL 

By using certain coding technlquea, you can optlmla the performance of COBOL programs. To 
understand why certain technlquea are dealrable and others are lmpo1111lble, you need an overview 
of the compiler and run·tlme structure. 

Tht COBOL package contains a one·paaa complier that produces object code In a format called a 
POP. B1cau111 the ~P format 111 especially tailored to the COBOL environment, object code pro· 
ductd by the complltr u111 apace much more efflclently than doea machine language object 
code. Thie COBOL structure le well suited to the minicomputer environment where taak apace la 
crltlcal. 

However, since the compiler In this package only pa1111111 over the source once, global optimization 
techniques cannot be used to reduce the ala of the object. Instead, you can optimize programs 
through coding techniques that decrease the size of the object generated or Increase speed of 
execution. These techniques fall Into the following categorlea: 

• Object size conalderatlona 

• Arithmetic operations 

• Control operations 

• Move operations 

• 1/0 operations 

Future changes In the aoftware may change some of the following performance conalderatlona 
and technlquea. 

13.2 OBJECT SIZE CONSIDERATIONS 

One way of optimizing the performance of a Tl 990 COBOL program la to decrease the size of the 
compller·generated object by using apace·efflclent code whenever poaalble. 

Each paragraph and section which doH not end In an uncondltlonal GOTO Increases object size 
by at least one word. Avoid the PERFORM PARA·NAME THRU PARA·EXIT when the THRU con· 
atruct la unnece111ary. In the following example, PERFORM PARA·NAME achieves the same result 
more efflclently. 

13·1 



Optimizing Run-Time Performance 

EXAMPLE 

Use: 

PERFORM PARA-NAME. 

PARA-NAME. 
MOVE. 
ADD . 

NEXT-PARA. 

Rather than: 

PERFORM PARA-NAME THRU PARA-EXIT. 

PARA-NAME. 
MOVE. 
ADD . 

PARA-EXIT. 
EXIT. 

NEXT-PARA. 

13.3 ARITHMETIC OPERATIONS 

The following statements illustrate ways to optimize code when using arithmetic statements. 

• Use binary (COMP-1) data definitions. Binary is 2.5 to 10 times faster than COMP or 
DISPLAY. 

• Do not mix binary and nonbinary operands because mixing slows arithmetic operations. 
Use constant data items or hexadecimal literals instead of decimal literals with 
COMP-1. 

EXAMPLE 

With: 

77 XYZ PIC 9(5) COMP-1. 
77 ONEX PIC 9(5) COMP-1 VALUE 1. 

Use: 

ADD ONEX TO XYZ. 

Rather than: 

ADD 1 TO XYZ. 

13·2 2270521-9701 



Optimizing Run-Time Performance 

The reason for the above is that all decimal literals are stored as type DISPLAY. Arithmetic is per
formed in the mode of the highest operand in the hierarchy: 

3 DISPLAY 
2 COMP 
1 COMP-1 

The following example provides further information regarding the handling of arithmetic oper
ations. 

EXAMPLE 

With: 

Use: 

77 XYZ PIC 9(5)V9(3) COMP. 
77 ZZZ PIC 9(5) COMP-1. 

ADO 1, ZZZ GIVING XYZ. 

The above requires conversion of "ZZZ" to display, adds display "1" and "ZZZ", converts the 
answer to COMP, and places it in "XYZ". 

The following additional facts should be noted: 

• Rounding increases the execution time of an instruction by 6 to 22 percent. 

• Within a given picture size, the magnitude and sign of the operands have minimal effect 
on execution times. 

• Increasing picture size of COMP or COMP-1 slows down execution by 1.5 to 5 percent 
per character. 

13.4 CONTROL OPERATIONS 

The logical sequence of program flow can be made more efficient in the following ways: 

• Use "PERFORM <some-function> LIMIT TIMES" rather than a counter loop. 

2270521-9701 13-3 



Optlmlllng Run· f/mo Porformnneo 

EXAMPLE 

Use: 

PERFORM LOOP LIMIT TIMES. 
LOO~. 

<11om11 function> 

Rather than: 

MOVE 1 TO I<. 
I.COP. 

<11om11afunctlon> 
ADD 1 TO K. 
IF K NOT • l.lMIT GO TO LOOP. 

• Use 11 PERFORM ~aome·functlon~ LIMIT TIMES" rather than 11 PERFORM.VARYING" 
unleH the varlable la used for aubacrlptlng In the procedure. 

EXAMPLE 

Use: 
PERFORM XYZ VARYING K FROM 1 BY 
1 UNTIL K > 30 • 

. 
XYZ. MOVE XM CK) TO L. 

Rather than: 

MOVE 1 TO K. 
PERFORM XYZ 30 TIMES. 

. 
XYZ. MOVE XM CK) TO I.. 
ADD 1 TO K. 

... •V ~-· 

• Use 1100 TO DEPENDING ON" rather than any N·WAY·BRANCH structure with an IF 
statement, whenever N ~ 3. For example: 



EXAMPLE 

Uae: 
GO TO 1.1, L2, L3, 1.4 DEPENDING ON J, 

Rather than: 

lF J•1 GO TO L1. 
IF J•2 GO TO 1.2. 
IF J•3 GO TO L3. 
IF J•4 GO TO L4. 

Optimizing Run~ Tlmo Porfofm{jnoo 

• Use modular programming techniques as permitted by the CALL statement. CALLs are 
efficient. 

• When IF statements are mixed with COMP, COMP·1, and/or DISPLAY, more time Is 
required. Avoid statements such as IF COMP1·1TEM '"" 4.GO TO MN. 

• Avoid using CONTROL when possible. 

EXAMPLE 

With: 

Use: 

11 K PIC 9(5) COMP=1. 
01 XYZ. 
03 MMM PIC 9(5)V99 OCCURS 10. 

MOVE ZEROS TO XYZ. 

Rather than: 
.-·· _ -,, '• ·---"~ -~~· .--,..-~ it,, r· •. ~· ·· '"" ' »- ~-f~:-· · ·--~ ~-· ''.-~;{ff.~""-~.,).-: ·.·•.-,a.~.-· ... ~_,.,;_,~ -·r-2 ¥-· • ~ • · 

PERFORM ZONK VARYING K FR0111 1 
BY 1 UNTIL > 10. 

ZONK. MOVE 0 TO MMM CK). 

• Combine DISPLAY statements Into one llteral to reduce the likelihood of swapping. 

13·5 



Optimizing Run-Time Performance 

EXAMPLE 

Use: 

DISPLAY "DATE OF BIRTH - MO: DA: YR: II 

Rather than: 

DISPLAY "DATE OF BIRTH" 
DISPLAY "MO" 
DISPLAY "DA" 
DISPLAY "YR" 

LINE 17. 
LINE 17 POSITION 17. 
LINE 17 POSITION 23. 
LINE 17 POSITION 29. 

• Use the DISPLAY/ACCEPT statement once instead of repeating the statement several 
times. 

EXAMPLE 

Use: 

DISPLAY NAME 
SEX 
DOB-MO 
DOB-DA 
DOB-YR 

Rather than: 

DISPLAY NAME 
DISPLAY SEX 
DISPLAY DOB-MO 
DISPLAY DOB-DA 
DISPLAY DOB-YR 

LINE 
LINE 
LINE 
LINE 

LINE 1 POSITION 
POSITION 23 
POSITION 25 
POSITION 28 
POSITION 31. 

LINE 1 
LINE 1 
LINE 1 
LINE 1 
LINE 1 

POSITION 1. 
POSITION 23. 
POSITION 25. 
POSIT ION 28. 
POSITION 31. 

13.5 MOVE OPERATIONS 

Efficiency in your use of the MOVE statement can be enhanced by applying the following 
suggestions: 

• 

• 

13-6 

Move larger, rather than smaller, groups of characters whenever possible. The larger the 
group moved, the shorter the time used per character. Moving a 1000-character group is 
30 times faster than moving a single character 1000 times. 

Use the MOVE statement for moving one source to multiple destinations. The instruc
tion need not be interpreted multiple times, nor does the source operand need to be set 
up multiple times. 

2270521-9701 



EXAMPLE 

Use: 

MOVE 0 TO A, B, C. 

Rather than: 

MOVE 0 TO A. 
MOVE 0 TO B. 
MOVE 0 TO C. 

Optimizing Run-Time Performance 

• Use an alphabetic MOVE statement in preference to numeric or ASCII string moves 
except with very small ASCII strings. 

• When performing multiple moves, combine literals and move to a group area. (Literals 
can be combined; data items cannot be combined.) 

EXAMPLE 

With: 

Use: 

01 DATES 
02 MO 
02 DA 
02 YR 

PIC XX. 
PIC XX. 
PIC XX. 

MOVE "042545" TO DATES. 

Rather than: 

MOVE 11 04 11 TO MO. 
MOVE 11 25 11 TO DA. 
MOVE 11 45 11 TO YR. 

2270521-9701 13·7 



Optimizing Run· flm@ P@rlorm/jno@ 

13.8 1/0 OPERATIONS 

The following considerations relate to the responH time In performing data 1/0 operations to a flle 
or device. 

• When possible execute: 

a READ and not a READ ' ' ' INTO. READ Is 30 percent faster. If INTO Is required, It 
Is 20 percent faster than a READ followed by a MOVE. 

a WRITE and not a WRITE ... FROM. WRITE Is 30 percent faster unless a MOVE Is 
required to complete the FROM. 

• Record-level locking adds only about 5 percent to the 110 operation. 

• Increasing a file's blocking size (physical record size) beyond a factor of about 10 has a 
minima! effect. Always UH a multiple of the ADU size on the disk as the block size. 

The following statements describe ways to enhance the responH time In performing 1/0 oper· 
atlons to key Indexed files (KIFs): 

• If you make numerous lnHrtlons, occasionally rebuild KIFs to decreaH access time. 

• When building a KIF, specify the key that will be accessed most often as the primary 
key. This will produce a flle structure with the fastest Hquentlal access time for that 
key. 

• Keep the number of keys In a flle small to keep down the time needed to build the flle. 
Note: the number of keys In a flle has little effect on the access time for reading. 

• Keep keys short to reduce access time. 

• When possible, UH Hquentlal Input to build fllH. Flies built from se40.ntla'I Input are ""' 
smaller than files bullt by random record lnHrtlons, and require less access time. Also, 
the time needed to build a KIF from a Hquentlal file sorted on the primary key Is less 
than for a randomly ordered flle. 

• When possible, keep the Hquentlal Input flle In sort order (as when the Input flle Is the 
result of OKS). This reduces the time needed to build the KIF. 



Appendix A 

Keycap Cross-Reference 

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this 
manual. Thia appendix contains specific keyboard Information to help you Identify lndlvldual keys 
on any aupported terminal. For Instance, every terminal has an Attention key, but not all Attention 
keys look alike or have the same position on the keyboard. Vou can use the terminal Information In 
this appendix to find the Attention key on any terminal. 

The terminals supported are the 931 VDT, 911 VDT, 91!5 VDT, 940 EVT1 the Buslneaa System 
terminal, and hard-copy terminals (Including teleprinter devices). The 820 KSR has been used as a 
typical hard-copy terminal. The 91!5 VDT keyboard Information la the same as that for the 911 VOT 
except where noted In the tablea. 

Appendix A contains three tables and keyboard drawings of the supported terminals. 

Table A·1 llata the generic keycap names alphabetically and provides llluatratlons of the 
correapondlng keycapa on each of the currently supported keyboarda. When you need to preaa 
two keys to obtain a function, both keya are shown In the table. For example, on the 940 EVT the 
Attention key function la activated by preaalng and holding down the Shift key whlle preaslng the 
key labeled !'REV FORM NEXT. Table A·1 ahowa the generic keycap name aa Attention, and a 
corresponding Illustration shows a key labeled SHIFT above a key named !'REV FORM NEXT. 

Function keys, such as F1, F2 1 and so on, are considered to be already generic and do not need 
further definition. However, a function key becomes generic when It does not appear on a certain 
keyboard but has an alternate key sequence. For that reason, the function keys are Included In the 
table. 

MuM"1e1<ey aequence,11 •1'1 Muttlfieoua keystrdhl -cltl &llC1Ml d'lat=rmitd In Qtnlrlc ~eycap 
names that are applicable to all terminals. For example, you use a multiple key sequence and 
simultaneous keystrokes with the log-on function. Vou log on by pressing the Attention key, then 
holding down the Shift key while you press the excl11m11tlon (I) key. The same Information In a table 
appears as Attentlonl(Shlft)I. 

Table A·2 shows some frequently used multiple key sequences. 

Table A·3 lists the generic namea tor 911 keycap designations used In previous manuals. Vou can 
use this table to translate existing documentation Into generic keycap documentation. 

Figures A·1 through A·!5 show diagrams of the 911 VDT, 91!5 VDT, 940 EVT, 931 VDT, and Buslneaa 
System terminal, respectively. Figure A·8 shows a diagram of the 820 KSR. 

2270521·9701 



Keycap Cross-Reference 

A·2 

Generic Name 

Alternate 
Mode 

Attention' 

Back Tab 

Command' 

Control 

Delete 
Character 

Enter 

Erase Field 

Notes: 

911 
VDT 

None 

None 

Table A·1. Generic Keycap Names 

940 
EVT 

931 
VDT 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR)_ Keys on otherTPD devices may be missing or have different functions. 

'On a 915 VDT the Command Key has the label F9 and the Attention Key has the label F10. 

2284734 (2;1,t) 

8201 

KSR 

None 

2270521-9701 



Table A-1. Generic Keycap Names (Continued) 

911 940 931 Business 
Generic Name VDT EVT VDT 

System 
Terminal 

Erase Input RASE [_iJ ERASE [IJ INPUT INPUT . 

Exit [81 [iJ ~ [ii 
[81 [IJ 

Forward Tab Iii [ii [l s ~ ii] 
~ . [ii 

F1 ~ [i] [] iii 

F2 ~ [iJ ~ [ii 

F3 ~ [iJ [] [ii 

F4 ~ [IJ [] ii] 

Notes: 

'The 820 KSR terminal has been used as a typical hard·copy terminal with the TPD Device Service 
Routine (OSRJ Keys on other TPD devices may be rniss1nq or have different funct1ons 

2284734 (3/14) 

2270521-9701 

Keycap Cross-Reference 

820' 
KSR 

[iJ 
~ 
~ 

[IJ 
Lg] 

llJ 
~ 

[IJ 
[®] 

[IJ 
~ 

[iJ 
[@] 

A-3 



TabltA•1. Otntrlc K1yc1p N1m11 (Continued) 

811 840 831 UI n111 820 1 
Q1n1rlc N1m1 VDT EVT VDT 

Sy1t1m 
KSA 

F& rc:J riJ ~ riJ 
rw 

~ ~ Fii riJ . 

F 

~ 
F7 ~ fj;J ri 

~ 
Fl t:l ~ riJ 

~ 
Fl ~ riJ 

[DJ 
F10 ~ iii riJ 

ii ~ 
NolHi 

'fh@ 1121l l<!lfil l@fffiiMill Mil§ l'l!l@M Y§!ltl ii§ ii ly~ieal Milftl•@fl~Y l@fffiinill wilh 11'1@ fl"!:) O@Yl§!l !l@fYI§@ 
filflYlin@ (O!lfil), l<@Y§ en fllMl!f fl"!:) tl@Yi@@§ ffiilY l'lll ffiiHiMIJ flf h!IY@ @ifl@f@Ml IYM§lien§ 

2270821 ·1701 



Q1norlc N1m1 

F11 

F12 

F13 

F14 

Ho mt 

lnltl1llzt Input 

T1bl1 A·1. CJtntrlc Ktyc1p N1m11 (Continued) 

811 
VDT 

840 
EVT 

iii ii 
rm liiil 
~ -

iii 
liiil -

831 
VDT 

UI ntll 
Sy1t1m 
T r in I 

'ih@ l!~ll Ktrn 111rm1Ael he§ tl@@A Y§@§ e§ e ly~i§el hen'lo©@~Y l@rm1m11 w1111 llw Hlt} 011vw11 !l111v11'11 

~@YliA@(i:l~~), K@y§ @A @lh@f i"'t} (J@vi§@§ ffieY tl@ ffii§§iA!l §f h~v@ it1ll~rP1H l111wl1n11~ 

2270821·9701 

820 1 

KSR 



Keycap Cross-Reference 

A-6 

Generic Name 

Insert 
Character 

Next 
Character 

Next Field 

Next Line 

Previous 
Character 

Previous Field 

Notes: 

Table A-1. Generic Keycap Names (Continued) 

911 
VDT 

~ 
~ 

or 

[SJ 
or 

~ 

940 
EVT 

931 
VDT 

Business 
System 
Terminal 

'The 820 KSR terminal has been used as a typical harcJ copy ter11111wl w1ll1 tlH' TPll Device St•rv1ct' 
Routine (DSR). Keys on other TPD devices may be missing or have dilfl!rt'nl functions 

2284734 (6/14) 

820' 
KSR 

None 

None 

None 

or 

~ 
~ 

None 

None 

2270521-9701 



Generic Name 

Previous Line 

Print 

Repeat 

Return 

Shift 

Skip 

Uppercase 
Lock 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VDT 

940 
EVT 

iii ii 

931 
VDT 

Business 
System 
Terminal 

r.iim1 
~ 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions 

'The keyboard is typamatic. and no repeat key is needed. 

2284734 (7/14) 

2270521-9701 

Keycap Cross-Reference 

820' 
KSR 

None 

None 

None 

A·7 



Keycap Cross-Reference 

2284734 (8/14) 

A-8 

Table A-2. 

Function 

Log-on 
Hard-break 
Hold 
Resume 

Frequently Used Key Sequences 

Key Sequence 

Attention/(Shift) ! 
A ttention/(Cont rol)x 
Attention 
Any key 

Table A-3. 911 Keycap Name Equivalents 

911 Phrase 

Blank gray 
Blank orange 
Down arrow 
Escape 
Left arrow 
Right arrow 
Up arrow 

Generic Name 

Initialize Input 
Attention 
Next Line 
Exit 
Previous Character 
Next Character 
Previous Line 

2270521-9701 



N 
N 
--.I 
0 
(JI 

~ 

'° --.I 

~ 

J> 
cO 

CURSOR CONTROL 
AND EDIT 

2284734 (9/14) 

Fl r2 r11 F3 1 
·,-.-.-.~~~~:: 

F4 

SPECIAL CONTROL 

FS 
.-.~~-.- .. L .·:·:·:·:·:·.·:·.·:·.·:\'.:: 

DATA ENTRY 

F7 FS 
.;·:·:-:-:-:-: .. -.-:·.·.->:·: :·:·:·:·.·.·.·.·.·-:-:-\:: 

Figure A· 1. 911 VDT Standard Keyboard Layout 

NUMERIC PAD 

::>:; 
CD 

'<: 

£ 
1J 
() 
(3 
en 
en 
:l:i 
CD 
(b 
q; 
::i 
() 
CD 



~ ..... 
0 

I\) 
I\) ..... 
0 
OI 

~ 
«> ..... 
~ 

CURSOR CONTROL 
AND EDIT KEYS 

2284734 (10;14) 

FUNCTION 
KEYS 

.. ::::::::::::::::::::::::::::.:.:.:::: •. :;::::::::·.:.;.:.:::: ::::::::::::::::::::::::::::::::::::::::::::::: ··.:.:, .. ·.·•·• :.;.;.;.;;:; :;:;:;:;>> :·:-:-:-:-:· ... -.-.-.-. 

--------------
DATA ENTRY 
KEYS 

Figure A-2. 915 VDT Standard Keyboard Layout 

STATUS LEDs 

0 0 0 0 
IDLE EXEC TEST COMM 

0 0 0 0 
ERR MODE 0501 DS02 

NUMERIC 
KEY PAO 

::>;;; 
Cb 

'<:: 
(') 

"' ~ 
() 

Cl 
<n 
<n 

ii 
Cb 

CD' 
(!; 
;:) 
(') 
Cb 



I\) 
I\) 
-.j 
0 
(11 

~ 
«> 
-.j 

~ 

~ ..... ..... 

[ F~13 II F~4 11 F;; II FF1: II F;; II F~B II F;; II F: II FF~ II~~ II~~~ )£~(! [ill IJIJIJI IJDI 
STATUS 

DEL TABS 

2284734 (11/14) 

Figure A·3. 940 EVT Standard Keyboard Layout 

[11 

~ 

"' '<: 
() 
Q) 

"ti 
() 

Ci 
(I) 
(I) 

ii 
"' <;)' 
(il 
::i 
() 

"' 



~ ..... 
N 

I\) 
I\) 
-..J 
0 
01 
~ 
<O 
-..J 

~ 

STATUS 

2284734 (12;1 4) 

ON/OFF REV DISPLAY 
LINE BKGND BRIGHT DIM 

SPEC 
CHAR 

Bf LL 
VOLUME 

.-.·.·.·.·.·.·,·,·:•,•;o;~To' •' o '•'o'•'•'•'o"o".'o'o',"o'o'o'o"o'o'o'o"o'o'o"o'o'o'o'o'o':'o'.o'.o'.•~•'.o'.o"•:•'.•':':<:::~::-:0:::,:•:•:•:•'•'•'•'•'•-• 

Figure A-4. 931 VDT Standard Keyboard Layout 

;>:; 
<!> 

'<: 

2 
'l) 

() 

Cl 
Ci) 
Ci) 

::0 
<!> 
(i) 
ib 
:::i 
() 
<!> 



N 
N ..... 
0 
OI 
~ 
cb ..... 
0 
~ 

~ ...... 
(t.) 

Ll:-l~1r~J£..:.l£.:..Jl.:.Jl_:_J(~l IJ;l~[] 

2284734 ( 13/14) 

Figure A-5. Business System Terminal Standard Keyboard Layout 

;:>;; 
<l> 

'<: 
() 
Q) 

'tJ 
0 a 
Cl) 
Cl) 

:0 
<l> 
CD' 
(ti 
:::s 
() 
<l> 



~ ... 
.c. 

I\) 
I\) 
-...I 
0 
CJ1 
I\) ...... 

~ 
~ 

[Q][QJ[g] 

0 0 

t:l t:t 
·.-.-.-.-.-.-.-0:0:0:·'.·'.·'.·-·-·-·.·~:._·.·.·.·.·.·.·.·.·.·:·;·:'.::::::;::o:o. 

2284734 (14/14) 

Figure A·6. 820 KSR Standard Keyboard Layout 

::>;; 
(!) 

'<:; 
() 
Q) 

-0 
() 

0 
"' "' ::0 
(!) 

~ 
Q; 
:::i 
() 
(!) 



Appendix B 

COBOL Compiler Error Messages 

B.1 USER ERROR MESSAGES 

As source constructs are scanned, they are checked for syntax and semantic errors. If an error 
interrupts the scanning, text is ignored until a recovery point is found and a resume message is 
printed. Recovery points are chosen to minimize the amount of unanalyzed text without producing 
irrelevant error messages. A warning message referencing the appropriate undermark ($ in the 
examples in this appendix) indicates the point at which scanning resumes. In any case, the con· 
structs at fault are undermarked and error messages are listed when the source line is printed. The 
error message includes either Es or Ws, indicating error or warning. For example, 

004030 02 STOCK PIC 9C16)PPP COMPUTATIONAL. 
$ 

The 1 at the beginning of the error message in the preceding example indicates that the first under· 
mark from the left (the only undermark in this example) indicates the position at which the error 
was identified. The message PICTURE indicates invalid PICTURE syntax (semantic number size). 
The string of alternating asterisks and Es identifies it as an error message. This error did not inter
rupt the scan of the source statement. 

The following is an example of an error that interrupted the scan: 

005040 02 PART PIC XC4BXC10)) SYNC. 
$ $ 

1) SYNTAX *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
2) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 

The 1 at the beginning of the first message specifies that the first undermark from the left indi
cates the position at which the error was identified. The message SYNTAX indicates a syntax 
error. The string of alternating asterisks and Es identifies it as an error message. The 2 at the 
beginning of the second message indicates that the second undermark is associated with this 
message. The message SCAN RESUME indicates that the scan of the statement resumed at the 
second undermark (the S in the keyword SYNC). The alternating asterisks and Ws identify the 
message as a warning. 

Global errors such as undefined paragraph names and illegal control transfers are listed with the 
program summary at the end of the source listing. The following shows a program summary error 
message. 

VALUE ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E DATA-NAME 

The message VALUE ERROR indicates that the data item listed to the right has been assigned a 
value which is too large. The alternate asterisks and Es identify the message as an error message. 

2270521-9701 B-1 



COBOL Compiler Error Messages 

The error messages described in this paragraph are printed in the compiler listing. Figure B-1 
shows a listing that includes errors and error messages. Table B-1 lists the error messages. 

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG PG/LN A ... B ....................................................... . 

1 
2 
3 
4 
5 
6 
7 
8 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 

TI-DATA-TEST. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 

TI-990-10. 
OBJECT-COMPUTER. 
$ 

1) SYNTAX *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
9 TI-990-10. 

10 INPUT-OUTPUT SECTION. 
$ 

1) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 
11 FILE-CONTROL. 
12 SELECT CARD-FILE 
13 ASSIGN TO INPUT, "CARDF", 
14 FILE STATUS IS CARD-STATUS. 
15 SELECT DISC-FILE-RAN-REL 
16 ASSIGN TO RANDOM, "DISCRR" 
17 FILE STATUS IS OUTPUT-STATUS 
18 ORGANIZATION IS RELATIVE 
19 ACCESS MODE IS RANDOM 
20 RELATIVE KEY IS RR KEY. 
21 DATA DIVISION. 
22 FILE SECTION. 
23 FD CARD-FILE 
24 RECORD CONTAINS 10 TO 90 CHARACTERS 
25 BLOCK CONTAINS 512 CHARACTERS 
26 LABEL RECORDS ARE OMITTED. 
27 01 CARD-RECORD. 
28 02 IN-KEY PICTURE 999. 
29 02 FILLER PICTURE X(77). 
30 FD DISC-FILE-RAN-REL 
31 LABEL RECORDS ARE STANDARD 
32 VALUE OF LABEL IS "RAN-REL". 
33 01 RAN-REL-RECORD PICTURE XC80). 
34 WORKING-STORAGE SECTION. 
35 77 CARD-STATUS PICTURE X(Q3). 

$ 
1) SYNTAX *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 

36 77 OUTPUT-STATUS PICTURE X(02). 
$ 

Figure 8·1. COBOL Compiler Listing With Error Message Examples (Sheet 1of3) 

B·2 2270521-9701 



COBOL Compiler Error Messages 

1) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 
37 77 ERROR-VALUE PICTURE X(02) VALUE "ERROR". 
38 77 COUNT PIC 9(05). 
39 77 ERR-PIC PICTURE $(05). $9. 

$ 

1) PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
1) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 

40 77 PIC-USE PICTURE X COMP-1. 
$ 

1) 

41 
42 
43 

PICTURE-USAGE CLASH 
01 

*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 

DXCBL 
LINE 

44 

GRP-AREA VALUE IS "GROUP VALUE". 
02 VALUE-1 PICTURE X(14). 
02 VALUE-2 REDEFINES VALUE-1 PIC X(2Q). 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
DEBUG PG/LN A ... 8 ••.••.••.•••..••••.•••••.•••.........................•. 

02 VALUE-3 PICTURE 9(4) VALUE 75. 
$ 

1) GROUP CLASH *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
45 PROCEDURE DIVISION. 
46 >0000 INIT-000. 
47 >0000 OPEN INPUT CARD-FILE. 

$ $ 
1) REFERENCE TYPE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
2) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 

48 >0002 OPEN OUTPUT RAN-REL-RECORD. 
$ $ 

1) FILE NAME REQUIRED *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
2) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 

49 >0004 ALTER INIT-000 TO END-RUN. 
50 >0006 PERFORM ALPHA-PROC. 
51 >0008 GO TO ALPHA-PROC. 
52 >OOOC END-RUN. 
53 >OOOC MOVE 5.8 TO OUTPUT-STATUS. 

$ $ 
1) MOVE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E 
2) SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W 

54 END PROGRAM. 

RESERVED WORD CONFLICT *W*W*W*W*W*W*W*W*W*W*W*W COUNT 

ILLEGAL ALTER *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E INIT-000 
END-RUN 

RECORD SIZE ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E CARD-FILE 

Figure B·1. COBOL Compiler Listing With Error Message Examples {Sheet 2 of 3) 

2270521-9701 B·3 



COBOL Compiler Error Messages 

VALUE ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E ERROR-VALUE 

REDEFINES ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E VALUE-2 

STATUS ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E CARD-FILE 

RELATIVE KEY ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E DISC-FILE-RAN-REL 

READ ONLY BYTE SIZE = >0058 

READ/WRITE BYTE SIZE = >OOCC 

TOTAL BYTE SIZE = >0124 

16 ERRORS 

7 WARNINGS 

Figure B·1. COBOL Compiler Listing With Error Message Examples (Sheet 3 of 3) 

B·4 

Table B·1. COBOL Compiler User Error Messages 

Message 

ACCESS CLASH 

BLANK WHEN ZERO 

CLASS 

COPY 

CORRESPONDING 

DATA OVERFLOW 

DATA TYPE 

DEVICE CLASH 

DEVICE TYPE 

DOUBLE DECLARATION 

DOUBLE DEFINITION 

Cause 

Nonsequential access given for sequential file. 

BLANK WHEN ZERO clause given for nonnumeric or 
group item. 

Referenced data type invalid for this form of class test. 

COPY statement failed because of permanent error 
associated with the undermarked text-name. 

The referenced item has no subordinate items for 
CORRESPONDING operation. 

The data area (working storage and literals) is larger 
than 65,535 bytes long. 

The data type is invalid for this reference. 

Random characteristics giveR-to nonrandom device. 

OPEN or CLOSE mode inconsistent with device type. 

Multiple declaration of a file or identifier attribute. 

Multiple definition of an identifier. 

2270521-9701 



COBOL Compiler Error Messages 

Table B·1. COBOL Compiler User Error Messages (Continued) 

Message 

DUPLICATE 

FILE DECL ERROR 

FILE NAME ERROR 

FILE NAME REQUIRED 

FILE RECORD KEY ERROR 

Fl LE RECORD SIZE ERROR 

FILE STATUS ERROR 

FILE TYPE 

FILLER LEVEL 

GROUP CLASH 

GROUP VALUE CLASH 

IDENTIFIER 

ILLEGAL AL TEA 

ILLEGAL PERFORM 

INVALID ID 

INVALID PARAGRAPH 

2270521-9701 

Cause 

Warning only. Multiple USE procedure declared for 
same function. 

Error in file declaration. 

Error in defining variable for external file pathname 
(must be ANS or G RP). 

File name not given as reference in 1/0 verb. 

The referenced file name has a RECORD KEY that is 
incorrectly qualified or that is not defined as adata item 
of the alphanumeric category within a record-descrip
tion-entry associated with that file name. 

The referenced file name has a declared record size that 
either conflicts with the actual record description, is a 
relative organization file with variable length records, or 
is odd length. 

The referenced file name has a status item that is either 
incorrectly qualified, not defined in the WORKING
STORAGE SECTION, or not a two-character alpha
numeric item. 

Access or organization of file conflicts with under
marked statement. 

A nonelementary FILLER item is declared. 

USAGE or VALUE clause of group member conflicts 
with same clause for group. 

An item subordinate to a group with the VALUE IS 
clause is described with the SYNCHRONIZED, JUSTI
FIED, or USAGE (other than USAGE IS DISPLAY) clause. 

Identifier reference is incorrectly constructed, or the 
identifier has an invalid or double definition. 

An AL TEA statement references an unalterable para
graph, or violates the rules of COBOL segmentation. 

A PERFORM statement references an undefined or 
incorrectly qualified paragraph, or the reference vio
lates the rules of COBOL segmentation. 

An invalid identifier is referenced (check declaration). 

An invalid paragraph name is referenced. 

B·S 



COBOL Compiler Error Messages 

Table B-1. COBOL Compiler User Error Messages (Continued) 

Message 

JUSTIFY 

KEY REQUIRED 

LABEL 

LEVEL 

LINKAGE 

LITERAL VALUE 

MOVE 

MUST BE INTEGER 

MUST BE PROCEDURE 

MUST BE SECTION 

NAME ERROR 

NESTING 

NOT IN REDEFINE 

OCCURS 

OCCURS-VALUE CLASH 

PICTURE 

PICTURE-BWZ CLASH 

PICTURE-USAGE CLASH 

PROCEDURE INDEPENDENCE 

B-6 

Cause 

JUSTIFY clause given in conflict with other attributes. 

Relative key not declared for random access relative 
file, or record key not declared for KIF. 

Presence or absence of label record conflicts with 
device standards. 

Level number given is invalid either intrinsically or 
because of position within a group. 

An identifier in the USING clause of the PROCEDURE 
header is not a linkage item, or a statement references a 
linkage item not subordinate to an identifier in the 
USING clause of the PROCEDURE header. 

Literal value given is incorrect in context. 

Operands of MOVE verb specify an invalid move. 

Context requires an integer. 

Context requires procedure name either as reference or 
definition, or the reference must be a nondeclarative 
procedure name. 

Context requires procedure name to be section. 

The referenced file name has an invalid external file 
name declaration. 

Illegal nesting of condition that is not an IF condition. 

VALUE IS clause given in REDEFINES item. 

OCCURS clause given at invalid level (only three nested 
levels of occurs acceptable). 

VALUE IS and OCCURS in effect for the same item. 

Invalid picture syntax. 

BLANK WHEN ZERO clause given when picture con
tains asterisk character. 

USAGE clause or implied usage conflicts with usage 
implied by picture. 

PERFORM given for procedures in independent seg
ments not in the current segments. 

2270521-9701 



COBOL Compiler Error Messages 

Table 8·1. COBOL Compiler User Error Messages (Continued) 

Message 

PROGRAM OVERFLOW 

RECORD KEY 

RECORD REQUIRED 

REDEFINES 

REDEFINES ERROR 

REFERENCE INVALID 

RELATION 

RELATIVE KEY 

RELATIVE KEY ERROR 

RESERVED WORD CONFLICT 

SCAN RESUME 

SECTION CLASH 

SEGMENT 

SEPARATOR 

SIGN 

2270521-9701 

Cause 

The instruction area is larger than 32,767 bytes long. 

Record key declared for other than an indexed organi
zation file, or a START statement KEY phrase r~fer
ences a data item not aligned on the declared leftmost 
byte of the key. 

File record must be referenced for WRITE or REWRITE 
verb. 

REDEFINES given within an OCCURS or not redefining 
the last allocated item. 

The referenced data-name redefines an item that does 
not have the same number of character positions and 
that is not level 01. 

Reference given is not valid in context. 

Operands of relation test are incompatible. 

Relative key declared for other than a relative organi
zation file, or a START statement key phrase references 
a data item other than the declared key. 

The referenced file name has a RELATIVE KEY that is 
incorrectly qualified, is defined in a record description 
associated with that file name, or is not defined as an 
unsigned integer. 

A COBOL reserved word or symbol is given where a user 
word is required. In the summary, this is only a warning 
about an ANSI COBOL reserved word that is not a Tl 
COBOL reserved word. 

Warning only. Scanning was terminated at previous 
error message and resumes at undermarked character. 

A VALUE IS clause appears in the FILE or LINKAGE 
section. 

Warning only. Segment number given in an independent 
segment is not the same as the current segment or the 
number of new independent segments. 

Warning only. Redundant punctuation. 

SIGN clause given in conflict with usage and picture. 

B·7 



COBOL Compiler Error Messages 

Table B·1. COBOL Compiler User Error Messages (Continued) 

Message 

SIZE 

SIZE ERROR 

ST A TUS ERROR 

SUBSCRIPT 

SYNC 

SYNTAX 

UNDEFINED 

UNDEFINED PROCEDURE 

USE REQUIRED 

USING COUNT 

VALUE 

VALUE ERROR 

VARIABLE RECORD 

B.2 SYSTEM ERROR MESSAGES 

Cause 

Warning only. Size of data referenced not correct for 
context. 

Declared size of record conflicts with the present 
reference. 

The referenced file name has a status item which is 
incorrectly qualified, is not defined in the WORKING· 
STORAGE SECTION, or is not a two-character alpha
numeric item. 

Incorrect number of subscripts or indexes given for a 
reference. 

Synchronized clause given for a group item. 

Character or reserved word given is incorrect for 
context. 

File referencGd in FD paragraph was not defined. 

A GO TO statement references an undefined or incor
rectly qualified paragraph. 

Compiler expects a USE statement. This error may indi
cate that no END DECLARATIVES statement is present 
in the program. 

Warning only. The item count in the USING list of a 
CALL statement is different from that of the first refer
ence to the same program name. 

VALUE IS clause given in conflict with other declared 
attributes. 

Value given in VALUE IS required truncation of nonzero 
digits. 

Warning only. A READ ... INTO references a file with 
variable record sizes. 

Other types of errors prevent proper execution of the COBOL compiler. When any of these errors 
occur, the system displays an error message and terminates the attempt to execute the compiler. 
Table B-2 lists these messages. 

B·8 2270521-9701 



COBOL Compiler Error Messages 

Table B·2. COBOL Compiler System Error Messages 

Message 

COBOL COMPILER 
ABNORMAL TERMINATION 

COBOL COMPILER BUG 

COBOL COMPILER FATAL 
ERROR-END VECTOR TAKEN 

COBOL COMPILER OVERLAY 
LOAD ERROR 

COBOL COMPILERTCA 
ERROR 

COBOL COMPILER TLF 
ERROR 

COPY FILE CLOSE ERROR 

COPY FILE OPEN ERROR 

Meaning 

The compiler has unsuccessfully completed 
creation of the object module from the sup
plied source program. 

The compiler was unable to complete the 
compilation due to a problem internal to the 
compiler. 

The operating system has detected a fatal 
error and has terminated the compile 

Recovery 

Refer to listing to deter
mine reason. 

Refer problem to system 
programmer. 

Refer to the DX10 Mes
sages and Codes Refer
ence Manual for possible 
errors. 

An attempt to load a compiler overlay Refer problem to system 
resulted in an error. programmer. 

The system has detected an error condition Refer problem to system 
in the Task Communication Area (TCA). programmer. 

The system has detected an error condition Refer problem to system 
in the Terminal Local File (TLF) processing. programmer. 

An attempt to close the copy file resulted in Refer problem to system 
an error. programmer. 

An attempt to open the copy file resulted in Refer problem to system 
an error. programmer. 

COBOL POINTER OVERFLOW Program too large; has too many variable Make program smaller. 
names. 

COBOL PROGRAM OVER
FLOW 

FATAL SYNTAX ERROR OR 
NULL PROGRAM 

1/0 ERROR 

INVALID COMPILE OPTION 

2270521-9701 

Insufficient memory space is available for 
storing the program. 

A syntax error in the source code resulted in 
a fatal error for the compiler. 

An error has occurred with one of the 110 
devices. 

One or more of the selected compiler option 
characters entered for this compilation is 
not a defined option character. 

Program exceeds task 
addressability. Program 
area must be smaller. 

Examine source statement 
and correct syntax. Check 
for blank line at beginning 
or end of source code. 

Use system error code to 
determine reason for error. 

Correct invalid option char
acter. (Compiler will func
tion properly without 
correction, ignoring the 
invalid character.) 

B·9 



COBOL Compiler Error Messages 

Table B·2. COBOL Compiler System Error Messages (Continued) 

Message 

LISTING FILE ERROR 

MEMORY REQUESTED 
EXCEEDS SYSTEM CAPACITY 

OBJECT FILE ERROR 

ROLL SPILL Fl LE ERROR 

SOURCE FILE ERROR 

TOO MANY NESTED 

Meaning 

An error has occurred while transferring data 
to the listing device. 

The memory resources of the system are not 
sufficient to provide the quantity of memory 
required. 

An error has occurred while transferring data 
to the object file. 

An error has occurred during 1/0 to the ROLL 
SPILL file. 

An error has occurred while transferring data 
from the source file. 

A COPY statement has been read that would 
result in more than five nesting levels. 

Recovery 

Use system error code to 
determine reason for error. 

Allow other tasks to termi
nate prior to recompiling or 
delete the X option. 

Use system error code to 
determine reason for error. 

System buffer size is possi
bly too small; refer problem 
to a system analyst. 

Use system error code to 
determine reason for error. 

Modify source program to 
limit number of nesting 
levels of COPY statements 
to five or less. 

B.3 INFORMATIVE MESSAGES 

B-10 

Table B·3. COBOL Compiler Informative Messages 

Message 

INFO-ROLL xxxx 
SPILLING TO DISK 

Cause 

The rolls used by the compiler have exceeded the available 
memory for the task. The roll indicated has been moved to 
disk. An increase in compile time will occur after spilling is 
performed. This informative message has been added to 
assist in producing programs with optimal compile times. 

2270521-9701 



Appendix C 

COBOL Run-Time Error Messages 

COBOL provides two types of run-time error messages. Table C-1 lists both types. The first type is 
related to object code resulting from incorrect source statements. Messages of this type are 
displayed in the following format: 

COBOL (ERROR MESSAGE) AT: xxyyyy IN nnnnnn 

The ERROR MESSAGE portion defines the error and is one of the messages listed in Table C-1. 
The xx portion represents the segment number of the segmented module, and the yyyy portion 
represents the address of the statement at which the error was detected. The address corresponds 
to the address shown in the DEBUG column of the compiler listing. The nnnnnn is the first six 
characters of the program name, as specified in the PROGRAM-ID statement. 

The second type of run-time error messages relates to system errors. The system displays the 
message and terminates the execution attempt. 

The message is as follows: 

Explanation: 
The object file contains an end-of-file prior to data required for executing the program. 

User action: 
Verify that the correct object file was read and that it was correctly positioned. If necessary, 
recompile. 

The run-time error message file is installed as .S$MSG$.COBOL. If at the time of execution the 
message file does not exist, the message format appears as follows: 

COBOL--INTERNAL CODE >eeee xxyyyy;nnnnnn 

The eeee portion represents the number of the message requested and the xxyyyy;nnnnnn 
portions are as previously defined. 

2270521-9701 C-1 



COBOL Run-Time Error Messages 

C·2 

Table C·1. COBOL Run-Time Error Messages 

UNEXPECTED END OF FILE ON OBJECT FILE 

Explanation: 
The object file contains an end-of-file prior to data required for executing the program. 

User action: 
Verify that the correct object file was read and that it was correctly positioned. If necessary, 
recompile. 

ERROR READING OBJECT FILE, CODE = ?1 

Explanation: 
An error was detected while reading the object file. The code indicates the relative record number 
in the object file where the error occurred. 

User action: 
Recompile and relink. 

INVALID TAG, CODE = ?1 

Explanation: 
A tag character in the object file was not a valid tag. The code indicates the relative record number 
in the object file where the invalid tag was found. 

User action: 
Verify that the correct object file was read and that it was correctly positioned. If necessary, 
recompile. Look for unresolved external references when using XCP or XCPF commands. 

CHECKSUM ERROR, CODE = ?1 

Explanation: 
A checksum in the object file was incorrect. The code indicates the relative record number in the 
object file where the checksum error was found. 

User action: 
Verify that the correct object file was read and that it was correctly positioned. If necessary, 
recompile. 

BAD HEX VALUE ON OBJECT FILE, CODE = ?1 

Explanation: 
Object file contains a character that is not a hexadecimal value. The code indicates the relative 
record number in the object file where the invalid value was found. 

User action: 
Verify that the correct object file was read and that it was correctly positioned. If necessary, 
recompile. 

2270521-9701 



COBOL Run-Time Error Messages 

Table C·1. COBOL Run-Time.Error Messages (Continued) 

LOAD ADDRESS OUT OF RANGE, CODE = ?1 

Explanation: 
The object file contains a load address that is not within the valid range. 

User action: 
Verify that the correct opject file was read, and that it was correctly positioned. If necessary, 
recompile. 

UNABLE TO GET MEMORY 

Explanation: 
The system has insufficient memory space available for program requirements. 

User action: 
Allow other tasks to terminate. Rerun program withoutcompetition for system resources. Check 
object code size in the compiler object listing or linked object listing. If the program will not fit in 
the task address space, then the program must be restructured using segmentation or overlays. 

INVALID OBJECT FILE TYPE, CODE = ?1 

Explanation: 
The object file type must be a relative record file when the program is compiled or linked. The 
code indicates the relative record number in the object file where the error was found. 

User action: 
Delete the object file and recompile and/or link edit. 

END COBOL RUN 

Explanation: 
The program has completed. 

User action: 
None required. 

UNABLE TO OPEN OBJECT FILE, CODE = ?1 

2270521-9701 

Explanation: 
The system encountered an error when it tried to open the object file. The error code is the DX10 
internal SVC error code. 

User action: 
Refer to the table in the DX10 Messages and Codes Reference Manual where correspondence 
between the internal error and the SVC Message ID is given. Look at the internal error code 
>00xx, where xx is the DX10 SVC internal error given in the COBOL message. Verify that the 
correct object file was read and that it was correctly positioned. If necessary, recompile. 

C·3 



COBOL Run-Time Error Messages 

C-4 

Table C-1. COBOL Run· Time Error Messages (Continued) 

LOAD OVERLAY SVC ERROR 

Explanation: 
The system encountered an error when loading an independent segment. 

User action: 
Check that the link control file is correct. 

COBOL DEBUGGER NOT AVAILABLE 

Explanation: 
The COBOL dGbugger is not linked with this task. 

User action: 
Relink the task with RCBTSKD instead of RCBTSK. 

COBOL RUN-TIME TCA ERROR 

Explanation: 
The system encountered an error in the Task Communication Area (TCA) processing. 

User action: 
Refer to system programmer. 

COBOL RUN-TIME MESSAGE ACCESS ERROR 

Explanation: 
The system encountered an error with the MESSAGE ACCESS NAME specified in the execution 
command prompt. 

User action: 
Ensure that the MESSAGE ACCESS NAME specified in the command prompt is not being used 
concurrently by multiple programs. Ensure that foreground-only programs are not being run in 
background. If a file name is specified, ensure that it is sequential. 

CFDKEYCOUNTDOESNOTMATCHFCBKEYCOUNT 

Explanation: 
The number of keys declared in a program for a key indexed file does not match the number of 
keys in the file control block declared when the file was created. 

User action: 
Verify program description of key indexed file and modify program to match file or recreate file to 
match program. 

2270521-9701 



COBOL Run-Time Error Messages 

Table C-1. COBOL Run-Time Error Messages (Continued) 

CFDKEYFLAG~LENGTHDOESNOTMATCHFCBKEYFLAG~LENGTH 

Explanation: 
The key indexed file key attributes declared in a program do not match key attributes in the file 
control block declared when the file was created. 

User action: 
Check all keys for compatibility with file; specifically key length attribute, modifiable attribute, 
and duplicate attribute. 

CFD KEY OFFSET DOES NOT MATCH FCB KEY OFFSET 

Explanation: 
The displacement of a key-indexed file declared in a program does not match the displacement in 
the file control block declared when the file was created. 

User action: 
Check all keys for compatibility with the file; specifically key displacements. 

UNEXPECTED ERROR CONDITION 

Explanation: 
An unexpected error has occurred. 

User action: 
Refer to system programmer. 

COBOL INVALID ADDRESS AT: ?1 IN ?2 

Explanation: 
The statement references a linkage item for which no corresponding parameter exists. The error 
occurred at the given statement in the indicated program. 

User action: 
Examine the USING parameter lists for correspondence in both sending and receiving programs. 
An invalid UNIT number in an ACCEPT or DISPLAY can also cause this error. 

COBOL INVALID EDIT AT: ?1 IN ?2 

2270521-9701 

Explanation: 
Statement implies editing of data for which the PICTURE clause is in error. Normally occurs only 
when attempting to execute object code that contains compiler errors. The error occurred at the 
given statement in the indicated program. 

User action: 
Correct the statement and recompile. 

C·S 



COBOL Run-Time Error Messages 

C-6 

Table C-1. COBOL Run-Time Error Messages (Continued) 

COBOL INVALID DATA DESCRIPTOR AT: ?1 IN ?2 

Explanation: 
Statement references data for which the PICTURE clause is in error. Normally occurs only when 
attempting to execute object code that contains compiler errors. The error occurred at the given 
statement in the indicated program. 

User action: 
Correct PICTURE clause for data and recompile. 

COBOL UNDEFINED LABEL REFERENCE AT: ?1 IN ?2 

Explanation: 
Statement transfers control to a paragraph that is undefined. The error occurred at the given 
statement in the indicated program. 

User action: 
Correct statement or source program and recompile. 

COBOL INVALID INSTRUCTION AT: ?1 IN ?2 

Explanation: 
The statement resulted in an undefined object instruction. Normally occurs only when attempting 
to execute object code that contains compiler errors. The error occurred at the given statement in 
the indicated program. 

User action: 
Correct the statement and recompile. 

COBOL OVERLAY LOAD AT: ?1 IN ?2 

Explanation: 
This message provides traceback when an error has occurred. The previous overlay was loaded by 
the given statement in the indicated program. 

User action: 
None required. 

COBOL SUBSCRIPT RANGE ERROR AT: ?1 IN ?2 

Explanation: 
Statement contains a subscript that is not within proper range. The error occurred at the given 
statement in the indicated program. 

User action: 
Correct statement and recompile. 

2270521-9701 



COBOL Run-Time Error Messages 

Table C-1. COBOL Run-Time Error Messages (Continued) 

COBOL COMPILATION ERROR AT: ?1 IN ?2 

Explanation: 
Statement compiled in error. The error occurred at the given statement in the indicated program. 

User action: 
Correct statement and recompile. 

COBOL STOP RUN AT: ?1 IN ?2 

Explanation: 
The program has completed with the execution of a STOP RUN statement at the given statement 
in the indicated program. 

User action: 
None required. 

CALLED AT: ?1 IN ?2 

Explanation: 
This message provides traceback when an error has occurred. The previous program was called by 
the given statement in the indicated program. 

User action: 
None required. 

CRT ?1 110 ERROR = ?2,?3 AT: ?4 IN ?5 

Explanation: 
An error has occurred reading the characteristics of the given device. 

User action: 
Refer to system programmer. 

COBOLllOERROR = ?1,?2AT:?31N?4 

2270521-9701 

Explanation: 
1/0 statement did not execute successfully, and no AT END or INVALID KEY clause was 
applicable. The first number represents the status key. The second number is the SVC internal 
error code. The error occurred at the given statement in the indicated program. 

User action: 
For explanation of the status key, refer to the COBOL Programmer's Guide, Section 12: Error 
Processing. For explanation of the SVC error code, refer to the table in the Messages and Codes 
Manual where correspondence between the internal error and the SVC Message ID is given. Look 
at the internal error code >00xx, where xx is the SVC internal error given in the COBOL message. 
Either write a USE procedure for the 110 or add the AT END or INVALID KEY clause to the 
statement and recompile. 

Exceptions to the SVC internal error code: On an open operation when the status key is 97 (invalid 
record length), the second number is the record length of the file being opened. When the status 
key is 93 or 94 (invalid open function), the second number indicates that some condition other 
than a detected error resulted in this condition. 

C-7 



COBOL Run-Time Error Messages 

C·8 

Table C-1. COBOL Run-Time Error Messages (Continued) 

COBOL STOP "?1" AT: ?2 IN ?3 

Explanation: 
The program has completed with the execution of a STOP "literal" statement at the given 
statement in the indicated program. 

User action: 
None required. 

PATHNAME: ?1 

Explanation: 
This message accompanies a COBOL 1/0 error message (C01 F). The error occurred using the 
given pathname. 

User action: 
None required. 

END ACTION TAKEN: TASK ERROR CODE = ?1; PC = ?2 

Explanation: 
The task error indicated by the code has occurred. The program counter where the error occurred 
is noted by the second code. A task error message is also logged to the system log. 

User action: 
Refer to the Error Messages and Codes section of your operating system reference manual for 
explanation. 

2270521-9701 



Appendix D 

COBOL Subroutine Library Package 

0.1 INTRODUCTION 

This appendix contains a general explanation for each of the subroutines in the COBOL sub
routine library. These are listed in Table D-1. 

Where a subroutine has multiple alternate entry points, a main module name is listed, followed by 
the alternate entry points. The subroutine is not accessible by the main module name, but only 
through the entry points. The names given for the latter in Table D-1 are assigned aliases and can 
be used to access the code. Where a subroutine has only a single entry point, the code can be 
accessed via the module name shown. 

All data fields used as parameters to the COBOL subroutines MUST be aligned on word bound
aries. This can be accomplished by making the parameter an 01-Level data item in the WORKING
STORAGE section of the program. There are no provisions in either the compiler or the run-time 
packages to test for this condition, since to include such provisions would increase program Size, 
causing a space problem in some user programs. However, user failure to ensure word alignment 
can result in improper execution or erroneous results. 

2270521-9701 0·1 



COBOL Subroutine Library Package 

D·2 

Name 

C$CBID 

C$BSRT 

C$CARG 

C$CMPR 

C$CVDT 

C$EXCP 

C$FCFD 
C$BKSP 
C$DLTE 
C$MFAP 
C$MKEY 

C$RPRV 
C$TMPF 

C$GRPC 
C$GROF 
C$GRPH 

C$LOC 

C$RERR 

C$SCI 
C$MAPS 
C$PARM 
C$SETS 

C$SCRN 
C$CLOS 
C$0PEN 
C$WRIT 

C$SIGN 
C$ADDP 
C$SEPP 

C$SRCH 

C$SVC 

Table D-1. COBOL Library Subroutines 

Description 

Bid a COBOL task from COBOL. 

Sort an array on a given character string. 

Return USING argument information. 

Compare character strings logically. 

Close all VDTs currently open. 

Turn off function key accessibility. 

Backspace 1/0 on sequential file. 
Delete a file from COBOL. 
Modify file access privilege. 
Modify a KIF alternate key attribute to be nonmodifiable in program 
declaration. 
Read Previous 1/0 on KIF. 
Set a temporary file flag; next OPEN ... OUTPUT creates a tempo
rary file. 

Turn off graphic display option. 
Turn on graphics bit. 

Return the address of the data argument. 

Return the 1/0 completion status of the last file. 

Map and return synonym value. 
Get parameter from terminal communications area. 
Define or redefine a synonym in the terminal communications area. 

Close VDT device and output file. 
Open the VDT device and output file. 
Write the VDT screen contents to the output file or device. 

Embed the sign character with last data character. 
Separate embedded data character and sign character into data 
character and separate trailing sign. 

Perform a binary search on the array for the specified key value. 

Issue an SVC to operating system. 

2270521-9701 



COBOL Subroutine Library Package 

All of these subroutines reside in the library .S$SYSLIB.C$SUBS. They must be linked with the 
user application program using the LIBRARY or SEARCH command. These routines must be 
included in the task area, and the library .SCl990.S$0BJECT must also be declared. The following 
shows a typical link control file, which can be used successfully to link any of the subroutines 
onto a program file: 

FORMAT IMAGE,REPLACE 
LIBR .S$SYSLIB.C$SUBS 
LIBR .SCI990.S$0BJECT 
PROC RCOBOL 
DUMMY 
INCL .S$SYSLIB.RCBPRC 
TASK CBLTSK 
INCL .S$SYSLIB.RCBTSK 
INCL .S$SYSLIB.RCBMPD 
INCL <COBOL object module> 
END 

NOTE 

Refer to the COBOL Reference Manual for details on using the 
CALL statement with the USING option for passing parameters to 
subroutines. Pathnames specified as parameters in the USING list 
may be specified as valued data items or nonnumeric literals 
enclosed in quotes. 

The available routines are discussed below. Each discussion addresses the function of the 
routine, the COBOL calling sequence, each required argument, and where applicable, the error 
codes returned. 

D.2 C$CBID 

Function: This bids a COBOL task from COBOL with the message access name set to DUMY. 
Any file that will be deleted from within t~at bid task via a call to C$DL TE must not be 
open at the time C$CBID is called. 

Any task bid through C$CBID should not use any SCI interface routines that update the 
Task Communications Area (TCA). These include S$PTCA, S$SETS (and C$SETS), 
S$0PEN, S$WRIT, S$WEOL, and S$CLOS. The completion code and message are not 
available to the terminal associated with the original task. 

When a COBOL task bids another COBOL task using C$CBID, a copy of the original 
task's synonym table is copied for use in the bid task. Any further updates of the syn· 
onym table in the original task are not available to the bid task. 

2270521-9701 0·3 



COBOL Subroutine Library Package 

Calling Sequence: 

CALL "C$CBID" USING ERR ID LUNO FLAGS. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

ID is an eight-byte alphanumeric data item specifying the installed task name. 

LUNO is a two-byte alphanumeric data item specifying the LUNO assigned to the pro
gram file containing the task to be bid. The LUNO must be specified as the hexade
cimal value of the LUNO; for example, LUNO >40 would be specified as '40'. 

FLAGS is a COMP-1 data item containing bid information, as specified by the following 
values: 

Value 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13-15 

Meaning 

Task is bid without suspending calling task 

Task is bid; calling task suspended until task ends 

Task is bid suspended; calling task continues 

Task is bid suspended; calling task suspended 

Task is bid controlled; calling task continues 

Task is bid controlled; calling task suspended 

Task is bid controlled and suspended; calling task continues 

Task is bid controlled and suspended; calling task suspended 
until task ends 

Task is bid; calling task terminated 

Same as 8 

Task is bid suspended; calling task terminated 

Same as 10 

Task is bid controlled; calling task terminated 

Task is bid; calling task terminated 

Values 8-15 use task chaining which does the following: 

• When C$CBID is called in foreground to bid another task, it does so and then terminates 
itself. SCI does not reactivate until the bid task has terminated. The bid task can perform 
ACCEPT and DISPLAY commands to and from the terminal. Any synonyms updated by 
the calling task and the bid task are available to SCI after the bid task terminates. 

• When C$CBID is called in batch mode, the batch stream is suspended until the bid task 
has completed. 

0·4 2270521-9701 



COBOL Subroutine Library Package 

When using the task chaining facility, the bidding program must take into account the additional 
memory requirements for the C$CBID subroutine, the S$BIDT routine, and the TCA record which is 
initiated by S$BIDT. 

A controlled bid, as selected by values 4-7 and 12 for parameter FLAGS in a C$CBID call, corre
sponds to a bid performed using the SCI primitive .DBID. That is, the task is bid in ASSEMBLY 
DEBUG mode. 

Table D-2. Error Codes Returned for C$SUBS Subroutines 

Code 

00 
21 
90 
91 
92 
99 
BF 
Others 

Meaning 

Successful completion 
Cannot map synonym 
Illegal open mode or operation 
File CFO not found 
Illegal file type 
Incorrect argument list 
Invalid key number 
Operating system errors 

D.3 C$BSRT 

Function: Sort an array in ascending sequence on a given character-string key, using a bub
ble-sort technique. 

Calling Sequence: 

2270521-9701 

CALL "C$BSRT" USING RECORD-CNT ARRAY-NAME RECORD-LENGTH 
KEY-LENGTH KEY-DISPLACEMENT. 

RECORD-CNT is a COMP-1 data item specifying the maximum number of entries in the 
array to be sorted. 

ARRAY-NAME is the array containing entries to be sorted. It must either be declared as a 
one-dimensional array, or made to appear as one by the specification of a RECORD
LENGTH to encompass any subarrays. 

RECORD-LENGTH is a COMP-1 data item specifying the size of an individual array ele-
ment. · 

KEY-LENGTH is a COMP-1 data item specifying the length of the character string to be 
used as the sort key. 

KEY-DISPLACEMENT is a COMP-1 data item specifying the displacement of the sort key 
from the beginning of the array element. The first character position in the array 
element has a displacement of 0. 

D·5 



COBOL Subroutine Library Package 

D.4 C$CARG 

Function: This fetches and returns information about an argument in the USING list of a 
CALL statement. Refer to the section of this manual, "Calling Subroutines", for a 
description of the information returned. 

Calling Sequence: 

CALL "C$CARG" USING ERR BUFFER ARG. 

ERR is a two-byte alphanumeric data item that gets set by C$CARG to an error code. A 
value of 00 indicates successful completion. Refer to Table D-2 for a complete list 
of error codes. 

BUFFER is the address of a buffer area to which the argument information is returned. 
The buffer must be at least 10 bytes long. 

ARG is the name of the data item for which argument information is obtained. 

D.5 C$CMPR 

D·6 

Function: This compares character strings logically using a specified table. The table defines 
nonstandard ASCII collating sequences. 

Calling Sequence: 

CALL "C$CMPR" USING STATSTRNG1 STRNG2TABLE. 

STAT is a two-byte alphanumeric data item for returning a comparison result. Possible 
completion codes are: 

HI if STRNG1 > STRNG2 
EQ if STRNG1 = STRNG2 
LO if STRNG1 < STRNG2 

A value of 99 indicates an incorrect argument list. 

STRNG1 is the name of string records that are to be compared. 

STRNG2 is the name of string records that are to be compared. 

TABLE is the name of a record area that defines nonstandard collating sequences. 

If a character is not defined in the table, it is assumed to use its standard ASCII code value. 

2270521-9701 



EXAMPLE: 

01 ALT-TABLE PICTURE X(64) VALUE 
"A[BCDEFGHIJKLMNO/PQRSTUJVWXYZ_ 'a{bcdefghi" 
"j k L mno I pq rs-t uvwx yz}". 

D.6 C$CVDT 

COBOL Subroutine Library Package 

Function: Close all VDTs currently open for ACCEPT or DISPLAY functions. This allows tasks 
that are bid by C$CBID to gain access to the function keys. 

Calling Sequence: 

CALL "C$CVDT". 

D.7 C$EXCP 

Function: This turns off accessibility to the function keys. C$EXCP should be called prior to 
the first ACCEPT or DISPLAY command because the first ACCEPT or DISPLAY com· 
mand to a VDT gains exclusive access to the function keys within a task. C$EXCP 
causes the ACCEPT and DISPLAY commands to ignore function key requests. 

Calling Sequence: 

CALL "C$EXCP". 

D.8 C$FCFD 

The alternate entry points C$BKSP, C$DLTE, C$MFAP, C$MKEY, C$RPRV, and C$TMPF all require 
COBOL file definitions (CFD) contained in the COBOL module. In all cases the pathname values in 
the working storage field, or the string used in the select statement, is used as is. No synonym 
resolution will be performed. 

D.8.1 C$BKSP 

Function: This performs backspace 1/0 on sequential file. The calling program must contain 
the file description, and the file must be open when called. 

Calling Sequence: 

CALL "C$BKSP" USING ERR PATHNAME CNT. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi· 
cates successful completion. Refer to Table D·2 for a complete list of error codes. 

2270521-9701 D·7 



COBOL Subroutine Library Package 

PATHNAME must contain the same pathname, synonym, or data name value as speci
fied in the SELECT ... ASSIGN statement. PATHNAME must be declared as a valued 
data item or a non numeric literal. Refer to Figure D-1 for examples. 

CNT is a COMP-1 data item specifying the number of records to backspace. 

0.8.2 C$0L TE 

Function: This deletes a file from COBOL. Any LUNO associated with the file will be released. 
Files with assigned global LUNOs will not be deleted. The calling program must contain 
the file description. The file must have been opened and closed within the COBOL pro
gram before calling C$DLTE. 

Calling Sequence: 

CALL "C$DLTE" USING ERR PATHNAME. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PATHNAME must contain the same pathname, synonym, or data name value as speci
fied in the SELECT ... ASSIGN statement. PATHNAME must be declared as a valued 
data item or a non numeric literal. Refer to Figure D-1 for examples. 

0.8.3 C$MFAP 

Function: This changes the file access privilege to "exclusive all". The calling program must 
contain the file description. The file must be opened prior to calling C$MFAP. 

Calling Sequence: 

CALL "C$MFAP" USING ERR PATHNAME. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PATHNAME must contain the same pathname, synonym, or data name value as speci
fied in the SELECT ... ASSIGN statement. PATHNAME must be declared as a valued 
data item or a non numeric literal. Refer to Figure D-1 for examples. 

0.8.4 C$MKEY 

0·8 

Function: This changes a COBOL program's declaration of an alternate key from modifiable 
(default) to nonmodifiable. The calling program must contain the file description. 
C$MKEY must be called prior to opening the file. 

The KIF file to be opened must contain the characteristics specified in the SELECT 
statement and the C$MKEY description. 

2270521-9701 



COBOL Subroutine Library Package 

Calling Sequence: 

CALL "C$MKEY" USING ERR PATHNAME KEY. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PATHNAME must contain the same pathname, synonym, or data name value as speci
fied in the SELECT ... ASSIGN statement. PATHNAME must be declared as a valued 
data item or as a non numeric literal. Refer to Figure D-1 for examples. 

KEY is a COMP-1 data item specifying the ordinal number of the key whose status is to 
be changed. The primary key is always key "1" regardless of displacement. 

0.8.5 CSRPRV 

Function: This reads previous 1/0 on KIF. The calling module must contain the file descrip
tion. The file must be open and in the sequential access mode. C$RPRV functions like a 
Read Next command except the previous record is read based on the key of reference. 

Calling Sequence: 

CALL "C$RPRV" USING ERR PATHNAME BUFFER. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PATHNAME must contain the same pathname, synonym, or data name value as speci
fied in the SELECT ... ASSIGN statement. PATHNAME must be declared as a valued 
data item or a nonnumeric literal. Refer to Figure D-1 for examples. If the PATH
NAME is a data item, it must be unique to that KIF file. Otherwise, the program may 
produce indeterminant results. 

BUFFER is the name of a record area in which to return the record read. 

0.8.6 C$TMPF 

Function: This sets a flag that causes the following OPEN ... OUTPUT command to create a 
temporary file. If more than one file is specified in the OPEN statement, only the first will 
be created as a temporary. The calling program must contain the file description. Refer 
to Figure D-1 for examples. 

Calling Sequence: 

CALL "C$TMPF". 

0.9 CSGRPC 

The alternate entry points, C$GROF and C$GRPH, affect the graphics VDT capabilities. 

2270521-9701 0·9 



COBOL Subroutine Library Package 

D.9.1 C$GROF 

Function: This turns off the graphics display option. 

Calling Sequence: 

CALL "C$GROF". 

D.9.2 C$GRPH 

Function: This turns on the graphics display option. 

Calling Sequence: 

CALL "C$GRPH". 

D.10 C$LOC 

Function: This returns the run-time address of a COBOL data item or 1/0 buffer. 

Calling Sequence: 

CALL "C$LOC" USING VARIABLE-NAME, VARIABLE-ADDRESS. 

VARIABLE-NAME is a group level item or a single data name. It may not be a table item. 

VARIABLE-ADDRESS must be aligned on a word boundary as an 01-level PIC 9(4) 
COMP-4 data item. 

D.11 C$RERR 

Function: This retrieves the last file 1/0 completion status. 

Calling Sequence: 

CALL "C$RERR" USING RET-STATUS. 

RET-STATUS is a four-byte alphanumeric data item used for returning the DX10 1/0 com
pletion code (bytes 1-2) and the KIF information code (bytes 3-4) where applicable. 
These codes are in ASCII representation. 

D.12 C$SCI 

The alternate entry points, C$MAPS, C$PARM, and C$SETS, all use SCI routines. Refer to Figure 
D-2 for examples. 

D-10 2270521-9701 



COBOL Subroutine Library Package 

D.12.1 C$MAPS 

Function: This maps and returns a synonym value from the terminal communications area. 

Calling Sequence: 

CALL "C$MAPS" USING ERR SYNONYM SYN-VALUE. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

SYNONYM specifies an alphanumeric data item or a non numeric literal value which may 
neither exceed 50 characters nor contain embedded blanks. 

SYN-VALUE specifies an alphanumeric data item of sufficient length to contain the 
mapped value of the synonym. If the value contains embedded blanks, only that 
part which precedes the first blank will be returned. 

D.12.2 C$PARM 

Function: This gets the parameter placed in the terminal communications area by the com
mand procedure via the PARMS parameter. 

Calling Sequence: 

CALL "C$PARM" USING ERR PARM-NO PARM-VALUE. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PARM-NO is a COMP-1 data item specifying the parameter in the PARMS list for the 
desired parameter. 

PARM-VALUE is an alphanumeric data item of sufficient length to contain the returned 
parameter value. 

D.12.3 C$SETS 

Function: This defines or redefines a synonym in the terminal communications area. 

Calling Sequence: 

2270521-9701 

CALL "C$SETS" USING ERR SYNONYM SYNONYM-VALUE. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

D-11 



COBOL Subroutine Library Package 

SYNONYM specifies an alphanumeric data item or a non numeric literal value which may 
neither exceed 50 characters nor contain blanks. 

SYNONYM-VALUE specifies that an alphanumeric data item contain the value of the 
synonym. The value may neither exceed 50 characters nor contain embedded blank 
characters. If blanks are present, only that portion of the value which precedes the 
first blank will be used, and the remainder will be ignored. 

D.13 C$SCRN 

The alternate entry points, C$0PEN, C$WRIT, and C$CLOS are used together to open the terminal 
screen and output file, write the screen contents, and close all files. 

D.13.1 C$CLOS 

Function: This closes the VDT device and output file to which the VDT screen contents were 
written. C$CLOS should be called only if C$0PEN was called to open the files. 

Calling Sequence: 

CALL "C$CLOS" USING ERR. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi· 
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

D.13.2 C$0PEN 

D-12 

Function: This opens the VDT device and an output file or device for the writing of screen 
contents. This must be called before calling C$WRIT or C$CLOS. 

Calling Sequence: 

CALL "C$0PEN" USING ERR PATHNAME. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

PATHNAME is the pathname of the output file, or the device name if writing to a device. 

2270521-9701 



COBOL Subroutine Library Package 

D.13.3 C$WRIT 

Function: Write the contents of the VDT screen to a file or other device. C$0PEN must be 
called prior to calling C$WRIT. 

Calling Sequence: 

CALL "C$WRIT" USING ERR. 

ERR is a two-byte alphanumeric data item for returning an error code. A value of 00 indi
cates successful completion. Refer to Table D-2 for a complete list of error codes. 

D.14 C$SIGN 

The alternate entry points C$ADDP and C$SEPP respectively generate and remove "overpunch" 
signs. 

D.14.1 C$ADDP 

Function: This embeds a separate trailing sign with the last data byte forming an overpunch 
character or unpacked format. Only a negative sign is processed in forming the over
punch character. The characters], J, K, L, M, N, 0, P, Q, and R represent the negative 
values - O through - 9, respectively. 

Calling Sequence: 

CALL "C$ADDP" USING IN-DATA OUT-DATA. 

IN-DATA is a numeric sign-trailing-separate data item of length n. 

OUT-DATA is an unsigned numeric data item of length n - 1. 

D.14.2 C$SEPP 

Function: This separates the last data byte referenced, which is assumed to have an embed
ded sign, into a data byte and a separate trailing sign. The characters], J, K, L, M, N, 0, P, 
Q, and R convert to a negative sign; the characters 0 through 9, and A through I, and 
hexadecimal 78 convert to a positive sign. 

Calling Sequence: 

CALL "C$SEPP" USING IN-DATA CUT-DATA. 

IN-DATA is an unsigned numeric data item of length n. 

OUT-DATA is a signed numeric data item of length n + 1. 

2270521 ·9701 D-13 



COBOL Subroutine Library Package 

D.15 C$SRCH 

Function: This performs a binary search on an array for a specified key value. The array must 
be in ascending sort order on the specified key. 

Calling Sequence: 

CALL "C$SRCH" USING RECORD-CNT ARRAY-NAME RECORD-LENGTH 
KEY-LENGTH KEY-DISPLACEMENT KEY-VALUE. 

RECORD-CNT is a COMP-1 data item specifying the maximum number of entries in the 
array to be searched. 

ARRAY-NAME is the array containing entries to be searched. It must be declared as a 
one-dimensional array. 

RECORD-LENGTH is a COMP-1 data item specifying the size of an individual array 
element. 

KEY-LENGTH is a COMP-1 data item specifying the length of the character string to be 
used as the search key. 

KEY-DISPLACEMENT is a COMP-1 data item specifying the displacement of the search 
key from the beginning of the array element. The first character position in the array 
element has a displacement of 0. 

KEY-VALUE specifies the value of the key to locate in the array. It must be used in the 
same way as the key field of the array described by KEY-LENGTH and KEY
DISPLACEM ENT. 

On return, RECORD-CNT contains the array element occurrence number that matches 
KEY-VALUE or the value 0 if a match is not found. 

D.16 C$SVC 

0·14 

Function: This issues an SVC call block to the operating system as defined in the DX10 Sys
tem Programmer's Guide. 

Calling Sequence: 

CALL "C$SVC" USING SVC-CALL-BLOCK. 

SVC-CALL-BLOCK is a COBOL description of the call block for the particular SVC code 
to execute. Most of the items in the call block need to be unsigned binary items of 
differing lengths. 

The actual SVC status is returned by the SVC mechanism into the second byte of the SVC 
call block. The second byte is in the range O through 255 (decimal), or O through >FF 
(hexadecimal). 

2270521-9701 



COBOL Subroutine Library Package 

D.17 COBOL PROGRAMS USING SUBROUTINES 

Figure D·1 and Figure D·2 show two examples of the use of subroutines. 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIGOD01 
DUMY 
MANUAL.PG.LST.FIGOD01 
M 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE DEBUG 

1 
PG/LN A ... B ...................................................... . 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

2270521-9701 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CALLER. 

* THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL 
* DEMONSTRATION TEST TO ILLUSTRATE EXECUTION 
* OF SELECTED MEMBERS OF THE COBOL SUBROUTINE 
* LI BRA RY. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

DATA 
FILE 
FD 
01 

SELECT KIFALTF ASSIGN TO RANDOM, "KIFALT" 
ORGANIZATION INDEXED 
ACCESS SEQUENTIAL 
RECORD KEY KEY-N01 
ALTERNATE RECORD KEY KEY-N02 
FILE STATUS IS KIFALT-STATUS. 

SELECT SEQFILE ASSIGN TO RANDOM "SEQF". 
SELECT KIFFILE ASSIGN TO RANDOM "KIFF" 

ORGANIZATION INDEXED 
ACCESS SEQUENTIAL 
RECORD KEY KEY-NO. 

SELECT OUTFILE ASSIGN TO RANDOM, DATA-NAME. 
SELECT DLTEFLE ASSIGN TO RANDOM, DATA-NAME2. 

DIVISION. 
SECTION. 
KIFALTF LABEL RECORDS STANDARD. 
KIF-ALT-REC. 
02 KEY-N01 PIC xx. 
02 KEY-N02 PIC x (4) . 
02 FILLER PIC XC74). 

Figure D·1. COBOL Subroutine Example 1(Sheet1of7) 

D·15 



COBOL Subroutine Library Package 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

FD SEQFILE LABEL RECORDS STANDARD. 
01 SEQ-REC PIC XC80). 
FD KIFFILE LABEL RECORDS STANDARD. 
01 KIF-REC. 

02 KEY-NO PIC X(2). 
02 FILLER PIC X(78). 

FD OUTFILE LABEL RECORDS STANDARD. 
01 OUT-REC PIC X(80). 

FD DLTEFLE LABEL RECORDS STANDARD. 
01 DLT-REC PIC X(80). 

WORKING-STORAGE SECTION. 
01 T-CODE PIC 9. 
01 ACTION PIC X. 
01 REC-NO PIC 99. 
01 KIFALT-STATUS PIC XX VALUE 11 11 • 

01 DATA-NAME PIC X(20) VALUE 11 TEMPF 11 • 

01 DATA-NAME2 PIC X(20) VALUE 11 DLTEF 11 • 

01 PATHNAME PIC X(20). 
01 ERR-FLG PIC X(4) VALUE II II 

01 KEY-NUMBER PIC 99 COMP-1. 
01 BACKSPACE-COUNT PIC 99 COMP-1. 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
LINE DEBUG PG/LN A ... B ...................................................... . 

57 01 ERR-RETRIEVED PIC xxxx VALUE II II 

DXCBL 
LINE DEBUG 

58 
59 
60 
61 >0002 
62 
63 >0002 
64 >0004 
65 >0008 
66 
67 >0008 
68 >OOOA 
69 
70 
71 >OOOE 
72 >OOOE 

0·16 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 4 
PG/LN A ... B ...................................................... . 

I 
PROCEDURE DIVISION. 
DECLARATIVES. 
DECL1 SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON OUTFILE. 
DEC1. GO TO RETRIEVE-ERROR. 
END-DEC1. EXIT. 
DECL2 SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON XIFFILE. 
DEC2. GO TO RETRIEVE-ERROR. 
END-DEC2. EXIT. 
END DECLARATIVES. 

MAIN SECTION. 
BEGIN. 

Figure D·1. COBOL Subroutine Example 1(Sheet2 of 7) 

2270521-9701 



73 >OOOE 
74 >0016 
75 >001A 
76 >001E 
77 >0022 
78 >0026 
79 >002A 
80 >002E 
81 >0032 
82 >0038 
83 >0042 
84 
85 
86 
87 
88 
89 
90 
91 
92 >0056 
93 >0058 

DXCBL 
LINE DEBUG 

94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

>005C 
>005C 
>005C 
>0064 
>006A 
>006E 
>0076 
>007E 
>0086 
>008A 
>008C 
>0094 
>0098 
>OOAO 
>OOA4 
>OOA8 
>OOAE 
>OOB4 
>OOB8 
>OOCO 
>OOC8 
>OODO 
>0004 

2270521-9701 

COBOL Subroutine Library Package 

DISPLAY "RETRIEVE ERROR WORD - 1" LINE 1 ERASE. 
DISPLAY "SET TEMP FILE FLAG - 2". 
DISPLAY "BACKSPACE SEQ FILE - 3". 
DISPLAY "ALT KIF KEY NON-MOD - 4". 
DISPLAY "READ PREVIOUS KIF - 5". 
DISPLAY "DELETE FILE - 6". 
DISPLAY "EXCLUSIVE ACCESS - 7". 
DISPLAY "END TEST - 8". 
DISPLAY "ENTER TEST CODE: II LINE 10. 
ACCEPT T-CODE LINE 10 POSITION 20 PROMPT. 
GO TO RETRIEVE ERROR 

SET-TEMP-FLAG 
BACKSPACE-SEQ 
ALT-KEY-NON-MOD 
READ-PREVIOUS 
DELETE-FILE 
EXCLUSIVE-ACCESS 
FINISH-TEST 

DEPENDING ON T-CODE. 
GO TO MAIN. 

END-MAIN. EXIT. 

L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 5 
PG/LN A ... B ...•..................•.........•...................... 

I 
BACKSPACE-SEQ SECTION. 
BEGIN. 

DISPLAY "C$BKSP - BACKSPACE TEST" LINE 1 ERASE. 
OPEN INPUT SEQFILE. 
MOVE "SEQF" TO PATHNAME. 
READ SEQFILE AT END GO TO END-RD. 
READ SEQFILE NO LOCK AT END GO TO END-RD. 
READ SEQFILE AT END GO TO END-RD. 
MOVE 3 TO BACKSPACE-COUNT. 
CALL "C$BKSP" USING ERR-FLG "SEQF" BACKSTAGE-COUNT. 
DISPLAY "ERROR = " ERR-FLG. 
MOVE SPACE TO SEQ-REC. 
READ SEQFILE AT END GO TO END-RD. 
DISPLAY SEQ-REC. 
DISPLAY " TEST1 PASSES IF RECORD 1 DISPLAYED". 
CLOSE SEQFILE. 
OPEN I-0 SEQFILE. 
MOVE "SEQF" TO PATHNAME. 
READ SEQFILE AT END GO TO END-RD. 
READ SEQFILE NO LOCK AT END GO TO END-RD. 
READ SEQFILE AT END GO TO END-RD. 
MOVE 5 TO BACKSPACE-COUNT. 
CALL "C$BKSP" USING ERR-FLG "SEQF" BACKSPACE-COUNT. 

Figure 0·1. COBOL Subroutine Example 1 (Sheet 3 of 7) 

0·17 



COBOL Subroutine Library Package 

118 >0006 
119 >OODE 
120 >OOE2 
121 >OOEA 
122 >OOEE 
123 >OOF2 
124 >OOF6 
125 >OOFE 
126 >0106 
127 
128 >0108 
129 >0108 
130 >0108 
131 >0110 
132 >0112 
133 >011A 
134 >011E 
135 >0124 
136 >0126 
137 
138 >012A 
139 >012A 
140 >012A 
141 >0132 
142 >0134 
143 >013A 
144 >013E 
145 >014A 
146 >0150 
147 >0156 
148 >015E 
149 >0162 

DXCBL 
LINE DEBUG 
150 >0166 
151 >016A 
152 >0172 
153 >017A 

0·18 

DISPLAY "ERROR = II ERR-FLG. 
MOVE SPACE TO SEQ-REC. 
READ SEQFILE AT END GO TO END-RD. 
DISPLAY SEQ-REC. 
DISPLAY " TEST2 PASSES IF RECORD DISPLAYED". 
DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 

END-RD. CLOSE SEQFILE. 
END-SEQ. GO TO MAIN. 

RETRIEVE-ERROR SECTION. 
BEGIN. 

DISPLAY "C$RERR - RETRIEVE ERROR TEST" LINE 1 ERASE. 
CALL "C$RERR" USING ERR-RETRIEVED. 
DISPLAY "ERROR RETRIEVED = " ERR-RETRIEVED. 
DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 
GO TO MAIN. 

END-RET. EXIT. 

SET-TEMP-FLAG SECTION. 
BEGIN. 

DISPLAY "C$TMPF - TEMPORARY FILE TEST" LINE 1 ERASE. 
CALL "C$TMPF". 
OPEN OUTPUT OUTFILE. 
MOVE ALL "*" TO OUT-REC. 
WRITE OUT-REC. 
CLOSE OUTFILE. 
OPEN INPUT OUTFILE. 
READ OUTFILE AT END GO TO END-TMP-RD. 
DISPLAY OUT-REC. 
DISPLAY " TEST PASSES IF RECORD OF ALL * DISPLAYED". 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 6 
PG/LN A ... B ...................................................... . 

DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 

END-TMP-RD. CLOSE OUTFILE. 
END-TEMP. GO TO MAIN. 

Figure D·1. COBOL Subroutine Example 1 (Sheet 4 of 7) 

2270521-9701 



DXCBL 
LINE DEGUB 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 

>017C 
>017C 
>017C 
>0184 
>018A 
>0192 
>019A 
>019E 
>01AO 
>01A8 
>01AC 
>01BO 
>01B4 

>01C4 
>01C8 
>01CA 
>0102 
>0106 
>01DA 
>01DE 
>01E6 
>01EE 

>01FO 
>01FO 
>01FO 
>01F8 

>0202 
>0208 
>020A 
>0212 
>0216 
>021A 
>0222 

>0224 
>0224 
>0224 

>0230 
>0234 
>0236 
>023E 
>0244 
>024C 
>0250 
>025C 
>0260 
>0268 

2270521-9701 

COBOL Subroutine Library Package 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 7 
PG/LN A ... B ...................................................... . 

I 
READ-PREVIOUS SECTION. 
BEGIN. 

DISPLAY "C$RPRV - READ PREVIOUS TEST" LINE 1 ERASE. 
OPEN INPUT KIFFILE. 
READ KIFFILE AT END GO TO END-KIFR. 
READ KIFFILE AT END GO TO END-KIFR. 
MOVE "KIFF" TO PATHNAME. 
CALL "C$RPRV" USING ERR-FLG PATHNAME KIF-REC. 
DISPLAY "ERROR = II ERR-FLG. 
DISPLAY KIF-REC. 
DISPLAY " TEST 1 PASSES IF RECORD 1 DISPLAYED". 
MOVE 11 05 11 TO KEY-NO. 
START KIFFILE KEY NOT < KEY-NO 

INVALID KEY DISPLAY "INVALID START" 
GO TO END-KIFR. 

MOVE "KIFF" TO PATHNAME. 
CALL "C$RPRV" USING ERR-FLG PATHNAME KIF-REC. 
DISPLAY "ERROR = II ERR-FLG. 
DISPLAY KIF-REC. 
DISPLAY " TEST 2 PASSES IF RECORD 5 DISPLAYED". 
DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 

END-KIFR. CLOSE KIFFILE. 
END-PRV. GO TO MAIN. 

DELETE-FILE SECTION. 
BEGIN. 

DISPLAY "C$DLTE - DELETE TEST" LINE 1 ERASE. 
MOVE DATA-NAME2 TO PATHNAME. 
OPEN OUTPUT DLTEFLE. 
CLOSE DLTEFLE. 
CALL "C$DLTE" USING ERR-FLG PATHNAME. 
DISPLAY "ERROR = II ERR-FLG. 
DISPLAY " TEST PASSES IF NO ERROR RETURNED". 
DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 

END-DEL. GO TO MAIN. 

ALT-KEY-NON-MOD SECTION. 
BEGIN. 

DISPLAY "C$MKEY - SET ALT KIF KEY NON-MOD TEST" LINE 1 
MOVE "KIFALT" TO PATHNAME. 
MOVE 2 TO KEY-NUMBER. 
CALL "C$MKEY" USING ERR-FLG PATHNAME KEY-NUMBER. 
DISPLAY "ERROR = II ERR-FLG. 
OPEN INPUT KIFALTF. 
DISPLAY "FILE STATUS = " KIFALT STATUS. 
DISPLAY " TEST PASSES IF FILE STATUS = 00". 
IF KIFALT-STATUS = "00" CLOSE KIFALTF. 
DISPLAY "HIT Return TO CONTINUE." 
ACCEPT ACTION PROMPT. 

END-ALT-MOD. GO TO MAIN. 

Figure 0·1. COBOL Subroutine Example 1 (Sheet 5 of 7) 

0·19 



COBOL Subroutine Library Package 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 8 
LINE 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 

DEBUG PG/LN A ... B ...................................................... . 

>026A 
>026A 
>026A 
>0272 
>0278 
>027C 
>027E 
>0286 
>028A 
>0290 
>0294 
>029C 

>029E 
>029E 
>029E 
>02A2 

I 
EXCLUSIVE-ACCESS SECTION. 
BEGIN. 

DISPLAY "C$MFAP - EXCLUSIVE ACCESS TEST" LINE 1 ERASE. 
OPEN I-0 KIFFILE. 
MOVE "KIFF" TO PATHNAME. 
CALL "C$MFAP" USING ERR-FLG "KIFF". 
DISPLAY "ERROR = " ERR-FLG. 
DISPLAY " TEST PASSES IF NO ERROR RETURNED". 
CLOSE KIFFILE. 
DISPLAY "HIT Return TO CONTINUE". 
ACCEPT ACTION PROMPT. 

END-EXCL. GO TO MAIN. 

FINISH-TEST SECTION. 
BEGIN. 

DISP~AY "END OF JOB". 
STOP RUN. 

ZZZZZZ END PROGRAM. *** END OF FILE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 9 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

0 FILE KI FAL TF 
>0026 80 GRP 0 GROUP KIF-ALT-REC 
>0026 2 ANS 0 ALPHANUMERIC KEY-N01 
>0028 4 ANS 0 ALPHANUMERIC KEY-N02 

0 FILE SEQ FILE 
>0076 80 ANS 0 ALPHANUMERIC SEQ-REC 

0 FILE KIFFILE 
>OOC6 80 GRP 0 GROUP KIF-REC 
>OOC6 2 ANS 0 ALPHANUMERIC KEY-NO 

0 FILE OUTF I LE 
>0116 80 ANS 0 ALPHANUMERIC OUT-REC 

0 FILE DLTEFLE 
>0166 80 ANS 0 ALPHANUMERIC DLT-REC 

>01BA NSU 0 NUMERIC UNSIGNED T-CODE 

>01BC ANS 0 ALPHANUMERIC ACTION 

>01BE 2 NSU 0 NUMERIC UNSIGNED REC-NO 

Figure D·1. COBOL Subroutine Example 1(Sheet6 of 7) 

0·20 2270521-9701 



COBOL Subroutine Library Package 

>01CO 2 ANS 0 ALPHANUMERIC KI FALT-STATUS 

>01C2 20 ANS 0 ALPHANUMERIC DATA-NAME 

>01D6 20 ANS 0 ALPHANUMERIC DATA-NAME2 

>01EA 20 ANS 0 ALPHANUMERIC PATHNAME 

>01FE 4 ANS 0 ALPHANUMERIC ERR-FLG 

>0202 2 NBS 0 BINARY SIGNED KEY-NUMBER 

>0204 2 NBS 0 BINARY SIGNED BACKSPACE-COUNT 

>0206 4 ANS 0 ALPHANUMERIC ERR-RETRIEVED 

READ ONLY BYTE SIZE = >0762 

READ/WRITE BYTE SIZE = >043E 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >OBAO 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V YY.DDD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
PROGRAM USING COUNT 

C$BKSP 
C$DLTE 
C$MFAP 
C$MKEY 
C$RERR 
C$RPRV 
C$TMPF 

2270521-9701 

3 
2 
2 
3 
1 
3 
0 

Figure 0·1. COBOL Subroutine Example 1 (Sheet 7 of 7) 

PAGE 10 

0·21 



COBOL Subroutine Library Package 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIGOC02 
DUMY 
MANUAL.PG.LST.FIGOC02 
M 
80 
55 
1000 

PAGE 1 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 2 
LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

0·22 

DEBUG PG/LN A ... B ...................................................... . 

>0000 
>0000 
>0008 
>OOOE 
>0018 
>001C 
>001E 

>0042 
>0048 
>0052 
>0058 
>0062 
>0064 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CBLMAPS. 

* THIS PROGRAM WAS DEVELOPED AS A FUNCTIONAL 
* DEMONSTRATION TEST TO VERIFY THE INTERFACE 
* OF COBOL TO SCI VIA SUBROUTINES. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
01 ACTION PIC X. 
01 ERR-FLG PIC 99 VALUE 0. 
01 PATHNAME PI c x (50) VALUE II II 

01 SYNONYM PIC X(20) VALUE " ". 
01 BUFFR PI c x (50) VALUE II II 

01 NUM PIC 99 COMP-1. 
PROCEDURE DIVISION. 
MAIN-PROG. 

DISPLAY"C$PARM, C$SETS, C$MAPS - SCI TESTS" LINE 1 ERASE 
DISPLAY "ENTER PARM NO." LINE 3. 

* 

ACCEPT NUM LINE 3 POSITION 20 CONVERT. 
MOVE II II TO BUFFR. 
CALL "C$PARM" USING ERR-FLG NUM BUFFR. 
IF ERR-FLG = 00 

DISPLAY "PARAMETER = " LINE 4 
BUFFR LINE 4 POSITION 20 

ELSE DISPLAY "PARM ERROR" LINE 4 
DISPLAY ERR-FLG LINE 4 POSITION 20. 

DISPLAY "ENTER SET SYNONYM" LINE 6. 
ACCEPT SYNONYM LINE 6 POSITION 20 PROMPT. 
DISPLAY "ENTER PATHNAME" LINE 7. 
ACCEPT PATHNAME LINE 7 POSITION 20 PROMPT. 
CALL "C$SETS" USING ERR-FLG SYNONYM PATHNAME. 
IF ERR-FLG = 00 

Figure D·2. COBOL Subroutine Example 2 (Sheet 1 of 3) 

2270521-9701 



COBOL Subroutine Library Package 

38 
39 
40 
41 
42 >0080 
43 >0084 
44 >008A 
45 >0094 
46 >0096 
47 
48 
49 
50 
51 

* 

* 

DISPLAY "SYNONYM SET" LINE 8 
ELSE DISPLAY "SET ERROR" LINE 8 

DISPLAY ERR-FLG LINE 8 POSITION 20. 

MOVE II II TO PATHNAME. 
DISPLAY "ENTER MAP SYNONYM" LINE 10. 
ACCEPT SYNONYM LINE 10 POSITION 20 PROMPT. 
CALL "C$MAPS" USING ERR-FLG SYNONYM PATHNAME. 
IF ERR-FLG = 00 

DISPLAY "SYNONYM VALUE = " LINE 11 
PATHNAME LINE 11 POSITION 20. 

ELSE DISPLAY "MAP ERROR" LINE 11 
DISPLAY ERR-FLG LINE 11 POSITION 20. 

DISPLAY "HIT Return TO CONTINUE" LINE 22. 
ACCEPT ACTION LINE 22 POSITION 30 PROMPT. 
STOP RUN. 

52 >OOBA 
53 >OOCO 
54 >OOCA 
55 ZZZZZZ END PROGRAM. *** END OF FILE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=M PAGE 3 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

>002A 1 ANS 0 ALPHANUMERIC ACTION 

>002C 2 NSU 0 NUMERIC SIGNED ERR-FLG 

>OOZE 50 ANS 0 ALPHANUMERIC PATHNAME 

>0060 20 ANS 0 ALPHANUMERIC SYNONYM 

>0074 50 ANS 0 ALPHANUMERIC BUFFR 

>OOA6 2 NBS 0 BINARY SIGNED NUM 

READ ONLY BYTE SIZE = >0284 

READ/WRITE BYTE SIZE = >OOBO 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >0334 

0 ERRORS 

0 WARNINGS 

Figure 0·2. COBOL Subroutine Example 2 (Sheet 2 of 3) 

2270521-9701 D-23 



COBOL Subroutine Library Package 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=M 
PROGRAM USING COUNT 

C$MAPS 
C$PARM 
C$SETS 

D-24 

3 
3 
3 

Figure D·2. COBOL Subroutine Example 2 (Sheet 3 of 3) 

PAGE 4 

2270521-9701 



Appendix E 

COBOL Compiler Listing Format 

This appendix shows the output that results from the M, 0, and X options on the COBOL compiler. 
Refer to the COBOL System Design Document for details of generated COBOL compiler output. 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX 

SOURCE ACCESS NAME: 
OBJECT ACCESS NAME: 
LISTING ACCESS NAME: 
OPTIONS: 
PRINT WIDTH: 
PAGE SIZE: 
PROGRAM SIZE (LINES): 

MANUAL.PG.SRC.FIGOE01 
DUMY 
MANUAL.PG.LST.FIGOE01 
MOX 
80 
55 
1000 

PAGE 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 2 

1 

LINE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

DEBUG PG/LN A ... B ...................................................... . 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2270521-9701 

IDENTIFICATION DIVISION. 
PROGRAM-ID. OBJLST. 

* THIS PROGRAM IS USED TO ILLUSTRATE THE FORMAT 
* OF THE COMPILER LISTING WITH M, 0, & X OPTIONS. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TI-990. 
OBJECT-COMPUTER. TI-990. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUTF.ILE ASSIGN TO PRINT "OUTX". 
DATA DIVISION. 
FILE SECTION. 
FD OUTFILE LABEL RECORDS OMITTED. 
01 OUT-REC. 

02 REC1 PIC X(80). 
WORKING-STORAGE SECTION. 
01 ACTION PIC X. 
01 HEADER PIC X(80) VALUE ALL "-" 

Figure E·1. COBOL Compiler Listing Format (Sheet 1of8) 

E·1 



COBOL Compiler Listing Format 

E >0084 s >0084 8 >2020 
E >0086 s >0086 8 >2020 
E >0088 s >0088 8 >2020 
E >008A s >008A 8 >2020 
E >008C s >008C 8 >2020 
E >008E s >008E 8 >2020 
E >0090 s >0090 8 >2020 
E >0092 s >0092 8 >2020 
E >0094 s >0094 8 >2020 
E >0096 s >0096 8 >2020 
E >0098 s >0098 8 >2020 
E >009A s >009A 8 >2020 
E >009C s >009C 8 >2020 
E >009E s >009E 8 >2020 
E >OOAO s >OOAO 8 >2020 
E >OOA2 s >OOA2 8 >2020 
E >OOA4 s >OOA4 8 >2020 
E >OOA6 s >OOA6 8 >2020 
E >OOA8 s >OOA8 8 >2020 
E >OOAA s >OOAA 8 >2020 
E >OOAC s >OOAC 8 >2020 
E >OOAE s >OOAE 8 >2020 
E >0080 s >0080 8 >2020 
E >0082 s >0082 8 >2020 
E >0084 s >0084 8 >2020 
E >0086 s >0086 8 >2020 
E >0088 s >0088 8 >2020 
E >008A s >008A 8 >2020 
E >008C s >008C 8 >2020 
E >008E s >008E 8 >2020 
E >OOCO s >OOCO 8 >2020 
E >OOC2 s >OOC2 8 >2020 
E >OOC4 s >OOC4 8 >2020 
E >OOC6 s >OOC6 8 >2020 
E >OOC8 s >OOC8 8 >2020 
E >OOCA s >OOCA 8 >2020 
E >OOCC s >OOCC 8 >2020 

Figure E-1. COBOL Compiler Listing Format (Sheet 2 of 8) 

E-2 2270521-9701 



COBOL Compiler Listing Format 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 3 
LINE DEBUG 

E >OOCE 
E >0000 
E >0002 

PG/LN A ... B ...................................................... . 

20 
21 

22 

23 

24 

S >OOCE B >2020 
S >0000 B >2020 
S >0002 B >2020 

I I I I I I 

I 
I 
I 
I 
I 
I 

I 

I I I I 
I I I I 
I I I 
I I DATA VALUES 
I I 
I I B-TAG: DENOTES ABSOLUTE VALUE 
I I 
I J RELOCATABLE ADDRESS RELATIVE TO START 
I -------------- OF SDATA 
I 
I S-TAG: DATA CSDATA) RELOCATABLE LOAD 

ADDRESS TAG 

J LOGICAL OFFSET IN ESECT (EXPLICIT DATA 
------------------------- SECTION OF INITIALIZED VALUES ONLY 

----------------------------- LOGICAL ESECT DESIGNATOR TAG 

PROCEDURE DIVISION. 
>0000 MAIN-PROG. 

I 
I 
------------------------- LOGICAL PSECT ALWAYS STARTS AT ZERO 

p >0000 A >0030 B >4707 
I 
I 
--------------- PSECT STARTS AT >30; OBJECT HEADER 

PRECEDES PSECT. 

p >0002 A >0032 B >4405 
p >0004 A >0034 B >3400 

>0000 OPEN OUTPUT OUTFILE WITH NO REWIND. 
p >0006 A >0036 B >5308 
p >0008 A >0038 B >OC09 

>0006 MOVE ALL "*" TO OUT-REC. 
p >OOOA A >003A B >470B 
p >OOOC A >003C B >5EOE 
p >OOOE A >003E B >2COC 
p >0010 A >0040 B >7400 

>OOOA WRITE OUT-REC. 
p >0012 A >0042 B >5300 
p >0014 A >0044 B >OC09 
p >0016 A >0046 B >460F 

Figure E·1. COBOL Compiler Listing Format (Sheet 3 of 8) 

2270521-9701 E-3 



COBOL Compiler Listing Format 

25 

26 

27 

28 

p >0018 A >0048 B >5EOE 
p >001A A >004A B >2COC 
p >001C A >004C B >7400 

>0012 WRITE OUT-REC FROM HEADER. 
p >001E A >004E B >4710 
p >0020 A >0050 B >4401 
p >00'22 A >0052 B >OAOO 

>001E CLOSE OUTF I LE WITH NO REWIND. 
p >0024 A >0054 B >OFOO 
p >0026 A >0056 B >4C11 
p >0028 A >0058 B >4404 
p 

p 
p 
p 

p 
p 
p 
p 

I 

>002A 
>0024 
>002C 
>002E 
>0030 
>002C 
>0032 
>0034 
>0036 
>0038 

A 

A 
A 
A 

A 
A 
A 
A 
I 

>005A B >1613 
DISPLAY "ENTER I c I TO CONTINUE" LINE 1 ERASE. 

>00.5C B >OFOO 
>005E B >4408 
>0060 B >0215 

ACCEPT ACTION PROMPT. 
>0062 B >5315 
>0064 B >6A17 
>0066 B >1C19 
>0068 B >261A 

I I I 
I I I 
I I 
I I 
I I ABSOLUTE INSTRUCTIONS. INSTRUCTION IS 
I I >25, BUT FIRST INSTRUCTION OF STATEMENT 
I I HAS BIT 7 OF FIRST BYTE ON - THUS IT 
I I BECOMES >26 

I 
-------- B-TAG: DENOTES ABSOLUTE VALUE 

PROGRAM (PROG-PSEG) RELOCATABLE 
---------------- ADDRESS 

A-TAG: DENOTES PROGRAM RELOCATABLE 
-------------------- ADDRESS 

I LOGICAL PSECT ADDRESS (OBJECT 
-------------------------- INSTRUCTIONS) 

------------------------------ LOGICAL PSECT DESIGNATOR TAG 

A >006A 
IF ACTION = "C" GO TO MAIN-PROG. 
B >5900 
STOP RUN. 

29 >0032 
P >003A 

30 >003A 
31 ZZZZZZ END PROGRAM. *** END OF FILE 

Figure E-1. COBOL Compiler Listing Format (Sheet 4 of 8) 

E-4 2270521-9701 

/ 

( 



COBOL Compiler Listing Format 

L >0004 
L >0006 
L >0008 
L >OODA 
L >OODC 
L >DODE 
L >OOEO 
L >OOE2 
L >OOE4 
L >OOE6 
L >OOE8 

DXCBL 
LINE DEBUG 

L >ODEA 
L >OOEC 
L >ODEE 
L >OOFO 

I 

I 
I 
I 
I 
I 

A >006C B >4F55 
A >006E B >5458 
A >0070 B >3100 
A >0072 B >454E 
A >0074 B >5445 
A >0076 B >5220 
A >0078 B >2743 
A >007A B >2720 
A >007C B >544F 
A >007E B >2043 
A >0080 B >4F4E 

L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 4 
PG/LN A ... B ...................................................... . 

A >0082 B >5449 
A >0084 B >4E55 
A >0086 B >4500 
A >0088 B >4300 
I I I I 
I I I 
I I I 

I I 
J J ---- ABSOLUTE DATA - LITERALS. 
I I 
J -------- B-TAG: DENOTES ABSOLUTE VALUE 
I 
I PROGRAM RELOCATABLE ADDRESS. LOADED 

AFTER PSECT. 

A-TAG: DENOTES PSEG OR SPROG LOAD 
-------------------- ADDRESS 

-------------------------- COBOL RELATIVE ADDRESS 

------------------------------ LSECT (LITERAL SECTION) DESIGNATOR 

Figure E-1. COBOL Compiler Listing Format (Sheet 5 of 8) 

2270521-9701 E·S 



COBOL Compiler Listing Format 

F >0000 s >OOD4 c >006C 
F >0001 s >OOD6 B >0004 
F >0002 s >OOD8 B >0000 
F >0003 s >OODA T >002A 
F >0004 s >OODC B >0056 
F >0005 s >OODE B >0050 
F >0006 s >OOEO B >0000 
F >0007 s >OOE2 B >0000 
F >0008 s >OOE4 B >0000 
F >0009 s >OOE6 B >0000 
I I I I I I 
I I I I I I 
I I I I I 
I I I I I 
I I I I DATA 
I I I I 
I I I I TAGS: 
I I I I C-TAG: PROGRAM CPSEG) RELOCATABLE DATA 
I I I I B-TAG: ABSOLUTE DATA 
I I I -------- T-TAG: DATA (DSEG-SDATA) RELOCATABLE DATA 
I I I 
I I ---------------- RELOCATABLE ADDRESS IN SDATA 
I I 
I -------------------- S-TAG: DENOTES SDATA RELOCATABLE 
I 
I ------------------------- RELATIVE ADDRESS WITHIN FSECT 
I 
------------------------------ FSECT DESIGNATOR TAG 

F >OOOA s >OOE8 B >0000 
F >OOOB s >OOEA B >0000 
F >OOOC s >OOEC B >0300 
F >OOOD s >OOEE B >0100 
F >OOOE s >OOFO B >OOFC 
F >OOOF s >OOF2 B >0000 
F >0010 s >OOF4 B >0000 
F >0011 s >OOF6 B >0000 
F >0012 s >OOF8 B >0000 
F >0013 s >OOFA B >0000 

D >0000 A >008A B >2C24 
D >0001 A >008C B >2E01 
D >0002 A >008E B >0000 
D >0003 A >0090 B >0000 
D >0004 A >0092 B >0000 
D >0005 A >0094 B >0000 
D >0006 A >0096 T >0120 
D >0007 A >0098 B >0006 
D >0008 A >009A B >102A 

Figure E·1. COBOL Compiler Listing Format (Sheet 6 of 8) 

E·6 2270521-9701 



COBOL Compiler Listing Format 

D >0009 A >009C B >6050 
D >OOOA A >009E B >002A 
D >OOOB A >OOAO B >0012 
D >OOOC A >OOA2 B >0050 
D >0000 A >OOA4 B >5050 
D >OOOE A >OOA6 B >0084 
D >OOOF A >OOA8 B >001E 
D >0010 A >OOAA B >0024 
D >0011 A >OOAC B >8001 
D >0012 A >OOAE B >0008 
D >0013 A >OOBO B >5015 
D >0014 A >OOB2 B >OODA 
D >0015 A >OOB4 B >5001 
D >0016 A >OOB6 B >0082 
D >0017 A >OOB8 B >5001 

-----------------
D >0018 A >OOBA B >OOFO 
D >0019 A >OOBC B >003A 
D >001A A >OOBE B >0000 
I I I I 
I I I I 
I I I 
I I I 

I ABSOLUTE DATA 
I 
I -------- B-TAG: ABSOLUTE DATA DESIGNATOR 
I I 
I I RELOCATABLE ADDRESS WITHIN PSEG OR 
I ----------------$PROG 
I 
I A-TAG: PROGRAM RELOCATABLE PSEG 
-------------------- DESIGNATOR 

-------------------------- DSECT RELATIVE ADDRESS 

----------------------------- DSECT DESIGNATOR TAG 

DXCBL L.R.V VY.DOD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 5 
LINE DEBUG PG/LN A ... B ...................................................... 

H >0000 A >0000 T >0000 
H >0000 A >0002 c >0004 
H >0000 A >0004 B >05CE 
H >0000 A >0006 B >069E 
p >0000 A >0008 c >0030 
T >0000 A >OOOA T >0004 ' 

F >0000 A >OOOC T >0004 
D >0000 A >OOOE c >008A 
c >0000 A >0010 c >OOCO 
E >0000 A >0012 T >0000 
u >0000 A >0014 B >0000 
L >0000 A >0016 c >006C 

Figure E-1. COBOL Compiler Listing Format (Sheet 7 of 8) 

2270521-9701 E·7 



COBOL Compiler Listing Format 

I >0000 A >0018 B >0000 
H >0000 A >001A B >4F42 
H >0000 A >001C B >4A4C 
H >0000 A >001E B >5354 
p >0000 A >0020 B >003C 
T >0000 A >0022 B >0000 
F >0000 A >0024 B >0028 
D >0000 A >0026 B >0036 
x >0000 A >0028 B >0000 
E >0000 A >002A B >0004 
u >0000 A >002C B >0000 
L >0000 A >OOZE B >001E 

H >0000 A >0000 B >0000 
H >0000 A >0002 B >0008 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 6 
ADDRESS SIZE DEBUG ORDER TYPE NAME 

0 FILE OUTF I LE 
>002A 80 GRP 0 GROUP OUT-REC 
>002A 80 ANS 0 ALPHANUMERIC REC1 

>0082 1 ANS 0 ALPHANUMERIC ACTION 

>0084 80 ANS 0 ALPHANUMERIC HEADER 

READ ONLY BYTE SIZE = >OOCO 

READ/WRITE BYTE SIZE = >0122 

OVERLAY SEGMENT BYTE SIZE = >0000 

TOTAL BYTE SIZE = >01E2 

0 ERRORS 

0 WARNINGS 

DXCBL L.R.V VY.ODD COMPILED:MM/DD/YY HH:MM:SS OPT=MOX PAGE 7 
CROSS REFERENCE /DECL/ *DEST* 
ACTION /0018/ *0028* 0029 
HEADER /0019/ 0025 
MAIN-PROG /0021/ 0029 
OUTF I LE /0011/ /0014/ 0022 0026 
OUT-REC /0015/ *0023* *0024* *0025 
REC1 /0016/ 

Figure E·1. COBOL Compiler Listing Format (Sheet 8 of 8) 

E·B 2270521-9701 



Index 

This index lists key topics of this manual and specifies where each topic appears, as follows: 

• Sections - Section references appear as Section n, where n represents the section 
number. 

• Appendixes - Appendix references appear as Appendix Y, where Y represents the 
appendix letter. 

• Paragraphs - Paragraph references appear as alphanumeric characters separated by 
decimal points. The first character refers to the section or appendix containing the para
graph, and any other numbers indicate the sequence of the paragraph within the section 
or appendix. For example: 

- 3.5.2 refers to Section 3, paragraph 5.2. 

- A.2 refers to Appendix A, paragraph 2. 

• Figures - Figure references appear as Fn-x or FY-x, where n represents the section and 
Y represents the appendix containing the figure; x represents the number of the figure 
within the section or appendix. For example: 

- F2-7 refers to the seventh figure in Section 2. 

- FG-1 refers to the first figure in Appendix G. 

• Tables - Table references appear as Tn-x or TY-x, where n represents the section and Y 
represents the appendix containing the table; x represents the number of the table 
within the section or appendix. For example: 

- T3-10 refers to the tenth table in Section 3. 

- TB-4 refers to the fourth table in Appendix B. 

• See and See also references - See and See also direct you to other entries in the index. 
For example: 

Logical Unit Number ........................................... . See LUNO 

Device .......................... See also individual device names or numbers 

Page numbers that correspond to these index references appear in the Table of Contents. 

2270521-9701 lndex-1 



Index 

A Debug Command ................ 7.2.2.1 
ACCEPT: 

Calling: 
Assembly Language Module, 

Statement ........................ i 1.1 COBOL Program ................. F7-2 
Use ........................... F11-1 Subroutine ......................... 8.1 

Access Name ........................ 2.5 Capabi I ities, System .................. 2.1 
Activation, Debugger ................ 7.2.1 CC SCI Command ................. 2.3.4.4 
Address Stop ........................ 7.2 
Adjustment, Blank ................. 2.7.1.1 
ADU ................................ 2.7 

CF SCI Command ................... 2.4.3 
CFDIR SCI Command ............ 2.4.2, 3.4 
CFIMG SCI Command ............... 2.4.3 

AGL SCI Command .................. 6.4.1 CF KEY SCI Command ............... 2.4.3 
AL SCI Command ................... 6.4.1 CF PRO SCI Command ............... 2.4.3 
Alias ................................ 5.7 CFREL SCI Command ............... 2.4.3 
Allocatable Disk Unit (ADU) ............ 2.7 
ALLOCATE: 

CFSEQ SCI Command ............... 2.4.3 
Change Program Location (L) 

Linking Using .................... F5-13 
SCI Command .................... 5.6.5 

Debug Command ................ 7.2.2.4 
Characters, Graphic ................ F11-4 

ALN SCI Command .................. 6.4.1 CL SCI Command ..................... 3.5 
Alternate Directory Structure ........... 3.3 
Argument ........................... 8.3 

List ............................... 8.3 

CLOSE Statement ................ 3.5, 12.2 
COBOL: 

Compilation ....................... 4.1 
Arithmetic Operations ................ 13.3 Compiler: 
AS SCI Command ................. 1.2, 2.6 Informative Messages ............ TB-3 
Assembler Subroutine, COBOL Listing With Error Messages ...... FB-1 

Routine Calling .................... F8-5 Options ........................ 4.2.1 
Assembly Language: 

Module ...................... F7-3, F7-4 
System Error Messages ........... TB-2 
User Error Messages ............. TB-1 

COBOL Program Calling .......... F7-2 
Subroutine ......................... 8.3 

Debug: 
Commands ..................... 7.2.2 

Debugging ....................... 7.3 Mode ........................... 1.2 
Assign Address Stop (A) Debug 

Command ...................... 7.2.2.1 
Execution ......................... 6.1 
Interfacing With DBMS-990 .......... F9-3 

Assign Global LUNO (AGL) SCI 
Command ........................ 6.4.1 

1/0 Operation Validity Table ........ T12-3 
Library Subroutines ................ TD-1 

Assign Logical Name (ALN) SCI 
Command ........................ 6.4.1 

Module: 
Debugging ....................... 7.2 

Assign LUNO (AL) SCI Command ...... 6.4.1 
Assign Synonym (AS) SCI 

Command ...................... 1.2, 2.6 

Linking DBMS-990 ............... 9.4.3 
Linking Query-990 and ............ F9-5 
Segmentation ................... 5.4.3 

AT END Phrase ...................... 12.4 Overview .......................... 1.1 
Attributes: Procedure . , ..................... F10-3 

Relative Record : ................ 2.7.2.1 Program: 
Sequential File .................. 2.7.1.1 Calling Assembly Language 

Module ....................... F7-2 
Background Task: Development Overview ............. 1.2 

Synonym Availability With a .......... 2.6 
BATCH SCI Command .............. 2.3.4.1 

Module Retrieving Additional 
SCI Parameters ............... F10-4 

Batch Job .......................... 2.2.2 Source Module .................. F3-1 
Stream Format .................. 2.3.4.1 Using Subroutines ............... D.17 
Use ............................. 2.3.4 Routine Calling: 

Blank: Assembler Subroutine ............ F8-5 
Adjustment ..................... 2.7.1.1 
Suppression .................... 2.7.1.1 

Blocking Factor ...................... 2.7 
Building, Program .................... 3.5 
By File Type, Organization ............ 3.3.2 
By Programs, Organization ........... 3.3.1 

Sort/Merge ...................... F9-2 
Run Time ........................ 5.6.1 

Error Messages ................. TC-1 
Interpreter ...................... 5.6.1 

Segmentation Within Overlay 
Phase Modules .................. F5-8 

Source Module ..................... 3.1 
CALL Statement ...................... 8.3 Subroutine .................. FD-1, FD-2 

lndex-2 2270521-9701 



Index 

Library Package ............... 8.2, D.1 Program Images .................... 5.6 
Codes, C$SUBS Subroutine Error ...... TD-2 Relative Record ................. 2.7.2.2 
Command: Relative Record File ................ F2-8 

Name ........................... 1.3.1 Sequential File .............. 2.7.1.2, F2-2 
Procedure ........................ 10.2 C$ADDP .......................... D.14.1 

Example ........................ 10.3 C$BKSP ........................... D.8.1 
Procedures, SCI ................... 10.1 C$BSRT ............................ D.3 
Processor ........................ 10.2 C$CARG ............................ D.4 
Prompt .......................... 1.3.2 C$CBID ............................. D.2 

Format, SCI ...................... 1.3 C$CLOS .......................... D.13.1 
Notation ........................ T1-1 C$CMPR ............................ D.5 

SCI ........................... 1.3 C$CVDT ............................ D.6 
Commands: C$DL TE ........................... D.8.2 

COBOL Debug .................... 7.2.2 C$EXCP ............................ D.7 
Debug ........................... T7-1 C$FCFD ............................ D.8 
Link Editor ........................ T5-1 C$GROF .......................... D.9.1 

Communication ...................... 9.6 C$GRPC ............................ D.9 
Comparison of Memory Requirements .. F5-7 C$GRPH .......................... D.9.2 
Compilation, COBOL .................. 4.1 C$LOC ............................ D.10 
Compiler: C$MAPS ......................... D.12.1 

Completion Codes .................. 4.4 C$MFAP .......................... D.8.3 
Error Messages ..................... 4.5 C$MKEY .......................... D.8.4 
Execution ......................... 4.2 C$0PEN ......................... D.13.2 
Informative Messages, COBOL ...... TB-3 
Limitations ........................ 4.6 

C$PARM ......................... D.12.2 
C$RERR ........................... D.11 

Listing ........................... F1-1 C$RPRV ........................... D.8.5 
With Error Messages, COBOL ..... FB-1 C$SCI ............................. D.12 

Options .......................... 4.2.1 C$SCRN ........................... D.13 
COBOL ........................ 4.2.1 C$SEPP .......................... D.14.2 

Output ............................ 4.3 C$SETS .......................... D.12.3 
Listing ......................... F7-1 C$SIGN ............................ D.14 

System Error Messages, COBOL ..... TB-2 C$SRCH ........................... D.15 
User Error Messages, COBOL ....... TB-1 C$SUBS Subroutine Error Codes ....... TD-2 

Completion Codes ................ 6.3, 6.5 C$SVC ............................ D.16 
Compiler .......................... 4.4 C$TMPF ........................... D.8.6 

Compressed Format .................. 5.5 C$WRIT .......................... D.13.3 
Contents, Program File ............... F5-3 
Control• D Debug Command ................ 7.2.2.2 

File, Link ....................... 1.2, 5.5 
Operations ....................... 13.4 

Data Base Management System 
(DBMS-990) ........................ 9.4 

Copy/Concatenate (CC) Data Definition Language (DDL) File .... F9-4 
SCI Command ................... 2.3.4.4 DBMS-990 .......................... F9.4 

Copy Lines (CL) SCI Command .......... 3.5 
Correspondence Table, Device ........ T12-4 

COBOL: 
Interfacing With ................. F9-3 

Create Directory File (CFDIR) Module, Linking ................. 9.4.3 
SCI Command ................. 2.4.2, 3.4 Features ......................... 9.4.1 

Create File (CF) SCI Command ........ 2.4.3 User Interface .................... 9.4.2 
Create Image File (CFIMG) 

SCI Command .................... 2.4.3 
Debug: 

Commands ....................... T7-1 
Create Key Indexed File (CFKEY) 

SCI Command .................... 2.4.3 
COBOL ........................ 7.2.2 

Mode ............................. 7.1 
Create Program File (CFPRO) 

SCI Command .................... 2.4.3 
COBOL .......................... 1.2 

Debug Command: 
Create Relative Record File (CFREL) 

SCI Command .................... 2.4.3 
A .............................. 7.2.2.1 
Assign Address Stop (A) .......... 7.2.2.1 

Create Sequential File (CFSEQ) 
SCI Command .................... 2.4.3 

Change Program Location (L) ...... 7.2.2.4 
D .............................. 7.2.2.2 

Creating: 
Di rectory ..................... 2.4.2, 3.4 

Dump Data Item (D) ............... 7.2.2.2 
E .............................. 7.2.2.3 

File .......................... 2.4.3, 3.4 
Linked Object Modules .............. 5.5 

Execute Next Single Statement (S) .. 7.2.2.8 
Exit Debug Mode (E) .............. 7.2.2.3 

2270521-9701 lndex-3 



Index 

L .............................. 7.2.2.4 Example: 
M ............................. 7.2.2.5 Command Procedure ............... 10.3 
Modify Data Item (M) ............. 7.2.2.5 SCI Command .................... 2.3.3 
Q .............................. 7.2.2.6 Execute Batch (XB) SCI Command ..... 2.3.4 
Quit Execution (Q) ............... 7.2.2.6 Execute COBOL Compiler in Background 
R .............................. 7.2.2.7 (XCC) SCI Command ............... 4.2.2 
Resume Program Execution (R) .... 7.2.2.7 Execute COBOL Compiler in Foreground 
s .............................. 7.2.2.8 (XCCF) SCI Command ........... 1.2, 4.2. 
u ... ' ' ............. ' ' .. ' ' ' ' .... 7.2.2.9 Execute COBOL Program in Background 
Undo Address Stop (U) ............ 7.2.2.9 (XCP) SCI Command ............... 6.2.2 

. w ............................ 7.2.2.10 Execute COBOL Program in Foreground 
Write Screen to Message File (W) .. 7.2.2. 10 (XCPF) SCI Command ...... 1.2, 6.2.1, 7 .2.1 

Debugger Activation ................. 7.2.1 Execute COBOL Task in Background 
Debugging: (XCT) SCI Command ............... 6.4.2 

Assembly Language Subroutine ....... 7.3 Execute COBOL Task in Foreground 
COBOL Module ..................... 7.2 (XCTF) SCI Command ...... 1.2, 6.4.1, 7.2. 1 
Functions ......................... 7. 1 Execute Link Editor 
Interactive ........................ F7-1 (XLE) SCI Command ................. 1.2 

Declarative Use ..................... 12.4 Execute Next Single Statement (S) 
Default Value ..................... 1.3.3.2 Debug Command ................ 7.2.2.8 
DELETE Statement ........ , ......... 12.2 Execution: 
Delete Lines (DL) SCI Command ......... 3.5 COBOL ........................... 6.1 
Description, Relative Record File ...... F2-8 Compiler .......................... 4.2 
Description: Object Module ..................... 6.2 

SCI ............................. 2.3.1 Program Image ..................... 6.4 
Sequential File .................... F2-2 Exit Debug Mode (E) Debug 

Development Overview, COBOL Command ...................... 7.2.2.3 
Program ........................... 1.2 Expected Response ................. 1.3.3 

Device Correspondence Table ........ T12-4 
Directory ............................ 2.4 Features, DBMS-990 ................. 9.4.1 

Creating ...................... 2.4.2, 3.4 File ............................. 2.4, 2.7 
File ....................... 2.4.2, 2.7.2.3 Attributes, Sequential ............ 2.7.1.1 
Preparation ........................ 3.2 Contents, Program ................. F5-3 
Structure ..................... 2.4,F2-1 Creating ...................... 2.4.3, 3.4 

Alternate ........................ 3.3 Relative Record ................. F2·8 
DISPLAY Statement ................... 1.1 Sequential ............... 2.7.1.2, F2-2 

Use ............................. F11-1 Description, Relative Record ........ F2·8 
DLSCI Command ..................... 3.5 Description, Sequential ............. F2-2 
DSEG ................... 5.6.4, 5.6.5, 5.6.6 Directory .................. 2.4.2, 2.7.2.3 
Dump Data Item (D) Debug 

Command ...................... 7.2.2.2 
Image .......................... 2.7.2.3 
1/0: 

Status .......................... 12.2 
E Debug Command ................ 7.2.2.3 Status Value .................... 12.3 
EBATCH SCI Command ............ 2.3.4.1 Key Indexed ...................... 2.7.3 
Editor, Text .......................... 3.5 Keylndexed(KIF) ................. F2-14 
Error: Link Control .................... 1.2, 5.5 

Codes, C$SUBS Subroutine ......... TD-2 Linked Object ...................... 1.2 
Processing ....................... 12.1 Listing ............................ 4.3 

Error Messages: Name, Synonym as a ................ 2.6 
COBO~ . Object ......................... 1.2, 4.3 

Compiler Listing With ............ FB-1 
Compiler System ................ TB-2 

Preparation ........................ 3.2 
Program ................. 1.2, 2.7.2.3, 5.4 

Compiler User ................... TB-1 Relative Record ........ 2.7.2, F2-9, F2-10, 
Run-Time ....................... TC-1 F2-11, F2-12, F2-13 

Compiler .......................... 4.5 Sequential .............. 2. 7 .1, F2-3, F2·4, 
Run-Time ...................... 6.3, 6.5 
System ........................... B.2 

F2-5, F2·6, F2-7 
Source ....................... 1.2,F1-1 

User .............................. B.1 Special Types Relative Record ..... 2.7.2.3 
Errors, Intercepting 1/0 .............. F12-1 Status Table ..................... T12·1 

lndex-4 2270521-9701 



Index 

Structure ..................... 2.4, F2-1 Interactive ....................... 2.2.1 
Type .............................. 2.7 Structure .......................... 2.2 
.S$SHARED Program ............. 5.4.1.2 

Find String (FS) SCI Command .......... 3.5 Key Indexed File .................... 2.7.3 
Foreground Task ..................... 2.2 

Synonym Availability With a .......... 2.6 
Key Indexed (KIF) File ............... F2-14 
Key Name, Generic ..... 2.3.2, 2.3.3.1, 2.3.3.2 

Format: 
Batch Stream ................... 2.3.4.1 
Compressed ....................... 5.5 

Keyboard Functions .................. 3.5 
KIF .......................... 2.7.3, F2-14 

SCI Command Prompt ............... 1.3 L Debug Command ................ 7.2.2.4 
Tagged ............................ 5.5 Language, SCI ...................... 10.2 

FS SCI Command ..................... 3.5 LO SCI Command .................. 2.3.3.2 
Function Key ....................... 11.1 Library: 

Mapping ........................ T11-1 Linking ............................ 5.7 
Functions, Debugging ................. 7.1 Package, COBOL Subroutine ...... 8.2, D.1 

Random ..................... 5.7, F5-18 
Generic Key Name ...... 2.3.2, 2.3.3.1, 2.3.3.2 Sequential ......................... 5. 7 
Graphic: 

Characters ...................... F11-4 
Subroutines, COBOL ............... TD-1 

LI BRA RY SCI Command ............... 8.2 
In put/Output ...................... 11.3 

Graphics .......................... F11-3 
Limitations, Compiler ................. 4.6 
Link Control File .................. 1.2, 5.5 
Link Editor ........................... 5.1 

IF SCI Command ..................... 3.5 Commands ....................... T5-1 
Image: 

Execution, Program ................. 6.4 
File ............................ 2.7.2.3 

Requirements ..................... F5-1 
Linked: 

Object File ......................... 1.2 
Images, Creating Program .............. 5.6 Object Modules, Creating ............ 5.5 
Images From Relative File, Linking: 

Installing Program ................ 5.6.10 DBMS-990 COBOL Module .......... 9.4.3 
Informative Messages ................. B.3 

COBOL Compiler .................. TB-3 
Library ............................ 5.7 
Overlay .......................... 5.6.6 

Initial Value ....................... 1.3.3.1 P1 With Different P2 .......... 5.6.8, F5-16 
Initialize New Volume Query-990 and COBOL Module ....... F9-5 

(I NV) SCI Command ................ 2.4.1 Single Procedure With: 
Initiate Text Editor (XE) SCI Command ... 3.5 
In put/Out put: 

Multiple Tasks ............. 5.6.3, FS-10 
Single Task ................ 5.6.2, F5-9 

Graphic .......................... 11.3 Single Task User Program 
Low Volume ...................... 11.2 File .................... 5.6.9, F5-17 

Insert File(IF)SCI Command ........... 3.5 Two Procedures With: 
Installing Program Images From 

Relative File ..................... 5.6.10 
Interactive: · 

Multiple Tasks ............. 5.6.5, F5-12 
"Single Task ............... 5.6.4, F5-11 

Using ALLOCATE ................. F5-13 
Debugging ....................... F7-1 List, Argument ....................... 8.3 
Job ............................. 2.2.1 List Directory (LO) SCI Command ..... 2.3.3.2 

Intercepting 1/0 Errors ............... F12-1 Listing Compiler .................... F1-1 
Interface, DBMS-990 User ............ 9.4.2 File ............................... 4.3 
Interfacing With DBMS-990, COBOL .... F9-3 Output ........................... F7-1 
Interpreter, COBOL Run-Time ......... 5.6.1 
INV SCI Command .................. 2.4.1 

With Error Messages, COBOL 
Compiler ....................... FB-1 

INVALID KEY Phrase ................. 12.4 LOAD SCI Command ................ 5.6.6 
1/0: Logical Record ....................... 2.7 

Errors, Intercepting ............... F12-1 
Operation Validity Table, COBOL .... T12-3 

Logical Record Length (LRECL) ......... 2.7 
Logical Unit Number (LUNO) ........... 1.2 

Operations ....................... 13.6 Low Volume Input/Output ............. 11.2 
Status: LRECL .............................. 2.7 

File ............................ 12.2 LUNO ............................... 1.2 
Value, File ...................... 12.3 

M Debug Command ................ 7.2.2.5 
Job: Main Program Module: 

Batch ........................... 2.2.2 Sharing .......................... 5.6.7 

2270521-9701 lndex-5 



Index 

With P2, Sharing .................. F5-15 110 . .............................. 13.6 
Mapping: Move ............................ 13.5 

Function Key .................... T11-1 Optimizing Run-Time Performance ..... 13.1 
Program ........................... 5.3 Options: 

Memory Requirements, COBOL Compiler .................. 4.2.1 
Comparison of .................... F5-7 Compiler ......................... 4.2.1 

MLSCI Command .................... 3.5 Organization: 
Mode: By Fi le Type ...................... 3.3.2 

COBOL Debug ..................... 1.2 By Programs ...................... 3.3.1 
Debug ............................ 7.1 Output: 
VDT ............................. 2.3.2 Compiler .......................... 4.3 

Modify Data Item (M) Debug Listing, Compiler .................. F7-1 
Command ...................... 7.2.2.5 Overlay ............................ 5.4.2 

Modify Roll (MR) SCI Command ......... 3.5 Linking .......................... 5.6.6 
Modify Synonym (MS) SCI Command .... 2.6 Phase ........................... 5.4.2 
Module ............................. 1.2 Structure ................... 5.6.6, F5-14 

Assembly Language ........... F7-3, F7-4 Overview: 
COBOL: COBOL ........................... 1.1 

Program Calling Assembly Program Development ............. 1.2 
Language ..................... F7-2 System ............................ 1.1 

Program Source ................. F3-1 
Source .......................... 3.1 Package, COBOL Subroutine 

Debugging COBOL .................. 7.2 Library ........................ 8.2, D.1 
Linking: Paragraph, SPECIAL-NAMES .... 6.2.1, F6-18 

DBMS-990 COBOL ............... 9.4.3 Parameters, COBOL Program Module 
Query-990 and COBOL ............ F9-5 Retrieving Additional SCI .......... F10-4 

Retrieving Additional SCI Parameters, PARMS ............................. 6.6 
COBOL Program ................ F10-4 Pathname ........................... 2.5 

Segmentation, COBOL ............. 5.4.3 
Move Operations .................... 13.5 

Performance, Optimizing Run-Time ..... 13.1 
Phase, Overlay ...................... 5.4.2 

Move Lines(ML)SCI Command ......... 3.5 PHASE SCI Command .......... 5.6.5, 5.6.6 
MR SCI Command .................... 3.5 Phrase: 
MS SCI Command .................... 2.6 AT END .......................... 12.4 
Multiple Tasks: INVALID KEY ..................... 12.4 

Linking: Physical Record ...................... 2. 7 
Single Procedure With ...... 5.6.3, F5-10 Physical Record Length (PRECL) ..... 2.7.2.2 
Two Procedures With ....... 5.6.5, F5-12 PRECL ........................... 2.7.2.2 

Separate Program Files ............. F5-6 Preparation: 
Sharing: Directory .......................... 3.2 

Same P1 and P2 ................. F5-4 File ............................... 3.2 
Same P1 but Different P2s ......... F5-5 Procedure: 

COBOL ......................... F10-3 
Name: SCI ............................. F10-1 

Access ............................ 2.5 Segment ....................... 5.4.1.2 
Command ........................ 1.3.1 Reentrant ..................... 5.4.1.2 
Synonym as a File ................... 2.6 Tailored SCI ..................... F10-2 
Volume .......................... 2.4.1 Processing, Error .................... 12.1 

Notation: Productivity Tools .................... 9.1 
Command Prompt ................. T1-1 Program ............................. 1.2 
SCI Command Prompt ............... 1.3 Building ........................... 3.5 

Calling Assembly Language 
Object File ....................... 1.2, 4.3 Module, COBOL ................. F7-2 

Linked ............................ 1.2 Development Overview, COBOL ....... 1.2 
Object Module Execution .............. 6.2 Fi le ..................... 1.2, 2. 7 .2.3, 5.4 
Object Modules, Creating Linked ........ 5.5 
OPEN Statement .................... 12.2 

Contents ....................... F5-3 
.S$SHARED ................... 5.4.1.2 

Operating System .................... 2.1 Image Execution .................... 6.4 
Operation Validity Table, COBOL 1/0 ... T12-3 Images, Creating ................... 5.6 
Operations: From Relative File, Installing ..... 5.6.10 

Arithmetic ........................ 13.3 Mapping ........................... 5.3 
Control ........................... 13.4 

lndex-6 2270521-9701 



Index 

Module Retrieving Additional SCI Parameters, COBOL Program Module 
Parameters, COBOL ............. F10-4 Retrieving Additional ............ F10-4 

Source Module, COBOL ............ F3-1 Procedure ....................... F10-1 
Using Subroutines, COBOL ......... D.17 Tailored ....................... F10-2 

Program File, Linking Single Procedure SCI Command: 
With Single Task User ........ 5.6.9, F5-17 AGL ............................. 6.4.1 

PSEG .................... 5.6.4, 5.6.5, 5.6.6 AL .............................. 6.4.1 
P1 with Different P2, Linking .... 5.6.8, F5-16 ALLOCATE ....................... 5.6.5 

ALN ............................. 6.4.1 
Q Debug Command ................ 7.2.2.6 AS ............................ 1.2, 2.6 
QE SCI Command .................... 3.5 Assign Global LUNO (AGL) .......... 6.4.1 
QUERY-990 .......................... 9.5 Assign Logical Name (ALN) ......... 6.4.1 
Query-990 and COBOL Module, Assign LUNO (AL) ................. 6.4.1 

Linking .......................... F9-5 Assign Synonym (AS) ............ 1.2, 2.6 
Quit Edit (QE) SCI Command ........... 3.5 BATCH ......................... 2.3.4.1 
Quit Execution (Q) Debug Command .. 7.2.2.6 cc ............................ 2.3.4.4 

CF .............................. 2.4.3 
R Debug Command ................ 7.2.2.7 CFDIR ....................... 2.4.2, 3.4 
Random Library ................. 5. 7, F5-18 CFIMG .......................... 2.4.3 
READ Statement .................... 12.2 CFKEY .......................... 2.4.3 
Reentrant Procedure Segment ....... 5.4.1.2 CF PRO .......................... 2.4.3 
Relative File, Installing Program 

Images from ..................... 5.6.10 
CFREL .......................... 2.4.3 
CFSEQ .......................... 2.4.3 

Relative Record: CL ................................ 3.5 
Attributes ...................... 2.7.2.1 Copy/Concatenate (CC) ........... 2.3.4.4 
Creating ........................ 2.7.2.2 Copy Lines (CL) ..................... 3.5 
File .. 2.7.2, F2-9, F2-10, F2-11, F2-12, F2-13 Create Directory File (CFDIR) .... 2.4.2, 3.4 

Creating ........................ F2-8 Create File (CF) ................... 2.4.3 
Description ..................... F2-8 Create Image File (CFI MG) .......... 2.4.3 
Special Types ................. 2.7.2.3 Create Key Indexed Fi le (CFKEY) ..... 2.4.3 

Release Level, Software ............... 4.1 Create Program Fi le (CF PRO) ........ 2.4.3 
Requirements, Link Editor ............ F5-.1 Create Relative Record File (CFREL) .. 2.4.3 
Response, Expected ................. 1.3.3 
Resume Program Execution (R) ' 

Debug Command ................ 7.2.2.7 
Retrieving Additional SCI Parameters, 

Create Sequential Fi le (CFSEQ) ...... 2.4.3 
Delete Lines (DL) ................... 3.5 
DL ................................ 3.5 
EBATCH ....................... 2.3.4.1 

COBOL Program Module ........... F10-4 Example ......................... 2.3.3 
REWRITE Statement ................. 12.2 Execute Batch (XB) ................ 2.3.4 
Routine Calling: Execute COBOL Compiler in 

Assembler Subroutine, COBOL ...... F8-5 Background (XCC) ............... 4.2.2 
Sort/Merge, COBOL ................ F9-2 

Run Time, COBOL ................... 5.6.1 
Execute COBOL Compiler in 

Foreground (XCCF) ........... 1.2, 4.2.1 
Run-Time: Execute COBOL Program in 

Error Messages ................. 6.3, 6.5 Background (XCP) ............... 6.2.2 
COBOL ........................ TC-1 Execute COBOL Program in 

Interpreter, COBOL ................ 5.6.1 
Performance, Optimizing ............ 13.1 

Foreground (XCPF) ...... 1.2, 6.2.1, 7 .2.1 
Execute COBOL Task in 

Background (XCT) ............... 6.4.2 
S Debug Command ................ 7.2.2.8 
Same P1 and P2, Multiple Tasks 

Execute COBOL Task in 
Foreground (XCTF) ...... 1.2, 6.4.1, 7.2.1 

Sharing .......................... F5-4 Execute Link Editor (XLE) ............ 1.2 
Same P1 but Different P2s, 

Multiple Tasks Sharing ............. F5-5 
SBS SCI Command ................ 2.3.3.1 

Find String (FS) ..................... 3.5 
FS ................................ 3.5 
IF ................................ 3.5 

SCI .................... 1.1, 2.2.1, 2.3, 2.3.3 
Command Procedures .............. 10.1 

Initialize NewVolume(INV) ......... 2.4.1 
Initiate Text Editor (XE) .............. 3.5 

Command Prompt: 
Format .......................... 1.3 

Insert Fi le (IF) ...................... 3.5 
INV ............................. 2.4.1 

Notation ......................... 1.3 LD ............................. 2.3.3.2 
Description ....................... 2.3.1 LIBRARY .......................... 8.2 
Language ......................... 10.2 

2270521-9701 lndex-7 



Index 

List Directory (LD) ................ 2.3.3.2 
LOAD ........................... 5.6.6 
ML ............................... 3.5 
Modify Roll (MR) .................... 3.5 
Modify Synonym (MS) ............... 2.6 
Move Lines (ML) .................... 3.5 
MR ............................... 3.5 
MS ............................... 2.6 
PHASE ..................... 5.6.5, 5.6.6 
OE ............................... 3.5 
QuitEdit(QE) ...................... 3.5 
S BS ........................... 2.3.3.1 
SEARCH .......................... 8.2 
Show Background Status (SSS) .... 2.3.3.1 
Show Line (SL) ..................... 3.5 
SL ................................ 3.5 
TASK ............................ 5.6.5 
XB .............................. 2.3.4 
xcc ............................. 4.2.2 
XCCF ........................ 1.2, 4.2.1 
XCP ............................. 6.2.2 
XCPF ................... 1.2, 6.2.1, 7.2.1 
XCT ............................. 6.4.2 
XCTF ................... 1.2, 6.4.1, 7.2.1 
XE ................................ 3.5 
XLE ........................ 1.2, 2.3.4.1 

Screen Description, Tl FORM VDT ...... F9-1 
SEARCH SCI Command ............... 8.2 
Segment: 

Procedure ...................... 5.4.1.2 
Reentrant Procedure ............. 5.4.1.2 
Task ........................... 5.4.1.1 

Segmentation: 
COBOL Module ................... 5.4.3 
Within Overlay Phase Modules, 

COBOL ........................ F5-8 
Separate Program Files, Multiple 

Tasks ............................ F5-6 
Sequential: 

File ...... 2.7.1, F2-3, F2-4, F2-5, F2-6, F2-7 
Attributes ..................... 2.7.1.1 
Creating ................. 2.7.1.2, F2-2 
Description ..................... F2-2 

Library ............................ 5.7 
Sharing: 

Main Program Module .............. 5.6.7 
With P2 ....................... F5-15 

Same P1 and P2, Multiple Tasks ...... F5-4 
Same P1 but Different P2s, 

Multiple Tasks .................. F5-5 
Show Background Status (SBS) 

SCI Command ................... 2.3.3.1 
Show Line (SL) SCI Command .......... 3.5 
Single Procedure With: 

Multiple Tasks, Linking ....... 5.6.3, F5-10 
Single Task: 

Linking .................... 5.6.2, F5-9 
User Program File, Linking .. 5.6.9, F5-17 

Single Task: 
Linking: 

Single Procedure With ....... 5.6.2, F5-9 

lndex-8 

Two Procedures With ....... 5.6.4, F5-11 
User Program File, Linking Single 

Procedure With ............ 5.6.9, F5-17 
SL SCI Command ..................... 3.5 
Software Release Level ................ 4.1 
Sort/Merge .......................... 9.3 

COBOL Routine Calling ............. F9-2 
Source: 

File .......................... 1.2, F1-1 
Module: 

COBOL .......................... 3.1 
COBOL Program ................. F3-1 

Special Types Relative Record File ... 2.7.2.3 
SPECIAL-NAM ES Paragraph .... 6.2.1, F6-18 
ST ART Statement .................... 12.2 
Statement: 

ACCEPT ........................... 1.1 
CALL ............................. 8.3 
CLOSE ....................... 3.5, 12.2 
DELETE .......................... 12.2 
DISPLAY .......................... 1.1 
OPEN ............................ 12.2 
READ ............................ 12.2 
REWRITE ......................... 12.2 
START ........................... 12.2 
STOP RUN ......................... 7.2 
Use: 

ACCEPT ....................... F11-1 
DISPLAY ...................... F11-1 

WRITE ........................... 12.2 
Status: 

File 1/0 ........................... 12.2 
Table, File ....................... T12-1 
Value, File 1/0 ..................... 12.3 

Stop, Address ........................ 7.2 
STOP RUN Statement ................. 7.2 
Stream Format, Batch .............. 2.3.4.1 
Structure: 

Alternate Di rectory .................. 3.3 
Di rectory ...................... 2.4, F2-1 
File .......................... 2.4, F2-1 
Job ............................... 2.2 
Overlay .................... 5.6.6, F5-14 

Subroutine .......................... 1.2 
Assembly Language ................. 8.3 
Calling ............................ 8.1 
COBOL ..................... FD-1, FD-2 
Debugging, Assembly Language ...... 7.3 
Library Package, COBOL ......... 8.2, D.1 

Subroutines, COBOL Library .......... TD-1 
Suppression, Blank ................ 2.7.1.1 
Synonym ........................ 1.2, 2.6 
Synonym as a File Name ............... 2.6 
Synonym Availability With a: 

Background Task ................... 2.6 
Foreground Task ................... 2.6 

System: 
Capabilities ........................ 2.1 
Error Messages .................... 8.2 

COBOL Compiler ................ TB-2 
Overview .......................... 1.1 

2270521-9701 



Index 

System Command Interpreter 
(SCI) ................. 1.1, 2.2.1, 2.3, 2.3.3 

Using ALLOCATE, Linking ........... F5-13 
Using Subroutines, COBOL Program ... D.17 

Table: Value: 
Device Correspondence ........... T12-4 
File Status ....................... T12-1 

Default ......................... 1.3.3.2 
File 1/0 Status ..................... 12.3 

Tagged Format ....................... 5.5 
Tailored SCI Procedure .............. F10-2 

Initial .......................... 1.3.3.1 
VCATALOG ........................ 2.4.2 

Task ............................ 1.2, 2.2 VDT: 
Background ........................ 2.2 
Foreground ........................ 2.2 
Segment ....................... 5.4.1.1 

Mode ............................ 2.3.2 
Screen Description, Tl FORM ........ F9-1 

Volume Name ...................... 2.4.1 
Synonym Availability With a: 

Background ...................... 2.6 
Foreground ...................... 2.6 

TASK SCI Command ................. 5.6.5 
Termination Messages ................ 6.6 
Text Editor .......................... 3.5 

W Debug Command ............... 7.2.2.10 
With Error Messages, COBOL 

Compiler Listing .................. FB-1 
With P2, Sharing Main Program 

Module ......................... F5-15 
TIFORM ............................. 9.2 Within Overlay Phase Modules, 

VDT Screen Description ............ F9-1 
Tools, Productivity .................... 9.1 

COBOL Segmentation .............. F5-8 
WRITE Statement. ................... 12.2 

Two Procedures With: 
Multiple Tasks, Linking ....... 5.6.5, F5-12 
Single Task, Linking .......... 5.6.4, F5-11 

Type, Fi le ............................ 2. 7 

Write Screen to Message File 
(W) Debug Command ............ 7.2.2.10 

XB SCI Command ................... 2.3.4 
XCC SCI Command .................. 4.2.2 

U Debug Command ................ 7.2.2.9 
Undo Address Stop (U) Debug 

Command ...................... 7.2.2.9 

XCCF SCI Command ............. 1.2, 4.2.1 
XCP SCI Command .................. 6.2.2 
XCPF SCI Command ........ 1.2, 6.2.1, 7.2.1 

Use: XCT SCI Command .................. 6.4.2 
ACCEPT Statement ............... F11-1 XCTF SCI Command ........ 1.2, 6.4.1, 7.2.1 
Batch ........................... 2.3.4 XE SCI Command ..................... 3.5 
Declarative ....................... 12.4 
DISPLAY Statement. .............. F11-1 

XLE SCI Command ............. 1.2, 2.3.4.1 

User: 
Error Messages .................... B.1 

COBOL Compiler ................ TB-1 

.S$SHARED Program File ........... 5.4.1.2 

.S$SYSLIB.RCBMPD ................. 5.6.1 

.S$SYSLIB.RCBNOIO ................ 5.6.1 
Interface, DBMS-990 ............... 9.4.2 .S$SYSLIB.RCBPRC ................. 5.6.1 
Program File, Linking Single .S$SYSLIB.RCBTSK ................. 5.6.1 

Procedure With Single .S$SYSLIB.RCBTSKD ................ 5.6.1 
Task ................... 5.6.9, F5-17 

2270521-9701 lndex-9/lndex-10 



( 



w z 
:J 
CJ z 
0 
...J 
ct 
1-
::> 
0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER'S RESPONSE SHEET 

Manual Title: DX10 COBOL Programmer's Guide (2270521-9701) 

Manual Date: February 1985 Date of This Letter: -------

User's Name: --------------- Telephone: ----------

Company: _______________ _ 
Office/Department: -------

Street Address:-----------------------------

City/State/Zip Code:---------------------------

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the 
following space. If there are any other suggestions that you wish to make, feel free to include 
them. Thank you. 

Location in Manual Comment/Suggestion 

NO POST AGE NECESSARY IF MAILED IN U.S.A. 
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL 



FOLD 

I II II I 

r BUSINESS REPLY MAIL~ 
'- FIRST CLASS PERMIT NO. 7284 DALLAS, TX ~ 

POSTAGE WILL BE PAID BY ADDRESSEE 

TEXAS INSTRUMENTS INCORPORATED 
DATA SYSTEMS GROUP 

.ATIN: TECHNICAL PUBLICATIONS 
P.O. Box 2909 M/S 2146 
Austin, Texas 78769 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 




